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Abstract

Finger growth is studied in the first part of the thesis and a method for growth
prediction is presented. The effectiveness of the method is validated in several
tests. Fingerprint image preprocessing is discussed in the second part and novel
methods for orientation field estimation, ridge frequency estimation and image
enhancement are proposed: the line sensor method for orientation estimation
provides more robustness to noise than state of the art methods. Curved regions
are proposed for improving the ridge frequency estimation and curved Gabor
filters for image enhancement. The notion of multi-level judgment aggregation
is introduced as a design principle for combining different methods at all levels
of fingerprint image processing. Lastly, score revaluation is proposed for in-
corporating information obtained during preprocessing into the score, and thus
amending the quality of the similarity measure at the final stage. A sample ap-
plication combines all proposed methods of the second part and demonstrates
the validity of the approach by achieving massive verification performance im-
provements in comparison to state of the art software on all available databases
of the fingerprint verification competitions (FVC).
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Chapter 1

Introduction

Fingerprints have been used as a means of identification since ancient times [8].
In the late nineteenth century, first systematic studies of fingerprints and their
properties were conducted by pioneers like Sir Francis Galton, Henry Faulds, Sir
Edward Henry and Sir William Herschel [112]. Based on his empirical observa-
tions, Henry Faulds suggested in a letter to Nature in 1880 that “finger marks
or impressions [..] may lead to the scientific identification of criminals.” [13].
This statement implies two very important traits of fingerprints: permanence
and individuality.

Sir Francis Galton, a cousin of Charles Darwin, was the first to define and name
specific minutiae in his famous book “Finger Prints” published in 1892 [42]. The
two most important types of minutiae are ridge endings and bifurcations, i.e.
the division of a ridge into two ridges. Sir Edward Henry established a system
for fingerprint classification called “the Henry System” in 1899 [56]. Similar
fingerprint classification systems were also developed by Sir Francis Galton and
Sir William Herschel [57]. These milestones were followed by the acceptance of
fingerprint recognition as a valid method of identification by forensic experts
and in court [103].

In the 1960s, law enforcement agencies began to develop automatic fingerprint
identification systems (AFIS) in order to cope with the continuously growing
database sizes and number of daily requests [13]. Nowadays, fingerprint recog-
nition technology is also widely used in commercial applications, e.g. for access
control to laptops or buildings, or for drawing money from ATM.

Despite all the advances in fingerprint recognition over more than a century,
some fundamental questions have remained open.

1.1 Thesis Contribution

1.1.1 Fingerprint Growth Analysis and Prediction

How do fingers grow? The specific configuration of ridges is finalized after 24
weeks estimated gestational age [7] and there is a consensus about the perma-
nence of the fingerprints’ pattern, but the course of the growth process has, up
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to now, not been systematically examined. This lack of knowledge has practical
consequences for law enforcement agencies as well as social implications.

Given a query fingerprint, the task of an AFIS is to find the corresponding
finger, if it is stored in the database, and in this way identify the person to
whom the query fingerprint belongs. If a person was registered to the database
as a child or juvenile and the query fingerprint is acquired years later when
the person is already a grown-up, then the AFIS is confronted with a major
challenge. In this scenario, existing AFIS may fail to identify a person who is
registered to the database, because the growth of the finger is not factored in
adequately. Results presented in Section 2.4.4 give a first indication regarding
missed identifications, but the exact number of failures that currently occur due
to ignoring the impact of growth on fingerprints is unknown. This number can
up to now simply not be counted, because from the perspective of the AFIS,
the case of ’not in the database’ and a missed identification are indistinguishable.

In the first part of the thesis, fingerprint growth is analyzed and a method
for growth prediction based on the age of the person is proposed. Several tests
demonstrate the effectiveness of the approach. After the implementation of
these suggestions, law enforcement agencies can begin to estimate the dark fig-
ure of missed identifications by recording the cases in which the matching finger
in the database was taken from a person under the age of 20 and determining
the percentage of identifications that previously would have been missed.

Fingerprint growth is not only relevant for purposes of law enforcement and
prosecution, but it also has societal significance due to the use of biometrics in
visa applications and passports. In April 2009, the European Parliament and
the Council of the European Union passed a resolution [1] regarding the intro-
duction of biometrics in visa applications. The lack of knowledge regarding the
growth of fingers caused the EP and the Council to exempt children under 12
from having their fingerprints included into the visa application. The according
press release1 states:

During negotiations with the Council, MEPs2 successfully argued
for children under twelve to be exempted from the requirement to
give their fingerprints. At present there is no available large scale
study that documents the reliability of juvenile fingerprinting. MEPs
insisted on a prudent minimum age limit in order to ensure that
the biometrics are reliable for the VIS to work as intended. On 14
January this year, the European Parliament voted for a similar ex-
emption for biometric passports. The age limit will be re-examined
in the light of the findings of the study that the Commission has
undertaken to carry out at Parliament’s request.

The conduction of a study analyzing the effects of growth on juveniles’ finger-
prints is enacted at the end of the resolution [1] and the first report is expected
in 2012:

1http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+IM-
PRESS+20090324IPR52485+0+DOC+XML+V0//EN

2Members of the European Parliament
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The first report shall also address the issue of the sufficient relia-
bility for identification and verification purposes of fingerprints of
children under the age of 12 and, in particular, how fingerprints
evolve with age, based on the results of a study carried out under
the responsibility of the Commission.

The first part of the thesis contributes to reducing this gap in knowledge by
analyzing the fingerprint growth of persons who were between 6 and 15 (median
11.9) years old at the time of their first check-out.

1.1.2 Fingerprint Image Preprocessing and Multi-level Judg-
ment Aggregation

Individuality of fingerprints is commonly assumed by forensic experts, researchers
and the general public, to the extent that the term ’fingerprint’ has become a
synonym for ’something that identifies; a trait, trace, or characteristic revealing
origin or responsibility’3. On the other hand, fingerprint based identification is
regularly challenged in court [103, 23] pleading that the uniqueness of finger-
prints is not scientifically tested and matching error rates are not established.
As a consequence, the ’Committee on Identifying the Needs of the Forensic Sci-
ence Community’ of the National Research Council, USA, reports [2] the need
for strengthening the scientific foundation of fingerprint based identification.

Following the assumption that a fingerprint contains a sufficient amount of
discriminative information, the challenge emerges how to reliably extract this
information from a fingerprint image. The second part of the thesis addresses
this pattern recognition challenge in the following way:

Chapter 4 treats the task of estimating the flow of ridges resulting in an ori-
entation field (OF). Special regard is paid to low quality images in which large
regions are disturbed by various kinds of noise aggravating the OF estimation.
A review of relevant existing methods is given followed by the introduction of
a novel OF estimation method called line sensor method which marks an im-
provement in comparison to state of the art methods. In Chapter 6, curved
regions are presented as an approach of dealing with naturally occurring cur-
vature of ridges in fingerprints. Subsequently, the curved regions are applied
for improving the ridge frequency estimation. Chapter 7 surveys widely used
fingerprint image enhancement techniques and introduces curved Gabor filters.
This constitutes a synthesis of the previous two chapters, since the line sensor
based OF estimation, the curved regions and the improved ridge frequency es-
timation method are combined.

Chapter 8 outlines the idea of multi-level judgment aggregation as an archi-
tecture for building an AFIS which makes good use of the plurality of existing
methods on all levels of fingerprint image processing. Some first practical exam-
ples are presented and their performance improvements is validated in verifica-
tion tests [73]. The results give a hint of the potential of this approach. Known
fusion techniques are examined and discussed before a novel method of score

3Merriam-Webster’s Collegiate Dictionary http://www.merriam-webster.com/
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revaluation is proposed. In a case study of FVC 2002 database 2, the choice of
appropriate score revaluation criteria is shown based on previously extracted in-
formation, in particular the orientation field. A commercial software is applied
for minutiae extraction and matching which performs on the original images at
an equal error rate (EER) of 1.08 %. In Section 8.8, all previously introduced
methods for line sensor based OF estimation, RF estimation using curved re-
gions, image enhancement by curved Gabor filters, template cross matching and
score revaluation are united under the roof of multi-level judgment aggregation
leading to a perfect, i.e. error-free separation into genuine and impostor recogni-
tion attempts. To the best of my knowledge, this is the first time that a perfect
result was obtained on any of the FVC databases. Subsequently, the score reval-
uation criteria are generalized and tested on all available FVC databases. The
thesis concludes with a discussion of the achieved results and possibilities for
future work within the framework of multi-level judgment aggregation.
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Fingerprint Growth
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Chapter 2

Fingerprint Growth
Analysis and Prediction

2.1 Introduction

The dynamics of individual and average growth in humans have been exten-
sively studied [53], particularly in terms of body height. But how do fingers
grow? The question of finger growth is not only of theoretical interest in biol-
ogy and auxology, but it has practical relevance for law enforcement agencies:
if the person being checked out had been registered as a juvenile, retrieving
a matching fingerprint in their databases poses serious difficulties to existing
automated fingerprint identification systems (AFIS).

Studies of human growth show strong correlations between the increase in body
height and the limb lengths (see e.g. [102]). Most studies concerned with the
effects of growth on fingerprints have focused on the stability of the line pat-
tern’s structure. In 1892, Sir Francis Galton was among the first who noted the
permanence of the configuration of individual ridges and furrows [42]. These
findings were confirmed by biologists who discovered that the development of
the pattern is finalized after 24 weeks estimated gestational age [7]. The de-
formation of this pattern due to the fingers’ growth, however, received little
attention [133]. One explanation why the effects of growth on fingerprints have
not been investigated yet, may be the lack of longitudinal data of juveniles’
fingerprints through adolescence. The data sets for the growth analysis were
provided by the BKA (Bundeskriminalamt, Federal Criminal Police Office of
Germany). The cooperation with the BKA offered a unique opportunity to
work with data which is rarely available in other respects and the systematic
examination of finger pad growth contributes to strengthen the scientific founda-
tion of fingerprint recognition as requested by the National Research Council [2].

The fingerprint growth analysis and prediction presented in this first part of
the thesis is joint work with Thomas Hotz who especially performed the sta-
tistical analysis of the data. The results can be found in a separate report
[48].
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2.2 Data source

The finger pad growth analysis is based on data sets of 48 persons (35 male,
13 female) provided by the BKA. During the initial enrollment of their finger-
prints to the database, the subjects of this study were between 6.1 and 14.7
years old (median 11.9 years). At the time of final check out (CO), subjects
were between 16.5 and 34.0 (median 24.5) years old. The images are scans of
inked fingerprints on sheets of paper. Image resolution was 500 dots per inch. A
full data set for a CO consists of 14 images: a nail-to-nail rolled fingerprint for
each of the ten fingers and four additional plain control prints. One control print
for each thumb and another control print for the other four fingers of each hand.

Each person was checked out in Criminal Records between 2 and 48 times (me-
dian 4.5 times). The whole data set consists of 367 COs. For the subsequent
growth analysis and the test in Section 2.4.1, 8930 points of interest (POI) were
marked. POI are minutiae, i.e. endings and bifurcations of ridges, and singular
points, i.e. core and delta points. In order to investigate the growth effects, the
locations of POI were determined in the fingerprint images of each person at
all times of CO. Only in very few cases, POI could not be marked due to very
low image quality. For each person, one finger was chosen for the analysis. The
right index was selected, if the data set of a person contained one or more so
called simplified COs which consist only of the right index finger. Otherwise,
the most informative finger available was chosen for each person, i.e. the finger
with the maximum number of unambiguously markable corresponding POI with
respect to the image quality of overlapping areas. Fingers of the left or right
hand are of tantamount eligibility, because differences in proportions between
bones of the left and right body side have been found to be insignificant [120].

2.3 Growth Analysis

Naturally, the fingers’ size will increase due to growth, but does it affect all
of a fingerprint’s parts similarly, or is there possibly a dominant direction, e.g.
because fingers get rather elongated? If the latter was the case, distances along
that direction would increase relative to distances orthogonal to it, requiring
an elaborate correction step. In the analysis (see [48] for details), no dominant
direction of variation or strong correlation with size was found. This suggests
that growth has an isotropic effect on fingerprints; in other words, they get uni-
formly rescaled, and all that remains to be determined is the scale factor.

Taking the strong correlation of stature and limb lengths into account [102],
we hypothesized this scale factor to be essentially the same for fingerprints as
for stature. Determining the spread of minutiae in each fingerprint allowed us
to obtain an intra-finger measure of size: we define size as the square root of
the squared distances of the POI from their center of gravity. Out of all marked
POI, only those corresponding pairs are considered which are shared at all times
of CO (between 4 and 25 per person, median 11). We modeled the intra-finger
size proportional to median stature as obtained from growth charts of boys and
girls [88] and we found the model to explain the data very well with model misfit
being smaller than variations at identical time points, the latter being caused by
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Figure 2.1: Mean distance of POI at different COs (blue: original, green: con-
trol) of persons 17 (left) and 31 (right), as well as fitted growth according to
growth chart (purple) [48].

nonlinear distortions when the finger is pressed on a flat surface and systematic
differences between originals and controls (see [48]). Another explanation for
deviations from the median stature based model are individual characteristics
such as varying times of on-set of the pubertal growth spurt.

Combining the strong correlation between finger pad growth and longitudinal
growth with the isotropy results in a simple, practical method for predicting a
fingerprint at a later stage in growth based on an earlier one: compute a scale
factor as the ratio of median stature for the corresponding ages and gender and
uniformly scale the earlier print up by that factor. The quality of this finger
pad growth prediction is examined in the next section.

2.4 Results of Validation Tests

The validity and usefulness of the finger pad growth prediction is evaluated in
light of the application we have in mind: matching a newly obtained fingerprint
with a fingerprint in a database recorded several years ago before growth was
completed. In order to obtain a broad understanding as well as practically
relevant results, we performed several tests.

2.4.1 Test 1: Minutiae Distances after Alignment

For this test, the fingerprints of the first and last CO of each person are aligned
using the POIs by choosing the combination of rotation and translation that
minimizes the sum of the squared distances between pairs of POIs. Subse-
quently, the similarity of the two fingerprints was determined as the mean
squared distance between corresponding POIs. This resulted in a measure of
similarity where growth was not taken into account. Likewise, we took the ac-
cordingly rescaled fingerprints of the first CO, aligning and comparing these to
the fingerprints at the last CO, giving a measure of similarity after predicting
growth as described above. In order to obtain a measure of dissimilarity due
to non-growth related effects, i.e. chiefly nonlinear distortions of the skin when
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Figure 2.2: Imprints of right middle finger of persons 15 (top) and 18 (bottom)
at first (left) and last (middle) CO with marked POI. Superimposed POI (right)
at first CO without rescaling (blue), with rescaling (purple), each brought into
optimal position w.r.t. the POI at last CO (red); control at last CO (green)
shown for comparison (scale bars: 2 mm or 31.5 pixels) [48].

pressed on a flat surface, we also compared a second fingerprint recorded at the
last CO for control purposes to the fingerprint at last CO.

Summarizing these intra-person measures by taking the median over our study
population of 46 persons reveals that rescaling can reduce the median distance
from 10.5 pixels when growth is not taken into account to 5.7 pixels with the
suggested method. For comparison, the median distance between the two prints
at the last CO was 4.7 pixels, the latter value being indicative of the achievable
accuracy because these deviations in the relative location of the minutiae to
each other are caused by the lack of reproducibility of the deformations that
occur when an elastic three-dimensional object is pressed on a two-dimensional
surface with variations in the angle, direction, speed and amount of pressure
that is exerted. The corresponding empirical cumulative distribution functions
comparing unscaled, first CO magnified and control print of the last CO are
displayed in Figure 2.3.

Noteworthy, the distances between corresponding minutiae play an import role
for the fingerprint matching algorithms which typically have a defined range of
tolerance with respect to the amount of allowed fluctuation. For this reason, a
gain in the matching performance by rescaling is to be expected, and accord-
ingly, the second way in which we tested the validity of the growth prediction
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Figure 2.3: Left: cumulative distribution function of mean distance from POI
at last CO after bringing POI at first CO without rescaling (blue) and with
rescaling (purple) into optimal position, control at last CO (green) shown for
comparison. Right: relative reduction in this mean distance per person achieved
by rescaling vs scale factor given by the growth chart (numbers give person IDs)
[48].

is by conducting several verification tests.

2.4.2 Software for Minutiae Extraction and Matching

Two software packages were used for the experimental results presented in the
following section and the verification tests in Chapter 8.

The first bundle is provided by the National Institute of Standards and Technol-
ogy1 (NIST) which is a agency of the United States Department of Commerce.
It is called NBIS (NIST Biometric Image Software) and is freely available for
download2. NBIS consists of a number of algorithms for fingerprint pattern clas-
sification, segmentation, quality estimation, minutiae extraction, matching and
general purpose image utilities [144]. For this thesis, three NBIS algorithms
were applied: MINDTCT for minutiae extraction, BOZORTH3 for matching
and NFIQ [139] for global image quality estimation. MINDTCT extracts minu-
tiae from a grayscale image and saves them in a text file (template). For each
minutia, the x- and y-coordinates, the direction θ and a quality indicator are
stored. BOZORTH3 takes two templates as argument and calculates a similar-
ity score. Henceforth the abbreviation BZ3 will denote results obtained using
MINDTCT and BOZORTH3 without further options.

The second software package is called VeriFinger 5.0 Software Development Kit
(SDK) provided by Neurotechnology3. It was chosen, because at the time of the
experimentation, a license for the software was already available at our institute.
Certainly, it is of interest to additionally conduct the verification tests, especially
those described in Chapter 8, using further algorithms. VeriFinger was applied
in two different ways using the functions VfeExtractUnpackedFromImage and

1http://www.nist.gov/
2http://fingerprint.nist.gov/NBIS/
3http://www.neurotechnology.com/
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VfmVerify. Using the VeriFinger SDK, these two variants were created. The
first takes two grayscale images as argument and outputs a score. It is labeled
VFG for VeriFinger grayscale in the result tables. The second variant extracts
minutiae from a grayscale image and stores the information in a template. For
each minutia, the x- and y-coordinates, the direction θ and the type (ending or
bifurcation) are stored. In a second step, two templates are matched and a score
is obtained, as well as additional information like e.g. which minutiae pairs were
matched. The second variant is denoted as VFM for VeriFinger minutiae.

For the two minutiae based algorithms BZ3 and VFM, the rescaling was per-
formed by adjusting the x- and y-coordinates in the template files. For VFG,
the grayscale images were rescaled and stored, and for the identification test
conducted at the BKA using their in-house matcher, rescaling was performed
by adjusting DPI settings.

2.4.3 Test 2: Verification Tests

Within the biometrics community, the most popular performance measures are
the false rejection and false acceptance rates (FRR and FAR, respectively) in a
verification test where a matcher must decide whether a query fingerprint be-
longs to the same person who had her fingerprint registered in a database: the
database contains one fingerprint for each person, while the query set contains
another fingerprint each. FAR and FRR are functionally related (see Figure
2.4 for receiver operating characteristic curves) via a threshold parameter that
determines which scores, i.e. measures of confidence, produced by the matcher
will lead to a claimed verification. In general, the smaller the FAR the larger
the FRR. For comparing two matchers, one therefore often chooses the equal
error rate (EER) [99], i.e. the rate obtained when the threshold parameter is
selected in such a way that FAR and FRR become equal.

For our application, the query set is given by the fingerprints at the last CO.
Similar to the analysis described earlier, we compare results for two different
databases: one comprising the unaltered fingerprints at the first CO, and the
other one with those fingerprints rescaled according to their predicted growth.
To ensure that the results do not depend on the particular matching algorithm
used, three different matchers were applied as described previously.

On rescaling according to the growth prediction, there are two possibilities: the
fingerprint (represented by a grayscale image or a minutiae template) of the first
CO can be magnified (FM) according to the prediction or the last finger can be
shrunken (LS) with the reciprocal value. The former may be of greater practical
relevance because magnified templates can easily be kept in the database as a
projection of the current fingerprint for persons who are presumably still grow-
ing. These templates should be regularly updated, in intervals that account for
the speed of growth. A query against such a template would involve the same
computational effort as a query against any other template, whereas shrinking
the older, in most cases adult finger would require an individual rescaling for
each combination of a query finger with a database finger of a person under the
age of 20. In this section, the two rescaling variants FM and LS are compared
with the unscaled (UN) images or templates.
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Figure 2.4: Receiver operating characteristic (ROC) curves comparing unscaled
(blue) and first CO magnified (purple) for the algorithms BZ3 (top left), VFM
(top right), VFG (bottom left) and score fusion of the three using the sume rule
(bottom right).

The verification tests were conducted according to the following protocol: All
available fingers of the first and the last CO are incorporated into the test. For
2 of the 48 persons, only the right index finger could be considered due to a
so called simplified check-out, whereas for all other persons all ten fingers are
included, resulting in 462 different fingers. For each finger of the last CO, one
genuine recognition attempt is performed by matching it against the same fin-
ger at the first CO, and 461 impostor recognition attempts are conducted by
matching it against all other fingers of the last CO. This protocol corresponds to
a scenario with a database containing a vast majority of adult fingerprints and
only few prints of children and juveniles, as it is the case at the BKA. In order
to measure the effects of rescaling, the performance in verification tests with
three variants of genuine recognition attempts are compared: (i) the first and
last CO of each finger are matched without scaling, (ii) the fingerprint of the
first CO is magnified according to the growth prediction and matched against
the unscaled print of the last CO and (iii) the fingerprint of the last CO is scaled
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down with the reciprocal value and matched against the unscaled first CO.

In a first step, we compared the verification performance for each of the three
matchers and the three versions of genuine recognition attempts (UN, FM and
LS). The EERs for matching the unscaled fingers are located in the range from
10.81 to 14.11 %. EERs are cut in half by magnifying the first finger (5.35 - 6.35
%) and reductions up to 77% are achieved by shrinking the last finger (3.28 -
4.98 %). Score fusion using the sum rule (see also Chapter 8) leads to a further
decrease of the EERs: UN 7.22 %, FM 2.97 %, LS 2.22 % (13).

The growth prediction is based on the median body height charts for boys
and girls [88] and it works well for the vast majority of examined cases. How-
ever, individual growth can deviate considerably from average growth. Genetic
influence and environmental factors such as the nutritional status affect e.g. the
timing of the pubertal growth spurt. In order to optimize the identification
performance of an AFIS and include persons who grow considerably more or
less than the median growth chart suggests, it stands to reason that matching
with multiple rescaled versions of a finger results in higher matching scores for
persons deviating from the median curve. For example, considering the two ad-
ditional scenarios that a person grew 5% more or 5% less than predicted by the
median curve and making use of the maximum score of these variations, leads
to EERs in the range 1.98-5.05% for FM and 2.19-2.36% for LS. Score fusion
using the sum rule achieves EERs of 1.76% (FM) and 0.9% (LS). The EERs
can be even further reduced by considering more rescaling variants. With a
combination of nine versions of rescaling and score fusion the EERs went down
to 0.99% for magnifying the first finger and 0.37% for shrinking the last finger.
The remaining matching errors were caused by very low quality of the finger-
prints as found by visual inspection. The approach of using multiple rescaled
fingers overcomes the difficulties of predicting individual growth from one single
data set.

Theoretically, both scaling variants should perform equally well. In my opinion,
the aforementioned differences in EERs between scaling up the first CO and
scaling down the last CO are caused by specifics of the algorithms. Presum-
ably, allowed ranges for matching minutiae are fixed, so that comparing two
fingerprints of juveniles causes less false accepts, because the distance between
matching minutiae are smaller than for the scaled up versions of the same im-
ages or templates. Once AFIS software designers begin to factor in the growth
of fingers, these differences in performance should vanish. For practical reasons,
the subsequently presented identification test at the BKA compares only the
magnifying of the first CO to the unscaled version.

2.4.4 Test 3: Identification Test at the BKA

From a forensics point of view, verification is less of an issue. What matters
more is identification [66]: whether a search in the database given some query
fingerprint will return the same person’s fingerprint as one of the top ranked
results. For the purpose of a positive identification, a human expert will exam-
ine a small, variable number of potentially matching fingerprints depending on
the score and factors like time resources and the importance of the case. In this
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Top Rank One of Top 3 Ranks
unscaled first CO magnified unscaled first CO magnified

BZ3 59.1 % 82.5 % 67.5 % 85.9 %
VFG 64.3 % 90.5 % 69.5 % 92.4 %
VFM 69.7 % 90.7 % 75.3 % 92.0 %
Score Fusion 79.9 % 94.6 % 84.0 % 95.9 %
3 Factors 79.9 % 97.6 % 84.0 % 98.3 %
BKA 79.2 % 97.9 % 79.2 % 97.9 %

Table 2.1: Proportion of genuine matching scores ranked as the highest score or
among the three highest scores, respectively.

study, the belonging of the genuine match to the top one or the top three search
results are applied as criterion for measuring the success of the identification
attempt.

The results of the verification tests could also be used as identification tests
by determining how often the score of the genuine imprint at first CO, unscaled
or rescaled respectively, ranked among the corresponding impostor scores. We
thus computed the respective proportion of genuines giving the highest score, or
ranking among the top three (see Table 2.1). The identification test at the BKA
was conducted on a database containing 3.25 million right index fingers, as well
as a scaled and an unscaled version of the first check out of the 48 examined
persons. Querying the database with the right index finger obtained at the final
check out of each person, the unscaled data set was in 38 of 48 part of top three
ranked results which means that if only the first CO were available, in 10 cases
the person belonging to the queried finger could not be identified. For the data
sets that were rescaled according to the growth prediction, the search was 47
out of 48 times successful. In one case, both versions failed due to low image
quality. If the left index finger was used instead of the right one for that person,
both versions could identify the person. Detailed results including the relative
improvement of the matching score by rescaling can be found in [48].

2.5 Anecdotes

Remarkably, the statistical examination of the age and finger pad size data
detected two clear outliers. Investigations by the BKA discovered that in one
case the date of the check out in Criminal Records was mistaken by 10 years
and for another person, the true year of birth is unknown. It would appear that
the person might have stated a false year of birth in avoidance of punishment,
and the finger pad growth data underpin this supposition. After the correction
of these two entries, the outliers disappeared and the data sets were consistent
with the growth model.
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2.6 Discussion

Drawing conclusions from this finger pad growth analysis yields simple, practical
suggestions: law enforcement agencies can improve their identification perfor-
mance by considering and predicting the growth of fingers for persons under
the age of 20. Multiple rescaled templates account for deviations from the av-
erage growth and can easily be integrated into an existing AFIS. Regular (e.g.
quarterly) database updates can adjust the fingerprint templates of juveniles
according to the predicted growth. This procedure is technically feasible even
for databases with millions of entries and the updates can be performed at times
of low workload or off-line. The effectiveness of the prosed method for growth
prediction was verified in three tests:
first, the minutiae distances after alignment of corresponding marked minutiae
were dramatically reduced by rescaling. Second, the verification performance
on the test set of 462 fingers was immensely improved and thirdly, this result
result was confirmed on a BKA database consisting of 3.25 million right index
fingers on which 9 failures to identify a person who was registered as a juvenile
out of 48 identification attempts could be avoided by rescaling.

The exact number of failures to identify persons that currently occur due to
ignoring the impact of growth on fingerprints is unknown. We learned of cases
in which the records of the first and last CO could not be matched despite ten
print matching. The identifications of these persons was only made possible by
intermediate COs and chain inference. For these cases, the application of the
growth prediction enables a successful matching. After the implementation of
these suggestions, law enforcement agencies can begin to estimate the dark fig-
ure of missed identifications by recording the cases in which the matching finger
in the database was taken from a person under the age of 20 and determining
the percentage of identifications that previously would have been missed by the
unscaled template.
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Part II

Fingerprint Image
Preprocessing
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Chapter 3

Introduction

The first stage of fingerprint image processing comprises of preparation steps
which aim at improving the overall performance of the AFIS, i.e. minimizing
the number of identification or verification errors, especially by enhancing the
original input image. The importance of image preprocessing is illustrated by
the fact that only very few fingerprint recognition algorithms abstain from pre-
processing: e.g. a survey among the participants of the fingerprint verification
competition “FVC 2004” [101] reveals that 25 of 29 participating algorithms
segment the image at the beginning, and also 25 of 29 perform image enhance-
ment before feature extraction and matching [18].

Fingerprint image processing includes methods and techniques for carrying out
the following tasks:

• segmentation

• orientation field (OF) estimation

• singular point (SP) detection

• classification

• image quality estimation (global or local)

• ridge frequency (RF) estimation

• image enhancement

• binarization (e.g. [54])

A multitude of specific methods can be found in the fingerprint recognition lit-
erature for each of the listed tasks, and when one looks at the core ideas of
the proposed methods, it becomes clear that aforementioned areas are deeply
interwoven with each other. In all following chapters, this interconnection will
be taken into consideration.

At the beginning of the next chapter, a review of existing methods for orienta-
tion field estimation is given and their advantages and limitations are discussed,
especially when dealing with low quality images disturbed by typical types of
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noise. Having established the need for more robust approaches to OF estima-
tion, the line sensor based method is presented and its performance is compared
with two state of the art methods on artificially generated and naturally poor
quality images. The interconnection of the line sensor method to segmentation
and image quality estimation is addressed and it is sketched how these two
tasks can performed simultaneously using the information obtained for the OF
estimation. At the end of the chapter, the line sensor based method is further
developed into a method which minimizes the computational efforts while pre-
serving the robustness.

Chapter 5 sketches the application of quadratic Bezier curves for dealing with
the naturally occurring curvature in fingerprints.

Chapter 6 discusses the relevance of ridge frequency estimation for fingerprint
image preprocessing and gives a survey of existing methods for this task. The
novel idea of curved regions is introduced which attempt to mimic the curva-
ture of ridges and valleys by piecewise linear steps along the local orientation.
The curved regions are applied in Chapter 6 for an improved method of ridge
frequency estimation and in Chapter 7 for the design of a curved Gabor filter.

Finally, the concept of multi-level judgment aggregation is introduced in Chap-
ter 8. A general architecture for designing better AFIS is recommended and
some practical examples are given. All proposed methods for orientation field
estimation, ridge frequency estimation and image enhancement from the pre-
vious Chapters 4 – 7 are combined and in Section 8.3, the improvement of
the verification performance applying this combined image preprocessing is re-
ported. In the subsequent five sections, several approaches aiming at a further
reduction of the error rates are investigated. Techniques known from the lit-
erature are examined, implemented and evaluated, and a novel idea for the
post-matching stage called score revaluation is proposed which make good use
of the information obtained at the preprocessing stage, in particular the orien-
tation field. In the light of this information, score revaluation achieves a perfect
separation of genuine and impostor recognition attempts in a case study of FVC
2002 database 2. To the best of my knowledge, this is the first time that an
error-free verification result was achieved on any of the FVC databases. The
subsequent generalization of the revaluation criteria leads to massive error re-
ductions on all available databases. The chapter concludes with a discussion of
the results and possible improvements.
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Chapter 4

Orientation Field
Estimation

4.1 Motivation

A precise and reliable OF estimation is a crucial preprocessing step in finger-
print image processing, because many subsequently applied methods for ridge
frequency estimation, image enhancement, binarization and feature extraction
require information about the local ridge orientation, and computing singular
points (SPs) using the Poincaré index [10] is based on the orientation field.

For example, if an image enhancement step using Gabor filters is incorporated
into the automated fingerprint processing, this can improve the verification per-
formance as e.g. shown in [60]. The Gabor filter is a local operator that takes the
gray values of the image within a certain neighborhood, the local orientation and
the local ridge frequency as input (as well as two additional tuning parameters:
σx and σy, the standard deviations of the Gaussian envelope. [103]). Applied
with an accurate estimation of the local orientation and ridge frequency, the
Gabor filter has the potential to significantly improve the image quality. On
the other hand, if inaccuracies and mistakes occur during the OF estimation
that can not be dealt with by techniques like low-pass filtering, incorrect local
ridge orientations are subsequently passed to the Gabor filter. This will lead
to artifacts (see e.g. [140]) in the enhanced image, especially to the creation of
spurious bifurcations, and eventually decrease the matching results. The prop-
erties of Gabor filter are discussed in more detail in Chapter 7. For these and
further reasons, the quality of the OF estimation can have a big influence on
the overall performance.

4.2 Review of Existing Methods

Gradients

Currently, the most popular method for OF estimation is based on gradients
and was introduced by Kass and Witkin in 1987 [82]. Its advantages are that it
can be computed very fast, it performs well for many images, and unlike other
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Figure 4.1: Image 1 10 from FVC2006 DB3 [17]: A 16× 16 pixels detail (right)
from the original image (left) in which the block is marked as a white square.

methods previously used, the accuracy of the calculated orientation is not lim-
ited by a fixed number of possible orientations [10]. Nevertheless, the gradients
based method is susceptible to interference by scars, dirt, moisture or dryness
of the finger, and other sources of noise which can lead to interrupted, thick
or grainy ridge structures in the acquired image. The problem is inherent to
the fact that gradients are extracted from the image using very small masks (of
3 × 3 up to 5 × 5 pixels). The results are then averaged over larger windows
in order to increase the consistency of the results. Figure 4.1 (b) displays a
16 × 16 pixels detail from a fingerprint image that is disturbed by scar noise.
In the depicted window, the orientation seemingly goes from the left top to the
right center, but this detail belongs to an area disturbed by scars. For a human
expert it is quite obvious, taking the surroundings of this window into account,
that the true ridge flow roughly goes from top to bottom. The method based
on averaging squared gradients fails to estimate the true ridge flow, because the
information is not contained in this small window. Possible improvements rest
upon neighboring windows that may catch a better orientation estimation, and
on a subsequent smoothing step like low-pass filtering. A gradients based ap-
proach which combines Gaussian smoothed OFs at different scales was proposed
by [11]. Since then, several additional methods have been proposed which are
based on smoothing a coarse gradients derived OF at different scales (e.g., see
[145],[107] and [80]).

Normal Vectors

An idea similar to the approach based on averaging squared gradients was pre-
sented by Donahue and Rokhlin [28]. They regarded a gray scale image as a
surface over the xy-plane, calculated for each 2×2 pixels neighborhood the nor-
mal vectors and computed the orientation by a least squares minimization over
the surface normals in an averaging window. This idea is related to the Marr-
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Hildreth operator [105] for edge detection which is also known as Laplacian of
Gaussian (LoG) or Mexican hat, since the direction of the normal vectors is
dictated by the gray-level intensity changes and peaks in the first directional
derivative are equivalent to zero-crossings in the second directional derivative of
intensity.

Micropatterns

Kawagoe and Tojo suggested a block wise OF estimation method [83] based on
2 × 2 pixels binary micropatterns. First, a fingerprint image is binarized and
divided into subregions of 16×16 pixels. Each 2×2 pixels micropattern belongs
to one of four classes representing the orientations of 0 ◦, 45 ◦, 90 ◦ and 135 ◦, or a
neutral fifth class. For each block the occurrences of 2× 2 pixels micropatterns
are determined and compiled into a histogram of the four orientation classes
from which an average block orientation is estimated.
A survey of further local methods for OF estimation can be found in [103].

Global Models

On the other side of the scale, global models strive to describe the whole orien-
tation field by a number of parameters. Sherlock and Monroe [137] introduced
a zero-pole global model using rational complex functions. An improvement by
using a piecewise linear orientation function was proposed in [142]. The zero-
pole model [137] has been extended by Zhou and Gu [156] who suggested to
approximate the rational function by a set of polynomials, and to use a point-
charge model in order to improve the accuracy in the proximity to singular
points (see also [157, 51]). For fingerprint matching, the usage of the globally
modeled OF in combination with minutiae was proposed in [52]. The applica-
tion of quadratic differentials for a global OF model was introduced in [64, 61].
All aforementioned global models have the disadvantage of requiring the prior
knowledge of the singular points. First, a coarse gradients based OF is com-
puted from which the type and location of the SPs is estimated. Inaccuracies
and mistakes in this process lead to erroneous OF estimations by the global
model.

Two models have been proposed that do not require prior knowledge of SPs:
in [143], a model called FOMFE was presented that is based on 2D Fourier
expansions in the phase plane and adapts directly to the coarse gradients based
OF estimation. The second approach uses Legendre polynomials for smoothing
the OF and correcting errors in the initial, gradients based estimation [126].

Gabor Filter Bank

The ridge and furrow pattern of a fingerprint can be regarded as an oriented
texture [75] and the frequency- and orientation-selective properties of a Gabor
filter [68] can be capitalized in a filter bank which chooses for each location
the filter with the highest energy response and selects the frequency and the
orientation accordingly.
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2D Sine Waves

For the extraction of ridge patterns from palmprint images that are disturbed
by many creases crossing the ridge lines, an approximation of the ridge patterns
by 2-dimensional sine waves was proposed in [40]. This method was refined in
[69] by, amongst other things, a region growing algorithm that is similar to the
one presented in Section 4.4.2.

Multiscale Directional Operator

A multiscale directional operator has been introduced by Oliveira and Leite
[119]. It estimates the orientation of each pixel (x, y) by dividing the semicircle
into D directions and calculates the standard deviation of the gray values for
n test points along each direction with (x, y) as central point. From all pairs
of two orthogonal directions, the pair exhibiting the highest information con-
trast is chosen. The information contrast is defined as the maximum of the
absolute values of the differences in standard deviation between two orthogonal
directions. Next, from the two directions of the chosen pair for pixel (x, y), the
direction with the smaller standard deviation is determined following the idea
that the standard deviation along a ridge or valley is smaller than in the perpen-
dicular direction, and this value is stored in a new orientation image g. Finally,
the orientation at pixel (x, y) is obtained by applying a smoothing window Ω
centered in (x, y) to image g.
The multiscale directional operator can be regarded as a generalization of Mehtre’s
idea for the computation of the directional image [106].

Line Sensor

The line-sensor based method which will be described in the following section
traces ridge and valley lines and builds a coherent structure of locally parallel
line segments from which the OF estimation is derived. To this end, the line-
sensor based approach makes good use of a property inherent in fingerprints:
the continuity of ridge and valley flow perpendicular to the flow. This is a
multiscale approach, since, at first, line segments are discovered locally. In a
second step, neighboring parallel line segments will be merged and eventually
they ’broadcast’ their orientation to a medium-scale vicinity. By this means,
the orientation field is constructed.

4.3 Line Sensor Based OF Estimation

4.3.1 Sketch of the Method

Firstly, the gray scale image is smoothed, binarized and morphologically im-
proved. Secondly, a rudimentary line tracing detects ridges and valleys, com-
pletely or partially. Thirdly, the discovered line pieces are analyzed for parallel
pieces in a neighborhood orthogonal to the line piece. Fourthly, we take the
parallelism of line pieces into account and group them to parallel structures;
the larger the structure, the higher the confidence in the resulting orientation
estimation. All structures that cover a minimum number of pixels are merged,
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and all line pieces propagate their orientation orthogonally. In this way, the ori-
entation field is estimated. Finally, missing blocks are iteratively reconstructed
until the orientation field is complete. See Figure 4.7 for an illustration of the
main steps.

4.3.2 Results

Figure 4.2: Examples of three typical types of noise from FVC2004 [101]: a wet
(left, image 108 8 DB1) and a dry fingerprint (center, image 1 7 DB1). The
fingerprint on the right (image 10 1 DB3) is disturbed by scars.

In order to investigate the performance of our method, in a first step we
chose a sample of good quality fingerprint images from the FVC2000 [99] and
FVC2002 [100] databases. The images were divided into blocks of 16×16 pixels.
A human expert classified the blocks as foreground or background and marked
the orientation of all foreground blocks. Next, artificial scars were simulated
by drawing white bars on top the good quality images. We compared the OF
estimations of the line-sensor based method, the gradients based method [10]
and the multiscale directional operator [119] to the OF marked by the human
expert. As performance measure, the number of deviations > 15 ◦ between an
estimated orientation and the marked ’ground truth’ orientation was used. For
the gradients, averaging window sizes from 8 to 100 pixels were applied, and
for the multiscale directional operator, 36 combinations of the three parameters
number of directions, number of test points and smoothing window size were
computed.

For the original good quality images, the gradients based method and the line-
sensor based method achieved the best results with 12 deviations > 15 ◦ out
of 4072 foreground blocks (0.29%) and 20 deviations > 15 ◦ (0.49%), respec-
tively. The multiscale directional operator produced 105 erroneous estimations
(2.58%). With an increasing number of simulated scars, the performance of
the gradient based method deteriorates proportionally to the amount of added
scar noise, whereas the line-sensor based method shows greater robustness to
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this type of simulated noise. The number of defective estimations by the multi-
scale directional operator increases slowly in comparison to the gradients based
method, but its performance is clearly worse than the line-sensor based method
(see Figure 4.11).

In the main part of the experimentation, 1782 orientations were manually marked
in 60 poor quality images from FVC2004 [101] representing three typical types
of real life noise: wet finger, dry finger and finger with scars (see Figure 4.2).
For the convenience of the reader, all marked orientations are made available 1

for comparative tests. On these naturally poor quality images, the performance
of the three methods was compared using the same measure.

The line-sensor based method clearly outperformed the other two methods on
these naturally poor fingerprint images. Using the number of deviations > 15 ◦

between the estimated and the marked orientation as performance measure, the
gradients based method produced 50% more defective orientation estimations
than the line-sensor based method, and the multiscale directional operator pro-
duced more than three times the number of errors. On the other hand, the
presented method has difficulties in the core area, where due to the ridge bend-
ing the approach based on parallel traced segments has its limitations, and the
computational costs for the line-sensor based OF estimation are greater than
the requirements of the gradient based method.

4.4 Detailed Description of the Line Sensor

The various steps of the algorithm described below depend on a variety of sig-
nificant constants. Large variations of the values of these parameters are con-
ceivable. We have chosen these values empirically, striving to optimize the
estimation performance.

4.4.1 Preprocessing

Binarization

Goal of the binarization is to prepare the subsequent line tracing by obtaining
a binary image with a ridge and valley structure that is as distinct as possible
with respect to the local noise level. This is achieved in three steps: firstly,
the gray scale image is smoothed by a two-dimensional Gaussian filter [135].
Secondly, it is binarized by applying a basic adaptive mean threshold [138] and
finally single pixels and very small 4-connected pixel areas are removed using a
seed fill method [55].

In the tests with images from all FVC databases and different combinations
of parameters, the following produced the best results: a Gaussian filter with
mask size 7×7 pixels and σ = 1.0, a 5×5 pixels window for the locally adaptive
mean threshold and the removal of all 4-connected areas ≤ 10 pixels.

1Please refer to the website of the biometrics working group at the Institute for Mathe-
matical Stochastics, Georg-August-University Goettingen: http://www.stochastik.math.uni-
goettingen.de/biometrics/
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Figure 4.3: Original grayscale and binarized images 101 6 (left) and 101 8 from
FVC2004 DB1 [101].

Figure 4.4: The sensor peers from a start point into a circular set of directions.

Tracing

The line tracing is based upon the principles of the sensor-like ’Entracer’ in-
troduced in [110]. Lines are traced in black (ridges) and white (valleys). The
tracing of valleys is necessary in binarized images of dry fingerprints, whereas
ridge tracing is appropriate for wet prints (see Figure 4.3). It is desirable to
trace complete ridge and valley lines in order to retrieve as many pieces of in-
formation as possible, but for the purpose of orientation field estimation, it is
sufficient if only some parts of lines are traced.

For choosing start points, we iterate in a grid over the binarized image. Ini-
tially, all grid points are permitted as start points and marked accordingly in a
two-dimensional Boolean array. After a line was traced, grid points which are
part of the line and neighboring pixels of the same color in the binary image
are excluded from being start points. In this way, double tracing of lines is
avoided. On commencing to trace a line, the sensor peers from the start point
p0 ∈ B(i, j) into d directions as shown in Figure 4.4. Here, B(i, j) denotes
the (i, j)-th pixel of the binary image B. For each direction, the number n of
possible pixel steps in the same color are measured. After sorting, let n0 be the
biggest value. Prerequisites for beginning to follow a line: firstly, n0 must be
greater than a threshold value tminStartLen, and secondly, all other directions
with ni ≥ tminStartLen must be situated in a cone around the direction belong-
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Figure 4.5: Starting in the top left corner of the first image (left), the line-sensor
performs an all-around search and traces the line into the direction which can
be followed for the longest possible distance (red line). From the next point on,
the line-sensor explores only those directions that are located in cone around
the recently followed direction (second image).

ing to n0 or in a cone around the opposite direction. If there are other directions
with ni ≥ tminStartLen outside these two cones, the tracing is aborted, because
the start point might be part of the image background or an area disturbed by
noise. If this initial all-around search detects exactly one or two directions, the
tracing begins. The second direction is the one belonging to the biggest ni in
the opposite cone. Now, the line is followed k ≤ n0 pixel steps into the first
direction to the point p1 ∈ B(i, j). The choice of each k aims at going as far
as possible in one direction and simultaneously ensuring that the next point is
close to the center of the followed line for being able to continue the tracing.
Now looking from point p1, the sensor searches in the cone around the followed
direction for the next possible pixel steps without changing the color (see Figure
4.5). The angle of the cone shall not be much larger than ’normal’ ridge bend-
ing. Let n0 be the biggest pixel step value and tminContinueLen the minimum
length necessary for the continuation of the tracing. If n0 ≥ tminContinueLen,
the line is followed in the direction which belongs to n0 and this step is iterated.
Otherwise the line is terminated and if there is a second direction at the start
point, the line is tracked in that direction in the same manner. Also, after each
step from pk to pk+1, this piece is marked as an 8-connected line in the start
point image and it is checked whether an already discovered line was crossed. If
so, the intersecting angle α is determined. For an α smaller than a threshold tα,
the tracing is stopped in order to avoid the double tracing of lines, for a big α,
the line tracing continues, and the decision, which of the two lines expresses the
true ridge flow and which line tracks a scar, will be postponed. After a line can
not be traced further, it is stored in a list. The color of the line and intermediate
points are stored. Henceforward, ’line piece’ or ’line segment’ denotes the seg-
ment between of two consecutive intermediate points on a traced ridge or valley.

For the experimentation in Section 4.5, the following parameters were used:

• grid size g = 4 pixels
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Step 1 Step 2 Step 3 Step 4

Figure 4.6: In step 1, the gray polygon (range = 24 pixels) covers the proximity
of the blue line piece in orthogonal direction. Other line pieces (traced ridges
or valleys) crossing the polygon are examined for whether they run parallel
(green), i.e. forming an angle ≤ 7.5 ◦ with the blue piece. The ratio of green
pixels within the polygon to the total number of polygon pixels is 0.21 in this
example. Discovered parallel pieces (green) in step 1 are added to the structure.
In step 2, the grown structure of coherent pieces is drawn in blue, and for each
newly added piece the corresponding polygon (gray) is inspected for crossing line
pieces. The iteration continues as long as new parallel pieces are discovered.

• number of directions d = 120

• minimum start length tminStartLen = 15 pixels

• minimum length for continuing the tracing tminContinueLen = 5 pixels

• start cone size conestart = 45 ◦

• max bending threshold conebending = 15 ◦

• intersecting angle threshold tα = 22.5 ◦

Related work: For the purpose of minutiae detection, a different tracing ap-
proach operating in the grayscale image was proposed by Maio and Maltoni
[98]. Extensions are given in [94] by tracing both, ridges and valleys, and in [79]
by adaptive tracing and filtering.

4.4.2 Orientation Field Estimation

Evaluation of Traced Lines

Once, a list of lines consisting of straight pieces was compiled, the critical ques-
tion arises: which lines, or which pieces of lines, reflect the true ridge flow, and
which pieces belong to traced scars and other sources of noise?

Bearing in mind the continuity of ridge flow perpendicular to the flow direc-
tion, such line pieces tend to comprise the true ridge flow that are confirmed by
many parallel line pieces. Traced scars may also have other parallel scar pieces,
but from a broader perspective, they remain a local phenomenon. The number
of parallel ridge and valley line pieces are detected for each line piece in the
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following way: A vector orthogonal to the piece’s orientation is added to and
subtracted from the start point and the end point of the piece. These resulting
four points form a polygon which covers the neighborhood in orthogonal direc-
tion. It is examined whether the pieces crossing this polygon run parallel (see
Figure 4.6 step 1). If so, simply the number of pixels that belong to the parallel
piece and are located inside the polygon are summed up. The ratio of parallel
pixels to total pixels of the polygon is used as an indicator for the goodness of
the piece. This ratio and the polygon are stored for each piece and they will be
utilized in the next step. A good line is characterized by the fact that a high
percentage of lines and line pieces in the region surrounding the good line run
parallel. This, to some extent, is also true for lines that are very closely located
to the core and delta points.

Growing Coherent Structure

After sorting all line pieces according to descending parallel ratios, let p0 be
the piece with the biggest proportion of parallel parts. Beginning with p0 and
a new, blank image coherent structure (CS), a structure of coherent pieces is
created as follows: p0 is added to a new list s1 which keeps track of all pieces
building this structure. The polygon belonging to p0 is drawn on CS and in
the start point image S, where all line pieces are marked, the pieces located
in or crossing the polygon area are detected (see Figure 4.6). If a piece under
consideration and p0 form an angle α ≤ tparallel, the new piece is classified as
parallel and added to the list s1. Next, for each piece pk that was added dur-
ing the last step, the according polygon is drawn on CS and that area of the
polygon which was previously blank is checked in image S for the occurrence
of pieces. Each detected piece parallel to pk is appended to the structure s1.
The iteration lasts until in a single step no new parallel pieces are discovered
and the growth of structure s1 stops. The pixel count of the whole structure is
stored. From the list of line pieces, sorted in descending order with respect to
their ratio, the next item is analyzed. If piece p1 is not part of structure s1, a
new structure s2 is built starting with piece p1, else it is continued with piece p2.

Finally, all structures that cover an area of more than tminPixel are merged.
Traced scar lines may have some parallel pieces and grow to a structure, but
even in the case of two or more parallel scars this remains a local phenomenon,
and in this merging step all possible scar influence is excluded. For the experi-
mentation in Section 4.5, the parameter was chosen: tminPixel = 1000.

Related work: A region growing algorithm proposed by Jain and Feng [69] for
blocks of 2D sine waves instead of line pieces rests upon a similar philosophy.
Another idea for verifying thinned ridges extracted from a binarized image was
presented in [59] for OF estimation and subsequent fingerprint classification.

Two papers were recently published which especially address the problem of
creases and scars: Oliveira and Leite [119] propose to detect and reconnect
broken ridges using a multiscale directional operator in combination with mor-
phological tools. In [155] creases are detected for removing spurious minutiae
and as a feature for fingerprint matching.
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Figure 4.7: The main steps of the line-sensor based method. Top left: image
107 7 from FVC2000 DB2 [99] with 15 randomly added artificial scars; top right:
traced ridges (blue) and valleys (red); bottom left: merged coherent structure;
bottom right: derived orientation field after reconstruction.
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Orientation Field Estimation

For the orientation field estimation, the image I is divided into blocks. Rea-
sonable values for the block size b are in the range from 1-16 pixels. For the
scar simulation in Section 4.5.2, a block size of b = 8 pixels was chosen. Each
block B(a, b) is initialized with a vector v(a, b) = [0.0, 0.0]. Iterating over the
merged line piece structure created in the last step, each line piece propagates
its orientation to the OF in the following way: The polygon belonging to the
line piece is reused for determining which OF blocks are overlapped by it and
how many pixels are covered. Let φk be the orientation of line piece pk and
assume it covers nk,(a,b) pixels of block B(a, b). Then, the weighted influence of
piece pk on block B(a, b) is wk,(a,b) = nk,(a,b)/b

2 and v(a, b) is updated:
vnew(a, b) = vold(a, b) + [wk,(a,b) · cos(2 ∗ φk), wk,(a,b) · sin(2 ∗ φk)].
The idea of doubling the angles before summing up the vectors was introduced
by Kass and Witkin [82]; it reflects the fact that tangents to flow lines have no
direction, so the angles are defined (mod π). The orientation of each block is
calculated by φ(a, b) = 0.5 · atan2(vy(a, b), vx(a, b)) mod π [103]. This prop-
agation makes good use of the continuity of ridge flow orthogonal to the flow
direction which is an intrinsic property of fingerprints. Finally, the polygons
belonging to the line pieces of the merged coherent structure are reused for de-
ciding which blocks of the orientation field receive enough orientation influence
by the line pieces. If the original image is disturbed and has some noisy areas,
this tends to lead to hiatuses in the merged coherent structure. Now, these
missing blocks are determined and they will be reconstructed in the next step.
Starting with a blank image P , all polygons appertaining to the line pieces of
the merged coherent structure are drawn on P . For all blocks that are nearly
completely or totally covered by polygons, the orientation φ(a, b) is stored, all
other blocks are marked as missing.

Reconstructing Missing Blocks

First, it is determined which missing blocks are 4-connected with each other
and together, they form a gap in the OF. It is checked whether a gap adjoins
the image border or not, and the information is stored.

Small Gaps

Single or two connected missing blocks are simply reconstructed as follows: The
missing block is regarded as the center of a 5 × 5 blocks neighborhood. Let
(xm, ym) be the coordinates of the missing blocks center, (xab, yab) of block
B(a, b) respectively. Let α(ab),m be the angle between the orientation of block
B(a, b) and the line from (xab, yab) to (xm, ym) with 0 ≤ α(ab),m ≤ π/2 and
d(ab),m be the Euclidean distance. The influence of each block is weighted with
wab = (2 ∗ α(ab),m)/(π ∗ (1 + d(ab),m)). Thus, blocks close to the missing block
have a greater influence than those further away, and blocks with an orientation
parallel to the missing block’s location are weighted stronger. For an example,
see Figure 4.8.
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Figure 4.8: The central block is reconstructed, missing blocks are gray. On the
right, an area close to the core is reconstructed and only the orientations in
green influence the estimation, the orange ones are ignored.

Figure 4.9: On the left, the Poincaré index is calculated using the margin of the
big gap. On the right, the numbers of intersection points within each block are
displayed.

Big Gaps

For three or more missing blocks connected with each other, a path on the mar-
gin around the big orientation field gap is detected and the Poincaré index is
calculated. If the result is 0, then the area contains no singular points, and it
is reconstructed like the single block previously, starting with the missing block
that has the largest weights from the neighboring blocks. The same procedure
is applied for gaps containing a delta.

If the Poincaré index indicates a core or a whorl inside the gap, the location of
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the core point is estimated by the intersection points of lines perpendicular to
the orientation as proposed by Novikov and Kot [117]. From each block along
the margin, the line perpendicular to its orientation is drawn and intersections
are counted. Figure 4.9 shows the numbers of intersection points. Blocks whose
normal lines did not cut the gap are marked in blue. The blue blocks in Figure
4.9 correspond to the margin blocks 14 to 18 in Figure 4.9. In the case of more
than one candidate for the block containing the core point, the block with the
smallest average distance to the blue blocks is chosen. After the core block is
determined, the reconstruction begins with the missing block that is farthest
away from the core. Unlike before, only those neighboring blocks are accounted
for that are located in the cone around the direction from the core block to
the missing block (a cone of 15 ◦ was used), and that are further away from
the core than the missing block (see Figure 4.8). Orientations of reconstructed
blocks are included in subsequent reconstruction steps. See Figure 4.10 for a
successful reconstruction of a whorl (left column) and an example in which the
reconstruction fails.

Border region

Having finished the reconstruction of all missing blocks inside the orientation
field, the OF estimation is gradually expanded from the center to the image
border in the same way as the single blocks were reconstructed. This proceeds
until the orientation of all blocks is estimated.

4.4.3 Segmentation and Image Quality

A byproduct of the growing coherent structure in Section 4.4.2 is the classi-
fication of the area covered by this merged structure as foreground. For an
illustration, see Figure 4.7 image (d). The union of all polygons belonging to
the line pieces of the merged coherent structure form the gray area and can be
regarded as foreground. Small gaps can easily be filled by applying the compos-
ite morphological operator ’closing’ [65].

Furthermore, a local quality index can be intuitively derived from the coher-
ent structure in combination with the traced line segments that are located in
the foreground but are not part of the coherent structure by computing the
relation of ’good’ line segments which are part of the coherent structure to the
overall number of traced line segments in that area. An exception is the direct
neighborhood to core points where due to the high curvature it tends to be
difficult to find parallel pieces, In the terminology of [4], the aforementioned
quality index belongs to the category of measures which are based on the local
direction. At the matching stage, the local quality index can be used for evalu-
ating the reliability of the extracted features so that features from high quality
areas gain more influence [22].

Also, this quality index can be mapped easily to the division of the image by
Hong et al. [60] into the categories ’well-defined’, ’recoverable’ and ’unrecover-
able’. In our model, a well-defined area consists mostly of line segments that
are part of the coherent structure of parallel pieces, whereas a neighborhood
which is covered by the coherent structure and simultaneous has a considerable
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Figure 4.10: Two fingerprints of the class whorl. For the image on the left,
the reconstruction of the orientation field leads to a satisfactory result. For the
image on the right, it failed for two reasons: first, the location estimation of the
upper core (block in magenta) is inexact, and second, the core below is missing.
This is due to its location being in an area with too few parallel segments to be
part of the coherent structure, and the singular point detection of the presented
method is limited to gaps which are surrounded by blocks endowed with an
orientation estimation.

portion of line segments originating from the tracing of noisy parts can be clas-
sified as ’recoverable’. If an area is not covered by the coherent structure, but
it differs clearly from the background e.g. pertaining to the mean and variance
of its gray values [9], then this quality corresponds to category ’unrecoverable’.

The OF estimation method described in Section 4.4.2 can effortlessly extrapo-
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late into ’unrecoverable’ and background regions, but in terms of avoiding the
extraction of spurious features and reducing computational costs for subsequent
image enhancement, it is advisable to exclude these regions [3].

4.4.4 Ridge Frequency Estimation

Applying the merged coherent line structure and the orientation field, an esti-
mate of the ridge frequency can be derived. This may be very useful, e.g. if
a Gabor filter shall be applied in a subsequent image enhancement step (see
Chapter 7).

4.5 Experimental Results

4.5.1 Introduction

In this section, it is the aim to analyze the robustness to noise of the line-sensor
based method for OF estimation and compare its performance with the gradient
based method [10] and the multiscale directional operator [119]. In a first step,
a small number of good quality images was chosen in which foreground and
orientations were manually marked. Next, artificial noise was added to these
images mimicking scars and broken ridge lines, and the performance of all three
methods was measured for various levels of noise. In the main part of the exper-
imentation, 60 naturally poor images were chosen which represent the typical
types of noise. In these images, 1782 orientations were manually marked with
a focus on regions affected by noise. As described in Section 4.1, an estimated
orientation that deviates considerably from the true ridge flow passed on to a
Gabor filter tends to lead to the creation of spurious minutiae. According to a
reviewers suggestion, hence, I will use the number of estimated orientations that
deviate more than 15 ◦ from the marked orientation as a measure for comparing
the performance.

4.5.2 Scar Simulation

For our simulation, 15 good quality gray scale images were chosen from the
FVC2000 [99] and FVC2002 databases [100]. The images were divided into
blocks of 16 × 16 pixels. A human expert classified the blocks into foreground
or background and determined the orientation for each foreground block. This
’ground truth’ orientation will be used as the reference value for the perfor-
mance evaluation. Scars are simulated by drawing white bars onto the original
images. See Figure 4.7 for an example with 15 artificial scars. This type of
noise simulation has the advantage that, like in the case of generating synthetic
images [20, 104], the level of artificial noise can be steered and a big number of
images can be produced. Simulation runs were conducted for 5 to 25 scars in
steps of 5 additional scars (see Figure 4.11). For each number of scars and each
original image, 100 scar images were produced. The following parameters were
randomly chosen (independent and identically distributed) in the given range:

• length (10 to 50 pixels and 10 to 200 pixels; see Figure 4.11)

• width (2 to 5 pixels)
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Figure 4.11: Performance comparison for different levels of artificial scar noise.
The scar length was randomly chosen (i.i.d.) between 10 and 50 pixels (left)
and between 10 and 200 pixels (right).

• orientation (0 to π)

• x- and y-coordinate of the scar center (among all foreground pixels)

For the original images, the gradients based method performed slightly better
than the line-sensor based method (12 vs. 20 estimations with deviation > 15 ◦

out of 4072 foreground blocks). Most of those erroneous estimations by the
line-sensor were caused by the difficulty of finding parallel line pieces in the
core area. With an increasing number of simulated scars, the gradients based
orientation estimation deteriorates proportionally to the amount of added noise.
The performance of the multiscale directional operator is more stable than the
gradients based method, but it is significantly worse than the line-sensor based
method.

4.5.3 Simulation of Broken Ridges

In a simulation of broken ridge lines, I strove to mimic the type of noise caused
by a dry finger. In my opinion, the artificial noise does not look as realistic
as real noise, but nevertheless this procedures was very useful for testing the
behavior of the three OF estimation methods. The line sensor method and the
results of the noise simulations were presented at the 6th International Sympo-
sium on Image and Signal Processing and Analysis (ISPA) in Salzburg, Austria,
held September 16-18 2009.

The results (see [47]) are similar to the previous experimentations with sim-
ulated scars. The OF estimation derived from the coherent structure of parallel
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Figure 4.12: The top row depicts details from four images of FVC2000 [99] and
FVC2002 [100]. Row 2 to 6 display simulations of noise levels from 500 to 2500.

lines is less susceptible to this kind of simulated noise than the gradients based
OF estimation and the multiscale directional operator.

4.5.4 Real Life Noise

For the benchmark test with real life noise, 60 poor quality images were chosen
from FVC2004 [101]. This selection represents three typical types of noise (see
Figure 4.2):

• Wet finger

• Dry finger

• Finger with scars

1782 orientations were manually marked with a focus on regions affected by
noise. Selection criteria for the marked orientations were that ridge flow can be
determined clear without ambiguity by a human expert and the location pre-
sumably poses a challenge to an automatic orientation estimation. All marked
orientations and estimations by the line-sensor method consisting of the tuple
image filename, x- and y-coordinate and angle are made available for compara-
tive tests.
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Figure 4.13: Performance comparison for different levels of simulated noise.

On these naturally poor fingerprint images (see Figure 4.14 for three examples),
the line-sensor based method is compared with the gradients based method
and the multiscale directional operator using the same performance measure as
before. For the gradients based method, orientations were computed using aver-
aging windows with sizes ranging from 5 to 101 pixels. Odd window sizes were
applied, so that the marked location (i, j) is the true center of the averaging
window. If the window protrudes the image border, only the available gradients
were accounted for. Results depending on the size of the averaging window are
shown in Figure 4.15.

The multiscale directional operator [119] was calculated using the standard de-
viation as information parameter and with pixel-wise filtering as suggested by
the authors. Orientation estimations were computed for 36 different combina-
tions of the three parameters number of directions D, number of test points n
and the size of the smoothing window Ω. For the number of directions, values
in the range from 4 to 120 were tested.
As shown in Table 4.1, the line-sensor based orientation estimation deviates in
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Figure 4.14: OF estimations for three images from FVC 2004 (top row: image
107 3 from database 2; below images 106 7 and 101 8 from database 1). The
left column displays the gradients based estimation (with W = 59), the central
column the estimation of the multiscale directional operator (with D = 30,
n = 16 and Ω = 45) [119] and the right column depicts the result of the line-
sensor based method. For illustrative purposes, the orientation at every 16th
pixel horizontally and vertically is shown for the gradients based method and
the multiscale directional operator which are endowed with pixel wise calculated
orientation fields.

only 79 out of 1782 cases more than 15 ◦ from the manually marked orientation,
whereas the best result of the gradient based method was 119 erroneous esti-
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Figure 4.15: The performance of the gradients based OF estimation (left) and
the multiscale directional operator (right) on 1782 marked orientations from
60 images of FVC2004. On the right, an orange circle indicates a smoothing
window Ω of 15 pixels, a yellow square 31 pixels and a red triangle 45 pixels,
respectively.

Table 4.1: Comparison of Orientation Estimation Performance on 1782 Marked
Orientations from 60 images of FVC2004 [101]

Orientation Estimation Method Number of deviations > 15 ◦

Line-sensor 79

Gradients
119

Best results with
w = 57 and w = 59

Multiscale directional operator
259

Best result with
D = 30, n = 16 and Ω = 45

mations for averaging window sizes of 57 and 59 pixels. The best performance
of the multiscale directional operator was 259 deviations of more than 15 ◦.
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This result demonstrates the robustness and effectiveness of the line-sensor
based approach for orientation estimation in regions of fingerprint images which
are disturbed by real life noise.

4.6 Discussion

4.6.1 Application Areas and Computational Complexity

In comparison to the gradients based method, the presented line-sensor based
method can estimate the flow of ridges and valleys for noisy fingerprint image
regions in a significantly more robust way as shown in Section 4.5.4. On the
other hand, it has the disadvantage of a greater computational complexity than
the gradients based approach. Hence, the choice of the OF estimation method
will depend on the area of application. In forensics, the benefits of a more
reliable orientation estimation can outweigh computational costs, whereas in
on-line fingerprint verification fast computation is of great importance.

Bearing in mind these two different areas of application, the further devel-
opment of the line-sensor based method for OF estimation should go in two
directions: one is the formulation of a ’light version’ that follows the principles
of the line-sensor and the coherent structure of parallel segments and meets the
computational requirements and time constraints of on-line verification systems.
The second direction is the improvement of the ’forensic version’ with aim of
obtaining all the ridge flow information that is present in a fingerprint image,
and simultaneously providing a segmentation into foreground and background
as well as a local image quality estimation which can be used for assessing the
reliability of extracted features at the matching stage. In this way, a subsequent
image enhancement step is optimally prepared.

The ’light version’ will be presented in the next section and the ’forensic version’
is sketched in Chapter 5 and some first experimental results are presented. In
addition, it will be of interest to apply the presented method to palmprints and
fingerprint latents (and compare it e.g. to [153]).

4.7 Fast Line Sensor

In this section, the line sensor method described in Section 4.3 using straight
lines is further developed into the direction of a ’light version’ as announced
in [46]. The general idea is to improve the method described in Section 4.3 by
overcoming the drawbacks of the line tracing while preserving its advantages.
One major strength of the line sensor is the robustness to noise, as discussed in
Section 4.6 two weaknesses are the computational complexity and the limited
accuracy in the core zone. Both drawbacks are connected to the tracing pro-
cess, whereas, in my opinion, the robustness of the method is provided by the
coherent structure.

The major differences between the ’light version’ and the line sensor from Sec-
tion 4.3 are:
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Figure 4.16: First, the grid points (orange square) are centralized, and from
these start points (red square), the line sensor peeks into directions all-around.
The length of opposite directions is summed up for the orientation histogram,
depicted below. In the image on the left, the lines corresponding to the four
local maxima are shown. Next, the orientation histograms are smoothed with
a Gaussian kernel. For these two examples, the resulting histograms have only
one maximum. Please note that local maxima in the neighborhood of a greater
local maximum are ignored (here: minimum distance mindist = 10). The black
horizontal line on top of the histograms indicates the minimum line length (here
minlen = 15 pixels).
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• no tracing is performed

• at each grid point, multiple directions can be considered

• all steps of the method are fully computable in parallel

In the subsequent paragraphs, all details of the implementation are described
with an emphasis on the parts that differ from the previous version of the line
sensor.

4.7.1 Preprocessing

The first step of the method is the preprocessing of the gray scale input image.
This is performed exactly as described in Section 4.4.1 and results in a binary
image which is stored as two dimensional Boolean array.

4.7.2 Line Sensing

Next, we iterate in grid with size gs = 8 pixels over the binary image. At each
grid point, the sensor start point is first centralized and then straight lines are
sensed by Boolean comparison with precalculated lines as described in Section
4.4.1.

Centralization Purpose of the centralization is to avoid start points in ’pock-
ets’ of the coarse binary image. For a grid point, the 8-connected neighbors of
the same color are determined iteratively in the binary image up to a maximum
number of neighbors. Then, the barycenter of all neighboring pixels is computed
and the nearest pixel of the same color as the grid pixels is chosen as start point.
This procedure has an effect like inflating a balloon and the barycenter tends
to move towards the center of the ridge or valley with each iteration (see Figure
4.16, image on the right for an example).

Straight Line Sensing For each start point, the lines are sensed in the bi-
nary image by Boolean comparison of possible pixel steps using precalculated
lines. In our experimentation, lines for n = 360 directions are computed during
the initialization of the line sensor.

At this point, the previous version of the line sensor chose the best direction
(i.e. the direction with the maximum number of possible pixel steps without
changing the color) in a all-around search, or while following a line, for a defined
cone. Here, the length of opposite directions are summed up into an orientation
histogram (see Figure 4.16). Next, the histogram is smoothed with a Gaussian
filter which bundles the main directions and erase small peaks caused by noise
(see Figure 4.16, the sensor on the right). However, larger scars that cross two
or ridges are not removed by the Gaussian smoothing. They will be stored
in a list together with all other detected segments and the decision which seg-
ments reflect the true ridge flow will be postponed. The alteration of permitting
more than one segment per sensor is also helpful for representing curved lines,
especially close to the core point.
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Figure 4.17: In the example on the left, the red line reflects the true ridge flow,
whereas the green line belongs to scar. Both segments are stored for a later
evaluation. During the growing of the coherent structure, the wheat will be
separated from the chaff. The start point on the right is closely located to the
core and all three lines are valid. Whether they have an impact on the OF
estimation depends on the discovery of parallel segments.
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4.7.3 Coherent Structure

The growing coherent structure is build as described in Section 4.4.2 with one
important difference: previously, it was time consuming to discover the neigh-
bors for each line segment. Here, this piece of information is encoded into the
grid index which saves a lot of time. Also, the tuning parameters of the growing
process have to be adjusted with regard to fact that much more segments are
available. A variety of constants was chosen empirically in order to optimize
the performance of the orientation field estimation. All values are listed at the
end of the section.

4.7.4 Orientation Field Estimation

All line sensors which are part of the merged coherent structure broadcast their
orientation as explained in Section 4.4.2. Two examples are given in Figure 4.18
in which the merged coherent structure is depicted in the left column and the
derived orientation field in the right column.

An alternative approach for this step is also thinkable: several authors pro-
posed methods for the reconstruction of fingerprints from minutiae files (see
e.g. [132] or [21]). Triplets of good quality minutiae form a triangle and the
orientation inside the triangle is interpolated using the orientation of the three
minutia points. A very similar idea is applied in [19] for speeding up the manual
marking process of a fingerprint by a human expert. For reasonable number of
points, the orientation and ridge frequency is marked and the OF and RF map is
interpolated using Delaunay triangulation [31] (see Figure 7.1 for illustration), a
technique well known from minutiae matching [93]. Analogous, the orientation
can be estimated a sufficient number of points from line sensors and afterwards,
the OF is interpolated using Delaunay triangulation. However, according to my
experience it is difficult to ensure a good quality of the OF estimation near the
core points applying this method.

4.7.5 Parameters

If we refer to a line sensor based OF estimation in the subsequent chapters, it
was obtained with the following parameters:

• number of directions nd = 360

• number of orientations no = 180

• grid size gs = 8 pixels

• minimum line length minlen = 15 pixels

• maximum number of discovered lines exceeding the minimum line length
maxlines = 60

• maximum number of local maxima in the orientation histogram
maxmax = 3

• maximum angle for segments to be classified as parallel thrparallel = 8 ◦
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Figure 4.18: Left column: line sensors which are part of the merged coher-
ent structure plotted on top of the binary image. Right column: derived OF
estimation on top of the original image.
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• minimum number of parallel segments for a seed segment minseed = 25

• search radius (in grid index distance) sr = 3

• minimum number of parallel segments for entering a coherent structure
minenter = 5

• minimum structure size for merging mincs = 100 segments

4.7.6 Discussion

In comparison to the previous version of the line sensor (see Section 4.3), the
waiving of the tracing did not only speed up the OF estimation, but also in-
creased the accuracy in the core region (see Figure 4.18 and Figure 4.19). The
latter is facilitated by allowing more than one orientation for each sensor. E.g.
at locations close the core, the sensor can detect two lines which form an angle
> 15 ◦. If both are valid reflections of the ridge flow and they have enough
parallel lines (with respect to a threshold), then including both lines into the
OF estimation tends to increase the precision of the estimation. Previously, this
was impossible because of the way the tracing is designed (see Figure 4.20 for a
comparison of both methods).

In addition, all steps of the line sensor light version can be computed in par-
allel. For the results in Chapter 7 and 8, a proof-of-concept implementation
programmed Java 2 was applied. In order to demonstrate the practicability of
the line sensor based OF estimation for on-line fingerprint verification, it is de-
sirable to implement the algorithm using the parallel processing capabilities of
graphics processing units (GPUs) and measure the average runtime for finger-
print images from the FVC databases and other sources obtained with different
scanners.

2http://java.sun.com/
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Figure 4.19: Line sensor OF estimations for a selection of images which illustrate
the capability of the ’light version’ to adapt to core regions with a precision that
was not possible in the previous version due to the tracing procedure.
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Figure 4.20: Details from images 2 1 of FVC 2004 database 1 (top row) and
30 6 of FVC 2000 database 2. Comparing the fast line sensor based OF esti-
mation (left column) with line sensor method tracing ridges and valleys (second
from left). The latter method traces the core area of some images only partially
due to the cone criteria of the ridge tracing (see Section 4.4.1) or if it is traced
correctly, the segments may lack enough parallel segments in order to become
part of the coherent structure (bottom right). In the majority of the cases,
the reconstruction described in Section 4.4.2 resolves the situation, but if the
core location estimation is too imprecise, the result of the reconstruction is an
erroneous OF estimation for the core region. The example on the top right illus-
trates the strengths and weaknesses of the method. The orientation estimation
is accurate for the area disturbed by the scar and the dryness of finger, but it is
wrong for the region above the core which is located close to the image border
and it is incorrectly reconstructed. The fast line sensor method overcomes these
hindrances by considering all possible orientations at each grid point.
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Chapter 5

Line Sensing Based on
Quadratic Bezier Splines

The curved ridges and valleys of fingerprints resemble, at least in parts, quadratic
Bezier curves. Therefore, it is a quite natural approach to endow the previously
described line sensor which currently senses only straight lines with capabilities
to sense quadratic Bezier curves [134]. This approach accounts especially for
regions of high curvature like the core region in fingerprints of the types loop
and whorl, but also for the central regions of arch type fingerprints. Quadratic
Bezier curves are based on Bernstein polynomials and defined by:

C(t) =

2∑
i=0

(
2

i

)
ti(1− t)2−iPi = (1− t)2P0 + 2t(1− t)P1 + t2P2

where P0 and P2 are the start and end points of the curve and P1 is the central
control point.

Splines are functions defined piecewise by polynomials. Here, we combine two
quadratic Bezier curves to a spline, analogously to the combination of two linear
curves in the previous chapter. Very related are B-splines [134] for which the
polynomials are defined by a different basis. To my knowledge, there are two
publications that suggest the application of B-splines for fingerprint recognition.
In [26], the usage of B-splines for the compression of fingerprint data is proposed.
More recently, the removal of digitization errors in the binary, thinned image
by B-splines was recommended [14].

Analogous to the precalculated straight lines, quadratic Bezier curves were com-
puted for combinations of start points P0 and end points P2 of the control poly-
gon with a Chebyshev distance d in the range from 15 to 42 pixels. The curves
were rasterized and stored in a tree [87] structure. Instead of checking hundreds
of millions of curves, due to the tree structure the computational costs shrink
down to a few tens of thousands Boolean comparisons in the binary image. See
Figure 5.1 for an example of two discovered curves in a valley (white) and on a
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Figure 5.1: Peering around from the start point (red) in the center of the image,
the sensor discovered a rasterized quadratic Bezier curve (yellow). The points
of the control polygons are depicted in red.

ridge (black) close to the core point.

For combining two curves and preparing the creation of a coherent structure
similar to the algorithm presented in Section 4.4.2, for each curve a score is
calculated. The following weight factors where empirically determined on a
selection of images which is representative for the typical types of noise:

• length of the curve (80%)

• degree of curvature (15%)

• centralization of the end point (5%)

The length of the curve is weighted positively and has a big influence. This con-
tributes to the robustness of the method, because long segments are generally
more trustworthy (with the exception of long scars which will be handled during
the growing of the coherent structure). The curvature is weighted negatively,
so that in the case of two approximately equally long segments, the straighter
segment is preferred over the more curved one. And finally, among curves which
are similar with respect to length and curvature, the one with more centered end
point is chosen, because it is more likely to be connectible with further segments.

Any two quadratic Bezier curves can be combined, if the following the con-
straint is fulfilled: the angle formed by the central points of both control poly-
gons and the sensor start point has to be close to 180 ◦ (see Figure 5.2 for an
illustration). This condition assures the continuity at the connection point. For
all connectible pairs, the scores are summed up, and the combination with the
highest score is chosen by the sensor. See Figure 5.2 for two examples of com-
binations with highest score for the respective sensor start point.

First results are very promising and it will be of interest to further investigate
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Figure 5.2: Two rasterized quadratic Bezier curves (green and yellow) and the
points of the control polygons (red). The sensor start point connecting both
curves is also the start point of both control polygons. The curves were detected
in the binary image and, for image at the top plotted onto this detail of the
grayscale image. For the image at the bottom, please note the centralization of
the end points which increases the possibilities to connect additional curves.
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the application of quadratic Bezier curves to fingerprint images, particularly
with regard to noisy core regions, for orientation field estimation, ridge fre-
quency estimation and image enhancement. In the next chapter, this idea is
adopted and curved regions are defined by a piecewise linear approximation of
the curves. Chapter 7 introduces a curved Gabor filter which applies this idea
to image enhancement.
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Chapter 6

Ridge Frequency
Estimation

Figure 6.1: Screenshot from [103], illustrating the ridge frequency estimation
method called ’x-signature’ proposed by Hong, Wan and Jain in [60].

In addition to the local ridge orientation, the ridge frequency (RF) is a sec-
ond local feature providing significant contextual information. It is defined as
the inverse of the inter-ridge distance, measured orthogonal to the local orien-
tation.

The ridge frequency is required by some image enhancement methods of which
the Gabor filter is the most prominent one. It can vary considerably across
different regions of a finger. If the ridge frequency is estimated incorrectly and
these erroneous estimations are passed on to a Gabor filter, this can result in the
creation of false additional ridges or the deletion of true ridges, depending on the
tuning parameters of the filter, and possibly the number of iterations. An illus-
tration of this effect is shown in Figure 6.2. Therefore, the quality of the ridge
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Figure 6.2: In the top row, the original image (left) 55 6 from FVC2000 database
2 and the line sensor based OF estimation (right) are displayed. The two images
at the bottom were processed with a Gabor filter. The ridge frequency was
globally set to f = 5.0 for the image on the left and f = 15.0 for the image on
the right. The other filter parameters were identical for both images.
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frequency estimation can impact the overall performance, corresponding to the
previous argumentation concerning the quality of the orientation estimation.

6.1 Related Work

6.1.1 X-Signature

A widely cited ridge frequency estimation method called ’x-signature’ was pro-
posed by Hong, Wan and Jain in [60]. The y-axis of a rectangular window
centered in (xi, yi) is aligned to the ridge orientation by rotation (see Figure
6.1). Gray-level values are averaged along the y-axis resulting in smoothed
ridge and valley profile. The average distance between consecutive peaks in this
profile is computed and the RF estimation is obtained by inverting the average
distance.

6.1.2 Higher Order Spectrum

In order to achieve less error prone frequency estimations from a noise gray-level
profile, [78] suggested the application of higher order spectrum which exploits
the harmonics of the frequency. This approach is based on the assumption that
the gray-level profile has in principal a sinusoidal shape which is disturbed by
noise. A so called mix-spectrum is proposed for suppressing the noise.

6.1.3 Geometric and Spectral Approach

A two-step method for RF estimation is proposed in [86]. In the first step,
a geometric method similar to the x-signature and a spectral method based
on harmonic coefficients are considered for estimating the ridge frequency of
64 × 64 pixels blocks. In the second step, the RF image is completed by the
interpolation of missing values with diffusion equations.

6.1.4 Short Time Fourier Transform

The authors of [25] follow an approach similar to the x-signature and apply
short time Fourier transform analysis for smoothing their RF estimation.

6.1.5 Sinusoidal Shaped Surface

In [97], the fingerprint image is modeled as two-dimensional, sinusoidal shaped
surface, and the frequency is approximated using the variation of the gray-
level values orthogonal to the orientation together with a computed average
amplitude.

6.1.6 Further Methods

A survey of further methods for ridge frequency estimation can be found in [154]
and [103].
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6.2 Curved Regions

In my opinion, the idea of x-signature method suggests itself from the defini-
tion of the ridge frequency being the inverse of the inter-ridge distance. The
advantages of the x-signature are the simplicity of the idea and implementation
and that can be computed very fast. However, the lower the image quality,
the more likely it is to produce erroneous RF estimations. Again, this is the
dilemma of fingerprint image enhancement: for those images that could profit
the most from the enhancement, it is the most difficult to estimate the local
context (orientation and ridge frequency) correctly. For this reason, there is a
strong need for more robust RF estimation methods.

The averaging of gray-level values along the y-axis (see Figure 6.1) smooths
the gray-level profile and in doing so it contributes to the robustness of the RF
estimation. For this reason, it would be desirable to extend the oriented win-
dow in y-direction for improving the stability of the estimation. However, due
to rectangular shape, this idea is only applicable, if the ridge lines are straight
and parallel to each other. In general, fingerprint ridges and valleys are more or
less curved, and therefore an elongated y-axis tends to cross neighboring ridges
and valleys which introduces noise into the gray-level profile and consequently
degrades the ridge frequency estimation (see Figure 6.8).

This limitation can be overcome by applying the following idea: instead of av-
eraging gray-level values along straight lines, we adjust our lines to the curved
ridges and valleys. A self-evident method for this purpose is the usage of
quadratic Bezier curves (QBC) as proposed in Chapter 5. In the case of an
orientation estimation without QBC, these curves can be approximated in piece-
wise linear steps.

A curved region centered in the pixel (xc, yc) is computed in the following way:
let θc be the orientation at (xc, yc). Both orthogonal directions are θo1 = θc+

1
2π

and θo2 = (θc + 3
2π) mod 2π. By going np pixel steps of unit length into both

directions, the start points for all 2np + 1 curves are obtained. For each start
point (xs, ys), the decimal coordinates are rounded to the nearest pixel (is, js)
and the local orientation θs is looked up in the orientation image. First, the
curve is approximated in direction d1 = θs, afterwards these steps are repeated
for direction d2 = θs + π. Along each curve, the next point (xi+1, yi+1) is
computed from the previous: xi+1 = xi + cos θi and yi+1 = yi + sin θi. For
each curve point (xi, yi), the gray value is estimated from the surrounding four
pixels by bilinear interpolation [45]. In this way, the curves are mapped to two-
dimensional array (see Figure 6.4) from which the gray-level profile is calculated
by averaging along the curves and convolution with a Gaussian kernel. Next, all
local minima and maxima are detected. All the distances of consecutive minima
or maxima in the range from 3 to 25 are regarded as valid, and the inverse of
the median is stored as the ridge frequency estimation for the pixel (xc, yc).

Very noteworthy is the visibility of the minutiae in the raw ridge frequency
image (see Figure 6.6). This effect demonstrates the precision of the RF es-
timation and many applications are imaginable in order to make good use of
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Figure 6.3: Both curved regions are centered at the red dot. Parallel curves start
at the blue dots and are located on a line orthogonal to the ridge orientation
at the center. Each curve consists of straight pieces which are obtained by
following the local orientation for one pixel unit.
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Figure 6.4: The bilinear interpolated gray values along the curves in Figure 6.3
are mapped to a matrix (top row). A column from top to bottom corresponds to
a curve, the central column corresponds to the red curve in Figure 6.3. Below,
the ridge and valley profile is obtained by averaging the gray values along each
column and smoothing with a Gaussian kernel. Finally, local minima (gray
square) and local maxima (red square) are detected.
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Figure 6.5: Two circular details from image 13 8 (left and third from left) of the
FVC 2000 database 1. The corresponding parts from the RF image are displayed
right to the details. All circles are divided perpendicular to orientation into two
halves. For left the detail, the mean inter-ridge distances are 10.2 pixels for
the upper half and 8.4 pixels for the lower half. This gap is caused by the
ridge ending in the center of the detail. The example on the right contains no
minutiae and the mean inter-ridge distances are 8.2 and 8.4 pixels for the left
and right half, respectively.

this piece of information. In my opinion, a thorough examination should be
undertaken that clarifies how reliable minutiae can be directly extracted from
the ridge frequency image. Moreover, the local properties of the RF image can
be exceedingly useful for steering the curved Gabor filter which is presented in
the next Chapter. In the proximity of a minutia location, the curved Gabor
filter should proceed in a cautious way, i.e. limit the smoothing range along
the local orientation, whereas in the absence of minutiae, it can operate with
its full smoothing power. The RF image can also be applied for a retroactive
inspection of minutiae which are detected by other methods, and for making
decisions during the merging of minutiae templates. However besides minutiae,
noise can also be a possible cause for peaks in the RF difference map. Therefore,
the RF difference map should be applied in combination with a local quality
map of the image. The Gabor filter should be tuned to smooth strongly in
regions that are low quality or contain no minutiae, and it should be bridled
in a neighborhood that is of medium to good quality and involves minutia points.

For the tests presented in Chapter 8, the raw RF images were smoothed by
simple averaging over a quadratic window as depicted in Figure 6.6.
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Figure 6.6: Top left: image 30 6 from FVC 2000 database 2; top right: the ridge
frequency image. Light gray colors correspond to large inter-ridge distances, i.e.
small frequencies. Dark gray colors indicate small inter-ridge distances, i.e. high
frequencies. Ridge endings and bifurcations in the original image lead to edges
in the frequency image which run orthogonal to the orientation. This enables
the direct extraction of minutiae from RF image. Please note that the location
and direction of the minutia can be estimated, but endings and bifurcations
can not be distinguished. The bottom row displays mean smoothed frequency
images. Smoothing window sizes are 33, 49 and 65 pixels from left to right.
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Figure 6.7: The orientation field (top left) and raw, pixelwise obtained ridge
frequencies (top right) plotted for image 13 8 of FVC 2000 database 1. Bottom
left, the RF differences computed according to Figure 6.5 are visualized. Dif-
ferences below 0.4 pixels are drawn in white, values greater than 1.0 in black,
and intermediate values correspondingly in gray. This RF difference map can
be useful for verifying minutiae, steering the Gabor filter and further purposes.
Bottom right, an alternative way of smoothing the RF image is shown. It was
computed simultaneously with the difference image by setting the local RF to
the mean value of the half circle which is closer to the mean of the full circle
(see Figure 6.5).
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Figure 6.8: Comparing the x-signature (top) and curved region (bottom) based
methods for ridge frequency estimation. Noise can cause the x-signature method
to fail, because the oriented window (red rectangle) contains an insufficient
amount of information. Magnifying the window (blue) along the local orienta-
tion does not remedy these deficiencies in regions of curvature and would lead
to an erroneous gray level profile. The RF estimation based on curved regions
overcomes these limitations by considering the change of local orientation, i.e.
curvature.
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Chapter 7

Image Enhancement

The purpose of fingerprint image enhancement is to improve the overall per-
formance of the fingerprint recognition system by optimally preparing input
images for later processing stages. Most systems extract minutiae from finger-
prints, and the presence of noise can interfere with the extraction. As a result,
true minutia may be missed and false minutia may be detected which both has
a negative impact on the recognition rate. In order to avoid these two types of
errors, image enhancement aims at improving the clarity of the ridge and valley
structure. The image quality is also an important factor for algorithms which
extract other features like e.g. ridges [108] or apply correlation based techniques
(see e.g. [12]).

With special consideration of the typical types of noise occurring in fingerprints,
an image enhancement method should have four important properties:

• reconnect broken ridges e.g. caused by dryness of the finger or scars

• separate falsely conglutinated ridges e.g. caused by wetness of the
finger or smudges

• preserve ridge endings and bifurcations

• robustness of the method to noise

The fourth point appears to be self-evident, but the robustness of the image
enhancement method to noise is of special importance and should not be taken
for granted. Many of the methods which can be found in the literature are
error-prone and their performance tends to degrade in cases for which image
enhancement matters the most: when dealing with low and very low quality
images. Ironically, there is a substantial risk that the verification performance
can be impaired by image enhancement (see Table 7.1 which cites the results
from Table II in [38]).

For measuring the performance of the image enhancement and comparing dif-
ferent methods, it is important to have clear concept of the goal which shall
be achieved by the image enhancement step. In this thesis, we will focus on
enhancement methods that prepare the input image for algorithms which sub-
sequently extract and match minutiae features [148]. In general, these methods
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Enhancement method DB1 DB2 DB3 DB4

No enhancement 14.5 9.5 6.2 7.3
Hong, Wan, Jain [60] (16.9) 14.4 7.1 9.8

Chikkerur, Cartwright, Govindaraju [25] (19.1) 11.9 7.6 10.9
Fronthaler, Kollreider, Bigun [38] 12.0 8.2 5.0 7.0

Table 7.1: EERs in % of the NIST minutiae extractor and matcher for the
original and enhanced images of FVC 2004 [101]. Parentheses indicate that
only a small fingerprint area was useful for recognition. Results are cited from
[38].

improve the clarity of the ridge and valley structure, and together with what
can unequivocally be defined as noise (e.g. ridge interruptions caused by the
dryness of the finger during scanning), they tend to remove sweat pores (see
e.g.[67]), creases, scars, dots and incipients [24], so that these potential features
will no longer be available in the enhanced image.

Most filters applied in fingerprint recognition systems are contextual filters [103]
which means that the filter adapts its parameters and behavior according to the
local context. As discussed in the previous chapters, the two most important
types of contextual information are the local orientation and the local ridge
frequency.

7.1 Related Work

A multitude of methods has been proposed for contextual filtering of fingerprint
images. Among the first suggestions was a bank of drawn-out bell shaped filters
created by rotation in 16 discrete directions [118]. For each pixel, one of the
filters is chosen depending on the local orientation and convoluted with the
image.

7.1.1 Pyramid Methods

Pyramid based techniques (see e.g. [39, 38] decompose the image into sub-
bands which correspond to different scales. On each pyramid level, smoothing
is performed. For choosing the orientation, a structure tensor [15] is applied
whose usage was also suggested for coherence enhancing diffusion filtering [147].

7.1.2 Short Time Fourier Transform

In [25], the image is partitioned into blocks and for each block, a Fourier analysis
is performed. As mentioned earlier, this method estimates the orientation and
ridge frequency block-wise and utilizes this piece of information for filtering the
image in the Fourier domain. In Chapter 8, the STFT method is included in
the performance comparison of image enhancement approaches.
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7.1.3 Discrete Cosine Transform

An idea similar to [25] was presented in [81]. Again, the input image is parti-
tioned into blocks and then transformed into the DCT domain. The estimations
of the ridge frequency and orientation are followed by a filtering in the DCT
domain with a modified Gabor filter. The authors compare the DCT method
with a separable Gabor filter [6] in the spatial domain and the STFT method
[25].

7.1.4 Wavelet Transform

A transform with a Daubechies wavelet basis decomposes the input image into
a multi-resolution representation in [63]. The enhancement step is accomplished
by convolution with quadrature mirror filters (QMFs) of eight coefficients.

7.1.5 Gabor Filter

The most popular technique for contextual filtering is the Gabor filter [41]. In
the next section, we will discuss its properties and with respect to the specifics
of fingerprints, an improvement in comparison to [60] is suggested.

7.1.6 Anisotropic Filtering

In [49, 50], anisotropic filters are proposed that are similar to the Gabor filter,
but do not require a ridge frequency estimation. An ellipse shaped filter smooths
the image pixel-wise along the ridges.

7.1.7 Further Methods

A survey of further fingerprint image enhancing methods is given in [3] and
[103].

7.2 Gabor Filter

The Gabor filter is a two-dimensional, linear filter formed by the combination of
a cosine with a two-dimensional Gaussian function and it has the general form:

g(x, y, θ, f, σx, σy) = exp

{
−1

2

[
x2θ
σ2
x

+
y2θ
σ2
y

]}
· cos (2π · f · xθ) (7.1)

xθ = x · cos θ + y · sin θ (7.2)

yθ = −x · sin θ + y · cos θ (7.3)

Here, the Gabor filter is centered at the origin. θ denotes the rotation of the
filter related to the x-axis and f the local frequency. σx and σy signify the stan-
dard deviation of the Gaussian function along the x- and y-axis, respectively.
The Gabor filter is a local operator which is applied to each pixel of the image
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Figure 7.1: Screenshot from [19]. (a) displays a latent fingerprint from NIST
special database 27 [43]. (d) and (e) show the result of image enhancement
with a Gabor filter. In (d), the orientation field and ridge frequency image was
estimated automatically as described in [60]. For (e), the orientation field (b)
and ridge frequency (c) were marked by a human expert.

foreground. It considers the gray values of the pixels in a predefined neighbor-
hood and its parameters for the aim of producing an enhanced output pixel.
The Gabor filter has the beautiful property of simultaneously minimizing the
uncertainty in space and spatial frequency [29, 85].

7.2.1 Filter Parameters and Their Impact

The four Gabor filter parameters have a decisive influence on the behavior of
the filter. Two of them, the local orientation θ and the local ridge frequency
f are estimated prior to the filter application. The standard deviations of the
Gaussian envelope σx and σy are tuning parameters which steer the range of
included neighboring pixels.

Local Orientation and Ridge Frequency The local orientation θ plays
a key role for the Gabor filter. Orientation estimation errors tend to create
spurious minutiae and ultimately deteriorate the verification performance. Il-
lustrations of this effect are given in Figure 7.2 and 7.1. Additional examples
can be found in [19] and [140].

The correctness and precision of the local ridge frequency is of a great impor-
tance as well, because the Gabor filter creates a ridge structure with the specified
input frequency. Underestimating the actual ridge frequency (i.e. overestimat-
ing the inter-ridge distance) will cause the deletion of ridge lines, and the inverse
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Figure 7.2: Top left: image 107 3 from FVC 2004 database 2. On the top right,
the original image was contextually filtered and binarized by the VeriFinger 5.0
SDK. Evidently, artifacts are caused by errors in the orientation estimation. If
instead the line sensor method with tracing is applied for the OF estimation (il-
lustration of the merged coherend structure on the bottom left) and the original
image is smoothed along the orientation, the binarization using the VeriFinger
5.0 SDK leads to an improved output.
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situation of overestimating the real ridge frequency will induce the creation of
false ridges. Figure 6.2 depicts the consequences of defective ridge frequency es-
timations for both cases. These effects are also visible when comparing images
(d) and (e) in Figure 7.1.

In summary, accurate estimations of the local orientation and ridge frequency
are a conditio sine qua non for the application of the Gabor filter. As extensively
discussed in Chapter 4 and 6, the steadiness of these estimations are a challenge
for low quality fingerprint images. The authors of [19] argue likewise and suggest
to manually mark the orientation and frequency for the enhancement of very
low quality images like latents. Here, I would like emphasize that I do not share
this pessimistic point of view. The previously described methods for OF and
RF estimation achieve strong improvements in comparison to currently widely
used methods like the gradients based OF estimation and the x-signature for
RF estimation.

In Section 7.3, we will introduce the novel idea of a curved Gabor filter and in
Chapter 8 an architecture for multi-level judgment aggregation. In my opinion,
the combination of these four factors provides an excellent tool kit for tackling
low and very low quality images.

Standard Deviations σx and σy The choice of σx and σy steers the range
of influence along the local orientation and in orthogonal direction. This prop-
erty corresponds to the extension of the oriented window (see Figure 6.1) of
the x-signature. Larger values of both parameters increase on the one hand,
the capability to remove noise, and on the other hand, the probability of the
creating spurious features. Again, this effect is caused by the rectangular shape
of the Gabor filter window and the often curved course of fingerprint ridges.
For smaller σx and σy values, the filter tends to create fewer spurious features,
but also become less effective in improving the ridge structure. So, the choice of
σx and σy boils down to a trade-off between these two extremes. The authors
of [60] suggest σx = 4.0 and σy = 4.0 based on their experiences. In [19], σy
is chosen to be larger than σx which is defined to have a specified number of
peaks independently of the ridge frequency: σx = 3.4

9·f , σy = 4
3σx.

Illustrations showing how different values of σx and σy influence the enhanced
image are given in Figure 7.4.

7.2.2 Gabor Filter Modifications

Some modified versions of Gabor filters can be found in the literature. The
authors of [152] argue that the cosine function taking effect orthogonal to the
orientation does not map the real ridge profile in many cases and they propose
an adaptation of the filter to the local gray-level profile.

Some experimentations with adaptive Gabor filter parameters applied on par-
tial images from FVC 2000 were presented in [44]. A separable Gabor filter was
introduced in [6] for a reduction of the computing time.
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Carrying on the work of [60], a Gabor filtering method with alterations is sug-
gested in [158]: the first modification is the use of circular instead of rectangular
shaped windows for the Gabor filter in order to avoid the creation of aforemen-
tioned artifacts. And secondly, an average ridge frequency is estimated for the
complete image foreground. Comparing their altered method with the Gabor fil-
ter from [60] on 14 images, the authors observe an improvement. In my opinion,
it seems natural to apply a circular mask instead of rectangle, but the influence
of the excluded pixels is because of the Gaussian kernel so close to zero that
the gain should be negligible. In regions with bending ridges, the circular filter
can still cross neighboring ridges, depending on the size of the mask and the
local inter-ridge distance. The data basis of 14 images is too small to draw any
conclusions, but in my opinion any possible improvements are achieved by using
a globally averaged ridge frequency. This speaks volumes about the quality of
the x-signature based RF estimation and underlines the demand for a robust
RF estimation method as discussed in the previous chapter. Moreover, in many
images there is a huge disparity of local ridge frequency from one image region
to another. The use of a global frequency value remains unsatisfactory and
contradicts the idea of contextual filtering.

Gabor filter banks are also used for measuring texture energy which is called
”Gabor features” [76]. For fingerprint images, these Gabor features can e.g. be
employed for singular point detection [90], for image segmentation [5] and for
quality estimation [136]. Another example are the well-known FingerCodes [75].

7.3 Curved Gabor Filter

Bearing in mind the specifics of fingerprints, we introduce a curved Gabor filter
(see Figure 7.3) which is bent according to the degree of local ridge curvature.
In this way, we overcome all aforementioned limitations that were imposed by
the rectangular shape of the filter window. Especially, a strong smoothing along
the ridges for the reconnection of broken ridges and the separation of falsely con-
glutinated ridges (see Figure 7.4) without creating spurious features is enabled
by the curved Gabor filter. A comparison of image enhancement by the Gabor
filter as defined in [60] and the curved Gabor filter is depicted in Figures 7.6 to
7.11.

In this thesis, we apply the curved regions (see Figure 6.3) from the previ-
ous chapter for building the curved Gabor filter. In principal, the quadratic
Bezier curves from Chapter 5 could also be utilized for this purpose. The reuse
of the curved regions has the additional advantage of saving computational
time. For estimating the ridge frequency, the curved region is mapped to a two-
dimensional array of bilinear interpolated gray values (see Figure 6.4). Exactly
the same array will be accessed for curved Gabor filter. Further acceleration is
to be expected using the GPUs of the graphics card. An implementation of the
fast line sensor, the curved ridge frequency estimation and the curved Gabor
filter for GPUs (e.g. using Nvidia’s CUDA 1 technology) is one of the goals for
the near future.

1http://developer.nvidia.com/object/cuda.html
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Figure 7.3: Visualization of a curved Gabor filter for a pixel near a core point.
Filter parameters are: σx = 6.0, σy = 8.0. The underlying curved region consists
of 33 parallel curved lines with 65 points for each line.
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Figure 7.4: From top to bottom: details from images 10 8 and 107 2 of FVC2004
database 1 and image 21 5 of FVC2000 database 1. The left column displays
details of the original images and aside, the corresponding parts from enhanced
versions applying the curved Gabor filter with the following parameters, from
left to right: σx = 2.0, σy = 4.0; σx = 4.0, σy = 2.0; σx = 4.0, σy = 4.0;
σx = 6.0, σy = 8.0; In the top row, the example on the right demonstrates
in particular the usefulness of the curved Gabor filter with large σy values for
separating falsely conglutinated ridges. The images in the middle row illustrate
the capabilities of the curved Gabor filter to reconnect interrupted ridges (es-
pecially on the right, by applying large σy values). The example at the bottom
row was chosen in order to create an awareness for the dangers of smoothing.
Depending the specific configuration of ridges and the precision of the local ori-
entation estimation, it is possible that the smoothing step alters a bifurcation
into an ending, and vice versa. In this particular case, two bifurcations switched
to opposing endings that were connected for the filter with the largest σy value.

73



Figure 7.5: Enhancement with curved Gabor filter. Overview for image 10 1 of
FVC2004 database 3. Top row from left: line sensor OF, raw RF image and
smoothed RF image. Bottom right: enhanced with filter parameter σx = 3.0
σy = 7.0. The same OF and smoothed RF image is passed on to all filters.
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Figure 7.6: Comparing the enhancement of image 69 7 of FVC 2004 database 2
using the Gabor filter as defined by Hong et al. in [60] (top right and bottom
left) and the curved Gabor filter (bottom right). Filter parameters are σx = 4.0,
σy = 4.0 for top right, σx = 4.0, σy = 7.0 for the bottom row. The same OF
and smoothed RF image is passed on to all filters.
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Figure 7.7: Comparing the enhancement of image 105 1 of FVC 2004 database 1
using the Gabor filter as defined by Hong et al. in [60] (top right and bottom
left) and the curved Gabor filter (bottom right). Filter parameters are σx = 4.0,
σy = 4.0 for top right, σx = 4.0, σy = 7.0 for the bottom row.
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Figure 7.8: Comparing the enhancement of image 100 8 of FVC 2004 database 1
using the Gabor filter as defined by Hong et al. in [60] (top right and bottom
left) and the curved Gabor filter (bottom right). Filter parameters are σx = 4.0,
σy = 4.0 for top right, σx = 7.0, σy = 4.0 for the bottom row. The same OF
and smoothed RF image is passed on to all filters.
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Figure 7.9: Comparing the enhancement of image 102 8 of FVC 2004 database 2
using the Gabor filter as defined by Hong et al. in [60] (top right and bottom
left) and the curved Gabor filter (bottom right). Filter parameters are σx = 4.0,
σy = 4.0 for top right, σx = 7.0, σy = 4.0 for the bottom row. The same OF
and smoothed RF image is passed on to all filters.
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Figure 7.10: Comparing the enhancement of image 106 7 of FVC 2004
database 1 using the Gabor filter as defined by Hong et al. in [60] (top right
and bottom left) and the curved Gabor filter (bottom right). Filter parameters
are σx = 4.0, σy = 4.0 for top right, σx = 7.0, σy = 4.0 for the bottom row.
The same OF and smoothed RF image is passed on to all filters.
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Figure 7.11: Comparing the enhancement of image 16 8 of FVC 2004 database 1
using the Gabor filter as defined by Hong et al. in [60] (top right and bottom
left) and the curved Gabor filter (bottom right). Filter parameters are σx = 4.0,
σy = 4.0 for top right, σx = 4.0, σy = 7.0 for the bottom row. The same OF
and smoothed RF image is passed on to all filters.
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Chapter 8

Multi-Level Judgment
Aggregation

Fusion is the concept of combining different sources of information in order
to improve the performance of a biometric system. Depending on the type
of information that is combined, customarily the following kinds of fusion are
distinguished:

• Multiple modalities [130], e.g. face, iris and fingerprint

• Multiple units, e.g. left iris and right iris, or right index finger and right
thumb

• Multiple sensors, e.g. different cameras for face, or an optical and a ca-
pacitive sensor for fingerprints

• Multiple samples, e.g. two prints of the same finger

• Multiple algorithms, e.g. two different extractors and matchers

In this thesis, we focus on the last-mentioned item on the list and consider
the case that we have one sample (image) of one unit (finger) of one modality
(fingerprint) captured by one sensor. For this scenario, the following fusion
categories are covered in the literature:

• Decision-level fusion

• Rank-level fusion

• Score-level fusion

Decision-level fusion (see e.g. [141]) is the combination of binary decisions made
by different matchers. Established combination rules are AND, OR, majority
voting and weighted majority voting. On all levels of information fusion, the
danger exists that the decision based on fusion can impair the performance of the
biometric system in comparison to the best individual matcher. For decision-
level fusion, this aspect was pointed out in [30].

81



Rank-level fusion (see e.g. [113]) can be applied, if the task of the system is
identification (opposed to verification which is the main focus of this chapter).
For a given query, each algorithm outputs a list of potential identities which
are sorted by the computed similarity to the query. The highest similarity is
assigned to the lowest rank. A rank-level fusion which was originally proposed
for political voting is called Borda count. The combined ranks are obtained by
summing up the individual ranks for each biometric identity or political can-
didate. It was suggested by the French mathematician Jean-Charles de Borda.
A modified version of Borda count is used at the Eurovision Song Contest, in
which the top ranked country wins 12 points, the second ranked 10 points, the
third ranked 9 points and so on.

Score-level fusion is the most popular type of fusion. In general, fusion tech-
niques can be divided into three categories.

• Score density-based methods (see e.g. [115] and [114])

• Classifier-based methods

• Transformation-based methods

Transformation-based methods for score fusion consist of two steps: in a prepa-
ration step, scores are normalized, e.g. by min-max normalization which trans-
forms the scores to the interval [0, 1] or z-normalization which attains a zero
mean and a unit variance of the score distribution. Normalization is necessary
e.g. if different fingerprint matchers are combined or if different modalities (e.g.
iris, face, fingerprint) are fused (refer to [74] and [103] for a survey). After
normalization, score fusion can be performed. The basic combination rules are
self-explaining:

• Sum rule

• Max rule

• Median rule

• Min rule

• Product rule

In [84], these rules are embedded into a common theoretical framework origi-
nating from Bayesian theory. In Chapter 2, we applied above listed rules for
improving the verification performance in the case of matching adult fingerprints
with unscaled and rescaled juvenile prints. Transformation-based score fusion
is examined in the following sections.

Furthermore, image-level fusion and feature-level fusion are discussed in the con-
text of multiple samples. E.g. in mosaicking [77, 127], two images are aligned
and combined to one mosaicked image. Mosaicking improves the recognition
rates in comparison to the individual images. The combination of different
templates acquired from multiple impressions of the same finger are discussed
under the headwords template consolidation and template adaptation. Consoli-
dation refers to the enrollment phase, whereas adaption indicates modifications
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of the database template during later recognition attempts. Remembering the
fingerprint growth analysis, we can imagine the case of a juvenile enrolling to a
database, e.g. for access control to a library. Assuming that the person visits
the library regularly, these recognition attempts give the system the opportu-
nity to adapt to the changing, i.e. growing finger, and the template might be
rescaled in this way without explicitly knowing about the grow process.

8.1 Multi-Level Judgment Aggregation

All aforementioned fusion techniques have their benefits and merits. And it is
clear that in some scenarios only score-based, rank based or decision-based fu-
sion is possible, because e.g. matchers are combined that act as black boxes and
they output nothing but a score, rank or binary decision. Or another scenario is
imaginable in which the matching algorithms are more transparent, cooperative
and talkative, but they do not share mutual features, e.g. if a ridge-based algo-
rithm is combined with a correlation-based and a Gabor feature-based matching
algorithm. However, in most cases they do extract mutual features. A report on
the Fingerprint Verification Competition 2004 states that 27 out of 29 partici-
pating algorithms extract minutiae as feature used for global or local matching
[35]. For a moment, let us image what kind of minutiae template could be
build, if these 27 algorithms cooperated and shared the pieces of information
they gained from the image. Coinstantaneously the question arises: which strat-
egy can be adopted for aggregating these extraction results?

The idea of judgment aggregation is to assemble as many pieces of information
as possible on each level and render a judgment which is more substantiated
and meaningful than the best of the individual judgments. The term ’judg-
ment aggregation’ is preferred in comparison to ’fusion’ in order to indicate
the capability of architecture to deal with incoherent and abstaining judgments
[125] that goes beyond linear averaging. Let us imagine a board of judges or
experts who shall deliver a judgment on a certain issue. Some of the judges
may abstain from a decision, others might deliver incoherent judgments. [125]
gives the example of experts forecasting probabilities. If expert Alice assigns
a probability of 0.75 to event X and a probability of 0.25 to the occurrence of
XorY , she delivers incoherent judgments. Let us consider the level of orienta-
tion estimation. Here, an OF estimation method can be regarded as an expert
and the orientation estimation for a certain pixel as a judgment. Method A
may be unable to estimate the orientation for certain pixels (abstaining) and if
estimations of neighboring pixels are discontinuous at locations other than the
core and delta points, these judgments can be considered as incoherent. Fur-
thermore, the judgment aggregation should account for the fact that experts
have different skills. E.g. let us consider the scenario of combining three OF
estimation methods named A, B and C. We assume that A and B are in general
robust to noise, whereas C works only for regions of high quality and produces
erroneous estimations for noisy parts of the image. Any kind of simple averaging
of the three estimations will lead to an impaired OF estimation for low quality
images. On the other hand, if the different skills are factored in, the weakness
of method C can become a strength: if all methods agree on a judgment, i.e.
if all estimations are located within a small cone, this allows not only to derive
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a combined estimation, but there is also reason to have confidence in the esti-
mation and conclude that the pixel belongs probably to a good quality region.
The conclusions may be even more specific, e.g. if it is know that a certain
method is prone to fail especially in dry parts with broken ridge lines. The
term ’multi-level’ indicates that judgment aggregation should be performed on
all possible levels, and in particular on the following levels (please regard this
as an unordered list of partially overlapping, deeply interconnected tasks and
bear in mind that different algorithms may operate in different sequences on
different subsets):

• image quality estimation (global or local)

• segmentation

• orientation field estimation

• ridge frequency (RF) estimation

• image enhancement

• binarization

• minutiae extraction and evaluation

• alignment

• score normalization

Subsequently, a few practical applications are presented which illustrate the
potential of the design. On the OF level, a combination of the line sensor method
and the gradients based method is tested. Pertaining to the binarization level,
some experiments with three different binarization methods were conducted in
which a new binary image was obtained by majority voting for each pixel. It
is of interest to investigate this further. In Section 8.3, five image enhancement
variants are described which are applied in Section 8.7 and 8.8 for judgment
aggregation on the image enhancement and score normalization levels. In the
next section, the general experimental setup is described and details of the used
fingerprint image databases, verification protocols and performance measure are
given.

8.2 Test Setup

The experiments were conducted on all available data sets from the series of
the fingerprint verification competitions (FVC). Each competition held in the
years 2000 [99], 2002 [100] and 2004 [101] comprises of four databases, and for
each databases, 8 impressions of 110 fingers are provided. In all competitions,
database 4 is made up of artificially generated fingerprints. The images of first
100 fingers were used in the competition, and the images of the other 10 fingers
of each database were published in advance, so that the participants could tune
their algorithms according to the sample. Table 8.1 gives an overview of the
database properties.
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Database Sensor Type Image size Resolution
in pixels in DPI

FVC2000 DB1 Low-cost Optical Sensor 300x300 500
DB2 Low-cost Capacitive Sensor 256x364 500
DB3 Optical Sensor 448x478 500
DB4 Synthetic Generator 240x320 about 500

FVC2002 DB1 Optical Sensor 388x374 500
DB2 Optical Sensor 296x560 569
DB3 Capacitive Sensor 300x300 500
DB4 SFinGe v2.51 288x384 about 500

FVC2004 DB1 Optical Sensor 640x480 500
DB2 Optical Sensor 328x364 500
DB3 Thermal sweeping Sensor 300x480 512
DB4 SFinGe v3.0 288x384 about 500

Table 8.1: Overview of the 12 FVC databases used in this thesis. Additional in-
formation can be found at the FVC websites: http://bias.csr.unibo.it/fvc200x/
where x has to be replaced by 0, 2 or 4.

In this thesis, tests are performed on all 12 databases and the enhancement
is not adjusted to any specific database. The enhancement variants described
in the next section are executed on all 9600 images with the same parameters.

The following verification protocol was established for the performance eval-
uation in FVC 2000 [99] and applied in all subsequent competitions:

Genuine Recognition Attempts For each of the 100 fingers, the first im-
pression is matched against the seven other impressions, the second against
the remaining six and so on, adding up to 28 genuine recognition attempts
per finger and 2800 per database.

Impostor Recognition Attempts For the impostor recognition attempts,
only the first of the eight available impressions is used. The first print
of the first finger is matched against the first prints of 99 other fingers,
the first print of the second finger is matched against the remaining 98
first prints of the other fingers and so on. This adds up to 4950 impostor
recognition attempts per database.

All subsequently presented results are obtained following exactly the above de-
scribed verification protocol. False acceptance rates (FARs), false rejection rates
(FRRs) and the equal error rates (EERs) are calculated as explained in [99].
FARs are also called ’false match rates’ (FMRs) and FRRs are also known
as ’false non-match rates’ (FNMRs). In this thesis, the EER is used as the
main performance indicator, because it is particularly suitable for measuring
the reduction of false accepts and false rejects by image enhancement. Other
performance indicators like FMR100, FMR1000 and ZeroFMR [18] are very rel-
evant for the evaluation of practical applications [71], but here, they are only of
subordinate interest, and for reasons of clarity and readability, they are omitted.
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On comparing different image enhancement and fusion approaches, it is very
important to account for the applied verification protocol. The relation of gen-
uine to impostor recognition attempts as well as the choice of certain subsets of
images from a database massively influences the performance of the system and
results become incomparable. Therefore, the conduction of all experimentations
according to the full FVC protocol is of great significance in order to produce
results that can be compared with other methods.

For minutiae extraction and matching, the same software was applied as de-
scribed in Section 2.4.2.

8.3 Image Enhancement by Applying the Curved
Gabor Filter

In this section, five image enhancement versions are described which apply
curved regions for the ridge frequency estimation as introduced in Section 6.2
and the curved Gabor filter (CGF) introduced in Section 7.3. Acronyms are
established, so that they can referenced in all subsequent sections. Due to
time constraints and computational limitations, these enhancement variants are
sample applications with an ad hoc parameter choice. Further parameter com-
binations should be tested more systematically in order to investigate possible
improvements by better parameter choices.

All enhancement versions have the same general layout: first, the OF is es-
timated, either by a single method or by a combination of methods. Second,
a raw, pixelwise RF image is obtained using the curved regions based RF es-
timation and the OF from the first step. Afterwards, the RF is smoothed by
averaging in a window. Finally, the curved Gabor filter is applied. Input ar-
guments are the OF, the smoothed RF and the tuning parameters σx and σy.
Segmentation or quality estimation is not explicitly performed in this experi-
mentation. Since image enhancement is only performed for those pixels that are
equipped with orientation and ridge frequency estimation, all other pixels are
set to the global mean gray value and regarded as background.

Enhancement version E1. Two orientation fields are computed applying the
line sensor method and the gradients based method with a smoothing window
size of 33 pixels. The OFs are compared at each pixel. If the angle between both
estimations is smaller than 15 ◦, the orientation of the combined OF is set to
the average of the two. Otherwise, the pixel is marked as missing. Afterwards,
all inner gaps are reconstructed as described in Section 4.4.2 and up to a radius
of 16 pixels, the orientation of the outer proximity is extrapolated. The raw
RF image is computed and smoothed in a window of size 49 pixels. Finally, the
curved Gabor filter is applied with σx = 4 and σy = 4.

Enhancement version E2. Like in the previous version, two orientation fields
are estimated using the line sensor method and the gradients based method
(smoothing window size of 33 pixels). Here, the condition for averaging is an
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angle smaller than 10 ◦ between both estimations and pixels for which both
methods disagree (i.e. forming an angle ≥ 10 ◦) are not reconstructed. Since
image enhancement is performed only for pixels endowed with an orientation
estimation, this leads to gaps in the enhanced image which are filled with the
mean gray value. The raw RF image is smoothed over windows of 33 pixels
width and the CGF parameters are σx = 5 and σy = 4.

Enhancement version E3. The OF is estimated by the line sensor method.
A window size of 33 pixels is used for smoothing the raw RF image and the
curved Gabor filter parameters are σx = 6 and σy = 7.

Enhancement version E4. Here, the line sensor method is applied with a grid
size of 6 pixels (instead of 8 pixels which is used in all cases when the grid size
is not explicitly stated). The averaging window for RF smoothing is 49 pixels
wide and σx = 6, σy = 7 are the tuning parameters of the CGF.

Enhancement version E5. For version E5, the OF is estimated using the gra-
dients based method with an averaging window of size 33 pixels. The ridge
frequency is smoothed over windows of 65 pixels and the curved Gabor filter is
applied with σx = 4 and σy = 4.

8.3.1 Results and Discussion

Table 8.2 specifies the EERs which are obtained, if the the three algorithms
BZ3, VFM and VFG (see Section 2.4.2) are applied to the original images and
enhanced images using version E1. On comparing the results, it is important to
bear in mind that the free NIST software binarizes the grayscale input image
and extracts the minutiae without performing any image enhancement, whereas
the two algorithms derived from the Neurotechnology VeriFinger 5.0 SDK, VFM
and VFG, have a built-in image enhancement which can not be turned off. In
the case of these two algorithms, the test should be understood as a compar-
ison of the VeriFinger built-in image enhancement versus a pre-enhancement
using version E1 as described in Section 8.3 followed by the VeriFinger built-in
enhancement. Bearing in mind that the VeriFinger software belonged to the
top five algorithms in the FVC competitions, it is quite astonishing that EER
reductions of up to 75 % are possible by the additional pre-enhancement using
version E1. On the other hand, the results on FVC 2002 database 1 remind us
of the risk that image enhancement can also impair the performance.

Basically, there are two types of errors which can occur during the minutiae
extraction stage: first, true minutiae can be missed and second, false minutiae
can be extracted. The image enhancement techniques we regard in this thesis
aim at reducing the number of extraction errors. Ideally, fewer true minutiae
are missed after the enhancement without introducing additional false minutiae.
The image enhancement version E1 is well suited to function as a stand-alone
image enhancement step, whereas e.g. version E2 is specifically designed for en-
hancing only those parts of the image which can be regard as reliable in terms of
agreeing orientation estimations by the line sensor and gradients based method.
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Matcher: BZ3 Original images Enhancement E1 EER Change

FVC2000 DB1 25.96 % 4.18 % - 83.9 %
DB2 4.8 % 2.68 % - 44.2 %
DB3 6.3 % 4.93 % - 21.7 %
DB4 10.41 % 4.85 % - 53.4 %

FVC2002 DB1 4.13 % 4.2 % + 1.7 %
DB2 3.32 % 2.38 % - 28.3 %
DB3 8.54 % 9.13 % + 6.9 %
DB4 6.92 % 4.41 % - 36.3 %

FVC2004 DB1 15.06 % 11.42 % - 24.2 %
DB2 16.34 % 5.93 % - 63.7 %
DB3 7.37 % 5.31 % - 28 %
DB4 9.88 % 6.8 % - 31.2 %

Matcher: VFM Original images Enhancement E1 EER Change

FVC2000 DB1 4.5 % 1.65 % - 63.3 %
DB2 1.05 % 0.74 % - 29.5 %
DB3 8.04 % 4.61 % - 42.7 %
DB4 3.77 % 2.6 % - 31 %

FVC2002 DB1 0.76 % 0.95 % + 25 %
DB2 1.08 % 0.46 % - 57.4 %
DB3 2.9 % 2.31 % - 20.3 %
DB4 2.09 % 1.23 % - 41.1 %

FVC2004 DB1 8.29 % 6.87 % - 17.1 %
DB2 7.1 % 4.18 % - 41.1 %
DB3 7.35 % 4.37 % - 40.5 %
DB4 2.38 % 2.29 % - 3.8 %

Matcher: VFG Original images Enhancement E1 EER Change

FVC2000 DB1 4.37 % 1.03 % - 76.4 %
DB2 0.87 % 0.5 % - 42.5 %
DB3 6.7 % 3.19 % - 52.4 %
DB4 3.64 % 1.45 % - 60.2 %

FVC2002 DB1 0.68 % 0.74 % + 8.8 %
DB2 0.9 % 0.39 % - 56.7 %
DB3 2.32 % 1.39 % - 40.1 %
DB4 1.67 % 0.44 % - 73.7 %

FVC2004 DB1 8.78 % 6.16 % - 29.8 %
DB2 6.62 % 2.93 % - 63.9 %
DB3 5.32 % 2.3 % - 56.8 %
DB4 1.97 % 1.31 % - 33.5 %

Table 8.2: EERs for the original and enhanced images. For each entry, a full
FVC verification test with 7750 recognition attempts was conducted. BZ3, VFM
and VFG denote the three algorithms described in Section 2.4.2.
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E2 targets for improving the clarity of the ridge structure in these parts, so that
further true minutiae can be discovered without adding false minutiae. On the
downside, a substantial amount of information is lost, because the regions in
which the OF estimations disagree, i.e. forming an angle ≥ 10 ◦, are ignored
and set to the mean gray value. For these reasons, E2 is unsuitable as a stand-
alone enhancement method. An obvious concept, however, is the combination
of the minutiae from the original and enhanced image following the idea that
additional true minutiae are discovered in the foreground of the enhanced image
and that a combined template will perform better than each of the individual
templates. This notion is examined in the next section.

8.4 Score Fusion vs. Minutiae Fusion

In this section, we investigate whether the EERs can be further reduced by two
traditional fusion approaches: score-level fusion and minutiae-level fusion.

On the score level, the VFM score for a recognition attempt with the origi-
nal images is combined with the VFM score obtained on the enhanced images
for each of the five enhancement variants. Ideally, the enhancement amplifies
the scores of the genuine recognition attempts without changing the scores of
the impostor recognition attempts. In some cases, matching two original images
of the same finger produces scores close to 0, especially for low quality images,
whereas matching the enhanced images may lead to scores which lie above the
threshold at the EER. Averaging the scores (which is equivalent to applying the
sum rule) would not be favorable for these cases. Therefore, scores are fused by
the max rule [84] in this test.

Two minutiae templates are combined by simply attaching all minutiae of one
template to the other with one constraint: in avoidance of duplicates, existing
minutiae are checked whether they are located in a radius of 5 pixels and they
have a similar direction (≤ 15 ◦). If such a minutia is already part of the tem-
plate, than the second, similar minutia is not added.

Regarding the results listed in Table 8.3, a number of conclusions can be drawn.
Generally, both score-level fusion and minutiae level fusion have the potential
to improve the verification performance, partially EERs shrink down to a quar-
ter of the original rate. On the other hand, in a few cases the EERs increase,
especially for the combination of algorithm E3 and minutiae fusion. Relating
to the order of magnitude, both fusion techniques yield approximately equiv-
alent results. Performance differences are apparent between the enhancement
variants. Score and minutiae fusion involving version E1 which combines the
line sensor and gradients based method for OF estimations achieves the lowest
EER on 11 out of the 12 databases. Additional to the combinations listed in
Table 8.3, minutiae and score fusion of two or three enhancement versions (ex-
cluding the scores and templates of the original images) were also tested. These
combinations performed similar to those which fuse E2 to E5 in Table 8.3, but
EERs were higher than the EERs achieved by the combination of E1 and the
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FVC 2000 Database 1 Database 2 Database 3 Database 4

Original images 4.5 % 1.05 % 8.04 % 3.77 %

Score: O. and E1 1.02 % 0.7 % 4.39 % 1.64 %
Minutiae: O. and E1 1.36 % 0.79 % 4.25 % 1.58 %
Score: O. and E2 1.53 % 0.81 % 4.59 % 2.55 %
Minutiae: O. and E2 1.36 % 0.94 % 4.97 % 2.4 %
Score: O. and E3 1.88 % 0.77 % 5.29 % 3.28 %
Minutiae: O. and E3 1.81 % 0.98 % 5.49 % 3.61 %
Score: O. and E4 1.79 % 0.9 % 5.44 % 2.16 %
Minutiae: O. and E4 1.46 % 0.91 % 5.06 % 2.16 %
Score: O. and E5 1.45 % 0.79 % 5.04 % 2.08 %
Minutiae: O. and E5 1.43 % 0.91 % 5.27 % 1.7 %

FVC 2002 Database 1 Database 2 Database 3 Database 4

Original images 0.76 % 1.08 % 2.9 % 2.09 %

Score: O. and E1 0.67 % 0.28 % 1.25 % 0.8 %
Minutiae: O. and E1 0.72 % 0.38 % 1.56 % 0.9 %
Score: O. and E2 0.67 % 0.43 % 2.08 % 1.17 %
Minutiae: O. and E2 0.62 % 0.42 % 2.07 % 1.24 %
Score: O. and E3 0.82 % 0.31 % 2.12 % 1.75 %
Minutiae: O. and E3 0.87 % 0.41 % 2.41 % 2.31 %
Score: O. and E4 0.75 % 0.39 % 2.0 % 1.71 %
Minutiae: O. and E4 0.75 % 0.46 % 1.88 % 1.54 %
Score: O. and E5 0.69 % 0.49 % 2.18 % 1.33 %
Minutiae: O. and E5 0.81 % 0.7 % 2.45 % 0.95 %

FVC 2004 Database 1 Database 2 Database 3 Database 4

Original images 8.29 % 7.1 % 7.35 % 2.38 %

Score: O. and E1 5.84 % 4.12 % 3.95 % 1.5 %
Minutiae: O. and E1 6.48 % 4.01 % 4.99 % 1.88 %
Score: O. and E2 6.67 % 4.43 % 4.5 % 2.17 %
Minutiae: O. and E2 7.05 % 4.57 % 4.7 % 2.21 %
Score: O. and E3 7.35 % 5.07 % 4.74 % 2.15 %
Minutiae: O. and E3 7.67 % 5.33 % 5.33 % 3.07 %
Score: O. and E4 6.46 % 4.64 % 4.86 % 2.05 %
Minutiae: O. and E4 6.49 % 4.22 % 5.06 % 2.56 %
Score: O. and E5 6.2 % 5.42 % 5.08 % 1.55 %
Minutiae: O. and E5 6.8 % 4.55 % 4.95 % 1.69 %

Table 8.3: EERs for verification tests applying algorithm VFM. Performance
on the original images is compared with score fusion using the max rule and
combination of minutiae templates. O. indicates the original images..
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original images. Interestingly, E1 as a standalone method performs better than
the score or minutiae fusion of E1 and the original images on three databases
of FVC 2004. Bearing the in mind that FVC 2004 contains many low quality
images, it suggests itself to incorporate quality estimation into decisions at the
score level.

8.5 Image Quality Based Score Normalization

Fingerprint image quality influences the verification performance. In low quality
images, large parts of the image or the whole image is disturbed by one or more
kinds noise. As discussed previously, typical types of noise are caused by wet-
ness or dryness of the finger, or by scars. During one the scanning sessions for
acquiring the fingerprints used in FVC 2004, the fingers of the volunteers were
intentionally dried and moistened in order to introduce this kind of difficulty.
Generally, dryness interrupts the ridges, wetness causes neighboring ridges to
conglutinate and scars usually cut some ridges along a line, often simultaneously
joining the cut neighboring lines near the cutting point. During the minutia ex-
traction, it is more likely that true minutiae are missed and false minutiae are
discovered in regions disturbed by noise.

Verification errors can be reduced, if the image quality is taken into account
during the score fusion [37]. This approach is also useful for multibiometric
fusion (e.g. see [116] for fusion of fingerprint and iris).

For our study of possible improvements by an image quality based score nor-
malization, we apply the NFIQ (NIST fingerprint image quality) software [139].
NFIQ outputs a discrete number in the range from 1 to 5 as a global quality
estimation for the input image. 1 indicates excellent quality and 5 stands for
poor quality. Quality assessment is viewed as a classification problem by NFIQ.
The decisive weights were determined using a neural network at the NIST and
their training images may have varied perspicuously from the FVC images. This
is how I interpret the fact that my human quality estimation disagrees with the
NFIQ assessment on many of the visually inspected images. Another point of
critique is the susceptibility of the NFIQ quality estimation to slight changes.
In my experimentation, I tested NFIQ on the original images and on various
smoothed variants using median or Gaussian filters [138] and found assessment
jumps from 1 to 5 for slightly smoothed images which visually appeared to
have the about same quality. In principle, it is desirable for an image quality
estimation method to be robust to small changes of the image.

8.5.1 Test Details

The basic idea of quality based score normalization is to compensate for poor
quality by upgrading the scores obtained on matching low quality fingerprint
images. In our experimentation, boosting low quality images was performed in
the following way: for each of the 7750 recognition attempts per FVC database,
the max value (lowest quality) of the quality assessment by NFIQ for the two
involved images is determined. The scores of recognition attempts with qualities
between 2 and 5 are valorized by factors q2 to q5. Combinations are tested with
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FVC 2000 Database 1 Database 2 Database 3 Database 4

Original images 4.5 % 1.05 % 8.04 % 3.77 %
Q(Original images) 4.28 % 0.92 % 6.91 % 3.58 %

Enhancement E1 1.65 % 0.74 % 4.61 % 2.6 %
Q(Enhancement E1) 1.59 % 0.6 % 3.48 % 2.39 %

SF(O. and E1) 1.02 % 0.7 % 4.39 % 1.64 %
Q(SF(O. and E1)) 1.00 % 0.52 % 3.35 % 1.57 %

FVC 2002 Database 1 Database 2 Database 3 Database 4

Original images 0.76 % 1.08 % 2.9 % 2.09 %
Q(Original images) 0.74 % 0.94 % 2.51 % 2.03 %

Enhancement E1 0.95 % 0.46 % 2.31 % 1.23 %
Q(Enhancement E1) 0.86 % 0.4 % 2.02 % 1.1 %

Score: O. and E1 0.67 % 0.28 % 1.25 % 0.8 %
Q(SF(O. and E1)) 0.63 % 0.23 % 1.15 % 0.75 %

FVC 2004 Database 1 Database 2 Database 3 Database 4

Original images 8.29 % 7.1 % 7.35 % 2.38 %
Q(Original images) 7.67 % 5.72 % 6.24 % 2.38 %

Enhancement E1 6.87 % 4.18 % 4.37 % 2.29 %
Q(Enhancement E1) 6.44 % 3.47 % 3.02 % 2.17 %

Score: O. and E1 5.84 % 4.12 % 3.95 % 1.5 %
Q(SF(O. and E1)) 5.53 % 3.21 % 2.67 % 1.4 %

Table 8.4: EERs of verification tests using algorithm VFM. O denotes the orig-
inal images, SF score fusion and Q indicates that quality based score normal-
ization was performed.

the constraints 1 ≤ q5 ≤ 5 and q2 ≤ q3 ≤ q4 ≤ q5. Steps of 0.1 were considered.
E.g. in Table 8.4, the algorithm VFM achieved an EER of 7.1% on matching
the templates of the original images of FVC 2004 database 2. If matching scores
are multiplied by q5 = 2.8, q4 = 1.7, q3 = 1.5, q2 = 1.1, the EER is reduced to
5.72%.

8.5.2 Results and Discussion

Pertaining to the results listed in Table 8.4, it can be positively noted that in all
36 cases the EERs of the verification tests applying the quality based normal-
ized scores are smaller (or equal in one case) than the EERs of the tests using
the corresponding non-normalized scores. This is far from being self-evident,
especially bearing in mind that NFIQ produced a number of erroneous estima-
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tions for the inspected images. However, in most cases the gained improvement
was very small. It would be of interest to test other quality estimation meth-
ods than NFIQ, e.g. [91], and also, to compare it to quality estimations by a
human expert. In my opinion, it is quite obvious that on the one hand, some
further reduction of the EERs is possible by applying better quality estimation
methods, but on the other hand, there are limits which can not be overcome by
regarding image quality only. In Section 8.8, image quality will be an important
part of our considerations in conjunction with other factors.

8.6 The Doddington Zoo Effect

The ’Doddington zoo effect’ is named after George Doddington who investi-
gated the performance variability in speaker recognition systems [32]. Based on
the observation that recognition errors are inhomogeneously distributed among
speakers, population statistics are analyzed in order to detect speakers who per-
form conspicuously well or poor, because these speakers strongly influence the
performance of whole the system. Afterwards, this concept was transferred from
speaker recognition to other biometric modalities including fingerprint recogni-
tion. This approach became widely known in the biometrics community and
received a lot of attention recently. The objective of this section is to examine
whether the Doddington zoo effect can be capitalized for a user-specific score
adaptation in order to reduce the number of verification errors on the FVC
databases used in our experimentation.

Depending on the performance characteristics, users are assigned to following
classes which have been given animal names:

• Sheep: Users who generally perform well. They achieve high scores in
genuine recognition attempts and low scores in impostor recognition at-
tempts. These users are ideal from a biometric system’s point of view.

• Goats: Users who are particularly difficult to match. They achieve low
scores when matched against themselves or others and therefore, they tend
to cause false rejects.

• Lambs: Users who are vulnerable to impersonation. They achieve high
scores when being matched against resulting in false accepts.

• Wolves: Users who are disproportionately likely to be successful as an
impostor and in doing so, they tend to produce false accepts.

For our analysis, lambs and wolves are regarded conjointly, because we do not
consider the sequence in which images or templates are matched and both tend
to cause false accepts. An expansion of biometric menagerie by four additional
animals is proposed in [150, 151].

The idea of exploiting the Doddington zoo effect is to identify users belong-
ing to the classes goat or lamb/wolf, and then magnify (for goats) or diminish
(for lamb/wolf) the matching scores, so that ideally all scores of the genuine
recognition attempts for that user are located above the threshold and for im-
postor scores end up below the threshold. Ways of exploiting the effect can be
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FVC 2004 DB 1 DB 2 DB 3 DB 4

Error free 0 6 7 26

Involved in false accepts (FA) 49 57 58 55
Involved in false rejects (FR) 1 2 7 4
Involved in FAs and FRs 50 25 28 15

Separable 40 62 49 49
Inseparable 60 32 44 25

Table 8.5: Based on the verification results achieved by score fusion of the orig-
inal images and E1 using VFM (see Table 8.3), fingers are divided into four
classes depending on the kind of verification errors they are involved in. Sepa-
rable indicates that the minimum genuine score for a finger is greater than the
maximum impostor, so that in the best case, a user-specific score normalization
could transform that finger from one of the three error categories into the class
’error free’. Inseparable denotes that the minimum genuine score for a finger is
less or equal to the maximum impostor score.

found in [32] and [131]. The latter describes its application for fusion of iris and
fingerprint data. Two very similar methods are F-ratio [122] and Z-shift [123].
Fingerprint pattern classification was analyzed in [146] and the author comes
to the conclusion that wolves and lambs exist in fingerprint recognition (with
gradual transition between sheep and these populations). In [16], verification
performance after single enrollment was statistically analyzed using a commer-
cial matcher. 10 % of the users were more likely to be involved in false rejects
than the remaining 90 %. Based on this result, the authors attest these 10 %
a ’goat’-like behavior. Goats are also in main focus of [58]. Based on studying
6000 subjects who are frequent users of US-VISIT, the authors reject the notion
of goats and summarize:

There have been a variety of statements made in the recent past that
a small percentage of people (usually 2%) cannot be fingerprinted
due to poor quality fingers. This study shows these statements are
based on misconceptions: the fact that some small percentage of fin-
gerprints may be hard to match does not mean that a corresponding
percentage of people are hard to match.

Scrutinizing the false rejects which remain after image enhancement, I agree with
the statement. There are no goats in the FVC databases, i.e. no persons who
are consistently hard to match. Rather, the false accepts are caused by single
impressions which have a particularly low quality or a small area of overlap with
the other impressions of that finger (a more detailed illumination of this fact
follows in Sections 8.8; e.g. see Figure 8.2).

8.6.1 Discussion

Taking into account the Doddington zoo effect certainly has its merits, espe-
cially in speech and speaker recognition. And it can be useful for establishing
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criteria to verify the adequacy of a template at enrollment and the choice of se-
lection criteria for multimodal fusion [124] In fingerprint recognition, analyzing
the verification performance of a system for the Doddington zoo effect can be
a very useful approach for detecting the weaknesses of system. E.g. if persons
whose fingers are disturbed by scars show a goat-like behavior, this fact could
indicate that the algorithm has a flaw for this kind of noise. On the other hand,
if user-specific score normalization is applied in order not minimize verification
errors, a drawback is that impostor scores are required as training data [36],
i.e. for computing the z-norm. In real life scenarios, fulfilling this prerequisite
might not be feasible.

Table 8.5 illustrates the potential and the limitations of what be achieved by a
user-specific score normalization. There is a large number of separable fingers
which means that their minimum genuine score is greater than the maximum
impostor score, so that in principle, a user-specific score normalization could
transform in such a way that after the transformation, all genuine scores are
located above the score threshold at the EER and all impostor scores below.
On the other hand, the inseparable cases show the limitations. No matter what
transformation is applied, verification errors remain. In the light of the insepara-
ble cases, it is unsatisfying that there is no hope to solve the pattern recognition
challenge by applying a user-specific score normalization. That is way I decided
not to pursue this direction. In Section 8.8, we will consider a novel approach
for addressing this challenge.

8.7 Cross Matching

Score-level fusion is typically performed in a scenario with multiple algorithms
acting as black boxes. Each algorithm outputs only a score which measures the
similarity between the two fingerprints that are compared in the recognition
attempt.

In our study, we experiment with different image enhancement variants which
enables us to combine them with each other. In my opinion, this is a quite
natural idea that has, to the best of my knowledge, not yet been considered in
literature. The name cross matching was chosen, because each variant is com-
bined with all other variants. Here, ’variant’ shall include the original image
as well as all enhanced versions. Templates can be cross-matched against other
templates (BZ3, VFM), or images can be cross-matched against other images
(VFG). The rationale behind this approach is that different enhancement ver-
sions may produce better or worse results on different images. E.g. one version
may have very strong smoothing and ridge reconnecting properties and e.g. it
may lead to the best results on dry images, whereas another enhancement ver-
sion may achieve the best results on another type of noise. If e.g. in a genuine
recognition attempt, an image with many scars is matched against a dry fin-
gerprint, the highest score may be obtained by a combination of two different
enhancement versions.

95



FVC 2000 Database 1 Database 2 Database 3 Database 4

Original images 4.5 % 1.05 % 8.04 % 3.77 %

Trad. score fusion of
O and E1

1.02 % 0.7 % 4.39 % 1.64 %

Cross matching of
O and E1

1.08 % 0.66 % 3.69 % 1.63 %

Trad. score fusion of
O, E1 and E5

1.01 % 0.66 % 4.21 % 1.55 %

Cross matching of
O, E1 and E5

0.96 % 0.62 % 3.33 % 1.34 %

FVC 2002 Database 1 Database 2 Database 3 Database 4

Original images 0.76 % 1.08 % 2.9 % 2.09 %

Trad. score fusion of
O and E1

0.67 % 0.28 % 1.25 % 0.8 %

Cross matching of
O and E1

0.72 % 0.25 % 1.23 % 0.79 %

Trad. score fusion of
O, E1 and E5

0.66 % 0.28 % 1.25 % 0.78 %

Cross matching of
O, E1 and E5

0.64 % 0.25 % 1.15 % 0.71 %

FVC 2004 Database 1 Database 2 Database 3 Database 4

Original images 8.29 % 7.1 % 7.35 % 2.38 %

Trad. score fusion of
O and E1

5.84 % 4.12 % 3.95 % 1.5 %

Cross matching of
O and E1

5.32 % 3.84 % 3.37 % 1.33 %

Trad. score fusion of
O, E1 and E5

5.71 % 4.09 % 3.61 % 1.3 %

Cross matching of
O, E1 and E5

4.96 % 3.27 % 3.0 % 1.1 %

Table 8.6: Comparison of EERs for verification tests applying algorithm VFM.
Performance of the traditional score fusion applying the max rule is compared to
the verification performance of cross matching. O denotes the templates created
on the original images. For enhancement versions E1 and E5, confer to Section
8.3.
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In Table 8.6, the verification performance of traditional score fusion and cross
matching is compared. Improvements are achieved by all three algorithms on the
difficult databases (FVC 2000 DB 3 and all databases of FVC 2004). The best
results are obtained by VFG. For reasons of comparability, Table 8.6 reports the
results for algorithm VFM which is applied in previous and subsequent sections.

Another aspect is by far more important than the achieved improvements. Cross
matching prepares score revaluation which is presented in the next section by
potentially creating alternative matches in regard of the matched minutiae and
the respective alignment. On comparing the available templates for each im-
pression pairwise, it is obvious that they may contain different subsets of true
minutiae and different sets of false minutiae. From this circumstance arises the
possibility that different sets of minutiae are paired and regarded as best match
by an algorithm. Recognition attempts are retroactively re-evaluated in the
following section. Wrong alignments (non-fitting with respect to an introduced
measure) are downgraded which can equally affect impostors and genuine users.
If a genuine recognition attempt is devaluated due to non-fitting alignment, it
is imperative to have alternative combinations in order to recognize the genuine
user. Cross matching assists to provide these alternatives.

Once the currently existing obstacles at the matcher level are eliminated and
additionally, local quality estimation methods are part of the architecture, then
the main purpose of cross matching will be the integration of different meth-
ods on the image enhancement level, e.g. combining curved Gabor filters with
anisotropic diffusion techniques and pyramid-based image enhancement.

8.8 Score Revaluation

Previously, we considered possible improvements by a quality based score nor-
malization and by a user-dependent score adaption. Both approaches can reduce
the EERs to some extent, but they also have their limitations. Let us remember
our goal stated in the introduction of this thesis: assuming the individuality of
fingerprints, how can a sufficient amount of discriminative information be ex-
tracted, so that for each recognition attempt a non-ambiguous decision between
genuine users and impostors can be made?

Reckoning visualizations of false accepts and false rejects, it is quite obvious
for a human being where the machine algorithm erred. Analogous to the be-
ginnings of AFIS in the 1960s when algorithms learned from the way forensic
experts process fingerprint images, the basic idea of score revaluation is to the
teach the algorithm comparable skills for the post-matching stage.

The orientation field is a pivotal point in this approach. E.g. if a human expert
glances at the recognition attempt depicted in Figure 8.1 and regards the pro-
posed alignment and matched minutiae, it is instantaneously clear that these
two images belong to two different fingers. Subsequently, we develop features
and criteria allowing for an automated score revaluation.
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Figure 8.1: The impostor recognition attempt (f.l.t.r: finger 29 and 77 of FVC
2002 database 2) with the highest matching score (48, VFM, maximum of cross
matching original images and enhancement version E1) before score revaluation.
On the left, the enhanced image applying E1 for finger 29, original image for
finger 77 aside. Matching minutiae are depicted in blue and red, non-matching
in black and yellow. The third image from the left displays minutiae positions
after alignment and the fourth the OFs after alignment. Black area indicates
OF foreground for the first image and white OF foreground for the second im-
age. Overlapping foreground is drawn in gray, background in orange. The OF
belonging to the first images is visualized in red, the OF for the second in green.
Obviously, the OFs do not fit, if the second OF is aligned by the same affine
transform as the matching minutiae.
Overlapping area in pixels: 55815
OF measurement points (every 8th pixel vertically and horizontally which be-
longs the overlapping area): 876
Mean OF deviation: 43.1 ◦

Number of deviations > 45 ◦: 431
Rotation for alignment: 102.7 ◦

Matched minutiae: 5

8.8.1 Features

For the revaluation, we aim to make good use of the already available infor-
mation. From the preprocessing stage, there are the orientation field and ridge
frequency estimations. From the matching stage, VFM provides some details
additional to the score: the information how many and which minutiae were
matched as well as the corresponding alignment (which could easily be deduced
from the minutiae pairs if it would be missing). In our tests, the OF and RF es-
timations belonging to enhancement version E2 are applied. Out of these pieces
of information, the following features are derived:

• Size of the area in pixels which is covered by both OFs after alignment by
the same affine transformation as the minutiae

• Number of measurement points (every 8th pixel vertically and horizontally
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which belongs the overlapping area)

• Number of orientation deviations > 45 ◦ between both OFs at measure-
ment points

• Number of orientation deviations > 30 ◦ between both OFs at measure-
ment points

• Number of orientation deviations > 20 ◦ between both OFs at measure-
ment points

• Mean OF deviation computed over all measurement points

• Number of matched minutiae

• Number of matched minutiae which are located close to a core point

• Number of unmatched minutiae located inside the overlapping area

• Rotation for alignment for all measurement points

• Mean inter-ridge distance difference computed over all measurement points

Inspecting the false accepts and false rejects, some general rules can be for-
mulated using above listed features: in impostor recognition attempts, a small
number of randomly matching minutiae may be found on matching two tem-
plates of different fingers (see e.g. Figure 8.1). If the OFs and RF images of
corresponding fingerprints are aligned using the same rotation and translation
as for the minutiae, the impostor recognition attempt is characterized by not
fitting OFs and RF images, whereas in genuine recognition attempts, OFs and
RF images fit quite well.

In order to measure the goodness of fit, aforementioned features are computed.
As OF foreground, we regard all pixels which are endowed with an orientation
estimation, and accordingly, the RF foreground consist of all pixels with a RF
estimation. After the alignment of the second OF to the first OF, we focus on
the overlapping area of both OFs and measure the OF and RF deviations, count
the number of unmatched minutiae as well as the number of matched minutiae
which located in a core area.

8.8.2 Case Study: FVC 2002 Database 2

Basis for our case study are the false accepts and false rejects of FVC 2002
database 2 which remain if score fusion is performed on the scores obtained by
VFM cross matching the templates of the original images and enhancement ver-
sion E1 (see Section 8.4). FVC 2002 database 2 was chosen, because the lowest
EER was achieved on that database and it appeared to be the easiest man-
ageable of the twelve databases. Of the three available matching algorithms,
VFM was applied for this study, because the pairs of matched minutiae and the
corresponding alignment could be accessed additional to the matching score.
Subsequently, we derive criteria from the properties of the remaining verifica-
tions errors in a natural way.
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Figure 8.2: Impressions 6 to 8 (top row, from left to right) of finger 32 in
FVC 2002 database 2. The genuine recognition attempt matching impression 6
and 7 achieved the lowest genuine score (17, VFM, maximum of cross match-
ing original images and enhancement version E1) before score revaluation, the
combination of impression 6 and 8 achieved the fifth lowest genuine score (25).
Cause for the low scores is the small overlapping area between impression 6 and
the other images after the correct alignment. Bottom row: impressions 5 and
6 are matched. Due to the small overlapping area (gray on the right, 16707
pixels) and the fitting OFs (applying rule 1 and 2), score revaluation boosts the
score of this genuine recognition attempt up to 32.
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Figure 8.3: In this impostor recognition attempt of finger 26 and 100, the orig-
inal score of 19 is increased, because of the small overlap (rule 1, 11996 pixels).
Here, the impostor can not be recognized by non-fitting OFs (no deviations
> 45 ◦, mean OF difference is < 10 ◦), but the rotation angle of 128 ◦ is suspi-
cious. According to rule 4, the score is decreased by 20%. Also, the inter-ridge
distance difference is 2.8, so that rule 5 applies. After score revaluation, this im-
postor recognition attempt is assigned a score of 24 which is the second highest
of all impostor scores.

For each cross combination of original and enhanced images, a score revaluation
factor is computed. At the beginning, the factor is set to 100%. Depending on
which conditions are met by properties of the cross combination, the factor is
increased or decreased before finally the score is multiplied with the factor.

Rule 1: orientation field The orientation field is of great discriminative
power. The following penalties are inflicted for deviations:
If the number of orientation deviations > 45 ◦ (Dev45) between both OFs is in
the range from 1 to 9, the factor is decreased by 10%, for a deviation count in
the range from 10 to 49 (see e.g. Figure 8.5), the factor is halved, and for a
Dev45 of 50 or more, the factor is diminished by 70%.

Moreover, if the average deviation between the OFs is ≥ 10 ◦, the factor is
decreased by 10%.

In my opinion, it is not necessary to additionally consider the number and
location of core and delta points, since this information is already the contained
in the orientation field. The same argument holds for the type of the pattern
which is often described by the Galton-Henry-classes. Furthermore, ridge cur-
vature correspondence which has been proposed for matching (see e.g. [92]) is
contained in the OF.

Rule 2: overlap The size of the overlapping area can have a big impact on
the similarity score. A small overlap tends to cause false rejects as illustrated in
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Figure 8.2. Here, we strive to avoid these false rejects by boosting small over-
laps, and in doing so, we consider the operational quality of the two fingerprints.
The following thresholds are stated as absolute pixel values. Subsequently, this
is generalized.

Overlapping areas (OAs) which are smaller than 5000 and simultaneously have
no OF deviations > 45 ◦, are boosted by 250%. OAs between 5000 and 10000
with Dev45 = 0 are upgraded by 150%, OAs between 10000 and 15000 with
Dev45 = 0 are magnified by 75% and those OAs between 15000 and 40000 with
Dev45 = 0 scaled up by 10%.

At the other end of overlap sizes, huge overlaps which perfectly fit should be
rewarded and misfits punished: OAs ≥ 80000 with Dev45 = 0 are scaled up by
10% and OAs ≥ 80000 with Dev45 ≥ 1 are reduced by 25%.

Rule 3: minutiae A very high number of matched minutiae (MM) should
be additionally rewarded: If MM is between 15 and 19, the factor is increased
by 50% and for MM ≥ 20, the upgrade is 200%.

Scores should be pushed even further, if minutiae can be matched on a small
overlap and the OFs perfectly fit on the overlap: If MM ≥ 7 and OA < 40000
and Dev45 = 0, then the factor is magnified by 75% and for MM ≥ 7 and OA
≥ 40000 and Dev45 = 0, the increase is 20%.

Inspecting the false accepts, it can be observed that a number of wrongly
matched fingers contain minutiae located close to the core among the matched
minutiae. Therefore, we downgrade this configuration: If OA ≥ 40000 and there
a one or more core minutiae among the matched ones, the factor is decreased
by 30%.

In relation to our considerations of boosting small overlaps, we also promote
scenarios in which there are more matched than unmatched minutiae (UM).
Typically, this is good indicator for a genuine recognition attempt with a small
overlap. Here, these are boosted by 20%, if MM ≥ UM and MM ≥ 3. On the
other hand, a high count of UM is characteristic for an impostor recognition
attempt with a huge overlap. This configuration is treated with an additional
penalty: for UM ≥ 60, the factor is reduced by 15% (see Figure 8.4).

Rule 4: rotation Although generally large rotations should be allowed, it can
be observed that a big rotation angle is typical for many impostor recognition
attempts (see e.g. Figure 8.3). Therefore, angles ≥ 60 ◦ are punished by a
reduction of 20%.

Rule 5: ridge frequency If the inter-ridge distance deviates by more than
1, the scaling factor is lessened by 10%.
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Figure 8.4: VFM finds 11 matching minutiae in this impostor recognition at-
tempt (fingers 35 and 61) leading to an initial score of 34 and a false accept. At
first sight comparing the two images on the left, it might not be clear whether
both impressions belong to the same finger, since both prints have the same
pattern (left loop), but score revaluation detects a number of misfits: there are
39 OF deviations > 45 ◦ (rule 1), a huge overlap combined with OF deviations
(rule 2), 61 unmatched minutiae (rule 3), three of the matched minutiae are
located in the core area (rule 3) and the mean inter-ridge difference is 1.1 (rule
5). After score revaluation, the new score is 7.

Figure 8.5: Before score revaluation, this impostor recognition attempt (fingers
16 and 77) with 5 matched minutiae is assigned a score of 43 by VFM. Because
of 13 OF deviations > 45 ◦, the score is halved (rule 1). Two of the matched
minutiae are located close to core (magenta in the third image from the left),
therefore the score is reduced another 30% (rule 3). Finally, an average inter-
ridge distances of 1.3 induces an additional reduction of 10% (rule 5). The
resulting score is 14, clearly below the threshold of 26.
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Results and Discussion Applying aforementioned rules to the scores of the
cross match combinations of the original images and enhancement version 1
leads to a perfect, error free separation into genuine users and impostors for
FVC 2002 database 2. This demonstrates that the information content of at
least these 800 fingerprint images of 100 fingers is sufficient for a successful
separation. Nevertheless, this case study can only be regarded as a first step
towards designing an AFIS that addresses the pattern recognition challenge and
reliably extracts the information required for separating of genuine users and
impostors on much larger databases.

Reflecting on the achieved results, it is important to be aware of the risk of
overfitting. Are the applied rules generally a good choice or are they too well
adapted to the specifics of FVC 2002 database 2? The question of generalizing
the score revaluation criteria is covered in the next section.

8.8.3 Generalization of Revaluation Criteria

As a first step towards generalization, fixed thresholds from the previous section,
e.g. pertaining to the overlapping area, are replaced by percentages, e.g. of the
average overlapping area (AOA) of all recognition attempts for each database.
E.g. AOA of FVC 2002 database 2 is 72174 pixels, AOA of FVC 2000 database
4 is 28052, and so on. Applying the aforementioned five rules to other FVC
databases leads using the same thresholds leads to considerable EER reduc-
tions on all FVC databases with the exception of FVC 2004 databases 1 and 3.
Subsequently, these five rules are simplified and disentangled, before different
combinations of parameters and their impact are tested. Each of the following
nine rules is based on one feature or the relation of two features:

Rule 1: Orientation deviations DEV45 > 0 are devaluated.
Parameters: DEV45 threshold and reduction in percent.

Rule 2: Mean orientation deviation is devaluated.
Parameters: threshold for mean orientation deviation and reduction in percent.

Rule 3: Small overlaps are boosted.
Parameters: overlap threshold in percent of AOA and increase in percent.

Rule 4: Many matched minutiae are boosted.
Parameters: matched minutiae threshold and increase in percent.

Rule 5: Scenario of more matched than unmatched minutiae is boosted.
Parameters: increase in percent.

Rule 6: Core minutiae among the matched minutiae are devaluated.
Parameters: core minutiae threshold and reduction in percent.

Rule 7: Many unmatched minutiae are devaluated.
Parameters: unmatched minutiae threshold and reduction in percent.
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Rule 8: Huge rotation angles are devaluated.
Parameters: angle threshold and reduction in percent.

Rule 9: Huge mean inter-ridge distance deviations are devaluated.
Parameters: mean inter-ridge distance threshold and reduction in percent.

Due to computational and time constraints, only a small number of parame-
ter choices (3-8 per rule) has been tested so far. Results are listed in Table
8.7. It would be of interest to test additional rules, e.g. boosting combinations
of huge overlap and a fitting OF. Moreover, further parameter combinations
should evaluated more systematically, and new features can be added, e.g. in
some areas of two fingerprints in a genuine recognition attempt agree not only
in respect to the orientation and ridge frequency, but also on the absence of
minutiae which can be used as a feature for boosting fitting, minutiae-free over-
laps.

8.8.4 Discussion

In Section 8.8.2, we began our investigation with a case study of FVC 2002
database 2 and we determined criteria which optimized the performance on
that database. Having generalized this approach, we are now searching for cri-
teria that minimize the verification errors on all FVC databases.

Score revaluation accounts for the operational quality by boosting small over-
laps, but image quality is not yet account for. Preferably, local and global image
quality estimations will be integrated in the near future. Two additional aspects
which can impact the verification and identification performance, but are not
yet considered are nonlinear distortion [128, 129] and fingerprint alteration [34].
Especially nonlinear distortion may cause orientation deviations in otherwise
fitting alignments of two OFs. The further development of score revaluation
should make allowances for distortions in an adequate way.
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FVC 2000 Database 1 Database 2 Database 3 Database 4

Original images 4.5 % 1.05 % 8.04 % 3.77 %

Enhancement E1 1.65 % 0.74 % 4.61 % 2.6 %

Cross matching of
O and E1

1.08 % 0.66 % 3.69 % 1.63 %

Score revaluation of
cross matching 0.48 % 0.36 % 2.58 % 0.75 %
O and E1
EER change comp.
original images and -89.3 % -65.7 % -67.9 % - 80.1 %
score revaluation

FVC 2002 Database 1 Database 2 Database 3 Database 4

Original images 0.76 % 1.08 % 2.9 % 2.09 %

Enhancement E1 0.95 % 0.46 % 2.31 % 1.23 %

Cross matching of
O and E1

0.72 % 0.25 % 1.23 % 0.79 %

Score revaluation of
cross matching 0.32 % 0.06 % 0.68 % 0.33 %
O and E1
EER change comp.
original images and - 57.9 % -94.4 % -76.6 % - 84.2 %
score revaluation

FVC 2004 Database 1 Database 2 Database 3 Database 4

Original images 8.29 % 7.1 % 7.35 % 2.38 %

Enhancement E1 6.87 % 4.18 % 4.37 % 2.29 %

Cross matching of
O and E1

5.32 % 3.84 % 3.37 % 1.33 %

Score revaluation of
cross matching 4.22 % 2.82 % 2.11 % 1.01 %
O and E1
EER change comp.
original images and -49.1 % -60.3 % -71.3 % -57.6 %
score revaluation

Table 8.7: Overview of achieved EER reductions after enhancement, cross
matching and score revaluation applying VFM. For score revaluation, the EER
corresponding to the best parameter choice of the tested combinations is stated
(see Section 8.8.3).
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8.9 Conclusion and Future Work

The second part of the thesis started in Chapter 4 with a survey of existing
methods for orientation field estimation and the introduction of the line sen-
sor method. Retrospectively, the importance of the orientation field estimation
becomes even more apparent. Estimated in the primary processing step, the
OF has a huge impact on all subsequent steps and the overall performance. In
our sample application, the quality of the OF estimation influences the ridge
frequency via the curved regions and in doing so, it influences directly and indi-
rectly the image enhancement by the curved Gabor filter. Minutiae extraction
and matching were performed by an external module, otherwise the OF could
be used e.g. for alignment [149] during a latter step. In the post-matching stage,
the OF is the key factor for the score revaluation as introduced in the previous
section. The vast majority of impostors is characterized by a deviating OF after
alignment and consequently, the score which is nothing but a similarity measure
is accordingly devaluated. The line sensor method is an advancement in compar-
ison to existing state of the art methods. If the verification performance on the
FVC databases is used as an performance measure, then a major improvement
pertaining to the quality of the OF estimation was achieved by combining the
line sensor and the gradients based method in the frame of multi-level judgment
aggregation. Here, improvement means that the number of erroneous estimates
is significantly reduced. Nevertheless, visual inspection of the remaining false
accepts and false rejects after score revaluation shows incorrect OF estimations
in cases where the true ridge flow is clearly recognizable for a human expert.
Bearing the importance of the OF estimation in mind, a better overall perfor-
mance is to be expected by further improvements of the OF estimation.

The beauty of the presented architecture is that possibilities for improvement
exist on all levels:

• Local quality estimation A locally adaptive estimation of quality is a
very important aspect which is not considered in this thesis. Preferably,
the estimation should not only quantify the local quality, but also classify
the type of noise in case of low quality. The result of this step can have a
huge positive impact on other steps. During the image enhancement, the
local quality can steer the curved Gabor filter or alternative methods. At
the minutiae extraction and matching stages, the quality estimation can
help to avoid the extraction of false minutiae or to extenuate the influence
of unreliable minutiae on the matching score. Correspondingly, weights
of minutiae (and perhaps also OF and RF estimations) from low quality
regions can be reduced at score revaluation.

• Orientation field estimation As sketched in Section 8.1, it is desirable
to incorporate further OF estimation methods like e.g. based on quadratic
Bezier curves, Gabor filter banks, 2D sine waves, normal vectors or global
models. This could not only improve the OF estimation, but also, de-
pending on the properties of the specific method, local quality could be
inferred from responses of the methods.

• Ridge frequency estimation The ridge frequency estimation based on
curved regions is a major advancement in comparison to methods like the
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x-signature. The exact amount of improvement should measured and it
is great interest to systematically evaluate the performance of all existing
methods which, to my knowledge, has not been done yet. Based on these
results, possibilities for judgment aggregation on the ridge frequency can
be considered.

• Image enhancement The performance of the curved Gabor can be fur-
ther improved if its smoothing behavior is steered by local quality infor-
mation and a local minutia probability, e.g. derived from the raw RF
image. Additionally, the combination of different methods on the image
enhancement level should be evaluated. E.g. Images enhanced by the
curved Gabor filter, anisotropic diffusion and pyramid-based techniques
may be cross matched.

• Minutiae extraction In this thesis, minutiae extraction was performed
by an external software module acting as a black box. In order to enable
communication between all levels, this black box should be replaced by
a transparent implementation which can make good use of the already
existing information like e.g. OF estimation, RF estimation and local
quality.

• Alignment The available information is also useful for (pre-)aligning two
images of a recognition attempt. Either by directly applying the OF [149],
or by computing a symmetry axis [62] or reference points [75, 89]. Of
course, if more information currently used for score revaluation can be di-
rectly applied at the minutiae extraction, alignment and matching stages,
then this integration could replace the score revaluation.

• Minutiae matching One of the biggest limitations encountered during
score revaluation is the output of the matcher. The software used in this
thesis prints only the best result: a score and the corresponding list of
matched minutiae. Preferably, a list of all scores and the appertaining
minutiae pairs should be announced, because for genuine recognition at-
tempts, the alignment belonging to the highest score may be recognized as
wrong by the score revaluation in some cases due to e.g. small overlap or
image quality and the corresponding devaluation may cause an avoidable
false reject. In this scenario, one of the alternatives on the list could have
the fitting alignment and consequently be boosted by score revaluation.
Currently this information is lost, because the software outputs only the
details for the matching variant endowed with the highest score which
causes avoidable false rejects. Cross matching as described in Section
8.7 attempts to mitigate the negative effects of this limitation. Simul-
taneously, cross matching tries to make up for the lack of local quality
estimation by integrating images which are smoothed using different pa-
rameters and it allows to incorporate completely different image enhance-
ment methods. On the other hand, minutiae fusion could be an alternative
to cross matching, if only the matching software would output secondary
matches. Then, wrongly matched minutiae could be detected and sorted
out by score revaluation. A possible workaround for using minutiae fusion
in the current situation of a limited matcher output would be the follow-
ing procedure: minutiae templates A and B are matched, the score and
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the corresponding list of matched minutiae are stored. Next, one of the
matched minutiae is deleted from template A, and the modified template
is matched with template B. Again, the score and the list of matched
minutiae are stored. The deletion step is iterated as long as the score is
above a threshold. Afterwards, the course of action is repeated using the
original template A and minutiae are deleted from template B. Finally,
the list of scores, matched minutiae and the corresponding alignments is
processed by score revaluation. The maximum score after revaluation is
assigned to the recognition attempt. In the long run, score revaluation
should integrated into the matching algorithm which will be a subject of
future work.

• Global quality estimation As demonstrated in Section 8.5, the verifi-
cation performance can be improved by considering the global quality of
an image. In the context of matching and score revaluation, the ’global’
should not refer to the complete image, but rather to whole overlapping
area. The global measure may be derived from the previously computed
local quality estimations for the corresponding region.

• Post-matching score revaluation Incorporating operational quality by
boosting small overlaps and sorting out false accepts by measuring the de-
gree of orientation field fitting are two key factors for the success of score
revaluation. Further refinement on this level is possible by a thorough
inspection of the remaining verification errors. Potentially, there are cur-
rently unused features within the gathered information. On the other
hand, this analysis can also yield valuable hints for weaknesses and their
emendations on other levels.

• Score, rank and decision level In this thesis, we turned our attention
to minutiae-based matching. Of course, alternative approaches should be
considered and integrated under the roof of multi-level judgment aggrega-
tion. E.g. on the score level, minutiae-based matching can be combined
with correlation-based algorithms, ridge-based matching, Gabor-feature-
based matching and other methods. All techniques which perform an
alignment can benefit from a score revaluation before fusion. The ori-
entation field, the derived overlap and the ridge frequency image can be
utilized for all algorithms as well as quality estimation in future versions.
Additional features depend on the specific approach.

In view of all these possibilities for improvements, it will be a delight to face two
research challenges in fingerprint recognition: first, to reliably extract informa-
tion from low quality images and to achieve very low error rates on databases
like FVC 2004 [101] and NIST SD27 [43]; and second, to achieve perfect results
on large databases of good quality images, and in doing so, to push the bound-
ary of our practical knowledge of individuality further and further.

For the next generation of fingerprint recognition systems, security and tem-
plate protection will be of increasing significance [72]. If fingerprints are to
be employed as biometrics keys, the key length is related to the information
content [121]. Naturally, the more pieces of discriminative information can be
extracted and used, the less vulnerable the system will be to attacks [111]. In
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that sense, the architecture and methods discussed in this theses also pave the
way for cryptographic applications of fingerprints.

Score revaluation achieved massive EER reductions in comparison to conven-
tional template matching (see Section 8.7) by incorporating additional infor-
mation, especially the orientation field, but also the ridge frequency image and
derived features like the overlapping area of the two aligned OFs, the num-
ber of unmatched minutiae within the overlap etc. Therefore, I propose to add
this information to templates of next generation fingerprint recognition systems.
Keeping in mind the goal of minimizing template size, it would be preferable
to compress the OF as much as possible. Global models may be applied for
this purpose, e.g. the global model based on quadratic differentials [64] re-
quires five geometrically interpretable parameters plus all singular points for
computing the OF and the minutiae locations and their directions may used
for fine-tuning. The application of characteristic ridges [95], e.g. modeled by
quadratic Bezier Splines, could provide an alternative to this end, and the OF
may be reconstructed iteratively from a curve stored in the template, analo-
gously to the ’broadcasting’ in Section 4.4.2, and by considering the divergence
at minutiae locations. A third possibility is to store orientation and RF infor-
mation for additional points, especially covering the area around singular points
and the border of the region of interest, so that the OF and RF image can be
reconstructed by a simple interpolation using the minutiae and the additional
points, e.g. by a Delaunay triangulation. The design of templates endowed with
additional information which are efficient with respect to computational efforts
and storage size is a topic for future research.
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