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1. Abstract

In this work we study the effects interactions have on the evolution of gas-rich
barred galaxies usingN -body/smoothed-particle-hydrodynamics simulations.

In the first part we investigate the dynamical effects of an interaction between
an initially barred galaxy and a small spherical companion. In these models the
small companion passes through the disc of the larger galaxy nearly perpendicular
to it’s plane. The impact position and time are varied with respect to the phase
of the bar and the dynamical evolution of the disc. We find that the interactions
produce expanding ring structures, offset bars, spokes, and other asymmetries in
the stars and gas. We describe how the evolution of the bar strength, pattern speed,
and gas inflow rate are affected by the interaction. The results are compared with
pure stellar simulations to assess the role played by the dissipative component on
the evolution of the disc and bar during the interaction.

In the second part, we study the regeneration of stellar bars triggered by a tidal
interaction, using numerical simulations of either purely stellar or stellar+gas disc
galaxies. We find that interactions which are sufficiently strong to regenerate the bar
in the purely stellar models do not lead to a regeneration in the dissipative models,
owing to the induced gas inflow. In models in which the bar can be regenerated, we
find a tight correlation between the strength and the pattern speed of the induced
bar. This relation can be explained by a significant radial redistribution of angular
momentum in the disc due to the interaction, similar to the processes and correla-
tions found for isolated barred spirals. We furthermore show that the regenerated
bars show the same dynamical properties as their isolated counterparts.

In the final part, we present a systematic study of the influence of numerical
effects on the evolution of the pattern speed of bars in fully self-consistent simu-
lations. We show that the evolution of the pattern speed is very sensitive to both
the intrinsic numerical noise of the model, as well as to the numerical accuracy in
the force calculation. Owing to the superposition of these effects the pattern speed
Ωp shows an uncertainty of roughly 13 per cent. We conclude that large particle
numbers and high force accuracy are required for a robust determination ofΩp.
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2. Introduction

Galaxies are assumed to be the basic building blocks of the large-scale visible struc-
ture in our Universe. A typical galaxy consists of a baryonic component of stars
(1010− 1012) and gas mixed with dust (up to some 30 per cent), and a large fraction
by mass of non-baryonic material or dark matter. The morphological appearance of
galaxies is varied and a classification scheme had been first introduced by Edwin
P. Hubble (1926), which is known as the Hubble sequence of galaxies. Hubble di-
vided the galaxies, based on galaxy images on photographic plates, into basically
three main classes: elliptical (E), spiral (S) and irregular (Irr) galaxies. The spirals
are subdivided into two families, thenormal spirals (SA) and thebarred spirals
(SB). The classical representation of the Hubble sequence, which is, because of its
appearance, called the tuning-fork diagram, is shown in Fig.2.1. Elliptical galaxies
contain almost no gas and are dominated by an older stellar population, giving them
a reddish appearance. S0 galaxies represent a transitional type between elliptical
and spiral galaxies. Spiral galaxies are in contrast to ellipticals rotationally sup-
ported systems, with a relatively thin stellar disc, typically less and 10 per cent of
their diameters. The gas content of the galaxies increases in the Hubble sequence
from left to right from almost zero to 20–30 per cent of the baryonic mass. Further-
more, the central bulge component decreases. Historically, the galaxies are called
late- and early-type galaxies.

Observations only provide a snapshot of galaxies and thus it is not possible
for us get direct information about their dynamical and morphological evolution in
time. Numerical simulations of galaxies, however, provide us a tool to follow their
evolution. It is now clear that the morphological and dynamical evolution of disc
galaxies is driven through both internal and external processes. Instabilities in the
disc often give rise to the formation of bars. Because of their striking morphology
and dynamical importance on the evolution of the galactic discs, bars have been the
subject of intensive study.

Galaxies are in general not isolated objects, but often appear in groups or clus-
ters. Also many field galaxies have a number of small, i.e. less massive, companion
galaxies. Interactions between galaxies are therefore frequent events, encounters
with the smaller companions are with equally or more massive neighbouring galax-
ies.

In this work we study several aspects of interactions with gas-rich barred galax-
ies by means of numerical simulations. We describe the morphological and dynam-
ical evolution of the bar and the disc.
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CHAPTER 2. INTRODUCTION

Figure 2.1: Tuning-fork diagram of the Hubble sequence of galaxies (Hubble
1926).

2.1 Barred galaxies

Stellar bars in disc galaxies are a common feature. The nearest barred galaxy –
although difficult to observe directly – is our own, the Milky Way (see, for example,
de Vaucouleurs 1964; Blitz & Spergel 1991; Kuijken 1996; Gerhard 1996, and
references therein). In Fig.2.2 we show a striking example of a barred galaxy.1

The large-scale bar consists predominantly of older stars, giving it a reddish colour.
Some light of the bar is obscured by the off-set leading dust-lanes across the bar.
Connected to the end of the bar are two long spiral arms. Both the bar and the spiral
arms rotate clockwise in this image.

As shown in Fig.2.3 (upper panel), barred galaxies amount to more than one
third of the catalogued disc galaxies in optical wavelengths (see, for example,de
Vaucouleurs 1963; Sellwood & Wilkinson 1993). With a growing number of avail-
able near-infrared (hereafter NIR) observations (see, for example,Pompea & Rieke
1990; Rix 1993; Rix & Rieke 1993; Seigar & James 1998; Eskridge et al. 2000;
etc.), it has been confirmed that the fraction of barred galaxies is even higher, i.e.
up to roughly two thirds (Eskridge et al. 2000; see also Fig.2.3, lower panel). As
can be seen from Fig.2.3 the fraction of barred galaxies seems to be independent

1Credit European Southern Observatory (ESO).
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2.1. BARRED GALAXIES

Barred Galaxy NGC 1365
ESO PR Photo 08a/99 ( 27 February 1999 )

(VLT UT1 + FORS1)

Figure 2.2: Barred spiral NGC 1365 (Credit European Southern Observatory ESO).
This galaxy is the largest spiral in the Fornax cluster of galaxies.

of the galaxies Hubble-type. The properties of the bars, however, vary with respect
to the Hubble-type. Elmegreen & Elmegreen (1985) found that bars in early-type
galaxies have uniform luminosity profiles and are longer than the ones in late-type
galaxies, which have exponential-like density profiles. Furthermore, Athanassoula
& Martinet (1980) and Martin (1995) found a correlation between the length of the
bar and the size of the bulge component, in the sense that less massive bulges allow
larger bars.

Because of their importance to the dynamical evolution of disc galaxies, barred
galaxies have been extensively studied in the past, both from the observational

7



CHAPTER 2. INTRODUCTION

Figure 2.3: Bar-fraction as a function of morphological type. The upper panel
shows the fraction of bars in galaxies from different catalogues (Sellwood & Wilkin-
son 1993). The lower panel shows the fraction of bars found in a sample of galaxies
observed in the H-band in comparison with the catalogued classification (Eskridge
et al. 2000).

and theoretical side. It has been established, that thelife of a bar can be divided
into several episodes (see, for example, the review byFriedli 1999): its formation
(Sec.2.1.1), evolution (Sec.2.1.2), dissolution (Sec.2.1.3) and maybe its regenera-
tion (Sec.2.1.4).

2.1.1 Bar formation

Two mechanisms for the formation of bars in disc galaxies are being widely ac-
cepted at present. Bar formation can occur, as shown in many numerical simula-

8



2.1. BARRED GALAXIES

tions, spontaneously by a global instability in cold, rotationally supported stellar
discs (see, for example,Miller et al. 1970; Hohl 1971; Ostriker & Peebles 1973;
Sellwood 1981; Athanassoula & Sellwood 1986; etc.). The bars can be considered
as long-living modes in the disc, caused by the formation of a standing wave by su-
perposition of leading and trailing waves. As outlined by Toomre (1981) for spiral
density waves, the bar mode can grow through swing amplification.

It was found early on that the dark matter halo of a galaxy has a stabilizing
influence on the disc and the formation of bars (Ostriker & Peebles 1973). These
authors postulated the condition for a rotating stellar system to be stable against the
growth of the bar mode, known as the Ostriker-Peebles criterion, ast ≡ Trot/|W | ≥
0.14, whereTrot andW are the rotational kinetic energy and the gravitational energy
of the system, respectively. As reported only recently, however, even in massive
halos the bar growth can be stimulated in the disc due to the destabilising influence
of resonant stars in the halo (Athanassoula 2002).

The second mechanism, also confirmed in numerousN -body simulations, is
the formation of tidally induced bars, triggered by interactions with neighbouring
galaxies (see, for example,Byrd et al. 1986; Noguchi 1987, 1988, 1996; Barnes &
Hernquist 1991; Salo 1991; Miwa & Noguchi 1998; etc.). In this section we will
concentrate on the description of bars in isolated disc galaxies, and will come back
to tidally induced bars and their properties in Sec.2.2.

2.1.2 Evolution of bars

Once a stellar bar has formed, it changes both the kinematics and the mass distri-
bution within the disc and undergoes further evolution itself, which often ends in a
significant weakening or sometimes even destruction of the bar.

The presence of a rotating bar often gives rise to dynamical resonances in the
disc, which can be associated with inner and outer rings as found in many barred
spirals (see, for example, Schwarz1979, 1981, 1984a, 1984b, 1984c; Buta 1983,
1984; Combes & Gerin 1985; etc.). In these works it has been shown that gaseous
rings can arise around the Lindblad resonances owing to the perturbation of the
bar. The most fundamental parameter describing the dynamics of the bar and the
corresponding dynamical resonances is the pattern speedΩp, i.e. the angular fre-
quency with which the bar rotates in the disc. The direct measurement ofΩp from
observations, however, remains a problematic.

One way to measureΩp from observations is by the Tremaine-Weinberg method
(Tremaine & Weinberg 1984a). This method is based on the continuity equation of
a tracer population. However, this method is strongly sensitive to errors in the po-
sition angle of the disc (Debattista 2003). Another way is to locate the radius of
corotation in the disc as derived from the non-circular motion in the disc owing to
the bar and spiral structure (Canzian 1993). Furthermore, if the potential of the
galaxy can be derived, for instance from near-infrared data, one can use numeri-
cal hydrodynamical simulations (see, for example,Sempere et al. 1995a, 1995b;
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CHAPTER 2. INTRODUCTION

Lindblad et al. 1996; Lindblad & Kristen 1996; Laine et al. 1998; etc.) to find
Ωp. In this method the pattern speed is a free model parameter and can be varied
until the observed gas-flow patterns is reproduced sufficiently well. As shown by
Patsis & Athanassoula (2000), the morphology and the inflow are dependent on the
hydrodynamical and numerical parameters used in the models.

Numerical simulations of barred galaxies indicate that the pattern speed of the
bar does not remain constant during its evolution. The bar can efficiently redis-
tribute and exchange angular momentum with the disc and the spherical galactic
components (see, for example,Sellwood 1980, 1981; Weinberg & Tremaine 1983;
Weinberg 1985; Little & Carlberg 1991a, 1991b; Debattista & Sellwood 1998,
2000; Athanassoula 1996a). Athanassoula (2003) argued that the evolution of bars
in isolated disc galaxies is driven by this redistribution of angular momentum. Disc
galaxies strive to transfer angular momentum outwards (Lynden-Bell & Kalnajs
1972). Disc material in the inner disc, being at resonance with the bar, emits angu-
lar momentum to resonant material in the outer disc or to the spheroidal components
like the halo and bulge (Athanassoula 2002). The corotation radius of the bar – i.e.
the radius at which the disc material rotates with the same angular frequency as the
bar – divides the regions of emitters and absorbers. The size and the pattern speed
of the bar responds to the angular momentum exchange such as to keep an equilib-
rium between the emitters and absorbers. These recent results argue strongly that
the strength and pattern speed of the bar is determined by the amount of angular
momentum exchanged. The bar’s slowdown rate found in numerical simulations
depends on the relative halo mass and on the velocity dispersion of both the disc
and the halo. Furthermore the author has shown that bar growth in the disc can be
stimulated even in massive halos due to the destabilising influence of resonant stars
in the halo (Athanassoula 2002).

If the bar in the disc becomes sufficiently massive and long, the so-called fire-
hose (orbuckling/bending) instability out of the equatorial disc plane may occur
(see, for example,Hunter & Toomre 1969; Combes et al. 1990; Pfenniger & Friedli
1991; Raha et al. 1991; etc.). After this vertical instability sets in, the disc settles
with an increased thickness and vertical velocity dispersion. During and after this
phase the bar appears boxy or peanut-shaped when viewed edge-on. Thus this insta-
bility may be associated with boxy/peanut-shaped bulges (see, for example,Bureau
& Freeman 1997and references therein). The fire-hose instability is found to be
prominent especially in pureN -body simulations. These simulations show that if
the instability is very rapid the bar can be destroyed. On the other hand the instabil-
ity seems to be greatly damped out in models of gas-rich barred discs (Berentzen et
al. 1998) owing to the stabilizing influence of the dissipative component.

Influence of the gas

Another factor influencing the evolution of bars is the interstellar medium in the
disc. Although the gas usually contributes only a small fraction to the mass of a
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2.1. BARRED GALAXIES

galaxy, it can significantly influence it’s evolution (see, for example,Shlosman &
Noguchi 1993). Many numerical simulations that have included a dissipative disc
component have emphasized the importance of the gas in isolated barred galaxies
(see, for example,Friedli & Benz 1993; Heller & Shlosman 1994; Berentzen et
al. 1998). The dynamics of the gas in barred galaxies can be understood by the
orbital structure of the disc. A clear introduction to this subject has been given
by Prendergast (1983). The gas streamlines tend to follow periodic orbits in the
potential of the galaxy. In contrast to stellar trajectories, however, the streamlines
in the gas cannot cross. In the case of intersecting orbits, the gas dissipates energy
by the way of shocks and thus change orbits (e.g.,Sanders et al. 1983). Many
barred galaxies of types SBb to SBc show dust lanes in the bar, predominantly on its
leading side. Such dust lanes are associated with the shocks in the gas flow, as first
claimed by Prendergast (1962, unpublished). Numerical simulations have shown
that the shape of the dust lanes reveals information about the internal dynamics of
the bar and disc (Athanassoula 1992b).

Owing to the gravitational torques of the bar, gas is driven towards the centre of
the galaxy, which might then be accompanied by a central starburst (Heller & Shlos-
man 1994) and formation/fuelling of an active galactic nucleus (Shlosman, Frank
& Begelman 1989; Shlosman, Begelman & Frank 1990). Recent NIR-observations
(Pèrez-Ramírez et al. 2000) have also shown a relation between the circumnu-
clear star formation in barred galaxies and the circumnuclear spiral or ring structure
present in these galaxies. The large-scale redistribution of disc material owing to
the bar also affects chemical abundance gradients across the disc (see, for example,
Edmunds & Roy 1993; Martin & Roy 1992; Martin & Friedli 1999; etc.)

Fully self-consistent numerical simulations including a gaseous disc component
have shown that a substantial gas inflow can significantly weaken or even destroy
the bar (see, for example,Friedli & Benz 1993; Berentzen et al. 1998). The cen-
tral mass concentrations and the times-scales found in these simulations, however,
might be too high and too short, respectively, to be in agreement with observations
(e.g. Sakamoto et al. 1991) and the relatively high fraction of barred galaxies ob-
served. Furthermore, the fraction of bars seems to be independent of the galaxies
morphology (see Sec.2.1), while early-types are known to have considerably less
gas.

2.1.3 Bar dissolution

Once they have formed, bars do not stay eternally in the disc, but may instead
weaken or dissolve over time. The dissolution of bars can be driven both by in-
ternal and external processes, though the basic mechanism in both cases is often
a significant change of the central mass concentration in the galaxy. The most ef-
ficient mechanism to transfer angular momentum within the disc and induce gas
inflow are the gravitational torques from a global non-axisymmetric perturbation
of the potential such as a from a bar or interaction. Several numerical simulations
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CHAPTER 2. INTRODUCTION

have shown that the growth of a central mass concentration affects the bar struc-
ture and often leads to its gradual dissolution (Kormendy 1982; Hasan & Norman
1990; Friedli & Pfenniger 1991; Friedli & Benz 1993; Hasan et al. 1993; Norman
et al. 1996; Berentzen et al. 1998). Friedli (1999) proposed a critical mass ratio
γanni ≡Mcentre/Mtotal ≈ 0.1R+ 0.02, whereR is the radius considered, as a rough
threshold to annihilate the bar. Besides the growth of central mass concentration,
the formation of massive nuclear rings (Heller & Shlosman 1996), as well as the on-
set of a very rapid fire-hose instability tend to significantly weaken or even dissolve
the bar.

2.1.4 Bar regeneration

The regeneration of the stellar bar, i.e. a second bar-formation episode during the
lifetime of the disc, has been suggested as a possible mechanism to explain the
observed number of barred galaxies. One possible scenario for this, as suggested by
Sellwood & Moore (1999), could be the accretion of gas-rich companion galaxies
or freshly infalling gas, which, by adding colder material to the disc, may cool it
sufficiently and allow the generation of a new bar. The difficulty with this approach
is that the dissolution of a bar is accompanied by an increase in the stellar velocity
dispersion, which further stabilizes the disc against future bar formation. Bournaud
& Combes (2002) studied the effects of gas accretion on the evolution of spiral
galaxies by means ofN -body simulations including star-formation and feedback
processes. From their models they indeed found recurrent episodes of bar formation
and dissolution.

Another scenario could be the regeneration of a previously dissolved bar by a
sufficiently strong tidal encounter with a neighbouring galaxy. While many studies
have looked into the formation of bars by tidal interactions (see, for example,Byrd
et al. 1986; Noguchi 1987, 1988; Gerin, Combes & Athanassoula1990; Barnes &
Hernquist 1991; Salo 1991; Miwa & Noguchi 1998; etc.), the regeneration of bars
by such a mechanism has not to our knowledge been previously examined. We will
describe the effects of interactions on the evolution of disc galaxies in more detail
in the following section.

2.2 Interacting galaxies

Interactions between galaxies play a fundamental role in the formation and evo-
lution of galaxies in current hierarchical cosmological models. Deep-field obser-
vations, both ground-based and HST, reveal that interactions and mergers between
galaxies were much more common in the past. Even the Milky Way will most likely
collide with our neighbour M31 (i.e. the Andromeda galaxy) in some1010 years.
Furthermore, most disc galaxies have less massive companion galaxies. It is clear
that interactions between galaxies are frequent enough to be a major factor influenc-

12



2.2. INTERACTING GALAXIES

ing their dynamical evolution. For a review on interacting galaxies see, for example,
Barnes & Hernquist (1992) and Struck (1999).

The terminteractionusually refers to the gravitational interaction between the
affected galaxies. Various signs of interactions have been found in the catalogues
of peculiar galaxies and galaxies pairs (see, for example,Vorontsov-Velyaminov
1959; Vorontsov-Velyaminov & Krasnogorskaya 1961; Zwicky 1961; Arp 1966;
Vorontsov-Velyaminov 1977; etc.). Many of these galaxies showbridgesandtails,
which are now known to be of tidal origin. Furthermore, some of the galaxies are
in the process of merging, i.e. forming a single bound system. That the observed
features are indeed of tidal origin has been confirmed by Holmberg (1941) using
sophisticated laboratory models of galaxy encounters, as well as by early numeri-
cal simulations using test particles by Pfleiderer & Siedentopf (1961) and Pfleiderer
(1963). In the ground-breaking work of Toomre & Toomre (1972) finally demon-
strated, based on restrictedN -body simulations, that gravity alone could account
for the formation of such observed structures. The authors presented also a detailed
modelling of four particularly well-known pairs of interacting galaxies. It has also
been suggested that the gravitational interaction between two self-gravitating bod-
ies can give rise to the formation of spiral structure – in a broader context though –
for the first time by Chamberlin (1901).

The blue colors, an indicator for ongoing star-formation, found in interacting
galaxies (Holmberg 1958) can be explained by bursts of star-formation with ages
and durations of the order some107 − 108 yr (Larson & Tinsley 1978). Further-
more, observations indicate a clear link between tidal interactions and nuclear ac-
tivity (Hummel 1981; Kennicutt & Keel 1984; Keel et al. 1985), as well as a higher
frequency of Seyfert activity (Dahari 1984). Strong interactions in gas-rich systems
can transport large amounts of interstellar gas to the centres of the interaction rem-
nants and thus trigger nuclear starbursts or nonthermal nuclear activity (e.g., see
reviews byHeckman 1990, 1994; Sanders 1992).

During the encounter between two galaxies, they may suffer a a gradual loss of
their orbital energy owing to dynamical friction (see, for example,Chandrasekhar
1942; Tremaine & Weinberg 1984b). Owing to this orbital decay the interaction
between the galaxies finally leads to merging of the two systems. Two well-known
examples of nearly equal mass disc galaxies, which are still in the merging process
are NGC 4038/4039 (The Antennae) and NGC 4676 (The Mice). The outcome of a
merger strongly depends on the mass ratio of the two participants. In general two
different types of mergers are distinguished. Mergers of comparable mass spirals,
so called major mergers, are the most striking example of galaxy collisions. Toomre
& Toomre (1972) and Toomre (1977) argued that major merger events are the dom-
inant process by which early-type galaxies form. There is growing evidence from
observations of fine structure and indicators of past starbursts in elliptical galaxies
(see, for example, the reviews bySchweizer 1998and Kennicutt 1998, and ref-
erences therein), as well as from numerical simulations (see, for example,Barnes
1988, 1992; Hernquist 1992, 1993; Barnes & Hernquist 1992, 1996, 1998; Barnes
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1998 and references therein), that indicate at least some elliptical galaxies have
formed by a merger of two spiral galaxies.

Major mergers are, however, less common than minor mergers, i.e. the accretion
of satellites or dwarfs on disc galaxies. Minor merger are in general less violent and
numerical simulations have shown that they can drive the morphological evolution
of the disc without actually destroying it (see, for example,Quinn & Goodman
1986; Quinn et al. 1993). For instance, minor mergers may trigger starbursts (Mihos
& Hernquist 1994a), excite nuclear activity (Hernquist & Mihos 1995), lead to the
formation of warps and bars (Quinn et al. 1993; Laine & Heller 1999) and to the
dynamical heating of the disc (see, for example,Toth & Ostriker 1992; Schwarzkopf
& Dettmar 2000; etc.).

In the cases above the interaction leads to galaxy mergers. However, if the en-
counter of the two galaxies is fast enough the galaxies will remain unbound and a
interaction can occur with out a merger. In this work we focus on less violent inter-
actions. In general interactions can be distinguished between collisions (Sec.2.2.1)
and tidal encounters of galaxies (Sec.2.2.2).

2.2.1 Galaxy collisions

An only recently recognised important external agent for driving galaxy evolution is
the interaction with small companions. Statistical surveys by Zaritsky et al. (1993,
1997) have shown that the average number of companions for field spiral galaxies
has a lower limit of1.2 ± 0.3 (see also Fig.2.4). Thus we expect interactions
between a disc galaxy (orhost) and less-massive galaxies (orcompanion) to be a
frequent phenomenon during the lifetime of a galaxy.

Particularly spectacular, though probably not the most common case, are in-
teractions in which the companion galaxy passes nearly perpendicular through the
equatorial plane of the host’s disc, which often gives rise to the formation of im-
pressive ring-like structures. A most striking example of such a collisional ring
galaxy is the Cartwheel-Galaxy (AM 0644-741; see Fig.2.5 2). For recentN -body
modelling of the Cartwheel galaxy, see for example Horellou & Combes (Horellou
& Combes 2001) and Villa, Athanassoula & Bosma (Villa et al. 2002). These col-
lisionally induced rings have a different physical origin and dynamical properties
than the resonance rings often found in isolated discs.

The formation of collisionally induced rings can be described by the impulse
approximation (see, for example,Binney & Tremaine 1987). The passage of the
companion through the disc excites both radial and vertical oscillations in the disc.
The induced radial oscillatory motion of the stars and the gas produces expanding
density ring-waves (see, for example,Lynds & Toomre 1976) centred on the impact

2Based on observations with the NASA/ESA Hubble Space Telescope (HST), obtained from the
Space Telescope Science Institute, which is operated by the Association of Universities for Research
in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with
Photo Release No. STScI-PRC 95-02.
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Figure 2.4: Statistic of satellites per field galaxy (Zaritzky et al. 1997)

position, while the vertical oscillations lead to an increase in the vertical velocity
dispersion and a significant thickening of the disc. As noted by Athanassoula, Puer-
ari & Bosma (1997), spokes form only between the first and the second ring, the
presence of the latter being necessary. The properties of those spokes in collisional
ring galaxies are discussed in detail by Hernquist & Weil (1993).

Impacts along trajectories 30 degrees (and sometimes higher) from the disc nor-
mal still yield ring shaped features (Lynds & Toomre 1976). The effects of oblique
impacts have been studied by Toomre (1978), Athanassoula (1999) and Athanas-
soula et al. (1997). In the latter work, concentrating on the formation of collisionally
induced rings, the authors present purely collisionless simulations of off-centred
impacts of a sufficiently massive companion hitting the inner parts of a barred disc
galaxy. They have shown that the impact can displace the bar to one side, causing
asymmetries and the formation of rings. So far, the simulations of such collisions
involving barred galaxies have been purely stellar and not much is known about the
influence of the dissipative component in such encounters.

2.2.2 Tidal encounters

Since the pioneering work of Toomre & Toomre (1972) much effort has been spent
to investigate galaxy-galaxy interactions by means of numerical simulations (e.g.
see the reviewBarnes & Hernquist 1992, and references therein). As mentioned
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Cartwheel Galaxy                                              HST WFPC2
PR95-02 - ST ScI OPO - January 1995 - K. Borne (ST ScI), NASA                    12/23/94 zgl

Figure 2.5: HST observation of the collisional double-ring galaxy AM 0644-741
(or Cartwheel galaxy). On the right hand side are the two companion galaxies and
interaction candidates.

before, these simulations have shown that gravitational forces alone are able to re-
produce many of the observed features, such as tidal arms, in great detail.

Toomre & Toomre (1972) argued that the bridges and tails often found in galaxy
pairs are tidal relicts of close encounters. The authors studied such interactions and
the formation of tidal arms by means of restrictedN -body models. They found the
strongest effect, when the encounter is prograde with respect to the discs rotation
and the orbits are close to the equatorial plane of the disc, with inclinations less
then30◦. Owing to the gravitational torques the angular momentum of the material
in the outer disc increases and ispulled outof the galaxy, forming impressive tidal
arms. Only recently, interest in the study of tidal arms has been revived, as they
are suspected to be the birthplace of dwarf galaxies, the so-calledtidal dwarfs.
Such a mechanism for the formation of tidal dwarf galaxies was first proposed by
Schweizer (1978) for the southern tail of the Antennae galaxies (NGC 4038/39).
Further support for this scenario has been given by, for example, Mirabel et al.
(1991, 1992) in the Superantennae (Am-1925-724) and Weilbacher et al. (2000,
2003; see also Fig.2.6).
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Figure 2.6: Interacting galaxy AM 1353-272 (The Dentist’s Chair). Composite
B+V +NIR true color image from NTT-SUSI (Weilbacher et al. 2000) and SOFI
(Weilbacher in prep.)

Interactions and bars

NumerousN -body simulations have demonstrated that tidal interactions with neigh-
bouring galaxies can give rise to the formation of stellar bars (see, for example,Byrd
et al. 1986; Noguchi 1987, 1988; Gerin, Combes & Athanassoula1990; Barnes &
Hernquist 1991; Salo 1991; Miwa & Noguchi 1998; etc.). These tidally induced
bars form more rapidly than there isolated counterparts and effectively funnel gas
into the central disc region (Noguchi 1987, 1988), thus providing a source of fuel
for nuclear starbursts and active galactic nuclei.

Based on 2DN -body simulations, Salo (1991) has used the Dahari index (Da-
hari 1984) as a quantitative measure for tidally induced bar formation and found a
minimum value ofQD, depending on the specific host galaxy, above which a bar is
formed by the interaction. The specific value ofQD as a criterium for induced bar
formation, however, depends strongly on the central mass concentration of the host
galaxy. Elmegreen et al. (1991) defined a more advanced parameter for which a
limiting value was also found.

Elmegreen & Elmegreen (1985) found two different types of major axis surface
density profiles of bars, exponential and the flat, corresponding to bars in late- and
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early-type galaxies. Noguchi (1996) argued that this distinction could be due to the
fact that the first type is found in spontaneous bars and the second in driven ones.
To distinguish between the two bar forming mechanisms, Miwa & Noguchi (1998)
compared the properties of spontaneously formed and tidally induced bars by means
of N -body simulations and argued that tidally induced bars are slow rotators, while
the spontaneously formed bars usually have higher pattern speeds.

Gerin, Combes & Athanassoula (1990) have performed both 2D and 3DN -
body simulations to study the response of a bar formed in ainitially globally unsta-
ble disc (Ostriker & Peebles 1973), to a tidal encounter with a spherical perturber.
They studied the effect of close encounters, both in and out of the plane, on trajec-
tories with pericentres outside the disc. This work has been continued by Sundin &
Sundelius (1991) and Sundin, Donner & Sundelius (1993), who have studied the re-
sponse of a bar using 2DN -body simulations, which had beeninducedby a satellite
on a planar parabolic orbit. In these works the change in pattern speed and angular
momentum distribution and resonances in the disc have been investigated for dif-
ferent orbits and masses of the perturber. Depending on the initial conditions the
strength of the bar transiently enhanced or decreased owing to the tidal interaction.
This is accompanied by an increase or decrease of the bar’s pattern speed.
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2.3 Objectives and thesis outline

The aim of this work is to study the morphological and dynamical evolution of
barred galaxies undergoing interactions with companion galaxies. In particular
we take the gaseous component into account, which is known to play a signif-
icant role in the evolution of disc galaxies. We use a fully self-consistent 3D
N -body/smoothed-particle-hydrodynamics algorithm to evolve both the stellar and
gaseous galaxy components.

Firstly, we briefly summarize in Sec3 the basic theory of stellar orbits and
galactic dynamics in respect to the evolution of barred galaxies. We then describe
in Sec.4 the algorithm used for the numerical simulations presented in this work
and provide a description of the set-up procedure for the initial conditions of our
models.

In Sec.5 we focus upon the evolution of a gas-rich barred disc galaxies, which
are perturbed by the impact of a less massive spherical companion galaxy. In these
simulations the companion galaxy passes through the disc of the larger galaxy
nearly perpendicular to the equatorial plane of the disc. The impact position and
time are varied with respect to the bar and evolutionary phase of the isolated barred
galaxy. The mass of the companion galaxy has been chosen such that the interac-
tion can be considered as a perturbation to the bar and disc. The set of encounter
parameters has been taken from the simulations of Athanassoula, Puerari & Bosma
(1997) and chosen to produce considerable effects, like asymmetries, off-centred
bars and formation of rings.

In Sec.6 we study the regeneration process of stellar bars triggered by a tidal
interaction, providing a comparison between purely stellar and stellar+gas simula-
tions. We describe the conditions necessary to regenerate the bar in the disc. We
also compare the properties of tidally regenerated bars to those formed by the spon-
taneous bar instability in isolated disc. In addition, we describe how the radial
redistribution of angular momentum due to the interactions affects the regeneration
process.

In Sec.7 we present a first systematic study of the influence of different nu-
merical effects on the accuracy of pattern speeds determined from numerical sim-
ulations. The simulations presented in this sections are carried out on different
hardware, i.e. GRAPE-3 and GRAPE-5, as well as different numerical schemes,
like direct summation and treecode methods.

Finally, in Sec.8 we give a brief summary of the main results of this work and
give an outlook on future research in Sec.8.4. In the Appendix the astronomical
constants frequently used in this work are given, along with a detailed description
of theN -body/SPH code (Sec.B) and GRAPE-System (Sec.C) used for the simu-
lations.
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3. Galactic dynamics

3.1 Collisionless systems

Galaxies can be considered as dynamical systems, which evolve secularly on cos-
mological time-scales. Before giving a brief introduction into the field of galactic
dynamics, we first give some estimates of characteristic time-scales related to the
evolution of stellar systems in general. The crossing timetc is defined by the time
that a star with a mean velocityv needs to cross a system with a linear sizeL:

tc =
L

v
. (3.1)

For a typical disc galaxy with a diameter of roughlyL=30 kpc and a mean velocity
of v= 250 km s−1, the crossing time is of the order of some108 yr. When moving
through the galaxy, however, the orbit of a star gets deflected from its original path
by successive encounters with other stars. The relaxation timetr in a stellar system
is defined as the time over which these cumulative effects of stellar encounters be-
come comparable to the stars initial velocity. In terms of the crossing timestc, the
relaxation time is given by (see, for example,Binney & Tremaine 1987):

tr ≈
N

8 ln N
tc , (3.2)

whereN is the number of stars in the system. The relaxation time increases com-
pared to the crossing time with increasingN . For a typical galaxy withN ≈ 1011

stars the relaxation time is roughlytr≈ 6 × 1017 yr. This means that the relaxation
time in stellar systems with largeN is much longer than the crossing time. Since
galaxies are only some 100 crossing times old, however, cumulative effects of stel-
lar encounters or collisions are not significant in the evolution of those systems.
Therefore the dynamics of galaxies can be described by a collisionless system, in
which the stars move only under the influence of themeangravitational potential
Φ(r, t) generated by all the other stars.

In the analytic approach (fortr→∞) the galaxy can be represented by a con-
tinuous mass distribution with a distribution functionf(r,v, t). The dynamics of
such a system is governed by the collisionless Boltzmann equation:

∂f

∂t
+ v ·∇f −∇Φ · ∂f

∂v
= 0 . (3.3)
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The gravitational fieldΦ(r, t) can be obtained from the distribution function (or
density distribution) by using the Poisson equation

∇2Φ = 4πG

∫
f(r,v, t) d3v = 4πG ρ(r, t) , (3.4)

whereρ(r) is the volume density and G is the gravitational constant. So in general,
if the distribution function at some given timet0 is known, we can use Eq.3.3 to
derivef(r,v, t) at timet. The Boltzmann equation, however, is a first-order partial
differential equation with six independent spatial variables and time, and therefore
an analytic solution can be derived only for a very few specific distribution functions
(see, for example,Fridman & Polyachenko 1984).

A numerical approach to study the dynamics of galaxies areN -body realisations
of a given distribution function. In this method,f(r,v, t) is sampled at some given
time t0 by a set ofN discrete points with massesmi:

f(r,v, t0) → fN(ri,vi, t0) =
N∑
i=1

mi δ
3(r − ri) δ3(v − vi) . (3.5)

In this representation the sampling points are often referred to asbodiesor particles
and it can be shown that with this approach the phase space density always equals
the mass volume density. One has to keep in mind that the particles act astracers
of the phase-space distribution and cannot be identified as individual stars. The
evolution in time off can then be calculated by explicit numerical integration of
the standard Newtonian equations of motion for each particlei, as given by

dri
d t

= vi (3.6)

and

dvi
d t

=
N∑
j 6=i

Gmj (rj − ri)
|rj − ri|3

. (3.7)

This approach can be interpreted as a Monte-Carlo method of solving Eq.3.3(White
1982). Because the particle numberN , which can be simulated with state-of-the-art
super-computers, is still many orders of magnitude smaller than the actual number
of stars in a galaxy, there is some need to reduce the discreteness effects introduced,
e.g. by the singularity in Eq.3.7. To reduce the effects of two-body relaxation (or
graininessof the sampled distribution function) and to avoid the numerical singu-
larities in the acceleration term atrj =ri, a softened form of the acceleration term
(Eq.3.7) is generally used, such as:

dvi
d t

=
N∑
j 6=i

Gmj (rj − ri)[
(rj − ri)2 + ε2

]3/2 , (3.8)
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whereε is referred to as the softening length. The softening length can be introduced
in a self-consistent way, i.e. with the Poisson equation being satisfied, by smoothing
out the ’density’ of a particle in Eq.3.5as

δ3(r − ri) →
3

4π

ε2

(|r − ri|2 + ε2)5/2
. (3.9)

Applying a softening to the force law always affects the spatial resolution of the
simulation. For the best choice of the softening inN -body simulations see, for
example, Merrit (1996), Athanassoula et al. (2000) and Dehnen (2001).

3.2 Stellar orbits in barred galaxies

Disc galaxies – in contrast to elliptical galaxies and spheroidal galaxy components
like a halo or bulge – are rotationally supported system, i.e. most of the stars in
the disc rotate about the galactic centre on quasi-circular orbits, which are confined
close to the equatorial plane of the disc. The rotation of the disc is differential,
with the angular velocity of the stars varying with radius. Stellar orbits can be
considered as the building blocks of galaxies and are the backbone for studying the
structure and dynamics of galaxies (e.g.,Athanassoula et al. 1983). In this section
we give a brief summary of the main properties of stellar orbits (see, for example,
Binney & Tremaine 1987and the review article bySellwood & Wilkinson 1993)
and the basic methods, which are intensively used in this work for analysing the
numerical simulations. In the last part of this section, we will also briefly discuss
the connection between the gas-dynamics and periodic orbits.

3.2.1 Epicyclic approximation

Let us first consider two-dimensional planar orbits, i.e. in the equatorial plane of the
disc, in an axisymmetric and time-invariant potentialΦ(R, θ, z = 0), in which the
angular momentumJ=R2 θ̇ of a star is a conserved quantity. The general solution
can be obtained by solving the equations of motion of a test particle in the potential:

R̈−R θ̇ = −∂Φ

∂R
and J̇ = −∂Φ

∂θ
. (3.10)

The simplest solution in this case is a circular orbit with a home radiusRc and a
circular frequency

Ωc(R) =

√
1

R

∂Φ

∂R
. (3.11)

In Fig. 3.1 (panel a) we show an example of a circular orbit in an axisymmetric
potential. The circular orbits are among other things characterized by the fact that
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Figure 3.1: Epicyclic approximation. In panel (a) we show a circular orbit with
frequencyΩc. Panel (b) shows a nearly circular orbit in the same potential. Panel
(c) shows the epicyclic approximation of the same orbit, in which the motion is
described by the guiding centre and an epicycle.

they are the orbits with minimum energy for a givenJ . Stars with higher energies
(and the sameJ) describe rosette-like orbits instead, which are in general not closed
(Fig 3.1b) in the inertial frame of reference. For orbits which are not far from being
circular, the motion of the stars can be approximated by a harmonic epicycle about a
guiding centre, which orbits atΩc (Lindblad 1927), as illustrated in Fig.3.1c. This
can be shown by writing the equations of motion in terms of displacements from a
circular motion (see also next section).
Theradial Lindblad epicyclic frequency of a star is then given by

κ(R) =

[
4Ω2

c +R
dΩ2

c

dR

]1/2

. (3.12)

In this linear approximation the two frequenciesΩc andκ describing the star’s mo-
tion, can be considered as the star’snatural frequencies in the galactic potential.
The quasi-circular orbits are only closed in an inertial frame of reference, if and
only if Ωc = l

m
κ, with integersl andm. 1 The orbit closes after|l| revolutions about

the galactic centre andm radial oscillations.

3.2.2 Orbits in barred potentials

In this section we describe stellar orbits in a barred potential. We assume that the
bar rotates steadily with a pattern speedΩp. The equations of motion in a frame of
reference rotating with a constant pattern speedΩp are then given by:

r̈ = −∇Φ− 2(Ωp × ṙ)−Ωp × (Ωp × r) , (3.13)
1It is always possible to choose a frame of reference, rotating with a constant frequencyΩframe

in which such an orbit appears to be closed, i.e. satisfying the conditionΩc − Ωframe = l
m κ.
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where the second and third term on the right-hand side of Eq.3.13represent the cori-
olis and the centrifugal forces, respectively. Using cylindrical coordinates, choosing
Ωp = Ωp ez and settingz= ż= z̈= 0, the equations of motion become component-
wise, inR andϕ, respectively:

(R̈−R ϕ̇2) = −∂Φ

∂R
+ 2R ϕ̇Ωp +RΩ2

p (3.14)

(2Ṙϕ̇+Rϕ̈) = − 1

R

∂Φ

∂ϕ
− 2ṘΩp . (3.15)

Furthermore we use the first-order perturbation ansatz and write the gravitational
potential as:

Φ(R, ϕ) = Φ0(R) + Φ1(R, ϕ) , (3.16)

with |Φ1/Φ0|�1. We further useR(t)=R0 +R1(t) andϕ(t)=ϕ0(t) +ϕ1(t). The
zeroth-order terms in Eq.3.14then yields:

R0 ϕ̇
2
0 =

(
dΦ0

dR

)
R0

− 2R0 ϕ̇0 Ωp −R0 Ω2
p , (3.17)

which is equivalent to the equation for centrifugal equilibrium at radiusR0:

R0 (ϕ̇0 + Ωp)2 =

(
dΦ0

dR

)
R0

. (3.18)

If we defineΩ0≡Ωc(R0), whereΩc is the circular frequency as given by Eq.3.11in
the axisymmetric potentialΦ0, we get the angular frequency of the guiding centre
(R0, ϕ0) from Eq.3.18as:

ϕ̇0 = Ω0 − Ωp . (3.19)

We assume here thatΩp>0, so that for prograde (ordirect) and retrograde orbit are
Ω0>0 andΩ0<0, respectively. We further chooset=0 such that

ϕ0(t) = (Ω0 − Ωp) t . (3.20)

For the first-order terms in the linearized equation of motion Eq.3.14we get:

R̈1 − 2R0 ϕ̇0 ϕ̇1 −R1 ϕ̇
2
0 = (3.21)

−
(
dΦ1

dR

)
R0

−R1

(
d2Φ0

dR2

)
R0

+ 2R0 ϕ̇1 Ωp + 2R1 ϕ̇0 Ωp +R1 Ω2
p .
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By rearranging the terms and using Eq.3.19, we get:

R̈1 +

[(
d2Φ0

dR2

)
− Ω2

]
R0

R1 − 2R0 ϕ̇1 Ω0 = −
(
dΦ1

dR

)
R0

, (3.22)

where[(d2Φ0/dR
2)− Ω2]R0

is the epicyclic frequencyκ0 =κ(R0) as introduced in
Eq.3.12. In a similar way we get for the first-order terms in Eq.3.15:

2Ṙ1ϕ̇0 +R0ϕ̈1 = −
(

1

R

∂Φ1

∂ϕ

)
R0

− 2 Ṙ1Ωp , (3.23)

which yields

ϕ̈1 + 2Ω0
Ṙ1

R0

= − 1

R2
0

(
∂Φ1

∂ϕ

)
R0

. (3.24)

The results obtained so far did not make any assumptions about the form of the
perturbing potential. For further analysis we now choose a specific form ofΦ1 and
set

Φ1(R, ϕ) = Φb(R) cos(mϕ) . (3.25)

Since bars show roughly a two-fold symmetry, we expectm=2 to be the dominant
case for barred galaxies. We further assume thatϕ1 � ϕ0, i.e., ϕ(t) ≈ ϕ0(t) =
(Ω0 − Ωp) t. The equations of motion can now be written as:

R̈1 + κ2
0 R1 − 2R0 Ω0 ϕ̇1 = −

(
∂Φb

∂R

)
R0

cos[m(Ω0 − Ωp) t] (3.26)

ϕ̈1 + 2 Ω0
Ṙ1

R0

=
mΦb(R0)

R2
0

sin[m(Ω0 − Ωp) t] . (3.27)

Integrating Eq.3.27, we obtain:

ϕ̇1 = −2Ω0
R1

R0

− Φb(R0)

R2
0(Ω0 − Ωp)

cos[m(Ω0 − Ωp) t] + const. , (3.28)

and substituting this expression in Eq.3.26:

R̈1 + κ2
0R1 = −

[
dΦb

dR
+

2ΩcΦb

R(Ωc − Ωp)

]
R0

cos[m(Ω0 − Ωp)t] + const. (3.29)

This equation corresponds to the equation of motion for a harmonic oscillator of
natural frequencyκ0 that is driven at frequencym(Ω0 − Ωp). The general solution
of Eq.3.29is thus given by:

R1(t) = C1 cos(κ0t+ψ)−
[
dΦb

dR
+

2ΩcΦb

R(Ωc − Ωb)

]
R0

cos[m(Ω0 − Ωp) t]

∆
, (3.30)
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whereC1 andψ are arbitrary constants, and∆ is defined as:

∆ = κ2
0 −m2(Ω0 − Ωp)2 . (3.31)

We can use Eq.3.20to eliminatet and obtain:

R1(ϕ0) = C1 cos

(
κ0ϕ0

Ω0 − Ωp

+ ψ

)
+ C2 cos(mϕ0) , (3.32)

where

C2 = − 1

∆

[
dΦb

dR
+

2ΩcΦb

R(Ωc − Ωp)

]
R0

. (3.33)

Thus the full solution of the equations of motion is a combination of thedistorted
path of the guiding centre and epicycles. WithC1 6= 0 the solution describes non-
closed loop orbits, while forC1 = 0 the solution is periodic inϕ0 with a period of
2π/m. The periodic orbits play an important role in understanding the dynamics of
barred galaxies and we will come back to them later on in this section.

Dynamical resonances in the linear regime

When one of the terms on the right-hand side of Eq.3.32 become singular, the
orbit is in resonance with the perturbation. The resonance condition from the linear
theory is thus given by:

Ωp = Ωc(R)± l

m
κ(R) . (3.34)

The main planar resonances, which play a central role in the study of bars and
spirals, are the

1. corotation resonance(hereafter CR)

Ωp =Ωc (l=0)

2. outer Lindblad resonance(hereafter OLR)

Ωp =Ωc +
κ

2
(l = +1,m=2)

3. inner Lindblad resonance(hereafter ILR)

Ωp =Ωc −
κ

2
(l = −1,m=2)

4. ultra-harmonic resonance(hereafter UHR)

Ωp =Ωc −
κ

4
(l=−1,m=4)
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Figure 3.2: Linear resonance diagram. The curves show the circular frequencyΩc

(full line), Ωc±κ/2 (dashed lines) andΩc−κ/4 (dotted-dashed line). The horizontal
and vertical lines indicate the pattern speedΩp of the bar and the position of the
corresponding resonances, respectively.

Please note that the resonance condition for the ILR is equivalent to the condition
for an orbit in a rotating frame of reference to be closed. Thus orbits which appear
closed in the frame of reference co-rotating with the bar can always be considered
as resonance orbits. This result leads to some ambiguity in the definition of the
Lindblad resonances (seeAthanassoula 2003for a discussion).

If the potential of a galaxy is known, we can use Eq.3.34to determine the posi-
tion of the resonances in the disc. In Fig.3.2we show a resonance diagram, which
has been obtained by plotting the frequenciesΩc andΩc ± (l/m)κ as a function of
radius (forl= 1 andm= 2, 4). At those radii where the lineΩp = const. intersects
with the frequency curves we locate a resonance. As can be easily seen from this
plot, the number of inner Lindblad resonances can vary, depending on the value of
Ωp. In the case shown we have two ILRs, which are appropriate calledinner and
outer ILR (hereafter iILR and oILR, respectively). For higher values ofΩp there
may exist only one or even no ILR, which is the case whenΩp equals or exceeds
the maximum of theΩp =Ωc − κ/2 curve, respectively.

As can be seen from Eq.3.34, the orientation of the orbits changes at each
principle resonance (for fixedm), i.e. the orbits are aligned with the bar forC2<0
and perpendicular to the bar forC2>0. The latter is the case in the region between
the inner and the outer ILR. We will later identify those orbits trapped between the
iILR and the oILR as thex1 andx2 orbits in the non-linear regime. Indeed the
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presence of thex2 orbits is anecessarycondition for the presence of an ILR (see
Athanassoula 2003).

The linear approximation described above is only valid for weak perturbations.
For the case of a strong bar one has to switch to an orbit analysis in the non-linear
regime, which will be discussed in the following sections. The above analysis helps
us, however, to understand the properties of stellar orbits in barred potentials.

3.2.3 Periodic orbits

In this section we describe periodic orbits in barred potentials, i.e. orbits which
make a closed figure in a frame of reference rotating with the bar. These orbits pro-
vide useful information to study the stellar dynamics of barred galaxies (see, for ex-
ample,Contopoulos & Mertzanides 1977; Contopoulos & Papayannopoulos 1980;
Contopoulos & Grosbøl 1989; Athanassoula 1992b; etc.) and can be considered as
the backbone of galactic structure (Athanassoula et al. 1983). Although the stars in
a galaxy will not be on periodic orbits, the latter provide useful information, because
they trap non-closed orbits around them. For simplicity we confine ourselves again
to two-dimensional planar orbits only, which are confined to the equatorial plane of
the disc. A description of the three-dimensional structure of orbits in barred galax-
ies is given in, e.g., Pfenniger (1984), Pfenniger & Friedli (1991), Berentzen et al.
(1998) and the series of papers by Skokos, Patsis & Athanassoula (2002a, 2002b)
and Patsis, Skokos & Athanassoula (2002, 2003).

In this section we describe the lowest order periodic orbits. The most important
orbits are the ones which are bi-symmetricm= 2 with respect to the bar and close
after one orbit around the centre in the rotating frame of reference. In the frame
of reference corotating with the bar neither the particles energy nor its angular mo-
mentum is a conserved quantity. However, there exists another integral of motion2.
In the rotating frame of reference the only known integral of motion is the Jacobi
integral:

EJ =
1

2
|v|2 + Φeff(r) , (3.35)

whereΦeff = Φ − 1
2
Ω2

p R
2 is theeffectivepotential. BecauseEJ has the units of

an energy, it is often referred to as the Jacobi energy and can be thought of as an
effective energy of a star.

Characteristic diagrams

In the characteristic diagram the periodic orbits are plotted with respect to their
Jacobi integralEJ and they-intercept value with thex=0 plane. In such a diagram

2An integral of motion is a time-independent function of the coordinates, which is constant along
a trajectory in phase space.
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Figure 3.3: Main periodic orbit families. The panels from left to right show exam-
ples of thex1, x2 andx4 orbits in a barred potential. The orientation of the bar’s
major axis is indicated by the horizontal dotted line.

Figure 3.4: Characteristic diagram of the main orbit families. We show the char-
acteristic curves (full lines) of the main planar periodic orbits within corotation in a
barred potential. The dashed line shows the zero-velocity curve (ZVC).

the periodic orbits are not scattered, but are grouped in families in the form of
curves, known as characteristic curves in this diagram. In Fig.3.3 we show some
examples of different periodic orbits and in Fig.3.4the corresponding characteristic
diagram of the main orbit families in a barred potential (within the corotation), using
the notation of Contopoulos & Papayannopoulos (1980). The dashed curve is the
zero-velocity curve (hereafter ZVC), which delineates the accessible region in the
plane based on energy considerations.
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3.2. STELLAR ORBITS IN BARRED GALAXIES

Figure 3.5: Example of a surface of section. The three fix-points atvy=0 are, from
left to right, the periodic orbits of thex4 (retrograde), thex1 and thex2 families
(both direct or prograde). Trapped around them are the multi- and non-periodic
orbits, forming the invariant curves andislands. A ergodic region is also present in
this case, separating thex1 andx2 region.

Thex1 orbit family consists of orbits, which predominately give the bar its struc-
ture. They are elongated along the bar major axis and are direct orbit, i.e. the star’s
motion is in the same sense as the bar. In the rotating reference frame of the bar
they move in and out, twice for once around the centre (2/1). Thex4 orbits are
retrograde 2/1 orbits, slightly elongated perpendicular to the bar. Thex2 orbits, like
x1, are also direct 2/1 orbits, but elongated perpendicular to the bar. As mentioned
before, their presence is indicative of an ILR (or more than one) in the non-linear
regime.

Surfaces of section

For a given dynamical system the orbital properties can be obtained from the sur-
faces of section (hereafter SOS), originally introduced by Poincaré (1892). To con-
struct an SOS, we plot for a givenEJ the intersections of orbits with the planex=0
for trajectories which havėx>0. Thus we have for each orbit a succession of points
Pi = (y, ẏ) called consequents. In such a diagram periodic orbits are represented
by fixed points, i.e. anm-periodic orbit is represented bym fixed points. In a
galactic-like potential, however, most orbits are not periodic. Nevertheless, the pe-
riodic orbits play an important role, because they trap regions of phase space about
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them. These trapped regions are called regular regions and the orbits, which reside
in them are called regular orbits. Their motion is confined to a 2D surface, referred
to as an invariant torus and which surrounds the parent periodic orbit. Orbits, which
are not trapped, are called irregular orbits. Unlike the regular orbits, they are not
restricted to a subsurface and may wander throughout the non-regular regions of
the phase space, at least within energy considerations. An example of a SOS for a
barred potential can be seen in Fig.3.5.

The regular orbits in this diagram form the closed curves, which surround the
fixed points of the parent periodic orbits at the centres. These curves are referred
to as invariant curves and are a cross-section of the invariant tori. The left side of
the diagram, withy < 0, represents the retrograde orbits, while the right side, with
y > 0, represents the direct or prograde orbits. In Fig.3.5 there are three regular
regions, which from left to right are associated with thex4, x1 and thex2 orbital
families, respectively. Because the presence of thex2 orbits is indicative of the
inner Lindblad resonances, the SOS provide a tool to find the resonances in the
non-linear regime and to estimate the importance of each orbit family by the phase
space region it occupies.

3.2.4 Gas-dynamics in barred galaxies

In the introduction we already described the importance of gas on the dynamics of
barred galaxies and some of the different features it may produce. In this section we
will briefly describe the response of gas to a barred potential in terms of the periodic
orbits.

A relation between the gas flow and the main periodic orbits in barred galaxies
has already been pointed out by Prendergast (1983) and and Sanders et al. (1983).
The velocity dispersion in the interstellar medium is in general an order of magni-
tude lower than the streaming motion of the gas and the influence of pressure will
thus be negligible. Therefore the gas streamlines must under this condition coincide
with the periodic orbits in the potential. In contrast to the stellar orbits, however,
the gas streamlines in a laminar flow cannot cross, since the gas must have a unique
streaming velocity at each point in the flow. Thus if the periodic orbits are not prop-
erly nested and somehow cross each other (e.g., by superposition ofx1 andx2 orbits
or loopx1 orbits; compare Fig.3.3), pressure or viscous forces will act such as to
prevent crossing streamlines. If the main families of periodic orbits intersect shocks
are formed (Prendergast 1983; Sanders et al. 1983). Through changes in energy or
angular momentum the gas may change its orbit, resulting in a radial redistribution
of the gas, which within co-rotation is generally directed inwards. Athanassoula
(1992b, 1994) found how the location and the shape of the shock loci, as well as the
strength and the inflow rates, depend on the dynamical parameter of the galaxy.
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4. Numerical methods

4.1 The algorithms

As has been shown in the previous section, the dynamics of a galaxy can be de-
scribed by that of a collisionless fluid, with the stars moving in the mean gravita-
tional potential generated by all the other stars. Thus the main task in numerical
simulations is the computation of the forces exerted by the stars. To simulate a
galaxy with itsreal numer of stars (i.e., withN ≈ 1011) is not possible even with
state-of-the-art supercomputers. But even with the particle numbers feasible today,
i.e. some106,N -body simulations remain a vastly time-consuming task.

The differentN -body methods can be categorised basically in the following
groups (e.g., see review bySellwood 1987; Hockney & Eastwood 1988):

1. direct methods(or particle-particlemethods):
In direct methods the gravitational interaction between the particles is calcu-
lated by taking the direct sum over all other particles. Since this step is done
for all particles the computational time is roughly proportional toN2, while
the integration of the equations of motion only goes withN . Direct methods
are by far the slowest ones, albeit the most accurate. Furthermore they have
the advantage, that they do not set any constraints on the symmetry of the
simulated system.

2. hierarchical methods(or treemethods):
The basic concept of the tree methods is to approximate the forces of a group
of distant particles by some sort of truncated expansion instead of individual
pair-wise sums . The particles are typically binned in a hierarchical tree struc-
ture. The forces accummulated for any given particle in a descent through the
tree. A popular implementation is the hierarchical tree method by Barnes &
Hut (1986). The computational cost of this method scales withO(N log N).
Tree methods are, as direct methods, gridless and have no preferred geometry.

3. field expansion methods:
The gravitational potential or density distribution is approximated by a trun-
cated expansion in some set of basis function, such as spherical harmonics.
The basis set has to be chosen depending on the geometry of system under
study. While very fast and produce no two-body relaxation they are best
suited to studying equilibrium distributions.
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Figure 4.1: Schematic illustration of the GRAPE-3 chip. The red and green boxes
indicate model input and output values, respectively, for a given set of coordinates
(xi, yi, zi).

4. grid methods (or particle-mesh):
In this method the mass of a particle is distributed over several grid points
and the forces on the particles are then interpolated after calculating the grav-
itational potential and the force at the grid points. Their advantage is in their
speed which comes from the use of the FFT to compute the forces from the
density. The main disadvantage of grid methods is, however, that it sets con-
traints on the geometry of the system and thus sets limits on the spatial reso-
lution of the simulation.

4.1.1 The special-purpose hardwareGRAPE

The direct particle-particle method is the most straight-forward one among theN -
body methods. But the direct integration approach has a high computational cost:
O(N2) operations are required to evaluate the forces on allN particles. In or-
der to simulate tens of thousands of particles by a highly-accurate particle-particle
method, one can expect the simulations to perform at least1014 floating operations.
The special-purpose hardware GRAPE (short for GRAvity PipE) was designed and
built by a group of astro-physicists at the University of Tokyo (seeSugimoto et al.
1990). The GRAPE-board is a piece of hardware attached to a host workstation, and
accelerates the Newtonian force calculation. The basic concept of GRAPE is that
the host computer, usually a general-purpose workstation running UNIX, sends the
positions and masses of particles to the GRAPE hardware. Then the GRAPE hard-
ware calculates the interaction between particles, i.e. the gravitational potential and
forces. The design of a GRAPE chip is shown in Fig.4.1. The GRAPE-3 hardware
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was originally released in 1991 and reaches a peak velocity of 15 Gflops (flops =
floating point operations per second).
With this type of hardware it is possible to evolve a system of a few 100K parti-
cles and a few million particles with the follow-up version GRAPE-5 (Kawai et al.
2000). A description of the GRAPE-3 system at the Sternwarte Göttingen, which
among others has been used for the simulations presented in this work, is given in
AppendixC.

4.1.2 TheN -body/SPH code

In this section we describe the basic concepts of the numerical methods used for the
simulations presented in this work. TheN -body/SPH code used in the simulations
(calledFTM; short forFast Tree Method) was developed by C.H. Heller (seeHeller
1991) to study encounters between protostellar discs. The version used in this work
has been updated, including support for the GRAPE hardware.

Gravity

For systems with a large number of stars, one can adopt a statistical description
as described in Sec3.1, instead of tracking individual stars. The evolution of the
distribution functionf (r,v, t) is governed by the collisionless Boltzmann equation
(Eq. 3.3). where the gravitational potentialφ (r, t) is given by Poisson’s equation
(Eq. 3.4). The gravitational forces between gas, stars and halo particles are com-
puted by adirect summationmethod supporting the GRAPE-3Af hardware. The
Keplerian potential between two particles is replaced by the softened form in or-
der to prevent numerical divergencies and to reduce the two-body relaxation. The
softened potential gives a force

F j =
N∑
i6=j

Gmimj · (ri − rj)(
|ri − rj|2 + ε2

)3/2
(4.1)

In the simulations presented in this work the direct force calculation has been per-
formed using the GRAPE-hardware.

4.1.3 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics (hereafter SPH) has first been introduced in an
astrophysical context by Lucy (1977) and Gingold & Monaghan (1977). SPH is a
fully Lagrangian method, in which the fluid elements constituting the system are
sampled and represented by a set of points, which are referred to asparticles. The
advantage of this method is, that it is not based on grids, which would constrain the
dynamical range in spatial resolution and the global geometry of the system being
studied. The dynamical equations are obtained from the Lagrangian form of the
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hydrodynamic conservation laws. In this section we describe the basic concepts of
SPH and the general features of the applied algorithm, following the description of
Monaghan (1992).

Basic concept

The mean value of any physical field, A(r), within a given interval can be deter-
mined by the integral interpolant

〈A(r)〉I =

∫
A(r′)W (r − r′;h) dr′ , (4.2)

whereW is an normalised interpolating kernel,h the smoothing length, and the
integration is done over the entire space. The interpolating kernel has the following
properties:∫

W (r − r′, h) dr′ = 1 (4.3)

and

lim
h→0

W (r − r′, h) = δ(r − r′) . (4.4)

For practical useW is chosen to be greater than zero everywhere and should be at
least differentiable once. For numerical work the values ofA(r) are known only at
a finite number of discrete points, distributed with a number density

∑N
i=1 δ(r−r′).

The integral interpolant in Eq.4.2can then expressed as

〈A(r)〉S =
N∑
i=1

f(ri)

〈n(ri)〉
W (r − ri, h) . (4.5)

In the following we will skip the suffixS when related to finite sampling. With a
massmi associated with each fluid element, the density may be estimated by

〈ρ(r)〉 =
N∑
i=1

miW (r − ri, h) . (4.6)

The gradient ofA(r) is easily obtained from Eq.4.2as:

〈∇A(r)〉I =

∫
A(r′)∇W (r − r′, h) dr′ , (4.7)

and similarly the divergence is given by:

〈∇ · A(r)〉I =

∫
A(r′) ·∇W (r − r′, h) dr′ . (4.8)
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The interpolation kernel

The three-dimensional kernelW used in the code is based on a spherically symmet-
ric spline function (Monaghan & Lattanzio 1985) of the form

W (r, h) =
1

πh3


1− 3

2
q2 + 3

4
q3 if 0 ≤ r

h
≤ 1;

1
4

(2− q)3 if 1 ≤ r
h
≤ 2;

0 if otherwise

, (4.9)

wherer ≡ |r − r′|. This kernel has several advantages. First, it has compact sup-
port, i.e. forr > 2h interactions are exactly zero. Second, the second derivative is
continuous, which means, that the kernel is not sensitive to disorder and the errors
in approximating the integral interpolants by summation interpolants are small pro-
vided the particle disorder is not too large. And finally, the error term in the integral
interpolant isO(h2). For the kernel given in Eq.4.9 only particles within a radius
of 2h contribute to the interpolation integral.

The smoothing length

The smoothing lengthh defines the spatial resolution as a length scale over which
is averaged during the estimation process. In the FTM code we apply a spatially
varying smoothing length and therefore the kernel gradient for a variableh is given
as:

∇W (r, h) =
∂W

∂r
∇r +

∂W

∂h
∇h . (4.10)

In general the second term is small compared to the first and can safely be ignored
(Evrard 1988). In order to guarantee the total momentum conservation the equations
of motion must be symmetrised inhi andhj, wherei andj denote the particles. In
the FTM code we symmetrise the smoothing procedure following Hernquist & Katz
(1989) by adopting a hybrid kernel of the form:

W ′(|r − r′| , h(r), h(r′)) =
1

2
[W (|r − r′| , h(r′)) +W (|r − r′| , h(r))] , (4.11)

which is a linear combination of the scatter and gather formalisms (seeHernquist
& Katz 1989). The expectation values are then computed according to

〈A(r)〉 =

∫
A(r′)

1

2
[W (|r − r′| , h(r)) +W (|r − r′| , h(r′))] dr′ . (4.12)
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Equations of motion

The SPH particles are moved in phase space according to Eulerian equations

d ri
d t

= vi (4.13)

and

dvi
d t

= − 1

ρi
∇Pi + avisc

i −∇Φi , (4.14)

whereΦi is the gravitational potential,Pi is the pressure, andavisc
i is acceleration

owing to artificial viscosity. The continuity equation

ρi =
∑
j

mjWij (4.15)

is satisfied automatically to orderO(h2). The introduction of an artificial viscosity
in Eq. 4.14allows the presence of shocks in the flow. The pressure gradient term
(∇P )/ρ in Eq.4.14is calculated by using the identity

∇P
ρ

=
2
√
P ∇
√
P

ρ
(4.16)

and using the smoothed estimates according to equation Eq.4.12. For the sym-
metrised expression, which conserves both linear and angular momentum exactly,
we obtain:

− ∇Pi
ρi

= −
∑
j

mj

√
Pi Pj

ρi ρj
[∇iW (rij, hi) +∇iW (rij, hj)] , (4.17)

whererij = |ri − rj| and
√
Pi Pj/ρi ρj represents the geometric mean ofP/ρ2.

Artificial viscosity

For an accurate treatment of shocks the introduction of an artificial viscosity is
required (e.g.,Monaghan & Gingold 1983). In this version of the code a form
suggested by Hernquist & Katz (1989) has been adopted,

avisc = −
∑
j

mj Πij
1

2
[∇iW (rij, hi) +∇iW (rij, hj)] , (4.18)

where

Πij =
−α c̄ij µij + β µ2

ij

ρ̄ij
, (4.19)
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µij =


vij ·rij

hij

[(
rij
hij

)2

+η2

] for vij · rij < 0

0 for vij · rij ≥ 0

(4.20)

and c̄ij = (ci + cj)/2, h̄ij = (hi + hj)/2, ρ̄ij = (ρi + ρj)/2. andvij = vi − vj.
We use the typical values for the constantsα ∼ 1 andβ ∼ 2 (Hernquist & Katz
1989; Evrard 1988). The first term in Eq.4.19is analogous to a bulk viscosity (e.g.,
Lucy 1977), whereas the second term is similar to a Von Neuman-Richtmyer (or
molecular) artificial viscosity.

Artificial viscosities, however, can in general introduce considerable shear vis-
cosity into the flow. To reduce the effective shear viscosity, we introduce a viscosity
’switch’ (e.g.,Benz 1990) in the form of a multiplicative factorfij = (fi + fj)/2
onµij, where

fi =
|∇ · c|i

|∇ · v|i + |∇× v|i + 0.001 ci/hi
, (4.21)

and the curl of the velocity is given by the estimate

∇× v =
1

ρi

∑
j

mjvij ×∇Wij . (4.22)

Thermal equation

Using the first law of thermodynamics, we obtain the time evolution of the internal
energyu:

du = −P dV + T ds , (4.23)

whereV = 1/ρ ands is the specific entropy. The thermal equation is then calculated
from:

d ui
d t

=
∑
j

mj

(√
Pi Pj

ρi ρj
+

1

2
Πij

)
vij ·

1

2
[∇iW (rij, hi) +∇iW (rij, hj)] .(4.24)

The non-adiabatic effect of the artificial viscosity is included in the change of the
specific entropy.

Equation of state

In order to close the system of equations an equation of state is needed. In this work
we use the polytropic relation

P = Kργ (4.25)

This reduces to the isothermal relation, which has been used throughout this work,
with K=c2

s andγ=1.
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4.1.4 Integration and time-stepping

To integrate the equations of motion there exist different numerical schemes (e.g.,
Press et al. 1986), each with its own advantages and disadvantages. In the code
used in this work we apply two different types of numerical integrators: aleapfrog
integrator for the stellar components and apredictor/correctormethod for the gas.

One of the advantages of the leapfrog integrator compared to other integrators
is, that it is time reversible because of the symmetric way in which it is defined. This
is important, for systems where energy conserved. Furthermore the leapfrog inte-
grator is computationally less expensive than, for example, the predictor/corrector
approach, and it requires less storage. This could be an important advantage in the
case of largeN calculations. Moreover it is a very stable method, an advantage
when the forces are only approximated.

For the gas integration a predictor corrector method is employed. This is advan-
tages for the viscosity computation as positions and velocities are always synchro-
nized.

Hierachical time-steps

The individual time-step for the collisionless (stellar) particles is defined by

δti =

√
η|ai|
|äi|

, (4.26)

whereai andη are the acceleration on the particle and a dimensionless accuracy
parameter, respectively. For a appropriate estimate ofä see Heller (1991). For the
dissipative particles, i.e. the gas, we include the Courant condition and the condition
demanded by the diffusive terms, by:

δti = C min

(√
hi
|ai|

;
hi
σi

)
, (4.27)

whereC≈0.3 is the Courant number,hi the smoothing length andσi is the viscosity
parameter defined in Hernquist & Katz (1989) by:

σi =

{
hi |∇ · vi|+ ci + 1.2 (α ci + β hi |∇ · vi|) ∇ · vi < 0,
hi |∇ · vi|+ ci + 1.2α ci ∇ · vi ≥ 0,

(4.28)

To cover the wide dynamical range, i.e. some three to four orders of magnitude
in radius and density, we advance the system with a fixed set of hierarchical time-
steps (Hernquist & Katz 1989, Whitehurst 1988). The multiple time-steps orbins
are defined by:

∆tk =
∆t0
2i

, with k=1, 2, . . . , n , (4.29)
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Figure 4.2: Schematic illustration of the time-stepping scheme. The bin numberk
is represented by the vertical axis. The horizontal axis represents the time in units
of ∆tn. Each box represents the advancement of a bin in time with the numbers
specifying the order in which the steps are made.

where the number of sub-binsk and the maximum time-bin∆t0 remain fixed during
the simulation. Individual particles are then placed in the bins according to their
individually computed step sizes (Eq.4.26and4.27).

The bins for the particles are selected according to the scheme showed in Fig.4.2,
and all particles in a particular time-bin are advanced together. Using this scheme
the entire system will be time synchronised only after each set of (2n+1 − 1) time-
steps. We allow an individual particle to move to a smaller time-bin, i.e. to larger
k, at the end of its step and to a larger time-bin, i.e. to smallerk, when both are
time synchronised. All relevant quantities are extrapolated to the mid-point time as
required by the numerical integrator and thus it is never necessary to extrapolate a
particle in time greater than half its current time-stepδti.
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4.2 Setting up the models

In this section we describe how theN -body models used throughout this work are
initially set up from a given analytic potential or density distribution. The realisa-
tion of the multicomponent systems, i.e. the equilibrium disc-halo models, follows
basically the set-up procedure described in Barnes (1988).

4.2.1 Plummer model

For the density profile of the spherical components of the galaxies, e.g. halo or
companion, we use a Plummer profile (Plummer 1911), i.e. a profile corresponding
to a stellar polytrope of index 5, which is given by:

ρPl(r) =
3

4π
MPl b

2
Pl ·
(
r2 + b2

Pl

)−5/2
, (4.30)

whereMPl andbPl are the total mass and the radial scalelength of the sphere, re-
spectively. This distribution was originally used by Plummer to fit observations of
globular clusters, but is also used for describing stellar models and quasi-spherical
components like galactic bulges and halos. In Fig.4.3 we show an example of the
volume density of a Plummer sphere as a function of radius.

Using Poisson’s equation (Eq.3.4) the corresponding gravitational potential of
the Plummer sphere is given by:

ΦPl(r) = −GMPl

(
r2 + b2

Pl

)−1/2
, (4.31)

where G is the gravitational constant. The potential energy of the Plummer sphere
is

W = −4πG

∞∫
0

Φ(r) ρ(r) r dr = −3π

32
GM2

Pl b
−1
Pl (4.32)

With the assumptions that the system is in a steady state and the velocity distribution
is isotropic, the corresponding distribution function can directly be derived from the
density distribution following the description in Binney & Tremaine (1987) by using
Eddington’s formula (Eddington 1916):

f(E) =
1√
8π2

d

dE

E∫
0

dρ

dΦ

dΦ√
E − Φ

, (4.33)

whereE is the specific energyE = Φ+v2/2 of a particle. The resulting distribution
function of a Plummer sphere is then given by:

f(r,v) =

{
24
√

2
7π3 G−5 M−4

Pl bPl (−E)7/2 : E < 0,
0 : E ≥ 0.

(4.34)

42



4.2. SETTING UP THE MODELS

Figure 4.3: Normalised volume density of a Plummer sphere. Both the density and
the length scales are normalised by the central densityρ0 and the radial scalelength
bPl, respectively.

Thek-th moment of the velocity distribution is obtained by integration of the above
equation over the whole velocity space:

〈vk(r)〉 =

∫
vkf(r,v) dv (4.35)

The velocity dispersion is the second moment (k = 2) of the distribution function.
A detailed description of the Plummer model and its numericalN -body realisation
is given by Aarseth et al. (1974).

Truncated model

The Plummer model has a finite total mass and a non-zero density everywhere.
In theN -body realisation, however, the system is truncated at some given cut-off
radiusrcut and the velocity distribution needs to be corrected accordingly to keep
the model in virial equilibrium. The cut-off massMcut is given by:

Mcut ≡M(rcut) = MPl · r3
cut ·

(
r2

cut + b2
Pl

)−3/2
. (4.36)

The derivation of the velocities assumes an infinitesmoothsphere, which underes-
timates them in the truncated, discrete model. Therefore we correct the assigned
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velocities by some factorc0 directly calculated from theN -body model. Virial
equilibrium requires:

2E +W =
N∑
i=1

mi

〈
c0 · v2

i

〉
+W ≡ 0 , (4.37)

wherevi is the velocity obtained from the infinite distribution. The factorc0 is
then given by

c0 =

√
|W |
2E

. (4.38)

4.2.2 Kuzmin-Toomre disc

For the stellar and gaseous disc component we use a radial surface density of the
Kuzmin-Toomre model (Kuzmin 1956; Toomre 1963; see alsoBinney & Tremaine
1987), which is given by:

ΣKT(R) =
1

2π
aKT MKT

(
R2 + a2

KT

)−3/2
, (4.39)

whereMKT anda are the total mass and radial scalelength of the disc, respectively.
In Fig. 4.4 (upper panel) we show an example of the radial surface density of a
Kuzmin-Toomre disc. The radial mass distribution of the disc is given by:

M(R) = MKT ·
[
1− aKT · (R2 + a2

KT)−1/2
]
. (4.40)

For the truncatedN -body model the mass within the cut-off radiusRcut is given by

Mcut ≡MKT(Rcut) = MKT ·
[
1− aKT · (R2

cut + a2
KT)−1/2

]
. (4.41)

The vertical density distribution of the disc in our models follows that of an
isothermal sheet (Spitzer 1942), given by:

Σ(z) = Σ0(R) · sech2(z/z0) , (4.42)

whereΣ0(R) andz0 are the central surface density and the vertical scaleheight of
the disc, respectively. The mass within±z is then given by

MKT(z) = 2 Σ0 · z0 · tanh(z/z0) . (4.43)

Before we assign the velocities to the disc particles in a self-consistent way, we first
have to relax the halo on thefrozendisk, i.e. that the disc particles keep their initial
positions with respect to each other during the relaxation process.
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Figure 4.4: Density distribution of a Kuzmin-Toomre disc. The top panel shows
the normalized surface density. The bottom panel shows isodensity contours of an
isothermal sheet.

4.2.3 Relaxation of the halo

The set-up procedure of the multicomponent system basically follows the descrip-
tion of Barnes (1988). The initially spherical halo is set up such as to be in virial
equilibrium. This equilibrium is disturbed by adding the disc to the halo owing to
the extra gravitational potential. The halo is therefore allowed to relax by evolving
it in the gravitational potential of thefrozendisc. To reduce the effects of violent
relaxation the gravitational field of the disc is gradually imposed over some time-
scalet0, while the halo is dynamically evolved and responds quasi-adiabatically,
e.g. the potential variations are slow compared to the typical orbital frequencies
in the halo. During the relaxation the disc potential is directly calculated from the
N -body model with the particle masses of the disc being slowly increased by some
factoru(τ), following a normalised spline function of the form

u(τ) =

{
(3− 2 τ) · τ 2 : τ ≤ 1 ,

1 : τ > 1 .
(4.44)

whereτ= t/t0. In Fig.4.5we show the response of the halo to the slowly increased
disc. In the models presented in this work we typically uset0 = 60 ≈ 12τdyn. The
halo is evolved for another∆t=60 after the disc has reached its full mass.
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Figure 4.5: Relaxation of the halo. The upper panel shows radii of constant mass
normalised by the initial cut-off radiusrcut of the halo as a function ofτ . In the
bottom panel we show the functionu(τ) used for gradually increasing the disc’s
mass.

4.2.4 Assigning the disc velocities

After the halo has reached a new virial equilibrium after its relaxation, we now
assign the velocities to the disc particles. We first calculate the azimuthally averaged
gravitational potential of the galaxy (halo+disc) on a polar grid in the equatorial
plane of the disc. The rotation curvevc(R) of the disc is then derived from the
potential using Eq.3.11. Thus we can derive the principal circular velocityvc for
each disc particle by interpolation. The radial velocity dispersionσR of the disc
particles have been chosen so that theQ-parameter (Toomre 1964):

σR = 3.358
1

κ
Σ(R) ·Q (4.45)

is independent of radius. We have calculated the tangential velocity dispersion using
the relation (see, for example,Binney & Tremaine 1987):

σφ =
1

2
· σR κ

Ωc

. (4.46)

Finally we assign the vertical velocity dispersionσz of an isothermal sheet given
by:

σz =
√
πG Σ z0 . (4.47)
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Asymmetric drift correction

Since the surface density of stars in the disc in general decreases with increasing
radius, the average azimuthal velocity (hereaftervφ) of the stars in some volume
element is smaller than the principal circular velocityvc, i.e. that the net motion of
the stars lags behind the local circular velocity. This effect is called the asymmetric
drift. It increases with increasing average random motion, or velocity dispersion, of
the stars.

To correct for the asymmetric drift in our models, the velocities of the stellar
disc particles have been corrected following the description of Binney & Tremaine
(1987). The asymmetric driftva is defined as:

va ≡ vc − v̄φ (4.48)

To derive the relationship for the asymmetric drift, we take the radial velocity mo-
ment of the collisionless Boltzmann equation (Eq.3.3) for a steady-state axisym-
metric system in cylindrical coordinates. By multiplying this equation with the
radial velocity componentvR and integrating over all velocities we obtain the Jeans
equation:

R

Σ

∂(Σ v2
R)

∂R
+R

∂(vR vz)

∂z
+ v2

R − v2
φ +R

∂Φ

∂R
= 0 (for z=0) (4.49)

With the definition of the azimuthal velocity dispersion

σ2
φ = (vφ − v̄φ)2 = v2

φ − v̄
2
φ (4.50)

and substitution ofR (∂Φ/∂R) = v2
c we obtain from Eq.4.49:

σ2
φ − v2

R −
R

Σ

∂(Σ v2
R)

∂R
− R

∂(vR vz)

∂z
= v2

c − v̄2
φ

= (vc − v̄φ) (vc + v̄φ)

= va (2 vc − va) (4.51)

With the assumption that the asymmetric driftva is small compared to2 vc we obtain
the following expression:

2 vcva ' v2
R

[
σ2
φ

v2
R

− 1− ∂ ln(Σ v2
R)

∂ lnR
− R

v2
R

∂(vRvz)

∂z

]
(4.52)

Observations of external galaxies (van der Kruit & Searle 1981; van der Kruit
& Freeman 1984) suggest that in these systemv2

R is roughly proportional toΣ.
Assuming that the shape of the velocity ellipsoid is constant, we estimate that[
∂ ln(Σv2

R)
]
/∂ lnR ' 2(∂ ln Σ/∂ lnR). The value of the other derivative depends

on the orientation of the velocity ellipsoid at points just above the plane of a galaxy.
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Figure 4.6: Asymmetric drift correction. The plot shows the local circular velocity
vc, the average azimuthal motionvΦ, and the asymmetric drift termva as a function
of radius.

For simplicity we assume that the ellipsoid’s principal axes remains aligned with
the coordinate directions of the(R, φ, z) system, e.g.(vRvz) is independent ofz.
We have therefore

2 vcva ' v2
R

[
σ2
φ

v2
R

− 1− 2
R

Σ

∂Σ

∂R

]
(4.53)

The case of greatest practical importance is when the system is in a steady state and
v̄r = v̄φ = 0, since there is no net streaming in the radial component of the velocity
dispersion, i.e.

σ2
R ≡ v2

R − v̄
2
R = v2

R (4.54)

If the asymmetric drift of the population under study is small, we havev̄φ ' vc and
finally get

v2
c − v̄2

φ = 2 vcva

' σ2
R

[
σ2
φ

σ2
R

− 1− 2
R

Σ

∂Σ

∂R

]
. (4.55)
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Application: Kuzmin-Toomre disc

With the surface density of a Kuzmin-Toomre disc,

∂ΣKT

∂R
=−3RΣKT(R)

R2 + a2
KT

(4.56)

and using Eq.4.46, we finally obtain the mean tangential velocities for the disc
particles as:

v̄2
φ = v2

c − σ2
R

[
κ

4 Ωc

− 1 + 6R2(R2 + a2
KT)−1

]
(4.57)

In Fig. 4.6 we show an example of the asymmetric drift correction in a Kuzmin-
Toomre disc.

4.2.5 Including the companion

To create the interaction models, the companion galaxy has to be introduced in the
initial model. The simulations presented in this work require specific initial condi-
tions for the companion, i.e. the impact position of the companion or pericentric
position with respect to the phase angle of the rotating bar. To create the initial cen-
tre of mass positions and velocities of both the host and the companion galaxy we
use the solution of the corresponding two-body problem. For large distances this
approximation is valid, but with close encounters the local potential of the galax-
ies become more important. Therefore we introduce the companion to the model
at pericentric time (hereaftertperi) with given initial velocities and integrate their
orbits backward in time with a frozen disc. We will first summarise the results of
the Keplerian two-body problem to determine the centre of mass positions and ve-
locities and then describe the set-up procedure for the different types of interactions
studied in this work.

The two-body problem

The classical two-body problem can be reduced to the equations of motion of a
particle with a reduced mass

µ =
M1 ·M2

M1 +M2

, (4.58)

whereM1 andM2 are the mass of – in our case – the two galaxies, moving in a
central potential of the form:

V (r) = −GM1 M2

r
≡ −α

r
, (4.59)
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companion

host galaxy

R

R

vcomp

comp

peri

Figure 4.7: Schematic illustration of the galaxy-galaxy encounter in the frame of
reference of the host galaxy. The orbit of the companion galaxy lies in the equatorial
plane of the host disc.

with α = GM1 ·M2. Since the angular momentumL is a conserved quantity the
motion of the particle is confined to a fixed plane and we can define aneffective
potential energy of the particle as (in polar coordinates):

Veff(R) = −α
R

+
L2

2µR2
(4.60)

whereL = µR2φ̇. The effective potentialVeff has a minimum atR=L2/(µα) with
a value ofV min

eff =−µα2/2L2.
In practice we would like to derive the initial conditions of the galaxies for an orbit
with a given eccentricitye and pericentric separationRperi. By solving the corre-
sponding Hamiltonian the principal path is given in a parametrised form by:

φ = cos−1

(
(L/R)− (µα/L)√
(2µE + µ2α2/L2

)
+ const. , (4.61)

whereE is the total energy, given by:

E = Veff +
1

2
µṘ2 (4.62)
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The coordinate system can always be chosen such thatconst ≡ 0. With p= L2

µα
and

the orbits eccentricitye=
√

[1 + (2EL2/mα2)] we can write Eq.4.61as:

p

R
= 1 + e cosφ (4.63)

If we chooseφperi≡φ(Rperi)=0 for a pericentric separationRperi, we can calculate
the angular momentum for a given orbit with eccentricitye from Eq.4.63as:

L2 = µαRperi(1 + e) (4.64)

From the conservation of angular momentumL = µR2φ̇ = const. we finally get

φ̇(tperi) =
L

µR2
peri

=

√
µαRperi (1 + e)

µR2
peri

(4.65)

In a similar way the initial conditions are obtained for givenφ̇(tperi) andrperi.

Vertical impacts

The initial conditions of the companion and the host in the simulations presented
in Chap.5 are obtained as follows. After selecting the impact position in the disc,
the initial centre of mass positions and velocities of the host and companion were
obtained by integrating their orbits backward in time, starting from the impact time
timp at which the centre of mass of the companion lies in the disc plane. During this
integration the disc (with bar) and halo particles of the host galaxy are frozen with
respect to each other, but allowed to rotate as a single system with the (negative)
angular frequency or pattern speedΩp(t) of the bar, as determined from the isolated
disc model. The companion is represented by a point mass for this integration.
This approximation is sufficient since the encounter is fast enough that dynamical
friction does not significantly modify the orbit.

Tidal encounters

In the simulations presented in Chap.6 we confine ourselves to planar fly-by en-
counters, i.e. the orbits of the host and the companion galaxy are unbound and lie in
the equatorial plane of the host. The orbit of the companion galaxy is prograde with
respect to the rotation in the host disc and has been chosen to be either parabolic or
hyperbolic, with different pericentric separationsrperi. The pericentric position has
been chosen such that at time of pericentre (hereaftertperi) the major axis of the bar,
which has formed/evolved in the hosts disc before the encounter, points in the di-
rection of the companion. The initial orbital parameters attperi were then calculated
from the solution of the corresponding two-body problem either for a given orbital
eccentricitye or for a pericentric angular frequency of the companion

φ̇ ≡ ωperi = vperi/Rperi , (4.66)
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wherevperi is the velocity of the companion at pericentre. To obtain the initial
centre of mass positions and velocities of the host and of the companion galaxy, we
integrate their orbits backward in time, starting from the pericentric timetperi, until
the distance∆R between host and companion is reached. During the initial orbit
integration the particles of the host are – as before – frozen with respect to each
other.
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5. Numerical simulations of interacting gas-rich barred ga-
laxies: vertical impact of small companions.1

I. Berentzen1,2, E. Athanassoula2, C.H. Heller3, andK.J. Fricke 1

1 Universitäts–Sternwarte, Geismarlandstraße 11, D-37083 Göttingen, Germany
2 Observatoire de Marseille, 2 Place Le Verrier, F-13248 Marseille Cedex 4, France
3 Georgia Southern University, Department of Physics, Statesboro, GA 30460, U.S.A.

Abstract
We investigate the dynamical effects of an interaction between anini-
tially barred galaxy and a small spherical companion using anN -body/
smoothed-particle-hydrodynamics algorithm. In the models described
here the small companion passes through the disc of the larger galaxy
nearly perpendicular to its plane. The impact positions and times are
varied with respect to the phase of the bar and the dynamical evolution
of the disc.

The interactions produce expanding ring structures, off-set bars,
spokes, and other asymmetries in the stars and gas. These character-
istic signatures of the interaction are present in the disc for about 1 Gyr.
We find that in some cases it is possible to destroy the bar while keeping
the disc structure. In general, the central impacts cause larger damage
to the bar and the disc than the peripheral ones. The interaction tends
to accelerate the transition from a strongly-barred galaxy to a weakly-
or non-barred galaxy. The final disc morphology is determined more
by the impact position relative to the bar rather than the impact time.

5.1 Introduction

The evolution of disc galaxies is driven through both internal and external processes.
Internal instabilities in the disc often give rise to the formation of a bar, which
as many as half of all disc galaxies are now known to harbour. In the last few
years near-infrared (NIR) observations (Pompea & Rieke 1990; Rix 1993; Rix &

1This paper has been published in Monthly Notices of the Royal Astronomical Society341,
343-360 (2003).
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Rieke 1993; Rix & Rieke 1993; Seigar & James 1998; Eskridge et al. 2000) have
confirmed that bars are a very common feature in disc galaxies and by no means an
exception. The presence of a bar changes both the kinematics and mass (stellar and
gas) distributions within the disc and can give raise to dynamical resonances (see,
for example,Sellwood & Wilkinson 1993). Likewise, an only recently recognized
important external agent is the interaction with small companions. A statistical
survey by Zaritsky et al. (1993, 1997) gave a lower limit to the average number
of companions for field spiral galaxies of1.2 ± 0.3. Since these two processes are
thought to be so common, it is a reasonable assumption that the interaction between
a barred disc galaxy and a small companion would be a common event.

Although it is only a small fraction of the mass of a galaxy, gas can significantly
influence the evolution of disc galaxies (see, for example,Shlosman & Noguchi
1993). Owing to the torques of a stellar bar, the dissipative gas can be driven to-
wards the galactic centre and channelled toward the inner kpc (Shlosman, Begel-
man & Frank 1990; Athanassoula 1992b) driving active galactic nuclei (AGN) or
nuclear starbursts (Heller & Shlosman 1994) and creating nuclear and circumnu-
clear discs and rings. Recent NIR-observations (Pèrez-Ramírez et al. 2000) have
shown a relation between the circumnuclear star formation in barred galaxies and
the circumnuclear spiral or ring structure present in these galaxies. The shape of
dust lanes inside the bar, coinciding with the location of shocks in the gasflow, re-
veals information about the internal dynamics of the bar and disc (Athanassoula
1992b). Many numerical simulations including a dissipative disc component have
emphasized the importance of the gas in isolated barred galaxies (see, for exam-
ple, Friedli & Benz 1993; Shlosman & Noguchi 1993; Heller & Shlosman 1994;
Berentzen et al. 1998) and interacting galaxies as well (see, for example,Noguchi
1987; Hernquist & Weil 1993; Barnes & Hernquist 1996).

Since the pioneering work of Toomre & Toomre (1972) much effort has been
spent to investigate galaxy-galaxy interactions (see, for example, the review by
Barnes & Hernquist 1992, and references therein). Noguchi (1988) started with
numerical simulations to study the formation of bars in tidal interactions and the
response of the gas to a tidal bar. Gerin, Combes & Athanassoula (1990) have per-
formed both 2D and 3DN -body simulations to study the response of an initial bar
formed in a globally unstable disc (Ostriker & Peebles 1973) to a tidal encounter
with a spherical perturber. They studied the effect of a close encounter, both in
and out of plane, with trajectories with pericentres outside the disc. This work has
been continued by Sundin & Sundelius (1991) and Sundin, Donner & Sundelius
(1993), who, using 2DN -body simulations, studied the response of a bar, which
had beeninducedby a satellite on a planar parabolic orbit. In these works, the
change in pattern speed, angular momentum distribution and resonances in the disc
were investigated for different orbits and masses of the perturber. Further work,
concentrating on the formation of collisionally induced rings, has been performed
by Athanassoula, Puerari & Bosma (1997, hereafter APB97). These purely colli-
sionless simulations have shown that off-centred impacts of a sufficiently massive
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companion hitting the inner parts of a barred disc galaxy can displace the bar to
one side, causing asymmetries and the formation of rings. We should note that
off-centred bars may also form spontaneously in galaxies.

In this paper we focus upon the evolution of a gas-rich barred disc galaxy which
is perturbed by the impact of a less massive spherical companion galaxy. AnN -
body/smoothed-particle-hydrodynamics (SPH) algorithm is used to evolve the stel-
lar and gas components of the two systems. In the models described here the small
companion passes through the disc of the larger galaxy nearly perpendicular to its
plane. The impact position and time are varied with respect to the bar and to the
evolutionary phase of the isolated barred galaxy. The mass of the companion galaxy
has been chosen such that the interaction can be considered as a perturbation to the
bar and disc. The set of encounter parameters has been deduced from the previ-
ous simulations by APB97 and chosen as to produce the strongest effects – such as
asymmetries, off-centred bars and rings. We describe how the evolution of the bar
strength, pattern speed, and gas inflow rate are affected by the interaction.

5.2 Methods

The method consists of anN -body algorithm to evolve the collisionless compo-
nent (representing the stars and dark matter), combined with a smoothed particle
hydrodynamics (SPH) algorithm to evolve the dissipative component (representing
the gas) – see, for example, the review by Monaghan (1992). For the simulations
presented in this paper we use the hybridN -body/SPH code described in detail by
Heller (1991) and Heller & Shlosman (1994). The algorithm employs such features
as a spatially varying smoothing length, a hierarchy of time bins to approximate
individual particle time-steps, a viscosity ‘switch’ to reduce the effects of viscous
shear, and the special purpose GRAPE-3AF hardware to compute the gravitational
forces and neighbour interaction lists (Sugimoto et al. 1990; Steinmetz 1996). Be-
sides speed in the direct force summation, the GRAPE hardware has the additional
advantage that it does not impose any constraints on the spatial distribution of the
particles.

The model of the disc galaxy (orhost galaxy) is composed of a stellar and
gaseous disc, embedded in a hot spherical dark matter halo. An isothermal equa-
tion of state is used for the gas component. The spherical companion galaxy (or
perturber) consists of stars only.

5.2.1 Initial conditions

Host galaxy and companion

The model parameters for the host and the companion galaxy are selected similar
to those used by APB97, so as to allow a meaningful comparison between the col-
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Figure 5.1: Initial velocity distribution of the host modelI0 . We show the mean
tangential velocity of both the stellar (thin full line) and the gaseous disc (thick full
line) as a function of radius. The radial and tangential velocity dispersion of the
stellar disc is shown with dotted and dashed lines, respectively.

lisionless and dissipative models. The host galaxy is a barred model referred to
asmb in APB97. Our model here, however, differs frommb in that about 23 per
cent of the mass of the stellar disc has been replaced by a gaseous disc. The radial
scalelength and total mass of the disc have been retained in the model.

Both the stellar and the gaseous disc are initially setup with a Kuzmin-Toomre
(hereafter KT) projected radial surface density profile (Kuzmin 1956; Toomre 1963)

ΣKT(R) =
1

2π
aMKT ×

(
R2 + a2

)−3/2
. (5.1)

In the above,R, MKT anda are the cylindrical radius, the total mass and the radial
scalelength, respectively. The resulting truncated mass profile for the disc is then
set up with the disc massMD =Ms + Mg, whereMs andMg are the masses of the
stellar and the gaseous disc, respectively, which have been truncated at a radiusRD.
The vertical disc profile follows the sech2(z/zi) distribution of an isothermal sheet
(Spitzer 1942), wherezi is the vertical scaleheight withi=s andi=g for the stellar
and gaseous disc, respectively.

Both the halo and the companion have a generic Plummer (hereafter Pl) density
profile (Plummer 1911)

ρPl(r) =
3 b2 MPl

4π
(r2 + b2)−5/2, (5.2)

wherer is the spherical radius.MPl andb denote the total mass and radial scale-
length for each individual component. The truncated mass profile for the halo and
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Table 5.1: Initial model parameters.

Type N MD a RD zs/g

Disc
stars KT 13 500 0.54 1.0 5.0 0.20
gas KT 10 000 0.16 1.0 5.0 0.05

Type N MH bH rH

Halo
stars Pl 32 500 1.30 5.0 10.0

Type N MC bC rC

Comp.
stars Pl 10 000 0.40 0.195 3.0

the companion are set up with a cut-off massMj and radial scalelengthbj with
j=H andC, respectively, with the cut-off radiusrj.

The initially spherical halo, not being in virial equilibrium with the embedded
disc, is allowed to relax in the potential of the dynamicallyfrozendisc, whose mass
is slowly turned on over time following the spline function

u(t) =

{ (
3− 2 t

t0

)
·
(
t
t0

)2

for t ≤ t0

1.0 for t > t0
, (5.3)

where the turn-on time in our units has been chosen ast0 =60. The halo is relaxed
for a total time period of∆t = 120. From the resulting potential we then assign
velocities to the disc particles, with the radial dispersion based on Toomre’s stability
criterion (Toomre 1964) and correcting for asymmetric drift.

The spherical companion galaxy is similar to the model referred to ascsd in
APB97. The massMC of the companion has been chosen such that the mass ratios
of companion to the host disc and to total host massMtot =MD + MH are, respec-
tively, MC/MD = 0.57 andMC/Mtot = 0.20. Based on the results of APB97, we
expect to obtain with these mass ratios the formation of spokes and rings following
the interaction. The initial model parameters are summarized in Table5.1. The
initial velocity distribution of the disc is shown in Fig.5.1. The tangential velocity
curve has its turn-over radius at roughly 2a and stays flat in the outer disc.
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Table 5.2: Model and interaction description.

Model Name timp Bar tend

Isolated model I0 · · · t=300

Central impact C1 t= 60 strong t=210
C2 t=150 weak t=300

Major axis impact A1 t= 60 strong t=210
A2 t=150 weak t=300

Minor axis impact B1 t= 60 strong t=210
B2 t=150 weak t=300

Units

The adopted units for mass, distance, and time areM = 6 × 1010 M�, R = 3 kpc
andτ = 107 yr, respectively, for which the gravitational constant G is unity. The
dynamical time isτdyn≡ (R3

h/GMh)1/2 =4.8× 107 yr, whereMh is the total mass
within a sphere of radius equal to the half mass radiusrh, which is, after relaxation
of the halo, approximately 8.5 kpc or, in terms of the disc scalelength,2.8 a. The
initial stellar disc rotation period in these units then corresponds totrot≡2πτdyn ≈
3×108 yr. A fixed gravitational softening length ofε = 0.375 kpc is used for all
particles. An isothermal equation of state is used for the gas with a sound speed of
vs =12 km s−1. The corresponding thermal temperature of the gas is 104 K.

Interaction parameters

Before adding the companion to the model, we evolve the isolated barred host
galaxy for∆t= 300, or 3 × 109 yr. The initial centre of mass positions and veloc-
ities of the host and companion have then been obtained by integrating their orbits
backward in time, starting from the impact timetimp at which the centre of mass of
the companion lies in the disc plane. During this integration, the disc (with bar) and
halo particles are frozen with respect to each other, but allowed to rotate as a single
system with the (negative) angular frequency or pattern speedΩp(t) of the bar, as
determined from the isolated disc model (hereafterI0 ). The companion is repre-
sented by a point mass for this integration. This approximation is sufficient since
the encounter is fast enough that dynamical friction does not significantly modify
the orbit.

The impact velocityvimp of the companion has been chosen to be of the order
of 4 vesc, with vesc being the escape velocity from the centre of the host system. The
hyperbolic orbit is then integrated backward for a time period of∆t = 30, which
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places the companion well outside the halo of the disc system. The simulations
presented in this paper will be confined to almost perpendicular passages. Impacts
along trajectories 30 degrees (and sometimes higher) from the disc normal still yield
ring shaped features (Lynds & Toomre 1976). The effects of oblique impacts have
been studied by Toomre (1978), Athanassoula (1999) and APB97. An overview of
the isolated and interaction models is given in Table5.2. The columns, from left to
right, give the type and the name of the model, the impact timetimp, the strength of
the bar attimp and the end timetend of each simulation.

5.3 Results

5.3.1 ModelI0 : isolated barred galaxy

The morphological evolution of the stellar and gaseous disc is shown in Fig.5.2.
The model of the disc galaxy was constructed so as to be globally unstable to non-
axisymmetric perturbations and form a large-scale bar in a few disc rotations. At
t = 60, or after some2 trot, the stellar bar reaches its maximum strength, defined
by the normalized amplitude of them = 2 Fourier component of the stellar disc
particle distribution inside a cylindrical radius of 3.75 kpc and one scaleheight of
the disc plane. Care was taken in all models not to include any power from spiral
features. The result is shown in Fig.5.3(a). At the time of its maximum strength
the bar has a major axis length ofa = 6 kpc and an axial ratio of approximately
3:1, as determined by simple measurements of the stellar isodensity contours. Both
stellar and gaseous trailing spiral arms emerge from the end of the bar. While the
stellar arms slowly dissolve and are hardly visible byt= 100, large spiral features
in the gas persist throughout the run. The spiral pattern in the gas evolves from a
two-arm to a flocculent-type spiral after the stellar arms have dissolved. The gas
also forms straight off-set shocks at the leading edge of the stellar bar. The shape
and position of the shock loci indicate that the Lagrangian radiusrL is small and
that the resonantx2 orbit family is either absent or negligible at this early stage of
evolution (Athanassoula 1992b).

As soon as the bar forms, a substantial gas inflow sets in owing to its gravita-
tional torque, and within some40 τ , or approximately two bar rotations, some 50
per cent of the total gas, or4.8 × 109 M�, is driven towards the centre (Fig.5.3c)
and accumulates there in a dense oval nuclear disc. This disc is elongated along the
bar’s major axis and has a mean radius of approximatelyr=0.36 kpc. Although the
nuclear disc appears to be aligned with the bar’s major axis, its shape and orienta-
tion could well be affected by the numerical softening, since its radius is a little less
than half the softening lengthε. The mass of the nuclear disc represents some 18
per cent of the total dynamical mass within a radius of 1.0 kpc. As a result of the
growing mass concentration at the centre, the amplitude of the stellar bar decreases
rapidly (Heller & Shlosman 1994). At t=80 the initial burst of inflow slows down
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Figure 5.2: Evolution of the stellar and gaseous disc in the isolated barred galaxy
model I0 . We show the face-on grey-scale density plot and the edge-on particle
distribution of the gas. The stellar isodensity contours are shown face-on. The disc
rotation is counter-clockwise. The time is given in the upper right-hand corner of
each panel in model units.

and the stellar bar becomes quasi-stable (see Fig.5.3a), decaying at a much slower
rate of3 × 10−4 τ−1, as estimated by a linear least-squares fit. Likewise, owing to
the inflow of gas to the centre, the pattern speedΩp of the bar, as given by the phase
angle of them=2 Fourier component, increases linearly (Heller & Shlosman 1994)
till t=80 (Fig. 5.3b). After the central inflow of gas stops, i.e. at aroundt≈90, the
bar is rotating uniformly with a constant rate ofΩp = 0.3 τ−1, or 29 km s−1 kpc−1,
throughout the rest of the simulation.

The gaseous nuclear disc (hereafter n-disc) that has formed by the burst of gas
inflow at first remains connected with the outer disc by two trailing spiral segments,
which by way of their shocks feed material inward and thus contribute to its growth.
Initially the nuclear disc is oval in shape, but as the bar weakens it becomes more
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Figure 5.3: The time-evolution of (a) the bar strength, (b) the pattern speed and
(c) the gaseous mass fraction (fg) within a constant radius in the isolated modelI0
(full lines). In panels (b) and (c) the bar strength is plotted with a dotted line for
better comparison.

circular. Aftert= 95 the nuclear disc does not grow in mass anymore and the still
inflowing gas starts to accumulate in a circumnuclear disc (hereafter cn-disc) sur-
rounding the nuclear disc. This elongated cn-disc is orientated perpendicular to the
bar’s major axis and has a lower surface density than the nuclear disc. In addition the

63



CHAPTER 5. VERTICAL IMPACT OF SMALL COMPANIONS.

Figure 5.4: Face-on plot of the gas particle distribution in the central disc region.
The panels show the final gaseous mass distribution at the end of the different sim-
ulations (see Table 2), identified in the upper right-hand corner of each panel. The
circles mark the radius of the resonances obtained from the linear analysis: oILR
(dashed lines) and UHR (full lines).

cn-disc is more extended in size than the n-disc and has a radius ofrcnd = 0.9 kpc
at the end of the simulation. The final morphology of the nuclear region is shown
in Fig. 5.4. The orientation of both the nuclear and the circumnuclear disc relative
to the stellar bar indicate that the gas populates the main families of periodic orbits
in the barred potential (see, for example,Contopoulos & Papayannopoulos 1980;
Athanassoula et al. 1983). Thex1 orbits, which support the bar, are elongated along
the bar’s major axis, while thex2 orbits between the inner and outer Inner Lindblad
Resonances (hereafter: iILR and oILR, respectively) are orientated perpendicular
to the bar (Contopoulos & Mertzanides 1977).

In order to identify the presence and location of the main planar resonances in
the disc at different times we average the mass distribution azimuthally and derive
theΩc−κ/2 curve, whereΩc andκ denote the circular and the epicyclic frequency,
respectively. At the end of the run (t= 300) this curve shows a pronounced maxi-
mum at a radius ofr=0.5 kpc exceeding the pattern speedΩp of the bar, indicating
the presence of ILRs. The resonant radii, obtained with this approximation, are
given in Table5.3.

At its maximum strength, however, the stellar bar provides a strong non-linear
perturbation to the gravitational potential of the disc and applying linear theory
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Table 5.3: Resonances in the disc at different model times.

Time Model Ωend
p i ILR o ILR UHR CR OLR

60 I0 0.28 0.11 0.23 1.40 2.16 3.85
150 I0 0.30 0.03 0.64 1.25 1.99 3.48

210 I0 0.30 0.03 0.64 1.27 2.01 3.52
C1 0.11 0.02 1.37 2.26 3.52 4.78
A1 0.28 0.04 0.67 1.38 2.12 3.71
B1 0.53 0.09 0.39 0.72 1.09 1.90

300 I0 0.29 0.03 0.68 1.31 2.08 3.68
C2 0.16 0.01 0.93 2.22 3.63 4.93
A2 0.28 0.02 0.59 1.18 1.93 3.47
B2 0.33 0.02 0.61 1.20 1.85 3.14

to identify the dynamical resonances is not sufficient. A more reliable way is to
search for the existence of the main orbit families (Athanassoula 1992a). For this
we constructed surfaces of sections (SOS) by integrating orbits of a given Jacobian
energy EJ in the equatorial plane, marking the points in the(y, ẏ) plane each time
the orbits cross the linex = 0 with ẋ < 0 (see, for example,Binney & Tremaine
1987). The gravitational potential of each snapshot has been calculated on a non-
equally spaced Cartesian grid with a size of 6 by 6 kpc. From that, the potential and
its derivatives are evaluated by using a piecewise polynomial function represented
by a tensor product of one-dimensional B-splines. The times chosen for the SOS,
i.e. at impact time and at the end of each run, are given in Table5.2. We were thus
able to confirm the presence of the ILRs in all of the cases, except for modelsI0
(t=60) andC1 (t=210).

Most of the gas initially residing within corotation is driven towards the centre,
resulting in a noticeable deficiency of gas outside the cn-disc, which could be in-
terpreted as representing an HI hole. In contrast to this hole, an oval ring of gas
accumulates near the end of the weak stellar bar, close to the position of the ultra-
harmonic resonance (UHR) atr = 2.25 kpc. After the resonance ring has formed
(t=175) little further net radial redistribution of the gas (less than 1 per cent) occurs.

The stellar disc thickens vertically. We follow the time-evolution of its radially
averaged vertical scaleheightz0 by fitting a sech2(z/z0) density distribution to the
particle distribution. The result is shown in Figure5.5. We find a linear increase
in the vertical scaleheight by a total of roughly 25 per cent in the isolated model.
We also notice a thickening of the gaseous disc, especially some slight flaring in
the outer parts. Some of the thickening, however, might be induced numerically,
either owing to the limited number of particles in the model or to the relatively
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Figure 5.5: Time-evolution of the radially averaged scaleheightz0 of the stellar
disc. The full line in both panels shows the isolated modelI0 . In panel (a) the
evolution of the modelsC1, A1 andB1 with an early impact is plotted with dotted,
dashed, and dash-dotted lines, respectively. The same for panel (b) for the late
impact modelsC2, A2 andB2. The impact times are marked by an arrow in both
panels.

large softening. Since we use the same model later for the host galaxy, it will show
the same numerical heating and any further change in scaleheight may be attributed
to the interaction.

In this isolated model there is no perceptible sign of a peanut-shaped bar due to
a buckling instability. This could be due to the fact that, even if the stellar disc were
susceptible to such an instability, the presence of the gas would greatly dampen it
(Berentzen et al. 1998).

5.3.2 Interacting models

The two times chosen for the impact of the companion correspond to the time (1)
when the bar is at its maximum strength (timp = 60) and (2) when the bar is weak
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Figure 5.6: Evolution of the gaseous and stellar disc in the early central passage
modelC1. The layout is as for Fig.5.2.

and has settled down to a quasi-stable state (timp = 150). Both times represent
a characteristic epoch in the evolution of the disc. In the first case the bar has
already formed and dynamically dominates the disc, but has still not had time to
modify significantly the radial mass distribution of stars and gas. In the second
case the stellar bar has weakened and the dynamical influence of the bar can be
neglected compared to the effects of the interaction alone. The impact position, i.e.
the position of the centre of mass of the companion in the equatorialz = 0 plane of
the disc attimp, has also been varied with respect to the bar. In the models with major
axis impacts, the impact position has a distance from the centre ofrimp = 6.0 kpc,
which corresponds roughly to the corotation radius in the isolated model. For the
minor axis impacts, the distance isrimp = 3.0 kpc.
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Figure 5.7: Same as Fig.5.6, but for the late central passage modelC2.

5.3.3 Central passage : modelsC1 and C2

In the simulations described in this section the companion hits the disc of the host
galaxy at its centre. The morphological evolution of the modelsC1 (timp =60) and
C2 (timp = 150) is shown in Figs5.6 and5.7, respectively. Prior to impact, both
models show an axisymmetric vertical bending in both the stellar and the gaseous
disc, with the inner regions pulled out in the direction of the approaching compan-
ion, as illustrated for the gaseous disc in the figures att=60 andt=150 for models
C1 andC2, respectively.

The impact of the companion produces some expanding rings in the stars and
gas, of which the latter are more sharply pronounced. The axial symmetry of the
disc in modelC1 is broken by the strong stellar bar and therefore the induced rings
do not maintain their circular shape at larger radii (Fig.5.6, aftert= 70). Between
the first and the second ring form several spokes, which are more pronounced in
the gas, while their stellar counterparts are hardly visible by eye. All these induced
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Figure 5.8: Face-on plot of the final gas particle distribution in the inner disc re-
gion of modelsC1 (left-hand panel) andC2 (right-hand panel) at the end of the
simulation.

Figure 5.9: Evolution of the stellar bar in modelC1 after the impact. We show the
face-on particle distribution of the stellar disc. The corresponding times in model
units are given in the upper left-hand corner of each frame and the size of the box
corresponds to 12 kpc.

features persist for only a few dynamical times after which the disc settles down
once again to a quasi-steady state. Although the stellar bar gets destroyed in both
simulations, its dynamical imprint remains in the gas: namely the nuclear and cir-
cumnuclear discs, and the inner pseudo-ring. These components become visible
again shortly following the impact and survive in the disc till the end of the runs
(see Fig.5.8).
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Figure 5.10: Evolution of the gaseous disc in modelC1 after the impact. We show
the face-on gas particle distribution. The size of one box corresponds to 4.5 kpc.
The two gaseous fragments are labelled A and B and the time in model units is
given in the lower left-hand corner of each panel.

Evolution of the bar

In the early-impact modelC1, both the stellar bar and the gas, which had accumu-
lated prior to the impact in the shock loci inside the bar, get torn apart by the impact
into two separate fragments. Fig.5.9shows this evolution for the stellar bar. When
the companion passes through the disc, it exerts an extra inwards gravitational force
on the disc particles and causes their orbits to contract. This affects the main orbit
families of the bar and therefore the bar temporarily shortens somewhat (Fig.5.9,
t=61). After the companion has left the disc there is a strong rebound of the orbits,
resulting in a radially expanding density wave. With the expansion of the particle
orbits, the bar gets torn apart and the extremities of the two stellar fragments re-
main temporarily connected with the expanding stellar ring. At all times the two
bar fragments are enclosed by the expanding ring. When the ring reaches a radius
of approximatelyr = 6 kpc, the two bar fragments detach from it and sink back
towards the centre, where they finally merge some∆t = 10, or 0.1 Gyr, after the
impact and form a dense, almost axisymmetric centre. Likewise, the gas concentra-
tions at the shock loci inside the bar get torn apart, following the movement of the
stellar bar fragments. As shown in Fig.5.10the two separated gas fragments flow
back and forth inside the bar potential being trapped aroundx1-like orbits. During
this period they appear as two separate nuclei, before they finally merge and form a
single nuclear disc some 0.2 Gyr after the impact.

In the later impact modelC2, the stellar bar already has been weakened signif-
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icantly owing to the gas inflow. In this case also the impact produces expanding
rings in the disc, but no stellar or gaseous fragments as in modelC1.

In both models the stellar bar gets destroyed by the interaction almost immedi-
ately after the impact. The bar strength as a function of time is shown in Fig.5.19
(full line). In modelC2 the already weak bar gets destroyed when the first stellar
ring detaches from the central region. The temporary increase in them = 2 am-
plitude after the impact in modelC1 results from the two stellar fragments which
contribute to a bisymmetric distribution, but does not represent a stronger bar. No
further stellar signatures of the former bar are left in the disc at the end of the runs.

Rings and spokes

The passage of the companion through the disc excites both radial and vertical os-
cillations in the disc. The induced radial oscillatory motion of the particles produces
expanding density ring-waves (see, for example,Lynds & Toomre 1976) centred on
the impact position, while the vertical oscillations lead to an increase of the vertical
velocity dispersion and a significant thickening of the disc.

As shown in Figs5.6 and 5.7, an expanding ring is produced by the impact
in both the stars and the gas. The ring first becomes visible in the gas, since the
stellar ring is much broader and only becomes visible at sufficiently large radii. As
the ring expands outward it becomes broader and its amplitude in both stars and
gas decreases slowly as predicted by the impulse approximation (see, for example,
Binney & Tremaine 1987). The ring in modelC1 becomes asymmetric (Fig5.6,
t = 70), since the underlying disc potential is perturbed by the presence of the
stellar bar at least in the early phases of ring formation. In modelC2, however, the
induced ring is more symmetric, since the perturbation due to the bar is weaker.
In both models, the first ring reaches about 9 kpc, at which point the inner part of
the gaseous ring starts to fragment, with most of its mass flowing back towards the
inner few kpc.

Following the first, a second expanding ring forms in both models, and becomes
first visible in the gas after some∆t=20, or0.2 Gyr after the impact (see Fig.5.11).
The second ring expands out to a radius ofr ≈ 6 kpc where it dissolves and its
material is redistributed in the central region. In the stellar disc the second ring is
hardly visible, since its amplitude is too low and it does not expand as far out as
the first one. While only two rings form in the stars – a third one can (hardly) be
identified only in the radial density profile of the disc – we find several consecutive
expanding ring features in the gas that are more asymmetric than the first two rings
(e.g., Fig.5.7 t=190, 200 and Fig.5.12t=57).

The gas fragments that detach from the inner side of the first ring flow back to
the central disc region and are sheared out by the differential rotation of the disc,
forming several spokes between the two collisional rings (Fig.5.11). As noted by
APB97, spokes form only between the first and the second ring, the presence of
the latter being necessary. The properties of spokes in collisional ring galaxies are
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Figure 5.11: Face-on particle distribution of modelsC1 andC2 at time∆t = 20
after the impact. The left- and right-hand frames show the stellar and gaseous disc,
respectively. Only half the stellar particles are plotted for clarity. The spokes form
between the first and second ring, the latter being visible mainly in the gas at this
time. While the gaseous spokes are very prominent their stellar counterparts are
less or hardly visible.

discussed in detail by Hernquist & Weil (1993).
To track the position of the rings and derive their expansion velocity, we deter-

mine the azimuthally averaged density of annuli of varying radii in the disc. Then
we fit a polynomial function to subtract the background of the disc and a Gaussian
to fit the density distribution inside the ring. Using this method we get information
about the position, width and mass of the rings. The results are shown in Fig.5.13.
We find that the gaseous ring traces the position of the stellar ring, i.e. its posi-
tion coincides with that of the stellar ring (Fig.5.13a) and both expand with the
same velocity. With increasing radius the stellar and gaseous rings become broader
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Figure 5.12: Expansion of the gaseous rings in modelC2. The circle in the panels
shows the position of the first ring. The time in model units is given in the lower
left-hand corner of each panel. The first and the last panel show the SPH particle
distribution of the whole disc, while the remaining panels include only the particles
contributing to the first gaseous ring att=33.

(Fig. 5.13b) and less dense, as predicted by the impulse approximation (see, for
example,Binney & Tremaine 1987).

By integrating the Gaussian with the fitted parameters we can estimate the gas
mass contributing to the rings. Fig.5.13c shows the mass of the gaseous rings as a
function of time. Unlike stars, the orbits of the gas cannot cross and up tot= 40
gas is piled up in the ring as it expands outward. Owing to shock dissipation and
self-gravity of the ring, its inner parts start to fragment and thus its mass decreases.
We fit a logarithmic function to the radii of the gaseous rings from which we derive
their expansion velocity. Fig.5.14shows the position and expansion velocity of the
first and second ring in modelC2. As has been previously found (see, for example,
APB97) the expansion velocity of the rings decreases with radius, as predicted by
the impulse approximation. The expansion velocity of the first ring drops gradu-
ally from 88 km s−1 (7.5vs) to 35 km s−1 (3vs, wherevs is the sound speed in the
gas). The second ring starts with a lower velocity, which decreases from 29 km s−1

(2.5vs) to 11.72 km s−1 (1vs).

In Figs 5.15 a and b we show the isocontours of the radial velocities for the
stellar and gaseous disc, respectively, as a function of both radius and time. It
shows the radial oscillation of the disc material, first inward following the impact,
followed by an outward movement as the ring passes through, and finally again
inward. The amplitude of this motion can be seen to be considerable. With each
passage of a ring the local radial velocity dispersion (not shown here) in the disc
increases, until further density enhancements of this kind are no longer supported.

The passage of the companion also gives rise to vertical oscillations in the disc
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Figure 5.13: Properties of the stellar and gaseous rings in modelC2. Panel (a)
shows the mean radius of the three gaseous (full, dashed and dotted lines, respec-
tively) and stellar rings (marked by stars) as a function of time. Panel (b) shows the
width σ of the gaseous rings obtained from a Gaussian fit. Panel (c) shows the mass
of these rings.

(see, for example,Weinberg 1991; Mihos & Hernquist 1994) giving it a layered
appearance in the edge-on projection (see Fig.5.6, e.g.,t = 75 and Fig5.7, e.g.,
t= 165). The same type of vertical motion can be seen in the numerical models by
Lynds & Toomre (1976) and also in Mihos & Hernquist (1994). In fact the layered
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Figure 5.14: Properties of the gaseous rings in modelC2. The upper panel shows
the radius of the gaseous rings as a function of time. The ‘raw’ data are given
by dotted lines and the fitted function by full lines. The lower panel shows the
derivative of the fitted function.

appearance is a projection effect resulting from the different vertical position of the
outer, still unperturbed, gas disc and the expanding ring. As a consequence of the
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Figure 5.15: Isocontour plots of the radial velocity for the stellar (upper panel) and
gaseous (lower panel) disc. Dotted contours correspond to -10, 0 and 10 km s−1,
solid line contours to 20, 30, 40,. . . km s−1 and dashed ones to -20, -30, -40,. . .
km s−1.

vertical bending in the disc, induced by the companion prior to impact, the first
expanding ring starts forming above the equatorialz = 0 plane (Fig.5.7, t= 155).
At larger radii, i.e. at later times, the ring crosses thez=0 plane of the disc (defined
by the centre of mass of the gaseous disc) driven by the passage of the companion.
With each passage of a ring through the equatorial disc plane the vertical velocity
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dispersion increases and results in a significant thickening of the disc. The vertical
scaleheight of the stellar disc is shown in Fig.5.5. We find an abrupt increase in〈z〉
from a value of roughly 0.6 kpc to 1 kpc at∆t∼15 after the impact.

To analyse the radial and vertical oscillations in the disc in more detail, we trace
the orbits of individual particles inr andz as a function of time. With a Fourier
transformation we find that the principal frequencies correspond to the radial and
vertical epicyclic frequencies in the disc. The increase of kinetic energy inz is
therefore responsible for the heating or thickening of the disc after the impact.

Nuclear and circumnuclear disc

In modelC1 (strong bar) the two gas nuclei, which have formed after the interaction
in the disrupted bar, merge and form a single nuclear disc. This nuclear disc, how-
ever, is less massive and more extended than the one in the isolated model. After
the n-disc has formed, it remains connected by two gaseous trailing spiral segments
with the second induced ring (t= 85 in Fig. 5.6). The gas which is driven towards
the centre continuously by way of the spiral shocks accumulates in a circumnuclear
disc. Compared to the isolated model, we find about 5 per cent more gas in the
cn-disc insider=2.0 kpc. We also find some two-armed trailing spiral structure of
varying strength in the cn-disc. At the end of the run of modelC1, smoothly dis-
tributed gas remains in the outer disc, as well as in a dense nuclear disc/core (like in
the isolated model) surrounded by a circumnuclear disc with a radius ofr= 3 kpc
(Fig. 5.4). This disc is orientated almost perpendicular to the nuclear disc and is
connected by two trailing spiral arms with an outer distorted ring which has formed
at a radius ofr≈6 kpc, close to the UHR of the former bar (see Fig.5.8).

In modelC2 the gaseous nuclear disc has already formed before the impact.
With the companion passing through the disc, the inner disc region is pulled out of
thez = 0 disc plane towards the direction of the companion. The gaseous nuclear
disc reaches a maximum vertical distance relative to the (first) expanding ring of
approximately∆z = 1.5 kpc at ∆t = 8, or 8 × 107 yr, after the impact. After
the collisional rings have dissolved and the n-disc has recentred vertically, more
gas is driven towards the centre by way of the spiral shocks which have newly
formed in the surrounding disc. The radius of the nuclear disc is larger than in the
isolated model at the same time, but has about the same mass. The inflowing gas
accumulates in a circumnuclear disc, which has a mean radius ofr≈2.1 kpc at the
end of the simulation and is connected by two spiral arms with the outer ring, which
has formed close to the UHR. The region between the cn-disc and the ring at the
UHR (at roughlyr ≈ 6 kpc) shows a clear deficiency of gas, which also exists in
modelC1.

After the bar has been destroyed, the gaseous nuclear discs in both models main-
tain their slightly elongated shape and still rotate with the same pattern speed as the
former stellar bar before the impact. In both models we find spiral shocks in the
circumnuclear disc (Fig.5.4), which persist till the end of the simulation.
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Figure 5.16: Evolution of the stellar and gaseous disc in modelA1, where the im-
pact occurs on the bar’s major axis at an early time. The layout is as for Fig.5.2.
The origin in the frames is always centred on the centre of mass of the halo com-
ponent and the impact position of the companion is marked by a cross in the first
frame.

5.3.4 Major axis passages : modelsA1 and A2

In these simulations the companion hits the disc on the bar’s major axis at a radius of
approximately 6.0 kpc, i.e. in modelA1 close to the end of the strong bar and close
to the corotation radius as determined from the isolated model. The morphological
evolution of these models is shown in Figs5.16and5.17for the early (A1) and late
(A2) impact, respectively.

When the companion approaches the disc it exerts an extra gravitational force
on the disc particles and the bar gets shifted towards the impact position, almost
merging with the spiral arm close to the impact position (Fig.5.16, t= 65). While
the central impacts produce a closed expanding ring structure, the off-centred pas-
sages produce long spiral arms, which do not form a closed ring (see Fig.5.16,
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Figure 5.17: Same as Fig.5.16but for the late impact modelA2.

t=70 and Fig.5.17, t=165), in good agreement with the results of Toomre (1978)
for non-barred galaxies.

Evolution of the bar

Immediately following the passage of the companion through the disc plane, the
stellar bar gets displaced from the centre to a maximum radius of 2.4 kpc in the di-
rection of the impact position in both modelsA1 (early impact) andA2 (late impact).
The off-centring of the bar in these types of interaction has already been described
by several authors (see, for example,Gerber & Lamb1994, 1996; Athanassoula
1996a; APB97). To measure the displacement of the bar we trace its centre of mass
iteratively within a cylindrical shell of constant radius and then determine the dis-
tance to the centre of mass of the halo, which we can assume to be the dynamical
centre of the galaxy. Fig.5.18shows the relative distance of the centre of mass of
the bar from this centre in the galactic plane as a function of time. In both mod-
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Figure 5.18: Bar displacement. Panels (a) and (b) show the relative distance be-
tween the centre of mass of the bar and that of the halo for the early and late impact
models, respectively. The stars and dashed lines in each panel mark the impact lo-
cation in the disc. The models for major and minor axis impacts are shown with full
and dotted lines, respectively.

els, the bar, still rotating around its own centre, reaches its maximum distance at
∆t=10 or 0.1 Gyr after the impact and recentres over a period of some two disc ro-
tations, or 0.6 Gyr. The shape of the stellar bar does not change significantly while
being off-centred. The bar strength is not affected by the interaction compared to
the isolated model (Fig.5.19), although the bar also weakens owing to gas inflow.

In modelA1 the off-centred bar detaches from the ring due to its rotation and
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moves to the centre again. We find that the outer spiral arms in modelA2 rotate
temporarily with about half of the bar pattern speed for some 0.6 Gyr after the
impact. Fig.5.20shows the phase angle of them=2 component of the stellar disc
mass distribution as a function of radius for different times. The stellar bar detaches
from the spiral arms at about∆t = 55 after the impact and reconnects again at
∆t=60. A similar effect has been described by Sellwood & Sparke (1988; see their
fig. 2), who studied the dynamics of an isolated galaxy with different pattern speeds
for the bar and the spiral arms. In their models the bar detaches periodically from
the spiral arms. In our simulation, however, the bar detaches only once from the
spiral arms, because the spiral pattern speed increases again to its initial value of
Ω=0.3 τ−1 after roughly∆t=60 after the impact. The pattern speedΩp of the bar
in modelA1 decreases after the interaction for some 0.3 Gyr, but reaches its initial
value of 0.3τ−1 when the bar has recentred (see Fig.5.21). The spiral arms in this
model rotate with the same pattern speed as the bar and remain connected to it at all
times.

Nuclear and circumnuclear discs

In model A1, the gas that was in the shock loci inside the stellar bar before the
impact is driven towards the centre of the displaced bar and accumulates in a small
elongated nuclear disc, which is aligned with the bar’s major axis. Att = 90 an
elongated gaseous ring starts to form with a constant mean radius of approximately
r = 4.5 kpc, located close to the bar’s UHR. The ring and the nuclear disc are
connected by spiral arms, which form at aboutt=100. By way of the spiral shocks
more gas is driven towards the centre and accumulates in a circumnuclear disc,
which is slightly elongated perpendicular to the stellar bar.

The evolution in modelA2 is similar. The gaseous nuclear disc is already
present before the impact, and, after the stellar bar has recentred, spiral shocks
between the nuclear disc and a gaseous ring that has formed close to the UHR drive
more gas to the centre. This gas accumulates in a circumnuclear disc. In both mod-
els A1 andA2, we find a small gap between the nuclear and circumnuclear disc
with a deficiency of gas. The final gas morphology of the central disc region in both
models is shown in Fig.5.4.

Rings and spiral arms

As in the central impact models, the passage of the companion through the disc
produces a radially expanding density wave in both the stars and the gas, originating
from the impact position. However, since the impact in modelA1 andA2 is off-
centred, the symmetry of the ring wave is broken as soon as it encounters the stellar
bar and spiral arms in the disc. This is illustrated for modelA2 in Figure 5.22.
An expanding ring-like structure forms at the impact position, but gets sheared out
by the differential rotation in the disc as it expands, forming apocketstructure as
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Figure 5.19: Bar strength as a function of time. Panel (a) and (b) show them= 2
component for the models with early and late impacts, respectively. The isolated
model is shown in both panels (dotted line). The impact time is marked with arrows.

mentioned by Gerber & Lamb (1994), who studied the caustics produced by an off-
centred impact in a non-barred disc model. Because the mass distribution in the disc
is more symmetric than in modelA1, the features produced are more symmetric.
Inside the ring orpocketthere is a deficiency of gas. The density wave expands out
more freely in the direction of disc rotation. When it encounters the spiral arm, it
joins it to form one long tidal arm, which is connected to the end of the off-centred
bar (see, for example, Fig.5.16, ∆t≈15 after the impact).

In both models a second expanding density wave starts to form at∆t≈20 after
the impact, starting from the impact position in the rotating frame of the disc. When
the density wave merges with the spiral arm, a tidal arm is formed which is more
linear than the first tidal arm that previously formed on the opposite side of the
bar. By this time the first tidal arm in modelA1 already extends out to a radius of
r = 18 kpc, exceeding the initial disc radius. Between the two tidal arms there is
a clear deficiency of stars and gas. Both tidal arms wind up and dissolve slowly
with most of their material redistributed in the inner 15 kpc again. Some material,
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Figure 5.20: Phase angle of them=2 component of the stellar mass distribution as
a function of radius for modelA2. Note that the outer spiral arms rotate slower than
the central stellar bar. At∆t=60 (t=210) a leading spiral segment is also present,
connecting the bar to the outer spirals.

however, is left in the outer disc, giving it an asymmetric shape.

5.3.5 Minor axis passages : modelsB1 and B2

In this section we describe the evolution of the models in which the companion
hits the disc in the direction of the bar’s minor axis at a distance of approximately
rimp = 3.0 kpc, just outside the bar. The impact times for modelsB1 andB2 are
timp = 60 andtimp = 150, respectively. Figs5.23and5.24show the evolution of
both the stellar and the gaseous disc.

Before the impact the evolution of the disc is similar to the isolated modelI0 .
In contrast to the central impact cases we do not find a vertical bending of the disc
prior to impact in either of the two models. After the impact the bar is temporarily
off-centred, and the passage of the companion excites radial oscillations in the disc,
resulting in the formation of an expanding density wave. Owing to its off-centring
the impact produces two long tidal arms rather than a closed ring structure. Finally,
the stellar bar gets almost destroyed by the interactions in both models.

Evolution of the bar

Immediately following the impact, the stellar bar gets displaced from the centre in
both models to a maximum distance of approximately 3.0 kpc towards the impact
position, i.e. to a distance comparable with that of the impact location from the
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Figure 5.21: Pattern speedΩp as a function of time. Panel (a) shows modelA1
(thick line) andB1 (thin line) with the early impact att=60. The dotted line shows
the evolution for the isolated modelI0 . The same for panel (b) for modelsA2
(thick line) andB2 (thin line) with impact at timet = 150. The impact times are
marked by arrows in both panels.

centre of the target disc (Fig.5.18). The off-centred bar still rotates around its own
centre, while moving radially in the disc. The bar reaches its maximum distance
from the dynamical centre at a time of∆t = 10 after the impact of the perturber,
which is the same time-scale as in the major axis impact models. The offset of the
bar lasts for a period of roughly∆t= 0.6 Gyr, or about two disc rotations, in both
models, as for modelsA1 andA2.

We measure the strength and pattern speed of the bar with the method described
in Sec.5.3.1. Care was taken that no power from spiral features was included in
the computation by checking that the phase angle is constant with radius. As the
bar strength weakened, the error in the pattern speed measurement increased, but
was always below about 5 per cent. While the pattern speed in modelB2 remains
constant after the impact, we find an increase ofΩp in the early-impact modelB1
from 0.3τ−1 to a rate of 0.5τ−1 (see Fig.5.21), presumably owing to the torque
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Figure 5.22: Evolution of the gaseous disc in modelA2 after the impact. We show
the face-on gas particle distribution. The time in model units is given in the lower
left-hand corner in each frame. The size of each box corresponds to 30 kpc. The
position of the forming density wave is marked in the first frame by an arrow.

by the companion on the strong bar. Since the rotation curve of the disc does not
change significantly after the impact, the change ofΩp is accompanied by a change
of the positions of the resonances in the disc. In fact this change can be observed
in the resonance gas ring located close to the bar’s UHR. WhileΩp increases, the
UHR moves inward and the ring shrinks from a radius of approximatelyr= 3 kpc
to 2.4 kpc, compatible with the change ofΩp.

By the end of the simulation, the stellar bar is almost destroyed by the inter-
actions in both models. However, the dissolution time-scale for the early-impact
caseB1 is longer than in the corresponding model with central impact (Fig.5.19).
There is an indication that this might also be true, but to a lesser degree, for the late-
impact caseB2. The vertical scaleheight of the disc, however, does not increase
considerably after the interaction (see Fig.5.5).

Nuclear and circumnuclear disc

In modelB1, where the bar is strong at impact time, the leading gaseous shocks
remain inside the off-centred stellar bar. As the bar is recentring, the gas flows
toward the centre of the bar. Following the bar recentring this gas forms a dense
nuclear disc which is aligned with the bar’s major axis. Over time the nuclear disc
looses its elongated shape and becomes more circular, while the inflow rate inside
a central region of450 pc remains constant at about4 M� yr−1. The total amount
of gas driven towards the centre, which is limited by the amount of gas within the
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Figure 5.23: Evolution of the stellar and gaseous disc in modelB1, where the
impact occurs on the bar minor axis at an early time. The layout is as in Fig.5.16.

bar region before the impact, is the same as in the isolated model. In this model,
however, no circumnuclear gaseous disc forms (see Fig.5.4).

The nuclear disc in modelB2 has already formed before the impact and remains
in the centre of the temporarily off-centred bar. Some of the inflowing gas accumu-
lates in a large diffuse circumnuclear disc, almost extending out to the gas ring at
3 kpc, which has formed following the impact.

Rings and spiral arms

The passage of the companion through the disc produces an expanding density
wave, which becomes visible first in the gas. The general evolution of this ring-
wave is similar to the one in the major axis impact models. As can be seen in
Figs5.23and5.24the density wave expands more freely in the direction of disc ro-
tation and maintains longer its circular shape on that side (∆t= 5 after the impact)
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Figure 5.24: Same as Fig.5.23but for the late-impact modelB2.

before merging with the spiral arm in the outer disc. As soon as the wave encoun-
ters the spiral arm, the ring feature opens up and forms a long tidal arm, extending
out to a maximum radius of approximatelyr = 18 kpc. Then the tidal spiral arm
dissolves slowly and most of its material is redistributed in the initial disc region.
The other part of the ring remains close to the off-centred bar and is connected to it
by a straight spoke (∆t= 10). Between the bar and the spoke, which is visible in
both the stars and the gas, there is a clear deficiency of gas.

In both models a second expanding density wave ring becomes visible∆t= 20
after the impact, when the bar has almost recentred. The second ring in modelB1
merges with a spiral arm segment, which has formed after the impact (Fig.5.23).
In B2 the second ring is more symmetric than the first one and encloses the weak
bar completely. However, the ring is not centred with respect to the bar. In fact
the bar remains connected to the ring for a few dynamical times (Fig.5.24). Similar
to the previous simulations, additional ring-like structures or segments form in the
gas at later times, merging with the spiral arms in the disc. These features are not
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supported by a stellar counterpart and are washed out relatively fast.

5.4 Discussion

5.4.1 Bar amplitude

The evolution of the bar strength for the different models is shown in Fig.5.19(a)
and (b). In the isolated model the stellar bar forms within a few disc rotations and
reaches its maximum strength att=60. As a result of the gas inflow the amplitude
decreases rapidly at first, but then settles down to a quasi-stationary state, in which
its strength decreases linearly on a time-scale which is significantly longer than the
dynamical one, as described in Sec.5.3.1.

The passage of the companion through the disc has several effects on the mor-
phological evolution of the bar, such as a temporary off-centring and a weakening
or destruction of the bar. The strength of these effects depends strongly on the im-
pact location relative to the bar. With the central passage the bar is destroyed very
shortly after the impact of the companion (∆t = 10, or 0.5 disc rotations). For
the early impact, the bar gets torn into two fragments that move outward with the
expanding ring and later merge again, while for the late impact, no bar is left af-
ter the first stellar ring becomes visible. In both models the destruction of the bar
is accompanied by a considerable vertical thickening of the disc. Impacts on the
bar’s major axis (models of type A) show a similar evolution of bar strength as in
the isolated model, although the bar is temporarily off-centred after the impact for
some 0.6 Gyr. Comparison with the isolated model shows that the bar strength in
these models is more significantly affected by the gas inflow than by the interaction
itself. When the companion is close to thez= 0 disc plane, the tidal force it exerts
on the bar is directed almost parallel to the bar major axis and thus does not disrupt
the bar structure much. In the models with the minor axis passage (modelsB1 and
B2) the bar is nearly destroyed, but its amplitude decreases more slowly (∆t= 50)
than in the corresponding central passage, an effect which is particularly evident
in modelB1. The decay of the bar amplitude in both models can be described as
quasi-exponential. The dissolution of the bar is not accompanied by a vertical thick-
ening of the disc in these models. For the minor axis impacts it seems to be possible
to destroy the stellar bar, while keeping the disc, in contrast to the pureN -body
simulations where it is found that an interaction sufficiently strong to destroy the
bar also destroys the disc (Athanassoula 1996b), i.e. the ratio between the vertical
and the radial scaleheights increased very significantly. This could be due to the
fact that the decrease in the bar amplitude in the purely stellar cases can be due only
to the impact, while in simulations including a gaseous component it is due to the
cummulative effects of the impact and the gaseous central mass concentration.

Central impacts and passages through the bar’s minor axis seem to cause more
damage to the bar than the major axis impacts. The disc thickens more if it is
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hit at the centre than at the periphery, so the disc of models of type C thickens
considerably, while models of type A and B do not show a significant difference
in this regard. Between early- and late-impact models with same impact positions,
we find differences in the bar’s evolution shortly after the impact because of the
different initial state of the bar at impact time, but the long-term evolution of the
bar in both types of models is similar. We conclude that the fate of the bar is more
sensitive to the impact location of the companion relative to the bar than to the
evolutionary phase of the bar during impact. In general, the impact of a companion
tends to accelerate the evolution from a strongly-barred spiral to a weakly- or non-
barred galaxy, a trend also found in the isolated model, but on longer time-scales.

5.4.2 Bar pattern speed

The evolution of the pattern speed in the isolated model is mainly influenced by two
processes. Angular momentum is transferred to the outer disc and halo resulting
in a decrease of the pattern speed (see, for example,Tremaine & Weinberg 1984;
Weinberg 1985; Little & Carlberg 1991; Hernquist & Weinberg 1992; Athanassoula
1996b, 2002; Debattista & Sellwood 1998, 2000), while mass accretion into the nu-
clear region steepens the rotation curve at the centre and leads to an increase ofΩp

(see, for example,Friedli & Benz 1993; Heller & Shlosman 1994; Berentzen et al.
1998). In our isolated model we find that during the early phases of the bar evolu-
tion, i.e. during its growth and dissolution before it has reached quasi-stability, the
pattern speed increases linearly fromΩp =0.22 at t=30 to Ωp =0.30 at t=80, and
thereafter stays constant to the end of the run. This behavior is in agreement with
other numerical simulations which have included a gas component (e.g.,Friedli &
Benz 1993; Heller & Shlosman 1994; Berentzen et al. 1998), showing either con-
stant or slightly increasing pattern speeds.

Owing to the interaction, for models with impacts on either the major or the
minor axis of the bar we find some variations in the pattern speed (see Fig.5.21).
In the late-impact models, shortly after the impact, the pattern speed decreases tem-
porarily by about 30 per cent, but when the bar recentres againΩp increases back
to its original value, though with oscillations that are damped over time. One of
our models, however, shows an evolution in pattern speed that is different from that
of our other vertical-impact models. In modelB1, where the companion hits the
disc on the minor axis of the strong bar, we find an increase ofΩp from 0.3τ−1

to 0.5τ−1. The bar maintains this high rotation after recentring and so has gained
angular momentum. This effect is probably due to torques exerted by the perturber
galaxy on the bar. For the central passage modelsC1 andC2 the bar seems to be
slowed down by the interaction, although them = 2 amplitude of the bar is only
marginal and a pattern speed is difficult to measure with confidence. The collision-
less models studied by Athanassoula (1996a) and APB97 showed a decrease of the
bar pattern speed in those models where an abrupt change ofΩp occurred after the
impact. Sundin et al. (1993) found that depending on the mass of the perturber,
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both an increase or a decrease ofΩp was possible. In their models, however, the
trajectory of the perturbing galaxy lies in the equatorial plane of the disc.

5.4.3 Off-centred bars

Another important feature produced by the interaction is the displacement of the
bar from the centre of the galaxy. Asymmetries of this type are frequently found in
disc galaxies, particularly in late-type galaxies (see, for example,de Vaucouleurs &
Freeman 1972; Odewahn 1996). While this kind of asymmetry could be produced
by strongm = 1 modes in the disc, an off-centred impact of a companion galaxy
should generally give rise to more significant shifts, depending on the impact pa-
rameters. In all our models with off-set passages we notice a strong displacement of
the bar structure for approximately 0.6 Gyr, independent of the evolutionary phase
of the bar at impact time. The maximum displacement of the bar centre, which is
in our models roughly∆R = 3 kpc, depends only on the impact position or dis-
tance of the companion from the bar centre, but not on the strength of the bar at
impact time. The size of the displacement in our models is in good agreement with
the relative displacement parameter found by Feitzinger (1980) for Magellanic type
galaxies. The off-centring of the bar is also accompanied by asymmetries in the spi-
ral structure. The morphology of the discs with off-centred bars in our simulations
is dominated by one long spiral arm, which formed after the impact by an expand-
ing density wave, in agreement with the results of Athanassoula (1996b) and with
the morphology of several asymmetric barred galaxies, such as NGC 4027. The
induced asymmetries are visible in the disc, for about 0.6 Gyr after the impact.

5.4.4 Nuclear and circumnuclear disc

The presence of the bar results in a considerable change in the mass distribution of
the gas. Owing to the bar torques, gas is driven towards the centre of the galaxy and
accumulates in nuclear and circumnuclear discs. This type of discs forms in both
the isolated and the interacting models, although its shape and size varies depending
on the interaction parameters (Fig.5.4). The circumnuclear disc is always elongated
perpendicular to the major axis of the bar, indicating that the gas in it populates the
x2 orbits and is therefore trapped between the inner and the outer ILR, which have
been confirmed to be present by the surfaces of section. The gas in the nuclear disc
represents some 18 per cent of the total dynamical mass inside the central region,
i.e. within a radius of 1 kpc. This is about the same fraction as found in the isolated
barred galaxy model by Berentzen et al. (1998).

The cn-discs in the interacting models with central impact are much larger than
in the isolated model (up to a factor of three in radius). Since the bar is destroyed
by the interaction almost immediately in these models, no torque acts on the gas
to drive it closer to the centre. In the major axis impacts, the bar keeps roughly
the same strength as in the isolated model, therefore we do not find a significant
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difference in the morphology of the central region. Very little additional gas is
driven towards the centre by the impact itself.

5.4.5 Rings and spokes

In our central impact modelsC1 and C2, following the passage of the compan-
ion, we find expanding ring structures in the disc. The process of ring formation
by interactions is described for non-barred galaxies in detail by Lynds & Toomre
(1976). These authors show that the expanding stellar ring is a density wave fea-
ture travelling through the disc and is due to radial oscillations of the disc particles,
as later confirmed by simulations (see, for example, APB97). We find such radial
oscillations for both the stellar and the gas particles, of which the latter contribute
longer to the rings. The gaseous ring always remains within the expanding stellar
ring, having roughly the same radius but considerably smaller width. The gaseous
rings fragment on the inner side owing to the self-gravity of the gas and its dissipa-
tive nature, while gas piles up in the ring during its expansion, because the gaseous
orbits cannot cross. In contrast, the stellar ring becomes weaker and broader while
expanding, but the gas ring can be identified for a longer time.

The expansion velocity of the rings decreases with radius as predicted by the
impulse approximation and as found inN -body simulations (APB97). The expan-
sion velocity of the first ring drops gradually from 88 km s−1 (7.5vs) to 35 km s−1

(3vs, wherevs is the sound speed in the gas). With the passage of the ring the lo-
cal velocity dispersion in the disc increases. The second ring in our models starts
off more slowly than the first, with an expansion velocity which decreases from 29
km s−1 (2.5vs) to 11.72 km s−1 (1vs). Note that there is a transition in the gas from
a supersonic density wave supported by the stellar rings to anacousticwave.

A well-known example of a collisionally-induced ring galaxy is the Cartwheel
galaxy (A0035-324). Density enhancements like the rings are accompanied by the
formation of bright young blue stars and HII regions, while the induced stellar ring
represents mainly the underlying disc population. The star-formation rate found in
the outer ring of the Cartwheel galaxy is about6.7×107 M�Myr−1 (Higdon 1995).
After the passage of such star-forming rings, colour gradients are expected in the
disc and have been observed in several ring galaxies (Korchagin et al. 1999). In
particular, such radial age gradients have been found in the optical and the NIR in
the Cartwheel galaxy (Marcum, Appleton & Hidgon 1992). In numerical simula-
tions that have included star formation (Mihos & Hernquist 1994), however, such
gradients remained for only a short period of time before the nuclear starburst dom-
inated the rings. In our modelC2 we find that the second gas ring, which forms
after the impact, consists mainly of particles that had already contributed to the first
one. Thus, if we assume that some fraction of this gas is used up by star formation,
we might expect the inner ring to contain considerably less gas than the outer ones,
as confirmed by the observations of Cartwheel.
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5.4.6 Role of the halo

To study the role of the halo response in our simulations, we rerun a simulation of
modelC2 but with a fixed (frozen) halo, i.e. we represented the halo by an external
force, unchanged through the simulation. We find that the morphological evolution
of the disc in face-on projection is very similar to the case with a live halo, e.g. the
number of rings formed after the impact, their shape and their expansion velocity
are qualitatively reproduced. The main difference between the two models is found
in the vertical structure of the disc following the impact. In the edge-on projection
we find that in the frozen halo model both the gaseous and the stellar disc become
vertically thicker after the impact and settle down in a more irregular shape, i.e. not
disc-like, in contrast to the live-halo model. In the latter we find that the halo gets
centrally less concentrated and dynamically hotter after the impact. We therefore
conclude that the live halo stabilizes the disc by absorbing energy from the impact.

5.5 Summary

We have performed fully self-consistentN -body/SPH simulations to study the inter-
action between an initially barred galaxy and a less massive spherical companion.
The companion passesalmostvertically through the disc of the host galaxy and
leaves the host system following the impact. The mass of the companion has been
chosen so as to be asignificantperturbation to the disc. Two different impact times
have been chosen, representing different characteristic phases of the isolated bar’s
evolution. In the first set of simulations the impact is at an early phase of evolution
when the bar is strongest, while in the second set an advanced phase has been cho-
sen, i.e. when the bar is weak and has settled down in a quasi-stable state. Beside
the impact time, we also varied the position of the impact with respect to the bar in
the disc. In the simplest case the companion hits the bar at its centre, while in other
cases it hits the disc outside the bar at its major or minor axis. Interactions at times
before a stellar bar has formed or during its non-linear growth phase have not been
performed here.

The interactions produce characteristic features that remain in the disc for only
a few dynamical times. In general the gaseous features tend to persist longer than
their stellar counterparts, though after about 1 Gyr both of them are dissolved. The
most prominent features produced by the interaction are the collisionally induced
rings, which are well known from non-barred galaxies. The central impacts pro-
duce expanding stellar and gaseous rings whose symmetry is disturbed in the case
of the strong-bar model. The stellar ring is a density wave produced by forced ra-
dial oscillations of the stellar orbits. The basic properties of the stellar rings, such
as density or expansion velocity, are well described, at least qualitatively, by the
impulse approximation. The gaseous rings also show the characteristics of a den-
sity wave, which is supported by the potential of the stellar ring. We find that more
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than two rings can be formed in the gaseous disc by the impact, some of them not
supported by stellar density enhancements. These rings are less pronounced than
the first two rings and dissolve much faster. In contrast to central impacts, the off-
centred passages produce outwardly expanding ring-like density waves – not in the
form of closed rings, but as long tidal spiral arms whose extent exceeds the initial
disc cut-off radius. These tidal arms are present for some few dynamical times in
our simulations, before they dissolve and the material in the arms is redistributed in
the disc.

In the simulations with off-centred impacts, the stellar bar gets temporarily dis-
placed from the centre of the galaxy for some 0.6 Gyr before it recentres again. The
gas inside the bar is driven towards the centre, forming a nuclear disc whose mass
is determined by the amount of gas located in the bar region. Almost no additional
gas is driven towards the centre of the galaxy owing to the interaction, compared
with the isolated model. In most of our simulations, the stellar bar is destroyed after
the impact of the companion, leaving behind a dense stellar core at the centre of the
galaxy. In the central impact models the destruction of the bar is accompanied with
a considerable thickening of the disc. In models with minor axis impacts, however,
it seems to be possible to destroy the bar while keeping the disc. We also find cases
(i.e., the major axis impact) in which the bar survives the interaction, resembling
the weak bar of the isolated model. We argue that the interaction with a companion
can drive the transition from a strongly-barred galaxy to a weakly-barred galaxy
on shorter time-scales than those found in isolated models. The impact time, or
the dynamical phase of the disc, does not play a significant role in determining the
final morphology of the disc. The dense nuclear disc and the surrounding gap in
the gas distribution are the only morphological imprints that survive the interaction,
even after the bar has dissolved. Such features in a non-barred galaxy may indicate
the former existence of a bar. Apart from that, looking at the final face-on mor-
phology of the gaseous disc – in which the differences are more clear than in the
stellar – the interacting and non-interacting models can hardly be separated. This
might be possible from models including star formation, e.g. from the resulting
colour/metallicity gradients.
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6. The regeneration of stellar bars by tidal interactions.
Numerical simulations of fly-by encounters.1

I. Berentzen1,2, E. Athanassoula2, C.H. Heller3, andK.J. Fricke 1

1 Universitäts–Sternwarte, Geismarlandstraße 11, D-37083 Göttingen, Germany
2 Observatoire de Marseille, 2 Place Le Verrier, F-13248 Marseille Cedex 4, France
3 Georgia Southern University, Department of Physics, Statesboro, GA 30460, U.S.A.

Abstract
We study the regeneration of stellar bars triggered by a tidal interac-
tion, using numerical simulations of either purely stellar or stellar+gas
disc galaxies. We find that interactions which are sufficiently strong to
regenerate the bar in the purely stellar models do not lead to a regenera-
tion in the dissipative models, owing to the induced gas inflow in those
models. In models in which the bar can be regenerated, we find a tight
correlation between the strength and the pattern speed of the induced
bar. This relation can be explained by a significant radial redistribu-
tion of angular momentum in the disc due to the interaction, similar
to the processes and correlations found for isolated barred spirals. We
furthermore show that the regenerated bars show the same dynamical
properties as their isolated counterparts.

6.1 Introduction

Barred galaxies amount to more than one third of the catalogued disc galaxies in op-
tical wavelengths (see, for example,de Vaucouleurs 1963) ant to about two thirds in
the near-infrared (Eskridge et al. 2000). It has been established by now, that thelife
of a bar can be divided into several episodes: its formation, evolution, dissolution
and maybe its regeneration (see, for example, the review byFriedli 1999).

Two mechanisms for the formation of bars in disc galaxies are being widely
accepted at present. Bar formation can occur, as shown in many numerical simu-
lations, spontaneously by a global instability in cold, rotationally supported stellar

1This manuscript has been accepted for publication in the Monthly Notices of the Royal Astro-
nomical Society.
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CHAPTER 6. THE REGENERATION OF BARS BY INTERACTIONS

discs (see, for example, Miller, Prendergast & Quirk1970; Hohl 1971; Ostriker
& Peebles 1973; Sellwood 1981; Athanassoula & Sellwood 1986; etc.). The sec-
ond mechanism, also confirmed in numerousN -body simulations, is the formation
of tidally induced bars, triggered by interactions with neighbouring galaxies (see,
for example,Byrd et al. 1986; Noguchi 1987, 1988; Gerin, Combes & Athanas-
soula1990; Barnes & Hernquist 1991; Salo 1991; Miwa & Noguchi 1998; etc.).
To distinguish between the two bar forming mechanisms, Miwa & Noguchi (1998)
compared the properties of spontaneously formed and tidally induced bars by means
of N -body simulations and argued that tidally induced bars are slow rotators, while
the spontaneously formed bars have usually higher pattern speeds.

Athanassoula (2003) argued that the evolution of bars in isolated disc galaxies
is driven by the redistribution of angular momentum. Since this is crucial for the
work presented here, we will briefly summarise the main results. Disc galaxies
strive to transfer angular momentum outwards (Lynden-Bell & Kalnajs 1972). Disc
material in the inner disc, being at resonance with the bar, emits angular momentum
to resonant material in the outer disc, or in the spheroidal components like the halo
and the bulge (Athanassoula 2002). The corotation radius of the bar roughly divides
the regions of disc emitters from that of disc absorbers. The size and the pattern
speed of the bar responds to the angular momentum exchange in a way as to keep an
equilibrium between the emitters and absorbers. These recent results argue strongly
that the strength and the pattern speed of the bar are determined by the amount
of angular momentum exchanged. The bar’s slowdown rate found in numerical
simulations depends on the relative halo mass and on the velocity dispersion of
both the disc and the halo. Furthermore, Athanassoula (2002) has shown that bar
growth in the disc can be stimulated even in massive halos due to the destabilising
influence of resonant stars in the halo.

Another factor influencing the evolution of bars is the interstellar medium in
the disc. Owing to the gravitational torques of the bar, gas can be driven towards
the centre of the galaxy and this is likely to be accompanied by central starbursts
and formation/fueling of an active galactic nucleus (Shlosman, Begelman & Frank
1989). Fully self-consistent numerical simulations including gas have shown that
substantial gas inflow can weaken significantly, or even destroy, the bar (Friedli
& Benz 1993; Berentzen et al. 1998). The central mass concentrations and the
times-scales found in these simulations, however, might be too high and too short,
respectively, to be in agreement with the relatively high fraction of barred galaxies
observed. Furthermore, this fraction seems to be independent of galaxy morphol-
ogy, i.e. the same in early- and late-type disc galaxies, while early-types are known
to have considerably less gas.

A regeneration of the stellar bar, i.e. a secondary episode of bar-formation dur-
ing the lifetime of the disc, has been suggested as a possible mechanism to explain
the observed number of barred galaxies. One scenario for this, as suggested by
Sellwood & Moore (1999), could be the accretion of gas-rich companion galaxies
or freshly infalling gas, which, by adding colder material to the disc, may cool it
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sufficiently and allow the generation of a new bar. Another scenario suggested, and
upon which we will focus in this paper, could be the regeneration of a previously
dissolved or weakened bar by a tidal encounter with a neighbouring galaxy. In this
work we study this regeneration process by means of fully self-consistent, 3D nu-
merical simulations. The host galaxy, in which the first, i.e. spontaneously formed,
bar has significantly weakened before the interaction, is tidally perturbed by a com-
panion galaxy. Various orbits and masses have been considered for the companion,
in order to cover a wide parameter space. We provide a comparison between pure
stellar and two-component stars+gas models and describe the regeneration process
and the dynamical properties of the tidally induced bars.

In §6.2 we describe the numerical methods and the initial conditions of the
galaxy models. The evolution and the dynamical properties of the isolated models
with and without gas are described in §6.3and §6.4, respectively. In §6.5and §6.6
we present the results of the interacting models with and without gas, respectively.
The results are then discussed in §6.7and finally we give a summary in §6.8.

6.2 Numerical methods and initial conditions

6.2.1 Methods

To evolve both the collisionless component, representing the stars and the dark
matter, and the dissipative component, representing the gas, we use anN -body
algorithm, combined with a smoothed particle hydrodynamics (hereafter SPH) al-
gorithm (see, for example, the review byMonaghan 1992). For this purpose we
use the version of the hybridN -body/SPH code of Heller (1991; see alsoHeller &
Shlosman 1994). The fully self-consistent 3D algorithm employs such features as
a spatially varying smoothing length, a hierarchy of time-bins to approximate in-
dividual time-steps, a viscosity ‘switch’ to reduce the effects of viscous shear, and
the special-purpose hardware GRAPE-3AF to compute the gravitational forces and
neighbour interaction lists (Sugimoto et al. 1990; Steinmetz 1996).

6.2.2 Initial conditions

Our isolated model I0 is initially composed of a stellar and a gaseous disc, em-
bedded in a spherical halo. The radial surface density of both the discs follows
a truncated Kuzmin-Toomre (hereafter KT) profile (Kuzmin 1956; Toomre 1963)
with a radial scalelengthad. Their vertical density profile follows thesech2 dis-
tribution of an isothermal sheet (Spitzer 1942). The halo is set up initially as a
Plummer (hereafter Pl) sphere (Plummer 1911) with a radial scalelengthbh, and is
then allowed to relax in the gradually introduced potential of thefrozendisc. For
a detailed description of the initial model I0 see also Berentzen et al. (2003). The
initial model parameters are summarized in Tab.6.1. The columns from left to right
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Table 6.1: Initial model parameters.

Component Type Nd Md ad rcut z0

Disc – I0
stars KT 13 500 0.54 1.0 5.0 0.20
gas KT 10 000 0.16 1.0 5.0 0.05

Disc – I1
stars · · · 17 500 0.7 · · · · · · · · ·

Component Type Nh Mh bh rcut

Halo
stars Pl 32 500 1.30 5.0 10.0 · · ·

Component Type Nc Mc

Companion
C1 pt 1 2.0 · · · · · · · · ·
C2 pt 1 4.0 · · · · · · · · ·
C3 pt 1 6.0 · · · · · · · · ·
C4 pt 1 8.0 · · · · · · · · ·
C5 pt 1 0.66 · · · · · · · · ·
C6 pt 1 1.0 · · · · · · · · ·

give the component, the type of density profile, the particle number, the total mass,
the radial scalelengthsad andbh, the cut-off radiusrcut, and the vertical scaleheight
z0 of each component. Our isolated model I1 differs from model I0 in that about
one third of the gas particles have been replaced with stellar particles, i.e. with
keeping their positions and assigning new masses, keeping the total disc mass the
same as in model I0. The remaining gas particles have been completely removed
from the disc. We then assign velocities to the new stellar particles according to the
mean velocity distribution of theold underlying stellar disc. Both host galaxies, I0
and I1, are evolved in isolation first. The disc of I0 is constructed so as to be glob-
ally unstable to non-axisymmetric perturbations and form a large-scale bar. Owing
to induced gas-inflow, the stellar bar in model I0 weakens significantly during its
evolution, but is present in both models before the companion galaxy is introduced.

The companion galaxy in the interaction simulations is represented by a smoothed
point mass (hereafter pt) for simplicity, applying a Plummer softening for the force
calculation. Since the GRAPE-3 hardware can only handle a fixed softening length,
we apply the same softening for all particles, including the companion. The mass
ratioMhost :Mcomp, whereMhost andMcomp are the total mass of the host and of the
companion galaxy, respectively, has been varied between1 : 1 to 1 : 4. In addition a
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few simulations have been run with less massive companions. For the simulations
presented in this paper we confine ourselves to planar fly-by encounters, i.e. the
orbits of the host and the companion galaxy are unbound and lie in the equatorial
plane of the host. The initial conditions have been chosen such as to provide a strong
perturbation to the disc. The orbit of the companion galaxy is prograde with respect
to the rotation in the host disc and has been chosen to be either parabolic or hyper-
bolic, with different pericentric separationsRperi. The pericentric position has been
chosen such that at time of pericentre (hereaftertperi) the major axis of the relatively
weak bar, which has formed/evolved in the hosts disc before the encounter, points
towards the companion. The times of pericentric separation have been chosen to
be tperi = 270 and500 for all simulations with host galaxy I0 and I1, respectively.
The initial orbital parameters attperi have been calculated from the solution of the
corresponding two-body problem, either for a given orbital eccentricitye, or for a
pericentric angular frequency of the companion

ωperi = vperi/Rperi , (6.1)

wherevperi is the velocity of the companion at pericentre. To obtain the initial
centre of mass positions and velocities of the host and of the companion galaxy,
we integrate their orbits backward in time, starting from the pericentric timetperi,
until the distance∆R between host and companion is roughly 10 times the cut-off
radius of the initial halo. During this backwards orbit integration the particles of
the host are frozen with respect to each other. Owing to the limited spatial range of
the GRAPE-3 hardware, the interaction models have been calculated in the inertial
frame of the host galaxy and the force of the companion has partly been calculated
by direct summation on the front-end, i.e. without using the GRAPE hardware.

6.2.3 Units

The adopted units for mass, distance, and time areM = 6 × 1010 M�, R = 3 kpc
andτ = 107 yr, respectively, for which the gravitational constant G is unity. The
dynamical time isτdyn≡(r3

1/2/GM1/2)1/2 =4.8× 107 yr, whereM1/2 is half the total
mass of the host andr1/2 is its half-mass radius, which is, after relaxation of the halo,
approximately 8.5 kpc or in terms of the disc scalelength,2.8 ad. The initial stellar
disc rotation period in these units then corresponds totrot ≡ 2πτdyn ≈ 3×108 yr.
A fixed gravitational softening length ofε= 0.375 kpc is used for all particles. An
isothermal equation of state is used for the gas with a sound speed ofvs = 12 km
s−1. The corresponding thermal gas temperature is 104 K.

6.3 Isolated model with gas – model I0

As described in the previous section, the isolated galaxy model I0 is composed of
a stellar (collisionless) and a gaseous (dissipative) disc component, embedded in
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a live halo. The morphological evolution of the disc is shown in Fig.6.1 (upper
panels). The stellar disc has been chosen to be initially bar unstable and forms a
large-scale bar within roughly 2trot. The stellar bar reaches its maximum strength
at aboutt = 60 (see Fig.6.2). The bar strength, here defined by the normalized
m= 2 Fourier component of the stellar disc mass distribution, has been measured
inside a cylindrical radius ofR= 1.25 and about one scaleheight of the disc plane.
Owing to the torque of the bar, most of the gas in the bar region is driven towards
the centre of the galaxy, accumulating in a nuclear and circumnuclear disc. At the
end of the run the mass of the gaseous nuclear disc represents some 18 per cent
of the total mass within a spherical radius of1.0 kpc. As a result of the growing
central mass concentration the stellar bar weakens significantly, and the disc settles
down in a quasi-stable state at aboutt≈ 120. Some gas also accumulates near the
end of the weak stellar bar, forming an oval ring close to the position of the inner
ultra-harmonic resonance (hereafter UHR) atR=2.25 kpc. The pattern speed of the
bar (hereafterΩp) first increases due to the short burst of gas inflow and thereafter
reaches a constant rate of aboutΩp =0.3 τ−1, or 29.3 km s−1 kpc−1. The evolution
of model I0 is followed in total up tot= 300, i.e. about 10 disc rotations. A more
detailed description of the evolution of this model and its dynamical properties is
given in Berentzen et al. (2003).

To identify the presence and the location of the main planar resonances in the
disc, we apply both the linear (epicyclic) approximation and non-linear methods.
We therefore calculate the gravitational potential in thez = 0 plane of the disc on
a Cartesian grid and symmetrise it with a four-fold symmetry with respect to the
main axes of the bar. From the potential we then derive the azimuthally averaged
circular and epicyclic frequencyΩc(R) andκ(R), respectively. The standard linear
resonance condition is given by

Ωp = Ωc +
l

m
κ , (6.2)

with integersl andm. For a strict definition of the inner Lindblad resonances (here-
after ILRs; withl=−1 andm=2) three extensions to the linear definition have been
proposed (see Athanassoula2003for a discussion), which are not fully compatible
to each other and sometimes in contradiction. Throughout this work we apply the
orbital structure definition for the ILRs, i.e. by saying that an ILR exists if and only
if the x2 andx3 orbit families exist. The ILRs have been confirmed in this case by
calculating the surfaces of section (hereafter SOS). The SOS have been constructed
by integrating orbits of a given Jacobian energy (hereafter EJ; see also Sec.6.4) in
the equatorial plane of the disc and marking the points in the(y, ẏ) plane each time
the orbits cross the linex = 0 with ẋ < 0 (see, for example,Binney & Tremaine
1987). At the end of the run (t= 300) the corotation radius (hereafter CR; i.e., the
radius at whichΩc = Ωp) in this model is at about6.15 kpc (EJ ≈−0.91), and the
ILRs are located at about 0.47 kpc (inner ILR;EJ =−1.58) and 2.1 kpc (outer ILR;
EJ =−1.10), respectively.
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Figure 6.2: Evolution of the bar strength (upper panel) and pattern speed (lower
panel) for models I0 (stars+gas) and I1 (stars). The transition between the two
models is marked by two vertical dashes (t=300).

6.4 Isolated model without gas – model I1

We study the regeneration of the bar by interactions of two different types of host
galaxies – with and without gas in the disc – which, nevertheless, have similar dy-
namical properties. We therefore construct our purely stellar model I1 by replacing
the gas particles in model I0 with stellar particles, as described in Sec.6.2.2. This
has been accomplished for the last snapshot of model I0 att=300, i.e. at the end of
the run, when the amplitude of the initial bar has very considerably decreased and
the disc is in a quasi-stable state. After replacing the gaseous particles with stellar
ones we follow the evolution of the new model I1 for another∆t= 300. The mor-
phological evolution of the stellar disc is shown in Fig.6.1 (lower panels), and in
Fig. 6.2we show the evolution of the bar strength and of the pattern speed. The bar
strength first decreases abruptly, owing to thenewlyadded stellar particles, which
follow initially the distribution of the gas. The phase angle of them = 2 Fourier
component of the latter is shifted with respect to that of the old underlying disc
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Figure 6.3: Characteristic diagram of the isolated model I1 at the end of the run.
We show the characteristic curves of the main orbit families (full lines) and the zero
velocity curve (ZVC; dashed line).

and therefore tends to decrease the normalizedm = 2 amplitude of the combined
discs. The velocities, which are assigned to the new stellar disc component, fol-
low the velocity distribution of theold underlying stellar disc. Therefore the stellar
disc of model I1 is initially slightly out of virial equilibrium, since the dispersion
of the stellar particles is higher than that of the gas particles. After some∆t= 30,
however, the disc settles to a new equilibrium and the bar strength increases again,
reaching its previous value and remaining constant after the short relaxation phase.
Owing to the decreasing central mass concentration of the new stellar component,
the pattern speed of the bar slightly decreases first, but remains roughly constant
after the relaxation phase at aboutΩp =0.22τ−1, or 21.5 km s−1 kpc−1, till the end
of the run.

To gain some insight in the orbital structure of the disc of model I1, we locate the
main planar periodic orbits in a frozen potential that rotates with the bar. General
information on orbits in barred potentials can be found, e.g., in Contopoulos &
Grosbøl (1989). The gravitational potential has been calculated the same way as
described in the previous section, but is time-averaged over roughly one bar rotation.
For simplicity, we restrict ourselves to planar orbits which are bi-symmetric with
respect to the bar and close after one orbit around the centre in the frame of reference
corotating with the bar. The results are then displayed in terms of a characteristic
diagram, where for each orbit we plot its Jacobi integralEJ with respect to they-
intercept value with thex = 0 plane. The Jacobi integral is a conserved quantity
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Table 6.2: Notation of the interaction models.

ωperi para-
Rperi 0.3 0.6 0.9 bolic
15.0 a b c p
10.0 d e f p1
5.0 g h i p2

along any given orbit in the rotating frame, and can be thought of as an effective
energy (see, for example,Binney & Tremaine 1987). In the characteristic diagram
the orbits form curves of families. In Fig.6.3 we show the characteristic diagram
of the main orbit families, using the notation of Contopoulos & Papayannopoulos
(1980), in model I1 at the end of the run (t= 600). The dashed curve is the zero-
velocity curve (hereafter ZVC), which delineates the accessible region in the plane
based on energy considerations. The family labelledx1 consists of orbits that are
elongated along the bar and predominately gives the bar its structure. Orbits of the
x2-family are elongated perpendicular to the bar. Their presence is indicative of
an ILR (or more than one) in the non-linear regime. Thex4 orbits are retrograde
and slightly elongated perpendicular to the bar. The corotation radius in model I1
is atEJ = −0.79, or approximately7.98 kpc. Thex2-orbits range in energy from
EJ =−1.35 to−1.07, with semi-major axes ranging from 0.86 to 2.1 kpc.

6.5 Interacting models with gas

In this section we describe the simulations in which the gas-rich host galaxy I0 is
perturbed by encounters with companions of different mass. The time of pericentric
separation has been chosen to betperi = 270 for all runs with the host galaxy I0. In
the first set of simulations the companions are initially set up to follow prograde,
parabolic orbits with a pericentric separation ofRperi =15, which is just outside the
halo of the host galaxy. When referring to a specific model, we will hereafter use a
notation like ‘I0 C4 p’, where ‘I0’ is the name of the host galaxy, ‘C4’ is the name of
the companion (see Tab.6.1), and ‘p’ (parabolic) denotes the type of orbit, the latter
following the notation given in Tab.6.2. In Tab.6.5we summarise the basic param-
eters and properties of both the isolated and the interaction models. The first and
the second column give the name of the host and of the companion galaxy, respec-
tively, and the third column gives the orbit of the companion (see Tab.6.2). In the
fourth column we give the time when the companion is included in the simulation,
resulting from the initial backward orbit integration (see Sec.6.2.2). The fifth to
seventh column give the pericentric separation and frequency, and the eccentricity
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Figure 6.5: Evolution of the bar strength as a function of time for prograde,
parabolic encounters with host galaxy I0 (thick line). The pericentric separation
is Rperi = 15 and the mass ratioMhost :Mcomp is given on top of each frame. The
type of the companions orbit is given in the upper right-hand corner of each frame.
For comparison we also show the bar strength of the isolated model (thin line).

Figure 6.6: Same as Fig.6.5, but for encounters with a fixed mass ratio of1 :4 and
pericentric separations of 15 (p), 10 (p2) and 5 (p3), respectively.

of the orbit, respectively. In the eighth and ninth column we give the strength and
pattern speed of the bar, respectively, after the interaction. The tenth and eleventh
columns give the ratio of bar strength and pattern speed to the corresponding values
of the isolated model. In the penultimate column we give the interaction strength
parameter as defined in Sec.6.6.1 and in the last column the corotation radius at the
end of each run, determined from the linear analysis.

In Fig. 6.4 (upper panels) we show an example of the morphological evolution
of the disc during an encounter, in this case for model I0 C4 p. The bar strength as
a function of time for the models with different massive companions is shown in
Fig. 6.5. We find that the encounters in this set of simulations are not sufficiently
strong to regenerate the stellar bar in the disc, even for a mass ratio of1:4, i.e. even
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Figure 6.7: Logarithmic surface density as a function of radius for the stellar and
gaseous disc and of the halo (from top to bottom, respectively). We showlogΣ(R)
for models I0 C4 p (left-hand panels) and I1 C4 p (right-hand panels). The dotted
and full lines represent times before (∆t=−100) and after (∆t= 240) the interac-
tion, respectively.

with companion C4. In order to increase the strength of the tidal perturbation on
the host galaxy, we run two additional simulations with companion C4, in which we
now choose pericentric separations ofRperi =10 and5. The orbits of the companion
are again chosen to be prograde and parabolic. The bar strength for these models is
shown in Fig.6.6. The peaks immediately followingtperi result from the time when
the transient tidal arms contribute to them = 2 power in the inner disc region, in
which the bar amplitude is measured, but disappear as soon as the tidal arm features
have dissolved. Even with these close encounters, it is not possible to regenerate
the stellar bar in the disc of the gas-rich host galaxy.

In order to facilitate comparison with the purely stellar simulations described in
the next section, we present here a more detailed analysis of the interaction sim-
ulations with the gas-rich host galaxy I0. As can be seen in Fig.6.4 already, the
interaction apparently leads to a significant redistribution of both the stellar and
the gaseous material in the disc. This becomes more evident in Fig.6.7, in which
we show the logarithmic radial surface density of the disc and the halo for model
I0 C4 p at times before and after the interaction. While the stellar density remains
basically constant within a radius of approximatelyR < 2.0, i.e. roughly inside
corotation in the corresponding isolated model, there is some net inflow of gas from
the outer disc. The inflowing gas first piles up at a radius of aboutR≈1.25, which
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Figure 6.8: Specific cumulative angular momentum̃Lz as a function of radius in
the stellar disc at the end of the run of the isolated model I0 (with gas) and of the in-
teraction models with a mass ratio of1:4 and different pericentric separations. The
full and dashed lines show the results for the stellar and gaseous disc, respectively.

Figure 6.9: Same as Fig.6.8, but for the combined disc (stars+gas).

is close to the position of the gaseous ring, and then flows gradually towards the
central disc region, accumulating in the nuclear disc. At the end of the run, the gas
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mass within 0.5 length units has increased by about 0.5 per cent of the total host
mass, or some 6 per cent of the total gas mass, while the gas mass within 2 length
units increased by roughly 1 per cent of the total mass, or about 12 per cent of the
total gas mass. Some fraction of both the stellar and the gaseous material in the
outer disc moves further out, contributing to the transient tidal arms and/or getting
stripped off by the companion. The halo material in the inner region does not show
any net radial redistribution, but we find some expansion in the outer parts, where
halo material is also stripped off by the companion.

We measure also the specific cumulative angular momentum (hereafterL̃z) as a
function of radius for both the stellar and the gaseous disc, given by

L̃z(R) =

(∑
Ri<R

lz,i

)
×

(∑
Ri<R

mi

)−1

, (6.3)

whereRi, mi and lz,i are the planar radius, the mass and the angular momentum,
respectively, of thei-th disc particle. As an example we show in Fig.6.8the results
of simulations with companion C4 and different pericentric separations. As can be
seen in this plot, the interaction removes angular momentum from the stellar disc at
all radii shown. We do not find any indication that the corotation radius of the bar
or of the companion separates regions which gain from regions which lose angular
momentum. More angular momentum is removed from the stellar disc for the closer
pericentric separation. The gaseous disc shows a different behaviour. The gas in the
inner disc gains angular momentum compared to the isolated model, within roughly
R= 3.0 and1.7 for pericentric separations ofRperi = 15 and10, respectively, and
loses angular momentum outside those radii.

In Fig. 6.9 we show the specific cumulative angular momentum as a function
of radius in the combined disc (stars+gas). We find that the disc in the interaction
models I0 C4 p and I0 C4 p2 does not lose, or even gains, angular momentum within
a radius ofR≈2.0 andR≈1.0, respectively, as compared to the isolated model I0.

6.6 Interacting models without gas

In this section we describe the set of simulations with the purely stellar model I1 as
the host galaxy. We start with simulations having similar orbits for the interaction
as the ones described in the previous section, i.e. prograde and parabolic encounters
using different companions (see Tab.6.5). As shown in Fig.6.10, in which we plot
the bar strength as a function of time, simulations with mass ratios of1 : 3 and1 : 4
are, contrary to the dissipative models, sufficiently strong to regenerate the stellar
bar in the disc, and the strength of the induced bar increases with the mass of the
companion. In Fig.6.11we show as an example the characteristic diagram of the
host galaxy of the interaction model I1 C4 p at timet= 640, i.e. the end of the run,
in which the stellar bar has been successfully regenerated by the interaction. The
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Figure 6.10: Bar strength as a function of time for the prograde, parabolic encoun-
ters with the purely stellar model I1 (thick line). The layout is as in Fig.6.5.

Figure 6.11: Characteristic diagram of model I1 C4 p after the interaction. The
layout is as in Fig.6.3.

orbit analysis has been performed following the description given in Sec.6.4. The
corotation radius in this model is atEJ =−0.63, or about10.3 kpc. Thex2 orbits
range in energy fromEJ =−1.34 to−0.88, with semi-major axes ranging from0.83
to 3.04 kpc.

Motivated by these results, we now explore a much wider – though still far from
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Figure 6.12: Basic frequencies of the isolated model I1 (t= 500) as a function of
radius, obtained with the linear axisymmetric definition, using the epicyclic approx-
imation. The horizontal lines mark the angular frequencyωperi of the companion at
the time of pericentric separation.

Figure 6.13: Different trajectories of the companion galaxy C4. We show the
parabolic and hyperbolic orbits (full lines) from simulations with different peri-
centric separations, as given on top of each panel. The corresponding circular and
parabolic orbits are indicated by dotted lines. The host galaxy is marked by a star
in each panel.

complete – parameter range, in order to determine the initial conditions necessary
(or sufficient) to regenerate the stellar bar in the disc. We therefore run a set of
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simulations, in which we vary the orbit of the companion, the pericentric separation
Rperi and the massMC, respectively. The simulations and their basic initial param-
eters are summarized in Tab.6.5. From the solution of the corresponding two-body
problem the eccentricitye of the companions orbit has been determined by its angu-
lar frequencyωperi at pericentre, and we restrict ourselves in this work to unbound
orbits only. We chooseωperi such that a prescribed number of inner Lindblad reso-
nances is present in the disc, i.e. that certain orbits in the disc are in resonance with
the companion, when passingRperi.

2 Since the stellar bar in the unperturbed host
galaxy is very weak, we apply the linear approximation, as described in Sec.6.3, in
order to determine the resonances in the disc. The resonance diagram for the iso-
lated model I1 is shown in Fig.6.12, and the frequencies chosen for the companion
are:

1. ωperi =0.3 (two ILRs)
2. ωperi =0.6 (one ILR)
3. ωperi =0.9 (no ILR) .

The mass of the companion for these simulations has been varied, as before, from
1 :1 to 1 :4, and we have a few additional runs with even lower mass ratios, namely
1 : 1

2
(C6) and1 : 1

3
(C5). A complete list of all simulations and of their main

parameters is given in Tab.6.5. Some of the companion orbits are illustrated in
Fig. 6.13for different eccentricities and pericentric separations.

In Fig.6.14we show the bar strength as a function of time for this set of interac-
tion models. It is striking that – in contrast to the models with gas – the interaction
is sufficiently strong to regenerate the bar in about half our models. As can also
be seen from the plot, there is a general trend, that the strength of the induced bar
increases with

• increasing massMC of the companion,

• decreasing pericentric separationRperi,

• decreasing pericentric frequencyωperi.

This is what one might generally expect, since the gravitational force of the com-
panion is proportional to its mass, the tidal force decreases withR−3, and the time
integrated force of the companion on the host galaxy becomes stronger for slower
passages.

Furthermore, after the bar has formed in the disc, we find that the amplitude of
the bar stays constant with time. We have checked the life-time of the regenerated
bar by running model I1 C4 d, which shows a significant increase in bar strength
after the interaction, for roughly∆t = 4 × 1010 yr in total. Using a linear-fitting

2We point out that the angular frequency of the companion, and therefore also the location of the
corresponding resonances in the disc, changes with time.
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Figure 6.14: Bar strength as a function of time for some of the pure stellar models.
The four frames show the models with mass ratios of1 : 1, 1 : 2, 1 : 3 and1 : 4,
respectively. The filled squares mark models which have not been run, because other
runs allow us to deduce that a bar cannot form. Models in which the companion
would be on a bound elliptical orbit are marked by a filled circle.

we find a decay-rate of the bar of roughly9×10−12 yr. With this the bar will drop
to half its amplitude after approximately∆t= 5×1010 yr. After one Hubble time
(with H−1

0 = 1.3×1010 yr) the bar amplitude would have dropped only by 12 per
cent. A fraction of this decrease could be introduced by the relatively low number
of particles used in the simulations, so that in fact there could be (almost) no sign
of a decay for bars formed in interactions. These results strongly argue for the
fact that bars formed by the interaction are long-living and by no means transient
phenomena.
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Figure 6.14: continued

6.6.1 Dynamical properties of the bars

To quantify the correlations described in the previous section, we define a parameter
Θ, which allows us to evaluate the interaction strength:

Θ ≡
〈
fcomp

fgal

〉
=

∫
fcomp

fgal

dt, (6.4)

where fgal and fcomp are the mean radial forces, exerted from the host I1 and
the companion galaxy, respectively, averaged over the equatorial plane of the host
galaxy. In practice we calculate them on a radial equally-spaced polar grid with
maximum radiusR = 4.8 and then take a density weighted average. The integral
in Eq. 6.4 is carried out fromt = −250 to t = 250, with t = 0 corresponding to
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Figure 6.15: Normalized bar strength A/AI1 versus the interaction strength param-
eterΘ. We show the results of the purely stellar simulations and the corresponding
linear fits for mass ratios of1 : 1 (bullets, full line),1 : 2 (squares, dashed line),1 : 3
(triangles, dotted-dashed line) and1 : 4 (stars, dotted line). The simulations with
parabolic orbits are shown with open symbols and are not taken into account for the
linear fits.

tperi, in order to guarantee an adequate convergence ofΘ in all models. For these
force calculations both galaxies are approximated by point masses for simplicity.
The results forΘ are given in the penultimate column of Tab.6.5. We also calcu-
late the normalized bar strengthA/AI1, whereA andAI1 are the bar strength in the
interaction model and in the isolated model, respectively. By plotting the normal-
ized bar strength versus the interaction strength parameterΘ (Fig. 6.15), we find a
roughly linear correlation between the two quantities for each companion Ci, with
i= 1 . . . 4. One of the1 : 4 models (I1 C4 h) is systematically off-set in all plots of
this kind (i.e., Figs6.15, 6.17and6.19), but always lies within the2σ confidence
limit. The models with parabolic encounters are all off-set from the relationships
found, but seem to be correlated themselves linearly.

Plotting the bar strength of the different models in a diagram showing the loga-
rithmic orbital eccentricitye versus the angular frequencyωperi (see Fig.6.16), we
find that models with orbits of roughlylog e> 1.2 are not sufficiently strong to re-
generate the bar in the purely stellar models. A larger sample of simulations has to
be run, however, to confirm the existence of such a limiting eccentricity. If such a
limit really exists, it would give a necessary, but not sufficient condition for tidally
induced bar formation for our purely stellar model.
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Figure 6.16: Logarithmic orbital eccentricity versus the angular frequency of the
companion at pericentre time. For each pericentric separation the curves obtained
from the corresponding two-body problem are plotted for different mass ratios:1:1
(full line), 1:2 (dashed),1:3 (dotted-dashed) and1:4 (dotted line). The filled circles
mark the different simulations and their size is proportional to the bar strength at
the end of each run. The two circles which do not lie on a line are simulations with
mass ratios of1 : 0.5 and1 : 0.33. The limit of ε, as explained in the text, is marked
by the horizontal dashed line.

Figure 6.17: Normalized pattern speedΩp/ΩI1 versus normalized bar strength
A/AI1 of the purely stellar interaction models. Symbols are as in Fig.6.15.
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Figure 6.18: Specific cumulative angular momentum of the stellar disc for the iso-
lated model I1 (thick line) and different interaction models I1 C4 (thin lines). The
dotted lines indicate models in which no or only a weak increase of bar strength has
been found after the interaction. Models in which the bar has been regenerated (full
lines) are labelled (with the orbit type as given in Tab.6.5) and the corresponding
bar pattern speed is given.

Angular momentum exchange in isolated galaxies leads to correlations between
the bar pattern speed and strength, as well as between the bar strength and the an-
gular momentum gained by the spheroid, which, in many cases, is a measure of
the angular momentum exchanged (Athanassoula 2003). We will now test whether
such correlations can be found in our regenerated bars. We indeed find a tight corre-
lation between the strength and the pattern speed of the regenerated bars (Fig.6.17).
The stronger the bar gets after the interaction, the lower becomes its pattern speed,
in good agreement with Athanassoula (2003). We further find that the pattern speed
in the interaction models is always lower than in the corresponding isolated case.

The passage of the companion again is accompanied by a redistribution of disc
angular momentum. The angular momentum exchange between the different disc
regions (as defined in the previous section) is similar to that in Fig.6.8. In Fig.6.18
we show the radial distribution of the specific cumulative angular momentumL̃z(R)
for a set of simulations with companion C4 in comparison with the isolated model
I1. For the runs with lower mass companions, we find similar results. It is noticeable
that the regeneration of the stellar bar has been feasible only in those models which
show a significant change iñLz. Actually we find a tight correlation between the
loss of angular momentum∆Lz in the disc measured inside the initial disc cut-off
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Figure 6.19: Total change of angular momentum∆Lz of the stellar disc inside its
initial cut-off radius as a function of bar strength normalized by the correspond-
ing value of the isolated model. The different symbols represent interactions with
different mass ratios. Parabolic and hyperbolic orbits are represented by open and
filled symbols, respectively.

radiusrcut and the induced bar strength, as shown in Fig.6.19. The more angular
momentum is removed from the disc, the stronger the regenerated bar becomes, in
good agreement with what was found for isolated bars by Athanassoula (2003). We
find the same correlation about equally strong when we plot the angular momentum
change within the corotation radius. This important connection between the angular
momentum exchange and the (re)generation process of the bar is described further
in the discussion section.

6.7 Discussion

The regeneration of stellar bars triggered by galaxy interactions has been suggested
as an additional scenario for the formation of bars and for explaining the observed
frequency of bars along the Hubble sequence (Sellwood & Moore 1999; Friedli
1999; Athanassoula 2000). So far only the formation of tidally induced bars in
initially non-barred disc galaxies and the required conditions, under which such
an event may occur, have widely been studied by means of numerical simulations
(Byrd et al. 1986; Noguchi 1988; Salo 1991; Miwa & Noguchi 1998; etc.). These
results, however, need not necessarily apply to interactions with aformerlybarred
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Figure 6.20: Logarithmic surface density of the stellar disc of models I0 (left-hand
panel) and I1 (right-hand panel). The filled dots show the density distribution of the
stellar discs and the thick full lines the best-fit of the corresponding Kuzmin-Toomre
profile. The thin full line in the left-hand panel gives the density distribution of the
initial stellar disc in model I0. We also show the different exponential discs used by
Miwa & Noguchi (1998) with dotted lines and give the mass of each disc in their
model units. The value of the Toomre Q-parameter of the stellar disc is given at the
bottom of each panel.

galaxy. Indeed, a former stellar bar likely might have changed the dynamics of the
disc, i.e. increased the velocity dispersion in the stellar disc and changed both the
density and angular momentum distribution. Therefore, the regeneration of stellar
bars is subject to different conditions than the formation of a bar in an bar-unstable
isolated disc or in a tidal interaction.

In this work we present numerical simulations starting with a host galaxy which
has initially been bar unstable and in which the bar has been significantly weakened
due to gas inflow before the interaction.

6.7.1 Quantifying the interaction strength

To quantify the strength of the interaction, we have introduced a parameterΘ for the
interaction strength (Sec.6.6.1), which basically takes the following quantities into
account: 1) the mass of the companion, 2) the pericentric separation between the
galaxies, and 3) the velocity of the companion at pericentre, defining a kind of inter-
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Figure 6.21: Normalized bar strength A/AI1 versus the Dahari indexQD (Dahari
1984) for interactions with different mass ratios. The layout is as in Fig.6.15.

Figure 6.22: Normalized bar strength versus the interaction parameterQE

(Elmegreen et al. 1991). The layout is as in Fig.6.15.

action time-scale. With our definition (see Sec.6.6.1), we find that the interaction
strengthΘ correlates well, i.e. roughly linearly, with the strength of the regenerated
bars, which have been created in our purely stellar models.
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A different parameter for the interaction strength has been introduced by Dahari
(1984) as an estimate of the direct tidal impulse:

QD =(Mcomp/Mhost)/(Rmin/Rdisc)
3, (6.5)

whereMcomp andRperi are the mass of the companion galaxy and the pericentric
separation, respectively.Mhost is the mass of the host galaxy within the disc trunca-
tion radiusRdisc. Salo (1991) has used the Dahari index as a quantitative measure
for tidally induced bar formation in his 2D simulations and found a minimum value
of QD, depending on the specific host galaxy, above which a bar is formed by the
interaction. The specific limiting value ofQD Salo found depends strongly the cen-
tral mass concentration of the host galaxy and cannot be easily transferred to our
model. Furthermore, applying the Dahari index to our simulations we find neither
a correlation between the strength of the interaction and the regeneration of the bar,
nor a limiting value of QD (see Fig.6.21). The main drawback of the Dahari index is
that it does not take into account the interaction orbit, i.e. the interaction time-scale.
The Dahari index therefore does not seem to be sufficient to constrain the param-
eters necessary for the formation or regeneration of bars by galaxy interactions in
general.

A more advanced parameter has been introduced by Elmegreen et al. (1991).
This is based on the Dahari index, but includes also the ratio between an interaction
time-scale∆T and some dynamical timeT of the disc:

QE = QD ×
∆T

T
, (6.6)

whereT =R3
gal/GMgal and∆T is the time it takes the companion to move by one

radian relative to the hosts centre at pericentre time. These authors also report a
limiting valueQE =0.038 for the formation of the bar by tidal interactions. Apply-
ing this parameter to our simulations we find a correlation between the interaction
strength and the strength of the regenerated bar (see Fig.6.22). This, however, is
less pronounced than the corresponding one for our parameterΘ, which takes more
fully the interaction into account. The existence of a limiting parameter, as found
by Salo (1991) and Elmegreen et al. (1991), however, might be attributed to the
method for measuring the bar strength. For our purely stellar simulations we find
a correlation betweenΘ and the induced bar strength rather than a limiting value
of Θ. Still, the exact correlation betweenΘ and the bar strength – as described in
Sec.6.6.1 – is likely to be model dependent.

6.7.2 Radial redistribution of angular momentum

Athanassoula (2003) argued that the redistribution of angular momentum is the driv-
ing agent for the evolution of an isolated barred galaxy. Both her analytical work
and her numerical simulations show that galaxies that have exchanged more angular
momentum should have a stronger bar, with a faster decreasing pattern speed. In
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our purely stellar models, we also find that, whenever bar regeneration occurs, it
is always accompanied by a considerable loss of angular momentum from the disc
(see Fig.6.18). Indeed, as in the case of isolated galaxies (Athanassoula 2003),
there is a tight correlation between the strength of the bar and the angular momen-
tum lost by the inner disc. This argues that angular momentum exchange is tightly
linked to the bar formation process, independent of whether that is spontaneous, or
driven.

The actual exchange process, however, is not always the same. In isolated discs
angular momentum is emitted by particles in resonance with the bar in the inner part
of the disc (within corotation), and, to a lesser extent and if there is a considerable
bar growth, by non-resonant particles in that region. This is absorbed by particles in
the outer disc and halo. In this case there is only one pattern speed, that of the bar,
since the spirals, which could in principle have a different pattern speed (Tagger et
al. 1987; Sygnet et al. 1988), have died away in the early parts of the simulations.
Thus resonances are well defined. This is certainly not the case here. Besides the
bar pattern speed, there is the driving frequency of the interaction, which changes
with time. Furthermore, the forcing from the companion is of comparable strength
than that of the bar, and the companion itself participates actively in the angular
momentum exchange. Thus, in contrast to the isolated cases, we do not find the bar
corotation radius to separate disc angular momentum emitters from disc absorbers.

The bar regeneration process can be be understood in terms of basically the
same angular momentum considerations as described by Athanassoula (2003) for
isolated disc galaxies. The bar in an isolated disc can get stronger and lose angular
momentum basically by four different effects, which should be linked to each other.
First, particles which were on quasi-circular orbits outside the bar get trapped into
elongated orbits in its outer part and thus the bar becomes longer. Secondly, the
orbits trapped in the bar could get thinner and make the bar thinner, too. Third,
more mass could be get trapped on periodic orbits in the bar. And finally, the bar
can of course lose angular momentum by slowing down. These effects should also
be present in our case as well, where the loss of disc angular momentum is pre-
dominantly driven by the tidal perturbation of the companion. We will discuss here
how much the different effects contribute to the regeneration of the stellar bars in
our simulations. Since the analytical calculations cannot make any statements about
this, we will base the discussion on the dynamical properties and orbital structure
of our specific models.

In Fig. 6.23(right-hand column, upper panel) we show a direct comparison of
the characteristic diagrams of the purely stellar models I1 and I1 C4 p at the end of
each run, respectively. The characteristic diagram of the isolated and the perturbed
case look very similar in terms of the layout of the main periodic orbits. The main
difference, however, is that both thex1 and thex2 orbits extend to higher energies
after the interaction. This is especially obvious for the part of thex1 characteristic
aroundEJ =−0.75, where the value of they intercept increases strongly withEJ.
This clearly moved towards higher energies. In Fig.6.24(right-hand column) we
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Figure 6.23: Comparison of models I0 C4 p (with gas; left-hand side) and I1 C4 p
(without gas; right-hand side). The upper panels show the characteristic diagram
at the end of the run of the interaction model (main panel) and of the correspond-
ing isolated model (subpanel). The layout of the diagrams is the same as for, e.g.,
Fig.6.3. Instability regions in the characteristic curves are indicated by dotted lines.
In the middle panels we show the axial ratiosb/a of thex1 andx2 orbit families,
wherea andb are the major and minor axis, respectively. The full and dotted lines
show the results of the interaction and the isolated model, respectively. The hori-
zontal dashed lines indicate axes ratios of1:2, 1:3, 1:4 and1:5. The bottom panels
show a histogram of the number of stellar disc particles within corotation per energy
interval, normalized by total number of stellar disc particles within corotation in the
corresponding isolated model. The vertical dotted lines mark the region in which
thex2 orbits is present in the perturbed models.

show some examples of the periodic orbits with different Jacobian energiesEJ of
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Figure 6.24: Concentric orbits of thex1 (full lines) andx2 (dotted lines) families.
The left- and the right-hand column show the models with and without gas, respec-
tively. In the upper panels we show the isolated models I0 and I1 and in the lower
panels models I0 C4 p and I1 C4 p.

both thex1 and thex2 family. We find that thex1 orbits become longer and, to
some smaller extent though, also thinner after the interaction. This becomes clearer
in Fig. 6.23(middle panel), in which we plot the axial ratiob/a of the orbits, where
a and b denote the major and minor axis, respectively, as a function ofEJ. The
main effect, however, is the lengthening of both thex1 and thex2 orbits towards
higher energies and, taking into account the corresponding characteristic diagram,
also in radial extent. For thex1 orbits we also notice some lengthening towards
lower energies, as well. Owing to these effects the bar gets both more centrally
concentrated and more extended to large radii.

The thinning of the periodic orbits, which is less pronounced in our models
than the lengthening, can be understood by the analytic calculations by Lynden-
Bell (1979; hereafter LB79) in the context of gradual bar growth in isolated disc
galaxies. As described in LB79, the mean circular frequencyΩc of most disc stars
in the central and/or inner disc region is much higher than the pattern speedΩp of
the weak periodic perturbation, which is considered to be bar-like in this case. In
the frame of reference corotating with the perturbation, the fast motionΩc − Ωp of
the stars on near-circular orbits is not considerably affected by the weak perturba-
tion and therefore the fast action variableJf (see LB79) is approximately constant.
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As shown by Lynden-Bell, angular momentum is removed from the orbits, whose
elongation leads the perturbing bar-like potential. Near-resonant orbits in the inner
disc region, which reside in the abnormal region (see Fig. 2 in LB79), i.e. the region
whereΩi=Ωc − 1

2
κ of the orbit decreases as its angular momentum decreases with

constantJf , will align with the perturbation and become more eccentric, supporting
the growth of the bar structure. As pointed out by Lynden-Bell, this way the bar
shape also becomes more eccentric, but the length of the bar will not change signif-
icantly. The main difference to the scenario described in LB79 is that in our case,
the perturbation is not periodic, since it is due to both the companion and the bar,
and the angular frequency of the former is a function of time.

We finally check which orbits are important for making the bar. In the lower
panel of Fig.6.23 we therefore plot the number of particles as a function ofEJ,
normalized by the total disc particle number within corotation of the isolated model
I1. This way we get information about how the principal orbits at different ener-
gies are populated in our model. As can be seen from this plot, the total number
of stellar particles within the corotation radius increased by less than 10 per cent.
We conclude that the mass of the bar does not increase significantly. The main
effect we find is that particles with energies close to the verticalx1-branch move to-
wards higher energies or higher radial extent, taking into account the characteristic
diagram.

By tracking individual particle orbits in the corresponding potential and plot-
ting their average y-intercept versus the Jacobian energyEJ in the characteristic
diagram, we find that thex2 orbits in the purely stellar models are only populated
by a very small fraction of particles. This result is consistent with Fig.6.25, in
which we show the surfaces of section of model I1 C4 p at the end of the run for
differentEJ. As can be clearly seen, thex1 family dominates phase space over a
wide range in energy and thex2 orbits are almost not present.

6.7.3 Influence of the gas

Interactions which are strong enough to induce a bar in our purely stellar models
are not sufficiently strong to induce a bar in theN -body/SPH models. In fact it has
not been possible to induce a bar in any of our dissipative models, and we will here
discuss the possible reasons for this. The stellar disc component in these simulations
loses angular momentum, as was found also in the purelyN -body models (see
Fig. 6.8 and6.18). The gas in the inner parts, however, gains angular momentum,
so that the inner parts of the disc may gain a small amount of angular momentum
(see Fig.6.9), or if they lose, it is considerably less than the corresponding quantity
for the purely stellar case. Furthermore, as was shown in Fig.6.7 the interaction
is accompanied by a significant inflow of gas towards the central disc. These two
effects, coupled, prevent the regeneration of the bar. In this section we discuss how
the increase of the central mass concentration affects the orbital structure of the disc
and thus helps prevent the regeneration of the bar in these models.
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Figure 6.25: Surfaces of section for models I0 C4 p (with gas; left-hand column)
and I1 C4 p (without gas; right-hand column) at the end of the runs. The values of
the Jacobian energyEJ, given in the bottom left-hand corner of each panel, have
been chosen such as to give roughly the same range iny for each row. In the purely
stellar model the phase space is dominated by thex1 andx4 orbits at low Jacobian
energies, while in the models with gas the phase space is mainly dominated by the
x2 and irregular orbits.
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In Fig. 6.23(left-hand column) we compare models with gas, before and after
the interaction. In particular, for models I0 and I0 C4 p, we compare the character-
istic diagrams (upper panel), the axial ratio of thex1 andx2 orbits (middle panel)
and the particle number per energy range (bottom panel). In contrast to the models
without gas (right column) the characteristic diagram of the models with gas ex-
tends more to lower energies, as would be expected from Fig.6.7and Sec.6.4, that
show clearly that the density distribution is centrally more concentrated in models
with gas. Furthermore, the extent of thex2 orbits is considerably larger, and thex1

orbits have a sizeable instability strip between roughlyEJ =−1.34 and−1.66.
Information on the axial ratio of thex1 andx2 orbits and on their extent is given

in the middle panels of Figs6.23 and 6.24. We see clearly that the differences
between the cases before and after the interaction are much smaller than for the
purely stellar case. Thex1 orbits are a bit thinner after the interaction and thex2

orbits have slightly larger radial extent, but the differences are small. From Figs6.23
and6.24we see that thex1 orbits are less elongated than the corresponding orbits in
the models without gas. This is particularly true at the highest and lowest energies.
The extent of the elongated orbits is also considerably shorter. Also thex2 orbits in
the central region, i.e. at lower energies, are much rounder in the case with gas.

The number of stellar particles within corotation in models with gas (Fig.6.23;
bottom panel) have increased by roughly 12 per cent compared to the corresponding
isolated model. Particles move from the intermediate energy region to the high
energy one, and also, though to a lesser amount, to the low energy central region,
similar to what is found in the models without gas.

Comparing the SOSs of models with and without gas (I0 C4 p and I1 C4 p, re-
spectively) after the interaction (Fig.6.25), we note that the area corresponding tox2

orbits is much smaller in models with gas. On the other hand the area correspond-
ing to chaotic motion and the area corresponding tox1 orbits is considerably larger.
The chaos in the cases with gas is due to the instabilities of thex1 orbits, discussed
above. The larger area covered by thex2 orbits is in agreement with the fact that the
x2 characteristic is much more extended. To pursue this further we followed in the
frozen potential the orbits of particles with initial conditions from the simulation, as
we had already done for the simulations without gas. We find a notable difference.
Namely there is now an indication that, contrary to the purely stellar case, a non-
negligible fraction of the orbits is trapped aroundx2 orbits. This difference can be
understood as a result of the induced gas-inflow (see Fig.6.7), in accordance with
the results found in numerical simulations of isolated gas-rich barred galaxies (see,
for example,Friedli & Benz 1993; Berentzen et al. 1998). Owing to the growing
central mass concentration thex2 orbits cover a larger phase-space volume at the
expense of thex1 orbits.

Thus the fact that bars cannot be regenerated in simulations with gas can be un-
derstood with the help of the many differences between the two models, described
above. There is considerably less angular momentum loss from the inner disc ma-
terial, if this is not a gain. The interaction brings considerably less change of the
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shape and extent of thex1 orbits, but renders them unstable over a considerable en-
ergy interval, thus introducing a considerable amount of chaos. Finally, due to the
increased central concentration, the importance of thex2 population is considerably
increased. The coupling of these three anti-bar effects prevents the regeneration of
a bar component.

6.7.4 Properties of regenerated bars

As a next step we discuss the properties of the regenerated bars compared to the ones
formed by the bar instability in isolated discs. Contrary to Miwa & Noguchi (1998),
we find no clear evidence for qualitative differences between the two types of bars,
while we do find clear evidence for similarities. The orbital differences between the
two types of bars, discussed in the two previous subsections are quantitative, rather
than qualitative, since they pertain only to the extent of the families and the shape
of the corresponding orbits. The role of the resonances seems the same.

Athanassoula (2003) found a correlation between the bar strength and the pat-
tern speed of bars in isolated disc galaxies. In order to compare the properties of
the bars formed in our models and the ones in isolated discs, we first calibrate our
model units appropriately, as proposed in Athanassoula & Misiriotis (2002), and
then compared them to the ones in Athanassoula (2003). The result is shown in
Fig. 6.26, which shows that the area covered by the driven bars is not separated by
that covered by the isolated bars. This argues strongly for the similarity between
the dynamical properties of the two types of bars, and the difficulty to distinguish
between them.

Elmegreen & Elmegreen (1985) found two different types of major axis surface
density profiles, the exponential and the flat ones, and Noguchi (1996) argued that
this distinction could be due to the fact that the first type is found in spontaneous
bars and the second in driven ones. We believe that the difference is due to the bar
strength, rather than its origin, since Athanassoula & Misiriotis (2002) showed that
both types of profiles could be found in isolated galaxies: the flat profiles occurring
in the stronger bars and the exponential ones in less strong ones.

Apart from these differences, we find agreement with the results of Miwa &
Noguchi (1998). Thus, in our purely stellar simulations we find a roughly linear
correlation between the pattern speed of the regenerated bar and its strength, or,
accordingly, the interaction parameterΘ (see Figs6.17 and 6.15, respectively).
In other words, stronger bars – regenerated by the interaction – have lower pattern
speeds. This result is in agreement with the simulations of Miwa & Noguchi (1998),
who find a similar correlation – less strict though – between the pattern speed of the
induced bars and the companions mass. In both cases, i.e. the formation (Miwa &
Noguchi 1998) and regeneration of stellar bars (see Fig.6.17) by tidal interactions,
the bars always have lower pattern speeds than the bars formed spontaneously in
the corresponding isolated models.

In agreement with Noguchi (1987) and Gerin et al. (1990) we find that tidal
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Figure 6.26: Bar strengthSB versus pattern speedΩp in units used by Athanassoula
& Misiriotis (2002). The dots and bullets show the results of the isolated models of
Athanassoula (2003) and our purely stellar interaction models, respectively.

bars are not transient, but long-lived, as are spontaneous bars. Thus bars which are
observed at high redshifts (Sheth et al. 2003) may have formed by galaxy interac-
tions and thus played an important role in the evolution of disc galaxies (Sheth et
al. 2003).

6.7.5 Numerical considerations

The simulations presented in this work have been performed with a rather low parti-
cle number of the host galaxy, because of the relatively large sample of simulations.
On the one hand the induced numerical noise in general supports the bar formation
process, while on the other it will heat the disc, and thus make the bar regeneration
more difficult. We trust, however, that a higher number of particles would make
only quantitative, and not qualitative differences. Thus the physical results should
remain unchanged.

The companion galaxy in our simulations has always been approximated by a
softened point mass. For simulations in which the companion passes outside the
halo of the host galaxy, this approximation is well suited. For simulations in which
the companion crosses the halo, however, dynamical friction can be sufficiently
strong to change the orbit of the companion and finally lead to a merger between
the two galaxies.
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6.8 Summary

In this paper we used numerical simulations to investigate the regeneration of a
stellar bar by tidal encounters. The host galaxy has been chosen to be initially
bar unstable and forms a large-scale bar during its early evolution. Before the in-
teraction with the companion galaxy the bar significantly weakened, owing to the
bar-driven gas-inflow towards the central disc region. For the simulations presented
in this work we used two different types of host galaxies, i.e. one gas-rich disc
model and one without gas. The encounters in our simulations have been chosen to
be prograde in respect to the rotation in the host disc and co-planar with the discs
equatorial plane. The mass and the orbit of the companion have been varied in order
to cover a large parameter space.

We found that interactions, which are sufficiently strong to regenerate the bar
in the purely stellar models, do not lead to a regeneration in the dissipative mod-
els. The regenerated bars in our simulations are long-living phenomena and by no
means only transient, i.e. that (regenerated) bars formed by interactions may indeed
contribute to the number of barred spirals at high redshifts and in the local Universe.

We have shown that the strength of the regenerated bars increases with the in-
teraction strength. Owing to the tidal perturbation, angular momentum is removed
from the disc. In fact, the whole disc within its initial cut-off radius loses angular
momentum, in contrast to what is found for an isolated disc, where the corotation
radius of the bar separates disc regions loosing and gaining angular momentum.
The amount of angular momentum removed from the disc shows a clear correlation
with the interaction strength. We argued that the main effect of this angular momen-
tum loss is a significant extension of the region where bar-supporting orbits exist,
resulting in a lengthening of the bar. As a further, though somewhat less important,
effect, we found also a thinning of both the bar-supporting orbits and the bar itself.

The regenerated bars are generally slow-rotators and have lower pattern speeds
than the bars in the corresponding isolated models. Furthermore, we found strong
correlation between the strength and the pattern speed of the bar. This correlation
is in very good agreement with the correlation found for bars in isolated discs. This
is one of the pieces of evidence that the regenerated bars are qualitatively similar
to those formed in isolated discs and thus cannot easily (if at all) be distinguished
from them by their dynamical properties.

In contrast to the purely stellar simulations presented in this work, it has not been
possible to regenerate the bar in our models including gas. We argued that owing to
the interaction additional gas is driven towards the centre of the disc, which finally
prevents the regeneration process. We concluded that the regeneration of stellar bars
by galaxy interactions seems to be a reasonable mechanism, provided the external
forcing is sufficiently strong.
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Abstract
We use fully self-consistentN -body/smoothed-particle-hydrodynamics
simulations to study the influence of different numerical effects on the
evolution of bars in models of isolated galaxies. We argue that the
evolution of the bar’s pattern speed is affected by both the intrinsic
numerical noise owing to theN -body realisation and the numerical ac-
curacy of the code, e.g. in the force calculation and in the time-stepping
scheme. These effects can lead to a difference in the evolution of the
pattern speed up to 13 per cent. We conclude that the pattern speeds de-
termined from models today which have only a few tens-of-thousands
of particles and/or moderate accuracy in the force computation are not
very robust and care should be taken not to over-interpret their values
and evolutionary behaviour.

7.1 Introduction

The angular velocity orpattern speed(hereafterΩp) at which bars rotate in disc
galaxies is one of the fundamental parameters determining the structure of barred
galaxies. The rotating bar introduces dynamical resonances in the disc, and it has
been shown that the shape of the bar and its pattern speed are directly linked to the
exchange of angular momentum in the disc and between the disc and spheroidal
components like bulge or halo (Athanassoula 2003).

The direct measurement ofΩp from observations, however, is very difficult.
Several methods have been suggested and applied to determine the pattern speed
of bars. The Tremaine-Weinberg method (Tremaine & Weinberg 1984), which is
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based on the continuity equation of a tracer population, allows one to deriveΩp

from long-slit spectra and photometric light profiles along the bar’s major axis. The
Tremaine-Weinberg method is, however, strongly sensitive to errors in the position
angle of the disc (Debattista 2003). Another way is to use the non-circular motion
produced by the bar and spiral structure to locate the radius of corotation in the disc
(Canzian 1993) and thus the pattern speed. Additionally one can identify character-
istic morphological structures, like inner and outer rings in the disc, with the loca-
tion of resonances induced by the bar (see, for example, Elmegreen, Elmegreen &
Seiden1989; Elmegreen & Elmegreen1990; Knapen et al. 1992; etc.). If the poten-
tial of the galaxy can be derived, e.g. from near-infrared data, one can use numerical
hydrodynamical simulations (see, for example,Sempere et al. 1995a, 1995b; Lind-
blad, Lindblad & Athanassoula1996; ; Lindblad & Kristen1996; Laine, Heller &
Shlosman1998; etc.) to findΩp. The bar’s pattern speed can be varied until the
observed gas-flow patterns are reproduced sufficiently well. The morphology and
the inflow are dependent on the hydrodynamical and numerical parameters used in
the models (Patsis & Athanassoula 2000).

To study the evolution of bar pattern speeds one needs to turn to self-consistent
N -body simulations. In such simulations the pattern speed can easily be derived
from the change of the bar’s phase angle in the disc. For instance, such simulations
have been used to study the slow-down of bars (see, for example,Hernquist & Wein-
berg 1992; Athanassoula 1996; Debattista & Sellwood 1998, 2000; Athanassoula
2003).

In this paper we examine the simulations ability to produce robust and repro-
ducible pattern speeds. The models we run are that of of barred galaxies using fully
self-consistentN -body/smoothed-particle-hydrodynamics (hereafter SPH) simula-
tions. In Sec.7.2we describe the numerical methods and initial conditions used for
the models presented in this work. In Sec.7.3we then provide a direct comparison
of the results of our reference model from GRAPE-3 and GRAPE-5 in comparison
with the treecode, using different resolutions. Furthermore we present different tests
to rule out different sources of error in the code. In Sec.7.4we study the effect of
the initial conditions used for theN -body realisation of the models. Finally, in we
describe in Sec.7.5 further numerical effects introduced by the code. We discuss
the results in Sec.7.7and finally give a summary in Sec.7.8.

7.2 Numerical methods and initial conditions

7.2.1 Numerical methods

To evolve both the collisionless component (representing the stars and the dark mat-
ter) and the dissipative component (representing the gas) we use anN -body com-
bined with an SPH algorithm (see, for example, the review byMonaghan 1992).
In particular we use the version of the hybridN -body/SPH code of Heller (1991;
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see alsoHeller & Shlosman 1994). This 3D algorithm employs such features as
a spatially varying smoothing length, a hierarchy of time-bins to approximate in-
dividual time-steps and a viscosity ‘switch’ to reduce the effects of viscous shear.
To compute the gravitational forces and neighbour interaction lists we use either
the special-purpose hardware GRAPE-3AF and GRAPE-5 (Sugimoto et al. 1990;
Steinmetz 1996) or a treecode.

7.2.2 The GRAPE hardware

The most time-consuming part inN -body simulations is the gravitational force cal-
culation. In the direct method, i.e. the direct summation of the forces between the
N particles, the computational cost scales asN (N−1). Hence several techniques
have been developed, both from the numerical and the technical side, to obviate
this bottleneck. There are the software-based methods, such as the Barnes & Hut
Treecode (Barnes & Hut 1986) or the Very-Fast-Treecode (Dehnen 2000), which
scale asN logN or N , respectively. Other software methods, like the grid-based
or field-expansion methods, often have the disadvantage, that they set constraints
on the geometry of the system. In contrast to these methods there is the hardware
approach. For this special-purpose machines are constructed, such as the GRAPE
(short for: GRAvity PipE) hardware series, in which the direct force calculation is
hardwired on chips, thus greatly accelerating the force calculation. There exist dif-
ferent versions/generations of GRAPE-boards, of which the GRAPE-3 (Okumura et
al. 1993) and GRAPE-5 (Kawai et al. 2000) are well suited for galaxy simulations.
The performance and accuracy of the GRAPE-3 hardware is described in Athanas-
soula et al. (1998). The GRAPE-5 is the successor of the GRAPE-3 and provides
a higher numerical accuracy in the force calculation and is about10 times faster
(Kawai et al. 2000). The GRAPE hardware furthermore supports hydrodynami-
cal schemes like SPH and is thus widely being used in galactic and cosmological
studies.

7.2.3 Initial conditions

Our galaxy model is initially composed of a stellar and gaseous disc, embedded in
a spherical halo. The radial surface density of the disc follows a truncated Kuzmin-
Toomre (hereafter KT) profile (Kuzmin 1956; Toomre 1963) with a radial scale-
length ad. The disc vertical density profile follows thesech2 distribution of an
isothermal sheet (Spitzer 1942). The halo is set up initially as a Plummer (hereafter
Pl) sphere (Plummer 1911) with a radial scalelengthbh. The initial model parame-
ters are summarised in Tab.7.1. The columns from left to right give the component,
the type of density profile, the particle number, the total mass, the radial scalelengths
ad andbh, the cut-off radiusrcut, and the vertical scaleheightz0 of each component.

The halo is then allowed to relax in the gradually introduced potential of the
frozendisc. After the relaxation of the halo we assign velocities to the disc particles
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Table 7.1: Initial model parameters.

Component Type Nd Md ad rcut z0

Disc
stars KT 13 500 0.54 1.0 5.0 0.20
gas KT 10 000 0.16 1.0 5.0 0.05

Component Type Nh Mh bh rcut

Halo
stars Pl 32 500 1.30 5.0 10.0 · · ·

such that the disc is globally unstable to non-axisymmetric perturbations and will
form a large-scale bar during its evolution. For a detailed description of the initial
model see also Berentzen et al. (2003). In the following we will refer to this model
as ourreferencemodel (hereafter model I0). In addition we have created three more
models (hereafter I1, I2 and I3, respectively) based on this reference model. The
new realisations have been constructed by changing the initial(x, y) component of
both the position and velocities of all particles, keeping the particles initial radius
fixed and rotating it by some random angle about thez-axis. The angle of rotation
for each has been determined using a random number generator with three different
initial seeds.

In Tab.7.2 we summarize some of the parameters of the different simulations
presented in the paper. The columns from left to right give the method/hardware
used, the opening angleθ of the treecode simulations, along with the models and
special parameters used. The minimum and maximum time-steps in the hierarchical
stepping scheme areτmin =0.02 andτmax =1.0, respectively, if not stated otherwise.

7.2.4 Units

The adopted units for mass, distance, and time areM = 6 × 1010 M�, R = 3 kpc
andτ = 107 yr, respectively, for which the gravitational constant G is unity. The
dynamical time isτdyn ≡ (r3

1/2/GM1/2)1/2 = 4.8 × 107 yr, whereM1/2 is half the
hosts total mass andr1/2 is the half-mass radius, which is, after relaxation of the halo,
approximately 8.5 kpc or in terms of the disc scalelength,2.8 ad. The initial stellar
disc rotation period in these units then corresponds totrot≡2πτdyn ≈ 3×108 yr. A
fixed gravitational softening length ofε= 0.375 kpc is used for all particles1. An
isothermal equation of state is used for the gas with a sound speed ofvs = 12 km
s−1. The corresponding thermal gas temperature is 104 K.

1 Because the GRAPE hardware supports only a fixed gravitational softening for all particles, we
apply a fixedε for the treecode simulations, too.
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Table 7.2: Simulation description.

Method θ Model(s) comments
GRAPE-3 · · · I0, I1, I2, I3 · · ·
GRAPE-5 · · · I0 · · ·
GRAPE-3 · · · I0 trst =60, 180, 220
GRAPE-3 · · · I0 SPH with 1.5 h
treecode 0.1 I0, I1, I2, I3 · · ·
treecode 0.2 I0, I1, I2, I3 · · ·
treecode 0.3 I0, I1, I2, I3 · · ·
treecode 0.4 I0, I1, I2, I3 · · ·
treecode 0.5 I0, I1, I2, I3 · · ·
treecode 0.6 I0, I1, I2, I3 · · ·
treecode 0.7 I0, I1, I2, I3 · · ·
treecode 0.8 I0, I1, I2, I3 · · ·
treecode 0.9 I0, I1, I2, I3 · · ·
treecode 1.0 I0, I1, I2, I3 · · ·
treecode 0.5 I0 τmin =0.01, τmax=1.0
treecode 0.5 I0 τmin =0.01, τmax =0.05
treecode 0.5 I0 τmin =0.04, τmax =1.0
treecode 0.5 I0 τmin =0.06, τmax =1.0
treecode 0.7 I0 quadrupole on
treecode 0.15 I0 G5 resolution
treecode 0.66 I0 G3 resolution
hybrid · · · I0 neighb. from tree
hybrid 0.2 I0 gravity from tree

7.2.5 Measuring the bar properties

In the following we define the bar strength by the normalizedm= 2 Fourier com-
ponent of the stellar mass distribution. For a givenm, the Fourier coefficients are
given by:

Am =

Nd∑
i=1

mi cos(mθi), m = 0, 1, 2, . . . , (7.1)

and

Bm =

Nd∑
i=1

mi sin(mθi) , m = 1, 2, . . . , (7.2)
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where the sum is taken over all stellar disc particlesNd andθi andmi are the polar
position angle and the mass of thei-th particle, respectively. We then define the
strength of the bar as:

SB =

√
A2

2 +B2
2

A0

(7.3)

and the phase-angle of the bar is derived as:

θB =
1

2
arctan

(
Bm

Am

)
. (7.4)

We measure the bar’s amplitudeSB within a cylindrical radiusR= 1.25 and about
one scaleheight of the stellar disc. Special care was taken not to include any power
contributed by the stellar spiral arms. The pattern speed of the bar is derived directly
from the phase angle asΩp = ∆θB/∆t. We tested different radii in order to make
sure that the measurement was not overly sensitive to the choice.

7.3 Direct comparison of GRAPE-3 and -5 simula-
tions

In order to provide a direct comparison between simulations using the GRAPE-3
and GRAPE-5 hardware (hereafter G3 and G5, respectively), we first run our refer-
ence model I0 of an isolated barred galaxy on both machines. The initial conditions
of the disc in our reference model have been chosen such as to be bar-unstable and
form a strong bar after a few disc rotations. Owing to the torques of the growing
bar, gas is driven towards the central region and accumulates in a central gaseous
disc. The growing central mass concentration leads to a significant weakening of the
bar during the further evolution. A detailed description of the reference model (G3
simulation) and its evolution can be found in Berentzen et al. (2003). From sim-
ple inspection by eye of the particle distribution and the isodensity contour plots,
we find that the morphological evolution of the disc (not shown here) is basically
identical in both simulations (G3 and G5).

Fig. 7.1 (upper panel) shows the evolution of the bar strength, as defined in the
previous section, for the simulations G3 and G5. The bar strength during the evolu-
tion in both models is basically identical within the error bars. After the nonlinear
growth-phase, the bar reaches its maximum strength at roughlyt=60 and weakens
significantly owing to the induced gas inflow. After the disc has settled down to a
quasi-stable state again, the bar strength remains roughly constant till the end of the
run, i.e.t=300, or 3× 109 yr. The pattern speedΩp of the bar (see Fig.7.1, lower
panel), however, shows clear differences between the two simulations. Essentially
we can distinguish four different phases in the evolution ofΩp:
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Figure 7.1: Direct comparison of the GRAPE-3 and GRAPE-5 results of the ref-
erence model I0. The upper and lower panel show the bar strength and the pat-
tern speedΩp, respectively, as a function of time for the GRAPE-3 (full line) and
GRAPE-5 (dotted line) simulations. In the lower panel we mark the four phases of
Ωp as defined in the text.

(I) 20 < t ≤ 70: During the initial growth phase of the bar,Ωp increases from
0.23 to roughly0.3. During this first phase the pattern speed is the same in
both simulations.

(II) 70 < t ≤ 135: In the second phase, the pattern speed in both simulations
first increases, reaching a local maximum ofΩp ≈ 0.4 at roughlyt= 80 and
decreases again afterwards. In the G5 simulation, however,Ωp is temporarily
about12 per cent higher than in the G3 run.

(III) 135<t≤180: In the third phase, the pattern speed in both runs is once again
identical, remaining at a constant level of someΩp =0.3.

(IV) 180 < t≤ 300: While Ωp remains roughly constant in the G3 simulation, it
increases again in the G5 run. The pattern speed in G5 is, as in phase II, about
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12 per cent higher than in G3.

A possible explanation for the differences could be the higher numerical accuracy
of the G5. We will show, however, that the different evolution cannot be attributed
solely to this and some other numerical effect(s) must also play a role.

7.3.1 Switching machines

In a first test we check, if the different evolution ofΩp on the two machines is
sensitive to the evolutionary phases of the bar. We therefore use different snapshots
from the G5 run to restart the simulation on the G3. The restart times (hereafter
trst) have been chosen from the different phases ofΩp as described in the previous
section.

We show the evolution of the pattern speed in Fig.7.2. In the run restarted
in the last phase IV, i.e. at (trst = 220; upper panel), the pattern speed coincides
with the G5 result till the end of the run. This result may give some indication
that the underlying dynamics of the disc has been changed in an earlier phase of
evolution and further evolution is not dependent on the hardware used. On the
other hand, the integration period might have been too short for numerical effects
introduced from the G3 to take place. Restarting the model in phase III, i.e. at
trst = 160 (middle panel), the evolution ofΩp is similar as in the G5 case, i.e. the
pattern speed increases in phase IV and follows the G5 result afterwards. There is
some indication, however, thatΩp decreases somewhat towards the end of the run.
Finally, restarting the model in phase I (trst =60; lower panel), we find an increment
of Ωp in phase II, but later onΩp settles down somewhere between the G3 and G5
results. To summarize, we find a general trend, that the restarted simulations on the
G3 tend to stay closer to the G5 result. Thus if the underlying dynamics of the disc
is really affected by the type of hardware used, this must have occurred in an early
phase, i.e. during the bar-growth and/or gas-inflow phase.

7.3.2 Hybrid tree/GRAPE codes

Besides the gravitational force and potential calculation, the GRAPE hardware re-
turns an index array containing all particle neighbours within a sphere with radius
1.3 × 2hi, wherehi is the SPH smoothing length, around a given particle position
xi. This 30 per cent buffer is required when using multiple time-steps, because of
the symmetric nature of the kernel evaluation. However, the size of the buffer zone
is based on tests which show that it will find the majority of the required neighbours,
but is not guaranteed to locate them all. In contrast the software method we use will
find all the neighbours within the truncation error of the machine.

To see if the difference in the neighbour search method is effecting the pattern
speed, we replace in the code both tasks, i.e. the force calculation and the SPH parti-
cle neighbour-list search, separately by the optional treecode routines. The opening
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Figure 7.2: Pattern speed of the bar in GRAPE-3 models (thick full line), which
have been restarted from GRAPE-5 snapshots. The G3 and G5 results are shown
for comparison with a thin full line and dotted line, respectively. The restart time
trst is given in each panel.

angleθ used in the treecode has been chosen asθ=0.2 in the force calculation. The
results are shown in Fig.7.3. Using the treecode force calculation (upper panel),
the evolution ofΩp is similar to the pure G3 simulation in all four phases. We find
differences in the evolution, however, when using the software-based neighbour
search (Fig.7.3; lower panel). In the beginningΩp matches with the pure G3 run
but then lies somewhat between G3 and G5. In the phases III and IV algorithm.
These results may indicate that the diverging evolution is in part attributable to the
neighbour search method. However, using a brute force algorithm, we find that all
lists have most of the neighbours in common, within some1 per cent. Further tests,
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Figure 7.3: Results of the hybrid Tree-GRAPE3-code. Panel (a) and (b) show the
pattern speed of the runs in which the force calculation and the neighbour search,
respectively, has been done by the treecode on the front-end machine.

in which we increase the size of the buffer zone to1.5 × 2h give similar results.
The outcome of these tests shows that even small variations in the neighbour-lists
make a difference in the evolution of the bar pattern speed

7.3.3 Hydrodynamics

To check the numerical accuracy of the hydrodynamical routines in our code in
more detail, we run a set of simulations of the collision between two non-gravitating
isothermal sheets of gas (see, for example,Heller & Shlosman 1994; see also Ap-
pendix7.11), using the G3, G5 and the treecode. In this test, the SPH particles are
non-self-gravitating and thus the gravitational force calculation does not play a role.
The particles are initially located on a grid with a spacing ofdx= dy= 0.03 units
and with equal masses of valuem= p dx dy = 1 dx dy. Particles located atx < 0
have an initial velocity ofv0 =1, i.e. Mach1, while those withx>0 havev0 =−1.
The shock profiles of the G3, G5 and treecode runs in comparison with the analytic

146



7.4. SYSTEMATIC NUMERICAL TESTS

Figure 7.4: Shock profile of two colliding isothermal sheets of gas. The left- and
right-hand panel show the normalized density profiles produced by the treecode and
GRAPE-5, respectively, both marked by points. The analytic solution (dotted line)
and the result of GRAPE-3 (full line) are shown for comparison in both panels.

solution are shown in Fig.7.4. We find that the SPH algorithm adequately repro-
duces the analytic density profile of the Mach2 shock at timeτ=0.5. Furthermore,
the three different runs do not show any discrepancies.

7.4 Systematic numerical tests

Since the GRAPE-5 hardware is about ten times more accurate in the force cal-
culation than GRAPE-3 (Kawai et al. 2000), we consider the numerical accuracy
as an possible source of error in the deviating evolution ofΩp. Since the force
calculation is hardwired on the GRAPE the numerical accuracy is the same for all
simulations on this hardware. In the following sections we will therefore present
a set of treecode simulations using ordinary workstations, applying different open-
ing anglesθ in order to look for a possible correlation between the evolution ofΩp

and the accuracy of the force calculation. In order to make a comparison feasible,
we first calculate the relative errors from the treecode and the GRAPE simulations
(Sec.7.4.1). Furthermore, in order to have a larger sample of simulations available,
we set-up three more realisations of our reference model. The new realisations have
been constructed by changing the initial(x, y) component of both the position and
velocities of all particles, keeping the particles initial radius fixed and rotating it
by a random angle about thez-axis. The angle of rotation for each has been de-
termined using a random number generator with three different initial seeds. All
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Figure 7.5: Logarithmic root-mean-square (r.m.s.) relative errors in acceleration,
〈‖∆a‖2/‖a‖2〉1/2. We show the results of the treecode (full circles), GRAPE-5
(open circle) and GRAPE-3 (open square). For the GRAPE results we give the
corresponding opening angle for the treecode.

models have been run on the GRAPE-3 and with the treecode, using opening angles
θ=0.1, 0.2,. . ., 1.0. The results are discussed in Sec.7.4.2.

7.4.1 Accuracy in the force calculations

The accuracy of the force calculation in treecode simulations is determined by the
opening angleθ. In order to provide a comparison between the GRAPE and the
treecode simulations, we first compare the accuracy in the force calculation. There-
fore we select a snapshot (t=100) from the G5 simulation of model I0 and calculate
the total gravitational forces for the stellar disc particles using a direct summation
method, giving us areferenceforcea0, wherea0 =

∑N
i=1 ai. Then we repeat the force

calculation for the same snapshot using the G3, G5 and the treecode with opening
anglesθ= 0.1, 0.2, . . . , 1.0. We than calculate the root-mean-square (r.m.s.) errors
of the forces, as defined by:

σ∆a =

(
|a− a0|2

|a0|2

)1/2

. (7.5)

We show the results in Fig.7.5, where we plot the logarithmic r.m.s. relative errors
as a function oflog θ. We find that the error in the force calculation increases
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Figure 7.6: Comparison of the treecode models with the deduced opening angles
for G5 (θ=0.15, upper panel) and G3 (θ=0.66, lower panel).

linearly in this plot, which is in agreement with the results of Barnes & Hut (1989).
From our graph we can now look up theθ corresponding to the accuracy of G3 and
G5, which givesθ= 0.66 and0.15, respectively. In order to check this prediction,
we run two treecode simulations of our reference model with these opening angles
and compare the results with the ones from G3 and G5 (see Fig.7.6). We find
that the simulation withθ = 0.66 fairly reproduces the G3 result of our reference
model. The simulation withθ=0.15, however, does not reproduce the G5 result as
expected, though in the early phase (up tot≈120) it shows a similar evolution.

7.4.2 Treecode with different opening angles

In this section we describe a set of simulations using the treecode with opening
anglesθ = 0.1, 0.2, . . . , 1.0 in order to study the influence of the accuracy of the
force calculation on the evolution ofΩp. We create three more model realisations
based on our reference model I0, following the description in Sec.7.2.3, to further
check the influence of theintrinsic numerical noise in the initial conditions. For the
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Figure 7.7: Model with different initial positions and velocities using different ini-
tial random seeds. The figure shows the results of the GRAPE-3 simulations. The
reference model from GRAPE-3 and GRAPE-5 are shown for comparison.

latter, we first run simulations using the GRAPE-3 hardware with the new models
I1, I2 and I3. In Fig.7.7 we show the bar’s pattern speed as a function of time
in these models. We find some deviations in pattern speed in the early phases of
evolution (i.e., phase I and II), but thenΩp converges at later times to a pattern
speed which is smaller than in the G5 run of model I0. Thus the change in the
particles initial positions results in a different evolution of the pattern speed.

In Fig. 7.8 we show the pattern speed of the four models, using this time the
treecode with different opening anglesθ= 0.1, 0.2, . . . , 1.0. As can be seen in this
plot, the scattering ofΩp between the four realisations increases in simulations with
a lower accuracy in the force calculation, i.e. with increasingθ. In order to quantify
this result, we calculate the mean deviation ofΩp for the simulations in the four
phasesk=I, . . . , IV, as defined in Sec.7.3. We therefore define the mean deviation
as:

σk =
1

2 ∆tk

3∑
i,j=0

|Ωi
p − Ωj

p|k , (7.6)

where∆tj is the time interval of each phase. Furthermore we calculate the time-
integrated deviation as:

σT = σI + σII + σIII + σIV (7.7)

We use the corresponding definitions for calculating the mean deviation of the bar’s
amplitude. In Figs7.9and7.10we showσj andσT of the simulations with different
θ. While simulations withθ ≤ 0.5 have relatively low deviations, which is roughly
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Figure 7.8: Pattern speed of the four model realisations as a function of time. The
simulations have been run with the treecode using different opening angles as given
in the lower right of each panel. The results of the GRAPE-3 and GRAPE-5 refer-
ence model are plotted by a thin full line and a dotted line, respectively.

constant for those runs, the deviation for largerθ starts to increase approximately
linearly. Assuming a gaussian-like distribution of the values ofΩp, the errors with
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Figure 7.9: Mean deviationσj of the bar strength (upper panel) and pattern speed
(lower panel) in each phase (as defined in the text) for the different model real-
isations. Simulations with different opening angles are marked by the different
symbols as given in the plot.

respect to thetruegaussian average should be proportional to the width of the gaus-
sian. Thus the average of the results of the largeθ simulations gives a much poorer
estimate of the true average than the corresponding one for a smallθ. For an equal
accuracy, more realisations for largeθ would be required. This might explain the
off-set result for the models withθ=0.9 in Fig. 7.10.

7.5 Further numerical tests

7.5.1 Treecode with and without quadrupole terms

The treecode simulations presented so far in this work have been neglecting the
quadrupole terms in the force calculation. We thus run a test with our reference
model I0 using the treecode with an opening angle ofθ=0.7, taking the quadrupole
moment into account. In Fig.7.11 we show a comparison of the runs with and
without quadrupole terms. We find that the higher accuracy in the force calculation
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Figure 7.10: Time-integrated deviationsσT of the bar strength (upper panel) and
pattern speed (lower panel) integrated over the four phases as a function of the open-
ing angle. The deviation from the GRAPE-3 simulations is given by the horizontal
dotted line.

(with quadrupole terms) results in a different evolution ofΩp, being closer to the
G5 result. This results is in agreement with the fact, that the evolution of the bar is
sensitive to the accuracy of the force calculation.

7.5.2 Treecode with different time-step limits

The time stepping affects the results mainly in terms of energy conservation. We
run different simulations with the treecode and GRAPE-3, varying the maximum
and minimum system time-steps,τmax and τmin, respectively. Fig.7.12 shows
the pattern speed of two runs with different maximum system time-steps using the
treecode. We do not find any significant differences between the two models, al-
though the pattern speed in the model withτmax = 0.05 seems to increase slightly
again at the end of the run. We also checked if the minimum time-step affects the
pattern speed in the simulations. The results of these runs are shown in Fig.7.13.
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Figure 7.11: Comparison of treecode simulations of model I0 withθ= 0.7. Panels
(a) and (b) show the results without and with quadrupole terms in the force calcula-
tion, respectively. The results of the G3 (dashed line) and G5 (dotted line) runs are
shown for comparison.

7.6 Properties of the bars

As we have shown in Sec.7.4.2, the evolution of the disc is affected by theintrinsic
numerical noise in theN -body/SPH model realisation. So far we have mainly con-
centrated on the evolution of the bar’s pattern speed with respect to the numerical
accuracy of the code and the hardware. In this section we now discuss the properties
of the bar and the disc in general.

In Fig.7.14we show the bar strength and the pattern speed as a function of time,
along with the logarithmic surface density of the gas (roughly within the inner kpc)
at the end of the simulations as a function of radius. We have arranged the plot such
as to compare simulations with different opening angles. As can be seen in the plot,
both the bar strength and the pattern speed show a different evolution for the same
model. We note that the deviation of the three quantities is minimum for model I3.
This indicates that the variations inΩp depend on both the opening angle and the
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Figure 7.12: Treecode with an opening angle ofθ = 0.5 and different maximum
system time-stepsτmax. Panel (a) and (b) show the pattern speed for runs with
τmax = 1.0 and τmax = 0.05, respectively (full lines). The results of GRAPE-3
(dashed line) and GRAPE-5 (dotted line) are shown for comparison in both panels.

intrinsic noise of the model.
Models which show strong deviation from themeanevolution also show con-

spicuous differences in the central gas mass distribution. As can be seen from
Fig. 7.8, both the pattern speed and the bar strength stay roughly constant approxi-
mately aftert= 150 in most of the simulations. We therefore calculate the average
of Ωp andSB from t= 150 till the end of the run for each simulation. Furthermore
we calculate the central gas mass within a radiusR = 0.3, which is just outside
the circumnuclear gaseous disc formed in the models. The results are then plotted
versus the opening angleθ in Fig. 7.15. From this plot, however, we cannot find an
obvious correlation between the central gas mass and the evolution of the bar. Thus
the evolution of the bar seems to be dependent on the density profile of the gas (or
vice versa) rather than on the absolute amount of gas in the central region of the
disc. We do find a roughly linear correlation between the central gas mass and the
pattern speed of the bar, as shown in Fig.7.16.
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Figure 7.13: Models with different minimum system time-stepsτmin. The panels
(a) to (d) shows the result of the GRAPE-3 and the treecode simulations (withθ=
0.5), respectively. The minimum system time-steps (τmin = 0.04, 0.02 and 0.01)
used in the runs are given in the lower right of each panel. The results of thedefault
GRAPE-3 and GRAPE-5 models are shown with a thin full line and dotted line,
respectively, for comparison.
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Figure 7.14: Bar strength, pattern speed and logarithmic surface density for the
models with different initial seeds. The different colors represent simulations with
different opening anglesθ (0.4, 0.5, . . . 1.0). Lower theta runs are not yet included.
Also the y-axis labels for the density have to go to the other side.

Athanassoula (2003) found, using pureN -body simulations, a correlation be-
tween the bar strength and the pattern speed of bars in isolated disc galaxies. The
author argues, that the evolution of bars in isolated disc galaxies is driven by the
redistribution of angular momentum and that the strength and the pattern speed of
the bar are determined by the amount of angular momentum exchanged. The main
difference between her models and the one presented in this work is that we have
an additional gas component in the disc. The gas can dissipate energy and loose
angular momentum in the inner regions. In order to compare the properties of the
bars formed in our models to the ones in the purely stellar models, we first calibrate
our model units appropriately, as proposed in Athanassoula & Misiriotis (2002).
We then compare them to the ones in Athanassoula (2003). The result is shown in
Fig. 7.172. We find a similar correlation between the bar strength and the pattern

2Care is needed when evaluating the plot, because the results of Athanassoula (2003) represent
different models, while our results are based on four realisations of the same model with different
numerical accuracy.
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Figure 7.15: Bar strength, pattern speed and central gas mass (withinR= 0.2) for
the four realisations versus the opening angle used in the treecode simulations. Note
that forθ=0.3 only one model has been run and so only a single point representing
it is shown.

speed, which is, however, slightly off-set from the one in the purely stellar models.
We associate this difference with the presence of the dissipative component in our
models.

7.7 Discussion

The set of simulations presented in this work shows that the pattern speed of the bar
can show variations of up to13 per cent between the different runs. These variations
are due to more than one numerical effect, which are difficult to disentangle.

There is theintrinsic numerical noise in the models, which can result in a dif-
ferent evolution of the bar (Figs7.7 and 7.14). Because of the large number of
simulations presented in this work, we used a relatively low number of particles
in our models3. This discreteness effect can probably be significantly reduced in
models with largerN . Thus the value of largerN models for even basic studies of
disc evolution is clear.

There are also effects which are directly related to the numerical accuracy of
the code and the hardware used. One aspect of this is the accuracy of the force cal-
culation in the simulations, because it directly affects the momentum conservation

3The simulations presented in this work took several week/month on modern work-stations.
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Figure 7.16: Pattern speed versus central gas mass (withinR < 0.3) at the end
of each run. Sets of models with different initial seeds are represented by black
squares, red stars, blue triangles and green circles. The corresponding GRAPE sim-
ulations are represented by open circles with a cross (GRAPE-3) and a dot (GRAPE-
5). Opening angles are given for some of the simulations below the corresponding
symbols.

Figure 7.17: Bar strengthSB versus pattern speedΩp in units used by Athanassoula
& Misiriotis (2002). The dots and bullets show the results of the isolated models
of Athanassoula (2003) and of our four model realisations using the treecode with
different opening angles.
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in the models. For the GRAPE hardware, which is often used for galactic and cos-
mological simulation, the accuracy is fixed by the hardware itself. The GRAPE-5
is about ten times more accurate than its progenitor GRAPE-3 (see Fig.7.5). This
difference alone shows a clear impact on the evolution of the bar’s pattern speed
(Fig. 7.1) in our models. The deviation ofΩp also shows a clear correlation with the
numerical accuracy when using the treecode (Fig.7.10), in which we can vary the
accuracy of the force calculation by means of the opening angleθ. The results are in
agreement with the assumption of a gaussian-like distribution for the deviations in
Ωp. This is however based on only four different models and additional simulations
will be required to fully test this hypothesis. The deviation ofΩp in the different
simulations increases linearly for opening anglesθ≥0.5, and thus a relatively small
θ is required to minimize the influence of the force calculation. Another approach
to increase the numerical accuracy is to take the quadrupole terms in the force cal-
culation of the treecode into account. So far, we have only one simulation of this
kind available, but the result is in agreement with our previous finding that the force
accuracy strongly affects the evolution of the bar.

Another aspect is the time-stepping scheme used in the simulations. Changing
the time-stepping scheme, i.e. using different minimum and maximum system time-
steps – which affects the energy conservation in the simulations – also leads to a
different evolution ofΩp (Figs7.12).

To summarize, a combination of different numerical effects has a significant in-
fluence on the evolution ofΩp and numerical simulations of small or even moderate
N do not allow a robust determination of the pattern speed.

7.8 Summary

In this work we present a systematic study of the influence of numerical effects
on the evolution of the pattern speed of bars in fully self-consistentN -body/SPH
simulations. We have applied different numerical schemes for computing the grav-
itational forces, such as a treecode or the GRAPE hardware. We found that the
evolution ofΩp is very sensitive to both the intrinsic numerical noise of the model,
as well as to the numerical accuracy of the method used. The superposition of these
effects lead to an uncertainty of roughly 13 per cent inΩp for models with less
than a few tens-of-thousands of particles and/or moderate force computations. We
conclude that largeN and high force accuracy are required for making a robust
determination ofΩp.
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7.11 Appendix: Shocks in a polytropic gas

The continuity conditions for a shock at rest are obtained from the conservation of
mass, momentum and energy given by:

ρ1 v1 = ρ2 v2 ≡ j (7.8)

p1 + ρ1 v
2
1 = p2 + ρ2 v

2
2 (7.9)

and

w1 +
1

2
v2

1 = w2 +
1

2
v2

2 (7.10)

whereρ, p, w andj are the density, the pressure, the enthalpy and the mass flux of
the gas, and the indicesi= 1, 2 denote the supersonic and the subsonic part of the
gas. From these equations we get the equation of a shock adiabate (or Hugoniot-
Rankine adiabate;Rankine 1870; Hugoniot 1885), which is given by

w1 − w2 +
1

2
(V1 + V2)(p2 − p1) = 0, (7.11)

whereV is the specific volume of the gas, given byV = 1/ρ. For a polytropic gas,
i.e. with a constant specific heat capacitycp, the enthalpyw is given by:

w = cp T =
γ

γ − 1
p V =

c2
s

γ(γ − 1)
, (7.12)

wherecs is the sound speed,γ the adiabatic index, andT the temperature of the gas,
respectively. From Eq.7.11we then get:

V2

V1

=
(γ + 1) p1 + (γ − 1) p2

(γ − 1) p1 + (γ + 1) p2

(7.13)

Using this relation we can now derive the ratios of density, pressure and temperature
for the shock wave. With the definition of the Mach numberMa = v/cs we obtain:

ρ2

ρ1

=
v2

v1

=
(γ + 1) Ma2

1

(γ − 1) Ma2
1 + 2

, (7.14)
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Figure 7.18: Systematic illustration of the initial set-up of the collision of two
gaseous sheets.
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Figure 7.19: Illustration of the initial set-up of the collision of two gaseous sheets.
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and

T2

T1

=
[2γMa2

1 − (γ − 1)][(γ − 1) Ma2
1 + 2]

(γ + 1)2Ma2
1

. (7.16)

With these results we can now describe the collision between two isothermal
sheets of gas, which collide with a relative velocity of2 v0 = 2 Ma (see Fig.7.18).
This problem is equivalent to a gas with constant density and pressure, which is
initially at rest, and bounded on the left by a plane piston. We further assume that the
gas is compressed at an initial time by the piston moving into the gas with a constant
velocity u, equal to the gas velocity. IfD is the propagation velocity of the shock
through the stationary gas, thenv2 = −D is the velocity at which the undisturbed
gas flows into the discontinuity. Likewise,D − u is the propagation velocity of the
discontinuity with respect to the gas moving behind it, andv1 = −(D − u) is the
velocity of the gas flowing out of the discontinuity.
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In this notation we finally get

v2

v1

=
−D

−(D − u)
(7.17)

ρ2

ρ1

=
(γ + 1)Ma2

1

(γ − 1)Ma2
1 + 2

(7.18)

=
(γ + 1)D2

(γ − 1)D2 + 2c2
s,1

, (7.19)

where we usedMa2
1 = v2

1/c
2
s,1 = D2/c2

s,1. In Fig.7.20we show the evolution of the
shock as a function of time.
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Figure 7.20: Evolution of the shock wave.
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8. Summary and prospects

The evolution of disc galaxies is driven by both internal and external processes,
such as bars and interactions. Both these phenomena are now known to be common
events in the life of disc galaxy. Thus interactions of barred galaxies should also be
a common occurrence. However, numerical simulations of interacting disc galaxies
have mainly concentrated on normal spiral galaxies only, i.e. without a central
stellar bar.

The presence of gas has also been shown to be important to the dynamical evo-
lution of barred galaxies. The inflow of gas due to the gravitational torques of bar
and the resulting increase in the central gas concentration will weaken or destroy the
bar. As the bar slows its structure and pattern speed has been shown to change. It is
therefore expected that the inclusion of gas in models of barred galaxy interactions
would be an important, if not critical, dynamical component.

In this work we have studied the effect of interactions between a gas-rich,ini-
tially barred galaxy and a companion galaxy by means of fully self-consistent nu-
merical simulations. We modified anN -body/SPH code to handle multiple galaxy
systems, along with the inclusion of additional routines to support both the GRAPE-
3 and GRAPE-5 hardware. Furthermore, several algorithms have been developed
to set up the initial models and interaction configurations. Part of the simulations
presented in this work have been performed on the Göttinger GRAPE-3 facilities,
which is funded by theDeutsche Forschungsgemeinschaft(DFG) for this project.
The hardware has been set up and fully maintained by the author.

8.1 Vertical impacts of small companions

In the first part of this work (Sec.5) we have performedN -body/SPH simulations
of an interaction between an initially barred galaxy and a less massive spherical
companion. The initial conditions for the galaxies have been chosen such that the
companion passes almost vertically through the disc of the host galaxy, leaving
the host system following the impact. Both the impact time and the impact posi-
tion have been varied with respect to the orientation of the bar and its evolutionary
phase. The initial models and parameters in our simulations have been chosen to
be similar to the ones used by Athanassoula, Puerari & Bosma (1997) in order to
provide a direct comparison with their purely stellar simulations. These purely col-
lisionless simulations have shown that off-centred impacts of a sufficiently massive
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companion hitting the inner parts of a barred disc galaxy can displace the bar to one
side, causing asymmetries and the formation of rings.

We find that the interactions produce characteristic features, such as expanding
rings, tidal arms and off-centred bars, as observed in many interacting galaxies.
In order to analyze the models accurately, we have developed several tools, e.g.
for tracing the off-centred bars and the expanding rings automatically. We also
developed graphical tools to study the 3D morphology of the galaxies. The features
produced by the interaction remain in the disc for only a few dynamical times, in
agreement with what is found in previous purely stellar simulations. The gaseous
features in our models, however, tend to persist longer than their stellar counterparts,
though after about 1 Gyr both of them are dissolved.

The most striking feature produced in our central-impact models are the expand-
ing rings. Owing to the passage of the companion through the disc both radial and
vertical oscillations in the disc are excited. The induced radial oscillatory motion
of the particles produces expanding density ring-waves (see, for example,Lynds &
Toomre 1976) centred on the impact position, while the vertical oscillations lead
to an increase of the vertical velocity dispersion and a significant thickening of the
disc. The same type of vertical motion can be seen in the numerical models by
Lynds & Toomre (1976) and also in Mihos & Hernquist (1994b). While only two
rings form in the stellar disc, we find several consecutive expanding ring features in
the gas. The gas fragments that detach from the inner side of the first ring flow back
to the central disc region and are sheared out by the differential rotation of the disc,
forming several spokes between the two collisional rings (Hernquist & Weil 1993).

In contrast to central impacts, the off-centred passages produce outward-expan-
ding ring-like density waves not in the form of closed rings, but as long tidal spi-
ral arms whose extent exceeds the initial disc cut-off radius. These tidal arms are
present for a few dynamical times in our simulations, before they dissolve and the
material in the arms is redistributed in the disc. We furthermore find that the bar
gets off-centred in these simulations, which is in agreement with the results by Ger-
ber & Lamb (1994, 1996), Athanassoula (1996a) and Athanassoula et al. (1997).
Asymmetries of this type are frequently found in disc galaxies, particularly in late-
type galaxies (see, for example,de Vaucouleurs & Freeman 1972; Odewahn 1996).
While this kind of asymmetry could be produced by strongm = 1 modes in the
disc, we find that an off-centred impact of a companion galaxy should generally
give rise to more significant shifts, depending on the impact parameters. The size
of the displacement found in our models is in good agreement with the relative dis-
placement parameter found by Feitzinger (1980) for Magellanic-type galaxies. The
off-centring of the bar is also accompanied by asymmetries in the spiral structure.
The morphology of the discs with off-centred bars in our simulations is dominated
by one long spiral arm, which forms after the impact by an expanding density wave,
in agreement with the results of Athanassoula (1996b) and with the morphology of
several asymmetric barred galaxies as, e.g., NGC 4027. In all our models with off-
set passages we notice a strong displacement of the bar structure for approximately
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0.6 Gyr, independent of the evolutionary phase of the bar at impact time.
Central impacts and passages through the bar minor axis cause more damage to

the bar than major axis impacts. In the central impact models the destruction of the
bar is accompanied with a considerable thickening of the disc. For the minor axis
impacts it is possible to destroy the stellar bar, while keeping the disc. This is in
contrast to the pureN -body simulations, where an interaction of sufficient strength
to destroy the bar also destroys the disc (Athanassoula 1996b), i.e. the ratio between
the vertical and the radial scale-heights is greatly increased. The impact time itself,
or correspondingly the dynamical phase of the disc, does not play a significant role
in determining the final morphology of the disc. In most of our simulations, the
stellar bar is destroyed after the impact of the companion. The dense nuclear disc
and the surrounding gap in the gas distribution are the only morphological imprints
that survive the interaction, even after the bar has dissolved. Such features in a
non-barred galaxy may indicate the former existence of a bar.

We conclude that the fate of the bar is more sensitive to the impact location of
the companion relative to the bar than to the evolutionary phase of the bar during
impact. We finally argue that the interaction with a companion can drive the transi-
tion from a strongly-barred galaxy to a weakly-barred galaxy on shorter time-scales
than those found in isolated models.

8.2 The regeneration of bars

Numerical simulations of isolated barred galaxies including a gaseous component
have shown that the bar in the disc can be significantly weakened or dissolved dur-
ing its evolution on relatively short time-scales. Thus the question has arisen if
there are different epochs of bar formation and if stellar bars can be regenerated in
order to explain the number of barred galaxies observed along the Hubble sequence
(Sellwood & Moore 1999; Friedli 1999; Athanassoula et al. 2000). Two scenar-
ios have been suggested for the regeneration of stellar bars by Sellwood & Moore
(1999), i.e. by adding cooler material to the disc or by the tidal interaction with a
companion galaxy. Numerical simulations have shown that bars can be triggered
in initially non-barred galaxies by tidal interactions, and that those bars are slow
rotators, while the spontaneously formed bars have higher pattern speeds. The pres-
ence of aformer stellar bar, however, will changed the dynamics of the disc, for
example increasing the velocity dispersion in the stellar disc and changing both the
density and angular momentum distribution. Therefore, the regeneration of stellar
bars is subject to different conditions than the formation of a bar in an bar-unstable
isolated disc or in a tidal interaction. It has been unclear what kind of interactions
are sufficient to regenerate the bar and what the properties of those bars would be.

In the second part (Sec.6) of this work we therefore have used numerical simu-
lations to investigate the regeneration of a stellar bar by tidal encounters. The host
galaxy in our simulations again has been chosen to be initially bar unstable and
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forms a large-scale bar during its early evolution. Owing to the induced gas in-
flow the bar weakened significantly before the interaction with the companion takes
place. We have used different masses and orbits for the companion in order to cover
as wide a parameter range as possible for the interactions . Furthermore we have
used two different host galaxies, one with and one without gas in order to elucidate
the influence of the gas.

We find that tidal interactions, which are sufficiently strong to regenerate the bar
in the purely stellar models, do not lead to a regeneration in the dissipative models.
We argue that owing to the interaction, additional gas is driven towards the centre of
the disc, which prevents the regeneration process. To analyze the bars we developed
several tools to trace and classify individual orbits of the stellar particles.

The regenerated bars in our purely stellar simulations are long-living phenom-
ena and by no means only transient, being in agreement with the results of Noguchi
(1987) and Gerin et al. (1990). We argue that (regenerated) bars formed by in-
teractions may indeed contribute to the number of barred spirals at high redshifts
and in the local Universe (Sheth et al. 2003). Furthermore, the regenerated bars
are generally slow-rotators and have lower pattern speeds than the bars in the corre-
sponding isolated models, in agreement with what is found for tidally induced-bars
in normal spiral galaxies (Miwa & Noguchi 1998). We find a strong correlation be-
tween the strength and the pattern speed of the bar. This correlation is also in very
good agreement with the correlation found for bars in isolated discs (Athanassoula
2003). This is one of the pieces of evidence indicating that the regenerated bars are
qualitatively similar to those formed in isolated discs and thus cannot easily (if at
all) be distinguished by comparing their dynamical properties.

Athanassoula (2003) argued that the evolution of bars in isolated disc galaxies
is driven by the redistribution of angular momentum. These recent results argue
strongly that the strength and the pattern speed of the bar are determined by the
amount of angular momentum exchanged. In our models we find that the strength
of the regenerated bars increases with the interaction strength. Owing to the tidal
perturbation, angular momentum is removed from the disc. In fact, the whole disc
within its initial cut-off radius loses angular momentum, in contrast to what is found
for an isolated disc, where the corotation radius of the bar separates the disc into
regions of angular momentum loss and gain (Athanassoula 2003). The amount
of angular momentum removed from the disc shows a clear correlation with the
interaction strength. We argue that the main effect of this angular momentum loss
is a significant extension of the region where bar-supporting orbits exist, resulting
in a lengthening of the bar. As a further, though somewhat less important effect, we
find a thinning of both the bar-supporting orbits and the bar itself.

We finally conclude that the regeneration of stellar bars by galaxy interactions
seems to be a reasonable mechanism, provided the external forcing is sufficiently
strong.
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8.3 Numerical accuracy of pattern speeds

With the GRAPE-5 hardware becoming available, we performed a comparison of
simulations of identical models using both the GRAPE-3 and the GRAPE-5. We
find that although the morphological evolution of the disc was in qualitative agree-
ment, the evolution of the bar’s pattern speed showed differences of up to 13 per
cent between the two machines. Since the pattern speed is one of the main parame-
ters characterizing the dynamical properties of the bar and disc, the reliability of its
measurement in numerical models is an important issue.

Thus we have presented in Sec.6 the first systematic study of numerical effects
on the accuracy of the pattern speed of isolated barred models. We show that the
variations ofΩp found in our models result from a mix of different numerical effects,
which are difficult to disentangle.

On the one hand there is theintrinsic numerical noise in the models, which can
result in a different evolution of the bar. This noise owing to discreteness effects
can likely be reduced with higher particle number. On the other hand, there are
effects which are directly related to the numerical accuracy of the code and the
hardware used. One aspect of this is the accuracy of the force calculation used in
the simulations. The deviation ofΩp shows a clear correlation with the numerical
accuracy when using a treecode and the different GRAPE machines. The results
found are generally in agreement with the assumption of a gaussian-like distribution
for the deviations inΩp. This is however based on only four different models and
further simulations are required to improve the statistics.

Another important aspect is the time-stepping scheme used in the simulations.
Changing the time-stepping scheme also leads to a different evolution ofΩp.

To summarize, a combination of different numerical effects have a significant
influence on the evolution ofΩp and numerical simulations of moderateN or accu-
racy do not allow a robust determination of the pattern speed.

8.4 Future research

We have studied the effects of an interaction on the evolution of gas-rich barred
galaxies, describing how interactions effect the evolution of the bar and the in-
terstellar medium in the disc. In this work we have restricted ourselves to certain
geometries of the interaction and to relatively fast passages, for which the two galax-
ies do not finally merge. However, numerical simulations have shown, that minor
mergers also affect the evolution of disc galaxies in many ways, without actually
destroying the disc. Purely stellar simulations of minor merger models with barred
galaxies have shown that such an event can lead to the destruction of the bar and
may result in the formation of alens(Athanassoula 1996a; Athanassoula 1996b).
Thus it would be interesting to study the effect of the accretion of either gas clouds
or small companions on the evolution of gas-rich barred galaxy.
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Purely stellar simulations have shown a clear correlation between the pattern
speed and the bar strength due to angular momentum transport within the disc and
between the disc and the spheroidal components of the galaxy. These results, how-
ever, did not take the gaseous component into account, which would have a strong
effect on the angular momentum transfer in the disc. It would be interesting to com-
pare the properties of bars in gas-rich barred galaxies with the ones of the purely
stellar models of Athanassoula (Athanassoula 2003).

The present work has emphasized the importance of the interstellar medium on
the evolution of interacting barred galaxies. The gas, however, may be partially
consumed by star-formation, which is likely to affect the evolution of the disc. The
next step after studying the effects of the gaseous component alone would to include
star-formation, with the accompanying gas consumption and energy feedback.

Star-formation may provide further interesting aspects in the evolution of colli-
sions with barred galaxies. As we have shown in the simulations of vertical impacts,
the final face-on morphology of the gaseous disc – in which the differences are more
clear than in the stellar – the interacting and non-interacting models can hardly be
separated. This might become possible from models including star formation, e.g.,
from the resulting colour/metallicity gradients.
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III Appendices





A. Astronomical units and constants

Constants relevant for this work:

Gravitational constant G 6.672(4)×10−8 cm3 g−1 sec−2

Mass of hydrogen mH 1.6733×10−24 g
Boltzmann’s constant kB 1.38066(4)×10−16 erg K−1

Parsec pc 3.08567802(2)×1018 cm
Solar mass M� 1.989(2)×1033 g
Hubble constant H0 100h km s−1 Mpc−1 where0.5<h<1
Hubble time H−1

0 9.78 h−1 × 109 yr

Table A.1: Units and constants

Reference: Binney & Tremaine (1987)
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B. Documentation for the GöttingerN -body/SPH code

B.1 Input files

FTM.NML Simulation parameters namelist.
FTM.MSG Message text. Copied to output fileFTM.TXT (optional).
FTM.MDL Model data.

B.2 Output files

FTM.TXT Informational and diagnostic text.
FTM.DMP Model diagnostic data dump.
FTM.RST Model restart file. Same asFTM.MDL , but with additional data.

Needed for restart appended to end of file. May be renamed to
FTM.MDL for restart.

FTM.ACC Accretion diagnostics.
FTM.SFM Star formation diagnostics.

B.3 Input parameters (FTM.NML )

MODEL ascii Model file specification. All input, exceptFTM.NML ,
and all output files use this file name.MODEL= ’ftm’
in this document.

SELFGRAV logical Gas self-gravity switch.
KERNEL3D logical SPH kernel dimension.

.FALSE. 2D

.TRUE. 3D
QUADPOLE logical Gravitational quadrupole-moment switch.
DYNSOFT logical SPH dynamic gravitational softening.

.FALSE. EPS = SOFT_GRV

.TRUE. EPS = SPH smoothing length
SWITCH logical Artificial viscosity "switch".
XSPH logical SPH marching velocities switch.
EXTPOT logical External gravitational potential switch.

ExecutesEXTINIT on startup andEXTFORCE
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during force evaluation. SeeEXTFORCE.F.
ACCRETE logical Central accreting object switch.

If RESTART= 0, initializes stellar particle
as central accreting object.

STARFORM logical SPH star formation switch.
MASSLOSS logical Stellar mass loss switch.
DAMPING logical Damping term switch.

Used to produce equilibrium gas models.
STEPPING integer Time stepping method.

0 - Single time-step
STEP_MIN= time-step size
STEP_MAX= log output step size

1 - Hierarchical time bins
STEP_MIN= minimum step size for stars
STEP_MAX= maximum or system step size

RESTART integer Simulation restart indicator.
0 - No restart; time = 0.0
1 - Restart;FTM.MDL contains restart data
2 - No restart; time = 0.0, shift to c-of-m
3 - No restart; time = 0.0, smooth fields

EQSTATE integer Equation of state indicator.
1 - Perfect gas; p = (GAMMA-1) ·ρ· u
2 - Polytropic; p =POLY_CON· ρ ** GAMMA
3 - Isothermal; p =POLY_CON**2* ρ

EQVISC integer Artificial viscosity indicator.
1 - v · r type
2 -∇ · v type

DUMPINDX integer Dump file format indicator.
1 - class , state , mass , x , v
2 - 1 +eps , phi , f
3 - 1 + 2 +u, d, divv , udot1 , udot2 , h

See Data Base section for explanation of variables.
DATAFRMT integer Floating point format indicator.

1 - IEEE
2 - IBM

TranslatesFTM.MDL file into native format, writes
ftm.rst file in native format; always writes
ftm.dmp file in IEEE format.

TIME_TXT real Textual information output time-step.
Energy diagnostics output to stdout andFTM.TXT.
Should be divisible bySTEP_MAX.

TIME_DMP1 real Stellar dump file output time-step.
Full or partial dump selected byDUMPINDX.

186



B.3. INPUT PARAMETERS (FTM.NML )

Should be divisible bySTEP_MAX.
TIME_DMP2 real Gas dump file output time-step.

Full or partial dump selected byDUMPINDX.
Should be divisible bySTEP_MAX.

TIME_RST real Restart file output time-step.
Should be divisible bySTEP_MAX.

TIME_END real End time of simulation.
Should be divisible bySTEP_MAX.

STEP_MAX real Maximum system time-step.
STEP_MIN real Minimum time-step for collisionless particles.
ZONE_MX1 real Outer removal zone one.

Particles greater than this distance from c-of-m of
system and having positive energies are removed
from the simulation.

ZONE_MX2 real Outer removal zone two.
Particles greater than this distance from c-of-m of
system are removed from simulation.
UsuallyZONE_MX1< ZONE_MX2.

ZONE_MIN real Accretion radius of central object.
TOL_GRAV real Gravitational tolerance in tree algorithm (theta).

UsuallyTOL_GRAV<= 0.8.
TOL_BODY real Time-step tolerance for stellar particles.

UsuallyTOL_BODY< 0.05.
TOL_SPH real Time-step tolerance for SPH particles.

UsuallyTOL_SPH<= 0.3.
RAD_INIT real Initial SPH smoothing length.

Assigned to particles at initialization ifRAD_INIT
not equal to zero, else smoothing lengths from
model file (FTM.MDL ) used.

RAD_INCR real SPH smoothing length increment.
Used in iterative neighborhood routine if number
of neighbors equals zero. Usually set equal
to about 10% of system size.

SOFT_GRV real Gravitational softening length.
eps = SOFT_GRVif non-zero. Not used by SPH par-
ticles, if DYNSOFT= .TRUE. (eps(i) = h(i) ).

SOFT_MIN real Minimum gravitational softening length.
Used only ifDYNSOFT= .TRUE.

GAMMA real Ratio of specific heats.
POLY_CON real Polytropic constant.

Used by equation of state. Equals sound speed if
isothermal. SeeEQSTATEabove for more details.

XSPH_CON real XSPH constant. 0< XSPH_CON< 1.
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SFM_DMAX real Star formation maximum gas density.
Star formation is triggered when rho> SFM_DMAX
and∇ · v < 0.

SFM_EFCY real Star formation efficiency factor.
Typically 0.02< SFM_EFCY< 0.5.

SFM_RTRN real Star formation mass return factor.
Typically SFM_RTRN= 0.45.

SFM_SNII real Number of SNII per unit mass.
Typically SFM_SNII = 0.002 per solar mass.

SFM_ENGY real Energy per SNII.
Typically SFM_ENGY= 1051 ergs.

SFM_THRM real Star formation thermalization factor.
SFM_WIND real Star formation wind factor.
SFM_ZYLD real Star formation metal yield per unit mass.
SFM_GMIN real Minimum SPH particle mass.

Typically 5% of SPH initial particle mass.
MLS_GMAS real Mass loss SPH particle mass.
MLS_NMIN real Mass loss minimum number of particles.
VISC_P1 real Artificial viscosity parameter one.

Typically VISC_P1 = 0.5 forEQVISC= 1 or 2.
VISC_P2 real Artificial viscosity parameter two.

Typically VISC_P2 = 1.0 forEQVISC= 1.
Typically VISC_P2 = 1.5 forEQVISC= 2.

DAMP_CON real Damping factor.
Used to obtain equilibrium gaseous models.
Typically DAMP_CON= 0.3.

B.4 Model and diagnostic data

class integer*4 Index assigned to each particle.
Used to both uniquely identify and classify
individual particles.
For compatibility with GALPLOT graphics:
class< -100,000 Stellar halo particle
-100,000<= class< 0 Stellar disk particle
class = 0 Central BH
0< class SPH particle

state integer*2 Bit map indicating state of particle.
Currently only used to indicate SPH particle
undergoing starformation:

0 - No starformation
1 - Starformation
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mass real*8 Mass of particle.
eps real*8 Gravitational softening length of particle.

Read in fromFTM.MDL file.
Set equal toSOFT_GRV, if non-zero.
For SPH particles, set equal to smoothing length
if DYNSOFTequals.TRUE. .

x real*8 Position vector of particle.
v real*8 Velocity vector of particle.
phi real*8 Gravitational potential of particle.
f real*8 Acceleration vector of particle.
u real*8 SPH Internal energy per unit mass.
d real*8 SPH gas density.
divv real*8 SPH divergence of velocity field.
udot1 real*8 SPH du/dt adiabatic component.
udot2 real*8 SPH du/dt viscous component.
h real*8 SPH smoothing length.

B.5 Compile time parameters (PARAM.F)

MXBODY1 Maximum number of collisionless (stellar) particles.
MXBODY2 Maximum number of collisional (gaseous) particles.
NEIOPT Optimum number of SPH neighbors.
NEITOL Neighbor tolerance. The actual number of neighbors,NEI ,

is allowed to vary fromNEIOPT-NEITOL to NEIOPT+NEITOL.

B.6 Model data input file format (FTM.MDL )

The following is an example FORTRAN code section illustrating the format of a
model input file:

parameter (NBDY=150000)
integer*2 istate
integer class(NBDY)
real*8 x(3,NBDY),v(3,NBDY),mass(NBDY),

& eps(NBDY),u(NBDY),h(NBDY)
character*60 title
data title/’Disk-Halo Fall-Efstathiou Galaxy Model’/

c
c title Model description
c ifrmt Floating point format
c n1 Number of stellar particles
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c n2 Number of gaseous particles
.
.
.

c
open (1,file=’ftm.mdl’,form=’unformatted’)

c
istate = 0
ifrmt = 1

c
write (1) ifrmt,title,n1,n2,0

c
do 10 i = 1,n1

10 write (1) class(i),istate,mass(i),eps(i),
& (x(j,i),j=1,3),(v(j,i),j=1,3)

c
do 20 i = n1+1,n1+n2

20 write (1) class(i),istate,mass(i),eps(i),
& (x(j,i),j=1,3),(v(j,i),j=1,3),u(i),h(i)

c
close (1)

c
.
.
.

Note: For an example on how to access the dump file (FTM.DMP) see the FORTRAN
routinesFRAME.F, READDMP.F, andREADDEF.F in the TOOLS directory.

B.7 Data Structures

Storage allocations for stellar particles, gaseous particles, and tree cells are defined by com-
pile time parameters,IBLST1 , IBLST2 , IBLST3 , andIELST1 , IELST2 , andIELST3 .
The actual locations of particles are defined by run time integer variables,bptr11 , bptr12 ,
andeptr11 , eptr12 . This is shown schematically below:

stellar
IBLST1 IELST1

6 6

bptr11 eptr11
? ?

t t t t t t t t t t
gas

IBLST2 IELST2

6 6

bptr12 eptr12
? ?

t t t t t t t t
tree

IBLST3 IELST3

6 6t t t t t t t
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B.8 ExamplesI

(I) To access the masses of thestellar particles you might have a loop:

do 10 i = bptr11,eptr11
m = m + mass(i)

10 continue

(II) To access the masses of thegaseousparticles you might have a loop:

do 10 i = bptr12,eptr12
m = m + mass(i)

10 continue

(III) To access the masses ofall the particles you might have a loop:

do 10 i = bptr11,eptr12
m = m + mass(i)

10 continue

This last example will work even if there are either no stellar or gaseous particles.
For indirect addressing, integer listindx1 contains the array locations of the particles

in the current time-step. The particle addresses are located in the array according to the run
time integer variablesbptr21 , bptr22 , andeptr21 , eptr22 .

B.9 ExamplesII

(I) To access the masses of thestellar particles in thecurrent time-step you might have
a loop:

do 10 i = bptr21,eptr21
m = m + mass(indx1(i))

10 continue

(II) To access the masses of thegaseousparticles in thecurrent time-step you might
have a loop:

do 10 i = bptr22,eptr22
m = m + mass(indx1(i))

10 continue

(III) To access the masses ofall the particles in thecurrent time-step you might have a
loop:
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do 10 i = bptr21,eptr22
m = m + mass(indx1(i))

10 continue

This last example will work even if there are either no stellar or gaseous particles.

NOTE: The first digit onbptr andeptr represents whether its absolute or indirect
addressing, and the second digit stellar or gas.

NOTE: The variablesbptr13 , eptr13 , andbptr23 , eptr23 are used to define
locations for special SPH boundary particles. In general use, when such particles are not
present,eptr13 = eptr12 andeptr23 = eptr22 .
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B.10. FLOW DIAGRAM

B.10 Flow Diagram

FTM entry point
INITIAL data base initialization
INTEGRAT model time integration
SYNCH time synchronize positions and velocities
DIAGNOSE Diagnostic output (-> stdout, .txt)
WRTDMP Dump file output (-> .dmp)
WRTRST Restart file output (-> .rst)
STATS run statistics (-> .txt)
TASKTERM terminate parallel tasks and locks

INITIAL data base initialization
READNML read input parameters namelist (<-ftm.nml)
READMDL read model data file (<- .mdl)
EPSINIT gravitational softening length initialization
SOFTINIT gravitational softening interpolation table generation
KERNINIT SPH smoothing kernel interpolation table generation
EXTINIT initialize external potential
TASKORIG create parallel tasks and locks
INTGINIT integration initialization

INTGINIT integration initialization
LOADINDX load all bodies into current list (indx1)
SMOOTH smooth velocity and internal energy fields
WARMUP assign velocities to disk particles
FREEZE remove disk particles from integrator
FORCE compute total force on current particles (-> stdout, .txt)
INSERT insert particles into time stepping data base
TIMESTEP compute time-step for current particles

INTEGRAT model time integration
FORCE compute total force on current particles
TIMESTEP compute time-step for current particles
RESTRCT restrict internal energies to positive values
BNDRY1 check inner accretion boundary (-> .acc)
BNDRY2 check outer removal boundary

FORCE compute total force on current particles
NEIGHBOR Find smoothing lengths and neighborhoods
SETBOX set tree system box size
MAKNTREE construct neighborhood tree
TASK1 schedule parallel task 1
INTERAC1 find immediate neighborhoods
TASK2 schedule parallel task 2
LIMITS set tree for neighborhood corrections
INTERAC2 neighborhood corrections
SPHVAR compute SPH variables (d, p, c, divv, q)
SPHSFM check for starformation (-> .sfm)
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SPHFORCE compute hydrodynamic forces
SPHVEL compute marching velocities
TASK3 schedule parallel task 3
MAKGTREE construct gravity tree
GRVFORCE compute gravitational forces
EXTFORCE compute external forces
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C. The GRAPE-system in Göttingen (GÖ-GRAPE)

As a member of the Galactic Dynamics Group at the Department II of the Sternwarte Göt-
tingen, I have installed and maintained the local GRAPE facilities, which have been granted
to my research project by the Deutsche Forschungsgemeinschaft (DFG).

The front-end machine is a TATUNG Ultra SPARC system COMPstation U Series
(TWS-9320) with an UltraSparc II 233 MHz processor (single CPU). The machine runs
currently under the operating system Solaris 2.6. All software related to the GRAPE has
been compiled with the OSF compiler gcc/g77 obtained from the GNU Project.

The SBus-to-VMEbus adapter, connecting the front-end and the GRAPE board is the
PERFORMANCETECHNOLOGIESINC. model PT-SBS915. The Grape-board is the Grape-
3 Af version. It uses the 8-chip PCB board (without broadcast mode support).
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