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Chapter 1

Introduction: Extremal Analysis of
Stationary Time Series

The key questions in classic extreme value theory concern the behavior of the maximum
of n independent and identically distributed random variables X3, i.e.

M, = maX(Xl, e ,X’n)

for large n. It is well-known that for a wide class of distributions there are suitable
normalizing constants a, > 0, b, € R, such that, in a nontrivial way,

P(M, < ayz+b,) — G(z)

giving rise to the class of so-called max-stable distributions. The popular Fisher-
Tippett theorem states further that every nondegenerate max-stable distribution be-
longs to either of only three parametric families, namely the Fréchet, Gumbel or Weibull
class. It is a natural question, however, whether a similar result also holds for the more
general concept of (strictly) stationary stochastic sequences (X;);cz with the same
marginal distribution as X,. The latter appears to be the adequate framework for
most applications. To name a few examples we may refer to sequences of returns for
financial data [35], the fluctuation of daily rainfall amounts [&, 9], or the concentration
of ground-level ozone [59]. In either case the extremes are usually linked to a specific
underlying event such as a financial crisis or a certain persistent atmospheric condition
that causes dependence in the observations as it dominates their behavior for some
time. The data plotted in Figure [, for example, correspond to the daily absolute
log-returns of the S&P 500 index from 01.07.97 to 29.06.01 and encompass several such
underlying financial shocks, namely the 1997 Asian and 1998 Russian crises as well
as the dot-com bubble burst in 2000. Correspondingly, we find from Figure [ that
the respective extreme returns tend to appear in clusters of size two or three. At the
same time, however, we may reasonably conclude from economic theory that there
is still independence in the long run, i.e. between any two clusters that occur suffi-
ciently far apart (e.g. one year). With respect to the latter finding it turns out that a
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Chapter 1: Introduction: Extremal Analysis of Stationary Time Series
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Figure 1: Daily absolute log-returns of the S&P 500 index from 01.07.97 to 29.06.01 (N = 1009). The period
encompasses the 1997 Asian financial crisis, the 1998 Russian financial crisis as well as the dot-com bubble burst in
2000. The dashed line represents the 99% marginal quantile. The data reflect the stylized fact that extreme financial
returns tend to occur in clusters. The year marks indicate the beginning of the respective trading year.

weak long range condition discussed in [31)] is sufficient for the possible limit laws of
M, = max(Xj,...,X,) to be also necessarily of the nontrivial max-stable form. More
precisely, we have that if

P(M, < ayx+b,) — G(x)

then G is also a max-stable distribution. Most importantly, it is in addition frequently
the case that .
G(z) = G*()

for some 6 € [0,1]. That is, the results for i.i.d. sequences largely extend to the
stationary case, but the parameters of the respective limit distributions will be affected
by a single number 6, the so-called extremal index [31]. The latter has become widely
accepted as the standard measure for extremal dependence. It allows for several useful
interpretations that all roughly characterize the dependence structure in the extremes
of the data. In particular, the extremal index reflects the reciprocal of the mean cluster
size of extreme events [27]. Due to its influence on the limit distribution for maxima of
stationary sequences the extremal index plays a key role in the evaluation of extremal
quantiles for dependent data. Moreover, estimates of the average extremal cluster size
are a direct matter of interest in numerous applications. For example, with respect
to the above S&P 500 data set we get that 0§ ~ 1/3, see Section for details. Note
that the resulting limiting mean cluster size of three is roughly in line with a visual



Chapter 1: Introduction: Extremal Analysis of Stationary Time Series

inspection of the data. Here, the relevance of the extremal index is straightforward.
For example, a financial shock that encompasses three days of successive extremal
returns is likely to imply higher economic ruin probabilities than a single day of such
large losses. That is, the extremal index is essential to prevent the financial risk from
being underestimated. To consider a different context it is well-known that a long-term
exposure to high ground-level ozone concentrations can be seriously harmful (and even
lethal) in contrast to a short but intensive exposure only. The same is also true for
extreme rainfalls on several successive days in contrast to a single day with heavy rain.
Given the practical importance of the extremal index it is desirable to have a broad
characterization of its behavior. Our first question will therefore concern properties of
the extremal index. To this end we shall, however, generalize the above setup to the
study of a multivariate D-dimensional stationary sequence where maxima will always
be considered componentwise. As before, under a suitable long range independence
condition the well-known i.i.d. approach for multivariate extremes [50] generalizes to the
stationary case where a so-called multivariate extremal index describes the necessary
adjustments to the D-dimensional distribution of the maxima. In particular, we will
consider the D-dimensional limits

P(My1 < apizi +byi, ..., Myp < anprp+byp) — Gx),
P(Mm < an1xi +bp, .., Mn,D < a,prp +byp) — C?(a:),

where £ € R, and as before the independent case carries a tilde. Now, similar to the
univariate case we may concentrate on the multivariate extremal index [43]

_ InG(x)
 InG(x)

0(v)

for v € [0,00) \ {0} C RP such that vy = —InGy(zy), d =1,...,D. Here, by Gy we
denote the d-th margin of the D-variate max-stable distribution G. A more detailed
setup will be given in Section [Z1l Apparently, the extremal index in the multivariate
case turns out to be a function rather than a single number. With respect to the statis-
tical estimation of such a function a detailed description of its behavior is particularly
welcome in order to coerce estimates to correspond to the multivariate extremal index
of a certain stochastic process. To this end, in Chapter Bl we will discuss an extension
of the set of common properties of the multivariate extremal index function. In par-
ticular, we will derive sharp bounds for the entire function that appear to be opposed
to a former conjecture in [61]. Thereafter, motivated by the above definition of the
multivariate extremal index, we will study separately the functions G(x) and G(z).
Regarding the latter, the extremal coefficient [60)]

6=—InG {é;(exp(—n), - ég(exp(—n)}

has been proposed as a summary measure for the dependence structure of the D-variate
marginal distribution G. A similar concept will be considered for G. Here, G, d =

3
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1,...,D, denote the univariate quantile functions of G. Obviously, the characteristics
0(v) and ¢ will be strongly related. We will make use of this interrelationship and shall
extend a discussion of the mutual properties of #(v) and ¢ started in [36] and [37].
Further, for D = 2 we will study relatively narrow bounds for valid combinations
of #(v) and the extremal coefficient that are useful e.g. with respect to a consistent
simultaneous estimation of such pairs. Most importantly, however, in the sequel when
we will leave the D-variate context the extremal coefficients will still play a crucial
role. More precisely, we will discuss in Chapters B to Bl how the extremal coefficient, an
actually multivariate concept, may also be applied to the extremal analysis of univariate
time series where we will focus on a so-called extremal coefficient function [56].

The extremal coefficient function is a summary measure that in comparison with the
univariate extremal index gives a more detailed description of the extremal clusters as
for many problems it is not sufficient to solely address the implications of short range
dependence on the distribution of maxima. Under some weak regularity conditions 22|
we have

¢(h)=2—lim P(X, >u| Xo>u), helzZ, (1.1)

i.e. the extremal coefficient function focusses on the probability of extremes to occur
jointly at a certain lag h € N. It turns out to have an interpretation similar to the usual
autocovariance function but for extreme values [56]. In fact, in many applications a
number of questions concern all such large (above a certain high threshold) values in a
sequence of observations in order to understand the qualitative evolution of a cluster
of extremes. For example, assume that in a financial context the average cluster size
is two such that, equivalently, # = 0.5. Now, the grouped extremes may appear e.g.
on two subsequent days, or they may as well reflect a different scheme such as a mod-
erate observation on the second day of the cluster in combination with a total cluster
duration of three days. The implications for the inherent financial risk may differ sub-
stantially between the two scenarios. Here, in contrast to the possible applications for
the extremal index discussed above the average number of extreme events that cluster
together is not at all a sufficient summary measure. We will discuss such questions in
Chapters Bl to Bl In general, when devising adequate cluster characteristics other than
the extremal index in order to answer the above questions we will face a tradeoff be-
tween the amount of information reflected by the characteristic and its interpretability.
A general setup comprising more general cluster functionals is studied in [67]. We shall,
however, not follow this approach here and will mainly focus on the abovementioned
extremal coefficient function instead. It turns out that with respect to the behavior
of valid extremal coefficient functions little is known apart from their positive definite
type. In particular, the reconstruction of stochastic example processes from given ex-
tremal coefficient functions has not been considered before. We will discuss the latter
problem in Chapter Bl First, for the one-dimensional case we will show the equivalence
of so-called set correlation functions and the extremal coefficient functions with finite
range of dependence on a grid. Note that the rather technical proof of the assertion
will be deferred to Chapter Bl The above equivalence will then be useful in order to
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determine the set of vertices for the convex set of extremal coefficient functions. This
will allow for the construction of simple max-stable processes complying with a given
extremal coefficient function and, in addition, will highlight further properties of the
latter. We will include an application of this approach and discuss several examples.
Further, as to processes with infinite range we will consider a natural extension of the
term “long memory” that is well-known in the Gaussian framework to max-stable pro-
cesses. We will also address the implications of a fixed extremal coefficient function at
a certain lag h € N on the allowable range of dependence for the underlying process.
As mentioned above Chapter Hl will then be devoted to a constructive proof of equiv-
alence for set correlation and extremal coefficient functions. Apart from the mere
theoretical result we will in particular be able to assign the well-known properties of
set correlations to the extremal coefficient functions. For example, with respect to the
abovementioned desired characterization of the cluster structure it will be easy to show
from the set correlations that the extremal coefficient function is unable to distinguish
between a certain class of simple cluster types. The problem of such homometric pat-
terns is well-known e.g. in the field of crystallography [46, 47|, and will be studied in
the extreme value context here.

We will further discuss the implications of the above shortcomings on possible appli-
cations of the extremal coefficient function in Chapter Bl This leads us to propose an

alternative characteristic that we shall at this point define only tentatively for all h € N
by

v(h) = uhrrolo P(X}, >u | Xy > u, and X first event in the extremal cluster). (1.2)
We will show that in many applications it has a more suitable interpretation and that
its properties are often easier to handle in comparison with the extremal coefficient
function. In particular, it characterizes the dependence structure of two extremes given
that the first observation corresponds to the onset of an extremal cluster. Our focus on
the first event in such a cluster is motivated by the fact that e.g. in financial applications
the outset of a stress period is in general the point to take adequate measures based on
such conditional predictions whereas the extremal coefficient function is not explicitly
linked to the beginning of a cluster. We will illustrate the different interpretation of
the above characteristics and study some of their general properties. To conclude, an
evaluation of our new cluster characteristic, the extremal coefficient function and the
extremal index for max-stable as well as the important class of GARCH(1,1) processes
will be discussed. To this end, we shall modify a tail chain approach proposed by [57|.
Interestingly, the evaluation of y(h) will require the entire framework of [57], i.e. a
forward and backward tail chain. This is in contrast to the related analysis of the
extremal coefficient function where in principal the forward chain is sufficient [22].
At the same time, with respect to [3(] our more general approach yields a simplified
algorithm for the evaluation of the extremal index in the GARCH(1,1) case. We will
include an example for a GARCH(1,1) model fitted to the S&P 500 data set as well as
a small simulation study comprising different GARCH(1,1) parameters.
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In order to make the text easier to read we will in general introduce any specific notation
chapterwise, i.e. where it first appears. In addition, the most important notational
conventions that shall be used throughout are separately summarized above. We will
only exceptionally deviate from this setup where it is necessary, e.g. in the closed
context of longer proofs. Finally, note that in place of a more detailed introduction at
this point we decided to commence each chapter with an outline of the context and a
more formal setup.



Chapter 2

The Multivariate Extremal Index

2.1 Multivariate Extremes

The study of componentwise maxima for independent copies of stationary processes
on RP is a natural question arising in extreme value theory. Its relevance to practice
is indicated by numerous applications to extremal phenomena in the environmental or
financial context, see e.g. |36, [L0, 22]. In theory, the family of limiting processes that
emerges from the above setup is fully characterized by the so-called class of max-stable
processes that can be seen as infinite dimensional extensions of the multivariate extreme
value distributions discussed in Chapter [l As the latter fail to be of a finite parametric
nature particular models for max-stable processes have become a major matter of
interest. In this regard we may mention the seminal paper by [60], the extensive class
of M, processes discussed by [61], and [54| for the spatial case. In Chapter [0 we
discussed informally the extremal index as the key parameter to capture the effect of
temporal dependence on the limiting distribution of maxima. Recall that an intuitive
interpretation of the extremal index emphasizing its relevance to practice is based
on its reciprocal value which corresponds to the mean cluster size of extremes of the
sequence [23]. In the following we will be concerned with a multivariate generalization
of this concept. Then, the corresponding interpretation for the multivariate extremal
index is the reciprocal mean cluster size of a univariate sequence that, for each point
in time, is given as the maximum of the weighted marginal sequences [61]. That
is, the multivariate extremal index is a function of weights comprising each of the
respective univariate extremal indices as a special case. This concept will be made
precise below. However, the average cluster size for arbitrary weights can, in general,
not be determined by knowledge of the univariate extremal indices alone. Given only
the latter, the behavior of valid multivariate extremal index functions is therefore an
important matter of interest. To be specific, we will consider D-variate, stationary
max-stable processes (Y;)iez = {Y: = (Yi1,...,Yen), t € Z}, ie.

P"(Yig <nyy,t=1,....k,d=1,...,D)

(2.1)
:P(}ngytd,tzl,...,k‘,dzl,...,D)

7



2.1: Multivariate Extremes

for all k,n € N and y;q > 0. Here, we may assume without loss of generality that
the univariate marginal distribution functions Fj are standard Fréchet, i.e. Fy(yoq) =
exp{—yo_,;} for yoq > 0, and Fy(yoq) = 0, else, d = 1,...,D. Let (f’t)tez = {fft =
(}7;71, .. .,5;;571)), t € Z} be the associated D-variate sequence of i.i.d. random vectors
with the same marginal distribution and let M, = (max},Y:1,...,max},Y:p),
and M, similarly, denote the sequences of componentwise maxima. Then, for any
y = (y1,...,yp) € R? and [0,y]° = [0,00] \ [0,y] we have by Theorem 3.1 in [52],
Proposition 2.1 of |61] and a tightness argument that

lim P(n~' M, <y) = exp{—u([0,9])} = G(y), (2.2)
lim P(n"'M, < y) = exp{-([0,y])} = G(y) = P(Y1 < y),

where p(-) and fi(-) denote the exponent measures as in [5(]. Then, for v € [0,00) \
{0} C R%, the function
—17c
(o) = 100" ) (2.3)
([0, v=1])

introduced by [43], is called the multivariate extremal index. Here, the expression v~
is to be understood componentwise. For D = 1 the quotient of the exponent measures
reduces to the well-known univariate extremal index 0 € (0, 1]. Note that throughout
we will in general exclude the special case 6 = 0 that is of limited practical interest,
see [32] for a discussion. We will accordingly denote by 6, the univariate extremal
index of the d-th sequence {Yi4,t € Z}. As mentioned above, §(v) is the univariate
extremal index of the series {max,vyYyq,t € Z} [61, Proposition 2.1].
In the following let @ = (01, ...,0p), and let Qv = (61vy,...,0pvp) involve the compo-
nentwise multiplication. Then,

1

(2.4)

where [ and [ are the two stable tail dependence functions 126],

l(z7") = p([0,9]), za=—(nGalya) ", (2:5)

l(g_l) = ,&([0, y]c), 2d = —(111 éd(yd))_l = Yd, d= 1, cey D.
Up to now we are aware of five known properties characterizing (v), cf. |2, 43, 48, 61]:
T1)  6(v) is continuous in v,

T2)  6O(cv) = 0(v), for any constant ¢ > 0,

—

T4) 0<6(v) <1, ie [(6v) <lI(v),

(
(
(
(
(T5

)
)
3)  H(ey) =04, where ey is the dth unit vector,
)
)

0;>0foralld=1,...,Diff §(v) > 0 for all v € [0,00) \ {0}.

8



2.2: Properties of the Multivariate Extremal Index

By property (T2) we may in particular confine our analysis to the (D — 1)-dimensional
unit simplex Sp = {v € [0,1] : ||v]; = v1 + ... + vp = 1}, and we shall refer to the
restriction of [ and [ to Sp as (Pickands) dependence functions, cf. [49] and [2]. We
will frequently make use of the following properties [2|:

(L) lpin(v) = max{vy, ..., vp} <UV) < lnax(v) = S, 04,
(L2)  [(v) is convex,
(L3)  I(cv) = cl(v), for any constant ¢ > 0,

where v € [0,00) \ {0}, and [, and [,.x are also valid dependence functions. For
later reference, let A be a subset of {1,..., D} and let e4 be a vector in RP with the
d-th component equal to one if d € A and zero otherwise. Let 1 = ey py. Note that
the properties (T1) to (T5) above are not sufficient to characterize the function 6(v)
completely. As a step towards a better understanding of the multivariate extremal
index it will be one of our main results to refine property (T4). In addition to the
conjecture in [61] of [(6v) < I(v) to be the only restriction on the two dependence
functions we will show further constraints in Section 23l which, equivalently, correspond
to improved bounds for the function §(v) given only marginal dependence in terms of
0s,d = 1,...,D. In Section B the extremal coefficient, ¢ = l~(1), a well-known
summary measure for ([0, x]°), will be related to the multivariate extremal index,
cf. [60] and [56]. We will first discuss an obvious connection between the univariate
extremal indices and the extremal coefficient and give an improved upper bound for the
dependence adjusted extremal coefficient, ¢ = [(61), a counterpart of gz~5 that applies
to stationary sequences, see [36]. In the main, however, we will concentrate on the
fact that 6(1) = ¢/¢, and show that knowledge of ¢ or ¢, respectively, allows for a
significant improvement of the unrestricted bounds for 6(v) considered in Section Z3.
Throughout the chapter we will discuss various example processes.

2.2 Properties of the Multivariate Extremal Index

By [14] a D-dimensional process (Y )iz = {Y+ = (Yi1,...,Y:ip), t € Z} is max-stable
with standard Fréchet margins if and only if

Yig = m%thd(Sl)Uz teZ,d=1,...,D, (26)
1€

where {Uj;, S;}52, is a Poisson point process on R, x [0, 1] with intensity du/u®x ds, and
{Gtattez, d = 1,..., D, are sequences of nonnegative deterministic spectral functions
with fol Gta(s)ds =1 for all t. Replacing {g;} ~ {gi+1} by

{(hp@=1y415 - hoey)} ~ {(hpe=148)+15 - - -, AD@e+r)) }

in Theorem 5.1 of [14] with hpy_1)+a := Gra gives the spectral representation for sta-
tionary D-variate max-stable processes.



2.2: Properties of the Multivariate Extremal Index

Theorem 2.2.1 (|14, Theorem 5.1]). The elements of a stationary maz-stable D-
variate process (Y;) are representable through (Z14) with the proper sequence {g; =
(Gtas-- - Ge.p) ez There exists a piston I' such that Giy = T(Gt).

In order to state a corresponding expression for the multivariate extremal index it is
convenient to refer to the following concepts from the literature. Let [0,1] = S; U Sy
be the Hopf decomposition for (ZZ6]) into the dissipative and the conservative part [29],
where S is isomorphic to Sy X Z for some measurable set Sy C S;. Theorem 3.1 in
[52] states that the extremal index 6, of the dth component is given by

0y = / max gtd

Similarly, by means of Proposition 2.1 in [61] we may conclude that the multivariate
extremal index equals

fSo maxez maxi_; vaga(s)ds
fso D ez MAXG | VaGra(s)ds + f52 max;_; vago,a(s)ds’

Theorem 2.2.2 (|17, Theorem 2|). The set of extremal index functions is closed under
uniform convergence.

‘9(’0) = v E SD.

In the remainder we shall follow the ideas of [16] and [61] who consider discrete and
stationary versions of (Z6) given by the decomposition

Yig = max{ M4, Sy}, t€Z,d=1,...,D, (2.7)
where
M4 = maxmax a;xqZ; 1k,
Jje€I  k€eZ

Sia = Max max jkaZ; .
JEF O<k<N ’

Here, I, F CNU{0}, {Z, t € Z,j€ I} and {Z;, 0 <t < N; <00, j € F'} are inde-
pendent sequences of i.i.d. standard Fréchet variables where Z7, Z]*Hm(N 41y ME 7.
The constants a;iq, j € I, k € Z, and i, j € F, 0 < k < Nj are non-negative with
Zj >k Qjkd + Zj Y w@jka = 1 for d =1,...,D. Note that the S;; part of the pro-
cess (7)) consists of periodic elements and leads to non-ergodic processes [62] whereas
the mixing component M;,; corresponds to the M, class of multivariate mixed moving
maxima discussed by [61]. Later, beginning with Chapter Bl we will restrict our anal-
ysis to the case D = 1 and a corresponding class of Mjz processes, cf. (B28). Note
that the latter correspond to the class of so-called dissipative stationary max-stable
processes [28]. It will be essential in the following that for the dependence functions of

the process (IZ'_ZI) we get that

E max max a]kdvd,

EZ d* ’" 7
jel
E E max a]kdvd+ E E max Ozjkdvd
jel keZ JEF 0<k<N;

10



2.3: Bounds for the Multivariate Extremal Index

The following proposition states that the results upon the multivariate extremal in-
dex for M, processes may be generalized to hold for stationary max-stable processes.
Moreover, under the conditions of [61, Theorem 2.3| the results obtained in Sec-
tions 23 and EZ4 hold true also for general stationary processes in the maximum domain
of attraction of a max-stable process.

Proposition 2.2.1 (|17, Proposition 1|). The multivariate extremal index of a D-
variate stationary maz-stable process (Y;) may be approzimated uniformly by the mul-
tivariate extremal index of an My process.

Whenever we will define in the following a process as in (1) or an M, process by its
coefficients we will tacitly assume all coefficients not explicitly defined to be zero.

2.3 Bounds for the Multivariate Extremal Index

We will now turn to the question of the interdependencies between the two dependence
functions ! and I, and their implications for valid functions #(v). From the definition of
the multivariate extremal index it merely follows that [(Qv) < [(v), cf. the conjecture
in [61]. We state the following counterexample in order to demonstrate that [(Qv) <
I(v) is not a sufficient condition for {(6v)/I(v) to serve as a valid multivariate extremal
index.

Example 2.3.1. Consider an My process with D =2, I =2 and 6, = 0, = 0.5. The
condition (8v)/I(v) < 1 allows to fix ¢ = I(1) = > Zk maxy a;,q = 1, say, which is
equivalent to a;i; = ajie for all j, k, see also Corollary 24T below. Then, it necessarily
follows that
[(Ov) = Z MAX MAX @jUa = 0.5 max vg
j

obviously further restricting the requirement 1(6v)/i(v) < 1. Accordingly, 6; = 05 =
0.5 is incompatible with (1) = 1, for example. See Figure Z31] for a sketch of the
valid bounds for #(1) that are easily derived from the results discussed below.

For a more detailed understanding of the reasoning in Example 2.3.Twe shall introduce
a decomposition for the dependence function [ in the following theorem and state simple
but important properties that we shall use repeatedly in the rest of the chapter.

Lemma 2.3.1. Let ), ar = ), ap—maxy aj for any sequence of nonnegative constants
ap and assume that maxy ay exists. Then, for any arq € R

maxg a <E max g -
d kkd— k d kd

11



2.3: Bounds for the Multivariate Extremal Index

1 1.5 2

¢

Figure 2.3.1: Bounds for 6(1) with 61 = 62 = 0.5 as functions of the extremal coefficient, see Example 1. Lined: Valid
combinations. Gray: Invalid combinations, but consistent with the bound I(6v) < I(v) given in [61].

Proof. For any fixed d* € {1,...,D} let ¢ = ) ,{maxjarqs — ars-}. Now, ¢ >
maxy max, drg — Maxy dgg+, and

E Qpgs + Max Max ayg — MaX A < E max agg, foralld* € {1,...,D}.
ko d k d
k k

O

Theorem 2.3.1. Let an arbitrary process as in (Z7) with extremal indices 64, ...,0p
be given by the coefficients ajiq, j € I,k € Z,d = 1,...,D, and ajrq, j € F,0 <
k< Nj,d=1,...,D. For all j,d let aj,, = 0 for all k except one k = k(j,d) €
arg maxy a;ra where a3y, = maxy ajrq, and ajrg = 0 for k = k(j,d) and ajkg = ajka
otherwise, i.e. Ajka = Gjra — @y Define lo(v) = Zj >, maxy @pga and lig(v) =
Zj > Maxy GjkqVq + Zj > MAXy k-

(i) The functions ly and l~1~,9 are valid dependence functions with sharp upper and
lower bounds given by lp min(v) = lnin(0v) = maxq 0404, lgmax(V) = lnax(0v) =
Zd Qd’l}d, l1_97min(’0) = maxd(l — Qd)’l}d, cmd l1_97max(’0) = Zd(l — Qd)’l}d.

(i1) It holds that
(Ov) §~l~9(v), ) (2.8)
(’U) S l.g(’v) + ll,g('v), (29)

i&,min('v)

<1
1(6V) 4 1 _gmin(v) < 1

where equality applies for the last inequality if and only if for all j € I and
d=1,...,D we have a;q = 0 for all k € {k(j,1),...,k(j,D)}.

12



2.3: Bounds for the Multivariate Extremal Index

(i1i) For any function [(6v) a corresponding My process exists such that l(v) =1, v €
Sp.

Proof. (i) From ly(6~'v) = >_j 2o maxg ajyva/0q it follows that the function Iy is a
dependence function. Analogously for I;_g. Now, the assertion follows from (L1).

To proof (ii) note that ([Z8) follows directly from (i) and the respective definitions.
Concerning the left hand side of (), we get by (i) and Lemma 3] that for all
v E€Sp

Z(G’U) —+ Zl_g,min('v)

=1(6v) + max { Z Z QjkdVa + Z Z AjkdVd — Z max ajkdvd}
Jj ok Jj ok J
< (6v) + max { Z Z ozjkdvd} + max { Z Zkajkdvd}
k J

J

<(6v) + g g mleOéjkdUd+ g E MAX kU — E MAX MAX €j1qVq
Jj ok Jj ok J
= g g MAax ajkqVq + E g max axqvq = l(v).
d d
j ok Jj k

Finally, the right hand side of (Z9) follows from the fact that maxg % qVatmaxy AjkdVq >
maxd(a;fkd + Gjka)va- Equality holds for all v € Sp if and only if a;,q = 0 for all
ke{k(y,1),....k(j,D)}.

With respect to (iii) we have that the swapping of the values of a;, 4 and a;, 4 does
not change [ for any j, ki, ko, d, so that we may assume for all j and k that a},, # 0
for at most one value of d. Then,

lo(v) =D > max e =) Y @ uiadva = )_Yava:
k i d d

J

Further, for all j and &, let the a4 be such that a;zq # 0 for at most one value of d, and
ajra = 0forall j,dand k € {k(j,1),...,k(j5,D)}. Then, [1_g(v) =>_,(1—04)vq by the
above argumentation. Finally, by (ii) we have l(v) = lp(v) + l1_9(v) =1, v €Sp. O

Now, the incompatibility of 8, = 6, = 0.5 and 6(1) = 1, i.e. [(61) = [(1), in Exam-
ple 23T follows also immediately from (Z3). There, we find that ;, =1,d=1,..., D,
or equivalently, I} _gmin(1) = 0 is a necessary condition for #(1) = 1. In addition to
Theorem B (i) and (ii) see also [61] where a special case for which [(v) — [(Qv) is
convex is discussed. There, using the notation of Theorem Z3], for D = 2 a process
with k(j,1) = k(j,2) = 0, j € I, is considered. Then, by Theorem 3] (ii) we have
that I(v) = lp(v) + l1_p(v) = 1(6v) + [,_¢(v). Now, [(v) — I(Ov) is a valid dependence
function by Theorem 3] (i) and hence also a convex function. The fact that, in

general, [(v) — [(@v) may be neither a dependence function nor a convex function at

13



2.3: Bounds for the Multivariate Extremal Index

all does not, however, allow for the conclusion of arbitrariness of [ and [ as will become
clear in the remainder of this chapter.

Theorem below gives sharp upper and lower bounds for 6(v) = [(8v)/I(v) for all
v € Sp given 0y, d = 1,..., D, i.e. bounds for the entire multivariate extremal index
function given only marginal dependence in terms of 6(ey), d =1,...,D.

Theorem 2.3.2. Let O(6,...,0p) be the closed set of multivariate extremal index
functions of all stationary maz-stable processes with univariate extremal indices 64 €

(0,1],d=1,...,D. Define

Ome : Sp — (0,1}, v —  inf  O(v),

0€O(04,..., 0p)
Osup : Sp — (0,1], v —  sup  O(v).
0€0(61,..,0p)
Then,
Ot (v) = max Oqvq ,
>_qbava

Osu = )
p<v) Zd Qd’l}d + maxd(l — Qd)’l}d

In particular, O, Oy € O(61,...,0p).

Proof. Let A = A(fy,...,0p) be the class of processes A as in (7)) with coefficients
ajka, j €1, k € Z, ajrg, j € F, 0 <k < Nj, such that [(Bey) =64, d=1,...,D. Now,
using the same notation as in Theorem PZ3T1

[(Bv ]| A)
(60 [ A) + ligmin(v)

lmax (0V)

< = )
lmax(ev) + ll—G,min(v)

Imin(0v) < O(v | A) < l

where the lower bound is sharp by property (L1) and Theorem 3] (iii), the second
inequality holds with Theorem EZZT] (ii) and the right hand side follows from the
discussion of the mapping = — 7ta» T,a > 0. To show that the upper bound is
sharp consider A* € A with I = {1,...,D}, F = {1}, a};;, = 04 and af;;, = 1 — b,.

Proposition 2211 finalizes the proof. O

Figure gives a bivariate example of the above bounds. Theorem may equiv-
alently be rewritten in terms of an improved lower bound for I(v) making use of the
additional information obtained by [(@v), and an improved upper bound for [(Ov)
given 0 and [(v).

Corollary 2.3.1. For any stationary max-stable process with univariate extremal in-
dices 04 € (0,1], d=1,..., D, it holds that for allv € Sp

Zd Hdvd + maXd(l — Hd)vd
24 fava
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2.4: Exploring the Extremal Coefficients

1T T 1
4+ 0
0o+ 40

v1 =0 v =1

Figure 2.3.2: Bounds for 6(v) in the bivariate case: All admissible multivariate extremal index functions for 6; =
0.7, 02 = 0.4 are located in the shaded area (including the boundaries).

and

. O4v
mdaxﬁdvd <I(0v) < mm{ ( ) 2.4 0ava Zﬁdvd} )

Zd 9dvd + maxd 1 — Q9d

Note that the bounds discussed in Theorem are applicable e.g. in order to improve
on the validity of estimation schemes for the multivariate extremal index function. An
example for an estimate of the latter that does not conform to Theorem may be
found in [40)].

2.4 Exploring the Extremal Coefficients

The extremal coefficient qg has been proposed as a summary measure for the in general
complex dependence structure of G(x) given by ([0, xz]°), see [60]. In effect, it is
nothing but a single point of the respective dependence function, namely

oa=1l(ea) (2.10)

where A is a nonempty subset of {1,..., D}. Nevertheless, the extremal coefficient
substantially restricts the possible shape of the entire dependence function l~, see also
properties (L1) and (I.2). Note that the extremal coefficient ¢ may be interpreted more
intuitively in terms of the number of independent variables in a multivariate setting.
For a discussion of its further properties see e.g. [56]. So far, however, the bounds for
f(v) derived in Section Z3 do not incorporate any information in terms of the extremal
coefficient. Being a quotient measure of two dependence functions it is therefore natural

15



2.4: Exploring the Extremal Coefficients

with respect to f(v) to consider the effect of a fixed extremal coefficient on the above
bounds. Depending on the value of the extremal coefficient it turns out that the bounds
may be improved significantly, compare Figure 221 with Figure Z32 Following [36]
we may also look at

as an adjusted extremal coefficient accounting for temporal dependence. Here, sim-
ilarly, a single point of the dependence function corresponding to G(x) is fixed. It
roughly characterizes the entire function [ in the above sense. We will therefore also
discuss the corresponding improvement of the bounds for (v) given ¢, cf. Figure Z42.
Note that the structure of the improvement of the bounds is completely distinct for
fixed ¢ and , respectively. This will in particular be reflected by the differing complex-
ity of Theorems 4.3, 244 and below. Before we turn to the interrelationship
between f(v) and the two extremal coefficients, however, we will discuss how the latter
themselves are influenced by marginal dependence.

Theorem 2.4.1. Let A be a non-empty subset of {1, ..., D}. Then, for any stationary
maz-stable process with univariate extremal indices g € (0, 1], d € A, the extremal
coefficient ¢4 is limited by the sharp bounds

1-0,) < o4 <|Al.
rgeaju?dergeaj(( 0a) < da < |A

Proof. The left inequality follows immediately from Theorem EZ3Tl (ii). The right
inequality is well-known, and sharp by Theorem [Z3] (iii). An M, process with [ =
{1} that reaches the lower bound is given by a1y = 04, a1,q = (1 — 0,)/K for k =
2,..., K+ 1and K large enough such that ; > (1 — 60,)/K for all d. O

As a consequence of Theorem EZZ1] the case ¢ = 1 is restricted to identical marginal
dependence of all D series such that 6; = ... = 0p, cf. Example 2311 It also follows
from Theorem EZZ1 that Proposition 2.1(ii) in [31] where G is assumed to have totally
dependent margins (i.e. b = 1) loses generality and must be restricted to the special
situation where 6; = ... = 6p. The case is addressed by the following corollary with
A defined as above.

Corollary 2.4.1. If ¢4 = 1 then 0,, = 0, for allm,n € A, and O(v) = by, v € Sy

Let now ¢ be given. Theorem .2 below shows that the full set of possible dependence
functions [ compatible with 6y, ..., fp is not necessarily admissible for all possible values
of the extremal coefficient ¢ and vice versa. Equivalently, Theorem extends the
set of properties of ¢ = 1(01) given in [36] by an improved upper bound related to ¢.

Theorem 2.4.2. Let A be a subset of {1, ..., D} with at least two elements. Then, for
any stationary max-stable process with univariate extremal indices 04 € (0,1] for all d €
A and extremal coefficient ¢ 5 the adjusted extremal coefficient ¢ 4 is limited by the sharp
bounds

réleajcﬁd <l(Bea) = ¢4 < min {Z 04, P4 — Igeaj((l — Hd)} )

deA
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2.4: Exploring the Extremal Coefficients

Proof. Let ¢ = ¢4 and qg — ¢4 and let us restrict to an | A|-variate M, process where
|A] > 1 by assumption. It is a well-known property of any dependence function that
max, 0y < 1(01) < 3,04, see (L1). Further, 1(81) < (1) — maxy(1 — ;) is a direct
consequence of Theorem [Z3T] (i) and (ii), and hence a closer bound for ¢ is given if
gb — maxd(l — Qd) < Zded .
We first give example processes reaching the bounds for the case ¢ < > g 0a+maxy(1—
04). Consider the My process A where [ = {1,2}, a149 = 04, as1qa = (1 — ¢)04, asrq =
(1 —64)/K for k =2,...,K+1and ¢ € [0,1). Here, as;q4 > 0, and K is chosen
such that as1q > agrq for all k and d. Further, let B be the M, process where I =
{1, ., D+ 1}, bgiqa = Oy, bD+1,1,d = a914, bD-{—l,k,d =aog, k=2,.... K+1,ce [O, 1)
Now, for .

. ¢ — max, 0; — maxy(1 — 6,) € [0.1)

Zd Qd — maXy Qd

gg is attained for both processes. Also, A reaches the lower bound and B reaches the
upper bound for ¢.
We now consider the case ¢ > >0, + maxy(1 — 6,). Let A be a process as in (27
where [ = {1}, F = {1,2}, A1dd = Qd, A1dd = C(l—@d), Q91q = (1—6)(1—0d), c e [0, 1]
Further, consider the process B that is also of the form ([Z7) where [ = {1,...,D}, F =
{1,2}, bara = 04, Prda = 1dd, P14 = @214. Now, for

o= (5 - Zd‘gd — maxd(l — Qd)
Zd(l — Qd) — maxd(l — Qd)

¢ is attained for both processes where A reaches the lower bound and B reaches the
upper bound for ¢. O

€ [0, 1]

With respect to the behavior of the multivariate extremal index we have the following
corollary.

Corollary 2.4.2. For any stationary maz-stable process with univariate extremal in-
dices 04 € (0,1],d = 1,...,D, and extremal coefficient ¢ the multivariate extremal
index 1s bounded at 1 by

maxg 0,

10a _ g1 — g(p11) < min{qb—maxd(}—ed), Sogbat .

¢ ¢
In the following three theorems we will generalize the above corollary for the case D = 2,
i.e. new bounds for the entire multivariate extremal index function will be given for
fixed qg and ¢, respectively. Due to the complex interdependencies of higher order de-
pendence functions, see e.g. [5], corresponding bounds for D > 3 are not known yet.
From the following theorems note that, in particular, for ¢ = > g ba + maxgy(1 — 6y)
in Theorem the upper bound may not be improved in comparison with Theo-
rem 232 and for ¢ = D in Theorem the lower bound is unchanged. First, we
will state the following example for reference in Theorems and 241
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Example 2.4.1. Let X = X(01,02,¢x) be the class of processes X as in (1) with
coefficients .4, j € I,k € Z,d = 1,2, and Xjrq, 7 € F,0 < k < N;,d = 1,2, such
that [(Bey | X) = 05 and (01 | X) = ¢x < ¢x. Consider X*(01,0,, 0x) € X with
I'={1,2,3},F={1}, 2}y = ox — Os_q, 251, = D400 — dx and X}, = 1 — 6,4, where
Zjka > 0. Here, ¢x+ = ¢pr. Now, using the results of Theorem [Z3.T],

(Ov | X*) =ly(v | X*) = Z(¢X* — O3_q)va + (Z‘gd - ¢X*) max v,
d d
Loo(v | X*) =1_gmin(v),
(| X*) =lpv | X*)+11_g(v | X*).

Then, (61 | X*) > (01 | X), and from the convexity and piecewise linearity of | we
may conclude that
(v | X*)>1(0v | X) forall X € X.

Now, by Theorem 3] (ii)
[(Ov | X7)
[(8v | X*) + 1 g min(v)

HBv | X) _ (8 | X)

= = <
lv]|X) 1(0v]| X)+l-omn(v)

=0(v | X7)
for all X € X using the same argumentation as in the proof of Theorem for the
second inequality.

Theorem 2.4.3. Let D =2 and ©(601, 05, @) be the closed set of multivariate extremal
index functions 0 of all stationary maz-stable processes with univariate extremal indices
01, 05 € (0,1] and extremal coefficient ¢. Define

Osup © So — (0,1, v+—  sup  6(v).
96@(91,92#{))

(i) If ¢ < 3,04+ maxy(1 — 60,), then by, € O and

-1
B maxg(1l — 04)vg
esup<v) - (1 + Zd(¢* — eg_d)vd + (Ql + 6y — QZ)*) maxg ’Ud> 7

where ¢* = ¢ — maxy(1 — 0,).

(i1) If ¢ > > qba +maxy(1 —60y), then Oy, € © iff =D, and

o mind { max{(l — Gd)vd, (2 — (];)Ugfd} + ((Z; —1- 937d>v37d} -
Osup (V) = (1 + S Ouon ) :

Proof. From Theorem EZZ2 we have that ©(0y, 0, ¢) is closed. Let B = B(6y, 02, ¢) be
the class of processes B of the form (Z7) where [(fe,; | B) = 6,4 and [(1 | B) = ¢.
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(i) For X as in Example EA], B(6y,6,,¢) C X(0y,6,, ¢ — maxy(1 — 6,)) by Theo-
rem A2 Now, it is easily verified that X*(6;,0, ¢ — maxy(1 — 6,)) € B, and the
assertion follows from Example 22Tl

(ii) Using the same notation as in Theorems 2231 and Z3A we have that B(6;, 65, ) C
A(01,605), and hence

lmax (0V)
lmax(ev) + ilfG,min('v>

Further, from I(1 | B) = ¢ it follows by convexity and piecewise linearity that (v |
B) > > vg—maxg{(2>_,va—¢)va} = 1—(2—¢) maxy vy, and hence, a second upper
bound is given by

0(’0 | B) S =: 0U71(’U), B e B.

Iinax (60
QU,2<’U) = g ) .
1 — (2 — ¢) maxy vy
Next, we will show that
min {9&1(’0), 9U72 (’U)}
B Imax (6V)
Max{lnax (00) + 1 _gmin(v), 1 — (2 — ¢) maxy v}
B limax (00)
mind {max{(l — Hd)vd, (2 — (];)Ugfd} + ((5 -1 Qg,d)vg,d} + Zd Hdvd
Iinax (60
=ty )

min {l~1 (’U), Z;(’U)}
is a sharp upper bound for valid dependence functions 5 and Il consistent with [(Ov) =
Imax(@v). Here, the second equation follows after some lengthy but elementary calcula-

tions. Note that 0, is reached piecewise by the example processes B,, € B, m = 1,2,
as in (Z7) where bpgia = 04, Bmim = 1 = Oy Bna1,8-m) = 2 — ¢, Bm,1,2,3-m) =

gzNS— 1 — 05, and By, 123-m) = 0, m = 1,2, by the assumption on ¢. Finally, for
¢ < D by lack of convexity of min{ly, I} we have that O, ¢ © whereas for ¢ = D it

holds that [; = Iy, and by,, € ©. O

Except for specific parameter values the lower bound for 6(v) given 6y, 6 and b to
be discussed next and represented in Figure appears to be of a more complex
form than the upper bound in the last theorem. For a motivation of the structure
of the processes involved we first give the following example process. Namely, for the
complex case when ¢ < 37 0, + maxy(1 — 6,), see the theorem below, it will turn out
to be a simple member of two classes of processes reaching the lower bound pointwise
for certain values of v € S,. Further, for the remaining values of v € Sy the process
reaches the lower bound piecewise. In the following example and in Theorem we
will make use of a certain partition of v € Sy. To this end let for 6; > 6,

1
’ ‘/3:|:_

¢—1+6,—06;
20— 2+ 0, — 0,

VY1: 2’

1} Vo= [0,1]\ (Vi UV4),
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;o Vo1 =Va\ V.

Example 2.4.2. For D =2, 6; > 6, ¢ < 1+ 60, and v* € S, let C = C(6y, 64, b, v%)
be the M, process with coefficients cjiq, j € I = {1,2}, k € N, d = 1,2, where

Clid = (1 - Qd)9d,

C2dd = qafa,

Ciega=(1—=01)/K fork=2,... K+ 1,
e = (01 — ) /K for k =2+ K,..., 1+ 2K

for some ¢4 € [0,1) specified below and K the smallest positive integer such that
C11d = Cigq for k > 2, d = 1, 2. Further,

—14+0,—20
w = 2TERThcp),
2
.
—1
°~1c0,1), o e,
0,
* 6
6" =3 Zap(l/s -1 €0.1), o €V,
1
QQu UTG‘/QQU%

\

such that ¢;14 > 0. Now, for Z¢ = {(j,k) € X Z : cjra > 0,d = 1,2} = {(1,k) : k =
L,....,K +1} and Z§ = {(j, k) € ZF : ¢j;1 = maxcjp} = {(1,1)} the meaning of
which will become clear in the proof of the next theorem it obviously holds that

LI e =4,

2. Cjk1 = Cjk2, (j, k’) c Zlc \ ZQC,

3. Z cip =1 — 01,

(.k)eZ{\2Z8

* * * *

v v v . .
4. c110 = 0111—1 + 0y — 91—1 > 0111—17 Co2 = 0211—1, vy € Vo, v5 =1 —y,
Ua Ua Ug Ua
5. Cii2 = 011192/91, Co22 = 021192/91, U’f € VQ,Q U V.
Theorem 2.4.4. Let D =2 and ©(6,, 0s, é) be the closed set of multivariate extremal
index functions 0 for all stationary maz-stable processes with univariate extremal in-
dices 01, 05 € (0,1] and extremal coefficient ¢. Define

Qinf . SQ — (0, ]_], v — inf _ 0(’0) .
96@(91,92,(;5)
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V]_:O V1:1

Figure 2.4.1: Upper and lower bounds for §(v) as in Theorems and ZZA given ¢ = 1.35 (thick line), ¢ = 1.5
(-++), ¢ =1.8 (- - -) and ¢ = 1.95 (thin line) for 6; = 0.7,02 = 0.4.

1. Ifg?) > > 0a+maxy(1 —04) or 0y = 05, then 0y € © and

6
Qinf(’v) = = A% iﬂ)d , U E Ss.
¢ — 14 (2 —¢)maxy vy

2. If 01 > 0y and qg < Y g0+ maxy(1 —64) =1+ 6, then

(

0
LQ** ; v € ‘/17
1— (2 — (b)Ul
0
Oint(v) = Haxd d})d , v €V,
maxg 0qvg + (¢ — 01)ve
0
Ll** ) (%1 S ‘/:9)7
\ 1— (2 — (b)UQ
where vy = 1 —vy. In particular, Oy ¢ ©. The assertion for 6, < 0y is given by

symmetry.

Proof. Again, by Proposition EEZTlit suffices to restrict to the respective bounds of My
processes.

1. For ¢ > 3", 04+max,(1—0,) and 6,, 6, € (0, 1] consider a sequence of M, processes A
with [ = {1} given by a149 = 04, a1xq = % fork =D+1,..., D+K, ajpg = % >0
fork=D+dK+1,...,D+ (d+ 1)K and K such that 6; > aye for all k,d. Now,
1(0v | A) = lpin(6v) and (v | A) = lpax(v | @) by convexity and piecewise linearity
where [pax(v | @) is the overall maximum of [(v) given ¢.
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For 0; = 05 and gb < > 404+ maxy(1 —64) = 14 6, consider the process C’(@l, 0, b, 0)
in Example We have that {(8v | C) = L (6v) and (v | C) = lna(v | @) by

convexity and piecewise linearity.

2. We consider separately the four subsets V;, Va1, Va2 and V5 for v; with v € S,.

(i) For v; € Vi consider the process C(0y, 05, ¢, v;) in Example Now, [(Ov |
C) = 0305 = lyin(Ov) and (v | C) =1 — (2 — )ty = lpax (v | gb) v € V1.

(ii) Throughout this part we fix v € Sy with v; € V5;. Let B = 8(91,92,@ be
the class of M, processes B with coefficients bjiq, j € I, k € Z, d = 1,2, where
I(Pey | B) = 64 and I(1 | B) = ¢. We will show that a process C' with [(Qv |
C) = lmin(@v) exists such that for all B € B the inequality [(v | B) — (v | C) <
(v | B) —1(8v | C) holds. Then, I(8v | C)/l(v | C) = Oi¢(v) by discussion
of the mapping x — %ﬁ:, 0 <a<b, z>0. For the calculation of [ it will be
advantageous to replace the double index (j, k) € I x Z by a single one, m € Z.
More precisely, let f : [ x Z — Z, (j,k) — f(j,k) be an arbitrary bijective

mapping and define b,,q = bp-1(;n)4. Then,

(v | B) Zmaxbmdvd Zvd —m(v | B),
meZ
with m(v | B) = ), o, ming bpqvg > 0.

Let m be the projection 7: I x Z — I, (j, k) — j, and define g :=mwo f~1: Z —
I, m— g(m)=j. Let b}, = bj,k;d,da for k3, € arg maxy bjra, j € I, d = 1,2. Since
the set of My processes B for which £, is unique is a dense subset of B we may
assume uniqueness of k%, Let Z{ = {m € Z : byq > 0, d = 1,2} such that

ijnbmd: Z mjnbmd:2—¢:m(1 | B). (2.12)

meZ meZp

Let Zy = {m € Z{ : by = b,y , }. Now,

Z b1 <1 -0, (2.13)

meZP\zZ5

such that
Z min by = 1~ 61— p (2.14)

meZP\zP

for 0 < p < min{l — 6,, qg — 14 60y — 0;}, where the latter follows from the fact
that

1—6—p=2—¢— Zm;nbmd (2.15)

mGZQB
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2.4: Exploring the Extremal Coefficients

by ([2I4) and [ZI2), and EmeZQB ming b,y < miny ZmeZQB b < ming 0y = 0.
Note that from ¢ < 1+ 6, Eq. (ZI2) and Ineq. @I3) it follows that ZZ +# 0.
Now, with

Z min bndVa > Z min bnd min vg=(1—01 — p)vy (2.16)
meZB\ZE meZB\ZE
we get
m(v | B) > Z mgn binava + (1 — 6y — p)vy. (2.17)
mEZQB

We consider the (disjoint) decomposition ZJ = ZJ, U 2}, U Z}; where m € Z3)
if bml < me; m € 221?2 if bmg < bml < bmgvg/’l}l and m € 221?3 else. NOW,

min b _ b1 = bz — &, m € ZQE,;l
a ml bz, M € Z3y U Z3%s,
bmlvl, m € Zfl U Zf?
bin2ve = (b1 — M) U1, M € ng,

mgn{bmdvd} = {

. | bz + Em)v2, m € Z3 U Z7,
max {bg dvd} o { (b + Km)ve + max{0, n,v1 — Kpve}, m € ng,

where & = bz — bt > 0, m € Z), K = bsmy2 — bma > 0, m € ZB, and

0< NMm = b;(m),l — bmgvg/’vl = bml — me’UQ/’Ul S 1-— meUQ/Ul, m € 253 Let

Sm1 = > =601~ ) b (2.18)

jel\{g(m):meZQB} mezp
=0, —{ Z mdinbmdvd/vl + Z nm},
mezB meZQB3
Sm2 = Z 2 — 92 Z b*
j€I\{g(m)meZ3} mezp
:92—{ Zmdinbmd+ Z Em + Z /{m}.
mEZQB merl meZQB
Then,
[(6v | B) = Z mgx{b;(mmvd} + Z mgx{b;dvd}
meZf j€\{g(m):meZ$}
> Z bymavs + Z KmUs + Z max{0, 7,01 — KnVa}
mezB mezyP meZP,
+ Sm1v1- (2.19)
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2.4: Exploring the Extremal Coefficients

Let C C B be the class of My processes C' with coefficients c;jzq where

% U1 4 .
Cjo = U_chl + Y, J € Ia i > 07 (220)
Cml = Cma, M E Zlc \ ZQC, (2.21)
> em=1-6, (2.22)
mezZ\z§
v
Cm2 = Cymy0 = v—;cml + Yg(m) < Cm1, m € Z5,  and (2.23)
U1
> Ygemy =D =0 0. (2.24)
mez§ jel 2

Here, Eq. (222)) replaces the corresponding Ineq. ([ZI3)) above. In particular, C
is not empty by Example Since -, cz0\ zo mMing cng = 1 — 61 by ZZ0)

and (Z22) it holds with (ZZ3) and ([ZI2) that
> Wi Cyng = Y m=1-9+0: (2.25)

mez§ mez§
By the left hand side of ([ZZ3) we now get with (Z23) that

Z Cm1V1 = (1—§Z~5+91— Z %n)vz

mez§ mez§

—(1—¢—0)v,+6;, veES,, (2.26)
where (Z20) follows from (Z2Z4). Further, by ([Z23)) and Z21),
m(v | C) Z mmcmdvd = Z Cm1V1 + Z Cm1V1 (2.27)

mez¢ mezg mezZ\z§

=1— (¢ — 01 + 05)vs, (2.28)

where (Z2Z8) follows with (226) and ([Z222). To conclude the proof we will make
use of the following four results.

First, by (Z2Z0) and the definition of s,,» we have

(00 | C) = lnin(00) = 0203 = Spova + > Biyove, v1 € Var.  (2.29)

mGZB

Eqs. (ZZ3) and IF) imply
3m2:92—{ Z mdincmd—l—,u—l— Z Em + Z /im}. (2.30)

mez§ meZg, mezP
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2.4: Exploring the Extremal Coefficients

Further, applying (224)) and ([Z23]) twice yields

Z mdin CrmdVU2 = Z Cm1U1 + Oov9 — 010, (2.31)
mezg mezZ§
Finally, by (Z217), Z22) and ZI1)
m(v | C)—m(v | B) Z Cm1V1 — Z m}n bmaVa + 1. (2.32)
mGZC meZQB

Now,

[(6v | B) — 1(8v | C) = [(Bv | B) — 03

> 81Ul — Smatls + Z (M1 — Kmvs) (2.33)
meZ2B:3
= Z Cm1 V1 — Z mc}n bmava + pve + Z EmUot
mez§ mezZP mezP,
Z KmUs — Z KmU2 (2.34)
mEZQB meZ2B3
>m(v | C)—m(v | B), (2.35)

where (Z33)) holds with ([ZT9) and (229), [234) holds with (Z30), ([Z31) and
the definition of s,,;, and (Z33) finally follows from (Z32).

(iii) Let v € Sy with vy € V55 be fixed. The proof is similar to that of part (ii) and
uses the same notation where possible. Let now C be the class of M, processes
C with coefficients c;zq where
* V1 4 . U1
Cio=—Ch—, J€IL,7 =0, Z’Yj:v—Qel—Qz, (2.36)

U
2 jel

and (ZZI) and ([Z22) hold. From [E36) we get for m € Z§ that

(%1
Cm2 = U_le - ’Yg(m) —E&m S Cm1, (237)
2
where 0 < ¢, < %cml — Yg(m) accounts for the fact that ¢,y < c 5. Again, C

is not empty by Example , where 7; = ¢}, (v /vy — 02/01) and
Z(O'U | C) = lmin(ev) = 911)1 (238)
by Eq. (236). From (231) it follows that ¢,,1v1 > ¢nav2, v1 € Voo, and hence

m(v | C) Z Cimals + Z Crm1 V1. (2.39)

meZzZ§ meZE\Z§
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2.4: Exploring the Extremal Coefficients

Further, following the argumentation there, Eq. (220) holds with (237) instead
of (Z2Z3). Now, with (Z39) and ([Z22) it follows that

m(’v | C) = (]_ — QZ; + 91)’02 + (1 — 01)’01. (240)

Consider again the class B as in part (ii). Using the above decomposition of Z2
we may write

’U ‘ B Z meUQ Z (meUQ — bmlvl) + Z m}n bmdvd.

mezZP meZP uzP, meZE\ZE

Eq. (ZI5) states that 1 — ¢ + 6, 4+ p = Zmezée ming by,g < ZmEZQB bima. Now,
using (ZI6) and (Z40) it follows that

meg’UQ—'— Z mmbmdvd (1—q§+61—|—,u)vg+(1—91 )y

mezZb meZB\zZ5
>(1- ¢+ 01)va + (1 = 61)v
=m(v | C),
and hence
m|[C)=m|B)< > (bmava — bivn). (2.41)
77’LEZ2]371LJZ2113:2

Further, with

b b —b ZB ZB
mgx{b;(m)dvd} _ { m1U1 + ( m2U2 m1U1 + K'mUQ), m € 21 U 5o

b1vr + max{0, Ky,ve — N1}, M E Zf?),

we get that
Z mdax{bz(m)’dvd} = Z bm1U1 —+ Z (meUQ — bm1U1 + :‘imvg)
mezZb mezZb meZP vz,
+ Z max{0, K,Vs — N1} (2.42)
mGZQP:3
By definition,
[(6v | B) = Z m(?x{b;(mmvd} + Z mczlix{b;dvd}. (2.43)
mEZQB je]\{g(m):mEZQB}
Now,
[(6v | B)—1(0v|C)=10v]|B)—btn (2.44)
0’0 | B Z bmlvl Z b;*»lvl (245)
mezy jel\{g(m):meZF}
> Z (bmavz — brm1v1) (2.46)
mGZfluZ£2
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2.4: Exploring the Extremal Coefficients

I 1
V]_:O V1:1

Figure 2.4.2: Upper and lower bounds for §(v) as in Theorem EZZH given ¢ = 0.75 (thick line), ¢ =08 (---), ¢ =1
(- - -) and ¢ = 1.05 (thin line) for ; = 0.7,02 = 0.4.

where (244]) holds with (238), (243) holds with (ZI]]), and 48] follows from (2Z3])
and (ZZ2). Finally, by (Z41]) and the argumentation at the beginning of part (ii)
we have that 0;,¢(v) = 60(v | C).

(iv) For v; € V3 consider the process C(61, 65, o, v1) in Example 222 and apply the
same argumentation as in part (i).

U
Finally, we will consider the case where ¢ instead of ¢ is given, see Figure A2

Theorem 2.4.5. Let D =2 and ©(60,, 65, ¢) be the closed set of multivariate extremal
index functions 0 for all stationary max-stable processes with univariate extremal in-
dices 0y, 05 € (0,1] and adjusted extremal coefficient ¢ = 1(61) = ¢0(1). Let ¢ and
Osup be defined in the same way as in Theorems [2.4.3 and[Z24.4) Then,

-1
maxg(1 — 6y)vg
0 —
sup('v) <1 + Zd<¢ — egfd)vd + (91 + 62 — (b) maxy Ud) ’

Ot (v) = mdin { max{0; — 2(0q — ¢/2)v3_q, Gg,dvg,d}} )
Further, 5., € © for all ¢, and Oie ¢ O if and only if maxy 6y < ¢ <>, 60a.

Proof. Let B = B(01,602,¢) be the class of processes B as in (Z1) with coefficients
bira,J € I,k € Z,d = 1,2, and Bjrq, 5 € F,0 < k < Nj,d = 1,2, such that
[(Bey | B) =0, and [(01 | B) = ¢. Now, the equality for s, follows by Example 2Z2T]
and the fact that B C X(0y, 05, ¢), where X*(6;,0,,¢) € B.
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2.4: Exploring the Extremal Coefficients

To show the equality for 6, note that from [(61 | B) = ¢ it holds by (L1) and (L2)
that

[(6v | B) > min {max{0; —2(04 — ¢/2)v3_q, O3_qv3_a}}
= min{l;(v), l2(v)} = Oine(v),

where [; and [, are valid dependence functions, see below. Then, the last equation

follows from Theorem EZ3T] (iii). Further, ;¢ is not a valid dependence function for

max,0; < ¢ < >_,04 by lack of convexity, and ;¢ (v) = Y, 0qv4 for ¢ = >, 0, and

Oint(v) = maxy Oqvg for ¢ = max, 6.

Finally, note that 6,¢ is reached piecewise by the example processes B e B, m=
, of the form ) where by, 11m = ¢ — O3_m, bnoim = D _g0a — (2,2,3—m) =

03—7717 Bmjdd = 1 — 04. O
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Chapter 3

Reconstruction of Max-Stable
Processes for Given Extremal
Coeflicient Functions

3.1 Motivation

With respect to the dependence structure of D-variate stationary max-stable processes
we discussed in Chapter [J the multivariate extremal index as a rough summary mea-
sure of the clustering behavior. In particular, we gave an illustrative interpretation of
the extremal index in terms of the mean limiting cluster size. Consequently, a given ex-
tremal index may in general be realized by a rich class of processes comprising a large
variety of different dependence structures. Furthermore, unlike the Gaussian family
where the dependence structure is entirely determined by the corresponding autoco-
variance function the class of max-stable processes cannot be completely characterized
by a similar concept. Still, a suitable summary measure for the dependence structure of
such processes that goes beyond the meaning of the extremal index is given by the ex-
tremal coefficient function, cf. (). It is a conditionally negative definite function and
was proposed in [56]. At the same time it is a special case of the extremogram [12]. Tt
will become clear in Section how this function is related to the more general notion
of extremal coefficients already discussed in Chapter Pl Although in most applications
the extremal coefficient function gives a more detailed idea of the dependence structure
than the extremal index we remark that the former may not be understood rigorously
as a refinement of the extremal index. In particular, the latter can in general not be
reconstructed uniquely for a given extremal coefficient function. Recall also (2) for
an alternative approach to the dependence structure within extremal clusters that is
not affected by this shortcoming. It will be studied in detail in Chapter

The matter of the extremal coefficient function may best be understood alluding to
the usual autocovariance. Similar to the latter the extremal coefficient function is a
dependence measure for pairwise (temporal or spatial) separations of a process at a

29



3.1: Motivation

given lag h € RP. This concept will be covered more formally in Section B3 Although
it remains a summary measure of the dependence structure, i.e. it neither character-
izes the multivariate marginals of the process nor the bivariate dependence structure
over space or time completely, it has a convenient interpretation that is appropriate to
most applications. Moreover, as in the Gaussian case a summability condition on the
extremal coefficient function will allow for a corresponding characterization of max-
stable processes as having short or long memory. Further, while it does not determine
the dependence structure of a max-stable process any given extremal coefficient func-
tion still imposes significant restrictions on the admissible set of underlying processes.
Here, we will exploit in more detail the structure of extremal coefficient functions in
order to recover corresponding max-stable processes, i.e. such processes that are able
to generate the respective extremal coefficient function. Although the latter classes are
extensive it has been an open question to state such valid member processes explicitly.
Based on the well-known fact that the set of extremal coefficient functions is convex [56]
we will, in particular, focus on convex decompositions of those functions, i.e. a repre-
sentation of the latter in terms only of the vertices of their hull. It will be instructive
at this point to have an early look at Figure BiAT] below where as an example for a
range of n = 5 we display the abovementioned vertex extremal coefficient functions.
Put differently, all valid extremal coefficient functions on Z up to range five are given
by some convex combination of the functions included in the figure. As a crucial point
we will discuss in detail the determination of the set of such vertices. The latter will
then give rise to a reconstruction scheme for max-stable processes associated to given
extremal coefficient functions. In particular, we shall introduce a sparse reference class
of max-stable processes that is intimately related to the above set of vertices. The
class of processes depends on a weight vector that may readily be chosen such as to
reproduce any valid extremal coefficient function. The reconstruction of max-stable
example processes from given extremal coefficient functions is then essentially reduced
to the determination of suitable weights. Note that throughout we will confine our
analysis to the one-dimensional case in discrete time.

The chapter will be organized as follows. In Section we shall first introduce the
concept of set correlation functions. Following a brief discussion of their properties we
will restrict to their evaluation on a grid, and determine the vertices of their convex
set. We point out that the analysis in Section is self contained and independent
of the concepts commonly used in extreme value theory. We will, however, show
in Section that the ensembles of set correlation functions and extremal coefficient
functions actually coincide on a grid. The reason to work with set correlation functions
first is that in order to analyze their structure and determine the vertices of their set
we may refer directly to well-known concepts from the literature, in particular the
problem of homometry [46, 47|. In Section B33 we will then formally refer to the theory
of extremes and recall two essential concepts already discussed in Chapter ], namely
max-stable processes and extremal coefficients. Section B4l will be primarily devoted
to the setup of the abovementioned reconstruction scheme. An example of the latter
in addition to some related applications will be discussed in Section Finally, the
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3.2: Set Correlation Functions and Basic Notions

usefulness of partial knowledge of the extremal coefficient function for assertions on
the range of the underlying process will be considered in Section

Throughout, following standard conventions we will write S+ ¢ = {x + ¢ : x € S},
and accordingly aS = {ax : x € S}, for aset S C R, and ¢,a € R. We will denote the
indicator function of a set S C R by 1(z € S). Further, we will assume all operations
that involve vectors to apply componentwise, and denote by “C” a proper inclusion
whereas “C” does not preclude equality. For z € R let |z] = max{n € Z : n < z}.

3.2 Set Correlation Functions and Basic Notions

To begin with in this section we will concentrate exclusively on set correlation functions,
a concept shown in Section to be equivalent to the extremal coefficient functions
on a grid. In our approach we will show first that the ensemble 7 ; of set correlation
functions with finite range n € N that are evaluated on Z is a convex set. We will
further determine its vertices, see Lemma B2l and Theorem B21] below. To begin
with, it will be instructive to incorporate the relevant concepts successively into the
well-known framework of general covariograms. To this end, for an integrable and
square integrable function w(x) in R we will define the covariogram by the convolution
product

f(h) = /w(:c)w(x + h)dx, heR. (3.1)

Note that two fundamental properties of the covariogram, namely symmetry and pos-
itive definiteness, are immediate from (BJ), and will be essential in the following. As
an important special case of (Bl we will next consider the length of the intersection
of a set with its translation. More precisely, for w(z) = 1(z € S), S € 04, let

Fo(h) = / WreS)l(ze(S—h))dr=|SN(S—h), heR, (3.2

denote the set covariance function of S, also termed the geometric covariogram [3§],
where o, stands for the ensemble of all Borel sets S C R with 0 < |S| < co. Note
that later on we shall use the notation | - | also to indicate the cardinality of a set
where no confusion may arise. For later reference we introduce o, C 0 in order to
represent accordingly all Borel sets S C [¢,n + ¢) for some ¢ € R. The number n € N
will later be referred to as finite range. For convenience, in the following we shall
without loss of generality consider the set correlation functions f§(h) = fs(h)/fs(0)
for all h € R, S € 0. To provide some preliminary insight into the behavior of f§
note that by (BZ) we have in particular that f3(0) = 1, [ f&(h)dh = |S|, and that
f5(h) is not differentiable at the origin [@]. As a further restriction of ([BJl) and (B2
we shall henceforth confine our analysis to the evaluation of f& on a subset () C R, i.e.
we consider f5(h), h € Q, and put F; , = {f; € R : S € 0,,} for any n € NU {oo}.
Note that f§ € FZ, o might be in F 5 for some n € N although S is unbounded. The

31



3.2: Set Correlation Functions and Basic Notions

following elementary lemma provides a fundamental background for the rest of our
analysis.

Lemma 3.2.1. For alln € NU {oo} and all p € N the set F ., is conver.

Proof. Let f5, fs, € F, 1. n € NU {oo}. Consider first the case n € N. Without
loss of generality we may assume that S; C [0,n), i = 1,2. For A € [0, 1] put

S(BRCE)
o((for-3) - (s-50))+5) 5

Now, we have that S3 € o, and f (h) = Af3 (h) + (1 — A)f5,(h), h € Z/p, holds
by B2). If n = oo, the assertion follows for S; C R, i =1, 2. O

In the following, by V(F; ;) we will denote the (unknown) set of vertices representing
the convex hull of F;,. It will be a consequence of Proposition BTl below that
V(Fy7) is contained in a natural superset with finite cardinality for any n € N,
ie. [V(Fy )| < 2" The superset will be determined by the set of all 2" binary vectors
that, however, entails substantial redundancies to be discussed below. We will intro-
duce simple set correlation functions f, for Uy = ;¢ [7 — 1,7), where I is the set of
indices corresponding to ones in b = (by,...,b,) € B, = {0,1}" (e.g. [, = {1, 3,4} for
b= (1,0,1,1)). For the restriction of ff; , b € B,, to Z we shall for simplicity introduce
the notation f7, and put H; , = {f}kb ER” be Bn}. For later reference, note that

by (B2), in particular,

fl*b(h) = Z min{bk, bk+h}|Ib|_1 = Zbkbk+h|lb|_1a heZ,bebB,, (33)

keZ keZ
where b, =0 for k € Z\ {1,...,n}.

Proposition 3.2.1. For alln € N we have that V(F}; ;) € H; 5. Further, V(F%, ;) C

UZO:1 Z,Z-

Proof. In order to show the first assertion let n € N and S € o,. Without loss of
generality we may assume that S C [0,n). We will show that

fi() =Y fi,(Wm, he,

beB,

where 0 < i, <1, b€ By, Y45 ts = 1. To this end, for all b € B, let

& =10,1)N[(S+1-1) (3.4)

i€l
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and put
Ay=060 (] <o) (3.5)
a€Bn: 1, Cl,
Now, we find that

AaﬂAbzéaﬂém< U 5w) =0 forall a,b,€ B, with a # b. (3.6)

weBn:lqClw
or Iy Cly

Here, the last equality follows from the fact that by (B4]) we have

& C | bu abeB,a#d

weBn:IqCly,
or IbCIw

Let Sy = (J;cr, (Ao + i — 1), b € By, where the union is disjoint by (B3). By [E3)
and (B6) we get in particular that

SaN(Sy+h)=10 forall h€Z, and all a,b, € B,, with a # b. (3.7)
Further, (B4) and (B3) yield for all b € B,, that S, C S, and hence
1) sncs. (3.8)
beB,

Next, note that € S by (B4 implies that x € ¢, + i — 1 for some i € {1,...,n} and
b € B, with I, = {i}. By ([B3) we get further that = € A, +1i— 1 for some a € B, with
I, C I,. Altogether we now find that x € .S implies

re lJ@a+i-ncJ Jav+i-1)= [ S,

beBy, beBy i€l beB,
and hence S = (1), Sy by ([BX). Then, from [F1) and ([B2) we get for pu, = [Sp|/|S| =
|AbH[b|/‘S‘a be Bn, that
f5(h) = 3 &, = > I1, ()
beBn bEBn

where the second equality holds by definition of S, and f;. We finally consider the
second assertion. For any S € o, let

L,= U (z+ U ((S—z’)m[(),l))), neN,
2€7Z 1€Z\{—n,...,n}
and S = (SN L,) U(SNLS). Then,
5 =S OLLISI ™ fonre + 1S NV LullSI™ fonr, € Fron
and f§. € Fs,yy 4. Now, for n — oo we have that [SNL;[[S|™" — 1, and the second

summand tends to 0. O
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Next, via the introduction of suitable equivalence relations we will successively discard
certain redundancies within B, and finally determine a set C, C B, with V(H;, ;) =
{f}kb eR” be Cn}. In particular, we will demonstrate that the immediate idea of
congruence for any two sets I, and I, a,b € By, is a sufficient condition for f; = f}
only whereas the concept of homometry that we shall discuss below is necessary and
sufficient. Still, we will also study the former equivalence relation in more detail as the
number of noncongruent and homometric vectors a, b € B,, will turn out to be relatively
small, cf. Proposition B2 and Table BZ2Z1l To formalize the notion of congruence first
define reflections r, : {0,1}" — {0,1}", uw € {0,1}, ri((z1,...,20)) = (T, ..., 21),
ro = id, and translations s, : {0,1}" — {0,1}", t € Z,

0,...,0,21,...,2p) ifxpyi1,...,2, =0and t >0,
se((@1, .. xn)) = (Tpq1, -y 0, 0,...,0) if ..., y=0and t < —1,
(T1,..., %) else.
Now, for all a,b € B,, we will define congruence by the equivalance relation a ~. b,
a = s;or,(b) for some (t,2) € {—n+1,...,n—1} x{0,1}. We will denote the quotient

set of B, with respect to ~. by B, /~. and state the following result for |B, /~|, i.e.
the number of non-congruent patterns in B,,.

Proposition 3.2.2. We have that
‘BH/NC‘ = 2”72 + 2L(n72)/2J + 2L(n71)/2J’ n € N (39)
In particular, we have |B,,/~.| ~ 2772

Proof. Let B,; = {b € B, : by = 1} C B,, where applying the translation defined above
we have that b = s,(a) for all b € B, \ {0} and some (t,a) € {0,...,n — 1} x B, 1.
Hence, by definition of the equivalence relation ~. we find that

By /~el = |Bui /rve] + 1. (3.10)

Next, consider the partition B,, 1y U B, 1 g of B, 1 where B, ; y = {b € B,,1 : b, = 0}
and B, 15 = By \ Bnan. We obviously get that a . b for any a € B, ; x and any
b € B, 1, such that

|Bn,1/Nc| = |Bn,1,N/Nc| + |Bn,1,E/Nc|' (311)

Note that by definition of B,,; and B,y we have that b € B,,_;, if and only if
(b,0) € B,, 1 n such that, in particular, |B,_11/~.| = |Bn1n/~c|. Applying the latter
equality successively to ([BI1) we find with (BI0) that

By frvel = 3 1By /el + 1. (3.12)
j=1
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3.2: Set Correlation Functions and Basic Notions

For S, = {b € Bui1g : bk = bp_r1,k =1,...,n}, i.e. the set of all symmetric vectors
b € By,1,r, we now consider the partition

Buip = A, US, (3.13)

where A, = B, 1 g \ Sy It is immediate that S,, can be identified with its quotient set
with respect to ~, i.e. S,/~. = S,. Moreover, with respect to the set A, C B, g
of asymmetric vectors for all @ € A, we have that r(a) = b for some b € A,, b # a.
Note that s;(a) = a for all (¢,a) € Z x B, 1 g, and hence we get that |A, /~.| = $|A,|.
Further, the definition of S,, yields that a +. b for any a € S,, and any b € A, such
that

1

1 1
|Bn71,E/NC| = ‘An/’\“6| + |Sn/NC| = i‘An‘ + ‘Sn| = é‘Bn,LE‘ + §|Sn| (3-14)

where the second equality follows from the above remarks and the third equality holds
by (BI3). Note that B, ;g is the ensemble of all b € B, with b = b, = 1 and

cardinality
n—2 n—9
Bo,1,6| = Z( . ) (3.15)

m=0

For the number of symmetric sequences |S,| we find by case differentiation that, for

n >3,
( n—2
—2)/2
((n /2)/ ) if m,n even,
m
(= (n—3)/2
15, = Z( m/2 ) if n odd and m even, (3.16)
n m=0 '
n—2
—3)/2
3 ((" ?1)/2> if m,n odd,
2 \(m-1)/
0 else.

\

Finally, using (B12), and by case differentiation upon ([BI6]) we get that, for n > 3,

(=2 d j 1 (22721 g j L(n=3)/2] j j
|Bn/~c\:5+522(m)+§ Z(m)+ Z(m)

7=2 m=0
_ gn=2 4 oln=2)/2] | 9l(n-1)/2]

It is readily seen that the r.h.s. also holds for n = 1 and n = 2. O

Note from Proposition B222 that a correction for congruence in B,, will asymptotically
reduce the number of relevant binary vectors by three quarters. Next, in order to
motivate the abovementioned notion of homometry we shall consider an alternative
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3.2: Set Correlation Functions and Basic Notions

interpretation of the set correlation that focusses on the mutual differences between
the elements in [, i.e.

() =H(zy) € ra+h=y}ILl ™, heZ (3.17)

The concept of homometry, also known as the turnpike or partial digest problem, is
typically specified by equations similar to (BIZ). In particular, given all distances
between points on the line is it possible to retrieve the corresponding sets I,, b € B,
up to congruence? Put differently, if any is there a unique class [b] € B, /~., b € B,,
identified by a given set correlation function f* € Hj, ;7 The answer goes back at least
as far as [46, 47| in the context of the analysis of diffraction patterns in crystallography
where the set covariance is related to so-called multisets and where it is also well-known
that |B,/~c| > [H} z|, n > 12, cf. Table BZTl In line with the above discussion two
patterns a,b € B, are called homometric if, a ~p, b, ff = f;, cf. [41]. Denote by
la] = {b € B,, : b ~, a} the equivalence class of a, i.e. we identify the equivalence class
[a] with the corresponding function f; and put f}; = f},, a € B,. Let

By~ = {[b] : b € By},

Note that emphasizing its computational complexity the problem has been discussed
more recently in [33|. For later reference we may define |[b]| := |I,| for some a € [b],
b € B,,, by the following lemma.

Lemma 3.2.2. From a € [b] for some b € B,, it follows that |I,| = |I|.

Proof. By definition we have that a € [b], b € B,, is equivalent to f; = f} such that,
in particular, max I, — min [, = max [, — min I, =: r. The latter yields by (B3] that

]fza‘(r) = f1,(r) = 1. Now, by definition we get || = fu,(r)/f],(r) = f1,(r)/f},(r) =
Iy|. O

By the above discussion we may now restrict to any representative of B, /~; as candi-
date vectors generating V' (Hy, ;). For

C, = {[a] € By /~n: fly # Z fitue), for all py) € [0, 1]} C B,/~n (3.18)
[b)€Bn/~1\{[a]}
we get that
{fiy eR™: 0] € Co} = V(M 2) = V(F,2) (3.19)
where the second equality follows from Proposition B.ZTland the fact that H; , C F; ;.
Note that beyond the idea of homometry we are not aware of a suitable concept that
yields the set C,, directly from B,.

Theorem 3.2.1. For all S € 0,, n € NU {oo}, there is X C C,, such that
F5(h) = fiy(Wp, h €, (3.20)
[bleXx

where 0 < ppy < 1, [b] € X, 32 cq by = 1. Reversely, given the r.h.s. of (Z20) a set
S € o, exists such that (ZZ0) holds. In particular, |X| < n, n € N.
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3.2: Set Correlation Functions and Basic Notions

|Bn| =2" ‘Bn/NC‘ |Bn/’\“6‘ — |Bn/Nh| |Bn/Nh| — |Cn‘

n

4 16 8 0 0

) 32 14 0 1

6 64 24 0 2

7 128 44 0 2

8 256 80 0 4

9 512 152 0 7

10 1024 288 0 19

11 2048 560 0 36

12 4096 1088 2 73

13 8192 2144 8 131

14 16384 4224 20 259

15 32768 8384 36 523

16 65536 16640 73 958

17 131072 33152 128 1762

18 262144 66048 234 3379

19 524288 131840 394 —

20 1048576 263168 682 —
Table 3.2.1: Number of equivalence classes with respect to congruence, cf. Proposition and homometry where
|7 4| = |Bn/~k|- We also state the number of homometric equivalence classes in the interior of Cp, i.e. a number
[Bn/~nr| — |Cn| of set correlation functions f[’z], b € Bp/~p, are convex combinations of some f[’;], la] € Cn, a # 1,

cf. (BI8). The latter result has been obtained by a search algorithm and gives a lower bound. Because of computational
limitations we do not report the results for n > 19.

Proof. The proof of Proposition B2l yields that for all S € o,,, and fi, = |S|/|S| we
have

=Y mmm =Y fWm= Y fyWan= > fi het,

beBn beBn [b]eCn [(b]eXCCn

where the third equality follows by (BXId). The existence of X C C,, with |[X| < n,is a
consequence of Carathéodory’s theorem [6] and (BI9). Finally, note that

ZM Zﬂ[b}:Zﬂbzl

[b]eCy, [blex beBn

where the weights fi), [b] € Cp, and pp), [b] € &, are not unique in general. O

The fact that in general B, /~j; may include interior points of C, is referred to in
Table BEZZTl where it is shown that |B,,/~,| > |C,| for n > 5, cf. also Section BA3 Note
that the results for |B,/~| and |C,| in Table BZZT] have been obtained by simulation,
cf. [4]. Related questions have also been studied by [23] and [51].
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3.3: Relations Between Extremal Coefficient and Set Correlation

3.3 Relations Between Extremal Coefficient and Set
Correlation

Recall Definition (Z8) and Theorem EZZT] for a stationary max-stable process (Y;)iez
for D = 1 with standard Fréchet margins. For its finite dimensional distributions we
then have

t
P(Yi <yi,...,Ye <yp) = exp < \/ I (Go(s ) (3.21)
0 =1

for all Kk > 1 and 3y, > 0, t = 1,..., k. Here, the so-called spectral functions (see
Section EZ2) ¢; : [0,1] — Ry are such that fo gi(s)ds = 1 for all ¢t where as before
Gi+1 = I'(g:) for a piston T, see [14]. Note that we put I"=To...oT for the ¢-fold
composition of I'. As a summary measure reflecting the temporal (spatial) dependence
structure of Y the metric

/ Go(s) — T(Go(s))lds, h e, (3.22)

has been proposed, see e.g. [13]. Following its standard usage in the literature we
shall, however, not directly refer to d(h) but define the equivalent extremal coefficient
function [56] as a transformation of (B22) that is given by

o) = T2 = [onactiolo). T Go(s)bs, nez. (32
Note that ([BZI]) yields a more intuitive interpretation of ¢(h), i.e
P(Yy <y YVy<y)=PY,<y)*® 4>0hc7, (3.24)
and also
o(h) ZQ_JLTOP(Yh>y | Yo >y), heZ, (3.25)

as introduced in Chapter [[l c¢f. (TT)). Both representations particularly emphasize the
relevance to practice of the extremal coefficient function, see also [22]. Especially (B25))
provides a convenient interpretation in terms of the conditional probability of an ex-
treme event to follow a preceding extreme event at lag h. Note that ¢(h) =2, h € Z,
by (BZ4) is equivalent to independence of Y; and Yy, for all ¢ € Z. We remark
that (B24) for a fixed lag h € N closely corresponds to the definition of ¢ in ([EZI0).
More precisely, let the vector e 413 € R"*! be defined as in Section Bl By (ZI0)
we now have

oy = yl(y lequneny) = yi ([0’ ye{_ll,hm] )
= —yInG <ye{1 h+1}) —yInP(Y1 <y, Y1 <vy)
=—ylnPY1 <y)o(h|[Y)=0(h[Y), y>0,
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3.3: Relations Between Extremal Coefficient and Set Correlation

where (Z3) yields the second equality and the third equality is a consequence of ([Z2).
The last two equalities hold by the assumption of standard Fréchet margins for Y,
and (B2Z4), respectively. Here, in contrast to Section 1] the function G, and L or [
equivalently, reflect the (h + 1)-variate marginal distribution of the stationary max-
stable process Y. We shall next restrict the above framework to the class of dissipative
stationary max-stable processes, see e.g. [28]. By [65] such a process (Y;);cz has the
representation
Y, = max Uigi—=.(Si), tE€Z,

where as above g, : [0,1] — R with fol gi(s)ds =1 for all t. Here, {(U;, S;, z;)}52, is a
Poisson point process on [0, 00) x S x Z with intensity measure u21(u > 0)du x dS x 1.

Without loss of generality we may again assume that & = [0,1] and dS = 1(s €
[0,1])ds. For g(t) = g4 (t — [t]), t € R, we have that

Y, = max Ug(t — z), te, (3.26)
1€

where {(U;, z;)}52, is a Poisson point process on [0,00) x R with intensity measure
u21(u > 0)du x dz. Note that in (BZH) the single spectral function g completely
charaterizes the dependence structure of the dissipative max-stable process Y on Z. In
the following we will write Y, where it is advantageous to indicate that the process Y’
is generated by g. We have in particular that (B2Z3) simplifies to

6(h | g) = /max{g(s),g(s +h)yds, hez, (3.27)

and denoting by supp(g) the support of g the range of Y}, is given by
ry, = inf{m € N : [supp(g) N (supp(g) + t)| = 0 for all [t| > m, t € Z},

ie. (Y1,...,Yy) and (Yiyq, .., Yetqr) are independent for all ¢ > ry, k,1 € N. For the
ensemble of extremal coefficient functions we shall next discuss a summability condi-
tion, and put @z = {¢ € [1,2]%: >, (2 — #(h)) < co}. We will denote by @, 7 the
restriction of ®, 7 to those underlying processes with finite range ry < n. The above
classification of extremal coefficient functions motivates the following analogy to the
term “long memory” 3] that usually refers to the non-summabilty of the autocovariance
function. We will propose an analogous notion for max-stable processes.

Definition 3.3.1. A second order weakly stationary random process on Z with co-
variance function p has a long memory [3] if >, _, |p(h)| = co. A stationary random
process Y on 7Z with existing extremal coefficient function ¢ has a long memory if
o(-|Y) & @z, i.e. the correlation function of the random process 1(Y > n) is not
absolutely summable in the limit as n — oo.

Proposition 3.3.1 (|18, Proposition 3|). Any stationary maz-stable process Y on Z
with standard Fréchet margins and summable function 2 — ¢(- | Y) is dissipative.
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3.3: Relations Between Extremal Coefficient and Set Correlation

The following theorem is essential to the integration of the results discussed in Sec-
tion B2 into the extreme value context. It characterizes every summable function 2 — ¢
for max-stable processes on Z as a special set correlation function. Note that its proof
will be based on the rather lengthy arguments preceding Corollary in Chapter @l

Theorem 3.3.1. For alln € NU {oo} we have F;; ={2—¢: ¢ € O, z}.

Proof. Let § € F;, n € NU{oo}. Then, there is S € 0, such that f5(h) = £(h),
h € Z. Further, for g(z) = 1(z € S)|S|™! we have ¢(h | g) =2 —&(h) € D,z by (BZD)
and (B2). The reverse direction is a direct consequence of Corollary 52 in Chapter H,
and Proposition B3l O

Now, Theorem B3 Tlyields in particular that a discrete-time max-stable random process
has a long memory if and only if its extremal coefficient function cannot be represented
by a set correlation function. Note that Definition B3] also characterizes certain dis-
sipative processes as having a long memory. Our point of view therefore differs from
the interpretation in [52] where the definition for short memory phenomena coincides
with a process being purely dissipative. Consider e.g. a dissipative process as in (B20])
with spectral function g(s) = s721(s > 1) that has a long memory according to Def-
inition B30l With respect to Theorem B3] note also that we have discussed three
equivalent concepts representing the extremal coefficient function on a grid, namely ¢,
d and f, cf. B210), BZ2) and [B2). We will henceforth mainly be concerned with two
questions related to the above setup. Namely, in what way is the class of extremal
coefficient functions restricted by the right-hand side of (BZ27), and how can processes
of the form given in (B226) be reconstructed for given extremal coefficient functions?
To this end, from now on we will focus on so-called M; processes, also termed mixed
moving maxima. For D = 1 the processes correspond to the M, class introduced in
Section More precisely, the processes are discrete versions of ([B26) where

J
Mt = I‘l7l:a,1X Iileazxaljkzj"t_k, t e Z, (328)

for some J € N and a sequence {Z;;,j € {1,...,J},t € Z} of i.i.d. standard Fréchet
variables, i.e. P(Z;; < u) =exp(—u~'), u > 0. Further, a;, > 0,7 € {1,...,J}, k € Z,
and Z}]:1 > kez @ik = 1 such that the marginal distributions of the Mj processes are
also standard Fréchet. Note that we obtain (B2])) from ([BZ6) by choosing

g(x) :JZZajkl(azekjLJ*l[j— 1,7)), xz€R. (3.29)

j=1 keZ

We will consider the following useful classification of M3 processes. To this end, by M,
we will denote the set of all M3 processes with J <. € NU{oo}. Note that for their
special structure the elements of M are canonically referred to as moving maxima or
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3.4: A Class of Simple Processes for Given Extremal Coefficients

M, processes. Further, we will put M, ,, for the restriction of M, to processes up to
range n € N. The extremal coefficient function ¢(h | M) using (B21) and ([B29)) equals

¢(h | M) = (d(h| M) +2)/2 (3.30)
where
d(h | M) ZZ \ajr — ajpinl, hE€Z,ME M. (3.31)
=1 keZ

For later reference, by D,,, we will accordingly denote the set of functions d(h | M),
heZ, forall M € M,,,, t,n € NU {oco}.

3.4 A Class of Simple Processes for Given Extremal
Coefficients

In the following we will turn the results for set correlation functions obtained in Sec-
tion into the construction of actual max-stable processes corresponding to given
extremal coefficient functions. In particular, we will assign to each vertex of F ; a
simple class of M, processes that represents the respective vertex extremal coefficient
functions, cf. Corollary below. We will then focus on weighted maxima of those
classes in order to incorporate the convexity of ®, 7. To this end, consider the follow-
ing sparse class R(¢) € Mc,|» of M processes. Let G = {( = ( C)pec, € 10,1161
> pec, Sulb]] =1}, and for all ¢ € G define

R(C) = {(Rt)teZ : Ry = max C[b} m%XT[b},kZ[b],tfkat € Z,
[bleCn k=1 (3 32)

and rp = (g1, - - -5 Tpa) € [b]}

where as before by { Zj ;, [b] € Cy,i € Z} we denote a sequence of i.i.d. standard Fréchet
variables. Note from ([B32) that any complete vector of representatives r = (rp)pec,
determines a particular process R € R(() for any given ( € G. In the following
proposition we will state an essential property of the class R(().

Proposition 3.4.1. We have that ¢(h | A) = ¢(h | B), h € Z, for all A, B € R((),
Ceg.

Proof. By [B32) for any fixed R € R(() there is a unique vector of representatives
r € B!, Consequently, we find by B30) that

h | R Z C[b] Zmax {T’[b] k> T[b), k+h} =2- Z C me {T’[b] k> T[p), k+h}

[bleCn keZ [bleCn keZ

=2- Y (ulbllfh), heZ

[bleCn
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where the last equality holds by ([B3), and where we tacitly assume that rp; , = 0 for all
keZ\{l,...,n}, [b] € C,. To conclude the proof note that the r.h.s. is independent
of r. O

The next corollary follows immediately from the proof of Proposition BZZT1l It identifies
the abovementioned classes of Mj processes R(() that generate the vertex extremal
coefficient functions.

Corollary 3.4.1. Let () = |[b ]|*1 for any ﬁxed [b] € C,,, and let (i = 0 for all [a] € C,,
la] # [b]. Then, 2 — ¢(h \ R) = fi(h) € V(H;, z) for all R € R(().

Referring to Corollary B-AT] we shall in the following denote the vertex extremal coeffi-
cient functions by ¢(h | [b]) = ¢(h | R) = 2— fj;(h) for any R € R(() with (p = [[o]| 7L,
[b] € C,,. The functions are displayed in Figure BTl for the case n = 5. We will show
in Corollary below that the restriction to the class R((), ¢ € G, is admissible
in order to represent any extremal coefficient function ¢ € ®, 7. An actual example
for the reconstruction of processes based on the classes R(¢) will be discussed in more
detail in Section B2l

Corollary 3.4.2. For any extremal coefficient function ¢ € ®,, 7 there is a ( € G with
¢ = Cpy > 0,[b] € Cu}| < n such that for all R € R(() we have ¢(h | R) = ¢(h),
h € Z.

Proof. By Theorem B3] there is S € o, such that ¢(h) =2 — f&(h), h € Z. Further,
Theorem BZT with (= pp/|[0]], [b] € X, yields that

Zf[b] ullbll =2=o(h | R) =2—= Y 6(h | B])(y|0b)l, heZ,

blex

for any process R € R((). Here, the second equality follows from the proof of Propo-
sition and the third equality is immediate from the definition of ¢(- | [8]). O

Finally, it will be instructive to recall that any vertex extremal coefficient function
o(- | [b]) reflects a class [b] € C, of homometric vectors rather than a unique vector
b € B,,. In particular, the signature pattern [68] of a process is in general not determined
by the extremal coefficient function, see the discussion in Section Bl below. Even for
a given function ¢(- | R) € @, where R € R((), ( € G, the signature pattern
corresponding to R is at best determined up to homometry, cf. Section B2

3.5 Examples

3.5.1 Simplification of Arbitrary M3 Processes with Given Co-
efficients

Let A € Mj,, J,n € N, be given by the coefficients a;, > 0, j € {1,...,J}, k € Z.
Due to the bounded range n of A we may assume without loss of generality that a;, = 0,
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Figure 3.4.1: Vertex extremal coefficient functions ¢(h | [b]), [b] € Cn, for n =5 and h = 0,...,5. The respective
equivalence classes are identified by the corresponding representatives b € B,. Note that we only tentatively include
the lines joining the points as we confine our analysis to Z.

jed{l,....J}, ke Z\{1,...,n}. Define

¥ [0,1)" — [0, 1]"
b — max (b — min{b; : b; > 0},0).

Let the M3 process C' € M y), carry a third index [ in addition to j, k, and let C' be
defined by the coefficients ¢;;, >0, 7 € {1,...,J}, [,k € {1,...,n}, that is

J n
Cy = maxmaxmax ¢ Zji—k, t € 7Z, (3.33)
j=1 I1=1 keZ ’
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where the sequence {Zj;,5 € {1,...,J},l € {1,...,n},i € Z} again represents i.i.d.
standard Fréchet variables. Further, let c;; = (cji1, - - -, Cjin) = ¥ (a;) —¥'(a;) where
a; = (aj1,...,a;,) are the coefficients of A, and ¢! = ¢ o ... 09 gives the [-fold
composition of ¥. We will make use of the following simple fact.

Lemma 3.5.1. For all aj,as,m € R let by = max(a; — m,0), by = max(as —m,0),
¢ = min(ay, m) and co = min(ag, m). Then |ay — as| = |by — ba| + |1 — ca|.

Now, by a repeated application of Lemma BATl it follows that

J n n
dh|A) =d(h|C) = ZZZ|cﬂk—cﬂk+h\ h e Z.

_]:1 =1 k=1

We will finally emphasize that the vertex extremal coefficient functions may be identi-
fied naturally from C'. To this end, for ¢;; # 0 let mj; = maxy, cji, and ¢j; = ¢j;/mj; such
that by definition of ¢;; we have ¢;; € B, for all j € {1,...,J} and all [ € {1,...,n}.
Next, put

Cie = |[ej]] max CiikZjii—k, t €L,

such that B30) yields Cj; € My, and ¢(h | Cj) = [[é)| 7 Do ez max{ ik, Cjrptn}-
Further, using (B33) we get that Cy = max/_, maxj", |[¢;]|m;iCjis, t € Z, and, accord-

ingly, by (B30) we now have

p(h | C) szﬂ| cillg(h | Cjr). (3.34)

7j=1 =1

The fact that ¢;; € B, by B32) yields that Cj € R(() for (e, = |[é;]|™" such
that for all processes Cj; with ¢; € [b], [b] € C,, we find by Corollary BT that

o(- | Cy) = ¢(- | [b]). Finally, B3d) gives

d(h|A)=o¢(h|C)= > Bys(h|b]), hez,

[bleCn

where [y = Z}]:1 Yoy myl[én]|1(éj € [b]) for all [b] € C,. To conclude the example
note that applying the arguments discussed in Sections and we may further
reduce the appropriate index set to X C C,,.

3.5.2 Blind Reconstruction of My Processes

We shall now turn to the blind retrieval of a real example process for an extremal
coefficient function of a stationary max-stable process in discrete time with finite range
n. Here, we will first restrict to the class of M, processes, that is we put |[[| =
1, in order to show that given a priori knowledge about the index set I there are
alternative approaches for the reconstruction of processes that do not necessarily resort
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to Corollary B.A2 Below we shall discuss such an approach. To this end, let d € Dy,
be given. Then, there is an unknown (not necessarily unique) M, process X that is
determined by its coefficients z1, ..., z, such that by (B31) we have

dh| X) = Zm—a;k W, h=1,...,n. (3.35)

In order to turn (B33) into more tractable systems of linear equations we will make
use of the following lemma that can be easily seen.

Lemma 3.5.2. Let x; > 0,i=1,...,n, and x; = 0, else. There is a permutation 7
on {1,...,n} such that Ty > ... > 21, and

Z |w; — win| = iamh,ﬂi, h=1,...,n, (3.36)
i—1

where
Qrpi=2[1(n(i) <7(i —h))+1(r(i) <7w(i+h)) —1] € {-2,0,2} (3.37)

for-all hyi € {1,...,n}, and (i) = oo for alli € Z\{1,...,n}. Further, > " | arp; =
2h, h = 1,...,n. The sequence of coefficients o p;, h,i = 1,...,n, is unique for a
given permutation w, and vice versa.

Now, for the unknown M, process X according to Lemma B5.2 there is a (not neces-
sarily unique) permutation 7 such that @,-11) > ... > Zz-1(,) and such that by (B33

and (B30) we have
d(h| X) = Zaﬂhzxz, h=1,...,n. (3.38)

Note that as 7 is unknown so is the sequence o, h,7 = 1,...,n, and hence running
through all possible permutations we will have that (B38) represents n! systems of
linear equations. Here, in each case the coefficients o, j,; are given by (B31). However,
by the assumption that d € D, an appropriate permutation 7 will be associated to
at least one of the linear systems, and a corresponding solution z1, ..., x, representing
such a process X exists. The latter can be found for instance via a linear program [4].
Note also that for any d € D, the above approach will reveal whether any solution
to (B3Y) exists at all, i.e. whether d € Dy, C Dy .

3.5.3 Blind Reconstruction of M3 Processes

As indicated by the above discussion we find that even with respect to the function
d(h | A) for an arbitrary process A € Ma,, it appears to be nontrivial to state whether
also d(h | A) € Dy,. Put differently, given A € M,,, we ask whether there is a
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a22

Figure 3.5.1: Admissible combinations of a12 and ags for the process A discussed in Section BER3where d(h | A) € D1,
(o) and d(h | A) ¢ D1,n (o).

process B € M, such that d(h | A) = d(h | B), h € Z. Except for some pathological
examples we are not aware of a suitable analytic criterion that focusses directly on the
coefficients of A. Thus, using (B38) and the method outlined above we will check by
a trial and error procedure whether for simulated processes A € My, with arbitrary
coefficients a;i, 7 € {1,2}, k € {1,...,5}, we have that d(h | A) € Dy,. We give
particular such processes A(ay2, asn) where d(h | A(aiz, ax)) ¢ Di, for at least some
12, oo in Table B5Tl In order to get more insight into the sensitivity of our results to
changes of the coefficients we run through all admissible values of a5 and ass with all
other coefficients fixed and state whether d(h | A(a12, a22)) € Dy . The result is given
in Figure B0l Apart from a certain tradeoff between ai5 and ags along the upper
right boundary the figure appears to reveal no specific structure.

@k k=1 k=2 k=3 k=4 k=5
7=1 0.01 a19 0.02 0.05 0.21
j =2 052— 12 — 929 929 0.12 0.06 0.01

Table 3.5.1: Coefficients of the process A(ai2,a22) discussed in Section BEA3l

Next, we will discuss an example for the reconstruction of max-stable processes that
makes use of Corollary B42] that is we do not consider the above instances where
J = 1. We will put n = 5 in order to cover at the same time the case |B,/~| > |C,|
discussed in Section B2l To this end, from the class of processes A discussed above we
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b b k=1 k=2 k=3 k=4 k=5
(171717171> 1 Cl Cl Cl Cl Cl
(171707171> 2 C2 <2 <2 C2
(1707 1707 1) 3 C3 C3 C3
(1,1,0,0,1) 4 Ca (4 Ca
(1,0,0,0,1) 5 Cs Cs
(171717170> 6 CG <6 CG <6
(17 1707 170) 7 C7 C? C?
(1,0,0,1,0) 8 (s (s
(171’ 17070) 9 §9 C9 §9
(1,0,1,0,0) 10 (o C10
(1,1,0,0,0) 11 (n (11
(1,0,0,0,0) 12 (o

Table 3.5.2: Example coefficients (jpjrpp)p, k= 1,.. ., 5, for a specific process R € R(¢) C Mia s, cf. (E324). Here,
(ST C12) = ¢ where we use the notational convention explained after ([Z39). See Figure B for an illustration of
the vertex extremal coefficient functions ¢(- | [b]), [b] € Cn, that are retrievable from any R € R(¢) if {5 = |[b]|~*. Note
also that the case b= (1,1,1,0,1) is not included in the table as [b] € B/~ but [b] ¢ Cp.

arbitrarily choose A(0.15,0.18) with d(h | A(0.15,0.18)) ¢ D, ,, where, in particular,

h 1 2 3 4 5
d(h [ A(0.15,0.18)) 1.06 1.46 1.54 1.96 2.00

From now on, we will assume d(h) = d(h | A) to be given and consider the process A €
My, \ My, to be unknown. Let Gypy = {C € G:d(h | R) =d(h),h € Z,R € R(()}
be the set of all vectors ¢ € G that determine sets R(() of suitable candidate processes.
Note that Gy is nonempty by Corollary B4 We will focus on the following system

of linear equations
d(h)=d(h | R), Re€ R((),heZ, (3.39)

where by Proposition we may choose R € R(() arbitrarily. A particular process
R € R(() is given in Table To simplify notation we shall replace the indices
[b], [b] € Cp, by 1,...,12 according to the second column in Table B2l We now get
from (B39) and (B3] for R as in Table that

d(1| R) = 2C1 + 4¢ + 6C3 + 4¢s + 4Cs + 2¢6 + 4Cr + 4Cs + 2o + 4C10 + 2¢11 + 212
d(2 | R) = 4C1 + 6Co + 2¢3 + 6C4 + 4¢5 + 46 + 4¢7 + 4¢s + 4o + 2C10 + 4¢11 + 2Cr2
d(3 | R) = 6C1 + 4Cs + 6C3 + 4¢s + 4¢5 + 66 + 4¢7 + 2¢s + 6o + 4C10 + 4¢11 + 2Cr2
d(4 | R) = 8C1 + 6z + 4¢3 + 4¢s + 2¢5 + 86 + 6¢7 + 4¢s + 6o + 4C10 + 4¢11 + 212
d(5 | R) =10¢1 + 8Cs + 63 + 6¢4 + 45 + 8(s + 67 + 4Cs + 6o + 4C10 + 411 + 2(i0.

Numerically, if ¢(h) is a valid extremal coefficient function, i.e. Gyp) is nonempty,
a particular element ( € Gy may be determined by expanding (E39) to a linear
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program. Here, using [4] we find e.g.
¢= (..., C2) = (0.020,0,0,0,0,0.085,0,0.105, 0,0.040, 0.135, 0)

as a valid (not necessarily unique) solution. We point out that according to Corol-
lary B.42 there are n = 5 nonzero elements in (.

Remark 3.5.1. For all processes R € R((), ¢ € G, we have that >y . (p = 0r where
Or denotes the extremal index or, equivalently, the expected inverse cluster size, see
Chapter 1. Note also that 1/n < 0 < 1, i.e. the range n of R imposes a lower bound
on the extremal index.

3.5.4 Necessary Conditions for Valid Extremal Coefficient Func-
tions

Apart from the reconstruction of max-stable processes for given extremal coefficient
functions the technique applied in Section is applicable also to evaluate whether
a supposed extremal coefficient function of order n is valid for max-stable processes on
Z.. To our knowledge, in the literature so far only necessary conditions for extremal co-
efficient functions to be admissible have been discussed |10, 56]. Linking the results for
first order variograms (madograms) discussed by [39] to extremal coefficient functions
it is shown in [10] that every valid extremal coefficient function ¢(h) for all h, k € R
satisfies

o(h+k) <o(h)o(k), (3.40)
d(h+ k)7 <d(h) +ok) =1, 0<7<1, (3.41)
d(h+ k) > d(h) +ok) —1, <0, (3.42)

In addition, it is well-known that ¢(h) is positive semi-definite, cf. [56]. We give an
example showing that conditions (BZ0) to (B42) are indeed not sufficient. The con-
struction of such an example is not evident but substantially facilitated by knowledge
of the vertex extremal coefficient functions displayed in Figure B4Tl Consider e.g. the
following function p : Z — [1, 2], p(—h) = p(h), with

h 0 1 2 3 4
p(h) 1 5/3 5/3 3/2 2

and p(h) =2, h > 5. Note that
pa) = o | 1)) for z € {0,3,4,5} (3.43)

and that
p(x) # ¢z | [b]) for z € {1,2} (3.44)
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3.6: Restrictions on the Range of Extremal Coefficient Functions

for b=(1,0,0,1,0) € B,,. Further, by Figure we easily find that

(GBI, o | ), o5 [ BD)# > (@3] a).é(4][a]). &5 [a]) pra  (3.45)
[al€C\ {01}

for any p € [0,1], [a] € Co \ {[b]}. Now, using [BZ3) to ([BZD) we get from the
convexity of @, 7 that p is not a valid extremal coefficient function. However, it is

readily verified that p still satisfies (B40) to (B42).

3.6 Restrictions on the Range of Extremal Coefficient
Functions

In the following we will study a lower bound on the range of a max-stable process if
the corresponding extremal coefficient is known for a fixed » € N only. More precisely,
if for any fixed h € N the extremal coefficient ¢(h) is given we will specify the smallest
lag h > h for which ng(fL) = 2 for all h > h is possible. In practice, the approach will
be applicable to the study of the actual (bounded) memory spread of short memory
processes, cf. Definition B23l Consider for instance the question of a lower bound on
the memory of financial markets after shocks when information is limited to estimates
of a single extremal coefficient.

Theorem 3.6.1. Let ¢(h | Y) € [1,2) be given for some fized h € N and some mazx-
stable process Y € My,. We have that Y ¢ Mo, for any

; e{N if ¢(h) = 1,
T, [(6(h) — 1)) else,

where [z] = max{n € Z : n < z} for any x € R. On the other hand, if ¢(h) € (1,2),
for some h € N, then a process Y € M [(o(h)—1)-1]n+1 with ¢(h |Y) = ¢(h) emists.

Proof. The assertion for ¢(h) = 1, h > 0, follows directly from Theorem 1.4.1(2) in [53].
The proof for ¢(h) € (1,2) will be based on the Mj representation for dissipative max-
stable processes discussed in Section B33l and comprises three steps. First, within the
classes Moo k4+n—1 of all Mz processes with maximum range K +h—1, K e Nh+1 =
{h+1,2h 4+ 1,...}, we will define a simple Mj; process Ax; € M, of range K.
Then, we will show that Agxj € M xyr—1 minimizes ¢(h | B) for all B € Moo gin-1.
Based on this finding we may conclude in step three that all processes Z € M, with
é(h | Z) = ¢(h) are at least of range [(¢(h) — 1)71]h + 1. We will give an example in
order to show that the bounds are sharp.

1. For any K € Nh + 1 let the process Ak ) € M g be given by the coefficients
ak i, k € Z, where

K—1 \7'
AK ih+1 = (T+1> , 1€ {O,l,,(K— ].)/h}, (346)
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and all other coefficients zero. In particular, by (B31]) we have
d(h | Axp) = 2ak,1. (3.47)
Without loss of generality we let B € My, x4,—1 be given by
O0<byp=axr+en<1, ke{l,...,K+h—1}, (3.48)

where the ag are chosen according to (BZ6). Further, for j € {2,3,...} and
ke{l,..., K+ h—1} we let

and tacitly assume all other coefficients to be zero. Now, from the fact that

> i1 2 kez Uik = 1 we get by (B48) and (B49) that
YD en=0 (3.50)

j=1 keZ

and, in particular,

‘N
=

€1,ih+1 S 0. (351)

Il
o

. We show that for all processes B € M k451 it holds that
d(h | B) >d(h | Akp), K €Nh+1. (3.52)
To this end, note that by (B331) we find that (B52) is equivalent to

Ko1g
—€&11 —E€1,K SZZ Z |5]l+ i+1 h_€]l+zh|+z Z (ej1+e)K41-1)- (3.53)

j=1 =1 =0 =1 =1
J J J+HI>2

Now, (B48) and (BZ4J) yield that €;;,&; k411 > 0forall j e Nand [ € {1,...,h}
with j+[ > 2, such that (B53) holds if min{ey1, €1 x} > 0. In order to show ([BAL3))
for the case min{ey;,e1x} <0 put N = {ith+1,i=0,1,...,(K —1)/h} and
fOI"j S N, l e {1,2, .. ,h} let Sjl = ZieN—f—l—l Ejis ﬂjl = Sjl|N|71 and Hjlmax =
maxX;enti—1€j;. burther, let

H1min = — min {Ml,l,maxa O} . (354)
Now, we find that

—e1n — ek < len| + lerk] < et — imin] + €18 — 11 min] + 2401, min

K-1
K=l

< Z le1,int1 = 1,6+ 1)ht1] + 2001 min- (3.55)
i=0
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3.6: Restrictions on the Range of Extremal Coefficient Functions

Also, by (B54) we get for min{ey1, &1 x} < 0 that minen €1; < f01 min < MaXjen €14
which yields the second inequality in (B53). Next, we have

_g 00 h 00 h 00 h
H1,min S |Tl|71 == ﬁ Z Z Sj,l = Z Z ,ajl S Z Z ,uj,l,max- (356)

=1 =1 =1 =1 =1 =1
J JHI>2 J I+5>2 J J+I>2

Here, if max;ey{e1,;} > 0 note that py i, = 0, such that the first inequality is
obvious from the fact that S;; < 0 by [BRI). Else, if max;en{e1,} < 0 we get
that M1 min = minieN{—f—:Li} < |]\]|71 ZieN —€14 = —5171|N|71 which in that case
yields the first inequality. Further, the first equality in (B56) holds by (B50) and
the second equality as well as the second inequality are immediate. Finally, for
all j e Nand all [ € {1,...,h} with [ 4+ j > 2 we have

2/ 1max = |[j1max — €1 F [ 1max — €ji+k—1] + Eji + €14 k-1
K—1
L
< E |5 1tG+1)h — Ejatin| + €1 + €jurr—1. (3.57)
i=0

where the equality follows from the fact that 0 < ej; < f1j; max for 1 + 7 > 2.

Now, (B53) holds by B353) to (BED).

. Let Z(d(h)) € M be the class of all M3 processes Z with d(h | Z) = d(h).
By [B12) it follows that Z(d(h)) N Me xin—1 = 0 for all

ke {KeNh+1:d(h|Axy)>dh)}={K eNh+1:K < [2/d(h)]h+ 1}

where (BA7) yields the equality. Let K* = [2/d(h)]h + 1 where K* < oo from
the fact that by assumption d(h) > 0. In particular, we now have that

d(h | Ag=p) < d(h) <d(h | Age—1,)- (3.58)

It remains to show that a process Z* € My g« N Z(d(h)) exists. To this end,
let Z* be given by 2z} = ag+r —ep + 0, k € {1,2,..., K*} where ag~ are the
coefficients of Ay, cf. BZH). Further, we put ej,11 = sag«1(d(h) — 2ax-1),
i€{0,1,...,(K*—1)/h}, 6, = 2(d(h) — 22}) and all other coefficients zero such
that Z* is of range K*. Note that ([B58) yields

h h -
K—1 Kr—1+h

such that 0 < ey, < ag+1, i € {0,1,...,(K* —1)/h}. Further, using (BLS) we
have

1

1
0< §d<h) — Qg1 < Ags_11 — QR =

22’1< = 2(0,[(*71 — 51) < 2(1[(*’1 = d(h | AK*,h) S d(h)
which yields that d > 0. Finally, d(h | Z*) = d(h) is a consequence of (B3Il).
U
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Chapter 4

A Constructive Proof for the
Extremal Coefficient of a Dissipative
Max-Stable Process on Z being a Set
Correlation

4.1 Formal Setup

In this chapter we will develop successively a certain sequence of sets that form the
basis of the assertion in Corollaries and 52 The latter was already referred
to in the proof of Theorem B3l above. There, we stated that the sets of extremal
coefficient functions for dissipative max-stable processes and those of set correlations
actually coincide on Z. To begin with we shall briefly restate the definition of the
extremal coefficient function in terms of a spectral function g as the latter will be the
starting point of our analysis. Recall that a stationary dissipative max-stable process
Y on Z with standard Fréchet margins has the representation Y; = max;ey U;g(t — 2;),
t € Z, cf. Section B3 Here, g : R — Ry with [g(s)ds = 1, and {(U;, z)}2, is a
Poisson point process on [0,00) x R with intensity measure v 21(u > 0)du X dz. In
particular, the spectral function g completely characterizes the dependence structure of
Y. As a suitable summary measure with properties similar to the usual autocovariance
function in Section we discussed the extremal coefficient function

o(h|g) = /max{g(s),g(s +h)}ds, heZ, (4.1)

that has been proposed by [56]. In the following we will consider a sequence (g, )nen,
Ny = NU {0}, of non-negative step functions such that g, T £ for a suitable function

1R — R, with ¢(- | €) = ¢(- | g), and hence ¢(- | g.) — (- | g) as n — oo.
Our main result will be the construction of a bounded monotonic sequence of sets, i.e.
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(S)neny TS, |S] < o0, associated to (g,) such that
2/gn(s) ds —¢(h | gn) =15, N (S, —h)|, neNyhel. (4.2)

Hence, our analysis will imply that for any extremal coefficient function (EJl) on Z an
equivalent representation as a set covariance function |S N (S — h)|, h € Z, given by
a certain set S C R, |S| < oo, exists. The reverse is straightforward, cf. Section B3
Consequently, the ensembles for set covariance and extremal coefficient functions for
dissipative processes can be shown to actually coincide on a grid. For reasons of content
this result was already stated in Section without proof, see Theorem B3]
To be specific, let (gn)nen, T € be a monotonically increasing sequence of step functions
with nonnegative coefficients a1, n € No, k € K, = {—n,...,n}, i = (i1,...,4,) €
{0,1}", and all other coefficients zero. Here, i, € {0,1}, s=1,...,n, and i = iqg = () if
n = 0. Throughout this chapter, we will put [i], = > ", 4;2" 7 and i, = (i1, ..., i),
7 =1,...,n, where i|p = (). Note that the use of a binary number for the index ¢ will
be advantageous later on. As before, for all z € R we put || = max{n € Z:n < z},
and we will assume from now on that
n
gn(z) = Z Us ki, Where k= |x] and ¢ € {0,1}" with [i], = |2"(x — k)|.  (4.3)
s=0
According to (1)) let ¢(h | g,), h € Z, n € Ny, denote the extremal coefficient function
of the stationary dissipative process Y, generated by the spectral function g, where
by ([E3)) we find that

o(h | gn) =27 Z Z Zas,k,ﬂs_

k€Kn i€{0,1}™ s=0

2~ nz Z mln{Zaskz|s,Za5k+ms} heZ.

keKn, ie{0,1}m

(4.4)

Example 4.1.1. For the continuous spectral function g = £ given in Figure EET.T] we
sketch the first three elements of a monotonic sequence of step functions (g, )nen, T &

given by (E3)) with

1 _ 1 _ 1
0,00 = g 1,00 = 13 2,-2,000) = 3
_ 1 _ 1 _ 1

a1,-1,0 = 35 ai10 = 15 a2,0,(1,00 = 39
2 1 1

aj—-11 = 15 a1 = 3 22,100 = 15

To give a preliminary idea of our construction principle for a suitable sequence (.5,)
consider the sets Ag, s = 0,1,2, k € K, 1 € {0,1}*%, given in Figure I3l Their
formal structure will be studied below. We put

OU ) (Awi+k), neN, (4.5)

0keKsie{0,1}*
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az, —2,(0,0)

&(x) a1,0,0

aj,—1,1

= [*2,0,(1,0)

30 @0,0,

a1,1,0

@2,2,(1,0)

30 a1 1,0 a1,1,1

Figure 4.1.1: Approximation of a continuous spectral function g = £ by the step function go defined in E3). The
corresponding coefficients are given in Example LIl Note that the bars a,x; do not necessarily touch the graph of &.

such that (S,,) is clearly monotonic, and we will show in Theorem EE5T] cf. Section ELH,
that () holds. For the above small set of example coefficients the latter may be
readily verified graphically using Figures EETT] and L3l We point out that in (E2)
the requirement of monotonicity for (S,,) appears to be a fundamental restriction.
More precisely, the determination of an arbitrary sequence (.S,) such that (2) holds
is straightforward. Throughout the rest of our analysis we will mainly be concerned
with the construction of suitable sets A,; as well as the discussion of their properties.
However, note that in Figure we also include certain intervals Bgy,;, s = 0,1, 2,
i € {0,1}*, for some tedious index b that will be discussed below. At this point the
intervals By, may best be thought of as placeholders. In particular, they indicate
allowable locations for the sets A,y;. Further, the intervals B,,; will necessarily have to
be constructed jointly with A,z;. As an only preliminary remark in this direction note
that the construction of B,y 4 ; for j € {(¢,0), (¢,1)} and some suitable index a will be
shown in (EEIH) below to depend on certain intersections of Ag; on the index k ranging
over particular orderable subsets of K. The latter will specifically be reflected by the
index a. To conclude the example, note that in Theorem we will essentially make
use of the fact that

27 gn(k + [i:27") = (4.6)

n
U As,k,i|s N U Bnbi
s=0 b

for all £ € K,, and all i € {0,1}". It will be helpful later on to check at this point
that (L) holds for the above example using Figures and E3T1

Throughout the chapter we will as before denote a proper inclusion by “C” whereas
we shall use “C” for an inclusion that does not preclude equality. Further, we will
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understand [z, y) = 0 if y < x, and A° = @ for any set A. For n € Ny let B, = {0,1}"",
b= (by,...,b,) €B,, where by € {0,1}*7 1 s=1,....n, b=by =0 if n =0, and Ny,
is the set of indices corresponding to zeros in by, e.g. Ny, = {2,5} for b, = (1,0, 1, 1,0).
Let E,0 =B, x{0,1}" and E,, = E, o\ ({0} x {0,1}"). We will put b, = (b, . .., b;),
and accordingly (b,7)|, = (b, i|;) for 7 =0,...,n. Our approach will be organized as
follows. In Section we will define suitable intervals B,;; and discuss their relevant
properties. To this end, we shall study an order on the joint index (b, i) € E,, o that will
later refer to the allocation of the intervals B,,;; on the line. We will formally introduce
the order in (7)) below. The nature of the order will then be largely revealed by part
of Lemma FEZTl It will be shown in Lemma that the order is total on a suitable
subset of E,o. In particular, the definition of B,;; in (I6) will be restricted to this
subset in a natural way. As we will be able to draw some important conclusions on
the intervals B,;; even for arbitrary sets A,;; we will defer the actual joint definition
of B, and A,.; to Section There, in Corollaries EE3.1] and we will show
that the assertions of two auxiliary assumptions made for step n, cf. (Ad]) and ([A2) in
Section EE2] hold true by induction in step n + 1. In Section we will further discuss
two important properties of A,; in Lemmata 3Tl and L322 Thereafter we will study
a decomposition of A,; in Section EE4] that will eventually be useful in the proof of
Theorem in Section L0 where we will show that (f2)) holds. Our main result will
be stated in Corollaries E5. Tl and EE2. 2l where for the latter we will make use of the fact
that for any given spectral function ¢ there is a suitable function £ as a limit of step
functions with ¢(- | g) = o(- | £), cf. [19].

4.2 A Sequence of Auxiliary Sets

To begin with, we will equip the sets E), o, n € N, with the following partial order “<,”.
For (b,1) € E, let

{(a,7) € Eno:(a,j) <, (b,i)} = {(a,j) € E, o : 31 <n such that a|, = 0|,

and al, # b|x, al., b|x # 0 for all 7 < k < n. Further, [j|,]o < [i|]2,

or jl, =il and N, _,, C NbTH} U {(a,j) € E,o:36 <nsuch (4.7)
that bls = 0,als # 0 and b|y # 0 for all 6 < A < n}
For later reference note that by (1), in particular,
(b,i) <, (0,7), forall j e {0,1}" and (b,7) € E,,. (4.8)
Further, we have that
(b,7) € B, if (b,1) <, (a,j) for any (a,j) € E,. (4.9)
As indicated above, we will show in Lemma L2 below that for all n € Ny the functions
9o, - - -, gn generate a suitable subset E, o = E,, 0, € £, for which the above order is
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total. An essential step to the construction of En,O will be provided by the following
lemma whose proof is obvious.

Lemma 4.2.1. Fork=1,..., K, let g, € [0,1] and put ¢oo = 1. Define maxyep qr = 0
and mingep g = 1 and let vy, = maxyen, @ and y» = minggy, qp for all b € {0, 1}5.
Put M, ={l: q <u}, u €R, and Uy = {b € {0,1} : N, = M, for some u € {q :
q < q.} U{0}}. Forallke{l,...,K}U{oco} we have that

1. A partition of [0, qx) is given by {[xp, ys), b € Ux}
2. {Ny, b € Uy} is strictly totally ordered under inclusion
3. Yo <y for Ny C Ny, a,b € Uy, orifa=0b¢ Uy
4. Up={a €Uy : Ny C Np}, b € argmaxep, |Na|-

Example 4.2.1. For K = 6 and ¢¢ = 0.2, ¢o = 03, ¢3 = 0, ¢4 = 0.4, ¢5 = 0.1
and g5 = 0.2 we consider the partition of [0,¢2) given by part [l of Lemma EZT]
We have {¢ : ¢ < ¢} U {0} = {0,0.1,0.2} and M, = {3}, My; = {3,5} and
Moo = {1,3,5,6} such that U, = {(1,1,0,1,1,1),(1,1,0,1,0,1),(0,1,0,1,0,0)}. In
particular, part [ of Lemma E2T] yields [0,0.3) = [0,0.1) U [0.1,0.2) U [0.2,0.3),
and parts Bl and B are obvious. Concerning part Bl of the lemma we have U, =
{(1,1,0,1,1,1),(1,1,0,1,0,1),(0,1,0,1,0,0), (0,0,0, 1,0,0), (0,0,0,0,0,0)}. To verify
the assertion note finally that arg max.cp, |Na| = {(0,1,0,1,0,0)}.

For later reference by parts [ to Bl of Lemma for all b € Uy, we readily have

[wnye) = Y % o)l + 0,35 — a). (4.10)

a€Uco:
Na CNy

For all n € Ny we will next define successively the sets En,O and B,,;;. For that purpose
we shall frequently apply the notation introduced in Lemma EEZ2Tl Note carefully,
however, that we will necessarily have to extend the subscripts by the indices n € Ny
and (b,7) € E, . Consequently, for all k € K,, U {oo} and (b,i) € E, ¢ let now

Ui = {CL c {0, 1}2n+1 N, = M, ubi for some u € {inbi D Qni < anbi} U {0}} (4.11)
where, as above, My = {k : Gurps < u}, u € R. Further, we put
Gukbi = | Anki N Byl (4.12)

and
Qn,c0,bi — |Bnbz| (413)

for arbitrary sets A,x; that will be chosen to depend on gq, . . ., g,_1 in ([EE35) below, i.e.
Gnkbi, k € K,, U {00}, are arbitrary numbers up to ¢uu < |Busil- Note that by (EIT)
we have

56



2: A Sequence of Auxiliary Sets

Let now

{ (b, Z) c Eanl,o,u € Un—l,oo,b,iaj € {07 1}}
{0} {0 1} )

and put E, = E, 0\ ({0} x{0,1}"). We will discuss below that the union in (I35 can in
fact be disjoint. In particular, for any n € Ny we will have that 0 ¢ Uy 04, ¢ € {0, 1}",
cf. the proof of Corollary L3.Tl Note that in the following we shall occasionally truncate
the above indexation where no confusion may arise.

(4.15)

Lemma 4.2.2. For alln € N the order “<,” given in ([f74) is total on E,q.

Proof. Let the order “<,” be total on E,_; o and let (a,j), (b,i) € E,_1. By (EIA)
it is sufficient to show that either ((a,«), (j,¢)) = ((b, ), (i,¢€)) or ((a,«), (j,¢)) <

((b,3), (i,€)) or ((a, ), (j,¢)) =p ((b, 5), (i,€)) for all @ € Us 4 U{0}, 5 € Uoopi U{0}
and all ¢,e € {0,1}. By symmetry we may assume that (a,j) =< (b,i). Let first
(a,j) = (b,i). Then, Uxaj = Uspi, and the following threefold distinction is a
partition of all ((a,«), (j,¢)) and ((b, ), (i,€)) with (a,j) = (b,7). In either case we
will show that an ordering by “<,” exists where we will omit the trivial relation of
equality.

1. Let « = f € Uxypy and e € {0,1} such that [(j,¢)]2 < [(i,€)]2. Then,
) ist.

((a,a),(_j,L ) <p ((b,08), (i,¢)) by @) for 7 =n. (§ does not exi 3

2. Let (a,),(b,8) # 0, a,f € Usaj, @ # B, and ¢,e € {0,1}. Then, (a,q)|, =
(b,8)|; and (a,a)|, # (b,0)|s for all 7 < kK < n, only if 7 = n — 1. Fur-
ther, (j,¢)[n-1 = J =i = (i,€)|n—1, and N, C Ng (or N, D Ng) by part 2 of
Lemma 2Tl and the fact that a, 5 € Usx ;. (0 does not exist.)

3. Let (b,8) =0, @ € Usg g, @ # 0, and ¢, € {0,1}. Then, § = n, and the fact
that (a,«) # 0 yields ((a, ), (4, ¢)) <, ((b,3), (i,€)) by D). (7 does not exist.)

Next, let (a,j) <, (b,7). Then, by () there is 7 < n — 1 such that a|, = b|, and
aly # bls, alx,blx # 0 for all 7 < kK < n—1, or there is 6 < n — 1 such that b|s = 0,
als # 0 and by # 0 for all 6 < A < n — 1. According to (1) we may distinguish
three cases that yield the ordering (a,j) <, (b,i). We will consider them separately
and show that in either case also ((a, ), (4,¢)) <, ((b,8), (i,€)) for all a, 5 € {0, 1}*"*
and all ¢,e € {0, 1}.

1. Let al, = b|, a|x # blx, alx, bl # 0 for all 7 < kK < n—1, and [j|]2 < [i]/]2-
Now, (a,a)|;+1 = (b,3)|r4+1 only if 7 = n — 1. (§ does not exist.) Then, the
fact that [(j, ¢)]r4]a < [(4, €)lr1al2 yields ((a, @), (7,0)) <, (b, 5), (4, €)) by (D).
If (0, @)[r11 7 (b, 8)|-41 also ((a, @), (5,1)) <p ((b, ), (i,€)) by @) using that
(a,@)|; = (b, 3)|- and [(j,1)]-]2 < [(4, €)|7]a.
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4.2: A Sequence of Auxiliary Sets

2. Let al, = b|;, al. # b|x, alx, bl # 0 for all 7 < k < n, and j|; = i|;, Na,,, C
Ny.... (6 does not exist.) Then, 7 < n, and for all o, € {0,1}*"! and all
t,e € {0,1} we trivially also have (a, )|, = (b,0)|-, [(4,¢)|-]2 = [(7,€)|-]2 and
Na)rsr € Nig)yr- The above yields further that (a, )41 # (b, 8)]r+1 and
(a,@)]r41, (b, B)|r41 # 0. Comparing with () we find that ((a, ), (j,)) <,
(b, B), (i, €))-

3. Finally, let bs = 0, als # 0 and b|, # 0 for all § < A < n. (7 does not exist.)

Now, also (b, 3)|s = 0 and (a, )]s # 0. If (b, 5)|s+1 # O then ((a,),(7,¢)) <,
((b,B), (i,€)) is immediate by ). If (b,5)|s21 = 0 then 6 = n — 1, and

(a,)|s41 # 0 yields by (E) that ((a, a), (j. 1)) <, (b, B). (i,€).
]

We will denote the respective total order by “<”. For (b,1i) € E~'n,0 let

p
+ )
|:'L‘ba il yb) + Z IBn—l,a,jI ) b 7& 07 lp = 07

2 Nt
(a,j)=<(b,2)|n—1

Ty + )
[ b2yb’yb + Y [Buragl, b#0,i, =1,
(avj)-<(b7i)‘n*1 (416)

2 {0, max g, (k + [1127") — maxgy 1 (k + [i]>2 ))
+ Z |Bryjl, b=0,
( (b)=(0.0)

where retaining the notation of Lemma EZZT] we put

Bnbi -

To = Tnbiln-y = | AKX 1k, (0i) |1 (4.17)
and
Yo = Ynbsiln—1 = k¢r]1\}in On—1,k,(b,3)|n—1- (4.18)
b — T

Note that part Bl of Lemma EEZT and ([ETH) yield in particular that by applying (16
to any (b,1) ¢ En,o we get By = (0. In Figure EE3] we give a successive construction
of B,y up to n = 2. There, we use the coefficients discussed in Example and we
anticipate (E3H) in order to fix A,x;. Next, note that ([ZI6) for all n € Ny yields

|Braj| = |Brai|  for all (a,7), (a,4) € E, with j|,_1 = i|,_, (4.19)

where we point out that (LI9) does not hold for a = 0, cf. the intervals By oo and
By, in Figure B30l As indicated above we shall in the following work under the
assumption that for a fixed n € Ny, we have

Bmoi= |} Bumtia; forallm<mnandie{0,1}" (A1)

(a,j)EEm+1:
(a,5)lm=(0,7)

The assumption will be relaxed in Section
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4.2: A Sequence of Auxiliary Sets

Lemma 4.2.3. Assume ([A1l). Then, for all m < n the following holds.

1. For (b,i) € E,, o we have

mei = [07 ‘mezl) + Z |Bmaj|- (420)

(a,5)=(b;7)
2. For (b,i) € E,, we have

Bui= )  Bmitas (4.21)

(a,j)EEm+1i
(@,5)lm=(b,i)

Proof. For the proof of (EL20) we may restrict to the case b # 0 as ([EZ0) is immediate
from (EIH) for b = 0. In the following, let (a,5) € E,,_1, for any m < n. To begin
with, in (£22) to ([E24) we will discuss simple but important preliminaries that follow
easily from the above setup. Let first v € Us 4 = Un—1,004,; be arbitrary. Using

(ET7) and (EEIS) we then have by (EEI0) that

T(an) T Yan) Y(ay) — T(ay)
l%ma #) = Z |[%0,5)> Yia)| + [o, %) (4.22)

BeUoo.a,j:
NgCNy

and, accordingly,

T(an) T Ylan) Y(ay) — T(ay)
{%,y(am) = Y e vas)| + =5 T

BEUoo,a,j:

NpChy (4.23)

Y(ay) — T(ayy)
0, ——"2].
o rengren)

Further, we get by (EI3) that

Yo D IBuwsonl = > | Bine

BE€Uss,a,j 1€{0,1} (e,1)€Epm, 0:Nep, CNy
NgCNy (eDlm—1=(a,j)

- > B (4.24)

(eD)E€ B 0:(c:D)<((a,7).(5.0)),
() lm—1=(a.7)

where the latter equality holds by (ET)). Next, let 7 € Uy 4,5 such that (a,v) # 0. Note
that depending on the above choice of (a,j) € E,,_1 this constitutes an additional
restriction on «y only if @ = 0. Now, using ({LI0) in (£22) and ([E23), we find that for
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4.2: A Sequence of Auxiliary Sets

any i € {(4,0), (j, )}

Bu@mni= Y, > |Bn@sGnl + 1im = 1) Bm@m.ol

ﬁero,a,jz l€{0,1}
NgCNy

+10,1Buami) + Y. |Bu-tell

(Cvl)EEm—l,O:

(e.1)=<(a.3)
= > |Bmal + [0, | Bramil) £ Y. [Bmotel  (4.25)
(c,1)EEm:(c,l)<((a,v),3), (el)€Em_1,0:
(e:D)lm—1=(a,j) (e,1)=(a,5)

where the latter equality holds by ([E24)). Note that by () and the fact that (a,v) # 0
we may restrict to £, instead of E,, ¢ for the first sum in (LZ3)). We next consider the
special case (¢,l) € E,,—1. Then,

T(e,8) T Y(e,8) T(e,8) T Y(e,8)
O U e e Dl e )

/Bero,c,l
- U U Bmv(cvﬁ)v(Li) - : : |Bm_17a7i
ﬁero,c,l 16{071} (a’i)eém—l:
(a,1)=<(e,l)
- U Bmai - E |Bm—1,a,i| (426)
(a,i)EE‘m: (a,i)GEm_lz
(@;)|m—1=(c,) (a,1)=(e,l)

where the first equality is immediate by part [l of Lemma B2l and ([T3), and the
second equality holds by (ET6]) as we have ¢ # 0 by assumption. The third equality is
a consequence of (ELTH). Note that in the second and third equality we also make use
of (EX) in order to justify the sets E,,_; instead of ENm,LO. Now, by ([2Z6) and ([ATl),
we have for all (c,1) € E,,_1 that

|Bm—1,c,l| - Z |Bmai|a (427)

(a,i)EE‘m:
(@,8)|lm—1=(c;1)

and ([E20) for b # 0 holds by ([EZH) and ([EZ7). Note that we use ([EZ7) in order to

resolve the last sum in ({E20), and that, in particular, (AJ]) is a necessary assumption
even though (a,v) # 0. In order to proof ([EZI]) consider ([E2H) for m + 1 instead of

m, 1.e.

[07 |Bmcz|) = U Bm+1,a,j - Z |Bmaj| ) (C, Z) € Emv (428)
(a,j)EEm+1: (C"yj)EEmi
(@) lm=(c:i) (@.)=(exd)
and the assertion follows by (EE20). O

In particular, by (E20) we have for m < n that
mei N Bmaj = (2)7 (ba Z)7 (a’uj) € Em,07 <b7 Z) ;é (a’7j)' (429)
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Using (&), and ([EZ) repeatedly yields for all (b,i) € E,,, m < n, that

mei = U Bnaj- (430)

(a,j)EEn:a‘m+1#0,
(a,5) [m=(b,7)

Note that the restriction a,,+1 # 0 affects the case b = 0 only, cf. (Adl) where the index
(a,j) does not run over a = 0. Further, using (ET9) repeatedly we have by (30) for
all (b,i) € E,0, m < n, and any j € {0,1}" with j|,, = ¢ that

2" " Bupil = > |Buagl- (4.31)

a€Bp:(a,j)EEn,
alm=b,a|y, 170

Note that in (L31]) the summation is over a € B, only, and j is fixed. We shall assume
next that for a fixed n € Ng and all m <n, k € K,, and j € {0, 1} there is a unique
(w,(4,1)) = (Wmkj, (4,1)) € Enqq such that

m
__o—m
E | Bint1,a,i| =2 E Up kil (A2)
(a,0)€ B 1138 lm=4, p=0

(a,1) 2 (w,(4,1))

The assumption ([A2)) will also be relaxed in Section

Lemma 4.2.4. Let n € No, k € K,,, i € {0,1}" and j = i|,—1. Assume (A1) and let
(w, (7,1)) = (Wn-1k, (J; 1)) € By according to (AD). We have

Z | Brail > 27" anpi-
a:(w,(4,1))<(a,i)

Proof. By (31 for all i € {0,1}", n € Ny, we get that

n n—1
Z Qm‘Bm,O,i|m| = 2" Z Z |Bnai| + 2n|Bn,0,i‘
m=0

m=0 a:(a,i)€En,a|m=0,
alm4170

=2" > [Buail- (4.32)

a:(a,i)€En.o

Let k* = k7, € argmaxy, g,,(k + [i]o27"). Then, by (E3) we have

n n p p—l
9ok +[127) = D Gages, = D (mZ| - mXZ)
s=0 p=0 s=0 s=0
_ Z 2B, 0| (4.33)
p=0
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where the third equality holds by (EIf). Combining ([32) and (E33)) yields for all
ke K, i€{0,1}" and j =i, that

n

Z |Bnai| =9 " Z Qs k> i|s — Z |Bnai|

a:(w,(7,1))<(a,3) 5=0 a:(a,i)2(w,(5,1))
n n—1
— 2—n Z (137]?*7“8 — 2—n Z as,k,i\s Z 2_n(lnki (434)
s=0 5=0

where we use ([A2) and ([EI9) for the second equality. O

4.3 The Sequence S,,: Building Blocks and Properties

The sets S, n € Ny, are given in ([L3) where at this point for all n € Ny, k € K,
i € {0,1}" and for (w, (i[-1,1)) = (Wn-1k,ilp_1> (iln-1,1)) € E, according to [A2), we
will define essentially

Auei = ) {Bnbiﬂ([O,Q”anM)—i— > Buglt D \Bnai\)}. (4.35)

bi(by3) (@0)=(b), ai(a,i)

€En 0 i 2@, (ilp—1,1))
Here, the union is disjoint by (E20). For the final definition of A,; we refer to Corol-
lary below. In Figure we depict the sets A,; and B, up to n = 2 for
the coefficients discussed in Example EEIIl Note that for all (b,i) € E,o and all
(c,j) € Em,o, m < n, we have

Z |Bnaj| + Z |Bnai|

(a,5)=<(b1), a:(a,i)|m=(c,5)
J#i
Z |Bnaj| - Z |Bnai|7 (C7j) = (b7 Z)|m
(a,5)=(b7) aed) <@ dlm. (4.36)
Z |Bnaj| + Z |Bnai|7 else7
SR e

such that, by (EZ0) and [E3H), we get
Z |Bnaj‘ + |:O, min {Q"anm

(a,7)=(b,1)

Anki n Bnbi - - Z ‘Bnai|7 |Bnbz‘ })7 (wv <i|n*17 1)) < (b7 Z)7 (437)

a:(w,(ilp—1,1))<
(a,i)=(b,i)

L 0, else.

Next, we find that by Lemma EEZ4 and ([37) for all ¢ € {0,1}", k € K, there is a

62



4.3: The Sequence S,: Building Blocks and Properties

Bo,0,0
n=0 F-———"—"">"">"—"—"—-—-———————— 9
A0,0,0
t )
Bi,1,0 Bi,1,1 Bi,0,0 Bi,0,1
n=1 kF-———=———= G ——— ————— -=
Ai,-1,0 CAy,—11 CAy,—11
) I ) —
A1,0,0
A1,1,0 At111
| ) : )
-4 & 4 °© A ° =& S = &) = s 4 9
2.2 2 2 % 5.2 & =& 2 2 s & 3.2
[=] [=] [=3 [=3 [=3 [=3 [=] o [=] [=] — — [=] [=] [=3
- - (=} (=} o (=} - - - — (=} (=} — — o
N &N & o o o & o o~ o~ o~ o~ N~ o~
[ M [ MY M.y M Q Q Q Q [
n=2 koo o o —— S —— S —— b —— &~ )
C Az _2,(0,0) C Az 20,0 C Az, 20,0
) ) ) | — )
A2.0,(1,0)
A2,2,(1,0)
)
L 1 1 1 1 1 1
T T T T T T T
0 _L 1 1 2 3 19
120 20 10 15 20 120

Figure 4.3.1: Jointly successive construction of Byp; and A,g; (top to bottom) using (EI6) and E3H) up to n = 2.
The corresponding coefficients are given in Example EEITl In the figure we denote by “C X” a subset of a set X.

unique (0,%) = (Wnkir 1) > (W, (i[n-1,1)) = (Wn-1kifn_1> (Iln-1,1)), (©,4) = (0,4), such
that

0 S 2in(1n]m' — |Bnai| S |Bn,®,i|' (438)

a:(w,(i|n71,1))-<(a,i)-<(®,i)

Hence, by ([E37) and ([E3])

( B, (W, (iln-1,1)) <
(b, 1) < (@,1),
A OB =4 3" Byl + [0, Auai O Bull, (0,8) = (@,4), (4.39)
(a,5)=(@59)
L 0, else.
Note that ([E39) and 35 yield

b:(wv(i‘nfl71))'<(b7i)j(‘:}7i)

such that, in particular,

b:(w7(i|n—1 71))<(b7i)j(®7i)
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For later reference we find that the latter yields
| Al = 27" s (4.42)

where we use ([37) and (E3]).
Corollary 4.3.1. Assume [A1) and {A2). For alli € {0,1}" we have
B = U Brii,a,5- (4.43)
(a’7j)6En+1:

(@,3)In=(0,7)

Proof. Let k* =k, as in the proof of Lemma EEZ4, and let
(wa (Z.|n—17 1)) = (wnfl,k*ﬂn_p (Z.|n—17 1)) S En
as in ([A2). We now get by ([E34) for k = k* that for any ¢ € {0,1}"

2y s = > Buail = > |Buail (4.44)

a:(w,(iln—1,1)) = (a,i) a:(w,(iln—1,1))<
(,1)2(0,4)

where the second equality holds by (8. Using further that from ([A2) and [EF) we
have (w, (i],—1,1)) < (0,7) we get by (E37) that

Ap i N By

= Z |Bnaj| + |:07 min {2_nan,k*,i - Z |Bnai|7 |Bn,0,i| })

(@,5)=<(0,3) ai(w,(ilp—1,1))
=<(a,i)=(0,i)
= Z | Brajl + [0, [Bno,l) = Bno, (4.45)
(a,3)=(0,3)

Here, the second equality follows by (EZ44]) and the last equality corresponds to (E20).

By (EZ3H), using (1) and @I3) we find that ¢,z 0; = ¢n.c00.4 Such that by EII), in

particular,
U0, = Uso,0,i- (4.46)
Further, (£48) and ([I4) yield
0 ¢ Uss,0,- (4.47)
Now,
[0,1Bnoi) = [0,gnr=0:) = ) Fosvop)= ) ) Bunosin
BEUR* 0,i BEUx 0,: j€{0,1}
Z Buj= ) Butiei— Y. Bua (4.48)
(a,7)=(0,%) (a,5)€Epy1: (a,7)=(0,)

(@,3)|n=(0,7)
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4.3: The Sequence S,: Building Blocks and Properties

Here, the first equality follows from (E4H) and (I3), the second equality holds by
part [ of Lemma EEZT], and the third equality is a consequence of ([ZI6) where we use
that by [ET) 0 ¢ Uge ;. The last equality holds by (E46) and ([EIH) where we again

may restrict the union to E,; instead of E, ;1o by @EId). Finally, ({20) and [E245)
yield the assertion.

Corollary 4.3.2. Assume (A1) and (AJ). For all k € K, and j € {0,1}" there is a
unique (w, (7,1)) = (Wnkj, (4,1)) € Entr such that

> Buitail =27ty (4.49)

(a,))€Epq1:8ln=4, p=0
(a,9)2(w,(4,1))

Proof. Let k € K, and (©,7) = (@nrj,j) € Eno as in ([E38). Further, let z €
arg maxgep,,, |Vg|- Then, z # 0 by ([ET4), and z is unique by part Pl of Lemma 2Tl
By part B of Lemma EEZT] we have

Ursj = {8 € Ussj : Ns C N.}. (4.50)

Further,

0. 0unz) = | Femvesn) = | Fes ves)

BEUK,@,; BEU 5.5
NgENz
= U U Bueson— D |Buil (4.51)
e (o) ()= (@.4)
p=iNz

where the first equality holds by part [l of Lemma EE2T] and the second equality is a
consequence of (ER{). The third equality then follows by (ETI6]) and (EET4)). Next, by

(E39) and ([ELI) we get that

AN Buzi= ) | Burneson = ) Brit,a,
BeU,@,5: 1€{0,1} (a,8)€Ep41:(a,i)|ln=(&,3),
NgCENz Na,, 1 CNz
= U Bn+1,a,i (452)

(a,1)€Epy1:(a,) 2((@,2),(4,1)),
(a,9)|n=(&,)

where the second equality holds by (EI3)). Here, by (E30) and ([EId) we have that
B # 0 such that (LX) justifies the restriction to Enﬂ instead of E,;10. The third
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equality is a consequence of (7)) and Lemma EEZ2 Further, by (EZ41]) and (E39)
Apgj = U By W (Aukj N Bugy)

b:(Wn—1 k.5, 1 Gln—1,1))
=<(b,5)=(@,5)

= U Bn+1,a,i U] U Bn+1,a,i

(ay8)€Epq3iln=4, (a,9) € Bpy1:(a,8)2((8,2),(5,1)),
(w”_l’hﬂnfl J(Uln—1,1))<(a,i)|n<(@,5) (a,i)|ln=(&,5)
= U Bn+1,a,i (453)

(@))€ By y 11iln=7,(a,1) 2((&,2),(5,1)),
(“"n—l,k:,j\n,1 y(Glp—1,1))=<(a,i)In

where the second equality follows from (ZII) and (E22). Thus,

Z |Bn+1,a,i

(a,i)€Epy1:iln=4,(a,d) 2((@,2),(4,1)),
(W”*Lkvﬂn—l (Gln—1,1))=(a,i)|n

where the second equality holds by ({42)). Further, ([A2)) yields

= |Ank]| = 2_"ank]~ (454)

n—1

—n+1 _

27N k), = > | B
p:0 (bal)EEnf”nfl:jlnfla

(b’l)j(wnfl,k,ﬂn_l y(Fln—1,1))

= Z |Bn+1,a,i| (455)

(a,1)€Epy1tiln—1=0ln—1,
(@)In=2(wn 1k j],_q Gln—1,1))

where the second equality is a consequence of ([EZI]). Note that by (ET9)

% Z |Bn+1,a,i| = Z |Bn+1,a,i|

(aai)eEn+11i‘nfl:j‘nfl7 (a,i)EEn+1Zi\n:j,
(@:D)In=2(wpn_1 k,j|,,_q1ln-1,1) (@:D)ln=2(wn_1,k,j|,,_1 Uln-1,1))
n—1
— 9N R
=277 (4.56)
p=0

Here, the second equality holds by (EERA). The assertion follows by (Eh6]) and (L)

where we put
wnkj = ((anja Z) (457)
U
Now, for (LA3)) and ([EI9) to hold for all n € Ny, by induction on Corollaries E3T]

and EE32 it is sufficient to note that (Adl) and ([A2)) hold trivially in the case n = 0. In
particular, for all n € Ny, we have

BnOi - U Bn-f—l,a,jv (458)

(a,j)EEn+1i
(@,5)[n=(0,1)
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and for all n € Ny, k € K,, and j € {0, 1}" there is a unique (w, (4,1)) = (wnkj, (j, 1)) €

E,, 1 such that

Z |Bn+1,a,i| = 2—n Z ap7k,j|p. (459)
p=0

(a,i)EEn+1:i\n:j,
(a,9)2(w,(4,1))

Combining ([EA8)) and ([EZT)) yields that for all n € Ny

Bnbi = U Bn-i-l,a,ja (b7 'L) € EMO’ (460)

(a,j)EE‘n+1:
(a,5)In=(b,3)

and by a repeated applicaction of (EE0) we get that for all m,n € Ny, m < n,

Boyi = 1 Buaj, (b,i) € Enp. (4.61)

(a,j)EEn:a|m+17§0,
(a,5)lm=(b,i)

Lemma 4.3.1. For allm,n € Ny, k € K,,, and j € {0,1}™, i € {0, 1} with n # m or
j # 1 we have

Proof. For m = n the assertion is immediate by (A0) and ([E29). To prove the case
m < nlet (b,i) € Eyno such that (b,7)|m+1 = (Wnk,ilms (ilm>1)). Then, by E3S) we
have

(mef,i\mv <Z|WL7 1)) = <&m+17k,i\m+17 Z'|m+1) = (wm+1,k7i|m+17 (ilerlv 1))|m+1

where the equality holds by @X1). Now, (b,7)|m+1 < (Wint1kifmsrs (Elm+1, 1)) |ms1, and
by the second part in the proof of Lemma the latter implies that (b,7)|42 <
(W1 kil (E|ma1, 1)) if m 42 < n. Proceeding iteratively, we have that

(b7 'L) < (wnfl,kﬂn_p (i|n—17 1)) lf (ba Z.)|m+1 j (wm,k,i\ma (Zl’ma 1)) (462)
Further, note that
Amkj = U Bm+1,b,i - U Bnbi (463)
(b,0)€ By g 1:1lm =3, (0,1) X (Wn kg (3:1)), (0:0)€Enilm=5,(b) lm41=(@mkj-(3:1),
@1,k 11 Glm—11) =) m @1,k 1 Glm=11)= (D) m

where the first equality follows from (EE53]) and the second equality is a consequence

of (EET). Now, comparing ([EA0) and ([EE3F) for j = i|,, yields the assertion by (EG2).
To finalize the proof let j # i|,,. By (E33) we find that

Amkj - U mej = U Bncl (464)

b:(b,5)€Em 0 () €EEn,0:l|m=j
where the equality holds by (L61). Using (E29)) the assertion follows by (E33) and
(EE). The case m > n follows by symmetry. O
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Lemma 4.3.2. For alln € Ny and k € K,, we have
) ) 4w clo)
s=04e{0,1}

Proof. For m < n € N we have by ([LG1) that

) Bui=Buos Jje{0.1}"

(b,6)€ Bp:blyyq 170,
(b,8)lm=(0,5)

such that (EZ9) with (E66) yields
Bino; N Bpoy =0 form#porj#L

Consequently, we get that

U ) Buos= U g ) Bui = ) B,

m=0 je{0,1}™ m=0j€{0,1}™ (b,i)€En:b|pm41#0, (bi)eEn
(6,4)lm=(0,5)

and by (EZ0) and (D) for all < € {0, 1}™ it holds that

U Bnb] ) U BnO] - U Bnbj-

(bj5)EER [1]2<[d]2 (6,5)=<(0,7)

Now, from (E6]) and (EEJ) we find that for all i € {0, 1}"

n—1
> Bul =Y. > Buogl+ Y [Buol

(b,7)=<(0,) m=0 je{0,1}™ lil2<i]2

such that by (EI6) and (E0)

nOz_ 0 |Bn01 +Z Z |Bm0]|+ Z |Bn,0,j|-

m=0 je{0,1}m [1]2<[d]2

Next, using (E66) we have for all + € {0,1}"

U Bnbi C Bm,O,i\ma

bi(b’i)EEn»b‘m:O»
blm417#0

and ([E67) and ([ET2) yield

U Bino,ifm 2 U Bupi, forallie {0,1}".

b:(bi)€Fn.0
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We get from (E30) that A, C Ub:(b,i)eEno By for all k € K,,, i € {0,1}", such that
using Lemma E37T]

JU aclU U sacUU U Bun

s=04€{0,1}* 5=04€{0,1}* b:(b,i)eEs 0 s=0m=0:€{0,1}s
“UU U o= U B
s=0m=0 je{0,1}™ s=04€{0,1}s
= o,i > |Beoil |, k€K, (4.74)
s=0 4e{0,1}*

where the second inclusion follows by (73], the second equality holds by (E67), and
the last equality is a consequence of (7). Next, note that

S % Bl =% X 2 (maxo (b 127) - maxgs (b f1227))

s=0ic{0,1}¢ s=0ic{0,1}¢

<SS S (g (b + [27) — g (k4 [1227))

s=0 i{0,1}* k€Z

_ Zn: S 2 (g (B +[1227") = goot (B + [1227))

=0 7€{0,1}™ k€Z

= Z ZQ*”gn (k+[i]227") = /gn(a:) dr < 1. (4.75)

1€{0,1}" k€Z

Here, the first equality follows directly from (EZI6]), and the first inequality is a conse-
quence of the fact that for a;, < by € R we have 0 < maxy, by, — maxy ar, < ), (by — ag).
As to the second equality we use that for any j € {0,1}* we have g, (k + [j].27%) =
gs (k+[i]227"), i € {0,1}", i|s = j, and [{i € {0,1}" : i|s = j}| = 2% The last
inequality reflects the assumption of unit Fréchet margins of the max-stable process
generated by g. Finally, (L7)) and (EE73) yield the assertion. O

4.4 A Useful Decomposition of the Sets A,x;

Recall from (ET6) and (E33) that the sets By, and A, are defined in a joint suc-
cessive way. The following notion of D,, ,,x; will generalize the sets A,,x;. In contrast
to ([E3H), however, for m < n they will require the corresponding sets B, to be already
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defined. More precisely, we put

Dn,mki - U Bnbi N ([07 2_nam,k,i|m) + Z |Bnai|

b:(b,i)eEmO ‘li(avi)EEn,O:
(a,1)|m 2 (w,(ilm—1,1)) (4 76)
+ g |Bnaj |) }
(a,5)=<(b,3),
J#i

for all n € Ng, m <n, k € K,,, and 7 € {0,1}" where

(wa (i|m—1’ 1)) = (wmfl,k,i\m—n (Z.|m—1> 1))

as in ({L09). In particular, we readily find by (E76) that

b:(bi)€Fn 0

and ([70) and ([E30) yield that D, = Ang;. Further, for i, 5 € {0,1}", i # j, we get
by (@Z9) and (ET6) that

Dn,mki N Dn,p,k+h7j = @, for all m,p<ne Ng, h € Ng. (478)

Next, using (E77) and (EBI) we have for all m < n, (b, ) € Epo and all i € {0,1}"
with i|,, = j that

Dn,mki N mej - Dn,mki N U Bnai = U (Bnai N Dn,mki)
a:(a,i)EEn,a\m+17ﬁ0, a:(a,i)EEn,a\m+17ﬁ0,
(a,1)|m=(b,7) (a,4)|m=(b,5)

such that, for later reference,

U (Dn,mk:z N mej) = U U (Dn,mk:z N Bnai) (479)
i€{0,1}": i€{0,1}™: ai(a,i)eEp 0,(as3)|m=(b,4),
ilm=j ilm=j (a,9) 4170l 1)

where the union on i is disjoint by (E76) and ([E29).

Lemma 4.4.1. For allm <n € Ny, k € K,,,, i € {0,1}" and j = i|,, we have

Dn,mki g U Bmaj

a:(0,§)€ By 0,
(@, lm—1,1) = (a:1) 2(@,5)

where (W, (jlm-1,1)) = (@mn-1k 1> (Gm-1,1)) and (@, 7) = (©@mrj; )
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Proof. Note first that [{0) and ([E20) give

Dn,mki N Bnbi = ( Z IBnaj| + [07 |Bnbz|)) N ([0, 2_nam,k,i|m)
(a,3)=(b;8)

(4.80)
Y Bt Y |ij|).
a:(a,i)€Ey o, (a,5)=(b,3),
(a,i)|m = (w,(ilm—1,1)) J#i

Next, applying ([E36) to [ER0) we find similar as in ([E37) that

Dn,mki N Bnbi

Z | Bpaj| + {O,min {2_"am,k7i|m

(a,5)=(b;7)

— - Z | Brail |Bnbi|}), (w, (ilme1,1)) < (b,%)|m, (4.81)

a:(w, (il —1,1))<(a,i)|m,
(a,i)=<(b,)

L 0, else.

Further, using ({I9) repeatedly we get
Z |Bmaj| =2 Z |Bnci| (4-82)
(w,(Jlm-1,1))<(a,j) 2(@.5) c:(w, (Jlm—1,1)) = (1) [m 2(@,5)
such that by ([82) and (E38) for all j € {0,1}™ and all i € {0,1}" with i|,, = j
2 iy — > | Buei] < 0. (4.83)

c:(c,i)EEn’O,
(@, lm—1,1))=(c,))|m 2(@,5)

Now, by (ST and @S3) for all (b, i) € E, o with (b,7)|m = (w, (ilm_1,1)) or (@, i|m) <
(b, 1), we have
Dy, ki N B = 0. (4.84)

Finally, (E77) and (E84) yield that for all i € {0, 1}" with i|,, = j

Dn,mki C U Bnbi = U Bmaj (485)
b:(b,i)€ By, 0, a:(a,5)€Ep, 0,
(W, (Gl —1+1))=(b,3) |m =(@,7) (w,(Glm—1,1))=(a,j)2(@,5)
where the equality holds by (EE1). O

By (EXT)) and (ERH) we may now state for later reference that

|Dn,mkz| = 2_na'm,k,i\m~ (486)
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Lemma 4.4.2. For allm <n € Ny, k € K,,, and j € {0,1}"" we have

mkj - U Dn mki-

1€{0,1}7:
i|lm=j

Proof. Note that by ([E40) and Lemma LAl it is sufficient to show for all (b, 7) € E~m70
with (w, (jm-1,1)) < (b,7) X (@, 7) that

Buntj N At = Bopy 0 (2] Do (4.87)

ic{0,1}n:
ilm=j

To this end, we shall consider a twofold case differentiation. First, let 27 a1 —
2 G lm—1,1)= (@) <(bg) | Bmai| < [Bumps|. Then, by (.37)

Bt N Ak = D | Bunail + {0, 2" ks — > |Bmaj|)

(a,8)=(b,4) a:(w,(lm—1,1))<(a,5)<(b,5)

= Y ) B (4.88)

i€{0,1}":  a:(a,i)[m=(b,5),
ilm=7 (2, )m41=2(w, G)

where the second equality follows by [EG3) and (EEI). Now, (ERY) and a repeated
application of (ET9) yield that for all ¢ € {0,1}" with i|,, = j

Z ‘Bnai‘ =2 (Qmamkj - Z |Bmaj|)

a:(a,i)|m=(bj a:(w,(Jlm—1,1))<
(@,8)|m41=3(w, (s 1)) (a,5)=<(b,5)

=2 "4 — >, |Buail (4.89)

ci(w,(ilm—1,1))=<
(¢,8)[m=(b,5)

and by (EX9), in particular,

(e <), e:(w,(lm—1,1)<(e:8)|m=(b.5)
(¢,0)lm=(b,7)

for all a € B,, with (a,?)|,, = (b,7) and (a,%)|mi1 = (w, (j,1)). Further, by [EY) we
have for (w, (j,1)) < (a,%)|m+1 that

2 ey — > Bueil = > |Baail <0. (4.91)

e:(@,(ilm—1.1)) = () m = (b.4) el
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Now, by [E20) we get

U Bu= U (0Bt Y 15

a:(a,i)|m=(b,j), a:(a,i)|m=(b,j), (e,l)=<(a,i)
(@,1) |41 2 (w, (J 1)) (a,9) [ +1=2(w,(5,1))
= U ( E |Bncl| + |:0, min {Q"kaj
a:(avi”m:(byj) (C,l){((l,l’)
- § |Bncz| - E |Bncz|a|Bn(u|}))
ex(@,(ilm—1,1))< ()l m=(b.) () <)
(c¢,0)lm=(b,5)
= U (Dn,mkz N Bnai) (492)

a:(a,9)|m=(b,5)

where we use ([Z90) to (E3AT) for the second equality and (EEXT]) for the last equality.
Next, by (E8Y) and (32) we find that

mej N Amkj - U U (Dn,mkz N Bnai)

1€{0,1}": a:(a,i)|m=(b,j)

ilm=j

i€{0,1}"m:
ilm=j

where the last equality holds by (EIQ) To conclude the proof consider now the case

mej N Amkj = Z |Bmai| + [07 ‘me]D
(a,1)=<(b,5)

= By = U U Birai (4.94)

i€{0,1}™: a:(a,i)€En,alp, 4170,
ilm=j (a,i)|lm=(b,7)

where the second equality is a consequence of ([EZ0) and the last equality holds by
(EET). In particular, using (E94)) and applying ([ETY) repeatedly we find that

> |Buail = 2" Buy| < 2 "y — Y |Bueil (4.95)
a:(a,1)€ By 0,0lm4170, e(w,(dlm—1,1))=<
(a,1)[m=(b,5) (¢;1)lm = (b,7)

where the inequality merely reflects the above assumption for the second case. Now,
for any a € B,, such that (a,i)|,, = (b,j) we have by (L33 that

2inamk:j - Z |Bncz| - Z |Bncz| > ‘Bnai|- (496)
ei(w,(Glm—1))=< ci(c,i)<(a,1),
(e,3)|m =< (b,5) (i) Im=(b,J)
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Hence, we get that

U B U (X Bal+bisaD)

a:(a,i)EEn’o,a\m_’_l;ﬁO, (ayi)EEn,Ova‘m-ﬁ—l?éO’ (C,l)%((l,l’)
(@,)|m=(b,5) (a,1)|m=(b,5))

- U ( Z |Bncl| + |:0, min {2namkj

(aai)EEn,()’a‘mel#O’ (e,1)=(ayi)

(a,3)|m=(b,5)
- E |Bncz| - E |Bncz|a|Bn(u|}>)
c:i(w,(Glm—1,1))< ci(c,i)<(a,i),
(c,8)[m < (b,5) (¢,8)Im=(b,5)
= U (Dn,mkz N Bnai) (497)
a:(avi)eEn,Ova‘m-Fl?éO’
(a,1)|m=(b,5)

where the first equality holds by (EE20) and the second equality follows from (E386).
The last equality corresponds to (EE8T]). Now, similar to the above, the result follows

by combining (E94) and (ETD) first, and using [T to conclude. O
Note that by (1) and ([E29) we get that
U Dn,mkj N U Bnbi == Dn,mkiu { € {07 1}n’ (498)
je{o,11m b:(bi)€Fn o

such that (L98)) and Lemma EEZ A yield an equivalent representation of D, ki, namely
Dyki = Ampin 0 1) Buw foralli e {0,1}",
b:(b,i)EFn 0
By Lemma and Lemma we have
) A= ) Dumki, m<neNykeK,. (4.99)
jefo,1ym ie{0,1}"

Further, Lemma yields that D,, ;e € Ay for all j € {0,1}™", k € K, and all
i € {0,1}" with i|,, = j. Then, the fact that for all n € Ng, k € K, and i € {0,1}" we
have

Dymki N Dy =0, m < p <, (4.100)

holds by Lemma E3T]

4.5 Main Result

In the following theorem we shall make use of the sets S, given in () where the
unions are now seen to be disjoint by Lemma EE32]
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Theorem 4.5.1. The sequence of sets (Sp)nen, 1S s monotonic, and

- Z Z Zaﬁk”s h|gn) |Snﬂ(5n_h>|7 nENo,hEZ.

keKnp ie{0,1}" s=0

Proof. By Lemma we have

|Sn N (Sn - h)| = Z U U Aski N U U As,k—l—h,i

keZ |s=0ic{0,1} s=01ie{0,1}*
n n
S Y UP 0 Y YD
k€Z |ie{0,1}" s=0 ie{0,1}" s=0

= U ( U Dn ,ski N U Dn,S,lH—h Z)

keZ |ie{0,1}n N s=

= Z Z U Dn ,ski N U Dms,k—i—h %

k€Z ic{0,1} [s=0

(4.101)

where the second equality holds by 3d), and [Z8) gives the third equality. Next,
note that (E0) and ([EI00) yield

U Dn,ski = U {Bnbz N ( Z ‘Bnaj|
s=0 (

(b 5)=(b0),
b:(b,i)E€ER 0 aJ;#g 0)

+ oo ([0, 2 M) T D |B"“i|)) }

a:(a,i)EEn’O,
(a,)|s 2 (w,(i[s—1,1))

= Y {ann’ﬁ<( >, \Bnaj|+{0,2”§as,k,i|s))} (4.102)

(b eE 5)=(b0),
b:(b,i)EER 0 aJ;#g 0)

where the second equality holds by ([09) and ([{I9). Using ([LI02) we get that

n n n
U Dn,ski N U Dn,s,k-‘,—h,i = U Dn,ski
s=0 s=0 s=0

if and only if

E skz\s E Qs k+h,i|s

s=0
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foranyn € No, h € Z, k € K,, and ¢ € {0,1}". Combining the latter result with (EI{I])
and ({4 yields the assertion where

n n

-n §
U Dn,ski =2 Qs ki s
s=0 s=0

follows directly from (FES6]). O

Corollary 4.5.1. For any extremal coefficient function ¢ of a dissipative maz-stable
process on Z whose spectral function g may be approzimated by ([.3) there exists a
measurable set S C R such that

2-g(h]g)=|SN(S—h), heZ
Proof. Using ([E3) we find that
/gn(x)dx =27" Z Z Zas,k,ils —1 (n— o)
k€Kn ic{0,1} s=0

by the fact that g, 1 g, and by [ g(z)dz = 1. Now, the assertion follows directly from
Theorem E5T] O

The following corollary extends the above result to general dissipative max-stable pro-
cesses, i.e. the assumption (EE3]) on the spectral function ¢ is abandoned. As indicated
in Section its proof may be based on the construction of a suitable function £ such
that g, T & and ¢(- | ) = ¢(- | g), see [19] for details.

Corollary 4.5.2 (|19, Corollary 3|). For any extremal coefficient function ¢ of a dis-
sipative maz-stable process on 7 there exists a measurable set S C R such that

2—¢(h)=|SN(S—h), heZ
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Chapter 5

A Novel Characteristic for the
Dependence Structure of Clustered
Extremes

5.1 Exploring Extremal Clusters

In the preceding chapters we characterized extremal clusters of stationary max-stable
processes by basically two well-known summary measures. We discussed the extremal
index that reflects the expected size of such clusters and we studied the extremal
coefficient function that describes bivariate dependencies at all lags of such processes.
In the following we will abandon the restriction to max-stable processes and extend
the study of extremal measures to the rich class of processes that lie in the domain of
attraction of a max-stable process, cf. [22]. Note that the latter assumption will hold in
particular for the important GARCH family of time series models that we shall consider
in detail below. In the first place, however, we shall turn to a more general problem.
That is, we will critically examine the informational value of the existing measures 6
and ¢ with respect to typical questions about the structure of extremes that may
come up in many applications. Our reasoning will then give rise to the proposal of a
novel summary measure for extremal dependence. Note that the current chapter has
been motivated to a large extent by the study of homometric patterns in Section B3],
i.e. such simple cluster types that are not distinguishable by the extremal coefficient
function. As in that section we used a rather technical setup we will clarify below by
a brief example the possible implications of such patterns in practice. Although we
shall for convenience incorporate our discussion into a stylized financial context whose
extremal behavior has been studied in detail [41, 20] we remark that all arguments will
likewise cover further fields of application. To begin with, it appears to be reasonable
to require an appropriate measure for the within extremal cluster structure to address
the following questions:

(Q1) What is the probability for a second, third etc. extreme event occuring two, three
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Figure 5.1.1: Volatility clustering for the daily absolute log returns of the S&P 500 index from 01.04.80 to 31.03.10
(7569 records). The marked extreme events are enlarged in the respective bottom pictures and correspond to the “Black
Monday” in 1987, the Russian financial crisis in 1998 and the dot-com bubble burst in 2000. The remaining event in
2008 is surrounded by the unusual volatility attributable to the so-called subprime mortgage crisis.

etc. days after the outset of a financial crisis?

(Q2) What is the structure of a cluster of high-level exceedances and how does the
course of extreme events (i.e. the evolution of a stress period or crisis over time)
typically look like?

(Q3) How may the memory spread of financial markets with respect to shocks be
characterized, i.e. how long does a crisis typically last?

Hence, many possible questions focus on expected events in the near future given a
first extreme event today (i.e. the beginning of a temporary shock or crisis). Note
that the above setup may readily be extended to a multivariate approach that we
will not consider here. To illustrate the relevance of these matters, in Figure BTl we
display the daily absolute logarithmic returns of the S&P 500 index ranging from 1980
to 2010. We understand that an extremal cluster is formed by several adjacent high-
level exceedances where different clusters are generally separated by longer periods
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5.1: Exploring Extremal Clusters

k 1 2 3 4 5 6 7 8 9 10 11 12

P1 1/3 1/3 1/3
P2 1/3 1/3 1/3
P3 1/6 1/6 1/6 1/6 1/6 1/6
P4 1/6 1/6 1/6 1/6 1/6 1/6

Table 5.1.1: Coefficients aj of the My processes P1 to P4 discussed in Example B2l

of low levels. Here, we focus on the within-cluster dependence structure and assume
observations in different clusters to be independent. The courses of four typical clusters
indicated by an arrow in the upper plot are depicted in the bottom subfigures. Apart
from an obvious volatility clustering at high levels they also suggest the presence of
a roughly common pattern. In particular, the outset of each cluster of extremes is
fairly well distinguishable in the first three cases which illustrates the relevance of
conditioning on the beginning of a crisis when judging probabilities for future extreme
events. In contrast, the event in 2008 is accompanied by an unusually long-lasting
volatility cluster which complicates the identification of such a definite starting point.
Still, in all four subfigures we find that just giving the average cluster size (where
using [64] we get that 6 ~ 1/3, see also Example 531]) does not reveal the characteristic
structure of extreme events that is evident from the above plots. More precisely, the
latter show a clearly visible second peak five to six trading days after the start of each
cluster. In practice, e.g. for financial institutions the expected location of such events
within a cluster of extremes is essential in order to efficiently react to the pattern
of inherent risk they describe. We shall therefore require a suitable characteristic
that reaches beyond the extremal index to reliably indicate strength and location of
subsequent extreme events within a crisis. The shortcomings of the extremal coefficient
function in this regard may best be understood by the following example.

Example 5.1.1. Consider the M, processes P1 to P4 that are given by their co-
efficients a; according to Table IIl Recall from (B28) that the coefficients in Ta-
ble BT Tlin particular determine the structure of the extremal clusters for the respective
processes, also called their signature patterns [6&]. According to Section the cor-
responding extremal indices are given by 0p; = 0py = 1/3 and Op3 = 0py = 1/6.
Further, we contrast the extremal coefficient function ¢ with a new characteristic ~ in
Table BET2 We will give a formal definition of the latter in Section but at this
point it will be sufficient to preliminarily recall the representation given in Chapter [T,
ie.

y(h|Y) = lim P(Y, > u| Yy > u, and Yj first event in the extremal cluster) (5.1)

for all h € N. For convenience we repeat (B220) where the extremal coefficient function
is given by
2—¢h|Y)=lim P(Y,>u|Yy>u), heZ,

which highlights the similar construction of the two characteristics. It is therefore
even more remarkable that their interpretation will differ substantially. First and
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5.2: Properties of Dependence Measures

n 0 1 2 3 4 5 6 7 8 9 10 11 12
B Pl 1 1/3 1/3 1/3 0
2=0) by 1 43 1y3 13 0
PL 1 1 0 1 0
v ey 1 0 1 1 o
2 o 31 1/3 1/3 1/6 1/6 1/3 1/3 1/6 1/6 1/6 1/6 1/6 0
P4 1 1/3 1/3 1/6 1/6 1/3 1/3 1/6 1/6 1/6 1/6 1/6 0
gy P31 1 1 0 0 0 1 0 1 0 0 1 0
v P41 1 0 o0 O O 1 1 0 1 0 1 0

Table 5.1.2: Extremal measures ¢ and « for processes P1 to P4 discussed in Example BTl

obvious, note that the limiting probabilities defining ¢ are not tied to the beginning
of an extremal cluster which is in contrast to (Q1) discussed above. Moreover, we
will show in Corollary below that v traces the evolution of an extremal cluster
in the way suggested by (Q1) and (Q2). In particular, Table shows that for P1
and P2 the extremal coefficient function is unable to distinguish between a simple
reflection of the processes whereas v exactly mirrors the pattern of extremes. The
problem, however, is not restricted to the rather obvious case of congruent patterns
as can be seen from the behavior of ¢ for P3 and P4 which represent an example of
the homometric noncongruent patterns discussed in Section Here, we find once
more that v conveys the information requested by (Q1) and (Q2). Concerning (Q3),
however, Table suggests that both ¢ and ~ are suitable characteristics in order
to reflect the duration of extremal clusters.

The above simple example underlines the ability of v to draw a priori conclusions about
the shape of an extremal cluster. Note that from the point of view of a financial in-
stitution scenarios of the kind P1 and P2 will clearly require a different management
of risk that is not distinguishable by the extremal coefficient function. More precisely,
under P1 measures against two subsequent shocks and hence a larger risk at the be-
ginning of the cluster will have to be taken from the outset whereas under P2 those
events will occur only at the end of the cluster. In particular, they will be signalized by
a single extreme event two days in advance. In addition to the favourable properties
of v with respect to questions of the above kind the new characteristic will turn out
to have a remarkably easy relation with the extremal index which is not the case for
the extremal coefficient function. We will discuss those questions in Section where
we will also study further properties both of v and ¢. In Section we will evaluate
the above measures in the GARCH(1,1) case using a modified tail chain approach. We
shall conclude with an example regarding the above S&P 500 data set.

5.2 Properties of Dependence Measures

In the following we will study the above extremal measures for stationary processes in
the domain of attraction of a max-stable process, see [22] for details. To this end, we will
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5.2: Properties of Dependence Measures

assume throughout for the stationary stochastic process (X;);cz that a corresponding
max-stable limiting process (Y} )iz exists, cf. (ZII). More precisely, we will require all
finite dimensional distributions of (X;) to belong to the maximum domain of attraction
of a multivariate extreme value distribution. Here, without loss of generality we may
restrict the latter to standard Fréchet margins, i.e. Fy,(z) = exp(—z~'), z > 0. It will
be advantageous later on to cover the above assumptions equivalently by means of a
multivariate regular variation condition, i.e.

o (22 € ) 2 u) o oo) (1)

i i

for a Radon measure p on [—00, 00]™\{0}™ and all m € N. Here, by — we denote vague
convergence, see e.g. [50, 41] for details. Throughout, we will put Mg = max;cs X; for
an index set S where My = 0 and M,,,, = M, . ny, m < n. Further, we will frequently
make use of the sets S,, = {—-m,..., =1}, Spup = S U {h} and S,, 0 = S U {0}
We shall refer to the familiar extremal index 6 of the process (X;) using a particularly
illustrative definition, i.e.

O(h) = lim P(X; <n,te S, n|Xo>n), helZ, (5.2)

such that §(—1) = 0 corresponds to (3] for D = 1 under a weak mixing condition [45],
see also |61]. Here, 1, — 00 is a suitable sequence that, in particular, satisfies r,,/n — 0
as n — oo. The limiting probability in (£2)) also provides an alternative interpretation
of the extremal index in terms of the probability of a high-level exceedance being the
first (last) in a cluster of extremes. Recall that in general we have 6 € [0, 1] where the
case § = 0 may reasonably be excluded a priori in most applications. We will therefore
assume throughout that for some increasing sequence r, with r,/n — oo as n — oo
the well-known condition

7711_{13)0 limsup P(M_,, —m—1 >n|Xg>n)=0 (C2)
holds, see e.g. [43], which restricts the influence of an extreme observation over time.
In particular, (C2) is sufficient for > 0, and it guarantees the existence of the limit
in (B2), cf. Proposition EEZTl1 Note that (C2) may be stronger than necessary but
holds for the important class of GARCH(1,1) processes that we will consider below,
cf. Corollary B3l See also 58] for further examples. We will show that the following
more general concept

Omn(h) =P(X: <n,t € Spp| Xo>n), hez, (5.3)

is sufficient under ([C2) in order to investigate any of the extremal measures discussed
above.
Proposition 5.2.1. Under conditions (C1) and (CA) we have that

g(h) = lim lim 6,,,(h), heZ.

m—00 N—00

In particular, 0 = lim,, o limy, o0 O (—1) > 0.

81



5.2: Properties of Dependence Measures

Proof. Note first that the limit 6,,(h) = lim,_,c Om.n(h) exists by (). Consequently,
for all m € N, h € Z, we have
0 <6,(h)—limsup P(X; <n,te€S, n|Xo>n)

n—oo

<O (h) —liminf P(X; <n,t €S, 1| Xo>n)

= limsup [0 (k) — P(Xy <n, t €S, 5 | Xo > n)]
= limsup P(M_,, —m—1 >n, X <n,t € Spup | Xo > n)

<limsup P(M_,, —pm—1 >n | Xo > n).

n—oo

Now, by (C2)) the r.h.s. tends to 0 as m — oo, and we get that
8(h) = lim 6,,(h) = lim lim O,.(h), heZ,

as 0,,(h) decreases in m. Finally, the fact that § > 0 follows from the discussion after
Condition 10.8 in [2]. O

Note that under the conditions of Proposition 22Tl we may in general not conclude that
6(h) > 0, h € N. We will now give a formal definition of the extremal characteristics
discussed in Section BTl for stationary processes in the domain of attraction of a max-
stable process. First, for all h € Z the extremal coefficient function following [56] is
given by

o(h) =1+6y(h) = Q_JLIEOP(X” >n|Xg>n)= 2—7}L120P(Yh >nl|Yy>n) (5.4)
where the third equality by ([CIl) holds for the max-stable limiting process (Y;), cf. (B20).
Concerning the questions raised in Section Bl it may be beneficial to replace (B4) by
a similar probability that is tied to the first extreme event in a cluster as in (B&1I).
We therefore propose to modify the above concept and consider as a closely related
characteristic the function y(h) which we shall define by

1) =1 = i ), hen, (5.5)

where v,,(h) = lim, ..o P(Xp > n | Xo > n,X; < n,t € S,,). Although Defini-
tions (B4)) and (B3) appear to be closely related, in the following we will discuss that
their properties may differ substantially.

To begin with, note that § and ¢(h), h € N, are obviously invariant under time reversal
of the process (X;), i.e. 0(Xy, t € Z) = 6(X_4, t € Z) and ¢(h) = ¢(—h), but that in
general neither O(h | Xy, t € Z) = 0(h | X_4,t € Z) nor y(h | Xy, t € Z) = v(h |
X_ 4, t €Z), h €N, cf. Example EEITl From the above definitions we readily have that

0<0(h)<O<o(h)—1<1

for each h € N. The following theorem gives an exact relationship between the sum of
the function y(h), h € Ny, and the extremal index.
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5.2: Properties of Dependence Measures

Theorem 5.2.1. Under conditions (C1) and (C2) we have that
1
> ) =+ (5.6)

heNg

Proof. By (B3) it suffices to show that }_, . (0 — 0(h)) = 1. To this end, note that
for all h € N we have

0—0(h)= lim lim P(X_,, p<mn,....,.X 1 p<n, X, >n]|Xy>n)

m—00 N—00

= lim lim P(X_,, <n,...,. X 1 ,<n, X ,>n|Xy>n)

m—0o0 N—00

— lim lim P(M_ppomn1 >ny Xy <y, Xogop <im,

m—00 N—00

X p>n|Xo>n)

where the latter term is bounded from above by 0 through (C2). Now, for all p € N
we get that

p

> (0 —6(h) = lim lim P(X_, <n,...,X_,1 <n|Xo>n)

m—00 N—00

h=0
where
lim lim lim P(X_,, <n,...,X_,1 <n|Xo>n)
pP—00 M—00 N—00
>liminf P(X_,, <n,...,X_,1<n|Xo>n) forallgeN.
Finally, condition (C2) yields that the r.h.s. tends to 1 as ¢ — oc. O

In particular, Theorem B2l highlights the fact that under the above conditions § = 1
is equivalent to v(h) = 0, h € N. Note also that, depending on the point of view, (B6])
may provide a refined interpretation of the extremal index, see |20, Section 8.1.2] for a
discussion. Further, the proof of Theorem B2 Tlyields the following limiting relationship
between 6 and 6(h).

Corollary 5.2.1. Under the conditions of Theorem [Z1l we have that

1 n
6= lim —) "6(h).
h=0

n—oo M,
In the following we shall consider the M; representation for dissipative max-stable

processes as in ([B28). We will first derive the corresponding expressions for the above
extremal characteristics.
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5.2: Properties of Dependence Measures

Theorem 5.2.2. For an Ms process A defined by its coefficients a;, >0, 5 € I, p € Z,

we have
O(h | A)=> " (aj, — Gjpn)s, h€ELZ,
j€l peZ
where @y = Max{a; oo, ..., Ajp_1, Gjpth}-

Proof. By definition of A we find that

P(Atgn,tES):P(ZN_kSn/ajk,jGI,kEZ,tES)
:P(ijgn/ajk,jef,pEZ,k565+p)

1
= exp { - Z Z klggfpajk} (5.7)

je€l peZ

where from the fact that >, >, aj = 1 it follows immediately that

g < . .
DD max ay < |S] (5.8)

Jj€l peZ
Moreover, for all 7 € I we have
max G, = E max G + E (a~ —  max a»k> . 9.9
k€Sm,0,n+pP J k€S, n+p J P k€S, n+p J + ( )
PEZ PEZ PEZ

Now, using (B3], and (B7) to (H) we find that
1
O (R) = 1i - — ;
= fimer] - S5, e o)

jel peZ
1
l—expq — — ( i — ; )
( p{ n ZZ G s, 4k +})
. 111’[1 j€l peZ
n—00 1 —exp{—1/n}
“ 3 (ay,— max k) |
jel pel ( KESm ntp +
Finally,
0(h) = 7711_1;%0 Om(h) = Z Z(ajp — Ajp,h)+s
jel peZ
where a; ;5 = limy, oo Maxkes,, , +p Q- O

Note in particular that Theorem generalizes the well-known fact that 04 = 0(—1 |
A) =y maxpez ajp, of. [61]. As a useful corollary of Theorems BZTland EZ2 to any
dependence function v(h), h € Ny, we are now able to associate a simple M, example
process A = A(7) that represents ~(h).
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5.2: Properties of Dependence Measures

Corollary 5.2.2. Assume (C1) and (C2). For any function y(h), h € Ny, according
to () let the My process A be given by the coefficients

v(k)
ay = ZhENO v(h)
0, —k e N.

= 0y(k), k€N,

Then, we have that v(h) = v(h | A), h € Ny.

Note that A has the following useful properties that can be easily seen. First, we find
that ag = 0 > ap, h € Ny. That is, any extremal cluster of A starts with a value
driven by ay that dominates the following realizations in the same cluster. Second,
note that v(h) = A,/Ay = an/do, h € Ny, where Ay represents the starting point of
the current cluster. In particular, we also have that v(h) = 0 is equivalent to a; = 0,
for all A € N. To sum up, in order to illustrate and actually visualize the implications
of y(h) for arbitrarily complex processes it may be useful to study the simple process A
instead. Note that the possibility to readily state a valid example process for any valid
function «(h) is in sharp contrast to the difficulties encountered for the reconstruction
of example processes conforming to an extremal coefficient function ¢(h), see Chapter Bl
Further, as opposed to the latter characteristic which is necessarily positive definite,
we get from Corollary that any summable function ~ : Ny — [0, 1] with (0) =1
is a valid such extremal dependence function.

In contrast to Theorem B2ZTIno definite interrelation between the extremal index # and
the extremal coefficient function ¢(h) exists. In particular, # may not be reconstructed
from ¢. However, we are able to state a sharp lower bound in terms of ¢ on the sum
of 2—¢(h), h € N.

Theorem 5.2.3. For any maz-stable process we have that

[1/6) (1 —(1+[1/6])8/2) < D (2~ (h)). (5.10)

heN

Proof. Note first that any max-stable process with summable function 2—¢(h), h € N,
is dissipative by Proposition B3l Then, by Theorem 3.1 in [52| we have in particular
that & > 0. The proof may therefore be based on the Mj representation as in (B228).
Let A(6) be the class of Mz processes A given by the coefficients aj, j € I,k € Z,
with extremal index 6§ > 0. Put

=a=Y (2 0(h| A), AcA®).

heN

where ¢(h | A) = 3 ic; > pep MaXie(ony+k @i, see Theorem Next, note that for
all h € N and all j € I we have

23 aj— Y x| @t = > aj[Maj < aje-n) + Lag < ajpen)]
keZ keZ keZ
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5.2: Properties of Dependence Measures

such that by >,/ >,z an =1 we get

Ea=>_> am Y [Lap < ajpn) + Laj < ajpin)]

j€l keZ heN

=Y (k=1 ajm. (5.11)

keEN jel

Here, for all j € I we denote by a; 4 the k-th largest coefficient (including ties). Next,
for any A € A(0) let
be =Y ajmw, keEN, (5.12)
jel
and all other coefficients zero, define the M, process B = B(A) € A(f) such that
by (BI0) we have =4 = Zp. Let further the M, process B* € A(6) be given by b =0
fork=1,...,[1/0] = q, b;,, = 1—0q and all other coefficients zero. Put &), = b, — b,

where
> 6 =0 (5.13)
keN
and
0 >0 fork=1,...,¢q (5.14)

Here, the latter inequality holds by the fact that 6 = maxy b, cf. Theorem B2
Further,

0 <0 fork=q+2,..., (5.15)
follows from b; = 0 for k = ¢+ 2,.... Now,
q+1
Ep—Zp=) (k—1b—> (k—Dbg =Y (k—1)5 <0
k=2 keN keN
by (2I3) to (EIH). Finally, as a consequence of (EI0]) we have that Zg. = |1/0]{1 —
(14 11/6])6/2}. O

Remark 5.2.1. Tt can be seen by a simple example that a finite upper bound for the
r.h.s. of (1) does not exist for a fixed extremal index § < co. To this end, consider

an My process with ag =0, a; = ... = ay = (1 — 0)/N. Then, by (&211]) we have that
N-1
Y 2=o(h) =) ((1—6)—n(—6)/N)
heN n=0

1-0)(N+1)/2 >0 (N — 00).

Remark 5.2.2. To conclude this section we remark that processes with v(h) = 2 —¢(h),
h € N, are easily constructed. Let, for example, an M, process with § = 0.5 be
defined by the coefficients a;, = 0.5, k € N, and all other coefficients zero. Then, by
Theorem we find that y(h) = 2 — ¢(h) = 0.5", h € Ny.
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5.3: Application: GARCH(1,1)

5.3 Application: GARCH(1,1)

Recall from Figure BT]T] the stylized fact that financial returns tend to reflect a fluc-
tuating and at the same time clustered volatility over time. The class of GARCH(p, q)
processes [21, 15, 63] was originally proposed in order to model this behavior. The find-
ing that the family of GARCH models also parallels real financial data through both
heavy tails for its one-dimensional margins as well as a clustering of extreme values has
further increased its appeal. In contrast, the latter property does not hold for the class
of so-called stochastic volatility processes [L1]. In general, for the GARCH family to
our knowledge there are no analytic expressions for the extremal measures discussed in
Section We will therefore consider a suitable simulation technique that is based on
a so-called tail chain approach studied by [57]. The tail chain is a certain process that
mirrors the behavior of the original sequence when started at a high level [58]. Tt is
therefore of particular interest for the evaluation of extremal characteristics. The tail
chain resembles a random walk and, in particular, may be looked at in a forward as well
as backward direction. Our setup generalizes a similar method proposed by [15] and
[30] whose algorithm focusses on the square of the original process in an intermediate
step. It is therefore restricted to GARCH models with symmetric innovations whereas
our approach may readily be extended to the asymmetric case that we will, however,
not consider here. In addition, our procedure also covers the abovementioned simulta-
neous evaluation of the forward and backward behavior of the GARCH sequence when
started at a high value. Note that this property will be indispensible for the evaluation
of the characteristic y(h), h € N, with the backward direction being in general more
tedious. In the following, we will restrict to the GARCH(1,1) model only as a general-
ization of the tail chain approach to higher order GARCH(p, ¢) processes has not been
considered yet. Moreover, from an applied point of view it appears to be difficult for
any volatility model to outperform the GARCH(1,1) approach [24] such that the latter
is of special practical importance. Note also that we cover the well-known ARCH(1)
model in terms of a GARCH(1,0) setup. The GARCH(1,1) model is defined by

Xt = O, t e Z:, (516)

where for the volatility sequence of conditional variances we have that

Oy = \/Oé() + (()417]252,1 + ﬁ)O’?fl = (D(O'tfl, T]tfl). (517)

Here, (1;):ez is a sequence of i.i.d. standard normal distributed random variables where
7; and o, are independent for fixed ¢, and

lim s'®(s, 2) = ¢(2) = (2° + B)V2. (5.18)

S§— 00

We shall henceforth assume that ag > 0 in order to preclude the possibility of a
degenerate solution to (BI6l). Let further oy > 0, § > 0 and oy + 8 < 1 such that
there exist strictly stationary processes which fulfill the conditions (EI6) and (E217),
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5.3: Application: GARCH(1,1)

cf. [44|. Note that the case 5 = 0 corresponds to the ARCH(1) model mentioned above.

In order to evaluate the extremal measures 0, ¢(h), h € Z, and ~y(h), h € N, discussed
in Section we will concentrate on the joint limiting distribution

X_ X,

lim £ ( l —

r—00

T g e ey

i i

Xo > a:) (5.19)

where [,u € Ny. Here and in the following we will denote by £(X) the law of a random
vector X. Note that an application of the abovementioned tail chain approach requires
a first order Markov structure of the underlying process. We shall therefore make use
of the decomposition suggested by (E.16), and will initially focus only on the tail chain
of the volatility sequence (2I7) as a separate process which is first order Markov. We
will then apply a result obtained in [27] that covers the replacement of the conditioning
event og > x that is present in the tail chain of the volatility sequence by the event
| Xo| > x, i.e. a condition on the related overall process (X;). Based on this finding
we will show in a final step that by the special structure of (X;) it is straightforward
to recover the desired distribution in (EI9). The following well-known lemma (see
e.g. [42, Theorem 2.1]) shows that the random variables | Xy| and o are both regularly
varying with a certain index 2x > 0.

Lemma 5.3.1. For any stationary solution of (i1A) the equation
E ([amg —l—ﬁ]ﬁ) =1
has a unique positive solution. Further, for all y > 0 we then have that

- P(Xo| >yx) . Plog>yx)
].lm — s = hm —_— = .
z—oo P(|Xo| > ) z—oo P(0g > 1)

The following proposition establishes a preliminary tail chain for the (nonnegative)
volatility sequence (2I) that will form the basis for an appropriate tail chain of the

process (X;) in (B31]) below.

Proposition 5.3.1 (Theorem 5.2, [37]). Let the stationary process (o4)iez be given by
(2174). Then, for all l,u € Ny, as © — oo,

E(E,...,& o) >x) — L(G_4,...,04)
X X
where
t
a-:I:t - HA:l:i7 t S N07 (520)
1=0
P(Ag>x) =2 x>1, (5.21)
Ay = ¢(a) = (i +8)7, teN, (5.22)
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5.3: Application: GARCH(1,1)

for an i.i.d. sequence (M:)ien with the same distribution as no in (Z18). Further, Ay
i1s independent of all other variables, and A_;, t € N, are i.i.d. symmetric random
variables independent of (A;)ien where for 0 < x < 372 we have

PA 1 <z)= a2 + )" exp (—322) dz. (5.23)

1 n 1 /OO (
2 Vo J(=2=e)
a1

Proof. By Lemma B3] and (B.I1) the process (o;) satisfies the conditions of Theo-
rem 5.2 in [57|. Following his proof which is substantially simplified by the symmetry
of (BI6)) it remains to show that (6;/00)cz represents a so-called back and forth tail
chain BFTC(2k,v). The latter corresponds to (&Z0) by (4.4) and (4.5) in Segers where
L(A;) =vand L(A_;) =v*, t € N, for a certain relation between the measures v and
v*, and Ag is independent of ALy, t € N. Here, (EZ1)) is equivalent to (5.3.ii) in Segers.
Further, by (2.6) and (4.4) in Segers we get (22). Finally, the measures v and v* are
related via (3.7) in Segers which yields ([Z23]) by the fact that

BU(A) = B (1 (a2 + 6)2 < 1) (a2 + )] = P(A_, <)
for f(z) = 1(z < x). O
Lemma 5.3.2. For the stationary processes (X;) and (oy) given by (ZI8) and (217)

there is a random vector (Go, 7o) such that

where
and
P<6-0 >y, ﬁO < .T) =
—2K x
Yy — —2K
T / [1(1 > ylz))(|2]y) ™" + 11 < ylz])] T Fy(d2)

(7]0 ) —00

for ally >0 and z € R.

Proof. By Lemma B3] we have that

(5.25)

limP<@>1

T—00 €T

=25 y) = [0 2 e+ 10 <olah)]

Now, applying successively Lemmata 3.3.2 and 3.3.1 in [27] yields the assertion. O

As to the symmetric distribution of 7y it follows from (E2H) that

1 1 1 1
Py <z)= =+ -Fp | 2231 - >0 5.26
where by Fr(z,k,w) we denote the Gamma distribution function with shape parame-
ter w and scale parameter k. Using Lemma the following proposition now arises

as a special case of Theorem 3.5.2 in [21].
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5.3: Application: GARCH(1,1)

Proposition 5.3.2. Let the stationary processes (X;) and (oy) be given by ([ZI4)
and (&Z17). Then, for all l,u € Ny, as x — oo,

L(%U— |>x)—>£(6_l,...,&u) (5.27)
with (59,01) as in Lemma 233, and
&t = 5'15,11415, teN \ {1}, and 5',15 = &,tJrlA,t, t e N, (528)

for Ay as in (Z23) and (Z2Z3), t € Z \ {0, 1}, independent of (59, 61).

Next, we shall turn the r.h.s. in (ZZ7) into a more suitable form in order to simulate
from the limiting measure in (B2I9). To this end, note that by (BI7) we have

9 1/2
L(n) =L ((Ut“) —a—g—ﬁ> a;'?B, |, tez, (5.29)

for a sequence (By)i ez of i.i.d. random variables independent of (o)ez with
P(By=1)= P(By = —1) = 1/2. (5.30)

Now, by Proposition we get

X ~ ~
ﬁ(Tl,...,— ‘ >.T) Hﬁ(é,lﬁ,l,...,éuﬁu):£<X,l,...,Xu> (531)
where we apply (229) and the continuous mapping theorem. Here, (B28)) yields that
A2 12z
N = <7t+;1 ﬁ) By, (5.32)
A,Q . 1/2 ~
Ny = (;715) B_,, teN, (5.33)

for a sequence (B,)cz with the same distribution as (B;)sez, and independent of (Ay)sez.
Now, by (B22), in particular, £(7,) = L(n,), t € N. Further, we have that X, is
symmetric where .

P(|Xol >y) =y, y=>1, (5.34)

by Lemma B3 T and the definition in (B3T]). For simulation from the r.h.s. of ([&3T) it
will at first be advantageous to write

¥ T X O til]i
c(xﬂ)zﬁoxog Xﬂ“)) <|X0|H . teN,

Ui (i—1 ni(z 1)
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such that replacing for (24)), (E28)), (E32) and (B33)) yields

c (X_l, . XXOXX>
l -2 1/2 -2 1/2
- A2 — [ -~ B A (AT -
— (1% (BA(i) ),...,|Xo| 1 ( |
( H A2, -8 170 | a (5.35)

o APYITRIL e T - 172 1
Kol Bos | Kol (lio) L .. [ Kol (iol) L (<a1m 1 5) N—) .
750l |770|i1_! ' Ti-1

Now, the r.h.s. in (B30) highlights the fact that the drawing of mutually independent
i.i.d. random variables A, t € {—I,...,—1}, according to (&23)), By, t € {—1,...,0},
as in (30), and the standard normal variables n;, t € {1,...,u}, is sufficient in order
to simulate from the r.h.s. in (531)). Further, the random variables | X,| and |7jo| whose
distribution is directly related to the condition | Xy| > z, cf. (E34) and (220]), are also
independent both of the above variables and of each other. The latter can be seen e.g.
from |27, Lemma 3.1]. Finally, conditioning on X, > z in (BI9) instead of | Xo| > =
leads to the same limit distribution as in (£38) but with By = 1 almost surely.

In Table B3J] we report the results of a simulation study for 6,,, ¢(h) and 7,,(h), h =
1,...,5, where m = 500. It is based on (B.33)) according to the respective characteristic.
The evaluation of probabilities depends on N = 10000 replications. In order to reflect
the stylized fact that aq + 3 is close to one in many applications, we fix a; + (3 = 0.99.
Note, in particular, that in accordance with the discussion in Sections Bl and
Table 3.1 suggests that for the GARCH(1,1) class there is no simple relationship
between the characteristics ¢(h) and «(h). For the last column in Table B31] we refer
to Theorem EZZTl Note that the latter applies to the stationary GARCH(1,1) as it is
well-known that ([Cl) holds [1], and ([C2) will be considered in the following corollary.
In particular, we have that lim,, o 6,,(h) = 6(h), h € NU{1}. We also remark that
the mixing condition referred to after (E2) holds for the GARCH(1,1) class, see [34].
First, we will confirm the following result for later reference.

Lemma 5.3.3. We have that E(6,) < oc.

Proof. First, by (24) and the independence of | Xo| and |7jy| we find that E(5,) =
E(é(10]) /1m0 E(| Xo|). Here, E(|Xo|) < oo by (B34) and the fact that x > 1 if
ar + 3 < 1, see e.g. [41]. Further, we have by (£22)) that

E(@(lioD)/liol) = E ([o1 + 8/10f*] ") < i/ + 821 lil).

Finally, using (B226]) we get that

. (1/2)=12 ey 1, o2 LK)
E(1/|fr;0|):m/0 x exp(—iaj)d:c—Q /m.
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Corollary 5.3.1. For the stationary GARCH(1,1) process given by [I0) a sequence
T exists such that [(C3A) holds.

Proof. Note first that (C2)) is implied by the stronger condition
lim lim Y P(X_y>n|Xy>n)=0.
Further, by (E22) we have that E(Hf:2 A;) = M1\ < 1, such that, in particular,

l,)\kfl

V2T ’

x > 0.

k
P (xﬁkﬂcb(ﬁi—l) > 1) < 2B (1 (7 > 0)) =

Now, by (B33) we have that for all £ € N

ot ~ k

n—oo Mo i—2
. k
= / P (Mk [ ¢ > 1) F5, (dx)
0 i=2
)\k—l o]

\/271’ 0

where the second equality holds by (B24]) and the fact that &; is independent of the
sequence (7y,...,7). By ([30) there is n* = n*(k) € N such that P(X} > n | Xy >
n) < 2E(G1)A\*"1/v/2r for all n > n*. Consequently, for any r € N we get that

<

xF5, (dr) (5.36)

- 2E(61) N~ yk1
P(Xp>n|Xy>n) < A (5.37)
2 S &

.....

N(r) < n} we have r, — oo and r,/n — 0 as n — oo, and

o 2E(51) o

lim lim P Xpy>n|Xg>n) < lim lim A=
M—00 N—00 ];1 ( k | 0 ) T \/2m m—oon—oo Zm
where we use Lemma for the last equality. O

Example 5.3.1. We fit the GARCH(1,1) model given by (BI6) to the S&P 500 data
set discussed in Section Il The estimated parameters [64] are

~

Go=0.1x10""(10"7), @ =0.072(0.002), [ = 0.920 (0.003) (5.38)

where the ML standard errors are given in brackets. Note that &; + 4 = 0.992 being
close to one is a common result for long financial return series, see e.g. [41] for a
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discussion. We include an evaluation of the correspoding extremal measures by the
above tail chain approach in the last row of Table B3l Next, in order to assess the
accuracy for estimators of the extremal measures when applied to raw data we generate
N = 1000 independent GARCH(1,1) processes according to (38)) of the same length
as the S&P 500 dataset (7569 records) in Section BEIl The empirical quantiles resulting
from the so-called blocks estimator [66, 2] for a block length of m = 126 are given in
Table where we let the thresholds range from the empirical 0.95 quantile up to
the 0.995 quantile. As to the choice of the block length note that extremal events
occuring in two distinct blocks are assumed to be independent. Here, six trading
months corresponding to 126 days appear to be a reasonable order of magnitude.
Further, in order to evaluate the quality of the GARCH(1,1) approach in (B38)) with
respect to the observed extremal behavior of the S&P 500 series we directly estimate
the extremal index of the latter by the above blocks method without making any
model assumptions, cf. the last row in Table 232 Given that our block length is
a valid choice the fact that the results fall within the simulated pointwise confidence
intervals indicates a satisfactory agreement with the behavior of the estimated extremal
index in the GARCH(1,1) case. Note, however, that the block estimator is not directly
applicable in order to assess probabilities such as (ZH). To our knowledge, a so-called
runs estimation scheme [2] appears to be the only available alternative. Unfortunately,
the runs estimator performs poor even in case of the extremal index. We therefore
refrain from the statistical estimation of the characteristic v(h), h € N, for the S&P 500
data. With respect to ¢(h), h € Z, note that valid estimates should belong to a certain
class of positive definite functions, see [56] and [18] for a discussion. Appropriate
estimation schemes, however, have not been considered satisfactorily so far and are a
matter of current research.
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76

500 -1
a Bk O 2=6(1) 2=6(2) 2=9(3) 2=0(4) 2=6(5) An(1) Wm(2) FmB3) Am(4) Am(5) <Z&m<h))
h=0

0.99 0 1.014 0.570 0.251 0.167 0.125 0.090 0.063 0.213 0.139 0.104 0.071 0.052 0.573

0.15 0.84 1.478 0.207 0.153 0.144 0.139 0.138 0.140  0.061 0.063 0.065 0.054 0.064 0.199
0.11 0.88 1.838 0.245 0.110 0.104 0.104 0.101 0.093 0.052 0.042 0.038 0.047 0.034 0.247
0.09 0.90 2.203 0.304 0.089 0.085 0.081 0.073 0.080 0.045 0.035 0.034 0.030 0.028 0.302
0.07 0.92 2.885 0.397 0.055 0.050 0.053 0.051 0.052  0.022 0.020 0.020 0.025 0.022 0.419
0.04 095 5991 0.854 0.007 0.007 0.006 0.004 0.006  0.005 0.004 0.003 0.002 0.004 0.858
0.072 0.920 2.476 0.317 0.063 0.064 0.066 0.064 0.065 0.021 0.020 0.027 0.019 0.023 0.305

Table 5.3.1: Extremal measures (m = 500) for selected GARCH(1,1) processes with a; + 3 = 0.99, as well as the process fitted in Example B2l The results are
based on N = 10000 runs of the tail chain. The approximate confidence intervals are smaller than +0.01 for all entries.

q0.950 40.955 40.960 90.965 940.970 90.975 G0.980 40.985 40.990 40.995

95025 0.210 0.203 0.198 0.198 0.192 0.189 0.179 0.163 0.159 0.137
é5975 0.515 0.505 0.512 0.497 0.506 0.510 0.514 0.525 0.548 0.629
éE&P 500 0.305 0.301 0.339 0.347 0.348 0.330 0.325 0.355 0.363 0.403

Table 5.3.2: Blocks estimation (m = 126) of the extremal index for different thresholds represented by the respective quantiles ¢ for N = 1000 independent GARCH(1,1)
processes of length 7569 according to (R38)). The first and second row represent the simulated 95% confidence intervals. In the last row we include the blocks estimation
of the extremal index Ogg p 500 for the S&P 500 data set discussed in Section Bl

(1‘1)HDOY VD :uonyeorddy :g'g
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