Das Spätödem, induziert durch gewebeständigen Plasminogenaktivator bei Lyse einer tierexperimentellen intrazerebralen Blutung, wird durch die Gabe von Plasminogenaktivatorinhibitor 1 vermindert

INAUGURAL-DISSERTATION
zur Erlangung des Doktorgrades
der Medizinischen Fakultät
der Georg-August-Universität zu Göttingen

vorgelegt von
Gerrit Steffen Maier
aus
Lörrach

Göttingen 2012
Dekan: Prof. Dr. med. C. Frömmel

1. Berichterstatter: Prof. Dr. med. V. Rohde
2. Berichterstatter: Prof. Dr. med. Knauth
3. Berichterstatterin: Prof. Dr. rer. nat. Virsik-Köpp

Inhaltsverzeichnis

1 Einleitung .. 1

1.1 Die spontane intrazerebrale Blutung (ICB).. 2

1.1.1 Epidemiologie der intrazerebralen Blutung... 2
1.1.2 Ursachen der intrazerebralen Blutung... 3
1.1.3 Risikofaktoren der intrazerebralen Blutung... 4
1.1.4 Klinik der intrazerebralen Blutung... 4
1.1.5 Prognose der intrazerebralen Blutung.. 4
1.1.6 Diagnostik der intrazerebralen Blutung.. 5
1.1.7 Therapieoptionen der intrazerebralen Blutung.. 5
1.1.7.1 Kraniotomie und Hämatomentfernung... 5
1.1.7.2 Stereotaktische Hämatomentfernung... 6

1.2 Der Plasminogenaktivator... 7

1.2.1 Gewebeständiger Plasminogenaktivator (t-PA)... 7
1.2.2 Rekombinanter gewebeständiger Plasminogenaktivator (rt-PA).................................. 7

1.3 Plasminogenaktivatorinhibitor (PAI)... 9

1.4 Vorversuche zur vorliegenden Arbeit... 9

1.5 Zielsetzung der Arbeit.. 10

2 Material und Methoden .. 12

2.1 Material.. 12

2.1.1 Medikamente und Bioreagenzien... 12
2.1.2 Verbrauchsmaterial.. 12
2.1.3 Geräte.. 13
2.1.4 Computersoftware... 13
2.2 Versuchsaufbau und –durchführung..13

2.2.1 Versuchstiere..14
2.2.2 Medikation..14
2.2.3 Beatmung...15
2.2.4 Operationsablauf..15
2.2.5 Magnetresonanztomografische Untersuchungen...17
2.2.6 Fibrinolyse und Plasminogenaktivatorinhibitor (PAI)...19
2.2.7 Tötung und Sektion der Tiere..19

2.3 Neurohistopathologische Aufbereitung...21
2.3.1 Färbung mit Hämalaun-Eosin...21

2.4 Rekombinanter gewebeständiger Plasminogenaktivator (rt-PA).....................................21

2.5 Plasminogenaktivatorinhibitor-1 (PAI-1)...21

2.6 Statistische Auswertung..22

3 Ergebnisse..23

3.1 Blutungsverlauf der Kontrollgruppe..23
3.2 Ödemverlauf der Kontrollgruppe..23
3.3 T2-Relaxationszeit (T2rt) und ADC der Kontrollgruppe..24
3.4 Blutungsverlauf der rt-PA-Gruppe..24
3.5 Ödemverlauf der rt-PA-Gruppe..25
3.6 T2-Relaxationszeit (T2rt) und ADC der rt-PA-Gruppe...25
3.7 Blutungsverlauf der rt-PA-PAI-Gruppe..25
3.8 Ödemverlauf der rt-PA-PAI-Gruppe..26
3.9 T2-Relaxationszeit (T2rt) und ADC der rt-PA-PAI-Gruppe..26
3.10 Vergleich Kontrollgruppe vs. rt-PA-Gruppe vs. rt-PA-PAI-Gruppe.................................27
3.10.1 Hämatomvolumen...27
3.10.2 Grafik Hämatomvolumen..28
3.10.3 Ödenvolumen...29
3.10.4 Grafik Ödenvolumen...30
3.10.5 T2 Relaxationszeit und ADC...31
3.10.6 Grafik T2rt..32
3.10.7 Grafik ADC..33

II

Inhaltsverzeichnis
Inhaltsverzeichnis

3.11 Datentabelle der Kontrollgruppe...34
3.12 Datentabelle der rt-PA-Gruppe..35
3.13 Datentabelle der rt-PA-PAI-Gruppe...36
3.14 Datentabelle zur T2rt- und ADC-Messung der Kontrollgruppe....................37
3.15 Datentabelle zur T2rt- und ADC-Messung der rt-PA-Gruppe.........................38
3.16 Datentabelle zur T2rt- und ADC-Messung der rt-PA-PAI-Gruppe..................39
3.17 Beispiel MRT-Aufnahmen der Ödemverläufe...40
3.18 Beispiel MRT-Aufnahmen der Hämatomverläufe..42

4 Diskussion...44
4.1 Das Hämatom..44
4.2 Das Ödem..46
4.3 Gerinnung und Ödem..47
4.4 Zytotoxizität der Blut- und Plasmabestandteile..47
4.5 Gewebeständiger Plasminogenaktivator und rekombinanter t-PA......................50
4.6 Fibrinolytische Effektivität von rt-PA...50
4.7 Toxizität des rt-PA..51
4.8 Plasminogenaktivatorinhibitor-1 (PAI-1)..54
4.9 PAI-1 als Neuroprotektor...54
4.10 Die Ursache des perihämatomalen Ödems...55
4.11 Übertragbarkeit des Modells auf den Menschen..56
4.12 Die fibrinolytische Therapie einer ICB..57

5 Zusammenfassung...60

6 Literaturverzeichnis..62
<table>
<thead>
<tr>
<th>Abkürzungenverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADC</td>
</tr>
<tr>
<td>AT III</td>
</tr>
<tr>
<td>AVM</td>
</tr>
<tr>
<td>Bcl</td>
</tr>
<tr>
<td>ca.</td>
</tr>
<tr>
<td>CAA</td>
</tr>
<tr>
<td>Ca$^{2+}$</td>
</tr>
<tr>
<td>cm</td>
</tr>
<tr>
<td>cm3</td>
</tr>
<tr>
<td>CO$_2$</td>
</tr>
<tr>
<td>CT</td>
</tr>
<tr>
<td>DIC</td>
</tr>
<tr>
<td>DNA</td>
</tr>
<tr>
<td>EPI</td>
</tr>
<tr>
<td>Fa.</td>
</tr>
<tr>
<td>FLAIR</td>
</tr>
<tr>
<td>g</td>
</tr>
<tr>
<td>GCS</td>
</tr>
<tr>
<td>h</td>
</tr>
<tr>
<td>ICB</td>
</tr>
<tr>
<td>IVH</td>
</tr>
<tr>
<td>i.v.</td>
</tr>
<tr>
<td>kg</td>
</tr>
<tr>
<td>mg</td>
</tr>
<tr>
<td>MISTIE</td>
</tr>
<tr>
<td>m2</td>
</tr>
<tr>
<td>mm2</td>
</tr>
<tr>
<td>mm3</td>
</tr>
<tr>
<td>mRNA</td>
</tr>
<tr>
<td>MRT</td>
</tr>
<tr>
<td>ms</td>
</tr>
<tr>
<td>Abkürzung</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>NaCl</td>
</tr>
<tr>
<td>NMDA</td>
</tr>
<tr>
<td>PAI-1</td>
</tr>
<tr>
<td>PN-1</td>
</tr>
<tr>
<td>Rt-PA</td>
</tr>
<tr>
<td>s</td>
</tr>
<tr>
<td>SAB</td>
</tr>
<tr>
<td>STICH</td>
</tr>
<tr>
<td>t-PA</td>
</tr>
<tr>
<td>T2rt</td>
</tr>
<tr>
<td>U</td>
</tr>
</tbody>
</table>
1 Einleitung

Der Schlaganfall ist die häufigste neurologische Erkrankung, und mit circa 12 % aller Todesfälle in Deutschland, nach den ischämischen Herzerkrankungen und bösartigen Neubildungen, die drithhäufigste Todesursache. Bei einer Prävalenz von 600/100.000 Einwohnern ist er darüber hinaus die häufigste Ursache für Plegebedürftigkeit im Alter, sowie für erworbene, lebenslange Behinderungen im Erwachsenenalter. Epidemiologisch stellen die ischämischen Hirninfarkte mit etwa 80 % die bedeutendste Gruppe unter den Schlaganfällen dar (Kolominsky-Rabas und Heuschmann 2002). Ursache der Hirninfarkte sind Arteriosklerose, Kardioembolie, Mikroangiopathie, sowie seltener zum Beispiel Vaskulitiden, Nebenwirkungen von Kontrazeptiva oder bakterielle Entzündungen (Kolominsky-Rabas et al. 2001).

Hauptlokalisationsorte der primären ICB sind die Basalganglien, der Thalamus und das Kleinhirn (Fewel et al. 2003). Über die optimale Therapie der ICB besteht bis heute Uneinigkeit, so reichen die Empfehlungen von konservativem Management bis hin zur Kraniotomie und Lysetherapie der ICB (Pouratian et al. 2003).

In der vorliegenden Arbeit wird an einem Schweinemodell einer intrazerebralen Blutung untersucht, ob die Lysetherapie durch den Einsatz des Plasminogenaktivatorinhibitor 1 (PAI-1) optimiert werden kann.
1 Einleitung

1.1 Die spontane intrazerebrale Blutung (ICB)

Blutungen ins Hirnparenchym, intrazerebrale Blutungen, sind die Folge unterschiedlicher Grunderkrankungen und beruhen entweder auf Diapedeseblutungen, die sich überwiegend im Bereich der Kapillaren abspielen, oder auf Rhexisblutungen, die sich als eine arterielle Blutung ins Hirngewebe darstellen. Von klinischer Relevanz ist jedoch nicht nur die primäre irreversible Hinschädigung, sondern auch die sekundäre Hirnschädigung durch Ödementwicklung. Zur Diskussion der bisher noch nicht vollständig geklärten Pathogenese der Ödementstehung stehen momentan neben der perihämatomalen Ischämie eine Erhöhung des lokalen Gewebedruckes und vor allem toxische Effekte der Blutabbauprodukte (Gröschel 2002).

1.1.1 Epidemiologie der intrazerebralen Blutung

Eine intrazerebrale Blutung ist mit 37 000 bis 52 400 berichteten Fällen (in den U.S.A.) an ca. 15 % der Schlaganfälle ursächlich beteiligt. Es wird erwartet, dass sich diese Zahl bis zum Jahr 2050 aufgrund des demographischen Wandels verdoppelt (Fewel et al. 2003). Im Vergleich zu ischämischen Infarkten ist die Prognose der ICB deutlich schlechter. Eine Mortalität von 35 bis 50 % innerhalb der ersten 30 post-hämorrhagischen Tage verdeutlicht die schlechte Prognose, 6 % aller Patienten versterben auf dem Weg ins Krankenhaus (Broderick JP et al. 1993b). In einer Erhebung aller Fälle von ICB und Subarachnoidalblutung (SAB) im Raum Cincinnati wurde 1988 festgestellt, dass die ICB mehr als doppelt so häufig vorkommt wie die SAB. Die Inzidenzen werden mit 15/100 000 für die ICB und 6/100 000 für die SAB angegeben (Broderick JP et al. 1992; Broderick JP et al. 1993a). Die Inzidenz zeigt eine Variabilität in Bezug auf Alter, Geschlecht und Rasse. Männer sind geringfügig häufiger betroffen als Frauen, und auch mit zunehmendem Alter steigt die Wahrscheinlichkeit eine ICB zu erleiden. Bei Afro-Amerikanern (55/100 000) und Japanern (50/100 000) ist die Inzidenz im Vergleich zur kaukasischen Bevölkerung deutlich erhöht (Broderick JP et al. 1992). Hauptlokalisationsorte einer ICB sind die Basalganglien mit einem Anteil von 40 %, gefolgt von dem subkortikalen Marklager des Okzipital- und Temporallappens (ca. 25 %), dem Thalamus (ca. 20 %), dem Zerebellum (ca. 10 %) und des Pons (ca. 5 %).
1.1.2 Ursachen der intrazerebralen Blutung

<table>
<thead>
<tr>
<th>Primäre Ursachen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>arterielle Hypertonie</td>
</tr>
<tr>
<td>amyloide Angiopathie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sekundäre Ursachen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>vaskuläre Malformationen</td>
</tr>
<tr>
<td>Aneurysmata (sakkulär, fusiform, mykotisch)</td>
</tr>
<tr>
<td>arteriovenöse Malformationen (AVM)</td>
</tr>
<tr>
<td>kavernöse Malformationen</td>
</tr>
<tr>
<td>durele arteriovenöse Fisteln</td>
</tr>
<tr>
<td>Neoplasien</td>
</tr>
<tr>
<td>primär</td>
</tr>
<tr>
<td>Metastasen</td>
</tr>
<tr>
<td>Koagulopathien</td>
</tr>
<tr>
<td>erworben</td>
</tr>
<tr>
<td>Antikoagulation (Coumarin, Heparin)</td>
</tr>
<tr>
<td>Thrombolytika (t-PA, Urokinase)</td>
</tr>
<tr>
<td>Dyskrasie (disseminierte intravasale Gerinnung (DIC), Leukämie, Thrombozytopenie)</td>
</tr>
<tr>
<td>Leberversagen</td>
</tr>
<tr>
<td>kongenital</td>
</tr>
<tr>
<td>Hämophilie</td>
</tr>
<tr>
<td>hämorrhagischischämischer Hirninfarkt</td>
</tr>
<tr>
<td>Sinusvenenthrombose</td>
</tr>
<tr>
<td>Vaskulitiden</td>
</tr>
<tr>
<td>arterielle Dissektionen</td>
</tr>
</tbody>
</table>

Tabelle 1: Zusammenfassung der Ursachen einer primären und sekundären spontanen ICB (Fewel et al. 2003)
1.1.3 Risikofaktoren der intrazerebralen Blutung

1.1.4 Klinik der intrazerebralen Blutung

1.1.5 Prognose der intrazerebralen Blutung

Generell ist die Prognose einer ICB relativ schlecht, so starben von 37 000 Amerikanern, die im Jahre 1997 eine ICB erlitten, 52 % innerhalb des ersten Monats nach Auftreten der ICB (Broderick et al. 1993a). Nur 38 % aller Patienten überleben das erste Jahr (Dennis et al. 1993).

Prognostische Auswirkungen haben unter anderem der Zeitpunkt des Einsetzens des Komas, die Lokalisation, als auch die Größe der Blutung. So sind ein frühes Einsetzen, eine große Blutung (bei Volumina über 100 ml beträgt die Mortalität 90 %) sowie Blutungen im Thalamus und Hirnstamm prognostisch schlecht für das Überleben des Patienten. Die häufig stark verminderte Lebensqualität stellt für Überlebende einer ICB eine große Herausforderung dar. Nur 10 % der Patienten können nach einem Monat unabhängig leben,
nach 6 Monaten sind über 80 % der Patienten noch auf fremde Hilfe angewiesen. Sozioökonomisch gesehen weist der daraus resultierende lange und oftmals frustrane Weg durch die Instanzen des Krankenhaussystems eine hohe Relevanz auf (Fewel et al. 2003).

1.1.6 Diagnostik der intrazerebralen Blutung

Als Goldstandard der Diagnostik haben sich gegenwärtig die Computertomographie (CT) und die Magnetresonanztomographie (MRT) etabliert. Darüber hinaus wird oft bei atypisch lokализierten Blutungen auch die zerebrale Angiographie als Diagnostikum zur Identifikation bzw. zum Ausschluss einer Gefäßmalformation genutzt.

1.1.7 Therapieoptionen der intrazerebralen Blutung

1.1.7.1 Kraniotomie und Hämatomentfernung

International Surgical Trial in Intracerebral Haemorrhage (STICH), kam 2005 zu dem Ergebnis, dass das Outcome nicht signifikant unterschiedlich ist bei konservativer Therapie und Operation. Lediglich bei Blutungen, die nicht tiefer als 1 cm unter der Hirnoberfläche liegen, zeigten sich leichte Vorteile auf Seiten der operativen Gruppe. Gleichzeitig fand sich, dass bei komatösen Patienten die Operation mehr schadet als nutzt. Für Patienten mit tiefer gelegenen Blutungen deuten sich Vorteile der stereotaktischen Hämatomentleerung an (Mendelow et al. 2005).

1.1.7.2 Stereotaktische Hämatomentfernung

Die Diskussion um die Vor- und Nachteile der verschiedenen Behandlungsmethoden hält weiterhin an. Konsens besteht einzig darin, dass die Idealtherapie letztlich eine möglichst schnelle, minimal invasive Kompletttausräumung des Hämatoms wäre.
1 Einleitung

1.2 Der Plasminogenaktivator

1.2.1 Gewebeständiger Plasminogenaktivator (t-PA)

1.2.2 Rekombinanter gewebeständiger Plasminogenaktivator (rt-PA)

Armstead et al. stellten 2006 die Hypothese auf, dass es möglich ist, die neurotoxischen Effekte von rt-PA zu reduzieren, ohne dabei die fibrinolytische Aktivität zu dezimieren. Dies gelang ihnen mit Hilfe des vom Plasminogenaktivatorinhibitor Typ 1 (PAI-1) abgeleiteten Hexapeptids EEIIMD (Armstead et al. 2006).
1.3 Plasminogenaktivatorinhibitor (PAI)

Momentan gibt es 4 Moleküle, die Plasminogenaktivatoren in vitro inhibieren können. Dies sind Plasminogenaktivatorinhibitor Typ 1 (PAI-1), PAI-2, PAI-3 und Protease Nexin 1 (PN-1).

1.4 Vorversuche zur vorliegenden Arbeit

1.5 Zielsetzung der Arbeit

Als Ziele des Versuchsvorhabens wurde dementsprechend folgendes definiert:
- Es soll untersucht werden, ob durch die zusätzliche Applikation von PAI-1 nach der Lyse mit rt-PA eine Reduktion des parahämatomalen Ödems, als Indikator für die Neurotoxizität des rt-PA, im Vergleich zu den nur mit rt-PA behandelten Tieren erreicht werden kann.

- Es soll untersucht werden, wie sich die Reduktion des Hämatoms durch Gabe von PAI-1 im Vergleich zur Kontrollgruppe verhält.

- Es soll untersucht werden, ob sich die Begleitödeme der verschiedenen Gruppen in Bezug auf ihre Beschaffenheit unterscheiden.
2 Material und Methoden

2.1 Material

2.1.1 Medikamente und Bioreagenzien

- Actilyse (rt-PA) Thomae GmbH, Biberach
- Betaisodonalösung Mundipharma GmbH, Limburg
- Cefazolin Fresenius 2g Fresenius Kabi Deutschland GmbH, Bad Homburg
- Cutasept G (Desinfektionsmittel) Bode Chemie, Hamburg
- Disoprivan 1% (Propofol) Astra Zeneca, Wedel
- Ketamin 10% SANOFI-CEVA GmbH, Düsseldorf
- NaCl 0,9% B Braun Melsungen AG
- Nobecutan Spray Astra Chemicals GmbH, Wedel
- Stresnil (Azaperon) Janssen GmbH, Neuss
- T 61 (Tetracainhydrochlorid) Intervet, Unterschleißheim
- Temgesic 5mg (Buprenorphin) Essex Pharma, München
- Thiopental Rotexmedica, Trittau
- Paraformaldehyde reinst. Merck, Darmstadt
- Plasminogen Activator Inhibitor 1 Oxford Biomediacal Research
- Xylocain Gel 2% Astra Zeneca GmbH, Wedel

2.1.2 Verbrauchsmaterial

- Butterfly Injektionsnadeln 19G Becton Dickinson, Frankreich
- Einmalhandschuhe Hartmann AG, Heidenheim
- Einmalhandschuhe, steril Hartmann AG, Heidenheim
- Fogarty Katheter EMB80 Edward Lifesciences, U.S.A.
- Injektionskanülen 17G, 20G, 23G B Braun, Melsungen
- Kompressen, steril Hartmann AG, Heidenheim
- Lochtuch, steril Hartmann AG, Heidenheim
2 Material und Methoden

2.1.3 Geräte

<table>
<thead>
<tr>
<th>Gerät</th>
<th>Hersteller/Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gefrierschrank -20° C</td>
<td>Liebherr, Ochsenhausen</td>
</tr>
<tr>
<td>Herz Perfusionspumpe</td>
<td>Polystan</td>
</tr>
<tr>
<td>Magnetom Trio</td>
<td>Siemens Medical Solutions, Erlangen</td>
</tr>
<tr>
<td>Narkosegerät Tiberius</td>
<td>Dräger, Lübeck</td>
</tr>
<tr>
<td>Narkosemmonitor PM 8050</td>
<td>Dräger . Lübeck</td>
</tr>
<tr>
<td>Workstation</td>
<td>Siemens, Erlangen</td>
</tr>
</tbody>
</table>

2.1.4 Computersoftware

<table>
<thead>
<tr>
<th>Software</th>
<th>Hersteller/Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excel 2008</td>
<td>Microsoft Europe, Berlin</td>
</tr>
<tr>
<td>Syngo</td>
<td>Siemens, Erlangen</td>
</tr>
<tr>
<td>Word 2008</td>
<td>Microsoft Europe, Berlin</td>
</tr>
<tr>
<td>Statistica</td>
<td>Statsoft Europe GmbH</td>
</tr>
</tbody>
</table>

2.2 Versuchsaufbau und -durchführung

Das Versuchsvorhaben wurde gemäß § 8 Absatz 1 des Tierschutzgesetzes beim Niedersächsischen Landesamt für Verbraucherschutz und Lebensmittelsicherheit beantragt und genehmigt.

2.2.1 Versuchstiere

2.2.2 Medikation

An Tagen der Einschläferung der Versuchstiere wurde die Narkose zusätzlich durch Thiopental (Fa. Rotexmedica, 15-20 mg/Kg Körpergewicht i.v.) ergänzt.

2.2.3 Beatmung

Die Intubation der Tiere erfolgte mit einem Trachealtubus (Innendurchmesser 6,5 mm, Fa Portex Limited, England), wobei die Tubusspitze zum Zwecke einer verbesserten Gleitwirkung und zur Vorbeugung von Laryngospasmen mit Xylocain Gel 2 % (Fa. Astra Zeneca GmbH) eingerieben wurde.

Die Aufrechterhaltung der Narkose erfolgte durch die bedarfsgerechte weitere Gabe von Propofol.

2.2.4 Operationsablauf

2 ml Blut und einer darauf folgenden Wartezeit von 1 Minute wurden weitere 5 ml Blut zur Hämatombildung injiziert.

Abb. 1: Intraoperatives Setzen der Trepanation mittels 3,97 mm Bohrer

2.2.5 Magnetresonanztomografische Untersuchungen

Direkt im Anschluss an die Operation erfolgte unter manueller Beatmung eine MRT-Untersuchung des Schädels der Tiere. Des Weiteren wurden Kontroll-MRTs an den Tagen 3 beziehungsweise 4 und 10 beziehungsweise 11 postoperativ durchgeführt. Die Prämiedikation für die Narkose zur Durchführung der MRT-Untersuchungen entsprach dem Prämiedikationsprotokoll der Operationstage. Die MRT-Untersuchungen wurden in einem 3.0-Tesla-MRT (Magnetom Trio, Siemens Medicals Solutions, Erlangen/Germany) angefertigt. Als Wichtungen wurden folgende Einstellungen genutzt: T2* (1.2/1.0 mm), FLAIR (fluid-attenuated inversion recovery) (1.4/1.1 mm), Echo planar imaging (EPI) diffusion weighted imaging (DWI) (1.8/1.8 mm) und TSE-Dual weighted echo (0.6/0.6 mm).

Zur Bestimmung des Hämatomvolumens wurden die Bilder in der T2*-Wichtung ausgewertet. Das Ödemvolumen wurde in der FLAIR-Wichtung bestimmt. Die Auswertung

Diese Formel lautet:

\[V_{icb} = \frac{A \times B \times C}{2} \]

Das Produkt aus dem jeweils größten Längendurchmesser (A) und dem entsprechenden Querdurchmesser (B) der Blutung und der Anzahl (C) der MRT-Schnitte, auf denen die jeweilige ICB zu erkennen ist, wird durch zwei dividiert.

Außerdem wurden die T2-Relaxationszeit (T2rt) und der aktivierte Diffusionskoeffizient (ADC) bestimmt, um Wassergehalt, bzw. Wasserkonzentration des Ödems zu berechnen. T2rt-Bilder wurden mit Hilfe der folgenden Formel generiert:

\[T2 \text{ value} = \frac{(TE2 - TE1)}{\ln(SI1/SI2)} \]

Die Schweine der Kontrollgruppe wurden nach dem ersten MRT-Termin bei regelmäßiger Spontanatmung extubiert und zum Zwecke der Erholung in ihre Stallungen zurückgebracht.

2.2.6 Fibrinolyse und Plasminogenaktivatorinhibitor (PAI)

Bei den Tieren der rt-PA- sowie der rt-PA-PAI-Gruppe wurde nach der Bildgebung die Wunde wieder eröffnet und die Rickham-Kapsel freigelegt. Nun folgte die Injektion des Fibrinolytikums über die Rickham-Kapsel. Hierbei orientierte sich die Menge des rt-PAs
(Actilyse, Fa. Thomae GmbH) an dem zuvor mit Hilfe der T2*-Bilder berechneten Blutungsvolumen. Die Dosierung erfolgte nach der von Schaller et al beschriebenen Methode (Schaller et al. 1995). Hierbei entsprach 1mm3 der maximalen Blutungsgröße 0.1mg rt-PA. Nach 15 Minuten Einwirkzeit erfolgte die vorsichtige Aspiration der verflüssigten Hämatomanteile.

Bei den Tieren der rt-PA-PAI-Gruppe schloss sich der Aspiration die Gabe des Plasminogenaktivatorinhibitors 1 (PAI-1) (Fa. Oxford Biomedical Research) über die Rickham-Kapsel an. Die Dosierung betrug 1.1 mg.

Bei allen Versuchstieren wurden die eingebrachte Rickham-Kapsel und der Katheter in subgalealer Lage belassen. Die Wunden wurden per Einzelknopfnahnt verschlossen und zur weiteren Sicherung mit einem Sprühverband versehen.

2.2.7 Tötung und Sektion der Tiere

Nach vollständiger Perfusion des Tieres wurde die Kopfhaut abpräpariert und die Schädelkalotte mit Hilfe einer Knochensäge sowie eines Meißels eröffnet. Nach Durchtrennung der Medulla oblongata und der Hirnnerven konnte das Hirn entnommen werden. Bis zur neurohistologischen Aufbereitung wurde das Hirn zur weiteren Fixierung in einer 10 %igen Formalinlösung schwimmend gelagert.

Der Kadaver wurde fachgerecht durch die Mitarbeiter der tierexperimentellen Einrichtung entsorgt.
2.3 Neurohistopathologische Aufbereitung

2.3.1 Färbung mit Hämalaun-Eosin
Methodik der Färbung:
1. Aqua dest., anschließend 10 Minuten Kernfärbung in Hämalaun (Fa Merck)
2. Spülung des Schnittes mit Wasser
3. 10 Minuten Bläuen der Präparate in einem zweiten Wasser
4. Überfärbung der Schnitte (circa 5 Minuten) in 1 %iger wässriger Eosinlösung (Fa Merck), einige Tropfen Essig wurden zugesetzt.
5. 2maliges Abspülen der Schnitte mit Wasser
6. Differenzierung in 70 %igem und in 96 %igem Alkohol
7. 2-3 malige weitere Differenzierung in absolutem Alkohol für jeweils 2 Minuten
8. Xylol

2.4 Rekombinanter gewebeständiger Plasminogenaktivator (rt-PA)
Zum Zwecke der Studie wurde der Wirkstoff Alteplase (Actilyse, Fa. Dr. Karl Thomae GmbH) in der Darreichungsform einer wässrigen Lösung (Konzentration 1mg/ml) verwendet.

2.5 Plasminogenaktivatorinhibitor 1 (PAI-1)
Der in dieser Studie genutzte Plasminogenaktivatorinhibitor 1 wurde von der Firma Oxford Biomedical Research bezogen. Er wurde zu einer Konzentration von 1,1mg/ml mit einer sterilen 0,9%igen Kochsalzmischung verdünnt.
2.6 Statistische Auswertung
Zur statistischen Auswertung wurde der unverbundene Student’s-t-Test genutzt. Unterschiede wurden als signifikant für $P < 0,05$ festgelegt.
3 Ergebnisse

3.1 Blutungsverlauf der Kontrollgruppe

Die Kontrollgruppe bestand aus sechs Tieren. Diesen wurde, protokollarisch festgelegt, 7 ml Eigenblut zur Produktion der intrazerebralen Blutung injiziert. Das postoperative Blutvolumen variierte am ersten Tag zwischen 1,83 und 7,14 cm³. Der Mittelwert für das Blutungsvolumen unmittelbar nach Operation betrug 3,844 cm³ (+/- 2,4 cm³).

Die am vierten postoperativen Tag bestimmten Werte für das Blutungsvolumen variierten zwischen 1,42 cm³ und 5,32 cm³. Dies ergab einen Mittelwert von 3,01 cm³ (+/- 2,02 cm³). Dies entspricht, im Vergleich zum initialen Blutungsvolumen, einer Volumenreduktion um 0,843 cm³ auf 78,3 %, so dass sich innerhalb der ersten 3 Tage eine Abnahme um 21,7 % verzeichnen lässt.

In der abschließenden Messung an Tag 10 konnte eine weitere Volumenreduktion beobachtet werden. Das Blutungsvolumen hatte sich im Durchschnitt auf 2,62 cm³ (+/- 0,87 cm³) reduziert. Dies entspricht einer Reduktion des Blutungsvolumens bezogen auf das Initialvolumen von 3,844 cm³ auf 68,2 % des Ausgangswertes. Spontan betrug also die Reduktion des Blutungsvolumens bei den Tieren der Kontrollgruppe innerhalb der 10 beobachteten Tage 31,8 %. Bei Tier 6 konnte aufgrund technischer Probleme keine Messung an Tag 10 erfolgen.

3.2 Ödemverlauf der Kontrollgruppe

Das perifokale Ödem wurde mittels der FLAIR-Sequenz direkt postoperativ, am 3. bzw. 4. Tag und am 10. bzw. 11. Tag bestimmt.

Direkt postoperative Ödemgrößen reichten von nicht wahrnehmbar (0 cm³) bis 1,56 cm³, daraus ergab sich eine durchschnittliche Ödemgröße von 0,914 cm³ (+/- 2,82 cm³).

Das Ödembolumen an Tag 3 reichte von 7,76 cm³ bis 29,58 cm³. Der Mittelwert betrug 14,82 cm³ (+/- 9,45 cm³). Dies entspricht einer Volumensteigerung um 13,06 cm³, bzw. um 1621 % des Ausgangswertes.

Bis zum Sektionstag wurde ein Rückgang des Ödembolumens registriert. Die Werte schwankten hier zwischen 2,51 cm³ und 30,57 cm³. Der Mittelwert betrug hier 12,90 cm³ (+/- 11,15 cm³), was einer Reduktion von 1,92 cm³ oder um 12,9 % in Bezug auf Tag 3 / 4.
3 Ergebnisse

entspricht. Verglichen mit der initialen Volumenmessung konnte man eine Steigerung um 11,9 cm\(^3\) oder um 1411\% des Ausgangswertes verzeichnen. Aufgrund technischer Probleme war es bei Tier 6 nicht möglich am Sektionstag eine MRT-Aufnahme zu machen, so dass nur 5 von 6 Tieren zur Auswertung gelangten.

3.3 T2-Relaxationszeit (T2rt) und ADC der Kontrollgruppe

Die T2-Relaxationszeit- und ADC(activated diffusion coefficient)-Messung ergab direkt postoperativ Werte zwischen 112 – 137 ms (T2rt) und 72 – 76 x 10\(^{-6}\) mm\(^2\)/s (ADC). Dies ergab eine mittlere T2rt von 121,7 ms und einen mittleren ADC von 73,3 x 10\(^{-6}\) mm\(^2\)/s. Die zweite postoperative Messung offenbarte T2rt-Werte zwischen 133,2 und 155 ms, entsprechend einem Mittel von 147 ms. Die Messung des ADC ergab einen Mittelwert von 86,7 x 10\(^{-6}\) mm\(^2\)/sec bei Werten zwischen 84,3 und 92 x 10\(^{-6}\) mm\(^2\)/s. Die am Sektionstag gemessenen Werte variierten zwischen 111 und 142 ms für die T2rt und 78 bis 89,6 x 10\(^{-6}\) mm\(^2\)/s für den ADC. Dies entsprach Mittelwerten von 123,4 ms (T2rt) und 81,8 x 10\(^{-6}\) mm\(^2\)/s (ADC).

3.4 Blutungsverlauf der rt-PA-Gruppe

Auch den Tieren der rt-PA-Gruppe wurden 7 ml Blut injiziert. Es resultierten Blutvolumina zwischen 0,812 cm\(^3\) und 6,72 cm\(^3\). Dies ergab einen Mittelwert von 3,70 cm\(^3\) (+/- 5,02 cm\(^3\)). Bei der MRT-Kontrolle am dritten bzw. vierten postoperativen Tag lässt sich eine deutliche Reduktion des Blutungsvolumens feststellen. Die festgestellten Volumina variierten zwischen den Maximalwerten 0,416 cm\(^3\) und 5,323 cm\(^3\). Es zeigte sich ein durchschnittliches Volumen von 2,42 cm\(^3\) (+/- 2,02 cm\(^3\)), entsprechend einer Reduktion um 1,28 cm\(^3\) bzw. 34,6 % in Bezug auf das durchschnittliche Initialvolumen. Bei der MRT-Kontrolle am Sektionstag wurden Blutungsvolumina zwischen 0,416 cm\(^3\) und 3,048 cm\(^3\) gemessen. Dies entsprach einem mittleren Blutungsvolumen von 1,36 cm\(^3\), (+/- 1,12 cm\(^3\)) beziehungsweise einem Rückgang auf 36,7 % des durchschnittlichen Initialvolumens von 3,7 cm\(^3\). Unter der Behandlung der Blutung mit rt-PA konnte also bei den 7 von uns untersuchten Tieren eine durchschnittliche Blutungsreduktion um 63,3 % erzielt werden.
3.5 Ödemverlauf der rt-PA-Gruppe

Bei 3 von 7 Tieren konnte direkt postoperativ noch kein Ödem nachgewiesen werden. Bei den restlichen Tieren wurden Ödemvolumina zwischen 0,52 cm³ und 1,73 cm³ gemessen. Dies ergab ein mittleres Initialvolumen von 0,53 cm³ (+/- 0,62 cm³).

Alle 7 Tiere boten am dritten bzw. vierten Tag eine Steigerung des Ödemvolumens mit Werten zwischen 2,86 cm³ und 24,36 cm³. Es ergab sich ein Durchschnittswert von 17,37 cm³ (+/- 8,2 cm³). Dies entspricht einer Zunahme des Ödemvolumens von 16,84 cm³ oder um 3277 % bezogen auf das direkt postoperativ gemessene Ödemvolumen.

Bei der MRT-Kontrolle an Tag 10 konnte noch einmal eine deutliche Zunahme des Ödemvolumens bei allen 7 Tieren beobachtet werden. Es fand sich ein mittleres Ödemvolumen von 31,47 cm³ (+/- 16,02 cm³), wobei eine relativ große Streubreite der Werte zu verzeichnen ist. Tier 13 hat das kleinste Ödem mit 10,38 cm³, Tier 4 das Größte mit 48,69 cm³. Der Zuwachs im Vergleich zu den Messwerten an Tag 3 beträgt 181 %, bezogen auf den gesamten Beobachtungszeitraum lässt sich eine Zunahme des Volumens von 30,94 cm³ bzw. 5937 % des Ausgangswertes bestimmen.

3.6 T2-Relaxationszeit (T2rt) und ADC der rt-PA-Gruppe

In der rt-PA-Gruppe zeigten sich direkt postoperativ gemessene T2rt-Werte von 115 bis 136,2 ms, Mittelwert 123,5 ms, und ADC-Werte von 72 – 79 x 10⁻⁶ mm²/s, Mittelwert 73,02 x 10⁻⁶ mm²/s. In der Messung am vierten postoperativen Tag konnte eine deutliche Zunahme der Werte beobachtet werden. Es wurde eine mittlere T2rt von 258,1 ms und ein mittlerer ADC von 142 x 10⁻⁶ mm²/s festgestellt. Zum Sektionstag hin nahmen die Werte wieder leicht ab. Es ergaben sich mittlere Werte von 209 ms für die T2rt und 126 x 10⁻⁶ mm²/s. für den ADC.

3.7 Blutungsverlauf der rt-PA-PAI-Gruppe

Den 6 Tieren der rt-PA-PAI-Gruppe wurden wiederum 7 ml Eigenblut injiziert. Es wurden intrazerebrale Blutungen mit Volumina zwischen 0,74 cm³ und 7,472 cm³ gemessen. Dies ergab eine mittlere Blutungsgröße von 3,5 cm³ (+/- 2,65 cm³).

Die MRT- Kontrolle am dritten bzw. vierten Tag ergab eine Reduktion des Blutungsvolumens bei allen 6 Tieren. Die festgestellten Werte bewegten sich zwischen 0,58 cm³ und 5,24 cm³.
Das durchschnittliche Blutungsvolumen bei der zweiten MRT-Messung betrug 2,46 cm³ (±/− 1,28 cm³). Entsprechend einer Reduktion von 1,04 cm³, oder um 29,7 % bezogen auf die postoperativ ermittelten Volumina.

Die dritte MRT-Kontrolle an Tag 10 zeigte Volumina zwischen 0,48 cm³ und 4,94 cm³. Die durchschnittliche Blutungsgröße betrug 2,12 cm³ (±/− 0,98 cm³).

Für den gesamten Beobachtungszeitraum ergab sich so eine durchschnittliche Reduktion des Blutungsvolumens von 1,38 cm³. Dies entspricht einer Volumenreduktion auf 60,5 % des Ausgangswertes. Unter der Therapie mit rt-PA und PAI-1 konnte bei den von uns untersuchten Schweinen demnach eine Reduktion des Blutungsvolumens um 39,5 % erzielt werden.

3.8 Ödemverlauf der rt-PA-PAI-Gruppe

Das initiale Ödem der rt-PA-PAI-Gruppe varierte zwischen noch nicht nachweisbar bis zu 9,69 cm³. Das mittlere Ödemvolumen betrug 2,46 cm³ (±/− 3,72 cm³).

Alle 6 Tiere boten bei der zweiten MRT-Messung vergrößerte Ödemvolumina dar. Die Extremwerte variierten zwischen 9,45 cm³ und 43,44 cm³. Die Durchschnittsgröße betrug 24,62 cm³ (±/−11,21 cm³). Das Volumen vergrößerte sich also um 22,16 cm³ oder um 1000 %.

Die Messung der Volumina am Sektionstag ergab Extremwerte zwischen 4,5 cm³ und 35,72 cm³. Entsprechend einem Mittel von 11,94 cm³ (±/−11,93 cm³). Über den gesamten Beobachtungszeitraum ergibt sich so eine Zunahme des Ödemvolumens von 9,48 cm³. Prozentual ausgedrückt zeigt sich eine Zunahme auf 485 %.

3.9 T2-Relaxationszeit (T2rt) und ADC der rt-PA-PAI-Gruppe

Für die T2rt wurde postoperativ ein Mittelwert von 144,8 ms festgestellt, die Werte variierten hier zwischen 134 und 164 ms. Für den ADC ergab sich ein postoperatives Mittel von 74,5 x 10⁻⁶ mm²/s, wobei hier die Werte zwischen 72 und 77 x 10⁻⁶ mm²/s schwankten. Auch in der rt-PA-PAI Gruppe zeigte sich in der zweiten Messung eine deutliche Zunahme sowohl der T2rt als auch des ADC. Mittelwerte von 283,4 ms (T2rt) und 144, 08 x 10⁻⁶ mm²/s (ADC) stellen dies eindrucksvoll dar. Am Sektionstag zeigte sich eine drastische Abnahme der Werte. Die mittlere T2rt lag bei 168,1 ms und der mittlere ADC bei 109 x 10⁻⁶ mm²/s.
3 Ergebnisse

3.10 Vergleich Kontrollgruppe vs. rt-PA-Gruppe vs. rt-PA-PAI-Gruppe

Die Daten der drei Gruppen wurden mittels eines zweiseitigen, ungepaartem Student’s-T Test analysiert. Unterschiede der Gruppen wurden bei Werten von $P < 0,05$ als signifikant angenommen.

3.10.1 Hämatomvolumen

Vergleicht man die drei Gruppen im Hinblick auf das Hämatomvolumen direkt miteinander, so ist besonders der Zeitraum zwischen Operation und zweiter postoperativer Messung von Bedeutung. Die rt-PA-Gruppe zeigt hier einen deutlichen Abfall des Blutungsvolumens. Von den direkt postoperativ gemessenen Blutvolumina (durchschnittliches Volumen $3,7 \, \text{cm}^3$) verkleinerte sich das Volumen im Mittel um $1,28 \, \text{cm}^3$ auf $2,42 \, \text{cm}^3$. Dies entspricht einer Volumenreduktion um $34,6 \%$ innerhalb der ersten vier postoperativen Tage. Die Kontrollgruppe konnte in diesem Zeitraum nur eine Volumenreduktion um $21,7 \%$ verzeichnen, von $3,84 \, \text{cm}^3$ auf $3,0 \, \text{cm}^3$. Die rt-PA-PAI-Gruppe zeigte eine Reduktion des Initialhämatoms um $29,7 \%$ innerhalb der ersten $3 \, 4$ Tage postoperativ, entsprechend einer Abnahme der Volumina von $3,5 \, \text{cm}^3$ auf $2,96 \, \text{cm}^3$. Im weiteren Verlauf setzt sich diese Tendenz in der Abnahme des Hämatoms in allen drei Gruppen fort. Die größte Volumenreduktion im Zeitraum von Tag $3 \, 4$ postoperativ bis zum Sektionstag findet sich erneut in der rt-PA-Gruppe mit $1,06 \, \text{cm}^3$, in der Kontrollgruppe beträgt die Abnahme $0,38 \, \text{cm}^3$, in der rt-PA-PAI-Gruppe $0,84 \, \text{cm}^3$. Betrachtet man den ganzen Beobachtungszeitraum so nahm das Hämatomvolumen in der rt-PA-Gruppe um $63,3 \%$ ab, in der Kontrollgruppe um $31,8 \%$ und in der rt-PA-PAI-Gruppe um $39,5 \%$. Die Reduktion des Hämatoms in der rt-PA-Gruppe unterscheidet sich dabei signifikant ($P = 0,034$) von der Kontrollgruppe. Im Vergleich der Hämatomreduktion in der Kontroll- und rt-PA-PAI-Gruppe wurde kein signifikanter Unterschied ($P = 0,56$) festgestellt.
3.10.2 Grafik Hämatomvolumen

Abb. 4: Die Grafik zeigt die Durchschnittsvolumina des Hämatoms der unterschiedlichen Versuchsgruppen an Tag 0 und Tag 10. Gemessen wurde direkt postoperativ (Tag 0), an Tag 4 und am Sektionstag (Tag 10).
3.10.3 Ödenvolumen

Sowohl in der Kontroll- als auch in der rt-PA-PAI-Gruppe ließ sich ein Trend in der Ödementwicklung erkennen. Das Ödenvolumen vergrößerte sich im Zeitraum zwischen Messung 1 und 2 stark, bei Messung 3 (am Sektionstag) hatte das Ödem in beiden Gruppen wieder an Volumen verloren. In Zahlen ausgedrückt vergrößerte sich das Ödenvolumen innerhalb der ersten vier postoperativen Tage von anfänglich 0,91 cm³ in der Kontrollgruppe und 2,46 cm³ in der rt-PA-PAI-Gruppe auf 14,82 cm³ in der Kontrollgruppe beziehungsweise 24,62 cm³ in der rt-PA-PAI-Gruppe. Am Sektionstag fielen die Volumina auf Werte von 12,9 cm³ in der Kontrollgruppe und 11,94 cm³ in der rt-PA-PAI-Gruppe ab. Die mit rt-PA behandelten Tiere zeigten einen anderen Verlauf der Ödementwicklung. Auch hier zeigte sich eine stark ausgeprägte, Zunahme des Ödenvolumens bis zur zweiten postoperativen Messung. Von initial 0,53 cm³ vergrößerte sich das Ödenvolumen auf 17,37 cm³. Eine Volumenreduktion im weiteren Verlauf wie in den zwei anderen Versuchsgruppen blieb jedoch aus. Stattdessen nahm das Ödem weiter an Volumen zu, 14,1 cm³ zwischen zweiter und dritter Messung und 30,94 cm³ bezogen auf den gesamten Beobachtungszeitraum. Die Ödemzunahme ist im Vergleich zwischen Kontrollgruppe und rt-PA-Gruppe signifikant (P = 0,05) größer in der rt-PA-Gruppe. Im Vergleich zwischen rt-PA- und rt-PA-PAI-Gruppe konnte ein signifikant (P = 0,03) kleineres Ödem in der rt-PA-PAI-Gruppe festgestellt werden.
3.10.4 Grafik Ödemvolumen

Abb.5: Dargestellt ist das durchschnittliche Ödemvolumen der 3 Versuchsgruppen. Messzeitpunkte waren wiederrum Tag 0, Tag 4 und Tag 10 postoperativ, wobei sich in dieser Grafik die Darstellung auf Tag 4 und Tag 10 begrenzt.
3.10.5 T2-Relaxationszeit und ADC

Bei Betrachtung der T2rt-Entwicklung innerhalb der verschiedenen Versuchsgruppen fällt auf, dass sowohl in der rt-PA-Gruppe als auch in der rt-PA-PAI-Gruppe eine massive Zunahme der T2rt innerhalb der ersten vier postoperativen Tage zu verzeichnen ist. So vergrößert sich der Mittelwert der rt-PA-Gruppe von initial 123,5 ms auf 258,1 ms, d.h. also um 210 %. Auch in der rt-PA-PAI-Gruppe ist eine drastische Zunahme von 195 % bemerkbar. Die Mittelwerte steigen hier von 145,6 ms auf 283,4 ms. Auch in der Kontrollgruppe ist eine Zunahme der T2rt bis zum zweiten Messtermin sichtbar. Diese ist jedoch weit weniger ausgeprägt. Die Zunahme beträgt hier knapp 21 %, von 121,7 ms auf 146,98 ms. Im weiteren Verlauf nimmt in allen 3 Gruppen die T2rt wieder ab, sie erreicht jedoch lediglich in der Kontrollgruppe annähernd ihren Ausgangswert wieder. Auffallend ist, dass die Abnahme der T2rt in der rt-PA-PAI-Gruppe größer ist als in den anderen beiden Gruppen, die relativ parallele Verläufe vorweisen. Die rt-PA-PAI-Gruppe weist eine Abnahme der T2rt von 283,4 ms auf 168,1 ms, sprich 41 % auf. Innerhalb der rt-PA-Gruppe beträgt die Abnahme lediglich 21 %, in der Kontrollgruppe 17 %.

Der Verlauf des ADC folgt einem ähnlichen Muster. Auch hier zeigen die rt-PA-PAI-Tiere und rt-PA-Tiere eine drastische Zunahme des ADC im Zeitraum zwischen erster und zweiter postoperativer Untersuchung. Ausgehend von einem Mittelwert von 73×10^{-6} mm2/s steigt der Wert in der rt-PA-Gruppe auf 142×10^{-6} mm2/s ($+ 95,5 \%$) an. In der rt-PA-PAI-Gruppe ist ein Anstieg von $74,5 \times 10^{-6}$ mm2/s auf $144,08 \times 10^{-6}$ mm2/s bemerkbar. Dies entspricht einem Zuwachs von 93,3 %. Der Zuwachs der Kontrollgruppe verläuft verhältnismäßig moderat, von $73,3 \times 10^{-6}$ mm2/s auf $86,7 \times 10^{-6}$ mm2/s ($+ 18,2 \%$). Bis zum Sektionstag zeigt nun auch der ADC einen abnehmenden Verlauf, wobei analog zur T2rt-Entwicklung die rt-PA-PAI-Gruppe die steilste Abnahme verzeichnet. Sie beträgt 25 %, von $144,08 \times 10^{-6}$ mm2/s auf 109 $\times 10^{-6}$ mm2/s. In der rt-PA-Gruppe beträgt die Reduktion 12 %, von 142×10^{-6} mm2/s auf 126 $\times 10^{-6}$ mm2/s. Die geringste Abnahme verzeichnet die Kontrollgruppe mit 5,7 %, von $86,7 \times 10^{-6}$ mm2/s auf $81,8 \times 10^{-6}$ mm2/s.
3.10.6 Grafik T2rt

Abb. 6: Die Grafik zeigt die Werte der T2-Relaxationszeit (in ms) innerhalb der 3 Versuchsgruppen über den Beobachtungszeitraum.
3.10.7 Grafik ADC

Abb. 7: Dargestellt sind die Werte des ADC (Masseinheit $10^6 \text{ mm}^2/\text{s}$) im Beobachtungszeitraum.
3.11 Datentabelle der Kontrollgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 2 7 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatom</td>
<td>1,83 cm³</td>
<td>1,686 cm³</td>
<td>1,632 cm³</td>
</tr>
<tr>
<td>Ödem</td>
<td>1,31 cm³</td>
<td>7,776 cm³</td>
<td>2,508 cm³</td>
</tr>
<tr>
<td>Tier 3 7 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatom</td>
<td>2,192 cm³</td>
<td>1,904 cm³</td>
<td>1,684 cm³</td>
</tr>
<tr>
<td>Ödem</td>
<td>1,56 cm³</td>
<td>9,78 cm³</td>
<td>4,32 cm³</td>
</tr>
<tr>
<td>Tier 6 8 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatom</td>
<td>2,52 cm³</td>
<td>1,44 cm³</td>
<td>n.V.</td>
</tr>
<tr>
<td>Ödem</td>
<td>6,24 cm³</td>
<td>32,4 cm³</td>
<td>n.V.</td>
</tr>
<tr>
<td>Tier 10 6 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatom</td>
<td>1,644 cm³</td>
<td>1,42 cm³</td>
<td>1,44 cm³</td>
</tr>
<tr>
<td>Ödem</td>
<td>0 cm³</td>
<td>7,968 cm³</td>
<td>12,384 cm³</td>
</tr>
<tr>
<td>Tier 11 7 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatom</td>
<td>6,416 cm³</td>
<td>5,328 cm³</td>
<td>4,24 cm³</td>
</tr>
<tr>
<td>Ödem</td>
<td>0,83 cm³</td>
<td>29,584 cm³</td>
<td>30,576 cm³</td>
</tr>
<tr>
<td>Tier 20 7 ml</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hämatom</td>
<td>7,14 cm³</td>
<td>4,736 cm³</td>
<td>4,148 cm³</td>
</tr>
<tr>
<td>Ödem</td>
<td>0,87 cm³</td>
<td>19,128 cm³</td>
<td>14,74 cm³</td>
</tr>
</tbody>
</table>

Tabelle 2: Hämatom- und Ödemvolumina der Kontrollgruppe an den jeweiligen Kontrolltagen
3.12 Datentabelle der rt-PA-Gruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 4 7 ml</td>
<td>Hämatom: 6,72 cm³</td>
<td>3,776 cm³</td>
<td>2,16 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem: 0 cm³</td>
<td>24,36 cm³</td>
<td>48,692 cm³</td>
</tr>
<tr>
<td>Tier 5 7 ml</td>
<td>Hämatom: 5,344 cm³</td>
<td>4,416 cm³</td>
<td>2,150 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem: 0 cm³</td>
<td>21,92 cm³</td>
<td>48,03 cm³</td>
</tr>
<tr>
<td>Tier 7 5 ml</td>
<td>Hämatom: 0,812 cm³</td>
<td>0,416 cm³</td>
<td>0,408 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem: 0,52 cm³</td>
<td>23,536 cm³</td>
<td>42 cm³</td>
</tr>
<tr>
<td>Tier 12 7 ml</td>
<td>Hämatom: 1,08 cm³</td>
<td>0,424 cm³</td>
<td>0,416 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem: 0 cm³</td>
<td>23,192 cm³</td>
<td>36,192 cm³</td>
</tr>
<tr>
<td>Tier 13 7 ml</td>
<td>Hämatom: 2,448 cm³</td>
<td>1,908 cm³</td>
<td>0,76 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem: 0,792 cm³</td>
<td>2,868 cm³</td>
<td>10,384 cm³</td>
</tr>
<tr>
<td>Tier 14 8 ml</td>
<td>Hämatom: 6,96 cm³</td>
<td>5,323 cm³</td>
<td>3,048 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem: 0,688 cm³</td>
<td>10,528 cm³</td>
<td>16,78 cm³</td>
</tr>
<tr>
<td>Tier 18 7 ml</td>
<td>Hämatom: 5,84 cm³</td>
<td>0,78 cm³</td>
<td>0,576 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem: 1,736 cm³</td>
<td>15,216 cm³</td>
<td>18,216 cm³</td>
</tr>
</tbody>
</table>

Tabelle 3: Hämatom- und Ödemvolumina der rt-PA-Gruppe zu den jeweiligen Kontrolltagen
3.13 Datentabelle der rt-PA-PAI-Gruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 9 7 ml</td>
<td>Hämatom 2,512 cm³</td>
<td>1,392 cm³</td>
<td>1,248 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem 0 cm³</td>
<td>43,44 cm³</td>
<td>35,728 cm³</td>
</tr>
<tr>
<td>Tier 11a 7 ml</td>
<td>Hämatom 2,096 cm³</td>
<td>1,192 cm³</td>
<td>1,084 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem 0 cm³</td>
<td>23,016 cm³</td>
<td>4,932 cm³</td>
</tr>
<tr>
<td>Tier 15 8 ml</td>
<td>Hämatom 0,74 cm³</td>
<td>0,584 cm³</td>
<td>0,484 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem 0,268 cm³</td>
<td>21,5 cm³</td>
<td>6,944 cm³</td>
</tr>
<tr>
<td>Tier 16 6 ml</td>
<td>Hämatom 3,264 cm³</td>
<td>2,448 cm³</td>
<td>1,72 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem 2,216 cm³</td>
<td>9,456 cm³</td>
<td>7,888 cm³</td>
</tr>
<tr>
<td>Tier 17 7 ml</td>
<td>Hämatom 7,472 cm³</td>
<td>5,248 cm³</td>
<td>4,944 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem 9,696 cm³</td>
<td>21,164 cm³</td>
<td>4,5 cm³</td>
</tr>
<tr>
<td>Tier 21 7 ml</td>
<td>Hämatom 4,944 cm³</td>
<td>3,872 cm³</td>
<td>3,192 cm³</td>
</tr>
<tr>
<td></td>
<td>Ödem 2,58 cm³</td>
<td>29,184 cm³</td>
<td>11,64 cm³</td>
</tr>
</tbody>
</table>

Tabelle 4: Hämatom- und Ödemvolumina der rt-PA-PAI-Gruppe an den jeweiligen Kontrolltagen
3 Ergebnisse

3.14 Datentabelle zur T2rt- und ADC-Messung der Kontrollgruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 2</td>
<td>T2rt 137</td>
<td>145</td>
<td>120</td>
</tr>
<tr>
<td>7 ml</td>
<td>ADC 74</td>
<td>86</td>
<td>81,2</td>
</tr>
<tr>
<td>Tier 3</td>
<td>T2rt 112</td>
<td>133,2</td>
<td>142</td>
</tr>
<tr>
<td>7 ml</td>
<td>ADC 73</td>
<td>86</td>
<td>89,6</td>
</tr>
<tr>
<td>Tier 6</td>
<td>T2rt 119</td>
<td>153</td>
<td>n.V.</td>
</tr>
<tr>
<td>8 ml</td>
<td>ADC 72</td>
<td>92</td>
<td>n.V.</td>
</tr>
<tr>
<td>Tier 10</td>
<td>T2rt 120</td>
<td>152</td>
<td>123</td>
</tr>
<tr>
<td>6 ml</td>
<td>ADC 73</td>
<td>85,9</td>
<td>79,8</td>
</tr>
<tr>
<td>Tier 11</td>
<td>T2rt 121,5</td>
<td>143,7</td>
<td>110,9</td>
</tr>
<tr>
<td>7 ml</td>
<td>ADC 76</td>
<td>86,5</td>
<td>79,8</td>
</tr>
<tr>
<td>Tier 20</td>
<td>T2rt 117</td>
<td>155</td>
<td>111</td>
</tr>
<tr>
<td>7 ml</td>
<td>ADC 72</td>
<td>84,3</td>
<td>78,9</td>
</tr>
</tbody>
</table>

Tabelle 5: T2rt und ADC der Kontrolgruppe an den jeweiligen Kontrolltagen
3.15 Datentabelle zur T2rt- und ADC-Messung der rt-PA-Gruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 4 7 ml</td>
<td>T2rt n.V.</td>
<td>161</td>
<td>192,5</td>
</tr>
<tr>
<td></td>
<td>ADC n.V.</td>
<td>98</td>
<td>146</td>
</tr>
<tr>
<td>Tier 5 7 ml</td>
<td>T2rt 115</td>
<td>295,9</td>
<td>248,4</td>
</tr>
<tr>
<td></td>
<td>ADC 72</td>
<td>165</td>
<td>138</td>
</tr>
<tr>
<td>Tier 7 5 ml</td>
<td>T2rt 136,2</td>
<td>275,8</td>
<td>232,1</td>
</tr>
<tr>
<td></td>
<td>ADC 72</td>
<td>144</td>
<td>108</td>
</tr>
<tr>
<td>Tier 12 7 ml</td>
<td>T2rt 119</td>
<td>247</td>
<td>206</td>
</tr>
<tr>
<td></td>
<td>ADC 73,2</td>
<td>147</td>
<td>142</td>
</tr>
<tr>
<td>Tier 13 7 ml</td>
<td>T2rt 132</td>
<td>335</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>ADC 74</td>
<td>152</td>
<td>115</td>
</tr>
<tr>
<td>Tier 14 8 ml</td>
<td>T2rt 118</td>
<td>246</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td>ADC 76</td>
<td>155</td>
<td>110</td>
</tr>
<tr>
<td>Tier 18 7 ml</td>
<td>T2rt 121</td>
<td>246</td>
<td>199,4</td>
</tr>
<tr>
<td></td>
<td>ADC 73</td>
<td>133</td>
<td>125</td>
</tr>
</tbody>
</table>

Tabelle 6: T2rt und ADC der rt-P-Gruppe an den jeweiligen Kontrolltagen
3.16 Datentabelle zur T2rt- und ADC-Messung der rt-PA-PAI-Gruppe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 9 7 ml</td>
<td>T2rt 136,6</td>
<td>243</td>
<td>206</td>
</tr>
<tr>
<td>ADC 75</td>
<td></td>
<td>144</td>
<td>109</td>
</tr>
<tr>
<td>Tier 11 7 ml</td>
<td>T2rt 138</td>
<td>323</td>
<td>180</td>
</tr>
<tr>
<td>ADC 72,8</td>
<td></td>
<td>138,7</td>
<td>116</td>
</tr>
<tr>
<td>Tier 15 8 ml</td>
<td>T2rt 134</td>
<td>277</td>
<td>142</td>
</tr>
<tr>
<td>ADC 72</td>
<td></td>
<td>169</td>
<td>109</td>
</tr>
<tr>
<td>Tier 16 6 ml</td>
<td>T2rt 136</td>
<td>253</td>
<td>169</td>
</tr>
<tr>
<td>ADC 73</td>
<td></td>
<td>126</td>
<td>106</td>
</tr>
<tr>
<td>Tier 17 7 ml</td>
<td>T2rt 160</td>
<td>259</td>
<td>188</td>
</tr>
<tr>
<td>ADC 76</td>
<td></td>
<td>135</td>
<td>108</td>
</tr>
<tr>
<td>Tier 21 7 ml</td>
<td>T2rt 169</td>
<td>346</td>
<td>124</td>
</tr>
<tr>
<td>ADC 77</td>
<td></td>
<td>156</td>
<td>106</td>
</tr>
</tbody>
</table>

Tabelle 7: T2rt und ADC der rt-PA-PAI-Gruppe an den jeweiligen Kontrolltagen
3.17 Beispiel MRT-Aufnahmen der Ödemverläufe:

Tier 12 (rt-PA-Gruppe)

Abb. 8: FLAIR-gewichtete MRT-Aufnahme zur Ödemdarstellung an Tag 0 (A, links) und an Tag 10 (B, rechts). Es zeigt sich eine deutliche Zunahme des Ödems von 0 cm³ an Tag 0 auf 36 cm³ an Tag 10.

Tier 9 (rt-PA-PAI-Gruppe)

Abb. 9: FLAIR-gewichtete MRT-Aufnahme zur Ödemdarstellung an Tag 0 (A, links) und Tag 10 (B, rechts). Es zeigt sich eine Zunahme des Ödems von 0 cm³ an Tag 0 auf 35 cm³ an Tag 10.
Tier 11 (Kontrollgruppe)

Abb. 10: FLAIR-gewichtete MRT-Aufnahme zur Ödemdarstellung an Tag 0 (A, links) und an Tag 10 (B, rechts). Es zeigt sich eine Zunahme des Ödems von $0,83 \text{ cm}^3$ an Tag 0 auf 30 cm^3 an Tag 10.
3.18 Beispiel MRT-Aufnahmen der Hämatomverläufe:

Tier 12 (rt-PA-Gruppe)

Abb. 11: T2-gewichtete MRT-Aufnahme zur Hämatomdarstellung an Tag 0 (A, links) und an Tag 10 (B, rechts). Es zeigt sich eine Abnahme des Hämatoms von 1,08 cm³ an Tag 0 auf 0,416 cm³ an Tag 10.

Tier 17 (rt-PA-PAI-Gruppe)

Abb. 12: T2-gewichtete MRT-Aufnahme zur Hämatomdarstellung an Tag 0 (A, links) und an Tag 10 (B, rechts). Es zeigt sich eine Abnahme des Hämatoms von 7,472 cm³ an Tag 0 auf 4,944 cm³ an Tag 10.
Tier 10 (Kontrollgruppe)

Abb. 13: T2-gewichtete MRT-Aufnahme zur Hämatomdarstellung an Tag 0 (A, links) und an Tag 10 (B, rechts). Es zeigt sich eine Abnahme des Hämatoms von 1,644 cm3 an Tag 0 auf 1,44 cm3 an Tag 10.
4 Diskussion

4.1 Das Hämatom

In unserem Versuch zeigte sich bei der Gegenüberstellung der magnetresonanztomografisch gemessenen Hämatomgrößen der verschiedenen Versuchsgruppen:

1. In der rt-PA-Gruppe konnte eine Reduktion des Hämatoms um 63,3% in Vergleich zum Ausgangswert erzielt werden.

2. In der rt-PA-PAI-Gruppe wurde das Hämatomvolumen um 39,5% verringert, wobei hier der Hauptteil der Reduktion in den ersten 3 Tagen stattfand.

3. Die Kontrollgruppe konnte eine Reduktion um 31,8% vorweisen.

Auch die Ödementwicklung scheint mit der Blutungsgröße, bzw. den verschiedenen Blutbestandteilen verknüpft zu sein.
4.2 Das Ödem

Yang et al. (1994) beobachteten eine zeitgleich stattfindende Ödementwicklung bei Ratten nach intrazerebralen Blutungen sowie eine Konglomeration osmotisch aktiver Substanzen.

46

4.3 Gerinnung und Ödem

Die Studien der Arbeitsgruppe um Lee bekräftigten diese These (Lee et al. 1999; Lee et al. 1995; Lee et al. 1996b; Lee et al. 1997). Sie zogen das Fazit, dass die Gerinnungskaskade an der Ödembildung nach einer ICB maßgeblich beteiligt ist, somit also der Hauptgrund für das Ödem im chemisch-toxischen Bereich zu suchen ist (Lee et al. 1995).

4.4 Zytotoxizität der Blut- und Plasmabestandteilen

Xi et al. (1998) konnten in ihren tierexperimentellen Studien nach Infusion von Vollblut zwar eine Ödementwicklung am ersten Tag nachweisen, das Maximum des Ödemvolumens zeigte sich jedoch erst am dritten Tag nach Infusion, in der kontralateralen Hemisphäre zeigte sich das Maximum am 7. Tag (Xi et al. 1998b).

Auch andere Autoren berichten von maximalen Ödemausprägungen zwischen Tag 3 und Tag 7 (Enzmann et al. 1981; Mun-Bryce et al. 1993; Tomita et al. 1994).

Die Vielzahl und Komplexität der beschriebenen Pathomechanismen verdeutlichen, dass die genaue Genese der Ödementwicklung noch immer unklar ist. Man kann jedoch davon ausgehen, dass wohl alle genannten Pathomechanismen eine mehr oder weniger große Rolle...
in der perihämatomalen Ödemevolution spielen. Auf der Basis unserer Versuchsergebnisse stellt sich die Frage nach einer potentiellen Toxizität des rt-PA auf das Hirnparenchym.

4.5 Gewebeständiger Plasminogenaktivator und rekombinanter t-PA

4.6 Fibrinolytische Effektivität von rt-PA

Wir verwendeten zur Lyse experimentell erzeugter intrazerebraler Hämatome rt-PA. Dieser wurde einmalig nach Induktion der Blutung appliziert, nach einer Einwirkzeit von 15 Minuten folgte die vorsichtige Aspiration des verflüssigten Blutkloks. Die Dosis rt-PA in mg entsprach dabei dem mittels magnetresonanztomographischer Aufnahmen bestimmten Durchmesser des
Hämatoms in cm. Bis zum durchschnittlich zehnten Tage ließ sich so eine Reduktion des Blutungsvolumens um 63,3 % in der rt-PA Gruppe erzielen. Ohne Therapie reduzierte sich das Hämatomvolumen um 31,8 %. Bei Injektion von rt-PA plus PAI-1 betrug die Volumenreduktion 39,5 %.

Ebina et al. (1990) untersuchten im Rahmen ihrer Studie den Wirkungsgrad ausgewählter hämolytischer Substanzen. Es wurden sowohl rt-PA, als auch Urokinase zum einen miteinander, zum anderen mit Heparin sowie Elastase, einem Gemisch aus Fibrinolysin und Desoxyribonuclease kombiniert. 6 Stunden nach Applikation zeigten sich Hämolyseraten von bis zu 88,9 % bei Kombinationen mit rt-PA, die Kombinationen mit Urokinase erreichten eine maximale Auflösung von 27,5 % (Ebina et al. 1990).

Ein Vergleich des fibrinolytischen Effektes im Tierversuch mit klinischen Studien ist schwierig, da im klinischen Einsatz meist mehrmals rt-PA appliziert und das Hämatom mehrmals drainiert wird. Verschiedene Studien zeigten jedoch gute Lyseraten (zwischen 64,8 % und 75,8 %) bei Behandlung intrazerebraler Blutungen (Thiex et al. 2004b).
4.7 Toxizität des rt-PA

Diskussion

Nicole et al. (2001) untersuchten die Beziehung zwischen t-PA- und NMDA-Rezeptoren. So scheint t-PA den durch glutaminerge Rezeptoren vermittelten neuronalen Zelltod zu erhöhen. T-PA spaltet ein 15 bis 20 kDa großes Fragment von der NR1-Untereinheit des NMDA-Receptors ab, was einen Anstieg der NMDA-gekoppelten intrazellulären Calciumkonzentration zur Folge hat. Dies kann den Zelltod auslösen. Injektionen von NMDA führten im Striatum zu Zelluntergang, die alleinige t-PA-Injektion in das Striatum zeigte keinen schädigenden Auswirkungen. Eine kombinierte Injektion von t-PA und NMDA hingegen vergrößerte das Volumen der durch NMDA-Injektion entstandenen Läsionen um 50 %. Die Autoren schlossen daraus, dass t-PA die NMDA-Aktivierung potenziert (Nicole et al. 2001).

Thiex et al. (2007) untersuchten, ob durch die Kombination von rt-PA und dem nicht kompetitiven NMDA-Rezeptor-Antagonisten MK801 der ödем- und entzündungsauslösende Effekt des rt-PA gemildert werden kann. 20 Schweinen wurde nach der Induktion einer Blutung MK801 i.v. appliziert. 10 Schweine erhielten zusätzlich rt-PA. Im Beobachtungszeitraum von 10 Tagen zeigte sich keine signifikante Ödemvergrößerung in der MK801 rt-PA-Gruppe. In der rt-PA-Gruppe zeigte sich hingegen eine signifikante Zunahme
des Ödemvolumens am 4. postoperativen Tag, nicht jedoch an Tag 10. Thiex et al. (2007) schlossen daraus, dass die Kombination von rt-PA und neuroprotektiven Agenzien, wie NMDA-Rezeptor-Antagonisten, die Möglichkeit bietet, die neurotoxischen Eigenschaften des rt-PA unter Beibehaltung der fibrinolytischen Fähigkeiten zu inhibieren (Thiex et al. 2007).

In der hier vorliegenden Studie wurde versucht, durch die Kombination von rt-PA mit PAI-1 die rt-PA-vermittelte Neurotoxizität und Ödembildung durch t-PA zu reduzieren.

4.8 **Plasminogenaktivatorinhibitor 1 (PAI-1)**

PAI-1 ist ein Serinproteaseninhibitor (Serpin) und der primäre, physiologische Inhibitor der Plasminogenaktivatoren (Urokinase, t-PA). In seiner Form als einkettiges Glykoprotein beinhaltet es ein reaktives Zentrum, dass nur im aktiven Zustand des Proteins für Plasminogenaktivatoren erreichbar ist. Im inaktiven Zustand ist das reaktive Zentrum nicht erreichbar. PAI-1 wird von verschiedenen Geweben, wie Herz, Lunge, Muskel, Aorta und Fett produziert (Schneider et al. 2008).

Es gelang uns zu zeigen, dass die zusätzliche Gabe von PAI-1 bei rt-PA-Injektion zur Hämatomlyse eine signifikante Verringerung des Ödemvolumens im Vergleich zur alleinigen Lyse mit rt-PA bewirkte. Die Ödemvolumina der rt-PA-PAI-1-Gruppe gleichen annähernd der Kontrollgruppe. Daraus lässt sich die in anderen Studien beschriebene neuroprotective Rolle des PAI-1 bestätigen.

4.9 **PAI-1 als Neuroprotektor**

Hua et al. (2002) untersuchten die Konzentration von PAI-1 im Rattenhirn 24 Stunden nach Induktion einer intrazerebralen Blutung oder nach Injektion von Thrombin. Es zeigte sich ein

4.10 Die Ursache des perihämatomen Ödems

Fu et al. (1990) untersuchten die Möglichkeit der Wasserdarstellung im Hirngewebe mit Hilfe der T1- und T2-Relaxationszeit. Anhand von Katzenmodellen wurden Hirnodemtypen simuliert und der Wassergehalt der weißen Substanz der verschiedenen Versuchsgruppen miteinander verglichen. Sowohl T1- als auch T2-Relaxationszeit zeigte eine gute Korrelation zum Wassergehalt des Gewebes, jedoch war die T2-Relaxationszeit (T2-rt) sensitiver, Veränderungen im parenchymalen Wassergehalt festzustellen (Fu et al. 1990).

In der hier vorliegenden Studie wurde sowohl die T2rt als auch der ADC perihämatomal bestimmt. Es zeigte sich ein deutlicher Anstieg an Tag 4 sowohl in der rt-PA- als auch in der rt-PA-PAI-Gruppe. In der Kontrollgruppe war der Anstieg weniger stark ausgeprägt. An Tag 10, dem Sektionstag, zeigte sich dann eine Verkürzung der T2rt in allen 3 Gruppen, am stärksten in der rt-PA-PAI-Gruppe.

Basierend auf diesen Messungen schließen wir auf einen vasogenen, extrazellulären Ursprung des Ödems. Desweiteren zeigt sich ein durch PAI-1 vermitteltes schnelleres Abklingen des Ödems, bzw. eine deutliche Abnahme der extrazellulär eingelagerten Flüssigkeit.

4.11 Übertragbarkeit des Modells auf den Menschen

Die Simulation einer intrazerebralen Blutung durch Injektion von autologem Blut kommt der humanen Situation nahe, da nicht nur ein Masseneffekt resultiert, sondern auch die toxischen Wirkungen der Blutbestandteile auf das Hirnparenchym induziert werden. Kritisch zu beurteilen ist die Schaffung einer Hämatomhöhle durch Aufblasen eines Mikroballons, wobei allerdings Vorversuche gezeigt hatten, dass dies nur einen äußerst geringen Effekt auf die perihämatomale Ödemformation hat (Lee et al. 1996a; Rohde et al. 2002).
Potentielle Effekte der Narkose durch Barbiturate müssen berücksichtigt werden, schließlich sind die Versuchstiere während der Operation und MRT-Kontrollen über mehrere Stunden narkotisiert. Verschiedene Autoren schließen eine Beeinflussung der Reaktion des Hirnparenchyms auf eine regionale zerebrale Ischämie durch die Barbituratnarkose nicht aus (Branston et al. 1979; Michenfelder und Milde 1975).

Durch das Alter der Versuchsschweine fehlten die typischen histologisch erfassbaren degenerativen Veränderungen eines alten chronisch hypertensiven Patienten mit intrazerebraler Blutung, wie z.B. perivaskuläre Mikroinfarkte, Lakunenbildung, perivaskuläre Mikrohämatome oder fibrinoide Gefäßnekrosen (Chester et al. 1978).

4.12 Die fibrinolytische Therapie einer ICB

In einer Studie von Mohadjer et al. (1992) wurden den untersuchten Patienten nach partieller Evakuierung der Hämatomhöhle 2 bis 3 mal je 5.000 bis 10.000 U Urokinase appliziert.

Rohde et al. (2000) publizierten eine Serie von 27 Patienten, deren intrazerebrale Hämatome mit rt-PA lysiert wurden. Im Vordergrund der Studie stand die Evaluierung der rahmenlosen anstelle der rahmengestützten Stereotaxie zur Aspiration und Katheteranlage entlang der Hämatomachse. Bei 25 Patienten konnte durch Hämatomaspiration und wiederholter rt-PA-

Das retrospektive Design der meisten Studien sowie die fehlende Balance der einzigen prospektiven randomisierten Studie erlauben keine abschließende Bewertung der Sicherheit und insbesondere der Effizienz der minimal invasiven Lysetherapie.
5 Zusammenfassung

rt-PA und PAI-1 versucht werden, den positiven Effekt des rt-PA auf die HämATOMVOLUMENREDUKTION als auch den positiven Effekt des PAI-1 auf die Ödemunterdrückung zu erzielen.
6 Literaturverzeichnis

Danksagung:

Ich danke meinen Betreuern Herrn Professor Dr. med. Rohde, Frau Dr. med. Keric und Frau Professor Dr. med. Samadani für die gute Betreuung und tatkräftige Unterstützung im Rahmen dieser Arbeit.

Dank geht auch an das Team der Forschungsgruppe „MR-Forschung in Neurologie und Psychatrie“, allen voran an Herrn Dr. Kallenberg und Herrn Professor Dr. Dechent für das Erstellen der MRT-Aufnahmen sowie die Hilfe bei der Auswertung der Bilder.

Dem Team der Neuropathologie unter der Leitung von Herrn Professor Dr. med. Brück gebührt Dank für die Fixation der Schweinehirne sowie die Anfertigung der Schnitte.

Dank auch an Frau Dr. med. vet. Kimmina und Herrn Dr. med. vet. Schunk, sowie an das Team der ZTE für die gute Betreuung der Schweine und die Unterstützung im Rahmen der Operationen.

Außerdem danke ich Herrn Moreira für die Hilfestellungen im Rahmen der Datenformatierungen und der Bildbearbeitungen.
Lebenslauf: