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Chapter 1Introdu
tion: Extremal Analysis ofStationary Time SeriesThe key questions in 
lassi
 extreme value theory 
on
ern the behavior of the maximumof n independent and identi
ally distributed random variables X̃t, i.e.
M̃n = max(X̃1, . . . , X̃n)for large n. It is well-known that for a wide 
lass of distributions there are suitablenormalizing 
onstants an > 0, bn ∈ R, su
h that, in a nontrivial way,

P (M̃n ≤ anx+ bn) → G̃(x)giving rise to the 
lass of so-
alled max-stable distributions. The popular Fisher-Tippett theorem states further that every nondegenerate max-stable distribution be-longs to either of only three parametri
 families, namely the Fré
het, Gumbel or Weibull
lass. It is a natural question, however, whether a similar result also holds for the moregeneral 
on
ept of (stri
tly) stationary sto
hasti
 sequen
es (Xt)t∈Z with the samemarginal distribution as X̃1. The latter appears to be the adequate framework formost appli
ations. To name a few examples we may refer to sequen
es of returns for�nan
ial data [35℄, the �u
tuation of daily rainfall amounts [8, 9℄, or the 
on
entrationof ground-level ozone [59℄. In either 
ase the extremes are usually linked to a spe
i�
underlying event su
h as a �nan
ial 
risis or a 
ertain persistent atmospheri
 
onditionthat 
auses dependen
e in the observations as it dominates their behavior for sometime. The data plotted in Figure 1, for example, 
orrespond to the daily absolutelog-returns of the S&P 500 index from 01.07.97 to 29.06.01 and en
ompass several su
hunderlying �nan
ial sho
ks, namely the 1997 Asian and 1998 Russian 
rises as wellas the dot-
om bubble burst in 2000. Correspondingly, we �nd from Figure 1 thatthe respe
tive extreme returns tend to appear in 
lusters of size two or three. At thesame time, however, we may reasonably 
on
lude from e
onomi
 theory that thereis still independen
e in the long run, i.e. between any two 
lusters that o

ur su�-
iently far apart (e.g. one year). With respe
t to the latter �nding it turns out that a1



Chapter 1: Introdu
tion: Extremal Analysis of Stationary Time Series
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bFigure 1: Daily absolute log-returns of the S&P 500 index from 01.07.97 to 29.06.01 (N = 1009). The perioden
ompasses the 1997 Asian �nan
ial 
risis, the 1998 Russian �nan
ial 
risis as well as the dot-
om bubble burst in2000. The dashed line represents the 99% marginal quantile. The data re�e
t the stylized fa
t that extreme �nan
ialreturns tend to o

ur in 
lusters. The year marks indi
ate the beginning of the respe
tive trading year.weak long range 
ondition dis
ussed in [31℄ is su�
ient for the possible limit laws of
Mn = max(X1, . . . , Xn) to be also ne
essarily of the nontrivial max-stable form. Morepre
isely, we have that if

P (Mn ≤ anx+ bn) → G(x)then G is also a max-stable distribution. Most importantly, it is in addition frequentlythe 
ase that
G(x) = G̃θ(x)for some θ ∈ [0, 1]. That is, the results for i.i.d. sequen
es largely extend to thestationary 
ase, but the parameters of the respe
tive limit distributions will be a�e
tedby a single number θ, the so-
alled extremal index [31℄. The latter has be
ome widelya

epted as the standard measure for extremal dependen
e. It allows for several usefulinterpretations that all roughly 
hara
terize the dependen
e stru
ture in the extremesof the data. In parti
ular, the extremal index re�e
ts the re
ipro
al of the mean 
lustersize of extreme events [25℄. Due to its in�uen
e on the limit distribution for maxima ofstationary sequen
es the extremal index plays a key role in the evaluation of extremalquantiles for dependent data. Moreover, estimates of the average extremal 
luster sizeare a dire
t matter of interest in numerous appli
ations. For example, with respe
tto the above S&P 500 data set we get that θ ≈ 1/3, see Se
tion 5.3 for details. Notethat the resulting limiting mean 
luster size of three is roughly in line with a visual2



Chapter 1: Introdu
tion: Extremal Analysis of Stationary Time Seriesinspe
tion of the data. Here, the relevan
e of the extremal index is straightforward.For example, a �nan
ial sho
k that en
ompasses three days of su

essive extremalreturns is likely to imply higher e
onomi
 ruin probabilities than a single day of su
hlarge losses. That is, the extremal index is essential to prevent the �nan
ial risk frombeing underestimated. To 
onsider a di�erent 
ontext it is well-known that a long-termexposure to high ground-level ozone 
on
entrations 
an be seriously harmful (and evenlethal) in 
ontrast to a short but intensive exposure only. The same is also true forextreme rainfalls on several su

essive days in 
ontrast to a single day with heavy rain.Given the pra
ti
al importan
e of the extremal index it is desirable to have a broad
hara
terization of its behavior. Our �rst question will therefore 
on
ern properties ofthe extremal index. To this end we shall, however, generalize the above setup to thestudy of a multivariate D-dimensional stationary sequen
e where maxima will alwaysbe 
onsidered 
omponentwise. As before, under a suitable long range independen
e
ondition the well-known i.i.d. approa
h for multivariate extremes [50℄ generalizes to thestationary 
ase where a so-
alled multivariate extremal index des
ribes the ne
essaryadjustments to the D-dimensional distribution of the maxima. In parti
ular, we will
onsider the D-dimensional limits
P (Mn,1 ≤ an,1x1 + bn,1, . . . ,Mn,D ≤ an,DxD + bn,D) → G(x),

P (M̃n,1 ≤ an,1x1 + bn,1, . . . , M̃n,D ≤ an,DxD + bn,D) → G̃(x),where x ∈ RD, and as before the independent 
ase 
arries a tilde. Now, similar to theunivariate 
ase we may 
on
entrate on the multivariate extremal index [43℄
θ(v) =

lnG(x)

ln G̃(x)for v ∈ [0,∞) \ {0} ⊆ RD su
h that vd = − ln G̃d(xd), d = 1, . . . , D. Here, by G̃d wedenote the d-th margin of the D-variate max-stable distribution G̃. A more detailedsetup will be given in Se
tion 2.1. Apparently, the extremal index in the multivariate
ase turns out to be a fun
tion rather than a single number. With respe
t to the statis-ti
al estimation of su
h a fun
tion a detailed des
ription of its behavior is parti
ularlywel
ome in order to 
oer
e estimates to 
orrespond to the multivariate extremal indexof a 
ertain sto
hasti
 pro
ess. To this end, in Chapter 2 we will dis
uss an extensionof the set of 
ommon properties of the multivariate extremal index fun
tion. In par-ti
ular, we will derive sharp bounds for the entire fun
tion that appear to be opposedto a former 
onje
ture in [61℄. Thereafter, motivated by the above de�nition of themultivariate extremal index, we will study separately the fun
tions G(x) and G̃(x).Regarding the latter, the extremal 
oe�
ient [60℄
φ̃ = − ln G̃

{
G̃←1 (exp(−1)), . . . , G̃←D (exp(−1))

}has been proposed as a summary measure for the dependen
e stru
ture of theD-variatemarginal distribution G̃. A similar 
on
ept will be 
onsidered for G. Here, G̃←d , d =3



Chapter 1: Introdu
tion: Extremal Analysis of Stationary Time Series
1, . . . , D, denote the univariate quantile fun
tions of G̃. Obviously, the 
hara
teristi
s
θ(v) and φ̃ will be strongly related. We will make use of this interrelationship and shallextend a dis
ussion of the mutual properties of θ(v) and φ̃ started in [36℄ and [37℄.Further, for D = 2 we will study relatively narrow bounds for valid 
ombinationsof θ(v) and the extremal 
oe�
ient that are useful e.g. with respe
t to a 
onsistentsimultaneous estimation of su
h pairs. Most importantly, however, in the sequel whenwe will leave the D-variate 
ontext the extremal 
oe�
ients will still play a 
ru
ialrole. More pre
isely, we will dis
uss in Chapters 3 to 5 how the extremal 
oe�
ient, ana
tually multivariate 
on
ept, may also be applied to the extremal analysis of univariatetime series where we will fo
us on a so-
alled extremal 
oe�
ient fun
tion [56℄.The extremal 
oe�
ient fun
tion is a summary measure that in 
omparison with theunivariate extremal index gives a more detailed des
ription of the extremal 
lusters asfor many problems it is not su�
ient to solely address the impli
ations of short rangedependen
e on the distribution of maxima. Under some weak regularity 
onditions [22℄we have

φ(h) = 2 − lim
u→∞

P (Xh > u | X0 > u), h ∈ Z, (1.1)i.e. the extremal 
oe�
ient fun
tion fo
usses on the probability of extremes to o

urjointly at a 
ertain lag h ∈ N. It turns out to have an interpretation similar to the usualauto
ovarian
e fun
tion but for extreme values [56℄. In fa
t, in many appli
ations anumber of questions 
on
ern all su
h large (above a 
ertain high threshold) values in asequen
e of observations in order to understand the qualitative evolution of a 
lusterof extremes. For example, assume that in a �nan
ial 
ontext the average 
luster sizeis two su
h that, equivalently, θ = 0.5. Now, the grouped extremes may appear e.g.on two subsequent days, or they may as well re�e
t a di�erent s
heme su
h as a mod-erate observation on the se
ond day of the 
luster in 
ombination with a total 
lusterduration of three days. The impli
ations for the inherent �nan
ial risk may di�er sub-stantially between the two s
enarios. Here, in 
ontrast to the possible appli
ations forthe extremal index dis
ussed above the average number of extreme events that 
lustertogether is not at all a su�
ient summary measure. We will dis
uss su
h questions inChapters 3 to 5. In general, when devising adequate 
luster 
hara
teristi
s other thanthe extremal index in order to answer the above questions we will fa
e a tradeo� be-tween the amount of information re�e
ted by the 
hara
teristi
 and its interpretability.A general setup 
omprising more general 
luster fun
tionals is studied in [67℄. We shall,however, not follow this approa
h here and will mainly fo
us on the abovementionedextremal 
oe�
ient fun
tion instead. It turns out that with respe
t to the behaviorof valid extremal 
oe�
ient fun
tions little is known apart from their positive de�nitetype. In parti
ular, the re
onstru
tion of sto
hasti
 example pro
esses from given ex-tremal 
oe�
ient fun
tions has not been 
onsidered before. We will dis
uss the latterproblem in Chapter 3. First, for the one-dimensional 
ase we will show the equivalen
eof so-
alled set 
orrelation fun
tions and the extremal 
oe�
ient fun
tions with �niterange of dependen
e on a grid. Note that the rather te
hni
al proof of the assertionwill be deferred to Chapter 4. The above equivalen
e will then be useful in order to4



Chapter 1: Introdu
tion: Extremal Analysis of Stationary Time Seriesdetermine the set of verti
es for the 
onvex set of extremal 
oe�
ient fun
tions. Thiswill allow for the 
onstru
tion of simple max-stable pro
esses 
omplying with a givenextremal 
oe�
ient fun
tion and, in addition, will highlight further properties of thelatter. We will in
lude an appli
ation of this approa
h and dis
uss several examples.Further, as to pro
esses with in�nite range we will 
onsider a natural extension of theterm �long memory� that is well-known in the Gaussian framework to max-stable pro-
esses. We will also address the impli
ations of a �xed extremal 
oe�
ient fun
tion ata 
ertain lag h ∈ N on the allowable range of dependen
e for the underlying pro
ess.As mentioned above Chapter 4 will then be devoted to a 
onstru
tive proof of equiv-alen
e for set 
orrelation and extremal 
oe�
ient fun
tions. Apart from the meretheoreti
al result we will in parti
ular be able to assign the well-known properties ofset 
orrelations to the extremal 
oe�
ient fun
tions. For example, with respe
t to theabovementioned desired 
hara
terization of the 
luster stru
ture it will be easy to showfrom the set 
orrelations that the extremal 
oe�
ient fun
tion is unable to distinguishbetween a 
ertain 
lass of simple 
luster types. The problem of su
h homometri
 pat-terns is well-known e.g. in the �eld of 
rystallography [46, 47℄, and will be studied inthe extreme value 
ontext here.We will further dis
uss the impli
ations of the above short
omings on possible appli-
ations of the extremal 
oe�
ient fun
tion in Chapter 5. This leads us to propose analternative 
hara
teristi
 that we shall at this point de�ne only tentatively for all h ∈ Nby
γ(h) = lim

u→∞
P (Xh > u | X0 > u, and X0 �rst event in the extremal 
luster). (1.2)We will show that in many appli
ations it has a more suitable interpretation and thatits properties are often easier to handle in 
omparison with the extremal 
oe�
ientfun
tion. In parti
ular, it 
hara
terizes the dependen
e stru
ture of two extremes giventhat the �rst observation 
orresponds to the onset of an extremal 
luster. Our fo
us onthe �rst event in su
h a 
luster is motivated by the fa
t that e.g. in �nan
ial appli
ationsthe outset of a stress period is in general the point to take adequate measures based onsu
h 
onditional predi
tions whereas the extremal 
oe�
ient fun
tion is not expli
itlylinked to the beginning of a 
luster. We will illustrate the di�erent interpretation ofthe above 
hara
teristi
s and study some of their general properties. To 
on
lude, anevaluation of our new 
luster 
hara
teristi
, the extremal 
oe�
ient fun
tion and theextremal index for max-stable as well as the important 
lass of GARCH(1,1) pro
esseswill be dis
ussed. To this end, we shall modify a tail 
hain approa
h proposed by [57℄.Interestingly, the evaluation of γ(h) will require the entire framework of [57℄, i.e. aforward and ba
kward tail 
hain. This is in 
ontrast to the related analysis of theextremal 
oe�
ient fun
tion where in prin
ipal the forward 
hain is su�
ient [22℄.At the same time, with respe
t to [30℄ our more general approa
h yields a simpli�edalgorithm for the evaluation of the extremal index in the GARCH(1,1) 
ase. We willin
lude an example for a GARCH(1,1) model �tted to the S&P 500 data set as well asa small simulation study 
omprising di�erent GARCH(1,1) parameters.5



Chapter 1: Introdu
tion: Extremal Analysis of Stationary Time SeriesIn order to make the text easier to read we will in general introdu
e any spe
i�
 notation
hapterwise, i.e. where it �rst appears. In addition, the most important notational
onventions that shall be used throughout are separately summarized above. We willonly ex
eptionally deviate from this setup where it is ne
essary, e.g. in the 
losed
ontext of longer proofs. Finally, note that in pla
e of a more detailed introdu
tion atthis point we de
ided to 
ommen
e ea
h 
hapter with an outline of the 
ontext and amore formal setup.

6



Chapter 2The Multivariate Extremal Index
2.1 Multivariate ExtremesThe study of 
omponentwise maxima for independent 
opies of stationary pro
esseson RD is a natural question arising in extreme value theory. Its relevan
e to pra
ti
eis indi
ated by numerous appli
ations to extremal phenomena in the environmental or�nan
ial 
ontext, see e.g. [56, 10, 22℄. In theory, the family of limiting pro
esses thatemerges from the above setup is fully 
hara
terized by the so-
alled 
lass of max-stablepro
esses that 
an be seen as in�nite dimensional extensions of the multivariate extremevalue distributions dis
ussed in Chapter 1. As the latter fail to be of a �nite parametri
nature parti
ular models for max-stable pro
esses have be
ome a major matter ofinterest. In this regard we may mention the seminal paper by [60℄, the extensive 
lassof M4 pro
esses dis
ussed by [61℄, and [54℄ for the spatial 
ase. In Chapter 1 wedis
ussed informally the extremal index as the key parameter to 
apture the e�e
t oftemporal dependen
e on the limiting distribution of maxima. Re
all that an intuitiveinterpretation of the extremal index emphasizing its relevan
e to pra
ti
e is basedon its re
ipro
al value whi
h 
orresponds to the mean 
luster size of extremes of thesequen
e [25℄. In the following we will be 
on
erned with a multivariate generalizationof this 
on
ept. Then, the 
orresponding interpretation for the multivariate extremalindex is the re
ipro
al mean 
luster size of a univariate sequen
e that, for ea
h pointin time, is given as the maximum of the weighted marginal sequen
es [61℄. Thatis, the multivariate extremal index is a fun
tion of weights 
omprising ea
h of therespe
tive univariate extremal indi
es as a spe
ial 
ase. This 
on
ept will be madepre
ise below. However, the average 
luster size for arbitrary weights 
an, in general,not be determined by knowledge of the univariate extremal indi
es alone. Given onlythe latter, the behavior of valid multivariate extremal index fun
tions is therefore animportant matter of interest. To be spe
i�
, we will 
onsider D-variate, stationarymax-stable pro
esses (Y t)t∈Z = {Y t = (Yt,1, . . . , Yt,D), t ∈ Z}, i.e.

P n(Ytd ≤ nytd, t = 1, . . . , k, d = 1, . . . , D)

= P (Ytd ≤ ytd, t = 1, . . . , k, d = 1, . . . , D)
(2.1)7



2.1: Multivariate Extremesfor all k, n ∈ N and ytd ≥ 0. Here, we may assume without loss of generality thatthe univariate marginal distribution fun
tions Fd are standard Fré
het, i.e. Fd(y0,d) =

exp{−y−1
0,d} for y0,d > 0, and Fd(y0,d) = 0, else, d = 1, . . . , D. Let (Ỹ t)t∈Z = {Ỹ t =

(Ỹt,1, . . . , Ỹt,D), t ∈ Z} be the asso
iated D-variate sequen
e of i.i.d. random ve
torswith the same marginal distribution and let Mn = (maxn
t=1 Yt,1, . . . ,maxn

t=1 Yt,D),and M̃n similarly, denote the sequen
es of 
omponentwise maxima. Then, for any
y = (y1, . . . , yD) ∈ RD

+ and [0,y]c = [0,∞] \ [0,y] we have by Theorem 3.1 in [52℄,Proposition 2.1 of [61℄ and a tightness argument that
lim

n→∞
P (n−1Mn ≤ y) = exp{−µ([0,y]c)} = G(y), (2.2)

lim
n→∞

P (n−1M̃n ≤ y) = exp{−µ̃([0,y]c)} = G̃(y) = P (Y 1 ≤ y),where µ(·) and µ̃(·) denote the exponent measures as in [50℄. Then, for v ∈ [0,∞) \
{0} ⊆ RD

+ , the fun
tion
θ(v) =

µ([0,v−1]c)

µ̃([0,v−1]c)
(2.3)introdu
ed by [43℄, is 
alled the multivariate extremal index. Here, the expression v−1is to be understood 
omponentwise. For D = 1 the quotient of the exponent measuresredu
es to the well-known univariate extremal index θ ∈ (0, 1]. Note that throughoutwe will in general ex
lude the spe
ial 
ase θ = 0 that is of limited pra
ti
al interest,see [32℄ for a dis
ussion. We will a

ordingly denote by θd the univariate extremalindex of the d-th sequen
e {Ytd, t ∈ Z}. As mentioned above, θ(v) is the univariateextremal index of the series {maxd vdYtd, t ∈ Z} [61, Proposition 2.1℄.In the following let θ = (θ1, . . . , θD), and let θv = (θ1v1, . . . , θDvD) involve the 
ompo-nentwise multipli
ation. Then,

θ(v) =
l(θv)

l̃(v)
, (2.4)where l and l̃ are the two stable tail dependen
e fun
tions [26℄,

l(z−1) = µ([0,y]c), zd = −(lnGd(yd))
−1, (2.5)

l̃(z̃−1) = µ̃([0,y]c), z̃d = −(ln G̃d(yd))
−1 = yd, d = 1, . . . , D.Up to now we are aware of �ve known properties 
hara
terizing θ(v), 
f. [2, 43, 48, 61℄:(T1) θ(v) is 
ontinuous in v,(T2) θ(cv) = θ(v), for any 
onstant c > 0,(T3) θ(ed) = θd, where ed is the dth unit ve
tor,(T4) 0 ≤ θ(v) ≤ 1, i.e. l(θv) ≤ l̃(v),(T5) θd > 0 for all d = 1, . . . , D i� θ(v) > 0 for all v ∈ [0,∞) \ {0}.8



2.2: Properties of the Multivariate Extremal IndexBy property (T2) we may in parti
ular 
on�ne our analysis to the (D−1)-dimensionalunit simplex SD = {v ∈ [0, 1] : ‖v‖1 = v1 + . . . + vD = 1}, and we shall refer to therestri
tion of l and l̃ to SD as (Pi
kands) dependen
e fun
tions, 
f. [49℄ and [2℄. Wewill frequently make use of the following properties [2℄:(L1) lmin(v) = max{v1, . . . , vD} ≤ l(v) ≤ lmax(v) =
∑D

d=1 vd,(L2) l(v) is 
onvex,(L3) l(cv) = cl(v), for any 
onstant c > 0,where v ∈ [0,∞) \ {0}, and lmin and lmax are also valid dependen
e fun
tions. Forlater referen
e, let A be a subset of {1, . . . , D} and let eA be a ve
tor in RD with the
d-th 
omponent equal to one if d ∈ A and zero otherwise. Let 1 = e{1,...,D}. Note thatthe properties (T1) to (T5) above are not su�
ient to 
hara
terize the fun
tion θ(v)
ompletely. As a step towards a better understanding of the multivariate extremalindex it will be one of our main results to re�ne property (T4). In addition to the
onje
ture in [61℄ of l(θv) ≤ l̃(v) to be the only restri
tion on the two dependen
efun
tions we will show further 
onstraints in Se
tion 2.3 whi
h, equivalently, 
orrespondto improved bounds for the fun
tion θ(v) given only marginal dependen
e in terms of
θd, d = 1, . . . , D. In Se
tion 2.4 the extremal 
oe�
ient, φ̃ = l̃(1), a well-knownsummary measure for µ̃([0,x]c), will be related to the multivariate extremal index,
f. [60℄ and [56℄. We will �rst dis
uss an obvious 
onne
tion between the univariateextremal indi
es and the extremal 
oe�
ient and give an improved upper bound for thedependen
e adjusted extremal 
oe�
ient, φ = l(θ1), a 
ounterpart of φ̃ that appliesto stationary sequen
es, see [36℄. In the main, however, we will 
on
entrate on thefa
t that θ(1) = φ/φ̃, and show that knowledge of φ̃ or φ, respe
tively, allows for asigni�
ant improvement of the unrestri
ted bounds for θ(v) 
onsidered in Se
tion 2.3.Throughout the 
hapter we will dis
uss various example pro
esses.2.2 Properties of the Multivariate Extremal IndexBy [14℄ a D-dimensional pro
ess (Y t)t∈Z = {Y t = (Yt,1, . . . , Yt,D), t ∈ Z} is max-stablewith standard Fré
het margins if and only if

Ytd = max
i∈N

g̃td(Si)Ui, t ∈ Z, d = 1, . . . , D, (2.6)where {Ui, Si}∞i=1 is a Poisson point pro
ess on R+×[0, 1] with intensity du/u2×ds, and
{g̃td}t∈Z, d = 1, . . . , D, are sequen
es of nonnegative deterministi
 spe
tral fun
tionswith ∫ 1

0
g̃td(s)ds = 1 for all t. Repla
ing {g̃t} ∼ {g̃t+1} by

{(hD(t−1)+1, . . . , h(Dt))} ∼ {(hD(t−1+k)+1, . . . , hD(t+k))}in Theorem 5.1 of [14℄ with hD(t−1)+d := g̃td gives the spe
tral representation for sta-tionary D-variate max-stable pro
esses. 9



2.2: Properties of the Multivariate Extremal IndexTheorem 2.2.1 ([14, Theorem 5.1℄). The elements of a stationary max-stable D-variate pro
ess (Y t) are representable through (2.6) with the proper sequen
e {g̃t =
(g̃t,1, . . . , g̃t,D)}t∈Z. There exists a piston Γ su
h that g̃t+1 ≡ Γ(g̃t).In order to state a 
orresponding expression for the multivariate extremal index it is
onvenient to refer to the following 
on
epts from the literature. Let [0, 1] = S1 ∪ S2be the Hopf de
omposition for (2.6) into the dissipative and the 
onservative part [29℄,where S1 is isomorphi
 to S0 × Z for some measurable set S0 ⊂ S1. Theorem 3.1 in[52℄ states that the extremal index θd of the dth 
omponent is given by

θd =

∫

S0

max
t∈Z

g̃td(s)ds.Similarly, by means of Proposition 2.1 in [61℄ we may 
on
lude that the multivariateextremal index equals
θ(v) =

∫
S0

maxt∈Z maxD
d=1 vdg̃td(s)ds∫

S0

∑
t∈Z

maxD
d=1 vdg̃td(s)ds+

∫
S2

maxD
d=1 vdg̃0,d(s)ds

, v ∈ SD.Theorem 2.2.2 ([17, Theorem 2℄). The set of extremal index fun
tions is 
losed underuniform 
onvergen
e.In the remainder we shall follow the ideas of [16℄ and [61℄ who 
onsider dis
rete andstationary versions of (2.6) given by the de
omposition
Ytd = max{Mtd, Std}, t ∈ Z, d = 1, . . . , D, (2.7)where

Mtd = max
j∈I

max
k∈Z

ajkdZj,t−k,

Std = max
j∈F

max
0≤k≤Nj

αjkdZ
∗
j,t−k.Here, I, F ⊆ N ∪ {0}, {Zjt, t ∈ Z, j ∈ I} and {Z∗jt, 0 ≤ t ≤ Nj <∞, j ∈ F} are inde-pendent sequen
es of i.i.d. standard Fré
het variables where Z∗jt = Z∗j,t+m(Nj+1), m ∈ Z.The 
onstants ajkd, j ∈ I, k ∈ Z, and αjkd, j ∈ F, 0 ≤ k ≤ Nj are non-negative with∑

j

∑
k ajkd +

∑
j

∑
k αjkd = 1 for d = 1, . . . , D. Note that the Std part of the pro-
ess (2.7) 
onsists of periodi
 elements and leads to non-ergodi
 pro
esses [62℄ whereasthe mixing 
omponent Mtd 
orresponds to the M4 
lass of multivariate mixed movingmaxima dis
ussed by [61℄. Later, beginning with Chapter 3, we will restri
t our anal-ysis to the 
ase D = 1 and a 
orresponding 
lass of M3 pro
esses, 
f. (3.28). Notethat the latter 
orrespond to the 
lass of so-
alled dissipative stationary max-stablepro
esses [28℄. It will be essential in the following that for the dependen
e fun
tions ofthe pro
ess (2.7) we get that

l(θv) =
∑

j∈I

max
k∈Z

max
d=1,...,D

ajkdvd,

l̃(v) =
∑

j∈I

∑

k∈Z

max
d=1,...,D

ajkdvd +
∑

j∈F

∑

0≤k≤Nj

max
d=1,...,D

αjkdvd.10



2.3: Bounds for the Multivariate Extremal IndexThe following proposition states that the results upon the multivariate extremal in-dex for M4 pro
esses may be generalized to hold for stationary max-stable pro
esses.Moreover, under the 
onditions of [61, Theorem 2.3℄ the results obtained in Se
-tions 2.3 and 2.4 hold true also for general stationary pro
esses in the maximum domainof attra
tion of a max-stable pro
ess.Proposition 2.2.1 ([17, Proposition 1℄). The multivariate extremal index of a D-variate stationary max-stable pro
ess (Y t) may be approximated uniformly by the mul-tivariate extremal index of an M4 pro
ess.Whenever we will de�ne in the following a pro
ess as in (2.7) or an M4 pro
ess by its
oe�
ients we will ta
itly assume all 
oe�
ients not expli
itly de�ned to be zero.2.3 Bounds for the Multivariate Extremal IndexWe will now turn to the question of the interdependen
ies between the two dependen
efun
tions l and l̃, and their impli
ations for valid fun
tions θ(v). From the de�nition ofthe multivariate extremal index it merely follows that l(θv) ≤ l̃(v), 
f. the 
onje
turein [61℄. We state the following 
ounterexample in order to demonstrate that l(θv) ≤
l̃(v) is not a su�
ient 
ondition for l(θv)/l̃(v) to serve as a valid multivariate extremalindex.Example 2.3.1. Consider an M4 pro
ess with D = 2, I = 2 and θ1 = θ2 = 0.5. The
ondition l(θv)/l̃(v) ≤ 1 allows to �x φ̃ = l̃(1) =

∑
j

∑
k maxd ajkd = 1, say, whi
h isequivalent to ajk1 = ajk2 for all j, k, see also Corollary 2.4.1 below. Then, it ne
essarilyfollows that

l(θv) =
∑

j

max
k

max
d
ajkdvd = 0.5 max

d
vdobviously further restri
ting the requirement l(θv)/l̃(v) ≤ 1. A

ordingly, θ1 = θ2 =

0.5 is in
ompatible with θ(1) = 1, for example. See Figure 2.3.1 for a sket
h of thevalid bounds for θ(1) that are easily derived from the results dis
ussed below.For a more detailed understanding of the reasoning in Example 2.3.1 we shall introdu
ea de
omposition for the dependen
e fun
tion l̃ in the following theorem and state simplebut important properties that we shall use repeatedly in the rest of the 
hapter.Lemma 2.3.1. Let ∑̂kak =
∑

k ak−maxk ak for any sequen
e of nonnegative 
onstants
ak and assume that maxk ak exists. Then, for any akd ∈ R

max
d

∑̂
k
akd ≤

∑̂
k
max

d
akd .

11



2.3: Bounds for the Multivariate Extremal Index

1 1.5 20
0.5
1

φ̃

θ(1)

Figure 2.3.1: Bounds for θ(1) with θ1 = θ2 = 0.5 as fun
tions of the extremal 
oe�
ient, see Example 1. Lined: Valid
ombinations. Gray: Invalid 
ombinations, but 
onsistent with the bound l(θv) ≤ l̃(v) given in [61℄.Proof. For any �xed d∗ ∈ {1, . . . , D} let ε =
∑

k{maxd akd − akd∗}. Now, ε ≥
maxk maxd akd − maxk akd∗ , and

∑

k

akd∗ + max
k

max
d
akd − max

k
akd∗ ≤

∑

k

max
d
akd, for all d∗ ∈ {1, . . . , D}.Theorem 2.3.1. Let an arbitrary pro
ess as in (2.7) with extremal indi
es θ1, . . . , θDbe given by the 
oe�
ients ajkd, j ∈ I, k ∈ Z, d = 1, . . . , D, and αjkd, j ∈ F, 0 ≤

k ≤ Nj , d = 1, . . . , D. For all j, d let a∗jkd = 0 for all k ex
ept one k = k(j, d) ∈
arg maxk ajkd where a∗jkd = maxk ajkd, and âjkd = 0 for k = k(j, d) and âjkd = ajkdotherwise, i.e. âjkd = ajkd − a∗jkd. De�ne l̃θ(v) =

∑
j

∑
k maxd a

∗
jkdvd and l̃1−θ(v) =∑

j

∑
k maxd âjkdvd +

∑
j

∑
k maxd αjkdvd.(i) The fun
tions l̃θ and l̃1−θ are valid dependen
e fun
tions with sharp upper andlower bounds given by l̃θ,min(v) = lmin(θv) = maxd θdvd, l̃θ,max(v) = lmax(θv) =∑

d θdvd, l̃1−θ,min(v) = maxd(1 − θd)vd, and l̃1−θ,max(v) =
∑

d(1 − θd)vd.(ii) It holds that
l̃θ,min(v) ≤ l(θv) ≤ l̃θ(v), (2.8)

l(θv) + l̃1−θ,min(v) ≤ l̃(v) ≤ l̃θ(v) + l̃1−θ(v), (2.9)where equality applies for the last inequality if and only if for all j ∈ I and
d = 1, . . . , D we have âjkd = 0 for all k ∈ {k(j, 1), . . . , k(j,D)}.12



2.3: Bounds for the Multivariate Extremal Index(iii) For any fun
tion l(θv) a 
orresponding M4 pro
ess exists su
h that l̃(v) = 1, v ∈
SD.Proof. (i) From l̃θ(θ

−1v) =
∑

j

∑
k maxd a

∗
jkdvd/θd it follows that the fun
tion l̃θ is adependen
e fun
tion. Analogously for l̃1−θ. Now, the assertion follows from (L1).To proof (ii) note that (2.8) follows dire
tly from (i) and the respe
tive de�nitions.Con
erning the left hand side of (2.9), we get by (i) and Lemma 2.3.1 that for all

v ∈ SD

l(θv) + l̃1−θ,min(v)

= l(θv) + max
d

{∑

j

∑

k

αjkdvd +
∑

j

∑

k

ajkdvd −
∑

j

max
k

ajkdvd

}

≤ l(θv) + max
d

{∑

j

∑

k

αjkdvd

}
+ max

d

{∑

j

∑̂
k
ajkdvd

}

≤ l(θv) +
∑

j

∑

k

max
d
αjkdvd +

∑

j

∑

k

max
d
ajkdvd −

∑

j

max
k

max
d
ajkdvd

=
∑

j

∑

k

max
d
ajkdvd +

∑

j

∑

k

max
d
αjkdvd = l̃(v).Finally, the right hand side of (2.9) follows from the fa
t thatmaxd a

∗
jkdvd+maxd âjkdvd ≥

maxd(a
∗
jkd + âjkd)vd. Equality holds for all v ∈ SD if and only if âjkd = 0 for all

k ∈ {k(j, 1), . . . , k(j,D)}.With respe
t to (iii) we have that the swapping of the values of aj,k1,d and aj,k2,d doesnot 
hange l for any j, k1, k2, d, so that we may assume for all j and k that a∗jkd 6= 0for at most one value of d. Then,
l̃θ(v) =

∑

j

∑

k

max
d
a∗jkdvd =

∑

j

∑

d

a∗j,k(j,d),dvd =
∑

d

θdvd.Further, for all j and k, let the âjkd be su
h that âjkd 6= 0 for at most one value of d, and
âjkd = 0 for all j, d and k ∈ {k(j, 1), . . . , k(j,D)}. Then, l̃1−θ(v) =

∑
d(1−θd)vd by theabove argumentation. Finally, by (ii) we have l̃(v) = l̃θ(v) + l̃1−θ(v) = 1, v ∈ SD.Now, the in
ompatibility of θ1 = θ2 = 0.5 and θ(1) = 1, i.e. l(θ1) = l̃(1), in Exam-ple 2.3.1 follows also immediately from (2.9). There, we �nd that θd = 1, d = 1, . . . , D,or equivalently, l̃1−θ,min(1) = 0 is a ne
essary 
ondition for θ(1) = 1. In addition toTheorem 2.3.1 (i) and (ii) see also [61℄ where a spe
ial 
ase for whi
h l̃(v) − l(θv) is
onvex is dis
ussed. There, using the notation of Theorem 2.3.1, for D = 2 a pro
esswith k(j, 1) = k(j, 2) = 0, j ∈ I, is 
onsidered. Then, by Theorem 2.3.1 (ii) we havethat l̃(v) = l̃θ(v) + l̃1−θ(v) = l(θv) + l̃1−θ(v). Now, l̃(v) − l(θv) is a valid dependen
efun
tion by Theorem 2.3.1 (i) and hen
e also a 
onvex fun
tion. The fa
t that, ingeneral, l̃(v) − l(θv) may be neither a dependen
e fun
tion nor a 
onvex fun
tion at13



2.3: Bounds for the Multivariate Extremal Indexall does not, however, allow for the 
on
lusion of arbitrariness of l and l̃ as will be
ome
lear in the remainder of this 
hapter.Theorem 2.3.2 below gives sharp upper and lower bounds for θ(v) = l(θv)/l̃(v) for all
v ∈ SD given θd, d = 1, . . . , D, i.e. bounds for the entire multivariate extremal indexfun
tion given only marginal dependen
e in terms of θ(ed), d = 1, . . . , D.Theorem 2.3.2. Let Θ(θ1, . . . , θD) be the 
losed set of multivariate extremal indexfun
tions of all stationary max-stable pro
esses with univariate extremal indi
es θd ∈
(0, 1], d = 1, . . . , D. De�ne

θinf : SD → (0, 1], v 7→ inf
θ∈Θ(θ1,...,θD)

θ(v),

θsup : SD → (0, 1], v 7→ sup
θ∈Θ(θ1,...,θD)

θ(v).Then,
θinf(v) = max

d
θdvd ,

θsup(v) =

∑
d θdvd∑

d θdvd + maxd(1 − θd)vd

.In parti
ular, θinf , θsup ∈ Θ(θ1, . . . , θD).Proof. Let A = A(θ1, . . . , θD) be the 
lass of pro
esses A as in (2.7) with 
oe�
ients
ajkd, j ∈ I, k ∈ Z, αjkd, j ∈ F, 0 ≤ k ≤ Nj, su
h that l(θed) = θd, d = 1, . . . , D. Now,using the same notation as in Theorem 2.3.1,

lmin(θv) ≤ θ(v | A) ≤ l(θv | A)

l(θv | A) + l̃1−θ,min(v)
≤ lmax(θv)

lmax(θv) + l̃1−θ,min(v)
,where the lower bound is sharp by property (L1) and Theorem 2.3.1 (iii), the se
ondinequality holds with Theorem 2.3.1 (ii) and the right hand side follows from thedis
ussion of the mapping x 7→ x

x+a
, x, a ≥ 0. To show that the upper bound issharp 
onsider A∗ ∈ A with I = {1, . . . , D}, F = {1}, a∗d1d = θd and α∗11d = 1 − θd.Proposition 2.2.1 �nalizes the proof.Figure 2.3.2 gives a bivariate example of the above bounds. Theorem 2.3.2 may equiv-alently be rewritten in terms of an improved lower bound for l̃(v) making use of theadditional information obtained by l(θv), and an improved upper bound for l(θv)given θd and l̃(v).Corollary 2.3.1. For any stationary max-stable pro
ess with univariate extremal in-di
es θd ∈ (0, 1], d = 1, . . . , D, it holds that for all v ∈ SD

l(θv)

∑
d θdvd + maxd(1 − θd)vd∑

d θdvd

≤ l̃(v) ≤ 1,14



2.4: Exploring the Extremal Coe�
ients

v1 = 0 v1 = 1

0
θ2

1

0
θ1

1

Figure 2.3.2: Bounds for θ(v) in the bivariate 
ase: All admissible multivariate extremal index fun
tions for θ1 =
0.7, θ2 = 0.4 are lo
ated in the shaded area (in
luding the boundaries).and

max
d
θdvd ≤ l(θv) ≤ min

{
l̃(v)

∑
d θdvd∑

d θdvd + maxd(1 − θd)vd
,
∑

d

θdvd

}
.Note that the bounds dis
ussed in Theorem 2.3.2 are appli
able e.g. in order to improveon the validity of estimation s
hemes for the multivariate extremal index fun
tion. Anexample for an estimate of the latter that does not 
onform to Theorem 2.3.2 may befound in [40℄.2.4 Exploring the Extremal Coe�
ientsThe extremal 
oe�
ient φ̃ has been proposed as a summary measure for the in general
omplex dependen
e stru
ture of G̃(x) given by µ̃([0,x]c), see [60℄. In e�e
t, it isnothing but a single point of the respe
tive dependen
e fun
tion, namely

φ̃A = l̃(eA) (2.10)where A is a nonempty subset of {1, . . . , D}. Nevertheless, the extremal 
oe�
ientsubstantially restri
ts the possible shape of the entire dependen
e fun
tion l̃, see alsoproperties (L1) and (L2). Note that the extremal 
oe�
ient φ̃ may be interpreted moreintuitively in terms of the number of independent variables in a multivariate setting.For a dis
ussion of its further properties see e.g. [56℄. So far, however, the bounds for
θ(v) derived in Se
tion 2.3 do not in
orporate any information in terms of the extremal
oe�
ient. Being a quotient measure of two dependen
e fun
tions it is therefore natural15



2.4: Exploring the Extremal Coe�
ientswith respe
t to θ(v) to 
onsider the e�e
t of a �xed extremal 
oe�
ient on the abovebounds. Depending on the value of the extremal 
oe�
ient it turns out that the boundsmay be improved signi�
antly, 
ompare Figure 2.4.1 with Figure 2.3.2. Following [36℄we may also look at
φA = l(θeA) (2.11)as an adjusted extremal 
oe�
ient a

ounting for temporal dependen
e. Here, sim-ilarly, a single point of the dependen
e fun
tion 
orresponding to G(x) is �xed. Itroughly 
hara
terizes the entire fun
tion l in the above sense. We will therefore alsodis
uss the 
orresponding improvement of the bounds for θ(v) given φ, 
f. Figure 2.4.2.Note that the stru
ture of the improvement of the bounds is 
ompletely distin
t for�xed φ and φ̃, respe
tively. This will in parti
ular be re�e
ted by the di�ering 
omplex-ity of Theorems 2.4.3, 2.4.4 and 2.4.5 below. Before we turn to the interrelationshipbetween θ(v) and the two extremal 
oe�
ients, however, we will dis
uss how the latterthemselves are in�uen
ed by marginal dependen
e.Theorem 2.4.1. Let A be a non-empty subset of {1, . . . , D}. Then, for any stationarymax-stable pro
ess with univariate extremal indi
es θd ∈ (0, 1], d ∈ A, the extremal
oe�
ient φ̃A is limited by the sharp bounds

max
d∈A

θd + max
d∈A

(1 − θd) ≤ φ̃A ≤ |A| .Proof. The left inequality follows immediately from Theorem 2.3.1 (ii). The rightinequality is well-known, and sharp by Theorem 2.3.1 (iii). An M4 pro
ess with I =
{1} that rea
hes the lower bound is given by a11d = θd, a1kd = (1 − θd)/K for k =
2, . . . , K + 1 and K large enough su
h that θd ≥ (1 − θd)/K for all d.As a 
onsequen
e of Theorem 2.4.1 the 
ase φ̃ = 1 is restri
ted to identi
al marginaldependen
e of all D series su
h that θ1 = . . . = θD, 
f. Example 2.3.1. It also followsfrom Theorem 2.4.1 that Proposition 2.1(ii) in [37℄ where G̃ is assumed to have totallydependent margins (i.e. φ̃ = 1) loses generality and must be restri
ted to the spe
ialsituation where θ1 = . . . = θD. The 
ase is addressed by the following 
orollary with
A de�ned as above.Corollary 2.4.1. If φ̃A = 1 then θm = θn for all m,n ∈ A, and θ(v) = θm, v ∈ S|A|.Let now φ̃ be given. Theorem 2.4.2 below shows that the full set of possible dependen
efun
tions l 
ompatible with θ1, . . . , θD is not ne
essarily admissible for all possible valuesof the extremal 
oe�
ient φ̃ and vi
e versa. Equivalently, Theorem 2.4.2 extends theset of properties of φ = l(θ1) given in [36℄ by an improved upper bound related to φ̃.Theorem 2.4.2. Let A be a subset of {1, . . . , D} with at least two elements. Then, forany stationary max-stable pro
ess with univariate extremal indi
es θd ∈ (0, 1] for all d ∈
A and extremal 
oe�
ient φ̃A the adjusted extremal 
oe�
ient φA is limited by the sharpbounds

max
d∈A

θd ≤ l(θeA) = φA ≤ min

{∑

d∈A

θd, φ̃A − max
d∈A

(1 − θd)

}
.16



2.4: Exploring the Extremal Coe�
ientsProof. Let φ = φA and φ̃ = φ̃A and let us restri
t to an |A|-variate M4 pro
ess where
|A| > 1 by assumption. It is a well-known property of any dependen
e fun
tion that
maxd θd ≤ l(θ1) ≤ ∑

d θd, see (L1). Further, l(θ1) ≤ l̃(1) − maxd(1 − θd) is a dire
t
onsequen
e of Theorem 2.3.1 (i) and (ii), and hen
e a 
loser bound for φ is given if
φ̃− maxd(1 − θd) <

∑
d θd .We �rst give example pro
esses rea
hing the bounds for the 
ase φ̃ <∑d θd +maxd(1−

θd). Consider the M4 pro
ess A where I = {1, 2}, a1dd = cθd, a21d = (1 − c)θd, a2kd =
(1 − θd)/K for k = 2, . . . , K + 1 and c ∈ [0, 1). Here, a21d > 0, and K is 
hosensu
h that a21d ≥ a2kd for all k and d. Further, let B be the M4 pro
ess where I =
{1, . . . , D + 1}, bd1d = cθd, bD+1,1,d = a21d, bD+1,k,d = a2kd, k = 2, . . . , K + 1, c ∈ [0, 1).Now, for

c =
φ̃− maxd θd − maxd(1 − θd)∑

d θd − maxd θd

∈ [0, 1)

φ̃ is attained for both pro
esses. Also, A rea
hes the lower bound and B rea
hes theupper bound for φ.We now 
onsider the 
ase φ̃ ≥ ∑
d θd + maxd(1 − θd). Let A be a pro
ess as in (2.7)where I = {1}, F = {1, 2}, a1dd = θd, α1dd = c(1−θd), α21d = (1−c)(1−θd), c ∈ [0, 1].Further, 
onsider the pro
ess B that is also of the form (2.7) where I = {1, . . . , D}, F =

{1, 2}, bd1d = θd, β1dd = α1dd, β21d = α21d. Now, for
c =

φ̃−∑d θd − maxd(1 − θd)∑
d(1 − θd) − maxd(1 − θd)

∈ [0, 1]

φ̃ is attained for both pro
esses where A rea
hes the lower bound and B rea
hes theupper bound for φ.With respe
t to the behavior of the multivariate extremal index we have the following
orollary.Corollary 2.4.2. For any stationary max-stable pro
ess with univariate extremal in-di
es θd ∈ (0, 1], d = 1, . . . , D, and extremal 
oe�
ient φ̃ the multivariate extremalindex is bounded at 1 by
maxd θd

φ̃
≤ θ(1) = θ(D−1

1) ≤ min
{
φ̃− maxd(1 − θd),

∑
d θd

}

φ̃
.In the following three theorems we will generalize the above 
orollary for the 
aseD = 2,i.e. new bounds for the entire multivariate extremal index fun
tion will be given for�xed φ̃ and φ, respe
tively. Due to the 
omplex interdependen
ies of higher order de-penden
e fun
tions, see e.g. [55℄, 
orresponding bounds for D ≥ 3 are not known yet.From the following theorems note that, in parti
ular, for φ̃ =

∑
d θd + maxd(1 − θd)in Theorem 2.4.3 the upper bound may not be improved in 
omparison with Theo-rem 2.3.2, and for φ̃ = D in Theorem 2.4.4 the lower bound is un
hanged. First, wewill state the following example for referen
e in Theorems 2.4.3 and 2.4.5.17



2.4: Exploring the Extremal Coe�
ientsExample 2.4.1. Let X = X (θ1, θ2, φX ) be the 
lass of pro
esses X as in (2.7) with
oe�
ients xjkd, j ∈ I, k ∈ Z, d = 1, 2, and χjkd, j ∈ F, 0 ≤ k ≤ Nj , d = 1, 2, su
hthat l(θed | X) = θd and l(θ1 | X) = φX ≤ φX . Consider X∗(θ1, θ2, φX ) ∈ X with
I = {1, 2, 3} , F = {1}, x∗d1d = φX − θ3−d, x

∗
31d =

∑
d θd − φX and χ∗11d = 1 − θd, where

xjkd ≥ 0. Here, φX∗ = φX . Now, using the results of Theorem 2.3.1,
l(θv | X∗) = l̃θ(v | X∗) =

∑

d

(φX∗ − θ3−d)vd +
(∑

d

θd − φX∗

)
max

d
vd,

l̃1−θ(v | X∗) = l̃1−θ,min(v),

l̃(v | X∗) = l̃θ(v | X∗) + l̃1−θ(v | X∗).Then, l(θ1 | X∗) ≥ l(θ1 | X), and from the 
onvexity and pie
ewise linearity of l wemay 
on
lude that
l(θv | X∗) ≥ l(θv | X) for all X ∈ X .Now, by Theorem 2.3.1 (ii)

l(θv | X)

l̃(v | X)
≤ l(θv | X)

l(θv | X) + l̃1−θ,min(v)
≤ l(θv | X∗)
l(θv | X∗) + l̃1−θ,min(v)

= θ(v | X∗)for all X ∈ X using the same argumentation as in the proof of Theorem 2.3.2 for these
ond inequality.Theorem 2.4.3. Let D = 2 and Θ(θ1, θ2, φ̃) be the 
losed set of multivariate extremalindex fun
tions θ of all stationary max-stable pro
esses with univariate extremal indi
es
θ1, θ2 ∈ (0, 1] and extremal 
oe�
ient φ̃. De�ne

θsup : S2 → (0, 1], v 7→ sup
θ∈Θ(θ1,θ2,φ̃)

θ(v).(i) If φ̃ ≤∑d θd + maxd(1 − θd), then θsup ∈ Θ and
θsup(v) =

(
1 +

maxd(1 − θd)vd∑
d(φ
∗ − θ3−d)vd + (θ1 + θ2 − φ∗) maxd vd

)−1

,where φ∗ = φ̃− maxd(1 − θd).(ii) If φ̃ >∑d θd + maxd(1 − θd), then θsup ∈ Θ i� φ̃ = D, and
θsup(v) =

(
1 +

mind

{
max{(1 − θd)vd, (2 − φ̃)v3−d} + (φ̃− 1 − θ3−d)v3−d

}
∑

d θdvd

)−1

.Proof. From Theorem 2.2.2 we have that Θ(θ1, θ2, φ̃) is 
losed. Let B = B(θ1, θ2, φ̃) bethe 
lass of pro
esses B of the form (2.7) where l(θed | B) = θd and l̃(1 | B) = φ̃.18



2.4: Exploring the Extremal Coe�
ients(i) For X as in Example 2.4.1, B(θ1, θ2, φ̃) ⊂ X (θ1, θ2, φ̃ − maxd(1 − θd)) by Theo-rem 2.4.2. Now, it is easily veri�ed that X∗(θ1, θ2, φ̃ − maxd(1 − θd)) ∈ B, and theassertion follows from Example 2.4.1.(ii) Using the same notation as in Theorems 2.3.1 and 2.3.2 we have that B(θ1, θ2, φ̃) ⊂
A(θ1, θ2), and hen
e

θ(v | B) ≤ lmax(θv)

lmax(θv) + l̃1−θ,min(v)
=: θU,1(v), B ∈ B.Further, from l̃(1 | B) = φ̃ it follows by 
onvexity and pie
ewise linearity that l̃(v |

B) ≥∑d vd −maxd{(2
∑

d vd − φ̃)vd} = 1− (2− φ̃) maxd vd, and hen
e, a se
ond upperbound is given by
θU,2(v) =

lmax(θv)

1 − (2 − φ̃) maxd vd

.Next, we will show that
min {θU,1(v), θU,2(v)}

=
lmax(θv)

max{lmax(θv) + l̃1−θ,min(v), 1 − (2 − φ̃) maxd vd}

=
lmax(θv)

mind

{
max{(1 − θd)vd, (2 − φ̃)v3−d} + (φ̃− 1 − θ3−d)v3−d

}
+
∑

d θdvd

=
lmax(θv)

min
{
l̃1(v), l̃2(v)

} = θsup(v)is a sharp upper bound for valid dependen
e fun
tions l̃1 and l̃2 
onsistent with l(θv) =
lmax(θv). Here, the se
ond equation follows after some lengthy but elementary 
al
ula-tions. Note that θsup is rea
hed pie
ewise by the example pro
esses Bm ∈ B, m = 1, 2,as in (2.7) where bm,d1d = θd, βm,11m = 1 − θm, βm,(1,1,3−m) = 2 − φ̃, βm,(1,2,3−m) =

φ̃ − 1 − θ3−m, and βm,(1,2,3−m) ≥ 0, m = 1, 2, by the assumption on φ̃. Finally, for
φ̃ < D by la
k of 
onvexity of min{l̃1, l̃2} we have that θsup /∈ Θ whereas for φ̃ = D itholds that l̃1 = l̃2, and θsup ∈ Θ.Ex
ept for spe
i�
 parameter values the lower bound for θ(v) given θ1, θ2 and φ̃ tobe dis
ussed next and represented in Figure 2.4.1 appears to be of a more 
omplexform than the upper bound in the last theorem. For a motivation of the stru
tureof the pro
esses involved we �rst give the following example pro
ess. Namely, for the
omplex 
ase when φ̃ <∑d θd + maxd(1 − θd), see the theorem below, it will turn outto be a simple member of two 
lasses of pro
esses rea
hing the lower bound pointwisefor 
ertain values of v ∈ S2. Further, for the remaining values of v ∈ S2 the pro
essrea
hes the lower bound pie
ewise. In the following example and in Theorem 2.4.4 wewill make use of a 
ertain partition of v ∈ S2. To this end let for θ1 ≥ θ2

V1 =

[
0,

φ̃− 1 + θ2 − θ1

2φ̃− 2 + θ2 − θ1

]
, V3 =

[
1

2
, 1

]
, V2 = [0, 1] \ (V1 ∪ V3),19



2.4: Exploring the Extremal Coe�
ients
V2,2 =

[
θ2

θ1 + θ2
,

1

2

]
, V2,1 = V2 \ V2,2.Example 2.4.2. For D = 2, θ1 > θ2, φ̃ < 1 + θ1 and v∗ ∈ S2 let C = C(θ1, θ2, φ̃, v

∗
1)be the M4 pro
ess with 
oe�
ients cjkd, j ∈ I = {1, 2}, k ∈ N, d = 1, 2, where

c11d = (1 − qd)θd,

c2dd = qdθd,

c1kd = (1 − θ1)/K for k = 2, . . . , K + 1,

c1k2 = (θ1 − θ2)/K for k = 2 +K, . . . , 1 + 2Kfor some qd ∈ [0, 1) spe
i�ed below and K the smallest positive integer su
h that
c11d ≥ c1kd for k > 2, d = 1, 2. Further,

q2 =
φ̃− 1 + θ2 − θ1

θ2
∈ [0, 1) ,

q1(v
∗) =





φ̃− 1

θ1
∈ (0, 1) , v∗1 ∈ V1,

θ2
θ1
q2(1/v

∗
1 − 1) ∈ [0, 1) , v∗1 ∈ V2,1,

q2 , v∗1 ∈ V2,2 ∪ V3su
h that c11d > 0. Now, for ZC
1 = {(j, k) ∈ I × Z : cjkd > 0, d = 1, 2} = {(1, k) : k =

1, . . . , K + 1} and ZC
2 = {(j, k) ∈ ZC

1 : cjk1 = maxk cjk1} = {(1, 1)} the meaning ofwhi
h will be
ome 
lear in the proof of the next theorem it obviously holds that1. l̃(1 | C) = φ̃,2. cjk1 = cjk2, (j, k) ∈ ZC
1 \ ZC

2 ,3. ∑

(j,k)∈ZC
1 \Z

C
2

cjk1 = 1 − θ1,4. c112 = c111
v∗1
v∗2

+ θ2 − θ1
v∗1
v∗2

≥ c111
v∗1
v∗2
, c222 = c211

v∗1
v∗2
, v∗1 ∈ V2,1, v

∗
2 = 1 − v∗1 ,5. c112 = c111θ2/θ1, c222 = c211θ2/θ1, v∗1 ∈ V2,2 ∪ V3.Theorem 2.4.4. Let D = 2 and Θ(θ1, θ2, φ̃) be the 
losed set of multivariate extremalindex fun
tions θ for all stationary max-stable pro
esses with univariate extremal in-di
es θ1, θ2 ∈ (0, 1] and extremal 
oe�
ient φ̃. De�ne

θinf : S2 → (0, 1], v 7→ inf
θ∈Θ(θ1,θ2,φ̃)

θ(v) .20
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ients

v1 = 0 v1 = 1

θ2

1

θ1

1

Figure 2.4.1: Upper and lower bounds for θ(v) as in Theorems 2.4.3 and 2.4.4 given φ̃ = 1.35 (thi
k line), φ̃ = 1.5(· · · ), φ̃ = 1.8 (� · �) and φ̃ = 1.95 (thin line) for θ1 = 0.7, θ2 = 0.4.1. If φ̃ ≥∑d θd + maxd(1 − θd) or θ1 = θ2, then θinf ∈ Θ and
θinf(v) =

maxd θdvd

φ̃− 1 + (2 − φ̃) maxd vd

, v ∈ S2.2. If θ1 > θ2 and φ̃ <∑d θd + maxd(1 − θd) = 1 + θ1, then
θinf(v) =





θ2v2

1 − (2 − φ̃)v1

, v1 ∈ V1,

maxd θdvd

maxd θdvd + (φ̃− θ1)v2

, v1 ∈ V2,

θ1v1

1 − (2 − φ̃)v2

, v1 ∈ V3,where v2 = 1 − v1. In parti
ular, θinf /∈ Θ. The assertion for θ1 < θ2 is given bysymmetry.Proof. Again, by Proposition 2.2.1 it su�
es to restri
t to the respe
tive bounds ofM4pro
esses.1. For φ̃ ≥∑d θd+maxd(1−θd) and θ1, θ2 ∈ (0, 1] 
onsider a sequen
e ofM4 pro
esses Awith I = {1} given by a1dd = θd, a1kd = 2−φ̃
K

for k = D+1, . . . , D+K, a1kd = φ̃−1−θd

K
≥ 0for k = D + dK + 1, . . . , D + (d + 1)K and K su
h that θd ≥ a1kd for all k, d. Now,

l(θv | A) = lmin(θv) and l̃(v | A) = l̃max(v | φ̃) by 
onvexity and pie
ewise linearitywhere l̃max(v | φ̃) is the overall maximum of l̃(v) given φ̃.21



2.4: Exploring the Extremal Coe�
ientsFor θ1 = θ2 and φ̃ <∑d θd + maxd(1 − θd) = 1 + θ1 
onsider the pro
ess C(θ1, θ1, φ̃, 0)in Example 2.4.2. We have that l(θv | C) = lmin(θv) and l̃(v | C) = l̃max(v | φ̃) by
onvexity and pie
ewise linearity.2. We 
onsider separately the four subsets V1, V2,1, V2,2 and V3 for v1 with v ∈ S2.(i) For v1 ∈ V1 
onsider the pro
ess C(θ1, θ2, φ̃, v1) in Example 2.4.2. Now, l(θv |
C) = θ2v2 = lmin(θv) and l̃(v | C) = 1 − (2 − φ̃)v1 = l̃max(v | φ̃), v1 ∈ V1.(ii) Throughout this part we �x v ∈ S2 with v1 ∈ V2,1. Let B = B(θ1, θ2, φ̃) bethe 
lass of M4 pro
esses B with 
oe�
ients bjkd, j ∈ I, k ∈ Z, d = 1, 2, where
l(θed | B) = θd and l̃(1 | B) = φ̃. We will show that a pro
ess C with l(θv |
C) = lmin(θv) exists su
h that for all B ∈ B the inequality l̃(v | B) − l̃(v | C) ≤
l(θv | B) − l(θv | C) holds. Then, l(θv | C)/l̃(v | C) = θinf(v) by dis
ussionof the mapping x 7→ x+a

x+b
, 0 ≤ a ≤ b, x ≥ 0. For the 
al
ulation of l̃ it will beadvantageous to repla
e the double index (j, k) ∈ I × Z by a single one, m ∈ Z.More pre
isely, let f : I × Z → Z, (j, k) 7→ f(j, k) be an arbitrary bije
tivemapping and de�ne bmd = bf−1(m),d. Then,

l̃(v | B) =
∑

m∈Z

max
d
bmdvd =

∑

d

vd −m(v | B),with m(v | B) =
∑

m∈Z
mind bmdvd ≥ 0.Let π be the proje
tion π : I × Z → I, (j, k) 7→ j, and de�ne g := π ◦ f−1 : Z →

I, m 7→ g(m) = j. Let b∗jd = bj,k∗
jd,d, for k∗jd ∈ arg maxk bjkd, j ∈ I, d = 1, 2. Sin
ethe set of M4 pro
esses B for whi
h k∗jd is unique is a dense subset of B we mayassume uniqueness of k∗jd. Let ZB
1 = {m ∈ Z : bmd > 0, d = 1, 2} su
h that

∑

m∈Z

min
d
bmd =

∑

m∈ZB
1

min
d
bmd = 2 − φ̃ = m(1 | B). (2.12)Let ZB

2 = {m ∈ ZB
1 : bm1 = b∗g(m),1}. Now,

∑

m∈ZB
1 \Z

B
2

bm1 ≤ 1 − θ1 (2.13)su
h that ∑

m∈ZB
1 \Z

B
2

min
d
bmd = 1 − θ1 − µ (2.14)for 0 ≤ µ ≤ min{1 − θ1, φ̃− 1 + θ2 − θ1}, where the latter follows from the fa
tthat

1 − θ1 − µ = 2 − φ̃−
∑

m∈ZB
2

min
d
bmd (2.15)22



2.4: Exploring the Extremal Coe�
ientsby (2.14) and (2.12), and ∑m∈ZB
2

mind bmd ≤ mind

∑
m∈ZB

2
bmd ≤ mind θd = θ2.Note that from φ̃ < 1 + θ1, Eq. (2.12) and Ineq. (2.13) it follows that ZB

2 6= ∅.Now, with
∑

m∈ZB
1 \Z

B
2

min
d
bmdvd ≥

∑

m∈ZB
1 \Z

B
2

min
d
bmd min

d
vd = (1 − θ1 − µ)v1 (2.16)we get

m(v | B) ≥
∑

m∈ZB
2

min
d
bmdvd + (1 − θ1 − µ)v1. (2.17)We 
onsider the (disjoint) de
omposition ZB

2 = ZB
2,1 ∪ZB

2,2 ∪ZB
2,3 where m ∈ ZB

2,1if bm1 < bm2, m ∈ ZB
2,2 if bm2 ≤ bm1 ≤ bm2v2/v1 and m ∈ ZB

2,3 else. Now,
min

d
bmd =

{
bm1 = bm2 − ξm, m ∈ ZB

2,1

bm2, m ∈ ZB
2,2 ∪ ZB

2,3,

min
d
{bmdvd} =

{
bm1v1, m ∈ ZB

2,1 ∪ ZB
2,2

bm2v2 = (bm1 − ηm)v1, m ∈ ZB
2,3,

max
d

{
b∗g(m),dvd

}
=

{
(bm2 + κm)v2, m ∈ ZB

2,1 ∪ ZB
2,2

(bm2 + κm)v2 + max{0, ηmv1 − κmv2}, m ∈ ZB
2,3,where ξm = bm2 − bm1 > 0, m ∈ ZB

2,1, κm = b∗g(m),2 − bm2 ≥ 0, m ∈ ZB
2 , and

0 < ηm = b∗g(m),1 − bm2v2/v1 = bm1 − bm2v2/v1 ≤ 1 − bm2v2/v1, m ∈ ZB
2,3. Let

sm1 =
∑

j∈I\{g(m):m∈ZB
2 }

b∗j1 = θ1 −
∑

m∈ZB
2

bm1 (2.18)
= θ1 −

{ ∑

m∈ZB
2

min
d
bmdvd/v1 +

∑

m∈ZB
2,3

ηm

}
,

sm2 =
∑

j∈I\{g(m):m∈ZB
2 }

b∗j2 = θ2 −
∑

m∈ZB
2

b∗g(m),2

= θ2 −
{ ∑

m∈ZB
2

min
d
bmd +

∑

m∈ZB
2,1

ξm +
∑

m∈ZB
2

κm

}
.Then,

l(θv | B) =
∑

m∈ZB
2

max
d

{b∗g(m),dvd} +
∑

j∈I\{g(m):m∈ZB
2 }

max
d

{b∗jdvd}

≥
∑

m∈ZB
2

bm2v2 +
∑

m∈ZB
2

κmv2 +
∑

m∈ZB
2,3

max{0, ηmv1 − κmv2}

+ sm1v1. (2.19)23



2.4: Exploring the Extremal Coe�
ientsLet C ⊂ B be the 
lass of M4 pro
esses C with 
oe�
ients cjkd where
c∗j2 =

v1

v2
c∗j1 + γj, j ∈ I, γj ≥ 0, (2.20)

cm1 = cm2, m ∈ ZC
1 \ ZC

2 , (2.21)
∑

m∈ZC
1 \Z

C
2

cm1 = 1 − θ1, (2.22)
cm2 = c∗g(m),2 =

v1

v2
cm1 + γg(m) ≤ cm1, m ∈ ZC

2 , and (2.23)
∑

m∈ZC
2

γg(m) =
∑

j∈I

γj = θ2 −
v1

v2
θ1. (2.24)Here, Eq. (2.22) repla
es the 
orresponding Ineq. (2.13) above. In parti
ular, Cis not empty by Example 2.4.2. Sin
e ∑m∈ZC

1 \Z
C
2

mind cmd = 1 − θ1 by (2.21)and (2.22) it holds with (2.23) and (2.12) that
∑

m∈ZC
2

min
d
cmd =

∑

m∈ZC
2

cm2 = 1 − φ̃+ θ1. (2.25)By the left hand side of (2.23) we now get with (2.25) that
∑

m∈ZC
2

cm1v1 =

(
1 − φ̃+ θ1 −

∑

m∈ZC
2

γm

)
v2

= (1 − φ̃− θ2)v2 + θ1, v ∈ S2, (2.26)where (2.26) follows from (2.24). Further, by (2.23) and (2.21),
m(v | C) =

∑

m∈ZC
1

min
d
cmdvd =

∑

m∈ZC
2

cm1v1 +
∑

m∈ZC
1 \Z

C
2

cm1v1 (2.27)
= 1 − (φ̃− θ1 + θ2)v2, (2.28)where (2.28) follows with (2.26) and (2.22). To 
on
lude the proof we will makeuse of the following four results.First, by (2.20) and the de�nition of sm2 we have

l(θv | C) = lmin(θv) = θ2v2 = sm2v2 +
∑

m∈ZB
2

b∗g(m),2v2, v1 ∈ V2,1. (2.29)Eqs. (2.25) and (2.15) imply
sm2 = θ2 −

{ ∑

m∈ZC
2

min
d
cmd + µ+

∑

m∈ZB
2,1

ξm +
∑

m∈ZB
2

κm

}
. (2.30)24



2.4: Exploring the Extremal Coe�
ientsFurther, applying (2.24) and (2.23) twi
e yields
∑

m∈ZC
2

min
d
cmdv2 =

∑

m∈ZC
2

cm1v1 + θ2v2 − θ1v1. (2.31)Finally, by (2.27), (2.22) and (2.17)
m(v | C) −m(v | B) ≤

∑

m∈ZC
2

cm1v1 −
∑

m∈ZB
2

min
d
bmdvd + µv1. (2.32)Now,

l(θv | B) − l(θv | C) = l(θv | B) − θ2v2

≥ sm1v1 − sm2v2 +
∑

m∈ZB
2,3

(ηmv1 − κmv2) (2.33)
=
∑

m∈ZC
2

cm1v1 −
∑

m∈ZB
2

min
d
bmdvd + µv2 +

∑

m∈ZB
2,1

ξmv2+

∑

m∈ZB
2

κmv2 −
∑

m∈ZB
2,3

κmv2 (2.34)
≥ m(v | C) −m(v | B), (2.35)where (2.33) holds with (2.19) and (2.29), (2.34) holds with (2.30), (2.31) andthe de�nition of sm1, and (2.35) �nally follows from (2.32).(iii) Let v ∈ S2 with v1 ∈ V2,2 be �xed. The proof is similar to that of part (ii) anduses the same notation where possible. Let now C be the 
lass of M4 pro
esses

C with 
oe�
ients cjkd where
c∗j2 =

v1

v2
c∗j1 − γj, j ∈ I, γj ≥ 0,

∑

j∈I

γj =
v1

v2
θ1 − θ2, (2.36)and (2.21) and (2.22) hold. From (2.36) we get for m ∈ ZC

2 that
cm2 =

v1

v2
cm1 − γg(m) − εm ≤ cm1, (2.37)where 0 ≤ εm ≤ v1

v2
cm1 − γg(m) a

ounts for the fa
t that cm2 ≤ c∗g(m),2. Again, Cis not empty by Example 2.4.2, where γj = c∗j1(v1/v2 − θ2/θ1) and

l(θv | C) = lmin(θv) = θ1v1 (2.38)by Eq. (2.36). From (2.37) it follows that cm1v1 ≥ cm2v2, v1 ∈ V2,2, and hen
e
m(v | C) =

∑

m∈ZC
2

cm2v2 +
∑

m∈ZC
1 \Z

C
2

cm1v1. (2.39)25



2.4: Exploring the Extremal Coe�
ientsFurther, following the argumentation there, Eq. (2.25) holds with (2.37) insteadof (2.23). Now, with (2.39) and (2.22) it follows that
m(v | C) = (1 − φ̃+ θ1)v2 + (1 − θ1)v1. (2.40)Consider again the 
lass B as in part (ii). Using the above de
omposition of ZB

2we may write
m(v | B) =

∑

m∈ZB
2

bm2v2 −
∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1) +
∑

m∈ZB
1 \Z

B
2

min
d
bmdvd.Eq. (2.15) states that 1 − φ̃ + θ1 + µ =

∑
m∈ZB

2
mind bmd ≤ ∑

m∈ZB
2
bm2. Now,using (2.16) and (2.40) it follows that

∑

m∈ZB
2

bm2v2 +
∑

m∈ZB
1 \Z

B
2

min
d
bmdvd ≥ (1 − φ̃+ θ1 + µ)v2 + (1 − θ1 − µ)v1

≥ (1 − φ̃+ θ1)v2 + (1 − θ1)v1

= m(v | C),and hen
e
m(v | C) −m(v | B) ≤

∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1). (2.41)Further, with
max

d
{b∗g(m),dvd} =

{
bm1v1 + (bm2v2 − bm1v1 + κmv2), m ∈ ZB

2,1 ∪ ZB
2,2

bm1v1 + max{0, κmv2 − ηmv1}, m ∈ ZB
2,3,we get that

∑

m∈ZB
2

max
d

{b∗g(m),dvd} =
∑

m∈ZB
2

bm1v1 +
∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1 + κmv2)

+
∑

m∈ZB
2,3

max{0, κmv2 − ηmv1}. (2.42)By de�nition,
l(θv | B) =

∑

m∈ZB
2

max
d

{b∗g(m),dvd} +
∑

j∈I\{g(m):m∈ZB
2 }

max
d

{b∗jdvd}. (2.43)Now,
l(θv | B) − l(θv | C) = l(θv | B) − θ1v1 (2.44)

= l(θv | B) −
∑

m∈ZB
2

bm1v1 −
∑

j∈I\{g(m):m∈ZB
2 }

b∗j1v1 (2.45)
≥

∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1) (2.46)26



2.4: Exploring the Extremal Coe�
ients

v1 = 0 v1 = 1

θ2

1

θ1

1

Figure 2.4.2: Upper and lower bounds for θ(v) as in Theorem 2.4.5 given φ = 0.75 (thi
k line), φ = 0.8 (· · · ), φ = 1(� · �) and φ = 1.05 (thin line) for θ1 = 0.7, θ2 = 0.4.where (2.44) holds with (2.38), (2.45) holds with (2.18), and (2.46) follows from (2.43)and (2.42). Finally, by (2.41) and the argumentation at the beginning of part (ii)we have that θinf(v) = θ(v | C).(iv) For v1 ∈ V3 
onsider the pro
ess C(θ1, θ2, φ̃, v1) in Example 2.4.2 and apply thesame argumentation as in part (i).Finally, we will 
onsider the 
ase where φ instead of φ̃ is given, see Figure 2.4.2.Theorem 2.4.5. Let D = 2 and Θ(θ1, θ2, φ) be the 
losed set of multivariate extremalindex fun
tions θ for all stationary max-stable pro
esses with univariate extremal in-di
es θ1, θ2 ∈ (0, 1] and adjusted extremal 
oe�
ient φ = l(θ1) = φ̃ θ(1). Let θinf and
θsup be de�ned in the same way as in Theorems 2.4.3 and 2.4.4. Then,

θsup(v) =

(
1 +

maxd(1 − θd)vd∑
d(φ− θ3−d)vd + (θ1 + θ2 − φ) maxd vd

)−1

,

θinf(v) = min
d

{
max{θd − 2(θd − φ/2)v3−d, θ3−dv3−d}

}
.Further, θsup ∈ Θ for all φ, and θinf /∈ Θ if and only if maxd θd < φ <
∑

d θd.Proof. Let B = B(θ1, θ2, φ) be the 
lass of pro
esses B as in (2.7) with 
oe�
ients
bjkd, j ∈ I, k ∈ Z, d = 1, 2, and βjkd, j ∈ F, 0 ≤ k ≤ Nj , d = 1, 2, su
h that
l(θed | B) = θd and l(θ1 | B) = φ. Now, the equality for θsup follows by Example 2.4.1and the fa
t that B ⊆ X (θ1, θ2, φ), where X∗(θ1, θ2, φ) ∈ B.27



2.4: Exploring the Extremal Coe�
ientsTo show the equality for θinf note that from l(θ1 | B) = φ it holds by (L1) and (L2)that
l(θv | B) ≥ min

d
{max{θd − 2(θd − φ/2)v3−d, θ3−dv3−d}}

= min{l1(v), l2(v)} = θinf(v),where l1 and l2 are valid dependen
e fun
tions, see below. Then, the last equationfollows from Theorem 2.3.1 (iii). Further, θinf is not a valid dependen
e fun
tion for
maxd θd < φ <

∑
d θd by la
k of 
onvexity, and θinf(v) =

∑
d θdvd for φ =

∑
d θd and

θinf(v) = maxd θdvd for φ = maxd θd.Finally, note that θinf is rea
hed pie
ewise by the example pro
esses Bm ∈ B, m =
1, 2, of the form (2.7) where bm,11m = φ − θ3−m, bm,21m =

∑
d θd − φ, bm,(2,2,3−m) =

θ3−m, βm,1dd = 1 − θd.

28



Chapter 3Re
onstru
tion of Max-StablePro
esses for Given ExtremalCoe�
ient Fun
tions
3.1 MotivationWith respe
t to the dependen
e stru
ture of D-variate stationary max-stable pro
esseswe dis
ussed in Chapter 2 the multivariate extremal index as a rough summary mea-sure of the 
lustering behavior. In parti
ular, we gave an illustrative interpretation ofthe extremal index in terms of the mean limiting 
luster size. Consequently, a given ex-tremal index may in general be realized by a ri
h 
lass of pro
esses 
omprising a largevariety of di�erent dependen
e stru
tures. Furthermore, unlike the Gaussian familywhere the dependen
e stru
ture is entirely determined by the 
orresponding auto
o-varian
e fun
tion the 
lass of max-stable pro
esses 
annot be 
ompletely 
hara
terizedby a similar 
on
ept. Still, a suitable summary measure for the dependen
e stru
ture ofsu
h pro
esses that goes beyond the meaning of the extremal index is given by the ex-tremal 
oe�
ient fun
tion, 
f. (1.1). It is a 
onditionally negative de�nite fun
tion andwas proposed in [56℄. At the same time it is a spe
ial 
ase of the extremogram [12℄. Itwill be
ome 
lear in Se
tion 3.3 how this fun
tion is related to the more general notionof extremal 
oe�
ients already dis
ussed in Chapter 2. Although in most appli
ationsthe extremal 
oe�
ient fun
tion gives a more detailed idea of the dependen
e stru
turethan the extremal index we remark that the former may not be understood rigorouslyas a re�nement of the extremal index. In parti
ular, the latter 
an in general not bere
onstru
ted uniquely for a given extremal 
oe�
ient fun
tion. Re
all also (1.2) foran alternative approa
h to the dependen
e stru
ture within extremal 
lusters that isnot a�e
ted by this short
oming. It will be studied in detail in Chapter 5.The matter of the extremal 
oe�
ient fun
tion may best be understood alluding tothe usual auto
ovarian
e. Similar to the latter the extremal 
oe�
ient fun
tion is adependen
e measure for pairwise (temporal or spatial) separations of a pro
ess at a29



3.1: Motivationgiven lag h ∈ RD. This 
on
ept will be 
overed more formally in Se
tion 3.3. Althoughit remains a summary measure of the dependen
e stru
ture, i.e. it neither 
hara
ter-izes the multivariate marginals of the pro
ess nor the bivariate dependen
e stru
tureover spa
e or time 
ompletely, it has a 
onvenient interpretation that is appropriate tomost appli
ations. Moreover, as in the Gaussian 
ase a summability 
ondition on theextremal 
oe�
ient fun
tion will allow for a 
orresponding 
hara
terization of max-stable pro
esses as having short or long memory. Further, while it does not determinethe dependen
e stru
ture of a max-stable pro
ess any given extremal 
oe�
ient fun
-tion still imposes signi�
ant restri
tions on the admissible set of underlying pro
esses.Here, we will exploit in more detail the stru
ture of extremal 
oe�
ient fun
tions inorder to re
over 
orresponding max-stable pro
esses, i.e. su
h pro
esses that are ableto generate the respe
tive extremal 
oe�
ient fun
tion. Although the latter 
lasses areextensive it has been an open question to state su
h valid member pro
esses expli
itly.Based on the well-known fa
t that the set of extremal 
oe�
ient fun
tions is 
onvex [56℄we will, in parti
ular, fo
us on 
onvex de
ompositions of those fun
tions, i.e. a repre-sentation of the latter in terms only of the verti
es of their hull. It will be instru
tiveat this point to have an early look at Figure 3.4.1 below where as an example for arange of n = 5 we display the abovementioned vertex extremal 
oe�
ient fun
tions.Put di�erently, all valid extremal 
oe�
ient fun
tions on Z up to range �ve are givenby some 
onvex 
ombination of the fun
tions in
luded in the �gure. As a 
ru
ial pointwe will dis
uss in detail the determination of the set of su
h verti
es. The latter willthen give rise to a re
onstru
tion s
heme for max-stable pro
esses asso
iated to givenextremal 
oe�
ient fun
tions. In parti
ular, we shall introdu
e a sparse referen
e 
lassof max-stable pro
esses that is intimately related to the above set of verti
es. The
lass of pro
esses depends on a weight ve
tor that may readily be 
hosen su
h as toreprodu
e any valid extremal 
oe�
ient fun
tion. The re
onstru
tion of max-stableexample pro
esses from given extremal 
oe�
ient fun
tions is then essentially redu
edto the determination of suitable weights. Note that throughout we will 
on�ne ouranalysis to the one-dimensional 
ase in dis
rete time.The 
hapter will be organized as follows. In Se
tion 3.2 we shall �rst introdu
e the
on
ept of set 
orrelation fun
tions. Following a brief dis
ussion of their properties wewill restri
t to their evaluation on a grid, and determine the verti
es of their 
onvexset. We point out that the analysis in Se
tion 3.2 is self 
ontained and independentof the 
on
epts 
ommonly used in extreme value theory. We will, however, showin Se
tion 3.3 that the ensembles of set 
orrelation fun
tions and extremal 
oe�
ientfun
tions a
tually 
oin
ide on a grid. The reason to work with set 
orrelation fun
tions�rst is that in order to analyze their stru
ture and determine the verti
es of their setwe may refer dire
tly to well-known 
on
epts from the literature, in parti
ular theproblem of homometry [46, 47℄. In Se
tion 3.3 we will then formally refer to the theoryof extremes and re
all two essential 
on
epts already dis
ussed in Chapter 2, namelymax-stable pro
esses and extremal 
oe�
ients. Se
tion 3.4 will be primarily devotedto the setup of the abovementioned re
onstru
tion s
heme. An example of the latterin addition to some related appli
ations will be dis
ussed in Se
tion 3.5. Finally, the30



3.2: Set Correlation Fun
tions and Basi
 Notionsusefulness of partial knowledge of the extremal 
oe�
ient fun
tion for assertions onthe range of the underlying pro
ess will be 
onsidered in Se
tion 3.6.Throughout, following standard 
onventions we will write S + q = {x + q : x ∈ S},and a

ordingly aS = {ax : x ∈ S}, for a set S ⊆ R, and q, a ∈ R. We will denote theindi
ator fun
tion of a set S ⊆ R by 1(x ∈ S). Further, we will assume all operationsthat involve ve
tors to apply 
omponentwise, and denote by �⊂� a proper in
lusionwhereas �⊆� does not pre
lude equality. For x ∈ R let ⌊x⌋ = max{n ∈ Z : n ≤ x}.3.2 Set Correlation Fun
tions and Basi
 NotionsTo begin with in this se
tion we will 
on
entrate ex
lusively on set 
orrelation fun
tions,a 
on
ept shown in Se
tion 3.3 to be equivalent to the extremal 
oe�
ient fun
tionson a grid. In our approa
h we will show �rst that the ensemble F∗n,Z of set 
orrelationfun
tions with �nite range n ∈ N that are evaluated on Z is a 
onvex set. We willfurther determine its verti
es, see Lemma 3.2.1 and Theorem 3.2.1 below. To beginwith, it will be instru
tive to in
orporate the relevant 
on
epts su

essively into thewell-known framework of general 
ovariograms. To this end, for an integrable andsquare integrable fun
tion w(x) in R we will de�ne the 
ovariogram by the 
onvolutionprodu
t
f(h) =

∫
w(x)w(x+ h)dx, h ∈ R. (3.1)Note that two fundamental properties of the 
ovariogram, namely symmetry and pos-itive de�niteness, are immediate from (3.1), and will be essential in the following. Asan important spe
ial 
ase of (3.1) we will next 
onsider the length of the interse
tionof a set with its translation. More pre
isely, for w(x) = 1(x ∈ S), S ∈ σ∞, let

fS(h) =

∫
1(x ∈ S)1(x ∈ (S − h))dx = |S ∩ (S − h)|, h ∈ R, (3.2)denote the set 
ovarian
e fun
tion of S, also termed the geometri
 
ovariogram [38℄,where σ∞ stands for the ensemble of all Borel sets S ⊆ R with 0 < |S| < ∞. Notethat later on we shall use the notation | · | also to indi
ate the 
ardinality of a setwhere no 
onfusion may arise. For later referen
e we introdu
e σn ⊆ σ∞ in order torepresent a

ordingly all Borel sets S ⊆ [q, n+ q) for some q ∈ R. The number n ∈ Nwill later be referred to as �nite range. For 
onvenien
e, in the following we shallwithout loss of generality 
onsider the set 
orrelation fun
tions f ∗S(h) = fS(h)/fS(0)for all h ∈ R, S ∈ σ∞. To provide some preliminary insight into the behavior of f ∗Snote that by (3.2) we have in parti
ular that f ∗S(0) = 1, ∫ f ∗S(h)dh = |S|, and that

f ∗S(h) is not di�erentiable at the origin [7℄. As a further restri
tion of (3.1) and (3.2)we shall hen
eforth 
on�ne our analysis to the evaluation of f ∗S on a subset Q ⊆ R, i.e.we 
onsider f ∗S(h), h ∈ Q, and put F∗n,Q = {f ∗S ∈ RQ : S ∈ σn} for any n ∈ N ∪ {∞}.Note that f ∗S ∈ F∗∞,Q might be in F∗n,Q for some n ∈ N although S is unbounded. The31



3.2: Set Correlation Fun
tions and Basi
 Notionsfollowing elementary lemma provides a fundamental ba
kground for the rest of ouranalysis.Lemma 3.2.1. For all n ∈ N ∪ {∞} and all p ∈ N the set F∗n,p−1Z
is 
onvex.Proof. Let f ∗S1

, f ∗S2
∈ F∗n,p−1Z

, n ∈ N ∪ {∞}. Consider �rst the 
ase n ∈ N. Withoutloss of generality we may assume that Si ⊆ [0, n), i = 1, 2. For λ ∈ [0, 1] put
S3 =

⋃

i∈Z

[([
0,
λ

p

)
∩ λ

(
S1 −

i− 1

p

))

∪
(([

0, 1 − λ

p

)
∩ (1 − λ)

(
S2 −

i− 1

p

))
+
λ

p

)
+
i− 1

p

]
.Now, we have that S3 ∈ σn, and f ∗S3

(h) = λf ∗S1
(h) + (1 − λ)f ∗S2

(h), h ∈ Z/p, holdsby (3.2). If n = ∞, the assertion follows for Si ⊆ R, i = 1, 2.In the following, by V (F∗n,Z) we will denote the (unknown) set of verti
es representingthe 
onvex hull of F∗n,Z. It will be a 
onsequen
e of Proposition 3.2.1 below that
V (F∗n,Z) is 
ontained in a natural superset with �nite 
ardinality for any n ∈ N,i.e. |V (F∗n,Z)| ≤ 2n. The superset will be determined by the set of all 2n binary ve
torsthat, however, entails substantial redundan
ies to be dis
ussed below. We will intro-du
e simple set 
orrelation fun
tions f ∗Ub

for Ub =
⋃

j∈Ib
[j − 1, j), where Ib is the set ofindi
es 
orresponding to ones in b = (b1, . . . , bn) ∈ Bn = {0, 1}n (e.g. Ib = {1, 3, 4} for

b = (1, 0, 1, 1)). For the restri
tion of f ∗Ub
, b ∈ Bn, to Z we shall for simpli
ity introdu
ethe notation f ∗Ib

, and put H∗n,Z =
{
f ∗Ib

∈ RZ, b ∈ Bn

}. For later referen
e, note thatby (3.2), in parti
ular,
f ∗Ib

(h) =
∑

k∈Z

min{bk, bk+h}|Ib|−1 =
∑

k∈Z

bkbk+h|Ib|−1, h ∈ Z, b ∈ Bn, (3.3)where bk = 0 for k ∈ Z \ {1, . . . , n}.Proposition 3.2.1. For all n ∈ N we have that V (F∗n,Z) ⊆ H∗n,Z. Further, V (F∗∞,Z) ⊆⋃∞
n=1 H∗n,Z.Proof. In order to show the �rst assertion let n ∈ N and S ∈ σn. Without loss ofgenerality we may assume that S ⊆ [0, n). We will show that

f ∗S(h) =
∑

b∈Bn

f ∗Ib
(h)µb, h ∈ Z,where 0 ≤ µb ≤ 1, b ∈ Bn, ∑b∈Bn

µb = 1. To this end, for all b ∈ Bn let
δb = [0, 1) ∩

⋂

i∈Ib

(S + 1 − i) (3.4)32



3.2: Set Correlation Fun
tions and Basi
 Notionsand put
∆b = δb ∩

⋂

a∈Bn:Ib⊂Ia

δc
a ⊆ [0, 1). (3.5)Now, we �nd that

∆a ∩ ∆b = δa ∩ δb ∩
( ⋃

ω∈Bn:Ia⊂Iωor Ib⊂Iω

δω

)c

= ∅ for all a, b,∈ Bn with a 6= b. (3.6)Here, the last equality follows from the fa
t that by (3.4) we have
δa ∩ δb ⊆

⋃

ω∈Bn:Ia⊂Iωor Ib⊂Iω

δω, a, b,∈ Bn, a 6= b.Let Sb = •

⋃
i∈Ib

(∆b + i − 1), b ∈ Bn, where the union is disjoint by (3.5). By (3.5)and (3.6) we get in parti
ular that
Sa ∩ (Sb + h) = ∅ for all h ∈ Z, and all a, b,∈ Bn with a 6= b. (3.7)Further, (3.4) and (3.5) yield for all b ∈ Bn that Sb ⊆ S, and hen
e

•

⋃

b∈Bn

Sb ⊆ S. (3.8)Next, note that x ∈ S by (3.4) implies that x ∈ δb + i− 1 for some i ∈ {1, . . . , n} and
b ∈ Bn with Ib = {i}. By (3.5) we get further that x ∈ ∆a + i−1 for some a ∈ Bn with
Ib ⊆ Ia. Altogether we now �nd that x ∈ S implies

x ∈ •

⋃

b∈Bn

(∆b + i− 1) ⊆ •

⋃

b∈Bn

•

⋃

i∈Ib

(∆b + i− 1) = •

⋃

b∈Bn

Sb,and hen
e S = •

⋃
b∈Bn

Sb by (3.8). Then, from (3.7) and (3.2) we get for µb = |Sb|/|S| =
|∆b||Ib|/|S|, b ∈ Bn, that

f ∗S(h) =
∑

b∈Bn

f ∗Sb
(h)µb =

∑

b∈Bn

f ∗Ib
(h)µbwhere the se
ond equality holds by de�nition of Sb and f ∗Ib

. We �nally 
onsider these
ond assertion. For any S ∈ σ∞ let
Ln =

⋃

z∈Z

(
z +

⋃

i∈Z\{−n,...,n}

((S − i) ∩ [0, 1))

)
, n ∈ N,and S = (S ∩ Ln) ∪ (S ∩ Lc

n). Then,
f ∗S = |S ∩ Lc

n||S|−1f ∗S∩Lc
n

+ |S ∩ Ln||S|−1f ∗S∩Ln
∈ F∗∞,Zand f ∗S∩Lc

n
∈ F∗2n+1,Z. Now, for n→ ∞ we have that |S ∩Lc

n||S|−1 → 1, and the se
ondsummand tends to 0. 33



3.2: Set Correlation Fun
tions and Basi
 NotionsNext, via the introdu
tion of suitable equivalen
e relations we will su

essively dis
ard
ertain redundan
ies within Bn and �nally determine a set Cn ⊆ Bn with V (H∗n,Z) ={
f ∗Ib

∈ R
Z, b ∈ Cn

}. In parti
ular, we will demonstrate that the immediate idea of
ongruen
e for any two sets Ia and Ib, a, b ∈ Bn, is a su�
ient 
ondition for f ∗Ia
= f ∗Ibonly whereas the 
on
ept of homometry that we shall dis
uss below is ne
essary andsu�
ient. Still, we will also study the former equivalen
e relation in more detail as thenumber of non
ongruent and homometri
 ve
tors a, b ∈ Bn will turn out to be relativelysmall, 
f. Proposition 3.2.2 and Table 3.2.1. To formalize the notion of 
ongruen
e �rstde�ne re�e
tions ru : {0, 1}n → {0, 1}n, u ∈ {0, 1}, r1((x1, . . . , xn)) = (xn, . . . , x1),

r0 = id, and translations st : {0, 1}n → {0, 1}n, t ∈ Z,
st((x1, . . . , xn)) =





(0, . . . , 0, x1, . . . , xn−t) if xn−t+1, . . . , xn = 0 and t ≥ 0,
(x−t+1, . . . , xn, 0, . . . , 0) if x1, . . . , x−t = 0 and t ≤ −1,
(x1, . . . , xn) else.Now, for all a, b ∈ Bn we will de�ne 
ongruen
e by the equivalan
e relation a ∼c b,

a = st ◦rz(b) for some (t, z) ∈ {−n+1, . . . , n−1}×{0, 1}. We will denote the quotientset of Bn with respe
t to ∼c by Bn/∼c and state the following result for |Bn/∼c|, i.e.the number of non-
ongruent patterns in Bn.Proposition 3.2.2. We have that
|Bn/∼c| = 2n−2 + 2⌊(n−2)/2⌋ + 2⌊(n−1)/2⌋, n ∈ N. (3.9)In parti
ular, we have |Bn/∼c| ∼ 2n−2.Proof. Let Bn,1 = {b ∈ Bn : b1 = 1} ⊆ Bn where applying the translation de�ned abovewe have that b = st(a) for all b ∈ Bn \ {0} and some (t, a) ∈ {0, . . . , n − 1} × Bn,1.Hen
e, by de�nition of the equivalen
e relation ∼c we �nd that

|Bn/∼c| = |Bn,1/∼c| + 1. (3.10)Next, 
onsider the partition Bn,1,N ∪ Bn,1,E of Bn,1 where Bn,1,N = {b ∈ Bn,1 : bn = 0}and Bn,1,E = Bn,1 \ Bn,1,N . We obviously get that a 6∼c b for any a ∈ Bn,1,N and any
b ∈ Bn,1,E su
h that

|Bn,1/∼c| = |Bn,1,N/∼c| + |Bn,1,E/∼c|. (3.11)Note that by de�nition of Bn,1 and Bn,1,N we have that b ∈ Bn−1,1 if and only if
(b, 0) ∈ Bn,1,N su
h that, in parti
ular, |Bn−1,1/∼c| = |Bn,1,N/∼c|. Applying the latterequality su

essively to (3.11) we �nd with (3.10) that

|Bn/∼c| =
n∑

j=1

|Bj,1,E/∼c| + 1. (3.12)
34



3.2: Set Correlation Fun
tions and Basi
 NotionsFor Sn = {b ∈ Bn,1,E : bk = bn−k+1, k = 1, . . . , n}, i.e. the set of all symmetri
 ve
tors
b ∈ Bn,1,E , we now 
onsider the partition

Bn,1,E = An ∪ Sn (3.13)where An = Bn,1,E \ Sn. It is immediate that Sn 
an be identi�ed with its quotient setwith respe
t to ∼c, i.e. Sn/∼c = Sn. Moreover, with respe
t to the set An ⊆ Bn,1,Eof asymmetri
 ve
tors for all a ∈ An we have that r1(a) = b for some b ∈ An, b 6= a.Note that st(a) = a for all (t, a) ∈ Z × Bn,1,E, and hen
e we get that |An/∼c| = 1
2
|An|.Further, the de�nition of Sn yields that a 6∼c b for any a ∈ Sn and any b ∈ An su
hthat

|Bn,1,E/∼c| = |An/∼c| + |Sn/∼c| =
1

2
|An| + |Sn| =

1

2
|Bn,1,E| +

1

2
|Sn| (3.14)where the se
ond equality follows from the above remarks and the third equality holdsby (3.13). Note that Bn,1,E is the ensemble of all b ∈ Bn with b1 = bn = 1 and
ardinality

|Bn,1,E| =
n−2∑

m=0

(
n− 2

m

)
. (3.15)For the number of symmetri
 sequen
es |Sn| we �nd by 
ase di�erentiation that, for

n ≥ 3,
|Sn| =





n−2∑

m=0

(
(n− 2)/2

m/2

) if m,n even,
n−2∑

m=0

(
(n− 3)/2

m/2

) if n odd and m even,
n−2∑

m=0

(
(n− 3)/2

(m− 1)/2

) if m,n odd,
0 else. (3.16)

Finally, using (3.12), and by 
ase di�erentiation upon (3.16) we get that, for n ≥ 3,
|Bn/∼c| = 5 +

1

2

n−2∑

j=2

j∑

m=0

(
j

m

)
+

1

2

⌊(n−2)/2⌋∑

j=1

j∑

m=0

(
j

m

)
+

⌊(n−3)/2⌋∑

j=1

j∑

m=0

(
j

m

)

= 2n−2 + 2⌊(n−2)/2⌋ + 2⌊(n−1)/2⌋.It is readily seen that the r.h.s. also holds for n = 1 and n = 2.Note from Proposition 3.2.2 that a 
orre
tion for 
ongruen
e in Bn will asymptoti
allyredu
e the number of relevant binary ve
tors by three quarters. Next, in order tomotivate the abovementioned notion of homometry we shall 
onsider an alternative35



3.2: Set Correlation Fun
tions and Basi
 Notionsinterpretation of the set 
orrelation that fo
usses on the mutual di�eren
es betweenthe elements in Ib, i.e.
f ∗Ib

(h) = |{(x, y) ∈ I2
b : x+ h = y}||Ib|−1, h ∈ Z. (3.17)The 
on
ept of homometry, also known as the turnpike or partial digest problem, istypi
ally spe
i�ed by equations similar to (3.17). In parti
ular, given all distan
esbetween points on the line is it possible to retrieve the 
orresponding sets Ib, b ∈ Bn,up to 
ongruen
e? Put di�erently, if any is there a unique 
lass [b] ∈ Bn/∼c, b ∈ Bn,identi�ed by a given set 
orrelation fun
tion f ∗ ∈ H∗n,Z? The answer goes ba
k at leastas far as [46, 47℄ in the 
ontext of the analysis of di�ra
tion patterns in 
rystallographywhere the set 
ovarian
e is related to so-
alled multisets and where it is also well-knownthat |Bn/∼c| > |H∗n,Z|, n ≥ 12, 
f. Table 3.2.1. In line with the above dis
ussion twopatterns a, b ∈ Bn are 
alled homometri
 if, a ∼h b, f ∗Ia

= f ∗Ib
, 
f. [47℄. Denote by

[a] = {b ∈ Bn : b ∼h a} the equivalen
e 
lass of a, i.e. we identify the equivalen
e 
lass
[a] with the 
orresponding fun
tion f ∗Ia

and put f ∗[a] = f ∗Ia
, a ∈ Bn. Let

Bn/∼h = {[b] : b ∈ Bn}.Note that emphasizing its 
omputational 
omplexity the problem has been dis
ussedmore re
ently in [33℄. For later referen
e we may de�ne |[b]| := |Ia| for some a ∈ [b],
b ∈ Bn, by the following lemma.Lemma 3.2.2. From a ∈ [b] for some b ∈ Bn it follows that |Ia| = |Ib|.Proof. By de�nition we have that a ∈ [b], b ∈ Bn, is equivalent to f ∗Ia

= f ∗Ib
su
h that,in parti
ular, max Ia − min Ia = max Ib − min Ib =: r. The latter yields by (3.3) that

fIa(r) = fIb
(r) = 1. Now, by de�nition we get |Ia| = fIa(r)/f

∗
Ia

(r) = fIb
(r)/f ∗Ib

(r) =
|Ib|.By the above dis
ussion we may now restri
t to any representative of Bn/∼h as 
andi-date ve
tors generating V (H∗n,Z). For
Cn =

{
[a] ∈ Bn/∼h : f ∗[a] 6=

∑

[b]∈Bn/∼h\{[a]}

f ∗[b]µ[b], for all µ[b] ∈ [0, 1]

}
⊆ Bn/∼h (3.18)we get that {

f ∗[b] ∈ R
Z : [b] ∈ Cn

}
= V (H∗n,Z) = V (F∗n,Z) (3.19)where the se
ond equality follows from Proposition 3.2.1 and the fa
t thatH∗n,Z ⊆ F∗n,Z.Note that beyond the idea of homometry we are not aware of a suitable 
on
ept thatyields the set Cn dire
tly from Bn.Theorem 3.2.1. For all S ∈ σn, n ∈ N ∪ {∞}, there is X ⊆ Cn su
h that

f ∗S(h) =
∑

[b]∈X

f ∗[b](h)µ[b], h ∈ Z, (3.20)where 0 < µ[b] ≤ 1, [b] ∈ X , ∑[b]∈X µ[b] = 1. Reversely, given the r.h.s. of (3.20) a set
S ∈ σn exists su
h that (3.20) holds. In parti
ular, |X | ≤ n, n ∈ N.36



3.2: Set Correlation Fun
tions and Basi
 Notions
n |Bn| = 2n |Bn/∼c| |Bn/∼c| − |Bn/∼h| |Bn/∼h| − |Cn|
4 16 8 0 0
5 32 14 0 1
6 64 24 0 2
7 128 44 0 2
8 256 80 0 4
9 512 152 0 7
10 1024 288 0 19
11 2048 560 0 36
12 4096 1088 2 73
13 8192 2144 8 131
14 16384 4224 20 259
15 32768 8384 36 523
16 65536 16640 73 958
17 131072 33152 128 1762
18 262144 66048 234 3379
19 524288 131840 394 −
20 1048576 263168 682 −Table 3.2.1: Number of equivalen
e 
lasses with respe
t to 
ongruen
e, 
f. Proposition 3.2.2, and homometry where

|H∗
n,Z| = |Bn/∼h|. We also state the number of homometri
 equivalen
e 
lasses in the interior of Cn, i.e. a number

|Bn/∼h| − |Cn| of set 
orrelation fun
tions f∗
[b]
, b ∈ Bn/∼h, are 
onvex 
ombinations of some f∗

[a]
, [a] ∈ Cn, a 6= b,
f. (3.18). The latter result has been obtained by a sear
h algorithm and gives a lower bound. Be
ause of 
omputationallimitations we do not report the results for n ≥ 19.Proof. The proof of Proposition 3.2.1 yields that for all S ∈ σn, and µ̄b = |Sb|/|S| wehave

f ∗S(h) =
∑

b∈Bn

f ∗Sb
(h)µ̄b =

∑

b∈Bn

f ∗Ib
(h)µ̄b =

∑

[b]∈Cn

f ∗[b](h)µ̂[b] =
∑

[b]∈X⊆Cn

f ∗[b](h)µ[b], h ∈ Z,where the third equality follows by (3.19). The existen
e of X ⊆ Cn with |X | ≤ n, is a
onsequen
e of Carathéodory's theorem [6℄ and (3.19). Finally, note that
∑

[b]∈Cn

µ̂[b] =
∑

[b]∈X

µ[b] =
∑

b∈Bn

µ̄b = 1where the weights µ̂[b], [b] ∈ Cn, and µ[b], [b] ∈ X , are not unique in general.The fa
t that in general Bn/∼h may in
lude interior points of Cn is referred to inTable 3.2.1 where it is shown that |Bn/∼h| > |Cn| for n ≥ 5, 
f. also Se
tion 3.5.3. Notethat the results for |Bn/∼h| and |Cn| in Table 3.2.1 have been obtained by simulation,
f. [4℄. Related questions have also been studied by [23℄ and [51℄.37



3.3: Relations Between Extremal Coe�
ient and Set Correlation3.3 Relations Between Extremal Coe�
ient and SetCorrelationRe
all De�nition (2.6) and Theorem 2.2.1 for a stationary max-stable pro
ess (Yt)t∈Zfor D = 1 with standard Fré
het margins. For its �nite dimensional distributions wethen have
P (Y1 ≤ y1, . . . , Yk ≤ yk) = exp

(
−
∫ 1

0

k∨

t=1

Γt(g̃0(s))

yt
ds

) (3.21)for all k ≥ 1 and yt ≥ 0, t = 1, . . . , k. Here, the so-
alled spe
tral fun
tions (seeSe
tion 2.2) g̃t : [0, 1] → R+ are su
h that ∫ 1

0
g̃t(s)ds = 1 for all t where as before

g̃t+1 = Γ(g̃t) for a piston Γ, see [14℄. Note that we put Γt = Γ ◦ . . . ◦ Γ for the t-fold
omposition of Γ. As a summary measure re�e
ting the temporal (spatial) dependen
estru
ture of Y the metri

d(h) =

∫
|g̃0(s) − Γh(g̃0(s))|ds, h ∈ Z, (3.22)has been proposed, see e.g. [13℄. Following its standard usage in the literature weshall, however, not dire
tly refer to d(h) but de�ne the equivalent extremal 
oe�
ientfun
tion [56℄ as a transformation of (3.22) that is given by

φ(h) =
d(h) + 2

2
=

∫
max{g̃0(s),Γ

h(g̃0(s))}ds, h ∈ Z. (3.23)Note that (3.21) yields a more intuitive interpretation of φ(h), i.e.
P (Y0 ≤ y, Yh ≤ y) = P (Y0 ≤ y)φ(h), y > 0, h ∈ Z, (3.24)and also

φ(h) = 2 − lim
y→∞

P (Yh > y | Y0 > y), h ∈ Z, (3.25)as introdu
ed in Chapter 1, 
f. (1.1). Both representations parti
ularly emphasize therelevan
e to pra
ti
e of the extremal 
oe�
ient fun
tion, see also [22℄. Espe
ially (3.25)provides a 
onvenient interpretation in terms of the 
onditional probability of an ex-treme event to follow a pre
eding extreme event at lag h. Note that φ(h) = 2, h ∈ Z,by (3.24) is equivalent to independen
e of Yt and Yt+h for all t ∈ Z. We remarkthat (3.24) for a �xed lag h ∈ N 
losely 
orresponds to the de�nition of φ̃ in (2.10).More pre
isely, let the ve
tor e{1,h+1} ∈ Rh+1 be de�ned as in Se
tion 2.1. By (2.10)we now have
φ̃{1,h+1} = yl̃(y−1e{1,h+1}) = yµ̃

([
0, ye−1

{1,h+1}

]c)

= −y ln G̃
(
ye−1
{1,h+1}

)
= −y lnP (Y1 ≤ y, Yh+1 ≤ y)

= −y lnP (Y1 ≤ y)φ(h | Y ) = φ(h | Y ), y > 0,38



3.3: Relations Between Extremal Coe�
ient and Set Correlationwhere (2.5) yields the se
ond equality and the third equality is a 
onsequen
e of (2.2).The last two equalities hold by the assumption of standard Fré
het margins for Y ,and (3.24), respe
tively. Here, in 
ontrast to Se
tion 2.1 the fun
tion G̃, and µ̃ or l̃equivalently, re�e
t the (h + 1)-variate marginal distribution of the stationary max-stable pro
ess Y . We shall next restri
t the above framework to the 
lass of dissipativestationary max-stable pro
esses, see e.g. [28℄. By [65℄ su
h a pro
ess (Yt)t∈Z has therepresentation
Yt = max

i∈N

Uiĝt−zi
(Si), t ∈ Z,where as above ĝt : [0, 1] → R+ with ∫ 1

0
ĝt(s)ds = 1 for all t. Here, {(Ui, Si, zi)}∞i=1 is aPoisson point pro
ess on [0,∞)×S×Z with intensity measure u−2

1(u > 0)du×dS×1.Without loss of generality we may again assume that S = [0, 1] and dS = 1(s ∈
[0, 1])ds. For g(t) = ĝ⌊t⌋(t− ⌊t⌋), t ∈ R, we have that

Yt = max
i∈N

Uig(t− zi), t ∈ Z, (3.26)where {(Ui, zi)}∞i=1 is a Poisson point pro
ess on [0,∞) × R with intensity measure
u−2

1(u > 0)du × dz. Note that in (3.26) the single spe
tral fun
tion g 
ompletely
haraterizes the dependen
e stru
ture of the dissipative max-stable pro
ess Y on Z. Inthe following we will write Yg where it is advantageous to indi
ate that the pro
ess Yis generated by g. We have in parti
ular that (3.23) simpli�es to
φ(h | g) =

∫
max{g(s), g(s+ h)}ds, h ∈ Z, (3.27)and denoting by supp(g) the support of g the range of Yg is given by

rYg = inf{m ∈ N : |supp(g) ∩ (supp(g) + t)| = 0 for all |t| ≥ m, t ∈ Z},i.e. (Y1, . . . , Yk) and (Yk+q, . . . , Yk+q+l) are independent for all q ≥ rY , k, l ∈ N. For theensemble of extremal 
oe�
ient fun
tions we shall next dis
uss a summability 
ondi-tion, and put Φ∞,Z =
{
φ ∈ [1, 2]Z :

∑
h∈Z

(2 − φ(h)) <∞
}. We will denote by Φn,Z therestri
tion of Φ∞,Z to those underlying pro
esses with �nite range rY ≤ n. The above
lassi�
ation of extremal 
oe�
ient fun
tions motivates the following analogy to theterm �long memory� [3℄ that usually refers to the non-summabilty of the auto
ovarian
efun
tion. We will propose an analogous notion for max-stable pro
esses.De�nition 3.3.1. A se
ond order weakly stationary random pro
ess on Z with 
o-varian
e fun
tion ρ has a long memory [3℄ if ∑h∈Z

|ρ(h)| = ∞. A stationary randompro
ess Y on Z with existing extremal 
oe�
ient fun
tion φ has a long memory if
φ(· | Y ) 6∈ Φ∞,Z, i.e. the 
orrelation fun
tion of the random pro
ess 1(Y > n) is notabsolutely summable in the limit as n→ ∞.Proposition 3.3.1 ([18, Proposition 3℄). Any stationary max-stable pro
ess Y on Zwith standard Fré
het margins and summable fun
tion 2 − φ(· | Y ) is dissipative.39



3.3: Relations Between Extremal Coe�
ient and Set CorrelationThe following theorem is essential to the integration of the results dis
ussed in Se
-tion 3.2 into the extreme value 
ontext. It 
hara
terizes every summable fun
tion 2−φfor max-stable pro
esses on Z as a spe
ial set 
orrelation fun
tion. Note that its proofwill be based on the rather lengthy arguments pre
eding Corollary 4.5.2 in Chapter 4.Theorem 3.3.1. For all n ∈ N ∪ {∞} we have F∗n,Z = {2 − φ : φ ∈ Φn,Z}.Proof. Let ξ ∈ F∗n,Z, n ∈ N ∪ {∞}. Then, there is S ∈ σn su
h that f ∗S(h) = ξ(h),
h ∈ Z. Further, for g(x) = 1(x ∈ S)|S|−1 we have φ(h | g) = 2− ξ(h) ∈ Φn,Z by (3.27)and (3.2). The reverse dire
tion is a dire
t 
onsequen
e of Corollary 4.5.2 in Chapter 4,and Proposition 3.3.1.Now, Theorem 3.3.1 yields in parti
ular that a dis
rete-time max-stable random pro
esshas a long memory if and only if its extremal 
oe�
ient fun
tion 
annot be representedby a set 
orrelation fun
tion. Note that De�nition 3.3.1 also 
hara
terizes 
ertain dis-sipative pro
esses as having a long memory. Our point of view therefore di�ers fromthe interpretation in [52℄ where the de�nition for short memory phenomena 
oin
ideswith a pro
ess being purely dissipative. Consider e.g. a dissipative pro
ess as in (3.26)with spe
tral fun
tion g(s) = s−2

1(s ≥ 1) that has a long memory a

ording to Def-inition 3.3.1. With respe
t to Theorem 3.3.1 note also that we have dis
ussed threeequivalent 
on
epts representing the extremal 
oe�
ient fun
tion on a grid, namely φ,
d and f , 
f. (3.27), (3.22) and (3.2). We will hen
eforth mainly be 
on
erned with twoquestions related to the above setup. Namely, in what way is the 
lass of extremal
oe�
ient fun
tions restri
ted by the right-hand side of (3.27), and how 
an pro
essesof the form given in (3.26) be re
onstru
ted for given extremal 
oe�
ient fun
tions?To this end, from now on we will fo
us on so-
alled M3 pro
esses, also termed mixedmoving maxima. For D = 1 the pro
esses 
orrespond to the M4 
lass introdu
ed inSe
tion 2.2. More pre
isely, the pro
esses are dis
rete versions of (3.26) where

Mt =
J

max
j=1

max
k∈Z

ajkZj,t−k, t ∈ Z, (3.28)for some J ∈ N and a sequen
e {Zjt, j ∈ {1, . . . , J}, t ∈ Z} of i.i.d. standard Fré
hetvariables, i.e. P (Zjt ≤ u) = exp(−u−1), u > 0. Further, ajk ≥ 0, j ∈ {1, . . . , J}, k ∈ Z,and ∑J
j=1

∑
k∈Z

ajk = 1 su
h that the marginal distributions of the M3 pro
esses arealso standard Fré
het. Note that we obtain (3.28) from (3.26) by 
hoosing
g(x) = J

J∑

j=1

∑

k∈Z

ajk1(x ∈ k + J−1[j − 1, j)), x ∈ R. (3.29)We will 
onsider the following useful 
lassi�
ation ofM3 pro
esses. To this end, by Mιwe will denote the set of all M3 pro
esses with J ≤ ι ∈ N ∪ {∞}. Note that for theirspe
ial stru
ture the elements of M1 are 
anoni
ally referred to as moving maxima or40



3.4: A Class of Simple Pro
esses for Given Extremal Coe�
ients
M2 pro
esses. Further, we will put Mι,n for the restri
tion of Mι to pro
esses up torange n ∈ N. The extremal 
oe�
ient fun
tion φ(h | M) using (3.27) and (3.29) equals

φ(h | M) = (d(h | M) + 2)/2 (3.30)where
d(h |M) =

J∑

j=1

∑

k∈Z

|ajk − aj,k+h|, h ∈ Z,M ∈ M∞. (3.31)For later referen
e, by Dι,n we will a

ordingly denote the set of fun
tions d(h | M),
h ∈ Z, for all M ∈ Mι,n, ι, n ∈ N ∪ {∞}.3.4 A Class of Simple Pro
esses for Given ExtremalCoe�
ientsIn the following we will turn the results for set 
orrelation fun
tions obtained in Se
-tion 3.2 into the 
onstru
tion of a
tual max-stable pro
esses 
orresponding to givenextremal 
oe�
ient fun
tions. In parti
ular, we will assign to ea
h vertex of F∗n,Z asimple 
lass of M2 pro
esses that represents the respe
tive vertex extremal 
oe�
ientfun
tions, 
f. Corollary 3.4.1 below. We will then fo
us on weighted maxima of those
lasses in order to in
orporate the 
onvexity of Φn,Z. To this end, 
onsider the follow-ing sparse 
lass R(ζ) ⊆ M|Cn|,n of M3 pro
esses. Let G = {ζ = (ζ[b])[b]∈Cn ∈ [0, 1]|Cn| :∑

[b]∈Cn
ζ[b]|[b]| = 1}, and for all ζ ∈ G de�ne

R(ζ) =

{
(Rt)t∈Z : Rt = max

[b]∈Cn
ζ[b]

n
max
k=1

r[b],kZ[b],t−k, t ∈ Z,and r[b] = (r[b],1, . . . , r[b],n) ∈ [b]

} (3.32)where as before by {Z[b],i, [b] ∈ Cn, i ∈ Z} we denote a sequen
e of i.i.d. standard Fré
hetvariables. Note from (3.32) that any 
omplete ve
tor of representatives r = (r[b])[b]∈Cndetermines a parti
ular pro
ess R ∈ R(ζ) for any given ζ ∈ G. In the followingproposition we will state an essential property of the 
lass R(ζ).Proposition 3.4.1. We have that φ(h | A) = φ(h | B), h ∈ Z, for all A,B ∈ R(ζ),
ζ ∈ G.Proof. By (3.32) for any �xed R ∈ R(ζ) there is a unique ve
tor of representatives
r ∈ B|Cn|n . Consequently, we �nd by (3.30) that

φ(h | R) =
∑

[b]∈Cn

ζ[b]
∑

k∈Z

max
{
r[b],k, r[b],k+h

}
= 2 −

∑

[b]∈Cn

ζ[b]
∑

k∈Z

min
{
r[b],k, r[b],k+h

}

= 2 −
∑

[b]∈Cn

ζ[b]|[b]|f ∗[b](h), h ∈ Z,41



3.5: Exampleswhere the last equality holds by (3.3), and where we ta
itly assume that r[b],k = 0 for all
k ∈ Z \ {1, . . . , n}, [b] ∈ Cn. To 
on
lude the proof note that the r.h.s. is independentof r.The next 
orollary follows immediately from the proof of Proposition 3.4.1. It identi�esthe abovementioned 
lasses of M3 pro
esses R(ζ) that generate the vertex extremal
oe�
ient fun
tions.Corollary 3.4.1. Let ζ[b] = |[b]|−1 for any �xed [b] ∈ Cn, and let ζ[a] = 0 for all [a] ∈ Cn,
[a] 6= [b]. Then, 2 − φ(h | R) = f ∗[b](h) ∈ V (H∗n,Z) for all R ∈ R(ζ).Referring to Corollary 3.4.1 we shall in the following denote the vertex extremal 
oe�-
ient fun
tions by φ(h | [b]) = φ(h | R) = 2−f ∗[b](h) for any R ∈ R(ζ) with ζ[b] = |[b]|−1,
[b] ∈ Cn. The fun
tions are displayed in Figure 3.4.1 for the 
ase n = 5. We will showin Corollary 3.4.2 below that the restri
tion to the 
lass R(ζ), ζ ∈ G, is admissiblein order to represent any extremal 
oe�
ient fun
tion φ ∈ Φn,Z. An a
tual examplefor the re
onstru
tion of pro
esses based on the 
lasses R(ζ) will be dis
ussed in moredetail in Se
tion 3.5.3.Corollary 3.4.2. For any extremal 
oe�
ient fun
tion φ ∈ Φn,Z there is a ζ ∈ G with
|{ζ[b] : ζ[b] > 0, [b] ∈ Cn}| ≤ n su
h that for all R ∈ R(ζ) we have φ(h | R) = φ(h),
h ∈ Z.Proof. By Theorem 3.3.1 there is S ∈ σn su
h that φ(h) = 2 − f ∗S(h), h ∈ Z. Further,Theorem 3.2.1 with ζ[b] = µ[b]/|[b]|, [b] ∈ X , yields that

f ∗S(h) =
∑

[b]∈X

f ∗[b](h)ζ[b]|[b]| = 2 − φ(h | R) = 2 −
∑

[b]∈X

φ(h | [b])ζ[b]|[b]|, h ∈ Z,for any pro
ess R ∈ R(ζ). Here, the se
ond equality follows from the proof of Propo-sition 3.4.1 and the third equality is immediate from the de�nition of φ(· | [b]).Finally, it will be instru
tive to re
all that any vertex extremal 
oe�
ient fun
tion
φ(· | [b]) re�e
ts a 
lass [b] ∈ Cn of homometri
 ve
tors rather than a unique ve
tor
b ∈ Bn. In parti
ular, the signature pattern [68℄ of a pro
ess is in general not determinedby the extremal 
oe�
ient fun
tion, see the dis
ussion in Se
tion 5.1 below. Even fora given fun
tion φ(· | R) ∈ Φn,Z where R ∈ R(ζ), ζ ∈ G, the signature pattern
orresponding to R is at best determined up to homometry, 
f. Se
tion 3.2.3.5 Examples3.5.1 Simpli�
ation of Arbitrary M3 Pro
esses with Given Co-e�
ientsLet A ∈ MJ,n, J, n ∈ N, be given by the 
oe�
ients ajk ≥ 0, j ∈ {1, . . . , J}, k ∈ Z.Due to the bounded range n of A we may assume without loss of generality that ajk = 0,42



3.5: Examples
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Figure 3.4.1: Vertex extremal 
oe�
ient fun
tions φ(h | [b]), [b] ∈ Cn, for n = 5 and h = 0, . . . , 5. The respe
tiveequivalen
e 
lasses are identi�ed by the 
orresponding representatives b ∈ Bn. Note that we only tentatively in
ludethe lines joining the points as we 
on�ne our analysis to Z.
j ∈ {1, . . . , J}, k ∈ Z \ {1, . . . , n}. De�ne

ψ : [0, 1]n → [0, 1]n

b 7→ max (b− min{bi : bi > 0}, 0) .Let the M3 pro
ess C ∈ M(Jn),n 
arry a third index l in addition to j, k, and let C bede�ned by the 
oe�
ients cjlk ≥ 0, j ∈ {1, . . . , J}, l, k ∈ {1, . . . , n}, that is
Ct =

J
max
j=1

n
max
l=1

max
k∈Z

cjlkZjl,t−k, t ∈ Z, (3.33)43



3.5: Exampleswhere the sequen
e {Zjli, j ∈ {1, . . . , J}, l ∈ {1, . . . , n}, i ∈ Z} again represents i.i.d.standard Fré
het variables. Further, let cjl = (cjl,1, . . . , cjl,n) = ψl−1(aj)−ψl(aj) where
aj = (aj,1, . . . , aj,n) are the 
oe�
ients of A, and ψl = ψ ◦ . . . ◦ ψ gives the l-fold
omposition of ψ. We will make use of the following simple fa
t.Lemma 3.5.1. For all a1, a2, m ∈ R let b1 = max(a1 −m, 0), b2 = max(a2 −m, 0),
c1 = min(a1, m) and c2 = min(a2, m). Then |a1 − a2| = |b1 − b2| + |c1 − c2|.Now, by a repeated appli
ation of Lemma 3.5.1 it follows that

d(h | A) = d(h | C) =

J∑

j=1

n∑

l=1

n∑

k=1

|cjlk − cjl,k+h|, h ∈ Z.We will �nally emphasize that the vertex extremal 
oe�
ient fun
tions may be identi-�ed naturally from C. To this end, for cjl 6= 0 letmjl = maxk cjlk and ĉjl = cjl/mjl su
hthat by de�nition of cjl we have ĉjl ∈ Bn for all j ∈ {1, . . . , J} and all l ∈ {1, . . . , n}.Next, put
Cjl,t = |[ĉjl]|−1 max

k∈Z

ĉjlkZjl,t−k, t ∈ Z,su
h that (3.30) yields Cjl ∈ M1,n, and φ(h | Cjl) = |[ĉjl]|−1
∑

k∈Z
max{ĉjlk, ĉjl,k+h}.Further, using (3.33) we get that Ct = maxJ

j=1 maxn
l=1 |[ĉjl]|mjlCjl,t, t ∈ Z, and, a

ord-ingly, by (3.30) we now have

φ(h | C) =

J∑

j=1

n∑

l=1

mjl|[ĉjl]|φ(h | Cjl). (3.34)The fa
t that ĉjl ∈ Bn by (3.32) yields that Cjl ∈ R(ζ) for ζ[ĉjl] = |[ĉjl]|−1 su
hthat for all pro
esses Cjl with ĉjl ∈ [b], [b] ∈ Cn, we �nd by Corollary 3.4.1 that
φ(· | Cjl) = φ(· | [b]). Finally, (3.34) gives

φ(h | A) = φ(h | C) =
∑

[b]∈Cn

β[b]φ(h | [b]), h ∈ Z,where β[b] =
∑J

j=1

∑n
l=1mjl|[ĉjl]|1(ĉjl ∈ [b]) for all [b] ∈ Cn. To 
on
lude the examplenote that applying the arguments dis
ussed in Se
tions 3.2 and 3.4 we may furtherredu
e the appropriate index set to X ⊆ Cn.3.5.2 Blind Re
onstru
tion of M2 Pro
essesWe shall now turn to the blind retrieval of a real example pro
ess for an extremal
oe�
ient fun
tion of a stationary max-stable pro
ess in dis
rete time with �nite range

n. Here, we will �rst restri
t to the 
lass of M2 pro
esses, that is we put |I| =
1, in order to show that given a priori knowledge about the index set I there arealternative approa
hes for the re
onstru
tion of pro
esses that do not ne
essarily resort44



3.5: Examplesto Corollary 3.4.2. Below we shall dis
uss su
h an approa
h. To this end, let d ∈ D1,nbe given. Then, there is an unknown (not ne
essarily unique) M2 pro
ess X that isdetermined by its 
oe�
ients x1, . . . , xn su
h that by (3.31) we have
d(h | X) =

2n∑

k=1

|xk − xk−h|, h = 1, . . . , n. (3.35)In order to turn (3.35) into more tra
table systems of linear equations we will makeuse of the following lemma that 
an be easily seen.Lemma 3.5.2. Let xi ≥ 0, i = 1, . . . , n, and xi = 0, else. There is a permutation πon {1, . . . , n} su
h that xπ−1(1) ≥ . . . ≥ xπ−1(n) and
∑

i∈Z

|xi − xi−h| =
n∑

i=1

απ,h,ixi, h = 1, . . . , n, (3.36)where
απ,h,i = 2 [1(π(i) < π(i− h)) + 1(π(i) < π(i+ h)) − 1] ∈ {−2, 0, 2} (3.37)for all h, i ∈ {1, . . . , n}, and π(i) = ∞ for all i ∈ Z\{1, . . . , n}. Further,∑n

i=1 απ,h,i =
2h, h = 1, . . . , n. The sequen
e of 
oe�
ients απ,h,i, h, i = 1, . . . , n, is unique for agiven permutation π, and vi
e versa.Now, for the unknown M2 pro
ess X a

ording to Lemma 3.5.2 there is a (not ne
es-sarily unique) permutation π su
h that xπ−1(1) ≥ . . . ≥ xπ−1(n) and su
h that by (3.35)and (3.36) we have

d(h | X) =
n∑

i=1

απ,h,ixi, h = 1, . . . , n. (3.38)Note that as π is unknown so is the sequen
e απ,h,i, h, i = 1, . . . , n, and hen
e runningthrough all possible permutations we will have that (3.38) represents n! systems oflinear equations. Here, in ea
h 
ase the 
oe�
ients απ,h,i are given by (3.37). However,by the assumption that d ∈ D1,n an appropriate permutation π will be asso
iated toat least one of the linear systems, and a 
orresponding solution x1, . . . , xn representingsu
h a pro
ess X exists. The latter 
an be found for instan
e via a linear program [4℄.Note also that for any d ∈ D∞,n the above approa
h will reveal whether any solutionto (3.38) exists at all, i.e. whether d ∈ D1,n ⊆ D∞,n.3.5.3 Blind Re
onstru
tion of M3 Pro
essesAs indi
ated by the above dis
ussion we �nd that even with respe
t to the fun
tion
d(h | A) for an arbitrary pro
ess A ∈ M2,n it appears to be nontrivial to state whetheralso d(h | A) ∈ D1,n. Put di�erently, given A ∈ M2,n we ask whether there is a45



3.5: Examples
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Figure 3.5.1: Admissible 
ombinations of a12 and a22 for the pro
ess A dis
ussed in Se
tion 3.5.3 where d(h | A) ∈ D1,n(◦) and d(h | A) /∈ D1,n (•).pro
ess B ∈ M1,n su
h that d(h | A) = d(h | B), h ∈ Z. Ex
ept for some pathologi
alexamples we are not aware of a suitable analyti
 
riterion that fo
usses dire
tly on the
oe�
ients of A. Thus, using (3.38) and the method outlined above we will 
he
k bya trial and error pro
edure whether for simulated pro
esses A ∈ M2,n with arbitrary
oe�
ients ajk, j ∈ {1, 2}, k ∈ {1, . . . , 5}, we have that d(h | A) ∈ D1,n. We giveparti
ular su
h pro
esses A(a12, a22) where d(h | A(a12, a22)) /∈ D1,n for at least some
a12, a22 in Table 3.5.1. In order to get more insight into the sensitivity of our results to
hanges of the 
oe�
ients we run through all admissible values of a12 and a22 with allother 
oe�
ients �xed and state whether d(h | A(a12, a22)) ∈ D1,n. The result is givenin Figure 3.5.1. Apart from a 
ertain tradeo� between a12 and a22 along the upperright boundary the �gure appears to reveal no spe
i�
 stru
ture.

ajk k = 1 k = 2 k = 3 k = 4 k = 5
j = 1 0.01 a12 0.02 0.05 0.21
j = 2 0.52 − a12 − a22 a22 0.12 0.06 0.01Table 3.5.1: Coe�
ients of the pro
ess A(a12, a22) dis
ussed in Se
tion 3.5.3.Next, we will dis
uss an example for the re
onstru
tion of max-stable pro
esses thatmakes use of Corollary 3.4.2, that is we do not 
onsider the above instan
es where

J = 1. We will put n = 5 in order to 
over at the same time the 
ase |Bn/∼h| > |Cn|dis
ussed in Se
tion 3.2. To this end, from the 
lass of pro
esses A dis
ussed above we46



3.5: Examples
b [b] k = 1 k = 2 k = 3 k = 4 k = 5

(1, 1, 1, 1, 1) 1 ζ1 ζ1 ζ1 ζ1 ζ1
(1, 1, 0, 1, 1) 2 ζ2 ζ2 ζ2 ζ2
(1, 0, 1, 0, 1) 3 ζ3 ζ3 ζ3
(1, 1, 0, 0, 1) 4 ζ4 ζ4 ζ4
(1, 0, 0, 0, 1) 5 ζ5 ζ5
(1, 1, 1, 1, 0) 6 ζ6 ζ6 ζ6 ζ6
(1, 1, 0, 1, 0) 7 ζ7 ζ7 ζ7
(1, 0, 0, 1, 0) 8 ζ8 ζ8
(1, 1, 1, 0, 0) 9 ζ9 ζ9 ζ9
(1, 0, 1, 0, 0) 10 ζ10 ζ10
(1, 1, 0, 0, 0) 11 ζ11 ζ11
(1, 0, 0, 0, 0) 12 ζ12Table 3.5.2: Example 
oe�
ients ζ[b]r[b],k, k = 1, . . . , 5, for a spe
i�
 pro
ess R ∈ R(ζ) ⊆ M12,5, 
f. (3.32). Here,

(ζ1, . . . , ζ12) = ζ where we use the notational 
onvention explained after (3.39). See Figure 3.4.1 for an illustration ofthe vertex extremal 
oe�
ient fun
tions φ(· | [b]), [b] ∈ Cn, that are retrievable from any R ∈ R(ζ) if ζ[b] = |[b]|−1. Notealso that the 
ase b = (1, 1, 1, 0, 1) is not in
luded in the table as [b] ∈ Bn/∼h but [b] /∈ Cn.arbitrarily 
hoose A(0.15, 0.18) with d(h | A(0.15, 0.18)) /∈ D1,n where, in parti
ular,
h 1 2 3 4 5

d(h | A(0.15, 0.18)) 1.06 1.46 1.54 1.96 2.00From now on, we will assume d(h) = d(h | A) to be given and 
onsider the pro
ess A ∈
M2,n \M1,n to be unknown. Let Gd(h) = {ζ ∈ G : d(h | R) = d(h), h ∈ Z, R ∈ R(ζ)}be the set of all ve
tors ζ ∈ G that determine sets R(ζ) of suitable 
andidate pro
esses.Note that Gd(h) is nonempty by Corollary 3.4.2. We will fo
us on the following systemof linear equations

d(h) = d(h | R), R ∈ R(ζ), h ∈ Z, (3.39)where by Proposition 3.4.1 we may 
hoose R ∈ R(ζ) arbitrarily. A parti
ular pro
ess
R ∈ R(ζ) is given in Table 3.5.2. To simplify notation we shall repla
e the indi
es
[b], [b] ∈ Cn, by 1, . . . , 12 a

ording to the se
ond 
olumn in Table 3.5.2. We now getfrom (3.39) and (3.31) for R as in Table 3.5.2 that
d(1 | R) =12ζ1 + 4ζ2 + 6ζ3 + 4ζ4 + 4ζ5 + 2ζ6 + 4ζ7 + 4ζ8 + 2ζ9 + 4ζ10 + 2ζ11 + 2ζ12

d(2 | R) =14ζ1 + 6ζ2 + 2ζ3 + 6ζ4 + 4ζ5 + 4ζ6 + 4ζ7 + 4ζ8 + 4ζ9 + 2ζ10 + 4ζ11 + 2ζ12

d(3 | R) =16ζ1 + 4ζ2 + 6ζ3 + 4ζ4 + 4ζ5 + 6ζ6 + 4ζ7 + 2ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12

d(4 | R) =18ζ1 + 6ζ2 + 4ζ3 + 4ζ4 + 2ζ5 + 8ζ6 + 6ζ7 + 4ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12

d(5 | R) =10ζ1 + 8ζ2 + 6ζ3 + 6ζ4 + 4ζ5 + 8ζ6 + 6ζ7 + 4ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12.Numeri
ally, if φ(h) is a valid extremal 
oe�
ient fun
tion, i.e. Gd(h) is nonempty,a parti
ular element ζ ∈ Gd(h) may be determined by expanding (3.39) to a linear47



3.5: Examplesprogram. Here, using [4℄ we �nd e.g.
ζ = (ζ1, . . . , ζ12) = (0.020, 0, 0, 0, 0, 0.085, 0, 0.105, 0, 0.040, 0.135, 0)as a valid (not ne
essarily unique) solution. We point out that a

ording to Corol-lary 3.4.2 there are n = 5 nonzero elements in ζ .Remark 3.5.1. For all pro
esses R ∈ R(ζ), ζ ∈ G, we have that ∑[b]∈Cn

ζ[b] = θR where
θR denotes the extremal index or, equivalently, the expe
ted inverse 
luster size, seeChapter 2. Note also that 1/n ≤ θR ≤ 1, i.e. the range n of R imposes a lower boundon the extremal index.3.5.4 Ne
essary Conditions for Valid Extremal Coe�
ient Fun
-tionsApart from the re
onstru
tion of max-stable pro
esses for given extremal 
oe�
ientfun
tions the te
hnique applied in Se
tion 3.5.3 is appli
able also to evaluate whethera supposed extremal 
oe�
ient fun
tion of order n is valid for max-stable pro
esses on
Z. To our knowledge, in the literature so far only ne
essary 
onditions for extremal 
o-e�
ient fun
tions to be admissible have been dis
ussed [10, 56℄. Linking the results for�rst order variograms (madograms) dis
ussed by [39℄ to extremal 
oe�
ient fun
tionsit is shown in [10℄ that every valid extremal 
oe�
ient fun
tion φ(h) for all h, k ∈ Rsatis�es

φ(h+ k)τ ≤ φ(h)φ(k), (3.40)
φ(h+ k)τ ≤ φ(h)τ + φ(k)τ − 1, 0 ≤ τ ≤ 1, (3.41)
φ(h+ k)τ ≥ φ(h)τ + φ(k)τ − 1, τ ≤ 0. (3.42)In addition, it is well-known that φ(h) is positive semi-de�nite, 
f. [56℄. We give anexample showing that 
onditions (3.40) to (3.42) are indeed not su�
ient. The 
on-stru
tion of su
h an example is not evident but substantially fa
ilitated by knowledgeof the vertex extremal 
oe�
ient fun
tions displayed in Figure 3.4.1. Consider e.g. thefollowing fun
tion p : Z → [1, 2], p(−h) = p(h), with

h 0 1 2 3 4
p(h) 1 5/3 5/3 3/2 2and p(h) = 2, h ≥ 5. Note that

p(x) = φ(x | [b]) for x ∈ {0, 3, 4, 5} (3.43)and that
p(x) 6= φ(x | [b]) for x ∈ {1, 2} (3.44)48



3.6: Restri
tions on the Range of Extremal Coe�
ient Fun
tionsfor b = (1, 0, 0, 1, 0) ∈ Bn. Further, by Figure 3.4.1 we easily �nd that
(φ(3 | [b]), φ(4 | [b]), φ(5 | [b])) 6=

∑

[a]∈Cn\{[b]}

(φ(3 | [a]), φ(4 | [a]), φ(5 | [a]))µ[a] (3.45)for any µ[a] ∈ [0, 1], [a] ∈ Cn \ {[b]}. Now, using (3.43) to (3.45) we get from the
onvexity of Φn,Z that p is not a valid extremal 
oe�
ient fun
tion. However, it isreadily veri�ed that p still satis�es (3.40) to (3.42).3.6 Restri
tions on the Range of Extremal Coe�
ientFun
tionsIn the following we will study a lower bound on the range of a max-stable pro
ess ifthe 
orresponding extremal 
oe�
ient is known for a �xed h ∈ N only. More pre
isely,if for any �xed h ∈ N the extremal 
oe�
ient φ(h) is given we will spe
ify the smallestlag h̄ ≥ h for whi
h φ(h̃) = 2 for all h̃ ≥ h̄ is possible. In pra
ti
e, the approa
h willbe appli
able to the study of the a
tual (bounded) memory spread of short memorypro
esses, 
f. De�nition 3.3.1. Consider for instan
e the question of a lower bound onthe memory of �nan
ial markets after sho
ks when information is limited to estimatesof a single extremal 
oe�
ient.Theorem 3.6.1. Let φ(h | Y ) ∈ [1, 2) be given for some �xed h ∈ N and some max-stable pro
ess Y ∈ M∞. We have that Y /∈ M∞,rφ
for any

rφ ∈
{

N if φ(h) = 1,

{1, . . . , [[(φ(h) − 1)−1]]h} else,where [[x]] = max{n ∈ Z : n < x} for any x ∈ R. On the other hand, if φ(h) ∈ (1, 2),for some h ∈ N, then a pro
ess Y ∈ M∞,[[(φ(h)−1)−1]]h+1 with φ(h | Y ) = φ(h) exists.Proof. The assertion for φ(h) = 1, h > 0, follows dire
tly from Theorem 1.4.1(2) in [53℄.The proof for φ(h) ∈ (1, 2) will be based on the M3 representation for dissipative max-stable pro
esses dis
ussed in Se
tion 3.3, and 
omprises three steps. First, within the
lasses M∞,K+h−1 of all M3 pro
esses with maximum range K + h− 1, K ∈ Nh+ 1 =
{h + 1, 2h + 1, . . .}, we will de�ne a simple M3 pro
ess AK,h ∈ M1,K of range K.Then, we will show that AK,h ∈ M∞,K+h−1 minimizes φ(h | B) for all B ∈ M∞,K+h−1.Based on this �nding we may 
on
lude in step three that all pro
esses Z ∈ M∞ with
φ(h | Z) = φ(h) are at least of range [[(φ(h) − 1)−1]]h + 1. We will give an example inorder to show that the bounds are sharp.1. For any K ∈ Nh + 1 let the pro
ess AK,h ∈ M1,K be given by the 
oe�
ients

aK,k, k ∈ Z, where
aK,ih+1 =

(
K − 1

h
+ 1

)−1

, i ∈ {0, 1, . . . , (K − 1)/h}, (3.46)49



3.6: Restri
tions on the Range of Extremal Coe�
ient Fun
tionsand all other 
oe�
ients zero. In parti
ular, by (3.31) we have
d(h | AK,h) = 2aK,1. (3.47)Without loss of generality we let B ∈ M∞,K+h−1 be given by

0 ≤ b1k = aK,k + ε1k ≤ 1, k ∈ {1, . . . , K + h− 1}, (3.48)where the aK,k are 
hosen a

ording to (3.46). Further, for j ∈ {2, 3, . . .} and
k ∈ {1, . . . , K + h− 1} we let

0 ≤ bjk = εjk ≤ 1 (3.49)and ta
itly assume all other 
oe�
ients to be zero. Now, from the fa
t that∑∞
j=1

∑
k∈Z

bjk = 1 we get by (3.48) and (3.49) that
∞∑

j=1

∑

k∈Z

εjk = 0 (3.50)and, in parti
ular,
K−1

h∑

i=0

ε1,ih+1 ≤ 0. (3.51)2. We show that for all pro
esses B ∈ M∞,K+h−1 it holds that
d(h | B) ≥ d(h | AK,h), K ∈ Nh+ 1. (3.52)To this end, note that by (3.31) we �nd that (3.52) is equivalent to

−ε11−ε1,K ≤
∞∑

j=1

h∑

l=1

K−1
h
−1∑

i=0

|εj,l+(i+1)h−εj,l+ih|+
∞∑

j=1

h∑

l=1
j+l>2

(εjl +εj,K+l−1). (3.53)Now, (3.48) and (3.49) yield that εj,l, εj,K+l−1 ≥ 0 for all j ∈ N and l ∈ {1, . . . , h}with j+l > 2, su
h that (3.53) holds if min{ε11, ε1,K} ≥ 0. In order to show (3.53)for the 
ase min{ε11, ε1,K} < 0 put N = {ih + 1, i = 0, 1, . . . , (K − 1)/h} andfor j ∈ N, l ∈ {1, 2, . . . , h} let Sjl =
∑

i∈N+l−1 εji, µ̄jl = Sjl|N |−1 and µjl,max =
maxi∈N+l−1 εji. Further, let

µ1,min = −min {µ1,1,max, 0} . (3.54)Now, we �nd that
−ε11 − ε1,K ≤ |ε11| + |ε1,K| ≤ |ε11 − µ1,min| + |ε1,K − µ1,min| + 2µ1,min

≤
K−1

h
−1∑

i=0

|ε1,ih+1 − ε1,(i+1)h+1| + 2µ1,min. (3.55)50



3.6: Restri
tions on the Range of Extremal Coe�
ient Fun
tionsAlso, by (3.54) we get formin{ε11, ε1,K} < 0 that mini∈N ε1,i ≤ µ1,min ≤ maxi∈N ε1,iwhi
h yields the se
ond inequality in (3.55). Next, we have
µ1,min ≤ −S1,1

|N | =
1

|N |

∞∑

j=1

h∑

l=1
j+l>2

Sj,l =
∞∑

j=1

h∑

l=1
l+j>2

µ̄jl ≤
∞∑

j=1

h∑

l=1
j+l>2

µj,l,max. (3.56)Here, if maxi∈N{ε1,i} ≥ 0 note that µ1,min = 0, su
h that the �rst inequality isobvious from the fa
t that S1,1 ≤ 0 by (3.51). Else, if maxi∈N{ε1,i} < 0 we getthat µ1,min = mini∈N{−ε1,i} ≤ |N |−1
∑

i∈N −ε1,i = −S1,1|N |−1 whi
h in that 
aseyields the �rst inequality. Further, the �rst equality in (3.56) holds by (3.50) andthe se
ond equality as well as the se
ond inequality are immediate. Finally, forall j ∈ N and all l ∈ {1, . . . , h} with l + j > 2 we have
2µj,l,max = |µj,l,max − εjl| + |µj,l,max − εj,l+K−1| + εjl + εj,l+K−1

≤
K−1

h
−1∑

i=0

|εj,l+(i+1)h − εj,l+ih| + εjl + εj,l+K−1. (3.57)where the equality follows from the fa
t that 0 ≤ εjl ≤ µjl,max for l + j > 2.Now, (3.53) holds by (3.55) to (3.57).3. Let Z(d(h)) ⊆ M∞ be the 
lass of all M3 pro
esses Z with d(h | Z) = d(h).By (3.52) it follows that Z(d(h)) ∩M∞,κ+h−1 = ∅ for all
κ ∈ {K ∈ Nh+ 1 : d(h | AK,h) > d(h)} = {K ∈ Nh+ 1 : K < [[2/d(h)]]h+ 1}where (3.47) yields the equality. Let K∗ = [[2/d(h)]]h + 1 where K∗ < ∞ fromthe fa
t that by assumption d(h) > 0. In parti
ular, we now have that

d(h | AK∗,h) ≤ d(h) < d(h | AK∗−1,h). (3.58)It remains to show that a pro
ess Z∗ ∈ M∞,K∗ ∩ Z(d(h)) exists. To this end,let Z∗ be given by z∗k = aK∗,k − εk + δk, k ∈ {1, 2, . . . , K∗} where aK∗,k are the
oe�
ients of AK∗,h, 
f. (3.46). Further, we put εih+1 = 1
2
aK∗,1(d(h) − 2aK∗,1),

i ∈ {0, 1, . . . , (K∗− 1)/h}, δ2 = 1
2
(d(h)− 2z∗1) and all other 
oe�
ients zero su
hthat Z∗ is of range K∗. Note that (3.58) yields

0 ≤ 1

2
d(h) − aK∗,1 < aK∗−1,1 − aK∗,1 =

h

K∗ − 1
− h

K∗ − 1 + h
< 1su
h that 0 ≤ ε1+ih < aK∗,1, i ∈ {0, 1, . . . , (K∗ − 1)/h}. Further, using (3.58) wehave

2z∗1 = 2(aK∗,1 − ε1) < 2aK∗,1 = d(h | AK∗,h) ≤ d(h)whi
h yields that δ2 > 0. Finally, d(h | Z∗) = d(h) is a 
onsequen
e of (3.31).51



Chapter 4A Constru
tive Proof for theExtremal Coe�
ient of a DissipativeMax-Stable Pro
ess on Z being a SetCorrelation
4.1 Formal SetupIn this 
hapter we will develop su

essively a 
ertain sequen
e of sets that form thebasis of the assertion in Corollaries 4.5.1 and 4.5.2. The latter was already referredto in the proof of Theorem 3.3.1 above. There, we stated that the sets of extremal
oe�
ient fun
tions for dissipative max-stable pro
esses and those of set 
orrelationsa
tually 
oin
ide on Z. To begin with we shall brie�y restate the de�nition of theextremal 
oe�
ient fun
tion in terms of a spe
tral fun
tion g as the latter will be thestarting point of our analysis. Re
all that a stationary dissipative max-stable pro
ess
Y on Z with standard Fré
het margins has the representation Yt = maxi∈N Uig(t− zi),
t ∈ Z, 
f. Se
tion 3.3. Here, g : R → R+ with ∫ g(s)ds = 1, and {(Ui, zi)}∞i=1 is aPoisson point pro
ess on [0,∞) × R with intensity measure u−2

1(u > 0)du × dz. Inparti
ular, the spe
tral fun
tion g 
ompletely 
hara
terizes the dependen
e stru
ture of
Y . As a suitable summary measure with properties similar to the usual auto
ovarian
efun
tion in Se
tion 3.3 we dis
ussed the extremal 
oe�
ient fun
tion

φ(h | g) =

∫
max{g(s), g(s+ h)} ds, h ∈ Z, (4.1)that has been proposed by [56℄. In the following we will 
onsider a sequen
e (gn)n∈N0,

N0 = N ∪ {0}, of non-negative step fun
tions su
h that gn ↑ ξ for a suitable fun
tion
ξ : R → R+ with φ(· | ξ) = φ(· | g), and hen
e φ(· | gn) → φ(· | g) as n → ∞.Our main result will be the 
onstru
tion of a bounded monotoni
 sequen
e of sets, i.e.52



4.1: Formal Setup
(Sn)n∈N0 ↑ S, |S| <∞, asso
iated to (gn) su
h that

2

∫
gn(s) ds− φ(h | gn) = |Sn ∩ (Sn − h)|, n ∈ N0, h ∈ Z. (4.2)Hen
e, our analysis will imply that for any extremal 
oe�
ient fun
tion (4.1) on Z anequivalent representation as a set 
ovarian
e fun
tion |S ∩ (S − h)|, h ∈ Z, given bya 
ertain set S ⊂ R, |S| < ∞, exists. The reverse is straightforward, 
f. Se
tion 3.3.Consequently, the ensembles for set 
ovarian
e and extremal 
oe�
ient fun
tions fordissipative pro
esses 
an be shown to a
tually 
oin
ide on a grid. For reasons of 
ontentthis result was already stated in Se
tion 3.3 without proof, see Theorem 3.3.1.To be spe
i�
, let (gn)n∈N0 ↑ ξ be a monotoni
ally in
reasing sequen
e of step fun
tionswith nonnegative 
oe�
ients anki, n ∈ N0, k ∈ Kn = {−n, . . . , n}, i = (i1, . . . , in) ∈

{0, 1}n, and all other 
oe�
ients zero. Here, is ∈ {0, 1}, s = 1, . . . , n, and i = i0 = ∅ if
n = 0. Throughout this 
hapter, we will put [i]2 =

∑n
j=1 ij2

n−j and i|τ = (i1, . . . , iτ ),
τ = 1, . . . , n, where i|0 = ∅. Note that the use of a binary number for the index i willbe advantageous later on. As before, for all x ∈ R we put ⌊x⌋ = max{n ∈ Z : n ≤ x},and we will assume from now on that

gn(x) =

n∑

s=0

as,k,i|s, where k = ⌊x⌋ and i ∈ {0, 1}n with [i]2 = ⌊2n(x− k)⌋. (4.3)A

ording to (4.1) let φ(h | gn), h ∈ Z, n ∈ N0, denote the extremal 
oe�
ient fun
tionof the stationary dissipative pro
ess Ygn generated by the spe
tral fun
tion gn whereby (4.3) we �nd that
φ(h | gn) = 2−n+1

∑

k∈Kn

∑

i∈{0,1}n

n∑

s=0

as,k,i|s−

2−n
∑

k∈Kn

∑

i∈{0,1}n

min

{ n∑

s=0

as,k,i|s,

n∑

s=0

as,k+h,i|s

}
, h ∈ Z.

(4.4)Example 4.1.1. For the 
ontinuous spe
tral fun
tion g = ξ given in Figure 4.1.1 wesket
h the �rst three elements of a monotoni
 sequen
e of step fun
tions (gn)n∈N0 ↑ ξgiven by (4.3) with
a0,0,∅ = 1

10
a1,0,0 = 1

15
a2,−2,(0,0) = 1

5

a1,−1,0 = 1
30

a1,1,0 = 1
15

a2,0,(1,0) = 1
30

a1,−1,1 = 2
15

a1,1,1 = 1
30

a2,2,(1,0) = 1
15
.To give a preliminary idea of our 
onstru
tion prin
iple for a suitable sequen
e (Sn)
onsider the sets Aski, s = 0, 1, 2, k ∈ Ks, i ∈ {0, 1}s, given in Figure 4.3.1. Theirformal stru
ture will be studied below. We put

Sn =

n

•

⋃

s=0

•

⋃

k∈Ks

•

⋃

i∈{0,1}s

(Aski + k), n ∈ N0, (4.5)53



4.1: Formal Setup
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Figure 4.1.1: Approximation of a 
ontinuous spe
tral fun
tion g = ξ by the step fun
tion g2 de�ned in (4.3). The
orresponding 
oe�
ients are given in Example 4.1.1. Note that the bars anki do not ne
essarily tou
h the graph of ξ.su
h that (Sn) is 
learly monotoni
, and we will show in Theorem 4.5.1, 
f. Se
tion 4.5,that (4.2) holds. For the above small set of example 
oe�
ients the latter may bereadily veri�ed graphi
ally using Figures 4.1.1 and 4.3.1. We point out that in (4.2)the requirement of monotoni
ity for (Sn) appears to be a fundamental restri
tion.More pre
isely, the determination of an arbitrary sequen
e (Sn) su
h that (4.2) holdsis straightforward. Throughout the rest of our analysis we will mainly be 
on
ernedwith the 
onstru
tion of suitable sets Aski as well as the dis
ussion of their properties.However, note that in Figure 4.3.1 we also in
lude 
ertain intervals Bsbi, s = 0, 1, 2,
i ∈ {0, 1}s, for some tedious index b that will be dis
ussed below. At this point theintervals Bsbi may best be thought of as pla
eholders. In parti
ular, they indi
ateallowable lo
ations for the sets Aski. Further, the intervals Bsbi will ne
essarily have tobe 
onstru
ted jointly with Aski. As an only preliminary remark in this dire
tion notethat the 
onstru
tion of Bs+1,a,j for j ∈ {(i, 0), (i, 1)} and some suitable index a will beshown in (4.16) below to depend on 
ertain interse
tions of Aski on the index k rangingover parti
ular orderable subsets of Ks. The latter will spe
i�
ally be re�e
ted by theindex a. To 
on
lude the example, note that in Theorem 4.5.1 we will essentially makeuse of the fa
t that

2−ngn(k + [i]22
−n) =

∣∣∣∣
n

•

⋃

s=0

As,k,i|s ∩ •

⋃

b

Bnbi

∣∣∣∣ (4.6)for all k ∈ Kn and all i ∈ {0, 1}n. It will be helpful later on to 
he
k at this pointthat (4.6) holds for the above example using Figures 4.1.1 and 4.3.1.Throughout the 
hapter we will as before denote a proper in
lusion by �⊂� whereaswe shall use �⊆� for an in
lusion that does not pre
lude equality. Further, we will54



4.2: A Sequen
e of Auxiliary Setsunderstand [x, y) = ∅ if y < x, and A0 = ∅ for any set A. For n ∈ N0 let Bn = {0, 1}n2,
b = (b1, . . . , bn) ∈ Bn, where bs ∈ {0, 1}2s−1, s = 1, . . . , n, b = b0 = ∅ if n = 0, and Nbsis the set of indi
es 
orresponding to zeros in bs, e.g. Nbs = {2, 5} for bs = (1, 0, 1, 1, 0).Let En,0 = Bn ×{0, 1}n and En = En,0 \ ({0}×{0, 1}n). We will put b|τ = (b0, . . . , bτ ),and a

ordingly (b, i)|τ = (b|τ , i|τ ) for τ = 0, . . . , n. Our approa
h will be organized asfollows. In Se
tion 4.2 we will de�ne suitable intervals Bnbi and dis
uss their relevantproperties. To this end, we shall study an order on the joint index (b, i) ∈ En,0 that willlater refer to the allo
ation of the intervals Bnbi on the line. We will formally introdu
ethe order in (4.7) below. The nature of the order will then be largely revealed by part 2of Lemma 4.2.1. It will be shown in Lemma 4.2.2 that the order is total on a suitablesubset of En,0. In parti
ular, the de�nition of Bnbi in (4.16) will be restri
ted to thissubset in a natural way. As we will be able to draw some important 
on
lusions onthe intervals Bnbi even for arbitrary sets Anki we will defer the a
tual joint de�nitionof Bnbi and Anki to Se
tion 4.3. There, in Corollaries 4.3.1 and 4.3.2 we will showthat the assertions of two auxiliary assumptions made for step n, 
f. (A1) and (A2) inSe
tion 4.2, hold true by indu
tion in step n+ 1. In Se
tion 4.3 we will further dis
usstwo important properties of Anki in Lemmata 4.3.1 and 4.3.2. Thereafter we will studya de
omposition of Anki in Se
tion 4.4 that will eventually be useful in the proof ofTheorem 4.5.1 in Se
tion 4.5 where we will show that (4.2) holds. Our main result willbe stated in Corollaries 4.5.1 and 4.5.2 where for the latter we will make use of the fa
tthat for any given spe
tral fun
tion g there is a suitable fun
tion ξ as a limit of stepfun
tions with φ(· | g) = φ(· | ξ), 
f. [19℄.4.2 A Sequen
e of Auxiliary SetsTo begin with, we will equip the sets En,0, n ∈ N, with the following partial order �≺p�.For (b, i) ∈ En,0 let

{(a, j) ∈ En,0 : (a, j) ≺p (b, i)} =
{

(a, j) ∈ En,0 : ∃τ ≤ n su
h that a|τ = b|τand a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n. Further, [j|τ ]2 < [i|τ ]2,or j|τ = i|τ and Naτ+1 ⊂ Nbτ+1

}
∪
{

(a, j) ∈ En,0 : ∃δ ≤ n su
hthat b|δ = 0, a|δ 6= 0 and b|λ 6= 0 for all δ < λ ≤ n
}
.

(4.7)For later referen
e note that by (4.7), in parti
ular,
(b, i) ≺p (0, j), for all j ∈ {0, 1}n and (b, i) ∈ En. (4.8)Further, we have that

(b, i) ∈ En if (b, i) ≺p (a, j) for any (a, j) ∈ En. (4.9)As indi
ated above, we will show in Lemma 4.2.2 below that for all n ∈ N0 the fun
tions
g0, . . . , gn generate a suitable subset Ẽn,0 = Ẽn,0,g ⊆ En,0 for whi
h the above order is55



4.2: A Sequen
e of Auxiliary Setstotal. An essential step to the 
onstru
tion of Ẽn,0 will be provided by the followinglemma whose proof is obvious.Lemma 4.2.1. For k = 1, . . . , K, let qk ∈ [0, 1] and put q∞ = 1. De�ne maxk∈∅ qk = 0and mink∈∅ qk = 1 and let xb = maxk∈Nb
qk and yb = mink/∈Nb

qk for all b ∈ {0, 1}K.Put Mu = {l : ql ≤ u}, u ∈ R, and Uk = {b ∈ {0, 1}K : Nb = Mu for some u ∈ {ql :
ql < qk} ∪ {0}}. For all k ∈ {1, . . . , K} ∪ {∞} we have that1. A partition of [0, qk) is given by {[xb, yb), b ∈ Uk}2. {Nb, b ∈ Uk} is stri
tly totally ordered under in
lusion3. ya ≤ xb for Na ⊂ Nb, a, b ∈ Uk, or if a = b /∈ U∞4. Uk = {a ∈ U∞ : Na ⊆ Nb}, b ∈ arg maxa∈Uk

|Na|.Example 4.2.1. For K = 6 and q1 = 0.2, q2 = 0.3, q3 = 0, q4 = 0.4, q5 = 0.1and q6 = 0.2 we 
onsider the partition of [0, q2) given by part 1 of Lemma 4.2.1.We have {ql : ql < q2} ∪ {0} = {0, 0.1, 0.2} and M0 = {3}, M0.1 = {3, 5} and
M0.2 = {1, 3, 5, 6} su
h that U2 = {(1, 1, 0, 1, 1, 1), (1, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 0)}. Inparti
ular, part 1 of Lemma 4.2.1 yields [0, 0.3) = [0, 0.1) ∪ [0.1, 0.2) ∪ [0.2, 0.3),and parts 2 and 3 are obvious. Con
erning part 4 of the lemma we have U∞ =
{(1, 1, 0, 1, 1, 1), (1, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0)}. To verifythe assertion note �nally that arg maxa∈U2 |Na| = {(0, 1, 0, 1, 0, 0)}.For later referen
e by parts 1 to 3 of Lemma 4.2.1 for all b ∈ U∞ we readily have

[xb, yb) =
∑

a∈U∞:
Na⊂Nb

|[xa, ya)| + [0, yb − xb). (4.10)For all n ∈ N0 we will next de�ne su

essively the sets Ẽn,0 and Bnbi. For that purposewe shall frequently apply the notation introdu
ed in Lemma 4.2.1. Note 
arefully,however, that we will ne
essarily have to extend the subs
ripts by the indi
es n ∈ N0and (b, i) ∈ Ẽn,0. Consequently, for all k ∈ Kn ∪ {∞} and (b, i) ∈ En,0 let now
Unkbi =

{
a ∈ {0, 1}2n+1 : Na = Mnubi for some u ∈ {qnlbi : qnlbi < qnkbi} ∪ {0}

} (4.11)where, as above, Mnubi = {k : qnkbi ≤ u}, u ∈ R. Further, we put
qnkbi = |Anki ∩ Bnbi| (4.12)and
qn,∞,b,i = |Bnbi| (4.13)for arbitrary sets Anki that will be 
hosen to depend on g0, . . . , gn−1 in (4.35) below, i.e.

qnkbi, k ∈ Kn ∪ {∞}, are arbitrary numbers up to qnkbi ≤ |Bnbi|. Note that by (4.11)we have
0 /∈ Unkbi if k ∈ Kn, (i.e. k 6= ∞). (4.14)56



4.2: A Sequen
e of Auxiliary SetsLet now
Ẽn,0 =

{
((b, u), (i, j)) , (b, i) ∈ Ẽn−1,0, u ∈ Un−1,∞,b,i, j ∈ {0, 1}

}

∪ ({0} × {0, 1}n)
(4.15)and put Ẽn = Ẽn,0\({0}×{0, 1}n). We will dis
uss below that the union in (4.15) 
an infa
t be disjoint. In parti
ular, for any n ∈ N0 we will have that 0 /∈ U∞,0,i, i ∈ {0, 1}n,
f. the proof of Corollary 4.3.1. Note that in the following we shall o

asionally trun
atethe above indexation where no 
onfusion may arise.Lemma 4.2.2. For all n ∈ N the order �≺p� given in (4.7) is total on Ẽn,0.Proof. Let the order �≺p� be total on Ẽn−1,0 and let (a, j), (b, i) ∈ Ẽn−1,0. By (4.15)it is su�
ient to show that either ((a, α), (j, ι)) = ((b, β), (i, ǫ)) or ((a, α), (j, ι)) ≺p

((b, β), (i, ǫ)) or ((a, α), (j, ι)) ≻p ((b, β), (i, ǫ)) for all α ∈ U∞,a,j ∪ {0}, β ∈ U∞,b,i ∪ {0}and all ι, ǫ ∈ {0, 1}. By symmetry we may assume that (a, j) � (b, i). Let �rst
(a, j) = (b, i). Then, U∞,a,j = U∞,b,i, and the following threefold distin
tion is apartition of all ((a, α), (j, ι)) and ((b, β), (i, ǫ)) with (a, j) = (b, i). In either 
ase wewill show that an ordering by �≺p� exists where we will omit the trivial relation ofequality.1. Let α = β ∈ U∞,a,j and ι, ǫ ∈ {0, 1} su
h that [(j, ι)]2 < [(i, ǫ)]2. Then,

((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7) for τ = n. (δ does not exist.)2. Let (a, α), (b, β) 6= 0, α, β ∈ U∞,a,j, α 6= β, and ι, ǫ ∈ {0, 1}. Then, (a, α)|τ =
(b, β)|τ and (a, α)|κ 6= (b, β)|κ for all τ < κ ≤ n, only if τ = n − 1. Fur-ther, (j, ι)|n−1 = j = i = (i, ǫ)|n−1, and Nα ⊂ Nβ (or Nα ⊃ Nβ) by part 2 ofLemma 4.2.1 and the fa
t that α, β ∈ U∞,a,j. (δ does not exist.)3. Let (b, β) = 0, α ∈ U∞,a,i, α 6= 0, and ι, ǫ ∈ {0, 1}. Then, δ = n, and the fa
tthat (a, α) 6= 0 yields ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7). (τ does not exist.)Next, let (a, j) ≺p (b, i). Then, by (4.7) there is τ ≤ n − 1 su
h that a|τ = b|τ and

a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n − 1, or there is δ ≤ n − 1 su
h that b|δ = 0,
a|δ 6= 0 and bλ 6= 0 for all δ < λ ≤ n − 1. A

ording to (4.7) we may distinguishthree 
ases that yield the ordering (a, j) ≺p (b, i). We will 
onsider them separatelyand show that in either 
ase also ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) for all α, β ∈ {0, 1}2n−1and all ι, ǫ ∈ {0, 1}.1. Let a|τ = b|τ , a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n − 1, and [j|τ ]2 < [i|τ ]2.Now, (a, α)|τ+1 = (b, β)|τ+1 only if τ = n − 1. (δ does not exist.) Then, thefa
t that [(j, ι)|τ+1]2 < [(i, ǫ)|τ+1]2 yields ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7).If (a, α)|τ+1 6= (b, β)|τ+1 also ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7) using that

(a, α)|τ = (b, β)|τ and [(j, ι)|τ ]2 < [(i, ǫ)|τ ]2.57



4.2: A Sequen
e of Auxiliary Sets2. Let a|τ = b|τ , a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n, and j|τ = i|τ , Naτ+1 ⊂
Nbτ+1. (δ does not exist.) Then, τ < n, and for all α, β ∈ {0, 1}2n−1 and all
ι, ǫ ∈ {0, 1} we trivially also have (a, α)|τ = (b, β)|τ , [(j, ι)|τ ]2 = [(i, ǫ)|τ ]2 and
N(a,α)τ+1 ⊂ N(b,β)τ+1 . The above yields further that (a, α)|τ+1 6= (b, β)|τ+1 and
(a, α)|τ+1, (b, β)|τ+1 6= 0. Comparing with (4.7) we �nd that ((a, α), (j, ι)) ≺p

((b, β), (i, ǫ)).3. Finally, let bδ = 0, a|δ 6= 0 and b|λ 6= 0 for all δ < λ ≤ n. (τ does not exist.)Now, also (b, β)|δ = 0 and (a, α)|δ 6= 0. If (b, β)|δ+1 6= 0 then ((a, α), (j, ι)) ≺p

((b, β), (i, ǫ)) is immediate by (4.7). If (b, β)|δ+1 = 0 then δ = n − 1, and
(a, α)|δ+1 6= 0 yields by (4.7) that ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)).We will denote the respe
tive total order by �≺�. For (b, i) ∈ Ẽn,0 let
Bnbi =





[
xb,

xb + yb

2

)
+

∑

(a,j)≺(b,i)|n−1

|Bn−1,a,j | , b 6= 0, in = 0,

[
xb + yb

2
, yb

)
+

∑

(a,j)≺(b,i)|n−1

|Bn−1,a,j| , b 6= 0, in = 1,

2−n

[
0,max

k∈Z

gn

(
k + [i]22

−n
)
− max

k∈Z

gn−1

(
k + [i]22

−n
))

+
∑

(b,j)≺(0,i)

|Bnbj |, b = 0,

(4.16)
where retaining the notation of Lemma 4.2.1 we put

xb = xn,b,i|n−1 = max
k∈Nbn−n

qn−1,k,(b,i)|n−1 (4.17)and
yb = yn,b,i|n−1 = min

k/∈Nbn−n
qn−1,k,(b,i)|n−1. (4.18)Note that part 3 of Lemma 4.2.1 and (4.15) yield in parti
ular that by applying (4.16)to any (b, i) /∈ Ẽn,0 we get Bnbi = ∅. In Figure 4.3.1 we give a su

essive 
onstru
tionof Bnbi up to n = 2. There, we use the 
oe�
ients dis
ussed in Example 4.1.1 and weanti
ipate (4.35) in order to �x Anki. Next, note that (4.16) for all n ∈ N0 yields

|Bnaj | = |Bnai| for all (a, j), (a, i) ∈ Ẽn with j|n−1 = i|n−1 (4.19)where we point out that (4.19) does not hold for a = 0, 
f. the intervals B1,0,0 and
B1,0,1 in Figure 4.3.1. As indi
ated above we shall in the following work under theassumption that for a �xed n ∈ N0, we have

Bm,0,i = •

⋃

(a,j)∈Ẽm+1:

(a,j)|m=(0,i)

Bm+1,a,j for all m < n and i ∈ {0, 1}m. (A1)The assumption will be relaxed in Se
tion 4.3.58



4.2: A Sequen
e of Auxiliary SetsLemma 4.2.3. Assume (A1). Then, for all m ≤ n the following holds.1. For (b, i) ∈ Ẽm,0 we have
Bmbi = [0, |Bmbi|) +

∑

(a,j)≺(b,i)

|Bmaj |. (4.20)2. For (b, i) ∈ Ẽm we have
Bmbi = •

⋃

(a,j)∈Ẽm+1:

(a,j)|m=(b,i)

Bm+1,a,j . (4.21)Proof. For the proof of (4.20) we may restri
t to the 
ase b 6= 0 as (4.20) is immediatefrom (4.16) for b = 0. In the following, let (a, j) ∈ Ẽm−1,0 for any m ≤ n. To beginwith, in (4.22) to (4.24) we will dis
uss simple but important preliminaries that followeasily from the above setup. Let �rst γ ∈ U∞,a,j = Um−1,∞,a,j be arbitrary. Using(4.17) and (4.18) we then have by (4.10) that
[
x(a,γ),

x(a,γ) + y(a,γ)

2

)
=

∑

β∈U∞,a,j :

Nβ⊂Nγ

∣∣[x(a,β), y(a,β))
∣∣ +
[
0,
y(a,γ) − x(a,γ)

2

) (4.22)and, a

ordingly,
[
x(a,γ) + y(a,γ)

2
, y(a,γ)

)
=

∑

β∈U∞,a,j:

Nβ⊂Nγ

∣∣[x(a,β), y(a,β))
∣∣+ y(a,γ) − x(a,γ)

2

+

[
0,
y(a,γ) − x(a,γ)

2

)
.

(4.23)Further, we get by (4.15) that
∑

β∈U∞,a,j,

Nβ⊂Nγ

∑

l∈{0,1}

|Bm,(a,β),(j,l)| =
∑

(c,l)∈Ẽm,0:Ncm⊂Nγ,

(c,l)|m−1=(a,j)

|Bmcl|

=
∑

(c,l)∈Ẽm,0:(c,l)≺((a,γ),(j,0)),

(c,l)|m−1=(a,j)

|Bmcl| (4.24)where the latter equality holds by (4.7). Next, let γ ∈ U∞,a,j su
h that (a, γ) 6= 0. Notethat depending on the above 
hoi
e of (a, j) ∈ Ẽm−1,0 this 
onstitutes an additionalrestri
tion on γ only if a = 0. Now, using (4.16) in (4.22) and (4.23), we �nd that for59



4.2: A Sequen
e of Auxiliary Setsany i ∈ {(j, 0), (j, 1)}

Bm,(a,γ),i =
∑

β∈U∞,a,j:

Nβ⊂Nγ

∑

l∈{0,1}

|Bm,(a,β),(j,l)| + 1(im = 1)|Bm,(a,γ),(j,0)|

+ [0, |Bm,(a,γ),i|) +
∑

(c,l)∈Ẽm−1,0:

(c,l)≺(a,j)

|Bm−1,c,l|

=
∑

(c,l)∈Ẽm:(c,l)≺((a,γ),i),
(c,l)|m−1=(a,j)

|Bmcl| + [0, |Bm,(a,γ),i|) +
∑

(c,l)∈Ẽm−1,0:

(c,l)≺(a,j)

|Bm−1,c,l| (4.25)where the latter equality holds by (4.24). Note that by (4.9) and the fa
t that (a, γ) 6= 0we may restri
t to Ẽm instead of Ẽm,0 for the �rst sum in (4.25). We next 
onsider thespe
ial 
ase (c, l) ∈ Ẽm−1. Then,
[0, |Bm−1,c,l|) = •

⋃

β∈U∞,c,l

{[
x(c,β),

x(c,β) + y(c,β)

2

)
∪
[
x(c,β) + y(c,β)

2
, y(c,β)

)}

= •

⋃

β∈U∞,c,l

•

⋃

i∈{0,1}

Bm,(c,β),(l,i) −
∑

(a,i)∈Ẽm−1:

(a,i)≺(c,l)

|Bm−1,a,i|

= •

⋃

(a,i)∈Ẽm:
(a,i)|m−1=(c,l)

Bmai −
∑

(a,i)∈Ẽm−1:

(a,i)≺(c,l)

|Bm−1,a,i| (4.26)where the �rst equality is immediate by part 1 of Lemma 4.2.1 and (4.13), and these
ond equality holds by (4.16) as we have c 6= 0 by assumption. The third equality isa 
onsequen
e of (4.15). Note that in the se
ond and third equality we also make useof (4.9) in order to justify the sets Ẽm−1 instead of Ẽm−1,0. Now, by (4.26) and (A1),we have for all (c, l) ∈ Ẽm−1,0 that
|Bm−1,c,l| =

∑

(a,i)∈Ẽm:
(a,i)|m−1=(c,l)

|Bmai|, (4.27)and (4.20) for b 6= 0 holds by (4.25) and (4.27). Note that we use (4.27) in order toresolve the last sum in (4.25), and that, in parti
ular, (A1) is a ne
essary assumptioneven though (a, γ) 6= 0. In order to proof (4.21) 
onsider (4.26) for m + 1 instead of
m, i.e.

[0, |Bmci|) = •

⋃

(a,j)∈Ẽm+1:

(a,j)|m=(c,i)

Bm+1,a,j −
∑

(a,j)∈Ẽm:
(a,j)≺(c,i)

|Bmaj | , (c, i) ∈ Ẽm, (4.28)and the assertion follows by (4.20).In parti
ular, by (4.20) we have for m ≤ n that
Bmbi ∩Bmaj = ∅, (b, i), (a, j) ∈ Ẽm,0, (b, i) 6= (a, j). (4.29)60



4.2: A Sequen
e of Auxiliary SetsUsing (A1), and (4.21) repeatedly yields for all (b, i) ∈ Ẽm,0, m < n, that
Bmbi = •

⋃

(a,j)∈Ẽn:a|m+1 6=0,

(a,j)|m=(b,i)

Bnaj . (4.30)Note that the restri
tion am+1 6= 0 a�e
ts the 
ase b = 0 only, 
f. (A1) where the index
(a, j) does not run over a = 0. Further, using (4.19) repeatedly we have by (4.30) forall (b, i) ∈ Ẽm,0, m < n, and any j ∈ {0, 1}n with j|m = i that

2m−n|Bmbi| =
∑

a∈Bn:(a,j)∈Ẽn,
a|m=b,a|m+1 6=0

|Bnaj |. (4.31)Note that in (4.31) the summation is over a ∈ Bn only, and j is �xed. We shall assumenext that for a �xed n ∈ N0 and all m < n, k ∈ Km and j ∈ {0, 1}m there is a unique
(ω, (j, 1)) = (ωmkj, (j, 1)) ∈ Ẽm+1 su
h that

∑

(a,i)∈Ẽm+1:i|m=j,

(a,i)�(ω,(j,1))

|Bm+1,a,i| = 2−m
m∑

p=0

ap,k,j|p. (A2)The assumption (A2) will also be relaxed in Se
tion 4.3.Lemma 4.2.4. Let n ∈ N0, k ∈ Kn, i ∈ {0, 1}n and j = i|n−1. Assume (A1) and let
(ω, (j, 1)) = (ωn−1,k,j, (j, 1)) ∈ Ẽn a

ording to (A2). We have

∑

a:(ω,(j,1))≺(a,i)

|Bnai| ≥ 2−nanki.Proof. By (4.31) for all i ∈ {0, 1}n, n ∈ N0, we get that
n∑

m=0

2m|Bm,0,i|m| = 2n
n−1∑

m=0

∑

a:(a,i)∈Ẽn,a|m=0,
a|m+1 6=0

|Bnai| + 2n|Bn,0,i|

= 2n
∑

a:(a,i)∈Ẽn,0

|Bnai|. (4.32)Let k∗ = k∗i,n ∈ arg maxk gn(k + [i]22
−n). Then, by (4.3) we have

gn(k
∗ + [i]22

−n) =

n∑

s=0

as,k∗,i|s =

n∑

p=0

(
max

k

p∑

s=0

as,k,i|s − max
k

p−1∑

s=0

as,k,i|s

)

=
n∑

p=0

2p|Bp,0,i|p| (4.33)61



4.3: The Sequen
e Sn: Building Blo
ks and Propertieswhere the third equality holds by (4.16). Combining (4.32) and (4.33) yields for all
k ∈ Kn, i ∈ {0, 1}n and j = i|n−1 that

∑

a:(ω,(j,1))≺(a,i)

|Bnai| = 2−n

n∑

s=0

as,k∗,i|s −
∑

a:(a,i)�(ω,(j,1))

|Bnai|

= 2−n
n∑

s=0

as,k∗,i|s − 2−n
n−1∑

s=0

as,k,i|s ≥ 2−nanki (4.34)where we use (A2) and (4.19) for the se
ond equality.4.3 The Sequen
e Sn: Building Blo
ks and PropertiesThe sets Sn, n ∈ N0, are given in (4.5) where at this point for all n ∈ N0, k ∈ Kn,
i ∈ {0, 1}n and for (ω, (i|n−1, 1)) = (ωn−1,k,i|n−1, (i|n−1, 1)) ∈ Ẽn a

ording to (A2), wewill de�ne essentially

Anki = •

⋃

b:(b,i)

∈Ẽn,0

{
Bnbi ∩

(
[0, 2−nanki) +

∑

(a,j)≺(b,i),
j 6=i

|Bnaj| +
∑

a:(a,i)
�(ω,(i|n−1,1))

|Bnai|
)}

. (4.35)Here, the union is disjoint by (4.20). For the �nal de�nition of Anki we refer to Corol-lary 4.3.2 below. In Figure 4.3.1 we depi
t the sets Anki and Bnbi up to n = 2 forthe 
oe�
ients dis
ussed in Example 4.1.1. Note that for all (b, i) ∈ Ẽn,0 and all
(c, j) ∈ Ẽm,0, m ≤ n, we have

∑

(a,j)≺(b,i),
j 6=i

|Bnaj | +
∑

a:(a,i)|m�(c,j)

|Bnai|

=





∑

(a,j)≺(b,i)

|Bnaj| −
∑

a:(c,j)≺(a,i)|m,
(a,i)≺(b,i)

|Bnai|, (c, j) ≺ (b, i)|m
∑

(a,j)≺(b,i)

|Bnaj| +
∑

a:(b,i)�(a,i),
(a,i)|m�(c,j)

|Bnai|, else, (4.36)su
h that, by (4.20) and (4.35), we get
Anki ∩Bnbi =





∑

(a,j)≺(b,i)

|Bnaj | +
[
0,min

{
2−nanki

−
∑

a:(ω,(i|n−1,1))≺

(a,i)≺(b,i)

|Bnai|, |Bnbi|
})

, (ω, (i|n−1, 1)) ≺ (b, i),

∅, else. (4.37)
Next, we �nd that by Lemma 4.2.4 and (4.37) for all i ∈ {0, 1}n, k ∈ Kn, there is a62



4.3: The Sequen
e Sn: Building Blo
ks and Properties
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Figure 4.3.1: Jointly su

essive 
onstru
tion of Bnbi and Anki (top to bottom) using (4.16) and (4.35) up to n = 2.The 
orresponding 
oe�
ients are given in Example 4.1.1. In the �gure we denote by �⊂ X� a subset of a set X.unique (ω̃, i) = (ω̃nki, i) ≻ (ω, (i|n−1, 1)) = (ωn−1,k,i|n−1, (i|n−1, 1)), (ω̃, i) � (0, i), su
hthat
0 ≤ 2−nanki −

∑

a:(ω,(i|n−1,1))≺(a,i)≺(ω̃,i)

|Bnai| ≤ |Bn,ω̃,i|. (4.38)Hen
e, by (4.37) and (4.38)
Anki ∩Bnbi =





Bnbi, (ω, (i|n−1, 1)) ≺
(b, i) ≺ (ω̃, i),

∑

(a,j)≺(ω̃,i)

|Bnaj | + [0, |Anki ∩Bnbi|], (b, i) = (ω̃, i),

∅, else. (4.39)Note that (4.39) and (4.35) yield
Anki ⊆ •

⋃

b:(ω,(i|n−1,1))≺(b,i)�(ω̃,i)

Bnbi, (4.40)su
h that, in parti
ular,
Anki = •

⋃

b:(ω,(i|n−1,1))≺(b,i)�(ω̃,i)

Anki ∩ Bnbi. (4.41)63



4.3: The Sequen
e Sn: Building Blo
ks and PropertiesFor later referen
e we �nd that the latter yields
|Anki| = 2−nanki (4.42)where we use (4.37) and (4.38).Corollary 4.3.1. Assume (A1) and (A2). For all i ∈ {0, 1}n we have

Bn,0,i = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(0,i)

Bn+1,a,j. (4.43)Proof. Let k∗ = k∗i,n as in the proof of Lemma 4.2.4, and let
(ω, (i|n−1, 1)) = (ωn−1,k∗,i|n−1

, (i|n−1, 1)) ∈ Ẽnas in (A2). We now get by (4.34) for k = k∗ that for any i ∈ {0, 1}n

2−nan,k∗,i =
∑

a:(ω,(i|n−1,1))≺(a,i)

|Bnai| =
∑

a:(ω,(i|n−1,1))≺

(a,i)�(0,i)

|Bnai| (4.44)where the se
ond equality holds by (4.8). Using further that from (A2) and (4.8) wehave (ω, (i|n−1, 1)) ≺ (0, i) we get by (4.37) that
An,k∗,i ∩Bn,0,i

=
∑

(a,j)≺(0,i)

|Bnaj | +
[
0,min

{
2−nan,k∗,i −

∑

a:(ω,(i|n−1,1))

≺(a,i)≺(0,i)

|Bnai|, |Bn,0,i|
})

=
∑

(a,j)≺(0,i)

|Bnaj | + [0, |Bn,0,i|) = Bn,0,i. (4.45)Here, the se
ond equality follows by (4.44) and the last equality 
orresponds to (4.20).By (4.45), using (4.12) and (4.13) we �nd that qn,k∗,0,i = qn,∞,0,i su
h that by (4.11), inparti
ular,
Uk∗,0,i = U∞,0,i. (4.46)Further, (4.46) and (4.14) yield

0 /∈ U∞,0,i. (4.47)Now,
[0, |Bn,0,i|) = [0, qn,k∗,0,i) = •

⋃

β∈Uk∗,0,i

[x(0,β), y(0,β)) = •

⋃

β∈Uk∗,0,i

•

⋃

j∈{0,1}

Bn+1,(0,β),(i,j)

−
∑

(a,j)≺(0,i)

Bnaj = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(0,i)

Bn+1,a,j −
∑

(a,j)≺(0,i)

Bnaj . (4.48)64



4.3: The Sequen
e Sn: Building Blo
ks and PropertiesHere, the �rst equality follows from (4.45) and (4.13), the se
ond equality holds bypart 1 of Lemma 4.2.1, and the third equality is a 
onsequen
e of (4.16) where we usethat by (4.14) 0 /∈ Uk∗,0,i. The last equality holds by (4.46) and (4.15) where we againmay restri
t the union to Ẽn+1 instead of Ẽn+1,0 by (4.14). Finally, (4.20) and (4.48)yield the assertion.Corollary 4.3.2. Assume (A1) and (A2). For all k ∈ Kn and j ∈ {0, 1}n there is aunique (ω, (j, 1)) = (ωnkj, (j, 1)) ∈ Ẽn+1 su
h that
∑

(a,i)∈Ẽn+1:i|n=j,

(a,i)�(ω,(j,1))

|Bn+1,a,i| = 2−n

n∑

p=0

ap,k,j|p. (4.49)Proof. Let k ∈ Kn and (ω̃, j) = (ω̃nkj, j) ∈ Ẽn,0 as in (4.38). Further, let z ∈
arg maxβ∈Ukω̃j

|Nβ|. Then, z 6= 0 by (4.14), and z is unique by part 2 of Lemma 4.2.1.By part 4 of Lemma 4.2.1 we have
Ukω̃j = {β ∈ U∞,ω̃,j : Nβ ⊆ Nz} . (4.50)Further,

[0, qn,k,ω̃,j) = •

⋃

β∈Uk,ω̃,j

[x(ω̃,β), y(ω̃,β)) = •

⋃

β∈U∞,ω̃,j :

Nβ⊆Nz

[x(ω̃,β), y(ω̃,β))

= •

⋃

β∈U∞,ω̃,j :

Nβ⊆Nz

•

⋃

l∈{0,1}

Bn+1,(ω̃,β),(j,l) −
∑

(a,i)≺(ω̃,j)

|Bnai| (4.51)where the �rst equality holds by part 1 of Lemma 4.2.1 and the se
ond equality is a
onsequen
e of (4.50). The third equality then follows by (4.16) and (4.14). Next, by(4.39) and (4.51) we get that
Ankj ∩ Bnω̃j = •

⋃

β∈U∞,ω̃,j :

Nβ⊆Nz

•

⋃

l∈{0,1}

Bn+1,(ω̃,β),(j,l) = •

⋃

(a,i)∈Ẽn+1:(a,i)|n=(ω̃,j),

Nan+1⊆Nz

Bn+1,a,i

= •

⋃

(a,i)∈Ẽn+1:(a,i)�((ω̃,z),(j,1)),

(a,i)|n=(ω̃,j)

Bn+1,a,i (4.52)where the se
ond equality holds by (4.15). Here, by (4.50) and (4.14) we have that
β 6= 0 su
h that (4.8) justi�es the restri
tion to Ẽn+1 instead of Ẽn+1,0. The third

65



4.3: The Sequen
e Sn: Building Blo
ks and Propertiesequality is a 
onsequen
e of (4.7) and Lemma 4.2.2. Further, by (4.41) and (4.39)
Ankj = •

⋃

b:(ωn−1,k,j|n−1
,(j|n−1,1))

≺(b,j)≺(ω̃,j)

Bnbj
•∪ (Ankj ∩ Bnω̃j)

= •

⋃

(a,i)∈Ẽn+1:i|n=j,

(ωn−1,k,j|n−1
,(j|n−1,1))≺(a,i)|n≺(ω̃,j)

Bn+1,a,i
•∪ •

⋃

(a,i)∈Ẽn+1:(a,i)�((ω̃,z),(j,1)),

(a,i)|n=(ω̃,j)

Bn+1,a,i

= •

⋃

(a,i)∈Ẽn+1:i|n=j,(a,i)�((ω̃,z),(j,1)),

(ωn−1,k,j|n−1
,(j|n−1,1))≺(a,i)|n

Bn+1,a,i (4.53)where the se
ond equality follows from (4.21) and (4.52). Thus,
∑

(a,i)∈Ẽn+1:i|n=j,(a,i)�((ω̃,z),(j,1)),

(ωn−1,k,j|n−1
,(j|n−1,1))≺(a,i)|n

|Bn+1,a,i| = |Ankj| = 2−nankj (4.54)where the se
ond equality holds by (4.42). Further, (A2) yields
2−n+1

n−1∑

p=0

ap,k,j|p =
∑

(b,l)∈Ẽn:l|n−1=j|n−1,

(b,l)�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bnbl|

=
∑

(a,i)∈Ẽn+1:i|n−1=j|n−1,

(a,i)|n�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bn+1,a,i| (4.55)where the se
ond equality is a 
onsequen
e of (4.21). Note that by (4.19)
1

2

∑

(a,i)∈Ẽn+1:i|n−1=j|n−1,

(a,i)|n�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bn+1,a,i| =
∑

(a,i)∈Ẽn+1:i|n=j,

(a,i)|n�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bn+1,a,i|

= 2−n

n−1∑

p=0

ap,k,j|p. (4.56)Here, the se
ond equality holds by (4.55). The assertion follows by (4.56) and (4.54)where we put
ωnkj = (ω̃nkj, z). (4.57)Now, for (4.43) and (4.49) to hold for all n ∈ N0, by indu
tion on Corollaries 4.3.1and 4.3.2 it is su�
ient to note that (A1) and (A2) hold trivially in the 
ase n = 0. Inparti
ular, for all n ∈ N0, we have

Bn0i = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(0,i)

Bn+1,a,j , (4.58)66



4.3: The Sequen
e Sn: Building Blo
ks and Propertiesand for all n ∈ N0, k ∈ Kn and j ∈ {0, 1}n there is a unique (ω, (j, 1)) = (ωnkj, (j, 1)) ∈
Ẽn+1 su
h that

∑

(a,i)∈Ẽn+1:i|n=j,

(a,i)�(ω,(j,1))

|Bn+1,a,i| = 2−n
n∑

p=0

ap,k,j|p. (4.59)Combining (4.58) and (4.21) yields that for all n ∈ N0

Bnbi = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(b,i)

Bn+1,a,j, (b, i) ∈ Ẽn,0, (4.60)and by a repeated appli
a
tion of (4.60) we get that for all m,n ∈ N0, m < n,
Bmbi = •

⋃

(a,j)∈Ẽn:a|m+1 6=0,

(a,j)|m=(b,i)

Bnaj , (b, i) ∈ Ẽm,0. (4.61)Lemma 4.3.1. For all m,n ∈ N0, k ∈ Km and j ∈ {0, 1}m, i ∈ {0, 1}n with n 6= m or
j 6= i we have

Anki ∩Amkj = ∅.Proof. For m = n the assertion is immediate by (4.40) and (4.29). To prove the 
ase
m < n let (b, i) ∈ Ẽn,0 su
h that (b, i)|m+1 � (ωm,k,i|m, (i|m, 1)). Then, by (4.38) wehave

(ωm,k,i|m, (i|m, 1)) ≺ (ω̃m+1,k,i|m+1
, i|m+1) = (ωm+1,k,i|m+1

, (i|m+1, 1))|m+1where the equality holds by (4.57). Now, (b, i)|m+1 ≺ (ωm+1,k,i|m+1
, (i|m+1, 1))|m+1, andby the se
ond part in the proof of Lemma 4.2.2 the latter implies that (b, i)|m+2 ≺

(ωm+1,k,i|m+1
, (i|m+1, 1)) if m+ 2 ≤ n. Pro
eeding iteratively, we have that

(b, i) ≺ (ωn−1,k,i|n−1
, (i|n−1, 1)) if (b, i)|m+1 � (ωm,k,i|m, (i|m, 1)). (4.62)Further, note that

Amkj = •

⋃

(b,i)∈Ẽm+1:i|m=j,(b,i)�(ωmkj,(j,1)),

(ωm−1,k,j|m−1
,(j|m−1,1))≺(b,i)|m

Bm+1,b,i = •

⋃

(b,i)∈Ẽn:i|m=j,(b,i)|m+1�(ωmkj,(j,1)),

(ωm−1,k,j|m−1
,(j|m−1,1))≺(b,i)|m

Bnbi (4.63)where the �rst equality follows from (4.53) and the se
ond equality is a 
onsequen
eof (4.61). Now, 
omparing (4.40) and (4.63) for j = i|m yields the assertion by (4.62).To �nalize the proof let j 6= i|m. By (4.35) we �nd that
Amkj ⊆ •

⋃

b:(b,j)∈Ẽm,0

Bmbj = •

⋃

(c,l)∈Ẽn,0:l|m=j

Bncl (4.64)where the equality holds by (4.61). Using (4.29) the assertion follows by (4.35) and(4.64). The 
ase m > n follows by symmetry.67



4.3: The Sequen
e Sn: Building Blo
ks and PropertiesLemma 4.3.2. For all n ∈ N0 and k ∈ Kn we have
n

•

⋃

s=0

•

⋃

i∈{0,1}s

Aski ⊆ [0, 1). (4.65)Proof. For m < n ∈ N we have by (4.61) that
•

⋃

(b,i)∈Ẽn:b|m+1 6=0,

(b,i)|m=(0,j)

Bnbi = Bm,0,j , j ∈ {0, 1}m, (4.66)su
h that (4.29) with (4.66) yields
Bm,0,j ∩ Bp,0,l = ∅ for m 6= p or j 6= l. (4.67)Consequently, we get that

n−1

•

⋃

m=0

•

⋃

j∈{0,1}m

Bm,0,j =
n−1

•

⋃

m=0

•

⋃

j∈{0,1}m

•

⋃

(b,i)∈Ẽn:b|m+1 6=0,

(b,i)|m=(0,j)

Bnbi = •

⋃

(b,i)∈Ẽn

Bnbi, (4.68)and by (4.20) and (4.7) for all i ∈ {0, 1}n it holds that
•

⋃

(b,j)∈Ẽn

Bnbj
•∪ •

⋃

[j]2<[i]2

Bn,0,j = •

⋃

(b,j)≺(0,i)

Bnbj . (4.69)Now, from (4.68) and (4.69) we �nd that for all i ∈ {0, 1}n

∑

(b,j)≺(0,i)

|Bnbj| =

n−1∑

m=0

∑

j∈{0,1}m

|Bm,0,j| +
∑

[j]2<[i]2

|Bn,0,j| (4.70)su
h that by (4.16) and (4.70)
Bn,0,i = [0, |Bn,0,i|) +

n−1∑

m=0

∑

j∈{0,1}m

|Bm,0,j | +
∑

[j]2<[i]2

|Bn,0,j|. (4.71)Next, using (4.66) we have for all i ∈ {0, 1}n

•

⋃

b:(b,i)∈Ẽn,b|m=0,
b|m+1 6=0

Bnbi ⊆ Bm,0,i|m, (4.72)and (4.67) and (4.72) yield
n

•

⋃

m=0

Bm,0,i|m ⊇ •

⋃

b:(b,i)∈Ẽn,0

Bnbi, for all i ∈ {0, 1}n. (4.73)68



4.4: A Useful De
omposition of the Sets AnkiWe get from (4.35) that Anki ⊆ •

⋃
b:(b,i)∈Ẽn,0

Bnbi for all k ∈ Kn, i ∈ {0, 1}n, su
h thatusing Lemma 4.3.1
n

•

⋃

s=0

•

⋃

i∈{0,1}s

Aski ⊆
n⋃

s=0

⋃

i∈{0,1}s

⋃

b:(b,i)∈Ẽs,0

Bsbi ⊆
n⋃

s=0

s⋃

m=0

⋃

i∈{0,1}s

Bm,0,i|m

=
n⋃

s=0

s⋃

m=0

⋃

j∈{0,1}m

Bm,0,j =
n

•

⋃

s=0

•

⋃

i∈{0,1}s

Bs,0,i

=


0,

n∑

s=0

∑

i∈{0,1}s

|Bs,0,i|


 , k ∈ Kn, (4.74)where the se
ond in
lusion follows by (4.73), the se
ond equality holds by (4.67), andthe last equality is a 
onsequen
e of (4.71). Next, note that

n∑

s=0

∑

i∈{0,1}s

|Bs,0,i| =

n∑

s=0

∑

i∈{0,1}s

2−s

(
max
k∈Z

gs

(
k + [i]22

−s
)
−max

k∈Z

gs−1

(
k + [i]22

−s
))

≤
n∑

s=0

∑

i∈{0,1}s

∑

k∈Z

2−s
(
gs

(
k + [i]22

−s
)
− gs−1

(
k + [i]22

−s
))

=
n∑

s=0

∑

i∈{0,1}n

∑

k∈Z

2−n
(
gs

(
k + [i]22

−n
)
− gs−1

(
k + [i]22

−n
))

=
∑

i∈{0,1}n

∑

k∈Z

2−ngn

(
k + [i]22

−n
)

=

∫
gn(x) dx ≤ 1. (4.75)Here, the �rst equality follows dire
tly from (4.16), and the �rst inequality is a 
onse-quen
e of the fa
t that for ak ≤ bk ∈ R we have 0 ≤ maxk bk −maxk ak ≤∑k(bk − ak).As to the se
ond equality we use that for any j ∈ {0, 1}s we have gs (k + [j]22

−s) =
gs (k + [i]22

−n), i ∈ {0, 1}n, i|s = j, and |{i ∈ {0, 1}n : i|s = j}| = 2n−s. The lastinequality re�e
ts the assumption of unit Fré
het margins of the max-stable pro
essgenerated by g. Finally, (4.74) and (4.75) yield the assertion.4.4 A Useful De
omposition of the Sets AnkiRe
all from (4.16) and (4.35) that the sets Bmbi and Amki are de�ned in a joint su
-
essive way. The following notion of Dn,mki will generalize the sets Amki. In 
ontrastto (4.35), however, form < n they will require the 
orresponding sets Bnbi to be already
69



4.4: A Useful De
omposition of the Sets Ankide�ned. More pre
isely, we put
Dn,mki = •

⋃

b:(b,i)∈Ẽn,0

{
Bnbi ∩

(
[0, 2−nam,k,i|m) +

∑

a:(a,i)∈Ẽn,0:

(a,i)|m�(ω,(i|m−1,1))

|Bnai|

+
∑

(a,j)≺(b,i),
j 6=i

|Bnaj |
)} (4.76)

for all n ∈ N0, m ≤ n, k ∈ Km and i ∈ {0, 1}n where
(ω, (i|m−1, 1)) = (ωm−1,k,i|m−1

, (i|m−1, 1))as in (4.59). In parti
ular, we readily �nd by (4.76) that
Dn,mki ⊆ •

⋃

b:(b,i)∈Ẽn,0

Bnbi, (4.77)and (4.76) and (4.35) yield that Dn,nki = Anki. Further, for i, j ∈ {0, 1}n, i 6= j, we getby (4.29) and (4.76) that
Dn,mki ∩Dn,p,k+h,j = ∅, for all m, p ≤ n ∈ N0, h ∈ N0. (4.78)Next, using (4.77) and (4.61) we have for all m < n, (b, j) ∈ Ẽm,0 and all i ∈ {0, 1}nwith i|m = j that

Dn,mki ∩ Bmbj = Dn,mki ∩ •

⋃

a:(a,i)∈Ẽn,a|m+1 6=0,

(a,i)|m=(b,j)

Bnai = •

⋃

a:(a,i)∈Ẽn,a|m+1 6=0,

(a,i)|m=(b,j)

(Bnai ∩Dn,mki)su
h that, for later referen
e,
•

⋃

i∈{0,1}n:
i|m=j

(Dn,mki ∩Bmbj) = •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)∈Ẽn,0,(a,i)|m=(b,j),

(a,i)|m+1 6=(0,i|m+1)

(Dn,mki ∩ Bnai) (4.79)where the union on i is disjoint by (4.76) and (4.29).Lemma 4.4.1. For all m < n ∈ N0, k ∈ Km, i ∈ {0, 1}n and j = i|m we have
Dn,mki ⊆ •

⋃

a:(a,j)∈Ẽm,0,

(ω,(j|m−1,1))≺(a,j)�(ω̃,j)

Bmajwhere (ω, (j|m−1, 1)) = (ωm−1,k,j|m−1, (jm−1, 1)) and (ω̃, j) = (ω̃mkj, j).70



4.4: A Useful De
omposition of the Sets AnkiProof. Note �rst that (4.76) and (4.20) give
Dn,mki ∩Bnbi =

( ∑

(a,j)≺(b,i)

|Bnaj | + [0, |Bnbi|)
)
∩
(

[0, 2−nam,k,i|m)

+
∑

a:(a,i)∈Ẽn,0,

(a,i)|m�(ω,(i|m−1,1))

|Bnai| +
∑

(a,j)≺(b,i),
j 6=i

|Bnaj|
)
.

(4.80)
Next, applying (4.36) to (4.80) we �nd similar as in (4.37) that

Dn,mki ∩ Bnbi

=





∑

(a,j)≺(b,i)

|Bnaj | +
[
0,min

{
2−nam,k,i|m

−
∑

a:(ω,(i|m−1,1))≺(a,i)|m,

(a,i)≺(b,i)

|Bnai|, |Bnbi|
})

, (ω, (i|m−1, 1)) ≺ (b, i)|m,

∅, else. (4.81)
Further, using (4.19) repeatedly we get

∑

(ω,(j|m−1,1))≺(a,j)�(ω̃,j)

|Bmaj | = 2n−m
∑

c:(ω,(j|m−1,1))≺(c,i)|m�(ω̃,j)

|Bnci| (4.82)su
h that by (4.82) and (4.38) for all j ∈ {0, 1}m and all i ∈ {0, 1}n with i|m = j

2−namkj −
∑

c:(c,i)∈Ẽn,0,

(ω,(j|m−1,1))≺(c,i)|m�(ω̃,j)

|Bnci| ≤ 0. (4.83)Now, by (4.81) and (4.83) for all (b, i) ∈ Ẽn,0 with (b, i)|m � (ω, (i|m−1, 1)) or (ω̃, i|m) ≺
(b, i)|m we have

Dn,mki ∩ Bnbi = ∅. (4.84)Finally, (4.77) and (4.84) yield that for all i ∈ {0, 1}n with i|m = j

Dn,mki ⊆ •

⋃

b:(b,i)∈Ẽn,0,

(ω,(j|m−1,1))≺(b,i)|m�(ω̃,j)

Bnbi = •

⋃

a:(a,j)∈Ẽm,0,

(ω,(j|m−1,1))≺(a,j)�(ω̃,j)

Bmaj (4.85)where the equality holds by (4.61).By (4.81) and (4.85) we may now state for later referen
e that
|Dn,mki| = 2−nam,k,i|m. (4.86)71



4.4: A Useful De
omposition of the Sets AnkiLemma 4.4.2. For all m < n ∈ N0, k ∈ Km and j ∈ {0, 1}m we have
Amkj = •

⋃

i∈{0,1}n:
i|m=j

Dn,mki.Proof. Note that by (4.40) and Lemma 4.4.1 it is su�
ient to show for all (b, j) ∈ Ẽm,0with (ω, (j|m−1, 1)) ≺ (b, j) � (ω̃, j) that
Bmbj ∩Amkj = Bmbj ∩ •

⋃

i∈{0,1}n:
i|m=j

Dn,mki. (4.87)To this end, we shall 
onsider a twofold 
ase di�erentiation. First, let 2−mamkj −∑
a:(ω,(j|m−1,1))≺(a,j)≺(b,j) |Bmaj | ≤ |Bmbj|. Then, by (4.37)
Bmbj ∩Amkj =

∑

(a,i)≺(b,j)

|Bmai| +
[
0, 2−mamkj −

∑

a:(ω,(j|m−1,1))≺(a,j)≺(b,j)

|Bmaj |
)

= •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

Bnai (4.88)where the se
ond equality follows by (4.63) and (4.61). Now, (4.88) and a repeatedappli
ation of (4.19) yield that for all i ∈ {0, 1}n with i|m = j

∑

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

|Bnai| = 2m−n

(
2−mamkj −

∑

a:(ω,(j|m−1,1))≺

(a,j)≺(b,j)

|Bmaj |
)

= 2−namkj −
∑

c:(ω,(j|m−1,1))≺

(c,i)|m≺(b,j)

|Bnci| (4.89)and by (4.89), in parti
ular,
∑

c:(c,i)�(a,i),
(c,i)|m=(b,j)

|Bnci| ≤ 2−namkj −
∑

c:(ω,(j|m−1,1))≺(c,i)|m≺(b,j)

|Bnci| (4.90)for all a ∈ Bn with (a, i)|m = (b, j) and (a, i)|m+1 � (ω, (j, 1)). Further, by (4.89) wehave for (ω, (j, 1)) ≺ (a, i)|m+1 that
2−namkj −

∑

c:(ω,(j|m−1,1))≺(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci| ≤ 0. (4.91)
72



4.4: A Useful De
omposition of the Sets AnkiNow, by (4.20) we get
•

⋃

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

Bnai = •

⋃

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

(
[0, |Bnai|) +

∑

(c,l)≺(a,i)

|Bncl|
)

= •

⋃

a:(a,i)|m=(b,j)

( ∑

(c,l)≺(a,i)

|Bncl| +
[
0,min

{
2−namkj

−
∑

c:(ω,(j|m−1,1))≺(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci|, |Bnai|
}))

= •

⋃

a:(a,i)|m=(b,j)

(Dn,mki ∩Bnai) (4.92)where we use (4.90) to (4.91) for the se
ond equality and (4.81) for the last equality.Next, by (4.88) and (4.92) we �nd that
Bmbj ∩ Amkj = •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)|m=(b,j)

(Dn,mki ∩Bnai)

= Bmbj ∩ •

⋃

i∈{0,1}n:
i|m=j

Dn,mki (4.93)where the last equality holds by (4.79). To 
on
lude the proof 
onsider now the 
ase
2−mamkj −

∑
a:(ω,(j|m−1,1))≺(a,j)≺(b,j) |Bmaj | > |Bmbj|. Then, we have by (4.37) that

Bmbj ∩Amkj =
∑

(a,i)≺(b,j)

|Bmai| + [0, |Bmbj |)

= Bmbj = •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)∈Ẽn,a|m+1 6=0,

(a,i)|m=(b,j)

Bnai (4.94)where the se
ond equality is a 
onsequen
e of (4.20) and the last equality holds by(4.61). In parti
ular, using (4.94) and applying (4.19) repeatedly we �nd that
∑

a:(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

|Bnai| = 2m−n|Bmbj | < 2−namkj −
∑

c:(ω,(j|m−1,1))≺

(c,i)|m≺(b,j)

|Bnci| (4.95)where the inequality merely re�e
ts the above assumption for the se
ond 
ase. Now,for any a ∈ Bn su
h that (a, i)|m = (b, j) we have by (4.95) that
2−namkj −

∑

c:(ω,(j|m−1))≺

(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci| > |Bnai|. (4.96)73



4.5: Main ResultHen
e, we get that
•

⋃

a:(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

Bnai = •

⋃

(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j))

( ∑

(c,l)≺(a,i)

|Bncl| + [0, |Bnai|)
)

= •

⋃

(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

( ∑

(c,l)≺(a,i)

|Bncl| +
[
0,min

{
2−namkj

−
∑

c:(ω,(j|m−1,1))≺

(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci|, |Bnai|
}))

= •

⋃

a:(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

(Dn,mki ∩ Bnai) (4.97)where the �rst equality holds by (4.20) and the se
ond equality follows from (4.96).The last equality 
orresponds to (4.81). Now, similar to the above, the result followsby 
ombining (4.94) and (4.97) �rst, and using (4.79) to 
on
lude.Note that by (4.77) and (4.29) we get that
•

⋃

j∈{0,1}n

Dn,mkj ∩ •

⋃

b:(b,i)∈Ẽn,0

Bnbi = Dn,mki, i ∈ {0, 1}n, (4.98)su
h that (4.98) and Lemma 4.4.2 yield an equivalent representation of Dn,mki, namely
Dn,mki = Am,k,i|m ∩ •

⋃

b:(b,i)∈Ẽn,0

Bnbi for all i ∈ {0, 1}n.By Lemma 4.4.2 and Lemma 4.3.1 we have
•

⋃

j∈{0,1}m

Amkj = •

⋃

i∈{0,1}n

Dn,mki, m ≤ n ∈ N0, k ∈ Km. (4.99)Further, Lemma 4.4.2 yields that Dn,mki ⊆ Amkj for all j ∈ {0, 1}m, k ∈ Km and all
i ∈ {0, 1}n with i|m = j. Then, the fa
t that for all n ∈ N0, k ∈ Kn and i ∈ {0, 1}n wehave

Dn,mki ∩Dn,pki = ∅, m < p ≤ n, (4.100)holds by Lemma 4.3.1.4.5 Main ResultIn the following theorem we shall make use of the sets Sn given in (4.5) where theunions are now seen to be disjoint by Lemma 4.3.2.74



4.5: Main ResultTheorem 4.5.1. The sequen
e of sets (Sn)n∈N0 ↑ S is monotoni
, and
2−n+1

∑

k∈Kn

∑

i∈{0,1}n

n∑

s=0

as,k,i|s − φ(h | gn) = |Sn ∩ (Sn − h)|, n ∈ N0, h ∈ Z.Proof. By Lemma 4.3.2 we have
|Sn ∩ (Sn − h)| =

∑

k∈Z

∣∣∣∣∣∣

n

•

⋃

s=0

•

⋃

i∈{0,1}s

Aski ∩
n

•

⋃

s=0

•

⋃

i∈{0,1}s

As,k+h,i

∣∣∣∣∣∣

=
∑

k∈Z

∣∣∣∣∣∣
•

⋃

i∈{0,1}n

n

•

⋃

s=0

Dn,ski ∩ •

⋃

i∈{0,1}n

n

•

⋃

s=0

Dn,s,k+h,i

∣∣∣∣∣∣

=
∑

k∈Z

∣∣∣∣∣∣
•

⋃

i∈{0,1}n

( n

•

⋃

s=0

Dn,ski ∩
n

•

⋃

s=0

Dn,s,k+h,i

)∣∣∣∣∣∣

=
∑

k∈Z

∑

i∈{0,1}n

∣∣∣∣∣
n

•

⋃

s=0

Dn,ski ∩
n

•

⋃

s=0

Dn,s,k+h,i

∣∣∣∣∣ (4.101)where the se
ond equality holds by (4.99), and (4.78) gives the third equality. Next,note that (4.76) and (4.100) yield
n

•

⋃

s=0

Dn,ski = •

⋃

b:(b,i)∈Ẽn,0

{
Bnbi ∩

( ∑

(a,j)≺(b,i),
j 6=i

|Bnaj |

+
n

•

⋃

s=0

(
[0, 2−nas,k,i|s) +

∑

a:(a,i)∈Ẽn,0,

(a,i)|s�(ω,(i|s−1,1))

|Bnai|
))}

= •

⋃

b:(b,i)∈Ẽn,0

{
Bnbi ∩

( ∑

(a,j)≺(b,i),
j 6=i

|Bnaj | +
[
0, 2−n

n∑

s=0

as,k,i|s

))} (4.102)where the se
ond equality holds by (4.59) and (4.19). Using (4.102) we get that
n

•

⋃

s=0

Dn,ski ∩
n

•

⋃

s=0

Dn,s,k+h,i =
n

•

⋃

s=0

Dn,skiif and only if
n∑

s=0

as,k,i|s ≤
n∑

s=0

as,k+h,i|s,75



4.5: Main Resultfor any n ∈ N0, h ∈ Z, k ∈ Kn and i ∈ {0, 1}n. Combining the latter result with (4.101)and (4.4) yields the assertion where
∣∣∣∣

n

•

⋃

s=0

Dn,ski

∣∣∣∣ = 2−n

n∑

s=0

as,k,i|sfollows dire
tly from (4.86).Corollary 4.5.1. For any extremal 
oe�
ient fun
tion φ of a dissipative max-stablepro
ess on Z whose spe
tral fun
tion g may be approximated by (4.3) there exists ameasurable set S ⊂ R su
h that
2 − φ(h | g) = |S ∩ (S − h)|, h ∈ Z.Proof. Using (4.3) we �nd that

∫
gn(x)dx = 2−n

∑

k∈Kn

∑

i∈{0,1}n

n∑

s=0

as,k,i|s → 1 (n→ ∞)by the fa
t that gn ↑ g, and by ∫ g(x)dx = 1. Now, the assertion follows dire
tly fromTheorem 4.5.1.The following 
orollary extends the above result to general dissipative max-stable pro-
esses, i.e. the assumption (4.3) on the spe
tral fun
tion g is abandoned. As indi
atedin Se
tion 4.1 its proof may be based on the 
onstru
tion of a suitable fun
tion ξ su
hthat gn ↑ ξ and φ(· | ξ) = φ(· | g), see [19℄ for details.Corollary 4.5.2 ([19, Corollary 3℄). For any extremal 
oe�
ient fun
tion φ of a dis-sipative max-stable pro
ess on Z there exists a measurable set S ⊂ R su
h that
2 − φ(h) = |S ∩ (S − h)|, h ∈ Z.

76



Chapter 5A Novel Chara
teristi
 for theDependen
e Stru
ture of ClusteredExtremes
5.1 Exploring Extremal ClustersIn the pre
eding 
hapters we 
hara
terized extremal 
lusters of stationary max-stablepro
esses by basi
ally two well-known summary measures. We dis
ussed the extremalindex that re�e
ts the expe
ted size of su
h 
lusters and we studied the extremal
oe�
ient fun
tion that des
ribes bivariate dependen
ies at all lags of su
h pro
esses.In the following we will abandon the restri
tion to max-stable pro
esses and extendthe study of extremal measures to the ri
h 
lass of pro
esses that lie in the domain ofattra
tion of a max-stable pro
ess, 
f. [22℄. Note that the latter assumption will hold inparti
ular for the important GARCH family of time series models that we shall 
onsiderin detail below. In the �rst pla
e, however, we shall turn to a more general problem.That is, we will 
riti
ally examine the informational value of the existing measures θand φ with respe
t to typi
al questions about the stru
ture of extremes that may
ome up in many appli
ations. Our reasoning will then give rise to the proposal of anovel summary measure for extremal dependen
e. Note that the 
urrent 
hapter hasbeen motivated to a large extent by the study of homometri
 patterns in Se
tion 3.3,i.e. su
h simple 
luster types that are not distinguishable by the extremal 
oe�
ientfun
tion. As in that se
tion we used a rather te
hni
al setup we will 
larify below bya brief example the possible impli
ations of su
h patterns in pra
ti
e. Although weshall for 
onvenien
e in
orporate our dis
ussion into a stylized �nan
ial 
ontext whoseextremal behavior has been studied in detail [41, 20℄ we remark that all arguments willlikewise 
over further �elds of appli
ation. To begin with, it appears to be reasonableto require an appropriate measure for the within extremal 
luster stru
ture to addressthe following questions:(Q1) What is the probability for a se
ond, third et
. extreme event o

uring two, three77



5.1: Exploring Extremal Clusters
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Figure 5.1.1: Volatility 
lustering for the daily absolute log returns of the S&P 500 index from 01.04.80 to 31.03.10(7569 re
ords). The marked extreme events are enlarged in the respe
tive bottom pi
tures and 
orrespond to the �Bla
kMonday� in 1987, the Russian �nan
ial 
risis in 1998 and the dot-
om bubble burst in 2000. The remaining event in2008 is surrounded by the unusual volatility attributable to the so-
alled subprime mortgage 
risis.et
. days after the outset of a �nan
ial 
risis?(Q2) What is the stru
ture of a 
luster of high-level ex
eedan
es and how does the
ourse of extreme events (i.e. the evolution of a stress period or 
risis over time)typi
ally look like?(Q3) How may the memory spread of �nan
ial markets with respe
t to sho
ks be
hara
terized, i.e. how long does a 
risis typi
ally last?Hen
e, many possible questions fo
us on expe
ted events in the near future given a�rst extreme event today (i.e. the beginning of a temporary sho
k or 
risis). Notethat the above setup may readily be extended to a multivariate approa
h that wewill not 
onsider here. To illustrate the relevan
e of these matters, in Figure 5.1.1 wedisplay the daily absolute logarithmi
 returns of the S&P 500 index ranging from 1980to 2010. We understand that an extremal 
luster is formed by several adja
ent high-level ex
eedan
es where di�erent 
lusters are generally separated by longer periods78



5.1: Exploring Extremal Clusters
k 1 2 3 4 5 6 7 8 9 10 11 12

P1 1/3 1/3 1/3 1/3 1/3
P2 1/3 1/3 1/3
P3 1/6 1/6 1/6 1/6 1/6 1/6
P4 1/6 1/6 1/6 1/6 1/6 1/6Table 5.1.1: Coe�
ients ak of the M2 pro
esses P1 to P4 dis
ussed in Example 5.1.1.of low levels. Here, we fo
us on the within-
luster dependen
e stru
ture and assumeobservations in di�erent 
lusters to be independent. The 
ourses of four typi
al 
lustersindi
ated by an arrow in the upper plot are depi
ted in the bottom sub�gures. Apartfrom an obvious volatility 
lustering at high levels they also suggest the presen
e ofa roughly 
ommon pattern. In parti
ular, the outset of ea
h 
luster of extremes isfairly well distinguishable in the �rst three 
ases whi
h illustrates the relevan
e of
onditioning on the beginning of a 
risis when judging probabilities for future extremeevents. In 
ontrast, the event in 2008 is a

ompanied by an unusually long-lastingvolatility 
luster whi
h 
ompli
ates the identi�
ation of su
h a de�nite starting point.Still, in all four sub�gures we �nd that just giving the average 
luster size (whereusing [64℄ we get that θ ≈ 1/3 , see also Example 5.3.1) does not reveal the 
hara
teristi
stru
ture of extreme events that is evident from the above plots. More pre
isely, thelatter show a 
learly visible se
ond peak �ve to six trading days after the start of ea
h
luster. In pra
ti
e, e.g. for �nan
ial institutions the expe
ted lo
ation of su
h eventswithin a 
luster of extremes is essential in order to e�
iently rea
t to the patternof inherent risk they des
ribe. We shall therefore require a suitable 
hara
teristi
that rea
hes beyond the extremal index to reliably indi
ate strength and lo
ation ofsubsequent extreme events within a 
risis. The short
omings of the extremal 
oe�
ientfun
tion in this regard may best be understood by the following example.Example 5.1.1. Consider the M2 pro
esses P1 to P4 that are given by their 
o-e�
ients ak a

ording to Table 5.1.1. Re
all from (3.28) that the 
oe�
ients in Ta-ble 5.1.1 in parti
ular determine the stru
ture of the extremal 
lusters for the respe
tivepro
esses, also 
alled their signature patterns [68℄. A

ording to Se
tion 2.2 the 
or-responding extremal indi
es are given by θP1 = θP2 = 1/3 and θP3 = θP4 = 1/6.Further, we 
ontrast the extremal 
oe�
ient fun
tion φ with a new 
hara
teristi
 γ inTable 5.1.2. We will give a formal de�nition of the latter in Se
tion 5.2 but at thispoint it will be su�
ient to preliminarily re
all the representation given in Chapter 1,i.e.

γ(h | Y ) = lim
u→∞

P (Yh > u | Y0 > u, and Y0 �rst event in the extremal 
luster) (5.1)for all h ∈ N. For 
onvenien
e we repeat (3.25) where the extremal 
oe�
ient fun
tionis given by
2 − φ(h | Y ) = lim

u→∞
P (Yh > u | Y0 > u), h ∈ Z,whi
h highlights the similar 
onstru
tion of the two 
hara
teristi
s. It is thereforeeven more remarkable that their interpretation will di�er substantially. First and79



5.2: Properties of Dependen
e Measures
h 0 1 2 3 4 5 6 7 8 9 10 11 12

P1 1 1/3 1/3 1/3 0 · · ·
2 − φ(h)

P2 1 1/3 1/3 1/3 0 · · ·
P1 1 1 0 1 0 · · ·

γ(h)
P2 1 0 1 1 0 · · ·
P3 1 1/3 1/3 1/6 1/6 1/3 1/3 1/6 1/6 1/6 1/6 1/6 0

2 − φ(h)
P4 1 1/3 1/3 1/6 1/6 1/3 1/3 1/6 1/6 1/6 1/6 1/6 0
P3 1 1 1 0 0 0 1 0 1 0 0 1 0

γ(h)
P4 1 1 0 0 0 0 1 1 0 1 0 1 0Table 5.1.2: Extremal measures φ and γ for pro
esses P1 to P4 dis
ussed in Example 5.1.1.obvious, note that the limiting probabilities de�ning φ are not tied to the beginningof an extremal 
luster whi
h is in 
ontrast to (Q1) dis
ussed above. Moreover, wewill show in Corollary 5.2.2 below that γ tra
es the evolution of an extremal 
lusterin the way suggested by (Q1) and (Q2). In parti
ular, Table 5.1.2 shows that for P1and P2 the extremal 
oe�
ient fun
tion is unable to distinguish between a simplere�e
tion of the pro
esses whereas γ exa
tly mirrors the pattern of extremes. Theproblem, however, is not restri
ted to the rather obvious 
ase of 
ongruent patternsas 
an be seen from the behavior of φ for P3 and P4 whi
h represent an example ofthe homometri
 non
ongruent patterns dis
ussed in Se
tion 3.2. Here, we �nd on
emore that γ 
onveys the information requested by (Q1) and (Q2). Con
erning (Q3),however, Table 5.1.2 suggests that both φ and γ are suitable 
hara
teristi
s in orderto re�e
t the duration of extremal 
lusters.The above simple example underlines the ability of γ to draw a priori 
on
lusions aboutthe shape of an extremal 
luster. Note that from the point of view of a �nan
ial in-stitution s
enarios of the kind P1 and P2 will 
learly require a di�erent managementof risk that is not distinguishable by the extremal 
oe�
ient fun
tion. More pre
isely,under P1 measures against two subsequent sho
ks and hen
e a larger risk at the be-ginning of the 
luster will have to be taken from the outset whereas under P2 thoseevents will o

ur only at the end of the 
luster. In parti
ular, they will be signalized bya single extreme event two days in advan
e. In addition to the favourable propertiesof γ with respe
t to questions of the above kind the new 
hara
teristi
 will turn outto have a remarkably easy relation with the extremal index whi
h is not the 
ase forthe extremal 
oe�
ient fun
tion. We will dis
uss those questions in Se
tion 5.2 wherewe will also study further properties both of γ and φ. In Se
tion 5.3 we will evaluatethe above measures in the GARCH(1,1) 
ase using a modi�ed tail 
hain approa
h. Weshall 
on
lude with an example regarding the above S&P 500 data set.5.2 Properties of Dependen
e MeasuresIn the following we will study the above extremal measures for stationary pro
esses inthe domain of attra
tion of a max-stable pro
ess, see [22℄ for details. To this end, we will80



5.2: Properties of Dependen
e Measuresassume throughout for the stationary sto
hasti
 pro
ess (Xt)t∈Z that a 
orrespondingmax-stable limiting pro
ess (Yt)t∈Z exists, 
f. (2.1). More pre
isely, we will require all�nite dimensional distributions of (Xt) to belong to the maximum domain of attra
tionof a multivariate extreme value distribution. Here, without loss of generality we mayrestri
t the latter to standard Fré
het margins, i.e. FY0(x) = exp(−x−1), x > 0. It willbe advantageous later on to 
over the above assumptions equivalently by means of amultivariate regular variation 
ondition, i.e.
xP

((
X1

x
, . . . ,

Xm

x

)
∈ ·
)

v→ µ(·), (x→ ∞), (C1)for a Radon measure µ on [−∞,∞]m\{0}m and allm ∈ N. Here, by v→ we denote vague
onvergen
e, see e.g. [50, 41℄ for details. Throughout, we will put MS = maxt∈S Xt foran index set S whereM∅ = 0 andMm,n = M{m,...,n}, m ≤ n. Further, we will frequentlymake use of the sets Sm = {−m, . . . ,−1}, Sm,h = Sm ∪ {h} and Sm,0,h = Sm,h ∪ {0}.We shall refer to the familiar extremal index θ of the pro
ess (Xt) using a parti
ularlyillustrative de�nition, i.e.
θ(h) = lim

n→∞
P (Xt ≤ n, t ∈ Srn,h | X0 > n), h ∈ Z, (5.2)su
h that θ(−1) = θ 
orresponds to (2.3) forD = 1 under a weak mixing 
ondition [45℄,see also [61℄. Here, rn → ∞ is a suitable sequen
e that, in parti
ular, satis�es rn/n→ 0as n→ ∞. The limiting probability in (5.2) also provides an alternative interpretationof the extremal index in terms of the probability of a high-level ex
eedan
e being the�rst (last) in a 
luster of extremes. Re
all that in general we have θ ∈ [0, 1] where the
ase θ = 0 may reasonably be ex
luded a priori in most appli
ations. We will thereforeassume throughout that for some in
reasing sequen
e rn with rn/n → ∞ as n → ∞the well-known 
ondition

lim
m→∞

lim sup
n→∞

P (M−rn,−m−1 > n | X0 > n) = 0 (C2)holds, see e.g. [45℄, whi
h restri
ts the in�uen
e of an extreme observation over time.In parti
ular, (C2) is su�
ient for θ > 0, and it guarantees the existen
e of the limitin (5.2), 
f. Proposition 5.2.1. Note that (C2) may be stronger than ne
essary butholds for the important 
lass of GARCH(1,1) pro
esses that we will 
onsider below,
f. Corollary 5.3.1. See also [58℄ for further examples. We will show that the followingmore general 
on
ept
θm,n(h) = P (Xt ≤ n, t ∈ Sm,h | X0 > n), h ∈ Z, (5.3)is su�
ient under (C2) in order to investigate any of the extremal measures dis
ussedabove.Proposition 5.2.1. Under 
onditions (C1) and (C2) we have that

θ(h) = lim
m→∞

lim
n→∞

θm,n(h), h ∈ Z.In parti
ular, θ = limm→∞ limn→∞ θm,n(−1) > 0.81



5.2: Properties of Dependen
e MeasuresProof. Note �rst that the limit θm(h) = limn→∞ θm,n(h) exists by (C1). Consequently,for all m ∈ N, h ∈ Z, we have
0 ≤ θm(h) − lim sup

n→∞
P (Xt ≤ n, t ∈ Srn,h | X0 > n)

≤ θm(h) − lim inf
n→∞

P (Xt ≤ n, t ∈ Srn,h | X0 > n)

= lim sup
n→∞

[
θm,n(h) − P (Xt ≤ n, t ∈ Srn,h | X0 > n)

]

= lim sup
n→∞

P (M−rn,−m−1 > n,Xt ≤ n, t ∈ Sm,h | X0 > n)

≤ lim sup
n→∞

P (M−rn,−m−1 > n | X0 > n).Now, by (C2) the r.h.s. tends to 0 as m→ ∞, and we get that
θ(h) = lim

m→∞
θm(h) = lim

m→∞
lim

n→∞
θm,n(h), h ∈ Z,as θm(h) de
reases in m. Finally, the fa
t that θ > 0 follows from the dis
ussion afterCondition 10.8 in [2℄.Note that under the 
onditions of Proposition 5.2.1 we may in general not 
on
lude that

θ(h) > 0, h ∈ N. We will now give a formal de�nition of the extremal 
hara
teristi
sdis
ussed in Se
tion 5.1 for stationary pro
esses in the domain of attra
tion of a max-stable pro
ess. First, for all h ∈ Z the extremal 
oe�
ient fun
tion following [56℄ isgiven by
φ(h) = 1 + θ0(h) = 2− lim

n→∞
P (Xh > n | X0 > n) = 2− lim

n→∞
P (Yh > n | Y0 > n) (5.4)where the third equality by (C1) holds for the max-stable limiting pro
ess (Yt), 
f. (3.25).Con
erning the questions raised in Se
tion 5.1 it may be bene�
ial to repla
e (5.4) bya similar probability that is tied to the �rst extreme event in a 
luster as in (5.1).We therefore propose to modify the above 
on
ept and 
onsider as a 
losely related
hara
teristi
 the fun
tion γ(h) whi
h we shall de�ne by

γ(h) = 1 − θ(h)

θ
= lim

m→∞
γm(h), h ∈ N0, (5.5)where γm(h) = limn→∞ P (Xh > n | X0 > n,Xt ≤ n, t ∈ Sm). Although De�ni-tions (5.4) and (5.5) appear to be 
losely related, in the following we will dis
uss thattheir properties may di�er substantially.To begin with, note that θ and φ(h), h ∈ N, are obviously invariant under time reversalof the pro
ess (Xt), i.e. θ(Xt, t ∈ Z) = θ(X−t, t ∈ Z) and φ(h) = φ(−h), but that ingeneral neither θ(h | Xt, t ∈ Z) = θ(h | X−t, t ∈ Z) nor γ(h | Xt, t ∈ Z) = γ(h |

X−t, t ∈ Z), h ∈ N, 
f. Example 5.1.1. From the above de�nitions we readily have that
0 ≤ θ(h) ≤ θ ≤ φ(h) − 1 ≤ 1for ea
h h ∈ N. The following theorem gives an exa
t relationship between the sum ofthe fun
tion γ(h), h ∈ N0, and the extremal index.82



5.2: Properties of Dependen
e MeasuresTheorem 5.2.1. Under 
onditions (C1) and (C2) we have that
∑

h∈N0

γ(h) =
1

θ
. (5.6)Proof. By (5.5) it su�
es to show that ∑h∈N0

(θ − θ(h)) = 1. To this end, note thatfor all h ∈ N we have
θ − θ(h) = lim

m→∞
lim

n→∞
P (X−m−h ≤ n, . . . , X−1−h ≤ n, X−h > n | X0 > n)

= lim
m→∞

lim
n→∞

P (X−m ≤ n, . . . , X−1−h ≤ n, X−h > n | X0 > n)

− lim
m→∞

lim
n→∞

P (M−m−h,−m−1 > n, X−m ≤ n, . . . , X−1−h ≤ n,

X−h > n | X0 > n)where the latter term is bounded from above by 0 through (C2). Now, for all p ∈ Nwe get that
p∑

h=0

(θ − θ(h)) = lim
m→∞

lim
n→∞

P (X−m ≤ n, . . . , X−p−1 ≤ n | X0 > n)where
lim
p→∞

lim
m→∞

lim
n→∞

P (X−m ≤ n, . . . , X−p−1 ≤ n | X0 > n)

≥ lim inf
n→∞

P (X−rn ≤ n, . . . , X−q−1 ≤ n | X0 > n) for all q ∈ N.Finally, 
ondition (C2) yields that the r.h.s. tends to 1 as q → ∞.In parti
ular, Theorem 5.2.1 highlights the fa
t that under the above 
onditions θ = 1is equivalent to γ(h) = 0, h ∈ N. Note also that, depending on the point of view, (5.6)may provide a re�ned interpretation of the extremal index, see [20, Se
tion 8.1.2℄ for adis
ussion. Further, the proof of Theorem 5.2.1 yields the following limiting relationshipbetween θ and θ(h).Corollary 5.2.1. Under the 
onditions of Theorem 5.2.1 we have that
θ = lim

n→∞

1

n

n∑

h=0

θ(h).In the following we shall 
onsider the M3 representation for dissipative max-stablepro
esses as in (3.28). We will �rst derive the 
orresponding expressions for the aboveextremal 
hara
teristi
s. 83



5.2: Properties of Dependen
e MeasuresTheorem 5.2.2. For an M3 pro
ess A de�ned by its 
oe�
ients ajp ≥ 0, j ∈ I, p ∈ Z,we have
θ(h | A) =

∑

j∈I

∑

p∈Z

(ajp − āj,p,h)+, h ∈ Z,where āj,p,h := max{aj,−∞, . . . , aj,p−1, aj,p+h}.Proof. By de�nition of A we �nd that
P (At ≤ n, t ∈ S) = P (Zj,t−k ≤ n/ajk, j ∈ I, k ∈ Z, t ∈ S)

= P (Zj,p ≤ n/ajk, j ∈ I, p ∈ Z, k ∈ S + p)

= exp

{
− 1

n

∑

j∈I

∑

p∈Z

max
k∈S+p

ajk

} (5.7)where from the fa
t that ∑j

∑
k ajk = 1 it follows immediately that
∑

j∈I

∑

p∈Z

max
k∈S+p

ajk ≤ |S|. (5.8)Moreover, for all j ∈ I we have
∑

p∈Z

max
k∈Sm,0,h+p

ajk =
∑

p∈Z

max
k∈Sm,h+p

ajk +
∑

p∈Z

(
ajp − max

k∈Sm,h+p
ajk

)
+
. (5.9)Now, using (5.3), and (5.7) to (5.9) we �nd that

θm(h) = lim
n→∞

exp

{
− 1

n

∑

j∈I

∑

p∈Z

max
k∈Sm,h+p

ajk

}

· lim
n→∞

(
1 − exp

{
− 1

n

∑

j∈I

∑

p∈Z

(
ajp − max

k∈Sm,h+p
ajk

)
+

})

1 − exp{−1/n}

=
∑

j∈I

∑

p∈Z

(
ajp − max

k∈Sm,h+p
ajk

)

+

.Finally,
θ(h) = lim

m→∞
θm(h) =

∑

j∈I

∑

p∈Z

(ajp − āj,p,h)+,where āj,p,h = limm→∞maxk∈Sm,h+p ajk.Note in parti
ular that Theorem 5.2.2 generalizes the well-known fa
t that θA = θ(−1 |
A) =

∑
j∈I maxp∈Z ajp, 
f. [61℄. As a useful 
orollary of Theorems 5.2.1 and 5.2.2 to anydependen
e fun
tion γ(h), h ∈ N0, we are now able to asso
iate a simple M2 examplepro
ess Ã = Ã(γ) that represents γ(h). 84



5.2: Properties of Dependen
e MeasuresCorollary 5.2.2. Assume (C1) and (C2). For any fun
tion γ(h), h ∈ N0, a

ordingto (5.5) let the M2 pro
ess Ã be given by the 
oe�
ients
ãk =





γ(k)∑
h∈N0

γ(h)
= θγ(k), k ∈ N0,

0, −k ∈ N.Then, we have that γ(h) = γ(h | Ã), h ∈ N0.Note that Ã has the following useful properties that 
an be easily seen. First, we �ndthat ã0 = θ ≥ ãh, h ∈ N0. That is, any extremal 
luster of Ã starts with a valuedriven by ã0 that dominates the following realizations in the same 
luster. Se
ond,note that γ(h) = Ãh/Ã0 = ãh/ã0, h ∈ N0, where Ã0 represents the starting point ofthe 
urrent 
luster. In parti
ular, we also have that γ(h) = 0 is equivalent to ãh = 0,for all h ∈ N. To sum up, in order to illustrate and a
tually visualize the impli
ationsof γ(h) for arbitrarily 
omplex pro
esses it may be useful to study the simple pro
ess Ãinstead. Note that the possibility to readily state a valid example pro
ess for any validfun
tion γ(h) is in sharp 
ontrast to the di�
ulties en
ountered for the re
onstru
tionof example pro
esses 
onforming to an extremal 
oe�
ient fun
tion φ(h), see Chapter 3.Further, as opposed to the latter 
hara
teristi
 whi
h is ne
essarily positive de�nite,we get from Corollary 5.2.2 that any summable fun
tion γ : N0 → [0, 1] with γ(0) = 1is a valid su
h extremal dependen
e fun
tion.In 
ontrast to Theorem 5.2.1 no de�nite interrelation between the extremal index θ andthe extremal 
oe�
ient fun
tion φ(h) exists. In parti
ular, θ may not be re
onstru
tedfrom φ. However, we are able to state a sharp lower bound in terms of θ on the sumof 2 − φ(h), h ∈ N.Theorem 5.2.3. For any max-stable pro
ess we have that
⌊1/θ⌋ (1 − (1 + ⌊1/θ⌋)θ/2) ≤

∑

h∈N

(2 − φ(h)) . (5.10)Proof. Note �rst that any max-stable pro
ess with summable fun
tion 2−φ(h), h ∈ N,is dissipative by Proposition 3.3.1. Then, by Theorem 3.1 in [52℄ we have in parti
ularthat θ > 0. The proof may therefore be based on the M3 representation as in (3.28).Let A(θ) be the 
lass of M3 pro
esses A given by the 
oe�
ients ajk, j ∈ I, k ∈ Z,with extremal index θ > 0. Put
ΞA =

∑

h∈N

(2 − φ(h | A)) , A ∈ A(θ),where φ(h | A) =
∑

j∈I

∑
k∈Z

maxl∈{0,h}+k ajl, see Theorem 5.2.2. Next, note that forall h ∈ N and all j ∈ I we have
2
∑

k∈Z

ajk −
∑

k∈Z

max
l∈{0,h}+k

ajl =
∑

k∈Z

ajk [1(ajk < aj,k−h) + 1(ajk ≤ aj,k+h)]85



5.2: Properties of Dependen
e Measuressu
h that by ∑j∈I

∑
k∈Z

ajk = 1 we get
ΞA =

∑

j∈I

∑

k∈Z

ajk

∑

h∈N

[1(ajk < aj,k−h) + 1(ajk ≤ aj,k+h)]

=
∑

k∈N

(k − 1)
∑

j∈I

aj,(k). (5.11)Here, for all j ∈ I we denote by aj,(k) the k-th largest 
oe�
ient (in
luding ties). Next,for any A ∈ A(θ) let
bk =

∑

j∈I

aj,(k), k ∈ N, (5.12)and all other 
oe�
ients zero, de�ne the M2 pro
ess B = B(A) ∈ A(θ) su
h thatby (5.11) we have ΞA = ΞB. Let further the M2 pro
ess B∗ ∈ A(θ) be given by b∗k = θfor k = 1, . . . , ⌊1/θ⌋ = q, b∗q+1 = 1−θq and all other 
oe�
ients zero. Put δk = b∗k −b(k)where ∑

k∈N

δk = 0 (5.13)and
δk ≥ 0 for k = 1, . . . , q. (5.14)Here, the latter inequality holds by the fa
t that θ = maxk bk, 
f. Theorem 5.2.2.Further,
δk ≤ 0 for k = q + 2, . . . , (5.15)follows from b∗k = 0 for k = q + 2, . . .. Now,

ΞB∗ − ΞB =

q+1∑

k=2

(k − 1)b∗k −
∑

k∈N

(k − 1)b(k) =
∑

k∈N

(k − 1)δk ≤ 0by (5.13) to (5.15). Finally, as a 
onsequen
e of (5.11) we have that ΞB∗ = ⌊1/θ⌋{1 −
(1 + ⌊1/θ⌋)θ/2}.Remark 5.2.1. It 
an be seen by a simple example that a �nite upper bound for ther.h.s. of (5.10) does not exist for a �xed extremal index θ < ∞. To this end, 
onsideran M2 pro
ess with a0 = θ, a1 = . . . = aN = (1 − θ)/N . Then, by (5.11) we have that

∑

h∈N

(2 − φ(h)) =
N−1∑

n=0

((1 − θ) − n(1 − θ)/N)

= (1 − θ)(N + 1)/2 → ∞ (N → ∞).Remark 5.2.2. To 
on
lude this se
tion we remark that pro
esses with γ(h) = 2−φ(h),
h ∈ N, are easily 
onstru
ted. Let, for example, an M2 pro
ess with θ = 0.5 bede�ned by the 
oe�
ients ak = 0.5k, k ∈ N, and all other 
oe�
ients zero. Then, byTheorem 5.2.2 we �nd that γ(h) = 2 − φ(h) = 0.5h, h ∈ N0.86



5.3: Appli
ation: GARCH(1,1)5.3 Appli
ation: GARCH(1,1)Re
all from Figure 5.1.1 the stylized fa
t that �nan
ial returns tend to re�e
t a �u
-tuating and at the same time 
lustered volatility over time. The 
lass of GARCH(p, q)pro
esses [21, 5, 63℄ was originally proposed in order to model this behavior. The �nd-ing that the family of GARCH models also parallels real �nan
ial data through bothheavy tails for its one-dimensional margins as well as a 
lustering of extreme values hasfurther in
reased its appeal. In 
ontrast, the latter property does not hold for the 
lassof so-
alled sto
hasti
 volatility pro
esses [11℄. In general, for the GARCH family toour knowledge there are no analyti
 expressions for the extremal measures dis
ussed inSe
tion 5.2. We will therefore 
onsider a suitable simulation te
hnique that is based ona so-
alled tail 
hain approa
h studied by [57℄. The tail 
hain is a 
ertain pro
ess thatmirrors the behavior of the original sequen
e when started at a high level [58℄. It istherefore of parti
ular interest for the evaluation of extremal 
hara
teristi
s. The tail
hain resembles a random walk and, in parti
ular, may be looked at in a forward as wellas ba
kward dire
tion. Our setup generalizes a similar method proposed by [15℄ and[30℄ whose algorithm fo
usses on the square of the original pro
ess in an intermediatestep. It is therefore restri
ted to GARCH models with symmetri
 innovations whereasour approa
h may readily be extended to the asymmetri
 
ase that we will, however,not 
onsider here. In addition, our pro
edure also 
overs the abovementioned simulta-neous evaluation of the forward and ba
kward behavior of the GARCH sequen
e whenstarted at a high value. Note that this property will be indispensible for the evaluationof the 
hara
teristi
 γ(h), h ∈ N, with the ba
kward dire
tion being in general moretedious. In the following, we will restri
t to the GARCH(1,1) model only as a general-ization of the tail 
hain approa
h to higher order GARCH(p, q) pro
esses has not been
onsidered yet. Moreover, from an applied point of view it appears to be di�
ult forany volatility model to outperform the GARCH(1,1) approa
h [24℄ su
h that the latteris of spe
ial pra
ti
al importan
e. Note also that we 
over the well-known ARCH(1)model in terms of a GARCH(1,0) setup. The GARCH(1,1) model is de�ned by
Xt = σtηt, t ∈ Z, (5.16)where for the volatility sequen
e of 
onditional varian
es we have that

σt =
√
α0 + (α1η2

t−1 + β)σ2
t−1 = Φ(σt−1, ηt−1). (5.17)Here, (ηt)t∈Z is a sequen
e of i.i.d. standard normal distributed random variables where

ηt and σt are independent for �xed t, and
lim
s→∞

s−1Φ(s, z) = φ(z) = (α1z
2 + β)1/2. (5.18)We shall hen
eforth assume that α0 > 0 in order to pre
lude the possibility of adegenerate solution to (5.16). Let further α1 > 0, β ≥ 0 and α1 + β < 1 su
h thatthere exist stri
tly stationary pro
esses whi
h ful�ll the 
onditions (5.16) and (5.17),87



5.3: Appli
ation: GARCH(1,1)
f. [44℄. Note that the 
ase β = 0 
orresponds to the ARCH(1) model mentioned above.In order to evaluate the extremal measures θ, φ(h), h ∈ Z, and γ(h), h ∈ N, dis
ussedin Se
tion 5.2 we will 
on
entrate on the joint limiting distribution
lim
x→∞

L
(
X−l

x
, . . . ,

Xu

x

∣∣∣∣ X0 > x

) (5.19)where l, u ∈ N0. Here and in the following we will denote by L(X) the law of a randomve
tor X. Note that an appli
ation of the abovementioned tail 
hain approa
h requiresa �rst order Markov stru
ture of the underlying pro
ess. We shall therefore make useof the de
omposition suggested by (5.16), and will initially fo
us only on the tail 
hainof the volatility sequen
e (5.17) as a separate pro
ess whi
h is �rst order Markov. Wewill then apply a result obtained in [27℄ that 
overs the repla
ement of the 
onditioningevent σ0 > x that is present in the tail 
hain of the volatility sequen
e by the event
|X0| > x, i.e. a 
ondition on the related overall pro
ess (Xt). Based on this �ndingwe will show in a �nal step that by the spe
ial stru
ture of (Xt) it is straightforwardto re
over the desired distribution in (5.19). The following well-known lemma (seee.g. [42, Theorem 2.1℄) shows that the random variables |X0| and σ0 are both regularlyvarying with a 
ertain index 2κ > 0.Lemma 5.3.1. For any stationary solution of (5.16) the equation

E
([
α1η

2
0 + β

]κ)
= 1has a unique positive solution. Further, for all y > 0 we then have that

lim
x→∞

P (|X0| > yx)

P (|X0| > x)
= lim

x→∞

P (σ0 > yx)

P (σ0 > x)
= y−2κ.The following proposition establishes a preliminary tail 
hain for the (nonnegative)volatility sequen
e (5.17) that will form the basis for an appropriate tail 
hain of thepro
ess (Xt) in (5.31) below.Proposition 5.3.1 (Theorem 5.2, [57℄). Let the stationary pro
ess (σt)t∈Z be given by(5.17). Then, for all l, u ∈ N0, as x→ ∞,

L
(σ−l

x
, . . . ,

σu

x

∣∣∣ σ0 > x
)
→ L (σ̂−l, . . . , σ̂u)where

σ̂±t =
t∏

i=0

A±i, t ∈ N0, (5.20)
P (A0 > x) = x−2κ, x ≥ 1, (5.21)

At = φ(η̂t−1) =
(
α1η̂

2
t−1 + β

)1/2
, t ∈ N, (5.22)88



5.3: Appli
ation: GARCH(1,1)for an i.i.d. sequen
e (η̂t)t∈N with the same distribution as η0 in (5.16). Further, A0is independent of all other variables, and A−t, t ∈ N, are i.i.d. symmetri
 randomvariables independent of (At)t∈N where for 0 < x ≤ β−1/2 we have
P (A−1 ≤ x) =

1

2
+

1√
2π

∫ ∞
“

x−2−β
α1

”1/2
(α1z

2 + β)κ exp

(
−1

2
z2

)
dz. (5.23)Proof. By Lemma 5.3.1 and (5.17) the pro
ess (σt) satis�es the 
onditions of Theo-rem 5.2 in [57℄. Following his proof whi
h is substantially simpli�ed by the symmetryof (5.16) it remains to show that (σ̂t/σ̂0)t∈Z represents a so-
alled ba
k and forth tail
hain BFTC(2κ, ν). The latter 
orresponds to (5.20) by (4.4) and (4.5) in Segers where

L(At) = ν and L(A−t) = ν∗, t ∈ N, for a 
ertain relation between the measures ν and
ν∗, and A0 is independent of A±t, t ∈ N. Here, (5.21) is equivalent to (5.3.ii) in Segers.Further, by (2.6) and (4.4) in Segers we get (5.22). Finally, the measures ν and ν∗ arerelated via (3.7) in Segers whi
h yields (5.23) by the fa
t that

E(f(A−1)) = E
[
1
(
(α1η

2
1 + β)−1/2 ≤ x

)
(α1η

2
1 + β)κ

]
= P (A−1 ≤ x)for f(z) = 1(z ≤ x).Lemma 5.3.2. For the stationary pro
esses (Xt) and (σt) given by (5.16) and (5.17)there is a random ve
tor (σ̃0, η̃0) su
h that

lim
x→∞

L
(σ0

x
,
σ1

x

∣∣∣ |X0| > x
)

= L (σ̃0, σ̃1)where
σ̃1 = σ̃0φ(η̃0) (5.24)and

P (σ̃0 >y, η̃0 ≤ x) =

y−2κ

E(η2κ
0 )

∫ x

−∞

[
1(1 ≥ y|z|)(|z|y)−1 + 1(1 < y|z|)

]−2κ
Fη0(dz)

(5.25)for all y > 0 and x ∈ R.Proof. By Lemma 5.3.1 we have that
lim
x→∞

P

( |X0|
x

> 1

∣∣∣∣ η0 = z,
σ0

x
> y

)
=
[
1(1 ≥ y|z|)(|z|y)−1 + 1(1 < y|z|)

]−2κ
.Now, applying su

essively Lemmata 3.3.2 and 3.3.1 in [27℄ yields the assertion.As to the symmetri
 distribution of η̃0 it follows from (5.25) that

P (η̃0 ≤ x) =
1

2
+

1

2
FΓ

(
1

2
x2, 1, κ+

1

2

)
, x ≥ 0, (5.26)where by FΓ(x, k, ω) we denote the Gamma distribution fun
tion with shape parame-ter ω and s
ale parameter k. Using Lemma 5.3.2 the following proposition now arisesas a spe
ial 
ase of Theorem 3.5.2 in [27℄.89



5.3: Appli
ation: GARCH(1,1)Proposition 5.3.2. Let the stationary pro
esses (Xt) and (σt) be given by (5.16)and (5.17). Then, for all l, u ∈ N0, as x→ ∞,
L
(σ−l

x
, . . . ,

σu

x

∣∣∣ |X0| > x
)
→ L (σ̃−l, . . . , σ̃u) (5.27)with (σ̃0, σ̃1) as in Lemma 5.3.2, and

σ̃t = σ̃t−1At, t ∈ N \ {1}, and σ̃−t = σ̃−t+1A−t, t ∈ N, (5.28)for At as in (5.22) and (5.23), t ∈ Z \ {0, 1}, independent of (σ̃0, σ̃1).Next, we shall turn the r.h.s. in (5.27) into a more suitable form in order to simulatefrom the limiting measure in (5.19). To this end, note that by (5.17) we have
L(ηt) = L



((

σt+1

σt

)2

− α0

σ2
t

− β

)1/2

α
−1/2
1 Bt


 , t ∈ Z, (5.29)for a sequen
e (Bt)t∈Z of i.i.d. random variables independent of (σt)t∈Z with

P (B0 = 1) = P (B0 = −1) = 1/2. (5.30)Now, by Proposition 5.3.2 we get
L
(
X−l

x
, . . . ,

Xu

x

∣∣∣∣ |X0| > x

)
→ L (σ̃−lη̃−l, . . . , σ̃uη̃u) = L

(
X̃−l, . . . , X̃u

) (5.31)where we apply (5.29) and the 
ontinuous mapping theorem. Here, (5.28) yields that
η̃t =

(
A2

t+1 − β

α1

)1/2

B̃t, (5.32)
η̃−t =

(
A−2
−t − β

α1

)1/2

B̃−t, t ∈ N, (5.33)for a sequen
e (B̃t)t∈Z with the same distribution as (Bt)t∈Z, and independent of (At)t∈Z.Now, by (5.22), in parti
ular, L(η̃t) = L(ηt), t ∈ N. Further, we have that X̃0 issymmetri
 where
P (|X̃0| > y) = y−2κ, y ≥ 1, (5.34)by Lemma 5.3.1 and the de�nition in (5.31). For simulation from the r.h.s. of (5.31) itwill at �rst be advantageous to write

L
(
X̃±t

)
= L

(
|X̃0|

t∏

i=1

X̃±i

X̃±(i−1)

)
= L

(
|X̃0|

t∏

i=1

σ̃±iη̃±i

σ̃±(i−1)η̃±(i−1)

)
, t ∈ N,90



5.3: Appli
ation: GARCH(1,1)su
h that repla
ing for (5.24), (5.28), (5.32) and (5.33) yields
L
(
X̃−l, . . . , X̃−1, X̃0, X̃1, . . . , X̃u

)

= L
(
|X̃0|

l∏

i=2

(
B−iA−i

(
A−2
−i − β

A−2
−i+1 − β

)1/2)
, . . . , |X̃0|

B−1A−1

|η̃−1
0 |

(
A−2
−1 − β

α1

)1/2

,

|X̃0|B0, |X̃0|φ(|η̃0|)
η̃1

|η̃0|
, . . . , |X̃0|φ(|η̃0|)

η̃1

|η̃0|

u∏

i=2

(
(α1η̃

2
i−1 + β)1/2 η̃i

η̃i−1

))
.

(5.35)
Now, the r.h.s. in (5.35) highlights the fa
t that the drawing of mutually independenti.i.d. random variables At, t ∈ {−l, . . . ,−1}, a

ording to (5.23), Bt, t ∈ {−l, . . . , 0},as in (5.30), and the standard normal variables ηt, t ∈ {1, . . . , u}, is su�
ient in orderto simulate from the r.h.s. in (5.31). Further, the random variables |X̃0| and |η̃0| whosedistribution is dire
tly related to the 
ondition |X0| > x, 
f. (5.34) and (5.26), are alsoindependent both of the above variables and of ea
h other. The latter 
an be seen e.g.from [27, Lemma 3.1℄. Finally, 
onditioning on X0 > x in (5.19) instead of |X0| > xleads to the same limit distribution as in (5.35) but with B0 = 1 almost surely.In Table 5.3.1 we report the results of a simulation study for θm, φ(h) and γm(h), h =
1, . . . , 5, wherem = 500. It is based on (5.35) a

ording to the respe
tive 
hara
teristi
.The evaluation of probabilities depends on N = 10000 repli
ations. In order to re�e
tthe stylized fa
t that α1 + β is 
lose to one in many appli
ations, we �x α1 + β = 0.99.Note, in parti
ular, that in a

ordan
e with the dis
ussion in Se
tions 5.1 and 5.2Table 5.3.1 suggests that for the GARCH(1,1) 
lass there is no simple relationshipbetween the 
hara
teristi
s φ(h) and γ(h). For the last 
olumn in Table 5.3.1 we referto Theorem 5.2.1. Note that the latter applies to the stationary GARCH(1,1) as it iswell-known that (C1) holds [1℄, and (C2) will be 
onsidered in the following 
orollary.In parti
ular, we have that limm→∞ θm(h) = θ(h), h ∈ N ∪ {1}. We also remark thatthe mixing 
ondition referred to after (5.2) holds for the GARCH(1,1) 
lass, see [34℄.First, we will 
on�rm the following result for later referen
e.Lemma 5.3.3. We have that E(σ̃1) <∞.Proof. First, by (5.24) and the independen
e of |X̃0| and |η̃0| we �nd that E(σ̃1) =
E(φ(|η̃0|)/|η̃0|)E(|X̃0|). Here, E(|X̃0|) < ∞ by (5.34) and the fa
t that κ > 1 if
α1 + β < 1, see e.g. [41℄. Further, we have by (5.22) that

E(φ(|η̃0|)/|η̃0|) = E
([
α1 + β/|η̃0|2

]1/2
)
≤ α

1/2
1 + β1/2E(1/|η̃0|).Finally, using (5.26) we get that

E(1/|η̃0|) =
(1/2)κ−1/2

Γ(κ + 1/2)

∫ ∞

0

x2κ−1 exp

(
− 1

2
x2

)
dx = 2−1/2 Γ(κ)

Γ(κ+ 1/2)
.
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5.3: Appli
ation: GARCH(1,1)Corollary 5.3.1. For the stationary GARCH(1,1) pro
ess given by (5.16) a sequen
e
rn exists su
h that (C2) holds.Proof. Note �rst that (C2) is implied by the stronger 
ondition

lim
m→∞

lim
n→∞

rn∑

k=m+1

P (X−k > n | X0 > n) = 0.Further, by (5.22) we have that E(
∏k

i=2Ai) = λk−1, λ < 1, su
h that, in parti
ular,
P

(
xη̃k

k∏

i=2

φ(η̃i−1) > 1

)
≤ xλk−1E (η̃k1 (η̃k > 0)) =

xλk−1

√
2π

, x > 0.Now, by (5.35) we have that for all k ∈ N

lim
n→∞

P (Xk > n | X0 > n) = P

(
X̃0φ(η̃0)

η̃0

η̃k

k∏

i=2

φ(η̃i−1) > 1

)

=

∫ ∞

0

P

(
xη̃k

k∏

i=2

φ(η̃i−1) > 1

)
Fσ̃1(dx)

≤ λk−1

√
2π

∫ ∞

0

xFσ̃1(dx) (5.36)where the se
ond equality holds by (5.24) and the fa
t that σ̃1 is independent of thesequen
e (η̃1, . . . , η̃k). By (5.36) there is n∗ = n∗(k) ∈ N su
h that P (Xk > n | X0 >
n) ≤ 2E(σ̃1)λ

k−1/
√

2π for all n ≥ n∗. Consequently, for any r ∈ N we get that
r∑

k=1

P (Xk > n | X0 > n) ≤ 2E(σ̃1)√
2π

r∑

k=1

λk−1 (5.37)for all n ≥ N(r) = max{r2,maxk=1,...,r n
∗(k)}. With rn = N−1(n) := sup{r ∈ N0 :

N(r) < n} we have rn → ∞ and rn/n→ 0 as n→ ∞, and
lim

m→∞
lim

n→∞

rn∑

k=m

P (Xk > n | X0 > n) ≤ 2E(σ̃1)√
2π

lim
m→∞

lim
n→∞

rn∑

k=m

λk−1 = 0where we use Lemma 5.3.3 for the last equality.Example 5.3.1. We �t the GARCH(1,1) model given by (5.16) to the S&P 500 dataset dis
ussed in Se
tion 5.1. The estimated parameters [64℄ are
α̂0 = 0.1 × 10−5 (10−7), α̂1 = 0.072 (0.002), β̂ = 0.920 (0.003) (5.38)where the ML standard errors are given in bra
kets. Note that α̂1 + β̂ = 0.992 being
lose to one is a 
ommon result for long �nan
ial return series, see e.g. [41℄ for a92
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ation: GARCH(1,1)dis
ussion. We in
lude an evaluation of the 
orrespoding extremal measures by theabove tail 
hain approa
h in the last row of Table 5.3.1. Next, in order to assess thea

ura
y for estimators of the extremal measures when applied to raw data we generate
N = 1000 independent GARCH(1,1) pro
esses a

ording to (5.38) of the same lengthas the S&P 500 dataset (7569 re
ords) in Se
tion 5.1. The empiri
al quantiles resultingfrom the so-
alled blo
ks estimator [66, 2℄ for a blo
k length of m = 126 are given inTable 5.3.2 where we let the thresholds range from the empiri
al 0.95 quantile up tothe 0.995 quantile. As to the 
hoi
e of the blo
k length note that extremal eventso

uring in two distin
t blo
ks are assumed to be independent. Here, six tradingmonths 
orresponding to 126 days appear to be a reasonable order of magnitude.Further, in order to evaluate the quality of the GARCH(1,1) approa
h in (5.38) withrespe
t to the observed extremal behavior of the S&P 500 series we dire
tly estimatethe extremal index of the latter by the above blo
ks method without making anymodel assumptions, 
f. the last row in Table 5.3.2. Given that our blo
k length isa valid 
hoi
e the fa
t that the results fall within the simulated pointwise 
on�den
eintervals indi
ates a satisfa
tory agreement with the behavior of the estimated extremalindex in the GARCH(1,1) 
ase. Note, however, that the blo
k estimator is not dire
tlyappli
able in order to assess probabilities su
h as (5.5). To our knowledge, a so-
alledruns estimation s
heme [2℄ appears to be the only available alternative. Unfortunately,the runs estimator performs poor even in 
ase of the extremal index. We thereforerefrain from the statisti
al estimation of the 
hara
teristi
 γ(h), h ∈ N, for the S&P 500data. With respe
t to φ(h), h ∈ Z, note that valid estimates should belong to a 
ertain
lass of positive de�nite fun
tions, see [56℄ and [18℄ for a dis
ussion. Appropriateestimation s
hemes, however, have not been 
onsidered satisfa
torily so far and are amatter of 
urrent resear
h.
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5.3:Appli
ation:GARCH(1,1)
α1 β κ θ̂m 2 − φ̂(1) 2 − φ̂(2) 2 − φ̂(3) 2 − φ̂(4) 2 − φ̂(5) γ̂m(1) γ̂m(2) γ̂m(3) γ̂m(4) γ̂m(5)

(
500∑

h=0

γ̂m(h)

)
−10.99 0 1.014 0.570 0.251 0.167 0.125 0.090 0.063 0.213 0.139 0.104 0.071 0.052 0.5730.15 0.84 1.478 0.207 0.153 0.144 0.139 0.138 0.140 0.061 0.063 0.065 0.054 0.064 0.1990.11 0.88 1.838 0.245 0.110 0.104 0.104 0.101 0.093 0.052 0.042 0.038 0.047 0.034 0.2470.09 0.90 2.203 0.304 0.089 0.085 0.081 0.073 0.080 0.045 0.035 0.034 0.030 0.028 0.3020.07 0.92 2.885 0.397 0.055 0.050 0.053 0.051 0.052 0.022 0.020 0.020 0.025 0.022 0.4190.04 0.95 5.991 0.854 0.007 0.007 0.006 0.004 0.006 0.005 0.004 0.003 0.002 0.004 0.8580.072 0.920 2.476 0.317 0.063 0.064 0.066 0.064 0.065 0.021 0.020 0.027 0.019 0.023 0.305Table 5.3.1: Extremal measures (m = 500) for sele
ted GARCH(1,1) pro
esses with α1 + β = 0.99, as well as the pro
ess �tted in Example 5.3.1. The results arebased on N = 10000 runs of the tail 
hain. The approximate 
on�den
e intervals are smaller than ±0.01 for all entries.

q0.950 q0.955 q0.960 q0.965 q0.970 q0.975 q0.980 q0.985 q0.990 q0.995

θ̂B
0.025 0.210 0.203 0.198 0.198 0.192 0.189 0.179 0.163 0.159 0.137

θ̂B
0.975 0.515 0.505 0.512 0.497 0.506 0.510 0.514 0.525 0.548 0.629

θ̂B

S&P 500

0.305 0.301 0.339 0.347 0.348 0.330 0.325 0.355 0.363 0.403Table 5.3.2: Blo
ks estimation (m = 126) of the extremal index for di�erent thresholds represented by the respe
tive quantiles q for N = 1000 independent GARCH(1,1)pro
esses of length 7569 a

ording to (5.38). The �rst and se
ond row represent the simulated 95% 
on�den
e intervals. In the last row we in
lude the blo
ks estimationof the extremal index θS&P 500 for the S&P 500 data set dis
ussed in Se
tion 5.1.
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