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Chapter 1

General Introduction

1.Hippocampus and learning and memory

Anatomically the hippocampus is composed of four regions, CA1l, CA2 and CA3
pyramidal cell regions and the dentate gyrus and clearly plays a role in both navigation
and memory processing (Sweatt, 2003). The hippocampal system is learning what the
situation is, forming declarative or episodic memories about the events and their
relationships in the context of the organism's ongoing experience (Eichenbaum, 1999).
This assumption is based on experiments, which report that hippocampal principal
neurons-'place cells'-exhibit location-specific firing (Winson et al., 1978). There is further
evidence that hippocampal neurons are required for multi-modal sensory integration
(Shapiro et al., 1997; Tanila et al., 1997). The hippocampus is also crucial for trace
conditioning, a procedure where a period of no stimuli intervenes between the
conditioned stimulus and the unconditioned stimulus (Mehta et al., 1997; Quirk et al.,
2001). In support of this hypothesis, animals with hippocampal lesion have problems to
associate two different episodes separated in time (Squire et al., 1991; Clark et al., 1998;

Hueta et al., 2000).

2. SK channels and afterhyperpolarization (AHP)
2.1 Small-conductance calcium-activated potassium channels

Small conductance calcium-activated potassium channels play an important role
in excitable cells. They are potassium selective, voltage independent and activated by
intracellular calcium as seen during an action potential. As the action potential decays,
the membrane potential repolarizes, and the internal calcium level rises, inducing an

afterhyperpolarization (AHP). The initial faster phase is due to the activation of large-



conductance voltage- and calcium-activated potassium channels (BK), while the slower
phase is due to the activation of SK channels, which are gated by intracellular calcium
ions (Bond et al., 1999).

As SK channels activate, they extrude potassium ions from the cell, moving the
membrane potential to more negative potentials. SK channels generate a slow
afterhyperpolarization (sAHP), with a time course that reflects the decay of intracellular
calcium (Blatz and Magleby, 1986; Sah et al., 1996). The membrane hyperpolarization
caused by SK channels inhibits further cell firing even in response to incoming
depolarizing signals. This so-called spike-frequency adaptation or accommodation
protects the cell against the deleterious effects of continuous tetanic activity and is
essential for neurotransmission (Sah et al., 1996; Madison et al., 1984; Lancaster et al.,
1986; Hille et al., 1992).

Two kinds of sAHPs are reported based on their time course and pharmacology.
Apamin-sensitive sSAHPs are observed in hippocampal interneurons (Zhang et al., 1995)
and rat adrenal chromaffin cells (Park, 1994). Apamin-insensitive AHPs are documented
in the hippocampal neurons, where apamin does not have any effect on sSAHPs (Sah et al.,

1996; Lancaster et al., 1986).

2.2 Regulation of slow AHPs by neurotransmitters

Many neurotransmitters modulate the currents underlying SAHPs (Nicoll et al.,
1988), which in turn affects neuronal excitability (Gorelova et al., 1996). Noradrenaline,
dopamine, serotonin, histamine, acetylcholine (via muscarinic receptors), glutamine (via
metabotropic receptors), and some neuropeptides (i.e. VIP, CRF) suppress the apamin-
insensitive sAHP (Haug et al., 2000). As a consequence, neuronal excitability is
enhanced, spike frequency adaptation is strongly decreased, and the number of action
potentials evoked by a certain depolarizing stimulus is increased. In contrast, adenosine
can decrease neuronal excitability by increasing the apamin-insensitive SAHP (Strom,
1990). Modulatory neurotransmitter systems can control the functional state of the brain

by regulating the level of excitability in neurons.



2.3 Kinetics of SAHPs

Apamin-sensitive SAHPs have faster kinetics than apamin-insensitive SAHPs. In
some cells, such as in hippocampal interneurons, the apamin-sensitive SAHP is maximal
following an action potential and decays with a half-time in the order of hundreds of
milliseconds (Zhang et al., 1995). Apamin-insensitive SAHPs as seen in hippocampal
pyramidal neurons, rise and decay over several seconds (Sah et al., 1996; Lancaster et al.,
1986). A faster apamin-sensitive AHP is referred to the medium AHP (mAHP). Only the
sAHP is modulated by neurotransmitter-induced second-messengers, whereas the mAHP

is not known to be modulated by second-messenger cascades (Bond et al., 1999).

2.4 Genes encoding SK channels

Three genes encoding SK channels have been cloned from the mammalian brain
(Kohler et al., 1996). Although the SK channel amino acid sequences are very different
from other potassium channels, they show high degrees of homology among each other
(Kohler et al., 1996). Recent studies have reported that calcium ions do not bind SK
channels directly, but modulate gating of SK channels via binding to calmodulin (Maylie
et al., 2004; Lee et al., 2003; Sailor et al., 2002; Schumacher et al., 2001). All three SK
channels show similar calcium sensitivity. Elevated intracellular calcium concentrations
increase the relative contribution of long open times and short closures of the channels,
and changing membrane voltage alters none of the open or closed states (Maylie et al.,
2004; Lee et al., 2003; Bond et al., 1999).

The cloned SK channels reflect the pharmacological variation of AHPs. SK1,
which is known as apamin-insensitive, is expressed in regions that have apamin-
insensitive sAHPs, such as hippocampal pyramidal neurons. The distribution of regions
that express mRNA coding for SK2 and SK3 shows similar pattern to the areas, where
apamin-sensitive SAHPs have been recorded (Stocker et al., 2000; Kohler et al., 1996;
Mourre et al., 1984, 1986).



3. HPA axis and learning
3.1 HPA axis

It is already known that the hormones of the hypothalamus-pituitary-adrenal
(HPA) axis influence learning and memory process in situations of acute or chronic
stress. Animals react in multiple ways to physical or psychological stress. A first rapid
reaction is activation of autonomous nervous system (ANS) leading to enhanced
catecholamine activity. Adrenalin (epinephrine) and noradrenalin (norepinephrine) from
the adrenal medulla produce the typical stress symptoms such as increased heart rate and
sweat gland activation. A second, slower response is activation of hypothalamus-
pituitary-adrenal (HPA) axis. Corticotrophin-releasing hormone (CRH) from the
hypothalamus reaches the pituitary, which secretes adrenocorticotrophin (ACTH).
ACTH, in turn, stimulates the adrenal cortex to secrete glucocorticoids (GCs,
corticosterone in rodents, cortisol in human). Glucocorticoids are lipophilic hormones
and can easily pass the blood-brain barrier, where they influence multiple regions of the
brain. The effects of GCs are mediated via their specific intracellular receptors or via the
interaction of the hormone with neurotransmitter receptors on the cell surface (de Kloet et
al., 1998).

Glucocorticoid receptors have been found in several areas of the brain, which are
relevant to cognition such as the hippocampus, the amygdala and the prefrontal cortex
(Bizon et al., 2001; Silvestrini et al., 2003; Reincke et al., 1998). It has been reported that
the hippocampus plays an important role for spatial learning and declarative memory
(Eichenbaum et al., 1999; Squire et al., 1992). The amygdala is critical for emotional
memory, (LeDoux et al., 2000) and the prefrontal cortex is important for working

memory (McGaugh et al., 2002; Baddeley et al., 2001).

3.2 HPA axis, stress and aging

The stress-induced secretion of GCs has multiple acute effects in the central
nervous system (CNS). Most of the effects in the CNS are mediated via interaction with
the two specific intracellular receptors. One is mineralocorticoid receptor (MR or type I
receptor), which has high affinity for corticosteroid. The other is glucocorticoid receptor

(GR, or type II), which has much lower affinity for corticosteroid (for review, see de
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Kloet, 2003). Because they show quite different binding affinities for corticosteroid, we
can easily assume that most of the MR is occupied under basal conditions. GRs can only
be activated by high level of GCs as found under stress (de Kloet et al., 1998).
Electrophysiological studies have revealed that high levels of GCs reduce neuronal
excitability (Joel et al., 2001) and impair synaptic plasticity via a GR-mediated
mechanism (Diamond et al., 1992, Pavlides et al., 1996). Acute stress inhibits
neurogenesis in the dentate gyrus (Gould et al., 1998) and modulates synaptic spine
density in the CA1 region (Shors et al., 2001). The effects of stress are not limited to the
hippocampus. In the prefrontal cortex, stress enhances dopaminergic activity (Arnsten et
al., 1998) and increases extracellular glutamate levels (Moghaddam et al., 2002).

In some cases like fear conditioning, acute stress has positive effects and
improves learning (de Kloet et al., 1998, 1999). It is interesting to note that this learning
improvement is associated with increased secretion of corticosterone (Cordero et al.,
1998; Sandi et al., 1997; McGaugh et al., 2002; Oitzl et al., 2001)

On the other hand, acute stress impairs spatial learning and memory. If the
animals are placed in a stressful condition between the learning paradigm and the
subsequent recall, they showed impairment in the hippocampus-mediated spatial memory
(Diamonds et al., 1992, 1996; de Quervain et al., 1998). In contrast, stress before the
initial learning session seems to have very little or no effect on spatial memory. Thus, the
memory enhancing or impairing effects of stress are dependent on the forms of
conditioning and on the learning paradigm.

It is important to mention, that most of the studies investigating stress and
learning and memory have been performed with young, male animals. Indeed, those
studies looking at sex differences found a striking diversity. It has been reported that
stress enhances conditioning of male rats, while it impairs it in female rats (Wood and
Shors, 1998; Shors et al., 1998). It is also surprising that the learning ability seems to be
quite dependent on the level of estrogen, but it does not show a high relationship to the
level of corticosterone in female animals (Wood et al., 2001). In addition to sex
differences, age also influences the response to acute stress or GC treatment. Aging goes
with increases in basal cortisol or cortiscosterone levels and decreases in HPA axis

sensitivity (Seeman et al., 1994; van Cauter et al., 1996; Wolf et al., 2002). This
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phenomenon is accompanied by impaired spatial or declarative memory and hippocampal
atrophy (Issa et al., 1990; Landfield et al., 1978). Studies in rodents show that preventing
the age-associated changes of HPA axis reduced age-related memory impairment

(Landfield et al., 1981; Meaney et al., 1991).

4. Regulation of gene transcription by steroid receptors
4.1 Genomic action of steroids

Steroid hormones play important roles in the regulation of gene expression in
higher eukaryotes. When they enter the target cell, steroid hormones can bind to their
specific receptors with high affinity. Hormone receptors can regulate transcription as co-
factors, when they are activated by their ligands, hormones. Activated steroid receptors
can bind their cis-acting elements directly, regulate their transcription initiation or can
even affect alternative splicing of mRNA (Auboeuf et al., 2002; McKenna et al., 1999,
2002). Short DNA elements, which bind steroid receptors, are called 'steroid response

elements' (SREs).

4.2 Structure of steroid receptors

Reported steroid receptors consist of three domains, a variable N-terminal region,
a highly conserved central region known as a DNA binding domain and a moderately
conserved C-terminal region. The central DNA region has two 'Zn-finger' domains that
play an important role in binding DNA. In many steroid receptors, the ligand-binding
domain has been localized in the C-terminal region (Carson-Jurica et al., 1990; Conneely
et al., 1988). The N-terminal region plays an important role in the differential initiation of
target promoters (Kumar et al., 1986; Hollenberg et al., 1987; Rusconi et al., 1987; Tsai
et al., 1991; Carson et al., 1987).

4.3 Mechanism of steroid hormone regulation of target genes

When steroid hormones enter the target cell, they interact with 8-10S receptor
complexes. The 8-10 S complex is composed of the receptor and other proteins such as
hsp90, hsp70 and several other proteins (Bagchi et al., 1991; Schowalter et al., 1991). 8-

10S receptor complexes cannot bind steroid receptor elements, so they are functionally
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inert. Binding of the steroid hormone makes 8-10S receptor complexes active and these
activated receptor complexes dimerize to form 4-5S complexes. The receptor dimer is
functional, thus it is able to bind to SREs. The receptor-DNA complex can trigger the
formation of a stable pre-initiation complex with RNA polymerase II and other
transcription factors such as TFIIA, TFIIB, TFIID and TFIIE/F and start RNA synthesis
(Tsai et al., 1991; Joab et al., 1984; Sanchez et al., 1985; Schuh et al., 1985; Catelli et al.,
1985; Estes et al., 1987, Kost et al., 1989).

Several SREs were reported. A comparison of available sequences indicates that
there is a short 13-15 nucleotides consensus sequence for most of the steroid receptor
response elements (SREs). This suggests that target genes for receptors have conserved
response elements, just as the receptors have conserved DNA binding domains. There are
only minor differences among glucocorticoid response elements (GREs), estrogen
response elements (EREs) and thyroid response elements (TREs). Most of the
glucocorticoid response elements, which bind to the glucocorticoid receptors, can also
bind mineralocorticoid, progesterone, and androgen receptors (Tsai et al., 1989; Tsai and
O’Malley, 1991). TREs can confer retinoic acid receptor responsiveness (Beato et al.,

1996).

4.4 Role of steroid hormone receptors in target gene transcription

Steroid hormone regulated cellular promoters are complex and require multiple
protein co-factors. It is quite likely that the steroid receptor interacts with a number of
core promoter-binding factors, such as RNA polymerase II, TFIID, TFIIA, TFIIB and
TFIIE/F, to regulate initiation of transcription (for Review, see Tsai and O’Malley, 1991).
For example, in the case of the progesterone receptor (PR), the receptor is essential for
the assembly of such a stable transcription complex. The PR seems to act similar to other
regulatory proteins in enhancing the recognition of the promoter by other factors in the

transcriptional machinery (Leonhardt et al., 2003).

4.5 The role of steroid hormones in receptor function
It is known that the steroid receptors can only bind to their target SREs after

hormone treatment. However, several studies have demonstrated that 'purified' receptors
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can also bind to their SREs in a hormone-independent manner (Geisse et al., 1982; Karin
et al., 1984; Slater et al., 1985). It is conceivable that the steroid hormone is required to
free the receptor from an inhibitor protein but that it does not participate in the actual
DNA-binding process. It is reported that the steroid hormone has only little effect on the
kinetics and affinity of receptor binding to DNA (Rodriguez et al., 1989; Schauer et al.,
1989). For example, even purified PR is able to activate GRE/PRE dependent
transcription in the absence of progesterone. In this case, it is believed that ligand binding
maybe only required for the early phase of activation when hsp90 or other associated
proteins dissociate (Klein-Hitpass et al., 1990).

There is also the possibility of post-translational modification, which is
responsible for the stimulation of transcription such as phosphorylation or

dephosphorylation (Kuiper et al., 1994).

4.6 Synergistic interaction of steroid response elements

In the 5'-flanking regions of hormone responsive genes there are often multiple
SREs detectable. When in this case a single SRE is mutated or deleted, the entire level of
expression is changed. This suggests, that SREs act synergistically to control the level of
expression of a hormone-responsive gene (Tsai et al., 1989). It is also reported that a
GRE/PRE can co-operate with an ERE to induce a high level of promoter activity.
However, binding studies indicate that estrogen and progesterone receptors do not bind in
a co-operative manner, suggesting that additional other mechanisms exist (Tsai et al.,

1991).

5. Nuclear Factor - kappaB
5.1 Regulation of NF-kappaB

It has recently been reported that activation of transcription factor nuclear factor
kappaB (NF-kappaB) is associated with neuronal plasticity and anti-apoptotic effects in
several cultured neurons. The NF-kappaB complex is composed of three subunits: p50,
p65 and the inhibitory subunit IkappaB (IkB). However, since NF-kappaB has first been

identified (Sen and Baltimore, 1986), many other binding subunits, which are differently
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expressed depending on cell types, developmental stages and environmental factors have
been reported (for review, see Mattson et al., 2000; Verma et al., 1996).

The main molecular event, which activates NF-kappaB is phosphorylation of 1kB.
IkB proteins bind NF-kappaB p50/p65 complexes in the cytosol and block their
activation. Phosphorylation of IkB dissociates IkB from the p50/p65 complex.
Subsequently, activated p50/p65 complexes can enter the nucleus and function as a
transcription factor (Fig. 1). It has been reported that IkB is phosphorylated by IkB kinase
(IKK). IKK is phosphorylated by several kinases such as NF-kappaB-inducing kinase
(NIK, Malinin et al., 1997) and mitogen-activated protein kinase kinase kinase-1 (Lee et
al., 1998).

Many factors such as cytokines, neurotrophic factors, and neurotransmitters can
activate NF-kappaB. (Cheng et al., 1994; Barger et al., 1995; Carter et al., 1996)
Activation of glutamate receptors and membrane depolarization was shown to activate
NF-kappaB in hippocampal neurons and cerebellar granule neurons. (Guerrini et al.,
1995; Kaltschmidt et al., 1995)

Besides many other genes manganese superoxide dismutase (MnSOD) was one of
the first reported as a potential target of NF-kappaB (Wong et al., 1989; Mattson et al.,
1997). MnSOD is a mitochondrial antioxidant enzyme that protects cells from apoptosis.
Other genes, which are induced by NF-kappaB, are tumor necrosis factor-alpha (TNF-
alpha), interleukins 2,3,6 and 8, IkB-alpha, cyclooxygenase-2 and transglutaminase and
NF-kappaB inhibitor IkB. They are expressed in several kinds of cells and many of them
are related to apoptosis, which is induced in response to brain injury or stress insults (for
review, see Mattson et al., 2000).

NF-kappaB is also essential for the development of the nervous system. The NF-
kappaB homologue ’dorsal’ from drosophila plays a role in the establishment of
dorsoventral polarity in the developing embryo (Hoch and Jackle, 1993). Levels of NF-
kappaB activity change during development of the nervous system. Especially during the
early postnatal period when synaptogenesis is actively going on NF-kappaB shows very

high expression levels in the rat cerebellum (Kaltschmidt et al., 1995).
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5.2 Function of NF-kappaB

Because increased NF-kappaB activity is observed in neurons following seizure
and ischemia, NF-kappaB has initially been regarded as apoptosis inducers (Prasade et
al., 1994; Grilli et al., 1996; Salminen et al., 1995; Clemens et al., 1997). But recently
new interpretations about the function of NF-kappaB have emerged. A lot of reports
could demonstrate that NF-kappaB has rather anti-apoptotic function instead of damaging
the cells (Goodman and Mattson, 1996; Tamatani, et al., 1999). It has been reported that
tumor necrosis factor-alpha (TNF) can activate NF-kappaB, which protects cultured
hippocampal neurons from excitotoxic and apoptotic processes as seen during exposure
to glutamate, glucose deprivation and amyloid-beta peptide toxicity (Cheng et al., 1994;
Barger et al., 1995; Mattson et al., 1997)
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Fig.1 Mechanism of regulation of NF-kappaB activity. Inactivated NF-kappaB complexes are in the
cytosol, several factors such as Ca™, kinases, ceramide and H,O, activate them as cellular signals.
Activated NF-kappaB complexes enter the nucleus and trigger transcription of specific genes, which induce
apoptosis or protect cells from cellular damages. Modified from Mattson et al., 2000.

5.3 Interaction of NF-kappaB and glucocorticoid receptors

It has been well described that there is a negative interaction between
glucocorticoid receptors and NF-kappaB. Many cases have been reported that activated
GR can antagonize the activity of NF-kappaB by direct and indirect mechanisms. First of
all, glucocorticoids induce the expression of IkB, which is known as an endogenous and
specific NF-kappaB inhibitor (Auphan et al., 1995; Scheinman et al., 1995). In the second
case, hormone-activated GR-GRE binding can spatially mask the DNA binding sites of
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other basal and induced transcription factors (Ray and Sehgal, 1992; Akerblom et al.,
1988; Mordacq and Linzer, 1989). Furthermore, activated GR can bind NF-kappaB
directly and as a result reduce its DNA binding capacity (de Bosscher et al., 1997; Nissen
and Yamamoto, 2000). Another possibility is that activated-GR competes with NF-
kappaB for nuclear co-activators, which are crucial for transcription (Zhang et al., 1997).

In any case, activated GRs negatively regulate NF-kappaB activity.

6. Impact of aging on learning
6.1 Anatomical and physiological changes in aged animals

Although aging is not related to neuropathological diseases like Alzheimer’s
disease, it is known that normal aging is also associated with a mild impairment of
memory (Droscoll et al., 2003; Schumacher et al., 2003) But interestingly, most of the
basic cellular characteristics of hippocampal cells such as the resting membrane potential,
amplitude and duration of Na* -mediated action potentials, amplitude of Ca** -mediated
action potentials and firing rates in the awake or asleep animals do not changed with age
(for review, see Rosenzweig and Barnes, 2003).

One of the important changes in aged animals is the regulation of Ca®
homeostasis (Foster and Kumar, 2002; Toescu and Verkhratsky, 2000 a, b). It has been
reported that the density of functional L-type Ca®* channels and, in consequence, L-type
Ca’* currents are increased in the hippocampal CA1 region of aged rats (Thibault and
Landfield, 1996; Campbell et al., 1998). This is consistent with the report of increased
vdccL TP in CA1 pyramidal cells (Shankar et al., 1998). It has been also observed that
learning in aged rats in the Morris water maze is negatively correlated with the density of
L-type Ca’ channels (Thibault and Landfield, 1996; Ouanounou et al., 1999). It is also
observed that the activities of phosphatase PP1 and PP2A are enhanced with age (Norris
et al., 1998). Blockade of both phosphatases enhances synaptic strength in aged rats.
Behavioral experiments show that increased PP2A activity is negatively correlated to the
performance in the Morris water maze (Norris et al., 1996, 1998; Strack et al., 1997,

Foster et al., 2001).
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Several earlier studies show a loss of hippocampal cells with age (for review, see
Coleman and Flood, 1987). However, with improved quantification methods these results
could not be confirmed (Rapp and Gallagher, 1996; Rassmussen et al., 1996; Calhoun et
al., 1998; West et al., 1993; Peters et al., 1996; West, 1993).

Instead, it has been suggested that age-related learning deficits are related to
changed connections between cells in the hippocampus. To prove this hypothesis, several
methods were adopted such as stereological cell counting methods (Keuker et al., 2003;
von Bohlen und Halbach and Unsicker, 2002; Merrill et al., 2000). More recent work
examined the amount of synapse-associated proteins. They found no significant changes
in the amount of synaptic proteins like synaptophysin, synaptotagmin and synaptosomal
associated protein 25 in the entire hippocampus of aged memory-impaired rats (Nicolle et
al., 1999).

There are several reports about the changes of functional connectivity in the
brains of aged animals. For example, reduced synaptic contacts have been observed in the
mid-molecular layer together with decreased field EPSPs in the dentate gyrus (Geinisman
et al., 1992; Barnes and McNaughton, 1980; Foster et al., 1991). It has also been reported
that the NMDA -receptor mediated EPSP is reduced in the same area (Rao et al., 1994). In
contrast to these findings, there is no age-related change in the number of NMDA
receptor binding sites (Wenk and Barnes, 2000). This discrepancy obviously shows, that

the number of receptors does not necessarily allow for any functional predictions.

6.2 Age-dependent changes in synaptic plasticity
6.2.1 LTP

Since the last century, it has been believed that synaptic plasticity subserves
learning and memory process. Storage of memories certainly changes some form of
synaptic modification. About half a century ago, Hebb postulated that, if a presynaptic
and a postsynaptic cells fire at the same time, the strength of connection between those
two cells will increase (Hebb, 1949). After about 35 years, a long-lasting increase in
synaptic strength, which was named long-term potentiation (LTP), was observed in the
rabbit dentate gyrus (Bliss and Gardner-Medwin, 1973; Bliss and Lomo, 1973, Douglas
and Goddard, 1975). LTP was induced only at the synapse of the stimulated pathway,
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suggesting that LTP is not merely an increase in the strength of all synapses (Levy and
Steward, 1979). This result suggests, that LTP might be a cellular phenomenon
underlying memory processes.

The most intensively studied form of LTP is NMDA receptor-dependent
(Collingridge et al., 1983; Bliss and Collingridge, 1993). If glutamate is released from the
presynaptic site, it can bind to postsynaptic NMDA and AMPA receptor channels.
Initially, AMPA receptor channels are opened, whereas NMDA receptor channels are
blocked by Mg** (Kato et al., 1991; Psarropoulou and Kostopoulous, 1990). Open AMPA
receptor channels depolarize the membrane, which allows NMDA receptor channels to
flux Ca** into the cell. The Ca* influx induces a cascade of events, which result in
durable LTP (Gustafsson and Wigstroem, 1988; Bliss and Collingridge, 1993; Malenka
and Nicoll, 1993; Rosenzweig and Barnes, 2003). There are reports that LTP induces the
increase of postsynaptic AMPA receptor channels (Lynch and Baudry, 1984; Issac et al.,
1995; Liao et al., 1995; Shi et al., 1999; Hayashi et al., 2000; Heynen et al., 2000). In the
presence of more postsynaptic AMPA receptor channels, the same amount of glutamate
can easily trigger a larger depolarization (Malenka and Nicoll, 1999; Luscher et al., 2000;
Luscher and Frerking 2001; Lisman et al., 2002; Malinow and Malenka, 2002).

6.2.2 Age-related changes in LTP

There are conflicting data on the link between LTP and learning and memory (for
review, see Cain 1997; Martin et al., 2000). However, the vast majority of studies show a
positive correlation. For example, it has been reported that saturation of LTP disrupts
recently acquired memory and prevents the formation of new memories (McNaughton et
al., 1986; Castro et al., 1989; Moser et al., 1998). Blocking LTP can also prevent the
formation of new memories (Fanselow and Kim, 1994; Mayford et al., 1996; Tonegawa
et al., 1996; Tsien et al., 1996).

It is not clear whether impaired LTP is responsible for age-related memory
deficits, because age-related changes in LTP are only observed under specific
experimental conditions (for review, see Rosenzweig and Barnes, 2003). In most studies,
aged-animals have intact hippocampal LTP when the cells are stimulated with high

frequency (Landfield and Lynch, 1977; Barnes, 1979; Diana et al., 1994; Chang et al.,
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1991; Deupree et al., 1991; Moore et al., 1993). But interestingly, when aged animals are
stimulated with fewer stimulus pulses and lower intensity, they show reduced LTP in the
hippocampal CA1 area (Deupree et al., 1993; Moore et al., 1993; Rosenzweig et al.,
1997). It has to be mentioned, that aged-animals show deficits not only in LTP induction
but also in LTP maintenance. It has been reported that after LTP induction, LTP decays

faster in aged than in young animals (Barnes and McNaughton, 1980; Bach et al., 1999).

7. Aims of this study

SK channels are believed to contribute to the generation of AHPs in hippocampal
neurons. In hippocampal CA1l neurons glucocorticoids induce an increase in the
amplitude of the AHP following a short current pulse (Karst and Joels, 1991). Since this
change of membrane properties can be prevented by the protein synthesis inhibitor
cycloheximide, a genomic action of glucocorticoids can be assumed. Thus, it is
conceivable that the expression of SK channels can be altered by changing corticosteroid
levels as observed during stress and aging (Lupien et al., 1994; Ling and Jamali, 2003).
Because it has been reported that SK2 channels have neuroprotective effects in cultured
cells (Lee et al., 2003), it can be assumed that expression of SK2 channels is regulated by
transcription factors, which are associated with neuroprotection. NF-kappaB represents a
transcriptional modulator, which can either induce apoptosis or protect cells from the
cellular damage of oxidative stress, depending on the cellular context. In the present
study, my first goal was to clarify the regulatory mechanism of SK channel gene
expression in vivo and in vitro. The second aim of this study was to understand the
contribution of single SK channel subtypes to cognitive processes and synaptic plasticity.
So far, the precise functional role of each SK channel subtype in specific neuronal
pathways has been difficult to elucidate because of the absence of selective blockers. The
use of selective antisense probes against single SK channel subtypes made it possible to
overcome the lack of specific antagonists. With this approach, especially the role of SK3
channels in the modulation of hippocampal synaptic plasticity and hippocampal-

dependent memory encoding was investigated.
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Chapter 2

Transcriptional Regulation of the Mouse Gene for
the Calcium-Activated Potassium Channel SK2 in

PC12 Cells

Introduction

There is evolving recognition that stress modulates hippocampal long-term
potentiation (LTP) as well as learning and memory (Kim and Diamond, 2002). Thus far,
little is known about the underlying genomic processes. In response to stress,
corticosteroids, which are released from the adrenal gland, enter the brain after crossing
the blood-brain barrier (McEwen etldl., 1986; De Kloet 1991). Corticosteroids can
increase or decrease the transcription of specific target genes via binding to two different
corticosteroid-binding receptors: the glucocorticoid receptor (GR) and the
mineralocorticoid receptor (MR), the latter showing a 10-fold higher affinity for
corticosterone than the former (De Kloet et al., 1993; van Steensel et al., 1996).
Corticosteroids affect the signaling properties of hippocampal neurons and modulate the
amplitude of afterhyperpolarizations (AHPs) via genomic action (Joels et al., 1991; Karst
etl., 1991, 1994; Joels et al., 2003). We were now interested in identifying novel target
genes for these corticosteroid effects, particularly those that might be involved in
controlling neuronal activity.

In most central neurons, small conductance Ca**-activated potassium (SK)
channels contribute to AHPs, which control neuronal signaling. Immunohistochemistry
revealed a close correlation between apamin-sensitive currents, which underlie medium
AHPs, and the distribution of homotetrameric, apamin-sensitive SK2 channels in the rat
brain (Sailer et al., 2002; Villalobos et al., 2004). The mAHP that follows action

potentials is an important intrinsic negative feedback mechanism determining the firing
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rate (Stocker et al., 1999; Stackman et al., 2002). When apamin blocks SK channels and
thereby reduces underlying mAHPs the number of action potentials discharged in
response to current injection is increased in CA1 neurons. In parallel, apamin block of SK
channel activity enhances synaptic plasticity induced by high-frequency stimulation and
accelerates hippocampal-dependent spatial memoryl@ncoding (Stackman et al., 2002).
Thus, the modulation of SK2 channels is of fundamental importance to synaptic plasticity
and cognitive performance. Initial characterization identified putative binding sites for
corticosteroid receptors and for the transcription factor nuclear factor-kappaB (NF-
kappaB) on the upstream regulatory part of the murine SK2 gene, which might be
important for the control of SK2 gene expression. NF-kappaB is ubiquitously expressed
in an inactive form in the cytosol by interaction with inhibitory proteins (IkappaB). The
phosphorylation and subsequent degradation of these proteins results in translocation of
the liberated NF-kappaB to the nucleus where it induces transcription of target genes
(Baldwin, 1996). Considering that acute stress not only activates corticosteroid receptors
but also induces the translocation of NF-kappaB to the nucleus (Madrigal et al., 2001) the
present study was designed to investigate, by use of molecular and in vitro
pharmacological functional studies, whether corticosteroids and NF-kappaB can

modulate the expression of SK2 in PC12 cells.

Materials and methods
Cloning of SK2 reporter vectors

Fragments of murine SK2 promoter were cloned from genomic DNA using PCR.
Primers were designed according to published sequences (GenBank accession no
AC121957). The primer sequences used in this study were SK2-G5, 5°-
gcattagcagatattgggtggat-3° and SK2-G8, 5°- agccgatgttctggttcttctttt-3’. 3.6 Kb DNA
fragment was amplified with C57BL/6J mouse genomic DNA and pfu DNA polymerase
(Stratagene, CA, USA). The amplified DNA fragment was sub-cloned into a TOPO Zero-
Blunt cloning vector (Invitrogen, CA, USA) following manufacturer’s instruction and
transformed into JM109. It contained 3133bp of the 5’ upstream part from the translation

start codon and 567bp of translated region. To obtain the construct pGLF, the subcloned
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SK2-TOPO vector was cut with HindIII and the DNA fragment that contained the 5’
flanking region of SK2 was purified and cloned into the luciferase expression vector
pGL3 (Promega, WI, USA). pGLG was generated by cutting pGLF with Smal, which
removed 1428 base pairs from the 5’ upstream part, self-ligased and transformed into
JM109. When pGLG was cut with Pstl, self-ligased and transformed into JM109 we
obtained pGLH. To construct pGL-MG, pGLG was opened at the Smal site and ligated
with the 1.4Kb Smal DNA fragment from pGLF. We isolated 2.2Kb Accl DNA
fragments from pGLF, which contained a putative NF-kappaB binding site and
transferred it to a pDrive cloning vector (Qiagen). This fragment was transferred to the
pGL3 luciferase vectors using Mlul and HindIII sites. All sequences of reporter vectors

were confirmed by sequencing.

Cell culture

A PC12 cell line was maintained in RPMI1640 medium (GIBCO, CA, USA)
supplemented with 10% heat-inactivated fetal calf serum, 100 pg/ml penicillin and 100
U/ml streptomycin at 37°C in a humidified atmosphere 5% CO, and 95% room air. Cells

were divided every 5 to 6 days.

Transient transfection, antisense and drugs treatments to PC12 cells

10 x 10° cells were grown in 24 well plates in a total volume of 500ul. They were
transiently transfected with 1.6 yg of an SK2/luciferase construct and 0.4 ug of a co-
transfection control plasmid, pCMV SPORT B-gal (Invitrogen, CA, USA) using 5 ug of
Lipofectamine 2000 (Invitrogen, CA, USA) under antibiotics deprived condition. Two pg
DNA and 5 pg of Lipofectamine 2000 were diluted in 50 ul Optimem (GIBCO, CA,
USA). After 20 minutes incubation at room temperature the DNA/Lipofetamine complex
was directly added to the cells. All transfection procedures were performed according to
the manufacturer's instruction.

Cells were treated with spironolactone and mifepristone (MR and GR antagonists,
respectively) 44 hours after transfection. At 45 hours after transfection, cells were treated

with corticosterone, aldosterone and dexamethasone (MR and GR agonists). All agonists
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and antagonists were dissolved in 75% ethanol and diluted with culture medium 1: 50.
Final concentration of ethanol in culture was less than 0.1%.

We applied SN50 (NF-kappaB peptide inhibitor) and a corresponding control
peptide (Santa Cruz, CA, USA) after 47 hours of transfection with a final concentration
of 50 ug/ml. C2-ceramide (Sigma) activating NF-kappaB was dissolved in 75% ethanol
and diluted with culture medium 1:50. It was treated 24 hours after transfection with a
final concentration of 20 uM. The final concentration of ethanol was less than 0.1%.
Transfected cells were harvested 48 hours after transfection, washed with PBS and
analyzed. Antisense probes targeting at NF-kappaB subunits p50, p65 and control
oligonucleotides have been provided by Biognostik (Gottingen, Germany). The
lyophilized oligonucleotides were dissolved in 1 x Dilution buffer to a stock
concentration of 2 nmol/ul and stored at —20 °C. They were applied 24 hours after
transfection with a final concentration of 2 M. All DNA constructs used for the

transfection assay were prepared with ENDO free plasmid maxi prep kit (Qiagen).

Reporter gene assays and protein assay

Harvested cells were lysed with 300 pl luciferase cell culture lysis buffer
(Promega, WI, USA) and a luciferase assay was performed with Luciferase Assay
System (Promega) following manufacturer’s instruction. Luciferase activity was
measured with Wallac 1450 Microbeta Plus Liquid Scintillation Counter (PerkinElmer,
USA). As control B-galactosidase activity was determined by a B-galactosidase assay kit
(Stratagene, CA, USA). All procedures were performed according to the manufacturer's
protocol. The protein amount was calculated using a standard Bradford assay (Bio-Rad

Laboratories, Inc., Muenchen, Germany).

Statistics

Statistical comparisons were made using Students’t-test or ANOVA. All RT-PCR
experiments were repeated at least twice. Transfection assays was repeated at least 4
times per experiment. Data were expressed as mean + standard error (SEM). Asterisks
indicate the statistical difference versus vehicle controls. The significance was

determined at the level of p < 0.05.
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Results
Cloning of murine SK2 promoter fragments

Fragments of murine SK2 promoter were cloned from genomic DNA using PCR.
Primers were designed according to published sequences (GenBank accession no
AC121957). Clones carrying the mouse SK2 gene were isolated, and an approximate 3.6-

kb 5'-flanking region was sequenced in this study.

1Kb

| e |

— translation

luciferase pGL-F [ s

luciferase pGL-G 22Kb

[I Putative MR/GR binding site

Fig.1 Regulatory region of murine SK2 gene has putative MR/GR binding sites. Two
luc/SK?2 reporter vectors were constructed. pGL-F containing a 3.6 Kb 5’ flanking part of
the SK2 gene contains the putative binding site, which is missing in the pGL-G (2.2 Kb)
construct.

Corticosteroid regulation of the SK2 channel promoter

The reporter construct pGL-F, which contains putative MR/GR binding elements,
was transiently transfected into PC12 cells together with a control plasmid, pCMV
SPORT B-gal, to control transfection efficiency. Forty-four hours after transfection, cells
were treated with corticosteroid receptor agonists and antagonists. As shown in Fig. 2, A,
corticosterone stimulated the pGL-F reporter at a concentration of 450 nM. No significant
change in activation was observed when the corticosterone concentration was increased

to 900 nM. The mineralocorticoid aldosterone (Fig. 2, C) and the glucocorticoid
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dexamethasone (Fig. 2, E) stimulated the same reporter in a similar concentration-
dependent manner, which started from 28 nM in the case of aldosterone and from 12.5
nM in the case of dexamethasone. The effects of aldosterone and dexamethasone on
pGLF-Luc expression were attenuated by 240 nM of the MR antagonist spironolactone
(Fig. 2, C) and by 233 nM of the GR antagonist mifepristone, respectively (Fig. 2, E). An
additional construct, pGL-G, was generated by reduction of the promoter region from 3.6
Kb to 2.2 Kb. Corticosterone (Fig. 1, B), aldosterone (Fig. 1, D) and dexamethasone (Fig.
1, F) had no stimulatory effect on the pGL-G reporter gene expression, suggesting the
presence of potential glucocorticoid response element(s) (GRE) in the deleted region

(Fig. 1).



44

870

////

\ W//////////% g ° ///////////% 2 o
//// i = t w.e ﬂm Emm : = o w_ I m_mm

) | 5= _ 2 7

; = H | -~

ih g o g | 2 <

H & g = ik 5 -

P = EER = .

- ] -- — ..

o :%w_: o._ i ) um O o_. .m_.w_:_..m_w.: M%m m W M = : mesm.: M_mm M W

Fig. 2 Corticosteroids modulate promoter activity of the murine SK2 gene. Bar graphs

show relative luciferase activity of SK2/luc vectors containing the 5’ flanking region of
the SK2 gene in PC12 cells. A; Application of corticosterone (435nM) increased pGL-F
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SK2/luc reporter vector expression. B; Application of corticosterone didn't have effect on
pGL-G SK2/luc vector. C; Application of aldosterone induced pGL-F expression in does-
dependent manner. This effect was blocked by application of spironolactone (240 nM )
D; the expression of pGL-G vector wasn't changed. E; Application of dexamethasone
increased pGL-F expression. Application of mifepristone (233 nM) could block this
effect. F; Application of dexamethasone couldn't modify expression of pGL-G.
Luciferase activity was normalized to -galactosidase activity, which was co-transfected.
Data are averages of 8 measurements from 4 different transfection experiments. Data
were expressed as mean + standard error (SEM) *P<0.05, *** P<0.0001 by ANOVA
with Fisher’s PLSD post hoc test.

Activation of the SK2 channel Promoter by C2-ceramide

Sequence analysis of the deleted 1.4 Kb promoter region also revealed a potential
response element for NF-kappaB (Fig. 3, A). In the presence of NF-kappaB SN50 (50
ug/ml), which inhibits the translocation of NF-kappaB from the cytoplasm to the nucleus,
expression of both reporter gene constructs was unchanged when compared to vehicle-
treatment (Fig. 3, B). Interestingly, activation of NF-kappaB by C2-ceramide (20 yM)
was clearly capable of inducing luciferase activity of the pGL-F promoter construct (Fig.

3,0).
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Fig.3 C2-ceramide increased SK2 transcription in PC12 cells. A; Map of pGL-F vector
containing the 5’ flanking region of the SK2 gene. There are two putative NF-kappaB
binding sites and four putative SP binding sites. B; Application of the specific peptide
inhibitor, SN50 (50ug/ml) had no effect on the expression of SK2. C; Application of C2-
ceramide (20uM) increased the expression of SK2. Data were normalized using the
amount of B-galactosidase. These data are averages of 8 measurements from 4 different
transfection experiments. Data were expressed as mean * standard error (SEM) *#*
P<0.0001 by ANOVA with Fisher’s PLSD post hoc test.
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Antisense probes against NF-kappaB subunits down regulated ceramide-induced
SK2 expression.

We treated 2uM of antisense oligonucleotides against the NF-kappaB subunits
p50 and p65. Semi-quantitative RT-PCR showed that PC12 cells endogenously express
both subunits. Antisense probes against pS0 and p65 successfully reduced the mRNA
amount of both subunits (Fig.4, A, B and Fig.5, A, B). Antisense probe treatment down
regulated ceramide-induced elevation of SK2 expression in PC12 cells (Fig.4, C and

Fig.5, C). This suggested that C2-ceramide increased SK2 expression through NF-

kappaB.
p50-Antisense
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Fig.4 Antisense probes against NF-kappaB subunits p5S0 down regulated ceramide-
induced increase in SK2 expression in PC12 cells. A; Semi-quantitative RT-PCR shows
that antisense probes against NF-kappaB subunit pS0 successfully reduced the mRNA
level. HPRT was used as housekeeping control gene. B; Bar graphs show the relative
amount of p50 transcripts normalized to the amount of HPRT transcripts. All experiments
were repeated at least twice. C; Luciferase activity of the pGL-F reporter vector was
reduced after antisense treatment. Luciferase activity was normalized to the amount of
co-transfected B-galactosidase. All data are averages of 8 measurements from 4 different
transfection experiments. Data were expressed as mean =+ standard error (SEM); *p<0.05,
*#p<0.005, *** P<0.0001 by ANOVA with Fisher’s PLSD post hoc test.
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Fig.5 Antisense probes against the NF-kappaB subunit p65 downregulated ceramide-
induced increase in SK2 expression in PC12 cells. A; Semi-quantitative RT-PCR showed
that antisense probes against p65 successfully reduced the amount of p65 transcripts.
HPRT was used as housekeeping gene. B; Bar graphs show the relative amount of p65
transcripts normalized to the amount of HPRT transcripts. All experiments were repeated
at least twice. C; Luciferase activity of the pGL-F reporter vector was reduced after
antisense treatment. Luciferase activity was normalized to co-transfected beta-
galactosidase. All data are averages of at least 8 measurements from 4 different
transfection experiments. Data were expressed as mean =+ standard error (SEM); *p<0.05,
*4% P<0.0001 by ANOVA with Fisher’s PLSD post hoc test.

Regulation of SK2 promoter activity by two putative NF-kappaB binding motifs

As shown in figure 3, A, the 3.6 Kb 5’ flanking region of the SK2 gene has two
putative NF-kappaB binding sites. I constructed several SK2/luc vectors to investigate the
role of these binding sites for transcription (Fig.6, A). Interestingly, expression of pGL-F
and pGL-MG showed about 1.8 fold increase after 24 hours of C2-ceramide treatment but
the relative induction of pGL-NF was reduced compared to pGL-F and pGL-MG. pGL-G
and pGL-H did not show any difference to non-treated controls (Fig.6, B).
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Fig. 6. Two putative NF-kappaB binding sites modulate SK2 transcription. A; Schematic
map of SK2/luc vectors. B; Bar graphs show relative induction of luciferase activity after
24 hours treatment with 20 uM C2-ceramide. These bar graphs are normalized to co-
transfected -galactosidase. These data are the average of at least 8 measurements from 4
different transfection experiments. Data were expressed as mean + standard error (SEM).
*p<0.05, *** p<0.0001 by ANOVA with Fisher’s PLSD post hoc test.

Repression of NF-kappaB-induced SK2 Promoter Activity by glucocorticoid
receptors

To investigate whether glucocorticoid receptors interact with NF-kappaB and
thereby affecting SK2 expression in PC12 cells, we treated C2-ceramide together with
aldosterone or dexamethasone. Surprisingly, 25 nM of dexamethasone downregulated
C2-ceramide induced SK?2 expression, whereas 750 nM of dexamethasone had no effect.
Aldosterone did not influence C2-ceramide-induced SK2 expression at any concentration

(Fig.7).
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Fig. 7. Activated GR reduced C2-ceramide-induced SK?2 up-regulation. Dexamethasone
and aldosterone were applied to pGL-F expressing PC12 cells in the presence of C2-
ceramide. These data are the average of at least 8 measurements from 4 different
transfection experiments. Data are expressed as mean + standard error (SEM); *p<0.05,
*#p<0.005, *** P<0.0001 by ANOVA with Fisher’s PLSD post hoc test.

On the other hand, after removal of the putative MR/GR binding site 25 nM
dexamethasone had no effect on SK2 expression, whereas 750 nM of dexamethasone
reduced ceramide induced SK2 expression. Again, aldosterone had no effect on pGL-NF

expression (Fig.8).
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Fig.8. Activated GR reduced C2-ceramide induced SK?2 up-regulation. Dexamethasone
and aldosterone were applied to pGL-NF expressing PC12 cells in the presence of C2-
ceramide. These data are the average of at least 8 measurements from 4 different
transfection experiments. Data are expressed as mean + standard error (SEM); *p<0.05,
*#p<0.005, *** P<0.0001 by ANOVA with Fisher’s PLSD post hoc test.

Discussion

Small conductance, calcium activated potassium channels were assumed to be
responsible for afterhyperpolarization (AHP), which follow action potentials in neurons
and control neuronal excitability. To gain more insight into the regulation of SK channel
expression would help to understand the mechanisms underlying the modulation of
neuronal signaling. Based on previous reports that neuronal signaling is changed after
acute stress (Blank et al., 2002) and that it is modified by steroid hormones via genomic
action (Joels et al., 1991; Karst et al., 1991) we anticipated a regulation of SK gene

expression by corticosteroids.
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Three SK channel subtypes have been cloned from the mammalian brain (Kohler
et al., 1996). They show high homology in sequence but their pharmacological properties
are diverse. SK2 and SK3 channels are sensitive to the bee-venom toxin, apamin,
whereas SK1 channels are insensitive (Ishii et al., 1997). They further show very
different distribution pattern in the mammalian brain (Stocker and Pedarzani, 2000). The
data presented here support the view that SK2 channels are target genes for
corticosteroids and the transcription factor NF-kappaB.

Two kinds of corticosteroid receptors have been reported in mammalian cells,
with highly different binding affinities to corticosteroids. Mineralocorticosteroid
receptors (MR) have a 10 fold higher affinity to corticosterone than glucocorticoid
receptors (GR) (for review, see de Kloet et al., 1998). Although they share the same
ligand, corticosterone, they have different physiological functions and are expressed in
different tissues. Both receptors share the same DNA binding motif. However, due to
different transcription co-factors MRs and GRs have been reported to regulate distinct
genes (Joels, 2001; de Kloet, 2003). We constructed various reporter vectors to determine
the amount of SK2 transcription. pGLF, containing a putative MR/GR binding site,
showed a dose-dependent activation in response to corticosterone. To identify the type of
receptor involved in the activation of SK2 transcription, we applied selective MR and GR
agonists. Interestingly both, aldosterone and dexamethasone enhanced SK2 expression in
a receptor-dependent way.

NF-kappaB has been known as a transcriptional activator for several genes, which
are mainly involved in immune reaction and apoptosis. But recently completely different
implications have been reported such as neural plasticity and cellular protective effects
against stress and cellular damages (for review, see Mattson, et al., 2000; Carroll et al,
1998; Clemens et al, 1997; Culmsee et al., 2003). We found two putative NF-kappaB
binding sites in the 5 flanking region of the murine SK2 gene. There was no NF-kappaB
baseline activity in PC12 cells but activation of NF-kappaB resulted in enhanced SK2
expression. When we constructed several SK2/luc vectors to investigate the role of two
putative NF-kappaB binding sites we found that the region between the putative MR and

GR sites and upstream of the putative NF-kappaB binding site was important for
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complete SK2 expression. This data suggest that other transcription co-factors or
potential enhancers are necessary for NF-kappaB to become fully active.

Another interesting finding of this study is that there is an interaction between
activated GRs and NF-kappaB to modulate SK2 expression. It has been described that the
activity of NF-kappaB is regulated by several mechanisms (Zhao and Karalis, 2002).
Activated GRs can increase SK2 expression directly, but at the same time, decrease NF-
kappaB mediated SK2 expression. At the moment it is unclear why activated GRs have
opposite effects on the expression of the same gene. It can be speculated that this
mechanism prevents SK2 over expression under conditions, which activate GRs and NF-
kappaB.

Since SK channels are gating potassium ions from the inside to the outside of the
cell, they prevent neurons from tonic firing. It can be suggested that NF-kappaB
counteracts neuronal hyperexcitability via regulation of SK2 channels and thus protects
cells from damage. This is supported by a previous report, which showed that
hippocampal cells overexpressing SK2 channels are more resistant to several kinds of
cellular stressors (Lee et al., 2003). Our findings that expression of SK2 channel is
regulated by stress hormones and NF-kappaB at the same time propose a protective role

of SK2 channels for neurons experiencing various stressful stimuli.
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Chapter 3

Transcriptional Regulation of the Calcium-
Activated Potassium Channel SK2 Gene in Mouse

Hippocampus

Introduction

Small-conductance, calcium activated potassium channels are believed to underlie
afterhyperpolarizations (AHPs), which controls neuronal excitability (Sah and Faber,
2002; Faber and Sah, 2002; Hosseini et al., 2001; Lorenzon and Foehring, 2002; Knaus et
al., 2002). The control of excitability in neurons has been shown to be critical for various
learning processes (Tzounopoulos and Stackman, 2003; Morozov et al., 2003; Power et
al., 2002; Stackman et al., 2003) but is also essential to prevent neuronal
hyperexcitability and subsequent neuronal damage. In view of these findings it is
important to understand the regulation of SK channel gene expression because altered SK
channel expression can be expected to directly interfere with neuronal excitability. In
fact, several studies have shown that the electrophysiological properties of neurons are
altered after an animal has been exposed to a stressful situation (Blank et al., 2002, 2003).

The hypothalamo-pituitary—adrenocortical (HPA) axis plays a vital role in
adaptation of the organism to stress exposure. Activation of the HPA system culminates
in secretion of corticosteroids, which are recognized by corticosteroids receptor
molecules in numerous organ systems, and act by genomic mechanisms to modify
transcription of key regulatory proteins (for review, see de Kloet et al., 1998). By
crossing the blood-brain barrier, corticosteroids are also able to enter the brain (McEwen
etEdl., 1986; De Kloet, 1991). Several studies have shown that corticosteroids affect the

signaling properties of hippocampal neurons by modulating calcium current amplitudes
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(Joels et al., 1991), serotonin-induced hyperpolarizations (Karst etldl., 1994; Joels et al.,
2003) or afterhyperpolarizations (AHPs) (Joels et al., 1991; Karst et al., 1991).

Another transcription factor investigated in this study is nuclear factor-kappaB
(NF-kappaB) (for review, see Mattson et al., 2000). It has been reported that the activity
of NF-kappaB is regulated by the early stress hormone, CRF, and by corticosterone.
Interestingly, CRF increases NF-kappaB activity while corticosterone inhibits it (Zhao
and Karalis, 2002).

Here, we studied the effect of behavioral stress on the expression of SK2 in

Balb/c and C57BL/6J mice.

Materials and Methods

Animals and cannulation

Experiments were carried out with young (8 weeks), male Balb/c (Charles River,
Sultzfeld, Germany) and C57BL/6] mice (Harlan-Winkelmann, Borchen, Germany).
Upon arrival the mice were individually housed and maintained on a 12 hr light/dark
cycle (lights on at 7 a.m.) with free access to food and water. Mice were kept under these
housing conditions for at least two weeks before experiments were started. Double guide
cannulae (C235, Plastics One, Roanoke, Virginia) were implanted using a stereotactic
holder during 1.2% avertin anesthesia (0.02 ml/g, intraperitoneal) under aseptic
conditions as previously described (Blank et al., 2002). Each double guide cannula with
inserted dummy cannula and dust cap was fixed to the skull of the mouse with dental
cement. For intracerebroventricular (i.c.v.) injections cannulae were placed into both
lateral brain ventricles, with anteroposterior (AP) coordinates zeroed at Bregma AP 0
mm, lateral 1 mm and depth 3 mm. Bilateral injections were performed using an infusion
pump (CMA/100, CMA/Microdialysis, Solna, Sweden) at a constant rate of 0.5 ul/min
(final volume: 1 ul per side). Alternatively, cannulae were directed toward dorsal
hippocampi, AP-1.5mm, lateral Imm and depth 2mm (Franklin and Paxinos, 1997).
Bilateral injections were performed using an infusion pump at a constant rate of 0.33
ul/min (final volume: 1 ul per side). The animals were allowed to recover for 4-5 d

before the experiments started.
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Immobilization stress
An acute immobilization stress of mice consisted of taping their limbs to a plastic

surface for 1 hour (Smith et al., 1995).

Drug treatment

Mice were injected subcutaneously with either the mineralocorticoid receptor
(MR) antagonist spironolactone (50 mg/kg), the glucocorticoid receptor (GR) antagonist
mifepristone (25 mg/kg) or the corresponding vehicle (physiological saline containing
1% polyethylene glycol 400) 30 min prior to immobilization. Subsequently, mice were
briefly anesthetized with isoflurane and decapitated immediately or 2 hours after the
stress session. Peptide NF-kappaB inhibitor (SN50, Santa Cruz, CA, USA) and its
corresponding control peptide were dissolved in 0.9% saline with a final concentration of
50 ug/ml. One microliter of solution was injected per mouse hippocampus. The final
amount of injected peptide was 50 ng/hippocampus. One hour after treatment, animals
were briefly anesthetized with isoflurane and decapitated. All other drugs were purchased

from Sigma (MO, USA).

Collection of hippocampal tissue, RNA extraction and DNase I Treatment

After decapitation, hippocampi were rapidly removed, frozen on liquid nitrogen
and stored at -80°C. Total RNA was isolated from mouse hippocampi using the Micro
RNA Isolation Kit (Stratagene, CA, USA) following the manufacturer's instruction and
treated with RQ1 RNase-free DNase I (Promega, WI, USA) at 37°C for 45 min.
Subsequently we used Phenol/Chloroform extraction to remove DNasel. This procedure

was repeated twice. The concentration of RNA was measured by spectrophotometer.

Semi-quantitative RT-PCR

Semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) was
performed to quantify SK2 transcripts using SUPERSCRIPT® One-step RT-PCR with
PLATINUM Tag (Invitrogen, CA, USA). Hypoxanthine phosphoribosyl transferase
(HPRT) was used as housekeeping gene. Primer sequences were rSK2-f; 5°-

tccgacttaaatgaaaggag-3’, rSK2-r; 5’-gctcagcattgtaggtgac-3°, HPRT-up; 5°-
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cctgctggattacattaaagcactg-3’ and HPRT-low; 5’-cctgaagtactcattatagtcaagg-3’. 1.5 ug of
RNA was used for each RT-PCR reaction. To amplify SK2 and HPRT transcripts, 2 mM
Mg* concentration was optimal. The reverse transcriptase reaction was performed at
55°C for 25 minutes. PCR cycling was at 94°C for 15 seconds, annealing at 55°C for 30
seconds, extension at 72°C for 50 seconds and a final extension at 72°C for 10 minutes.
Eighteen microliter of each sample was removed every 3 cycles from 24 to 33 cycles in
each reaction to amplify SK2 and HPRT fragments. To investigate the effect of SN50, 1
ug of RNA was used for each RT-PCR reaction and 15 pl per sample were removed
every 3 cycles from 29 to 35 cycles in each reaction.

Primer sequences for NF-kappaB subunits, p50 and p65 were p50-3f; 5'-
gtgcgeggtggagacgaagtttat-3', p50-4r; 5'-ccgaagggctgggagaaggtg-3', p65-2f; 5'-
agctgectcggtggggatga-3' and p65-2r; cagectggtcecgtgaaata-3'. To amplify pS0 fragments,
a concentration of 2 mM Mg”** was optimal. For p65 fragments, we used a concentration
of 2.8 mM Mg**. For each RT-PCR reaction 1.5 ug of RNA was used. The same RT-PCR
and PCR conditions were used for SK2 and HPRT fragments. Every 3 cycles from cycle
31 to cycle 40 a sample of 18 ul was removed in each PCR reaction. HPRT was used as
control gene. Amplified PCR products were separated on 1.5 % agarose gels with Tris-
Borate EDTA buffer and stained with ethidium bromide. Gels were captured as a digital

image and quantified by densitometry (WinCam 2.2, Cybertech).

Statistics
Statistical comparisons were made using Students’t-test or ANOVA. All RT-PCR
experiments were repeated at least twice. Data were expressed as mean + standard error

(SEM). The significance was determined at the level of p < 0.05.

Results

We used semi-quantitative RT-PCR to determine the relative amount of
hippocampal mRNA coding for SK2 channels before and after restraint stress in Balb/c
and C57BL/6J mice. Amplified fragments of SK2 mRNAs and of the HPRT control

template gave products of expected size. The PCR products were further confirmed by
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DNA sequencing (data not shown). The effect of single immobilization for 1 hour on the
expression of SK2 channel subunits was measured 2 hours after stress exposure. In
Balb/c mice expression of SK2 mRNA was clearly elevated compared to naive controls,
whereas immobilization had no effect on SK2 mRNA levels in C57BL/6J mice.
Interestingly, baseline expression of SK2 mRNA was significantly different in
hippocampi of both mouse strains (Fig. 1). The mRNA levels of the housekeeping gene
HPRT were not affected by the stress stimulus (Fig. 1).

Balb/c C57BL/6J
A
Naive Stress+2hr Naive Stress+2hr
24 27 30 33 24 27 30 33 30 33 36 39 30 33 36 39
24 27 30 33 24 27 30 33 24 27 30 33 24 27 30 33
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—_1
0.50 1 0.50 -
= =
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: :
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0.00 - 0.00
Naive Stress+2hr Naive Stress+2hr

Fig. 1. The amount of SK2 transcript in hippocampi of BALB/c and C57BL/6J mouse
strains. (a) Semi-quantitative RT-PCR of SK?2 transcript and HPRT before and after 1-
hour immobilization stress in two mouse strains. (b) Relative amount of SK?2 transcript
normalized to the amount of the housekeeping gene HPRT. These data were from 8
mouse hippocampi and semi-quantitative RT-PCR was repeated at least three times. **
P<0.005 versus naive values by two-tailed Student’s t-test.
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To further investigate the stress-induced changes in SK2 mRNA levels observed
in hippocampi of Balb/c mice we subcutaneously injected mice with antagonists for GR
(mifepristone) or MR (spironolactone) (Fig. 2). Thirty minutes after injection, animals
were immobilized and the amount of hippocampal mRNA was analysed 1 and 2 hours
following the stress session. Gene expression of SK2 subunits in Balb/c was clearly
affected by both antagonists. As shown in Figs. 2 A and B, stress modulated SK2 channel
expression in a biphasic and time-dependent manner. The amount of mRNA coding for
SK2 was reduced immediately after the stress session, and was significantly elevated 2
hours later. Subcutaneous vehicle injection had no effect on the expression of SK2
mRNA compared to non-injected control. Spironolactone completely prevented the
reduction of SK2 mRNA immediately after the stress session. In the presence of
mifepristone the initial reduction of SK2 mRNA observed immediately after 1hour of
immobilization was turned into a significant enhancement when compared to naive levels

(Fig. 2 C, D).
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Fig. 2. The amount of SK2 transcript in mouse hippocampus is highly changed after
stress in Balb/c mice. (a) Semi-quantitative RT-PCR of SK2 and HPRT transcripts in
non-injected control. (b) Bar graphs show the relative amount of SK2 transcript
normalized to the amount of the housekeeping gene HPRT before and after one hour
immobilization without any injection. (c) Stress-induced changes in SK2 expression in
the presence of vehicle, (d) spironolactone or (e) mifepristone. All drugs were treated
systemically 30 minutes before immobilization session. These data are from at least 8
mouse hippocampi and semi-quantitative RT-PCR was repeated at least three times. *
p<0.05, ** p<0.005, ***p<0.0001 by ANOVA.

We determined the amounts of NF-kappaB subunits in mouse hippocampus using
semi-quantitative RT-PCR. Interestingly, hippocampi of Balb/c mice had higher amounts
of the NF-kappaB subunit, p50, when compared to the amounts found in hippocampi of
C57BL/6J mice. The amount of an additional NF-kappaB subunit, p65, was identical in
both strains (Fig. 3). When we injected 50 ng of the specific NF-kappaB peptide inhibitor
SN50 (Lin et al., 1995) into the mouse hippocampus it downregulated the transcription of

SK?2 channels in the hippocampus of both strains (Fig.4).
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Fig. 3 Balb/c mice have more p50 than C57BL/6J. (a) Semi-quantitative RT-PCR show
the amount of NF-kappaB subunits p50 and p65 transcripts in the hippocampus of both
mouse strains. (b) Bar graphs show the relative amount of p50 and p65 normalized to the
amount of HPRT transcripts. These data are from at least 6 mouse hippocampi and semi-
quantitative RT-PCR was repeated at least three times. ***p<0.0001 versus Balb/c by
two-tailed Student’s t-test.
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Fig.4 The specific peptide inhibitor SN50 reduced the amount of mRNA coding for SK2
channels in mouse hippocampus. (a) Semi-quantitative RT-PCR shows relative amounts
of SK2 transcripts in hippocampi of both mouse strains. (b) Bar graphs show the relative
amount of SK2 transcript normalized to the amount of HPRT transcripts. These data are
from at least 6 mouse hippocampi and semi-quantitative RT-PCR was repeated at least
three times. ***p<0.0001 versus control peptide using ANOVA.

Discussion

A key feature of SK channels in the central nervous system is the contribution to
an AHP that follows either single or trains of action potentials thus regulating neuronal
excitability (Sah, 1996). The data presented here support the view that hippocampal SK2
channels are target genes for corticosteroids and NF-kappaB.

Surprisingly, there are significant differences in the hippocampal expression of
SK2 under baseline conditions and after stress in both mouse strains. First of all naive
Balb/c mice have more SK2 mRNA when compared to naive C57BL/6J mice. Following

stress exposure we observed dramatic fluctuations in the expression of SK2 in Balb/c
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mice, whereas SK2 mRNA levels were unchanged in C57BL/6J. From our data it might
be assumed that in Balb/c mice activated MRs work as an activator of SK2 channel
expression in contrast to activated GRs, which seem to repress expression of SK2.

Another transcription factor modulating expression of SK2 channels is NF-
kappaB. The specific peptide inhibitor of NF-kappaB, SN50, clearly repressed expression
of SK2 channels in hippocampi of both mouse strains, suggesting that NF-kappaB
functions as an activator. While the amount of p50 mRNA was higher in hippocampi of
Balb/c mice when compared to hippocampi of C57BL/6J mice, the amount of p65 mRNA
was identical in both mouse strains. This difference might be responsible for the
observation that hippocampi of Balb/c mice express more SK2 mRNA than hippocampi
of C57BL/6J mice.

One of the most interesting findings of this study is that the expression and
regulation of SK2 channels are substantially different between the two mouse strains.
One possible explanation might be that there are different regulatory sites in the upstream
region of SK2 channels. It is also conceivable that both mouse strains show differences in
their HPA axis responsiveness, which might result in dissimilar elevation of
corticosterone levels following immobilization. In general, increased SK2 channel
expression appears to represent a protective mechanism by lowering neuronal
excitability. According to this hypothesis it was recently shown that overexpression of
SK2 channels in cultured hippocampal neurons can protect cells against excitotoxicity
(Lee et al., 2003).

In summary, expression of SK2 channels in mouse hippocampus is modulated by
two endogenous corticosterone receptors and NF-kappaB. However, some questions still
remain. First of all, why was the expression of SK2 channels in the hippocampus of
C57BL/6]J mice not changed after immobilization? It is very unlikely that corticosterone
levels were not sufficient because one hour immobilization is generally regarded as a
severe stressor. It seems as if the effect of corticosterone on SK?2 transcription in the
hippocampus of C57BL/6J mice was antagonized by additional transcription co-factors.
As a result, the total amount of SK2 transcripts was kept constant. Another unanswered
question is related to the activity of NF-kappaB in both mouse strains. It has been

reported that the activity of NF-kappaB is changed after stress or aging (Korhonen et al.,
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1997; Toliver-Kinsky et al., 1997, 2002). Based on this observation, it can be speculated
that in both mouse strains stress exposure may have a different impact on the activity of
NF-kappaB. These interstrain variations may help to further understand cellular

mechanisms responsible for regulating gene expression in diverse genetic backgrounds.
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Chapter 4

The small conductance calcium-activated
potassium channel SK3 generates age-related

memory and LTP deficits

Nature Neuroscience 2003 Sep 6(9): 911-2

Cognitive deficits are among the most devastating changes associated with the
aging process. The decrement in learning specific learning tasks (Houston, 1999; Barnes,
1980) is correlated with substantial changes in neuronal signal processing in the
hippocampus. (Landfield, et al., 1978, 1984; Wu, et al., 2000) Here, we show that
elevated expression of small-conductance Ca**-activated K* channels (SK channels) of
the SK3 type in hippocampi of aged mice contributes to reduced long-term potentiation
(LTP) and impaired trace fear conditioning, a hippocampus-dependent learning task.
(McEchron, et al., 1998; Wallenstein, et al., 1998) SK channels modulate membrane
excitability and are important determinants of the firing properties of central neurons.
(Storm, 1990; Sah, et al., 1996; Pedarzani, et al., 2001; Schumacher, 2002) Recent
immunohistological studies of SK3 channels revealed that they are highly expressed in
rat hippocampus. (Tacconi, 2002)

We performed semi-quantitative RT-PCR (Fig. 1a,b) and Western blot analysis
(Fig. 1d,e) of mouse hippocampus and showed that the SK3 channel transcript and
protein are more abundant in hippocampi from aged mice (22-24 months) when

compared to hippocampi from young mice (4-6 months).



72

a b
Young Aged Naive  Vchicle SK3con SK3-AS
24 27 30 33 24 27 30 33 293235 293235 293235 293235
24 27 30 33 24 27 30 33 273033 273033 273033 273033

No. of cycles No. of cycles

(o 1 d
075 | o W
= H SF S
o P Ym0
(ep) YSO ©6©
5 : WS
0.25 | i
ES
0 T;j
O LS
LY E
O YO IUD ™
< ep“gﬁ'ék
?.,QO%@ 2}6
Ll
e 6 -
2
22 4
0=
==
23
Eg
£22-
n
1_
0




73

Figure 1 Antisense-SK3 treatment reduced the elevated expression of hippocampal SK3
channels in aged mice. (a) A typical RT-PCR experiment with SK3-specific primers
(forward 5'-GTGCACAACTTCATGATGGA-3' and reverse 5'-
TTGACACCCCTCAGTTGG-3'") revealed PCR products with the predicted 181-bp
length of SK3 mRNA. Total RNA was extracted from a single hippocampus of a young
and aged mouse. (b) Bar graphs show the relative band intensities on the basis of
densitometric analysis as ratios of SK3 and HPRT mRNA after 30 cycles of co-
amplification (mean + SEM). The intensities were verified to be within the linear range
of product accumulation. For each group, we used 5-11 mRNA samples. Statistical
analysis was performed by a two-tailed Student's #-test. *Significance (P < 0.02). (¢) The
SK3 channel transcript was detected by RT-PCR in hippocampi from aged mice as
described under (a). Antisense-SK3 injection resulted in a significant reduction of the
amount of hippocampal SK3 mRNA (*P < 0.05 by repeated measures ANOVA) relative
to the amount detected in hippocampi from naive, vehicle-injected or control ODNs-
injected aged mice. One typical experiment of each group is presented. (d)
Representative Western blot showing the analysis of SK3 protein in homogenates from a
single hippocampus isolated from young or aged mice, which were pre-injected with
vehicle, control oligonucleotides (ODNSs) or antisense-SK3. (e) Bars represent mean
Western blot band intensities + SEM from the hippocampal homogenates (n = 6, * P <
0.001 by ANOVA with Fisher’s PLSD post hoc test).

To determine if the elevated SK3 channel expression in aged mice affects
memory formation, mice were subjected to delay or trace fear conditioning
(Supplementary Materials and Methods; all experiments were carried out in accordance
with the European Council Directive of November 24, 1986 (86/609/EEC) with the
permission (No. 604.42502/02-02.97) of the Animal Protection Law enforced by the
District Government of Braunschweig, State of Lower Saxony, Germany). Trace
conditioning is a hippocampus-dependent form of associative learning in which the
conditioned stimulus (tone) and the unconditioned stimulus (footshock) are separated by
a defined time interval. For delay conditioning, the tone is immediately followed by a
footshock. Young and aged mice were tested 24 hours after delay fear conditioning in an
altered context and did not differ in their freezing response to tone (Fig. 2a). This result
suggests that acquisition and retention of the conditioned fear response were similarly
intact in young and aged mice. The ability of young and aged mice to acquire
associations between unpaired events was assessed in trace fear conditioning. In our
protocol of trace fear conditioning, tone and shock were separated by a 15 s time interval.

When tested 24 hours later, the freezing response of aged mice to the tone was reduced as



74

compared to that of young mice (Fig. 2b), suggesting reduced hippocampal processing of
the temporally discontiguous stimuli in aged mice. To test whether downregulation of
SK3 channels in the hippocampus of aged mice would overcome this memory deficit,
bilaterally cannulated mice were infused with either SK3 antisense oligonucleotides
(ODNSs) or control ODNs on day 5, 3 and 1 before behavioral training (Supplementary
Materials and Methods). ODNs and vehicle injection before training did not affect overall
activity and response to the footshock during the training session (not shown). When
tested 24 hours after trace fear conditioning, however, aged mice treated with antisense
ODNs against SK3 showed the same freezing response to tone as young animals.
Injection of vehicle or control ODNs had no effect on freezing to tone (Fig. 2b). In a
similar set of experiments, hippocampal tissue was taken and assayed for the SK3
channel transcript (Figs. 1c and b) and its encoded protein (Figs. 1d and e). Both SK3
channel transcript and protein production were reduced by injection of SK3 antisense
ODNs in aged mice, whereas no effect on the amount of SK3 channel transcript and

protein was observed after vehicle or control ODNs treatment.
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Figure 2 Downregulation of SK3 reversed the age-related impairment of trace fear
conditioning, PS-LTP and fEPSP-LTP. (a) Delay fear conditioning. The percentage of
freezing in a novel context to tone tested 24 hr after training did not differ significantly (P
= n.s.) in young (n = 6) and aged mice (n = 11). (b) Trace fear conditioning. Mean
percentage of conditioned freezing to the tone for aged mice (n = 17) was reduced
compared with the freezing of young mice (*P < 0.05, n = 6). Injection of antisense-SK3
ODN s resulted in a significant enhancement of the freezing response in aged mice (*P <
0.05, n = 7). No significant change in freezing was seen in aged mice injected with
vehicle (n = 6) or control ODNs (n = 6). Statistics were performed by ANOVA with
Fisher's PLSD post hoc test. *Significance (P < 0.05) compared with aged mice. (c¢)
Conventional hippocampal slices were used'”. PS-LTP elicited in slices from young mice
was significantly more enhanced ( ; to 199 + 10.1% of baseline; 8 slices, 5 mice; P <
0.01) when compared to PS-LTP induced in slices from aged mice ( ; to 161 + 3.3% of
baseline; 8 slices, 7 mice). The age-dependent impairment was significantly attenuated
when aged mice were pre-injected with antisense ODNs against SK3 (; to 198 + 12.1%
of baseline; 8 slices, 7 mice; P < 0.01). Pre-injection of control ODNs did not
significantly affect PS-LTP elicited in hippocampal slices from aged mice ( ; to 158 +
10.7% of baseline; 8 slices, 6 mice; P = n.s.). Insets: Responses shown are population
spikes recorded during baseline and 55-60 min after the induction of LTP. Traces are
averages of six consecutive responses. (d) The magnitude of fEPSP-LTP was
significantly larger in slices from young animals ( ; to 164 + 3.4% of baseline; 6 slices, 5
mice; P < 0.001) than in slices from aged animals ( ; to 129 + 2.3% of baseline; 6 slices,
5 mice). Pre-treatment of aged mice with antisense ODNs against SK3 resulted in



77

enhanced fEPSP-LTP ( ; to 158 + 2.1% of baseline; 6 slices, 4 mice; P < 0.001), whereas
pre-injection of control ODNs had no significant effect on fEPSP-LTP in slices from
aged mice ( ; to 130 + 1.7% of baseline; 5 slices, 5 mice; P = n.s.). Insets: Responses
shown are fEPSPs recorded during baseline and 55-60 min after the induction of LTP.
Traces are averages of six consecutive responses. Data are expressed as means + SEM.
We tested significance using unpaired Student’s 7-test.

Several studies of aging and LTP have failed to demonstrate any age-related
deficits using suprathreshold stimulation paradigms, such as high-frequency stimulation.
(Moore, et al., 1993; Lanahan, et al., 1997) In contrast, perithreshold stimulation
protocols (such as theta burst and primed burst stimulation) have revealed age-related
deficits in the induction of LTP. (Moore, et al.,1993; Lanahan, et al., 1997) Therefore, we
induced population spike (PS)-LTP and field excitatory postsynaptic potential (fEPSP)-
LTP by theta burst stimulation (TBS), at the test pulse intensity, consisting of 5 x 100 Hz
bursts (five diphasic pulses per burst) with a 200 ms interburst interval. We stimulated
Schaffer collaterals with a bipolar electrode placed on the surface of the slice to record
field potentials in the pyramidal cell layer or the dendritic layer of the CA1 area. The
stimulus was adjusted to elicit a PS or fEPSP that represented a half-maximal response
and was fixed at this level throughout the experiment. (Blank, et al., 2002) The
magnitudes of PS-LTP and fEPSP-LTP measured one hour after stimulation were more
pronounced in hippocampal slices from young than from aged mice (Figs. 2¢ and d). PS-
LTP as well as fEPSP-LTP recorded in slices from aged mice pre-treated with antisense
ODNSs against SK3 channels did not differ significantly from the potentiation observed in
slices from young mice (both P = n.s.). Treatment of aged animals with control ODNs
had no significant effect on PS-LTP and fEPSP-LTP (both P = n.s., Figs. 2¢ and d).
These findings point to the SK3 channel as a decisive target involved in the reduced PS-
LTP and fEPSP-LTP magnitude in area CA1 of the aged mouse hippocampus.

In summary, the data we present here are the first to suggest that increased SK3
channel expression in the hippocampus of aged mice represents a mechanism, which
contributes to the age-dependent decline in learning and memory and synaptic plasticity.
With the help of SK3 deficient mice we will determine the role of SK3 channels in

learning and memory and synaptic plasticity in future experiments. An intervention that
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selectively reduces the function of SK3 channels may be a novel mechanistic approach
for pharmacological treatments that might ameliorate or even prevent the memory

deficits associated with aging.

Materials and Methods
Animals

Experiments were carried out with young (4-6 months) and aged (22-24 months)
male C57BL/6J mice maintained under a National Institute of Aging contract with Harlan
Sprague-Dawley. Upon arrival the mice were individually housed and maintained on a 12
hr light/dark cycle (lights on at 7 am) with free access to food and water. Mice were kept
under these housing conditions for at least two weeks before experiments were started.
All experimental procedures were in accordance with the European Council Directive
(86/609/EEC) and the Animal Section Law under the supervision of the District

Government of Braunschweig, Lower Saxony, Germany.

Behavioural experiment

One trial tone-dependent fear conditioning was performed by a computerized fear
conditioning system from TSE (Bad Homburg, Germany) as described previously.
(Blank, et al., 2002) Training was performed in a Plexiglas cage (36 x 21 x 20 cm) within
a fear conditioning box constantly illuminated (12 V, 10 W halogen lamp, 100-500 lux).
In this conditioning box, a high-frequency loudspeaker (Conrad, KT-25-DT, Hirschau,
Germany) provided constant background noise [white noise, 68 dB sound pressure level
(SPL)]. Delay conditioning consisted of exposing the mice for 180 s to the context
followed by a 30 s tone (10 kHz, 75 dB SPL, pulsed 5 Hz) and 2 s shock (0.7 mA,
constant current). For trace conditioning mice were placed into the conditioning box for
165 s and the tone and shock were separated by a 15 s interval. In both training
paradigms, the mouse was removed from the fear conditioning box 30 s after shock
termination to avoid an aversive association with the handling procedure. The tone-
dependent memory test was performed by exposure to a novel context (180 s) followed

by the tone employed for conditioning (180 s). Freezing, defined as the lack of movement
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besides respiration and heart beat, was assessed every 10 s. The experimenter was blind
to the animal pre-treatment in all studies. The data were converted to the percentage of
samples scored as freezing. Locomotor activity was automatically recorded by an infrared

beam system (detection rate 10 Hz), controlled by the fear conditioning system.

Antisense oligonucleotides

Antisense oligonucleotides (ODN) and controls directed against mouse SK3 have
been provided by Biognostik (Gottingen, Germany). ODNs were shipped as lyophilized
DNA-Na salt. The lyophilized ODNs were dissolved in 1 x TE buffer (10 mM Tris/HCl,
1 mM EDTA; pH 7.2) to a stock concentration of 2 nmol/ul and stored at —20 °C. The
oligodeoxynucleotide suspension was diluted to a concentration of 0.5 nmol/ul in
artificial cerebrospinal fluid (aCSF) with 13 uM of the lipophilic transfection reagent
DOTAP (Boehringer Mannheim). The mixture was incubated for 15 min at 37 °C prior to
injection. Animals were injected intracerebroventricularly (i.c.v.) with 1 ul antisense pro
side on day 1, 3 and 5. Animals were decapitated or trained in the fear conditioning
paradigm on day 6. The sequences of the antisense-SK3 and random control
oligonucleotides are as follows: antisense-SK3, 5'-CTGTACTTCCCTTGTGTG-3' and
random control, 5'-ACTACTACACTAGACTAC-3'.

Cannulation

Double guide cannulae (C235, Plastics One, Roanoke, Virginia) were implanted
using a stereotactic holder during 1.2% avertin anesthesia (0.02 ml/g, intraperitoneal)
under aseptic conditions as previously described. (Blank, et al., 2002) Each double guide
cannula with inserted dummy cannula and dust cap was fixed to the skull of the mouse
with dental cement. The cannulae were placed into both lateral brain ventricles, with
anteroposterior (AP) coordinates zeroed at Bregma AP 0 mm, lateral 1 mm, depth 3 mm.
The animals were allowed to recover for 4-5 d before the experiments started. Bilateral
injections were performed using an infusion pump (CMA/100, CMA/Microdialysis,
Solna, Sweden) at a constant rate of 0.5 ul/min (final volume: 1 ul per side). Cannula

placement was verified post hoc in all mice by injection of methylene blue. For
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electrophysiological experiments double guide cannula placement was verified by

unilateral methylene blue injection.

Hippocampal slice electrophysiology

Mice were briefly anesthetized with isoflurane and then decapitated. In less than
one minute the skull was opened, the brain removed and transferred to ice-cold aCSF
solution of the following composition (in mM): 130 NaCl, 3.5 KCl, 1.25 NaH,PO,, 1.5
MgSO,, 2 CaCl,, 24 NaHCO,, 10 glucose, equilibrated with 95% 0O,/5% CO, (pH 7.4).
Hippocampi were dissected from the chilled brain hemispheres on ice. Transverse
hippocampal slices (400 M) were obtained on a Mcllwain tissue chopper (The Mickle
Laboratory Engineering Co. LTD., Surrey, England) and kept submerged (minimum of 1
hr at room temperature before recordings) in aCSF. Extracellular field potentials were
recorded in a recording chamber maintained at 32 °C with recording electrodes pulled
from borosilicate glass (WPI, Sarasota, FL) and filled with 2 M NaCl (3-5 mQ). All
recordings were made using a SEC-05L amplifier (npi Electronics, Tamm, Germany). To
record field potentials in the pyramidal cell layer or the dendritic layer of the CA1 area
Schaffer collaterals were stimulated with a bipolar electrode placed on the surface of the
slice. At the beginning of each experiment, a stimulus-response curve was established by
increasing the stimulus intensity and measuring the amplitude of the population spike
(PS) or the field excitatory postsynaptic potential (fEPSP) slope. Based on the input-
output function, the stimulus was adjusted to elicit a population spike or a fEPSP that
represented a half-maximal response and was fixed at this level throughout the
experiments. PS-LTP and fEPSP-LTP were induced by theta burst stimulation, at the test
pulse intensity, consisting of 5 x 100 Hz bursts (five diphasic pulses per burst) with a 200
ms interburst interval. Traces were stored on a computer using Pulse 7.4 software
(HEKA, Lambrecht, Germany) for off-line analysis. PS-LTP and fEPSP-LTP were
measured 60 min after tetanic stimulation. The experimenter was blind to the animal pre-

treatment in all studies.
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Chapter 5

Summary and conclusion

Small conductance Ca**-activated K* (SK) channels are believed to be involved in
the generation of afterhyperpolarizations (AHPs) found in many central neurons. They
are activated by an increase in intracellular calcium levels as seen following single or
multiple action potentials (Sah, 1996). Three SK channel subtypes have been cloned from
mammalian brain (Kohler et al., 1996). The mRNAs for all three SK channels are present
throughout the mammalian central nervous with various densities. In the rat
hippocampus, which contributes to several learning and memory processes, SK1 and SK2
channels are dominant with very low levels of SK3 subunits (Kohler et al., 1996; Stocker
and Pedarzani, 2000).

The bee venom toxin apamin is known as a selective SK channel blocker.
However, all three SK channel subtypes show different sensitivities to apamin. SK2
channels have a high sensitivity to apamin, whereas SK1 channels show very low
sensitivity when expressed in Xenopus oocytes (Grunnet et al., 2001). In neurons, apamin
can block medium AHPs, therefore SK channels are supposed to be responsible for this
type of AHP (Storm, 1989; Savic et al., 2001; Abel et al., 2004, Villalobos et al., 2004).

Here, 1 showed that the expression level of SK2 channels is regulated by
corticosteroids and NF-kappaB. It has already been known that corticosteroids modulate
neuronal excitability, but there was no indication on down-stream targets of
corticosteroids (Werkman et al., 1997; Pavlides et al., 1995). From the present data
modulation of SK2 channel expression represents a potential mechanism to explain the
link between changes in neuronal excitability and corticosteroids.

The consequences of corticosteroid-induced changes in SK2 channel expression
for brain function are likely to be complex because this channel subtype is assumed to

participate in forming a variety of functionally distinct channels. Up-regulation of SK2



83

channel genes may play an important role in the control of neuronal excitability and
synaptic plasticity because increased levels of SK2 will cause elevated efflux of
potassium ions out of the cell and consequently dampen the state of excessive neuronal
activity. This in turn will protect the cell from persistent hyperexcitability and ultimately

even from neuronal damage (Fig.1).
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Fig. 1. Schematic diagram of regulation of SK2 gene expression by corticosteroids and
NF-kappaB. Corticosteroids can pass the cellular membrane freely and activate its two
endogenous receptors, which are in the cytosol. Activated receptors enter the nucleus and
modulate as transcription factors SK2 gene expression. The inactivated form of NF-
kappaB exists in the cytosol as a complex. Kinases activate IKK, and activated IKK in
turn phosphorylates 1kB. Alternatively, Ca2+ entering the cell via glutamate receptors
can also activate the NF-kappaB complex. Activated NF-kappaB enters the nucleus and
acts as a transcription factor on SK2 channel expression.

Another conclusion from this study is the possible role of SK3 channels in age-
related cognitive deficits. As discussed in Chaper 4, aged mice have higher levels of SK3
channel mRNA than young animals. When we decreased the amount of SK3 mRNA by
antisense treatment, we observed that impaired LTP and trace fear conditioning fully
recovered to the level of young animal. These findings suggest that increased expression

levels of SK3 contribute to impaired learning and memory in aged animals.
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