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Abstract 
 
The human heart has poor endogenous regeneration. If myocytes are lost due 

to injury, the myocardium is unable to restore its myocyte content and instead 

undergoes compensatory hypertrophy and remodeling. Cardiac tissue 

engineering aims to recreate and provide functional myocardium that replaces 

the injured myocardium. In this study, human engineered heart muscle (EHM) 

from cardiomyogenically differentiated human embryonic stem cells was 

generated. EHMs consisted of elongated, anisotropically organized 

cardiomyocyte bundles and responded “physiologically” to increasing calcium 

concentrations. To generate large myocardium capable of encompassing the 

ventricles, a novel process to systematically upscale the dimensions of 

engineered myocardium to a humanized Biological Ventricular Assisted Device 

(hBioVAD) was introduced. The hBioVADs formed a “pouch-like” myocardium at 

rabbit heart dimensions and were beating spontaneously. Further enhancement 

by biomimetic pulsatile loading generated “more mature” myocardium. 

Additional paracrine functionality was integrated by generating insulin-like 

growth factor-1 (IGF-1) secreting fibroblasts for tissue engineering applications. 

IGF-1 release induced higher levels of Akt phosphorylation and hypertrophy in 

cardiomyocytes resulting in increased force generation of EHM. Finally, 

feasibility of “paraBioVAD” (IGF-1 cell line and cardiomyocytes) implantation 

was demonstrated in a healthy rat model. Histological observations 

demonstrated engraftment on the heart and the presence of vascular structures. 

In conclusion, a humanized “paraBioVAD” technology for mechanic and 

paracrine heart support was developed. Future studies will assess its 

therapeutic utility in heart failure. 
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1.  Introduction 
 
1.1   Heart function and failure 

 
The human heart is a four-chambered pump capable of providing an optimal 

continuous blood flow to the rest of the body. It is mainly comprised of 

cardiomyocytes, fibroblasts, endothelial and smooth muscle cells of which 

cardiomyocytes are responsible for the contractility of the heart while 

fibroblasts synthesize and secrete extracellular matrix (ECM) to form the 

scaffold of the heart. In addition, growth factors are also secreted by 

fibroblasts, which promote growth, proliferation and maturation of 

cardiomyocytes in a paracrine manner. Cardiomyocytes are one of the least 

endogenously regenerative cell types in the human body (Mallory et al. 1939, 

Pasumarthi and Field 2002, Laflamme and Murry 2005, Rubart and Field 

2006, Laflamme et al. 2007) with only 1% of cardiomyocytes in the human 

heart regenerating till the age of 25 and a subsequent gradual reduction to 

0.5% till age of 75 (Bergmann et al. 2009). Hence, a loss of cardiomyocytes, 

for example as a consequence of myocardial ischemia, cannot be 

compensated effectively. Instead replacement fibrosis can be observed. This 

process also goes along with cardiomyocyte hypertrophy, which may partially 

compensate for the loss in cardiomyocytes, but will not suffice to restore 

proper function in most cases. Under these conditions, heart failure can 

develop. 

 

Heart failure is the leading cause of mortality globally with higher incidence in 

developed nations. It is however projected by the WHO to affect more 

populations in the future and be the main cause of death worldwide in less 
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then a decade (http://www.who.int/cardiovascular_diseases/en/). Unless 

promptly diagnosed and appropriate management strategies are implemented, 

heart failure progresses to severe forms where blood volume demands 

outstrip the ability of the heart to pump effectively. The only causal therapy for 

these patients is heart transplantation. Due to a shortage of organs many 

patients die before receiving a transplant. Hence, novel therapeutic modalities 

are needed urgently to bridge the time-to-transplant or re-muscularize the 

heart. 

 

Alternative therapeutic approaches, either in clinical practice or still under 

development, have been proposed to reverse pathological remodeling and 

halt disease progression in heart failure (Figure 1): 

  

 

 
Figure 1. Summary of therapeutic strategies in heart failure. 

Figure adapted from Dr. Edwin P. Ewing, CDC, USA. 

 

	
  

	
  	
  

	
  
Device therapy 

Cell-based 
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1.2  Drug therapy 

Several classes of drugs have been shown to increase survival of heart failure 

patients. Beta-adrenergic receptor blockers, angiotensin-converting enzyme 

inhibitors / angiotensin II receptor 2 antagonists and aldosterone receptor 

antagonists have been demonstrated in clinical trials as individual or 

combinatorial drug therapy to lower total mortality and hospitalization by 30 - 

40% and also shown to improve left ventricular function in patients with class 

II through class IV heart failure (SOLVD-Investigators 1992, MERIT-HF-

Investigators 1999, Pitt et al. 1999). These drugs have in common that they 

reduce neurohormonal activity and here in particular the stimulatory effects of 

endogenous catecholamines and the renin-angiotensin-aldosterone-system. 

Despite their success in clinical practice they do not stimulate cardiomyocyte 

proliferation and regeneration, and thus typically delay, but do not prevent the 

onset of late stage heart failure. 

 

1.3  Device therapy 

Throughout the progression of heart failure, the biophysical changes occurring 

in the cardiomyocytes lead to ventricle remodeling such as dilation of the 

myocardium, resulting in reduced left ventricular ejection fraction (LVEF); a 

critical index measured by amount of blood volume ejected from the left 

ventricle to the aorta and thus a widely used indicator of myocardium function. 

In end stage heart failure decrease of LVEF results in limited blood supply to 

the peripheral organs. To assist the failing heart cope with its pumping 

function, left ventricular assist devices (LVADs) can be implanted. LVADs are 

portable battery driven mechanical pumps which re-route blood supply from 
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the left ventricle and pumps it into the aorta at an adjustable flow-rate. Recent 

developments in LVAD technologies have resulted in 2nd and 3rd generation 

non-pulsatile continuous-flow VADs yielding higher survival rates, better 

quality of life and longer device durability (Slaughter et al. 2009). However, 

while LVADs are able to reduce the overload of the heart and in some cases 

even appear to reverse heart failure progression, they do not represent a 

long-term solution, because of high unwanted side-effect rates; typically minor 

and major strokes in 70% of the patients in one year (Moazami et al. 1997, 

Lazar et al. 2004, Thoennissen et al. 2006).  

 

An alternative “device” strategy was introduced with the Acorn Cor Cap 

Cardiac Support Device (ACSD; Acorn Cardiovascular Inc.; St Paul, MN, 

USA). ACSDs resemble knitted polyethylene terephthalate (PET) “bags” 

designed to be placed over the dilated heart as mesh wrap to restrict further 

dilation (Walsh 2005). In canine studies, restraint of left ventricle dilation was 

observed after ACSD placement (Sabbah 2005). Similar observations were 

made in a clinical study (Oz et al. 2003). However constriction of the heart 

was also observed in some patients, further compromising heart function. 

Finally, the ACSD was disapproved by the FDA primarily due to safety 

concerns (www.fda.gov/ohrms/dockets/ac/06/briefing/2006-

4269b1_09_sponsor.pdf).  

 

Taken together, neither LVADs nor ACSDs are capable of assisting in heart 

re-muscularization.  
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As an ultimate device therapy the concept of building a complete artificial 

heart was introduced (Morrissey 2012). Following a successful preclinical 

attempt in a canine model by Kolff and colleagues in 1958 (Norman 1975, 

Cooley 2003), the first clinical artificial heart was successfully implanted in a 

man suffering acute coronary arterial occlusion and complete heart block 

(Cooley et al. 1969). Since then, continuous research led to several 

improvements for example by introducing novel materials and advanced 

design principles (Copeland et al. 2001, Gray and Selzman 2006). While 

these heart replacement devices extend life in patients with end-stage heart 

failure, they can only serve as a temporary solution while the patients await 

total heart transplantation, also because of procedure related side effects i.e. 

thrombosis, embolism, infections and device failure.   

 

1.4  Cell-based therapy 

Given the obvious limitations of drug and device therapy, novel cell-based 

approaches to achieve biological replacement of damaged myocardium have 

been introduced (Dimmeler et al. 2005, Murry et al. 2005). Skeletal myoblasts 

were tested first in animal models of myocardial infarction and demonstrated 

some therapeutic effects, despite their inability to trans differentiate into 

cardiomyocytes (Koh et al. 1993, Taylor et al. 1998, Atkins et al. 1999, 

Chedrawy et al. 2002, Reinecke et al. 2002). A first clinical trial was 

conducted and involved the implantation of autologous myoblasts directly into 

the infarcted scar tissue (Menasche et al. 2008). However, while the majority 

of patients demonstrated enhanced systolic function, 4 patients developed 

arrhythmias within 2 weeks of cell injections (Menasché 2009). Interestingly, 
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there was no evidence for proper myoblasts integration into the host 

myocardium.  

 

Other groups experimented with intravenous application of bone marrow 

derived mesenchymal stem cells (BM-MSCs) into a large infarcted region of 

the hearts from rats, mice and pigs (Tomita et al. 1999, Shake et al. 2002, 

Nagaya et al. 2005). Nagaya and co-workers injected MSCs directly into 

dilated hearts of a rat DCM model and demonstrated that surviving 

transplanted MSCs expressed connexin-43 at junctions between MSCs as 

well as with native cardiomyocytes suggesting that autologous MSCs are 

capable of survival and integration when heterotopically transplanted. The 

MSCs also secrete high levels of angiogenic and antiapoptotic factors such as 

insulin like growth factor 1 (IGF1), vascular endothelial growth factor (VEGF) 

and hepatocyte growth factor (HGF).  Subsequently, clinical trials have been 

conducted demonstrating that autologous bone marrow cell transplantation 

can improve cardiac function likely by the inhibition of myocardial fibrosis as 

well as secretory growth factors that support myogenesis and angiogenesis 

(Murry, et al. 2005, Guarita-Souza et al. 2008, Strauer and Steinhoff 2011). 

Here it is important to note that additional animal studies have demonstrated 

that bone marrow cells and MSCs possess the risks of ectopic calcifications 

and ossifications in the heart (Breitbach et al. 2007). Nevertheless, human 

clinical trials are ongoing to ultimately assess safety, tolerability, and efficacy 

of bone marrow cell and MSC-based therapies (Schachinger et al. 2006, 

Assmus et al. 2010, Hare 2011). All of these trials target primarily patients 

with acute or sub-acute heart syndromes. In this scenario protective rather 
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than reparative approaches may suffice to offer a substantial therapeutic 

benefit to patients. 

 

In scenarios of chronic heart failure with substantial scarring there is clearly a 

need for re-muscularization. This may be best achieved by implantation of 

cardiomyocytes. In support of this, several groups have documented survival 

and integration of cardiomyocyte grafts in the heart (Soonpaa et al. 1994). 

These fundamental observations have been made in different animal models, 

but cannot be easily translated to the human, unless a reliable source for 

human cardiomyocytes can be identified.  

 

In light of this, the introduction of robust protocols to derive and maintain 

human embryonic stem cells (hESCs) in a self-renewing state with pluripotent 

differentiation potential was a major breakthrough (Thomson et al. 1998). 

More recently, alternative human pluripotent stem cells, including induced 

pluripotent stem cells (Takahashi et al. 2007) and parthenogenetic stem cells 

(Turovets et al. 2011), became available and may offer new perspectives to 

overcome the obvious ethical restraints associated with a potential use of 

hESC (Laflamme and Murry 2005, Zimmermann 2011). 

 

Today hESCs remain the gold standard for pluripotency and any pluripotent 

cell-based technology will have to be compared to it. hESCs can give rise to 

derivatives of the 3 germ lines – ectoderm, mesoderm and endoderm. 

Ectodermal differentiation is apparently the default differentiation pathway in 

most hESC lines (Vallier et al. 2004). Spontaneous mesoderm and in 
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particular cardiomyocyte differentiation are minimal in ESCs, but may be 

enhanced by stage specific differentiation protocols, adapted to simulate the 

paracrine milieu that governs embryonic heart development (Kattman et al. 

2011, Hudson et al. 2012). Coupled with new technologies to scale up the 

quantity of differentiated cardiomyocytes (Zweigerdt et al. 2011), these 

approaches would theoretically provide enough cardiomyocytes to replace 

and replenish those that were lost during myocardial infarction in a human 

heart (approx. 1x109 cardiomyocytes) (Reinecke et al. 2008). Alternatively, 

cardiomyocytes may be isolated and enriched by manual dissection of 

spontaneously beating areas within differentiating embryoid bodies (EBs) 

(Kehat et al. 2001, Xu et al. 2002), Percoll gradient centrifugation (Laflamme, 

et al. 2007), genetic selection in transgenic hESC-lines (Xu et al. 2008), or 

immune-assisted cell sorting via unique cell surface markers (Dubois et al. 

2011, Elliott et al. 2011). Direct implantations of hESC-derived 

cardiomyocytes into pigs with experimental atrial-ventricular conduction block 

and guinea pig models demonstrated that these cardiomyocytes were able to 

function as pacemaker cells (Kehat et al. 2004, Xue et al. 2005) and further 

experiments in rodent models and mice demonstrated that these 

cardiomyocytes are capable of survival, engraftment and maturation long term 

(Laflamme et al. 2005, Dai et al. 2007, van Laake et al. 2007). However, this 

direct approach has its limitations and conflicting reports. Most studies report 

that direct injection of the cardiomyocytes into a pulsing heart leads to 

massive cell loss by immediate ejection. The remaining cells that are lodged 

in the myocardium typically undergo cell death (Müller-Ehmsen 2002, Muller-

Ehmsen et al. 2002, Reinecke and Murry 2002, Dow et al. 2005). Well 
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controlled animal studies demonstrate that only <10% of the injected cells are 

retained (Zhang et al. 2001, Dow, et al. 2005, Qiao et al. 2009). In addition, 

when hESC derived cardiomyocytes were transplanted into rodents hearts, 

most of the transplanted cells secrete their unique extracellular matrix 

components which prevents the cells from integrating and connecting to the 

host myocardium; such fibrotic areas could also potentiate the risk for 

arrhythmia induction (Passier et al. 2008). However, a very recent study 

demonstrated that hESC derived cardiomyocytes can electrically couple and 

also prevent arrhythmias in infarcted guinea pig hearts (Shiba et al. 2012).  

 

Another recently discovered pool of cells - cardiac progenitor cells (CPCs) - 

has raised the possibility of endogenous heart regeneration (Hierlihy et al. 

2002, Beltrami et al. 2003). These progenitors can be isolated by flow 

cytometry either by making use of a Hoechst dye extrusion assay (Jackson et 

al. 2001) or by selection via surface markers such as c-kit (Beltrami et al. 

2003) and Sca-1 (Oh et al. 2003). Preliminary studies with transplanted 

animal CPCs and also sheets of clonally expanded Sca-1+ cells into infarcted 

animals suggested that CPCs are able to home to the injured myocardium 

(Oh, et al. 2003) and improve cardiac functions post infarct through VCAM-

1/VLA-4 signaling (Matsuura et al. 2009). These endogenous cells were also 

able to respond to growth factor stimulation via mobilization to the injured 

areas (Bocchi et al. 2011, Ellison et al. 2011). In humans, CPCs were also 

identified (Messina et al. 2004) and could be genetically modified to proliferate, 

survive, engraft with enhanced improvement to the injured myocardium 

structure and function (Mohsin et al. 2011). In clinical trials, patients with 
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ischemic cardiomyopathy were transplanted with human cardiac stem cells 

and preliminary results demonstrated that intracoronary infusion of autologous 

cardiac stem cells improved left ventricular systolic function and also reduced 

the infarcted size in patients with heart failure (Bolli et al. 2011). Similar 

results were obtained in another study from the Marban laboratory using the 

autologous CPC approach (Makkar et al. 2012). Both studies were not 

powered to draw any conclusions towards efficacy. This will have to be tested 

in follow-up trials. In addition, the mechanism of action of the cell grafts is not 

well understood. 

 

1.5  Paracrine Support – IGF-1 

A key observation from the many experimental and clinical cell-based studies 

is that irrespective of the cell entity employed, therapeutic effects could be 

observed. This raised the question whether a set of commonly secreted 

factors underlies the cell-based therapeutic effect rather than functional 

integration of contractile units into the heart, which was not observed in most 

of the tested cell types. Among the many paracrine factors released from cell 

grafts IGF-1 appears to exhibit strong “therapeutic” activities, i.e. enhanced 

cell survival, cardiomyocyte hypertrophy, and enhanced angiogenesis (Welch 

et al. 2002, Shyu et al. 2005, Dobrucki et al. 2010). 

 

IGF-1 application has been introduced clinically in the treatment of patients 

with Rett Syndrome (ClinicalTrials.gov Identifier: NCT01253317), amyotrophic 

lateral sclerosis (ClinicalTrials.gov Identifier: NCT00035815) and Duchenne 

muscular dystrophy (ClinicalTrials.gov Identifier: NCT00004646). In heart 
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failure, IGF-1 was tested to induce physiological hypertrophy in dilated 

ventricular myocardium (Osterziel et al. 1998, Vasan et al. 2003); these 

investigators could, however, not identify a clear therapeutic benefit of 

systemically applied IGF-1. Presently, safety and efficacy of IGF-1 

(Mecasermin; single dose, intracoronary injection) is tested in patients with 

ST-elevation Acute Myocardial Infarction (STEMI; ClinicalTrials.gov Identifier: 

NCT01438086). 

 

Biologically active IGF-1 is a 70 amino acid protein that is encoded on 6 

exons. It is mainly produced in the liver in response to growth hormone 

stimulation and circulates throughout the body bound to its binding protein 

(IGFBP3). There are 4 IGF-1 splice variants, which can be further grouped in 

2 classes (Figure 2). The mature peptide is encoded in exons 3 and 4. The 

definite roles of the IGF-1 splice variants are not fully understood, but most 

biological activities are affiliated to class 1 IGF-1 protein variants (Bloor et. al., 

2001). 
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Figure 2: Schematic overview of IGF-1 splice variants. Numbers 

represents exons. The biologically active IGF-1 peptide is encoded on exons 

3 and 4. 

 

 

IGF-1 binds to a specific receptor (IGF-1R) and activates a variety of signaling 

cascades (Mourkioti and Rosenthal 2005), which include phosphatidylinositol-

3-kinase (PI3K)/Akt, mitogen-activated-protein-kinase (MAPK), and 

calmodulin dependent kinase (CaMK) signaling (Figure 3). Of particular 

therapeutic interest in heart failure may be its activation of pro-survival 

pathways and induction of physiological cardiomyocyte hypertrophy. 

Unwanted effects include the possibility to induce oncogenic cell growth.  
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Figure 3. Schematic overview of IGF-1R signaling pathways. 

Adapted from Moukioti and Rosenthal (2005).  

 

 

1.6  Heart muscle tissue engineering  

Tissue engineering has been developed to biophysically support the failing 

heart, but also to provide in vitro test-beds for drug development and studies 

of organogenesis (Eschenhagen and Zimmermann 2005). In heart muscle 

repair the main goals are to (1) add contractile elements to the failing heart for 

functional support and (2) provide restraint similar to the ACSD approach, but 

fully humanized. The most direct approach involves the use of scaffolds, 

either synthetic (Carrier et al. 1999) or biological (Li et al. 1996, Eschenhagen 

et al. 1997, Zimmermann et al. 2000, Zimmermann et al. 2002, Bursac et al. 

2007, Tian and Morrisey 2012), and seeding of cardiomyocytes in or on these 

scaffold. The first macroscopic contractile three-dimensional heart-like tissue 
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was engineered from embryonic chick cardiomyocytes as in vitro model for 

target validation (Eschenhagen, et al. 1997). This was followed by the advent 

of mammalian engineered heart tissues (EHTs) for drug screening and 

therapeutic applications (Zimmermann, et al. 2000, Zimmermann, et al. 2002, 

Zimmermann et al. 2004, Naito et al. 2006, Zimmermann et al. 2006) In 

contrast to other original tissue-engineered heart muscle models (Bursac et al. 

1999, Carrier, et al. 1999, Li et al. 1999, Kelm and Fussenegger 2004, Leung 

and Sefton 2010), EHTs displayed coordinated beating with directed force 

development and heart muscle-like physiology (e.g., Frank-Starling 

mechanism) and pharmacological responses (e.g., beta-adrenergic and 

muscarinic modulation of contractile properties). Subsequently, alternative 

tissue engineering modalities with comparable functionality have been 

introduced (Radisic et al., 2004; Shimizu et al., 2002). Importantly, EHT 

cultures support anisotropic tissue organization and maturation of immature 

cardiomyocytes (Zimmermann, et al. 2002, Tiburcy et al. 2011). Based on this, 

it appeared straightforward to postulate that the EHT culture format would 

also support the assembly of immature hESC-derived cardiomyocytes into 

functional myocardium.  

 

Despite the recent increased focus on developing advanced models of 

engineered tissues, several key clinical challenges remain to be addressed: 

engineered cardiac constructs should be of a clinically relevant size and 

thickness and consist of immunologically tolerable cell populations in 

collagen-based matrix similar to the host heart (Vunjak-Novakovic and 

Scadden 2011). These constructs must also be able to connect to the host 
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blood supply, propagate electrical pulses which must be synchronized with 

the host myocardium, and subsequently generate sufficient contractile force to 

aid in blood circulation. First proof-of-concept for these in vivo functionalities 

stems from EHT engraftment in rats with myocardial infarction (Zimmermann, 

et al. 2006). 

 

To address the size issue, attempts were made by up scaling the physical 

area and thickness of cardiac tissue constructs. Most of these involve the 

fusion or stacking of tissue constructs such as EHTs (Naito et al., 2006) or 

with cell sheets (Shimizu et al. 2006). To further extend the applications of the 

EHT technology, a different approach to provision of cardiac restraint with 

contractile elements was attempted. This involved the development of a 

continuous pouch-like EHT (Yildirim et al. 2007), which allowed the 

embracement of the heart ventricles with an anticipated function as biological 

ventricular assist device (BioVAD). The BioVADs were generated using 

neonatal rat cardiomyocytes mixed with collagen type 1 and placed over a 

spherical glass mold to allow tissue condensation within 7 days.  BioVADs 

were observed to maintain spontaneous contractions throughout the casting 

and condensation stages, and force measurements demonstrated heart-like 

contractile properties. In addition, these BioVADs stably grafted onto the 

epicardial surface of rat hearts. Vascularization occurred rapidly in vivo. The 

study suggested that BioVADs could be engineered to provide a large tissue 

construct capable of therapeutically restraining the failing heart and adding 

contractile elements to aid in myocardial force generation. 
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1.7  Objectives 

The overarching aim of this dissertation was to advance the BioVAD concept 

to a human model with enhanced (paracrine) functionality. Following main 

objectives were defined and are summarized in Figure 4: 

 

1) Implementation of robust protocols to direct cardiogenicity in human 

ESC cultures 

2) Development of human engineered heart muscle (EHM) with properties 

of native myocardium 

3) Construction of human BioVADs based on the knowledge gained from 

the human EHM and rat BioVAD models 

4) Integration of paracrine IGF-1 activity into the human BioVAD 

approach. 

5) Testing the feasibility of human BioVAD implantation in vivo.  

 

Figure 4: Experimental outline of the dissertation.

5 
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2.  Materials and methods 
 

All experiments were performed according to institutional regulations and 

good laboratory practice rules. Animal experiments were approved by LAVES 

(AZ 10.13, AZ 33.9-42502-04-12/0830). All substances were acquired at 

highest grade from SIGMA ALDRICH if not indicated otherwise. 

 

 

2.1  Human embryonic stem cell culture 

Import and experimentation with human embryonic stem cells were approved 

by the Robert-Koch-Institute (www.rki.de; approval #12 from 13.09.2005 to 

W.H. Zimmermann according to §11 Stammzellgesetz). 

 

 

2.1.1 Human feeder cells preparation 

Human foreskin fibroblasts (HFFs) cells were purchased from the American 

Type Culture Collection (SCRC-1041; ATCC) and propagated in HFF-medium 

(Appendix) to passage 20 for cryopreservation at -152oC in cryo-medium 

(Appendix) for controlled freezing rate of cells. Passage 21 and onwards HFF 

cells were subsequently used to support hESC culture. Briefly, 2x106 HFF 

cells were harvested by trypsinization and exposed to 30 Gray γ-irradiation 

(STS Biobeam 8000, Germany) to mitogenically arrest the cells. 

Subsequently, inactivated HFF cells were plated down on a cell culture dish. 

The culture dish was then incubated in a 37oC cell culture incubator for 24 

hours. Thereafter, the cells were rinsed with PBS to remove the serum and 



Materials and Methods 

	
   18 

fresh hESC medium (Appendix) was overlaid. Subsequently, hESC colonies 

can be plated on top of the irradiated HFF cells. 

 

 

2.1.2  Embryonic stem cell culture 

hESC lines, HES2 and HES3 (ES Cell International, Singapore), were 

obtained and adapted to culture on γ-inactivated HFFs. hESC-medium was 

exchanged daily until colonies covered 80% of the culture dish. hESC cultures 

were tested to be free of mycoplasma using the MycoAlert™ Mycoplasma 

detection kit (Lonza). 

 

 

2.1.2.1 “Cut and Paste” passaging 

Undifferentiated hESCs were cultured as intact colonies and split at 1:9 ratio 

when confluent. The colonies were then enzymatically digested with 

collagenase IV working solution (Appendix) and either manually scored using 

a glass needles or by rolling with the StemPro® EZPassage™ Tool 

(Invitrogen) to obtain homogeneously sized cell rafts (Figure 5). These cell 

rafts were then either seeded onto another plate of irradiated HFFs for 

continual passage or subjected to embryoid bodies (EB) based cardiac 

differentiation protocols. 
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Figure 5:  hESC colonies scored with the EZ Passage tool. Image displays 

a representative HES3 culture. Scale bar 1 mm. Image from Soong et al., 

2012. 

 
 
 
2.1.2.2 Monolayer passaging 

Undifferentiated hESC were first single cell adapted to a monolayer culture as 

outlined (Hudson, et al. 2012). Briefly, confluent hESC cultures were gently 

enzymatically dissociated with TrypLE (Invitrogen) and triturated with a 10 ml 

serological pipette (Sarstedt) to obtain a homogenous suspension of single 

hESC with little contaminating fibroblast cells. The dissociated hESC were 

then plated onto 2.6x106 γ-irradiated HFFs and allowed to expand for further 7 

days in a 37oC humidified 5% CO2 incubator. After at least 10 rounds of cell 

passaging, hESC were considered “single cell adapted” and suitable for 

monolayer cardiomyogenesis differentiation protocols. 
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2.1.3 Embryonic stem cell differentiation 
 

 

2.1.3.1  Embryoid body differentiation 

HES 3 cell rafts were first adapted to serum free conditions in SF adaptation 

medium (Appendix) and incubated in a 100 mm Ultra-low® Petri dish 

(Corning) where EBs are spontaneously forming. These were then subjected 

to cardiomyocyte differentiation (Graichen et al. 2008) as follows. First a 40 

µm cell strainer was inverted into an open 50 ml centrifuge tube and placed 

carefully in a tube rack. Next, the Ultra Low® petri dishes containing the EBs 

were removed from the incubator. Then, the entire culture was passed 

through the inverted cell strainer rinsed with bSFS medium (Appendix). After 

the flow through was completed, the cell strainer was turned so that it sat 

properly inside the opening of a new sterile 50 ml centrifuge tube. 10 ml of 

bSFS containing 5 µmol/L of SB203580 (p38 MAPK inhibitor) was added in 

the dark and used to flush the EBs back into a centrifuge tube. Then they 

were transferred back into the source Ultra Low® Petri dish and incubated 

further (Figure 6). This was marked as Day 2 of differentiation. Medium 

change was performed every day until culture day 3 where it was then 

changed every 2 days. Spontaneously beating EBs can be observed from 

culture day 8 onwards. 
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Figure 6. Embryoid body differentiation. SB203580 (5 µmol/L) was added 

on day 2 (D2). Beating was observed to start on culture day 8 with increasing 

beating areas until culture day 14. D-1 denotes day of ESC seeding. 

 

 

2.1.3.2 Monolayer differentiation 

hESC colonies were first single cell adapted to form monolayers and then 

subjected to a modified cardiomyocyte differentiation protocol as outlined 

(Hudson, et al. 2012). Briefly, single cell adapted hESCs (0.5 x 104 cells per 

cm2 in a 24 well culture dish format) were exposed to a mesodermal induction 

protocol of 16 days (Figure 7).  
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Figure 7. Monolayer differentiation. Activin and BMP were added for 3 days 

before Wnt signaling was inhibited with IWP4 (Wnt inhibitor) on culture day 3. 

First beating was observed on culture day 10.   

 
 
From days 0 - 2, hESCs were cultured in serum free basal monolayer 

differentiation medium (Appendix) supplemented with 9 ng/ml Activin A, 5 

ng/ml BMP4 (both R&D Systems), 5 ng/ml bFGF (Millipore). From Day 3 - 10, 

Activin A, BMP4 and bFGF were withdrawn. Culture medium was exchanged 

and supplemented with 5 µmol/L IWP4 (Stemgent) every 3rd day until day 13. 

From day 13 - 16, cardiomyocyte specification was enhanced withdrawal of 

IWP4 from basal monolayer differentiation medium. Typically, first beating 

areas in the cultures were observed between days 10 - 13. 

 

 

2.1.4 Flow cytometry 

For analyzing pluripotency and cardiac differentiation efficiency cells were 

dissociated with trypsin and pelleted at 300 x g for 4 minutes. The supernatant 

was aspirated. The dissociated cells were fixed with 4% paraformaldehyde 
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(Histofix, Roth) for 24 hours. Next, 2 wash steps with PBS were performed 

and samples were then permeabilized with Triton X-100 in a blocking buffer 

(Appendix) for 10 minutes at room temperature followed by the staining by 

primary antibodies against Tra1-60, Oct4, SSEA4 for 1 hour at 4 oC. Following 

3 additional wash steps with blocking buffer, secondary antibodies (goat anti-

mouse IgG conjugated with Alexa Fluor® 488, Invitrogen 1:1000) and nuclear 

label dye, DAPI (1 µg/ml, 1:1000) were then incubated with the cells for 30 

minutes at 4 oC in the dark.  

 

For ESC derived cardiomyocytes analysis, 70% ethanol fixed single cells 

were incubated in blocking buffer (Appendix) for 10 minutes followed by 

incubation with primary antibodies against alpha sarcomeric actinin (Sigma-

Aldrich A7811, 1:4000) for 1 hour at 4 oC. Following 3 additional wash steps 

with blocking buffer, secondary antibodies (goat anti-mouse, IgG conjugated 

with Alexa Fluor® 488, Invitrogen 1:1000) and nuclear label dye, DAPI, were 

then added and the cardiomyocytes were incubated for 30 minutes at 4oC in 

the dark.  

 

In parallel, cell populations incubated with IgG isotype control primary 

antibodies with appropriate secondary antibodies served as negative controls. 

Recordings were performed on a LSRII cytometer (BD) and analyzed using 

FACSDiva Software 6.0 (BD) or Cyflogic Software. The following gating 

strategy was applied. The population of interest was first displayed in FSC 

and SSC (Figure 8 A). A DNA stain was used to gate out dead cells (sub-G1 

fraction, Figure 8 B). The width of the DNA signal was then used exclude cell 
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doublets (Figure 8 C). These gated cells were then displayed based on actinin 

fluorescence (Figure 8 D) to distinguish between cardiomyocytes (CM; 

actinin+) and non-myocytes (NM; actinin-). 

 

 

 

 

 

Figure 8. Flow cytometry gating strategy. (A) Cells were displayed as 

scatter plot based on SSC + FSC. (B) Viable cells in G1 + G2 were selected 

based on DAPI signal intensity. (C) Doublets were excluded based on DAPI 

signal width. (D) Cardiomyocytes (CM) and non-myocytes (NM) were 

distinguished based on actinin positivity. Similar gating strategies were applied 

for detection of stem cell markers. 
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2.2 Generation and characterization of human Engineered Heart 

Muscle (EHM) 

 

2.2.1 Preparation of casting molds 

To generate the casting molds for EHMs, 4 Teflon spacers of 11 mm diameter 

and 5 mm height were evenly spaced in a glass petri dish (Figure 9 A). 9 ml of 

Sylgard Silicone 184 (Dow Corning) and 1 ml of curing agent were pipetted 

and mixed thoroughly in a 50 ml centrifuge tube and spun at 300 x g for 3 

minutes to remove air bubbles. The silicone mixture was then poured into the 

glass dish around the Teflon spacers, allowed to harden for 24 hours at room 

temperature. Next, the Teflon spacers were carefully removed with forceps 

and a droplet of premixed silicone was applied to each of the centers of the 

four recesses to attach a short silicone core upright (Figure 9 A, ii) The 

assembled casting mold was allowed to cure at 55 °C overnight. 

 

To ensure the removal of toxic residuals from casting molds, they were placed 

in a glass beaker filled with distilled water, boiled and drained at least 4 times. 

Thereafter, silicone tubings (Figure 9 A, iii) were slipped over the silicone 

cores and the fully assembled casting mold was wrapped in aluminum and 

autoclaved until ready for use. These casting molds can be reused indefinitely. 
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Figure 9: Casting mold and silicone holder for EHM culture. A: Glass 

culture dish filled with transparent silicone and 4 circular recesses with central 

spacers: (i) Teflon disc of 11 mm diameter and 5 mm height with central hole 

used as spacer during the silicone hardening process; (ii) recess with thin 

silicone core; (iii) silicone tubing used as inner spacer during the EHM 

formation process placed over a central silicon core. B: Flexible silicone poles 

for mechanical loading of EHM. Scale bars: 10 mm. Image from Soong et al., 

2012. 

 

 

2.2.2 Preparation of holding devices 

Flexible silicone poles (length: 11 mm, thickness: 1.5 mm, inner/outer 

distance: 3/6 mm) with circular base (diameter: 20 mm, thickness: 1.6 mm) 

were made from Sylgard Silicone 184 (Dow Corning) as resilient holder 

(Figure 9 B) Before use they were boiled in distilled water, drained and 

autoclaved.  

 

A B 
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2.2.3 Preparations of cells 

Human EHM generation involves the casting of single cells, ESC-derived 

cardiomyocytes with or without non-myocytes such as fibroblasts, into a 

collagen-based hydrogel to form a 3 dimensional organoid.  

 

 

2.2.3.1 Embryonic stem cells 

To obtain single hESC derived cardiomyocytes from EBs or monolayer cells 

for human EHM generation, cells were first incubated with 0.2 % collagenase 

type 1 (C0130, Sigma Aldrich) for 45 minutes at 37oC and then incubated with 

0.25 % trypsin (Invitrogen) for 5 minutes at room temperature. Trituration with 

micropipettes was performed to further dissociate cell clumps for 5 minutes at 

room temperature. Full neutralization with complete human EHM medium 

(Appendix) was next carried out and cells were centrifuged at 300 x g, 4 

minutes. Supernatant was aspirated and the cell pellet was resuspended in 

complete medium until a homogenous single cell suspension was obtained. 

Cells were counted with a Neubauer counting chamber. 

 

 

2.2.3.2 Human foreskin fibroblasts (HFF) 

To obtain single HFF cell suspensions, wild type or transgenically modified 

HFF cells were incubated with TrypLE Express (Invitrogen) for 3 minutes at 

37 oC and then triturated with a 10 ml serological pipette to further dissociate 

cell clumps. Next, complete HFF medium (Appendix) was added to neutralize 

the enzymatic activity. Cells were then centrifuged at 300 x g, 4 minutes and 
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supernatant was aspirated. The required number of cells was counted in a 

Neubauer cell counting chamber.    

 

 

2.2.4 Construction and culture of EHM 

Single cells were mixed thoroughly with collagen type I, 2X DMEM (Appendix), 

NaOH and Matrigel in a prechilled 15 ml centrifuge tube accordingly (Table 1). 

NaOH was added drop wise until Phenol red color indicator changes from 

yellow (acidic) to pink. Then, 450 µl of the master mix was quickly distributed 

into individual casting mold recesses (Figure 9 A) and placed in a 37 °C 

humidified incubator with 5% CO2 for 1 hour. Following that, 6 ml of 

prewarmed complete EHM medium was overlaid until all EHMs were 

completely covered with medium and then incubated for a further 24 hours 

and medium was exchanged thereafter every other day. After the EHMs had 

progressively condensed, typically after 3 days, they were transferred onto 

resilient silicone holders (Figure 9 B). 

Number of EHM 4 20 

Rat Collagen (3.2 mg/ml) 440 µl 2,200 µl 

2X DMEM 535 µl 2,675 µl 

NaOH 0.1N  95 µl 475 µl 

Matrigel® 200 µl 1,000 µl 

Cell Suspension (1.5x106 per EHM) 829 4,145 

TOTAL VOLUME 2,100 µl 10,500 µl 

 

Table 1: EHM reconstitution mixture.  
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Prior to the transfer of condensed EHMs, the necessary number of silicone 

holders was first placed into a tissue culture plate filled with EHM medium. 

Thereafter, the top of the removable silicone tubing of a casting mold dish 

was pinched gently with a pair of curved forceps and slowly removed from 

the casting dish. Next, the silicon tube was placed over one of the paired 

silicone poles of a silicone holder and the EHM was released by gentle 

shaking or nudging with a pipette tip. With the help of another sterile pipette 

tip, the other silicone pole was gently bent to suspend the EHM between the 

2 poles. The contracting EHM will bend the silicone holders inducing dynamic 

load for the EHM to work against. Medium was exchanged every 2 days over 

the next 7 days of EHM maturation. EHMs were ready for end-point analyses 

on culture day 10. 

 

 

2.2.5 Isometric force measurements 

Force measurements of EHMs were performed in thermostatted organ baths 

(FMI GMbH) as previously described (Zimmermann, et al. 2000). Briefly, after 

day 7 of EHM culture on silicone stretchers, EHMs were carefully removed 

and placed over the hooks of a force transducer in an organ bath filled with 

Tyrode’s solution (Appendix). EHMs were field stimulated via two platinum 

electrodes at 2 Hz (5 ms monophasic pulses, 200 mA) and preloaded to the 

length of maximal force production (Lmax). Then the responses to increasing 

calcium concentrations (0.2 to 4 mmol/L) data were acquired using BMON 

software and analyzed by AMON software (both Jäckel; Hanau, Germany). 
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2.2.6 Immunofluorescence imaging 

Whole mount immunofluorescence antibody staining was performed to 

visualize cardiac muscle formation within the EHM. EHMs were fixed in 4% 

formaldehyde solution (Histofix, Roth) overnight. EHMs were then incubated 

in a permeabilizing blocking buffer for 24 hours. Next, EHMs were incubated 

with primary antibodies against alpha sarcomeric actinin (Sigma-Aldrich 

A7811, 1:4,000) for 3 days at 4oC on a rotary microfuge holder. Thereafter, 3 

thorough wash steps with blocking buffer (Appendix) were performed followed 

by the incubation with secondary antibodies (goat anti-mouse 2 mg/ml, IgG 

conjugated with Alexa Fluor® 488, Invitrogen 1:1,000), phalloidin (conjugated 

with Alexa Fluor® 546, Mobitec 1:60) and nuclear label dye, DAPI (1 µg/ml, 

1:1000) for 24 hours at 4oC in the dark. The EHMs were thoroughly washed 

with PBS and finally mounted on microscope slides for image capture and 

analysis. Images were taken with a Zeiss LSM710 confocal microscope. 

 

 

2.2.7 Dissociation of EHM for flow cytometry 

To obtain cells from EHMs for flow cytometry, each EHM was cut into half and 

incubated in 1 ml of collagenase for 30 minutes at room temperature. 

Thereafter, the remaining large pieces were gently teased apart with two 27G 

needles to obtain smaller pieces in the cell culture well. Next, further 

enzymatic dissociation of the pieces was performed according to the 

procedures highlighted in section 2.2.3.1. After single cells were obtained 

from the dissociation of EHMs, the cells were fixed in 70% EtOH and kept in 4 

oC until flow cytometry. 
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2.3 Generation and characterization of BioVADs 

 

2.3.1  Construction of BioVADs 

Modifications of the original rat BioVAD protocols (Yildirim et al., 2007) were 

required to create a scalable casting mold for the generation of large 

humanized BioVADs. In addition, to confer a biomimetic culture format with 

regular pulsatile action, an inflatable inner structure required to be designed. 

 

A series of casting cubes from Makrolon® (Bayer MaterialScience) were 

spherically machine-hollowed out and aligned to generate 18 mm, 20 mm and 

30 mm casting molds. 10% molten agarose was poured into the 18 mm 

casting mold and cooled to form a solidified spherical agarose ball and 

speared with a central wooden spine. Next, the ball and stick was removed, 

centrally placed in a 20 mm casting mold and liquid silicone (Silicone 2000 

and curing agent 9:1 ratio) was poured around the 18 mm agarose ball and 

allowed to cure uniformly for 24 hours at room temperature. Thereafter, the 

solidified silicone coated ball and stick were removed and placed in boiling 

water until the inner agarose dissolved, yielding an inflatable sphere with 20 

mm outer diameter and a wall thickness of 1 mm. This 20 mm inflatable 

sphere was then placed in a 30 mm casting mold and connected to a 10 G 

silicone urinary catheter (BARD, USA). 
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2.3.2  Preparation of casting molds for biomimetic support 

First, the silicone sphere was connected to a mechanical animal ventilator 

(FMI, GmbH) and inflated to check for surface tears so as to ensure proper 

pulsatile function. Next, the casting blocks with attached silicone spheres 

were boiled, drained and autoclaved to sterilize the whole apparatus prior to 

use. After cooling down to room temperature, the BioVAD casting mold could 

then be used for the seeding of cells to generate humanized BioVAD. 

 

 

2.3.3 Preparation of cells 

Initially, cardiomyocytes harvested from neonatal rat hearts were used to 

determine the feasibility of BioVAD formation. Thereafter, we attempted to 

generate human BioVADs with hESC derived cardiomyocytes.  

 

 

2.3.3.1 Rat model 

Rat myocytes were prepared by using a trypsin/DNase dissociation protocol 

(Zimmermann et al., 2002). 8 ml reconstitution mixture containing 2.6 x 107 

cells and rat-tail collagen (4.2 mg) was poured into the mold and allowed to 

condense for 72 hours. After day 10, the rat BioVAD was harvested and 

analyzed. 
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2.3.3.2 Human model 

Single cells obtained from the dissociation of hESC-derived cardiomyocytes 

were used to generate the human BioVAD (hBioVAD)s as outlined in Table 2 

and allowed to condense for 24 hours. From culture days 3 to 8, uniform 

pulsatile stretch (10% strain, 90 beats per minute) was initiated using a 

mechanical ventilator to inflate and deflate the central sphere. Non-pulsatile 

conditions served as control (0% strain). 

 

Human BioVAD 1 

Bovine collagen (6.1 mg/ml) 1,030 µl 

2x DMEM 1,030 µl 

NaOH 0.1 N 200 µl 

cells suspension 6,140 µl 

cell number (x106) 26 

total 8,400 µl 

 

Table 2: Components required to generate human BioVADs 

 

 

2.3.4 Immunofluorescence imaging 

Tissue samples from BioVADs were harvested and fixed in 4% formaldehyde 

(Histofix, Roth) overnight and then permeabilized with blocking buffer. 

Immunofluorescence labeling and imaging were performed as highlighted in 

section 2.2.6.  
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2.3.5 RNA preparation 

Total RNA was prepared using standard Trizol® (Invitrogen) extraction 

protocols. BioVAD and EHM tissue samples were first rinsed with PBS prior to 

snap freezing in liquid nitrogen. 500 µl of Trizol® and 7 mm stainless steel 

beads (Qiagen) were added to each sample tube and homogenized with a 

Tissue Lyser II (Qiagen) at 25 Hz for 5 minutes. Next, 100 µl of chloroform 

was added into the samples and the tubes were agitated vigorously for 1 

minute and allowed to settle for 10 minutes at room temperature. The tubes 

were then spun at 12,000 x g for 20 minutes at 4oC centrifuge (Eppendorf 

5417). The aqueous phase from the samples were transferred to individual 

RNAse free microfuge tubes and vigorously mixed with equal parts of 

isopropanol for 1 minute and allowed to settle for 5 minutes at room 

temperature. Next, the tubes were spun at 12,000 x g for 20 minutes to pellet 

the RNA and then rinsed with 70% EtOH. Following another centrifuge step of 

12,000 x g for 5 minutes, the RNA tubes were allowed to air dry prior to 

suspension in RNAse free water. The amount of RNA was quantified and 

quality ensured (260 / 280nm OD. ratio ≥ 1.8) with the Nanodrop 

spectrophotometer (Thermo Scientific) and subsequently stored at -80 oC. 

 

 

2.3.6 Reverse transcription 

Extracted RNA samples were first treated with DNAse I (Roche) to remove 

contaminating DNA. A reaction mix consisting of 1 µg RNA, 1 µl DNAse I 

buffer (Roche), 0.2 µl DNAse I enzyme was incubated at 37 oC for 20 minutes 

followed by an addition of 0.2 µl EDTA and incubation at 75 oC for 10 minutes 
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to inactivate DNAse I activity. For reverse transcription and quantitative RT-

PCR the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems) 

was used according to manufacturer's instructions. 50 ng cDNA was mixed 

with a mastermix of RT-PCR reactions consisting of 300 nM 5’ primer and 3’ 

primer each, 100 nM Taqman probe and 2 X Taq polymerase were 

assembled in a 384 well plate (Applied Biosystems).  

 

 

2.3.7 Quantitative RT-PCR 

Amplification was performed on an ABI PRISM 7900HT Fast Real-Time PCR 

system (Applied Biosystems) with the following parameters: 50oC for 2 

minutes, denaturation at 95oC for 10 minutes and a cyclical amplification at 

95oC for 15 seconds and 60oC for 1 minute for a total of 40 cycles. No 

template and no reverse transcriptase reactions served as controls to ensure 

product specificity. Results from the run were determined by using ΔΔCT 

method (Livak and Schmittgen 2001). Glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) served as housekeeping gene standard. Primer 

sequences are listed in the Appendix, page 127.  
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2.4 Development of a cell based IGF-1 secretion technology 

 

2.4.1  Plasmids 

The plasmids pCMV-XL4 (SC119792; Origene), pLVx-Tight-Puro and pTetOn 

(both Lenti-X™ TetOn® Advanced inducible expression system, 632162;  

Clontech) were purchased and used in the development of cell based IGF-1 

secretion. pCMV-XL4 consists of the full length human IGF-1 transcript; pLVx-

Tight-Puro is an expression response vector which consists of a modified 

CMV promoter (PTight) with regulatory elements of the tetracycline operator 

sequences and includes a puromycin resistance gene; pTet-On-Advanced is 

the transactivator plasmid which contains an improved version of the reverse 

tetracycline controlled transactivator protein (rtTA), and also includes a 

neomycin resistance gene. 

 

 

2.4.2  Cells 

In this study, TSA cells (Giovarelli et al. 1995) were exploited to test the 

expression of human IGF-1 from pCMV-XL4 by transfection and as host cells 

for the packaging of genetically engineered lentivirus plasmids and lastly, to 

serve as production cells for transgenic lentivirus. HFF cells were used as 

target cells for transgenic lentivirus transduction to generate a stable inducible 

IGF-1 secreting cell line. Both TSA and HFF cells were cultured till 80% 

confluence prior to transfection or transduction respectively. 
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2.4.2.1 TSA cells 

TSA cells were cultured in TSA medium (Appendix) on 100 mm cell culture 

plates (Nunc).  

 

 

2.4.2.2 Human foreskin fibroblasts 

HFF cells were cultured in HFF medium (Appendix) as highlighted in 2.1.1 on 

100 mm cell culture plates (Nunc).  

 

 

2.4.3 Lipofection of pCMV-XL4 into TSA cells 

TSA cells were transiently transfected with 3 µg of pCMV-XL4 plasmids using 

lipofection with Polyfect (Qiagen) according to manufacturer’s protocol. The 

cell culture medium was exchanged after 16 hours and cells were incubated 

for another 48 hours.  

 

 

2.4.4  Analysis of IGF-1 expression and secretion 

Supernatants from transfected cells and untransfected cells were harvested 

and stored in -20oC until further use. To obtain cell lysates from these cultures, 

cells were rinsed thoroughly with PBS to avoid supernatant contamination. 

Next, 400 µl CytoBuster protein extraction buffer (Novagen) was layered over 

the cells and allowed to incubate on ice for 30 minutes. Thereafter, with the 

help of a cell scraper, the lysates were collected individually in 1.5 ml 

microfuge tubes and centrifuged at 12,000 x g for 30 minutes to pellet the cell 
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debris. The supernatant above this cell debris was then collected into sterile 

microfuge tubes and designated as cell lysates and stored at -20oC until 

further required. 

 

 

2.4.4.1 Western blot detection of IGF-1 

Cell lysates and supernatants were first quantified with standard Bradford 

protein assay to standardize loading protein concentrations and processed 

using standard western blot protocols. Briefly, proteins were resolved on a 

10% SDS-polyacrylamide gel followed by 400 mA electrophoretic transfer to a 

0.2 - 0.4 µm nitrocellulose membrane (Protran, Whatman) at 400 mA for 1 

hour. All membrane blots were blocked with blocking buffer (5% goat serum in 

PBS) for 1 hour followed by incubation with primary antibodies against hIGF-1 

(abcam, 1:5,000) and GAPDH (Santa Cruz, 1:1,000) overnight at 4oC. 

Thereafter, the membrane was washed with 1% TBST buffer (Appendix) 

thoroughly and incubated with secondary antibodies (goat anti-mouse IgG, 

1:20,000) for 1 hour at room temperature. To visualize the protein bands, the 

membrane was incubated with horseradish peroxidase substrate 

(SuperSignal West Femto kit; Pearce, Thermo Scientific) and developed with 

a membrane detection system (VersaDoc; BioRad) and analyzed with 

Quantity One software (BioRad). 
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2.4.4.2 ELISA detection of IGF-1 

IGF-1 concentration in cell culture supernatants was measured with a 

sandwich enzyme linked immunosorbent assay (ELISA) following the 

manufacturer’s protocol (Quantikine® human IGF-1; R&D systems). Results 

were recorded at 450 nm and analyzed with a microplate reader (FlexStation 

3; Molecular Devices).  

 

 

2.4.5 IGF-1 PCR cloning 

The IGF-1 variant 4 sequence was PCR amplified from pCMV-XL4 with high 

fidelity hot start DNA polymerase  (Platinum® Taq; Invitrogen) and the 

following hIGF-1 primers with flanking restriction enzyme cutting sites: 5’– 

GCGGCCGCATGGGAAAAATCAGCAGTCTTCC, 3’– 

TCTAGACTACATCCTGTAGTTCTTGTTTCC (5’-NotI and 3’-XbaI sites 

underlined respectively). The PCR mastermix had the following composition: 

1 X PCR buffer, 1.5 mM MgCL2, 0.2 mM dNTP mix, 0.2 µM 5’ forward primer , 

0.2 µM 3’ reverse primer, 0.25 µg plasmid DNA and 0.2 µl of DNA Taq 

polymerase (1 unit) was subjected to 35 cycles in a thermal cycler (GeneAmp 

9600, Applied Biosystems) using the following temperature profiles: 

denaturation at 94oC for 1 min; annealing at 60oC for 1 min; and extension at 

72oC for 1 min. The PCR product for IGF-1 was separated on 1% agarose 

gels, visualized by ethidium bromide (EtBr) staining, excised and purified 

according to the manufacturer’s protocol (QIAquick gel extraction kit; 

QIAGEN). The purified IGF-1 product was stored at -20oC until required. 

Sequencing was performed to ensure the correct sequence of IGF-1 variant 4. 
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2.4.6  Construction of IGF-1 encoding lentivirus 

First, the plasmid pLVx-Tight-Puro was digested with restriction enzymes NotI 

and XbaI (both FastDigest®, Fermentas) in a double digestion reaction to 

generate a linearized plasmid (linpLVx-Tight-Puro). The restriction reaction 

mix included: 1.0 µl NotI, 1.0 µl XbaI, 2 µl FastDigest® Buffer, 1 µg/µl plasmid 

pLVx-Tight-Puro. This was incubated at 37oC for 4 hours and subsequently 

heat inactivated at 85oC for 5 minutes. The restriction digest product was 

separated on a 1% agarose gel, visualized by EtBr staining, excised and 

purified as described in 2.4.5. The purified linearized linpLVx-Tight-Puro 

vector was stored at -20oC until required.  

 

Next, a mastermix reaction containing 250 ng purified human IGF-1 amplified 

product, 100 ng linpLVx-Tight-Puro, 4 µl rapid ligation buffer (5X), 1 µl T4 

DNA ligase (5 units/µl) was assembled and incubated at room temperature for 

10 minutes to generate the recombinant pLVx-Tight-hIGF1-Puro plasmid.  

 

Then, chemically competent DNA methylase negative (dam-) E. coli strain 

(One Shot®INV110; Invitrogen) was chemically transformed with 2 µl pLVx-

Tight-hIGF1-Puro plasmid according to the manufacturer’s protocol. Positive 

colonies containing the ligated plasmid were selected for by ampicillin 

resistance and further confirmed by colony PCR with hIGF-1 primers listed 

above. Briefly, one colony of transformed E. coli was picked and inoculated 

into a tube containing the same PCR master mix outlined in 2.4.5. and PCR 

amplified. Amplification of a positively transformed E. coli colony containing 

the plasmid was then performed by sterile loop inoculation of a single colony 
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into a 2 L glass conical flask containing 250 ml of LB medium (Appendix) 

supplemented with 100 µg/ml ampicillin in a 37 oC shaking incubator (Innova 

4300) with constant 200 rpm agitation for 24 hours. Next, the amplified pLVx-

Tight-hIGF1-Puro plasmid was extracted and purified according to the 

manufacturer’s protocol for maximum pure plasmid recovery (NucleoBond® 

Xtra Maxi; Macherey-Nagel). The purified ligated plasmid was stored in -20oC 

until required. 

 

 

2.4.7  Lentivirus production 

To generate IGF-1 encoding lentivirus, TSA cells were transfected with 3 µg 

of pLVx-Tight-hIGF1-Puro, 2 µg of pCMV2.1 and 3 µg pMD2G plasmids 

(Trono Lab, EPFL, Switzerland) using lipofection with Polyfect (Qiagen). The 

cell culture medium was changed after 16 hours and medium containing 

recombinant IGF-1 lentiviral particles were harvested 48 hours later. The 

LentiX™ Go Stix™ (Clontech) was used according to the manufacturer’s 

protocol to determine the titer of >5 x 106 IFU/ml of the lentiviral particles. 

 

To generate the virus containing the Tet-On transactivator, TSA cells were 

also used as host cells and transfected with the same technique as described 

above. Again, cell culture medium was changed after 16 hours and medium 

containing recombinant Tet-On lentiviral particles were harvested 48 hours 

later. Both hIGF-1 and Tet-On lentivirus were then stored in -80oC freezer 

until required. 
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2.4.8  Lentiviral transduction of human foreskin fibroblasts 

Prior to transduction of HFF with the lentivirus, fresh cell culture medium with 

0.5% FBS was exchanged and supplemented with 10 µg/ml hexadimethrine 

bromide (polybrene, Millipore) at 37 oC for 10 minutes. Polybrene is a cationic 

polymer, which neutralizes cell membrane charges and increases the 

efficiency of transduction of viruses when added to cell culture medium. 

Thereafter, conditioned cell medium from TSA cells containing recombinant 

IGF-1 lentivirus was layered over HFF cells cultured in a 100 mm cell culture 

plate in a drop wise manner and then incubated in a 5% CO2, 37 oC cell 

culture incubator for 72 hours. Thereafter, fresh HFF medium with 15% FBS 

was exchanged and supplemented with 10 ng/ml basic Fibroblast Growth 

Factor (bFGF; Miltenyi) and 1 µg/ml Puromycin (Invitrogen). After 7 days, 

surviving cells were selected as HFFhIGF1+ cells. 

 

To generate a stable inducible secretion of human IGF-1 from HFF cells, the 

HFFhIGF1+ cells were next transduced with pTet-On-Advanced lentivirus as 

outlined above followed by extended culture in medium containing 1 µg/ml 

puromycin and 800 µg/ml neomycin (Invitrogen) for 7 days. Cells that survived 

double antibiotic selection were deemed successfully transduced with both 

hIGF-1 and Tet-On viruses to generate the inducible human IGF-1 cell line: 

HFFhIGF1+TetOn+. These cells were amplified till a desired quantity and frozen 

down as stock cell cultures in -80 oC until required.  
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2.4.9  Cell size measurement 

Cells were dispersed as outlined above in 2.2.3.2 and subjected to size 

measurements using a CASY counter (Roche). 

 

 

 

2.5 In vivo testing of human BioVAD (hBioVAD) with paracrine 

activity 

 

2.5.1  Assembly of hBioVAD with paracrine activity 

To confer the paracrine modality to the hBioVAD, 18.2 x 106 hESC derived 

cardiomyocytes and 7.8 x 106 HFFhIGF1+TetOn+ cells were mixed together to 

generate a BioVAD as highlighted in 2.3.2.2 and allowed to condense 

overnight. Thereafter, the hBioVAD was allowed to condense further for 

another 9 days prior to implantation. 

 

 

2.5.2  Implantation of hBioVAD in Wistar rat 

The hBioVAD was implanted into a 450 g male Wistar rat (Charles River). The 

implantation was performed under isoflurane (4%) anesthesia. The heart was 

exposed after median sternotomy and careful refraction of pericardium. Next, 

the hBioVAD was slipped over the hearts, enveloping the apex, left and right 

ventricles and secured with 2 sutures (6-0 prolene, Ethicon). Following 

closure of sutures, cyclosporine A (5 mg/kg) and methylprednisolone (2 
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mg/kg) were administered daily subcutaneously to suppress the immune 

response. 

 

 

2.6 Video capture 

Raw footages of spontaneously beating HES 2 cardiomyocytes and 

contracting BioVADs were captured with SONY HDR-HC9 1080p HD video 

camera and processed with Final Cut Pro software (Apple). 

 

 

2.7  Statistics 

GraphPad Prism software (GraphPad Software Inc; San Diego) was used to 

convert data sets into graphs (displayed as mean ± SEM) and subjected to 

Student’s t-test, one-way, or two-way ANOVA test where appropriate. P < 

0.05 was considered to be significant. 
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3. Results 
 

3.1  Human embryonic stem cell culture 

The ability to maintain high quality hESC cultures was a precondition for the 

successful execution of the following experiments. Basic hESC cultures are 

generally maintained under serum (Thomson, et al. 1998). We prefer to 

induce cardiogenesis in serum-free conditions for optimal control of this highly 

sensitive process by making use of recently published protocols (Graichen, et 

al. 2008, Hudson, et al. 2012). Embryoid body (3D) differentiation was 

considered the standard for many years. Recently monolayer (2D) 

differentiation was introduced to further enhance and better control in vitro 

cardiogenesis in hESC (Kattman et al. 2011, Burridge et al. 2012). 

 

 

3.1.1.  Human embryonic stem cell quality 

To assess whether hESCs would retain pluripotency characteristics after 2D 

monolayer adaptation, flow cytometry was performed and expression of 

pluripotency surrogate markers Oct4, Tra1-60 and SSEA4 (Andrews 1984, 

Badcock et al. 1999, Schopperle et al. 2003, Richards et al. 2004, Boyer et al. 

2005) analyzed. This experiment demonstrated that typically >99% cells 

expressed Oct4, Tra1-60 and SSEA4 in 2D cultured hESC (Figure 10). 
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Figure 10: Detection of pluripotency surrogate markers in monolayer 

hESC cultures. Cells were analyses by flow cytometry after labeling of the 

indicated proteins; IgG isotype served as control. Representative experiment 

with HES2 cells. 

 

 

3.1.2  Cardiomyocyte differentiation 

To test the hypothesis that 2D adapted hESC cultures would respond better to 

directed differentiation protocols, a direct comparison of 3D vs. 2D culture was 

performed. In the “classical” 3D embryoid differentiation protocol, 
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spontaneously beating EBs could typically be observed from culture day 8 

onwards. In contrast, cardiomyocyte 2D differentiation developed beating cell 

clusters later, i.e. typically from culture day 10 onwards. For direct comparison 

of cardiogenic induction efficacy cells were harvested on culture days 12 and 

16 from 3D and 2D cultures, respectively. These individual time-points were 

selected based on the observation that then steady-state beating activity was 

reached in the different culture protocols. Quantification of cardiomyocytes 

after specific labeling of the sarcomeric protein actinin by flow cytometry 

revealed 10-20% cardiomyocytes in 3D vs. 40-60% cardiomyocytes in 2D 

differentiation culture (Figure 11). 

 

Figure 11: Enhanced cardiogenesis in 2D vs. 3D cultures. 3D and 2D 

denotes embryoid body culture and monolayer culture, respectively (n = 5 

per/group). The ordinate displays the percentage of cells labeled positively 

for actinin, assessed by flow cytometry. Experiments were performed with 

HES2 hESCs. *p < 0.05 3D vs. 2D (two-sided, unpaired Student’s t-test).  

 

 

 

* 
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3.2  Generation of human Engineered Heart Muscle 

 

3.2.1 EHM exhibit heart like morphology and functionality 

EHM were generated from hESC after cardiogenic induction. Interestingly, 

EHM development, morphological and functional properties were similar in 

EHTs generated from 3D or 2D differentiation protocols. Beating was 

observed typically 48 hours after EHM generation. After 10 days EHMs were 

subjected to isometric force measurements or morphological studies. 

Immunolabelling of sarcomeric proteins (actinin and actin) revealed formation 

of anisotropically organized muscle bundles inside EHMs (Figure 12 A). 

EHMs responded to increasing extracellular calcium concentrations with a 

positive inotropic effect. Maximal contractile force was recorded at 2.8 ± 0.4 

mM calcium (apparent EC50: 0.7372 ± 0.1770 mM; n = 4). These human 

EHMs were then used as models to determine the impact of secreted human 

IGF-1 proteins on the functionality of the EHMs in the later part of this 

dissertation. 
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Figure 12. Morphological and functional parameters of human EHMs. (A) 

Anisotropically organized muscle bundle with characteristic sarcomeric cross-

striation documented by confocal laser-scaning microscopy (red: α-actinin; 

green: f-actin; blue: DAPI stained nuclei). Scale bar: 20 µm. (B) Force of 

contraction measured under isometric conditions at 37 °C, electrical field 

stimulation at 2 Hz, and increasing extracellular calcium (n=4). 

 

 

3.3  Generation of human BioVAD 

 

3.3.1  Construction of novel casting molds  

The challenge was to develop a scalable BioVAD technology, suitable to 

envelope the ventricles of a rabbit heart. This required the construction of 

novel spherical casting molds of 18 mm, 20 mm and 30 mm diameter. To 

achieve this, cube blocks of Makrolon® (Bayer) (Figure 13 A) were cut and 

hollowed using metal spherical bore drills respective to the diameters. 

Inflatable silicone spheres of 20 mm were also generated (section 2.3.1) 

(Figure 13 B) to enable “biomimetic” culture, i.e. culture under cyclic loading. 

A B 

Ca2+ (mmol/L) 
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Figure 13. Casting molds construction for BioVAD technology. 

Components required to generate a BioVAD includes (A) scalable casting 

molds. (B) Inner inflatable silicone sphere.  

 

 

3.3.2 Cells tested to generate BioVAD 

The utility of the casting molds was first determined by making use of non-

contractile fibroblasts and neonatal rat heart cells. Here the anticipated results 

were (1) formation of a tissue sphere at rabbit heart size and (2) contractile 

properties of native myocardium.  

 

 

3.3.2.1 BioVADs from fibroblasts 

To determine if the casting molds were feasible for cell seeding, we first mixed 

16.8x106 naïve HFF cells with collagen 1 and pipetted the cell/collagen 

mixture into the interspace between the inflatable silicone sphere and inner 

A 

B 
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wall of the casting mold. These cells were able to survive and formed a dense, 

albeit thin pouch like tissue within 72 hours (Figure 14). 

 

 

 

Figure 14. Pouch like tissue structure made from HFF. Scale bar: 10 mm 

 

 

3.3.2.2 BioVADs from neonatal rat heart cells 

Next, we attempted to generate a similar BioVAD using whole heart cell 

preparations containing rat cardiomyocytes. 26x106 cells were seeded with 

collagen and after 24 hours, a dense tissue was observed (Figure 15) in 

agreement with a previous study (Yildirim et al., 2007). When released from 

the silicone sphere, the neonatal rat BioVAD was able to spontaneously 

contract in a synchronized manner. 
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Figure 15: BioVAD from neonatal rat cardiomyocytes. After casting of the 

BioVAD reconstitution mix, formation of a tissue sphere could be observed 

within 24 hours. Beating was identified after additional 3 days. Images are 

from confocal laser scanning microscopy (red: f-actin; green: actinin; blue: 

DAPI stained nuclei). Scale bar: 50 µm. 

 

 

3.3.2.3  BioVAD from human embryonic stem cell derived 

cardiomyocytes 

Given the feasibility of the new molds to support BioVAD generation, we 

aimed at providing proof–of-concept for a humanized BioVAD approach. 

Enzymatically dissociated hESC-derived cardiomyocytes were obtained, 

mixed with bovine collagen (section 2.3.2.2) and poured into the BioVAD 



Results 

	
   53 

casting molds. The humanized BioVAD (hBioVAD) condensed within 24 hours 

to the size of a rabbit heart of approx. 35 mm in diameter (Figure 16).  

 

 

 

Figure 16: BioVAD from hESC derived cardiomyocytes. (left) hBioVAD 

after 10 days in culture; (right) adult rabbit heart. 

 

Taken together, the data demonstrates that the mold design will enable larger 

scale tissues to be formed. 

 

3.3.3 Biomimetic pulsatile load on BioVAD 

We next asked if the BioVAD could be improved further by introducing 

pulsatile load. To achieve this, the central silicone sphere was connected to a 

rodent ventilator via a silicone tube catheter and pulsed via a series of 

inflation and deflation cycles. We then tested this hypothesis using HFF and 
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adjusted the maxial strain to 110% of baseline at 90 inflation/deflation cycles 

per minute.  

 

 

3.3.3.1 Pulsatile load confers morphological rearrangements in 

fibroblasts 

To characterize the effects of the pulsatile loading immunofluorescence 

stainings for abundant cytoskeletal proteins (smooth muscle actin, vimentin 

and f-actin) were performed and identified superior elongation and alignment 

of HFFs in pulsed vs. unpulsed BioVADs (Figure 17). 

 

 

Figure 17. Mechanical load directs morphology in HFF-BioVADs. 

Unpulsed HFF-BioVAD (A) vs. pulsed BioVADs (B) stained for smooth muscle 

actin (red), vimentin (grey), actin (green) and nuclei staining with DAPI (blue). 

Images were recorded with a Zeiss LSM710 system. Scale bar: 100 µm. 

 

 

A B 
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3.3.3.2 Pulsatile load confers morphological rearrangements in 

cardiomyocytes 

When the pulsatile conditioning was applied to hESC-derived cardiomyocyte 

BioVADs cardiomyocyte elongation and enhanced sarcomere organization 

was observed (Figure 18 A, B). In contrast, unpulsed BioVADs showed mainly 

isotropic aggregation of cardiomyocytes (Figure 18 C). 

 

 

 

Figure 18: Mechanical pulsing improves morphology of hESC-BioVADs. 

Pulsed (A, B) vs. unpulsed hBioVADs (C) stained for actinin (green), actin 

(red) and nuclei staining with DAPI (blue). Scale bar: 50 µm. 

 

 

A B 

C 
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3.3.3.3 Pulsatile load leads to tissue maturation 

Based on the morphological enhancements in pulsed BioVAD constructs, we 

further investigated surrogates of maturation by qPCR.  Pulsatile loading of 

BioVADs enhanced the expression of cardiac actin, skeletal actin, alpha- and 

beta-myosin heavy chain, ryanodine receptor 2 (RYR2) and calsequestrin 2 

(CSQ2; Figure 19). In contrast, sarcoplasmic reticulum calcium-ATPase 

(SERCA2a) and phospholamban (PLB) transcript levels were unchanged 

compared to unpulsed BioVADs (Figure 19).  

 

 

 

Figure 19. Pulsatile loading improves BioVAD maturation. Abundance of 

indicated transcripts was assessed by qPCR. The dotted line indicates the 

mean transcript abundance in unpulsed hBioVADs. The ordinate denotes the 

relative difference from this mean. * p<0.05 vs unpulsed; two-way ANOVA. 

 

A 
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3.3.3.4 Pulsatile load enhances cell cycle activity 

Cell cycle activity was analyzed in isolated cells from BioVADs after DAPI 

labeling by flow cytometry. Pulsing increased the number of cells in G2/S 

phase in pulsed vs. unpulsed BioVADs (Figure 20), suggesting an increased 

cell cycle activity and/or DNA synthesis. 

 

           

 

 Figure 20. Pulsatile loading enhances cell cycle activity in BioVAD. Cell 

cycle phase was determined in isolated cells from BioVADs by flow cytometry 

after DNA labeling with DAPI. *p<0.05 vs. unpulsed (two-sided, unpaired 

Student’s t-test; n=5 for all groups). 

 

 

3.4 Pharmacological control of IGF-1 release from cells 

To further advance the functionality of the hBioVAD, supplementation of the 

system with inducible IGF-1 producing cells was proposed. The main goal of 

IGF-1 release in an EHM is to provide localized paracrine growth and survival 

support that can be controlled pharmacologically. One such system that allows 

* 

* 

B 
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the controlled release of IGF-1 is the Lenti-X™ TetOn® Advanced Expression 

system (Clontech). For this system to function, IGF-1 or any other gene of 

interest would need to be cloned into the Multiple Cloning Site (MCS), 

downstream of a modified CMV promoter which controls the expression of 

IGF-1. The promoter in turn is bound by Tet-controlled transactivators, which 

activates transcription in the presence of doxycycline. 
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3.4.1 PCR cloning of human IGF-1 gene 

The gene transcript for human IGF-1 variant 4 cDNA encoded on pCMV6-XL4 

plasmid (SC119792, Origene) spans 7,260 bp . The mature IGF-1 peptide is 

encoded on exons 3 and exons 4 (Figure 21 A). PCR amplification yielded an 

anticipated 462 bp fragment (Figure 21 B), which codes for the 153 amino 

acids of the secreted IGF-1 protein. 

  

 
 

 

 

Figure 21: PCR cloning of IGF-1.  (A) Schematic of exon arrangements in 

IGF-1 variant 4; PCR primer positions indicated by F1 and F2. (B) Lanes: (1) 

IGF-1 PCR amplified with F1 and F2. (M) DNA ladder (100 bp; Fermentas).  
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Next, restriction enzyme digestion of pLVx-Tight-Puro plasmid at the MCS 

with NotI and XbaI generated a 7791 bp linearized plasmid for the insertion of 

the amplified IGF-1. Subsequent ligation to generate recombinant pLVx-Tight-

hIGF1-Puro plasmid yielded 8253 bp (Figure 22, lanes 2) 

 

 

 

 

Figure 22: Construction of pLVx-IGF-1-Tight-Puro. Lanes: (1) Restriction 

enzyme digestion of hIGF-1 subcloned into TOPO TA plasmid with NotI and 

XbaI yields hIGF-1 (462 bp). (2) Linearized pLVx-hIGF1-Tight Puro with NotI 

only (8253 bp). (M) DNA ladder (1 kb plus, Fermentas). 

 

 

3.4.2   Transient expression of human IGF-1 in TSA cells 

To determine if IGF-1 could be transcribed, translated and secreted in human 

cells, TSA cells were first transiently transfected with pCMV-XL4, encoding for 

full length human IGF-1. Cell lysates and supernatants were harvested and 

analyzed by Western blot after 24 hours. Supernatants of pCMV-XL4 
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transfected but not EGFP transfected TSA cells contained human IGF-1 

protein with similar apparent molecular weight as the recombinant human 

IGF-1 positive control (Figure 23). 

 

 

 

 

Figure 23. Secretion of IGF-1 from pCMV-XL4 transfected TSA cells 

Lanes: (1) Cell lysate from TSA cells transfected with EGFP plasmid. (2) 

Supernatant from TSA cells transfected with EGFP. (3-5) Cell lysates from 

TSA cells transfected with increasing concentrations of pCMV-XL4; (6-8) 

Supernatant from TSA cells transfected with increasing concentrations of 

pCMV-XL4 plasmid. Samples were run on a 10% SDS PAGE at 120 Volts. (9) 

IGF-1 protein control (17 kDa) (Peprotech). 

 

Thereafter, TSA cells were transfected with pLVx-Tight-hIGF1-Puro and pTet-
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pCMV-XL4 plasmid as a positive control or with EGFP as a negative control 

plasmid. After 48 hours stimulation with 10 ng/ml doxycycline, cell lysates and 

supernatants were harvested. Western blot analyses of transfected cell 

supernatants demonstrated that human IGF-1 protein was secreted from 

TSApLVx-Tight-hIGF1-Puro and pTetOn+ and TSApLVx-Tight-hIGF1-Puro only cells into the cell 

culture medium. In TSAEGFP culture, no IGF-1 could be detected in the 

respective supernatant. In addition, the amount of secreted human IGF-1 

protein is further increased when 10 ng/ml doxycycline was added to the cell 

culture (Figure 24). 

 

 

 

Figure 24: Expression of IGF-1 from pLVx-IGF transfected TSA cells. 

Lanes: (1-2) TSA cells transfected with pLVxIGF1 and pTetOnAct 

supplemented with 10 ng/ml doxycycline. (3-4) TSA cells transfected with 

pLVxIGF1 and pTetOnAct in the absence of doxycycline. (5-6) TSA cells 

transfected with pLVx-IGF1 only. (7-8) TSA cells transfected with EGFP 

plasmid as negative control. (9-10) TSA cells transfected with pCMV-XL4 
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plasmid as positive control. (S) Represents supernatants. (L) Represents cell 

lysates. 

 

Taken together, this data demonstrates that that the secretion of human IGF-1 

can be induced in this system. Interestingly, no detectable amounts of human 

IGF-1 protein could be detected in cell lysates, suggesting that TSA cells are 

highly efficient host cells that are capable of processing and secreting the 

human IGF-1 protein.  

 

 

 

 

3.4.3  Quantification of IGF-1 release. 

In addition, ELISA analysis of supernatants from these TSA cell lines also 

revealed that human IGF-1 protein secretion was 11 times higher when 

induced by doxycycline (Figure 25).  
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 0 ng Dox 10 ng Dox 

-ve Ctrl (medium) 0.164  - 

Origene hIGF-1 11.697 - 

pLVx hIGF-1 0.884 - 

pLVx hIGF-1 + pTetOn 0.599 11.806 

 

Figure 25: Quantification of secreted IGF-1 from transfected TSA cells. 

The IGF-1 standard curve demonstrates linearity of the ELISA between 0 and 

6 ng/ml. IGF-1 release under baseline and doxycycline as displayed in table 

format. 
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3.4.4 Lentivirus transduction of IGF-1 

Given that IGF-1 could be secreted in TSA cells, lentiviruses were produced 

using pLVx-Tight-hIGF1-Puro and pTet-On in TSA cells as highlighted in 2.4.7. 

 

 

3.4.4.1  Antibiotic kill curves 

The recombinant plasmids contain antibiotic resistance genes. To determine 

the effective concentrations of antibiotics to select for positively transduced 

cells, we performed a toxicity killing assay on non transgenic HFF cells with 

the following concentrations of antibiotics; puromycin: 0, 0.01, 0.03, 0.1, 0.3 

and 1 µg/ml, neomycin: 0, 10, 30, 100, 300 and 1000 µg/ml. Surviving cells 

were counted for each concentration. 

 

This revealed that 1 mg/ml neomycin (Figure 26 A) and 1 µg/ml puromycin 

(Figure 26 B) were the effective concentrations required to inhibit naïve 

(HFFwt) cell growth. These concentrations were then selected for transgenic 

HFF cell growth. 
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Figure 26: Antibiotic kill curves. (A) Effective killing concentration of 

neomycin at 1000 µg/ml (B) Effective killing concentration of puromycin at 1 

µg/ml. n = 1. 
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3.4.4.2 Generation of IGF-1 transgenic cell line 

After confirming the inducible expression of hIGF-1 from transfected TSA cells 

and the effective antibiotic concentration to kill non transgenic HFF, we 

generated hIGF-1 lentivirus and/or pTetOn transactivator virus by transiently 

transfecting TSA cells with the recombinant pLVx-Tight-hIGF1-Puro plasmid 

or pTet-On-Advanced plasmid together with packaging pCMV and pMDG 

plasmids. Supernatant samples obtained were tested by the LentiX GoStix® 

rapid lentiviral p24 indicative test. More than 5 X 105 IFU/ml (infectious units / 

ml) of pLVx-Tight-hIGF1-Puro and pTet-On-Advanced viruses were obtained.  

 

Viruses from pLVx-Tight-hIGF1-Puro and pTet-On-Advanced were used to 

transduce HFF cells as outlined in 2.4.8. Effective integration was tested by 

stringent antibiotic selection. Double transduced transgenic HFF 

(HFFIGF1+TetOn) cells proliferated in the antibiotic supplemented cell culture 

medium while control HFFwt cells were killed. 

 

 

 

 

3.4.5  Expression of IGF-1 from lentiviral transduced fibroblasts 

After successful generation of the HFFIGF1+TetOn line, the expression of IGF-1 

was tested by quantitative ELISA assay and immunostaining.  
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3.4.5.1 Detection of IGF-1 in transgenic fibroblasts 

We first examined whether IGF-1 would be enriched in HFFIGF1+TetOn 

compared to HFFwt by immunofluorescence labeling of respective cultures. As 

anticipated, IGF-1 could be detected particularly in HFFIGF1+TetOn in the 

endoplasmic reticulum (Figure 27). 

 

 

 

Figure 27. Increased expression of IGF-1 in HFFIGF1+TetOn. HFFwt (A) and 

HFFIGF1+TetOn (B) labeled for IGF-1 (green). (C) Magnification identifies IGF-1 

primarily in the endoplasmic reticulum, Golgi of HFFIGF1+TetOn.  
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3.4.5.2   Quantification of IGF-1 release 

To demonstrate the reliability and functionality following transduction of HFF 

cells with this Tet-On lentiviral transduction system, we quantified the levels of 

human IGF-1 protein in the 72 hour conditioned supernatants and cell lysates 

harvested from HFFwt and transduced HFFhIGF1+TetOn with and without 

doxycycline exposure. Different concentrations of doxycycline were tested (10 

- 1000 ng/ml). We observed that in the supernatants of non-stimulated 

HFFhIGF1+TetOn cells, human IGF-1 protein levels were secreted at 

approximately 2.8 ng/ml of medium while HFFwt cells secreted only 0.4 ng/ml 

IGF-1 protein. In cell lysates from HFFwt and HFFhIGF1 cells, minimal human 

IGF-1 protein was detected (0.16 ng/ml and 0.23 ng/ml respectively). 

Exposure to doxycycline stimulation led to a 10 fold increase of human IGF-1 

protein in the supernatants and cell lysates of HFFhIGF1+TetOn cells, while 

minimal IGF-1 protein was detected from HFFwt cells (Figure 28). Increasing 

the doxycycline concentrations did not significantly increase IGF-1 protein 

production. 

 

Taken together, this result suggested that, the HFFs were successfully 

transduced with the inducible Tet-On lentivirus and both production and 

secretion of human IGF-1 proteins can be induced by pharmacological 

concentrations of doxycycline, demonstrating a proof of concept that growth 

factor production and expression can be controllable with pharmacological 

drug stimulation. On the other hand, leaky expression was observed in 

unstimulated HFFIGF1, however, at 10-fold lower levels compared to 

doxycycline induced cells. 
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Doxycycline 
 (ng/ml) 0 10 30 100 

HFFwt 
Supernatant 0.394346 0.3970632 0.3889115 0.3780425 

Cell Lysate 0.1633805 0.1633805 0.168815 0.1606633 

HFFIGF+TetOn 
Supernatant 2.774649 20.28998 19.57807 20.06717 

Cell Lysate 0.2313115 20.34704 20.37693 20.03728 

 

 

Figure 28. Human IGF-1 protein secretion from inducible HFFs. 10 ng/ml 

doxycycline was sufficient to induce 10 fold higher level of IGF-1 expression in 

HFFIGF1+TetOn cells and also secretion into the supernatants. Naïve HFFwt cells 

were investigated as negative controls. 
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3.4.6   Biological activity of human IGF-1 

 

3.4.6.1 Hypertrophy in IGF-1 transgenic fibroblasts 

Next we asked if the secreted hIGF from generated transgenic cell line 

confers biological activity in vitro. We observed that transduced HFFhIGF1+TetOn 

cells appeared larger in size compared to HFFwt cells during routine cell 

culture passaging (Figure 29). 

 

  

 

	
     

Figure 29. Hypertrophy in IGF-1 transduced HFFs. Brightfield image of 

HFFIGF1+TetOn (A) and HFFwt (B). (C) Cell volumes in HFFwt and HFFIGF1+TetOn 

in the presence and absence of 10 ng/ml doxycycline. 
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3.4.6.2  Paracrine action of IGF-1 activates Akt in cardiomyocytes 

As our overall goal of this study was to induce a beneficial effect in the human 

heart we next examined the downstream mediators of paracrine action of 

secreted IGF-1 on hypertrophy signaling pathway in hESC-derived 

cardiomyocytes. 72 hour serum-free conditioned medium from unstimulated 

and doxycycline stimulated HFFwt and HFFhIGF1+TetOn cells were harvested and 

layered over day 16 hESC-derived cardiomyocytes for 30 minutes. The 

cardiomyocytes were then harvested and lysed. Western blot of the hESC 

cardiomyocytes lysates revealed that phosphorylated Akt (pAkt) proteins were 

higher in unstimulated and stimulated HFFhIGF1+TetOn cells compared to HFFwt 

cells (Figure 30 A). 
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Figure 30. IGF-1 conditioned medium induces Akt phosphorylation in 

cardiomyocytes. Western blot analyses of pAkt, Akt and GAPDH in hESC-

derived cardiomyocytes exposed to supernatant from HFFwt and HFFIGF1+TetOn 

(± doxycycline stimulation). (B) Summary of Western blot  (n = 3 per group). * 

p< 0.05 vs HFFwt (± doxycycline; two-sided, unpaired Student’s t-test) 
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3.4.6.3   IGF-1 enhances force generation of human EHMs 

We supplemented EHMs with 20% of either HFFwt or HFFIGF-1TetOn cells. 

Subsequently, EHMs were transferred onto flexible silicone poles on culture 

day 3. On culture day 7, 10 ng/ml doxycycline was added to the EHMs 

medium to induce hIGF-1 secretion from HFF cells. Control EHMs were left 

without doxycycline. EHMs were subjected to force measurements 72 hours 

later. Analyses of the forces revealed that, despite no doxycycline stimulation, 

EHMs generated with HFFIGF1+TetOn cells developed stronger contraction 

forces compared to EHMs generated with HFFwt cells. However, doxycycline 

supplemented EHM with HFFhIGF1+TetOn cells developed highest forces 

compared to all other EHM groups (Figure 31) across varying calcium 

concentrations, with maximum force at 3.2 mmol/L Ca2+.  

 

Figure 31.  Force generation of EHMs is enhanced by doxycycline 

activiation of HFFIGF1+TetOn. The ordinate display  twitch tension in mN. The 

abscissa denotes extracellular calcium concentrations. * p < 0.05 vs HFFwt 

EHM; two way ANOVA. 
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3.4.6.4  IGF-1 induces cell hypertrophy in human EHMs 

We then enzymatically digested these human EHMs, isolated single cells and 

analyzed the cell sizes from each group using flow cytometry and observed 

that cells were larger in the presence of human IGF-1 (Figure 32). Enhanced 

size of non-myocytes may be due to the addition of “large” HFFIGF1+TetOn. In 

contrast, cardiomyocyte hypertrophy seems to be stimulated by the HFFs 

paracrine activity. 
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Figure 32. IGF-1 induces cardiomyocytes hypertrophy in EHMs. 

Cardiomyocyte (A) and (B) non-myocyte size measured by flow cytometry. 

*p<0.05 vs HFFwt.  
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3.4.6.5   IGF-1 improves morphology of human EHMs 

We performed whole mount immunofluorescence staining on both groups of 

EHMs and observed that cardiomyocytes were generally elongated and 

anisotropically aligned and form cardiac bundles (Figure 33 A). However, 

EHMs generated from cardiomyocytes mixed with HFFIGF1+TetOn appear to 

contain thicker muscle bundles and enlarged cardiomyocytes (Figure 33 B). 

  

 

Figure 33: Wholemount stainings of EHMs. (A) EHMs cultured with HFFwt. 

(B) EHMs cultured with HFFIGF1+TetOn cells. EHMs stained for actinin (red), 

actin (green) and nuclei staining with DAPI (blue). Scale bar: 50 µm. 

 

 

3.5   “paraBioVAD” generation 

To finally prepare the BioVAD with paracrine IGF-1 release, 20% HFFIGF1+TetOn 

were added to the BioVAD reconstitution mixture. This yielded “paraBioVAD” 

with similar appearance as the “simple” BioVAD (Figure 34). 
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Figure 34. Human “paraBioVAD”. Diameter of 20 mm. 

 

 

3.5.1 Implantation of “paraBioVAD” 

A single “paraBioVAD” was implanted in an immunosuppressed Wistar rat 

and harvested after 3 weeks (Figure 35). The explant was observed to have 

contracted towards the apex but remain attached and still encompassed the 

ventricles. 
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Figure 35. Explant of human “paraBioVAD”. Explanted “paraBioVAD” 

remains attached to rat heart 3 weeks post implantation. 

 

 

3.5.2  Histological observations of explanted “paraBioVAD” 

We then performed routine Haematoxylin & Eosin (H&E) and Sirius Red 

stainings to study the morphology of the explanted “paraBioVAD” relative to 

the rat heart and observed that the “paraBioVAD” generally remained intact 

over the rat heart.  

 

A clear border zone between the heart and the “paraBioVAD” was observed 

(Figure 36). Generally, a gap of 50-100 µm distinguishes the heart from the 

“paraBioVAD”. However, in several areas, there were clear “contact zones” 

between the “paraBioVAD” and recipient myocardium (Figure 36 A, B, C). 

“paraBioVAD” 
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“Myocardial-like” elongated cells were also observed (Figure 36 C). 

Interestingly, several areas showed developing vascular structures (Figure 36 

D, E, F), suggesting early vascularization. 

 

 

 

 

 

Figure 36. Histological sections of “paraBioVAD” on rat heart. (A) 

Grafting areas of  “paraBioVAD” to the rat heart (arrows). Scale bar 100 µm 

(B) Magnified area of engraftment with rat myocardium. Scale bar 50 µm. (C) 

Elongated muscle like strands engrafted to rat heart. Scale bar 50 µm. (D-F) 

Vascularization of “paraBioVAD”. (D) arrows indicate developing vasculature 

structures. Scale bar 100 µm. (E) Magnified image of vessels (arrows). Scale 

bar 100 µm. (F) Developing vascular structures in the “paraBioVAD” showing 

vessels containing blood. Scale 50 µm. 
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In Sirius red stained sections, we observed clear demarcation of collagen 

(stained red) stemming from the “paraBioVAD” matrix. Collagen was also 

observed at several points where the “paraBioVAD” engrafted onto the rat 

heart (Figure 37). Vascular structures were also observed in several areas of 

the “paraBioVAD” (Figure 36). 

 

 

 

Figure 37. Morphology of “paraBioVAD” stained with Sirius red. (A-C) 

Red staining indicates collagen. (A) Scale bar 100 µm (B) Scale bar 100 µm. 

(C) Vascular structures containing blood (arrows). Scale bar 100 µm. 
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4. Discussion 
 

Heart failure develops typically after myocardial infarction or chronic 

hypertension. However, not all patients with these conditions develop end-

stage heart failure and the mechanisms underlying its disease progression 

and conversion into severe heart failure are not well understood. Given the 

limitations in drug and device therapy today, cell therapy has been proposed 

as an alternative with the potential to replenish the disease heart with 

cardiomyocytes. Yet, until recently, direct cell replacement approaches have 

not yielded favorable results consistently (Schachinger, et al. 2006, Lunde 

and Aakhus 2008, Perin et al. 2012). In particular in chronic heart failure, 

where seeding of cardiomyocytes would likely elicit an optimal therapeutic 

effect, little advance has been made.  This is partly due to a lack of suitable 

cells (cardiomyocytes) and low cell retention rates following transplantations. 

The discovery of ESCs and subsequent establishment of stem cell lines have 

rekindled the possibility of obtaining unlimited amounts of cardiomyocytes 

(Thomson, et al. 1998). However, ethical and safety concerns have prevented 

the wide use and application of ESC as a therapy. Only the recent 

establishment of induced pluripotent stem cells (iPSC) circumvented this 

issue and allowed the use of virtually any adult cell to be transformed to an 

“ESC-like” state (Takahashi and Yamanaka 2006). This also led to a surge in 

up scaling technologies to rapidly increase the quantities and availability of 

naïve stem cells (Nie et al. 2009, Singh et al. 2010, Chen et al. 2011, 

Zweigerdt, et al. 2011). Despite these advances, differentiation of stem cells 

to obtain pure cardiomyocytes remains challenging, let alone obtaining large 
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quantities and quality. This is also due in part to the lack of understanding of 

the underlying mechanisms for proper cardiomyocyte differentiation.  

 

In recent years, the paradigm to replace the defective myocardium has shifted 

from direct cell replacement strategies to tissue-based approaches (Li, et al. 

1999, Shimizu et al. 2002, Zimmermann and Eschenhagen 2003, 

Zimmermann, et al. 2006). Applications of these engineered cardiac tissues in 

animal models have been encouraging, albeit insufficient to fully repair 

diseased heart muscle. The next phase of bioengineering advancements was 

to scale the tissue engineering concepts (Naito et al. 2006, Yildirim et al. 

2007). Based on this previous work, it was hypothesized that a large 

continuous human “pouch-like” tissue construct (BioVAD) can be generated 

with additional protective paracrine activity.  

 

The following results were achieved: 

- Robust cardiomyocyte derivation from hESCs. 

- Generation of human EHM from hESC-derived cardiomyocytes 

- Creation of a biomimetic culture platform to scale and mature BioVADs. 

- Development of a drug-inducible IGF-1 release cell line. 

- Proof-of-concept for tissue engineered paracrine support BioVAD 
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4.1 hESC differentiation to generate cardiomyocytes for tissue 

engineering 

In this study, two different protocols to generate cardiomyocytes from hESC 

cell lines were used. The first protocol involved the generation of 

spontaneously beating 3D embryoid bodies, which resulted in 10 – 20 % 

cardiomyocytes being generated. This differentiation protocol required hESC 

cell “rafts”; small pieces of uniformly cut HES colonies to be generated as 

starting material (Soong et al. 2012). This technique, while easily mastered is 

laborious and variable with respect to total cardiomyocyte yield. On day 2 of 

differentiation, cardiomyogenesis was initiated with the addition of a small 

molecule, SB203580, which is a specific inhibitor of the p38 - Mitogen 

Activated Protein Kinase (MAPK) pathway. This has been demonstrated to 

greatly enhance cardiomyogenesis in hESCs within a narrow range of 1 - 10 

µM concentrations (Graichen, et al. 2008) and marked dephosphorylation of 

p38 at 5 µM (Kempf et al. 2011). However, the inhibition of p38 MAPK has 

also been reported to inhibit ERK and JNK kinases and PKB (Henklova et. al., 

2008, Muniyappa et. al., 2008) and also inducing differentiation in human 

myeloid leukemia cells (Ishii et. al., 2001), suggesting that the inhibitory action 

also has widespread downstream effects on other important cell signaling 

pathways and hence is not an ideal small molecule to direct differentiation of 

HES cells into cardiomyocytes.   

 

Although the 3D EB formation approach may have been developed to mimic 

the environment during embryo development in the blastocyst stage and also 

as a method to initiate spontaneous differentiation into the 3 germ lineages, 
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directed cardiomyogenesis to yield large amounts of cardiomyocytes with 

such a model remains challenging. Embryoid bodies possess a layer of 

epithelial like cells which secretes extracellular matrix containing collagen and 

forms a thin barrier which limits uniform diffusion across the layer and also 

creates gradients of nutrients and metabolites reaching the cells within the 

(Sachlos and Auguste 2008, Carpenedo et al. 2009, Kinney et al. 2011, Van 

Winkle et al. 2012). This suggests that the cells within the EB which receives 

optimal concentrations of growth factors will undergo differentiation while 

others do not, leading to heterogeneous decreased efficiency in an EB and 

suboptimal numbers of cardiomyocytes. However, recent reports suggest that 

the 3D EB culture method may yield more physiologically similar and matured 

cardiac phenotype cells with decreased fetal genes expression and respond 

more rapidly to T3 hormonal stimulation than parallel 2D cultures (Akins et al. 

2010).  

 

The second differentiation protocol involves the generation of cardiomyocytes 

from 2D monolayer hESCs and is based on the differentiation protocol from 

Hudson et. al. 2012. First, heterogeneity of undifferentiated hESCs were 

reduced by single cell adaptation of hESCs and then cultured in a monolayer 

of 0.5x105 cells per cm2 in a tissue culture well of a 24 well plate. This cell 

number is critical to prevent overgrowth of cells during mesodermal cell type 

proliferation and is optimal for primitive streak cell specification with Activin A 

and BMP 4 supplementation and also allows even diffusion of the growth 

factors and oxygen concentrations into the culture, thus exposing a monolayer 

of cells to undergo uniform temporal differentiation in the well. The result is a 
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high yield of 40–60 % differentiated cardiomyocytes. In addition, 

supplementation of IWP4 inhibits Wnt/ß-catenin signaling; a signaling 

pathway implicated in hESC cardiogenesis (Klaus et al. 2007, Tzahor 2007, 

Paige et al. 2010, Hudson and Zimmermann 2011). Inhibition of the Wnt 

signaling pathway at day 3 was critical as BMP4 was withdrawn from the 

differentiation medium. This was done to prevent the continual activation and 

accumulation of Wnt, which then drives the expression of 

hematopoietic/vascular markers in the cells, and reduce cardiomyogenesis.  

 

Taking the results from both protocols, one can conclude that generation of 

cardiomyocytes from human ESCs involves the inhibition of key signaling 

pathways such as the p38-MAPK and Wnt regardless of human ESC lines. 

This can be accomplished by the antagonistic action of small molecules at 

critical concentrations. However, specific inhibition of the Wnt/ß-catenin 

signaling pathway offers the most effective way to achieve high yields of 

cardiomyocytes in an in vitro system compared to that of p38-MAPK pathway. 

Hence, a 2D direct differentiation protocol may be more suited in situations 

where large quantities of cardiomyocytes are required such as generating 

large cardiac constructs for application in humans. 

 

4.2 Generation of human EHM from ESC derived cardiomyocytes 

To engineer cardiac constructs capable of synchronous contraction and force 

generation, a finely balanced environment similar in composition to the native 

heart had to be recapitulated. Previous rodent EHT models generated with 

hydrogels containing collagen type 1 and Matrigel have been demonstrated to 
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be highly reproducible (Zimmermann, et al. 2000, Tiburcy, et al. 2011). The 

constructs also demonstrated enhanced maturity when subjected to strain 

(Fink et al. 2000, Zimmermann, et al. 2000, Zimmermann, et al. 2006). In this 

study, similar concepts were exploited to demonstrate the feasibility of human 

EHM construction with hESC-derived cardiomyocytes. The term Engineered 

Heart Muscle (EHM) was introduced instead of Engineered Heart Tissue 

(EHT) because it better describes the identity of the engineered construct and 

clearly distinguishes it from heart valve and vessel engineering. EHMs 

contracted spontaneously, generated appreciable forces, and responded to 

inotropic interventions (i.e. increase in extracellular calcium concentration) as 

expected for heart muscle, albeit with a higher calcium sensitivity. 

Morphologically, EHMs contained elongated and anisotropically aligned 

cardiomyocytes with highly ordered sarcomere arrangements. This is in clear 

contrast to monolayer cardiomyocyte cultures, where cell morphology does 

typically not resemble the in vivo situation (Kehat, et al. 2001, Mummery et al. 

2003). Hence, the human EHM platform may also for in vitro studies be 

considered more suitable than monolayer cultures. 

 

4.3 Generation of a large humanized BioVAD 

To overcome the limitations of restraint medical devices and the size of 

hEHMs, we rationalized that large functional human cardiac constructs can be 

generated by combining the large quantities of cardiomyocytes obtained from 

the 2D differentiation protocol of hESC together with an improvement of 

casting stages of the construct. It was of particular importance to fabricate 

“perfectly” spherical casting molds and spacers to ensure homogenous tissue 
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formation. This not only allowed the advancement of the previously developed 

BioVAD concept (Yildirim et al. 2007) from the rat to the human model, but 

also scaling of the BioVADs towards human heart applications.  

 

A further improvement was this implementation of biomimetic pulsatile 

mechanical stretch by making use of an inflatable inner “spacer”. Our results 

demonstrated that with conditioning by pulsatile stretch, we could obtained a 

rabbit heart sized human BioVAD that contained more cells undergoing DNA 

synthesis than unpulsed constructs, consistent with reports that mechanical 

stretching regulates DNA synthesis (Iwasaki et al. 2000, Adam et al. 2004), 

and activates stress activated protein kinases (Komuro et al. 1996). Whether 

this was in cardiomyocytes or non-myocytes remains to be clarified.  

 

Transcript analysis demonstrated higher abundance of sarcomeric protein and 

some, but not all, analyzed calcium handling protein encoding mRNAs in 

pulsed vs. unpulsed BioVADs. This is in agreement with previous studies 

demonstrating high maturity in tissue engineered heart muscle developed 

under mechanical load (Tiburcy, et al. 2011). Whether additional biophysical 

stimuli such as electrical stimulation would further facilitate tissue maturation 

remains to be studied. 

 

4.4 Drug-inducible IGF-1 release for paracrine heart support  

We reasoned that pharmacologically controlled paracrine secretion of IGF-1 

could confer an additional therapeutic benefit to the BioVAD technology. To 

achieve this, a fibroblast cell line with stable IGF-1 secretion was under the 
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control of the Tet-On activator domain was generated. However, already 

under unstimulated conditions IGF-1 release was enhanced, but could be 

further enhanced by doxycycline supplementation. In these cells IGF-1 

secretion reached maximum concentration already under 10 ng doxycycline. 

This was unexpected and either argues for an all-or-nothing activation, the 

need to test even lower doxycycline concentrations or insufficient linearity of 

the IGF-1 ELISA. Finally, alternative drug-inducible systems may need to be 

exploited to enable full control of IGF-1 release. 

 

Half-maximal activation (EC50) of the IGF-1 receptor is at 2 ng/ml IGF-1. IGF-

1 transduced cells supplemented the culture medium with 20.3 ng/ml IGF-1 in 

30 minutes. We also observed hypertrophy in IGF-1 expressing fibroblasts, 

which could be either an indirect effect of the transgenic approach or due to 

autocrine stimulation.  

 

IGF-1 has been studied extensively in skeletal muscle biology and its effects 

on aging (Renganathan et al. 1998, Musaro et al. 2001, Rommel et al. 2001, 

Rabinovsky et al. 2003, Musarò et al. 2004, Musarò et al. 2004, Song 2005, 

Perrini et al. 2010, Taekema et al. 2011). Circulating IGF-1 produced from the 

liver typically activates PI3K/Akt/mTOR and MAPK pathways (Mourkioti et. al., 

2005). Its effects on cardiomyocytes are mainly enhanced survival (Katjstura 

et. al., 2001) and hypertrophy (Kinugawa et al. 1999, Iwanaga et al. 2000, 

Kajstura et al. 2001, Yamashita et al. 2001, Welch, et al. 2002, McDevitt et al. 

2005, Millis et al. 2012); both are likely in response to AKT-activation. 

Different IGF-1 isoforms have been implicated in cardiomyocyte biology 
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(Vinciguerra et. al., 2009). In this study, IGF-1 variant 4 (Figure 3) was 

overexpressed to activate prosurvival and physiological hypertrophy in EHMs. 

Conditioned medium from human IGF-1 secreting fibroblasts increased Akt 

phosphorylation in hESC-derived cardiomyocytes in a paracrine manner. 

These cardiomyocytes were also significantly bigger than those not exposed 

to IGF-1 suggesting hypertrophic gene activation program. 

 

In three dimensional human cardiac tissue constructs, our results 

demonstrated that IGF-1-enriched EHMs developed enhanced contractile 

forces compared to non IGF-1-enriched EHTs. Here doxycycline addition to 

enhance IGF-1 release did indeed further improve contractile force. Whether 

this is due to better enrichment of the paracrine micro milieu in the EHM as 

compared to medium supernatant remains to be clarified.  

  

Given that IGF-1 plays a key role in many signaling pathways including 

proliferation, differentiation and hypertrophy (Figure 4), it would not be 

surprising that IGF-1 levels may be responsible for the regulation of 

contraction forces. Indeed, several studies have demonstrated that IGF-1 

binds to receptor tyrosine kinase and activates Akt via PI3K, and enhances L-

type Ca2+ current channels (Kamp and Chiamvimonvat 2006). Moreover, Akt 

overexpression studies in the myocardium also suggest an increased calcium 

channel activity in ventricular myocytes (Macrez et al. 2001, Quignard et al. 

2001, Kim et al. 2003). 
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4.5 Feasibility of “para BioVAD” generation and implantation 

Finally, we integrated the IGF-1 releasing fibroblasts into the human BioVAD 

system. The “paraBioVADs” were generated with 20 % HFFIGF1+TetOn cells. So 

far, only one attempt of implantation of a humanized “paraBioVAD” has been 

carried out. Importantly, the recipient rat survived the operation with no 

evidence of pericardial constriction or other complications. Teratoma 

formations were not detected despite the administration of cyclosporine. 

Longer observational studies are necessary to rule out this risk typically 

associated with pluripotent stem cell-derivatives. On the other hand, the 

relatively low numbers of undifferentiated hESCs after 2D differentiation 

(Hudson, et al. 2012) may not pose a risk for teratoma formation. 

 

Following explantation of the rat heart, histological stainings revealed areas of 

“paraBioVAD” that resemble “myocardial” structures. There was clear survival 

of cells within the graft which are elongated and aligned at the border zone, 

confirming that such engineered cardiac constructs can survive after 

transplantations in agreement with other studies (Zimmermann, et al. 2006, 

Yildirim, et al. 2007, Shiba, et al. 2012).  

 

We were encouraged by the observation of vascularization in several areas 

within the “paraBioVAD”. Indeed, vascularization is a critical point in attempts 

to generate humanized cardiac tissue constructs. In the human heart, 

vascular networks consisting of smaller arteries and capillaries are present to 

deliver oxygen and also transport growth factors to the contracting 

cardiomyocytes. This complicated network stems from the endothelial 
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mesenchymal lineage precursor cells (Martens et al. 2006) that is regulated 

by the extracellular cell matrix secreted by stromal cells (Kreutziger et al. 

2011). Any tissue engraftments then will need to develop connections to the 

host vascular system to obtain oxygen and important growth factors to allow 

the survival and further maturation of such tissues. Several cardiac constructs 

such as stacked cell sheets (Shimizu, et al. 2006), overlapping looped EHTs 

to form fused multiloops (Zimmermann, et al. 2006) and the neonatal rat 

BioVAD (Yildirim, et al. 2007) have also demonstrated some form of 

angiogenesis following engraftment of the construct. One major caveat is the 

potential hypoxia arising from the thickness of the BioVAD. Data from the cell 

sheet stacks demonstrated that the maximum thickness for tissues to survive 

with angiogenesis was 4 cell sheet layers amounting to ~45 µm (Shimizu, et 

al. 2002). This limitation could be circumvented by allowing the first blocks of 

cell sheet stacks to develop vasculature followed by polysurgery to further 

stack other cell sheet layers till a thick tissue is formed (Shimizu, et al. 2006). 

However, the “paraBioVAD” was generated to form a thick myocardial tissue 

of at least 1 mm and was also designed to prevent multiple surgical 

interventions during therapy. In light of this, we believe that the human 

“paraBioVAD” with enhanced survival will be able to obtain nutrients and 

oxygen via its developing vascularization network. However, further studies 

will have to characterize oxygen and nutrient supply in BioVAD grafts.   

 

The outlook of generating large viable and clinically applicable engineered 

cardiac constructs seems promising. Owing to the advancement and 

understanding of key signaling pathways and role of growth factors in hESC 
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development, improvements made in hESC cardiac differentiation protocols 

have significantly increased and enriched the amount of human 

cardiomyocytes that can be derived in vitro (Kattman et al. 2006, Hudson and 

Zimmermann 2011, Kattman et al. 2011, Hudson, et al. 2012). Coupled with 

mass scaling approaches with bioreactors (Zweigerdt, et al. 2011), the 

amount (~ 1 billion) of cardiomyocytes required to repair a myocardial 

infarcted region may soon be attained.  

 

Despite this advancement, further developments pertaining to the application 

of these cardiomyocytes have to be understood and addressed. Small models 

of engineered heart tissues using hESC-derived cardiomyocytes and non-

myocytes have only been recently established. Results gleaned from previous 

studies using similar animal EHT models have demonstrated that tissues 

engineered with only cardiomyocytes will not be sufficient to generate 

sufficient force and are structurally inferior to those generated with an equal 

composition of non myocytes and cardiomyocytes (Naito, et al. 2006, Yildirim, 

et al. 2007), suggesting a more complex mix of cell types would be required to 

engineer tissues that are deemed faithful to a healthy myocardium. In addition, 

these cells mix within the tissue must also demonstrate maturity of the tissue 

by responding to various stimuli (positive inotropic response to extracellular 

calcium and isoprenaline) through the generation of strong contractile forces 

and non-myocytes within such tissues must also secrete beneficial paracrine 

factors to the cardiomyocytes. Currently, we have addressed these issues in 

our human EHM model and are investigating the application to larger human 

engineered cardiac constructs such as the BioVAD. 
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For any contracting bioengineered cardiac construct to deliver an effective 

and improved function to the heart, the tissue must be able to integrate and 

electrically couple with the native heart. In addition, such constructs must also 

propagate the electrical impulses throughout the entire construct. We were 

encouraged to see areas of engraftments of the BioVAD to the rat heart in our 

study as well as possible microvasculature within the implant. This could 

potentially be derived from the surrounding pericard, however, further 

investigations would have to be performed to confirm the origins of such 

vascular structures. Concerns with electrical conduction issues pertaining to 

synchronization of tissue beating rate to host heart leading to arrhythmic 

events can be rectified by transient integrating pacemakers during early 

transplantation of the BioVAD.  
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5.  Outlook  
 
A new technology  to “build” scalable BioVADs from hESCs under “biomimetic” 

pulsatile stretching was developed. In addition, the concept of 

pharmacological inducible paracrine support in tissue engineered myocardium 

was established. First proof-of-concept for a BioVAD technology with 

paracrine activity was provided. This will further be exploited to investigate the 

hypothesis that BioVADs with paracrine activity can support a failing heart via 

(1) mechanical restraint, (2) contractile support, and (3) and paracrine activity. 

Currently, a doxorubicin induced dilated cardiomyopathy rat model is being 

established for first tests in a disease model. Further optimization of the 

BioVAD approach will likely be necessary to offer the necessary bio-artificial 

muscle mass to elicit a direct therapeutic effect and to identify optimal timing 

and “dosing” of its paracrine activity. Moreover, IGF-1 may turn out to not be 

the best choice to support a failing heart, requiring tests of other factors and 

combinations thereof. Given the use of potentially tumorigenic cells on the 

one hand and electrically excitable and conducting cells on the other hand it 

will be essential to define the risks associated with the proposed biological 

support approach. This will have to involve long-term large animal studies and 

“clinical” surveillance. Whether alternatives to the hESC approach will become 

available will depend on the implementation of robust methods to control 

cardiogenicity in vitro and on further advances in stem cell immunology and 

banking to facilitate allogeneic or autologous stem cell applications. 
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7. Appendix 
 

Cell Culture Reagents and Medium 

 

bFGF stock solution 

1. Dissolve bFGF according to manufacturer’s protocol to obtain a stock 

concentration of 10 µg/ml. 

2. Aliquot into sterile microfuge tubes and store at -20 °C. 

 

bFGF working solution 

1. Add 10 µl of bFGF stock solution into 10 ml of hESC maintenance 

medium per 100 mm hES cultured plates (final bFGF concentration: 10 

ng/ml). 

 

Collagenase IV stock solution  

1. Dissolve 10 mg of collagenase IV in 1 ml of DPBS+. 

2. Sterile filter the solution, aliquot (1 ml) in 15 ml centrifuge tubes, and 

store at -20 °C. 

 

Collagenase IV working solution 

1. Thaw 1 aliquot of Collagenase IV stock solution in a 37 °C water bath. 

2. Add 9 ml pre-warmed DPBS+ into the stock solution just prior to usage. 

3. Additional amounts of collagenase IV solution can be stored at 4 °C for 

1 week. 
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hESC medium  

500 ml KO-DMEM (#10829-018, Invitrogen) 

 128.2 ml KOSR (#10828028, Invitrogen) 

 6.4 ml L-glutamine (200 mmol/L; #25030-024, Invitrogen) 

 6.4 ml MEM NEAA (10 mmol/L; #11140-050, Invitrogen) 

bFGF is only added according to the required amount of medium used per 

hESC plate. 

 

HFF medium 

500 ml DMEM (#42430, Invitrogen) 

120 ml Fetal Bovine Serum (FBS; #A15102, PAA) 

6     ml Penicillin and Streptomycin (P/S: 5.000 U/ml and 5 mg/ml; 

#15070-063, Invitrogen) 

 

TSA medium 

500 ml DMEM + GlutaMax™ (#61965, Invitrogen) 

120 ml Fetal Bovine Serum (FBS; #A15102, PAA) 

6     ml Penicillin and Streptomycin (P/S: 5.000 U/ml and 5 mg/ml; 

#15070-063, Invitrogen) 

 

Cryopreservation medium 

18   ml Fetal Bovine serum (FBS; #A15102, PAA) 

2     ml DMSO (#276855, Sigma Aldrich) 

DMSO is added to FBS and mixed just prior to resuspension of cells for 

cryopreservation at -152oC. 
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SF (serum free) monolayer differentiation medium 

500 ml RPMI 1640 with GlutaMAX™ (#61870, Invitrogen) 

5     ml Sodium Pyruvate (100 mmol/L; #11360-039, Invitrogen) 

5     ml Penicillin and Streptomycin (P/S: 5.000 U/ml and 5 mg/ml; 

#15070-063, Invitrogen) 

All reagents are mixed well and stored at 4oC for two weeks. 2% B27 

supplement is added just prior to use. 

 

SF (serum free) adaptation medium containing 

485 ml DMEM (#11960, Invitrogen) 

5     ml L-Glutamine (200 mmol/L; #25030-024, Invitrogen) 

5     ml MEM NEAA (10 mmol/L; #11140-050, Invitrogen) 

5     ml ITS-X supplement (100X; #51500-056 Gibco, Invitrogen) 

 

bSFS (basal serum free differentiation medium) 

500 ml DMEM (# 11960, Invitrogen) 

5     ml L-Glutamine (200 mmol/L; #25030-024, Invitrogen) 

5     ml MEM NEAA (10 mmol/L; #11140-050, Invitrogen) 

900  µl 2-beta mercaptoethanol (50 mmol/L; #31350-010, Invitrogen) 

690  µl Human Transferrin (4 mg/ml; #030124SA, Gibco, Invitrogen) 

182  µl Sodium Pyruvate (100 mmol/L; #11360-039, Invitrogen) 

50    µl Sodium Selenite (100 µg/ml; #S5361-25G, Sigma Aldrich) 
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hEHM medium (human bioengineered heart muscle medium) 

 500 ml Iscove’s MEM (#F0465, Biochrom) 

120 ml Fetal Bovine Serum (FBS; #A15102, PAA) 

6     ml L-Glutamine (200 mmol/L; #25030-024, Invitrogen) 

6     ml NEAA (10 mmol/L; #11140-050, Invitrogen) 

6     ml Penicillin and Streptomycin (P/S: 5.000 U/ml and 5 mg/ml; 

#15070-063, Invitrogen) 

4.34 µl 2-ß-Mercaptoethanol (#31350-010, Sigma) 

 

 

10X DMEM 

1. Dissolve 669 mg DMEM powder (#52100-039,Invitrogen) in 5 ml sterile 

water. 

2. Filter the solution through a 0.22 µm syringe filter  

 

2X DMEM 

1    ml 10X DMEM  

2    ml FBS (#A15102, PAA) 

100 µl L-glutamine (200 mmol/L; #25030-024, Invitrogen) 

100 µl P/S (5.000 U/ml and 5 mg/ml; #15070-063, Invitrogen) 

adjusted to 5 ml ddH2O. 
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Collagenase I solution  

1. Dissolve 100 mg of collagenase I in 40 ml of DPBS+ and 10 ml FBS. 

2. Sterile filter the solution, aliquot (10 ml) in 15 ml centrifuge tubes, and 

store at -20 °C. 

 

DNAse I solution  

1. Suspend DNAse I in ice cold water at 1 mg/ml. Sterile filter the solution, 

aliquot (5 ml) in 15 ml centrifuge tubes, and store at -20 °C. Keep on 

ice after thawing. 
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Reagents and solutions for Isometric force measurements 

 

Tyrode’s solution 

CaCl2 stock (2.25M) 

165.57 g CaCl2 x 2H2O  (Mw = 147.02) 

500 ml ddH2O 

First, dissolve calcium salt thoroughly in ddH2O. This is stored at 4oC until 

required. 

 

MgCl2 stock (1.05M) 

 106.83 g MgCl2 x 6H2O (Mw = 203.01) 

 500ml  ddH2O 

Next, dissolve magnesium salt thoroughly in ddH2O to make a stock solution 

as indicated. 

 

Then, 3 stock solutions are made up as indicated. Stock solutions are stored 

at 4oC until required. Ca2+ concentration in Stock 1 can be adjusted as shown 

below. 

Stock I             

Tyrode  [Ca2+] = 1.8 mM 0.4 mM 0.2 mM 

NaCl (Mw=58.44) 175 g 175 g 175 g 

KCl (Mw=74.56) 10 g 10 g 10 g 

CaCl2 stock (2.25 M) 20 ml 4.44 ml 2.22 ml 

MgCl2 stock (1.05 M) 25 ml 25 ml 25 ml 

adjusted with ddH2O  1000 ml 1000 ml 1000 ml 
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Stock II 

NaHCO3 (Mw=84.01) 50 g 

H2O 1000 ml 

  

Stock III  

NaH2PO4 (Mw=137.99) 5.8 g 

H2O 1000 ml 

  

All stock solutions can be stored after reconstitution at 4oC until required. 

 

Tyrode’s  Working Solution 

 

Stock I 40 ml 80 ml 120 ml 200 ml 

Stock II 38 ml 76 ml 114 ml 140 ml 

Stock III 10 ml 20 ml 30 ml 50 ml 

Glucose 1 g 2 g 3 g 5 g 

Ascorbic acid 50 mg 100 mg 150 mg 250 mg 

H2O 1 L 2 L 3 L 5 L 

 

Prior to isometric force measurements, Tyrode’s working solutions  were 

mixed as indicated above, dissolved thoroughly and poured into thermostatted 

force transducer reservoirs as measurement buffer. 
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Cloning Reagents and Medium 

 

LB-Medium 

 20 g  Bacto-Tryptone 

 20 g Bacto Yeast Extract 

 20 g NaCl 

 

Dissolve the above reagents with 1 L ddH2O and equilibrate the medium with 

0.1 N NaOH to pH 7.4. Top up to 2 L with ddH2O in a glass bottle and 

autoclave. LB medium can be stored in 4oC for 3 weeks. 

 

 

 

Agarose plates for bacterial colony cultures 

 

Weigh 7.5 g molecular biology grade agarose into a glass bottle. Add 500ml 

LB-Medium and agitate to an even suspension. Autoclave the bottle and allow 

it to cool below 50oC. Add required antibiotics and agitate to mix the solution 

well. Pour about 20 ml of the molten agar into sterile 10 cm Petri dishes and 

allow these to cool and solidify. Store at 4oC for a maximum of 2 weeks. 

 

Antibiotics supplementation in 500 ml LB-Medium: 

2.5 ml Kanamycin and/or 

2.0 ml Ampicillin 
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Ampicillin-Stock 

25 mg/ml  

Weigh out 50 mg of Ampicillin and dissolve in 2 ml of ddH2O. Aliquot and 

freeze in -20oC 

 

Kanamycin-Stock 

10 mg/ml 

Weigh out 20 mg of Kanamycin and dissolve in 2 ml of ddH2O. Aliquot and 

freeze in -20oC 
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Protein blot Reagents 

6x Lämmli Loading buffer 

 2.4     g  SDS 

 12   mg Bromophenol blue 

 13.8 ml Glycerol, 87% 

 5.8   ml Tris-HCL, 1.0M, pH 6.8 

 1.85   g DTT 

 

First add SDS, Glycerol and Tris-HCL in a glass beaker and heat to 50oC for 

10 – 20 minutes. When reagents are completely dissolved, add Bromophenol 

blue and 20 ml ddH2O and mix well. Finally, add DTT to the solution, mix well, 

aliquot and freeze in -20oC. 

  

0.5 M Tris-HCl pH 6.8 

400   ml ddH2O 

30.28   g  Tris-HCl  

 

Adjusted to pH 6.8 and topped up to 500 ml H2O  

 

 

1.5 M Tris-HCl pH 8.8 

400     ml  ddH2O 

90.85    g  Tris-HCl  

 

Adjusted to pH 8.8 and topped up to 500 ml H2O.  
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SDS PAGE with 30% Acrylamide 

Separating Gel (for 2 gels) 

% SDS Agarose gel 

 

5% 6% 8% 10% 12% 15% 18% 

For kDa-proteins 220-60 150-50 105-40 90-25 60-20 45-10 40-4 

H2O 5.6 5.3 4.6 4.0 3.3 2.3 1.3 

30 % Acrylamide 1.7 2.0 2.7 3.3 4.0 5.0 6.0 

1.5 M Tris pH 8,8 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

10 % SDS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

10 % APS 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

TEMED 0.01 0.008 0.006 0.004 0.004 0.004 0.004 

 

 

Stacking Gel (for 4 gels) 

 Vol (ml) 

H2O 5.6 

30 % Acrylamide 1.7 

0.5 M Tris pH 6.8 2.5 

10 % SDS 0.1 

10 % APS 0.1 

TEMED 0.01 

 

 

Nitrocellulose membrane preparation 

 

Membranes were immersed in 100% Methanol for 10 seconds. Next, they 

were washed in ddH2O for 5 minutes and placed in transfer buffer and 

10 % APS: 150 mg APS 
dissolved in 1500 µl ddH2O.	
  

volumes in ml 
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allowed to equilibrate for 10 minutes. Thereafter, PVDF membranes are 

activated for SDS gel blot transfers. 

 

10x Transfer-Buffer I  (for Proteins under 80-100 kDa) 

60.5 g Tris-Base 

288 g Glycine 

 

Dissolve thoroughly in 2 L ddH2O 

 

1x Transfer Stock Solution Buffer  

200 ml  10x Puffer 

400 ml  Methanol  

Adjusted to 2 L ddH2O. 

 

Ponceau-S-Solution 

Ponceau-S-solution was purchased from Applichem and used neat for 

staining of western blot membranes. 

 

Membranes were incubated in Ponceau-S solution for 1-5 minutes in room 

temperature and then rinsed with ddH2O until the background turns white and 

stained bands are clearly contrasted. After image documentation, the 

ponceau stains are rinsed away in TBST. 
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10x TBS Solution 

 121.14 g Tris-Base 

175.32 g NaCl 

Add all reagents and 1.5 L of ddH2O in a suitable glass beaker and mix until 

all reagents are dissolved. Equilibrate the solution with fuming HCl till pH 7.5, 

then top up till 2 L with ddH2O. 

 

1x TBST Stock Solution 

100 ml  10x TBS 

900 ml  H2O 

     1    ml  Tween 20 

 

Mix all reagents until they dissolve. Tween 20 is extremely viscous and 

requires about 10 – 15 minutes to dissolve completely. 

 

10x Gel-Electrophoresis Buffer = Running Buffer (pH 8,3-8,7) 

 60.6 g  Tris- Base 

 288 g  Glycine 

   20 g  SDS 

 

Dissolve all reagents in 1 L ddH2O and topped up to 2 L ddH2O and mix 

thoroughly. During gel electrophoresis, 1 : 10 ml dilution with ddH2O is 

prepared fresh to obtain 1X running buffer. 
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DNA Agarose Gel Electrophoresis Reagents 

 

50x TAE 

 242 g Tris-Base 

100 ml EDTA 0.5M pH 8.0 

57.1 ml Glacial Acetic Acid 

 

Dissolve first in 800 ml, pH 8.5 adjusted and topped up to 1 L H2O. Gel 

electrophoresis run is diluted 1 : 50 to obtain 1X TAE gel running buffer prior 

to use. 

 

6x DNA loading buffer (2 coloured) 

 75 mg Bromophenol-Blue 

25 mg Xylene cyanol 

100 ml 30% Glycerol 

All reagents are mixed thoroughly and can be stored in 4oC indefinitely 

 

 

3.0 M NaOAc pH 5.4 

Anhydrous NaOAc: M = 82.03 g/mol 

To make 0.3 M of NaOAc, 24.609 g of anhydrous NaOAc was dissolved 

thoroughly in 70ml H2O and adjusted to pH 5.4 with dropwise addition of 

fuming HCL and topped up till100 ml ddH2O. 
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Reagents for Immunohistochemistry 

Permeabilizing / Blocking buffer 

500 ml Phosphate Buffered Saline (0.05 M, pH 7.4, Invitrogen) 

 25 ml Fetal Calf Serum 

 5 g Bovine Serum Albumin 

 2.5 ml Triton X-100 

All reagents are mixed together thoroughly. Triton X-100 is viscous and 

requires constant stirring to dissolve. Blocking buffer can be aliquot and 

stored at -20oC. 
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Gene 

transcripts 

5’ Forward primer 3’ Reverse primer Taqman probe 

Cardiac 

actin 

CCGGGAGAAGATGACTCAGA GCAAAGCGTAGCCCTCATAG CTGGCCGTACCACAGGCATTGTTCT 

Skeletal 

actin 

TGCCCATTTATGAGGGCTAC GCCATCTCGTTCTCGAAGTC CGTGACCACAGCTGAGCGCGAGAT 

α MHC GAAGTCCTCCCTCAAGCTCA CAAAGTGAGGATGGGTGGTC ACTGCCGATACTGGGGACAGTGGT 

ß MHC GAGGAAATGAGGGACGAGAG ATGGAGGCCATCTCCTTCTC CTGCTGGAACGTAGAGACTCCCTGCT 

RyR 2 TGGAAATGGTGTTGGAGATG AATTCGGAACGAGATGCTTG TTCATCTCTGGTCAGGTTGTATTGCTCGT 

SERCA GAGTTGAACCCTCCCACAAG CCAATCTCGGCTTTCTTCAG AGATTACAGCTATGACTGGCGATGGCGT 

CSQ 2 CTACCATGAGCCGGTGTCTT GCTTCTTTCTTGGCATCCAC ATCGTGCTTGAGCTTGTGGCCCA 

PLB CCCAGCTAAACACCCGTAAG TCCATGATACCAGCAGGACA GATGATCACAGCTGCCAAGGCTACCT 

Table 3. Primers and probes used in quantitative PCR. 
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ABSTRACT

The advent of pluripotent human embryonic stem cells has created the unique opportunity
for the development of a wide variety of humanized cellular tools for basic research,
as well as industrial and clinical applications. It has, however, become apparent that
embryonic stem cell derivatives in classical monolayer or embryoid body culture do
not resemble bona fide tissues, mainly because of their limited organotypic organization
and maturation in these culture formats. This shortcoming may be addressed by tissue
engineering technologies aiming at the provision of a “natural” growth environment to
facilitate organotypic tissue assembly. In this unit, we provide two harmonized basic
protocols for (1) cardiac differentiation of human embryonic stem cells under serum-free
conditions and (2) the assembly of the stem cell–derived cardiomyocytes into engineered
heart muscle. This protocol can be easily adapted to bioengineer heart muscle also from
other stem cell–derived cardiomyocytes, including cardiomyocytes from human-induced
pluripotent stem cells. Curr. Protoc. Cell Biol. 55:23.8.1-23.8.21. C© 2012 by John Wiley
& Sons, Inc.

Keywords: human embryonic stem cells � pluripotent stem cells � cardiac
differentiation � cardiomyocytes � tissue engineering � engineered heart muscle

INTRODUCTION

The introduction of robust protocols to derive and maintain human embryonic stem cells
(hESCs) in a self-renewing state with pluripotent differentiation potential (Thomson
et al., 1998) is likely to have an enormous impact on the utility of cell models in
human developmental biology, as well as drug discovery and development (Braam and
Mummery, 2010). Moreover, hESCs and other pluripotent stem cells appear to be a
promising source for cell-based organ repair (Laflamme et al., 2007).

hESCs can give rise to derivatives of the three germ lines—ectoderm, mesoderm, and
endoderm. Other human pluripotent stem cells, including induced pluripotent stem cells
(Takahashi et al., 2007) and parthenogenetic stem cells (Turovets et al., 2011), have
similar biological properties. hESC are nevertheless considered the “gold standard” for
a pluripotent stem cell, and mechanisms underlying pluripotent stem cell biology must
be scrutinized in hESC to attain general acceptance. Ectodermal differentiation is ap-
parently the default differentiation pathway in most hESC lines (Vallier et al., 2004).
Spontaneous mesoderm and in particular cardiomyocyte differentiation are minimal, but
may be enhanced by stage-specific differentiation protocols, adapted to simulate the
paracrine milieu that governs embryonic heart development (Kattman et al., 2011a). Al-
ternatively, cardiomyocytes may be isolated and enriched by manual dissection of sponta-
neously beating areas within differentiating embryoid bodies (EBs; Kehat et al., 2001; Xu
et al., 2002), Percoll gradient centrifugation (Laflamme et al., 2007), genetic selection in
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transgenic hESC lines (Xu et al., 2008), or immune-assisted cell sorting via unique cell
surface markers (Dubois et al., 2011; Elliott et al., 2011).

Isolated cardiomyocytes from hESCs display morphological and electrophysiological
features of fetal cardiomyocytes (Kehat et al., 2001; Mummery et al., 2003). Advancing
maturation in monolayer and EB cultures is severely compromised. Hence, it appears
necessary to introduce novel culture formats to unlock the intrinsic capacity of ESC-
derived cardiomyocytes to form heart muscle surrogates in vitro. To this end, tissue
engineering has been developed, as it may not only enable the adjustment of paracrine,
but also of biophysical conditions, which may both be essential to facilitate bona fide
heart muscle formation for a wide variety of applications, including (1) basic research
(e.g., in developmental biology), (2) industrial (e.g., in drug development and toxicity
screens), and (3) clinical (e.g., in cell-based heart repair) applications.

The complex architecture of the heart and its associated function, as well as the scarcity
of adequate cell material, impose considerable challenges on the cardiac tissue engineer.
Firstly, cardiomyocytes, even at an early developmental stage, are largely post-mitotic
and thus refractory to commonly used cell amplification protocols. Secondly, the heart
is a multi-cellular organ with a delicate balance of myocytes and nonmyocytes, each
with specific roles in tissue organization, function, and maintenance. Thirdly, the my-
ocytes have to be organized in a highly specialized functional syncytium embedded in
extracellular matrix. Accordingly, it is essential to (1) have access to large quantities
of bona fide cardiomyocytes, (2) supplement the myocyte pool with supporting stromal
cells, and (3) provide an extracellular matrix to hold the cellular components together.
In vitro vascularization is not required for myocardial tissue engineering if size limita-
tions are considered (Tiburcy et al., 2011), but will be a prerequisite for the survival of
tissue-engineered heart muscle if applied as surrogate tissue in vivo. Whether “precapil-
larization” of tissue engineered heart muscle already in vitro will be instrumental under
these circumstances remains to be documented.

Here we provide two harmonized protocols to firstly enable the allocation of a so-
matic cell pool with defined cardiomyocyte and mesodermal nonmyocyte content from
hESCs, and secondly allow the construction of human engineered heart muscle (EHT;
Zimmermann et al., 2000) with the characteristic morphological and functional features
of native myocardium (i.e., anisotropic arrangement, force developing contractions, and
electrical conductivity). The cardiomyocyte derivation protocol we provide here is not
optimized for cardiomyocyte purity, but for process reliability, low costs, and fast car-
diomyocyte allocation. Moreover, it is scalable to enable mass cardiomyocyte derivation
and subsequent assembly of engineered heart muscle.

STRATEGIC PLANNING

This unit contains two protocols: Basic Protocol 1 describes a method to robustly gener-
ate cardiomyocytes from hESCs under serum-free conditions; Basic Protocol 2 describes
a method to engineer human myocardium. Basic Protocol 2 can also be utilized with
minor modification to engineer heart muscle from other cardiomyocyte sources, includ-
ing induced pluripotent and other stem cells; the main prerequisite is that the input cell
population contains more than 10% immature cardiomyocytes and more than 40% meso-
dermal stromal cells. The described protocols should be highly robust in the hands of
researchers familiar with basic mammalian cell culture. However, it must be emphasized
that handling and maintaining of hESC is challenging and may require additional expert
training.
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NOTE: All protocol steps, with the exception of the casting mold and silicone holder
preparations, must be performed under sterile conditions. Casting molds and silicone
holders can be autoclaved and reused.

NOTE: All cultures should be maintained in a humidified incubator at 37◦C supplemented
with 5% CO2.

NOTE: Legal requirements for hESC use in academia and industry can vary substantially
and users of our protocols are recommended to contact the relevant regulatory authorities
to attain approval for the intended studies.

BASIC
PROTOCOL 1

CARDIAC DIFFERENTIATION IN HUMAN EMBRYONIC STEM CELLS
CULTURES

The ability to maintain high-quality hESC cultures is an essential precondition for the
successful execution of the following protocols. Basic hESC cultures are generally main-
tained under serum. We prefer to induce cardiogenesis in serum-free conditions for
optimal control of this highly sensitive process. This protocol describes the adaptation
of standard hESC-cultures to serum-free conditions and the induction of cardiac differ-
entiation by MAPK inhibition in embryoid body cultures.

Materials

hESCs (e.g., HES3 hESCs)
100-mm feeder cell-coated culture plates (see Support Protocol 1)
hESC maintenance medium (see recipe)
Dulbecco’s phosphate-buffered saline with Mg2+ and Ca2+ (DPBS+; Invitrogen,

cat. no. 14040-091)
Collagenase IV working solution (see recipe)
SF adaptation medium (see recipe)
bSFS medium (see recipe)
SB203580 (CalBiochem, cat. no. 559389-5MG)

100-mm tissue culture dishes (Nunc, cat. no. 150679)
Stereomicroscope (Leica, cat. no. MZ8)
Glass Pasteur pipets
Stem Cell EZ passaging Tool (Invitrogen, cat. no. 23181-010)
Cell scraper
Graded disposable serological pipets
50-ml centrifuge tubes (BD Falcon, cat. no. 352070), sterile
Centrifuge
100-mm ultra-low petri dishes (Corning, cat. no. 3262)
40-μm cell strainers (BD Falcon, cat. no. 352340)
Tube rack

Culture of hESC
1. Seed hESC (2 × 106) on a 100-mm feeder cell-coated culture plate containing

10 ml hESC culture medium. Place the plates in the incubator.

Feeder cells can be, e.g., mouse embryonic fibroblasts or human foreskin fibroblasts; both
have to be growth-inhibited either by mitomycin C or γ -irradiation.

2. Grow hEHCs to 60% to 90% confluency. Change the hESC culture medium every
day (use 10 ml culture medium per 100-mm culture dish).

Good-quality hESC colonies show a “pancake-like” appearance composed of densely
packed cells with a high nucleus:cytoplasm ratio, a clear demarcation, and a rather
circular morphology (Fig. 23.8.1A).
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Figure 23.8.1 hESC culture and processing (all displayed data are from HES3). (A) Single
hESC colony on irradiated human foreskin fibroblast. Notice the “pancake” morphology with clearly
defined borders. The absence of raised centers/cystic areas indicates that this is a good quality
hESC colony. Scale bar: 500 μm. (B) hESC colony manually “scored” using the StemPro EZ
Passage tool. Scale bar: 1 cm. (C) EBs with uniform size formed from manually cut hESC colonies
at culture day 1 of serum-free differentiation. Scale bar: 100 μm. (D) 50-ml centrifuge tubes with
cell strainers inverted (left) and correctly fitted (right) in the collection tube. EBs will be retained
by the inverted cell strainer while cell debris will flow through and can be discarded. After turning
over the cell strainer, the EBs can be washed into a fresh collection tube for further processing.

3. Split at a 1:9 ratio for further propagation.

Time to split cultures can vary depending on the adaptation of the hESC to the culture
conditions. Well-established cultures are typically split after 7 days.

4. For splitting, aspirate cell culture medium from hESC plates. If necessary, as-
pirate cystic/differentiated parts of hESC colonies under optical control using a
stereomicroscope.

Place the stereomicroscope underneath a laminar flow hood to ensure sterile handling of
cell cultures.

5. Rinse the tissue culture plate once with 5 ml DPBS+.

6. Aspirate DPBS+ and add 3 ml collagenase IV working solution. Incubate for 4 to
6 min at 37◦C.

Avoid over-digestion to prevent detachment of entire “feeder-mat” with hESC cell
colonies.

7. Remove the hESC plate carefully from the incubator and aspirate the collagenase
IV working solution with a glass Pasteur pipet.

Ensure that the Pasteur pipet does not contact the hESC colonies. hESC colonies are now
loosely located on the culture dish and can be easily aspirated.
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8. Quickly, but carefully, use the Stem Cell EZ Passage Tool to score the entire plate
by the rolling method. Rotate the plate 90◦ and repeat scoring (Fig. 23.8.1B). The
resulting squares are referred to as “cell rafts.”

The scoring step can also be performed with alternative tools (e.g., glass needle). We find
the Stem Cell EZ Passage Tool very well suited to produce homogeneously sized cell rafts
(∼1 mm2).

9. Add 10 ml hESC medium to neutralize the enzymatic activity of the collagenase.

10. Detach the cell rafts with a cell scraper.

Use short strokes starting from the edge of the plate inwards.

11. Verify that most of the cell rafts have been mechanically detached from the
plate.

Inspect using a stereomicroscope.

12. Using a 10-ml disposable serological pipet, aspirate the cell rafts and transfer into a
50-ml sterile centrifuge tube.

Prewet the pipet interior to minimize adhesion of cell rafts.

13. Repeat steps 2 to 12 for each individual hESC plate.

Drying of cultures must be prevented. Parallel plates can be handled once a sufficient
level of experience has been reached.

14. Pool the cell rafts into one 50-ml sterile centrifuge tube and pellet by centrifuging
for 4 min at 300 × g, room temperature.

15. Discard the supernatant.

Adapt to serum-free conditions
16. Resuspend the cell pellet in 10 ml SF adaptation medium.

Trituration of the cell pellet 5 times is sufficient to dislodge most cell rafts without breaking
them up too much.

17. Pool cell rafts from two 100-mm hESC plates into one 100-mm ultra-low petri dish
containing 10 ml prewarmed SF adaptation medium.

18. Incubate the ultra-low petri dishes in a 37◦C incubator with 5% CO2.

Homogeneously sized EBs form within 24 hr (Fig. 23.8.1C).

Cardiac differentiation
19. Insert a 40-μm cell strainer in inverted orientation into an open 50-ml centrifuge

tube and place carefully in a tube rack (Fig. 23.8.1D).

20. Carefully remove the ultra-low petri dishes from the incubator.

21. Using a sterile 10-ml serological pipet, gently aspirate the entire culture medium
including EBs and pass through the inverted cell strainer.

During serum-free adaptation and EB formation, cells are constantly shed. This straining
step is important to separate single cells and cell debris from the formed EBs.

22. Rinse the ultra-low petri dishes once with 10 ml bSFS medium and pass again
through the inverted cell strainer.

EBs are collected on top of the cell strainer. Work quickly to prevent drying of EBs.

We introduce bSFS here to reduce the insulin content. Insulin can interfere with cardio-
genesis in hESC culture.
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23. After the flow through is complete, turn the cell strainer so that it sits properly inside
the opening of a new sterile 50-ml centrifuge tube (Fig. 23.8.1D).

The EBs are now at the bottom of the cell strainer and can be washed inside the centrifu-
gation tube.

24. Add 10 ml bSFS containing 5 μM SB203580 in the dark.

SB203580 is a highly light-sensitive MAPK inhibitor.

25. Transfer the entire volume back into the source ultra-low petri dish.

26. Place the culture plates back into the incubator.

This is marked as day 1 of differentiation.

27. Perform medium change every day following steps 19 to 26, until culture day 3
where it is then changed every 2 days.

The daily washing steps during the first 3 culture days minimize the amount of cell debris
that develops during serum-free adaptation.

Spontaneously beating EBs can be observed from culture day 8 onwards (see Video 1 at
http://www.currentprotocols.com/protocol/cb2308).

EB culture can be continued for several weeks for cardiomyocyte harvest. We typically
harvest EBs for further processing (see Basic Protocol 2) on culture day 13.

BASIC
PROTOCOL 2

BIOENGINEERING OF HEART MUSCLE

ESC-derived cardiomyocytes in classical monolayer or EB culture do not resemble post-
natal myocytes or myocardial tissue. Tissue engineering aims at assembling cells typically
in biological extracellular matrix into tissue-like organoids. This protocol describes the
generation of EHT with morphological and functional properties of native myocardium.
This protocol can be used with several human cardiomyocyte sources including embry-
onic and induced pluripotent stem cells. This protocol requires the provision of casting
molds.

Materials

Culture day 13 EBS in ultra-low petri dishes (see Basic Protocol 1)
Collagenase I (see recipe)
DNase I (see recipe)
Iscove MEM F0465 (Biochrom)
0.25%Trypsin-EDTA (Invitrogen, cat. no. 24200-056)
Fetal bovine serum (FBS; PAA, cat. no. A15102)
hEHT medium (see recipe)
Dulbecco’s phosphate-buffered saline without Mg2+ and Ca2+ (DPBS-; Invitrogen,

cat. no. 14190-94)
70% (v/v) ethanol

15- and 50-ml centrifuge tubes
37◦C shaking water bath
10-ml serological pipets
Centrifuge (Eppendorf, cat. no. 5804R)
Glass Pasteur pipet
Hemacytometer
Casting molds (see Support Protocol 2; Figure 23.8.2A)
Silicone holders (Fig. 23.8.2B)
Sterile curved forceps
100-μl pipet tips, sterile
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Figure 23.8.2 Casting mold and silicone holder for extended culture under defined mechanical load.
(A) Glass culture dish filled with transparent silicone and four circular recesses with central spacers: (i)
Teflon disc of 11-mm diameter and 5-mm height with central hole used as spacer during the silicone hardening
process; (ii) recess with thin silicone core; (iii) silicone tubing used as inner spacer during the EHT formation
process placed over a central silicon core. (B) Flexible silicone poles (length: 11 mm, thickness: 1.5 mm,
inner/outer distance: 3/6 mm) with circular base (diameter: 20 mm, thickness: 1.6 mm) as resilient holder
(resilient force can be adapted as desired by for example altering the silicone curing conditions or changing
the pole dimensions). Scale bars: 10 mm.

Perform enzymatic digestion of hESC-EBs to obtain single cells
1. Harvest culture day 13 EBs from the ultra-low petri dishes (from Basic Protocol 1)

and pool into a 50-ml centrifuge tube.

2. Let settle for 15 min at room temperature.

3. Aspirate the supernatant carefully and add 5 ml collagenase I and 100 μl DNase I
(20 μl/ml collagenase solution).

At this stage, the EBs are only loosely pelleted and care should be taken to avoid aspiration
of EBs.

4. Incubate at 37◦C in a shaking water bath for 45 min.

5. Add 20 ml Iscove MEM and triturate at least 5 times with a 10-ml serological pipet
to mechanically aid in dispersion of compact EBs.

Always prewet the pipets to minimize cell adhesion.

6. Centrifuge the tube for 5 min at 200 × g, room temperature.

7. Aspirate the supernatant and add 5 ml of 0.25% Trypsin-EDTA into the tube.

8. Incubate the tube in the 37◦C shaking water bath again for 5 to 10 min.

Keep the time as short as possible to minimize cell damage. Aim at a dissociation of
>80% of the starting amount of EBs.

9. Triturate briefly with a glass Pasteur pipet to disperse any remaining cell clumps.

10. Add 20 ml Iscove MEM supplemented with fetal bovine serum at 1:1 ratio with
400 μl DNase I and triturate with a 10-ml serological pipet until a uniform cell
suspension is obtained.
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11. Centrifuge the tube for 5 min at 200 × g, 4◦C.

12. Aspirate the supernatant and discard.

13. Resuspend the cell pellet evenly in 20 ml cold hEHT medium.

14. Perform a cell count with a hemacytometer.

We anticipate to retrieve ∼8 × 106 cells per ultra-low petri dish. Cell viability should be
>90% based on Trypan blue exclusion assay.

15. Transfer 1 × 106 cells into a separate 15-ml centrifuge tube and centrifuge for 5 min
at 200 × g, 4◦C. Keep the remaining cells on ice.

16. Aspirate the supernatant and rinse with 10 ml cold DPBS-.

17. Centrifuge the 15-ml tube for an additional 5 min at 200 × g, 4◦C, and aspirate the
supernatant leaving an intact cell pellet.

18. Tap the base of the 15-ml centrifuge tube at least 5 times to dislodge the cell pellet
and add 3 ml of ice-cold 70% ethanol in a dropwise manner while gently shaking
(“vortex”).

19. Store the tube of ethanol-fixed cells at 4◦C until required for flow cytometry and
morphological cell smear analyses (Fig. 23.8.3).

The maximum storage time for ethanol-fixed cells should not exceed 1 week.

20. Centrifuge the remaining cells for 5 min at 200 × g, 4◦C.

21. Aspirate the supernatant and resuspend the cell pellet in an appropriate volume of
cold hEHT medium.

Adjust the volume of the cell suspension according to the EHT reconstitution protocol
(see below and Table 23.8.1).

Generate human EHTs
22. Mix the components in the exact order as indicated in Table 23.8.1 into a prechilled

15-ml (for 4 EHTs) or 50-ml (for 20 EHTs) centrifuge tube.

All reagents must be cold and kept on ice throughout the entire procedure. Work quickly
to prevent reagents from warming up.

23. Triturate the EHT master mix on ice with a prechilled serological pipet to ensure
homogeneous distribution of cells.

24. Quickly distribute 500 μl of the cell-collagen mixture into the individual casting
mold recesses (Fig. 23.8.2A).

25. Place the casting molds with minimal agitation in a 37◦C humidified incubator with
5% CO2 for 1 hr.

26. Remove the dishes and move into a sterile laminar hood and overlay carefully with
6 ml prewarmed hEHT medium. Ensure that all hEHTs are completely covered with
medium.

27. Return the dishes into the incubator for 24 hr.

28. Remove the dishes from the incubator and move into the laminar flow and exchange
the hEHT medium.

Microscopic inspection at this time point should demonstrate evenly distributed cells
within the hydrogel. Isolated beating of single cells and cell clusters should be visible.
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Figure 23.8.3 Assessment of hESC-EB cell composition by flow cytometry and fluorescence
microscopy (all data from HES3 EBs). (A) hESC-EBs on culture day 13 should contain >10%
cardiomyocytes (α-sarcomeric actinin-positive; right panel); left panel: isotype control. Analysis
was performed by flow cytometry (input cell number 1 × 106). (B) Microscopic analysis of cell
smears after enzymatic dispersion of hESC-EBs, demonstrating mainly mesodermal components
(vimentin and tropomyosin positive cells) and few cells positive for endodermal (alpha-fetoprotein),
as well as ectodermal (pan-neurofilament) markers. Oct 4 and Nanog (marking residual pluripotent
cells) were not detectable.

The hEHTs will progressively condense and will be ready for transfer onto resilient
silicone holders (Fig. 23.8.2B).

hEHT should be fully condensed around the central silicone tube within the casting mold
recess (Fig. 23.8.2A) on EHT culture day 3. The EHT transfer may be postponed by 2 days
if condensation is not complete by culture day 3.

Transfer hEHTs onto flexible silicone holders for mechanical stretching
29. Place the necessary number of silicone holders into a tissue culture plate, fill with

hEHT medium.

Silicone holders can be adjusted in size to facilitate EHT culture in variable culture plate
formats (single dish to 48-well plate).

30. Remove casting mold dishes from the incubator under the laminar hood.
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Table 23.8.1 Composition of Master Mix for Generation
of EHTs

Volume (μl)

Number of EHTs 4 20

Collagen (3.2 mg/ml)a 440 2,200

2× DMEM (see recipe) 535 2,675

0.1 N NaOHb 95 475

Matrigel (BD, cat. no. 354234) 200 1,000

Cell suspensionc 829 4,145

TOTAL VOLUME 2,100 10,500
aWe prefer to prepare collagen type 1 from rat tail tendons by classical
acid solubilization technique (adapted to 3 to 5 mg/ml). Stability of
collagen at 4◦C is approximately 1 year. Quality of most commercially
available collagens is insufficient.
bAdd dropwise until phenol red color indicator changes from yellow
(acidic) to pink.
cAdjust to 1.5 × 106 cells per EHT.

31. Gently pinch the top of the removable silicone tubing of a casting mold dish with
curved forceps and slowly remove the silicone tube. Ensure that the EHT is attached
around the silicone tube.

32. Place the silicone tube over one of the paired silicone poles of a silicone holder and
release the EHT by gentle shaking or nudging of the EHT carefully with a pipet tip.

EHTs typically slip from the silicon tubing with little extra manipulation.

33. Using another sterile pipet tip, gently bend the other silicone pole to suspend the
EHT between the two poles.

The EHTs are fragile at this stage and it is crucial that they are transferred from the
casting molds in an extremely careful manner. Tissue ruptures at this stage constitute
predetermined breaking points during subsequent EHT culture.

This step also has to be executed quickly to prevent drying of the EHT.

34. Position EHT horizontally suspended on the resilient silicone holder.

35. Transfer the holder with EHT into a tissue culture dish with fresh hEHT medium
and ensure that EHTs are fully covered.

36. Incubate for 24 hr at 37◦C.

37. Exchange medium and always ensure that EHTs are fully submerged. From now on
exchange medium every other day.

The EHTs will further condense around the poles over the next 5 to 7 days and start to
contract visibly. The resilient silicone poles facilitate auxotonic contractions (see video 2
at http://www.currentprotocols.com/protocol/cb2308). Their size can be easily adjusted
as desired.

EHT are ready for end-point analyses on culture day 10 or may be cultured for an extended
period of time (for at least 6 months).

We control the quality of EHT typically at culture day 10 by assessment of contractile
properties under isometric conditions with and without field stimulation in thermostatted
(37oC) organ baths filled with modified Tyrode’s solution (Fig. 23.8.4A) (Zimmermann
et al., 2000). This is typically followed by additional morphological (Fig. 23.8.4B) and
other analyses (see Anticipated Results).
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Figure 23.8.4 Functional and morphological parameters of hEHTs. (A) Force of contraction
measured under isometric conditions at 37◦C and electrical field stimulation at 2 Hz (n = 4). A
positive inotropic response (increase in force of contraction) is anticipated for muscle preparations
under increasing extracellular calcium concentrations. (B) Demonstration of an aligned muscle
bundle with characteristic sarcomeric cross-striation by confocal microscopy (red: α-actinin; green:
f-actin; blue; DAPI stained nuclei). Scale bar: 20 μm. For the color version of this figure go to
http://www.currentprotocols.com/protocol/cb2308.

SUPPORT
PROTOCOL 1

Embryonic stem cells are typically maintained in a pluripotent state on fibroblast feeders.
Feeder cultures can be prepared from fetal mice or human foreskin. Basic Protocol 1
utilizes human foreskin fibroblast (HFF) feeder cell–coated culture plates prepared as
outlined in this protocol.

Materials

Human foreskin fibroblasts (HFF; ATCC# SCRC-1041)
HFF maintenance medium (see recipe)
Human basic fibroblast growth factor (bFGF; Stemgent, cat. no. 03-0002 or

Miltenyi Biotech, cat. no. 130-093-841)
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37◦C water bath
15-ml conical tubes
Hemacytometer
Standard inverted microscope
Irradiation source
100-mm tissue culture plates
37◦C, 5% CO2 incubator

1. Thaw a vial of frozen HFF cells in a 37◦C water bath.

2. Transfer HFFs into a 15-ml conical tube containing 9 ml prewarmed HFF mainte-
nance medium.

3. Centrifuge the cells for 4 min at 300 × g, room temperature.

4. Aspirate the supernatant and resuspend the cells in 10 ml HFF maintenance medium.

Perform steps 1 to 4 quickly and without interruption to minimize cell damage.

5. Count the number of cells using a hemacytometer under a standard inverted micro-
scope.

Viability should be >90% based on Trypan blue exclusion.

6. Transfer the desired number of HFFs for feeder layer plating into a separate 15-ml
or 50-ml conical tube.

Calculate 2 × 106 irradiated HFFs per 100-mm tissue culture plate. Mark the conical
tube for irradiation.

Plate the remaining HFFs into 75-cm2 tissue culture flasks (2.2 × 106 HFFs/75-cm2 flask)
and supplement the medium with 10 ng/ml bFGF for continual passaging.

Alternatively, cryopreserve in 90% fetal bovine serum (FBS; PAA, cat. no. A15-102) and
10% DMSO; freeze down for storage in liquid nitrogen or −152◦C freezer.

7. Expose the tube marked for irradiation to 30-Gray γ -irradiation for 20 min at room
temperature.

Irradiation causes the HFFs to be mitotically arrested.

8. Centrifuge the irradiated HFFs for 4 min at 300 × g, room temperature.

9. Aspirate the supernatant and resuspend the cells in 10 ml HFF maintenance medium
for each 100-mm tissue culture plate.

10. Place the 100-mm tissue culture plates containing irradiated HFFs in a 37◦C incubator
with 5% CO2.

These plates can be used as feeder layer for hESC cultures after 24 hr.

SUPPORT
PROTOCOL 2

PREPARATION OF CASTING MOLDS FOR EHT CULTURE

EHTs are typically created in a defined circular geometry in casting molds (Fig. 23.8.2).
The circular geometry is advantageous in terms of tissue formation and cellular orienta-
tion compared to, e.g., lattice formats (Zimmermann et al., 2000). Casting molds can be
adapted in size depending on the respective application (Naito et al., 2006, Yildirim et al.,
2007). For large-scale applications in cardiac repair, fusion of individual units to complex
tissue-engineered myocardium can be performed (Naito et al., 2006; Zimmermann et al.,
2006).
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Materials

Sylgard silicone elastomer and curing agent 184 (Dow Corning, cat. no. 1673921)
Distilled water

Teflon spacer (Fig. 23.8.2A,i, custom made: 11-mm diameter, 5-mm height)
60 × 20–mm glass petri dishes (Schott Duran, cat. no. 217554101)
50-ml centrifuge tubes
Forceps
Silicone core (Figure 23.8.2A,ii, 1-mm diameter)
55◦C incubator
5-liter glass beakers
Silicone tubing (Figure 23.8.2A,iii, 4-mm diameter; VWR, cat. no. 224-0563)
Aluminum foil
Autoclave

1. Place four Teflon spacers evenly spaced in a glass petri dish (Fig. 23.8.2A).

2. Into a 50-ml centrifuge tube, pipet 9 ml Sylgard silicone and 1 ml of curing agent
and mix well.

3. Centrifuge the tube for 3 min at 300 × g, room temperature, to get rid of air bubbles.

4. Pour the silicone mixture into the glass dish around the Teflon spacers.

Avoid air bubbles.

5. Let set for 24 hr at room temperature or place in a 55◦C drying incubator for at least
1 hr for the silicone to cure.

6. Carefully remove the Teflon spacers with forceps (Fig. 23.8.2A, i).

7. Apply a droplet of premixed silicone to each of the centers of the four recesses,
attach a short silicone core upright (Fig. 23.8.2A,ii), and allow this to cure overnight
at 55◦C.

8. Place the newly fabricated molds in a 5-liter glass beaker filled with distilled water,
boil, drain, and dry. Discard water and repeat boiling steps at least 4 times.

This step removes cell toxic residuals from the casting molds.

9. Place silicone tubings (Fig. 23.8.2A,iii) over the silicone cores, wrap in aluminum
foil, and autoclave.

Casting molds can be reused indefinitely.

REAGENTS AND SOLUTIONS
Use deionized, distilled water in all recipes and protocol steps. For common stock solutions, see
APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX.

bFGF stock solution

Dissolve human basic fibroblast growth factor (bFGF; Stemgent, cat. no. 03-0002
or Miltenyi Biotech, cat. no. 130-093.841) according to the manufacturer’s protocol
to obtain a stock concentration of 10 μg/ml. Divide into 50-μl aliquots into sterile
microcentrifuge tubes. Store up to 2 months at −20◦C.

bFGF working solution

Add 10 μl bFGF stock solution (see recipe) into 10 ml hESC maintenance medium
(see recipe) per 100-mm hES cultured plates (final bFGF concentration: 10 ng/ml).
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bSFS (basal serum-free differentiation medium)

500 ml DMEM (Invitrogen, cat. no. 11960)
5 ml L-glutamine (200 mmol/liter; Invitrogen, cat. no. 25030-024)
5 ml MEM NEAA (10 mmol/liter; Invitrogen, cat. no. 11140-050)
900 μl 2-mercaptoethanol (50 mmol/liter; Invitrogen, cat. no. 31350-010)
690 μl human transferrin (4 mg/ml; Invitrogen, cat. no. 0030124SA)
182 μl sodium pyruvate (100 mmol/liter; Invitrogen, cat. no. 11360-039)
50 μl sodium selenite (100 μg/ml; Sigma Aldrich, cat. no. S5361-25G)
Store up to 2 weeks at 4◦C

Collagenase I solution

Dissolve 100 mg collagenase I (Sigma Aldrich, cat. no. C0130) in 40 ml Dul-
becco’s phosphate-buffered saline with Mg2+ and Ca2+ (DPBS+; Invitrogen, cat.
no. 14040-091) and 10 ml fetal bovine serum (FBS). Sterile filter the solution.
Divide into 10-ml aliquots in 15-ml centrifuge tubes and store up to 2 months at
−20◦C.

Collagenase IV stock solution

Dissolve 10 mg collagenase IV (Worthington, cat. no. CLS4) in 1 ml DPBS+.
Sterile filter the solution. Divide into 1-ml aliquots in 15-ml centrifuge tubes and
store up to 2 months at −20◦C.

Collagenase IV working solution

Thaw one aliquot of collagenase IV stock solution (see recipe) in a 37◦C water bath
Add 9 ml prewarmed DPBS+ into the stock solution just prior to usage
Additional amounts of collagenase IV solution can be stored up to 1 week at 4◦C

DMEM, 2×
1 ml 10× DMEM (see recipe)
2 ml fetal bovine serum (FBS; PAA, cat. no. A15102)
100 μl L-glutamine (200 mmol/liter; Invitrogen, cat. no. 25030-024)
100 μl penicillin/streptomycin (5000 U/ml and 5 mg/ml; Invitrogen, cat. no. 15070-

063)
1.8 ml H2O
Store up to 2 weeks at 4◦C

DMEM, 10×
Dissolve 669 mg DMEM powder (Invitrogen, cat. no. 52100-039) in 5 ml sterile

water
Filter the solution through a 0.22-μm syringe filter
Store up to 2 weeks at 4◦C

DNase I solution

Suspend DNase I (Calbiochem, cat. no. 260913) in ice-cold water at 1 mg/ml.
Sterile filter the solution. Divide into 5-ml aliquots in 15-ml centrifuge tubes and
store up to 2 months at −20◦C. Keep on ice after thawing.

hEHT medium (human bioengineered heart muscle medium)

500 ml Iscove’s MEM (Biochrom, cat. no. F0465)
120 ml fetal bovine serum (FBS; PAA, cat. no. A15102)
6 ml L-glutamine (200 mmol/liter; Invitrogen, cat. no. 25030-024)
6 ml NEAA (10 mmol/liter; Invitrogen, cat. no. 11140-050)

continued
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6 ml penicillin/streptomycin (5000 U/ml and 5 mg/ml; Invitrogen, cat. no. 15070-
063)

4.34 μl 2-mercaptoethanol (Sigma, cat. no. 31350-010)
Store up to 2 weeks at 4◦C

hESC maintenance medium

500 ml KO-DMEM (Invitrogen, cat. no. 10829-018)
128.2 ml Xeno-Free KnockOut-Serum Replacement (KOSR; Invitrogen, cat.

no. 10828-028)
6.4 ml L-glutamine (200 mmol/liter; Invitrogen, cat. no. 25030-024)
6.4 ml MEM NEAA (10 mmol/liter; Invitrogen, cat. no. 11140-050)
Human basic fibroblast growth factor (bFGF; Stemgent, cat. no. 03-0002 or

Miltenyi Biotech, cat. no. 130-093.841) is only added according to the required
amount of medium used per hESC plate

Store up to 2 weeks at 4◦C

HFF maintenance medium

500 ml DMEM (Invitrogen, cat. no. 42430)
100 ml fetal bovine serum (FBS; PAA, cat. no. A15-102)
6.4 ml penicillin/streptomycin (5000 U/ml and 5 mg/ml; Invitrogen, cat. no. 15070-

063)
Store up to 2 weeks at 4◦C

SF (serum-free) adaptation medium

485 ml DMEM (Invitrogen, cat. no. 11960)
5 ml L-glutamine (200 mmol/liter; Invitrogen, cat. no. 25030-024)
5 ml MEM NEAA (10 mmol/liter; Invitrogen, cat. no. 11140-050)
5 ml ITS-X supplement (100×; Invitrogen, cat. no. 51500-056)
Store up to 2 weeks at 4◦C

COMMENTARY

Background Information
The advent of stable mouse ESC lines

has without question revolutionized biologi-
cal/biomedical sciences (Evans and Kaufman,
1981; Martin, 1981). Given the fast introduc-
tion of this seminal technology into a vari-
ety of animal species (Schnieke et al., 1997;
Wilmut et al., 1997, 2002), it appeared only a
matter of time until stable hESC lines would
be established. The first successful isolation
and culture of hESCs was reported in 1994 by
Ariff Bongso and colleagues (Bongso et al.,
1994). This was followed by the establishment
of stable hESC lines by James Thomson and
colleagues in 1998 (Thomson et al., 1998). In
this study, pluripotency of the unique hESC
lines was unambiguously established and cul-
ture conditions for long-term maintenance of
hESCs were defined. Several groups have sub-
sequently characterized specific derivatives of
hESCs, including neurons (Schuldiner et al.,
2001) and cardiomyocytes (Kehat et al., 2001).
Despite its anticipated versatility for research
and even clinical applications, difficulties in

controlling the differentiation process and sub-
sequently the tissue-like maturation of ESC
derivatives have delayed its widespread use.

The properties of virtually unlimited self-
renewal and tri-lineage differentiation poten-
tial has generated the desire to scale-up hESC
amplification and processing to, e.g., obtain
large numbers of high-quality cardiomyocytes
(Xu et al., 2011). The excitement in the cardiac
research community is based on the expec-
tation that human bona fide cardiomyocytes
can finally be made widely available at quasi-
unlimited quantities, a scenario that was un-
realistic so far because of the limited prolif-
eration capacity in postnatal cardiomyocytes
(Soonpaa et al., 1996; Bergmann et al., 2009).
Unlimited availability of human cardiomy-
ocytes would be a prerequisite not only for
the introduction of novel cell-based therapies,
but also for applications in drug discovery and
safety pharmacology (Braam and Mummery,
2010).

When hESCs are allowed to spontaneously
differentiate, they form EBs containing the
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three embryonic germ layers (Thomson et al.,
1998). Their fate can be influenced by vari-
ous growth factors (Schuldiner et al., 2000).
When cultured for extended periods of time,
spontaneously differentiating embryoid bod-
ies develop cells that contract and possess
structural, functional, and electrophysiologi-
cal properties similar to those of fetal car-
diomyocytes (Kehat et al., 2001). However, the
amount of cardiomyocytes in standard EB cul-
tures is typically below the 1% range. Adapta-
tion of culture conditions by integration of the
rapidly increasing knowledge from cardiac de-
velopmental biology has dramatically helped
to optimize the differentiation processes to-
wards the cardiac lineage (Kattman et al.,
2006, 2011b). Moreover, further process opti-
mization has enabled industrial-scale produc-
tion of hESC-derived cardiomyocytes (Lecina
et al., 2010; Melkoumian et al., 2010; Xu et al.,
2011).

While the issue of limited scale appears to
be in principle overcome, albeit at still un-
acceptable costs for widespread applications,
it has to be acknowledged that hESC-derived
cardiomyocytes resemble embryonic rather
than postnatal stage cardiomyocytes. Impor-
tantly, even growth factor–enhanced mono-
layer or EB cultures appear to offer only
limited support for organotypic maturation
of hESC-derived cardiomyocytes. Conversely,
three-dimensional culture does not only en-
able growth factor support, but also biophys-
ical conditioning, a property that may be of
pivotal importance especially for organs with
predominantly biophysical functions.

The first macroscopic three-dimensional
heart-like tissues were engineered from em-
bryonic chick cardiomyocytes as in vitro mod-
els for pharmacological studies and as a test-
bed for target validation (Eschenhagen et al.,
1997). This was followed by the advent of
mammalian engineered heart tissues (EHTs;
Zimmermann et al., 2000). In contrast to other
original tissue-engineered heart muscle mod-
els (Bursac et al., 1999; Carrier et al., 1999; Li
et al., 1999; Leor et al., 2000), EHTs displayed
coordinated beating with directed force devel-
opment and heart muscle-like physiological
(e.g., Frank-Starling mechanism) and pharma-
cological responses (e.g., beta-adrenergic and
muscarinic modulation of contractile prop-
erties). Subsequently, alternative tissue engi-
neering modalities with comparable function-
ality have been introduced (Shimizu et al.,
2002; Radisic et al., 2004; Tulloch et al., 2011).
Importantly, EHT cultures support anisotropic
tissue organization and maturation of im-

mature cardiomyocytes (Zimmermann et al.,
2002; Tiburcy et al., 2011). Based on this, it
appeared straightforward to postulate that the
EHT culture format would also support the as-
sembly of immature hESC-derived cardiomy-
ocytes into functional myocardium.

Critical Parameters
We find the following parameters to be cru-

cial for the successful implementation of the
described protocol:

1. The described culture media are supple-
mented with a variety of growth factors and
serum components. It has to be anticipated that
the activity of culture media supplements can
vary substantially, despite having a nominally
similar concentration. Hence, it is critical that
batch testing of growth factors and sera be per-
formed and considerable batches secured for
the anticipated experiments. We expect that
fully defined serum-free medium conditions
will soon become available; this will clearly
be another important milestone for further de-
velopment of tissue-engineered myocardium.

2. It is essential to work with highest-
quality hESC cultures. These can be identified
morphologically and should display round,
flat, and cell-dense (“pancake”) colonies (Fig.
23.8.1A). Any deviation from such morphol-
ogy, such as “bubbly” or cystic centers, non-
defined border zones, or wispy fragile cen-
ters suggests that the hESC colonies are “un-
healthy.” This can be due to several factors,
including unwanted pH fluctuations in the cul-
ture medium, suboptimal oxygen levels, and
depletion of critical nutrients and growth fac-
tors in the medium. Overcrowding of hESC
colonies can also trigger cystic colony forma-
tion. Such cultures are unsuitable for down-
stream experiments and should be discarded.
In addition, the quality of the hESC should be
regularly scrutinized by flow cytometry or an-
tibody staining for pluripotency markers (such
as Oct4, SSEA4, Tra1-60; see Fig. 23.8.5) and
karyotyping using advanced technologies such
as chromosome painting and array-CGH anal-
yses are necessary if one wants to claim a nor-
mal karyotype (Rudolph and Schlegelberger,
2009). Simple Giemsa-banding is in our view
not sufficient to control for chromosomal in-
tegrity.

3. In this protocol, we use SB203580 for
MAPK inhibition and improvement of car-
diac differentiation in hESC cultures as orig-
inally described by Graichen and co-workers
(Graichen et al., 2008). To achieve robust re-
sults, SB203580 must be handled with care in
the dark to prevent loss of its activity.
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Figure 23.8.5 Assessment of pluripotency in hESC cultures by flow cytometry (all data from HES3). (A) IgG isotype
control, (B) SSEA 4, (C) Tra 1-60, and (D) Oct 4. High-quality hESC cultures must exhibit uniform expression of the
tested stemness surrogate markers.

4. We describe cardiac differentiation in
serum-free medium. This helps enhance the
robustness of this protocol as it avoids the
supplementation with difficult to define an-
imal sera. Our protocol is not optimized to
achieve optimal cardiomyocyte purity, but for
procedural simplicity, low costs, and fast car-
diomyocyte generation. During the first day
of serum-free adaptation, there will be plenty
of shedding of dead cells, which must be re-
moved from the medium to prevent damage of
the remaining healthy cells. This is achieved
by changing the medium daily for the first
3 days of differentiation.

5. The cardiomyocyte content in EB cul-
tures should be regularly monitored by flow
cytometry and fluorescence microscopy (e.g.,

see data in Fig. 23.8.3). Flow cytometry condi-
tions (in particular gating parameters and anti-
body labeling) have to be carefully established
to avoid false-positive or false-negative counts.

6. Our tissue engineering technology re-
lies on the use of high-quality collagen type 1.
Most commercially available collagens can-
not be used as they lack cardio-instructive
properties. We typically prepare collagen type
1 from rat tails using a classical acetic acid
solubilization protocol (Eschenhagen et al.,
2002). The collagen concentration in the col-
lagen stock solution should be adjusted to
>3 mg/ml for optimal results. Collagen type 1
degrades spontaneously even if stored at 4◦C
in acetic acid. We recommend preparing fresh
collagen stock solutions at least once a year.
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Table 23.8.2 Possible Problems and Their Solutions

Problem Possible solution

No or too little cardiac
differentiation in hESC cultures

Check the quality of undifferentiated hESCs

Prepare fresh bSFS

EHTs do not form/condense Prepare new batch of collagen with better
gelation capacity

Adjust the number of cells

Confirm the quality of the cells

Confirm proper cell myocyte/stroma cell
composition

EHTs do not beat Perform cell viability counts to determine
quality of the cells

Adjust cardiomyocyte content

Confirm the quality of cardiomyocytes and
nonmyocytes with flow cytometry analysis

Alternatively, collagen formulations from
commercial suppliers must be screened for
suitable collagen batches.

7. The described EHT reconstitution mix-
ture and in particular Matrigel are highly
sensitive to temperature. Premature gelation
during its preparation must be avoided under
any circumstances. We perform all EHT prepa-
ration steps on ice. Gelation will subsequently
be facilitated at 37◦C in a standard cell culture
incubator.

8. Casting mold and silicone holder dimen-
sions have been optimized for EHT culture
in a standard 12-well culture format. EHT
size can be adapted and functional properties
modified by alteration of the molds and hold-
ers. Single ring-shaped EHTs can be fused eas-
ily into larger functional syncytia by culturing
EHTs in direct contact with each other (Naito
et al., 2006). Ring-shaped EHTs allow easy as-
sessment of contractile parameters as a quality
control measure for tissue formation and tissue
maturation (Zimmermann et al., 2002).

Troubleshooting
For troubleshooting information, see

Table 23.8.2 for a list of possible problems
and their solutions.

Anticipated Results
The following results are expected:
1. Small round EBs should be observed on

culture day 1 of serum-free culture differenti-
ation.

2. First spontaneously beating of EBs
should be visible from culture day 8.

3. The number and beating activity of EBs
increases until culture day 13.

4. Flow cytometry of dissociated day 13
EBs should yield: >10% alpha-sarcomeric
actinin (Fig. 23.8.2A) or tropomyosin-
positive (Fig. 23.8.2B) cardiomyocytes,
>40% vimentin-positive mesodermal nonmy-
ocytes (Fig. 23.8.2B), few endodermal (based
on alpha-fetoprotein) or ectodermal (based
on neurofilament) cells (Fig. 23.8.2B), and
no pluripotent cells (based on Oct3/4 and/or
Nanog).

5. Localized beating should be observed
24 hr after EHT casting.

6. Synchronous contractions of EHT should
be observed after 3 days in culture; beating will
become more rigorous after transferring to sil-
icone poles leading to macroscopically visible
deflections of the silicone poles (see Video 2
at http://www.currentprotocols.com/protocol/
cb2308).

High-quality hEHTs should meet the
following quality control parameters:

i. Spontaneous macroscopically visible
contractions at >60 beats a minute at 37◦C (see
Video 2 at http://www.currentprotocols.com/
protocol/cb2308).

ii. Isometric force development of >0.2
mN at 2 mmol/liter calcium concentration
(Fig. 23.8.4A).

iii. Positive inotropic response to beta-
adrenergic receptor stimulation with isopre-
naline (1 μmol/liter), which can be antago-
nized by muscarinic receptor stimulation with
carbamylcholine (10 μmol/liter).
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iv. A tissue stiffness of >20 kPa measured
by uniaxial tension testing.

v. Conduction velocity of >0.1 m/sec mea-
sured by high-speed optical imaging or for ex-
ample multi-electrode arrays.

vi. Morphological identification of
anisotropically organized muscle bundles
with aligned sarcomeres (Fig. 23.8.4B).

vii. Absence of contaminating pluripotent
cells (Oct4, Rex2, Nanog transcripts not de-
tectable by quantitative PCR).

Time Considerations
Standard hESC cultures takes 7 days from

thawing cells until passaging/initiation of
differentiation. Daily medium change from
culture day 2 post thawing is required.

Differentiation of hESC colonies into beat-
ing EBs requires at least 8 days.

We harvest beating EBs typically on culture
day 13 or later for the generation of EHTs.

Condensation of EHTs requires 3 days.
EHT culture under defined mechanical load

to enhance tissue formation requires 7 days.
Taken together, hESC-derived EHTs can be

generated in 30 days (20 days hESC culture
and differentiation followed by 10 days EHT
generation).
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