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Abstract

New sequencing techniques have increased enormously the speed that new genomic
sequences are produced. As manual inspection is impossible for this amount of
data, there is an ongoing need for computational tools that can annotate this data
efficiently and accurately. Essential parts of the annotation process of genomes are
the prediction of protein-coding genes, and the classification of the obtained protein
sequences according to their function. Currently, computational predictions are

not accurate enough to be considered overall reliable.

At the same time that new data is produced that needs to be analysed, the
amount of available data that can be used to guide the prediction is growing as well.
In particular, databases containing annotated proteins and functional descriptions
of protein families, are widespread and easily accessible, and can provide additional

input to gene prediction programs.

In the focus of this thesis is the introduction of a new method that uses protein
profiles that can be generated from a set of related proteins to improve the accuracy

of present gene prediction methods. It was implemented as an extension to the gene
prediction program AUGUSTUS, called the “Protein Profile Extension” (PPX).

Since a correct classification of protein sequences relies on accurate gene pre-
dictions especially of regions typical for a class or family, this method can be
viewed a combination of gene prediction and protein classification that is designed

to improve classification rates.

Both gene prediction and protein classification commonly evaluate sequences
based on probabilistic models, identifying sequences that have a high probability

under the model. All these models have in common the Markov property, stating



that the direct neighbourhood determines the sequence composition at specific
location, without long-distance dependencies. The thesis describes the specific
models used in the presented methods.

In the context of this work, other problems arose involving probabilistic mod-
elling and protein-based gene prediction, that became projects on their own. In
this these, two of these are presented: SIGI-HMM, a method for classifying mi-
crobial genes examining the phenomenon of horizontally gene transfer, and Scipio,
a tool for reproducing exact gene structures from given protein sequences. The

main publications about the project are attached in an appendix to the thesis.
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Chapter 1
Introduction

In every cell of a living organism, its main design information is stored digitally in
the form of Deoxyribonucleic acid (DNA). The data structure described by a DNA
molecule is a string, a sequence over the four-letter alphabet N' = {A, C, G, T},
each letter denoting a single unit called nucleotide or basepair referring to their
biochemical meaning.

The full set of DNA sequences present in an organism is called its genome.
In the human genome, 24 sequence can be distinguished that have an average
length of approximately 140 Mbps (million base pairs).

The discovery of the sequential structure of the DNA in the 1950’s has had a
revolutionary impact on genetical research, and efforts were started to read the
genomic sequences (DNA sequencing), making them available in databases. In
2001, the Human Genome Project released the first draft of the human genome
[Con01]. Since then, the genomes of hundreds, soon thousands, of species have
been sequenced, as new sequencing techniques have led to an exponential growth
of the available amount of genomic data [LCM™10].

The DNA sequence provides a blueprint for the actual building blocks of the

organism, the proteins. Proteins are vital for virtually every process in a cell, and

!The human genome consists of 23 pairs of chromosomes (numbered 1 to 22, and X) each
contributing two almost identical copies of a sequence; in the male genome, one single chromosome
(Y) is present replacing one of the two copies of the X-chromosome. Not counted here is the

very short (16 Kbps) DNA sequence present in the mitochondrion of the cell.



also constitute their structure. From a data-processing point of view, proteins are
the same sequential objects as DNA, with the nucleotide alphabet replaced by the
amino acid alphabet A, consisting of 20 letters. In general, the physical structure
of a protein, and hence its function, is determined by the amino acid composition

of the sequence.

The biological process of protein synthesis is represented by translating a nu-
cleotide sequence into a protein sequence. The mapping used for translation is
clearly defined, and is the same for all organisms, with very few exceptions. This
quasi-universal genetic code assigns to a nucleotide triplet (also called codon)
c € N3 one letter a = tr(c) € A from the amino acid alphabet. From the 64
possible codons, 61 are translated into amino acids, while the three stop codons
(TAG, TGA and TAA) are not translated, causing the protein production process to
terminate. As there are only 21 possible values, the mapping tr cannot be an
injective function: the code is degenerate, with up to six different codons mapped
to the same amino acid. These synonymous codons mostly differ from each other
only on the third nucleotide, making the protein synthesis more robust to single

mutations.

The full process of automated genome annotation is as follows. The DNA is
read in short fragments that are assembled in several steps to longer sequences,
and ultimately to full-length chromosomes. The second step, the gene prediction,
is the determination of the coding segments of the genomic sequences, and their
translation to protein sequences. Finally, the outcoming proteins are classified into
groups according to their biological function. The methods presented in this thesis

focus on the two latter tasks: gene prediction and protein classification.

While the translation of a coding nucleotide sequence to a protein sequence
is computationally trivial, the determination of the coding parts of a given DNA
sequence is a complex task. Here, a region containing the segments coding for one

protein is called a gene.

Nucleotide sequences are found in living cells in two forms: DNA and RNA.
A DNA molecule consists of two strands where each nucleotide in one strand is

complemented by its counterpart in the other strand, with {A, T} and {G, C} form-

9



CHAPTER 1. INTRODUCTION

ing pairs of mutually complementary bases. Both strands are sequential objects
containing the same information, with a defined order that is reversed in opposite
strands. As a result, a DNA sequence cannot be distinguished from its reverse

complement. RNA sequences are single-stranded nucleotide sequences.

The protein biosynthesis is made complex by two processes that precede the
translation. First, a region from one of the DNA strands is transcribed, i.e. copied
into single-stranded RNA. Second, in a process called splicing, large segments
called introns are cut out from the RNA, and the remaining ones, called exons,
are concatenated. The actual coding sequence is now a contiguous subsequence of
the RNA, a series of codons that will be translated, followed by a stop codon. A
nucleotide triplet is considered a codon only if it is in-frame, i.e. its distance from
the translation start is a multiple of three. Introns may also occur inside a codon.
The reading frame of an intron is the position (0, 1, or 2) relative to the codon

start that the intron is inserted.

The procedure varies between the two domains of living organisms, prokaryotes
(single-cell organisms without cell membranes such as bacteria) and eukaryotes (or-
ganisms with more complex cell structures, including all multicellular organisms):
in prokaryotes, splicing does not occur at all (with very few exceptions), but one
RNA can contain several genes (coding for multiple proteins, often with related

function).

A gene structure is a labelling of DNA segments according to their destination
in the protein coding process. More labels can be defined, for example for exons
and exon parts that are transcribed to RNA but not coding for proteins, or for
other functional elements contained in DNA sequences. However, this thesis deals
with the problem of finding location of the coding exons; the segments forming the

untranslated regions (UTRs) are identified with intergenic regions.

Because of the huge amount of raw sequence data, computational methods have

to be designed that find the gene structure of a genomic sequence automatically.

’In RNA sequences, the letter T is sometimes replaced by U to reflect a different chemical
consistence but it would be misleading from the data processing point of view to distinguish
them.

10



The task of predicting the genes remains a challenge, as exact gene structures
can in the fewest cases be determined with certainty. The accuracy of prediction
programs varies according to the amount and type of data available as input. If
the target DNA sequence is the only input (ab-initio gene prediction), the problem
is especially difficult, since the prediction relies merely on a probabilistic model.
Such an approach exploits different nucleotide composition in coding and non-
coding sequences, and the presence of signals that precede the start of a gene, or

are located at exon-intron boundaries.

If other sequences are compared to the target sequence, they can provide addi-
tional information about the gene structure. For example, in cases that the protein
sequence of the same or very closely related gene is known, the gene structure may
in fact be reconstructed almost with certainty, by determining DNA segments
that match the query protein. The program Scipio that will be described here
was designed for this task. Methods that incorporate different kinds of extrinsic
information become increasingly important as the amount of available information

grows.

Finding the coordinates of protein-coding exons is often necessary to determine
the protein sequence that can be used in further analysis of the gene function. This
is achieved by comparing the protein sequence to repositories of related sequences
with known function, following the assumption that sequence similarity implies
similar function. An accurate gene prediction, especially for the regions conserved

among members of the same protein family, is crucial for the classification.

This issue is addressed by a new method that will be introduced as a major
part of this thesis. This method combines ab-initio prediction with the mapping
of protein family profiles to the target sequence that are given as additional input
to the program. This mapping was implemented as an integral part of the exist-
ing gene prediction program AUGUSTUS, by extending the internal probabilistic

models.

The thesis is organized in three parts: First, the probabilistic models are in-
troduced that form the basis of the prediction methods used. Second, the general

methods are described that are used in gene prediction and protein classification.

11



CHAPTER 1. INTRODUCTION

Finally, the Protein Profile Extension is presented and described in detail. Each of

the chapters is accompanied by a published work that is attached in the appendix
to the thesis.

12



Chapter 2

Local probabilistic models used in

genome analysis

If no sufficient extrinsic information is available by mapping of other sequences, a
sequence has to be evaluated by intrinsic methods: applying models for nucleotide
or amino acid composition. In a probabilistic approach, the target sequence itself
is considered the result of a random process, and the prediction is a decision made
by a statistical test, and experimentally confirmed training data sets are used to
estimate parameters for the model.

In this chapter, I will introduce local probabilistic models that are widely used
in biological sequence analysis, and then describe a specific model that I developped
for the software COLOMBO classifying prokaryotic genes.

The models presented here are local in the sense that distributions have no
dependencies over long distances; this is expressed by the Markov property for
sequential data: given that values on neighbouring locations are known, the nu-

cleotide distribution of a specific location is independent from the rest.

2.1 Markov Chains

Definition: A Markov chain (of order 1) is given by the following data:

e a finite state set Q)

13



CHAPTER 2. LOCAL PROBABILISTIC MODELS

e a set of transition functions (i € N)

Tr;: Q@ x Q — [0,1]
(dq) = Tr(q | )

such that > Tri(¢|¢)=1forall ¢ € Q@ and i > 1
9€q

e an initial transition Tri: @ — [0, 1], with > Trinie(q) = 1.
qeQ
If transition functions are specified only for ¢ = 1,...,n — 1 together with the
initial transitions, they constitute a finite Markov chain of length n. For each
n € N, a Markov chain of length n (or more) defines a probability distribution on

state sequences n = (q1,...,q,) € Q" by

P(n) = Trinie(q1) - Tri(g2 | @) - - - - Trn—1(gn | @n—1)

More generally, if Tr;: Q* x Q@ — R is a function of k 4 1 variables for each
1 > k, and Try,;; depends on k variables, they define a k-th order Markov chain
with the probability distribution

P(W) :Trinit(QIu S 7qk) ’ Trl(Qk—i—l | qi, - - - qu) T
e Trn7k<qn ‘ Qn—k;s - - - 7Qn71)

In a Markov chain, the frequency that state ¢ appears at position ¢, given
the value at the preceding position (or the k preceding positions), is independent
from the values at any other position. A Markov chain is called homogenous, if
the transition functions Tr; are the same for every position ¢, and m-periodical if
Tr; = Tr; for i = j (mod m).

Let Q* = U,y @" denote the set of state sequences of arbitrary length. If a
Markov chain is given with state space € U {¢term} such that gem is a terminal

state (which once entered cannot be left):

Tri(qterm | qterm) =1

14



2.1. MARKOV CHAINS

then a probability distribution summing to 1 over all n € Q*, is defined b

P(?]) = Trinit(Ql) . TI'1 (CI2‘C]1) et Trn—l(Qn‘Qn—l) Trn(Qterlen)~ (21)

Markov chains can be used directly to model nucleotide sequences of a fixed
type, by using the nucleotide alphabet as the state set: @ = N; or to model
the succession of sequence types, by using the states for labelling, e.g. @ =

{exon, intron, intergenic}.

Feature Representation of Markov chains

A Markov chain is characterized by the fact that the frequency that a random
value is observed at some position in a sequence depends only on the values at
neighbouring positions. More generally, any undirected graph G' with n nodes can
be used to describe dependencies: each node is assigned a random value from a
state set (), such that the values on any node v depend only on the values at
nodes adjacent to v. Such a distribution on Q" is called a Markov random field.
A Markov field over a linear graph (with nodes 1,...,n and edges {i,i+ 1}) is the
same as a (finite) Markov chain.

Instead of transition probabilites, the distribution function of a random field
in expressed as a product of feature functions, where each feature takes a non-
negative value that depends only on the values on one cligue (complete subgraph)
of G. Any such set of feature functions defines (after normalizing by a constant) a
probability distribution on ™ that turns it into a random field based on G. In the
case of a finite Markov chain, where cliques correspond to pairs of neighbouring
positions, this can be seen as follows.

Consider f: Q" — Rx( of the form

n—1
f(q17"'7qn) = Hfl(q“%—H) (22)
=1

!Provided that infinite sequences have zero probability; this can be ensured by the additional

condition that all terminal transition probabilities have a lower bound & > 0: Tr;(Germ|q) > €.

15



CHAPTER 2. LOCAL PROBABILISTIC MODELS

choosing the normalization factor ¢ =", f(q1,...,qn) makes P = f/c a proba-
bility distribution. Using the abbreviated notation

f[j..k}<Qj7 e an) = fj(Qjan—H) Tt fk—1<Qk—17Qk)
and
FCos )= fl.q...),
q€Q
we set 1
Trinit(q) - E f(Qa Kooy *)
Tr-(q | q’) = f[i-ﬂ](q/vq’*v"'?*) (2.3)
' f[zn](q/7*77*>
Then Y Tri(q | ¢') =1, and for all (qi,...,q1) € Q7
q€eqQ
f<q17"‘)QiJQi+17*7"'7*)
Tr;(qi i) = )
<q+1IQ) f<QI7"‘7Qi7*7*7"'7*)
hence
n—1
P<q17 cee 7Qn) = Trinit(Ql) ' H Tri(QiJrl ‘ qz) (24)
i=1

The expression (2.3]) is not defined if f;(¢,*) = 0; in this case, Tr;(-|¢") can be
defined safely by 1/|Q| (or any arbitrary function summing to 1) without violating
4.

The following lemma states which sets of feature functions are equivalent, and
gives a characterization of the partial product fu i(qi,...,¢). ¢ € Q is called

observable at position i if there are ¢, ..., ¢;—1, ¢iy1, - - - , Gn Such that P(qq, ..., qi—1,

Q7qi+17"'7qn) > 0.

Lemma: Two sets of feature functions (fi,...,f,—1) and
(f Lyoves fn_l) describe the same distribution if and only if there are positive func-
tions

ro,..., Tt Q@ — Ry

with r,, constant, such that

f[1..i} (Ch, e 7%) = f[l..i](fh, . 7Qi) : Ti(qz‘), (2-5>

16



2.1. MARKOV CHAINS

if ¢; is observable at i. Moreover, if ¢’ and ¢ € @) are observable at positions 7 and
1+ 1:

fl(qI7Q) =73(q) - fl(q/, q)

F oo _Ti+1(Q). (o
fild,q) = (@) fild',q)

(2.6)

Proof: Clearly, if f is given by equation (Z6)), then () is true also; if one of
q1,- - -, Gi—1 is not observable then both sides equal 0.

Conversely, let f and f be equivalent feature sets such that

fla, - an) :%f(Qh--an)

for all (q1,...,q,) € Q". For any fixed ¢ observable at i,

Joalas - a60,6) ¢ fiw) (@ v - Gn)

f[1..i}(fh, < Gi-1, q;") ¢ f[z’..n](Q% qi+1 - - - aQn)

is defined for suitable g, ..., ¢,, and independent of the choice of the g; (since the
left side depends on ¢, ..., g1 only, and the right side on ¢;41,...,¢,). Hence

f[u] (Q17 ey i1, CI)
f[lz} (QI7 <oy i1, Q)

is well-defined, so (23] is established, and the first line of (2.6]) as a special case.
Now let ¢’ be observable at i—1, so that (g1, ..., ¢;_2) exist with f[1..p1](Q1, ey Gim2,q') >
0. Then for ¢ > 1

ri(q) =

f (q/ q) . ];[1..1‘](%, <y Qi—2, q/’ Q) - TZ(Q) : f[ll](qlv sy Qi-2, q/v Q)
1—1 ) - = -
f[1..ze1} (QO, sy G2, q’) Ti—l(q/) ) f[l..i—l} (Ch, -y @2, q’)

. ri(Q) r ’
_Ti—l(q/) fz—l(an)

Semi-Markov Chains

In gene prediction, the task is to find a segmentation of the sequence, together with

a labelling of the segments, depending on the state. The labels correspond to the

2If ¢’ or q has zero probability to occur at all, then f;(¢’,q) > 0 could be replaced by any

function.

17



CHAPTER 2. LOCAL PROBABILISTIC MODELS

sequence type. A sequence of states, equipped with coordinates 0 =ty < ... < t,

is called a parse:

¢:(21,...,2n>; (%, z) QXN

Semi-Markov chains define probability distributions on parses, as follows:

Definition: Let n € N, and N = {1,...,n}. A finite semi-Markov chain is
a homogeneous Markov chain with state set (Q X N) U {Germ }, and probability
distribution as in equation (2.1I) such that

Tr ((q,t
Tr (qterm’ q t

T (Qterm | qterm 1

The second equation ensures that only complete parses (reaching the end of the
interval V) will get a positive probability. In an infinite semi-Markov chain, N is
given by N, and the terminal state is dropped

In many applications of semi-Markov chains the ¢; represent points in time, to
model the duration of a transition or a phase; however, in this thesis they refer to
sequence coordinates.

Although themselves defined as Markov chains, semi-markov chains are usually
viewed as a generalization of (inhomogeneous) Markov chains, over the state set

Q: Let the maximal length of a state ¢ be given by
Imax(q) = max{t —t' | Tr(q,t | ¢',t") > 0}. (2.7)

Then a Markov chain of length n is the same as a semi-Markov chain where each

state ¢ has maximal length [,,.x(q) = 1, by setting

TrY(q | ¢) = T ((q.i +1) | (¢,9))

3However, the distribution of infinite semi-Markov chains is on infinite parses, and the event

represented by a finite parse is the union of all infinite parses having it as a prefix. In particular,
events represented by parses of varying length are not necessarily disjoint and do not add up in

general.

18



2.1. MARKOV CHAINS

The semi-Markov chain is said to be time-homogeneous if

Tr (gt +1) | (¢, +1) = Tr ((¢.) | (1))

i.e. if the choice of the state and the length of a phase is independent of the current
point of time (or here, sequence coordinate). A Markov chain is homogeneous
exactly if it is time-homogeneous when viewed as a semi-Markov chain. A feature
representation for finite semi-Markov chains, analogously to (2.2]), can be derived
as follows:

Lemma: Let N = {1,...,n} for some n € N, and f: (Q x N) x (@ x N) - R
satisfy

f((d,t), (q,t)) =0 forall t < ¢

Let F be defined on parses ¢ = (21,...,2m) € (Q X N)* by

m—1
fo 21 H f ZZ,ZH_l (28)
=1

and let §((g,t)) = 0 for ¢ < n and 6((¢,n)) = 1. Then there is a semi-Markov
chain with probability distribution proportional to F(¢) - §(z,,) (i.e., proportonal

to F' for complete parses, and equal to 0 for incomplete parses).

Proof: Define

+Z Z flzo2) flz,22) - f(2met, 2m) 0(2m). (2.9)

Then, for 2’ = (¢/,t') with ¢’ < n:

S FF2)8()

ZEQXN
S ORCCELCES i) SFCEVER IRNF L)
2EQXN m=1 z1,...,
n+1

19



CHAPTER 2. LOCAL PROBABILISTIC MODELS

since the case m > n contributes 0 (the length of a parse cannot exceed n), and
d(z') =0. By setting c = > fo(z) 5(2) and

ZEQXN
f(#,2) B(2)
—— v (B(z') >0)
Trimt<z>=%fo<z>ﬁ<z>, Tr(z] ) :=¢  B)
1/1Ql, (B(') = 0)

Trinie and Tr(- | 2’) are well-defined and sum to 1, except in the case 2’ = (¢/,n)
where Tr(- | 2’) = 0. (In case 5(2') = 0, Tr(- | 2’) may be defined in an arbitrary
way). Together:

1
Trinit(21) - Tr(ze | 21) oo - Tr(zm | 2me1) = = F(z1,...,2m) B(zm) (2.10)
The proof is completed by setting

Tr(Qterm | <Q7 TL)) - Tr(qmrm | Qterm) =1

since B(zm) =1 = 8(zp) if 2, = n, and Tr(Gterm | 2m) = 0 = 0(2m) if 2, < n.

2.2 Hidden Markov Models

Hidden Markov Models are among the most widely used probabilistic models for
the local analysis of sequential data, including but not restricted to biological data
[DEKM99).

Definition: A Hidden Markov Model (HMM) consists of:
e a Markov chain M = (Q, (Tr;)ien, Trinit)
e an alphabet &, the emission alphabet
e emission functions

Em;: Q xE—R (i >0),
(¢,¢) = Emy(c| q)

satisfying > Em;(c|¢) =1for all ¢ € Q
cel

20



2.2. HIDDEN MARKOV MODELS

An HMM defines a distribution on £" dependent on a given state sequence 1 =

(05 ---+Gn-1) by
P(o|n)=Em(oo|qo)-...- Em(o,_1 ]| ¢u1). (2.11)

o is called the emission. In a typical application, the emitted sequence is known
but the underlying state sequence is not (“hidden”). The task is usually to de-
termine state sequences with a high conditional probability P(n | o), given the
observed sequence (a-posteriori probability); this reversion of dependencies makes
it a Bayesian approach (cf. Bayes’ formula P(A | B) = %P(B | A)). In general,
a Bayesian test uses a pre-defined a-priori distribution on hypotheses (here: the
Markov chain on state sequences) to choose the most likely ones given the obser-
vation. As the observation is constant, this is equivalent to maximizing the joint
probability
P(o,n) = Pu(n) - P(o | n) (2.12)
Unless otherwise specified, Hidden Markov Models are state-homogenous, i.e.
the underlying Markov chain is homogenous; if Em; is the same function for all 4,
the HMM is said to have homogenous emissions.
Hidden Markov Models can be generalized in several ways. For the purposes

of gene prediction it is convenient to allow the following:

e cach state can emit a full sequence segment w € £* rather than a single

character
e the emission probability Em may depend on the state preceding the last state

e Em may depend on the previously emitted sequencg

Definition: A Generalized Hidden Markov Model (GHMM) is given by the same
data as an HMM, with an emission function generalized to the form

Em: (Q @) {Qinit}> X Q X E X E — [0, 1]

!/

( q, g, W, w) = Emw]d,q )

4Although the GHMMs presented here do have homogenous emission probabilities, they are
a true generalization of ordinary HMMs with inhomogenous emissions since in those, ¢ is the

length of the previously emitted sequence.

21



CHAPTER 2. LOCAL PROBABILISTIC MODELS

The additional state ¢, is a dummy state to be able to model the first emission
probability where there is no predecessor; in this case, the previously emitted
sequence is the empty string e.

Joint probabilities in a GHMM refer to a segmented sequence. Let ¢ = |o| be
the length of o, and oy .,y denote the substring o; -+ - 0,,—1. Let J be a sequence of
indices

J:(to,...,tn), O:t0<t1,<...<tn:€
segmenting o into substrings:
0 = Wy Wp, Wy = O-[tifl..ti%

such that (o, .J) can be identified with (wy,...,w,—1). The GHMM defines a dis-

tribution on segmented sequences, subject to the state sequence 7:

P(U, J ’ 77) :Em(wl \ Qinit, 41, E) 'Em(w2 ’ qi, 42, w1) T

(2.13)
o Em(wn | o1, Gn, w1 wno1),
and a joint probability for a parse ¢ = (J, 1) and a sequence, by
P(o,¢) = P(o,J,n) = Pu(n) P(o,J | n) (2.14)

If the lengths of emission probabilities are independent of previous emissions w’,
of the form
Ll q,q) =) Emw]|d, q &)
weél
then the global distribution of parses produced by a GHMM is distributed accord-
ing to an infinite time-homogeneous semi-Markov chain, with transition probabil-
ities:

Tr (. 1) | (¢, 1) = Te ™ (g | ¢) L(t —t' | ¢, q)

Pyi(n) can be a distribution on variable length sequences, as in (2.1]), or add up
to 1 for each n. In the latter case, the joint probability (ZI4]) can be interpreted

as the probability to observe ¢ as the emission of a partial parse.

22



2.3. CONDITIONAL SEMI-MARKOV CHAINS

2.3 Conditional semi-Markov chains

A generative model like a Hidden Markov Model implicitly defines a distribution
on the set of sequences, by summing equation (2.12]) over all state sequences, or

equation (ZI4]) over all parses:

neq™
P(o)= > P(o,¢)
¢:(J777)
J=(0=to,...,tn=|0o])
neQ™

However, having a distribution on the set of sequences is not necessary when we
are just looking for a labelled segmentation of a fixed sequence. With dependen-
cies reversed, the state sequence is modelled subject to the observed sequence.
This approach is pursued by conditional Markov chains and their generalizations,

conditional semi-Markov chains (and conditional random fields).
Definition: A conditional (semi-)Markov chain consists of
e a set H of observations
e a state set ()
e for each h € H, a (semi-)Markov chain M on @
q = Trinic(z | ) (h € H)

(¢ q) — Tri(z] 2, h) (i>1, heH)

where z = (q,t) € @ X Nj, in the semi-Markov case, or z € @) otherwise.

The conditional Markov chain defines, for each observation h, a distribution
on Q" (or (@ x Ny)*), by

P(¢ | h)=Triie(z1 | ) - Tri(ze | 21,h) - oo Trp1(2n | 201, h)

The following lemma shows that GHMMs can be considered a special case of

conditional semi-Markov chains.
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CHAPTER 2. LOCAL PROBABILISTIC MODELS

Lemma: With a fixed observation sequence o, the a-posteriori distribution on
parses defined by a GHMM is a semi-Markov chain over the extended state set
Q x N, where N = {1,... ¢} is the set of positions of 0. Hence, the set of a-
posteriori distributions is a conditional semi-Markov chain with observation set
H=E" and N, ={1,...,|0|}.

Proof: In order to see that the a-posteriori distribution can be represented by a
semi-Markov chain, it is enough to show that it has a feature representation, as
explained in the end of section 21l Set ¢ = P(EHMM)(5) "and define

1
fO(((Lt)) = ? TTfﬁEMM)(Q) : Em(U[o..t) | €, (init, Q)

F((d, ), (g. ) = Te MG g) - Em(opp.4) | 00.47), ¢ @)
f((d, 1), (g,0) =0  (t<t)

Then, the a-posteriori distribution can be written as
PO | g) = . pIOM (4 g)
c
= fo(z1) - fz1,22) - ..+ (Zm—1, 2m)

where z; = (¢;,t;) and ¢ = (21,...,2n), if the parse ends with t,, = n, and 0

otherwise.

2.4 Algorithms for semi-Markov Chains

Viterbi Algorithm

The Viterbi algorithm maximizes the probability of parses in a semi-Markov chain.

Given a feature representation
m—1

F(¢) = fo(z1) - H f(zi, zi41),

i=1
the Viterbi variables are defined for z = (¢,i) € Q x N as

7(2):maX{F(zl,...,zm_l,z)|m2 1 21,000y Zmet EQXN}

24
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and can be calculated iteratively by

v(2) = max {y(z') - (¢, 2) | &' < z} U{fo(2)}

where (¢',7") < (q,1) is defined by i —1(q) < i’ < i, and the state length [(q) is given
by equation(27); more restrictive definitions that are necessary for f(z/,z) > 0
may be used if they can be determined efficiently.
The parse with maximal probability can then be determined by backtracking:
Define iteratively z*) = (¢*) i), k <0, by
20 ¢ argmax 7(z)

z € Qx{n}

*=1) ¢ argmax (2) - f(2/, 2)

z' € QXN

and K =max {k <0 [ y(z*D). f(z*D, 20) < fo(2®)}. Then

z

1) = 3(:0) - 0, 204)

and (), ..., 2(9) maximizes F, and hence, P.

Forward and Backward algorithms

The forward and backward algorithms work the same way as the Viterbi algorithm,

with maximum replaced by sums. The forward variables are defined as

n—1

a(z)=> " Y Flz,...,%m,2) (2.15)

(with the case m = 0 contributing F'(z) = fy(z)), while the backward variables
B(z) are defined as in equation (2.9).
An iterative formula for «(z) is given by
a(z) = fol2) + 3 a(2) - f(2,2)
2/ <z

Analogously, an iterative formula for §(z) is given by

B((g,n)) =1
B(z) = f(z,2) - B(2). 2= (g,4), i <n.
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Algorithm 1. Pseudocode of the Viterbi algorithm, for state set Q@ = {q, ...

. qr}

get_predecessor(i, j):
v* < folg;,1), <0, j* —1
for ¢/ = max{i —I(q),1},...,i—1do
for j/=1,...,r do
v 5 fa 7' q5,9)
if v* <v then
v v, it i, jr g
end if
end for
end for

return (v*,i*, j*)

viterbi:
fori=1,...,ndo
for j=1,...,r do
(v,i',5') < get_predecessor(i, )
Vi gl v
end for
end for
s+ v[n, 1], j+1
for j'=2,...,r do
if s <[n, '] then
s Jl, j« 7
end if
end for
i<n, ¢+ ()
repeat
Z (ij i)
push_front(¢, z)
(v,i,7) < get_predecessor(i, j)
until j = -1

return (¢, s)
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2.4. ALGORITHMS FOR SEMI-MARKOV CHAINS

Forward and backward variables can be used to calculate probabilities from

features. The constant ¢ of the feature function can be calculated as:

c= Y, alx)= ) folx) B(2)

z € Qx{n} z=(g,1)
1<i<l(q)
The probability to observe zy,..., 2z, as a subsequence of a parse is

1

- a(21) - f(zi,ziga) <o f(Zme1, 2m) - B(2m);
to express in addition that the parse starts with z;, or ends with z,,, a(z) is
replaced in this equation with fo(z1), or B(z,,) with d(z,,), respectively. Defining

reverse transition probabilities by

fo(2)
a(z)

the probability for a parse, in analogy to equation (ZI0), can also be expressed by

TriY (2) = B a(z)d(z), T (z]|2) = A2) (2, 7)

init c a(2) ;T (Grerm | 2) =

T (zn) - IOV (2t | 2m) o - TOY(21 | 22) - TYY (Grerm | 21)- (2.16)

init

The backward variables can be used to rescale viterbi variables to probabilities:
equation (2I0) shows that multiplying the scoring function with £(z)/c yields
the probability for a partial parse ending in z. In particular, v(2)8(z)/c is the
probability of the highest-scoring parse ending in z; even though scores (products
of features) are not given as probabilities, maximizing scores for a fixed last state
is the same as maximizing probabilities for partial scores.

In the case that features are given by transition probabilities, then ¢ = 1; all
backward variables equal 1, while the forward variables «(z) refer to the probability
to observe a given state ending at a given position.

If features are given by the joint probability of a GHMM, then c is the proba-
bility of the observed sequence; the forward variables refer to the joint probability
that a parse ending with state ¢ at position ¢ emits o ;, and the backward
variables refer to the conditional probability that o; ,) is emitted given that the
former is the case. In particular, 3(z)/c is the ratio between joint probability and

a-posteriori probability of a partial parse ending at z.
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CHAPTER 2. LOCAL PROBABILISTIC MODELS

2.5 The Markov model SIGI-HMM

I conclude this chapter with presenting a Markov model for the classification of
genes in a prokaryotic genome that we implemented in the program SIGI-HMM;
the detailed analysis of results is shown in the publication attached in appendix[Al

In prokaryotes, horizontal gene transfer is a frequent phenomenon: in a single
event, genes from evolutionary distant sources are incorporated into the genome of
an organism. In contrast to vertical transfer where the genomic material is trans-
ferred from one generation to the next, only subject to minor changes caused by
mutations and recombination, the incorporation of alien genes results in a sudden
addition of new, and possibly very dissimilar sequence to the genome which fre-
quently changes the behaviour of the microbes. In particular, they can make them
pathogenic. The detection of horizontal gene transfer is therefore an important
task.

The transferred sequences can contain several genes. A set of consecutive
genes that is conspicuous compared to the overall nucleotide composition of the
genome is called a genomic island; when it is characteristic for a pathogen, also a
pathogenicity island.

In SIGI-HMM, an algorithm based on a Markov model was implemented that
performed the task of recognising genomic islands, given the set of genes of a
prokaryotic genome; and labelling each gene according to its predicted source (the
class of the donor species).

In prokaryotes, genes are contiguous coding subsequences of the genome, with-
out introns in them, but seperated by intergenic regions. The genes are assumed
to be located prior to running the algorithm, with the set of genes given in the
order as they appear on the genome.

Alien genes are identified by a codon usage deviating from the genome under
consideration, an approach previously suggested and tested successfully [KarO1].
For each of the 64 codons, the codon usage CU® specifies the percentage of times
this codon ¢ was used to code for its amino acid: CU®(¢) = %<

T #a(c)
notes the amino acid assigned to ¢ by the genetic code, and # refers to the number

, where a(c) de-

of occurences of codon/amino acid in the genome(s) indexed by p. Thus defined,
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2.5, THE MARKOV MODEL SIGI-HMM

codon usage is referred to more precisely as synonymous codon usage (frequency
of codons coding for the same amino acid). Codon usage for candidate species
was taken from the Codon Usage Database (http://www.kazusa.or.jp/codon/,
INGI0Q]).

However, specific genes native to the host genome are highly expressed, often
coding for ribosomal proteins, can have a deviating codon usage [Kar(O1]. Hence,
highly expressed genes need to be excluded explicitly from being labelled as alien.
To this end, genes are marked as highly expressed if their codon usage resembles
that of ribosomal genes.

In order to combine scoring according to codon usage with local dependencies
(assuming that consecutive genes are transferred together in islands), the observed
set of genes was modelled according to an HMM conditional on the observed
amino acid sequences which is fixed by the model. The HMM is generalised in
that emission probabilities refer to the full gene rather than single nucleotides, but
since emission lengths are given and fixed, it can be also considered non-generalised
if the set of hypothetical coding sequences is viewed as alphabet. Its architecture

is as follows:

e the state set () = {nat,pA,,...,pA,} containing the candidate sources for

putative alien genes, and one state labelling native genes

e inhomogeneous transition probabilities Tr;(g | ¢'), for ¢,q" = nat, pA,. These
reflect expected length of the islands compared to native stretches, with a
bonus 7,, depending on a user-specified sensitivity parameter . They are
inhomogeneous since the bonus depends on the observed amino-acid compo-

sition of the following gene.

e inhomogeneous emission probabilites Em;(¢g | ¢), given by the probability
that the nucleotide sequence was used to encode the fixed amino acid se-
quence: Emy(cy...¢ | q) = CUD(¢)) ... - CUD ()

As shown before, a HMM described this way automatically defines a conditional

semi-Markov chain (here subject to the series of genes, i.e. coding nucleotide
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sequences), with feature function f;(¢’,q) = Tri(¢ | ¢) - Em;(g; | ¢), in this case of
a conditional inhomogeneous Markov chain. The Viterbi algorithm is now used to
determine the most likely labelling of genes (with a putative donor, or as native).
Genes that have been identified beforehand as highly expressed, carry a mark that
is interpreted as additional emission that is restricted to native states. This way,
they can be explicitly excluded from being predicted as alien.

Viewing the model as a conditional Markov chain defined by a scoring or feature
function is more adequat than the pure Bayesian approach where the Markov
chain underlying an HMM should reflect a-priori probabilities of the states. This
is frequently unnecessary, or even undesired (it can cause the Viterbi algorithm to
suffer from the Label Bias phenomenon; see also section [.6))

Here, transition probabilities are modified by a sensitivity control, making this
in fact a mixture of a Bayesian test and a test with a bounded error of second type
(i.e., the failure to recognize an alien gene).

For example, if an isolated gene was to be tested for being alien in a binary

classification test, then using the condition
< Tpa

for the discrimination, would result in a guaranteed sensitivity. Replacing the
threshold 7 by the ratio of a-priori probabilities would be the Bayesian equivalent
(and, in the case of the Markov chain, depend on the labels chosen for neighbouring
genes).

With a bonus of 7 being multiplied to the transition probabilities, the two
approaches are sensibly combined but do not anymore reflect an a-priori distribu-
tion on states or labels; however, the advantage of the conditional Markov chain

perspective is that an a-priori distribution is not needed.
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Chapter 3

Gene Prediction and Protein

Classification

In this chapter, I will discuss general methods that are part of the central steps of
the annotation pipeline: gene prediction and protein classification.

Gene prediction is the task of finding a gene structure: a labelled segmentation
0 = wy...w, of a genomic input sequence o € N*, according to their meaning
for the protein coding process. Other functional sequence segments than protein
coding genes are integrated into DNA [Jon06], but they will not be dealt with
here.

Gene prediction methods can be distinguished according to the available input.
Ab-initio (or intrinsic) methods do not need any input but the target sequence
itself. Extrinsic methods use additional information gained from further sources.
This information is frequently called evidence indicating certainty or considerably

higher reliability of the prediction compared to intrinsic methods.

3.1 Ab-initio Gene Prediction

An ab-initio gene prediction can only be model-based, using probabilistic models
as those introduced in chapter In the most widespread ab-initio gene predic-
tion programs (see [PP10] for an overview), the models are Generalized Hidden

Markov Models, or more recently, other kinds of Conditional semi-Markov chains
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CHAPTER 3. GENE PREDICTION AND PROTEIN CLASSIFICATION

[BCHPOT], with gene structures represented by parses, sometimes in a one-to-one
correspondence between states and labels. In these approaches, having defined a
model, finding the optimal gene structure amounts to finding the highest-scoring
parse, which is computed by the Viterbi algorithm.

Two components have to be distinguished in the description of a GHMM, the
architecture which is fixed throughout one approach, and the parameters that
have to be estimated. Commonly, transition probabilities, and the choice of state-
dependent emission models are specified in the architecture, while parameters of
emission models are trained.

Emission models generally fall into two categories:

e models for nucleotide composition differing in general between exons, introns
and inter-genic sequence, frequently given as position-unspecific k-th order

Markov chains on nucleotide level

e models for sequence motifs signalling a function, for example translation
start sites or splice sites (borders between exons and introns), often given as

explicit distributions at a defined distance from segment coordinates

In order to train the parameters, experimentally confirmed gene structures are
evaluated. In the classical approach, nucleotide composition and signal motifs
are estimated by counting occurences, compositional parameters averaged over all
segments of the same type, and signal motifs at well-defined locations.

Recently, a discriminative learning approach (online large-margin training,
[BCHPOQT]) has been proposed that optimizes all parameters simultaneously for
single training examples. This requires scoring functions to depend on parameters
linearly, which can be achieved by considering the logarithm of features. It also
requires giving up a GHMM interpretation of features in general.

The work presented in the next chapter of this thesis is an extension to the
ab-initio program AUGUSTUS that was introduced by Mario Stanke in 2003
[Sta03, SW03, SSMWO06]. AUGUSTUS was initially based on a Generalized Hid-
den Markov Model (GHMM), but parameters have in some cases been retrained

with the online large-margin method.
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The architecture of AUGUSTUS” GHMM is shown in [Sta03], Figure 3.1. Its
original state set consists of 47 states in total: 16 exon states, 30 intron states and

one intergenic state.

Four types of exon states, initial, internal, terminal and single, are distin-
guished, all with seperate states for the two reading directions (strands). Exon
states that can end inside a codon (initial and internal) are also distinguished by

reading frame, since it affects the nucleotide composition.

Two types of introns are distinguished: short introns with an explicit length
model, and long introns that have an implicit length model with geometrical dis-
tribution. In the latter case, an intron is represented in a parse by a fixed-length
prefix followed by a segmentation into single nucleotides each separately emitted
from the same state. In addition to these three states, two more intron states
model the splice sites (the intron regions adjoining the exons). Introns need to
be distinguished by reading frame in order to determine the reading frame for the
following exon. The intergenic state also emits single nucleotides and transitions

back to itself with probability close to 1.

AUGUSTUS executes the Viterbi algorithmus to determine the highest-scoring
parse. A parse is not completely identical with a gene structure since multiple
states can share the same label, consecutive occurences of the same state are
subsumed (in the single-nucleotide emission models), and model coordinates may
differ from biological coordinates. For example, the sequence region modelled by
the initial exon state starts before the biological exon, in order to contain signals

for the translation start located in the intergenic region.

AUGUSTUS can also execute a randomized sampling algorithm [SKGT06] to
procude a set of parses, each with probability proportional to their score. This
sampling algorithm first calculates the forward variables, and then iterative deter-

mines 2(®, (=1 proportional to the reverse transition probabilities given in

2.16).
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3.2 Scipio: Homology-based gene prediction

While an ab-initio approach is based on a model, evidence is in most cases gained
by aligning informant sequences to the target genome: coordinates of one sequence
are mapped to the other in a way that the corresponding sequence segments show
high, or even full identity.

Extrinsic approaches can be categorized according to the kind of the informant

sequence:

o Comparative methods use alignments with genomic sequences of closely re-
lated species, exploiting the fact that coding sequences show a higher degree

of cross-species conservation

e Transcript-based methods use alignments with RNA sequenced indepen-
dently from the DNA; since mature RNA does not contain introns, matching

segments of DNA are identified as exons

e Homology-based methods use alignments with RNA or protein sequences
coming from already known genes found at other locations or in other genomes,

DNA segments showing high similarity are likely to code for related proteins

The most accurate results are gained by approaches that combine extrinsic
information with an ab-initio gene prediction. AUGUSTUS has the ability to use
the evidence generated by external alignment tools, in the form of hints [SSMWO6]:
it can consider additional input that suggests, with specified reliability, labellings
at indicated locations, and incorporate this into the probabilistic model.

Formally, an alignment is given by a pairwise parse: segmentations
S=V1+Vp, O0=Wi " Wy

of query sequence s and the target sequence o, together with labellings ¢; describing
the relations between v; and w;. For example, labels might take the values MATCH
(if v; equals wj, or the translation of w; in a protein-DNA alignment), MISMATCH
(if v; differs from w; but both have same length), INSERTION (if w; is empty) or
DELETION (if v; is empty), or UNALIGNED if there is no relation whatsoever;
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an alignment can be assigned a score based on the labelling, similar to a semi-
Markov chain but for pairs of segmentations. MISMATCH and MATCH labels
not always distinguished, allowing MATCHes that are similar but not completely
identical.

A spliced alignment considers introns as a special case of deletions; with only
small penalties. A perfect spliced lignment is turned into a gene structure simply
by relabelling MATCH to exon labels. Since introns might occur inside codons, it is
convenient to specify spliced protein-DNA alignments in a virtual RNA coordinate
system (even if the sequence forming the RNA is only known after aligning).

The strongest evidence for a gene can clearly be gained from an alignment
with the coding (RNA) sequence itself, or with the resulting protein sequence.
This puts the step of identifying a protein before the gene prediction step. Protein
sequences may be available indepently from a gene prediction, for example when
closely related genomes have already been analysed.

With the software Scipio, I am presenting in this thesis a protein-based gene
prediction tool that is designed for the case of high homology. Finding a gene
structure based on similarity to the translated sequence is desirable in many cases,

for example:

e if protein sequences come from databases that do not contain the coordinates
of the coding sequences (this information may have existed but is not as easily

accessible)
e if protein or RNA sequences have been determined experimentally

e if sequences are only available for closely related species, for a cross-species

search

If the original location of a protein sequence is determined in the genome, the
task is to recover the gene structure rather than predict it; there is normally just
one gene structure resulting in a specified protein sequence. The resulting gene
structures can safely be used as reference.

The need for a tool that can determine the exact exon/intron boundaries from

a given protein sequence arose during the work related with this thesis at several
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occasions. Reference gene structures were needed to evaluate prediction quality.
In addition, it was found also a very useful approach for directly predicting gene
structures in cross-species analysis, for closely related sequences.

Scipio is a wrapper program for the alignment program BLAT written by Jim
Kent [Ken(2]. Postprocessing was needed since the protein-DNA alignment calcu-

lated by BLAT are not complete gene structures, for the following reasons:

e since BLAT aligns the protein sequence to the translated target sequence, it

misses codons that have been split by an intron

e rather than returning one accurate hit, it returns a list of hits with varying
accuracy, most of which can be regarded as false positives when searching

for a specific gene

e genomes in an incomplete stage of assembly are scattered over short se-
quences (contigs) that have not yet been assembled, and may contain only

partial genes

e sequencing or assembly errors can cause a single exon to be represented by

multiple segments in the alignment
e exons that are too short to be significant hits alone are not found by BLAT

Scipio addresses these issues and turns the spliced alignments found by BLAT
into gene structures, with precise exon/intron locations, by adding the split codons
to the predicted exons. Segments seperated in a hit by short insertions or deletions
are joined together to form a single exon.

Hits found by BLAT are sorted by score, and the highest scoring is returned.
More than one hit is returned only if the hits are compatible, i.e. they are partial
hits referring to non-overlapping parts of the query sequence, and are located on
different contigs such that the unaligned contig ends do not get too long (allowing
an interpretation as intron).

With the postprocessing performed by Scipio, the output provided by BLAT

was transformed into exact gene structures, turning the spliced alignment into an
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actual homology-based gene prediction. Details about the accuracy of the gene
structures produced were published in the article attached in appendix Bl

Short exons that may have been missed by BLAT are searched for by a version
of the exhaustive algorithm designed by Needleman and Wunsch [NW70], a global
dynamic programming algorithm with many analogies to the Viterbi algorithm.
It can be used efficiently only to fill short gaps in the alignment since its running
time is linear in the length of both sequences. In Scipio, its use is restricted to
cases where only short parts of query and target sequences are unaligned; only
these unaligned segments are the input to the algorithm. In the remainder of this
section, I will describe the implementation that I designed for Scipio.

The generic procedure is as follows: Given two sequences r and s, and a penalty
function p(v,w): & x & — R U {oo}, the dynamic programming (DP) variables
v(r,t) are defined as:

y(r,t) = min{ p(v,wr) + ... + p(Ve, wi) | Sjo.r) = V1. Vi, Oo.) = W1 ... Wk}
and iteratively calculated by
7(0,0) = 0;
v(r,t) = min{y(r', t') + p(sp vy, o)) | 7' <1t <t}
The optimal alignment is calculated by backtracking through the maximizing

arguments: Let

(r',t") = pred(r, t) = argmin (7(7“', ") + p(spr.,s J[t/”t)))
r/ <rt'<t
Then sequences (rg, . .., 7r), (to, ..., t,) are determined iteratively, by starting with
(rn,tn) = (|s], |o|), and prepending the predecessor (ry_1,tx_1) = pred(rg, tx) until

(ro,to) = (0,0) is reached. Then
Vi = S[i—1..4); Wi = Ofi—1..4)-

Given a label set () characterizing alignments, scores for labels depend only on
the associated segments and not on neighbouring labellings, and p can simply be

defined as

v,w) =minp( v, w .
plv,w) =minp(v, w | g)
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p is assigned the value oo for cases that are explicitly excluded

For the sake of efficiency, additional restrictions for the scoring function are
required. The lengths of admissible segments must be bounded, depending on the
label, and pairs of empty strings must be excluded.

The label set used by Scipio is
Q = {MAP,INS, GAP, FS,INTRON,, INTRON;, INTRON,},

and the penalty function p(v, w | q) is defined subject to the conditions

g = MAP : lv| =1, lw| =3
qg=1INS: lv| =1, w=¢€

qg= GAP: v =k, lw| =3
q¢=FS: v € {0,1}, w| € {1,2}
q = INTRON; : = |w| > lmin
q=1INTRON;, 5 : lv| =1, |w| > lmin + 3

where € is the empty string, and [,,;, is the minimum intron length.
The labels ¢ =INS, GAP, FS are used to allow insertions, deletions and frame-

shifts, at the cost of some constant penalty p(:|¢) = ¢,. Furthermore,

0, if v = tr(w)
p(v,w | MAP) = 6 (1, ) =

cviism,  otherwise

where tr(-) denotes translation. Introns are distinguished by reading frame; the
intron penalty is computed evaluating the splice sites (considering that 99% of all
introns start with GT and end with AG):

PINTRON (W) = pINTSTART(w[o,l}) + pINTEND(w[t—zt—u) + CINTRON

LA technical difference between the scores defined here and for the probabilistic models is
that here, for practical and historical reasons, additive scores are used, and minimized rather
than maximized, with 0 being replaced by co with the usual rules for calculation. The Viterbi

algorithm can use additive variables as well, using log-probabilities as feature functions.
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If ¢ = INTRON, (j = 1, 2), then the given nucleotide sequence is interpreted as
an intron inside a codon njngng. w has the form ny ...ngng (j = 1), or nyny...n3

(j = 2). The three reading frames give rise to different intron penalties and a

potential mismatch penalty:

p (e, w | INTRONy) = pintrON (W)

p (v, niwnang | INTRON;)

= 6tr V’ N1 Non, +p w
p (v, ninywng | INTRON,) } ( 1712723) INTRON (W)

Since the length of introns is not bounded from above, the DP variables cannot
be computed directly, without ¢’ iterating back to the start of the target sequence.

This is resolved by introducing DP variables keeping track of potential intron

scores at positions inside them (n € N):

YO (r,t) = min{ y(r,t') + pinrstart (O 1) | £ <t — lnin }
(1)(7"7 t,n) = min{ y(r,t') + pirstarr (O 1012) | 1 <t —lnin — 3, oy =n}

5
Y@ (r,t,n) = min{ v(r—1,¢) + pivrstart (O 42,043) + 6" (Sp_1), T w417
|t/§t_lmin_3}

leading to the following recursions

7O (r,t) = min{ 4O (r, t—1), ~(r,t') + PINTSTART (O ¢+1]) } (t' =t — lin)
YW (r,t —1,n); o) F# n
YV tn) = min{ D (r ¢~ 1,n), (t' = t—lin—3)
Y(r,t') + pintstarT (O 41,042 )3 O] =1
v (r,t,n) = min{ yP(r,t — 1,n),
Y(r — 1,t') + pinrstarr (O to045) + 0" (o piqnt  (F = t—lpin—3)
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and finally,
' Y(r —1,t = 3) + 0" (Sp—1]; Op—3,4-24-1]);
y(r —1,t) + cns,
v(r,t — 3) + caap,
, min { y(r,t—1), v(r,t=2), v(r—1,t—1), v(r—1,t—-2) } + cps,
~(r,t) = min

YO (r,t) + cintrRoN + PINTEND (Oi—2,4-1))5
min { YW (r—1,¢,n) + 6" (sp—1j, nopy_24-1) | n € N'}

+ cINTRON + PINTEND (Ot—a,4—3]),

L 7(2) (r,t, U[tfl]) + CINTRON + pINTEND(U[t73,t72]>>

During the iterations, the predecessor index (1, ') and the corresponding label
q(r,t) € Q are stored, corresponding to the argument maximizing y(r,t). Then the
optimal alignment is determined by the backtracking procedure described above.

This way, the remaining gaps in the gene prediction are filled.

3.3 Protein classification

After genes have been predicted on the DNA, protein sequence are determined
that then can be used for further analysis, such as classification. Conversely,
homology-based approaches use the feedback from protein resources for the gene
prediction.

By mapping single highly homologous, or identical protein sequences to the
genome, the gene structure can in most cases be reconstructed, as the results
obtained with Scipio have shown.

Similarity shared by all members of a given class can be a type of information
that can guide the gene prediction in the case of higher evolutionary distance,
effectively performing the protein classification in the same step. This was the
main idea behind designing AUGUSTUS-PPX, that I will present in detail in the
next chapter. In this section, I will describe models that can be used to represented
these similarities.

Relationship between proteins is commonly reflected by sequence similarity:

as the sequence determines most of the three-dimensional structure of a protein,
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3.3. PROTEIN CLASSIFICATION

sequence similarity generally implies similar or identical function. Hence proteins
with similar sequences are grouped into families, and membership of a query pro-
tein to a family is assessed by sequence models.

Along the full length of the sequences, the degree of conservation can vary
according to the importance of the sequence regions for the particular function
shared by the proteins. These domains are characteristic for the protein function.

Protein signatures are representations of protein families that can be used to
classify query sequences. They are commonly probabilistic models based on mul-
tiple sequence alignments (MSAs). In an MSA, related protein sequences are
arranged in a way that conserved sequence positions appear vertically aligned.

W

The gap character is inserted into sequences in an alignment to shift the cor-
responding motifs underneath each other.

Many publicly accessible protein databases, the most important of them inte-
grated into the meta-database InterPRO (http://www.ebi.ac.uk/interpro/, [HAAT09]),
offer services to classify query sequences provided by the user, according to the

precomputed signatures.

Profile HMMs

The majority of protein databases use profile HMMs to represent the families
[DEKM99, IGKHCO01, MLUL™05, BCD™04, QSPT05]. A profile HMM defines a
distribution on member sequences where the underlying state sequence of the HMM
represents the way a generated sequence is aligned to the MSA. Parameters of a
typical profile HMM are

e for each column j € N of the MSA, a distribution
P;: A—0,1]

summing to 1, estimated from the number of occurences of amino acids in

column j

P,(Del)

', estimated from the number of gap characters

e deletion probabilities

found in column j
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e an insertion probability P
The architecture of the HMM is defined by:

e 3 state set
Q = {Dely, ..., Del,} U{Maty, ..., Mat, } U{Insy,...,Int,}

where n is the number of columns of the MSA. The deletion states Del;
correspond to a column that is deleted in the query, the insertion states Ins;
correspond to extra characters inserted to the query between columns, and

the match states correspond to a column aligned to a character in the query.

e transition probabilities

Trinit (IHSO) = P (Ins) TI‘(IHSJ' ‘ IHS]') _ P(Ins)
Ty (Dely ) = PfDe” Tr(Mat; | Ins;_;) = 1 — P
Trinit(Matl) — Ins) Pl(Del)
Tr(Ins; | Mat;) = P Tr(Del; | Delj_y) = P](Del)
Tr(Del; | Mat;_1) = p](Del) Tr(Mat; | Del;_1) =1 — Pj(Del)
Tr(Mat; | Mat;_;) = plins) _ Pj(Del)

By introducing a terminal state as in 2.1 a variable number of insertions is
made possible at the end of the sequence: Tr(ginit | Mat,,) = Tr(ginis | Ins,) =
1 — P Tr(gi | Del,) =1

e emission probabilities

Em(a | Mat;) = P (a)
m(e | Del;) =1
Em(a | Ins;) = Prack(a)

where € is the empty string, and Py, (a) is the background (random) distri-

bution of amino acids, given by their global frequencies
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3.3. PROTEIN CLASSIFICATION

Note that this HMM is generalized by allowing the deletion states to emit
empty strings only (silent states). By choosing appropriate transition probabilites
and eliminating the silent states from (), it can be regarded as an HMM in the
original sense. The Viterbi algorithm can be used to produce an alignment, by
assigning to the coordinates of the query sequence the aligned columns of the MSA,
given by the state sequence. Moreover, the joint probability reflects the quality
of the alignment, and can be used as classificator, after choosing an appropriate

threshold.

Block profiles

In AUGUSTUS-PPX, protein families are modelled by block profiles. In this
context, a block is an ungapped and highly conserved section of a multiple sequence
alignment. The concept of a block was first introduced by Henikoff [HH91], and
then used to classify proteins in the Blocks database [PHH96, [HHP99).

Very similarly, collections of blocks, together with the ranges of admissible dis-
tances between consecutive blocks, have been used as protein signatures, referred
to as fingerprint|[AB94] and currently collected in the PRINTS database,|ABE™03]
a member database of InterPRO.

A block profile is a set of n frequency matrices, each generated from one
block, containing the column-specific frequencies of amino acids: (Pi(b)(a)), b =
0,....,n—1,i=0,...,w—1, a € A (w = w, denoting the block width). Let

GCh Pici?a)

denote the odds ratio obtained by dividing by the global distribuion P, of amino
acids. R serves as a scoring matrix for sequence motifs: given an amino acid

sequence s = Sy ... Sy,_1, its similarity to the block is expressed by

p(b)<8) = Ro(SO) L Rw—l(sw—1)~
More generally, a partial block score pEJb)k}(s) = R;(s0)-...- Ri(sk—;) can be defined
if s is a (shorter) sequence of length k — j + 1.
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The order of the blocks is assumed to be preserved throughout all sequences in
the family. For each b, an interval [, = [di"™, di"®] specifies the range of admissible
distances between consecutive block motifs (or, in the cases b = 0, b = n, between
the first/last block motif and the sequence start/end, respectively).

A mapping of the profile to a protein sequence s is defined by a series of block

starts J = (Jo, ..., Jn_1), giving rise to a profile score
p(s;J) = P(O)(mo) Tt p(n_l)(mn—1> (3.1)

where my = [, . j,+w,—1] 18 the motif mapped to block b, provided that consecutive

-----

motifs are in admissible distance from each other:
Jjo€lo; jp—jJp-1—wpr €, (b=1,...n)

(setting 7, := |s| to the sequence length of s).

In contrast to profile HMMs, this profile score is not Bayesian: there is no a-
priori distribution on mappings. While in a profile HMM, insertions and deletions
are penalized, here the score of a mapping depends only on the sequence motifs the
mapping aligns to blocks. The odds score reflects the ratio of probabilities in the
background model to the model defined by the mapping; both sequence models

are identical in inter-block regions.
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Chapter 4

AUGUSTUS-PPX: A new hybrid

gene prediction method

In this chapter, a new method is described that combines ab-initio gene predic-
tion with the information contained in a protein profile. The method has been
implemented, and integrated into the existing ab-initio gene prediction program
AUGUSTUS. It was tested successfully, showing considerably improved prediction
results. The publication based on this work is attached in Appendix [C], and gives

a detailed overview on the obtained results.

4.1 Motivation

Because of the enormous speed that new genomic data is produced, only a very
small part of it can be annotated manually. On the other hand, the amount of data
available as extrinsic input to automated annotation methods is equally growing.
It is therefore crucial to explore ways to integrate all possible kinds of information
that can improve the accuracy of gene prediction.

Since evidence is not available for all genomic regions, ab-initio methods are
still an essential part of the prediction process. Based on an ab-initio approach,
AUGUSTUS can be viewed as a platform for the integration of all types of evidence
produced by third-party tools (usually alignment-based), considering these as hints
of adjustable reliability [Sta03, [SSMWOG]
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As the next step in the annotation pipeline, the classification of newly predicted
genes depends strongly on the accuracy of the gene prediction. Existing protein
resources can help guiding the prediction. While many researchers are focused on
particular protein families of interest, comprehensive databases containing protein
data are widespread, and easily accessible, for example via InterPRO.

The protein profile extension (PPX) to AUGUSTUS is designed to combine
AUGUSTUS’ ab-initio model with a second probabilistic model for membership to
a protein family. The additional input that AUGUSTUS-PPX takes is a protein
signature in the form of a block profile. In contrast to the hints approach, the
evidence is not produced by a separate program but created in parallel to the ab-
initio prediction, allowing mutual interaction of the models. However, hints from
complementary sources can work together with this approach to include more kinds
of extrinsic information.

Two goals are pursued with the protein extension. First, the identification
of family members during the gene prediction, and second, more importantly, a
potential of correcting the prediction in a way that improves identification rates
for these genes.

The problem addressed by this combined approach is the prediction of gene
structures subject to the condition that the encoded protein sequence fits to the
protein model. To this end, the similarity of candidate genes to the profile is
evaluated based on candidate mappings of its blocks to the DNA; gene structures
equipped with a valid mapping are awarded a bonus to their ab-initio score. An
extended version of the Viterbi algorithm takes into account the bonus of potential

profile mappings for the determination of the highest-scoring parse.

4.2 Profile-DNA mappings

A block profile is mapped to the DNA sequence o by specifiying the start locations
(to,-..,tn_1) of the segments coding for potential block motifs. We denote any such
mapping by . Since blocks may be interrupted by introns, the full mapping is
well-defined only when also a candidate gene structure ¢ is given, as depicted in

Figure 4.1l In this case, v is wvalid if all ¢, lie on exons belonging to the same
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d
—

Ll
to

DNA sequence

js
Gt ts

Figure 4.1: A profileeDNA mapping. The translated transcript (above) contains
four block motifs (in red) my,. ..,ms, separated by inter-block sequence (in grey)
of length d;,. The coding gene (below) consists of six exons; sequences coding for
the block motifs are shown in red. Block hits may appear inside an exon (mg,m1)
or be disconnected by one or more introns (mg,ms).

gene, and the inter-block regions on the protein sequence have admissible lengths
e A

The score of the mapping is defined by equation (BI): if s is the protein
sequence of the gene, and 1/; are the protein coordinates of the mapping v, then

we write
plos i) = p(s, ) = pO(mo) - ... p" D (my_y). (4.1)

Several genes may be equipped with mappings ¢1,¥s, ..., 9, resulting in a

total score of

p(o; i, .. b)) = plosgsabn) - ... p(o; ¢ aby).

Formally, p can be defined to be 0 for invalid mappings. When provided with
a protein profile, the Viterbi algorithm will search for the best-scoring combina-
tion of gene structure and compatible profile-DNA mappings. More precisely, it

determines ¢, 11, ..., 1, maximizing the combined score

P(o, ) plos i, ..., ¢y, (4.2)

where the joint probability P(o,¢) for sequence and gene structure is multiplied
with the profile bonus p(o,¢,1) for each candidate transcript equipped with a
valid mapping 1. Thus, only if a gene is compatible to a profile mapping with a
score high enough to compensate for a lower ab-initio score, the prediction with
the profile will differ from the prediction without. In particular, on sequences

where no members of the protein family are identified, the result will be identical
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to the ab-initio prediction. In the underlying sequence model, multiplying with p
effectively amounts to replacing the background model with the block model, in
the exon sequence model.

For performance reasons, only mappings that consist of block hits are considered
for the evaluation of the profile bonus. To classify a given protein sequence s of
length w as a block hit, we turn the scoring function into a decision function by
requiring p(s) > 7, with a block-specific threshold 7 = 7).

Two global parameters 0y(= Ospec) and 01(= Ogsens) independent from b, are
specified by the user, designed to ensure that estimated error rates are low.

We consider two competing models, H, describing random sequences distributed
according to Ppau, and Hp describing block motifs from a block b under consider-
ation, distributed according to Poock = (P;)i=o,..w, the frequency matrix given in
the profile. P;(a) denotes the probability to observe amino acid a at position i of

a block motif, while P, (a) denotes the global probability for a to appear at any

position. The odds-ratio is given by R;(a) = %; for convenience, we consider
in the following the log-odds ratio L;(a) = log R;(a), turning the product p(s) =
Ro(sg) - ...« Ry—1(sw—1) into a sum ¢(s) = log p(s) = Lo(so) + ... + Ly—1(Sw-1)-

Each of the two models H; gives rise to a different expectation value p; = E;(L)
and variance o7 = Var;(L) for the log-scores.

By putting the global parameters into the block-specific scale, we obtain thresh-
olds 77 = po+6y 09, 7H = puy — 61 01. A score exceeding 77 is at least 0y standard
deviations above the expected score in the background model, and a score below
77 is at most 0, standard deviations less than the expected score for a block motif.
The probability for a random sequence (in either model) to have a score in this

range can be approximated with the Gaussian distribution by
1 — ®(6) and 1—®(6,),

where ® is the cumulative Gaussian distribution function; hence, these numbers
are bounding the estimated error rates.

For example, the values 8y = 4.5 and 6, = 1.5 used as default values correspond
to a false-positive rate less than 1 — ®(4.5) = 3.3-107% (one block hit in a random
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) my m, m,

Protein sequence
DNA sequence /
Figure 4.2: Calculating Viterbi variables at DNA position ¢, for substate (b,1),
b= 2,4 > 0. The score is maximized for all gene structures that have a mapping
to the truncated block motif msy of length i at the end of the exon. Any parse

continuing from here must have the next exon starting with the remainder of the
motif. The bonus awarded to the Viterbi variable for this mapping is p® (my) -

2
p(l) (ml) : 10[(0,),1;1] (mZ)

amino acid sequence of 300000 residues), and to a sensitivity of at least ®(1.5) =
93.3%.

In order to fulfill both conditions, 7 must satisfy 7= < 7 < 7F. Provided
that 7= < 7%, we set 7 = 1(7~ + 77). Any sequence satisfying the condition
(®)(s) > 7, or equivalently, p®(s) > exp(7), is then considered a block hit. In the

case 7~ > 71, or if w < 6, the block is removed from the profile for the evaluation.

4.3 Integration into AUGUSTUS’ state model

Iterating over all DNA positions, the Viterbi algorithm computes the scores of op-
timal partial parses (candidate gene structures) ending in the current position, and
stores them in variables indexed by position and last state, each state representing
a different sequence type, distinguished by strand and, if applicable, by reading
frame.

When equipped with a protein profile, the score assigned to a parse is modified
as described above: for each gene in the parse that is compatible with a profile-
DNA-mapping, the score is to be multiplied with the best possible profile bonus;
each exon in the gene contributes the bonus for the hits for a full or partial block
mapped onto it.

When the algorithm arrives at a position in the DNA, it must consider all
partial profile mappings started before that can be continued beyond this position,

having a particular position within the profile aligned to the current DNA position,
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as in Figure L2l This position determines the conditions for the mapping to be
continued; thus, a separate score has to be stored at that position for each profile
position. To this end, the original state space of AUGUSTUS was extended by a
set U of secondary states attached to the main state, representing the position in

the profile:

U={u=(bi)|b=0,...,n;i=—d® ... w}U{X}

max’

where b denotes the block (b = n the region behind the last block), and 4 the
position relative to the block. The state X represents an undefined position, for
genes not matching the profile.

Positive ¢ denotes a position inside block b, while negative i represents a position
before block b, determined by the position of the previous block. In the latter
case, —1 refers to the maximum allowed inter-block columns to follow; the earliest
admissible block start is at i = —d\ay + dfﬁ?n, the latest is at ¢ = 0.

For a partial profile mapping ending at position (b,7), the profile score mul-

tiplied to the ab-initio score is computed as in equation (A.T]), except that the

product is truncated at the current position:
_ b
PO (mo) - ...+ p® VD (my_y) - Pfo.).i_l](mb)

(where the last factor is included only in the case i > 0, as in Figure [4.2]).

If a gene structure is equipped with a profile-DNA mapping, they define a
sequence of secondary states in the form of profile positions aligned to the DNA
coordinates specified in the parse; an extended parse is a parse together with such

a sequence of secondary states:

¢+ = ((b;ula cee 7un) = ((qhtlaul); I (qnatnaun))7

by setting u; = X for all j, a parse without profile hits can be viewed an extended
parse as well.

We define the score of an extended parse as the maximum of the combined
scores of all profile-DNA mappings that agree with it: Let ¢ is an exon state, and

u’, u profile positions at exon start ¢ and end ¢. The exon bonus p(v/,t',u,t) is
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defined as follows: If ¢/ > 0, then the exon must start with the a block suffix, and
()

[i,_wb,)(m), where m is the translation of the

contributes the partial block score p
exon part overlapping with the block; an admissible mapping starts with block
b+ 1 at a suitable distance. If i/ < 0, then it determines the admissible block
start for block ’. Consecutive blocks may be mapped onto the exon, contributing
p® (m) to the exon bonus, provided they satisfy the distance constraints given in
the profile. There may also be no block starting on the exon if it is short enough
to fit into the admissible inter-block region.

Each admissible mapping defines a profile position u at the exon end, depending
on the last mapped block. p(u',t';u,t) is is the contribution of the block scores
aligned to the exon (partial block scores, if it starts or ends inside a block). If
several mappings are compatible with (u/,u) on the same exon, then maximum of
them is taken.

The extended feature function is then given by f(z/, v/, z,u) = f(2/, 2)-p(v, t'; u, t),
z = (q,t), if ¢ is an exon state.

Intron states inside a profile mapping are not contributing a bonus, but need
to be equipped with secondary states as well, in order to keep track of the profile
position for the following exon. For introns, we have and f(2/,u/,z,u) = f(2/, 2)
if u' = u, and f(u,t',u,t) = 0 otherwise.

It follows that

P(0-7¢+) = P(Ua ¢) 'p(07¢7¢17”-a¢7")

if 1,...,1, is the highest scoring set of profile-DNA mapping compatible with
the secondary state sequence ug,...,u, (including the case r = 0 that no gene
matches the profile, corresponding to u; = X).

The Viterbi variables used in the extended model are indexed by state and
secondary state:

”}/(Z,U) = maxy(z’, U,/> ’ f(Z/a ulv Z, U’)

2
Each pair of secondary states give rise potentially to a different profile bonus for
the same exon. To compute the extended variables, the combined scores have to

be maximized iterating over all predecessor DNA and profile positions.
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Genes on the backward strand are evaluated essentially in the same way as
genes on the forward strand; however, in this case, the profile is mapped to the
DNA “backwards”, starting with the C-terminus. Correspondingly, the secondary
states on the backward strand refer to blocks and columns in reverse order: the
first motif is evaluated by the last block in the profile, starting with the last block

column.

4.4 Speed-up and Memory-saving Strategies

Since the model attaches a high number of secondary states to every main state
of the original model, an exhaustive evaluation of all combinations of block loca-
tions and secondary states would become prohibitively slow; therefore, most of the
secondary state entries are eliminated or shared between main states in order to
control the computational cost. Secondary scores are stored in the Viterbi matrix

dynamically, reserving memory only for nonzero entries.

Precomputing block hit collections

To prepare the search for whole blocks found on the same exon, the target sequence
is searched for block hits in parallel to the main algorithm, and the hits are stored
in collections of consecutive hits satisfying the distance conditions. Motifs that do
not score over the threshold 7 defined in the end of section [4.2] are not considered
for the collections. In practice, this commonly leads to exon candidates with very
few block hits or none at all allowed on them, preventing the vast majority of

secondary state entries to be created.

Scores for blocks truncated at exon borders are calculated only once for every
location. Furthermore, similar to the case of full blocks, truncated blocks are
subject to filtering with thresholds if they exceed a minimum length; again, this

leaves only few values for ¢ > 0 actually stored as secondary states.
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Removing dominated states

In the situation that inter-block positions u = (b,7) with ¢ < 0 are calculated, i
constrains the admissible block start on the upcoming exon(s).

We call u = (b,7) dominated by two neighbouring positions (b,7") and (b,4") if
these cover the admissible block starts defined by w.

This is the case if i < i <" and " —i’ < dP™ —d"™. If both of the dominating
profile positions have a higher score, the entry at (b,7) may be deleted from the
Viterbi table.

Pruning dead state graph branches

In order to reduce the memory needed for the extended Viterbi table, we remove
from it all entries that are not contained in any parse reaching the current DNA
location. To this end, for each entry, a counter is installed and incremented every
time the entry is maximizing the partial score for some successor state. An entry for
a secondary state is deleted if its successor count is zero at the time the algorithm
has proceded to a location in the target sequence beyond the maximal state length
from the entry. This helps saving considerable amounts of memory in predictions

on long sequences.

Sharing substate tables

As the profile location is constant throughout an intron, memory can be saved by
sharing the state tables between consecutive intron states with a fixed length. AU-
GUSTUS’ state model has intron states emitting a single nucleotide, and candidate
parses evaluated in the course of the Viterbi algorithm contain long sequences of
the single-nucleotide intron states in every long intron, mostly with identical en-
tries for secondary states, just differing by a constant factor. Instead of using
a separate copy for the secondary states attached to the main intron state, for
each nucleotide position, only the constant factor is stored, and a link to the table
containing the secondary states of the predecessor (the last DNA location that an

exon candidate contributed to the intron score).
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4.5 An algorithm for fast block search

To make it possible to run AUGUSTUS-PPX on a whole-genome scale, we devised
a fast preliminary search algorithm for determining the genomic regions that are
likely to contain genes matching the profile, without determining detailed gene
structures. The algorithm was implemented in a separate executable that can be
used before running AUGUSTUS. Given a target sequence and a protein profile,

it performs the following steps:

e Building a seed collection: For each of the 8000 possible triplets of amino
acids, the positions in the profile are stored where that triplet is likely to

occur.

e Determining block hit candidates: iterating over the target sequence, each
9-tuple is tested for being a seed. Any segment covered at least 25% by seeds
for a block is considered for exhaustive evaluation. This prefiltering step is

very fast, since it consists of a simple lookup with amino acid triples as keys.

e Exhaustive evaluation of candidates: given a block start offset, partial scores
pyj.k(@;..ar) are maximized where ag..a,,—1 is the translated DNA segment.
This interval is stored as a partial block hit if its size reaches the minimal
block width and the (partial) block threshold is exceeded.

e Assembling block hits to profile hits: each block hit is extended to a series
of block hits by joining neighbouring hits, allowing for blocks being skipped.
Using dynamic programming, sequences of block hits are determined that

are highest-scoring for all contained blocks, and returned as profile hits.
This algorithm is fast enough to be run on whole genomes with a high number of

profiles, in order to determine the regions AUGUSTUS-PPX is then run on.

4.6 Discussion

In order to take into account information about membership to protein families of

predicted genes, a block profile representing one family of interest was accepted as
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additional input to the gene prediction program AUGUSTUS. The blocks of such
a profile were mapped to the DNA, imposing length constraints and deviating
nucleotide composition to the exon model. Gene structures following the modified
model were assigned a series of secondary states.

In general, secondary states can be used to model side conditions that influence
the score of a parse. For example, constraints on the total gene length may be
imposed, or they can keep track of split intron information, for the exclusion of
spliced stop codons. Here, secondary states are aligning the profile to the exon
ends.

Except for technicalities, secondary or sub-states can be characterized by the
propery that they do not follow the Bayesian approach: While in a GHMM, an
a-priori distribution for parses is defined by transition probabilities and state
length distributions, any legal sequence of secondary states may be assigned may
be assigned to the parse, without affecting the a-priori distribution. The result
is a mixture of a Bayesian and a maximum-likelihood approach: Given a parse,
the choice of secondary state depends only on the target sequence; all secondary
sequences have the same chance to be used.

The reason for this choice is the label bias [LMPOI]: a problem occuring in
some GHMMs when states that have many successor states compete with states
that do not. The parse returned by the Viterbi algorithm is the most likely single
parse, and will less frequently contain states with many successor states, since all
these successor states have to share the “mass” coming from the predecessor. This
is especially undesired if the successor states share the same label (what the user
sees as output), and are distinguished merely to implement side constraints.

In order to assess the prediction accuracy of AUGUSTUS-PPX, it was equipped
with the profile of several protein families, and test runs were performed on
genomes at different evolutionary distances. The results showed a significant in-
crease in prediction quality, compared to the ab-initio approach, but also to com-
peting software using protein profiles. The number of genes predicted with high
accuracy showed a dramatic increase. For detailed results, see the published article

in appendix
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Appendix A

Article about SIGI-HMM

“Score-based prediction of genomic islands in prokary-
otic genomes using hidden Markov models”

published in BMC Bioinformatics (2006), 7, 142.
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Abstract

Background: Horizontal gene transfer (HGT) is considered a strong evolutionary force shaping the
content of microbial genomes in a substantial manner. It is the difference in speed enabling the rapid
adaptation to changing environmental demands that distinguishes HGT from gene genesis, duplications or
mutations. For a precise characterization, algorithms are needed that identify transfer events with high
reliability. Frequently, the transferred pieces of DNA have a considerable length, comprise several genes
and are called genomic islands (Gls) or more specifically pathogenicity or symbiotic islands.

Results: We have implemented the program SIGI-HMM that predicts Gls and the putative donor of each
individual alien gene. It is based on the analysis of codon usage (CU) of each individual gene of a genome
under study. CU of each gene is compared against a carefully selected set of CU tables representing
microbial donors or highly expressed genes. Multiple tests are used to identify putatively alien genes, to
predict putative donors and to mask putatively highly expressed genes. Thus, we determine the states and
emission probabilities of an inhomogeneous hidden Markov model working on gene level. For the
transition probabilities, we draw upon classical test theory with the intention of integrating a sensitivity
controller in a consistent manner. SIGI-HMM was written in JAVA and is publicly available. It accepts as
input any file created according to the EMBL-format.

It generates output in the common GFF format readable for genome browsers. Benchmark tests showed
that the output of SIGI-HMM is in agreement with known findings. Its predictions were both consistent
with annotated Gls and with predictions generated by different methods.

Conclusion: SIGI-HMM is a sensitive tool for the identification of Gls in microbial genomes. It allows to
interactively analyze genomes in detail and to generate or to test hypotheses about the origin of acquired
genes.
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Background

Horizontal gene transfer (HGT) is a process that results in
the acquisition of novel genes originating from perhaps
taxonomically unrelated species. This phenomenon is fre-
quent among microbes and is considered a means of rapid
adaptation to changing environmental demands [1].
Pieces of DNA acquired via HGT frequently have a consid-
erable length. These patches have been called genomic
islands (GI) or due to their role and more specifically
pathogenicity islands [2] or symbiotic islands [3].

Several methods have been developed for the prediction
of GIs based on different approaches to identify putatively
alien (pA) genes [4-12]. Each of these concepts has spe-
cific preferences and drawbacks; for recent reviews see
[13,14]. In the following, we describe an approach which
relies on the genome theory postulating a rather homoge-
neous codon usage within a genome [15]. The algorithm
exploits taxon specific differences in codon usage for the
identification of pA genes and the prediction of their puta-
tive origin. Hidden Markov models (HMMs) are a state of
the art concept in computational learning theory. A
sequence of observations is considered as being emitted
from the states of an invisible Markov chain. The Viterbi
algorithm efficiently computes a sequence of states that
have the maximal posteriori probability given a certain
sequence of observations and fixed transition and emis-
sion probabilities. The challenge in designing a HMM is
representing the real situation adequately in order to gen-
erate relevant predictions. HMM have proved useful in
many applications. In the case of predicting eukaryotic
genes, for example, the programs GENSCAN [16,17],
HMMGene [18,19], GenomeScan [20], AUGUSTUS [21],
and AUGUSTUS+ [22] are HMM-based.

It has been shown that HMMs allow to predict GIs [9]. GIs
have typically a considerable length, therefore we have
decided to implement a HMM assessing GI prediction on
the gene level. GIs can originate from a variety of a priori
unknown donors. Therefore, it is difficult to assure suffi-
cient test statistics. We will describe an approach named
SIGI-HMM. To some extent, it is based on principles intro-
duced with SIGI [23]. This program was used to analyze
individual genomes [24,25] and to study the content of
genomic islands in general [26] as well as to characterize
gene-flux between bacteria and archaea [27]. For SIGI-
HMM we substituted a heuristic approach with a HMM.
SIGI-HMM has only few parameters to adjust. The most
relevant one is a sensitivity controller which affects transi-
tions of the HMM in a consistent manner. We will dem-
onstrate and assess the performance of SIGI-FHMM by
analyzing genomes in detail.
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Implementation

We have implemented SIGI-HMM in Java as a first mod-
ule of our software suite COLOMBO intended as a work-
bench for the statistical analysis of genomic data. The
program can be downloaded from [28]. The download
package contains also the program Artemis [29], which is
used to visualize the output of SIGI-HMM. After the instal-
lation, a genomic dataset formatted in EMBL-format can
be loaded and analyzed. SIGI-HMM creates several lists
containing the predictions in GFF-format or tabulated.
Predictions are classified according to the categories
NATIVE and PUTAL. In addition, a modified EMBL-for-
matted file is generated containing both the original
annotation and the predictions. This file can be fed into
Artemis in order to color-code and visualize genome con-
tent. Thus, the user can interactively study the composi-
tion of genomes. Intentionally, only few parameters can
be manipulated by the user: The sensitivity controller and
the gap length which decides on merging single GIs to
larger ones. In addition, the user can supplement the list
of putative donors we have deduced from the CUTG data-
base (see below). The default value of the the sensitivity
controller was chosen to give predictions consistent with
published results; see Table 1. If it is known that the
genome under study contains Gls, we propose the follow-
ing approach in order to optimize sensitivity of SIGI-
HMM: Starting from a low value, sensitivity should be
increased until all known GIs appear. If new islands
emerge, they show the same degree of codon usage bias
and should be considered GIs.

Results

The following text is organized as follows: First we intro-
duce data models, the scoring system and the architecture
of the HMM. Then we evaluate the predictive power of the
algorithm and present analyses of several genomes.

Stochastic data models

Let G be a series of genes as deduced from a genome cod-
ing for proteins % . For each codon ¢ we count its occur-
rence #c in G. We define the synonymous frequency q,, €
[0,1] as the ratio of #c divided by the occurrence of the
amino acid a encoded by cin . The frequency q, € [0,1]
of cin G is defined as #c divided by the occurrence of all
codonsin .

Now let G, be a prokaryotic genome whose genomic
islands have to be predicted and let G,, G, ... G,be
genomes assumed to be the donors for pA genes occurring
in G,. We consider G, to G, as representatives of taxa

7 ,to T ,which are assumed to be the putative sources

of G,'s alien genes. For each protein (i.e. sequence of
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Table I: A comparison of pA predictions for prokaryotic species. SIGI-HMM was used to identify Gls. The accumulated length of genes
constituting Gls is given in percent in column pA DNA. This transformation allows to compare results with entries of column Foreign
DNA, which was reproduced from [41]. The column Length lists the genome size im Mbp.

Species Length [Mbp] Foreign DNA [%] pA DNA [%]
Escherichia coli K-12 4.64 12.8 9.3
Bacillus subtilis 4.21 7.5 7.6
Synechocystis PCC6803 3.57 16.6 5.0
Deinococcus radiodurans 2.65 5.2 4.8
Archaeoglobus fulgidus 2.18 5.2 42
Aeropyrum pernix 1.67 32 1.5
Thermotoga maritima 1.86 6.4 1.0
Pyrococcus horikoshii 1.74 2.7 29
Methanobacterium thermoautotrophicum 1.75 9.4 1.6
Haemophilus influenzas Rd KW20 1.83 45 1.6
Helicobacter pylori 26695 1.67 6.2 0.0
Aquifex aeolicus 1.55 9.6 1.8
Methanocaldococcus jannaschii 1.66 1.3 0.2
Treponema pallidum 1.14 3.6 0.3
Borrelia burgdorferi 091 0.1 85
Rickettsia prowazekii .11 0.0 0.0
Mycoplasma pneumoniae 0.82 1.6 3.8
Mycoplasma genitalium 0.58 0.0 0.2

amino acids) 7= a,, 4,,..., a, that is encoded by a gene g of
genome G  (given by the sequence of codons ¢,,c,,...,c,),

and for each p=0, 1, ..., 1, we define the probability

(P) .

Po(8]7)=dif) all), -

q“zcz

(p)

..-L]ancn,

(1)

where qgf € [0,1] is the synonymous frequency in

genome G ,as defined above.

Scoring scheme
We utilize the odds ratio

0 0 0
Plglx) _ oty T,
O (P)
Pp (8 | ™) qafcl .q“fcz .”"q”ffn

in the following way as a scoring scheme. The codon usage
of g originating from G ,resembles more the prevalences

of G ,if

>P0(g\7r). (2)
P,(glm)

If this is the case for some p and if

P

p* — Ell'gIIliIl PO(g | 7T) ,
pef{l,2,...1} Pp (g | ”)
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then gene g is considered to be pA originating from taxon

T p+

deducing the putative donor has previously been intro-
duced and validated [23].

represented by genome G . This principle of

How to choose the thresholds 7, , needed in Equation 27
Let 7, be the set of all theoretically possible genes cod-

ing for protein 7. For each p € {1, 2,..., 1}, we consider the
statistic

where G € ¥, is arandom element distributed according
to P, (- | 7). Having computed the mean x,and the stand-
ard deviation o, of ¢,(G), we apply the central limit theo-
1/o,(t,(G) M)
approximately distributed according to the standard nor-
mal distribution with the cumulative distribution func-

rem: The random variable is

tion ®. We determine the value 7, ,such that
Int o~ Hp
a=1-®f ———
%p

The parameter « serves as SIGI-HMM's sensitivity control-
ler. It can be adjusted by the user. Please note that the
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Prat2nat

Pgi2nat NATIVE

Phnat2gi,

Figure |

States and transition probabilities of SIGI-HMM's Markov
chain. The state NATIVE represents genes which are unsus-
picious with respect to synonymous codon frequencies. For
p=1,2,.,r, the state PUTALp models genes, whose codon

usage resembles more the prevalences of genomes G ,
which represents taxon 7 . Each transition from state x to
state y is characterized by its transition probability p,,,. In

order to model the mosaic structure of Gl composition,
transitions from any state PUTAL , to any other one PUTAL ;
are allowed.

impact of parameter o onto the decision is independent of

G,and G,

Eliminating putatively highly expressed genes

In several genomes, highly expressed genes show a specific
codon usage which deviates from the average one and
resembles codon prevalences observed in genes coding for
ribosomal proteins; see e.g. [8]. We name these genes
putatively highly expressed (PHX). On the one hand, it is
unlikely that these genes were acquired via HGT. On the
other hand, methods based on codon usage tend to clas-
sify them as pA. This needs to be prevented explicitly. We
use an approach similar to the GCB score introduced in
[30]. It was shown that this methods is one of the best to

predict gene expressivity [31]. Let q&?’rib)

be the synony-
mous codon frequencies for the ribosomal genes of

genome G ,and let

xib rib rib
Poib(8 | 7) = q,(l?cfl )-q,(fj;: )-...vqflgc? ). (3)
If
Pn o
tin(g) = &) g
Py (g1 7)
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we consider the gene g as not alien (see |2,8]).

The threshold @is determined as follows: Let 1y and g ,
be the mean values and o and o, ;;, be the standard devi-
ations of the test statistic t,;,(G), where G is distributed
according to Py(- | 7) and Py 4,(- | 7), respectively. The
distribution functions of 1/oy(t;,(G) - #4) and 1/
Oo,5ib(Lin(G) - Ho,rp,) are approximately standard normal.
We choose @in such a way that
6 — 1o xib ]

]
00,rib

Thus, the error of the first and second kind are of equal
size.

S0

Architecture of the HMM

Figure 1 depicts the architecture of the implemented
HMM. The state NATIVE corresponds to genes having an
unsuspicious codon usage. The states PUTAL,, PUTAL,,...,
PUTAL, represent putatively alien genes originating from
taxa 7 ;to 7 ,. GIs frequently have a mosaic structure
which is due to their generation in a multistep process
(see [2]). Therefore, we allow transitions from any PUTAL
(i.e. donor) state to any other one.

In order to implement our sensitivity controller, we let the
transition probabilities depend on the protein under con-
sideration. Thus, the Markov chain presented in Figure 1
is in fact an inhomogeneous one driven by the series #
of proteins encoded by G ,,. To simplify notation, we have

omitted the index 7z, which refers to the protein. Instead,
we identify a protein by its index originating from % .

Solving some linear equations, the transition probabili-
ties given in Figure 1 can be determined in such a way that

a-

Pgiogi Pna2gi,
Tpo =8P and by, = 8L

pox

pgi2na Pna2na

a and b are positive constants which were chosen appro-
priately to generate GIs which are at mean shorter than the
surrounding regions of native genes. The probabilities p,,,
correspond to transitions from state x to y (see Figure 1).

We extend the Markov chain X, X,, ..., X€ driven by the
state diagram given in Figure 1 toa HMM X,, Y|, X,, Y, ...,
X¢, Y¢in the following way: For 7= 1, 2..., €, the random
emission Y takes values in the sample space ¥, defined

above. For p = 1, 2,..., 1, the emission probabilities are
defined by means of Equation 1 as follows:
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P(Y,=g | X,=NATIVE) = Py(g | 7)
PUTAL,) = P (g | 7). (5)

and P(Y,=g|X,=

As already explained, PHX genes have to be eliminated.
Our test for putatively highly expressed genes classifies
genes as phx or -phx. In order to integrate these predic-
tions into the HMM, we interpret the outputs as a random
sequence H,, H,,..., H€ of hints. Please note that an emis-
sion is now a combination of a gene and a hint. Hints are
interpreted the following way: For the native state we
define

1 iftrib(gn) >0;

P(H, =phx| X, =NATIVE,Y, = =
(Hr = phx| X, "= &) {0 otherwise.

For p=1, 2,..., 1, the emission probability given a pA state is
defined by

P(H,= -phx | X, e {PUTAL,, PUTAL,, .., PUTAL}) = 1.

It is biological evidence, which led to the above defini-
tions. The products of highly expressed genes are involved
in complex interactions. Therefore, it is highly unlikely
that these genes can be replaced by HGT. Please note that
the algorithm has - due to our design - to consider each
hint.

Determination of the codon-specific core and atypical
genes

It might be that some pA genes originate from sources not
characterized by our set of putative donors (see below). In
order to identify these atypical genes, we determine the
codon-specific core (CSC) of a genome, which consists of
those genes having an unsuspicious codon usage. Having
chosen a protein 7 € P ,and the related geneg € G, we
consider a random element G of the set ¥, distributed

according to Py(- | 7) (see Equation 1). For the following
test, we identifed those amino acids a encoded by more
than one codon and occurring at least 5 times (n,> 5) in

the protein. For each codon ¢ which encodes amino acid
a we introduce a random variable count (G) = #c, which

follows a binomial distribution characterized by the
expected value n,,q,(}g) and variance naq((l(c))(l - naqgg)).

The statistic

count,(G) - naq,(l(g)

V2 -42)

$.(G) =

62

is approximately distributed according to the standard
normal distribution. For each 6 € (0, 1) there is exactly
one H5> 0 such that

P(|¢C(G)|zea)=z¢(—95):§,

where yis the occurrence of those amino acids considered
in this section. In analogy to [32], we name the gene g &
typical (6 € (0, 1)), if for all codons ¢

:(8)| <05

This is why the probability of being not &-typical is for a
random gene G less than or equal to 8. Setting Jto 10/¢,
where € is the number of G ,'s genes, turned out to be ade-
quate. Only few genes (< 1%) were labelled as atypical
(see Results). Therefore, the exact value of ¢ is uncritical.
This observation confirms that our selection of codon
usage tables covers the prevalences of putative donors to a
great extent.

The algorithm for computing the CSC of genome G , first
removes all genes from G ,that are not &typical. Then the
synonymous codon frequencies of the remaining genes
G\ are recomputed and the genes not &typical with
respect to the new frequencies are removed from G,
This is done as long as there are such genes in G . Our
experiments showed that this algorithm converged for all
completely sequenced genomes to a CSC G ,, containing
at least 75% of all genes. The atypical genes are those not
contained in the CSC G o

Predicting genomic islands

Using the Viterbi algorithm (see e.g. [33,34]), SIGI-HMM
computes at first the Viterbi path (i.e. the most probable
sequence of states). All genes labeled as atypical and all
genes assigned to one of the states PUTAL,(p=1, 2, ..., 1)
are considered as belonging to Gls. Since it is reasonable
to expect inside Gls genes with a codon usage similar to
native ones, GIs separated by less than four native genes
can optionally be merged. This merging distance can be
set by the user.

Selecting putative donors

For each genome G , an individual set of putative donors
G G
reduced to their specific codon usage tables, we utilized
the Codon Usage Database (CUTG) (Release 149.0, Sep-
tember 26, 2005) [35]. Those entries were extracted that

... G, has to be selected. As these donors are
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consisted of more than 6,400 codons. If a species was rep-
resented by more than one table, we took the entry sam-
pling the largest number of codons. This pre-computing
phase resulted in the selection of z = 690 codon usage
tables. Then, a z x z dissimilarity matrix D was set up. For
each pair i, j of species, we calculated the value Dij =1/2-

77; In order to compute the discriminative error 7;, we

first considered the set of all "synthetic" genes each com-
prising 50 codons. Each of the 50 codons was independ-

ently selected according to the codon frequencies qgk) . We
then determined a probability distribution P, for each spe-
cies k on this set. These distributions were utilized to
determine 77; in analogy to Equation 4.

Hierarchical divisive clustering [36] was now applied to
analyze the dissimilarity matrix D. As it was our aim to
generate clusters representing taxonomically related spe-
cies, we used the data basis of the taxonomy browser of
the NCBI [37,38] for the following procedure. First, we
eliminated all entries, which could not be related to a tax-
onomical class. Then, we generated for the initiation of
the diversification process "class"-clusters consisting of
species (i.e. synonymous codon frequency tables) belong-
ing to the same taxonomical class. To test homogeneity of
the clusters G, we computed for each entry i the average

dissimilarity diss(éw) (i) (see [39]) according to

S

In order to initiate the split of a cluster G, the element i

diss(éw)(i) = Dy.

G having the maximal diss(cav) (i) value was chosen. This

i was the first element of a new cluster H. As long as the
condition

I;IE%X( diss{) (1) — diss ) (k) ) >0

was true, the element k generating the maximal

diss(cav)(k) - disss_‘;v) (k) value was transferred from G to H.

Starting with the initial set of class-clusters described
above, the split procedure was applied to that cluster G
having maximal diameter

diamG := max D;;
i,jeG
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as long as that maximal diameter was greater than or
equal to a threshold d, (see [40]).

The procedure resulted in 7 = 99 clusters. In order to
select a typical example for each cluster, the frequency
table having the lowest dissimilarity value to the baryc-
enter of the cluster was chosen. The resulting 7 codon
usage tables were regarded as representatives for putative
sources of aliens genes.

To prevent false predictions, clusters with a composition
too similar to the input genome G, have to be elimi-

nated. Therefore, the set of 7 codon usage tables was pre-
processed during the initialization phase for G . Those
elements were deleted, whose dissimilarity to the fre-
quency table of G ;was less than a threshold d,. This pro-

cedure resulted in a G -specific set of r putative sources.

Testing performance and analyzing genomes

To assess accuracy, SIGI-HMM's predictions were com-
pared with results published in [41]. In nearly all cases,
the fraction of pA genes determined by SIGI-HMM was
lower; compare results listed in Table 1. This might be due
to the focusing of SIGI-HMM on the prediction of Gls.
However, for the genome of Borrelia burgdorferi SIGI-
HMM predicts a significantly higher fraction of pA genes.
The organization of this genome is unusual, it consists of
20 mainly linear replicons and is subject to frequent
genomic rearrangements [42]. During these reorganiza-
tion events integration of alien DNA might take place
making a larger fractions of pA genes for the B. burgdorferi
genome plausible. In the following, we report in more
detail findings deduced for genomic data sets of the fol-
lowing microbial genomes: Vibrio cholerae, Bacillus subtilis,
Escherichia coli K-12, Methanosarcina mazei, Thermus ther-
mophilus and Propionibacterium acnes. The genome of V.
cholerae consists of two chromosomes with a pronounced
asymmetry in the distribution of coding elements with
respect to the replicons [43]. Most genes required for
growth and virulence are located on chromosome I,
whereas chromosome II contains a larger fraction of
hypothetical genes.

Interestingly, SIGI-HMM predicted 4.6% pA genes for
chromosome I and 21.1% pA genes for chromosome II.
Two predicted genomic islands on chromosome I com-
prise a gene cluster for a toxin-coregulated pilus (VC0813
- VCO0845) and fragments of a temperate filamentous
phage (VC1455 - VC1457, VC1464, VC1477 - VC1481).
Both clusters are closely associated with the pathogenicity
of V. cholerae |44]. Many of the hypothetical genes
encoded on chromosome II are located within a large
integron island comprising gene products that might be
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involved in drug resistance, DNA metabolism and viru-
lence [43]. One of the predicted Gls on chromosome II,
which consists of genes VCA0283 - VCA0507, overlaps to
a great extent the integron described above. SIGI-HMM
identified two additional GIs comprising genes VCA0198
- VCA0202 and VCA0790 - VCA0797, which contain
homologs for putative transposases. As transposases are
often encoded in genetically mobile IS-elements, these
genes are likely candidates for alien genes. For both chro-
mosomes, SIGI-HMM predicts similar distributions of
putative donors. The largest fractions belong to the class
of bacilli (51% or 61%), whereas the taxonomical class of
V. cholerae, the y-proteobacteria, accounts for 34% or 37%
of all pA genes.

For B. subtilis, 10 integrated prophages have been reported
(see [4,45,46], and [47]), whose identification is based
either on experimental evidence or theoretical considera-
tions. A profound analysis of chromosomal heterogenei-
ties has been accomplished by Nicolas et al. [9], using a
HMM on the nucleotide level. All genomic islands identi-
fied by Nicolas et al. were largely confirmed by SIGI-
HMM. Both approaches detected nine of the putative
prophages and several other islands assigned to functions
in cell wall biosynthesis, competence and resistance. In
contrast to Nicolas et al., SIGI-HMM identified pA genes,
which belong to the experimentally reported integrated
prophage PBSX [47]. In summary, SIGI-HMM predicted
for B. subtilis 9.5% of the genes as being pA, most of them
originating from the class of bacilli (316 pA genes, 81%).

Based on a combination of parameters measuring compu-
tational complexity, Lawrence and Ochman [4] had esti-
mated that about 18% of the E. coli K-12 genome have
been imported via lateral gene transfer. In contrast, SIGI-
HMM predicted 580 (13.4%) pA genes which were mostly
organized in small clusters of less than ten genes. 521 pA
genes (92%) seem to originate from p-proteobacteria, the
taxonomical class E. coli belongs to. The largest Gls
included the cryptic prophages CP4-6 (262 - 297 kbp),
DLP12 (557 - 584 kbp), e14 (1,196 - 1,221), Rac (1,410
- 1,433 kbp), Qin (1,631 - 1,651 kbp), CP4-44 (2,064 —
2,069 kbp), CPS-53 (2,465 - 2,475 kbp), Eut (2,556 -
2,563 kbp), CP4-57 (2,752 - 2,775 kbp), and the phage-
like element KpLE2 (4,494 - 4,544 kbp) (for review see
[48]). 44 IS-elements have been annotated within the
genome of E. coli K-12, SIGI-HMM predicted 34 of them
correctly.

T. thermophilus is an extreme thermophilic bacterium liv-
ing as a halotolerant in an extreme ecological niche. Two
T. thermophilus strains, namely HB27 [45] and HB8 [46],
have been sequenced so far. SIGI-HMM predicted for both
strains a small fraction of pA genes (HB27 1.0%; HB8
1.7%). The largest pA cluster consists of 6 genes in case of
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HB27 (TTC0277 - TTC0278, TTC0280 - TTC0283) and ot
5 genes in case of HB8 (TTHA0644 - TTHA0648). The Gls
share no sequence similarity and contain genes that are
associated with functions in cell wall biosynthesis. Most
PA genes seem to originate from the class of the &proteo-
bacteria (HB27 5 genes; HB8 18 genes). In both genomes
no donor was predicted for 12 pA genes, respectively.

It has been suggested that HGT plays an important role in
the evolution of the mesophilic archaeon M. mazei [49].
The analysis of protein sequences via BLAST showed that
31% of the archeal sequences were more similar to bacte-
rial than to archeal ones. SIGI-HMM predicted for M.
mazei only 8.4% pA genes. Please note that the two analy-
ses used different approaches for pA prediction and that
SIGI-HMM focuses on the analysis of GIs only. These sys-
tematic differences may explain the findings. Interestingly
and in agreement with the above analysis, only 21% of the
PA genes seem to originate from the archeal domain. 27%
of the pA genes were predicted to originate from the class
of shingobacteria, 23% from chlamydia and 11% from
clostridia. This finding is also in agreement with the pos-
tulated gene flux from mesophilic bacteria to mesophilic
archaea [27].

P. acnes is a major inhabitant of the adult human skin, liv-
ing in sebaceous follicles [50]. Usually the bacterium is
harmless; however it is involved in acne vulgaris forma-
tion. The genome harbors genes whose products are
involved in degrading host molecules and pore-forming
factors. It also contains surface-associated and other
immunogenic factors, which might be responsible for
acne inanimation and other P. acnes-associated diseases.
SIGI-HMM predicted 4.1% pA genes clustered in five
larger GIs and several smaller islands of less than five
genes. 47% (45 genes) of them are predicted to originate
from the a-proteobacteria, but only 13% (12 pA genes)
from the taxonomic class of P. acnes, the actinobacteria.
Interestingly, four of the larger GIs and two of the smaller
islands are flanked by tRNA-genes in direct or close vicin-
ity. tRNAs are considered to be hot spots for recombina-
tion events that can result in horizontal gene transfer.
SIGI-HMM found these anomalies although it does not
interpret sequences besides protein coding genes. Of the
larger GIs, the first (at position 28 - 34 kbp) contains
genes without functional assignment, the second (874 -
880 kbp) harbors genes for several transport systems
among others for iron(I1I)dicitrate (PPA0792 - PPA0794)
and the third (921 - 941 kbp) for an ABC-type transport
system (PPA0843 - PPA0845), putative conjugal transfer
proteins (PPA0846 - PPA0848) and two putative trans-
posases (PPA2354, PPA0858). The forth GI (1,390 -
1,407 kbp) contains a gene cluster for a putative non-
ribosomal peptide synthetase (NRPS) (PPA1287
PPA1290). NRPSs are involved in the biosynthesis of
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Kernel-based scatter plot visualization of SIGI-HMM predic-
tions for E. coli K-12. Blue points (PUTAL) represent pA
genes as predicted by SIGI-HMM, red points (PUTAL LIT)
indicate predicted pA genes with additional evidence from
the current literature as described in the text. Yellow points
(NATIVE / PHX) refer to genes which are predicted to be
native or highly expressed.

complex secondary metabolites. As many of the genes
clustered in the fifth GI (1,707 - 1,731 kbp) are annotated
as phage-associated proteins (PPA1593 - PPA1596,
PPA1604 - PPA1605), the GI may be attributed to an inte-
grated prophage.
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Figure 3

Kernel-based scatter plot visualization of SIGI-HMM predic-
tions for T. thermophilus. Blue points (PUTAL) represent pA
genes as predicted by SIGI-HMM, red points (PUTAL LIT)
indicate predicted pA genes with additional evidence from
the current literature as described in the text. Yellow points
(NATIVE / PHX) refer to genes which are predicted to be
native or highly expressed.
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Kernel-based scatter plot visualization of SIGI-HMM predic-
tions for V. cholerae (chromosome ll). Blue points (PUTAL)
represent pA genes as predicted by SIGI-HMM, red points
(PUTAL LIT) indicate predicted pA genes with additional evi-
dence from the current literature as described in the text.
Yellow points (NATIVE / PHX) refer to genes which are pre-
dicted to be native or highly expressed.

For visualization of the HMM-based predictions we use
scatter plot repesentations providing an overview of
codon usage similarities between all genes of a genome.
By means of a newly developed kernel for measuring sim-
ilarity of codon usage tables [51], we perform a kernel
principal component analysis (see e.g. [52]) to compute
the resulting 2D coordinates of all genes. In that represen-
tation, nearby points indicate a similar codon usage of the
corresponding genes. It is important to note that the ker-
nel-based approach does not use any information about
the location of genes on the genome. Instead, codon usage
correlations between different amino acids are used to
derive the two-dimensional representation. This approach
is different from the concept of SIGI-HMM. Therefore, a
clustering of SIGI-HMM predicted pA genes which
becomes visible in the scatter plots (see Figure 2, 3, and 4)
confirms the corresponding predictions.

Figure 2 is a plot of all genes of the E. coli K-12 genome.
The general form resembles the "rabbit head" trimodal
shape described earlier for the genome of B. subtilis [53].
Most genes belonging to integrated prophages are located
in the lower left "ear". PHX genes are clustered in the
lower right corner.

T. thermophilus is one of the genomes with lowest pA con-
tent. The plot depicted in Figure 3 represents the genome
of T. thermophilus and has a quite specific shape. This find-
ing indicates that the overall shape of the plot is massively
modulated by the fraction of genes acquired via HGT. The
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Table 2: Prophages and prophage-like elements integrated into
the genome of B. subtilis. Column | lists the elements flanked by
sequence repeats. Column 2 gives the location of the repeats.
Column 3 and 4 list the number of pA and pN genes predicted
for these Gls by SIGI-HMM. The two last columns indicate the
offset of the Gl from the sequence repeats. An offset of -| means
that the Gl predicted by SIGI-HMM starts (ends) one gene after
(before) the repeat. Positions are as in [9] and given in kbp.

Element Repeats #pA #pN Offset Begin  Offset End
Pl 202-213 10 | 0 -1
P2 555 - 567 10 | -1 0
P6 2050 - 2060 9 0 0 0
Skin 2654-2701 32 31 0 0
P7 2725 - 2735 7 6 -6 0

PA genes as predicted by SIGI-HMM are mainly located in
a long tail with low point density on the right hand side
of the plot.

As already mentioned, the genome of V. cholerae consists
of two chromosomes. Most essential genes are located on
chromosome I and codon usage of genes on chromosome
II is rather inhomogeneous. Again, the overall shape of
the plot, which represents chromosome II, reflects this sit-
uation (compare Figure 4) and shows a well-clustering
fraction of pA genes located in the lower left corner of the
plot. Please note that the positioning of pA genes pre-
dicted by SIGI-HMM only and those pA genes supported
by additional evidence from the literature corresponds to
a great extent in all plots.

Assessing the patchiness of Gls

Genomic islands are thought to be the result of constant
genetic rearrangement events, which account for their
observed mosaic structure. As these rearrangements could
also take place at hot spots for the integration of alien
DNA in the host genome, patches of genes having a codon
usage similar to the host have to be expected inside Gls.
This fact makes it difficult to determine the number of
false negatives, even in annotated Gls. The number of
false positives is difficult to deduce too, as it is hard to
proof that a stretch of pA genes has not been acquired via
HGT. In order to illustrate the problem and the patchiness
of GIs, we compare in more detail some predictions with
published findings.

Chromosome II of V. cholerae contains an integron island
of size 125.3 kbp, which includes genes VCA0271 to
VCAO0491 [43]. Of these 214 genes, SIGI-HMM labels 188
as pA (87%), 1 as AT (atypical) and 25 as pN (putatively
native). SIGI-HMM did subdivide the integron island into
the following patches: VCA0271 VCA0282 pN,
VCA0283 - VCA0286 pA, VCA0287 - VCA0291 pN,
VCA0292 - VCA0324 pA, VCA0325 - VCA0329 pN,
VCA0330 - VCA0379 pA, VCA0380 - VCAO0385 pN,
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VCA0386 - VCA0507 pA. From the remaining 611 genes
on the chromosome, 42 were predicted as pA.

The chromosome of Mesorhizobium loti consists of 6.725
protein coding genes. It contains a 611 kbp DNA segment
which is, as the authors put it, "a highly probable candi-
date of a symbiotic island" [3]. SIGI-HMM predicted
5.561 genes as pN, 1.161 (17%) as pA and 30 as AT. Of
the symbiotic island, 145 genes were pN, 421 pA (72%)
and 14 AT. The pA genes were clustered in 29 GIs ranging
in size from 2 to 108 genes.

As already mentioned, ten integrated prophages or
prophage-like elements were reported for the genome of
B. subtilis |9]. Five of these elements are flanked by
sequence repeats which we considered as the original inte-
grations sites indicating the actual borders of the GIs.
Table 2 summarizes composition and location of related
GIs predicted by SIGI-HMM. Skin prophage and P7 have
a mosaic structure and harbour » 50% pN genes. In four
of the five cases, the borders of the predicted GIs are in
good agreement with the location of the repeats.

Discussion

Analysis of codon usage reliably allows to identify most
HGT events

We have to stress that our approach entirely relies on the
analysis of codon usage. SIGI-HMM does not interpret
additional signals like direct repeats or disrupted tRNA
sequences frequently flanking Gls. Therefore, the out-
come of the HMM analysis are DNA regions showing
atypical codon usage. This fact has two consequences: 1)
SIGI-HMM is unable to identify GIs having an unsuspi-
cious codon usage and 2) the rationale of naming these
stretches GIs merely depends on the correlation with bio-
logical findings.

However, we have shown that DNA regions identified by
SIGI-HMM as suspicious correspond to known cases of
horizontally transferred elements like phages. Our
approach of focusing on the analysis of codon usage is not
a completely new one. There exist several methods to
identify horizontally transferred genes. These approaches
rely on the analysis of codon or amino acid sequences or
the construction of phylogenetic trees. For a comparison
see e.g. [14]. Each approach has individual drawbacks and
it might be that each method identifies a specific class of
genes acquired in a different time of genome evolution
[13]. It was argued that codon usage is no reliable indica-
tor for the study of HGT [54]. However, it was shown that
related methods identify pA genes to a great extent [55].
The assumption that methods analyzing codon usage
might overlook horizontally acquired genes could be
valid for more ancient events. For these genes, the effect of
amelioration [56] might have rendered codon usage
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unsuspicious. Lawrence and Ochman estimated the age ot
imported genes [4]. Their conclusion was that most were
relatively recent, i.e. acquired within the last few million
years; see also [57]. This suggests that older imports have
been purged presumably because the acquired genes did
not improve fitness. If this argument is true, there is no
need to search for larger amounts of ancient pA genes.
Therefore, methods based on the analysis of codon usage
should have the potential of identifying a great fraction of
horizontally transferred genes. Low values of pA content
can frequently be explained with biological findings. It
was argued that species populating extreme ecological
niches tend to have relative small genomes [58]. The size
of the sequenced T. thermophilus genomes support this
notion. If selective pressure minimizes genome size, it will
also effect acquisition and conservation of foreign DNA.
The low fraction of pA genes determined for both strains
is in agreement with the above hypothesis.

The methods will fail at alien genes having a codon usage
undistinguishable from the host's preferences. Among
them might be ancient pA genes. Because of the ameliora-
tion process, ancient pA genes are harder to detect. These
PA genes, surviving the selection process may actually
constitute important and useful genes. In order to com-
plete the set of identified HGT events and to reduce the
number of false negatives, it will be necessary to use a
completely different approach like the construction of
phylogenetic trees.

If not processed correctly, highly expressed genes could be
a source for false positive predictions. It is known that
these genes show a distinct codon usage by preferring a
species-specific set of major codons. In order to reduce the
rate of false positive predictions, we use a filter which is
based on a method [30] shown to be effective in predict-
ing gene expressivity [31]. We have adjusted the parame-
ters (see Equation 4) in such a way that the errors of the
first and second kind are equally likely. Highly expressed
genes belong to the core of a genome and it is unlikely
that these genes are subject to HGT. Nevertheless, the user
may disable this filter in order to study its influence on GI
prediction.

Focusing on the prediction of Gls is biologically reasonable

and reduces the risk of false predictions

Intrinsically, increasing the sensitivity of a test also
increases the risk of predicting false positives. For the pre-
diction of pA genes, the risk can however be minimized, if
an algorithm focuses on the prediction of genomic islands
as SIGI-HMM does. The pieces of DNA acquired via HGT
typically have a considerable length. Examples are the
symbiotic island of size 611 kbp described for the genome
of M. loti or the integron island of size 125 kbp found on
chromosome II of V. cholerae (see Results). Genes respon-
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sible for pathogenicity are also agglomerated in islands;
see [2] and references therein. Therefore, a focusing on
predicting Gls rather than all pA genes is an appropriate
strategy to avoid false positives without missing relevant
HGT events. Consequently, this argument was considered
for the design of recently introduced algorithms [23,59].
However, the rate of false positive predictions will
increase, if codon usage of a genome is inhomogeneous.
To avoid this situation, it is important, to determine the
CSC of a genome.

Codon usage is a reliable indicator to predict the origin of
pA genes

For each completely sequenced genome, we have com-
puted a variant of the CSC defined above; see [60]. It con-
sisted of those genes having a homogeneous codon usage.
The results obtained with the classification of genes from
CSCs show that codon usage hints at the origin of genes.
First tests indicate that prediction quality is high, as long
as the CSC contains at least 70% of the genes. In addition,
the results of performance tests (see [23]) carried out to
demonstrate SIGI's ability of predicting the putative
donor are also valid for SIGI-HMM.

Omelchenko et al. [61] used BLAST on the protein level to
determine HGT events in the genome of T. thermophilus
HB27. The protein sequences of many genes were similar
to those of hyperthermophilic archaea. Taxonomical clas-
sification of donors for genes constituting Gls predicted
by SIGI-HMM was rather inhomogeneous. The putative
donors belonged to bacteria, archaea and eukaryota. It
will be necessary to evaluate methods for pA prediction
with a standardized test bed. Artificial genomes as intro-
duced recently [62] may constitute the basis for such a val-
idation, which may lead to a contest of methods for pA
prediction.

Conclusion

An inhomogeneous HMM on gene level allows to identify
GIs in microbial genomes and to predict the putative
donor of horizontally transferred genes. The predictions
are consistent with known findings and do not depend on
the optimization of many parameters. Our implementa-
tion as a freely available tool written in Java allows an
independent inspection of genomes in great detail. The
genome-specific predictions can be used for further anal-
ysis or the comparison of several methods.
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Abstract

Background: For many types of analyses, data about gene structure and locations of non-coding
regions of genes are required. Although a vast amount of genomic sequence data is available,
precise annotation of genes is lacking behind. Finding the corresponding gene of a given protein
sequence by means of conventional tools is error prone, and cannot be completed without manual
inspection, which is time consuming and requires considerable experience.

Results: Scipio is a tool based on the alignment program BLAT to determine the precise gene
structure given a protein sequence and a genome sequence. It identifies intron-exon borders and
splice sites and is able to cope with sequencing errors and genes spanning several contigs in
genomes that have not yet been assembled to supercontigs or chromosomes. Instead of producing
a set of hits with varying confidence, Scipio gives the user a coherent summary of locations on the
genome that code for the query protein. The output contains information about discrepancies that
may result from sequencing errors. Scipio has also successfully been used to find homologous genes
in closely related species. Scipio was tested with 979 protein queries against 16 arthropod genomes
(intra species search). For cross-species annotation, Scipio was used to annotate 40 genes from
Homo sapiens in the primates Pongo pygmaeus abelii and Callithrix jacchus. The prediction quality of
Scipio was tested in a comparative study against that of BLAT and the well established program
Exonerate.

Conclusion: Scipio is able to precisely map a protein query onto a genome. Even in cases when
there are many sequencing errors, or when incomplete genome assemblies lead to hits that stretch
across multiple target sequences, it very often provides the user with the correct determination of
intron-exon borders and splice sites, showing an improved prediction accuracy compared to BLAT
and Exonerate. Apart from being able to find genes in the genome that encode the query protein,
Scipio can also be used to annotate genes in closely related species.
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Background

In the post-genome era, sequence data is the entry point
for many studies. Often, it is essential to obtain the correct
genomic DNA sequences of eukaryotic genes because of
the information contained in non-coding regions. For
example, the intron regions contain important sites for
the regulation of gene transcription, like enhancers,
repressors, and silencers [1]. Transcription initiator
sequences are located upstream from the target gene [2].
The determination of the exon/intron structures of genes
is also important in comparative genomic analyses like
the identification of ancient exons [3].

Today, over 340 eukaryotic genome sequencing projects
have resulted in genome assemblies [4]. For many of these
project, genomic sequences of genes are only available by
ab-initio gene predictions, if at all. However, it has been
shown that automatically annotated sequences are often
wrong because of sequencing and assembly errors, and
mispredictions of exons and introns [5]. Correct protein
sequences have in many cases been derived from manual
annotation of the genes of interest or from full-length
cDNAs. But experimentally obtained cDNA sequences
often do not completely correspond to annotated genes,
for example because previously undescribed alternative
splice forms have been isolated. In many cases, it might
also be interesting to look at the genes of evolutionary
closely related species. If these species have not been
annotated yet, it is, however, very time-consuming to
identify and manually annotate the corresponding
homologous genes.

Currently, a few programs are available for the retrieval of
non-coding sequence. The Java application Retrieval of
Regulative Regions (RRE) parses annotation and homol-
ogy data from NCBI [6]. RRE requires local installation
and local copies of the desired genome and annotation
files. The web application of RRE only hosts a small
number of eukaryotic genomes and annotation data only
from NCBI. Recently, the non-coding sequences retrieval
system (NCSRS) has been published [7] that has 16
genomes and annotation data from both NCBI and
Ensembl [8]. In summary, both tools rely on annotation
files provided by NCBI and Ensembl, with all possible
errors, for only a few organisms. In addition, Ensembl and
the UCSC browser [9] allow to search for genes and to
recover any part of the gene of interest. When searching
with descriptive terms, accession numbers, or other search
terms the output is mainly based on results of gene predic-
tion programs, often supported by evidence from cDNA
or manual curation. Both web-interfaces also allow
searching the genomes with any protein query with either
BLAST or BLAT. However, the quality of the resulting gene
structure is limited by these programs. There are also fur-
ther species-specific genome pages that offer retrieving the
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genomic DNA corresponding to search terms. But there is
no service offering the retrieval of the gene structures cor-
responding to protein queries of almost all sequenced and
assembled eukaryotic genomes.

If transcript or protein sequences are available, the task of
automatic identification of gene-related sequences can be
accomplished by spliced alignment tools much more
accurately and faster than, for example, by ab initio gene
prediction. Splign [10] is a program that aligns a cDNA
query determining the exact location of splice sites. Gene-
Wise [11] uses protein queries. The most notable tools
that can do both are Exonerate [12], partly based on the
algorithm used in GeneWise, and BLAT [13]. The suitable
variants of BLAST [14] (TBLASTN etc.) are probably still
the most widely used tools for the task, though they are
more useful for detecting weak homology and yield sepa-
rate contiguous hits rather than a single complete spliced
alignment. All approaches have in common a tradeoff
between high speed that can only be reached using heuris-
tics, and optimal accuracy that can only be achieved by
exact algorithms that are prohibitively slow for many
applications. Exonerate is very flexible as it implements a
variety of models to choose from in a particular setting.
BLAT is specialized on queries with high sequence similar-
ity, and is considered the fastest tool for this task.

An accurate protein spliced alignment tool is particularly
useful when a c¢DNA sequencing project precedes a
genome sequencing project. In those cases, protein
sequences can be constructed using the cDNA but the
genomic location of the exons and introns is yet
unknown. If the genome assemby is fragmented and
genes are split onto different contigs, then any gene-find-
ing or alignment method that considers each contig sepa-
rately makes insufficient use of the available protein
sequence information. Here, a spliced alignment should
take contig-spanning introns and exons into account for
maximal accuracy at the contig boundaries. Another
application scenario for accurate protein spliced align-
ment is the problem of annotating a new assembly of an
already annotated genome. Frequently, a complete re-
annotation is time-consuming as it often requires differ-
ent groups to run different gene finders and integrating all
available evidence. Simply mapping the previously
known protein sequences to the new genome is a fast and
easy alternative, at least for those genes that can be
mapped with 100% identity.

Some sequencing approaches sequence only filtered
genomic regions that are enriched for genes like the
methyl-filtrated sequencing or high-cot analysis used for
many plants (e.g. maize and tobacco). In these cases the
assembly will remain fragmented and many genes are
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split up onto ditterent contigs, requiring that a spliced
alignment tool takes this fragmentation into account.

Here, we present Scipio, a tool for the retrieval of the
genome sequence corresponding to a protein query. It
uses BLAT to perform a spliced alignment that results in a
list of candidate hits, which are then refined, filtered and
assembled to produce a prediction as accurate as possible.
No annotation data is required, and genes are identified
correctly even if they span several genome contigs, and
contain mismatches and frameshifts. With these capabili-
ties, Scipio is not only able to correctly identify the gene
in the genome corresponding to the protein query but
also to identify homologous genes in the genomes of
closely related organisms. Moreover, it provides a compre-
hensive output, both machine- and human-readable,
already containing the genomic sequences searched for.

Implementation

In most instances, the task of determining the gene struc-
ture of a query protein within a DNA target sequence is a
special case of the search for a spliced alignment. Since
several tools performing this task have already been avail-
able for a long time, writing another one would mean
reinventing the wheel. Our choice was to depend on a
BLAT search.

However, in the example of BLAT, when performing a
search for the protein in the translated DNA, the output
does not coincide with the exon structure of a single gene.
Usually, multiple hits are found for each query, varying in
accuracy, and exon boundaries are given only on amino
acid level, missing those codons that are split by introns.
Hence, manual processing was still needed until now in
the majority of cases to determine the exact location of the
query. In cases where the genomic sequence is in an early
stage of the assembly process, several parts of one particu-
lar gene are often found on different target sequences
(contigs), making this task very tedious and time consum-
ing.

The Scipio script

We designed the perl script Scipio to automate this proc-
ess and output the results in both human- and machine-
readable output formats [see Additional file 1]. The sum-
mary of the process is depicted in the diagram in Fig. 1.
We chose to run BLAT to provide us with the spliced align-
ments because it is specialized for the case of high
sequence identity, which is obviously the case when locat-
ing genes of the same species (where mismatches are
mainly due to sequencing errors), but it turned out to be
very applicable also for the case of closely related species.
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Stage one: hit refinement

After running BLAT, Scipio processes the query protein
and target DNA sequences, and the file containing the
BLAT hits. In the first stage, each hit is then "refined" by a
number of steps. A BLAT hit is a collection of consecutive
matchings of the protein sequence aligned to the trans-
lated DNA. We do not want to include hits with low qual-
ity. Therefore, everything with an accuracy below a given
threshold is discarded at this stage. The refinement then
consists of the following steps:

e Unaligned parts of the target sequence between the
matchings that form a BLAT hit are analysed. A hit is only
likely to be considered if they consist of a longer piece of
DNA corresponding to at most one residue of the query,
so they can be regarded as introns. Scipio tries to deter-
mine the exact location of the splice site by looking for a
known splice site pattern (see below). This way, codons
that are split by an intron, and are only joined after splic-
ing, can be revealed. In cases where all residues are aligned
by BLAT but a splice site pattern is missing, Scipio tries to
improve the prediction by shifting the splice sites in single
nucleotide steps. If an exact location can not be found, a
heuristic is used to determine a trade-off between the
number of additional mismatches and the presence of the
splice site pattern.

e In addition, two more types of unaligned target
sequence are distinguished: First, actual gaps with signifi-
cant parts of the query sequence unaligned (mostly due to
low coverage of sequencing resulting in gaps between con-
tigs represented by contiguous N's in supercontigs/chro-
mosomes). Second, short gaps resulting from sequencing
and assembly errors leading to additional or missing
bases or codons, with or without a frameshift. Additional
DNA in this case is not interpreted as intron an but as a
sequence shift of the query against the target.

e Scipio tries to locate very short exons where the BLAT hit
misses parts of the query sequence. This is done by simple
pattern matching. Thus only pieces with full identity are
added. Terminal exons are added only when an intact
splice site is found.

The filtering during the first stage ensures that nothing
will be shown that cannot be regarded as a good match. If
no hit is left after filtering, Scipio simply considers the
gene non-existent in the target sequence, and no further
processing is done.

Stage two: hit filtering and assembly

All BLAT hits that survive the first stage are subsequently
filtered in the second stage to determine those that form
the gene corresponding to the protein query. If only com-
plete chromosomes were considered, one could expect a
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The Scipio workflow. This diagram depicts the data flow
of a Scipio run. Scipio needs two FASTA files as input, one
containing the protein query and one containing the genome
sequence. Scipio starts BLAT and processes the BLAT results
in a series of steps, successively refining and assembling the
hits. Scipio's output is a YAML file, which can further be con-
verted into a GFF file or a log file. YAML files can also be
manually edited and read by a parser of which many exist for
all modern programming languages. The resulting data struc-
ture can then be further processed.

Hit Assembly
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Output
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single optimal BLAT hit coinciding with that gene; how-
ever, in cases without a complete assembly, partial hits on
different targets need to be taken into account.

First, all hits are sorted by a score proportional to the
number of matches, with a penalty subtracted for each
mismatch. Second, all incompatible hits are discarded in
the order just determined. Hits are incompatible if their
queries overlap but their targets do not. An exception is
the complete identity on DNA level at the ends of two
contigs. This could result from an incomplete assembly,
and the possibility of an overlap is taken into account. At
the end of this step, we come out with a small number
(usually just one) of non-overlapping hits forming the
best gene candidate.

The final part of stage two is another refinement step: by
assembling multiple hits, sequence parts may have been
identified as parts of an intron that is split on different tar-
gets, the first half at the end of one target, the second at the
beginning of the next. After the assembly Scipio uses the
same method as in stage one to determine the exact splice
site locations.

Output
The output contains target names, and location coordi-
nates (genomic and protein) of all features: introns,
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exons, and gaps; exons can have sub-features: sequence
shifts, mismatches, or undetermined positions. In addi-
tion, it contains the genomic DNA for all regions (includ-
ing up- and downstream of the hit) and the translation of
the coding sequence.

For the output format we defined two essential require-
ments: Human readability and machine readability. We
chose YAML as it is a format that is complex enough to
express our data structures and at the same time simple
enough to be human readable and editable. YAML can be
parsed easily and has numerous bindings to any modern
programming language. The resulting native data struc-
tures can be used to further process the data generated by
Scipio.

Conversion tools
Scipio provides two tools to convert YAML files:

e yaml2log: Converts YAML files into an easily readable
log file with summary information about the results and
clearly arranged sequence alignments.

e yaml2gff: Converts YAML files into GFF Format which
can be read by a wide range of genome-related software
packages.

Results and discussion

In many biological studies, protein sequences have been
obtained by isolating mRNAs and sequencing the reverse-
transcribed ¢cDNAs. Also, large-scale cDNA sequencing
projects resulted in thousands of supposed-to-be full-
length cDNA sequences for some eukaryotes [15,16]. Pro-
tein sequences might have also been obtained by manual
annotation. Sets of genomic DNA sequences of genes exist
for some annotation projects. However, for many eukary-
otic sequencing projects, the annotation process is lacking
years behind the sequencing and assembly. In addition,
experimentally obtained cDNA sequences often differ
from annotated sequences because new alternatively
spliced forms have been isolated. Therefore, for subse-
quent studies it might be useful or crucial to obtain the
genomic DNA and the gene structure corresponding to the
protein of interest.

Scipio has been designed for this task, and based on its
differentiated processing capabilities it is able to cope
with genes spanning multiple contigs as well as various
kinds of sequencing and assembly errors. Scipio has been
developed for the correct identification of eukaryotic
genes. It can also be used for bacterial and archaeal genes
although these genes are easily identified manually based
on their simple single-exon structure. Depending on the
similarity of the protein sequences, Scipio is also often
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able to correctly identity homologous genes in closely
related organisms.

We have implemented the following features:

A. If the query is distributed on several targets, the target
contigs will be assembled guided by the alignments to the
query. Untranslated regions from the last exon on a contig
to the contig end and from the beginning of the next con-
tig to the next exon are regarded as intronic. Scipio is also
able to resolve overlapping contig ends if they consist of
coding sequence, hence contributing to an improvement
of the assembly.

B. The yaml2log script identifies cases from a list of align-
ment discrepancies and mismatches between query and
target sequence that can result from sequencing/assembly
errors (Figure 2). The simplest case is that amino acids dif-
fer (cases 1 to 3), or that they are missing in either the tar-
get or the query (cases 4 and 5). Sequencing/assembly
errors may lead to additional or missing bases. These
frameshifts are represented by an X in the translation cor-
responding to one or two nucleotides. The query sequence
might have either been obtained from cDNA sources thus
leading to a mismatch between query and translated tar-
get (cases 6, 8, 10, and 12), or the sequencing errors might
have already been interpreted represented by an X in the
query (cases 7, 9, 11, and 13). The target sequence might
also contain in-frame stop codons (cases 14 to 17). These
can be the result of sequencing errors or real stop codons
as they appear in pseudogenes. In all these cases, the stop
codon is shown as an asterisk ('*') in the translation.

C. Scipio interprets splice site patterns to determine intron
locations. Exons borders are chosen so that the splice sites
belong to one of the following classes, in decreasing pri-
ority: GT-AG, GC-AG, AT-AC, GA-AG, GG-AG. In cases
where the translation of the adjacent intronic sequence
was identical to the query, it was necessary to shift the
intron location predicted by BLAT by several codons to
determine the splice site location.

D. Scipio searches for stop codons at the end of genes.
This helps evaluating the completeness of the query
sequence.

E. Scipio tries to locate very short exons that are not recog-
nized by BLAT. These short exons might either appear in-
between longer exons or at the ends of the gene. For exam-
ple, very often genes start with an N-terminal methionine
that is the only translated codon in the first exon. Scipio
locates N-terminal methionines only if matching splice
sites are found.

5

Insect genomes

To develop and test Scipio we used a test set of 16 arthro-
pod genomes and a set of 979 proteins (Figure 3). The
genome sequences (the newest collections of contigs as
submitted to NCBI) differ in quality and completeness
and are thus representative for straight-forward and for
difficult identifications of the genes.

Drosophila melanogaster is an example of a perfect genome
sequence with all reads assembled to chromosomes and
almost all gaps closed. Bombyx mori p50T was used as
example for a very preliminary assembly with many short
contigs. The other genome sequences represent all stages
in-between these extreme cases. For example, the
genomes of Drosophila persimilis and Drosophila sechellia
are quite complete which is visible from their number of
contigs, but they have a low sequence coverage and/or
contain many sequencing errors leading to high numbers
of mismatches and frameshifts in the identified genes
(Figure 3). In total, almost all query sequences have been
identified correctly by Scipio (90.9 %), although many are
spread on several target contigs (e.g. see Aedes aegyptii and
Culex pipiens). 4.7 % of the genes have correctly been iden-
tified but the target DNA sequence contains sequencing or
assembly errors. Another 1.7 % has not completely been
found with the standard BLAT settings (BLAT tilesize of 5)
because these genes contain very short exons. After chang-
ing the BLAT tilesize to 3 or 4 these genes have also com-
pletely been identified. Further 1.7 % of the genes could
not be identified correctly, because the query sequence
has been derived from manual annotation thus having
incorporated EST data, data from other genome assem-
blies (e.g. newer data from the sequencing centers), or
errors in the manual annotation process. E.g., the Bombyx
mori p50T genome data is very incomplete but a lot of EST
data is available. Thus, the query protein sequences have
been built to a large part on these EST data. EST data has
also been used to close gaps in the Apis mellifera and Dro-
sophila virilis genomes. Errors resulting from this process
are not due to problems in the implementation of Scipio.
Two sequences (0.2 %) could not be identified correctly,
because the genome sequences shows an large number of
sequencing errors resulting in a succession of frame shifts
in this particular region. The query protein sequences
have correctly been identified based on EST data. The
remaining 7 sequences (0.7 %) contain very long overlap-
ping regions due to problems in the genome assemblies.
Currently, Scipio handles overlapping hits by choosing
the one with the higher overall score, in some cases dis-
carding the one with fewer mismatches in the overlap
region. The other cases in which Scipio did not resolve the
complete gene structure are those, where a frame shift
exists very close to an intron border. BLAT does not
include the stretches past the frameshifts since they are
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Figure 2

Types of discrepancies. This chart lists all types of discrepancies between the protein query and target translation/DNA that

1: mismatch

gDNA AAA ttt GGG

translation K F G
x|

query K A G

2: undetermined query
gDNA AAA ttt GGG
translation K F G

query K X G

4: additional codon in target
gDNA AAA ttt GGG
translation K F G

query K - G

6: frameshift (+1) target only
gDNA AAA t-- GGG
translation K X G

query K - G

8: frameshift (+2) target only
gDNA ARA tt- GGG
translation K X G

query K - G

10: frameshift (-2) target only
gDNA AAA t-- GGG
translation K X G

query K A G

12: frameshift (-1) target only
gDNA AAA tt- GGG
translation K X G

query K A G

14: stopcodon target/query
gDNA AAA tag GGG
translation K * G

query K * G

16:
gDNA AAA tag GGG
translation K * G

query K X G

stopcodon, undetermined query

3: undetermined target
gDNA AAA nnn GGG
translation K X G

query K A G

5: unmatched query

gDNA AAA --- GGG
translation K - G
query K A G

7: frameshift (+1) target/query
gDNA AAA t-- GGG
translation K X G

query X - G

9: frameshift (+2) target/query
gDNA AAA tt- GGG
translation K X G

query X - G

11: frameshift (-2) target/query
gDNA ARA t-- GGG
translation K X G

query K X G

13: frameshift (-1) target/query
gDNA AAA tt- GGG
translation K X G

query K X G

15: stopcodon, target only

gDNA AAA tag GGG

translation K * G
x|

query K D G

17: additional stopcodon
gDNA AAA tag GGG
translation K * G

query K - G

are known to Scipio. The identifiers as written into the log files are given.
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smaller than the tile size used for searching. Scipio was
not able to place the missing residues between the exons.

Cross species search

To test the ability of Scipio to correctly predict ortholo-
gous genes in closely related organisms we have anno-
tated the myosins in the recently assembled primates
Pongo pygmaeus abelii and Callithrix jacchus [17]. As a
query, we used the 40 manually annotated myosins from
Homo sapiens [5], which can be obtained from CyMoBase
[18,19]. Although the genome assembly is not complete
and most of the sequencing/assembly errors described
above have been seen, Scipio correctly predicted and iden-
tified most orthologs of the human myosins in the two
primates and located all parts of the genes if they were dis-
tributed on several target contigs, It also correctly identi-
fied two rare splice sites (AT-AC and GG-AG) that are
specific for vertebrate sequences in two myosin classes. In
the tails of the class-15 and class-35 myosins very small
and divergent gaps had to be filled manually.

Figure 4A, shows the completeness compared to the
sequence of the human ortholog and demonstrates the
incompleteness of the genome sequences of Pongo pyg-
maeus abelii and Callithrix jacchus. Figure 4B and 4C show
how gene completeness as determined by manual annota-
tion depends on sequence identity. Exceptionally low val-
ues are largely due to gaps in the genome sequence (see
Figure 4A), values exceeding 100% are due to stretches in
homologous genes that were found by Scipio. Compari-
son between Figure 4B and 4C illustrates how a more
thorough search can improve the recognition accuracy of
'difficult’ genes (e.g. genes with very short exons) but at
the same adds false positive exons to genes.

Comparison with existing tools

To assess the improvement on prediction quality that
Scipio achieves, a comparative study was carried out with
a selection of genomes varying in size and quality of
assembly (Table 1). Running Scipio, standalone BLAT,
and Exonerate, a number of myosin and kinesin queries
were searched for in these genomic sequences.

Table 2 shows the accuracy on amino acid level. The
improvement over BLAT is mainly due to the identifica-
tion of split codons at intron boundaries. BLAT is only
able to align unbroken codons, but will predict split
codons as (false) matches whenever the splice site
matches the query sequence. By the postprocessing, Scipio
was able to reduce the number of residues missed by BLAT
(including false positives) from 2.16 % to 1.67 %.
Depending on the quality of the genomic sequences
(some of which contained frameshifts, undetermined
nucleotides, or even lacked larger parts), this is already the
best that can be achieved theoretically; in the example of
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Drosophila melanogaster where complete chromosomes
were available, 100 % of the residues could be matched.

Exonerate is able to find introns with exact boundaries.
Hence, its accuracy is somewhat higher than BLAT's. How-
ever, in our setting, Exonerate had running times of about
three to ten times longer than Scipio. Scipio adds less than
ten percent to BLAT's running time.

It is important to note that manual postprocessing of
BLAT's and Exonerate's results was used to gain compara-
ble values: while BLAT and Exonerate come out with a col-
lection of possibly overlapping hits with strongly varying
accuracy, Scipio is able to filter and assemble non-over-
lapping partial hits on multiple targets together to a single
prediction for each query sequence. This additional fea-
ture of Scipio had to be emulated by manually choosing a
collection of best-scoring hits without large overlaps, and
adding up the numbers of matches found, from the out-
puts of the two other programs.

In the case of a genome in a very early stage of assembly
(here: the silkworm Bombyx mori), this assembling of hits
increased the number of matching residues found to 92 %
from 64 % which would be found taking only a single hit
for each query. In the genome of Macaca mulatta, although
target sequences were complete chromosomes, Exonerate
still failed sometimes to return a single hit comprising the
entire query sequence, and hence assembling of partial
hits increased the number of residues found here, too.
Manual inspection showed that Scipio produced false
positives in rare cases when it rather had declared the gene
not present in the target sequences. 248 residues (equal-
ing 2 % of the missing residues, or 0.04 % of all)
accounted for false exons.

The results on sequence level (Table 3) show strikingly
how much the workload for manual postprocessing is
reduced by Scipio, given that every sequence not matched
completely will have to be looked at again, and align-
ments marked as completed (without mismatches, miss-
ing codons, sequence shifts or doubtful splice site
patterns) will not.

While BLAT was unable to yield a complete prediction
including the correct splice site locations in 95 % of the
query sequences, Exonerate, by modeling introns, did bet-
ter but would still fail to give a complete prediction in
about half of the queries, even when partial hits were
combined manually. The reason why assembling hits
does not improve the number of completed queries is that
in cases when a genomic sequence (e.g., a contig) ends in
the middle of an intron, Exonerate will not use the intron
model. Instead, at the cost of mismatches, the alignment
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Species Contigs ~ Queries  Complete Complete(mmifs)  Incomplete
Acdes acgypti 36206 59 55/93.2% 0/0% 4/6.8% Complete
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Apis melifera 18943 58 53/91.4% 5/8.6%
Incomplete
= =1 Complete with changed parameters
=3 Query from different source
‘Anopheles gambiae 69724 58 2/3.4% = Poor genome sequence
== Found with gaps
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[eEliftn  CEbEEED
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Drosophila persimilis 26813 65 52/80.0% 9/13.8% 4/6.2%

[«TsTel7] [1]2[sTaTsTel7]
Drosophila sechellia 21425 66 13/19.7% 2/3.0%
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Drostophila virilis 18402 64 58/90.6% 1/1.6% 5/7.8%
= H..
[T2[eT4TsTel7] [Tz[sT4TsTel7]
Drosophila yakuba 13496 64 63/98.4% 0/0% 1/1.6%
=)
[T2[e]4TsTel7] [T2[al4]
Pediculus humanus corporis 8555 55 47 185.5% 6/10.9% 2/36%
[«T5Te]7] [1Tz]s[4TsTel7]
total 695359 979 890 /90.9% 46 /4.7% 43/4.4%
= 17/1.7%
=17/1.7%
m 2/0.2%
= 7/0.7%

Figure 3

In-Species Performance. This chart shows Scipio's performance when searching in-species. The charts shows histograms
depicting how many sequences where found on a particular number of contigs in the genome. Black rectangles represent ten,
grey ones five and white ones single sequences. 'Complete' means the queries where found without discrepancies. 'Complete
(mm/fs)' means that Scipio found the complete gene without gaps but with discrepancies like mismatches or framshifts. 'Incom-
plete' means that Scipio could not determine the complete gene structure with standard parameters.
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Figure 4

Cross-Species Performance. This chart shows Scipio's performance when searching cross-species. The charts show the
dependency of the completeness of the gene reconstruction on the identity of the protein sequences. Red dots show searches
with human sequences against the genome of Pongo pygmaeus abelii, black dots show searches with human sequences against
the genome of Callithrix jacchus. A: Completeness compared to the query sequence. B: Completeness compared to the manu-
ally annotated sequence. A BLAT tile size of 7 was used. C: As in B, but with tile size 5.
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Table I: Sequences tested in comparative analysis.

Species typ. target size (kbp) # of target sequences # of query sequences
Bombyx mori p50T 2.8 213 289 8
Drosophila simulans 9.4 31198 37
Bombyx mori str. Dazao 14 66 482 32
Nasonia vitripennis (contigs) 27 26 605 35
Nasonia vitripennis (scaffolds) |1 827 6 18l 35
Drosophila sechellia 70 21 425 38
Aedes aegypti 113 36 206 40
Daphnia pulex 825 9 080 42
Anopheles gambiae 6 969 69 724 37
Drosophila melanogaster 21 575 13 38
Aspergillus niger 2 409 143 15
Homo sapiens 153 287 24 40
Macaca mulatta 150 724 22 40

A list of 9 insect, one fungi, and two primate genomes, searched for kinesin and myosin genes to compare the performance of Scipio with that of
BLAT and Exonerate. Genomic target sequences were taken from different stages of assembly, as can be seen from the different typical target sizes
(D. melanogaster, H. sapiens and M. mulatta were given as sets of complete chromosomes; of the genome of N. vitripennis, two versions were
compared; the genome of A. gambiae was given partly in chromosomes, partly in small contigs). The protein query sequences were taken from the

same species as the genome.

Table 2: Percentage of residues left unmatched.

Species

Scipio (automatic assembling)

BLAT Exnrt. BLAT Exnrt.

with manual assembling without assembling

Bombyx mori p50T
Drosophila simulans

Bombyx mori str. Dazao
Nasonia vitripennis (contigs)
Nasonia vitripennis (scaffolds)
Drosophila sechellia

Aedes aegypti

Daphnia pulex

Anopheles gambiae
Drosophila melanogaster
Aspergillus niger

Homo sapiens

Macaca mulatta

total

15.03 15.41 17.03 4361 43.64
7.11 7.4 8.14 31.83 30.33
7.93 8.43 7.86 36.09 36.38
020 0.60 0.45 10.17 9.38
111 1.50 1.38 3.70 3.89
0.11 045 0.95 9.05 10.14
0.73 1.01 021 10.43 10.22
1.26 1.84 1.33 1.84 1.88
0.02 031 026 031 0.63
0.00 032 0.05 032 0.05
001 0.18 0.08 0.18 2.63
0.06 0.92 0.10 0.92 0.10
229 3.09 23 3.09 7.82
1.67 216 1.87 8.24 871

The percentage of residues of the query sequences that the compared tools failed to recover from the target sequence. To gain comparable results,
the hits proposed by BLAT and Exonerate were assembled together manually: a collection of best-scoring non-overlapping hits was chosen for each
query. The last two columns show the results if only the best-scoring hit for each query was used.

is extended into the intron, yielding false boundaries and
consequently, a false prediction.

In the case of D. melanogaster, where Scipio completely
recovers all 38 query sequences, Exonerate misses five
short exons; while these account only for 0.05 % of all res-
idues, it reduces its rate of success on sequence level to 33
of 38, or 86.8 %.

These results show that Scipio, apart from providing a
more detailed and well arranged output, can improve the
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prediction rate to 100 % by searching for short exons. In
the case of fragmented genomes, the feature of hit assem-
bly significantly improves the chances of retrieving the
complete genomic sequence belonging to a protein query.

Future plans

The primary aim of the upcoming version of Scipio is to
eliminate false positive predictions and to close more gaps
still left in the prediction.
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Table 3: Percentage of perfectly aligned queries.

BLAT Exnrt. BLAT Exnrt.
Species Scipio (automatic assembling) with manual assembling without assembling
Bombyx mori p50T 25.0 0.0 25.0 0.0 12.5
Drosophila simulans 378 2.7 21.6 2.7 16.2
Bombyx mori str. Dazao 15.6 3.1 12.5 0.0 9.4
Nasonia vitripennis (contigs) 71.4 11.4 57.1 1.4 54.3
Nasonia vitripennis (scaffolds) 68.6 11.4 65.7 11.4 65.7
Drosophila sechellia 63.2 79 55.3 2.6 55.3
Aedes aegypti 87.5 7.5 525 75 50.0
Daphnia pulex 88.1 0.0 762 0.0 76.2
Anopheles gambiae 94.6 8.1 73.0 8.1 73.0
Drosophila melanogaster 100.0 10.5 86.8 10.5 86.8
Aspergillus niger 86.7 6.7 733 6.7 733
Homo sapiens 62.5 0.0 50.0 0.0 50.0
Macaca mulatta 12.5 0.0 10.0 0.0 10.0
total 64.5 5.5 51.7 4.8 50.3

The number of query sequences that were predicted by the programs exactly at the correct location, with 100 % matching residues, without
frameshifts or false positives. This figure reveals the amount of workload needed for manual postprocessing of the hits.

Eukaryotic genes contain far more information than is
encoded in the sequence of one expressed protein. Most
of this information is contained in the untranslated
regions. Therefore, our future developments will focus on
analyzing the untranslated regions to provide the user
with additional gene-related information. Thus, Scipio
will be developed to identify untranslated exons and, in
addition, to determine mutually exclusive exons, and
other alternatively spliced exons.

A web interface for Scipio is currently under development
to address a wider audience and to make Scipio more
user-friendly.

Conclusion

Scipio is a tool for the determination of gene structure and
annotation of genes for a given protein sequence. Based
on the widely used program BLAT, it performs exhaustive
processing to ensure the best possible mapping of the pro-
tein onto the genome. By the ability of assembling partial
hits ranging over multiple target sequences, Scipio goes
beyond the scope of present spliced alignment tools and
presents the user with a coherent set of matches that are
often accurate to the level of single bases. Having a certain
level of tolerance, Scipio can handle mismatches and
frameshifts that often result from sequencing errors in
genomes and cDNA. The same tolerance can be used to
track down homologous genes in closely related species,
allowing for cross-species annotation.

Availability and requirements
Project name: Scipio
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Project home page: http://www.webscipio.org

Operating system: Platform independent
Programming language: Perl
Software requirements: Installation of BLAT and BioPerl.

Hardware requirements: BLAT may demand several times
the genome size in RAM. If the RAM size is limiting, the
most reasonable way is to split the genome and run Scipio
against the split files.

License: Scipio may be obtained upon request and used
under a Creative Commons License.

Any restrictions to use by non-academics: Using Scipio by
non-academics requires permission.

Abbreviations
BLAT: BLAST like alignment tool; YAML: YAML ain't
markup language.
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Additional material

Additional file 1

Source code of the software, two Scipio output conversion tools, and a
manual on the usage of the Scipio script.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-278-81 zip|
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ABSTRACT

Motivation: As improved DNA sequencing techniques have in-
creased enormously the speed of producing new eukaryotic genome
assemblies, the further development of automated gene prediction
methods continues to be essential.

While the classification of proteins into families is a task heavily
relying on correct gene predictions, it can at the same time provide a
source of additional information for the prediction, complementary to
those presently used.

Results: We extended the gene prediction software AUGUSTUS by
a method that employs block profiles generated from multiple se-
quence alignments as a protein signature to improve the accuracy of
the prediction. Equipped with profiles modelling human Dynein Heavy
Chain (DHC) proteins and other families, AUGUSTUS was run on
the genomic sequences known to contain members of these fami-
lies. Compared both to AUGUSTUS'’ ab-initio version and Genewise
in HMM mode, the rate of genes predicted with high accuracy showed
a dramatic increase.

Availability: The AUGUSTUS project webpage is located at
http://augustus.gobics.de, with the executable program as well as the
source code available for download.

Contact: keller@cs.uni-goettingen.de,
mario.stanke@uni-greifswald.de

1 INTRODUCTION

With ever faster and cheger sequencing techniques, the amourt
of available nucleotide sequence data is growing rapidly. In com-
parison, the processof acarately annaating the generated data is
till lagging far behind. Fully automated anndation is essential here
as the sheg amourt of data makes manual inspedion, even as a
semndary step, impossble onthewhale. Thus, improving gene pre-
diction tools that perform automated annaation of protein-coding
regions as acalrate as possble is beacming increasingly impor-
tant for the generation, for example, of the arrespondng protein
sequence data.

*to whom corresponcence shoud be addressed
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In eukaryotes, the computational identification of the gene struc-
ture (in simplifi ed terms, thelocétions of the protein-coding exonsin
anucleotide sequence) is a complex and error-prone task. The most
dired approach is pursued by ab-initio methods that do nd need any
input but the genomic target sequenceitself. Commonly, sequences
are onsidered the result of a randam process and the outcome is
the gene structure that is most lik ely to randamly producethe target
sequence. Parameters for the underlying probabilistic model, often
a Generalized Hidden Markov Model, are derived from a training
set of gene structures verified as acarrate. As in any probabilistic
approach, the prediction acairagy is limited aready by constraints
inherent to the model, even if it is a perfed description of the data.

In order to overcome these theoretical bound, it is necessary to
employ extrinsic sources of information that give hints whether an
interval of the sequenceis, for example, a cding exon. These gene
finding methods are usually based on alignments with informant
sequences. comparative methods make use of similarities with the
DNA of closely related spedes, transcript-based methods map se-
guencesto thetarget genomethat are known to be expressed (such as
ESTsor RNA-Seq) while homology-based methods try to map tran-
scripts of related genes. Current approaches combine these methods,
some including an ab-initio gene prediction. Gene structures found
by these methods are the starting pant for the pipelines generating
reference aanaations for genomes (Harrow et al., 2009.

RNA-Seq (transcriptome sequencing with next-generation se-
quencing methods, Metzker, 2010 promises major advances for
gene finding; however, currently the acairagy of RNA-Seq based
gene prediction suffers from mapping ambiguities and pertially
contained introns, espedally in complex genomes.

Homology-based gene predictors, such as Genewise (Birney
et al., 2004 and Exonerate (Slater and Birney, 2005, can deter-
mine gene structures by mapping a single protein sequence to the
target genome, otherslik e Projector (Meyer and Durbin, 2004 com-
bine homology-based and comparative gpproaches. Cui et al. (2007
presented a combined hamology-based and comparative gene find-
ing method that extends the prediction beyondthe homologous part
to a complete gene structure but requires an established gene struc-
ture for the informant sequence. Protein queries highly identical to
the target sequence can be mapped with BLAT (Kent, 2002; the
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software Scipio (Keller et al., 2008 can refine amapping provided
by BLAT such that the predse exorrintron structure of a gene is
automatically recovered from the query.

The gene prediction program AUGUSTUS (Stanke and Waad,
2003 is able to incorporate hints from external sources to combine
them with an ab-initio prediction (Stanke et al., 2006ha, 2008. The
method employed in AUGUSTUS is completely generic as to the
source of the hints and the way they have been generated; in prac
tice, however, they are dmost always derived from alignment-based
methods (Stanke et al., 2006, 2008, including the use of peptides
from proteomics experiments (Castellana et al., 2008).

At alater stage of the genome anndation pipeline, an important
task is the dasdfication of proteins into families and subfamilies
based on sequence similarities. A corred classficaion obviously
relies on acarate gene predictions. Conversely, membership to a
family is a potential source of information that can be made avail-
able arealy to the gene prediction. This information is commonly
stored in protein family databases that are eaily accessble, for ex-
ample via InterPro (http://www.ebi.acuk/interpro/, Hunter et al.,
2009, quickly growing, and dften equipped with precomputed mod-
els (also cdled signatures) in the form of profile-HMMs, MSAs
and similar representations. Furthermore, reseachers gedalised
on spedfic families will be interested in tools that enable them to
use their existing sequencerepasitories to improve the prediction on
newly available nucleotide data.

While amost every resource of protein family signatures offers
its own methods to classfy protein query sequences supgied by the
user (bunded by InterProScan, Quevillon et al., 2005, these meth-
ods canna be goplied diredly to (eukaryotic) genomic sequences,
without the prior knowledge of the gene structure, and hence the
coding sequence. On the other hand, most protein-based gene find-
ing methods map single sequences rather than protein signatures.
The program Genewise has an HMM mode that can perform a com-
bination of gene prediction and protein signature reagrition using
aprofile-HMM (of one family at atime) in placeof asingle protein
sequence

Here, we present a novel approach that uses what we cdl a hy-
brid method as it combines the existing ab-initio model with the
protein signature & an additional model for protein family member-
ship of the resulting transcripts. It is implemented as an extension
(the protein profile extension, PPX) to the program AUGUSTUS.
In this approadh, evidence from complementary sources, such as
RNA-Seq, can be used simultaneously.

2 APPROACH

With the integration of a protein model into gene prediction, we
pursue two gads: first, the identification of members of a given
protein family, and more importantly, an increased acaracy of the
prediction designed espedally to improve identification rates.

In AUGUSTUS-PPX, protein families are modelled by block pro-
files. In this context, a block is an ungapped and highly conserved
sedion of a multiple sequence dignment (MSA). The concept of
ablock was first introduced by Henikoff and Henikoff (1991), and
then used to classfy proteins in the Blocks database (Pietrokovski
etal., 1996 Henikoff et al., 1999.

Very similarly, collections of blocks, together with the ranges of
admissible distances between conseautive blocks, have been used
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as protein signatures, referred to as fingerprint (Attwood and Bedk,
1994, and currently collected in the PRINTS database (Attwooc
et al., 2003, a member database of | nterPRO.

A block profile is a ollection of position-spedfic frequency ma-
trices, ead describing the amino add distribution in ablock, similar
to aprofile-HMM . However, in contrast to profile-HMM s, sequence
motifs modelled by Hocks have afixed length with no insertions
or deletions permitted inside ablock. Along the full length of a
multiple sequence dignment, non-conserved regions alternate with
blocks. These inter-block sequence parts are modelled in a block
profile only by constraining their length.

In the extended version of AUGUSTUS, one block profile at a
time can be provided asan additional input, representing a particular
protein family of interest. Here, we will refer toit asaprotein profile
as it models a gene with resped to its protein sequence

AUGUSTUS predicts genes using a Generalized Hidden Markov
Model (GHMM), in which ead of the states corresponds to the bio-
logical meaning of the sequence (exon, intron, intergenic, etc.); this
turns a gene structure into a sequence of states, together with their
sequence mordinates, also cdled a parse. The well-known Viterbi
algorithm is used to compute the highest-scoring amongall possble
parses. In a GHMM, the score corresponds to the joint probability
that the model generates the target sequence using the parse.

The profile extension to AUGUSTUS evaluates, for ead candi-
date gene structure, a similarity score of the predicted transcript to
the profile, giving a bonus to genes matching the profile. While the
gene prediction takes place in genomic space the protein profile
models the protein sequencethat the predicted gene translates to.

Although pofile-HMM s can be amore powerful sequencemodel,
block profiles were chasen here & a protein signature because the
integration into the existing GHMM requires a reduced complexity.
This is compensated by the use of the &b-initio model that can better
predict the lessconserved sequence parts.

The wordinates of the protein model are mapped to the input
DNA sequencewhen considering a candidate gene structure. Genes
consisting of multiple exons will induce amapping of partial pro-
files, where blocks may be disconreded by introns. Inter-block
regions impose a ®nstraint on exon length between blocks, but
modelling nucleotide composition in them is left to AUGUSTUS'
exon model.

Genes that show no evidence for similarity to all of the blocksin
the profile are predicted the same way they would without the profile
extension. This is an advantage over purely homology-based ap-
proaches which canna predict regions without sufficient homology.
On the other hand, exons containing distant blocks can be forced to
belongto the same gene, addressng the split gene problem common
to ab-initio approaches: while the predicted coding regions of along
gene may largely agree they are frequently mispredicted as sveral
shorter ones.

Instead of using the output of a separate program as ource of
extrinsic information, asis the case in the hints approadh introduced
by Stanke et al. (20061, the mapping of the block profile to the
target sequenceis creaed in parallel to the e-initio prediction, with
amutual interadion between bath.

The profile can be complemented with information about con-
served intron pasitions (relative to the protein sequence), anongthe
members of a protein family. This intron profile is a type of infor-
mation that is arealy lost when deding with MSAs but can be very
vauable for the gene prediction.
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3 METHODS

3.1 Block profiles representing protein famili es

Scoring function defined by block profiles. A set of n blocks can be
transformed into a set of frequency matrices, one for eat block, containing
the column-spedfic frequencies of amino adds.

The order of the blocks is assumed to be preserved throughou al se-
quences in the family. For ead b, theinterval I, = [d;}““,dgﬂ"*x] spedfies
the range of admissble distances between conseautive block matifs (or, in
the casesb = 0, b = n, between the first/last block matif and the sequence
start/end, respedively).

We cdl such a mlledion d frequency marices, together with the range
intervals I}, ablock profile, in analogy to other profiles generated from mul-
tiple sequence dignments. For the sake of brevity, we will use the term
block also for the particular matrix that represents it. A block profile does
not contain probabiliti es for insertions or deletions, and it does not model
the sequence regions between blocks.

From ead frequency matrix, oddratios are obtained by dviding eah
entry by the randam (badkground distribution o amino adds, and used as
the scoring matrix R(®) for block b. If s = s ... sw_1 iSan amino add
sequence, its smilarity to block b of length w is expressed by the odds ra-
tio score of s, the product of the respedive entries of the scoring matrix:
p(®)(s) = Ro(s0) - ... - Rw—1(sw—1). More generally, a partial block
scorepf]’)}k] (s) = Rj(s0)- ... Ri(sk_;) can bedefinedif s isa(shorter)
sequenceof length k — j + 1.

To clasdfy agiven protein sequence s of length w as a block hit, we turn
the scoring function into a dedsion function by requiring p(s) > 7, with a
block-spedfic threshold ~ = (%), whichis controlled by gobal parameters
Osens and Ospec that give upper bound for the expeded error rates in the
respedive models for blocks and badkgroundsequences (for details sethe
suppementary méterial).

Generating block profiles. To convert a MSA into a block profile that
can be used asinpu to AUGUSTUS, we provide separate todls that compute
frequency matrices from ead conserved ungapped regionin the dignment.
By the definition of ablock, ead member sequence of the family must con-
tain al matifsthat are part of ablock, without insertions or deletions. Only a
minimum number (usually set to 6—10 of subsequent gaplesscolumns will
adualy form a block. These alumns we cdl usable for conversion to a
block profile. Additional restrictions might be imposed, for example on the
degreeof conservationin ablock column.

Large protein families may be composed of subfamilies charaderised by
domains that are shared orly by a subset of al sequences. If no damain is
present in all member sequences, afamily canna be described appropriately
by ore single block profile. A possble solution is to convert the dignment
asociated with ead subfamiliy into a separate block profile. In the next sub-
sedion, we present a different approach of determining a “core” aignment
that can be transformed into a profile.

Once blocks have been extraded from an aignment, or retrieved from
the PRINTS or Blocks databases, PS3Vs can be cdculated by determining
column-wise relative frequencies. In our conversion scripts we follow the
methods used for the Blocks database: a position-spedfic weighting scheme
(Henikoff et al., 1990 is applied in order to avoid over-representation
of similar matifs, and pseudo courts are determined by regularizing the
position-spedfic courts with BLOSUM marices. Range intervals are de-
termined from an aignment by taking minimum and maximum lengths of
inter-block sequence parts among all aligned sequences, or taken diredly
from a database.

The restriction that no insertions or deletions occur in a block matif can
be relaxed, either by splitti ngablock into two to all ow insertionsin a central
position o a large block, or by merging amino add distributions of neigh-
bouing pasitions. This way, also profileeHMMs (e.g., given in HMMER
format) — aso containing frequency tables, but equipped with deletion and
insertion states — can be used for conversioninto block profiles.
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Figure 1. A profile-DNA mapping. The translated transcript (above) con
tains four block matifs (in red) mg,...,m3, separated by inter-block
sequence (in grey) of length d;,. The ading gene (below) consists of six
exons, sequences coding for the block matifs are shown in red. Block hits
may appea inside an exon (mg,m1) or be disconneded by ore or more
introns (mz,ms3).

Preprocessng of Multiple Sequence Alignments.  For the preparation
of MSAsfoundin PFAM, we implemented an algorithm that iteratively dis-
cards equences from an alignment until both a required number of usable
columns is readed (see &owe), and the estimated owerall profile size (the
number of usable columns multiplied with the number of used sequences)
reaties a maximum. To this end, eah column in an input aignment is
caegorized: Either

1. it contains only a smal number of gaps (removing the correspondng
sequences would turn it into a block column), or

. it contains only a smal number of nongap charaders (making it a
candidate for complete removal from the dignment).

Columnsthat do nd fall i nto these two caegories, are dready determined to
beinter-block columns at this dage, as well asisolated columns that canna
be extended to a block of minimd length.

Now, ead columnin the dignment can be nsidered as a potential start
of ablock of minima length. Each sequence is in conflict with the block
starting there if there is a deletion (the sequence has a gap in a @lumn of
caegory 1) or an insertion (the sequencehas aresidue charader in a clumn
of caegory 2) within the minimum number of columns after the fixed block
start.

In ead iteration, we use aheuristic to pick anew block start to be intro-
duced by removing its conflicting sequence set from the dignment, based
onthe expeded new profile size of the dignment; thisis repeaed urtil that
size cana beincreased further by removing more sequences. The resulting
sub-alignment can now be described by a block profile.

3.2 Evaluating profile-DNA mappings

A block profile is mapped to the DNA sequence o by spedfiying the start
locaions (to, . .., tn,—1) of the segments coding for potential block matifs.
We denote any such mapping by +. Since blocks may be interrupted by
introns, the full mapping is well-defined only when also a candidate gene
structure ¢ is given, as depicted in Figure 1. In this case, v isvalid if al ¢
lie on exons belongng to the same gene, and the inter-block regions on the
protein sequence have admissble lengths d‘b‘““ <dp < dpex.

The score of the mgppingis defined bythelog-odds of the candidate block
moatifs m;, onthe protein sequence

plosd) = p(())(mo) caes ~p("71)(mn,1)4

Several genes may be equipped with mgppings¥1,¥2, . . .
inatotal score of

(€]

, ¥m, resulting

JYm) = p(a;di91) - .. - p(0; d3Um).

Formdly, p can be defined to be 0 for invalid mappings. When provided
with a protein profile, the Viterbi algorithm will search for the best-scoring
combination o gene structure and compatible profile-DNA mappings. More

po;d31,. ..
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Figure 2. Calculating Viterbi variables at DNA position ¢, for substate
(b,i), b = 1,4 < 0. The score is maximized for all gene structures that
have amapping to block matif mg at afixed distance to the aurrent posi-
tion. In any parse continuing from this aubstate, the transcript must have a
block matif m; starting between d;“‘“ and di"®* from mg. This determines
the admissble range of block starts on the following exon (unlessit is short
enoughto fit into the inter-block region). The bonus awarded to the Viterbi
variable for this mappingis p(©) (mo).

mg m; my
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Figure 3. Calculating Viterbi variables at DNA position ¢, for substate
(b,i), b = 2,4 > 0. The score is maximized for all gene structures that
have amapping to the truncated block matif mo of length ¢ at the end of
the exon. Any parse continuing from here must have the next exon starting
with the remainder of the matif. The bonus awarded to the Viterbi variable

for thismeppingis p(®) (mo) - p() (ma) - ) (m2).

predsely, it determines ¢, 1, . . . , 1, maximizing the combined score

P(¢,0) - plos g5 b1, Pm),

where the joint probability P(¢, o) for gene structure and sequenceis mul-
tiplied with the profile bonus p(o, ¢, ) for ead candidate transcript that
permits a valid mapping . Thus, only if a gene is competible to a profile
mapping with a score high enoughto compensate for alower ab-initi o score,
the predictionwith the profile will differ from the predictionwithout. In par-
ticular, on sequences where no members of the protein family are identified,
the result will be identicd to the eb-initio prediction. For performance rea
sons, we mnsider for the evaluation d the profile bonws only mappings that
consist of hlock hits (ead of the p(®) must excee their threshold +(»)).

Inthe underlying sequencemodel, muti plyingwith p eff edively amounts
to repladng the badkground model with the block model, for the emisson
probabiliti es.

3.3 Integration into AUGUSTUS' state model

Iterating ower al DNA pasitions, the Viterbi algorithm computes the scores
of optimd partial parses (candidate gene structures) ending in the aurrent
position, and stores them in variables indexed by pasition and last state,
ead state representing a diff erent sequence type, strand, or realing frame.
The state model AUGUSTUS uses has been described in Stanke and Waad
(2003.

When equipped with a protein profile, the score assgned to a parse is
modified as described above: for eat gene in the parse that is compatible
with a profile-DNA-mapping, the scoreisto be multi plied with the best pos-
sible profile bonus; eat exonin the gene contributes the bonws for the block
(part) hits that overlap with it.

When the dgorithm arrives at a position in the DNA, it must consider
all partial profile mgppings garted before that can be continued beyondthis
position, having a particular positionwithin the profile digned to the aurrent
DNA position (see Figure 2). This pasition determines the condtions for
the mapping to be mntinued; thus, a separate score has to be stored at that
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position for ead profile position. To this end, the origina state space of
AUGUSTUS was extended by a set of substates attached to the main state,
representing the position in the profile, spedfied as a pair of integers (b, 7)
denating Hock (b) and pasition 4 relative to the block (i < 0 before ablock,
and: > 0inside ablock). As shownin Figure 2, if 7 isnegative, it determines
the admissble range for the start of block b onthe next exon.

The substates srve & additional indices for the Viterbi table labelling
the entries that the combined scores are stored. For apartial profile mapping
ending at the substate (b, i), the profile score muiti pli ed to the eb-initi o score
is given by equation (1), except that the product is truncaed at the aurrent
pasition: p( (mg) - ... - p®=1 (my_y) - pfg_)_%ll(mb) (the last factor
is a partial block score included orly in the case ¢ > 0, seeFigure 3). The
maximum of al combined scores ending in the same substate is then the
value stored in the table.

In general, substates can be used to model side condtions that influ-
ence the score of a parse, for example if constraints on the exon length are
imposed, or for the exclusion o spliced stop codors. Here, substates are
aigning the profile to the exon ends.

The emisgon probability of an exonin the extended version depends on
the substates on bdh ends: it gets a bonus equal to the maximum score of
al profile mappings on the exon that are compatible to the substates. Each
pair of substates gives rise potentially to a different profile bonws. New sub-
state variables are cdculated by maximizing the combined score, over all
predecessor positions and predecessor substates.

Inintrons, the emisson probabiliti es reman unchanged, but intron states
as well neel to be equipped with substates to indicate a potential profile
position they are mgpped to.

Genes on the badkward strand are evaluated essentially in the same way
as genes on the forward strand; however, in this case, the profile is mgpped
to the DNA “badwards’, starting with the C-terminus. Correspondngly,
the substates on the badkward strand refer to blocks and columnsin reverse
order: thefirst matif is evaluated by the last block in the profile, startingwith
the last block column.

Since the model attaches a high number substates to every main state of
the original model, an exhaustive evaluation o all combinations of block lo-
cations and substates would cause an explosion o runningtimeand memory
requirements; therefore, most of the substate entries are diminated or shared
between main statesin order to control the computational cost. We store sub-
state scores dynamicdly, reservingmemory only for norzero entries. Seethe
suppementary maerial for detail s on speed-up strategies.

3.4 Fast preliminary block hit search

To make it possble to run AUGUSTUS-PPX on a whole-genome scde, a
fast preliminary search agorithm was devised for determining the genomic
regions that are likely to contain genes maching the profile, withou de-
termining detailed gene structures. The dgorithm was implemented in a
separate exeautable that can be used before running AUGUSTUS. Given a
target sequence and a protein profile, it performsthe foll owing steps:

e Building a seal colledion: For ead of the 8000 pesble triplets of
amino adds, the positions in the profile ae stored where that triplet is
likely to occur.

Determining Hock hit candidates: iterating ower the target sequence,
ead 9-tupleis tested for being a seed. Any segment covered at least
25% by seals for ablock is considered for exhaustive evaluation. This
prefiltering step is very fast, sinceit consists of a simple lookupwith
nucleotides triple & keys.

Exhaustive evaluation o candidates: given a block start off set, partial
SCores py;. xj(aj..a) are maximized where ag..aw—1 is the trans-
lated DNA segment. Ths interval is dored as a partial block hit if its
sizereades the minima block width and the (partial) block threshold
is excealed.
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e Assmbling Hock hits to profile hits: ead block hit is extended to a
series of block hits by joining neighbouing hits, allowing for blocks
being skipped. Using dyramic programming, sequences of block hits
are determined that are highest-scoring for al contained blocks, and
returned as profile hits.

Thisagorithm isfast enoughto be run onwhae genomes with ahigh num-
ber of profiles, in order to determine the regions AUGUSTUS-PPX is then
run on

4 DATA SETS

4.1 Dynein Heavy Chain (DHC) family

Dynein Heavy Chain (DHC) proteins belong to the longest pro-
teins in eukaryotes comprising more than 4000amino adds. They
can be grouped into several subfamilies that are dther resporsi-
ble for intracdlular transport and mitosis or part of the complex
microtubule-based structures in cilia and axonemes. In mammals
most of the DHC genes are spread in up to hunded exons over sev-
eral hunded-thousand o base pairs. The 16 human DHC sequence
fall into 10 subfamilies DHC1 to DHC9 and DHC11.

The DHC genes have dl been manually assembled and verified
because existing gene prediction programswere not able to corredly
predict the gene structures over such long dstances. For 13 o the 16
human DHC sequences, cDNA data is available and hes been used
for prediction. The remaining three DHC sequences, and the DHC
genes of the other organisms, have been manually assembled based
oncomparative analysis of the metazoan hamologsin the subfamily.

The manually creaed and curated multiple sequence dignment
of the DHC family proteins, currently comprising more than 1 600
DHC sequences, has been the best control and gude during this
process These manually assembled and verified DHC sequences
are regarded as amost corred predictions and taken as reference
sequences for the test runs. The DHC data is available from Cy-
MoBase (http://www.cymobase.org, Odronitz and Kollmar, 2006).

From a complete sequence dignment of all Dynein Heary Chain
members available from CyMoBase, the dignment of the human
sequences was converted into block profiles that were used as input
in the test runs of AUGUSTUS.

A total of 96 DHC proteins out of six spedes were chosen as ref-
erence sequences; these were human, mouse, chicken, the Clawed
frog, and the Owl limpet, a seasnail. The range of members and
subfamilies varies dightly between spedes.

4.2 PFAM alignments

To assessthe performance of the profile extension onawider set of
protein families, five alditional profiles were produced from MSAs
downloaded from the PFAM database. The families were chosen
randamly from the set of al families that had a minimum average
length of at least 400residues, and a minimum of 30 human repre-
sentatives in them. Short alignments that cover only single domains
were not considered, since AUGUSTUS-PPX is designed for the
case of full-length protein signatures.

From ead alignment, a core dignment was produced with the
procedure described in sedion 3.1. Typically, about 60% of the
sequences were discarded in order to maximize the size of the us-
able part of the dignment. Among the core sequences, a total of
46 human sequences remained that were taken asreference andwere
downloaded from UniProt.
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4.3 Genomic reference sequences

From the protein sequences chosen asreferenceset, i.e. the 96 DHC
proteins from six spedes, and the 46 human sequences from the
PFAM alignments tested, we produced reference gene structures.
We used the program Scipio (Keller et al., 2008 Odronitz et al.,
20098 which is able to establish the exad exorvintron structure of a
given protein.

Thereferencegenes for the DHC family consisted of 75 exonson
average, spanning alength from 30 upto 450 kbys.

Depending on the quality of the assembly, the reference gene
structures in some cases could nat fully be determined; the corre-
spondng parts in the protein sequence had been determined from
unmapped contigs of the genome genome, or from cDNA analysis.
When they were missing completdy, their length had been esti-
mated from the dignment to orthologous squences. Furthermore,
the acwragy of gene structures might be d@feded by frameshifts
caused by sequencing errors.

5 RESULTS AND DISCUSSION
5.1 Setup of runs

AUGUSTUS was run onthe regions containing the reference genes,
bath in the &-initio and PPX versions, and the results were com-
pared to the reference genes. The DHC genes were chosen as
examples as their size makes their prediction prone to difficulties
like the split gene problem. The human DHC used in the runs corn-
sisted of 35 Hocks with atotal length of 1180sites (columns), the
largest block having a motif length of 134

In asecndset of runs, alowing for the scenario that no atholog
to the target sequence is known, the human ortholog to the test se-
guencewas removed from the dignment used to generate the profile,
so that the remaining sequences al had lessthan 60% identity to the
target sequence (“ex-ortholog”).

We dso ran Genewise in HMM mode on the reference regions,
suppied with a profile-HMM in HMMER format, automatically
generated from the same dignments, including the ex-ortholog
ones. While Genewise has been succeeled by faster tools such as
Exonerate in the case of single-protein queries, we ae not aware
of any other program that can perform a spliced aignment of a
profile-HMM to a genomic sequence. On average, running times
of Genewisein HMM mode were ebout 200times longer than those
of AUGUSTUS-PPX.

In order to compare asingle-query mapping approach designed
for high hamology, crossspedes saches with human queries for
their orthologs were exeauted with Scipio, using default parameters.

Finally, to examine arandam set of various reference proteins,
runswere performed with the profiles generated from the five PFAM
alignments, comparing AUGUSTUS-PPX to AUGUSTUS ab-initio
and Genewise. We ran a low-similarity scenario here & well, by
taking out from the dignments all sequences with more than 60%
identity.

5.2 Assssnent of the prediction quality

Results of theDHC runs.  Thetask of recogrizing agene asamem-
ber of the DHC protein family was acaomplished by AUGUSTUS-
PPX in amost all cases. Four sequences from subfamilies with
lesser sequenceidentity to therest, and ore case with an incomplete
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Table 1. Accuragy of DHC runs

spedes  AUGUSTUS-PPX  AUG. Scipio Genewise
full ex-ortho  ab-initio  crosssp.  full ex-ortho
exon level sensitivity (%)
human 929 912 843 N/A 837 527
mouse 933 913 858 860 804 501
chicken 888 873 805 660 688 462
frog 844 829 778 482 643 480
zebrafish 890 889 803 492 685 491
snail 86.0 845 785 316 593 491
total 89.0 876 813 635 709 494
exon level spedficity (%)
range 76-93  74-90 77-88 52-88 74-85 68-73
average 855 840 833 765 793 697
highly acairate genes (%)
human 625 625 313 N/A 938 125
mouse 722 667 278 889 556 0.0
chicken 417 333 167 83 167 0.0
frog 389 389 0.0 56 111 0.0
zebrafish 571 500 571 71 143 0.0
snail 44.4 444 111 0.0 111 0.0
total 531 500 146 365 344 21

Comparing the results of AUGUSTUS-PPX with AUGUSTUS abrinitio, single-ecuence
crossspeciessearch(Scipio, basedon BLAT), and Genewisein HMM mode. “ex-ortha”
refersto runs with orthologs of tamget geresremoved from the MSA. Highly accuate
geresarethose predctedwith atleas 95% sersitivity ard 8% specfficity.

genomic reference sequence were not identified as DHCs. Instead,
these genes were predicted identically to the é-initio version.

Scipio (run orly where human orthologs were there) and Ge-
newise failed to identify the same set of sequences, but did not make
a prediction in these caes. In the ex-ortholog scenario, Genewise
left 14 sequences unidentifi ed.

Table 1 shows prediction acairagy of the testing scenarios, com-
pared to the &k-initio version, Scipio, and Genewise. At exon level,
there is significant gain in sensitivity compared to the éb-initio ver-
sion, with aimost 40% of the previously missed or mispredicted
exons correded, throughou the tested spedes. Spedfi city was over-
al increased slightly, but showed a deaease in some of the more
distant spedes. Genewise is somewhat weéeker in predicting exadt
splice sites, resulting in lower acarracy than AUGUSTUS ab-initio,
even when using the full profile.

With genes consisting of more than 70exons, the requirement that
a gene is predicted entirely corredly has to be relaxed somewhat
when assessng prediction quality at the gene level. We cdculated
the rate of highly accurate genes, meaning that the overlap of pre-
diction andreferenceis at least 95% of the reference and 83 of the
prediction. Here, the prediction quelity of the human sequences of
both Genewise and AUGUSTUS-PPX was dramatically better than
the a-initio prediction; the protein-based prediction tools benefit
espedally from joining predicted exons to a single gene. However,
the acarracy of Genewise dropped signifi cantly on the more distant
spedes, and espedally in the “ex-ortholog” scenario. In the single-
query approach pusued by running Scipio, prediction qulity at all
levels deteriorates drondy with evolutionary distance
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Figure 4. A sedion o an example result of AUGUSTUS-PPX, shown in
GBrowse. Compared to the &b-initi o prediction, one exon containing ablock
hit is added by the extension, one false pasitive exon removed to satisfy the
distance @nstraints, and two genes are joined into ore.
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Figure 5. Fasepositive exonsdueto amissng Hock enforced bythe profile
extension.

Detailed andysis of results There ae various ways the profile
can improve the prediction, asillustrated in Figure 4. A gene with
complementary block hits on them, previously mispredicted as two
genes, is now joined to one. This is an important advantage that
protein-based gene finders have in comparison to ab-initio tools.

Overall, spedficity was improved to a leser extent; in some
genes, we observed a deterioration of spedficity at exonlevel when
using the profile, while in othersit was clearly improved. These het-
erogenousresults are caused by bock hits enforced onthe sequence
by the profile extension, leading to a number of false-positive exons
added to the prediction, as can be seen in Figure 5. This occurred
in the more distant spedes and in the ex-ortholog scenario, and also
when the asmbly quality was low.

We addressed this issue by performing a third set of runs where
we exeauted a fast block seach (seesedion 3.4) prior to the adual
AUGUSTUS run (shown as supgdementary data). The search can be
used to determine the regions for the gene prediction, but it also out-
puts a list of block hits foundthere. The missing blocks were then
removed from the DHC profile used in the AUGUSTUS-PPX pre-
diction. With the filtered profile, no exons were added by enforced
block hits, resulting in a higher exon spedficity in al spedes.

Runs with profiles generated from PFAM alignments.  Results of
the runs on the 46 reference genes from the five PFAM protein fam-
ilies are shown in Table 2. Exon level sensitivity and rate of highly
acarate genes were improved, to varying extent, in al five cases.
The number of completely corred genes rose from 10 (21.7%) to
14(30.4%). In al but one of the 46 cases, the genes were identifi ed
by AUGUSTUS-PPX as members of their families. Results deterio-
rated only slightly when werestricted the profile to low identity, and
occasionally evenimproved (removing similar sequences can lead to
more blocks in the profile, or prevent false positive block hits); two
more seqjuences were not reagrised as members. Genewise did not
reat the acaragy of AUGUSTUS ab-initio.
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Table2. Accuragy of PFAM runs

family AUGUSTUS-PPX AUGUSTUS Genewise

full <60% ab-initio
exon level sensitivity (%)
HSP70 921 895 842 105
Aldedh 926 901 860 488
AA permesse 839 854 810 244
Cullin 877 869 831 569
Secl 939 947 871 447
total 89.0 888 839 393
exon level spedficity (%)
range 72-92  71-89 65-89 25-77
average 805 789 759 57.7
highly acaurate genes (%)

56.5 543 391 0.0
completely corred genes (%)

304 283 217 0.0

AUGUSTUS-PPX was comparedto AUGUSTUS abrinitio and Gerewise.
“<60" refersto a profile with a maximum secuerce idertity of 60% to the
target sequerce, aralogotsly to “ex-ortho” above.

Further testing. In order to verify the interoperability with exter-
nal evidence we ran AUGUSTUS on the human sequences with
manually edited hints and the DHC profile simultaneously. When
suppied with the hintsfor the exons gill missing in the original pre-
dictions those were predicted corredly in general, unlessthere were
nonstandard splice sites. This showed that in principle there is the
potential of adding the advantages of complementary methods, such
as RNA-based evidence.

6 CONCLUSION

The gene prediction program AUGUSTUS was extended by a
method combining protein-family based gene finding with an ab-
initio prediction. Equipped with protein signatures, prediction aca-
ragy could be improved considerably, espedally on full-gene level
on very long genes. The extrinsic protein datasignifi cantly improves
the gene prediction compared to existing programs when sequence
data only from distant spedes was available.

The presented approach is complementary to transcript-based
methods, and easily combined with them, off ering the potential of a
further improvement of prediction acairragy.

Block profiles are aprotein signature suitable for aiding gene pre-
diction. The gproach for extending the model is generic and can
be used to describe other types of constraints, for example on cod-
ing sequence length. Future plans include the integration of intron
profiles, containing information about conserved intron pasitions.
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