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Zusammenfassung

Bei höher entwickelten Tieren nimmt die Komplexität der visuellen rezeptiven
Felder mit dem hierarchischen Aufbau von den visuellen Eingangsarealen zu den
höheren Hirnarealen in dem Maße zu, dass visuelle Reize in den höheren Hirnarealen
einen indirekteren Einfluss als in den Eingangsarealen ausüben. Von diesen Arealen
aus gibt das System diese Aktivität dann wieder über weitere Stufen an die Endef-
fektoren (Muskeln) weiter. Neuere Erkenntnisse zeigen jedoch, dass bei einfacheren
Tieren, beispielsweise Fliegen, ein Motorneuron über ein visuelles rezeptives Feld
verfügen kann (Krapp und Huston, 2005) und das Motorneuron dadurch entsprechende
sensorische Merkmale aufweisen kann. Solche rezeptiven Felder beeinflussen das Ver-
halten in direkter Weise, indem diese Neuronen ohne Zwischenschritte direkt die
Wahrnehmungs-Handlungs-Schleife schließen und Feedback über die Umwelt wieder
an die Sensoren geben.

Im ersten Teil dieser Doktorarbeit werden wir aufzeigen, dass es möglich ist, solche
direkt gekoppelten Sensor-Motor-Felder in einfachen Verhaltenssystemen mit Hilfe
eines auf Korrelationen basiertem Temporal-Sequence-Learning-Algorithmus zu en-
twickeln. Das Hauptziel besteht darin aufzuzeigen, dass Lernen stabiles Verhalten
generiert und dass die erzeugten rezeptiven Felder sich ebenfalls stabilisieren, wenn
das neuerlernte Verhalten erfolgreich ist. Die Entwicklung von stabilen neuronalen
Eigenschaften als auch von stabilem Verhalten ist schwierig, da die Konvergenz von
funktionalen Neuroneneigenschaften und vom Verhalten gleichzeitig sichergestellt wer-
den muss. Diese Arbeit stellt einen ersten Versuch dar, dieses Problem mit Hilfe
eines einfachen Robotorsystems zu lösen. Dieser Teil der Arbeit wird mit der Frage
geschlossen, wie eine indirekte Sensor-Motor-Kopplung, wie sie bei höher entwick-
elten Tieren vorkommt, aufgebaut werden kann. Durch die Nutzung von einfachen
hintereinandergeschalteten Lernstrukturen werden wir aufzeigen, dass damit ähnliche
Ergebnisse erzielt werden können; selbst für die sekundären rezeptiven Felder, die in-
direkte visuelle Reize erhalten.

Im zweiten Teil dieser Doktorarbeit werden wir verschiedene Agenten quantita-
tiv analysieren, die sich mit dem im ersten Teil vorgestelltem Temporal-Sequence-
Learning-Algorithmus an die Umwelt anpassen. Hierbei werden wir versuchen fol-
gende Frage zu beantworten: Wie können wir vorhersagen, welcher der gegebe-
nen Agenten sich am besten für ein bestimmtes Szenario (Umwelt) eignet? Direkt
gekoppelte Umwelt-Agent-Systeme in ihrem Verhalten zu verstehen, stellt kein triv-
iales Problem dar, vor allem wenn sich diese Systeme im Lernprozess verändern.
Geschlossene Regelschleifen, wie das Umwelt-Agent-System, wurden in der Infor-
mationstheorie bereits in den 50er Jahren beschrieben, dennoch gab es nur wenige
Versuche Lernen mitzuberücksichtigen, wobei meist der Informationsgehalt der Ein-
gangsgrößen gemessen wurde. Zur Beantwortung der oben genannten Frage werden
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wir mit Hilfe von Energie- und Entropiemessungen simulierte Agenten untersuchen
und deren Entwicklung im Lernprozess beobachten. So kann nachgewiesen werden,
dass es in genau definierten Szenarien lernende Agenten gibt, die in Bezug auf ihren
Aufbau und ihr Anpassungsvermögen optimale Eigenschaften aufweisen. Darüber
hinaus werden wir aufzeigen, dass es im Rahmen von vergleichsweise einfachen Fällen
analytische Lösungsmöglichkeiten für die zeitliche Entwicklung solcher Agenten gibt.

In den ersten beiden Teilen der Arbeit werden Agenten mit unimodalem sen-
sorischen Eingang analysiert (visuell oder somatosensorisch). Im dritten und letzten
Teil dieser Arbeit wird untersucht, inwieweit der Einsatz von multimodalen Sen-
soren die Entwicklung der rezeptiven Felder und des Verhaltens beeinflusst. Dieser
Ansatz geht auf Experimente mit Nagetieren zurück, in denen nachgewiesen werden
konnte, dass, obwohl visuelle Reize für die Entstehung von hippocampischen Ort-
szellen (“place cells”) und der räumlichen Orientierung eine wichtige Rolle spielen,
Ratten sich auch auf olfaktorische, auditive und somatosensorische Reize sowie solche
aus ihrer Eigenbewegung stützen können. In dieser Doktorarbeit wird erstmalig ein
Modell einer Ortszelle vorgestellt, in dem visuelle und olfaktorische Reize zur Her-
ausbildung eines Ortsfeldes kombiniert werden. Dies wird durch ein einfaches Feed-
Forward-Netzwerk und einem Winner-Takes-All-Lernmechanismus realisiert. Eine
Orientierungsaufgabe wird mit Hilfe der vorgestellten Orientierungsmechanismen,
basierend auf geruchliche Eigenmarkierungen, die mit einem Q-Lernalgorithmus kom-
biniert werden, gelöst. Wir zeigen, dass olfaktorische Reize eine wichtige Rolle bei
der Bildung von Ortsfeldern darstellen und weisen nach, dass eine Kombination von
visuellen und olfaktorischen Reizen, die mit einer gemischten Orientierungsstrategie
einhergeht, zu einer Verbesserung der zielgerichteten Orientierung führt.
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1
Introduction

In control theory systems are often classified into two groups: 1) Open-loop systems
and 2) Closed-loop systems. Open-loop systems are systems in which the output is
not used as a control variable. Since there is no feedback used to control the system,
open-loop systems can not cope with unexpected situations. For example, imagine we
are driving a car on very well known road and we close our eyes for a short moment
of time and then some creature suddenly enters the road. Evidently, the disrupted
visual feedback prevents us from reacting. While this is clearly dangerous, many
examples exist in biology for such feed-forward open-loop behaviour, too, such as
ballistic movements, i.e. a forced movement initiated by muscle actions (such as a
tennis serve or boxing punch), or ballistic stretching, i.e. a quick, bouncing movement
that often take a joint beyond its normal range (usually it is painful). The advantage
of such movements is that they are very fast. The lack of control therein, however,
normally leads to the situation that behaving systems form a closed-loop with their
environment where sensory inputs influence motor output, which in turn will create
different sensations. Let’s get back to our example of driving a car on a curvy road. In
this example the view of the curve segment generates visual input to the system and
steering is one possible output. Clearly, our perception of the road (steepness of the
curve) influences how much we have to steer, whereas turning the steering wheel will
cause changes in our perception for the next time moment. Visually guided reaching
and grasping, navigation in the environment, servoing in robots are also examples
of such closed-loop systems. Different from open-loop systems, closed-loop systems
can react to unexpected situations and/or adapt to environmental changes by ways
of learning.

In this thesis we will investigate closed-loop learning systems where the emphasis is
on the development and utility of receptive fields in a closed-loop behavioural context.
A receptive field (RF) of a given neuron is that particular surface area of a sensory
organ from which neuronal responses can be elicited. Or in other words, the collection
of sensors which form synapses to a single neuron form the neuron’s receptive field.
For example, the RF of a ganglion cell in the retina of the eye is composed of inputs
from photoreceptors which provide its input, whereas a group of ganglion cells in turn
forms the RF for a cell in the brain (Kandel et al., 2000). Receptive fields are found
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2 Chapter 1: Introduction

in different brain regions such as visual, somatosensory and auditory cortex.
Another type of receptive fields are place fields (PFs) found in rat hippocampus

(O’Keefe and Dostrovsky, 1971). Place fields of pyramidal cells code for a specific
location of the animal in its environment. Like other receptive fields, PFs are formed
from sensory inputs but differ from conventional RFs in that PFs are formed from
multiple sensory cues such as visual, olfactory, somatosensory, auditory and self-
motion cues (Knierim et al., 1995; Save et al., 1998, 2000; Hill and Best, 1981; Etienne
and Jeffery, 2004).

There have been different methods proposed for the development of visual recep-
tive fields in the visual cortex (Olshausen and Field, 1996; Bell and Sejnowski, 1997;
Blais et al., 1998; Weber and Obermayer, 1999; Hurri and Hyvärinen, 2003; Körding
et al., 2004; Wyss et al., 2006). However, in these studies the output of the receptive
fields is not used to control behaviour (open-loop system). On the other hand, there
exist studies which use receptive fields (place fields) for spatial navigation. However,
in these studies place fields are first developed in an exploration phase and only af-
terwards used for goal directed learning (Arleo and Gerstner, 2000; Arleo et al., 2004;
Strösslin et al., 2005; Sheynikhovich et al., 2005). The novelty of our approach is that
we simultaneously develop and use receptive fields in behavioural tasks as shown in
Fig. 1.1 creating a closed-loop scenario. We form receptive fields from sensory inputs
where at the same time RFs are used to drive the behaviour of the agent. When
acting in the environment, sensory inputs change, which in turn influence the forma-
tion of the receptive fields closing the loop. In one approach (presented in Chapter 2)
we will directly use receptive fields for the driving behaviour of a robot, whereas in
the other system (presented in Chapter 4) receptive fields will be used as an input
to the upper layer (motor neurons) in the network for path learning. Note that here
development of RFs and path learning will be performed simultaneously.

Figure 1.1: Schematic diagram of the development and utility of receptive fields in
a closed-loop behavioural context.

This thesis divides into three parts. The first part is devoted to the learning
in a sensory-motor loop and the development of primary and secondary “indirect”
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receptive fields. In the second part we will be concerned with the quantitative analysis
of closed-loop learning systems, whereas in the last part we will investigate multi-
sensor integration for receptive field development and its influence onto behavioural
performance.

In Chapter 2 we will present simple as well as chained learning architectures and
show the development of visual receptive fields by using temporal sequence learn-
ing. By implementing simple chained learning architectures we will for the first time
generate and stabilise secondary receptive fields in a closed-loop behavioural context.
Here by secondary RFs we mean the development of receptive fields in higher layers
of chained architectures which receive “indirect” inputs from lower layers.

Further on, in Chapter 3, we will investigate closed-loop learning systems which
perform temporal sequence learning as presented in the first part in a more generic
way by analysing aspects of system dynamics during learning. To our knowledge
this is one of the first attempts to address such issues in closed-loop systems during
learning.

And finally, in Chapter 4 we will present a navigation system based on place fields,
where for the first time we will show the importance of the integration of multi-modal
cues for place field formation and goal directed navigation. We will also present a
novel navigation mechanism based on self-marking which makes the learning process
even faster.

Each chapter starts with its own Introduction section, where we discuss the state
of the art and our goals related to that topic, and ends with Discussion section where
we compare our approach to other methods and relate it to biological data. We will
conclude this thesis with Chapter 5 where we will summarize all main findings and
provide an outlook for future investigations.
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2
Behaviourally Guided Development of the

Receptive Fields

2.1 Introduction

Normally many sensor events, which follow each other in time, are associated to a
real life situation. However, only a few can be used to improve the behaviour. This
can be achieved by temporal sequence learning. It rests on the assumption that it is
in most cases advantageous to react to the earliest of such sensor events not having
to wait for later following ones. For example, it is useful to react to a heat radiation
signal and not to the later following pain on having finally touched a hot surface.
Many similar sequences of sensor events are encountered during the life time of a
creature as the consequence of the existing far-senses (e.g.: vision, hearing, smell)
and near-senses (touch, taste, etc.). Generically one observes that the trigger of a
near-sense is preceded by that of a far sense (smell precedes taste, vision precedes
touch, etc.). Far-senses act predictive with respect to the corresponding near-senses
(Verschure and Coolen, 1991). Conceptionally this type of learning is related to
classical and/or operant conditioning (Sutton and Barto, 1981, 1990; Wörgötter and
Porr, 2005). Algorithmically all these approaches (Sutton and Barto, 1981; Kosco,
1986; Klopf, 1988; Porr and Wörgötter, 2003a) share the property that they are built
in a very simple way, in general only consisting of a single learning unit.

The development of visual receptive fields, for example in the primary visual cor-
tex, has been an intriguing problem addressed in numerous studies (Olshausen and
Field, 1996; Bell and Sejnowski, 1997; Blais et al., 1998; Weber and Obermayer, 1999;
Hurri and Hyvärinen, 2003; Körding et al., 2004; Wyss et al., 2006). However, in these
studies the receptive field output does not change the actual behaviour. This means
that these learning algorithms operate in open-loop or as so called input/output sys-
tems. Evidence, however, exists that visual receptive fields can indeed be influenced
by the behavioural context on quite different time-scales (Sugita, 1996; Dragoi et al.,
2003). Indeed there is one recent study that is able to generate receptive fields in a
behaviourally closed loop context (McKinstry et al., 2006) but it remains unclear if
these fields are stable over time (see section 2.13).

5



6 Chapter 2: Behaviourally Guided Development of the Receptive Fields

Furthermore, one can ask the question, how higher order receptive fields, like
those in visual areas beyond V1 are generated where the input becomes more and more
indirect and neurons receive their vision information conveyed by several intermediate
stages? In our context the question can be rephrased asking: Can we chain our
learning architectures and still arrive at a stable behaving system, which also generates
stable receptive fields?

Here we will apply temporal sequence learning to a driving robot that is supposed
to learn to better follow a line painted on the ground. We will demonstrate: 1) That it
is possible with such architectures to generate “receptive fields” from sensory inputs.
2) That the output of these RFs can drive the motors of the robot in order to create
better and more stable behaviour, (which in turn influences its sensor inputs) and 3)
that RF development will stop as soon as the system has obtained behavioural sta-
bility after learning. Furthermore we will show (4) that it is possible to design simple
chains of such learning units while at the same time still guaranteeing behavioural
stability, and that such architectures outperform simple architecture in cases where
we have only weakly correlated (in time) inputs. We will also demonstrate (5) that
secondary receptive fields can be developed by using simple chained architectures.
The central goal of this approach is to demonstrate that direct sensor-motor coupling
in a very simple architecture can lead to the generation of stable structural elements
and simultaneously to stable behaviour without additional assumptions, while it is
possible to gradually extend such architectures towards lattices without the need for
additional free parameters.

The chapter is organised in the following way. After presenting the sequence
learning rule called “ICO” (Input Correlation learning, Porr and Wörgötter, 2006)
and its embedding into a closed loop scenario we will first discuss some setups without
receptive fields. By this we would like to demonstrate the efficiency and stability of
the ICO-rule in the line-following task using high learning rates. Next we start to
look at receptive field development and analysis, which requires lower learning rates
without which fine structure would not develop. Later on we will present two simple
chained learning architectures and show results of receptive field development by using
such chained architectures. Finally, we will conclude this chapter with a discussion
section.

2.2 Experimental setup

2.2.1 Robot setup

A small two-wheeled Rug Warrior Pro mobile robot (diameter of 18 cm) was used for
investigation which was tested on a line following task as shown in Fig. 2.1 A. The
robot has built in camera which produces images of the track and is driven by two DC
motors. The robot was connected to the desktop PC via cables. DA/AD converter
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board USB-DUX1 was used for receiving visual input signals from the robot and for
sending motor output signals to control the robot. The sampling rate of the system
was 25 Hz.

Figure 2.1: A) Image of the Rug Warrior Pro mobile robot. B) Image of the robot
performing a line following task.

2.2.2 Learning task

The task for the robot was to learn following a black line painted on a white floor.
Initially there is implemented only a weak, abrupt and late steering reflex which in
most of cases (except of very shallow turns) will not be sufficient to steer the curve.
As a consequence the robot would looses the track. The learning goal is to learn
predictive and smoother steering reactions in order to stay on the track and to avoid
the initial reflex.

2.3 Learning algorithm

The temporal sequence learning rule based on spike timing dependent plasticity
(STDP) was used for learning (Porr and Wörgötter, 2006). The general scheme
of such learning algorithm is presented in Fig. 2.2 B. The learner has inputs xj which
feed into a summation unit v. The output is calculated by

v =
∑
j

ρjuj, (2.1)

1For more information please visit the web-page: http://www.linux-usb-daq.co.uk



8 Chapter 2: Behaviourally Guided Development of the Receptive Fields

where u = h ∗ x is a temporal convolution of the input x with a low-pass filter h. We
define the low-pass filter by

h(t) =
1

b
eat sin(bt), (2.2)

where, a = −πf/Q and b =
√

(2πf)2 − a2, with f the frequency and Q > 0.5 the
damping. This convolution correlates temporally non-overlapping signals x1 and x0

as shown in Fig. 2.2 C.

The learning unit receives its reflexive x0 and predictive x1 inputs from the sensors
fields (line detectors) xL,R0 and xl,R1 respectively in the image of a forward pointing
camera on the robot as shown in Fig. 2.2 A. Sensors fields xL,R0 are located at the
bottom in the camera image whereas sensor fields xL,R1 are place higher up from the
reflex. As a consequence the time delay T between x1 and x0 depends on the speed of
the robot and direction angle with respect to the curvature. To accommodate some
variability, x1 is fanned out and fed into a filter-bank of different filters h as indicated
by the dashed lines in Fig. 2.2 C. As shown in older studies of Porr and Wörgötter
(2003a, 2006), the number of filters k is not critical and here k = 10 was used. The
robot’s base speed of 0.125 m/s together with the camera frame rate of 25 Hz used
in all experiments leads to f1,k = 2.5/k Hz, k = 1, . . . , 10 for the filter-bank in the
x1 pathway. Frequency of the x0 pathway was f0 = 1.25 Hz. Damping parameter of
all filters was Q = 0.6.

Weights change according to an input-input correlation (ICO) rule (Porr and
Wörgötter, 2006):

ρ̇j = µuju̇0, j > 0, (2.3)

which is a modification of the isotropic sequence order (ISO) learning rule (Porr and
Wörgötter, 2003a). The behaviour of this rule and its convergence properties are
discussed in (Porr and Wörgötter, 2006).

The weight ρ0 is set to a fixed value (ρ0 = 1), all other weights are initially zero.
As discussed above this learning rule is specifically designed for a closed loop system
where the output of the learner v feeds back to its inputs xj after being modified by
the environment (see Fig. 2.3).

The goal is to learn predictive steering reactions in a way that the initial reflex is
avoided. This is achieved by changing the connection weights ρ1, such that the learner
can use the earlier signal at x1 to generate an anticipatory reaction. It is known that
weights stabilise and learning stops at the condition x0 = 0 when the reflex is not
triggered anymore (Porr and Wörgötter, 2003a). The convergence properties of this
kind of closed loop learning are discussed in Porr and Wörgötter (2006) and Porr and
Wörgötter (2003b).
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Figure 2.2: A) Camera image showing a track from the robot’s perspective and
relative positions of the predictive sensory inputs x1 and reflexive sensory inputs
x0. B) Schematic diagram of the learning system. Inputs x, resonator filters h,
connection weights ρ, output v. The symbol ⊗ denotes a multiplication, d/dt a
temporal derivative. The amplifier symbol stands for a variable connection weight.
Dashed lines indicate that input x1 is fed into a filter-bank. C) Resonator filters
h0 (solid line) for the input signal x0 and h1,k (dashed lines) for the x1 given by
parameters f1,k = 2.5/k Hz, k = 1, . . . , 10 for the filter-bank in the x1 pathway.
Frequency of the x0 pathway was f0 = 1.25 Hz. Damping parameter of all filters was
Q = 0.6.

2.4 Embedding learning in a closed-loop scenario

Fig. 2.3 shows how such a learning unit can be embedded in a closed-loop system.
Initially (see panel A) the system is set up only to react to the near-sense x0 by
ways of a reflex. This reflex will after some behavioural delay reset the signal from
the near-sensor again to its starting value (often zero) closing the loop. In more
technical terms, this represents a negative feedback-loop controller. The learning
system, however, contains a second, predictive loop (panel B) from a sensor x1 that
receives an earlier signal (far-sensor). At the beginning of the learning, synapses
ρ1 which convey information from the far-sense are zero and in Fig. 2.3 B only the
inner loop x0 is functioning. During learning, synapses ρ1 will get strengthened and
the system will increasingly better react to the far-sense. As a consequence reactions
occur earlier and the reflex based on x0 will not be triggered anymore. Effectively, the
inner loop has functionally been eliminated after learning (see Fig. 2.3 C). A forward-
model of the reflex has been built by Porr and Wörgötter (2003b). The learning of
a forward model makes this approach appear similar to “feedback-error learning” as
introduced by Gomi and Kawato (1993), but there are distinctive differences as will
be discussed later (see section 2.13.3).

Intuitively the mechanism introduced in Fig. 2.3 will work with any aversive reflex.
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Figure 2.3: Schematic diagram of the control (A), learning (B) and post-learning
case (C). Components of the learning system: sensor inputs x0 and x1, motor output
v, P0 denotes a reflexive pathway and P1 a predictive pathway. D - disturbance, T -
time delay between sensory inputs x1 and x0.

One should, however, note the same mechanisms can also be used to learn earlier at-
traction reactions. Already Braitenberg (1984) had nicely demonstrated that it is the
sign-combination of the motor signals which determines the resulting reaction (aver-
sion versus attraction) in his vehicles. Here, similarly, we can define the behavioural
outcome by ways of the motor signals leaving the learning mechanism unaffected (see
Porr and Wörgötter, 2003b, 2006 for examples of attraction reflexes). Regardless of
the motor-signs, the learning goal is always to avoid the earlier, near-sense-triggered
reflex leading to a situation where x0 = 0. Porr and Wörgötter (2003b, 2006) were
able to prove mathematically that synaptic weights will stop to change as soon as this
condition (x0 = 0) is fulfilled. Hence learning terminates as soon as the newly learnt
behaviour is successful, which creates a nice self-stabilising property of such systems.

2.5 Simple learning architecture

2.5.1 Physical and neuronal setup of the system

A physical setup used for learning is presented in Fig. 2.4 A. A camera mounted
at the front of the robot produces images of the track like the one shown. Since
the robot drives forward, obviously sensor fields more at the top of the image (xL,R1 )
represent far-sensors (predictive inputs), while those at the bottom (xL,R0 ) can be
regarded as near-sensors (reflexive inputs). Initially the robot reacts abruptly only
to the near-sensors as soon as the image of the track moves over one of these near-
sensor fields. The robot makes left turn if sensor on the left side is triggered and
vice versa. As a consequence the robot will be brought back to a situation where the
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track will remain mostly in the centre of the image. As mentioned before the learning
goal is to learn predictive and smoother steering reactions. This can be achieved by
changing the synaptic weights of the far-sensor fields in an appropriate way such that
earlier and smoother steering reactions will be elicited leading to the situation that
the near-sensor fields will never be triggered again, hence, avoiding the initial reflex.

Figure 2.4: Physical and neuronal setup of the simple learning architecture. A)
Camera image with left and right sensor fields marked by xL,R1 and xL,R0 . B) The
simple neuronal setup of the robot. Symbols α and β denote neurons, u denote
filtered input signals x, ρ connection weights and v the output of the neuron β used
for steering. v is calculated by the method shown in Fig. 2.2 B and its corresponding
Eq. 2.1. ML,R is given in Eq. 2.4 and transforms v to the motor output.

A simple neuronal setup of the robot is presented in Fig. 2.4 B. It has three
neurons, two are essentially only summation nodes, which we, for consistency, also
call neurons α. They have fixed weights (+1 for right side inputs and −1 for left side
inputs). In addition there is one neuron β with changing synapses on which all signals
converge. Synaptic weights ρβ0 are also set to a fixed value of 1 and only weights ρβ1
of all ten filters (see Fig. 2.2 C) change. The output vβ is used to control the motor
signals of the robot. Note, in this experiment the setup for the weight development is
symmetrical but with inverted signs for left versus right curves. Hence only one set of
weights ρβ1 develops. This is motivated by the fact that, in a natural setup, left and
right curves do not have any a priori bias. Situations were, for example, left curves
are always on average sharper than right curves are not realistic. Hence, weights
learnt for a left curve might as well be applied, with inverted sign, to a right curve
(and vice versa), where learning will commence if the learnt weights are not sufficient.
Given that the learning algorithm is linear, it would not make any difference if inputs
were all converging directly onto β. Note, since the robot is continuously driving, we
perform on-line and not batch learning.
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2.6 Sensory-motor system

2.6.1 Sensory input

As described in the introduction, a far-sensor (predictive) pathway and a near-sensor
(reflexive) loop can be defined from sensor fields in the image of a forward pointing
camera on the robot.

Figure 2.5: A) Sequence of camera frames taken from a left curve (here the number
denotes the camera frame in a sequence). B) Raw signals x0,1 raw obtained from
sensor fields in the camera image. C) Preprocessed input signals x0,1 of the learning
system. Track layout is shown in Fig. 2.1 B. Signals before camera frame 150 come
from the left turn, those after frame 150 from the right turn of the robot.

Fig. 2.5 A shows a sequence of camera frames obtained on a left-right track (see
Fig. 2.1 B) during a left curve and the corresponding raw input signals (panel B)
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obtained from the sensor fields xL,R0,1 (defined as the sum over all pixel values within
the sensor field; pixel values are between zero (black colour) and 255 (white colour).
The vertical dashed lines in panel B show that signals x1 are indeed earlier than those
at x0. The sequence of camera frames in panel A demonstrates that the ego-motion
of the robot creates quite some variability in the field of vision of the robot (see video
camera.mpg2), for example the moving-out and moving-in of the bent line, clearly
visible in the second row in panel A. This creates a temporally inverted sequence
of input events. Learning needs to be robust against such effects as well as against
other problems that arise from this behaviourally self-generated variability. Note
that we use a threshold for raw input signals (xL,R0,1 raw) before we feed them to the

neuronal circuit to get rid of background noise. The sensory inputs xL,R0,1 could obtain
binary value of 255 or zero depending on whether the raw inputs are below the given
threshold or not (see Fig. 2.4 B and C). The threshold for the reflex x0 raw and the
predictor x1 raw is 1000 and 3000 units respectively. We limited input activity of
inputs x0 and x1 in our model by a time period Tr (similar to a refractory period in
real neurons, Kandel et al., 2000), which means that if there was an input produced
by triggering a sensory field at time moment t then there will be no inputs elicited for
the next Tr time units. In our model we use Tr = 20 camera frames. In addition we
also use lateral-temporal inhibition across the inputs of the left and the right side in
order to avoid unwanted correlations. This means that whenever a sensor field on the
left or the right side is firstly triggered it will inhibit inputs coming from the other
side for the next Ti time units. Here we use Ti = 20 camera frames.

2.6.2 Motor output

The robot has a left and a right motor, which both receive a certain forward drive
leading to a constant speed of 0.125 m/s in all experiments. This signal is modified
by braking (|vβ|) and steering (±vβ). So, for the left ML and the right motor MR we
get:

ML = 1.1905× 10−4 (3097− |vβ| − vβ)− 0.2437 m/s,
MR = 1.1905× 10−4 (3097− |vβ|+ vβ)− 0.2437 m/s.

(2.4)

Numerical constants are determined by the 12-bit resolution of the used DA-converter,
where zero corresponds to maximal reverse and 4095 corresponds to maximal forward
speed. For the chained architectures, introduced later (see Fig. 2.29 B, C), we use vγ

instead of vβ in the Eq. 2.4.

2Videos can be downloaded at http://sites.google.com/site/ktomsite/driving-robot
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2.7 Learning with the simple architecture

2.7.1 Basic behaviour of the simple architecture

The simple learning architecture (see Fig. 2.4) was applied on the line following task
and three different tracks (intermediately steep, shallow and sharp track) were used
in this experiment. Results for the intermediately steep track are presented in Fig. 2.6
where we show sensory input of the left side xL0 (panel A), synaptic weights ρβ1 (panel
B) and motor output vβ (panel C). Driving trajectories of the robot for the control
case (i.e. before learning, reflexive behaviour) are shown in panel D and the trajectory
after learning is shown in panel E. As we can see the late and weak reflex response by
itself is not enough to assure line-following behaviour; therefore the robot misses the
line whenever it drives without learning (see panel D and also video control.mpg3).
In panels A-C two learning trials (separated by a vertical dashed line) are shown,
between which connection weights were frozen and the robot was manually returned
to its starting position. A rather high learning rate µ = 3 × 10−6 was chosen to
demonstrate fast learning. The cumulative action of reflex and predictive response
allows the robot to stay on the line already during the first learning trial (trajectory
not shown, but similar to the trajectory T2, see panel E). In the first learning trial the
motor signal (panel C) shows three leftward cumulative reflexive-predictive reactions
(large troughs) and seven (two leftward and five rightward) non-reflexive (predictive)
reactions. Note that cumulative responses consist of two components: the first com-
ponent, smaller in amplitude, is the predictive response, whereas the second, larger
in amplitude, is the reflexive response (see inset in panel C). In the second trial only
predictive leftward and rightward steering reactions occurred and the reflex was not
triggered anymore. An appropriate steering reaction was learnt after three learning
experiences (later on referred to LE) reflected by the three peaks in the weight-curve
in panel B, during the first learning trial corresponding to about 50 cm of the track
(total length of the track was approximately 1.7 m). The left reflex signal xL0 is shown
in panel A where we observe that the reflex was triggered three times (three troughs
below the threshold) which corresponds to three LEs. To ensure weight stabilisation
we employed a threshold where values of x0 above the threshold were set to zero
(similar to the mechanical arm experiment in Porr and Wörgötter, 2006). Due to
the symmetry of this setup (see Fig. 2.4 B), learnt synaptic weights from the left
curve could be equally applied to the right curve and no more reflexes were triggered
after these first three LEs. We can also observe, that after learning the robot elicits
steering reactions that are wider and much smaller in amplitude (compared to the
steering reactions during learning) which as a consequence leads to smoother driving
behaviour (for the whole learning process see video middle.mpg).

In addition two more extreme tracks were chosen to demonstrate the robustness

3Videos can be downloaded at http://sites.google.com/site/ktomsite/driving-robot
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Figure 2.6: Results for the line following experiment using the simple architecture
(see Fig. 2.4 B) on the intermediately steep track. Learning rate was µ = 3 × 10−6.
A) Reflex signal xL0 , B) connection weights ρβ1 , C) motor output vβ, D) driving
trajectories for the left (CL) and the right turn (CR) for the control case (before
learning). E) Driving trajectory for the second trial (after learning).

of these findings. The results for a shallower track (total length of the track was
approximately 1.5 m) are presented in Fig. 2.7 and are similar to those from the
previous experiment, but for this track learning stopped already after two experiences
even with a lower learning rate of µ = 2.5 × 10−6 as compared to the previous
experiment where the learning rate was µ = 3× 10−6. As expected smaller synaptic
weights (panel A) and a much weaker steering reaction (panel B) was learnt and
weights (panel A) are smaller. For a movie of the whole learning process see video
shallow.mpg.

The third experiment was performed using a track with very sharp corners (total
length of the track was approximately 1.5 m) and a relatively higher learning rate
µ = 6.5 × 10−6 was used (see Fig. 2.8 C). This was done to demonstrate that fast
and stable learning is possible even for such a sharp track. The results of three
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Figure 2.7: Results for the line following experiment using the simple architecture (see
Fig. 2.4 B) on the shallow track. Learning rate was µ = 6.5× 10−6. A) Connection
weights ρβ1 , B) motor output vβ, C) driving trajectory for the second trial (after
learning).

learning trials (separated by vertical dashed dashed lines) are presented in Fig. 2.8.
The robot missed the track twice and finally succeeded in the third trial (see also
video sharp.mpg). Learning stopped after three experiences. As before, it could
use the learnt weights also for the right curve. Note, however, as a consequence of
the general arrangement, the robot now “cuts corners”. This is a result of the fact
that the predictive sensor field is at some distance from the bottom of the camera
image. Because steering necessarily always consists of a sequence of short straight
trajectories, the robot will always take shortcuts if the curves are too sharp and/or
if the predictive sensor field is high up in the camera image.

In general we observed that the robot can learn the task fast even with a low
learning rate as long as the track is shallow but needs higher rates to be able to
follow the sharp track after about the same number of reflexes. If the same learning
rate is chosen for all tracks then more reflexes are needed for the sharp track than for
the shallow one.

Fig. 2.9 shows results for two control experiments with a shallow left and an
increasingly sharper right curve (see Fig. 2.9 C). Connection weights ρβ1 (panel A)
and motor output vβ (panel B) of four learning trials (separated by dashed lines)
are shown for a relatively low learning rate µ = 0.4 × 10−6. At the beginning, the
low learning rate prevents the robot even from following the very shallow left curve
(see trajectory T1 in Fig. 2.9 C). In the second trial, the robot succeeded for the left
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Figure 2.8: Results for the line following experiment using the simple architecture
(see Fig. 2.4 B) on the sharp track. Learning rate was µ = 2.5×10−6. A) Connection
weights ρβ1 , B) motor output vβ, C) driving trajectories two learning trails T1 and
T2, and T3 for the post-learning trial.

curve at the beginning of the right curve but the learnt steering reaction still was not
enough to allow it to follow the sharper parts of the right curve at the end of the spiral
track (see trajectory T2 in Fig. 2.9 C). In the third learning trial the robot succeeded
to follow the whole trajectory completely (see trajectory T3 in panel C) but still most
of the time a mix of predictive and reflexive (large peaks) steering reactions occurred.
The robot continued to improved its steering reactions in the fourth trial (trajectory
not shown, but see video of whole experiment: spiral-low.mpg) where one can see
more non-reflexive reactions (smaller peaks) and less predictive+reflexive reactions
than in the third trial. As expected from the linearity of our learning rule, in the
right curve the system can use the weights learnt during the left curve up to the point
where the right curvature remains below the left curvature (three leftward reactions
and then two rightward reactions in the fourth trial) after which weights will continue
to grow (large peaks). However, learning is not yet finished at this stage and would
need more trials until weights finally stabilise.

To speed-up the learning process a higher learning rate of µ = 1.5 × 10−6 was
used and three learning trials are presented in Fig. 2.9 D-F. In this case, the robot is
able to stay on the line already during the first learning trial (trajectories not shown
but see video spiral-high.mpg) but still more predictive+reflexive (large peaks) than
non-reflexive steering reactions occurred (see panel E). In the second trial only two
predictive+reflexive reactions occurred whereas in the last trial only non-reflexive
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Figure 2.9: Results of the driving robot experiment using the simple architecture (see
Fig. 2.4 B) on a spiral track. A-C) Results for a learning rate of µ = 0.4× 10−6. A)
Connection weights ρβ1 , B) motor output vβ, C) corresponding driving trajectories
T1, T2 and T3 during learning process. Note, learning has not yet finished after T3,
but improves gradually towards a smooth trajectory. D-F) Results for a learning
rate of µ = 1.5 × 10−6. D) Connection weights ρβ1 , E) motor output vβ, F) Final
driving trajectory T3 reached after two, not-shown learning trajectories, when using
the higher learning rate of µ = 1.5 × 10−6. In this case we find weight stabilisation
after two trials (see panel C), but learnt weights will lead to too strong reactions
(over-steering) for shallow curves which are compensated by corrective movements.
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Figure 2.10: Results for the line following experiment using the simple architecture
(see Fig. 2.4 B) on the maze track. Learning rate was µ = 3× 10−6. A) Connection
weights ρβ1 , B) motor output vβ, C) driving trajectory.

steering reactions occurred and weights did not change anymore. When we use the
final weights learnt with the sharp curve afterwards for driving a through the shallow
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left curve in a third trial the robot over-steers slightly the left curve and then makes
an oscillatory corrective movement, however, without triggering reflexes, in order to
remain on the line (see trajectory T3 in Fig. 2.9 F).

We also did an experiment to see how the robot behaves on a difficult track with
different kinds of curvatures (see Fig. 2.10). The total length of the track was ≈ 14
m. Connection weights and the motor output are shown in panel A and B. The robot
had three learning experiences at the beginning (see panel A and arrows in panel
C) while turning to the right and after that the reflex input was not triggered till
the robot approached the crossing point where the robot turned to the right (see
trajectory in panel C) and the reflex was triggered twice again. As expected from
the linearity of our learning rule, the robot can use the learnt weights up to the point
where the curvature remains below the experienced curvatures after which weights
will continue to grow. After ≈ 2740 camera frames (crossing point) the reflex was not
triggered anymore and weights stopped changing. When the robot approached the
crossing point for the second time it went straight and for the third time (trajectory
not shown) it turned to the left (see video maze.mpg). In general we obtained that the
robot uses the final weight learnt for the sharpest curve and over-steers when driving
on the shallower curves which leads to the oscillatory driving behaviour (compare
motor output signals before and after crossing point). Note, as the robot does not
use any assumptions about track smoothness, for the machine both solutions, driving
straight or turning, are equivalent at the crossing point in the centre of the track and
the selection of a certain behaviour only depends on the status of its sensory inputs.

2.7.2 Statistical evaluation of the simple architecture

In the experiments above it has become clear that our system performs on-line (and
not batch) learning. Hence the most critical parameter affecting the convergence of
learning is in which way the momentary behaviour will influence, or rather generate,
the next learning experience. Ultimately this is given by the sequence of viewing
angles which the robot creates due to its own driving. As a consequence an investi-
gation of the influence of the viewing angle on the learning should provide the most
relevant information about the robustness of this system. Other relevant parameters
are learning rate as well as relative placement of the different sensor fields.

Thus, to investigate the robustness against these parameters we used a simulation
and performed a set of experiments where we let the simulated robot learn to follow
left-right tracks with angles of 20, 45 and 90 degrees (see Fig. 2.11 A). The total
length of all tracks was 360 units while its thickness was 1 unit. The radius of the
robot was r = 20 units and the size of the sensory fields xL,R0,1 was 1×1 unit. Positions
of sensory fields were defined as shown in Fig. 2.11 B. We used the neuronal setup
as presented in Fig. 2.4 B. The output of the neuron vβ modified by transformation
function Px,y (Eq. 2.6) instead of function ML,R (Eq. 2.4) was used here to change the
position of the robot in the environment. The position of the robot Px,y was defined
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Figure 2.11: Setup of the simulated line following experiment. A) Tracks with
curvatures of 20, 45 and 90 degrees. B) Setup of the simulated robot. Dots represent
positions of the sensor fields xL,R0,1 , r = 20 units is the radius of the robot, d =
[2, 3 . . . 10] units is the distance between sensors x1 and x0. C) Direction angle α0

of the robot at its starting position, given by the deviation from the direction of
the track when placing the robot at the starting position. In the experiments a
Gaussian distribution of α0 has been used with mean µα0

= 0 and different variances
σ2
α0

= [1, 4, 9].

by the x and y coordinates of the robot’s mass centre. The signal vβ is then directly
used to change the robot’s driving angle α, i.e. vβ directly corresponds to the change
of the turning angle:

dα

dt
= −Gst v

β
t , (2.5)

where Gst = 0.01 is the steering gain. The change of the robot’s position is calculated
as follows:

dPx
dt

= (ν −Gbr |vβt |) cos(αt),
dPy
dt

= (ν −Gbr |vβt |) sin(αt),
(2.6)

where ν = 1 is the constant default velocity and Gbr = 0.001 is the breaking gain.

The sensory inputs xL,R0,1 can take binary values 255 or zero depending on whether
the sensor field is triggered or not. We used a filter bank of ten filters to prolong
inputs xL,R1 given by parameters f1 = 0.5/k, k = 1 . . . 10, for x1, wheras for x0 we
used one filter with the parameter f0 = 0.25. Damping parameter of all filters was
Q = 0.6.

To evaluate the robot’s performance we define three (AND-connected) conditions
to measure success:

1. The correlation coefficient between robot’s trajectory and the whole track is
> 0.90.
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2. The reflex is not triggered in three consecutive trials after connection weights
stopped changing.

3. The robot completed the task within maximally 20 trials.

Figure 2.12: Results of the simulated line following experiment using the simple
learning architecture (see Fig. 2.4 B). A) Success in 1000 experiments and average
number of learning experiences (LE) needed to accomplish the task within successful
experiments are plotted against the variance σ2

α0
of robot’s direction at the starting

position. Learning rate was µ = 5×10−6 and distance between sensor fields x1 and x0

was d = 3. B) Success in 100 experiments and average number of LE plotted against
the distance between sensor fields x1 and x0. Learning rate was µ = 5 × 10−6 and
variance σ2

α0
= 4. C) Success in 100 experiments and average number of LEs plotted

against the learning rate µ. The variance was σ2
α0

= 4 and the distance between
sensor fields x1 and x0 was d = 3.

If these three conditions are not fulfilled at the same time then we count an
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experiment as a failure.

Results demonstrating the influence of the robot’s position angle (α0, see Fig. 2.11 C)
on placing the robot at the starting position are presented in Fig. 2.12 A. We plot the
success rate in 1000 experiments and the average number of learning experiences (LE)
needed to accomplish the task within successful experiments against the variance of
the distribution of the starting angle σ2

α0
. The success is slightly decreasing if we

increase the variance of the starting angle distribution σ2
α, but we still get high per-

formance and the success rate is 0.92 < success ≤ 0.99 for all tracks. More learning
experiences are needed to accomplish the task if σ2

α0
is increased. Also, as expected,

more LEs are required for the sharp track as compared to shallower ones.

Results of 100 experiments for different positions of the predictor sensor x1 are
shown in Fig. 2.12 B. Success rate decreases if the distance between inputs is getting
larger for the sharp track whereas for the shallower tracks decrease is less significant
when the distance is very large (d = [9, 10]). The number of necessary LEs is in-
creasing if the distance between x1 and x0 is getting larger. This is due to the weight
change curve of the ICO learning rule (Porr and Wörgötter, 2006). If the inputs are
spaced further apart in time then correlations are weaker, the connection weights do
not change so fast, and more repetitions are needed to complete learning. Due to this
the robot never succeeded to steer the sharp track within 20 trials when the distance
between x1 and x0 was d > 8.

We also investigated the influence of the learning rate and results of 100 experi-
ments are presented in Fig. 2.12 C. The learning rate does not affect the performance
except for the sharp track. When the learning rate is relatively low the robot does
not succeed learn steering the curve within 20 trials. As expected we find that with a
higher learning rate less LEs are needed to complete the task, because with a higher
learning rate weights are growing faster and the task is learnt quicker.

2.8 Development of receptive fields with the simple

architecture

In the following we would like to show the development of receptive fields (RF) with
the simple architecture. In saying RF-development we are specifically focusing on
the development of the spatial features of an initially unresponsive (all weights zero)
field. Also we will average over all synapses coming from the same input pixel via
the used filter bank. Hence the spatio-temporal structure of the plotted field is more
complex. Filters are the same for all pixels and we are in this study more interested
in the general spatial structure of the RFs and in their stability. Therefore we will
neglect the temporal domain.
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2.8.1 Physical and neuronal setup of the system

Physical and a neuronal setup used for the receptive field (RF) development are
shown in Fig. 2.13 and are similar to the setups presented above (see Fig. 2.4). Here
predictive sensor fields xL,R1 with size of 10×2 px are replaced by receptive fields with
size of 15× 15 px (Fig. 2.13 A) where each pixel within the receptive field represents
an individual input x1i,j (in total 255 inputs) with corresponding plastic synapse ρβ1i,j
with which the input converges onto the neuron β. As before we have a symmetrical
setup where inputs from the left side have the fixed weight −1 and inputs from the
right side +1. Synaptic weight ρβ0 is also set to a fixed value of 1 and only weights ρβ1
of all ten filters (see Fig. 2.2 C) change.

Figure 2.13: Physical and neuronal setup of the receptive field (RF) development
using the simple learning architecture. A) Camera image with left and right sensor
fields. The receptive filed positions are denoted by xL,R1i,j

, where i = 1 . . . 15, j = 1 . . . 15

are the indices of the RF pixels, and sensor field positions xL,R0 . B) The simple
neuronal setup of the robot. Symbols α and β denote neurons, u denote filtered input
signals x, ρ connection weights and v the output of the neuron used for steering. v is
calculated by the method shown in Fig. 2.2 B and its corresponding Eq. 2.1. ML,R

is given in Eq. 2.4 and transforms v to the motor output.

2.8.2 Learning primary receptive fields

Results of the receptive field (RF) development using the simple neuronal setup
on three different tracks (shallow, intermediately steep and sharp) are presented in
Fig. 2.14 where we plot weights of the right receptive field xR1 . The left receptive field
is the mirror image of the right one due to the symmetry of the learning setup. The
obtained RFs have a line like structure with stronger and weaker sub-fields, where
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low weight values correspond to the weak steering reactions and high weight values
to the strong steering reactions. Note, in order to obtain structured receptive fields,
a smaller learning rate and a few more repetitions had to be used. As expected, we
obtained different RFs for different tracks. RF developed on the sharp track (panel
C) have higher weights (total sum of all weights is 0.553) compared to RFs obtained
from the shallower tracks shown in panel A and B (total sum of all weights is 1.068
and 2.304 respectively). For the shallow track (panel A) we obtained also negative
weights which is due to the fact that some inputs experience temporally inverted
correlations (predictor comes after reflex, see also Fig. refRFF C).

Figure 2.14: A-C) Results of the receptive field development using the simple neu-
ronal setup (see Fig. 2.13). The diagrams show the summed weights

∑10
k=1 ρ

β
1i,j ,k

over
all ten filters in the filter-bank which receive inputs from the corresponding predictor
xR1i,j (the right receptive field). The number in the RF denotes the total sum of all
weights (

∑
). A) Results for the shallow track (see Fig. 2.7 C). Learning rate was

µ = 1.7×10−8. Learning stopped after three trials (see video rf-shallow.mpg). B) Re-
sults for the intermediately steep track (see Fig. 2.6 D). Learning rate was µ = 10−8,
learning stopped after four trials (see video rf-middle.mpg). C) Results for the sharp
track (see Fig. 2.8 C). Learning rate was µ = 1.7 × 10−8. Learning stopped after
six trials (see video rf-sharp.mpg). D) Comparison between learnt motor outputs
obtained on the intermediately steep track by using single sensor fields (left) versus
receptive fields (right). For more details please read the main text.

In Fig. 2.14 D we compare motor outputs learnt on the intermediately steep track
(Fig. 2.6) by using single sensor fields (for the setup see Fig. 2.4) versus the receptive
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field (RF) approach (for the setup see Fig. 2.13). We can see that the motor output
obtained by using RFs (right panel) is smaller in amplitude and not as spiky as
compared to the output obtained by using single sensor fields (left panel), which,
as a consequence, corresponds to much smoother and more accurate line following
behaviour compared to the single sensor field approach (see also videos middle.mpg
and rf-middle.mpg4).

Figure 2.15: Results of the receptive field development using the simple neuronal
setup (see Fig. 2.13) on the intermediately steep track (see Fig. 2.6 D) obtained from
20 experiments. The diagrams show the summed weights

∑10
k=1 ρ

β
1i,j ,k

over all ten

filters in the filter-bank which receive inputs from the corresponding predictor xR1i,j .
Size of the RF (15x15 pixels) and position was as shown in Fig. 2.13 A. Learning
rate was µ = 10−8. Numbers in the receptive fields correspond to the total sum of
all weights (

∑
), pattern inconsistency (PI) and the number of learning experiences

(LE), respectively. Receptive fields are ordered according to the pattern inconsistency
measure PI as given in the RF. For more details read the main text.

4Videos can be downloaded at http://sites.google.com/site/ktomsite/driving-robot
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Figure 2.16: Corresponding motor outputs vβ obtained from the receptive fields
shown in Fig. 2.15.

For experiments with the same parameters we would nonetheless expect to receive
slightly differing RFs, because of the remaining contingencies mainly due to the man-
ual placement of the robot and the noise in the system. To investigate the variability
of the RFs we performed 20 experiments where we developed receptive fields on the
intermediately steep track using the same system parameters (position of the RFs and
learning rate). Obtained receptive are shown in Fig. 2.15 and corresponding motor
output for each receptive field are shown in Fig. 2.16. Learning stopped after ≈ 7
learning experiences (LE) on average. RFs are grouped according to the structure of
the RF. Here we represent the structure of RF by the pattern inconsistency measure
which is defined as the average distance to the neighbouring weights computed over
all weights within the receptive field (similar to the grey scale values used in self-
organising maps, Kohonen, 2001). The equation for the pattern inconsistency (PI)
measure is given in appendix A.1. The PI measure shows the dissimilarity between
neighbouring weights, thus, receptive fields with gradient-like structure (see 1st RF
in Fig. 2.15) lead to small pattern inconsistency values, whereas alternating or noisy
RFs (17th and 20th RF respectively) lead to the higher PI values. Note that for a
homogeneous RF one gets PI = 0 whereas for an RF with random structure of values
from a uniform distribution we find PI ≈ 0.33. We observe that some of the fields
are relatively noisy which is mainly due to the reasons stated above, but, nonetheless,
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behaviour is successfully learnt in all cases. Note that completely random receptive
fields would lead to the value of PI ≈ 1, whereas for our RFs we obtained much
smaller PI values (for all RF we obtained PI < 0.32), thus, developed RFs are not
random.

2.9 Analysis of the receptive field formation

2.9.1 Experimental setup

In the following we will analyse how system parameters influence formation of the
receptive field pattern. To do so, we simulated the development of receptive fields
on three different tracks as shown in Fig. 2.17 B. The setup of the robot used for
simulation of the RF development is shown in Fig. 2.17 A. As before we used the
simple neuronal setup as shown in Fig. 2.13) where the neuronal output vβ is directly
used to change the robot’s driving angle α and position as given in Eq. 2.5 and Eq. 2.6
with the steering gain Gst = 0.005 and breaking gain Gbr = 0.001. If not mention
elsewhere we used the following default system parameters. We used a filter-bank of
ten filters to prolong receptive field inputs xL,R1 given by parameters f1 = 0.1/k, k =
1 . . . 10, whereas for reflexive input x0 we used one filter with the parameter f0 = 0.05.
Damping parameter of all filters was Q = 0.6. The distance between RF position and
reflex position was d = 8 and the learning rate was µ = 0.5× 10−8.

2.9.2 Dependence on the track and RF position

First of all we analysed how the structure (pattern) of the receptive field depends on
the curvature of the track. We simulated the RF development on three different tracks
(see Fig. 2.17 B) with the same system parameters as given above. The resulting
receptive fields are shown in Fig. 2.18 A left column) and have different pattern
location and orientation for a specific curvature. This is due to the fact that location
and orientation of the pattern is determined by the input location within the receptive
field at which the RF inputs correlate best with the reflex. In the middle and the
right column of panel A we show the input intensity map of the RF during and after
learning, respectively. This map shows the input activity for each RF pixel (input).
It equals zero if there was no input at that pixel location and one if it was triggered
most often relative to the number of inputs at the other pixels. The equation for the
calculation of the input intensity map is given in appendix A.2. Intensity maps during
learning show which inputs contribute to the RF development, and intensity maps
after learning show which regions (inputs) of the RF drive the steering behaviour
of the robot after learning. We observe that after learning for the shallow and the
intermediately steep track there is only one dominant region within the RF, whereas
for the sharp track there are two regions which are most active. This is because the
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Figure 2.17: Setup of the simulation experiments for receptive field development.
A) Setup of the simulated robot. Dots represent positions of the reflexive sensor
fields xL,R0 (1 × 1 unit) and square grids represent positions of receptive fields xL,R1

(15×15 units). r = 20 units is the radius of the robot, d denotes the distance between
position of the RF (x1) and the reflex (x0). B) Image of tracks with curvatures of
different steepness: a shallow track, an intermediately steep track and a sharp track.
The thickness of all tracks was 1 unit.

robot over-steers on the sharp track (see Fig. 2.17 C) which causes activity in the
second region within the receptive field (on the side of the RF) in order to bring the
robot back to the track. In Fig. 2.18 C driving trajectories of the robot after learning
are shown for each track. As expected, we can see that the amplitude and width of
the response curve is increasing as the curvature of the track gets steeper.

Results of the receptive field development for different RF positions are presented
in Fig. 2.19 where we show RFs obtained on three different tracks. Here we varied the
position of the RF by changing the distance d between the position of the reflex sensor
field and the RF as shown in Fig. 2.17 A. From the results we can see that the location
of the pattern is shifting downwards as we increase the distance d between reflex and
RF position, i.e. shift the position of the RF upwards. This is expected as shifting the
RF upwards causes a change in the input location at which RF inputs correlate best
with the reflex. Thus, moving the RF downwards or upwards will change the location
of the RF pattern while maintaining more or less the same pattern orientation for
a particular track. We can also observe that for the shallow track faster learning is
obtained (less LEs are required) when the RF is further away from the reflex (d = 15)
whereas for the sharper tracks faster learning is obtained when the RF is closer to
the reflex (d = 9 for the intermediately steep track and d = 6 for the sharp track).

Motor outputs together with driving trajectories of the robot for three different
RF positions obtained on the intermediately steep track are shown in Fig. 2.20. Ob-
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Figure 2.18: Results of the simulated receptive field development for three different
tracks as shown in Fig. 2.17 B. A) The diagrams in the first column show the summed
weights

∑10
k=1 ρ

β
1i,j ,k

over all ten filters in the filter-bank which receive inputs from the

corresponding predictor xR1i,j (the right receptive field). Numbers in the RF denote
the total sum of all weights (

∑
) and the number of learning experiences (LE). The

diagrams in the second and the third column show input intensity maps of the RF
during and after learning, respectively. For more details please read the main text.
B) Learnt motor outputs vβ generated by the corresponding receptive fields (panel
A). C) Driving trajectories of the robot shown for each track.

tained motor outputs are different which, as a consequence, leads to different driving
behaviour. If the RF is too close then a relatively narrow motor response is generated
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Figure 2.19: Results of the simulated receptive field development for different RF po-
sitions (defined by the distance d between reflex and RF position) obtained from three
different tracks (Fig. 2.17 B). The diagrams show the summed weights

∑10
k=1 ρ

β
1i,j ,k

over all ten filters in the filter-bank which receive inputs from the corresponding pre-
dictor xR1i,j (the right receptive field). Numbers in the RF denote the total sum of all

weights (
∑

) and the number of learning experiences (LE).

which leads to slight under-steering (panel A). In case the RF is positioned too far
away then a much wider response is generated which leads to an over-steering (panel
C). This suggests that the position of the RF position affects not only the learning
speed (number of required learning experiences) but also the driving behaviour of
the robot. We tested this hypothesis by performing 100 experiments were we varied
the position of the receptive field, i.e. the distance d between reflex and RF posi-
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tion. In order to introduce some variability in the data we changed the direction
angle α0 of the robot every time when replacing the robot to its starting position (see
Fig. 2.11 C). Values for α0 were chosen randomly from a Gaussian distribution with
mean µα0

= 0 and variance σ2
α0

= 4.

Figure 2.20: A) Learnt motor outputs vβ (left side) generated by the corresponding
receptive fields (see Fig. 2.19) obtained on an intermediately steep track for different
RF positions. Position of the RF is defined by the distance d between reflex and RF
position (Fig. 2.17 A). B) Corresponding driving trajectories of the robot are shown
for each case (panel A). C-D) Statistics for different RF positions obtained from
100 experiments. C) Number of required learning experiences (LE) and D) robot’s
deviation from the track after learning Ψ. Average together with confidence intervals
(95%) is plotted for each case.

Results of the experiment as described above are presented in Fig. 2.20. Average
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number of required learning experiences (LE) is shown in panel C where we can see
that, indeed, there is an optimal RF position for a specific track with respect to
the number of LEs. The fastest learning for the shalow track is obtained when d is
between 15 and 18 whereas for the intermediately steep track and the sharp track
the optimum is at d = 6. This is due to the fact that for the shallow track better
correlations between RF inputs and reflex is obtained when the RF is further away
from the reflex whereas for the sharper tracks better correlations are obtained when
RF is placed closer to the reflex. Note that for the sharp track there were no more
correlations obtained between RF and reflex inputs for d > 20, so learning was not
possible anymore.

The influence of the RF position on the driving accuracy is shown in Fig. 2.20 D.
Here we define accuracy Ψ as the average deviation of the robot’s position from
the track and it is calculated as shown in appendix A.3. We observe that the best
accuracy with respect to track following for the shallow track is obtained when the
RF is far away from the reflex (d = 27) whereas for the sharp track the best accuracy
is obtained when the RF is placed as close as possible to the reflex (d = 1). This is
due to the fact that on the sharp track the robot is cutting corners (see Fig. 2.18 C),
and the further away the RF is from the reflex the more the robot cuts the corners
since it starts to turn earlier. In case of the shallow track the robot is reacting to late
and it is under-steering (see Fig. 2.18 C) if the RF is placed too close to the reflex.
On the intermediately steep track the minimal deviation from the track is obtained
then the RF is placed at the distance d = 18. Results suggest that there is an optimal
RF position with respect to learning speed and driving accuracy for a specific track.

2.9.3 Dependence on the input filter

In the next step we looked at how receptive field pattern depends on the input filters.
As described above we use filters to prolong our inputs in order to enable correlations
between predictive (x1) and reflexive inputs (x0). Our filters h0,1 are characterised by
two parameters: the frequency f0,1 and the damping Q. Here we analysed only the
influence of the filter frequency, where lower frequencies correspond to the wider filter
responses and higher frequencies correspond to the narrower filter responses. Note
that we kept the reflex filter h0 always the same and only varied the filter-bank h1 of
RF inputs. Results of the receptive field development for different input filters (for
the parameters see caption of Fig. 2.21) obtained on the intermediately steep track
are presented in Fig. 2.21 A-B. Receptive fields are shown in panel A where we can
observe that the filters influence only the width of RF pattern, but have no impact
on location and orientation of the RF pattern. Filters with the relatively narrow
response (f = 0.2) lead to narrower RF pattern compared to the wider response
filters (f = 0.075) which produce wider RF pattern. As a consequence RF pattern
will shape the motor output in a similar way such that in case of narrow filters the
motor output decays immediately after it reaches its maximum value whereas for
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Figure 2.21: Results of the simulated receptive field development for different input
filters obtained on the intermediately steep track. We used a filter bank h1 of ten filters
to filter receptive fields inputs xL,R1i,j

given by parameters f1 = f/k, k = 1 . . . 10, f =
[0.2, 0.1, 0.075], whereas for the reflexive input x0 we used one filter h0 with the
parameter f0 = 0.05 for all three cases. Damping parameter of all filters was Q =
0.6. A) The diagrams show the summed weights

∑10
k=1 ρ

β
1i,j ,k

over all ten filters

in the filter-bank which receive inputs from the corresponding predictor xR1i,j (the

right receptive field). B) Learnt motor outputs vβ generated by the corresponding
receptive fields (see panel A). C) Weight change curves for different filter parameters
f = [0.05, 0.1, 0.2]. Here we plot the total weight change over all ten filters in the
filter-bank versus time difference τ between inputs x1 and x0, where τ > 0 if x1 comes
before x0, and τ < 0 if x0 precedes x1. Statistics for different input filters obtained
from 100 experiments. D) Number of required learning experiences (LE), E) robot’s
deviation from the track after learning Ψ. Average together with confidence intervals
(95%) is shown for three different tracks.

wide filters the motor output stays relatively flat for a while until it starts going back
to zero (see top and bottom panel in Fig. 2.21 B). The RF pattern dependence on
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the input filters can be explained by the weight change curve (Porr and Wörgötter,
2003a,b) which is shown in panel C, where we plot weight change against the time
difference τ between inputs x0 and x1 for three different filter-banks. Note that here
we plot the total weight change

∑
δ1k over all ten filters in the filter-bank. From the

weight change curve we can see that for τ > 0 (x1 precedes x0 in time) we obtain
positive weight change whereas for τ < 0 (x0 precedes x1) negative weight change
occurs. We also observe that the interval of positive τ values, where a positive weight
change is obtained, is increasing if we use filters with wider response (lower frequency)
which as a consequence results in a wider RF pattern.

Statistics from 100 experiments showing the impact of the input filter on the
speed of learning (number of required learning experiences) and the driving accuracy
are shown in Fig. 2.21 D, E. As in the previous experiments we varied the direction
angle of the robot at its starting position in order to introduce some variability in the
data. Values of α0 were chosen randomly from a Gaussian distribution with mean
µα0

= 0 and variance σ2
α0

= 4. The fastest learning for the shallow track is obtained
when f = 0.125, and for the intermediate and sharp track the fastest learning is
obtained when f = 0.1 (panel D). This is due to the fact that there exists an optimal
filter for a given time difference τ which gives the maximal weight change δω per
learning experience as shown in Porr and Wörgötter (2003a). This can also be seen
in Fig. 2.21 C where we can observe that for a given τ for some specific filter-bank we
get bigger weight changes as compared to the other filters. In Fig. 2.21 E the influence
of the filter on the driving behaviour of the robot is shown. The best driving accuracy
for the middle track is achieved when wider filters (f = 0.075) are used whereas for
the sharp track minimal deviation from the track is achieved when narrower filters
are used (f = 0.125). This is because the narrower filters produce sharper motor
response which leads to a sharper driving trajectory and, as a consequence, the robot
does not cut corners so much as compared to wide filters. For the shallow track in
this case (given default RF position d = 8) filters were not so crucial with respect to
driving accuracy and the best driving is obtained when f equals 0.075 and 0.1.

2.9.4 Dependence on the robot’s initial position and learning
rate

In the third stage we analysed how the robot’s initial position influences the formation
of receptive field pattern and how this depends on the learning rate. Results showing
the influence of the robot’s initial position (direction angle α0) while placing the
robot at its starting position are shown in Fig. 2.22. In the experiments a Gaussian
distribution of α0 has been used with mean µα0

= 0 and different variances σ2
α0

=
[1, 4, 25]. Here we plot the resulting receptive fields from 10 experiments for each
case obtained on the intermediately steep track. Note that we used a relatively low
learning rate µ = 0.5× 10−8 leading to ≈ 20 learning experiences on average. Results
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Figure 2.22: Results of simulated receptive field development showing the influence
of the robot’s direction angle α0 at it’s starting position (see Fig. 2.11 C). Gaus-
sian distribution of α0 has been used with mean µα0

= 0 and different variances
σ2
α0

= [1, 4, 25]. Learning rate was µ = 0.5 × 10−8. The diagrams show the summed

weights
∑10

k=1 ρ
β
1i,j ,k

over all ten filters in the filter-bank which receive inputs from

the corresponding predictor xR1i,j (the right receptive field). Numbers in the receptive
fields correspond to the total sum of all weights (

∑
) and the number of learning

experiences (LE), respectively.

show that the robot’s initial position does not influence RF pattern if relatively low
learning rate is used and that after learning most of the RFs have similar structure
with more or less the same location, orientation and width of the pattern. By contrast,
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Figure 2.23: Results of simulated receptive field development showing the influence
of fast learning obtained on three different tracks. The learning rate was tuned
manually for each case in order to achieve more or less the same learning speed
(number of required LEs). The diagrams show the summed weights

∑10
k=1 ρ

β
1i,j ,k

over
all ten filters in the filter-bank which receive inputs from the corresponding predictor
xR1i,j (the right receptive field). Numbers in the receptive fields correspond to the total

sum of all weights (
∑

) and the number of learning experiences (LE), respectively.

in Fig. 2.23 we show RFs developed on three different tracks by using relatively high
learning rates leading to ≈ 6 LEs on average and high variance (σ2

α0
= 25). Note

that we tuned learning rates manually in order to arrive at more or less the same
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learning speed. Here we can see that patterns of the receptive fields vary quite a lot.
This can be explained by the fact that in case of rapid learning already the very first
experience shapes the pattern of the RF and influences the behaviour of the robot.

Figure 2.24: Results of simulated RF development obtained from 100 experiments
on three different tracks. Values of α0 are from a Gaussian distribution with mean
µα0

= 0 and variance σ2
α0

= 4. A) Number of required learning experiences (LE)
versus learning rate µ. Average together with confidence intervals (95%) is shown for
each track. B) Pattern inconsistency (PI) versus average number of required learning
experiences (LE). Average together with standard deviation (SD) is shown for each
track.

We also evaluated this statistically and results from 100 experiments are shown
in Fig. 2.24. In panel A we plot the number of required learning experiences (LE)
against the learning rate µ. For the shallow track we used learning rates µ = [0.05,
0.075, 0.1, 0.15, 0.25, 0.5]×10−8, and for the intermediately steep and the sharp track
we used µ = [0.1, 0.15, 0.25, 0.5, 0.75, 1]×10−8, since different learning rates are
required in order to achieve the same learning speed. As expected we can see that
number of LEs is decreasing as the learning rates increases. The pattern inconsistency
PI plotted against the number of required LEs is shown in Fig. 2.24 B where we plot
the average together with its standard deviation (SD) for each track. The average
value corresponds to the structure of the pattern and, as expected, is different for
all curvatures. We can observe, as demonstrated qualitatively, that in all cases the
variance is decreasing if we use more learning experiences. This suggests that in
case of a slow learning process the system’s noise is averaging out and a reproducible
pattern is obtained.
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Figure 2.25: A) Examples of receptive fields: “Shallow” - RF obtained on a shallow
track (see Fig. 2.17 B for different tracks), “Sharp” - RF obtained on a sharp track,
“Shallow→Sharp” - RF obtained when the RF learnt on the shallow track was trans-
ferred to the sharp track. “Shallow+Sharp” - sum of RFs obtained on the shallow
and the sharp track. The diagrams show the summed weights

∑10
k=1 ρ

β
1i,j ,k

over all ten

filters in the filter-bank which receive inputs from the corresponding predictor xR1i,j
(the right receptive field). Numbers in the RF denote the total sum of all weights
(
∑

) and the number of learning experiences (LE). B) Development of weights where
at first the RF was learnt on the shallow track (blue curve) and was later transferred
for the use on the sharp track (red curve). Here we show summed weights over all
ten filters in the filter-bank and over all inputs in the RF. C) Motor outputs after
learning and corresponding driving trajectories: “Sharp” - RF developed and used
on the sharp track (control case), “Shallow→Sharp” - RF developed on the shallow
track and later used on the sharp track. Default system parameters were used as
given in section 2.9.1.
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2.9.5 Transfer of RFs from one track to an other

Finally, we checked what happens in case of a transfer of the RF, learnt on one track,
for later use on a different track. Here we looked at two extreme cases where at first
we developed the RF on the shallow track (see Fig. 2.17 B) and then used it on the
sharp track (case 1), and vice versa (case 2). Results for the first case are presented
in Fig. 2.25 where weight development is shown in panel B. As expected, weights
continue growing when transferred to the sharp track as the reflex is triggered again,
because of too small weights and inappropriate RF structure. Additionally, seventeen
more learning experiences were required in order to adapt to the sharp track. The
resulting RF after such procedure is shown in panel A (“Shallow→Sharp”). The
obtained RF structure (“Shallow→Sharp”) is similar to the joint structure (sum of
two RFs) of RFs obtained on the shallow and sharp tracks independently which means
that the composite RF contains patterns inherited from both tracks which overlap
each other. We can also observe that a total sum of weights of the composite RF
is bigger than that obtained on the sharp track alone which is due to the weight
overlapping. As a consequence, the robot over-steers slightly more as compared to
the control case (see panel C).

Figure 2.26: Motor outputs after learning and corresponding driving trajecto-
ries: “Shallow” - RF developed and used on the shallow track (control case), and
“Sharp→Shallow” - RF developed on the sharp track and later used on the shallow
track. Default system parameters were used as given in section 2.9.1.

Results for the second case are shown in Fig. 2.26. If we apply the RF learnt on
the sharp track to the shallow track then the reflex will not be triggered anymore and
the RF structure will not change (even if have non optimal structure) since weight
values are relatively high and will cause stronger motor response which will lead to
over-steering.

In summary, we have demonstrated that the receptive field pattern adapts to the
specific track and depends on many system parameters. Results suggest that there
exist optimal system parameters with respect to learning speed and driving accuracy.
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We have also shown that the receptive field structure is more robust to noise in case
of slow compared to rapid learning.

2.10 Chained learning architectures

Two types of chained learning architectures, namely linear-chain and honeycomb-
chain, were developed by modifying the simple neuronal setup and were simulated and
analysed in the open loop case before applying them in the line following task (closed
loop case). In the current section we are going to explain both chained architectures
and in the next section we will present results when using those architectures in the
open- and closed-loop case.

2.10.1 Linear-chain architecture

The schematic of the first type of chained learning architecture, called the linear-
chain, is presented in Fig. 2.27 A. There is one reflex input x0 and two predictive
inputs x1 and x2. The output vβ is used as the reflex input of the neuron γ. The
final output vγ is calculated by

vγ = ργ0u
β + ργ1u2, (2.7)

where uβ = h0 ∗ vβ is a temporal convolution of the output vβ with a resonator h0.
Resonator filters for the x1 and x2 are determined by parameters f1,k = 2.5/k Hz,
k = 1, . . . , 10 for the filter-bank h1. For x0 and vβ we used one filter given by
f0 = 1.25 Hz. Damping parameter for all filters was Q = 0.6. The weights ρβ,γ0 are
set to a fixed value 1, all other weights are initially zero.

2.10.2 Honeycomb-chain architecture

The second type of chained architecture (Fig. 2.27 B) is named honeycomb-chain, to
which its structure resembles. Output vβ,1 is used as the reflex input of the neuron γ
and output vβ,2 as its predictive input. Note, the output vβ,2, similarly to inputs x1

and x2, is fed into a filter-bank h1 of ten different filters as indicated by the dashed
lines in Fig. 2.2 C. The final output vγ is calculated by

vγ = ργ0u
β,1 + ργ1u

β,2, (2.8)

where uβ,1 = h0 ∗ vβ,1 and uβ,2 = h1 ∗ vβ,2 is a temporal convolution of the output
vβ,1 (vβ,2) with a resonator h0 (h1). Resonator filters h1,k for vβ,2 are determined by
f1,k = 2.5/k Hz, k = 1, . . . , 10 for the filter-bank h1, whereas resonator filter h0 for
the x0 and vβ,1 is given by f0 = 1.25/k Hz. Damping parameter for all filters was
Q = 0.6. Note that we used the same filter parameter f0 to compute the signal uβ,20 .
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Figure 2.27: Schematic diagrams of chained learning architectures: A) linear-chain
architecture and B) honeycomb-chain architecture. Symbols α, β and γ denote neu-
rons, u denote filtered input signals x, ρ connection weights and v outputs of the
neurons.

Weights ρβ,10 and ργ0 are set to a fixed value 1, all other weights are initially zero. The
connection weight ρβ,20 is given by

ρβ,20 =
10∑
k=1

ρβ,11,k , (2.9)

where k denotes the number of the filter in the filter bank. Note that both architec-
tures (Fig. 2.27 A, B) are identical if we set ρβ,20 = 0 and ρβ,21 = 1.

2.11 Learning with chained architectures

In the following we will present the basic behaviour of the chained learning architec-
tures. First off all we will show simulation results in an open-loop case and later on
we will test the chained architectures on a line following task (closed-loop case).

2.11.1 Open-loop case

Inputs for the open loop case were generated as follows. Input x2 occurs 20 time
steps earlier than input x0 with a variability of up to ± 5 time steps and x1 occurs 10
time steps earlier than x0 with the same variability. This impulse sequence has been
repeated every 50 time steps.

Simulation results for the linear-chain (Fig. 2.27 A) are presented in Fig. 2.28 A,
B. The variability in the pulse sequences leads to uneven growth. In the open loop
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Figure 2.28: Simulation results for chained learning architectures in the open-loop
case. Learning rate for both architectures was µ = 10−7. A, B) Results for the linear-
chain (see Fig. 2.27 A). Connection weights ρβ1 and ργ1 . Weights ρβ1 stop growing at the
condition x0 = 0 and ργ1 stop growing when x1 = 0. C-E) Results for the honeycomb-
chain (see Fig. 2.27 B). Connection weights ρβ,11 , ρβ,21 , ργ1 . Weights ρβ,11 stop growing
at the condition x0 = 0, ρβ,21 and ργ1 stop growing when x1 = 0.

case we have to enforce weight stabilisation by setting the respective inputs x0 and
x1 to zero at some points. We have set x0 = 0 when the sum of weights over all ten
filters is

10∑
k=1

ρβ1,k ≥ 0.5, (2.10)

and x1 = 0 when
10∑
k=1

ργ1,k ≥ 0.5. (2.11)

Using this criterion, first the connection weights ρβ1 stabilise and after some time ργ1
stop to change (as indicated by vertical dashed lines).
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Results for the honeycomb-chain (Fig. 2.27 B) are presented in Fig. 2.28 C-E.
Similar to the linear-chain architecture to assure weight stability we have set x0 = 0
when the sum of weights over whole filter-bank is

10∑
k=1

ρβ,11,k ≥ 0.5, (2.12)

and x1 = 0 when
10∑
k=1

ρβ,21,k ≥ 0.5. (2.13)

In this situation first the connection weights ρβ,11 stop to change and later both weights
ρβ,21 and ργ1 stabilise (as indicated by vertical dashed lines).

2.11.2 Closed-loop case

The chained architectures were applied in the line following task and results similar
to those in the simulated open loop case were obtained for both architectures. The
physical and neuronal setup of the robot for the chained architectures are presented
in Fig. 2.29. The neuronal setup for the linear-chain architecture is presented in panel
B and for the honeycomb-chain in panel C. It is similar to those above (see Fig. 2.27),
only that we add left and right inputs with inverted signs before this signal finally
arrives at neurons β.

Results for the learning task using the linear-chain (Fig. 2.29 B) are presented in
Fig. 2.30 A-C and for the honeycomb-chain (Fig. 2.29 C) in Fig. 2.30 D-G. In the
first learning trial the motor signal (Fig. 2.30 C) shows three leftward cumulative
reflex-predictive reactions and two non-reflexive reactions, as well as two cumulative
rightward reactions and three non-reflexive reactions. Note, by chance in this trial
the three leftward reflexes were elicited by triggering xL0 , whereas the two rightward
reflexes came from xR1 . Hence the leftward reflexes where contributing to the change
on ρβ1 and ργ1 (Fig. 2.30 A, B) but not the rightward reflexes, which only contributed
to the change of ργ1 .

In the second trial only non-reflexive leftward and rightward steering signals oc-
curred and the reflex was not triggered anymore. The driving trajectory is not shown
but similar to that obtained by the simple architecture (see Fig. 2.6 D and also video
linear-chain.mpg5). Weights at a certain neuron stabilise as soon as their correspond-
ing reflex input remains silent. For the linear-chain (panels A-C) this happens earlier
for ρβ1 where x0 becomes zero after about 150 camera frames and later for ργ1 , be-
cause its reflex input vβ remains longer active. Essentially the same is true for the

5Videos can be downloaded at http://sites.google.com/site/ktomsite/driving-robot



2.11 LEARNING WITH CHAINED ARCHITECTURES 45

Figure 2.29: Physical and neuronal setup of chained learning architectures. A)
Camera image with left and right sensor fields marked by xL,R2 , xL,R1 and xL,R0 . B,
C) Neuronal setup of the robot for linear-chain and honeycomb-chain architectures
respectively. Symbols α, β and γ denote neurons, u denote filtered input signals x, ρ
connection weights, and v outputs of the neurons.

honeycomb-chain (D-G). Here ρβ,11 stops growing first, which gets the same reflex in-
put u0 as ρβ1 in the linear-chain. Convergence of the weights ρβ,21 is controlled by reflex
input u1 which also contributes to the signal vβ,1, being the reflex input to neuron γ.
Hence weights ρβ,21 and ργ1 behave in the same way and stabilise later (similar to ργ1
of the linear-chain).

2.11.3 Statistical evaluation of the chained architectures

We also did simulations using chained architectures in order to make a comparison
with the simple setup. The simulation setup for the chained architectures is shown in
Fig. 2.31 A. Positions of sensor fields xL,R1 and xL,R0 were fixed (distance was 3 units)
and we only varied the position of sensor fields xL,R2 (d2 = [2, 3 . . . 7] units).

The influence of the robot’s position angle while placing the robot at the starting
position is presented in Fig. 2.32 A, B. We plot the success rate in 1000 experiments
and the average number of learning experiences (LE) needed to accomplish the task
(in successful experiments) against the variance of the distribution of the starting
angle σ2

α. We obtained similar results using the linear-chain (panel A) as compared
to the simple architecture where success is slightly decreasing and more reflexes are
needed to accomplish the task if we increase the variance σ2

α. We get a slightly reduced
performance as compared to the simple setup (success rate 0.86 < success < 0.96
for all tracks). Also, as for the using simple setup, more learning experiences are
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Figure 2.30: Results of the driving robot experiment using chained learning archi-
tectures on the intermediately steep track. Learning rate for both experiments was
µ = 2.5×10−6. A-C) Results for the linear-chain (see Fig. 2.29 B). A, B) Connection
weights ρβ1 and ργ1 . C) Motor output vγ. D-G) Results for the honeycomb-chain (see
Fig. 2.29 C). D-F) Connection weights ρβ,11 , ρβ,21 and ργ1 . G) Motor output vγ.

required for the sharp track as compared to shallower ones. For the honeycomb-
chain (panel D) performance was again lower: success rate 0.71 < success ≤ 0.94
for the shallow and intermediately steep track where for the sharp track we got very
low performance (success rate success < 0.1). This is due to the fact that the
honeycomb-chain architecture is sensitive to the position of the sensor fields. We plot
the results of 100 experiments for different positions of the predictor sensor x2 (we
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Figure 2.31: A) Setup of the simulated robot used for the chained learning archi-
tectures. B, C) Setups of the simulated robots used for the comparison between
simple (B) and chained (C) learning architectures. Dots represent positions of the
sensor fields xL,R0,1,2, r = 20 units is the radius of the robot, d2 = [2, 3 . . . 7] units is the

distance between sensors x1 and x0 (A).

kept positions of x1 and x0 fixed) in panel D. Here we can see that we get the best
performance for the shallow and sharp track when the distance between x2 and x1 is
d2 = 5 units (success rate 0.70 ≤ success ≤ 0.96 for all tracks) where for the middle
track the importance of the position of the sensor fields is not significant (except for
the smallest distance between x2 and x1 given d2 = 2 units). For the linear-chain
setup (panel C) we obtained the same results as for the simple one. Success rate
decreases if the distance between inputs is getting larger only for the sharp track
whereas for the shallow and intermediately steep track decrease is not significant. We
also observed that the number of necessary learning experiences (see panel C, D) is
increasing if the distance between x1 and x0 is getting larger except for very small
distances between x2 and x1 when using the honeycomb-chain setup (panel D).

We can summarise that better performance is obtained with the simple setup as
compared to the chained architectures. The performance does not crucially depend
on the starting angle position. It decreases only slightly if the variance of the starting
angle position increases. In general we observed that only for the honeycomb-chain
architecture performance depends on the position of the sensor fields (distance be-
tween sensor fields). The learning rate does also not affect performance itself. The
robot only needs more reflexes to learn the task if we use relatively low learning rates.

2.11.4 Simple vs. chained learning architecture

Previously we summarised that with the simple setup we get better performance as
compared to the chained architectures. This is true only for cases where we have good
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Figure 2.32: Results of the simulation experiments using chained architectures. A-
B) Success in 1000 experiments and average number of learning experiences (LE)
at the motor output neuron γ needed to accomplish the task within successful trials
are plotted against the variance σ2

α: A) linear-chain, B) honeycomb-chain. Learning
rate was µ = 5 × 10−6 and distance between x1 and x0 and between x2 and x1 was
d = d2 = 3. C-D) Success in 100 experiments and average LE plotted against the
distance between x2 and x1: C) linear-chain, D) honeycomb-chain. Distance between
x1 and x0 was fixed and was d=3. Learning rate was µ = 5× 10−6 and the variance
was σ2

α = 4.

input correlations (small distances between inputs) in the simple setup. Performance
decreases if the distance between inputs is very large (see Fig. 2.12 B) for the shallow
and intermediately steep track and the robot never managed to steer the sharp curve
when the distance between inputs x1 and x0 was d > 8. However, the robot managed



2.11 LEARNING WITH CHAINED ARCHITECTURES 49

to steer the sharp curve when chained architectures were used (see Fig. 2.32 C, D)
where the distance between inputs x2 and x1 was d2 > 5 and between x1 and x0 was
d = 3 (total distance between x2 and x0 was > 8).

Figure 2.33: Results of the simulation experiments using different learning archi-
tectures on the intermediately steep track (45 degrees). A) Success in 500 experi-
ments. B) Average number and confidence intervals (95%) of learning experiences
(LE) needed to accomplish the task within successful experiments. Learning rate for
all experiments was µ = 5 × 10−6. Distance between x1 and x0 in the simple setup
was 15 units whereas distance between x1 and x0 and between x2 and x1 in chained
architectures was 7 and 8 units, respectively.

To test the hypothesis whether chained architectures are advantageous for bad
correlations because of sparse inputs we did an experiment where we compared the
performance of all three architectures on the intermediately steep track (45 degrees).
The setup of the input configuration for the simple architecture is shown in Fig. 2.31 B
and for the chained architectures in Fig. 2.31 C. Distance between inputs x1 and x0

in the simple setup was 15 units and in the chained architectures it was 8 between
inputs x2 and x1 and 7 between x1 and x0 (total distance between x2 and x0 was
15 units). A comparison between all three architectures is presented in Fig. 2.33
where we plot the success rate in 500 experiments (panel A) and the average number
of learning experiences (LE) within successful experiments together with confidence
intervals (95%) needed to accomplish the task (see panel B). From the results we can
conclude that chained architectures indeed perform better in this case (success rate
for the linear-chain 0.87 and for the honeycomb-chain 0.92) whereas for the simple
architecture we obtained a success rate of only 0.57 (see panel A). We also needed
less trials to complete learning when using chained architectures as compared to the
simple setup (see panel B).
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2.12 Development of receptive fields with chained

architectures

In the following we will present results on receptive field development using previ-
ously introduced chained learning architectures and will show that stable secondary
receptive fields can be obtained by using these architectures.

2.12.1 Physical and neuronal setup of the system

The physical and a neuronal setup used for the receptive field (RF) development
using chained learning architectures are shown in Fig. 2.34 and are similar to the
setup presented above (see Fig. 2.29). Only that here predictive sensor fields xL,R1

and xL,R2 with size of 10× 2 px and 15× 2 px respectively (Fig. 2.29 A) are replaced
by receptive fields with size of 10 × 10 px (Fig. 2.13 A) where each pixel within the
receptive field represents an individual input x1i,j and x2i,j with corresponding plastic

synapse ρβ1i,j and ργ1i,j for the linear chain, and ρβ,11i,j
and ρβ,21i,j

for the honeycomb-chain,
respectively. As before we have a symmetrical setup where inputs from the left side
have the fixed weight −1 and inputs from the right side +1. Synaptic weights ρβ0 , ργ0 ,
ρβ,10 are set to a fixed value of 1 and only weights ρβ1 , ργ1 , ρβ,11 and ρβ,21 of all ten filters
(see Fig. 2.2 C) change. Note that in the honeycomb-chain uβ,20 = h0 ∗ 1

n

∑
i,j x1i,j ,

and ρβ,20 =
∑10

k=1 ρ
β,1
1i,j ,k

, where i, j represent indices of active (non zero) input signals
and n is the number of active signals.

2.12.2 Learning secondary receptive fields

Results of the receptive field (RF) development using the chained learning archi-
tectures on an intermediately steep track are shown in Fig. 2.35. Receptive fields
obtained from the linear-chain (Fig. 2.34 A) are shown in panel A, where results for
the development of the RF of predictor xR2 is presented in the top panel and for xR1
in the bottom panel. We had to place the primary RF closer to the reflex sensor
field (at pixel-line 7) and to keep the secondary RF further from the primary RF (at
pixel-line 31) in order to achieve appropriate correlation between inputs and stabilise
the receptive fields (positions have been found experimentally). One can see that the
obtained fields are different. The secondary field xR2 is much noisier than the primary
field xR1 (pattern inconsistency PI for the secondary and primary RF is 0.1394 and
0.0736 respectively) and has only positive weights whereas the primary RF has posi-
tive and negative weights. Note that after learning only the secondary receptive field
will drive the steering behaviour of the robot. Connection weights stabilised after five
trials (in total nine learning experiences).

Results of the RF development using the honeycomb-chain (Fig. 2.34 B) are shown
in Fig. 2.35 B. In this case, in order to achieve appropriate behaviour and stabilise
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Figure 2.34: Physical and neuronal setup of the receptive field (RF) develop-
ment using chained learning architecture. A) Camera image with left and right
sensor fields. The receptive filed positions are denoted by xL,R1i,j

and xL,R2i,j
, where

i = 1 . . . 10, j = 1 . . . 10 are the indices of the RF pixels, and sensor field positions
xL,R0 . B, C) Neuronal setups of the robot for linear-chain and honeycomb-chain ar-
chitectures, respectively. Symbols α, β and γ denote neurons, u denote filtered input
signals x, ρ connection weights and v outputs of the neurons. v is calculated by the
method shown in Fig. 2.2 B and its corresponding Eq. 2.1. vγ is used for steering
control and is transformed to the motor output ML,R as given in Eq 2.4.

receptive fields, we placed the primary RF further from the reflex sensor field but
closer to the secondary RF (at pixel-line 15). The secondary RF was placed at the
same position as for the linear-chain (at pixel-line 31). Both fields have negative
and positive weights. In contrast to the linear chain the secondary RF is less noisy
than the primary RF (pattern inconsistency PI for the secondary and primary RF is
0.0651 and 0.0914 respectively. Connection weights stabilised after six trials (in total
18 learning experiences).

Because more care has to be taken in positioning the RF, in general, we have
found that chained architectures are harder to stabilise as compared to the simple
one-neuron architecture (see Fig. 2.13). This is not unexpected and results from
the influence of the indirect inputs. Hence the more indirect a signal becomes the
more does its correlation structure deteriorate, leading to problems in stabilising
the corresponding receptive fields. This cries out for more advanced sensory pre-
processing by ways of neurons that are already able to extract more stable correlation
patterns. We will discuss possible implications of this statement in section 2.13, but
in the current study we are not concerned with this pre-processing problem.
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Figure 2.35: Results of the receptive field (RF) development using the chained learn-
ing architectures on a intermediately steep track. A) Right RFs obtained from the
linear-chain (see Fig. 2.34 B). Diagrams show summed weights

∑10
k=1 ρ

γ
1i,j ,k

over all ten

filters in the filter-bank which receive inputs from the corresponding predictor xR2i,j
(top) and summed weights

∑10
k=1 ρ

β
1i,j ,k

from the corresponding predictor xR1i,j (bot-

tom). Learning rate was µ = 2× 10−8. B) Right RFs obtained from the honeycomb-
chain (see Fig. 2.34 C). Diagrams show summed weights

∑10
k=1 ρ

β,2
1i,j ,k

over all ten filters

in the filter-bank which receive inputs from the corresponding predictor xR2i,j (top)

and summed weights
∑10

k=1 ρ
β,1
1i,j ,k

from the corresponding predictor xR1i,j (bottom).

Learning rate was µ = 5 × 10−8. Note that the values in the receptive field denote
the total sum of all weights (

∑
) and the pattern inconsistency (PI) respectively.

2.13 Discussion

In this chapter we have introduced a specific closed loop robotics system which can
adaptively improve its line following behaviour, performing reflex-avoidance learning
by ways of replacing late responses to sensor fields at the base of a camera image
with earlier ones triggered by sensors higher up in the field of vision. A new learning
rule (ICO) has been employed which is able to correlate sequences of temporal events
and the system has been tested in a restricted set of scenarios far less complex than
those in a real-world navigation task. Thus, the system has been specifically designed
for this task and cannot easily be compared with more general navigation systems
(see section 2.13.4 below). These restrictions, however, are justified by the focus of
this chapter which is two-fold. We have focused on: 1) The development of receptive
fields in a closed loop perception-action system and 2) the question of how to chain
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temporal sequence learning architectures. Note, more general applications of single
module (no chaining) ICO learning are found in (Porr and Wörgötter, 2006, 2003a,b;
Manoonpong et al., 2007). These studies should support the general versatility of this
type of learning. In the following we would like to discuss how the open- and closed-
loop situation compares to biological and other artificial systems, how our methods
relate to other approaches for RF-development, and where there are relations to some
aspects of reinforcement learning.

2.13.1 Relation of ICO-learning to synaptic plasticity at real
neurons

The ICO-learning rule has been chosen because of its robust convergence properties
(Porr and Wörgötter, 2006) even with high learning rates. ICO learning changes its
weights by correlating inputs, only. This can be interpreted as heterosynaptic plas-
ticity or as modulatory plasticity. In biological systems, pure heterosynaptic learning
is only found at a few specialised synapses (mossy fibre, amygdala, see Humeau
et al., 2003; Tsukamoto et al., 2003), where the mossy fiber synapse between den-
tate gyrus and CA3 in the hippocampus can indeed create fast and strong changes
similar to those induced by ICO-learning with a high learning rate. More often, how-
ever, heterosynaptic influences are thought to be mainly modulatory (Kelley, 1999;
Ikeda et al., 2003; Bailey et al., 2000; Jay, 2003). Here we are not really concerned
with the possible biological implications of such a learning rule (for a more detailed
discussion see Wörgötter and Porr, 2005; Porr and Wörgötter, 2006). Instead we
have used it as a tool to employ fast learning in a difficult scenario. This property
is visible when learning succeeds after the first trial in keeping the robot on track
for an intermediately sharp track, while it does not follow the line if only the reflex
alone is employed. Hence, already during the first learning reflex synaptic weights
adjust quickly and, in turn, immediately influence the output leading to successful
behaviour. This behaviour is generically observed for the ICO-rule, which thereby
approaches the limit of one-shot learning in a stable behavioural domain (Porr and
Wörgötter, 2006), provided the input correlations are robust enough. With noisier
inputs, a lower learning rate needs to be applied, which will lead to a more gradual
development of the weights, required also in the case of RF-development in order to
arrive at structured receptive fields.

2.13.2 Relation to secondary conditioning

In this chapter we were concerned with designing simple chained architectures of
our learning modules. This was inspired by second-order conditioning in animals
(Rescorla, 1980; Gewirtz and Davis, 2000) and humans (Jara et al., 2006). Secondary
conditioning requires a similar situation where the primary correlation between con-
ditioned (early, CS) and unconditioned (late, US) stimulus is first learnt and then in
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a second learning stage is replaced by a newly learnt correlation between secondary
conditioned stimulus (yet again earlier) and CS. This situation is conceptually sim-
ilar to our chained learning units and the same problems, for example less reliable
correlation patterns, arise in both situations.

2.13.3 Closed-loop context: combining control and learning

Biological systems are generally operating in close conjunction with their environ-
ment. This so-called ecological embedding has already been discussed by theoreticians
very early as also essential for autonomous artificial agents (Ashby, 1956; McFarland,
1971; Wiener, 1961). On the more practical side the work of W.G.Walter was proba-
bly the first to create an operational, autonomous cybernetic control system when he
built his two robots Elmer and Elsie. These machines could already perform homing
as well as different forms of photokinesis (Walter, 1950). In the following the ecolog-
ical perspective had been widened most notably by the work of Braitenberg (1984)
on his “vehicles” and for invertebrates by Webb (2002).

In most of the older work typical feedback loop control systems had been built,
which do not adapt but instead react to a stimulus by ways of reflex-like behaviour.
Stable feedback loop control is in itself a difficult problem in particular when there
are multiple inputs and outputs. It is however known that even very simple animals
can learn and adapt to new situations. Hence we are now faced with the augmented
problem of how to combine Control with Learning in a stable way. Specifically we are
confronted with the question how animals arrive at useful, reproducible and, hence,
stable behavioural patterns, while they are at the same time able to learn “something
new”. Recently Verschure suggested that such systems should contain several layers
for control and learning: At the bottom a “reactive layer” performing pure reflex-
based control, one above an “adaptive layer” performing predictive learning much in
the sense of classical or operand conditioning and finally on top a “contextual layer”
for higher level adaptation (DAC-architecture, see Verschure and Althaus, 2003).
Here we are concerned with the first two layers only.

There is another class of learning setups, called feedback-error learning (FEL, see
Gomi and Kawato, 1993; Nakanishi and Schaal, 2004), which appear to be related to
closed-loop ICO. However, in contrast to ICO learning, FEL does not use additional
predictive inputs x1, x2, . . . to compensate for a disturbance. It rather improves the
feedback loop itself by using the signals which are available to the (late) feedback
system. A simple example is feedback loop which is set up as an over-damped system
(PI controller) so that the reaction of the loop to a disturbance or a change in the
set-point leads to a low pass filtered impulse response of the system. With the help of
FEL the reaction could be made faster by adding an adaptive controller which receives
a copy of the disturbance itself or the output of the feedback controller. Because we
have got an over-damped system, FEL would learn to become the derivative of the
disturbance. In other words, FEL would adaptively learn to add the “D” to a PI
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controller. ICO or ISO learning, however, are fundamentally different because they
use the derivative as a predictor to learn another predictive input which is then used
to eliminate the disturbance and eventually eliminates the feedback loop itself. FEL
on the other hand does not replace the feedback loop by a forward controller but
rather improves the performance of the feedback controller as such.

In all such architectures, however, one must ask how in the process of learning
synaptic weights are stabilised in conjunction with behavioural success. Stability in
our approach rests on the assumption that the reflex eliciting signal (x0) really rep-
resents an error signal. Hence, ICO-learning stabilises as soon as this error signal
is eliminated as has been rigorously shown in Porr and Wörgötter (2006). On the
behavioural side this, however, means that the reflex has been functionally eliminated
and has now been successfully replaced by an earlier anticipatory action. This prop-
erty allows controlling the homoeostasis of learning and behaviour at the same time,
which is difficult to achieve with most other architectures.

2.13.4 Comparison to other approaches on receptive field de-
velopment

The development of visual receptive fields has been in the centre of research interest
during the last decade and it had been shown that cortical receptive fields can develop
following a sparseness principle and essentially implementing independent component
analysis (Olshausen and Field, 1996; Bell and Sejnowski, 1997). These studies have
been followed by many others focusing on specific sub-aspects in the receptive field
development (Blais et al., 1998; Weber and Obermayer, 1999; Hurri and Hyvärinen,
2003; Körding et al., 2004). However, only very few attempts exist to develop RFs
from signals of a behaving agent. Einhäuser et al. (2002) had shown that receptive
fields develop from natural stimuli by employing an objective function to control
the development (Vinje and Gallant, 2000). Recently this work has been extended
employing exploration in a Khepera robot to drive the development of receptive fields
in a complex multi-layered neuronal system (Wyss et al., 2006). At the different layers
receptive fields are generated using an objective function to control their development
which also leads to stability of the RF structures after about three days of real-time
exploration. However also in this study the responses from the network are not used
to drive the behaviour. Hence these approaches, while conceptionally elegant, remain
in the tradition of the older studies (Olshausen and Field, 1996; Bell and Sejnowski,
1997) and do not employ direct behavioural feedback.

Pomerleau (1991, 1995) in his ALVINN system (Autonomous Land Vehicle In a
Neural Network) learnt to steer a vehicle in response to visual input from a forward
facing camera. The ALVINN system uses a single hidden layer feed-forward neural
network which applies the back-propagation learning algorithm to learn an appropri-
ate behaviour similar to and taught by human reactions. It differs from our approach
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because it is based on supervised learning and the learning also does not take place in
a complete closed loop setting. Obtained receptive fields (weight matrices of hidden
layers) do not get finally stabilised with this type of learning.

For a different system, Arleo and Gerstner (2000) have shown that place fields,
similar to those in the hippocampus (O’Keefe and Dostrovsky, 1971), can be devel-
oped in a robot. This robot does also explore its environment, but the motor control
is again not derived form the network.

Hence, these models differ strongly from our approach because they are still open
loop. This is different for a recent study by McKinstry et al. (2006) who were able
to close the loop and derive path-following behaviour in a robot that is driven by
a complex multi-layer neuronal system supposed to mimic parts of the cerebellar
system. The system learns, as in our case, reflex avoidance. This is done by neurons in
the simulated Inferior Olive which adapt following a Hebbian learning rule. Synaptic
weight matrices (receptive fields), develop at several stages in the network, but it
appears that this type of learning will not lead to their final stabilisation.

2.13.5 Limitations of our approach

We are, however, also facing some problems with our simple setup. First and foremost,
we found it difficult to assure convergence when receptive fields are to far up or down
in the camera field. A somewhat more detailed analysis of this problem showed that
in these cases the correlation structure between the signals x0 and x1 is distorted. If
the fields are too high up, correlations become weak, if it is too far down, they become
often temporally inverted. To be able to obtain convergent learning one has to make
sure that the correlations between the inputs are reliable enough, which is not the case
in these situations. On similar grounds we found it much harder to stabilise chained
receptive fields. It is clearly an overly simplified approach to use raw camera signals
to develop receptive fields, which was here meant to demonstrate basic principles of
closed loop learning. Hence in a more realistic setup one should already start with
an input pre-processing system that better extracts the necessary correlations. This
could, for example, be achieved by already starting with network units that have a
predefined spatio-temporal receptive field. It seems that visual receptive fields in the
cortex are specifically designed to optimally represent natural images (Simoncelli and
Olshausen, 2001; Felsen et al., 2005) and that essentially a spatial input decorrelation
is performed by the cortical population response (Daugman, 1989; Vinje and Gallant,
2000). Hence, untroubled by spurious spatial correlations, such cortical receptive
fields might be very well suited to encode stimulus driven temporal correlations, which
arise from scanning over a visual scene.
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2.13.6 Some relations to reinforcement learning

Parts of this chapter were concerned with designing simple chained architectures of
our learning modules. This was motivated by the fact that the sensor information in
animals internally progresses along many stages until a motor output is generated.
It is unknown, how such complex sensor-motor loops maintain behavioural stabil-
ity, let alone behavioural stability during changing synaptic strengths between these
different stages. Our approach is to some degree related to reinforcement learning,
not so much to machine learning methods like Q-learning (Watkins, 1989; Watkins
and Dayan, 1992), but rather to Actor-Critic loop architectures (Witten, 1977; Barto
et al., 1983; Barto, 1995), which have been employed in simulated neural systems.
Indeed, if one uses the x0 signal as a reward one can create a structural similarity
between some of these algorithms and our ICO-rule (for a detailed comparison see
Kolodziejski et al., 2009). Also, we note that the strict state- and action space tiling
used in traditional Q-learning approaches has in some approaches been replaced by
more adaptive self-defining processes, which span the state- and action space through
exploration (Jodogne et al., 2005; Agostini, 2004) making these algorithms better
compatible to neuronal architectures.

Indeed, some Actor-Critic algorithms have been also used to guide the learning of
biologically-inspired agents (Montague et al., 1995; Suri and Schultz, 1998; Schultz
and Suri, 2001; Niv et al., 2002) but – to our knowledge – it has not been attempted to
chain Actor-Critic loops so far. Apart from the fact that there is no generic “recipe”
existing, the problem may be even more fundamental. Actor-Critic architectures
usually rely (in their Critic) on the TD-algorithm (Sutton, 1988; Sutton and Barto,
1998) to assess the value of an action of the Actor. The prediction error δ in TD-
learning equals zero as soon as the output v accurately estimates the future expected
reward r(t + 1) using: δ(t) = r(t + 1) + v(t + 1) − v(t). To fulfil this convergence
condition, the output v needs to take on a certain value (output control). In any
single loop architecture, outputs will be fairly directly transferred to inputs by ways
of the environment (e.g. Fig. 2.3). In a nested or chained loop, however a problem
may arise. To guarantee the convergence of each individual stage of the chain its
output needs to be directly conveyed backward to compare it to the reward, which,
necessarily is an input to the regarded stage. Effectively this amounts to some kind
of error back-propagation, a commonly used principle in artificial neural networks
(McClelland et al., 1987), but hard to justify in biological networks, where the role
of internal feedback does not seem to be related to any error back-propagation mech-
anism. Architectures based on our correlation based learning rule(s) perform strict
input control, because they converge as soon as the error signal of the reflex, x0,
equals zero, regardless of the value of the output. This condition, hence, does not
require error back-propagation and may prove to be easier to handle for the design
of more complex nested of chained loops as compared to Actor-Critic architectures
(Wörgötter and Porr, 2005).
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3
Behavioural Analysis of Closed-loop

Learning Systems

3.1 Introduction

In the previous chapter we talked about closed-loop learning systems were we intro-
duced simple layered learning architectures. By applying such learning architectures
on a driving robot we were able to develop primary and secondary receptive fields,
at the same time guaranteeing stable behaviour of an agent. In this chapter we will
continue to further investigate closed-loop learning systems. Here we are concerned
with an analysis focusing on the dynamics of learning systems, where we will also
apply some of the now introduced system measures to analyse receptive fields from
chapter 2.

As discussed earlier, behaving systems form a closed loop with their environment
where sensor inputs influence motor output, which, in turn, will create different sensa-
tions. Simple systems of this kind are reflex based agents which react in a stereotyped
way to sensory stimulation, either by a retraction or an attraction reflex (Braitenberg
Vehicles, Braitenberg, 1984). If the environment is not too complex, one can describe
(linear) systems of this kind also in the closed loop case by methods from systems
theory. For this, the transfer functions of agent and environment need to be known
and the characteristics of the control-loop also needs to be taken into account.

The situation becomes much more complicated as soon as one allows the controller
to adapt, for example by learning. Now the transfer function of the agent changes
over time and thereby its interaction with the world, which not only influences its
behaviour but also the learning, resulting in an ongoing change of the behaviour. It
is exceedingly difficult to describe such non-stationary situations.

Two very general questions arise here. 1) To what degree is it possible to describe
the temporal development of such adaptive systems using only knowledge about their
initial configuration, their learning mechanism and knowledge about the structure of
the world? and 2) Given a certain complexity of the world can we predict which
system from a given class would be the best (in some well defined sense)? Clearly
these questions are too general to be answered without constraining “system” and
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“world” much more. But even when doing so, the problem remains intricate due to
the non-stationary closed loop configuration.

As in the previous chapter, we will focus on systems that perform differential
hebbian learning, related to spike-timing dependent plasticity (Markram et al., 1997;
Saudargiene et al., 2004, 2005), for the learning of temporal sequences of paired sensor
events. Differently from the previous chapter here we are going to use an agent
that learns to avoid obstacles as shown in Fig. 3.1 B. Fig. 3.1 A shows the general
control diagram for such system which is similar to the one introduced earlier (see
Fig. 2.3 B). In chapter 2 we assumed that transfer functions of the closed-loop system
are constant, however, while the agent interacts with its environment these transfer
function change. For example, the question arises whether the delay τ (Fig. 3.1 A)
between the predicting event x1 and the reflex trigger x0 would change while learning
to avoid obstacles. Thinking of an obstacle-avoiding robot, intuitively one would
expect τ to get longer as the growing influence of x1 should lead to a later and later
triggering (by x0) of the reflex until it is finally fully eliminated. This is shown in
Fig. 3.1 B trajectory (1) versus trajectory (2), where the robot beetle depicted uses
two sets of antennas (short and long) for near (x0) and far (x1) sensing, respectively.
The intuition of a growing τ is alluring, but just shows how even in the simplest cases
our understanding of such adaptive systems can go astray. Because, as shown below
and contrary to our naive intuition, such systems are better described by a τ which
first grows and then shrinks again back to essentially its starting value. A deeper
look into the development of these systems allows understanding why this happens
and we can even derive an analytical approximation for the weight development in
these cases.

In the second part of this chapter we define energy, input/output ratio and entropy
measures for these systems and measure them in environments of different complexity.
Using these measures we will first show that learning equalises the energy uptake
across agents and worlds. Strong differences which initially exist are being levelled
out during learning. However, when judging learning speed and complexity of the
resulting behaviour one finds a trade-off and some agents will be better than others
in the different worlds tested.

The analysis of closed-loop systems is a well established field in the engineering
sciences, which also investigates “adaptive controllers”. Very little, however, is known
about adaptive controllers which interact with their environment by shaping non-
stationary dynamics through their own learning (see section 3.10). It had been shown
that Shanon’s Information Theory (Shannon, 1948) can be applied for perception-
action loops (Ashby, 1956; Tishby et al., 1999; Touchette and Lloyd, 2000). Few other
studies exist that try to analyse closed loop systems from an agent-perspective asking
about the information processing properties of such system in the context of what
would be beneficial for the agent itself (Klyubin et al., 2007, 2008; Lungarella et al.,
2005; Lungarella and Sporns, 2006; Prokopenko et al., 2006). Even fewer attempts
exist that consider learning (Lungarella and Sporns, 2006; Porr et al., 2006). The work
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Figure 3.1: A) Schematic diagram of the closed-loop learning system with inputs x0

and x1, connection weights ω0 and ω1 and neuronal output z. P0 and P1 denote the
reflexive and the predictive pathway respectively. D defines the disturbance, where τ
is the time difference between inputs x0 and x1 as shown in panel C. B) Robot setup
with short antennas (reflexive inputs, x0) and long antennas (predictive inputs, x1).
The diagram shows a situation with an increase of the time difference between far-
and near-sensor events during learning process (τ2 > τ1), depicted by the respective
distance between the little (solid) triggering lines x0,1 from trajectory (dashed) to
wall. C) Schematic diagram of the input correlation learning rule and the signal
structure (ICO, Porr and Wörgötter, 2006; Kulvicius et al., 2007).

presented in this chapter is, to our knowledge, one of the first, which tries to address
these issues in closed-loop systems. While our scenarios have strong constrains, the
newly introduced information measures can be applied to a wide range of adaptive
predictive controllers.

The chapter is organised in the following way. First off all we will describe the
environment and the adaptive controller of our system and define several system mea-
sures. Then we will present results from single experiments to demonstrate the basic
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behaviour of the system and provide an analytical solution of its temporal develop-
ment. Afterwards we will show results for the different system measures showing a
statistical analysis for different agents and different environments. Finally we will dis-
cuss the question of “optimal robots” and will conclude this chapter with a Discussion
section relating our work to other approaches.

3.2 Experimental setup

Note, all spatial measures in the following are given in arbitrary “size units” (short
“units”), time is measured in “steps”.

3.2.1 Agent

The structure of the simulated agent used for these simulations is shown in Fig. 3.1 B.
It is a Braitenberg Vehicle of diameter 40 units with two lateral wheels. It operates in
a square arena of 400×400 units or a circular arena with diameter of 400 units, which
can be empty (“simple world”) or contain different numbers of obstacles (“complex
worlds”). By default, the agent drives straight forward (dashed arrow) with speed
ν = 1 units per time step. It has two sensor-pairs, near-sensors and far-sensors, at
the front; each sensor resembling a beetle’s antenna, albeit here with ideal spring-
like properties. Short near-sensors elicit the reflex signal x0 and long far-sensors the
predictive signal x1. Triggering of a sensor will happen as soon as the agent gets close
enough to an obstacle. Then sensor signal x will be elicited according to:

x(t) = β x(t− 1) + (1− β)
λt
Λ
, (3.1)

where λt is the part of the antenna bent by an obstacle at time point t and Λ is
the length of the antenna. The constant β = 0.6 defines the decay rate of the first
order low pass implemented by the feedback x(t− 1). We use a fixed reflex antenna
length of Λ0 = 10 units and different antenna lengths for the predictive sensor of
Λ1 = 40, 50, 60, 70, 80, 100, 120, 150, 200. In the following we will use the antenna
ratio Λ1

Λ0
to specify different robots.

From this the agent computes its output z as:

b0,1 = sign(xR0,1 − xL0,1),

z = ω0 b0 max{|xR0 |, |xL0 |}+ ω1 b1 max{|xR1 |, |xL1 |}, (3.2)

where xL,R0,1 are sensory inputs from the left and right side obtained by Eq. 3.1 above.
This corresponds to a linear summation neuron with an added-on winner-takes-all
mechanism so that the reaction z will follow the strongest of the left and right sensor
signals in case both are triggered at the same time.
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Signal z is then directly used to change the robot’s driving angle α. For the
remainder of this chapter it is important to remember that z directly corresponds to
the change of the turning angle dα/dt:

dα

dt
= gαz(t), (3.3)

where gα is the steering gain. From this the change of the robot position can be
calculated for each time step and as a result of this setup the agent will avoid obstacles
when moving through its arena.

3.2.2 Learning rule

For learning we use the ICO (input correlation) rule (Porr and Wörgötter, 2006),
because of its intrinsic stability, given by (Fig. 3.1 C):

dω1

dt
= µx1

dx0

dt
(3.4)

Note, that the typical low pass filtering of the input signals for ICO learning (Porr
and Wörgötter, 2006) is performed by the environment itself and by Eq. 3.1.

3.2.3 Closed-loop system

The general structure of the closed loop has been presented in Fig. 3.1 A and was
discussed in the introduction so that only a few explanations need to be added here.

In general we denote the transfer function of the agent by H and those of the
environment by P . In Fig. 3.1 A we have added the time variable t to all those
components of which the temporal development is of interest in the context of this
study: x0, x1, z, τ and ω1. The other synaptic weight ω0 is kept constant at 1.0.

3.2.4 Experimental procedure

We tested nine robots with different antenna ratio Λ1/Λ0 = 4, 5, 6, 7, 8, 10, 12, 15, 20
in four environments of different complexity. We used a circular environment with a
diameter of 400 units where complexity was defined by the number of obstacles (3,
7, 14, or 21). We used square shaped obstacles of size 20× 20 units that were placed
at random positions in a circular manner at the perimeter of three imaginary circles
with radii of 50, 120 and 190 points. This way we avoid deadlock situations and
assure a free path along the whole circular arena. Several examples of the simplest
and the most complex environments are shown in Fig. 3.2.

Two different types of experiments are being made. (1) Normal learning experi-
ments where the robots actually learn while driving and (2) steady state experiments
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(called weight freezing), where we keep ω1 for some time at a preset value for measur-
ing the currently queried parameter(s) in a steady state situation. Then ω1 will be
increased and parameter(s) will be measured again and so on until we are reaching
the final weight ωf1 at which the reflex is not triggered anymore.

We used the following procedure for this. We set the weight ω1 to specific values
(0,∆ω1, 2∆ω1, . . . ω

f
1 , where ∆ω1 = 10−3) and, for each ω1, let the robot run for

N = 20000 time steps without learning.
Such a procedure is motivated by the fact that actual runtime is irrelevant (as

explained above). Thus, by setting weights we can probe the robot’s behaviour for a
longer period in a steady state situation in order to get more data for the analysis.

3.3 System measures

In the following we will present different measures used to evaluate temporal develop-
ment and success of learning, and to find the optimal robot for a specific environment.

3.3.1 Temporal development

To analyse the temporal development we measure how the temporal difference τ
between inputs x1 and x0 changes on average during learning. As events in these
systems are very noisy we need to adopt a method by which the time-difference
between two subsequent x1, x0 events is reliably measured. For this we use the weight
freezing procedure and keep ω1 = const for N time steps. We define a window cw =
300 steps. Then we use a threshold with value 0.02 on the x0 signal and determine
the time tk where the signal x0 reaches the threshold (cw ≤ tk < N−cw, N = 20000).
Finally we place a window cw around these tk values and calculate the cross-correlation
between x1 and x0 by:

Ck(t) =
T=+cw∑
T=−cw

x1(tk) · x0(tk + T ), (3.5)

We determine the peak location of the cross-correlation as:

τk = argmax
t

Ck(t). (3.6)

Finally we calculate the mean value of the obtained different time differences τk for
the whole frozen time section (N steps) according to:

τ =
1

M

M∑
k=1

τk, (3.7)

where M is the number of found threshold crossings. After increasing ω1, this proce-
dure is repeated until ωf1 .
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3.3.2 Energy

We measure how much energy the robot uses for a given task during the learning
process. In physics the total kinetic energy of an extended object is defined as the
sum of the translational kinetic energy of the centre of mass and the rotational kinetic
energy about the centre of mass:

Ek =
1

2
mν2 +

1

2
Iω2, (3.8)

where m is the mass (translational inertia), I is the moment of inertia (rotational
inertia), ν and ω are the velocity and angular velocity respectively. As we use a
constant basic speed ν and our all robots have the same size we can simplify the
previous equation and define the mean output energy as:

Ez =
g2
α

2N

N−1∑
t=0

z2(t). (3.9)

We note that the change of the turning angle dα
dt

= gαz(t) is directly to be understood
as the angular velocity w.

3.3.3 Path Entropy

The following measure quantifies the complexity of the agent’s trajectory during the
learning process. The function z determines the state of the orientation of both wheels
(particles) relative to each other as the relative speed of one particle against the other
determines the turn angle and hence the orientation of the robot. If the robot only
makes sharp turns then we would find for z ideally only two values: zero for “no
turn” and one other (high) value for “sharp turn”. In defining the path entropy Hp

in an information theoretical way by number of states taken divided by number of all
possible states this would yield a very low entropy as only 2 states out of many possible
turns are taken. On the other hand the path entropy would reach its maximum value
if all possible steering reactions will be elicited with equal probability.

Thus, in order to calculate the path entropy we need to get probabilities p(zi) of
the output function z for each value zi. To do that, first we calculate a cumulative
distribution function of z by:

Fc(z) =
∑
zi≤z

f(zi), (3.10)

where z = 0,∆z, . . . 1 (we used ∆z = 2× 10−3). Here f(zi) = 1 if zi ≤ z, and f(zi) =
0 otherwise. From the cumulative distribution function we calculate a probability
distribution function to be able to calculate the probability of the different values of
z given by p(z):

p(z) =
∆Fc(z)

∆z
. (3.11)
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Then we can define Hp in the usual way as:

Hp = −
∑
z

p(z) log2 p(z). (3.12)

3.3.4 Input/Output Ratio

We define the input/output ratio Hz which measures the relation between reflexive
and predictive contribution to the final output, and shows how this relation changes
during the learning process. At the beginning of learning only the reflexive output
will be elicited which would lead to zero value. With learning ratio should grow and
reach a maximum when reflexive and predictive parts contribute to the output evenly.
After that ratio should go down back to zero since the reflex is being avoided and at
the end of learning only predictive reactions will be elicited.

We define the absolute value of the neuronal output for the x0 pathway:

|z0| =
N−1∑
t=0

|z0(t)|, (3.13)

z0(t) = x0(t) · w0,

and for the x1 pathway:

|z1| =
N−1∑
t=0

|z1(t)|, (3.14)

z1(t) = x1(t) · w1(t),

where N is the length of the sequence (here N = 20000 time steps). The total absolute
value of neuronal output can be defined as:

|z| =
N−1∑
t=0

|z(t)|, (3.15)

z(t) = z0(t) + z1(t).

Finally, the input/output ratio can be calculated by the following equation:

Hz = −
(
|z0|
|z|

log2
|z0|
|z|

+
|z1|
|z|

log2
|z1|
|z|

)
. (3.16)

Note that this measure would be similar to an entropy measure if one would use the
probabilities that an output z is generated by the reflex x0 or predictor x1 instead of
the integrals |z0/1|.
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3.3.5 Speed of learning

To evaluate the speed of learning we assess weight development and not time, noting
that elapsed time is irrelevant. For instance, if the robot drives around a long time
without touching obstacles (no learning events) this would not influence the weight.
Learning is driven by events (x1 and x0 pairs) which is directly reflected by weight
growth and this we relate to the speed of learning. Hence we can determine the speed
of learning of a specific agent by measuring at which weight the agent reaches the
maximum input/output ratio value, where reflex and predictor contribute equally to
the output. Thus, we define the learning speed S as being inversely proportional to
this weight:

S =

(
argmax

ω1

Hz(ω1)

)−1

, (3.17)

with ω1 = 0,∆ω1, . . . ω
f
1 , where ωf1 denotes the final weight at which the reflex x0 is

not triggered anymore.
Note in a given environment one finds that learning events can occur more or less

often depending on the sensitivity of the reflex. In this case - to compare architectures
at the reflex level - one would indeed want to measure time as such. We are, however,
in the current study not concerned with this.

3.3.6 Optimality

In order to find an optimal robot for a specific environment we used an averaged
optimality measure O which is a product of the speed of learning S and the final path
entropy Hp(ω

f
1 ):

O = S ·Hp(ω
f
1 ). (3.18)

Note that we normalised values of S and Hp(ω
f
1 ) between zero and one before cal-

culating the product in Eq. 3.18. With this measure we can find the optimal robot
in a given world, which learns the task quickly and also produces relatively complex
driving trajectories.

3.4 Basic behaviour of the system

The basic behaviour of the obstacle avoidance agent is presented in Fig. 3.2 where
we show simulation results for a circular environment with 3 and 21 obstacles. In
panels A and B we show weight development and corresponding driving trajectories
(see insets) for the case where the robot was actually learning (no weight freezing
here). The resulting weight curves for both cases are similar and we observe relatively
rapid weight growth at the beginning of the learning and then slow saturation till
the reflex is avoided and weights finally stabilise. Corresponding trajectories are
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colour-coded where the blue colour corresponds to reflex-driven behaviour and the
red colour corresponds to predictor-driven behaviour. Values for the colour-coding
were calculated by a contrast measure given in appendix A.4. From the driving
trajectories we can see that at the beginning the robots make sharp turns because
of the initially built in strong reflex reaction whereby, as a consequence, the robot
explores more or less the whole environment. With learning the predictor takes over
which at the end leads to wall following behaviour since learnt steering actions are
much weaker but are elicited earlier compared to the initially strong and late reflex
reactions. Simulation results for the case where we used the weight freezing procedure
are shown in panel C. This way we can, for different weights, show longer trajectories
to better assess the robots’ behaviour. Here we plot selected trajectories for two
different environments (3 and 21 obstacles) and for two different robots (antenna
ratio 6 and 15). Trajectories for each case are presented in rows where the first
trajectory corresponds to the reflexive driving behaviour (ω1 = 0), the second and
the third trajectory correspond to a mixture of reflexive and predictive behaviour, and
the last trajectory corresponds to the predictive driving trajectory when the reflex
is finally fully avoided (ω1 = ωf1 ). Here we obtained similar driving behaviour as in
the examples presented above. In general we observed that late, strong, and abrupt
reflex reactions turn into early, weak and smooth predictive reactions whereby, as a
consequence, a bouncing driving behaviour turns into a wall following behaviour.

3.5 Characterising the temporal development

Fig. 3.3 shows the results from one obstacle avoidance experiment in our standard
empty square arena. Panels A and B show the development of the reflex (x0) and
predictor (x1) signals over time (top panels), where the bottom panels show mag-
nifications for the beginning and the end of the learning. As expected, x0 shrinks
substantially during learning, because the reflex signal is better and better avoided.
It would finally fully vanish as theory predicts, leading to the stabilisation of weights
(Porr and Wörgötter, 2006), only here – to be able to show how small x0 signals look
like – we have stopped the learning process before this final equilibrium had been
reached (see Fig. 3.2 A for a completed process).

The predictor signal in panel B also gets smaller which is due to the fact that
at the beginning of learning the predictive antennas are bent all the way until the
reflex antennas finally also hit the wall whereas after learning the reflex is avoided
and the predictive antennas are not so strongly bent anymore. Panel C finally shows
the development of the output signal z, which shrinks in amplitude but gets wider
over time.

Of special interest is the development of τ during the learning process. Therefore
we carried out an experiment where we analysed how the time difference τ depends
on the synaptic weight ω1 and the angle at which the robot hits the obstacle. For
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Figure 3.2: Driving trajectories from single experiments in a circular environment
with obstacles. A, B) Weight development and corresponding driving trajectories
obtained from individual experiments in an environment with 3 (panel A) and 21
obstacles (panel B). Trajectories are colour-coded where a zero value corresponds
to reflex-driven behaviour and one corresponds to predictor-driven behaviour. The
following parameters were used: antenna ratio Λ1/Λ0 = 6, steering gain gα = 50,
learning rate was µ = 5 × 10−3 for the case A, and µ = 10−3 for the case B. C)
Driving trajectories obtained from individual experiments when using the weight
freezing procedure in an environment with 3 (first and third row) and 21 obstacles
(second and fourth row). For the two experiments shown in the first two rows we used
a robot with antennae ratio Λ1/Λ0 = 6 whereas for the third and fourth experiment
antenna ratio Λ1/Λ0 = 15 was used. The same steering gain gα = 50 was used for all
four cases.

that we simulated our agent in a square and a circular environment without obstacles
where we let the robot drive into a wall with different preset starting angles as shown
in Fig. 3.4 (see insets). We varied the starting angle from 30 to 90 degrees in the
square arena and from 40 to 90 degrees in the circular arena. Smaller angles were not
possible here. In addition we also varied the weight ω1 by setting it to a specific value
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Figure 3.3: Results from one experiment in a square arena without obstacles. A,
B) Inputs x0 and x1 respectively. C) Neuronal output z. Bottom panels show signal
shapes at the beginning and at the end of the learning. The following parameters
were used: antenna ratio Λ1/Λ0 = 5, steering gain gα = 50, learning rate µ = 0.06.

(0,∆ω1, . . ., where ∆ω1 = 10−3). Results for both environments are shown in Fig. 3.4
where we plot the time difference τ between inputs x1 and x0 against the synaptic
weight ω1. Here each curve shows time differences for one specific preset angle at
which the agent drives towards the wall. The obtained results are very similar for
both cases where we can see that the time difference increases for all given angles
with increasing weights. We can also see that the increase for large angles is less
pronounced than that for small angles. In general we observe that curves for small
angles are shorter than those for larger angles, which is due to the fact that a less
strong weight may suffice to avoid a wall when approaching under a small angle, but
will not under a large angle. In a real learning situation this would lead to the fact
that at the beginning all angles lead to learning, whereas at the end only large ones
will. If we assume that there is no prior bias for any approach-angle (hence all angles
will occur with equal probability without any learning), then this predicts that as
soon as learning takes place an agent will on average experience τ values which follow
(roughly) the average curve (grey) inside the “brushes” shown in Fig. 3.4.

To test this prediction, we analysed the development of τ statistically by testing
nine different robots in four different environments. For the statistical evaluation we
carried out 100 experiments for each specific case (in total 36 cases). All experiments
were carried out by using the weight freezing procedure. Statistics are presented in
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Figure 3.4: Time difference τ between far- and near-sensory inputs x1 and x0 for a
wall avoidance task in a square (A) and a circular arena (B). τ is plotted against
the weight ω1 where each curve represents a certain angle with which the robot sets
off to drive towards the wall of the specific arena as shown in the insets. Grey curve
represents the average. The following parameters were used for all cases: antenna
ratio Λ1/Λ0 = 5, steering gain gα = 50, weight change ∆ω1 = 10−3. C-F) Statistics
for time difference τ between inputs x0 and x1 obtained from an obstacle avoidance
task in a circular environment of different complexity with 3, 7, 14, and 21 obstacles
(see insets for examples). Coloured curves in each panel show the averaged results
plotted against the weight ω1 obtained from 100 experiments where different colour
represents results for the different robots defined by the antenna ratio Λ1/Λ0. The
following parameters were used for all cases: steering gain gα = 50, weight change
∆ω1 = 10−3.

Fig. 3.4 C-F where we plot averaged results for all 100 experiments for each case.
As discussed above we can see an increase of τ at the beginning and then a decay
later on. We can also observe that in general we get larger τ values if we increase the
antenna ratio which is obvious because longer antennas produce larger time differences
between x1 and x0 events. In addition we observe that the time differences at the
beginning of the development are smaller for simpler environments and are larger for
more complex environments. The reason for this is that in a simple environment we
get only those experiences where the robot drives into an obstacle placed close to
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the wall with a sharp angle or into the opposite wall when it is repelled from the
obstacle (for trajectories see Fig. 3.2 C cases 3/6 and 3/15), which leads to small,
uniform values of τ in panels C and D. In more complex environments the variety of
experiences is much larger due to the more complex paths taken by the robot (see
Fig. 3.2 C cases 21/6 and 21/15) and this leads to the larger and more dispersed τ
values in panels E and F.

3.6 Analytical closed-loop calculation of the tem-

poral development

3.6.1 Definitions

The analysis of the different signals and their changes makes it now possible to provide
an analytical approximation for the temporal weight development. To do so we need
to simplify the observed signal structure. For the analytics, the reflexive signal x0

consists of a linear rising and falling phase with identical slopes (see Fig. 3.5 A),
where we allow the amplitude to diminish gradually towards zero. By contrast, for
convenience, the predictive shape is described by a concave quadratic function (see
Fig. 3.5 B). The definition of both, with their maximum being at t = 0, is as follows:

x0(t) =
A0

σ0

(t+ σ0) Θ(t+ σ0) Θ(−t) +
A0

σ0

(σ0 − t) Θ(t) Θ(σ0 − t) (3.19)

x1(t) =A1

(
1− t2

σ2
1

)
Θ(σ1 + t) Θ(σ1 − t) (3.20)

with Θ being the Heaviside step function.

We will see that this simple definition will lead to a very good approximation of
the system’s behaviour.

3.6.2 Weight change per learning experience

As the weight change per time step is defined by the ICO-learning rule, the weight
change per experience k is the integral over a single x1-x0 experience using equa-
tion 3.4:

ω′(k) :=
dω(k)

d k
=

∫ σ1

−σ1

µx1(t) ẋ0(t− τ) dt (3.21)
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Figure 3.5: A-C) Structural simplifications of the input signals. A) Reflex signal.
B) Predictive signal. C) The relation between both signals including the temporal
difference τ . D) The development of τ -values over experience k.

where k is defined as experience and ẋ = dx
dt

. Next we include the definition for x0(t)
and x1(t) (i.e. equations 3.19 and 3.20) which allows us to integrate equation 3.21:

ω′(k) =

∫ τ

τ−σ0

µA1

(
1− (t− σ1)2

σ2
1

)
A0

σ0

dt−
∫ τ+σ0

τ

µA1

(
1− (t− σ1)2

σ2
1

)
A0

σ0

dt

=µ
A1A0

σ0

([
t− 1

3

(t− σ1)3

σ2
1

]τ
τ−σ0

−
[
t− 1

3

(t− σ1)3

σ2
1

]τ+σ0

τ

)
=µ

2A0A1 σ0

σ2
1

τ . (3.22)

In order to avoid unnecessary complex case distinctions we used following con-
straints on τ : |τ | < σ1 − σ0 given from the hindsight of the actual τ development we
will encounter.

When looking at the data one finds that it is reasonable to keep most variables,
especially A1, σ0 and σ1 and some others (see Table 3.1), constant. Clearly the
amplitude of the reflex A0 should shrink as this leads to weight stabilisation. The
parametrisation of A0, thus, writes as A0 = a0 (1− ω

ωf
), were we use the final weight

value ωf as a control parameter for the shrinking of reflex amplitude A0.

After including the parametrisation of A0 into equation 3.22 we get:

ω′(k) =µ
2 a0A1 σ0

σ2
1

τ

(
1− ω(k)

ωf

)
(3.23)

Now the question arises whether a constant or a changing τ would be required for
a good system description.
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Analytical calculation of the weight development with constant τ

For a constant τ = τb the solution of the first order differential equation Eq. 3.23
using the initial condition ω(0) = 0 is

ω(k) =ωf

(
1− exp

[
−µ 2 a0A1 σ0 τb

ωf σ2
1

k

])
=ωf (1− exp [−µλ k]) (3.24)

with λ =
2 a0A1 σ0 τb

ωf σ2
1

(3.25)

Analytical calculation of the temporal development including the temporal
dependence of τ on k

Different from above, here we start with equation 3.22 and add the parametrisation
of A0 and τ to this equation using:

τ(k) =


τb + (τp − τb) k

kp
if 0 ≤ k ≤ kp

τp − τp−τb
kp−kb

kp + τp−τb
kp−kb

k if kp < k ≤ kb

τb
k
kf

if k > kb

(3.26)

describing a linear increase in the beginning of learning which results in a τ -value
of τp at experience kp. It is followed by a linear decrease to the original τ -value of
τb at experience kb where it is kept fixed to the end (see Fig. 3.5 D). This gives us
three second order differential equations, which we solve independently. Equations
are structurally similar to Eq. 3.23 and their solutions are shown in appendix A.5.

Figure 3.6: Comparison of experimental and analytical results of weight development
when using constant τ (A) and variable τ (B). Parameters are given in parameters
in Tab. 3.1. Additionally we show the squared error scaled by a factor of 1000.
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Comparison of weight development with constant vs. changing τ

We can now extract the necessary parameters from the robot experiments and test to
what degree the different situations (constant versus variable τ) describe the system
correctly. Parameters are given in Table 3.1.

In Fig. 3.6 A and B we show the real weight change of the conducted experiment
and the analytical solution for constant and variable τ . From the experimental data
it can be seen that the weight ω1 grows at two different rates. First, faster till
experience k = 10 and then slower afterwards, which has been explained in sections 3.1
and 3.2, and is due to an initial increase in τ and then a decrease in τ to initial
values. Consequently, the constant-τ solution (panel A) only captures the overall
weight development, however, cannot reproduce the change in weight growth around
experience k = 10. The fit for variable τ is substantially better (panel B) and the
different weight growths are much better reproduced. The remaining error arises from
the required simplifications used to arrive at the analytical solution.

Table 3.1: Parameters extracted from an experiment. The first part states the pa-
rameters and their values needed for both, constant-τ and variable-τ , approximations,
whereas the second and the third part give particular parameters used for the respec-
tive, constant-τ and variable-τ , cases. We additionally indicate the learning rate by
µ1 and µ2, relating them to the equation used to fit the data.

parameters a0 A1 σ0 σ1 ωf τb µ1 τp kp kb µ2

values 0.6 0.85 43.75 5.75 0.0223 4 0.073 12 9 13 0.0523

3.7 Statistical evaluation of system measures

We analysed the development of the system measures during learning by testing nine
different robots in four different environments. For statistical evaluation we carried
out 100 experiments for each specific case (in total 36 cases). All experiments were
performed by using the weight freezing procedure. Statistics are presented in Fig. 3.7
where we plot averaged results for all 100 experiments for each measure.

Results for the energy development are shown in panels A-D. We can see that
energy is gradually decreasing as sharp reflexive steering reactions turn into smooth
predictive reactions and less energy is needed for shallow turns compared to sharp
turns. We also observe that the energy consumption at the end of the development
is similar across all robots and all environments.

Development of the input/output ratio is presented in panels E-H. As expected,
we observe that at the beginning of the development the ratio equals zero since only
the reflex contributes to the neuronal output and then increases as the synaptic
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Figure 3.7: Statistics for different measures obtained from an obstacle avoidance
task in a circular environment of different complexity with 3, 7, 14, and 21 obstacles
(from left to right). A-D) - output energy Ez, E-H) - input/output ratio Hz, I-L) -
path entropy Hp. Coloured curves in each panel show averaged results plotted against
weight ω1 for a specific measure obtained from 100 experiments where different colours
represent results for a specific robot defined by the antenna ratio Λ1/Λ0 (see panel
L). The following parameters were used for all cases: steering gain gα = 50, weight
change ∆ω1 = 10−3.

weight of the predictive input grows. The ratio reaches a maximum when reflex and
predictor contribute equally to the output. Thereafter the ratio decreases back to
zero since with development we get less and less reflexive reactions and at the end
of the development only predictive reactions are elicited. Different robots reach their
maximum ratio at the different weights. Similarly, a different steepness of the decay
after the maximum is found. Results suggest that in given environments, robots with
longer antennas are quicker learners compared to robots with shorter antennas. We
can conclude that the input/output ratio measure can be used to evaluate the success
and speed of learning of a specific agent in a given environment.

Results for the path entropy are presented in panels I-L where in most cases we
see a rapid decay at the beginning of the development followed by a small increase
and a slow decay at the end. This tells us that the reflexive behaviour at the very
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beginning of the development produces relatively complex paths whereas, when the
predictor takes over, the driving trajectories become simpler, which leads to a decrease
in path entropy. Usually there exists a transition phase during the development where
the robot changes its driving trajectory in order to avoid obstacles producing more
complex paths for some time and this is seen as a small increase in the path entropy
curve. After that the path entropy slowly decreases since predictive reactions produce
rather stereotypical and simple circular paths (see also Fig. 3.2 C). We can also observe
that robots with shorter antennas produce more complex paths compared to robots
with longer antennas.

Figure 3.8: A) Average reflex energy plotted against environment complexity defined
by the number of obstacles. B) final weight, C) final energy and D) final path entropy
plotted against the antenna ratio Λ1/Λ0. The error-bars represent confidence intervals
(95%) of the mean.

Summarised results for all robots and all environments are presented in Fig. 3.8.
In panel A we compare energy consumption of the reflexive behaviour (ω1 = 0) where
we see that energy consumption increases significantly with increase of environmental
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complexity. This suggests that by measuring reflex energy we can judge complexity of
the environment, and that learning is not necessary for such an evaluation. In panel B
we compare the final weights (ωf1 ). Results demonstrate that there is no statistically
significant difference between different environments except for the robots with short
antennas (antenna ratio 4-8). Results for the final energy (Ez(ω

f
1 )) are compared

in panel C. As expected, robots consume less energy in simple environments and
more energy in more complex environments, although those differences are mush less
pronounced compared to the pure reflex energy (panel A). We can also observe that
robots with very long antennas are energetically slightly worse on average than robots
with shorter antennas. In panel D we compare the final path entropies (Hp(ω

f
1 )).

Here we obtained similar results to those of the final energy where we see that robots
produce more complex paths as the environmental complexity increases. Results
also demonstrate that in general robots with shorter antennas produce more complex
paths compared to robots with long antennas.

3.8 On optimal robots

In the following we are concerned whether there exists an optimal robot for a given
environment. We compare the robots’ performance with respect to different measures
(Fig. 3.9). In panel A we compare side by side energy consumption after learning,
i.e. when the reflex x0 is not triggered anymore. Here we can see that the minimal
energy consumption shifts from robots with shorter antennas to robots with longer
antennas as the environment’s complexity increases, but differences (except for the
shortest antennas) are small. As we can see in panel B the most complex paths are
produced by shortest antennas (Λ1/Λ0 = 4) in all four environments. Concerning
the speed of learning (for the speed measure see Eq. 3.17) we observe that robots
with long antennas learn much quicker than robots with shorter antennas (panel C).
Also the drop in performance, when getting into more complex environments, is less
for long antennas as compared to short ones (see lines in panel C). We remind the
reader that speed of learning is given by the equilibrium point (peak of input/output
ratio, see Fig 3.7) where the reflex signal x0 and the predictor signal x1 contribute on
average equally to the output.

In general one should think that “a good robot” would be one that produces – after
learning – complex paths and learns those quickly. As we can see, however, there is a
trade-off between these two constraints, the speed of learning and the path complexity
for a given environment. As a consequence, by using the normalised product of these
two quantities (see Eq. 3.18), panel D shows that there is an optimal robot existing for
any given environment. For instance, the optimal robot for the simplest environment
is the robot with antenna ratio five whereas in the most complex environment the
robot with antenna ratio eight is the best. Based on the obtained results we can
conclude that different robots adapt differently to a specific environment due to their
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Figure 3.9: Comparison of different robots in specific environments of different com-
plexity. Antenna ratios are given by the gray shading (see panel A). A) energy, B)
path entropy, C) learning speed, and D) optimality. Average results are shown in
each panel obtained from 100 experiments. In panel D error bars represent confidence
intervals (95%) of mean.

different physical properties. Note, we did not consider using also the final energy
for defining “optimality” because it does not alter the general picture. For most
robots the final energy does not vary much (panel A) and, where its high (short
antennas, complex worlds) and, thus, not optimal, including it in the measure would
only emphasise the effect that robots with short antennas are best in simple worlds
and vice versa (as stated above).
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3.9 Applying system measures to receptive field anal-

ysis

3.9.1 Experimental setup

In the following section we will apply the above presented system measures for recep-
tive field analysis in order to answer the question: What do receptive fields optimise?
To do so, we performed simulations on a maze track as shown in Fig. 3.10 which is
a slight modification of the maze track presented in Fig. 2.10 C. Here we removed
the crossing point in order to make sure that the robot travels along the whole track
and does not get stuck on one of the two sub-laps of the track. We also varied the
direction angle of robot at its starting position. The value of α0 was chosen randomly
from a Gaussian distribution with mean µα0

= 0 and variance σ2
α0

= 4. We used the
same setup of the robot as presented in Fig. 2.17 and the same system parameters
as described in section 2.9.1. In order to include more variance in the data here we
place the robot on one of the four starting points as shown in Fig. 3.10 which was
chosen randomly from a uniform distribution. Note that the robot was placed at a
new starting point (chosen randomly) also after a loss of the track (deviation from
the track by more than 20 units). Since we can not set weights of the receptive fields
manually due to their unknown structure (no weight freezing possible), differently
from the approach presented above, we let the robot learn continuously and evalu-
ated system measures after learning. Learning in this case was treated as finished if
there was no reflex triggered during a driving period of 4200 time steps (the robot
travels the whole track in ≈ 4100 time steps). Due to the reason stated above we
excluded speed of learning from our analysis and changed our optimality measure as
follows. We used an optimality measure ORF which is a product of the path entropy
Hp, the inverse deviation from the track Ψ−1 (see Eq. A.3) and the inverse energy
E−1
z :

ORF = Hp ·Ψ−1 · E−1
z . (3.27)

Note that we normalised values of Hp, Ψ and Ez between zero and one before cal-
culating the product in Eq. 3.27. With this measure we can find the optimal robot
which after learning is able to produce different steering actions, performs the task
accurately and does not consume a lot of energy.

3.9.2 Statistical evaluation

First of all we looked at the robot’s performance with respect to the size (dimension)
of the receptive field. We used four robots with RF size of 5× 5, 10× 10, 15× 15 and
20× 20 units. In order to compare robots with different RF size we had to place RF
fields of all robots closer to the reflex (distance between reflex and RF position was
d = 5 units), since for small RF size (5× 5 units) larger distances d were not possible
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Figure 3.10: Experimental setup of the simulation of RF development on the maze
track. Four different starting points (arrows show the direction of driving) were used
in the simulations where the starting point was selected randomly from a uniform
distribution. The width of the track was 1 unit.

due to poor correlations between RF inputs and the reflex. We also tuned the learning
rate for each robot in order to achieve the same learning speed, i.e. number of required
learning experiences (see Fig. 3.13 A). Examples of receptive fields of different size
are shown in Fig. 3.11 where we show RFs from ten experiments for each case where
we can observe that smaller RFs are noisier and less structured compared to larger
RFs.

Single examples of motor outputs and corresponding driving trajectories when us-
ing different RF size (5× 5, 15× 15 and 20× 20) are shown in Fig. 3.12. Here we can
see that the motor output generated by small RFs (panel A) is much larger in ampli-
tude and narrower as compared to motor outputs produced by bigger RFs (panel B
and C) which generate weaker and wider responses. As a consequence small RF leads
to over-steering which on shallow turns produces bouncing driving behaviour (see
panel A), whereas bigger RFs lead to smoother and more accurate driving behaviour.
This can be explained by the fact that smaller RFs are less structured as compared
to bigger RFs. In general, we can observe that the driving behaviour of the robot
with small RFs (5× 5 units) is similar to the driving behaviour of the robot with the
simple setup (see Fig. 2.10).

The statistical evaluation of different system measures from 100 experiments is
presented in Fig. 3.13 B-E. Here we can see that the robot with the smallest RF
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Figure 3.11: Examples of receptive fields obtained on the maze track (see Fig. 3.10)
when using different RF size. A) 5×5, B) 10×10, C) 15×15, and D) 20×20 units.
Values in the receptive field correspond to the total sum of all weights (

∑
) and the

number of required learning experiences (LE), respectively.
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Figure 3.12: Examples of motor outputs vβ (left) and corresponding driving tra-
jectories (right) of the robot obtained on the maze track (see Fig. 3.10) when using
different RF sizes. A) RF size was 5 × 5, B) 15 × 15, and C) 20 × 20 units. Note
that here motor outputs correspond to the ≈ 3/4 of the driving trajectory (starting
from the black dot).
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deviates from the track significantly and more than the robots with larger RFs. This
is due to the fact that smaller RFs are less structured and are not capable of producing
as many different steering actions as larger RFs, which - as a consequence - leads to
over-steering and relatively inaccurate driving behaviour (see Fig 3.12 A). This can
also be seen from the path entropy Hp (see Fig. 3.13 D) where we can observe that Hp

decreases if we reduce the resolution of the receptive field. The robots with RF size
of 10× 10 and 15× 15 units were driving with the best accuracy, however, the robot
with the largest RF was deviating from the track significantly more. This is due to
the fact that the robot with very large RF (20 × 20 units) has it’s inputs relatively
far away from the reflex and starts to react earlier but with weaker steering reactions
compared to the robots with smaller RFs, which leads to the under-steering in most
of the cases (see Fig. 3.12 C), however, without triggering the reflex. We can also
observe that the robot with the largest RF consumes least energy whereas the robot
with the smallest RF is energetically mostly inefficient. This is because the robot
with small RF tends to over-steer and the robot with large RF is reacting earlier with
weaker steering reactions which as a consequence allows following the track without
triggering the reflex with less energy. Concerning optimal robots we obtain that the
best robot with respect to the driving behaviour and the energy consumption is the
one with RF size of 15×15 units whereas the robot with the smallest RF (5×5 units)
shows the worst performance.

We also checked the influence of the learning rate µ on the performance of the
robot. Here we used default system parameters: size of the RF was 15× 15 units and
the distance between reflex and RF position was d = 8. Results from 100 experiments
are shown in Fig. 3.13 F-H. As expected, the number of required learning experiences
decreases if we increase the learning rate (see panel A). We also observe an increase
in the deviation from the track and an increase in the energy with an increase of the
learning rate. This can be explained by the fact that a smaller learning rate (slower
learning process) leads to noise reduction in the RF structure which as a consequence
leads to more accurate and less energy demanding driving behaviour.

Finally, we compared the performance of learnt receptive fields (heterogeneous
RF) against that obtained with homogeneous RF, random RF and different trans-
formations of the learnt RF. Here we wanted to check whether the structure of the
RF plays an important role in agents behaviour. We hypothesised that the learnt
RF (heterogeneous RF) will give better behavioural performance compared to the
performance of an homogeneous RF or transformed RFs. To test this hypothesis
we used the following procedure. First of all we let the robot learn a receptive field
using our standard learning procedure. Afterwards we transformed the learnt RF
and tested the robot’s driving performance (learning rate µ was then set to zero) on
the same path. We used the following RF transformations (shown in Fig. 3.14 A):
vertical (VF), horizontal (HF) and diagonal (DF) flip of weights, random assignment
of weights (R) by shuffling weights of the learnt RF randomly, and homogeneous RF,
where all weights are the same and are equal to the average value of the learnt RF.
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Figure 3.13: Average results from RF simulations on the maze track (see Fig. 3.10)
obtained from 100 experiments. A-E) Different measures plotted versus RF size. A)
Number of required learning experiences (LE), B) robot’s deviation from the track
Ψ after learning, C) final output energy, D) final path entropy, and E) optimality as
given in Eq. 3.27. F-H) Different measures plotted versus learning rate µ. Results
are obtained with an RF size of 15 × 15 units. F) Number of required learning
experiences (LE), G) robot’s deviation from the track Ψ after learning, and H) final
output energy. Error bars represent confidence intervals (95%) of mean.
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Note that the vertical and the horizontal flip result in the change of the position and
the orientation of the RF pattern whereas the diagonal flip changes only the position
of the pattern but leaves the orientation the same. Here we used a relatively low
learning rate of µ = 0.25× 10−8 (which corresponds to ≈ 50 LEs on average) in order
to develop RF structure. The distance between reflex and RF position was d = 8.
For comparison we also tested the robot’s behaviour when driven by the reflex alone
(control case). For the control case (C) we performed 100 experiments (4200 time
steps each) where we let the robot drive without learning (reflexive behaviour) and
computed the system measures. We replaced the robot to one of the four starting
points (chosen randomly) in case it lost the track.

Results from experiments with different RF transformations are presented in
Fig. 3.14 B-F. First of all we can observe that the heterogeneous receptive fields
(learnt RF) increase the robot’s driving accuracy (panel B), reduce the energy1 (panel
C), and increase the variance of the motor output (path entropy, see panel D) as com-
pared to the purely reflex-driven behaviour. Secondly, the robot with heterogeneous
RF also performs better with respect to the driving behaviour, as shown by the larger
path entropy, than the robots with transformed RFs (see panels B and D). We obtain
that the robots with transformed RFs use significantly less energy as with the learnt
RF. This is due to the fact that transformed receptive fields are not capable of pro-
ducing appropriate driving behaviour which leads to the triggering of the reflex (see
panel E where we plot number of reflexes triggered during test driving). Note that
here we use a relatively strong reflex which to be able to bring the robot back to the
track. In case the weaker initial reflex was used the robot would not be able to stay
on the track and would lead to the loss of the track, which in some cases might be
very costly to the agent. Although the robot with learnt RF uses more energy (which
is needed to avoid the reflex) than the robots with transformed RFs, performance of
heterogeneous receptive field is the best with respect to the driving behaviour and
energy consumption (see panel F).

In general, we observed that heterogeneous RFs optimise the agents’ behaviour
which supports the importance of the receptive field structure and that there are
specific system parameters (such as RF size) which lead to the best performance of
the agent for the given task.

3.10 Discussion

In this chapter we have started to address the difficult question how to quantify
continuous learning processes in behaving systems that change by differential hebbian
plasticity. The central problem lies here in the closed loop situation, which leads - even

1Note that for VF, HF, DF, R and HM cases final output energy takes both predictive and
reflexive energy into account.
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Figure 3.14: A) Example of learnt receptive field and it’s transformations. HT
- heterogeneous receptive field (learnt RF), VF - vertical flip of learnt RF, HF -
horizontal flip, DF - diagonal flip, R - randomly shuffled weights of learnt RF, and
HM - homogeneous RF where all weights are the same and are equal to the average
value of learnt RF. B-F) Average results from RF simulation on the maze track (see
Fig. 3.10) obtained from 100 experiments. Different measures plotted versus different
RF transformations. Note that C is the control case (reflex-driven behaviour). B)
robot’s deviation from the track Ψ after learning, C) final output, D) final path
entropy, E) number of reflexes triggered during the test driving, and F) optimality
as given in Eq. 3.27. Error bars represent confidence intervals (95%) of mean.

in very simple linear cases - to an intricate interplay between behaviour and plasticity.
Signal shapes and timings change in a difficult way influencing the learning. As a
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consequence, it is not easy to find an appropriate description and the right measures
for capturing such non-stationary situations. Fig. 3.1 A shows the structure of our
closed loops system and this diagram has been used in earlier studies for convergence
analyses (Porr and Wörgötter, 2003a,b, 2006; Kulvicius et al., 2007). From this
diagram it becomes clear that τ , z as well as x0,1 are the relevant variables in our
system. While learning is defined by the relation between inputs x0,1 and, hence, τ ;
behaviour is defined by output z.

3.10.1 Aspects of model identification

In the first part of this chapter we have concentrated on the inputs and we could
show how τ develops over time for different robots and in different worlds. The
peaked characteristics of the development of τ during learning (Fig. 3.7) is a nice
example of the mutual interaction between behaviour and plasticity. Touching a wall
with a shallow angle just does not occur anymore after some learning and the system
finds itself in the domain of large approach angles where τ shrinks again (Fig. 3.4),
contrary to our naive first intuition, which had argued for a continuous growth of
τ . This also leads to a biphasic weight development and it was possible to use the
measured τ -characteristics, together with some assumptions on the amplitude change
of x0 and x1, to quite accurately calculate such a weight development in an analytical
way.

In the introduction we had asked (question 1) to what degree the temporal devel-
opment of such systems could be described by knowing just the initial conditions of
robot and world. The first part of this paper showed that one needs a bit more than
just the initial conditions. Only together with some information on the general struc-
ture of the development of x and τ , we can reproduce the biphasic characteristics of
the weight development by which the essence of such systems is captured. Essentially
this part of the study was, thus, concerned with aspects of model identification asking
by which parametrisation the behaviour of a simulated robot would be captured.

Several methods are known from the literature to address the model identification
issue in a broader context. For example one can use a [Non-linear] Auto-Regressive
Moving Average approach with or without exogeneous inputs ([N]ARMA[X], Box
et al., 1994) to arrive at a general model of behaving robot systems (Iglesias et al.,
2008; Kyriacou et al., 2008), but these models contain many parameters for fitting
and parameters do not have any direct physical meaning. Our attempts stop short of
a complete model identification approach, which does not seem to be required for our
system. Instead, here we could use a rather limited model with quite a reductionist
set of equations (see section 3.6), which was to some degree unexpected given the
complexity of the closed loop behaviour of our robots (Fig. 3.2).
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3.10.2 Comparison to other work on information flow in closed-
loop systems

In the second part of this paper, we have started to quantify the behaviour of our
little beetles by considering their output z. We have defined measures for energy,
input/output ratio and entropy focusing on the question whether there is an optimal
robot for a given environment (question 2 in the introduction). Interestingly one
finds in the first place that learning acts “equalising”. Robots with different initial
(reflex) energy (Fig. 3.8 A) become very similar after learning (Fig 3.8 B, note the
different scales in panel A and B). This finding can be understood from some older
studies on closed-loop differential hebbian (ISO, ICO) learning. Fig. 3.1 A shows
that these systems will learn avoiding the reflex and that learning will stop once this
goal has “just” been reached leading to an asymptotic equilibrium situation (Porr
and Wörgötter, 2003b). Furthermore the systems investigated here are linear, hence
all of them will in the end essentially require the same total effort for performing the
avoidance reaction. These two facts explain why their energy is very similar in the
end. The fact that robots are different, however, does surface when looking at the
paths they choose after learning. Robots with long predictive antennas can never
make sharp turns anymore and their paths are dominated by performing the same
shallow turns again and again leading to little path variability and hence to a small
final path entropy (Fig. 3.8 D). On the other hand, these same long-antenna robots
learn their task much faster than their short-antenna fellows: for the former, the
equilibrium point between reflex and predictor (peak in the input/output ratio) is
reached faster than for the latter (Fig. 3.7 E-H).

This leads to a trade-off and by using the normalised product of learning speed
times path entropy we found that for different environments different robots are
optimal (Fig. 3.9 D). Clearly, this type of optimality is to some degree just in the
eyes of the beholder and one might choose to weigh the two aspects (learning speed
and path complexity) differently by which other robots would be valued more than
those currently called ’optimal’. Nonetheless, also with a different weighing one will
observe that some robots would be better than others in the different worlds.

In general this part of the study relates to work focusing on information flow
in closed-loop systems. There have been a few contributions to this topic. Tishby
et al. (1999) introduced an Information-Bottleneck (IB) framework that finds concise
representations for a system’s input that are as relevant as possible for it’s output,
i.e. a concise description that preserves the relevant essence of the data. The rel-
evant information in one signal with respect to the other is defined as the mutual
information that the one signal provides about the other. Although, the Information-
Bottleneck framework was successfully applied in various applications, like data clus-
tering (Slonim and Tishby, 2000; Slonim et al., 2001), feature selection (Slonim and
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Tishby, 2001), POMDPs2 (Poupart and Boutilier, 2002), it conceptually differs from
our study, since we are interested in the dynamics of sensory-motor systems during
the learning process.

In the work of Klyubin et al. (2004, 2005, 2007, 2008) the authors used a Bayesian
network to model perception-action loops. In their approach a perception-action
loop is interpreted in terms of a communication channel-like model. They show that
maximisation of information flow can evolve into a meaningful sensorimotor structure
(Klyubin et al., 2004, 2007). In Klyubin et al. (2005, 2008) the authors present
a universal agent-centric measure, called “empowerment”, which is defined as the
information-theoretic capacity of an agent’s actuation channel (the maximum mutual
information for the channel over all possible distributions of the transmitted signal).
The empowerment is zero when the agent has no control over its sensory input, and
it is higher when the agent can control what it is sensing. In these studies it could be
demonstrated that maximisation of empowerment can be used for control tasks (such
as pole balancing) as well as for an evolution of the sensorimotor system or even
to construct contexts which can assign semantic “meaning” to the robot’s actions
(Klyubin et al., 2005, 2008). Similar to the work of Klyubin et al. (2004, 2005, 2007,
2008) in the study of Prokopenko et al. (2006) the authors used two measures called
generalised correlation entropy and generalised excess entropy to alter the locomotion
of a simulated modular robotic system (snake-like robot) by an evolution process.
The mentioned studies differ from our approach, since in these works information
measures had been used to drive a sensorimotor adaptation on a relatively large time
scales (simulating evolution by using genetic algorithms) whereas in our approach we
use information measures to investigate the behaviour of closed-loop system during
on-line learning on relatively short time scales.

Lungarella et al. (2005) have shown that coordinated and coupled sensorimotor
activity decreases the entropy and increases the mutual information within specific
regions of the sensory space. In contrast to our study they analysed information
flow only on the sensory inputs whereas we consider inputs as well as outputs (in-
put/output ratio, path entropy, energy). Also, different from our attempt, these
authors analysed the system in a reflex-based closed-loop scenario where no learning
had been applied. Ay et al. (2008) and Der et al. (2008) used a predictive infor-
mation measure (PI, mutual information between past and future sensor values) to
evaluate behavioural complexity of agents and to use PI as an objective function for
the agents’ adaptation, however, similar to Lungarella et al. (2005), only looking at
the input space.

An earlier study of Lungarella and Sporns (2006) has demonstrated that learning
can affect information flow (transfer entropy) of the sensorimotor network of a behav-
ing agent. In this study transfer entropy was used to analyze the causal structure of
the loop, i.e. causal effects of sensory inputs on motor states and vice versa, whereas

2POMDP - Partially observable Markov decision process
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in our study we use system measures to analyze the system dynamics during learning
with respect to the speed of learning and behavioral performance of an agent. Also
differently from our approach Lungarella and Sporns (2006) used incremental reward
based learning, which belongs to a different class of learning algorithms.

Our approach more closely relates to the study of Porr et al. (2006). They define
the information value (called predictive information) only by the weights of the ISO
learning rule (Porr and Wörgötter, 2003b), where, different from our approach (see
Eq. 3.16), sensory inputs and outputs are not included in this measure. In Porr
et al. (2006) weights reflect the predictive power of their corresponding inputs: the
larger the weights the higher the predictive information. Essentially this measure
shows which inputs are more predictive in relation to the signal at x0, whereas in
our approach the measures of input/output ratio, path entropy and energy reflect the
general behaviour of the system, for example the contribution of reflex and predictor
to the system’s output.

Our measures, similarly to Porr et al. (2006), are developed within the framework
of predictive correlation based learning (specifically using the ICO-rule here). These
measures can be also used for other learning rules as long as the reflex and the
predictive inputs can be identified. The previously discussed empowerment measure
(Klyubin et al., 2005, 2008) is independent of the specific learning rule and can treat
the system as a black box. As mentioned before empowerment is defined as channel
capacity, which is the maximum mutual information over all possible distributions of
the transmitted signal. This quantity is difficult to calculate and may require using
a “detachable” world model that allows exact repetitions of certain behaviours in a
particular situation (Klyubin et al., 2008). This means that it is not straightforward
to use empowerment for analysing on-line behavioural systems. Note that all our
output-signal based measures used by us, for example our path entropy measure,
which measures the variability of different actions, can also be applied independently
of the learning rule and the actual behavioural pattern and could, thus, be used
also in other systems quantifying their (possibly entirely different) behaviour and its
variability.
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4
Place Cell Model and Goal Navigation

4.1 Introduction

In the previous chapters 2 and 3 we showed how receptive fields can be developed
from visual stimuli by using temporal sequence learning and used for a driving task
in a closed loop scenario. As in the previous chapters we will also here stay in the
closed-loop context, however, we will develop another kind of receptive fields, called
place fields, and use them for gaol directed navigation. In contrast to chapter 2,
here we will use multi-modal sensory cues (visual and olfactory) to develop place
fields instead of uni-modal cues (visual cues alone). In the current chapter, different
from chapters 2 and 3, we will apply different learning mechanisms: unsupervised
learning (vector quantization) for place field development and reinforcement learning
(Q-learning) for path learning.

Place cells are principal neurons in hippocampus which respond maximally when
the animal is in a specific location in an environment. They were discovered in rat hip-
pocampus by O’Keefe&Dostrovsky in 1971 (O’Keefe and Dostrovsky, 1971; O’Keefe
and Nadel, 1978) and investigated in numerous studies (for reviews see Eichenbaum
et al., 1999; Hölscher, 2003). Place fields form from environmental cues and play an
important role in spatial navigation. Cells having similar properties to rat place cells
had also been found in humans using extracellular recordings from epileptic children
(Ekstrom et al., 2003). Thus, the formation of place fields, and their influence on
navigation remains an important experimental and theoretical question. In particu-
lar, little is known on how different sensory cues contribute to place field formation
and spatial navigation. Thus, the goal of the first part of this chapter is to investigate
how place fields are formed under visual as well as olfactory influences extending the
uni-modal view of place field representation.

In the second part of this chapter, we address the question of how place fields
can be used in navigation, and compare this to olfactory based navigation based on
self-laid scent marks. Here we would like to stress that we are dealing with a closed
loop system (see Fig. 4.1) where place field development and path learning progresses
simultaneously, i.e. the trajectory of the rat influences the development of place
fields, whereas, at the same time, place fields influence the weight development of
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motor neurons. We create place cells from allothetic visual and olfactory cues. Place
cells are connected to motor neurons, which produce certain motor actions. The rat
has to learn appropriate motor actions, which eventually lead to the food source. As a
consequence, sensory inputs as well as formation of place fields are affected whenever
the rat navigates in the environment, thus closing the loop as shown in Fig. 4.1.

Figure 4.1: Schematic diagram of the closed loop system.

Different models have been proposed for hippocampal place cell formation includ-
ing Gaussian functions (O’Keefe and Burgess, 1996; Touretzky and Redish, 1996;
Hartley et al., 2000; Foster et al., 2000), back-propagation algorithm (Shapiro and
Hetherington, 1993), auto-associative memory (Recce and Harris, 1996), competitive
learning (Sharp, 1991; Brown and Sharp, 1995), neural architecture based on land-
mark recognition (Gaussier et al., 2002), neuronal plasticity (Arleo and Gerstner,
2000; Arleo et al., 2004; Strösslin et al., 2005; Sheynikhovich et al., 2005; Krichmar
et al., 2005), independent component analysis (Takács and Lőrincz, 2006; Franzius
et al., 2007), self organizing map (Chokshi et al., 2003; Ollington and Vamplew, 2004)
or Kalman filter (Bousquet et al., 1998; Balakrishnan et al., 1999). None of these,
however, addresses the question of how multiple sensory inputs might affect place field
formation. Experiments with rodents demonstrate that visual cues play an impor-
tant role for the control of place cells (Muller and Kubie, 1987; Knierim et al., 1995;
Collett et al., 1986; O’Keefe and Speakman, 1987; Maaswinkel and Whishaw, 1999;
Dudchenko, 2001). On the other hand, in the absence of visual cues rats can rely on
other cues such as olfactory, auditory or somatosensory stimuli (Hill and Best, 1981;
Carvell and Simons, 1990; Maaswinkel and Whishaw, 1999; Wallace et al., 2002a).
Thus, it seems reasonable to consider the influence of such cues also on the formation
of place fields. This view is supported by the observation that place fields become
unstable when olfactory cues are removed, suggesting that olfactory cues are impor-
tant in the formation and stability of place fields (Markus et al., 1994; Save et al.,
2000).

Other types of cells related to hippocampal place cells and spatial navigation
are head direction cells and grid cells. Head direction cells are found in found in
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many brain areas including postsubiculum, the thalamus, lateral mammillary nu-
cleus, dorsal tegmental nucleus, and striatum (Taube et al., 1990a,b; Muller et al.,
1996; Knierim et al., 1998). Head direction cells respond maximally when the ani-
mal’s head is oriented in preferred direction in the horizontal plane. Like place cells,
head direction cells are under control of distal stimuli, and have different preferred
directions in different environments. Experimental data suggests that the head direc-
tion cell system may orient the place cell system (Jeffery and O’Keefe, 1999; Calton
et al., 2003; Yoganarasimha and Knierim, 2005).

Grid cells are found in entorhinal cortex (Hafting et al., 2005; Sargolini et al.,
2006; Barry et al., 2007). Grid cells, like place cells, also fire strongly when an animal
is in specific locations in an environment, but differ from place cells in that they
have multi-peak firing fields which are organised into a hexagonal grid. It has been
suggested that grid cells may make associations between places and events which is
needed for the formation of memories (Hafting et al., 2005).

Many experimental studies have been performed on goal directed learning in ro-
dents (Barnes et al., 1980; Morris, 1984; Prados and Trobalon, 1998; Lavenex and
Schenk, 1998; Maaswinkel and Whishaw, 1999; Wallace et al., 2002a; Etienne and Jef-
fery, 2004; Jeffery et al., 2003; Hines and Whishaw, 2005). Navigation models based
on place cells usually address goal learning by using reinforcement learning algorithms
(Arleo and Gerstner, 2000; Arleo et al., 2004; Strösslin et al., 2005; Sheynikhovich
et al., 2005; Krichmar et al., 2005) where place cell representation is based on the
combination of visual information and information provided by head direction cells
or path integration.

Path integration was considered by many researchers as evidence for an additional
mechanism when navigating in the absence of visual cues (for a review see Etienne and
Jeffery, 2004). Experimental data suggests that grid cells may be related to the path
integration system (Hafting et al., 2005; Sargolini et al., 2006; McNaughton et al.,
2006). However, Save et al. (2000) have shown that path integration alone is not
sufficient to maintain stable receptive fields of place cells when rats navigate in the
dark. Without additional cues, path integration leads to an accumulation of errors
in direction and distance, and it thus needs to be reset through position information
from stable cues (Etienne et al., 1996, 2004). In the study of Strösslin et al. (2005)
the authors claim that their model is able to work in the dark based on self-motion
cues (visual cues together with path integration were used), yet it is unclear how
the model can succeed if visual cues used for recalibration are not available while
navigating for a longer time in the dark.

Thus, for navigation in natural environments it seems reasonable to consider other
sensory inputs, and it is known from the literature that rodents can form spatial rep-
resentations based on olfactory cues and use this information for spatial orientation
and navigation (Tomlinson and Johnston, 1991; Lavenex and Schenk, 1995, 1996,
1998). Experiments show that rats can track odours or self-generated scent marks to
find a food source (Wallace et al., 2002a, 2003). To accommodate these findings, we
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propose a novel navigation mechanism based on self-marking by odour patches com-
bined with a reinforcement learning (Q-learning) algorithm based on multi-sensory
formed place fields in order to improve spatial navigation.

Studies show that rats use visual and/or olfactory cues when available, and that
such allothetic cues dominate over path integration (ideothetic component) informa-
tion (Maaswinkel and Whishaw, 1999; Whishaw et al., 2001). Therefore, the focus
of the current chapter is on place cell formation and spatial navigation in cue-rich,
illuminated environments, where path integration would be extraneous.

Another interesting consideration concerns the question how navigation is affected
by remapping. It is known that place fields change very quickly when the rat is
confronted with a new environment and that many place fields will re-obtain their
former properties as soon as the animal returns to the initial environment (Muller and
Kubie, 1987; Wilson and McNaughton, 1993; Shapiro et al., 1997; Tanila et al., 1997;
Knierim et al., 1995, 1998). It is, however, an unresolved question how remapping
affects navigation and navigation (re-)learning (Jeffery et al., 2003).

In this chapter, we concentrate on the impact of olfactory cues on place cell for-
mation and on goal navigation learning in different environments. We focus on the
following three questions: 1) What is the contribution of olfactory cues to the forma-
tion of place cells and goal navigation? 2) Can goal navigation based on place cells be
improved by additional navigation mechanisms? 3) How does the remapping of place
fields influence goal navigation when switching between different environments?

The chapter is organised as follows. First we describe the sensory inputs and
the model of the system. Then we present different goal navigation strategies and
thereafter we show the results of place cell analysis, and a comparison of the presented
navigation algorithms. Finally, we discuss our results and relate them to other studies
and biological data.

4.2 Sensory input

We use a square box with dimensions of 10000× 10000 units (discrete environment)
where the walls of the arena are marked by different landmarks (see Fig. 4.2 A). Visual
and olfactory cues are used as allothetic inputs to form place cells in our model.

4.2.1 Visual input

As visual input, we use the perpendicular distances from the rat’s position to all four
walls (Fig. 4.2 A), similar to many other models which use distances to walls or land-
marks (Sharp, 1991; Recce and Harris, 1996; O’Keefe and Burgess, 1996; Touretzky
and Redish, 1996; Hartley et al., 2000; Ollington and Vamplew, 2004). Let us define
the visual input by vkx,y, where x and y denote the position in the environment and
k = 1 . . . 4 is the number of possible visual inputs related to the four walls of the
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arena. In our model the rat has a view-field of 180 degrees (real rats have a wider
field of view), which means that the rat can see only the walls which are ahead, but
can not see what is behind. Prediction of the distance to a non-visible wall is made
by taking the last estimate of distance to the wall when it was visible. This can be
described by the following recurrent equation:

vjx,y(t) = vjx,y(t− 1), (4.1)

where j denotes the index of the non-visible wall, and t denotes the time in steps.
Note that if the rat is moving along a linear trajectory away from a non-visible wall
then the error of the estimate of this wall accumulates over time. The estimate is
re-calibrated as soon as the wall becomes visible again.

Figure 4.2: A) Image of square arena with landmarks. Perpendicular distances from
rat’s position (grey dot) to all four walls of square arena are used as visual stimuli.
B) Examples of odours used as olfactory stimuli to the rat. Blue colour corresponds
to low and red to high intensity of the odour. Five examples (Ex.1-Ex.5) are shown
where each box represents a different odour coming from a different location in the
environment.

4.2.2 Olfactory input

We also use four different odours as an additional input to the place cells. Five
examples of odours are shown in Fig. 4.2 B, where each box represents a different
odour with a different source location in the environment. We model odours at the
ground level (2D space) by the following Gaussian functions:

okx,y = e
−

 [a (x−skx+ξkx)]
2

2σ2
y

+
[a (y−sky+ξky )]

2

2σ2
x


, (4.2)
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with σx = 15 + a · x + 5 sin(0.1 a · x), and σy = 15 + a · y − 5 sin(0.1 a · y), where x
and y denote the position in the environment, k = 1 . . . 4 is the number of the odour
sources, and a = 0.01 is the scaling factor. The variables skx,y denote the coordinates
of the centre (maximum intensity) of the odour source and are given as follows:
s1
x,y = (100, 100), s2

x,y = (9900, 100), s3
x,y = (9900, 9900) and s4

x,y = (100, 9900).
Values ξkx and ξky are randomly drawn from a Gaussian distribution with zero mean
and a standard deviation of 100. Note, that here we model static odours that do not
change during different runs of the same experiment but differ across experiments.
The rat can smell the odours locally, and it does not sense the direction of the odour
source.

Noise is also added to the visual sensory inputs, assuming that the rat makes larger
errors in the estimation of long distances. Similarly, the rat makes larger errors in
estimating odours with low intensity and smaller errors for odours with high intensity.
This is given by the following equations:

V k
x,y =

vkx,y + 0.03 vkx,yη
k
v

L
, (4.3)

Ok
x,y =

okx,y + 0.03 (1− vkx,y)ηko
maxx,y okx,y

, (4.4)

where ηkv and ηko are random values from a uniform distribution within the interval
[-1;1]. Note, that both visual and olfactory inputs are normalised and bounded within
the interval [0;1], where L = 10000 units is the size of the environment.

4.3 Place cell model

We model place cells by using a simple feed-forward network with an input and an
output layer as shown in Fig. 4.3 A. At the input layer we have sensory inputs X :
[V k
x,y, O

k
x,y] received from visual and olfactory stimuli. Here we have a fully-connected

network where every neuron in the input layer is connected to every neuron in the
output layer via connection weights W i = [wi,1 . . . wi,n], where i = 1 . . . N,N = 500 is
the total number of place cells and n is the number of sensory inputs (n = 4 if only
visual cues are used and n = 8 if both visual and olfactory cues are used). Weights
are initialised randomly by a function fz:

fz =
(

1 + e
z−m
2σ2

)−1

, (4.5)

where z is a random number from a uniform distribution within the interval [0;1],
m = 0.5 and σ = 0.2. The distribution of initial weights is plotted in Fig. 4.3 C.
We have chosen such a distribution for the reason that if the weights are initialised
according to a uniform distribution then all place field centres are located around the
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centre of the environment and we do not obtain place fields close to the walls of the
environment. In our model weights are basis vectors, which are used to compute firing
rates of place cells (see equation below) where we start with a random initialisation
of basis vectors. By employing competitive learning, cells become tuned to a specific
input, which leads to the spatial selectivity of the place cells.

Figure 4.3: A) A simple feed-forward network with sensory inputs x at the input
layer, connection weights w and place cells (PC) at the output layer. B) Distribution
of initial weights of the neural network (A).

The firing rate of place cell i is expressed by a Gaussian function (similar to
O’Keefe and Burgess, 1996; Hartley et al., 2000) and is computed as follows:

rit = e
−

[ 1
n ||Xt−W

i
t ||]

2

2σ2
f , (4.6)

where σf = 0.07 defines the width of the place field, n is the dimension of the input
space, and the norm is the Euclidean distance. Weights of our neural network are
modified according to a winner-takes-all mechanism where we change only the weights
of the best matching unit βt:

βt = argmin
i
||Xt −W i

t ||. (4.7)

Weights of the winner neuron βt are changed according to the following equation:

W βt
t+1 = W βt

t + µ(Xt −W βt
t ), (4.8)

where 0 < µ� 1 is the rate factor.

4.4 Formation of place fields

In the following we are going to present results on place fields obtained by our place
cell model and provide an analysis on place cell directionality.
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Figure 4.4: Examples of place fields (100 out of a total of 500 cells). A) PFs obtained
when using visual cues alone. B) PFs obtained when using olfactory cues alone. C)
PFs obtained when using both, visual and olfactory, cues. Selected place fields with
maximum firing rate r > 0.5 are shown for each case.

4.4.1 Place fields

Examples of place fields (PF) after random exploration over 5000 time steps are
presented in Fig. 4.4. PFs obtained when using visual or olfactory cues alone are
shown in panel A and B. PFs obtained from both visual and olfactory cues are shown
in panel C. Here we show only selected PFs which have a maximum firing rate of
r > 0.5. Resulting PFs are localised, differ in size and firing rate, and are similar
to real PFs. For examples of place fields obtained from the rodent hippocampus see
Wilson and McNaughton (1993); O’Keefe (1999).

For the formation of place fields we used a relatively low rate factor (µ = 0.01) to
develop connection weights between input and output layer (see Fig. 4.3 A), because
weights oscillate and do not converge when a high rate factor (µ = 0.1) is used, and
this does not lead to the final stabilisation of place cells. For comparison of weight
development for different rate factors see Fig. 4.6 A. The distribution of firing rates is
shown in Fig. 4.5 C, where we have fewer cells with a high firing rate than cells with
a low firing rate, which resembles experimental data (Hartley et al., 2000). Some of
the cells which are silent in a specific environment become active when moved to the
other environment (see Fig. 4.16). PF centres from a single experiment (location of
maximum firing rate within the field) are shown in Fig. 4.5 B, where circles represent
centres of PFs with a low firing rate (r ≤ 0.5) and dots those with a high firing rate
(r > 0.5). We observed that cells with low firing rate are distributed around the centre
of the environment (similar to Gaussian distribution, panel D) whereas cells with high
firing rate are evenly distributed within the whole environment (see panel E). The
latter cells will drive the learning in the goal navigation task (see section 4.5.2).
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Figure 4.5: A) Connection weights between input neurons and place cells (see
Fig. 4.3 A) depending on the rate factor µ. B) Distribution of place field centres
within the environment from single experiment. Dots denote centres of place fields
with maximum firing rate r > 0.5 whereas circles denote centres of fields with max-
imum firing rate r ≤ 0.5. C) Distribution of maximum firing rates r of 500 cells;
average and standard deviation (SD) for 100 experiments. D, E Distribution of x
and y position of place cell centres with maximum firing rate r ≤ 0.5 (C) and r > 0.5
(D); average and standard deviation (SD) for 100 experiments.

4.4.2 Place cell analysis

Before looking at the comparison of goal navigation strategies we would like to inves-
tigate the contribution of the olfactory input to place cell formation. This influence
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can be assessed by measuring the directionality of place cells. Here we let the rat to
explore the environment randomly as shown in Fig. 4.6 A for 5000 time steps (devel-
opment phase). After the development phase we let the rat move in the environment
for another 5000 time steps to create test data. To evaluate the directionality of
place cells we looked at the locations which had been passed by the rat in different
directions. We say that a cell is omnidirectional, i.e. independent of the movement
direction, if at a given location the cell fires with its highest firing rate regardless of
crossing the location in different directions.

Figure 4.6: A) Example of the rat’s trajectory when the rat explores the environment
randomly. B) Percentage of omnidirectional cells before and after learning (rate
factor µ = 0.01). The average together with confidence intervals (95%) is shown in
20 experiments.

Averaged results of 20 experiments are presented in Fig. 4.6 B where we compare
the directionality of place cells obtained from visual cues alone with that obtained
from both visual and olfactory stimuli. The white bars show the control case, with
place cell directionality before the development phase (i.e. before learning). We can
see that we obtain more omnidirectional cells when we use combined stimuli compared
to visual stimuli alone and more omnidirectional cells develop during the development
phase compared to the control case. The improvement in omni-directionality when
using olfactory cues can be explained by the fact that perception of olfactory cues
is direction independent whereas perception of visual cues depends on local views.
Note that the view-field influences the directionality of place fields. The larger the
view-field, the fewer directional cells are obtained. Since the rats do not have the
omnidirectional view we still would get more directional cells obtained from visual
information alone compared to combined stimuli (visual and olfactory cues) or ol-
factory cues alone. Our results on place cell directionality are qualitatively similar
to experimental data of Battaglia et al. (2004). For further discussion on place cell
directionality see section 4.9.1.
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4.5 Navigation strategies

4.5.1 Goal navigation task

The rat has to learn to navigate from its home location to the goal, i.e the food source.
The rat can use allothetic visual and olfactory cues described above but it can not
see or smell the food source (similar to the Morris water maze task1, Morris, 1984).
The rat gets a reward only when it approaches the goal location. The setup for such
a spatial task is shown in Fig. 4.7 A. We use the same discrete environment (square
box) as described above, where we have different landmarks on all four walls (see
Fig. 4.2 A). The home location of the rat is in the bottom-left corner, 1000 units from
both walls and is marked by a grey dot. The dimensions of the food source, marked
by a square, are 2000× 2000 units and it is located 3000 units from the left wall and
2000 units from the upper wall. At the beginning, the rat explores the environment
randomly and finds the goal just by chance as shown by trajectory (1) in panel A,
whereas after a few learning runs the rat finds a more or less direct path (trajectory
(2)) to the food source. Whenever the rat finds the food location we start a new run
from the start position (home location). A maximum number of 200 steps is allowed
for one run with a step size in the range of 400-600 units. In our model during the
first run in most of the cases (80%) the rat finds the goal within less than 200 steps,
so the rat has enough time to find the goal even when navigating randomly. Another
reason for the 200 step limit is related to the frustration phenomenon observed in
animals where creatures return to “home-base” if the goal is not found within an
expected time (Eilam and Golani, 1989; Whishaw et al., 2001; Wallace et al., 2002b;
Hines and Whishaw, 2005; Nemati and Whishaw, 2007).

4.5.2 Q-learning with function approximation

As a first approach we apply reinforcement learning (Sutton and Barto, 1998) as used
by other studies on hippocampus-based navigation (Arleo and Gerstner, 2000; Arleo
et al., 2004; Foster et al., 2000; Strösslin et al., 2005; Krichmar et al., 2005). Here
we employ a version of Q-learning with function approximation similar to Reynolds
(2002). The algorithm is implemented by a three layer neural network (see Fig. 4.7 B)
where place cells are formed from sensory input as described in section 4.3. The
place cells are connected to motor neurons representing eight directional cells: north
(N), north-east (NE), east (E), south-east (SE), south (S), south-west (SW ), west
(W ) and north-west (NW ). The actual direction of movement is determined by

1Morris water maze task is a task where a rat or mouse is placed into a small pool of water (usually
1.2 to 1.8 meter) which contains an escape platform hidden a few millimeters below the water surface.
Escape from the water reinforces the rat to quickly find the platform, and on subsequent trials the
rat is able to locate the platform faster.
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Figure 4.7: A) Environmental setup of the goal navigation task. We used a discrete
square arena with dimensions of 10000 × 10000 units and a goal (food source) with
dimensions of 2000×2000 units. The starting position of the rat was 1000 units from
both left and bottom walls, whereas the location of the food source was 3000 units
from the left wall and 2000 units from the upper wall. B) Neuronal setup of the model
rat’s navigation system. Place cells are formed from sensory input as described in
section 4.3. Each place cell in the network is connected to eight motor neurons (eight
directions). The rat makes a movement to the direction which has the strongest
connection between place cells and motor neurons for eight directions averaged over
all cells, which are firing at the present location. The rat makes a random movement
whenever the connection weights are zero at the present location.

the maximum Q-value of the eight possible directions averaged over all cells, which
are firing at the present location, with additional noise. For example the horizontal
movements W or E are given by the following simple equations:

∆x = ±(∆s+ b · ηx),
∆y = b · ηy,

(4.9)

where ∆s = 500 is the step size, ηx and ηy are random values from a uniform distribu-
tion within the interval [-1;1], and b = 100 is the amplitude of the noise. Here we use
the minus sign for the W direction and the plus sign for the E direction. Similarly,
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for SW or NE we have:
∆x = ±(∆s√

2
+ b · ηx),

∆y = ±(∆s√
2

+ b · ηx),
(4.10)

and the equivalent for the other directions. The rat makes a random movement
whenever Q-values are zero at the present location. In this case, the rat keeps the
direction of the movement with a probability of 1 − pr, whereas with pr = 0.25 it
will randomly take a new direction. When Q values are non-zero we use a usual RL
strategy, with exploration and exploitation, where the direction of the movement is
chosen according to the learned Q-values most times, (exploitation probability 1−pe),
and a random move is made with exploration probability pe = 0.1.

As mentioned before, the learning mechanism from place cells to motor cells is a
version of Q-learning with function approximation (QLFA). Let us define our basis
functions Φi as a function of the firing rate rt of the place cell i at the time step t:

Φi(rt) =

{
1 if rit > 0.5,
0 otherwise.

(4.11)

Here, i = 1 . . . N,N = 500 is the total number of place cells. Note, we discretise the
space representation provided by place cell prior to the goal-navigation learning in
order to reduce the amount of noise in the place field system since low firing rates
give larger errors in position estimation compared to the real position of the rat in
the environment. By using binary cells we still get different place field sizes and we
preserve the directionality of place cells.

We define the action-value function by the following equation:

Q(rt, at) =

∑
i Θi,atΦi(rt)∑

i Φi(rt)
, (4.12)

where Θi,a is the weight from the i − th place cell to the motor action a. In the
given equation we sum over all basis functions, but at a specific location within the
environment only a specific subset of basis functions will be non-zero. We use an
averaging Q-learning rule according to Reynolds (2002) where we update weights
Θi,at of the actually taken action at at the time step t according to the following
learning rule:

Θi,at = Θi,at + α(Rt+1 + γ max
a

Q(rt+1, at+1)−Θi,at)Φi(rt), (4.13)

where α = 0.7 is the learning rate, γ = 0.7 is the discount factor and R is a reward.
We define our reward function Rt by

Rt =

{
1 if the rat has found the goal,
0 otherwise.

(4.14)
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4.5.3 Self-marking navigation

The second approach in our study is to use navigation based on self-generated odour
marks, where the rat follows the self-laid scent marks to find the food source. The rat
always explores the environment randomly by keeping the direction of the movement
whenever it does not smell anything locally. Note that the rat can smell only within
a given radius of 600 points, which corresponds to the maximum step size. At the
beginning, the rat finds the food source by moving randomly and marks it by a small
amount of scent. In the next runs, when the rat approaches the previously laid scent
mark within a distance at which the rat can smell it, the rat will mark its location
and then will go directly to the perceived scent mark and remark it again by another
small amount of scent. The whole navigational process can be defined as follows. The
rat marks the location of the food source or remarks the current location if it smells
another scent mark/marks ahead by

ux,yt+1 = ux,yt + ∆u, (4.15)

where u defines the self-laid odour patches in the environment, x, y define coordinates
of the position within the environment and ∆u = 0.005. The locations which have
strong smell, i.e. ux,yt = 1, are not remarked anymore. The rat goes directly to the
location lx,yt marked by scent mark which has the strongest smell according to

lx,yt = argmax
x,y

ux,yt , (4.16)

otherwise it makes a random movement as explained above. It is worth noting that
the given method propagates scent-marks backwards from the location of the reward
as in reinforcement learning, but here we do not have predefined features. Instead, we
create them “on the fly”, and we do not directly memorise action values associated
to states, where a state is defined by the rat’s position in the environment x, y. In
our model self-laid scent marks are modelled by little ”drops” which are less intense
relative to the environmental odours which may have very strong odour sources and
diffuse within the environment. Self-generated odour marks can be smelled and dis-
tinguished by the rat only locally within a relatively small radius (in our case within
one step size).

4.5.4 Combining Q-learning with self-marking navigation

The third and the last approach is a combination of the two previously described
methods. In this case the rat marks the location only if it smells another scent
mark/marks and the normalised maximum Q-value at this location obtained by using
the first method has reached a given threshold of λ = 1.5:

ux,yt+1 =

{
ux,yt + ∆u if maxa Q(rt,at)

1
8

∑
aQ(rt,at)

> λ,

ux,yt otherwise.
(4.17)
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The action in the combined strategy is taken by the following rule. If the rat does not
smell any scent mark within given radius then it takes an action according to the Q-
values, otherwise the rat follows the scent gradient. By using this type of navigation
the rat develops Q values and lays scent marks at the same time.

4.6 Goal navigation

In the following we will present navigation results on different navigation strategies
from single experiments and later on we will compare navigation performance of
different strategies by providing statistical analysis.

4.6.1 Navigation using Q-learning based on place cells

An example of navigation by using Q-learning based on place cells formed from com-
bined visual and olfactory cues is presented in Fig. 4.8. Trajectories of the rat’s paths
obtained from 30 runs are shown in panel A, and the number of steps needed to reach
the goal versus number of runs are plotted in panel B. The rat found a more or less
straight path to the goal after seven trials.

Figure 4.8: Results from single experiments using Q-learning navigation algorithm
based on place cells obtained from visual and olfactory cues. A, B) Goal navigation
from home location. A) Trajectories of rat’s paths from 30 runs. B) Number of steps
needed to reach the goal versus number of runs (B). C) Goal navigation from random
start position. Diagram shows vector field representation of learnt actions.
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Results obtained from a single experiment when looking for a goal from a random
start position are presented in Fig. 4.8 C, where in every trial the rat was placed
randomly within the environment. A vector field representation of learnt Q-values
after 100 runs is shown where each vector represents the cumulative direction of
movement from corresponding location. The vector field was calculated according
to the following procedure. A 20 × 20 grid was used to define specific points in the
environment. Corresponding subsets of place cells were found, which fire at each
intersection point of the grid. Average Q-values for eight directions were calculated
for the corresponding subset of place cells. The resulting movement direction vector
was computed from the obtained average Q-values for each intersection point of the
grid.

4.6.2 Self-marking navigation

Results for self-marking navigation are shown in Fig. 4.9. Trajectories of the rat’s
paths obtained from 60 runs are presented in panel A. The environment with self-laid
scent marks (marked as dots) is shown in panel B, where the dot’s size is proportional
to the strength of the scent mark. The rat follows the scent gradient to find the food
source. The number of steps needed to reach the goal versus number of runs is plotted
in panel C, where the rat had generated the trail of scent marks, which leads from
the home location to the food source after 56 runs (see the last four trajectories in
panel A).

In Fig. 4.9 D we show the resulting map of self-laid scent marks (marked by dots)
from self-marking navigation after 200 runs when looking for a goal from a random
start position. Here we use more runs since self-marking navigation converges slower
than Q-learning (see Fig. 4.8 B). When starting from random positions, the rat creates
a map of a tree-like structure of scent marks, where it chooses the closest branch and
then follows the gradient of scent marks, leading to the goal.

4.6.3 Combined navigation

One example of navigation with combined strategies is shown in Fig. 4.10 where
trajectories of the rat’s paths obtained from 30 runs are presented in panel A and
the number of steps needed to reach the goal versus number of runs in panel C. In
this experiment the rat found a more or less straight path to the food source already
after five runs. From the given example we can see that scent marks (panel B) are
laid only along the way to the food source whereas in the previous example of self-
marking navigation scent marks (see Fig. 4.9 D) are spread out widely throughout
the environment.

Results of combined navigation when starting from random positions are presented
in panel Fig. 4.10 D, where we show the vector field of learnt actions (left) and the
corresponding map of scent marks (right) after 100 runs. As expected we obtained
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Figure 4.9: Results from single experiments using self-marking navigation (no place
cells). A-C) Goal navigation from home location. A) Trajectories of rat’s paths
from 60 runs. B) Environment with self-laid scent marks (marked by dots) is shown
where larger dots represent stronger scent. The rat follows the trail of scent marks
to find the goal. C) Number of steps needed to reach the goal versus number of
runs. D) Goal navigation from random start position. Diagram shows vector field
representation of learnt actions.

similar results to those of self-marking and Q-learning navigation (see Fig. 4.8 C and
Fig. 4.9 C).

In general, we observed that when starting from the same position (home loca-
tion) the rat creates one main trail of scent marks, whereas when starting from a
random location the rat creates tree-like structures of scent marks with several main
branches. Also, the rat creates more scent marks when using pure self-marking navi-
gation compared to the combined strategy.
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Figure 4.10: Results from single experiments using combined navigation strategy
where Q-learning based on place cells obtained from visual and olfactory cues is com-
bined with the self-marking navigation. A-C) Goal navigation from home location.
A) Trajectories of rat’s paths from 60 runs. B) Environment with self-laid scent
marks (marked by dots). C) Number of steps needed to reach the goal versus num-
ber of runs. D) Goal navigation from random start position. Diagrams show vector
field representation of learnt actions (left) and corresponding self-laid scent marks
(right).

4.6.4 Navigation in environments with multiple targets

We also investigated the performance of self-marking navigation and the combined
navigation strategy in the environment with multiple targets. For this experiment
we used an environment with two food sources as shown in Fig. 4.11 A, where in one
case the rat always started to search for food from the same start position (home
location) and in the other case the rat was placed at a random position.

Results of a single experiment for self-marking navigation when always starting
from the home location are shown in Fig. 4.11 B, where we show a map of self-laid
scent marks after 200 runs. In the beginning the rat back-propagates scent marks
from both goal locations, where at the end it creates a stronger trail of scent marks,
which leads to only one of two food sources (see left and right sub-panels). When
starting from a random location (panel C), the rat creates a map of scent marks with
a tree-like structure similar to the case with one food source (see Fig. 4.9 D). Here we
obtain two trees of scent marks where each leads to one corresponding food source.

Results of combined navigation are presented in Fig. 4.11 D, E. As expected, when
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Figure 4.11: Results from single experiments using self-marking navigation and com-
bined navigation in the environment with two targets. A) Environmental setup of the
goal navigation task. We use a discrete square arena with dimensions of 10000×10000
units and two food sources with dimensions of 1500×1500 units (small squares). The
starting position of the rat is 1000 units from both left and bottom wall. The loca-
tion of the first food source is 1000 units from both left and upper wall, whereas the
location of the second food source is 1000 units from the right wall and 2500 units
from the bottom wall. B, C) Self-marking navigation: self-laid scent marks obtained
for the same start position (B) and for random start position (C). D, E) Combined
navigation: self-laid scent marks obtained for the same start position (D); E - vector
field of learnt Q-actions (left) and self-laid scent marks (right) obtained for random
start position.

starting from the home location (panel D), the rat marks only one route. Note, as
opposed to self-marking navigation (panel B), the rat back-propagates scent marks
only from one of the two food sources. Results for combined navigation when starting
from a random location are shown in panel E where we show the vector field of learnt
actions (left sub-panel) and the corresponding map of scent marks (right sub-panel).
As opposed to self-marking navigation (panel C), the rat creates only one tree of
scent marks, where all direction vectors point to the marked food source. This is
due to the fact that in combined navigation the rat marks only the locations where
Q-values are relatively high. As soon as the rat finds one of the two goals, it goes to
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that goal location more often and propagates scent marks backwards (similar to the
results presented in panel D).

Figure 4.12: A-C) Environmental setups for goal navigation task with two targets.
Size of the environment is 10000×10000 units, size of the targets is 1500×1500 units,
and the rat’s home position is 1000 units from both the left and the bottom wall. A)
Distance D1to the target T1 is the same as to the target T2 (D1 = D2). The location
of the first target is 2000 units from the left wall and 1500 units from the upper wall,
whereas the location of the second target is 1500 units from the right wall and 2000
units from the bottom wall. B) Target T1 is located closer to the rat’s home position
as compared to T2 (D1 < D2, D2−D1 = 940 units). The location of the first target is
2000 units from the left wall and 2500 units from the upper wall, whereas the location
of the second target is 1500 units from the right wall and 2000 units from the bottom
wall. C) Target T2 is located closer to the rat’s home position as compared to T1

(D1 > D2, D1 −D2 = 940 units). The location of the first target is 2000 units from
the left wall and 1500 units from the upper wall, whereas the location of the second
target is 2500 units from the right wall and 2000 units from the bottom wall. D)
Results from the goal navigation task with two targets for the cases A, B and C.
Average results together with confidence intervals (95%) from 100 experiments are
shown for each case.

We also observed that if one of two food sources is located significantly closer to
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the home location than the other, the rat in most of the cases finds the closer food
source when using the self-marking navigation strategy. This is due to the fact that
the rat propagates scent marks from the food sources to home location backwards,
and scent-marks from the closer food source reach home location earlier than those
of food source which is further away. To demonstrate this we performed the following
experiments. Three environmental setups have been used. In the first case we placed
two targets, T1 and T2 at equal distances away from the rat’s home position (D1 = D2,
see Fig. 4.12 A). This is a control case where we wanted to demonstrate that the rat
has no prior bias to any of two targets. In the second case we placed the first target
T1 940 units closer than the second target T2 to the rat’s home position (D1 < D2,
see panel B), and in the third case the second target T2 was 940 units closer than the
first target T1 (D1 > D2, panel C). We tested the rat’s target preference in all three
cases by letting the rat search for the goal for ten times (one experiment consisted of
75 runs) and checked how many times out of ten the rat selected goal T1 and T2. We
repeated this procedure 100 times for each case.

Results for this experiment are shown in Fig. 4.12 D where we plot the average
target preference for each case obtained from 100 experiments. As expected we can
see that for the control case, where distances to the both targets are the same, the rat
has no preference to any target whereas if one of the targets is close to home location
than the other then the rat in most of the cases (≈ 80%) will select the target which
is closer to the home location.

In summary, we observed that the rat learns a unique route which leads to one
of the two targets and only in the case of pure self-marking navigation when starting
from a random locations does the rat create routes to both targets.

4.6.5 Statistical evaluation of different navigation strategies

In the following we statistically determine the effectiveness of different stimuli for
the goal navigation task and compare the previously described navigation strategies.
The task for the rat was to find a route from home location to the food source as
shown in Fig. 4.7 A. Four different navigation strategies were used for comparison as
shown in 4.13 A. For a more detailed description of different navigation strategies see
section 4.6).

Comparison of different navigation strategies is presented in 4.13 B, C. The average
number of steps needed to find the goal versus number of runs obtained from 200
experiments is shown for each case in panel B. We obtained faster convergence when
both visual and olfactory cues are used as compared to visual stimuli alone (see V Q,
V OQ). This can be explained by the observation that cells formed from combined
stimuli are less directional than those formed from visual cues alone. Note, that if we
have a place cell system where all place cells are directional then it will require learning
of actions for every movement direction of an animal for every specific location in the
environment. For instance, if the rat learns the direction to the goal from a specific
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Figure 4.13: A) Four cases of different navigation strategies. V Q : place cells
obtained from visual cues alone are used for goal navigation by using Q-learning.
V OQ : similar to the case V Q, but here place cells are obtained from both visual
and olfactory cues. S : Self-marking navigation (no place cells) where the rat follows
self-generated marks to find a goal. V OQS : Combined navigation where the rat
marks the location only if the Q-value (obtained from the V OQ) has reached a given
threshold. B, C) Comparison of different goal navigation strategies. The average
number of steps needed to find the goal is plotted versus the number of runs in 200
experiments. The vertical bars show the standard error mean (SEM). C) Comparison
between the case S and V OQS (see panel A) where the self-generated marks were
“cleaned” after run 75.

location with a certain movement direction (e.g. north) then the rat will not know
the direction to the goal from the same location when crossing this location with a
different movement direction (east), since place cells will not fire when moving along
this different direction. If we have an omni-directional place cell system then we
learn actions for a specific location independently of the movement direction of the
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animal (the same actions for all movement directions for a specific location) which as
a consequence makes the learning faster. Self-marking navigation alone (S) converges
much slower than Q-learning based on PCs obtained from combined stimuli (V OQ),
whereas the combination of self-marking navigation with Q-learning (V OQS) is faster
than Q-learning alone (V OQ). Note that the number of steps needed to reach the
goal when using Q-learning (V Q/V OQ) is larger on average than that for self-marking
navigation (S) or combined method (V OQS). This is due to the fact that we use a
RL strategy with exploration and exploitation, where the rat tries random directions
hoping to find a better path. This sometimes leads to a loss of track and long
trajectories, which on average shifts the curve up. In self-marking navigation or with
the combined method the rat does not explore the environment anymore as it now
follows self-laid scent marks.

We also compared self-marking navigation (S) with the combined method (V OQS)
in a task where after learning of the spatial task the self-generated marks were
“cleaned” (i.e. u(x, y) = 0). Results are presented in Fig. 4.13 C. As expected,
the rat has to relearn the path to the goal from scratch when using self-marking navi-
gation alone, whereas the combined strategy allows the rat to use learnt Q-values (or
in the other words, to navigate using allothetic visual and olfactory cues) whenever
self-generated scent marks are not available anymore and it remarks the path again.
The small peak with a decay after “cleaning” (see case V OQS) is a result of the
previously discussed exploratory behaviour.

4.7 Hierarchical input preference in spatial naviga-

tion

In the presented combined strategy scent trails are used by the rat to find a goal
after learning. However, this kind of strategy is inconsistent with biological findings.
Maaswinkel and Whishaw (1999) showed that rats use visual cues for spatial nav-
igation if they are available. If visual cues are not available, the rats rely on self
generated odour cues. To address this problem we modified our combined navigation
strategy by adding hierarchical input preference to the model.

4.7.1 Modifying the combined navigation strategy

We modified the combined navigation algorithm in the following way. At the begin-
ning the rat uses both environmental cues and self-marking cues (combined strategy)
in order to speed up learning as described above. This differs from the previous
version in that the rat stops laying and following scent marks as soon as the trail
of scent marks reaches the home location, whereas Q-values are still left modifiable.
Furthermore, the rat prefers environmental cues (i.e. navigation based on Q-values)
if they are available; if not, the rat follows previously generated scent marks. Here
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we use a combined strategy (Q-learning with self-marking navigation) for learning as
it makes learning faster and only later on we use the hierarchical input preference for
navigation. During learning, Q-values as well as odour marks are generated where
initially the Q-value development dominates in the learning and guides the placing
of the odour patches since the rat lays a scent mark only if the normalised maximum
Q-value at this location has reached a given threshold. As we would associate the
Q-system with landmarks we find that during learning we are, due to Q-dominance,
compatible with Maaswinkel and Whishaw (1999). Note, that if we were starting with
the hierarchical input preference from the beginning then this would lead to a slower
convergence since the rat would learn the route based on landmarks alone (without
self-generated odour marks) and this would lead to the results obtained by using
Q-learning algorithm alone. After learning the model allows distinguishing between
different input preferences.

4.7.2 Goal navigation using hierarchical input preference

To demonstrate hierarchical input preference in spatial navigation we have performed
two different experiments. In the first experiment we flipped the self-generated scent
marks after learning along the diagonal of the box in a way that the scent trail
does not lead to the goal anymore (see left and right panels in Fig. 4.14 A, B),
where environmental cues were left unaffected. In the second experiment we removed
all environmental cues (visual and olfactory) after learning and left the scent trail
unaffected.

Two examples of single results from the first experiment are shown in Fig. 4.14 A
and B, where in the left sub-panel we show the scent trail and the rat’s trajectory at
the end of learning and in the right sub-panel we show three trajectories of consecutive
runs after scent marks were flipped. We found that the rat takes a correct route to
the goal using environmental cues. We also noticed that the route is along the trail of
scent marks that were produced during learning, which means that the rat has created
two similar representations of route to the goal, where one is based on environmental
cues and the other based on self-laid scent marks. After learning, the rat prefers
environmental cues, so the rat’s performance remains unaffected when we flip the
scent marks. Statistics for 200 experiments are presented in panel C. We show the
average number of steps needed to find a goal versus number of runs, where after 49
runs we flipped the scent trail. This analysis shows that the rat finds a path using
combined navigation after approximately 20 runs, on average. After learning, the rat
switches to the navigation based on environmental cues, and we observe an upwards
curve shift due to the exploration and exploitation strategy of the Q-learning. As
expected, the rat’s performance is not affected after scent marks were flipped since
the rat prefers environmental cues after learning. Statistics for the second experiment
are presented in Fig. 4.14 D where we can see that as soon as environmental cues are
unavailable (i.e. removed) the rat follows the trail of scent marks which leads to the
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Figure 4.14: Navigation results when using hierarchical input preference. A-C)
Navigation results when self-generated marks were flipped after run 49. A, B) Results
of single experiments: self-generated marks and rat’s trajectory at the end of learning
(left) and flipped self-generated marks and rat’s trajectories of three consecutive runs
after scent marks were flipped. C) The average number of steps needed to find the
goal is plotted versus the number of runs in 200 experiments. The vertical bars
show the standard error mean (SEM). D) Navigation results when environmental
cues were removed after run 49. The average number of steps together with SEM is
plotted versus the number of runs in 200 experiments.

food source. Lack of exploration in this case leads to the noise free flat line after run
49. Our modified model captures similar properties of hierarchical input preference
observed in animals (Maaswinkel and Whishaw, 1999). For further discussion and
relation to biological data see section 4.9.2.

4.8 Remapping of place fields and goal navigation

It is known from the literature that place fields can change in firing rate, posi-
tion, shape, or turn on/off when the animal is exposed to different environments,
a phenomenon which is called remapping (Muller and Kubie, 1987; Wilson and Mc-
Naughton, 1993; Shapiro et al., 1997; Tanila et al., 1997; Knierim et al., 1995, 1998).
Fundamental changes occur within 5-10 minutes of exploration in a new environ-
ment, whereas the firing rate can change even within the first second (Wilson and
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McNaughton, 1993). Here we also investigate how remapping of place cells affects
goal navigation task when the rat switches between different environments. We com-
pare different navigation strategies with respect to change of environmental cues, as
well as to a change of the goal location.

4.8.1 Experimental setup

To look at the remapping of place cells, we first let the rat explore randomly the whole
environment “A” for 5000 time steps. Environment “A” contains visual and olfactory
cues as shown in Fig. 4.15, as already used in the previously described experiments.
Afterwards the rat is exposed to another environment, “B”, for 5000 time steps (see
panel A and B). In our model we use the same visual landmarks and the same odours
for both environments “A” and “B”. In order to change the environment we switch
the landmarks and change the locations of odour sources. Landmarks are used by
the rat in order to distinguish between the four walls and to estimate the distance
to them. When we switch landmarks the rat gets different estimates of distances
to the walls marked by the same landmark when being at the same position in the
environment “A” and “B”. The rat also gets different odour intensity at the same
position in the environment “A” compared to the environment “B”. After exploration
in the environment “B” the rat was moved back to the familiar environment “A”.

Figure 4.15: A) Images of different environmental setups. Landmarks are switched
in the environment “B” as compared to the original environment “A” whereas in
the environment “C” allothetic cues as well as the location of the goal are changed.
B) Change of olfactory cues. The locations of odour sources are changed in the
environment “B/C” as compared to the environment “A”.
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To compare Q-learning based on place fields obtained from combined visual and
olfactory stimuli with the combination of Q-learning with the navigation based on self-
generated odour marks we performed two different sets of experiments. In the first set
of experiments, we switched between two environments “A” and “B”, changing only
environmental cues and keeping the location of the goal unchanged (see Fig. 4.15 A).
In the second set of experiments, we switched between environment “A” and “C”,
and in “C” the environmental cues as well as the location of the food source were
changed.

4.8.2 Place field remapping

The resulting place fields of a remapping experiment when switching between envi-
ronments “A” and “B” are shown in Fig. 4.16, with the same selected 100 of total 500
place cells shown for each case. As expected, we can see that place fields of cells can
change their firing rate, position, shape, or turn on/off. Note that there are also cells
which do not change their properties in both environments. Place cells, as expected,
display their original fields when returned to “A” (from environment “B” to “A”).

Figure 4.16: Remapping of place fields from environment “A” to “B” and from the
environment “B” back to “A”. The same selected cells (100 of total 500) are presented
in all three cases.

The average distribution of change in maximal firing rates of PFs between envi-
ronments “A” and “B” in 100 experiments is shown in Fig. 4.17 A. Note that we
show change in firing rates of PFs only for cells with maximum firing rate r > 0.5,
which are the cells that actually drive Q-learning. Positive values mean that cells
increased firing rate or turned on when moving the rat from the environment “A” to
“B” and vice versa. The distribution of changes in the positions of place fields (only
with maximum firing rate r > 0.5) is presented in panel B, where we plot the average
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distance between PFs centres (given by the location of the maximal firing in the PF)
in environment “A” versus “B”.

Figure 4.17: A) Average difference between maximum firing rate of place fields
in environment “A” and “B” together with standard deviation (SD) are plotted for
100 experiments. -1 means that the cell stopped firing when switched to the other
environment and +1 means that the cell was off in environment “A” but turned on
when moved to environment “B”. B) Average distance between centres of place fields
in environment “A” and “B” together with SD are plotted for 100 experiments.

4.8.3 Influence of remapping on goal navigation

In the following subsection we present results on spatial navigation with respect to
the remapping of place fields when switching between to different environments. For
environmental setup see Fig. 4.15. The results of goal navigation while switching
between environments “A” and “B” are shown in Fig. 4.18, where the average number
of steps needed to find the food source is plotted versus number of runs for 200
experiments. Navigation results obtained by using Q-learning based on PCs obtained
from visual and olfactory stimuli (V OQ) are presented in panel A, and results of the
combined method (V OQS) are shown in panel B. Note that here we used a combined
strategy without hierarchical input preference, i.e. the rat would still follow a scent
trail after learning. We can see that by using both navigation strategies the rat can
learn to find the goal in two environments “A” and “B”, whenever the location of
the food source is the same in both environments, and it goes directly to the goal
after returning to the previous environment. It is worthwhile to note that in our
model we do not introduce unfamiliar cues to the rat in the new environment, but we
just “fool” the rat by switching visual cues and changing the position and shape of
olfactory cues. That is why we also observe that the rat uses some information (i.e.
learnt Q-values) from the previous environment, and it does not have to relearn from
scratch when moved to the new environment. In panel A, for comparison, we show
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the control case where in environment “A” and “B” we initialise Q-values randomly
from a uniform distribution within the interval [0;1].

Figure 4.18: Comparison of goal navigation strategies with respect to different envi-
ronmental setups: A, B - only environmental change, C, D - the environment an the
location of the goal changed (see Fig. 4.15). The average number of steps needed to
find the goal are plotted versus the number of runs in 200 experiments. The vertical
bars show the standard error mean (SEM). Cases V OQ and V OQS are as explained
in Fig. 4.13 A. Control: the same as in case V OQ, but we start learning with random
Q-values at the beginning in the environment “A” and “B” whereas in case V OQ
we initialise weights with zero Q-values only at the very beginning and do not reset
values while switching between the environments.

The results for goal navigation while switching between environments “A” and
“C” (the location of the goal is also changed) for the cases VOQ and VOQS are
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presented in Fig. 4.18 C and D respectively. Here we found that the rat has to
relearn the food location all the time (panel A), even if returned to the previously
visited environment. However, by employing the combined strategy (see panel D),
the rat can easily find the food source in both environments even if the location of
the goal is changed, because the rat can follow the trail of scent marks. Note that
if we used the combined strategy with hierarchical input preference we would have
obtained results similar to the case VOQ (see panel F), since after learning the rat
would prefer environmental cues and navigate according Q-values.

In general, we observed that the rat can learn both environments when the location
of the goal is unchanged but has to relearn the route in case of changes in both
environmental cues and location of the goal. For further discussion on remapping
results see section 4.9.3.

4.9 Discussion

In the following we compare our place cell model and goal navigation strategies with
other approaches. We also discuss our results in relation to biological data.

4.9.1 Place cell model

We modelled place cells from visual and olfactory cues using a feed-forward network
based on radial basis functions. Here we used an abstract model excluding interactions
between hippocampal layers. This is justified as we did not focus on the place model
itself but rather on the contribution of sensory inputs to the formation of place cells
and on the utilisation of place cells in spatial navigation. Our approach is similar
to the model of O’Keefe and Burgess (1996) or Hartley et al. (2000), but we use
n-dimensional radial basis functions instead of calculating the thresholded sum of the
Gaussian tuning-curves of the rat’s distance from each box wall (O’Keefe and Burgess,
1996). Our model differs from the augmented model of Hartley et al. (2000), where
the firing rate of a place cell is modelled as the thresholded sum of boundary vector
cells (BVCs). The response of a BVC is the product of two Gaussian tuning curves,
where one is a function of the distance from the rat to the wall and the second
is a function of the rat’s head direction (Hartley et al., 2000). In these models,
the amplitude and the width of the place field depend on the distance to the wall:
the larger the distance, the lower the amplitude and the broader the field, and vice
versa. In our model we keep the width of the place field σf fixed and the obtained
place fields that vary in shape and amplitude because of the combination of different
sensory inputs. We use a winner-takes-all mechanism for place field formation, which
means that we do not change weights of neighbour neurons as in self-organising map
(SOM) approaches (Chokshi et al., 2003; Ollington and Vamplew, 2004) as there are
no obvious topographical relations between the positions of the place fields and the
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anatomical locations of the place cells relative to each other within the hippocampus
(O’Keefe, 1999).

In several studies (Arleo and Gerstner, 2000; Arleo et al., 2004; Sheynikhovich
et al., 2005; Strösslin et al., 2005) self-motion cues have been used as an additional
input to hippocampus to create place cells. The disadvantage of self-motion cues is
that path integration leads to an accumulation of errors in direction and distance and
needs to be re-calibrated according to position estimation from stable cues (Etienne
et al., 1996, 2004). Save et al. (2000) have shown that path integration alone is
insufficient to maintain the stability of place fields. If visual or olfactory sensory cues
are available then these cues dominate over path integration information (Maaswinkel
and Whishaw, 1999; Whishaw et al., 2001). In contrast to other models we use
odour cues as an additional input to form place cells. For the sake of simplicity
we model static odours. Models of dynamic odours are quite complex and include
many parameters (Boeker et al., 2000). By using static odours we ignore odour patch
development, and effects that might be induced by changes of odours in time. Here we
concentrate only on an odour function as a reference cue that is sensed unambiguously
by the rat, as opposed to visual cues, which might be mismatched, misinterpreted or
not seen at all. Obtained place fields capture properties similar to those that were
found in the rat hippocampus (Muller and Kubie, 1987; Muller et al., 1994; Wilson
and McNaughton, 1993; O’Keefe, 1999).

Place cells tend to be less directional when navigating in an open environment
as compared to navigation where the rat is forced to move along a specific direction
(McNaughton et al., 1983; Muller et al., 1994; Markus et al., 1995). These properties
has been also captured by the models of Sharp (1991) and Brunel and Trullier (1998).
Here we have investigated the contribution of olfactory input to the directionality
of place cells. From our analysis, we found that if olfactory cues are available for
the formation of place cells, more omnidirectional fields develop. This agrees with
observations of place fields by Battaglia et al. (2004) on cue-rich and cue-poor linear
tracks. The proportion of omnidirectional cells over total spatially selective cells was
≈ 43% in a cue-rich environment vs. ≈ 30% in a cue-poor environment. We obtained
more omnidirectional cells because cells tend to be more directional in eight-arm
mazes or T-mazes compared to open environments (Muller et al., 1994; Markus et al.,
1995). Our results support the notion that place cell directionality should influence
goal directed behaviour as we obtained better performance in a goal navigation task
when using place cells formed from both visual and combined stimuli than when using
place cells formed from visual cues alone.

4.9.2 Goal navigation learning

In the second part of this chapter we presented different navigation strategies and
compared them in a goal navigation task and in a remapping situation. Goal naviga-
tion based on place cells has previously been addressed by implementing reinforcement
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learning algorithms (Arleo and Gerstner, 2000; Arleo et al., 2004; Foster et al., 2000;
Strösslin et al., 2005; Sheynikhovich et al., 2005; Krichmar et al., 2005). We pre-
sented a new navigation mechanism that combined Q-learning with navigation based
on self-generated odour patches in order to achieve better performance in goal di-
rected navigation. Our approach differs from that of Russell (1995), who developed
a robotic system where the robot is able to lay an odour trail on the ground and to
follow the trail afterwards. In his approach the robot is not using odour marking to
find a goal, whereas in our approach, the rat lays scent marks in order to find a goal
and to create a trail, which leads to the food source. The proposed mechanism, based
on self-marking, propagates scent marks backwards from the location of the reward
as in reinforcement learning, but here we do not have predefined features, but rather
create them “on the fly”, and we do not directly memorise action values associated to
states. The mechanism of RBF2-like features created on-line in action learning was
used in several other studies (Kretchmar and Anderson, 1997; Atkeson et al., 1997).
The method of updating odour marks resembles a TD(0) approach with function ap-
proximation (Sutton and Barto, 1998), where the weights towards the value function
are increased if the following states have high values. The update rule in our study is
different from the one used in TD. Here, updates of odour marks are made by a fixed
amount based on the binary decision whether some odour is sensed at the current
location or not.

Experimental data show that rats perform better in cue-rich environments com-
pared to the cue-poor environments. Barnes et al. (1980) showed that if all of the
extra-maze cues surrounding a circular maze were removed, rats made many more
errors finding a goal location. Morris (1984) demonstrated that rats performed worse
when he obscured some of the cues around the water maze by pulling the curtains
1/4 of the way around. When he obscured all of the extra-maze cues by pulling the
curtains fully around, the rats performed very badly. Prados and Trobalon (1998)
showed that rats could learn the platform location in a water maze if 4 or 2 extra-
maze cues were available, but they were much worse if only 1 cue was present. We
addressed these findings by testing the performance of our model rat with and without
olfactory input where we observed that the model rat performed significantly better
with both, visual and olfactory, cues compared to visual stimuli alone.

The experiments of Maaswinkel and Whishaw (1999) suggest that rats have a hier-
archical preference in using sensory cues. In their experiments, rats ignored distortion
in self-motion cues when they where moved to a new starting position or ignored dis-
tortion in odour cues (scent marks) when the apparatus was rotated suggesting that
visual cues dominate over other cues whenever they are available. However, when
blindfolded, the rats still performed well suggesting that they were using odour cues
when available, and path integration when odour cues were disrupted. To address
these findings we modified our combined navigation strategy by adding an input pref-

2RBF - radial basis function
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erence component where the rat uses both environmental and self generated cues for
the learning. After learning the rat prefers environmental cues if they are available
and uses self-generated olfactory cues when visual cues are not available. By using
such an modified strategy, we have demonstrated that the model rat succeeds in faster
goal directed learning showing unaffected performance when environmental cues are
changed. This is supported by the finding that a rat can find a goal when the scent
trail is distorted or removed, or can find the route to the goal using self-laid odour
cues when environmental cues are unavailable.

4.9.3 Remapping and goal navigation

The results for goal navigation with respect to remapping of place cells show that the
rat can learn to find a goal in two environments, “A” and “B”, by using Q-learning or
combined navigation when the location of the goal is unchanged, but environmental
cues are switched. Note that the rat can learn both environments only as long as
different, partially overlapping subsets of place cells fire in the environment “A” and
“B”, i.e. most of the cells, which do not fire in environment “A”, fire in environment
“B”. In case of cue rotation the rat would need to relearn the task all the time if
the location of the goal is not rotated together with landmarks, because in both
environments the same subset of place cells would be used. This is an equivalent of
leaving the environment the same, but changing the location of the goal. Also in the
Morris water-maze experiment (Morris, 1981) the rat has to relearn the location of the
platform every time whenever it is moved to another location. When environments
are substantially different and the cells remap, in our experiments the rat can easily
find the food source in both environments even if the location of the goal is changed
by employing the combined strategy, because the rat can use the trail of scent marks.

Our model predicts that the remapping of place fields would disrupt a previously
learnt route to a goal. The closest empirical data addressing this prediction is a
study by Jeffery et al. (2003), who examined the relationship between remapping and
performance of a spatial navigation task. In their experiment, rats were trained to
search for a food source in a black box, and subsequently tested in a white box. Jeffery
et al. (2003) found that place cells re-mapped between the two boxes, and although
the rats were slightly worse in the second environment, they still performed well.
This finding suggests that, although the place cells may encode spatial contexts, they
dont directly guide behaviour. One difference between the experimental situation of
Jeffery et al. (2003) and that of the current model is that in the experimental situation
there were no landmarks within the square apparatus. Instead, rats relied on spatial
landmarks - posters on the curtains surrounding the apparatus - for orientation. So, in
the Jeffery et al. (2003) experiment, unlike in our model, cues outside the immediate
environment were the only way in which the animal could distinguish the correct
corner. The results of Yoganarasimha and Knierim (2005) suggest that head direction
cells are influenced by distal landmarks, whereas some place cells are influenced by
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local landmarks. Thus it may be that the Jeffery et al. (2003) task was one that could
not be solved using place cells, because there was no way of distinguishing one corner
of the apparatus from the other because there were no local cues available within
the square. Rats may have used a non-place cell representation - such as the head
direction cell system - to solve the task. Had there been local cues inside the square
enclosure and no cues outside the enclosure, a stronger link between remapping and
disrupted navigation may have been observed. An acknowledged difficulty with this
account, however, is that Jeffery et al. (2003) also show that this task is impaired by
lesions of the hippocampus.

4.9.4 Predictions and suggested experiments

Present experimental studies on spatial learning in cue-rich-cue-poor environments
are still based on visual cues alone (Barnes et al., 1980; Morris, 1984; Prados and
Trobalon, 1998). They also test the performance of the rat after learning. It would
thus be interesting to test whether real animals would learn the task faster in environ-
ments with additional olfactory cues compared to visual stimuli alone as our model
predicts.

Experiments on self-marking behaviour in the process of learning would be useful
to prove or disprove the proposed setup and hypothesis that self-marking behaviour
speeds-up learning.

In the Jeffery et al. (2003) experiment on place cell remapping and goal navigation,
it may be that the task was one that could not be solved using place cells, because
there was no way of distinguishing one corner of the apparatus from the other because
there were no local cues available within the square. It would be interesting to make
more experiments in order to test the hypothesis whether remapping of place cells
influences goal directed learning or not as our model predicts.

By using a combined strategy with hierarchical input preference the model rat
creates two representations of the route to the goal: one is based on environmental
cues while the other is based on self-generated scent marks. Our model predicts that
in case of remapping, when the goal in two environments is at different locations, the
rat would fail when moved back to the previous environment since it would prefer
environmental cues. We would hypothesise that the rat could use the scent trail in
the next trial after it fails to find a goal when using environmental cues. Experiments
to test this hypothesis would also be of great interest.
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Conclusion and Outlook

Each previous chapter contained its own extensive “Discussion” section where we
compared our methods to other approaches and related them to biological data. In
this chapter we will, thus, only briefly summarise presented work by highlighting all
main findings, provide an outlook for future investigations, and conclude this thesis.

In this thesis we were investigating the development and utility of receptive fields
in closed-loop behavioural systems. In the first part of the thesis (Chapter 2) we
developed visual receptive fields from uni-modal sensory cues (visual) by temporal
sequence learning. Here we have for the first time implemented a simple layered
structure and obtained stable behaviour in a closed-loop scenario. We showed that
chained architectures can be employed in order to obtain better behavioural perfor-
mance as compared to the simple architecture where learning fails because of weak
correlations. While the two chained architectures are still rather simple, we believe
that this is nevertheless an important step towards more advanced networks of cor-
relation based learning units. Furthermore, we could for the first time generate and
stabilise secondary receptive fields in a closed-loop context.

In section 2.9 we showed that many system parameters influence development of
receptive fields (RFs) which as a consequence will alter the agent’s behaviour. One
crucial parameter is the position of the receptive field in a camera image. On shallow
tracks faster learning and more accurate driving behaviour is obtained when the RF
is positioned further away from the reflex sensor field whereas for sharp tracks better
performance is achieved when the RF is closer to the reflex sensor. This could be
improved by using different shapes of receptive fields (e.g. elongated RFs) in order
to avoid tuning of RF position. Alternatively, we could use several smaller receptive
fields and place them at different positions in the camera image. Here we could use a
separate unit for each receptive field where all outputs of such units would contribute
to the final motor output which then would be used to control the agent.

Another limitation of our approach presented in this chapter is that the system can
not unlearn. If we train the robot on sharp tracks and then use the learned weights for
the shallow tracks then the robot behaves inefficiently by over-steering and consuming
too much energy (see Fig. 2.10 and Fig. 2.26). This problem could be solved by
augmenting our learning system by a weight decay (forgetting), i.e. by decreasing
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weights by a reasonable small value ∆ρ every time step or if the corresponding input
is not triggered for some time τ . In addition we could use an asymmetric instead of
the symmetric setup where left and right RFs would develop separately. This would
be beneficial in asymmetrical maze tracks, e.g. track which mainly contains shallow
leftward and sharp rightward turns.

The presented learning architectures for receptive field development could be also
used for tasks such as obstacle avoidance, food retrieval or combinations of those.
This would only require usage of several sets of RFs where each of them would be
responsible for a specific subtask and would develop independently. It should be also
possible to apply such receptive fields for visually guided reaching and grasping where
RFs would generate velocity and/or acceleration profiles for each joint of a robot
arm (Tamosiunaite et al., 2009). We could also use chained learning architectures
with different receptive fields in more complex navigation tasks, e.g olfactory (would
require a set of odour sensors in order to build receptive field) and visual RFs where
odour would predict specific visual targets which would be followed by a trigger of a
negative (hitting an obstacle) or positive (receiving energy) reflex.

In the second part (Chapter 3) we have analysed closed loop behavioural sys-
tems which change by differential Hebbian learning. We were surprised to find that
even these very simple systems are already too complex to fully deduct the system’s
behaviour from the initial setup of system and world. Only together with some infor-
mation on the general structure of the development of their descriptive parameters,
analytical solutions can be still found for their temporal development. By using en-
ergy, input/output ratio and entropy measures and investigating their development
during learning we have shown that within well-specified scenarios there are indeed
agents which are optimal with respect to their structure and adaptive properties. As
a consequence, this investigation may help leading to better understanding of the
complex dynamics of learning&behaving systems. The fact that with learning op-
timal agents will exist (probably under any measure of optimality!) may make it
necessary to reconsider evolutionary approaches as cited above (Klyubin et al., 2007,
2008; Prokopenko et al., 2006) in light of a different fitness function, which also takes
the learning into account (Baldwin Effect, Baldwin, 1896; Hinton and Nowlan, 1987).
Finally, by applying system measures to the receptive field analysis we were able
to demonstrate that receptive fields optimize the agents’ behaviour with respect to
the given task by minimising energy consumptions required to perform the task and
maximising accuracy of the performance.

Here we used input/output ratio in order to see how the influence of predictor and
reflex on the system output changes over time. This measure could be also used to
investigate the dynamics of systems with many different inputs (also without defining
predictive and reflexive inputs and independent on system setup) in order to analise
the contribution of different inputs to the performance during learning. For this, one
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would need to calculate input/output ratio of each sensory input independently. In
addition, measures like mutual information between system inputs could be included
in the analysis in order to see how much information inputs contain about each other
in order to detect and remove unwanted redundancies in the system. The mutual
information between sensory inputs at time moment t and the inputs after some time,
i.e. at the time moment t+τ , should allow us to see whether these inputs can predict
the upcoming sensory state, i.e. predicting the environment. An analysis of the
system dynamics with multiple subtasks, e.g. obstacle avoidance (negative tropism)
and food retrieval (positive tropism), or multiple agent systems, for investigation of
cooperative behaviour, would be also of great interest.

Finally, in the third and the last part of this thesis (Chapter 4) we presented a place
cell model where we modelled place fields from multi-modal sensory cues (visual and
olfactory) by using a feed-forward network based on radial basis functions. This was
motivated by the experimental data which show that olfactory cues play an important
role for the stability of place fields (Markus et al., 1994; Save et al., 2000) and the
navigation of rodents (Tomlinson and Johnston, 1991; Lavenex and Schenk, 1995,
1996, 1998; Wallace et al., 2002a, 2003). We have for the first time implemented
an odour supported place cell model and applied it for goal navigation learning.
Based on self-marking behaviour in rodents (Harley and Martin, 1999), we proposed
a novel navigation mechanism which generates better performance in goal directed
navigation. We predict that the use of environmental odour cues improves omni-
directionality of place cells which, as a consequence, results in faster goal directed
learning, whereas the use of self-generated scent marks results in even faster learning,
and could serve as an additional information for path finding when environmental
cues are not available.

We have demonstrated that additional sensory inputs improve spatial navigation.
We believe that adding more sensory inputs (auditory, somatosensory, self-motion)
would increase the performance even more. Including self-marks (scent marks) to
place field formation would be an important upgrade of the model, too.

Tamosiunaite et al. (2008) have shown that number and size of place fields play
quite an important role in spatial navigation with respect to speed and convergence
of path learning. From place cell recordings it is known that place cells in ventral hip-
pocampus fire with relatively large place fields (PFs) whereas dorsal PFs are smaller
(Hasselmo, 2008; Kjelstrup et al., 2008). It is thought that bigger PFs are used for
navigation on larger scales (e.g. associations with different rooms) whereas smaller
PFs are used where higher precision is needed (e.g. to code for a specific location
in the room). To take this into account we would need to augment our model with
several layers of place fields with different PF sizes (see Fig. 5.1 B) in order to effi-
ciently solve spatial tasks as shown in Fig. 5.1 A (for more details see figure legend).
This could be done by implementing such learning mechanisms as adaptive tile cod-
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Figure 5.1: A) Depiction of an environment with three empty rooms and one maze
room. Green point is the start position (home), red square is the target position
(goal). The task of a rat is to find an optimal (shortest) path from home location
to the goal as indicated by the blue line. B) Schematic diagram of configuration of
place fields for the environment shown in A. Here larger place fields (blue circles)
are used to differentiate between different rooms and smaller place fields are used for
navigation inside the maze room.

ing (Whiteson et al., 2007) and hierarchical reinforcement learning (Botvinick et al.,
2009).

We believe that the embedding of learning architectures into behaving systems,
which close the loop between perception and action, is an important field of investi-
gation leading away from the pure stimulus-response paradigm to a more ecological
system’s perspective. Our results suggest that it seems to be possible to achieve
stable structural and functional development also in more complex architectures by
rigorously embedding the learning neuronal system in its environment. While our
scenarios are still relatively simple we think that this work may help leading to a bet-
ter understanding of dynamics and behaviour of more complex closed-loop learning
systems. We also stress the advantage of multi-modal sensory cues to receptive field
development and behavioural performance which not only makes suggestions for new
biological experiments but also for new approaches in autonomous behaving systems.
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A
Appendix

A.1 Pattern inconsistency measure

For the structure evaluation and ordering of the receptive fields (see Fig. 2.15) we
used pattern inconsistency measure PI which is defined as the average distance to
the neighbouring weights computed over all weights within the receptive field (similar
to the grey scale values used in self-organising maps to measure the similarity across
neighbours, Kohonen, 2001):

PI =
1

N2

∑
i,j

1

m

∑
k,l

|ρi,j − ρk,l|, (A.1)

where i, j = 1 . . . N,N = 15 is the size of the receptive field, k = i − 1 . . . i + 1,
l = j− 1 . . . j + 1, and m is the number of neighbouring units. Indexes k and l define
the neighbouring weights ρk,l of the weight ρi,j in the receptive field, and we used
eight adjacent neighbours (m = 8) as shown in Fig. A.1 A. Note that at the corners
of RF we have only tree neighbouring units (m = 3) and at the borders we have
five neighbouring units (m = 5). We also normalised receptive field weights (ρi,j)
between zero and one before calculating PI. PI = 0 if receptive field is homogeneous
(ρi,j = const.) and PI ≈ 0.33 if the receptive field has random structure with weights
from a uniform distribution (see Fig. A.1 B).

A.2 Input intensity map

Values of the input intensity maps (Fig. 2.18 A) were calculated by the following
equation:

IMi,j =

∑
t f(xL1i,j(t)) +

∑
t f(xL1i,j(t))

maxi,j IMi,j

, with (A.2)

f(x) =

{
1 if |x| > 0,
0 otherwise.

Here i, j = 1 . . . 15 denote the indices of the receptive field pixels (inputs) and are
ordered as shown in Fig. 2.13 A, t = 1 . . . N is the time measured in steps. Note,
since we have a symmetrical setup, here we sum number of inputs from corresponding
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Figure A.1: A) Diagram shows neighbouring weights ρk,l (marked by light grey) of
the weight ρi,j (dark grey) in the receptive field. B-D) Examples of receptive fields
with different structure. B) Gradient-like receptive fields with values from a uniform
distribution. C) The same as in panel B only here we added Gaussian noise with the
mean µ = 0 and the standard deviation σ = 0.1. D) Random receptive field with
values from a uniform distribution. Value at the top of the RF represents the pattern
inconsistency measure.

pixels from both the left and the right RF and obtain only one intensity map (shown
as the right intensity map).

A.3 Robot’s deviation from the track

Robot’s deviation from the track is simply defined as the average deviation of the
robot’s position (defined by the mass centre of the robot) from the track obtained
from the robot’s driving trajectory and is calculated by Euclidian distance:

Ψ =
N−1∑
t=0

√
(xr(t)− xt(t))2 + (yr(t)− yt(t))2 units, (A.3)

where xr(t) and yr(t) are the coordinates of the robot’s position at time moment t,
xt(t) and yt(t) are the coordinates of the track point from which the distance to the
robot’s position is minimal, and t = 0 . . . N − 1 denote the driving duration and is
measured in steps.

A.4 Contrast measure

We obtained values for the colour-coding in Fig. 3.2 by the following equations:

Z1(k) =
k+cw−1∑
t=k

|ω1(t) · x1(t)|,
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Z0(k) =
k+cw−1∑
t=k

|ω0(t) · x0(t)|,

R(k) =
Z1(k)− Z0(k)

Z1(k) + Z0(k)
, (A.4)

where k = 0 . . . N−wr, N = 105 is the length of the input sequence, and cw = 5×103

is the size of the sliding time window. Note that we normalised values of R between
zero and one.

A.5 Analytical calculation of the temporal devel-

opment

Here we provide with the analytical calculation of the temporal development including
the temporal dependence of τ on k. From equations 3.22 and 3.26 we derive three
second order differential equations, which we solve independently:

if 0 ≤ k ≤ kp

ω′(k) = µ
2 a0A1 σ0

σ2
1

(
τb + (τp − τb)

k

kp

)(
1− ω(k)

ωf

)
, (A.5)

if kp < k ≤ kb

ω′(k) = µ
2 a0A1 σ0

σ2
1

(
τp −

τp − τb
kp − kb

kp +
τp − τb
kp − kb

k

)(
1− ω(k)

ωf

)
, (A.6)

if k > kb

ω′(k) = µ
2 a0A1 σ0

σ2
1

(
τb
k

kb

)(
1− ω(k)

ωf

)
. (A.7)

The solution of these differential equations are as follows:

if k ≤ kp

ω(k) = ωf

(
1− exp

[
−µ λ̃2 kp τb + k(τp − τb)

2 kp
k

])
, (A.8)

if kp < k ≤ kb

ω(k) = ωf

(
1− exp

[
−µ λ̃(k2 − 2 kp k + kp kb) τb − (k2 − 2 k kb + kp kb) τp

2 (kb − kp)

])
,

(A.9)

if k > kb

ω(k) = ωf

(
1− exp

[
−µ λ̃2 k τb + kb(τb − τb)

2

])
, (A.10)
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where λ̃ = λ/τ (see equation 3.25).
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