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1. Introduction

Natural sciences try to discover laws that allow to explain and predict observations.
Often, models are created with the purpose to verify or falsify proposed theories, which
are based on these laws and certain other assumptions. This frequently involves the
solution of differential equations, and in many cases this can only be done numerically.

In the context of plant simulation, functional-structural plant models (FSPMs) com-
bine a simulated structure (3D geometry) with functional aspects (physiology of the
plant) [GS05, VEBS+10]. L-systems [PL90] are often used to describe the structural
development of plants. The two most widely used platforms for L-system modelling of
plants have been reported to be L-Studio and GroIMP [VEBS+10].

XL [Kni08] is the underlying programming language of GroIMP and combines the
benefits of L-systems and the Java programming language [GJSB05]. It allows to simu-
late plants in which the structure of the plant is described by L-system growth rules or,
more generally, by graph grammars, and in which the functional aspects are described
by ordinary Java code. Similarly, the language of L-Studio (called L+C) allows to use
C++ constructs in the L-system rules [KP03].

Physiological processes such as assimilation and allocation of nutrients are usually
described by ordinary differential equations (ODEs). Transport processes like diffusion
are naturally described by partial differential equations (PDEs), but can be mapped to
ODEs via the method of lines [Sch91]. Some other processes (like in [LlCC09]) depend on
a former state and thus lead to delay differential equations (DDEs), that can be converted
to ODEs via the method of steps [BBK65] under certain conditions. Therefore, the main
task remains how to numerically integrate ODEs.

Numerical integration of the ODEs in FSPMs is often found to be performed by Euler
integration, e.g. [EVY+10, LKBS10, CSPH11]. In L-system-based models Euler inte-
gration is usually implemented as part of the rewriting step of rule applications. Using
this integration method, the results from a numerical integration can differ substantially
from the exact analytical solution, depending on the type of ODE and the integration
step size chosen [LlCC09]. Additionally, Euler integration also suffers from stability
problems if the step size chosen was too large.

If more advanced numerical methods should be used the question arises how to com-
bine the discrete nature of rule applications with the continuous nature of differential
equations. Differential L-systems (dL-systems) have been proposed by Prusinkiewicz et
al. in [PHM93] to overcome this issue. As was pointed out by the authors themselves,
“the user must explicitly specify the formulae for numerically solving the differential
equations included in the models (the forward Euler method was used in all cases)”,
so that dL-systems are merely “a notation for expressing developmental models that
include growing systems of ODEs” [FP04].
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1. Introduction

1.1. Motivation

As will be obvious later on, correctly implementing a numerical integration algorithm can
become an arbitrarily complex task, and one should resort to existing libraries instead.
Therefore, the aim of this thesis is to make those methods accessible to the average user
(i.e. biologist, chemist, physicist), who in general is no expert in numerical mathematics.
Two solutions will be presented.

The first solution is targeted at the easy specification of stoichiometric equations as
they occur in chemical kinetics, and from which the differential equations can be derived
according to the law of mass action (under certain conditions). For this purpose XL was
extended by the feature of operator overloading and user-defined implicit conversion
functions.

As will be shown, these features are general enough so that not only stoichiometric
equations can be entered, but even the whole parsing of the productions (right-hand
sides) of rules can be explained in terms of overloaded operators. Still there are cases
where this solution encounters its limits, like when arbitrary ODEs should be entered.
Also dynamical structures, which necessarily occur in growing plants, impose additional
problems. Furthermore, those structures are in general not regular, but they can form
an arbitrary network (in most observed cases a tree).

So a second solution addresses these issues by the introduction of a new operator
symbol and some special handling for it by the compiler and runtime system. This
way the user can specify any ODE in a direct way, while the framework performs the
bookkeeping tasks (like memory management, etc.) in the background. An interesting
aspect of this solution is, that from the user’s point of view not much changed compared
to how the users defined their model originally. This lowers the threshold for beginners
and levels the learning curve.

1.2. Structure of the Thesis

A very short overview and motivation for this work has been given in this chapter. In
short, we want to solve differential equations on network like structures with a strong
focus towards modelling of plants and provide the user with a tool how to easily formulate
such problems and solve them using advanced numerical algorithms.

In the next chapter (chapter 2) we will introduce numerical methods for the solution
of ordinary differential equations. However, this is just the tip of the iceberg. In the end
it should become clear that implementation of such numerical algorithms can be very
challenging and therefore should not be left to the user. Still, the user must possess
basic understanding about the problems associated with numerical integration.

Chapter 3 introduces formal languages, L-systems, and RGGs with their implemen-
tation in the language XL. L-systems allow to easily describe the topology of a plant.
In combination with turtle graphics this also allows generation of a 3D representation.
RGGs extend this idea further and generalize it to graph structures. Since the thesis is
concerned about extending the language XL, a short summary about the features of the
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1.2. Structure of the Thesis

language will be given. This is also helpful to understand some examples given later on.
Operator overloading and user-defined conversion functions will be presented in chap-

ter 4. It will be discussed how operator overloading was implemented in some other
programming languages to derive a design for implementing this feature as an extension
to XL. A short overview about the implementation will also be given. Finally, some
examples demonstrate the usefulness of the approach.

Chapter 5 adresses the specification and numerical solution of ODEs on graph struc-
tures. Some examples will be given and are used throughout the chapter to discuss
problems that need to be solved and the derived solution. Important issues are memory
management and the mapping between attributes of nodes and the elements of the state
vector, as well as handling interactions with the integrator during the solution process
via so-called monitor functions. Some available numerical libraries will be discussed and
a wrapping interface to these will be suggested. How native libraries can be included
will be demonstrated on the example of CVODE, which is part of SUNDIALS. Finally,
an overview about the implementation of the framework will be given, and how the user
can provide tolerances for attributes.

Results for both approaches will be provided and discussed in chapter 6. This includes
the transformation of two dL-systems, a model of the dragon curve and a model of the
cyanobacterium Anabaena catenula (from [PHM93]), into equivalent XL code. Another
example shows how Turing instability can be used for pattern formation, and how the
same set of ODEs can be applied to different structures without having to modify the
rate function (only the definition of the structure has to be modified as a matter of
course). Finally, the solution of PDEs with the method of lines will be demonstrated,
and a recipe for discretization of a tree structure with the help of XL rules will be
provided.

Chapter 7 gives a short summary of the present work and also provides some ideas
for further extensions.

3





2. Numerical Methods

In this part we will present the theoretical foundations of numerical solution of differential
equations to the extent needed for the other parts of this thesis. A wide range of literature
is available for this topic, for instance [Ama95, HW02, QSS07, Wal00]. Proofs of the
theorems can be found in [Ama95, Wal00]. Surveys/reviews about various techniques
and codes (implementations) can be found in [GSDT85, Cas03, Deu85, SWD76, BH87].
Comparison of methods can be based on their performance on test problems. A program
DETEST evaluates several methods by their ability to solve a set of 75 test problems
[HEFS72]. Shampine, Watts and Davenport show that not only the method itself, but
also its implementation is important [SWD76].

Some theoretical considerations use the Euler method, which is defined as

yn+1 = yn + hf(tn, yn)

and consitutes the simplest of the standard methods. It belongs, at the same time, to
the class of Runge-Kutta methods and linear multistep formulas, that will be defined
below.

2.1. Terminology

The notation used in the following sections will be according to the following table:
u(i)(t) – function and its derivatives of the real solution

u′, u′′, . . . – same as u(1), u(2), . . .
f(t, u(t)) – differential equation to integrate, same as u′

tn, yn – approximations made by the integration method
(tn, yn) – a point in the solution space, also called node

h – step size used for integration
τn – truncation error at step n
en – global error at step n

RK4 – Runge-Kutta method of 4th order
RK5(4) – embedded Runge-Kutta method of 5th order using 4th order for error

estimation and step size control

2.2. To the Theory of Initial Value Problems

Many problems in science lead to the numerical integration of ordinary differential
equations. In the most simple case the first derivative of a function u(t) is given by
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2. Numerical Methods

u′(t) = f(t, u(t)). Such a relationship is called ordinary differential equation and de-
scribes the behaviour of the system. Together with some initial state u0 = u(t0) at
some initial time t0, also called initial condition, one obtains an initial value problem,
or Cauchy problem [QSS07]. The result obtained by numerical integration is then the
integral

u(t) = u0 +

∫ t

t0

f(s, u(s))ds.

An initial value problem is said to be autonomous, if u′ does not explicitly depend
on t, so that u′(t) = f(u(t)). This is valid for laws of nature, that remain the same no
matter what the current time is.

Still the question remains whether the numerical solution is correct or not. For some
simple examples, where an analytical solution is available, this can be checked easily. In
general, an analytic solution is not known and this is, after all, the reason why numerical
integration is needed. The correctness of the solution can then be judged by indicators
like if an expected minimum/maximum occurs, appearance of unexpected oscillations or
by the asymptotic behaviour of the solution.

2.2.1. Systems of Ordinary Differential Equations

A more general formulation are systems of ordinary differential equations:

u′1(t) = f1(t, u1(t), . . . , un(t))
u′2(t) = f2(t, u1(t), . . . , un(t))

...
u′n(t) = fn(t, u1(t), . . . , un(t))

This can be written in vectorized form as:

u′(t) = f(t, u(t)), u′(t) =


u′1(t)
u′2(t)

...
u′n(t)

 , f(t, u(t)) =


f1(t, u1(t), . . . , un(t))
f2(t, u1(t), . . . , un(t))

...
fn(t, u1(t), . . . , un(t))


The initial condition becomes a vector as well:

u0 = u(t0) =


u1(t0)
u2(t0)

...
un(t0)


2.2.2. Higher Order Ordinary Differential Equations

Given an ordinary differential equation of higher order d

u(d)(t) = f(t, u(t), u(1)(t), . . . , u(d−1)(t))

6



2.2. To the Theory of Initial Value Problems

this can be transformed into a system of first order ordinary differential equations by
using the helper functions ui(t) = u(i−1)(t), i = 1, . . . , d. The resulting system is:

u′1(t) = u2(t)
...

u′d−1(t) = ud(t)
u′d(t) = f(t, u1(t), . . . , ud(t))

Because higher order ordinary differential equations can be mapped to systems of
first order ordinary differential equations, only the latter ones will be discussed on the
following pages (in their vectorized form).

2.2.3. Existence of Solutions

The Peano existence theorem guarantees the existence of local solutions of an initial
value problem:

Theorem 1. (Peano existence theorem) Let f : D → Rd be a continuous function on
the domain

D = {(t, x) ∈ R× Rd| |t− t0| ≤ α, ||x− u0|| ≤ β}

with α, β > 0. Let M = max(||f(D)||) be the greatest value of f on D and let T =
min(α, βM ). Then there exists at least one solution to the initial value problem u′(t) =
f(t, u(t)), u0 = u(t0) on the interval I = [t0 − T, t0 + T ].

Figure 2.1 graphically illustrates this theorem. The shaded area is enclosed between
lines with slope +M and −M . Because this is the maximum slope of u in the domain
D, all solutions (if any exists) must lie in this shaded area.

The proof of the theorem consists of the construction of a sequence of piecewise linear
functions uh(t) using the Euler method, that approximate the solution. By proving the
equicontinuity condition ||uh(s)−uh(t)|| ≤M |s− t| and using the Arzelà-Ascoli theorem
it can be shown, that uh(t) converges to a continuous function u(t) for h→ 0. Then it is
shown that this function fulfils the integral equation u(t) = u0 +

∫ t
t0
f(s, u(s))ds. With

the fundamental theorem of calculus it follows that this function is differentiable and is
a solution to the initial value problem.

Theorem 2. (Arzelà-Ascoli theorem) Let F = {fk} be a family of continuous functions
fk : I → Rd, that are uniformly bounded and equicontinuous:

M = sup
f∈F

max
t∈I
||f(t)|| <∞

∀ε > 0 : ∃δ > 0 : ∀f ∈ F : ∀s, t ∈ I : |s− t| < δ ⇒ ||f(s)− f(t)|| ≤ ε

Then there exists a subsequence {fn}n∈N ⊂ F , that converges uniformly towards a func-
tion f : I → Rd:

lim
n→∞

max
t∈I
||fn(t)− f(t)|| → 0
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t0 + αt0 − α

u0 + β

u0 − β

t0

t

u(t)

T

Figure 2.1.: Graphical illustration of the Peano existence theorem.

Although the Peano existence theorem can tell whether there are any solutions to the
initial value problem, it does not tell anything about their uniqueness. For instance

u′(t) = u(t)
2
3 , u(0) = 0

has valid solutions with c ≥ 0:

u(t) =

{
0, 0 ≤ t ≤ c ≤ 1
1
27(t− c)3, c < t ≤ 1.

The Euler method used for proving the Peano existence theorem can only find the solution
u(t) = 0, but not the infinitely many other solutions.

Definition 1. (Lipschitz continuity) Let (X, dX) and (Y, dY ) be metric spaces. A func-
tion f : X → Y is Lipschitz continuous, if there exists a real constant L ≥ 0 (Lipschitz
constant) such that

∀x1, x2 ∈ X : dY (f(x1), f(x2)) ≤ L · dX(x1, x2).

A function is locally Lipschitz continuous if for every x ∈ X there exists a neighbourhood
U ⊆ X such that for f restricted to U the condition is fulfilled.

For the function f(t, x) to be Lipschitz continuous in x this means, that

||f(t, x)− f(t, x′)|| ≤ L||x− x′||, (t, x), (t, x′) ∈ D. (2.1)
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2.2. To the Theory of Initial Value Problems

Theorem 3. (Picard-Lindelöf theorem) Let f(t, x) be a function that is continuous in t
and Lipschitz continuous in x and consider the initial value problem

u′(t) = f(t, u(t)), u(t0) = u0, t ∈ [t0 − α, t0 + α].

Then, for some value ε > 0, there exists a unique solution to the initial value problem
within the interval [t0 − ε, t0 + ε].

The Picard-Lindelöf theorem has stronger requirements than the Peano existence the-
orem, but ensures that there is a unique solution to the intial value problem, if any
exists.

A proof of the Picard-Lindelöf theorem can use the Peano existence theorem to show
that local solutions exist, and then use Gronwall’s lemma to show its uniqueness.

Theorem 4. (Gronwall’s lemma) Let ω(t) and b(t) be continuous functions, a(t) be
integrable and non-decreasing, ω(t) ≥ 0, a(t) ≥ 0, b(t) ≥ 0 and

ω(t) ≤ a(t) +

∫ t

t0

b(s)ω(s)ds, t ≥ t0,

then also

ω(t) ≤ a(t) exp

(∫ t

t0

b(s)ds

)
, t ≥ t0.

For estimation of the global truncation error later on, a discrete version of the Gronwall
lemma can be formulated as well:

Theorem 5. (Discrete Gronwall lemma) Let ωn, an, bn be nonnegative sequences, an
non-decreasing, such that

ωn ≤ an +
n−1∑
i=0

biωi, n ≥ 0,

then also

ωn ≤ an exp

(
n−1∑
i=0

bi

)
.

2.2.4. Local and Global Error

Numerical integration can just approximate the real solution u(t) of an initial value
problem

u′(t) = f(t, u(t)), u(t0) = u0.

Most methods then compute a sequence y1, y2, . . . , yn at t1, t2, . . . , tn as result. To obtain
yn+1, the method solves

y′(t) = f(t, y(t)), y(tn) = yn.
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2. Numerical Methods

Therefore the numerical method tries to approximate a different curve un(t) than the
curve of the real solution u(t). The local error introduced in the calculation of yn+1 is
then

ln+1 = un(tn+1)− yn+1.

The global error at tn+1 is

gn+1 = u(tn+1)− yn+1

= u(tn+1)− un(tn+1) + ln+1

and therefore depends on the local error at the current step and the local errors at all
the previous steps.

Reasons for local error are truncation error and round-off error. Round-off error is
caused by a limited precision when performing calculations with the computer. For
instance, a number like π or a fraction like 1.0

3.0 introduces round-off error when rep-
resented as floating-point number. Similarly, basic arithmetic operations can introduce
errors. This problem is discussed in [FH07, Gol91]. Especially subtraction of two similar
numbers is problematic, because it causes cancelation of the most significant digits. If
the operands were subject to rounding errors, then catastrophic cancelation can cause
the difference to have an error arbitrarily large and even the sign of the result can be
undetermined.

For instance the solution to the quadratic equation ax2 + bx+ c = 0 can be calculated
as

x1 =
−b+

√
b2 − 4ac

2a

x2 =
−b−

√
b2 − 4ac

2a
.

When |b| � |ac|, then
√
b2 − 4ac ≈ |b| and so for calculating either x1 or x2 catas-

trophic cancelation occurs. The problem can be circumvented by calculating

q =

{
−(b−

√
b2 − 4ac)/2, b < 0

−(b+
√
b2 − 4ac)/2, otherwise

x1 =
q

a

x2 =
c

q

as suggested in [Gol91, PH04].
But even when calculations with unlimited precision would be possible, truncation

errors would be produced by the numerical method. As an example, consider the Euler
method, which is defined as:

yn+1 = yn + hf(tn, yn). (2.2)
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The local truncation error1 is the difference between the increment of the real solution
and the increment of the numerical method in a step, so

τn =
u(tn+1)− u(tn)

h
− f(tn, u(tn)) (2.3)

is a measure for the quality of the numerical method.
A Taylor series expansion of the function u(t) at tn+1 yields

u(tn+1) = u(tn) + hu′(tn) +
h2

2!
u′′(tn) + · · · .

Inserting this expression for u(tn+1) into the expression for τn and noticing that
u′(tn) = f(tn, u(tn)) gives

τn =
h

2!
u′′(tn) + · · · = O(h).

For a reasonable numerical method the local truncation error goes to zero as h → 0.
If this is true for every τi, the method is called consistent. The consistency order (or
order of the method) tells how fast the truncation error disappears. For a method of
order p the local truncation error is O(hp). As can be seen, the Euler method is of first
order.

The global truncation error is en = yn − u(tn). By using equations (2.2) and (2.3) it
follows:

en+1 = en + h
(
f(tn, yn)− f(tn, u(tn))

)
− hτn.

Using the Lipschitz condition (2.1) this can be estimated as

||en+1|| ≤ ||en||+ hL||en||+ h||τn||.

Repeated application of this equation yields

||en+1|| ≤ ||e0||+ hL
n∑
i=0

||ei||+ h
n∑
i=0

||τi||.

Using the discrete Gronwall lemma (Lemma 5) it follows

||en+1|| ≤

(
||e0||+ h

n∑
i=0

||τi||

)
eL(tn+1−t0)

as approximation of the global truncation error of the Euler method.
A numerical method is convergent, if its global truncation error goes to zero as the

step size h goes to zero:
lim
h→0
||en|| = 0.

1 This definition is from [SB05], in [GSDT85] the local truncation error is defined as
τn = u(tn+1)− u(tn)− hf(tn, u(tn)).
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Figure 2.2.: Region of absolute stability for the explicit Euler method for z = hλ.

2.2.5. Stability and Stiffness

To successfully solve an integration problem the numerical method must be stable, there-
fore stability dictates the range of usable step sizes. If the step size is too big, the trun-
cation error causes instability and prevents finding a solution, while for a step size too
small, round-off errors dominate.

Different types of stability have been proposed, usually based on some test problem.
For instance, consider

y′ = λy, y(0) = y0

with exact solution

y(t) = y0e
λt

with a complex-valued parameter λ. This problem represents exponential decay or
growth. For linear systems of differential equations λ represents the eigenvalues of the
system. If Re(λ) < 0 then y(t) → 0 as t → ∞. A numerical method that mimics this
behaviour is said to be A-stable, as was defined by Dahlquist in [Dah63].

Now consider the explicit Euler method yn+1 = yn + hf(tn, yn) that was introduced
in equation (2.2). Substituting the definition of f(t, y) = λy for the problem above into
the numerical method yields

yn+1 = yn + hλyn

and after transformation

yn+1 = (1 + hλ)yn = (1 + hλ)n+1y0.

To be A-stable Re(λ) < 0 and thus |1 + hλ| < 1. Designating z = hλ with z ∈ C the
region of absolute stability as depicted in figure 2.2 is obtained for the explicit Euler
method. Stability therefore seriously limits the usable range of step sizes h.

Contrast this with the use of the implicit Euler method yn+1 = yn + hf(tn+1, yn+1)
giving

yn+1 = yn + hλyn+1

12
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Figure 2.3.: Region of absolute stability for the implicit Euler method for z = hλ.

after substitution and

yn+1 =
1

1− hλ
yn =

(
1

1− hλ

)n+1

y0

after transformation. The implicit Euler method is A-stable if |1−hλ| > 1 with a region
of absolute stability depicted in figure 2.3. As can be seen, the whole region left to
the y-axis is stable making this method unconditionally stable. This feature of implicit
methods makes them particularly attractive for this type of problems. The step size
used for integration is not limited by stability, but by accuracy requirements.

This is true especially for stiff problems. Consider the problem

u′ = z, z′ = −(λ+ 1)z − λu, λ > 0

given by Cash in [Cas03], based on a damped harmonic oscillator u′′+(λ+1)u′+λu = 0.
The exact solution is

u(t) = Ae−t +Be−λt

with A and B being some coefficients depending on the initial conditions. To obtain
stability when using the explicit Euler method,

0 < h < 2 and 0 < h <
2

λ

must be fulfilled. For big values of λ the second part Be−λt of the solution vanishes
rapidly but then still requires to keep the step size h very low to remain stable. Compare
this with the problem

u′ = −u,

which resembles the first part Ae−t of the previous problem. After a very short time the
solutions for both problems are basically identical, but in this second case the step size
is only limited by

0 < h < 2,
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which is much less restrictive for large λ. For the implicit Euler method this restriction
is removed and selection of a step size can be done according to the required accuracy.

For the definition of stiffness not only the problem itself must be accounted. For
instance, if integration were limited to the interval [0, 1/λ] then the restriction for the
step size caused by λ would be no restriction at all.

Besides A-stability, also other notions of stability have been suggested. Instead of
requiring the whole negative half-plane to be included in the region of absolute stability,
A(α)-stability requires this only for a certain sector [Wid67]. Another stability property
is A0-stable [Cry73], not to be confused with A(0)-stable. Strong A-stability defined
by Chipman [Chi71] is a more restrictive kind of A-stability for Runge-Kutta methods.
B-stability “is a natural extension of the notion of A-stability for non-linear systems” for
Runge-Kutta methods [But75]. A similar criterion for multistep methods is G-stability
[Dah76], although in [Dah78] the same author has shown that G-stability is equivalent
to A-stability. Similarly, Hairer and Türke have shown in [HT84] the equivalence of B-
stability and A-stability. S-stability provides an extension of A-stability to stiff problems
for implicit one-step methods [PR74]. If S-stability only holds for |arg(−hλ)| < α
the method is S(α)-stable. Properties equivalent to A0-stability for delay differential
equations are DA0-stability and GDA0-stability [Cry74]. Extensions are Q-stability and
GQ-stability as well as P-stability and GP-stability [Bar75], and P[α,β]-stability [Bic82].

2.3. Explicit Runge-Kutta Methods

The most widely used class of one-step methods are Runge-Kutta formulas, due to Runge
[Run95] and Kutta [Kut01]. In each step yn+1 is computed with stages

ki = f(tn + hci, yn + h

s∑
j=1

aijkj)

as

yn+1 = yn + h
s∑
i=1

biki.

According to [But64b] this can be represented in tabular form as:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

If aij = 0 for j ≥ i the method is explicit (ERK). In this case those coefficients may
also be omitted from the tableau. If aij = 0 for j > i and at least one of the aii 6= 0
the method is diagonally implicit (DIRK). If then also all entries on the diagonal have
the same value, aii = λ, then the method is singly diagonally implicit (SDIRK). In the
remaining cases it is just implicit (IRK).
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number of number of largest obtainable
conditions parameters order by an

i for order i for i stages i-stage method

1 1 1 1
2 2 3 2
3 4 6 3
4 8 10 4
5 17 15 4
6 37 21 5
7 85 28 6
8 200 36 6

Table 2.1.: Properties of some explicit Runge-Kutta methods.

Runge-Kutta methods can be developed by deriving the coefficients in the tableau
[But63, Sti67, Jen76]. The order and stability properties of a method depend on the
choice of these coefficients. Basically a Taylor series expansion with terms up to a certain
order is used to obtain a set of nonlinear equations. Solving these equations then gives
the coefficients for a method of that order, if such a method exists.

Table 2.1 lists the number of conditions (also called elementary differentials) for a
given order, the number of parameters for an explicit i-stage Runge-Kutta method and
the largest order obtainable by such a method [Jen76]. Note that there exists no 5-stage
explicit Runge-Kutta method of 5th order [But64b]. Note further, that for implicit
methods, orders higher than the number of stages can be obtained, for instance a 3-
stage method of 5th order [But63], or in general an s-stage method of order 2s [But64a].

Euler’s method

The most simple explicit Runge-Kutta method was presented by Leonard Euler in his
Institutionum calculi integralis volumen primum2 [Eul68] in paragraph 650. The integral
is approximated by calculating line segments with the slope defined by the function f
at the beginning of each segment. The algorithm to calculate the connecting points of
the segments for a step size h is therefore:

yn+1 = yn + hf(tn, yn). (2.4)

The corresponding tableau is:

0

1

The Euler method is a 1-stage method of 1st order. By construction, this is the only
such method.

2A translation into English can be found at http://www.17centurymaths.com/contents/

integralcalculus.html (last access: April 29th 2011)
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Runge’s methods

Based on the ideas of Euler, Carl Runge developed methods of higher orders [Run95].
In the first method (also known as midpoint method) the steps are calculated as

yn+1 = yn + hf(tn +
h

2
, yn +

h

2
f(tn, yn)) (2.5)

with the corresponding tableau

0
1
2

1
2

0 1

The second method (also known as Heun’s method) is defined as

yn+1 = yn +
h

2

(
f(tn, yn) + f(tn + h, yn + hf(tn, yn))

)
(2.6)

with tableau
0
1 1

1
2

1
2

Both 2-stage methods are of 2nd order.

Heun’s methods

In [Heu00] Karl Heun obtained the formulas of Runge and of some more of up to 4th
order. Based on the idea of the Gaussian quadrature rule he starts with

∆y =

n∑
ν=1

(
ανf(x+ εν∆x, y + ∆′νy)

)
·∆x

where ∆y = yn+1 − yn, ∆x = h and

∆′νy = ενf(x+ ε′ν ·∆x, y + ∆′′νy) ·∆x
∆′′νy = ε′νf(x+ ε′′ν ·∆x, y + ∆′′′ν y) ·∆x

...

∆(m)
ν y =

(m−1)∑
ν

f(x, y) ·∆x

to obtain coefficients for a method by comparison of the terms with the Taylor expansion
of ∆y.
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2.3. Explicit Runge-Kutta Methods

A 3-stage method of 3rd order provided by Heun is, for instance,

k1 = f(tn, yn)

k2 = f(tn +
h

3
, yn +

h

3
k1)

k3 = f(tn +
2h

3
, yn +

2h

3
k2)

yn+1 = yn +
h

4
(k1 + 3k3) (2.7)

with tableau

0
1
3

1
3

2
3 0 2

3

1
4 0 3

4

Kutta’s methods

Motivated by the work of Runge, Wilhelm Kutta tried to generalize the ideas of Runge
and Heun [Kut01]. He searched for methods that achieve a high order while keeping the
number of evaluations of f low and the coefficients rational.

Kutta observed, that Heun’s approach requires computation of n series of function
evaluations, where each evaluation just depends on the previous one. Kutta’s approach
is more flexible in that a function evaluation can depend on all previous evaluations,
which leads to the formulation of Runge-Kutta methods used nowadays.

For instance, Kutta provides a 3-stage method of 3rd order similar to Simpsons rule:

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
k1)

k3 = f(tn + h, yn − hk1 + 2hk2)

yn+1 = yn +
h

6
(k1 + 4k2 + k3) (2.8)

with tableau

0
1
2

1
2

1 −1 2
1
6

4
6

1
6

Kutta also provides a 4-stage method of 4th order known today as classical Runge-
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Kutta method :

k1 = f(tn, yn)

k2 = f(tn +
h

2
, yn +

h

2
k1)

k3 = f(tn +
h

2
, yn +

h

2
k2)

k4 = f(tn + h, yn + hk3)

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4) (2.9)

with tableau

0
1
2

1
2

1
2 0 1

2

1 0 0 1
1
6

2
6

2
6

1
6

In the case that f(t, y) does not depend on y, both methods transform into Simpsons
rule.

Another 4-stage method of 4th order by Kutta is (also known as 3/8 method):

k1 = f(tn, yn)

k2 = f(tn +
h

3
, yn +

h

3
k1)

k3 = f(tn +
2h

3
, yn −

h

3
k1 + hk2)

k4 = f(tn + h, yn + hk1 − hk2 + hk3)

yn+1 = yn +
h

8
(k1 + 3k2 + 3k3 + k4) (2.10)

with tableau

0
1
3

1
3

1
3 −2

3 1

1 1 −1 1
1
8

3
8

3
8

1
8

Kutta also investigated methods of higher orders. He conjectured that no 5-stage
method of 5th order exists, but it was more than 60 years later that Butcher proved this
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2.4. Variable Step Size and Error Control

[But64b]. Two 6-stage methods of 5th order provided by Kutta are:3

0
1
5

1
5

2
5 0 2

5

1 9
4 −20

4
15
4

3
5 − 63

100
180
100 − 65

100
8

100
4
5 −18

75
60
75

10
75

8
75 0

17
144 0 100

144
2

144 − 50
144

75
144

0
1
3

1
3

2
5

4
25

6
25

1 1
4 −12

4
15
4

2
3

6
81

90
81 −50

81
8
81

4
5

6
75

36
75

10
75

8
75 0

23
192 0 125

192 0 − 81
192

125
192

2.4. Variable Step Size and Error Control

For some problems it might be desirable to not compute the solution with a fixed step
size everywhere, but to modify the size of the steps according to some heuristic so that
bigger steps are made where the solution does not change much.

Ideally the chosen step size should depend on some estimate of the error produced by
the next step. For the one-step methods presented above, this error can be estimated by
comparing the errors made by doing one step of size h and doing two steps of sizes h/2
each. This argument is given in [Nys25]. If the method is of order p, the error made in
one step of size h is proportional to hp+1, so ε1 = Khp+1. Making two steps of size h/2
each gives ε2 = K(h2 )p+1 for one step, and approximately twice that value for two steps.
This gives 2ε2 = ε1−2ε2

2p−1 , meaning that the error made by two steps with size h/2 each is

just 1
2p−1 times the difference of both results.

This was also shown in [SB05], but based on the global error. Also an algorithm for
performing step size control is given there and will be shown below. Basically one wants
to obtain the largest possible step size that keeps the global truncation error below some
user defined threshold ε. Typically one sets ε = K · eps, where K = max{|u(t)|} gives
the size of the numbers in the integration interval and eps is the machine epsilon (for
double precision arithmetic this is 2−53).

For the intial value problem u′(t) = f(t, u(t));u(t0) = u0 let η(t;h) denote the approx-
imation of u(t) at t when integrating with a step size of h. Now given some step size H
and two approximations η(t0 +H;H) and η(t0 +H;H/2) a choice of a good step size h
respecting the error ε can be calculated as4

H

h
≈

(
2p

2p − 1
· |η(t0 +H;H)− η(t0 +H;H/2)|

ε

) 1
p+1

,

where p is the order of the Runge-Kutta method (for instance p = 4 for the classical
Runge-Kutta method). In the optimal case H ≈ 2h and η(t0 + H;H/2) has error ε. If

3Both methods contained errors in the coefficients, as was observed by Fehlberg in [Feh58] for the first
method and by Nyström in [Nys25] for the second method. The correct methods are presented here.

4 In [Jus09] basically the same formula is derived, but with an exponent of 1
p

instead of 1
p+1

.
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H
h � 2, the error of η(t0 +H;H/2) is greater than ε. In this case H will be set to 2h and
the calculation will be repeated. Otherwise accepting η(t0 +H;H/2) completes the step
and the process can be repeated for the next step. A diagram showing the algorithm is
shown in figure 2.4.

x0 = ?
y0 = ?
H = ?

Compute:
η(x0 +H;H)
η(x0 +H;H/2)
h

H
h � 2 H := 2h

x0 := x0 +H
y0 := η(x0 +H;H/2)
H := 2h

yes

no

do next step

Figure 2.4.: Flowchart of variable step size algorithm (from [SB05]).

Instead of accepting η(t0 +H;H/2) as solution for the step, a better estimate can be
found by using Richardson’s extrapolation to the limit :

η =
2pη(t0 +H;H/2)− η(t0 +H;H)

2p − 1

As an example consider the initial value problem (also from [SB05])

u′ = −200tu2, u(−3) =
1

901
,

with exact solution u(t) = 1/(1 + 100t2). The graph of the function u(t) is shown in
figure 2.5. Problematic for the numerical method is the peak at t = 0. Close to that
point the derivatives are becoming very high and the required step size must be rather
small, while on the remaining interval the step size can be much bigger.

Computing with 12 digits precision and replacing H
h � 2 by H

h ≥ 3 they obtained

error at t = 0 number of steps smallest H used

−0.13585 · 10−6 1476 0.1226 · 10−2
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2.5. Embedded Runge-Kutta Methods

t
-3 -2 -1 0 1 2 3

u

Figure 2.5.: Plot of the function u(t) = 1/(1 + 100t2).

for the method with variable step sizes and

step size h error at t = 0 number of steps
3

1476 = 0.2032 · 10−2 −0.5594 · 10−6 1476

0.1226 · 10−2 −0.4052 · 10−6 3
0.1226 · 10−6 = 2446

when using the same number respective size of fixed steps. As can be seen, the variable
step method is more accurate in both cases. One should notice, however, that three
times more function evaluations of f are needed per step compared to the fixed step
methods.

For a practical implementation one needs to handle the case when the two estimates
η(t0 +H;H) and η(t0 +H;H/2) have the same value. This can happen, for instance, if
H became too small so that no change in u can be detected, or if the function u is (at
least locally) linear. In the former case the step size should be limited by a minimum
step size hmin, so that the integrator does not get stuck and also roundoff errors do not
accumulate too much, or the integration can just be halted with an error message. In
the latter case the step size must be bounded by a maximum allowed step size hmax
defined by the user, which also prevents skipping important parts of the solution. Also
the choice of a good initial step size must be taken care of.

2.5. Embedded Runge-Kutta Methods

Instead of using the same method with different step sizes, like in the previous section,
we can also use different methods of different order to estimate the error made in one
step. According to [But96] this idea was first proposed by Merson [Mer57], who tried
to construct a method with five stages for which the first four stages give a method
of 4th order and all five stages a method of 5th order. As was shown by Butcher in
[But64b], no explicit Runge-Kutta method of 5th order with just five stages can exist,
and so the Merson method is appropriate only for problems which are approximately
linear. However, the underlying idea has lead to a new class of Runge-Kutta methods
named Embedded Runge-Kutta (ERK) methods or, due to of Fehlberg [Feh68, Feh69a],
also called Runge-Kutta-Fehlberg (RKF) methods.
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An explicit embedded method can be written with stages

ki = f(tn + hci, yn + h
i−1∑
j=1

aijkj)

and estimates

yn+1 = yn + h
s∑
i=1

biki

ŷn+1 = yn + h

t∑
i=1

b̂iki

of different order that share stages. Using an extended Butcher tableau this can also be
written as

0
c2 a21
...

...
. . .

cs as1 as2 ass−1

b1 b2 · · · bs

b̂1 b̂2 · · · b̂s

A method of fifth and sixth order RK 5(6) is derived by Fehlberg in [Feh69a] as

0
1
6

1
6

4
15

4
75

16
75

2
3

5
6 −8

3
5
2

4
5 −8

5
144
25 −4 16

25

1 361
320 −18

5
407
128 −11

80
55
128

0 − 11
640 0 11

256 − 11
160

11
256 0

1 93
640 −18

5
803
256 − 11

160
99
256 0 1

31
384 0 1125

2816
9
32

125
768

5
66

7
1408 0 1125

2816
9
32

125
768 0 5

66
5
66

with an estimate of the local truncation error of

τ =
5

66
(k1 + k6 − k7 + k8)h.

Here the 5th order method is used to compute the solution, while the 6th order method
is only used to estimate the error made by the 5th order method. The coefficients of the
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2.5. Embedded Runge-Kutta Methods

0
2
27

2
27

1
9

1
36

1
12

1
6

1
24 0 1

8
5
12

5
12 0 −25

16
25
16

1
2

1
20 0 0 1

4
1
5

5
6 − 25

108 0 0 125
108 −65

27
125
54

1
6

31
300 0 0 0 61

225 −2
9

13
900

2
3 2 0 0 −53

6
704
45 −107

9
67
90 3

1
3 − 91

108 0 0 23
108 −976

135
311
54 −19

60
17
6 − 1

12

1 2383
4100 0 0 −341

164
4496
1025 −301

82
2133
4100

45
22

45
164

18
41

0 3
205 0 0 0 0 − 6

41 − 3
205 − 3

41
3
41

6
41 0

1 −1777
4100 0 0 −341

164
4494
1025 −289

82
2193
4100

51
82

33
164

12
41 0 1

41
840 0 0 0 0 34

105
9
35

9
35

9
280

9
280

41
840

0 0 0 0 0 34
105

9
35

9
35

9
280

9
280 0 41

840
41
840

Table 2.2.: Coefficients of RK 7(8).

method are carefully chosen in a way such that the first element of the truncation error
is small compared to other methods of the same order (for instance Kutta’s methods)
thus allowing for larger step sizes without loss in accuracy. Fehlberg also derived an RK
7(8) method which computes the solution with a 7th order method and estimates the
error with an 8th order method (see table 2.2).

A method RK 8(9) is given by Fehlberg in [Feh68]. However, the gains compared to
RK 7(8) are only small, so Fehlberg concludes, that the optimum with those methods is
reached [Feh69a]. Methods of even higher order would require more function evaluations
and the number of stages grows stronger than the order. After all, the methods given by
Fehlberg provide savings of 40% to 60% computation time compared to previous methods
of the same order by carefully chosen coefficients that reduce the local truncation error.

In a later work Fehlberg investigated the application of Runge-Kutta methods to heat
transfer problems [Feh69b, Feh70]. For such problems choosing a small grid size for
the discretization in space requires to use a small step size for integration over time.
Runge-Kutta methods of high order, that become efficient for big step sizes only, thus
are of limited use. Fehlberg provides several methods of lower orders that are beneficial
in such cases.

23



2. Numerical Methods

Two such RK 2(3) methods are given by the tableaux

0
1 1
1
2

1
4

1
4

1
2

1
2

1
6

1
6

2
3

0
1
4

1
4

27
40 −189

800
729
800

1 214
891

1
33

650
891

214
891

1
33

650
891

533
2106 0 800

1053 − 1
78

where the left method is an extension to the so called improved Euler-Cauchy method.
The other method, while being RK 2(3), has an extra stage providing some freedom in
the choice of coefficients. This allows to reduce the local truncation error and to make
the last function evaluation of the current step equal to the first of the next step (here
a3i = bi). Such methods are also called FSAL (first same as last). Effectively only three
function evaluations are needed except for the first and unsuccessful steps, which are
rare with a good step size control.

A Runge-Kutta pair often referred to by other publications as RKF4(5) is given by
the tableau

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197 −7200

2197
7296
2197

1 439
216 −8 3680

513 − 845
4104

1
2 − 8

27 2 −3544
2565

1859
4104 −11

40

25
216 0 1408

2565
2197
4104 −1

5

16
135 0 6656

12825
28561
56430 − 9

50
2
55

(2.11)

and provided by Fehlberg in [Feh69b, Feh70].
Another method given by the tableau

0
1
2

1
2

1 1
256

255
256

1
256

255
256

1
512

255
256

1
512

is RK 1(2) and requires one function evaluation per step like the Euler method (because
it is FSAL), but with a much smaller error term allowing for greater step sizes and
making it more efficient. Also interesting is, that the denominators of all coefficients are
a power of two, which might be beneficial in some cases.

Fehlberg tried to minimize the leading terms of the truncation error for the lower order
method, but that can result in underestimation of the actual truncation error [DP78].
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2.5. Embedded Runge-Kutta Methods

This in turn can lead to poor step size control. Therefore the leading truncation terms
for the higher order method should be minimized and this method should also be used
to compute the solution.

Dormand and Prince presented in [DP80] a family of improved Runge-Kutta formulae,
for instance RK5(4)7M is given by the tableau

0
1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

35
384 0 500

1113
125
192 −2187

6784
11
84 0

5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

and provides better accuracy and a slightly improved region of absolute stability (the
RK5(4)7S provides an even larger stability region) compared to RK4(5) [Feh69b]. As
can be seen, the method is also using the “Fehlberg trick” of reusing the last function
evaluation of the current step as first function evaluation of the next step, resulting
effectively in six evaluations per step.

For automatic step size control the new step size can be calculated from the estimate
of the truncation error τ = yn+1 − ŷn+1 and the old step size h as

hnew = 0.9h

(
ε

||τ ||∞

) 1
p+1

,

where p is the order of the lower order method and ε the allowed error per step and

hnew = 0.9h

(
ε

|| τh ||∞

) 1
p

,

if ε is allowed error per unit step [HEFS72]. The value of 0.9 is a safety factor ensuring
that taking a step too small is more likely than taking a step too big.

Another way to improve efficiency of Runge-Kutta methods is to group integration
into a block of N steps. By this the evaluations computed for previous steps are available
for later steps and fewer evaluations are needed in total. Still the benefits of one-step
Runge-Kutta methods like being self-starting (unlike multistep methods, see section 2.8)
are kept. Rosser mentions in [Ros67] three references [Col66, Mil53, Sar65] that make
use of a block of steps, but in those cases this was used only to obtain starting values
for a predictor-corrector method (section 2.8.3). The use of block embedded Runge-
Kutta (BERK) methods as stand-alone numerical method is described in [Ros67] and
[Cas85]. Also because multiple solution points and their derivatives are available in a
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block, interpolation (see next section 2.6) for such methods is relatively easy and cheap.
A more thorough overview over BERK methods and comparisons with standard Runge-
Kutta methods is given in [Cas83a] and [Cas83b].

In case the solution contains discontinuities or sharp slopes, the derivatives have large
values in such regions. This causes rejections of the step until an appropriate step size is
found. The idea of Cash and Karp [CK90] was to detect such cases early by embedding
formulas of orders 1 through 4 into a fifth-order formula. The computation of the step
can then be aborted or a lower order solution can be accepted, whatever seems more
appropriate.

The formulas were designed by considering several criteria. The coefficients were
chosen in a way that every elementary differential contributes to the local error and its
estimate, as suggested in [DP80]. Further, the relative size of local error in the imbedded
formula compared to that of the higher order formula was concerned, as was investigated
by Shampine in [Sha86]. Finally, the coefficients ci were chosen in a way that they span
the interval [0, 1] approximately uniformly so as to detect discontinuous behaviour of f ,
if any occurs. The embedded method that was derived is given by the following tableau:

0
1
5

1
5

3
10

3
40

9
40

3
5

3
10 − 9

10
6
5

1 −11
54

5
2 −70

27
35
27

7
8

1631
55296

175
512

575
13824

44275
110592

253
4096

37
378 0 250

621
125
594 0 512

1771 Order 5
2825
27648 0 18575

48384
13525
55296

277
14336

1
4 Order 4

19
54 0 −10

27
55
54 0 0 Order 3

−3
2

5
2 0 0 0 0 Order 2

1 0 0 0 0 0 Order 1

It is assumed that all six function evaluations of the previous step are available. De-

noting with y
(i)
n the imbedded solution of order i at tn

ERR(n, i) = ||y(i+1)
n − y(i)

n ||
1
i+1 , i ∈ {1, 2, 4}

can be defined. Note that ERR(n, 3) is not defined since all stages need to be computed

to obtain y
(4)
n and then quitting early would not be possible anymore. Given the current

step size h = tn − tn−1, an optimized step size for the next step for the methods of
different orders can be computed by

h(i)
n =

SF × h
E(n, i)

with E(n, i) =
ERR(n, i)

ε
1
i+1

, i ∈ {1, 2, 4}
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where ε is the desired accuracy and SF a safety factor (usually 0.9). Some quitting
factors

QUIT (n, i) =
h

(4)
n

h
(i)
n

=
E(n, i)

E(n, 4)
, i ∈ {1, 2}

are introduced. To compute h
(1)
n+1 the first two stages k1 and k2 must be computed

together with first- and second-order solutions y
(1)
n+1 and y

(2)
n+1. Under the assumption

QUIT (n+ 1, 1) ≈ QUIT (n, 1) the optimized step size for the fifth-order method can be
estimated as

h
(4)
n+1 = QUIT (n+ 1, 1)× h(1)

n+1 ≈ QUIT (n, 1)× h(1)
n+1 =

QUIT (n, 1)× SF × h
E(n+ 1, 1)

.

If the step size for the fifth order in the next step would be reduced by too much, that

is if h
(4)
n+1 < SF × h or equivalently QUIT (n, 1) < E(n+ 1, 1), then it is expected that

the fifth-order solution will be rejected and so the current step should be aborted.
In case the current step might be successful, then the appropriate order solution is

used. For y
(2)
n+1 only the interval [tn, tn+h/5] was checked, so the integration will only be

advanced up to tn + h/5, if the error estimate for this range is small enough. Similarly,

if y
(3)
n+1 is chosen, integration would only be advanced to tn + 3h/5, if the error estimate

allows this. A detailed algorithm for the whole method is given in [CK90].

2.6. Interpolation for Runge-Kutta Methods

The Runge-Kutta methods calculate as solution a set of nodes (tn, yn). Sometimes it
might be desirable to obtain function values at intermediate points, for instance to per-
form root finding of a switching function for event based integration or for integrating
delayed differential equations. As solution values yi and derivatives y′i are readily avail-
able, Hermite interpolation of these values would seem to be a natural choice, but has
its issues [Sha85]. Instead interpolation should be local, so that it only depends on data
of the current step.

One approach was given in [O’R70] for the integration of differential equations with
discontinuities signalled by an implicit function φ(t, y). The calculations for the step are
performed as usual, but when φ changes its sign during the step, a discontinuity is found
and the exact fraction αh of the step is computed. The computed stages are then reused
to interpolate to the discontinuity at tn + αh. This is obtained basically by deriving
coefficients bi for a new Runge-Kutta method. The bi and α will usually be found by a
Newton iteration over α. O’Regan demonstrates the approach on an example using the
classical Runge-Kutta method for integration. Still the question remains if using stages
located behind the discontinuity, that is α < ci for such stages, is meaningful and which
discontinuity will be found if more than one is located inside the step. Also this method
suffers from the 4th order Runge-Kutta method dropping to a 3rd order interpolation.

Horn [Hor81, Hor82, Hor83] performs the interpolation only after a successful step.
This way data at the end of the step is available in addition to the stages of the Runge-
Kutta method for the current step.
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A scaled Runge-Kutta method is proposed, for which

y∗ = y(tn + h∗) = yn + h∗
s∗∑
i=1

b∗i k
∗
i

with a number s∗ of stages, s∗ ≥ s,

k∗i = f(tn + c∗ih
∗, yn + h∗

i−1∑
j=1

a∗ijk
∗
j )

and h∗ = σh with 0 ≤ σ ≤ 1. The coefficients c∗i and a∗ij are chosen so that ki = k∗i
by setting c∗i = ci/σ and a∗ij = aij/σ, 1 ≤ i ≤ s. Evaluation of additional stages k∗s<i≤s∗
may be needed to obtain a scaled method of proper order.

Horn states in [Hor81] that for given method of third order a scaled method of the
same order can be obtained without further function evaluations, while for a fourth order
method only a single additional evaluation is needed. For a fifth order method, per two
additional evaluations a scaled solution point may be obtained, or using five additional
evaluations a scaled method to compute as many intermediate points for dense output
may be derived. Horn derived those for the RKF4(5) method in equation (2.11), for
instance. A comparison of the scaled versions of the Fehlberg Pair, Dormand and Prince
pair and Sarafyan pair can be found in [PST88].

As pointed out by Shampine [Sha86], a drawback of Horn’s method is that the inter-
polants do not transition smoothly between the steps, that is y∗ does not tend to yn+1 as
σ → 1. Shampine therefore proposes to include solution and derivative at beginning and
end of the step, as interpolation is only performed after a successful step. Additionally
some methods provide solution points for free. For instance, in RKF4(5) a 4th order
solution is produced at tn + 0.6h, as pointed out by Horn [Hor83].

Interpolation according to Shampine [Sha85] is performed the following way. A number
of stages defines solution points and derivatives by

tn,i = tn + cih,

yn,i = yn + h
s∑
j=1

aijkj ,

ki = f(tn,i, yn,i) = y′n,i,

and

yn+1 = yn + h
s∑
i=1

biki.

Additional stages might be added, for instance,

ks+1 = f(tn + h, yn+1),
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2.7. Implicit Runge-Kutta Methods

which is right available after a successful step. A subset of those values is selected such
that

ζk = tn,j(k), k = 1, . . . ,m

uk = yn,j(k), k = 1, . . . ,m

u′k = y′n,j(k), k = 1, . . . , r

with j(k) a suitable function and r ≤ m. A hermite interpolant p(t) is then defined
according to the conditions

p(ζk) = uk

p′(ζk) = u′k

as

p(t) =

m∑
i=1

Ai(t)ui +

r∑
i=1

Bi(t)u
′
i

where

Ai(t) =

{1− (t− ζi)[L′i,m(ζi) + L′i,r(ζi)]}Li,m(t)Li,r(t), i = 1, . . . , r,

Li,m(t)
r∏

k=1

(
t−ζk
ζi−ζk

)
, i = r + 1, . . . ,m

Bi(t) = (t− ζi)Li,m(t)Li,r(t)

and

Li,m(t) =
m∏
k=1
k 6=i

(
t− ζk
ζi − ζk

)
, i = 1, . . . ,m.

2.7. Implicit Runge-Kutta Methods

For stiff ODEs the choice of the integration step size may not be determined by accuracy
requirements anymore, but by stability instead. Explicit Runge-Kutta methods tend to
decrease their step size dramatically while increasing their computational load at the
same time just for the purpose of keeping the step size in their region of stability. In
the worst case round-off errors may accumulate up to the point where no successful
integration with such an explicit method is possible. A better alternative in such cases
are implicit Runge-Kutta processes [But64a].

An implicit Runge-Kutta process is characterized by having non-zero coefficients aij
for i ≤ j. In this case, the result calculated for some stages depends on the result of
those stages themselves. An example is the implicit Euler method (also called backward
Euler, as opposed to forward Euler defined by equation (2.2))

yn+1 = yn + hf(tn+1, yn+1).
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Under certain conditions (the function u(t) is Lipschitz continuous and h is sufficiently
small) a unique solution can be found by iteration (e.g., fixed point iteration or Newton-
Raphson). Butcher has shown in [But64a] that |h|La < 1 must be fulfilled for the simple
iteration to converge, where L is the Lipschitz constant of f and a = l + u with

l = max
i


i−1∑
j=1

|aij |

 and u = max
i


s∑
j=i

|aij |

 .

The stages of the Runge-Kutta method can be rewritten into another form

yn+1 = yn + h
s∑
i=1

bif(tn + cih, Yi),

where the approximations Yi are given by

Yi = yn + h
s∑
j=1

aijf(tn + cjh, Yj).

For stiff ODEs, a modified Newton-Raphson method is used to solve the implicit

equations [But76, GSDT85]. In each iteration the values Y
(k−1)
i are replaced by Y

(k)
i =

Y
(k−1)
i + ω

(k)
i , where the ω

(k)
i are given by

ω
(k)
i − h

s∑
j=1

aijJω
(k)
j − z

(k)
i = 0,

with J being the Jacobian matrix of f and zi being the residuals defined by

z
(k)
i = −Y (k−1)

i + yn + h

s∑
j=1

aijf(tn + cjh, Y
(k−1)
j ).

The Jacobian J can be approximated by finite differences as shown in [PTVF07].
Rewritten into matrix form one obtains a set of linear equations to solve:

I − ha11J −ha12J · · · −ha1sJ
−ha21J I − ha22J · · · −ha2sJ

...
...

...
−has1J −has2J · · · I − hassJ



w

(k)
1

w
(k)
2
...

w
(k)
s

 =


z

(k)
1

z
(k)
2
...

z
(k)
s

 . (2.12)

Solving such a system is costly and can be done with classical techniques like LU
factorization. To reduce the amount of computation, Butcher suggests in [But76] to
transform the inverse A−1 of the coefficient matrix A = (aij) into the Jordan canonical
form

T−1A−1T =


λ−1

1 0 0 . . . 0

µ1 λ−1
2 0 . . . 0

0 µ2 λ−1
3 . . . 0

...
...

...
...

0 0 0 . . . λ−1
s

 ,
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2.8. Linear Multistep Methods

where µi is zero if λi 6= λi+1, zero or an arbitrary non-zero number otherwise. If it is non-
zero then µi = λ−1

i . Let D be the diagonal matrix with diagonal entries λ1, λ2, . . . , λs.
Then select two matrices P = (pij) = DT−1A−1 and Q = (qij) = T so that

PQ =


1 0 0 . . . 0
ε1 1 0 . . . 0
0 ε2 1 . . . 0
...

...
...

...
0 0 0 . . . 1

 ,

with the εi either zero or one. Application of the transformation

ω̃
(k)
i =

s∑
j=1

qijω
(k)
i and z̃

(k)
i =

s∑
j=1

qijz
(k)
i

reduces the system (2.12) to
I − hλ1J 0 · · · 0
−hµ1J I − hλ2J · · · 0

...
...

...
0 0 · · · I − hλsJ



w̃

(k)
1

w̃
(k)
2
...

w̃
(k)
s

 =


z̃

(k)
1

z̃
(k)
2
...

z̃
(k)
s

 .

Instead of having to solve one sN×sN linear system we now only have to solve s different
N ×N systems sequentially.

Examples for implicit Runge-Kutta processes based on Gaussian quadrature formulas
with a number s = 1, 2, 3, 4, 5 of stages and orders 2, 4, 6, 8, 10 are given by Butcher
[But64a]. For instance, the coefficients in the tableau

1
2 −

√
3

6
1
4

1
4 −

√
3

6

1
2 +

√
3

6
1
4 +

√
3

6
1
4

1
2

1
2

define an implicit Runge-Kutta method with 2 stages and of 4th order, and was previ-
ously given by Hammer and Hollingsworth [HH55]. Other families of implicit Runge-
Kutta processes exist, for instance the Radau family of order 2s − 1 and the Lobatto
family of order 2s− 2.

2.8. Linear Multistep Methods

The methods previously covered, namely the one-step Runge-Kutta methods, only used
information from the current step to calculate the next point of the solution. Multistep
methods increase efficiency by using several previous solution points instead. A linear
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multistep formula (LMF) approximates the next point of the solution by a linear com-
bination of previous solution points and their derivatives. The general form of an LMF
according to Dahlquist [Dah56] is

k∑
i=0

αiyn+i = h

k∑
i=0

βif(tn+i, yn+i), (2.13)

where h is the step size and k is the number of previous points. The point (tn+k, yn+k) is
the next to compute, f(tn+k, yn+k) its derivative. Normalization is obtained by setting
αk = 1. If βk = 0 the method is explicit (Adams-Bashforth type), otherwise it is implicit
(Adams-Moulton type). In the latter case yn+k can be found via simple iteration (in the
non-stiff case) or Newton’s method (in the stiff case).

To start with an LMF the k initial points need to be obtained. A Taylor series ex-
pansion of y(t) around t0 can be used if the solution is analytic at t0 [Mil26]. Another
possibility also suggested by Milne uses successive approximations by iterating a formula
obtained from the polynomial p(t). One could as well use Runge-Kutta methods, espe-
cially [Col66, Mil53, Sar65], to obtain starting values. Working with LMFs of variable
orders also allows to find starting values successively.

2.8.1. Adams-Bashforth Methods

In [Bas83] Francis Bashforth describes an attempt to test the theories of capillary action
by forms of fluid drops. The numerical methods for this were developed by John Couch
Adams. The idea is to interpolate previous derivatives fn−i = f(tn−i, yn−i), 0 ≤ i < k
by a polynomial p(t) and replace the integrand in the equation

y(tn+1) = y(tn) +

∫ tn+1

tn

f(t, y(t))dt

by p(t). Analytic integration of the polynomial then yields a numerical integration
method. The methods obtained for different values of k are given in table 2.3. Note that
for k = 1 the Euler method is obtained.

k = 1 : yn+1 = yn + hfn

k = 2 : yn+1 = yn + h
2 (3fn − fn−1)

k = 3 : yn+1 = yn + h
12 (23fn − 16fn−1 + 5fn−2)

k = 4 : yn+1 = yn + h
24 (55fn − 59fn−1 + 37fn−2 − 9fn−3)

Table 2.3.: Adams-Bashforth methods.

2.8.2. Adams-Moulton Methods

Implicit LMFs can be obtained by including fn+1 into the calculation of yn+1. The
polynomial p(t) now interpolates fn−i = f(tn−i, yn−i),−1 ≤ i < k. Methods obtained
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2.8. Linear Multistep Methods

this way are shown in table 2.4 and have been derived in [Mou26]. Solution of the
implicit equation can be performed by fixed-point iteration (in the non-stiff case) or by
Newton iteration (in the stiff case). Fixed-point iteration only converges if |hβkL| < 1
with L the Lipschitz constant of f .

k = 0 : yn+1 = yn + hfn+1

k = 1 : yn+1 = yn + h
2 (fn+1 + fn)

k = 2 : yn+1 = yn + h
12 (5fn+1 + 8fn − fn−1)

k = 3 : yn+1 = yn + h
24 (9fn+1 + 19fn − 5fn−1 + fn−2)

Table 2.4.: Adams-Moulton methods.

2.8.3. Predictor-Corrector Methods

Another way how to solve the implicit equations is to use those methods in combination
with the explicit ones (both using the same k). The explicit method predicts the next so-
lution ŷn+1 and the implicit method then uses this value to compute fn+1 = f(tn+1, ŷn+1)
and yn+1. The amount of correction needed gives an estimate for the error made [Mil26].

Such a predictor-corrector scheme is also named PECE, where P denotes prediction,
C denotes correction, and E refers to evaluation of f . If the correction step is performed
several times, the method is P(EC)nE.

2.8.4. Nordsieck Method

Better performance of LMFs can be achieved by using a variable step size. Compared to
the one-step Runge-Kutta methods, this requires regeneration of the k previous values
upon each change of step size. One way to obtain this is to ignore old values and
restart with k = 1 (Euler method), then working up to higher order methods. A better
alternative is to obtain new values by interpolation/extrapolation.

An even better way to store the values was suggested by Nordsieck [Nor62]. He
suggested, instead of storing previous values of y or f , to store the k+1 scaled derivatives
hi

i! y
(i)(tn), 0 ≤ i ≤ k for the current step (Nordsieck vector). This way the stored values

are independent of the current step size and thus allow easily to work with a variable
step size. Changing step size from hold to hnew with ν = hnew/hold is a simple matter of
scaling each row of N by νi, i.e. multiplication of N by a matrix diag(1, ν, ν2, . . . , νk).

The value of the next step can then be computed by a Taylor series as

y(t+ h) =
k∑
i=0

hi

i!
y(i)(t) +O(hk+1),

which is exact for y(t) being a polynomial of degree up to k. Higher order derivatives
can be calculated in a similar way. For a general formulation to advance the Nordsieck
vector see [Gea67] and see also equation (2.5) in [CLM89]. Gear [Gea67] also showed
how to transform between the Adams and the Nordsieck representation.
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2.8.5. Backward Differentiation Formula

Unlike the Adams formulas, that interpolate the derivatives fi, the backward differenti-
ation formulas (BDF) interpolate the previous solution values yi and yn+1 such that the
derivative of this polynomial at tn+1 agrees with fn+1. By construction these methods
are implicit in nature and as such are useful to solve stiff problems (if Newton iteration
is used).

For a k-step BDF a polynomial q(t) is constructed through Newton interpolation of
yn+1, yn, . . . , yn−k+1 and by requiring that q′(tn+1) = f(tn+1, q(tn+1)) one obtains

k∑
i=1

1

i
∆iyn+1 = hfn+1

with ∆i+1yn+1 = ∆iyn+1 − ∆iyn and ∆0yn = yn. Conversion into the form of equa-
tion (2.13) results in the BDFs shown in table 2.5. They have been introduced in [CH52]
and have been also described in [Gea71]. Methods with k ≤ 2 are A-stable, those with
k > 2 are at least A(α)-stable. Methods with k ≥ 7 are of no use as they are not stable.

k = 1 : yn+1 − yn = hfn+1

k = 2 : 3
2yn+1 − 2yn + 1

2yn−1 = hfn+1

k = 3 : 11
6 yn+1 − 3yn + 3

2yn−1 − 1
3yn−2 = hfn+1

k = 4 : 25
12yn+1 − 4yn + 3yn−1 − 4

3yn−2 + 1
4yn−3 = hfn+1

k = 5 : 137
60 yn+1 − 5yn + 5yn−1 − 10

3 yn−2 + 5
4yn−3 − 1

5yn−4 = hfn+1

k = 6 : 49
20yn+1 − 6yn + 15

2 yn−1 − 20
3 yn−2 + 15

4 yn−3 − 6
5yn−4 + 1

6yn−5 = hfn+1

Table 2.5.: Backward differentiation formulas.

2.9. Extrapolation Methods

The idea of extrapolation goes back to Lewis Fry Richardson [Ric11, Ric27]. When
using central differences [She99] the approximation φ(x, h) for a function f(x) can be
expressed by

φ(x, h) = f(x) + h2f2(x) + h4f4(x) + . . .

with h occurring only in even powers.5 The functions f2, f4, . . . of the error terms are
generally unknown. Richardson now observed that knowing φ(x, h) for two values h1

and h2 an estimate for f(x) can be obtained by

f(x) =
h2

2φ(x, h1)− h2
1φ(x, h2)

h2
2 − h2

1

5 This can be checked easily by forming the Taylor series expansions of f(x+ h) and f(x− h) around
x and setting φ(x, h) = [f(x+ h) + f(x− h)]/2.
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2.9. Extrapolation Methods

under the assumption that h1 and h2 are small enough so that h2f2(x) is the leading
error term. Thus the combination of the two approximations removes the f2-term and
yields a more accurate approximate for f(x). Similarly, using a third approximation
φ(x, h3) would allow to remove the f4-term, and so on.

A more direct view of this for the solution of ODEs is to consider obtaining an approx-
imation for yn+1 by integration from yn over some basic stepsize H. For some decreasing
sequence h0 > h1 > . . . > hN > 0 of internal stepsizes the function a(h) gives an es-
timate for yn+1. Extrapolation to the limit is then performed by fitting a polynomial
through the a(hi) and evaluating a(0).

Under the assumption that a(h) allows an expansion of the form

a(h) = a(0) + a1h
γ + a2h

2γ + . . .+ aNh
Nγ +O(h(N+1)γ)

the Aitken-Neville algorithm can be used to calculate the extrapolation tableau

T00

↘
T10 → T11

↘ ↘
T20 → T21 → T22

...
...

. . .

TN0 → TN1 → TN2 · · · TNN

with coefficients Tij determined by

Ti,0 = a(hi)

Ti,j = Ti,j−1 +
Ti,j−1 − Ti−1,j−1

(hi−j/hi)γ − 1
.

Thus no explicit representation of the approximating polynomial needs to be created.
The approximations Ti,0 are obtained by one of the standard methods, usually the Euler
method (γ = 1) or central differences (γ = 2). It was shown that each column converges
faster than the preceding one and that the diagonal converges faster than any column
[Gra65].

The sequence of internal stepsizes hi can be represented by an integer sequence

F = {ni}

with hi = H
ni

. Proposed sequences FR = {2, 4, 8, 16, . . .}, FB = {2, 4, 6, 8, 12, 16, . . .}
and FH = {2, 4, 6, 8, 10, 12, 14, 16, . . .} are the Romberg [Rom55], Bulirsch [Bul64] and
(double) Harmonic [Deu83] sequences. A comparison of the performance of the sequences
can be found in [MN92]. Note that the Toeplitz condition (for a constant α)

ni
ni+1

≤ α < 1,
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a necessary and sufficient condition for convergence of the Ti,j [Gra65], is satisfied for FR
and FB, but not for FH . But then, evaluation of the Ti,j is not performed ad infinitum.
A different approach to show convergence does not need the Toeplitz condition anymore
[Deu83, Deu85].

Extrapolation methods allow to easily increase the order by just appending another
row to the tableau, but by doing so the method becomes sensitive to round-off errors.
Therefore Bulirsch and Stoer combined extrapolation with an automatic stepsize selec-
tion [BS66]. Basically their algorithm tries, for a given accuracy, to keep a fixed number
of columns in the tableau by stepsize reduction (H̄ = 0.9 ·H · 0.6N−7, N ≥ 7) and in-
crease (H̄ = 1.5 ·H,N < 7). Improved algorithms, based on work per unit step, have
been suggested by Stoer [Sto74] and Deuflhard [Deu83, Deu85].

For the integration of stiff systems, implicit discretizations can be used, like implicit
Euler or trapezoidal and implicit mid-point rule [Deu85]. However, the fully implicit
discretizations cannot compete with BDF integrators presented in section 2.8.5. Semi-
implicit extrapolation methods [BD83] remedy this situation.

2.10. Symplectic Methods

Consider the following two-body problem of a function y(t) = (y1, y2, y3, y4)T defined by

y′(t) = f(t, y(t)) =


y3

y4

−y1/r
3

−y2/r
3

 , r =
√
y2

1 + y2
2,

y0 = y(t0) =


1
0
0
1


(2.14)

with (y1, y2) describing the position and (y3, y4) the speed of an object orbiting another
object (centered at the origin) in a 2D plane. The exact solution is a stable orbit with
r = 1 around the object in the origin. Numerical integration using the forward Euler
method causes the objects to depart from each other, while using the backward Euler
method the objects approach each other (see Fig. 2.6). A mathematical proof for this
and a detailed survey about symplectic integrators can be found in [Yos93].

Problems of celestial mechanics like the one above, springs or a pendulum can be
described by Hamilton equations

ṗ = −∂H
∂q

q̇ =
∂H

∂p
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2.10. Symplectic Methods

Figure 2.6.: Orbit obtained by numerical integration with forward and backward Euler
method.

where H is the Hamiltonian and represents the energy of the system, p the generalized
momentum and q the generalized coordinates. An energy conserving numerical integra-
tion scheme is called a symplectic integrator.

A well-known symplectic integrator is the Verlet algorithm [Ver67, Ver68]. The method
can be derived by a Taylor series expansion of the position function r(t) giving

r(t+ h) = r(t) + hv(t) +
h2

2
a(t) +

h3

6
b(t) +O(h4)

r(t− h) = r(t)− hv(t) +
h2

2
a(t)− h3

6
b(t) +O(h4)

with v(t) the velocity, a(t) the acceleration and b(t) the jerk. Adding both equations
yields the Verlet method

r(t+ h) = 2r(t)− r(t− h) + h2a(t) +O(h4).

Only the current and previous position need to be stored and the acceleration must be
computed for the current position. The method is accurate to the third order. Using
this method on the problem (2.14) one obtains a trajectory as shown in figure 2.7.

For some problems knowledge of the velocity may be required as well, i.e. to compute
kinetic energy. Verlet suggested to use v(t) = [r(t+h)− r(t−h)]/2h, which has an error
of O(h2). However, knowledge of the velocity always lags one step behind knowledge of
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Figure 2.7.: Orbit obtained with Verlet method.

the positions. Therefore a better alternative is the velocity Verlet algorithm

r(t+ h) = r(t) + hv(t) +
h2

2
a(t)

v(t+ h) = v(t) +
h

2
[a(t) + a(t+ h)]

If acceleration a(t + h) only depends on location r(t + h) and not on velocity v(t + h)
the values can be directly computed by

r(t+ h) = r(t) + hv(t) +
h2

2
a(t)

v(t+ h/2) = v(t) +
h

2
a(t)

a(t+ h) = . . .

v(t+ h) = v(t+ h/2) +
h

2
a(t+ h)

in the given order without needing additional storage for intermediate values, as those
can replace the previously stored ones.

2.11. DDEs and the Method of Steps

If in the description of a problem a time delay is involved, such problems are described by
a delay differential equation (DDE), sometimes also called retarded differential equation.
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Examples where DDEs are needed are population dynamics or chemical kinetics, for
instance also in plant models [LlCC09]. A very simple form of such a DDE with a
constant lag τ is

y′(t) = f(t, y(t), y(t− τ)) (2.15)

with an initial function Ψ(t) for t ∈ [t0 − τ, t0]. Another example with a variable lag is
the pantograph equation

y′(t) = αy(t) + βy(νt), 0 < ν < 1

with an initial value y(0). More general forms of DDEs might depend on multiple
previous points or have a variable lag, possibly state-dependent.

Several strategies to solve a DDE exist. For small τ it might be possible to ignore the
delay at all, but counterexamples exist [Kua93]. Alternatively an ODE integrator with
dense output might be used to track the solution and look up the delayed values, but
then τ should not become bigger than the internal step size of the ODE integrator and
the integrator must be able to detect and handle discontinuties in the solution, which
usually appear.

Another way how to solve a DDE is the method of steps. The DDE given in equation
(2.15) can be split into a set of equations

y′0 = f(t, y0(t),Ψ(t− τ)), t0 ≤ t ≤ t1
y′1 = f(t, y1(t), y0(t− τ)), t1 ≤ t ≤ t2

...
y′n = f(t, yn(t), yn−1(t− τ)), tn ≤ t ≤ tn+1

solved for distinct intervals [ti, ti+1] of t with ti = t0 + iτ . Integration is then per-
formed in a step-wise fashion and gave the method its name. The solution y(t) is then
a concatenation of the pieces y0(t), y1(t), . . . , yn(t).

In [BBK65], the variable-lag DDE

y′(t) = f(t, y(t), y(t− τ(t)))

was solved with the method of steps by converting the DDE into a set of ODEs. The steps
[ti, ti+1] are defined by ti+1 − τ(ti+1) = ti and it is assumed that τ(t) is monotonously
decreasing (therefore each step is shorter than the previous one). Definition of the lag-
functions L0(t) = t, L1(t) = t− τ(t), Lk(t) = L(Lk−1(t)) one obtains the set of ODEs

y′0(t) = L′n(t)f(Ln(t), y0(t),Ψ(Ln+1(t)))

y′1(t) = L′n−1(t)f(Ln−1(t), y1(t), y0(t))

...

y′n−1(t) = L′1(t)f(L1(t), yn−1(t), yn−2(t))

y′n(t) = L′0(t)f(L0(t), yn(t), yn−1(t))
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for integrating the interval [tk, tk+1] with initial conditions yi(tk) = y(ti) being the end-
points of the previous steps. However, for each successive step an additional ODE must
be added to the system resulting in increasing work the further integration proceeds.

A better approach is to use an ODE integrator with dense output. Integration of a
step results in a function that can then be sampled to integrate the next step, therefore
trading memory for speed.

Now consider the simple DDE defined as

y′(t) = y(t− τ)

with initial function y(t) = 1 for t ≤ 0. Integration over the interval [0, τ ] yields for the
first step the function

y0(t) = t+ 1,

then for the interval [τ, 2τ ] in the second step

y1(t) =
t2

2
+ t+ 1− τ2

2

and so on. The general formula to calculate y(t) for t ∈ [iτ, (i+ 1)τ ] in this example is

yi(t) = yi−1(iτ) +

∫ t

iτ
yi−1(s− τ)ds.

As can be seen, the discontinuity at t = 0 propagates to τ, 2τ, . . ., each time increasing
the order by one, and thus smoothes out with increasing number of steps.

This effect on discontinuities is a general feature of DDEs and does also apply to
discontinuities not at the end of the steps. Therefore and for other reasons, special DDE
solvers have been developed. A more thourough discussion of the issues with numerical
integration of DDEs can be found in [BPW94, BPW95]. An application of the method
of steps to an optimization problem can be found in [Ros88].

2.12. PDEs and the Method of Lines

Many problems in natural sciences relate spatial quantities with temporal ones. A promi-
nent example is the heat-equation

∂u

∂t
= κ

∂2u

∂x2
(2.16)

where u(x, t) describes the evolution of heat distribution, but also diffusion processes.
When applied to heat conduction it is Fourier’s second law, where u is the temperature
as a function of time t and location x and κ is the thermal diffusivity. When applied to
diffusion processes, then it is Fick’s second law with u describing the concentration and
κ being the diffusivity.
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2.12. PDEs and the Method of Lines

An equation that contains partial derivatives of different independent variables is
called partial differential equation (PDE). Often, the partial derivatives are written as
an index, so that equation (2.16) could also be written as

ut = κuxx

with ut = ∂u
∂t and uxx = ∂2u

∂x2
.

The order of an independent variable is the highest derivative that occurs in the
equation. For the heat-equation, t is therefore of first order and x is of second order.
The order of the PDE is then the highest order among all independent variables. The
degree of the PDE is the highest power of the terms containing the dependent variables.
A first-degree equation is said to be linear.

2.12.1. Initial and Boundary Conditions

To complete the definition of the integration problem, auxiliary conditions have to be
specified. For each independent variable as many conditions are needed as high the order
of the variable is.

An initial condition (IC) for t can be given by u(x, 0) = u0(x), where u0(x) is an
initial temperature distribution as a function of x. If more than one condition is needed,
all of them are given for the same value of the independent variable (in this case t with
t0 = 0).

A boundary condition (BC) can be set for more than one value of the independent
variable. For instance, a condition for u can be u(0, t) = u1(t), which is a Dirichlet
boundary condition since the dependent variable u is specified. Another condition could
be ux(L, t) = 0, which is a Neumann boundary condition because the derivative of the
dependent variable is specified. The first condition describes the temperature at x = 0
as a function of time, while the second condition describes the temperature gradient at
x = L. If the dependent variable and its derivative occur in the condition it is called a
boundary condition of the third type.

In most cases, the boundary conditions are given for the spatial variables and the initial
conditions for the time. Care must be taken when defining the condition equations, as
discontinuities (for instance by inconsistencies in the conditions for the same point) can
cause problems for the solution of the PDE.

2.12.2. Solution of a PDE

Given the partial differential equation together with sufficient initial and boundary condi-
tions, the solution of the PDE is a function u(x, t) that describes the dependent variable
u as a function of the independent variables x and t. The solution can either be an
analytical function or a numerical approximation to such a function.

An analytic solution is useful as it is exact and thus allows to check numerical solutions
for their correctness or derive asymptotic behaviour for stability analysis. However, an
analytic solution can only be found in very simple cases.
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2. Numerical Methods

For most problems, just a numerical solution can be computed. Different methods for
this exist, and one of them is the method of lines (MOL) [Sch91]. The basic idea is to
transform the PDE problem into a system of ODEs, that can then be solved by some
known numerical integration method.

The first step is to discretize the PDE in all but one of the independent variables.
Typically time is the variable for which the independent condition was given and which
thus remains. The partial derivatives of the other variables are then replaced in the
PDE by algebraic approximations. This then forms the basis for methods such as the
finite element method (FEM), finite volume method (FVM) and finite difference method
(FDM). We will now stick to the latter one.

2.12.3. Spatial Discretization using Finite Differences

As an example consider heat conduction through a one-dimensional metal stick with the
ends located at x = 0 and x = L. A grid xi = i∆x, 0 ≤ i ≤ N with ∆x = L/(N + 1) is
created so that x0 and xN are now the endpoints of the stick, as is shown in figure 2.8.

x0 xNx1 x2 x

L

∆x

Figure 2.8.: Metal stick with spatial discretization.

To discretize a spatial derivative ux it is approximated locally by a polynomial

u(x) = a0 + a1(x− xi) + a2(x− xi)2 + a3(x− xi)3 + · · ·

for a point xi on the grid. The coefficients a0, a1, a2, . . . can be obtained by successive
differentiation as

aν =
u(ν)(xi)

ν!

when setting x = xi. Letting n→∞ results in the Taylor series expansion of u(x).
With this, first-order derivatives with a first-order truncation error can be derived

easily. The approximation of u(xi+1) is

u(xi+1) = u(xi) + u′(xi)∆x+
1

2
u′′(xi)∆x

2 +
1

6
u′′′(xi)∆x

3 +O(∆x4) (2.17)

from which an approximation to u′(xi) follows as

u′(xi) =
u(xi+1)− u(xi)

∆x
+O(∆x).

42



2.12. PDEs and the Method of Lines

Similarly, using

u(xi−1) = u(xi)− u′(xi)∆x+
1

2
u′′(xi)∆x

2 − 1

6
u′′′(xi)∆x

3 +O(∆x4) (2.18)

one obtains

u′(xi) =
u(xi)− u(xi−1)

∆x
+O(∆x).

Subtracting equations (2.17) and (2.18) from each other gives the second-order central
finite difference approximation

u′(xi) =
u(xi+1)− u(xi−1)

2∆x
+O(∆x2).

This works for the grid points x1, . . . , xN−1, but a problem occurs for the points x0 and
xN , as those would depend on points x−1 respectively xN+1 that are outside the grid.
Instead, the points x0, x1, x2 can be used to obtain a second-order approximation for
u′(x0) and xN−2, xN−1, xN for u′(xN ).

Using a polynomial representation at x0 allows to approximate u(x1) and u(x2) as

u(x1) = u(x0) + u′(x0)∆x+
1

2
u′′(x0)∆x2 +O(∆x3)

u(x2) = u(x0) + u′(x0)(2∆x) +
1

2
u′′(x0)(2∆x)2 +O(∆x3)

Elimination of u′′(x0) results in

u′(x0) =
−3u(x0) + 4u(x1)− u(x2)

2∆x
+O(∆x2).

Similarly an approximation for u′(xN ) can be obtained as

u′(xN ) =
u(xN−2)− 4u(xN−1) + 3u(xN )

2∆x
+O(∆x2).

Adding the two equations (2.17) and (2.18) a central finite difference approximation

u′′(xi) =
u(xi−1)− 2u(xi) + u(xi+1)

∆x2
+O(∆x2)

for uxx in equation (2.16) can be derived. Replacing uxx by the finite difference approx-
imation in equation (2.16) reduces the PDE into a set of ODEs

du(xi, t)

dt
= κ

u(xi−1)− 2u(xi) + u(xi+1)

∆x2

for 1 ≤ i ≤ N − 1 and similar equations for the i = 0 and i = N .
Higher order approximations, also for higher-order derivatives, can be found in a

similar way. In [Bic41] a formula to compute the coefficients together with tables for
common cases is given. An algorithm to compute coefficients for arbitrarily spaced grids
is given in [For88]. As can be seen, the approximations are exact for polynomials up to
a certain degree and decrease when ∆x decreases. Also the error in the approximations
becomes larger the more uncentered the approximations are (especially at the borders).
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2. Numerical Methods

2.12.4. CFL Condition

An interesting observation made by Richard Courant, Kurt Friedrichs and Hans Lewy
is that when the length of the time step h is decreased then the space interval ∆x must
decrease at least proportionally to retain convergence [CFL28, CFL67]. A derivation of
this CFL condition for the advection equation ut + νux = 0 is given in [Sch91] as

|ν|∆t
∆x
≤ 1

using first-order finite differences for the spatial discretization and explicit Euler inte-
gration over time. A similar expression can be derived for other PDE problems.

Increasing the spatial resolution therefore increases the stiffness of the problem. Using
implicit numerical methods (like BDF methods) can compensate this to some degree,
but still care must be taken to stay in the stability region of the method. Also with
increasing spatial resolution the amount of work increases, as with more grid points
also more ODEs have to be integrated. Higher-order finite differences could be used to
increase accuracy without increasing the resolution of the grid. But then these are based
on polynomials and may show unexpected oscillations with increasing order.

2.12.5. An Example

Coming back to the metal stick from section 2.12.3, we can now investigate the solution
of a problem given by Schiesser. The problem is defined by the heat equation (2.16)

ut = uxx

together with inital and boundary conditions

u(x, 0) = sin
( π

2L
x
)

u(0, t) = 0

ux(L, t) = 0.

The exact solution of the problem is

u(x, t) = e−t(
π
2L)

2

sin
( π

2L
x
)
,

as can be easily checked by computing the partial derivatives

ut = −
( π

2L

)2
e−t(

π
2L)

2

sin
( π

2L
x
)

uxx = −
( π

2L

)2
e−t(

π
2L)

2

sin
( π

2L
x
)

and inserting them into the PDE and the initial and boundary conditions.
The numerical solution is shown in figure 2.9. As can be seen, for each ODE generated

by the MOL a solution curve is produced, which is the origin of this method’s name.
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2.12. PDEs and the Method of Lines

t

u(x, t)
x

Figure 2.9.: Method of lines solution of heat conduction.

2.12.6. Geometric Classification

As there exist many different kinds of PDEs, some kind of categorization together with
associated properties seems useful. Consider the general form of a second-order PDE
with two independent variables:

Auxx + 2Buxy + Cuyy + . . . = 0.

The geometric classification distinguishes three types of PDEs analogous to conic sec-
tions by the discriminant D = B2 −AC:

• D < 0: elliptic

• D = 0: parabolic

• D > 0: hyperbolic

Elliptic PDEs describe stationary processes or minimum energy states. In other words,
the PDE does not depend on partial derivatives of time. Examples are the Laplace
equation

∆u = 0

with the Laplace operator ∆ =
∑
i

∂2

∂x2i
, or the more general Poisson equation

∆u = f.

For the MOL this means that the set of ODEs can be extended to be time dependent
and then be integrated to equilibrium (time derivatives vanish) to obtain a solution.
This is also called method of false transients.

Parabolic PDEs usually depend on a first-order partial derivative in time and second-
order derivatives in space, but not on first-order spatial derivatives. An example is the
heat equation (2.16), in a more general form written as

ut = D∆u,

which also describes diffusion processes. The solution smoothes out with increasing time,
even if the initial or boundary conditions contain discontinuities.
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2. Numerical Methods

The remaining cases are hyperbolic PDEs, like the first-order advection equation

ut + νux = 0,

the second-order wave equation
utt = c2∆u,

or the hyperbolic-parabolic Burger’s equation

ut = −uux + νuxx,

where ν is the viscosity and controls how strong the hyperbolic character of the equation
is. Contrary to the previous classes, solutions of hyperbolic PDEs do not smooth out,
but instead shocks are propagated. Therefore they are the most difficult class of PDEs
for numerical integration. The MOL solution for a hyperbolic PDE should consider the
preferred spatial direction (i.e., in which waves propagate) when approximating the finite
differences. More details on this can be found in [Sch91].

2.13. Summary

In natural sciences very often differential equations or systems thereof have to be inte-
grated. In rare cases, an analytic solution can be found, but in the general case one has
to resort back to numerical integration. Several methods have been proposed, of which
the most important ones can be classified into three groups, namely the Runge-Kutta
method, linear multi-step methods and extrapolation methods. Development of such
methods concerns things like accuracy, stability and efficiency. Nevertheless, implemen-
tation of such methods can be quite challenging, especially if additional features like
variable step, variable order, interpolation or handling of discontinuities are considered.
Selection of an appropriate numerical method depends on the integration problem. Still,
those methods share a common interface and can thus easily be exchanged if there is
need.
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3. Formal Languages, L-systems and RGGs

Language and automata theory forms the basis of many important application areas
including, but not limited to, language understanding, text translation or compiler con-
struction. Formally, a language is a set of sentences of finite length. The sentences (also
named strings or words) are formed as a sequence of a set of symbols, the alphabet, usu-
ally designated by Σ. A grammar is a means to construct all sentences of that language
by a finite number of rules. For natural languages the language would be considered
a finite set, but for better theoretical analysis, formal languages are also allowed to be
infinite sets.

A formal grammar is a tuple 〈N,Σ, P, S〉. Σ is a finite set of terminal symbols. N
is a finite set of nonterminal symbols disjoint from Σ. Sometimes also a set V of all
symbols (the vocabulary) is used instead of N , with V = Σ∪N . The notation V + means
a string of one ore more symbols of V , and V ∗ means zero or more, where ∗ is the Kleene
star. The empty string is designated by ε, thus V ∗ \ {ε} = V +. A finite irreflexive set
P ⊂ V +×V ∗ of production rules defines how to replace symbol sequences. A production
rule is often written as α → β with (α, β) ∈ P . A derivation ϕ  ψ is the application
of a rule α → β with ϕ = γαδ and ψ = γβδ for γ, δ ∈ V ∗. The derivation process
starts with a start symbol S (which stands for sentence). The language generated by
the grammar is the set of sentences consisting exclusively of terminal symbols. Two
grammars are said to be equivalent if they generate the same language. By convention,
nonterminal symbols are usually represented by uppercase letters, terminal symbols by
lowercase letters and sequences of symbols by lowercase greek letters, but this is not
mandatory.

Consider now a simple grammar (from [Cho56]) defined by the rules

S → NP V P

V P → V NP

V → are flying

V → are

NP → they

NP → planes

NP → flying planes

where nonterminals are S, NP (noun phrase), V P (verb phrase) and V (verb). Begin-
ning with S, sequential application of the rules can derive a sentence of terminal symbols
only. Under appropriate restrictions the derivation can be visualized graphically with
the benefit that the order of rule application becomes unimportant. For the sentence
“they are flying planes”, actually two derivations shown in figure 3.1 are possible.
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3. Formal Languages, L-systems and RGGs

S

NP V P

they V NP

are flying planes

S

NP V P

they V NP

are flying planes

Figure 3.1.: Derivation trees for the sentence “they are flying planes”.

Chomsky
hierarchy

Grammar Language Automaton
Production

rule

type 0 unrestricted
recursively
enumerable

Turing machine α→ β

type 1 context-sensitive context-sensitive linear bounded γAδ → γαδ

type 2 context-free context-free
nondeterministic

pushdown
A→ α

type 3 regular regular finite state
A→ aB,
A→ a

Table 3.1.: Chomsky hierarchy of grammars and their generated languages, automata
that recognize them, and production rules that are characteristic for each
type of grammar.

Chomsky called this ambiguity in the derivative structure constructional homonymity.
There is also a semantic ambiguity, as the sentence could either describe objects on
the sky (they – are – flying planes) or alternatively what pilots are doing with the
planes (they – are flying – planes). If the grammar should serve the purpose of natural
language understanding a semantic ambiguity should be also reflected in an ambiguity
of the derivate structure. For compiler construction a semantic ambiguity would be
problematic, as here a given program text must be understood in a unique way.

Grammars and their generated languages can be classified into different types. Chom-
sky defined type i grammars and languages, with i ∈ 0, 1, 2, 3 [Cho59]. Further types
have been introduced as well, for instance LR(k), LL(k) and LF(k). For each type of
language there exists also a formal automaton that recognizes it. A tabular overview is
given in table 3.1. For reference see also [HU79, Sal73, AU68].

Type 0 grammars are unrestricted in the sense that they can contain any kind of rule asType 0

was defined above. The set of type 0 languages L0 generated by those grammars are the
recursively enumerable languages (RE). A Turing machine [Tur37] can recognize these
languages. For any sentence in the language, the Turing machine will halt and return 1,
but for sentences not in the language it may either halt and return 0 or loop forever. This
is related to the halting problem [Tur37], where it cannot be decided if a program will
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terminate or might run forever, which is also related to Gödel’s incompleteness theorem
[Göd31]. Thus a Turing machine can not decide if a sentence belongs to the language,
but it can only enumerate the sentences. The class co-RE is set of the complements of
all languages in RE, and for those a Turing machine can only disprove membership of a
sentence. The union of RE and co-RE is the set of recursive languages (R). The class R
is decidable, as two Turing machines can be run in parallel until either of them halts.

Type 1 grammars are obtained by restricting the allowed types of rules to those of Type 1

the form γAδ → γαδ, where γ, δ ∈ V ∗, A ∈ N and α ∈ V +. They are also called
context-sensitive grammars (CSG) and the set L1 of languages they generate are called
context-sensitive languages. The strings γ and δ are called the context. An equivalent
restriction is that the rules are non-shortening. Thus for a rule α → β must hold
|α| ≤ |β|. This yields monotone or noncontracting grammars, which are different from
type 1 grammars, but generate the same context-sensitive languages. To include the
empty sentence ε it is sometimes permitted to include a rule S → ε, provided that there
is no rule that produces an S. It is always possible to introduce a new symbol S̄ and rules
S̄ → ε, S̄ → S and using S̄ as start symbol. A context-free language can be recognized
by a linear bounded automaton (LBA), which is a nondeterministic Turing machine for
which its memory is limited linearly by the length of the input. More important, it is
decidable if a given sentence belongs to the language or not.

Further restricting the rules to A → α with A ∈ N and α ∈ V ∗ yields type 2 Type 2

grammars, which are context-free grammars (CFG). In the original definition of type 2
grammars by Chomsky the rules A→ α required A ∈ N and α ∈ V +. A grammar of this
kind is said to be ε-free. Every context-free grammar can be transformed1 into an ε-free
grammar, unless the context-free grammar generated the empty sentence. In this case a
single rule S → ε might be allowed, like it was for type 1 grammars above. Context-free
grammars can also be transformed into one of their normal forms. The Chomsky normal
form (CNF) restricts the allowed types of rules to A → BC, A → a and S → ε, where
A,B,C, S ∈ N, a ∈ V and S the start symbol. The Greibach normal form (GNF) allows
only rules of the form A → aA1A2 . . . An, and optionally S → ε if S is not contained
in any of the productions. The GNF generates exactly one terminal symbol with each
application of a rule (disregarding the optional ε-rule). With restriction n ∈ {0, 1} type
3 grammars are obtained, as explained below. All of the mentioned types of grammars
generate the type 2 languages L2, the set of context-free languages. A non-deterministic
pushdown automaton is a recognizer for context-free languages, and can be constructed
from a context-free grammar using the GNF.

If only rules of the forms A → a and A → aB with A,B ∈ V and a ∈ Σ are Type 3

allowed, type 3 grammars or regular grammars are obtained. Optionally ε-rules A → ε
might be allowed, but not in the original definition given by Chomsky. In fact, the
given rules define right regular grammars, where the generated string is followed by a
single nonterminal symbol. A left regular grammar has only rules of the form A → a
and A → Ba and the nonterminal precedes the generated string. These two kinds

1 For each rule A→ ε replace A in all productions by iterating P := P ∪{(B, γδ)|(A, ε), (B, γAδ) ∈ P}
until converged. Now remove all ε-productions by setting P := P \ (N × ε).
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3. Formal Languages, L-systems and RGGs

of grammars are also called strictly right/left regular grammars, as extended versions
allowing rules A → αB respectively A → Bα with α ∈ Σ∗ have also been defined. The
set of languages L3 generated by regular grammars are called regular languages. These
languages can also be described by regular expressions. Each regular grammar can be
recognized by a nondeterministic finite automaton (NFA), but any NFA can be converted
to a deterministic finite automaton (DFA) by the powerset construction2.

The four types of languages Li defined above form a proper inclusion relationship

L3 ⊂ L2 ⊂ L1 ⊂ L0.

The inclusion is clear as the sets Li were formed by increasing restrictions on the allowed
rules. That the inclusions are proper can be shown using examples that belong to one
type of language set, but not another. Consider the following languages

L1 = {anbncn|n ≥ 1}
L2 = {anbn|n ≥ 1}.

The pumping lemma for regular languages is a necessary, but not sufficient, conditionPumping lemma
for regular

languages
for a language being in L3. For every regular language L exists a number n ∈ N, such
that for all ω ∈ L with |ω| ≥ n exist α,ϕ, β ∈ Σ∗ for which

ω = αϕβ ∧ |ϕ| > 0 ∧ |αϕ| ≤ n ∧ ∀i ∈ N : αϕiβ ∈ L.

The proof of the lemma is based on the fact that for every regular language there exists
a finite automaton that recognizes it. If the finite number of states of the automaton is
n then to recognize a sentence of length n or more the automaton must enter a loop.
The string ϕ recognized by the loop can thus be repeated any number of times.
L2 does not fulfill the pumping lemma for regular languages. For some number n we

can consider the word ω = anbn and because of |ϕ| > 0 and |αϕ| ≤ n we know that ϕ
must be made up of a only. Pumping up ω yields αϕiβ yields sentences with an unequal
number of a and b, thus those sentences are not in L2 from which follows that L2 is not
a regular language. In fact, L2 is a context-free language which can be shown easily by
providing a context-free grammar with rules S → ab and S → aSb that generates L2.

The pumping lemma for context-free languages is a necessary, but not sufficient,Pumping lemma
for context-free

languages
condition for a language being in L2. For every context-free language L exists a number
n ∈ N, such that for all ω ∈ L with |ω| ≥ n exist α, β, γ, ϕ, ψ ∈ Σ∗ for which

ω = αϕβψγ ∧ |ϕψ| > 0 ∧ |ϕβψ| ≤ n ∧ ∀i ∈ N : αϕiβψiγ ∈ L.
2 Given an NFA (Q,Σ, T, q0, F ) with set of states Q, set of input symbols Σ, set of transitions T :
Q× Σ→ P(Q) with P(Q) denoting the power set of Q, initial state q0 ∈ Q and a set of final states
F ⊆ Q. A state in the corresponding DFA is a subset of Q, indicating the possible states the NFA
might be in after accepting a certain input. The initial state q0 of the NFA is represented as the
set {q0} for the DFA. The states and transitions of the DFA can be build incrementally. For some
input symbol and the NFA states of a DFA state q̄1 generate the set of NFA states q̄2 reachable by
transitions from T . For the DFA append q̄2 to the set of states, if not already done so, and add a
transition from q̄1 to q̄2. If any of the NFA states in q̄2 is a final state append q̄2 to the DFA set of
final states. Repeat this until no new DFA states or transitions can be found.
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3.1. L-systems

To proof this lemma consider a grammar in CNF that generates L and a sentence
ω ∈ L. By induction it can be shown that if the longest path in ω has length i then ω
has a length of at most 2i−1. If i = 1 then a rule of the form S → ε or S → a must have
generated the sentence, so its length is at most 20 = 1. If i > 1 then a rule S → AB
must have been used and under the assumption that A and B generate strings of at
most 2i−2 symbols then the generated sentence has a length of at most 2i−1 symbols. If
ω is sufficiently long, that is |ω| ≥ 2|N | = n with N the set of nonterminal symbols, then
since |ω| > 2|N |−1 there must be a path of length at least |N |+ 1. This path has |N |+ 2
vertices, of which only one is a terminal symbol. The remaining symbols are nonterminal
and at least one of them, let us call it A, must appear twice. The sequence of derivations
A  ∗ A can be repeated and generates the prefix ϕ and suffix ψ an arbitrary number
of times.

L1 does not fulfill the pumping lemma for context-free languages. For some number n
we consider the word ω = anbncn. Because |ϕβψ| ≤ n the string ϕβψ contains at most
two kinds of symbols. If ϕ and ψ get pumped since |ϕψ| > 0 the third kind of symbol
does not change its count while at least one of the other two does. Therefore L1 is not
context-free. In fact, it is context-sensitive, as a grammar that generates it is

S → aA aB → ab

S → aSA bB → bb

A→ BC bC → bc

CB → BC cC → cc.

and another with start symbol X0 is (from [Sal78])

X0 → X0Z1 X0 → X1Z1 X1 → aY1

X1 → aX1Y1 Y1Z1 → Y1Z3 Y1Z3 → Y Z3

Y Z3 → Y Z Y1Y → Y1Y2 Y1Y2 → Y Y2

Y Y2 → Y Y1 ZZ1 → Z2Z1 Z2Z1 → Z2Z

Z2Z → Z1Z Y → b Z → c.

The first grammar is non-shortening while the second one is context-sensitive.

3.1. L-systems

In 1968 Aristid Lindenmayer studied the development of multicellular structures and
simple plants [Lin68a, Lin68b]. Symbols represented distinguishable states of a cell.
A transition function maps the state of a cell (considering optionally also state of its
neighbour cells) to a new state. Cell division is explained by replacing a symbol by
a sequence of other symbols. This way a linear array of cells is connected to formal
language theory. Formal definitions for L-systems have been given in [Lin71, vD71,
RD71, PL90], for instance (from [RD71]):
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b

a

a b

a b a

a b a a b

a b a a b a b a

Figure 3.2.: Strings generated by a simple L-system.

Definition 2. A 0L-system is a system G = 〈Σ, P, σ〉, where Σ (the alphabet) is a
finite, nonempty set, σ (the axiom) is an element of Σ+, and P (the set of productions)
is a finite subset of Σ× Σ∗, such that ∀a ∈ Σ : ∃α ∈ Σ∗ : (a→ α) ∈ P .

Definition 3. (parallel rule application) Let G = 〈Σ, P, σ〉 be a 0L-system; let x ∈ Σ+,
x = a1 · · · am with m ≥ 1 and aj ∈ Σ for j = 1, . . . ,m; let y ∈ Σ∗. Then x ⇒ y if and
only if ∃p1, . . . , pm ∈ P : ∀j ∈ {1, . . . ,m} : pj = aj → αj ∧ y = α1 · · ·αm.

Definition 4. Let G = 〈Σ, P, σ〉 be a 0L-system. The language generated by G then is
L(G) = {ω|σ ⇒∗ ω}.

An example of a simple L-system is shown in figure 3.2. Derivation starts with b and
uses rules given in [PL90], which are

a→ ab

b→ a.

The difference of L-systems to the rewriting systems considered so far is

1. parallel rule application and

2. no distinction between terminal and non-terminal symbols.

The first difference, parallel application of production rules, can be justified biologically
as development of each cell progresses simultaneously. The second difference concerns the
fact that if a cell reaches a terminal state it can be considered dead or at least irreversibly
differentiated. To simulate living organisms (as words in the language generated by the
L-system) no distinction between terminal and non-terminal symbols must be made.

An iL-system [vD71] is an L-system where the transition function depends on the
current symbol only (i = 0), also the state of its left neighbour (i = 1), or state of both
left and right neighbour (i = 2). Often also the name OL-system is used instead of
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L0

L1

L2

L3 LOL

Figure 3.3.: Relation of OL-system languages to the Chomsky hierarchy.

0L-system. An L-system is propagating or a POL-system if the empty string ε cannot
be substituted for any symbol. It is determinate or a DOL-system if there is at most
one transition rule for every symbol. A DPOL-system is determinate and propagating.

Theorems for L-systems and their generated languages have been developed, e.g.
[Lin68a, Lin68b, Lin71, RD71, Her69, vD71]. Interesting results consider the relation
of languages generated by L-systems to the Chomsky hierarchy. It was shown [RD71]
for LOL, the set of all OL-languages, that they share some regular (LOL ∩ L3 6= ∅,
LOL * L3, L3 * LOL) and context-free (LOL∩L2 6= ∅, LOL * L2, L2 * LOL) languages
and are context-sensitive (LOL ⊂ L1). This is visualized in figure 3.3. It was also shown
that 1L-systems and 2L-systems are as strong as Turing machines [Her69, vD71]. An
interesting consequence is that there are L-systems for which it cannot be decided if the
modelled organism will eventually die or not.

In combination with Turtle graphics [Ad80] the power of L-systems to describe struc- Turtle graphics

tures grows beyond simple topology [Smi84, Pru86]. The turtle can be imagined as a
virtual pen with a position and movement direction (heading). Simple commands allow
the turtle to move forward and rotate. While moving, the turtle can also draw a line.
A graphical representation is obtained by interpretation of the generated string. The
following turtle commands have been used for L-systems:

F Move forward a distance d and draw a line.
f Move forward a distance d, but don’t draw a line.
+ Turn left by an angle θ.
– Turn right by an angle θ.

These commands modify the state of the turtle (position and orientation). Other
commands are ignored. The parameters d and θ have to be defined somewhere else.

To allow simulation of branching structures, Lindenmayer suggested to use symbols [ Branching
structures
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0 1 2 3

Figure 3.4.: A simple tree described by an L-system.

and ] [Lin68b]. For the graphical representation this means to push the current state of
the turtle onto a stack when [ occurs, and to pop it from the stack when the matching ]
is found. Thus when a branch is complete the turtle jumps back to the position where
the branch started. An example of a simple tree structure is shown in figure 3.4. The
growth is governed by the rules:

A→ F [+B][−B]A

B → FB

An extension of turtle graphics to three dimensions is straightforward [Pru87]. Three
direction vectors ~H, ~L, ~U define the orientation of the turtle, where in addition to the
heading ~H also left ~L and up ~U directions are given. The three vectors are perpendicular
to each other and have unit length. It is assumed that ~H × ~L = ~U holds. In addition to
these directions the turtle state is extended to include also thickness and color. A thick
line is represented in three dimensions by a cylinder.

To facilitate modelling of leaves additional symbols { and } have been introduced.
When encountering a { subsequent positions of the turtle are recorded and upon } a
polygon is created from these positions and filled. Instead of tracing the contour of the
polygon, an alternate method is described in [PL90], where a tree structure spans over
the leaf and polygon vertices are marked explicitly by a dot.

Nondeterminism in L-systems can occur if multiple rules are applicable for the samestochastic
L-system symbol. It can be resolved by assigning probabilities to the rules. This can be used to

control the speed of growth [Nis80], or to prevent repetetive structures when L-systems
are used for image generation [Pru87]. A more general definition of probabilistic L-
systems has been given earlier in [Jür76].

Communication between entities in the string, for instance to simulate transport ofcontext-
sensitive
L-system

hormones in a plant, can be supported by providing the context in which the entity de-
velops. This has been used in one-sided and two-sided L-systems (1L-system respectively
2L-system). A more general view is a 〈m,n〉 L-system [Lin75], where m and n describe
the number of symbols belonging to the left and right context. A 〈0, 0〉 L-system is the
same as an OL-system, but for m > 0 or n > 0 it is called an IL-system (the I stands
for interactive), or also context-sensitive L-system.

Not only the left and right context can be extended to a sequence of symbols, butpseudo L-system

also the string on the left side of the rule that is to be replaced. Pseudo-L-systems (pL-
systems) were introduced with this in mind [Pru86]. To be deterministic a precedence
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order over the rules is established and the string to be rewritten is partitioned by scanning
it from left to right for applicable rules.

In some cases it might be desirable to have multiple sets of rules. An example can be TOL-system

found in [SL69], where growth behaviour in light is different from the one in darkness. An
extension to OL-systems proposed by Rozenberg are table L-systems, also TOL-systems
[Roz73].

Traditional L-systems describe development in discrete steps. However, some aspects parametric
L-systemof a model can be better described by continuous quantities, like concentrations of nu-

trients, or size and age of cells. Lindenmayer suggested to associate parameters to the
symbols [Lin74]. A definition of parametric L-systems has been given in [PH90, Han92].

Definition 5. A parametric 0L-system is an ordered quadruplet G = 〈V,Σ, ω, P 〉, where

• V is the alphabet of the system,

• Σ is the set of formal parameters,

• ω ∈ (V × R∗)+ is a nonempty parametric word called the axiom,

• P ⊂ (V × Σ∗)× C(Σ)× (V × E(Σ)∗)∗ is a finite set of productions.

The productions (a,C, χ) ∈ P are written as a : C → χ, where a ∈ V × Σ∗ is the
predecessor and χ ∈ (V × E(Σ)∗)∗ the successor. When the production is matched,
the actual parameters of the match are substituted for the formal parameters of the
predecessor. The production is applicable if the condition, a logical expression C ∈
C(Σ), evaluates to true. The parameters of the successor are computed by arithmetic
expressions from E(Σ). As an example of such a production rule consider

F (a) : t < 5→ F (a+ 0.1).

Here F (a) repesents a cylinder of length a. By repeated application of this rule the F
will grow 0.1 length units per step until a final length of 5 is reached.

The definition of a parametric L-system can be easily extended to become context-
dependent. A definition has been given in [Han92]:

Definition 6. A parametric IL-system is an ordered quadruplet G = 〈V,Σ, ω, P 〉, where

• V is a nonempty set of letters called the alphabet of the system,

• Σ is the set of formal parameters,

• ω ∈ (V × R∗)+ is a nonempty parametric word called the axiom,

• P ⊂ (V × Σ∗)∗ × (V × Σ∗) × (V × Σ∗)∗ × C(Σ) × (V × E(Σ)∗)∗ is a finite set of
productions.
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The difference to parametric 0L-systems is that productions (ηl, a, ηr, C, χ), usually
written ηl < a > ηr : C → χ, are now equipped with a left and right context ηl and ηr.

As an example consider the development of blue-green alga Anabaena catenula. A
model for this has been presented in [BH72a, BH72b], and based on it an L-system
model in [Lin74, KL87]. Cells are represented by symbols C(t, c, a), where t is the type
(v for vegetative, h for heterocyst), c the inhibitor concentration, and a the age of the
cell. Diffusion of the inhibiting substrates is modelled by an ODE

dc

dt
= D(cl − c) +D(cr − c)− µc,

where c is the concentration of the current cell, cl and cr concentrations of the left
and right neighbours, D the diffusion constant, and µ a decay constant (diffusion to
environment). After discretization and setting D = µ and K = µ∆t one obtains

∆c = K(cl + cr − 3c).

A vegetative cell transforms into a heterocyst if its concentration c drops below some
threshold Tc. Heterocystic cells do not grow anymore and their inhibitor concentration
takes a constant value ch. A vegetative cell divides if its age reached a terminal age Ta.
Thus the growth process is governed by the following rules

C(−, cl,−) < C(v, c, a) > C(−, cr,−) : c > Tc ∧ a < Ta

→ C(v, c+K(cl + cr − 3c), a+ 1)

C(−, cl,−) < C(v, c, a) > C(−, cr,−) : c ≤ Tc
→ C(h, ch, 0)

C(−, cl,−) < C(v, c, a) > C(−, cr,−) : c > Tc ∧ a = Ta

→ C(v, c+K(cl + cr − 3c), 0) C(v, c+K(cl + cr − 3c), 0)

where “don’t care” parameters are indicated by a minus in the formal parameters list.
A similar model is used in [PL90, Han92], where cells are represented by line segments

F and their age corresponds to their length. For visualization of the cells the way the
turtle interprets the string was extended. If the symbol F , f , etc., is followed by a
parameter list, the first parameter is used instead of the one in the environment (for
instance for F this defines the length of the line segment).

The original formulation of L-systems was discrete in time and space. The introduc-
tion of parametric L-systems allowed a continuous view on space. Still, time remained
a discrete quantity as this is the nature of rule application. If time could be made con-
tinuous this would be beneficial when creating animations with L-systems or simulating
differential equations.

Timed DOL-systems (tDOL-systems) achieve this by associating a local time to eachtDOL-systems

symbol [PL90]. The pair (a, τ) ∈ V × R is referred to as the timed letter a with τ the
age of a. A sequence of timed letters is called a timed word.

Definition 7. A timed DOL-system is a triplet G = 〈V, ω, P 〉, where
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• V is the alphabet of the L-system,

• ω ∈ (V × R)+ is a nonempty timed word over V , called the initial word,

• P ⊂ (V × R)× (V × R)∗ is a finite set of productions.

A rule can be written (a, β) → (b1, α1) . . . (bn, αn), where β is the terminal age of a
and each αi is the initial age of ai. It is assumed that for each symbol a the terminal age
is unique and the initial age is always smaller than its terminal age. For a global time t a
timed word can be derived byD(ω, t), where the derivation function D : ((V×R)+×R)→
(V × R)∗ has the following properties:

P1 D(((a1, τ1), . . . , (an, τn)), t) = D((a1, τ1), t) . . .D((an, τn), t)

P2 D((a, τ), t) = (a, τ + t), if τ + t ≤ β

P3 D((a, τ), t) = D((b1, α1) . . . (bn, αn), τ + t− β), if τ + t > β.

A derivation of a timed word is obtained by deriving each timed letter in it on its own
(P1). Each timed letter grows until its terminal age is reached (P2). After reaching the
terminal age, the timed letter is replaced by the corresponding timed word as is defined
by the production and the remaining time τ + t − β is used to recursively perform
derivation of the new symbols (P3).

If tDOL-systems are used to create animations, the age of a timed letter has to be
mapped to its appearance. This was done in [PL90] on the example of Anabaena catenula,
where the length of a cell was controlled by its age. Continuity requirements must be
fulfilled to make the animation look smooth. If the length of a cell changes as a function
of time, this growth function g(a, τ) must be continuous. Similarly, if a cell divides into
other cells, the summed lengths of the new cells must be equal to the length of the
original cell. So for a production (a, β)→ (b1, α1) . . . (bn, αn) it follows that

g(a, β) =
n∑
i=1

g(bi, αi).

A linear mapping from age to length fulfills both requirements. However, when a cell
divides, the growth rate of the total cell array is discontinuous at this point (two cells
grow faster than one cell). This can be prevented if the two requirements must hold also
for higher orders of the growth function. Specifically g(k)(a, τ) must be continuous and

g(k)(a, β) =
n∑
i=1

g(k)(bi, αi) for k = 0, 1, . . . , N

must hold. But then also growth functions of higher order should be used. An alternative
is to use an exponential growth function. This can be justified as cellular cultures
show exponential growth as a whole, so assuming this for an individual cell should be
legitimate. In the example given in [PL90] this causes the continuity requirements to
hold for every order.
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An extension to parametric tDOL-systems with conditional and pseudo-stochastic
productions is given in [NTT92]. The difference to the tDOL-systems above is that
productions only apply if an associated condition is fulfilled (like in ordinary parametric
L-systems), and in this case application of a production only happens with a certain
probability. A difficulty with the stochastic part is that for similar values of time the
generated models should be similar as well. This was solved by using a fixed table of
random numbers and proper indexing.

In many cases time-dependent processes are described by differential equations. ThedL-systems

intention of dL-systems [PHM93] is to combine these continuous differential equations
with the discrete nature of production rules. It is assumed that parameters w of a
module A(w) may vary inside a domain DA of legal values. If a boundary CA of DA is
eventually reached a production will be triggered, which can cause a topological change
of the structure and also a discontinuity of the parameter values.

Development of A(w) is described by an ordinary differential equation

dw

dt
= fA(wl, w, wr),

where fA is continuous in DA, and wl and wr are the parameters of the left and right
neighbours Al and Ar of A. The boundary CA is assumed to consist of nonintersecting
segments CAk . A production

pAk : Al(wl) < A(w) > Ar(wr)→ Bk,1(wk,1)Bk,2(wk,2) · · ·Bk,mk(wk,mk)

is applied when w ∈ CAk . Modules Al(wl) and Ar(wr) define the context, A(w) is
the strict predecessor, and Bk,1(wk,1)Bk,2(wk,2) · · ·Bk,mk(wk,mk) the successor, where
the initial values wk,i may depend on wl, w, and wr. Different productions may apply
depending on which part of the boundary was hit.

As an example consider the model of Anabaena catenula from above. The symbols Fv
and Fh now represent vegetative cells and heterocysts. A symbol F is used to refer to
both types. The initial string is set to

Fh(xmax, cmax)Fv(xmax, cmax)Fh(xmax, cmax)

with initial length xmax and initial concentration of nitrogen compounds cmax. The
growth process is then governed by the rules

F (xl, cl) < Fv(x, c) > F (xr, cr) :
if x < xmax ∧ c > cmin

solve dx
dt = rx, dcdt = D · (cl + cr − 2c)− µc

if x = xmax ∧ c > cmin
produce Fv(kxmax, c)Fv((1− k)xmax, c)

if c = cmin
produce Fh(x, c)

Fh(x, c) :

solve dx
dt = rx(xmax − x), dcdt = rc(cmax − c)
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Figure 3.5.: Structure generation by a sensitive, two-phase growth grammar.

As long as a vegetative cell Fv did not reach its final length xmax and has a concen-
tration of nitrogen compounds of more than cmin it elongates exponentially. In parallel,
diffusion between the cell and its neighbour cells as well as the environment is applied.
If the cell reached its final length while its concentration c is still above the threshold
cmin, it divides into two new vegetative cells with initial lengths distributed according
to k. If instead the concentration c dropped below the threshold cmin before the final
length was reached, the cell differentiates into a heterocyst. Heterocystic cells grow to
the final length xmax and increase the concentration of nitrogen compounds to cmax
exponentially.3

3.2. Growth Grammars

Growth Grammars [Kur94, Kur99] are an extension of parametric, stochastic 0L-systems.
A difference to the latter is, that rewriting rules are distinguished semantically into gen-
erative and interpretative rules, in analogy to the “two-level grammars” of van Wijn-
gaarden [Kup80]. This is shown in figure 3.5. In each step, the generative rules rewrite
a string σi into a new string σi+1. Thereafter, interpretative rules transform σi+1 into
σ′i+1, from which then a geometrical representation Si+1 is derived by means of turtle
graphics. This comes in handy if, for instance, some object is represented by a single
symbol in σi, but its graphical representation by a multitude of turtle-commands in σ′i.

Another extension is sensitivity, where generative rules are affected by the geometrical
representation of the string (i.e. Si affects rules that transform σi into σi+1). This is
indicated in the figure by a dashed line. An example would be tree growth depending
on local light conditions (light cone). A rich set of turtle commands is provided.

Special commands are the repetition and expansion operators. The repetition operator
allows to produce a symbol sequence a given number of times. The expansion operator

3Remark: In the original model of Anabaena catenula the concentration of nitrogen compounds was
assumed to be constant for the heterocystic cells. However, in the dL-system model of Anabaena
catenula, the concentration in such cells may vary as described by a differential equation. Conse-
quently one should include diffusion also into the ODE for the heterocystic cells.

59



3. Formal Languages, L-systems and RGGs

instead takes a sequence of symbols and derives it a certain number of times. The result
of either computation is then inserted into the output string in place of the operator. A
possible application would be a random number of branches generated in a tree model.

For symbols produced by the right hand side of a rule parameter values can be cal-
culated by arithmetic expressions, as is common for parametric L-systems. Relational
growth grammars include in addition arithmetic-structural operators, that allow to query
certain features of the generated structure. For instance, one could sum the total leaf
area of a tree to calculate a photosynthesis rate and control growth of the structure by
this value.

3.3. Relational Growth Grammars

Although many things can be done with L-systems, there are still limitations. First, and
most important, the generated structures are exclusively trees (in the computer science
meaning). This might not be problematic if real trees are to be modelled, but might
impose severe restrictions if regulatory networks should be included. Second, the global
interaction between geometric entities generated from the string is complicated. A more
direct approach would consider symbols as geometry, not visualize them by it. Third,
symbols in L-systems can only have one of two kinds of relations (successor and branch),
whereas for some applications like multi-scale modelling additional relations might prove
to be useful. These problems have been addressed partially already by several extensions
to L-systems. Still a new approach was needed to fuse together those extensions and go
beyond.

Relational growth grammars [KBSK03, Kni04, Kni08] use a typed attributed graph
with inheritance for the structure. The former symbols of the string become nodes in
that graph, and relations (like successor or branch) become edges that connect the nodes.
This allows to define any kind of relation and between any two nodes any combination
of relations can be established. For more flexibility nodes become instances of classes
in an object-oriented fashion, with parameters being their attributes. Turtle-commands
are part of that class hierarchy, and the geometric structure is obtained by traversing
the graph only by successor and branch type edges (the induced structure by turtle-
interpretation must still be a tree for obvious reasons).

Such flexibility introduces a complication. Using a graph, it follows that rules now
do not replace symbols by a sequence of other symbols anymore, but that a pattern
of nodes and edges in the graph is replaced by some other pattern. The complication
that arises in this case is the question of embedding. It must be defined how outgoing
and incoming edges from and to the original pattern should be connected to the newly
generated production. Also conflicts between deletion and preservation of a node must
be properly handled (for instance, when one node in the graph identifies as two such
nodes in the pattern). RGGs use SPO (single pushout) productions, where deletion
always takes precedence over preservation.

An example of a graph replacement rule and its application to a graph is shown in
figure 3.6. The pattern on the left hand side of the rule is searched for in the graph. For
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Figure 3.6.: Graph rewriting rule and its application (from [Kur07]).

the pattern to match, not only the types of nodes (A and B) must coincide, but also the
configuration and type of edges (solid and dotted). Therefore a replacement only takes
place in the region marked by a solid rectangle, but not in the other region marked by
a dashed rectangle.

L-system rules have been shown to be a versatile tool for plant modelling. Therefore
it is favourable to keep L-system style rules as a subset of graph replacement rules for
backward-compatibility. RGGs achieve this by defining a special kind of embedding
mechanism, where for a rule (given in textual representation) all incoming edges to the
first node in the pattern on the left hand side are redirected to the first node of the
production on the right hand side, and outgoing edges from the last node of the pattern
to the last node of the production.

RGGs combine the rule-based approach, like in ordinary L-systems, with imperative
programming. Productions are allowed to contain code fragments, e.g., to compute inter-
mediate values or node attributes. Control flow statements allow to dynamically create
productions, for instance a number of side branches depending on a vitality attribute of
the main branch. Aggregate functions can be used to gather data from the whole graph,
for instance to get the total leaf area of a modelled tree. A query language defines how
to specify the values to aggregate, and is also used to define patterns on the left hand
side of rules. A set of rules does not form the main program anymore, but rules are
merely embedded into it. Flow control in the (object-oriented) main program decides
which rules to execute and in which order, therefore generalizing table L-systems.
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Type Arrow symbol

execution rule ::>

SPO rule with implicit connections ==>

SPO rule without implicit connections ==>>

Table 3.2.: Types of rules in XL.

3.4. XL

The concepts of relational growth grammars have been implemented in the XL program-
ming language [Kni08]. XL is based on the second edition of the Java programming
language [GJSB00], with some extensions from the third edition [GJSB05]. This means,
that every Java program (according to the 2nd edition) is also a valid XL program, but
not necessarily the other way around. In the following, we assume familiarity with Java.

The XL compiler transforms an XL program into Java bytecode. The bytecode is
then run by a Java Virtual Machine (JVM) [LY99]. The JVM executes bytecode by
interpretation or compilation to native machine code, with prior verification of bytecode
at runtime, performs memory management with garbage collection, and provides security
by sandboxing (for instance, when executed in a web-browser). Although the JVM was
originally aimed as platform for running Java programs, many other languages now
compile to Java bytecode to be run on a JVM, for instance, Scala4, Groovy5, Clojure6,
Fortress7, Jelly8, and many more.

Rule-based extensions to the Java language can be added at places where they do not
interfere with normal Java syntax. Most important, Java defines blocks of statements by
enclosing them in braces { and }. A logical choice in the design of XL therefore was to
allow blocks of rules, enclosed in brackets [ and ], wherever statement blocks are allowed.
By nesting these different types of blocks inside each other it is possible to switch from
Java to rule mode and vice versa. Three types of rules are supported in rule blocks and
are shown in table 3.2.

XL does not prescribe the semantics of ==> and ==>> rules, but rather this is up to
the implementation of the used producer. In GroIMP (see section 3.5), the ==> rules are
used to emulate L-system rules with implicit connections, while ==>> gives full control
over the rewriting process. Execution rules do not modify the topology of the graph,
but are handy if attributes of nodes need to be modified.

Rules inside a rule-block are executed sequentially. Parallel rule application is achieved
by storing all changes to be made to the graph into a modification queue. Therefore
all rules search the original graph for possible places where they apply, and all changes
become visible simultaneously when the queue is flushed.

Left hand sides of rules are described by a query. It can contain node patternsQueries

4http://www.scala-lang.org/
5http://groovy.codehaus.org/
6http://clojure.org/
7http://projectfortress.java.net/
8http://commons.apache.org/jelly
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> < --- <-> successor
+> <+ -+- <+> branch
/> </ -/- </> refinement
--> <-- -- <--> any type

Table 3.3.: Standard edge patterns in XL.

(possibly named, e.g., for later use on the right hand side of the rule), path patterns
(to describe relations between nodes), context graphs (that are not replaced but restrict
where the rule matches), and application conditions (that must evaluate to true for the
pattern to match).

Node patterns are usually used to search for nodes of a certain type or one derived
thereof. If the type is preceded by a name separated by a colon (as in x:X), the name
behaves like a local variable and allows to refer to the currently bound node of the match.
The type may be followed by a parenthesized list of parameters, like in parametric L-
systems, to obtain variables set to the actual values of the node’s attributes (in the
order given in the module definition). Expression patterns are functions that generate
a sequence of nodes. Unary predicates are boolean functions that tell if a certain node
should be considered.

Path patterns allow to search for graph structures instead of individual nodes by
providing relations between the nodes. Explicit path patterns are of one of the forms

-r-> <-r- -r- <-r->

with r the relation to use. The first two are used for directed relations (forward and
backward), the third one for undirected relations, and the last one for bidirectional
relations. Standard edge patterns have been defined as shorthand notations and are
shown in table 3.3. If r is the name of a boolean function, this function acts as binary
predicate. If r is a generator function, it generates a sequence of target nodes for a given
source node.

Patterns can be combined. If multiple patterns are listed in sequence, they define a
connected pattern graph. In case a node pattern is followed by another node pattern,
a successor edge is implicitly assumed (to provide compatibility to L-systems). Path
patterns must always be surrounded by other patterns. Two path patterns given in
sequence implicitly assume a node pattern of any type in between.

Compound patterns allow to search for multiple unconnected structures. These are
separated by a comma. In addition, boolean-valued expressions in parantheses can be
listed, which are considered as application conditions.

Transitive closures of patterns can be designated by appending a quantifier to a pat-
tern. To match, the pattern must then appear the requested number of times. The
syntax of the predicates was taken over from regular expressions. Table 3.4 lists the
supported quantifiers and the associated number of repetitions.

Certain parts of the structure in the query can be marked as context by surrounding
them with (* and *). They are not modified by rule applications, but nevertheless must
be present for the rule to match.
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Quantifier Repetitions

+ 1 to n
* 0 to n
? 0 or 1
{n} exactly n
{n, m} n to m
{n,} at least n

Table 3.4.: Pattern quantifiers and associated number of repetitions.

A query can also appear in Java code as query expression and has to be surroundedGenerator
Expressions by (* and *). The query then is a generator expression, producing a sequence of nodes

for each match (the right-most non-bracketed node of the pattern is used).

Another way to generate a sequence of values are generator methods. These are desig-
nated in the code by appending an asterisk * to the return type of a method. A yield

statement takes the place of the return statement of ordinary functions to return a
value, with the difference that execution continues with the next statement after yield
instead of returning control flow to the caller.

A sequence of values can also be generated by the range operator, written as a:b. It
yields all values from a to b, or no values at all if a > b. The array generator a[:]

yields all values of the array a. The guard operator a::b yields only values a, for which
b evaluates to true. The sequence of values a is thus filtered by b.

Filter methods are a generalization of the guard operator. They take as input aFilter Methods

sequence of values and produce as output another sequence. The types of the values in
input and output sequence may be different. Two standard filter methods first(a, n)

and slice(a, m, n) are provided. The former yields the first n elements of the input
sequence, while the latter yields n-m elements starting with element m of the sequence.

The counterpart of generator expressions are aggregate expressions. They take asAggregate
Expressions input a sequence of values and produce a single value as output. The containment

operator a in b evaluates to true, if any value from the sequence b is equal to a.
Aggregate methods are user-defined functions that are successively called with the values
from the sequence together with a state object to produce the desired output value. A
set of standard aggregate methods is shown in table 3.5.

The right hand side of rules consists of production statements and is thus fully dy-Production
Statements namic. A current producer is responsible for construction of the new structure. Node

expressions specify nodes to be created (the preceeding new and succeeding parentheses
may be omitted) or reinserted into the graph (if they occurred in a query and were
named), and may be connected by edges of various types. Multiple independent struc-
tures can be created by a production if they are separated by a comma.

Blocks of ordinary Java code can be embedded into productions by enclosing it in
braces { and }. To access variables declared in such a block later on outside of this block,
the code block does not introduce its own scope, but instead behaves as if inserted into
its enclosing scope.

64



3.4. XL

array convert sequence to array
count number of elements in sequence
empty test if sequence contains no elements
exist, forall logical or/and of all elements of sequence
first, last first/last element of sequence
max, min maximum/minimum element of sequence
mean arithmetical mean
prod, sum product/sum
string convert to string containing comma-separated list

of values enclosed in brackets
selectRandomly randomly select one value, either with uniform

probability or by a provided relative probabilities
selectWhere select first value for which an additional boolean

parameter evaluates to true

selectWhereMax, select the value for which an additional parameter
becomes maximal/minimalselectWhereMin

Table 3.5.: Standard aggregate methods in XL.

Control flow statements in rule mode allow dynamically created productions. For
instance, loop instructions (for, do, while) can be used to repeat creation of a certain
structure, thereby extending the repetition operator of growth grammars. The body of
the control flow statement has to be enclosed in parentheses (to remain in rule mode)
or braces (to switch to Java mode).

Properties are similar to instance fields, but values are read and written using special Properties

methods. They are accessed by e[n], where e is an expression of reference type T and
n is the name of a property declared in T.

In addition to the usual operators =, +=, etc., properties can also be modified using
deferred assignments (see table 3.6). These operators are prefixed by a colon and were
introduced to support parallel rule application by delaying attribute modifications to
a later point (again XL does not dictate this semantic, but this is how it is used in
GroIMP).

As for parametric L-systems, XL allows to define modules. Nodes that are mod- Modules

ule instances provide attribute access by positional parameters in addition to named
attributes. Modules are defined like ordinary Java classes, but instead of class the
keyword module has to be used, with the name of the module followed by a parenthe-
sized list of parameters. The XL compiler will then generate a node pattern so that the
module can be searched for in queries, and a constructor for occurrences in productions.

In the list of module parameters, attributes of superclasses can be listed by preceeding
their name with the keyword super and a period. This allows specialized modules that
reorder the parameter list or extend it.

Another feature of module definitions are instantiation rules. The module definition
is followed by an arrow ==>, which in turn is followed by a production that creates
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:= assign
:+= increment
:-= decrement
:*= multiply
:/= divide
:%= modulo
:**= raise to power
:<<= signed/unsigned shift left
:>>= signed shift right
:>>>= unsigned shift right
:&= and
:|= inclusive or
:^= exclusive or

Table 3.6.: Deferred assignment operators in XL.

geometry that should be drawn in addition to the module. This can be used to create
geometry algorithmically “on the fly” (trading memory for computation time), or to
place geometry defined elsewhere to the location of the module instance.

Functors (function objects) are functions with associated state, and are typically usedAnonymous
Function

Expressions
as callback functions. In Java functors can be defined using anonymous inner classes.
However, for simple functions such a definition becomes very verbose. XL provides
anonymous function expressions
X x => Y e

X x => Y* e

to generate inner classes (their name depends on the types X and Y) with an evaluate
function, that computes the expression e based on the input parameter x. The first form
returns a single value, while the second form yields a sequence of values.

Examples for using anonymous function expressions have been given in [Kni08]. For
the single-value form, one can write

DoubleToDouble f = double x => double x * Math.sin(x);

to define a functor for the function f(x) = x · sin(x). A sequence of values can be
generated by

ObjectToObjectGenerator<Node,Shoot> children =

Node parent => Shoot (* parent --> Shoot *)

containing all nodes of type Shoot connected to some parent node.
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Figure 3.7.: Screenshot of the graphical user interface of GroIMP.

3.5. GroIMP

GroIMP9 (growth-grammar related interactive modelling platform) is an open-source
software implemented in Java and licensed under the GNU General Public License
(GPL), version 3. Its main components are

• the XL compiler and runtime environment, integrated with a text editor (jEdit10)
and a message panel (showing compilation errors with clickable links to their source
code location),

• classes for geometric primitives like sphere, cone, cylinder, box, etc., for modelling
and visualization,

• a shader system for texturing geometric objects,

• a graphical user interface (shown in figure 3.7) with 3D view for interactive visu-
alization and manipulation of the model,

• a raytracer Twilight for rendering the 3D view,

• and a 2D view of the graph.

9http://sf.net/projects/groimp, accessed 18 October 2011
10http://www.jedit.org, accessed 18 October 2011

67

http://sf.net/projects/groimp
http://www.jedit.org


3. Formal Languages, L-systems and RGGs

3D-CS

RGGCPFG

Grammar

IMP-3D

Utilities

Graph

IMP

Math

Platform

Platform-Swing

IMP-2D

Raytracer

XL-ImpljEdit

Vecmath

Platform-Core

POV-Ray

XL-Compiler

XL-Core

X3D

XL

XL-VMX

Figure 3.8.: Schematic view of GroIMP plug-ins and their dependencies.
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Being based on Java, the software runs on any platform that is supported by a JVM.
GroIMP ships with a battery of examples, that demonstrate some of its features. The
user-interface is fully dynamic and consists of panels, that can be moved and (un)docked.
A layout of the GUI can be saved for later use. This is used also, for instance, to provide
two initial workspace configurations, one for interactive modelling and the other for RGG
development.

Several import and export filters allow to share files with other programs, for instance
GROGRA[Kur94] (dtd, dtg), external libraries (jar), or images (png, jpg, . . . ) for use
as textures. Export of images rendered by the built-in raytracer to such file formats is
also possible. Images can be managed by a panel called image explorer. Panels for other
types of resources like shaders, functions, curves, and datasets exist as well.

GroIMP has a plug-in architecture, similar to the Eclipse platform11. Each plug-in is
described by an XML file plugin.xml which defines the plug-in’s capabilities, a list of
prerequisite plug-ins, and libraries the plug-in depends on. Capabilities are represented
as a tree structure and include menu entries, input/output filters, etc., and are combined
for all plug-ins into a single registry. The list of prerequisite plug-ins is used to derive
the initialization order of the plug-ins and prevents cyclic dependencies between the
plug-ins. A schematic view of the plug-ins and their dependencies can be found in figure
3.8, and a short description in [Kni08].

The RGG plug-in connects GroIMP to the XL programming language. It provides
compilation filters for different source file formats (rgg, xl, java, lsy, ssy), and calls
the XL compiler for all such files contained in a project. The plug-in also provides a
class de.grogra.rgg.RGG, that serves as base class for relational growth grammar de-
velopment and manages the life cycle for such RGGs. The package de.grogra.turtle

contains scene graph nodes for turtle commands, to provide compatibility with the GRO-
GRA software. Finally, the class de.grogra.rgg.Library provides utility functions that
ease model development.

As many parts of GroIMP, and especially the RGG plug-in, are repeatedly involved
when creating a new model, a new file format (rgg) has been designed that simplifies
this action. Files with such an extension are modified before they are passed to the XL
compiler. The RGG dialect of XL implicitly surrounds the code by a declaration of a
subclass of RGG and the addition of several import statements. It also defines a static
field INSTANCE that allows to refer to the instance, for instance, if a project consists of
multiple files.

3.6. Structural Modelling with GroIMP/XL

Model development with GroIMP and XL usually starts by creating a simple structural
model. This can then be extended by inclusion of physiological processes to an FSPM
(functional-structural plant model), or used on its own in areas like computer graphics.
How to create a simple structural model of a daisy has been shown in [SH10].

The steps involved in creating a structural plant model are (see figure 3.9)

11http://www.eclipse.org, accessed 18 October 2011

69

http://www.eclipse.org


3. Formal Languages, L-systems and RGGs

(a) Data acquisition (b) Topology

(c) Texturing (d) Parameter calibration

Figure 3.9.: Steps to create a structural model of a daisy.

(a) Data acquisition,

(b) Creation of topology,

(c) Texturing,

(d) Parameter calibration.

Data about the plant can be obtained by collecting real plants and comparing theirData Acquisition

structure, measuring lengths (of steam, branches, etc.), count parts of them (like leaves,
blades, etc.), and observing their color or texture. Also books can serve as reference for
such data.

Topology in the model defines what parts the plant is made of, how many of eachTopology

occur, and how they are connected. Figure 3.10 shows a schematic view of the daisy. In
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Figure 3.10.: Schematic view of the daisy.

the model, for each part of the plant a corresponding module is created. Each module
also possesses a list of parameters relevant for it. Modules are also equipped with a
graphical representation, either by deriving them from some geometric primitive, or by
using an instantiation rule. For instance, the stem and flower petals were defined as

module Stem(float length, float diameter)

extends Cylinder(length, diameter/2);

module Flower(float length, float diameter, int color)

==> if (color == YELLOW)

(Cylinder(length, diameter/2))

else

(leaf(length, diameter));

and the other modules in a similar way. The instantiation rule for Flower dynamically
chooses a geometric primitive (cylinder or parallelogram) based on the parameter color.

Use of these parameters is made in a rule, that replaces the initial Axiom:

Axiom ==>

// create rosette of 7 leaves, diameter half of length

for (int i : 1:7)

( [

RH(i * 137.5) // rotate by Fibonacci angle

{ double r = 50 - i * 5; }

Leaf(r, r/2)

] )

// create stem, length 70mm, diameter 2mm

Stem(70, 2)

...
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Leaves (and also flowers) are created in a loop by successively rotating around the
Fibonacci angle [PL90]. The remaining parts are created in a similar way by that rule.
Additional rotation and translation commands were inserted to control orientation of
the parts.

Using textures allows to give the model a more realistic look. The importance ofTexturing

this can be seen by comparing figures 3.9b and 3.9c. For texturing, GroIMP provides a
material system, which makes it possible to map images onto surfaces, or define textures
procedurally. In case of the daisy model, image data was obtained by making pho-
tographs, and then using an image editing tool like the GIMP12 to cut out the textures.
Then, these image files were imported interactively into the daisy project using GroIMP
so that they appear in the Image Explorer and Shader Explorer.

A material defined in the shader explorer can be used in the model by obtaining a
reference to it, and then applying the material to the module. For instance, the leaves
can be assigned a texture by

ShaderRef leafShader = shader("leafShader");

...

module Leaf(float length, float diameter)

==> leaf(length, diameter).(setShader(leafShader));

Finally, to further improve the visual appearance, parameters like lengths and anglesParameter
Calibration can be calibrated. Also, randomness can be introduced by replacing a fixed parameter

value by a normally distributed value (where mean and variance depend on measure-
ments). Parameter calibration can also be reversed, by first creating the structure and
collecting statistical data from it [DKH+07], then adjusting parameters so that the values
derived from the model correspond to the measured data.

Other plants like fern (figure 3.11a) and horsetail (figure 3.11b) were modelled in a
similar way. Figure 3.12 shows a scene that combines daisy, fern and horsetail, together
with an alder tree [Rog08], grass leaves, an ivy plant, and some spruce trees [HKL+08].
It is also possible to distribute the plants according to a function. For instance, in figure
3.14 the daisy flowers were arranged according to a black/white image containing the
text SCCG08.

The structure of trees (and many other plants) follows one of the architectural models
proposed by [HOT78], which are shown in figure 3.13. Templates of such architectural
models in form of GroIMP projects have been developed by Smolenova [SH10], and can
serve as a starting point when developing new tree models.

To obtain an FSPM (functional-structural plant model), these templates can then
be extended to include physiological processes. An often used approach is the pipe
model theory [SYHK64a, SYHK64b]. It considers a so-called unit pipe (figure 3.15a), a
collection of leaves associated with a pipe of constant cross-sectional area, corresponding
to water-conducting vessels in branches and stem. A community of plants can then be
thought of as an assemblage of unit pipes (figure 3.15b), but also an individual plant
(figure 3.15c).

12http://www.gimp.org, accessed 20 October 2011
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(a) Fern (Dryopteris filis-mas) (b) Horsetail (Equisetum arvense)

Figure 3.11.: Virtual fern and horsetail modelled with GroIMP/XL.

Figure 3.12.: A virtual scene combining different plants.
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Figure 3.13.: Architectural models of trees (image from [Fer00]).
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Figure 3.14.: Daisy flowers distributed procedurally.

The pipe model can also explain the development of tree growth, where when lower
branches are shed parts of their pipes remain in the trunk giving them a conical shape
(figure 3.16). In GroIMP this shape can be modelled by a frustum.

Pipe model theory also conforms to Leonardos rule, that states that “all the branches
of a tree at every stage of its height when put together are equal in thickness to the
trunk” [Ric70]. This means that the total cross-sectional area remains constant at every
branching point (disregarding shed branches).

(a) Unit
pipe

(b) Stand (c) Plant

Figure 3.15.: Diagrammatic representation of the simple pipe model (from [SYHK64a]).

Figure 3.16.: Diagrammatic representation of the pipe model of tree form, showing the
successive accumulation of disused pipes in the trunk associated with the
progress of tree growth (from [SYHK64a]).

75





4. Operator Overloading

In this chapter we will introduce operator overloading into the XL language. We will start
with analyzing existing implementations of operator overloading in other programming
languages. Then we will define how operators should be overloaded in XL. This was
strongly influenced by operator overloading in C++. Finally we will discuss how this
was implemented and in which way the XL compiler had to be extended and modified.

4.1. Operator Overloading in Existing Programming Languages

Programming languages generally provide a set of operator symbols that allow to spec-
ify numerical expressions. For instance, the operator + usually represents addition of
numbers, and the expression a + b means to calculate the sum of expressions a and b.

Operator overloading allows the programmer to give an operator another seman-
tics. This is supported by many programming languages (like C++ [ISO11], D [Ale10],
Groovy1). Even Java overloads operators, namely the operator +, which can be used
to concatenate strings, besides its use as addition operator for numerical expressions
([GJSB00, section 15.18.1]). However, in Java it is not possible to provide user-defined
operator functions, while other languages like Prolog and Lisp even allow the user to
introduce new operator symbols.

One might argue if operator overloading is a good thing or not. As with any tool, it
should be used wisely and where appropriate. As an example of bad usage, consider a 3D
math library, where the cross product is performed by an operator *. Then the question
arises what operator should be used for the dot product. Using another operator (like
/ or %) for the cross product is even less intuitive. However, these issues are not due to
operator overloading, but have to be attributed to bad design decisions (like if a function
is called print, but adds two numbers instead). So in the example, free functions dot

and cross would be a better choice.

Proper usage of operator overloading would refrain from operator abuse. Common
guidelines2 for overloading operators suggest to use “common sense”, that is the op-
erators should behave as expected and similarly to how the numerical operators work.
For instance, it is perfectly fine to extend semantics of the addition operator +, etc., to
operate on vectors, matrices, and complex numbers. The aim is to make working with
these objects easier for the user, albeit it might need some experience from the developer
to do things right.

1http://groovy.codehaus.org, accessed 21 October 2011
2http://www.parashift.com/c++-faq-lite/operator-overloading.html#faq-13.9, accessed 21 Oc-

tober 2011
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4. Operator Overloading

Operators should be symmetric, like that when an increment operator += is defined,
also a decrement operator -= should be defined, with oppositional semantics, and they
should be consistent, like that a += b has the same semantics as a = a + b.

4.1.1. Operator Overloading in C++

The programming language C++ provides operators in the form of symbols (like +, -,
*, /, etc.) and keywords (like new, delete, etc.). The available set of operators is fixed,
and each operator has a corresponding precedence and associativity. Almost all of them
can be overloaded. Note that some operators are considered distinct, even though they
are using the same operator symbol (like unary/binary + and -, or prefix/postfix ++ and
--). At least one of the operands of any overloaded operator must be a user-defined
type. This prevents redefinition of any built-in operator.

To overload an operator, a function must be defined and its name must be the operator
symbol prefixed by the word operator. For instance, a common practice is to overload
the assigment operator of a class:

class Complex
{

private :
double r ea l , imag ;

public :
Complex& operator= ( const Complex& other )
{

r e a l = other . r e a l ;
imag = other . imag ;
return ∗ this ;

}

. . .
} ;

This allows to assign an instance of class Complex to another instance. The imple-
mentation of the assignment operator ensures that the data is copied in the correct
way. In this example this is trivial, but in more complex cases (like std::string) the
operator implementation must also allocate/release internal buffers and check for self-
assigments. Returning a reference to the operand on the left hand side of the assignment
allows invocation chaining, so that the overloaded operator behaves for instances of class
Complex like the ordinary operator for built-in datatypes (note that assignments are
right-associative):

Complex a , b , c ;
a = b = c ;

Operators can be implemented as methods of a class (like done above). Then the
operand on the left hand side is implicitly represented by the this pointer. Another
option is to implement them as global functions, which is often used for binary operators.
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C++ provides the keyword friend to give a function access to private data of a class,
although the function itself is visible globally. For instance, the addition operator of
class Complex could be implemented as:

class Complex
{

. . .

public :
friend Complex operator+ ( const Complex& a , const Complex& b)
{

Complex r e s u l t ;
r e s u l t . r e a l = a . r e a l + b . r e a l ;
r e s u l t . imag = a . imag + b . imag ;
return r e s u l t ;

}

} ;

This becomes powerful if combined with C++’s implicit conversion mechanism by
using conversion constructors and conversion operators. Like standard conversions exist
for primitive types (for instance, from int to float), conversions to and from a user-
defined type can be defined. A conversion constructor takes a single parameter of some
other type, and uses this value to initialize the instance. To suppress unwanted implicit
conversions, the function can be qualified with the keyword explicit. Then manually
casting to another type invokes the conversion function.

In the example above, an instance of class Complex can be initialized from a double,
if an appropriate constructor is implemented:

class Complex
{

. . .

public :
Complex (double d)
{

r e a l = d ;
imag = 0 ;

}

} ;

For a, b, and c instances of class Complex, all code above together allows to write
statements like the following:

c = a + b ;
c = a + 3 ;
c = 3 + b ;

The first line simply calls operator+ with two complex numbers as arguments. The
second line implicitly calls the conversion constructor to convert the integer 3 into an
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instance of Complex, then calls operator+ to perform the addition. The third line does
the same, but note that this only works because the operator+ was defined as friend

function. If it were instead defined as member function, the first operand must already
be an instance of Complex for the operator+ to be called.

A subtle difficulty arises when overloading the increment and decrement operators ++
and --. Two forms exists, a prefix and a postfix version, like in ++i and i++. Both
of them increment/decrement the variable, but the former returns the original value,
while the latter returns the modified value as result of the expression. As for both forms
the name of the operator function is the same (operator++ respectively operator--),
an additional feature is needed to distinguish both of them. In C++ this is solved
by requiring the prefix operator to accept no parameters, while the postfix operator is
required to accept an int (a dummy parameter, whose name doesn’t matter).

4.1.2. Operator Overloading in D

The D programming language [Ale10] also supports operator overloading. How this
is done differs between version 1.0 and version 2.0 of the language. Common to both
approaches is that the overloaded operators are specially named member functions of a
class or struct.

Operator Overloading in D 1.0

A unary operator op applied to a class or struct (like in -a) is interpreted as if its
corresponding member function opfunc was called (like a.opNeg()). The name of the
member function always consists of a prefix op followed by a string corresponding to the
operator to overload. The prefix operators ++ and -- cannot be overloaded directly, but
are instead rewritten using += and -= (so ++e becomes (e += 1)).

Binary operators can be overloaded in an analogous way. An expression containing a
binary operator op (like a + b) is rewritten by calling a member function opfunc (like
a.opAdd(b)). To enable also expressions like 3 + a, an additional (reversed) member
function opfunc r may be provided (like b.opAdd r(a)). If no match is found and
the operator is commutative, also operator functions for both operands exchanged are
searched for (like b.opAdd(a) and a.opAdd r(b)).

Comparison operators == and != both use the same operator function opEquals. So
a == b is rewritten as a.opEquals(b), and a != b is rewritten as !a.opEquals(b).
The other comparison operators <, <=, >, >= use the operator function opCmp. The
function is used to compute a value, that is then compared against zero (for instance,
a < b becomes a.opCmp(b) < 0).

The function call operator can be overloaded by providing member functions opCall.
The object can then be called as if it were a function, easing its use as functor.

Other operators that can be overloaded are the array index operator opIndex, the
array assignment operator opIndexAssign, and the array slice operators opSlice and
opSliceAssign.
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Operator Overloading in D 2.0

All unary operators can be overloaded through a single template function opUnary. The
template has an additional string parameter, that can be used to deduce or restrict the
operator to be overloaded. While for D 1.0 the prefix operators ++ and -- were handled
automatically, now this accounts to the postfix forms thereof. An expression e++ is
rewritten as (auto t = e, ++e, t).

Binary operators are rewritten to template functions opBinary and opBinaryRight,
with a template parameter of type string to recognize the operator to overload. The one
that better matches is selected. Exchanging the operands for commutative operators,
like in D 1.0, was abandoned. Compound assignment operators (like +=) were handled
as binary operators in D 1.0, but in D 2.0 they are represented by a templated function
opOpAssign.

Handling of comparison operators is similar to its handling in D 1.0, but for rela-
tional operators <, <=, >, >= also a reversed form is tried. For instance, for a < b both
a.opCmp(b) < 0 and b.opCmp(a) > 0 are checked.

Index and slice operators work like in D 1.0, but index assignment and slice as-
signment operators now are represented by template functions opIndexOpAssign and
opSliceOpAssign.

4.1.3. Operator Overloading in Groovy

Groovy is a programming language in its own right, but is compiled to Java bytecode,
which makes it possible to easily combine both, Groovy and Java programs. However,
there are some differences. For instance, in Java the operator == checks for equality
for primitive types, but for identity for objects, while in Groovy the operator checks
for both of them for equality (objects are compared by means of the equals function).
Reasoning for this is that equality checks should also work as expected when combined
with autoboxing. Comparison for identity can be done with function is in Groovy.

Overloaded operators are implemented as ordinary member functions. For instance,
a + b is rewritten as a.plus(b). The other operators are named similarly. Incre-
ment and decrement operators ++ and -- are overloaded by functions next and prev

for both forms, prefix and suffix. This makes them compatible to Java’s iterators (in
java.util.Iterator) so that they can be used like iterators in C++.

Comparison operators <, <=, >, >= are overloaded by providing a method compareTo

whose result is compared against zero (e.g., a < b is rewritten as a.compareTo(b) < 0).
An operator <=> exists, that is simply rewritten as a.compareTo(b), and usually returns
-1 if the left operand is smaller, 0 if both are equal, and 1 if the left operand is greater.

4.1.4. Conclusions for Operator Overloading in XL

In all three languages operators are overloaded by providing specially named functions.
These functions can then be called like any regular function, or in form of an operator
applied to some expression.

81



4. Operator Overloading

The naming scheme of operator functions is different between the three languages.
While D and Groovy use ordinary names for operator functions, C++ uses special
names containing the operator symbol, which are not allowed for ordinary functions.
This naming for operator functions in C++ effectively suppresses name collisions with
user-defined functions. In D such conflicts are at least very improbable because of the
used naming scheme. In Groovy, chances are high that the user unintentionally overloads
an operator, which might be even intended in case of the increment and decrement
operators.

The way C++ handles naming of operator functions seems to be most suitable. So
in XL operators should be overloaded in a similar way, by naming them operator+ and
the like, and transforming these names to an internal representation that prevents name
collisions.

To make operator overloading more useful for binary operators, it should be allowed
to combine two operands of different type, especially one of the operands should also be
allowed to be of primitive type (like int or double). The primitive type may also appear
as left operand, like in 3 + c for a complex number c, or 1.2 * v for a geometrical vector
v. D solves this by allowing the programmer to provide two operator overloads, a normal
form, and a reversed form with both operands exchanged. C++ instead relies on user-
defined conversion functions, that allow to convert the operands into the correct form
to apply the operator.

The C++ solution with user-defined implicit conversion functions seems to be more
flexible, and also extends the idea of automatic conversions introduced as auto(un)boxing
with version three of the Java language [GJSB05], as will be seen later on in section 4.3.
Without implicit conversions, many versions of the operator would have to be imple-
mented for sake of matching the types of the operands.

The increment and decrement operators ++ and -- need special handling as well.
While it might seem like a good idea to automatically rewrite those operators in terms
of another (like was done in D), this takes away some flexibility in expressiveness. Also
it is trivially possible to rewrite those operators manually in terms of another, so there
is no need to enforce this by the language.

Therefore, in XL increment and decrement operators should be defined like it is done
in C++. A dummy parameter of type int distinguishes the postfix form from the prefix
form.

Care must be taken when overloading comparison operators == and !=. As already
mentioned above, in Java these operators applied to primitive types check for equality,
but applied to objects compare for identity. In Groovy this is solved by introduction
of a new operator is to check for identity, and use of == and != to check for equality
instead. But this raises the question whether the is operator should be overloadable as
well.

The intention for overloading operators usually is to make instances of classes behave
as if they were primitive types. For instance, the same operations that can be performed
with an int should also be possible with an instance of a class Complex. Overloading
comparison operators is part of this process. Therefore, the intention when writing an
expression like a == b is to check for equality of two objects, and not if a and b reference
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the object.

In XL, if operators == and != are overloaded they will check for equality. A check
for identity is still possible by means of the equals method of class java.lang.Object,
which is the (direct or indirect) superclass of any class.

C++ allows to overload the assignment operator. One should discuss if allowing this
for XL is a good idea. Consider the following lines of code:

1 Complex a = new Complex (1 , 2 ) ;
2 Complex b = new Complex (3 , 4 ) ;
3 b = a ;
4 a++;

If overloading the assignment operator was not possible, so assignments behave like in
Java and copy just the reference and not the referenced object, then the third line would
cause both references a and b to refer to the same object. The fourth line would modify
the object a refers to, and by this also the object b refers to. This would be unexpected
behaviour, supposed that Complex should behave like a primitive type.

Assuming the assignment operator was overloadable and would, in the third line, cause
a copy of the referred data instead of just the reference. Then a modification like in the
fourth line would only affect the object referenced by a, and not the one referenced by
b. This is the expected behaviour. But what about the first line then ?

If it were also considered an assignment, then the assignment operator (if defined as a
member function of class Complex) would be called on an uninitialized object (actually
a does not refer to any object that the values could be stored in). The compiler could
generate code that automatically allocates a new object in this case, but this would place
restrictions on how the class has to be defined (it then must have an accessible default
constructor) and could cause unexpected side-effects.

Alternatively, the statement in the first line could be explained as definition and
initialization of a variable, so no assignment operator would be called. But if the user
then wrote

5 Complex c = new Complex (1 , 2 ) ;
6 Complex d = c ;
7 c++;

then c and d would again refer to the same object and the increment in the seventh
line would affect both, c and d, which is unexpected. Also, a reference in Java (and XL)
is similar to a pointer in C++, and C++ does not allow overloading the assignment
operator for pointers.

In conclusion, XL does not allow to overload the assignment operator.

4.2. Operator Overloading in XL

Operator overloading in XL is very similar to how it is done in C++. However, many
complications that arise in C++ because of its memory management (objects can be
allocated on the heap and locally on the stack) withdraw in XL (as there is only a
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garbage collected heap). Accordingly, operator overloading becomes simpler and less
error prone.

When overloading an operator, the name of the operator and number of parameters it
accepts must match. For example the name operator- could refer to the binary or the
unary minus operator. The compiler counts the number of parameters, including the
implicit this-reference if available, then decides which operator function was overloaded.

In the example above, the unary minus operator may either be a static function with
one parameter, or a member function with no parameter (besides the implicit this-
reference every member function has).

The return type and parameter types of an operator function may be freely chosen,
i.e. the operator< does not necessarily need to return a boolean. How this can become
beneficial will be shown later on in section 4.4.4.

The user is not required to overload every operator, but only those that make sense.
For instance, overloading operator< for class Complex does not make much sense (one
could sort complex numbers in many ways). If the user tries to call a non-overloaded
operator, a compile-time error is generated.

So picking up the example of a class for complex numbers from before, one could
implement addition of two such numbers in the following way:

class Complex {
private double r ea l , imag ;

public Complex (double r ea l , double imag ) {
this . r e a l = r e a l ;
this . imag = imag ;

}

public stat ic Complex operator+ ( Complex a , Complex b) {
return new Complex ( a . r e a l + b . r ea l , a . imag + b . imag ) ;

}

. . .
}

Code that performs computations on such complex numbers can statically import the
operator function, so that it becomes globally visible (in analogy to friend functions in
C++). For instance, this way one could write:

import stat ic Complex . ∗ ;
. . .
Complex a = new Complex (1 , 2 ) ;
Complex b = new Complex (3 , 4 ) ;
Complex c = a + b ; // c . r e a l == 4 and c . imag == 6

The remaining operators can be implemented in a similar way. For the increment and
decrement operators ++ and --, the prefix and postfix forms must be distinguished. In
the complex number example, prefix and postfix form of the increment operator could
be implemented in this way:
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class Complex {
. . .

// p r e f i x increment
public Complex operator++ ( ) {

r e a l ++;
return this ;

}

// p o s t f i x increment
public Complex operator++ ( int i ) {

Complex r e s u l t = new Complex ( r ea l , imag ) ;
r e a l ++;
return r e s u l t ;

}
}

The postfix variant expects an additional paramter of type int, its name can be chosen
freely. As can be seen, the postfix form is required to create a temporary copy, so i++

performs slightly less efficient than ++i.

Comparison operators == and != can be overloaded as well. Care must be taken to
not recursively call the operator itself, as this will result in a stack overflow at runtime.
For the complex number example, an implementation of the operator == might look like
this:

class Complex {
. . .

public stat ic boolean operator== ( Complex a , Complex b) {
return a . r e a l == b . r e a l && a . imag == b . imag ;

}
}

One might argue if it is necessary to handle the case if either (or both) reference is
null. The implementation, as defined above, would throw a NullPointerException in
this case. Considering that overloading operators should help to substitute a class for a
primitive type, passing in a null-reference indicates an error in the code that uses the
class. Therefore, throwing an exception seems to be appropriate.

4.2.1. Implementation

The (internal) name of an operator function is restricted by the Java Virtual Machine
specification to be a valid name in the Java programming language ([LY99, §2.7.1 and
§4.6]). As stated in [GJSB00, section 3.8 on page 19], identifiers (of which method
names are one kind) may consist of Java letters and Java digits, but must not start with
the latter. Furthermore, “the Java letters include uppercase and lowercase ASCII Latin
letters A–Z (\u0041–\u005a), and a–z (\u0061–\u007a), and, for historical reasons, the
ASCII underscore ( , or \u005f) and dollar sign ($, or \u0024). The $ character should be
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used only in mechanically generated source code or, rarely, to access preexisting names
on legacy systems.” Java digits are the normal ASCII digits 0–9 (\u0030–\u0039).

Naming a method operator+ is not allowed, but the special handling of names con-
taining a dollar sign $ opens up another possibility. Names of operator functions are
mapped to legal names for Java functions by prefixing an operator dependent name
with the string operator$. For instance, the internal name for the unary operator+

becomes operator$pos, and for the binary operator+ it becomes operator$add. This
also prevents collisions with names of user-defined functions.

Table 4.1 on page 99 lists all operators available in XL, sorted by precedence. Over-
loadable operators are listed together with their internal name suffix, all other operators
cannot be overloaded. Additional operators to support graph replacement rules are in-
cluded in the table. The modifications to the XL compiler so that it supports operator
overloading are outlined below.

The implementation of the XL compiler is described in [Kni08, chapter 8]. At first,
the input file is decomposed into tokens by the lexical analyzer (XLTokenizer). Then
tokens are combined into abstract syntax trees by the parser (XLParser). A seman-
tic analyzer (Compiler) converts these into expression trees. Finally, a code genera-
tor (BytecodeWriter) produces bytecode that can be executed by the JVM. To facili-
tate implementation, the parser XLParser (generated from XL.g) extends class Parser,
and the semantic analyzer Compiler (generated from Compiler.tree.g) extends class
CompilerBase.

To make the compiler understand operator overloading, CompilerBase was retrofitted
with a method checkOperatorFunction. This determines the number of operands
(counting this for member functions as additional operand), then decides if such an
operator is overloadable. In the parser grammar (XL.g) in rule typeMember (members
of a type are fields, methods, etc.), a call to checkOperatorFunction ensures that only
valid combinations of operator symbol and number of parameters are overloaded. The
rule methodIdent, which parses the name of a method, is used to distinguish between
normal and operator methods, and to check that for methods starting with the prefix
operator only valid operator symbols are used (rule overloadableOperator). Also
tokens of non-Java operators are included in the list.

Now that the parser accepts definitions of operator functions, the semantic analyzer
must be instructed to call those methods in place of an operator. The grammar of the
semantic analyzer (Compiler.tree.g) contains rules unaryExpr, binaryOp, etc., that
in turn call the function compileOperator in CompilerBase to generate an expression
tree from an abstract syntax tree. Application of an overloaded operator is done by
generating a call to its operator function. If no matching operator function can be
found, an error message is generated. An error is also generated, if multiple operator
functions match (e.g., binary addition defined as static function with two parameters
and as member function with one parameter).
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4.3. Implicit Conversions

Operator overloading alone is already useful, but becomes powerful in combination with
implicit conversions. Java already defines a number of conversions, namely

• Identity conversions,

• Widening primitive conversions,

• Narrowing primitive conversions,

• Widening reference conversions,

• Narrowing reference conversions,

• Boxing conversions,

• Unboxing conversions,

• Unchecked conversions,

• Capture conversions,

• String conversions,

• Value set conversions.

Different conversions apply in different contexts (assignment, method invocation, etc.).
For reference see [GJSB05, chapter 5].

Identity conversion just states that conversion of a type to the same type is always
permitted. This includes redundant application of cast operators.

A widening primitive conversion allows a type byte, short, int, long, float, double
to be cast to any other type right to it in this list, and to cast char to int and types
right to it in the list. Widening primitive conversions extend the magnitude of a numeric
value, but might loose precision (for instance, when converting int to float).

A narrowing primitive conversion allows a type byte, short, int, long, float, double
to be cast to any other type left to it in this list or to char, and char to byte or short.
Note that conversion from byte to char first performs a widening primitive conversion
to int, then a narrowing primitive conversion to char. Narrowing primitive conversions
might loose information about magnitude and precision of a numeric value.

A widening reference conversion simply allows to convert a reference type to any of
its supertypes.

A narrowing reference conversion allows, among others, to convert from a type to one
of its derived types, and requires a test at run time if the conversion is really possible.

Boxing conversions convert a primitive type boolean, byte, char, short, int, long,
float, double to a value of corresponding reference type Boolean, Byte, Character,
Short, Integer, Long, Float, Double. For a value v of primitive type p conversion to a

87



4. Operator Overloading

reference r of corresponding reference type R is performed such that r.pValue() == v.
Conversion can be performed by calling the static function R.valueOf(v).

Unboxing conversions convert from a reference type Boolean, Byte, Character, Short,
Integer, Long, Float, Double to primitive type boolean, byte, char, short, int, long,
float, double. A reference r of one of the reference types R can be converted to a value
of its corresponding primitive type p by r.pValue().

Unchecked and capture conversion are related to generics and will not be discussed
here.

String conversion converts any type to type String. Primitive types can be converted
to strings by static functions valueOf in String. Reference types can be converted to
String by the method toString, that Object and so also every class derived from it
possesses. String conversion applies, when one of the operands of the binary + operator
is a String (string concatenation).

Value set conversion is related to FP-strict expressions. If FP-strict, values of type
float (respective double), that are not an element of the float (double) value set, must
always be mapped to the nearest element of the float (double) value set.

As can be seen, some patterns for conversion emerge. In fact, many other methods in
the Java standard library follow these patterns. Constructors taking one argument can
be also be seen as conversion functions (like conversion constructors in C++). Therefore,
the following conversion functions will be considered in XL:

class C {
C (S source ) ;
stat ic C valueOf (S source ) ;
T toTs ( ) ;
t tValue ( ) ;

}

where C and T are reference types (class or interface), with Ts the simple name3 of T ,
S is a primitive or reference type, and t a primitive type.

For already existing types, conversions can also be defined non-intrusively. Instead of
an implicit this reference the toTs method can be declared static and with an explicit
reference to the conversion source, like in

class C {
stat ic T toTs (S source ) ;

}

and then may be statically imported into the current scope. In principle, the valueOf

method could have been used for this purpose as well, as it contains the same signature.
The intention for supporting both forms is to give better control about which conversions
are visible in a certain scope. The valueOf methods must be declared in the reference
type C to be applicable, while the static toTs methods must be statically imported for
applicability.

To keep compatibility to legacy code, applicability of conversion constructors must
be restricted. While in C++ the explicit keyword disables a constructor for implicit

3For instance, if T is java.lang.String, then Ts is String. See also [GJSB05, section 6.2].
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conversions, in XL the annotation @ConversionConstructor enables a constructor for
such purpose. So only constructors that are explicitly marked with the annotation take
part in implicit conversions. This prevents unexpected conversions from occurring.

The allowed conversions may also be controlled with an annotation @UseConversions.
The enumeration ConversionType provides conversion types that can be enabled:

VALUE OF enables use of static valueOf methods
TO TYPE IN SCOPE enables toTs methods
CONVERSION CONSTRUCTOR constructors marked with @ConversionConstructor

are used for conversion
CONSTRUCTOR all constructors are used for conversion (this super-

sedes CONVERSION CONSTRUCTOR)
Initially, also implicit conversions over multiple conversion steps were considered. But

this causes more problems than it solves. For instance, every object has a toString

method and boxing classes like Integer, Float, etc. would thus allow any object to be
converted to int, float, etc. For this reason, at most one autoconversion step is used,
which also conforms to how implicit conversions are handled in C++.

In conclusion, autoconversions can be seen as a natural extension to auto(un)boxing.

4.3.1. Implementation

The XL compiler performs standard conversions as defined in [GJSB05, chapter 5] in the
method standardImplicitConversion of class CompilerBase. To extend the compiler
to support autoconversions, a method implicitConversion is used in appropriate con-
version contexts (assignment, method invokation, etc.) instead of standard conversions.
The method implicitConversion first checks if standard conversions apply by calling
standardImplicitConversion. If this is not the case, conversion functions provided by
the user are searched for.

The class Scope manages the enabled types of conversion functions, which can be
queried by its method isEnabledConversion. If a candidate method has one of the
valid patterns for autoconversions and its use is enabled, a function checkCvCandidate

is called to perform additional checks (accessibility) and then enters it into a list of
conversion functions.

Special treatment must be performed for toTs and tValue conversion functions, as the
target type is part of its name. The function getToTypeMethodName takes the target type
of the conversion and generates a string that must match with the name of a conversion
function in the current scope. Precisely, primitive types t generate the string tValue,
array types T generate the string toTcArray, where Tc is the array’s component type,
otherwise it is just toTs with Ts the simple name of reference type T . Examples are:

int → intValue
int [ ] → toIntArray
int [ ] [ ] → toIntArrayArray
. . .
S t r ing → t oS t r i ng
St r ing [ ] → toStr ingArray

89



4. Operator Overloading

St r ing [ ] [ ] → toStr ingArrayArray
. . .

Having obtained a list of candidate functions for conversion, implicitConversion

checks if there is a best match. If there is no such match or more than one, the compiler
generates an error. Otherwise, a call to the conversion function is generated.

4.4. Applications

The combination of operator overloading in combination with user-defined implicit con-
version functions allows some interesting applications. Examples thereof will be pre-
sented in the following sections.

4.4.1. Vector and Matrix Computations

Probably the standard example for using operator overloading are vector and matrix
calculations. GroIMP contains classes for this purpose in the package javax.vecmath,
which is a modified version4 of the original vecmath package5. The package contains
classes Vector{2,3,4}{d,f} for vectors and Point{2,3,4}{d,f} for points, both of
them derived from classes Tuple{2,3,4}{d,f}, classes for matrices, quaternions, rota-
tions and colors.

To facilitate working with these classes, some operator overloads are provided in the
class VecmathOperators. In addition, the class Library (containing many helper func-
tions for working with RGGs) provides conversion functions to transform a node into a
Point3d of its location. Using these functions, for three nodes na, nb and nc the user
can simply write:

Point3d a = na ;
Point3d b = nb ;
Vector3d v = b − a ;
Point3d c = nc + 3 ∗ v ;

The operators are defined as static functions and are statically imported into the
current scope. This way, no modification of the vector classes was necessary. A complete
example making use of these operators is the Boids model in GroIMP, which is based
on [Rey87].

4.4.2. Arbitrary-Precision Arithmetic

The Java standard library provides in the package java.math classes BigInteger and
BigDecimal for arbitrary-precision arithmetic. Usage of these classes is performed by
calling methods on such objects to perform arithmetic operations, for instance a function
add to calculate the sum, which is cumbersome. Furthermore, more complex arithmetic
expressions must be written in prefix-form, which is hard to read and so prone to errors.

4http://objectclub.jp/download/vecmath_e, accessed 8. November 2011
5http://java.net/projects/vecmath, accessed 8. November 2011
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By making use of operator overloading and autoconversions those data types can be
made to work like any of the built-in types. For instance, one could provide a conversion
function to transform an int to a BigInteger:

public stat ic Big Intege r toB ig In t ege r ( int i )
{

return new Big Intege r ( i ) ;
}

Then a BigInteger can be initialized from an integer literal, like in:

Big Intege r a = 3 ;

The operations on BigInteger can also be overloaded. For instance, an overload for
the function add can be provided as:

public stat ic Big Intege r operator+ ( Big Intege r a , B ig Intege r b)
{

return a . add (b ) ;
}

Then it is possible to write:

p r i n t l n (2 + a ) ;

A nice feature of how XL implements operator overloading is that no modification of
the original classes is necessary to retrofit them with operators. This wouldn’t even be
possible in this case, as those classes belong to the Java standard library.

4.4.3. Stream IO

Programming input/output operations is a common task in a programmers life. Most
common is to print something to the screen, like in println("Hello world!"). In Java,
basic input and output is performed by classes defined in the package java.io, and the
class System provides a field out of type PrintStream to perform formatted output to
the console.

Different functions in PrintStream can print data of different types, but to write
something as simple as a number with a label, either multiple calls have to be made, like
in

System . out . p r i n t ( ” i = ” ) ;
System . out . p r i n t l n ( i ) ;

or label and number have to be concatenated to a string as in

System . out . p r i n t l n ( ” i = ” + i ) ;

To fix this, printf-style functions that take a variable number of arguments have been
introduced. Using these functions, the example can be written as:

System . out . p r i n t f ( ” i = %d” , i ) ;
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Unlike the counterpart in C, the printf-functions in Java provide type safety. How-
ever, interpreting the format string and checking argument types decreases performance,
as does boxing of primitive values (like i above). A better approach to formatted out-
put can be found in the iostream library of C++. Input and output of data can be
performed by calling overloaded shift operators >> and <<. So to print the value of a
variable i with a label, like in the examples above, in C++ one would write:

std : : cout << ” i = ” << i << ”\n” ;

The shift operators are assumed to expect the stream as first parameter and return it
as result of the shift expression to allow invocation chaining. In comparison with printf-
functions, the operator approach is more flexible, as formatted output of user-defined
types can be added later on (by providing appropriate overloads for the operators).

In XL, the stream operator can be implemented by functions like this:

stat ic PrintWriter operator<< ( Pr intWriter p , int i ) {
p . p r i n t ( i ) ;
return p ;

}
stat ic PrintWriter operator<< ( Pr intWriter p , S t r ing s ) {

p . p r i n t ( s ) ;
return p ;

}

Then formatted output like in the examples above can be performed in GroIMP/XL
by:

out << ” i = ” << i << ”\n” ;

Also, fine-tuning of the output (number of digits, time and date format, etc.) can
be controlled by inserting manipulators into the stream, instead of putting hard-to-
remember flags into the format string. For instance, the C++ iostreams library pro-
vides standard manipulators like endl (insert end of line and flush output) or hex (all
subsequent integral values will be written in hexadecimal format).

In C++, manipulators are implemented as functions and stream operators are pro-
vided to insert the manipulators into the stream. In XL, it is not possible to directly
insert a function call into the stream, instead a functor must be used. Stream manipu-
lators must implement an interface Manipulator:

interface Manipulator
{

void apply ( Pr intWriter p ) ;
}

An implementation of the endl manipulator then might look like this:

f ina l stat ic Manipulator endl = new Manipulator ( )
{

public void apply ( Pr intWriter p)
{

p . p r i n t ( ’ \n ’ ) ;
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p . f l u s h ( ) ;
}

} ;

To insert manipulators into the stream, an appropriate overload of the shift operator
must be provided:

stat ic PrintWriter operator<< ( Pr intWriter p , Manipulator m)
{

m. apply (p ) ;
return p ;

}

The manipulator can then be used like in this example:

out << ” i = ” << i << endl ;

Some manipulators, like hex, might need to store an additional state. This can be
done by working on an extended stream class with fields to store such a state, and
letting the manipulator check if the stream object is really of this type (if not, the
state change might be silently ignored) and then setting the state appropriately. Other
stream operators, for instance those that output numbers, refer to the state and behave
accordingly.

4.4.4. Expression Templates and Parsing of Chemical Reactions in XL

In C++, expression templates [Vel95, Vel98] provide a technique that allows to drasti-
cally improve the performance of applications. Consider a library that provides over-
loaded operators for vector calculations and the following simple computation:

DoubleVec w(1000) , x (1000) , y (1000) , z ( 1 0 0 0 ) ;
w = x + y ∗ z ;

The type DoubleVec represents a variable-length vector of double values and operators +
and * are assumed to perform component-wise addition respectively multiplication. With
traditional use of operator overloading, this code produces for y * z an intermediate
vector t, which is then added to x to obtain the final result.This is cache-unfriendly and
degrades performance.

Using expression templates, Veldhuizen reports to obtain more than 95% efficiency
compared to a hand-coded C version. The trick is, not to evalute the operator in-place,
but to return some object that knows how to perform the computation. The assignment
then executes a loop over all target indices, and evaluates the vector line by line. This
is equivalent to the following code:

for ( int i = 0 ; i < 1000 ; i++)
w[ i ] = x [ i ] + y [ i ] ∗ z [ i ] ;

The technique relies heavily on the compiler to perform partial evaluation of expres-
sions, and the ability of the compiler to construct syntax trees for expressions by match-
ing types at compilation time of the program. It has been reported that this technique
can also be applied to Java programs [Vel00].
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Although XL does not support templates, some of the ideas from expression templates
can be transferred to XL. The aim is to be able to parse chemical reactions like

2 H2 + O2

kf−−⇀↽−−
kb

2 H2O

and integrate them numerically. We make use of overloaded operators and autoconver-
sions to let the compiler deduce the structure of the chemical reaction equation.

We start by defining a class that represents individual species that participate in a
reaction:

class Molecule
{

public stat ic f ina l Molecule H2 = new Molecule ( ”H2” ) ;
public stat ic f ina l Molecule H2O = new Molecule ( ”H2O” ) ;
public stat ic f ina l Molecule O2 = new Molecule ( ”O2” ) ;

S t r ing name ;

public Molecule ( S t r ing name) {
this . name = name ;

}

public St r ing toS t r i ng ( ) {
return name ;

}
}

Each Molecule has a name. Some predefined species types have been defined (H2, O2,
H2O), that can be statically imported later on into the scope.

To enter the chemical reaction, we want to use overloaded operators to capture the
structure of the reaction, and then store this into a variable. So the resulting code in
the application will look like this:

ChemicalReaction r = 2∗H2 + O2 <=> 2∗H2O;

The addition operator + must be overloaded, so that reactants can be “summed”, and
the comparison operator <=> is overloaded to serve as reaction arrow, indicating a bidi-
rectional reaction is possible. Optionally, the operators --> and <-- could be overloaded
to indicate unidirectional reactions. The multiplication operator * allows to provide the
stoichiometric coefficient of the species. The produced ChemicalReaction collects all
information about the structure of the reaction, and can be called later on to evalute re-
action speeds for given concentrations of the reactants. A parse tree of the oxyhydrogen
reaction is shown in figure 4.1.
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ChemicalReaction

ChemicalExpression

ChemicalTerm

2 H2

ChemicalTerm

O2

ChemicalExpression

ChemicalTerm

2 H2O

left right

Figure 4.1.: Parse tree generated for chemical reaction 2 H2 + O2

kf−−⇀↽−−
kb

2 H2O.

The mentioned operators are implemented in a class ChemicalOperators, together
with some conversion functions. The overload of the reaction arrow is as follows:

public stat ic ChemicalReaction operator<=> (
ChemicalExpress ion lhs , ChemicalExpress ion rhs )

{
ChemicalReaction r e s u l t = new ChemicalReaction ( ) ;
r e s u l t . l e f t = l h s ;
r e s u l t . r i g h t = rhs ;
return r e s u l t ;

}

At compilation time, the compiler tries to match the types of the left and right hand
side of operator <=> to the type ChemicalExpression, defined as:

class ChemicalExpress ion
{

f ina l ArrayList<ChemicalTerm> terms =
new ArrayList<ChemicalTerm>() ;

public void add ( ChemicalTerm term )
{

terms . add ( term ) ;
}

}

As can be seen, a ChemicalExpression just stores a list of ChemicalTerms, and
provides a function to add new terms to the list. This is used by an overloaded operator
+ to form an expression from a sequence of terms:

public stat ic ChemicalExpress ion operator+ (
ChemicalExpress ion lhs , ChemicalTerm rhs )

{
l h s . add ( rhs ) ;
return l h s ;

}
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A ChemicalTerm stores the used Molecule together with its stoichiometric coefficient.
Its definition is:

class ChemicalTerm
{

double f a c t o r ;
Molecule m;

public ChemicalTerm ( Molecule m)
{

this . f a c t o r = 1 ;
this .m = m;

}

public ChemicalTerm (double f a c to r , Molecule m)
{

this . f a c t o r = f a c t o r ;
this .m = m;

}
}

Finally, the operator * is overloaded to assign stoichiometric coefficients to a term:

public stat ic ChemicalTerm operator ∗ (
double f a c to r , ChemicalTerm term )

{
term . f a c t o r ∗= f a c t o r ;
return term ;

}

Some conversion functions are needed to handle special cases, like when the chemical
expression consists of a single term. The following conversions are needed:

1) Molecule → ChemicalTerm

2) Molecule → ChemicalExpression

3) ChemicalTerm → ChemicalExpression

The first conversion is needed when a molecule is to be combined with a stoichiometric
coefficient, so that the operator * can be called, and also to provide subsequent terms
of a chemical expression if they are molecules without stoichiometric coefficient. In the
example, the former condition applies to 2 H2, while latter condition applies to O2.

The second conversion helps if a chemical expression consists solely of a molecule,
without any stoichiometric coefficient, or to provide the first term in the expression. In
the example this would apply if the coefficient 2 was missing in front of H2.

The third conversion allows an expression to consist of a single molecule with a stoi-
chiometric coefficient. In the example, this applies to 2 H2O.

The interesting result is that by adding overloading and autoconversions to the XL
language, the XL compiler is able to analyze the structure of the chemical reaction and
produces an error message at compilation time if its syntax was violated, provided the
operators were overloaded as shown above.
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An extension of this approach could also not just check the syntax of the reaction
equation, but also its semantics. For instance, one could provide a class Atom, that
captures properties of atoms, and make Molecule understand from which and how many
atoms it is made of. Then the balance of atoms on the left and right side of the reaction
could be ensured. In C++, it would be possible to perform this check at compilation
time with the help of templates, but as XL does not support templates this must be
done at runtime (when the reaction is constructed).

Not yet discussed was the structure of the ChemicalReaction. As this is used to
numerically integrate the process, a differential equation must be obtained from the
reaction formula. For elementary reactions, the law of mass action [WG64]6 allows to
derive an equation. For instance, the dynamics of a reaction

aA + bB
kf−−⇀↽−−
kb

cC + dD

with chemical species A, B, C, D with associated stoichiometric coefficients a, b, c, d can
be described by differential equations

−1

a

d[A]

dt
= −1

b

d[B]

dt
=

1

c

d[C]

dt
=

1

d

d[D]

dt
= kf [A]a[B]b − kb[C]c[D]d,

where the reaction rate vf = kf [A]a[B]b of the forward reaction depends on the con-
centrations of A and B and a rate constant kf , and likewise for the backward reaction
on concentrations of C and D, and a constant kb. The coefficients a, b, c, d indicate the
order of the chemical species, and their sum a+ b respectively c+ d indicates the order
of the forward respectively backward reaction.

Note that elementary reactions with more than two molecules involved are very rare
(the molecules must be at the same location to interact), and that the rate constants are
temperature dependent (as described by the Arrhenius equation [Moo86, section 9.28]).

As the result of parsing the chemical formula an instance of ChemicalReaction is
obtained, and additional parameters like kf and kb can be set on this object. To permit
the numerical integrator evaluation of the rate equation, the class contains a function
eval that calculates the rates for each reactant and accumulates them in a rate vector.

Usually more than one reaction is simulated at the same time, especially considering
that many observed reactions consist of a network of elementary reactions. Therefore, a
class Model is used to manage a collection of chemical reactions. In addition, other types
of time dependent behaviour could be considered, like diffusion processes. By providing
overloaded operators analogously to those for chemical reactions shown above, these
diffusion processes could use their own syntax.

If multiple compartments are to be simulated, like in a cellular filament or tissue,
multiple instances of the same Molecule have to be created. Each of them then rep-
resents the concentration of a species in a certain compartment. To support this, the
class Model contains a method assignIndices that prior to integration automatically
indexes all used Molecules starting with zero. The indices refer to an entry in a array
of double, the state vector, which stores the concentrations of the molecules.

6An English translation can be found in [Abr86] and a German translation in [Abe99].

97



4. Operator Overloading

4.4.5. Production Statements in XL

After the introduction of operator overloading in XL, parsing of production statements
was rewritten to work in a similar way like the stream output facility. The parser then
maps the syntax of productions to calls of operator functions. The following example

x [−e−> Y] < Z , x W

was given in [Kni08], and results in a sequence of calls

tmp1 = producer . producer$beg in ( ) . operator$space ( x ) ;
tmp2 = tmp1 . producer$push ( ) . producer$beg in ( )

. operator$arrow (new Y( ) , e ) . producer$end ( ) ;
tmp1 . producer$pop ( tmp2 ) . o p e r a t o r $ l t (new Z ( ) ) . producer$separate ( )

. operator$space ( x ) . operator$space (new W( ) ) . producer$end ( ) ;

Besides operator functions there exist also producer functions, for instance the push-
operator [ is mapped to the function producer$push. The return value of these functions
is another producer, so that invocation chaining is possible.

Usually, the same producer on which the function was called is returned. But by
returning some other type of producer it is possible to activate another set of parsing
rules. This is used when switching from the RGG producer (class RGGProducer) to
vertex-vertex algebra rules (class VVProducer) [Kni08, section 10.6], and also within the
vv system to only allow certain sequences of operations. The latter works by providing
a producer with only the allowed set of operators defined. If the user specified some
forbidden sequence of operations, this can be detected already at compilation time and
the compiler can issue an error.

4.5. Conclusion

Operator overloading and user-defined implicit conversion functions are features known
from many programming languages, among them C++. By introducing these features
into the XL language, mathematical computations can be written in a user-friendly way,
thus becoming more clear and less prone to errors.

Advanced usage includes parsing of chemical expressions. By providing appropriate
operator overloads and conversion functions, the syntax of the language can be extended
by the user to understand such chemical formulae. Also errors made in the specification
of the formula can be detected at compilation time.

The possibility to also explain production rules for relational growth grammars and
vertex-vertex algebras demonstrates that operator overloading is general purpose and
thus very flexible.
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Operator Description Name suffix
`a` Quote quote

a[b] Array/Property access index

a(b) Invocation invoke

a[:] Array generator generator

a -> b Arrow arrow

a <- b Leaf arrow leafArrow

a++ Postfix increment postInc

a-- Postfix decrement postDec

a ** b Exponentiation pow

++a Prefix increment inc

--a Prefix decrement dec

+a Unary plus pos

-a Negation neg

∼a Bitwise complement com

!a Logical complement not

a * b Multiplication mul

a / b Division div

a % b Remainder rem

a + b Addition add

a - b Subtraction sub

a << b Shift left shl

a >> b Shift right shr

a >>> b Unsigned shift right ushr

a instanceof T Type comparison
a < b Less than lt

a > b Greater than gt

a <= b Less than or equal le

a >= b Greater than or equal ge

a <=> b Comparison cmp

a in b Containment in

a <-> b Left-right arrow leftRightArrow

a --> b Long arrow longArrow

a <-- b Long left arrow longLeftArrow

a <--> b Long left-right arrow longLeftRightArrow

a --- b Line line

a +> b Plus arrow plusArrow

a <+ b Plus left arrow plusLeftArrow

a <+> b Plus left-right arrow plusLeftRightArrow

a -+- b Plus line plusLine

a /> b Slash arrow slashArrow

a </ b Slash left arrow slashLeftArrow

a </> b Slash left-right arrow slashLeftRightArrow

a -/- b Slash line slashLine

a == b Equality eq

a != b Inequality neq

a & b Bitwise and and

a ^ b Bitwise exclusive or xor

a | b Bitwise inclusive or or

a && b Logical and cand

a || b Logical or cor

a :: b Guard guard

a ? b : c Conditional
a : b Range range

a = b Assignment
a := b Deferred assignment defAssign

a op= b Compound assignment sAssign
a :op= b Compound deferred assignment defSAssign
op ∈ {**, *, /, %, +, -, <<, >>, >>>, &, ^, |} s ∈ {pow, mul, div, ...}

S ∈ {Pow, Mul, Div, ...}

Table 4.1.: XL operators, sorted by precedence.
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5. Ordinary Differential Equations on
Graphs

In this chapter we investigate how to formulate differential equations on graphs or net-
works and how to solve them with the help of XL programs. Core of this chapter is the
introduction of a new operator into the language XL.

We will start with some examples that we want to integrate numerically. Then we
show how integration was performed previously in GroIMP/XL using Euler integration.
In a next step, we will apply numerical standard methods (like Runge-Kutta) to solve
the same problems, we show how the examples need to be modified accordingly, and
what difficulties arise when doing this.

As solution to automatically handle these problems, a new operator is introduced into
the language XL, which provides the needed information. The examples will then be
rewritten in terms of this operator to show how things simplify.

There will also be a short evaluation of some numerical libraries, and reasoning for
inclusion of one of these into GroIMP will be described.

Finally, the considerations made during implementation of the system will be pre-
sented.

5.1. Introduction

There are many simulation problems that need numerical integration. We will start out
by investigating which type of problems might be interesting to solve.

Already discussed in the last chapter in section 4.4.4 was the solution of chemical
kinetics. It turns out that the approach using operator overloading, despite being inter-
esting, is not sufficiently flexible to formulate all possible kinds of reactions that might
occur. Also, for the average user it might be not straightforward to formulate his problem
this way. Therefore, some issues that might arise when formulating chemical reaction
networks will be discussed.

Many simulation models also combine processes with a geometrical structure. A com-
mon type are transport processes, as they are often used in functional-structural plant
models (FSPMs). So this will be discussed as well.

5.1.1. Chemical Kinetics

In biological organisms chemical reactions play an important role. Chemical kinetics
investigates what influences the speed of a chemical reaction, as well as its reaction
mechanism. For reference see [Moo86].
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2 N2O5 −−→ 4 NO2 + O2 −d[N2O5]

dt
= k1[N2O5]

2 NO2 −−→ 2 NO + O2 −d[NO2]

dt
= k2[NO2]2

(C2H5)3N + C2H5Br −−→ (C2H5)4N+Br– −d[C2H5Br]

dt
= k2[C2H5Br][(C2H5)3N]

CH3CHO −−→ CH4 + CO −d[CH3CHO]

dt
= k1.5[CH3CHO]3/2

Table 5.1.: Examples of chemical reactions and their rate laws (from [Moo86]).

For a general equation

ν1A + ν2B + . . . −−→ ν ′1A′ + ν ′2B′ + . . .

one obtains the reaction rate

r = − 1

ν1

d[A]

dt
= − 1

ν2

d[B]

dt
=

1

ν ′1

d[A′]

dt
=

1

ν ′2

d[B′]

dt
= . . .

where ν1, ν2, ν ′1, ν ′2, . . . are the stoichiometric coefficients in the equation.
A rate law describes how the reaction rate depends on concentrations of the involved

species, and perhaps some other factors. They often are found to be of the form

r = k[A]a[B]b . . . ,

where k is the rate constant or rate coefficient. The exponents a, b, . . . are the order
with respect to A, B, . . . , and their sum is the reaction order.

Table 5.1 shows some examples of reactions together with their rate laws. As can be
seen, reactions do not necessarily have to be of an integer order. It was found that for
elementary reactions the order of the involved species corresponds to its stoichiometric
coefficient. However, most observed reactions follow a reaction mechanism consisting of
a sequence of elementary steps that cannot be split up further, and their rate law cannot
be determined directly from the stoichiometric equation. Also, for reactions taking place
in a dimensionally-restricted environment such as biological cells, the traditional law of
mass action is not valid anymore and fractional kinetics [Sav98] have to be considered.

Often the temperature has a strong influence on the reaction rate. The Arrhenius
equation

k(T ) = A · e
−Ea
RT

with A the pre-exponential factor, Ea the activation energy, R the universal gas constant
and T the temperature approximates this dependency of the rate coefficient.

In biology, many reactions are catalyzed by enzymes. Michaelis-Menten kinetics
[MM13] is used to describe such processes, which are constituted by formation of an
enzyme-substrate complex followed by a reaction to the final products:

E + S
k1−−⇀↽−−
k2

ES
k3−→ E + P
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5.1. Introduction

A B

Figure 5.1.: Diffusion through membrane in aqueous solution.

For the observed reaction S −−→ P the corresponding rate law is

−d[S]

dt
=
d[P]

dt
= vmax

[S]

Km + [S]
.

A very high substrate concentration [S] results in saturation with a maximal reaction
rate vmax = k3[E]0, where [E]0 = [E] + [ES] is the total enzyme concentration. The
Michaelis constant Km = k2+k3

k1
is the substrate constant for which the reaction rate is

half of the maximal rate vmax.
In conclusion, the rate law may not be directly derived from the stoichiometric equa-

tion. So being able to enter those equations (as was presented in section 4.4.4) is only
of partial use if the reaction mechanisms are unknown. Also, additional effects (like
dependency on temperature, pH, water, etc.) may need to be described. Therefore, the
user should be able to easily specify (ordinary) differential equations.

5.1.2. Transport Processes

Simulation of transport processes plays an important role in many models, especially
biological ones. An example of this is diffusion of a substance through a membrane, as
is shown in figure 5.1. A difference between concentrations cA and cB causes a flux from
higher to lower concentration according to the law:

−dcA
dt

=
dcB
dt

= P ·A · (cA − cB), (5.1)

where P is the permeability of the membrane and A its area.
A more general formulation is

∂c

∂t
= D

∂2c

∂x2
,

which is known as Fick’s second law [Fic55], or when applied to heat conduction as
Fourier’s second law (see equation 2.16 on page 40).

Reaction-diffusion systems [Tur52] combine diffusion of chemical substances with re-
actions between them. They are described by the PDE

ut = D ·∆u+ f(u),
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5. Ordinary Differential Equations on Graphs

where u(x, t) is a vector-valued function representing the concentrations of the chemical
substances at location x for time t, ut its time-derivative, D a diagonal matrix with
diffusion coefficients, ∆u the Laplacian of u, and f : Rn → Rn an arbitrary function
accounting for the chemical reactions. The interesting aspect about these systems is
that, although the original state may be quite homogeneous, they may later on develop
a pattern or structure due to small random disturbances. Activator-inhibitor systems
[You84] may be seen as a special case of reaction-diffusion systems.

Instead of on a grid, transport processes may also take place on graph structures or
networks. An example are real trees, where the phloem transports carbon assimilates
downward from the leaves, and the xylem transports water and nutrients upward from
the roots. Water transport in trees has been investigated in [Frü95, FK99].

5.2. Examples for Integration on Graphs

Below we will present some examples that define processes on networks respectively
graphs. Both examples are artificial in the sense that they do not claim to simulate
any problem from the real world. Nevertheless, they are representative for real world
problems, like reaction networks or transport of carbon and nitrogen in a plant. The
examples have been described previously in [HSK10].

5.2.1. Circular Transport with Inhibition

Consider the following (artificial) example of transport with inhibition, as is shown in
figure 5.2. A substrate at Si⊕1 is transported to Si⊕2, if the concentration of the substrate
at Si is below a certain threshold. Here, the operator ⊕ indicates addition in the ring,
so i⊕ j = mod(i+ j, n) with n the number of nodes in the ring (in the example n = 5).

S0

S1

S2 S3

S4

Figure 5.2.: Circular transport with inhibition (schematic).

The process is governed by the differential equations

d[Si⊕2]

dt
= −d[Si⊕1]

dt
=

{
µ · [Si⊕1] if [Si] ≤ T
0 otherwise.
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In XL, this can be modelled by introducing a module for the substrate nodes Si:

module S(double c ) ;

The solid edges in figure 5.2 can be represented in the GroIMP graph by user-defined
edges, such that there is an EDGE 0 from Si to Si⊕1 for each i ∈ {0, 1, 2, 3, 4}. Simulation
of transport can then be done in XL by the following rule:

x : S −EDGE 0−> y : S −EDGE 0−> z : S ::> {
double r a t e = x [ c ] > T ? 0 : µ ∗ y [ c ] ;
y [ c ] :−= rate ;
z [ c ] :+= rat e ;

}

Starting with an initial substrate concentration of 1 at S0, transport of a fraction µ
of the substrate to S1 will be performed. There will be no transport from S1 to S2 until
the concentration at S0 drops below the threshold value T. The effect is, that almost all
of the substrate will be transported from S0 to S1, before it is transported further from
S1 to S2. The resulting sequence of development of the system is shown in figure 5.3.

5.2.2. Transport in a Tree

As a more complicated example, consider transport of carbon assimilates through a tree.
Transport is assumed to be caused by diffusion, which might not correspond to reality.
But the purpose of the model is not to explain real trees, rather it should serve as an
example that shows what complications arise if differential equations were to be solved
on a dynamical structure.

For each connected pair A and B of nodes the differential equations

−d[Ac]

dt
=
d[Bc]

dt
= D · ([Ac]− [Bc])

describe exchange of carbon assimilates between these nodes.
Besides transport, also production and consumption of the substrates is simulated.

Production occurs in leaves, represented by green spheres. Consumption is performed
in the branches, represented by cylinders, and causes growth of them. This is shown in
figure 5.4, where the concentration of carbon assimilates is visualized by the radius of
the corresponding objects.

Differential equations describing production and consumption of carbon and growth
in length for each node A are

d[Ac]

dt
= PA − CA · [Ac]

d[Al]

dt
= γ ·CA · [Ac].

These apply simultaneously to the diffusion equations. Here, for each node A, PA is a
production coefficient (PA = 0 if A is a branch) and CA is a consumption coefficient
(CA = 0 if A is a leaf).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3.: Circular transport with inhibition (result).
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(a) (b) (c) (d)

Figure 5.4.: Growth of artificial tree by means of simulated carbon assimilation.

The rules in XL to model these processes are shown in listing 5.1. Type A represents
a leaf and type B a branch, and both are derived from type C. The variable h provides
the integration step size, γ is a conversion factor from consumed carbon to length incre-
ment, and D is the diffusivity. PROD and CONS are fixed coefficients for production and
consumption rate computation. The rather complicated looking syntax for the pattern
in the diffusion rule ensures, that only pairs of nodes of type C (or types derived thereof)
are considered, for which there is a path from the first node ca to the second node cb

without any other node of type C in between. This is necessary to skip rotation nodes.

Listing 5.1: XL rules that model processes for carbon assimilates in a tree.

1 // app ly product ion to nodes
2 a :A ::> a [ carbon ] :+= h ∗ PROD;
3

4 // app ly consumption and conver t to growth
5 b :B ::> {
6 double r a t e = CONS ∗ b [ carbon ] ;
7 b [ carbon ] :−= h ∗ r a t e ;
8 b [ l ength ] :+= h ∗ γ ∗ r a t e ;
9 }

10

11 // perform d i f f u s i o n between nodes
12 ca :C (−−>)+ : ( cb :C) ::> {
13 double r a t e = D ∗ ( ca [ carbon ] − cb [ carbon ] ) ;
14 ca [ carbon ] :−= h ∗ r a t e ;
15 cb [ carbon ] :+= h ∗ r a t e ;
16 }

The initial configuration of the tree is a single branch with a leaf on top. New branches
are produced by a rule, that triggers when the carbon concentration in a leaf rises above
a threshold T. The leaf is then replaced by two branches, each of them with a leaf on
top, and the carbon assimilates of the original leaf are distributed among the new leaves.
The rule is shown in listing 5.2.
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Listing 5.2: Branching rule that triggers when assimilate concentration rises above a
threshold T.

1 a :A, ( a [ carbon ] > T) ==>
2 [RU( 30) RH(75) B(0) A( a [ carbon ] / 2 ) ]
3 [RU(−30) RH(75) B(0) A( a [ carbon ] / 2 ) ]
4 ;

5.3. Use of Advanced Numerical Methods

A closer inspection of the examples from the previous section reveals that Euler integra-
tion is used. Numerical issues with this method are known from literature and have also
been discussed in chapter 2. Therefore, one of the advanced methods should be used
instead.

To do this, the integration problem must be expressed as initial value problem. Re-
peating its definition from section 2.2 on page 5 we have to formulate and solve

u′(t) = f(t, u(t)), u(t0) = u0,

where f(t, u) is determined by the problem being integrated together with initial condi-
tion u0 for some time t0. The result is an approximation to the scalar or vector-valued
function u(t).

In an implementation of a numerical method, rate and state vectors are usually rep-
resented as an array of double, and the rate function f(t, u(t)) is provided in form of a
method with the following signature:

void getRate (double [ ] rate , double time , double [ ] s t a t e ) ;

The parameters time and state are input parameters, whereas rate is an output pa-
rameter providing just the memory to store the result. This prevents memory allocations
each time the rate function is called.

5.3.1. Circular Transport with Inhibition

So to numerically integrate the example of circular transport with a method other than
Euler, we need to provide such a rate function. Due to the specific structure of this
problem, this can be expressed rather easily. Each concentration in a substrate node
becomes an element of the state vector. For each triple of nodes, the corresponding
indices into the state vector can be calculated with modulus arithmetic. The resulting
function is shown in listing 5.3.

5.3.2. Transport in a Tree

A bit more elaborate is the simulation of transport in a tree structure. As this structure
is dynamic, no fixed mapping between the attributes of nodes in the graph to elements of
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Listing 5.3: Rate function for circular transport with inhibition.

1 void getRate (double [ ] rate , double time , double [ ] s t a t e ) {
2 // zero output array
3 java . u t i l . Arrays . f i l l ( rate , 0 ) ;
4 // c a l c u l a t e t r a n s p o r t r a t e
5 for ( int i = 0 ; i < r a t e . l ength ; i++) {
6 int x = i ;
7 int y = ( i + 1) % ra t e . l ength ;
8 int z = ( i + 2) % ra t e . l ength ;
9 double r = s t a t e [ x ] > T ? 0 : µ ∗ s t a t e [ y ] ;

10 r a t e [ y ] −= r ;
11 r a t e [ z ] += r ;
12 }
13 }

the rate/state vector can be used. Instead, this mapping has to be created dynamically
when the integration is started (see figure 5.5).

The steps that must be performed are as follows:

1) Calculate length of state vector
2) Allocate state vector
3) Create mapping between attributes of nodes and entries in state vector
4) Copy state from graph to state vector
5) Perform integration
6) Copy state from state vector to graph

In this example, calculating the length of the state vector is rather simple. As there
is just one type of node to consider (only type C stores data) it is sufficient to just count
the number of instances of type C. Creation of the mapping can then be performed by
enumerating the instances of type C starting from zero. The assigned number is then
the index into the state vector.

If only the carbon attribute of every C node had to be integrated we were done.
But carbon consumption results in branch growth, so the length attribute must be
integrated as well. Here, we can just allocate two elements in the state vector per
node by enumerating with an increment of two in step number three. The fact that
this actually wastes a bit of memory and computation time, because the length growth
only accounts for the branches, is outweighted by the fact that indexing becomes a lot
simpler. In the more general setting when integration is performed on different types
with a differing number of attributes, and these types are perhaps even organized in
a class hierarchy, things become complicated and doing this manually is error-prone.
Therefore, another solution will be developed later on.

In step number five, the integrator is called. This in turn calls back the rate function
to obtain derivatives for different states at different times. One should be aware that
the queried states do not necessarily lie on the solution curve. The steps that must be
performed in the rate function are:
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0

1

2

3

4
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6

7

8

9

...

state

Figure 5.5.: Mapping from nodes in the graph to elements of the state vector.

1) Initialize rate vector with zero
2) Copy state from state vector to graph
3) Calculate rates using XL rules and accumulate them in the rate vector

Instead of copying the state to the graph each time the rate function is called, one
might opt to look up the values directly from within the rate function. But this intro-
duces another level of indirection for those values and they need to be read at least once
anyways to participate in integration. So the suggested procedure is to just copy those
values into the attributes of the nodes once. This way the rate calculations can make use
of XL rules and therefore specification of the ODEs on a graph structure is simplified.

The resulting main function for the model is shown in listing 5.4. The factor two in
line 2 when calculating the length of the state vector and the increment by two in line 11
is due to integrating two attributes (carbon and length) per node. For the same reason,
the offsets (+0 and +1) in lines 14,15 and 22,23 are used when copying between graph
and state vector. The actual integration is initiated in line 18, where DT is a constant
duration, y0 the initial state, and y the final state.

The integrator calls back the rate function, which is given in listing 5.5. Again, the
rate vector is initialized to zero. Then, the state vector is copied into the graph. This
simplifies calculation of the rates in the third step (lines 11 to 26). One must be careful
when writing to the rate vector to use the correct indexing and not to accidentially
write to the attribute instead. An integration step size h does not appear anymore, as
its choice is now up to the actual integration method.
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Listing 5.4: Main function for diffusion in a tree using advanced integration methods.

1 // c a l c u l a t e l e n g t h o f s t a t e v e c t o r
2 f ina l int N = 2 ∗ ( int ) count ( (∗ C ∗ ) ) ;
3

4 // a l l o c a t e s t a t e v e c t o r
5 f ina l double [ ] y0 = new double [N ] ;
6 f ina l double [ ] y = new double [N ] ;
7

8 // c r e a t e mapping between a t t r i b u t e s o f nodes
9 // and e n t r i e s in s t a t e v e c t o r

10 int index = 0 ;
11 [ c :C ::> { c [ index ] = index ; index += 2 ; } ]
12

13 // copy s t a t e from graph to y0
14 [ c :C ::> y0 [ c [ index ]+0] = c [ carbon ] ; ]
15 [ c :C ::> y0 [ c [ index ]+1] = c [ l ength ] ; ]
16

17 // i n t e g r a t e over time
18 i n t e g r a t e ( time , y0 , time + DT, y ) ;
19 time += DT;
20

21 // copy s t a t e from y to graph
22 [ c :C ::> c [ carbon ] = y [ c [ index ] + 0 ] ; ]
23 [ c :C ::> c [ l ength ] = y [ c [ index ] + 1 ] ; ]
24

25 // s p l i t l e a f i f c o n c e n t r a t i o n over t h r e s h o l d
26 [
27 a :A, ( a [ carbon ] > T) ==>
28 [RU(30) RH(75) B(0) A( a [ carbon ] / 2 ) ]
29 [RU(−30) RH(75) B(0) A( a [ carbon ] / 2 ) ]
30 ;
31 ]

5.4. Rate Assignment Operator

We have seen in the previous section 5.3.2 that even in a simple model the creation
of the mapping between node attributes and the elements of the rate/state vector can
become complex swiftly. In a more general setting, this can be even quite challenging,
especially if class hierarchies are involved. Therefore, the system should assist the user
by creating this mapping automatically.

Consider the class diagram shown in figure 5.6a. It is assumed that all attributes Memory
Allocationexcept x participate in integration. So for all of these attributes a location in the rate

and state vector must be assigned and corresponding memory must be allocated. Let
nA, nB, nC , nD designate the number of instances of the respective types A, B, C, and D.
Let further νA = 1, νB = 0, νC = 2, νD = 1 indicate the number of attributes of these
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Listing 5.5: Rate function for diffusion in a tree using advanced integration methods.

1 void getRate (double [ ] rate , double time , double [ ] s t a t e ) {
2 // zero output array
3 java . u t i l . Arrays . f i l l ( rate , 0 ) ;
4

5 // copy s t a t e y to graph
6 [ c :C ::> c [ carbon ] = y [ c [ index ] + 0 ] ; ]
7 [ c :C ::> c [ l ength ] = y [ c [ index ] + 1 ] ; ]
8

9 // c a l c u l a t e r a t e v e c t o r
10 [
11 // app ly product ion to A nodes
12 c :A ::> r a t e [ c [ index ] ] += PROD;
13

14 // app ly consumption and conver t to growth
15 c :B ::> {
16 double r = CONS ∗ c [ carbon ] ;
17 r a t e [ c [ index ]+0] −= r ;
18 r a t e [ c [ index ]+1] += γ ∗ r ;
19 }
20

21 // perform d i f f u s i o n between nodes
22 ca :C (−−>)+ : ( cb :C) ::> {
23 double r = D ∗ ( ca [ carbon ] − cb [ carbon ] ) ;
24 r a t e [ ca [ index ] ] −= r ;
25 r a t e [ cb [ index ] ] += r ;
26 }
27 ]
28 }

types. Then the total length n of the state vector can be computed as:

n = nA · νA + nB · (νA + νB) + nC · (νA + νB + νC) + nD · (νA + νD).

It follows that for each type the number of attributes it declares together with those
inherited from its supertypes must be counted. With respect to integration, a reduced
class hierarchy is obtained by omitting attributes and classes that do not participate in
integration (see figure 5.6b).

An alternative way to compute n can be realized if tA = nA + nB + nC + nD, tB =
nB + nC , tC = nC , tD = nD denote the total number of instances that can be cast to a
certain type. Then the size of the rate and state vector is evaluated as:

n = tA · νA + tB · νB + tC · νC + tD · νD. (5.2)

This latter variant is beneficial as the values for ν∗ can be precomputed. Also we will
see later on that the values for t∗ are directly provided by the GroIMP implementation at
runtime. This makes calculation of the size of the rate and state vector straightforward.
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A

a : double

B

C

c1 : double
c2 : double

D

d : double
x : int

(a) original

A

a : double

C

c1 : double
c2 : double

D

d : double

(b) reduced

A

a : double

C

a : double
c1 : double
c2 : double

D

a : double
d : double

(c) separated

Figure 5.6.: Class diagram of module hierarchy used in an XL model.

Once memory for rate and state vector has been allocated, for each attribute that Mapping

participates in integration an index into these vectors must be assigned. A separated view
on the class hierarchy is created (see figure 5.6c), where attributes have been merged
for each class in the order they appear in the derivation chain. The attributes in each
separated class can then be assigned offsets starting from zero, and the size of each class
can be determined (in the example sizes are σA = 1, σC = 3, σD = 2). For each node, a
base index is assigned, so that consecutive elements in rate and state vector belong to
this node. For a node n with base index nbase and a property p of this node with offset
poffset , the index can be calculated as:

index = nbase + poffset .

What remains to do is to provide the user with a tool to indicate which attributes Rate Assignment
Operatorparticipate in integration and to assign rates to these attributes. Therefore, a new

operator :’= was introduced into the language XL, called the deferred rate assignment
operator. For a node n with a property p a rate r can be assigned by calling

n [ p ] : ’= r ;

The operator does not modify the attribute itself, but rather writes to a hidden rate
vector. Multiple calls to this operator result in the rates being accumulated. There
must be no step size h anymore, as managing this is up to the integrator.
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When working in RGG mode (see [Kni08, appendix B.4]), the user benefits from the
fact that the model class then implicitly extends a class RGG, which in turn is derived
from Node. This allows to write rate assignments as

p : ’= r ;

for a (global) property p of the model and the current instance of RGG is used as node.

At compile time, rate assignments are written to a table as pairs of node type and
property. At run time, these data are analyzed to calculate offsets for the attributes and
sizes of the node types, as was described above. Then the system performs the steps
that were described in section 5.3.2. These are now automatic and don’t need any user
assistance, as all necessary data is already available.

For the integrator to execute the rate assignments, the user is responsible to group
them into a function getRate. The user must be aware that the proposed state does
not necessarily belong to the solution curve, but is solely provided to compute rates.
Enforcing to group all rate assignments into a single function helps the user to stay alert
for this.

5.4.1. Circular Transport with Inhibition

The rule for circular transport from sections 5.2.1 and 5.3.1 can now be written as:

x : S −EDGE 0−> y : S −EDGE 0−> z : S ::> {
double r a t e = x [ c ] > T ? 0 : µ ∗ y [ c ] ;
y [ c ] : ’= −r a t e ;
z [ c ] : ’= +rat e ;

}

It attains the simplicity of the Euler version, while it maintains support for advanced
numerical methods. By using a rule, the differential equation can be directly applied to
a graph.

5.4.2. Transport in a Tree

Similarly, we can reformulate the tree model in terms of rate assignments (see listing 5.6).
Again, the simplicity of the Euler version from section 5.2.2 is attained (listing 5.1), while
keeping the support for better integration methods.

One modification that is necessary is the introduction of a new property len for nodes
of type B. This is due to the fact that the rate assignment operator is only defined on
properties of type double, which reflects the observation that all investigated libraries for
numerical integration work on double as well. However, the inherited attribute length

of a cylinder is defined as single precision float.

Technically it would be possible to also define the rate assignment operator for at-
tributes of type float. When passing values to the integrator, these would have to be
converted implicitly to type double, and when such attributes are copied into the graph
they would be converted back to float. However, this rounding to a lower precision
might cause numerical issues and instability in integration, which may result in subtle
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Listing 5.6: XL rules using rate assignments that model processes for carbon assimilates
in a tree.

1 // app ly product ion to nodes
2 a :A ::> a [ carbon ] : ’= PROD;
3

4 // apply consumption and convert to growth
5 b :B ::> {
6 double ra t e = CONS ∗ b [ carbon ] ;
7 b [ carbon ] : ’= −r a t e ;
8 b [ l en ] : ’= γ ∗ r a t e ;
9 }

10

11 // perform d i f f u s i o n between nodes
12 ca :C (−−>)+ : ( cb :C) ::> {
13 double ra t e = D ∗ ( ca [ carbon ] − cb [ carbon ] ) ;
14 ca [ carbon ] : ’= −r a t e ;
15 cb [ carbon ] : ’= +rat e ;
16 }

bugs later one. So a design-decision was not to support rate assignments on single pre-
cision floats. This imposes no real restriction, as visualization is not performed in the
rate function anyway.

5.5. Monitor Functions

The example from the previous section 5.4.2 is not complete yet. What is missing is
a way to trigger the branching rule when the concentration in a node of type A rises
above some threshold (listing 5.2). This cannot be done in the rate function, as this is
only supposed to calculate rates, and the provided state might (and usually will) not
lie on the solution curve. Instead, integration must be stopped, the modification of the
structure then performed, and integration is restarted with the new structure.

If the time when the event occurs is not known a priori, some way is needed to tell the
integrator when to stop. The solution lies in so called monitor functions, sometimes also
called trigger functions or switching functions, and the technique is generally referred to
as G-stop facility. A function g(t, y) is provided by the user to compute a single value
for a given point on the solution curve. If the sign of the computed values changes along
this curve, an event is generated. Root-finding methods are used to determine the exact
event location. The function g must be continuous for this sake, but not necessarily
smooth. If more than one monitor function was provided, the earliest event is used.

In the branching rule the event should trigger when a threshold concentration is
reached. A g-function for this can be derived easily by subtracting the threshold from
the concentration, so:

g(t, y) = y − T.
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To express this in XL, we can make use of anonymous function expressions (see sec-
tion 3.4 on page 66). The current state y is provided implicitly as the attribute values of
the nodes in the graph. This hides the mapping between such attributes and the state
vector from the user and is thus easier to use. The g-function is then specified as

void=>double c − T

where c is the current concentration and T is the threshold. A function monitor allows
to register this monitor for the integrator.

In the tree model we want to install such a g-function for every node of type A. So to
stop integration when the threshold concentration was reached for any node of type A

we can write a rule:

a :A ::> monitor ( void=>double a [ carbon ] − T) ;

Although integration now stops at the correct time, we lack knowledge about which
node actually exceeded the threshold concentration. An overloaded variant of the
monitor function allows to supply an event handler along with the g-function. The
event handler must implement the interface java.lang.Runnable and will be executed
after integration was halted. Setting the monitor in conjunction with the branching rule
looks like this:

a :A ::> monitor ( void=>double a [ carbon ] − T, new Runnable ( ) {
public void run ( ) {

a ==>
[RU( 30) RH(75) B(0) A( a [ carbon ] / 2 ) ]
[RU(−30) RH(75) B(0) A( a [ carbon ] / 2 ) ]

;
}

} ) ;

Another need for a g-function prevails when the user wants to plot or visualize some
attributes. For instance, the attribute len was introduced to capture the length of
the branches, while their attribute length is used for their visual representation as a
cylinder. During integration their length should be updated in regular intervals so that
the user can see the tree growing. The corresponding g-function must be continuous and
change sign in regular intervals. Examples for such a function are a triangle wave or a
sine wave. A rectangle wave or sawtooth wave should be avoided as they have a very
large (perhaps even infinite) slope at the point where the sign changes.

A function monitorPeriodic is provided to trigger such periodic events. It uses a
sine wave for the g-function with the specified period. Contrary to monitor, integration
does not stop when the event triggers. Therefore, no modifications to the structure must
be made, but changing the values of attributes is possible. The corresponding code to
setup visualization is shown in listing 5.7.

5.6. Numerical Codes

It was shown in chapter 2 that there is a wide choice of numerical integration methods.
Considering various features like adaptive step sizes with error control, interpolation and
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Listing 5.7: Code to setup visualization in periodic intervals.

1 monitorPer iod ic (PERIOD, new Runnable ( ) {
2 public void run ( ) [
3 b :B ::> b [ l ength ] = b [ l en ] ;
4 c :C ::> c [ r ad iu s ] = c [ carbon ] ;
5 { de r i v e ( ) ; }
6 ]
7 } ) ;

event handling, their implementation can be quite tricky. It is therefore recommended
not to reimplement such methods, but to resort to existing libraries.

Several libraries for numerical integration of ODEs have been investigated, among
them:

1. Apache Commons Math1

2. Open Source Physics2

3. SUNDIALS3 [HBG+05]

We will shortly present these below and then discuss which one was chosen for inclusion
in GroIMP.

5.6.1. Apache Commons Math

The Apache Commons project is a collection of reusable Java components. All source
and documentation of the Commons project is available under the Apache License,
version 2. The project is composed of three parts:

• The Commons Proper – A repository of reusable Java components.

• The Commons Sandbox – A workspace for Java component development.

• The Commons Dormant – A repository of Sandbox components that are currently
inactive.

In the Commons Proper the Apache Commons Math project can be found. It con-
tains packages for numerical analysis (including root finding and function interpolation),
solvers for ODEs, statistics and much more.

1http://commons.apache.org/math/index.html, accessed 8. December 2011
2http://www.opensourcephysics.org, accessed 8. December 2011
3https://computation.llnl.gov/casc/sundials/main.html, accessed 8. December 2011
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5. Ordinary Differential Equations on Graphs

Specification of the ODE

The package org.apache.commons.math.ode and its subpackages contain all classes
and interfaces related to integration of ordinary differential equations. In particular, the
interface FirstOrderDifferentialEquations allows to specify the problem to simulate:� �

1 interface F i r s t O r d e r D i f f e r e n t i a l E q u a t i o n s {
2 void computeDer ivat ives (
3 double t , double [ ] y , double [ ] yDot ) ;
4 int getDimension ( ) ;
5 }� �

The number of elements to be expected in the state and rate vector can be queried by
calling the method getDimension(). The rate function f(t, y) is evaluated by calling
computeDerivatives(). The parameter yDot is used to pass in memory for the resulting
rates.

Solver interface

Classes which are devoted to solve first order differential equations implement the inter-
face FirstOrderIntegrator. The interface defines a single method integrate that is
passed in the ODE to solve together with initial state y0 at initial time t0. The ODEs
will then be integrated up to time t and the result for this time will be written into the
memory provided by y.� �

1 interface F i r s tO rd e r I n t e g r a to r extends ODEIntegrator {
2 void i n t e g r a t e ( F i r s t O r d e r D i f f e r e n t i a l E q u a t i o n s equat ions ,
3 double t0 , double [ ] y0 , double t , double [ ] y ) ;
4 }� �

Besides explicit Runge-Kutta methods (for instance, classical Runge-Kutta) using a
fixed step size for integration also many adaptive step size integrators are provided.
A complete list is shown in table 5.2. All methods are for non-stiff problems, and the
Adams methods use the Nordsieck representation and therefore allow for efficient change
of step size.

The interface implemented by the integrators also inherits from another interface
ODEIntegrator that defines methods to install step and event handlers.

An EventHandler provides a g-function to monitor integration for possible events and
an action to handle them. Event handling can be used with all integrators, even the
ones using a fixed step size.

A StepHandler is called after each successful step and is used to provide continuous
output. This can be used for plotting the solution. Interpolation is used to obtain
intermediate points.

Monitor functions

The already mentioned EventHandler takes on the same role as monitor functions do
in GroIMP. The interface is defined as follows:
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Name Type Order

EulerIntegrator RK 1
fixed step size

MidpointIntegrator RK 2
ClassicalRungeKuttaIntegrator RK 4
GillIntegrator RK 4
ThreeEightesIntegrator RK 4
AdamsBashforthIntegrator LMF variable


adaptive step size

AdamsMoultonIntegrator LMF variable
GraggBulirschStoerIntegrator extrapolation variable
DormandPrince54Integrator ERK 5(4)
DormandPrince853Integrator ERK 8(5,3)
HighamHall54Integrator ERK 5(4)

Table 5.2.: Integration methods provided by Apache Commons Math library.

� �
1 interface EventHandler {
2 double g (double t , double [ ] y ) ;
3 int eventOccurred (double t , double [ ] y , boolean i n c r e a s i n g ) ;
4 void r e s e t S t a t e (double t , double [ ] y ) ;
5 }� �

Besides a function g to monitor state, also a handler is provided that is called once
an event triggers. The handler returns are flag indicating if integration should proceed
or has to stop, or if state or derivatives are discontinuous at this point.

Search for the exact time when an event triggers is performed using Brent’s method4,
which is a combination of root bracketing, bisection, and inverse quadratic interpolation.

5.6.2. Open Source Physics

The Open Source Physics is a library for numerical simulation and visualization and
a collection of examples for application in physics. It is released under GNU General
Public License (GPL), version 2. A set of numerical integrators is included in a package
org.opensourcephysics.numerics. Table 5.3 lists the implemented methods.

Specification of the ODE

Ordinary differential equations are provided to the integrators by implementing the
interface ODE:� �

1 interface ODE {
2 void getRate (double [ ] s ta te , double [ ] r a t e ) ;
3 double [ ] g e tS ta t e ( ) ;
4 }� �

4http://mathworld.wolfram.com/BrentsMethod.html, accessed on 14. January 2012
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Name Type Order

Adams4 LMF 4
Adams5 LMF 5
Adams6 LMF 6
Euler RK 1
EulerRichardson RK 2
Ralston2 RK 2
Heun3 RK 3
RK4 RK 4
Butcher5 RK 5
Fehlberg8 RK 8
CashKarp45 ERK 5(4)
DormandPrince45 ERK 5(4)
LeapFrog symplectic 3
Verlet symplectic n/a

Table 5.3.: Integration methods provided by Open Source Physics library.

The first derivatives are computed by the method getRate, where state is the current
state as provided by the integrator, and rate is memory to store the resulting rates. No
parameter for the time is mentioned explicitly, since laws of physics do not depend on
the current time. If the user wishes to have a local time value accessible, it can be added
as another element of the state with a rate of one.

The initial state is returned by the method getState and the length of the array is
the dimension of the problem.

Solver interface

All numerical integrators implement an interface ODESolver:� �
1 interface ODESolver {
2 void i n i t i a l i z e (double s t e p S i z e ) ;
3 double s tep ( ) ;
4 void s e t S t e p S i z e (double s t e p S i z e ) ;
5 double ge tS t epS i z e ( ) ;
6 }� �

It is responsible for managing the size of the step. Calling the method step then
integrates over the previously set duration. Subinterfaces ODEAdaptiveSolver for a
variable (internal) step size and ODEEventSolver for providing a g-function exist.

With the exception of CashCarp45 and DormandPrince45, all solvers use a fixed in-
tegration step size. The special handling of discontinuities with early exit, that charac-
terizes the Cash-Karp method, is missing in the implementation. Symplectic integrators
LeapFrog and Verlet are provided, but they need a special layout of the rate and state
vector by design, making them not interchangeable with other methods. The Fehlberg8
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is an implementation of the method shown in table 2.2 on page 23, but error estimation
and adaptive step size control is missing. The Adams methods work in a PECE mode,
and initial steps are computed by a Runge-Kutta method.

The implementation of the methods lacks any kind of interpolation (although an
interface ODEInterpolationSolver exists, but it is never implemented). Event handling
is supported by an ODEBisectionSolver, which implements ODEEventSolver. It uses
another solver for integration (by default RK4), but since no interpolation is performed
the achieved efficiency is suboptimal.

5.6.3. SUNDIALS

SUNDIALS is a SU ite of N onlinear and DI fferential/ALgebraic equation Solvers writ-
ten in C/C++. As the name suggestes, besides methods for numerical integration of
ODEs it also includes some for DAEs (Differential Algebraic Equations). SUNDIALS is
distributed under a BSD license (BSD-3 with an additional notice). However, as of now
(13. December 2011) the last release dates back to May 2009.

The library consists of five solvers:
CVODE – solves stiff/nonstiff ODE systems in the form y′ = f(t, y)
CVODES – solves stiff/nonstiff ODE systems with sensitivity analysis in

the form y′ = f(t, y, p)
IDA – solves DAE systems in the form F (t, y, y′) = 0
IDAS – solves DAE systems with sensitivity analysis in the form

F (t, y, y′, p) = 0
KINSOL – solves nonlinear algebraic systems

Interesting in our case are CVODE and CVODES. Both of them are using the same
methods, with the latter one being a superset of the former one. For nonstiff problems,
Adams-Moulton formulae are used with a variable order between 1 and 12. For stiff
problems, it uses Gear’s Backward Differentiation Formulae with a variable order be-
tween 1 and 5. The implicit equations are either solved by simple iteration or using
Newton’s method. The solvers work either serially or in parallel.

Specification of the ODE

The rate function must be provided as a callback, which is typical for C applications.
The type of the callback function is defined as

typede f int (∗CVRhsFn) ( r e a l t y p e t , N Vector y , N Vector ydot ,
void ∗ use r data ) ;

Here, realtype is a configurable data type for floating point numbers (usually double),
and N Vector is a type provided by SUNDIALS for representing a vector. The return
value of the callback can be used to indicate errors to the solver.

Solver interface

Access to the solver is granted by a set of global functions. The most important ones
and how they are typically used when defining an IVP are
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void ∗cvode mem = CVodeCreate (lmm, i t e r ) ;
CVodeInit ( cvode mem , f , t0 , y0 ) ;
CVodeSStolerances ( cvode mem , r e l t o l , a b s t o l ) ;
CVDense( cvode mem , N) ;
CVodeRootInit ( cvode mem , nrt fn , g ) ;
CVode( cvode mem , tout , yout , &t re t , i t a s k ) ;
CVodeFree(&cvode mem ) ;

The memory referred to by cvode mem is used by the library to hold the internal
state of the solver. For stiff problems, CV BDF and CV NEWTON should be passed for lmm

respectively iter.

The IVP is passed to the integrator with the second call. Initial time and state are
given by t0 and y0, and the signature of the rate function f must match CVRhsFn from
above.

If Newton iteration is used to solve the implicit equations, a linear solver must be
installed. Here, a dense linear solver is used, but the library also provides other kinds.

Rootfinding functions may also be installed, and will be described below. The actual
integration is started by a call to CVode.

Monitor functions

To monitor progress of the integration, user-defined functions may be provided as a
callback. The type of such callback functions is defined as

typede f int (∗CVRootFn ) ( r e a l t y p e t , N Vector y , r e a l t y p e ∗gout ,
void ∗ use r data ) ;

N Vector and realtype are as explained above. The parameter gout provides access
to memory for returning the values of all g-functions at once. The size of gout must be
set prior integration by calling CVodeRootInit (parameter nrtfn).

5.6.4. Discussion

Libraries for numerical integration of ODEs have been developed in many programming
languages, mainly Fortran and C/C++, but fortunately also for Java. As GroIMP/XL
was implemented in Java and thus gains platform independence, one should favour li-
braries that have been implemented in Java as well, unless there is a good reason not
to do so. As the basic interface between numerical integrator and problem definition
is the same — an initial value problem expressed by a rate function and initial state
— regardless which library was used, switching to another library later on should in
principle be possible.

From the libraries presented above, Apache Commons Math looks more sophisticated
than Open Source Physics, and should be used for non-stiff problems. For stiff problems,
often arising for instance in the simulation of chemical kinetics, the SUNDIALS library
should be used instead (BDF with Newton).

Other libraries have been also investigated, but they were either non-Java or lacked
some features compared to the presented libraries. Therefore, the choice was to include
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Apache Commons Math into GroIMP, but also a wrapper to SUNDIALS is provided.
By default a Dormand-Prince 5(4) method with variable step size is used.

5.7. Wrapping Access to Numerical Libraries

Access to numerical integration algorithms is provided by a package de.grogra.numeric
in the plugin Numeric. The bottom part of the UML-Diagram in figure 5.7 presents the
types exposed by the plugin. The upper part in the diagram builds on top of this in the
RGG plugin and is described later on in section 5.8.2.

An interface Solver has been introduced to facilitate support for different numer-
ical libraries, where the implementation FirstOrderIntegratorAdapter provides ac-
cess to those solvers provided by Apache Commons Math, and the implementation
CVodeAdapter respectively to CVODE.

A compromise is made between the user-interfaces of the libraries presented above. As
a result, the Solver interface allows to set monitor functions and tolerances. Additional
options may be passed in a Map as well, but interpretation and availability of such options
is up to the implementation of the actual integration method that is being used.

Monitor functions are provided, like for CVODE, all at once. This simplifies things
if a special setup has to be performed before actually evaluating the g-functions, like
having to copy the state into the graph (see section 5.8.2 below).

Actual integration is performed by calling the function integrate, to which initial
conditions t0 and y0 are passed along with an implementation of the ODE interface for
the rate function f .

5.7.1. Wrapping Access to Apache Commons Math

In Apache Commons Math the interface FirstOrderDifferentialEquations is used
to describe the rate function of the ODE, while the initial state is passed directly to the
solver when its integrate method is called. Besides a function computeDerivatives

to evalute the rate function, another function getDimension is used by the solver to
query the size of the state vector, so that memory for internal data structures may be
allocated.

Since in Java it is possible to obtain this information by retrieving the length of the
array for the state vector, in the design of the wrapper interfaces it was decided to omit
such a function like getDimension.

Another complication when wrapping Apache Commons Math is that monitor func-
tions are assumed to be registered individually, rather than all at once. Since during
integration it is not determined in which order monitor functions will be called, a caching
strategy has been implemented that will ensure that the monitor will only be evaluted
if time or state does not match to the cached values.
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ODE
getRate(out:double[], t:double, state:double[])

GraphODE
rateTable:HashMap<Class,RateEntry>
state:double[]
absTol:double[]
relTol:double[]
getRate()
getRate(out:double[], t:double, state:double[])
integrate(duration:double)
getSolver() : Solver
setSolver(solver:Solver)
monitor(g:VoidToDouble)
monitor(g:VoidToDouble, r:Runnable)
monitorPeriodic(period:double, r:Runnable)
unmonitor()
calculateOffsets(list:RateAssignment[]) : HashMap<Class,RateEntry>
copyStateToGraph(state:double[], useTransaction:boolean)
getRateAssignments(r:Registry) : RateAssignment[]

Solver
integrate(ode:ODE, t0:double, y0:double[], t1:double, y1:double[])
setMonitor(n:int, monitor:Monitor)
setOptions(options:Map)
setTolerances(absTol:double[], relTol:double[])

RGG
autoClearMonitors:boolean
...
isAutoClearMonitors() : boolean
setAutoClearMonitors(b:boolean)
getSolver() : Solver
setSolver(solver:Solver)
monitor(g:VoidToDouble)
monitor(g:VoidToDouble, r:Runnable)
monitorPeriodic(period:double, r:Runnable)
unmonitor()
integrate()
integrate(duration:double)
getRate()
...

GraphProperty<T>

GraphManager
baseMap:LongToIntHashMap
...
...

FirstOrderIntegratorAdapter CVodeAdapter

Monitor
g(out:double[], t:double, y:double[])
handleEvent(i:int, t:double, y:double[]) : boolean

@Tolerance
absolute() : double
relative() : double

ode

solver

<<uses>> <<uses>>

<<uses>>

<<uses>>

Figure 5.7.: Classes used in the ODE framework.
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5.7.2. Wrapping Access to CVODE

CVODE is a C library, and as such access to it requires to think about how to transfer
execution from Java to native code. One way to achieve this is to use the Java Native
Interface (JNI). Here, the developer has to implement a wrapper class (in our case
one that implements the Solver interface) marking all functions as native for which
execution is to be forwarded to a native context.

Then, a tool javah (part of the JDK) is used to generate a C header file for the
wrapper class. Functions that have been marked as native will appear as global C
functions in the generated header file, using special name mangling to uniquely identify
them. The task of the developer then is to implement those functions using ordinary C
code, to finally produce a shared library. This will be loaded and linked by the wrapper
class at runtime.

While this sounds simple at a first glance, implementation of the wrapper can become
quite challenging, especially if the native code calls back to Java (which is the case for
monitor and rate functions).

Java Native Access (JNA)5 provides an alternative, where the wrapper can be imple-
mented completely using just Java code. This simplifies development and also makes
debugging much easier for the developer.

The classes in the package de.grogra.numeric.cvode provide access to CVODE to
the degree needed to implement the Solver interface. There, the class CVODE contains
wrappers for the functions in the library, and some constants that have been defined.
It is also responsible for loading the shared library. The class N Vector represents the
analogously named structure for representation of an n-dimensional vector. It has been
retrofitted with additional methods to more easily access the data stored in the vector.
The classes CVRhsFn and CVRootFn represent callbacks for rate and monitor functions
as they are used by CVODE. CVodeAdapter in the package de.grogra.numeric imple-
ments the Solver interface and resorts to those wrapper classes.

The native library itself must be created independently from the wrapper code. For
CVODE, this can be done by downloading and then extracting the SUNDIALS source
code to some directory. In a console the developer has to change to this directory and
execute the common commands

./configure CFLAGS="-fPIC"

make

The configure script creates a suitable Makefile that is used to compile SUNDIALS.
Setting the variable CFLAGS instructs configure to generate position-independent code
and is needed when a shared library ought to be created. Calling make will initiate the
compilation process and produce object files. These must be linked to obtain a shared
library file.

The command used to create the shared library with GCC for Linux is

gcc -shared -Wl,-soname=libcvode.so -o libcvode.so -static-libgcc *.o

5https://github.com/twall/jna, accessed 11 Januar 2012
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The option -shared instructs GCC to produce a shared library. The -soname linker
option will cause the name of the library to be stored in the file itself.

Naming of shared library files is platform dependent. For instance, under Windows
the library would be named cvode.dll instead of libcvode.so.

5.8. Implementation of the Rate Assignment Operator

Although introduction of the rate assignment operator looks very easy to the user, it
requires several changes to be made in the implementation of the XL compiler. These
changes can be separated into two groups, one for compile time and the other one for
run time.

At compile time, all occurrences of the rate assignment operator :’= in a class are
collected as pairs of property and the class it was accessed with. This table is written into
a static field of a hidden class, the name of the class being derived from the name of the
class that contained the rate assignments (using a specially generated name containing
$ to prevent name collisions, as was already used for operator methods).

At run time, all classes belonging to an RGG project are searched for those tables to
generate a combined list of (class, property) pairs. Using so-called extents it is possible
to obtain lists of node instances that are stored in the graph, one list per class. The
extent also replicates the class hierarchy, so it is possible to extract the reduced and
separated view on the class hierarchy that only considers those attributes that are being
integrated.

5.8.1. Compile Time

To support a quasi-parallel modification of node attributes, the XL languages contains
deferred versions of the traditional operators (see table 3.6 on page 66). The XL compiler
does not associate any semantics to these operators, rather this is up to the run time
system.

The rate assignment operator :’= inserts into this list of operators. Regarding the
XL compiler, it does not associate any semantics to this operator as well. However, to
support ODE integration as was explained above, the compiler will generate a table of
all occurrences of rate assignments, one table per class.

To make the compiler aware of the existence of the new operator, the first step is to
announce a new token :’= as DEFERRED RATE ASSIGN in the parser grammar (file XL.g).

Then we have to add a reference to this token to the places where the other deferred
operators are allowed. In the parser grammar this is the case in the preamble (in an array
NON JAVA TOKENS), and in rules overloadableOperator, assignmentExpressionRest,
and singleExpressionNoRange. This ensures that rate assignments will be properly
parsed and nodes in an abstract syntax tree (AST) will be created.

The tree parser (in file Compiler.tree.g) is responsible to convert the AST into ex-
pression trees [Kni08, section 8.3]. For rate assignments, this must be added to the rule
blockExpr, so that these get converted as well. Compilation of deferred operators is per-
formed by a helper function compileDeferredAssignment in the class CompilerBase,
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Listing 5.8: Example Model.rgg that uses rate assignments.

1 module A(double n ) ;
2

3 protected void getRate ( ) [
4 a :A ::> a [ n ] : ’= 1 ;
5 . . .
6 ]

Listing 5.9: Generated helper class containing a table of rate assignments.

1 class Model$ODEHelper {
2 public stat ic f ina l RateAssignment [ ] TABLE;
3 stat ic { TABLE = new RateAssignment [ ] {
4 RateAssignment . c r e a t e (pA,n , A. class ) ,
5 . . .
6 } }
7 }

from which the generated tree parser is derived from. Special handling for rate assign-
ments was added to this function, so that it generates a table of all property and node
type pairs the rate assignments were used with.

Considering the RGG model given in listing 5.8, then a class equivalent to the Java
code in listing 5.9 will be generated, where pA,n is the property n of module A. The class
RateAssignment just holds a reference to the property and class (listing 5.10).

In GroIMP/XL, properties are managed by the classes shown in the class diagram in
figure 5.8. Each model interface/class defines an inner property interface/class. Also, for
each compile time class, there exists a run time counterpart. The property referred to
within CompilerBase during compilation is an instance of the interface Property defined
within the interface de.grogra.xl.property.CompiletimeModel. When the expression
tree is compiled to bytecode, this is replaced by its corresponding run time equivalent,
which is an instance of de.grogra.xl.property.RuntimeModel.Property (actually an
instance of de.grogra.rgg.model.PropertyRuntime.GraphProperty<T>). The little
trick with the generated class thus helps us with the transfer of information about rate
assignments from compile time to run time.

This is all the compiler is concerned about rate assignments. It does not prescribe
any semantics, rather this is up to the run time system and will be described below.

5.8.2. Run Time

To the user, the ODE framework is exposed directly as a class GraphODE, or indirectly
as a set of helper functions in the class RGG that forward calls to a GraphODE managed
internally. Both classes are part of the RGG plugin, with GraphODE and some helper
classes located in the package de.grogra.numeric. GraphODE automatizes the tasks to
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Listing 5.10: Definition of the class RateAssignment.

1 class RateAssignment {
2 public RuntimeModel . Property property ;
3 public Class c l s ;
4

5 public stat ic RateAssignment c r e a t e (
6 RuntimeModel . Property p , Class c )
7 {
8 return new RateAssignment (p , c ) ;
9 }

10

11 . . .
12 }

perform when numerically integrating ODEs on a graph structure.

The first action in using rate assignments is to find all helper classes that haveList of Rate
Assignments been generated and extract a list of instances of RateAssignment from them. GroIMP

manages a registry, which is mentioned in appendix A.2 in [Kni08, page 377]. An
undocumented feature of this registry is that it contains information about all classes
belonging to an opened project. So one just has to query the registry for all project
classes and process those that end in $ODEHelper. For each such class one checks if
it contains a static field TABLE (via Java’s reflection capabilities) and if so appends all
entries it contained in this field to the list.

Once all occurrences of rate assignments have been collected, the memory layoutAssign Offsets

(separated view) of the classes can be computed and offsets to the attributes can be
assigned. The result is a mapping from Class to RateEntry, referred to as rateTable.
The type RateEntry collects all properties of a class that are being integrated (see
figure 5.9).

A new integer field offset has been introduced into the class GraphProperty<T>

together with an operator function for rate assignments of double values. The rate
assignment operator is also included in the interface DoubleProperty, which is used by
the compiler to automatically recognize which operations are allowed on a property for
an attribute of type double.

Calculation of the offsets begins with an iteration over the list of all RateAssignments.
In this pass, the offset fields are invalidated (set to -1) and instances of ClsEntry are
created (see figure 5.9). For each class used in a rate assignment, there is one instance of
ClsEntry, and its field props stores all properties that have been accessed in conjunction
with this class (without duplicates).

In a second pass, a loop over all instances of ClsEntry builds up a hierarchical struc-
ture by setting fields parent, child, and next appropriately. An entry p is considered
parent of an entry e if the associated class of p is a (direct or indirect) superclass of e.
An entry for the class java.lang.Object was added to form the root of the hierarchy.
This is no problem, as Object is predefined by Java and has no attributes that could
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CompiletimeModel

CompiletimeModel
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RuntimeModel
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operator:’=
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de.grogra.xl.property
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de.grogra.xl.impl.property
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operator:’=

...
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GraphProperty GraphProperty<T>
offset:int
operator:’=

...

Figure 5.8.: Compile time and run time classes for managing properties.

be integrated. If p is considered parent of e, then e is inserted into the list of children,
defined by first child (field child of p) and its siblings (field next of the last child). The
generated tree structure is the reduced view on the class hierarchy of classes participating
in integration.

In a third pass, the tree of ClsEntry is traversed in depth-first order starting from the
root to calculate the number of attributes for each class, as is needed to obtain the sepa-
rated view on the class hierarchy. For each entry, each property it contains is assigned an
offset. This is complicated by the fact that there may be more than one GraphProperty

per PersistenceField, the latter one being the superclass of all fields that hold the
data for a property. A mapping from PersistenceField to GraphProperty helps to
assign the same offset to all properties, and one GraphProperty is remembered as proxy
for all the others that refer to the same field.

Offsets are numbered incrementally starting with the size of the parent. The size of
the root entry is zero. When all properties have been processed, the size of the entry
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ClsEntry
cls:Class
parent:ClsEntry
child:ClsEntry
next:ClsEntry
size:int

RateEntry
cls:Class
m:int

GraphProperty<T>
offset:int
...
operator:’=
...

PersistenceField
...
getter/setter
...

n
props

*
props

*

1 field

Figure 5.9.: Helper classes used for offset calculation.

is set to the next free number (sum of parent size and number of assigned offsets).

In a final fourth pass, the rateTable is extracted from the entries in the tree. Each
Class is mapped to a RateEntry, where the same class is also stored in the field cls of
the entry, the number of attributes to allocate in the field m, and a list of all properties
that are accessed in rate assignments in conjunction with this class in the field props.

With the rateTable at hand, one can now continue with the steps that have beenLength of
State Vector outlined in section 5.3.2. At first, we need to calculate how many values should be stored

in the rate and state vector.

GroIMP helps us by providing extents, which are normally used in pattern matching
to find all nodes of a given type. The extents are formed by instances of the class Extent,
one instance per node type in the graph. The extents replicate the class hierarchy, and
each extent also stores the number of nodes in the graph that exactly match (field size)
and that can be converted (field totalSize) to the node type represented by the extent.

The latter one corresponds to the values t∗ described in section 5.4. The length of the
rate and state vector can then be calculated analogously to equation (5.2) on page 112,
by iterating over every RateEntry of the rateTable and summing each product of the
number of properties in the entry times the totalSize of the extent associated to the
class from the same entry.

Once the size of rate and state vector is known, allocating memory for them is trivial.Memory
Allocation However, some of the provided integration methods seemed to not properly handle the

case when no attributes were being integrated and so the length was zero. In this case
one could either skip the remaining steps of the integration completely, or just allocate
some non-zero number of elements for the vectors (we used one element).
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Since the integrators work on arrays, prior to integration we have to copy the state Copy Graph to
State Vectorfrom the graph into the state vector. This step includes assignment of memory locations

in the state vector to each node in the graph. For calculation of the index for a property
of a certain node later on, a mapping from the node ID to the base index into the state
vector for this node is created in baseMap (see figure 5.7). This allows for the addressing
that was described earlier in section 5.4.

For each RateEntry, a loop over all nodes in the associated extent and its sub-extents
ensures that each node was assigned a base index. This is the case if the node was
already put into baseMap. If not, a new base index is assigned directly behind the
already allocated region, and the node is put into baseMap. The field m of RateEntry

then indicates the size to allocate for the node, and the properties props in the entry
are then used to copy all attributes.

One must be careful not to use m of the RateEntry that constitutes the outer loop,
since the associated node type represents how the property was accessed, not by which
node type it was defined. Node types that are removed in the reduced module hierarchy,
because they do not provide any additional attributes that should be integrated, may
still be found instantiated in the graph. To ensure that they get a base index assigned,
one has to handle nodes in all sub-extents. However, these may include also derived
node types that do provide additional attributes for integration, and so have a different
size for allocation. Therefore, a RateEntry is obtained from rateTable for the actual
type of the node to allocate space for, to obtain the correct m. If the node type is not
contained in rateTable, the search is repeated with the supertype, until a RateEntry

is found.
With all things prepared, it is now time to perform the actual integration. The user Integration

can select a solver implementation by calling the method setSolver on GraphODE or
RGG, by default the Dormand-Prince 5(4) implementation of Apache Commons Math is
used. When the integrator is called, it in turn calls back the rate function that has been
provided by the user. The flow of execution is shown in figure 5.10.

Once integration is complete, the new state must become visible in the graph. A Copy State
Vector to Graphsimilar loop to the one before performs copying of the state vector into the node at-

tributes. It is important to make use of the persistence mechanism described in [Kni08,
appendix A.3.2], so that GroIMP is aware of these changes. Practically this means
that the values have to be written to the nodes over the GraphProperty, not over the
PersistenceField the property refers to.

Modifications to the attributes will then be recorded in a transaction, which is nec-
essary to correctly update the graph in case it is shared by multiple GroIMP instances.
However, this also introduces additional overhead and is thus only applicable after inte-
gration is done to commit the results.

The second option, which uses PersistenceField, turns out useful when preparing
the graph for evaluation of the rates. In this case, all attributes must be written from
the state vector to the graph as well, but it is not needed to distribute this information
via the persistence mechanism. Strictly speaking, the additional overhead introduced by
the transaction mechanism would cause allocation of a vast amount of memory, which
would drastically degrade performance and is thus undesirable.
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GraphODE

void getRate(float[] out, float t, float[] state)

{

    ...

    getRate();

}

TransportODE

void getRate()

[

    a:X --> b:X ::> {

        float rate = D * (a[c] - b[c]);

        a[c] :’= -rate;

        b[c] :’= +rate;

    }

]

RK4

void integrate(...)

{

    ode.getRate(k1, t, y);

    ...

}

PropertyRuntime.GraphProperty<T>

void operator$defRateAssign(

    Object node, int[] indices, float value)

{

    ...

}

Figure 5.10.: Control flow when integrator evalutes rate equation.

5.9. Specification of Tolerances

The solvers implemented in numerical libraries usually allow the user to provide absolute
and relative tolerances for the integrated values. Such tolerances can be either set as a
scalar quantity and then apply equally to all elements in the state vector, or a tolerance
vector can be provided to adjust the tolerance for each element individually.

The Solver interface contains a method setTolerances to provide vector-valued
tolerances. Scalar tolerances are assumed to be set using the setOptions method.

When working on a graph structure, the GraphODE manages the mapping between
node attributes and elements in the state vector. This mapping is not exposed to the
user by purpose. Therefore, for the user it is not possible to set per-element tolerances
using the Solver interface.

Instead, an annotation @Tolerance is provided so that the user can directly assign
absolute and relative tolerances to node attributes. Its use in an RGG file is demon-
strated in listing 5.11. Specification of absolute and relative tolerance is optional. If
unspecified, a default value provided by the solver is used.

Listing 5.11: Example demonstrating use of @Tolerance annotation.

1 @Tolerance ( abso lu t e=1e−6, r e l a t i v e =1e−4)
2 double t ;
3

4 module A( @Tolerance ( abso lu t e=1e−4) double n ) ;
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6. Results and Discussion

6.1. Chemical Kinetics with Operator Overloading

In chapter 4 an extension to the programming language XL, and in this sense also to
Java, has been proposed that allows the user to redefine the meaning of operator symbols.
The versatility of this extension has been demonstrated on some examples.

One of these examples, in section 4.4.4, shows how ODEs can be formulated using the
law of mass action by properly overloading operator functions. This can be applied to
the following conversion of a reactant A over an intermediate B to some product C:

A
k1−→ B

k2−→ C

For demonstration purpose the rate constants have been set to k1 = 2 and k2 = 1.
Specification of the two elementary reactions A −−→ B and B −−→ C of this reaction
mechanism can then be written in XL as shown in listing 6.1 (for the complete model
code see appendix A.1.1). The resulting time series plot is shown in figure 6.1. The initial
concentration for A is 10 and for the other species it is zero. A classical Runge-Kutta
method of 4th order with fixed step-size was used for numerical integration.

Similarly, Michaelis-Menten kinetics, which was discussed shortly in section 5.1.1, can
be expressed using the overloaded operator symbols (listing 6.2, complete model code in
appendix A.1.2). The implemented reaction mechanism is

E + S
kf−−⇀↽−−
kr

ES
kcat−−→ E + P,

with rate constants arbitrarily set to kf = 3, kr = 0.1 and kcat = 2. Initial
concentration for S was set to 10 and for the enzyme E set to (an unrealistic high value
of) 3 results in the time series plot shown in figure 6.2. Again, a classical Runge-Kutta
method of 4th order with fixed step-size was used for numerical integration.

6.2. dL-systems

In [PHM93] the formalism of dL-systems was presented. As was stated in that article
“the simulations [. . . ] were carried out using a programming language for parametric
L-systems”, where “the user must explicitly specify the formulae for numerically solving
the differential equations included in the models (the forward Euler method was used in
all cases)”. This basically means that dL-systems are merely “a notation for expressing
developmental models that include growing systems of ODEs” [FP04].
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Figure 6.1.: Time series plot of the reaction mechanism A
k1−→ B

k2−→ C.
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Figure 6.2.: Time series plot of Michaelis-Menten kinetics.
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Listing 6.1: Specification of A
k1−→ B

k2−→ C in XL using operator overloading.

1 Model model = new Model ( ) ;
2 model . add (A <=> B, k1 ) ;
3 model . add (B <=> C, k2 ) ;

Listing 6.2: Michaelis-Menten kinetics expressed using operator overloading.

1 Model model = new Model ( ) ;
2 model . add (E + S <=> ES , kf , kr ) ;
3 model . add (ES <=> E + P, kcat ) ;

[PHM93] also provides some examples of dL-systems, for instance a model of the
dragon curve or a model of the cyanobacterium Anabaena catenula. The latter was
integrated numerically in [FP04] by means of the implicit Crank-Nicolson method [CN47,
CN96]. However, it was entirely left to the user to manually transform the dL-system
to an equivalent L-system and implement the numerical method in terms of L-system
rules.

We can solve dL-systems more easily in GroIMP/XL by using the rate assignment
operator. In the dL-system of the dragon curve given in [PHM93] the rules consist of
two parts responsible for integration and for production, for instance:

Fr(x, s) :

if x < s solve dx
dt = s

T ,
ds
dt = 0

if x = s produce − Fr(0, s
√

2
2 ) + Fh(s, s) + Fl(0, s

√
2

2 )−

The first part of the rule describing the ODEs can be written in XL simply as:

fr:FR ::> fr[x] :’= fr[s] / T;

Since the rate of change for fr[s] is constant zero, the second ODE can be omitted.
The second part containing the production can be defined using a monitor:

fr:FR ::> monitor(void=>double fr[x] - fr[s], new Runnable() {

public void run() [

fr ==> RU( A) FR(0, fr[s]*sqrt(2)/2) RU(-A) FH(fr[s], fr[s])

RU(-A) FL(0, fr[s]*sqrt(2)/2) RU( A);

]

});

The RU denotes a rotation around the local up-axis, where parameter A provides an
angle of 45◦. The modules FR, FL and FH correspond to Fr, Fl and Fh, respectively.
For complete model code see appendix A.2.1. The resulting developmental stages of the
dragon curve are shown in figure 6.3.
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Figure 6.3.: Development of the dragon curve simulated in GroIMP with time steps of
0.125 T. Successive animation frames have been blended together (left 0–8,
middle 8–16, right 16–24).

In a similar way, the model of Anabaena catenula (see figure 6.4) can be defined in XL
(for complete model code see appendix A.2.2). For instance, the ODEs for the vegetative
cells can be written as:

F(xl, cl) fv:FV(x, c) F(xr, cr) ::> {

fv[x] :’= R * x;

fv[c] :’= D * (cl - 2*c + cr) - MU * c;

}

Note that the actual parameters (when the rule is executed) of the modules can be used
in the rule as well, saving some typing and thus making the representation of the ODEs
more clear.

Figure 6.4.: Anabaena catenula simulation after 50n+20 steps, n ∈ N, 0 ≤ n ≤ 10. Color
encodes nitrogen compound concentration (yellow – low, red – high).

In [PHM93] the diffusion process, described by the PDE ∂c
∂t = D ∂2c

∂x2
, was solved using

a second order central difference approximation [Bic41] for ∂2c
∂x2
≈ D(cl − 2c + cr). As

the concentration of the nitrogen compounds in the heterocysts is not assumed to be
constant, but varies according to an ODE, it follows that diffusion between vegetative
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6.3. Auxin Dynamics in Plants

and heterocystic cells should be included as well. Considering pairs of nodes allows to
provide an equivalent, but easier, formulation of the diffusion process:

a:F b:F ::> {

double r = D * (a[c] - b[c]);

a[c] :’= -r;

b[c] :’= r;

}

This way diffusion is performed between both cell types (vegetative and heterocyst) and
mass balance is ensured. In addition, by separation of the different processes the model
becomes easier to understand as well. However, this technique cannot be used with
dL-systems in the narrower sense, as for these in each rule there can be only one active
symbol for which the ODE can be applied, not two as in the diffusion exchange.

6.3. Auxin Dynamics in Plants

Plant growth is believed to be controlled by the hormone auxin. A mechanistic model
of auxin transport was developed by [PCS+09], based on the feedback between auxin
flux from one metamer1 to the next, and concentration of auxin transport proteins in
the direction of the flux. For details on model equations and biological principles see
[PCS+09].

The original model was created using the L+C modelling language [KP03]. The
L+C implementation uses Euler integration with a step size of 0.05. The model was
reimplemented in XL making use of the rate assignment operator to easily specify the
differential equations. For reference, a version using Euler integration like in the original
model was also implemented. The modelled structure was a simple static combination
of 4 metamers comprising the main shoot, and two lateral metamers (Figure 6.5).

Simulations were performed measuring the wall-clock time between the moment the
simulation was started, and the moment the auxin level in the bottom metamer exceeded
a certain threshold (1.5). For the model using Euler integration this took approximately
5 seconds with an integration time step of 0.05, and 25 seconds with an integration time
step of 0.01. Attempts to speed up Euler integration by increasing the integration time
step from 0.05 to 0.1 resulted in chaotic model behaviour. By optimizing the code (e.g.,
taking out any other time-consuming part of the simulation such as visualization and
chart plotting) simulation time could be decreased, but this situation was not represen-
tative for common modelling practice.

Using the new ODE solver system with Dormand-Prince 5(4) integration, the simula-
tion time dropped to about 0.5 seconds. Although not precisely estimated, the simulation
times of the L+C model were comparable to the Euler version of the XL model for both
time step sizes of 0.05 and 0.01.

Figure 6.6 shows the results of the calculations. Euler integration with an integration
time step of 0.01 and the Dormand-Prince integration showed comparable accuracy;

1A metamer consists of an internode (part of the stem/branch), a bud, and a leaf.
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6. Results and Discussion

Figure 6.5.: Static plant structure used to model auxin transport. A square represents
a metamer (the degree of red and the value in the square both represent
the auxin level, the width of the yellow bar is the concentration of auxin
transporter proteins). The connectors between the squares represent auxin
flux from one metamer to the other, the width representing the value of
the flux. Auxin transport is occurring basipetally (from the top metamer
towards the bottom metamer). Auxin is only produced in the top metamer.

Euler integration with an integration time step of 0.05 showed an underestimation of
auxin level. In other words, to get a comparable level of accuracy, Euler integration needs
ca. 47 times more simulation time than Dormand-Prince integration. This disadvantage
of Euler integration was already known; we have shown here that this downside can
be avoided with minimal effort, merely by using a different operator and by placing all
ODEs in one method.

6.4. Model of Gibberellic Acid Biosynthesis

Another hormone important for plant growth and development is gibberellic acid (GA).
Its bioactive form, GA1, participates in the regulation of a number of physiological pro-
cesses, such as seed germination and organ extension. [BSKK05] devised a simple model
of GA biosynthesis involving the three last steps from GA19 over GA20 to the final
product, GA1, and its catabolite, GA8. This simple model was extended considerably
[BSHK+08] by adding a signal transduction network with three further elements (essen-
tially transcription factors), thereby linking the spatiotemporal dynamics of bioactive
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Figure 6.6.: Time series plot of auxin level in the bottom (root) metamer.

GA1 to internode extension in barley.

A simplified model consisting of 10 internodes was obtained by decoupling the network
model from the morphogenetic model of barley. Initial concentrations of substances and
parameters for the Michaelis-Menten equations were taken from [BSHK+08]. To show
how a more advanced numerical method can be used, in this case the classical Runge-
Kutta method of 4th order, the model was modified accordingly. Furthermore, the model
was reimplemented using the new ODE framework without and with monitor functions
to show how this simplifies the use of advanced integration methods and to evaluate how
different methods perform on this problem.

Table 6.1 shows the obtained accuracy for several numerical methods. A reference
solution was obtained with Dormand-Prince (DP5(4)) using an absolute and relative
error tolerance of 10−4, and was checked against Gragg-Bulirsch-Stoer (GBS). As can
be seen, Euler integration produces large errors, while Runge-Kutta (RK4) comes close
to the reference solution. However, for a step size of 1, both methods become unstable.
Also, the effort for RK4 to obtain the requested accuracy is slightly higher than for
DP5(4), and also a priori it is not clear what is the correct step size for the problem.
The Adams methods (AB and AM) perform efficiently and with good accuracy, but for
the AB method one should not set the order too high to obtain a stable solution for this
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6. Results and Discussion

problem.

Method h Calls Deviation

Euler 1 280 387
1/2 560 0.4015
1/4 1120 0.1968
1/8 2240 0.0975
1/16 4480 0.0485

RK4 1 1120 364
1/2 2240 0.0005
1/4 4480 0.0003
1/8 8960 0.0003
1/16 17920 0.0003

DP5(4) var. 3386 -
GBS var. 10380 0.0003
AB var. 1660 0.0089
AM var. 3167 0.0007

Table 6.1.: Evaluation of GA network simulation results for GID2 obtained over 280
time steps. Simulations were done with use of selected integration methods
with variable or fixed step size h as indicated (RK4 – classical Runge-Kutta,
DP5(4) – Dormand-Prince 5(4), GBS – Gragg-Bulirsch-Stoer, AB – Adams-
Bashforth, AM – Adams-Moulton). Calls give the number of evaluations of
the rate function. Deviation is maximal distance to reference curve obtained
with DP5(4). Requested accuracy of variable step size methods was 10−4.
AB and AM methods are of order 2.

A diagram showing deviations of the Euler method from the reference solution can
be found in figure 6.7. One can see that the Euler method overestimates respectively
underestimates the solution. Halving the step size also halves the error of the Euler
solution, as is expected.

6.5. Radiation Modelling

In [HKL+08] a light model based on GroIMP’s path tracer was presented. Light, as an
important factor for modelling plant growth, controls how much photosynthesis a plant
can perform and subsequently the amount of growth and the shape of the plant. This
was applied to a mixed-species tree stand consisting of young specimens of beech (Fagus
sylvatica L.) and spruce (Picea abies (L.) Karst.) trees. A virtual forest consisting of
700 trees is shown in figure 6.8.

The spruce trees were based on a model presented in [Kur99, chapter 5], but were
extended to include dependency on light as a limiting factor. The model of young beech
is a relatively complex functional-structural model that includes carbon assimilation via
photosynthesis and distribution. The effect of competition for light can be easily seen
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6.5. Radiation Modelling

Figure 6.7.: Time series plot of GA network. Concentration of substances versus model
time of 280 time units computed using Dormand-Prince method with vari-
able step size is compared against results of Euler integration with step size
h. Curves show summed concentration of hormones in the whole plant.
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Figure 6.8.: Virtual landscape with 700 beech and spruce trees.
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6.5. Radiation Modelling

in figure 6.9. Light was incident mainly from the right, but also from other directions.
Therefore, trees placed at the border of the stand were growing bigger than those that
were placed inside. Note that the influence of light on growth was severely exaggerated
to make the effect more clear.

(a) (b)

Figure 6.9.: Close tree stand after 10 years: (a) as simulated and (a) moved further apart
afterwards.

Although the models of the trees did not make use of the ODE framework presented
in chapter 5 (because it didn’t exist yet at this time), it is interesting to think about
what would happen if the model was integrated with advanced numerical algorithms.

The problematic aspect in the solution of the differential equations in this model is
the stochasticity of the light model. Typically Monte Carlo integration is used to solve
the measurement equation (see [Vea97, section 3.7.1]). This introduces noise into the so-
lution, which in this case is light distribution in the scene. For the classical Runge-Kutta
method, Runge investigated the error propagation behaviour of this method [Run05].
This way, if the noise introduced by the light model is known, the noise in the result of
the integration process can be estimated. Further continuing the idea leads to stochastic
differential equations (SDEs). For the solution of such equations we refer to [KP92].
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6. Results and Discussion

6.6. Turing Patterns

The reaction-diffusion systems that have been mentioned in section 5.1.2 can be solved
using the ODE framework to obtain so-called Turing Patterns. An example, provided
by Turing himself in [Tur52, §10] is a linear ring of twenty cells. Two morphogens X
and Y are considered, and diffusion of these between neighbouring cells. In each cell, a
set of reactions is assumed to take place simultaneously, namely:

Y +X→W at the rate 25
16Y X,

W +A→2Y +B instantly,
2X→W at the rate 7

64X
2,

A→X at the rate 1
16 × 10−3A,

Y→B at the rate 1
16Y,

Y + C→C ′ instantly,
C ′→X + C at the rate 55

32 × 10+3C ′.

The rate laws are based on a period of 1000s as units of time, and 10−11 mol/cm3 as
concentration unit. The equations above basically describe conversion from a substrate
A, initially existing at a very high concentration of 1000 units, over X and Y to some
final form B. The conversion is catalyzed by C and its combined form C ′, with a
concentration of 10−3(1 + γ) , where γ ranges from -0.5 to 0.5.

Effectively, a net rate of 1
32 [50XY +7X2−55(1+γ)] for the conversion from X to Y is

obtained, while at the same time X is produced at a fixed rate of 1
16 and Y is consumed

at a rate of 1
16Y . In case that the conversion rate from X to Y is negative (so basically

a conversion from Y to X takes place) and the concentration of Y is already zero, the
rate is properly limited to ensure that the concentration of Y does not become negative.
The diffusion coefficients, using the same units, are DX = 1

2 and DY = 1
4 .

Although the same equations apply for each cell, random fluctuations in the initial
conditions may move the system out from an initial metastable equilibrium to some more
stable state, in this case stationary waves of final wave-length. The resulting pattern for
morphogen Y is shown in figure 6.10. The initial concentrations were varying around
the dashed line.

The XL program used to produce this pattern creates a ring structure in the graph,
like the one shown in figure 6.11, by making use of bidirectional user-defined edges (of
type E). Each node is a module with two attributes x and y to store the concentrations
of the morphogens. The XL-rules that have been used to describe the reaction-diffusion
system are shown in listing 6.3. As can be seen, formulation of the rate-law in XL is
straight-forward.

Using the same reaction-diffusion system on a two-dimensional grid of 50 × 50 cells
results in the pattern shown in figure 6.12. The connection between the cells forms a
torus world. Orange cells show a dominance of morphogen X, while greenish ones a
dominance of Y . The interesting aspect of the ODE framework when going from 1D to
2D is that only the initial setup of the cells must be changed (which is needed anyway),
but the part of the program related to numerical integration did not change at all.
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6.6. Turing Patterns
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Figure 6.10.: Turing pattern produced by a reaction-diffusion system.
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Figure 6.11.: Ring structure used to produce Turing pattern.
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Listing 6.3: XL rules used to form Turing patterns.

1 // r e a c t i o n
2 a :A(x , y ) ::> {
3 double r = max((50∗x∗y + 7∗x∗x − 55∗(1+gamma) ) / 32 , 0 ) ;
4 a [ x ] : ’= 1 . 0/ 16 . 0 − r ;
5 a [ y ] : ’= r − y / 1 6 . 0 ;
6 }
7 // d i f f u s i o n
8 a :A <−E−> b :A, ( a < b) ::> {
9 double rx = D X ∗ ( a [ x ] − b [ x ] ) ;

10 a [ x ] : ’= −rx ;
11 b [ x ] : ’= +rx ;
12 double ry = D Y ∗ ( a [ y ] − b [ y ] ) ;
13 a [ y ] : ’= −ry ;
14 b [ y ] : ’= +ry ;
15 }

Instead of a regular grid, one could also investigate how Turing patterns emerge on
an arbitrary network. This idea has been pursued in [NM10].

6.7. PDE Solution

Let us recall the example of heat conduction in a metal stick from section 2.12.5. The
PDE ut = uxx models heat transport with an initial condition u(x, 0) = sin(x ·π/2)
and boundary conditions u(0, t) = 0 and ux(L, t) = 0.

The method of lines is applied to the stick with a spatial discretization into 21 points.
Each point is represented in XL by a module A defined as

module A(double u) extends Box ==> s e tCo lo r (u , 0 , 0 ) ;

The attribute u stores the current value of the temperature for this segment, which is
visualized by a shade of red set using an instantiation rule. For neighbouring segments
the corresponding nodes are connected by successor edges.

Using finite differences and taking into account the boundary conditions, the following
set of ODEs must be integrated:

du0

dt
= 0,

dui
dt

=
ui−1 − 2ui + ui+1

∆x2
, 0 < i < N

duN
dt

=
2 · (uN−1 − uN )

∆x2
,

where N is the number of points, ∆x = L/N the spacing between the points, and ui
the temperature at point number i. A central finite difference approximation of second
order has been used for all points, except those at the borders. For u0 the first boundary
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6.7. PDE Solution

Figure 6.12.: Reaction-diffusion system in two dimensions. Amount of morphogen in
each cell is indicated by RGB colors (red component for morphogen X,
green component for morphogen Y ).

147



6. Results and Discussion

Listing 6.4: XL rules used to apply method of lines to heat conduction.

1 a :A ::> {
2 A l = f i r s t ( (∗ a < A ∗ ) ) ;
3 A r = f i r s t ( (∗ a > A ∗ ) ) ;
4 i f ( l == null ) {
5 // no change , keep at zero
6 } else i f ( r == null ) {
7 a [ u ] : ’= 2 ∗ ( l [ u ] − a [ u ] ) / ∆x2 ;
8 } e l s e {
9 a [ u ] : ’= ( l [ u ] − 2∗a [ u ] + r [ u ] ) / ∆x2 ;

10 }
11 }

condition requires the value to remain zero, which is also true for its time-derivative.
For the other end uN of the stick we need the non-existent value uN+1, which can be
derived from the finite difference approximation of the second boundary condition

∂uN
∂x
≈ uN+1 − uN−1

2∆x
= 0

as uN+1 = uN−1.
Listing 6.4 shows the equivalent formulation of the ODEs in XL. For each node a the

left and right neighbour is searched in the graph. If the node was on one of the ends of
the metal stick, such a neighbour is missing and this is handled accordingly.

Numerical integration of the model was done with an implicit Adams-Moulton inte-
grator. The resulting time series is shown in figure 6.13. Note that explicit methods
might have difficulties according to the CFL condition, especially if a finer discretization
is used.

t = 0.0 :

t = 0.1 :

t = 0.2 :

t = 0.3 :

t = 0.4 :

t = 0.5 :

t = 0.6 :

t = 0.7 :

t = 0.8 :

t = 0.9 :

t = 1.0 :

Figure 6.13.: Method of lines solution for a metal stick.

In the modelling of trees, which currently is one of the main application fields ofPDEs on Tree
Structures
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6.7. PDE Solution

GroIMP/XL, segments of the trunk or the branches are often represented by cylinders
as nodes in the graph. When accurate information about the spatial distribution of
chemical substrates within the segments is needed, these segments must be discretized.
This raises the question whether there is an automatic way to achieve this.

If we take a look at figure 6.14a we can see that the structure, as it is usually mod-
elled, causes segments to overlap spatially. This causes problems if the discretization
is one-dimensional along the main axis of each segment (see figure 6.14b), since in the
overlapping region it must be decided for each point in space to which segment it should
be assigned. A three-dimensional discretization would perhaps solve this issue, but now
we have way more ODEs to integrate. Also it is not clear how the inner workings of the
transport mechanism should be accounted for (i.e. transport pipes within branches).

(a) overlapping segments (b) discretization

Figure 6.14.: Original tree structure (a) and a one-dimensional discretization (b) of it.

For these and other reasons, an automatic discretization of 3D structures is not feasi-
ble, thus the user should be responsible to provide a proper one. However, there should
be some way to support the user in doing this. Since the topology is already available,
the user can attach to it the discretized structure that is created by ordinary XL rules.
This also gives freedom in interpretation of the topology, since this is fully under the
user’s control.

Each segment of the tree structure (cf. figure 6.15a) can be decomposed like it was done
for the metal stick before, by creating a chain of nodes connected by unidirectional edges.
These chains can then be linked to the original segment using some user-defined edge
type, thus allowing to handle each segment separately in a first pass (see figure 6.15b.
Then, in a second pass, these chains can be linked together according to the topology
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Figure 6.15.: Tree structure with attached spatial discretization.

(see figure 6.15c).

The program shown in listing 6.5 demonstrates how this idea can be implemented in
XL. In init the structure from figure 6.15a is created. Then, in discretize, the first
rule attaches a chain of user-defined nodes of type A to each segment F. The number of A
nodes created could optionally depend on the length of the F segment to obtain a more
regular discretization, but for sake of simplicity a fixed number of three As was used
here. Calling derive makes the modifications to the graph visible, so that the second
rule can finally connect the chains according to the topology.

Usually, the structure created to represent the tree also contains other commands
like rotations, translations, etc. and branches are connected by branch edges and not
successor ones. So if the structure that ought to be discretized is created by this rule

Axiom ==> F F [RU(35) F ( 1 . 5 ) ] RU(−30) F ;

we have to slightly modify our discretization function to take care of this. The second
rule would then be replaced by

(∗ a1 :A −E−> f 1 :F (−( s u c c e s s o r | branch)−>)+ : ( f 2 :F) −E−> a2 :A ∗)
==>> a1 a2 ;

to ensure that successor and branch edges are properly skipped.

6.8. Performance Considerations

A discussion of the results would not be complete without a detailed look at how much
overhead is introduced into the computation by using the ODE framework. Such an
abstraction penalty may be viable if it is small compared to the total time needed.
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Listing 6.5: Spatial discretization of a tree structure using XL rules.

1 const int E = EDGE 0 ;
2

3 module A(double u ) ;
4

5 protected void i n i t ( )
6 [
7 Axiom ==> F f :F F, f F ;
8 ]
9

10 public void d i s c r e t i z e ( )
11 [
12 // d i s c r e t i z e each element i n d i v i d u a l l y
13 (∗ f :F ∗) ==>> f −E−> A A A −E−> f ;
14 { de r i v e ( ) ; }
15 // connect segments accord ing to t o p o l o g y
16 (∗ a1 :A −E−> f 1 :F f2 :F −E−> a2 :A ∗) ==>> a1 a2 ;
17 ]

Listing 6.6: Code to measure accuracy of System.nanoTime().

1 int a = I n t e g e r .MAX VALUE;
2 int b = I n t e g e r .MIN VALUE;
3 for ( int i = 0 ; i < 100000000; i++) {
4 long t0 = System . nanoTime ( ) ;
5 long t1 = System . nanoTime ( ) ;
6 int dt = ( int ) ( t1 − t0 ) ;
7 a = min ( a , dt ) ;
8 b = max(b , dt ) ;
9 }

For measuring execution time the Java standard library provides in the class System

a command currentTimeMillis, and from version 1.5 for the language also a command
nanoTime. The latter one returns the difference in nanoseconds between the current
time and some arbitrary other time, perhaps even in the future. Although nanosecond
precision is provided, this does not necessarily infer nanosecond accuracy, meaning that
the same value might be returned by multiple successive calls until the returned value
jumps to some higher value.

To get an idea about the time it takes to execute nanoTime and the accuracy obtained
for the timing measurements the code in listing 6.6 was executed. In a loop many calls
to the function are performed in succession. The value a captures the smallest time
delta, while b the greatest one. On the system used to perform timing measurements
both values were 26, indicating that a call to nanoTime takes 26ns to execute.

To measure the impact of the overhead on some example, the model of Anabaena
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Listing 6.7: Code to measure execution time for a piece of code.

1 long s = 0 ;
2 . . .
3 // s t a r t measurement
4 long t = System . nanoTime ( ) ;
5 // e x e c u t e some code here
6 . . .
7 // s t op measurement
8 s += System . nanoTime ( ) − t ;

Counter Value Description

time 600.069 Simulated time (variable time)
s0 3645.439ms total time spent in integrate

s1 1697.772ms total time spent in getRate

s2 1406.324ms total time for first rule (outer)
s3 61.553ms total time for first rule (inner)
s4 285.431ms total time for second rule (outer)
s5 19.926ms total time for second rule (inner)

Table 6.2.: Final simulated time and total execution times for different parts of the
Anabaena catenula model. The rate function was called 10854 times, and
run was called 663 times.

catenula from section 6.2 was used, with its complete code in appendix A.2.2. Timing
instructions (see listing 6.7) bracket the code in question to find out how long its ex-
ecution takes. The variable t stores the starting time, which is needed to compute a
time delta later on. All time deltas are summed over multiple iterations to get a more
accurate estimate of the time needed.

In the example, timings were taken for the call to integrate(1), the rate function,
and for each of the two rules. To distinguish between the time needed to find matches
for the given patterns and actual computation and assignment of the rates times were
taken outside the rule and inside the code block on the right-hand side of the rule.
The obtained measurements as time series plot (over developmental age) are shown in
figure 6.16, and the final values of the measurements in table 6.2.

As can be seen in figure 6.16, the accumulated times increase exponentially as is
expected, since the number of simulated cells increases exponentially and execution time
directly depends on this. It can also be seen that for the first (curves s2/s3) most time
is consumed to search for the queried patterns, while only a negligible time is needed
to actually compute and apply the rates. The situation is different for the second rule
(curves s4/s5), as here the search is optimized by iterating over the corresponding extent.
Still, for both rules the time needed to find a match is much higher than the time needed
to compute and apply the rate.

A similar conclusion can be drawn from the timings presented in table 6.2. Still, there
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Figure 6.16.: Execution times (in ms) measured for Anabaena catenula model, plotted
against model time. Curve s0 is the total time spent in integrate, s1 total
time spent in getRate, s2/s3 total times for first rule (outer/inner), and
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is a big discrepancy between the total time spent in the integrate function and the rate
function, so an explanation is needed where the other half of the time went to, especially
how much time can be attributed to the handling of monitor functions.

The JDK ships with a nice tool called Java VisualVM, which allows to monitor the
execution of a running Java application. There are two modes of operation, a sampler
and a profiler. The sampler peeks in regular intervals which method is currently being
executed, thus long running methods or those that are called frequently will be sampled
often, and thus the sample count is proportional to the execution time for this method.
Fortunately, the running time of the application is almost unaffected, but it may take
many samples to get accurate results. The profiler instead introduces timing instructions
into the application code for every method, so execution speed of the application is slowed
down drastically, but more accurate measurements are obtained in exchange.

Application of the sampler to the original model code (without nanoTime instructions
and visualization) over a model time of 600 time units yields the measurements shown
in figure 6.17. The sampling period was set to the lowest selectable value of 20ms
(corresponds to 50Hz). Since for a wall-clock time of 3.6s there are just 180 samples, a
second measurement over a model time of 800 time units (corresponds to 72s wall-clock
time, or 3600 samples) was taken (figure 6.18).

In both cases, the time that was not spent in evaluation of rate assignments can be
attributed to step handling, and there to step interpolation (getInterpolatedState).
This is more pronounced for the second measurement over 800 time units of model
time. The time needed to evaluate the monitor functions (method g and also part of
the time needed to execute BrentSolver.solve), as well as the time needed for event
handling (method handleEvent) is only a fraction of the time the integrator needs for
step interpolation.

All in all, this is a good result, since it indicates that the additional overhead intro-
duced by the ODE framework is only very little. The main contribution to the execution
time of the rate function is the time needed to search patterns in the graph, which is
needed anyways and thus cannot be counted. But by using the ODE framework it is pos-
sible to select more advanced integration methods that obtain the same accuracy with
much fewer calls to the rate function, thus amortizing the overhead of copying the state
to the graph and the indirection of the rate assignment operator. Similarly, the overhead
introduced by monitor functions is small compared to the remaining computations the
integration method performs.

Thus the versatility of working on a graph structure instead of an array more than
outweighs the additional overhead introduced by the framework.
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Figure 6.17.: Sampling results of the Anabaena catenula model for a model time of 600
time units.
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Figure 6.18.: Sampling results of the Anabaena catenula model for a model time of 800
time units.
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7. Summary

The software GroIMP is an interesting tool for the creation of functional-structural
models, especially of plants, and its programming language XL provides a powerful
combination of the imperative and rule-based paradigm. However, rule-application is
discrete by definition, while the differential equations used to describe functional aspects
of a model are continuous.

The thesis proposes a way how to bridge this gap between the discrete and continuous
world. A first solution to overcome this discrepancy was the extension of the language
by operator overloading in combination with user-defined implicit conversion functions
(autoconversions, which naturally extend Java’s autoboxing). As was shown in chap-
ter 4 this provides for some useful applications. Based on ideas learned from expression
templates, properly overloaded operators allow chemical reactions to be entered as or-
dinary XL code, which can be analyzed to derive differential equations for numerical
integration. The operator overloading approach is so flexible that even productions of a
rule can be explained by it.

For dynamically growing structures, memory management becomes an important is-
sue. As existing numerical libraries work on arrays, a mapping between the node at-
tributes in the graph and the elements of these arrays must be created. Doing this
manually is tedious and error-prone, so a second solution introduces a new operator
symbol that allows the user to indicate which attributes should be integrated and how
to compute their slope. This simplifies the specification of differential equations for the
user and is even close to what users unintentionally wrote before, but with the added
benefit that better numerical solvers can be used and also can be easily exchanged.

Some examples demonstrate the usage of the ODE framework and how the numerical
solution improves. It was also shown how dL-systems can be directly transformed to
equivalent XL code and then be solved on a graph. Turing patterns, which frequently
occur in nature in many animals and plants, can also easily be described in XL and
solved with help of the new framework. Examples of integration on a one-dimensional
and a two-dimensional lattice are provided.

PDEs frequently occur when simulating natural phenomena. The method of lines
is a common approach used to solve such PDEs numerically, but requires a spatial
discretization of the geometry. How this can be done easily with the help of rules in XL
has been shown.

7.1. Outlook

There are still many things that could be done to further enhance the framework. For
instance, in physics often second-order ODEs arise in the description of motion. Taking
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into account the second derivative along with the first one allows to develop methods
with reduced computational effort while maintaining accuracy, as was already observed
by Nyström in [Nys25]. In principle, a new operator :’’= could be introduced that
allows specification of the second derivative, but it must be investigated how this fits
into the existing framework.

Implicit methods that perform Newton iterations for root finding need the Jacobian,
which describes how changes in the input parameters affect the output parameters. The
coefficients can be derived automatically by a finite difference approximation, but it can
be much more efficient if the user can provide this matrix. Thus adding such a feature
to the framework is beneficial.

Often, biological models combine processes that occur on different spatial and tem-
poral scales. For instance, leaf formation is a matter of days for some trees, while for
the same trees growth is modelled on a per-year basis instead. Numerical integration
of such combined models can be problematic, as fast processes need a sufficiently small
time step for the numerical algorithm to remain appropriately stable and accurate, but
which for the slow processes results in a waste of computation at the same time. It
should be researched how this issue can be solved robustly, for instance, by separately
integrating slow and fast processes. This idea has been addressed previously in the
DEVS framework [CJC10], but it would be interesting to also investigate how this can
be combined with the ODE framework presented in this thesis.

With the upcoming emergence and availability of multi-core CPUs a natural question
is how the framework can make use of this. Splitting a model into independent submod-
els, as was already mentioned, would be one way to do this. Another way to increase
parallelism would be to distribute (parallel) rule applications to multiple cores, or even
computers, as was already suggested in [Kni08]. Also, implicit integration methods that
need to solve a system of linear equations can benefit when this task is performed in a
distributed fashion (e.g., SUNDIALS allows for this).

Going one step further one might ask if GPUs can accelerate the computation as
well. Since GroIMP is inherently dependent on Java, large parts of the runtime system
probably need to be reimplemented in terms of a GPU language (CUDA or OpenCL) or
a transformation of the Java bytecode to GPU instructions has to be performed. Still a
challenge remains of how to map the graph structure to an appropriate data structure
for the GPU and how this might look like, since this is critical to obtain an efficient
GPU implementation.
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A. Example Models with XL-Code

A.1. Chemical Kinetics with Operator Overloading

A.1.1. Model Code for the Reaction A
k1−→ B

k2−→ C

1 import de . grogra . chem . ∗ ;
2 import de . grogra . numeric . ∗ ;
3 import java . u t i l . ∗ ;
4 import org . apache . commons . math . ode . n o n s t i f f . ∗ ;
5 import stat ic de . grogra . chem . ChemicalOperators . ∗ ;
6 import stat ic java . lang . Math . ∗ ;
7

8 const Molecule A = new Molecule ( ”A” ) ;
9 const Molecule B = new Molecule ( ”B” ) ;

10 const Molecule C = new Molecule ( ”C” ) ;
11

12 const DatasetRef fnc = datase t ( ” Function ” ) ;
13

14 protected void i n i t ( )
15 {
16 fnc . c l e a r ( ) . s e t T i t l e ( ”” )
17 . setColumnKey (0 , ”A” )
18 . setColumnKey (1 , ”B” )
19 . setColumnKey (2 , ”C” ) ;
20 chart ( fnc , XY PLOT) ;
21 }
22

23 public void run ( )
24 {
25 ChemicalReaction r1 = A <=> B;
26 r1 . setForwardRateConstant ( 2 ) ;
27

28 f ina l Model model = new Model ( ) ;
29 model . addSlope ( r1 ) ;
30 model . add (B <=> C, 1 ) ;
31

32 f ina l HashMap m = new HashMap ( ) ;
33 int count = model . a s s i g n I n d i c e s (0 , m) ;
34

35 double [ ] y0 = new double [ count ] ;
36 double [ ] y = new double [ count ] ;
37
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38 // s e t i n i t i a l c o n d i t i o n s
39 setValue (m, y0 , A, 1 0 ) ;
40 p lo t (0 , y0 [ idx (m, A) ] , y0 [ idx (m, B) ] , y0 [ idx (m, C ) ] ) ;
41

42 // prepare d i f f e r e n t i a l e q u a t i o n s
43 ODE ode = new ODE( )
44 {
45 public void getRate (double [ ] out , double t , double [ ] y )
46 {
47 Arrays . f i l l ( out , 0 ) ;
48 model . eva l ( out , t , y ) ;
49 }
50 } ;
51

52 // perform numerical i n t e g r a t i o n and p l o t data
53 So lve r s o l v e r = new Fir s tOrder IntegratorAdapter (
54 new Class i ca lRungeKutta Integrator ( 0 . 0 0 1 ) ) ;
55 s o l v e r . setMonitor (1 , new Monitor ( )
56 {
57 public void g (double [ ] out , double t , double [ ] y )
58 {
59 out [ 0 ] = s i n ( PI ∗ t ∗ 2 0 ) ;
60 }
61 public boolean handleEvent ( int i , double t , double [ ] y )
62 {
63 p lo t ( t , y [ idx (m, A) ] , y [ idx (m, B) ] , y [ idx (m, C ) ] ) ;
64 return fa l se ;
65 }
66 } ) ;
67 s o l v e r . i n t e g r a t e ( ode , 0 , y0 , 5 , y ) ;
68 }
69

70 void p lo t (double t , double a , double b , double c )
71 {
72 fnc . addRow ( )
73 . setX (0 , t ) . setY (0 , a )
74 . setX (1 , t ) . setY (1 , b)
75 . setX (2 , t ) . setY (2 , c ) ;
76 }
77

78 int idx (Map m, Object obj )
79 {
80 I n t e g e r index = ( I n t e g e r )m. get ( obj ) ;
81 return index != null ? index . intValue ( ) : −1;
82 }
83

84 void setValue (Map m, double [ ] array , Object obj ,
85 double value )
86 {
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87 I n t e g e r index = ( I n t e g e r )m. get ( obj ) ;
88 i f ( index != null )
89 {
90 array [ index ] = value ;
91 }
92 }

A.1.2. Model Code for Michaelis-Menten Kinetics

1 import de . grogra . chem . ∗ ;
2 import de . grogra . numeric . ∗ ;
3 import java . u t i l . ∗ ;
4 import org . apache . commons . math . ode . n o n s t i f f . ∗ ;
5 import stat ic de . grogra . chem . ChemicalOperators . ∗ ;
6 import stat ic java . lang . Math . ∗ ;
7

8 const Molecule E = new Molecule ( ”E” ) ;
9 const Molecule S = new Molecule ( ”S” ) ;

10 const Molecule ES = new Molecule ( ”ES” ) ;
11 const Molecule P = new Molecule ( ”P” ) ;
12

13 const DatasetRef fnc = datase t ( ” Function ” ) ;
14

15 protected void i n i t ( )
16 {
17 fnc . c l e a r ( ) . s e t T i t l e ( ”” )
18 . setColumnKey (0 , ”E” )
19 . setColumnKey (1 , ”S” )
20 . setColumnKey (2 , ”ES” )
21 . setColumnKey (3 , ”P” ) ;
22 chart ( fnc , XY PLOT) ;
23 }
24

25 public void run ( )
26 {
27 f ina l Model model = new Model ( ) ;
28 model . add (E + S <=> ES , 3 , 0 . 1 ) ;
29 model . add (ES <=> E + P, 2 ) ;
30

31 f ina l HashMap m = new HashMap ( ) ;
32 int count = model . a s s i g n I n d i c e s (0 , m) ;
33

34 double [ ] y0 = new double [ count ] ;
35 double [ ] y = new double [ count ] ;
36

37 // s e t i n i t i a l c o n d i t i o n s
38 setValue (m, y0 , E, 3 ) ;
39 setValue (m, y0 , S , 1 0 ) ;
40 p lo t (0 , y0 [ idx (m, E) ] , y0 [ idx (m, S ) ] ,
41 y0 [ idx (m, ES ) ] , y0 [ idx (m, P ) ] ) ;
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42

43 // prepare d i f f e r e n t i a l e q u a t i o n s
44 ODE ode = new ODE( )
45 {
46 public void getRate (double [ ] out , double t , double [ ] y )
47 {
48 Arrays . f i l l ( out , 0 ) ;
49 model . eva l ( out , t , y ) ;
50 }
51 } ;
52

53 // perform numerical i n t e g r a t i o n and p l o t data
54 So lve r s o l v e r = new Fir s tOrder IntegratorAdapter (
55 new Class i ca lRungeKutta Integrator ( 0 . 0 0 1 ) ) ;
56 s o l v e r . setMonitor (1 , new Monitor ( )
57 {
58 public void g (double [ ] out , double t , double [ ] y )
59 {
60 out [ 0 ] = s i n ( PI ∗ t ∗ 2 0 ) ;
61 }
62 public boolean handleEvent ( int i , double t , double [ ] y )
63 {
64 p lo t ( t , y [ idx (m, E) ] , y [ idx (m, S ) ] ,
65 y [ idx (m, ES ) ] , y [ idx (m, P ) ] ) ;
66 return fa l se ;
67 }
68 } ) ;
69 s o l v e r . i n t e g r a t e ( ode , 0 , y0 , 5 , y ) ;
70 }
71

72 void p lo t (double t , double e , double s , double es , double p)
73 {
74 fnc . addRow ( )
75 . setX (0 , t ) . setY (0 , e )
76 . setX (1 , t ) . setY (1 , s )
77 . setX (2 , t ) . setY (2 , es )
78 . setX (3 , t ) . setY (3 , p ) ;
79 }
80

81 int idx (Map m, Object obj )
82 {
83 I n t e g e r index = ( I n t e g e r )m. get ( obj ) ;
84 return index != null ? index . intValue ( ) : −1;
85 }
86

87 void setValue (Map m, double [ ] array , Object obj ,
88 double value )
89 {
90 I n t e g e r index = ( I n t e g e r )m. get ( obj ) ;

162



A.2. dL-systems with GroIMP/XL

91 i f ( index != null )
92 {
93 array [ index ] = value ;
94 }
95 }

A.2. dL-systems with GroIMP/XL

A.2.1. Model Code for Dragon Curve

1 import stat ic java . lang . Math . s q r t ;
2

3 module FR(double x , double s ) extends F(x , 0 . 0 5 ) ;
4 module FL(double x , double s ) extends F(x , 0 . 0 5 ) ;
5 module FH(double x , double s ) extends F(x , 0 . 0 5 ) ;
6

7 const double ANGLE = 45 ;
8 const double T = 1 ;
9

10 protected void i n i t ( )
11 [
12 Axiom ==> RU(2∗ANGLE) FR(0 , 1 ) ;
13 ]
14

15 public void run ( )
16 [
17 f r :FR ::> monitor ( void=>double f r [ x ] − f r [ s ] ,
18 new Runnable ( ) {
19 public void run ( ) [
20 f r ==>
21 RU(ANGLE) FR(0 , f r [ s ] ∗ s q r t (2 )/2 )
22 RU(−ANGLE) FH( f r [ s ] , f r [ s ] )
23 RU(−ANGLE) FL(0 , f r [ s ] ∗ s q r t (2 )/2 )
24 RU(ANGLE) ;
25 ]
26 } ) ;
27

28 f l :FL ::> monitor ( void=>double f l [ x ] − f l [ s ] ,
29 new Runnable ( ) {
30 public void run ( ) [
31 f l ==>
32 RU(−ANGLE) FR(0 , f l [ s ] ∗ s q r t (2 )/2 )
33 RU(ANGLE) FH( f l [ s ] , f l [ s ] )
34 RU(ANGLE) FL(0 , f l [ s ] ∗ s q r t (2 )/2 )
35 RU(−ANGLE) ;
36 ]
37 } ) ;
38

39 fh :FH ::> monitor ( void=>double fh [ x ] , new Runnable ( ) {
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40 public void run ( ) [
41 fh ==> ; // d e l e t e node
42 ]
43 } ) ;
44

45 { i n t e g r a t e ( 0 . 1 2 5 ) ; }
46

47 // v i s u a l i z e curve
48 f r :FR ::> f r [ l ength ] = f r [ x ] ;
49 f l :FL ::> f l [ l ength ] = f l [ x ] ;
50 fh :FH ::> fh [ l ength ] = fh [ x ] ;
51 ]
52

53 protected void getRate ( )
54 [
55 f r :FR ::> f r [ x ] : ’= f r [ s ] /T;
56 f l :FL ::> f l [ x ] : ’= f l [ s ] /T;
57 fh :FH ::> fh [ x ] : ’= −fh [ s ] /T;
58 ]

A.2.2. Model Code for Anabaena Catenula

1 import stat ic java . lang . Math . ∗ ;
2

3 module F(double x , double c ) extends Cyl inder (x , 2 . 5 ) ;
4 module FH( super . x , super . c ) extends F(x , c ) ; // h e t e r o c y s t
5 module FV( super . x , super . c ) extends F(x , c ) ; // v e g e t a t i v e
6

7 // parameters from :
8 // P. Federl , P. P r u s i n k i e w i c z (2004) S o l v i n g d i f f e r e n t i a l
9 // e q u a t i o n s in deve lopmenta l models o f m u l t i c e l l u l a r

10 // s t r u c t u r e s e x p r e s s e d us ing L−systems .
11 // ICCS 2004 , Springer , LNCS 3037 , pp . 65−−72
12 const double X MAX = 1 ;
13 const double C MAX = 255 ;
14 const double C MIN = 5 ;
15 const double R X = 0 . 1 ;
16 const double R C = 0 . 1 5 ;
17 const double R = 0 . 0 1 ;
18 const double D = 0 . 0 3 ;
19 const double K = 0 . 3 7 ;
20 const double MU = 0 . 0 3 ;
21

22 protected void i n i t ( )
23 [
24 Axiom ==> RU(90)
25 FH(0 , C MAX) FV( 0 . 9∗X MAX, C MAX) FH(0 , C MAX) ;
26 ]
27

28 public void run ( )
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29 [
30 // s e t monitor f o r reach ing maximum l e n g t h
31 fv :FV ::> monitor ( void=>double fv [ x ] − X MAX,
32 new Runnable ( ) {
33 public void run ( ) [
34 fv ==> FV(K∗X MAX, fv [ c ] ) FV((1−K)∗X MAX, fv [ c ] ) ;
35 ]
36 } ) ;
37 // s e t monitor f o r reach ing minimum c o n c e n t r a t i o n
38 fv :FV ::> monitor ( void=>double fv [ c ] − C MIN,
39 new Runnable ( ) {
40 public void run ( ) [
41 fv ==> FH( fv [ x ] , fv [ c ] ) ;
42 ]
43 } ) ;
44

45 // perform i n t e g r a t i o n over at most one time u n i t
46 // i n t e g r a t i o n may h a l t e a r l i e r i f one o f the s e t
47 // monitors t r i g g e r s
48 { i n t e g r a t e ( 1 ) ; }
49

50 // perform v i s u a l i z a t i o n
51 f :F(x , c ) : :> {
52 f [ l ength ] = f [ x ] ;
53 f . s e tCo lo r (
54 java . awt . Color .HSBtoRGB((1 − c / C MAX) / 6 , 1 , 1 ) ) ;
55 }
56 ]
57

58 protected void getRate ( )
59 [
60 F( xl , c l ) fv :FV(x , c ) F( xr , c r ) : :> {
61 fv [ x ] : ’= R ∗ x ;
62 fv [ c ] : ’= D ∗ ( c l − 2∗ c + cr ) − MU ∗ c ;
63 }
64 fh :FH(x , c ) : :> {
65 fh [ x ] : ’= R X ∗ (X MAX − x ) ;
66 fh [ c ] : ’= R C ∗ (C MAX − c ) ;
67 }
68 ]
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B.1. Improved 3D-View for GroIMP using OpenGL

The time when the work on this thesis started, GroIMP’s visualization capabilities con-
sisted of an interactive software renderer based on AWT (wireframe canvas) and an
export filter to render the scene with POV-Ray1. At that time, also a path tracer was
in development, which is now known as “Twilight”.

While the interactive view using a software renderer is beneficial, especially if GroIMP
is to be run on a CPU cluster where this usually is the only means of interactive preview
capabilities, it does not make use of any hardware acceleration provided by GPUs.
Therefore, the idea was born to add an additional OpenGL-based 3D view with a more
convincing representation of the current scene.

A strict requirement for this was that it should be usable in combination with any
OpenGL-compatible graphics card, even on older systems. Also all graphical primitives
supported by GroIMP (like box, sphere, NURBS, etc.) should be supported by the new
view. Shading of the objects according to the light sources in the scene should improve
realism and help the user to setup the scene for rendering with “Twilight” more easily.

For compatibility reasons the choice was made to only use features provided by
OpenGL 1.1. This version is supported by Windows systems out of the box and meets
the requirements mentioned above. To access OpenGL from Java the JOGL2 library is
used.

The resulting 3D view handles as many lights as are supported by the current OpenGL
implementation (at least 8). For some objects (like sphere or cylinder) a level of detail
(LOD) was implemented, so that a triangle of the object covers roughly the same number
of pixels independently from the object’s distance. So if an object is farther away fewer
triangles will be used to approximate its shape.

Another improvement over the wireframe canvas is that surfaces can be textured. This
allows to represent the leaves of a tree simply by using an image of a real leaf as texture
for a rectangle. The transparency in this image is then used to approximate the shape
of the leaf, which is also respected by GroIMP’s raytracers (especially for the shadow
created by a leaf).

With the advent of freely programmable GPUs and its wide availability in consumer
graphics cards the wish for an even more realistic interactive visualization of the scene
emerged. The OpenGL Shading Language (GLSL), originally introduced as an extension
to OpenGL 1.4 and since OpenGL 2.0 part of the core specification, promised to allow

1http://www.povray.org, accessed 2nd February 2012
2formerly http://java.net/projects/jogl, currently http://jogamp.org/jogl/www, both accessed

2nd February 2012
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the interactive evaluation of GroIMP’s procedural shaders. Before, these had to be
statically rendered into a texture for preview.

Other improvements over the previous OpenGL view are pixel-accurate lighting com-
putations (Phong shading instead of Gouraud shading), deferred shading (so each pixel
is shaded only once), shadows, transparency (via depth peeling), and high dynamic
range (HDR) rendering with proper subsequent tone mapping. The advanced OpenGL
view was implemented by Konni Hartmann as part of his bachelor’s thesis [Har10]. A
comparison of the three interactive views is shown in figure B.1.

Figure B.1.: Comparison of the different 3D views in GroIMP. From left to right: ad-
vanced OpenGL view, normal OpenGL view, software renderer.

B.2. PDB Import Filter

The PDB file format allows to describe molecules, even complex ones like proteins. A
collection of many such molecules can be found in the protein data bank3 and their PDB
files can be downloaded freely. The PDB plugin allows to import such files into GroIMP
and visualize them. Examples are a space filled visualization of a cyclohexane molecule
(figure B.2) and a ball stick representation of some protein.

The PDB plugin is based on Java code written by Fabian Dill and Matthias Dube

3http://www.pdb.org, accessed 8 Februrary 2012
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Figure B.2.: Space filled visualization of cyclohexane (imported from PDB file).

Figure B.3.: Ball stick visualization of some protein (imported from PDB file).
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during the course “Datenanalyse und Visualisierung in der Bioinformatik”, subtopic
“Visualisierung von Proteinstrukturen” in summer semester 2004 for reading PDB files.

B.3. Synthetic Texture Generation

For the creation of virtual plant models it is sometimes useful to also create procedurally
generated landscapes. An algorithm that was devised produce artificial landscapes is the
so-called Carpenter’s algorithm [FFC82], often also called diamond-square algorithm.
The latter name also very tellingly describes its operation.

The goal is to create an image that represents the landscape by storing one height
value per pixel. Initially, only the four corners are set. The algorithm subdivides the
grid by alternately creating a center point in each square of already computed points
(diamond step, figure B.4a), then creating a center point in each diamond of the resulting
points (square step, figure B.4b). In both cases the value for the new point is the average
of the four generating points plus some random offset. A landscape that was generated
with this algorithm is shown in figure B.5.

(a) diamond step (b) square step

Figure B.4.: Graphical illustration of the diamond-square algorithm.

Autoregressive models provide another means to create procedural textures [PdSPK01].
A new pixel is created from the previously generated neighbourhood (figure B.6) accord-
ing to the formula

xt+1 =
3∑
i=0

aixt−i + νt+1

with νt some additional white noise for pixel t+ 1. A texture generated by this method
is shown in figure B.7.

B.4. Import/Export Filters for DXF and OBJ

During the seminar “Artifizielle Wachstumsprozesse” in the winter semester 2006/07
at the BTU Cottbus, students of architecture investigated how GroIMP can be used
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Figure B.5.: Procedural landscape generated with Carpenter’s algorithm.

a0 a1 a2

a3

Figure B.6.: Neighbourhood used for autoregressive texture generation.

Figure B.7.: Texture created by autoregressive model.
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to create (proto-)architectural structures. The intention was that the observer of such
structures should be aware that there was some algorithmical processes used to generate
the structure, but it should not be obvious what this process was alike. Also, since
the structure is generated by an algorithm, parameters can be easily adjusted to target
a specific situation. Examples of some structures created by the students during this
course are shown in figures B.8, B.10 and B.9.

Figure B.8.: Proto architecture created with GroIMP (by Liang Liang).

Figure B.9.: Stairs created with GroIMP (by Christopher Jarchow).

In order to make 3D structures modelled with GroIMP available to other software for
post-processing, or to import complicated geometrical objects into GroIMP, import/ex-
port filters for the DXF file format and an import filter for the OBJ file format were
added. To hold imported polygonal data, also a new geometric primitive type repre-
sented by the class MeshNode was introduced. A structure generated with GroIMP and
post-processed after exporting it to DXF is shown in figure B.11.
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Figure B.10.: Proto architecture created with GroIMP (by Christopher Jarchow).

Figure B.11.: Skyscraper created with GroIMP (by Christopher Jarchow) [BK07].
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