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1. Introduction

The main theorems of the thesis concern studying countable discrete groups
through so called l2-Betti numbers. These are certain invariants, originally
introduced by M. Atiyah in [Ati76] to study free cocompact actions of discrete
groups on manifolds. Subsequently, they were studied and used in many different
context in geometry and group theory (e.g. [Dod77], [CG86], [Gab02]).

A particular question Atiyah asked in [Ati76] was whether l2-Betti numbers can
be irrational. Since then, various statements about restrictions on possible values
of l2-Betti numbers bear the name the Atiyah conjecture (e.g. [DLM+03]). We
depart somewhat from this tradition. Given a countable discrete group G, the
following question will be referred to as the Atiyah problem for G.

Question. What is the set of l2-Betti numbers arising from G?

Let us right away introduce the notation C(G) for the set in the above question.
Over time it has been realized (see [Eck00] and [GLSŻ00]) that l2-Betti numbers
arising from a given group can be defined purely in terms of G, without mentioning
manifolds. Consequently, the Atiyah problem can also be phrased purely in terms
of G. This is the approach we adopt in the thesis and which we now briefly present.

The rational group ring QG acts on the Hilbert space l2G by convolution, and
similarly matrices Mk(QG) ∼= Mk(Q)⊗QG act on (l2G)k. We have a trace τG on
QG defined by τG(T ) := 〈Tζe, ζe〉, where ζe ∈ l2G is the vector corresponding to
the neutral element of G, and we have the induced trace tr⊗τG on Mk(QG), also
denoted by τG.

Recall that when R is a ∗-ring of operators on a Hilbert space, together with
a trace τ which is normal (i.e., extends in a continuous way to the weak closure
of R), positive (i.e., τ(T ∗T ) ≥ 0) and faithful (i.e., τ(T ∗T ) = 0 implies T = 0),
then for a self-adjoint T ∈ R we can compose the usual projection-valued spectral
measure with τ , to obtain the (scalar-valued) spectral measure of T . In particular,
spectral measure of the set {0} is called the von Neumann dimension of the
kernel of T , and is denoted by dimvN kerT . For a non-self-adjoint T , one defines
dimvN kerT := dimvN kerT ∗T .

It turns out that τG is a positive faithful normal trace on Mk(QG) and thus
we have a von Neumann dimension. A real number r is said to be an l2-Betti
number arising from G if and only if there exists a matrix T ∈ Mk(QG) such
that dimvN kerT = r.

Much is known about the Atiyah problem for various particular groups. If
G is torsion-free, then C(G) is conjectured to be the set of non-negative integers.
This statement is known as the Atiyah conjecture for torsion-free groups (there is a
similar conjecture for groups whose torsion subgroups have bounded orders). Cases
for which the Atiyah conjecture is known include elementary amenable groups,
free groups (see [Lin93] for both classes) and braid groups (see [LS07]). Many
results follow by applying versions of Lück’s approximation theorem (see [Lüc94],
[DLM+03], [Tho08]) to already established results. Perhaps the most familiar
consequence of the Atiyah conjecture is the zero divisors conjecture for torsion-
free groups. For other results see [Lüc02], Chapter 10.
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Before the work of R. Grigorchuk and A. Żuk in [GŻ01], it had been conjectured
that C(G) ⊂ Z( 1

a1
, 1
a2
, . . .), where ai are orders of torsion subgroups in G. However,

in [GŻ01] the authors showed that dimvN kerT = 1
3 for a certain operator T from

the group ring of the lamplighter group Z/2Z o Z. Recall that the latter group
is a semi-direct product of Z/2Z ⊕Z with Z with respect to the shift action of Z
on Z/2Z ⊕Z. In particular torsion subgroups of the lamplighter group have orders
which are powers of 2.

Shortly afterwards W. Dicks and T. Schick described in [DS02] an operator T
from the group ring of (Z/2Z o Z)2 and an heuristic evidence on why dimvN kerT
is probably irrational. Nonetheless, the question of irrationality of that specific
number has remained open.

A breakthrough came in 2009, when T. Austin showed the following theorem.
Theorem ([Aus09]). The set of l2-Betti numbers arising from finitely generated
groups is uncountable.

In particular there exist irrational l2-Betti numbers. However, [Aus09] did not
provide a particular group which gives rise to irrational l2-Betti numbers.
1-A. Results

1.1. Theorem. The set of l2-Betti numbers arising from the group (Z/2Z o Z)3

contains
1
64 −

1
8

∞∑
k=1

1
2k2+4k+6 ,

which is an irrational number.

Irrationality of the number above follows from the fact that its binary expansion
is non-periodic. The author does not know whether the current transcendence
results cover this number.

It is of some theoretical interest to have explicit finitely presented examples, so
we point out also the following corollary.
1.2. Corollary. Let G be a group given by the presentation

〈a, t, s | a2 = 1, [t, s] = 1, [t−1at, a] = 1, s−1as = at−1at〉.
The set of l2-Betti numbers arising from G3 contains

1
64 −

1
8

∞∑
k=1

1
2k2+4k+6 .

In both Theorem 1.1 and Corollary 1.2, the appropriate matrix whose kernel
dimension is as stated can be explicitly written down in terms of the standard
generators.
1.3. Theorem. The set of l2-Betti numbers arising from finitely generated groups
is equal to the set of non-negative real numbers.

The group which realizes a given real number r is “as explicit as the binary
expansion of r“.

We can also say something about the set of l2-Betti numbers arising from finitely
presented groups. Recall that a set Σ of natural numbers is called computable
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if there exists a Turing machine which lists elements of Σ in the increasing order
(in other words, there exists an algorithm which allows to compute subsequent
elements of Σ).

We say that a real number r has computable binary expansion if the frac-
tional part of r is of the form ∑

i∈Σ

1
2i

for some computable set Σ.

1.4. Theorem. The set of l2-Betti numbers arising from finitely presented groups
contains all numbers with computable binary expansions.

Examples of numbers with computable binary expansion include all algebraic
numbers, π and e. A fairly well-known example of a number whose binary ex-
pansion is not computable is Chaitin’s constant encoding the halting problem (see
[CC10]).

Theorem 1.3 has been independently proven by M. Pichot, T. Schick and A.
Żuk in [PSZ10]. They also proved a result similar to Theorem 1.4. Let us also
mention two later developments: (1) In [LW10], F. Lehner and S. Wagner show
that C(Z/pZ oFd) contains irrational algebraic numbers, where Fd is the free group
on d generators, d > 2, p ≥ 2d − 1; (2) In [Gra10] the present author shows that
C(Z/pZ oΓ) contains transcendental numbers, for all p > 1 and all groups Γ which
contain an element of infinite order.

1-B. Summary

Groupoids. Section 2 introduces a computational tool - measured groupoids,
i.e. small categories in which morphisms are all invertible, in which the space of
objects is a probability measure space, and in which the space of all morphisms is
a measure space, in a compatible way (for example, given a set of objects U , the
set of identity morphisms of objects in U should have the same measure as U). In
a groupoid G the space of morphisms is denoted by G as well. The space objects
is denoted by G0.

A measurable edge is a pair (U, φ), where U is a set of objects and φ : U → G is
a (measurable) choice of one morphism for each object of U , such that morphisms
corresponding to different objects have different codomains. Each measurable edge
gives rise to a convolution operator on L2G, in largely the same way as the group
ring CG of a group G acts on l2G. Each function f ∈ L∞(G0) also acts on L2G,
by pointwise multiplication by f composed with the codomain map G → G0. The
groupoid ring CG is defined to be the ring of bounded operators on L2G generated
by measurable edges and L∞(G0).

There is a positive normal faithful trace on CG which, as explained above, allows
to compute von Neumann dimensions of kernels of elements of CG.

A connected component in G is a maximal set of objects such that between
any two objects there is a morphism in G between them. If a groupoid G has only
finite connected components then computing dimvN kerT reduces to computing the
standard dimension of kernels of ”T restricted to different connected components“.
This is made precise in Corollary 2.10, which is the main computational tool.
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Given T ∈ CG we have

(1.1) dimvN kerT =
∑
[g]

µ([g])
|V (g)| dim kerTg,

where [g] are different isomorphism classes of connected components, µ([g]) is the
probability with which given connected component [g] appears in G0, |V (g)| is the
number of points in g and Tg is the ”restriction of T to g“.

Pontryagin duality and action groupoids. Section 3 explains how to pass
from certain groups to groupoids. This is done in order to simplify the computa-
tions of spectral measures. If X is a compact abelian group and ρ : ΓyX is an
action of a discrete group Γ by group automorphisms, then we also have the dual
action ρ : ΓyX̂ on the Pontryagin dual of X.

On the one hand, we can form the action groupoid G(ρ) of ρ whose space of
objects is X and morphisms whose source is x ∈ X are elements (x, γ), γ ∈ Γ.
Range of a morphism (x, γ) is ρ(γ)(x), and the composition is the obvious one.

On the other hand we can form the semi-direct product X̂ o Γ and its group
ring Q(X̂ o Γ).

Pontryagin duality gives us a map P : X̂ → L∞(X). Also, given γ ∈ Γ, we
obtain a measurable edge x 7→ (x, γ) with the domain of definition being all of X.
Those two maps combine to give a map

P ⊗ 1: Q(X̂ o Γ)→ CG(ρ),
which has the property that dimvN kerT = dimvN ker(P ⊗1)(T ) (Proposition 3.1).

The reason why computations on the right hand side are sometimes easier is
as follows: it might be that supp(T ) (the set of elements of X̂ o Γ on which T is
supported) generates the whole group; but supp(P ⊗ 1 (T )) generates a groupoid
with finite connected components, and therefore formula (1.1) can be used to
compute dimvN ker(P ⊗ 1)(T ).

Example computations. As an example, we recover in Section 3-B a com-
putation of R. Grigorchuk and A. Żuk from [GŻ01]. Consider the operator T =
t+ t−1 + tg + gt−1 in the group ring of Z/2Z o Z, where t generates Z and g gen-
erates Z/2Z . It is an example of an operator whose support generates the whole
group Z/2Z o Z, yet its image (P ⊗ 1)(T ) in the groupoid ring of the Bernoulli
action ZyZ/2Z Z has support generating a subgroupoid with finite connected
components. Therefore, we can use (1.1) to show that dimvN kerT = 1

3 .
As another example, in Section 3-C we derive a generalization, proved originally

by F.Lehner, M. Neuhauser and W. Woess in [LNW08], of the above computation
to arbitrary wreath products Z/pZ o Γ.

Logic of the proofs. By now we can explain the strategy to prove, say,
Theorem 1.3. For a given real number r find a groupoid Gr, which is an action
groupoid for an action ρr : ΓyX (note that Γ and X do not depend on r) and an
operator Tr ∈ CGr whose support generates a subgroupoid with finite connected
components. Then use formula (1.1) to show that dimvN kerTr = r, and check
that Tr is in the image of the map P ⊗ 1: Q(X̂ o Γ)→ CGr. This shows that r is
an l2-Betti number arising from X̂ o Γ.
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Turing dynamical systems. The question is, where to get the groupoid
Gr from. For this we introduce in Section 4 Turing dynamical systems. They
essentially consist of (1) an action ρ : ΓyX, (2) a map TX : X → X defined by
restrictions of elements of Γ to a finite number of subsets of X, and (3) three
disjoint distinguished subsets I, A and R of X, referred to as the initial, accepting
and rejecting sets. Such a Turing dynamical system is denoted by (X,TX).

Given (X,TX) we get two groupoids. The first one is simply G(ρ), the action
groupoid of ρ. For the second, note that TX gives a structure of a directed graph
on X: there is an edge from x to y if TX(x) = y. The second groupoid, G(TX), has
X as the space of objects, and morphisms are generated by the directed graph just
described. Although it is not entirely clear from the description we gave, G(TX) is
a subgroupoid of G(ρ).

In Section 4-B we describe an operator S ∈ CG(TX) and prove the following
(Theorem 4.11).

Theorem. If in the graph induced by TX each connected component (1) has a final
point (i.e. a point without outgoing edges) in A∪R, and (2) has at most one point
in I, then
(1.2) dimvN kerS = µ(I)− µ({x ∈ I : T kX(x) ∈ A for some k}).

Furthermore, because of a general condition in Lemma 3.2, we see that S is in
the image of P ⊗ 1. Therefore, in order to prove that a given number r is an
l2-Betti number arising from some group, it is enough to find a Turing dynamical
system such that µ(I) − µ({x ∈ I : T kX(x) ∈ A for some k}) = r (and check that
conditions (1) and (2) hold). This is done in Section 5.

The proof of the theorem above is an application of the formula (1.1), which
can be used, since (1) implies that the connected components of G(TX) are finite.

We finish the summary by informally explaining what is a Turing machine,
how does it give rise to a Turing dynamical system, and what is the meaning of
µ({x ∈ I : T kX(x) ∈ A for some k}) for such systems. The examples from Section
5 are (almost) obtained by performing the descibed construction for particular
Turing machines. Although we do not use Turing machines per se in the main
body of the thesis, reading Section 5 is probably easier when the reader has some
intuition about them.
Turing machines. Let S be a finite set of states and M be a finite set of
symbols. A Turing machine whose set of states is S and which operates on the
alphabet M consists of four components; three of them can be thought of as a
hardware: an infinite tape with symbols written on it, a tape reader, and a state
register. The fourth component, a transition table, should be thought of as a
software.

The transition table consists of a single entry of the type:
”If the current state is σ and the symbol under the tape reader is m, then do ...“
for each pair (m,σ) ∈M × S.

We assume that the tape have infinitely many symbols written on it, i.e. there
are no empty cells on the tape. We assume that three elements of S are distin-
guished: Initial, Rejecting, and Accepting states (also denoted by i, r and a). It is
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assumed that the Turing machine always starts its operation in the Initial state,
and it stops to operate whenever it reaches either the Rejecting or the Accepting
state.

At any given moment the machine is in one of the states. In a single step of
operation it does the following things: it reads a symbol on the tape under the
tape reader, and then it performs a subset of the following operations, depending
on what is written after “do” in the appropriate entry of the transition table:

(1) it changes the symbol on the tape under the tape reader into some other
symbol.

(2) it shifts the tape reader to the right or to the left
(3) it changes the state it is currently in into some other state

Associated Turing dynamical systems. Given a Turing machine whose set
of symbols isM and whose set of states is S, we associate to it a Turing dynamical
system as follows. The measure space is "the space of configurations of the Turing
machine". i.e. X := MZ×S (with the product measure), whereMZ is the product
of infinitely many copies of M indexed by Z; elements of it should be thought of
as infinite tapes.

Let Γ be the group of measure-preserving automorphisms of X generated by the
shift on MZ, bijections of S and automorphisms Kβ of MZ, for every bijection β
of M , defined as

Kβ((mi))j =
{
mj if j 6= 0
β(m0) if j = 0

In this way we obtain an action ρ : ΓyX.
The crucial observation is that the operations (1), (2) and (3) above correspond

to elements of Γ. More precisely, the set X can be divided into a finite number of
subsets [m][σ], m ∈M , σ ∈ S:

[m][σ] := {((mi, τ) : m0 = m,σ = τ},
and for every set [m][σ] we have an element γ(m,σ) ∈ Γ corresponding to the
entry in the transition table which describes the behaviour of the Turing machine
for the symbol m and the state σ. Now, we can define the map TX : X → X as

TX(x) := γ(m,σ)(x) for x ∈ [m][σ].
It should be clear that if we have a configuration x ∈ X of our Turing machine then
TX(x) is the configuration after a single step of operation of this Turing machine.

The Initial, Accepting and Rejecting sets are defined as
I =

⋃
m∈M

[m][i], A =
⋃
m∈M

[m][a], R =
⋃
m∈M

[m][r].

Let us now give a more concrete example to understand the set {x ∈ I : T kX(x) ∈
A for some k} (called the first fundamental set of (X,TX)), and its measure (called
the first fundamental value of (X,TX)).

Let P be a Turing machine which “computes the digits of π“ in the following
sense. P operates on the symbols A,B,C,D. Denote the symbol which is under
the tape reader before the machine starts to operate by m0, the symbol immedi-
ately to its right by m1, and so on. Suppose P is put into the initial state and
given a tape for which m0,m1, . . . ,mk ∈ {A,B}, mk+1 ∈ {C,D}. Then P ends
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in the accepting state if k is such that the k’th digit in the binary expansion of
the fractional part of π is 1. Otherwise, it ends in the Rejecting state or operates
forever.

From the description of P it follows that the first fundamental set is the union⋃
k∈Σ

Fk,

where Σ is the set of those natural numbers N such that the binary expansion of
the fractional part of π has 1 at N ’th place, and Fk is defined as

Fk = {((mj), σ) : m0,m1, . . . ,mk ∈ {A,B}, mk+1 ∈ {C,D}, σ = i}.
Note that

µ(Fk) = 1
|S|
· 1

2k+2 .

Accordingly, the fundamental value is equal to 1
4|S| ·{π}, where {π} is the fractional

part of π.

Note however that we can not use the Turing dynamical system obtained from
the machine P to prove that 1

4|S| ·{π} is an l
2-Betti number arising from some group.

There are two reasons. First, the measure space X of configurations of P is not a
compact topological group, so we do not have a map P ⊗ 1: Q(X̂ o Γ)→ CG(ρ),
because X̂ does not exist. However, this is easily repairable.

But second, we did not give any details on how P operates precisely, and so it
is not possible to check conditions (1) and (2) to apply the formula (1.2). This
is a serious obstruction and the reason why examples in Section 5 are much more
explicit, so that the conditions (1) and (2) can actually be checked.

1-C. Open questions

All questions are well-known to the experts.

Question 1. What is the set of l2-Betti numbers arising from finitely presented
groups?

Note that the set in question is countable. In [PSZ10] different numbers appear
than those covered by Theorem 1.4. On the other hand, note that every l2-Betti
number is, by functional calculus, a limit of a sequence τG((1 − T )n), where T ∈
Mk(QG) and τG is the group trace. If the group G is sofic, then there are bounds
known on what n one has to take to be ε-close to the limit (this follows from the
determinant conjecture, see [ES05]). It follows that if G is a sofic group, then
elements of C(G) are computable by a Turing machine with an oracle for the word
problem of G. If G is finitely presented then the word problem of G is known to
be not harder than the halting problem. This gives some bound on what l2-Betti
numbers can arise from (sofic) finitely presented groups; however this bound seems
to be far away for the techniques presented here or in [PSZ10].

Question 2. For a group G and a ring k ⊂ C, define C(G, k) to be the set
of those r such that there exists T ∈ kG with dimvN kerT = r. By definition,
C(G,Q) = C(G). Is it true that for every group G we have C(G) = C(G,C)? In
particular, is it true that the set C(G,C) is countable?
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The answers are trivially yes for those torsion-free groups (or groups with
bounded torsion subgroups) for which the so called strong Atiyah conjecture holds:
C(G,C) = N (this has to be modified appropriately for bounded torsion groups).
Examples include free groups and bounded-torsion elementary amenable groups
(see [Lin93]). On the other hand, the answers are not known even for Z/2Z o Z.
This motivates the next question.

Question 3. What is C(Z/2Z o Z)?

In Theorem 1.1 we prove C((Z/2Z o Z)3) * Q. After the first version of this
article was submitted to arXiv, F. Lehner and S. Wagner showed in [LW10] that
C(Z/pZ oFd) contains irrational algebraic numbers, where Fd is the free group on
d generators, d > 2, p ≥ 2d − 1, which subsequently led the author to show in
[Gra10] that C(Z/pZ o Z) contains transcendental numbers, for all p > 1. This
raises the question whether C(Z/pZ oZ) contains irrational algebraic numbers. In
fact, C((Z/pZ o Z)k) contains algebraic numbers of degree k, as will be shown in
a future version of [Gra10].

Question 4. Are l2-Betti numbers of a countable discrete group rational?

For a precise definition of l2-Betti numbers of a group, see e.g. [Eck00] or [Lüc02]
for a more general definition. If r is an l2-Betti number of a group G, then it is in
particular an l2-Betti number arising from G, but not the other way around. All
the examples in the literature so far, of groups which give rise to irrational l2-Betti
number, have an infinite normal amenable subgroup. This implies that all their
l2-Betti numbers are 0 (see [Lüc02], Theorem 7.2).
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1-E. Basic notation and conventions

Throughout the thesis the term measurable space refers to a standard Borel
space. The word subset means measurable subset, whenever it makes sense. In
the proofs, we sometimes do not check that the sets we work with are measurable,
but in all the cases such checks are straight-forward.

If U is a subset of X then χU : X → {0, 1} and χ(U) : X → {0, 1} denote the
characteristic function of U in X.

If S is a set then cardinality of S is denoted by |S|. The Hilbert space whose or-
thonormal basis consists of elements of S is denoted by l2(S) or l2S. The standard
basis vectors are denoted by ζs, s ∈ S.

If g is a graph then its sets of vertices and edges are denoted by V (g) and E(g).
If g is an oriented graph and e ∈ E(g), then the starting and ending points of e
are denoted by s(e) and r(e) (r stands for range). The Hilbert space l2(V (g)) is
denoted also by l2g.

A full subgraph of a graph g is a subgraph h with the property that if e ∈ E(g)
is an edge between two vertices in V (h), then e ∈ E(h).

If v is a vertex in an oriented graph with only outgoing edges, v is called a
starting vertex. If v has only incoming edges then it is called a final vertex.

Given a ring R, the ring of k × k-matrices over R is denoted by Mk(R). A
trace τ on R is a function τ : R → C such that τ(ab) = τ(ba). The standard
trace (i.e. sum of diagonal elements) on Mk(C) is denoted by tr. If R is a ∗-ring of
operators on a Hilbert spaces then we also require that τ(T ∗T ) is a non-negative
real number, for all T ∈ R. If R is an algebra over a field F ⊂ C and τ is a trace
on R, then we have an induced trace on Mk(R) ∼= Mk(F) ⊗ R given by tr⊗τ ,
The induced trace is also denoted by τ .

If R is a ∗-ring of operators on a Hilbert space, then a trace τ on R is called
normal if it extends to a continuous trace on the weak completion of R. A trace
is faithful if, for every T , τ(T ∗T ) = 0 implies T = 0. All traces we will consider
are faithful and normal.

If R is a ∗-ring of operators on a Hilbert space, τ is a faithful normal trace on
R, and T ∗ = T ∈ R then the spectral measure of T is the usual projection-
valued spectral measure of T composed with τ (it makes sense to evaluate τ on
spectral projections of T , since the latter are in the weak completion of R). The
spectral measure of the set {0} is called von Neumann dimension of kernel
of T , denoted by dimvN ker(T ). For a non-self-adjoint T we define dimvN ker(T ) =
dimvN ker(T ).

We say that the spectral measure of T ∗ = T ∈ R is pure-point, or that T has
pure-point spectrum, if the spectral measure of T is a countable sum of measures
supported on single points.

2. Groupoids

2-A. Definitions

For more detailed information on groupoids see [ST10] and references therein.
A groupoid G is a small category whose morphisms are all invertible. The set

of objects is denoted by G0 and the set of all morphisms is denoted by G. The
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embedding 1 : G0 → G sends an object x to the identity morphism on x. The space
G0 will be often identified with a subset of G via this embedding.

The maps s, r : G → G0, source and range maps, associate to a morphism its
domain and codomain. Composition is a map Gr×s G → G; composition of mor-
phisms γ : x→ y and γ′ : y → z is denoted by γγ′. Given γ : x→ y, the inverse of
γ is denoted either by i(γ) or by γ−1.

For x ∈ G0, the sets s−1(x) and r−1(x) are denoted by s∗x and r∗x. The set of
those objects y for which there exists a morphism between x and y is referred to
as the orbit of x, denoted by Gx.

A discrete measurable groupoid is a groupoid together with a structure of
a measurable space on G, and such that G0 is a measurable subset, fibers of the
maps s and r are countable, and the structure maps s, r, i and composition are
measurable.

A discrete measured groupoid is a discrete measurable groupoid G together
with a measure µ on G0, such that the measures

G ⊃ U 7→
∫
G0
|r−1(x) ∩ U |dµ(x)

and
G ⊃ U 7→

∫
G0
|s−1(x) ∩ U |dµ(x)

are equal. This measure on G is also denoted by µ.
From now on all groupoids will be discrete measured, unless explicitly stated

otherwise. The following lemma is a direct consequence of the definition of measure
on G.

2.1. Lemma. Suppose U ⊂ G is such that r restricted to U is an injection. Then
measure of U in G is the same as the measure of r(U) in G0.

We say that a groupoid G is a relation groupoid, if for almost all pairs (x, y)
of objects (with respect to the product measure on G0 × G0) there is at most
one morphism from x to y. If G is a relation groupoid then we freely use the
identification of s∗x with Gx given by s∗x 3 γ 7→ r(γ).

A measurable edge is a pair (U, φ), where U ⊂ G0 and φ : U → G, such that
s◦φ : U → G0 is the identity embedding, and r ◦φ : U → G0 is injective. Note that
φ and r ◦ φ are automatically measure preserving. For the most part, we write
simply φ, with the understanding that U = Dom(φ) is the domain of definition of
φ. If φ is a measurable edge, then φ−1, the inverse of φ, is the measurable edge
with Dom(φ−1) = r(Im(φ)), and such that φ−1(r(φ(x))) = i(φ(x)).

2.2. Lemma. There exists a countable family of measurable edges whose images
are disjoint and such that the union of all their images is all of G.

Proof. The statement follows from a theorem of Luzin and Novikov (see [Kec95],
Theorem 18.10): there exists a division of G into countably many disjoint sets such
that the restriction of s to any of them is injective (this is true for any map with
countable fibers between measurable spaces). �
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Given a measurable edge φ, define a bounded operator on L2G = L2(G, µ),
denoted also by φ, by

(2.1) φ(F )(γ) =
{
F (γφ−1(r(γ))) if r(γ) ∈ Dom(φ−1),
0 otherwise,

where F ∈ L2(G).
Given f ∈ L∞(G0) and F ∈ L2(G), we define f(F ) ∈ L2(G) to be f(F )(α) :=

f(r(α))F (α). This is an action of L∞(G0) on L2(G).
The groupoid ring of G, denoted by CG, is the ring of bounded operators on

L2(G) generated by measurable edges and L∞(X). We note that CG is ∗-closed
(compare Lemma 2.3 below).

Given a measurable edge φ and a set U ⊂ Dom(φ), we let φ|U and φU denote
the restriction of φ to U .
2.3. Lemma. Let φ be a measurable edge and f ∈ L∞(X). Then, in CG, we have

(1) φf = φ|supp(f)∩Dom(φ)f ,
(2) If Dom(φ) ⊂ U , and χ is the characteristic function of U then φχ = φ.
(3) φ∗ = φ−1,
(4) φf = φ(f)φ,

where φ(f) ∈ L∞(G0) is defined by the formula

(2.2) φ(f)(x) =
{
f(r(φ−1(x))) if x ∈ Dom(φ−1),
0 otherwise.

Proof. We only prove (4). The other statements are proved similarly and left to
the reader as an exercise.

Let F ∈ L2(G). Then f(F )(α) = f(r(α)) · F (α) and therefore

(φf)(F )(α) =
{
f(r(αφ−1(r(α)))) · F (αφ−1(r(α))) if r(α) ∈ Dom(φ−1),
0 otherwise.

On the other hand from (2.1) we get

(φ(f)φ)(F )(α) =
{
φ(f)(r(α)) · F (αφ−1(r(α))) if r(α) ∈ Dom(φ−1),
0 otherwise,

but, from (2.2) we see that, if r(α) ∈ Dom(φ−1) then φ(f)(r(α)) = f(r(φ−1(r(α)))),
and so the claim follows from noting that r(αβ) = r(β) for every composable pair
α, β of morphisms. �

In particular, each element of CG can be (non-uniquely) represented by a finite
linear combination of operators φ · f , where f ∈ L∞(G0), and φ is a measurable
edge.

The trace τG on CG is defined by the formula
τG(T ) := 〈Tχ0, χ0〉L2G,

where χ0 is the characteristic function of G0 ⊂ G. The extension of τG to the weak
completion of G is positive, faithful and normal.
2-B. Subgroupoids

Let A = (φi)i∈I be a family of measurable edges. The subgroupoid gener-
ated by A, denoted by G(A), is the discrete measured groupoid whose space of
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objects is equal to G0 and whose morphisms are generated by φi, φ−1
i , and identity

morphisms. More precisely, morphisms in G(A) are the subset of G consisting
of (1) those γ ∈ G such that there exists a finite sequence γ1, . . . , γn such that
γ = γ1 . . . γn, and for every j either γj or γ−1

j is in the image of some φi, and (2)
all identity morphisms.

A subgroupoid of a groupoid is a subgroupoid generated by a family of mea-
surable edges.

2.4. Proposition. Let H be a subgroupoid of G. Note that if φ is a measurable
edge in H, then it is also a measurable edge in G. Similarly, elements of L∞H0
are at the same time elements of L∞G0. These two identifications extend to a
trace-preserving ∗-embedding CH ↪→ CG.

Proof. Let T ∈ H be represented by a finite sum ∑
φifi. Note that

τH(
∑

φifi) =
∑
〈(φifi)(χ0), χ0〉L2H =

∫
Ki
φi(fi)

=
∑
〈(φifi)(χ0), χ0〉L2G = τG(

∑
φifi),

where Ki = {x ∈ G0 : φi(x) is the identity morphism of x}.
Therefore, we have a map from the set of finite sums representing elements of CH

to the set of finite sums representing elements of CG, which is trace preserving and
∗-preserving. It follows that this map induces a well-defined linear ∗-embedding of
CH into CG because both τH and τG are faithful. �

2.5. Corollary. Let T ∗ = T ∈ CG be represented by a sum ∑n
i=1 fi · αi, where

fi ∈ L∞(G0), and αi are measurable edges. Let H be the groupoid generated by the
measurable edges αi. Then T is in the image of the embedding CH ↪→ CG, and
the corresponding element of CH is also denoted by T . The spectral measure of T
in CH is the same as the spectral measure of T in CG.

This corollary is a special case of the following lemma which will be used several
times again.

2.6. Lemma. Let A and B be ∗-rings with traces τA and τB of operators on the
Hilbert spaces HA and HB. Moreover, assume that the traces extend to faithful
normal traces on the weak completions of A and B in the algebras of bounded
operators on HA and HB, respectively. Let φ : A → B be a trace preserving ∗-
homomorphism and T ∗ = T ∈ A. Then the spectral measure of T with respect to
τA is the same as the spectral measure of φ(T ) with respect τB.

Proof. Since φ is ∗-preserving, φ(T ) is also self-adjoint. The spectral measure,
as any σ-additive measure, is determined by measures of intervals. Let I be
an interval and pn be a sequence of polynomials converging to χI pointwise,
everywhere on R. By the definition of the spectral measure, we need to show
τA(χI(T )) = τB(χI(φ(T )).

By the spectral theorem, we have pn(T ) → χI(T ), and pn(φ(T )) → χI(φ(T )).
Since φ is a homomorphism, we have pn(φ(T )) = φ(pn(T )). Since τ is normal,
we have τA(pn(T )) → τA(χI(T )), and τB(φ(pn(T ))) → τB(χI(φ(T )). The claim
follows since φ is assumed to be trace preserving, in particular τB(φ(pn(T ))) =
τA(pn(T )). �
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2-C. Elements of the groupoid ring as direct integrals of operators

Given an operator ∑ fi ·φi ∈ CG and x ∈ G0, we want to “restrict” the operator
to the space l2(s∗x). To define it precisely, we use direct integrals of fields of
Hilbert spaces and of operators. For definitions and notation see [Fol95], Chapter
7.4.

Unless explicitly stated otherwise, all integrals are taken over the space G0.
Consider the field x 7→ l2(s∗x) of Hilbert spaces over G0. For a measurable edge

φ, define a section Sφ, by

Sφ(x) =
{

0 if x /∈ Dom(φ)
ζφ(x) otherwise

Let ψi be a countable family of measurable edges from Lemma 2.2. We make
l2(s∗x) into a measurable field by equipping it with the family of sections Sψi .

Let φ be a measurable edge. We define the corresponding field of operators
φx : l2(s∗x)→ l2(s∗x) by

φx(ζα) =
{
ζαβ if ∃β ∈ Im(φ) : r(α) = s(β)
0 otherwise

Let f ∈ L∞(G0). We define the corresponding field of operators fx : l2(s∗x) →
l2(s∗x) by first fixing a measurable function on G0 which is a representative for f ,
we also call it f , and by putting

fx(ζα) = f(r(α)) · ζα.
Given T ∈ CG represented by a finite sum ∑

φi · fi, we define a field of op-
erators Tx : l2(s∗x) → l2(s∗x) by first fixing representatives for fi and putting
Tx = ∑(φi)x(fi)x.

2.7. Proposition. There is an isomorphism of Hilbert spaces L2(G) and∫ ⊕
l2(s∗x) dµ(x)

which sends a function F : G → C to a section
(2.3) x 7→

∑
γ∈s∗x

F (γ) · ζγ.

Under this isomorphism elements of CG are decomposable. Operator T ∈ CG
corresponds to the operator

∫⊕ Tx dµ(x). Furthermore,

τG(T ) =
∫
〈Tx(ζx), ζx〉l2(s∗x) dµ(x).

Proof. The statements about the decomposition of T and the trace follow from
the formula (2.3) through a direct computation.

We need to check (1) that the formula (2.3) defines a measurable element of the
field

∫⊕ l2(s∗x) dµ(x), (2) that this field is square-summable, and that the resulting
map of Hilbert spaces is (3) isometric and (4) surjective.

(1) For each measurable edge Sφ we need to check that the function
x 7→ 〈Sφ(x),

∑
γ∈s∗x

F (γ) · ζγ〉l2s∗x
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is measurable. By definition of Sφ, this function is non-zero only on Dom(φ),
where it is equal to

〈ζφ(x),
∑
γ∈s∗x

F (γ) · ζγ〉l2s∗x,

which is equal to F (φ(x)).
(2) and (3) Due to Lemma 2.2, we have

〈F, F 〉L2G =
∫
G
|F (γ)|2 dµ(γ) =

∫ ∑
γ∈s∗x

|F (γ)|2 dµ(x),

which is equal to ∫
〈
∑
γ∈s∗x

F (γ) · ζγ,
∑
γ∈s∗x

F (γ) · ζγ〉l2s∗x dµ(x).

(4) Let an element of
∫⊕ l2(s∗x) dµ(x) be given by a measurable section F (x) ∈

l2(s∗x). Define F ∈ L2(G0) as F (γ) = 〈F (s(γ)), ζγ〉. By (2.3), the image of F is
the section F (x).

�

2-D. Relation groupoids with finite orbits

The measurable structure on the field x 7→ l2(Gx) of Hilbert spaces is given by
the sections

Sψi =
{

0 if x /∈ Dom(φ)
ζr(ψi(x)) otherwise

where ψi is the countable family of measurable edges from Lemma 2.2. If G is a
relation groupoid then, under the standard identification of s∗x with Gx, it is the
same measurable structure as the one on the field x 7→ l2(s∗x).

We say that a groupoid G has finite orbits, if almost all points in G0 have finite
orbits. Note that if G is a groupoid with finite orbits, then there exists a funda-
mental domain, i.e. a measurable subset D ⊂ G0 such that every finite orbit
intersects D exactly once. In this case, we define the trace τD on decomposable
operators on ∫ ⊕

D
l2(Gx) dµ(x),

by the formula
τD

(∫ ⊕
D
Tx dµ(x)

)
=
∫
D

tr(Tx) dµ(x).

2.8. Proposition. Let G be a relation groupoid with finite orbits, and let D be a
fundamental domain of G. There is a trace-preserving ∗-representation of CG on∫⊕
D l2(Gx) dµ(x), which sends an operator T ∈ CG to∫ ⊕

D
Tx dµ(x).

In particular, for a self-adjoint operator T , the spectral measure of T is the same
as the spectral measure of

∫⊕
D Tx dµ(x).

Proof. Let Dc be the complement of D. We have the direct sum decomposition∫ ⊕
l2(Gx) dµ(x) =

∫ ⊕
D
l2(Gx) dµ(x)⊕

∫ ⊕
Dc
l2(Gx) dµ(x),
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and the corresponding decomposition of the operator T :∫
Tx dµ(x) =

∫ ⊕
D
Tx dµ(x)⊕

∫ ⊕
Dc
Tx dµ(x).

It follows that T 7→
∫⊕
D Tx is a ∗-representation. Thus, we need only the equality

of the traces.
Using the standard identification of Gx with s∗x,

τD(T ) =
∫
D

∑
γ∈s∗x

〈Txζγ, ζγ〉 dµ(x).

Because of Lemma 2.2,

τD(T ) =
∫
s−1(D)

〈Ts(γ)ζγ, ζγ〉 dµ(γ),

which, by Lemma 2.1, is equal to∫
G0
〈Td(x)ζx, ζx〉 dµ(x),

where d(x) is the unique point in D ∩ Gx.
In a relation groupoid, for any two points x, y in the same orbit we have Tx =

Ty : l2(Gx)→ l2(Gx). It is enough to check it for T = f ∈ L∞(X) and for T = φ,
where φ is a measurable edge. In both cases it is a straight-forward computation.

Therefore, we have

τD(T ) =
∫
G0
〈Txζx, ζx〉 dµ(x) = τG(T ).

Equality of the spectral measures follows from Lemma 2.6. �

Let A = (φi)i∈I be a family of measurable edges. An A-graph is an oriented
graph whose edges are labeled by elements of A. The A-graphing of G0 is the
A-graph whose vertices are elements of G0; there is an oriented edge from x to y
with label φi if, for some β ∈ Im(φi), s(β) = x, r(β) = y. The A-graphing of Gx
is the full sub-A-graph of the A-graphing of G0 whose vertices are points of Gx.

An A-graph in G is an A-graph isomorphic to the A-graphing of Gx for some
x ∈ G0. For an A-graph g in G, let [g] denote its isomorphism class of A-graphs,
let

U[g] := {x ∈ G0 : A-graphing of Gx is isomorphic (as an A-graph) to g},
and µG[g] := µ(U[g]). When G is understood, we write µ[g].

The subring of CG generated over C by elements of A and their inverses is
denoted by CAG. Note that it is ∗-closed.

Given an A-graph g and φ ∈ A we define φg : l2(g)→ l2(g) by

〈φg(ζv), ζw〉 =
{

1 there is an edge with label φ from v to w
0 otherwise

For T ∈ CAG and an A-graph g in G, we define Tg : l2g → l2g by first fixing a
representative T = ∑

ciφi, where ci ∈ C, φi ∈ A∪A−1, and putting Tg := ∑
ci(φi)g.

That this is well-defined follows from the observation that Tg is conjugate to Tx
for any x such that the A-graphing of Gx is isomorphic to x. In fact, every
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isomorphism of A-graphs between g and the A-graphing of Gx is an intertwining
operator.
2.9. Corollary. Let G be a relation groupoid with finite orbits, D be a fundamental
domain, and g be a finite A-graph in G with µ[g] 6= 0. The map φ 7→ φg extends to
a ∗-representation of CAG on l2g. The image of T ∈ CAG under this representation
is Tg.

Furthermore, consider the Hilbert space
⊕[g]l

2g

where the sum is over different isomorphism classes of A-graphs in G with µ[g] 6= 0.
The map T 7→ ⊕Tg is a faithful ∗-representation of CAG on the above Hilbert space,
and

(2.4) τG(T ) =
∑
[g]

µ[g]
|V (g)| tr(Tg).

Proof. Let D be a fundamental domain and let V the complement of U[g] in G0.
We have a direct sum decomposition∫ ⊕

D
l2(Gx) dµ(x) =

∫ ⊕
U[g]∩D

l2(Gx) dµ(x)⊕
∫ ⊕
V ∩D

l2(Gx) dµ(x)

and the corresponding direct sum of operators∫
D
Tx dµ(x) =

∫ ⊕
U[g]∩D

Tx dµ(x)⊕
∫ ⊕
V ∩D

Tx dµ(x),

which shows that T 7→
∫⊕
U[g]∩D Tx dµ(x) is a representation of CA.

To show that T → Tg is a representation we construct an intertwining operator
between

∫⊕
U[g]∩D l

2(Gx) and the direct integral
∫⊕
U[g]∩D l

2g of the constant field l2g.
For each x ∈ U[g] ∩D we need to choose, in a measurable way, an isomorphism
between the A-graphing of Gx and g. Observe that given x ∈ Gx and v ∈ V (g),
there is at most one such isomorphism which sends x to v, since different outgoing
vertices of a given vertex have different labels. Let us order the vertices of g. The
field of intertwiners between

∫⊕
U[g]∩D l

2(Gx) and
∫⊕
U[g]∩D l

2g is defined as x 7→ [the
isomorphism between the A-graphing of Gx and g which sends x to the smallest
possible v ∈ V (g)].

To prove that the representation T 7→ ⊕Tg is faithful, it is enough to check that
(2.4) holds. We have

τG(T ) =
∫
D

tr(Tx) dµ(x) =
∑
[g]

∫
U[g]∩D

tr(Tx) dµ(x).

Note that, on the right side, each integrand is a constant function equal to tr(Tg).
The claim follows by noting that µ(U[g] ∩D) = µ[g]

|V (g)| . �

Given an A-graph g and an edge e, let L(e) denote the label of e. Given a
(not-necessarily directed) path p consisting of edges e1, e2, . . . , ek, the label of p is

L(p) :=
n∏
i=1

L(ei)εi ,

where εi = 1, if p crosses ei respecting the orientation of ei, and εi = −1 otherwise.
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An A-graph is uniquely labeled if for every closed path p the measurable edge
L(p) is the identity embedding G0 → G restricted to some set.
2.10. Corollary. Let G be a groupoid and A be a family of measurable edges in G.
Suppose that all the orbits in G(A) are finite and that for almost every object x,
the A-graphing of G(A)x is uniquely labeled. Let T ∈ CAG. Then T has pure-point
spectrum and the von Neumann dimension of the eigenspace for a given κ ∈ C is
equal to ∑

[g]

µG(A)[g]
|V (g)| dim ker(Tg − κ),

where the sum is taken over isomorphism classes of A-graphs in G(A).
Proof. The assumption that almost all x have uniquely-labeled A-graphings im-
plies that G(A) is a relation groupoid, and G(A) has finite orbits by assumption.
The statement follows by applying the previous corollary to G(A), since the spaces
l2g are finite-dimensional and the von Neumann dimension arising from the stan-
dard trace is the standard dimension. �

3. Examples

3-A. Action groupoids and Pontryagin duality
Let Γ be a discrete countable group, (X,µ) be a probability measure space and

ρ : ΓyX be a right measure preserving action, which is not necessarily free. The
action groupoid G(ρ) is a measured groupoid whose space of objects is X, and
whose space of morphisms is X ×Γ. The structure maps are given by s(x, γ) = x,
r(x, γ) = ρ(γ)(x). Composition of (x, α) and (ρ(α)(x), β) is (x, αβ). The inverse
of (x, γ) is (ρ(γ)(x), γ−1).

Each element γ ∈ Γ gives rise to a measurable edge x 7→ (x, γ), denoted also by
γ, whose domain of definition is all of X.

For the rest of this subsection, (X,µ) is a compact abelian group with the
normalized Haar measure and the action ρ : ΓyX is by continuous group au-
tomorphisms. The action ρ̂ of Γ on the Pontryagin dual X̂ of X is defined as
ρ̂(γ)(f)(x) = f(ρ(γ−1)(x)), where f : X → C is an element of X̂.

For more information on Pontryagin duality see e.g. [Fol95]. In particular,
Pontryagin duality induces a map P : X̂ → L∞(X).
3.1. Proposition. We have a trace-preserving ∗-embedding of the complex group
ring C(X̂ oρ̂ Γ) into the groupoid ring CG(ρ), which sends f ∈ X̂ to P (f), and
γ ∈ Γ to a measurable edge γ. This embedding will be denoted by P ⊗ 1.
In particular, if T = T ∗ ∈ C(X̂ oρ̂ Γ), then T and P ⊗ 1(T ) have the same

spectral measures.
Proof. To begin with, we show that the map ∑

ĉi · ai · γi 7→
∑
ai · γi, ci ∈ C,

ai ∈ X̂, γi ∈ Γ, is a ring homomorphism. It is well-defined, since every element of
C(X̂ oρ̂ Γ) can be written in a unique way as ∑ ĉi · ai · γi. It certainly is a ring
homomorphism when restricted to CΓ and to CX̂. The standard presentation of
a semi-direct product and Lemma 2.3(4) imply that it is a homomorphism on all
of C(X̂ oρ̂ Γ).
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Lemma 2.3(3) implies that the ∗-operation is preserved.
By linearity, it is enough to check the trace-preservation on an element of the

form â · γ ∈ C(X̂ oρ̂ Γ), where â ∈ X̂, γ ∈ Γ. The group ring trace of â · γ is equal
to 1 if â and γ are the neutral elements of X̂ and Γ respectively, and is equal to 0
otherwise.

We consider three cases.
(1) Both â and γ are the neutral elements. Then a is the function on X con-

stantly equal to 1 and τG(ρ)(P ⊗ 1(â · γ)) = 〈χ0, χ0〉 = 1.
(2) γ is not the neutral element. Then the functions χ0 and γ(χ0) have dis-

joint supports and, therefore, also χ0 and (aγ)(χ0) have disjoint supports, so
〈(aγ)(χ0), χ0〉 = 0.

(3) γ is the neutral element, but â is not. Then, it follows from Pontryagin
duality that a is a non-constant function on G0, and the trace we have to compute
is equal to 〈a, χ0〉 =

∫
a dµ. Let x, y ∈ G0 with a(x) 6= a(y). We use that a is a

group homomorphism and invariance of Haar measure to get∫
a(z) dµ(z) =

∫
a(xz) dµ(z) = a(x)

∫
a(z) dµ(z).

Repeating with y in place of x we obtain a(x)
∫
a(z) dµ(z) = a(y)

∫
a(z) dµ(z),

which is possible only if
∫
a(z) dµ(z) = 0.

The statement about the spectral measures follows from Lemma 2.6. �

3.2. Lemma. Let Z(1
2) be the subring of Q generated by Z and 1

2 . If X is a
product of infinitely many copies of Z/2Z indexed by a set I, then the image of
Z(1

2)(X̂ oρ̂ Γ) under P ⊗ 1 is generated over Z(1
2) by measurable edges γ ∈ Γ and

the characteristic functions of cylinder sets.

Proof. Let R ⊂ CG be the ring generated by characteristic functions of cylinder
sets and measurable edges γ ∈ Γ.

First, we show that image of Z(1
2)(X̂ oρ̂ Γ) is contained in R. Clearly, (P ⊗

1)(Γ) ⊂ R. Note that X̂ is a direct sum of infinitely many copies of Z/2Z indexed
by I. Let gi be the generator of Z/2Z corresponding to the index i ∈ I. Direct
computation shows that P ⊗ 1( e+gi2 ) is the characteristic function of the cylinder
set {(xj) ∈

∏
I Z/2Z : xi = 0}. Also P ⊗ 1(e) is a characteristic function of a

cylinder set (namely, of the whole X). The statement follows, since Z(1
2)(X̂) is

generated, as a Z(1
2)-ring, by e+gi

2 and e.
In the other direction, we just saw that the characteristic functions of cylinder

sets {(xj) ∈
∏
I Z/2Z : xi = 0} are in the image. Since the constant function 1 is

also in the image, it follows that characteristic function of {(xj) ∈
∏
I Z/2Z : xi =

1} is in the image as well. Every cylinder set is an intersection of sets of those two
types, so the claim follows. �

3-B. Computation of Grigorchuk & Żuk

We now show how Corollary 2.10 is used in practice. We start by computing
the von Neumann dimension of the kernel of a random walk operator on the group
Z/2Z o Z. This was originally done, by different methods, by R. Grigorchuk and
A. Żuk in [GŻ01]. Compare also [DS02].
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Recall that the lamplighter group Z/2Z o Z is defined as Z/2Z ⊕Z o Z, where
the action of Z on Z/2Z ⊕Z is by the shift i.e. [t((xi))]j = xj+1,

Let X = Z/2Z Z. Given ε−k, . . . , εl ∈ Z/2Z , the set
{(xi) ∈ X : x−k = ε−k, . . . , xl = εl}

is denoted by
[ε−k . . . ε0 . . . εl]

and its characteristic function is denoted by
χ[ε−k . . . ε0 . . . εl].

Similarly the set {(xi) ∈ X : x−1 = 0} is denoted by [0 · ] and its characteristic
function by χ[0 · ]. Concrete elements from the set [ε−k . . . ε0 . . . εl] are denoted
by (ε−k . . . ε0 . . . εl).

3.3. Theorem ([GŻ01]). Let T be the element in the rational group ring of the
lamplighter group given by T = 1

2(t+ t−1 + tg + gt−1), where t is the generator of
Z, and g ∈ Z/2Z ⊕Z is a characteristic function Z → Z/2Z of {0} ⊂ Z. Then
dimvN kerT = 1

3 .

Proof. Let X = {0, 1}Z with the standard product measure, and let ρ : ZyX be
the Bernoulli shift action, i.e. [ρ(t)((xi))]j = xj+1, where t is the distinguished
generator of Z.

Note that T = t · 1+g
2 + t−1 · 1+t(g)

2 , and that the Pontryagin dual of 1+g
2 is χ[ 0 ]

and of 1+t(g)
2 is χ[0 · ]. Therefore, by Proposition 3.1, the spectral measure of T is

the same as the spectral measure of the operator t[ 0 ] + t−1
[0 · ] ∈ G(ρ). Let us call the

latter operator T as well.
Now, we want to use Corollary 2.10 for the family A = {t[ 0 ]} (note that inverse

of the measurable edge t[ 0 ] is the measurable edge t−1
[0 · ]).

Orbits of G(A) are as follows: the orbit of a point xk = ( 1 0 0k−1 1 ), k > 1,
consists of points ρ(ti)(x), i = 0, . . . , k. The A-graphing of G(A)xk, denote it by
gk, has a directed edge from ρ(ti−1)(x) to ρ(ti)(x) for i = 1, . . . k. It follows that
Tg is the (directed) random walk operator on the graph

•� •� · · ·� •� •
with k + 1 vertices. Clearly µ[gk] = k+1

2k+2 .
The only other points are of the form x0 = (11). Their orbits consist of a single

point and the corresponding A-graphings have no edges. It follows that, in this
case, Tg = 0, and that µ[g] = 1

4 .
Recall that the kernel of the random walk operator on k vertices is 1-dimensional

if k is odd and 0-dimensional otherwise. By Corollary 2.10 we have

dimvN kerT =
∞∑
l=0

1
22l+2 = 1

3 .

�

If we put more effort into computing the spectra of the random walk operators
on the graphs gk in the proof, we could compute the whole spectral measure of T
(see [GŻ01] or [DS02]).
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3-C. Percolation theory, theorem of Lehner, Neuhauser & Woess

We now present a theorem of F. Lehner, M. Neuhaser and W. Woess from
[LNW08]. It is a generalization of the computation from the previous subsection
and a special case of Corollary 2.10.

Let Γ be a finitely generated group, A be a finite set of generators for Γ, and
C be the associated directed Cayley graph. Vertices of C are elements of Γ, and
there is an edge from α to β if and only if αγ = β, for some γ ∈ A (so, if A is a
symmetric set of generators, then between each two vertices of C there are either
none or two edges). An animal is a full connected subgraph of C which contains
the neutral element e ∈ Γ. The A-boundary of an animal L is the set
∂AL := {α ∈ V (C)− V (L) : ∃β ∈ V (L) such that there is an edge from α to β}.
Let L denote the subgraph of C whose set of vertices is V (L)∪ ∂AL, and whose

set of edges contains all edges of L and additionally those edges of C which connect
vertices of L with points of ∂AL.

Given a natural number p and a finite animal L, denote

µp(L) :=
(

1
p

)|L|
·
(
p− 1
p

)|∂AL|
.

Let TL denote the (oriented) random walk operator l2L→ l2L.
Given a point x ∈ Z/pZ Γ let C0(x) be the full subgraph of C with V (C0(x)) =
{α ∈ Γ: x(α) = 0}, and let L(x) be the animal whose set of vertices is equal to
the connected component of C0(x) containing e ∈ Γ (if e /∈ C0G then L(x) is the
empty animal).

For q ∈ [0, 1], let νq denote the product measure on Z/pZ Γ of a fixed measure
ν on Z/pZ such that ν({0}) = q, ν({1, 2, . . . , p − 1}) = 1 − q. We say that a
parameter q is subcritical for Γ with respect to A if animals L(x) are νq-almost
surely finite. Subcriticality does not depend on p or a choice of ν.

For example, for Γ = Z with the standard generating set, every q < 1 is sub-
critical. More generally, for the free group Fk with the standard generating set
every q < 1

2k−1 is subcritical. It is known that there exists qc ∈ [0, 1] such that
subcritical parameters are precisely those smaller than qc. See [BS96] for more
information on percolation theory.

3.4. Theorem ([LNW08]). Let G = Z/pZ o Γ, let π ∈ QZ/pZ be the projection
π := 1

p
·∑x∈Z/pZ x, let T ∈ QG be defined as

T :=
∑
γ∈A

γπ.

Suppose that the parameter 1
p
is subcritical for Γ with respect to A. Then the

spectral measure of T + T ∗ is pure-point and

dimvN ker(T + T ∗) =
∑
L

µp(L)
|L|

· dim ker(TL + T ∗
L
),

where the sum is over all finite animals.

Proof. The proof is analogous to the one in the previous subsection.
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Let X = Z/pZ Γ with the normalized Haar measure µ and let the action
ρ : ΓyX be the Bernoulli shift, i.e.

[ρ(γ)(xα)]β := xβγ.

The action groupoid G(ρ) is denoted by G.
Let [0] ⊂ X be the set {f ∈ X : f(e) = 0}. The image of T under the Pontryagin

duality map P ⊗ 1: Q(Z/pZ o Γ)→ G(ρ) is the element∑
γ∈A

γ · χ[0]

and, by Proposition 3.1, the spectral measure of T is the same as the spectral
measure of (P ⊗ 1)(T ). Let us call the latter operator T as well.

We want to use Corollary 2.10 for the family of measurable edges {γ[0], γ ∈ A},
which we also call A.

Let x ∈ X. The A-graphing of the G(A)-orbit of x can be identified (as an
oriented graph) with L(x), and under this identification Tg corresponds to TL(g).
By the assumption on p µ-almost all animals L(x) are finite and so almost all
orbits of G(A) are finite. Almost all orbits of G(A) are also uniquely labeled, since
the action ρ is essentially free. If we denote the A-graphing of the G(A) orbit of x
by g(x) then we have µ[g(x)] = µp(L(x)), and so the result follows from Corollary
2.10, since T + T ∗ ∈ CAG(A). �

The author was informed by Franz Lehner that is an open problem to determine
whether 1

p
> qc implies that the continuous part appears in the spectral measure

of the random walk operator T+T ∗ above, even for groups Zk, k > 1. Surprisingly
to the author, the conjecture seems to be that for k = 2 the continuous part does
not appear.

The advantage Corollary 2.10 has over the methods of [LNW08] is that it
works for many more operators. For example, we can often find an operator
T ∈ Q(Z/pZ oΓ such that the relevant A-graphings consist of a prescribed family
of graphs g, and the operators Tg are more arbitrary than the random walk oper-
ators. This flexibility is used later in the thesis (Theorem 4.11), and in [Gra10] to
show existence of transcendental l2-Betti numbers arising from the group Z/2Z oZ.

As an easy example, suppose we wanted to obtain an operator T in Q(Z/pZ oΓ)
such that computing the spectral measure of T boils down to computing spectral
measures of the random walk operators on animals themselves (and not on L, as
above). Then we would take the preimage under P ⊗ 1: Q(Z/pZ o Γ)→ G(A) of
the operator S + S∗, where

S :=
∑
γ∈A

γ · χ([0 γ−→ 0]),

and [0 γ−→ 0] := {x ∈ X : x(e) = x(γ) = 0}.

4. Turing dynamical systems

4-A. Definitions and basic properties
Let (X,µ) be a probability measure space and ρ : Γ y X be a right probability

measure preserving action of a countable discrete group Γ on X.
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4.1.Definition. A dynamical hardware is the following data: (X,µ), the action
ρ, and a division X = ⋃n

i=1Xi of X into disjoint measurable subsets.

For brevity, we denote such a dynamical hardware by (X).
Suppose now that we are given a dynamical hardware (X) and we choose three

additional distinguished disjoint subsets of X, each of which is a union of certain
Xi’s: the initial set I, the rejecting set R, and the accepting set A (all or some
of them might be empty). Furthermore, suppose that for every set Xi, we choose
one element γi of the group Γ in such a way that the elements corresponding to
the sets Xi which are subsets of R ∪ A are equal to the neutral element of Γ.

Define a map TX : X → X by
TX(x) := ρ(γi)(x) for x ∈ Xi.

4.2. Definition. A dynamical software for a given dynamical hardware (X) is
the following data: the distinguished sets I, A and R, the choice of elements γi,
and the map TX , subject to the conditions above. The map TX will be called the
Turing map, and the whole dynamical software will be denoted by (TX).

4.3. Definition. A Turing dynamical system is a dynamical hardware (X)
together with a dynamical software (TX) for (X). We will denote such a Turing
dynamical system by (X,TX).

4.4. Proposition. In any Turing system (X,TX), the Turing map TX is measure-
contracting, i.e., for every measurable set U ⊂ X the set TX(U) is measurable and
µ(TX(U)) ≤ µ(U). If TX is injective on U then µ(TX(U)) = µ(U).

Proof. TX(U) is measurable since TX is finite-to-one and measurable.
Define Ui := U ∩Xi. By the definition of TX , we have that TX(Ui) = ρ(γi)(Ui).

But all the maps ρ(γi) are, by Definition 4.1, measure-preserving, and so the claim
follows. �

4.5. Definition. Let (X,TX) be a Turing dynamical system.
• A TX-chain is a sequence of points (xi) in X, indexed by Z or N, such
that TX(xj) = xj+1. If the TX-chain is indexed by N, then we demand that
TX maps no point in X to x0, and, in this case, we say x0 is the starting
point of the TX-chain (xi). Similarly, if for some j we have TX(xj) = xj,
then we call xj the final point of the TX-chain.
• A finite TX-chain is one with a finite number of elements belonging to it.
If (αi) is a finite T -chain which has the starting point and the final point,
then we will denote it also by (α0, α1, . . . , αk), understanding that αk is the
final point of (αi) and αk−1 is not.
• If the final point of some TX-chain lies in a set U ⊂ X then we say that
this TX-chain ends in U . Similarly, if the starting point of some TX-chain
lies in U then we say that this TX-chain begins in U or starts in U .
• If p is the starting point of some TX-chain then we will say that this TX-
chain starts at p, and similarly for final points.

4.6. Definition. Let (X,TX) be a Turing dynamical system.
• A fundamental TX-chain is a TX-chain which starts in I and ends in A.
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• The first fundamental set, or simply the fundamental set of (X,TX)
is the subset F1 of I consisting of all starting points of fundamental TX-
chains.
• The second fundamental set of (X,TX) is the subset F2 of A consisting
of all final points of fundamental TX-chains.

4.7. Definition. Both the first and the second fundamental set of (X,TX) are
measurable. Indeed, for example, the first fundamental set is nothing but

∞⋃
i=1

(T−iX (A) ∩ I)− TX(X),

and TX(X) is measurable by Proposition 4.4. Therefore, we can define the first
fundamental value, or simply the fundamental value, of (X,TX) as the mea-
sure of its first fundamental set, and similarly for the second fundamental value.
They will be denoted by, respectively, Ω1(X,TX) and Ω2(X,TX).

In the next definition, the expression almost all TX-chains and similar ones
should be taken to mean that there exists a family of TX-chains such that the set
of all points which are elements of TX-chains from this family is of full measure.
4.8. Definition. We say that a Turing dynamical system (X,TX)

• is strongly attracting, if almost every TX-chain ends in either R or A
(in particular almost every TX-chain has a final point.)
• has finite chains, if almost all TX-chains are finite.
• has disjoint fundamental chains, if almost all fundamental TX-chains
are pairwise disjoint (as sets.)
• does not restart, if µ(TX(X) ∩ I) = 0.

4.9. Proposition. If (X,TX) has disjoint fundamental chains, then
Ω1(X,TX) = Ω2(X,TX).

Proof. Consider the map E from the first fundamental set F1 to the second fun-
damental set F2, given by

E(x) := the final point of the TX-chain starting at x
By assumption, this map is injective almost everywhere. On the other hand, we
can express F1 as a countable disjoint union

F1 =
∞⋃
i=1

T−iX (F2) ∩ F1,

and it is clear that E restricted to T−iX (F2) ∩ F1 is equal to T iX . Therefore, the
claim follows by applying Proposition 4.4. �

4.10. Proposition. If (X,TX) is strongly attracting then it has finite chains.
Proof. Let C0 ⊂ X denote the set of final points of all TX-chains. C0 consists
precisely of the fixed points of TX . Since the system is strongly attracting, the set
of fixed points of TX is A ∪R ∪ Z, where Z is some set of measure 0.

Similarly define Ci, i > 0, to be the set of points ”which are at distance i from
a final point“. That is, we let
Ci := {x ∈ X : T iX(x) is a final point, T j(x) is not a final point for j < i}.
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Since Ci+1 = T−1
X (Ci)−∪j≤iCi, we see inductively that the sets Ci are measurable.

It is clear that these sets are disjoint, and because the system is strongly attracting,
we know that ⋃

i≥0
Ci

is of measure 1. Therefore, it is enough to see that, for every i, the measure of the
set

{x ∈ Ci : x is an element of an infinite TX-chain}
is 0. But for a given i the above set is equal to⋂

j>i

T j−iX (Cj).

Now, we note that, because Cj’s are disjoint, we have
lim

j→+∞
µ(Cj) = 0.

This, together with the fact that TX is measure-contracting (by Proposition 4.4),
proves the claim. �

4-B. Expressing the fundamental values as von Neumann dimensions
Let us now fix a Turing dynamical system (X,TX). Define T to be an element

of the groupoid ring CG(ρ) given by T := ∑n
i=1 γiχi, where χi’s are characteristic

functions of the respective Xi’s.
Given two operators A and B on some Hilbert space, note that kerA∗A+B∗B =

kerA ∩ kerB.
Let S ∈ CG(ρ) be defined as

S := (T + χX − χI − χA − χR)∗(T + χX − χI − χA − χR) + χA.

4.11. Theorem. Let (X,TX) be a Turing dynamical system which does not restart
and is strongly attracting. Then the von Neumann dimension of kernel of S is
equal to µ(I)− Ω2(X,TX).

Proof. Let A be the family of measurable edges γi|Xi . Note that S ∈ CAG(ρ).
We want to use the formula from Corollary 2.10, i.e.

(4.1)
∑
[g]

µG(A)([g])

|V (g)| · dim kerSg,

where the sum is over distinct isomorphism classes of A-graphs. In order to be
able to do so, we need to check the assumptions of Corollary 2.10 hold.

Lemma. (1) In the groupoid G(A), the orbit G(A)x of almost any point x is finite.
(2) For almost any point x the A-graphing of G(A)x is uniquely labeled.

Proof. Note that in the A-graphing of G(A)x there is an oriented edge between
two points y and z precisely when TX(y) = z. Because our system is strongly
attracting, A-graphings of G(A)-orbits are oriented rooted trees with a self-loop
at the root (see Figure 1), whose label is the neutral element of Γ (restricted to
either A or R). This implies that T -graphings of orbits are uniquely labeled.

Let G(A)∞0 be the set of points x in G(A)0 = G0 = X such that G(A)x is infinite,
and let E = G(A)∞0 ∩ (A ∪ R). Therefore E is precisely the set of final points of
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Figure 1. An example A-graphing of a G(A)-orbit. Some of the starting points belong to I,
and the final point belongs to either A or R. The only loop in the graph is the self-loop at
the final point whose label is the neutral element of Γ.

infinite TX-chains, and as such it has, by Proposition 4.10, measure 0. But every
point whose connected component is infinite is contained in one of countably many
translates of E by elements of Γ, and so the first statement also follows. �

Let us fix x ∈ X and let g be the A-graphing of G(A)x. Thanks to the formula
(4.1) it is enough to show that dim kerSg is equal to
(4.2) |V (g) ∩ I| − |V (g) ∩ A|.

Let us first compute the kernel of Tg + (χX)g− (χI)g− (χA)g− (χR)g. Note that
Tg is defined by the formula

〈Tg(ζv), ζw〉 =
{

1 there is an edge with from v to w
0 otherwise

The operator (χX)g − (χI)g − (χA)g − (χR)g acts identically on vectors ζv for
v /∈ A ∪ I ∪R and is null on other vectors ζv.

Let x1 be any starting vertex of g which belongs to the initial set I, and let
(x1, x2, . . . xk) be a TX-chain. Note that the vector

ξ(x1) := ζx1 − ζx2 + . . .± ζxk
is in the kernel of Tg + (χX)g − (χI)g − (χA)g − (χR)g. Furthermore if x, y, . . . , z
are different starting vertices then the vectors ξ(x), ξ(y), . . . , ξ(z) are linearly in-
dependent.

Lemma. The linear span of the set {ξ(x) : x ∈ V (g)∩ I} is equal to the kernel of
Tg + (χX)g − (χI)g − (χA)g − (χR)g

Proof. We just saw that the linear span of {ξ(x) : x ∈ V (g) ∩ I} is in the kernel,
so it is enough to see that it generates the whole kernel. If this was not the case
than there would be a vector η in the kernel such that 〈η, ζx〉 = 0 for every vertex
x ∈ I. Let y be a maximal (with respect to the relation generated by oriented
edges) vertex of g such that 〈η, ζy〉 6= 0.
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Write η = ζy + η′, where η′ is a linear combination of vectors ζz for y > z. It
follows that 〈Tg + (χX)g − (χI)g − (χA)g − (χR)gη′, ζy〉 = 0, and so

0 = 〈Tg + (χX)g − (χI)g − (χA)g − (χR)gη, ζy〉 =
= 〈Tg + (χX)g − (χI)g − (χA)g − (χR)ζy, ζy〉.

But if y is not a final vertex then 〈Tgζy, ζy〉 = 0, and 〈(χX)g − (χI)g − (χA)g −
(χR)ζy, ζy〉 = 1 (the last equality follows, since by assumption also y /∈ I), which
is a contradiction. And if y is a final vertex then 〈Tgζy, ζy〉 = 1, and 〈(χX)g −
(χI)g − (χA)g − (χR)ζy, ζy〉 = 0, which is also a contradiction. �

Now we need to consider two cases: either the final point of g is in R or A.
If the first possibility holds then χAg = 0 and kerSg = kerTg + (χX)g − (χI)g −
(χA)g−(χR)g, and then the formula 4.2 holds because the dimension of linear span
of {ξ(x) : x ∈ I} is precisely |I|. If the final point of g is in A then kernel of χgA is
of codimension 1, and we see that it non-trivially intersects span of {ξ(x) : x ∈ I},
which implies that kernel of Sg has dimension equal to |I| − 1, which shows that
the formula (4.2) holds. �

4.12. Corollary. Let (X,TX) be a Turing dynamical system which does not restart,
is strongly attracting, and has disjoint fundamental chains. Then

dimvN kerS = µ(I)− Ω1(X,TX).

Proof. Follows directly from the previous theorem and Proposition 4.9. �

5. Turing dynamical systems - examples

We want to use presented examples later together with Theorem 4.11 and Propo-
sition 3.1, so we have to assure that the actions are by continuous group automor-
phisms, which is the reason for an extra degree of complicacy.

5-A. Turing dynamical system associated to a set of natural numbers

Definition of X and Γ. Let X be a measure space MZ × S, where M :=
Z/2Z ⊕ Z/2Z ⊕ Z/2Z should be interpreted as the set of symbols, and S :=
Z/2Z ⊕ Z/2Z ⊕ Z/2Z as the set of states of a Turing machine.

Let Aut(M) be the group of group automorphisms of M ; similarly for Aut(S).
Recall that Aut(M) o Z is defined as Aut(M)⊕Z o Z, and put

Γ = [(Aut(M) o Z) ∗ Z/2Z ]× Aut(S),
where ∗ denotes the free product.
Notation for elements of X. Given m−k, . . . ,m0, . . . ,ml ∈ M and σ ∈ S the
set

{((ni), τ) ∈MZ × S : n−k = m−k, . . . , nl = ml, τ = σ}
is denoted by

[mkmk−1 . . . ,m−1m0m1 . . . ml][σ].
Given σ ∈ S, the set ⋃

m imM

[m][σ]
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is denote by [][σ], and given m ∈M the set⋃
σ∈S

[m][σ]

is denoted by [m][].
A concrete element from the set [mkmk−1 . . . ,m−1m0m1 . . . ml][σ] is denoted

by
(mkmk−1 . . . ,m−1m0m1 . . . ml)[σ],

and similarly for ()[σ] and (m)[].
Definition of the action. Let us fix a set of positive natural numbers Σ. The
action ρ of Γ on X will depend on Σ. Whenever we want to stress this dependence
we use the symbol ρΣ.

Let β′ be the automorphism ofM defined by β′((1, 0, 0)) = (1, 0, 0), β′((0, 1, 0) =
(0, 0, 1), β′(0, 0, 1) = (0, 1, 0). Let Mβ be the set of fixed points of β′. Note that
it consists of 4 elements. Let β be the automorphism of MZ defined by

(5.1) (β((xi)))j :=
{
β′(x0) if j = 0
xj otherwise

The automorphism β will be referred to as normal flip.
Let B = BΣ be the following automorphism of MZ:

(5.2) (B((xi)))j :=
{
xj if j /∈ Σ
β′(xj) otherwise

The automorphism B will be referred to as oracle flip.
We proceed to describe ρ.
The subgroup Aut(M) oZ < Γ acts in the standard way on theMZ coordinate of

X: Aut(M) acts on the 0-coordinate of MZ in the natural way, and the generator
t of Z acts by
(5.3) (ρ(t)((mi)))j := mj+1.

The maps ρ(t) and ρ(t−1) will be called respectively shift forward, and shift
backward.

The subgroup Aut(S) < Γ acts on the S coordinate of X in the natural way.
The generator of Z/2Z acts by the oracle flip B on MZ; the generator will also

be denoted by B.
Division of X into disjoint subsets. We choose the following division:

X =
⊔

m∈M,σ∈S
[m][σ].

We just finished defining a dynamical hardware (X). When we need to stress
its dependence on Σ, we denote it by (XΣ).

Elements of S = Z/2Z⊕Z/2Z⊕Z/2Z will be referred to as [Start], [Search for-
ward for (0, 1, 0)], [Search backward for (0, 1, 0)], [Search forward for either (0, 1, 0)
or (0, 0, 1)], [Dummy state 1 ], [Dummy state 2 ], [Dummy state 3 ], [Dummy state
4 ]. We do not specify which names correspond to which elements of S - the only
important thing is that this assignment is made in such a way that Aut(S) acts
transitively on the first four elements.

We proceed to define a dynamical software for (XΣ).
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Choice of elements of Γ for the sets [m][σ]. This is done in Figure 2: arrow
between two states σ and τ with a label, for example,

(0, 1, 0): normal flip, shift backward
means that the element of Γ corresponding to [(0, 1, 0)][σ] is a · β · t−1, where
a ∈ Aut(S) is any group automorphism sending σ to τ . Since the action is a right
action it means in particular that in this example flipping is done before shifting.
Similarly, an arrow with label

Dummy state 1

m ∈Mβ:
shift forward

(0, 1, 0): shift forward

(0, 1, 0): oracle flop, shift forward

(0, 1, 0): normal flop, shift backward

Search backward for (0, 1, 0)

Search forward for (0, 1, 0)shift forward

Start

Search forward for
either (0, 1, 0) or (0, 0, 1)

Dummy state 2 Dummy state 3 Dummy state 4

m ∈Mβ:

m ∈Mβ:
shift backward

Figure 2. Turing dynamical system (XΣ, T Σ
X)

m ∈Mβ: shift forward
joining a state σ with itself means that the element of Γ corresponding to [m][σ]
for m ∈Mβ is t.

Finally, if for some state σ there is no label with a given symbol m ∈M then it
means that the element of Γ corresponding to [m][σ] is the neutral element.
Choice of the sets I, A and R. . We specify them as follows:

I := [(0, 1, 0)][Start],
A := [(0, 1, 0)][Search forward for (0, 1, 0) or (0, 0, 1)].

As to the set R, it is defined as the union of all the sets [m][σ] whose associated
group element is the neutral element, apart from A.

Defined software will be denoted by (TX) or (TΣ
X).

5-B. Properties of the system (X,TX)

5.1. Proposition. The first fundamental set of (X,TX) is equal to the union⋃
k∈Σ

Fk ∪ Z,
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where Fk is equal to⋃
m1,...,mk−1∈Mβ

[(0, 1, 0)m1m2 . . . mk−1 (0, 1, 0)][Start],

and Z is some set of measure 0.

Proof. This proposition follows from chasing through Figure 2. First, we show
that Fk is in the fundamental set for k ∈ Σ.

Let x = ((0, 1, 0)m1m2 . . .mk−1 (0, 1, 0))[Start], mi ∈ Mβ, k ∈ Σ. Because of
the arrow between the first and the second level of Figure 1, we have

T (x) = ((0, 1, 0)m1m2 . . .mk−1 (0, 1, 0))[Search forward for (0, 1, 0)].
Then, because of the arrow “m ∈Mβ : shift forward” on the second level of Figure
2, we get

T k(x) = ((0, 1, 0)m1m2 . . .mk−1 (0, 1, 0))[Search forward for (0, 1, 0)].
Because of the arrow between the second and the third level, we see

T k+1(x) = ((0, 1, 0)m1m2 . . .mk−1 (0, 0, 1))[Search backward for (0, 1, 0)].
Because of the arrow “m ∈Mβ : shift backward” on the third level, we conclude

T 2k(x) = ((0, 1, 0)m1m2 . . .mk−1 (0, 0, 1))[Search backward for (0, 1, 0)].
Because of the arrow between the third and the fourth level, and since k ∈ Σ, we
get that T 2k+1(x) is equal to

((0, 1, 0)m1m2 . . .mk−1 (0, 0, 1))[Search forward for either (0, 1, 0) or (0, 0, 1)].
Finally, because of the arrow “m ∈Mβ : shift forward” on the fourth level, we see
that T 3k(x) equals

((0, 1, 0)m1m2 . . .mk−1 (0, 0, 1))[Search forward for either (0, 1, 0) or (0, 0, 1)],
which is an element of the accepting set.

In the other direction, let
x = (m0m1 . . . mk−1mk)[σ]

be an element of the fundamental set of (X,TX). We can assume m1, . . . ,mk−1 ∈
Mβ, and mk /∈ Mβ, since points ((xi), σ) ∈ X such that xi ∈ Mβ for i > 0 form
a set of measure 0. We have to prove that (1) σ =[Start], (2) m0 = (0, 1, 0), (3)
mk = (0, 1, 0), and (4) k ∈ Σ.

(1) and (2) follow from I = (0, 1, 0) [Start]. As before we have

T kX(x) = (m0m1 . . . mk−1mk)[Search forward for (0, 1, 0)],
and therefore from the fact that T kX(x) /∈ R we get (3). Again, as before we see
T 2k
X (x) is equal to

(m0m1 . . . mk−1 (0, 0, 1))[Search backward for (0, 1, 0)].
Now, suppose that (4) does not hold, i.e. k /∈ Σ. Assume that (4) does not hold.
Then because of the arrow between the third and the fourth level, and by the
definition of the oracle flip we get that T 2k+1

X (x) is
(m0m1 . . . mk−1 (0, 0, 1))s[Search forward for either (0, 1, 0) or (0, 0, 1)],
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which implies that T 3k
X (x) is

(m0m1 . . . mk−1 (0, 0, 1))[Search forward for either (0, 1, 0) or (0, 0, 1)],
which is an element of R, which contradicts the assumption that x is in the fun-
damental set. �

5.2. Corollary. The first fundamental value of (X,TX) is equal to
2
83

∑
i∈Σ

1
2i

Proof. The sets Fk are disjoint, and the measure of Fk is equal to 1
8(1

2)k−1 1
8

1
8 = 2

83
1
2k .
�

5.3. Proposition. The Turing dynamical system (X,TX) has the following prop-
erties.

(i) It doesn’t restart.
(ii) It has disjoint fundamental chains.
(iii) It is strongly attracting.

Proof. (i) We have to show that TX(I) ∩ I = ∅. Recall I = [(0, 1, 0)][Start];
from Figure 2 we see that (1) points from outside of [][Start] are not mapped into
[][Start], and in particular are not mapped into I; (2) points from I are mapped
outside of [][Start] and in particular outside of I; and (3) Points from [][Start] which
are not in I are mapped identically to themselves, and so are also not mapped to
I.

(ii) We need to check that there exists a subset of the fundamental set which
have the same measure as the fundamental set and such that the mapping

x 7→ final point of the TX-chain containing x
is injective. But in the proof of Proposition 5.1 we saw that if x ∈ Fk, k ∈ Σ,
and we write x = ((0, 1, 0)m1m2 . . .mk−1 (0, 1, 0))[Start] then the final point of
the TX-chain containing x is T 3k(x) equal to

((0, 1, 0)m1m2 . . .mk−1 (0, 0, 1))[Search forward for either (0, 1, 0) or (0, 0, 1)],
in particular T 3k(x) allows as to recover x. In particular the above map is injective
on the set ⋃k∈Σ Fk

For (iii), note the following claim.

Claim. Suppose x = ((mi), σ) ∈ MZ × S = X is such that its TX-chain doesn’t
end in A ∪ R. Then there exists N ∈ Z such that mj ∈ Mβ for all j ≥ N or for
all j ≤ N .

Proof. The only elements of Γ which are applied to the MZ-coordinate are shifts,
normal flip and oracle flip. Since they preserve the property “exists N such that
mj ∈Mβ for all j ≥ N or all j ≤ N”, it is enough to show that some power T jX(x)
has this property. But this is clear from Figure 1: first, there exists a state τ and
K such that T kX(x) ∈ [][τ ] for k ≥ K. But the only way it is possible is if either
(1) for some k, T kX(x) is in a set [m][σ] for which the corresponding element of γ is
the neutral element, or (2) if we write TK(x) = ((ni), τ) then exists N such that



35

nj ∈ Mβ for all j > N or all j < N . The second case is what we want to show,
and the first case is not possible because it implies that T k(x) ∈ A ∪R. �

Now, (iii) follows, since the set of points (mi) ∈ MZ such that there exists N
such that mj ∈Mβ for j > N is of measure 0. �

5-C. A “read only” system with irrational fundamental values

Definition of Y and ∆. Let Y be the measure space (Z/2Z Z × Z/2Z Z ×
Z/2Z Z) × S, where S = Z/2Z × Z/2Z × Z/2Z should again be interpreted as
the set of states. However, in this example Z/2Z should be interpreted as the set
of symbols, and Z/2Z Z × Z/2Z Z × Z/2Z Z should be interpreted as the set of
triples of tapes.

Let ∆ be the group Z3 ×Aut(S), and let standard generators of Z3 be denoted
by t1, t2, and t3. They will be also referred to as, respectively, shift forward
tape 1, shift forward tape 2 , and shift forward tape 3. Similarly t−1

i will
be referred to as shift backward tape i.
Definition of the action. The action ρ : ∆ y Y is defined as follows. Let
V : Z/2Z Z → Z/2Z Z be the shift automorphism, i.e. V ((xi))j = xj+1. Define

ρ(t1)((xi), (yi), (zi)) := (V ((xi)), (yi), (zi))
ρ(t2)((xi), (yi), (zi)) := ((xi), V ((yi)), (zi))
ρ(t3)((xi), (yi), (zi)) := ((xi), (yi), V ((zi))).

Aut(S) acts in the natural way on the S-coordinate.
Notation. Notation is similar to that in Subsection A. Given a−ka , . . . , ala ,
b−kb , . . . , blb , c−kc , . . . clc ∈ Z/2Z and σ ∈ S, the set

{((xi), (yi), (zi), τ) ∈ (Z/2Z Z × Z/2Z Z × Z/2Z Z)× S :
x−ka = a−ka , . . . , zlc = clc , τ = σ}

is denoted by  a−ka . . . a0 . . . ala
b−kb . . . b0 . . . blb
c−kc . . . c0 . . . clc

 [σ].

Given v = (v1, v2, v3) ∈ Z/2Z 3 and σ ∈ S, the set v1
v2
v3

 [σ].

is also denoted by [v][σ] and [(v1, v2, v3)][σ].
Within the context of above notation, given a natural number k and ε ∈ Z/2Z

we denote by εk the sequence of k consecutive ε’s.
Division of Y . We choose the following decomposition of Y :

Y =
⊔

v∈Z/2Z 3, σ∈S
[v][σ].

We have just defined a dynamical hardware (Y )
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The states - i.e. elements of S - will be referred to as [Start], [Check if the
number of 0’s on tape 1 and on tape 2 is the same], [Search backward for 1 on tape
1], [Search forward for 1 on tape 1 and move forward tape 3 ], [Dummy state 1 ],
[Dummy state 2 ], [Dummy state 3 ], [Dummy state 4 ]. Again we do not specify
which of these names correspond to which elements of S, but we demand that
Aut(S) acts transitively on the first four of the above states.

Dummy state 1 Dummy state 2 Dummy state 3 Dummy state 4

 1
1
1

: shift forward tape 1
shift forward tape 2

 1
0
0

: shift forward tape 1

Check if the number of 0’s
on tape 1 and on tape 2 is the same

Start

 1
1
1

:
shift backward tape 1
shift backward tape 2
shift forward tape 3

Search backward for 1 on tape 1

 1
0
0

:
shift backward tape 1
shift backward tape 2
shift forward tape 3

Search forward for 1 on tape 1
and move forward tape 3

 0
0
1

: shift forward tape 1
shift forward tape 2

 0
0
0

: shift backward tape 1

 0
0
0

: shift forward tape 1
shift forward tape 3

Figure 3. Turing dynamical system (Y, TY )

We proceed to define a dynamical software (TY ) for (Y ). This is done using
Figure 2, with the same convention as in Subsection A, e.g. an arrow with a label 1

1
1

: shift forward tape 1
shift forward tape 2

between states σ and τ means that the element of ∆ associated to the set [(1, 1, 1)][σ]
is a · t1 · t2, where a ∈ Aut(S) is any group automorphism of S which sends σ to τ .
Choice of the sets A, I and R. We define them as follows:

I := [(1, 1, 1)][Start],
A := [(0, 1, 1)][Search backward for 1 on tape 1],

and the rejecting set R is defined to be the union of all the sets [v][σ] whose
associated group element is the neutral element, apart from A.
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5-D. Properties of the system (Y, TY )

5.4. Proposition. The first fundamental set of (Y, TY ) is equal to the union
∞⋃
k=1

Fk ∪ Z,

where Z is some set of measure 0 and Fk is defined to be 1 0k 1
1 0k 1
1 0k2+2k 1

 [Start].

Proof. The proof is by chasing Figure 3, fully analogous to the proof of Proposition
5.1. �

5.5. Corollary. The first fundamental value of (Y, TY ) is equal to
1
8

∞∑
k=1

1
2k2+4k+6

Proof. Indeed, measure of the set Fk is equal to 1
8 ·

1
2k2+2k · 1

2k ·
1
2k ·

1
26 (i.e. “1

8 is for
states, 1

2k2+2k and 1
2k are for 0’s, and 1

26 is for 1’s”.) �

5.6. Proposition. (Y, TY ) has the following properties.
(i) It does not restart.
(ii) It has disjoint fundamental chains.
(iii) It is strongly attracting.

Proof. (i) and (ii) are proved just like (i) and (ii) of Proposition 5.3.
As for (iii), let x ∈ Y be a point whose TY -chain doesn’t end in A ∪ R. If

TY -chain of y stays on the first two levels of Figure 3 then it means there are
infinitely many consecutive 0’s to the right on the first two tapes of y. Since the
set of points which have infinitely many consecutive 0’s on any tape is of measure
0, we can assume that TY -chain of y from some point on stays on the third and
the fourth level of Figure 3 (since a TY -chain can not go from the third or fourth
level to the first or second level).

Consider two possibilities: (1) TY -chain of y stays from some point on on the
third level, or (2) TY -chain of y has infinitely many points on the fourth level.

If (1) holds then because of the arrow 0
0
0

: shift backward tape 1

we see that the first tape of y has infinitely many consecutive 0’s to the left.
If (2) holds then note that the only element of ∆ which acts on the third tape

of the TY -chain of y is shift forward. If TY -chain of y is infinite then from Figure
3 we see that shift forward on the third tape is applied infinitely many times. We
see also that it can be applied only if there is 0 on the third tape. Therefore in
this case there are infinitely many consecutive 0’s on the third tape of y. �
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6. Atiyah problem

6-A. Preliminaries

Recall that if G is a (discrete countable) group then there is a trace τG (called
group trace) on the group ring CG which extends to a faithful normal trace with
respect to the (right) action of Mk(CG) on (l2G)k for any k. Given T ∈Mk(CG),
von Neumann dimension of the kernel of T is defined as the spectral measure of
T with respect to this action and the group trace of the set {0}. It is denoted by
dimvN kerT .

Recall that a real number r is an l2-Betti number arising from G if for some
k there exists T ∈Mk(QG) such that

dimvN ker θ = r.

The set of l2-Betti numbers arising from G is denoted by C(G). Note that if
r ∈ C(G) then we can always assume that r = dimvN kerT for a positive self-
adjoint T of norm < 1, since kerT = kerT ∗T = ker 1

N
T ∗T for every positive

number N .
Recall that a set Σ of natural numbers is called computable if there exists a

Turing machine which lists elements of Σ in the increasing order. Equivalently
(see e.g. [LS01]), Σ is computable if there exists a Turing machine which lists
elements of Σ in some order (possibly with repetitions), and there exists a Turing
machine which lists elements of the complement of Σ in some order (possibly with
repetitions).

We say that a real number r has a computable binary expansion if the
fractional part of r is of the form ∑

i∈Σ

1
2i

for some computable set Σ.
In this section we prove Theorems 1.1, 1.3, 1.4, and Corollary 1.2:

Theorem. The set of l2-Betti numbers arising from the group (Z/2Z oZ)3 contains
1
64 −

1
8

∞∑
k=1

1
2k2+4k+6 ,

which is a transcendental number.

Theorem. The set of l2-Betti numbers arising from finitely generated groups is
equal to the set of non-negative real numbers.

Theorem. The set of l2-Betti numbers arising from finitely presented groups con-
tains all numbers with computable binary expansions.

Corollary. Let G be a group given by the presentation
〈a, t, s | a2 = 1, [t, s] = 1, [t−1at, a] = 1, s−1as = at−1at〉.

The set of l2-Betti numbers arising from G3 contains
1
64 −

1
8

∞∑
k=1

1
2k2+4k+6 ,
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Corollary follows from the fact proven in [GLSŻ00], namely Z/2Z o Z is a sub-
group of G, and the following lemma.

6.1. Lemma. Let H be a subgroup of a group G. Then C(H) ⊂ C(G).

Proof. The map Mk(CH)↪→Mk(CH), induced by the inclusion H↪→G, is a trace-
preserving ∗-homomorphism. The claim follows from Lemma 2.6. �

6.2. Lemma. If G is a discrete countable group and H is a finite group then
|H| · C(G×H) = C(G).

Proof. Let π ∈ Q(G×H) be the sum
1
|H|

∑
h∈H

h

Clearly π is a projection of trace 1
|H| which commutes with QG. Similarly the

k × k matrix πk which has π everywhere on the diagonal and 0’s elsewhere is of
trace 1

|H| and commutes with Mk(QG). We claim that for a positive self-adjoint
T ∈Mk(QG) of norm at most 1 we have

1
|H|
· dimvN kerT = dimvN ker(1− πk + πkT )

Indeed, by functional calculus the right side is equal to the limit of
τG×H ((1− (1− πk + πkT ))n) ,

for n going to +∞. The above expression is equal to τG×H(πk(1 + T )n) = τH(π) ·
τ((1 + T )n). By functional calculus again limit of the latter expressions is equal
to 1
|H| · dimvN kerT . This shows the inclusion C(G) ⊂ |H| · C(G×H)
For the other inclusion, note that the regular representation of H induces a

∗-embedding QH↪→M|H|(Q) such that for T ∈ QH we have |H|τH(T ) = tr(T ).
This induces a ∗-embedding

ι : Q(G×H) ∼= Q(G)⊗Q(H)↪→Q(G)⊗M|H|(Q) ∼= M|H|(Q(G))
such that for T ∈ Q(G×H) we have |H| · τG×H(T ) = τG(ι(T )). The result follows
from Lemma 2.6.

�

6.3. Lemma. Let G be a countable discrete group. The set CG is closed under
addition. Furthermore, if H is another countable discrete group, a ∈ C(G), b ∈
C(H) then a+ b ∈ C(G×H).

Proof. The first claim follows from the fact that if S ∈Mk(QG) and T ∈Ml(QG)
then S ⊕ T ∈Mk+l(QG) has the property

dimvN ker(S ⊕ T ) = dimvN kerS + dimvN kerT.
The second claims follows from taking S ∈ Mk(QG) and T ∈ Ml(QH) and

observing that for S ⊕ T ∈Mk+l(Q(G×H) we also have
dimvN ker(S ⊕ T ) = dimvN kerS + dimvN kerT.

�
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6.4. Lemma. Let (X,TX) be a Turing dynamical system in which X is a compact
abelian group ∏ Z/2Z , the action of Γ on X is by continuous group automorphisms
and the distinguished disjoint subsets Xi of X are cylinder sets.

Suppose furthermore that (X,TX) doesn’t restart, has disjoint fundamental chains
and is strongly attracting. Then

µ(I)− Ω1(X,TX),
is an l2-Betti number arising from the group X̂ oρ̂ Γ.

Proof. By Corollary 2.10, µ(I)−Ω1(X,TX) is equal to dimvN kerS, where S ∈ G(ρ)
is expressed by a finite sum of elements γiχi, where γi ∈ Γ, and χi are products
of characteristic functions of the sets Xi. By Lemma 3.2, S is in the image of the
Pontryagin map P ⊗ 1: Q(X̂ oρ̂ Γ) → G(ρ). Let Ŝ be the preimage of S. By
Proposition 3.1 we get

dimvN ker Ŝ = dimvN kerS = µ(I)− Ω1(X,TX).
�

6-B. The lamplighter group

6.5. Theorem. The set of l2-Betti numbers arising from the group (Z/2Z o Z)3

contains
1
64 −

1
8

∞∑
k=1

1
2k2+4k+6 ,

Proof. Note that Turing dynamical system (Y, TY ) from Subsection 5.C fulfills
conditions of Lemma 6.4. We conclude, by Corollary 5.5 that the number

1
64 −

1
8

∞∑
k=1

1
2k2+4k+6

is an l2-Betti number arising from the group Ŷ oρ̂ ∆, or more explicitly from the
group

(Z/2Z ⊕Z ⊕ Z/2Z ⊕Z ⊕ Z/2Z ⊕Z ⊕ Ŝ) oρ̂ (Z⊕ Z⊕ Z⊕ Aut(S)).
Note that the copies of Z act only on respective copies of Z/2Z ⊕Z, and that they
act by the shift. It follows that the above group is isomorphic to the group

(Z/2Z o Z)3 × (Ŝ o Aut(S)),
so the result follows from Lemma 6.2. �

6-C. Finitely generated groups

Theorem. The set of l2-Betti numbers arising from finitely generated groups is
equal to the set of non-negative real numbers.

Proof. Note that Turing dynamical system (XΣ, TΣ
X) from Subsection 5.A fulfills

conditions of Lemma 6.4. We conclude, by Corollary 5.2 that the number
1
64 −

2
83

∑
i∈Σ

1
2i
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is an l2-Betti number arising from the group X̂ o
ρ̂Σ Γ, or more explicitly from the

group
(M̂⊕Z × Ŝ) oρ̂ [(Aut(M) o Z) ∗ Z/2Z ]× Aut(S),

so, by Lemma 6.2, also from the group
(6.1) M̂⊕Z oρ̂ ((Aut(M) o Z) ∗ Z/2Z ),
which is easily seen to be finitely generated. This and the fact that Σ was arbitrary
implies that every number between 1

64 −
2
83 and 1

64 is an l2-Betti number arising
from a finitely generated group.

By additivity (Lemma 6.3), we see that there exists a natural number N = 83

64·2
such that every number between N − 1 and N with is an l2-Betti number arising
from a finitely generated group. By additivity again it follows that every number
bigger than N is an l2-Betti number arising from a finitely generated group.

Let r be an arbitrary positive real number. By the previous paragraph there
exists a natural number k such that k · r is an l2-Betti number arising from a
finitely presented group. The result follows from Lemma 6.2. �

6-D. Finitely presented groups

Theorem. The set of l2-Betti numbers arising from finitely presented groups con-
tains all numbers with computable binary expansions.
Proof. Recall that a presentation 〈g1, g2, . . . | r1, r2, . . .〉 is a recursive presenta-
tion if there exists an algorithm which lists all the elements of the set {r1, r2, . . .}
in some order (perhaps with repetitions).
Theorem (Higman’s Embedding Theorem). If a group has a recursive presenta-
tion then it can be embedded into a finitely presented group.

For a proof, see [Hig61]. Higman treated the case of infinitely many generators,
although many standard books (e.g. [LS01]) state Higman’s theorem only for
presentations with finitely many generators.
Lemma. Let Σ be a set of natural numbers. And let (XΣ, TΣ

X) be the Turing
dynamical system from Subsection 5-A If Σ is computable (i.e. all elements of Σ
can be listed by a Turing machine and all elements of the complement of Σ can be
listed by a Turing machine) then the group

M̂⊕Z o
ρ̂Σ ((Aut(M) o Z) ∗ Z/2Z )

has a recursive presentation.
Proof. Recall that when a group G = 〈g1, g2, . . . | p1, p2, . . .〉 acts on a group H =
〈h1, h2, . . . | r1, r2, . . .〉 through an action α then the standard presentation of the
semi-direct product H oα G is
〈h2, h2, . . . ; g1, g2, . . . | p1, p2, . . . ; r1, r2, . . . ; gihjg−1

i = α(gi)(hj), i, j = 1, 2, . . .〉.
When we proceed to write this presentation in the case at hand, the only part

which could possibly make it non-algorithmic is the action of Z/2Z . For m ∈
Ẑ/2Z 3 and j ∈ Z, let mj denote the element (. . . , 0,m, 0, . . .) ∈ ( Ẑ/2Z 3)⊕Z,
with m on the j’th place. Let s be the generator of Z/2Z . Recall that Let β′ is
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the automorphism of M defined by β′((1, 0, 0)) = (1, 0, 0), β′((0, 1, 0) = (0, 0, 1),
β′(0, 0, 1) = (0, 1, 0). and that the action of s on mj is trivial if j /∈ Σ and is by
the Pontryagin dual β̂′ if j ∈ Σ.The relations which we have to write down are of
the form:

s ·mj · s−1 = mj, for j /∈ Σ
s ·mj · s−1 = [β̂′(m)]j for j ∈ Σ

It is clear that if Σ is computable, i.e. there exists an algorithm which lists all
elements of Σ, and there is an algorithm which lists all elements of the complement
of Σ, then there exists also an algorithm which lists all of the above relations. �

We saw in the previous subsection that the number

(6.2) 1
64 −

2
83

∑
i∈Σ

1
2i

is an l2-Betti arising from
M̂⊕Z o

ρ̂Σ ((Aut(M) o Z) ∗ Z/2Z ).

By Higman’s Embedding Theorem and the previous lemma we see that when Σ
is computable, then (6.2) is an l2-Betti number arising from a finitely presented
group.

By additivity, we see that there exists a natural number N = 83

64·2 such that
every number between N − 1 and N with a computable binary expansion is an
l2-Betti number arising from a finitely presented group. By additivity again, it
follows that every number bigger than N with a computable binary expansion is
an l2-Betti number arising from a finitely presented group.

Let r be an arbitrary positive number with a computable binary expansion. By
the previous paragraph there exists a natural number k such that 2k ·r is an l2-Betti
number arising from a finitely presented group (since 2k · r has also computable
binary expansion). The result follows from Lemma 6.2. �
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