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Introduction

! This dissertation is devoted to the study of certain analytic problems inspired by recent results
in the theory of Toeplitz operators on the Bergman spaces. We attack the problem of commuting
Toeplitz operators with quasi-homogeneous symbols on the Segal-Bargmann space over C. For
a fixed monomial z'Z* we characterize the functions ¥ of polynomial growth at infinity such
that the Toeplitz operators Ty and 7’,;;» commute on the space of all holomorphic polynomials
over C. Moreover, we construct commutative Banach and C*-algebras generated by Toeplitz
operators acting on the Segal-Bargmann spaces over C". We show that the class of symbols
which generate the commutative Toeplitz C*-algebra generates also a commutative C*-algebra
of operators acting on the true-k-Fock spaces. Furthermore, we use Toeplitz operator theory
techniques to construct the heat kernel of a class of positive sub-elliptic differential operators.
As an application, we obtain the heat kernel of the Grusin operator on R™"! as well as that of
the sub-Laplace operator on the (2n + 1)-dimensional Heisenberg group (n € N is arbitrary).
Finally, we switch our attention to a compactness criteria for Toeplitz operators 77 acting on the
standard weighted Bergman spaces over bounded symmetric domains. We obtain an estimate
for the Berezin tansform g,, in terms of the operator norm of 77 whenever v and v are suitable
weights. As a consequence, we prove that for a bounded function g on a bounded symmetric
domain the compactness of 7 is independent of the weight parameter v, for v large enough.

For tackling these problems we use functional analytic methods as well as tools from op-
erator and measure theory. Integral transforms such as Bargmann, Berezin, Fourier and Mellin
transform are frequently used in our approach. Methods from differential equations and matrix
analysis occur in our study of the ,,heat kernel” for Toeplitz operators. Rudiments of the alge-
braic classification of bounded symmetric domains appear in the investigation of the uniform
compactness for Toeplitz operators acting on such domains.

We start by introducing and motivating the above mentioned problems in more details. In
order to facilitate our explanation of these problems we briefly indicate some basic facts in the
theory of Toeplitz operators (c.f. Chapter 1).

Let 2 C C" be an open connected domain. For a suitable finite measure p (c.f. Sec-
tion 1.2) the Hilbert space of all holomorphic p-square integrable functions on ¢ is called the
Bergman space over €2 and is denoted by H?*(£2, du). Moreover, each pointwise evaluation map

is continuous on H?(€), du) which turns the Bergman space into a reproducing kernel Hilbert

IThe project has been supported by an "Emmy-Noether scholarship” of DFG (Deutsche Forschungsgemein-
schaff).



4 CHAPTER 0. INTRODUCTION

space (c.f. Section 1.1). For a measurable function g on {2 and via the orthogonal projection
P from L*(2,du) onto H?(2, dp), the Toeplitz operator 7, is defined on a suitable domain in
H*(Q,du) by T,f := PM, where M, is the multiplication by g. The set of Toeplitz operators
acting on the Bergman space over a certain domain is neither commutative nor closed under
multiplication (composition of operators). In the analysis of Toeplitz operators two natural

questions arise:

(D Let f and g be two symbols belonging to a certain subclass of functions. What is the

relation between f and g so that 7 and 7, commute?

(II) How to obtain a symbol class for which the algebra generated by Toeplitz operators with

symbols in this class is commutative?

In recent years, there has been a considerable interest in the problem of characterizing the
symbols of commuting Toeplitz operators over various domains [8, 9, 16, 17, 60, 61, 66, 126,
129, 130]. In particular, the problem of commuting Toeplitz operators with bounded symbols
on the Bergman space over the unit disc is not fully understood until now. Such a problem has
been completely solved for the case of Toeplitz operators acting on the Hardy space H*(S') (c.f.
[186]). In [54], A. Brown and P. R. Halmos proved that two Toeplitz operators with bounded
symbols commute on H2(S') if and only if both symbols are analytic, or both are conjugate
analytic, or one of them is a linear function of the other. In the case of the (un-weighted)
Bergman space A(ID) over the unit disc D (where the measure 1 is the normalized Lebesgue
measure c.f. Section 1.4) the above mentioned result fails. In particular, if f € L>°(D) is radial
then T is diagonal w.r.t. the usual orthonormal basis of A(ID) so that Toeplitz operators with
bounded radial symbols commute on A(DD). However, under an additional assumption on the
symbols S. Axler and Z. Cuckovié¢ showed that for a pair of commuting Toeplitz operators on
A(D) with bounded harmonic symbols, Brown and Halmos result is still valid [8].

A special case for the problem of commuting Toeplitz operators on A(D) with bounded
(non-harmonic) symbols has been considered by Z. Cu¢kovi¢ and N. V. Rao in [66] and by I.
Louhichi and L. Zakariasy in [130]. Roughly speaking, let f be a monomial or more generally
a bounded quasi-homogeneous function on D. In [66, 130], sufficient and necessary conditions
for a symbol ¢ € L>°(ID) have been obtained so that 7 and 7}, commute on A(D). The
technique used is to express ¢ in an L?-convergent series 1) (re?) = > e o ¥ (r)e? of quasi-
homogeneous symbols (r and ¢ denote the polar coordinates in C) and then investigate the
commuting problem between T’ and each T, (,)cise. The authors of [66] noticed that for each
J € Z there is at most one v¢; (up to a multiplication by a constant) such that the operators
T’y and Ty, (y)eise cOmmute on A(ID). They obtained the radial part ¢; in terms of the inverse
Mellin transform of an expression formed of a product of Gamma functions. Moreover, using
this approach they proved that for any ®(, ® € L>°(D), where @, is non-constant and radial,
the operators T, and T commute on A(ID) if and only if  is radial.

The above description motivates an analogous problem in the case of the Segal-Bargmann
space over C (c.f. Section 1.3). First investigated by V. Bargmann [12, 13] and LE. Segal



[152], the Segal-Bargmann space over C" (denoted by H?(C",du)) is a Bergman space w.r.t.
a Gaussian measure p and is naturally isomorphic to the Fock space. The choice of y allows
the multiplication operator by the coordinate z; (the Toeplitz operator with symbol z;) to be
the adjoint of the differential operator 0., (Toeplitz operator with symbol Z;). Such operators
are important in quantum mechanics because they satisfy the canonical commutational relations
(CCR) [12, 13, 62, 160]. Toeplitz operators on the Segal-Bargmann space have been studied by
several authors [15-17, 34, 35, 94, 95] and the map g — T; has been considered in [29, 31—
33, 62, 98].

The commuting problem of Toeplitz operators acting on H?(C", du) has been recently con-
sidered in the works of W. Bauer, T. Le and Y.J. Lee [16, 17]. It has been noticed that the
growth of the symbol near infinity influences the results. For example, in [16] W. Bauer and T.
Le proved that if f and ¢ are two measurable functions having a linear exponential growth at
infinity and f is radial and non-constant then a sufficient and a necessary condition for 7'y and
T, to commute is that g is radial in each component. The case n = 1 was treated in [17] where
the implications ,,g is radial” holds true. However, Example 5.6 in [17] shows that if we allow
the operator symbol ¢ to have a higher growth at infinity then this result is no longer true even
in the case where f is bounded.

Inspired by these results and analogous to the case of the Bergman space over D we are inter-
ested in the following commuting problem of Toeplitz operators acting on the Segal-Bargmann
space H? := H?*(C, du) over the complex plane

(PO) Let fns(re®) = rme = z!z* be a monomial. Determine the operator symbols W
having polynomial growth at infinity so that the Toeplitz operators 7, ; and Ty commute

on the space of all holomorphic polynomials P[z] in H?.

Chapter 2 is devoted to the problem (P0). As a first step, we will reduce the above problem
to the case 6 € Ny and V is a quasi-homogeneous symbol. On the one hand, dealing i.g.
with unbounded Toeplitz operators 77, ; and Ty we prove the existence of a densely embedded
Hilbert space H, — H? containing IP[z] on which the operator products Ty 7}, , and T}, Ty
are well defined and continuous (c.f. Proposition 2.2.1 for a more general statement). As a
consequence of this and the fact that the Berezin transform is injective on the set of bounded
operators acting on H,, we will show that 7y and 7, commute if and only if T and Ty, _;
commute. This shows that it is sufficient to consider (PO) for the case € Ny. On the other hand,
we represent W as an L*-convergent series W(re®) = 32 W;(r)e’ of quasi-homogeneous
symbols. Upon applying the products Ty Ty, ; and Ty Ty to the monomials it turns out that
Ty and T}, ; commute on P[z] if and only if for each j € Z the operators Ty, , and Ty (y)eii0
commute on P[z] (c.f. Proposition 2.3.1 for a more general case). This result allows us to

replace (PO) by the following new problem

(P1) Let f,5(re®®) = 2/z% = r™e'%? be a monomial. For each j € Z determine the functions
V; defined a.e. on R, with at most polynomial growth at infinity such that the Toeplitz

operators Ty . and Ty ()50 on P[z] commute.
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In our investigation of (P1), we fix j € Z and we start by assuming that 77, 5T\I;j€z'j8(zk) =
Ty, 50Ty, ;(2*) for all k € Ny. From these relations we obtain a certain distribution of zeros
of the Mellin transform of a radial function involving W, (7’)6_’"2. Using a result in [17], which
replaces the Blaschke condition in the analysis on the unit disc, we derive from the previously
obtained relations a functional equation for the Mellin transform of ¥, (r)e~"" on some right
half plane (Propositions 2.4.1, 2.5.1 and 2.6.1). In order to construct all possible solutions of
the functional equation we have to distinguish between the cases 7 > 9, 7 < 0and 0 < j < 0.
By studying each case separately and under the assumption that V; is at most of polynomial
growth at infinity we obtain all possible solutions (Propositions 2.4.3 and 2.5.2 ). In all the
cases, the radial function ¥; is expressed as an inverse Mellin transform of an expression which
is a product of Gamma functions and a trigonometric polynomial (Theorems 2.4.1, 2.5.2 and
2.6.1). From this collection of candidates obtained we search for those who produce reasonable
symbols for Toeplitz operators so that the commutator [T}, ,, Ty 0] vanishes on P[z]. On the
one hand, it turns out that for j € Z sufficiently small there is no non-zero radial function ¥;
of polynomial growth at infinity such that [T}, ;, Ty cie] = 0 (Theorem 2.5.1). On the other
hand, if j is large enough then there is at least one ¥; of polynomial growth at infinity with
this property (Corollaries 2.4.1 and 2.6.1). As it is indicated by Corollary 2.4.2 and Example
2.6.1 when f,, 5 is a monomial, there is an infinite number of indices j € Z where the existence
as well as the uniqueness (up to a constant factor) of a non-zero W, is obtained. If we allow
operator symbols of higher growth at infinity, and for a fixed j we point out that in some of the

cases there are more than one Toeplitz operator Ty (,)ise commuting with T’ .

Chapter 2 contains many applications of the above mentioned results. Roughly speaking,
we prove that for any j € Z the radial component ¥; can be extended to a complex analytic
function on a neighborhood of R, (Corollary 2.7.1). In particular, they are uniquely determined
by their restrictions to any open sub-interval of R, . In Example 2.4.1 we show that in the case
where m # 0 the condition [T}, ,,Ty] = 0 is equivalent to ¥ being radial (c.f. [17] for a
more general result). Moreover, we recover the examples in [17] of radial functions u such
that 7, commutes with another Toeplitz operator having a non-radial symbol (Example 2.7.1).
Furthermore, we note that I. Louhichi and N. V. Rao conjectured that if two Toeplitz operators
with bounded symbols acting on A(D) commute with a third one, none of them being the
identity, then they commute with each other [129]. Motivated by this conjecture, our results
in this chapter allow us to construct a triple (7', T,, T},) of Toeplitz operators with unbounded
symbols such that [T, T,] = [T, 1)) = 0 but [T,, T},] # 0 (Examples 2.7.2 and 2.7.3).

One can also consider a family of Segal-Bargmann spaces H2Z(C") := H?*(C",dps))
parametrized w.r.t. the time parameter s > 0 and the measure p, is a Gaussian measure (c.f.
Section 1.3). These spaces are mapped to each other unitarly by a simple composition operator
(c.f. (1.3.4)). For a measurable function g on C" we write ’Z;f for the Toeplitz operator with
symbol g acting on H?(C™). We remark that with the notation used above and in the case of the
complex plane we have H* = H?(C) and 7} = Tj,.

In connection with problem (P1) one may ask whether the commuting problem is uniform



w.r.t. the time parameter s. Roughly speaking, let f,, s be a monomial and suppose that for some
j € Zthere is a function W;(r)e”’? of polynomial growth at infinity such that T}, ; and Ty, (ciso
commute on P[z] C H?. Does it follow that 7y ,and Ty ) ;0 commute on P[z] € H2(C) for
some s # 1? The answer to this question is i.g. negative as it is indicated by the example given
in Remark 2.4.2. However, when W;(r)e? is a polynomial, then by a composition formula
for the product of Toeplitz operators with polynomial symbols (c.f. [63] and [14] for a more
general result) the operators 7 , and T\ffj (r)eiio COMmMute on P[z] for all s > 0 if and only if

T}, , and Ty ,ci50 commute on P[z].

Motivated by this observation and addressing Question (II), we will consider two classes
of specific symbols and prove that the algebra generated by Toeplitz operators with symbols
in each class is commutative on each Segal-Bargmann space H2(C") (the commuting result is
uniform in s). The first is a Banach algebra and refers to symbols of the form go{pfq where ¢ is
invariant under a certain action of a product of spheres on C", ¢ € S**~! C C" and p,q € NI
satisfying some conditions. The second is a C*-algebra and corresponds to symbols g where
g(z) depends on the real and on the imaginary part of z in a certain sense. Chapter 3 contains
the construction of these algebras together with some other related results that are explained

below.

There is an extensive study concerning the commutative algebras generated by Toeplitz
operators acting on the (weighted) Bergman spaces A3 (B™) (A > —1 c.f. Section 1.4) over the
unitball B® C C"[22,23,93-97, 144, 145, 168—172]. A well known example of a commutative
(C*-algebra generated by Toeplitz operators is induced by the class of bounded measurable
radial symbols over B™. This is due to the fact that Toeplitz operators with such symbols are
diagonal w.r.t. the standard orthonormal basis of A%(B"). Note that separately radial symbols
are precisely those functions which are invariant under a group action of a maximal commutative
subgroup of automorphisms Aut(B") of the unit ball (the rotational action of the n-torus on B™).
However, there is a general method for classifying C*-algebras generated by Toeplitz operators
which are commmutative on each Bergmann space A3 (B"). More precisely, due to a result by
R. Quiroga-Barranco and N. Vasilevski [144], the C*-algebra generated by Toeplitz operators
with measurable bounded symbols which are invariant under the group action of a maximal
commutative subgroup of Aut(B") is commutative on A3 (B") for any A > —1. As maximal
commutative subgroups of Aut(B") are completely classified [145] in to five classes: quasi-
elliptic, quasi-parabolic, quasi-hyperbolic, nilpotent, and quasi-nilpotent, this gives rise to n + 2
different cases of commutative C*-algebras. The authors in [144] showed that in each of these
cases the corresponding Toeplitz operators are unitary equivalent to a certain multiplication
operator and the commutativity result then follows. In the case where n > 1, it turns out that
there are non-geometrically defined symbols which generate commutative Banach algebras of
Toeplitz operators. This appears for example for the commutative Banach algebras generated by
a class of measurable symbols subordinated to the quasi-elliptic group (c.f. [172]). For the case
n = 1, this commutative algebra is the C'*-algebra of Toeplitz operators with bounded radial

symbols (note that the commutative Banach algebras of Toeplitz operators on A3 (D) related to
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the quasi-parabolic and to the quasi-hyperbolic groups are also C*-algebras [22, 171]).

Analogous to the commutative Banach algebras constructed in [172], we will obtain a sim-
ilar result in the case of the Segal-Bargmann space H?(C") (c.f. Section 3.3). Each Banach
algebra is generated by Toeplitz operators with symbols in a sub-class of the so-called k-quasi
homogeneous functions (here m € N and k& € N™ are fixed with |k| = n). The notion of
k-quasi homogeneous functions is a natural generalization of the quasi-homogeneous functions
considered in Chapter 2 in the case of the complex plane (c.f. [130, 172, 181]). More precisely,
for each tuple k& = (kq,--- , k,,) the space of k-quasi homogeneous functions H; contains
measurable functions of the form wgpfq where ¢ is invariant under the rotational action of
Shi=1 x ... x §%m=1 on C" (y is k-quasi radial c.f. (3.1.2)), £ € S*»~! and p, q are orthogonal
multi-indices. For two measurable functions g&fpzq, 1/)5“? € 'Hj with reasonable growth at
infinity, we show that under certain conditions on the indices p, ¢, u and v the Toeplitz opera-
tors ’Z;fgpgq and ’Z;;’gugv commute on P[z] for any s > 0 (Theorem 3.3.1). With these conditions
and following the ideas in [172] we are able to construct subspaces Ry(h) C Hjy N L>°(C")
parametrized by tuples h € N[ in which the Toeplitz operators with symbols in each Ry (h)
commute on H?(C") for all s > 0. We should remark that each symbol space Ry (h) con-
tains the bounded measurable radial symbols and in the case where n > 2 and k # (1,---,1)
the commutative algebras obtained are only Banach and not C*-algebras. When n = 1 and
analogous to the case of the unit ball all these algebras collapse to the C*-algebra generated
by Toeplitz operators with bounded radial symbols. We note that in our investigation of these
kinds of Banach algebras on the Segal-Bargmann space all the results obtained are analogous

to those in [172] for the case of the Bergman space over the unit ball.

There is a more general notion of Toeplitz operators acting on a domain in H2(C") with
symbols having a suitable growth at infinity as introduced in [14, 16, 117, 118]. In Section 3.2,
we employ a natural extension of the notion of Toeplitz operators acting on P[z] with symbols
in a reasonable sub-class of k-quasi radial functions containing all /(5 -square integrable radial
functions. We should note that in our generalized notion of Toeplitz operators with k-quasi
radial symbols the operators are still diagonal w.r.t the standard orthonormal basis. We aim to
construct a C*-algebra formed only by Toeplitz operators with radial symbols in this general
notion (note that the product of two Toeplitz operators is rarely a Toeplitz operator again).
For this reason we will consider a suitable C*-algebra .A;(C") of bounded diagonal operators
on P[z]. By studying some Stieltjes moment problems we show that for any s > 0 and any
T € A;(C") there is a radial function so that the Toeplitz operator with this symbol acting
on H2(C") coincide with T on P[z]. Consequently, we obtain a C*-algebra containing only
Toeplitz operators and which is commutative on each H2(C") for any s > 0 (Corollary 3.2.1).
We want to remark that this result is a generalization of the particular case n = s = 1 considered
in [95]. Moreover, in our investigation for the general case of k-quasi radial functions (not
necessarily radial), we are able to find a subclass of k-quasi radial functions for which the
(C*-algebra generated by Toeplitz operators with symbols in this class is commutative on each
H?2(C") and contains only Toeplitz operators (c.f. Corollary 3.2.2).



In [167], N. Vasilevski proved that there is an infinite direct sum decomposition of
L*(C") := L*(C",duqy) into spaces Fj,(C") of entire (holomorphic) type functions. These
spaces are parametrized through all multi-indices £ = (kq, - -+ , k,) € N and they are called the
true-k-Fock spaces (c.f. Section 3.4). We will construct an isomorphism between each F (Qk) (C™)
and the Lebesgue space L*(R") := L*(R™, dv) over R" where v is the usual Lebesgue measure
(c.f. [167] for the case n = 1, and Theorem 3.4.2 for arbitrary n € N). For each fixed tuple k£ and
via the orthogonal projection P from L?(C™) onto F(Qk) (C™) we introduce the notion of true-
k-Toeplitz operators Tg(k) with bounded measurable symbols g as Tg(k) = Py)M,. We note that
for k = (1,---,1) € N" the space F{j,(C") is the Segal-Bargmann space H*(C") := H}(C")
and Tg(k) = ’Tgl is the usual Toeplitz operator with symbol g acting on H?(C"). This shows
that true-k-Toeplitz operators acting on the true-k-Fock spaces are generalizations of Toeplitz
operators acting on H?(C").

We are interested in a symbol class for which the C*-algebra generated by true-%-Toeplitz
operators is commutative on F (Qk) (C™) for any k£ € N™. For this reason, we consider bounded
symbols of the form ¥(z) = a(A(x))e™? where x,y € R" with z = x + iy, A is an endo-
morphism of R" and u € ker A = H. Similar to a result in [167] we prove that Té,k) is unitary
equivalent to an operator on L?(IR") which is a composition of a shift and a multiplication op-
erator. Using this fact we show that for a fixed subspace H C R" the C*-algebra generated by
true-k-Toeplitz operators (respectively Toeplitz operators) with symbols of the above form is

commutative on [ (Qk) (C™) (respectively on each Segal-Bargmann space HZ(C")).

At the end of Chapter 3, we use the fact that the Segal-Bargmann space H2(C") over C" is
a tensor product of Segal-Bargmann spaces over lower dimensional complex spaces to combine
our results for the commutative Banach and C*-algebras indicated above. As a consequence,
we will obtain a more general type of Banach algebras generated by Toeplitz operators which
is commutative on each H2(C") for any s > 0.

In Chapter 4 we apply Toeplitz operator theory techniques to the computation of heat kernels
for a class of elliptic and sub-elliptic differential operators. For this reason, we introduce (via the
Bargmann transform from L?(R™) onto the Segal-Bargmann space H?(C")) the notion of the
,.heat kernel of a Toeplitz operator” (c.f. Definition 4.3.3 for a precise statement for the notion
of the heat kernel of a Toeplitz operator). Introduced by V. Bargmann in [12], the Bargmann
transform 3 5 maps L?(R") isometrically onto H?(C"). Via the push-forwards under (3 5 each
operator on L?*(R™) can be regarded as an operator acting on H?(C"). In the case where the
operator symbol g is a polynomial over C" in the complex variables z and z the Toeplitz operator
T, corresponds to a partial differential operator with polynomial coefficient acting on a suitable
dense domain in L?(R"). The Bargmann transform also gives a one-to-one correspondence
between a subclass of integral operators acting on H*(C") and another subclass of integral
operators on L?(R™). The kernels on both sides are related via an application of the Bargmann

transform (c.f. Proposition 4.2.2).

Assume that we are given a differential operator £ with polynomial coefficients on L*(R")
corresponding to a Toeplitz operator 7, on H?(C") such that the ,,heat kernel” of T}, (c.f. Def-
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inition 4.3.3) exists and defines an integral operator in the above mentioned subclass. Then
the heat kernel of L is given by an application of the inverse Bargmann transform to the ,,heat
kernel” of T,. Motivated by this observation, in Chapter 4 we are interested in investigating
the ,,heat kernel” of a certain type of Toeplitz operators with polynomial symbols acting on
H?(C"). Using the Bargmann transform we deduce the heat kernel of a class of elliptic oper-
ators acting on L?(R"). As the simplest example we obtain the well-known heat kernel of the
Hermite operator on R" as well as that of the isotropic twisted Laplacian on R?" (c.f. for ex-
ample [56, 161, 162]). As an application and using the partial Fourier transformation we obtain
the heat kernel of the Grusin operator on R"™! as well as that of the sub-Laplace operator on
the (2n + 1)-dimensional Heisenberg group.

In Chapter 4 we combine results due to F.A. Berezin [29] and J. Janas [118] to obtain the
,.heat kernel” of a certain class of Toeplitz operators acting on a dense domain of H 2(C”).
On the one hand, Berezin’s result states that if 7 is a selfadjoint operator with a positive
measurable symbol f then the exponential operator e=*7/ on H?(C") is given by e~/ =
limy o1 -4 ;) where convergence is understood in the strong sense. On the other hand, J.
Janas proved that if f is a ¢t-radially symmetric function (c.f. Section 4.3 for the definition) such
that the space of holomorphic polynomial P[z] over C" is contained in the domain of 7 then
Ty is essentially selfadjoint as an operator on the dense domain PP[z]. In this case we will not
distinguish between 7% and its unique self adjoint extension. Combining these two results we
can therefore apply Berezin’s result for Toeplitz operators with positive ¢-radially symmetric
polynomial symbols. Note that Berezin’s result expresses the kernel of the exponential operator
e~*Ts as an infinite limit of multiple integrals over C"" (N — oc). However, in some cases
each multiple integral can be reduced to a simple integral over C". In particular, this is the case
when the higher products of Toeplitz operators (7' )" is again a Toeplitz operator. The core
part of Chapter 4 is devoted to the following problem

(P2) Consider a positive semidefinite matrix A € M,,(C) such that (4 + A) is positive definite
and define f(z) = zAZ, where z,Z € C". Let L, be the partial differential operator
acting on a suitable dense domain in L?(R") with polynomial coefficients corresponding

to the Toeplitz operator 7%. Then

(a) What is the ,,heat kernel” of T on H?*(C")?

(b) Let A € M, (C) denotes the matrix whose entries are the conjugate entries of A i.e.
A = Re(A) —iIm(A) where Re(A) and Im(A) denotes the real and the imaginary
part of A, respectively. Assume that A and A commute. What is the heat kernel of
L, on L*(R")?

As a first step we check that f is ¢-radially symmetric and we employ Berezin’s result stated

above. We will show that e 577

is also a Toeplitz operator acting on a dense domain in H?(C").
We then obtain the ,,heat kernel” of 7' by a simple expression involving the exponential operator
e~*Ts and the reproducing kernel of H?(C") (c.f. Theorem 4.3.5). Moreover, we show that the

operator £, is elliptic, semibounded below and in the case where A and A commute its heat



11

kernel is obtained explicitly by a suitable application of the inverse Bargmann transform to the
,-heat kernel” of T’ (c.f. Corollary 4.3.2).

In our investigation of the ,,heat kernel” for Toeplitz operators, we were able in some cases
to use the method of partial Fourier transform to obtain the heat kernel of certain sub-elliptic
positive essentially selfadjoint differential operators with polynomial coefficients on L*(R™)
where m > 2. We write m = n + 1 and apply the partial Fourier transform w.r.t. the last
variable in order to eliminate this variable and to obtain a one parameter family of elliptic
operators corresponding to the previously mentioned situation on L?*(IR™). For this reason, we
start Chapter 4 by introducing a family of Bargmann transforms (; parametrized by ¢ > 0.
This is essential as this parameter will play the role of the eliminated variable. In fact, we will
consider a certain type of differential operators having a specific form (4.3.7) with polynomial
coefficients involving the entries of the above matrix A. Even in the case where A is complex,
we will express each examined operator £ as a sum of squares of real valued vector fields. It
turns out that these vector fields together with their higher commutators span the tangent space
of R™ at every point i.e. they satisfy the ,,bracket generating condition” turning £ into a sub-
elliptic operator [107]. Moreover, we will prove that £ is symmetric, positive and essentially
selfadjoint on the Schwartz space S(R"*1) (c.f. Theorems 4.3.1 and 4.3.7). In order to obtain
the heat kernel of £, we apply the partial Fourier transformation at each fixed point £ # 0 to
obtain an elliptic partial differential operator £¢ on L*(R™). Via the Bargmann transform S,
with ¢t = /2¢
a constant depending on £ and A is a matrix satisfying the conditions in (P2) and whose entries
are independent of . Therefore, the heat kernel k¢(z,y) € C>(R"™ x R"™) of L, is obtained by
the method explained above. It turns out that k(, z, y) := ke(z,y) is also smooth in £. Under

, the operator L, is unitary equivalent to a Toeplitz operator o1, 4z where « is

certain assumptions on k (&, x, y), the heat kernel of L is then obtained by an application of the
inverse partial Fourier transform to the function k(¢, x,y). To illustrate the importance of our
results we will recover the well-known integral formula for the heat kernel of the sub-Laplace
operator on the (2n + 1)-dimensional Heisenberg group as well as that of the Grusin operator
on R [56].

Chapter 5 of this thesis is devoted to study the uniform compactness (w.r.t. the standard
weight parameter) of a Toeplitz operator with a fixed symbol acting on the standard weighted
Bergman spaces over a bounded symmetric domain. Such a problem has been considered by W.
Bauer, L.A. Coburn and J. Isralowitz in [15] for the case of Toeplitz operators with symbols of
bounded mean oscillation acting on the Segal-Bargmann spaces. The case of Toeplitz operators
(also with symbol of bounded mean oscillation on the unit ball) acting on the standard weighted
Bergman spaces over the unit ball was also investigated in [15]. The authors of [15] proved that
if g € BMO"(C") the Toeplitz operator 7,/ is compact on H;, (C") for some o > 0 if and only
if ’Z;t is compact on H?(C") for all ¢ > 0. This result remains valid for Toeplitz operators Tg)‘
acting on the weighted Bergman space A% (B") (here \ € (—1,00)) whenever g € BMO'(B").
We refer the reader to Sections 1.3 and 1.4 were a detailed description for the methods used in
[15] is given.
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Bounded symmetric domains are the natural generalization of the unit ball B” C C", and
are Hermitian symmetric spaces when endowed with the Bergman metric. Irreducible bounded
symmetric domains have been completely classified by E. Cartan [57] into four classical do-
mains and two exceptional ones. Up to a biholomorphic equivalence each irreducible bounded
symmetric domain {2 C C” is uniquely determined by a triple of non-negative integers (r, a, b)
called the type of €2. It is well known that to each 2 there is attached a unique polynomial
h(z,w) (z,w € C") called the Jordan triple determinant. The real valued function h(z, z) de-
fines standard normalized weights 1, on €2 parametrized by v € R such that v > p — 1, where
p is the genus of (2 depending on (7, a, b) and given by (5.2.1). For each v > p — 1 and for a
measurable function g on {2 we denote by T}’ the Toeplitz operator with symbol g acting on the
Bergman space H? := H?*(Q), dyu,). A natural question in the study of the Toeplitz operators is
whether the compactness of 7 is uniform w.r.t. the weight parameter v. Under the assump-
tion that g € L°°(€2) we will show that the compactness of 7} is independent of v, for v large
enough. On the one hand, under the above assumption our result is a generalization to that in
[15] since we deal with a wider class of domains. On the other hand, our result is somewhat
limited since only bounded symbols are considered. The main ingredients in our investigation

for the uniform compactness of the Toeplitz operator T, where g € L°(€2) are the following

(a) An upper estimate for the sup-norm of the Berezin transform g, in terms of the operator

norm of T whenever v and vy are suitable weights.

(b) A density result for a class of Toeplitz operators in the space of all compact operators on
H.

(c) Englis’s result [77] for the equivalence between the compactness of Toeplitz operators
with bounded symbols and the vanishing of the Berezin transform of the symbol near the

boundary of ).

For each pair (v, 14) of weights we construct a trace class operator on H? such that g, is given
as the operator trace. We use then a standard estimate for the trace norm to obtain (a). This
result is valid not only for bounded functions but also for wider class of functions. As for (b),
we will prove the density result for all Bergman spaces. Namely, we show that the space of
Toeplitz operators with symbols that are continuous with compact support on the domain is
norm dense in the space of all compact operators acting on the Bergman space over the domain.
In particular, this holds true for the case of the Bergman space H2. We also use a result in [77]
which states that 7 is compact on H? if and only if g, vanishes on 0%, for v large enough.
By combining these results we prove that the compactness of 7 is independent of the weight
parameter v, for v large enough. Finally, we want to remark that it is still not clear whether our
result can be extended to the case of Toeplitz operators with symbols having a bounded mean
oscillation on ) where such a result has been obtained for the case {2 = B" [15]. This is due
to the fact that the equivalence between the vanishing of the Berezin transform on 0f) and the
compactness of Toeplitz operators is not clear for such a space of symbols on a general bounded

symmetric domain.
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We will now state some of our main results obtained in this thesis. In the following we only
provide two results addressed to each of the above mentioned problems.

Main results:
For the commuting problem (P1) of Toeplitz operators with quasi-homogeneous symbols
acting on the Segal-Bargmann space over the complex plane we indicate the following results

Theorem 1. Let ¥ be a measurable complex valued function on C of polynomial growth at
infinity and write U(re®) = 3"°0 _ Wi(r)e"? as an expansion in L*(C,dp). Let f,, s(re?) =

j=—o00
278 = ™% be a monomial where m =1+ k € Nand § = 1 — k € Ny. For each j > 6, we

define a holomorphic function G;(z) for Re(z) > —j — 1 by

{F(%“ﬂ s

z+p+lj6
Hr

=1 =1

CJ

where p := ™. Suppose that Ty, sTy = TyTy, ;. Then for each j > 0 there exists a

trigonometric polynomial p(z) = 3, <5 e *5° such that

Wy(r) = 2M 1[Gy (2)p(2)] (r*)r 72",
where M1 denotes the inverse Mellin transform.

Theorem 2. Let f,, 5(re’) = r™e"’ be a monomial, and let | € Z such that |I| < 2 arccos 2.

4
Then for each 7 > ¢ the function

0;(r)e? .= M [Gj(z)e%} (r2)r 72 0,
defines an operator symbol such that the commutator [Tfm, 50 Lip; cis0] is well defined and vanish-
ing on the space of holomorphic polynomials. Moreover, goj(r)eijg is of polynomial growth at

infinity in case | = (.

For the commutative algebras generated by Toeplitz operators acting on Segal-Bargmann
space H2(C") we have

Theorem 3. Let k = (ky,- -+ , ky,) be a tuple of positive integers such that ky + - - - + k,, =
Without loss of generality assume that ky < ky < -+ < ky,. Consider atuple h = (hy, -+, hy,)
with h; = 0ifk; = 1and 1 < hj < k;j — 1. In the case kj, = k;, with jo < j1 put h;, < hj,.
Let Ry(h) be the space of all bounded k-quasi-homogeneous symbols

90(7“17 e 7rm)€pgq7

where p, q are multi-indices of the form (3.3.6) and satisfying (3.3.7). Then the Toeplitz opera-
tors with symbols in Ry(h) generate a commutative Banach algebra in L(H?) for any s > 0.
Moreover, forn > 2 and k # (1,--- , 1) these algebras are not C*-algebras.
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Theorem 4. If 'H is a linear subspace of R™ then the C*-algebra generated by the set
{T, a@yeivw | @ € LZ(R"), Ais an endomorphism R" with ker A = 'H and u € H}

is commutative on H2. Moreover, for each k € N" this result holds true for the C*-algebra

generated by true-k-Toeplitz operators cha(x))em , acting on the true-k-Fock space F ((C")

Addressing the Problem (P2) for the ,,heat kernel” of Toeplitz operators we mention the
following results

Theorem 5. Let A be a n xn positive semidefinite matrix. Then the ,,heat kernel” of the Toeplitz
operator T, 5= on H*(C") is given by

Ka(s,z,w) = st A) gze (s,z,w) € Ry x C" x C".

Theorem 6. Ler A = (a;i,) be an n x n positive semidefinite matrix. For each £ # 0 consider
the differential operator L¢ on R" deﬁned by

0 0
Le=) aj;(& - a o2 )+ aj 1+ 5 )(5 T = 5

i#k J
Then L is essentially selfadjoint and semibounded below. Moreover, if (A + A) is positive
definite then L¢ is elliptic. If we assume further that the matrices A and A commute then the
heat kernel of L¢ denoted by ke(s,x,y) and defined on R x R"™ x R™ is given by

k _ —sléftr(A) @ 54/det(Id — e—2sl€l(A+4A))—1
els,2,y) =e S DED L Jder(1d — ¢ )
% exp{ _ Ey([d o~ 2slEI(A+A) )~ (Id—|— —25\£|(A+Z))y
2

— @x(ld — 6—28\EI(A+Z))—1(M + 6—2s|£\(A+Z))x
2

o+ 20gly(Id — AT gl

As for the problem of the uniform compactness of Toeplitz operators with bounded symbols
we fix an irreducible bounded symmetric domain 2 C C¢ of multiplicities a and b, rank r and

genus p. For v > p — 1 we consider the space of symbols
7,(Q):={g: Q— C| 9K, € L*(Qdpy,) foralla € Q},
where K, |, is the reproducing kernel of H? at the point a € .

Theorem 7. Let v > p— 1,1 > d with |v — vo| > “Sra and write 7 = min{v,1,}. Then there
exists C(v,vy) > 0 such that for all g € 7,,(Q) N LY(Q, dus) (c.f. (5.2.5)) we have

1]l < Cv,w0) || Ty |-

Theorem 8. Let Q2 C C? be an irreducible bounded symmetric domain and suppose that

- {d 1+7‘—1 . r—1 2+r—1 r—1 n 1 }
1% ma — a a a — .
» Vo X N 4 a 4 9 9 p

Then for any g € L (X)) we have the equivalence:

T,° is compact on H, 30 if and only if T} is compact on H, 2,
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Organization of the text:

CHAPTER 1: This is an introductory chapter and most of the results here can be found
in the literature. In this chapter we set notation and terminology and we collect some basic
tools which will be used later in our analysis. We also explain some recent results in the area of
the analysis of Toeplitz operators which motivate our work. As Bergman spaces are examples
of reproducing kernel Hilbert spaces we prefer to start this chapter by introducing the general
theory of reproducing kernel Hilbert spaces. We show that the Berezin transform is one-to-
one on a class of bounded operators, which will be used in Chapter 2 for reducing problem
(PO) to (P1). In Section 1.2 we consider Bergman spaces (w.r.t. a suitable finite measure)
over a domain {2 C C" and indicate some useful properties of Toeplitz operators acting on
these spaces. We generalize the density result in [35] from the case of the Segal-Bargmann
space to all Bergman spaces. This compactness criteria is essential in our investigation for
the uniform compactness of Toeplitz operators with bounded symbols acting on the standard
weighted Bergman spaces over a bounded symmetric domain (c.f. Chapter 5). Sections 1.3
and 1.4 are devoted to introduce the Segal-Bargmann and the (weighted) Bergman spaces over
the unit ball, respectively. We explain some properties of Toeplitz operators acting on such
spaces and their connection to the Berezin transform of the symbol. In particular, we give a
detailed explanation of the method used in [15] for investigating of the uniform compactness
of a Toeplitz operator with symbols having a bounded mean oscillation acting on the Segal-
Bargmann spaces or the weighted Bergman spaces over the unit ball. The results collected in

Section 1.4 will help us later in comparing our results to those in [15, 35, 66, 95, 129, 172]

CHAPTER 2: We investigate the commuting problem of Toeplitz operators with quasi-
homogeneous symbols (P0). Section 2.1 is devoted to a detailed description of (P0) as well as a
brief explanation of the methods used for solving it. We also state the main result in [66] for the
problem which motivated (PO). This enables us throughout the chapter to compare our results
for the case of the Segal-Bargmann space to those in [66] for the case of the Bergman space
over the unit disc. In Section 2.2, we construct a space of functions £ C L? for which Toeplitz
operators with symbols in £ are densely defined on a domain in H? containing P[z]. Moreover,
we represent each function in ¥ € £ as an L?-series expansion of quasi-homogeneous functions
W(re) = 3372 W;(r)e . The problem (PO) is then reduced to the case > 0. Finally, we
introduce the concept of the Mellin transform of a function which will be a useful tool in our
investigation. We start Section 2.3 by proving that if f is a measurable function with at most
polynomial growth at infinity and ¥ € £ then 7 and Ty commute on PP[2] if and only if for
each j € Z the Toeplitz operators 7y and Ty ;e commute on P[z]. As a consequence (PO) is
reduced to (P1). Furthermore, for each fixed j € Z we show that the commuting problem in
(P1) can be described by certain equivalent conditions involving the Mellin transform of W; at
specific points. In order to characterize the functions {¥;},cz we decompose the problem into
three parts: (1) case j > d (2), case 7 < 0, (3) 0 < j < 4. Section 2.4 treats case (1) and
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Theorems 1 and 2 are proved. We show that for an infinite number of indices j there is only
one (up to a constant factor) function ¥; of polynomial growth solving (P1). Example 2.4.1
treats the case & = 0 showing that if the monomial is non-constant then WV is radial. Sections
2.5 and 2.6 deals with the case (2) and (3), respectively. In these two sections results analogous
to Theorems 1 and 2 are obtained. In Section 2.7 some applications of our results are indicated
(c.f. the explanation above). Finally, we state two conjectures which are inspired by the results

obtained in this chapter.

CHAPTER 3: This chapter is devoted to the construction of the above mentioned types
of commutative algebras generated by Toeplitz operators. In Section 3.1 we introduce the con-
cept of k-quasi-radial and k-quasi-homogeneous functions. We then explain the contents and
the main results in this chapter. In Section 3.2 we give a more general notion of Toeplitz opera-
tors with k-quasi-radial symbols. By studying suitable Stieltjes moment problems we construct
commutative C*-algebras containing only Toeplitz operators with radial symbols in the previ-
ously mentioned sense. Moreover, for the case of arbitrary k-quasi-radial functions we are able
to obtain commutative C*-algebras of Toeplitz operators whose symbols are in a sub-class of
the k-quasi-radial functions. Section 3.3 deals with the commutative Banach algebras generated
by Toeplitz operators with k-quasi-homogeneous symbols. We search for sufficient conditions
on two k-quasi-homogeneous functions so that the Toeplitz operators with the these symbols
commute on each Segal-Bargmann space H?2. This enables us to give a proof of Theorem 3. In
Section 3.4 we are interested in obtaining the commutative C*-algebras as described in Theorem
4. We start by introducing the true-k-Fock spaces as well as the notion of the true-k-Toeplitz
operators, with suitable symbols, acting on these spaces. We show that each true-£-Toeplitz
operator, with symbols of the form considered in Theorem 4, is unitary equivalent to an oper-
ator on L?*(IR™) which is a composition of a shift and a multiplication operator. This leads to
a construction of commutative C*-algebras generated by true-k-Toeplitz operators. Using this
fact together with Remark 3.4.1 for the case of Toeplitz operators acting on the Segal-Bargmann
spaces, Theorem 4 then follows. Finally, we combine the commutative algebras obtained in the
last two sections to form a more general type of commutative Banach algebras of Toeplitz oper-

ators. Motivated by the results obtained, we end this chapter by indicating some open problems.

CHAPTER 4: We use Toeplitz operator theory techniques to obtain the heat kernel of
a class of elliptic bounded below essentially self-adjoint differential operators. Together with
the partial Fourier transformation method we give an explicit integral kernel for a sub-class of
sub-elliptic partial differential operators. In Section 4.1 we explain how we will combine the
Bargmann transform, Berezin’s result [29], and the partial Fourier transformation method to
obtain the heat kernel of these operators. Section 4.2 is devoted to the concept of the Bargmann
transform. Namely, we will introduce a family of Bargmann transforms ; parametrized by
t > 0. Via the push-forward under 3, we consider a class of integral operators acting on a

dense domain of H?(C") and exhibit their corresponding operators acting on a dense domain
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24w where 2z, w € C" and

of L*(R™). We also calculate the ,,inverse Bargmann transform” of e
A € M,(C) is Hermitian satisfying some conditions. This result will be used later to obtain
the heat kernel of the considered elliptic operators. Section 4.3 is the core part of Chapter 4.
We start by explaining the method of the partial Fourier transform for obtaining the heat kernel
of a certain class of differential operators. Next, we consider a class of differential operators
with polynomial coefficient and show that they are sub-elliptic positive and essentially self-
adjoint. Applying the partial Fourier transform on these operators we obtain a class of elliptic
essentially self-adjoint bounded below differential operators. We then investigate the ,,heat
kernel” of the corresponding Toeplitz operators on H?(C") and Theorems 5 and 6 are proved.
Using the Bargmann transform and the result in the previous section we obtain the heat kernel
of the above mentioned elliptic operators. Under certain condition on the heat kernel of these
operators we are able to obtain the heat kernel for a class of sub-elliptic operators. Moreover,
several examples which illustrate the importance of the considered class of differential operators

are indicated in this section.

CHAPTER 5: In this chapter we switch our attention to Toeplitz operators acting on the
standard weighted Bergman spaces over a bounded symmetric domain. For a fixed measur-
able bounded symbol we investigate the uniform compactness (w.r.t. the standards weights) of
Toeplitz operators with bounded symbols acting on these Bergman spaces. In Section 5.1 we
motivate this problem by discussing some of the results in [15] and we state some of our main
results. Section 5.2 is devoted to some preliminaries on bounded symmetric domains as well as
the standard weighted Bergman spaces over such domains. In Section 5.3 we will construct a
trace class operator (c.f. above) and we will indicate some generalized Forelli-Rudin inequal-
ities. Together with a standard estimate for the trace norm, this enables us to obtain Theorem
7. In Section 5.4 we prove the equivalence in Theorem 8 by using the density theorem obtained
in Chapter 1 and another result in [77] . Finally, we mention some open problems which are

inspired by our results

Appendix: We collect several calculations which are essential throughout the thesis. As
the proof of these calculations are not needed somewhere else we provide them in the Appendix.
We remark that the results in Chapters 2 and 5 originally appeared as an articles in [21, 113]

with minor modifications.
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Chapter 1

Preliminaries

1.1 Reproducing kernel Hilbert spaces

In this section, we present some fundamental properties of reproducing kernel Hilbert spaces
and we show that the Berezin transform acting on bounded operators is one-to-one. We start by

some preliminaries.

Definition 1.1.1. Let H be a Hilbert space (over C) of complex valued functions on a set
Q C C™ H is called a reproducing kernel Hilbert space (abbreviated by RKHS) if for every
z € () the linear evaluation map, 6, : H — C, defined by 6,(f) = f(z) is continuous.

For a Hilbert space H we denote by (-, -) the inner product on H and by ||-|| the correspond-
ing norm. We remark that H is a RKHS if and only if for every z € () there exists a unique
function K, € H such that

f(z)={f,K.), forall f€ H. (1.1.1)

Indeed, the necessity follows from the Riesz Representation Theorem and the sufficiency is

direct:

10(F) = (s Kl < I FINEC-
Definition 1.1.2. The 2-variable function on ) x () defined by
K(w,z) = K,(w)

is called the reproducing kernel of H.

Note that, there are many Hilbert spaces of functions which are not RKHS. Indeed, when (2
is an open connected subset of C" then the ordinary Lebesgue space L?((2) is not a RKHS. In
fact, for any z, € €2 we can construct a sequence { f,} C Cg°(€2) such that || f,[|z2() = 1 and

fn(z0) = n for all n € N and thus the evaluation map is not continuous.

19
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The general theory of reproducing kernel Hilbert spaces was systematized in [6, 7] by N.
Aronszajn around 1948 and developed by L. Schwartz [150]. However, before N. Aronszajn
there have been two trends in consideration of reproducing kernels. The first trend considered
positive definite kernels, which were discovered by J. Mercer [133, 134] and E. H. Moore [135],
and study the kernel itself. The kernels considered by J. Mercer were ,,continuous kernels of
positive definite integral operators” [7]. They arose in the theory of integral equations as de-
veloped by Hilbert and they were positive definite in the sense of E. H. Moore. Later on, E.
H. Moore [135, 136] considered such kernels on an abstract set and he discovered that to each
positive definite kernel there corresponds a Hilbert space of functions to which these kernels
has the reproducing kernel property (1.1.1). The second trend considered a Hilbert space of
functions and the corresponding kernel is used as a tool in the study of these functions. In the
investigation of S. Zaremba on boundary value problems for harmonic and biharmonic func-
tions, he was the first to go through this trend and to find a reproducing kernel for the classes
of these functions (c.f. [180]). Then the idea of reproducing kernels appeared in the work done
by S. Bergman [36, 37]. He introduced reproducing kernels for the classes of harmonic and
analytic functions and he called them kernel functions. In [44—46], S. Bergman and M. Schiffer
used the original idea of Zaremba in applying the kernels to the solutions of boundary value
problems. It turned out that these kernels are useful tools for solving boundary value problems
of partial differential equations of elliptic type. Finally, N. Aronszajn [6] found that any repro-
ducing kernel on a Hilbert space of functions is positive definite in the sense of E. H. Moore
and thus formed the second link between these two trends. This link led to important results
in the study of conformal mappings [38, 39, 41], integral equations [133], partial differential
equations [40], invariant Riemannian metrics [42], in probability theory [121, 141, 142] and in
other subjects in physics. For instant, in [70] J. Duchon formulated generalized smooth surface
spline functions using the reproducing kernel Hilbert space technique in Sobolev space [1]. To-
gether with the work of Loéve the theory of reproducing kernel Hilbert space has been used for
a variety of applications, especially in data interpolation, signal processing, and smoothing (c.f.
[48, 140, 173]). Meanwhile, the notion of RKHS is quite used in numerous fields especially
in solving boundary value problems [89-91], Tikhonov regularization [105, 159], image and

video colorization [100].

In our study there are several reasons for introducing the abstract theory of reproducing
kernel Hilbert spaces. The two main tasks in the thesis the Segal-Bargmann space and the
Bergman spaces over bounded symmetric domains are special types of a RKHS. The corre-
sponding kernels of these spaces share some fundamental properties. In particular, they can be
calculated explicitly by finding an orthonormal system of functions in the corresponding space
(c.f. Proposition 1.1.3 below). Moreover, the fact that the Berezin transform is one-to-one on
bounded Toeplitz operators acting on a Bergman space follows from the fact that this transform
is one-to-one on bounded operators acting on any RKHS of analytic functions whose kernel

does not vanish on the diagonal of €2 x (2 (c.f. Proposition 1.1.4 below).

Let us now present some basic properties of the reproducing kernel K in a RKHS. Applying
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(1.1.1) to the function K, at w, we get

K(w,2) = K, (w) = (K,, K,) forzweQ.

Therefore, the reproducing kernel satisfies:

K(w,z2) = K(z,w), |K.|=+K(z,z2), and |K(w,z)\§\/K(z,z)\/K(w,w).

Furthermore, for a fixed zy € 2 it follows that K (zg, z9) = 0 if and only if f(z,) = 0 for all
f € H. Again by the reproducing kernel property (1.1.1) it is easy to check that span {K}.cq
is dense in H.

It is important to notice that if the RKHS H with kernel K is a subspace of a larger Hilbert
space then K determines the orthogonal projection to .

Proposition 1.1.1. [151] Let (L, (-,-)) be a Hilbert space of complex valued functions defined
on (). Equipped with the norm inhereted from L, suppose there is a reproducing kernel Hilbert
space H C L. Then the orthogonal projection P : . — H is given by

[Pfl(z) =(f,K.), fe€LzeQ. (1.1.2)
Proof. Let f € L, then [Pf](z) = (Pf,K,) = (f, PK.) = (f, K.). N

The next proposition shows that the reproducing kernel of a separable RKHS can be de-
scribed explicitly in terms of an orthonormal basis for the space.

Proposition 1.1.2. [15]1] Let H be a separable RKHS. Then for any complete orthonormal

system {e, },en we have

K(w,z) = Zen(w)en(z), (1.1.3)

neN

where the series converges absolutely on € x €.

Proof. Since {e, },cn is a complete orthonormal system then for any z € ) we have K, =

Y nen(Kz, en)en, where the series converges in H. Hence
K.(w) = (K., K,) =Y (K. ex){en, Ku) =Y en(2)en(w).
neN neN

The absolute convergence follows by Cauchy-Schwartz inequality and Parseval identity:

D lea(@enw)] < QK= ea))2(Q_len Ku)l?)? = [Nl (1.1.4)

neN neN neN

O

Hereafter, we confine our discussion to the case where (2 is an open connected domain in

Cn.
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Proposition 1.1.3. Let H be a RKHS of analytic functions on ). Then the kernel K (w, z) is
analytic in w and anti-analytic in z. Moreover, H is separable and the convergence in (1.1.3)

is uniform on compact sets of €2 x €.

Proof. The first part of the proposition follows since K, € H is analytic and K(w,z) =
m. Note that, for any dense sequence {z,,} in 2 the corresponding sequence of functions
{K., } is atotal setin H therefore H is separable. Moreover, if S C € is compact we know that
for any f € H the complex valued function z — f(2z) = (f, K.) is analytic hence continuous
on (). Therefore, the Hilbert space-valued function z —— K, is weakly continuous. So that,
{K.,z € S} is weakly compact hence strongly bounded. This means that sup{|| K|,z € S}

is finite and the uniform convergence follows from (1.1.4). L]

The bounded operators on a RKHS admit an interesting representation via the so-called
Berezin transform. This transform plays an important role in the theory of Bergman spaces
as well as in the solution of the heat equation (c.f. Section 3). Let us start by recalling the

definition of this transform.

Definition 1.1.3. Let H be a RKHS such that K(z,z) > 0 for all z € Q). Let T be a linear

operator acting on the linear space

1
Ly := span{k, = ———K_.}.cq,
H pan { K(z,2) }ze
of the normalized reproducing kernel functions with values in H. Then the Berezin transform of
T, denoted by T, is the complex valued function defined on () by:

T(z) = (Tk., k.).

The fact that the Berezin transform acting on the bounded operators of a RKHS forms a
representation of these operators is a special case of a more general statement given in the next
proposition. It is sufficient to find a Hilbert subspace H, in H such that Ly C H, is dense then
for any 7' € L(H,, H) one has T = 0 if and only if 7" = 0. This idea was used in [14] for
the case of the Segal-Bargmann space to prove that the Berezin transform acting on Toeplitz
operators with symbols having a certain growth at infinity is one-to-one. In the next chapter,
we use a similar argument to that in [14] to prove that two Toeplitz operators with reasonable
symbol growth at infinity commute on the space of holomorphic polynomials if and only if the

Berezin transform of their commutator vanishes (c.f. Corollary 2.2.1).

Proposition 1.1.4. Let H be a RKHS of analytic functions on §). Suppose there is a Hilbert
space Hy of analytic functions on ) such that Ly C Hy is dense in Hy. Then the mapping

T — T is an injective linear operator from L(Hy, H) into the real-analytic functions in

L>(Q).
Proof. Using the continuity of 7" we have

IT(2)] = [Tk, k)| < | Tkl < 1T,
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hence T € L>(£2). Moreover, since K (w, z) is analytic in w conjugate-analytic in z then k. is
real-analytic but 7" is continuous hence 7'(z) is real-analytic too. To prove the injectivity, we

define the two-variable function on 2 x
Kr(z,w) = (TKy, K.) = (TK,)(z2).

Since T'K,, € H for all w € ) the kernel K is analytic in z but

Kr(z,w) = (K, T*K,) = (T*K,, K,) = (T*K,)(w),

hence K is anti-analytic in w. By assumption K7 vanishes on the diagonal of €2 x (2. As a
consequence (c.f. p. 371 in [124]), the map K7 is identically zero on 2 x €2 hence TK,, = 0
for all w € €). Since Ly C H, is dense and 7" is continuous on H, it follows that 7' =0. [J

At the end of this section we give some classical examples of reproducing kernel Hilbert
spaces.

Example 1.1.1. It is well known that the Peter-Wiener space PW, which consists of square
integrable functions on R such that their Fourier transformation vanishes outside the band
[—r, 7] is a RKHS (c.f. [179]). We generalize this fact to arbitrary dimensions and calculate
the reproducing kernel of the corresponding space. For each v > 0, we define the generalized
Peter-Wiener space PW,. on R" to be (c.f. [178])

PW,.(R") := {go : C" — C|  is entire, pjgn € L*(R"),s. t. for any e > 0,
3 Cowith |p(2)] < CeeM 9l vz € C"}.
According to the generalized Paley-Wiener theorem (c.f. [156, 178]) we know that
F(L*(B(0,7))) = PW,(R™),

where B(0,r) is the closed ball in R™ with radius r centered at the origin, and F is the n-
dimensional Fourier transformation. Since F is an isometry, we can endow the space PW,

with the following inner product

(F,9)pw, = (F L, F 7 9) 2B0)-

It follows directly that PW,. is a Hilbert space and for every z € C"

o()| = (@m)" /B L CEFERE

< (2m) " VIB(0, ") | F ol 250, = Cligllpw,.

which shows that PW, is a RKHS. Moreover, for any o € PW, and any z € C" the identity

0(2) = (F 7, 2oy = (@, Fe*O) pw,,
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shows that the reproducing kernel of PW, is K (w,z) = F(e*"))(w). Using induction on n,
one can prove that (c.f. [65])

roondn(rlz —wl)

)i,
27 |z — w2

Fe0)(w) = (

where J, is the Bessel function of the first kind of order v.

Other examples of RKHS are the Bergman spaces, the Sobolev spaces H*(R¢) for all s > g
[47], the Szegb spaces Aly(0S2) and many others [151]. In the next section we discuss briefly

the Bergman spaces over an open domain.

1.2 Bergman spaces

In the book [43], S. Bergman developed an elegant theory of the Hilbert spaces of analytic
square-integrable (with respect to the volume measure) functions over a bounded domain 2 C
C". These spaces turned out to be reproducing kernel Hilbert spaces. They are now called
Bergman spaces and the corresponding kernels are the so-called Bergman kernels. However, for
an arbitrary (not necessarily bounded) open connected domain €2 one can choose an appropriate
weight function w on €2 and then consider the analytic functions which are square integrable
with respect to the weight function. It was natural to call these spaces ,,weighted Bergman
spaces”. We start this section, by introducing these spaces and proving that they possess a

reproducing kernel.

We will identify €2 (not necessarily bounded) as subset of R?" and we write 2, = xj, + iy
forany z = (21, -+ ,2,) € Q C C". We also write z = 7 for the representation of z in polar
coordinates, i.e. 7 € [0,00) and £ is in the real (2n — 1)-dimensional unit sphere S**~! C C".
We denote by dv(z) the ordinary Lebesgue measure on {2

dv(z) = H dxydyy.
k=1

Let w : 2 — R be a positive integrable function that is locally bounded below by a strictly
positive constant, i.e. for every z € (2 there exists a neighborhood N, C 2 and a contant M,
such that w(u) > M, > 0 for all u € N,. We denote by L? := L?(Q, dpu,,) the Hilbert space of

functions on () which are square integrable with respect to the finite measure

Aty (2) = w(z)dv(z).

Definition 1.2.1. The weighted Bergman space over ) (with respect to the weight w), denoted
by H2 (), is the space of all holomorphic functions f on S such that

HN%@:AWM%@M@<m
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Note that when € is bounded and w = vol(Q2)~! then H2 () is the standard ,,unweighted”
Bergman space. The following lemma is a generalization of Lemma 1.4.1 in [124] from the
,unweighted” to the weighted case of Bergman spaces. It shows that the convergence in the

norm of H2(£2) implies the uniform convergence on compact sets.

Lemma 1.2.1. [124] Let K C 2 be a compact set. Then there exists a constant C'x depending
on K and w, such that

sug!f(z)l < Cxllflluz@), forall f € HZ(S). (1.2.1)
zE

In particular, the pointwise evaluation map is continuous on H? ().

Proof. Since K is compact and w is locally bounded below, there exist , M > 0 depending

on K and w such that the closed ball B(z,7) C € for any z € K and w(u) > M for all
u € B(z,r). By the mean-value property of harmonic functions (c.f. p. 313 in [157] for
example), we know that for any f € H2 () and any 0 < p < r we have:

1
1) = oy [ 1+ n€)ao(©) (122

where do is the area measure on S?*~!. Multiplying both sides of (1.2.2) by a factor of p*"~!

and integrating, we obtain

— —0(821"1) /B( )f(u)dv(u).

Hence by Cauchy-Schwartz inequality we have

< e | (Zm)lf(U)\de(U)] U g )|

N \/]Bzz,r)\ {/B(Z7T)|f(u)\2dv(u)}

N|—=

1

< % [ (Z7T)|f(U)|2w(U>dv(U)}

= Cxl| fllm2 -

2

]

Remark 1.2.1. The proof of the above lemma shows that the inequality (1.2.1) is still true for

any harmonic function f in L2,

We use Lemma 1.2.1 to prove that H2 (1) is a RKHS.
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Theorem 1.2.1. [124] Let ) be an open domain in C", and w be a positive locally bounded
below measurable function. Then the Bergman space H?2()) is a reproducing kernel Hilbert

space. Moreover, for any orthonormal basis {e, }nen of H2 (Q) the reproducing kernel is given
by

K(w,z) = Z en(w)e,(2), (1.2.3)

neN

where the series converges uniformly on compact sets of €} x €.

Proof. For H2 (1) to be a RKHS we only need to prove the completeness. Let { f,, } be a Cauchy
sequence in H2 (). By the previous lemma, f,, convergence uniformly to some function g(z)
on every compact set of 2. Hence, by Montel’s Theorem, ¢ is holomorphic on . Since L?
is complete, there exists f € L*(Q, dpu,,) such that f, converges to f in the norm. Therefore,
there is a subsequence f,,, which converges to f pointwisely a.e. on 2. This shows that f =
g € H2(Q) hence H2(Q) is complete. Since L*((2, dpu,,) is separable, the second part of the

theorem follows directly from Proposition 1.1.3. [

Note that, if w is an integrable positive function then f(z) = 1 € H2(Q) hence K(z,2) > 0
for all z € ). Furthermore, by Proposition (1.1.1) the orthogonal projection P from L2 onto

H2() is an integral operator given by:

[Phl(z) = (h, K(-,2)) = / h(u)K (z,u)dp,(u), Vze. (1.2.4)
Q

Now, we introduce the so-called Toeplitz operators on the weighted Bergman spaces. We
note that the notion of Toeplitz operators goes back to the work of Otto Toeplitz [163] on the
Hardy space H?(S'). This space consists of all square integrable functions on the unit circle
whose discrete Fourier transform vanishes for all negative integers. As a consequence, these
functions admit a holomorphic extension to the unit disc. Moreover, it turned out that H*(S')
is a RKHS with the topology induced from the norm of L?(S!, %d@) (df denotes the ordinary
measure on S'). For a bounded function @ € L*°(S'), O. Toeplitz defined the operator 7}, :
H?*(S') — H?*(S'), by the rule T,(f) = Py(af) where P, is the orthogonal projection form
L?(S*, 3=df) onto H?(S'). These operators have several remarkable properties. For example,
a necessary and a sufficient condition that an operator on H?(S') is a Toeplitz operator is that
its matrix (with respect to the monomials) is a Toeplitz matrix [54]. It is also well known that
there are no non-zero compact Toeplitz operators on the Hardy space (c.f. Ch. 10 in [186]) and
that the spectrum of these operators is always connected (see [69]). However, it was important
to extend the theory of Toeplitz operators to the case of analytic square integrable functions on
an open domain. That is replacing the Hardy space by the Bergman space so it was natural to
call these operators Toeplitz operators on the Bergman space. The study of these operators is
,,a core part of the so-called ,,quantization” of symplectic manifolds” [166] . In fact, the use
of Toeplitz operators in geometric quantization has its origin in the work of F. Berezin [29-32]
and L. Boutet de Monvel [50-52]. The idea of quantization is that of assigning to functions

on a symplectic manifold operators on a separable Hilbert space (state space) satisfying certain
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commutation relations (c.f. [99]). The quantization also consists in deforming the pointwise
product of functions into a new product depending on a positive parameter (Planck’s constant)
[49, 62, 76, 99]. It was noticed that there are many differences between the theory of Toeplitz
operators on the Bergman space and that on the Hardy space. For example, it is easy to construct
a Toeplitz operator on the Bergman space whose spectrum is discrete (see [78] for example).
In the following we will prove that the space of Toeplitz operators with continuous symbols of
compact support is norm dense in the space of all compact operators on the weighted Bergman
space. This fact, appeared for the first time in the work of M. EngliS [74] for the case of the
Bergman space over the unit disc and in the work of L. Coburn and C. Berger [35] for the case
of the Segal-Bargmann space. We will show that this property is still true for any weighted
Bergman space over any open domain. We start by defining the Toeplitz operators and recalling

some basic properties.

Definition 1.2.2. For a measurable symbol g : ) — C we define the operator T, on:
D(T,) = {h € HX(Q) | gh € L2(, dp,)}

by
T,h = P(gh) € H2, he D(T,) C H2(Q).

T, is called the Toeplitz operator on the weighted Bergman space HZ(Q) with symbol g.

Since (€2, ) is a finite measure space, for each measurable function g € L*™(2) the
Toeplitz operator T} is defined on H2(S2). Moreover, T, € L(H2(2)) with [|T,]| < |gllco-
If we suppose further that g has a compact support in 2 then 7}, is of trace class on H2 (). To
make this clear, recall the well known result for operators on any measurable space (Theorem
3.51n [186]):

Lemma 1.2.2. [186] Let (X, 1) be a measure space, and T a linear operator on L*(X, du).
Then T is a Hilbert-Schmidt operator if and only if there is a function K € L*(X x X, du x du)
such that:

/ K(z,y)f(y)du(y), forall f € L*(X,dpu).

Now suppose g is a bounded measurable function with a compact support S, C (2. Let x be
the characteristic function of S;,. We will prove that 7} is of trace class on H2(2). On the one
hand, the operator PM,, where M, is the multiplication operator by Y, is a Hilbert-Schmidt
operator on L*(), du.,,). Indeed, by (1.2.4) we know that for any h € L?*(Q,du,,) and any
z €

PM() = (b K(2)) = [ x(@h) K wdpao)

Applying the above lemma to 7" = PM,, X = (), and dy = dy,, we need to show that
x(u)K (z,u) € L2(2 x Q, dp, X dji,). But this is clear since the mapping > u — K (u, u)
is continuous and

/Ix !/Kzu K (2, w)diy (2)dpy (u /Kuuduw)
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On the other hand, since g is bounded the multiplication operator M, is also bounded on
L*(Q,du,,). Hence (PM,)M,(PM,)* is of trace class on L*(, du,,) (c.f. Lemma 1.36 in
[186]). But the Toeplitz operator T, coincides with (PM,)M,(PM,)* on H2(L2). Indeed, for
f,h € H2(Q2) we have

<Tgf7 h> = <PMgfa h) = <PMgM;Pfa h> - <PMXMgM;Pf7 h> - <PMXM9<PMX)*f7 h>

Similar to a corresponding result in [35] on Toeplitz operators acting on the Segal-Bargmann
space, and by purely functional analytic methods one can prove the following density criteria

for Bergman spaces over any open domain (c.f. Appendix A.1 for a complete proof):

Theorem 1.2.2. For any open domain ) C C" the space
C={T, | g continuouswith compact support in {2}

is norm dense in the space of all compact operators acting on H2 ().

Note that, Theorem 17 in [35] shows that the bounded Toeplitz operators are in general not
norm-dense in the algebra of all bounded operators on H2(2).

In the next two sections, we consider two examples of Bergman spaces the Segal-Bargmann
space (2 = C" with natural Gaussian measures) and the standard weighted Bergman spaces

over the unit ball of C".

1.3 Segal-Bargmann space

The Segal-Bargmann space on C" ,,dates back to the work of Fischer in mathematics [82]
and Fock in physics [83]” [155]. For this reason it is sometimes called the Fischer or the
Fock space. In quantum mechanics it is a sort of ,,phase space” that incorporates the states
of a dynamical system. [99]. Recall that in classical mechanics the motion of a system of n
particles is described by their corresponding position (z1, - - - , x,,) and momentum (p; - - - , py,).
The energy of the system is given by the Hamiltonian function H (z,p) defined on the phase
space R?", It is well known that if f is a smooth function on R?" and (z(t), p(t)) is a solution
of Hamiltons equations then % = {f,H} on (z(t),p(t)) where {-, -} is the Poisson bracket
(c.f. [99]). In quantum mechanics, the phase space is replaced by an infinite-dimensional
separable complex Hilbert space H and points (z,p) € R?" are replaced by unit vectors in H
called the states. The real valued functions which were defined in the phase space in classical
mechanics are now replaced by self-adjoint operators on H. In particular, we have the position
and momentum operators P;, (); where j = 1,--- ,n (c.f. p. 83 in [160] for explicit definition
of these operators). According to Dirac the relations between these operators are given by the
canonical commutation relations (CCR) for n degrees of freedom which is a classical analogue

to the Poisson bracket in classical mechanics (p. 82 in [160])

[Pj, P] = [Q;,Qx] =0 and [Qj, Pi] = ihdj, (1.3.1)
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where 1 < j, k < n, [, -] denotes the commutator and # is the Planck’s constant. The annihila-
tion and creation operators { /i, i; } j=1.., (together are called the ladder operators) are defined
by

1 1
i = E(Pj +iQ;) and Ti; = E(PJ —iQ;).

Using the CCR (1.3.1) one can easily check that the ladder operators satisfy

(7, 1) = [y, i) =0 and  [[1;, ] = hojp. (1.3.2)

In 1928 Fock introduced the operator solution 7i; = h% of the commutation relations
(1.3.2) and applied it to quantum field theory [83]. In [12], V. Bargmann studied the Hilbert
space on which Fock’s solution is realized i.e. the Hilbert space of holomorphic functions, say
inz = (2, -+ ,%,), so that if y; is the multiplication operator by z; then ha%j is the adjoint
operator. It is often named afterafter the investigation of Bargmann [12, 13] and Segal [152,
153]. In this section, we introduce the Segal-Bargmann space as well as the Toeplitz operators
acting on it. We also study the Berezin transform of suitable functions and the connection
of its analytic properties to the behavior of the corresponding Toeplitz operator on the Segal-
Bargmann space.

It will be convenient to use the standard notation and to write & = > _ | &y, 2] = V27,

@ =220 where 2, € C", a = (ay, ag, -+, a,) € Nj is a multi-index of non-negative

z
integers. We shall also write |o| = o + ag + -+ - + a, and a! = aqlag! -+ - .
For each t > 0, consider the Gauss-Weierstrass function w; on C" defined by:
122
L)ne B
4t

wi(z) = w(|z]) = ( (1.3.3)

The function wy is also called the heat kernel since it satisfies the heat equation (Fourier law of

heat conductivity)
ow

ot
where A is the the Laplace operator in R?*" &~ C" and ¢ is the time. We introduce the one-

t
= Awt,

parameter family of normalized Gaussian measures on C”

dp(2) = wy(2)dv(2).

Denote by L?(C", du;) the space of all ,ut square integrable functions on C". For f,g €
L*(C", du), we write (f, g)¢ = [on f(2)g(2)dps(2) for the inner product and || f[|; = \/(f, f):
for the corresponding norm.

For each ¢ > 0, the subspace of all entire functions in L?(C", dy), denoted by H?, is called
the Segal-Bargmann space. By Theorem 1.2.1 we know that H? is a reproducing kernel Hilbert
space. We should note that for any s,¢ > 0 the operator

Ui f](2) = f (NF) (1.3.4)
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unitary maps L*(C", du,) onto L?(C", dyu;) and H? onto H?.

Returning back to the Segal-Bargmann space H?, we want to calculate its reproducing ker-
nel which we denote it by K;(w, z). For this, we recall that for any positive integer n and for
any o, 3 € Ny (c.f. Prop. 1.4.9 in [149]):

21"l L
/ Pio)=d -1+l 7 v (1.3.5)
st 0 o # .

Since wy is radial, integration by polar coordinates shows that (2%, 2); = 0 whenever o #
(. Moreover, using (1.3.5) and the integral formula of the Gamma function one can easily
check that || 2%, = 2/*/v/altlel. Each element f € H? has a power series expansion f(z) =
D aen, Ga2®s ao € C, with || f[I7 = 3 o [aa|*[|2* 7. In particular, the polynomials are dense
in H? and

{etar = 1
2|a| @'t'a‘ a€Ny

forms an orthonormal basis of H?. Therefore, by (1.2.3) the reproducing kernel K*(w, z) of H?

(1.3.6)

is given by:

azx

1 w®z L
t T WZ
K'(w,z) = g _a!—(4t)|a\ = ea ", (1.3.7)
a€Np

and according to (1.2.4) the orthogonal projection P; from L?(C", du;) onto H? can be written
as an integral operator of the form:

[Ph)(2) = (h, Ki(+,2))¢ = / h(w)eﬁﬂdut(w), Vh e L*(C",du;), 2 € C".  (1.3.8)
Note that, by choosing the weight function w; as defined in (1.3.3) we obtain a relation between

1
47t

true for a RKHS. Moreover, using the reproducing kernel property of the Segal-Bargmann space

the kernel on the diagonal and this weight w;(z) = (+=)"(K;(z, 2))~! which is in general not
(1.3.8) one can easily check that for any s,¢ > 0 the convolution product satisfies the semigroup
identity

Wt * Wsg = Wiy s- (139)

(Throughout the thesis the convolution product is given by fxg(z) = [, f(w)g(z —w)dv(w)).
Historically, the reason for choosing the Gauss-Weierstrass function as a weight is that it satis-
fies the following condition on the inner product imposed by Fock (c.f. [12] and the discussion

at the beginning of this section):

Lemma 1.3.1. The Gauss-Weierstrass function w, is the unique continuous radial weight such
that ||1||; = L and for each j = 1, - - - | n the operator of multiplication by z; and the differential
operator ﬁazj are adjoint on the Bergman space of C" (here ﬁ plays the role of Planck’s

constant).
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For convenience and throughout the thesis we write H? for the Segal-Bargmann space H?
4t
and we use the following notation

dlu’(t)(z) = dru’ﬁ (Z>7 K(t)(wVZ) = Kﬁ (wv'z)? <'> '>(t) = <'7 '>i°

4t

Let us describe next the Toeplitz operators acting on the Segal-Bargmann space. Fix ¢ > 0, then
for a measurable function g : C* — C the Toeplitz operator with symbol g, denoted by Tgt, is
defined on the maximal domain D(T}}) = {f € H? | gf € L*(C",du,)} C H} and given by:

T35 = [Pafl) = [ gl fw)etTam(w), vze ' (1310

Throughout the thesis we write ’];t =T, gi for the Toeplitz operator with symbol g on the Segal-
Bargmann space H? = H?2 . Moreover, in the case t = i we simply denote by 7}, the Toeplitz
operator T, N

Toeplitz operators on the Segal-Bargmann space have been studied by several authors [15—
17, 34, 35, 94, 95] and the map g — Tgt has been considered by Berezin [29, 31, 32] and
others [33, 62, 98, 106] as a natural ,,quantization”. In particular, one can easily check that
the operators Tzij and Tjk are densely defined on H?. They satisfy the canonical commutation

relations (1.3.2) ( the factor ﬁ will play the role of the Planck’s constant ). Now let us introduce
a class of symbols g where the correspondence g — Tgf is one-to-one.

Definition 1.3.1. For eacht > 0, we define the class of symbols &, to be

1
& = {g : C" — C| g is measurable and 3c,d > 0 s.t. ¢ < P and |g(z)| < de”|2} )
(1.3.11)

Proposition 1.3.1. For every g € &, the Toeplitz operator T; is densely defined on H? and its
domain of definition D(T}) contains the space of holomorphic polynomials P[z] as well as the

linear space of the normalized kernels
L _ kt L 4%1112 —é|z\2
uz = span {k (w) == ea""e }oecn-
Moreover, the correspondence £ > g — T; is one-to-one.

Proof. For f € P[z] U L(H}) the multiplication operator M; by f maps & into itself. Hence
forany g € & we have Mg = fg € & C L*(C", dy,) which means f € D(T}). Now suppose
T} = 0 then for any a, # € N" we have

(9,2°%") = (92", 2%) = (P'g2", 2%) = (T}2",2%) = 0.

However, the polynomials in z and Z are dense in LQ((C”, duy) (c.f. [84, 119]) and therefore
g=0ae. onC". O
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Remark 1.3.1. A more general notion of Toeplitz operators on the Segal-Bargmann space
H? := H? was introduced by J. Janas in [117, 118] (c.f. also Section 3.2). For a measur-
4

able function g, J. Janas defined the operator T, on the maximal domain D(T,) := {f € H? |
gf = h+rh € H*and |, rpdps = 0,Yp € P[z]} by T,f = h. It turned out that this
operator is well defined with D(T,) C D(T,) and T, = T, on D(T},). In [95], S. Grudsky and
N. Vasilevski characterized a class of non-zero radial symbols g on which T, y I8 identically zero
on the Segal-Bargmann space of the complex plane. According to Proposition 1.3.1, this class
contains only symbols of high growth order at infinity. Explicit examples of such symbols where
constructed by W. Bauer and T. Le in [16].

We also remark that if g € & is radial in each component, g(z) = g(|z1], -, |znl),
then by the rotation-invariant property of yu,; the Toeplitz operator T; is diagonal with re-

spect to the standard orthonormal basis (1.3.6). Indeed, if we represent each component of

u= (uy,---,u,) € C"inits polar coordinates by u; = r,&;, where r; = |u;| and &, € S! then
we obtain
(0% o Lzﬂ
T;Z :/n g(u)u et d,ut(u)
> o [ stwyurw i
= glu)u~u"ap(u
18131
ﬁGNo (4t> B n
= i -5 . e P '
_[;EN (4t)181 3! (47Tt)n/0 g(r1, ,rn)jli[lr] e~ drdr; /Sl ;78 do (&)
0 =

n

z¢ 1 o0 oy 41
~ (4t)llal (2t)n/0 g(re, o) [ 75 wy(rj)dr;.

=1

Conversely, in [16] W. Bauer and T. Le proved that if g € &; is such that T ,f is diagonal
with respect to the standard orthonormal basis then ¢ is radial in each component. Now let us
consider two radial symbols f, g € &;.

On the one hand, since T} and T} are diagonal operators their product 7,7} and T}T, are
well defined and commute on the space of holomorphic polynomials P[z]. In Chapter 3, we
will prove a wider result namely if f,g € & are k-quasi-homogeneous symbols (having a
specific form) then the Toeplitz operators T; and T}E also commute on P[z]. For example, put
f(2) = p(r)ere” and g(z) = 1 (r)EPE" where @, 1) € & and p, ¢ are orthogonal multi indices
s.t. |p| = |q| then T} and T, commute.

On the other hand, one may ask whether for a non-constant radial symbol f € & and for
an arbitrary g € &; the commuting condition between TJE and Tgt implies that ¢ is radial in its
components. In [16], it was proved that this is not true in general for f, g € &. However, if we
assume f and g to be in the space Sym_(C") := N;>¢&,; and f is non-trivial and radial then T J'E
and T} commute if and only if g(e?z) = g(z) for a.e. @ € Rand a.e. z € C". This generalize
the previously known result in [17] for the case n = 1. If we allow the operator symbol g to
grow by high order at infinity and even in the case where f is bounded then the implication ,,g

is radial” is no longer true (c.f. [17]). In Chapter 2, by studying commuting Toeplitz operators
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with quasi-homogeneous symbols we recover the examples in [17] of radial functions whose
Toeplitz operators commute with another Toeplitz operator having a non-radial symbol.

In connection with the analysis of Tgt the heat semigroup:

7' (2) = g w(z :; ue_lzjlr‘Q v(u
7 =g e ) = o [ alwe S anw (13.12)

plays an important role and is called the ,,heat transform” of ¢ at time ¢ or the Berezin symbol
of T;. The use of the Berezin transform as a determining factor of the behavior of the Toeplitz
operators on the Segal-Bargmann space has generated an extensive list of results [14—17, 35,
64, 111, 112]. It should be noted that whenever g is in the class of symbols:

7,:={g:C" — C | gk! € L*(C",dy) forall z € C"}, (1.3.13)

the Berezin transform of ¢ coincide with the Berezin transform of the Toeplitz operator T;:

§'(2) = (TikL KLYy = Ti(2). (1.3.14)
Therefore, by the Propositions 1.1.4 and 1.3.1 for any g € & C 7; such that T; is bounded on
H} the Berezin transform g' is real analytic and bounded by ||7}|| and satisfies g* = 0 if and
only if ¢ = 0 a.e. on C". More general, in [14] it has been proved that the Berezin transform
on the space Sym_(C") = Nyo&; is one-to-one. In the next chapter, we shall use a similar
argument to that in [14] together with Proposition 1.1.4 to prove this result on every space &,
(c.f. Remark 2.2.2). Note that, since k! converges to zero weakly on H? as z — oo equation
(1.3.14) shows that the Berezin transform of ¢ vanishes at infinity (§* € Cy(C™)) whenever the
Toeplitz operator T}, is compact on H7.

Let us now study some properties of the Berezin transform and then apply it to study the
behavior of the Toeplitz operator. First we remark that the convolution product g x w;(z) may
not exists for particular z and ¢. However, if g € L*(C", dyu,) for some s > 0 then the integral
in (1.3.12) converges absolutely for every ¢ such that ¢ < 2s. Indeed, for every z € C" the
function 1, ; s (u) := (4ms)"w,(z — u)e% € L?(C", du,) hence

lgxwi(2)] < [ g(u)|wi(z —w)dv(u) = [ [g(w)|i. s (u)dps(u) < oo.
cn Ccn

Moreover, for every ¢ < s the Berezin transform g € L*(C", dus_;) with [|'||s—+ < |lg]|s- In
fact, using Cauchy-Schwartz inequality

o < [ [ ot - wt]

< / wi(z —uw)dv(w) | [g(w)[wi(z —uw)dv(w) = | [g(u)[wi(z — u)dv(w).
n Cn Cn
(1.3.15)
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Hence, by (1.3.9) we obtain

13115 = g 19 (2)[*dprs—e(2)

< [ lot)Pun(z — vy, ()av()

= | lg(w)wy > ws—y(u)dv(u)
cn

= [ lg(u)Pws(w)dv(u) = |lg]|3.
o

From (1.3.9) again it follows that the Berezin transform of g € L?(C", du,) fulfills the semi-
group identity:

S (t+)

G"N(2) = grwp, (2) = g* (we xw,) = (g% wy) xw, = {3"'}", (1.3.16)

for every ¢, > 0 such that  + v < s. This is not surprising since by direct calculations one
can show that if g € L°°(C"™) then the Berezin transform u(x,t) := §" is the solution of the heat

t

equation u(z,t) = e~*¢ at any time ¢.

On the one hand, using (1.3.16) it is easy to see that if g € L*(C", du,) then

13 oo < 113”0 (1.3.17)

forevery 0 < v < t < 2s (|3'(2)| = |§¥ * wi_,(2)| < ||g”|]). On the other hand, it is easily
checked that |§”| < (}/)”mt for every 0 < v < t < 2s. This shows that, for g € L2(C", dyu,),
H@to oo < 00 for some fixed 0 < ¢y < 2s then ||§ || < oo forall 0 < ¢ < 2s (c.f. Proposition
2 in [35]).

Let us now collect some interesting results which relates the Berezin transform of a function
and its corresponding Toeplitz operator. Using (1.3.14) and (1.3.17) we see that if 7/ is bounded
(respectively compact) for some 0 < v < 2s then g is bounded (respectively g° € Cy(C™)
where C(C™) is the space of functions vanishing at infinity) for every 0 < v < ¢. Moreover, in
[35] and later on in [15] it has been proved that the norm of the Berezin transform is dominated

by that of the corresponding Toeplitz operator in the following sense.

Theorem 1.3.1. /15, 35] For g € T; and every s such that % < § < 2t there is a universal
constant c(t, s) > 0, independent of g, such that

15°]|oo < c(t, s)|IT2]]. (1.3.18)

Therefore, g° is bounded for all % < 8§ < 2t whenever T gt is bounded. Furthermore, the
above theorem was used in [15] to prove an interesting property relating the compactness of the
Toeplitz operator and the vanishing of the Berezin transform at infinity. For completeness we
state the result and give the proof (c.f. Theorem 4 in [15]).

Theorem 1.3.2. [15] Let g € 7. If T}, is compact on H} for some t > 0 then g* € Co(C") for
all % < s < 2t
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Proof. Suppose T; is compact then by Theorem 1.2.2 there is a sequence of compactly sup-
ported continuous functions (g;); such that || 7 — 77 || 2%, 0. Therefore, by (1.3.18) for any

Jj—00

fixed s such that £ < s < 2t we obtain ||§° — g;"[|oc < c(t,s)||T}; — T,.Il — 0. Since each

g;° € Cy(C™) and is of compact support, then §° € Cp(C"). O

A converse implication to the above theorem was also proved in [15]. Roughly speaking, if
g € 7; such that g° € Cy(C™) for some 0 < s < % then Tgt is compact. The proof uses some
known pseudo-differential estimates. More clearly, it is well known [12, 84, 98] that via the
Bargmann transform,

B: L*(R", dx) — H?

defined by [Bf](2) = 21 [, f (x)e\/?m_”tgdx, every Toeplitz operator T} on H is unitary
equivalent to the Weyl-pseudodifferential operator Wﬁ acting on L2(R", dz). Since §z €
Co(C™) an application of Pool s theorem [143] together with the Calderon-Vaillancourt theorem
[84] proves that Wg]% is compact on L?(R", dx).

These results together with the equivalence between the compactness of T; and the vanish-
ing at infinity of §* whenever ¢ is of bounded mean oscillation (c.f. [64]) were used in [15] to
show the independence of the compactness of T; with respect to the time £. In Chapter 5, we
will use similar techniques to prove that the compactness of Toeplitz operator (with bounded
symbols) acting on the Bergman space over a bounded symmetric domain is independent of the

standard weights and results similar to Theorems 1.3.1 and 1.3.2 are obtained.

1.4 Bergman spaces over the unit ball of C"

The weighted and the ,,unweighted” Bergman spaces over the unit ball of C" and related oper-
ators have been studied intensively by several authors [3, 4, 10, 11, 72, 101, 125, 185-187]. In
this section, we introduce some properties of these RKHS and compare the situation to the case
of the Segal-Bargmann space.

Let 2 = B" be the open unit ball in C" and for any A\ > —1 consider the radial weight

wx(z) == ex(1—|2[*),

where the normalizing constant ¢, := % is chosen so that duy(z) = wy(2)dv(z) is a
probability measure on B". Theses weights {w,},~_1 are the standard weights on B™. In
fact, they arise from the Jordan triple determinant polynomial h(z,w) = 1 — zw associated to
symmetric domain B" (c.f. Chapter 5).

Denote by A%(B") the weighted Bergman space in L3 := L*(B", duy). When the weight
A = 0, we simply write A*(B") instead of AZ(B") and refer to A?(B") as the ,, unweighted”
Bergman space over the unit ball. The inner product and the norm on L3 or A3 (B") is denoted

by (,-)x and [|-

A, Tespectively.
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By Theorem 1.2.1 we know that A% (B") is a reproducing kernel Hilbert space. Moreover,
by integration in polar coordinates and using (1.3.5) it is easy to check that the set

_ (Tt +A+1)
€a(2) = oCn+A+1) —

where T" stands for the Gamma function, forms an orthonormal basis of A% (B"). Therefore, by

(1.2.3) the reproducing kernel of A2, denoted by K, is given by the series

r A+1 1
K u,2) =) (ntlal A+ 1) oo _

all'(n+A+1) (1 — uz)nti+r

aeN”

According to (1.2.4) the orthogonal projection P* from L3 onto A3(B") is given by the integral
formula

[PMRI(2) = (b K-, 2))s = /B u_il(ﬂ%dm(u), hellzcB. (141
Note that, for fixed z € B" the reproducing kernel K (u, z) is bounded in u and therefore P
can be extended to L} := L*(B", du,) by its integral representation in (1.4.1). Therefore, for a
function g € L} the Toeplitz operator TgA, given by
1) = (Pghl(s) = [ S din (),
is densely defined on A3 and its domain of definition D(Tg)‘) contains all bounded holomorphic
functions on B". Since P* is not bounded on L} the operator Tg’\ is unbounded in general.
The Berezin transform of a function ¢ € L3}, denoted gA, is defined to be the Berezin

transform of the Toeplitz operator TgA:

P(2) = (T, RD) = (gh, k) = (1 — [2?)m /B oW ), (142)

AR z1 vz . |1 _uz|2(n+)\+1)

1
(1 — uz)ntitn
Note that, by the above definition the Berezin transform §* replaces the heat transform in the

where k2 is the normalizing kernel function given by k> (u) = (1—|z[?)2("+A+1)

case of the Segal-Bargmann space. Since the mapping ¢ — TgA is bounded on L*>°(B") it
follows that the Berezin transform By : ¢ — §* is bounded on L>®(B") with ||§*]|cc < [|9|lco-
Moreover, in [125] it has been shown that the mapping B, is bounded on LP(B", du,) if and
only if p > 1. Note that 53, is one-to-one on Li (c.f. p. 32 in [101] for the case n = 1). Indeed,

suppose §* = 0 for some g € L} then the function

1o = (= = [ et~ i) =0

Therefore, for any «, 3 € N7 we have (920°G)(0) = 0, where 9 := 021052 - - - 92 Dif-
ferentiation under the integral sign shows that [5, u*u”g(u)du(u) = 0 hence g = 0 a.e. on
B".
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There is another useful way to write the Berezin transform as an integral involving the
involutive automorphisms ¢, of the ball. For each z € B" the function ¢, is the automorphism
B™ which exchanges 0 and z and is given by

2 — P,(uw) — /T- :PQ(u)

. (u) = - u e B,

where P, is the orthogonal projection from C" on to the one-dimensional subspace generated
by z and Q(u) = u — P,(u). Remark that the automorphism group of the ball Aut(B") is
generated by the unitary operators on C" and the involutions {p, },cp» (c.f. Theorem 2.2.5 in

[149]). Moreover, we have

(1= =11 = |21
1 —uz]?)

L= [e:(u)]* =

(1.4.3)

and

1— |z

n+1
_ ,  where Jrp, is the real Jacobian of ¢,. (1.4.4)
11— uz|?

i) = (
Therefore, by the change of variable u — ¢, (u) together with (1.4.3) and (1.4.4) we obtain:

- [ QAP

|1 — uz[2n+A+D) dux(u)

:/ g o, (u)dpuy(u). (1.4.5)

Let us choose a function g € Li for all —1 < A < 0 such that the Berezin transform satisfies
the semigroup property (QNVS = ¢""%). Then by (1.4.5) we have

~0

') = [ P optwdin =56 = [ go (i)

Since the Berezin transform map is one-to-one on L} we see that §~’\0 = ¢ ifand only if g = §*
(compare the situation to the Segal-Bargmann case). Therefore, it is natural to study the fix
points of the Berezin transform. In fact, the problem of characterizing the functions invariant
under the Berezin transform has been encountered by several authors [2, 8, 75, 137]. In the case
n = 1, and under the assumption that g is continuous up to the boundary g is a fix point of the
Berezin transform if and only if it is a harmonic function (c.f. Prop. 6.20 in [186]). This result
is still true if we assume only that g is bounded on the open unit disc [75].

We aim now to prove that the M-harmonic functions on B" are fixed points of the Berezin
transform. Recall that a twice differentiable function g is called M-harmonic if (Ag)(z) :=
A(gop,)(0) =0 forall z € B". In case n = 1, they are precisely the harmonic functions and
this fails to be true for n > 1 (c.f. Remark 4.1.4 in [149]).

Let g be M-harmonic function then by the mean value property of the M-harmonic functions

(Theorem 4.1.3 in [149]) we can write
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1
000) = s [ oo lrE)o(e), forevery0 << 1.
Multiplying both sides of the above equation by a factor of 2n7?"~*(1 — r2?)* and integrating

over [0, 1) we obtain

2ng(z)/0 r2nH (1 — TQ))\dT = 0(82;”1) /Bn go@.(u)(1—|ul?)dv(u).

Therefore,
92) = [ g = ()

By the above calculations it should be noted that any function g € L} is a fix point for the
Berezin transform B, if and only if g satisfies the mean value property . In case of A = 0, it has
been proved in [2] that functions in L} which satisfy the mean value property are exactly those
M-harmonic in case n < 11 and this fails for higher dimensions. Therefore there are fix points
of the Berezin transform 5, which are not M-harmonic, and according to Proposition 13.4.4 in

[149] these functions do not admit continuous extension to the closed ball B".

Similar to the case of the Segal-Bargmann space it is clear that if g € L} then ||§*]|o. <
19 M lse < ||IT;|| for all Ay > A. Therefore, if T is bounded then the Berezin transform g
is bounded for all Ay > ). Moreover, since k7 =0 weakly g* € Cy(B") whenever Tg)‘
is compact for some A\ < )\g. Furthermore, if we suppose that g is M-harmonic then Tg)‘ is
bounded (respectively compact) if and only if g is bounded (respectively g = 0). Indeed, since
the M-harmonic functions are fix points of the Berezin transform 7’ g;\ is bounded if and only if
g = §" is bounded. Now, if we suppose that T’ g’\ is compact then g = §* 2%, 0 and therefore
by the maximum principle of the M-harmonic functions (c.f. Theorem 4.3.2 in [149]) it follows
that g = 0.

The connection between the vanishing of the Berezin transform of the function near the
boundary and the compactness of its corresponding Toeplitz operator has been studied fre-
quently [10, 158, 183, 187]. In [187] it was proved that for symbols g of bounded mean oscilla-
tion §° € Co(B") if and only if T;) is compact on A*(B"). Later on in [15] and as an analogue to
the Segal-Bargmann space case, the existence of a universal constant c(\, \g) was shown such
that

1750 < X AT

for g in a suitable class of symbols. This estimation together with the result [187] were used in
[15] to prove that the compactness of the Toeplitz operator TgA is independent of the weight A

whenever ¢ is of bounded mean oscillation.



Chapter 2

Commuting Toeplitz operators with
quasi-homogeneous symbols
on the Segal-Bargmann space

For the Gaussian measure ;o on the complex plane C given by the density du = du 1=
%e“"de, where v is the usual Lebesgue measure, we denote by H? := H? = H?*(C,du)
the Segal-Bargmann space over C. As introduced in the previous chapter H? 'is a closed sub-
space of L? := L*(C, du) consisting of all y-square integrable entire functions on C. We know
that H? is a RKHS with the reproducing kernel K (w, z) = ¢“Z. In particular, if P denotes the
orthogonal projection of L? onto H? then

[PhIG:) = (h K (- 2)) = [ Bw)ean(w), vz e C.
C
where (-, -) denotes the usual inner product on L.
For a function g € £ := 8% cé& 1 (c.f. Definition 1.3.1), the Toeplitz operator T, := T, is
given by

T, D(T,) := {h e H? | ghe LQ(C,du)} C H? — H?: h P(gh).

According to Proposition 1.3.1 the operator T, is densely defined and D(7},) contains the space
of holomorphic polynomials PP[z] as well as the linear space

L := Ly = span {k,(w) := K(w, 2)6_%‘42}360

In this chapter we are motivated by the following problem: Let 7' = T« with [,k €
Np be a Toeplitz operator with monomial symbol acting on H?. Determine the symbols ¥
of polynomial growth at infinity such that 7%y and 7,5+ commute on the space of all holo-
morphic polynomials in H2. By using polar coordinates we represent ¥ as an infinite sum
W(re®) = 3772 W;(r)e’. Then we are able to reduce the above problem to the case of

quasi-homogeneous symbols ¥ = ¥ 7% We obtain the radial part ¥ ;(r) in terms of the inverse

39
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Mellin transform of an expression which is a product of Gamma functions and a trigonometric
polynomial. If we allow operator symbols of higher growth at infinity (but remaining in &), we
point out that in some of the cases more than one Toeplitz operator Ty ..o exists commuting
with 7.

The following section describes this problem in details as well as the steps used for solving
it. We also state two of our main results which we prove throughout the chapter.

2.1 Introduction

The problem of characterizing the symbols of commuting Toeplitz operators on (weighted)
Bergman spaces over various domains as well as the study of algebras of commuting Toeplitz
operators, has attracted the interest of several authors [8, 9, 16, 17, 60, 61, 66, 126, 129, 130,
144,168, 169, 172]. The analysis often is restricted to the case where at least one of the symbols
belongs to a certain subclass of functions.

On the Hardy space H 2(Sl), Brown and Halmos [54] were the first to obtain a complete de-
scription of bounded symbols so that the corresponding Toeplitz operators commute on H?(S').
In fact, they proved that two Toeplitz operators with bounded symbols commute on H?(S!) if
and only if both symbols are analytic, or both are conjugate analytic, or one of them is a linear
function of the other. An analogous problem in the case of the Bergman space A(ID) over the
unit disc D was considered by S. Axler and Z. Cu¢kovi¢ in [8]. Roughly speaking, they showed
that for a pair of commuting Toeplitz operators on A(ID) with bounded harmonic symbols the
result obtained by Brown and Halmos in [54] is still true. Of course, harmonicity is essential
since any two Toeplitz operators with radial symbols commute on A(ID). Later on, with Rao
[9], they proved that if two Toeplitz operators on A(D) commute and ,, the symbol of one of
them is non constant and analytic then the other is analytic too” [9].

Let ¢ be a monomial or more generally a bounded quasi-homogeneous function on . In
[66, 130] a complete characterization of the Toeplitz operator 7', on A(D) with bounded symbol
1 was given such that T}, commutes with 7,,. More precisely, every bounded function v can
be represented by an L*(ID, dv)-convergent series ¢(re’) = 372 4b;(r)e? where 1);(r) are
bounded functions defined on the interval [0, 1) ( here r and 6 represent the polar coordinated
in C). Using this fact, Z. Cuckovi¢ and N. V. Rao deduced that T, commutes with T, commute
if and only if for each j € Z the Toeplitz operator Ty (,).i;e commutes with T,,. Then they
were able to describe each function ¢); as the inverse Mellin transform of a product of Gamma
functions (c.f. Theorem AQ).

An analogous problem in the case of the Segal-Bargmann space and considering v to be
of polynomial growth at infinity is investigated in this chapter (for a detailed description of the
problem c.f. below). In order to compare our results to those in the case of the Bergman space
over the unit disc and for the sake of completeness we state the main result in [66].

Theorem A0. [66] Let ¢)(re) = 3220 4;(r)e”? and p(re”) = r™e® be bounded func-
tions on D, where 1; are bounded, m € Ny and § € N. Then T, T, = T, T, on A(D) if and
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only if for each j € 7 there is a constant a; such that

p(%ﬂ‘)p(w@_gé—j)

¢j(r):aj - F<z+§§—j)r(z+rr12—g6+j) (T>a

(2.1.1)

where M~ denotes the inverse Mellin transform.

Moreover, it was shown in [66] that for bounded functions ®; and ®, where ®, is non-
constant and radial (i.e. p(re?) = (r)), the operators Ty, and Ty commute if and only if @ is

radial.

In the case of the Segal-Bargmann space it was recently shown in [16, 17] that the growth
of symbols near infinity essentially influences the results. On the one hand, if 7, and T,
commute such that both symbols are of polynomial growth and one of them is radial non-
constant, then the other symbol must be radial, too. On the other hand, examples of commuting
operators 7, and T.,, exist where ¢, is radial of exponential growth at infinity and (5 is non-
radial and bounded, c.f. Example 2.7.3 of Section 7 and Example 5.6 in [17].

In this chapter, we fix a monomial f,, 5(re??) = rme®’, where m = [+ k and § = | — k with
I,k € No. We search for functions ¥ of polynomial growth at infinity such that 7, and Ty
commute as operators on the space of holomorphic polynomials. Analogous to the case of the
Bergman space over the unit disc, we express ¥ in a form of an L?-convergent series of quasi-
homogeneous functions W(re) = 37 W;(r)e”’. It turns out, as in the case considered by
Z. Cuckovi¢ and N. V. Rao in [66], that it is sufficient to consider this problem for the operators

T, 5 and Ty .ij0. More precisely:

(1) Under the assumption [T}, ,, Ty, cio] := Ty, Ty, ciso — Ty, ei0TY,, ; = 0, we characterize
the functions W, as the inverse Mellin transform of an expression formed up of Gamma

functions and a trigonometric polynomial.

(2) For each fixed j € Z, we give a collection of quasi-homogeneous symbols ¥;e™/? such

that the commutator [7}, ;, Ty o] vanishes.

The main idea in (1) is to derive a functional equation for the Mellin transform of \Ilje_’”2

on some right half plane together with additional conditions starting from the relations
(T4, 55 T\I/jeija](zk) =0, forall k€ Ny.

We then, construct all possible solutions under the assumption that W has polynomial growth at

infinity. Finally, we obtain ¥; via the inverse Mellin transform.

In (2) we use the symbols obtained in (1) and study their growth behavior, to find the can-
didates of quasi-homogeneous symbols ¥ ;e such that [T}, 5> L eio] = 0. We prove that,
for j € Z sufficiently large, there exists at least one symbol W; with this property having at
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most polynomial growth at infinity. Moreover, we point out that in general there are additional
symbols W; of exponential growth such that 7%, ; and Ty ;e commute.

We show that it is sufficient to treat only the case § Then we decompose the problem
J

> 0.
into three parts: (1) case j > 6 (2)case 7 < 0, (3) 0 < j < 0.
Now we state two of our main results. The first one addresses the problem (1)

Theorem Al. Let ¥ be a measurable complex valued function on C of polynomial growth at
infinity. We write U(re') = 320 W;(r)e”? as an expansion in L*(C, dy). For each j > 4,

we define a holomorphic function G;(z) for Re(z) > —j — 1 by

J Jj—0o -1
6 = [ T e o

=1 =1

where p = ‘HTm. Suppose that Ty Ty = TyT}, ;. Then for each j > ¢ there exists a

trigonometric polynomial p(z) = ZUK% we”s such that
Wy(r) = 2M [Gy(2)p(2)] ()2,
where M~ denotes the inverse Mellin transform.

On the other hand we have:

3

Theorem A2. Let f,, 5(re¢") = r™ e be a monomial, and let | € Z such that |I| < £ arccos 3.

Then for each j > ¢ the function

2milz

pi(r)e?’ == M~ [Gj(Z)e s } (r?)r =972 et

defines an operator symbol such that the commutator [Ty, ., T%eijo] is well defined and vanish-
ing on the space of holomorphic polynomials. Moreover, goj(r)eije is of polynomial growth at

infinity in case | = (.

Results analogous to Theorems Al and A2 and in the cases j < 0 and 0 < j < ¢ are also
obtained (c.f. Theorems 2.5.1-2.6.1 and Corollary 2.6.1).

The chapter is organized as follows. In Section 2.2 we setup the notations and give some
standard results used in our work. In particular, we make clear that the operator products
Ty, sTw,eio and Ty i}, ; are well defined on a dense subset of H* containing the holo-
morphic polynomials and we reduce the problem to the case 6 > 0. Section 2.3 is devoted to
the proof that [T, ;,Ty] = 0 if and only if [T}, ;, Ty 0] = O for all j € Z. Moreover, we
give further equivalent conditions involving the Mellin transform of each {¥;} ;7 at specific
points. In Section 2.4 we consider the case 7 > J and under the assumption that ¥ is of at
most polynomial growth at infinity and [T}, ,, Ty 0] = 0, we derive a functional equation

T

for the Mellin transform of W e~ * on some right half plane. Moreover, for an infinite number
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of indices j € Z we prove that there is exactly one function ¥;(r) (up to multiplication by a
constant) of polynomial growth such that [Ty 5,T\I,jeije} = (0. As an application we show that
in case m # 0 the condition [T}, ,,Ty] = 0 is equivalent to ¥ being radial. Section 2.5 deals
with the case j < 0, and we prove that there is no non-zero function ¥; of polynomial growth
satisfying [T}, ;, Ty ciso] = 0 for j < —2[%]. By using similar techniques, Section 2.6 treats
the case 0 < 5 < 4. In Section 2.7, some applications of our results are indicated. We show
that the radial components W, can be extended to a complex analytic function on the right half
plane. Moreover, by our method we recover the examples in [17] of radial functions u such
that 7;, commutes with another Toeplitz operator having a non-radial symbol. Motivated by a
conjecture of Louhichi and Rao in [129] and using our results, we give a triple (7,7}, 7},) of
Toeplitz operators with 7' # Id such that [T}, T,] = [T, T},] = 0 but [T, T3] # 0. Finally, we
ask if for every j € Z there is exactly one function W, such that [Tfm, 5 T\I,jeijé)] = 0.

2.2 Preliminaries

Let us start by defining the space of measurable functions of at most polynomialgrowth at
infinity to be

§={g:C—C[3C,c> 05t |g(=)| < C(1+[2I)°}.

For a given ¢ > 0, we also define a function space:

D, = {\If : C — C | ¥ measurable and 3d > 0 s.t. |¥(z)| < declz‘z}

p. = ||[We || . We write F, := (D. N H2,|-||p,) for the

intersection with H? and we note that £ := UC <1 De.
4

equipped with the norm |||

Throughout the chapter, » and 6 denote the polar coordinates of z € Cie. z = re?. We
fix a symbol f,, 5(re”) = r™e®, where m € R, § € Z, and we write [-] for the greatest
integer function. Note that each function ¥ € S can be expanded to an L?-convergent series
W(re?) =372 Wy(r)e? (c.f. Lemma 2.2.1).

For a fixed symbol f,, s we aim to characterize ¥ € S such that the commutator [T, ;, Ty]
vanishes as an operator on the space of holomorphic polynomials P[z]. It turns out that it is
sufficient to characterize the coefficient functions {,};c7 in the series expansion above. We
express {U,};cz in terms of the inverse Mellin transform of a function formed up of Gamma
functions and a trigonometric polynomial. Moreover, if f,, s is a monomial (i.e. m £+ 0 € 2Ny),
then for each j € Z such that j > —2['?1—‘] we find a collection of quasi-homogeneous functions

{¢;e’} C € such that [Ty, ,, T, i) = 0 on P[z] where & := sign(d).

First it is essential to make clear that the commutator [T, ,,Ty] is well defined on IP[z], and

that it is sufficient to solve the above problem when ¢ € N,
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Let f €S,V € &andpickup0 < € < }1 such that ¥ € D.. We define a dense subspace
H. C H? containing P[z] such that the operator products 7;Ty and Ty T are well defined on
H.. Moreover, we prove the equivalence: [T, Ty] = 0 on H, if and only if [T, T5] = 0 on H..

In order to construct the space H,. we need to introduce a scale of subspaces (c.f. [14] ):

D.cD,cD,c--cl|JD,cL?

JjeN

where (c;);en is the increasing sequence of real numbers ¢; := 1/2 — 1/(2j + 2) such that

c; € [1/4,1/2) forall j € N and
1

It is known that the orthogonal projection P is continuous from D, to D, forall j € N (c.f.

Ci+1

Lemma 10 in [14]). Using this fact, we can prove the following:

Proposition 2.2.1. Let f € S and fix ¢ < i. Then there exists a densely embedded Hilbert

space H, — H? containing P|z] as well as the linear space

‘ 2

L= span{kz(w) = K(w,z)e‘ék Lz € (C},
such that for all V € D, C & the operator products TyTy and T¢Ty are well defined and

continuous from H, to H>.

Proof. The first step in the proof is to find a positive number ¢ = ¢(¢) such that the operator
products Ty Ty and T} Ty are well defined and continuous from F; to H? for all ¥ € D.. Pick
areal number v with 0 < v < 1 — 2(1—£2€)
and one can find j; > jo with ¢ := ¢j, 41 — ¢;;, < 7. Let My and My denote the operators of

. Then there exists j, € N such that ﬁ + € < ¢jo,

multiplication by f and W, respectively. The assertion then follows by noting that Ty 7% is the
composition of the following well defined and continuous operators:

My P
Deo — Fejonn

— H?.

M P
F.~—L D, > F
4(1—7)
Since ¢ + € < ¢j, + ¢j,+1 — ¢j, < ¢j 41, the operator product 7Ty is the composition of the

continuous operators:

My P

fg Ci1+1 FCJ1+2 Cj1+3

Mf P

— F

Cj1+4

— H?.

Next, we modify F. to obtain a densely embedded Hilbert space H, — F. such that LUP[z] C
‘H. and the inclusion £ C H, is dense. In particular, the restriction [Tf,T\p] : H, — H?
defines a continuous operator.

In order to construct the space H, we fix a positive number A = A(e) such that % < g, and
we denote by p, the probability Gaussian measure on C given by

A 2
dux(z) = ;e”“z‘ dv(z).
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Moreover, let (-, -) be the usual inner product on L?(C, djy) and define
H, := H*(C,du,)

to be the subspace of all entire u)-square integrable functions on C equipped with the usual

topology inherited from L?(C, du,) (with the notation used in Section 1.3, H, is the Segal-
2
(zx)

properties. 0

Bargmann space H over C). Then it is easy to check that H. has the above mentioned

Remark 2.2.1. In comparison to the case of the Bergman space over the unit disc considered
in [66] and using the notation of Theorem AO the Toeplitz operators Ty, and T, are bounded
on A(D). Hence Ty, and T,, commute on A(DD) if and only if they commute on the holomorphic
polynomials defined on D.

Remark 2.2.2. According to the above proposition, for a fixed € < % the Toeplitz operator Ty

is continuous on H, for any ¥ € D, C &. Since L C H,, by Proposition 1.1.4 it follows that

the Berezin transform is one-to-one on the space of Toeplitz operators with symbols in D, for

any € < %l. Moreover, since D., C D, for e, < e and £ = U€<; D, the Berezin transform is
4

one-to-one on the space of Toeplitz operators with symbols in &.

Another consequence of Proposition 1.1.4 we have:

Corollary 2.2.1. Let f € S and € < 1 such that ¥ € D, C E. Then [Ty, Ty] and [T, Tg] are

well defined and continuous on 'H. and satisfies

Proof. By a direct calculation, we obtain

[T5, Tg] = [T}, Tw], (2.2.1)

where [-, -] denotes the Berezin transform of the corresponding commutator. Since the operator
[T7, Tg] : He — H? is continuous, it follows from (2.2.1) and Proposition 1.1.4 that

The following L?-series expansion is essential in our proofs:

Lemma 2.2.1. Let e < % and W € D, then V has the series expansion:

[e.e]

U(re) = Z W, (r)e? M

j=—o00

with |W;(r)| < Ce” for some constant C > 0 and almost all v > 0. The above convergence
holds in L*(C, dp). Moreover, if U € S then V;(r) is defined a.e. on R, and is of polynomial
growth at infinity for all j € 7.
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Proof. If U € S, then by Lemma 4.2 in [17], ¥ has an L2-convergent expansion ¥ where each
W, (r) is of polynomial growth at infinity. Now, if ¥ € D, \ S then X is obtained from the

expansion of the bounded function W (z)e ", O

Remark 2.2.3. Let V € € and f,,s = r™e®? be the function defined earlier. Assume that
[T}, 5:Tw] = 0 on P[z]. Then by Corollary 2.2.1 and due to the dense inclusion P[z] C H.

it follows that [T, Tg| = [T}, _;,Tg] = 0 on P[z]. Since (V); = V_; forall j € Z, it is

fm,ﬁ ’
sufficient to consider only the case 6 € Ny in the following.

Remark 2.2.4. In [66], it has been shown that any ¢ € L*(D,dv) can be written as an
L*(D, Ldv)-series expansion ¢ (re) = > oo i(r)eV’. Indeed, if R denotes the space
of complex valued functions defined on [0, 1) which are integrable with respect to the rdr mea-
sure (r varies in [0,1)) then the spaces {¢*R};cz are mutually orthogonal in L*(D, Zdv).
Moreover, every polynomial can be written as a finite sum in @jeijeR. But the polynomials
are dense in L*(D, dv) hence L*(D,dv) = ®;cze7?R. As in the case of the Segal-Bargmann
space considered in the above remark, Theorem AO treats also the case 6 < 0. In fact, if 1
i50

and p(re?®) = r™e are the bounded functions considered in Theorem A0 then T, and Ty

commute if and only if the adjoint operators T = T,me-ise and T}, = T, commute.

Now we recall some properties of the Mellin transform, which forms an important tool
throughout this chapter. Let g be a (suitable) complex valued function defined on the interval
(0, 00). We write M [g| for the Mellin transform of g:

Recall that M[g] is complex analytic on a strip in the complex plane parallel to the imaginary
axis. For a suitable function ((z) which is complex analytic in a strip a < Re(z) < b, the

inverse Mellin transform M ~![¢] is the function on (0, 0o) given by:

c+ioco
M g)(z) = — / 7 p(2)dz,

210 Jolino

where ¢ is any number between a and b. Let I'(2) denote the Gamma function, and write

0 ifx<0;
H(z)=<1 ifz>0;
Loifa =0

for the Heaviside step function. Then one has the following well known identities:

(1) For Re(z) > 0,T(z) = M[e~*](2), and 1T'(2) = M[e %] (2).

z
2

(2) For Re(2) > 0, - = M[H(1 — 2)](2).

z
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The relation (2) can be generalized as follows: Let j € Z, n € N with n > j, then for
Re(z) > —j we have:

H (z+1)" (nij)!xj(l—x)"_jH(l — ). (2.2.2)

l=j

Indeed, let B(z, w) be the Beta function defined for Re(z), Re(w) > 0 by:

Note that
M[:zj(l )" JH 1_33 / z+j— 1 )n_jdiE:B(z—i—j,n—j+1)
T+l —j+1)
L(z4+n+1)
T =+ DTS (2 +1)
['(2) Hlnzo(z + 1)

_ (=gt

[T-;(z+0)

We shortly write Q,(z) := QL (x). If $ € D, is a radial function on C, i.e. ¢(z) = ¢(|z]) =
¢(r), with ¢ < 1 then M[p(r)e ""](z) exists for all z € C such that Re(z) > 0.

In order to relate the Mellin transform of a function to Toeplitz operators, we need the

following simple observation:
Proposition 2.2.2. Let ¢ € £ be a radial function on C, and let k € Ny. Then:

(1) Forl € Ny, we have:
.

P¢r*e™) = 2M[pe |1 + k + 2)= T

(2) Forl e {---,—2,—1}, it holds P(¢r¥e’?) = 0.

Proof. (1) : Forl € Ny
P(grte) = (¢r*e™ K (-, 2))

=Nn,.n ,inb
z'r-e
— E <¢T ezlﬂ >
n=0

n

= _ Z/ il=n edQ/ k+”+1¢(r)e_r2drz—'
n!

n2=0
l

= 2M [pe” ](l+k+2)l'

(2) : The second assertion follows by a similar calculation.
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2.3 Necessary and sufficient conditions for the commuting

problem

For each ;1 € Ny, we define S, C S to be the subspace of quasi-homogeneous symbols of
degree i:

S,={f€C—C| f(re”) = g(r)e™* for some radial function g € S} .

Note that, by an application of the previous proposition, for any f € S, we have T;z* € S, C
S for all k € Nj.

Remark 2.3.1. In general, and even in the case of a bounded symbol g the function T,z"* needs
not to be in S. In fact, if we put g(z) := e®¢), then

[Pg)(=) = /g(w)eé(”w)ezwdu(w) = /g(w)ei%w@“)du(w) = [peé<~>](%+z) _ s

Proposition 2.3.1. Let f € Sy, and fix V € £ having the expansion "Xt. Then (1), (2) and (3)

below are equivalent:
(1) T¥Ty = TyTy.
(2) TyTy,cii0 = Ty, c00Ty,  forall j € Z.
(3) Foreach j € 7, the relations (a) and (b) hold:

(a) Forall k € Ny such that k > —j:

(j+ k).
(n+Ek)!

Mge™"|(2k + p+2) - M[W;e 7| (2k + 2 + j + 2)

— M[ge |2k + 2j + p+2) - M[W,e " )(2k + j + 2).
(b) Forall k € Ny suchthat —pp — j < k< —j — 1:

Mlge™)(2k + p+2) - M[W;e™"")(2k + 214 j 4 2) = 0.

Proof. For each k € Ny, and using the previous proposition we know that:

j+k
» IM[W.e "] (2k + j + 2)— itk > —j
T\I,jeijezk = P(\I!jrkel(j+k)0) = e ) / )(] +k)! /
0 ifk < —j.
Since f = ge'? € S, and pu € Ny we have:
putk

Ty = P(ge® Pk = 2M[ge ) (2k + u +2)

(p+ k)
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Combining these relations gives:

TfTy 02" = e1(j, k)27
itk

0 itk < —j,
and:
T\PjeijGTka = Cg(j, k’)Z’u+j+k
9 ) L ) oAtk
B ifk 2 —p—j;
0 itk < —p—j.

Note that, T§ Ty cio 2" = Ty, ei0Tp2* = 0 for all k such that k < —p — j.
The next step now, is to prove the uniformly compact convergence on C of:
(1) Z;.O:_OO T\I,jeijezk = Tq,zk,
(11) Z;i—oo Tf'T\I,jeijG Zl€ = Tqu;Zk,
(lll) Zjoi_oo T\I,jeijGTka = T\I;szk,

which follows from Lemma 2 and the following estimates (we only prove (i) and (ii)). Let
N € N then

(@):
\P(ENwmw%’f \Ilz’fxz)]—(g W)t — w(w)ut, )|
| 3w —wiwJutee]
(i1):
1P<fP<ji_N W) ) — [P(W)) ()] =
]<P<]_§N W) — Ww)ut, Fe )| < | j_ﬁN W) — Wlw) || e
Therefore:

e}

TfT\I,Zk = Z TfT\I/jeijGZk = Z Cl(j, k)zu+j+k

j=—o00 j=—k
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and . .
T\prZk = Z T\I;jeijGTka = Z Cg(j, k)Z“HJrk.
j=—o0 j=—un—k

The proposition then follows from the identity of the two power series and the last two condi-

tions. ]

Now, we apply the above proposition to f = f,,, 5 (as we remarked before, we can assume

that 6 > 0) to obtain the following theorem:

Theorem 2.3.1. Let ¥ € &, then the following are equivalent:
N 1y, , Ty = TyTy,, ;-
(2) Ty, ;Ty,eis0 = Ty,ei0 Ty, ; forall j € Z.
(3) Foreach j € 7, we have:

(a) Forevery k € Ny with k > —j the following equation holds

F(k+1+w) 2
52 MW ](2k +20+ 5 +2) =
) +m
C(k+j+1+—5—)
T(k+0+1) . .
mM[‘Pje [(2k +j+2). (2.3.1)

(b) For each k € Ny such that —6 — j < k < —j — 1, we have

M[W;e "] (2k 420 +j +2) = 0. (2.3.2)

Proof. The equivalence of (1), (2) and (3) directly follows from an application of the previous
proposition and the fact that:

2 o
1. M[rme_”](2k+5+2):%F(k+1+¥)7£0.
) . 1 . 5+m
2. M[r™e T](2k+2j+5+2):5F(k+g+1+7)7é0.

]

Remark 2.3.2. For the case considered in Theorem AO and by Remark 2.2.1 the Toeplitz oper-
ators T, and T,, commute on A(D) if and only if for each k € Ny we have T, Tyz* = T, T, z*.
By direct calculation (c.f. p. 201 in [66]) and similar to the above theorem, this is equivalent
to say that for each fixed j € 7 and for every k € Ny such that k > —j the following equation
holds

(2k + 25 + 2)(2k + 6 +m + 2)

M)k 4204 +2) = MU k4 4+ ) e ok + 25 + 6+ m + 9)

. (23.3)
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Analogous to condition (2) in Theorem 2.3.1, Equation (2.3.3) shows that T,,T, = T, T, if and
only if for each j € 7 we have T, T, (yyeiso = Ty, (r)eiso Tp. Moreover, since 1; is supported in
0, 1] and bounded (since 1 is bounded) it follows that M [v;](z) is bounded as function of z on
the right half-plane Re(z) > 1. This shows that the function

(z4+7)(z—Jj+d+m)
(z—j+20)(z+75+0+m)

is bounded, analytic and vanishing at the integers in some right half-plane. However by the

M{y;)(z +20) — Mi;](2)

Blaschke condition a bounded analytic function can not have zeros that form an arithmetic
sequence unless it is the zero function. Therefore the Toeplitz operators T, and T, commute on
A(D) if and only if for each j € 7 the following equation
(z+)(z—j+d+m)
(z—7+20)(z+j+d+m)

M[p;)(z +20) = M[;](2) (234

holds true on some right half-plane.

Now suppose that W € S and we fix j € Z. Similar to the above remark, we aim to prove
that the relation (2.3.1) extends from all z = k& € Ny to all z € C such that Re(z) > —j — 1.

For this purpose, we need to define the following space of functions:

C
A= {U:R+ — C |3 C,e,p,y>0st. |u(z)] < — forz e (0, 1]
T

and |u(z)| < cx” forz € [1,00)}.

The following two lemmas are found in [17]:

Lemma 2.3.1. For u,v € A, set f,(z) := u(x)e ™ and f,(x) := v(zx)e . Then the Mellin

convolution product f,, * f, exists on R, and there is h € A such that:
(fux fo)(x) = h(z)e™™.
The following lemma replaces the Blaschke condition in the unit disc (c.f. Remark 2.3.2).

Lemma 2.3.2. Let u € A, and fix a number a € (0,2]. Suppose there is mg € Nq with the
property:
Mue *|(ak +1) = / u(z)e *z™dr =0
0
forall k > mg. Thenu = 0 a.e. on R™.

In order to determine the components ¥; of W in the expansion ¥ whenever [T} ,,Ty] =0,

we need to distinguish three cases:

e Case j > 0.
e Case j < 0.

e Case 0 < j <.

A detailed analysis is done in the following three sections.
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24 Casej >0

Since 7 > 0and 0 > 0 the case —6 — j < k < —j — 1 in Theorem 2.3.1, (3)(b) does not occur
for any k € Ng and henceT}, Ty ciso = Ty, cis0T},, ; holds if and only if the Equation (2.3.1) is
fulfilled for all k£ € N.

Proposition 2.4.1. Let V € S and j > 0, then Ty, ; Ty ciio = Ty ei0T},, 5 holds if and only if
the following functional equation:

J Jj—6
2 2 5 —
M[W;e)(22 + 25+ j +2) = M[W,e "] (22 + 5 +2) []( z+%+l)n(z+5+l) !
=1

=1

2.4.1)
is fulfilled in the half plane Re(z) > —5 — 1.

Proof. First we note that M[W;e~""](2z + j + 2) exists for Re(z) > —1 — 1. Now, by the
functional equation of the Gamma function one obtains for each j > § and for Re(z) > —j —1:

T(z+6+1)

- 12 541"

[(z+ 42 +1
. (me .) =TT, (z+ 22 )™
F(Z+T+]+1)

and (2.3.1) takes the form:

J Jj—6
. d+m _ . _

M[We | (2k+20+j+2) [ ]( k:+T+l) = M[We | 2k+j+2) [[(k+0+D7"

1=1 =1
(2.4.2)
Recall that the Mellin transform of a function g satisfies the transformation rule:
“ 1 z
Mlg(a))(z) = - M[g)(2),

for all @ > 0 such that M{g] is defined for Z. Together with (2.2.2) we get

j—o

[1G+6+07" = ME°Q;s()](2) = 2M[r*Q;-5(r*)](22),

and
H + —5 rmy D7 = M Q,(r)](2) = 2M [P+ Q;(r2))(22).

By substituting these quantities into (2.4.2) we obtain for all &£ € Ny and for all j > §:

M{PP25020,07)(2k) - M Q, (r))(2k) = Mr W, )(2k) - M2 Q,_s(r)) (2K).
(2.4.3)

Now consider
vi(r) = r5+mQj (7’2>€T2, and u;(r) == rj+25+2\11j ().
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Since (); is supported in [0, 1] and ¥; € A we conclude that u;, v; € A. Therefore, by Lemma
2.3.1 the convolution product (f., * f,,)(r) exists for all » > 0, and there is h; € A such that

(P Q,(r?)) * (r”%*?\I/j (T)e_r2> (r) = h;(r)e™".

The same argument can be used on the right-hand side of (2.4.3) to show that there is n; € A
such that

(rj+2\11j(r)e_r2> * (rQ‘SQj_(;(TQ)) (r) =n;(r)e".
By substituting these relations into (2.4.3) and applying the convolution theorem for the Mellin

transform, we obtain for any k& € Ny:
B — ms
M{(h; —ny)e ](2k) = M[-2—"de
According to Lemma 2.3.2 we have h; = n; a.e. on Ry, i.e M[(h; — n;)e "](2z) = 0, so that
for Re(z) > —% — 1 the functional equation (2.4.1) holds. ]

Example 2.4.1. (c.f. [17]) Put § = 0 and consider the symbol f(z) = fp,0 =™ withm € R.
Assume that V € S with [Ty, Ty| = 0 on P[z]. Then by Theorem 2.3.1, for each j € N and for
every k € Ny we have
Nk+14+%)
Lk+j+1+7%)

T(k+ 1)

M[W;e "] (2k +j +2) = i)

M[U;e ]2k 47 42). (24.4)

Let m # 0, then we want to prove that V; = 0 for all j # 0. For this, suppose there is j > 0,
such that V; # 0. Then by Lemma 2.3.2 there is ky € Ny with

M[W;e~"")(2ko 4 7 + 2) # 0.

According to (2.4.4) we get

D(ko+5+1)  T(ko+1)
T(ho+j+2+1) T(ko+j+1)

and therefore
J J
II k04— +1) = [ ko + 1),
=1 =1
which contradicts our assumption m # 0. Hence, for m # 0 we have V; = 0 for all j > 0.
By Corollary 2.2.1 it holds 11y = Tt1g, and the same argument shows that V; = 0 for all

7 <0, ie ¥ =V,is radial.

In this part of the chapter, we aim to find functions{ ¥ } ,~.5 such that M[¥e~""] satisfy the
functional equation (2.4.1). For this purpose, and for each j > § we define the meromorphic
function:

Z2+p+1 PR RN
6, = TP D T e 0] e
=1 =1

)
where p := % eR,.
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Proposition 2.4.2. Let V € S and suppose that Ty, /Ty = TyTy, ;. Then for each j > 0:

MW,e~""](22 4+ j + 2)
G;(2)

Filz) i=

defines a 0-periodic entire function.

Proof. Recall that Gj(z) isdefinedon{z € C | z+p+1# —kd,l=1,--- ,jand k € Np}. In
the case Re(z) sufficiently large, and by using the functional equation of the Gamma function
we have:

j—6
(z40)

Iirz+p+l

=1

—-1
lFZ+5+l+U} 5+

o~
o~

=1

J —1
z+ptly z+p+l cto+in z+5+l s
I I I

J

~

=1 =1

J j—o
GO [[+pr+D][Gz+o+D7

=1 =1

Since by Theorem 2.3.1 and Proposition 2.4.1 the Mellin transform M [V e*’"Q] (z) is a solution
of the functional equation (2.4.1) we obtain

M[U,e~""](22 + 26 + j + 2)

Filz+0) = G,(:10)
M2 426 4§+ 2) 1 . *sz
= e Ly +p+1) lﬂ(-+5+0
C M[Te (22 +5+2) ‘Z
B G;(z) =72

Therefore, F;(z) is a §-periodic holomorphic function in some right half plane. Hence it can be

extended to an entire function on the complex plane. 0

In the rest of this section, we assume that W € S and Tfm, sTw = Tq,Tfm - Now, we want to
prove that for each j > , the entire function F;(z) is a trigonometric polynomial. For this we
need Stirling’s formula together with the following well known result (c.f. [132]):

Lemma 2.4.1. Let g be an entire function on C with period 6 € N. Suppose, there are A, B > 0
such that |g(2)| < AePZ. Then g is a trigonometric polynomial of the form:

= Z aleQﬁglz, a€C, neNlN.
l=—n
Applying Lemma 2.4.1 to the periodic function F;(z), we can prove:

2milz

Proposition 2.4.3. For each j > 0, there exists a trigonometric polynomial ZI <5 (e o such
4
that

M[¥e” "1(2z + j + 2) Z ae’s . (2.4.5)

U<§
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Proof. For Re(z) > 0, it is well known that the Gamma function has the following asymptotic
behavior as |z| — oo, (c.f. [175]):

1 og(2m 1
['(z) = ez 1) log(z) =2+ 57 {1 + 0(_)} )

z

It follows that

. l i z+p 1 z+p z+p og(2m 1
HF(%) — He( +5+l_§)log( +5+l)— tptl y log(2m) % {1 —{—O(;)} (2.4.6)

=1 =1
Using
z+p+l p+1
log(“=5) = log(5) + log(1 + =),

the exponent can be decomposed in the form:

z+p+1 1 z+p+l\  z+p+l 1 z
z+p+1 1 p+1
(S tog(1+ 2
z+p+1 1
= (- Dlog(3) +0(1), Ja] = oo

We insert this relation into (2.4.6):

HF z+§+l)_exp{z[ z+p+l_%)log(§>+0(1>_z+§+l}}

=1 =1

{1+0 }
—exp {[ 200 Miosy - 2]+ U D iogE) o<1>}

X {1+0(%)}.

Similarly, one has as |z| — oo

ﬁ[P(ZJr:;H} {”[ z+5+l)10g(5)+0<) z—l—;ﬂ—l}}

=1
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Hence
2ptl, = 541
=1 =1

_ e P Leg®) - E
—exp{zlog(6)+(5 +2)log(6) z+0(1)}{1+0(z)}.
We choose a branch of log(z) such that log(§*) = zlog(d). Then we can write
z 1
Gj(z) = exp {zlog(z) + slog(g) —z+ 0(1)} X {1 + 0(;)} :

where s := ( %j + %) If we write z = o + it, then we obtain the following asymptotic behavior

of |G;(2)| as |z| — oot
1
|G(2)| = exp{(0 + s)log(|z|) — o —t-arg(z) + O(1)} x {1 + o(m)} ) 2.4.7)
Since ¥; € A, there is some ¢ > 0 such that

M[W;e ") (22 + j + 2)‘ -

o
/ \Ifj(:c)e_IQ:UQZHHd:B
0

1 00
< C/ e :L,QU c+]+ld.ﬁl§+0/ e~ % $20+c+]+1d$
0 1

<2c0(0 + ‘% + g 1), (2.4.8)
where the above inequality holds for o > 0 sufficiently large. From this we obtain
2e(c+L+£+1
[ F5(2)] < G R ) (2.4.9)

exp {(o + 8)log(|2]) — o — ¢ -arg(2) + O(1)} x {1+o()}

By Proposition 2.4.2, we know that F;(z) is a d-periodic entire function. In order to estimate
the growth of |F;(z)| as |z| — oo, we therefore can assume that in the above estimate o is
large and varying in an interval of length §. According to (2.4.9), there is a constant C' > 0 such

that o o
. . t ar, (Z) E‘;/;|
|‘/T](Z)|< ]_—|—t2 e 1+t262 :

Now, by applying Lemma 2.4.1, it follows that there are a; € C such that

M[Te (22 +j+2) = Gi(2) Y ae™5".

5
<3
]

Theorem 2.4.1. Let V € S and suppose that Tf sTy = TyTy, ;. Then for each j > 0 there

exists a trigonometric polynomial Z| i|<3 ale #5% such that:

27ilz

U,(r)=2M" |G;(2) Z ae s | (r)riT2e”, (2.4.10)

5
<3
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Proof. According to (2.4.5) the transformation rule for the Mellin transform gives:

M50 (22) = DM (Ve (2) = Gy(2) 3 e

s
<3

Applying the inverse Mellin transform to both sides of the equation shows:

U,(vr)=2M"" | Gy(2) Z 5| (ryreler

<3
and replacing /7 by r proves the assertion. 0

Remark 2.4.1. Arguments analogous to Propositions 2.4.1, 2.4.2, 2.4.3, 2.4.5 and Theorem
2.4.1 were used in [66] to prove Theorem AO. Roughly speaking, in [66] and under the as-
sumption that T,, and T, commute on A(D), for each fixed j € Z the author introduced the

function
z+j z+m+0—j
() DT
J : z+20—j z+m+0+j
F( +§5 J)F( + 2?5_ —H)
My;](2)
Fj(2)
half-plane and hence can be extended to the whole complex plane forming an entire 24-periodic

Using Equation (2.3.4) it follows that the function is 20-periodic on some some right

function. Moreover, by a similar argument to that in Proposition 2.4.3 it was shown that
% = 0o(|z|) which means there is a constant ay such that equation M[);] = aoFj(z)
and Equation 2.1.1 follows. Furthermore, by studying estimating the growth of the inverse
Mellin transform M~ [F}] at infinity it follows that the function 1; given by (2.1.1) is bounded
and Theorem AO then follows.

Compared to the problem considered in this chapter, we are not able to prove in general
that the functions given by (2.4.10) are of polynomial growth. However, the function ¢;(r) :=
MG, (r?)r—7=2e" € S and satisfies [T,ei50, T},, ;] = 0. In some cases we are able to show
that there is one and only one function namely p; € S such that [T¢jeij9, Ty,. ;] = 0. If we allow
operator symbols of higher growth at infinity it turns out that there is more than one function

Y with [Ty, 0, T}, ;] = 0.

Fix fp.s. m € Ry, 0 > 0, and for j > 0, consider G,(z) which clearly defines a holomorphic
function on Re(z) > 0. Suppose for a moment we found some trigonometric polynomials
D <8 ae™s" such that

2milz

@i(r)e?” = M7 G(2) 30 e | (%) TR e,

s
<3

defines an element in £. Then the equality (2.3.1) is satisfied if we replace ¥; by ¢;, and so we
find a collection of symbols {(;(r)e”?} ;.5 C & such that [T}, ;, T, .is0] = 0.

In this part of the chapter, we determine such a collection whenever f,, 5 is a monomial i.e.

p = mTM, mT_‘s € Ny. Moreover, we prove that there is an infinite number of j € Z such that
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{p;(r)e¥®} c S if and only if the trigonometricpolynomial in (2.4.10) is a constant. More
precisely, for infinitely many j € Z and up to a constant factor there is one function¥;(r)e"? €
S such that [T}, ., Ty cise] = 0.

First we need to simplify the expression

Ry Ilrz+p+l11{ z+5+€] G2

=1 =

to a product of holomorphic polynomials and Gamma functions.

The case p = § means that f55 = 2” is holomorphic and R;(z) takes the form:
7 shpHl. Y a4+l
R;(z) = II N——F—JZIIH——?——+Sy (2.4.11)
I=j—6+1 =
Now, assume that p € N and consider the cases:

1. Case j > p: Choose ¢,n € N with 1 < g < § such that j = nd + ¢. Therefore:

(a) Foreach ¢suchthatl < ¢ < p—6,choosel = (+j—p+d—q. Then 1+j—p+d—q <
I <j—g¢, and

e T e

P(z+§+€) - F(zTH + 1) 5

r=1

(b) Inthecasep—d < (< j—oputl=¢—p+0.Thenl <[ < j—pand

F(z+§+l) _,
F(z—l—g-l-ﬂ)
Therefore:
p—6 n J —p+é—q J
kg ctptl z+p+l
Ri(z) =TI« : ) JI T T IT ¢ T). (2.4.12)
{=1r=1 l=7—p+1 l=j—q+1

2. Case j < p:Letp=nd+qgwithgn € Nand1 < ¢qg<d. Thenforeachl </ < j—4,
letl=¢+4+0—qg.Hencel +0 — ¢ <1< j—qand

F@?H)_Fﬁﬁ+n+1)_sz+£+ﬂ
D) T+ g 9 ’
which implies that
I 4 L a+p+l Z4p+l
Ri(z) =11+ [[r———) I] T——) @413
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Proposition 2.4.4. Let f,, s be a monomial with § > 0, and let | € Z be fixed such that |I| < 2.
For each j € N such that j > ¢ consider G;(z) = R;j(z)0*. Then:
(1) G;(z) is holomorphic on Re(z) > —j — 1.

2milz

(2) The inverse Mellin transform M ™" [Gj(z)e 5 ] (x) exists for all © > 0.

2milz

(3) M~! [Gj(z)e 5 } (2?)x™772 = o(27~¢) as x — 0.
Proof. (1) It follows directly by calculating the largest pole of R;(z) from (2.4.11), (2.4.12)
and (2.4.13). In particular, if p =  or j > p then the largest pole is —j — 1. If j < p then

itislocatedat —p — 1 < —j5 — 1.

(2) For z = o + 1t with o fixed and using (2.4.7) we see that there are constants 5 and s

independent of ¢ such that
s
Gi(2)| < Bexp{ (o + ) log(J2]) — [t] T }

Now, let ¢ > —j — 1 be fixed, then it follows for |I| < %:

1 otico mwilz
—/ :E_ZGj(z)ezél dz

‘M‘l [Gj(@e%] (@) -

270 J o oo
B o ots x_2n
< —x_"e_"/ (0 +17) 2 e M55 gt < 0.
27 oo
(3) For a positive number ¢ we put 0 = —j — 1 + 5. Then:

27ilz

; 1 . —onlt
‘M_l [Gj(Z)e ’ } (562))33"‘2 < %x‘20‘9‘24|Gj(a+¢t)| e 75 dt.

Now, we give a global estimate for the inverse of the Mellin transform:

Proposition 2.4.5. Let | € 7 be fixed with |l| < g. Then for each j > 0 there exists a constant

¢ such that:

< CTQs—j+3€r2(1—cos(%)) )

2milz

‘M‘l [Gj(z)e 5 } (r?)r=9-2e”

Proof. Throughout the proof ¢ denotes some constant which may change from line to line. For

1 ntioo wilz
—/ x_ZGj(z)626l dz|.

210 S oo

each n € N we have

27ilz

‘M‘l [Gj(z)e 5

EE

Together with (2.4.7) it follows that

2milz

"M [Gj(z)e 5 }(JJ)‘ < %/R\Gj(n—i-it)\ezgltdt

< c/ enlog\/W—tarctan%_ysbgm_n_%dt
R

2 2
— ce” log n—n,s en log 4/ 1+Z—2—t‘arctan %—&—s log \/1+i—2—¥dt

R
— 2_ _ 27lu P}
:Cenlogn nns+1/ en[log\/1+u warctan u— =% |+slog vV 1+u du,
R
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where we have used the change of variable u = ﬁ Let H;(u) be the function on R defined by

27l
Hi(u) :=log V14 u? — varctanu — %

Then H,(u) attains its maximum at up = — tan 2 with H;(ug) = — log cos 2. Moreover, it
is easy to check that lim,,_, o, H;(u) = lim,_,_ Hl( ) = —o0.
Now, let 7 > 0 be such that H;(u) < —1 for |u| > r. Then we have for all n € N:

(1) [ entitwstoevitu?qy < [T exp{H;(u) + slog V1 + u?}du < c,

2) foo nH, (u)+slog V1+u? ., < f:o exp{Hl(u) + slog /1+ u2}du <ec,

2ml

(3) fjr enHl(u)-i-slog\/l-i-u?du < Ce—nlogcos 5

By substituting (1)-(3) into the above inequality, we obtain

nlogn—n
2milz g

"M [Gj(z)eT] (m)) < cn5+1[CeOS(W.

According to Stirling’s formula we know that

nlogn—n n! as
e ~ , n — 00,
V2mn
and it follows that
o l’ COS wilz
P Gl ‘M [ (z)e%] (:v)’ <= (2.4.14)
n
Note that for each ¢ > 0 there exists d > 0 such that for all z > d we have
1 2"
. L
TS Z ndn!’
neN
Using this estimate and summing up the inequalities (2.4.14) over n € N we get
s Trz z 2 l milz
gs—3ereos | pp-1 [G’j(z KR } ‘ Zn ~3 2" cos™ (= ’M [G (2)6%} (x)‘
c
S Z <
neN
Finally, the assertion follows by replacing z with 2. 0

As a consequence of the above proposition, we obtain:

Corollary 2.4.1. Let f,,5(re??) = rme®’ be a monomial, and let | € 7 such that |l| <

4

5- arccos %. Then for each j > 0 the function

2milz

©;(r)e? .= M [Gj(z)e 5 } (rz)r’j’2er2eij9,

defines an element in & and satisfies [Ty, ;, T, o] = 0. Moreover, 0 (r)ei® € Sin casel = 0.
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By applying the duplication formula for the Gamma function for k£ € N:

ﬁ I'(z+ é) = (21)"7 k3R (k)

=0

we give several examples where G;(z) takes the form G;(z) = p(2)I'(z) with p(z) € P[z].

Example 2.4.2. (1): Suppose that f,, s is holomorphic i.e. m = . Then applying the above
duplication formula to Equation (2.4.11) we obtain

- +5+1 1
Ry(z) = [[T—5—+3)
= (2m) T 6T (2 4§ + 1)
J
= (2m)"7 0 [ (= + )L (2). (2.4.15)
=0

(2): As before we write p = mTJ”S. Now, let j > p > 6 with 7 = nd for some n € N. Then
using (2.4.12) we get

p—dn—1 J

R =[TTIC +n T 2
(=1r=1 I=j—5+1
p—0n—1 6—1 .
z+/ z2+p+7—0+1 1
=TI+ ; +5)
/=1 r=1 =0
S p—dn—1 oy
= (27) 7§ F P I (zp i+ 1 T
(27) (z4+p+J )JELB 5 r)
5 p—06 n—1 Z"—g p+j—4
— (27) T §FPito—3 4 24+ 0| T(2). (2.4.16
20 IS 0] [T o) e esn

(3): Suppose that p = né for some n € N withn > 1, which is equivalent to m = (2n — 1)0.
Then for each j such that § < j < p and using (2.4.13) we have

z+ 4 z24+p+1
R =TI +n I 2
t=1r=1 I=j—6+1
j—6n—1 6—1 .
z+ /0 z4+p+j—64+1 1
=TITI¢ +r) []T( + <)
5 ) )
/=1 r=1 =0
s j—d n—1 ) p+j—4
— (27) T §—FPito—3 4 +0)| (). 417
20 T | [ TEe o] @am

Corollary 2.4.2. Let V € S and let f,,5 = r™e"’ be a monomial. Suppose that Ty, Ty =
TyT},, ; and that one of the following cases holds:
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(1) fim,s is holomorphic,
(2) j > p, and j = né for somen € N,
(3) d < j <p, andp = nd.
Then there is a constant ay € C such that
U;(r) = aoM 1 [G(2)] (rP)r 972" € 8.

Proof. The above cases occur in the equations (2.4.15), (2.4.16) and (2.4.17). Therefore, we
have G;(z) = p(2)I'(2) where p(2) is a polynomial in z. According to Theorem 2.4.1 we know
that

2milz

U,(r)=2M"" |Gj(2) Z me s | ()72

s
<3

For each [ such that |[| < % we have (c.f. [154], and (2.7.2) below):

27il

M [F(z)e%] (ry=e" °

and therefore

2milz 2mil

M [Gy()e 5] (1) = gl (e

where ! (1) is a non-zero polynomial in  and having values in C. This means that

L —i=2 L(r2 —j=2r? 1 (.2 —7‘267%ﬂ
5Vi(r) =7 Paopy(r?) + 77 e > argh(r?)e . (2.4.18)
1120

Now we want to prove that
U,(r) € S <= a;=0foralll # 0.

Let0 < k < % be the greatest positive integer such that a; # 0 or a_; # 0. Then (2.4.18)

can be written in the form

J+2 k
T2 qu(?") _ a0@6<7"2) + Z (alpll(TQ)efirz sinQTﬁl + G,I@II(TQ)EZ'TQ sin %’Tl) 67‘2(17(308 QT”Z)
=1

Note that given positive numbers a; < ay < -+ < «,, and radial functions 1, - - - , @, it is
easy to see that if 327", o(r)e®” € S then @, (1) — 0as r — oo. Since ¥, € S by

assumption this shows that

. . Tk . . Tk
lim (akplf(TQ)e_”’Q sin %58 | a_ppyF(r?)er s 2T> =0. (2.4.19)
7——00
In particular, this holds true for the sequence r,, := su%% so that
S

lim (appi(r}) + a_rpy"(r3)) = 0.

n
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This shows that aze¥(r?) + a_rp;*(r?) = 0. By substituting this relation into (2.4.19) we

obtain as r — o0

27k 27k k . . 271' k
apEt(r?) eI — S 5 = _94a, oF (1) sin(r? sin T) — 0.
. . . 4q+1 . ., .
In particular, if we choose the sequence r, = ésm Q%k where ¢ is any positive integer, then

lim appf(rl) = 0.

q—0
Therefore, a,p(r?) = 0i.e. ar, = a_; = 0 which is a contradiction. O

Remark 2.4.2. For s > 0 consider the Segal-Bargmann space H?> over C with respect to the
Gaussian measure dji(s)(2) := %e‘s"z'de(z). The Toeplitz operator on H? with symbol h is
denoted by T;5. Note that for every g € H2 s.t. hg € L*(C, dju(s)) we have

Tig(=) = Mo 2NV52), (2:4.20)

where Th(?) corresponds to the Toeplitz operator on H? with symbol h(TE) Now let us con-
sider two monomials [ and g. It is well known (c.f. [14, 63]) that the product operator

171, =15,  forany two monomials f and g, (2.4.21)

where ftsq is the polynomial given by

Fha() = 3 ) o) (<)
keN
Note that Equation (2.4.21) holds true for more general symbols (c.f. Lemma 16 in [14]).

Suppose that the Toeplitz operators Ty and T, commute on the space of holomorphic poly-
nomials in H?. Then by (2.4.20) and (2.4.21) one can easily verify that the operators T} and
T, commute on the holomorphic polynomials in H2 for all s > 0.

If we fix f = fis as a monomial and g = ), (1)e“? of polynomial growth at infinity (not
necessarily monomial) for some j > 6, one may ask wether the condition [T, , ;, Ty, (ryeiio] = 0
on P[z] still implies that [T}, 15 0 jeise] = 0onP[z] forall s > 0. This is in general not true.
In particular, the Toeplitz operators 1 and 1} with symbols

f(2) = fms(2) = 222 = r*e? | and g(2) = o(r)e” = (1% — 2r*)e??
commute on P[z] C H? if and only if s = 1 (c.f. Appendix A.2.1 for the proof).

25 Casej <0

In this section we consider operator symbols ¥ € S and f,,, s = r™e®? withm € R,, § € N.
Under the assumption Ty, Ty = TyTy, ;, we aim to determine the functions W;(r) of the
expansion M in Lemma 2.2.1 whenever j < 0. An important result here is that ¥; = 0 in the
case j < —2[2] where [-] is the greatest integer function. Similar to Proposition 4 (c.f. Appendix
A.2.2 for a proof), we have:
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Proposition 2.5.1. Let V € S and suppose that T, /Ty = TyTy,, ;. Then for each j < 0 the

following functional equations:

0—j —J -1
. . 0+m
M e~ |(224+20+5+2) = M[T;e )22+ +2) [[c+i+D [[ =+ + —— 1)
1=1 =1
(2.5.1)
hold in the half plane Re(z) > —j — 1.
Fix 7 < 0 and consider the meromorphic function:
0—j —J 5+m
l + + +1
m,(z) = [[rEH2 ! H T [ (Et )] 5 (2.5.2)
1=1 =1
Note that the quotient
MW e™")(22 + 5 + 2
[ ]e ]( Z+] -+ ) (2.5.3)

7j(2) = H,(2)

is holomorphic and well defined on the half plane Re(z) > —j — 1. By (2.5.1) it is easy

to check that 7;(z) is d-periodic (c.f. the proof of Proposition 2.4.2). Therefore, it can be

extended to an entire function on the whole complex plane. As an analog to Proposition 2.4.3
(c.f. Appendix A.2.3for a proof), we conclude

Proposition 2.5.2. Let V € S and suppose that Ty, /Ty = TyTy, ;. Then for each j < 0 there

exists a trigonometric polynomial Z| i|<3 e 5% such that forRe(z) > —j — 1 we have
M[V,e )22 4 j + 2) (2) Y we™i. (2.5.4)
<4

Assume that ¥ € S with (2.5.4). We know from Theorem 2.3.1 that for a fixed j < 0 the
assumption M[W;e"](2k + 26 +j +2) = Oforall k € Ny with =0 — j < k < —j — 1is
necessary and sufficient for the operators Ty, ; and Ty ;e to commute.

Theorem 2.5.1. Let ¥ € S and suppose that Ty, /Ty = TyTy, ;, then for each j € Z with
j < —2[%] we have ¥; = 0.

Proof. Fix j < —2[2] and for convenience write

M\Ifje*’"2 22+7+2 2mils
7i(2) = [ I-}J((z) j+2) = Z ae

<[]

where a s =a.s = 0 whenever 0 € 4N. Taking condition (2.3.2) into account we have to

consider two cases:

1. If j < —0, then according to (2.3.2) the Mellin transform M [¥;e~""](2z+ 5 +2) vanishes
at the points
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Since H,(z) is well defined and nowhere zero on this set, condition (2.3.2) is equivalent
to say that 7;(z) vanishes exactly on

This in turn, is equivalent to say that the trigonometric polynomial

vanishes at the  points

R, T+ T +5 -1}

From 2(§ — 1) < 27 and 2[2] < § we obtain 7; = 0. (If 7; (2 2) # 0, then it can have at
most 2[2] roots in any interval of length less than 27).

2. Inthe case of —§ < j < —2[2] condition (2.3.2) implies that M[U,e~""](2k 425+ j +2)
vanishes for all k € {0,1,---,—j — 1}. Thatis, M[¥;e""](2z 4 j + 2) vanishes at the
(—j)-points

{6, 0 +1,---,0—j5—1}.
Again, note that H;(z) is well defined and nowhere zero on this set. We conclude that
7;(2) vanishes at the points {6,0 + 1,--- ,0 — j — 1}, which implies that
o 2 2
Tj(%z) =0forall z € {27r, %(5 +1),--- ,%((5 —j— 1)}
By assumption we have 2% (—j — 1) < 27 and 2[2] < —j, which proves that 7;(z) = 0.
O

Remark 2.5.1. In comparison to the case of the Bergman space over unit disc and with as-
sumption considered in Theorem AQO, I. Louhichi and L. Zakariasy proved that the condition
T,Ty = TyT, on A(D) implies that 1); = 0 for all j < 0 (c.f. Theorem 11 in [130]). Hence
there is no non-zero quasi-homogeneous symbol 1/1]-6”9 such that [T, ijeije] = 0 on A(D).
However, we are not able to prove this fact in our problem but we point out that if we allow
operator symbol of higher growth then there are non-zero symbols in £ whose corresponding

Toeplitz operator commmute with T, , whenever 0 > —27__ (c.f. Theorem 2.5.3 below).
) arccos 1
Condition (2.3.2) and Proposition 2.5.2 lead to the following fact:

Theorem 2.5.2. Let V € S and suppose that Ty, /Ty = TyTy, ;. Then for each j < 0 with

2[ | +J = 0 there exists a trigonometric polynomial Z[ it [] 5 a5 such that for Re(z) >
4

—7—1:

—j—1 [2]+5
M[\I]jeirz](ZZ +] + 2) _ H](Z) H ( 27rzz . 27Tzn Z ale27r§lz’

n=0 =[]

wherea_s = a = 0 whenever § € 4N.

[
9 ZJ'_

SN
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Proof. By (2.3.2) we know that M[W;e""](2z + j + 2) vanishes for
ze{dd+1,--- 6 —j—1}.
According to (2.5.4), and since H;(z) is well defined and nowhere zero on the above set, we

conclude that {6,0 + 1,---,0 — j — 1} are zeros of the trigonometric polynomial 7;(z) =

27ilz

leK[g] ae” s where as =a_s = 0 whenever § € 4N. Note that
Slg

2(4]

2milz 27TZZ 5 2milz
7;(2) = Z ae s :exp{ 5 [Z}} a_ge ?
<[$] 1=0
2mz 5 2miz
:exp{ — 75 [1}}1[)(6 5 ),

where P(w) is the following polynomial in the complex variable w:

2(4]
P(w) = Z al_[%]wl.
1=0

Now, 7;(z) vanishes at the (—j)-points {0, + 1,--- ,0 — j — 1} if and only if the polynomial

P(w) vanishes at {1, e ,e%(_j_l)} C S'. This means P(w) has the form
—j—1 -
P(w) = [] (w—e)Pw),
n=0

where P(w) is a polynomial of maximal degree 2[%] + j € No. Therefore

—j—1

M{W;e™)(22 +j+2) = Hy(z) P(e 5 )e™ 5 & T (77" — &™),
n=0

]

Proposition 2.5.3. Fix 0 > 0, and let j < 0 be such that 2[%] + 7 = 0. Then for each | € Z
such that —% <l< g + 7, we have:

27miz 2min

(1) H;(2)[1. 2, (e™5" — e™") is holomorphic on Re(z) > —1.

( 2miz 2min

(2) The inverse Mellin transform M~* [Hj(z)e% [, (75" —e™5%) | () exists for all
x > 0.

27miz 2min
(&

(3) M1 [Hj(z)e% ) —es )} (x?)x™72 = o(x™77) for all ¢ > 0 and as

xz — 0.

Proof. (1): Itis clear that H,(z) is holomorphic on Re(z) > —j — 1 and admits the simple
poles {0,1,--- ,—j — 1} in the region Re(z) > —1. However, {0,1,---,—j — 1} are

2miz 2min

roots of the trigonometric polynomial H;i Bl(e 5o—es ).
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2min

(2): The expansion of H,(z)e 5 H an 1( 5 eT) can be written as a linear combination

of functions of the form H;(z)e ™+ where —2 5 < v < $. Now, the assertion follows in a
way similar to the proof of Proposition 2.4.4, (2).

(3): This follows by an argument similar to the one in Proposition 2.4.4, (3) together with (1)
and (2) above.
O

Theorem 2.5.3. Let f,5(re??) = rme®® with § > —2%—~. Then for each j < 0 such that

arccos 3
3

j+%arccos% > 0 and for each | € Z such that —g <l< g—i-jwith |l—j] < %arccos;1

the function

_j_l 3 ] ) . ..
pj(r)e’” == M~ [Hj(z) [Te™ - 627?)625] (r2)r=2e e,

n=0

defines an element in £ and satisfies [Ty, ,, T, cijo] = 0.

Proof. Under the condition § > —2%— there exist j and [ satisfying the corresponding condi-
arccos 1

tion in the previous theorem. Moreover, M [goj (r)e‘rz] (z) satisfies (2.3.1) and (2.3.2). Now,

by a similar estimation to that given in Proposition 2.4.5 the assertion follows. [

26 Case0<j7<9

Assume that U € S has the series-representation *X, and let f,, s = r™e®? where m € R, and
6 € N. Under the condition T}, Ty = TyT},, ;, we aim to find the functions W;(r) whenever
0 < j < 4. Conversely, we want to determine symbols in S; C .S such that the corresponding

Toeplitz operators commute with 7%, .

Proposition 2.6.1. Let V € S and suppose that Ty, [Ty = TyTy,, ;. Then for each j € Ny such
that 0 < j < 0 the functional equation:

J 6—j
: _ : 0 +m :
MW e™"](22420+5+2) = M[Te~"|(22+5+2) [] (= + — 1) [[G+i+D) @61
=1 =1
holds in the half plane Re(z) > —% — 1.
Proof. Similar to the proof of Proposition 2.4.1. 0

For each j such that 0 < j < ¢ we consider the meromorphic function:

ﬁf ! MFZHH

=1

~
—_

‘We know that i
M[\I/je” 1224j+2)
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is holomorphic on the right half plane Re(z) > maX{— —1,—%m _ 1} By using (2.6.1) to-
gether with the functional equation of the Gamma function we conclude that (2) is d-periodic.
Therefore, it can be extended to the whole complex plane. Similar to the proof of Proposition

2.4.3 and Theorem 2.4.1, we can show:

Theorem 2.6.1. Let V € S and suppose that Ty, Ty = TyT},, ;. Then for each j such that

0 < j < 0 there exists a trigonometric polynomial Z‘ <2 @e 3 such that
4

,(r)=2M"" | I;(2) Z ae’s (r2)ri=2e".

s
[]<g

Now let f,, s be a monomial and set p := mTJ“‘S € N. Then for each j € Ny such that
0 < j < 4, one can prove that [;(z) satisfies (1), (2) and (3) in Proposition 2.4.4. Analogous to
Corollary 2.4.1 we have:

Corollary 2.6.1. Let f,,5(re®®) = r™e® be a monomial, and let | € 7 such that |l| <
i arccos 2. Then for each j € Ny such that 0 < j < 0 the function

0;(r)e? .= M []j(z)e%] (r?)r—9- 27 610,
defines an element in € and satisfies [T}, ;, T, 0] = 0. Moreover, ;(r)e"’ € S in the case
[=0.

We give several examples where there exists one and only one ¥; € S (up to multiplication
by a constant) such that [T}, ;, Ty eiso] = 0.

Example 2.6.1. (1): Suppose that p = nd for some n € N, then for each j such that 0 < j <

0 we have

L(z) = [ ¢ ;l +n) Hr(%ﬂ)a

—1

@) Iy(2) = [1y T(ER)5* = (2m)F 674 [[o(= + DT(2).
(3): Ip(z) = (27)"7 6~ 22T(2).

Now, applying the same technique as in Corollary 2.4.2, we obtain that there is only one
radial symbol g € S; (up to multiplication by constant ) such that lem, 5 Lyeido] = 0.

Remark 2.6.1. We would like to mention that Corollary 2.4.1 is valid not only for monomials
fm,s, but also under the weaker condition p := m+6 € N. We also note that Corollary 2.6.1 is
still valid for all j € 7 such that 0 < j < min{J, 5+m} even in the case where f,, 5 = r"e® is

not a monomial.
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2.7 Examples and applications

In this section, several applications of our results are indicated.

(a) Let f, s be a monomial and suppose that [T}, ,, Ty 0] = O with j € Z such that

4]
Jj+ 2[1] > 0. We would like to investigate the analytic behavior of V; on R .

For each j > ¢ we extend the inverse Mellin transform of G;(z) which is defined on R
to a holomorphic function on the right half plane.

Fix ¢ > 0 and define the function A;(x) for z € C with Re(z) > 0 by:

B 1 o+100 .
M) = MGy () = o [ a2
T Jo—ico
Note that the function A; is well defined and holomorphic. Indeed, fix € C with
Re(z) > 0 and write z = re® where r = |z| and |[§] < Z. Following the proof of
Proposition 2.4.4, (2) we obtain

1 o+i00
— / r *Gji(z)dz

270 J o —ioo

1 o+100 0
= 2—7”/0 rG(z)e”"*dz

—100
B o ots x
< 2—7"’6”/ (0% +13) 2 e 11394t < oo,
m _

where z = o0 + it , B and s are real numbers independent of z. One can easily check that

o0

A; fulfills the Cauchy-Riemann equations and therefore it defines a holomorphic function
on the right half plane. Note that for all A\ € R, we have

Gj(z))\_zz)\_z/ Aj(m)xz_ldx:/ Aj(x)()\_las)zd—x:/ Aj(Ax)z* da.
R4 R+ T R+
Therefore, the relation

Aj(Az) = M1 [Gi(2)A77] (2) (2.7.1)

holds for all A € C with Re(A) > 0 and all z € C such that Re(Az) > 0. In particular,
for \ = ¢ € S' with —% < 6 < Z, (2.7.1) holds in the half space arg(z) € (=% —

2 2°
0,5 — 0). Therefore, the inverse Mellin transform M~ [G;(z)A %] (r?) is the restriction
of a holomorphic function defined in the neighborhood arg(z) € (= — 4,7 — &) of R,

2mil

Now, for each [ € Z such that || < 2 we put \, = e~ 5 and
Ui (r) = MU [G()N 7] ()9 %
According to Theorem 2.4.1 and using the notations there we can write

W(r) = Z a U,y (r), with a €C,

5
<3
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Since each V; ,,(7) can be extended to a holomorphic map on (—§ — %, 7 — %), we
conclude that ¥; can be extended holomorphically on a neighborhood of R, . Moreover,

we have
Wi () = Ot = M Gy ) (e
Wi (VA)A T e 2.72)

where v/, := exp(3 log ;).

Note that, since H;(z) and I;(z) have a growth similar to that of G;(z) we can apply the

above arguments also in the cases j < 0 and 0 < j < 6.

Corollary 2.7.1. Let f,, s be a monomial and let V € S such that [T}, ;, Ty| = 0. Then
foreach j € 7Z, V; can be extended to a holomorphic function on a neighborhood of R .

In particular for j # 0, V; is non-constant on any interval unless it is the zero function.

Proof. By Theorem 2.5.1 we can assume that j + 2[%} > 0. Now, suppose that W; is
constant on some interval. By the above argument we know that W; can be extended
to a holomorphic function on a neighborhood of R_. Therefore, ¥; is constant on R .
However, by Propositions 2.4.4 (3) and 2.5.3 (3) we have U;(r) = o(r¥l=¢) as r — 0
for all e > 0. Hence ¥, = 0. [

Note that by Example 2.6.1, (3) we have W (r) is a constant function.

In [17] Theorem B, it was shown that for u, v € S such that u is radial and non constant
the Toeplitz operators 77, and 7;, commute if and only if v is radial. A counterexample
was established in the case of a symbol of exponential growth at infinity. In particular,

the operators with symbols u(re?) = e1=¢"r* and v(re) = ¢ commute. By our

results we are able to obtain such examples whenever we fix v = f s with § > — 3.
4

Example 2.7.1. Let 6 € N such that 6 > arci’;sé. According to Corollary 2.6.1 and

4

Remark 2.6.1 we know that for any | € Z such that 0 < |l| < % arccos 3, the operator

T .5 COMMuLeES with T,

u; Where uy s is the non-constant radial function:

27rzlz

uig(re) = golr) = M [Io()e "] (2

2755 9 p2
:Cl7§7"26 ree r 267'

2mil

= 61756(1_6 0 )TZ € g

Here c; 5 is a constant depending on | and §. In particular, this true when m = 0, so

that the radial symbol v, 5 commutes with a non-radial bounded symbol f,s. Another
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approach to prove that T, ; and Ty, ; commute is to introduce the following unitary

1,6
composition operator U; on H?:

2Ter

U :H?> — H*: f — f(e” 5 2).

It is shown in [63] that T, ; = 5" U,. Moreover, we note that for any symbol f € € we
have
U_TiU =Ty ,; onadensedomain D C H?.

In the case f = f,, s we have U_;f = f, hence

27Til

Tf s —€° UlU*lem,sUl = Tfm,JT

uy,s

T,

uy,s

In [129] I. Louhichi and N.V. Rao conjectured the following: If two Toeplitz operators
with bounded symbols acting on the Bergman space over the unit disc commute with
a third one, none of them being the identity, then they commute with each other. In
[172], N. Vasilevski gave a counterexample in the case of Toeplitz operators acting on the

Bergman space over the unit ball B" with n > 1.

The next two examples show that a corresponding conjecture is wrong for Toeplitz oper-
ators on the Segal-Bargmann space. However, in our counterexamples at least one of the

symbols is an unbounded function.

Example 2.7.2. Fix a monomial f,, s with 0 > ST and let f, 5 be a monomial such
that m # n. According to Example 2.7.1, there is u1 E & such that

[Tuanm,a] =0= [Tul7Tfn,§]'

However, Ty, . and Ty, ; do not commute as operators on P[z]. In fact, suppose the
contrary then according to condition (2.3.1) we have
0+ m

o
M[r"e ™ )(2k +20 + 6 +2) = M[r"e " |(2k + 5+ 2) [ [ ( (k+—5—+1).
=1

le.
)

s
d+n 0+m
k+——+1 k+——+1
Ip S+l = ll( 5 +0).
The relation holds if and only if m = n.

Example 2.7.3. Let oy be an integer such that 69 > — 2z .7 and put § = 28y. According

to Example 2.7.1 the operators Ty, , ~and Ty, ; commute wzth T,, where uy = u;(re?) =
2711

6(1—6 0 )2

only if

. According to condition (2.3.1) the commutator |:Tfo, 507 Lfo, 5} vanishes if and

%,
2 — M[e™""](2k+200+250+2) =
P(k+250+1+5°)

I'(k+1+ I(k+6+1)

T(k + 200 + 1)

Me™"")(2k+260+2),
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which is equivalent to

50 5()
k4 dp+1
(bt 2t Ik +60 41 =1 (2.73)
2+ 5+ 1) =
0,
and would imply that H?il(z +d+1)* = ?iol(z + 50 +1) for all z € C. However, this
cannot be true since z = —% is a root of the right hand side and not a root of the left

hand side. Therefore (2.7.3) cannot hold for all k € N,.

In the case of the Bergman space over the unit disc D considered in Theorem A0, Z. Cuckovié
and N.V. Rao proved, in [66], the following: Let z'Z* be a monomial on D and let j € Z. Then
there is at most one function W; € L>(R ) such that [T,izx, Ty cis0] = 0 (c.f. Theorem AO).

In the case of the Segal-Bargmann space we know that if 6 < 4 then ¥, is unique with the
above property among the functions of polynomial growth at infinity. Moreover, in Corollary
2.4.2 and Example 2.6.1 we proved for an infinite number of indices j € Z the uniqueness of

W, as well. So one may conjecture the following:

Conjecture. Let f,, s be a fixed monomial. Then for each j € Z, there is at most one function
g(r) defined on the positive real line and of polynomial growth such that [Ty ., T;.i0] = 0 on

the holomorphic polynomials.

Conjecture. Let f,, s be a fixed monomial. Then for each j € Z\{0}, there is no bounded

non-zero function g(r) such that [Tfm, 5+ Tyeise] = 0 on the holomorphic polynomials.



Chapter 3

Commutative algebras of Toeplitz
operators on the Segal-Bargmann space

We construct two types of commutative algebras generated by Toeplitz operators acting on the
Segal-Bargmann space H?(C"). The first is a Banach algebra and refers to bounded symbols
in the class R} (h) (or simply denoted by R (h)) which is a subspace of k-quasi-homogeneous
symbols (here & € N™ with |k| = n). The second is a C*-algebra and is generated by symbols
of the form ¥(z) = ¥(x,y) = a(A(x))e™ where z = z + iy € C", A is an endomorphism
of R" with ker A = H C R" is fixed, v € H and a € L*°(R") are arbitrary. In this case, the
result is generalized from the Segal-Bargmann space to all true-k-Fock spaces (c.f. Section 3.4
for the definition). Finally, and in the case of the Segal-Bargmann space we are able to combine
the two situations forming a more general type of commutative Banach algebras of Toeplitz
operators. Roughly speaking, for each fixed [ € {0,1,--- ,n}, k € Nj* with |k| = [ and any
linear subspace H C R"~! the Banach algebra generated by the Toeplitz operators
{Toagraayens | PE7E" € Ri(h),a € L®(R"'),u € H, A € LIR") s.t. ker A = H}

(3.0.1)
is commutative on each Segal-Bargmann space H?(C") when s > 0. In the case of | = n
(respectively [ = 0) we recover the commutative Banach algebra (respectively C'*-algebra) of
the first (respectively the second) type mentioned above.

3.1 Introduction

Commutative Toeplitz algebras acting on the standard weighted Bergman space A3 (B") of the
unit ball B C C™ have been widely studied by several authors [93-97, 144, 145, 168-172].
In [122], and in the case of n = 1 it was noted that Toeplitz operators with radial symbols are
diagonal with respect to the standard orthonormal basis of A3 (D) (c.f. Section 1.4). Hence, the
(C*-algebra generated by Toeplitz operators of bounded radial symbols is obviously commuta-
tive on each weighted Bergman space A3 (D) with A > —1. This space of symbols is actually

the space of bounded measurable functions which are invariant under the group action

73
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S!xD—D
(€ 2) — &=

This was the first example which shows that the bounded symbols which are invariant un-
der the group action of a maximal commutative subgroup of the automorphisms of the unit
disc (in this case it is the group of rotations) generates commutative C*-algebras of Toeplitz
operators on each weighted Bergman space. Later on in [144], R. Quiroga-Barranco and N.
Vasilevski gave a general way for constructing commutative C*-algebras of Toeplitz operators
from a maximal commutative subgroup of the automorphisms of B". Namely, for any maximal
commutative subgroup in Aut(B") the C*-algebras generated by Toeplitz operators with mea-
surable bounded symbols which are invariant under the action of this subgroup is commutative
on each weighted Bergman space A% (B") of the unit ball. It was noted that there are five differ-
ent classes of such subgroups: quasi-elliptic, quasi-parabolic, quasi-hyperbolic, nilpotent, and
quasi-nilpotent. These classes give rise for n + 2 different cases of commutative C"*-algebra
generated by Toeplitz operator acting on the weighted Bergman spaces A% (B"). In the case of
the unit disc, n = 1, and assuming some technical conditions on the ,,richness” of the symbol
classes it was shown in [93] that any C*-algebra generated by Toeplitz operators is commutative
on each A3 (D) if and only if the symbols of the corresponding Toeplitz operators are invariant
under the group action of a maximal commutative subgroup in Aut(D).

In the case of the Segal-Bargmann space it remained open how to describe the symbol
classes of bounded functions whose corresponding Toeplitz operators generate commutative
(C*-algebras. However, examples of (non-commutative) C*-algebras generated by Toeplitz op-
erators have been studied in [33]. In this chapter, we aim to give examples of commutative
algebras generated by Toeplitz operators acting on each Segal-Bargmann space. Analogous
to the case of the unit ball and following the ideas in [172], we show that the Banach alge-
bra generated by Toeplitz operators whose symbols are in a suitable subclass of the k-quasi-
homogeneous functions is commutative on each Segal-Bargmann space HZ(C™). We also con-
struct a commutative C*-algebra generated by the true-k-Toeplitz operators whose symbols
depend on x = Re(z) and y = I'm(z) in a suitable way (c.f. Section 3.4).

In the study of Toeplitz operators with k-quasi-homogeneous symbols, it is interesting for
us to investigate the case where the symbols are only k-quasi-radial but unbounded in general.
In this situation, we employ a natural extension of the usual notion of Toeplitz operators similar
to the one in [16, 117, 118]. Analogous to the case n = s = 1 in [95], it turns out that any
suitable diagonal operator on {z*, a € N[}, is a Toeplitz operator with radial symbol in this
general notion for any n € N and any s > 0. Consequently, the C*-algebra generated by such
operators is commutative on each Segal-Bargmann space H?(C") and contains only Toeplitz

operators with radial symbols.

Let us now setup the notation used in this chapter and describe explicitly the steps followed

in our proofs.
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For each s > 0 we denote by H? := H2(C") the Segal-Bargmann space of entire functions
over C" square integrable with respect to the Gaussian measure

Ao (2) = dpa (2) = (e o 2).

4s T

From Section 1.3 we know that H? is a closed subspace of L*(C", dj(s)) with the reproducing
kernel
K®(z,w) = ™

L [e% .
and having the set {egf)(z) = ey (z) = \/%z"‘}aeNS as an orthonormal basis . For a mea-
surable function g € 6’% (c.f. Definition 1.3.1) the Toeplitz operator 7. is the densely defined

operator on H? and given by

(T2 F)(2) = / g(w) f(w)e™ Pdu (w). G.LD)

For each tuple k = (k1,- - - , k,,) of positive integers such that k; + - - - + k,,, = n we write
C" =Ck x -+ x C* and we use the notation

C'>z= (217 e azn) = ((Zla e 7Zk1)7 (Zkl—i-la T 7Zk1+k2)7 Ty (Zn—km—‘rh e azn))
= (2), s 2(my) € CM x o x T,
Forj =1,--- ,m werepresent each z(;) = (21+E<,,€,, e ,zz_<_k,) € C" in polar coordinates:
i<j i i<j "

) =1i€u),  withry = |z and &) € ST C CY

We start by introducing the notion of k-quasi-radial and k-quasi-homogeneous functions on C”.

Let us consider the following action of the product of the spheres S?*1~1 x ... x §?km~1 on C"

Ch=Ch x...xCk —C"
z=(2a), " 2m)) — Wz Em)Zm)); (3.1.2)

for each ({1, -+ , &) € S*171 x o x §Hm—L,

A measurable function ¢ defined a.e. on C” is called k-quasi-radial if it is invariant under
the above action. Equivalently, a measurable function ¢ is k-quasi-radial if it depends only on
the radial components ry, - -+ , 7, i.e. ¢(z) = @(ry,--+ ,7ry). The space of all k-quasi-radial
functions will be denoted by Ry. Itis clear that for any tuple k£ we have R,y € Ry € R1,... 1),
i.e. the space of radial function R, (respectively the space of separately radial) is the minimal
(respectively the maximal) among these spaces.

For a k-quasi-radial function ¢ with a high growth at infinity the Toeplitz operator 7 may
not be defined on the holomorphic polynomials P[z] (for example when ¢ ¢ L*(C", dys))).
However, in some cases we may still define a ,,Toeplitz operator” on P[z] with such symbols
extending (3.1.1) (c.f. [16, 117, 118]). In Section 3.2, we consider a more general notion of

Toeplitz operators Tj acting on P[z] whenever ¢ is in a suitable subclass L; C R containing
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the pu(s)-square integrable k-quasi-radial functions. Since every function in H? can be approx-
imated by holomorphic polynomials it is therefore possible to extend the domain of definition
of ’j;f according to the behavior of the operator on IP[z]. For example, if i:j is bounded on P[z]
then it can be uniquely extended to a bounded operator on 2. In this case we do not distinguish

between ’j;f and its unique bounded extension ’fj € L(H?).

By studying suitable Stieltjes moment problems we will show that any operator 7" on P[z]
such that 72 = §(«)z® with 6(ay) = d(az) whenever || = |as| is originated from a Toeplitz
operator in the above sense. That is there is a radial function (not unique) o(r) such that
’Z;S(T) = T on P[z]. Consequently, we verify that the set of operators {j;f € L(H?),p € Lfn)}
is a C*-algebra. Partial results are also obtained for the case of arbitrary k-quasi-radial symbols.
In particular, the set {7 € L(H2),p(r1, -, 1) = @1(r1) - @u(re) € Li} is also a C*-

algebra.

In Section 3.3, we consider Toeplitz operators with k-quasi-homogeneous symbols which
are unbounded in general. More precisely, these symbols are the measurable functions (z)

which can be written in the form:

,QZ)(Z) = 30(7”1, o arm)gpzq

for some ¢ € Ry and some p,q € Nj with p - ¢ = 0. We shall denote by H, the space of all
k-quasi-homogeneous functions. For 11,1y € H; N é%, we obtain sufficient conditions that
ensure that the Toeplitz operators 7,5 and 77, commute on P[] C H2. Tt turns out that these
conditions are independent of the parameter s. Following the ideas in [172], we show that for
each tuple k there are subspaces Ry(h) C Hy., parametrized by tuples h € Nj', containing the
bounded k-quasi-radial functions such that the Banach algebra generated by Toeplitz operators
with symbols in each Ry (h) is commutative. The subspaces Ry (h) are distinct in the case
k # (1,---,1). Furthermore, in the case n # 1 these are not C*-algebras and when n = 1 they
all collapse to the C*-algebra generated by Toeplitz operators with bounded radial symbols.

Section 3.4 is devoted to the construction of a C*-algebra generated by the true-k-Toeplitz
operators. We shall start the section by defining such operators. In fact, these operators gen-
eralize the notion of Toeplitz operators acting on the Segal-Bargmann space to the case of the
true-k-Fock spaces (c.f. [167]). The symbols we deal with are bounded functions of the form
U(z) = a(A(x))e™? where z,y € R™ with z = = + iy, A is an endomorphism of R" and
t € ker A = H. We prove that each true-k-Toeplitz operator with such symbol is unitary
equivalent to an operator on L*(R", dz) which is a composition of a shift and a multiplica-
tion operator. Consequently, for a fixed linear subspace H C R" we show that the C*-algebra
generated by true-k-Toeplitz operators with symbol of the previously mentioned form is com-
mutative. In particular, this holds true for Toeplitz operators acting on the Segal-Bargmann
space. Finally, we are able to combine the two situations considered in Sections 3.3 and 3.4 to
form a more general type of commutative Banach-algebra generated by Toeplitz operators of
the form (3.0.1).
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3.2 Commutative C*-algebras of Toeplitz operator

We start by introducing the Toeplitz operator ’Z;s on PP[z] with symbol ¢ in a suitable class. Let
us consider the following space of measurable functions

Ly :={p € Ry | pz* € L'(C", dpys) forall o € Nj }.

Note that for ¢ € L}, the complex number J, j, s ()

Opks(c) = (el el)) (o) (3.2.1)
can be expressed as an integration over R™. Indeed, by (1.3.5) and using integration by polar
coordinates r;§(;) on each complex space C*i we obtain

bl
(pel), el

o = Toap L etwlur e ot

m

+ |

s 2oy |42k —1 _gp2

- | n/ rl, A IITJ v Te Srjdrj
Q. Tt m

J=1

CG)e )
g /S%jl oy S do(€q)

om g n+|af

- 2|a(J)|+2kJ—1 —gr2
= 77 o(r, ) | | 75 e *idr;. (3.2.2)
1o e 11 ;

Remark 3.2.1. The above equation shows that the multi-sequence {0,y () faenn satisfies
Opk,s(@0) = Oy k,s(B) whenever o, B € Ni are such that |a)| = |5y forall j = 1,--- ,m.

Moreover, if ¢ € Lj, can be written in the form

™ol

o(ri,- ) = [[ i) (3.2.3)
j=1

where @; are functions in Lf k) then by Fubini’s theorem

<pks Hécp]ks H(Sgoks "'7Oé(j),07"',0>. (324)

For each ¢ € L; we define the Toeplitz operator ’f:j on the holomorphic polynomials by

T52% = O te,s(00) 27 (3.2.5)

©

This notion of Toeplitz operators is a natural extension to the usual definition. Indeed, if
¢ € Ry is such that P[z] € D(T}) := {f € H? | fo € L*(C",dps))} then 73 = T on Pz].
In fact, for each a € Njj we have pz* € L*(C", dju s ) hence by the monotone convergence
theorem we can write

T3wo)(2) = (pu™, K)o = (pu, 3 e w)ed () = I (peld) (w), e (w)) (92°
BEN? BEND
= (e, ) (2" = [T7w](2).
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Note that, the operator ’f;f uniquely extends to a bounded operator on H? if and only if
{0gk.s() Yaenp € 1°(NG). In this case we write ’th € L(H?). Moreover, if ¢ € Lj is of the
form (3.2.3) then by the above remark

T3 =[] 732, (3.2.6)
j=1

where each ’j;fj is the Toeplitz operator defined on the holomorphic polynomials over CFs.
Furthermore, if ¢ € Lfn) then ’th is a diagonal operator on the monomials and the multi-

sequence of the eigenvalues {d, 1, s(@) }aens belongs to the space
L) (NG) = {{(5a}aeN3 C C | 0 = 65 whenever |a| = |3]}.

Conversely, we will show that for any diagonal operator acting on the monomials by 7'z =
002 with {ataeny € l(n)(NG) there is ¢ € L, (not unique) such that " = 7;5 on P[z]. For

this reason we have to introduce some results on the so-called Stieltjes moment problem.

Theorem 3.2.1. [71] Let {1, }1en, be any sequence of complex numbers. Then there exists a

function g in the space

St:={feSMR)| f(r) =0forr <0}, where S(R) is the Schwartz space over R

such that the moments of g satisfies

/ g(r)rldr =y foralll € N,. (3.2.7)
0

The following example shows that there exists a non-zero function gy € S* such that
I3 go(r)ridr = 0 for all I € N. Hence the solutions of (3.2.7) in the space S* are not unique

for any complex sequence {14 }ien, -

1

Example 3.2.1. [176] Let go(r) = e "* sin(ri) then by the change of the variable ri o=t we

have

/ go(r)rtdr = 4/ e~ M3 sin(t)dt
0 0

— 9 /Oo[e—(l—i)t — et gy

0
_ —2Z<4l + 3)!4—(l+1)[6i7r(l+1) . e—iﬂ(l—&-l)}
= 47141 4 3)!sin(l + )7 = 0.
More generally, in [71] A. J. Duran characterized the functions ¢ € ST whose moments

(3.2.7) are identically zero. Roughly speaking, if g € ST then [° g(r)r'dr = 0 if and only

if there is a function ¢ € S* such that g(r) = 5 [~ ¢(x)Jo(v/2r)dz where J; is the Bessel
function of the first kind.
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Let {0a faeny € l(n)(Np) be a fixed sequence of complex numbers and consider the operator
T on P[z] defined by Tz% = 0.2 . We aim to find a function ¢ € L, such that ’f:j =T on

IP[z]. For this reason, we define the sequence {4 }1en, by

(n—141)!

9gn+l

According to Theorem 3.2.1 there exists a function g € ST such that y; = [* g(r)r'dr for
all [ € Ny. Now let

Hi 2= 01,0, 0)

2 2\ sr?
p(r) == mg(?” Je

be defined on (0, 00). We claim that ¢ € L{,) and d,x,s(cv) = d, for all @ € N. Indeed, since
g is in the Schwartz space then g(r?)rl®*! € S(0,00) C L*((0,00), dr) but

al  —sr? _ > 2 |a|+1
Cn|g0(z)||z le™*" dv(2) 2/0 lg(r=)|r dr/S ldo(§) < oc.

2n—1

Moreover, using (3.2.2) and by the change of variables u = r? we obtain

~ 2 n+l (o)
T2 =6, 5((1,0,- - ,0))200 0 = [S—y/ 90(7’>T2"717°2167“2d7’] 2(10:++0)
"Jo

4 (n—1+1
25"t o .
_ d } (1,0, ,0)
[(n—1+1)1/0 glupidu]z

= G, 200 = T(000)

Furthermore, for any o € Nj we know that

’j::za = O os()2% = 0y pe,s (], 0, -+ ,0))2% = jaf,0, 002" = 002" = T'2°.

We arrive now to the description of the C*-algebra of the bounded Toeplitz operators with
symbols in L.

Corollary 3.2.1. The set
Al (C") = {’j:j | ¢ € L{,) such that’j;;S € L(H2)}
is a commutative C*-algebra.
Proof. One can easily check that the set
A(C") ={T € L(H?) | Tz" = 642 where {d, }aenp € ln)(NG) }
is a commutative C*-algebra. But the above calculation shows that A(C") = A7, (C"). [

We generalize the above result to the case of bounded Toeplitz operators with symbols of
the form (3.2.3).
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Corollary 3.2.2. The set

1o(C") = {’Z;S ELH) | @ € L st p(ry, -+ 1) = H(pj(rj) where @; € Lfkj)}

Jj=1

is a commutative C*-algebra.

Proof. Consider the following commutative C*-algebra

Ao(C") = {T € L(H?) | T=* = 6,2" where 6, = H§(0,.‘.7a(j),07...70) and

Jj=1

da = 0 whenever |a;)| = |G| forall j =1,--- ;/mandall o, 5 € Ng}.

On the one hand, Equations (3.2.2) and (3.2.4) shows that Aj (C") C A(C"). On the other
hand, if 7" € Ay(C") then for each j = 1--- ,m the operator 7; defined on the holomorphic

polynomials over C*i by
Ti2% = 750 a(5),0,-.,0)

is bounded on HZ(C*/). Therefore by the Corollary 3.2.1 there is ¢;(r;) € Lfk]—) such that
’j;fj = T on HZ(C*). Now let (11, - -+ ,7m) = [/, ¢;(r;) then by (3.2.6) we obtain

m m m
Tz =[] 7200 = [[ 2% =[] 00 agy 00002 * 00070 = 6,27 = T2
j=1 7=1 Jj=1

Hence Ay (C") C Aj ((C") and the corollary follows.

3.3 Commutative Banach algebras generated by Toeplitz op-

erators with £-quasi-homogeneous symbols

Starting from a tuple k = (ky, - - - , k) of positive integers with |k| = n we construct subspaces
Ryi(h) C HiNL>®(C™) parametrized by tuples h € N{*. For each fixed tuple i we show that the
Toeplitz operators with symbols in Ry (h) commute on each Segal-Bargmann space H?(C").
Consequently, the Banach algebra generated by the Toeplitz operators with symbols in Ry(h)
is commutative.

In [172], N. Vasilevski obtained a similar result for the construction of commutative Ba-
nach algebras generated by Toeplitz operators with k-quasi-homogeneous symbols acting on
the Bergman space of the unit ball A%(B"). As it turns out analogously the result stated in [172]
holds for Toeplitz operators on H?2(C").

Let us start by considering a function g € £, (i.e. l9(2)| < de?” for all z € C" where
d,c> 0s.t. ¢ < 3). From Section 1.3 we know that the Toeplitz operator 7 is well defined on
P[z]. In the following we consider oePE! peuE € Hy N Si with

oyl = lagl,  |ugl = |vgl forall j =1,---  m
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S
pevge A T

operators with symbols o€ peug’ e Ry (h) commute on P[z].

By direct calculation, the following lemma shows how Toeplitz operators with k-quasi-

and apply 7° » to the monomials in order to find a class R (h) for which Toeplitz

homogeneous symbols behave on P[z].

Lemma 3.3.1. Let cpﬁpgq € Hy. be a k-quasi-homogeneous function i.e. ¢ € Ry andp - q = 0.
Moreover, suppose € €1 1 then for each o € N"™ the Toeplitz operator T° oerE? fulfills:

5 S(a)zoTPa o +p— Oforalll =1,-
T e = | Pobwas(®) a0 (33.1)

else,

g ( ) 2m8n+\a+p—Q|(a +p)'
kp,gs\&) = m
o (O“"p_q)lnjﬂ(kj_1+|O‘(j)+p(j)|>!

m
20y +p( )~y | +2k;—1 _gp2
></ iy ) [ @ TP TIO T e g (332)

j=1

Proof. Since p € £ 1 then by the monotone convergence theorem we can write

Torer®" = / P e () e do(w)

™
m

B olBl+n
zPs oy | HBG) 2k —1 _ g2
=2 / (e ) [T ey

BEN” ’ j=1

ag) g Bt
X/S%j_l%)] Ty T do (&)

The above terms are all zero except when ;) + pj) = B(;) + q(; forall j = 1--- ,m. So that
[ = a + p — g which means «; + p; — ¢; should be non-negative for all [ = 1,--- ,n. Using
(1.3.5) we obtain

P L A T (O
e (a+p = TTZ (k — 1+ |ag) +pi)|)!

203y +P) —a0) [+2k5 =1 —gr2 atp—q
x/ <,0(7”1,"',7”m)H7“j e *idr;z .

j=1

]

Let us now consider two Toeplitz operators one with k-quasi-radial symbol and the second
with k-quasi-homogeneous symbol.

Proposition 3.3.1. Let k = (kq,- -+ , k) be a tuple of positive integers with ky + - - - + k,, =
and consider two functions o1, ps € RyNE 1. Then for any couple of orthogonal multi-indices
p,q € Ny such that |p;)| = |qq| for all j = 1,--- ,m the Toeplitz operators T} and ’]::ﬁpgq

commute on P|[z].
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Proof. Leta € Njj be such thatay +p; — ¢ > Oforall/ =1,--- ,n then by (3.2.5) and (3.3.1)

we have
s Ts a __ % s Lot+p—q _ X _ a+p—q
d 7:017;2@5‘12 = 5wz,k,p,q,8(a)%12 = 5wz,k,p,q,8(a)5<p1,k75(a +p—q)z

o T° T3 2%=00p ps()T*

0atPg? 1% sazépéqza = 5@01,k7s(a>5cpzyk,p7q,s(O‘)Z(Hpiq-

Hence the operators 7 and T S evg? COMMute on IP[z] if and only if

Sw,k,p,q,S(a)(ssol,k,s(O‘ +p—q) = 5901,k,s(Q)Sw,k,p,q,S(a)- (3.3.3)

From Remark 3.2.1 we know that d,, () = d,, 1.s(3) whenever |a;| = |5(;)| for all j =
1,---,m. Since |p)| = |q;| forall j =1,---  m we get §y, . s() =y, k,s( +p —¢) and
(3.3.3) holds. ]

As a consequence, we obtain the following corollaries

Corollary 3.3.1. For a given tuple k = (ky,--- ,ky,) let p,q € N{ be a pair of orthogonal

multi-indicies such that |pjy| = |q¢)| forall j = 1,--- ,m. Then for any ¢ € R ﬂc‘,} we have
T T = Toa T = T, (3.3.4)

where the above equality holds on P[z].

Proof. First we remark that for any p, ¢ € Nj such that [p(;)| = |¢;)| forall j = 1,--- ,m and
any ¢ € Ry N 8% the following equality holds

om n+|a\(a+p)
(a+p—gTIL (k) — 1+ |y +p<j>|)!

20y |2k =1 _gp2
x / H Peolih gy,
m

m

(k; —1+|a< D! ag) +p)!
=0 ks /) ’ = O ,s ()M prg ().
i H (ag) +pg) — ao)!(kj — 1+ |ag) + o))t 7 .

5so7k7p,q,s(04>

J=1

(3.3.5)

The first equality of (3.3.4) follows from Proposition 3.3.1. In order to prove the second
equality we note that 0, x s(a) = <egf), e((f))(s) = 1. Now by Lemma 3.3.1 we know that for any

a such that oy +p; — q; = O:
IZZ:@EQZQ - g%km,qﬁ(o‘)za+piq = 5<p,k,s(06)77k,p,q(a)2a+p7q
= O ()01, (@) p g () 27770 = 5¢,k,s(Oé)gl,k,p,q,s(oé)za“*q

= Therdona@) = ToaTis"
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Corollary 3.3.2. Given a tuple k = (ky,- - - , kn,) and a pair of orthogonal multi-indicies p, q €
Ng such that |p;)| = |qg)| forall j = 1,--- ,m, consider

ﬁ(j):(oa"'aoap(j)aoa"'70) and g(j):(of"a07Q(j)707”'ﬂ0)

then

S S S

PG gl Q;ﬁwg)g@uw - 7;5<j1>+ﬁ<j2>g@<n>+5ug) :

In particular, the operators ’]; 3 GE) mutually commute for j = 1,--- ,m and
m
S o S
H Igﬁmg%) T Terg”
j=1

Proof. It is easy to see that

M 551t OBy ) () = Ty 455 s+ (05
where 7y, ,() is given by (3.3.5). Therefore

s s QL s a+P(jy) ~d(ia)
DG L gim 2 = Moy i (O Tz, 2771027102
— - _ a+P(j1) TP (ig) ~4(i1) ~9(i2)

T B33 ) (T iy (@) 27T PO 7000 740G

— - L . AP (1) FP(a) ~4(i1) ~d(in)
T 51y +B3 050+ (O v T e

— S ~ _ _ a
= TG0 426 g0 i #
[

We are ready now to consider two Toeplitz operators with k-quasi-homogeneous symbols.

Theorem 3.3.1. Given a tuple k = (ky,- - , k) of positive integers with ky + - - - + k,, = n.
Letp,q,u,v € Ny such thatp-q =0, u-v=0and

o)l = lag |, lug] =gl forallj=1,--- m.
Moreover, suppose that for each | = 1,--- . n one of the following conditions holds:

e p=q =0,

Then for any functions p,v € Ry NE 1 the Toeplitz operators 7:;5??’ and Zpsgugv commute on
P[z].

Proof. Let o € Nj be such that oy +p; — ¢ +w; —v; > 0foralll = 1,---  n. Then by (3.3.1)
we know that:
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TSE"E ’Z;& P2 = gw,k,u,v,s( )ngpng”“—” = 5w7k7u,v,5(a)g%k,p,w(a—i-u—v)zo‘+“_”+p_q,

° 7;5§u 78 qu 6@,k,pﬂ,s(0€)7§§uguza+p—q = 5p,k,p,q,s(a)$¢,k,u,v,s(a+p—q)zo‘""“_v"‘p_q'

Then 7 Jepge and T Jewgy COMMUte on P[z] if and only if for every a € Ny with oy + p; — q; +
u; — v; = 0 we have

ngk,u,v,s(a)g%k,pvq,s(O‘ +u— U) = S%k,pvq,s(a)gw,k,u,v,S(O‘ +p—q).

Since |p;)| = |qj| and |ug;)| = |v()| forall j = 1,--- ,m the above equation takes the form
2msnHol (o 4 u)! T 2lag 42k 1 g2
i, Tm pl O oS e
oo O Tty — Tt fagy g e V0 ) 1 f

2msnHel (o + u — v + p)!
(a+tu—v+p—g! ;L (kj — 1+ [ag) +pp)l)!

m
2‘04(‘)|+2kj71 757.2
x/ ga(rl,---,rm)Hrj g e dr;

j=1
Qmanrlal(a +p) / ik 2|ar(jy|+2k;—1 2

= m P, Tm Ty Toe M dry

(a+p—! L (k= 1+ |ag) +p) D! Jam ( )]Hl ’ ’

2msmHol(o +p — g+ u)!
X m
(a+p—qg+u—o)[L(k — 1+ [ag) + up))!

m
2la)+2k; =1 2
X w T, T Hry dr;.
J=1

—» commute on P[z] if

u

Therefore the Toeplitz operators ’T y & and 7 55

(atu—vtpllatw)! (a+p—g+u)latp!

(a+u—0)! (a+p—q)

The equality holds forall « € Njj if foreach/ = 1, - - - , n one of the above conditions holds. L[]

By the above theorem we are now able to construct commutative Banach algebras gener-
ated by Toeplitz operators with k-quasi-homogeneous symbols. Let us start by a tuple £ =
(k1,- -+, k) of positive integers with k; + - - - + k,,, = n. Since the perturbation of the coordi-
nates is a biholomorphism of C" and gives an unitary equivalence of the Toeplitz operator (via
the biholomorphic map), we can assume k1 < ky < -+ < k.

Now consider a tuple h = (hy, - , hy,,) with hj =0ifk; =1land 1 < h; < k; — 1 and if
k;, = kj;, with jo < ji put hj, < hj,. Put

Py = (pj,la"' 7pj,hj70"' 70)7 qi) = (07 707qj,hj+17". 7qj,kj) (336)

where P11y s Pmbhms Q1,0 +15 " " 5 Ak, € Ng satisfies

)| = layl- (3.3.7)
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Now let Ry (h) be the space of all bounded k-quasi-homogeneous symbols of the form

@(Tl, T 7rm>£pgq7
where p, ¢ are multi-indices of the form (3.3.6) and satisfying (3.3.7) then by Theorem
(3.3.1) we obtain

Corollary 3.3.3. The Toeplitz operators with symbols in Ry (h) generates a commutative Ba-
nach algebra in L(H?). Moreover, forn > 2 and k # (1,---,1) these algebras are not
C*-algebras.

3.4 Commutative C"*-algebras generated by true-4-Toeplitz

operators

In this section, for each multi-index & = (ky,- - - , k,) € N we consider the true-k-Fock space
F(Qk) (C™) as was defined in [167]. Via the orthogonal projection Py from L*(C", du := dpi1))

onto F (Qk) (C™) we define the true-k-Toeplitz operator T

, with suitable symbol ¢, on I3, (C")
as Py, M, where M, is the multiplication operator by ¢. Consider two bounded functions ¢

and y on C" such that
0(z) = 0(x,y) = a(A(z))e™", ~(2) = d(z,y) = b(B(x))e"”

where z = = + 1y, x,y € R", and a, b are functions on R™. Moreover, A and B are linear
maps on R" and u,? € R". We show that the operator Te(k) on F(Qk)(C") is unitary equivalent
to an operator on L?(R", dx) which is a composition of a shift and a multiplication operator.
The point here is that the equivalence arise from an isometric isomorphism from F(Qk) (C™) onto
L*(R", dz). This isomorphism was introduced by N. Vasilevski in [167]. As a consequence,
we show that the two true-k-Toeplitz operator 7| e(k) and I’ W(k) commute whenever u € ker B and
t € ker A. In particular, for any subspace H C R” the C*-algebra generated by the set

{Téﬁzx(x))em-w a € L>(R"™), A is an endomorphism of R" with ker A = H and u € H}

is commutative. We would like then to mention that our results still hold true for the case of the
Segal-Bargmann space. Finally, we combine the algebras obtained here with those given in the
previous section to form a more general type of commutative Banach algebra generated by the
operators in (3.0.1).

For k € N the k-Fock space F?(C) is defined to be the closure of the set of all smooth
functions in L?(C, du) satisfying the equation

k
%gp = 0.

The true-k-Fock space is defined as follows:

F(zk)((C) =F(C)e F? ,(C), fork>1
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Now for each multi-index k& = (ky,-- - , k,,) € N the true-k-Fock space F(2k) (C™) on C™ is
defined as the tensor product of the true-poly-Fock spaces on C

F(Qk) (C") = ® F(%cj)((c)a
j=1

with the induced norm from L?(C", du). We denote by Py the orthogonal projection from

L*(C™, dp) onto F, (zk). Moreover, we introduce on R" the function
hiy) = Hhkzj (Y5)
j=1

where hy; (u) is the function defined on R by

w2

1) = (217, (e ¥

and Hy, (u) := (—1)& e %e‘“Q is the Hermite polynomial of degree k,. By direct calculation
it is easy to see that ||/ (y) | L2®n ay) = 1.
We now collect some of the results which were obtained in [167] and which we shall use

later. In [167] N. Vasilevski introduced the following unitary operators:

Uy : L(C",dp) — LA(R", dz) @ L2(R", dy)

2?41yl
2

_n
2e

o — (Uip)(z,y) =7 p(r +1y),

o Uy:=1®F:LAR", dr) ® L*(R",dy) — L*(R",dz) ® L*(R", dy),
[ J

Us=U; ' =Us: L*(R", dr) ® L*(R",dy) — L*(R",dr) @ L*(R", dy)

o — (Usp)(z,y) =
1 1
—(x + , ——= €T —
l \/5( v), 7@ =)
where I is the identity map and F is the Fourier transformation on L?*(R™). The following

theorem was established in [167].

Theorem 3.4.1. [167] The unitary operator U = UsUsU; provides an isometric isomorphism
of the space L?(C",du) onto L*(R",dx) @ L*(R", dy) under which the true-k-Fock space is
mapped onto L*(R", dx)hy_1(y) where 1 = (1,1,--- ,1).

By Generalizing from the case n = 1 (as proved in [167]) to an arbitrary dimension n and

by using the above theorem one can verify that the mapping

Ry : L*(R*, dx) — L*(R", dz) ® L*(R", dy)
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defined by Ry f == f (2)hy—1(y) is an isometric embedding and the adjoint operator
Ry - L*(R", dx) © L*(R", dy) — L*(R", dx)
is given by
(Fiyella) = [ ola.p)hus()dy

We define the operator ]?(k) = R’(*k)U on L?(C", du), and use the same techniques as in [167]
for the case n = 1 to prove the following theorem.

Theorem 3.4.2. The restriction
R(k)\F(%C)(C") : F(zk)(cn) — L*(R", dx)
and the adjoint operator
Rl = U*Rgy « L*(R", dz) — F(3,(C")
are isometric isomorphisms. Furthermore, it holds
RuyRpyy =1 : L*(R",dx) — L*(R", dx),

and

RiyyRgy = Py « L2(C", dp) — Fy(C).
Let us introduce the notion of true-k-Toeplitz operators on the true-k-Fock space F(Qk) (C™).

Definition 3.4.1. Let h be a bounded function on C" then the true-k-Toeplitz operator T, }Ek) is
defined on F, (216)(@”) as )
T .= Py M,

where M, is the multiplication operator by h.

Note that for k = 1 = (1,1,---,1) we have F3,(C") = ®}_;H}(C) = H{(C") and
T}El) := P(1)M,, is the usual Toeplitz operator on H3(C").
Using Theorem 3.4.2 it is easy to see that the true-k-Toeplitz operator T,Sk) on F(Qk) (C™) is

unitary equivalent to the operator

k) px 3 % D Dx D %
R T Riyy = Ry Pog Ma Ry = Roo Riyy Row MRy,
= Ry My R,
= Ri UMU* Ry == Sh.

For a special kind of bounded symbols 6 we prove that the above operator Sy is a composi-

tion of a shift and a multiplication operator on L?(R™).
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Theorem 3.4.3. Let k = (ky, ko, - - - , k) be a tuple of positive integers and consider a bounded
function 0 on C" of the following form

0(2) = 0(x,y) = a(A(x))e™?,

where u € R™ and A is an endomorphism of R". Then the true-k-Toeplitz operator T(,(k) on
F, (2k) (C™) is unitary equivalent to the operator Sy on L*(R™, dx) which is given by:

Tty

(So0)a) = vla =22 [ oA haly+

forall ¢ € L*(R", dz).

Uu ~

ﬁ)hkfl(:wdy?

Proof. We want to calculate (Sp¢)(z) = Rfy,(UMoU*R(,)¥)(x). First we calculate the op-
erator UMyU*. Tt is easy to check Uy MpU; = My. Now let ¢ = Us(f @ g) = f ® F(g) €
L*(R", dz) ® L*(R", dy) then

UsMoUz ¢ = [I @ Fla(A(z))e™ ' f @ g
= a(A(2))f © Flg()e"O)(y)
= a(A(x))f @ F(g)(y — u) = a(A(x))d(z, y — u).
For convenience we write (7¢)(x,y) := ¢(x,y — u). We shall now apply the operator
U M,U* on an arbitrary element ¢ € L*(R",dx) ® L*(R"™, dy):
T4y Ty,
V2 V2
rT+yYy—u r—y+u

V2T V2

(UMU@)(,y) = Usa(A(x))TUzp = Usa(A(x)) 7 (

= Usa(A(z))(

)

Therefore, for any ) € L*(R™, dz) we obtain
(Sot) (@) = Ry (UMpU" Ry ) (@)
= UMQU*(R(k)W(JCa y)ilk—l(y)dy

]Rn

— [ aa" ) Rayia -

= (z — i)/ (AN i (g + — Vi ()

We are able now to construct commutative true-k-Toeplitz operators.
Theorem 3.4.4. Consider two bounded functions on C"
0(z) =0(x,y) = a(A(:E))ew'y and v(z) =~(z,y) = b(B(x))eit'y,
where A and B are endomorphisms of R", t € ker A and u € ker B. Then for any tuple k =

(k1, ko, -+, ky) of positive integers the two true-k-Toeplitz operators Te(k) and T§k) commute

on the true-k-Fock space F| (21<:) (C™).
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Proof. By Theorem 3.4.3 we know that Te(k)T V(k) is unitary equivalent to the operator SpS, on
L?*(R", dz) which is given by:

(S0r0)(a) = Su(S,2)(w) = (Sre)le =) [ (AT haly+ s ()

U

—ola == ) [ B (o (e
X /R ) a(A(%))Ek_ﬂy + %)ﬁk_l(y)dy- (34.1)

On the other hand 7T V(k)T e(k) is unitary equivalent to the operator S.Sy on L*(R", dz):

t rT+v, .~ t .-
(5750¢)(x) = 5,(Sep) () = (Sep)(z — ﬁ) / b(B(W))hk—l(v + E)hk—l(v)dv
t
t U r= 7 Ty - U =
= - — - — A(——=— ) hp_1(y + —=) hs_ d

oo = J= =) | al AL sty + bl

x / n b(B(‘”;;))iLk_l(v + %)ﬁk_l(v)dv. (3.4.2)
It is easy now to see that the two equations (3.4.1) and (3.4.2) are equal whenever ¢t € ker A and
u € ker B. ]

Remark 3.4.1. Let 0 and vy be the two functions defined in the above theorem. Then the Toeplitz
operators 1y and T.7 commute on each Segal-Bargmann space H2(C"). Indeed, the above the-
orem shows that the Toeplitz operators Ty and T., commute on H1(C") as well as the operators

Ty
an arbitrary dimension n one can easily verify that for any measurable function h we have

and Tv(j) for any s > 0. Now by a slight generalization of Eq. (2.4.20) for the case of

%59(2)=[Th(ﬁ)g(ﬁ)](\/52), forall g st hge L*(C, dug). (3.4.3)

Applying the above equation to the product operator 1T one obtains
TT9(2) = [Tog [T sl 2I0)] (V52)
= [Ty [T 9 210)]| (/52

— T Tig(z) forall g€ HACM)

Theorem 3.4.4 (respectively Remark 3.4.1 ) allows us to generate commutative C*-algebras
of true-k-Toeplitz operators (respectively of Toeplitz operators).

Corollary 3.4.1. Let H be a linear subspace of R"™ then for each tuple k = (kq, ko, - , ky) of
positive integers the C*-algebra generated by the set

{Ta(f,zl(m))ei“‘y | a € L*(R™), A is an endomorphism of R" with ker A = H and u € H}

Is commutative.
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Corollary 3.4.2. Let H be a linear subspace of R" then the C*-algebra generated by the set
{7, awyeinw | @ € LZ(R"), Ais an endomorphism R™ with ker A = 'H and u € H}
is commutative.

Now we combine the above result of commutative C*-algebra with the result in Section 3.3
to form a more general types of commutative Banach algebras genrated by Toeplitz operators.

Let s > 0 be arbitrary and consider the Segal-Bargmann space H?(C"). Fix a number
[l € {0,1,--- ,n} and a tuple k = (kyi,--- , k) € N such that |k| = [. Consider a tuple
h = (hi,--+ ,hy) with h; = 0if k; = 1and 1 < h; < k; — 1 and when k;, = k;, for
certain jo < j; put hj, < h;,. Moreover, for each j = 1,--- ,m let p;), q¢;) € Ngj to be of the

following form

PGy = (Pins 5 Pings 0,00 ,0) gy = (0,0, @541, 5 Giky)s With [y = [ |-

Note that the numbers pj 1, -, Djn,; @jn+1, " G5k are arbitrary in No. Now with those
D), q(j) as defined above put

p=(pay,  Pwm)s 4= (qa), " +qum)) € N

Let us decompose the complex space C™ as the product C* = C! x C" ! and write z = (2/,2") €
C!' x C"~'. Moreover, we represent z' € C' in the polar coordinates r;¢(;) with r; = |z£ i) &) €
S**i~1 and we write £ = ({1, - -+ ,&m)). We denote by R (h) the space of bounded k-quasi-

homogeneous symbols

QD(T'l, e 7Tm>£pgq7

where p, ¢ are given by the above form. Furthermore, for 2 € C"~! we decompose 2" in its
real and imaginary part 2’ = x + iy.
With the notation used above, we are now able to construct new commutative Banach alge-

bras generated by Toeplitz operators.

Corollary 3.4.3. Let | € {0,1,--- ,n} be fixed. Then for each linear subspace H C R"~! and
each tuple k = (ky,--- , ky) € N™ such that |k| = | and each tuple h as described above the
Banach algebra generated by the set

{1* | pePe" € Ri(h),a € L®(R"™"),u € H,A € LIR") s.t. ker A ="H}

0P a(A(z))etn v

Is commutative.

Proof. Let g = g1 ® g2 € H2(C") = H2(C') ® H?(C™"). Then for any Toeplitz operator of
the above form one can easily check that

[Tjgpgqa(A(z))em-yg](z) = [ngpgqgl](zl) : [%?A(m))eiuygﬂ(zl%
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where Q;fgpg
The corollary follows by an application of Corollary 3.3.3 to the case of the Segal-Bargmann

a and 70,y are the Toeplitz operators on H?(C') and H?(C™!), respectively.

space H2(C!) and another application of Corollary 3.4.2 to the case of the Segal-Bargmann
space HZ(C" ).
[

Note that, in the above corollary, when [ = n (respectively [ = 0) this is the commutative
Banach-algebra (respectively C*-algebra) obtained in Corollary 3.3.3 (respectively in Corollary
3.4.2).

Finally, we would like to mention some open problems which are inspired by our results.

1. With the notation used in Section 3.2, it is clear that for any tuple k = (ky,--- , k) € N™
with |k| = n the set

A (C") == {7}, ¢ € L; such that T} € L(H?)}
is contained in the commutative C*-algebra

A, ={T € L(H?) | Tz* = 6,2" where §, = 03
whenever |a ;)| = ()| forall j =1,--- ;mand all o, § € Nj }.

Analogous to the case k = (n) as considered in Corollary 3.2.1, one may ask wether it is
still true that C(C™) = C}, thus being also a commutative C*-algebra. In fact, it is easy

to see that such a problem reduces to the following higher dimensional moment problem:

Let {5a}aeN3 be such that 6, = ¢ . Find a function g(ry, - - ,7,,) such that

[yl slagmy )

0 = / g(re, - rm) Hr}a(mdrj for all o € Nj
R

T j=1
and that
2 2 sr2
g(ry,---,r>)e m .
s 2k:-—|; N LYRTY, dr)  forall 3= (Bay, -, Bum)) € NG
H;n:l r 3~ 1BG)

2. As mentioned in Section 2.1, in [66] Z. Cuckovi¢ and N. Rao proved that if ¢, ¢, €
L>(D) such that ¢, is non-constant and radial then the Toeplitz operators 7, and T,
commute on A?(ID) if and only if (5 is radial. Later on, in [181] Ze-Hua Zhou and Xing-
Tang Dong showed that if p, ¢ € Nj are orthogonal multi-indices and ¢y, o € L>*(B")
are radial such that ¢; is non-constant and ¢, # 0 then 7, and T,,¢ogr cOmmute on
the un-weighted Bergman space A%(B") if and only if |p| = |g|. Finally, in [172] N.
Vasilevski generalized the previously result to the case of k-quasi-radial functions and
standard weighted Bergman spaces A% (B™) over the unit ball. Roughly speaking, given a
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tuple k = (ky,- -+ , k) € N with |k| = n, a pair of orthogonal multi-indices p, ¢ € N,
and two k-quasi-radial functions ¢,y € L°°(B") such that ¢, is non-constant and
w2 # 0, then T,,, and T, »,evg? cOmmute on each weighted Bergman space A3(B") if and
only if [p(;)| = |q(;)| foreachj =1,---  m.

As for such a problems in the case of the Segal-Bargmann space the growth of the symbol
near infinity plays an essential role. As explained in Section 1.3, W. Bauer and T. Le
proved that if ¢, o € Sym_,(C") := Ny=0& such that o is non-trivial and radial then
7 and 73 commute if and only if @y(e”2) = ,(z) forae. § € Rand ae. z € C*
[16]. In particular, if ,(2) = p3(r)EPE” for some orthogonal multi-indices p, ¢ € N2 and
some radial function 3 then 777, and 7, commute if and only if [p| = [q|. Analogous to

this case, one may ask if the following is till true:

Let k = (ki, -+ ,kn) € N™ with |[k| = n and fix a pair of orthogonal multi-indices
p,q € Nj. Consider two k-quasi-radial functions ¢y, p, € Sym.,(C") such that ¢, is
non-constant and ¢ # 0 then 7 and 7:;2 crge COMmMute on each Segal-Bargmann space
HZ(C™) if and only if |p(;)| = |g| for each j = 1,---,m. The sufficient condition
is proved by Proposition 3.3.1, however the necessary condition is still open for further

research.



Chapter 4
,,Heat kernel” for Toeplitz operators

We employ Berezin’s result in [29] to calculate the heat kernel of a certain class of elliptic
and sub-elliptic partial differential operators. Via the Bargmann transform which maps L?(R")
isometrically onto H*(C™) := H?(C") every partial differential operator £ on L?(R") with
polynomial coefficients is unitary equivalent to a Toeplitz operator 7 on H?*(C™) where f is
a polynomial over C" in the complex variables z and Z. We show that when f(z,Z) = zAZ
and A is a n x n positive semidefinite matrix then the one parameter semi-group e Z/ can be
calculated explicitly by Berezin’s formula (4.1.1). In this case, it turns out that the operator
e~ 17 is also a Toeplitz operator on H?(C") and the ,,heat kernel” of T} defined on R, x C*"
is simply obtained (c.f. Theorem 4.3.5). Finally, the heat kernel of the operator £ defined
on R, x R?" is deduced via an application of the inverse Bargmann transform. We illustrate
our method by obtaining the heat kernel of the Hermite operator on R™ as well as that of the
isotropic twisted Laplacian on R" (here n = 2N with N € N is arbitrary). Moreover, using
this approach together with the partial Fourier transformation we calculate the heat kernel of the
Grusin operator on R" ™! as well as that of the sub-Laplace operator on the (2N +1)-dimensional
Heisenberg group Hon41).

4.1 Introduction

Several attempts for expressing the heat kernel for the sub-Laplace operator Ay, on nilpotent
Lie groups appeared in many papers [24-27, 58, 59, 67, 85, 86, 110, 116, 148]. In [88],
B. Gaveau constructed the heat kernel for Ag,;, on free 2-step nilpotent Lie groups using the
complex Hamilton-Jacobi method (see also [25-27, 55]). By the left invariance of Ay, on a
nilpotent Lie group (M, *) the heat kernel k(¢, x, y) can be described by a smooth function k;(x)
on R, x M in the form k(t, x,y) = ki(y~' xx). The complex Hamilton-Jacobi method assumes
that the kernel k;(x) has a certain integral form which reflects the physical phenomena. More
precisely, the value of k;(z) at a point z and time ¢ is equal to the integral of the heat flowing
over a certain class of geodesics starting from the identity element of the group and arriving

at x at the time ¢. By solving a certain Hamiltonian system (c.f. Chapter 10 in [56]) the class

93
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of the geodesics is determined. Another method for calculating the heat kernel for A, on
free 2-step nilpotent Lie groups uses the symbolic calculus of pseudo-differential operators (c.f.
[115, 116]). This method is also applicable to strongly elliptic operators and some sub-elliptic
operators (c.f. Chapter 15 in [56]). The heat kernel of Ay, is usually given in an integral
form (c.f. Theorem 15.4.8 in [56]). In the case of connected and simply connected free 2-

n(n—1

step nilpotent Lie groups the integral runs over R"* ™ 2 * where n is the dimension of the Lie
algebra. Several other methods for calculating the kernel of Ay, are explained in [56].

The easiest example of a 2-step nilpotent Lie group is the (2N + 1)-dimensional Heisen-
berg group Hn41). In [110], A. Hulanicki was the first to give an explicit integral formula for
the heat kernel of the sub-Laplacian on Hx 1) using a probabilistic argument. The argument
involves some harmonic analysis techniques especially Mehler’s formula for the Hermite func-
tions (c.f. [84, 164]). In this chapter, we investigate the heat kernel for a class of elliptic and
sub-elliptic differential operators using Toeplitz operator theory techniques. Our method can be
used for finding the heat kernel of the sub-Laplacian on H, 1) butitis also applicable for other
differential operators (c.f. Examples 4.3.1, 4.3.2 and 4.3.3, Corollary 4.3.2 and Theorem 4.3.7)
with polynomial coefficients. However, it is still not clear how to characterize completely the
class of partial differential operators for which their heat kernel can be obtained by this method.
In fact, our approach is somewhat limited since it is heavily based on the symbol of the Toeplitz
operator associated to the differential operator via the Bargmann transform. The method we use
relies on the partial Fourier transform, Bargmann transform and on Berezin’s method for the
construction of the exponential of an essentially selfadjoint Toeplitz operator having a positive
symbol [29]. Let us explain these tools in more details.

Consider a partial differential operator £ on L*(R™*!) whose function coefficients are in-
dependent of the last variable. The partial Fourier transform with respect to the last variable is
used to eliminate this variable in the operator £. This transform in some of the examples is used
to reduce a sub-elliptic operator to an elliptic one (c.f. Chapter 5 in [56]). The problem is then
reduced to find the heat kernel of this elliptic operator having fewer variables. Under certain
conditions (c.f. Proposition 4.3.1) the heat kernel of the sub-elliptic operator can be obtained by
an application of the inverse partial Fourier transform to the heat kernel of the elliptic operator.

Suppose that the operator obtained by applying the partial Fourier transform on £ is a partial
differential operator with polynomial coefficients and let us denote it by £;. Via the Bargmann
transform £, is unitary equivalent to a Toeplitz operator T on H?(C™) where f is a polynomial
over C". The problem of finding the heat kernel of £; on L?*(R"™) is then transformed to a
similar problem of finding the ,heat kernel” of 7T on H 2(C”) (c.f. Definition 4.3.3 for the
notion of the ,,heat kernel” of Toeplitz operators). In fact, the heat kernel of £, on LQ(R”) can
be easily related to the heat kernel of 7' via an application of the inverse Bargmann transform.

There is no general method to calculate the ,,heat kernel” of the Toeplitz operator 7'y explic-
itly. However, in the case where f is positive and T} is selfadjoint the operator e~*'f exists for
all s > 0 and is given by Berezin’s formula (c.f. [29])

e = lim (T
N—oco €

DN, 4.1.1)
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where the above limit is understood in the strong sense. In this case the ,,heat kernel” of the
operator Ty on H?(C™) is obtained by a simple expression involving the exponential operator
e~*T7 and the reproducing kernel of the Segal-Bargmann space (c.f. Theorem 4.3.5). Therefore,
the main point is to compute the higher product of Toeplitz operators (Te_% )N where s > 0
and N € N. This product is in general expressed as a multiple integral over C™*V (c.f. [29])
and in some cases it can be reduced to a simple integral over C". In particular, if we consider
f(z) = zAZ, where z,Z € C" and I + A are positive definite Hermitian matrices for all
s > 0and N € N, then each product (7 _ ¢ )Y is simply a Toeplitz operator whose symbol

involves s and N. Moreover, using Eq. (4.1.1) the exponential operator e¢~*77

is also a Toeplitz
operator with an explicitly given symbol involving the time parameter s. In this case, the ,,heat
kernel” of the Toeplitz operator 7 is easily computed and via the inverse Bargmann transform
and the inverse partial Fourier transform the heat kernel of the partial differential operator £ on

L?*(R™1) is obtained.

In this chapter, we aim to give a proof of the above approach for calculating the heat kernel
of a class of elliptic and sub-elliptic partial differential operators . We illustrate the method
by calculating the heat kernel for the Hermite operator on R" and for the isotropic twisted
Laplacian on R" (here n = 2N with N € N is arbitrary). We also give an explicit integral
expression for the heat kernel of the Grusin operator on R"*! and the sub-Laplace operator on
Han1). We note that the exact form of these kernels have been known since some time but our

method works for other cases too.

Chapter 4 is organized as follows: In Section 4.2, we start by introducing a family of
Bargmann transforms {/3;};~¢ for which each (3; maps L*(R") isometrically onto H?(C").
The parameter ¢ > 0 is essential and will be used later to replace the variable which was
eliminated through the application of the partial Fourier transform to the operator £. Via the
Bargmann transform (3, we represent each suitable integral operator acting on the Schwartz
space S(R") C L?(R") by an integral operator on H?(C") and express its kernel in terms of
the Bargmann transform applied to the kernel of the initial operator. We then give an explicit

#Aw where (z,w) € C?" and A is a Hermitian

formula for the ,,inverse Bargmann transform” of e
matrix satisfying some conditions (c.f. Proposition 4.2.4). This calculation will be used later
to obtain the heat kernel of the sub-Laplacian from the ,,heat kernel” of the associated Toeplitz
operator obtained via the inverse Bargmann transform. We end the section by introducing the
(2N + 1)-dimensional Heisenberg group and the sub-Laplacian A, acting on it. In Section
4.3, we use the partial Fourier transform to reduce the problem of finding the heat kernel of
a partial differential operator to a simpler problem involving fewer variables. Berezin’s result
is then stated and is applied to Toeplitz operators with symbols of the above mentioned type.
The ,.heat kernels” of these Toeplitz operators are then calculated and the heat kernel of the
Hermite and the isotropic twisted Laplace operators are deduced. Finally, with the help of the
partial Fourier transformation we apply these techniques to the Grusin operator and to Ag,;, and

provide the explicit expression of their heat kernels.
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4.2 The Bargmann transform

In this section, we introduce a family of Bargmann transform {[3; };~ parametrized by the pa-
rameter ¢ > 0. Using Bargmann’s result [12], we show that each 3; maps L?*(R™) isometrically
onto H?(C™). For an integral operator D acting on a dense domain of H?(C") we find its
corresponding (via the push-forward under 3; 'Df3,) integral operator on L?(R"). We shall

zAw whenever A is a Hermitian matrix

also calculate the ,,inverse Bargmann transform” of e
satisfying some conditions. This result will be used in Section 4.3 to calculate the heat ker-
nel of a certain type of sub-elliptic operators. Finally, we introduce the sub-Laplacian on the
(2N + 1)-dimensional Heisenberg group.

Throughout this chapter and to simplify the notation used here we simply write (-, -) (re-
spectively dy) for the inner product (-, -) (1) (respectively for the Gaussian measure dyi(1)) on the
Segal-Bargmann space H*(C") := H3(C"). For a matrix A = (a;) € M,(C) with complex
entries we denote by A := (a;1,), AT := (ax;) € M, (C) the complex conjugate and the trans-
pose of A, respectively. Moreover, we write A* := A= (ag;) for the conjugate transpose of
A. For z,w € C™ we will sometimes denote by z - w the usual product zw = ) z;w,. For each
z € C" we write K,(u) := €** for the reproducing kernel K*)(u, z) at the point z and for a

fixed ¢ > 0 we put
2 72
P

For each ¢t > 0 one can check that the linear span of {®'},ccn is norm dense in L*(R"™) (c.f.

Ol (z) :=t7 (2m) "1 exp{taz — t*

Chapter 1 in [84]) and that for any 2z, u € C" the following equality holds:
<<Dl;, CD;‘/J,)LQ(]R") = <Kza Ku> = €u2. (421)
Let us now introduce the Bargmann transform on L?(R™).

Definition 4.2.1. For each fixed t > 0, the Bargmann transform of f € L*(R"™) denoted by (3, f
is the entire function defined on C" by:

Buf(2) = (f, ®L) p2ny = o f(x)®L(x)dx.

The Bargmann transform (3, 5 was first introduced by S. Bargmann in his paper [12] on the
structure of the Segal-Bargmann space. Bargmann proved that (3 5 maps L?(R™) isometrically
onto H?(C") (c.f. also [84]). However, for any s, > 0 on can easily check that

Bs = fioUs, (422

where U is the unitary operator defined on L*(R") by [U: f](z) := ()2 f(tz). This shows
that for a;1y t > 0 the Bargmann transform (3; maps LQ(R")sisometrically onto H?(C"). Using
Equation (4.2.2) together with Equation (2.11) in [12] for the inverse Bargmann transform 6\_/%
one can easily calculate 3, L for all t > 0. In the next theorem, we summarize the above facts

and give the explicit expression for the inverse Bargmann transform 3; *.
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Theorem 4.2.1. For each t > 0 the Bargmann transform [3; is an isometry from L*(R™) onto

H?(C") and the inverse Bargmann transform is given by:
[B71F)(z) = / F(2)®' (z)du(z) forall F € H*(C"). (4.2.3)

Denote by S(R™) C L?*(R") the Schwartz space over R™. In the following we characterize
the entire functions over C" which are in the range of the Bargmann transform (3; [S (R”)] .

Proposition 4.2.1. Ler f(2) =), enp co2” be an entire function over C". Then for everyt > 0

we have

fepn [S(]R”)} <= forevery M > 0, sup (|ca| Ha?/[\/aj!> < 00. (4.2.4)

a€eNg j=1

Moreover, the space [3; [S (R”)} is invariant under the change of variable = —— Pz for any

unitary matrix P.

Proof. We refer the reader to Chapter 4 in [139] for the case t = 1/2. Now for any s, > 0 it
is easy to see that the operator U. is bijective on S(R™). Using (4.2.2) we obtain (3, [S(R")] =
Bs[S(R™)]. This shows that (4.2.4) holds true for all ¢ > 0. O

Remark 4.2.1. The above proposition shows that if f € 3,[S(R™)] then 23 f(z) € ,[S(R™)]
forall j = 1,---  n. Hence by the reproducing kernel property of H*(C") the following esti-
mate holds true

n

FEITIO+ 5P = [T+ w). k)

j=1

> 2
e (4.2.5)
H2((Cn)

< Hff[(lerf.)

Via the push-forward under 3; each operator D on H?(C") corresponds to the operator
B; DB, on L?(R™). The next proposition exhibit the push-forward under 3, of a family of
integral operators acting on 3; [S(R")] € H?*(C").

Proposition 4.2.2. Let (A,) >0 be a family of integral operators acting on 3, [S(R™)]. For each
s > 0 we write K (s, z,W) for the integral kernel of A, i.e.

(AsF)(2) = . K(s,z,0)F(w)du(w), forall F € p;[SR")].

Let (x,y), (z,w) denote the coordinates in R™ x R", C" x C" respectively. For a fixed t > 0
we write 3 5., and By .., for the Bargmann transform on LQ(R”) w.r.t the variables x and y

respectively. Assume that K (0, z,w) = e*¥ and for each s > 0 we have
1. K(s,2,W) € Bra- [S(R”)}, forall w e C",

2. [Bra_.K(s,z,w)|(x) € H*(CL) forall z€R"
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Furthermore, we suppose that for each x € R" there is a constant C,, depending on x such that

J.

Then for each s > 0 the corresponding operator (3; " A,B3; on S(R") is an integral operator

w\Q

! (7)K (s, z,@)‘du(z) <Cpe 2, forall s>0,weC" (4.2.6)

given by:
57 AB S () = / k(s,2,9)f (4)dy,

n
where

K5, 2.) = B | B [K (5, 2,0)] (2)] (1), 2.7)

Moreover, for each x € R™ we have

tim [ k(s,2.0)f()dy =[5 ABf) (@) = f(2). forall feSEY).  @428)

s—0 R™

Proof. Let f € S(R™) and fix ¢t > 0. For each s > 0 we have

A, [ﬁtf} (2) = K(s,z,w) [ﬂtﬂ (w)dp(w).

Cn

Hence for each =z € R™ we can write

87 AL f] () = / & (2) A, [uf] (2)du(2)

n

- [ 2@

Equations (4.2.5) and (4.2.6) allow us to apply Fubini theorem to the above integral. Indeed,

[ i) [ /.

Cnr

K(s,z,0)[0,f] (w)d,u(w)] du(z).

Jow)?

| w)|e s dutw)

@i(a:)K(s,z,w)\du(z)] dp(w) < C

AT+, o7 [ TL O ) o) <
J=1 J=1

(4.2.9)

This shows that
[ﬁt_lAsﬁtf] (x) = / [ﬁtﬂ (w) [ K(s,z,@)@i(m)du(z)] dp(w)
cn cn

= [ 1)) [ K (5.0 )t
FO)8 0 [ B L [K (s, 0)] (0)| () dy.

Rn

Equation (4.2.8) follows from (4.2.9) by an application of the Lebesgue dominated convergence
theorem together with the fact that K (0, z,w) = e*¥. O
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Remark 4.2.2. With the notation used in the above proposition we remark that if f(z,y) €

L*(R" x R™) and 3 2, denotes the 2n-dimensional Bargmann transform (i.e. on L*(R?*") then

(Bt 2n f1(2, w) = /

R7 xR™

- / (y) 5 fx, y)®L(z)dady = / L (y) [Bra—ef (2, )] (2)dy

n

= Oraos | Bra—z [F(@,9)] (2)] (0) = Brar—o | Brg [ @) ()] (2)

£ ()t o (2, y)dady = / £, )@ (2) B () derdly

R7 xR"™

In the above equality we applied Fubini’s theorem using the fact that (IJ’EE @) (z,y) € L*(R*™).
Hence for any function F € H*(C?") we have

(B8 F ()] (0,9) = [k (8P 0)] )] (@) = (B [8 (2 w0)] (@) W)

Using this observation together with above proposition one can easily show that if T' is an
integral operator on L*(R™) with a kernel k(x,y) € L*(R®") then the corresponding operator
BT 3t on H?(C™) is an integral operator given by:

BTBF(E) = | K m P (),

where K is the (2n-dimensional) Bargmann transform of k (c.f. Chapter 1 in [84] for the case

t=+2).

Foreachi € {1,--- ,n} let ; (respectively a%) be the operators of multiplication (respec-

tively differentiation) with respect to the i-th coordinate of R". Under the Bargmann transform
0 these differential operators correspond to the following Toeplitz operators densely defined

on H*(C"):

1
Ti < PREEE (4.2.10)
0 t
1=, 4.2.11
81‘2' — 2 1 [ ( )
or equivalently
t 10
Ty — sxi— S5 4.2.12
t 10
Tz, ST+ 7 . 4.2.13
1“—ﬁ'2$ +>t0xi ( )

We only prove (4.2.13). Let Cg°(R™) denotes the space of all smooth functions with compact
support in R”. Then for any f € C§{°(R") we have
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Bilgni+ 1)) = [ Gt a0 )8t e)ds

— [ ms@ete)ds - [ (i G fe)e )
= /n(zfasZ — 2;)®L(x) f(x)dx = 821- /Rn OL(x) f(z)dx

0
(922-

16ef1(2) = [Tz:8:f1(2)-

In the following we aim to calculate

B [ (@) (0), (42.14)

where A € M, (C) is a Hermitian such that AA = AA,||AA|| < 1 and the matrix (Id +
AA)(Id — AA)~! is positive definite. The reason for this calculation is motivated by the fol-
lowing observation: let N € N be fixed and put n = 2N. If L is the operator defined on
L?*(R™) obtained by applying the partial Fourier transform to the sub-Laplacian on the (2N +1)-
dimensional Heisenberg group then the ,,heat kernel” of its corresponding Toeplitz on H?(C")
(c.f. Definition 4.3.3) is of the form e*4® where (z,w) € C" x C" and A has the previously
mentioned properties. Hence by Proposition 4.2.2 we get the heat kernel of £ by (4.2.14). The
next proposition is essential in calculating (4.2.14) and its proof is given in Appendix A.3.

Proposition 4.2.3. Let E € M, (C) be a Hermitian n x n complex matrix such that | E| < 3.
Denote by F the real matrix F := E + E and assume that (Id — F)(Id + F)~! is positive
definite. We write (3, X for the n-dimensional inverse Bargmann transform on H*(C"). Then

for fixed vector u € C™ we have

2

ﬁ;;_,z exp{u-z+zEz}(z) = cexp {u(IaH— F) 'ter — %m([d— FY(Id+ F)_lzv}, (4.2.15)

where c is the constant given by:

5 (o)t det(Id — F)(Id + F)~'\1
e=them det(Id — 4EE) )

1 — _ _ _
X exp 5{uE(Id — AEE) ‘u+u(Ild — AEE) ‘u+uE(Id — AEE)a ~ (#216)

—w(Id+ F)"'(Id — F)"'u — u(Id — F)~'(Id + F)—lu}.
The next proposition gives the explicit expression of (4.2.14).

Proposition 4.2.4. Denote by (z,y), (z,w) the coordinates in R™ x R™, C" x C" respectively.
Let A € M,(C) be a Hermitian matrix and write F := —AA. Suppose that AA = AA,
|AA|| < 1 and the matrix (Id — F)(Id + F)~! is positive definite then
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e [ 0)] @) = | B (@) )
—t"(271) "2 \/det(Id + F)~!

X exp{_T{y(Id—i—F)_l([d— Fy

v(Id+ F)'(Id — F)z} + y(Id + F)*le}.

4.2.17)
Proof. Using Equation (4.2.1) we obtain:
Bt e )| () = |8 [0 w)] | (@)
= #3(2m) 8¢ [ expltyATz — (T A)(AT))] (@)
= t2(21) e T [ﬁ;x:z exp{t(Ay) -z — 2142—142}}( ). (4.2.18)

Applying Equations (4.2.15) and (4.2.16) for u = tAy, E = E = —ATZ and F = —AA we get:

T 2
Bra_.exp{tyAz — z%z}] (z) = cexp{t*y(Id + F) ' Az — tzx(]d + F)"Y(Id — F)z},
(4.2.19)
where
det(ld — F)(Id + )
det(Id — 4EE)

{uF(Jd _4EE) W +u(ld — AEE) "W’ + uB(Id — AEE) 'u

N

c=t>(2m)"1( (4.2.20)

X exp

N —

—w(Id+ F)Y(Id - F)" " — u(Id — F) (Id+F)—1u*}

2

—t3 (2m) "% /det(Id + F)~L exp Tt{ (Id — AZAY)" L (24%A° + 2ZA)y}. 42.21)

Substituting (4.2.19) and (4.2.20) into (4.2.18) we then obtain:

B[] )| (@)

n —t2 — — _ —
= t"(2m) 5 /det(Id + F) Lexp {T{y(fd — AZAY) (24" + 244 + [d — ARy}

t2
+ 2y(ld+ F) ™ Av — —o(ld + F)~(Id - F)w}

= t"(27) "2 +/det(Id + F)~exp {_Ttg{y(ld + F)"'(Id— F)y

—a(Id+ F)'(Id — F)z} + y(Id + F)*le}.
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Using a similar calculation together with the fact that y(Id + F)~' Az = yA(Id + F)'x for
all (z,y) € R™ x R™ one can show that

i Bk @) )
is also given by (4.2.17). ]

Remark 4.2.3. Let A € M, (C) be a Hermitian matrix and denote by p(A) > 0 its spectral
radius. Then the function e*** € H?(C**) ifand only if p(A) < 1. Indeed, since A is Hermitian

there is a unitary matrix P such that
A=PD(\,--- , \) P71,

where D(\y, -+, \,) is the diagonal matrix whose entries \; are the eigenvalues of A (\; are
real). Since the Segal-Bargmann space is invariant under a unitary transformation of coordi-
nates it follows that e € H?*(C?") if and only if eX=*%"% € H?(C>) (here we used the
transformation (z,w) — (Pz, Pw)). This is equivalent to say that for eachj = 1,--- | n

M =y N ijj € HY(C?) <= ) |\ < oo || < L.
a€eNp a€Ng
Hence by Remark 4.2.2 it follows that if A € M, (C) is such that p(A) < 1 and satisfies

the conditions in the above proposition then the 2n-dimensional inverse Bargmann transform
Brane* € L*(R®™) exists and is given by (4.2.17).

The next example is an application of Proposition 4.2.2 for a certain class of integral opera-
tors. This example will be essential for obtaining the heat kernel of a class of elliptic operators

from the ,,heat kernel” of their corresponding Toeplitz operators (c.f. Corollary 4.3.2).

Example 4.2.1. Let A € M, (C) be a positive semidefinite matrix such that (A + A) is pos-
itive definite and AA = AA. We consider a family (T,)s>0 of integral operators acting on
Bi[S(R™)] C H?(C") defined by

(T F)(z) := /n e "UF(w)dp(w), forall F € B, [S(R™)].

Then for each fixed couple s,t > 0 the corresponding operator 3; *T,3, on S(R") is an integral

operator given by:

5T )(e) = [ Koo fw)d,
where k(s,x,y) is given by an application of (4.2.17) to the matrix e~*. Moreover, for each
x € R™ we have

lim [ k(s,z,y)f(y)dy = [B; ' Tobuf](x) = f(x), forall [eSR").

s—0 R7

Indeed, this is an application of Proposition 4.2.2 to the operators defined by the kernels

K(s,z,w) = gze W together with another application of Proposition 4.2.4 to the matrix e~**.
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First we check condition (4.2.6) in Proposition 4.2.2. Since (A + A) is positive definite we

obtain the following estimate

N

222
t4

|0 (x)e* " ldp(z) =t? (2m) e
(cn

1 —
X / exp {5 (taZ + twz — Rez? + ze *4w + ze*4w) }du(2)

2

<c, / ol M) 5 (e AT 5 o~ gy, ()

=(2m)"C, exp {%(e—&“w tx) - (e Mw +t)} < 0;6#7

where C,. and C' are constants depending on x. It remains to check the conditions in Propo-
sition 4.2.4 for the matrix e=**. In fact, since A and A commute it follows that e *4e=%4 =

e AT Moreover, since (A + A) is positive definite we have ||e 4| < 1 and (Id —

e~s(A+A) s positive definite.

At the end of this section we introduce the sub-Laplacian on the (2N +1)-dimension Heisen-
berg group.

For a fixed N € N, let Hoy41) = R2Y x R then H(2n+1) becomes a non-commutative Lie
group when equipped with the product o : R2V+1 x R2V+1 __, R2N+1 gjven by the formula:

N

(I7u) © (yaa> = (‘T + y,u +u+ Z(xij-&-j - :L‘N—&-jyj))a
=1
where (z,u) = (z1,- -+, Tan,u), (Y, @) = (Y1, ,Yan, @) € RZVFL This Lie group is called

the (2N + 1)-dimensional Heisenberg group. If we denote by hon 1 the corresponding Lie

algebra of left invariant vector fields on H,n 1) then a basis for han 1 s given by

0 0 0 0 0
X =—— —, Xuyn=_-—" — dU = — here/ =1,--- ,N.
: oz, TN Gy N Ox N + o ou an ou where o
An easy computation shows that the above vector fields obey the relations [X;, X;, y] = 2U

and [X;,U] = [Xyyn,U] = 0 turning Hoy 1) into a 2-step nilpotent Lie group [174]. The
vector fields X; and X, y are called the Heisenberg vector fields and the sub-elliptic operator
(c.f. [107])

N
Aap = =5 Y (X7 + X7 y) (4.2.22)

=1

N | —

is called the sub-Laplacian or the Heisenberg sub-Laplacian on H;x ). For more details on
the analysis of the sub-Laplacian on the Heisenberg group we refere the reader to the book of
S. Thangavelu ([165]).

4.3 Heat kernel by Toeplitz operator theory techniques

In this section, we give a new method for calculating the heat kernel of a certain type of subel-

liptic positive essentially selfadjoint differential operators by using Toeplitz operator theory
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techniques. Our approach relies on transforming (via the Bargmann transform) a differential
operator with polynomial coefficients into a Toeplitz operator with a polynomial symbol acting
on the Segal-Bargmann space. For suitable symbols, we are able to obtain the ,,heat kernel” of
the Toeplitz operator using Berezin’s result on the exponential of a selfadjoint Toeplitz operator.
The heat kernel of the differential operator is then obtained explicitly via an application of the
inverse Bargmann transform to the ,,heat kernel” of the corresponding Toeplitz operator. As an
application, we determine the heat kernel of the Hermite operator on R™ as well as that of the
isotropic twisted Laplacian on R" (here n = 2N with N € N is arbitrary). We use the Fourier
transform method to reduce the problem of finding the heat kernel of a certain family of sub-
elliptic operators to a family of elliptic operators depending on a smaller number of variables
and then apply the above mentioned technique. As a consequence, we obtain an explicit integral
formula for the heat kernel of the Grusin operator on R"*! as well as that of the sub-Laplace
operator on Hx,1). We shall start by recalling some basic definitions and introducing the

method of Fourier transform.

Definition 4.3.1. Let L be a differential operator defined on R™ then the operator
)

P:&—i‘ﬁ

defined on C*°(R x R") is called the heat operator with respect to L on R™.
Definition 4.3.2. A fundamental solution K (t,z,y) € C*°(R; x R™ x R") of the operator P

(in case of existence) is called the heat kernel i.e. it satisfies the heat equation:

P(K(t,-.y)) =0, vVt >0,y € R™;
limy o K(t,z,) = 6,, VzeR",

where 0., is the Dirac distribution and the above limit is considered in the distributional sense
ie.

lim | K(t,z,y)f(y)dy = f(x)  forall f € Cg°(R").

t10 Jgn

Let us explain now the method of the Fourier transform. Denote by (z,u) € R™ x R the
coordinates on R™"!. We are interested in second order differential operators with coefficient
that are independent of the u-variable. Consider the partial Fourier transformation in the u-
variable F, : L*(R"*1) — L?(R™"!) given by

(Fuf)(@, ) = \/%/Rf(x,u)ewgdu, for any f € L*(R").

The importance of the partial Fourier transform in reducing the problem of obtaining the heat

kernel for some differential operators is given in the following proposition.

Proposition 4.3.1. Let L be a differential operator acting on the Schwartz space S(R™™') and
having the following form:

n 82 n 82 ) 82 P 82
- 02 ' —+ = 43.1
L ;{&kax%+;bk’]a$kaxj+Ckaxk+dkaxk8u}+e —|—fau2, 4.3.1)

where ay, by, j, c, di, e, f are (smooth) functions of v € R™. Then the following holds:
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1. Applying the inverse Fourier transformation on S(R"™') we get:

,Cgiz:lruﬁ./f_l

U

:Z{“ 3_2+Zb .8—2—1—(0 —l—igd)i}—i—i{e—fﬁQ (4.3.2)

2. For each £ € R assume that the heat kernel of the operator L¢ on R"™ exists and denote
it by K¢(t, z, ). Suppose that for every t > 0 the function K(t,z,%,§) == K¢(t,x,2) €
C>®(R? x R? x R¢) such that K (t,x, &,-) € L*(R) and satisfies the following conditions

(i) For each fixed pair (t,%), multi-index o € Ny with |a| € {1,2} and each j =

1,--- ,n there are integrable functions go,q1 and g on R such that

olel
or®
§‘a|K(t,SU,§7,f)‘ < qi(¢) € L*(R), and

K(t,2,,6)| < o(€) € L'(R),

5%1((@:6,5:,5)( < g2(&) € LY(R), forall z € R™.

J

(ii) For each fixed triple (to, x, &) there exist a positive number € < tq and an integrable

function g3 depending on € such that

0

EK(t,x,i,g)\ < g3(€) € L'(R), forall t€[ty—eto+e.

(iii) For every fixed x € R™ and each function h € S(R"*1) there is a function g €
LY(R) depending on x and h only such that

‘ Kg(t,x,i)h(i,g)di’ < g(€) forallt>0.
R”
Then the heat kernel of the operator L on R" ! is given by:

1 ) -
K(t,z,u, &) = — / ST It &) dE. (4.3.3)
R

2

Proof. 1. Eq. (4.3.2) follows from the following well known identities on S(R™ ")

8l
oul

D). 8) = () Fuchl,€), and Fue(5h)(0,6) = 5 (Furch)(5,6)

fuﬁg ( ax'y
4.3.4)

forall h € S(R"™!), I € Ny and all multi-indices v € NJ.

2. As for the second assertion we have:
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(a) The conditions (i) and (ii) on the heat kernel K¢(¢,z, ) stated above allows us to
use the Lebesgue theorem and apply the operator (% + L) under the integral sign as
follows

9 OKe(t, 2, 7)
—1) E\by Ly
(5 +£)/ ~0) [, (t, , )dE = / s
/Eezfu a Kg(t x, F dg / €(u—a aKf(;tx x>d€
N 0? 0? 0
i§(u—1)
+/6 (Z a 2+Zbk38 k@x +Ck8Ik>K§( )df
82 0 NP
Y -~ L ig(u—a) ~
+/{;dk8uaxk +eon +fW}e Ke(t, =, 2)d¢

i (O
_ [ i) _
/e (5 + £e) Kelt, 2, 7)dg = 0.

(b) First let us note that for any h € C°(R™*!) and any fixed (z,£) € R" x R we have

ltif? . Ke(t,x, %) (Fuoeh)(Z,€)dT = (Fueh)(x, ) forall h € C5°(R"1).
(4.3.5)

The above equation holds true since (F,_¢h)(Z,&) € C5°(R™). Now let (z,u) €

R™ x R be fixed. Using (ii1) and by the Lebesgue dominated convergence theorem

we can write

lim h(Z, ) / SV (t, 2, 7)dEdTdi
R

th Rn+1

=lim | h(Z,a)e “"di - e““K(t, v, ¥)dEdT

t]0
= 1}%1\/% / e / Ke(t, 2, %) (Fuch)(7,€)dTdé

Vi / ¢ (Feh) (2, €)dE = (2m)h(z, u).
O

Let A = (a;z) € M,(C) be an x n positive semidefinite matrix such that (A+ A) is positive
definite and AA = AA (here A is the complex conjugate of A4, i.e. A = (aj;) € M,(C)). We
consider the following differential operator on R™*!

2, 02 0 02
Li==) a (@ 75 Ou 2) —2Re) KL G2 s=2m | a (x’“a ou &mﬁu)
J

>k >k

— 2R : 4.3.
e> aj o~ ax] (4.3.6)

>k

It turns out that the above operator is subelliptic positive and essentially selfadjoint as an
operator on the Schwartz space S(R"™!) (c.f. Theorems 4.3.1 and 4.3.7). Our goal is to give
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an explicit integral formula for the heat kernel of this operator under certain conditions. As an
application, we obtain the heat kernel of the Grusin and sub-Laplace operators.

In his famous paper [107], L. Hérmander proved that if {X7,--- , X,,,} are first order real
vector fields over R™ with smooth coefficients such that the Lie algebra generated by these
vector fields generates the tangent space of R™ in each point then the operator £/ = Z;n:l X ]2
satisfies a classical subelliptic estimate. This generating condition on the vector fields is usually
known as the ,,bracket generating condition” or ,,Hormander condition for hypo-ellipticity”
(recall that every sub-elliptic operator is hypoelliptic [73]). The next theorem shows that the
operator (4.3.6) is written as the sum of squares of first order real vector fields that satisfy the

bracket generating condition and hence ensure the sub-ellipticity of the operator L.

Theorem 4.3.1. Let A € M, (C) be a n x n positive semidefinite matrix such that (A + A) is
positive definite. Consider the differential operator L on R""* defined by

2, 7 o >
== gz +aiga) - e ) apasiyz=2m ) aj (90~ )

82
—2Re Y ajia, 43.7
© , ik 01,0z ( )
>k
where (x,u) = (x1, - ,xp,u) € R" X R. Then L is a sub-elliptic, symmetric and positive

operator on the Schwartz space S(R™1).

Proof. We start by expressing —L as a sum of squares of real valued vector fields. We then
investigate the bracket generating condition for the sub-ellipticity condition of the operator.

Since A is Hermitian it is easy to check that (4.3.7) can be written in the following form

82 82 82 . 62 82
== Yoz + shiga) = Dot~ Lo~ )

J

S oz
— =
= O0x0x;
For each j = 1,--- ,n consider the complex valued vector field Z; := ax + o au and put
Z = (Zl, ceey Zn). Denote by Z* the conjugate transpose of the row matrix Z then
JAZ* = Z aijjZ + Z aijjZ
J#k
Z ( 0? e 0? 0 i 0? , 0? )
= (= +2=——1i— e e
Prox T our Ou T dx;0u T Ox;0u
0? , 0? 0? 0?
2 Gy T gy g T i g T i)

Which shows that
(4.3.8)
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We use the above equation together with the fact that A is positive semidefinite to write —L
as a sum of squares of real valued vector fields. Since A is positive semidefinite there exists a
unique Hermitian positive semidefinite matrix C' = (c;;) such that A = C? (c.f. Theorem 7.2.6
in [109]). Let us write C' = o + i3 where o = (avj;,) (respectively 5 = (3;x)) denotes the real
symmetric (respectively antisymmetric) part of C'. According to (4.3.8) we can write

L+ itr(A)% = —ZAZ* = —ZCC*Z* = —ZC(ZC)* = = (ZO)W(ZC).  (43.9)
k

We calculate each candidate (ZC'),(ZC)y, explicitly

0 9, 0 8 0 0
(ZC) = Z(O‘Jk+7ﬁ]k)( ‘H%a ) = Z(%k ng%a +i Z Xk g, "’ﬁykax ).
J J
Therefore
— 0 6 0 0
(ZOWTZ0N = Yl — Buvig, )i (et + gy el

F
9 8 . 0 o

* [Z(O‘J’“a — Brim) ZZ(O‘M%‘% +ﬁjk%)]

J j J

:[Z(ajk 0 — Bk Jaa )r + [Z(Oéjkxj% +ﬁjkaixj)}2

j j
. 0 0 0 0
+ Z(%’k%’% + ﬁjk%)mlka_xl - 511{561%)
- j
0

0 0
— ZZ oz]k @kl‘]a )(alkxla + @ka )-

4]

The imaginary part in the above equation reduces to —akka%. Indeed, it is easy to see that

0 0 0 0
;(%k%‘% + ﬁjk%)(alka_xl - @km%)
0 0
= Z alk_ - @kfﬁz )(ajkl‘j— + Bik=—)
T ou Ox;
0 0 0 0
= ;(a]kax] BikT;=— u )(Oéucﬂfza + Bk 8351)

Hence the imaginary part reduces to

0 0 0

0
Z(%kx]a + @k )(ajka — Bk i 9u =)

J

0 0 0 0
_Z<aﬂ€a — Bk I ou )y Ja +ﬂjka%)

0 0
=Y (-85 - %210% == lewl’ = ~kk

J J

L
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By using (4.3.9) together with the above calculations we obtain

n

0 ANE: 0 0 .12
L= —Z[Z(%k — By )} + [Z(%kl‘j% +3jk3—%)] :
k=1 J J
For each k = 1,--- | n consider the real vector fields
0 0 0 0
Xk = ;(ajka_% — ﬂjkxj%) and Yk = ;(Oéjkl’j% + 6jka_.1’])
It is clear that for each k = 1,--- ,n we have X; = —X}, and Y, = —Y}, where X and Y}

denote the formal adjoint of X and Y}, respectively. This shows that the operator

L=-% (X,f + Y,f) =S (XkX,: + mq:)
k=1 k=1
is symmetric and positive. Next, we show that for any fixed integer p € {1,--- ,n} the linear
combinations of elements in { Xy, - -+ , X,,, Y1, , Y, [X,, Y,]} span the tangent space of R"**
at each point. Fix a point (zg,ug) = (21, ,Zp,up) € R™ and an integer p € {1,--- ,n}.

Denote by

S = Span{Xl\ 7Xn|(xo,u0) le|(xg ug)y " 7Yn|(x0,u0) [Xpa YZ’7]|(z0,u0)}

(zoyuo)s "

the linear span of the above vector fields at the point (¢, ug). It follows that

0 0 4 g
X, Y;}]quo) = ; [osza — BipTjo— 90 Oélpivza + B axl} ’(xmuo)
9 9 9 g
= Z [osz% - ﬁjplz'j%, Oéjpxj% + ﬂjpa_xj} ’(Imuo)

0
_ 2
Z @p T ”’ 3U\ Z| il 81” app%mo

Since A + A is positive definite this shows that -2

Buluy € S and thus for any £k = 1,--- | n the

vector fields

9 0
L ikLj = '
Xk T Xk|(w0ﬂt0) + Zﬁjkx] au\uo B Za]kaxﬂ 0
J J :

and

0 0
Vi = Yijomu) — Z%’k%‘@l . = Zﬁjk%
j “ j I Jwo

are elements of S. It is sufficient to prove that the vector fields { X7, - - - ,X{l, Y{,--+,Y!} span
the tangent space of R" at x,. It is clear that the matrix of {X1,---, X/} (respectively of
- d:r:n| } is « (respectively [3). Note that the
real part of the matrix A denoted by Re(A) and given by Re(A) = L(A+ A) = o® — f*is

positive definite hence it is nonsingular. Therefore, for any x € R" there exists v, w € R™ such

{Y{,---,Y'}) in the canonical basis {%IHCo’
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that v € Ima and w € Im 3 with x = v 4+ w. This shows that Im« + Im § = R" which
means that there are n linearly independent column vectors formed by the matrices « and 3. It
follows that there are n linearly independent vectors in { X7, -+, X/, Y/ --- Y} ensuring the
sub-ellipticity of £ [l

Remark 4.3.1. With the notation (z,u,n,0) = (x4, , Tp, U, N1, M, 0) € R x R
we write p(x,u,n,0) for the principle symbol of the operator L given by (4.3.7). Using (4.3.8)

it is easy to see that p(x,u,n, 0) is given by the matrix product

p(xv u, 1, 0) = _((771 + ixle)u Ty (nn + ZIne))A((nl - ixle)a Ty (nn - ane))T
= —X"TAX.

Recall that the characteristic set of L is defined to be the subset of R" x R"1\0 where the
principle symbol p(x,u,n,0) vanishes. Assume that p(x,u,n,0) = 0 = XTAX with X € C™.
Since A is positive semidefinite there exists a positive semidefinite matrix C' such that A = C?

hence
p(r,u,m,0) = XTAX = (CTX)T(CTX) = [|CTX|? =0 <= X € ker C".

Therefore the characteristic set of L is the kernel of the matrix CT. In particular, the linear
space

{(0,---,0,u,0,---,0,0) | u,0 € R}

is in the characteristic set of L. This shows that the operator L is not elliptic in u. Moreover,
L is said to be of principle type if the gradient of the principle symbol (w.r.t. to (n,0)) does not
vanish on the characteristic set of L (c.f. Section 1 in [73] and Section 2.3 in [147]). These
types of differential operators are important for the local solvability of differential equations

(see for example [108]). In our case the operator L is also not of principle type. Indeed, direct

computation shows that for eachl = 1,--- ,n we have

op(xz,u,n,0 _ .

% = —2aym + Z [am(—nk +ixpl) — ap(—m — w"k:@)]

m o
and 5
0
—p(f,aueﬂ?, ) = —20(zAx).
Hence for any u € R we have p(0,u, 0,0) = 0 and 22219 — p(zun) = 0 for
y pY,u, U, an 1(0,1,0,0) o0 1(0,u,0,0)

alll=1,--- n.

From now on £ will denote the operator defined in the above theorem satisfying the condi-
tions there.
Since L is of the form (4.3.1) let us conjugate £ w.r.t. the partial Fourier transform in the

u-variable in order to eliminate the variable u. By (4.3.2) it follows that for every £ € R the
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operator L¢ := }—“E}—“il@ is given by:

0? 0? , 0 0

>k
+ 52(2 ajjx? + 2Re Z ajkT;Ty)

i>k
5?2 d d
= a;(¢a - )t > aj(So + 8—$k)(§xj —5.) (4.3.10)
I gk J

Let £ # 0 be fixed and put t = m . Since L; is a partial differential operator with polyno-
mial coefficients on L?(R") it follows that via the Bargmann transform 3,L¢; ' is a Toeplitz
operator with polynomial symbol acting on H?(C"). In order to calculate the exact symbol of
the corresponding Toeplitz operator we need the following composition formula for the product

of Toeplitz operators with polynomial symbols [63] (see also [14]).

Theorem 4.3.2. [63] Let f an g be two polynomials on C". Then the operator product TT, is

well defined on the dense domain
span{p(z)e** | a € C" and p is a holomorphic polynomial on C"}.

Moreover, on this domain the following composition formula holds

TiT, = Ty, 4.3.11)
where ffig is the polynomial given by
(=1)hl ghl ohl
f19() = 3 i GRNEGHE). (43.12)

YENG
Using the above theorem together with Equations (4.2.10) and (4.2.11) we obtain the corre-
sponding Toeplitz operator of L via the Bargmann transform 3 N

Proposition 4.3.2. Let & # 0 be fixed and put t = +/2|¢| then 3,L¢f3; " is the Toeplitz operator
on H?(C") given by
Bilefyt = 2/€|Teaz — I€[tr(A). (4.3.13)

Proof. By Equations (4.2.10), (4.2.11) and (4.3.11) we obtain

1. Foreach 7 =1,--- ,n the following correspondence holds
92 £2 2
2,2
(5 T — 0_xj2) <—>t—2sz+2szj+Ej - Zsz—ijzj—zj
= @[T 3 sy — 1.3 =]
= o L (EtE)N(+E) (2j=Z;)t(2—%;)
iq

?[T(Zj‘i‘gj)Q*l - T(ijgj)Q‘i’l] = 2|£‘TZ]|27% (4.3.14)
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2. For each j # k we have

(§rg + aixk)(f%‘ - aixj) <—>§[Tzk+zk + Tz [Tejrz; — T35
= 20¢| Tz, = 20€| Tz, (4.3.15)
Substituting (4.3.14) and (4.3.15) into (4.3.10) we get
BiLeBt = 2[¢] [ZajjT\sz—% + ZajszkEj] = 2[¢|[Thnz — %tr(A)]-
J#k
]

Let us now introduce the notion of the heat kernel of a Toeplitz operator.

Definition 4.3.3. For a measurable function ® on C" denote by D(Ty) C H?(C") the maximal
domain of the Toeplitz operator Te. Assume that there is a function K (s,z,w) defined on
R, x C" x C" such that K(0, z,w) = e** and K(s,-,w) € D(Tg) forall s > 0,w € C™

Moreover, suppose that

(%+T¢)K(s,-,w) =0 forall s>0,weC"

Then the function K is called the heat kernel of the Toeplitz operator Ts.

In the following, we aim to calculate the ,,heat kernel” of the essentially selfadjoint semi-
bounded operator 3;L¢/3; ' given by (4.3.13) on the Segal-Bargmann space H?(C"). The main
point is obviously to calculate the ,heat kernel” of the Toeplitz operator T, > on H?(C").
For this reason, we introduce Berezin’s result on the exponential of an essentially selfadjoint

Toeplitz operators with positive symbols.

Theorem 4.3.3. [29] Let f be a positive function a.e. on C" and suppose that the Toeplitz
operator Ty is essentially selfadjoint on a dense subset of H*(C™) then for any s > 0 we have:

e = lim (T 4,)", (4.3.16)

N—o0

where the limit is in the strong sense.

The above theorem expresses the kernel of the exponential of the Toeplitz operator (—sT)
as the limit of a multiple integral over C"" obtained by the higher product of Toeplitz operators
(Te,% 7)™V, However, in some cases this multiple integral can be reduced to an integral over C".
For example, this holds true if the higher products (7 - 4 ,)" are also Toeplitz operators. Now
let us apply the above theorem to the case f(z) = zAZ.

In order to show that the Toeplitz operator 7, 45 is essentially selfadjoint we recall the notion
of a t-radially symmetric function which was first introduced by E. Fischer in [82].

Lett = (t1,--- ,t,) € R’. A measurable function ¢ on C" is said to be ¢-radially symmet-

ric if for each 8 € R we have

(™02, e"02,) = p(z), ae . z=(z, 2, €C"
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The next theorem shows the essentially selfadjointness of Toeplitz operators with t-radially
symmetric real valued symbols. This theorem is a consequence of Theorem 4.1 and Proposition
5.2in [118].

Theorem 4.3.4. [118] Let ¢ : C* — R be a t-radially symmetric function and suppose that
the space of the holomorphic polynomials IP[z] is contained in D(T,). Denote by T, |p the
restriction of the Toeplitz operator T, to P[z]. Then the closure (T, |p)~ is selfadjoint and

consequently T, is essentially selfadjoint as an operator on P[z] C H?(C").

Note that the matrix A is positive semidefinite i.e. zAZ > 0. Moreover, it is obvious that
the function f(z) := zAZ satisfies f(e?’z) = f(z) for all z € C" showing that f is (1,--- ,1)-
radially symmetric. Therefore, by the above theorem we know that 7T, 45 is essentially self-
adjoint as an operator on P[z] C H?(C"). This shows that Equation (4.3.16) holds true for
f(z) := zAZ. Moreover, by calculating the higher products (T -4 )N for all N € N we prove
that the operator e~*7:4% is also a Toeplitz operator on H?(C™). In the next theorem, we obtain
a composition formula (7.-5=)" whenever Id — B is a positive definite Hermitian matrix. We
then apply the result to the case B = — A proving that (T 4 ,)"
H?(C").

is a Toeplitz operator on

Proposition 4.3.3. Let B € M, (C) be a n x n matrix such that Id — B is a positive definite

Hermitian matrix. Then for any N € N the product (T,.52)" is well defined on the dense

domain
D = span{p(z)eza | a € C" and p is a holomorphic polynomial on (C"} C H*(C™)

and is given by
(TGZB?)N — ez{—([d—B)N+Id}E' (4.3.17)

Proof. Let us first check that 7.5= is well defined on D. For any g € D we have

lg(w) PP du(w) = [ |g(w)[Pe” 2 PPy (w)
(CTL C‘IL

_ det(21d — B)l/ 9(v/(21d = B)1u) P~ dv(u) < oo,

n

where in the last equality we used the change of variable v = 1/(2Id — B)w which is well
defined since 21d — B is positive definite. Now fix z € C" and let us calculate T,-5=g(z). Using

the change of variable u = 1/ (Id — B)w we have
T,.529(z) = W"/g(w)eWBwezwe“’de(w)
— " / g(w)e—w(ld—B)EezEdU(w)

:W_”/g(\/ﬁu)ez\/m“e_mpdv( (Id—E)—1u>

= det(Id — B) 'g((Id — B)'z). (4.3.18)



114 CHAPTER 4. ,,HEAT KERNEL” FOR TOEPLITZ OPERATORS

This shows that D is invariant under 7,-5= and thus (7,-5z)" is well defined on D forall N € N.
Moreover, using (4.3.18) we prove by induction Eq. (4.3.17). Fix N € N and suppose that
(4.3.17) holds true for all integers less than or equal N — 1. Then for any g € D we have

[(Tesz)Ng](z) = Tten= [Tez{—u«i—B)N*lHd}zg](2)
— (det(Id — B)~H)N-! [Teszg({m 4 (Id— BN - Id}‘l(-)ﬂ (2)

— (det(Id — B)‘l)Ng<[(1d - E)N]_lz>
= ez{f(lde)NJrId}Eg(Z)'
]

As a consequence we prove that for every s > 0 the operator ¢~*7=4= is a Toeplitz operator
densely defined on D C H?*(C"). Indeed, since A is positive semidefinite then Id + ~Aisa
positive definite matrix for all s > 0 and all N € N. Therefore, applying Proposition 4.3.3 for
B = —% A we obtain

e—stAz = lim (T{Z%Az)N
N—00

= Nh_r{loo Tez[—(1d+%A)N+1d]E

= ez(—e5A+Id)Eu (4.3.19)

where the limit is in the strong sense. In fact, the above equation holds true by applying the

Lebesgue dominated convergence theorem twice. More precisely, denote by {gn } nen the se-

quence of functions in L?(C", du) defined by
gN(w) — ew[—([d—l—%A)N—Hd}wl

Then gy converges pointwisely to g(w) := e*(-¢"*+)¥ ¢ [2(C" du). Moreover, since A

is positive semidefinite it follows that gy < ¢; for all N € N. Hence, for every f € D the

sequence of functions 7}, f converges to T}, f pointwisely on C". Furthermore, for each N € N

S /
N—oo

Which shows that T, f —— T, f in H*(C") for each f € D, i.e. T,, converges to T, in the
strong sense.

We are able now to obtain the ,,heat kernel” of 7T, 4z on H*(C").

it is easy to check that

f(w)g(w) Kz(w)|dp(w) € L*(CE, dp).

T S| = | [ Fwlgn(w)(w)dn(w)

Theorem 4.3.5. Let A € M, (C) be a n x n positive semidefinite matrix. Then the heat kernel
of the Toeplitz operator T, s defined on D C H?(C") is given by

Ka(s,z,w) = e str(A) gze W, (s,2z,w) € Ry x C" x C". (4.3.20)
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Proof. Fix s > 0 and let B = —e*4 + Id. Then by Equations (4.3.18) and (4.3.19) together
with the reproducing kernel property of the Segal-Bargmann space we have

g %t=az = .B% = det _ —1e{d= ~lw eZ) — gstr 6ze_SAE.
(e Ky, K.) = (T Ky, K.) = det(Id — B) " (e TP ¢7) tr(4)
To see that the above equation is the heat kernel of T}, 4z in D C H?*(C?"). One can easily check
that K4 (0, z, w) = ¢*™ and that
9 —sT, 4%z n
I 2Az )\€ wyhz) = w .
(8 + Toaz){e 42K, K,) =0 forall eC
s

]

In the next proposition for a fixed s > 0 we investigate if the entire function K 4(s, z, W) is
in the range of the Bargmann transform when restricted to the Schwartz space. It turns out that

such a property holds independent of the time variable s.

Theorem 4.3.6. Let A be a positive semidefinite matrix and K 4(s, z, w) be the heat kernel of
the Toeplitz operator T, 4z obtained in the above theorem. Then there exists a unitary matrix P
such that

e—sk'oc

Ku(s, z,w) = e~ Z o (PT2)*(P~1w)?, (4.3.21)

aeNg

where A - a = Z?:l Aja; and each \; is an eigenvalue of A repeated according to its multi-
plicity. Moreover, for every s,t > 0 the entire function K (s, z,w) € (3,[S(R*")] if and only if
A is positive definite.

Proof. Since A is positive semidefinite there is a unitary matrix P such that
A=PD(\,--+ ,A\) P71,

where D(\, -+, \,) is the diagonal matrix whose entries A\; > 0 are the eigenvalues of A.

Using the change of variables z —— Pz and w —— Pw we can write
- _— —1 —8A1 ... p—SAn -1 —8SA| ... p—SAn
estr(A)];(A(S7 PZ, PU)) — ezP PD(e 57 - e )P~ Pw _ ezD(e 1. e Jw

n n 1
_.Av
S I GRS | DOFLER Iy
Oé" W adV)
L J'
7j=1

7j=1 O(jENO

On the one hand, replacing z by P72z and w by P~!w in the above equation we obtain (4.3.21).
On the other hand, since z ® w — Pz ® Puw is a unitary operator on C" ® C" it follows that
for every t > 0

e—s)\-a

5;1[KA(s,z,w)] € S(R™) = ﬂ;l[ > = zamﬂ € S(R™).

a€eNg
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For every j = 1,--- ,n denote by 3, ]-1 the inverse Bargmann transform at ¢ > 0 on the Segal-
Bargmann space over C? w.r.t. the coordinates (z;,w;) € C? then

[ ] < [ et

aeNg j=1a;€eNg
n
o ﬁ_l 1 sAja (Z )OéJ
= t.j o€ i Wj
— 7
j=1 a;€Ng

This shows that 3; |:KA<S, Z,E)i| € S(R?") if and only if forevery j = 1,--- ,n

Z %e‘s’\fo‘f(zjwj)o‘f € 5 [S(RQ)}.

a;€Ng 7
Using Proposition 4.2.1, this is equivalent to

sup (e7*¥%a®M) < 0o forall M >0<= \; > 0.

a€eNp

]

Remark 4.3.2. Similar to Proposition 4.2.1, there is a characterization for the image of the
space of tempered distributions under the Bargmann transform (c.f. Proposition 2.6 of Chapter
4in [139]). We note that under the assumption that A is positive semidefinite one can show that
Ka(s,z,w) € B[S'(R*™)] where S'(R*") denotes the space of tempered distributions. In fact,
this follows from the fact that sup(e~*%a~*M) < oo for all M > 0.

Note that the above results are valid for any positive semidefinite matrix without the as-
sumptions (A + A) is positive definite or AA = AA. However, we will need these conditions
in order to obtain the heat kernel of L, (c.f. the proof of Corollary 4.3.2).

Remark 4.3.3. We show that the Toeplitz operator T, a5 is diagonalizable. Moreover, we prove
that in the case where A is positive definite T, »= has a discrete spectrum and each eigenvalue
has a finite multiplicity. Indeed, with the notation used in Theorem 4.3.6 define the unitary
operator Up on H?*(C") by

[Upf1(2) := f o P*(2).

Therefore, for any f € D C H?(C") we can write
Tef(2) = [ wdwf()eTdutw) = [ wPD(h,-++ AP0 f(w)edu(u)
= / (PTw)TD()\b e a)\n)<PTw)f('LU)€Zﬁdﬂ(w)
_Z)\ yPT )12 f (w) e dp(w Z)\/ Jui | f(Pu)e* T dpu(u)

_ZA 71,0 (U0 (7 ZA Up|Ti.,pUp ) (2),
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where we used the change of variable w = PTw. This shows that T, sz can be written in the
following form
n
Toaz = Y NUpT,2Up.
j=1
The last expression can be used to obtain the eigenfunctions and eigenvalues of T, 4. In fact,
foreach j =1,--- nandeach o € N} we have

Ti.,122" = ( +1)z% = (a; +1)27.

b2
J 8zj
This shows that the Toeplitz operator T, sz has eigenfunctions {Upz® = (PTz)a}aeNg with the

corresponding eigenvalues
Ao =Y Aoy +1).
j=1

(Note that since T, o> is a symmetric operator it follows by Lemma 1.2.2 in [68] that T, 5 is
essentially selfadjoint). Hence in case where A is positive definite it follows that lim|| . Ao =
oo and each eigenvalue has finite multiplicity showing that the spectrum of T, sz is discrete (c.f.
Theorem C.2.4 in [131]). Note that if A is singular then the eigenvalues of T, o> are of infinite
multiplicity (Example 4.3.2).

Theorem 4.3.5 together with an easy computation gives the ,,heat kernel” of the Toeplitz
operator (4.3.13).

Corollary 4.3.1. Let A € M,,(C) be a n x n positive semidefinite matrix. Then for any £ # 0
the ,,heat kernel” of the Toeplitz operator [2|¢|T, 4z — |£|tr(A)] denoted by K¢(s, z, w)is given
by

Ke(s, z,w) = e’smtr(“)e“_zs‘w@, (s,z,w) € Ry x C" x C". (4.3.22)

By the above corollary and using the inverse Bargmann transform we are able now to calcu-
late the heat kernel of the partial differential operator £ on L?(R") whenever AA = AA and
the matrix (A + A) is positive definite.

Corollary 4.3.2. Let A = (aj;) € M,(C) be an n x n positive semidefinite matrix. For each
& # 0 consider the differential operator L¢ on R™ defined by

Le=) aj;(&a] - a—2) + ) ag(Eay + i)(ga,« — i). (4.3.23)
17 7 02 J Oxy, 7 Oz,

i gk

Then Ly is essentially selfadjoint as an operator on the following dense domain of L*(R™)
22
D := {p(x)e I | p is a polynomial over R™}.

Moreover, (Lep, p)r2wny > —|&|||@||? for all ¢ € Dy. Furthermore, if A and A commute and
(A + A) is positive definite then the heat kernel of L¢ denoted by ke(s,z,y) and defined on
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R, x R™ x R" is given by

k‘g(s, z,y) :e—s‘ﬂtr(/‘)(@)% \/det(]d _ 6—25|§\(A+Z))—1
m

X exp{ — gy(]d — 6—28\£I(A+Z)>—1(Id + e_zs|g|(A+Z))y

. %I(Id_€—2s|§(A+A))—1(Id+e—28|§(A+A))I

+2lgfy(Id — e D) el L 4.3.04)

Proof. Let & # 0,s > 0 be fixed and put ¢t = /2|¢|. Since T, 45 is essentially selfadjoint as an

operator on IP[2] the differential operator L, is essentially selfadjoint on the space of functions
D; :=span{hq := ;2% a € Nj}.

Since the space of holomorphic polynomials is dense in H?(C") it follows that Dy is dense in
LZ(]R”). However, one can easily check that Dy = Dé. Indeed, using Equation (4.2.1) we know

that ho(x) = t%(27r)_%e_t2§. Hence, by (4.2.12) we obtain

ha(z) = 6,12 = B [Teal](2) = B; ' Tha Biho(2)
- t%(gﬂ)—%(fxl _ li)al e (fgjn 1i

2 t Oxq 2 _gﬁxn) c

The other inclusion D¢ C Dg holds true by a similar argument. We conclude that £, is essen-
tially selfadjoint on D,. Moreover, since A is positive semidefinite the Toeplitz operator 7, 45 is
non-negative on its maximal domain D(7, 45). Consequently, and via the Bargmann transform
it follows that £¢ + |¢|tr(A) is a non-negative operator on {3; '(g),g € D(T.az)} D De.

Let us now calculate the heat kernel of L. By Corollary 4.3.1 the heat kernel K¢(s, z, w) of
the operator 3L 3, " = 2|¢|T,az — |€|tr(A) on H?(C") is given by (4.3.22) where (s, 2, w) €
R, x C"x C™. However, Example 4.2.1 shows that the heat kernel of the operator £¢ on L?(R™)
denoted by k¢ (s, z,y) is given by

hels2.y) = | B Kels, 2, 0))(@) | () = O G0 [0 ) @)] ),

(4.3.25)
where (s,z,w) € Ry x C" x C" and t = 4/2|{|. Direct application of Proposition 4.2.4 to
the matrix e~25€l4 gives the exact expression of (4.3.25) and shows that ke(s,z,y) is given by

(4.3.24). ]

Remark 4.3.4. Using (4.3.23) one can easily check that the principle symbol p(x,n) of the

operator L¢ is given by

1
p(z,n) = —577(14 + Ay, (x,n) € R" x R™.

So that in the case where (A + A) is positive definite the operator Ly is elliptic.
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Remark 4.3.5. It is easy to see that the heat kernel (4.3.24) satisfies ke(s,x,y) = k_¢(s, ,y).
Moreover; the function k(s,x,y,€) = ke(s,z,y) € C*°((0,00) x R*™ x R). Indeed, fix s > 0

and x,y € R*" where we write

k(s 2,y,€) = f(|€])e 9D,
and f is the function defined (0, 00) by

1 n -
f(?]) — _nefsvtr(A)U§ \/d@t([d _ 6725'0(A+A))71_

T2

Moreover, e~ 9@ 18D js the exponential part in (4.3.24). The function f can be extended to the
real line R and is a Schwartz function. In fact, since the matrix (A + A) is positive definite and

real then it is diagonalizable by a real unitary matrix () i.e.
A—i_z = Q_ID(Ah e 7)‘H)Q7

where M1, - -+ , \, are the eigenvalues of the matrix A + A. This shows that

1 1

—2sv(A+A\—1 __ _— -1
(Id—e ( ) _QD(m7.”’1_e—28U>\n>Q ’

A
Note that e=5"%(4) = 15— e~*'3 . It is now easy to check that

10)= g (I ) € SR

j=1
The smoothness of k(s,x,y, &) then follows by the smoothness of the function g. Eventhough,

in all our examples the function k(s,-,y,-) € S(R™ x R) for every fixed pair (s,y) € R, x R™
it is not clear if this property always holds true for the heat kernel obtained in (4.3.24).

We illustrate the above technique by calculating the (well-known) heat kernels of the Her-
mite operator on R" (c.f. Section 5.7 in [56]) and the isotropic twisted Laplacian on R?" (c.f.
[161, 164]). In the case of the Hermite operator (respectively the isotropic Laplace operator) the
corresponding matrix A is real (respectively Hermitian) satisfying the conditions of the above
corollary.

Example 4.3.1. Ler £ # 0 be fixed and consider the Hermite operator G¢ on L*(R™) defined by

o 2,2
Ge == Z(f Ty — @)- (4.3.26)
Jj=1 J
Note that the operator G is of the form (4.3.23). Hence its heat kernel which is denoted by
kg, (s,x,y) is given by (4.3.24) with A = Id i.e.

kgg (87 xz, y)

n z _ —asle] sl
()3 fIE S e
- € ( T 1 — e—4slél exp 2 1 — e—4sl¢ (|ZE| + |y| ) + 2|€| 1— 6_48|§|y T

5 > % _5cot};(25§) (|$|2+‘y|2)+ ] ][5 YT
= T — sinh(2s€) . 4-3.27
<27r sinh(2s€)/) © (4.3.27)
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Remark that when replacing & by 0 in Equation (4.3.26) we obtain the Laplacian

- 2
j=1 axj

A —

on R™. Making £ — 0 in (4.3.27) provides the heat kernel of A. Indeed, using the fact that

limg_.o = 2—15 we have

sinh(2s¢)

1 \% _a 2
i — () e aleyl
%1_{% bige (5,7, ) <4s7r> ©! ’

which is the heat kernel for the Laplacian A.

Example 4.3.2. For ¢ # 0 the isotropic twisted Laplacian on R*" is the elliptic operator given
by

l/en 0 .
Le=—5 (X5, o) + (5 — +i€m)?). (4.3.28)

OxiN

We write the above operator in the form (4.3.10)

LI Y N B )
_ (L 2,2\ _ o
Le = Z 2(0%2 3 x]) i§ lzz; (fl Dren Ti4N axl)

j=1
n 82 5 5
2,2 .
=2 (€] = 55) - QZflmzajk(xka—xj )
Jj=1 J >k
where n = 2N and A = (a;,) is the n X n Hermitian matrix given by

1 .

aj; = 5 forallj=1,---.n and aj = %(5j,k+N forall j > k. (4.3.29)

Hence A = $1d + iIm(A) where Im(A) is the antisymmetric real matrix defined by aj, =
% kN for all j > k. It is now obvious that AA = AA and A + A = Id is positive definite.
Moreover since A is diagonally dominant this ensures that A is positive semidefinite. Therefore,
the heat kernel of L¢ is given by (4.3.24) with the above defined matrix A. Let us simplify the
ingredients in (4.3.24) for the matrix A associated to L¢. On the one hand, it is easy to check

~2slE4 s given by

that A?> = A therefore the exponential matrix e
e~ 2RI = 1 4 (e7 %18 — 1) A.

This shows that the Hermitian matrix M := 2(Id — e~ 2E1(AT)=1e=25E14 — (11 s given by

2

Mjj = T (6_2‘9'5' — 1)aj; = coth(s|¢|) forallj=1,---,n, and
2 s , .

e = g (¢ ¥ = Daje = ~idjuin forall j > .

Therefore, forany y = (Y1, ,Yn), © = (21, -+ ,,) € R" we have

=2

yMz =1y - a:[coth(s|§|) — iZ(xky;H_N — xk+Nyk)}.
k=1
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On the other hand, since A + A = Id we obtain
(Id —23\§|(A+A ) (Id+ —2s\§|(A+A)) _ COth( ’§|)

Hence, the heat kernel of L¢ denoted by ki, (s,x,y) is given by

|€|673|£‘ N -~
/{ZL§<S,.T,y) - 7r_N<1 — 6_25‘&) €

1 ( § >N€_§C0th(5§)[2?1($j_yj)2]e—if SRt (Y + N —YkThN) (4.3.30)

5] coth(slel) (|22 +ly[? ,lelyMaT

- (2m)N \sinh(s¢)
As in Example (4.3.1) we remark that replacing ¢ by 0 in Equation (4.3.28) yields to the
Laplacian
1~ 02
1= -3 ol
2 p ox3

Taking the limit as £ — 0 in (4.3.30) provides the heat kernel K, (s, z,y) of A,

1 n

. 2 z—yl2
%I_Ii%k‘gf(s,l',y) = <E> € 23' d KAl(‘S?xay)‘

Finally we obtain the heat kernel of the operator (4.3.6) in the following theorem.

Theorem 4.3.7. Let A € M, (C) to be a n x n positive semidefinite matrix such that (A + A)
is positive definite. Consider the differential operator £ on R"*! defined by

Za 262 —2ReZakaf e & QImZakxk > xa—Q)
9 (92 Y = IEETTE Q2 J Or;0u 7 dz0u
o2
_ 2Rej>zk el (4.3.31)
where (z,u) = (x1, -+ ,x,,u) € R® X R. Then L is subelliptic positive and essentially

selfadjoint as an operator on S(R"™). Suppose that AA = AA and for every s > 0 the
function k(s,z,y,§) = ke(s,x,y) € C°(R*™) (c.f. Remark 4.3.5), where k¢(s,x,y) is given
by (4.3.24), satisfies the conditions in Proposition 4.3.1 (2). Then the heat kernel of L denoted
by kr(s,x,u,y, ) is given by

1 n —-
ke(s,z,u,y, ) = Py /eSKtT(A)(E—‘)?\/det(Id — e~ 2slEl(A+A4)) -1 (4.3.32)
R
exp { _gg‘y(ld o~ 21€l(A+7) )~ ([d+ 6—25\§|(A+A))y
#x( —2s\£|(A+A) Y(1d + —2S\EI(A+A))

+ 20¢ly(1d — AT gl it i ge
(4.3.33)
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Proof. The positivity and the sub-ellipticity of £ was proved in Theorem 4.3.1. Let us check
that £ is essentially self adjoint as an operator on S(R"). Since £ is symmetric on S(R")
the operator £ can be extended to a selfadjoint operator (for example the Friedrich’s extension).
We will prove that £ has a unique self adjoint extension i.e. L is essentially self adjoint. Let
L, and L, be two selfadjoint extensions of £. By Corollary 4.3.2 we know that for each £ # 0
the operator L, := Fuﬁfuﬁé) is essentially selfadjoint on Dy C S(R™) which shows that L is
again essentially selfadjoint on S(R™). Note that fuﬁlfuﬁ@ and fuﬁgfuﬁ{) are selfadjoint
extensions of L | s(rn)- Therefore, for any § # 0 we have fuﬁlf“ﬁ@ = ]:uﬁgfuﬁo which
shows that £1F, 't = L.F, tie L = Lo. Finally, we calculate the heat kernel of the
operator £. Again by Corollary 4.3.2 we know that the heat kernel k¢ (s, =, y) of the operator L
is given by (4.3.24) for all £ # 0. However, by Proposition 4.3.1 the heat kernel of the operator
L on R"*! is given by

1

k‘g(s,x,u,y,ﬂ) = %/kﬁ(saxay)eig(u_a)dg'
R

We apply the above theorem to calculate the heat kernel of the Grusin operator on R”*! and

that of the sub-Laplacian Ag,;, on the (2N 4 1)-dimensional Heisenberg group Han 4 1).

Example 4.3.3. The subelliptic operator
N 0? n
Q:—Z(—z—i—sz), (ZC,U,) GR x R

is called the Grusin operator. It is easy to check that for each & # 0 the operator G: =
J—"ugfuﬁ@ is the Hermite operator on R" considered in Example (4.3.1) and thus its heat
kernel k’gg(S, x,y) is given by (4.3.27). Therefore, the heat kernel of the Grusin operator is
obtained via the inverse Fourier transform

1 o
Kg(s,z,u,y,0) = —/kgg(s,x,y)elé(““)df
27T R
"2 )11+n / (5 th 5))ge‘“"t?%@('x'“yF)ﬂmnfzSoweié(u—@df
m)1T2 Jp ‘sinh(2s
1 T \B —Z coth(2r)(elP+Hyl?) + smry e it (i
T (2sm)3 /R(smh(%)Ve g Fmhen VP el i g,

where the last equality is obtained by using the change of variable T = s¢.

Example 4.3.4. For the sub-Laplace operator Ay, on Han 1y given by (4.2.22) we apply the
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above theorem to obtain its heat kernel. A simple computation shows that Ny, takes the form

i + a7 o + > + a7 o
— 9z7 N ou? b ou?

+2( 82 62 ))

Ty — Ti4N
ox}, N 01 NOU Ox;0u

N R i 02
=250 tige) 2 Uiy e T T g

7j=1 =1
_ 0? 0? 0? 0?
T Zaj‘j(@ * wiw) B QImZajk(xkaxﬁu B xj@x 8u)’
=1 J >k J k

where n = 2N and A = (aj) is the n X n Hermitian matrix defined by (4.3.29) in Example
(4.3.2). In fact, for any § # 0 the operator L¢ = f“AS“bfuﬁs) is the isotropic twisted Laplace
operator on R*N given by (4.3.28). The heat kernel of L¢ denoted by kre(s,z, y) is given by
Equation (4.3.30). This shows that the heat kernel of Ay, is given by

7l 1 & (u—1u
kag (s 2, u,y,0) = o / kLg(Saxay)e & )df
R
= (2 )1N+1 /< ' hf( £>>N€_§coth(8£)[zy1($j_yj)2]€—if(ﬂ—u+ZkN1(Z’kyk+N—yk$k+N))d€
us r \sinh(s
1 T N —_ T cotht n Ti— )2 —i T (—ut+ N z e
= (287T)N+1/R(Sinh7) € 2s 5= (i—y5) ]e =( > k=1 (ThYr+ N Yk Ic+N))d7-’

where in the last equality we used the change of variable T = s&.
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Chapter 5

Compact Toeplitz operators for weighted
Bergman spaces on bounded symmetric

domains

Let Q C C? be an irreducible bounded symmetric domain of multiplicities @ and b, rank
r and genus p. For each v > p — 1, we consider on €2 the normalized weighted measure
dp, = c,h(z, 2)"Pdv where h(z,w) (z,w € C?) is the Jordan triple determinant polynomial
associated to (2. In this chapter, we study Toeplitz operators 7’ with symbol g acting on the
standard weighted Bergman space H?2 := H>(, du, ) over ) with weight v. Under some con-
ditions on the weights v and 1, we show that there exists C'(v, 1) > 0, such that the Berezin

transform g,,, of g with respect to HEO satisfies:
1]l < Cw0) |77

for all g in a suitable class of symbols containing L>°(£2). As a consequence we apply a result in
[77], to prove that the compactness of 7 is independent of the weight v, whenever g € L*>(Q)

and v > C where C'is a constant depending on (7, a, b).

5.1 Introduction

In this chapter we switch our attention to weighted Bergman spaces over bounded symmet-
ric domains. For an irreducible bounded symmetric domain @ C C¢ of type (r,a,b) in its
Harish-Chandra realization we write (-, -),, for the usual inner product on L2 := L*(£2,du,)
whenever v > 1 + (r — 1)a + b. From Section 1.2 we know that the weighted Bergman space
H? := H2(Q,du,) C L? is closed in L2 and forms a reproducing kernel Hilbert space. Via
the orthogonal projection P, from L? onto H? and for a measurable symbol f, the Toeplitz
operator T% is defined on a suitable domain in A, 2 as the product T7 := P, My where My is the
multiplication by f. Moreover, for a suitable function g : {2 — C the weighted Berezin trans-
form g, is the real analytic map on € given by g, (z) = <Tg” kv 12, kv [2)) where K, |.) denotes the

normalized Bergman kernel.

125
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As it was mentioned in Sections 1.3 and 1.4 the Berezin transform is an important tool in
the analysis of Toeplitz operators giving rise to various results in operator theory (c.f. [10, 15,
18, 35, 64, 77, 187]). For example, it was shown in [77] that under some condition on the
weight v the Toeplitz operator 7; with bounded symbol g is compact on H? if and only if
gy € Cp(Q). In case of the unit disc {2 = D in the complex plane, this result was generalized
from bounded symbols to symbols of bounded mean oscillation BMO'(D) (c.f. [187]). The
corresponding compactness characterization also holds true for weighted Bergman spaces over
the n-dimensional unit ball 2 = B" and g € BMO'(B") (c.f. [15]). Theorems of the previously
mentioned type have been obtained for unbounded domains, as well. In case of the Segal-
Bargmann space H?(C",dy;), it was proved in [15] that for symbols f € BMO'(C") the
Toeplitz operator T}E is bounded (respectively compact) if and only if the heat transform f(%)
(c.f. (1.3.12) for the definition) at time % is bounded (respectively vanishing at infinity) (c.f.
[15, 64]).

A natural question which arises in the study of Toeplitz operators with a fixed symbol acting
on a family of weighted Bergman spaces is wether their compactness is independent of the
weight parameter. By essentially using the previously mentioned results it was shown in [15]
that an independence in fact holds in case of the Segal-Bargmann space H?(C",dy;) and the
weighted Bergman spaces A3 over the unit ball B" under the assumption that g € BMO'(C")
and g € BMO'(B"), respectively. However, there are counter examples for general symbols
(c.f. Section 6 in [15]). As an application it follows that for functions g € BMO'(C") the heat
transform gt € C(C") of ¢ vanishes at infinity for a certain time ¢, > 0 if and only if §(*)
vanishes at infinity for each time ¢ > 0. This, roughly speaking, gives some information on the

heat flow “backwards in time”.

In the case of a bounded symmetric domain, the weight parameter v replaces the time pa-
rameter ¢ in the Segal-Bargmann space construction and the Berezin transform g, replaces the
heat transform (1.3.12). Thus it is natural to ask whether the compactness of the Toeplitz op-
erator 7/ on the standard weighted Bergman space corresponding to the weight parameter v
on a bounded symmetric domain depends on v. The aim of this chapter is to prove that the
compactness of 7 is uniform with respect to the weight v, whenever g € L>(2) and v > C

where C'is a constant depending on (7, a, b).

The first attempt to solve such a problem was given in [15] for the case of the Segal-
Bargmann space. One important ingredient was to obtain an estimation between the sup-norm
of the heat transform of the symbol and the norm of the Toeplitz operator (c.f. Theorem 11 [35],
Proposition 1 and Theorem 10 in [15]) and to use the above mentioned result in [187]. In this
chapter, we employ a similar technique to investigate the case of a general bounded symmetric
domain. In particular, for suitable weights v and 1, we give an upper estimate for the 1p-Berezin
transform in terms of the operator norm of the Toeplitz operator 7/ (c.f. Theorem A below).
We then use a compactness characterization in [77] which holds for bounded symbols proving
the uniform compactness of 7/ w.r.t. the weight v (c.f. Theorem B below). We point out that

under the assumption of boundedness our result is a generalization to that in [15] since we deal
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with a wider class of domains. However, we are not able to generalize the statement to functions
of bounded mean oscillation. This is due to the fact that the equivalence between the vanishing
of the Berezin transform at the boundary of €2 and the compactness of Toeplitz operators is not
clear for such a space of symbols.

Here we state two of our main results:

Theorem A. Let v > p — 1,19 > d with |v — 5| > “Sta and write v = min{v,15}. Then
there exists C(v,vy) > 0 such that for all g € 7,(Q) N LY(Q, dus) (c.f. (5.2.5)) we have

100l < Cv,0) || T5]] - (5.1.1)

Theorem B. Let Q) C C? be an irreducible bounded symmetric domain and suppose that

> {d R Sl 2+T_1 Tl st }
ma — — _
v, 1 xqd,p 1 T 5@ 5 a+p

Then for any g € L (X)) we have the equivalence:

T, is compact on H 30 if and only if T; is compact on H, 2,

Chapter 5 is organized as follows: In Section 5.2 we set up notation and present some of
the standard results concerning irreducible bounded symmetric domains. In Section 5.3 we
prove the inequality in Theorem A by a technique similar to that in [35]. An essential idea is
to construct for each pair (v, 1) of weights a certain trace class operator on H? and represent
the Berezin transform of a function as an operator trace. Section 5.4 is devoted to the proof of
Theorem B, where we use a result in [77]. Finally, we present some open problems which are

motivated by our results.

5.2 Preliminaries

The objective of this section is to provide some basic facts on bounded symmetric domains as
well as the weighted Bergman spaces over such domains. As bounded symmetric domains are
Hermitian symmetric spaces (w.r.t. the Bergman metric) we refer the reader to Helgason’s book
[102] for a general theory of symmetric spaces. For an algebraic description and characteriza-
tion (using Jordan triple systems) of bounded symmetric domain c.f. [123, 128, 166]. A full
account for the theory of Bergman spaces over bounded symmetric domains can be found in
[166] and Part III of [79].

A bounded domain 2 C C? is said to be symmetric if for every point w € € there exists
an involutive automorphism of €2 for which w is an isolated fixed point of the automorphism
function. Since 2 is bounded we can consider the ,,un-weighted” Bergman space Hvzol(m,1 (c.f.
Section 1.2). Let us denote by K (z,w) (z,w € ) the reproducing kernel of Hv201(9)—1' It is
well known (c.f. [79] p. 190) that the d x d matrix

2

J

log K(z,2), z€Q
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defines a Hermitian metric on €). This metric is called the Bergman metric and gives the usual
topology on 2 [28, 124]. Therefore, when €2 is symmetric (€2, g) becomes a Hermitian globally
symmetric space. Hence, the set of all isometries (w.r.t g) on €2 denoted by 7(£2) acts transitively
on  i.e.  is homogeneous space (c.f. Lemma 3.1 of Chapter IV in [102]). Moreover, (£2)
is a separable locally compact transformation Lie group w.r.t. the compact open topology on
I(Q) (c.f. Lemma 3.2 of Chapter IV in [102] ). Furthermore, for any z € (2 the isotropy group
(stabilizer of z) of isometries k. is a compact subgroup of I(€2) such that the coset () /k. is
homeomorphic to 2 (c.f. Theorem 3.2 of Chapter II in [102]). Let us denote by Aut((2) the
group of all biholomorphic automorphisms on 2. One can easily check that every biholomor-
phic function on 2 is an isometry w.r.t. the Hermitian metric g. Hence, Aut(§2) C I(£2) and
by Montel’s theorem the automorphism group has the structure of a transformation Lie group.
By a theorem of E. Cartan Aut(€2) acts transitively on Q (c.f. [57]). Again by Theorem 3.2 of
Chapter IT in [102] the coset Aut(£2)/k, is homeomorphic to €2 where k, is the isotropy group
in Aut(Q2) fixing z. Moreover, if GG is the connected component of Aut(£2) containing the iden-
tity then by Proposition 4.3 of Chapter II in [102] G is a semi-simple Lie group. Furthermore,
if K is the isotropy subgroup of G fixing z then K is a maximal compact subgroup of GG and
G/K = Q (c.f. [102, 138]).

Let us consider an irreducible bounded symmetric domain Q C C?i.e. €2 is not a Cartesian
product of lower dimensional symmetric spaces. In [57], E. Cartan proved that there exist only
six types of irreducible bounded symmetric domains, the so called four classical domains and
two exceptional domains of dimensions 16 and 27, respectively (see also Chapter IX in [102] for
the classification of irreducible globally symmetric spaces). There is also a complete algebraic
classification of bounded symmetric domains using Jordan systems (c.f. Chapter I in [166]).
More precisely, we consider Q C C? in its (Harish-Chandra) realization with multiplicities a
and b and with rank r. In particular, ) contains the origin and it is invariant under the natural
St-action (circular). The triple (r, a,b) is called the type of §2 and it determines the domain up
to biholomorphic equivalence (c.f. [57, 128]). Moreover, the genus p of 2 and the complex
dimension d are given by:

r(r—1)

p=2+(—Da+b  di=dmQ=r+"2 +rb. (5.2.1)

To each such (2 there is attached a unique function h(z, w) (z,w € C?) which is a polyno-
mial in z and w, called the Jordan triple determinant and satisfies the following properties (c.f.
[128, 166]):

1. h(2,0) =1and h(z,w) = h(w, z), Vz,we C%
2. h(z,2) >0, VzeQandh(z,z)=0, Vze .

Thus for any A € R, we fix a branch of i(z, w)* for z,w € €. It is well known that for any
v € R (cf. [166]):

h(z,2)"Pdv(z) < 0o <= v >p—1, (5.2.2)
Q
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where dv(z) is the Euclidean measure on (2. In this case, we consider the normalized weighted

measure:
dp, = ¢, h(z, z)" Pdv.

The weighted Bergman space H? is the space of holomorphic functions in L2. We write K, :

Q) x 2 — C for the reproducing kernel of H2, i.e. for any f € H2, w € §2 we have:

f(w) = [Puf](w) = <f7 KV("w)>y = <f7 KV,[’LU]>V7

where P, denotes the projection of L2 onto H2 and K, [, := K, (-, w). The kernel K, (z, w) is
related to the Jordan triple determinant i (z, w) via (c.f. [80]):

K,(z,w) =h(z,w)™, Yv>p—1 (5.2.3)
For a measurable symbol g : {2 — C the Toeplitz operator 7}/ is given by:

Ty :D(T)):={h e H.|ghe L.} C H} — H} : h— P,(gh). (5.2.4)

g

The Berezin transform T’ of an operator 7' on H? with the domain of 7' containing all the
normalized kernels k. := K./ || K,,)|| where z runs through €, is the complex valued
map defined on 2 by:

T(2) = (Thu i) k), 2 € Q

In the rest of the chapter we will frequently use the symbol space:
7,(Q):={g:Q— C| gK, s € L*(Qdp,) foralla € Q} . (5.2.5)

Note that for g € 7,(§2) the operator 7}/ is densely defined on H? and its Berezin transform is
defined to be:
gy =TY.

Let P be the space of all holomorphic polynomials on C%. For f, g € P we define g*(2) := g(2)
and 0y := f(£). Let dv(z) denote the Lebesgue volume measure, and equip P with the Fischer

inner product:
(fo9)e = 0y(g")O) =7 | [()g()e dvz).

Due to the action of K (the isotropy group fixing the origin) on P which is given by: 7(k)f :=
f ok (each k € K can be extended to a linear map on C¢ (c.f. [138])) , P admits a Peter Weyl
decomposition:

P=aPF,

where m = (mq,---,m,) € Nj with m; > --- > m, > 0 (in all what follows the multi-
indices m will always have this ordering). Note that each P, is a subspace of P, , the space
all homogeneous polynomials on C? of degree |m| (c.f. [80]).

The importance of this decomposition is given by the following theorem:
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Theorem 5.2.1 ([5]). The spaces P,, are K-invariant irreducible and orthogonal under (-, ) p.
Moreover, if H is a Hilbert space of analytic functions on ) with K-invariant inner product
(-,-), then P,, is orthogonal to P, under (-,-) whenever m # n. Moreover, (-, -) is proportional

to (-, ") on each P,

In particular, this holds for the space H? and the constant of proportionality was calculated
in [80]:
<.fa g)F = (V)m<f7 g>l/7

where (v),, is the generalized Pochhammer symbol:

(1), = H I(m; +v— %a).

ey INOZ j%la)

Since each P, is closed in P (F,, is finite dimensional), it admits a reproducing kernel
K™(z,w),i.e.
f(w>:<f7Km(7w)>F7 vfEF)m

The relation between these reproducing kernels and the Bergman kernel was given in [80]:

Theorem 5.2.2 ([80]). Forallv € C and all z, w € €2, we have:

hzw)™ = Y (W)uK"(zw0). (5.2.6)

my1>--2>2my>0
The series converges uniformly and absolutely on compact subsets of Q) x .
Finally, we relate the orthonormal basis of the Fischer norm to the orthonormal basis of H, 3:

Proposition 5.2.1. Letv > p — 1, d,,, = dim P,,, and {w}n}jzl,,..,dm be an orthonormal basis
of (P, (-, ")r). Then

Bi={ey = Whey [ mandj =1, dy } (527)

J

is an orthonormal basis of (H?, (-,-),). Here m runs through the previously mentioned order-
ing.

Proof. Let j # k then (7", 7)), = ﬁ( 7Yty e = 0. Moreover, for m # n (c.f. Theorem
5.2.1)

Also, note that:

(Db T = W)l 07 = W 0 = 1.

v
Now, since the polynomials are dense in H? it follows that the functions in B form a complete

orthonormal system of H2.
O]
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5.3 Upper estimation of the Berezin transform

In this section we prove Theorem A using a similar technique to that in [35]. Under the as-
sumptions on the weights v and v and for each z € (2, we find a trace class operator 77"*° on
H} where ||T?"]|, is independent of z and one has tr (T, T)") = 57”0’5},,0(2). We then apply a
standard estimate for the trace norm to obtain the inequality (5.1.1).

For X € L(H?) define the function KX(z,w) = (X*K,(-,w))(z) on Q x Q. We write
Proposition A.1.3 for the case of the weighted Bergman space H? using the notation followed
in this chapter.

Proposition 5.3.1. Let g € 7,(Q) and X € L(H?) with v > p — 1. Suppose the following

conditions hold:
1. TV € L(H?).
2. TYX is of trace class on H}.

3. Jo Jo L9 K (w, 2)| | KK (w, 2)| dp, (2)dps, (w) < oo.
Then

tr(Tg”X):/Qg(z)Klf((z,z)du,,(z). (5.3.1)

The basic idea in the proof of Theorem A is to construct a trace class operator X = 7"
on Hp satisfying K\ (z,w) = h(z,w)*~". In order to do that, we fix {¢)7"};_; .. 4, as an
orthonormal basis of (P,,, (-, -) ). Then, the reproducing kernel K™ (z, w) of P,, is given by:

dm
K™(z,w) =Y I (2)y (w). (5.3.2)
j=1
Now, for each m € Nj such thatm; > --- > m, > 0and each j = 1,--- ,d,,, we denote by

m : : 2 : : m.
P the orthogonal projection from H;; to the one-dimensional space spanned by e’":
moro.__ m m 2
‘Pj f T < 7€j >V€j f € Hl/'

Hence:

m

K7 (2 w0) = [P, 2) () = (Ko, 2), €l ()

= (V)] ()Y} (w). (5.3.3)

Now, define the operator T;"”* on H? as the infinite sum:

D Y- I

my > >me >0
Theorem 5.3.1. For v > p — 1 and vy > d the operator T,"™ is of trace class on H? and

TV,VO

K)o (z,w) = h(z,w)"™". (5.3.4)
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Proof. For each [ € N, consider the operator

vy . (V—V())m o m

my 2> >mye>0,|m|<I

‘We write :

T j—1 J—1
1/—1/0 HFm] u—uo—"—a) (v —5-a)

Therefore, by Stirling’s and as m; — oo we have:

I'(m; +v—vy— j%la) Jp—

['(m; +v— Lta) !

Since vy > p—1 > 1, it follows that the operators S;"** converge to Ty in the norm of L(H2).

Moreover, by an application of the Cauchy-Schwarz Theorem we know that:

v,vg v,vQ

K, (z,w) — K (2,w),

as | — oo uniformly on compact subsets of €2 x € (c.f. Proposition 3-(7) in [35]). Together
with Theorem 5.2.2 and the equalities (5.2.6), (5.3.2), and (5.3.3) we obtain:

K% (z,w) = Z W= vo)m (7/):2)7” ZKfjm(Z,w)

my>--2>mr >0

I
M.

(v — 1) K™ (2, w)

my>--2mr >0

= h(z,w)"".

v,10

In order to prove that 7" is of trace class, note that || 2?21 PP |lyy= dp, = dim B,,. One
has the inclusion P,, C P, and B, admits {¢,z* | |a| = |m|,« € N¢} (¢, are normalized
constants) as an orthonormal basis with respect to the Fischer inner product. Hence it follows

that

— 1
i< (Im| +d 1).-
= |m|!(d—1)!
Therefore,
R I S | L e
O T(v—v—5ta)  D(mj+v—17a)

T

Z |m|+d_1)|H F(mj—l—y—yg—j%la) F(V—j%la)
= 2 -1 AL

T(v—v—LFa) D(mj+v—1Ha)|

meN”
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Now, as |m| — oo, and by Stirling’s formula again we have:
. d—1

(Im|+d—-1)! |m/*" 1
m[id— 1!~ (d—1)  (d- 1)!(ij>

T

= Z i‘m7 < cH(l + m;)

i=d-1 " i=1
where ¢ > 0 is a suitable constant independent of m. Therefore, as m; — oo it follows that:
ﬁf(mj+u—yo—j71a)(|m|+d—1)!
Ty +v - 5la)  (m)id—1)!

j=1

T

L(m; +v— vy — 5ta) -
<c —2 1+m)t ~e 1+ mj) ot
i, ooy (m v elltem)

Jj=1

Since vy > d this shows that 75" is of trace class. O

We want to apply Proposition 5.3.1 to X = 7" and in order to check condition (3) therein,

we need the generalized Forelli-Rudin inequalities which can be found in [77, 80]:

Lemma 5.3.1. Consider the integral
Taq(2) = /Q (2, w)|” T h(w, w) P dv(w),
where z € Q,v € Rand A > p — 1. Let
Ay ={aeR|3C > 0st |Jr,(2)] < Ch(z,2)"% forall z € Q},
then:
1. Ay, = [y,00), ify > Sta
2. Ay, =1[0,00), ify < —a

According to Theorem 5.3.1 and to the above lemma, we are able now to establish the

following theorem:

Theorem 5.3.2. Let v > p — 1,19 > d with |v — o] > Sta, and write v = min{v, v}

Moreover, suppose that g € 1,,(Q) N L' (2, du;) and that TY is bounded. Then
r(TVTY™) = 225,(0). (5.3.5)
Vo

Proof. The first step is to verify condition (3) of Proposition 5.3.1 i.e. to prove the convergence

of the following integral

/Q/Q|g(z)|!Ky(w,z)|‘K,?S’”O(w,z) dy, (2)dpy (w).
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Using (5.2.3) and (5.3.4) we obtain:

[ oo 2 5 2

. / / (h(aw, 2) [+ B, w)Pdu(w) |g(2)| bz, 2)”Pdu(z).

Now, we apply Lemma 5.3.1 for A = v and v = v — 1. Since |7| > “51a, we have two case:

dp, (2)dps, (w)

(a) Incase v > 1y, Lemma 5.3.1 (1) implies that v — 1y € A ,, which means that:
/Q|h(w,z)|_('/+(u_l’°)) h(w,w)"Pdv(w) < Ch(z,z)"".
So, we have to check if
otz 2y oot = — [ o)l du
This is true since g € L'(€, dpu,, )-
(b) In case of vy > v, we have v < —%a. By Lemma 5.3.1 (2), we know that 0 € A, , i.e.
/Q |h(w, 2)| T b (w, w)Y Pdu(w) < C.

Therefore, we have to investigate

/ lg(2)| h(z, 2)" Pdv(z) < o0
Q

But this is also true since in this case we have g € L' (2, dp,)).

Hence, we can apply Proposition 5.3.1 with X = T;"* to obtain:

(T = [ EE 22
Q

:c,,/Qg(z)h(z,z)”o”h(z,z)”pdv(z)

Cy Cy .
= g(z)d”w)(z) = _guo(o)'
Cyy JO 0]

O

Our aim now is to extend the above Theorem from z = 0 to an arbitrary z € (). More
precisely, under the assumptions of Theorem 5.3.2 and for each z € 2 we find a trace class
operator 17" such that tr(T;T;") = %ﬁyo(z) and the trace norm |77, = || 75" |l,, is
independent of z € ).

For each z € (2 we consider the automorphism ¢, which interchanges z and zero. We define
the linear operator U, , on H? by

Uy.f = (fog.) Jo.», VfeH?

where J¢, denotes the complex Jacobian of ¢,.

Using the transformation formula of the unweighted Bergman kernel, one can prove:
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Proposition 5.3.2. For all z € (), the operator U, , is self-adjoint and unitary i.e.
Ul =U;,=U,.. (5.3.6)
For each S € L(H?), and each z € ) we define S, , € L(H?) by:
Sy =U,:5U,.
The following lemma is found in ([77], Lemma 4):

Lemma 5.3.2. Forall a, z € €, the Berezin transform :9—:; of Sy is given by:

Sval(2) = S(¢a(2)). (5.3.7)

One can easily check a slightly more general version of Lemma 6 in [77]:

Lemma 5.3.3. Let v > p — 1 then for any g € 7,(Q) and any a € Q) we have:

UsaT)Upa =Ty, (5.3.8)
where both sides are interpreted as operators with domain D(Tg”od)a) (c.f- (5.2.4)).
According to (5.3.6), we know that for any 2z € (2 the operator
TV = U, 1,70, . (5.3.9)
is of trace class and satisfies |77, = [|75"°||,,. Moreover, according to Theorem 5.3.2

together with (5.3.7) and (5.3.8) we obtain:

Corollary 5.3.1. Let v > p — 1 and vy > d with |v — 1p| > 5*a . Moreover, suppose that

g € 7,(Q) N LYQ, dpy), where v = min {v, 1y}, and that T}, is bounded. Then we have:
Cy ~

tr(TVT) = 2 G,0(2) Yz € Q. (5.3.10)

0]

Proof. We apply Theorem 5.3.2:
tr(T;Ty™) = tr(T, U, 15U, .) = tr(U,,. T, U, . T5"™)

y v CV —~—
= 757’.(7?90(;5276 0) = (g © ¢2)u0 (0)

Cup

]

Proof of Theorem A: Let T be bounded, then by Corollary 5.3.1 and by a standard estimate
for the trace norm we have for all z € :

|§V0<Z)| < Cl(V, 1/0) |t7n(T;T;’VO)|
Calws o) [T 1T
= Cy(v,v0) || 2| 1T |,
< Clv,w)||T7]|,

g
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where C' (v, 1) and C(v, 1) are suitable constants independent of g and z. Therefore:

15w/l < Cw, o) || TY]] -

1%

Clearly, the trace norm ||7;,""||,, also depends on r and a. However, we omit indicating this

fact in the constant C'(v, ).

5.4 Compactness criteria

In the following, we establish the equivalence stated in Theorem B. For this, we need a density
result for a class of Toeplitz operators together with Theorem A and the main result in [77].
Let us write Theorem 1.2.2 for the case of the weighted Bergman space H?(€2, dyu,) using

the notation followed in this chapter.

Theorem 5.4.1. Let v > p — 1, then
{Tg” | g continuous with compact support in Q}

is norm dense in the space of all compact operators acting on H?*(Q, dyu,).

In order to prove Theorem B, we use the equivalence between the compactness of the
Toeplitz operator and the vanishing of the Berezin transform at the boundary of a bounded

symmetric domain (c.f. Theorem A in [77]):

Theorem 5.4.2 ([77]). Let

r—1 r—1\> r—1 [r—1
v>p—1+ 1 a+ ( 1 a) + 5 a( 5 a+p—1). (54.1)

Denote by Cy(R2) the space of functions vanishing on 0X2. Then for any g € L>(S) the following

two conditions are equivalent:

v 2
1. T} is compact on Hy.
2. g, € Cph(Q).

In fact, the above theorem can be generalized to all finite sums of Toeplitz operators with
bounded symbols and other equivalent conditions can be given. In our proof, the conditions on
the weights v and 1 in Theorem B is owned to an application of Theorem 5.4.2.

The key of proving Theorem B is the following:

Theorem 5.4.3. Let Q C C? be an irreducible bounded symmetric domain and suppose that

-1 —1\> r-1 -1
1/,1/0>max{d,p—1+r4 a+\/(r4 a) +r2 a(rz a—l—p—l)}. (54.2)

Then for any g € L* () the following are equivalent:
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(1) Guy € Co(S2).
(2) g, € Co(Q), for all v such that |v — vy| > %a.

(3) T;° is compact on H;,

-
(4) TV is compact on H7, for all v such that |v — 1| > ta.
(5) Gu € Co(2), for some v such that |v — 1| > Sta.

(6) TY is compact on H}, for some v such that |v — o] > Fa.

Proof. (1) We prove the implication (6 = 1): Suppose that 7 is compact for some v such

r—

that |v — o] > “Sta. Then by Theorem A there exists C(v, 1) > 0 independent of g
such that:

||§V0||oo < O(Vv VO) HT;H :

Since T}/ is compact, Theorem 5.4.1 tells us that there is a sequence (g )ren of continuous

functions with compact support such that:

k—oo

e

which shows that

—

EVO - (gk')u() 0o

k—
ST00.

. € Co(€2), hence g,,, € Co(92).

But each (gy)

14

(i) By the same argument it is easy to show the implication (3 = 2) using the inequality
lulloe < Clo ) T3],

Finally, we remark that by Theorem 5.4.2 we have (1 <= 3), (2 <= 4), and (5 <= 0).
The implications (4 = 6) and (2 = 5) are trivial and we obtain the proof. [

Proof of Theorem B: Let (v, 1) be two weights satisfying (5.4.2) and suppose that T is
compact. Then by the previous theorem it is sufficient to prove that 7 is compact for v — 1| <

“La. Sety := max {vy, v} and let v; = v + 1 + “51a. Then we have

min {v; — vy, 1 — vV} > a == T/ is compact == T’ is compact.

Remark 5.4.1. In [15], the authors proved that for a measurable function g defined on the
unit ball B" C C" and having a bounded mean oscillation the compactness of the Toeplitz
operator Tg’\ on A3(B") (c.f. Section 1.4) is uniform w.r.t. weight \ whenever X > —1. We
should remark here that our result is a generalization to that in [15] under the assumption of
boundedness since we cover the case of all bounded symmetric domains. Indeed, for the case
where () = B" C C" we know thatr = 1, b = n—1 and p = n+ 1. Substituting these quantities
in Theorem B we conclude that for any g € L*°(B") the Toeplitz operator T; is compact on
A3(B™) for all X > —1 if and only if there is \g > —1 such that Tg)‘(J is compact on A3 (B").



138 CHAPTER 5. UNIFORM COMPACTNESS OF TOEPLITZ OPERATORS

Finally, we would like to collect some open problems which are motivated by our results.

Question 1: Ts the obstruction |v — 1| > %a in Theorem A necessary to obtain the in-

equality (5.1.1)?

Question 2: As mention in the above remark, it was proved in [15] that for the case of the
unit ball @ = B" C C™ Theorem B holds for symbols ¢ € BMO'(B") of bounded mean
oscillation. This class of symbols strictly contains the bounded measurable functions. So one
may ask if it is possible to extend Theorem B to the case of BMO'(€2) symbols for an arbitrary

bounded symmetric domain €2 C C".

Question 3: Let S,(H?) denote the Schatten-p-class over H? and assume that:

S {d 1+r—1 N r—1 2+7’—1 r—1 n 1 }
V. U m — — .
, Vo ax<qd,p 1 a 1 a 5 a 5 a—+p

For every g € L>(2), and all 1 < p < o0, is it true that:

T € S,(H}) if and only if T} € S,(H,)?



Appendix A

Al

Density theorem This section is devoted to a detailed proof of the density criteria on compact
operators acting on the Bergman space H?2(f2) over any open domain € C C" (Theorem 1.2.2
). This theorem was established by C. Berger and L. Coburn in the case of the Segal-Bargmann
space with the standard weight d,u% [35]. However using purely functional analytic methods
we generalize this fact to any weighted Bergman space over ). We use the same notation as in
Chapter 1.

For X € L(H?2(9)) we define the function KX (z,w) = (X*K(-,w))(z) on Q x Q. Itis
easy to check that the two variable function KX satisfies:

@ KX(z,w) = (XK (- 2) (w).
(b) K* is holomorphic in z and anti-holomorphic in w.

Since span {K}.cq is dense in H2 and X is bounded, by (b) it follows that if KX (z,2) = 0
for all z € 2 then X = 0. Moreover, if X is of trace class we have the following relation
between its trace and K.

Proposition A.1.1. If X € trace class (H2(R)), then the trace of X is given by:

/KXaad,u a).

Proof. Let {e, }nen be an orthonormal basis of H2 (1), then for any a € € we know that ( c.f.
Theorem 1.2.1) K(-,a) = >, .y en(-)en(a). Therefore, by the continuity of X we have

X(K(-a))(z) = X enen(a)(2) = Y X(en)(2)en(a) = (XK (-, a), K(-, 2)).

neN neN

Integrating both sides of the above equation over {2 we obtain

fx o) = | Baadnt) = [ (XK (.0, K(-a)du)
—Z/Xen @en@dp(a) = 37 (X(en) ea) = r(X),

139
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Proposition A.1.2. Let X, Y € L(H?2(R)), such that Y X € trace class (H2(X)), then :

tr(YX):/d,u(a)/KY(z,a)KX(a,z)du(z).
Q Q
Proof. Note that, for all z, w € €, we have:

KX (z,w) = 2 (w) = (YX(K(, 2)), K- w)) = (X(K(, 2)), Y K(-, w))

/X VREwl@date) = | KGRy (@ uldufa).

Now by Proposition A.1.1, we have:

(Y X) = /Q V% (a a)dp(a) = /Q /Q K¥(a, )R (. a)du(2)du(a).
U]

Remark A.1.1. Suppose g € 7,(Q) :={f: Q@ — C" | fK, € L*(Q,du,), forall = € Q}
and T, € L(HZ(Q)) then:

GK(-,a) — K™ (- a) := p(-,a) € (H2(Q))" Va € Q, (A.1.1)

where (H2(Q))" = {f € L% | (f,9)w = 0,9 € H2(Q)}.

Proof.
K% (2,a) = T,(K(-, 2))(a) :/ K(u,a)dp,(u)
=L/’ K ) ()
,a), K (-, 2)) = P(gK (-, a))(2),
which shows that GK (-, a) — K¢(-,a) € (H2(Q)) Va € Q. O

The following proposition is a generalization of Proposition 5.3.1 in Chapter 5.
Proposition A.1.3. Let g € 7,,(Q2), X € L(H2(Q)) and suppose the following conditions hold:

1. T, € L(H2()).

2. T,X € trace class (H2(Q)).

3 Jo S\ K (a2 | KX (1, 2)] dya(2)dp(a) < o

then

w(T,X) = [ (T 2)dul).
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Proof. By proposition A.1.2 and the above remark we get
w(T,X) = [ | RS G adul=)duta)
= [ [ B @R G0 + R du()dn(o)
- [ 4 / R a2 (o, 2)dla)dn(z) = [ ()0 2), K2
— [ 9 RXC A RKC () = [ g PR ) EIdu)
Q Q
_ / 9(:) KXz, 2)du()

The following proposition is the key to prove the density criteria:

Proposition A.1.4. For g bounded, measurable function of compact support S, C ). T} is of
trace class on H? and for X € L(H?2) we have:

tr(TgX):/Qg(u)KX(u,u)d,uw(u). (A.1.2)

Proof. The fact that T}, is of trace class is proved in Section 1.2 of Chapter 1. In order to obtain
(A.1.2) we have only to check condition 3 of Proposition A.1.3:

[ 2 5 )] die ()2

= [ loteddue) [ 1 G2 G 2) 0] d )

< [ loGIX IR G 2) P du)

- 171 f 192 K 2 () < X e / K 2)ine) <o

]

Proof of Theorem 1.2.2: Denote by H(€2) the space of all compact operators acting on
H2(2). Then the dual space H* = S is the space of all trace class operator on H2((2) and the
duality is given by (c.f. Chapter 1 in [186])

<KX>H:U'(YX>, VYESl,XE'H.

Suppose C!I'l £ H, then by the Hahn-Banach Theorem 3X # 0X € S; and X ic = 0. Then by
the above proposition we have

(T, %) = [ o) R Cuu)dyen(u) = .

for every continuous function with g with compact support, hence K~ (w,w) = 0 which is
possible if and only if X = 0.
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A.2

A.2.1 Proof of Remark 2.4.2
Theorem A.2.1. Let
f(2) = fns(z) = 222 =", and g(z) = ¢a(r)e” (r® — 2r")e*”

be the functions defined in Remark 2.4.2. Then the Toeplitz operators ’Z}s and 1, commute on
P[z] if and only if s = 1.

Proof. We apply the Toeplitz operators T and T, acting on H? to the monomials {2"},cn,-
Using Proposition 2.2.2 we obtain

1.
Tg(Z ) P(‘IJTTL m@) P(r6+nez’(n+2)0 . 2T’n+46i(n+2)9)
_ 2M —r2 9 10 4M 2 9 8 Z”-‘r?
= {2M[e™""](2n + 10) — 4M[e™"](2n + )}(n+2)!
n+2
=2 —4I 4 .
{2I'(n +5) (n+ >}(n—|—2)!

n+1 n+l

2. Typan = Tpogzn = P 3eitriiheta () — 91 [e=r*)(2n + 6) Zoy = 2D(n + 3)

Combining the above equalities we get

n+3

1. T,T;z" _27”3@nn+® AT(n + 5)} -

2I'(n+5) —4l(n +4)
(n+2)!
Moreover, using Equation (2.4.20) we apply the Toeplitz operator 7 and 7 acting on H? to

n+3

2I'(n +5) (g

2. TyT,=" =

the monomials {2"},cn, and we obtain

34n Zntl

L Tp2"(2) = Tf(ﬁ)\/gzn(\/gz) = s 2 T2 (/52) = s 220 (n + 3T

2. TS n( ) ﬂ 7)2”(\/52) _ %{21—‘(;—0—5) . 4F(:2+4) }S% . 8(27:;2)' _ {21—‘(:3-"-5) .
4F(n+4 282 e * '
} n+2
Therefore
2T'(n +5) 4C(n+4) s s 23
T7T°2"(2) = — 2r 5
7172 =1 s3 52 }(n+2)!3 P20 + )(n+3)!
" D +6)  4P(n+5), =
s 2I'(n 4+ 6 4I'(n + 5 z"
TSTS n — —%QF 3 —
g 172z = s (n+ )(n+1)!{ s3 s? }(n—1—3)!
Hence 17Ty = 1317 if and only if for all n € Ny the following equation holds
2I'(n+5) 4l'(n+4) 1 1 2I'(n+6) 4'(n+5)
- r 5) =T 3 - .
{ 53 s2 }(n+2)! (n+5) (n+ )(n+1)!{ 53 52 '

By choosing n = 0 the above equation holds true only in the case s = 1. O
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A.2.2 Proof of Proposition 2.5.1

Let U € S and suppose that Ty, Ty = TyT},, ;. Then for each j < 0 the following functional

equations:

-1

d—j —Jj
) | ot
M[Wye )22 4254+ j+2) = M[W,e )22 +j+2) [J G+ +D ] z—l—j—l—Terl)
=1 =1

(A2.1)
hold in the half plane Re(z) > —j — 1.

Proof. Fix j < 0, by Equation (2.3.1) and under the assumption 7 Ty = TyTy, ; we know
that for every k € Ny such that & > —

P(k+j+1)  T(k+j+1+%")
Pk+6+1)  D(k+1+2%m)

MIWe"")(2k + 26 + j + 2) M([W;e™)(2k + j +2).

Using the functional equation of the Gamma function the above equation can written in the

following form

.

5— —Jj -1
2 2 '6
M[Wje | (2k+26+j+2) = MW" |(2k+5+2) [ [(k+i+D) [ [ (k+5 + J;m Y

=1 =1

(A.2.2)
According to (2.2.2) we know that for Re(z) > —j — 1

T
<.

(z4j+1) " =2M[r¥Qs_;(r*)](22), and

i . 0+m - 2j+6+m 2
[[G+i+——+D =2ME"Q(%)(22).
=1

Substituting these quantities into (A.2.2), we conclude that

M2 (r)e ") (2k) - M[r¥ Qs ()] (2k)
= M[r7*2W,e7")(2k) - MP2HoemQ (7)) (2k), (A2.3)

for all integers integers k such that k£ > —j. Now consider

v;(r) == rsz(;,j(TQ)e”?, and u;(r) := rI T2 (r),

Since Q)s5—; is supported in [0, 1] and ¥; € A, then u;, v; € A. Therefore, by Lemma 2.3.1
the convolution product f,; * f,, (r) exists for all > 0, and there is h; € A such that:

2

[P Qs—j (r®) s 7 H0 42U (r)e ™" (r) = hy(r)e ™

The same technique can be used on the right hand side of (A.2.3) to show that there is n; € A
such that

[7“j+2llfje_7“2 £ 2™ O (P (r) = nj(r)e".
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By substituting these relations into (A.2.3) and applying the convolution theorem for the Mellin
transform, we obtain for any £ € Ny such that k > —j :

(hj —ny)

r

M((h; —nj)e "(2k) = M]| e "(2k+1) = 0.

By Lemma 2.3.2 we have h; = n; a.e. on R4, i.e the equality (A.2.1) holds on the half plane

Re(z) > —j — 1. O

A.2.3 Proof of Proposition 2.5.2

Let W € S and suppose that Ty, Ty = TyTY,, ;. Then for each j < 0 there exists a trigonomet-
ric polynomial ), <3 e 57 such that for Re(z) > —j — 1 we have:

M[Ue™(22+j+2) = Hy(2) > e 3. (A.2.4)

U<§

Proof. Using the calculations done in Proposition 2.4.3, we conclude that

— e { [Z1g) - 2] (5 )+ 6 - L 1wy + o | x f1+ oD ),

as |z| — oo. Similarly, we have

-1

g
IT|rc e
=1
e s~ N N 24+ S 1
:exp{—l2;< T o) o)+ (R bl o]

z

= exp — { [% log(g) — 5] (—Jj) + (_j)jJrQLéH log(%) + 0(1)} X {1 + O(é)} ’

as |z| — oo

Therefore

6—j —j —1

+ +l z+]+”m+l
rE2s ] )T [ 5 )]

=1 =1

exp {s10g(3) + stoe(5) — =+ 0} x {10},
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where s := J(m;% + j. According to (2.4.8) together the above asymptotic behavior of H;
M[We ") (22 + j +2
we know that the function 7;(2) = [¥ye [_;( ( z)—i— j+2) satisfies
j\Z

2e[ (0 + L +541)

I7i(2)] <
exp{(o+ ) log(|2]) — o — - arg(2) + O(1)} x {1+ 0(L)}

: (A.2.5)

where z = o + it, 0 > 0 is sufficiently large and c is independent of z. However, Equation
(A.2.4) shows that 7; is d-periodic hence it can be extended to entire function on the complex
plane. Therefore, for studying the growth of 7; as |z] — oo, we can suppose that in the
above estimate o is large and varying in an interval of length d. According to (A.2.5), there is a
constant C' > 0 such that:

C tagry _ O mp
|Tj<2)|<m€ & <1+t262 .

Hence Lemma 2.4.1 shows that there is a trigonometric polynomial Z‘ i|<3 ae’s satisfying
(A.2.4).
]

A3

A.3.1 Proof of Proposition 4.2.3

For the proof we need the next Lemma which easily follows from Theorem 3 of Appendix A in
[84].

Lemma A.3.1. [84]

Let A and D be two Hermitian n X n complex matrices such that

1 1 1
< < Z -,
JAl <5, IDI<5, and [AD] <

Then for any u,v € C™ we have:

/ exp{zAz +ZDZ + uz + vz }du(z)
B 1
Jdet(Id — 4AD)

exp{uD(Id — 4AD) 'u +v(Id — 4AD) 'u + vA(Id — 4AD) 'v}.
(A.3.1)
For a complex matrix A we denote by A, AT the complex conjugate and the transpose of

. : : —T :
the matrix A, respectively. Moreover, we write A* := A" for the conjugate transpose of A. We

are able now to give a complete proof of Proposition 4.2.3.



146 APPENDIX A.

Proof. We write uw = (uy,- -+ ,u,) € C"and denote by % the n-column matrix with differential
operator entries % i.e. for any entire function g on C" we have
J

dg dg g \T
= (521...5;;> ,

Let £ = (ey;) € M,(C) be Hermitian s.t. ||E|| <  and the matrix (Id — F)(Id + F)™!
is positive definite where I’ := E + E. In order to obtain (4.2.16) we apply % to the complex

valued function e%**#£2

a u-z+zEz a
826 =3 exp{z w2 + ; ZkerjZi}

_ eu-z+zEz <(U1 + Z €17 —+ Z Zrer1 + 221611), cee

j#1 k#1

T
(un + Z €nj<j + Z Zk€kn + QZnenn)>

J#n k#n

— (FZ + u)ewz—i-zEz

Therefore, e“***E% is in the kernel of the following column matrix with differential operator

entries acting on H?(C™) solution of the differential operator

0
Hence ;' exp{u - z + zEz} is in the kernel of the corresponding operator x := 3; 'A3; on

L*(R™). By (4.2.12) and (4.2.13) we have:

t 10 t 10
— e (i
X 2x+t8:c (21’ tax)
t 1 0
—§(Id—F)x+¥([d+F)%—u. (A.3.2)

In order to find the general solution of the ,,column matrix differential operator” (A.3.2) we

replace y by

x1:=(Id+ F)'x
10

t
=—(Id+ F)Y Y (Id— F —— —(Id+ F) .
SUd+F) N (Id = Flo+——- — (Id+ F)"u

Now let f € L?(R") be such that y; f = 0. Solving the above system of first order differential
equation leads to the existence of a constant ¢ such that:

2

f(z) = cexp{u(ld + F) 'tz — %x(]d — F)(Id+ F) 'z} (A.3.3)

Since the Bargmann transform is an isometry we deduce the constant ¢ by calculating the

uz+zEz

norm of f and the norm of e in the corresponding spaces. Applying Equation (A.3.1)
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to e**t2E% with A = E, D = E and v = T we obtain:

[ev= 2212 = / exp{z2Ez +ZEZ + uz + uz}du(z)
B 1
\/det(Id — 4EE)

exp{uE(Id — AEE) 'u+u(ld — 4EE) 'u + uE(Id — AEE) ™ 'u}

(A.3.4)

To calculate || f||* write Equation (A.3.3) in an another way. Put K := (Id— F)(Id+ F)~! and
Z:= VK Y(Id+ F) 'u € C". Using the change of variable y = VK it is easy to check that

F@) = FVETy) = cexp{ulld + F) /KTy - Ly

-_n n z2
=ct? (2m) 1D (y)e >
w(ld+ F)'K-YId+ F) 'u

2
uw(ld+ F) '(Id — F)™u
2

=t (21) 10! (VK ) exp{

}

=t (21) 10! (VK ) exp{ }. (A.3.5)

Applying equation (4.2.1) together with (A.3.5) we get:

£ 72y = t7(2m)2 exp{u(ld+ F) "' (Id — F)"'u} | ®L(VEK)||?
ol

det VK
t(2m) 2

= det T P exp{u(Id+ F)"'(Id — F) 'u}

x exp{u(ld+ F)"*(Id — F) 'u}. (A.3.6)

= At (2m) 2 exp{u(ld + F)"Y(Id — F)"'u}

Comparing (A.3.4) and (A.3.6) we obtain:

\ Id— F)(Id + F)™" _ _ _
¢ = r(om)-t, A= WA+ B)7 ) B — 4EE) ' + u(1d — AEE)'u
det(Id — AEE)

+uB(Id — 4EE) u —u(Id+ F)'(Id — F) ‘v —u(Id + F) ' (Id — F)—la}.

]
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