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Chapter 1Introdution: Extremal Analysis ofStationary Time SeriesThe key questions in lassi extreme value theory onern the behavior of the maximumof n independent and identially distributed random variables X̃t, i.e.
M̃n = max(X̃1, . . . , X̃n)for large n. It is well-known that for a wide lass of distributions there are suitablenormalizing onstants an > 0, bn ∈ R, suh that, in a nontrivial way,

P (M̃n ≤ anx+ bn) → G̃(x)giving rise to the lass of so-alled max-stable distributions. The popular Fisher-Tippett theorem states further that every nondegenerate max-stable distribution be-longs to either of only three parametri families, namely the Fréhet, Gumbel or Weibulllass. It is a natural question, however, whether a similar result also holds for the moregeneral onept of (stritly) stationary stohasti sequenes (Xt)t∈Z with the samemarginal distribution as X̃1. The latter appears to be the adequate framework formost appliations. To name a few examples we may refer to sequenes of returns for�nanial data [35℄, the �utuation of daily rainfall amounts [8, 9℄, or the onentrationof ground-level ozone [59℄. In either ase the extremes are usually linked to a spei�underlying event suh as a �nanial risis or a ertain persistent atmospheri onditionthat auses dependene in the observations as it dominates their behavior for sometime. The data plotted in Figure 1, for example, orrespond to the daily absolutelog-returns of the S&P 500 index from 01.07.97 to 29.06.01 and enompass several suhunderlying �nanial shoks, namely the 1997 Asian and 1998 Russian rises as wellas the dot-om bubble burst in 2000. Correspondingly, we �nd from Figure 1 thatthe respetive extreme returns tend to appear in lusters of size two or three. At thesame time, however, we may reasonably onlude from eonomi theory that thereis still independene in the long run, i.e. between any two lusters that our su�-iently far apart (e.g. one year). With respet to the latter �nding it turns out that a1



Chapter 1: Introdution: Extremal Analysis of Stationary Time Series
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bFigure 1: Daily absolute log-returns of the S&P 500 index from 01.07.97 to 29.06.01 (N = 1009). The periodenompasses the 1997 Asian �nanial risis, the 1998 Russian �nanial risis as well as the dot-om bubble burst in2000. The dashed line represents the 99% marginal quantile. The data re�et the stylized fat that extreme �nanialreturns tend to our in lusters. The year marks indiate the beginning of the respetive trading year.weak long range ondition disussed in [31℄ is su�ient for the possible limit laws of
Mn = max(X1, . . . , Xn) to be also neessarily of the nontrivial max-stable form. Morepreisely, we have that if

P (Mn ≤ anx+ bn) → G(x)then G is also a max-stable distribution. Most importantly, it is in addition frequentlythe ase that
G(x) = G̃θ(x)for some θ ∈ [0, 1]. That is, the results for i.i.d. sequenes largely extend to thestationary ase, but the parameters of the respetive limit distributions will be a�etedby a single number θ, the so-alled extremal index [31℄. The latter has beome widelyaepted as the standard measure for extremal dependene. It allows for several usefulinterpretations that all roughly haraterize the dependene struture in the extremesof the data. In partiular, the extremal index re�ets the reiproal of the mean lustersize of extreme events [25℄. Due to its in�uene on the limit distribution for maxima ofstationary sequenes the extremal index plays a key role in the evaluation of extremalquantiles for dependent data. Moreover, estimates of the average extremal luster sizeare a diret matter of interest in numerous appliations. For example, with respetto the above S&P 500 data set we get that θ ≈ 1/3, see Setion 5.3 for details. Notethat the resulting limiting mean luster size of three is roughly in line with a visual2



Chapter 1: Introdution: Extremal Analysis of Stationary Time Seriesinspetion of the data. Here, the relevane of the extremal index is straightforward.For example, a �nanial shok that enompasses three days of suessive extremalreturns is likely to imply higher eonomi ruin probabilities than a single day of suhlarge losses. That is, the extremal index is essential to prevent the �nanial risk frombeing underestimated. To onsider a di�erent ontext it is well-known that a long-termexposure to high ground-level ozone onentrations an be seriously harmful (and evenlethal) in ontrast to a short but intensive exposure only. The same is also true forextreme rainfalls on several suessive days in ontrast to a single day with heavy rain.Given the pratial importane of the extremal index it is desirable to have a broadharaterization of its behavior. Our �rst question will therefore onern properties ofthe extremal index. To this end we shall, however, generalize the above setup to thestudy of a multivariate D-dimensional stationary sequene where maxima will alwaysbe onsidered omponentwise. As before, under a suitable long range independeneondition the well-known i.i.d. approah for multivariate extremes [50℄ generalizes to thestationary ase where a so-alled multivariate extremal index desribes the neessaryadjustments to the D-dimensional distribution of the maxima. In partiular, we willonsider the D-dimensional limits
P (Mn,1 ≤ an,1x1 + bn,1, . . . ,Mn,D ≤ an,DxD + bn,D) → G(x),

P (M̃n,1 ≤ an,1x1 + bn,1, . . . , M̃n,D ≤ an,DxD + bn,D) → G̃(x),where x ∈ RD, and as before the independent ase arries a tilde. Now, similar to theunivariate ase we may onentrate on the multivariate extremal index [43℄
θ(v) =

lnG(x)

ln G̃(x)for v ∈ [0,∞) \ {0} ⊆ RD suh that vd = − ln G̃d(xd), d = 1, . . . , D. Here, by G̃d wedenote the d-th margin of the D-variate max-stable distribution G̃. A more detailedsetup will be given in Setion 2.1. Apparently, the extremal index in the multivariatease turns out to be a funtion rather than a single number. With respet to the statis-tial estimation of suh a funtion a detailed desription of its behavior is partiularlywelome in order to oere estimates to orrespond to the multivariate extremal indexof a ertain stohasti proess. To this end, in Chapter 2 we will disuss an extensionof the set of ommon properties of the multivariate extremal index funtion. In par-tiular, we will derive sharp bounds for the entire funtion that appear to be opposedto a former onjeture in [61℄. Thereafter, motivated by the above de�nition of themultivariate extremal index, we will study separately the funtions G(x) and G̃(x).Regarding the latter, the extremal oe�ient [60℄
φ̃ = − ln G̃

{
G̃←1 (exp(−1)), . . . , G̃←D (exp(−1))

}has been proposed as a summary measure for the dependene struture of theD-variatemarginal distribution G̃. A similar onept will be onsidered for G. Here, G̃←d , d =3



Chapter 1: Introdution: Extremal Analysis of Stationary Time Series
1, . . . , D, denote the univariate quantile funtions of G̃. Obviously, the harateristis
θ(v) and φ̃ will be strongly related. We will make use of this interrelationship and shallextend a disussion of the mutual properties of θ(v) and φ̃ started in [36℄ and [37℄.Further, for D = 2 we will study relatively narrow bounds for valid ombinationsof θ(v) and the extremal oe�ient that are useful e.g. with respet to a onsistentsimultaneous estimation of suh pairs. Most importantly, however, in the sequel whenwe will leave the D-variate ontext the extremal oe�ients will still play a ruialrole. More preisely, we will disuss in Chapters 3 to 5 how the extremal oe�ient, anatually multivariate onept, may also be applied to the extremal analysis of univariatetime series where we will fous on a so-alled extremal oe�ient funtion [56℄.The extremal oe�ient funtion is a summary measure that in omparison with theunivariate extremal index gives a more detailed desription of the extremal lusters asfor many problems it is not su�ient to solely address the impliations of short rangedependene on the distribution of maxima. Under some weak regularity onditions [22℄we have

φ(h) = 2 − lim
u→∞

P (Xh > u | X0 > u), h ∈ Z, (1.1)i.e. the extremal oe�ient funtion fousses on the probability of extremes to ourjointly at a ertain lag h ∈ N. It turns out to have an interpretation similar to the usualautoovariane funtion but for extreme values [56℄. In fat, in many appliations anumber of questions onern all suh large (above a ertain high threshold) values in asequene of observations in order to understand the qualitative evolution of a lusterof extremes. For example, assume that in a �nanial ontext the average luster sizeis two suh that, equivalently, θ = 0.5. Now, the grouped extremes may appear e.g.on two subsequent days, or they may as well re�et a di�erent sheme suh as a mod-erate observation on the seond day of the luster in ombination with a total lusterduration of three days. The impliations for the inherent �nanial risk may di�er sub-stantially between the two senarios. Here, in ontrast to the possible appliations forthe extremal index disussed above the average number of extreme events that lustertogether is not at all a su�ient summary measure. We will disuss suh questions inChapters 3 to 5. In general, when devising adequate luster harateristis other thanthe extremal index in order to answer the above questions we will fae a tradeo� be-tween the amount of information re�eted by the harateristi and its interpretability.A general setup omprising more general luster funtionals is studied in [67℄. We shall,however, not follow this approah here and will mainly fous on the abovementionedextremal oe�ient funtion instead. It turns out that with respet to the behaviorof valid extremal oe�ient funtions little is known apart from their positive de�nitetype. In partiular, the reonstrution of stohasti example proesses from given ex-tremal oe�ient funtions has not been onsidered before. We will disuss the latterproblem in Chapter 3. First, for the one-dimensional ase we will show the equivaleneof so-alled set orrelation funtions and the extremal oe�ient funtions with �niterange of dependene on a grid. Note that the rather tehnial proof of the assertionwill be deferred to Chapter 4. The above equivalene will then be useful in order to4



Chapter 1: Introdution: Extremal Analysis of Stationary Time Seriesdetermine the set of verties for the onvex set of extremal oe�ient funtions. Thiswill allow for the onstrution of simple max-stable proesses omplying with a givenextremal oe�ient funtion and, in addition, will highlight further properties of thelatter. We will inlude an appliation of this approah and disuss several examples.Further, as to proesses with in�nite range we will onsider a natural extension of theterm �long memory� that is well-known in the Gaussian framework to max-stable pro-esses. We will also address the impliations of a �xed extremal oe�ient funtion ata ertain lag h ∈ N on the allowable range of dependene for the underlying proess.As mentioned above Chapter 4 will then be devoted to a onstrutive proof of equiv-alene for set orrelation and extremal oe�ient funtions. Apart from the meretheoretial result we will in partiular be able to assign the well-known properties ofset orrelations to the extremal oe�ient funtions. For example, with respet to theabovementioned desired haraterization of the luster struture it will be easy to showfrom the set orrelations that the extremal oe�ient funtion is unable to distinguishbetween a ertain lass of simple luster types. The problem of suh homometri pat-terns is well-known e.g. in the �eld of rystallography [46, 47℄, and will be studied inthe extreme value ontext here.We will further disuss the impliations of the above shortomings on possible appli-ations of the extremal oe�ient funtion in Chapter 5. This leads us to propose analternative harateristi that we shall at this point de�ne only tentatively for all h ∈ Nby
γ(h) = lim

u→∞
P (Xh > u | X0 > u, and X0 �rst event in the extremal luster). (1.2)We will show that in many appliations it has a more suitable interpretation and thatits properties are often easier to handle in omparison with the extremal oe�ientfuntion. In partiular, it haraterizes the dependene struture of two extremes giventhat the �rst observation orresponds to the onset of an extremal luster. Our fous onthe �rst event in suh a luster is motivated by the fat that e.g. in �nanial appliationsthe outset of a stress period is in general the point to take adequate measures based onsuh onditional preditions whereas the extremal oe�ient funtion is not expliitlylinked to the beginning of a luster. We will illustrate the di�erent interpretation ofthe above harateristis and study some of their general properties. To onlude, anevaluation of our new luster harateristi, the extremal oe�ient funtion and theextremal index for max-stable as well as the important lass of GARCH(1,1) proesseswill be disussed. To this end, we shall modify a tail hain approah proposed by [57℄.Interestingly, the evaluation of γ(h) will require the entire framework of [57℄, i.e. aforward and bakward tail hain. This is in ontrast to the related analysis of theextremal oe�ient funtion where in prinipal the forward hain is su�ient [22℄.At the same time, with respet to [30℄ our more general approah yields a simpli�edalgorithm for the evaluation of the extremal index in the GARCH(1,1) ase. We willinlude an example for a GARCH(1,1) model �tted to the S&P 500 data set as well asa small simulation study omprising di�erent GARCH(1,1) parameters.5



Chapter 1: Introdution: Extremal Analysis of Stationary Time SeriesIn order to make the text easier to read we will in general introdue any spei� notationhapterwise, i.e. where it �rst appears. In addition, the most important notationalonventions that shall be used throughout are separately summarized above. We willonly exeptionally deviate from this setup where it is neessary, e.g. in the losedontext of longer proofs. Finally, note that in plae of a more detailed introdution atthis point we deided to ommene eah hapter with an outline of the ontext and amore formal setup.
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Chapter 2The Multivariate Extremal Index
2.1 Multivariate ExtremesThe study of omponentwise maxima for independent opies of stationary proesseson RD is a natural question arising in extreme value theory. Its relevane to pratieis indiated by numerous appliations to extremal phenomena in the environmental or�nanial ontext, see e.g. [56, 10, 22℄. In theory, the family of limiting proesses thatemerges from the above setup is fully haraterized by the so-alled lass of max-stableproesses that an be seen as in�nite dimensional extensions of the multivariate extremevalue distributions disussed in Chapter 1. As the latter fail to be of a �nite parametrinature partiular models for max-stable proesses have beome a major matter ofinterest. In this regard we may mention the seminal paper by [60℄, the extensive lassof M4 proesses disussed by [61℄, and [54℄ for the spatial ase. In Chapter 1 wedisussed informally the extremal index as the key parameter to apture the e�et oftemporal dependene on the limiting distribution of maxima. Reall that an intuitiveinterpretation of the extremal index emphasizing its relevane to pratie is basedon its reiproal value whih orresponds to the mean luster size of extremes of thesequene [25℄. In the following we will be onerned with a multivariate generalizationof this onept. Then, the orresponding interpretation for the multivariate extremalindex is the reiproal mean luster size of a univariate sequene that, for eah pointin time, is given as the maximum of the weighted marginal sequenes [61℄. Thatis, the multivariate extremal index is a funtion of weights omprising eah of therespetive univariate extremal indies as a speial ase. This onept will be madepreise below. However, the average luster size for arbitrary weights an, in general,not be determined by knowledge of the univariate extremal indies alone. Given onlythe latter, the behavior of valid multivariate extremal index funtions is therefore animportant matter of interest. To be spei�, we will onsider D-variate, stationarymax-stable proesses (Y t)t∈Z = {Y t = (Yt,1, . . . , Yt,D), t ∈ Z}, i.e.

P n(Ytd ≤ nytd, t = 1, . . . , k, d = 1, . . . , D)

= P (Ytd ≤ ytd, t = 1, . . . , k, d = 1, . . . , D)
(2.1)7



2.1: Multivariate Extremesfor all k, n ∈ N and ytd ≥ 0. Here, we may assume without loss of generality thatthe univariate marginal distribution funtions Fd are standard Fréhet, i.e. Fd(y0,d) =

exp{−y−1
0,d} for y0,d > 0, and Fd(y0,d) = 0, else, d = 1, . . . , D. Let (Ỹ t)t∈Z = {Ỹ t =

(Ỹt,1, . . . , Ỹt,D), t ∈ Z} be the assoiated D-variate sequene of i.i.d. random vetorswith the same marginal distribution and let Mn = (maxn
t=1 Yt,1, . . . ,maxn

t=1 Yt,D),and M̃n similarly, denote the sequenes of omponentwise maxima. Then, for any
y = (y1, . . . , yD) ∈ RD

+ and [0,y]c = [0,∞] \ [0,y] we have by Theorem 3.1 in [52℄,Proposition 2.1 of [61℄ and a tightness argument that
lim

n→∞
P (n−1Mn ≤ y) = exp{−µ([0,y]c)} = G(y), (2.2)

lim
n→∞

P (n−1M̃n ≤ y) = exp{−µ̃([0,y]c)} = G̃(y) = P (Y 1 ≤ y),where µ(·) and µ̃(·) denote the exponent measures as in [50℄. Then, for v ∈ [0,∞) \
{0} ⊆ RD

+ , the funtion
θ(v) =

µ([0,v−1]c)

µ̃([0,v−1]c)
(2.3)introdued by [43℄, is alled the multivariate extremal index. Here, the expression v−1is to be understood omponentwise. For D = 1 the quotient of the exponent measuresredues to the well-known univariate extremal index θ ∈ (0, 1]. Note that throughoutwe will in general exlude the speial ase θ = 0 that is of limited pratial interest,see [32℄ for a disussion. We will aordingly denote by θd the univariate extremalindex of the d-th sequene {Ytd, t ∈ Z}. As mentioned above, θ(v) is the univariateextremal index of the series {maxd vdYtd, t ∈ Z} [61, Proposition 2.1℄.In the following let θ = (θ1, . . . , θD), and let θv = (θ1v1, . . . , θDvD) involve the ompo-nentwise multipliation. Then,

θ(v) =
l(θv)

l̃(v)
, (2.4)where l and l̃ are the two stable tail dependene funtions [26℄,

l(z−1) = µ([0,y]c), zd = −(lnGd(yd))
−1, (2.5)

l̃(z̃−1) = µ̃([0,y]c), z̃d = −(ln G̃d(yd))
−1 = yd, d = 1, . . . , D.Up to now we are aware of �ve known properties haraterizing θ(v), f. [2, 43, 48, 61℄:(T1) θ(v) is ontinuous in v,(T2) θ(cv) = θ(v), for any onstant c > 0,(T3) θ(ed) = θd, where ed is the dth unit vetor,(T4) 0 ≤ θ(v) ≤ 1, i.e. l(θv) ≤ l̃(v),(T5) θd > 0 for all d = 1, . . . , D i� θ(v) > 0 for all v ∈ [0,∞) \ {0}.8



2.2: Properties of the Multivariate Extremal IndexBy property (T2) we may in partiular on�ne our analysis to the (D−1)-dimensionalunit simplex SD = {v ∈ [0, 1] : ‖v‖1 = v1 + . . . + vD = 1}, and we shall refer to therestrition of l and l̃ to SD as (Pikands) dependene funtions, f. [49℄ and [2℄. Wewill frequently make use of the following properties [2℄:(L1) lmin(v) = max{v1, . . . , vD} ≤ l(v) ≤ lmax(v) =
∑D

d=1 vd,(L2) l(v) is onvex,(L3) l(cv) = cl(v), for any onstant c > 0,where v ∈ [0,∞) \ {0}, and lmin and lmax are also valid dependene funtions. Forlater referene, let A be a subset of {1, . . . , D} and let eA be a vetor in RD with the
d-th omponent equal to one if d ∈ A and zero otherwise. Let 1 = e{1,...,D}. Note thatthe properties (T1) to (T5) above are not su�ient to haraterize the funtion θ(v)ompletely. As a step towards a better understanding of the multivariate extremalindex it will be one of our main results to re�ne property (T4). In addition to theonjeture in [61℄ of l(θv) ≤ l̃(v) to be the only restrition on the two dependenefuntions we will show further onstraints in Setion 2.3 whih, equivalently, orrespondto improved bounds for the funtion θ(v) given only marginal dependene in terms of
θd, d = 1, . . . , D. In Setion 2.4 the extremal oe�ient, φ̃ = l̃(1), a well-knownsummary measure for µ̃([0,x]c), will be related to the multivariate extremal index,f. [60℄ and [56℄. We will �rst disuss an obvious onnetion between the univariateextremal indies and the extremal oe�ient and give an improved upper bound for thedependene adjusted extremal oe�ient, φ = l(θ1), a ounterpart of φ̃ that appliesto stationary sequenes, see [36℄. In the main, however, we will onentrate on thefat that θ(1) = φ/φ̃, and show that knowledge of φ̃ or φ, respetively, allows for asigni�ant improvement of the unrestrited bounds for θ(v) onsidered in Setion 2.3.Throughout the hapter we will disuss various example proesses.2.2 Properties of the Multivariate Extremal IndexBy [14℄ a D-dimensional proess (Y t)t∈Z = {Y t = (Yt,1, . . . , Yt,D), t ∈ Z} is max-stablewith standard Fréhet margins if and only if

Ytd = max
i∈N

g̃td(Si)Ui, t ∈ Z, d = 1, . . . , D, (2.6)where {Ui, Si}∞i=1 is a Poisson point proess on R+×[0, 1] with intensity du/u2×ds, and
{g̃td}t∈Z, d = 1, . . . , D, are sequenes of nonnegative deterministi spetral funtionswith ∫ 1

0
g̃td(s)ds = 1 for all t. Replaing {g̃t} ∼ {g̃t+1} by

{(hD(t−1)+1, . . . , h(Dt))} ∼ {(hD(t−1+k)+1, . . . , hD(t+k))}in Theorem 5.1 of [14℄ with hD(t−1)+d := g̃td gives the spetral representation for sta-tionary D-variate max-stable proesses. 9



2.2: Properties of the Multivariate Extremal IndexTheorem 2.2.1 ([14, Theorem 5.1℄). The elements of a stationary max-stable D-variate proess (Y t) are representable through (2.6) with the proper sequene {g̃t =
(g̃t,1, . . . , g̃t,D)}t∈Z. There exists a piston Γ suh that g̃t+1 ≡ Γ(g̃t).In order to state a orresponding expression for the multivariate extremal index it isonvenient to refer to the following onepts from the literature. Let [0, 1] = S1 ∪ S2be the Hopf deomposition for (2.6) into the dissipative and the onservative part [29℄,where S1 is isomorphi to S0 × Z for some measurable set S0 ⊂ S1. Theorem 3.1 in[52℄ states that the extremal index θd of the dth omponent is given by

θd =

∫

S0

max
t∈Z

g̃td(s)ds.Similarly, by means of Proposition 2.1 in [61℄ we may onlude that the multivariateextremal index equals
θ(v) =

∫
S0

maxt∈Z maxD
d=1 vdg̃td(s)ds∫

S0

∑
t∈Z

maxD
d=1 vdg̃td(s)ds+

∫
S2

maxD
d=1 vdg̃0,d(s)ds

, v ∈ SD.Theorem 2.2.2 ([17, Theorem 2℄). The set of extremal index funtions is losed underuniform onvergene.In the remainder we shall follow the ideas of [16℄ and [61℄ who onsider disrete andstationary versions of (2.6) given by the deomposition
Ytd = max{Mtd, Std}, t ∈ Z, d = 1, . . . , D, (2.7)where

Mtd = max
j∈I

max
k∈Z

ajkdZj,t−k,

Std = max
j∈F

max
0≤k≤Nj

αjkdZ
∗
j,t−k.Here, I, F ⊆ N ∪ {0}, {Zjt, t ∈ Z, j ∈ I} and {Z∗jt, 0 ≤ t ≤ Nj <∞, j ∈ F} are inde-pendent sequenes of i.i.d. standard Fréhet variables where Z∗jt = Z∗j,t+m(Nj+1), m ∈ Z.The onstants ajkd, j ∈ I, k ∈ Z, and αjkd, j ∈ F, 0 ≤ k ≤ Nj are non-negative with∑

j

∑
k ajkd +

∑
j

∑
k αjkd = 1 for d = 1, . . . , D. Note that the Std part of the pro-ess (2.7) onsists of periodi elements and leads to non-ergodi proesses [62℄ whereasthe mixing omponent Mtd orresponds to the M4 lass of multivariate mixed movingmaxima disussed by [61℄. Later, beginning with Chapter 3, we will restrit our anal-ysis to the ase D = 1 and a orresponding lass of M3 proesses, f. (3.28). Notethat the latter orrespond to the lass of so-alled dissipative stationary max-stableproesses [28℄. It will be essential in the following that for the dependene funtions ofthe proess (2.7) we get that

l(θv) =
∑

j∈I

max
k∈Z

max
d=1,...,D

ajkdvd,

l̃(v) =
∑

j∈I

∑

k∈Z

max
d=1,...,D

ajkdvd +
∑

j∈F

∑

0≤k≤Nj

max
d=1,...,D

αjkdvd.10



2.3: Bounds for the Multivariate Extremal IndexThe following proposition states that the results upon the multivariate extremal in-dex for M4 proesses may be generalized to hold for stationary max-stable proesses.Moreover, under the onditions of [61, Theorem 2.3℄ the results obtained in Se-tions 2.3 and 2.4 hold true also for general stationary proesses in the maximum domainof attration of a max-stable proess.Proposition 2.2.1 ([17, Proposition 1℄). The multivariate extremal index of a D-variate stationary max-stable proess (Y t) may be approximated uniformly by the mul-tivariate extremal index of an M4 proess.Whenever we will de�ne in the following a proess as in (2.7) or an M4 proess by itsoe�ients we will taitly assume all oe�ients not expliitly de�ned to be zero.2.3 Bounds for the Multivariate Extremal IndexWe will now turn to the question of the interdependenies between the two dependenefuntions l and l̃, and their impliations for valid funtions θ(v). From the de�nition ofthe multivariate extremal index it merely follows that l(θv) ≤ l̃(v), f. the onjeturein [61℄. We state the following ounterexample in order to demonstrate that l(θv) ≤
l̃(v) is not a su�ient ondition for l(θv)/l̃(v) to serve as a valid multivariate extremalindex.Example 2.3.1. Consider an M4 proess with D = 2, I = 2 and θ1 = θ2 = 0.5. Theondition l(θv)/l̃(v) ≤ 1 allows to �x φ̃ = l̃(1) =

∑
j

∑
k maxd ajkd = 1, say, whih isequivalent to ajk1 = ajk2 for all j, k, see also Corollary 2.4.1 below. Then, it neessarilyfollows that

l(θv) =
∑

j

max
k

max
d
ajkdvd = 0.5 max

d
vdobviously further restriting the requirement l(θv)/l̃(v) ≤ 1. Aordingly, θ1 = θ2 =

0.5 is inompatible with θ(1) = 1, for example. See Figure 2.3.1 for a sketh of thevalid bounds for θ(1) that are easily derived from the results disussed below.For a more detailed understanding of the reasoning in Example 2.3.1 we shall introduea deomposition for the dependene funtion l̃ in the following theorem and state simplebut important properties that we shall use repeatedly in the rest of the hapter.Lemma 2.3.1. Let ∑̂kak =
∑

k ak−maxk ak for any sequene of nonnegative onstants
ak and assume that maxk ak exists. Then, for any akd ∈ R

max
d

∑̂
k
akd ≤

∑̂
k
max

d
akd .

11



2.3: Bounds for the Multivariate Extremal Index

1 1.5 20
0.5
1

φ̃

θ(1)

Figure 2.3.1: Bounds for θ(1) with θ1 = θ2 = 0.5 as funtions of the extremal oe�ient, see Example 1. Lined: Validombinations. Gray: Invalid ombinations, but onsistent with the bound l(θv) ≤ l̃(v) given in [61℄.Proof. For any �xed d∗ ∈ {1, . . . , D} let ε =
∑

k{maxd akd − akd∗}. Now, ε ≥
maxk maxd akd − maxk akd∗ , and

∑

k

akd∗ + max
k

max
d
akd − max

k
akd∗ ≤

∑

k

max
d
akd, for all d∗ ∈ {1, . . . , D}.Theorem 2.3.1. Let an arbitrary proess as in (2.7) with extremal indies θ1, . . . , θDbe given by the oe�ients ajkd, j ∈ I, k ∈ Z, d = 1, . . . , D, and αjkd, j ∈ F, 0 ≤

k ≤ Nj , d = 1, . . . , D. For all j, d let a∗jkd = 0 for all k exept one k = k(j, d) ∈
arg maxk ajkd where a∗jkd = maxk ajkd, and âjkd = 0 for k = k(j, d) and âjkd = ajkdotherwise, i.e. âjkd = ajkd − a∗jkd. De�ne l̃θ(v) =

∑
j

∑
k maxd a

∗
jkdvd and l̃1−θ(v) =∑

j

∑
k maxd âjkdvd +

∑
j

∑
k maxd αjkdvd.(i) The funtions l̃θ and l̃1−θ are valid dependene funtions with sharp upper andlower bounds given by l̃θ,min(v) = lmin(θv) = maxd θdvd, l̃θ,max(v) = lmax(θv) =∑

d θdvd, l̃1−θ,min(v) = maxd(1 − θd)vd, and l̃1−θ,max(v) =
∑

d(1 − θd)vd.(ii) It holds that
l̃θ,min(v) ≤ l(θv) ≤ l̃θ(v), (2.8)

l(θv) + l̃1−θ,min(v) ≤ l̃(v) ≤ l̃θ(v) + l̃1−θ(v), (2.9)where equality applies for the last inequality if and only if for all j ∈ I and
d = 1, . . . , D we have âjkd = 0 for all k ∈ {k(j, 1), . . . , k(j,D)}.12



2.3: Bounds for the Multivariate Extremal Index(iii) For any funtion l(θv) a orresponding M4 proess exists suh that l̃(v) = 1, v ∈
SD.Proof. (i) From l̃θ(θ

−1v) =
∑

j

∑
k maxd a

∗
jkdvd/θd it follows that the funtion l̃θ is adependene funtion. Analogously for l̃1−θ. Now, the assertion follows from (L1).To proof (ii) note that (2.8) follows diretly from (i) and the respetive de�nitions.Conerning the left hand side of (2.9), we get by (i) and Lemma 2.3.1 that for all

v ∈ SD

l(θv) + l̃1−θ,min(v)

= l(θv) + max
d

{∑

j

∑

k

αjkdvd +
∑

j

∑

k

ajkdvd −
∑

j

max
k

ajkdvd

}

≤ l(θv) + max
d

{∑

j

∑

k

αjkdvd

}
+ max

d

{∑

j

∑̂
k
ajkdvd

}

≤ l(θv) +
∑

j

∑

k

max
d
αjkdvd +

∑

j

∑

k

max
d
ajkdvd −

∑

j

max
k

max
d
ajkdvd

=
∑

j

∑

k

max
d
ajkdvd +

∑

j

∑

k

max
d
αjkdvd = l̃(v).Finally, the right hand side of (2.9) follows from the fat thatmaxd a

∗
jkdvd+maxd âjkdvd ≥

maxd(a
∗
jkd + âjkd)vd. Equality holds for all v ∈ SD if and only if âjkd = 0 for all

k ∈ {k(j, 1), . . . , k(j,D)}.With respet to (iii) we have that the swapping of the values of aj,k1,d and aj,k2,d doesnot hange l for any j, k1, k2, d, so that we may assume for all j and k that a∗jkd 6= 0for at most one value of d. Then,
l̃θ(v) =

∑

j

∑

k

max
d
a∗jkdvd =

∑

j

∑

d

a∗j,k(j,d),dvd =
∑

d

θdvd.Further, for all j and k, let the âjkd be suh that âjkd 6= 0 for at most one value of d, and
âjkd = 0 for all j, d and k ∈ {k(j, 1), . . . , k(j,D)}. Then, l̃1−θ(v) =

∑
d(1−θd)vd by theabove argumentation. Finally, by (ii) we have l̃(v) = l̃θ(v) + l̃1−θ(v) = 1, v ∈ SD.Now, the inompatibility of θ1 = θ2 = 0.5 and θ(1) = 1, i.e. l(θ1) = l̃(1), in Exam-ple 2.3.1 follows also immediately from (2.9). There, we �nd that θd = 1, d = 1, . . . , D,or equivalently, l̃1−θ,min(1) = 0 is a neessary ondition for θ(1) = 1. In addition toTheorem 2.3.1 (i) and (ii) see also [61℄ where a speial ase for whih l̃(v) − l(θv) isonvex is disussed. There, using the notation of Theorem 2.3.1, for D = 2 a proesswith k(j, 1) = k(j, 2) = 0, j ∈ I, is onsidered. Then, by Theorem 2.3.1 (ii) we havethat l̃(v) = l̃θ(v) + l̃1−θ(v) = l(θv) + l̃1−θ(v). Now, l̃(v) − l(θv) is a valid dependenefuntion by Theorem 2.3.1 (i) and hene also a onvex funtion. The fat that, ingeneral, l̃(v) − l(θv) may be neither a dependene funtion nor a onvex funtion at13



2.3: Bounds for the Multivariate Extremal Indexall does not, however, allow for the onlusion of arbitrariness of l and l̃ as will beomelear in the remainder of this hapter.Theorem 2.3.2 below gives sharp upper and lower bounds for θ(v) = l(θv)/l̃(v) for all
v ∈ SD given θd, d = 1, . . . , D, i.e. bounds for the entire multivariate extremal indexfuntion given only marginal dependene in terms of θ(ed), d = 1, . . . , D.Theorem 2.3.2. Let Θ(θ1, . . . , θD) be the losed set of multivariate extremal indexfuntions of all stationary max-stable proesses with univariate extremal indies θd ∈
(0, 1], d = 1, . . . , D. De�ne

θinf : SD → (0, 1], v 7→ inf
θ∈Θ(θ1,...,θD)

θ(v),

θsup : SD → (0, 1], v 7→ sup
θ∈Θ(θ1,...,θD)

θ(v).Then,
θinf(v) = max

d
θdvd ,

θsup(v) =

∑
d θdvd∑

d θdvd + maxd(1 − θd)vd

.In partiular, θinf , θsup ∈ Θ(θ1, . . . , θD).Proof. Let A = A(θ1, . . . , θD) be the lass of proesses A as in (2.7) with oe�ients
ajkd, j ∈ I, k ∈ Z, αjkd, j ∈ F, 0 ≤ k ≤ Nj, suh that l(θed) = θd, d = 1, . . . , D. Now,using the same notation as in Theorem 2.3.1,

lmin(θv) ≤ θ(v | A) ≤ l(θv | A)

l(θv | A) + l̃1−θ,min(v)
≤ lmax(θv)

lmax(θv) + l̃1−θ,min(v)
,where the lower bound is sharp by property (L1) and Theorem 2.3.1 (iii), the seondinequality holds with Theorem 2.3.1 (ii) and the right hand side follows from thedisussion of the mapping x 7→ x

x+a
, x, a ≥ 0. To show that the upper bound issharp onsider A∗ ∈ A with I = {1, . . . , D}, F = {1}, a∗d1d = θd and α∗11d = 1 − θd.Proposition 2.2.1 �nalizes the proof.Figure 2.3.2 gives a bivariate example of the above bounds. Theorem 2.3.2 may equiv-alently be rewritten in terms of an improved lower bound for l̃(v) making use of theadditional information obtained by l(θv), and an improved upper bound for l(θv)given θd and l̃(v).Corollary 2.3.1. For any stationary max-stable proess with univariate extremal in-dies θd ∈ (0, 1], d = 1, . . . , D, it holds that for all v ∈ SD

l(θv)

∑
d θdvd + maxd(1 − θd)vd∑

d θdvd

≤ l̃(v) ≤ 1,14
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v1 = 0 v1 = 1

0
θ2

1

0
θ1

1

Figure 2.3.2: Bounds for θ(v) in the bivariate ase: All admissible multivariate extremal index funtions for θ1 =
0.7, θ2 = 0.4 are loated in the shaded area (inluding the boundaries).and

max
d
θdvd ≤ l(θv) ≤ min

{
l̃(v)

∑
d θdvd∑

d θdvd + maxd(1 − θd)vd
,
∑

d

θdvd

}
.Note that the bounds disussed in Theorem 2.3.2 are appliable e.g. in order to improveon the validity of estimation shemes for the multivariate extremal index funtion. Anexample for an estimate of the latter that does not onform to Theorem 2.3.2 may befound in [40℄.2.4 Exploring the Extremal Coe�ientsThe extremal oe�ient φ̃ has been proposed as a summary measure for the in generalomplex dependene struture of G̃(x) given by µ̃([0,x]c), see [60℄. In e�et, it isnothing but a single point of the respetive dependene funtion, namely

φ̃A = l̃(eA) (2.10)where A is a nonempty subset of {1, . . . , D}. Nevertheless, the extremal oe�ientsubstantially restrits the possible shape of the entire dependene funtion l̃, see alsoproperties (L1) and (L2). Note that the extremal oe�ient φ̃ may be interpreted moreintuitively in terms of the number of independent variables in a multivariate setting.For a disussion of its further properties see e.g. [56℄. So far, however, the bounds for
θ(v) derived in Setion 2.3 do not inorporate any information in terms of the extremaloe�ient. Being a quotient measure of two dependene funtions it is therefore natural15



2.4: Exploring the Extremal Coe�ientswith respet to θ(v) to onsider the e�et of a �xed extremal oe�ient on the abovebounds. Depending on the value of the extremal oe�ient it turns out that the boundsmay be improved signi�antly, ompare Figure 2.4.1 with Figure 2.3.2. Following [36℄we may also look at
φA = l(θeA) (2.11)as an adjusted extremal oe�ient aounting for temporal dependene. Here, sim-ilarly, a single point of the dependene funtion orresponding to G(x) is �xed. Itroughly haraterizes the entire funtion l in the above sense. We will therefore alsodisuss the orresponding improvement of the bounds for θ(v) given φ, f. Figure 2.4.2.Note that the struture of the improvement of the bounds is ompletely distint for�xed φ and φ̃, respetively. This will in partiular be re�eted by the di�ering omplex-ity of Theorems 2.4.3, 2.4.4 and 2.4.5 below. Before we turn to the interrelationshipbetween θ(v) and the two extremal oe�ients, however, we will disuss how the latterthemselves are in�uened by marginal dependene.Theorem 2.4.1. Let A be a non-empty subset of {1, . . . , D}. Then, for any stationarymax-stable proess with univariate extremal indies θd ∈ (0, 1], d ∈ A, the extremaloe�ient φ̃A is limited by the sharp bounds

max
d∈A

θd + max
d∈A

(1 − θd) ≤ φ̃A ≤ |A| .Proof. The left inequality follows immediately from Theorem 2.3.1 (ii). The rightinequality is well-known, and sharp by Theorem 2.3.1 (iii). An M4 proess with I =
{1} that reahes the lower bound is given by a11d = θd, a1kd = (1 − θd)/K for k =
2, . . . , K + 1 and K large enough suh that θd ≥ (1 − θd)/K for all d.As a onsequene of Theorem 2.4.1 the ase φ̃ = 1 is restrited to idential marginaldependene of all D series suh that θ1 = . . . = θD, f. Example 2.3.1. It also followsfrom Theorem 2.4.1 that Proposition 2.1(ii) in [37℄ where G̃ is assumed to have totallydependent margins (i.e. φ̃ = 1) loses generality and must be restrited to the speialsituation where θ1 = . . . = θD. The ase is addressed by the following orollary with
A de�ned as above.Corollary 2.4.1. If φ̃A = 1 then θm = θn for all m,n ∈ A, and θ(v) = θm, v ∈ S|A|.Let now φ̃ be given. Theorem 2.4.2 below shows that the full set of possible dependenefuntions l ompatible with θ1, . . . , θD is not neessarily admissible for all possible valuesof the extremal oe�ient φ̃ and vie versa. Equivalently, Theorem 2.4.2 extends theset of properties of φ = l(θ1) given in [36℄ by an improved upper bound related to φ̃.Theorem 2.4.2. Let A be a subset of {1, . . . , D} with at least two elements. Then, forany stationary max-stable proess with univariate extremal indies θd ∈ (0, 1] for all d ∈
A and extremal oe�ient φ̃A the adjusted extremal oe�ient φA is limited by the sharpbounds

max
d∈A

θd ≤ l(θeA) = φA ≤ min

{∑

d∈A

θd, φ̃A − max
d∈A

(1 − θd)

}
.16



2.4: Exploring the Extremal Coe�ientsProof. Let φ = φA and φ̃ = φ̃A and let us restrit to an |A|-variate M4 proess where
|A| > 1 by assumption. It is a well-known property of any dependene funtion that
maxd θd ≤ l(θ1) ≤ ∑

d θd, see (L1). Further, l(θ1) ≤ l̃(1) − maxd(1 − θd) is a diretonsequene of Theorem 2.3.1 (i) and (ii), and hene a loser bound for φ is given if
φ̃− maxd(1 − θd) <

∑
d θd .We �rst give example proesses reahing the bounds for the ase φ̃ <∑d θd +maxd(1−

θd). Consider the M4 proess A where I = {1, 2}, a1dd = cθd, a21d = (1 − c)θd, a2kd =
(1 − θd)/K for k = 2, . . . , K + 1 and c ∈ [0, 1). Here, a21d > 0, and K is hosensuh that a21d ≥ a2kd for all k and d. Further, let B be the M4 proess where I =
{1, . . . , D + 1}, bd1d = cθd, bD+1,1,d = a21d, bD+1,k,d = a2kd, k = 2, . . . , K + 1, c ∈ [0, 1).Now, for

c =
φ̃− maxd θd − maxd(1 − θd)∑

d θd − maxd θd

∈ [0, 1)

φ̃ is attained for both proesses. Also, A reahes the lower bound and B reahes theupper bound for φ.We now onsider the ase φ̃ ≥ ∑
d θd + maxd(1 − θd). Let A be a proess as in (2.7)where I = {1}, F = {1, 2}, a1dd = θd, α1dd = c(1−θd), α21d = (1−c)(1−θd), c ∈ [0, 1].Further, onsider the proess B that is also of the form (2.7) where I = {1, . . . , D}, F =

{1, 2}, bd1d = θd, β1dd = α1dd, β21d = α21d. Now, for
c =

φ̃−∑d θd − maxd(1 − θd)∑
d(1 − θd) − maxd(1 − θd)

∈ [0, 1]

φ̃ is attained for both proesses where A reahes the lower bound and B reahes theupper bound for φ.With respet to the behavior of the multivariate extremal index we have the followingorollary.Corollary 2.4.2. For any stationary max-stable proess with univariate extremal in-dies θd ∈ (0, 1], d = 1, . . . , D, and extremal oe�ient φ̃ the multivariate extremalindex is bounded at 1 by
maxd θd

φ̃
≤ θ(1) = θ(D−1

1) ≤ min
{
φ̃− maxd(1 − θd),

∑
d θd

}

φ̃
.In the following three theorems we will generalize the above orollary for the aseD = 2,i.e. new bounds for the entire multivariate extremal index funtion will be given for�xed φ̃ and φ, respetively. Due to the omplex interdependenies of higher order de-pendene funtions, see e.g. [55℄, orresponding bounds for D ≥ 3 are not known yet.From the following theorems note that, in partiular, for φ̃ =

∑
d θd + maxd(1 − θd)in Theorem 2.4.3 the upper bound may not be improved in omparison with Theo-rem 2.3.2, and for φ̃ = D in Theorem 2.4.4 the lower bound is unhanged. First, wewill state the following example for referene in Theorems 2.4.3 and 2.4.5.17



2.4: Exploring the Extremal Coe�ientsExample 2.4.1. Let X = X (θ1, θ2, φX ) be the lass of proesses X as in (2.7) withoe�ients xjkd, j ∈ I, k ∈ Z, d = 1, 2, and χjkd, j ∈ F, 0 ≤ k ≤ Nj , d = 1, 2, suhthat l(θed | X) = θd and l(θ1 | X) = φX ≤ φX . Consider X∗(θ1, θ2, φX ) ∈ X with
I = {1, 2, 3} , F = {1}, x∗d1d = φX − θ3−d, x

∗
31d =

∑
d θd − φX and χ∗11d = 1 − θd, where

xjkd ≥ 0. Here, φX∗ = φX . Now, using the results of Theorem 2.3.1,
l(θv | X∗) = l̃θ(v | X∗) =

∑

d

(φX∗ − θ3−d)vd +
(∑

d

θd − φX∗

)
max

d
vd,

l̃1−θ(v | X∗) = l̃1−θ,min(v),

l̃(v | X∗) = l̃θ(v | X∗) + l̃1−θ(v | X∗).Then, l(θ1 | X∗) ≥ l(θ1 | X), and from the onvexity and pieewise linearity of l wemay onlude that
l(θv | X∗) ≥ l(θv | X) for all X ∈ X .Now, by Theorem 2.3.1 (ii)

l(θv | X)

l̃(v | X)
≤ l(θv | X)

l(θv | X) + l̃1−θ,min(v)
≤ l(θv | X∗)
l(θv | X∗) + l̃1−θ,min(v)

= θ(v | X∗)for all X ∈ X using the same argumentation as in the proof of Theorem 2.3.2 for theseond inequality.Theorem 2.4.3. Let D = 2 and Θ(θ1, θ2, φ̃) be the losed set of multivariate extremalindex funtions θ of all stationary max-stable proesses with univariate extremal indies
θ1, θ2 ∈ (0, 1] and extremal oe�ient φ̃. De�ne

θsup : S2 → (0, 1], v 7→ sup
θ∈Θ(θ1,θ2,φ̃)

θ(v).(i) If φ̃ ≤∑d θd + maxd(1 − θd), then θsup ∈ Θ and
θsup(v) =

(
1 +

maxd(1 − θd)vd∑
d(φ
∗ − θ3−d)vd + (θ1 + θ2 − φ∗) maxd vd

)−1

,where φ∗ = φ̃− maxd(1 − θd).(ii) If φ̃ >∑d θd + maxd(1 − θd), then θsup ∈ Θ i� φ̃ = D, and
θsup(v) =

(
1 +

mind

{
max{(1 − θd)vd, (2 − φ̃)v3−d} + (φ̃− 1 − θ3−d)v3−d

}
∑

d θdvd

)−1

.Proof. From Theorem 2.2.2 we have that Θ(θ1, θ2, φ̃) is losed. Let B = B(θ1, θ2, φ̃) bethe lass of proesses B of the form (2.7) where l(θed | B) = θd and l̃(1 | B) = φ̃.18



2.4: Exploring the Extremal Coe�ients(i) For X as in Example 2.4.1, B(θ1, θ2, φ̃) ⊂ X (θ1, θ2, φ̃ − maxd(1 − θd)) by Theo-rem 2.4.2. Now, it is easily veri�ed that X∗(θ1, θ2, φ̃ − maxd(1 − θd)) ∈ B, and theassertion follows from Example 2.4.1.(ii) Using the same notation as in Theorems 2.3.1 and 2.3.2 we have that B(θ1, θ2, φ̃) ⊂
A(θ1, θ2), and hene

θ(v | B) ≤ lmax(θv)

lmax(θv) + l̃1−θ,min(v)
=: θU,1(v), B ∈ B.Further, from l̃(1 | B) = φ̃ it follows by onvexity and pieewise linearity that l̃(v |

B) ≥∑d vd −maxd{(2
∑

d vd − φ̃)vd} = 1− (2− φ̃) maxd vd, and hene, a seond upperbound is given by
θU,2(v) =

lmax(θv)

1 − (2 − φ̃) maxd vd

.Next, we will show that
min {θU,1(v), θU,2(v)}

=
lmax(θv)

max{lmax(θv) + l̃1−θ,min(v), 1 − (2 − φ̃) maxd vd}

=
lmax(θv)

mind

{
max{(1 − θd)vd, (2 − φ̃)v3−d} + (φ̃− 1 − θ3−d)v3−d

}
+
∑

d θdvd

=
lmax(θv)

min
{
l̃1(v), l̃2(v)

} = θsup(v)is a sharp upper bound for valid dependene funtions l̃1 and l̃2 onsistent with l(θv) =
lmax(θv). Here, the seond equation follows after some lengthy but elementary alula-tions. Note that θsup is reahed pieewise by the example proesses Bm ∈ B, m = 1, 2,as in (2.7) where bm,d1d = θd, βm,11m = 1 − θm, βm,(1,1,3−m) = 2 − φ̃, βm,(1,2,3−m) =

φ̃ − 1 − θ3−m, and βm,(1,2,3−m) ≥ 0, m = 1, 2, by the assumption on φ̃. Finally, for
φ̃ < D by lak of onvexity of min{l̃1, l̃2} we have that θsup /∈ Θ whereas for φ̃ = D itholds that l̃1 = l̃2, and θsup ∈ Θ.Exept for spei� parameter values the lower bound for θ(v) given θ1, θ2 and φ̃ tobe disussed next and represented in Figure 2.4.1 appears to be of a more omplexform than the upper bound in the last theorem. For a motivation of the strutureof the proesses involved we �rst give the following example proess. Namely, for theomplex ase when φ̃ <∑d θd + maxd(1 − θd), see the theorem below, it will turn outto be a simple member of two lasses of proesses reahing the lower bound pointwisefor ertain values of v ∈ S2. Further, for the remaining values of v ∈ S2 the proessreahes the lower bound pieewise. In the following example and in Theorem 2.4.4 wewill make use of a ertain partition of v ∈ S2. To this end let for θ1 ≥ θ2

V1 =

[
0,

φ̃− 1 + θ2 − θ1

2φ̃− 2 + θ2 − θ1

]
, V3 =

[
1

2
, 1

]
, V2 = [0, 1] \ (V1 ∪ V3),19



2.4: Exploring the Extremal Coe�ients
V2,2 =

[
θ2

θ1 + θ2
,

1

2

]
, V2,1 = V2 \ V2,2.Example 2.4.2. For D = 2, θ1 > θ2, φ̃ < 1 + θ1 and v∗ ∈ S2 let C = C(θ1, θ2, φ̃, v

∗
1)be the M4 proess with oe�ients cjkd, j ∈ I = {1, 2}, k ∈ N, d = 1, 2, where

c11d = (1 − qd)θd,

c2dd = qdθd,

c1kd = (1 − θ1)/K for k = 2, . . . , K + 1,

c1k2 = (θ1 − θ2)/K for k = 2 +K, . . . , 1 + 2Kfor some qd ∈ [0, 1) spei�ed below and K the smallest positive integer suh that
c11d ≥ c1kd for k > 2, d = 1, 2. Further,

q2 =
φ̃− 1 + θ2 − θ1

θ2
∈ [0, 1) ,

q1(v
∗) =





φ̃− 1

θ1
∈ (0, 1) , v∗1 ∈ V1,

θ2
θ1
q2(1/v

∗
1 − 1) ∈ [0, 1) , v∗1 ∈ V2,1,

q2 , v∗1 ∈ V2,2 ∪ V3suh that c11d > 0. Now, for ZC
1 = {(j, k) ∈ I × Z : cjkd > 0, d = 1, 2} = {(1, k) : k =

1, . . . , K + 1} and ZC
2 = {(j, k) ∈ ZC

1 : cjk1 = maxk cjk1} = {(1, 1)} the meaning ofwhih will beome lear in the proof of the next theorem it obviously holds that1. l̃(1 | C) = φ̃,2. cjk1 = cjk2, (j, k) ∈ ZC
1 \ ZC

2 ,3. ∑

(j,k)∈ZC
1 \Z

C
2

cjk1 = 1 − θ1,4. c112 = c111
v∗1
v∗2

+ θ2 − θ1
v∗1
v∗2

≥ c111
v∗1
v∗2
, c222 = c211

v∗1
v∗2
, v∗1 ∈ V2,1, v

∗
2 = 1 − v∗1 ,5. c112 = c111θ2/θ1, c222 = c211θ2/θ1, v∗1 ∈ V2,2 ∪ V3.Theorem 2.4.4. Let D = 2 and Θ(θ1, θ2, φ̃) be the losed set of multivariate extremalindex funtions θ for all stationary max-stable proesses with univariate extremal in-dies θ1, θ2 ∈ (0, 1] and extremal oe�ient φ̃. De�ne

θinf : S2 → (0, 1], v 7→ inf
θ∈Θ(θ1,θ2,φ̃)

θ(v) .20
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v1 = 0 v1 = 1

θ2

1

θ1

1

Figure 2.4.1: Upper and lower bounds for θ(v) as in Theorems 2.4.3 and 2.4.4 given φ̃ = 1.35 (thik line), φ̃ = 1.5(· · · ), φ̃ = 1.8 (� · �) and φ̃ = 1.95 (thin line) for θ1 = 0.7, θ2 = 0.4.1. If φ̃ ≥∑d θd + maxd(1 − θd) or θ1 = θ2, then θinf ∈ Θ and
θinf(v) =

maxd θdvd

φ̃− 1 + (2 − φ̃) maxd vd

, v ∈ S2.2. If θ1 > θ2 and φ̃ <∑d θd + maxd(1 − θd) = 1 + θ1, then
θinf(v) =





θ2v2

1 − (2 − φ̃)v1

, v1 ∈ V1,

maxd θdvd

maxd θdvd + (φ̃− θ1)v2

, v1 ∈ V2,

θ1v1

1 − (2 − φ̃)v2

, v1 ∈ V3,where v2 = 1 − v1. In partiular, θinf /∈ Θ. The assertion for θ1 < θ2 is given bysymmetry.Proof. Again, by Proposition 2.2.1 it su�es to restrit to the respetive bounds ofM4proesses.1. For φ̃ ≥∑d θd+maxd(1−θd) and θ1, θ2 ∈ (0, 1] onsider a sequene ofM4 proesses Awith I = {1} given by a1dd = θd, a1kd = 2−φ̃
K

for k = D+1, . . . , D+K, a1kd = φ̃−1−θd

K
≥ 0for k = D + dK + 1, . . . , D + (d + 1)K and K suh that θd ≥ a1kd for all k, d. Now,

l(θv | A) = lmin(θv) and l̃(v | A) = l̃max(v | φ̃) by onvexity and pieewise linearitywhere l̃max(v | φ̃) is the overall maximum of l̃(v) given φ̃.21



2.4: Exploring the Extremal Coe�ientsFor θ1 = θ2 and φ̃ <∑d θd + maxd(1 − θd) = 1 + θ1 onsider the proess C(θ1, θ1, φ̃, 0)in Example 2.4.2. We have that l(θv | C) = lmin(θv) and l̃(v | C) = l̃max(v | φ̃) byonvexity and pieewise linearity.2. We onsider separately the four subsets V1, V2,1, V2,2 and V3 for v1 with v ∈ S2.(i) For v1 ∈ V1 onsider the proess C(θ1, θ2, φ̃, v1) in Example 2.4.2. Now, l(θv |
C) = θ2v2 = lmin(θv) and l̃(v | C) = 1 − (2 − φ̃)v1 = l̃max(v | φ̃), v1 ∈ V1.(ii) Throughout this part we �x v ∈ S2 with v1 ∈ V2,1. Let B = B(θ1, θ2, φ̃) bethe lass of M4 proesses B with oe�ients bjkd, j ∈ I, k ∈ Z, d = 1, 2, where
l(θed | B) = θd and l̃(1 | B) = φ̃. We will show that a proess C with l(θv |
C) = lmin(θv) exists suh that for all B ∈ B the inequality l̃(v | B) − l̃(v | C) ≤
l(θv | B) − l(θv | C) holds. Then, l(θv | C)/l̃(v | C) = θinf(v) by disussionof the mapping x 7→ x+a

x+b
, 0 ≤ a ≤ b, x ≥ 0. For the alulation of l̃ it will beadvantageous to replae the double index (j, k) ∈ I × Z by a single one, m ∈ Z.More preisely, let f : I × Z → Z, (j, k) 7→ f(j, k) be an arbitrary bijetivemapping and de�ne bmd = bf−1(m),d. Then,

l̃(v | B) =
∑

m∈Z

max
d
bmdvd =

∑

d

vd −m(v | B),with m(v | B) =
∑

m∈Z
mind bmdvd ≥ 0.Let π be the projetion π : I × Z → I, (j, k) 7→ j, and de�ne g := π ◦ f−1 : Z →

I, m 7→ g(m) = j. Let b∗jd = bj,k∗
jd,d, for k∗jd ∈ arg maxk bjkd, j ∈ I, d = 1, 2. Sinethe set of M4 proesses B for whih k∗jd is unique is a dense subset of B we mayassume uniqueness of k∗jd. Let ZB
1 = {m ∈ Z : bmd > 0, d = 1, 2} suh that

∑

m∈Z

min
d
bmd =

∑

m∈ZB
1

min
d
bmd = 2 − φ̃ = m(1 | B). (2.12)Let ZB

2 = {m ∈ ZB
1 : bm1 = b∗g(m),1}. Now,

∑

m∈ZB
1 \Z

B
2

bm1 ≤ 1 − θ1 (2.13)suh that ∑

m∈ZB
1 \Z

B
2

min
d
bmd = 1 − θ1 − µ (2.14)for 0 ≤ µ ≤ min{1 − θ1, φ̃− 1 + θ2 − θ1}, where the latter follows from the fatthat

1 − θ1 − µ = 2 − φ̃−
∑

m∈ZB
2

min
d
bmd (2.15)22



2.4: Exploring the Extremal Coe�ientsby (2.14) and (2.12), and ∑m∈ZB
2

mind bmd ≤ mind

∑
m∈ZB

2
bmd ≤ mind θd = θ2.Note that from φ̃ < 1 + θ1, Eq. (2.12) and Ineq. (2.13) it follows that ZB

2 6= ∅.Now, with
∑

m∈ZB
1 \Z

B
2

min
d
bmdvd ≥

∑

m∈ZB
1 \Z

B
2

min
d
bmd min

d
vd = (1 − θ1 − µ)v1 (2.16)we get

m(v | B) ≥
∑

m∈ZB
2

min
d
bmdvd + (1 − θ1 − µ)v1. (2.17)We onsider the (disjoint) deomposition ZB

2 = ZB
2,1 ∪ZB

2,2 ∪ZB
2,3 where m ∈ ZB

2,1if bm1 < bm2, m ∈ ZB
2,2 if bm2 ≤ bm1 ≤ bm2v2/v1 and m ∈ ZB

2,3 else. Now,
min

d
bmd =

{
bm1 = bm2 − ξm, m ∈ ZB

2,1

bm2, m ∈ ZB
2,2 ∪ ZB

2,3,

min
d
{bmdvd} =

{
bm1v1, m ∈ ZB

2,1 ∪ ZB
2,2

bm2v2 = (bm1 − ηm)v1, m ∈ ZB
2,3,

max
d

{
b∗g(m),dvd

}
=

{
(bm2 + κm)v2, m ∈ ZB

2,1 ∪ ZB
2,2

(bm2 + κm)v2 + max{0, ηmv1 − κmv2}, m ∈ ZB
2,3,where ξm = bm2 − bm1 > 0, m ∈ ZB

2,1, κm = b∗g(m),2 − bm2 ≥ 0, m ∈ ZB
2 , and

0 < ηm = b∗g(m),1 − bm2v2/v1 = bm1 − bm2v2/v1 ≤ 1 − bm2v2/v1, m ∈ ZB
2,3. Let

sm1 =
∑

j∈I\{g(m):m∈ZB
2 }

b∗j1 = θ1 −
∑

m∈ZB
2

bm1 (2.18)
= θ1 −

{ ∑

m∈ZB
2

min
d
bmdvd/v1 +

∑

m∈ZB
2,3

ηm

}
,

sm2 =
∑

j∈I\{g(m):m∈ZB
2 }

b∗j2 = θ2 −
∑

m∈ZB
2

b∗g(m),2

= θ2 −
{ ∑

m∈ZB
2

min
d
bmd +

∑

m∈ZB
2,1

ξm +
∑

m∈ZB
2

κm

}
.Then,

l(θv | B) =
∑

m∈ZB
2

max
d

{b∗g(m),dvd} +
∑

j∈I\{g(m):m∈ZB
2 }

max
d

{b∗jdvd}

≥
∑

m∈ZB
2

bm2v2 +
∑

m∈ZB
2

κmv2 +
∑

m∈ZB
2,3

max{0, ηmv1 − κmv2}

+ sm1v1. (2.19)23



2.4: Exploring the Extremal Coe�ientsLet C ⊂ B be the lass of M4 proesses C with oe�ients cjkd where
c∗j2 =

v1

v2
c∗j1 + γj, j ∈ I, γj ≥ 0, (2.20)

cm1 = cm2, m ∈ ZC
1 \ ZC

2 , (2.21)
∑

m∈ZC
1 \Z

C
2

cm1 = 1 − θ1, (2.22)
cm2 = c∗g(m),2 =

v1

v2
cm1 + γg(m) ≤ cm1, m ∈ ZC

2 , and (2.23)
∑

m∈ZC
2

γg(m) =
∑

j∈I

γj = θ2 −
v1

v2
θ1. (2.24)Here, Eq. (2.22) replaes the orresponding Ineq. (2.13) above. In partiular, Cis not empty by Example 2.4.2. Sine ∑m∈ZC

1 \Z
C
2

mind cmd = 1 − θ1 by (2.21)and (2.22) it holds with (2.23) and (2.12) that
∑

m∈ZC
2

min
d
cmd =

∑

m∈ZC
2

cm2 = 1 − φ̃+ θ1. (2.25)By the left hand side of (2.23) we now get with (2.25) that
∑

m∈ZC
2

cm1v1 =

(
1 − φ̃+ θ1 −

∑

m∈ZC
2

γm

)
v2

= (1 − φ̃− θ2)v2 + θ1, v ∈ S2, (2.26)where (2.26) follows from (2.24). Further, by (2.23) and (2.21),
m(v | C) =

∑

m∈ZC
1

min
d
cmdvd =

∑

m∈ZC
2

cm1v1 +
∑

m∈ZC
1 \Z

C
2

cm1v1 (2.27)
= 1 − (φ̃− θ1 + θ2)v2, (2.28)where (2.28) follows with (2.26) and (2.22). To onlude the proof we will makeuse of the following four results.First, by (2.20) and the de�nition of sm2 we have

l(θv | C) = lmin(θv) = θ2v2 = sm2v2 +
∑

m∈ZB
2

b∗g(m),2v2, v1 ∈ V2,1. (2.29)Eqs. (2.25) and (2.15) imply
sm2 = θ2 −

{ ∑

m∈ZC
2

min
d
cmd + µ+

∑

m∈ZB
2,1

ξm +
∑

m∈ZB
2

κm

}
. (2.30)24



2.4: Exploring the Extremal Coe�ientsFurther, applying (2.24) and (2.23) twie yields
∑

m∈ZC
2

min
d
cmdv2 =

∑

m∈ZC
2

cm1v1 + θ2v2 − θ1v1. (2.31)Finally, by (2.27), (2.22) and (2.17)
m(v | C) −m(v | B) ≤

∑

m∈ZC
2

cm1v1 −
∑

m∈ZB
2

min
d
bmdvd + µv1. (2.32)Now,

l(θv | B) − l(θv | C) = l(θv | B) − θ2v2

≥ sm1v1 − sm2v2 +
∑

m∈ZB
2,3

(ηmv1 − κmv2) (2.33)
=
∑

m∈ZC
2

cm1v1 −
∑

m∈ZB
2

min
d
bmdvd + µv2 +

∑

m∈ZB
2,1

ξmv2+

∑

m∈ZB
2

κmv2 −
∑

m∈ZB
2,3

κmv2 (2.34)
≥ m(v | C) −m(v | B), (2.35)where (2.33) holds with (2.19) and (2.29), (2.34) holds with (2.30), (2.31) andthe de�nition of sm1, and (2.35) �nally follows from (2.32).(iii) Let v ∈ S2 with v1 ∈ V2,2 be �xed. The proof is similar to that of part (ii) anduses the same notation where possible. Let now C be the lass of M4 proesses

C with oe�ients cjkd where
c∗j2 =

v1

v2
c∗j1 − γj, j ∈ I, γj ≥ 0,

∑

j∈I

γj =
v1

v2
θ1 − θ2, (2.36)and (2.21) and (2.22) hold. From (2.36) we get for m ∈ ZC

2 that
cm2 =

v1

v2
cm1 − γg(m) − εm ≤ cm1, (2.37)where 0 ≤ εm ≤ v1

v2
cm1 − γg(m) aounts for the fat that cm2 ≤ c∗g(m),2. Again, Cis not empty by Example 2.4.2, where γj = c∗j1(v1/v2 − θ2/θ1) and

l(θv | C) = lmin(θv) = θ1v1 (2.38)by Eq. (2.36). From (2.37) it follows that cm1v1 ≥ cm2v2, v1 ∈ V2,2, and hene
m(v | C) =

∑

m∈ZC
2

cm2v2 +
∑

m∈ZC
1 \Z

C
2

cm1v1. (2.39)25



2.4: Exploring the Extremal Coe�ientsFurther, following the argumentation there, Eq. (2.25) holds with (2.37) insteadof (2.23). Now, with (2.39) and (2.22) it follows that
m(v | C) = (1 − φ̃+ θ1)v2 + (1 − θ1)v1. (2.40)Consider again the lass B as in part (ii). Using the above deomposition of ZB

2we may write
m(v | B) =

∑

m∈ZB
2

bm2v2 −
∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1) +
∑

m∈ZB
1 \Z

B
2

min
d
bmdvd.Eq. (2.15) states that 1 − φ̃ + θ1 + µ =

∑
m∈ZB

2
mind bmd ≤ ∑

m∈ZB
2
bm2. Now,using (2.16) and (2.40) it follows that

∑

m∈ZB
2

bm2v2 +
∑

m∈ZB
1 \Z

B
2

min
d
bmdvd ≥ (1 − φ̃+ θ1 + µ)v2 + (1 − θ1 − µ)v1

≥ (1 − φ̃+ θ1)v2 + (1 − θ1)v1

= m(v | C),and hene
m(v | C) −m(v | B) ≤

∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1). (2.41)Further, with
max

d
{b∗g(m),dvd} =

{
bm1v1 + (bm2v2 − bm1v1 + κmv2), m ∈ ZB

2,1 ∪ ZB
2,2

bm1v1 + max{0, κmv2 − ηmv1}, m ∈ ZB
2,3,we get that

∑

m∈ZB
2

max
d

{b∗g(m),dvd} =
∑

m∈ZB
2

bm1v1 +
∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1 + κmv2)

+
∑

m∈ZB
2,3

max{0, κmv2 − ηmv1}. (2.42)By de�nition,
l(θv | B) =

∑

m∈ZB
2

max
d

{b∗g(m),dvd} +
∑

j∈I\{g(m):m∈ZB
2 }

max
d

{b∗jdvd}. (2.43)Now,
l(θv | B) − l(θv | C) = l(θv | B) − θ1v1 (2.44)

= l(θv | B) −
∑

m∈ZB
2

bm1v1 −
∑

j∈I\{g(m):m∈ZB
2 }

b∗j1v1 (2.45)
≥

∑

m∈ZB
2,1∪ZB

2,2

(bm2v2 − bm1v1) (2.46)26



2.4: Exploring the Extremal Coe�ients

v1 = 0 v1 = 1

θ2

1

θ1

1

Figure 2.4.2: Upper and lower bounds for θ(v) as in Theorem 2.4.5 given φ = 0.75 (thik line), φ = 0.8 (· · · ), φ = 1(� · �) and φ = 1.05 (thin line) for θ1 = 0.7, θ2 = 0.4.where (2.44) holds with (2.38), (2.45) holds with (2.18), and (2.46) follows from (2.43)and (2.42). Finally, by (2.41) and the argumentation at the beginning of part (ii)we have that θinf(v) = θ(v | C).(iv) For v1 ∈ V3 onsider the proess C(θ1, θ2, φ̃, v1) in Example 2.4.2 and apply thesame argumentation as in part (i).Finally, we will onsider the ase where φ instead of φ̃ is given, see Figure 2.4.2.Theorem 2.4.5. Let D = 2 and Θ(θ1, θ2, φ) be the losed set of multivariate extremalindex funtions θ for all stationary max-stable proesses with univariate extremal in-dies θ1, θ2 ∈ (0, 1] and adjusted extremal oe�ient φ = l(θ1) = φ̃ θ(1). Let θinf and
θsup be de�ned in the same way as in Theorems 2.4.3 and 2.4.4. Then,

θsup(v) =

(
1 +

maxd(1 − θd)vd∑
d(φ− θ3−d)vd + (θ1 + θ2 − φ) maxd vd

)−1

,

θinf(v) = min
d

{
max{θd − 2(θd − φ/2)v3−d, θ3−dv3−d}

}
.Further, θsup ∈ Θ for all φ, and θinf /∈ Θ if and only if maxd θd < φ <
∑

d θd.Proof. Let B = B(θ1, θ2, φ) be the lass of proesses B as in (2.7) with oe�ients
bjkd, j ∈ I, k ∈ Z, d = 1, 2, and βjkd, j ∈ F, 0 ≤ k ≤ Nj , d = 1, 2, suh that
l(θed | B) = θd and l(θ1 | B) = φ. Now, the equality for θsup follows by Example 2.4.1and the fat that B ⊆ X (θ1, θ2, φ), where X∗(θ1, θ2, φ) ∈ B.27



2.4: Exploring the Extremal Coe�ientsTo show the equality for θinf note that from l(θ1 | B) = φ it holds by (L1) and (L2)that
l(θv | B) ≥ min

d
{max{θd − 2(θd − φ/2)v3−d, θ3−dv3−d}}

= min{l1(v), l2(v)} = θinf(v),where l1 and l2 are valid dependene funtions, see below. Then, the last equationfollows from Theorem 2.3.1 (iii). Further, θinf is not a valid dependene funtion for
maxd θd < φ <

∑
d θd by lak of onvexity, and θinf(v) =

∑
d θdvd for φ =

∑
d θd and

θinf(v) = maxd θdvd for φ = maxd θd.Finally, note that θinf is reahed pieewise by the example proesses Bm ∈ B, m =
1, 2, of the form (2.7) where bm,11m = φ − θ3−m, bm,21m =

∑
d θd − φ, bm,(2,2,3−m) =

θ3−m, βm,1dd = 1 − θd.

28



Chapter 3Reonstrution of Max-StableProesses for Given ExtremalCoe�ient Funtions
3.1 MotivationWith respet to the dependene struture of D-variate stationary max-stable proesseswe disussed in Chapter 2 the multivariate extremal index as a rough summary mea-sure of the lustering behavior. In partiular, we gave an illustrative interpretation ofthe extremal index in terms of the mean limiting luster size. Consequently, a given ex-tremal index may in general be realized by a rih lass of proesses omprising a largevariety of di�erent dependene strutures. Furthermore, unlike the Gaussian familywhere the dependene struture is entirely determined by the orresponding autoo-variane funtion the lass of max-stable proesses annot be ompletely haraterizedby a similar onept. Still, a suitable summary measure for the dependene struture ofsuh proesses that goes beyond the meaning of the extremal index is given by the ex-tremal oe�ient funtion, f. (1.1). It is a onditionally negative de�nite funtion andwas proposed in [56℄. At the same time it is a speial ase of the extremogram [12℄. Itwill beome lear in Setion 3.3 how this funtion is related to the more general notionof extremal oe�ients already disussed in Chapter 2. Although in most appliationsthe extremal oe�ient funtion gives a more detailed idea of the dependene struturethan the extremal index we remark that the former may not be understood rigorouslyas a re�nement of the extremal index. In partiular, the latter an in general not bereonstruted uniquely for a given extremal oe�ient funtion. Reall also (1.2) foran alternative approah to the dependene struture within extremal lusters that isnot a�eted by this shortoming. It will be studied in detail in Chapter 5.The matter of the extremal oe�ient funtion may best be understood alluding tothe usual autoovariane. Similar to the latter the extremal oe�ient funtion is adependene measure for pairwise (temporal or spatial) separations of a proess at a29



3.1: Motivationgiven lag h ∈ RD. This onept will be overed more formally in Setion 3.3. Althoughit remains a summary measure of the dependene struture, i.e. it neither harater-izes the multivariate marginals of the proess nor the bivariate dependene strutureover spae or time ompletely, it has a onvenient interpretation that is appropriate tomost appliations. Moreover, as in the Gaussian ase a summability ondition on theextremal oe�ient funtion will allow for a orresponding haraterization of max-stable proesses as having short or long memory. Further, while it does not determinethe dependene struture of a max-stable proess any given extremal oe�ient fun-tion still imposes signi�ant restritions on the admissible set of underlying proesses.Here, we will exploit in more detail the struture of extremal oe�ient funtions inorder to reover orresponding max-stable proesses, i.e. suh proesses that are ableto generate the respetive extremal oe�ient funtion. Although the latter lasses areextensive it has been an open question to state suh valid member proesses expliitly.Based on the well-known fat that the set of extremal oe�ient funtions is onvex [56℄we will, in partiular, fous on onvex deompositions of those funtions, i.e. a repre-sentation of the latter in terms only of the verties of their hull. It will be instrutiveat this point to have an early look at Figure 3.4.1 below where as an example for arange of n = 5 we display the abovementioned vertex extremal oe�ient funtions.Put di�erently, all valid extremal oe�ient funtions on Z up to range �ve are givenby some onvex ombination of the funtions inluded in the �gure. As a ruial pointwe will disuss in detail the determination of the set of suh verties. The latter willthen give rise to a reonstrution sheme for max-stable proesses assoiated to givenextremal oe�ient funtions. In partiular, we shall introdue a sparse referene lassof max-stable proesses that is intimately related to the above set of verties. Thelass of proesses depends on a weight vetor that may readily be hosen suh as toreprodue any valid extremal oe�ient funtion. The reonstrution of max-stableexample proesses from given extremal oe�ient funtions is then essentially reduedto the determination of suitable weights. Note that throughout we will on�ne ouranalysis to the one-dimensional ase in disrete time.The hapter will be organized as follows. In Setion 3.2 we shall �rst introdue theonept of set orrelation funtions. Following a brief disussion of their properties wewill restrit to their evaluation on a grid, and determine the verties of their onvexset. We point out that the analysis in Setion 3.2 is self ontained and independentof the onepts ommonly used in extreme value theory. We will, however, showin Setion 3.3 that the ensembles of set orrelation funtions and extremal oe�ientfuntions atually oinide on a grid. The reason to work with set orrelation funtions�rst is that in order to analyze their struture and determine the verties of their setwe may refer diretly to well-known onepts from the literature, in partiular theproblem of homometry [46, 47℄. In Setion 3.3 we will then formally refer to the theoryof extremes and reall two essential onepts already disussed in Chapter 2, namelymax-stable proesses and extremal oe�ients. Setion 3.4 will be primarily devotedto the setup of the abovementioned reonstrution sheme. An example of the latterin addition to some related appliations will be disussed in Setion 3.5. Finally, the30



3.2: Set Correlation Funtions and Basi Notionsusefulness of partial knowledge of the extremal oe�ient funtion for assertions onthe range of the underlying proess will be onsidered in Setion 3.6.Throughout, following standard onventions we will write S + q = {x + q : x ∈ S},and aordingly aS = {ax : x ∈ S}, for a set S ⊆ R, and q, a ∈ R. We will denote theindiator funtion of a set S ⊆ R by 1(x ∈ S). Further, we will assume all operationsthat involve vetors to apply omponentwise, and denote by �⊂� a proper inlusionwhereas �⊆� does not prelude equality. For x ∈ R let ⌊x⌋ = max{n ∈ Z : n ≤ x}.3.2 Set Correlation Funtions and Basi NotionsTo begin with in this setion we will onentrate exlusively on set orrelation funtions,a onept shown in Setion 3.3 to be equivalent to the extremal oe�ient funtionson a grid. In our approah we will show �rst that the ensemble F∗n,Z of set orrelationfuntions with �nite range n ∈ N that are evaluated on Z is a onvex set. We willfurther determine its verties, see Lemma 3.2.1 and Theorem 3.2.1 below. To beginwith, it will be instrutive to inorporate the relevant onepts suessively into thewell-known framework of general ovariograms. To this end, for an integrable andsquare integrable funtion w(x) in R we will de�ne the ovariogram by the onvolutionprodut
f(h) =

∫
w(x)w(x+ h)dx, h ∈ R. (3.1)Note that two fundamental properties of the ovariogram, namely symmetry and pos-itive de�niteness, are immediate from (3.1), and will be essential in the following. Asan important speial ase of (3.1) we will next onsider the length of the intersetionof a set with its translation. More preisely, for w(x) = 1(x ∈ S), S ∈ σ∞, let

fS(h) =

∫
1(x ∈ S)1(x ∈ (S − h))dx = |S ∩ (S − h)|, h ∈ R, (3.2)denote the set ovariane funtion of S, also termed the geometri ovariogram [38℄,where σ∞ stands for the ensemble of all Borel sets S ⊆ R with 0 < |S| < ∞. Notethat later on we shall use the notation | · | also to indiate the ardinality of a setwhere no onfusion may arise. For later referene we introdue σn ⊆ σ∞ in order torepresent aordingly all Borel sets S ⊆ [q, n+ q) for some q ∈ R. The number n ∈ Nwill later be referred to as �nite range. For onveniene, in the following we shallwithout loss of generality onsider the set orrelation funtions f ∗S(h) = fS(h)/fS(0)for all h ∈ R, S ∈ σ∞. To provide some preliminary insight into the behavior of f ∗Snote that by (3.2) we have in partiular that f ∗S(0) = 1, ∫ f ∗S(h)dh = |S|, and that

f ∗S(h) is not di�erentiable at the origin [7℄. As a further restrition of (3.1) and (3.2)we shall heneforth on�ne our analysis to the evaluation of f ∗S on a subset Q ⊆ R, i.e.we onsider f ∗S(h), h ∈ Q, and put F∗n,Q = {f ∗S ∈ RQ : S ∈ σn} for any n ∈ N ∪ {∞}.Note that f ∗S ∈ F∗∞,Q might be in F∗n,Q for some n ∈ N although S is unbounded. The31



3.2: Set Correlation Funtions and Basi Notionsfollowing elementary lemma provides a fundamental bakground for the rest of ouranalysis.Lemma 3.2.1. For all n ∈ N ∪ {∞} and all p ∈ N the set F∗n,p−1Z
is onvex.Proof. Let f ∗S1

, f ∗S2
∈ F∗n,p−1Z

, n ∈ N ∪ {∞}. Consider �rst the ase n ∈ N. Withoutloss of generality we may assume that Si ⊆ [0, n), i = 1, 2. For λ ∈ [0, 1] put
S3 =

⋃

i∈Z

[([
0,
λ

p

)
∩ λ

(
S1 −

i− 1

p

))

∪
(([

0, 1 − λ

p

)
∩ (1 − λ)

(
S2 −

i− 1

p

))
+
λ

p

)
+
i− 1

p

]
.Now, we have that S3 ∈ σn, and f ∗S3

(h) = λf ∗S1
(h) + (1 − λ)f ∗S2

(h), h ∈ Z/p, holdsby (3.2). If n = ∞, the assertion follows for Si ⊆ R, i = 1, 2.In the following, by V (F∗n,Z) we will denote the (unknown) set of verties representingthe onvex hull of F∗n,Z. It will be a onsequene of Proposition 3.2.1 below that
V (F∗n,Z) is ontained in a natural superset with �nite ardinality for any n ∈ N,i.e. |V (F∗n,Z)| ≤ 2n. The superset will be determined by the set of all 2n binary vetorsthat, however, entails substantial redundanies to be disussed below. We will intro-due simple set orrelation funtions f ∗Ub

for Ub =
⋃

j∈Ib
[j − 1, j), where Ib is the set ofindies orresponding to ones in b = (b1, . . . , bn) ∈ Bn = {0, 1}n (e.g. Ib = {1, 3, 4} for

b = (1, 0, 1, 1)). For the restrition of f ∗Ub
, b ∈ Bn, to Z we shall for simpliity introduethe notation f ∗Ib

, and put H∗n,Z =
{
f ∗Ib

∈ RZ, b ∈ Bn

}. For later referene, note thatby (3.2), in partiular,
f ∗Ib

(h) =
∑

k∈Z

min{bk, bk+h}|Ib|−1 =
∑

k∈Z

bkbk+h|Ib|−1, h ∈ Z, b ∈ Bn, (3.3)where bk = 0 for k ∈ Z \ {1, . . . , n}.Proposition 3.2.1. For all n ∈ N we have that V (F∗n,Z) ⊆ H∗n,Z. Further, V (F∗∞,Z) ⊆⋃∞
n=1 H∗n,Z.Proof. In order to show the �rst assertion let n ∈ N and S ∈ σn. Without loss ofgenerality we may assume that S ⊆ [0, n). We will show that

f ∗S(h) =
∑

b∈Bn

f ∗Ib
(h)µb, h ∈ Z,where 0 ≤ µb ≤ 1, b ∈ Bn, ∑b∈Bn

µb = 1. To this end, for all b ∈ Bn let
δb = [0, 1) ∩

⋂

i∈Ib

(S + 1 − i) (3.4)32



3.2: Set Correlation Funtions and Basi Notionsand put
∆b = δb ∩

⋂

a∈Bn:Ib⊂Ia

δc
a ⊆ [0, 1). (3.5)Now, we �nd that

∆a ∩ ∆b = δa ∩ δb ∩
( ⋃

ω∈Bn:Ia⊂Iωor Ib⊂Iω

δω

)c

= ∅ for all a, b,∈ Bn with a 6= b. (3.6)Here, the last equality follows from the fat that by (3.4) we have
δa ∩ δb ⊆

⋃

ω∈Bn:Ia⊂Iωor Ib⊂Iω

δω, a, b,∈ Bn, a 6= b.Let Sb = •

⋃
i∈Ib

(∆b + i − 1), b ∈ Bn, where the union is disjoint by (3.5). By (3.5)and (3.6) we get in partiular that
Sa ∩ (Sb + h) = ∅ for all h ∈ Z, and all a, b,∈ Bn with a 6= b. (3.7)Further, (3.4) and (3.5) yield for all b ∈ Bn that Sb ⊆ S, and hene

•

⋃

b∈Bn

Sb ⊆ S. (3.8)Next, note that x ∈ S by (3.4) implies that x ∈ δb + i− 1 for some i ∈ {1, . . . , n} and
b ∈ Bn with Ib = {i}. By (3.5) we get further that x ∈ ∆a + i−1 for some a ∈ Bn with
Ib ⊆ Ia. Altogether we now �nd that x ∈ S implies

x ∈ •

⋃

b∈Bn

(∆b + i− 1) ⊆ •

⋃

b∈Bn

•

⋃

i∈Ib

(∆b + i− 1) = •

⋃

b∈Bn

Sb,and hene S = •

⋃
b∈Bn

Sb by (3.8). Then, from (3.7) and (3.2) we get for µb = |Sb|/|S| =
|∆b||Ib|/|S|, b ∈ Bn, that

f ∗S(h) =
∑

b∈Bn

f ∗Sb
(h)µb =

∑

b∈Bn

f ∗Ib
(h)µbwhere the seond equality holds by de�nition of Sb and f ∗Ib

. We �nally onsider theseond assertion. For any S ∈ σ∞ let
Ln =

⋃

z∈Z

(
z +

⋃

i∈Z\{−n,...,n}

((S − i) ∩ [0, 1))

)
, n ∈ N,and S = (S ∩ Ln) ∪ (S ∩ Lc

n). Then,
f ∗S = |S ∩ Lc

n||S|−1f ∗S∩Lc
n

+ |S ∩ Ln||S|−1f ∗S∩Ln
∈ F∗∞,Zand f ∗S∩Lc

n
∈ F∗2n+1,Z. Now, for n→ ∞ we have that |S ∩Lc

n||S|−1 → 1, and the seondsummand tends to 0. 33



3.2: Set Correlation Funtions and Basi NotionsNext, via the introdution of suitable equivalene relations we will suessively disardertain redundanies within Bn and �nally determine a set Cn ⊆ Bn with V (H∗n,Z) ={
f ∗Ib

∈ R
Z, b ∈ Cn

}. In partiular, we will demonstrate that the immediate idea ofongruene for any two sets Ia and Ib, a, b ∈ Bn, is a su�ient ondition for f ∗Ia
= f ∗Ibonly whereas the onept of homometry that we shall disuss below is neessary andsu�ient. Still, we will also study the former equivalene relation in more detail as thenumber of nonongruent and homometri vetors a, b ∈ Bn will turn out to be relativelysmall, f. Proposition 3.2.2 and Table 3.2.1. To formalize the notion of ongruene �rstde�ne re�etions ru : {0, 1}n → {0, 1}n, u ∈ {0, 1}, r1((x1, . . . , xn)) = (xn, . . . , x1),

r0 = id, and translations st : {0, 1}n → {0, 1}n, t ∈ Z,
st((x1, . . . , xn)) =





(0, . . . , 0, x1, . . . , xn−t) if xn−t+1, . . . , xn = 0 and t ≥ 0,
(x−t+1, . . . , xn, 0, . . . , 0) if x1, . . . , x−t = 0 and t ≤ −1,
(x1, . . . , xn) else.Now, for all a, b ∈ Bn we will de�ne ongruene by the equivalane relation a ∼c b,

a = st ◦rz(b) for some (t, z) ∈ {−n+1, . . . , n−1}×{0, 1}. We will denote the quotientset of Bn with respet to ∼c by Bn/∼c and state the following result for |Bn/∼c|, i.e.the number of non-ongruent patterns in Bn.Proposition 3.2.2. We have that
|Bn/∼c| = 2n−2 + 2⌊(n−2)/2⌋ + 2⌊(n−1)/2⌋, n ∈ N. (3.9)In partiular, we have |Bn/∼c| ∼ 2n−2.Proof. Let Bn,1 = {b ∈ Bn : b1 = 1} ⊆ Bn where applying the translation de�ned abovewe have that b = st(a) for all b ∈ Bn \ {0} and some (t, a) ∈ {0, . . . , n − 1} × Bn,1.Hene, by de�nition of the equivalene relation ∼c we �nd that

|Bn/∼c| = |Bn,1/∼c| + 1. (3.10)Next, onsider the partition Bn,1,N ∪ Bn,1,E of Bn,1 where Bn,1,N = {b ∈ Bn,1 : bn = 0}and Bn,1,E = Bn,1 \ Bn,1,N . We obviously get that a 6∼c b for any a ∈ Bn,1,N and any
b ∈ Bn,1,E suh that

|Bn,1/∼c| = |Bn,1,N/∼c| + |Bn,1,E/∼c|. (3.11)Note that by de�nition of Bn,1 and Bn,1,N we have that b ∈ Bn−1,1 if and only if
(b, 0) ∈ Bn,1,N suh that, in partiular, |Bn−1,1/∼c| = |Bn,1,N/∼c|. Applying the latterequality suessively to (3.11) we �nd with (3.10) that

|Bn/∼c| =
n∑

j=1

|Bj,1,E/∼c| + 1. (3.12)
34



3.2: Set Correlation Funtions and Basi NotionsFor Sn = {b ∈ Bn,1,E : bk = bn−k+1, k = 1, . . . , n}, i.e. the set of all symmetri vetors
b ∈ Bn,1,E , we now onsider the partition

Bn,1,E = An ∪ Sn (3.13)where An = Bn,1,E \ Sn. It is immediate that Sn an be identi�ed with its quotient setwith respet to ∼c, i.e. Sn/∼c = Sn. Moreover, with respet to the set An ⊆ Bn,1,Eof asymmetri vetors for all a ∈ An we have that r1(a) = b for some b ∈ An, b 6= a.Note that st(a) = a for all (t, a) ∈ Z × Bn,1,E, and hene we get that |An/∼c| = 1
2
|An|.Further, the de�nition of Sn yields that a 6∼c b for any a ∈ Sn and any b ∈ An suhthat

|Bn,1,E/∼c| = |An/∼c| + |Sn/∼c| =
1

2
|An| + |Sn| =

1

2
|Bn,1,E| +

1

2
|Sn| (3.14)where the seond equality follows from the above remarks and the third equality holdsby (3.13). Note that Bn,1,E is the ensemble of all b ∈ Bn with b1 = bn = 1 andardinality

|Bn,1,E| =
n−2∑

m=0

(
n− 2

m

)
. (3.15)For the number of symmetri sequenes |Sn| we �nd by ase di�erentiation that, for

n ≥ 3,
|Sn| =





n−2∑

m=0

(
(n− 2)/2

m/2

) if m,n even,
n−2∑

m=0

(
(n− 3)/2

m/2

) if n odd and m even,
n−2∑

m=0

(
(n− 3)/2

(m− 1)/2

) if m,n odd,
0 else. (3.16)

Finally, using (3.12), and by ase di�erentiation upon (3.16) we get that, for n ≥ 3,
|Bn/∼c| = 5 +

1

2

n−2∑

j=2

j∑

m=0

(
j

m

)
+

1

2

⌊(n−2)/2⌋∑

j=1

j∑

m=0

(
j

m

)
+

⌊(n−3)/2⌋∑

j=1

j∑

m=0

(
j

m

)

= 2n−2 + 2⌊(n−2)/2⌋ + 2⌊(n−1)/2⌋.It is readily seen that the r.h.s. also holds for n = 1 and n = 2.Note from Proposition 3.2.2 that a orretion for ongruene in Bn will asymptotiallyredue the number of relevant binary vetors by three quarters. Next, in order tomotivate the abovementioned notion of homometry we shall onsider an alternative35



3.2: Set Correlation Funtions and Basi Notionsinterpretation of the set orrelation that fousses on the mutual di�erenes betweenthe elements in Ib, i.e.
f ∗Ib

(h) = |{(x, y) ∈ I2
b : x+ h = y}||Ib|−1, h ∈ Z. (3.17)The onept of homometry, also known as the turnpike or partial digest problem, istypially spei�ed by equations similar to (3.17). In partiular, given all distanesbetween points on the line is it possible to retrieve the orresponding sets Ib, b ∈ Bn,up to ongruene? Put di�erently, if any is there a unique lass [b] ∈ Bn/∼c, b ∈ Bn,identi�ed by a given set orrelation funtion f ∗ ∈ H∗n,Z? The answer goes bak at leastas far as [46, 47℄ in the ontext of the analysis of di�ration patterns in rystallographywhere the set ovariane is related to so-alled multisets and where it is also well-knownthat |Bn/∼c| > |H∗n,Z|, n ≥ 12, f. Table 3.2.1. In line with the above disussion twopatterns a, b ∈ Bn are alled homometri if, a ∼h b, f ∗Ia

= f ∗Ib
, f. [47℄. Denote by

[a] = {b ∈ Bn : b ∼h a} the equivalene lass of a, i.e. we identify the equivalene lass
[a] with the orresponding funtion f ∗Ia

and put f ∗[a] = f ∗Ia
, a ∈ Bn. Let

Bn/∼h = {[b] : b ∈ Bn}.Note that emphasizing its omputational omplexity the problem has been disussedmore reently in [33℄. For later referene we may de�ne |[b]| := |Ia| for some a ∈ [b],
b ∈ Bn, by the following lemma.Lemma 3.2.2. From a ∈ [b] for some b ∈ Bn it follows that |Ia| = |Ib|.Proof. By de�nition we have that a ∈ [b], b ∈ Bn, is equivalent to f ∗Ia

= f ∗Ib
suh that,in partiular, max Ia − min Ia = max Ib − min Ib =: r. The latter yields by (3.3) that

fIa(r) = fIb
(r) = 1. Now, by de�nition we get |Ia| = fIa(r)/f

∗
Ia

(r) = fIb
(r)/f ∗Ib

(r) =
|Ib|.By the above disussion we may now restrit to any representative of Bn/∼h as andi-date vetors generating V (H∗n,Z). For
Cn =

{
[a] ∈ Bn/∼h : f ∗[a] 6=

∑

[b]∈Bn/∼h\{[a]}

f ∗[b]µ[b], for all µ[b] ∈ [0, 1]

}
⊆ Bn/∼h (3.18)we get that {

f ∗[b] ∈ R
Z : [b] ∈ Cn

}
= V (H∗n,Z) = V (F∗n,Z) (3.19)where the seond equality follows from Proposition 3.2.1 and the fat thatH∗n,Z ⊆ F∗n,Z.Note that beyond the idea of homometry we are not aware of a suitable onept thatyields the set Cn diretly from Bn.Theorem 3.2.1. For all S ∈ σn, n ∈ N ∪ {∞}, there is X ⊆ Cn suh that

f ∗S(h) =
∑

[b]∈X

f ∗[b](h)µ[b], h ∈ Z, (3.20)where 0 < µ[b] ≤ 1, [b] ∈ X , ∑[b]∈X µ[b] = 1. Reversely, given the r.h.s. of (3.20) a set
S ∈ σn exists suh that (3.20) holds. In partiular, |X | ≤ n, n ∈ N.36



3.2: Set Correlation Funtions and Basi Notions
n |Bn| = 2n |Bn/∼c| |Bn/∼c| − |Bn/∼h| |Bn/∼h| − |Cn|
4 16 8 0 0
5 32 14 0 1
6 64 24 0 2
7 128 44 0 2
8 256 80 0 4
9 512 152 0 7
10 1024 288 0 19
11 2048 560 0 36
12 4096 1088 2 73
13 8192 2144 8 131
14 16384 4224 20 259
15 32768 8384 36 523
16 65536 16640 73 958
17 131072 33152 128 1762
18 262144 66048 234 3379
19 524288 131840 394 −
20 1048576 263168 682 −Table 3.2.1: Number of equivalene lasses with respet to ongruene, f. Proposition 3.2.2, and homometry where

|H∗
n,Z| = |Bn/∼h|. We also state the number of homometri equivalene lasses in the interior of Cn, i.e. a number

|Bn/∼h| − |Cn| of set orrelation funtions f∗
[b]
, b ∈ Bn/∼h, are onvex ombinations of some f∗

[a]
, [a] ∈ Cn, a 6= b,f. (3.18). The latter result has been obtained by a searh algorithm and gives a lower bound. Beause of omputationallimitations we do not report the results for n ≥ 19.Proof. The proof of Proposition 3.2.1 yields that for all S ∈ σn, and µ̄b = |Sb|/|S| wehave

f ∗S(h) =
∑

b∈Bn

f ∗Sb
(h)µ̄b =

∑

b∈Bn

f ∗Ib
(h)µ̄b =

∑

[b]∈Cn

f ∗[b](h)µ̂[b] =
∑

[b]∈X⊆Cn

f ∗[b](h)µ[b], h ∈ Z,where the third equality follows by (3.19). The existene of X ⊆ Cn with |X | ≤ n, is aonsequene of Carathéodory's theorem [6℄ and (3.19). Finally, note that
∑

[b]∈Cn

µ̂[b] =
∑

[b]∈X

µ[b] =
∑

b∈Bn

µ̄b = 1where the weights µ̂[b], [b] ∈ Cn, and µ[b], [b] ∈ X , are not unique in general.The fat that in general Bn/∼h may inlude interior points of Cn is referred to inTable 3.2.1 where it is shown that |Bn/∼h| > |Cn| for n ≥ 5, f. also Setion 3.5.3. Notethat the results for |Bn/∼h| and |Cn| in Table 3.2.1 have been obtained by simulation,f. [4℄. Related questions have also been studied by [23℄ and [51℄.37



3.3: Relations Between Extremal Coe�ient and Set Correlation3.3 Relations Between Extremal Coe�ient and SetCorrelationReall De�nition (2.6) and Theorem 2.2.1 for a stationary max-stable proess (Yt)t∈Zfor D = 1 with standard Fréhet margins. For its �nite dimensional distributions wethen have
P (Y1 ≤ y1, . . . , Yk ≤ yk) = exp

(
−
∫ 1

0

k∨

t=1

Γt(g̃0(s))

yt
ds

) (3.21)for all k ≥ 1 and yt ≥ 0, t = 1, . . . , k. Here, the so-alled spetral funtions (seeSetion 2.2) g̃t : [0, 1] → R+ are suh that ∫ 1

0
g̃t(s)ds = 1 for all t where as before

g̃t+1 = Γ(g̃t) for a piston Γ, see [14℄. Note that we put Γt = Γ ◦ . . . ◦ Γ for the t-foldomposition of Γ. As a summary measure re�eting the temporal (spatial) dependenestruture of Y the metri
d(h) =

∫
|g̃0(s) − Γh(g̃0(s))|ds, h ∈ Z, (3.22)has been proposed, see e.g. [13℄. Following its standard usage in the literature weshall, however, not diretly refer to d(h) but de�ne the equivalent extremal oe�ientfuntion [56℄ as a transformation of (3.22) that is given by

φ(h) =
d(h) + 2

2
=

∫
max{g̃0(s),Γ

h(g̃0(s))}ds, h ∈ Z. (3.23)Note that (3.21) yields a more intuitive interpretation of φ(h), i.e.
P (Y0 ≤ y, Yh ≤ y) = P (Y0 ≤ y)φ(h), y > 0, h ∈ Z, (3.24)and also

φ(h) = 2 − lim
y→∞

P (Yh > y | Y0 > y), h ∈ Z, (3.25)as introdued in Chapter 1, f. (1.1). Both representations partiularly emphasize therelevane to pratie of the extremal oe�ient funtion, see also [22℄. Espeially (3.25)provides a onvenient interpretation in terms of the onditional probability of an ex-treme event to follow a preeding extreme event at lag h. Note that φ(h) = 2, h ∈ Z,by (3.24) is equivalent to independene of Yt and Yt+h for all t ∈ Z. We remarkthat (3.24) for a �xed lag h ∈ N losely orresponds to the de�nition of φ̃ in (2.10).More preisely, let the vetor e{1,h+1} ∈ Rh+1 be de�ned as in Setion 2.1. By (2.10)we now have
φ̃{1,h+1} = yl̃(y−1e{1,h+1}) = yµ̃

([
0, ye−1

{1,h+1}

]c)

= −y ln G̃
(
ye−1
{1,h+1}

)
= −y lnP (Y1 ≤ y, Yh+1 ≤ y)

= −y lnP (Y1 ≤ y)φ(h | Y ) = φ(h | Y ), y > 0,38



3.3: Relations Between Extremal Coe�ient and Set Correlationwhere (2.5) yields the seond equality and the third equality is a onsequene of (2.2).The last two equalities hold by the assumption of standard Fréhet margins for Y ,and (3.24), respetively. Here, in ontrast to Setion 2.1 the funtion G̃, and µ̃ or l̃equivalently, re�et the (h + 1)-variate marginal distribution of the stationary max-stable proess Y . We shall next restrit the above framework to the lass of dissipativestationary max-stable proesses, see e.g. [28℄. By [65℄ suh a proess (Yt)t∈Z has therepresentation
Yt = max

i∈N

Uiĝt−zi
(Si), t ∈ Z,where as above ĝt : [0, 1] → R+ with ∫ 1

0
ĝt(s)ds = 1 for all t. Here, {(Ui, Si, zi)}∞i=1 is aPoisson point proess on [0,∞)×S×Z with intensity measure u−2

1(u > 0)du×dS×1.Without loss of generality we may again assume that S = [0, 1] and dS = 1(s ∈
[0, 1])ds. For g(t) = ĝ⌊t⌋(t− ⌊t⌋), t ∈ R, we have that

Yt = max
i∈N

Uig(t− zi), t ∈ Z, (3.26)where {(Ui, zi)}∞i=1 is a Poisson point proess on [0,∞) × R with intensity measure
u−2

1(u > 0)du × dz. Note that in (3.26) the single spetral funtion g ompletelyharaterizes the dependene struture of the dissipative max-stable proess Y on Z. Inthe following we will write Yg where it is advantageous to indiate that the proess Yis generated by g. We have in partiular that (3.23) simpli�es to
φ(h | g) =

∫
max{g(s), g(s+ h)}ds, h ∈ Z, (3.27)and denoting by supp(g) the support of g the range of Yg is given by

rYg = inf{m ∈ N : |supp(g) ∩ (supp(g) + t)| = 0 for all |t| ≥ m, t ∈ Z},i.e. (Y1, . . . , Yk) and (Yk+q, . . . , Yk+q+l) are independent for all q ≥ rY , k, l ∈ N. For theensemble of extremal oe�ient funtions we shall next disuss a summability ondi-tion, and put Φ∞,Z =
{
φ ∈ [1, 2]Z :

∑
h∈Z

(2 − φ(h)) <∞
}. We will denote by Φn,Z therestrition of Φ∞,Z to those underlying proesses with �nite range rY ≤ n. The abovelassi�ation of extremal oe�ient funtions motivates the following analogy to theterm �long memory� [3℄ that usually refers to the non-summabilty of the autoovarianefuntion. We will propose an analogous notion for max-stable proesses.De�nition 3.3.1. A seond order weakly stationary random proess on Z with o-variane funtion ρ has a long memory [3℄ if ∑h∈Z

|ρ(h)| = ∞. A stationary randomproess Y on Z with existing extremal oe�ient funtion φ has a long memory if
φ(· | Y ) 6∈ Φ∞,Z, i.e. the orrelation funtion of the random proess 1(Y > n) is notabsolutely summable in the limit as n→ ∞.Proposition 3.3.1 ([18, Proposition 3℄). Any stationary max-stable proess Y on Zwith standard Fréhet margins and summable funtion 2 − φ(· | Y ) is dissipative.39



3.3: Relations Between Extremal Coe�ient and Set CorrelationThe following theorem is essential to the integration of the results disussed in Se-tion 3.2 into the extreme value ontext. It haraterizes every summable funtion 2−φfor max-stable proesses on Z as a speial set orrelation funtion. Note that its proofwill be based on the rather lengthy arguments preeding Corollary 4.5.2 in Chapter 4.Theorem 3.3.1. For all n ∈ N ∪ {∞} we have F∗n,Z = {2 − φ : φ ∈ Φn,Z}.Proof. Let ξ ∈ F∗n,Z, n ∈ N ∪ {∞}. Then, there is S ∈ σn suh that f ∗S(h) = ξ(h),
h ∈ Z. Further, for g(x) = 1(x ∈ S)|S|−1 we have φ(h | g) = 2− ξ(h) ∈ Φn,Z by (3.27)and (3.2). The reverse diretion is a diret onsequene of Corollary 4.5.2 in Chapter 4,and Proposition 3.3.1.Now, Theorem 3.3.1 yields in partiular that a disrete-time max-stable random proesshas a long memory if and only if its extremal oe�ient funtion annot be representedby a set orrelation funtion. Note that De�nition 3.3.1 also haraterizes ertain dis-sipative proesses as having a long memory. Our point of view therefore di�ers fromthe interpretation in [52℄ where the de�nition for short memory phenomena oinideswith a proess being purely dissipative. Consider e.g. a dissipative proess as in (3.26)with spetral funtion g(s) = s−2

1(s ≥ 1) that has a long memory aording to Def-inition 3.3.1. With respet to Theorem 3.3.1 note also that we have disussed threeequivalent onepts representing the extremal oe�ient funtion on a grid, namely φ,
d and f , f. (3.27), (3.22) and (3.2). We will heneforth mainly be onerned with twoquestions related to the above setup. Namely, in what way is the lass of extremaloe�ient funtions restrited by the right-hand side of (3.27), and how an proessesof the form given in (3.26) be reonstruted for given extremal oe�ient funtions?To this end, from now on we will fous on so-alled M3 proesses, also termed mixedmoving maxima. For D = 1 the proesses orrespond to the M4 lass introdued inSetion 2.2. More preisely, the proesses are disrete versions of (3.26) where

Mt =
J

max
j=1

max
k∈Z

ajkZj,t−k, t ∈ Z, (3.28)for some J ∈ N and a sequene {Zjt, j ∈ {1, . . . , J}, t ∈ Z} of i.i.d. standard Fréhetvariables, i.e. P (Zjt ≤ u) = exp(−u−1), u > 0. Further, ajk ≥ 0, j ∈ {1, . . . , J}, k ∈ Z,and ∑J
j=1

∑
k∈Z

ajk = 1 suh that the marginal distributions of the M3 proesses arealso standard Fréhet. Note that we obtain (3.28) from (3.26) by hoosing
g(x) = J

J∑

j=1

∑

k∈Z

ajk1(x ∈ k + J−1[j − 1, j)), x ∈ R. (3.29)We will onsider the following useful lassi�ation ofM3 proesses. To this end, by Mιwe will denote the set of all M3 proesses with J ≤ ι ∈ N ∪ {∞}. Note that for theirspeial struture the elements of M1 are anonially referred to as moving maxima or40



3.4: A Class of Simple Proesses for Given Extremal Coe�ients
M2 proesses. Further, we will put Mι,n for the restrition of Mι to proesses up torange n ∈ N. The extremal oe�ient funtion φ(h | M) using (3.27) and (3.29) equals

φ(h | M) = (d(h | M) + 2)/2 (3.30)where
d(h |M) =

J∑

j=1

∑

k∈Z

|ajk − aj,k+h|, h ∈ Z,M ∈ M∞. (3.31)For later referene, by Dι,n we will aordingly denote the set of funtions d(h | M),
h ∈ Z, for all M ∈ Mι,n, ι, n ∈ N ∪ {∞}.3.4 A Class of Simple Proesses for Given ExtremalCoe�ientsIn the following we will turn the results for set orrelation funtions obtained in Se-tion 3.2 into the onstrution of atual max-stable proesses orresponding to givenextremal oe�ient funtions. In partiular, we will assign to eah vertex of F∗n,Z asimple lass of M2 proesses that represents the respetive vertex extremal oe�ientfuntions, f. Corollary 3.4.1 below. We will then fous on weighted maxima of thoselasses in order to inorporate the onvexity of Φn,Z. To this end, onsider the follow-ing sparse lass R(ζ) ⊆ M|Cn|,n of M3 proesses. Let G = {ζ = (ζ[b])[b]∈Cn ∈ [0, 1]|Cn| :∑

[b]∈Cn
ζ[b]|[b]| = 1}, and for all ζ ∈ G de�ne

R(ζ) =

{
(Rt)t∈Z : Rt = max

[b]∈Cn
ζ[b]

n
max
k=1

r[b],kZ[b],t−k, t ∈ Z,and r[b] = (r[b],1, . . . , r[b],n) ∈ [b]

} (3.32)where as before by {Z[b],i, [b] ∈ Cn, i ∈ Z} we denote a sequene of i.i.d. standard Fréhetvariables. Note from (3.32) that any omplete vetor of representatives r = (r[b])[b]∈Cndetermines a partiular proess R ∈ R(ζ) for any given ζ ∈ G. In the followingproposition we will state an essential property of the lass R(ζ).Proposition 3.4.1. We have that φ(h | A) = φ(h | B), h ∈ Z, for all A,B ∈ R(ζ),
ζ ∈ G.Proof. By (3.32) for any �xed R ∈ R(ζ) there is a unique vetor of representatives
r ∈ B|Cn|n . Consequently, we �nd by (3.30) that

φ(h | R) =
∑

[b]∈Cn

ζ[b]
∑

k∈Z

max
{
r[b],k, r[b],k+h

}
= 2 −

∑

[b]∈Cn

ζ[b]
∑

k∈Z

min
{
r[b],k, r[b],k+h

}

= 2 −
∑

[b]∈Cn

ζ[b]|[b]|f ∗[b](h), h ∈ Z,41



3.5: Exampleswhere the last equality holds by (3.3), and where we taitly assume that r[b],k = 0 for all
k ∈ Z \ {1, . . . , n}, [b] ∈ Cn. To onlude the proof note that the r.h.s. is independentof r.The next orollary follows immediately from the proof of Proposition 3.4.1. It identi�esthe abovementioned lasses of M3 proesses R(ζ) that generate the vertex extremaloe�ient funtions.Corollary 3.4.1. Let ζ[b] = |[b]|−1 for any �xed [b] ∈ Cn, and let ζ[a] = 0 for all [a] ∈ Cn,
[a] 6= [b]. Then, 2 − φ(h | R) = f ∗[b](h) ∈ V (H∗n,Z) for all R ∈ R(ζ).Referring to Corollary 3.4.1 we shall in the following denote the vertex extremal oe�-ient funtions by φ(h | [b]) = φ(h | R) = 2−f ∗[b](h) for any R ∈ R(ζ) with ζ[b] = |[b]|−1,
[b] ∈ Cn. The funtions are displayed in Figure 3.4.1 for the ase n = 5. We will showin Corollary 3.4.2 below that the restrition to the lass R(ζ), ζ ∈ G, is admissiblein order to represent any extremal oe�ient funtion φ ∈ Φn,Z. An atual examplefor the reonstrution of proesses based on the lasses R(ζ) will be disussed in moredetail in Setion 3.5.3.Corollary 3.4.2. For any extremal oe�ient funtion φ ∈ Φn,Z there is a ζ ∈ G with
|{ζ[b] : ζ[b] > 0, [b] ∈ Cn}| ≤ n suh that for all R ∈ R(ζ) we have φ(h | R) = φ(h),
h ∈ Z.Proof. By Theorem 3.3.1 there is S ∈ σn suh that φ(h) = 2 − f ∗S(h), h ∈ Z. Further,Theorem 3.2.1 with ζ[b] = µ[b]/|[b]|, [b] ∈ X , yields that

f ∗S(h) =
∑

[b]∈X

f ∗[b](h)ζ[b]|[b]| = 2 − φ(h | R) = 2 −
∑

[b]∈X

φ(h | [b])ζ[b]|[b]|, h ∈ Z,for any proess R ∈ R(ζ). Here, the seond equality follows from the proof of Propo-sition 3.4.1 and the third equality is immediate from the de�nition of φ(· | [b]).Finally, it will be instrutive to reall that any vertex extremal oe�ient funtion
φ(· | [b]) re�ets a lass [b] ∈ Cn of homometri vetors rather than a unique vetor
b ∈ Bn. In partiular, the signature pattern [68℄ of a proess is in general not determinedby the extremal oe�ient funtion, see the disussion in Setion 5.1 below. Even fora given funtion φ(· | R) ∈ Φn,Z where R ∈ R(ζ), ζ ∈ G, the signature patternorresponding to R is at best determined up to homometry, f. Setion 3.2.3.5 Examples3.5.1 Simpli�ation of Arbitrary M3 Proesses with Given Co-e�ientsLet A ∈ MJ,n, J, n ∈ N, be given by the oe�ients ajk ≥ 0, j ∈ {1, . . . , J}, k ∈ Z.Due to the bounded range n of A we may assume without loss of generality that ajk = 0,42
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Figure 3.4.1: Vertex extremal oe�ient funtions φ(h | [b]), [b] ∈ Cn, for n = 5 and h = 0, . . . , 5. The respetiveequivalene lasses are identi�ed by the orresponding representatives b ∈ Bn. Note that we only tentatively inludethe lines joining the points as we on�ne our analysis to Z.
j ∈ {1, . . . , J}, k ∈ Z \ {1, . . . , n}. De�ne

ψ : [0, 1]n → [0, 1]n

b 7→ max (b− min{bi : bi > 0}, 0) .Let the M3 proess C ∈ M(Jn),n arry a third index l in addition to j, k, and let C bede�ned by the oe�ients cjlk ≥ 0, j ∈ {1, . . . , J}, l, k ∈ {1, . . . , n}, that is
Ct =

J
max
j=1

n
max
l=1

max
k∈Z

cjlkZjl,t−k, t ∈ Z, (3.33)43



3.5: Exampleswhere the sequene {Zjli, j ∈ {1, . . . , J}, l ∈ {1, . . . , n}, i ∈ Z} again represents i.i.d.standard Fréhet variables. Further, let cjl = (cjl,1, . . . , cjl,n) = ψl−1(aj)−ψl(aj) where
aj = (aj,1, . . . , aj,n) are the oe�ients of A, and ψl = ψ ◦ . . . ◦ ψ gives the l-foldomposition of ψ. We will make use of the following simple fat.Lemma 3.5.1. For all a1, a2, m ∈ R let b1 = max(a1 −m, 0), b2 = max(a2 −m, 0),
c1 = min(a1, m) and c2 = min(a2, m). Then |a1 − a2| = |b1 − b2| + |c1 − c2|.Now, by a repeated appliation of Lemma 3.5.1 it follows that

d(h | A) = d(h | C) =

J∑

j=1

n∑

l=1

n∑

k=1

|cjlk − cjl,k+h|, h ∈ Z.We will �nally emphasize that the vertex extremal oe�ient funtions may be identi-�ed naturally from C. To this end, for cjl 6= 0 letmjl = maxk cjlk and ĉjl = cjl/mjl suhthat by de�nition of cjl we have ĉjl ∈ Bn for all j ∈ {1, . . . , J} and all l ∈ {1, . . . , n}.Next, put
Cjl,t = |[ĉjl]|−1 max

k∈Z

ĉjlkZjl,t−k, t ∈ Z,suh that (3.30) yields Cjl ∈ M1,n, and φ(h | Cjl) = |[ĉjl]|−1
∑

k∈Z
max{ĉjlk, ĉjl,k+h}.Further, using (3.33) we get that Ct = maxJ

j=1 maxn
l=1 |[ĉjl]|mjlCjl,t, t ∈ Z, and, aord-ingly, by (3.30) we now have

φ(h | C) =

J∑

j=1

n∑

l=1

mjl|[ĉjl]|φ(h | Cjl). (3.34)The fat that ĉjl ∈ Bn by (3.32) yields that Cjl ∈ R(ζ) for ζ[ĉjl] = |[ĉjl]|−1 suhthat for all proesses Cjl with ĉjl ∈ [b], [b] ∈ Cn, we �nd by Corollary 3.4.1 that
φ(· | Cjl) = φ(· | [b]). Finally, (3.34) gives

φ(h | A) = φ(h | C) =
∑

[b]∈Cn

β[b]φ(h | [b]), h ∈ Z,where β[b] =
∑J

j=1

∑n
l=1mjl|[ĉjl]|1(ĉjl ∈ [b]) for all [b] ∈ Cn. To onlude the examplenote that applying the arguments disussed in Setions 3.2 and 3.4 we may furtherredue the appropriate index set to X ⊆ Cn.3.5.2 Blind Reonstrution of M2 ProessesWe shall now turn to the blind retrieval of a real example proess for an extremaloe�ient funtion of a stationary max-stable proess in disrete time with �nite range

n. Here, we will �rst restrit to the lass of M2 proesses, that is we put |I| =
1, in order to show that given a priori knowledge about the index set I there arealternative approahes for the reonstrution of proesses that do not neessarily resort44



3.5: Examplesto Corollary 3.4.2. Below we shall disuss suh an approah. To this end, let d ∈ D1,nbe given. Then, there is an unknown (not neessarily unique) M2 proess X that isdetermined by its oe�ients x1, . . . , xn suh that by (3.31) we have
d(h | X) =

2n∑

k=1

|xk − xk−h|, h = 1, . . . , n. (3.35)In order to turn (3.35) into more tratable systems of linear equations we will makeuse of the following lemma that an be easily seen.Lemma 3.5.2. Let xi ≥ 0, i = 1, . . . , n, and xi = 0, else. There is a permutation πon {1, . . . , n} suh that xπ−1(1) ≥ . . . ≥ xπ−1(n) and
∑

i∈Z

|xi − xi−h| =
n∑

i=1

απ,h,ixi, h = 1, . . . , n, (3.36)where
απ,h,i = 2 [1(π(i) < π(i− h)) + 1(π(i) < π(i+ h)) − 1] ∈ {−2, 0, 2} (3.37)for all h, i ∈ {1, . . . , n}, and π(i) = ∞ for all i ∈ Z\{1, . . . , n}. Further,∑n

i=1 απ,h,i =
2h, h = 1, . . . , n. The sequene of oe�ients απ,h,i, h, i = 1, . . . , n, is unique for agiven permutation π, and vie versa.Now, for the unknown M2 proess X aording to Lemma 3.5.2 there is a (not nees-sarily unique) permutation π suh that xπ−1(1) ≥ . . . ≥ xπ−1(n) and suh that by (3.35)and (3.36) we have

d(h | X) =
n∑

i=1

απ,h,ixi, h = 1, . . . , n. (3.38)Note that as π is unknown so is the sequene απ,h,i, h, i = 1, . . . , n, and hene runningthrough all possible permutations we will have that (3.38) represents n! systems oflinear equations. Here, in eah ase the oe�ients απ,h,i are given by (3.37). However,by the assumption that d ∈ D1,n an appropriate permutation π will be assoiated toat least one of the linear systems, and a orresponding solution x1, . . . , xn representingsuh a proess X exists. The latter an be found for instane via a linear program [4℄.Note also that for any d ∈ D∞,n the above approah will reveal whether any solutionto (3.38) exists at all, i.e. whether d ∈ D1,n ⊆ D∞,n.3.5.3 Blind Reonstrution of M3 ProessesAs indiated by the above disussion we �nd that even with respet to the funtion
d(h | A) for an arbitrary proess A ∈ M2,n it appears to be nontrivial to state whetheralso d(h | A) ∈ D1,n. Put di�erently, given A ∈ M2,n we ask whether there is a45



3.5: Examples
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Figure 3.5.1: Admissible ombinations of a12 and a22 for the proess A disussed in Setion 3.5.3 where d(h | A) ∈ D1,n(◦) and d(h | A) /∈ D1,n (•).proess B ∈ M1,n suh that d(h | A) = d(h | B), h ∈ Z. Exept for some pathologialexamples we are not aware of a suitable analyti riterion that fousses diretly on theoe�ients of A. Thus, using (3.38) and the method outlined above we will hek bya trial and error proedure whether for simulated proesses A ∈ M2,n with arbitraryoe�ients ajk, j ∈ {1, 2}, k ∈ {1, . . . , 5}, we have that d(h | A) ∈ D1,n. We givepartiular suh proesses A(a12, a22) where d(h | A(a12, a22)) /∈ D1,n for at least some
a12, a22 in Table 3.5.1. In order to get more insight into the sensitivity of our results tohanges of the oe�ients we run through all admissible values of a12 and a22 with allother oe�ients �xed and state whether d(h | A(a12, a22)) ∈ D1,n. The result is givenin Figure 3.5.1. Apart from a ertain tradeo� between a12 and a22 along the upperright boundary the �gure appears to reveal no spei� struture.

ajk k = 1 k = 2 k = 3 k = 4 k = 5
j = 1 0.01 a12 0.02 0.05 0.21
j = 2 0.52 − a12 − a22 a22 0.12 0.06 0.01Table 3.5.1: Coe�ients of the proess A(a12, a22) disussed in Setion 3.5.3.Next, we will disuss an example for the reonstrution of max-stable proesses thatmakes use of Corollary 3.4.2, that is we do not onsider the above instanes where

J = 1. We will put n = 5 in order to over at the same time the ase |Bn/∼h| > |Cn|disussed in Setion 3.2. To this end, from the lass of proesses A disussed above we46



3.5: Examples
b [b] k = 1 k = 2 k = 3 k = 4 k = 5

(1, 1, 1, 1, 1) 1 ζ1 ζ1 ζ1 ζ1 ζ1
(1, 1, 0, 1, 1) 2 ζ2 ζ2 ζ2 ζ2
(1, 0, 1, 0, 1) 3 ζ3 ζ3 ζ3
(1, 1, 0, 0, 1) 4 ζ4 ζ4 ζ4
(1, 0, 0, 0, 1) 5 ζ5 ζ5
(1, 1, 1, 1, 0) 6 ζ6 ζ6 ζ6 ζ6
(1, 1, 0, 1, 0) 7 ζ7 ζ7 ζ7
(1, 0, 0, 1, 0) 8 ζ8 ζ8
(1, 1, 1, 0, 0) 9 ζ9 ζ9 ζ9
(1, 0, 1, 0, 0) 10 ζ10 ζ10
(1, 1, 0, 0, 0) 11 ζ11 ζ11
(1, 0, 0, 0, 0) 12 ζ12Table 3.5.2: Example oe�ients ζ[b]r[b],k, k = 1, . . . , 5, for a spei� proess R ∈ R(ζ) ⊆ M12,5, f. (3.32). Here,

(ζ1, . . . , ζ12) = ζ where we use the notational onvention explained after (3.39). See Figure 3.4.1 for an illustration ofthe vertex extremal oe�ient funtions φ(· | [b]), [b] ∈ Cn, that are retrievable from any R ∈ R(ζ) if ζ[b] = |[b]|−1. Notealso that the ase b = (1, 1, 1, 0, 1) is not inluded in the table as [b] ∈ Bn/∼h but [b] /∈ Cn.arbitrarily hoose A(0.15, 0.18) with d(h | A(0.15, 0.18)) /∈ D1,n where, in partiular,
h 1 2 3 4 5

d(h | A(0.15, 0.18)) 1.06 1.46 1.54 1.96 2.00From now on, we will assume d(h) = d(h | A) to be given and onsider the proess A ∈
M2,n \M1,n to be unknown. Let Gd(h) = {ζ ∈ G : d(h | R) = d(h), h ∈ Z, R ∈ R(ζ)}be the set of all vetors ζ ∈ G that determine sets R(ζ) of suitable andidate proesses.Note that Gd(h) is nonempty by Corollary 3.4.2. We will fous on the following systemof linear equations

d(h) = d(h | R), R ∈ R(ζ), h ∈ Z, (3.39)where by Proposition 3.4.1 we may hoose R ∈ R(ζ) arbitrarily. A partiular proess
R ∈ R(ζ) is given in Table 3.5.2. To simplify notation we shall replae the indies
[b], [b] ∈ Cn, by 1, . . . , 12 aording to the seond olumn in Table 3.5.2. We now getfrom (3.39) and (3.31) for R as in Table 3.5.2 that
d(1 | R) =12ζ1 + 4ζ2 + 6ζ3 + 4ζ4 + 4ζ5 + 2ζ6 + 4ζ7 + 4ζ8 + 2ζ9 + 4ζ10 + 2ζ11 + 2ζ12

d(2 | R) =14ζ1 + 6ζ2 + 2ζ3 + 6ζ4 + 4ζ5 + 4ζ6 + 4ζ7 + 4ζ8 + 4ζ9 + 2ζ10 + 4ζ11 + 2ζ12

d(3 | R) =16ζ1 + 4ζ2 + 6ζ3 + 4ζ4 + 4ζ5 + 6ζ6 + 4ζ7 + 2ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12

d(4 | R) =18ζ1 + 6ζ2 + 4ζ3 + 4ζ4 + 2ζ5 + 8ζ6 + 6ζ7 + 4ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12

d(5 | R) =10ζ1 + 8ζ2 + 6ζ3 + 6ζ4 + 4ζ5 + 8ζ6 + 6ζ7 + 4ζ8 + 6ζ9 + 4ζ10 + 4ζ11 + 2ζ12.Numerially, if φ(h) is a valid extremal oe�ient funtion, i.e. Gd(h) is nonempty,a partiular element ζ ∈ Gd(h) may be determined by expanding (3.39) to a linear47



3.5: Examplesprogram. Here, using [4℄ we �nd e.g.
ζ = (ζ1, . . . , ζ12) = (0.020, 0, 0, 0, 0, 0.085, 0, 0.105, 0, 0.040, 0.135, 0)as a valid (not neessarily unique) solution. We point out that aording to Corol-lary 3.4.2 there are n = 5 nonzero elements in ζ .Remark 3.5.1. For all proesses R ∈ R(ζ), ζ ∈ G, we have that ∑[b]∈Cn

ζ[b] = θR where
θR denotes the extremal index or, equivalently, the expeted inverse luster size, seeChapter 2. Note also that 1/n ≤ θR ≤ 1, i.e. the range n of R imposes a lower boundon the extremal index.3.5.4 Neessary Conditions for Valid Extremal Coe�ient Fun-tionsApart from the reonstrution of max-stable proesses for given extremal oe�ientfuntions the tehnique applied in Setion 3.5.3 is appliable also to evaluate whethera supposed extremal oe�ient funtion of order n is valid for max-stable proesses on
Z. To our knowledge, in the literature so far only neessary onditions for extremal o-e�ient funtions to be admissible have been disussed [10, 56℄. Linking the results for�rst order variograms (madograms) disussed by [39℄ to extremal oe�ient funtionsit is shown in [10℄ that every valid extremal oe�ient funtion φ(h) for all h, k ∈ Rsatis�es

φ(h+ k)τ ≤ φ(h)φ(k), (3.40)
φ(h+ k)τ ≤ φ(h)τ + φ(k)τ − 1, 0 ≤ τ ≤ 1, (3.41)
φ(h+ k)τ ≥ φ(h)τ + φ(k)τ − 1, τ ≤ 0. (3.42)In addition, it is well-known that φ(h) is positive semi-de�nite, f. [56℄. We give anexample showing that onditions (3.40) to (3.42) are indeed not su�ient. The on-strution of suh an example is not evident but substantially failitated by knowledgeof the vertex extremal oe�ient funtions displayed in Figure 3.4.1. Consider e.g. thefollowing funtion p : Z → [1, 2], p(−h) = p(h), with

h 0 1 2 3 4
p(h) 1 5/3 5/3 3/2 2and p(h) = 2, h ≥ 5. Note that

p(x) = φ(x | [b]) for x ∈ {0, 3, 4, 5} (3.43)and that
p(x) 6= φ(x | [b]) for x ∈ {1, 2} (3.44)48



3.6: Restritions on the Range of Extremal Coe�ient Funtionsfor b = (1, 0, 0, 1, 0) ∈ Bn. Further, by Figure 3.4.1 we easily �nd that
(φ(3 | [b]), φ(4 | [b]), φ(5 | [b])) 6=

∑

[a]∈Cn\{[b]}

(φ(3 | [a]), φ(4 | [a]), φ(5 | [a]))µ[a] (3.45)for any µ[a] ∈ [0, 1], [a] ∈ Cn \ {[b]}. Now, using (3.43) to (3.45) we get from theonvexity of Φn,Z that p is not a valid extremal oe�ient funtion. However, it isreadily veri�ed that p still satis�es (3.40) to (3.42).3.6 Restritions on the Range of Extremal Coe�ientFuntionsIn the following we will study a lower bound on the range of a max-stable proess ifthe orresponding extremal oe�ient is known for a �xed h ∈ N only. More preisely,if for any �xed h ∈ N the extremal oe�ient φ(h) is given we will speify the smallestlag h̄ ≥ h for whih φ(h̃) = 2 for all h̃ ≥ h̄ is possible. In pratie, the approah willbe appliable to the study of the atual (bounded) memory spread of short memoryproesses, f. De�nition 3.3.1. Consider for instane the question of a lower bound onthe memory of �nanial markets after shoks when information is limited to estimatesof a single extremal oe�ient.Theorem 3.6.1. Let φ(h | Y ) ∈ [1, 2) be given for some �xed h ∈ N and some max-stable proess Y ∈ M∞. We have that Y /∈ M∞,rφ
for any

rφ ∈
{

N if φ(h) = 1,

{1, . . . , [[(φ(h) − 1)−1]]h} else,where [[x]] = max{n ∈ Z : n < x} for any x ∈ R. On the other hand, if φ(h) ∈ (1, 2),for some h ∈ N, then a proess Y ∈ M∞,[[(φ(h)−1)−1]]h+1 with φ(h | Y ) = φ(h) exists.Proof. The assertion for φ(h) = 1, h > 0, follows diretly from Theorem 1.4.1(2) in [53℄.The proof for φ(h) ∈ (1, 2) will be based on the M3 representation for dissipative max-stable proesses disussed in Setion 3.3, and omprises three steps. First, within thelasses M∞,K+h−1 of all M3 proesses with maximum range K + h− 1, K ∈ Nh+ 1 =
{h + 1, 2h + 1, . . .}, we will de�ne a simple M3 proess AK,h ∈ M1,K of range K.Then, we will show that AK,h ∈ M∞,K+h−1 minimizes φ(h | B) for all B ∈ M∞,K+h−1.Based on this �nding we may onlude in step three that all proesses Z ∈ M∞ with
φ(h | Z) = φ(h) are at least of range [[(φ(h) − 1)−1]]h + 1. We will give an example inorder to show that the bounds are sharp.1. For any K ∈ Nh + 1 let the proess AK,h ∈ M1,K be given by the oe�ients

aK,k, k ∈ Z, where
aK,ih+1 =

(
K − 1

h
+ 1

)−1

, i ∈ {0, 1, . . . , (K − 1)/h}, (3.46)49



3.6: Restritions on the Range of Extremal Coe�ient Funtionsand all other oe�ients zero. In partiular, by (3.31) we have
d(h | AK,h) = 2aK,1. (3.47)Without loss of generality we let B ∈ M∞,K+h−1 be given by

0 ≤ b1k = aK,k + ε1k ≤ 1, k ∈ {1, . . . , K + h− 1}, (3.48)where the aK,k are hosen aording to (3.46). Further, for j ∈ {2, 3, . . .} and
k ∈ {1, . . . , K + h− 1} we let

0 ≤ bjk = εjk ≤ 1 (3.49)and taitly assume all other oe�ients to be zero. Now, from the fat that∑∞
j=1

∑
k∈Z

bjk = 1 we get by (3.48) and (3.49) that
∞∑

j=1

∑

k∈Z

εjk = 0 (3.50)and, in partiular,
K−1

h∑

i=0

ε1,ih+1 ≤ 0. (3.51)2. We show that for all proesses B ∈ M∞,K+h−1 it holds that
d(h | B) ≥ d(h | AK,h), K ∈ Nh+ 1. (3.52)To this end, note that by (3.31) we �nd that (3.52) is equivalent to

−ε11−ε1,K ≤
∞∑

j=1

h∑

l=1

K−1
h
−1∑

i=0

|εj,l+(i+1)h−εj,l+ih|+
∞∑

j=1

h∑

l=1
j+l>2

(εjl +εj,K+l−1). (3.53)Now, (3.48) and (3.49) yield that εj,l, εj,K+l−1 ≥ 0 for all j ∈ N and l ∈ {1, . . . , h}with j+l > 2, suh that (3.53) holds if min{ε11, ε1,K} ≥ 0. In order to show (3.53)for the ase min{ε11, ε1,K} < 0 put N = {ih + 1, i = 0, 1, . . . , (K − 1)/h} andfor j ∈ N, l ∈ {1, 2, . . . , h} let Sjl =
∑

i∈N+l−1 εji, µ̄jl = Sjl|N |−1 and µjl,max =
maxi∈N+l−1 εji. Further, let

µ1,min = −min {µ1,1,max, 0} . (3.54)Now, we �nd that
−ε11 − ε1,K ≤ |ε11| + |ε1,K| ≤ |ε11 − µ1,min| + |ε1,K − µ1,min| + 2µ1,min

≤
K−1

h
−1∑

i=0

|ε1,ih+1 − ε1,(i+1)h+1| + 2µ1,min. (3.55)50



3.6: Restritions on the Range of Extremal Coe�ient FuntionsAlso, by (3.54) we get formin{ε11, ε1,K} < 0 that mini∈N ε1,i ≤ µ1,min ≤ maxi∈N ε1,iwhih yields the seond inequality in (3.55). Next, we have
µ1,min ≤ −S1,1

|N | =
1

|N |

∞∑

j=1

h∑

l=1
j+l>2

Sj,l =
∞∑

j=1

h∑

l=1
l+j>2

µ̄jl ≤
∞∑

j=1

h∑

l=1
j+l>2

µj,l,max. (3.56)Here, if maxi∈N{ε1,i} ≥ 0 note that µ1,min = 0, suh that the �rst inequality isobvious from the fat that S1,1 ≤ 0 by (3.51). Else, if maxi∈N{ε1,i} < 0 we getthat µ1,min = mini∈N{−ε1,i} ≤ |N |−1
∑

i∈N −ε1,i = −S1,1|N |−1 whih in that aseyields the �rst inequality. Further, the �rst equality in (3.56) holds by (3.50) andthe seond equality as well as the seond inequality are immediate. Finally, forall j ∈ N and all l ∈ {1, . . . , h} with l + j > 2 we have
2µj,l,max = |µj,l,max − εjl| + |µj,l,max − εj,l+K−1| + εjl + εj,l+K−1

≤
K−1

h
−1∑

i=0

|εj,l+(i+1)h − εj,l+ih| + εjl + εj,l+K−1. (3.57)where the equality follows from the fat that 0 ≤ εjl ≤ µjl,max for l + j > 2.Now, (3.53) holds by (3.55) to (3.57).3. Let Z(d(h)) ⊆ M∞ be the lass of all M3 proesses Z with d(h | Z) = d(h).By (3.52) it follows that Z(d(h)) ∩M∞,κ+h−1 = ∅ for all
κ ∈ {K ∈ Nh+ 1 : d(h | AK,h) > d(h)} = {K ∈ Nh+ 1 : K < [[2/d(h)]]h+ 1}where (3.47) yields the equality. Let K∗ = [[2/d(h)]]h + 1 where K∗ < ∞ fromthe fat that by assumption d(h) > 0. In partiular, we now have that

d(h | AK∗,h) ≤ d(h) < d(h | AK∗−1,h). (3.58)It remains to show that a proess Z∗ ∈ M∞,K∗ ∩ Z(d(h)) exists. To this end,let Z∗ be given by z∗k = aK∗,k − εk + δk, k ∈ {1, 2, . . . , K∗} where aK∗,k are theoe�ients of AK∗,h, f. (3.46). Further, we put εih+1 = 1
2
aK∗,1(d(h) − 2aK∗,1),

i ∈ {0, 1, . . . , (K∗− 1)/h}, δ2 = 1
2
(d(h)− 2z∗1) and all other oe�ients zero suhthat Z∗ is of range K∗. Note that (3.58) yields

0 ≤ 1

2
d(h) − aK∗,1 < aK∗−1,1 − aK∗,1 =

h

K∗ − 1
− h

K∗ − 1 + h
< 1suh that 0 ≤ ε1+ih < aK∗,1, i ∈ {0, 1, . . . , (K∗ − 1)/h}. Further, using (3.58) wehave

2z∗1 = 2(aK∗,1 − ε1) < 2aK∗,1 = d(h | AK∗,h) ≤ d(h)whih yields that δ2 > 0. Finally, d(h | Z∗) = d(h) is a onsequene of (3.31).51



Chapter 4A Construtive Proof for theExtremal Coe�ient of a DissipativeMax-Stable Proess on Z being a SetCorrelation
4.1 Formal SetupIn this hapter we will develop suessively a ertain sequene of sets that form thebasis of the assertion in Corollaries 4.5.1 and 4.5.2. The latter was already referredto in the proof of Theorem 3.3.1 above. There, we stated that the sets of extremaloe�ient funtions for dissipative max-stable proesses and those of set orrelationsatually oinide on Z. To begin with we shall brie�y restate the de�nition of theextremal oe�ient funtion in terms of a spetral funtion g as the latter will be thestarting point of our analysis. Reall that a stationary dissipative max-stable proess
Y on Z with standard Fréhet margins has the representation Yt = maxi∈N Uig(t− zi),
t ∈ Z, f. Setion 3.3. Here, g : R → R+ with ∫ g(s)ds = 1, and {(Ui, zi)}∞i=1 is aPoisson point proess on [0,∞) × R with intensity measure u−2

1(u > 0)du × dz. Inpartiular, the spetral funtion g ompletely haraterizes the dependene struture of
Y . As a suitable summary measure with properties similar to the usual autoovarianefuntion in Setion 3.3 we disussed the extremal oe�ient funtion

φ(h | g) =

∫
max{g(s), g(s+ h)} ds, h ∈ Z, (4.1)that has been proposed by [56℄. In the following we will onsider a sequene (gn)n∈N0,

N0 = N ∪ {0}, of non-negative step funtions suh that gn ↑ ξ for a suitable funtion
ξ : R → R+ with φ(· | ξ) = φ(· | g), and hene φ(· | gn) → φ(· | g) as n → ∞.Our main result will be the onstrution of a bounded monotoni sequene of sets, i.e.52



4.1: Formal Setup
(Sn)n∈N0 ↑ S, |S| <∞, assoiated to (gn) suh that

2

∫
gn(s) ds− φ(h | gn) = |Sn ∩ (Sn − h)|, n ∈ N0, h ∈ Z. (4.2)Hene, our analysis will imply that for any extremal oe�ient funtion (4.1) on Z anequivalent representation as a set ovariane funtion |S ∩ (S − h)|, h ∈ Z, given bya ertain set S ⊂ R, |S| < ∞, exists. The reverse is straightforward, f. Setion 3.3.Consequently, the ensembles for set ovariane and extremal oe�ient funtions fordissipative proesses an be shown to atually oinide on a grid. For reasons of ontentthis result was already stated in Setion 3.3 without proof, see Theorem 3.3.1.To be spei�, let (gn)n∈N0 ↑ ξ be a monotonially inreasing sequene of step funtionswith nonnegative oe�ients anki, n ∈ N0, k ∈ Kn = {−n, . . . , n}, i = (i1, . . . , in) ∈

{0, 1}n, and all other oe�ients zero. Here, is ∈ {0, 1}, s = 1, . . . , n, and i = i0 = ∅ if
n = 0. Throughout this hapter, we will put [i]2 =

∑n
j=1 ij2

n−j and i|τ = (i1, . . . , iτ ),
τ = 1, . . . , n, where i|0 = ∅. Note that the use of a binary number for the index i willbe advantageous later on. As before, for all x ∈ R we put ⌊x⌋ = max{n ∈ Z : n ≤ x},and we will assume from now on that

gn(x) =

n∑

s=0

as,k,i|s, where k = ⌊x⌋ and i ∈ {0, 1}n with [i]2 = ⌊2n(x− k)⌋. (4.3)Aording to (4.1) let φ(h | gn), h ∈ Z, n ∈ N0, denote the extremal oe�ient funtionof the stationary dissipative proess Ygn generated by the spetral funtion gn whereby (4.3) we �nd that
φ(h | gn) = 2−n+1

∑

k∈Kn

∑

i∈{0,1}n

n∑

s=0

as,k,i|s−

2−n
∑

k∈Kn

∑

i∈{0,1}n

min

{ n∑

s=0

as,k,i|s,

n∑

s=0

as,k+h,i|s

}
, h ∈ Z.

(4.4)Example 4.1.1. For the ontinuous spetral funtion g = ξ given in Figure 4.1.1 wesketh the �rst three elements of a monotoni sequene of step funtions (gn)n∈N0 ↑ ξgiven by (4.3) with
a0,0,∅ = 1

10
a1,0,0 = 1

15
a2,−2,(0,0) = 1

5

a1,−1,0 = 1
30

a1,1,0 = 1
15

a2,0,(1,0) = 1
30

a1,−1,1 = 2
15

a1,1,1 = 1
30

a2,2,(1,0) = 1
15
.To give a preliminary idea of our onstrution priniple for a suitable sequene (Sn)onsider the sets Aski, s = 0, 1, 2, k ∈ Ks, i ∈ {0, 1}s, given in Figure 4.3.1. Theirformal struture will be studied below. We put

Sn =

n

•

⋃

s=0

•

⋃

k∈Ks

•

⋃

i∈{0,1}s

(Aski + k), n ∈ N0, (4.5)53



4.1: Formal Setup
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Figure 4.1.1: Approximation of a ontinuous spetral funtion g = ξ by the step funtion g2 de�ned in (4.3). Theorresponding oe�ients are given in Example 4.1.1. Note that the bars anki do not neessarily touh the graph of ξ.suh that (Sn) is learly monotoni, and we will show in Theorem 4.5.1, f. Setion 4.5,that (4.2) holds. For the above small set of example oe�ients the latter may bereadily veri�ed graphially using Figures 4.1.1 and 4.3.1. We point out that in (4.2)the requirement of monotoniity for (Sn) appears to be a fundamental restrition.More preisely, the determination of an arbitrary sequene (Sn) suh that (4.2) holdsis straightforward. Throughout the rest of our analysis we will mainly be onernedwith the onstrution of suitable sets Aski as well as the disussion of their properties.However, note that in Figure 4.3.1 we also inlude ertain intervals Bsbi, s = 0, 1, 2,
i ∈ {0, 1}s, for some tedious index b that will be disussed below. At this point theintervals Bsbi may best be thought of as plaeholders. In partiular, they indiateallowable loations for the sets Aski. Further, the intervals Bsbi will neessarily have tobe onstruted jointly with Aski. As an only preliminary remark in this diretion notethat the onstrution of Bs+1,a,j for j ∈ {(i, 0), (i, 1)} and some suitable index a will beshown in (4.16) below to depend on ertain intersetions of Aski on the index k rangingover partiular orderable subsets of Ks. The latter will spei�ally be re�eted by theindex a. To onlude the example, note that in Theorem 4.5.1 we will essentially makeuse of the fat that

2−ngn(k + [i]22
−n) =

∣∣∣∣
n

•

⋃

s=0

As,k,i|s ∩ •

⋃

b

Bnbi

∣∣∣∣ (4.6)for all k ∈ Kn and all i ∈ {0, 1}n. It will be helpful later on to hek at this pointthat (4.6) holds for the above example using Figures 4.1.1 and 4.3.1.Throughout the hapter we will as before denote a proper inlusion by �⊂� whereaswe shall use �⊆� for an inlusion that does not prelude equality. Further, we will54



4.2: A Sequene of Auxiliary Setsunderstand [x, y) = ∅ if y < x, and A0 = ∅ for any set A. For n ∈ N0 let Bn = {0, 1}n2,
b = (b1, . . . , bn) ∈ Bn, where bs ∈ {0, 1}2s−1, s = 1, . . . , n, b = b0 = ∅ if n = 0, and Nbsis the set of indies orresponding to zeros in bs, e.g. Nbs = {2, 5} for bs = (1, 0, 1, 1, 0).Let En,0 = Bn ×{0, 1}n and En = En,0 \ ({0}×{0, 1}n). We will put b|τ = (b0, . . . , bτ ),and aordingly (b, i)|τ = (b|τ , i|τ ) for τ = 0, . . . , n. Our approah will be organized asfollows. In Setion 4.2 we will de�ne suitable intervals Bnbi and disuss their relevantproperties. To this end, we shall study an order on the joint index (b, i) ∈ En,0 that willlater refer to the alloation of the intervals Bnbi on the line. We will formally introduethe order in (4.7) below. The nature of the order will then be largely revealed by part 2of Lemma 4.2.1. It will be shown in Lemma 4.2.2 that the order is total on a suitablesubset of En,0. In partiular, the de�nition of Bnbi in (4.16) will be restrited to thissubset in a natural way. As we will be able to draw some important onlusions onthe intervals Bnbi even for arbitrary sets Anki we will defer the atual joint de�nitionof Bnbi and Anki to Setion 4.3. There, in Corollaries 4.3.1 and 4.3.2 we will showthat the assertions of two auxiliary assumptions made for step n, f. (A1) and (A2) inSetion 4.2, hold true by indution in step n+ 1. In Setion 4.3 we will further disusstwo important properties of Anki in Lemmata 4.3.1 and 4.3.2. Thereafter we will studya deomposition of Anki in Setion 4.4 that will eventually be useful in the proof ofTheorem 4.5.1 in Setion 4.5 where we will show that (4.2) holds. Our main result willbe stated in Corollaries 4.5.1 and 4.5.2 where for the latter we will make use of the fatthat for any given spetral funtion g there is a suitable funtion ξ as a limit of stepfuntions with φ(· | g) = φ(· | ξ), f. [19℄.4.2 A Sequene of Auxiliary SetsTo begin with, we will equip the sets En,0, n ∈ N, with the following partial order �≺p�.For (b, i) ∈ En,0 let

{(a, j) ∈ En,0 : (a, j) ≺p (b, i)} =
{

(a, j) ∈ En,0 : ∃τ ≤ n suh that a|τ = b|τand a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n. Further, [j|τ ]2 < [i|τ ]2,or j|τ = i|τ and Naτ+1 ⊂ Nbτ+1

}
∪
{

(a, j) ∈ En,0 : ∃δ ≤ n suhthat b|δ = 0, a|δ 6= 0 and b|λ 6= 0 for all δ < λ ≤ n
}
.

(4.7)For later referene note that by (4.7), in partiular,
(b, i) ≺p (0, j), for all j ∈ {0, 1}n and (b, i) ∈ En. (4.8)Further, we have that

(b, i) ∈ En if (b, i) ≺p (a, j) for any (a, j) ∈ En. (4.9)As indiated above, we will show in Lemma 4.2.2 below that for all n ∈ N0 the funtions
g0, . . . , gn generate a suitable subset Ẽn,0 = Ẽn,0,g ⊆ En,0 for whih the above order is55



4.2: A Sequene of Auxiliary Setstotal. An essential step to the onstrution of Ẽn,0 will be provided by the followinglemma whose proof is obvious.Lemma 4.2.1. For k = 1, . . . , K, let qk ∈ [0, 1] and put q∞ = 1. De�ne maxk∈∅ qk = 0and mink∈∅ qk = 1 and let xb = maxk∈Nb
qk and yb = mink/∈Nb

qk for all b ∈ {0, 1}K.Put Mu = {l : ql ≤ u}, u ∈ R, and Uk = {b ∈ {0, 1}K : Nb = Mu for some u ∈ {ql :
ql < qk} ∪ {0}}. For all k ∈ {1, . . . , K} ∪ {∞} we have that1. A partition of [0, qk) is given by {[xb, yb), b ∈ Uk}2. {Nb, b ∈ Uk} is stritly totally ordered under inlusion3. ya ≤ xb for Na ⊂ Nb, a, b ∈ Uk, or if a = b /∈ U∞4. Uk = {a ∈ U∞ : Na ⊆ Nb}, b ∈ arg maxa∈Uk

|Na|.Example 4.2.1. For K = 6 and q1 = 0.2, q2 = 0.3, q3 = 0, q4 = 0.4, q5 = 0.1and q6 = 0.2 we onsider the partition of [0, q2) given by part 1 of Lemma 4.2.1.We have {ql : ql < q2} ∪ {0} = {0, 0.1, 0.2} and M0 = {3}, M0.1 = {3, 5} and
M0.2 = {1, 3, 5, 6} suh that U2 = {(1, 1, 0, 1, 1, 1), (1, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 0)}. Inpartiular, part 1 of Lemma 4.2.1 yields [0, 0.3) = [0, 0.1) ∪ [0.1, 0.2) ∪ [0.2, 0.3),and parts 2 and 3 are obvious. Conerning part 4 of the lemma we have U∞ =
{(1, 1, 0, 1, 1, 1), (1, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0)}. To verifythe assertion note �nally that arg maxa∈U2 |Na| = {(0, 1, 0, 1, 0, 0)}.For later referene by parts 1 to 3 of Lemma 4.2.1 for all b ∈ U∞ we readily have

[xb, yb) =
∑

a∈U∞:
Na⊂Nb

|[xa, ya)| + [0, yb − xb). (4.10)For all n ∈ N0 we will next de�ne suessively the sets Ẽn,0 and Bnbi. For that purposewe shall frequently apply the notation introdued in Lemma 4.2.1. Note arefully,however, that we will neessarily have to extend the subsripts by the indies n ∈ N0and (b, i) ∈ Ẽn,0. Consequently, for all k ∈ Kn ∪ {∞} and (b, i) ∈ En,0 let now
Unkbi =

{
a ∈ {0, 1}2n+1 : Na = Mnubi for some u ∈ {qnlbi : qnlbi < qnkbi} ∪ {0}

} (4.11)where, as above, Mnubi = {k : qnkbi ≤ u}, u ∈ R. Further, we put
qnkbi = |Anki ∩ Bnbi| (4.12)and
qn,∞,b,i = |Bnbi| (4.13)for arbitrary sets Anki that will be hosen to depend on g0, . . . , gn−1 in (4.35) below, i.e.

qnkbi, k ∈ Kn ∪ {∞}, are arbitrary numbers up to qnkbi ≤ |Bnbi|. Note that by (4.11)we have
0 /∈ Unkbi if k ∈ Kn, (i.e. k 6= ∞). (4.14)56



4.2: A Sequene of Auxiliary SetsLet now
Ẽn,0 =

{
((b, u), (i, j)) , (b, i) ∈ Ẽn−1,0, u ∈ Un−1,∞,b,i, j ∈ {0, 1}

}

∪ ({0} × {0, 1}n)
(4.15)and put Ẽn = Ẽn,0\({0}×{0, 1}n). We will disuss below that the union in (4.15) an infat be disjoint. In partiular, for any n ∈ N0 we will have that 0 /∈ U∞,0,i, i ∈ {0, 1}n,f. the proof of Corollary 4.3.1. Note that in the following we shall oasionally trunatethe above indexation where no onfusion may arise.Lemma 4.2.2. For all n ∈ N the order �≺p� given in (4.7) is total on Ẽn,0.Proof. Let the order �≺p� be total on Ẽn−1,0 and let (a, j), (b, i) ∈ Ẽn−1,0. By (4.15)it is su�ient to show that either ((a, α), (j, ι)) = ((b, β), (i, ǫ)) or ((a, α), (j, ι)) ≺p

((b, β), (i, ǫ)) or ((a, α), (j, ι)) ≻p ((b, β), (i, ǫ)) for all α ∈ U∞,a,j ∪ {0}, β ∈ U∞,b,i ∪ {0}and all ι, ǫ ∈ {0, 1}. By symmetry we may assume that (a, j) � (b, i). Let �rst
(a, j) = (b, i). Then, U∞,a,j = U∞,b,i, and the following threefold distintion is apartition of all ((a, α), (j, ι)) and ((b, β), (i, ǫ)) with (a, j) = (b, i). In either ase wewill show that an ordering by �≺p� exists where we will omit the trivial relation ofequality.1. Let α = β ∈ U∞,a,j and ι, ǫ ∈ {0, 1} suh that [(j, ι)]2 < [(i, ǫ)]2. Then,

((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7) for τ = n. (δ does not exist.)2. Let (a, α), (b, β) 6= 0, α, β ∈ U∞,a,j, α 6= β, and ι, ǫ ∈ {0, 1}. Then, (a, α)|τ =
(b, β)|τ and (a, α)|κ 6= (b, β)|κ for all τ < κ ≤ n, only if τ = n − 1. Fur-ther, (j, ι)|n−1 = j = i = (i, ǫ)|n−1, and Nα ⊂ Nβ (or Nα ⊃ Nβ) by part 2 ofLemma 4.2.1 and the fat that α, β ∈ U∞,a,j. (δ does not exist.)3. Let (b, β) = 0, α ∈ U∞,a,i, α 6= 0, and ι, ǫ ∈ {0, 1}. Then, δ = n, and the fatthat (a, α) 6= 0 yields ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7). (τ does not exist.)Next, let (a, j) ≺p (b, i). Then, by (4.7) there is τ ≤ n − 1 suh that a|τ = b|τ and

a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n − 1, or there is δ ≤ n − 1 suh that b|δ = 0,
a|δ 6= 0 and bλ 6= 0 for all δ < λ ≤ n − 1. Aording to (4.7) we may distinguishthree ases that yield the ordering (a, j) ≺p (b, i). We will onsider them separatelyand show that in either ase also ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) for all α, β ∈ {0, 1}2n−1and all ι, ǫ ∈ {0, 1}.1. Let a|τ = b|τ , a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n − 1, and [j|τ ]2 < [i|τ ]2.Now, (a, α)|τ+1 = (b, β)|τ+1 only if τ = n − 1. (δ does not exist.) Then, thefat that [(j, ι)|τ+1]2 < [(i, ǫ)|τ+1]2 yields ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7).If (a, α)|τ+1 6= (b, β)|τ+1 also ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)) by (4.7) using that

(a, α)|τ = (b, β)|τ and [(j, ι)|τ ]2 < [(i, ǫ)|τ ]2.57



4.2: A Sequene of Auxiliary Sets2. Let a|τ = b|τ , a|κ 6= b|κ, a|κ, b|κ 6= 0 for all τ < κ ≤ n, and j|τ = i|τ , Naτ+1 ⊂
Nbτ+1. (δ does not exist.) Then, τ < n, and for all α, β ∈ {0, 1}2n−1 and all
ι, ǫ ∈ {0, 1} we trivially also have (a, α)|τ = (b, β)|τ , [(j, ι)|τ ]2 = [(i, ǫ)|τ ]2 and
N(a,α)τ+1 ⊂ N(b,β)τ+1 . The above yields further that (a, α)|τ+1 6= (b, β)|τ+1 and
(a, α)|τ+1, (b, β)|τ+1 6= 0. Comparing with (4.7) we �nd that ((a, α), (j, ι)) ≺p

((b, β), (i, ǫ)).3. Finally, let bδ = 0, a|δ 6= 0 and b|λ 6= 0 for all δ < λ ≤ n. (τ does not exist.)Now, also (b, β)|δ = 0 and (a, α)|δ 6= 0. If (b, β)|δ+1 6= 0 then ((a, α), (j, ι)) ≺p

((b, β), (i, ǫ)) is immediate by (4.7). If (b, β)|δ+1 = 0 then δ = n − 1, and
(a, α)|δ+1 6= 0 yields by (4.7) that ((a, α), (j, ι)) ≺p ((b, β), (i, ǫ)).We will denote the respetive total order by �≺�. For (b, i) ∈ Ẽn,0 let
Bnbi =





[
xb,

xb + yb

2

)
+

∑

(a,j)≺(b,i)|n−1

|Bn−1,a,j | , b 6= 0, in = 0,

[
xb + yb

2
, yb

)
+

∑

(a,j)≺(b,i)|n−1

|Bn−1,a,j| , b 6= 0, in = 1,

2−n

[
0,max

k∈Z

gn

(
k + [i]22

−n
)
− max

k∈Z

gn−1

(
k + [i]22

−n
))

+
∑

(b,j)≺(0,i)

|Bnbj |, b = 0,

(4.16)
where retaining the notation of Lemma 4.2.1 we put

xb = xn,b,i|n−1 = max
k∈Nbn−n

qn−1,k,(b,i)|n−1 (4.17)and
yb = yn,b,i|n−1 = min

k/∈Nbn−n
qn−1,k,(b,i)|n−1. (4.18)Note that part 3 of Lemma 4.2.1 and (4.15) yield in partiular that by applying (4.16)to any (b, i) /∈ Ẽn,0 we get Bnbi = ∅. In Figure 4.3.1 we give a suessive onstrutionof Bnbi up to n = 2. There, we use the oe�ients disussed in Example 4.1.1 and weantiipate (4.35) in order to �x Anki. Next, note that (4.16) for all n ∈ N0 yields

|Bnaj | = |Bnai| for all (a, j), (a, i) ∈ Ẽn with j|n−1 = i|n−1 (4.19)where we point out that (4.19) does not hold for a = 0, f. the intervals B1,0,0 and
B1,0,1 in Figure 4.3.1. As indiated above we shall in the following work under theassumption that for a �xed n ∈ N0, we have

Bm,0,i = •

⋃

(a,j)∈Ẽm+1:

(a,j)|m=(0,i)

Bm+1,a,j for all m < n and i ∈ {0, 1}m. (A1)The assumption will be relaxed in Setion 4.3.58



4.2: A Sequene of Auxiliary SetsLemma 4.2.3. Assume (A1). Then, for all m ≤ n the following holds.1. For (b, i) ∈ Ẽm,0 we have
Bmbi = [0, |Bmbi|) +

∑

(a,j)≺(b,i)

|Bmaj |. (4.20)2. For (b, i) ∈ Ẽm we have
Bmbi = •

⋃

(a,j)∈Ẽm+1:

(a,j)|m=(b,i)

Bm+1,a,j . (4.21)Proof. For the proof of (4.20) we may restrit to the ase b 6= 0 as (4.20) is immediatefrom (4.16) for b = 0. In the following, let (a, j) ∈ Ẽm−1,0 for any m ≤ n. To beginwith, in (4.22) to (4.24) we will disuss simple but important preliminaries that followeasily from the above setup. Let �rst γ ∈ U∞,a,j = Um−1,∞,a,j be arbitrary. Using(4.17) and (4.18) we then have by (4.10) that
[
x(a,γ),

x(a,γ) + y(a,γ)

2

)
=

∑

β∈U∞,a,j :

Nβ⊂Nγ

∣∣[x(a,β), y(a,β))
∣∣ +
[
0,
y(a,γ) − x(a,γ)

2

) (4.22)and, aordingly,
[
x(a,γ) + y(a,γ)

2
, y(a,γ)

)
=

∑

β∈U∞,a,j:

Nβ⊂Nγ

∣∣[x(a,β), y(a,β))
∣∣+ y(a,γ) − x(a,γ)

2

+

[
0,
y(a,γ) − x(a,γ)

2

)
.

(4.23)Further, we get by (4.15) that
∑

β∈U∞,a,j,

Nβ⊂Nγ

∑

l∈{0,1}

|Bm,(a,β),(j,l)| =
∑

(c,l)∈Ẽm,0:Ncm⊂Nγ,

(c,l)|m−1=(a,j)

|Bmcl|

=
∑

(c,l)∈Ẽm,0:(c,l)≺((a,γ),(j,0)),

(c,l)|m−1=(a,j)

|Bmcl| (4.24)where the latter equality holds by (4.7). Next, let γ ∈ U∞,a,j suh that (a, γ) 6= 0. Notethat depending on the above hoie of (a, j) ∈ Ẽm−1,0 this onstitutes an additionalrestrition on γ only if a = 0. Now, using (4.16) in (4.22) and (4.23), we �nd that for59



4.2: A Sequene of Auxiliary Setsany i ∈ {(j, 0), (j, 1)}

Bm,(a,γ),i =
∑

β∈U∞,a,j:

Nβ⊂Nγ

∑

l∈{0,1}

|Bm,(a,β),(j,l)| + 1(im = 1)|Bm,(a,γ),(j,0)|

+ [0, |Bm,(a,γ),i|) +
∑

(c,l)∈Ẽm−1,0:

(c,l)≺(a,j)

|Bm−1,c,l|

=
∑

(c,l)∈Ẽm:(c,l)≺((a,γ),i),
(c,l)|m−1=(a,j)

|Bmcl| + [0, |Bm,(a,γ),i|) +
∑

(c,l)∈Ẽm−1,0:

(c,l)≺(a,j)

|Bm−1,c,l| (4.25)where the latter equality holds by (4.24). Note that by (4.9) and the fat that (a, γ) 6= 0we may restrit to Ẽm instead of Ẽm,0 for the �rst sum in (4.25). We next onsider thespeial ase (c, l) ∈ Ẽm−1. Then,
[0, |Bm−1,c,l|) = •

⋃

β∈U∞,c,l

{[
x(c,β),

x(c,β) + y(c,β)

2

)
∪
[
x(c,β) + y(c,β)

2
, y(c,β)

)}

= •

⋃

β∈U∞,c,l

•

⋃

i∈{0,1}

Bm,(c,β),(l,i) −
∑

(a,i)∈Ẽm−1:

(a,i)≺(c,l)

|Bm−1,a,i|

= •

⋃

(a,i)∈Ẽm:
(a,i)|m−1=(c,l)

Bmai −
∑

(a,i)∈Ẽm−1:

(a,i)≺(c,l)

|Bm−1,a,i| (4.26)where the �rst equality is immediate by part 1 of Lemma 4.2.1 and (4.13), and theseond equality holds by (4.16) as we have c 6= 0 by assumption. The third equality isa onsequene of (4.15). Note that in the seond and third equality we also make useof (4.9) in order to justify the sets Ẽm−1 instead of Ẽm−1,0. Now, by (4.26) and (A1),we have for all (c, l) ∈ Ẽm−1,0 that
|Bm−1,c,l| =

∑

(a,i)∈Ẽm:
(a,i)|m−1=(c,l)

|Bmai|, (4.27)and (4.20) for b 6= 0 holds by (4.25) and (4.27). Note that we use (4.27) in order toresolve the last sum in (4.25), and that, in partiular, (A1) is a neessary assumptioneven though (a, γ) 6= 0. In order to proof (4.21) onsider (4.26) for m + 1 instead of
m, i.e.

[0, |Bmci|) = •

⋃

(a,j)∈Ẽm+1:

(a,j)|m=(c,i)

Bm+1,a,j −
∑

(a,j)∈Ẽm:
(a,j)≺(c,i)

|Bmaj | , (c, i) ∈ Ẽm, (4.28)and the assertion follows by (4.20).In partiular, by (4.20) we have for m ≤ n that
Bmbi ∩Bmaj = ∅, (b, i), (a, j) ∈ Ẽm,0, (b, i) 6= (a, j). (4.29)60



4.2: A Sequene of Auxiliary SetsUsing (A1), and (4.21) repeatedly yields for all (b, i) ∈ Ẽm,0, m < n, that
Bmbi = •

⋃

(a,j)∈Ẽn:a|m+1 6=0,

(a,j)|m=(b,i)

Bnaj . (4.30)Note that the restrition am+1 6= 0 a�ets the ase b = 0 only, f. (A1) where the index
(a, j) does not run over a = 0. Further, using (4.19) repeatedly we have by (4.30) forall (b, i) ∈ Ẽm,0, m < n, and any j ∈ {0, 1}n with j|m = i that

2m−n|Bmbi| =
∑

a∈Bn:(a,j)∈Ẽn,
a|m=b,a|m+1 6=0

|Bnaj |. (4.31)Note that in (4.31) the summation is over a ∈ Bn only, and j is �xed. We shall assumenext that for a �xed n ∈ N0 and all m < n, k ∈ Km and j ∈ {0, 1}m there is a unique
(ω, (j, 1)) = (ωmkj, (j, 1)) ∈ Ẽm+1 suh that

∑

(a,i)∈Ẽm+1:i|m=j,

(a,i)�(ω,(j,1))

|Bm+1,a,i| = 2−m
m∑

p=0

ap,k,j|p. (A2)The assumption (A2) will also be relaxed in Setion 4.3.Lemma 4.2.4. Let n ∈ N0, k ∈ Kn, i ∈ {0, 1}n and j = i|n−1. Assume (A1) and let
(ω, (j, 1)) = (ωn−1,k,j, (j, 1)) ∈ Ẽn aording to (A2). We have

∑

a:(ω,(j,1))≺(a,i)

|Bnai| ≥ 2−nanki.Proof. By (4.31) for all i ∈ {0, 1}n, n ∈ N0, we get that
n∑

m=0

2m|Bm,0,i|m| = 2n
n−1∑

m=0

∑

a:(a,i)∈Ẽn,a|m=0,
a|m+1 6=0

|Bnai| + 2n|Bn,0,i|

= 2n
∑

a:(a,i)∈Ẽn,0

|Bnai|. (4.32)Let k∗ = k∗i,n ∈ arg maxk gn(k + [i]22
−n). Then, by (4.3) we have

gn(k
∗ + [i]22

−n) =

n∑

s=0

as,k∗,i|s =

n∑

p=0

(
max

k

p∑

s=0

as,k,i|s − max
k

p−1∑

s=0

as,k,i|s

)

=
n∑

p=0

2p|Bp,0,i|p| (4.33)61



4.3: The Sequene Sn: Building Bloks and Propertieswhere the third equality holds by (4.16). Combining (4.32) and (4.33) yields for all
k ∈ Kn, i ∈ {0, 1}n and j = i|n−1 that

∑

a:(ω,(j,1))≺(a,i)

|Bnai| = 2−n

n∑

s=0

as,k∗,i|s −
∑

a:(a,i)�(ω,(j,1))

|Bnai|

= 2−n
n∑

s=0

as,k∗,i|s − 2−n
n−1∑

s=0

as,k,i|s ≥ 2−nanki (4.34)where we use (A2) and (4.19) for the seond equality.4.3 The Sequene Sn: Building Bloks and PropertiesThe sets Sn, n ∈ N0, are given in (4.5) where at this point for all n ∈ N0, k ∈ Kn,
i ∈ {0, 1}n and for (ω, (i|n−1, 1)) = (ωn−1,k,i|n−1, (i|n−1, 1)) ∈ Ẽn aording to (A2), wewill de�ne essentially

Anki = •

⋃

b:(b,i)

∈Ẽn,0

{
Bnbi ∩

(
[0, 2−nanki) +

∑

(a,j)≺(b,i),
j 6=i

|Bnaj| +
∑

a:(a,i)
�(ω,(i|n−1,1))

|Bnai|
)}

. (4.35)Here, the union is disjoint by (4.20). For the �nal de�nition of Anki we refer to Corol-lary 4.3.2 below. In Figure 4.3.1 we depit the sets Anki and Bnbi up to n = 2 forthe oe�ients disussed in Example 4.1.1. Note that for all (b, i) ∈ Ẽn,0 and all
(c, j) ∈ Ẽm,0, m ≤ n, we have

∑

(a,j)≺(b,i),
j 6=i

|Bnaj | +
∑

a:(a,i)|m�(c,j)

|Bnai|

=





∑

(a,j)≺(b,i)

|Bnaj| −
∑

a:(c,j)≺(a,i)|m,
(a,i)≺(b,i)

|Bnai|, (c, j) ≺ (b, i)|m
∑

(a,j)≺(b,i)

|Bnaj| +
∑

a:(b,i)�(a,i),
(a,i)|m�(c,j)

|Bnai|, else, (4.36)suh that, by (4.20) and (4.35), we get
Anki ∩Bnbi =





∑

(a,j)≺(b,i)

|Bnaj | +
[
0,min

{
2−nanki

−
∑

a:(ω,(i|n−1,1))≺

(a,i)≺(b,i)

|Bnai|, |Bnbi|
})

, (ω, (i|n−1, 1)) ≺ (b, i),

∅, else. (4.37)
Next, we �nd that by Lemma 4.2.4 and (4.37) for all i ∈ {0, 1}n, k ∈ Kn, there is a62



4.3: The Sequene Sn: Building Bloks and Properties
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Figure 4.3.1: Jointly suessive onstrution of Bnbi and Anki (top to bottom) using (4.16) and (4.35) up to n = 2.The orresponding oe�ients are given in Example 4.1.1. In the �gure we denote by �⊂ X� a subset of a set X.unique (ω̃, i) = (ω̃nki, i) ≻ (ω, (i|n−1, 1)) = (ωn−1,k,i|n−1, (i|n−1, 1)), (ω̃, i) � (0, i), suhthat
0 ≤ 2−nanki −

∑

a:(ω,(i|n−1,1))≺(a,i)≺(ω̃,i)

|Bnai| ≤ |Bn,ω̃,i|. (4.38)Hene, by (4.37) and (4.38)
Anki ∩Bnbi =





Bnbi, (ω, (i|n−1, 1)) ≺
(b, i) ≺ (ω̃, i),

∑

(a,j)≺(ω̃,i)

|Bnaj | + [0, |Anki ∩Bnbi|], (b, i) = (ω̃, i),

∅, else. (4.39)Note that (4.39) and (4.35) yield
Anki ⊆ •

⋃

b:(ω,(i|n−1,1))≺(b,i)�(ω̃,i)

Bnbi, (4.40)suh that, in partiular,
Anki = •

⋃

b:(ω,(i|n−1,1))≺(b,i)�(ω̃,i)

Anki ∩ Bnbi. (4.41)63



4.3: The Sequene Sn: Building Bloks and PropertiesFor later referene we �nd that the latter yields
|Anki| = 2−nanki (4.42)where we use (4.37) and (4.38).Corollary 4.3.1. Assume (A1) and (A2). For all i ∈ {0, 1}n we have

Bn,0,i = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(0,i)

Bn+1,a,j. (4.43)Proof. Let k∗ = k∗i,n as in the proof of Lemma 4.2.4, and let
(ω, (i|n−1, 1)) = (ωn−1,k∗,i|n−1

, (i|n−1, 1)) ∈ Ẽnas in (A2). We now get by (4.34) for k = k∗ that for any i ∈ {0, 1}n

2−nan,k∗,i =
∑

a:(ω,(i|n−1,1))≺(a,i)

|Bnai| =
∑

a:(ω,(i|n−1,1))≺

(a,i)�(0,i)

|Bnai| (4.44)where the seond equality holds by (4.8). Using further that from (A2) and (4.8) wehave (ω, (i|n−1, 1)) ≺ (0, i) we get by (4.37) that
An,k∗,i ∩Bn,0,i

=
∑

(a,j)≺(0,i)

|Bnaj | +
[
0,min

{
2−nan,k∗,i −

∑

a:(ω,(i|n−1,1))

≺(a,i)≺(0,i)

|Bnai|, |Bn,0,i|
})

=
∑

(a,j)≺(0,i)

|Bnaj | + [0, |Bn,0,i|) = Bn,0,i. (4.45)Here, the seond equality follows by (4.44) and the last equality orresponds to (4.20).By (4.45), using (4.12) and (4.13) we �nd that qn,k∗,0,i = qn,∞,0,i suh that by (4.11), inpartiular,
Uk∗,0,i = U∞,0,i. (4.46)Further, (4.46) and (4.14) yield

0 /∈ U∞,0,i. (4.47)Now,
[0, |Bn,0,i|) = [0, qn,k∗,0,i) = •

⋃

β∈Uk∗,0,i

[x(0,β), y(0,β)) = •

⋃

β∈Uk∗,0,i

•

⋃

j∈{0,1}

Bn+1,(0,β),(i,j)

−
∑

(a,j)≺(0,i)

Bnaj = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(0,i)

Bn+1,a,j −
∑

(a,j)≺(0,i)

Bnaj . (4.48)64



4.3: The Sequene Sn: Building Bloks and PropertiesHere, the �rst equality follows from (4.45) and (4.13), the seond equality holds bypart 1 of Lemma 4.2.1, and the third equality is a onsequene of (4.16) where we usethat by (4.14) 0 /∈ Uk∗,0,i. The last equality holds by (4.46) and (4.15) where we againmay restrit the union to Ẽn+1 instead of Ẽn+1,0 by (4.14). Finally, (4.20) and (4.48)yield the assertion.Corollary 4.3.2. Assume (A1) and (A2). For all k ∈ Kn and j ∈ {0, 1}n there is aunique (ω, (j, 1)) = (ωnkj, (j, 1)) ∈ Ẽn+1 suh that
∑

(a,i)∈Ẽn+1:i|n=j,

(a,i)�(ω,(j,1))

|Bn+1,a,i| = 2−n

n∑

p=0

ap,k,j|p. (4.49)Proof. Let k ∈ Kn and (ω̃, j) = (ω̃nkj, j) ∈ Ẽn,0 as in (4.38). Further, let z ∈
arg maxβ∈Ukω̃j

|Nβ|. Then, z 6= 0 by (4.14), and z is unique by part 2 of Lemma 4.2.1.By part 4 of Lemma 4.2.1 we have
Ukω̃j = {β ∈ U∞,ω̃,j : Nβ ⊆ Nz} . (4.50)Further,

[0, qn,k,ω̃,j) = •

⋃

β∈Uk,ω̃,j

[x(ω̃,β), y(ω̃,β)) = •

⋃

β∈U∞,ω̃,j :

Nβ⊆Nz

[x(ω̃,β), y(ω̃,β))

= •

⋃

β∈U∞,ω̃,j :

Nβ⊆Nz

•

⋃

l∈{0,1}

Bn+1,(ω̃,β),(j,l) −
∑

(a,i)≺(ω̃,j)

|Bnai| (4.51)where the �rst equality holds by part 1 of Lemma 4.2.1 and the seond equality is aonsequene of (4.50). The third equality then follows by (4.16) and (4.14). Next, by(4.39) and (4.51) we get that
Ankj ∩ Bnω̃j = •

⋃

β∈U∞,ω̃,j :

Nβ⊆Nz

•

⋃

l∈{0,1}

Bn+1,(ω̃,β),(j,l) = •

⋃

(a,i)∈Ẽn+1:(a,i)|n=(ω̃,j),

Nan+1⊆Nz

Bn+1,a,i

= •

⋃

(a,i)∈Ẽn+1:(a,i)�((ω̃,z),(j,1)),

(a,i)|n=(ω̃,j)

Bn+1,a,i (4.52)where the seond equality holds by (4.15). Here, by (4.50) and (4.14) we have that
β 6= 0 suh that (4.8) justi�es the restrition to Ẽn+1 instead of Ẽn+1,0. The third
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4.3: The Sequene Sn: Building Bloks and Propertiesequality is a onsequene of (4.7) and Lemma 4.2.2. Further, by (4.41) and (4.39)
Ankj = •

⋃

b:(ωn−1,k,j|n−1
,(j|n−1,1))

≺(b,j)≺(ω̃,j)

Bnbj
•∪ (Ankj ∩ Bnω̃j)

= •

⋃

(a,i)∈Ẽn+1:i|n=j,

(ωn−1,k,j|n−1
,(j|n−1,1))≺(a,i)|n≺(ω̃,j)

Bn+1,a,i
•∪ •

⋃

(a,i)∈Ẽn+1:(a,i)�((ω̃,z),(j,1)),

(a,i)|n=(ω̃,j)

Bn+1,a,i

= •

⋃

(a,i)∈Ẽn+1:i|n=j,(a,i)�((ω̃,z),(j,1)),

(ωn−1,k,j|n−1
,(j|n−1,1))≺(a,i)|n

Bn+1,a,i (4.53)where the seond equality follows from (4.21) and (4.52). Thus,
∑

(a,i)∈Ẽn+1:i|n=j,(a,i)�((ω̃,z),(j,1)),

(ωn−1,k,j|n−1
,(j|n−1,1))≺(a,i)|n

|Bn+1,a,i| = |Ankj| = 2−nankj (4.54)where the seond equality holds by (4.42). Further, (A2) yields
2−n+1

n−1∑

p=0

ap,k,j|p =
∑

(b,l)∈Ẽn:l|n−1=j|n−1,

(b,l)�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bnbl|

=
∑

(a,i)∈Ẽn+1:i|n−1=j|n−1,

(a,i)|n�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bn+1,a,i| (4.55)where the seond equality is a onsequene of (4.21). Note that by (4.19)
1

2

∑

(a,i)∈Ẽn+1:i|n−1=j|n−1,

(a,i)|n�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bn+1,a,i| =
∑

(a,i)∈Ẽn+1:i|n=j,

(a,i)|n�(ωn−1,k,j|n−1
,(j|n−1,1))

|Bn+1,a,i|

= 2−n

n−1∑

p=0

ap,k,j|p. (4.56)Here, the seond equality holds by (4.55). The assertion follows by (4.56) and (4.54)where we put
ωnkj = (ω̃nkj, z). (4.57)Now, for (4.43) and (4.49) to hold for all n ∈ N0, by indution on Corollaries 4.3.1and 4.3.2 it is su�ient to note that (A1) and (A2) hold trivially in the ase n = 0. Inpartiular, for all n ∈ N0, we have

Bn0i = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(0,i)

Bn+1,a,j , (4.58)66



4.3: The Sequene Sn: Building Bloks and Propertiesand for all n ∈ N0, k ∈ Kn and j ∈ {0, 1}n there is a unique (ω, (j, 1)) = (ωnkj, (j, 1)) ∈
Ẽn+1 suh that

∑

(a,i)∈Ẽn+1:i|n=j,

(a,i)�(ω,(j,1))

|Bn+1,a,i| = 2−n
n∑

p=0

ap,k,j|p. (4.59)Combining (4.58) and (4.21) yields that for all n ∈ N0

Bnbi = •

⋃

(a,j)∈Ẽn+1:

(a,j)|n=(b,i)

Bn+1,a,j, (b, i) ∈ Ẽn,0, (4.60)and by a repeated appliation of (4.60) we get that for all m,n ∈ N0, m < n,
Bmbi = •

⋃

(a,j)∈Ẽn:a|m+1 6=0,

(a,j)|m=(b,i)

Bnaj , (b, i) ∈ Ẽm,0. (4.61)Lemma 4.3.1. For all m,n ∈ N0, k ∈ Km and j ∈ {0, 1}m, i ∈ {0, 1}n with n 6= m or
j 6= i we have

Anki ∩Amkj = ∅.Proof. For m = n the assertion is immediate by (4.40) and (4.29). To prove the ase
m < n let (b, i) ∈ Ẽn,0 suh that (b, i)|m+1 � (ωm,k,i|m, (i|m, 1)). Then, by (4.38) wehave

(ωm,k,i|m, (i|m, 1)) ≺ (ω̃m+1,k,i|m+1
, i|m+1) = (ωm+1,k,i|m+1

, (i|m+1, 1))|m+1where the equality holds by (4.57). Now, (b, i)|m+1 ≺ (ωm+1,k,i|m+1
, (i|m+1, 1))|m+1, andby the seond part in the proof of Lemma 4.2.2 the latter implies that (b, i)|m+2 ≺

(ωm+1,k,i|m+1
, (i|m+1, 1)) if m+ 2 ≤ n. Proeeding iteratively, we have that

(b, i) ≺ (ωn−1,k,i|n−1
, (i|n−1, 1)) if (b, i)|m+1 � (ωm,k,i|m, (i|m, 1)). (4.62)Further, note that

Amkj = •

⋃

(b,i)∈Ẽm+1:i|m=j,(b,i)�(ωmkj,(j,1)),

(ωm−1,k,j|m−1
,(j|m−1,1))≺(b,i)|m

Bm+1,b,i = •

⋃

(b,i)∈Ẽn:i|m=j,(b,i)|m+1�(ωmkj,(j,1)),

(ωm−1,k,j|m−1
,(j|m−1,1))≺(b,i)|m

Bnbi (4.63)where the �rst equality follows from (4.53) and the seond equality is a onsequeneof (4.61). Now, omparing (4.40) and (4.63) for j = i|m yields the assertion by (4.62).To �nalize the proof let j 6= i|m. By (4.35) we �nd that
Amkj ⊆ •

⋃

b:(b,j)∈Ẽm,0

Bmbj = •

⋃

(c,l)∈Ẽn,0:l|m=j

Bncl (4.64)where the equality holds by (4.61). Using (4.29) the assertion follows by (4.35) and(4.64). The ase m > n follows by symmetry.67



4.3: The Sequene Sn: Building Bloks and PropertiesLemma 4.3.2. For all n ∈ N0 and k ∈ Kn we have
n

•

⋃

s=0

•

⋃

i∈{0,1}s

Aski ⊆ [0, 1). (4.65)Proof. For m < n ∈ N we have by (4.61) that
•

⋃

(b,i)∈Ẽn:b|m+1 6=0,

(b,i)|m=(0,j)

Bnbi = Bm,0,j , j ∈ {0, 1}m, (4.66)suh that (4.29) with (4.66) yields
Bm,0,j ∩ Bp,0,l = ∅ for m 6= p or j 6= l. (4.67)Consequently, we get that

n−1

•

⋃

m=0

•

⋃

j∈{0,1}m

Bm,0,j =
n−1

•

⋃

m=0

•

⋃

j∈{0,1}m

•

⋃

(b,i)∈Ẽn:b|m+1 6=0,

(b,i)|m=(0,j)

Bnbi = •

⋃

(b,i)∈Ẽn

Bnbi, (4.68)and by (4.20) and (4.7) for all i ∈ {0, 1}n it holds that
•

⋃

(b,j)∈Ẽn

Bnbj
•∪ •

⋃

[j]2<[i]2

Bn,0,j = •

⋃

(b,j)≺(0,i)

Bnbj . (4.69)Now, from (4.68) and (4.69) we �nd that for all i ∈ {0, 1}n

∑

(b,j)≺(0,i)

|Bnbj| =

n−1∑

m=0

∑

j∈{0,1}m

|Bm,0,j| +
∑

[j]2<[i]2

|Bn,0,j| (4.70)suh that by (4.16) and (4.70)
Bn,0,i = [0, |Bn,0,i|) +

n−1∑

m=0

∑

j∈{0,1}m

|Bm,0,j | +
∑

[j]2<[i]2

|Bn,0,j|. (4.71)Next, using (4.66) we have for all i ∈ {0, 1}n

•

⋃

b:(b,i)∈Ẽn,b|m=0,
b|m+1 6=0

Bnbi ⊆ Bm,0,i|m, (4.72)and (4.67) and (4.72) yield
n

•

⋃

m=0

Bm,0,i|m ⊇ •

⋃

b:(b,i)∈Ẽn,0

Bnbi, for all i ∈ {0, 1}n. (4.73)68



4.4: A Useful Deomposition of the Sets AnkiWe get from (4.35) that Anki ⊆ •

⋃
b:(b,i)∈Ẽn,0

Bnbi for all k ∈ Kn, i ∈ {0, 1}n, suh thatusing Lemma 4.3.1
n

•

⋃

s=0

•

⋃

i∈{0,1}s

Aski ⊆
n⋃

s=0

⋃

i∈{0,1}s

⋃

b:(b,i)∈Ẽs,0

Bsbi ⊆
n⋃

s=0

s⋃

m=0

⋃

i∈{0,1}s

Bm,0,i|m

=
n⋃

s=0

s⋃

m=0

⋃

j∈{0,1}m

Bm,0,j =
n

•

⋃

s=0

•

⋃

i∈{0,1}s

Bs,0,i

=


0,

n∑

s=0

∑

i∈{0,1}s

|Bs,0,i|


 , k ∈ Kn, (4.74)where the seond inlusion follows by (4.73), the seond equality holds by (4.67), andthe last equality is a onsequene of (4.71). Next, note that

n∑

s=0

∑

i∈{0,1}s

|Bs,0,i| =

n∑

s=0

∑

i∈{0,1}s

2−s

(
max
k∈Z

gs

(
k + [i]22

−s
)
−max

k∈Z

gs−1

(
k + [i]22

−s
))

≤
n∑

s=0

∑

i∈{0,1}s

∑

k∈Z

2−s
(
gs

(
k + [i]22

−s
)
− gs−1

(
k + [i]22

−s
))

=
n∑

s=0

∑

i∈{0,1}n

∑

k∈Z

2−n
(
gs

(
k + [i]22

−n
)
− gs−1

(
k + [i]22

−n
))

=
∑

i∈{0,1}n

∑

k∈Z

2−ngn

(
k + [i]22

−n
)

=

∫
gn(x) dx ≤ 1. (4.75)Here, the �rst equality follows diretly from (4.16), and the �rst inequality is a onse-quene of the fat that for ak ≤ bk ∈ R we have 0 ≤ maxk bk −maxk ak ≤∑k(bk − ak).As to the seond equality we use that for any j ∈ {0, 1}s we have gs (k + [j]22

−s) =
gs (k + [i]22

−n), i ∈ {0, 1}n, i|s = j, and |{i ∈ {0, 1}n : i|s = j}| = 2n−s. The lastinequality re�ets the assumption of unit Fréhet margins of the max-stable proessgenerated by g. Finally, (4.74) and (4.75) yield the assertion.4.4 A Useful Deomposition of the Sets AnkiReall from (4.16) and (4.35) that the sets Bmbi and Amki are de�ned in a joint su-essive way. The following notion of Dn,mki will generalize the sets Amki. In ontrastto (4.35), however, form < n they will require the orresponding sets Bnbi to be already
69



4.4: A Useful Deomposition of the Sets Ankide�ned. More preisely, we put
Dn,mki = •

⋃

b:(b,i)∈Ẽn,0

{
Bnbi ∩

(
[0, 2−nam,k,i|m) +

∑

a:(a,i)∈Ẽn,0:

(a,i)|m�(ω,(i|m−1,1))

|Bnai|

+
∑

(a,j)≺(b,i),
j 6=i

|Bnaj |
)} (4.76)

for all n ∈ N0, m ≤ n, k ∈ Km and i ∈ {0, 1}n where
(ω, (i|m−1, 1)) = (ωm−1,k,i|m−1

, (i|m−1, 1))as in (4.59). In partiular, we readily �nd by (4.76) that
Dn,mki ⊆ •

⋃

b:(b,i)∈Ẽn,0

Bnbi, (4.77)and (4.76) and (4.35) yield that Dn,nki = Anki. Further, for i, j ∈ {0, 1}n, i 6= j, we getby (4.29) and (4.76) that
Dn,mki ∩Dn,p,k+h,j = ∅, for all m, p ≤ n ∈ N0, h ∈ N0. (4.78)Next, using (4.77) and (4.61) we have for all m < n, (b, j) ∈ Ẽm,0 and all i ∈ {0, 1}nwith i|m = j that

Dn,mki ∩ Bmbj = Dn,mki ∩ •

⋃

a:(a,i)∈Ẽn,a|m+1 6=0,

(a,i)|m=(b,j)

Bnai = •

⋃

a:(a,i)∈Ẽn,a|m+1 6=0,

(a,i)|m=(b,j)

(Bnai ∩Dn,mki)suh that, for later referene,
•

⋃

i∈{0,1}n:
i|m=j

(Dn,mki ∩Bmbj) = •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)∈Ẽn,0,(a,i)|m=(b,j),

(a,i)|m+1 6=(0,i|m+1)

(Dn,mki ∩ Bnai) (4.79)where the union on i is disjoint by (4.76) and (4.29).Lemma 4.4.1. For all m < n ∈ N0, k ∈ Km, i ∈ {0, 1}n and j = i|m we have
Dn,mki ⊆ •

⋃

a:(a,j)∈Ẽm,0,

(ω,(j|m−1,1))≺(a,j)�(ω̃,j)

Bmajwhere (ω, (j|m−1, 1)) = (ωm−1,k,j|m−1, (jm−1, 1)) and (ω̃, j) = (ω̃mkj, j).70



4.4: A Useful Deomposition of the Sets AnkiProof. Note �rst that (4.76) and (4.20) give
Dn,mki ∩Bnbi =

( ∑

(a,j)≺(b,i)

|Bnaj | + [0, |Bnbi|)
)
∩
(

[0, 2−nam,k,i|m)

+
∑

a:(a,i)∈Ẽn,0,

(a,i)|m�(ω,(i|m−1,1))

|Bnai| +
∑

(a,j)≺(b,i),
j 6=i

|Bnaj|
)
.

(4.80)
Next, applying (4.36) to (4.80) we �nd similar as in (4.37) that

Dn,mki ∩ Bnbi

=





∑

(a,j)≺(b,i)

|Bnaj | +
[
0,min

{
2−nam,k,i|m

−
∑

a:(ω,(i|m−1,1))≺(a,i)|m,

(a,i)≺(b,i)

|Bnai|, |Bnbi|
})

, (ω, (i|m−1, 1)) ≺ (b, i)|m,

∅, else. (4.81)
Further, using (4.19) repeatedly we get

∑

(ω,(j|m−1,1))≺(a,j)�(ω̃,j)

|Bmaj | = 2n−m
∑

c:(ω,(j|m−1,1))≺(c,i)|m�(ω̃,j)

|Bnci| (4.82)suh that by (4.82) and (4.38) for all j ∈ {0, 1}m and all i ∈ {0, 1}n with i|m = j

2−namkj −
∑

c:(c,i)∈Ẽn,0,

(ω,(j|m−1,1))≺(c,i)|m�(ω̃,j)

|Bnci| ≤ 0. (4.83)Now, by (4.81) and (4.83) for all (b, i) ∈ Ẽn,0 with (b, i)|m � (ω, (i|m−1, 1)) or (ω̃, i|m) ≺
(b, i)|m we have

Dn,mki ∩ Bnbi = ∅. (4.84)Finally, (4.77) and (4.84) yield that for all i ∈ {0, 1}n with i|m = j

Dn,mki ⊆ •

⋃

b:(b,i)∈Ẽn,0,

(ω,(j|m−1,1))≺(b,i)|m�(ω̃,j)

Bnbi = •

⋃

a:(a,j)∈Ẽm,0,

(ω,(j|m−1,1))≺(a,j)�(ω̃,j)

Bmaj (4.85)where the equality holds by (4.61).By (4.81) and (4.85) we may now state for later referene that
|Dn,mki| = 2−nam,k,i|m. (4.86)71



4.4: A Useful Deomposition of the Sets AnkiLemma 4.4.2. For all m < n ∈ N0, k ∈ Km and j ∈ {0, 1}m we have
Amkj = •

⋃

i∈{0,1}n:
i|m=j

Dn,mki.Proof. Note that by (4.40) and Lemma 4.4.1 it is su�ient to show for all (b, j) ∈ Ẽm,0with (ω, (j|m−1, 1)) ≺ (b, j) � (ω̃, j) that
Bmbj ∩Amkj = Bmbj ∩ •

⋃

i∈{0,1}n:
i|m=j

Dn,mki. (4.87)To this end, we shall onsider a twofold ase di�erentiation. First, let 2−mamkj −∑
a:(ω,(j|m−1,1))≺(a,j)≺(b,j) |Bmaj | ≤ |Bmbj|. Then, by (4.37)
Bmbj ∩Amkj =

∑

(a,i)≺(b,j)

|Bmai| +
[
0, 2−mamkj −

∑

a:(ω,(j|m−1,1))≺(a,j)≺(b,j)

|Bmaj |
)

= •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

Bnai (4.88)where the seond equality follows by (4.63) and (4.61). Now, (4.88) and a repeatedappliation of (4.19) yield that for all i ∈ {0, 1}n with i|m = j

∑

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

|Bnai| = 2m−n

(
2−mamkj −

∑

a:(ω,(j|m−1,1))≺

(a,j)≺(b,j)

|Bmaj |
)

= 2−namkj −
∑

c:(ω,(j|m−1,1))≺

(c,i)|m≺(b,j)

|Bnci| (4.89)and by (4.89), in partiular,
∑

c:(c,i)�(a,i),
(c,i)|m=(b,j)

|Bnci| ≤ 2−namkj −
∑

c:(ω,(j|m−1,1))≺(c,i)|m≺(b,j)

|Bnci| (4.90)for all a ∈ Bn with (a, i)|m = (b, j) and (a, i)|m+1 � (ω, (j, 1)). Further, by (4.89) wehave for (ω, (j, 1)) ≺ (a, i)|m+1 that
2−namkj −

∑

c:(ω,(j|m−1,1))≺(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci| ≤ 0. (4.91)
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4.4: A Useful Deomposition of the Sets AnkiNow, by (4.20) we get
•

⋃

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

Bnai = •

⋃

a:(a,i)|m=(b,j),
(a,i)|m+1�(ω,(j,1))

(
[0, |Bnai|) +

∑

(c,l)≺(a,i)

|Bncl|
)

= •

⋃

a:(a,i)|m=(b,j)

( ∑

(c,l)≺(a,i)

|Bncl| +
[
0,min

{
2−namkj

−
∑

c:(ω,(j|m−1,1))≺(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci|, |Bnai|
}))

= •

⋃

a:(a,i)|m=(b,j)

(Dn,mki ∩Bnai) (4.92)where we use (4.90) to (4.91) for the seond equality and (4.81) for the last equality.Next, by (4.88) and (4.92) we �nd that
Bmbj ∩ Amkj = •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)|m=(b,j)

(Dn,mki ∩Bnai)

= Bmbj ∩ •

⋃

i∈{0,1}n:
i|m=j

Dn,mki (4.93)where the last equality holds by (4.79). To onlude the proof onsider now the ase
2−mamkj −

∑
a:(ω,(j|m−1,1))≺(a,j)≺(b,j) |Bmaj | > |Bmbj|. Then, we have by (4.37) that

Bmbj ∩Amkj =
∑

(a,i)≺(b,j)

|Bmai| + [0, |Bmbj |)

= Bmbj = •

⋃

i∈{0,1}n:
i|m=j

•

⋃

a:(a,i)∈Ẽn,a|m+1 6=0,

(a,i)|m=(b,j)

Bnai (4.94)where the seond equality is a onsequene of (4.20) and the last equality holds by(4.61). In partiular, using (4.94) and applying (4.19) repeatedly we �nd that
∑

a:(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

|Bnai| = 2m−n|Bmbj | < 2−namkj −
∑

c:(ω,(j|m−1,1))≺

(c,i)|m≺(b,j)

|Bnci| (4.95)where the inequality merely re�ets the above assumption for the seond ase. Now,for any a ∈ Bn suh that (a, i)|m = (b, j) we have by (4.95) that
2−namkj −

∑

c:(ω,(j|m−1))≺

(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci| > |Bnai|. (4.96)73



4.5: Main ResultHene, we get that
•

⋃

a:(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

Bnai = •

⋃

(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j))

( ∑

(c,l)≺(a,i)

|Bncl| + [0, |Bnai|)
)

= •

⋃

(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

( ∑

(c,l)≺(a,i)

|Bncl| +
[
0,min

{
2−namkj

−
∑

c:(ω,(j|m−1,1))≺

(c,i)|m≺(b,j)

|Bnci| −
∑

c:(c,i)≺(a,i),
(c,i)|m=(b,j)

|Bnci|, |Bnai|
}))

= •

⋃

a:(a,i)∈Ẽn,0,a|m+1 6=0,

(a,i)|m=(b,j)

(Dn,mki ∩ Bnai) (4.97)where the �rst equality holds by (4.20) and the seond equality follows from (4.96).The last equality orresponds to (4.81). Now, similar to the above, the result followsby ombining (4.94) and (4.97) �rst, and using (4.79) to onlude.Note that by (4.77) and (4.29) we get that
•

⋃

j∈{0,1}n

Dn,mkj ∩ •

⋃

b:(b,i)∈Ẽn,0

Bnbi = Dn,mki, i ∈ {0, 1}n, (4.98)suh that (4.98) and Lemma 4.4.2 yield an equivalent representation of Dn,mki, namely
Dn,mki = Am,k,i|m ∩ •

⋃

b:(b,i)∈Ẽn,0

Bnbi for all i ∈ {0, 1}n.By Lemma 4.4.2 and Lemma 4.3.1 we have
•

⋃

j∈{0,1}m

Amkj = •

⋃

i∈{0,1}n

Dn,mki, m ≤ n ∈ N0, k ∈ Km. (4.99)Further, Lemma 4.4.2 yields that Dn,mki ⊆ Amkj for all j ∈ {0, 1}m, k ∈ Km and all
i ∈ {0, 1}n with i|m = j. Then, the fat that for all n ∈ N0, k ∈ Kn and i ∈ {0, 1}n wehave

Dn,mki ∩Dn,pki = ∅, m < p ≤ n, (4.100)holds by Lemma 4.3.1.4.5 Main ResultIn the following theorem we shall make use of the sets Sn given in (4.5) where theunions are now seen to be disjoint by Lemma 4.3.2.74



4.5: Main ResultTheorem 4.5.1. The sequene of sets (Sn)n∈N0 ↑ S is monotoni, and
2−n+1

∑

k∈Kn

∑

i∈{0,1}n

n∑

s=0

as,k,i|s − φ(h | gn) = |Sn ∩ (Sn − h)|, n ∈ N0, h ∈ Z.Proof. By Lemma 4.3.2 we have
|Sn ∩ (Sn − h)| =

∑

k∈Z

∣∣∣∣∣∣

n

•

⋃

s=0

•

⋃

i∈{0,1}s

Aski ∩
n

•

⋃

s=0

•

⋃

i∈{0,1}s

As,k+h,i

∣∣∣∣∣∣

=
∑

k∈Z

∣∣∣∣∣∣
•

⋃

i∈{0,1}n

n

•

⋃

s=0

Dn,ski ∩ •

⋃

i∈{0,1}n

n

•

⋃

s=0

Dn,s,k+h,i

∣∣∣∣∣∣

=
∑

k∈Z

∣∣∣∣∣∣
•

⋃

i∈{0,1}n

( n

•

⋃

s=0

Dn,ski ∩
n

•

⋃

s=0

Dn,s,k+h,i

)∣∣∣∣∣∣

=
∑

k∈Z

∑

i∈{0,1}n

∣∣∣∣∣
n

•

⋃

s=0

Dn,ski ∩
n

•

⋃

s=0

Dn,s,k+h,i

∣∣∣∣∣ (4.101)where the seond equality holds by (4.99), and (4.78) gives the third equality. Next,note that (4.76) and (4.100) yield
n

•

⋃

s=0

Dn,ski = •

⋃

b:(b,i)∈Ẽn,0

{
Bnbi ∩

( ∑

(a,j)≺(b,i),
j 6=i

|Bnaj |

+
n

•

⋃

s=0

(
[0, 2−nas,k,i|s) +

∑

a:(a,i)∈Ẽn,0,

(a,i)|s�(ω,(i|s−1,1))

|Bnai|
))}

= •

⋃

b:(b,i)∈Ẽn,0

{
Bnbi ∩

( ∑

(a,j)≺(b,i),
j 6=i

|Bnaj | +
[
0, 2−n

n∑

s=0

as,k,i|s

))} (4.102)where the seond equality holds by (4.59) and (4.19). Using (4.102) we get that
n

•

⋃

s=0

Dn,ski ∩
n

•

⋃

s=0

Dn,s,k+h,i =
n

•

⋃

s=0

Dn,skiif and only if
n∑

s=0

as,k,i|s ≤
n∑

s=0

as,k+h,i|s,75



4.5: Main Resultfor any n ∈ N0, h ∈ Z, k ∈ Kn and i ∈ {0, 1}n. Combining the latter result with (4.101)and (4.4) yields the assertion where
∣∣∣∣

n

•

⋃

s=0

Dn,ski

∣∣∣∣ = 2−n

n∑

s=0

as,k,i|sfollows diretly from (4.86).Corollary 4.5.1. For any extremal oe�ient funtion φ of a dissipative max-stableproess on Z whose spetral funtion g may be approximated by (4.3) there exists ameasurable set S ⊂ R suh that
2 − φ(h | g) = |S ∩ (S − h)|, h ∈ Z.Proof. Using (4.3) we �nd that

∫
gn(x)dx = 2−n

∑

k∈Kn

∑

i∈{0,1}n

n∑

s=0

as,k,i|s → 1 (n→ ∞)by the fat that gn ↑ g, and by ∫ g(x)dx = 1. Now, the assertion follows diretly fromTheorem 4.5.1.The following orollary extends the above result to general dissipative max-stable pro-esses, i.e. the assumption (4.3) on the spetral funtion g is abandoned. As indiatedin Setion 4.1 its proof may be based on the onstrution of a suitable funtion ξ suhthat gn ↑ ξ and φ(· | ξ) = φ(· | g), see [19℄ for details.Corollary 4.5.2 ([19, Corollary 3℄). For any extremal oe�ient funtion φ of a dis-sipative max-stable proess on Z there exists a measurable set S ⊂ R suh that
2 − φ(h) = |S ∩ (S − h)|, h ∈ Z.
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Chapter 5A Novel Charateristi for theDependene Struture of ClusteredExtremes
5.1 Exploring Extremal ClustersIn the preeding hapters we haraterized extremal lusters of stationary max-stableproesses by basially two well-known summary measures. We disussed the extremalindex that re�ets the expeted size of suh lusters and we studied the extremaloe�ient funtion that desribes bivariate dependenies at all lags of suh proesses.In the following we will abandon the restrition to max-stable proesses and extendthe study of extremal measures to the rih lass of proesses that lie in the domain ofattration of a max-stable proess, f. [22℄. Note that the latter assumption will hold inpartiular for the important GARCH family of time series models that we shall onsiderin detail below. In the �rst plae, however, we shall turn to a more general problem.That is, we will ritially examine the informational value of the existing measures θand φ with respet to typial questions about the struture of extremes that mayome up in many appliations. Our reasoning will then give rise to the proposal of anovel summary measure for extremal dependene. Note that the urrent hapter hasbeen motivated to a large extent by the study of homometri patterns in Setion 3.3,i.e. suh simple luster types that are not distinguishable by the extremal oe�ientfuntion. As in that setion we used a rather tehnial setup we will larify below bya brief example the possible impliations of suh patterns in pratie. Although weshall for onveniene inorporate our disussion into a stylized �nanial ontext whoseextremal behavior has been studied in detail [41, 20℄ we remark that all arguments willlikewise over further �elds of appliation. To begin with, it appears to be reasonableto require an appropriate measure for the within extremal luster struture to addressthe following questions:(Q1) What is the probability for a seond, third et. extreme event ouring two, three77



5.1: Exploring Extremal Clusters
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Figure 5.1.1: Volatility lustering for the daily absolute log returns of the S&P 500 index from 01.04.80 to 31.03.10(7569 reords). The marked extreme events are enlarged in the respetive bottom pitures and orrespond to the �BlakMonday� in 1987, the Russian �nanial risis in 1998 and the dot-om bubble burst in 2000. The remaining event in2008 is surrounded by the unusual volatility attributable to the so-alled subprime mortgage risis.et. days after the outset of a �nanial risis?(Q2) What is the struture of a luster of high-level exeedanes and how does theourse of extreme events (i.e. the evolution of a stress period or risis over time)typially look like?(Q3) How may the memory spread of �nanial markets with respet to shoks beharaterized, i.e. how long does a risis typially last?Hene, many possible questions fous on expeted events in the near future given a�rst extreme event today (i.e. the beginning of a temporary shok or risis). Notethat the above setup may readily be extended to a multivariate approah that wewill not onsider here. To illustrate the relevane of these matters, in Figure 5.1.1 wedisplay the daily absolute logarithmi returns of the S&P 500 index ranging from 1980to 2010. We understand that an extremal luster is formed by several adjaent high-level exeedanes where di�erent lusters are generally separated by longer periods78



5.1: Exploring Extremal Clusters
k 1 2 3 4 5 6 7 8 9 10 11 12

P1 1/3 1/3 1/3 1/3 1/3
P2 1/3 1/3 1/3
P3 1/6 1/6 1/6 1/6 1/6 1/6
P4 1/6 1/6 1/6 1/6 1/6 1/6Table 5.1.1: Coe�ients ak of the M2 proesses P1 to P4 disussed in Example 5.1.1.of low levels. Here, we fous on the within-luster dependene struture and assumeobservations in di�erent lusters to be independent. The ourses of four typial lustersindiated by an arrow in the upper plot are depited in the bottom sub�gures. Apartfrom an obvious volatility lustering at high levels they also suggest the presene ofa roughly ommon pattern. In partiular, the outset of eah luster of extremes isfairly well distinguishable in the �rst three ases whih illustrates the relevane ofonditioning on the beginning of a risis when judging probabilities for future extremeevents. In ontrast, the event in 2008 is aompanied by an unusually long-lastingvolatility luster whih ompliates the identi�ation of suh a de�nite starting point.Still, in all four sub�gures we �nd that just giving the average luster size (whereusing [64℄ we get that θ ≈ 1/3 , see also Example 5.3.1) does not reveal the haraterististruture of extreme events that is evident from the above plots. More preisely, thelatter show a learly visible seond peak �ve to six trading days after the start of eahluster. In pratie, e.g. for �nanial institutions the expeted loation of suh eventswithin a luster of extremes is essential in order to e�iently reat to the patternof inherent risk they desribe. We shall therefore require a suitable harateristithat reahes beyond the extremal index to reliably indiate strength and loation ofsubsequent extreme events within a risis. The shortomings of the extremal oe�ientfuntion in this regard may best be understood by the following example.Example 5.1.1. Consider the M2 proesses P1 to P4 that are given by their o-e�ients ak aording to Table 5.1.1. Reall from (3.28) that the oe�ients in Ta-ble 5.1.1 in partiular determine the struture of the extremal lusters for the respetiveproesses, also alled their signature patterns [68℄. Aording to Setion 2.2 the or-responding extremal indies are given by θP1 = θP2 = 1/3 and θP3 = θP4 = 1/6.Further, we ontrast the extremal oe�ient funtion φ with a new harateristi γ inTable 5.1.2. We will give a formal de�nition of the latter in Setion 5.2 but at thispoint it will be su�ient to preliminarily reall the representation given in Chapter 1,i.e.

γ(h | Y ) = lim
u→∞

P (Yh > u | Y0 > u, and Y0 �rst event in the extremal luster) (5.1)for all h ∈ N. For onveniene we repeat (3.25) where the extremal oe�ient funtionis given by
2 − φ(h | Y ) = lim

u→∞
P (Yh > u | Y0 > u), h ∈ Z,whih highlights the similar onstrution of the two harateristis. It is thereforeeven more remarkable that their interpretation will di�er substantially. First and79



5.2: Properties of Dependene Measures
h 0 1 2 3 4 5 6 7 8 9 10 11 12

P1 1 1/3 1/3 1/3 0 · · ·
2 − φ(h)

P2 1 1/3 1/3 1/3 0 · · ·
P1 1 1 0 1 0 · · ·

γ(h)
P2 1 0 1 1 0 · · ·
P3 1 1/3 1/3 1/6 1/6 1/3 1/3 1/6 1/6 1/6 1/6 1/6 0

2 − φ(h)
P4 1 1/3 1/3 1/6 1/6 1/3 1/3 1/6 1/6 1/6 1/6 1/6 0
P3 1 1 1 0 0 0 1 0 1 0 0 1 0

γ(h)
P4 1 1 0 0 0 0 1 1 0 1 0 1 0Table 5.1.2: Extremal measures φ and γ for proesses P1 to P4 disussed in Example 5.1.1.obvious, note that the limiting probabilities de�ning φ are not tied to the beginningof an extremal luster whih is in ontrast to (Q1) disussed above. Moreover, wewill show in Corollary 5.2.2 below that γ traes the evolution of an extremal lusterin the way suggested by (Q1) and (Q2). In partiular, Table 5.1.2 shows that for P1and P2 the extremal oe�ient funtion is unable to distinguish between a simplere�etion of the proesses whereas γ exatly mirrors the pattern of extremes. Theproblem, however, is not restrited to the rather obvious ase of ongruent patternsas an be seen from the behavior of φ for P3 and P4 whih represent an example ofthe homometri nonongruent patterns disussed in Setion 3.2. Here, we �nd onemore that γ onveys the information requested by (Q1) and (Q2). Conerning (Q3),however, Table 5.1.2 suggests that both φ and γ are suitable harateristis in orderto re�et the duration of extremal lusters.The above simple example underlines the ability of γ to draw a priori onlusions aboutthe shape of an extremal luster. Note that from the point of view of a �nanial in-stitution senarios of the kind P1 and P2 will learly require a di�erent managementof risk that is not distinguishable by the extremal oe�ient funtion. More preisely,under P1 measures against two subsequent shoks and hene a larger risk at the be-ginning of the luster will have to be taken from the outset whereas under P2 thoseevents will our only at the end of the luster. In partiular, they will be signalized bya single extreme event two days in advane. In addition to the favourable propertiesof γ with respet to questions of the above kind the new harateristi will turn outto have a remarkably easy relation with the extremal index whih is not the ase forthe extremal oe�ient funtion. We will disuss those questions in Setion 5.2 wherewe will also study further properties both of γ and φ. In Setion 5.3 we will evaluatethe above measures in the GARCH(1,1) ase using a modi�ed tail hain approah. Weshall onlude with an example regarding the above S&P 500 data set.5.2 Properties of Dependene MeasuresIn the following we will study the above extremal measures for stationary proesses inthe domain of attration of a max-stable proess, see [22℄ for details. To this end, we will80



5.2: Properties of Dependene Measuresassume throughout for the stationary stohasti proess (Xt)t∈Z that a orrespondingmax-stable limiting proess (Yt)t∈Z exists, f. (2.1). More preisely, we will require all�nite dimensional distributions of (Xt) to belong to the maximum domain of attrationof a multivariate extreme value distribution. Here, without loss of generality we mayrestrit the latter to standard Fréhet margins, i.e. FY0(x) = exp(−x−1), x > 0. It willbe advantageous later on to over the above assumptions equivalently by means of amultivariate regular variation ondition, i.e.
xP

((
X1

x
, . . . ,

Xm

x

)
∈ ·
)

v→ µ(·), (x→ ∞), (C1)for a Radon measure µ on [−∞,∞]m\{0}m and allm ∈ N. Here, by v→ we denote vagueonvergene, see e.g. [50, 41℄ for details. Throughout, we will put MS = maxt∈S Xt foran index set S whereM∅ = 0 andMm,n = M{m,...,n}, m ≤ n. Further, we will frequentlymake use of the sets Sm = {−m, . . . ,−1}, Sm,h = Sm ∪ {h} and Sm,0,h = Sm,h ∪ {0}.We shall refer to the familiar extremal index θ of the proess (Xt) using a partiularlyillustrative de�nition, i.e.
θ(h) = lim

n→∞
P (Xt ≤ n, t ∈ Srn,h | X0 > n), h ∈ Z, (5.2)suh that θ(−1) = θ orresponds to (2.3) forD = 1 under a weak mixing ondition [45℄,see also [61℄. Here, rn → ∞ is a suitable sequene that, in partiular, satis�es rn/n→ 0as n→ ∞. The limiting probability in (5.2) also provides an alternative interpretationof the extremal index in terms of the probability of a high-level exeedane being the�rst (last) in a luster of extremes. Reall that in general we have θ ∈ [0, 1] where thease θ = 0 may reasonably be exluded a priori in most appliations. We will thereforeassume throughout that for some inreasing sequene rn with rn/n → ∞ as n → ∞the well-known ondition

lim
m→∞

lim sup
n→∞

P (M−rn,−m−1 > n | X0 > n) = 0 (C2)holds, see e.g. [45℄, whih restrits the in�uene of an extreme observation over time.In partiular, (C2) is su�ient for θ > 0, and it guarantees the existene of the limitin (5.2), f. Proposition 5.2.1. Note that (C2) may be stronger than neessary butholds for the important lass of GARCH(1,1) proesses that we will onsider below,f. Corollary 5.3.1. See also [58℄ for further examples. We will show that the followingmore general onept
θm,n(h) = P (Xt ≤ n, t ∈ Sm,h | X0 > n), h ∈ Z, (5.3)is su�ient under (C2) in order to investigate any of the extremal measures disussedabove.Proposition 5.2.1. Under onditions (C1) and (C2) we have that

θ(h) = lim
m→∞

lim
n→∞

θm,n(h), h ∈ Z.In partiular, θ = limm→∞ limn→∞ θm,n(−1) > 0.81



5.2: Properties of Dependene MeasuresProof. Note �rst that the limit θm(h) = limn→∞ θm,n(h) exists by (C1). Consequently,for all m ∈ N, h ∈ Z, we have
0 ≤ θm(h) − lim sup

n→∞
P (Xt ≤ n, t ∈ Srn,h | X0 > n)

≤ θm(h) − lim inf
n→∞

P (Xt ≤ n, t ∈ Srn,h | X0 > n)

= lim sup
n→∞

[
θm,n(h) − P (Xt ≤ n, t ∈ Srn,h | X0 > n)

]

= lim sup
n→∞

P (M−rn,−m−1 > n,Xt ≤ n, t ∈ Sm,h | X0 > n)

≤ lim sup
n→∞

P (M−rn,−m−1 > n | X0 > n).Now, by (C2) the r.h.s. tends to 0 as m→ ∞, and we get that
θ(h) = lim

m→∞
θm(h) = lim

m→∞
lim

n→∞
θm,n(h), h ∈ Z,as θm(h) dereases in m. Finally, the fat that θ > 0 follows from the disussion afterCondition 10.8 in [2℄.Note that under the onditions of Proposition 5.2.1 we may in general not onlude that

θ(h) > 0, h ∈ N. We will now give a formal de�nition of the extremal harateristisdisussed in Setion 5.1 for stationary proesses in the domain of attration of a max-stable proess. First, for all h ∈ Z the extremal oe�ient funtion following [56℄ isgiven by
φ(h) = 1 + θ0(h) = 2− lim

n→∞
P (Xh > n | X0 > n) = 2− lim

n→∞
P (Yh > n | Y0 > n) (5.4)where the third equality by (C1) holds for the max-stable limiting proess (Yt), f. (3.25).Conerning the questions raised in Setion 5.1 it may be bene�ial to replae (5.4) bya similar probability that is tied to the �rst extreme event in a luster as in (5.1).We therefore propose to modify the above onept and onsider as a losely relatedharateristi the funtion γ(h) whih we shall de�ne by

γ(h) = 1 − θ(h)

θ
= lim

m→∞
γm(h), h ∈ N0, (5.5)where γm(h) = limn→∞ P (Xh > n | X0 > n,Xt ≤ n, t ∈ Sm). Although De�ni-tions (5.4) and (5.5) appear to be losely related, in the following we will disuss thattheir properties may di�er substantially.To begin with, note that θ and φ(h), h ∈ N, are obviously invariant under time reversalof the proess (Xt), i.e. θ(Xt, t ∈ Z) = θ(X−t, t ∈ Z) and φ(h) = φ(−h), but that ingeneral neither θ(h | Xt, t ∈ Z) = θ(h | X−t, t ∈ Z) nor γ(h | Xt, t ∈ Z) = γ(h |

X−t, t ∈ Z), h ∈ N, f. Example 5.1.1. From the above de�nitions we readily have that
0 ≤ θ(h) ≤ θ ≤ φ(h) − 1 ≤ 1for eah h ∈ N. The following theorem gives an exat relationship between the sum ofthe funtion γ(h), h ∈ N0, and the extremal index.82



5.2: Properties of Dependene MeasuresTheorem 5.2.1. Under onditions (C1) and (C2) we have that
∑

h∈N0

γ(h) =
1

θ
. (5.6)Proof. By (5.5) it su�es to show that ∑h∈N0

(θ − θ(h)) = 1. To this end, note thatfor all h ∈ N we have
θ − θ(h) = lim

m→∞
lim

n→∞
P (X−m−h ≤ n, . . . , X−1−h ≤ n, X−h > n | X0 > n)

= lim
m→∞

lim
n→∞

P (X−m ≤ n, . . . , X−1−h ≤ n, X−h > n | X0 > n)

− lim
m→∞

lim
n→∞

P (M−m−h,−m−1 > n, X−m ≤ n, . . . , X−1−h ≤ n,

X−h > n | X0 > n)where the latter term is bounded from above by 0 through (C2). Now, for all p ∈ Nwe get that
p∑

h=0

(θ − θ(h)) = lim
m→∞

lim
n→∞

P (X−m ≤ n, . . . , X−p−1 ≤ n | X0 > n)where
lim
p→∞

lim
m→∞

lim
n→∞

P (X−m ≤ n, . . . , X−p−1 ≤ n | X0 > n)

≥ lim inf
n→∞

P (X−rn ≤ n, . . . , X−q−1 ≤ n | X0 > n) for all q ∈ N.Finally, ondition (C2) yields that the r.h.s. tends to 1 as q → ∞.In partiular, Theorem 5.2.1 highlights the fat that under the above onditions θ = 1is equivalent to γ(h) = 0, h ∈ N. Note also that, depending on the point of view, (5.6)may provide a re�ned interpretation of the extremal index, see [20, Setion 8.1.2℄ for adisussion. Further, the proof of Theorem 5.2.1 yields the following limiting relationshipbetween θ and θ(h).Corollary 5.2.1. Under the onditions of Theorem 5.2.1 we have that
θ = lim

n→∞

1

n

n∑

h=0

θ(h).In the following we shall onsider the M3 representation for dissipative max-stableproesses as in (3.28). We will �rst derive the orresponding expressions for the aboveextremal harateristis. 83



5.2: Properties of Dependene MeasuresTheorem 5.2.2. For an M3 proess A de�ned by its oe�ients ajp ≥ 0, j ∈ I, p ∈ Z,we have
θ(h | A) =

∑

j∈I

∑

p∈Z

(ajp − āj,p,h)+, h ∈ Z,where āj,p,h := max{aj,−∞, . . . , aj,p−1, aj,p+h}.Proof. By de�nition of A we �nd that
P (At ≤ n, t ∈ S) = P (Zj,t−k ≤ n/ajk, j ∈ I, k ∈ Z, t ∈ S)

= P (Zj,p ≤ n/ajk, j ∈ I, p ∈ Z, k ∈ S + p)

= exp

{
− 1

n

∑

j∈I

∑

p∈Z

max
k∈S+p

ajk

} (5.7)where from the fat that ∑j

∑
k ajk = 1 it follows immediately that
∑

j∈I

∑

p∈Z

max
k∈S+p

ajk ≤ |S|. (5.8)Moreover, for all j ∈ I we have
∑

p∈Z

max
k∈Sm,0,h+p

ajk =
∑

p∈Z

max
k∈Sm,h+p

ajk +
∑

p∈Z

(
ajp − max

k∈Sm,h+p
ajk

)
+
. (5.9)Now, using (5.3), and (5.7) to (5.9) we �nd that

θm(h) = lim
n→∞

exp

{
− 1

n

∑

j∈I

∑

p∈Z

max
k∈Sm,h+p

ajk

}

· lim
n→∞

(
1 − exp

{
− 1

n

∑

j∈I

∑

p∈Z

(
ajp − max

k∈Sm,h+p
ajk

)
+

})

1 − exp{−1/n}

=
∑

j∈I

∑

p∈Z

(
ajp − max

k∈Sm,h+p
ajk

)

+

.Finally,
θ(h) = lim

m→∞
θm(h) =

∑

j∈I

∑

p∈Z

(ajp − āj,p,h)+,where āj,p,h = limm→∞maxk∈Sm,h+p ajk.Note in partiular that Theorem 5.2.2 generalizes the well-known fat that θA = θ(−1 |
A) =

∑
j∈I maxp∈Z ajp, f. [61℄. As a useful orollary of Theorems 5.2.1 and 5.2.2 to anydependene funtion γ(h), h ∈ N0, we are now able to assoiate a simple M2 exampleproess Ã = Ã(γ) that represents γ(h). 84



5.2: Properties of Dependene MeasuresCorollary 5.2.2. Assume (C1) and (C2). For any funtion γ(h), h ∈ N0, aordingto (5.5) let the M2 proess Ã be given by the oe�ients
ãk =





γ(k)∑
h∈N0

γ(h)
= θγ(k), k ∈ N0,

0, −k ∈ N.Then, we have that γ(h) = γ(h | Ã), h ∈ N0.Note that Ã has the following useful properties that an be easily seen. First, we �ndthat ã0 = θ ≥ ãh, h ∈ N0. That is, any extremal luster of Ã starts with a valuedriven by ã0 that dominates the following realizations in the same luster. Seond,note that γ(h) = Ãh/Ã0 = ãh/ã0, h ∈ N0, where Ã0 represents the starting point ofthe urrent luster. In partiular, we also have that γ(h) = 0 is equivalent to ãh = 0,for all h ∈ N. To sum up, in order to illustrate and atually visualize the impliationsof γ(h) for arbitrarily omplex proesses it may be useful to study the simple proess Ãinstead. Note that the possibility to readily state a valid example proess for any validfuntion γ(h) is in sharp ontrast to the di�ulties enountered for the reonstrutionof example proesses onforming to an extremal oe�ient funtion φ(h), see Chapter 3.Further, as opposed to the latter harateristi whih is neessarily positive de�nite,we get from Corollary 5.2.2 that any summable funtion γ : N0 → [0, 1] with γ(0) = 1is a valid suh extremal dependene funtion.In ontrast to Theorem 5.2.1 no de�nite interrelation between the extremal index θ andthe extremal oe�ient funtion φ(h) exists. In partiular, θ may not be reonstrutedfrom φ. However, we are able to state a sharp lower bound in terms of θ on the sumof 2 − φ(h), h ∈ N.Theorem 5.2.3. For any max-stable proess we have that
⌊1/θ⌋ (1 − (1 + ⌊1/θ⌋)θ/2) ≤

∑

h∈N

(2 − φ(h)) . (5.10)Proof. Note �rst that any max-stable proess with summable funtion 2−φ(h), h ∈ N,is dissipative by Proposition 3.3.1. Then, by Theorem 3.1 in [52℄ we have in partiularthat θ > 0. The proof may therefore be based on the M3 representation as in (3.28).Let A(θ) be the lass of M3 proesses A given by the oe�ients ajk, j ∈ I, k ∈ Z,with extremal index θ > 0. Put
ΞA =

∑

h∈N

(2 − φ(h | A)) , A ∈ A(θ),where φ(h | A) =
∑

j∈I

∑
k∈Z

maxl∈{0,h}+k ajl, see Theorem 5.2.2. Next, note that forall h ∈ N and all j ∈ I we have
2
∑

k∈Z

ajk −
∑

k∈Z

max
l∈{0,h}+k

ajl =
∑

k∈Z

ajk [1(ajk < aj,k−h) + 1(ajk ≤ aj,k+h)]85



5.2: Properties of Dependene Measuressuh that by ∑j∈I

∑
k∈Z

ajk = 1 we get
ΞA =

∑

j∈I

∑

k∈Z

ajk

∑

h∈N

[1(ajk < aj,k−h) + 1(ajk ≤ aj,k+h)]

=
∑

k∈N

(k − 1)
∑

j∈I

aj,(k). (5.11)Here, for all j ∈ I we denote by aj,(k) the k-th largest oe�ient (inluding ties). Next,for any A ∈ A(θ) let
bk =

∑

j∈I

aj,(k), k ∈ N, (5.12)and all other oe�ients zero, de�ne the M2 proess B = B(A) ∈ A(θ) suh thatby (5.11) we have ΞA = ΞB. Let further the M2 proess B∗ ∈ A(θ) be given by b∗k = θfor k = 1, . . . , ⌊1/θ⌋ = q, b∗q+1 = 1−θq and all other oe�ients zero. Put δk = b∗k −b(k)where ∑

k∈N

δk = 0 (5.13)and
δk ≥ 0 for k = 1, . . . , q. (5.14)Here, the latter inequality holds by the fat that θ = maxk bk, f. Theorem 5.2.2.Further,
δk ≤ 0 for k = q + 2, . . . , (5.15)follows from b∗k = 0 for k = q + 2, . . .. Now,

ΞB∗ − ΞB =

q+1∑

k=2

(k − 1)b∗k −
∑

k∈N

(k − 1)b(k) =
∑

k∈N

(k − 1)δk ≤ 0by (5.13) to (5.15). Finally, as a onsequene of (5.11) we have that ΞB∗ = ⌊1/θ⌋{1 −
(1 + ⌊1/θ⌋)θ/2}.Remark 5.2.1. It an be seen by a simple example that a �nite upper bound for ther.h.s. of (5.10) does not exist for a �xed extremal index θ < ∞. To this end, onsideran M2 proess with a0 = θ, a1 = . . . = aN = (1 − θ)/N . Then, by (5.11) we have that

∑

h∈N

(2 − φ(h)) =
N−1∑

n=0

((1 − θ) − n(1 − θ)/N)

= (1 − θ)(N + 1)/2 → ∞ (N → ∞).Remark 5.2.2. To onlude this setion we remark that proesses with γ(h) = 2−φ(h),
h ∈ N, are easily onstruted. Let, for example, an M2 proess with θ = 0.5 bede�ned by the oe�ients ak = 0.5k, k ∈ N, and all other oe�ients zero. Then, byTheorem 5.2.2 we �nd that γ(h) = 2 − φ(h) = 0.5h, h ∈ N0.86



5.3: Appliation: GARCH(1,1)5.3 Appliation: GARCH(1,1)Reall from Figure 5.1.1 the stylized fat that �nanial returns tend to re�et a �u-tuating and at the same time lustered volatility over time. The lass of GARCH(p, q)proesses [21, 5, 63℄ was originally proposed in order to model this behavior. The �nd-ing that the family of GARCH models also parallels real �nanial data through bothheavy tails for its one-dimensional margins as well as a lustering of extreme values hasfurther inreased its appeal. In ontrast, the latter property does not hold for the lassof so-alled stohasti volatility proesses [11℄. In general, for the GARCH family toour knowledge there are no analyti expressions for the extremal measures disussed inSetion 5.2. We will therefore onsider a suitable simulation tehnique that is based ona so-alled tail hain approah studied by [57℄. The tail hain is a ertain proess thatmirrors the behavior of the original sequene when started at a high level [58℄. It istherefore of partiular interest for the evaluation of extremal harateristis. The tailhain resembles a random walk and, in partiular, may be looked at in a forward as wellas bakward diretion. Our setup generalizes a similar method proposed by [15℄ and[30℄ whose algorithm fousses on the square of the original proess in an intermediatestep. It is therefore restrited to GARCH models with symmetri innovations whereasour approah may readily be extended to the asymmetri ase that we will, however,not onsider here. In addition, our proedure also overs the abovementioned simulta-neous evaluation of the forward and bakward behavior of the GARCH sequene whenstarted at a high value. Note that this property will be indispensible for the evaluationof the harateristi γ(h), h ∈ N, with the bakward diretion being in general moretedious. In the following, we will restrit to the GARCH(1,1) model only as a general-ization of the tail hain approah to higher order GARCH(p, q) proesses has not beenonsidered yet. Moreover, from an applied point of view it appears to be di�ult forany volatility model to outperform the GARCH(1,1) approah [24℄ suh that the latteris of speial pratial importane. Note also that we over the well-known ARCH(1)model in terms of a GARCH(1,0) setup. The GARCH(1,1) model is de�ned by
Xt = σtηt, t ∈ Z, (5.16)where for the volatility sequene of onditional varianes we have that

σt =
√
α0 + (α1η2

t−1 + β)σ2
t−1 = Φ(σt−1, ηt−1). (5.17)Here, (ηt)t∈Z is a sequene of i.i.d. standard normal distributed random variables where

ηt and σt are independent for �xed t, and
lim
s→∞

s−1Φ(s, z) = φ(z) = (α1z
2 + β)1/2. (5.18)We shall heneforth assume that α0 > 0 in order to prelude the possibility of adegenerate solution to (5.16). Let further α1 > 0, β ≥ 0 and α1 + β < 1 suh thatthere exist stritly stationary proesses whih ful�ll the onditions (5.16) and (5.17),87



5.3: Appliation: GARCH(1,1)f. [44℄. Note that the ase β = 0 orresponds to the ARCH(1) model mentioned above.In order to evaluate the extremal measures θ, φ(h), h ∈ Z, and γ(h), h ∈ N, disussedin Setion 5.2 we will onentrate on the joint limiting distribution
lim
x→∞

L
(
X−l

x
, . . . ,

Xu

x

∣∣∣∣ X0 > x

) (5.19)where l, u ∈ N0. Here and in the following we will denote by L(X) the law of a randomvetor X. Note that an appliation of the abovementioned tail hain approah requiresa �rst order Markov struture of the underlying proess. We shall therefore make useof the deomposition suggested by (5.16), and will initially fous only on the tail hainof the volatility sequene (5.17) as a separate proess whih is �rst order Markov. Wewill then apply a result obtained in [27℄ that overs the replaement of the onditioningevent σ0 > x that is present in the tail hain of the volatility sequene by the event
|X0| > x, i.e. a ondition on the related overall proess (Xt). Based on this �ndingwe will show in a �nal step that by the speial struture of (Xt) it is straightforwardto reover the desired distribution in (5.19). The following well-known lemma (seee.g. [42, Theorem 2.1℄) shows that the random variables |X0| and σ0 are both regularlyvarying with a ertain index 2κ > 0.Lemma 5.3.1. For any stationary solution of (5.16) the equation

E
([
α1η

2
0 + β

]κ)
= 1has a unique positive solution. Further, for all y > 0 we then have that

lim
x→∞

P (|X0| > yx)

P (|X0| > x)
= lim

x→∞

P (σ0 > yx)

P (σ0 > x)
= y−2κ.The following proposition establishes a preliminary tail hain for the (nonnegative)volatility sequene (5.17) that will form the basis for an appropriate tail hain of theproess (Xt) in (5.31) below.Proposition 5.3.1 (Theorem 5.2, [57℄). Let the stationary proess (σt)t∈Z be given by(5.17). Then, for all l, u ∈ N0, as x→ ∞,

L
(σ−l

x
, . . . ,

σu

x

∣∣∣ σ0 > x
)
→ L (σ̂−l, . . . , σ̂u)where

σ̂±t =
t∏

i=0

A±i, t ∈ N0, (5.20)
P (A0 > x) = x−2κ, x ≥ 1, (5.21)

At = φ(η̂t−1) =
(
α1η̂

2
t−1 + β

)1/2
, t ∈ N, (5.22)88



5.3: Appliation: GARCH(1,1)for an i.i.d. sequene (η̂t)t∈N with the same distribution as η0 in (5.16). Further, A0is independent of all other variables, and A−t, t ∈ N, are i.i.d. symmetri randomvariables independent of (At)t∈N where for 0 < x ≤ β−1/2 we have
P (A−1 ≤ x) =

1

2
+

1√
2π

∫ ∞
“

x−2−β
α1

”1/2
(α1z

2 + β)κ exp

(
−1

2
z2

)
dz. (5.23)Proof. By Lemma 5.3.1 and (5.17) the proess (σt) satis�es the onditions of Theo-rem 5.2 in [57℄. Following his proof whih is substantially simpli�ed by the symmetryof (5.16) it remains to show that (σ̂t/σ̂0)t∈Z represents a so-alled bak and forth tailhain BFTC(2κ, ν). The latter orresponds to (5.20) by (4.4) and (4.5) in Segers where

L(At) = ν and L(A−t) = ν∗, t ∈ N, for a ertain relation between the measures ν and
ν∗, and A0 is independent of A±t, t ∈ N. Here, (5.21) is equivalent to (5.3.ii) in Segers.Further, by (2.6) and (4.4) in Segers we get (5.22). Finally, the measures ν and ν∗ arerelated via (3.7) in Segers whih yields (5.23) by the fat that

E(f(A−1)) = E
[
1
(
(α1η

2
1 + β)−1/2 ≤ x

)
(α1η

2
1 + β)κ

]
= P (A−1 ≤ x)for f(z) = 1(z ≤ x).Lemma 5.3.2. For the stationary proesses (Xt) and (σt) given by (5.16) and (5.17)there is a random vetor (σ̃0, η̃0) suh that

lim
x→∞

L
(σ0

x
,
σ1

x

∣∣∣ |X0| > x
)

= L (σ̃0, σ̃1)where
σ̃1 = σ̃0φ(η̃0) (5.24)and

P (σ̃0 >y, η̃0 ≤ x) =

y−2κ

E(η2κ
0 )

∫ x

−∞

[
1(1 ≥ y|z|)(|z|y)−1 + 1(1 < y|z|)

]−2κ
Fη0(dz)

(5.25)for all y > 0 and x ∈ R.Proof. By Lemma 5.3.1 we have that
lim
x→∞

P

( |X0|
x

> 1

∣∣∣∣ η0 = z,
σ0

x
> y

)
=
[
1(1 ≥ y|z|)(|z|y)−1 + 1(1 < y|z|)

]−2κ
.Now, applying suessively Lemmata 3.3.2 and 3.3.1 in [27℄ yields the assertion.As to the symmetri distribution of η̃0 it follows from (5.25) that

P (η̃0 ≤ x) =
1

2
+

1

2
FΓ

(
1

2
x2, 1, κ+

1

2

)
, x ≥ 0, (5.26)where by FΓ(x, k, ω) we denote the Gamma distribution funtion with shape parame-ter ω and sale parameter k. Using Lemma 5.3.2 the following proposition now arisesas a speial ase of Theorem 3.5.2 in [27℄.89



5.3: Appliation: GARCH(1,1)Proposition 5.3.2. Let the stationary proesses (Xt) and (σt) be given by (5.16)and (5.17). Then, for all l, u ∈ N0, as x→ ∞,
L
(σ−l

x
, . . . ,

σu

x

∣∣∣ |X0| > x
)
→ L (σ̃−l, . . . , σ̃u) (5.27)with (σ̃0, σ̃1) as in Lemma 5.3.2, and

σ̃t = σ̃t−1At, t ∈ N \ {1}, and σ̃−t = σ̃−t+1A−t, t ∈ N, (5.28)for At as in (5.22) and (5.23), t ∈ Z \ {0, 1}, independent of (σ̃0, σ̃1).Next, we shall turn the r.h.s. in (5.27) into a more suitable form in order to simulatefrom the limiting measure in (5.19). To this end, note that by (5.17) we have
L(ηt) = L



((

σt+1

σt

)2

− α0

σ2
t

− β

)1/2

α
−1/2
1 Bt


 , t ∈ Z, (5.29)for a sequene (Bt)t∈Z of i.i.d. random variables independent of (σt)t∈Z with

P (B0 = 1) = P (B0 = −1) = 1/2. (5.30)Now, by Proposition 5.3.2 we get
L
(
X−l

x
, . . . ,

Xu

x

∣∣∣∣ |X0| > x

)
→ L (σ̃−lη̃−l, . . . , σ̃uη̃u) = L

(
X̃−l, . . . , X̃u

) (5.31)where we apply (5.29) and the ontinuous mapping theorem. Here, (5.28) yields that
η̃t =

(
A2

t+1 − β

α1

)1/2

B̃t, (5.32)
η̃−t =

(
A−2
−t − β

α1

)1/2

B̃−t, t ∈ N, (5.33)for a sequene (B̃t)t∈Z with the same distribution as (Bt)t∈Z, and independent of (At)t∈Z.Now, by (5.22), in partiular, L(η̃t) = L(ηt), t ∈ N. Further, we have that X̃0 issymmetri where
P (|X̃0| > y) = y−2κ, y ≥ 1, (5.34)by Lemma 5.3.1 and the de�nition in (5.31). For simulation from the r.h.s. of (5.31) itwill at �rst be advantageous to write

L
(
X̃±t

)
= L

(
|X̃0|

t∏

i=1

X̃±i

X̃±(i−1)

)
= L

(
|X̃0|

t∏

i=1

σ̃±iη̃±i

σ̃±(i−1)η̃±(i−1)

)
, t ∈ N,90



5.3: Appliation: GARCH(1,1)suh that replaing for (5.24), (5.28), (5.32) and (5.33) yields
L
(
X̃−l, . . . , X̃−1, X̃0, X̃1, . . . , X̃u

)

= L
(
|X̃0|

l∏

i=2

(
B−iA−i

(
A−2
−i − β

A−2
−i+1 − β

)1/2)
, . . . , |X̃0|

B−1A−1

|η̃−1
0 |

(
A−2
−1 − β

α1

)1/2

,

|X̃0|B0, |X̃0|φ(|η̃0|)
η̃1

|η̃0|
, . . . , |X̃0|φ(|η̃0|)

η̃1

|η̃0|

u∏

i=2

(
(α1η̃

2
i−1 + β)1/2 η̃i

η̃i−1

))
.

(5.35)
Now, the r.h.s. in (5.35) highlights the fat that the drawing of mutually independenti.i.d. random variables At, t ∈ {−l, . . . ,−1}, aording to (5.23), Bt, t ∈ {−l, . . . , 0},as in (5.30), and the standard normal variables ηt, t ∈ {1, . . . , u}, is su�ient in orderto simulate from the r.h.s. in (5.31). Further, the random variables |X̃0| and |η̃0| whosedistribution is diretly related to the ondition |X0| > x, f. (5.34) and (5.26), are alsoindependent both of the above variables and of eah other. The latter an be seen e.g.from [27, Lemma 3.1℄. Finally, onditioning on X0 > x in (5.19) instead of |X0| > xleads to the same limit distribution as in (5.35) but with B0 = 1 almost surely.In Table 5.3.1 we report the results of a simulation study for θm, φ(h) and γm(h), h =
1, . . . , 5, wherem = 500. It is based on (5.35) aording to the respetive harateristi.The evaluation of probabilities depends on N = 10000 repliations. In order to re�etthe stylized fat that α1 + β is lose to one in many appliations, we �x α1 + β = 0.99.Note, in partiular, that in aordane with the disussion in Setions 5.1 and 5.2Table 5.3.1 suggests that for the GARCH(1,1) lass there is no simple relationshipbetween the harateristis φ(h) and γ(h). For the last olumn in Table 5.3.1 we referto Theorem 5.2.1. Note that the latter applies to the stationary GARCH(1,1) as it iswell-known that (C1) holds [1℄, and (C2) will be onsidered in the following orollary.In partiular, we have that limm→∞ θm(h) = θ(h), h ∈ N ∪ {1}. We also remark thatthe mixing ondition referred to after (5.2) holds for the GARCH(1,1) lass, see [34℄.First, we will on�rm the following result for later referene.Lemma 5.3.3. We have that E(σ̃1) <∞.Proof. First, by (5.24) and the independene of |X̃0| and |η̃0| we �nd that E(σ̃1) =
E(φ(|η̃0|)/|η̃0|)E(|X̃0|). Here, E(|X̃0|) < ∞ by (5.34) and the fat that κ > 1 if
α1 + β < 1, see e.g. [41℄. Further, we have by (5.22) that

E(φ(|η̃0|)/|η̃0|) = E
([
α1 + β/|η̃0|2

]1/2
)
≤ α

1/2
1 + β1/2E(1/|η̃0|).Finally, using (5.26) we get that

E(1/|η̃0|) =
(1/2)κ−1/2

Γ(κ + 1/2)

∫ ∞

0

x2κ−1 exp

(
− 1

2
x2

)
dx = 2−1/2 Γ(κ)

Γ(κ+ 1/2)
.

91



5.3: Appliation: GARCH(1,1)Corollary 5.3.1. For the stationary GARCH(1,1) proess given by (5.16) a sequene
rn exists suh that (C2) holds.Proof. Note �rst that (C2) is implied by the stronger ondition

lim
m→∞

lim
n→∞

rn∑

k=m+1

P (X−k > n | X0 > n) = 0.Further, by (5.22) we have that E(
∏k

i=2Ai) = λk−1, λ < 1, suh that, in partiular,
P

(
xη̃k

k∏

i=2

φ(η̃i−1) > 1
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≤ xλk−1E (η̃k1 (η̃k > 0)) =

xλk−1

√
2π

, x > 0.Now, by (5.35) we have that for all k ∈ N
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n→∞
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i=2
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φ(η̃i−1) > 1

)
Fσ̃1(dx)

≤ λk−1

√
2π

∫ ∞

0

xFσ̃1(dx) (5.36)where the seond equality holds by (5.24) and the fat that σ̃1 is independent of thesequene (η̃1, . . . , η̃k). By (5.36) there is n∗ = n∗(k) ∈ N suh that P (Xk > n | X0 >
n) ≤ 2E(σ̃1)λ

k−1/
√

2π for all n ≥ n∗. Consequently, for any r ∈ N we get that
r∑

k=1

P (Xk > n | X0 > n) ≤ 2E(σ̃1)√
2π

r∑

k=1

λk−1 (5.37)for all n ≥ N(r) = max{r2,maxk=1,...,r n
∗(k)}. With rn = N−1(n) := sup{r ∈ N0 :

N(r) < n} we have rn → ∞ and rn/n→ 0 as n→ ∞, and
lim

m→∞
lim

n→∞

rn∑

k=m

P (Xk > n | X0 > n) ≤ 2E(σ̃1)√
2π

lim
m→∞

lim
n→∞

rn∑

k=m

λk−1 = 0where we use Lemma 5.3.3 for the last equality.Example 5.3.1. We �t the GARCH(1,1) model given by (5.16) to the S&P 500 dataset disussed in Setion 5.1. The estimated parameters [64℄ are
α̂0 = 0.1 × 10−5 (10−7), α̂1 = 0.072 (0.002), β̂ = 0.920 (0.003) (5.38)where the ML standard errors are given in brakets. Note that α̂1 + β̂ = 0.992 beinglose to one is a ommon result for long �nanial return series, see e.g. [41℄ for a92



5.3: Appliation: GARCH(1,1)disussion. We inlude an evaluation of the orrespoding extremal measures by theabove tail hain approah in the last row of Table 5.3.1. Next, in order to assess theauray for estimators of the extremal measures when applied to raw data we generate
N = 1000 independent GARCH(1,1) proesses aording to (5.38) of the same lengthas the S&P 500 dataset (7569 reords) in Setion 5.1. The empirial quantiles resultingfrom the so-alled bloks estimator [66, 2℄ for a blok length of m = 126 are given inTable 5.3.2 where we let the thresholds range from the empirial 0.95 quantile up tothe 0.995 quantile. As to the hoie of the blok length note that extremal eventsouring in two distint bloks are assumed to be independent. Here, six tradingmonths orresponding to 126 days appear to be a reasonable order of magnitude.Further, in order to evaluate the quality of the GARCH(1,1) approah in (5.38) withrespet to the observed extremal behavior of the S&P 500 series we diretly estimatethe extremal index of the latter by the above bloks method without making anymodel assumptions, f. the last row in Table 5.3.2. Given that our blok length isa valid hoie the fat that the results fall within the simulated pointwise on�deneintervals indiates a satisfatory agreement with the behavior of the estimated extremalindex in the GARCH(1,1) ase. Note, however, that the blok estimator is not diretlyappliable in order to assess probabilities suh as (5.5). To our knowledge, a so-alledruns estimation sheme [2℄ appears to be the only available alternative. Unfortunately,the runs estimator performs poor even in ase of the extremal index. We thereforerefrain from the statistial estimation of the harateristi γ(h), h ∈ N, for the S&P 500data. With respet to φ(h), h ∈ Z, note that valid estimates should belong to a ertainlass of positive de�nite funtions, see [56℄ and [18℄ for a disussion. Appropriateestimation shemes, however, have not been onsidered satisfatorily so far and are amatter of urrent researh.
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5.3:Appliation:GARCH(1,1)
α1 β κ θ̂m 2 − φ̂(1) 2 − φ̂(2) 2 − φ̂(3) 2 − φ̂(4) 2 − φ̂(5) γ̂m(1) γ̂m(2) γ̂m(3) γ̂m(4) γ̂m(5)

(
500∑

h=0

γ̂m(h)

)
−10.99 0 1.014 0.570 0.251 0.167 0.125 0.090 0.063 0.213 0.139 0.104 0.071 0.052 0.5730.15 0.84 1.478 0.207 0.153 0.144 0.139 0.138 0.140 0.061 0.063 0.065 0.054 0.064 0.1990.11 0.88 1.838 0.245 0.110 0.104 0.104 0.101 0.093 0.052 0.042 0.038 0.047 0.034 0.2470.09 0.90 2.203 0.304 0.089 0.085 0.081 0.073 0.080 0.045 0.035 0.034 0.030 0.028 0.3020.07 0.92 2.885 0.397 0.055 0.050 0.053 0.051 0.052 0.022 0.020 0.020 0.025 0.022 0.4190.04 0.95 5.991 0.854 0.007 0.007 0.006 0.004 0.006 0.005 0.004 0.003 0.002 0.004 0.8580.072 0.920 2.476 0.317 0.063 0.064 0.066 0.064 0.065 0.021 0.020 0.027 0.019 0.023 0.305Table 5.3.1: Extremal measures (m = 500) for seleted GARCH(1,1) proesses with α1 + β = 0.99, as well as the proess �tted in Example 5.3.1. The results arebased on N = 10000 runs of the tail hain. The approximate on�dene intervals are smaller than ±0.01 for all entries.

q0.950 q0.955 q0.960 q0.965 q0.970 q0.975 q0.980 q0.985 q0.990 q0.995

θ̂B
0.025 0.210 0.203 0.198 0.198 0.192 0.189 0.179 0.163 0.159 0.137

θ̂B
0.975 0.515 0.505 0.512 0.497 0.506 0.510 0.514 0.525 0.548 0.629

θ̂B

S&P 500

0.305 0.301 0.339 0.347 0.348 0.330 0.325 0.355 0.363 0.403Table 5.3.2: Bloks estimation (m = 126) of the extremal index for di�erent thresholds represented by the respetive quantiles q for N = 1000 independent GARCH(1,1)proesses of length 7569 aording to (5.38). The �rst and seond row represent the simulated 95% on�dene intervals. In the last row we inlude the bloks estimationof the extremal index θS&P 500 for the S&P 500 data set disussed in Setion 5.1.
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