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Abstract

The increase in bandwidth, the number of internet users and the variety of
internet applications, all point towards the need for adaptive and flexible
internet protocols. Alternatively, they also emphasize on the necessity for
specialized protocols that cater to application requirements. Current Trans-
port protocols such as TCP and UDP are not flexible enough to be used by
applications which differ in their performance expectations. UDP, for exam-
ple, is inelastic in nature and therefore can cause exacerbation of congestion
in an already congested network. TCP on the other hand was designed to
provide proportional fairness, such that a “flow” is the unit which is allo-
cated resources. This not only results in all flows having an equal share
at the bandwidth irrespective of the application requirements, but also give
way to a new trend of applications that are able to take advantage of the
“flow-oriented” fairness.

Delay-insensitive applications, such as P2P file sharing, generate sub-
stantial amounts of traffic and compete with other applications on an equal
footing while using TCP. Further, to optimize throughput, such applications
open multiple connections. This results in an unfair and potentially poor
service for applications having stringent performance objectives. The main
part of this thesis proposes NF-TCP, a TCP variant for P2P and similar
background delay-insensitive applications. NF-TCP aims to be submissive
to delay-sensitive applications under congestion. It is designed to be network
friendly based on a fluid flow model for intermediate queues and uses explicit
congestion notification (ECN) for early detection of congestion. Moreover,
it exploits the measure of the available bandwidth to be able to aggressively
utilize spare capacity.

It can be observed that the traditional congestion control protocols com-
prise of tightly coupled mechanisms, and are designed to address a spe-
cific problem or scenario. They either lack the flexibility in meeting vary-
ing requirements or utilizing different types of available network support.
This thesis proposes a congestion control framework that consists of plug-
gable components and utilizes it to guide the NF-TCP design. It identifies
congestion-detection, flow-control and bandwidth-estimation as the main
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Abstract

components of the congestion control protocol, which can be loosely or
strictly decoupled from each other under a modular framework.

This thesis implemented NF-TCP on Linux and ns-2. The evaluations of
the NF-TCP Linux implementation on ns-2 show that NF-TCP outperforms
other network friendly approaches (e.g., LEDBAT, TCP-LP and RAPID).
NF-TCP achieves high utilization, fair bandwidth allocation among NF-
TCP flows and maintains a small average queue. The evaluations further
demonstrate that with NF-TCP, the available bandwidth can be efficiently
utilized for supporting both delay-sensitive and insensitive traffic in a wide
range of scenarios.
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Chapter 1

Introduction

The Transmission Control Protocol (TCP) [5] is the most widely used trans-
port layer protocol in the Internet. Popular applications such as peer-to-peer
(P2P), video, live-streaming and gaming prefer to use TCP due to its inher-
ent congestion control characteristics and reliable delivery semantics. TCP’s
reliability is achieved by recovering from packet loss through retransmissions.
TCP’s congestion control ensures that it reacts to congestion that results
in packet loss, by halving its sending rate. This ensures that the flows are
able to minimize losses and mitigate congestion. These mechanisms enable
TCP to adapt to heterogeneous network environments and varying traffic
conditions, while also avoiding congestion. Although TCP and its variants
have served the Internet for a long period, they unfortunately have certain
limitations too (see Section 1.1).

Different applications have varying requirements which are summarized
in Table 1.1. Based on user expectations and the technologies currently
available in the Internet, applications may be broadly classified into:

Delay-sensitive applications: Users have higher expectations and less
tolerance for delays caused to delay-sensitive applications such as video con-
ferencing and streaming, and even web-browsing.

Delay-insensitive applications: Users consider applications such as
software updates, “download and play” and P2P file sharing to name a
few, as lower priority. These applications are therefore relatively delay-
insensitive.

TCP treats all of these applications in the same way. Although Quality
of Service (QoS) in the network could address the needs of the various appli-
cations, it has not been widely deployed. This thesis proposes a “Network
Friendly” version of TCP to overcome the limitations (see Section 1.1) of
TCP so that it is able to serve the needs of the delay-insensitive applications.
This approach is named as Network Friendly TCP (NF-TCP). In the rest
of the chapter, the thesis discusses the motivation behind the approach and
lists out the key contribution of the thesis.
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1.1. Problem statement

1.1 Problem statement

Internet traffic is ever increasing and becoming more and more varied and
complex. Video, live-streaming and gaming are some of the popular appli-
cations which are sensitive to packet drops, delay and jitter. On the other
hand, download and play, peer-to-peer applications are tolerant to delay, lost
packets and jitter but typically require a large amount of data to be trans-
ferred. For example, according to a study from Ipoque [6], P2P accounted
for a range between 43% and 70% of the total traffic in large parts of Europe,
Middle East, Africa and South America. But, peer-to-peer like applications
do not have stringent completion deadlines. Web-traffic on the other hand
is an example of an application that has a need to complete in a reasonable
time before a user times out, but they transfer relatively smaller amounts
of data. In essence, different applications have varying requirements which
are summarized in Table 1.1. Figure 1.1 illustrates the various application
flows that might be traversing an access router. The access router could be
either in a single household or at the Internet Service provider. All of these
applications use TCP.

A legitimate question that arises in the design of a network friendly pro-
tocol is whether the Transport Layer is the right place for a mechanism
that incorporates the policy encouraging delay-insensitive applications to
be deferential to other applications in their usage of congested network re-
sources. The primary argument behind this is driven by considerations of
time-scale. Placing the responsibility on the user to defer their downloads
during congestion periods is difficult because of both the unpredictable na-
ture of congestion (and hence there is no well-defined period of “uncongested
network”) and its short-term transient nature (relative to human user time
scales). Another alternative is to place the responsibility on the application,
which requires the application to be then congestion-aware. Despite this
being possible, it is difficult to be able to respond to congestion (and the
absence of) within small time-scales. Even upon adding several hundreds of
milliseconds, a substantial congestion buildup would occur, thereby impact-
ing other traffic not only from the same host but also from others sharing a
bottleneck. Moreover, capacity left unused is “lost” if the application is un-
able to opportunistically exploit available bandwidth within a time scale of
a few round-trip times (RTTs). Based on these arguments, delay-insensitive
traffic needs to be submissive and it is most suitable when performed as a
transport layer protocol.

2



1.1. Problem statement

Limitations of Standard TCP

TCP provides proportional fairness: TCP aims to provide propor-
tional fairness, such that a “flow” is the unit which is allocated resources.
This refers to the allocation of resources in a fair manner among all the ex-
isting flows, i.e., aiming to ensure similar experience and treatment for every
flow. This results in all the flows contributing equally to queue build-up at
a congested bottleneck link, thereby causing an increase in delay to all the
applications. In Figure 1.1, one can observe that various applications con-
tribute at a single bottleneck. Applications such as P2P can open multiple
connections, enabling all the flows to receive a share of the bandwidth. This
results in unfair benefit of potentially higher throughput for applications
that open multiple connections. Unfortunately, TCP cannot overcome this
deficiency.

Standard TCP is not flexible: Standard TCP was designed as a non
flexible transport layer protocol and provides similar transport functionality
to all applications. This implies that users and applications do not have
control over the type of service they desire. Instead, users and applications
have to find other means such as manual switch on/off or open multiple
connections, to fulfil their needs. An application that uses standard TCP,
even though it may wish to be network friendly and be submissive to other
traffic when the network is congested, is unable to tune or defer its load to
avoid using resources in the network even when there is excess demand.

Inefficient use of spare bandwidth: Inefficiency in utilizing available
bandwidth is another disadvantage of standard TCP. As the Bandwidth
Delay Product (BDP) increases, performance decreases. This problem is
particularly of concern in the case of network friendly flows due to their
nature of being submissive during congestion periods.

Effect of ISP charging models

Charging models such as flat-rate charging increase the strain on the net-
works, since a certain amount of heavy users use up most of the resources.
Coupled with the use of TCP, these heavy users try to compete for a fair
share of the capacity. Applications that use UDP increase congestion due
to the inelastic nature of such flows. One obvious solution to the shortage is
that the Internet Service Providers (ISPs) increase their capacities to accom-
modate the extra traffic. Murat Yuksel et al. argue in [7] that the required

3



1.2. Thesis Contributions

extra capacity to service a small increase in traffic is quite significant. More-
over, users are not willing to pay for capacities that would benefit only a
small number of players. In light of this, ISPs prefer to make efficient use of
their capacity before attempting to increase it. Figure 1.2 shows the actual
distribution of traffic in the current network whereas, Figure 1.3 depicts the
distribution of traffic that ISPs would prefer.

ISPs and heavy users

ISPs generally try to circumvent the interruption to efficient use of capacity
by deploying various charging mechanisms such as volume counting/charg-
ing, application based rate limiting, deep packet inspection, blocking/throt-
tling certain applications like P2P, and bottleneck policing. All these un-
derline the fact that according to ISPs, heavy users are receive a dispropor-
tionate share of resources. But this raises the following question: Is a user
using 5 Mbps in an empty bottleneck link with a bandwidth of 10 Mbps
worse than a user using 1 Mbps of the same link during congestion? In the
first case, there is no impact on other users whereas, in the second case, all
users are affected. Neither the volume of data nor the rate, but the con-
tribution to congestion is what really matters. People using the network
during congested periods may be willing to pay a premium for it. Similarly,
the ISPs may intend to provide cheaper service to flows that postpone their
use of the network to a non congested period. Currently, once a network has
been provisioned at a certain size, it does not cost the network operator any
more even if the user sends more data without causing congestion [8].This is
analogous to offering discounts for using public transport and flights during
non peak periods.

Unfortunately, the current protocols are not well suited to use spare
bandwidth efficiently, while minimizing the impact caused during congested
periods. There is a need for a mechanism that can be used by delay-
insensitive applications to seamlessly use spare bandwidth efficiently and
be informed so as to enable them to defer usage of the network during con-
gested periods.

1.2 Thesis Contributions

Increasing amount of Internet users along with a wide range of diverse In-
ternet applications are currently motivating researchers to come up with
adaptive and flexible Internet solutions. In this thesis, a network-friendly

4



1.2. Thesis Contributions

Figure 1.1: Examples of various application flows traversing a common ac-
cess router.

congestion control protocol (NF-TCP) was developed. It differs from exist-
ing approaches in three major ways:

• NF-TCP is a network-friendly, submissive variant of TCP, depending on
network feedback. It exploits Explicit Congestion Notification (ECN) [9]
to reliably identify incipient congestion and have delay-insensitive applica-
tions aggressively defer their load from a congested network.

• An aggressive but informed exploitation of available bandwidth such that
NF-TCP utilizes spare capacity when the network is uncongested. It exploits
information provided by an available bandwidth measurement compo-

nent that is carefully crafted to rapidly obtain the estimate. This is the
first work that incorporates a separate bandwidth measurement mechanism
into a congestion control framework.

• While NF-TCP exploits the available bandwidth estimation, it is designed
to still be robust to errors in the estimation.

The key contributions to this thesis include:

5



1.2. Thesis Contributions

Table 1.1: Application requirements

Examples of High Examples of low

Volume of data transfer P2P, download & play Web-traffic

Tolerance to jitter Web-traffic Video, gaming
live streaming

Tolerance to delay P2P Web-traffic, gaming

Tolerance to packet loss streaming, video Web-traffic,
gaming, sensors
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Figure 1.2: Current distribution of traffic in the ISP networks, where peaks
resulting in congestion during certain periods are prominent
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Figure 1.3: An ideal distribution of traffic in the ISP networks, where appli-
cations are able to uniformly distribute their usage of the network capacity

thereby reducing congestion periods in the network

• The thesis promotes a modular and flexible congestion control framework
that comprises of decoupled congestion control mechanisms including con-
gestion detection, flow control and bandwidth estimation. This facilitates
the understanding and design of new components of a congestion control
protocol, while allowing the reuse of existing available mechanisms and pro-
tocol elements.

• The thesis proposes Network Friendly TCP (NF-TCP) as an enhancement
to TCP to allow delay-insensitive applications to be reliably submissive to
delay-sensitive applications during periods of congestion. This has been
implemented on Linux and results from a testbed setup on the ns-2 simula-
tor [10] have been provided.

• The thesis proposes a novel ECN enhanced bandwidth estimation mecha-
nism (ProECN) to guide NF-TCP to aggressively utilize the bandwidth dur-
ing non-congestion periods. This enables NF-TCP to avoid under-utilization
of available bandwidth.

1.3 Thesis overview

Chapter 2 highlights and discusses the design goals of the NF-TCP approach.
Moreover, it reviews the existing proposals and details their shortcomings,
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1.3. Thesis overview

thereby reducing their chance to be a network friendly protocol. Chapter 3
outlines the congestion control framework and NF-TCP in described in detail
in Chapter 4. In Chapter 5, evaluation results of a comparative study of
NF-TCP, LEDBAT, RAPID, TCP-LP and standard TCP Reno is provided.
Chapter 6 details upon the deployment scheme and tries to answer some of
the frequently asked questions. Finally, a summary of the dissertation has
been presented in Chapter 7.

8



Chapter 2

Design Goals and Related
Work

In this chapter, the thesis explains the design goals of NF-TCP and ex-
plore the state of the art approaches that could be used by delay-insensitive
applications.

2.1 Design Goals of a Network Friendly
Congestion Control Protocol

The main goal of this work is to develop a network friendly protocol that
addresses the challenges described above. The solution is built based on the
following requirements:

Requirement-I: Be submissive to standard TCP when
encountering network congestion

This is to ensure that packets of delay-insensitive applications do not occupy
the buffers, which can impact existing or newly arriving TCP flows. Buffer
occupancy could result in an increase in latency or drop rate for delay-
sensitive applications. This also enables standard TCP flows to utilize the
available capacity.

During congestion periods where the queue is building up, one gets the
following condition for NF-TCP using the rate deterministic model (TN ∝
a√
p
) described in [11]:

aN√
pN
→ 0 (2.1)

where TN is the throughput of an NF-TCP flow, pN is the loss rate of the
NF-TCP flow and aN is the rate of increase of the NF-TCP flow. Therefore,
to meet the conditions of the equation, either NF-TCP’s increase factor (aN )
should be close to zero or the loss rate of NF-TCP (pN ) should be very high.
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Comparison of a NF-TCP flow to a standard TCP flow

Requirement-II: Ability to detect network congestion early

Early detection of congestion provides NF-TCP ample time to become sub-
missive and yield its share of the capacity thereby satisfying Requirement-I.

Requirement-III: Ability to saturate available bandwidth as
fast as possible in the absence of other TCP flows

An NF-TCP flow must be capable of aggressively capturing available band-
width during non-congestion periods without having a negative impact on
co-existing TCP flows. Moreover, in the presence of other NF-TCP flows,
the bandwidth should be equally shared among all flows.

Requirement-IV: Ability to operate in very short timescales

As mentioned in Requirement-I, II and III, an NF-TCP flow must be capable
of aggressively capturing available bandwidth during non-congestion periods
and being submissive during congestion periods. It is therefore essential for
it to operate in as short a timescale as possible. The choice of a transport
layer solution ensures that NF-TCP is able to operate in timescales of a few
RTTs.

Comparison of a NF-TCP flow to a standard TCP
flow

It is undesirable for delay-insensitive traffic to contribute to queuing because
of the elastic nature of its demand and the inherent ability of such applica-
tions to defer until the network is relieved of congestion. Figure 2.2 shows
the friendly nature of standard TCP as compared to what is expected of a
network friendly TCP shown in Figure 2.1. One can observe in Figure 2.1
that the network friendly flow is able to be submissive in the presence of
standard TCP flow during congestion instead of competing for an equal
share. Figure 2.1 illustrates that standard TCP is able to utilize the full
bandwidth whereas in Figure 2.2, standard TCP is able to utilize only half
the capacity.
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Figure 2.1: Required behaviour of a network friendly flow
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Figure 2.2: TCP Fairness

2.2 State of the Art in Network Friendly
Approaches

The IETF Application-Layer Transport Optimization (ALTO) [12] protocol
relies on the support of dedicated servers to assist in the selection of peers,
to avoid the overloading of any specific part of the network. Application
layer solutions such as ALTO [12] that help in peer selection could in fact
compliment transport layer solutions. Recently, to relax the dependence
on dedicated servers and to react to instantaneous congestion levels in the
networks, the IETF LEDBAT working group has been formed to develop
a network friendly protocol [2], which is primarily an end-host delay-based
protocol. Other delay-based network friendly mechanisms include TCP-
LP [13] and RAPID [14].
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In this section, the work briefly describes standard TCP and other can-
didate approaches for a network friendly protocol. The properties of each
of the approach are then compared against the requirements of a network
friendly approach listed out in Section 2.1.

2.2.1 Standard TCP

The Transmission Control Protocol (TCP) [5] is the most widely used trans-
port layer protocol and the thesis uses the term standard TCP to denote
the same. TCP establishes a connection between sender and receiver. Each
segment, which is sent over the network is acknowledged by the receiver to
make the data transfer reliable. The time taken from sending a packet to
receiving an acknowledgement (ACK) for this packet is called RTT (Round
Trip Time). Among other abilities TCP provides Congestion Control [15] by
using four algorithms: slow start, congestion avoidance, fast retransmit and
fast recovery which are defined in [5]. These algorithms make extensive use
of two variables: congestion window (cwnd), which limits the amount of data
a sender can inject into the network before receiving an acknowledgement
and the receiver’s advertised window (rwnd), which limits the amount of out-
standing data to a value which the TCP receiver can handle. The congestion
window is limited by the advertised window so as to not overwhelm the re-
ceiver. To determine whether slow start or congestion avoidance should be
used, another state variable, the slow start threshold (ssthresh) is used.
Initially ssthresh is set arbitrarily high and is then reduced in response to
congestion as described later on in this chapter.

TCP Slow Start

During the slow start phase, for every successful transmission and acknowl-
edgement of a TCP segment, the congestion window is doubled resulting in
an exponential growth. This exponential growth is continued till the conges-
tion window reaches the SS-threshold value or till a packet loss is observed
(See Figure 2.3). When a TCP sender is starting to transmit data, the
available bandwidth of the network is unknown. Therefore, it slowly needs
to probe for the capacity in order to refrain from introducing congestion in
the network. It does so by using the slow start algorithm. Slow start is used
when cwnd < ssthresh, while congestion avoidance is used otherwise.

At the beginning of a connection TCP starts with a cwnd of one segment.
This means that it is only able to send one segment and has to wait for
the acknowledgement from the receiver, before sending a second segment.
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During slow start the sender increases the cwnd by at most one segment size
per acknowledgement received, leading to effectively doubling the congestion
window each RTT. The slow start phase is terminated when the cwnd exceeds
ssthresh or when congestion is observed. The setting of the cwnd on a
received acknowledgement is then given by:

ACK : cwnd← cwnd+min(N,SMSS) (2.2)

where SMSS is the maximum segment size and N is the number of unac-
knowledged bytes acknowledged by the receiver.

TCP Congestion avoidance

TCP enters the congestion avoidance phase on exiting the slow start phase.
In this phase, the cwnd is incremented roughly by one SMSS per RTT. One
way to achieve this behavior is to count the number of acknowledged bytes
for new data. When the number of bytes counted reaches cwnd, it is in-
cremented by one SMSS. Another way to increase the congestion window on
every received ACK is given by:

ACK : cwnd← cwnd+ SMSS ∗ SMSS/cwnd (2.3)

Both congestion avoidance formulas lead to an almost linear increase of
the cwnd.

When TCP switches to congestion avoidance, the ssthresh variable is
reset on detecting a segment loss event and given by:

SEGMENT LOSS : ssthresh← max(FlightSize/2, 2 ∗ SMSS) (2.4)

where FlightSize is the amount of sent but not yet acknowledged data
in the network. When there is no acknowledgement received for a long time
and the connection times out, the cwnd is reset to one SMSS.

In the Congestion Avoidance algorithm a retransmission timer expiring
or the reception of duplicate ACKs can implicitly signal the sender that a
network congestion situation is occurring. The sender immediately sets its
transmission window to one half of the current window size (the minimum of
the congestion window and the receivers advertised window size), but to at
least two segments. If congestion was indicated by a timeout, the congestion
window is reset to one segment, which automatically puts the sender into
Slow Start mode. If congestion was indicated by duplicate ACKs, the Fast
Retransmit and Fast Recovery algorithms are invoked (see below). As data is
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received during Congestion Avoidance, the congestion window is increased.
However, Slow Start is only used up to the halfway point where congestion
originally occurred. This halfway point was recorded earlier as the new
transmission window. After this halfway point, the congestion window is
increased by one segment for all segments in the transmission window that
are acknowledged. This mechanism will force the sender to more slowly
grow its transmission rate, as it will approach the point where congestion
had previously been detected (See Figure 2.3).

TCP Fast Retransmit and Fast Recovery

If three or more duplicate ACKs are received, it is a strong indication that at
least one segment has been lost. The sender does not even wait for a retrans-
mission timer to expire before retransmitting the segment (as indicated by
the position of the duplicate ACK in the byte stream). This process is called
the Fast Retransmit algorithm and immediately following Fast Retransmit
is the Fast Recovery algorithm.

Since the Fast Retransmit algorithm [16] is used when duplicate ACKs
are being received, the TCP sender has implicit knowledge that there is data
still flowing to the receiver. The reason is because duplicate ACKs can only
be generated when a segment is received. This is a strong indication of the
fact that serious network congestion may not exist and that the lost segment
was a rare event. So instead of reducing the flow of data abruptly by going
all the way into Slow Start, the sender only enters Congestion Avoidance
mode. Rather than start at a window of one segment as in Slow Start mode,
the sender resumes transmission with a larger window, incrementing as if in
Congestion Avoidance mode. This allows for higher throughput under the
condition of only moderate congestion.

Features of standard TCP against the requirements of a network

friendly transport protocol listed in Section 2.1

Table 2.1 compares the features of the standard TCP protocol to that of
the requirements of a network friendly protocol listed out in Section 2.1. As
mentioned earlier, TCP is not designed to be a network friendly approach
and is therefore not submissive. Moreover, TCP detects congestion via
packet losses or an ECN marking to indicate the same. TCP is not equiped
to use spare bandwidth aggressivley too.
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Figure 2.3: TCP congestion control overview.

Table 2.1: Comparison of Standard TCP to the requirements of a network
friendly transport protocol listed in Section 2.1

Yes/no Detail

Submissive No

Detect Congestion earlier No

Saturate bandwidth as
fast as possible No

Ability to operate in shorter Yes
timescales of a few RTTs

2.2.2 Application-Layer Transport Optimization (ALTO)

A significant part of the Internet traffic today is generated by peer-to-peer
(P2P) applications used for file sharing, real-time communications, and live
media streaming. P2P applications transfer a large volume of data and in
most cases download from multiple sources. In P2P systems, the files stored
are normally redundant in nature. Therefore nodes will have to choose from
a selection of peers. Currently, peers make this selection based on some
adhoc values and do not base their decision on the underlying topology, cost
to the Internet Service Provider (ISP) among others. Given the emergence of
P2P and other delay-insensitive traffic, recent developments have attempted
to provide means to support such applications. The IETF Application-Layer
Transport Optimization (ALTO) [12][17][18] protocol relies on the support of
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Table 2.2: Comparison of ALTO to the requirements of a network friendly
transport protocol listed in Section 2.1

Yes/no Detail

Submissive No

Detect Congestion earlier No Longer timescale

Saturate bandwidth as
fast as possible No Not in the required timescale

Ability to operate in shorter No Decisions are made at
timescales of a few RTTs the beginning of a transfer

dedicated servers to assist in the selection of peers, to avoid the overloading
of any specific part of the network. ALTO helps applications to perform
better-than-random initial peer selection. ALTO services may take different
approaches at balancing factors such as maximum bandwidth, minimum
cross-domain traffic, lowest cost to the user. Application layer solutions
such as ALTO [12] that help in peer selection could in fact compliment the
NF-TCP.

Table 2.2 compares the features of the ALTO protocol to that of the
requirements of a network friendly protocol listed out in Section 2.1. Since
ALTO is an application layer solution, one can note that it is not able
to operate in the timescales required. As mentioned earlier, ALTO can
compliment NF-TCP in the initial phase of peer selection by providing a
better-than-random peer selection.

2.2.3 TCP westwood

TCP Westwood [19] (or TCPW for short) differs from Reno in the fact that
it adjusts the congestion window after a loss detection by setting it to the
measured rate currently experienced by the connection, rather than using
the conventional multiplicative decrease scheme (i.e., divide the current win-
dow by half). The control scheme of TCPW converges to “fair share” at
steady state under uniform path conditions.

In TCP Westwood the sender continuously computes the connection
Bandwidth Estimate (BWE) which is defined as the share of bottleneck
bandwidth used by the connection. Thus, BWE is equal to the rate at
which data is delivered to the TCP receiver. The estimate is based on the
rate at which ACKs are received and on their payload. After a packet loss
indication, (ie, reception of 3 duplicate ACKs, or timeout expiration), the
sender resets the congestion window and the slow start threshold based on
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Table 2.3: Comparison of TCP Westwood to the requirements of a network
friendly transport protocol listed in Section 2.1

Yes/no Detail

Submissive No

Detect Congestion earlier No BWE does it to a certain extent

Saturate bandwidth as
fast as possible Yes Uses BWE

Ability to operate in shorter Yes
timescales of a few RTTs

BWE.
Table 2.3 compares the features of the TCPW protocol to that of the

requirements of a network friendly protocol listed out in Section 2.1. Since
TCPW was not designed to be a network friendly approach, it is not able
to be submissive. Moreover, on detecting congestion, it neither gives up its
share of the bandwidth nor reduce the congestion window by half. It reduces
the sending rate to a rate based on the BWE.

2.2.4 TCP Vegas

TCP Vegas [20][21] was one of the first TCP protocols to identify conges-
tion by means other than a packet loss or duplicate ACKs. In the Con-
gestion Avoidance phase, TCP Vegas calculates the expected throughput
as congestion-window-size / BaseRTT, where congestion-window-size is the
current congestion window and BaseRTT is the minimum of all measured
RTTs. If the actual measured throughput is smaller than the expected
throughput (minus a threshold beta), this is taken as a sign of congestion,
causing the protocol to linearly decrease its rate.

Table 2.4 compares the features of the TCP Vegas protocol to that of
the requirements of a network friendly protocol listed out in Section 2.1.
Since TCP Vegas was not designed to be a network friendly approach, it is
not designed to be completely submissive. It is designed to have a smaller
sending rate than TCP when they share a bottleneck bandwidth.

2.2.5 TCP Nice

TCP Nice [22] is similar to TCP Vegas and improves upon it. TCP Vegas, on
detecting congestion decreases its rate linearly, whereas TCP Nice reduces
its congestion window by half, similar to that of TCP. To avoid being too
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Table 2.4: Comparison of TCP Vegas to the requirements of a network
friendly transport protocol listed in Section 2.1

Yes/no Detail

Submissive No

Detect Congestion earlier Yes Not reliable

Saturate bandwidth as
fast as possible No

Ability to operate in shorter Yes
timescales of a few RTTs

Table 2.5: Comparison of TCP Nice to the requirements of a network
friendly transport protocol listed in Section 2.1

Yes/no Detail

Submissive Partially

Detect Congestion earlier Yes Not reliable

Saturate bandwidth as
fast as possible No

Ability to operate in shorter Yes
timescales of a few RTTs

conservative, TCP Nice performs such a decrease only on noticing a number
of delay-based incipient congestion that is above a certain threshold per
RTT. Else it uses TCP Vegas linear decrease and reverts to standard TCP’s
decrease on experiencing a packet loss.

Table 2.5 compares the features of the TCP Nice protocol to that of the
requirements of a network friendly protocol listed out in Section 2.1. TCP
Nice unlike TCP Vegas is partially submissive, especially on noticing enough
number of delay-based incipient congestion signals.

2.2.6 TCP-LP: A distributed algorithm for low priority
data transfer

The goal of TCP Low Priority (TCP-LP [13]) is to provide a low priority
transport protocol in the presence of TCP. It provides a low priority service
instead of the best effort service provided by standard TCP. It achieves this
by measuring the one-way delay.
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Table 2.6: Comparison of TCP-LP to the requirements of a network friendly
transport protocol listed in Section 2.1

Yes/no Detail

Submissive Yes

Detect Congestion earlier Yes Not reliable

Saturate bandwidth as
fast as possible No

Ability to operate in shorter Yes
timescales of a few RTTs

One-way delay: It is defined as the transmission delay of a packet that
is sent from a source to the destination. This is different from an round
trip time (RTT), and is a better indicator of congestion in the forward path.
An RTT might include transmission delay caused by the ACK having to
traverse a congested link. The issue with measuring one-way delay is that
the source and the destination clocks might have a slight skew. In order to
negate this effect, it is important to use the measured one-way delay as a
reference delay.

TCP-LP source attempts to measure one-way delay to identify the onset
of congestion and therefore does not need any network support. It aims
to use spare bandwidth whenever available and therefore tries to be trans-
parent to both TCP and UDP traffic. LEDBAT [2][23], which is currently
being pursued by the IETF, is similar to TCP-LP, and is explained more
elaborately, in the next section.

Table 2.6 compares the features of the TCP-LP protocol to that of the re-
quirements of a network friendly protocol listed out in Section 2.1. TCP-LP
is submissive and detects congestion early by using one-way delay measure-
ments. The disadvantages of a delay-based congestion detection mechanism
are elaborated later in Section 2.3.

2.2.7 LEDBAT: Low Extra Delay Background Transport

The IETF LEDBAT working group is developing a Low Extra Delay Back-
ground Transport (LEDBAT) [2] layer solution as an alternative experi-
mental congestion control algorithm that could be used by delay-insensitive
applications. Their goal is to standardize a network congestion control algo-
rithm, that is able to saturate the bottleneck, while maintaining low delay
and not competing to standard TCP traffic. This allows applications that
send large amounts of data, particularly upstream on home connections, such
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as peer-to-peer application, to operate without destroying the user experi-
ence in interactive applications. LEDBAT enables a networking application
to minimize the extra delay it induces in the bottleneck while saturating
the bottleneck. It thus implements an end-to-end version of scavenger ser-
vice. This mechanism not only allows to keep delay across a bottleneck low,
but also yields quickly in the presence of competing traffic with loss-based
congestion control. Beyond its utility for P2P, LEDBAT enables and rather
makes it easier for other advanced networking applications to get out of the
way of interactive applications.

The goal of the LEDBAT algorithm is to minimize the queuing delay.
However it cannot be zero, because that would mean that the bottleneck link
is not fully utilized. The goal is to keep it as close to a target value and not
to have zero queuing delay. The LEDBAT algorithm measures the one way
delay between sender and receiver and keeps the minimum as a base delay.
The queuing delay then is set as the difference between the measured delay
and the base delay. If the queuing delay is higher than the target value,
LEDBAT reduces and if it is lower, it increases its congestion window.
The base delay is updated from time to time to be able to react to route
changes. Listing 2.1 shows the pseudocode of the linear controller that is
used by LEDBAT to set the congestion window on each acknowledgement.

on acknowledgement :
de lay = acknowledgement . de lay
update base de lay ( de lay )
update cu r r en t de lay ( de lay )
queu ing de lay = cu r r en t d e l ay ( ) − base de lay ( )
o f f t a r g e t = TARGET − queu ing de lay + random input ( )
cwnd += GAIN ∗ o f f t a r g e t / cwnd
# f l i g h t s i z e ( ) i s the amount o f cu r r en t l y not acked data .
max allowed cwnd = ALLOWED INCREASE + TETHER∗ f l i g h t s i z e ( )
cwnd = min(cwnd , max allowed cwnd )

Listing 2.1: Linear controller of LEDBAT [2]

In Listing 2.1, TARGET is the target for the queuing delay and current delay
is the delay just measured. Because LEDBAT aims to be friendly to TCP,
the GAIN parameter is set so that the maximum ramp up speed is not faster
than for TCP in congestion avoidance. The pseudocode presented is a sim-
plification and ignores noise filtering and base expiration. The more precise
pseudocode that takes these factors into account is shown in Listing 2.2 and
must be followed.

In Listing 2.2, NOISE FILTER maintains a list of the current delays
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on i n i t i a l i z a t i o n :
s e t NOISE FILTER de lay s used by cu r r en t d e l ay ( ) to +i n f i n i t y
s e t BASE HISTORY de lay s used by base de lay ( ) to +i n f i n i t y
l a s t r o l l o v e r = − i n f i n i t y # More than a minute in the past .

Listing 2.2: Precise linear controller of LEDBAT [2]

measured and BASE HISTORY maintains a list of the measured base
delays.

LEDBAT maintains a history of the current delays observed, with the
older values being flushed out as shown in Listing 2.3.

update cu r r en t de lay ( de lay )
# Maintain a l i s t o f NOISE FILTER l a s t de lay s observed .
f o r g e t the e a r l i e s t o f NOISE FILTER cu r r en t d e l ay s
add delay to the end o f cu r r en t d e l ay s

Listing 2.3: List of current delays observed in LEDBAT [2]

To account for changes in route, the Base delay is reset after a certain
time period (currently every 25ms) as shown in Listing 2.4.

update base de lay ( de lay )
# Maintain BASE HISTORY min de lay s . Each r ep r e s en t s a minute .
i f round to minute (now) != round to minute ( l a s t r o l l o v e r )

l a s t r o l l o v e r = now
f o r g e t the e a r l i e s t o f base de lay s
add delay to the end o f b a s e d e l ay s

else

l a s t o f b a s e d e l ay s = min( l a s t o f base de lay s , de lay )

base de lay ( )
min ( the BASE HISTORY min de lay s s tored by update base de lay )

Listing 2.4: Base Delay resetting in LEDBAT [2]

Table 2.7 lists the variables used by the LEDBAT algorithm and their
recommended values along with an advocated range. LEDBAT proposes the
use of a consistent TARGET value. If flows using different TARGET values
share a bottleneck, flows with higher values will tend to get a disproportion-
ately large share of the bottleneck. This is the reason why TARGET is the
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Table 2.7: Recommended LEDBAT parameters [2]

Condition Value
TARGET MUST 100ms
GAIN SHOULD same or upto 2 times that of max ramp up of TCP
BASE HISTORY SHOULD 10 (greater than 2 and less than 20)
NOISE FILTER SHOULD 1 (atleast 1 and less than cwnd/2)
ALLOWED INCREASE SHOULD atleast 1 packet and not more than 3 packets
TETHER SHOULD 1.5 (must be greater than 1)
RANDOMNESS AMOUNT SHOULD 0 (between 0 and 0.1, inclusive)

Table 2.8: Comparison of LEDBAT to the requirements of a network friendly
transport protocol listed in Section 2.1

Yes/no Detail

Submissive Yes

Detect Congestion earlier Yes Not reliable

Saturate bandwidth as
fast as possible No

Ability to operate in shorter Yes
timescales of a few RTTs

only parameter that is specified with no flexibility in the implementation.
The RANDOMNESS AMOUNT is used to introduce a random addition
to the TARGET to avoid synchronization and is currently set to zero based
on experience.

Table 2.8 compares the features of the LEDBAT protocol to that of
the requirements of a network friendly protocol listed out in Section 2.1.
LEDBAT, similar to TCP-LP, is submissive and detects congestion early
by using one-way delay measurements. The disadvantages of a delay-based
congestion detection mechanism are elaborated later in Section 2.3.

2.2.8 RAPID: Shrinking the Congestion-control Timescale

RAPID [14], unlike other congestion control protocols is a multi-rate based
protocol based on the principles of pathChirp. RAPID sends packets with
varying intergap and uses this intergap to identify available bandwidth. In
the next subsection, pathChirp is explained in detail followed by a descrip-
tion of RAPID.
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pathChirp: A tool to estimate available bandwidth

One of the main problems when talking about congestion control is to esti-
mate the available bandwidth on a network path. PathChirp [3] uses a probe
mechanism to solve this problem. It relies on the concept of self-induced con-
gestion and introduces a chirp probing train, that consists of exponentially
spaced packets to measure bandwidth. This section uses the terminologies
and formulas, that are introduced in the pathChirp [3]. PathChirp esti-
mates the available bandwidth along a network path by launching a number
of packet chirp trains from sender to receiver. The structure of a typical
chirp train is shown in 2.4.

Figure 2.4: Chirp probe train [3]

Each chirp consists of N packets of size P , which are exponentially
spaced. The inter packet spacing time between packet k and packet k + 1
is denoted as ∆k and its queuing delay as qk. The spreadfactor γ is the
ratio between two neighbouring gaps. The instantaneous chirp rate, with
which packet k is sent, is then given as Rk = P/∆k. B[a, b] is the avail-
able bandwidth in the time interval from a to b and tk the sending time of
packet k. When the receiver has received the full chirp train, it conducts
an analysis of the inter packet gaps. In a simplified scenario, if qk > qk−1,
packet k has induced some additional delay, because Rk > B[t1, tN ]. So a
simple estimation for the bandwidth is B[t1, tN ] = Rk∗, where k∗ is the last
packet before the delay begins to increase. After calculating the available
bandwidth, the receiver encodes the estimate in a packet and sends it back
to the sender. Due to bursty traffic in a real network, the queuing delay
normally does not increase monotonically. In Figure 2.5, a typical plot for
the queuing delay is shown.

The estimation of available bandwidth during the total sending time of a
whole chirp is based on an estimate Ek of the per-packet available bandwidth
B[tk, tk+1]. Ek is estimated depending on if a packet is part of an excursion
or not. Usually the last excursion does not terminate. If there is such an
excursion, the last packet before the excursion starts is denoted as l. The
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Figure 2.5: A typical chirp queuing delay signature [3]

pathChirp paper [3] differentiates between three cases:

1. If packet k belongs to an excursion that terminates and qk ≤ qk+1,
then set

Ek = Rk (2.5)

2. If packet k belongs to an excursion that does not terminate then set

Ek = Rl,∀k > l (2.6)

3. For all packets k that do not fit into the upper cases, set

Ek = Rl (2.7)

The pathChirp algorithm uses two variables to determine if there is an
excursion and when the excursion ends. The decrease factor F is used to
determine the end of an excursion. Let packet i be the packet where qi <
qi+1. The end of an excursion, packet j is then the first packet where

qj − qi =
maxi≤k≤j[qk − qi]

F
. (2.8)

The packets between packet i and packet j are considered to form an
excursion, when j − i > L, whereby L is called the busy period threshold.
The per-chirp available bandwidth, D is then calculated as

D =

∑N−1
k=1 Ek∆k
∑N−1

k=1 ∆k

. (2.9)

Finally pathChirp averages the instantaneous estimate of m chirps for
the final bandwidth estimate.

24



2.2. State of the Art in Network Friendly Approaches

Table 2.9: Comparison of RAPID to the requirements of a network friendly
transport protocol listed in Section 2.1

Yes/no Detail

Submissive Yes Not reliable, Not designed
to be network friendly

Detect Congestion earlier Yes Not reliable

Saturate bandwidth as
fast as possible Yes

Ability to operate in shorter Yes
timescales of a few RTTs

RAPID design

RAPID’s design is motivated by the primary goal of shrinking the congestion-
control timescale. To achieve this goal it does not use a congestion window
anymore, but fully relies on an orchestrated rate based packet sending. To
estimate the available bandwidth, it makes the same approach as pathChirp.
All packets are sent in chirp trains of N packets with decreasing inter-packet
gaps, the receiver observes these gaps, computes the available bandwidth by
looking for increasing trends and encodes its estimation into the acknowl-
edgement sent to the sender. When the sender receives an estimation, it
updates its average sending rate to the received estimation. With the next
chirp of packets it then probes for some rates below and some above the
received estimation, which makes it possible to react to bandwidth changes.
To solve the problem of how to set the average sending rate at connection
startup, it limits the traffic at the beginning to be only as aggressive as
TCP during slow start. It does so by limiting the number of packets per
chirp to N = 2 initially, doubling it once per RTT, going up to a maximum
value of N = 16. During this slow start phase, it uses a spreadfactor be-
tween the packets of γ = 2, making it possible to probe for a large range of
different bandwidth values. After reaching N = 16, it switches over to its
steady-state mode where it uses N = 30 and γ = 1.07.

Table 2.9 compares the features of the RAPID protocol to that of the
requirements of a network friendly protocol listed out in Section 2.1. RAPID
is not designed to be completely network friendly and is therefore submis-
sive only under certain scenarios as shown in Chapter 5. It depends on a
delay based bandwidth estimation scheme and is therefore not totally reli-
able. The disadvantages of a delay-based congestion detection mechanism
are elaborated later in Section 2.3.
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Figure 2.6: A router queue performing DCTCP marking [4]

2.2.9 Data Center TCP (DCTCP)

Data Center TCP (DCTCP [4]) is a TCP protocol designed for data centers.
The advantage of this mechanism is that it is easily deployable and highly
suited for a data-center environment.

The main goal of DCTCP is to achieve high burst tolerance, low latency,
and high throughput, with commodity shallow buffered switches. DCTCP
is therefore designed to operate with very small queue occupancies, while
ensuring that the throughput is not compromised. DCTCP achieves these
goals with the help of a modified router and by reacting to congestion in
proportion to the extent of congestion. A DCTCP aware router performs
instantaneous congestion marking when the queue size exceeds a certain
threshold K as shown in Figure 2.6. One can observe that this marking
scheme is quite different from the RED [24] marking behaviour. The Con-
gestion Experienced (CE) codepoint of packets are set to indicate that the
buffer occupancy has exceeded the threshold K. The DCTCP source takes
into account the number of marked packets and proportionally adjusts its
decrease factor. This results in a large decrease factor when it receives a
large number of CE marked packets and viceversa.

Table 2.10 compares the features of the DCTCP protocol to that of
the requirements of a network friendly protocol listed out in Section 2.1.
DCTCP is also an ECN based approach that is able to detect congestion
depending on the threshold value K. It is neither designed to be submissive
nor aggressive in the usage of spare bandwidth. Moreover, the use of an
instantaneous marking mechanism makes it inefficient on a large scale such
as the Internet, since it would result in reacting to the highly dynamic traffic
flow.
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Table 2.10: Comparison of DCTCP to the requirements of a network friendly
transport protocol listed in Section 2.1

Yes/no Detail

Submissive No Not designed to be network friendly

Detect Congestion earlier Yes

Saturate bandwidth as
fast as possible No

Ability to operate in shorter Yes
timescales of a few RTTs

2.3 The need for a more reliable network friendly

congestion control protocol

Problems of delay based approaches

A limitation of these delay-based approaches [25–27] is that they require
high precision packet time-stamps and accurate delay measurements in the
implementation to identify the onset of congestion. Delay measurements
are susceptible to noise in low latency networks and also in the presence of
dynamic background traffic [28]. Additional difficulties include randomness
and widely varying RTTs for competing traffic [29]. Evaluations conducted
also highlight that LEDBAT is unfriendly to standard TCP and contributes
to queue buildup in high bandwidth-delay product (BDP) networks.

Other delay-based approaches include Jain’s Delay Based Congestion
Control scheme [29], TCP Vegas [20] and partial delay-based approaches
such as Compound TCP [30]. However, findings have shown that DCA-
based approaches cannot function efficiently in high Bandwidth-Delay Prod-
uct (BDP) networks. For example, Jain [29] mentioned the disadvantage of
using a delay-based approach in networks with competing users and varying
service times. Martin, Nilsson and Rhee [31] showed that DCA-based TCP
is rarely (with only 7%-18% probability) able to detect queue build-up that
precedes packet loss and react in time. Biaz and Vaidya [28] established that
there is no strong correlation in DCA-based TCP approaches, between RTT
and congestion window size, since the measured RTT is inaccurate and in-
cludes a high random component due to the bursty nature of the background
traffic. La, Walrand and Anantharam argue about the problems of delay
based approaches namely TCP Vegas in [32]. They mention that they do
not work well in networks where rerouting of traffic causes a change in base
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2.3. The need for a more reliable network friendly congestion control protocol

delay and that it provides an unfair advantage to flows which constantly
have higher RTT measurements. Evaluations conducted in this thesis also
highlight that LEDBAT is unfriendly to standard TCP and contributes to
queue buildup, in high bandwidth-delay product (BDP) networks.

Example of an issue with delay based approaches

Highlighting the disadvantages of a delay based approach, Mohammad Al-
izadeh et al. states in DCTCP [4],

At very high data rates and with low-latency network fabrics,
sensing the queue buildup in shallow-buffered switches can be
extremely noisy. For example, a 10 packet backlog constitutes
120s of queuing delay at 1 Gbps, and only 12s at 10 Gbps. The
accurate measurement of such small increases in queueing delay
is a daunting task for todays servers.

Router support based mechanisms

VCP [33], MLCP [34] and BMCC [35] are examples of non delay-based
approaches that use network-based feedback. VCP and MLCP are based
on explicit congestion feedback from the network and require the router to
maintain states of the link-load over a time period. They also need additional
bits in the IP header, which may pose a challenge in itself. BMCC, on the
other hand is another protocol based on explicit congestion feedback and
requires only a single ECN bit. However, it requires knowledge about the
number of flows in addition to maintaining states regarding the load. It
would be difficult for the routers to identify the number of unique flows or
maintain states to identify the start and end of a flow.

Problem with efficiently using bandwidth

Efficiently utilizing available bandwidth is another consideration driving to-
wards existing solutions for high BDP environments. This problem is more
prominent in the case of submissive flows due to their nature of being sub-
missive during congestion periods. LEDBAT and TCP-LP are based on
standard TCP and are not designed to aggressively utilize bandwidth dur-
ing non-congestion periods and therefore achieve low overall throughput.
To motivate users and application designers to use network friendly appli-
cation, it is essential that the protocol is able to aggressively utilize spare
bandwidth as fast as possible during non-congestion periods. High speed
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solutions such as High-speed TCP [36], FAST [37], Compound TCP [30],
CUBIC [38], Quick-Start [39] and XCP [40] exist. However, part of their
ability to opportunistically utilize the large bandwidths in these types of
environments is due to their aggressive increase policies. Thus, they are
not necessarily “submissive” or “friendly” to other delay-sensitive applica-
tions, and have the ability to cause a potential period of congestion. In
fact, evidence of their “collateral damage” on existing TCP traffic has been
documented (e.g., [41]). Moreover, each of these solutions have their respec-
tive advantages and disadvantages. Some require complex network support,
whereas some are not flexible enough to easily adapt to meet the require-
ments of transporting delay-insensitive traffic.
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Chapter 3

Decoupled Congestion
Control Framework

To overcome the disadvantages of the candidate approaches mentioned in
Chapter 2, this thesis proposes a Network Friendly TCP (NF-TCP). In this
chapter, the modular congestion control framework that forms the foun-
dation of the design of NF-TCP is discussed. This framework helps to
assimilate the various components involved while designing NF-TCP. This
architecture is briefly described in [42] and [43].

It can be observed that the traditional congestion control protocols com-
prise of tightly coupled mechanisms, and are designed to address a specific
problem or scenario. They either lack the flexibility in meeting varying
requirements or utilizing different types of available network support. For
example, HighSpeed TCP [36] is likely unable to utilize the benefits of Quick-
Start [39] like approaches even if the network supports it.

Motivated by this observation, this research proposes a modular conges-
tion control framework that consists of pluggable components and utilizes
it to guide the NF-TCP design. This work identifies congestion-detection,
flow-control and bandwidth-estimation as the main components of a conges-
tion control protocol, which can be loosely or strictly decoupled from each
other under a modular framework as shown in Fig. 3.1. Using this frame-
work to guide this NF-TCP design helps future extensions as mechanisms
evolve. This work exploits the possibility of a measurement-based estima-
tion to guide this aggressive increase (rather than an uninformed aggressive
increase that has the potential to cause congestion). In the future sections,
this thesis describes the functioning of the three modules of the NF-TCP
protocol in detail.

3.1 Congestion-detection module

A network friendly congestion control avoidance protocol must be backed by
an efficient congestion detection mechanism that is able to detect incipient
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Bandwidth-Estimate (BW_est)

Flow-Control Module

Delay, probing, router/Oracle-server assisted

Window/rate when Non-congested

Congestion-Detection Module

Bandwidth-Estimation Module

Window/rate when congested

Loss, delay, ECN, ECN + loss, AQM + loss

Congestion_Detected

(Binary/Multiple states)

Figure 3.1: A guiding modular congestion control framework

congestion earlier than standard TCP, thereby enabling it to react earlier. In
the case of a network friendly congestion control avoidance protocol, it is all
the more important that the protocol is able to detect incipient congestion
earlier than standard TCP (especially the loss-based congestion detection).
Early detection of congestion assists a network friendly congestion control
avoidance protocol in quickly yielding to standard TCP.

The aim is to ensure that the network friendly application packets do not
contribute to queue build-up/congestion, which results in higher latencies for
delay-sensitive and other traffic that may use TCP. The congestion detection
scheme needs to ensure that the protocol is able to detect the onset of
congestion as early as reasonable, while ensuring that it does not respond
to truly short-term transients.

This module is responsible for detecting congestion by means of the
existing mechanisms such as loss-based, ECN-based, delay-based or a com-
bination of these approaches (and one could also differentiate among them
based on assigned weights). It is also expected to provide a reliable in-
dication via the CONGESTION DETECTED variable to the flow-control
module. Some example congestion detection mechanisms currently available
are listed in the subsequent subsections.

3.1.1 Delay based congestion detection

Delay based schemes for detection of incipient congestion depend on the
difference between the current one-way delay and the observed base delay.
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The advantage of such a scheme is that it does not need network support and
is easy to deploy. The current LEDBAT effort is based on such a mechanism
to detect congestion. However, there is the potential that it may not be an
accurate indicator of congestion, especially if the base delay was based on a
congested scenario or if there were frequent route changes.

3.1.2 Explicit Congestion Marking (ECN) based congestion
detection

Amarking based scheme could depend on receiving explicit congestion mark-
ing from congested routers. Such a scheme would require the support of
intermediate network nodes. This scheme could make use of the existing
congestion marking schemes such as ECN marking [9], PCN marking [44]
using the existing RED queue mechanisms. Additionally, it may be feasible
to propose new marking behaviours.

3.1.3 Loss based congestion detection

The network friendly congestion control protocol may use packet loss as
an indicator to detect congestion. But for this scheme to be effective, the
network should be able to induce drops for the network friendly applications
earlier than it does for standard TCP.

3.1.4 Combination of ECN, AQM, Loss based congestion
detection

The module could also perform a congestion detection based on the com-
bination of loss, ECN marking and/or other AQM techniques. This allows
the congestion module to improve its accuracy and also perform a weighted
congestion detection scheme wherein different mechanisms have different
weights assigned.

CONGESTION DETECTED←− w1∗Nloss+w2∗NECN+w3∗NAQM (3.1)

where, Nloss,NECN and NAQM represent number of loss, ECN markings and
AQM markings experienced respectively.

3.2 Flow-control module

This module is responsible for placing load on the network. The flow-control
module is in charge of the sending rate. This module is responsible for
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placing load on the network. Based on the feedback received from the
bandwidth-estimation module and the congestion-detection module, it ei-
ther increases or decreases its sending rate. The function of the flow control
module can be broadly classified into two major parts:

• No congestion detected: When no congestion is detected, the NF-TCP
flow control module is designed to use the feedback obtained from the
bandwidth-estimation module to perform a more aggressive and guided in-
crease than the standard linear increase. In case an estimate is not available,
the NF-TCP resorts to a linear increase.

• Congestion detected: When the congestion-detection module signals the
onset of congestion, the flow control module goes into submissive mode,
wherein it performs a multiplicative decrease.

The sending rate can be based on the standard TCP like mechanism,
wherein slow start is followed by a linear increase. To optimize the network
throughput and be opportunistic in using available bandwidth, a network
friendly congestion control mechanism may be designed to be aggressive
during non-congestion periods. During this phase, the protocol can use the
estimated bandwidth as a means to either perform multiplicative increase or
jump directly to the estimated value. If the protocol is backed by an efficient
congestion detection and reaction to congestion scheme, it can attempt to
aggressively utilize the available bandwidth. This is driven by the consid-
eration that not using available bandwidth means that it is most likely left
un-utilized.

The decrease rate is an important feature when congestion is detected in
a network friendly congestion avoidance protocol. It must be able to yield
as quickly as possible to standard TCP on detection of incipient congestion.
Standard TCP reduces its congestion window by half. But one may envisage
schemes that have a more ’severe’ multiplicative decrease or even a drastic
reduction by decreasing the congestion window to one in an attempt to be
extremely network friendly. The reduction rate could also depend on the
accuracy of the congestion detection and available bandwidth estimation
mechanisms and could therefore be lesser than 50%, e.g. 12.5%, similar
to that proposed in [45]. Further investigation is necessary to arrive at a
good decrease rate on the detection of incipient congestion, depending on
the means used for detection as well as the bandwidth estimation method.
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3.3 Bandwidth-estimation module

This module is responsible for estimating the available bandwidth. Tra-
ditionally, congestion control protocols detect congestion by placing an in-
creasing load until congestion is detected. As a result, such protocols are
required to be conservative. For example, standard TCP performs an in-
crease of 1 packet per Round Trip Time (RTT). The proposed bandwidth-
estimation module in NF-TCP should to be able to use mechanisms such as
probing, estimates from a dedicated server, router assisted estimates (Quick-
start for TCP [39]) or any other means.

Bandwidth estimation is the mechanism used by TCP to try to estimate
the available bandwidth. Standard TCP schemes like RENO identify avail-
able bandwidth by placing a load on the network and exploring to determine
the available bandwidth of the network. Standard TCP has been shown to
be insufficient in high bandwidth delay product (BDP) networks, because
of its conservative approach to increase the load on the network. Other
schemes such as HighSpeed TCP [36], CUBIC TCP [38] and Quick-Start for
TCP [39] try to capture the bandwidth more quickly.

An efficient bandwidth utilization mechanism backed by an efficient de-
tection of incipient congestion will potentially improve the throughput of
a network friendly TCP protocol during non-congestion periods. Since the
network friendly congestion control protocol desires to be ”submissive” in
the presence of standard TCP during network congestion, an efficient band-
width estimation scheme will enable it to be opportunistic in using available
bandwidth. Thus it optimizes the throughput achieved as well as increases
network utilization without causing congestion. The choice of a good start-
ing behaviour could also depend on the network topology, the BDP of the
network, and the support provided by the network.

A Bandwidth-estimation module would be expected to provide a rea-
sonable estimate of the available bandwidth (BW ESTIMATE) to the Flow-
control module. The subsequent subsections introduce some of the prevalent
bandwidth estimation schemes.

3.3.1 Slow start followed by linear increase

This is the standard TCP’s implicit bandwidth estimation mechanism that
works by placing load on the network until it causes congestion (queueing
or loss at a bottleneck in the path). It starts with a slow start phase where
it places an extra load of one packet per acknowledgement received and
switches over to a linear increase phase wherein it places a load of an extra
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packet per RTT.

3.3.2 Probing packets based bandwidth estimation

The standard TCP bandwidth estimation mechanism has been shown to be
insufficient in a high BDP network. An alternative bandwidth estimation
method could be based on probing for available bandwidth.

For example, in a pathchirp-like probing mechanism, the end host sends
a train of packets interspaced by specified intervals and tries to probe an
estimate of available bandwidth between a lowrate and highrate. The es-
timate is deduced from changes in the delays experienced by the packets,
and works in a somewhat similar conceptual approach as that used in delay-
based methods for congestion control. Except here, the flow control reaction
is not intimately bound to the delay experienced by the packets. The range
depends on various factors such as the number of probe packets, the spread
factor etc. The choice of lowrate and highrate can be varied to perform
dynamic bandwidth estimation.

3.3.3 Network support based bandwidth estimation

Another means to overcome some of the limitations of slow start is to request
the routers along the path to help with the bandwidth estimation.

For example, in a Quick-Start TCP [39] like mechanism, the end host
would indicate its desired sending rate using a quick start option in the IP
header of the TCP packet. Each router along the path will in turn, either
approve the rate or reduce the rate. The receiver would in turn indicate
the final rate to the sender. The router should be aware of the Quick-Start
option to be able to help.
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Chapter 4

Design

In this chapter, the design of NF-TCP [46] is illustrated in detail. It is guided
by a modular congestion control framework, which separates estimation of
available bandwidth and congestion detection from the reaction-to-incipient
congestion. Since the main design goal is to be submissive to standard TCP
during congestion periods, NF-TCP exploits the availability of Active Queue
Management (AQM) routers that use a lower threshold to begin marking or
dropping of packets belonging to NF-TCP flows. TCP packets are marked
or dropped much later according to the standard marking schemes. This
approach provides an earlier indication of the onset of congestion for NF-
TCP, preventing it from occupying the queue. This way, NF-TCP could
aggressively use spare bandwidth during non-congestion periods.

NF-TCP begins with a slow-start phase similar to standard TCP. Mean-
while, it seeks to take advantage of an associated available bandwidth esti-
mation process that uses a probe-based approach to obtain a rough estimate
of the available bandwidth. It uses this rough estimate as a safe guideline
to increase its sending rate rapidly. It competes for equal share of the link
capacity if and only if all the other existing flows are NF-TCP flows, since
they are all influenced by the same control laws.

Figure 4.1 shows the various entities and how they interact. Router-1 is
an NF-TCP aware core router whereas, Router-2 is either NF-TCP aware or
not. The NF-TCP packets traverse a bottleneck link between Router-1 and
Router-2, which is also shared with packets from standard TCP flows. When
Router-1 is congested, it performs early marking for NF-TCP packets. The
NF-TCP receiver forwards the feedback received to the sender to enable the
sender to become submissive. Figure 4.2 illustrates the interworking of the
congestion-detection module, the flow-control module and the bandwdith-
estimation module, at the end host on the sender side.

4.1 Congestion-Detection Module

NF-TCP’s network friendly congestion control is achieved by taking ad-
vantage of a congestion detection mechanism that detects incipient conges-
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Figure 4.1: Various entities and their interaction

Figure 4.2: Flowchart showing the interaction between the various modules
in the case of NF-TCP
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tion earlier than standard TCP. NF-TCP exploits the availability of Ac-
tive Queue Management (AQM) routers that are configured to use a lower
threshold to begin marking or dropping of packets belonging to NF-TCP
flows. The aim is to ensure that packets of network friendly applications do
not contribute to queue build-up, which results in higher latencies for delay-
sensitive traffic. The congestion-detection module is responsible for detect-
ing congestion by means of any existing mechanism such as loss-based, ECN-
based, delay-based or a combination of these approaches. This module is ex-
pected to provide a reliable indication via the CONGESTION DETECTED
variable to the flow-control module. The standard AQM mechanism is
slightly modified to provide feedback for NF-TCP based on ECN, within
time-scales of an RTT. ECN-unaware routers can drop NF-TCP packets
earlier to indicate the onset of congestion. Next, how a modified Random
Early Detection (RED) queue [24] is used for this purpose is shown.

Active Queue Management (AQM) is a queuing discipline in which pack-
ets are dropped or marked before the queue is full. Typically, they operate
by maintaining one or more drop/mark probabilities, and probabilistically
dropping or marking packets even when the queue is short. Random Early
Detection (RED) [24] is a popular AQM technique wherein a RED enabled
router calculates the average queue size using a Equally Weighted moving
average (EWMA) and compares it to two threshold variables: theminimum
and the maximum threshold. As shown in Figure 4.3, when the average is
less than the minimum threshold no packets are marked, while all packets
are marked when the average queue size exceeds the maximum threshold.
When the average queue size is in between the minimum and the maximum
threshold the packets are marked with a certain probability pa, which is itself
a function of the queue average. While TCP uses packet drops as an indi-
cation of congestion, the addition of Explicit Congestion Control (ECN) [9]
was suggested to detect congestion earlier. ECN uses Active Queue Manage-
ment (AQM) at the routers that allows the routers to not only drop packets,
when its buffers are overflowing, but to react to congestion earlier. With
AQM the routers can use a new Congestion Experienced (CE) codepoint in
the packet header to indicate that the packet was buffered for some time.
When a TCP receiver receives a packet with the CE codepoint set, it sets
the ECN-Echo flag in its next acknowledgement informing the sender that
the send data has experienced congestion. Through this the TCP sender
is able to react to congestion earlier, than when it is only going by packet
losses.
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Figure 4.3: A router queue performing normal RED marking

Table 4.1: The used RED queue parameters for evaluation (Bandwidth =
100Mbps, RTT = 100ms)

NF-TCP Standard TCP

Min-threshold (packets) 12 1133
(= 1% of queue size )

Max-threshold (packets) 625 1250
(= 50% of total queue size)

4.1.1 Modified RED queue for NF-TCP

The modified RED queue consists of different parameters for NF-TCP com-
pared to standard TCP. To detect the onset of congestion as early as possible
while ensuring that one does not respond to truly short-term transients, the
marking threshold values in the RED queue are set much lower than that
for standard TCP. Fig. 4.4 illustrates the setting of the queue threshold val-
ues. The early marking and ECN for feedback to the source enables early
reaction to the onset of congestion. The queue thresholds are based on the
same mechanism as for a RED queue, except that the MinThreshold for
NF-TCP flows (QN

min) is set much lower. The MaxThreshold for NF-TCP
flows (QN

max) is set to about half of the buffer size. This ensures that once
the “average” queue (based on an exponentially weighted moving average
(EWMA)) begins to build up, NF-TCP packets are probabilistically marked
(p). All NF-TCP packets are marked or dropped when the average queue
size exceeds MaxThreshold, QN

max. Note that this mechanism uses a FIFO
queue and is therefore different from the approach adopted by a priority
queue [47] and other approaches such as [48–50]. This ensures that the
delay-insensitive applications receive timely feedback and are therefore able
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Figure 4.4: A router queue performing network friendly marking

to become submissive on their own.
The stochastic equations for the case of a standard TCP flow coexisting

with an NF-TCP flow are now introduced. They share the same bottleneck
link that involves a RED queue with modified parameters for an NF-TCP
flow. Let B and q denote the size of the buffer and the queue respectively.
The varied parameters result in the mean loss or marking rate of standard
TCP (denoted by NTCP (q)):

NTCP (q) =







0, if q6QT
min

pmaxT , if QT
min<q6QT

max

1, if q>QT
max.

(4.1)

and the mean loss or marking rate of NF-TCP (denoted by NNF−TCP (q)):

NNF−TCP (q) =







0, if q6QN
min

pmaxN , if QN
min< q6QN

max

1, if q>QN
max.

(4.2)

where pmaxT and pmaxT are the marking probability for TCP and NF-TCP
packets respectively. Figure 4.4 shows a graphical representation of how the
respective threshold values will affect the marking behaviour. Figure 4.5
shows the effect of this differential marking behaviour on the network.

4.1.2 Analytical model of the modified queue parameters

Using the fluid model representation given in [11], the evolution of a single
TCP congestion window during the congestion avoidance phase is described
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Figure 4.5: Instantaneous traffic distribution caused by NF-TCP on the ISP
network

by the following hybrid differential equation:

dW (t) =
a

R
dt− W (t)

b
N(dt). (4.3)

This indicates that the congestion window increases between two loss events
is linear with a slope of a

R
, where a is the rate of increase of the conges-

tion window per RTT (denoted by R) and W is the size of the congestion
window. The loss events or marks result in reductions of the congestion
window by a factor b. In this stochastic differential equation, N(dt) repre-
sents the loss point process or ECN marking. In the case of NF-TCP, the
window is increased by a units for every window acknowledgement where a
is determined by the bandwidth-estimation module.

The modified RED queue is modelled using stochastic equations for the
case of a standard TCP flow coexisting with an NF-TCP flow. They share
the same bottleneck link that involves a RED queue with modified parame-
ters for an NF-TCP flow. Let B and Q(t) denote the maximum and instan-
taneous size of the buffer respectively. The stochastic equations consist of
the following four operational phases (let X and Y denote the throughput
of NF-TCP and standard TCP respectively).
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Phase 1 or the free phase The buffer is nearly empty and therefore the
aggressive growth of NF-TCP does not affect the growth of the TCP flow.

{0 < Q(t) < QN
min} ⇒

{

dX(t) = adt
R

dY (t) = dt
R

(4.4)

Phase 2 or the submissive phase The queue size is greater than QN
min

and NF-TCP packets get ECN markings with probability p, whereas TCP
packets are not affected (and increase window by 1).

{QN
min < Q(t) ≤ QN

max} ⇒
{

dX(t) = adt
R
− W (t)∗p

b

dY (t) = dt
R

(4.5)

Equation 4.5 models the queue behavior when NF-TCP flows gets an indi-
cation of congestion earlier than TCP and start reducing their congestion
window. This enables NF-TCP to be submissive to TCP.

Phase 3 or the starvation phase The queue size is greater than QN
max

and all NF-TCP packets are marked.

{QN
max < Q(t) ≤ QT

min} ⇒
{

dX(t) = − W (t)
b

dY (t) = dt
R

(4.6)

Eq. 4.6 shows that the NF-TCP flows reduce their sending rate. By intro-
ducing loss or marking to NF-TCP packets earlier than that of TCP, it is
ensured that NF-TCP is submissive to standard TCP. Thus the NF-TCP
flow detects congestion at the very onset of queue buildup and backs off.
The backing off results in yielding capacity to standard TCP flows. A non-
ECN aware TCP would realize the onset of congestion only when Q(t) > B,
but the NF-TCP flows would have already reduced their rate by then.

Phase 4 or the loss phase The queue size is greater than the QTCP
min and

therefore both TCP and NF-TCP packets are marked or dropped.

{QT
min(orB) < Q(t)} ⇒

{

dX(t) = −W (t)
b

dY (t) = −W (t)
2 N(dt)

(4.7)

The evolution of the buffer occupancy in the intermediate router for
Q(t) > 0 is given by

Q(t) = Q(0) +

∫ t

0
(X(u) + Y (u)) du. (4.8)
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Eq.(4.4)-(4.8) imply that in the absence of a TCP flow, the instanta-
neous queue size is upper-bound close to QN

min and when NF-TCP and TCP
coexist, the queue is upper-bounded by QT

min. The choice of a much lower
value for QN

max than QT
min ensures that all packets of NF-TCP flows are

being marked before TCP packets are marked or dropped. Therefore, the
robustness of the approach is proportional to the difference between QN

max

and QT
min. For example, for a bottleneck bandwidth of 100Mbps, with a

buffer size equivalent to the BDP (=1250 packets), the queue parameters
are set as depicted in Table 4.1. The results obtained (see Figure 5.3(a)) are
in perfect agreement with the evolution of the queue size as predicted by
Eq.(4.4)-(4.8). The RED parameters can be enhanced by using approaches
such as [51–55].

Figure 4.6 shows a flow chart representation of an NF-TCP aware router.
One can observe how the router handles various packets it receives, namely
the probe packets, the NF-TCP packets and standard TCP packets.

4.2 Flow-Control Module

Based on the feedback received from the bandwidth-estimation module and
the congestion-detection module, the flow control module adjusts the source’s
sending rate.

4.2.1 Congestion window decrease

On receiving a feedback of CONGESTION DETECTED from the congestion-
detection module (e.g., obtained from ECN), the NF-TCP flow control mod-
ule reduces its sending window to yield to higher priority applications. Note
that the NF-TCP flow does not differentiate between the existence or non-
existence of standard TCP and therefore is designed to decrease its conges-
tion window as follows:

CONGESTION DETECTED : w ←− w − b ∗ w. (4.9)

From Eq.(4.4)-(4.7) we observe that even a low value for b would still
result in NF-TCP being submissive. With a small value of b, NF-TCP
flows will take longer to attain fairness among themselves. A high b on the
other hand potentially results in low link utilization. Determined evaluations
are based on a value of b = 12.5%, similar to that proposed in [45]. It
strikes a balance between being submissive to standard TCP, improving the
link utilization and fairness in the presence of only NF-TCP flows. A 50%
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4.2. Flow-Control Module

Figure 4.6: Router: How an NF-TCP aware router handles the various
packets traversing it.
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reduction on noticing ECN marks/packet drops affects overall throughput,
especially in high BDP networks.

4.2.2 Congestion window increase

NF-TCP is designed to be aggressive during non-congestion periods, in order
to be opportunistic in using available bandwidth. NF-TCP takes advantage
of a bandwidth-estimation module to determine the rate of increase, so as to
have an informed aggressive increase mechanism. This is unlike approaches
that use an aggressive increase for large BDP networks, where they po-
tentially cause congestion before backing off. The approach in this thesis
enables NF-TCP to be truly friendly to existing transport connections. The
estimate of the available bandwidth allows NF-TCP flows to aggressively
utilize a certain percentage of the remaining available bandwidth. The in-
crease is limited to a factor α of the estimated available bandwidth to allow
inaccuracies in the measured estimate as well as differences in the time
scales. On receiving an estimate of the available bandwidth (BWest), NF-
TCP switches over to an aggressive increase phase wherein the congestion
window is adjusted as follows:

ACK : w ←− w +
α ∗ BWest

w
, if BWest > 0 (4.10)

ACK : w ←− w +
1

w
, if BWest = 0 (4.11)

where ACK stands for acknowledgement received.

4.3 Bandwidth-Estimation Module

NF-TCP explores the use of a novel combination of bandwidth measurement
and congestion control. The bandwidth estimation mechanism guides the
decision of the congestion control framework in the appropriate time-scale to
opportunistically use spare bandwidth. This feature is especially applicable
for a network friendly transport that needs to be both submissive during
congestion and aggressive during non-congestion periods. NF-TCP uses the
bandwidth estimation module to estimate the available bandwidth. This
estimate is used as a target value, up to which the flow can increase its rate,
as long as it has not received an ECN marking. This enables NF-TCP to
be opportunistic in using available bandwidth resulting in throughput opti-
mization as well as increased network utilization without causing congestion.
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1

0

2 Drop

Pro-ECN packets

Mark/

Drop

Figure 4.7: Instantaneous queue marking for ECN based probing mechanism

The bandwidth estimation module separates the measurement process for
obtaining the available bandwidth from the congestion control. Whenever
an estimate is not available, NF-TCP continues to use the standard conser-
vative increase of 1 packet per RTT to be able to achieve fairness among
NF-TCP flows.

4.3.1 Probing based on ECN (ProECN)

An ECN complimented probing mechanism that is based on pathChirp [3]
is proposed here. Similar to pathChirp, ProECN uses a series of packets
that have an exponentially reducing inter-packet spacing to measure a wide
range of available bandwidths. The sender sends this stream of packets to
simulate an increasing sending rate and utilizes self-induced congestion to
identify available bandwidth. ProECN differs from pathChirp by using an
ECN complimented approach to measure the available bandwidth instead of
depending only on increasing delay estimates. For this purpose, a modified
AQM queue is used here, that is able to perform instantaneous marking
instead of the traditional EWMA based RED marking. The modified AQM
queue identifies probe packets by the DSCP bit set in the header and marks
them if the instantaneous queue size is greater than 1 so as to indicate
self-induced congestion.

The bandwidth-estimation module sends the probe packets with varying
inter-packet gaps to emulate a range of sending rates. When the sending
rate is higher than the available bandwidth, the probe packets undergo self-
induced congestion. This results in the packets having to wait in the queue
and thus being ECN marked. The ECN marking acts as a reliable and early
indicator of a packet having to wait in the queue and therefore enables the
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bandwidth-estimation module to obtain a reliable estimate of the available
bandwidth. The estimated available bandwidth (BWest (bps)) is described
by:

BWest =























MinRate ∗ SFN−1,
if BWAvail>Maxrate

MinRate ∗ SFN−k,
if Minrate<BWAvail<Maxrate

0, if BWAvail<Minrate

(4.12)

N is the number of probe packets and k is the first packet in the series that
arrives with an ECN marking and/or at a time greater than all the previous
packets and BWAvail is the actual available bandwidth on the link.

The ECN marking compliments the delay-based approach of pathChirp
since it exploits feedback received from the intermediate routers instead of
having to depend only on delay measurements that could have high noise in
low latency networks. With this enhancement, a source is able to identify
excursion segments (a period of increasing delays) more accurately. The
actual analysis and the heuristics utilized are similar to that described in [3]
to account for bursty traffic.

RAPID [14] also uses a pathChirp like mechanism to perform a rate-
based transmission in which all data packets are part of a continuous logical
group of N probe packets; NF-TCP on the other hand uses ProECN only
for probing and employs a window based transmission for the data packets.

4.3.2 Dynamic probing algorithm

NF-TCP’s bandwidth estimation module is designed to dynamically adjust
the measurement probe rate to get an estimate of the available bandwidth
quickly, while limiting the overhead introduced in the network. This ensures
that the probing mechanism can function efficiently in networks ranging
from low BDP networks to high BDP networks. Currently, by design, the
minimum probe rate is set to 1Mbps to prevent probing in networks with
an available capacity that is lesser than 1Mbps.

An NF-TCP flow generates two kinds of packets: normal data and probe
packets. The bandwidth-estimation module starts after the first RTT on
receiving an acknowledgement of the initial data packets, and only if there
are no losses or ECN markings received. This is to ensure that newly starting
flows do not contribute to congestion caused by the probes. The estimate of
the available bandwidth BWest depends on the MinRate, the spread factor
(SF ) and the number of packets (N) (Eq. 4.12). The N probe packets are
sent with varying inter-packet spacing so that available bandwidth can be
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measured in the range of MinRate to MaxRate, such that the probes rate
(ri) is given by:

ri = MinRate ∗ (SF )i−1 (4.13)

MaxRate = MinRate ∗ (SF )N−2 (4.14)

Similar to RAPID [14] the bandwidth-estimation module starts prob-
ing in a slow-start manner starting with 2 packets and doubling the num-
ber of packets afterwards. The slow-start phase is exited when the size of
the probe train reaches N or when the estimated bandwidth is lower than
the MaxRate. On exiting slow-start, the probing transits into a dynamic
probing mode. Here, the average sending rate (ravg) is set to α ∗ BWest.
PathChirp probe packets are limited in quantity for a particular probe event
and the SF is set to a fixed value (for evaluations conducted in this thesis,
N = 15 and SF = 1.2). On receiving an estimate of the available band-
width, the probing mechanism is restarted after a uniformly distributed time
period with a mean value equal to that of the baseRTT. The new MinRate
is calculated according to the last BWest and is given by:

MinRate =
SFN−1 − 1

(N − 1)(SF − 1) ∗ SFN−2
∗ ravg (4.15)

Figure 4.8 shows a flow chart representation of the probing mechanism at
the sender side. One can observe how the probe mechanism increases and
decreases its probing range based on the estimated bandwidth.

Figure 4.9 shows a flow chart representation of the probing mechanism
and its interaction with the flow rate module, at the sender side. One can
observe that the mechanism switches off on receiving a continuous band-
width estimate of zero and is restarted after a time period of probefreq.

Dealing with the loss of chirp packets

There is a possibility of the chirp packets or for the packet carrying the
estimated bandwidth getting lost in the network. It could also happen that
the a chirp is restarted due to the expiry of timers. To deal with such
extreme cases is important.

In the current implementation, a simple algorithm is used to avoid prob-
lems with loss events. Figure 4.10 shows a flow chart of the chirp packet loss
control at the receiver. The receiver can detect packet losses or packets that
are out of sequence by tracking their packet numbers in pktnum. When a
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Figure 4.8: Sender side: Flow chart of the probe based bandwidth estimation
mechanism

packet is lost or when the chirp packets are transmitted in the wrong order,
the receiver will observe an unexpected packet number on the next received
packet. When the last packet of a chirp is lost, the timer implemented
in PcTimeoutTimer times out and the whole chirp will get retransmitted.
When an unexpected packet arrives, the receiver simply bases its bandwidth
estimation on the packets that were received before the unexpected packet
arrived. Further on, it ignores all the incoming chirp packets until a chirp
packet arrives which carries a packet number of zero, thus indicating that a
new chirp was started.

4.4 Candidate approaches and their need for
network support and endhost support

NF-TCP and various other solutions try to provide the ISPs with different
business models and means to efficiently use capacity, and try to cater to the
varying needs of the applications. Table 4.2 outlines some of the proposals
and their need for endhost as well as network support.
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Figure 4.9: Sender side: Flow chart of probe based Bandwidth Estimation
module and Flow Rate module interaction

50



4.4. Candidate approaches and their need for network support and endhost support

start
wait for

probe packet

pktnum == 0?

initialize 

pathChirp values

pknum == 

expected?

obtain 

packet data

ignore packet

pktnum == 

pktsperchirp - 

1?

calculate and 

send bandwidth

YES

NO NO

YES

YES

NO

Figure 4.10: Receiver side: Flow chart of chirp packet loss control
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Table 4.2: The various solutions and their requirement of application support, network support and the applications
that they can support.

Usage of Congestion Network Endhost Example
Support support Applications

ALTO [12] Can be used Yes Yes P2P, Live streaming
LEDBAT [2] Implicit (delay based) No Yes P2P, delay-insensitive
Comcast solution [56] 70-80% bandwidth usage Yes No All
RAPID [14] via probing No Yes P2P
NF-TCP Explicit Yes Not mandatory P2P, delay-insensitive,

download and play
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Chapter 5

Evaluation

NF-TCP was implemented on Linux kernel 2.6.31 and the Linux TCP imple-
mentation ns-2 tool [57, 58] was used to import the Linux-based implemen-
tation of NF-TCP as well as the existing TCP Reno and TCP-LP onto ns-2.
This enabled tests in a wide range of topology, scale and simulation time.
Additionally, this allowed comparison of NF-TCP performance against other
candidate proposals such as LEDBAT and RAPID which were developed on
ns-2.

Starting with a single bottleneck scenario, more sophisticated scenar-
ios with RTT heterogeneity and multiple bottlenecks with several flows
(Fig. 5.9) are illustrated further. The bottleneck link routers (Router1,
2 and 3) maintain a modified RED queue with different threshold values for
NF-TCP flows, and a normal RED queue [59][60][61][62] for TCP flows, as
shown in Table 5.1. Routers have a buffer capacity equal to the link BDP.
FTP is used and a SACK is generated for every received data packet. Packet
size is set to 1000 bytes (including the IP header) and the initial ssthresh
for Reno/SACK is set to 100 packets. Bottleneck capacity is 600 Mbps and
RTT is 100 ms.

5.1 Comparison with Other Approaches

In this section, NF-TCP and other candidate approaches are evaluated. At
first, the focus is on the performance of a single candidate (NF-TCP/LEDBAT/

Table 5.1: The used RED queue parameters for evaluation (Bandwidth =
600Mbps, RTT = 100ms, queue size= 7500 packets)

NF-TCP Standard TCP

Min-threshold (packets) 75 6800
(= 1% of queue size )

Max-threshold (packets) 3750 7500
(= 50% of total queue size)
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Figure 5.1: Single-hop dumbbell topology
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Figure 5.2: Dumbbell topology: Instantaneous throughput of a candidate
flow in the presence of a TCP flow
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Figure 5.3: Impact of NF-TCP on the network
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TCP-LP/ RAPID) flow in the presence of a single standard TCP flow. The
topology is used as shown in Fig. 5.1 with the candidate flow being sent
from S11 – R20 and the reference flow being sent from S10 – R21 and all
flows traversing the bottleneck link at Router1.

Fig. 5.2 illustrates the instantaneous throughput of the network friendly
flows versus a competing standard TCP flow. Fig. 5.2(a) shows that the
NF-TCP flow is able to opportunistically utilize the bandwidth in the pe-
riod from 0-500s with the support of its ProECN bandwidth estimation.
NF-TCP is comparable in its aggressive increase phase to the most aggres-
sive of the alternatives, RAPID (Fig. 5.2(b)). RAPID was designed for use
in high BDP networks and hence is aggressive in its startup. On the other
hand, TCP-LP (Fig. 5.2(c)) and LEDBAT (Fig. 5.2(d)) are much slower in
their increase and hence are unable to fully utilize the uncongested network
during this time period.

From 500s onwards, as TCP increases its demand, NF-TCP quickly re-
duces its load, as a result of ECN marking, allowing TCP to grow its band-
width as much as it desires. NF-TCP is thus submissive to TCP. TCP is
not impacted after time t=1200s. In this particular case, RAPID is also
submissive. Again, TCP-LP and LEDBAT are much less submissive, yield-
ing bandwidth to TCP more slowly. Further, once TCP nearly attains its
full window at 1200 secs, TCP-LP and LEDBAT impact the TCP flow to
different extents. In fact, when co-existing with LEDBAT, TCP continually
experiences significant loss and reduced throughput, and thus incurs both
additional delay and lower throughput. Thus, this experiment demonstrates
both the capabilities of NF-TCP: to be opportunistic in its use of available
bandwidth and submissive in the presence of TCP.

The performance of a LEDBAT flow was evaluated versus a standard
TCP flow. It is true that LEDBAT flows are network friendly to standard
TCP flows as reported in [63], however only under low BDP scenarios. When
the bottleneck bandwidth becomes higher (i.e., 200Mbps and more) and the
buffer size is set equivalent to the link BDP (more realistic with higher speed
links), results obtained show that LEDBAT flows are no longer friendly
to TCP flows. Fig. 5.2(d) demonstrates that LEDBAT is more aggressive
than NF-TCP (and TCP-LP) during congestion periods. Fig. 5.4(a) shows
that, as the queue builds up, the base-delay stored by LEDBAT increases
(Fig. 5.4(b)). This is due to the resetting of the baseRTT every 2-10 minutes
and results in LEDBAT increasing its throughput. In short, the results
demonstrate that LEDBAT does not satisfy the requirement of a network
friendly protocol to maintain low queues and being submissive to TCP over
a reasonable wide range of system parameters.
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Table 5.2: The used RED queue parameters for evaluation (Bandwidth =
600Mbps, RTT = 200ms, queue size= 15000 packets)

NF-TCP Standard TCP

Min-threshold (packets) 150 13600
(= 1% of queue size )

Max-threshold (packets) 7500 15000
(= 50% of total queue size)

5.1.1 Bottleneck Bandwidth = 600 Mbps, RTT = 200ms

In this section, NF-TCP and other candidate approaches were evaluated
using the topology shown in Fig. 5.1, but the RTT was increased to 200ms.
The candidate flow was sent from S11 – R20 and the reference flow was sent
from S10 – R21 and all flows traversed the bottleneck link at Router1. The
RED queue parameters were changed as shown in Table 5.2 to reflect the
increase in RTT.

Fig. 5.5 illustrates the instantaneous throughput of the network friendly
flows versus a competing standard TCP flow. Fig. 5.5(a) shows that the
NF-TCP flow is still able to opportunistically utilize the bandwidth in the
period from 0-500s with the support of its ProECN bandwidth estimation.
Moreover NF-TCP and RAPID are able to be submissive, whereas the other
candidate flows struggle in their performance to be submissive.

5.1.2 Bottleneck Bandwidth = 1Gbps, RTT = 100ms

In this section, NF-TCP and other candidate approaches were evaluated
using the topology shown in Fig. 5.1, but the bottleneck bandwidth was
increased to 1Gbps. The candidate flow was sent from S11 – R20 and the
reference flow was sent from S10 – R21 and all flows traversed the bottleneck
link at Router1. The RED queue parameters were changed as shown in
Table 5.3 to reflect the increase in Bandwidth.

Fig. 5.6 illustrates the instantaneous throughput of the network friendly
flows versus a competing standard TCP flow. Fig. 5.6(a) shows that the
NF-TCP flow is still able to opportunistically utilize the bandwidth in the
period from 0-500s with the support of its ProECN bandwidth estimation.
Moreover NF-TCP and RAPID are able to be submissive, whereas the other
candidate flows struggle in their performance to be submissive.

The readers are requested to refer to [43] for results illustrating the
performance of NF-TCP in networks with different BDPs.
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Figure 5.5: Dumbbell topology: Instantaneous throughput of a candidate
flow in the presence of a TCP flow (Bottleneck Link Bandwidth =

600Mbps, RTT = 200ms)

Table 5.3: The used RED queue parameters for evaluation (Bandwidth =
1Gbps, RTT = 100ms, queue size= 125000 packets)

NF-TCP Standard TCP

Min-threshold (packets) 1250 113300
(= 1% of queue size )

Max-threshold (packets) 62500 125000
(= 50% of total queue size)
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Figure 5.6: Dumbbell topology: Instantaneous throughput of a candidate
flow in the presence of a TCP flow (Bottleneck Link Bandwidth =

1000Mbps, RTT = 100ms)
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5.2 NF-TCP in the Presence of Standard TCP

5.2.1 The impact on queue sizes

Fig. 5.3(a) illustrates the instantaneous queue length for NF-TCP with
bandwidth estimation competing against a standard TCP flow. The NF-
TCP flow maintains a near zero buffer (< QN

min) until TCP achieves max-
imum utilization of the link at about 1200s. 1200s onwards, it is the TCP
flow that contributes to the increase in buffer utilization and the increase
in queue coincides with the increase in throughput for TCP (Fig. 5.2(a)).
This behavior of NF-TCP ensures that it yields its share of the bandwidth
to TCP flows and is also able to have a minimum impact on TCP flows
that start later. The results also show that an NF-TCP flow maintains a
low queue size irrespective of the number of NF-TCP flows, as reported in
subsection 5.5.

5.2.2 ProECN dynamic bandwidth estimation

The performance of ProECN bandwidth estimation tool within NF-TCP
with a varying measurement range is determined here. Probes are sent
about once per 2 RTTs. Fig. 5.3(b) illustrates that it is able to provide NF-
TCP with an estimate of the available bandwidth while having an average
probe throughput of about 0.6Mbps. The minimum rate that can be probed
is limited to 1Mbps to prevent congestion when network capacity is less than
1Mpbs. With ProECN, NF-TCP should ideally switch off during congestion
periods, as confirmed by experiments conducted: in the period ranging from
1800-2200s and 2700s and beyond, when the NF-TCP becomes completely
submissive.

5.2.3 NF-TCP with and without bandwidth estimation

Fig. 5.2(a) and Fig. 5.7(a) show the difference between NF-TCP with and
without bandwidth estimation. The NF-TCP’ flow in the latter case is a
TCP-RENO flow that gets preferential early marking. In both cases, due to
the early warning provided by the modified RED queue, NF-TCP’ is able
to be submissive. However, in the case of NF-TCP’ (without bandwidth
estimation), the flow cannot opportunistically utilize the bandwidth and
therefore suffers by having a lower overall throughput.
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5.2.4 NF-TCP vs UDP cross traffic

The ability of NF-TCP to opportunistically utilize available bandwidth in
the presence of UDP cross traffic (rate generated from a Poisson distribution)
has also been checked and evaluated. Fig. 5.7(b) illustrates that NF-TCP
opportunistically get close to the available bandwidth and then resorts to a
slower increase. This results in better link utilization and also allows it to
be friendly to other flows.

5.3 Fairness among NF-TCP Flows

To study the fairness among NF-TCP flows, the following two scenarios are
chosen: a) 5 NF-TCP flows started at the same time, b) 5 NF-TCP flows
starting one after another every 50 secs. Fig. 5.8(a) and Fig. 5.8(b) show
that the 5 NF-TCP flows are fair to one another. Fig. 5.8(b) also shows
that since the NF-TCP flow (NF-TCP0) that started at time zero did not
have any competing flow, it was able to utilize the available bandwidth
completely and yielded its share of the bandwidth when the other flows
started. A decrease factor of 12.5% instead of the standard 50% makes it
longer to achieve fairness but ensures that the overall link utilization is still
high. With different RTTs, NF-TCP is also able to achieve a fairness similar
to that achieved by standard TCP in the same scenario.

5.4 Candidate Flows with Multihop, Varying

RTTs

More realistic scenarios where the TCP flow traverses multiple hops going
over several congested routers are looked upon. They compete with flows
that have different RTTs. For this purpose, the testbed is setup as shown
in Fig. 5.9 with three ’bottleneck’ links. The RTT on the longest path
from S10/S11 to R40/R41 is three times the RTT on the shorter single
hop paths. Evaluations were conducted with a TCP flow and a competing
candidate flow from S10 to R20, S20 to R30 and S30 to R40. The candidate
flows are started at 0s and the TCP flow is started at 500s.

Fig. 5.10(a) illustrates that although NF-TCP has a much shorter RTT,
it is friendly towards TCP flows while also opportunistically utilizing the
spare bandwidth. TCP-LP (Fig. 5.10(c)) is also friendly to standard TCP,
but is not completely submissive. Both RAPID (Fig. 5.10(b)) and LEDBAT
(Fig. 5.10(d)) are also not submissive. For RAPID, this is due to the com-
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Figure 5.7: Need for bandwidth estimation
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Figure 5.8: Fairness among NF-TCP flows in a single hop scenario
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Figure 5.9: Multi-hop topology (RTT for TCP = 3 times RTT of candidate
flow)

bination of its aggressive nature and its complete reliance on delay-based
probing to measure available bandwidth. RAPID sends a continuous burst
of about 20 packets in a chain with the average rate of the chain equal to
that of the recently estimated available bandwidth. Each of these chains
measures an estimate of the available bandwidth and this is a continuous
process. Unfortunately, as the RTTs become diverse, some of the probe
trains measure total available capacity instead of the available bandwidth
resulting in an increase in throughput for RAPID. Extensive evaluations
show that for RAPID to function well, its parameters have to be carefully
adjusted for varying network scenarios and this is nearly impossible for com-
plex networks.

5.5 Scalability Test

For this purpose, a dumbbell topology with a bottleneck bandwidth of
250Mbps and an RTT of 100ms has been created.

5.5.1 Impact of varying number of candidate Flows

First, the average throughput of five standard TCP flows competing against
a varying number (from 1 to 200) of candidate flows is determined. All
the flows are started at the beginning. Fig. 5.11 shows that the NF-TCP
flows have the least impact on TCP and they obtain an average through-
put of 220Mbps. It can be observed that TCP-LP and LEDBAT reduce
the throughput of TCP further by about 50Mbits. Of course, in the pres-
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Figure 5.10: Multihop topology: Instantaneous throughput of candidate
flows in the presence of a TCP flow (RTT of candidate flows = 1/3 RTT of

TCP flow)
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Figure 5.12: A candidate flow with 100 TCP flows that arrive in bursts

ence of other standard TCP flows (as in the current Internet), the reference
TCP flows lose about 80% of their throughput. Finally, with RAPID, the
reference TCP flows get near zero throughput.

5.5.2 Impact of candidate flows on bursty TCP traffic

Now, the instantaneous throughput of a candidate flow and its impact on
a burst of TCP traffic (100 TCP flows) that arrive every 90s and have a
lifetime of 60s (i.e., ON-OFF TCP traffic) are deduced. Fig. 5.12 shows
that NF-TCP yields quickly to TCP and is able to aggressively utilize the
spare bandwidth. TCP-LP, which is one of the better candidates is unable
to be submissive in such short time scales.
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Chapter 6

Deployment and Other
Considerations

The key requirement of NF-TCP like protocols is to detect the onset of
congestion earlier than standard TCP flows. This provides ample time for
such flows to become submissive, thereby reducing the adverse impact on
delay sensitive flows. To achieve this goal, the following deployment options
are considered:

low-priority DSCP codepoint [1]

re-ECN

PCN

6.1 Usage of low-priority DSCP codepoint [1]

NF-TCP is designed to use the standard ECN bits to receive congestion
feedback. Nevertheless, it is required to distinguish the NF-TCP flows from
other kinds of flows.

RFC [1] proposes the use of a low-priority DSCP code to identify traffic
that would fit under the Low-Priority Data service class for selected back-
ground applications where data transfer can be delayed or suspended during
peak network load conditions. In this work, the use of the same codepoint
to identify NF-TCP flows is proposed. Intermediate core routers can then
identify NF-TCP flows and use the standard ECN bits to perform early
marking.

6.2 Usage of Pre-congestion Notification(PCN)

marking

Pre-Congestion Notification [44][64][65][66] is currently proposed for non-
elastic traffic to perform admission control and flow termination. The pos-
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6.3. Usage of Re-ECN

sibility of using a PCN like approach is considered wherein the flows are
AC marked and FT marked. The NF-TCP flows could react on seeing AC
marking whereas FT marking could be analogous to the current ECN mark-
ing and all flows could react accordingly. Note that this approach does not
interfere with the standard PCN packets that use a separate virtual queue.
This marking is performed by intermediate routers to indicate admission
control and flow termination. It is used to perform early marking for NF-
TCP flows. With PCN being standardized by the IETF, the routers could
employ a PCN like marking wherein two marking thresholds exist. The
lower marking threshold is for AC and marks all the packets whereas the
FT threshold is higher and performs excessive marking. The same token
bucket could be used to perform AC marking on NF-TCP flows to indicate
that they could reduce their rate. The downside is that AC marking marks
all packets and therefore cannot be used for volume charging and interme-
diate router cannot distinguish between an AC and an FT marked packet.
Figure 6.1 illustrates the difference between the early marking required by
NF-TCP and how PCN AC and FT marking can be adapted to perform
NF-TCP marking.

For this solution to be effective, it requires three code-points. One code-
point to identify NF-TCP flows, a second code-point to identify admission
control marking and a third code-point to identify flow termination marking.
In case, there is a lack of code-points, one could a solution similar to that
provided in [67], [68] and [69]. Similar to this solution, a single code-point
can be used to identify NF-TCP flows and the other code-point can be used
to signal both admission control and flow termination.

6.3 Usage of Re-ECN

Re-ECN [70] aims to place a premium on congestion and the trasnfer of data
during this period. The applications on seeing congestion marks can decide
to either lower their rate, continue to transfer at the same rate or increase
their rate if they are willing to pay for congestion. To enable NF-TCP
support in re-ECN, the following key issues need to be addressed:

• Distinguish between NF-TCP flows and standard re-ECN flows

• The routers need to be able to mark NF-TCP flows differentially
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Figure 6.1: A router queue performing NF-TCP early marking (top) versus
how PCN marking can be adapted for NF-TCP flows (below)
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Providing a separate codepoint for NF-TCP

To differentiate a delay-sensitive flow from a non delay-sensitive flow, the
unused codepoint in the re-ECN proposal is put into use. As shown in
Table 6.1, the combination to indicate that the flow or packet is of a delay-
insensitive application and therefore of low priority. As seen in Table 6.1,
re-ECN uses the combination of ECN flag =00 and RE flag =1 is used to
identify a re-ECN flow and the combination of ECN flag =00 and RE flag=1
is used to identify a NF-TCP flow, thus making it backward compatible too.

ECN RE RFC 3168 re-ECN NF-TCP & Description
Flag Flag codepoint codepoint Re-ECN

codepoint
00 0 Not-ECT Not-ECT Not-ECT Not re-ECN capable
00 1 - FNE FNE Feedback not established
01 0 ECT(1) Re-Echo Re-Echo Re-echoed congestion and RECT
01 1 - RECT RECT Re-ecn capable
10 0 ECT(0) ECT(0) ECT(0) ECN use only
10 1 - - NF-TCP NF-TCP capable
11 0 CE CE(0) CE(0) Re-Echo cancelled
11 1 - CE(-1) CE(-1) Congestion experienced

Table 6.1: Description of the extended NF-TCP enabled re-ECN codepoints

Early Marking for NF-TCP flows

Early marking is a marking scheme in which a router needs to be enabled to
perform differential marking. The router needs to have a different set of RED
thresholds for NF-TCP flows in addition to the standard RED marking. The
early marking is the ideal form of marking since it provides ample time for
NF-TCP to react to the onset of congestion and become submissive. The
network provider could use existing approaches such as Cisco’s DWRED
or the Linux GRED [71]. This ensures that the delay-insensitive flows are
warned earlier and can therefore be of less impact to the delay-sensitive
flows.

This allows the high priority application to make a decision on seeing
marking. It can either decide to continue and get charged or if the rate is
not appropriate enough, it can switch off. The alternative is to be unsure
of how many low priority flows exist and therefore wait for an RTT for the
low priority flows to reduce their sending rates, then wait for another RTT
to decide on whether to continue sending at the rate or not.

The other advantages of earlier marking ensures that newly starting
flows can be switched off at the beginning itself. Moreover, in a highly
dynamic environment, this gives the router enough time to ensure that the
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6.3. Usage of Re-ECN

low priority traffic are in fact switched off.

Selective marking of NF-TCP flows

Similar to the above case, this marking can also be performed by intermedi-
ate routers unaware of re-ECN as well as NF-TCP enabled re-ECN marking.
This is the easiest to deploy. This does not require a change in the routers
except that the router is set to mark NF-TCP packets as much as possible
before resorting to the marking on RE-ECN packets.

Standard ECN congestion marking

This marking is performed by standard traditional routers that are unaware
of re-ECN and NF-TCP enabled re-ECN and represent the currently de-
ployed routers. The NF-TCP flows would see such routers during the incre-
mental deployment phase. In such a scenario too, the use of early marking
indicating the onset of congestion is recommended instead of the traditional
marking that signals possible loss. The downside is that both NF-TCP and
re-ECN flows would get early marking. This could result in re-ECN flows
seeing more marking than the normal case resulting in a higher congestion
charge. To mitigate this, it is recommended that when the egress notices
large amount of NF-TCP traffic, it must remove the congestion marking for
re-ECN flows so as to provide the NF-TCP flows ample time to reduce their
sending rate. Moreover early marking must be factored in the congestion
charging too.

Re-ECN performs congestion marking and it is expected that this in-
formation is used to penalize the heavy congestion causing flows by either
charging them or performing rate base control. The problem with this ap-
proach is that delay-sensitive and delay-insensitive approaches see the mark-
ing at the same time. This leads to the confusion at the application side
as to what is the next step. It is unreasonable to expect the application to
make an informed decision since it has no idea of how many high priority
flows are existing. Therefore the high priority flow has to either make a
decision of slowing down or getting charged. The low priority flow on the
other hand, on seeing the marking can reduce its sending rate, thus allowing
the high priority flow to utilize the available bandwidth.
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6.4 Discussion

The design, analysis and deployment of NF-TCP happened over a long pe-
riod. In this chapter, I try to answer a number of questions that could be
still lingering in the minds of the reader. This is based on questions from
reviewers, conference and workshop attendees and peers.

Question 1: Is there a potential for unfairness if
delay-sensitive applications decide not to use NF-TCP?

NF-TCP is designed by users and developers of delay-insensitive applica-
tions willing to use non-congested periods for such applications. In the
future, schemes such as congestion-based pricing [72], caps on usage during
peak hours, etc may encourage more users to choose NF-TCP. To overcome
the perceived unfair and sometimes unnecessary disadvantage that delay-
sensitive applications are subjected to by traffic from background delay-
insensitive applications, ISPs have resorted to throttling or even blocking
of traffic from heavy users during congestion. For example, the Fairshare
solution [56] implemented recently by Comcast have already started throt-
tling the traffic of heavy users during congestion periods. Such a scheme is
unfair as there is no means for the user to identify congestion periods in the
network. The use of NF-TCP would give users a tool to spread out their
usage without manual intervention.

Question 2: Does it require any change at the end host?

In its simplest form, it does not need any change of the end-host other than a
way of identifying that it is a NF-TCP flow. This kind of differentiation can
be performed by enabling ECN as default in such flows and other standard
flows not using ECN.

Question 3: Does it require change in the IP header?

NF-TCP is designed to use the standard ECN bits. It can, for example, use
the low-priority DSCP code point [1] to identify an NF-TCP flow.

Question 4: What is the effect of ECN not widely enabled
on NF-TCP?

ECN is deployed in most of the current routers and is available in most of
the popular OSes. I recognize that it is not yet enabled by default, but
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envision that NF-TCP is another compelling reason, since it will allow more
efficient use of network resources.

Question 5: How does the use of NF-TCP as a re-ECN
mechanism affect applications?

Delay-insensitive applications can choose to use NF-TCP as their default
transport protocol. This would ensure that such applications do not per-
form data transfer during congestion periods and therefore do not contribute
to congestion debts. Moreover, this allows the application to function seam-
lessly as a submissive protocol without the need for user intervention. Users
can have the possibility to manually change the transport protocol used
in standard re-ECN to override the submissive nature in case they want a
certain file urgently or when enough congestion credits are in hand.

Question 6: How does the NF-TCP enhancement affect
Re-ECN positive marking?

On receiving early marking, NF-TCP is designed to reduce its sending rate.
The NF-TCP can then set positive re-ECN marking proportional to the
marking received. This would help intermediate ingress and egress routers
to monitor the NF-TCP flows and take action when required. It is important
to note that the positive packets should have less weightage when taken
into congestion debts. This also ensures that the delay-sensitive flows are
congestion marked only in the presence of other high priority delay sensitive
flows and can therefore decide if the cost is worth it.

Question 7: How does the NF-TCP enhancement affect
volume based charging mechanisms?

NF-TCP flows will support the seamless reduction of congestion and result
in only high priority delay sensitive flows using the network during conges-
tion periods. The users of such applications must be accountable for the
congestion they cause. The congestion caused by NF-TCP flows must have
less weightage and in fact neglected if the NF-TCP flow takes evasive action
by reducing its rate to a very low value.
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Question 8: How does the NF-TCP enhancement for
re-ECN function in the absence of early marking queues?

In this case, the application on seeing re-ECN marks would reduce their
sending rate, whereas delay-sensitive high priority flows would continue to
transfer data at the rate at which they were sending and thereby accumulate
congestion payments. The disadvantage of such an approach is that NF-
TCP flows would recognise congestion at the same time re-ECN flows do
and hence not giving them enough time to react. Moreover, the re-ECN
flows would not know if they are in the presence of other re-ECN or NF-
TCP flows and therefore would not know whether to maintain the same rate
or reduce their rate. This would have an impact on re-ECN flows and would
break the traditional congestion approaches.

Question 9: Does the NF-TCP solution require changes to
all routers along the path?

NF-TCP can function efficiently even when only the bottleneck routers are
NF-TCP enabled. ISPs that are interested in optimizing their network ca-
pacity can choose to deploy NF-TCP enabled routers in access networks and
other potential bottlenecks.

Question 10: What are the deployment incentives?

In addition to the use of NF-TCP for delay insensitive applications, there
are several other deployment incentives such as:

• Usage of unused bandwidth: NF-TCP with the help of the bandwidth
estimation tool is able to make better use of unused bandwidth. Due to the
support of the network assisted early congestion detection, it has a robust
mechanism to react to the onset of congestion.

• Data pre-fetching: NF-TCP can be used by smart applications that can
anticipate future requirements and pre-fetch data accordingly whenever band-
width is available.

• Multiple paths: NF-TCP can be modified to also support multipath so
that it is able to use non-congested paths for the bulk of their transfers.

• Rerouting: NF-TCP depends on ECN marking and can therefore recover
reasonably within a few RTTs after a change in route unlike delay based
mechanisms, which will have to rely on their prediction models.
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Figure 6.2: An example of how an uploading peer reduces the traffic it sends
on congested link and how a downloading peer uses non-congested links to

download data

• Usage of non-congested routes: Figure 6.2 illustrates the scenario wherein
the application is able to use a non-congested route based on the congestion
feedback it obtains.

Question 11: What is the purpose of the congestion control
framework with respect to the NF-TCP?

The congestion control framework ensures that the NF-TCP is adaptable in
the future. It ensures that NF-TCP can make use of available mechanisms
and when efficient mechanisms are discovered, NF-TCP can seamlessly use
it.

Question 12: Is the congestion control framework similar to
the congestion manager?

The congestion manager [73] is present in an endhost and performs conges-
tion management for all the connections present. The congestion control
framework on the other hand is applicable per flow. The two approaches
can co-exist and also compliment each other.
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Chapter 7

Conclusion and Future Work

This thesis presents a “Network Friendly” transport protocol, which is able
to meet the modern application requirements whilst optimizing the usage
of network resources. Optimizing network resources include efficient use
of spare capacity, postponing their use of the network as well as avoiding
congestion that harms flows in the networks.

This thesis proposes a congestion control framework and uses it
to design the NF-TCP protocol. Taking the NF-TCP design as an exam-
ple, this thesis shows that the decoupled framework provides flexibility and
adaptability to transport protocols. This allows applications to request for a
specific transport protocol behaviour. Additionally, the transport protocols
can use network support when available, to optimize their performance.

Network friendly TCP (NF-TCP) allows delay-insensitive applications
to be submissive to standard TCP flows during congestion periods. Ad-
ditionally, NF-TCP exploits a novel combination of adaptive measurement
of available bandwidth and traditional window based congestion control to
efficiently utilize network capacity. NF-TCP outperforms other

candidate approaches such as LEDBAT, TCP-LP and RAPID and is
shown to be more reliable due to its use of network feedback. With the use
of extensive evaluations, this thesis also illustrates the following:

• NF-TCP meets the requirements of a network friendly transport protocol
to be submissive.

• NF-TCP is able to detect congestion earlier than standard TCP using a
reliable mechanism.

• NF-TCP contributes very little to the queueing at bottlenecks.

• NF-TCP is able to use spare bandwidth efficiently by using proECN.
The available bandwidth estimation scheme, proECN, is able to estimate
available bandwidth in a reasonable time frame that makes it suitable for
use by the NF-TCP protocol.
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• NF-TCP outperforms other candidate approaches in a wide range of net-
work scenarios.

• Furthermore, this research shows that even when the number of NF-TCP
flows increases, its impact on standard TCP is negligible.

This thesis underlines that NF-TCP is viable and practical as an efficient
network friendly protocol for delay-insensitive applications. Development of
new transport protocols are necessary to meet the requirements of modern
day and future applications, whilst ensuring network resources are efficiently
utilized. These transport protocols need to be able to optimize the feedback
they receive from the network to further better their performance and re-
duce their impact on the network. Additionally, the notion of flow fairness
should be ceased and a premium be placed on data transfer during congested
periods in the networks. This thesis touches upon such a solution, but a lot
of work needs to be done. Some of the open issues are:

• Available Bandwidth Estimation: This thesis proposes proECN, which
uses a combination of ECN markings and delay measurements to measure
available bandwidth. This approach can be further improved to make it
more reliable by relying completely on network feedback.

• Congestion Control Framework: The congestion control framework needs
to be expanded to fit most of the existing transport layer protocols.

• NF-TCP deployment: NF-TCP must be deployed in a real network to
further study its benefits and improve it.

• This thesis implements the modified RED queue in a Linux based router.
It would be beneficial to implement and deploy it in an actual router hard-
ware to study its impact.
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