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0. Introduction

0.1. The problem

A major open problem in differential geometry is to decide whether a given
smooth manifold admits a Riemannian metric of positive scalar curvature or
not. This question has attracted a lot of attention over the last decades since it
is both mathematically intriguing as well as important for applications in the
realm of mathematics and physics. We only name Seiberg-Witten theory and
the Einstein-Hilbert action here.

Let M be a smooth (compact or non-compact) manifold (with or without)
boundary. As stated above the central problem we are interested in within
this thesis is whether or not M admits a Riemannian metric gij whose scalar
curvature

κ =
∑

gijRkijk

is an every positive function. Each sphere Sn (for n ∈ N≥2) and each (real,
complex or quaterionic) projective space admits a Riemannian metric of posit-
ive scalar curvature. The same is true for each compact semi-simple Lie group.
By [15] no torus Tn (for n ∈ N) admits a Riemannian metric of positive scalar
curvature. It is well-known that each compact manifold with dim(M) ≥ 3 and
each complete non-compact manifold with dim(M) ≥ 5 admits a metric of con-
stant negative scalar curvature, see [25] and [4]. The existence of a Riemannian
metric of positive scalar curvature on the other hand is non-trivially linked to
the topology of the manifold. The first important result in this direction, due
to Lichnerowicz, shows that the A-hat-genus Â(M) of a closed spin manifold
M must vanish in order for the manifold to admit a metric of positive scalar
curvature. Here the A-hat genus is a topological datum of the manifold defined
via the Pontryagin classes of M and Hirzebruch’s calculus of multiplicative se-
quences. This result is obtained by means of the Atiyah-Singer index theorem
and Lichnerowicz’ astute observation that the square of the Dirac operator
induced by the spin structure satisfies the equation

D2 = ∇∗∇+
κ

4
id .

This interplay between index theory of Dirac-type operators and positive scalar
curvature was refined in later years and accumulated in the Gromov-Lawson-
Rosenberg Conjecture which gives both a necessary and sufficient condition for
a compact spin manifold (with dim(M) ≥ 5) to admit a metric of positive scalar
curvature, and links this question to the K-theory of the group C∗-algebra of
the fundamental group π = π1(M) of M . This conjecture is known to be true
in many cases but also known to fail in general, see [24] or [41].
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0. Introduction

0.2. Presentation of results

This thesis has two main results, which we set out to describe next.

The first result is a vanishing theorem for coefficient-versions of the higher
Roe indices, and is stated as Theorem 1.4.28 in Subsection 1.4.6. It gives
a generalization of a result previously obtained by Roe [37] and Yu [49]. A
similar result was obtained by Block and Weinberger [5] based on previous
work by Bunke [6]. After stating the result below we compare it briefly with
the one of Block and Weinberger. Our result reads as follows.

0.2.1 Theorem (Vanishing theorem). Let (M, g) be non-compact complete
Riemannian spin manifold whose scalar curvature is uniformly positive out-
side of a compact subset. Then the even (if dim(M) is even) and odd Roe index
with coefficients in the group C∗-algebra A = C∗π of the fundamental group
π = π1(M)

ind0(D) ∈ K0(C∗(M,A))

and
ind1(D) ∈ K1(C∗(M,A))

vanish. Here D : Γ(M,S) −→ Γ(M,S) with S = ΣM ⊗ VM is the twisted Dirac
operator obtained by twisting the spinorial Dirac operator of (M, g) with the
Mishchenko line bundle (VM ,∇VM ).

As indicated above this result was previously known for the untwisted spinorial
Dirac operator and the usual Roe indices (i.e. those with complex coefficients).

Our vanishing theorem bears similarities to the Bochner-Lichnerowicz theorem
of Block and Weinberger [5, Thm. 4.8] which reads as follows.

0.2.2 Theorem (see [5]). Let (M, g) be an n-dimensional complete Rieman-
nian spin manifold with fundamental group π = π1(M). Let f : M −→ R be a
smooth and proper map and N = f−1(t) a regular submanifold (compact and of
codimension 1) corresponding to a regular value t ∈ R. If the scalar curvature
of the Riemannian manifold is uniformly positive outside a compact subset, the
higher index à la Rosenberg

indC∗rπ(DN ⊗ (VM )|N ) = [Ct ⊗ f ∗ ⊗CM ] ∈ Kn−1(C∗rπ)

vanishes. (That this index is described by a certain correspondence Ct⊗f ∗⊗CM
in the sense of Connes and Skandalis is the content of [5, Thm. 3.4].)
Notice that the given index is not the usual Rosenberg α-index α(N) :=
indC∗rπ1(N)(DN ⊗ VN ) lying in K∗(C

∗π1(N)).

This result is referred to as ‘equivariant version of Roe’s partitioned index
theorem’ in [8, p. 7]. Indeed, it is pointed out in [5, p. 389] that the theorem
can be reduced to Roe’s partitioned manifold index theorem when π is trivial.
We note that though both results assume that the scalar curvature is positive
at infinity, the manifold M in our vanishing theorem has not to be ‘partitioned’
by a codimension one submanifold N . Furthermore, the considered indices lie
in different K-theory groups.
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0. Introduction

The partitioned manifold index theorem by Roe has recently been extended by
Zadeh [51] to a coefficient version. As an application of our vanishing result,
one can obtain a codimension two obstruction result similar to the one given by
Gromov and Lawson [16, Thm. 7.47] using Zadeh’s version of Roe’s theorem.

Our vanishing theorem implies together with the coefficient version of Roe’s
index theorem the following result which the reader should compare with the
Bochner-Lichnerowicz theorem of Block and Weinberger stated above.

0.2.3 Theorem. Let (M, g) be an n-dimensional complete Riemannian spin
manifold with fundamental group π = π1(M). Let f : M −→ R be a smooth
and proper map and N = f−1(t) a regular submanifold (compact and of codi-
mension 1) corresponding to a regular value t ∈ R. If the scalar curvature of
the Riemannian manifold is uniformly positive outside a compact subset the
Rosenberg α-index of N

α(N) = indC∗π1(N)(DN ⊗ VN ) ∈ Kn−1(C∗π1(N))

vanishes, provided there exists a flat bundle E over M with E|N = VN . More
generally, we have: If E is a flat bundle over M , then the index of DM ⊗ E is
related to the index of DN ⊗ E|N by

ζN (indC∗π1(M)(DM ⊗ E)) = indC∗π1(N)(DN ⊗ E|N )

where
ζN : Kn(C∗(M,C∗π)) −→ Kn−1(C∗π1(N))

is a certain homomorphism induced by f , constructed in Subsection 1.5.3.

Thus the vanishing of indC∗π1(M)(DM ⊗ E) (following from Theorem 0.2.1) is
the reason for the vanishing of α(N). This can sometimes be used to conclude
from the non-existence of a Riemannian metric of positive scalar curvature on
a submanifold the non-existence of such a metric on the ambient manifold. The
codimension two obstruction theorem of Section 1.6 is such an application.

The second result is a counterexample to a recent conjecture from [7] giving
necessary and sufficient conditions for the existence of a Riemannian metric
of positive scalar curvature on so-called (compact) totally non-spin manifolds.
This result is stated as Proposition 2.3.3 in Section 2.3 of Chapter 2. Here a
totally non-spin manifold is one for which neither the manifold nor its universal
covering admits a spin structure. Nevertheless the manifolds considered by the
conjecture are assumed to be at least orientable, and it reads as follows.

0.2.4 Conjecture (see [7]). Suppose that M is a compact oriented totally non-
spin manifold, with fundamental group π and of dimension n ≥ 5. Let f : M −→
Bπ be the composition of the classifying map c : M −→ Bπ of the universal
covering of M , and the natural map Bπ −→ Bπ. Denote by [M ] the fundamental
class of M in Hn(M). Then M admits a metric of positive scalar curvature if
and only if f∗[M ] vanishes in Hn(Bπ).

Here Bπ is the classifying space of the group π and Bπ is the (maybe less
familiar) classifying space for proper actions.
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0. Introduction

0.3. Organization of this thesis

The whole work is divided in two chapters, each chapter bringing one of the
two main results announced in the previous section. Finally, there is a brief
appendix with auxiliary results used in the proof of Theorem 1.4.27.

The first chapter deals with the vanishing theorem for the coarse indices. We
begin in Section 2 by briefly recapitulating the definition of the coarse C∗-
algebra (with coefficients) and of a relative version of this algebra, which will
be used in the proof of the vanishing theorem. In Section 3 we proceed to first
discuss Kucerovsky’s functional calculus [28] for regular operators on Hilbert
C∗-modules which is then used to define coefficient version of the coarse indices
in a second step. In the final part of Section 3 these are shown in the usual
way to be obstructions to the existence of a metric of uniform positive scalar
curvature and thus are suitable to investigate the existence of metrics of positive
scalar curvature via covering spaces. Section 4 contains the vanishing theorem
and is the central part of the first chapter. The proof relies on two auxiliary
results. The first is contained in Subsection 1.4.4 and 1.4.5 and shows that the
inclusion of the compact operators into the Roe C∗-algebra induces the trivial
map in K-theory. This is proven for even and odd K-theory in Subsection 1.4.5
and in a different way for even K-theory in the preceding Subsection 1.4.4.
Though the proof of the former is more general the last is more illustrative. The
second auxilliary result is contained in Subsection 1.4.6 and roughly states that
some normalized function of the twisted spinorial Dirac operator is a compact
operator if the scalar curvature is positive at infinity. Chapter 1 concludes with
a discussion of the coefficient version of Roe partitioned manifold index theorem
and the derivation of a geometric application of the vanishing theorem in the
final Sections 5 and 6, respectively.

The second chapter is rather brief and contains after an introduction and some
preparatory remarks the above announced counterexample
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1. Coarse index theory and positive
scalar curvature

1.1. Introduction

The main objective of this chapter is to formulate and prove a vanishing theorem
for the coarse indices of certain Dirac operators. More specifically, the class of
operators we study consists of twisted spinorial Dirac operators on complete
Riemannian spin manifolds where the twisting bundle is the Mishchenko line
bundle of the underlying spin manifold. In coarse index theory one studies
certain higher indices of Dirac operators like these. These higher indices take
values in the K-theory of the coarse C∗-algebra (or Roe C∗-algebra) associated
with the metric structure of the underlying Riemannian manifold. The term
‘coarse’ is used because the assignment of a Riemannian manifold (or more
generally a proper metric space) to the K-theory of its associated coarse C∗-
algebra becomes functorial with respect to so-called coarse maps which appear
in the study of the large scale geometry of these spaces. For a more detailed
account of coarse index theory and Roe’s coarse geometry we refer the interested
reader to [21], [37], [38] and [40].

In Section 2 of this chapter we introduce the coarse C∗-algebra associated with
a representation ρ : C0(X) −→ L ∗

A(H ) of the C∗-algebra of continuous functions
on a metric space X vanishing at infinity by adjointable operators on a Hilbert
A-module. In this kind of generality the notion of a coarse C∗-algebra already
appeared in [20]. After introducing a relative version of the coarse C∗-algebra
which will be important in the course of the proof of the targeted vanishing the-
orem, we introduce the coarse indices in Section 3. For this purpose we briefly
recall the notion of a regular operator on a Hilbert C∗-module and describe
Kucerovsky’s [28] functional calculus for these operators. After this we can
define the coarse indices and show that they are obstructions to the existence
of uniform positive scalar curvature metrics. In the following Section 4 we state
the announced vanishing theorem. This will generalize a previously known ver-
sion for the case A = C, which is due to Roe [37] and Yu [49]. The original
proofs of Roe and Yu are based on the finite dimensionality of the L2-kernel of
the spinorial Dirac operators on a complete Riemannian spin manifold whose
metric has positive scalar curvature outside of a compact subset. We briefly
review this result of Gromov and Lawson [16] in Subsection 1.4.2. After some
preparation in Subsection 1.4.3, we show in Subsection 1.4.4 that the map in-
duced by the inclusion of the compact operators in the Roe C∗-algebra vanishes
in even K-theory. An analogous result holds for the odd K-theory as we show
in Subsection 1.4.5 by means of a more general result, which applies both to
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1. Coarse index theory and positive scalar curvature

the even and odd case. The generalized version of the vanishing theorem will
be given in Subsection 1.4.6. In the following final parts of this chapter we
recall Roe’s partitioned manifold index theorem in Section 5 and describe in
Section 6 how this theorem together with the vanishing theorem can be used
to prove a codimension two-obstruction theorem in style of the one by Gromov
and Lawson [16, Thm. 7.47].

1.2. The coarse C∗-algebra

In this section we introduce modules over metric spaces and their associated
coarse C∗-algebra. We will assume that the reader is familiar with the notion of
a Hilbert C∗-module. An introduction (and much more) to Hilbert C∗-modules
can be found in [34], [43], [44] or [48].

1.2.1 Notation. If A is a C∗-algebra and H a Hilbert A-module, we denote
by L ∗

A(H ) and KA(H ) the C∗-algebra of all adjointable operators and of all
compact operators1 on H , respectively. Likewise, UA(H ) denotes the set of all
unitary operators on H . For S, T ∈ L ∗

A(H ) we write S ∼ T if S−T ∈ KA(H ).

Let X be a locally compact2 metric space and H a Hilbert A-module, where A
is a unital (complex) C∗-algebra. We introduce the following language: An X-
module structure for H is a ∗-homomorphism ρ : C0(X) −→ L ∗

A(H ), i.e. a
representation of the C∗-algebra C0(X) by adjointable operators on H . An X-
module is a pair (H , ρ) consisting of a Hilbert A-module H and an X-module
structure ρ for H .

The following is our main example.

1.2.2 Example. Let X = M be an oriented Riemannian manifold, A a
unital C∗-algebra, and H = L2(M,E) the Hilbert A-module of square-
integrable sections of a bundle π : E −→M of Hilbert A-modules (here integra-
tion is with respect to the Riemannian-Lebesgue measure given by the metric
and the orientation). This becomes an X-module via the ∗-homomorphism
ρ : C0(X) −→ L ∗

A(H ) for which ρ(ϕ) = Mϕ is the operator given by multiplying
sections of E by ϕ. We will often use ρ(ϕ) in this sense for ϕ ∈ C(X) not
necessarily in C0(X).

1.2.3 Remark. Sometimes it is useful to impose additional requirements on ρ,
such as for example that ρ should be non-degenerate (i.e. the image of the
action is dense) and ample (i.e. no non-zero element acts via ρ as a compact
operator). These conditions are fulfilled in Example 1.2.2 and can be used to
make the assignment of a metric space X to the K-theory of its coarse C∗-
algebra (to be introduced below) functorial by introducing the notion of ‘coarse
maps’ between such spaces. Cf. [21, Def. 5.1.3] and [21, p. 149 f.], or [38, p.
19].

1See Definition 1.4.10 later in this chapter.
2We assume this because we want that C0(X) is C∗-algebra. In addition to this, this as-

sumption will allow us to construct cut-off functions later on.
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1. Coarse index theory and positive scalar curvature

1.2.4 Notation. Points in X are denoted x, y, z, etc. Elements of C0(X) are
denoted by ϕ, ψ, etc. Elements of H are denoted u, v, etc.

1.2.5 Definition. Let (H , ρ) be an X-module.

(i) The support of an element u ∈ H , denoted by supp(u), is the comple-
ment in X of the following subset⋃

{U ⊂ X ; U is open and ∀ϕ ∈ C0(U): ρ(ϕ)u = 0} .

(ii) The support of an operator T ∈ L ∗
A(H ), denoted by supp(T ), is the

complement in X ×X of the following subset

{(x, y) ∈ X ×X ; ∃ϕ,ψ ∈ C0(X) with ϕ(x), ψ(y) 6= 0: ρ(ϕ)Tρ(ψ) = 0} .

Denote by Hcpt the set of all compactly supported elements in H .

(iii) An operator T ∈ L ∗
A(H ) is pseudolocal if [T, ρ(ϕ)] ∈ KA(H ) holds for

any ϕ ∈ C0(X). The C∗-algebra of all pseudolocal operators is denoted
by Ψ0(X).

(iv) An operator T ∈ L ∗
A(H ) is locally compact if both ρ(ϕ)T ∈ KA(H )

and Tρ(ϕ) ∈ KA(H ) hold for any ϕ ∈ C0(X). The C∗-algebra of all
locally compact operators is denoted by Ψ−1(X).

(v) An operator T ∈ L ∗
A(H ) has finite propagation3 if there exists R > 0

such that ρ(ϕ)Tρ(ψ) = 0 for all ϕ,ψ ∈ C0(X) with d(supp(ϕ), supp(ψ)) ≥
R. The infimum over all such R is called the propagation of T .

(vi) Call (H , ρ) admissible if Hcpt is dense in H , and one has ρ(ϕ)u = u,
whenever u ∈ Hcpt and ϕ ∈ C(X) with ϕ|supp(u) = 1. Furthermore, we
require u = 0 if and only if supp(u) = ∅.

One readily verifies that Ψ−1(X) is a C∗-ideal in Ψ0(X).

1.2.6 Notation. We will denote the set of all locally compact operators T ∈
Ψ−1(X) which are of finite propagation by Ψ−1

fp (X).

The next lemma gives another characterization of finite propagation operators.

1.2.7 Lemma. Let X be a locally compact metric space and (H , ρ) an admiss-
ible X-module. The following are equivalent:

(i) The operator T ∈ L ∗
A(H ) has finite propagation.

(ii) There exists R > 0 such that supp(Tu) ⊂ B(supp(u);R) holds for every
element u ∈H .

3Finite propagation operators are also often called controlled operators or operators of
bounded propagation.
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1. Coarse index theory and positive scalar curvature

Proof. “(i) =⇒ (ii)”: Let R > 0 be as in (v) of Definition 1.2.5. We show that
x /∈ B(supp(u);R) implies

x ∈
⋃
{U ⊂ X ; U is open and ∀ϕ ∈ C0(U): ρ(ϕ)u = 0} .

By assumption, there exists a small ε > 0 such that x ∈ U where U is the open
set U := X \B(supp(u);R+ ε). Furthermore, one has for any ϕ ∈ C0(U)

ρ(ϕ)Tu = ρ(ϕ)Tρ(ψ)u = 0 .

Here ψ ∈ C0(X) is a function with ψ|supp(u) = 1 and ψ|X\B(supp(u);ε) = 0.
Such a function ψ exists by [30, Section 2.4] since X is locally compact, and
ρ(ϕ)Tρ(ψ) = 0 holds because d(supp(ϕ), supp(ψ)) ≥ R.

“(ii) =⇒ (i)”: Let u ∈H and ϕ,ψ ∈ C0(M). Then one has for R > 0 as in (ii)

supp((ρ(ϕ)Tρ(ψ))u) ⊂ supp(ϕ) ∩ supp((Tρ(ψ))u)

⊂ supp(ϕ) ∩B(supp(ψ) ∩ supp(u);R)

⊂ supp(ϕ) ∩B(supp(ψ);R)

and the set on the RHS is empty. Thus supp((ρ(ϕ)Tρ(ψ))u) = ∅, which implies
ρ(ϕ)Tρ(ψ) = 0 by (vi) of Definition 1.2.5. �

We now introduce the C∗-algebra associated with an X-module.

1.2.8 Definition (Roe C∗-algebra of an X-module). Let (H , ρ) be an X-
module. The Roe C∗-algebra or coarse C∗-algebra of (H , ρ) is the C∗-
algebra generated by all operators T ∈ L ∗

A(H ) which are locally compact and
of finite propagation:

C∗(H , ρ) := C∗{locally compact, finite propagation ops.} .

Thus C∗(H , ρ) = C∗(Ψ−1
fp (X)).

Next we introduce a relative version of the Roe C∗-algebra. This will take a
preeminent role in the proof of the vanishing theorem in Section 1.4.6.

1.2.9 Definition (Relative Roe C∗-algebra). Let (H , ρ) be an X-module and
K ⊂ X a subset. An operator T ∈ L ∗

A(H ) with finite propagation is suppor-
ted near K if there exists R > 0 such that

ρ(ϕ)T = Tρ(ϕ) = 0

for each ϕ ∈ C0(X) with d(supp(ϕ),K) > R. The Roe C∗-algebra or coarse
C∗-algebra of (H , ρ) relative to K is the C∗-algebra generated by all T ∈
Ψ−1

fp (X) which are supported near K and is denoted by C∗K(H , ρ).

The following lemma gives another description of the relative Roe C∗-algebra.

9



1. Coarse index theory and positive scalar curvature

1.2.10 Lemma. Let X be a locally compact metric space, (H , ρ) an admissible
X-module and K ⊂ X a compact subset. Assume ρ extends to a unital C∗-
homomorphism on C(X). The following holds:

C∗K(H , ρ) = C∗{T ∈ Ψ−1
fp (X) ; T has property (∗)}

where the property (∗) reads as follows: for each ε > 0 there exists R > 0
such that ‖Tu‖ < ε for all compactly supported u ∈ H with ‖u‖ = 1 and
d(supp(u),K) > R.

Proof. “⊂”: Let T ∈ Ψ−1
fp (X) ⊂ L ∗

A(H ) be supported near K and ε > 0.
Then there exists R > 0 such that Tρ(ϕ) = ρ(ϕ)T = 0 for each ϕ ∈ C0(X)
with d(supp(ϕ),K) > R. Assume u ∈ H is compactly supported and
d(supp(u),K) > R + 1. Since X is locally compact, there exists by [30, Sec-
tion 2.4] a function ψ ∈ Ccpt(X) which is equal to 1 on a small neighbourhood
of supp(u) and whose support satisfies d(supp(ψ),K) > R. But this implies
‖Tu‖ = ‖Tρ(ψ)u‖ = 0 < ε showing that T satisfies (∗).

“⊃”: Let T ∈ Ψ−1
fp (X) be a locally compact operator of finite propagation

which satisfies property (∗). Let ε > 0. We show that there exists an operator
Tε ∈ Ψ−1

fp (X) which is supported near K and which satisfies ‖T −Tε‖ ≤ ε. This
implies T ∈ C∗K(H , ρ).

Given ε > 0, there exists R > 0 such that ‖Tu‖ < ε for all compactly supported
u ∈ H with ‖u‖ = 1 and supp(u) ∩ B(K;R) 6= ∅. By [30, Section 2.4] there
exists a function ϕε ∈ Ccpt(X) with B(K;R+ 1) ⊂ supp(ϕε) with ϕ|B(K;R+1)

=

1. Set Tε := Tρ(ϕε). Then Tε is locally compact and has finite propagation
since T is already of this kind. Furthermore, (∗) implies

‖Tu− Tεu‖ = ‖Tρ(1− ϕε)u‖ ≤ ε .

From this ‖T − Tε‖ ≤ ε follows because Hcpt is dense in H . �

1.2.11 Notation. From now on H will be as in Example 1.2.2. In this case
we write C∗(M ;A) for C∗(L2(M,E), ρ) or C∗(M,H ) if we want to make the
module H explicit. Analogously, C∗K(M ;A) stands for C∗K(L2(M,E), ρ).

Finally, we prove the following important lemma about the relative Roe C∗-
algebra of a compact subset.

1.2.12 Lemma. If K is compact, then C∗K(M ;A) equals KA(L2(M,E)).

Proof. “⊃”: Let (ej)j∈N be an orthonormal basis of L2(M,E) consisting of com-
pactly supported elements4. We claim that each elementary compact operator5

Θeja,ekb for j, k ∈ N and a, b ∈ A is supported near K and locally compact.
After proving this the claim follows since KA(L2(M,E)) is the C∗-algebra gen-
erated by all elementary compact operators, and since xn −→ x and. yn −→ y

4One can use Claim 6.3.14 from [21] to obtain such a basis for each ample non-degenerate
module.

5See Definition 1.4.10 for our notation.

10



1. Coarse index theory and positive scalar curvature

implies Θxn,y −→ Θx,y and Θx,yn −→ Θx,y. So let j, k ∈ N and a, b ∈ A. Since
each compact operator is locally compact, we only have to prove that Θeja,ekb

is supported near K.

To see that Θeja,ekb has finite propagation, choose R > 0 such that supp(ej) ⊂
B(supp(ek);R). Then supp(Θeja,ekbu) is contained in the ball around supp(u)
of radius R + diam(supp(ek)). In order to see that Θeja,ekb is supported near
K, choose R > 0 such that

supp(ej) ∪ supp(ek) ⊂ B(K;R) .

Then one has for any u ∈ L2(M,E)(
ρ(ϕ) Θeja,ekb

)
u = (ρ(ϕ)eja) 〈ekb, u〉 = 0

and

Θeja,ekb(ρ(ϕ)u) = (eja) 〈ekb, ρ(ϕ)u〉 = (eja)

(∫
M

(ek(x)b)ϕ(x)u(x) dx

)
= 0

for any ϕ ∈ C0(X) with supp(ϕ) ∩B(K;R) = ∅.

“⊂”: Let T ∈ Ψ−1
fp (X) be supported near K and choose R > 0 as in Defini-

tion 1.2.9. Since K is compact, there exists a covering (Uj)j∈N of M by open
subsets such that only finitely many of these have non-empty intersection with
B(K;R). Let (πj)j∈N be a partition of unity subordinated to (Uj)j∈N. We

choose the notation in such a way that {j ∈ N ; supp(πj) ∩ B(K;R) 6= ∅} is
{1, . . . , n}. If N ≥ n+ 1 and u ∈ L2(M,E), then one has

‖Tu−
n∑
j=1

ρ(πj)Tu‖ = ‖ρ(fN )Tu‖

with fN := 1 −
∑N

j=1 πj , since d(supp(πj),K) > R for j ≥ n + 1. The claim
follows now because ρ(fN ) −→ 0 (strongly). To see this let v ∈ Γcpt(M,E).
Then

‖ρ(fN )v‖2 =

∫
M
|fN (x)|2 ‖v(x)‖2 dx

becomes zero for sufficiently large N as fN (x) = 0 on supp(v) for such N . The
desired result follows now because Γcpt(M,E) is dense in L2(M,E). �

1.3. Coarse indices

Let (M, g) be a complete Riemannian spin manifold with Dirac operator D. In
this section we define the even and odd coarse index (class)

indp(D) ∈ Kp(C
∗(M,A)) , p = 0, 1 .

For this we will use the functional calculus for so-called regular operators on
Hilbert C∗-modules. We describe this calculus in the next subsection.

11



1. Coarse index theory and positive scalar curvature

1.3.1. The functional calculus for regular operators

The aim of this section is to introduce the functional calculus which in the end
will allow us to define the operator χ(D) (where χ is a normalizing function)
used in the definition of the coarse index. Before this, the calculus will be
used to introduce the wave semi-group {eisD}s∈R. This is a one-parameter
family of unitary operators by means of which we can express the functions
ϕ(D) of D (where ϕ is a function in C0(R)) via Fourier transformation as
(2π)−1

∫
ϕ̂(t) eitD dt. This will enable us to show that ϕ(D) belongs to the Roe

C∗-algebra for ϕ ∈ C0(R).

The notion of a regular operator on a Hilbert module is due to Woronowicz and
Baaj-Julg. Our presentation if based mainly on [28] and [50].

1.3.1 Definition (Regular operator). A closed6 A-linear operator
T : dom(T ) −→H with domain dom(T ) ⊂H is called regular if

(i) Both T and T ∗ are densely defined.

(ii) The range of 1 + T ∗T is dense.

We denote the set of all regular operators on the Hilbert A-module H by
RA(H ).

The following theorem guarantees that the Dirac-type operator we are mostly
interested in is regular in the sense of Definition 1.3.1.

1.3.2 Theorem. Let (M, g) be a complete Riemannian spin manifold with
spinor bundle ΣM . The closure

D : H1(M,S) −→ L2(M,S)

of the twisted spinoral Dirac operator, with twisting bundle the Mishchenko line
bundle,

D : Γcpt(M,S) −→ Γcpt(M,S) ⊂ L2(M,S)

with S = ΣM ⊗ VM , is regular and self-adjoint.

Proof. See [51, Lemma 2.1]. �

The next theorem introduces the continuous functional calculus for normal
regular operators.

Recall that the spectrum σ(T ) of an (unbounded) operator T on a Hilbert
C∗-module H over a C∗-algebra A is simply the spectrum of T viewed as an
(unbounded) operator on the particular Banach space H . Thus σ(T ) is the
complement of the resolvent set ρ(T ) ⊂ C, where λ ∈ ρ(T ) if and only if the op-
erator ρ(λ) := (T−λ I) : dom(D) −→H has a bounded inverse. Notice that ρ(λ)
is automatically A-linear but it is not clear whether ρ(λ) ∈ L ∗

A(dom(T ),H ) or
not. In particular, 0 ∈ σ(T ) if and only if T : dom(T ) −→H admits no bounded
inverse.

6This is defined exactly as in the Hilbert space case (i.e. A = C).
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1. Coarse index theory and positive scalar curvature

1.3.3 Theorem (Continuous functional calculus). Let T ∈ RA(H ) be a nor-
mal regular A-linear operator on the Hilbert A-module H . Then there exists a
map

πT : C(C) −→ RA(H ) , f 7→ f(T )

with the following properties:

(i) (idC)(T ) = T and πT (1) = I.

(ii) (f + λ g)(T ) = f(T ) + λ g(T ) for any λ ∈ C.

(iii) (f · g)(T ) = f(T ) ◦ g(T ) = g(T ) ◦ f(T ).

(iv) If f ∈ BC(C) is a bounded continuous function, then f(T ) is bounded.

(v) If f, g ∈ C(C) coincide on σ(T ), then f(T ) = g(T ).

(vi) Spectral mapping theorem: One has σ(f(T )) = f(σ(T )) for f ∈ C0(C).

(vii) If f ∈ BC(C), then ‖f(T )‖ = ‖f‖σ(T ) is the supremum of |f | on σ(T ).

(viii) If g ∈ BC(C), then (f ◦ g)(T ) = f(g(T )) for any f ∈ C(C).

(ix) f(T )∗ = f(T ∗).

(x) If T is bounded, then πT is the usual functional calculus of the normal
element T in the C∗-algebra L ∗

A(H ).

(xi) Continuity property: Assume (fn)n∈N ⊂ C(C) is a sequence of continuous
functions and F ∈ C(C) is such that |fn| ≤ |F |. If fn −→ f uniformly on
compact subsets, then fn(T ) −→ f(T ) pointwise on dom(F (T )).

(xii) The restriction πT : C0(C) −→ L ∗
A(E) is a C∗-algebra homomorphism.

Proof. We only need to prove (v), (vi) and (vii) here since a proof of the re-
maining statements can be found in [28, p. 473 ff., especially Prop. 16 on
p. 474]. Before doing so we briefly outline the construction of the functional
calculus from [28].

Let D ⊂ C denote the open unit disk. The map h : C −→ D, h(z) = z(1 +
|z|2)−1/2 is a bijection and using it we define a map · : C0(C) −→ C0(D) by
mapping g ∈ C0(C) to the function g ∈ C0(D) with g(h(z)) := h(g(z)). Next
let Q : RA(H ) −→ VA(H ) with Q(T ) := T (1 + T ∗T )−1/2 be the bounded
transform from [28, Prop. 10] and Φ: C(C) −→ L ∗

A(H ) with Φ(f) = f(Q(T ))
the functional calculus of the now bounded operator Q(T ). Because Q maps
L ∗
A(H ) ⊂ RA(H ) onto the open unit disc in L ∗

A(H ), see again [28, Prop.
10], and therefore if ‖f‖∞ < 1 whence also ‖f(Q(T ))‖ < 1, there exists Tf ∈
L ∗
A(H ) with Q(Tf ) = f(Q(T )) or Tf = Q−1(f(Q(T ))). Using this the desired

functional calculus πT : C0(C) −→ L ∗
A(H ) is finally defined by πT (g) := Tg.

This calculus for functions in C0(C) can be extended to a calculus for arbitrary
continuous functions as follows: by [28, Cor. 14] the algebraic tensor product
C0(C)�πT H is isomorphic to H via the map that sends the elementary tensors

13



1. Coarse index theory and positive scalar curvature

f � e onto f(T )e. Using this the given action πT : C0(C) −→ L ∗
A(H ) induces an

action πT : C(C) −→ RA(H ) as follows: let πT (f) for f ∈ C(C) be the operator
whose domain dom(πT (f)) is the linear span generated by those elementary
tensors h � e (with e ∈ H and h ∈ C0(C)) for which fh ∈ C0(C) and which
maps h� e to (fh)� e. With this definition f(T ) is clearly defined everywhere
whenever f is bounded.

(v) We can assume ρ(T ) 6= ∅. By linearity, it suffices to show that f(T ) = 0
if f vanishes on σ(T ). First of all, assume that f is compactly supported with
supp(f) ⊂ B(λ; ελ) where λ ∈ ρ(T ) and ελ > 0 is such that ‖(T −λ)−1‖ ≤ ε−1

λ .
Then we can write

f(T ) = f(T ) ◦ (T − λ)n ε−nλ ◦ (T − λ)−n εnλ

= f(T ) ◦ (T − λ)n ε−nλ ◦ (T − λ)−n εnλ

= fn(T ) ◦ (T − λ)−n εnλ

(1.3.1)

by (iii), where fn(t) := f(t) (t − λ)n ε−nλ . Here we have used that f(T ) is
continuous by (iv) and that T is closed. Thus

‖f(T )‖ ≤ ‖fn(T )‖ ‖(T − λ)−n εnλ‖ ≤ ‖fn‖∞

since πT is continuous with ‖πT ‖ = 1. Since supp(f) lies in B(λ; ελ) and is
compact, there exists 0 < q < 1 with |t − λ| ε−1

λ < q for all t ∈ supp(f),
implying ‖f(T )‖ = 0. Secondly, assume f compactly supported in ρ(T ). There
exist λ1, . . . , λn ∈ ρ(T ) and ε1, . . . , εn > 0 such that the balls B(λj ; εj) cover
supp(f) and such that ‖T −λj‖ ≤ ε−1

j . Let {π1, . . . , πn} be a partition of unity
subordinated to open covering given by these balls. Then (f ·πj)(T ) = 0 by the
previous part and thus also f(T ) = 0 in this case. Finally, we remark that each
f which vanishes on σ(T ) is a uniform limit of functions compactely supported
in ρ(T ) whose absolute values are bounded by |f |, so that (ix) implies also
f(T ) = 0 in this case.

(vi) The claim follows once we have shown a corresponding version of it holds for
q: indeed the spectral mapping theorem for the normal operator Q(T ) together
with σ(q(T )) = q(σ(T )) implies

σ(f(T )) = σ(πT (f))

= σ((f ◦ q−1)(Q(T )))

= (f ◦ q−1)(σ(Q(T )))

= (f ◦ q−1)(σ(q(T )))

= (f ◦ q−1)(q(σ(T )))

= f(σ(T ))

(1.3.2)

for each f ∈ C0(C). Here the inclusion “⊂” for the last equality is obvious. In
order to show the other inclusions “⊃” it suffices to show (f ◦ q−1)(q(σ(T ))) ⊃
f(σ(T )) (as the LHS in the inclusion is closed by the above). The latter then
easily follows from q(σ(T )) ⊃ q(σ(T )).
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1. Coarse index theory and positive scalar curvature

Furthermore, one can prove σ(f(T )) ⊂ f(σ(T )) for any f ∈ BC(C) directly in
the following way: let µ /∈ f(σ(T )) and let gµ : C −→ C be a bounded continuous
extension of the bounded continuous function on σ(T ) whose value in t ∈ σ(T )
is (f(t)− µ)−1. By (iii) and (v)

gµ(T ) ◦ (f(T )− µ I) = gµ(T ) ◦ (f(T )− µ I)

= (gµ · (f − µ idC))(T )

= πT (1)

= T

(1.3.3)

and likewise
(f(T )− µ I) ◦ gµ(T ) = (f(T )− µ I) ◦ gµ(T )

= ((f − µ idC) · gµ)(T )

= πT (1)

= T

(1.3.4)

Thus µ /∈ σ(f(T )). Here we have used that gµ(T ) and f(T ) are bounded.

Therefore σ(f(T )) ⊂ fσ(T )) and in particular σ(q(T )) ⊂ q(σ(T )).

We are left to prove q(σ(T )) ⊂ σ(q(T )). For this suppose there exists λ ∈ σ(T )
such that q(λ) /∈ σ(q(T )). Then there exists a bounded operator G which inverts
(q(T )− q(λ) I). Furthermore, there exists gλ ∈ BC(C) with (q(T )− q(λ) I) =
(T − λ I) gλ(T ). But this implies that the bounded operator G ◦ gλ(T ) inverts
(T−λ I) contradicting λ ∈ σ(T ). Thus q(σ(T )) ⊂ σ(q(T )) and as a consequence
thereof q(σ(T )) ⊂ σ(q(T )). To see that G ◦ gλ(T ) would really invert (T − λ I)
we notice that both

I = G ◦ (q(T )− q(λ) I)

= G ◦ (T − λ I) ◦ gλ(T )

= G ◦ (T − λ I) ◦ gλ(T )

= G ◦ gλ(T ) ◦ (T − λ I)

= G ◦ gλ(T ) ◦ (T − λ I)

(1.3.5)

and analogously
I = (q(T )− q(λ) I) ◦G

= (T − λ I) ◦ gλ(T ) ◦G
(1.3.6)

hold by (iii). Here we have used that T is closed and gλ(T ) is bounded to see
that (T−λ I)◦qλ(T ) is bounded, as well as that gλ(T ) and G are both functions
of Q(T ) and hence commute.

(vii) We have already seen ‖f(T )‖ ≤ ‖f‖∞ in the proof of part (v). But
by (v) we can replace ‖f‖∞ here by ‖f‖σ(T ). This can be seen the following
way: since f is bounded, σ(f(T )) is compact. Furthermore we know ‖f(T )‖ =
‖g(T )‖ = ‖g‖∞ by (v) for any g ∈ BC(C) which coincides with f on σ(T ).
If we assume ‖f(T )‖ > ‖f‖σ(T ) this yields a contradiction. Simply let φ be a
Urysohn function for the pair (σ(T ),C\U), where U is an open neighbourhood
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1. Coarse index theory and positive scalar curvature

of σ(T ), and set g := φ · f . On the other hand the spectral radius formula
together with (vi) implies

‖f(T )‖ ≥ sup{|z| ; z ∈ σ(f(T ))}
= sup{|w| ; w ∈ f(σ(T ))}
≥ sup{|w| ; w ∈ f(σ(T ))}
= ‖f‖σ(T )

(1.3.7)

and thus the desired relation. �

The following lemma is used in the proof of Theorem 1.3.5.

1.3.4 Lemma. Let W be the set of all functions ϕ ∈ C0(R) ∩ L1(R) such that
supp(ϕ̂) is compact7. Then there exists for each ϕ ∈ C0(R) a sequence (ϕn)n∈N
in W with ϕn −→ ϕ uniformly and |ϕn| ≤ |Φ| for a constant function Φ ∈ C(R).
In particular, W is dense in C0(R), and ϕn(D) converges strongly to ϕ(D) on
all of H according to part (viii) of Theorem 1.3.3

Proof. Let ψ ∈ C0(R). We will show that to each n ∈ N there exists a ϕn ∈W
such that

sup
t∈R
|ψ(t)− ϕn(t)| < 1

n
.

To achieve this let n ∈ N and choose first of all a Schwartz function fn ∈ S (R)
with

sup
t∈R
|ψ(t)− fn(t)| < 1

2n
.

Since C∞cpt(R) is dense in L1(R) and because of the Fourier inversion formula
we can find ϕn ∈W given by ϕn(t) =

∫
ϕ̂n(s) eist dt such that

sup
t∈R
|fn(t)− ϕn(t)| ≤ ‖f̂n − ϕ̂n‖1 <

1

2n
.

Thus

sup
t∈R
|ψ(t)− ϕn(t)| < 1

n

for this choice of ϕn. Furthermore, ‖ϕn‖∞ converges to ‖ψ‖∞, which allows to
obtain a function Φ ∈ C(R) as desired. �

Let D ∈ RC∗π(L2(M,S)) be as in Theorem 1.3.2. (Most of the following results
could be stated in more general form for an arbitrary self-adjoint operator
T ∈ RA(H ) instead of D.) One has σ(D) ⊂ R and can thus consider the
family {U(s)}s∈R given by the operators

U(s) := exp(isD)

for s ∈ R, which are obtained from the operator D by applying the functional
calculus πD to the bounded function f : R −→ C with f(t) := exp(ist).

The following theorem is the main result of this section.

7Here we use the notation used in [37, p. 45]. The set W contains, e.g., the sinus cardinalis,
which is given by sinc(t) = t−1 sin(t) for t ∈ R.
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1.3.5 Theorem. The following hold:

(i) The family {U(s)}s∈R is a one-parameter group of (bounded) unitary A-
linear operators, i.e. the map U : R −→ UA(H ), s 7→ U(s) is a group
homomorphism.

(ii) The one-parameter group {U(s)}s∈R solves the wave equation8 U ′(s) =
iDU(s) uniquely for the initial condition

lim
s−→0

U(s)u = u , u ∈ dom(D)

and is called the wave semigroup.

(iii) Each operator U(s) is an operator of finite propagation in the sense of
Definition 1.2.5.

(iv) One can express the functional calculus of D with {U(s)}s∈R via Fourier
transformation as

ϕ(D) =
1

2π

∫
R
ϕ̂(s)U(s) ds (1.3.8)

for ϕ ∈ W , where W is the set of all (bounded) smooth functions
ϕ ∈ C∞(R) ∩ L1(R) such that ϕ̂ ∈ C∞cpt(R) is compactly supported. Here
Equation (1.3.8) holds in the weak sense, i.e. one has

〈ϕ(D)u, v〉 =
1

2π

∫
R
ϕ̂(s) 〈U(s)u, v〉 ds

for u, v ∈ Γcpt(M,S) and the right-hand side is the Riemann integral of a
bounded continuous function. Cf. [21, Prop. 10.3.5].

(v) As a consequence of (iii) and (iv), one has ϕ(D) ∈ C∗(H , ρ) for ϕ ∈
C0(R).

Proof. (i) It follows from part (iv) of Theorem 1.3.3 that each operator U(s) is
bounded. That these operators are unitary, follows from (vi) of Theorem 1.3.3
since D is self-adjoint by Theorem 1.3.2: we have

U(s)∗ = exp(−isD∗) = exp(−isD) = U(−s) .

Analogously, we obtain from (iii) of Theorem 1.3.3 that

U(s+ s′) = exp(i(s+ s′)D) = exp(isD) ◦ exp(is′D) = U(s) ◦ U(s′) .

Thus U : R −→ UA(H ) is a group homomorphism.

(ii) We show that for each s0 ∈ R the limit

U ′(s0) = lim
s−→s0

U(s)− U(s0)

s− s0

8Here the limit U ′(s) exists pointwise and equals iDU(s).
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exists pointwise and equals iDU(s0). For this let (sn)n∈N be any sequence
converging to s0 and C > 0 such that |sn − s0| < C for each n ∈ N. We have

U(sn)− U(s0)

sn − s0
= fn(D)

with fn(t) = (exp(isnt) − exp(is0t))(sn − s0)−1. Obviously, fn −→ f pointwise
for f(t) := it exp(is0t). As we show next, the convergence fn −→ f is even
uniform on compact subsets. For this end, assume |t| ≤ B. A straightforward
computation then shows

|fn(t)− f(t)| ≤

 ∞∑
j=2

Cj−2Bj

j!

 |sn − s0|

which proves that fn −→ f uniformly on [−B,B]. An easy computation shows

|fn(t)| = |exp(isnt)− exp(is0t)

sn − s0
|

= | 1

sn − s0

(∫ snt

s0t
eiτ dτ

)
|

≤ |t| .

Since the sequence of functions (fn)n∈N also converges uniformly on compact
subset, we can now conclude from part (viii) of Theorem 1.3.3 that fn(D) −→
f(D) pointwise on dom(D).

In order to show that the wave equation is uniquely solvable for the given initial
condition, notice that the self-adjointness of D implies

d

ds
‖C(s)u‖2 = 0

for any u ∈ dom(D), whenever {C(s)}s∈R is a solution of the wave equation.

(iii) Cf. [21, Prop. 10.3.1] and its proof.

(iv) Let u, v ∈ Γcpt(M,S). Suppose supp(ϕ̂) ⊂ [−R,R] for R > 0. As the fol-
lowing remarks show, the function s 7→ 〈U(s)u, v〉 of s ∈ [−R,R] is continuous.
If (sn)n∈N is a sequence in [−R,R] converging to s0, then we can first of all
estimate as follows:

|〈(U(sn)− U(s0))u, v〉| ≤ ‖(U(sn)− U(s0))u‖ ‖v‖
≤ ‖U(s0)‖ ‖(U(sn − s0)− I)u‖ ‖v‖ .

Set hn := sn − s0. The operator U(hn)− I is the operator obtained from D by
applying the function fn(t) := exp(ihnt) − 1 to it. Notice that (writing fh(t)
for exp(iht)− 1)

|fh(t)| = |
∫ ht

0
eiτ dτ | ≤ |h| |t| .
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So certainly |fh(t)| ≤ |F (t)| for F being a constant multiple of the identity
function, provided the variable h is bounded. In particular, dom(F (D)) =
dom(D). Also,

|fh(t)| ≤ C|h|

for |t| ≤ C whenever C > 0, so that fn −→ 0 uniformly on compact subsets
and thus fn(D)u −→ 0 for every u ∈ dom(D) by (viii) of Theorem 1.3.3. Thus
1

2π

∫
R ϕ̂(s) 〈U(s)u, v〉 ds exists as an integral of a continuous function on a com-

pact interval.

By the Fourier-Inversion Theorem one has ϕ(t) = 1
2π

∫ +R
−R ϕ̂(s) eist ds. Fur-

thermore, there exists a sequence (τn)n∈N of step functions which uniformly
converges to ϕ̂. Since the sequence (fn)n∈N with fn(s) := eist τn of gap con-
tinuous functions converges uniformly to the function given by s 7→ ϕ̂(s) eist,
we have

ϕ(t) =
1

2π

∫ +R

−R
ϕ̂(s) exp(ist) dt =

1

2π
lim
n−→∞

∫ +R

−R
τn(s) eist ds

for any t ∈ R. Set ϕn(s) := 1
2π

∫ +R
−R τn(s) eist ds. Let u ∈ H . We claim

ϕn(D)u −→ ϕ(D)u. This follows from the following estimate

‖(ϕ(D)− ϕn(D))u‖ = ‖ 1

2π

(∫ +R

−R
(ϕ̂(s)− τn(s)) eisD ds

)
u‖

≤ 1

2π

∫ +R

−R
|ϕ̂(s)− τn(s)| ‖eisDu‖ ds

=
1

2π

∫ +R

−R
|ϕ̂(s)− τn(s)| ‖u‖ ds .

From this we can conclude

〈ϕ(D)u, v〉 = lim
n→∞

〈ϕn(D)u, v〉

= lim
n→∞

〈 1

2π

(∫ +R

−R
τn(s) eisD ds

)
u, v〉

= lim
n→∞

1

2π

∫ +R

−R
τn(s)〈eisDu, v〉 ds

=
1

2π

∫ +R

−R
〈ϕ̂(s)eistu, v〉 ds .

Here we have used for the second inequality the fact that(∫ b

a
A(s)ds

)
.u =

∫ b

a
(A(s).u) ds

for u ∈ E, whenever A : [a, b] −→ L (E) is a continuous path of bounded oper-
ators on a Banach space E.

(v) That ϕ(D) is a locally compact operator for ϕ ∈ C0(R) can be proven along
the lines of [21, Prop. 10.5.2].
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1. Coarse index theory and positive scalar curvature

We are left to prove that ϕ(D) is a finite propagation operator. This will follow
from the finite propagation property of the operator U(s) = eisD as follows.
First of all, let us assume ϕ ∈ W and supp(ϕ̂) ⊂ [−R,R]. In this case we can
compute

〈ρ(f)ϕ(D)ρ(g)u, v〉 = 〈ϕ(D)ρ(g)u, ρ(f)∗v〉

=

∫ +R

−R
ϕ̂(s) 〈U(s)ρ(g)u, ρ(f)∗v〉 ds

=

∫ +R

−R
ϕ̂(s) 〈ρ(f)U(s)ρ(g)u, v〉 ds .

whenever f, g ∈ C0(M). From this the desired result follows since U(s) has
propagation |s|.

According to Lemma 1.3.4 there exists for every ϕ ∈ C0(R) a sequence (ϕn)
in W which converges uniformly to ϕ, and Part (ix) of Lemma 1.3.3 implies
ϕn(D) −→ ϕ(D) in norm. Thus also ϕ(D) ∈ C∗(H , ρ) in this case. �

1.3.2. Definition of the coarse indices

Let D∗(H , ρ) be the C∗-algebra generated by all controlled and pseudolocal
T ∈ L ∗

A(H ). The C∗-algebra C∗(H , ρ) is an ideal in the unital C∗-algebra
D∗(H , ρ) and we can consider the associated six term exact sequence in K-
theory

K0(C∗(H , ρ)) −−−−→ K0(D∗(H , ρ)) −−−−→ K0(Q∗(H , ρ))

∂1

x y∂0
K1(Q∗(H , ρ))) ←−−−− K0(D∗(H , ρ)) ←−−−− K1(C∗(H , ρ))

.

Here we have written Q∗(H , ρ) for D∗(H , ρ)/C∗(H , ρ) for reasons of space.

For S, T ∈ D∗(H , ρ) we write S ∼ T if S − T ∈ C∗(H , ρ).

Let χ ∈ C∞(R) be a normalizing function, i.e. an odd function χ ∈ C∞(R)
with χ(0) = 0 and limt−→±∞ χ(t) = ±1. Set

• ϕ := 1− χ2 ∈ C0(R) and

• χ̄ := (1 + χ)/2.

By part (v) of Theorem 1.3.5 we have

χ̄(D)2 =

(
1 + 2χ+ χ2

4

)
(D) =

(
1 + 2χ+ (1− ϕ)

4

)
(D) ∼ χ̄(D) .

Hence χ̄(D) defines a projection in Q∗(H , ρ) and consequently an element in
the K0-group of this quotient C∗-algebra. Analogously, if H = H0 ⊕H1 and
ρ = ρ0 ⊕ ρ1 is in addition graded such that

D =

[
0 D1

D0 0

]
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1. Coarse index theory and positive scalar curvature

with respect to this grading, and U : H0 −→ H1 is a unitary isomorph-
ism which covers9 the identity idM : M −→ M , then it can be shown that
U∗χ(D0) : H0 −→ H0 defines a unitary element in the quotient C∗-algebra
Q∗(H0, ρ0) and therefore an element in the K1-group of this C∗-algebra. Using
these elements we define the coarse index as follows:

1.3.6 Definition (Coarse index). Let χ ∈ C∞(R) be a normalizing function
and χ̄ := (1 + χ)/2. The coarse index of D is the following class:

indp(D) :=

{
∂1[U∗χ(D0)] , p = 0;

∂0[χ̄(D)] , p = 1.

We call ind0(D) ∈ K0(C∗(H , ρ)) and ind1(D) ∈ K0(C∗(H0, ρ0)) the even and
odd index of D, respectively.

One can show that the indices indp(D) ∈ Kp(C
∗(M ;A) (for p = 0, 1) are well-

defined, that is, they do neither depend on the particular choice of the nor-
malizing function χ nor the choice of the unitary U : H0 −→ H1 covering the
identity. For details we refer the interested reader to [38].

The following Theorem 1.3.7 shows that the coarse indices of a Dirac operator
D are obstructions to the invertibility of D (acting on H1(M,S)). Using the
Lichnerowicz formula it follows that the coarse indices are obstructions to the
existence of uniform positive scalar curvature on the underlying manifold, see
Theorem 1.3.9. In Section 1.4.6 of this chapter we show that even more is true:
the coarse index is an obstruction to the existence of a metric which is uniformly
positive outside a compact subset. This will be important for applications, see
the proof of Theorem 1.6.9 later in this chapter.

1.3.7 Theorem (Coarse index and spectrum). If indp(D) 6= 0, then the fol-
lowing holds for the spectrum of D:

1. Graded case (p=0): One has 0 ∈ σ(D).

2. Ungraded case (p=1): One has σ(D) = R.

Or, to put it negatively:

1’. Graded case (p=0): One has ind0(D) = 0 if D is invertible.

2’. Ungraded case (p=1): One has ind1(D) = 0 if D+λ I is invertible for some
λ ∈ R.

Proof. 1. Graded case: Assume 0 /∈ σ(D). Then there exists a normalizing
function χ, which only takes the values ±1 on σ(D). Hence χ(D)2 = I and we
can compute as follows[

0 χ(D0)∗

χ(D0) 0

] [
0 χ(D0)∗

χ(D0) 0

]
=

[
χ(D0)∗χ(D0) 0

0 χ(D0)χ(D0)∗

]
=

[
I0 0
0 I1

]
.

9Cf. [21, Def. 6.9.3] for the this.
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1. Coarse index theory and positive scalar curvature

Hence U∗χ(D0) is unitary and thus defines an element in K1(D∗(H0, ρ0)). Be-
cause of the exactness of the six-term exact sequence we finally obtain

ind0(D) = (∂1 ◦K1(π))[U∗χ(D0)] = 0 .

2. Ungraded case: Assume there exists x0 ∈ R with x0 /∈ σ(D). Since σ(D)
is closed and whence the resolvent set ρ(D) is open, there exists ε > 0 with
(x0 − ε, x0 + ε) ⊂ ρ(D), and one can find a normalizing function χ ∈ C(R),
which is constantly −1 left of x0 − ε and constantly +1 on the right of x0 + ε.
Hence χ(D)2 = I, as χ2 = 1 on σ(D). Therefore χ(D) is an involution in the
Roe algebra C∗(H , ρ), which defines a K0-class[

χ(D) + I

2

]
∈ K0(C∗(H , ρ)) .

Because of the exactness of the six term exact sequence we thus obtain

ind0(D) = (∂0 ◦K0(π))[χ(D)] = 0 .

This completes the proof. �

1.3.8 Lemma. Let H be a Hilbert A-module. Assume T : dom(T ) −→H is an
self-adjoint regular operator with domain in H such that for some C > 0 the
inequality

‖Tu‖ ≥ C‖u‖

holds for any u ∈ dom(T ). Then T admits a bounded inverse.

Proof. We give a proof along the lines of [29, Lemma 3.1] and use the functional
calculus for T presented in Theorem 1.3.3. Suppose 0 ∈ σ(T ). Choose a function
f ∈ C0(R) with f(t) = 0 for |t| ≥ C/2 which has f(0) = 1 as its maximal
absolute value. Then the function g ∈ C0(R) with g(t) = tf(t) is such that
‖g‖∞ ≤ C/2. Therefore ‖g(T )‖ ≤ C/2 by (iv) of Theorem 1.3.3. Furthermore,
one has ‖f(T )‖ = 1 by part (iv) of Theorem 1.3.3. Therefore we can choose
u ∈ H such that ‖f(T )u‖ > 1/2. This implies by part (iii) of Theorem 1.3.3
that

‖Tf(T )u‖ = ‖g(T )u‖ ≤ C

2
< C ‖f(T )u‖ .

On the other hand ‖Tf(T )u‖ ≥ C‖f(T )u‖ by assumption. �

1.3.9 Theorem (Coarse index as obstruction to uniform positive scalar
curvature). Let (M, g) be a complete Riemannian spin manifold and

D : Γ(M,ΣM) −→ Γ(M,ΣM)

the spinorial Dirac operator, and E be a flat Hilbert A-module bundle over M .
If the scalar curvature scal of M satisfies scal ≥ C > 0 for some C > 0, then the
Roe indices indp(DE) (for p = 0, 1) of the twisted Dirac operator DE vanish.
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1. Coarse index theory and positive scalar curvature

Proof. We set S = ΣM ⊗E. Because E is flat, the Lichnerowicz formula takes
the form

D2
E = ∆S +

scal

4
idS .

Thus for every section u ∈ Γcpt(M,S) one has (because DE is formally self-
adjoint)

‖DEu‖2 = 〈DEu,DEu〉
= 〈D2

Eu, u〉

= 〈∆Su, u〉+ 〈scal

4
u, u〉

= ‖∇u‖2 +

∫
supp(u)

scal(x)

4
‖u(x)‖2 dx

≥ ‖∇u‖2 +
C

4
‖u‖2

≥ C

4
‖u‖2 .

More generally, one knows [16, Thm. 2.8] that dom(DE) is the closure of
Γcpt(M,S) with respect to the Sobolev 1-norm ‖u‖21 =

∫
M 〈u(x), u(x)〉 +

〈∇u(x),∇u(x)〉 dx and

‖DEu‖2L2(M,S) = ‖∇u‖2L2(M,S) +

∫
M

scal(x)

4
‖u(x)‖2 dx

for each u ∈ dom(DE). From this the claim follows from Lemma 1.3.8 applied
to the operator DE : H1(M,S) −→ L2(M,S) on L2(M,S). �

1.4. A vanishing theorem for the coarse

indices

1.4.1. Introduction

In this section we prove the following theorem (see Theorem 1.4.28):

Vanishing Theorem: Let (M, g) be an non-compact and complete Rieman-
nian spin manifold. Assume that K ⊂ M is a compact subset such that
the scalar curvature of the metric is uniformly positive outside of K. Then
indp(D) ∈ Kp(C

∗(L2(M,S)) vanishes for p = 0, 1. Here D : Γ(M,S) −→ Γ(M,S)
with S = ΣM ⊗ VM is the twisted Dirac operator obtained by twisting the
spinorial Dirac operator of (M, g) with the Mishchenko line bundle (VM ,∇VM ).

This kind of result was first obtained (independently) by Roe and Yu for the
(untwisted) spinorial Dirac operator10. See [36, Ch. 5, p. 68] and [49]. Ori-
ginally, both the proof by Roe as well as the one by Yu make use of a result

10The result is part of Yu’s thesis from 1991. He writes in [49] that he obtained a preprint
version of Roe’s Memoirs article [36] shortly afterwards. Yu’s article was received 1991 by
the publisher but was only published in 1997, which explains the time difference between
the publication of [36] and [49]
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1. Coarse index theory and positive scalar curvature

due to Gromov and Lawson on the finite-dimensionality of the L2-kernel of the
spinorial Dirac operator on a Riemannian spin manifold whose scalar curvature
is uniformly positive outside of a compact subset. We briefly review this result
and two of its proofs in Subsection 1.4.2. Since an analogous result is not avail-
able for the twisted Dirac operator, it became necessary to find another proof
for the vanishing theorem which would not rely on such a result. Nevertheless,
the main steps in proving the vanishing theorem will be essentially the same
(let A be the group C∗-algebra of the fundamental group of M):

1. Step: The map induced in K-theory by the inclusion i : KA(L2(M,S)) −→
C∗(M ;A) vanishes.

2. Step: The element in Kp+1(C∗(M,A)/D∗(M,A)) that is mapped to indp(D)
under the boundary map ∂p+1 in the six-term exact sequence can be
lifted to Kp+1(D∗(M,A)/KA(L2(M,S))).

From this the vanishing theorem will follow by the naturality of the six-term
exact sequence. The first step will be put in practice in Subsection 1.4.4 after
collecting some useful material on Hilbert C∗-modules in Subsection 1.4.3, and
in full generality in 1.4.5. The first proof is an adaptation of the one already
given by Yu [49] for the (untwisted) spinorial Dirac operator and the second,
more general one, uses an argument from [22]. For both proofs, the main part
of the argument is an ‘infinity swindle’ which makes use of the existence of a
geodesic ray in the non-compact and complete Riemannian manifold (M, g).
The adaptation of Yu’s proof, described in Subsection 1.4.4, uses the notion of
orthonormal bases for Hilbert C∗-modules and Kasparov’s Stabilization The-
orem. We summarize this and other preparatory material in Subsection 1.4.3.
In this subsection we will also show that L2(M,S) admits a countable orthonor-
mal basis and is thus isomorphic to the standard Hilbert A-module `2(A). This
will allow us in the sequel to identify the K-theory groups of KA(L2(M,S)) with
those of A. In the final Subsection 1.4.6 we show that the function I − χ(D)2

of the twisted Dirac operator lies in the ideal C∗K(M ;A) of C∗(M ;A) for at
least one normalizing function χ, provided the scalar curvature on the under-
lying Riemannian manifold is uniformly positive outside of a compact subset
K ⊂M . This immediately gives the second of the steps outlined above as will
be explained in more detail at the end of Subsection 1.4.6.

1.4.2. Finite-dimensionality of the L2-kernel

In [16] Gromov and Lawson gave two independent proofs for the fact that the
L2-kernel

kerD∗ = kerD ⊂ H1(M,S)

of the spinorial Dirac operator D on a complete non-compact Riemannian man-
ifold is finite-dimensional provided the scalar curvature of the manifold is uni-
formly positive outside a compact subset. Since this means that the projection
onto the kernel of the Dirac operator is a compact operator, this result im-
plies that the Dirac operator has vanishing coarse index. We set out to review
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1. Coarse index theory and positive scalar curvature

these results here and study whether they remain true if one twists with the
Mishchenko line bundle.

The following result is taken from [16, Theorem 3.2, p. 326].

1.4.1 Theorem (Gromov and Lawson). Let M be a complete Riemannian
manifold and D : Γ(M,S) −→ Γ(M,S) a generalized Dirac operator. If there
exists a compact subset K ⊂ M and a constant κ0 > 0 such that the scalar
curvature satisfies κ ≥ κ0 outside of K, then the L2-kernel

kerD = {u ∈ L2(M,S) ; Du = 0 (weakly)}
= {u ∈ L2(M,S) ; 〈u,D∗ϕ〉 = 0 , ∀ϕ ∈ Γcpt(M,S)}

is finite-dimensional. (Here D is the unique self-adjoint extension of D.) In
particular, if the fundamental group Γ := π1(M) of M is finite, then the L2-
kernel of DVM , the Dirac operator of M twisted by the Mishchenko line bundle
over M , is finite-dimensional.

Proof. Let u ∈ L2(M,S) with Du = 0. By elliptic regularity u is smooth. If we
choose κ1 > 0 such that κ1 ≥ −κ/4 on K, we can make the following estimate
(detailed derivation follows)

‖∇u‖2 + κ0 ‖u‖2M\K ≤ κ1 ‖u‖2K .

Derivation: κ ≥ κ0 in M \K implies

0 = 〈D2u, u〉

= ‖∇u‖2 + 〈κ
4
u, u〉

= ‖∇u‖2 +

∫
K
〈κ
4
u, σ〉x dx+

∫
M\K
〈κ
4
u, u〉x dx

≥ ‖∇u‖2 +

∫
K
〈κ
4
u, u〉x dx+ κ0

∫
M\K
〈u, u〉x dx

which gives the desired inequality. From ‖u‖2M = ‖u‖2K + ‖u‖2M\K . we obtain
from the above inequality the following:

1

κ0 + κ1
‖∇u‖2 +

κ0‖u‖2M
κ0 + κ1

≤ ‖u‖2K .

Let ε > 0 and choose an ε-dense subset {x1, . . . , xm} of K. Set H := kerD.
We claim dim(H) ≤ d with d := mr, where r := 2〈n〉 is the rank of the spinor
bundle of M . Suppose our claim is not true. Then there exists u0 ∈ H\{0} with
u0(xk) = 0 for 1 ≤ k ≤ d. (Concerning this: There exists a linear independent
subset {e1, . . . , ed+1} of kerD. We make the ansatz u0 =

∑d+1
j=1 λj ej with

λj ∈ C. From this we obtain the following m equations:

0 = u0(xk) =
d+1∑
j=1

λj ej(xk) , k = 1, . . . ,m .
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Over each of the balls B(x1, ε), . . . , B(xm, ε) we can identify sections of ΣM
with functions from the corresponding ball to Cr. Having done this, the above
m equations yield a homogeneous system of linear equations with d equations
and d + 1 unknowns. By the rank-nullity theorem a linear map from Cd+1 to
Cd has a non-trivial kernel. From this our claim follows.) Of course, we can
assume ‖u0‖M = 1.

Let Ω be an open neighbourhood of K. By Friedrichs’ Lemma we can find a
constant C > 0 such that

‖u‖C1,K ≤ C ‖u‖Ω
for each u ∈ Γ(Ω, S) with Du = 0. From this and because {x1, . . . , xm} is
ε-dense, one can conclude ‖u0(x)‖ ≤ Cε for all x ∈ K. But this implies

0 <
κ0

κ0 + κ1
≤ ‖u0‖2K ≤ C2ε2 vol(K)

for any ε > 0. �

The following result is also taken from [16, Theorem 3.7, p. 327] and proves
again that the L2-kernel of the Dirac operator on a complete non-compact
Riemannian manifold whose scalar curvature is uniformly positive outside of a
compact subset, is finite dimensional.

1.4.2 Theorem (Gromov and Lawson). Let M be a complete Riemannian
manifold and assume that the scalar curvature is uniformly positive outside of
a compact subset K ⊂ M . Then there exists a constant C > 0 such that the
Hilbert space sum

HC :=
⊕
|λ|≤C

Eλ ⊂ H1(M,S)

is finite-dimensional. Here Eλ denotes the eigenspace of the operator
D : H1(M,S) −→ L2(M,S), corresponding to the eigenvalue λ. In particular
dim(E0) = dim ker(D) <∞.

Proof. Fix κ0, κ1 > 0 such that −κ1 ≤ κ/4 globally and κ0 ≤ κ/4 outside of
K. To begin with, let C > 0 be arbitrary at first. For u ∈ HC with Du = λu
where |λ| ≤ C, it follows from the Lichnerowicz formula D2 = ∇∗∇+ κ

4 that

‖∇u‖2 +

∫
κ(x)

4
‖u(x)‖2 dx = ‖Du‖2 ≤ C2‖u‖2 .

From this
‖∇u‖2 + κ0‖u‖2M\K ≤ C

2‖u‖2 + κ1‖u‖2K
follows. This implies

‖∇u‖2 + (κ0 − C2) ‖u‖2 ≤ (κ0 + κ1)‖u‖2K .

Therefore, if C is such that 0 < C2 < κ0, one has for u ∈ HC \ {0}:

C ′ :=
κ0 − C2

κ0 + κ1
≤
‖u‖2K
‖u‖2

.
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For the following consideration, let C ′′ > 0 be the square root of C ′, and
Q ∈ Ψ−1(M,S) a parametrix for D with remainder R ∈ Ψ−∞(M,S). Thus

QD = I −R ,

where the operators D : H1(M,S) −→ L2(M,S) and Q : L2(M,S) −→ L2(M,S),
as well as R : H1(M,S) −→ L2(M,S) are the bounded extension given by D, Q
and R. Finally, let ρ : L2(M,S) −→ L2(K,S|K) be the restriction operator and

consider the compact operator R̃ = ρ ◦ R. For u ∈ HC we have ‖Du‖ ≤ C‖u‖
and thus

‖R̃u‖ = ‖ρ(I −QD)u‖
≥ ‖u‖K − ‖QDu‖
≥ ‖u‖K − ‖Q‖ ‖Du‖
≥ ‖u‖K − C ‖Q‖ ‖u‖
≥ (C ′′ − C ‖Q‖) ‖u‖ .

By choosing C > 0 sufficiently small we obtain ‖R̃u‖ ≥ C ′′′‖u‖ for some positive
constant C ′′′ > 0. Since R̃ is compact, HC is finite-dimensional. �

To obtain Yu’s and Roe’s vanishing theorem from the previous results one uses
the following lemma.

1.4.3 Lemma (Spectral characterization of self-adjoint Fredholm operators).
Let H be a Hilbert space and T : dom(T ) −→ H be a (bounded or unbounded) op-
erator defined on dom(T ) ⊂ H. Assume 0 ∈ σ(T ). The followig are equivalent:

(i) The operator T has discrete spectrum of finite multiplicity in a neighbour-
hood of zero, i.e. there exists C > 0 such that dim(

⊕
|λ|≤C Eλ) <∞ (the

sum being a sum of Hilbert spaces).

(ii) The kernel ker(T ) is finite-dimensional and im(T ) is closed.

Proof. “=⇒”: According to [11, XIII.6.5, p. 1895] λ ∈ σ(T ) is isolated if and
only if im(T − λ I) is closed. Since, by (i), the spectrum of T is discrete near
λ = 0, the image of T is closed. Since the spectrum of T near 0 has finite
multiplicity kerD ⊂ E0 is finite-dimensional.

“⇐=”: The point λ = 0 is isolated in σ(T ) since im(T ) is closed by (ii). Thus
there exists C > 0 such that [−C,C] ∩ σ(T ) = {0} and dim(

⊕
|λ|≤C Eλ) =

dim ker(T ) <∞. �

1.4.3. Preliminary facts about Hilbert C∗-modules

In this section A denotes a (complex) C∗-algebra. Most of the time it will be
assumed that A is unital. But we will state this explicitly when needed. We
denote the closed cone given by the positive elements in A by A+. A useful
reference for the basic properties of A+ is [33, Section 2.2].

We recollect some facts about orthonormal bases in Hilbert C∗-modules.
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1.4.4 Definition (Orthonormal sequence, orthonormal basis). Let A be a
unital C∗-algebra with unit element 1A and let H be a Hilbert A-module.

1. An orthonormal sequence is a system (ei)i∈I of vectors in E such that
〈ei, ej〉 = δij · 1A.

2. An orthonormal basis is an orthonormal sequence (ei)i∈I which is com-
plete in the sense that x =

∑
i∈I ei 〈ei, x〉 holds for each x ∈ E.

Also recall the following definition.

1.4.5 Definition (Countably generated). Let A be a C∗-algebra. A Hilbert C∗-
module H is called countably generated if there exists a sequence (xi)i∈N
in H such that H = linA(xi)i∈N is the closure of the set of all finite linear
combinations in the xi with coefficients in A.

1.4.6 Definition (Direct sum of Hilbert C∗-modules). Let A be a C∗-algebra.
Let H and H ′ be two Hilbert A-modules. Their direct sum H ⊕H ′ is a
Hilbert A-module when equipped with the A-valued inner product given by

〈(e, f), (e′, f ′)〉 := 〈e, e′〉+ 〈f, f ′〉 .

Recall that an isomorphism between Hilbert C∗-modules is a linear bijection
which preserves the inner products.

1.4.7 Theorem (Kasparov’s stabilization theorem). Let A be a C∗-algebra. If
H is a countably generated Hilbert A-module, then the direct sum of H with
`2(A), as defined in Definition 1.4.6, is isomorphic as a Hilbert A-module to
`2(A):

H ⊕ `2(A) ∼= `2(A) .

1.4.8 Corollary (Extending orthonormal bases). Let A be a unital C∗-algebra
and let H be Hilbert A-submodule of `2(A). If (ei)i∈N is a countable orthonor-
mal basis for H , then there exists a countable orthonormal basis (fj)j∈N of
`2(A) which extends the given orthonormal basis, i.e. one which is such that
{ei ; i ∈ N} is contained in {fj ; j ∈ N}.

Proof. We have H = linA(ei)i∈N. Using Kasparov’s stabilization theorem we
can identify `2(A) with H ⊕`2(A). The elements of the standard orthornormal
basis for `2(A) together with the elements of the given orthonormal basis of
H define a countable orthonormal basis (fj)j∈N for H ⊕ `2(A) and hence for
`2(A) via the above identification. �

The following convergence result will be used subsequently in the proof of
Lemma 1.4.21.

1.4.9 Lemma. Let A be a unital C∗-algebra and H a Hilbert A-module. If
(fj)j∈N is an orthonormal system in H , and (aj)j∈N is sequence in A+ which
is bounded by an element in C · 1A, then the series∑

j∈N
〈fj , x〉∗aj〈fj , x〉

converges in norm for each fixed x ∈H .
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For later application in the proof of Lemma 1.4.21 we remark the following:
This lemma applies in particular if the sequence (aj)j∈N is constant with the
only value being a projection p ∈ Proj(A). In this case p ≤ 1 by [33, Thm.
2.3.2, p. 50].

Proof of the lemma. By Corollary 1.4.8 we can choose an orthonormal basis
(ek)k∈N of H which contains (fj)j∈N. We can assume that this sequence is
enumerated such that e2j = fj for any j ∈ N. From x =

∑∞
k=1 ek〈ek, x〉 the

equality 〈x, x〉H =
∑∞

k=1〈ek, x〉∗〈ek, x〉 follows. In particular, it follows that the
latter series converges. Next choose b ∈ C · 1A with aj ≤ b for all j ∈ N. Then
by [33, Theorem 2.2.5, (3), p. 46]

‖
∞∑
j=n

〈fj , x〉∗aj〈fj , x〉‖A ≤ ‖b‖A ‖
∞∑

k=2n

〈ek, x〉∗〈ek, x〉‖A .

From this the lemma follows with the help of [48, Corollary on p. 237]. �

We recall the definition of a compact operator (in the sense of Kasparov) on a
Hilbert C∗-module. It reads as follows.

1.4.10 Definition (Elementary compact operator, generalized compact oper-
ator). Let H be a Hilbert A-module. The operator Θx,y : H −→ H given
by Θx,y(z) := x 〈y, z〉 is called an elementary compact operator. The C∗-
subalgebra of L ∗

A(H ) generated by the elementary compact operators is de-
noted by KA(H ). The elements of KA(H ) are called generalized compact
operators (in the sense of Kasparov).

Let A be a unital C∗-algebra and S a bundle of Hilbert A-modules over the
manifold M .

1.4.11 Definition (The Hilbert A-module of square-integrable sections). We
define L2(M,S) as the closure of Γcpt(M,S) with respect to the norm ‖ · ‖L2(M,S)

induced by the following A-valued inner product:

〈s, t〉 :=

∫
M
〈s(x), t(x)〉Sx dx .

In the following we will work with a technical assumption which reads as follows.

1.4.12 Assumption. Let (M, g) be a Riemannian manifold, with or without
boundary, which is compact or non-compact, and let p : S −→M be a hermitian
bundle of Hilbert A-modules with typical fibre Ar, where r ∈ N, the free A-
module of rank r ∈ N. Typically we will consider S = ΣM ⊗VM with its typical
fibre C〈n〉 ⊗ C∗π = (C∗π)〈n〉.

Later in this chapter we will need an explicit description for the K-theory groups
of the compact operators on L2(M,S). For this we show that L2(M,S) is
isomorphic as a Hilbert A-module to the standard Hilbert A-module `2(A).
This gives the required description since the K-theory groups of KA(`2(A)) are
known to be those of A.

Recall that an isomorphism between Hilbert A-modules is a linear bijection
which preserves the inner products.
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1.4.13 Lemma. Let (Uj)j∈N be a partition of M into simplices given by a
triangulation of M . Choose vector bundle charts ψj : p−1(Uj) −→ Uj×Ar (fibre-
wise these are isomorphisms of Hilbert A-modules), which trivialize the bundle
over the simplices. Then the map

h : L2(M,E) −→
⊕
j∈N

L2(Uj , Uj ×Ar) , h(s) :=
∑⊕

j∈N
ψj ◦ (χj s)

is an isomorphism of Hilbert A-modules. Here χj is the characteristic function
of Uj.

Proof. We begin by remarking that the bundle Uj × Ar over Uj is equipped
with the metric induced by the metric 〈 · , · 〉∗ on Ar given by

〈(a1, . . . , ar), (b1, . . . , br)〉∗ =
r∑
j=1

ajb
∗
j .

Let s, t ∈ Γ(M,S). Then one has

〈s, t〉 =

∫
M
〈s(x), t(x)〉 dx

=
∑
j∈N

∫
Uj

〈χj(x)s(x), χj(x)t(x)〉 dx

=
∑
j∈N

∫
Uj

〈ψj(χj(x)s(x)), ψj(χj(x)t(x))〉 dx

=
∑
j∈N
〈ψj ◦ (χjs), ψj ◦ (χjt)〉

= 〈h(s), h(t)〉 .

Thus h preserves the inner products. Cleary, h is also surjective: if we are given
sections sj ∈ L2(Uj , Uj ×Ar) for each j, then we can first of all extend ψ−1

j ◦ sj
trivially to the section χj (ψ−1

j ◦ sj). Then s =
∑
χj (ψ−1

j ◦ sj) is mapped onto
(sj)j∈N by h. �

If U ⊂M is an open subset of M , we can identify L2(U,U×Ar), the completion
of Γcpt(U,U×Ar) with respect to ‖ · ‖L2(U,U×Ar), with the completion L2

∗(U,A
r)

of C∞cpt(U,A
r) with respect to the norm ‖ · ‖L2

∗(U,A
r) induced by the A-valued

inner product

〈f, g〉L2
∗(U,A

r) =

∫
U
〈f(x), g(x)〉∗ dx .

This notation is chosen in this way to distinguish the above norm from the norm
‖ · ‖2 on the Banach space L2(U,Ar) of square-integrable, Ar-valued functions
on U .

Let ⊗ denote the tensor product of complex vector spaces. For r ∈ N the space
Cr⊗A becomes a Hilbert A-module via (e⊗a)b = e⊗(ab) and 〈e1⊗a1, e2⊗a2〉 =
〈e1, e2〉〈a1, a2〉. Clearly, this Hilbert A-module is isomorphic to Ar. In the
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following it will be more convenient to work with Cr ⊗ A instead of Ar. Let
U ⊂M be an open subset. We view C(U,Cr)⊗A as a subspace of C(U,Cr⊗A)
by regarding the function f ⊗ a as the function with (f ⊗ a)(x) = f(x) ⊗ a in
x ∈ U .

1.4.14 Remark. We observe the following: if f, g ∈ L2(U,Cr) and a, b ∈ A, then

〈f ⊗ a, g ⊗ b〉L2(U,Cr⊗A) =

∫
U
〈f(x), g(x)〉 〈a, b〉∗ dx = 〈f, g〉L2(U,Cr) 〈a, b〉∗

by the definition of the scalar product on Cr ⊗A. In particular, if (fj)j∈N is a
sequence in C∞cpt(U,Cr), which converges in mean to f ∈ C∞cpt(U,Cr) then, for
any a ∈ A, the sequence (fj ⊗ a)j∈N of functions in C∞cpt(U,Cr ⊗ A) converges
to f ⊗ a in the norm-topology of L2

∗(U,Cr ⊗ A). This allows us to define
f ⊗ a ∈ L2

∗(U,Cr ⊗A) for any f ∈ L2
∗(U,Cr) and a ∈ A.

1.4.15 Lemma. Let A be a unital C∗-algebra with unit element 1A and U ⊂M
an open subset of M . Furthermore, let r ∈ N. Choose an orthonormal basis
(ej)j∈N for the Hilbert space L2(U,Cr). Then (ej ⊗ 1A)j∈N is an orthonormal
basis for the Hilbert A-module L2(U,Cr ⊗ A). In particular, L2(U ;Cr ⊗ A) is
isomorphic to `2(A) as a Hilbert A-module.

Proof. First of all, we note that by the above Remark 1.4.14 (ej ⊗ 1A)j∈N is an
orthonormal system in L2

∗(U,Cr⊗A). To see that this system is an orthornormal
basis it suffices to show that (ej)j∈N has dense A-linear span in C∞cpt(U,Cr⊗A)
where the closure is being taken with respect to the norm-topology of L2

∗(U,Cr⊗
A). Let f ∈ C∞cpt(U,Cr ⊗ A) and set K := supp(f). We denote by C∞K (U,Cr)
the space of all smooth functions with compact support in K, equipped with the
topology of uniform convergence on K. Clearly, convergence to 0 in C∞K (U,Cr)
implies convergence to 0 in L2(U,Cr). Therefore the proof will be complete
if we show that f is a uniform limit of functions in C∞K (U,Cr) ⊗ A since by
Remark 1.4.14 the A-linear closure of (ej)j∈N is dense in this space in the
norm-topology of L2

∗(U,Cr ⊗ A). Let ε > 0. Since f is continuous and K is
compact we can choose points x1, . . . , xk such that for each x ∈ K one has
‖f(x)− f(xj)‖Cr⊗A < ε for some 1 ≤ j ≤ k. The open sets

Vj := {x ∈ K ; ‖f(x)− f(xj)‖Cr⊗A < ε} , 1 ≤ j ≤ k

cover K. Let (πj)1≤j≤k be a partition of unity subordinated to this open cov-
ering of K. Then

‖f(x)−
k∑
j=1

πj(x) f(xj)‖Cr⊗A = ‖
k∑
j=1

πj(x) (f(x)− f(xj))‖Cr⊗A

≤
k∑
j=1

πj(x) ‖(f(x)− f(xj))‖Cr⊗A

< ε ,

which gives the desired result. �
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From Lemma 1.4.13 and Lemma 1.4.15 we conclude the following corollary.

1.4.16 Corollary. The Hilbert A-module L2(M,E) is isomorphic to `2(A) for
dim(M) ≥ 1.

1.4.4. The vanishing of K0(i): First proof

1.4.17 Definition (Geodesic ray). Let (M, g) be a Riemannian manifold. A
geodesic ray in M is a geodesic

γ : R+ −→M

which minimizes the distance between any pair of points on itself, i.e.

d(γ(t0), γ(t1)) =

∫ t1

t0

‖γ′(t)‖ dt = v(t1 − t0)

where v is the constant velocity of γ.

We can always assume v = 1.

Thus every restriction γ|[a,b] : [a, b] −→ M of γ to a compact subinterval [a, b] of
R+ is a geodesic segment. The content of the following lemma, is that there
always exists a geodesic ray in the given context.

1.4.18 Lemma (Existence of rays). In every complete and non-compact
Riemannian manifold (M, g) there exists at least one geodesic ray.

Proof. A proof for the existence of rays in the above setting can be found, for
example, in [9, p. 51 and p. 135] or in [13, p. 92, Proposition 2.95]. �

1.4.19 Assumption. From now on we assume that (M, g) is complete, non-
compact, and of positive injectivity radius inj(M, g) > 0. Finally, choose r > 0
with r ≤ inj(M, g).

Let p : S −→M be as in Assumption 1.4.12. The following remark is essentially
the key to the proof of the subsequent Lemma 1.4.20: Suppose s, t ∈ Γcpt(M,S)
and let ϕ : π−1(U) −→ U × Ar and ψ : π−1(V ) −→ V × Ar be isometric trivi-
alizations of S over sets U and V with supp(s) ⊂ U and supp(t) ⊂ V .
Then there exists functions s, t ∈ C∞cpt(M,Ar) with s(x) = ϕ−1(x, s(x)) and
t(x) = ψ−1(x, t(x)). One then has the following equality (∗)

〈s, t〉L2(M,S) =

∫
M
〈s(x), t(x)〉Sx dx

=

∫
M
〈s(x), t(x)〉Ar dx

=

∫
M

r∑
i=1

(si(x)) (t
i
(x))∗ dx .

The following lemma will be useful in the sequel.
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1.4.20 Lemma. Under the above Assumption 1.4.19, if γ : R+ −→ M is a
geodesic ray in M , then there exists a sequence (fj)j∈N in Γcpt(M,S) such that
the following hold:

(i) supp(fj) ⊂ Bj, where Bj := B(γ(jr); r/2). (Note that these balls are
disjoint since we assume v = 1, and that each ball is diffeomorphic to Rn,
n = dim(M), since r ≤ inj(M, g) by our assumptions.)

(ii) 〈fi, fj〉L2(M,S) = δi,j · 1C∗π in C∗π.

(iii) 〈gfj , gfj〉L2(M,S) ∈ C · 1C∗π whenever g ∈ C(M).

Proof. Such a sequence of sections fj ∈ Γcpt(M,S) can be constructed by
first choosing a sequence of trivializations ϕi : π

−1(Ui) −→ Ui × Ar of the
bundle over sets Uj ⊂ Bj and then choosing f j ∈ C∞cpt(M, (C1̇C∗π)) with

fj(x) = ϕ−1
j (x, f j(x)) using the above equality (∗) in such a way that (ii)

holds. Property (i) is fulfilled by the choice of the Uj as subset of BJ and (iii)
holds by (∗) and the choice of the f j as scalar-valued functions. �

1.4.21 Lemma. Under the above Assumption 1.4.19, if p ∈ Proj(A) is a pro-
jection and if (fj)j∈N ⊂ L2(M,S) is a sequence like in Lemma 1.4.20, then
K0(i) maps [Θf1p,f1p] to zero.

Proof. (i) We use the notation of Definition 1.4.10 and consider the sequence
(Θfjp,fjp)j∈N. Obviously, the following relations hold:

Θ∗fjp,fjp = Θ2
fjp,fjp

= Θfjp,fjp

and
Θfjp,fjpΘfkp,fkp = δjk Θfjp,fkp

for all j, k ∈ N. For any N ∈ N set

TN :=

N∑
j=1

Θfjp,fj+1p =

N∑
j=1

fjp〈fj+1, · 〉 .

We claim that the strong limit T := s-limN−→∞ TN exists. This can be proven
as follows: Let u ∈ L2(M,S) and M,N ∈ N with N > M . We calculate:

‖(TN − TM )u‖2L2(M,S) = ‖
N∑

j=M+1

fjp〈fj+1, u〉‖2L2(M,S)

= ‖
N∑

j=M+1

〈fj+1p, u〉∗L2(M,S)〈fj+1p, u〉L2(M,S)‖A

= ‖
N∑

j=M+1

〈fj+1, u〉∗L2(M,S)p〈fj+1, u〉L2(M,S)‖A .

Hence, by Lemma 1.4.9 and the remark following it, (TNs)n∈N is a Cauchy
sequence and therefore convergent.
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(ii) In this part of the proof we show that T is an element of C∗Roe(M ;A). First
of all, T is adjointable with adjoint given by

T ∗ =
∞∑
j=1

Θ∗fjp,fj+1p
=
∞∑
j=1

Θfj+1p,fjp .

Hence T ∈ L ∗
A(L2(M,S)). To see that T is locally compact we proceed as

follows. Let g ∈ C0(M). According to Corollary 1.4.8 we can complete (fj)j∈N
to an orthonormal basis (ek)k∈N of L2(M,S). One has

‖Tg − TNg‖ = sup
‖u‖=1

‖(Tg)u− (TNg)u‖L2(M,VM ) .

Since

(Tg)u− (TNg)u =
∞∑

j=N+1

fjp〈fj+1, gu〉

holds for any u ∈ L2(M,S), we find using Lemma 1.4.20 (ii)

‖(Tg)u− (TNg)u‖2L2(M,S) = ‖〈
∞∑

j=N+1

fjp〈fj+1, gu〉,
∞∑

k=N+1

fkp〈fk+1, gu〉〉‖A

= ‖
∞∑

j,k=N+1

〈fj+1, gu〉∗p〈fj , fk〉p〈fk+1, gu〉‖A

= ‖
∞∑

j=N+1

〈fj+1, gu〉∗p〈fj+1, gu〉‖A .

Now Lemma 1.4.9 shows that TNg −→ Tg not only pointwise but also uniformly.
Thus Tg is compact. Analogously, gT is compact: by definition

‖gT − gTN‖ = sup
‖u‖=1

‖(gT − gTN )u‖L2(M,S) .

One finds

(gT )u− (gTN )u =
∞∑

j=N+1

gfjp〈fj+1, u〉

for any u ∈ L2(M,S). Here we have used that the multiplication by g is a
continuous operator. An auxiliary computation shows:

‖(gT )u− (gTN )u‖2L2(M,S) = ‖
∞∑

j,k=N+1

〈gfjp〈fj+1, u〉, gfk〈fk+1, u〉〉‖A

= ‖
∞∑

j,k=N+1

〈fj+1, u〉∗〈gfjp, gfkp〉〈fk+1, u〉‖A

= ‖
∞∑

j,k=N+1

〈fj+1, u〉∗p〈gfj , gfk〉p〈fk+1u〉‖A

= ‖
∞∑

j=N+1

〈fj+1, u〉∗p〈gfj , gfj〉p〈fj+1, u〉‖A .
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By Lemma 1.4.20 the sequence 〈gfj+1, gfj+1〉 ∈ C ·1A converges to zero as j −→
∞ since g ∈ C0(M). Thus the sequence (aj)j∈N with aj := p〈gfj , gfj〉p ∈ A+ of
positive elements is bounded by an element in C ·1A. Because of this, it follows
from Lemma 1.4.9 that gTN −→ gT not only pointwise but also uniformly.

Finally, we show that T has finite propagation. Concerning this: we have to
show that there exists R > 0 such that supp(Tu), for any u ∈ Γcpt(M,S), is
contained in the R-ball B(supp(u);R). To this end assume that x ∈M is such
that

0 6= (Tu)(x) =

∞∑
j=1

fj(x)p〈fj+1, u〉 .

This means that not all summands fj(x)p〈fj+1, u〉 in the RHS are zero. Hence
there exists j0 ∈ N such that fj0(x) 6= 0 and 〈fj0+1, u〉 6= 0. The latter condition
implies that there exists a point x0 in B(j0 + 1) such that u(x0) 6= 0, i.e. x0 ∈
supp(u). Since γ is a geodesic ray with velocity v = 1 we have d(γ(j0r), γ((j0 +
1)r)) = r. Hence, if we set R := 2r, then

d(x, x0) ≤ d(x, γ(j0r)) + d(γ(j0r), x0)

≤ r

2
+ d(γ(j0r), x0)

≤ r

2
+ d(γ(j0r), γ((j0 + 1)r)) + d(γ((j0 + 1)r), x0)

≤ r

2
+
r

2
+ d(γ(j0r), γ((j0 + 1)r)) = R .

Thus supp(Tu) ⊂ B(supp(u);R) proving that T has finite propagation.

(iii) A calculation shows:

P := T ∗T =
∞∑
j=2

Θfjp,fjp

and

Q := TT ∗ =
∞∑
j=1

Θfjp,fjp .

Obviously, P and Q are self-adjoint and a calculation shows P 2 = P and
Q2 = Q. Thus P and Q are projections in C∗Roe(M ;A) which are Murray-
von Neumann equivalent. Therefore one has in K0(C∗Roe(M ;A))

[TT ∗] = [T ∗T + Θf1p,f1p]

= [T ∗T ] + [Θf1p,f1p] .

Here we have used [Rørdam et al., Prop. 3.1.7, (iv)]. Now, by definition,
[T ∗T ] = [TT ∗]. Hence, [Θf1p,f1p] = 0 in K0(C∗Roe(M ;A)). �

Next we recall the stabilization theorem for K-theory.
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1.4.22 Remark (The stabilization map in K-Theory). Let A be a C∗-algebra, H
a separable Hilbert space and KC(H) the C∗-algebra of all compact operators on
H. The stabilization by KC(H) is the spatial tensor product of KC(H) and
A. Denote by e ∈ KC(H) any rank-1-projection, i.e. an elementary compact
operator Θx,x(z) = 〈z, x〉x where x ∈ H with 〈x, x〉 = 1. The map

A −→ KC(H)⊗A , a 7→ e⊗ a

is a ∗-homorphism. The map induced by it on even K-theory

σHA : K0(A) −→ K0(KC(H)⊗A) , [p] 7→ [e⊗ p]

is independent of the choice of e and is called the stabilization map for H.
It is a (non-trivial) theorem that σHA is an isomorphism. A similar statement
holds for odd K-theory. The usual identification of KC(H) ⊗ C with KC(H)
given by scalar multiplication gives an identification of K0(C) with K0(KC(H)):

K0(C)
σC−→ K0(KC(H)⊗ C) −→ K0(KC(H)) , [1] 7→ [e⊗ 1] 7→ [e] .

The choice of an orthonormal basis (ej)j∈N and (fj)j∈N for L2(M,S) and
L2(M,C), respectively, induces the isometric embedding

ι : L2(M,C) ∼= `2(C) ↪→ `2(A) ∼= L2(M,S)

given by ∑
j∈N

σjfj 7→ (σj)j∈N 7→ (σj · 1A)j∈N 7→ ι(f) :=
∑
j∈N

σj ej .

1.4.23 Lemma. Let p1, p2, p3, . . . ∈ A be projections such that the abelian group
K0(A) is generated by {[p1], [p2], [p3], . . .}, If f ∈ L2(M,C) with ‖f‖L2(M,C) =
1, then the even K-theory classes of Θι(f)pj ,ι(f)pj , j = 1, 2, 3, . . ., generate

K0(KA(L2(M,S))).

Proof. By [23, Lemma 1.2.6 and its proof, p. 24] the map

U : L2(M,C)⊗s A −→ L2(M,S) , (σj)j∈N ⊗ a 7→ (σj · 1A)j∈N · a

is an isomorphism of Hilbert A-modules. Let

µ : KA(L2(M,C)⊗s A) −→ KA(L2(M,S)) , Θx,y 7→ ΘU(x),U(y)

be the identification of C∗-algebras induced by U . According to [23, Lemma
1.2.7, p. 24] the map

λ : KC(L2(M,C))⊗A −→ KA(L2(M,C)⊗s A) , λ(Θx,y ⊗ bc∗) = Θx⊗b,y⊗c

is an isomorphism of C∗-algebras. Therefore the composition (∗) of the maps
in the subsequent diagram is an isomorphism:

K0(A)
σ
L2(M,C)
A−−−−−−→ K0(KC(L2(M,C))⊗A)

K0(λ)−−−−−−→ K0(KA(L2(M,C)⊗s A))

K0(µ)−−−−−−→ K0(KA(L2(M,S))
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Choose the rank-1-projection which gives σ
L2(M,C)
A to be equal Θf,f . Then

under the above isomorphism (∗) the class [pj ] ∈ K0(A) is mapped under the
isomorphism as follows:

[pj ]
σ
L2(M,C)
A−−−−−→ [Θf,f ⊗ pj ]
K0(λ)−−−−−→ [Θf⊗pj ,f⊗pj ]

K0(µ)−−−−−→ [ΘU(f⊗pj),U(f⊗pj)] = [Θι(f)pj ,ι(f)pj ]

This implies the claim. �

1.4.24 Lemma. Choose (fj)j∈N as in Lemma 1.4.20. Then the map K0(i)
maps the generators [Θι(f)pj ,ι(f)pj ] to zero. In particular, K0(i) = 0.

Proof. Complete (fj)j∈N to an orthonormal basis (ek)k∈N of L2(M,S). Then
apply Lemma 1.4.23 to f ∈ L2(M,C) with ι(f) = f1, to see that the
classes [Θf1pj ,f1pj ] generate K0(KA(L2(M,S))). From this the claim follows
by Lemma 1.4.21. �

1.4.5. The vanishing of K0(i) and K1(i): General proof.

In the previous section we have shown that K0(i) is zero for the inclusion map i
of the compact operators into the Roe C∗-algebra. In this section we also prove
that K1(i) vanishes. Since the argument will also show that K0(i) vanishes, we
will obtain a second independent proof of this result. The argument used is an
adaptation of well-known results from [8] and [22].

The following lemma will be useful in the proof of the next theorem.

1.4.25 Lemma. Let (ej)j∈N be an orthonormal basis of L2(M,S), and (fj)j∈N
an orthonormal basis for L2(M,C). Furthermore, let ι : L2(M,C) −→ L2(M,S)
be the isometric embedding given by ι(fj) = ej for each j ∈ N. The following
hold:

(i) The map U : L2(M,C) ⊗s A −→ L2(M,S) with U(f ⊗ a) := ι(f) · a is an
isomorphism of Hilbert A-modules.

(ii) Define for each u ∈ L2(M,S) with 〈u, u〉 = 1 the ∗-homomorphism

Φu : A −→ KA(L2(M,S)) , a 7→ Θu·a,u .

Then Φι(f) induces an isomorphism in K-theory for each f ∈ L2(M,C)
with ‖f‖ = 1.

Proof. (i) Cf. [23, Lemma 1.2.6 and its proof, p. 24].

(ii) This was explained in the proof of Lemma 1.4.23. �

1.4.26 Theorem. Let (M, g) be a complete non-compact Riemannian spin
manifold. Furthermore, let S = ΣM ⊗ V be the spinor bundle of M twis-
ted by the Mishchenko line bundle of M . Then Kp(i) = 0 for p = 0, 1, where
i : KA(L2(M,S)) −→ C∗(M ;A) is the inclusion map.
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Proof. (i) By Lemma 1.4.18 there exists a ray γ : R+ −→ M . Let
V : L2(R+, A) −→ L2(M,S) be an isometry which covers11 γ and f ∈ L2(M,C)
with ‖f‖ = 1. The diagram

A
idA−−−−→ A

Φι(f)

y yΦ(V ◦ι)(f)

KA(L2(R+, A)) −−−−→
Ad(V )

KA(L2(M,S))

commutes and by Lemma 1.4.25 the vertical maps induce isomorphisms.
Whence the map

γ∗ = Kp(Ad(V )) : Kp(KA(L2(R+, A))) −→ Kp(KA(L2(M,S)))

is an isomorphism for p = 0, 1. From the commutative diagram

KA(L2(R+, A))
Ad(V )−−−−→ KA(L2(M,S))

i+

y yi
C∗(R+;A) −−−−→

Ad(V )
C∗(M ;A)

in which the vertical maps are the inclusion maps, we obtain the commutative
diagramm

Kp(KA(L2(R+, A)))
γ∗−−−−→∼= Kp(KA(L2(M,S)))

Kp(i+)

y yKp(i)

Kp(C
∗(R+;A)) −−−−→

γ∗
Kp(C

∗(M ;A))

From this Kp(i) = 0 will follow by showing that Kp(C
∗(R+;A)) vanishes. In or-

der to show this we need to introduce various operators before we can complete
the argument. This will be done in next part (ii) and after this preparation the
proof will be completed in (iii).

(ii) First of all, set

L2(R+, A)∞ :=

∞⊕
j=1

L2(R+, A)

and let U : L2(R+, A) −→ L2(R+, A)∞ be the isometric embedding given by

Uf := (f ⊕ 0⊕ 0⊕ · · · ) .

The adjoint of U is given by

U∗(f1 ⊕ f2 ⊕ f3 ⊕ · · · ) = f1 .

We have U∗U = I and UU∗ is the projection onto the first component. For the
next step let W : L2(R+, A) −→ L2(R+, A) be the operator, which translates the

11See [22, Prop. 6.3.12, p. 150] for the existence of such an isometry.
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graph of a function one unit to the right side and extends the function trivially
to the whole of R+, i.e.

(Wf)(t) :=

{
f(t− 1) , t ≥ 1;

0 , otherwise.

Clearly, the adjoint of W is given by left translation by one unit. Thus
(W ∗f)(t) = f(t + 1) for each f ∈ L2(R+, A) and t ∈ R+. We have W ∗W = I
and WW ∗ is the multiplication with the characteristic function χ[1,∞). Fur-
thermore, the equalities

supp(W ∗jf) = (supp(f)− j) ∩ R+

and
supp(W jf) = (supp(f) + j)

hold for each j ∈ N. We notice that MfW = WMg for g = W ∗f . In particular,
supp(g) = (supp(f)− 1) ∩ R+ holds in this case.

In the next step we show that the operator

Ψ(T ) := (0⊕WTW ∗ ⊕W 2TW ∗2 ⊕W 3TW ∗3 ⊕ · · · )

on L2(R+, A)∞ is locally compact and finite propagation for each locally com-
pact operator T ∈ L ∗

A(R+, A) of finite propagation. To begin with, for any
ϕ,ψ ∈ C0(R+) we have

ρ(ϕ)Ψ(T )ρ(ψ) = 0⊕
∞⊕
j=1

ρ(ϕ)W jTW ∗jρ(ψ)

= 0⊕
∞⊕
j=1

W jρ(ϕj)Tρ(ψj)W
∗j

for functions ϕj ∈ C0(R+) and ψj ∈ C0(R+) with supp(ϕj) = (supp(ϕ)−j)∩R+

and supp(ψj) = (supp(ψ)−j)∩R+. Since T has finite propagation, this implies
that Ψ(T ) also has finite propagation. Finally, we explain why Ψ(T ) is locally
compact. First of all, we notice that

ρ(f)Ψ(T ) = (0⊕ (ρ(f)WTW ∗)⊕ (ρ(f)W 2TW ∗2)⊕ (ρ(f)W 3TW ∗3)⊕ · · · )

is an compact operator for each compactly supported function f ∈ C0(R+)
simply because ρ(f)W j vanishes for j sufficiently large and because T is locally
compact. Analogously, Ψ(T )ρ(f) is compact. But then ρ(f)Ψ(T ) and Ψ(T )ρ(f)
are also compact for each f ∈ C0(R+).

In part (iii) we will use the isometry V : L2(R+, A)∞ −→ L2(R+, A)∞ given by

V (f1 ⊕ f2 ⊕ f3 ⊕ · · · ) := (0⊕Wf1 ⊕Wf2 ⊕ · · · ) .
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Its adjoint is given by

V ∗(f1 ⊕ f2 ⊕ f3 ⊕ · · · ) = (W ∗f2 ⊕W ∗f3 ⊕ · · · ) .

In (iii) we will use that Ad(V ) : L ∗
A(L2(R+, A)∞) −→ L ∗

A(L2(R+, A)∞) maps
C∗(R+, L

2(R+, A)) into itself. This can for instance be seen in the following
way. If the operator T ∈ L ∗

A(L2(R+, A)∞) is locally compact and of finite
propagation, then V TV ∗ is also of this kind: to see that local compactness of
V TV ∗ let ϕ ∈ C0(R+). Then also W ∗ϕ ∈ C0(R+) and

ρ(ϕ)V TV ∗ = V ρ(W ∗ϕ)TV ∗

is compact since ρ(W ∗ϕ)T is compact and because of the fact that the compact
operators form an ideal inside L ∗

A(L2(R+, A)∞). As V TV ∗ρ(ϕ) is compact if
and only if ρ(ϕ)V T ∗V ∗ is compact, this shows that V TV ∗ is locally compact.
Finally, V TV ∗ has finite propagation, because

ρ(ϕ)V TV ∗ρ(ψ) = (ρ(ϕ)V )T (ρ(ψ)V )∗

= V ρ(W ∗ϕ)Tρ(W ∗ψ)V ∗

is zero if

d(supp(W ∗ϕ), supp(W ∗ψ)) = d(supp(ϕ), supp(ψ)) ≥ R

where R > 0 is choosen for T as in (v) of Definition 1.2.5.

(iii) Consider the homomorphisms

Φ := Ad(U) : C∗(R+, L
2(R+, A)) −→ C∗(R+, L

2(R+, A)∞)

and
Ψ: C∗(R+, L

2(R+, A)) −→ C∗(R+, L
2(R+, A)∞)

given by

Φ(T ) := (UTU∗ : (f1 ⊕ f2 ⊕ f3 ⊕ · · · ) 7→ (Tf1 ⊕ 0⊕ 0⊕ · · · ))

and
Ψ(T ) := (0⊕WTW ∗ ⊕W 2TW ∗2 ⊕W 3TW ∗3 ⊕ · · · ) ,

respectively. Because of U∗U = I, Kp(Φ) is an injection for p = 0, 1. Obviously,
Φ and Ψ are orthogonal to each other. A straightforward computation shows
that Ad(V ) ◦ (Φ + Ψ) = Ψ holds. By [22, Lemma 3, p. 90] this implies the
vanishing of Kp(Φ) and thus Kp(C

∗(R+, A)) = 0 for p = 0, 1. �

1.4.6. The vanishing theorem

In this final subsection of the chapter we prove the vanishing theorem. One
half of the proof of this result uses the in the previous subsections established
fact that the inclusion of the compact operators in the Roe C∗-algebra induces
the trivial map in K-theory, if the underlying complete Riemannian spin man-
ifold is non-compact. The remaining part will use the following result which
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we establish next. We show that the relative Roe C∗-algebra C∗K(M ;A) of a
Riemannian manifold (M, g) with respect to a subset K ⊂ M for which the
scalar curvature of the metric is uniformly positive outside of K, contains the
bounded transform I − χ(D)2 of the spinorial Dirac operator twisted with the
Mishchenko line bundle for some normalizing function χ. The idea for the con-
struction of such a normalizing function χ is to decompose f = (1 − χ2)2 as
f = fδ + rδ and to use various estimates obtained from the functional calculus
of D as well as the Lichnerowicz formula to find out how to choose fδ and rδ
appropriately in order to obtain a normalizing function as desired.

1.4.27 Theorem. Let (M, g) be a complete Riemannian spin manifold and
K ⊂ M a subset such that the scalar curvature of the metric is uniformly pos-
itive outside K. Let D : Γ(M,S) −→ Γ(M,S) with S = ΣM ⊗ VM be the twis-
ted Dirac operator obtained by twisting the spinorial Dirac operator of (M, g)
with the Mishchenko line bundle (VM ,∇VM ). Then there exists a normalizing
function χ such that the bounded transform ϕ(D) of D associated with χ (i.e.
ϕ = 1− χ2) lies in the relative coarse C∗-algebra of (M,K):

ϕ(D) = I − χ(D)2 ∈ C∗K(M ;A) .

Proof. Let κ0 > 0 be such that the scalar curvature κ of the metric g satisfies
κ ≥ κ0 outside of K, and let χ be a normalizing function such that ϕ =
1 − χ2 has support in [−α, α] for α > 0 with α2 < κ0/4. We will prove
subsequently ϕ(D) ∈ C∗K(M ;A) for such a choice of χ. To this end we show that
‖ϕ(D)u‖ becomes arbitrary small if the support of u ∈ L2(M,S) with ‖u‖ = 1
is sufficiently far away from K, cf. Lemma 1.2.10. The argument will consist
in deriving an estimate for ‖ϕ(D)u‖ from more elementary estimates which
contain ‖ϕ(D)‖ as LHS and RHS, respectively, by means of a decomposition of
ϕ2 into functions whose growth we can control.

To begin with, set f := ϕ2 and let δ > 0. By Lemma 1.1.3 of the Appendix we
can choose fδ such that f = fδ + rδ with a function rδ such that fδ = g2

δ for a
function gδ ∈W , and such that in addition

sup
x∈R
|xj rδ(x)| ≤ δ

for each j = 0, 1, 2. Using these choices we now derive several estimates, which
we will combine to obtain the desired result. For this let u ∈ Γcpt(M,S). Since
D is self-adjoint, one has

‖ϕ(D)u‖2 = 〈f(D)u, u〉 . (1)

Furthermore, our choice of ϕ and fδ together with the Cauchy-Schwarz inequal-
ity and basic properties of the functional calculus for D, imply the following
two estimates (see Section 1.2 in the Appendix for more details)

|〈D2f(D)u, u〉| ≤ α2 ‖ϕ(D)u‖2 (2)

and
|〈D2rδ(D)u, u〉| ≤ δ ‖u‖2 . (3)
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Let R > 0 be such that supp(ĝδ) ⊂ [−R,R], then by a finite propagation speed
argument, supp(gδ(D)u) ⊂ B(supp(u);R). We have

gδ(D) =

∫ +R

−R
ĝδ(t) e

itD dt = 2R ĝδ(t0) eit0D

for some t0 ∈ (−R,R). Since D has finite propagation speed cD = 1, one has
supp(eit0Du) ⊂ B(supp(u); |t0|) for each u ∈ Γcpt(M,S) and hence

supp(gδ(D)u) = supp(eit0Du)

⊂ B(supp(u); |t0|)
⊂ B(supp(u);R) .

Here we have used supp(gδ(D)u) = supp(eit0Du). This holds certainly if
ĝδ(t0) = 0 and otherwise because ρ(ϕ) gδ(D)u = 0 is equivalent to the re-
quirement that

0 = 〈ρ(ϕ) gδ(D)u, v〉
= 〈gδ(D)u, ρ(ϕ) v〉
= ĝδ(t0) 〈eit0Du, ρ(ϕ)v〉
= ĝδ(t0) 〈ρ(ϕ) eit0Du, v〉

holds for each v ∈ L2(M,S), that is, to the requirement ρ(ϕ) eit0Du = 0.

To summarize, supp(gδ(D)u) is outside of B(K;R) if u is such that supp(u) ∩
B(K; 2R) = ∅. Hence supp(fδ(D)u) is outside of B(K;R) if the support of u
satisfies supp(u) ∩B(K; 3R) = ∅.

From now on assume that supp(u) is outside of B(K; 3R). Then, if ∆ = ∇∗∇
is the connection Laplacian for the connection on the spinor bundle, we can
derive using the Lichnerowicz formula, the following estimate

〈D2fδ(D)u, u〉 = 〈fδ(D)D2u, u〉

= 〈fδ(D)
{

∆ +
κ

4

}
u, u〉

= 〈fδ(D)

{
∆ +

(
κ− κ0

4

)}
u, u〉+

κ0

4
〈fδ(D)u, u〉

= 〈
{

∆ +

(
κ− κ0

4

)}
u, fδ(D)u〉+

κ0

4
〈fδ(D)u, u〉

≥ κ0

4
〈fδ(D)u, u〉

for each u ∈ Γcpt(M,S) whose support lies outside of B(K; 3R). Here we have
used fδ(D) ≥ 0 and that supp(fδ(D)u) is outside of K and hence that κ ≥ κ0

holds there. Thus
〈D2fδ(D)u, u〉 ≥ κ0

4
〈fδ(D)u, u〉 (4)
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holds for each u ∈ Γcpt(M,S) for which supp(u) lies outside of B(K; 3R).
Finally, we obtain using (1) - (4) the following estimate(κ0

4
− α2

)
‖ϕ(D)u‖2 ≤ κ0

4
〈f(D)u, u〉 − 〈D2f(D)u, u〉

≤ κ0

4
〈f(D)u, u〉 − 〈D2fδ(D)u, u〉 − 〈D2rδ(D)u, u〉

≤ κ0

4
〈f(D)u, u〉 − 〈D2fδ(D)u, u〉+ δ ‖u‖2

≤ κ0

4
〈f(D)u, u〉 − κ0

4
〈fδ(D)u, u〉+ δ ‖u‖2

=
κ0

4
〈rδ(D)u, u〉+ δ ‖u‖2

≤
(κ0

4
+ 1
)
δ ‖u‖2 .

In conclusion, one has

‖ϕ(D)u‖2 ≤
(κ0

4
− α2

)−1 (κ0

4
+ 1
)
δ ‖u‖2

for each u ∈ Γcpt(M,S) with supp(u) outside of B(K; 3R).

Finally, let ε > 0. Assume u ∈ L2(M,S) satisfies ‖u‖ = 1 and that supp(u) lies
outside of B(K; 3R). Then there exists v ∈ Γcpt(M,S) with ‖u − v‖ < ε and
supp(v) lying outside of B(K; 3R). Then

‖ϕ(D)u‖ ≤ ‖ϕ(D)‖ ε+ ‖ϕ(D)v‖

≤ ‖ϕ(D)‖ ε+
(κ0

4
− α2

)−1 (κ0

4
+ 1
)
δ ‖v‖2 .

The last expression becomes arbitrarily small if one chooses ε and δ sufficiently
small (and hence R sufficiently large). �

1.4.28 Theorem (Vanishing theorem). Let (M, g) be as in Assumption 1.4.19.
Assume that K ⊂ M is a compact subset such that the scalar curvature of
the metric is uniformly positive outside of K. Then indp(D) ∈ Kp(C

∗(M,A))
vanishes for p = 0, 1. Here D : Γ(M,S) −→ Γ(M,S) with S = ΣM ⊗ VM is
the twisted Dirac operator obtained by twisting the spinorial Dirac operator of
(M, g) with the Mishchenko line bundle (VM ,∇VM ).

Proof. We first of all consider the case where p = 0. For reasons of space
we set A = C∗π1(M) and abbreviate C∗(M ;A), D∗(M ;A) ⊂ L ∗

A(L2(M,S+))
and KA(L2(M,S+)) as C∗, D∗ and KA. Using this notation we consider the
following commutative diagram

0 −−−−→ C∗ −−−−→ D∗ −−−−→ D∗/C∗ −−−−→ 0

i

x ∥∥∥ x
0 −−−−→ KA −−−−→ D∗ −−−−→ D∗/KA −−−−→ 0
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in which i denotes the inclusion map. From it we obtain by naturality of the
six-term exact sequence the following commutative diagram

K0(C∗) //
OO

K0(D∗) //
OO

K0(D∗/C∗)
OO

K1(D∗/C∗)

??��
oo

OO
K1(D∗) oo

OO
K1(C∗)

�� ��

OO

K0(KA) // K0(D∗) // K0(D∗/KA)

K1(D∗/KA) oo

??��
K1(D∗) oo K1(KA)

�� ��

By Lemma 1.4.24 (and more restrictive assumptions like in Assumption 1.4.19)
or Theorem 1.4.26 the map K0(i) induced by the inclusion i of KA(L2(M,S+))
into C∗(M ;A) vanishes. According to Theorem 1.4.27 there exists a normalizing
function χ such that K := I − χ(D)2 ∈ KA(L2(M,S)). Since

χ(D) =

[
0 χ(D−)

χ(D+) 0

]
we thus find compact operators K1 ∈ KA(L2(M,S+)) and K2 ∈
KA(L2(M,S−)) with[

I+ − χ(D−)χ(D+)
I− − χ(D+)χ(D−)

]
=

[
K1

K2

]
Here I± ∈ L ∗

A(L2(M,S±)) is the identity operator. By definition ind0(D) =
∂1[U∗χ(D+)]. On the other hand U∗χ(D+) defines a unitary in D∗/KA as the
following computations show:

(U∗χ(D+)) (χ(D−)U) = U∗χ(D+)χ(D−)U

= U∗(I− −K2)(D)U

∼ I+ mod KA .

and

(χ(D−)U) (U∗χ(D+)) = χ(D−)χ(D+)

= (I+ −K1)(D)

∼ I+ mod KA .

This implies ind0(D) = 0.

Finally, we can handle the case where p = 1 analogously to the previous
case. Again we set A = C∗π1(M) and abbreviate C∗(M ;A), D∗(M ;A) ⊂
L ∗
A(L2(M,S)) and KA(L2(M,S)) as C∗, D∗ and KA. Again there exists by

naturality of the six-term exact sequence the following commutative diagram

K0(C∗) //
OO

K0(D∗) //
OO

K0(D∗/C∗)
OO

K1(D∗/C∗)

??��
oo

OO
K1(D∗) oo

OO
K1(C∗)

�� ��

OO

K0(KA) // K0(D∗) // K0(D∗/KA)

K1(D∗/KA) oo

??��
K1(D∗) oo K1(KA)

�� ��
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By Theorem 1.4.26 the map K1(i) induced by the inclusion i of KA(L2(M,S))
into C∗(M ;A) vanishes. Again there exists by Theorem 1.4.27 a normalizing
function χ such that K := I − χ(D)2 ∈ KA. By definition ind1(D) = ∂1[(I +
χ(D))/2] but the following computation shows that (I + χ(D))/2 defines a
projection in D∗/KA:(

I + χ(D)

2

)2

=

(
I + χ(D)

2

)
+

(χ2 − 1)(D)

4

∼
(
I + χ(D)

2

)
mod KA .

This implies ind1(D) = 0. �

1.5. Roe’s partitioned manifold index

theorem

1.5.1. Introduction

The partitioned manifold index theorem of Roe relates the odd index of a Dirac
operator on an odd dimensional complete Riemannian manifold, partitioned by
a compact hypersurface, to the index of the Dirac operator on the hypersurface.
The result appeared first 1989 in [35]. Two years after this, Higson gave a new
proof of this theorem in [21]. On first sight Higson’s formulation of the theorem
differs from the one given by Roe, but actually they are equivalent as will
be explained later in this section. Recently Zadeh [51] extended the theorem
in Higson’s formulation to the C∗-linear context. A similar, though different,
generalization in the same direction was given and applied before in [5] by Block
and Weinberger.

1.5.2. Dirac operators on hypersurfaces

Before stating the partitioned manifold index theorem, we recall the definition
of a partitioned manifold and that of an induced spin structure and then discuss
Dirac operators on a hypersurfaces.

1.5.1 Definition (Partitioning hypersurface, partitioned manifold). Let (M, g)
be an oriented Riemannian manifold. A hypersurface in M is an submanifold
N ⊂ M of codimension 1 (usually equipped with the induced metric) which is
oriented by a unit normal vector field ν. The hypersurface N is a partition-
ing hypersurface if M \N is the disjoint union of two open (not necessarily
connected) subsets M+ and M− of M with ∂M± = N . Where applicable, we
say that N partitions M and that M is a partitioned manifold with parti-
tioning (M,M+,M−). We will always orient N such that the the unit normal
vector field along N points into M+.

Of course, with this definition every manifold admits a partition (simply let N
be the boundary of a coordinate ball in M). A rather interesting question is
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whether a given manifold N can be realized as a partitioning hypersurface in
another given manifold.

5.2 Induced spin structure. A submanifold of a spin manifold needs not to
be a spin manifold itself. Nevertheless, it is sometimes possible to induce a spin
structure from an ambient manifold on a submanifold. Let (M, gM ) be an n-
dimensional Riemannian manifold with spin structure σM = (Spin(M),ΘM ).
We consider a k-codimensional submanifold N ⊂M of M and ask whether and
how we can use the given spin structure to induce a spin structure σN on the
manifold N .

Recall the following definition.

1.5.3 Definition (Reduction of a principal bundle/the structure group). Let
λ : H −→ G be a continuous group homomorphism and (PG, πG,M ;G) a G-
principal bundle. A H-principal bundle (PH , πH ,M ;H) together with a con-
tinuous map f : PH −→ PG is a λ-reduction if the following diagram commutes:

PH ×H
right action−−−−−−−→ PH

f×λ
y yf

PG ×G
right action−−−−−−−→ PG

1.5.4 Definition (Induced spin structure). Let (M, g) be a Riemannian spin
manifold with spin structure (Spin(M),ΘM ), and N a hypersurface oriented
by the normal vectorfield ν. The sub-bundle P of SO(M)|N given by

P := {(s1, . . . , sn−1, ν) ; (s1, . . . , sn−1) ∈ SO(N)} ⊂ SO(M)|N

is an SO(n − 1)-reduction of SO(M)|N which is isomorphic to SO(N) as a
SO(n − 1)-principal bundle. In this case f is the inclusion map, the action
of SO(n − 1) on P is the one induced by the inclusion SO(n − 1) ⊂ SO(n)
and the given action of SO(n) on SO(M). Finally, let σN = (Spin(N),ΘN )
be the spin structure given by Spin(N) := Θ−1

M (P ) ⊂ Spin(M)|N with the
action of Spin(n−1) induced by the Spin(n)-action on Spin(M)|N , and ΘN :=
(ΘM )|Spin(N) as bundle projection. That this defines indeed a spin structure
follows directly from the fact that σM is such a structure. The spin structure
σN is called the induced spin structure.

1.5.5 Example. Let M be a oriented (n+ 1)-dimensional manifold for which
SO(M) is trivial and which is equipped with the trivial spin structure, and let
N ⊂ M be a 1-codimensional submanifold oriented by the outward pointing
normal vector field ν. By choosing a trivializing global oriented orthonormal
frame (E1, . . . , En+1), we can identify SO(M) with M × SO(n + 1). Simply
identify the frame (E1(p), . . . , En+1(p)) · A, with A ∈ SO(n + 1). for a given
point p with (p,A) ∈ M × SO(n + 1). The bundle SO(M)|N is also trivial.
Let us also assume that there exists a global section (E1, . . . , En) of SO(N)
and consider the global section (E1, . . . , En, ν) with last component equal to ν.
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This identifies SO(M)|N with N × SO(n + 1), and P with N × SO(n). Since
ΘM = idM × θn+1, we have

Spin(N) = Θ−1
M (P ) = {(p, g) ∈ N × Spin(n+ 1) ; θn+1(g) ∈ Spin(n)} .

The diagram
Spin(n) −−−−→ Spin(n+ 1)

θn

y yθn+1

SO(n) −−−−→ SO(n+ 1)

commutes and θn+1(g) ∈ SO(n) is equivalent to g ∈ Spin(n), we thus find that
Θ−1
M (P ) = N × Spin(n) is the trivial spin structure on N .

5.6 Dirac operators on hypersurfaces. Here we recall some well-known
results on the Dirac operator on a hypersurface. See [2] and [14]. For this
purpose let (M, gM ) be an (n+1)-dimensional Riemannian manifold with metric
gM and spin structure σM = (Spin(M),ΘM ). The associated Dirac operator
DM : Γ(M,ΣM) −→ Γ(M,ΣM) acts on sections of the associated spinor bundle
ΣM = Spin(M) ×σ2n+1 ∆2n+1. We consider a hypersurface N of M which
is oriented by a normal vector field ν, and we equip this submanifold with
the induced metric gN = i∗gM (here i : N −→ M is the inclusion map) and
the induced spin structure (Spin(N),ΘN ). We will describe the intrinsically
defined Dirac operator DN : Γ(N,ΣN) −→ Γ(N,ΣN) extrinsically by means of
the spinor bundle ΣM , the Clifford multiplication cM , and the covariant spinor
derivative ∇ΣM induced by the covariant Levi-Civita derivative ∇M of the
ambient manifold M . As the following table makes clear, the rank of ΣM can
only be equal to that of ΣN if n = dim(N) is even (let k ∈ N0 and 〈n〉 the
dimension of the representation space ∆n).

n = 2k n = 2k + 1

〈n〉 = bn2 c k k

〈n+ 1〉 = bn2 c k k + 1

From now on we assume n = dim(N) to be even.

1.5.7 Lemma. Let n = 2k be even and let (e1, . . . , en, en+1) be an or-
thonormal basis of Rn+1 (with the usual Euclidean scalar product). Then
the algebra isomorphism α : Clc(n) −→ Clc(n + 1)0 with α(ej) = ejen+1 (for
j = 1, . . . , n) restricts on Spin(n) to the inclusion map from Spin(n) into
Spin(n + 1). If κn+1 : Clc(n + 1) −→ End(∆n+1) is an irreducible algebra rep-
resentation, then κn := κn+1 ◦ α defines an irreducible algebra representation
κn : Clc(n) −→ End(∆n) (set ∆n := ∆n+1). Hence these representations are up
to equivalence the unique spinor representations of the Clifford algebras Clc(n)
and Clc(n + 1). Furthermore, ∆±n = Eig(Men+1 ;±

√
−1) ⊂ ∆n+1 is the eigen-

space of the endomorphism of ∆n+1, which is given by multiplication with en+1

from the right.

1.5.8 Definition (Restriction of a Dirac operator). Let M and N be as in
Section 1.5.2. We drop the spin condition and assume only that (S,∇S) is a
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Dirac bundle on M (for instance, the spinorial Dirac bundle coming from a
spin structure on M) with associated Dirac operator D : Γ(M,S) −→ Γ(M,S).
In this situation, the restriction of (S,∇S) to N , written resN (S,∇S), is the
Dirac bundle (T,∇T ) given by the following data: the Dirac bundle T := S|N ,
the restriction of S to N equipped with the Clifford multiplication cN : TN −→
End(S|N ) with cN (v)(sx) = cM (v)(sx), where cM : TM −→ End(S) is Clifford

multiplication for S. The covariant derivative operator ∇T is12

∇TX(s|N ) :=

(
∇SXs+

1

2
(∇MX ν) · ν · s

)
|N

. (1.5.1)

Here X is a vector field tangent to N and s ∈ Γ(M,S) is a section with restric-
tion s|N ∈ Γ(N,T ) and ∇M is the usual covariant derivative operator of the
Levi-Civita connection given by the metric of M . The restriction of D to
the hypersurface N is the Dirac operator

resN (D) : Γ(N,S|N ) −→ Γ(N,S|N )

associated with the restricted Dirac bundle of (S,∇S). On resN (S,∇S) we
consider the grading operator γresN (S,∇S) : S|N −→ S|N with γresN (sx) :=
cN (ν(x))(sx) for sx ∈ Sx over x ∈ N .

We can now state the desired description of the instrinsic Dirac operator by
exterior data.

1.5.9 Proposition. With the notation from Subsection 1.5.2, there exists an
isomorphism between resN (ΣM,∇ΣM ) and the intrinsically defined spinorial
Dirac bundle (ΣN,∇ΣN ) which respects the Z/2-grading (recall that n is even).

Proof. To begin with, recall ∆2n = ∆2n+1 = C〈n〉 as vector spaces. We explain
how one can realize the spin representaions σ2n and σ2n+1 in such a way that
σ2n+1|Spin(2n) = σ2n. After this is done, a vector bundle isomorphism Φ: ΣN −→
(ΣM)|N can be obtained from the following readily verified result: if f : PH −→
PG is a reduction for λ : H −→ G, and if ρG : G −→ GL(V ) and ρH : H −→ GL(V )
are finite-dimensional linear group representations with ρH = ρG ◦ λ, then
the map Φ: PH ×ρH V −→ PG ×ρG V with Φ[p, v] = [f(p), v] is an injective
homomorphism of vector bundles of the same rank, and thus an isomorphism.
In our case f : Spin(N) = Θ−1(P ) −→ Spin(M)|N is the inclusion map and
λ : Spin(n − 1) −→ Spin(n) is the inclusion obtained from Rn−1 ⊂ Rn. Thus
Φ: ΣN −→ (ΣM)|N is given by Φ[p, v] = [p, v].

In order to be able to see that Φ is compatible with the Z/2-gradings,
i.e. Φ ◦ γΣN = γ(ΣM)|N ◦ Φ, we recall how the Clifford multiplication

cM : X(M) × Γ(M,Σ) −→ Γ(M,ΣM) is defined: first of all, one identifies TM
with Spin(M)×ρR2n+1, where ρ : Spin(2n+ 1) −→ GL(Rn) is the linear repres-
entation given by the left regular representation of SO(2n + 1) on R2n+1 and

12The second summand in this definition – the first one is given by the pullback derivative
operator – has to be added to guarantee the compatibility with the Levi-Civita connection
on N .
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the spin covering Θ2n+1 : Spin(2n+ 1) −→ SO(2n+ 1). Under this identification
the Clifford multiplication · : R2n+1⊗∆2n+1 −→ ∆2n+1 induces a multiplication
between tangent vectors and spinors via (let x ∈M)

TxM ⊗ (ΣM)x −→ (ΣM)x , [p, v]⊗ [p, ψ] 7→ [p, v · ψ] .

If the identification of TM with Spin(M)×ρR2n+1 is given by the obvious map
TM −→ Spin(M)×ρ R2n+1, which maps as follows:

2n+1∑
i=1

λiEi(x) 7→ [Θ−1
M (E1, . . . , E2n+1), (λ1, . . . , λ2n+1)] ,

then ν(x) corresponds to [Θ−1
M (E1, . . . , E2n, ν), e2n+1]. Thus, the Clifford mul-

tiplication by ν(x) is given by the Clifford multiplication by e2n+1 on ∆2n+1.
With this at hand one obtains

Φ(γΣN (ψx)) = Φ(ν(x) · ψx)

= Φ[Θ−1
M (E1, . . . , E2n, ν), en+1 · v]

= γΣM (ψx)

for any ψx = [Θ−1
M (E1, . . . , E2n, ν), v] in ΣN .

Now Lemma 1.5.7 shows how one has to choose the spin representations.

In order to see that Φ ◦ (∇ΣN
X s) = ∇resN (ΣM)

X (Φ ◦ s) holds for any section
s ∈ Γ(N,ΣN) and each X ∈ X(N) we make the following remarks: by definition
of ∇ΣN one has

∇ΣN
X s = X.s+

1

2

∑
1≤i<j≤n

gN (∇NXEi, Ej) cN (Ei)(cN (Ej).s) (1.5.2)

for all X ∈ X(N), s ∈ Γ(N,ΣN) and any SO(N)-frame (E1, . . . , En). Analog-
ously, one has

∇ΣM
Y t = Y.t+

1

2

∑
1≤k<l≤n+1

gM (∇MY Fk, Fl) cM (Fk)(cM (Fl).t) (1.5.3)

for all Y ∈ X(M), t ∈ Γ(M,ΣM) and any SO(M)-frame (F1, . . . , Fn, Fn+1).
Now let ν : N −→ TM|N be the given unit normal field and (E1, . . . , En) an
SO(N)-frame. Then for each x ∈ N the tuple (E1(x), . . . , En(x), ν(x)) is an
oriented orthonormal basis for TxN and we can do the following calculation
valid on N :

∇ΣM
Y t = Y.t+

1

2

∑
1≤k<l≤n

gM (∇MY Ek, El) cM (Ek)(cM (El).t)

+
1

2

n∑
k=1

gM (∇MY Ek, ν) cM (Ek)(cM (ν).t)

= Y.t+
1

2

∑
1≤k<l≤n

gM (∇MY Ek, El) cM (Ek)(cM (El).t)

+
1

2
cM

(
n∑
k=1

gM (∇MY Ek, ν)Ek

)
(cM (ν).t) .

(1.5.4)
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Since one has

gM (∇MY Ek, ν) = −gM (Ek,∇MY ν) + Y.gM (Ek, ν) = −gM (Ek,∇MY ν)

for any 1 ≤ k ≤ n, we can rewrite the sum occuring in the third summand term
of Equation (1.5.4) in the following way:

n∑
k=1

gM (∇MY Ek, ν)Ek = −
n∑
k=1

gM (∇MY ν,Ek)Ek

= gM (∇MY ν, ν) ν −∇MY ν
= −∇NY ν .

(1.5.5)

Here the last equality comes from the definition of ∇N . Now notice that
gM (∇MY Ek, El) = gN (∇NY Ek, El) holds by the following computation

gM (∇MY Ek, El) = gM (∇NY Ek + gM (∇MY Ek, ν) ν,El)

= gM (∇NY Ek, El) + gM (∇MY Ek, ν) gM (ν,El)

= gM (∇NY Ek, El)
= gN (∇NY Ek, El) .

Thus we finally obtain from (1.5.4) and (1.5.5) the following formula:

∇ΣM
Y t = Y.t+

1

2

∑
1≤k<l≤n

gN (∇MY Ek, El) cM (Ek)(cM (El).t)

− 1

2
cM (∇NY ν)(cM (ν).t) .

(1.5.6)

Setting t = Φ ◦ s and Y = X we obtain from equation (1.5.1) and (1.5.6) the
following formula, valid on N :

(∇resN (ΣM)
X (Φ ◦ s))(x) = ∇ΣM

X (Φ ◦ s) +
1

2
cM (∇MX ν)(cM (ν)(Φ ◦ s))

= X.(Φ ◦ s) +
1

2

∑
1≤k<l≤n

gN (∇MY Ek, El) ∴

∵ cM (Ek)(cM (El)(Φ ◦ s)) .

(1.5.7)

One has cM (Ek)(cM (El)(Φ ◦ s)) = cN (Ek)(cN (El)(Φ ◦ s)) for all 1 ≤ k, l ≤ n
as follows from the following two computations: let v ∈ TxN ⊂ TxM , Then
v = (v1, . . . , v2n, 0) with respect to the basis (E1(x), . . . , E2n(x), ν(x)). Let
fs : Spin(N) −→ ∆2n be an equivariant function with s(x) = [x̃, fs(x̃)] for any
x ∈ N covered by x̃ ∈ Spin(N). With this notation, one has on one hand

cM (v)(Φ(s(x))) = cM (v)[x̃, fs(x̃)]

= [x̃, κ2n+1(v1, . . . , v2n, 0)(fs(x̃))]
(1.5.8)

and on the other hand

Φ(cN (v)(s(x))) = [x̃, κ2n(viei)(fs(x̃))]

= [x̃, κ2n+1(vieien+1)(fs(x̃))]

= [x̃, κ2n+1(viei)(κ2n+1(en+1)(fs(x̃)))]

= [x̃,−κ2n+1(en+1)(κ2n+1(viei)(fs(x̃)))] .

(1.5.9)
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Notice that e2
2n+1 = −1. Thus the claim follows by comparing equation (1.5.2)

with equation (1.5.7). �

1.5.3. The theorem

Let M be a complete Riemannian spin manifold of odd dimension, which is
partitioned by a compact hypersurface. In [35] Roe constructs a homomorphism
ζN : K1(C∗(M)) −→ Z using the pairing between odd K-theory and odd cyclic
cohomology. For the moment we postpone the definition of this homomorphism
and state the partitioned manifold index theorem. After this we will describe
how the homomorphism is constructed.

1.5.10 Theorem (Partitioned manifold index theorem). Let (M, g) be a com-
plete Riemannian spin manifold of odd dimension. Assume that M is parti-
tioned by a compact hypersurface N ⊂M . Then the equality

ζN (ind1(DM )) = ind(DN )

holds.

We continue with the construction of Roe’s homomorphism ζN . This is con-
structed using Connes’ cyclic cohomology whose definition we recall next.

1.5.11 Definition. For each complex algebra A one defines the Hochschild
cochain complex (Ck(A), bk)k∈N0 and the subcomplex (Ckλ(A), bk)k∈N0 given
by the cyclic cochain complex by the following data:

1. A cochain (of degree k) is a (k + 1)-linear functional φ : Ak+1 −→ C. The
(additive) group of all cochains of degree k is denoted by Ck(A). It is
customary to denote the elements of Ak+1 by (a0, . . . , ak).

2. A cyclic cochain (of degree k) is a chain φ ∈ Ck(A) which satisfies the
following cyclic permutation condition: One has

φ(a0, . . . , ak) = (−1)k φ(ak, a0, . . . , ak−1) .

If one defines the cyclic permutation operator

λ = λk : Ck(A) −→ Ck(A)

by
(λkφ)(a0, . . . , ak) := (−1)k φ(ak, a0, . . . , ak−1)

then the (additive) group of all cyclic cochains of degree k, denoted by Ckλ(A),
is exactly ker(1− λk).

3. The boundary map
b = bk : Ck(A) −→ Ck+1(A)

as well as the induced boundary map (denoted by the same letter)

b = bk : Ckλ(A) −→ Ck+1
λ (A)
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is given by the formula

(bkφ)(a0, . . . , ak+1) :=
k∑
j=0

(−1)j φ(a0, . . . , ajaj+1, . . . , ak+1)

+ (−1)k φ(ak+1a0, a1, . . . , ak)

for φ ∈ Ck(A) and φ ∈ Ckλ(A).

Finally, the Hochschild cohomology (of degree k) of A, denoted by Hk(A)
and the cyclic cohomology (of degree k) of A, denoted by Hk

λ(A), is defined
as the homology (of degree k) of the Hochschild and cyclic cochain complex,
respectively.

Let the complex algebra in the previous definition be the Roe C∗-algebra
C∗(M). In [35] Roe considers the cyclic cocycle ζ ∈ C1

λ(C∗(M)) given by

ζ : (A,B) 7→ Tr([PAP,PBP ]− P [A,B]P ) . (1.5.10)

Here P is the operator given by multiplication by the characteristic function
of M+. This defines a class in the odd cyclic cohomology Hodd

λ (C∗(M)) of the
Roe C∗-algebra. Recall that there exists for any C∗-algebra A a pairing

〈 · , ·〉 : K1(A)×Hodd
λ (A) −→ C (∗)

between the odd K-theory and odd cyclic cohomology of A. It is given by the
following formula for which we refer the reader to [26, p. 157]: for [u] ∈ K1(A)
represented by u ∈ GL∞(A) and [φ] ∈ H2n−1

λ (A) represented by φ ∈ C2n−1
λ (A)

one defines

〈[u], [φ]〉 = Cn φ(u−1 − 1, u− 1, . . . , u−1 − 1, u− 1)

where Cn ∈ R is a constant depending only on n ∈ N. With this notation,
Roe’s homomorphism is given as follows

ζN : K1(C∗(M)) −→ Z , [u] 7→ 〈[u], [ζ]〉 .

As we have already remarked in the introduction to this section, there is a
second version of the partitioned manifold index theorem due to Higson. We
set out to briefly review Higson’s approach and then relate this version with
the cyclic cocycle-description of Roe. Higson (and following him, also Zadeh)
consider the Cayley transform

U := (D + i I)(D − i I)−1

of D, and the operator
U+ = Mφ− +Mφ+ U

obtained from it. Here φ+ is a smooth function on M which coincides outside
a compact neighbourhood of N with the characteristic function of M+, and φ−
is defined as φ− := 1 − φ+. As it turns out, this operator is Fredholm (in the
case of Zadeh’s paper it is Fredholm in the sense of Fomenko and Mishchenko)
and its Fredholm index equals the index of DN . This is Higson’s formulation of
Roe’s index theorem for partitioned manifolds which we now state as a theorem.
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1.5.12 Theorem (Partitioned manifold index theorem). Let (M, g) be a com-
plete Riemannian spin manifold of odd dimension. Assume that M is parti-
tioned by a compact hypersurface N ⊂M . Then the equality

ind(U+) = ind(DN )

holds.

We now try to explain why this formulation is equivalent to the original one.
For this we follow a corresponding remark in [18, p. 44]. One has U = ϕ(D)
if the normalizing function is chosen as χ(t) = 2

π arctan(t) and by definition
ind1(D) is the class [U ] ∈ K1(C∗(M)). Recall, that there exists the following
index pairing between the K-homology and K-theory of a C∗-algebra A

〈 · , · 〉 : K1(A)×K1(A) −→ Z
([H , ρ, F ], [u]) ind(PuP − (1− P ) : PH −→ PH )

(∗∗)

where P := (1 + F )/2. If A = C∗(M) is the Roe C∗-algebra, we can consider
the cycle

[L2(M,S), ρstd, 2P − 1]

with P := Mχ+ , where χ+ is the charactistic function of the M+. The index
pairing of this cycle with the odd index class ind1(D) = [U ] is exactly the index
ind(U+) considered by Higson. The relation between the pairing (∗) between
cyclic cohomology and K-homology and the pairing (∗∗) between K-theory
and K-homology is given by Connes’ Chern character formula (also known as
Connes’ index theorem)

〈Chodd(H , F ), [u]〉 = 〈(H , ρ, F ), [u]〉 ,

which can be found for example in [26, Prop. 4.2.5, p. 176]. Using this, the
equivalence of the two stated formulations of the partitioned manifold index
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theorem follows from the subsequent computation:

ζN [u] = 〈[u], [ζ]〉

=
1

4
ζ(u−1 − 1, u− 1)

=
1

4
Tr([P (u−1 − 1)P, P (u− 1)P ]− P [u−1 − 1, u− 1]P )

=
1

4
Tr(Pu−1PuP − PuPu−1P )

= Tr(P − (Pu−1PuP ))− Tr(P − (PuPu−1P ))

= Tr(P − (Pu−1PuP ))− Tr((Pu1u−1P )− (PuPu−1P ))

= Tr(P − (Pu−1PuP ))− Tr(Pu(1− P )(Pu(1− P ))∗)

= −Tr((−P + Pu−1PuP ) + ((Pu(1− P ))∗(Pu(1− P ))))

= −Tr(−P + Pu−1PuP + (1− P )u−1P 2u(1− P ))

= −Tr(−P + Pu−1PuP + (1− P )u−1Pu(1− P ))

= −Tr(Pu−1Pu− P − (2P − I)u−1Pu+ (2P − I)u−1PuP )

= −1

4
Tr(F [F, u−1] [F, u])

= 〈Chodd(L2(M,E), ρstd, 2P − 1), [u]〉
= 〈(L2(M,E), ρstd, 2P − 1), [u]〉
= ind(PuP − (1− P ))

= ind(PuP ) .

The previous calculation contains a third version of the partitioned manifold
theorem, which is considered in [38]. It reads as follows.

1.5.13 Theorem (Partitioned manifold index theorem). Let (M, g) be a com-
plete Riemannian spin manifold of odd dimension. Assume that M is parti-
tioned by a compact hypersurface N ⊂M . Let

ϕN : K1(M) −→ Z

be the map constructed in the following way: let A ⊂ L ∗
C(L2(M,ΣM))

be the C∗-algebra obtained by adjoining a unit to C∗(M) and set H+ :=
P (L2(M,ΣM)). Map the class [u] ∈ K1(M) represented by u ∈ GL∞(A) to
the Fredholm index of Toeplitz-type operator

Tu : (H+)n −→ (H+)n

obtained by first multiplying by u and then compressing to (H+)n by the ortho-
gonal projection P ⊕ · · · ⊕ P . Then the equality

ϕN (ind1(DM )) = ind(DN )

holds.
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Finally, we remark that another proof of the partitioned manifold index theorem
is given in [37].

The general version of the partitioned manifold index theorem now reads as
follows, see [51].

1.5.14 Theorem (Coefficient version of Roe’s partitioned index theorem). Let
M be an odd-dimensional manifold with dim(M) ≥ 3 and N ⊂ M a compact
partitioning hypersurface, let S be a Dirac bundle of Hilbert A-modules over M
with associated Dirac operator D : Γ(M,S) −→ Γ(M,S). Let

ϕN : K1(C∗(M,A)) −→ K0(A) , [u] 7→ indA(Tu)

be the homomorphism defined by the partitioning hypersurface. Then one has

ϕN (ind1(D)) = indA(resN (D)) .

Here resN (D) is the restriction of D to N as in Definition 1.5.8.

1.5.15 Remark. For A = C this is the usual partitioned index theorem as it was
given by Roe.

1.5.16 Example. If M is spin and N carries the induced spin structure, we can
identify the restricted spinor bundle (ΣM)|N with the intrinsic spinor bundle
ΣN and the restricted spinorial Dirac operator resN (DM ) with the intrinsic
spinorial Dirac operator DN of N . This remains true if one twists: the restric-
tion of the Dirac operator DM,E = DM ⊗E, which is obtained by twisting the
spinorial Dirac operator DM on M with a Banach bundle (E,∇) equipped with
a covariant derivative operator ∇, can be identified with DN ⊗E|N where E|N
carries the restricted covariant derivative operator ∇E|N . In order to see this,
we first of all notice that by definition

resN (ΣM ⊗ E) = (ΣM ⊗ E)|N = (ΣM)|N ⊗ (E|N )

and secondly, that the connection on resN (ΣM ⊗ E) is given by (1.5.1) as

∇resN (ΣM⊗E)
X s|N =

(
∇ΣM⊗E
X s− 1

2
cM (∇MX ν)(cM (ν)(s))

)
|N

(1.5.11)

for any section s ∈ Γ(M,ΣM ⊗E). If s = ψ⊗ t is an elementary tensor section
with ψ ∈ Γ(M,ΣM) and t ∈ Γ(M,E), then formula (1.5.11) becomes

∇resN (ΣM⊗E)
X s|N =

(
∇ΣM⊗E
X s− 1

2
(∇MX ν) · ν · s

)
|N

=
(

(∇ΣM
X ψ)⊗ t+ ψ ⊗∇EXt

)
|N
−((1

2
cM (∇MX ν)(cM (ν)(ψ))

)
⊗ t
)
|N

=
(

(∇resN (ΣM)
X ψ)⊗ t|N

)
+
(
ψ ⊗ (∇EXt)

)
|N

= ∇resN (ΣM)⊗E|N
X (ψ ⊗ t)|N

= ∇resN (ΣM)⊗E|N
X s|N .
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Here we have used that cM : TM −→ End(ΣM⊗E) acts by cM (v) = cM (v)⊗ idE
for each v ∈ TM . Hence, resN (DM,E) = DN,E|N follows.

1.5.17 Remark. We briefly want to compare our definition of resN (DM ) with
the one Higson uses in his note [19]: let M be a (2n+ 1)-dimensional manifold
and (S,∇S) a Dirac bundle on M . Both Higson’s and our Dirac operator on N ,
act on sections of S|N equipped with the Clifford multiplication of TN induced
by the embedding TN −→ TM |N , cf. [19, p. 440]. On this bundle we consider
the covariant derivative operator given by Equation (1.5.1) of Definition 1.5.8.
Higson chooses an arbitrary compatible connection on S|N instead, again cf.
[19, p. 440]. Finally, let us compare the grading on S|N that Higson uses with
the one we have chosen in Definition 1.5.8. For this we need to explain that
Higson [19, p. 439] makes the following additional assumption on (S,∇S): let
(E0, E1, . . . , E2n) be a local orthonormal frame for M and set

η := (
√
−1)1+nE0E1 · · ·E2n ,

then it is assumed that the Dirac bundle (S,∇S) is such that

η s = s (∗)

holds for each section s ∈ Γ(M,S). If this additional assumption is not already
true for (S,∇S) it can be enforced following [19] as follows: one considers the
self-adjoint endomorphism σ ∈ End(S) given by left multiplication with η on
the fibres. We can then consider the eigenbundles S± = Eig(σ;±1). Then S =
S+⊕S− and ∇S as well as ±D maps S± to S± (this follows from [31, (5.4) on p.
114 as well as (5.25) on p. 128]) and we obtain a decomposition D = D+⊕D−.
The sections of the Dirac bundle (S+,∇) satisfy the desired relation, so that
we can replace (if necessary) (S,∇) by (S+,∇). With this out of the way,
Higson finally orients N as ∂M− and chooses the self-adjoint endomorphism
ε : S|N −→ S|N with ε(s) = (

√
−1)nE1 · · ·E2ns as grading operator for S|N . If

s ∈ Eig(ε;±1), then by (∗) one has

±(
√
−1) νs = (

√
−1) νε(s)

= (
√
−1)1+n νE1 · · ·E2ns

= η s

= s

Thus Eig(ε;±1) = Eig(ν;∓i). This explains the connection between the grad-
ing on S|N used in [19] and the grading we have choosen in Definition 1.5.8.

1.6. A geometric application

In this section we consider a codimension two-obstruction theorem as an ex-
ample of an application of the (general version of) the vanishing theorem and
the partitioned manifold index theorem. This is joint work with Hanke and
Schick. This results goes back to a similar result by Gromov and Lawson [16,
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Thm. 7.47] and describes a situation in which the non-existence of a posit-
ive scalar curvature metric on a submanifold of codimension two obstructs the
existence of such a metric on the ambient manifold.

A basic problem in the application of the partitioned manifold index theorem
to a geometrical situation is to extend the various structures given on the parti-
tioning submanifold to the ambient manifold. The aforementioned application
identifies a geometrical setting in which such an extension is actually possible
and is described in Theorem 1.6.9.

We begin by reviewing the product formula for the Rosenberg index. This will
play an important role in the proof of Theorem 1.6.9.
6.1 Product formula for the Rosenberg index. In this section we extend
the definition of the Rosenberg α-index to odd-dimensional manifolds as in [17,
Sec. 3, p. 14 and Sec. 4, p. 20], using a Kasparov-type product

⊗̂ : Kp(A1)×Kq(A2) −→ Kp+q(A1⊗̂A2) , p, q ∈ Z/2 (1.6.1)

whose definition we recall next. Here and in the following ⊗̂ denotes the (min-
imal) graded tensor product for C∗-algebras, see [3, p. 116].

We assume the reader is familiar with the Kasparov product

⊗̂D : KK(A,D)×KK(D,B) −→ KK(A,B) . (1.6.2)

and

⊗̂D : KK(A1, B1⊗̂D)×KK(D⊗̂A2, B2) −→ KK(A1⊗̂A2, B1⊗̂B2) , (1.6.3)

respectively. This product can be extended to a product

⊗̂D : KKp(A,D)×KKq(D,B) −→ KKp+q(A,B) , p, q ∈ Z/2 (1.6.4)

between the higher KK-groups KKp(A,B). These are defined for p ∈ N≥1 by
means of the complex Clifford algebras Clcp as

KKp(A,B) := KK(A,B ⊗ Clcp) (1.6.5)

and one sets KK0(A,B) := KK(A,B) in addition to this. Likewise, Kp(A) =
KKp(C, A ⊗ Clcp) for p ∈ N≥1. Since we only need KKp(A,B) for p = 0 and
p = 1 here, we give no further details and only recall that Clc1 = C · 1 ⊕ C · i.
Next, we explain the definition of the ‘mixed Kasparov product’

⊗̂p,qD : KKp(A,D)×KKq(D,B) −→ KKp+q(A,B) , p, q ∈ Z/2 . (1.6.6)

Of course, for p, q = 0 the ‘mixed product’ ⊗̂0,0
D is simply the usual product

⊗̂D. To define ⊗p,qD for other values of p and q use [3, 18.10, p. 181] and the
exterior tensor product.

Finally, we obtain the ‘K-theory version’

⊗̂ : Kp(A1)×Kq(A2) −→ Kp+q(A1⊗̂A2) , p, q ∈ Z/2 (1.6.7)
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of the mixed Kasparaov product announced in (5.2) by writing C = C⊗C and
A = A⊗ C and the following diagram

KK(C, A1⊗̂Clcp)×KK(C, A2⊗̂Clcq)
⊗̂−−−−→ Kp+q(A1⊗̂A2)∥∥∥ ∥∥∥

KK(C, (A1 ⊗ Clcp)⊗ C)×KK(C⊗ C, A2 ⊗ Clcq) −−−−→
⊗̂C

KK(C⊗̂C, A1⊗̂A2 ⊗ Clcp ⊗ Clcq)

(1.6.8)
Here the lower horizontal arrow is given by (1.6.3).

Let us briefly review Schochet’s Künneth formula: for a C∗-algebra A introduce
the graded group K∗(A) := K0(A)⊕K1(A). If A and B are C∗-algebras we can
consider the graded tensor product of K∗(A) and K∗(B). It is given by

K∗(A)⊗̂K∗(B) =
(
K∗(A)⊗K∗(B)

)
0
⊕
(
K∗(A)⊗K∗(B)

)
1

with even part(
K∗(A)⊗̂K∗(B)

)
0

=
(
K0(A)⊗K0(B)

)
⊕
(
K1(A)⊗K1(B)

)
and odd part(

K∗(A)⊗̂K∗(B)
)

1
=
(
K1(A)⊗K0(B)

)
⊕
(
K0(A)⊗K1(B)

)
.

According to [42], if A and B are separable and A is also nuclear, there exists
a short exact sequence

0 −→ K∗(A)⊗̂K∗(B)
ρ−→ K∗(A⊗̂B)

σ−→ Tor(K∗(A),K∗(B)) −→ 0 .

We will not need the definition of ρ and σ here, but see [42]. (The map ρ is
denoted α in [42]. But since we are using this letter to denote the Rosenberg
index we use different notation here.)

1.6.2 Theorem (Product formula). For i = 1, 2 let Mi be a compact spin
manifold and let Ai be Z/2-graded C∗-algebras, and let Si −→ Mi be Ai-Dirac
bundle with associated Dirac operator Di. Then the exterior product S1� S2 is
a (A1⊗A2)-Dirac bundle and the index ind(D) of the associated Dirac operator
D1 �D2 can be computed using the Kasparov product

⊗̂ : K0(A1)⊗̂K0(A2) −→ K0(A1⊗̂A2)

as
ind(D1 �D2) = ind(D1)⊗̂ind(D2) .

Proof. See [46]. �

1.6.3 Definition (Even and odd Rosenberg index). If M is even-dimensional
we set α0(M) := α(M). If M is odd-dimensional, M × S1 is even-dimensional
and we can consider α(M × S1). By the product formula of Theorem 1.6.2
α(M × S1) = α(M)⊗̂α(S1) in K0(C∗π1(M)⊗̂C∗π1(S1)). On the other hand

[K0(C∗π1(M))⊗ Z · g0]⊕ [K1(C∗π1(M))⊗ Z · g1]
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1. Coarse index theory and positive scalar curvature

is isomorphic to K0(C∗π1(M)⊗̂C∗π1(S1)) via ρ by Schochet’s Künneth formula.
Here we have written K0(C∗π1(S1)) = Z ·g0 and K1(C∗π1(S1)) = Z ·g1. Finally,
define α1(M) ∈ K1(C∗π1(M)) as the element such that α1(M)⊗̂g1 is mapped
onto α(M × S1) under the isomorphism ρ.

1.6.4 Lemma. Let H be a Hilbert A-module, which is isomorphic to the stand-
ard module `2(A). Denote by Q(H ) = L ∗

A(A)/KA(H ) the associated Calkin
algebra and by π : L ∗

A(A) −→ Q(H ) the quotient map. If T ∈ FredA(H ) is an
A-linear Fredholm operator, i.e. the image π(T ) ∈ GL(QA(H )) of T in the
Calkin algebra is invertible, then

indA(T ) = ∂1[π(T )] .

Here [π(T )] ∈ K1(A) the class of π(T ) ∈ GL(QA(H )) and ∂1 : K1(A) −→ K0(A)
is the index map.

Proof. By [48, Lemma 17.1.4, p. 270] there exists K ∈ KA(H ) such that T+K
admits a polar decomposition T + K = SR with S a partial isometry and R
positive and invertible such that I − S∗S, I − SS∗ ∈ KA(H ) are compact
projections. In particular, it follows that

π(T ) = π(T +K) = π(S)π(R)

is invertible and since R is invertible, π(S) is invertible. For 0 ≤ t ≤ 1 set

Rt := S(tR+ (1− t)I) .

Then R0 = S and R1 = SR = T +K. For any 0 ≤ t ≤ 1, the operator

π(Rt) = π(S)π(tR+ (1− t)I)

is invertible. Hence π(S) ∼h π(T +K) = π(T ) are homotopic in GL(QA(H )).
From this we finally obtain

∂1[π(T )] = ∂1[π(T +K)]

= ∂1[π(S)]

= [I − S∗S]− [I − SS∗]
= indA(T ) .

This completes the proof. �

1.6.5 Lemma. Let M be a compact Riemannian spin manifold with funda-
mental group π. Then the Roe C∗-algebra C∗(M ; C∗π) coincides with the C∗-
algebra KC∗π(L2(M,S)) of all C∗π-compact operators. Furthermore, the even
Roe indices (if M is even dimensional)

ind0(DM ) ∈ K0(KC∗π(L2(M,S)))

coincides with the Rosenberg α-indices

α0(M) = indC∗π(DM ) ∈ Kp(KC∗π(L2(M,S))) .
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1. Coarse index theory and positive scalar curvature

Proof. The invariance of the generalized Fredholm index with respect to the
application of normalizing functions as well as unitary invariance of the gen-
eralized Fredholm index, and Lemma 1.6.4 allows us to make the following
computation

α0(M) = indC∗π(D+
M )

= indC∗π(χ(D+
M ))

= indC∗π(U∗χ(D+
M ))

= ∂1[π(U∗χ(D+
M ))]

= ind0(DM )

This completes the proof. �

1.6.6 Remark. A statement analogous to Lemma 1.6.5 should be true for the
odd Roe index. A similar result can be found in [39]. We defer to give a proof
here.

6.7 Extending the Mishchenko bundle. Let M be a spin manifold with
spinor bundle ΣM , A = C∗(π1(M)) the group C∗-algebra of the fundamental
group π1(M) of M , and S the Dirac bundle given by ΣM ⊗ VM with VM :=

M̃ ×π1(M) A. In Proposition 1.5.9 we saw that the restrition of the Dirac
operator on M to N can be identified with the intrinsic Dirac operator of N
(with the induced spin structure). Now as we take the fundamental group
into account we can no longer expect that the Dirac operator twisted by the
Mishchenko line bundle on M will restrict to the corresponding operator on
N simply because it may happen that the fundamental group π1(N) of N is
trivial although π1(M) might not be trivial. In order to apply Roe’s index
theorem for partitioned manifolds one needs an extension of the Mishchenko
line bundle on the partitioning manifold to the partitioned ambient manifold.
This is a non-trivial matter since such an extensions does not always exist. The
following theorem due to Hanke and Schick describes a situation where such an
extension is possible.

1.6.8 Definition. The double of a manifold M with boundary N = ∂M is
D(M) = M ∪N M . If M is a manifold without boundary and W ⊂ M is a 0-
codimensional submanifold with boundary, we set D(M,W ) := D(M \ int(W )).

The reader who is interested in the detailed construction of the double of a
manifold, can consult [27, Chapter VI, Section 5].

1.6.9 Theorem (Hanke, Schick). Let M be a connected closed manifold with
dim(M) ≥ 3 and W ⊂ M a connected submanifold of codimension 0 with
boundary ∂W . Additionaly, assume that the following holds:

(1) The boundary ∂W is connected.

(2) The second homotopy group of M vanishes: π2(M) = 0.

(3) The Hurewicz map hur: π1(∂W ) −→ H1(∂W ) becomes injective when re-
stricted to the kernel ker(i∗) ⊂ π1(∂W ) of the map induced by inclusion
map i : ∂W −→W .
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(4) The inclusion map j : W −→ M induces a monomorphism π1(j) : π1(W ) −→
π1(M) whose image has infinite index.

Then the following holds:

(a) Let p : M −→ M be the covering corresponding to the subgroup j∗(π1(W ))
of π1(M), and W ⊂ M be a lift of W to M . If we consider the manifold
D(M,W ) which is partitioned by ∂W of W , then there exists an exten-
sion of the Mishchenko line bundle V∂W over ∂W to a flat bundle E over
D(M,W )

(b) In the case where W = N ×D2 is a trivial tubular neighbourhood of a con-
nected13 submanifold N ⊂ M with codim(N) = 2, the manifold M admits
no metric of positive scalar curvature if either (i) M is odd-dimensional
and α1(N) 6= 0, or if (ii) M is even-dimensional and α0(N) 6= 0. Here
α0(N) and α1(N) is the even and odd Rosenberg index of N , respectively,
as it is defined in Definition 1.6.3.

Proof. Let p : M −→ M be the covering corresponding to the subgroup
j∗(π1(W )) of π1(M). With this choice we can, by standard covering the-
ory, lift the inclusion map j : W −→ M to an injection j : W −→ M , and
j∗ : π1(W ) −→ π1(M) is bijective. Set W := j(W ).

(a) Let k : ∂W −→M \W be the inclusion map. Consider

k∗ : π1(∂W ) −→ π1(M \W )

Subclaim: The following hold:

(i) k∗ is injective.

(ii) There exists r : π1(M \W ) −→ π1(∂W ) with r ◦ k∗ = idπ1(∂W ).

With other words, k∗ is a split injection.

Ad (i): Applying the functor π1 to the commutative diagram

∂W
k−−−−→ M \W

l

y y
W

j−−−−→ M

in which the vertical maps are given by inclusions and the covering projection

p (thus l = i ◦ p|W|∂W ), we obtain the commutative diagram

π1(∂W )
k∗−−−−→ π1(M \W )

l∗

y y
π1(W )

j∗−−−−→ π1(M)

(1.6.9)

13Such that ∂W = N × S1 satisfies assumption (1)
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The map j∗ is injective. Indeed, j∗ = p∗ ◦ j∗ and j∗ is injective by assumption
(4). Thus ker(k∗) ⊂ ker(l∗). Therefore, if [α] ∈ ker(k∗), then the path α is both
nullhomotopic as a map toW and as a map toM\W . Consequently, there exists
a singular sphere σ : S2 −→ M which maps the lower and upper semisphere S2

−
and S2

+, intoW andM\W , respectively, and the equator S1 ⊂ S2 onto the curve
im(α). We have σ∗[S

2] = 0 because of π2(M) = π2(M) = 0 by assumption (2).
But ∂MVS(σ∗[S

2]) = α∗[S
1] = hur1[α] by construction of the boundary operator

∂MVS of the Mayer-Vietoris sequence of the triad (M,M \W,W ). The diagram

∂W
k−−−−→ M \W

p
|∂W
|∂W

y ypM\WM\W

∂W −−−−→
i

M \W

commutes. Because of this (p
|∂W
|∂W )∗ maps ker(k∗) into ker(i∗) and the diagram

ker(k∗)
⊂−−−−→ π1(∂W )

hur1−−−−→ H1(∂W )y (p
|∂W
|∂W

)∗

y∼= p∗

y∼=
ker(i∗)

⊂−−−−→ π1(∂W )
hur1−−−−→ H1(∂W )

commutes because the Hurewicz morphism is natural. By assumption (3) the
lower horizontal composition in this diagram is injective, and therefore the
same is also true for the upper horizontal one. Thus [α] = 0, proving that k∗ is
injective.

Ad (ii): By considering the long exact sequence of the pair (M,W ) one finds
H1(M,W ) = 0 because the inclusion l is an isomorphism on zeroth homology
as both M and W are path connected.

The pair (M,W ) is 1-connected and the relative Hurewicz theorem as well as
assumption (2) imply H2(M,W ) = 0.

Thus the groups H1(M \ W,∂W ) and H2(M \ W,∂W ) vanish (use excision
and homotopy invariance). Therefore H1(k) : H1(∂W ) −→ H1(M \ W ) is an
isomorphism. The diagram

π1(∂W )
k∗−−−−→ π1(M \W )

l∗×hur1

y y
π1(W )×H1(∂W )

∼=−−−−−−→
j∗×H1(k)

π1(M)×H1(M \W )

obtained from Diagram 1.6.9 by taking the products with the Hurewicz morph-
ism commutes, and the lower horizontal arrow is an isomorphism since both j∗
and H1(k) are isomorphism.

The map l∗ × hur1 is injective. Indeed, if [α] ∈ π1(∂W ) lies in the kernel of
this map, then [α] lies in both the kernel of l∗ and the kernel of hur1. But
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l = i ◦ p|∂W|∂W and thus [α] must lie in (p
|∂W
|∂W )−1(ker(i∗)) = ker(k∗). But by

assumption (3) hur1 is injective on ker(k∗) as we noticed before. Hence [α] = 1,
proving that l∗ × hur1 is injective. Thus we can regard π1(∂W ) as subgroup of
π1(M)×H1(M \W ) via the injection given by the composition of this injection
with the lower horizontal arrow. The right vertical arrow then surjects onto
this subgroup of π1(M)×H1(M \W ) and gives a retraction r of k∗.

Finally, we remark that the diagram

Bπ1(M \W )
Br−−−−→ Bπ1(∂W )

cM\W

x xc∂W
M \W ←−−−−

k
∂W

in which the vertical maps are given by the classifying maps of the corresponding
universal coverings, commutes up to homotopy exactly if the diagram

π1(Bπ1(M \W ))
(Br)∗−−−−→ π1(Bπ1(∂W ))

(cM\W )∗

x x(c∂W )∗

π1(M \W ) ←−−−−
k∗

π1(∂W )

,

applying the functor π1, commutes, see [47, Section 8.7 and 8.8]. But this
follows directly from r ◦ k∗ = idBπ1(∂W ). Indeed, if X is any space, then under

the identification of π1(Bπ1(X)) with π1(X) via the boundary operator in the
long exact sequence of the fibration Eπ1(X) −→ Bπ1(X), the map induced on
π1-level by cX : X −→ Bπ1(X) is identified with idBπ1(X). Therefore, if we set

E := (Br ◦ cM\W )∗(Eπ1(∂W )), then k∗E ∼= V∂W by the Homotopy Theorem,

see [47, Thm. 14.3.3]. This completes the proof of assertion (a).

(b) We consider the cases where M is odd- and even-dimensional, respectively,
seperately, beginning with the odd-dimensional case.

(i) Assume M is odd dimensional. Denote by W a trivial normal neighbourhood
of N . Then W is a zero-codimensional submanifold of M . The image W of
W under j is a zero-codimensional submanifold of M . The manifold D(M,W )
admits a spin structure and is partitioned by the boundary ∂W ∼= N × S1

of W . By part (a) there is a flat bundle E over D(M,W ) which extends the
Mishchenko line bundle V over ∂W . By Theorem 1.5.14 and Example 1.5.16
we have:

ζ∂W (ind1(DD(M,W ),E )) = ind0(D∂W,V ) ∈ K0(C∗(π1(∂W ))) .

Furthermore, we have by Lemma 1.6.5

ind0(D∂W,V ) = α0(∂W )

= α0(∂W )

= α0(N × S1)

= ρ−1(α1(N)⊗̂g1)
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since W ∼= W and because of the product formula for the Rosenberg α-index.
(Here g1 is such that K1(C∗max(Z)) = Z ·g1. See Definition 1.6.3.) In conclusion,

ρ(ζ∂W (ind1(DD(M,W ),E ))) = α1(N)⊗̂g1

and hence ind1(DD(M,W ),E ) 6= 0 as we assume α1(N) 6= 0. Since the bundle E

is flat this and Lemma 1.3.9 imply that D(M,W ) has no PSC-metric outside of
a compact subset. Now, if M would admit a metric of positive scalar curvature
then M would admit a metric of uniformly positive scalar curvature which
in turn would imply that D(M,W ) admits a metric with uniformly positive
scalar curvature outside of a compact neighbourhood of ∂W which contradicts
ind1(DD(M,W ),E ) 6= 0.

(ii) Assume now that M is even-dimensional. In this case we replace the pair
(M,N) by (M × S1, N × S1). Since N has trivial normal bundle in M the
normal bundle of N×S1 in M×S1 is trivial. Also the fundamental group of the
submanifold still injects into the fundamental group of the ambient manifold.
Since

α1(N × S1) 6= 0⇐⇒ α1(N)⊗̂g1 6= 0

⇐⇒ ρ−1(α1(N)⊗̂g1) = α(N)⊗̂α(S1) 6= 0

=⇒ α(N) 6= 0

it follows from (i) that M × S1 admits no metric of postive scalar curvature.
Hence M has no such metric. �

64



2. A counterexample to a conjecture
about positive scalar curvature

2.1. Introduction

The Gromov-Lawson-Rosenberg Conjecture gives a necessary and sufficient con-
dition in terms of an index theoretic obstruction for a closed connected spin
manifold (of dimension ≥ 5) to admit a Riemannian metric of positive scalar
curvature. An analogous conjecture in the non-spin case is not known, though a
result of Gromov-Lawson-Stolz shows that each simply connected non-spin man-
ifold admits a Riemannian metric of positive scalar curvature. In [7] Chang has
proposed a conjecture which gives a necessary and sufficient condition in terms
of a homological obstruction for a closed connected totally non-spin manifold
(of dimension ≥ 5) to admit a Riemannian metric of positive scalar curvature.
Here a totally non-spin manifold is one for which neither the manifold nor its
universal covering admits a spin structure. Chang attributes the conjecture to
Rosenberg and Weinberger. In this chapter we show that the counterexample
from [41] to the (unstable) Gromov-Lawson-Rosenberg Conjecture can be en-
hanced to give a counterexample to the general version of the Chang-Rosenberg-
Weinberger Conjecture.

2.2. Preliminary remarks

2.1 Smooth connected sums. Let M and N be connected smooth manifolds
of the same dimension n. A detailed construction of the smooth connected
sum M#N , including a proof that it is again a smooth manifold, can be
found in [27, pp. 90-92]. It is useful to know that the fundamental group
and also the homology groups of M#N can be expressed completely in terms
of those of M and N . For example one has π1(M#N) = π1(M) ∗ π1(N)
for the fundamental groups if n ≥ 3, see [27, p. 94] or [45], and similarly
Hp(M#N) ∼= Hp(M)⊕Hp(N) for the homology groups in degree 1 ≤ p ≤ n−1,
see [10] or [27, p. 94]. Of course, H0(M#N) ∼= Hn(M#N) ∼= Z, if we assume
that M and N are orientable. Sometimes we want to prevent a manifold from
admitting a spin structure (without changing the fundamental group). This can
be achieved by taking the connected sum with a suitable non-spinable manifold
as the following lemma shows.

2.2.2 Lemma. Let M1 and M2 be closed, oriented manifolds of the same di-
mension n ≥ 3. Then M1#M2 is spin if and only if both M1 and M2 are
spin.
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Proof. “⇒”: Since n ≥ 3 the trivial spin structure is the only spin structure
on Sn−1. By removing suitable closed discs D1 and D2 from M1 and M2,
respectively, we can regard M1 \ D1 and M2 \ D2 as open submanifolds of
M1#M2. Of course, these inherit spin structures from M1#M2. These spin
structures in turn induce a spin structures on ∂D1 ⊂M1 and ∂D2 ⊂M2, which
can be extended to the whole of M1 and M2 trivially.

“⇐”: See [1] or [31, p. 91, Remark 2.17]. �

If M and N are connected smooth manifold, then X := M#N , for N simply-
connected has the same fundamental group as M according to paragraph 2.1.
Furthermore, the universal covering of M#N can be obtained from the uni-
versal covering of M in the following easy manner: First, we can assume that
M#N is obtained by gluing N to M by identifying a disc in N with a disc
M which itself lies completely in a neighbourhood which is uniformly covered
by the covering map from M onto M . Then M#N is M with a copy of N
attached in the obvious way to every sheet over the chosen uniformly covered
neighbourhood.

2.3 Spin structures and covering spaces. Let M be a connected closed
manifold and p : M −→ M its universal covering. We can ask whether a spin
structure on M ascends to a spin structure on M , and vice versa, whether a spin
structure on M descends to one on M . The latter is false: If M is spin, then
M needs not to be spinable, not even orientable, as one can see by looking at
real projective spaces. A sufficient criterion to decide whether a spin structure
on M induces a spin structure on M can be found, e.g., in [14, Proposition
1.4.2, p. 28]. On the other hand, it is true that a spin structure on M always
ascends to one on M (this is even true for any covering, not only the universal
one). If M itself admits no spin structure one can at least ask if there is one
on M . If this is the case, one calls M almost spin, see [32, Definition 1.2, p.
104]. Thus, e.g., real projective spaces are almost spin. If not even M admits a
spin structure (and hence the same must be true for M), one calls M totally
non-spin, see [7, p. 1621].

2.2.4 Example (Examples of totally non-spin manifolds). Any simply-
connected (and hence orientable) non-spin manifold, e.g. CP2n or SU(3)/SO(3).
For the latter, see [12, p. 50 f.]. On the other hand no manifold of dimension
less or equal to 3 is totally non-spin.

2.3. The counterexample

In this section we give a counterexample to the following conjecture from [7].

2.3.1 Conjecture. Suppose that M is a totally non-spin manifold with funda-
mental group Γ and dimension n = dim(M) at least five. Let f : M −→ BΓ be
the composition of the classifying map c : M −→ BΓ of the universal covering of
M , and the natural map BΓ −→ BΓ. Denote by [M ] the fundamental class of
M in Hn(M). Then M admits a metric of positive scalar curvature if and only
if f∗[M ] vanishes in Hn(BΓ).
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Here BΓ is the classifying space for the group Γ and BΓ is the classifying space
for proper actions, cf. [7, p. 1623].

Our counterexample is based on Schick’s counterexample to the (unstable)
Gromov-Lawson-Rosenberg conjecture, given in [41]. There a 5-dimensional
closed spin-manifold M with fundamental group Γ = Z4 ⊕ Z/3 is construc-
ted, whose Rosenberg index vanishes, but which nevertheless does not admit
a metric of positive scalar curvature. By taking the connected sum of this
manifold M with any simply-connected non-spin manifold, we obtain a totally
non-spin manifold, which has the same fundamental group as M . Therefore
BΓ = B(Z4)×B(Z/3) = T4×B(Z/3) and analogously BΓ = T4 by [7, (1) and
(4), p. 1624]. Specifically, Hn(BΓ) = 0 for n ≥ 5, so that the condition on f∗[X]
from Conjecture 2.3.1 is satisfied in the case at hand. The argument in [41] re-
lies on the following observation by Stolz, and we will also make significant use
of this result.

2.3.2 Lemma. Let X be a topological space. Denote for any n ∈ N≥2 by H+
n (X)

the set of all homology classes f∗[M ] ∈ Hn(X) where M is an n-dimensional
manifold which admits a metric of positive scalar curvature, and f : M −→ X is
a continuous map. Then for any class u ∈ H1(X) the map

u∩ : Hn(X) −→ Hn−1(X)

maps H+
n (X) into H+

n−1(X) if 3 ≤ n ≤ 8.

Proof. See [41] for 3 ≤ n ≤ 7 and [24, Thm 4.4] for n = 8. �

2.3.3 Proposition. Let M be the manifold constructed in [41] and N a simply
connected manifold of dimension 5, which admits no spin structure. Then the
manifold X := M#N has non-spin universal covering and admits no metric
with positive scalar curvature.

Proof. First of all, if X is constructed as above, we have already noted that it
has non-spin universal covering. To obtain an explicit simply-connected non-
spin 5-manifold N , one can start with CP 2 × S1, which is non-spin as CP 2

is, and then do surgery on the embedded S1 to obtain the simply-connected
N . Because this surgery does not touch the embedded CP 1 with its non-spin
normal bundle, the resulting N remains a non-spin manifold.

In order to see that X admits no metric of positive scalar curvature, we use the
same argument as in [41]. To begin with, we choose the model BΓ = T4×BZ/3.
Recall,

Hn(Td) = Zd(n) , d(n) =

(
d

n

)
and

Hn(BZ/k) = Hn(Z/k) =


Z, n = 0;

Z/k, n odd;

0, n even.
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Together with the Künneth formula this gives

Hk(BΓ) =
⊕

p1+···+p5=k

Hp1(X1)⊗ · · · ⊗Hp4(X4)⊗Hp5(X5) .

Here we have written T4 = X1 × · · · ×X4 as product of four copies of T, and
X5 for BZ/3.

Fix a basepoint x = (x1, . . . , x5) ∈ BΓ and let p : T −→ BZ/3 be a map which
induces an epimorphism on π1 as in [41], as well as fj : Xj −→ BΓ the map
which includes Xj identically and basepoint-preserving. We denote by [∗] ∈
H0(BΓ) the canonical generator. Next, choose for each 1 ≤ j ≤ 4 generators
gj ∈ H1(Xj) and elements g∗j ∈ H1(Xj) with 〈g∗j , gj〉 = 1, and let g5 ∈ H1(X5)
be p∗[T] where [T] is the standard generator for H1(T). Introduce the elements
vj := (fj)∗(gj) ∈ H1(BΓ) for j = 1, . . . , 5 as well as a1, . . . , a4 ∈ H1(BΓ) with

a1 := (pr1)∗(g∗1)× 1× 1× 1× 1 ,

a2 := 1× (pr2)∗(g∗2)× 1× 1× 1 ,

a3 := 1× 1× (pr3)∗(g∗3)× 1× 1 ,

a4 := 1× 1× 1× (pr4)∗(g∗4)× 1 .

Finally, set
w := v1 × · · · × v4 × v5 ∈ H5(BΓ)

and
z := [∗]× [∗]× [∗]× v4 × v5 ∈ H2(BΓ) .

By the Künneth formula, w 6= 0 and z 6= 0. Furthermore,

z = a1 ∩ (a2 ∩ (a3 ∩ w)) ∈ H2(BΓ) . (∗)

For example one has

a3 ∩ w =
((

1× 1× (pr3)∗(g∗3)
)
×
(
1× 1

))
∩
((
v1 × v2 × v3

)
×
(
v4 × v5

))
=
((

1× 1× (pr3)∗(g∗3)
)
∩
(
v1 × v2 × v3

))
×
(
(1× 1) ∩ (v4 × v5)

)
=
((

1 ∩ v1

)
×
(
1 ∩ v2

)
×
(
(pr3)∗(g3)∗ ∩ v3

))
×
((

1 ∩ v4

)
×
(
1 ∩ v5

))
= v1 × v2 ×

(
(pr3)∗(g∗3) ∩ v3

)
× v4 × v5

= v1 × v2 × [∗]× v4 × v5 ,

because of (pr3)∗(g∗3)∩ (i3)∗(g3) = 〈g∗3, g3〉[∗]. Let f : T5 −→ T4×BZ/3 be given
by f = (f1 × f2 × f3 × f4)× (f5 ◦ p) and choose (g1 × · · · × g4)× [T] =: [T5] as
fundamental class for T5. Then f∗[T5] = w. As in [41] one can construct a bor-
dism in Ωspin

5 (BΓ) from f to a map g : M −→ BΓ which induces an isomorphism
on π1-level. This defines the manifold M . Now let N be any simply-connected
closed non-spin manifold of dimension 5 and set X := M#N .

Finally, assume that X admits a metric of positive scalar curvature. Then
consider the map h : M t N −→ BΓ on the disjoint union of M and N , which
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equals g on M and sends N to a point. One has h∗[M t N ] = g∗[M ] = w
and since M t N is bordant to M#N , it follows that w ∈ H+

5 (X). But then
it follows from (∗) as well as Lemma 2.3.2 that w is mapped to z under the
following map

H+
5 (BΓ)

a3∩−−−→ H+
4 (BΓ)

a2∩−−−→ H+
3 (BΓ)

a1∩−−−→ H+
2 (BΓ) .

Hence z = k∗[S
2] for some k : S2 −→ BΓ since S2 is the only orientable sur-

face which admits a metric of positive scalar curvature. On the other hand,
π2(BΓ) = 0 so that k is null homotopic. This implies z = 0, which is a contra-
diction. �

69



A. Appendix

1.1. Some technical lemmas

In this section we prove a few technical results, which will be useful in the main
part.

1.1.1 Lemma (Technical lemma). If one chooses for each ε > 0 real numbers
0 < Rε < Sε with Rε −→ ∞ as ε −→ 0 as well as Sε − Rε = C = const., then
there exist functions Φε ∈ C∞cpt(R) satisfying the following:

(i) 0 ≤ Φε ≤ 1.

(ii) Φε vanishes outside of [−Sε, Sε] and is constantly equal to 1 on [−Rε, Rε].

(iii) There exists a uniform bound for the first and second derivative of Φε,
i.e. ‖Φ′ε‖∞ < D and ‖Φ′′ε‖∞ < D with a constant D > 0 which does not
depend on ε.

Proof. Let ε > 0. Choose gε ∈ C∞cpt(R) with support in the set {x ∈ R ; Rε ≤
|x| ≤ Sε} such that hε(x) :=

∫ x
−∞ gε(t) dt is equal to hε,1 + hε,2, where hε,1 is

an everywhere non-negative bump function with support [−Sε,−Rε] and total
mass

∫
hε,1(x) dx = 1 and hε,2 is the negative of the reflection of hε,1. Set

Φε(x) :=
∫ x
−∞ hε(t) dt. Then (i) and (ii) obviously hold. Furthermore, we can

assume that all functions gε are translates of each other, and hence the same
applies to all functions hε. This implies (iii). �

Let W be the set of all smooth L1-functions with compactly supported Fourier
transform.

1.1.2 Lemma. Let f ∈ C∞cpt(R) be an smooth function with compact support.
Then there exists for each δ > 0 a function fδ ∈W with the following properties
(where the suprema are taken over all x ∈ R):

(i) sup |f(x)− fδ(x)| < δ,

(ii) sup |x (f(x)− fδ(x))| < δ,

(iii) sup |x2 (f(x)− fδ(x))| < δ, and

(iv) ‖fδ‖∞ ≤ ‖f‖∞.

Furthermore, supp(f̂δ) ⊂ [−C(δ), C(δ)] where C(δ) −→∞ for δ −→ 0.
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Proof. Let δ > 0. Consider the Fourier transform F := f̂ ∈ S of f . (In the
following we denote the Fourier transform of a function which is denoted by
a lower case letter by the corresponding upper case letter. This will simplify
notation when we consider derivatives of such transforms.) Let ε > 0 and
Rε, Sε > 0 and Φε as well as C > 0 be as in the Technical Lemma 1.1.1.
Define an auxiliary function fε by its Fourier transform via Fε(ξ) := Φε(ξ)F (ξ).
Notice supp(Fε) ⊂ supp(Φε) ⊂ [−Sε, Sε]. Thus, with C(ε) := Sε, one has
supp(f̂ε) ⊂ [−C(ε), C(ε)] and C(ε) −→∞ for ε −→ 0. In the end we will define fδ
as fε for an appropriate ε > 0, which will be such that we can prove (i) - (iii).
For this we make use of the following fact: Whenever u and v are (suitable)
functions with Fourier transforms U and V , one has

‖xk(u(x)− v(x))‖∞ ≤ ‖U (k)(ξ)− V (k)(ξ)‖1 .

Choose m ∈ N with m ≥ 2.

Ad (i): Since F is a Schwartz function there exists a constant Dm > 0 such that
|ξm F (ξ)| ≤ Dm for each ξ ∈ R. Using this we can make the following estimate:

‖F − Fε‖1 = ‖(1− Φε)F‖1

≤
∫
|ξ|≥Rε

|F (ξ)| dξ

≤ Dm

∫
|ξ|≥Rε

dξ

|ξ|m
.

This implies (i) since Rε −→∞ as ε −→ 0.

Ad (ii): To begin with, one has:

F ′(ξ)− F ′ε(ξ) = (1− Φε(ξ))F
′(ξ) + Φ′ε(ξ)F (ξ) .

Furthermore, there exists Dm > 0 with |ξm F (ξ)| ≤ Dm and |ξm F ′(ξ)| ≤ Dm

for each ξ ∈ R. Using this we can estimate as follows:

‖F ′ − F ′ε‖1 ≤ ‖(1− Φε)F
′‖1 + ‖Φ′ε F‖1

≤
∫
|ξ|≥Rε

|F ′(ξ)| dξ + C

∫
Rε≤|ξ|≤Sε

|F (ξ)| dξ

≤ Dm

∫
|ξ|≥Rε

dξ

|ξ|m
+ CDm

∫
Rε≤|ξ|≤Sε

dξ

|ξ|m
.

This, together with the fact that Rε −→∞ as ε −→ 0, implies (ii).

Ad (iii): This can be proven by the same reasoning as in (ii): First of all, one
has:

F ′′(ξ)− F ′′ε (ξ) = (1− Φε(ξ))F
′′(ξ) + Φ′′ε(ξ)F (ξ) .

Using this, we can estimate as follows:

‖F ′′ − F ′′ε ‖1 ≤ ‖(1− Φε)F
′′‖1 + ‖Φ′′ε F‖1

≤
∫
|ξ|≥Rε

|F ′′(ξ)| dξ + C

∫
Rε≤|ξ|≤Sε

|F (ξ)| dξ .
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Since F is a Schwartz function and Rε −→∞ as ε −→∞ this implies (iii).

Ad (iv): Let ϕε ∈W be such that Φε = ϕ̂ε. By definition, fε = (2π)−1 (ϕε ∗ f).
Young’s inequality implies the following estimate:

‖fε‖∞ = ‖ϕε ∗ f‖∞ ≤ ‖ϕε‖1 ‖f‖∞ .

Since ‖ϕε‖1 ≤ ‖Φε‖∞ ≤ 1, we can conclude (iv). �

1.1.3 Lemma. Let f ∈ C∞cpt(R) be a non-negative, compactly supported, smooth
function. Then there exists for each ε > 0 a function fε ∈ C∞(R) with the
following properties:

(i) fε ≥ 0 and the square-root gε of fε belongs to W ,

(ii) sup |f(x)− fε(x)| < ε,

(iii) sup |x (f(x)− fε(x))| < ε and

(iv) sup |x2 (f(x)− fε(x))| < ε .

Furthermore, supp(fε) ⊂ [−C(ε), C(ε)] where C(ε) −→∞ for ε −→ 0.

Proof. Set F :=
√
f . Because this function is continuous and vanishes outside

of a compact set, there exists by [30, Thm. 2.3, 13.2, p. 357] and [30, Thm.
3.1, 13.3, p. 359] a smooth function G which is uniformly as close to F as one
wants. By Lemma 1.1.2, G admits a decomposition G = Gδ +Rδ with Gδ ∈W
such that

sup
x∈R
|xk Rδ(x)| < δ , k = 0, 1, 2

as well as ‖Gδ‖∞ ≤ ‖G‖. Furthermore, supp(Gδ) ⊂ [−C(δ), C(δ)] where
C(δ) −→∞ for δ −→ 0. One has

G2 = G2
δ + 2GδRδ +R2

δ .

Set fδ := G2
δ and rδ := 2GδRδ +R2

δ . Then (i) holds.

Ad (ii) - (iv): For each k = 0, 1, 2 one has

|xk (f − fδ)(x)| = |xk (
√
f −

√
fδ)(x) (

√
f +

√
fδ)(x))|

≤ |xk (F −Gδ)(x)| ‖F +Gδ‖∞

≤
(
|xk (F −G)(x)|+ |xk (G−Gδ)(x)|

)
‖F +Gδ‖∞

≤
(
|xk (F −G)(x)|+ |xk Rδ(x)|

)
(‖F‖∞ + ‖Gδ‖∞)

This implies the claim. �
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1.2. More detailed estimates

For equation (2): Set g(t) := t2 and h(t) := f(t)g(t) = t2f(t). With this one
obtains using the Cauchy-Schwarz inequality and Theorem 1.3.3 the following
estimates

|〈D2f(D)u, u〉| = |〈h(D)u, u〉|
= |〈(f · g)(D)u, u〉|
= |〈(f(D) ◦ g(D))u, u〉|
= |〈(ϕ(D) ◦ ϕ(D) ◦ g(D))u, u〉|
= |〈(ϕ(D) ◦ g(D))u, ϕ(D)u〉|
= |〈(g(D) ◦ ϕ(D))u, ϕ(D)u〉|
= |〈g(D)(ϕ(D)u), ϕ(D)u〉|
≤ ‖g(D)(ϕ(D)u)‖ ‖ϕ(D)u‖
≤ ‖g(D)‖ ‖ϕ(D)u‖2

≤ ‖g‖∞ ‖ϕ(D)u‖2

≤ α2 ‖ϕ(D)u‖2 .

For equation (3): Set g(t) := t2 and h(t) = g(t)fδ(t). Then one obtains using
‖h‖∞ ≤ δ the estimate

|〈D2fδ(D)u, u〉| = |〈(g · fδ)(D)u, u〉|
= |〈h(D)u, u〉|
≤ ‖h(D)u‖ ‖u‖
≤ ‖h‖∞ ‖u‖2

≤ δ ‖u‖2 .
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[10] Jean Dieudonné. A history of algebraic and differential topology 1900–
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