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Abstract

Bots are the root cause of many security problems on the Internet — they
send spam, steal information from infected machines, and perform distributed
denial of service attacks. Given their security impact, it is not surprising that a
large number of techniques have been proposed that aim to detect and mitigate
bots, both network-based and host-based approaches.

Detecting bots at the network-level has a number of advantages over host-
based solutions, as it allows for the efficient analysis of a large number of hosts
without the need for any end point installation. Currently, network-based bot-
net detection techniques often target the command and control traffic between
the bots and their botmaster. Moreover, a significant majority of these tech-
niques are based on the analysis of packet payloads. The proposed approaches
range from simple pattern matching against signatures to structural analysis of
command and control communication. Unfortunately, deep packet inspection
is rendered increasingly ineffective as malware authors start to use obfuscated
or encrypted command and control connections.

This thesis presents BOTFINDER, a novel system that can detect individual,
malware-infected hosts in a network, based solely on the statistical patterns of
the network traffic they generate, without relying on content analysis. BOT-
FINDER uses machine learning techniques to identify the key features of com-
mand and control communications, based on observing traffic that bots pro-
duce in a controlled environment. Using these features, BOTFINDER creates
models that can be deployed at edge routers to identify infected hosts. The sys-
tem was trained on several different bot families and evaluated on real-world
traffic datasets — most notably, the NetFlow information of a large ISP that
contains more than 25 billion flows, which correspond to approximately half a
Petabyte of network traffic. The results show that BOTFINDER achieves high
detection rates with very low false positives.
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Chapter 1

Introduction

Many security problems on today’s Internet such as spam, Distributed Denial
of Service (DDoS) attacks, data theft and click fraud are caused by malicious
software that runs undetected on end-user machines. A very efficient, and
arguably, the most relevant kind of such malware are bots. Hereby, the malware
opens a command and control (C&C) channel [18] to a single entity — called
the botmaster — and uploads stolen information and awaits new commands.
A group of infected hosts reporting to the same botmaster is referred to as
botnet [16, 25, 61]. These botnets are malicious infrastructures that can carry
out a number of different criminal activities that significantly impact the overall
security in the Internet.

As the malware’s focus and design shifted in the recent years from a fun-
motivated hacking idea to a malicious criminal economy [33], bot authors take
great care to make their bots resilient against easy detection or removal [23].
Consequently, defenses against malware infections are a high priority in the in-
dustry and the security research community whereby identification of infected
machines is the first step on the way to purge the Internet of bots.

The traditional way of malware detection is the installation of host-based sys-
tems such as Anti-Virus (AV) scanners. Unfortunately, these scanners have
the significant drawback that end-users with widespread skill levels in com-
puter administration are in charge of ensuring an up-to-date protection of
their machines. Furthermore, an AV scanner is not necessarily able to detect
a local infection due to its increasingly stealthy behavior: For example, a Zeus
study [75] revealed that of 10,000 real world infections of this financial trojan,
55% occurred on systems with an up-to-date virus scanner installed. In ad-



dition, “only” 71% of the overall hosts under analysis had a recent anti-virus
solution, 6% an outdated one and 23% had none at all.

In the light of AV installation rates of 71% and the existence of numerous
botnets in the wild, complementary solutions to detect malware infections are
required. As a consequence, network-based bot detection approaches are in-
creasingly deployed for complementary protection. Such network devices pro-
vide a number of advantages, such as the possibility to inspect a large number
of hosts without the need for any end-point installation or the ability for the
network provider to quickly warn the provider’s clients if their machines are
infected.

Existing techniques for identifying bot-infected hosts by observing network
events can be broadly divided into two approaches. One approach relies on
vertical correlation, where network events and traffic are inspected, looking for
typical evidence of bot infections (such as scanning) or command and control
communication produced by individual hosts [80, 31, 28]. Such approaches
typically rely on the presence of a specific bot-infection life-cycle or noisy bot
behavior, such as scans, spam, or Denial of Service (DoS) traffic (Silveira et
al. [65]). Moreover, they usually search packet payloads for specific signatures,
making them unsuited for encrypted C&C' traffic.

The second approach focuses on horizontal correlation of activities carried
out by multiple hosts. More precisely, network traffic is examined to identify
cases in which two or more hosts are involved in similar, malicious commu-
nication [32, 30, 82]. The main strength of these techniques is that they are
independent on the underlying botnet structure and do not require access to
packet content. However, systems based on horizontal correlations require that
at least two hosts in the monitored network are infected by the same botnet,
and, in addition, exhibit unique communication patterns that can be corre-
lated. As a consequence, such techniques inherently cannot detect individual
bot-infected hosts. This is a significant limitation, especially when consider-
ing the trend toward smaller botnets [16]. In addition, horizontal correlation
techniques are usually triggered by noisy activity [30]. This is problematic, as
the past few years have seen a shift of malware from a for-fun activity to a
for-profit one [23]. As a result, bots are becoming increasingly stealthy, and
new detection techniques that do not rely on the presence of noisy activities
need to be explored.

Starting from the assumption that malware authors will further raise the bar to
successful detection by continuing the trend towards encrypted CéC commu-
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nication, this thesis investigates novel solutions for network-level bot detection
based on packet header information only. Being payload agnostic is advanta-
geous in many ways: From an Internet Service Provider (ISP)’s perspective it
is significantly easier to obtain packet header information than full packet cap-
tures. Such streams contain all relevant information about every connection
handled on the router. Moreover, end-users privacy is less impacted compared
to full traffic captures.

As a consequence of the requirement to ignore packet payloads, the fundamen-
tal questions investigated and answered in this thesis are:

1. Does network traffic of bots exhibit any special features that distinguish
it from other, benign traffic that a typical end-host emits?

2. If bot traffic can be distinguished from other traffic, can one use this to
construct a system that exploits this difference in traffic to detect bots
— preferably in an automated way?

3. Is such a system’s performance in terms of processing speed and detec-
tion quality high enough to provide a valuable complement to existing
solutions?

¢

To anticipate the results, all questions can be answered with a clear “yes”: In
the following, this thesis presents the analysis of network traffic of different
malware families, that allow the observation that CéC connections associated
with a particular bot family follow certain regular patterns. That is, bots of a
certain family send similar traffic to their CéC' server to request commands,
and they upload information about infected hosts in a specific format. Also,
repeated connections to the command and control infrastructure often follow
certain timing patterns.

The regularity in Cé&C network traffic is leveraged to create BOTFINDER, a
vertical correlation system that detects individual, bot-infected machines by
monitoring their network traffic. BOTFINDER works by automatically building
models for Cé¢C' traffic of different malware families. To this end, bot instances
that belong to a single family are executed in a controlled environment and
their traffic is recorded. In the next step, the system extracts features related
to this traffic and uses them to build a detection model. The detection model
can then be applied to unknown network traffic. When traffic is found that
matches the model, the host responsible for this traffic if flagged as infected.



4 1.1 Thesis Contribution

BOTFINDER offers a combination of salient properties that sets it apart from
previous work. First, it does not correlate activity among multiple hosts dur-
ing the detection phase. This allows it to detect individual bot infections (or
bots that deliberately behave in a non-synchronized way to avoid detection).
Second, the system does not require access to packet payloads. Thus, it is
resilient to the presence of encrypted bot communication, and it can process
network-level information such as NetFlow. This is a significant advantage over
related work [80, 31, 28] that explicitly investigate packet contents, which is a
computationally intense, sometimes legally problematic, and recently increas-
ingly evaded way of bot detection. Moreover, BOTFINDER does not rely on
the presence of noisy activities, such as scanning or denial-of-service attacks
to identify bot-infected hosts.

The BOTFINDER approach is evaluated by generating detection models for a
number of botnet families. These families are currently active in the wild, and
make use of a mix of different infection and CéC' strategies. The results show
that BOTFINDER is able to detect malicious traffic from these bots with high
accuracy. The detection models are also applied to traffic collected both on an
academic computer laboratory network and a large ISP network with tens of
billions of flows. These experiments demonstrate that BOTFINDER produces
promising detection results with few false positives.

1.1 Thesis Contribution

In summary, this thesis makes the following contributions:

e The observation that C¢/C' traffic of different bot families exhibit regular-
ities, both in terms of traffic properties and timing, that can be leveraged
for network-based detection of bot-infected hosts.

e [t presents BOTFINDER, a learning-based approach that automatically
generates bot detection models and does not require packet payload in-
formation. Bot binaries are run in a controlled environment and their
traffic is recorded. Using this data, models of characteristic network traf-
fic features are build.

e The implementation of BOTFINDER, that shows that the system is able
to operate on high-performance networks with hundreds of thousands
of active hosts and Gigabit throughput in real time. The application of



CHAPTER 1. INTRODUCTION ]

BOTFINDER to real traffic traces demonstrates its high detection rate
and low false positive rate. Additionally, the thesis shows that BoT-
FINDER outperforms existing bot detection systems and it discusses how
BoOTFINDER handles certain evasion strategies by adaptive attackers.

1.2 Thesis Overview

The remainder of this thesis is organized as follows: In Chapter 2, background
on the cyber-crime economy of malware is given, which motivates the develop-
ment of certain types of stealthier bots. A technical malware analysis frame-
work is presented and the bot families and datasets used in this thesis are in-
troduced. In Chapter 3, traffic obtained from malware samples is compared to
“normal” end-host traffic and the concept of traces is presented. Based on the
observation that C'é/C traces exhibit periodic behavior, the content agnostic
malware detection framework BOTFINDER is created in Chapter 4. Chapter 5
shows the implementation, potential deployment scenarios and a computa-
tional performance evaluation of the BOTFINDER prototype and Chapter 6
investigates the influence of BOTFINDER’s parameters. In Chapter 7, BoT-
FINDER’s performance with regards to the bot detection rate and false posi-
tives is evaluated in a cross-validation experiment, BOTFINDER is compared
to the related work Bothunter and BOTFINDER is applied to the large ISP-
NetFlow dataset. In Chapter 8, potential detection evasion strategies of next
generation malware are discussed and their impact on BOTFINDER is analyzed.
Chapter 9 places BOTFINDER in context to the related works and Chapter 10
concludes the thesis.






Chapter 2

Background and Malware
Detalils

This chapter gives an overview on general bot functionalities and discusses
the economic motivation of malware authors to design their bots in a stealthy
and efficient way. Further, it presents the analysis framework Anubis [5] that
allows identification of malicious software based on behavioral models, and it
introduces the malware families investigated in this thesis. Finally, this chapter
presents Ant, a VirtualBox!'-based malware execution environment.

2.1 Bots in the Criminal Cyber-Economy

Although initial malware development might have been motivated by a kind
of “hacker spirit” and the fun to overcome technical barriers, modern malware
is typically a fundamental block of cyber crime [33] with the sole purpose to
gain substantial profits.

These profits are earned for example by spam, which includes all formes
of unauthorized and unsolicited advertising such as email spam, blog post
spam [55], Twitter spam [29] or forum spam [64]. The revenue and profit gain
of spammers is hard to estimate and typically based on interpolation of ob-
served transactions or internal botnet knowledge [71]. Archak et al. [2] inves-
tigated the product markets advertised in spam mails and identified affiliate
programs as the core money income source for the spammer. Such programs

"https://www.virtualbox.org/
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pay on commission basis, for example between 30-50% in the pharmaceutical
market [63, 44]. Different estimates for the spammer’s revenues range from 2-3
millions a year [49, 37] up to high values as 2 million dollars per day for a single
botnet [1]. A main — if not the main — source of spam are botnets [12, 45, 62];
for example, in a single study, Xie et al. [81] identified 7,721 botnet-based spam
campaigns covering ~ 340,000 unique botnet host Internet Protocol (IP) ad-
dresses.

Fighting botnets is worthwhile for the spam alone, especially considering that
the computer users themselves do not see a personal responsibility to better
defend against these threats [35], but hold ISPs and anti-virus software sup-
pliers responsible. However, multiple other income vectors to botnet operators
exist, for example click fraud [41] in advertisement networks or the data theft
of personal information such as social security numbers or credit card data.
To illustrate the significance of the latter, please note that Stone-Gross [71]
obtained 1,660 unique credit card numbers during a relatively short period of
10 days of operational control over the Torpig botnet with 180,000 infected
members. Together with the blackmailing threat to execute DDoS attacks,
botnets offer a variety of tools for malicious cyber-criminals.

As a consequence, the cyber crime economy specializes further and criminals
establish underground markets to offer and request services. For example, Ca-
ballero et al. [8] illustrate that some malware authors specialized on infecting
victim hosts and sell the service to install third-party malware for prices of
around $100-$180 per thousand unique installs. On the infected hosts, meth-
ods as depicted in Figure 2.1 are applied. Here, the initial malware is a very
small and carries highly packed infection-code that “opens the door” to the
victim host by exploiting security flaws. After initial infection, the bot contacts
the CéC server and starts to download further malware. This ability is often
referred to as dropper functionality. Such additional malicious software might
either be a module of the malware itself or a completely independent malware
downloaded on behalf and for payment (Pay-Per-Install (PPI)) of other par-
ticipants in the underground economy [71, 70]. Therefore, the initial malware
and the follow-up installations may vary on each end host.

The PPI infrastructure offered allows botnet operators that roll out a new
botnet version to buy large quantities of infected hosts and then directly start
to gain profits by selling their new botnet to spammers or other cyber criminals.
Overall, the cybercrime economy is highly sophisticated and the malware in
operation becomes more versatile, modular and flexible to exploit all possible
revenue vectors.
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Figure 2.1: Example of a common malware infection path. After the initial
infection, additional malware modules or third party bots are downloaded and
installed.

2.2 Anti-Virus Scanners

The classical countermeasure against malware are AV-scanners — host base
software components that try to detect and remove malware infections of dif-
ferent kinds such as worms, bots and viruses. Hereby, the classification of mal-
ware into groups is not always clear and the classes are often “smeared out”,
as many malware systems offer overlapping functionalities. Typically, modern
scanners from Kaspersky?, TrendMicro®, AVG*, Symantec® or McAfeeS also
try to prevent infections by scanning the life file access on the end host, suspi-
cious registry access or malicious software behavior (like typical steps to install
a root-kit). Recent updates allow the scanners to know binary signatures of
most of the currently active viruses. To detect unknown malicious software,
heuristics are deployed that rate the behavior or code fragments of end host
software. However, AV systems have a number of drawbacks. First, the AV
systems run at very high trust levels which opens potential infection paths

2http://www.
3http://www.
‘http://www.
Shttp://www.
Shttp://www.

kaspersky.com
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and inflicts the system performance by the file and activity surveillance. Sec-
ond, the AV scanners have to be installed at every end-host that should be
protected. In the private sector at end-users, some users are technically unable
to ensure a proper and continuously updated anti-virus installation. Third, as
mentioned in the introduction, even an up-to-date is not necessarily protecting
the system from advanced malware infections like the Zeus bot.

A helpful asset for security researchers performing AV-scanner analysis is the
webservice VirusTotal”: Users submit suspicious executables to the website
and receive the accumulated output of, at time of February 2012, 41 anti-virus
solutions. If a majority of AV systems report the same malware infection,
this can be considered as a good malware classification hypothesis for further
research.

2.3 Machine Learning

The general concept of machine learning is the process of knowledge gener-
ation or derivation from data by an artificial entity — typically a computer
program. Instead of plain reading and storing of data, underlying principles
are investigated and general laws that are contained in the data under analy-
sis are derived. In a generic way, Mitchell [51]® summarized this process in the
following definition:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E.”

Often, the machine learning process is divided into a learning phase to gain
experience and an application phase to perform the task, e.g., a classification
of data sets: In the first phase, examples are analyzed and the underlying
principles are derived. In the second phase, the system performs the task and
applies the learned knowledge. In a data classification example, the learning
step might lead to rules to group data sets. These rules are then applied in the
second phase to classify unknown data.

Algorithms used in machine learning can be divided into the two domains
of supervised and unsupervised learning. In supervised learning, a human ex-
pert provides labels to the data and “guides” the algorithm by input-output

"https://www.virustotal.com/
8Chapter 1, Page 2
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specifications. In unsupervised learning, unknown data is investigated under
the assumption of minimal to none prior knowledge. Typical techniques in
unsupervised learning are clustering mechanisms and Principal Component

Analysis (PCA).

In a special type of machine learning — the reinforcement learning [73] — the
results of the performed tasks generate some feedback that complements the
training set in follow-up rounds of learning. Hereby, the algorithm iteratively
approaches high quality models for the given challenge. Unfortunately, this
approach only works in scenarios where either a human expert is able to provide
the feedback or some kind of environment generates feedback that is usable in
an automated fashion.

The application space of machine learning is extremely broad and ranges from
computer vision over natural language processing to DNA sequence analysis,
artificial intelligence and many more. In this thesis, as will be shown in Chap-
ter 4, unsupervised machine learning techniques such as clustering are used
for automated security analysis. This application of machine learning is a well
suited and often applied approach to tackle the problem of the vast number
of malware samples active in the wild. The high number of samples makes it
impossible for a human security researcher to investigate every suspicious bi-
nary. The amount of samples is even further increased when polymorphic code
modification or frequent updates are applied by the malware. The time and
cost extensive human analysis can hereby be replaced — or at least be assisted
— by automated malware analysis and detection [43, 50].

2.4 Bots Under Investigation

A common problem in detection and classification of malware is the highly
versatile binary representation that prevents simple signature matching. More-
over, various incrementally modified or improved versions of the bot exist in
parallel. Typically, a malware author modifies and updates its malware by
adding new functionality, counteracting recent security advances (e.g., in virus
scanners) or changes the communication mechanism. To group such malicious
binaries that use shared binary code and typically originate from the same
author, the concept of malware families is used. Samples that belong to the
same family, often share communication fragments in the Cé/C exchange or
behave similarly on a technical level.
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Throughout this thesis, the classification of malicious samples is based on the
combination of the following techniques to identify a given binary sample:

e Using a large number of anti-virus scanners in parallel increases the
probability of detecting and identifying a given malware sample. As afore-
mentioned, the VirusTotal project yields a reasonable starting guess for
further analysis.

e Behavioral similarity analysis as, for example, applied in the sandbox
environment Anubis [5]: Anubis is a tool that analyzes Windows mal-
ware samples (any kind of executable file) submitted from users through
a public webpage. As a dynamic malware analysis platform, it is similar
to environments such as BitBlaze [67], CWSandbox [78], and Ether[19]).
Anubis, which superseeds Bayer et al.’s TTAnalyze [4], executes the re-
ceived samples in a restricted QEMU [6]-based environment and observes
the behavior of the malware. In this realm, behavior especially focuses
on security relevant aspects such as modifications made to the registry
or the file system, interactions with other processes and the network
traffic. The obtained information is typically investigated by a security
researcher that judges and classifies the malware sample. Yet, as secu-
rity companies receive thousands of malware samples a day Bayer et al.
proposed a method for automated, behavior based scaling [3]. Hereby,
Anubis’ reports are used to formalize the malware’s behavior and create
behavioral profiles that allow clustering. This approach is highly advan-
tageous if a certain amount of malware samples are already classified, as
similar behavior indicates that members of the individual clusters belong
to the same malware family. Hereby, simple detection evasion techniques
employed by malware authors, such as small code variations or modified
signatures, are rendered ineffective. If this analysis is complemented with
the result of various AV-scanners, Anubis allows automated classification
of malware samples.

e Blacklist comparison of destination IP addresses contacted by the
executed malware sample: If the malware under investigation contacts an
already known and malware-attributed malicious server, it is reasonable
to assume that other samples contacting the same server also belong to
the same malware family.

e Manual traffic inspection may allow definite identification of the mal-
ware sample by signature analysis and http traffic inspection. However,
packet inspection is applicable on unencrypted traffic only.
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The following six different malware families are a representative mix of families
that are currently active and observed in the wild. More precisely, these fami-
lies represent active malware samples observed in the UCSB Anubis malware
analysis sandbox. Therefore, it is ensured that all following analysis operates
on malware that is active and relevant.

2.4.1 Banbra

Banbra is a trojan horse/spyware program that downloads and installs fur-
ther malware components from the CéC' server secretly. It specifically targets
Brazilian banking websites and employs an interesting strategy to remove pro-
tection mechanisms deployed by these banks ?. For this purpose, it downloads
the legitimate malware removal tool Avenger by Swandog!'®. According to the
Avenger’s website, “The Avenger is a fully-scriptable, kernel-level Windows
driver designed to remove highly persistent files, registry keys/values, and other
drivers protected by entrenched malware.”. This toolkit is then (mis)used to
remove the protection system from the banking websites and pave the way to
allow Banbra to steal banking credentials. To do so, Banbra injects malicious
HTML code and logs the user’s keystrokes to steal and upload credentials.

2.4.2 Bifrose

The Bifrose family is also represented in the trojan variants called Bifrost
and sum up to a family of more than 10 variants of backdoor trojans. These
trojans establish a connection to a remote host on port 81 and allow a mali-
cious user to access the infected machine!''2. Among other functions, it allows
the attacker to log keystrokes, manipulate the registry and execute arbitrary
commands. Interestingly, Bifrose is using the The Onion Router (TOR) net-
work [20] (multiple routers that forward onion-like, encapsulated encrypted
information and provide anonymity between the sender and the receiver) in an
attempt to evade detection by network signatures and, implicitly, enumeration
approaches from security researchers. It is thereby a good representative of

Yhttp://www.f-secure.com/v-descs/trojan-spy_w32_banbra_rm.shtml, 2011-11-28
Ohttp://swandogd6 . geekstogo . com/avenger2/avenger2. html, 2011-11-28
Uhttp://www.f-secure.com/v-descs/backdoor_w32_bifrose_bge.shtml, 2011-11-28
2http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?

Name=Backdoor%3AWin32),2FBifrose, retrieved 2011-11-27


http://www.f-secure.com/v-descs/trojan-spy_w32_banbra_rm.shtml
http://swandog46.geekstogo.com/avenger2/avenger2.html
http://www.f-secure.com/v-descs/backdoor_w32_bifrose_bge.shtml
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Backdoor%3AWin32%2FBifrose
http://www.microsoft.com/security/portal/Threat/Encyclopedia/Entry.aspx?Name=Backdoor%3AWin32%2FBifrose

14 2.4.3 Blackenergy

encrypted and stealthy communication that effectively evades most classical
network based detection mechanisms.

2.4.3 Blackenergy

Blackenergy is a DDoS bot [53] that communicates through HTTP requests.
The current version 2 is an advanced evolution from prior versions that ex-
plicitly improved in the field of rootkit/process-injection techniques and adds
strong encryption and a modular architecture [68]. The infection cycle follows
a dropper approach where a small initial infection installs a rootkit and installs
itself as a service in Windows. Then it downloads and installs further modules.
An interesting aspect with respect to the work presented in this thesis is the
encryption used by Blackenergy: Whereas for content, a hard-coded 128-bit
key is used, the network traffic is encrypted with a unique identification string
as key. This effectively counteracts the risk that all botnet traffic can be de-
crypted after security researchers have obtained a single key from a controlled
installation.

2.4.4 Dedler

Dedler is a classical spambot that is active in different versions (Dedler.AA
to Dedler.W, also depending on the AV company) from a simple worm
that spreads through open fileshares to an advanced trojan/spambot system.
Whereas initial versions appeared already in 20043, recent versions are still
prevalent and active as seen in the Anubis malware analysis environment.

2.4.5 Pushdo / Cutwail / Pandex

The Pushdo botnet!* also known as Pandex or Cutwail, is a powerful bot-
not active in the wild since January 2007'°. It is a very advanced DDoS and
spamming botnet responsible for approximately 4 percent of the overall spam

Bhttp://www.symantec.com/security_response/writeup.jsp?docid=2004-050714-
2558-99, retrieved 2011-11-29

4In-depth study by TrendMicro: http://us.trendmicro.com/imperia/md/content/
us/pdf/threats/securitylibrary/study_of_pushdo.pdf, retrieved 2011-12-08

5http://about-threats.trendmicro.com/ArchiveMalware.aspx?language=
us&name=TROJ_PANDEX. A, retrieved 2011-12-08


http://www.symantec.com/security_response/writeup.jsp?docid=2004-050714-2558-99
http://www.symantec.com/security_response/writeup.jsp?docid=2004-050714-2558-99
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/study_of_pushdo.pdf
http://us.trendmicro.com/imperia/md/content/us/pdf/threats/securitylibrary/study_of_pushdo.pdf
http://about-threats.trendmicro.com/ArchiveMalware.aspx?language=us&name=TROJ_PANDEX.A
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CHAPTER 2. BACKGROUND AND MALWARE DETAILS 15

volume!®, making it one of the largest spam botnets in the world. With re-
gards to the botnet’s name, some confusion originates from the naming of the
main binaries. The advanced downloader is called Pushdo and the spamming
module of Pushdo is named Cutwail.

The malware follows a typical infection cycle as depicted in Figure 2.1 by
installing multiple levels of protection on the infected host to complicate de-
tection and removal. After the initial Pushdo engine is installed, additional
malware such as the Cutwail spam engine is downloaded and executed as mod-
ules. Cutwail configures itself and reports the client configuration to the Cé&C
server. In the next steps, the server is contacted again and spam content is re-
trieved. As TrendMicro reports, the spam engine continues to send spam until
the entire run has been completed and finally requests a new spam run and
sleeps for a period of time. This period of inactive time between CéC requests
is finally exploited by BOTFINDER to detect the malware on the network level.

Additional to the spamming, Pushdo loads so-called campaign modules that
might contain pop-up advertisements to lure an user into buying fake services
or subscribe to malicious websites that again launch multiple attacks on the
victim’s PC. Another module loaded by Pushdo contains DDoS functionalities.

2.4.6 Sasfis

Sasfis is a trojan horse that spreads via spam or infected web-pages and allows
the remote control of compromised machines!”. Following typical bot behavior,
the C¢C channel is used to transfer new commands or download additional
malware to the computer. A final use of Sasfis is to work as a bot-for-hire that
allows attackers to install additional malware for a payment.

2.5 Ant — VirtualBox Malware Environment

To execute large amounts of malware samples in parallel, large amounts of
VirtualBox!'® Virtual Machine (VM)s are run in parallel which each execute a

http://www.symanteccloud.com/de/de/download.get?filename=MLIReport_2009.
01_Jan_Final.pdf, retrieved 2011-12-08

"http://www.symantec.com/security_response/writeup.jsp?docid=2010-020210-
5440-99

Bhttp://virtualbox.org
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Figure 2.2: The Ant malware execution environment.

single malware sample instance. The process is automated using a set of scripts
called Ant that allows to start strapped down Windows XP virtual machines
and automatically load malware samples from Anubis.

The technical process is depicted in Figure 2.2. To start numerous VMs (50 in
the Figure), a basic VM of an operating system sample needs to be prepared.
All instances are derived from this initial VM and the only difference between
the machines is the Media Access Control (MAC) address. Ant sequentially
starts the VMs and automatically iterates the VM-number, which leads to the
MAC address. In Figure 2.2 this incremental number is referred to as x. After
loading the Operating System (OS), a script starts to run on the VM and
requests the malware name and the MD5 hash of the binary to download. The
download is performed automatically from the Anubis malware database based
on the MD5 hash. To learn about this MD5, the script contacts a configuration
server, which runs on localhost (a simple perl script) and reads the MAC-
to-malware-matchings from a file and serves it to the VMs. Directly after
download, the malware sample is executed in the VM. All network traffic
is captured separately for each MAC so that observed traffic can easily be
attributed to the corresponding malware sample.

Running Windows XP VMs with minimum requirements allows the parallel
execution of up to 50 virtual machines on an eight-core Intel Core i7 CPU
(3.07GHz) server equipped with 12 Gigabytes of RAM.
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’ ‘ LabCapture ‘ ISPNetFlow ‘

Traffic ~ 3.6 TB ~ 540 TB
Internal hosts ~ 80 ~1M
Concurrently active ~60 ~250k
Start time 2011-05-04 | 2011-05-28
Length 84 days 37 days
Connection ~64.3-10° | ~2.5-10"
Long Traces ~ 39k ~ 30M

Table 2.1: Evaluation datasets.

2.6 Datasets

In this thesis, two main datasets, as shown in Table 2.1, are used to analyze
malicious network traffic and compare it to “normal” network traffic from
different sources: The LabCapture and the ISPNetFlow datasets.

2.6.1 The LabCapture Dataset

The LabCapture dataset is a full packet capture of 2.5 months of traffic of
the UCSB security lab with approximately 80 lab machines (including bridged
VMs). According to the lab policy, no malware-related experiments should
have been executed in this environment, and the LabCapture should consist
of only benign traffic. Still, some researchers might have ignored the policy
and malware traces might exist in the traffic. However, the advantage of this
dataset is that it contains the full packets of all communications. This allows
to inspect suspicious traffic or potential infections manually.

2.6.2 The ISPNetFlow Dataset

The ISPNetFlow dataset is a large dataset covering 37 days of unsampled
NetFlow v5 data collected from a large network provider serving over one
million customers. The captured data reflects around 540 Terabytes of data
or, in other words, 170 Megabytes per second of traffic.

NetFlow [13] is a widely used standard by Cisco covering network flow infor-
mation such as:
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Observation Point &
Exporter

Netflow storage server

Figure 2.3: A typical NetFlow data-collection scenario.

e The ingress interface

e The source IP address

e The destination IP address

e The network layer protocol (e.g., IP)

e The source port (if UDP or TCP is used)

e The destination port (if UDP, TCP) is used or a code for ICMP
e The type-of-service information from the IP packet

e The duration of the connection

e The number of bytes sent from the source and from the destination

Whereas NetFlow v5 is a static data format, the recent version 9 is based
on a modular structure with varying datatypes and very flexible usage. It
builds the foundation for the IETF’s specification of Internet Protocol Flow
Information Export (IPFIX) [14, 59, 74], which is a universal flow information
export standard.
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A typical NetFlow collection scenario is exemplified in Figure 2.3: The IP traffic
is observed at the observation point, which is typically the edge router of the
system, by the metering process (also IPFIX nomenclature). Via an exporter
the aggregated data is sent to the data collector. It is important to note, that
the aggregation of flow information requires maintaining state for each open
connection to finally report flow statistics on connection closure.

From a security researcher’s perspective, the ISPNetFlow dataset has the slight
drawback that there is no ground truth information on infections due to the
lack of the underlying, full traffic capture. Therefore, no full content inspection
is possible. Nevertheless, as will be shown throughout this thesis, the statistical
data allows comparison of IP addresses to known malware IP blacklists and
judgement of the usability of the — to be presented — BOTFINDER approach
for the daily operation of large networks.






Chapter 3

Network Traffic Analysis

The characterization and classification of network traffic in a packet payload
agnostic way — as required for this thesis’s goal of content agnostic malware
detection in networks —is inherently a hard task as only minimal information is
available. Such information must be obtained from packet header observation
and connection properties only. This chapter details how this information can
be grouped into chronological structures called traces, which itself enable the
extraction of statistical features.

An interesting feature, for example, is the assumed periodicity of malware
communication with its C&C server. Stone-Gross et. al [71] support this as-
sumption of periodic CéC traffic as they observed two main communication
intervals for the Torpig botnet under their control: A fixed twenty minute inter-
val for the upload of stolen data and a second, two hour long interval between
updates of server information. As statistical features that can be attributed to
typical bot behavior allow statistical analysis, this chapter investigates distin-
guishing properties between network traffic exhibited by malware and normal,
benign, traffic in detail.

3.1 Available Information

Without Deep Packet Inspection (DPI), only packet header information is
available. However, the headers allow reconstruction of transport layer con-
nections to a representation similar to NetFlow. Therefore, for each flow,!, the

!The words flow or connection are used interchangeably throughout this thesis.
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following information is obtained:

e The IP addresses of the source and destination host,

the ports at the source and destination,

the number of bytes transferred to the source/destination,

the number of packets transferred to the source/destination,

the duration of the communication, and

the start and end time of the connection.

All further analysis has to be based on this basic information.

3.2 Traces - Chronologically Ordered Connec-
tion Sequences

Over a longer network traffic observation period, all flows between two hosts
A and B belong to the same “service” can be grouped together to build a
basis for further analysis. As the simplest mean of distinguishing a service, one
can define the property to share the same destination IP address, destination
port and to use the same transport layer protocol. Therefore, the definition to
group flows together as belonging to the same service — whereby a CéC server
of a malware is explicitly considered as a service — is:

Two flows are considered to belong to the same service, when they have the
same source IP address, destination IP address, destination port and
transport layer protocol identifier.

Using the flow start time information to chronologically order the set forms a
sequence of flows that is — in the following — referred to as trace, denoted 7.
Such traces reflect the communication behavior of a two hosts with each other
over a given timespan. If many connections are aggregated in a single trace,
statistical properties of that communication can be extracted.
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Trace
Source IP: 192.168.1.33
Destination IP: 134.76.27.2
Destination Port: 80
Time Source Dest. Source Dest Flow
Intervals Bytes Bytes Packets Packets Duration
l l l l l l .
3
360s 15673 7865 1231 845 24s @
[ [ [ [ [ [
50s 344 78643 75 2224 70s
[ [ [ [ [ [
1200s 6571 4531 351 324 30s
[ [ [ [ [ [
360s 687 7586563 123 87124 34s
Voov vy

Figure 3.1: Example of the accumulated information in a trace.

3.3 Dimensions of Traces

Although the connection elements in a trace are ordered by start times, a trace
posses multiple dimensions or vectors reflecting the available information from
each flow in the trace as depicted in Figure 3.1: A timing dimension that con-
tains the different start times (or intervals between start times), a byte transfer
dimension for each communication direction, a packet count dimension for each
direction, and the duration of each flow. The source IP address, destination IP
address, and destination port (and other scalar information) complements the
trace.

3.4 Basic Features of Traces

For traffic characterization it is relevant to identify statistical properties that
allow trace distinguishing. In this thesis, the statistical features of a trace
should especially capture typical malware behavior best. In this context, please
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Figure 3.2: Traces with different statistical behaviors (in time and duration
space).

note the difference between a trace dimension and a feature: A dimension is the
vector of observed properties of the traffic such as the start time, byte transfer
or connection duration. The concept of a feature describes a mathematical
property such as “the average interval between connections” derived from these
vectors. Although, in the following, only simple mathematical properties are
used to calculate the basic features of a trace, there is no general limitation to
the complexity or variety of potential features extracted. This especially covers
behavioral models on traces or statistically inhomogeneous distributions.

Figure 3.2 exemplifies different shapes of traces. Here, the trace 75 from A to
C on port 80 shows a highly regular behavior. In this example, the roughly
constant distance between two flows — having a high periodicity — and the
similar duration of communication allows for an accurate description of the
whole trace by using the average time distance between flows and their average
duration only.

In the following, basic features to efficiently describe malware traffic traces are
presented. Please note that no feature is based on the packet dimension of the
trace. This is because a strong correlation with the transferred bytes can be
expected and the number of packets is heavily influenced by network setup
properties like the Maximum Transmission Unit (MTU). Such properties do
not belong to the network behavior of potential bots and the packet dimension
is ignored in the remainder of the thesis.
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3.4.1 Average Time Interval

The first feature considered is the average time interval between the start times
of two subsequent flows in the trace. The botmaster has to ensure that all bots
under her/his control receive new commands and update frequently. Commu-
nication from the CéC server to the bots following a push model is often
impossible, as many infected hosts in private networks are behind Network
Address Translation (NAT') boxes or not registered with the C¢C server yet.
A core assumption is that most bots use a constant time interval between
CEC connections or a randomized value within an certain underlying, spe-
cific time interval. This leads to detectable periodicity in the communication.
For the communication pattern, the botmaster has to balance the scalability
and agility of his botnet with the increasing risk of detection associated with
an increasing number of CéC server connections. Some bot variants already
open random, benign connections [22, 21, 57] to distract signature generation
(e.g., Li et al. [46]) and malware detection systems. Other approaches, such as
“connect each day at time X” also suffer from issues like the requirement of
synchronization between the bots” host clocks. Nevertheless, malware authors
might craft their bots explicitly to not show periodic behavior. The poten-
tial impact of such randomization efforts on detection systems that exploit
regularity are discussed in Chapter 8.

3.4.2 Average Duration of Connections

The average duration of communication between the bot and the CéC' server
is expected to be relatively constant, as bots often do not receive new com-
mands and, as a consequence, most of the communication consists of a simple
handshake: The bot requests new commands and the CéC server responds
that no new commands have been issued. Thus, it can be expected that C¢C
traces behave in a similar manner. Nevertheless, the duration of communica-
tion is also dependent on the end host bandwidth of the client (bot) and inside
a single trace, such timing durations remain constant. However, different net-
work environments may impact the average duration feature and the same
malware with identical traffic might create slightly different average durations.
Nevertheless, such fluctuations may be minimal enough to still allow a posi-
tive indication of a bot infection. This argument is supported for the — to be
presented — BOTFINDER system by a feature contribution analysis in Section
7.5.



26 3.4.3 Average Number of Source and Destination Bytes Transmitted

3.4.3 Average Number of Source and Destination Bytes
Transmitted

The average number of source bytes and destination bytes per flow is, similar
to the duration of the connection, a recurring element in the bot’s CéC' com-
munication. By splitting up the two directions of communication using source
and destination bytes, it is possible to separate the request channel from the
actual command transmission. That is, the request for an updated spam ad-
dress list might always be of identical size, whereas the data transferred from
the CéC server, containing the actual list, varies. As a result, a C&C' trace is
expected to contain many flows with the same number of source bytes. Similar
considerations apply to the destination bytes — for example, when the response
from the Cé&C server has a fixed format.

3.5 Malware Traffic

To collect traffic of malware samples, the Ant system (see Section 2.5) was
used. On average 30 samples of Banbra, Bifrose, Blackenergy, Dedler, Pushdo
and Sasfis, as presented in Section 2.4, were executed in a Windows XP VM
for one to two days and all network traffic was recorded. To better separate
normal network traffic events from regular CéC traffic, some of the following
optimizations are applied.

3.5.1 Minimal Trace Length

As for every statistical property, the expressive power of a given number for
real world properties grows with an increasing number of observation or exper-
imental repetitions to obtain the number. Analog, each trace feature requires a
minimal amount of flows in the trace to derive a meaningful statistical interpre-
tation. For example, the statistical distance between just two individual points
is of nearly zero expressive power to describe a statistical behavior, whereas
a dataset of 100 collected intervals already allows a quantitative description.
Consequently, only traces of a certain length greater than |T |, are consid-
ered for feature extraction. The selection of this threshold is hard as it has to
be high enough to drop infrequent and arbitrary requests (which are not of
interest for CéC traffic detection) but low enough to capture recurring CéC
connections with respect to the overall observation time. The general fact, that



CHAPTER 3. NETWORK TRAFFIC ANALYSIS 27

1000000 1

‘\ 0o /,...W-
100000 /
— 08
2
£ \ or 14
£ .
H 10000 g /
g Eos
3 i
2 1000 3 05
£ E
£ Ml
5 204
] 100 5
é Sos3
E
0.2
10
01
. 1 ,
1 10 100 1000 10000 100000 1000000 0 20 40 60 80 100
Trace Length (Logarithmic) Length of Traces
(a) Overall traces (b) One-Day traces

Figure 3.3: Trace length distribution.

such a minimal threshold exists is consistent with the fact that command and
control traffic consists of multiple connections between the infected host and

the CEC server.

If one investigates normal, benign traffic as assumed in the LabCapture dataset,
a large number of short traces and a fast decreasing number of longer traces
is observed. As illustrated in the double logarithmic plot in Figure 3.3(a), the
vast majority of traces is of very short length, only 2.7% are longer than 50
flows. The Cumulative Distribution Function (CDF) shown in Figure 3.3(b)
highlights this behavior: although only trace lengths with less than hundred
datapoints are shown, the CDF quickly reaches 98.5%. Moreover, 37% of all
traces in the LabCapture dataset are of length one, the CDF up to length five
already covers 75% of all traces.

Given the periodicity information of 20-minute-intervals from Stone-Gross et.
al [71] for the Torpig botnet, a limitation to an initial minimal trace length
of |T|min = 50 seems reasonable given one collects traces for one or a few
days. By this number, the trace analysis workload is reduced to 2.5% and the
statistical quality of the trace should allow estimations of periodic behavior.

However, for the analysis of CéC communication in a controlled environment,
a shorter |T |, may be chosen if manual inspection reveals that the short
traces do not negatively impact the overall trace quality. The impact of minimal
trace length selection for an automated processing of the malware sets of this
thesis is presented in Section 6.2.
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3.5.2 Identification of CéC Traffic — Purification

The identification of relevant CéC' traffic in network traces is of importance
as it cleans the input data from traces that have been falsely attributed to bot
communication. The problem of C&(C traffic classification is especially hard if
fully automated approaches, for example, for automated machine learning, are
used.

Any classification mechanism has to reduce the uncertainty which malware-
generated traces are meaningful command and control interactions and which
traces are just random, additional “noise”. Such noise might either be inten-
tionally generated by the bot under investigation [22, 21, 57], by the operating
system itself — for example update services, network discoveries etc. — or other
applications running on the machine. The introduction of benign traffic is an
advanced method to cloak the malware’s own CéC' communication and to
counter automatic signature generation systems.

For this purification of training input traces, the traces are classified into three
different groups reflecting the attribution to the malware sample: The first
group contains all traces that are classified to a different service or are consid-
ered non-malicious with a very high probability. Typical traces in this set are
whitelisted connections such as to internal servers, common Internet services
such as Microsoft Update, or other requests that can be attributed to well
known and documented benign services. The second group contains malicious
traces that have a high probability to belong to a bot’s communication. Classi-
fication to this set is realized by using, for example, one of the following traffic
identification methods:

1. A manual way is to leverage third party knowledge and perform traffic
inspection — if the traffic is unencrypted — to compare the packet payloads
to known signatures or special communication patterns.

2. Another option is the comparison of the destination IPs of flows to a list
of known Cé/C servers, which is an easy to automate and efficient task.

3. A more advanced and automated technique that allows identification of
previously unknown C&C' servers is JACKSTRAWS [36] by Jacob et al.,
an approach that leverages additional system call information from the
bot sample’s execution.

The method selection process highly depends on the final application of the
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traces. The third group of traces is formed from the traces that are not proven
to be malicious but that are exhibited by the malware, which might have not
shown traffic that matches the previous two groups.

Purification Strictness

One can distinguish between two different modes of trace purification: In the
first configuration — (standard) — the purification is performed for each sample
and if a network trace matches a blacklisted IP, only this trace (and other
matching traces, if any) of the sample is(are) used for further investigation.
If samples do not contain any traces whose destination IP addresses match a
known, blacklisted, IP address, all traces are considered matching. The second
mode — (strict) — ignores samples that do not contain matching traces and
only accepts traces from the set of verified malicious traces.

3.6 Comparison of Malware Traffic with Be-
nign Network Traffic

The core element to detect malicious traffic in network traces without the
use of packet payloads are recurring statistical properties of the traffic. Such
properties enable methods to distinguish malicious traffic from benign traffic
and, as aforementioned, the main assumption followed in this thesis is that the
distinguishing feature of bot traffic is a more periodic behavior than typical
benign traffic.

To investigate the periodicity in traces, the feature average u = % vazl Ti,
with feature values z;,i € [0, N] for N flows in the trace, and it’s standard

deviation o = \/ * SV (; — p)? is calculated. o is a statistical measure of the
the variation of data around the average and therefore captures the periodicity
in communication behavior. If a bot connects frequently in similar time inter-
vals to the CéC server, the average will capture this interval and the standard
deviation will be low if the spread or dispersion of data is low. As a measure
of periodicity, the relative standard deviation is used, which is defined as o/ .
A low relative standard deviation therefore expresses a high periodicity of the
traffic feature. Please note that the average and relative standard deviation is
calculated on a per-trace level. Low values therefore do not indicate that all
traces behave the same, but that each trace in itself is relatively periodic.
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Figure 3.4: Feature relative standard deviations of malware and benign traffic
samples: The more periodic a feature, the lower the bar.

For each malware family, the averages over all relative standard deviations of
a given feature are computed, which yields the values depicted in Figure 3.4.
Here, the difference between malware and benign traffic becomes highlighted
as the relative standard deviations for the “normal” traffic in the LabCapture
dataset are high compared to the bot’s traffic. Especially the Banbra bot fam-
ily has very periodic traffic (low average relative standard deviation), whereas
Bifrose’s traffic is significantly more random. It is also interesting to see, that
the different dimensions analyzed in this experiment are not necessarily corre-
lated. For example, the Pushdo traces show very high periodicity for time and
the average number of bytes transferred to the source and destination, but the
duration of connection highly fluctuates. In some dimensions, bots like Bifrose
are even more non-periodic than normal traffic (e.g., in the source bytes di-
mension). Nevertheless, as a first result of this comparison one can state that
the bots under investigation on average show a significantly higher level of
periodicity than normal user traffic.
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BotFinder Design

In this Chapter, the high periodicity of malware traffic is exploited to create
BOTFINDER, a system that detects malware infections in network traffic by
comparing statistical features of the traffic to previously-observed bot activity.

BOTFINDER operates in two phases: a training phase and a detection phase.
During the training phase, the system learns the statistical properties that
are characteristic of the command and control traffic of different bot families.
Then, BOTFINDER uses these statistical properties to create models that can
identify similar traffic. In the detection phase, the models are applied to the
traffic under investigation. This allows BOTFINDER to identify potential bot
infections in the network, even when the bots use encrypted CéC' communi-
cation.

Figure 4.1 depicts the various steps involved in both phases: First, input for
the system is obtained. In the training phase, this input is generally generated
by executing malware samples in a controlled environment such as Anubis [5],
BitBlaze [67], CWSandbox [78], or Ether[19] and by capturing the traffic that
these samples produce. As described in Section 3.5, throughout this thesis the
training input is obtained by using the Ant system that utilizes Anubis bi-
naries. In the second step, the flows in the captured traffic are reassembled;
a step that can be omitted when NetFlow data is used instead of full packet
captures. In the third step, the flows are aggregated in traces as described in
Section 3.2 — chronologically-ordered sequences of connections between two IP
addresses on a given destination port. BOTFINDER then extracts five statis-
tical features for each trace in the fourth step. These statistical features are
the already introduced features of average time between two subsequent flows
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Figure 4.1: General architecture of BOTFINDER. During the training phase
(a), malware samples are run and models are created based on the statistical
features of the bots’ network behavior. During detection (b), BOTFINDER
analyzes NetFlow or full traffic captures and compares the extracted network
features to the established models.

in the trace, the average duration of a connection, the number of bytes on
average transferred to the source, and the number of bytes on average trans-
ferred to the destination. Additionally, a Fourier Transform over the flow start
times in the trace is calculated. This Fast Fourier Transform (FFT) allows to
identify underlying frequencies of communication that might not be captured
using simple averages. Finally, in the fifth step, BOTFINDER leverages the five
features to build models. During model creation, BOTFINDER clusters the ob-
served feature values. Each feature is treated separately to reflect the fact that
not always correlations between features are observed: For example, a malware
family might exhibit similar periodicity between their CéC' communications,
but each connection transmits a very different number of bytes. The combina-
tion of multiple clusters for each of a bot’s features produces the final malware
family model.

When BOTFINDER works in the detection phase, it operates on network traffic
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and uses the previously-created models for malware detection.

It is important to note that BOTFINDER does not rely on any payload informa-
tion of the traffic for the whole process, but works on the statistical properties
exhibited by the CéC communication only.

In the following, the steps involved are explained in greater detail.

4.1 Input Data Processing

The input to BOTFINDER is either a traffic capture or NetFlow data, which is
a dominant industry standard for traffic monitoring and IP traffic collection.
During the training phase, malware samples are executed in a controlled envi-
ronment (as done in the Ant environment), and all network traffic is recorded.
In this step, it is important to correctly classify the malware samples so that
different samples of the same malware family are analyzed together as de-
scribed in Section 2.4. Of course, incorrectly classified samples are possible
and might affect the quality of the produced models. However, as explained
later in Section 4.5.4, BOTFINDER tolerates a certain amount of noise in the
training data.

4.2 Flow Reassembly

In this step, flows are reassembled from captured packet data. A flow is iden-
tified by the 5-tuple of source IP address, destination IP address, source port,
destination port, and transport protocol ID (UDP or TCP). For each connec-
tion, properties such as start and end times, the number of bytes transferred
in total, and the number of packets are extracted. As a final result of this
reassembly step, BOTFINDER yields aggregated data similar to NetFlow. For
all further processing steps, the system only operates on these aggregated,
content-agnostic data. If NetFlow data is available, BOTFINDER directly im-
ports it.
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4.3 Trace Extraction

A core element in BOTFINDER is the concept of traces as described in Sec-
tion 3.2: A trace T is a sequence of chronologically-ordered flows between two
network endpoints that share the 4-tuple source IP, destination IP, destination
port and protocol ID. Effectively, the source port information from the previous
step is dropped as recurring connections may be created on random different
source ports without changing any of the relevant connection properties.

For the trace extraction as many connections as possible have to be collected
and ordered along the aforementioned 4-tuple. The trace captures the mid to
long term behavior of communication between two hosts on a given service.

4.4 Feature Extraction

After trace generation, BOTFINDER processes each trace to extract relevant
statistical features for subsequent trace classification. Inherently, the feature
extraction is the systematical core of BOTFINDER as it defines all properties
used for the following model creation and finally the malware detection in
network traffic. In general, the four features introduced in Section 3.4 of average
time interval, average number of source bytes, average number of destination
bytes, and the average duration of connections are calculated.

In order to detect underlying communication regularities, a FF'T is calculated
over the Cé&C' communication. In this step, the trace is sampled like a bi-
nary signal by assigning it to be 1 at each connection start, and 0 in-between
connections.

The general purpose of a Fourier transform is the trigonometric approximation
of an aperiodic signal to a function composed of cosine or sine waves. In its
continues form and using Euler’s formula (e = cos z + i sinz) to simplify the
writing by using complex exponents, a Fourier transform of a function f(¢)
can be expressed by

+o0
Flf)w) = % / F(t)e = dt (4.1)

with w being the angular frequency w = 27 /T with the period T'. However,
as BOTFINDER obtains and samples the flow information in discrete time
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intervals, a Discrete Fourier Transform (DFT) needs to be used. Let a =
(ag, ..., an—_1) be the series of N sampled binary datapoints that represent the
trace flows. Analog to Equation 4.1, the complex fourier coefficients a for the
DFT can be expressed as:

s a4y (42)

Please note that the prefactor \/LTW in Equation 4.1 normed the infinitesimal

summation over the unit circle whereas in Equation 4.2, the sum is calculated
over all elements of the series a. The inverse DFT has to be normed accordingly:
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The mathematical description in Equation 4.2 becomes clear if one represents
the discrete values a as values ay = A(zg) of the polynomial
A(Z) — ]lV <d0+dlz—|—d222+...—|—CALN71,ZN71) (44)

with complex coefficients ag, ..., ay_1. The arguments zg, 21, ..., 2y_1 are cho-
sen homogenously from the unit circle:

2 = €N " = cos(3k) + 1 sin(35k) (4.5)

The key to carry out the transform to frequency space is to express z; via a
time based function that circles on the unit circle

z(t) = 2T (4.6)

At times t, = ty + %T, this function returns 1, which finally resolves to a
using Equation 4.2. The exponents of z(t) yield

2(t)F = i . cos(2mkiZ2) 41 sin(2rktFe ), (4.7)

which is periodic in 7'/k. As a consequence, the measured series a can be
described by a constant value at &k = 0, a fundamental frequency at k = 1 and
superpositions of frequencies at k£ > 1.
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If @ consists of real values only, the DFT spectrum is composed of N/2 values
mirrored at the folding frequency at k = N/2. The term FFT is often used
synonymous with DFT, although it classifies a set of algorithms that allow a
faster calculation of the DFT than a plain implementation with O(N?). Most
algorithms such as Cooley and Tukey [17] use a Radix-2-FFT approach that
divides and conquers the DFT calculation by splitting the series into sub-
series and calculating each DF'T separately. Hereby, the DFT calculation is
improved to O(NlogsN). As the divide step requires to split the data series,
the algorithms work optimal for series that have a length of a factor of two:
N = 2 - M. If the series is not highly composite, the transform algorithm is
unable to divide the series efficiently and the calculation is slow compared to
a highly composite series.

To calculate a high-quality FF'T, BOTFINDER samples the signal with a fre-
quency of two times the Nyquist frequency [56], which is the minimal frequency
that allows to distinguish between individual data points. This implies a sam-
pling interval of 1/4th of the smallest time interval in the trace and ensures
that the trace is not “undersampled”. However, if the distance between two
flows is extremely small and large gaps occur between other flows of the trace,
this sampling method can lead to a significant amount of data points. In such
cases, the length of the FFT is limited to 2'¢ = 65,536 datapoints and minor
undersampling is accepted. This value was chosen as the FFT is fastest for
a length of the power of two, and, with this value, only few datapoints are
(under)sampled in a way that two flows appear as one. More precisely, for the
CEC traces observed in this thesis, 18% showed undersampling, which resulted
in a median of only 1% of the start times that were sampled together.

In the next step, the Spectral Density (SD) of the transform is calculated
over the sampled trace and the most significant frequencies are extracted. The
FFT effectively returns the complex fourier coefficients for frequencies between
0 (the constant) and frequencies up to half of the sampling frequency. To obtain
the spectral density, the square of the magnitude of each frequency f; has to
be calculated by magnitude( fi.)? = Re(ay)? +Im(ay,)?. Picking the frequencies
with the highest magnitude from the spectrum reveals the most significant fre-
quencies. These FFT peaks correlate with time periodicities and are resistant
against irregular large gaps in the trace (as will be shown in Chapter 8). When
malware authors randomly vary the CéC connection frequency within a cer-
tain window, it will lower the FFT peak. However, despite the randomization
the FFT peak remains detectable at the underlying frequency and allows the
detection of the malware communication.
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4.5 Model Creation via Clustering

Models are created using clustering on previously-extracted features such as av-
erage time, average duration, average source bytes, average destination bytes,
and FFT frequencies. Please note that other features can easily be integrated,
as long as they are comparable by Euclidian distances.

The clustering process is a hierarchical approach that performs multiple group-
ing steps before actually generating the clusters. The starting point of the
analysis is an initial grouping of all traces that belong to the same malware
family. For the bots under investigation in this thesis, those are the six sets for
Banbra, Bifrose, Blackenergy, Dedler, Pushdo and Sasfis. In the next step, each
feature is clustered individually in each set because traces with, for example,
the same connection duration exhibit completely different average time inter-
vals between each flow. To not artificially introduce a correlation that does not
exist in reality, all features are clustered separately.

After clustering, typically a number of rather large clusters is observed that
can be assumed to contain the actual malware-specific behavior. Furthermore,
some smaller clusters with more diverse data (lower clustering quality) are
seen, and even individual traces that might be considered as false attributions
to the malware sample can be observed. As a consequence, very small clusters
are dropped, which makes BOTFINDER robust against diverse and noisy traffic.
If different training malware samples exhibit different noisy traces, these traces
will be clustered either to a very large and loose which is not relevant through
the quality measure or to a cluster with only one element.

The final model M itself spans the five features, each containing a collection
of cluster centers. In human terms, a model can be understood as:

An average interval between connections of 2,100 seconds, a transfer of 51kB
to the source, 140 bytes to the destination, a flow duration of 10 seconds, and
a communication frequency of around 0.04Hz indicate a Dedler infection.

4.5.1 The CLUES Clustering Algorithm

To cluster the trace-features for a bot family, the CLUES (CLUstEring based
on local Shrinking) clustering algorithm [77] is used. This algorithm allows
non-parametric clustering without an initial determination of the expected
number of clusters.
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CLUES iteratively applies three procedures:

1. Shrinking: Local shrinking is based on the rationale of gravitational clus-
tering [79, 42|, which treats all data points as unit mass and zero velocity
particles and applies an arbitrary gravitational field between the data
points. Denser populations attract data points from the sparsely popu-
lated areas and, over a number of iterations, the data points converge to
so-called focal points. In CLUES, this step is realized using a mean-shift
algorithm [26, 15], but governed by the K-nearest neighbor approach [47]
instead of kernel functions.

2. Partition: After the shrinking process, the calibrated set of data points
is used to obtain the actual cluster formations or, in other words the
membership function.

3. Determination of K, the optimal number of clusters: In each step that
K is gradually increased, a cluster strength measure index function is
calculated. For this index funcation either the CH index by Calinski and
Harabasz [10] or the Silhouette index by Kaufman and Rousseuw [39] is
used. K is chosen to give the optimum of the selected index function. In
our analysis, we used the Silhouette index following the slightly better
results for this indexing method found by Wang et al. [77].

As CLUES is computationally challenging and relatively slow for large datasets
due to the iterative processes involved (for details see [77]), the authors intro-
duced a speed factor a that allows to balance between clustering quality and
speed. A larger o delivers more accurate clustering but significantly increases
the run time of the algorithm. In its recommended default setting [11] « is set
to 0.05 and, additionally, the number of the allowed maximum of iterations is
defaulted to 20.

Fortunately, the model clustering datasets originating from malware samples
are typically in the range of tenth to a few hundred datapoints and consist of
plain double values comparable using the most simple Euclidian distance. This
allows to balance the algorithm more towards clustering accuracy by using
a = 0.20 and to set the maximum number of iterations to 200. The latter
excludes clustering limitations raised by a too limited number of iterations.
However, typically the algorithm converges in five to ten iterations.
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Figure 4.2: Illustration of the k-means clustering algorithm.

4.5.2 CLUES Compared to k-means

Although Wang et al. demonstrated impressive results clustering four typical
datasets [77], the applicability of CLUES was verified for the specific structure
of malware datasets by comparing it to the well-known k-means algorithm
[48, 34]. This simple algorithm incrementally optimizes a pre-specified number
of k clusters. As depicted in Figure 4.2, each center is initially chosen randomly
and the remaining data points are assigned towards the closest cluster center |
Step a) and b) |. In each iteration, the cluster mean is calculated and used as
the new cluster center [ step c) |. Repeatedly, the assignment is performed again
and the cluster centers are recalculated. As a consequence, the average distance
of each point to its centroid decreases until final convergence is reached.

Effectively, each iteration minimizes the sum over the cluster’s within sum of
squares (wss) Z?Zl wss = Z?Zl S ||#] —¢j||? of n datapoints that group to
k clusters with centroids (means) ¢ . This measure is in general used to rate
the overall success of k-means and to compare results for different k. As the
clustering quality also depends on the initial random position of the cluster
centers, the algorithm is typically run from n = 10 to n = 50 times and the
best fit — the overall minimal sum of wss — is chosen. Please note, that each
result only represents a local minimum, which does not necessarily reflects the
global minimum.

To find a good k for comparison to CLUES, k-means was run 50 times for all
k € [1,15] and the the sum of wss over k was plotted as shown in Figure 4.3. In
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Figure 4.3: Within sum of squares of k cluster for the average time feature.



CHAPTER 4. BOTFINDER DESIGN 41

N
‘H"""-.. N"\

0 0.2 0.4 0.6 0.8 1
Relative Standard Deviation

Figure 4.4: Quality rating function by relative standard deviation.

the next step, the selection of an appropriate k was performed either manually
or in an automated way: During manual selection, a k was chosen that allowed
a relatively low sum of wss balanced with the number of clusters. In a second
step, this procedure was automated to select £ in an unsupervised way, so that
adding a cluster £ + 1 would lower the sum of wss only by a given fraction,
typically set to 0.5. In other words, adding a cluster should lower the wss at
least by 50%. Both methods generate similar, often identical clustering results
as the fully automated, non-supervised CLUES algorithm. In certain cases,
even slightly better cluster formation than with k-means was found. The same
holds for the manually supervised selection. Therefore, CLUES is considered
to be an ideal fit for the specific clustering scenario faced by BOTFINDER.

4.5.3 The Quality Rating Function

As aforementioned, the cluster quality is typically measured using the within
sum of squares or other, more advanced methods as the CH or Silhouette
index. For BOTFINDER, the quality is expressed using a dedicated exponential
quality rating function that is based on the within sum of squares. Hereby, the
standard deviation of each cluster is calculated based on the sum of squares
SS. Connected via the variance V' = SS/(N — 1) with N being the cluster size
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(number of elements in the cluster), the standard deviation o follows to be:

o= \/g (4.8)

As in the periodicity rating in Section 3.6, the relative standard deviation
rsd = o/c with ¢ being the cluster average is used. This rsd is finally used as
an input to an exponential cluster quality rating function, which is illustrated
for four g values in Figure 4.4:

Gcluster = eXp_B'TSd (49)

This quality measure reflects the uncertainties inherited by trace collection
and feature extraction in the previous steps. A low quality rating represents a
low trust in the capability of the rated cluster to describe a malware sample
sufficiently. Consequently, the higher 3, the faster the quality rating function
decreases and the less trust is placed in clusters with increasing relative stan-
dard deviations.

4.5.4 The Final Model

The final models M consist of a hierarchical structure as depicted in Figure 4.5.
The highest level builds the malware family m € M, which is itself divided
into the different features under analysis. For each feature, a number of clusters
represent the actual model. The cluster size (in traces) in relation to the total
amount of traces reveals the relevance of the cluster. Too small clusters are
dropped (currently, only clusters of size 1). The most relevant information is
the cluster center (or centroid) and its standard deviation. Based on these
information, the model quality is calculated.

4.6 Model Matching during Detection

During the detection phase, BOTFINDER matches traces from the traffic under
investigation with the models M created during the training phase. Hereby,
each statistical feature of a trace T is compared to the clusters generated for
each model m € M.

The detailed process (including all optional conditions that will be defined in
the following subsections) is shown in Algorithm 1: The trace 7 is compared
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Figure 4.5: Final model structure.

to all models (Line 6 to Line 20) and for each model m, a scoring variable 7, is
used. As shown in Line 6, all features are compared to the model individually
and add to 7,,. The match() function is detailed separately in Algorithm 2
and quantifies how well the cluster was hit in a range of [0, 1].

If the matching is good enough — the scoring value is equal or larger than
a predefined threshold a — the model is considered to be matched. The best
matching model, which is the one with the highest ~,,, is finally returned as
BOTFINDER’s detection result (Line 30).

4.6.1 Requirement of Minimal Number of Hits

To reduce false positives and to not rely only on a single feature alone, BOT-
FINDER allows the user to optionally specify a minimal number of feature hits
h. This means in addition to the requirement to match v > a, the trace has to
match in h features at least. This rule avoids accidental matches solely based
on, for example, time periodicities. Setting h = 3 requires to not only match
in two feature such as average time and FF'T, but also in either the average
duration or one of the byte transmission features. In Algorithm 1, this optional
test is shown in lines 17 and following.
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4.6.2 Increasing the Scoring Value

To match a trace to a cluster, the trace feature average x and its standard
deviation o, the cluster center ¢, the cluster’s standard deviation o., and the
cluster’s quality qual. is used.

BOTFINDER considers the value x to be matching the cluster with center c if
it lies in the area of « € [¢ — 20, ¢ + 20]. The choice of two times the standard
deviation is motivated by the assumption that matching traces may be gaussian
distributed around the cluster average: For such a normal distribution, 95% of
all values of the distribution are located in the range of +20. In the context
of malware detection quality this represents a 95% probability that a malware
trace actually matches the cluster it belongs to.

Algorithm 2 details the trace-feature to cluster matching: If the trace matches
— z is near to ¢ — BOTFINDER either returns the quality of the matching cluster
or performs additional error calculations: Hereby, the accuracy of the trace-
feature that is matched to the cluster is considered as well: Input traces can
be considered to be of a high statistical quality when the feature averages can
be calculated with low standard deviations. To reduce false positives in the
detection stage, this quality can be used to reduce the influence of low quality
traces on the matching decision. Using qual,.-exp (=6 - 0, /x), both, the cluster
quality and the trace quality, is used.

The presented calculations are mathematical representations of the statistical
confidence placed in traces and clusters. Clusters consisting of loosely similar
traces are considered less expressive than large clusters of tight and well clus-
tering trace features. If a tight cluster is hit by a highly periodic trace, =, is
increased most. If the same cluster is hit by a trace with low relative standard
deviation for the feature, even the contribution of high quality clusters de-
grades exponentially with the rsd. Non-periodic traces that hit loose clusters
barely increase ,,.
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Algorithm 1 Basic model matching algorithm
Input: a trace T to analyze and the set of models M
Output: the detection scores for each model

1:
2: modelmatches = dict() > a dict is a simple key-value mapping
3: for all models m € M do > loop through the models
4: Vm = 0
5: hits,, =0
6: for all features f € F do > f is e.g. “average duration”
7 t="TI[f] > the trace value and o for the feature f
8: cx = list() > stores the results for each cluster
9: for all clusters clus € my do
10: cx.append(match(t, clus)) > calculate the score
11: end for
12: if max(cx) > 0 then
13: hits,, = hits,, + 1
14: end if
15: Ym = Ym + max(cx) > increase score
16: end for
17: if hits,, > h then > optional check for h
18: modelmatched|m] = 7y,
19: end if
20: end for
21: Yimaz = 0.0 > find the best match
22 Mypaw =
23: for all m € modelmatched do
24: if modelmatched|m| > Yynq, then
25: Ymaz = modelmatched|m)|
26: Mpmax = M
27: end if
28: end for
29: if Y00 > a then > hit good enough?
30: return “Model matched:” m,,qz
31: else
32: return “No match”
33: end if
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Algorithm 2 Individual feature matching
Input: z,0,,c, 0., qual,

Input: an erroraware flag as an option
Output: the matching score (to increase 7,,)

function MATCH(tracefeature, cluster)
ife>c—2-sdand x <c¢+2-d then
if erroraware then
return qual, - exp (=6 - 0, /1)
else
return qual,
end if
else
return 0
end if

end function




Chapter 5

Deployment Considerations,
Implementation, and
Performance Benchmarking

This chapter details the implementation of BOTFINDER in Python and the tar-
geted deployment scenarios. Moreover, a performance evaluation investigates
the processing steps that require high computational efforts. Additionally, it
highlights the overall processing speed, which is sufficient to handle large scale
networks with millions of hosts in real-time.

5.1 Targeted Deployment Scenario

Depending on the network size, BOTFINDER is intended to be deployed in
different locations in the network. In larger networks, system administrators
typically already obtain network statistics information using Cisco’s NetFlow
or similar technologies, e.g., the novel IPFIX [14, 59, 74] standard based on
NetFlow 9, to assess the network’s service quality and proactively detect prob-
lems in the network. In such networks, the NetFlow information can be directly
fed into a BOTFINDER analysis server as depicted in Figure 5.1. Here, the fol-
lowing definitions are used:

e Edge routers are routers deployed at the intersection between the inner
ISP’s network and a network under foreign control. Modern routers often
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support to automatically keep track of connections and log statistical in-
formation about involved IP-addresses, ports, connection durations and
much more for later analysis.

e The Data Collection Server (or “collector”) is a server that typically
already exists in a larger network and that is used by the network ad-
ministrator as a storage for network analysis. Such analysis may cover
traffic distributions, traffic loads and in general network health moni-
toring. In the context of BOTFINDER, the server is just a data storage
device, which holds the collected NetFlow /traffic information from the
network.

e Analysis Servers are the core element of BOTFINDER. They read in-
coming traffic or NetFlow data and perform the trace assembly. As the
trace generation requires large amounts of memory, BOTFINDER is able
to run on multiple analysis servers in parallel that cover different seg-
ments of the network, e.g., different source IP address ranges. The anal-
ysis server also processes the traces in regular intervals and reports indi-
cations of bot infections to the network administrator.

e Computational Support Servers are processing units accepting a
trace and performing the relevant computations for statistical analysis
such as averaging and the Fast Fourier Transform.

Generally, the network’s edge routers collect NetFlow information and submit
the NetFlows to a central data collection server. Special considerations for
BOTFINDER need to be taken if the NetFlow data is sampled, for example
due to large traffic loads at the router: In such cases, the sampling rate — such
as “every fifth connection is captured” — needs to be known and BOTFINDER
needs to re-assemble the traces accordingly. However, the mechanism to cope
with sampled data is not yet implemented.

Unsampled NetFlow information is directly used by BOTFINDER running on
the BOTFINDER analysis server, the central unit reading in the inputs and
raising alarms to the administrator. As will be explained in detail, BOTFINDER
easily parallelizes and scales linearly in the number of servers supporting the
analysis by providing computational capacities.
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Figure 5.1: BOTFINDER deployment scenario in a large scale network.

5.2 Implementation Details

BOTFINDER is implemented as a prototype using the interpreted high level lan-
guage Python [76]. The abstract processing steps of BOTFINDER are roughly
matched by various scripts as depicted in Figure 5.2. The core script reads in-
put data, assembles traces and, if the length is above the given threshold |7 |,in,
sends the traces to the feature extraction (computation) client. The resulting
trace features are written to a file and either piped into the cluster-generation
or the model-comparison script. The process is detailed in the following sub-
sections.

5.2.1 Input Data

As BOTFINDER is able to process packet capture (pcap) or NetFlow data, the
traffic collection tool can vary respectively. For full traffic collection classical
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tecpdump! or Wireshark? can be used (or any other network traffic capturing
tool that writes standard pcap files). If Cisco’s NetFlow is used, it has to
be processed and written to files via flow-tools® first, before it is read into
BOTFINDER using pyflowtools*. As flow-tools does not support the modular
NetFlow version 9, BOTFINDER works best on the relatively static and widely
deployed NetFlow version 5.

5.2.2 Flow Reassembly

In this step, flows are reconstructed from individual packet headers and a
whitelisting is applied. In general, BOTFINDER supports two input formats:

1. For full packet captures, the powerful scripting engine of the Bro®
Network Intrusion Detection System (NIDS) is used for flow reassem-
bly.

2. For NetFlow input, no packet level reassembly is required. NetFlow al-
ready provides the full low information collected and processed by the
routers.

In the traffic assembly script, a first whitelisting step is applied for which a
list of IP addresses or network addresses that should be excluded from further
processing is imported. For example, a network administrator may exclude
mail traffic (port 25) or whitelisted services. Furthermore, the whole internal
IP address-range of the administered network might be excluded to minimize
false positives.

5.2.3 Trace Extraction and Feature Analysis
The BOTFINDER core implements steps 3 and 4 — the trace assembly and the

feature analysis — and expects as input a flow level representation of network
communication. Based on the tuple of matching source IP address, destination

http://www.tcpdump.org/
’http://www.wireshark.org/
3http://code.google.com/p/flow-tools/
4http://code.google.com/p/pyflowtools/
Shttp://bro-ids.org/
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IP address, protocol ID and destination port, a dictionary structure — the
“trace assembly buffer” — is filled with the flows that build traces.

This trace assembly buffer raises special technical challenges for the analysis
of large quantities of data: To reassemble sufficiently long traces (Section 6.2),
as many connections as possible should be included into the trace. However, if
millions or even billions of flows are under investigation in parallel, maintain-
ing the current state of all traces in the trace assembly buffer in memory is
hard. Moreover, a live deployment of BOTFINDER will have to report analysis
results in regular intervals. To solve this challenge, the following solutions are
implemented.

Balancing the Trace Assembly Load

To process large amounts of flow records in real-time, BOTFINDER offers var-
ious parallelization options that benefit from the fact, that BOTFINDER per-
forms no horizontal correlation between independent flows.

Multiple Analysis Servers: On a large scale, the data collection server or
a special module at the analysis server may balance the trace analysis load
among different servers. Hereby, different source IP address ranges may be
used to coordinate the load balancing.

Simple Size Limitation: The simplest way to keep the trace assembly buffer
in the targeted range, which is typically the overall memory size, is to limit
the amount of flows that is read in between each trace calculation step. This
method requires the user to specify the amount of traces that should be read
in. Statistically, the smaller the trace assembly buffer is chosen, the less long
traces will be generated and the lower is the detection quality of BOTFINDER.

Furthermore, BOTFINDER offers two different behaviors after reaching and
processing a full trace assembly buffer. In the non-overlapping mode, the trace
assembly buffer is deleted and the next processing step starts after re-filling
the buffer. As an alternative, BOTFINDER allows to let the trace assembly
buffers of each processing interval overlap (e.g., by 25%) to minimize problems
at the end of each processing buffer. Nevertheless, simply reducing the size of
the buffer comes with a number of disadvantages, such as the potential loss of
traces due to small buffer sizes.

File Based Analysis: As the trace building process is linear and requires
no interaction with other traces, the processing is easily split by IP addresses
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and the flows are stored in different files. As an example, a /24 network traffic
may be split up to 254 files and each file is processed individually. Thereby,
the amount of data that has to be kept simultaneously in the trace buffer is
limited.

Especially for offline analysis, the file based approach provides substantial
benefits. Conceptually, the number of sub-splitting files is infinite, although
technically a limitation of ~ 2'° is observed (Ubuntu 11.04). Still, using, for
example, 768 files to distribute flows based on the source IP address allows
to compute traces over a significantly longer timeframe than to simply use
in-memory storage of all traces.

Processing the Trace Buffer

After all files are read or the trace assembly buffer is full, the processing starts.
To speed up the process, BOTFINDER uses multiple threads to separate the
work of reading data from the processing workload. Thereby, after reading the
buffer, sufficiently long traces are sent to the feature extraction clients and the
reading of a new buffer continues while the old buffer is being processed. This
concurrency is especially useful if traffic or NetFlow data is directly piped into
BOTFINDER without saving it to files first.

For the feature extraction, BOTFINDER’s performance is inherently impacted
by the computational challenge to perform large amounts of Fast Fourier Trans-
forms and other mathematical tests. To cope with this problem, BOTFINDER
supports optional computational workers as highlighted in the blue cloud in
Figure 5.1. These calculation clients expect a trace as input and perform all
statistical analysis and report the information on averages, deviations, and
FFT back to the analysis server. As the processing of one trace does not re-
quire any result from the processing of another trace, the process parallelizes
well and an arbitrary number of machines can be used for computational sup-
port. In an optimal scenario, the processing completes just before the trace
assembly buffer is filled again.

All communication with the networked calculation clients — whereby BoT-
FINDER allows to run both entities, the core script and the calculation client
on the same host — is done in an additional thread that manages multiple
processing clients. Hereby, BOTFINDER already reads new data while process-
ing the buffer. The processing results are written to a file that serves as input
either to the model-creation script or the model-comparison (detection) script.
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5.2.4 Calculation Client

The calculation client is a simple script that opens a network port and awaits
formatted trace-strings. After receival, the processing of traces is started on all
available (or configured) cores. Hereby, simple mathematical operations such
as the averaging, standard deviation calculation, and summations are done
directly in Python. For complex operations such as the Fast Fourier Transform,
the statistical computation environment R [60] is used. Using the rpy2° Python
interface, R is easily accessed and Python data containers (especially lists) are
shifted to R in a fast manner.

Two processing elements govern the computation load during the FFT analy-
sis. The first step is the sampling of the trace elements as a binary signal, which
may lead to a large number of data points when very small intervals enforce
a small Nyquist frequency (see Section 4.4 for details) while large gaps in the
trace require many 0 sampling points. If a small frequency would enforce more
than 2!6 datapoints, the sampling frequency is corrected and minor undersam-
pling is accepted. The limitation that the number of datapoints has to be a
factor of two directly leads to the second time consuming step during calcula-
tion, the actual FFT calculation. R implements the routines by Singleton [66]
and is fastest when the length of the data series is highly composite.

After calculating the FFT, the three strongest frequencies, their power, and
the overall power sum is extracted and returned via the network socket.

5.2.5 Create Model — Clustering

The script to create models reads a trace feature output file and creates models
using the CLUES clustering algorithm. Each feature is clustered individually
(as described in Section 4.5) using the standard parameters defined by Chang
et al. [11] with an increased o = 0.2 (from 0.05). Additionally, the number of
iterations is set from 20 to 200. All calculations are performed in R and the
generated clusters are written to file. Additionally to the cluster center and
size, the standard deviation and cluster quality is calculated. For the latter, the
[ parameter as exponent in the quality rating function has to be supplied, or
the default value of § = 2.5 is used. The final clusters are written to file using
an XML based data-structure as shown in Figure 5.3. Each cluster element
contains the information of cluster size, total size of all clusters, the center,

Shttp://rpy.sourceforge.net/rpy2.html
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<pure_pushdo>

<avgtime>
<cluster>17,106,376.502597943,10.0249808739,0.9356007 16224 </cluster>
<cluster>24,106,405.306230591,18.4277554409,0.892556348828</cluster>
<cluster>32,106,250.248460408,9.13601506973,0.912771737511</cluster>
<cluster>17,106,214.224754301,28.899597005,0.713724740726</cluster>
<cluster>16,106,1273.99011928,137.67907301,0.763247471045</cluster>

</avgtime>

<srcbytes>
<cluster>62,106,208.973513213,152.728669969,0.160874693196</cluster>
<cluster>44,106,132.067745795,27.8883917682,0.589831546777</cluster>

</srcbytes>

<dstbytes>
<cluster>70,106,163.445178164,5.27597132832,0.92247094 1658</cluster>

</dstbytes>

<avgduration>
<cluster>36,106,9.91748253516,14.750168725,0.0242770450496</cluster>
<cluster>17,106,0.639529625624,0.0329234397102,0.87923613487</cluster>
<cluster>18,106,0.543640351578,0.0171900840755,0.923992975088</cluster>
<cluster>17,106,0.262405375039,0.0470137452867,0.638961282986</cluster>
<cluster>18,106,0.022240949149,0.0155630677467,0.17388329796</cluster>

</avgduration>

<fftfreq>
<cluster>54,106,0.00554994321007,0.00531778447144,0.0911341281862</cluster>
<cluster>52,106,0.00200745042759,0.0007946695012,0.371706684647</cluster>

</fftfreq>

</pure_pushdo>

Figure 5.3: XML based representation of the Pushdo model.

the standard deviation of the cluster, and the quality.

To combine multiple traffic samples of the same family, the respective feature
files are combined to one large file in an additional script. Hereby, the bot
identification is simply based on filename elements that are either automati-
cally generated during sample generation — if BOTFINDER scripts are used —
or manually by the BOTFINDER operator, if third party malware traces are
supplied for training.

The purification script implements the standard and strict modes of purifica-
tion and reads a trace feature file as input. The binary sample is identified
by a MD5 tag that is associated to each sample trace. A list containing IP
addresses and network masks of identified CéC' servers is used as additional
input to the purification script. The overall structure of files after trace extrac-
tion, combination and purification remains the same. The steps of combination
and purification are optional processing steps.
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5.2.6 Compare to Model — Detection

The model comparison script reads a model file and the trace feature file that
should be investigated for infections. As described in Section 4.6, each feature
is matched individually and for each model a separate 7,, is maintained. For
each feature, the script checks whether the trace average is in the range of plus-
minus two standard deviations around the cluster center. The best matching
model is chosen and, if v,, > «a, a report line is written. Hereby, additional
statistical information such as the contributing features and the ~,, value are
presented.

5.3 Performance

Although BOTFINDER’s implementation is on a prototype level, a qualitative
and quantitative evaluation sheds light on time-costly computational processes
and the real world applicability of BOTFINDER. As a prototype, BOTFINDER
is implemented in Python, which is — as an interpreted language — significantly
slower than a native language like C [40]. Further, the Fast Fourier Transforms
are performed via the statistical computing environment R [60] and the Python
interface rpy2”. This shift of data from Python to R is hindering the perfor-
mance as well.

In general, BOTFINDER’s performance is systematically impacted by three
factors:

1. The choice of input data which is either a Bro pre-processed file or a
flowtools packed NetFlow records.

2. The choice of trace buffer management: If the optimization for large
amounts of data is used and the data is read and distributed towards
more than 700 files, these files have to be written and read again which
impacts the performance. If all data is kept in-memory, which is only
possible for few Gigabytes of input data, the input file has to be read
only once.

3. The number of CPU cores available for feature extraction: For simplicity
reasons, all experiments — if not explicitly stated otherwise — are run
using a single core.

"http://rpy.sourceforge.net/rpy2.html
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Figure 5.4: Workload distribution among different BOTFINDER tasks using
one CPU core.

Further, hardware factors like the read and write speed of the harddisk, the
CPU speed and the memory size and speed are relevant for the overall per-

formance. All experiments are conducted on a Dell lab machine with an Intel
Core i7 CPU with 8 cores at 2.8GHz and 12GB of RAM.

Figure 5.4 illustrates the workload distribution of BOTFINDER to read 15.3
million lines of randomly chosen NetFlow data using files (Figure 5.4(a)) and
the in-memory trace buffer (Figure 5.4(b)). As can be clearly seen, the overall
processing is dominated by the feature extraction step (86% and 88%). Using
one CPU, the processing of the 15 million lines of NetFlow requires ~ 1690
seconds using the file based approach and ~ 1640 seconds using the in-memory
method. The pyflowtools package performs relatively well using 16.83 seconds
in total or 0.16 seconds per 100,000 lines of NetFlow. Please note that the
NetFlow data can be expected to produce a relatively low amount of long
traces and therefore relatively low feature extraction overhead, as millions
of hosts contribute to the dataset. For other datasets, e.g., the LabCapture
dataset, the feature extraction workload is higher per line of input flows.

Although the file read, write and re-read time is increased by 37% for the
file based approach, the difference is of low overall relevance considering the
domination of the feature extraction time. The general processing accounts for
only 2.4% of the overall run time.

If four CPUs are used, the processing time is reduced significantly to 876 sec-
onds which corresponds to nearly perfect linear scaling in the feature extraction
domination. Here, the complete independence of each trace during statistical
analysis is advantageous to achieve good parallelization.
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Figure 5.5: Input data processing using file based and in-memory solutions. For
Bro input data, the pre-processing using Bro has to be added to BOTFINDER’s
processing.

Using as many calculation clients and cores as possible reduces the feature
extraction speed significantly. However, as the creation of the trace assembly
buffer hardly parallelizes, the input processing becomes the major bottleneck.
Figure 5.5 depicts the absolute processing speed to read 100,000 lines of Net-
Flow or Bro pre-processed data.

BOTFINDER reads 100,000 lines of NetFlow in 0.88 seconds in in-memory mode
and in 1.31 seconds using files to handle larger inputs. If data is used that was
pre-processed using Bro, BOTFINDER reads 100,000 lines of Bro output in
0.65 seconds (in-memory) or in 1.01 seconds (file based). However, the pre-
processing has to be added to the overall processing time. Figure 5.5 compares
the different processing times and Bro impacts the performance substantially.
In a measurement experiment, Bro extracted 621,362 flows from 3GB of raw
network pcap data in &= 90 seconds. As a rough number, one can state that
Bro takes around 14 seconds to generate 100,000 flows. Still, the Bro-process is
influenced by the size of the flows. If few flows that transferred a large amount
of Bytes are injected to Bro, the per flow processing time increases.

In summary, BOTFINDER performs fastest if the high computational load of
feature extraction is outsourced to a larger amount of processing clients, which
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makes the input processing the most relevant key for time saving. Hereby, data
that was pre-processed by Bro is computed fastest, but the Bro computation
time has to be considered. As the difference between in-memory processing and
the file based approach is low, the recommendation for real world deployment
of BOTFINDER is to use the file based approach and NetFlow data as input.






Chapter 6

Parameter Analysis

This chapter analyzes the influence of the individual BOTFINDER parameters.
A challenging factor is the high inter-dependency between the different param-
eters. For example, a high correlation between the minimal trace length and
the applied purification method is observed. Each parameter is investigated
in an isolated way by varying a single parameter and fixing the remaining.
Parameters and methods under investigation are:

e The purification method, especially the amount of trace reduction and
the final impact on clustering quality and detection rates.

e The minimal trace length for trace consideration. This factor is intended
to reduce the number of false positives by statistically weak, short traces
and, implicitly, reduce the workload for BOTFINDER.

e The error-aware detection method judging the quality of each individual
trace that is under investigation. Hereby, the J parameter controls the
individual trace quality and contribution.

6.1 Minimal Cross-Validation Experiment

As a basis for further parameter analysis and optimization, the first experiment
conducted is a cross validation run with a minimal set of parameters. This
cross-validation experiment can already be counted towards the evaluation of
BOTFINDER: In this experiment, the BOTFINDER prototype is applied to (a)
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traffic produced by the malware samples described in Section 2.4 and (b) the
LabCapture traffic. For each varying acceptance threshold «, 30 independent
cross-validation runs were executed as follows:

1. This thesis’ ground truth malware dataset, as given in Table 6.1, is ran-
domly split into a training set W, which contains 70% of the traces, and
a detection set D, which contains the remaining 30% of traces.

2. The set D is mixed with the traces from the LabCapture dataset, which
is assumed to be completely infection-free, and is therefore a reasonable
dataset to derive the false positive ratio of BOTFINDER.

3. Thereafter, BOTFINDER is trained on the bot behavior exhibited in the
traces in WV and creates the models accordingly.

4. Finally, the generated models are applied to the mixed set composed
from D and the LabCapture dataset.

The analysis is performed on a per-sample level, which is possible as the in-
formation which malware binary generated a specific trace is available. More
precisely, if one trace of a sample is correctly identified by a trace match, the
entire sample is counted as correctly identified; if a trace of a given malware
is classified as a different malware, this match is considered as a false positive.

No purification is applied and all traces from the malware samples are used for
detection. The minimal trace length is set to 5, ensuring, that even short traces
are used for analysis. Still, the 75% short connections (see also Section 3.5.1),
flows to port 25, and whitelisted connections to, for example, the Windows
Update Server, are removed. No input trace error awareness (the ¢ parameter)
during detection is used. The cluster quality rating function requires a param-
eter 3, which is initially set to 2.5. The requirement to hit at least h features
to raise an alarm is disabled.

Figure 6.1 shows the cross-validation detection rate and the corresponding false
positive ratio. Please note, that the false positives are, as throughout the whole
thesis, depicted in logarithmic scaling. For a detection ratio of around 75%,
a false positive rate of 0.0015 is obtained. In other words, for 10,000 traces,
15 false positives are raised. Considering, that all traces longer than 5 flows
are under investigation, a typical network with millions of traces raises a large
amount of false positives.
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Figure 6.1: Detection rate with minimal parameter setting.

Starting from this baseline of detection and false positive rates, the introduced
parameters are investigated for their impact on reducing the number of false
positives while maintaining a high detection ratio.

6.2 Data Purification and the Minimal Trace
Length

The data purification method is, as aforementioned, an optional step to opti-
mize the input data for BOTFINDER’s training. The purification is related to
the minimal trace length, as CéC connections have a relatively high connec-
tion frequency to the CéC server. This high frequency is required for the bots
to remain agile members of the botnet.

To highlight the correlation between trace lengths and the purification sets,
the trace lengths distribution for three different purification levels and the
trace length CDF is shown in Figure 6.2. The three levels are as introduced in
Section 3.5.2:

1. No purification is applied, therefore all traces are in the training set.
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2. The standard approach: Effectively, if a sample has matching traces, all
non-matching traces of that sample are dropped. If, on the other hand,
a sample has no matching traces, the entire set of traces is used. For this
CE&C TP address matching, an existing, UCSB in-house-managed Cé&(C
control server list is used. Using various other lists, such as EmergingTh-
reats', which is based on information from Shadowserver?, Spam-Haus?,
and DShield?, yields similar results.

3. The strict approach, whereby only confirmed (black-list matching) C&C
traces are used. Samples that do not exhibit a connection to a blacklisted
IP address are ignored.

6.2.1 Matching IP Addresses

The standard purification step yields a reduction of training traces as shown
in Table 6.1. On average the amount of traces is reduced to 40%. For Banbra,
24% of all samples had a blacklist-matching trace but the overall amount of
sufficiently long traces is not reduced as the standard approach adds all traces
of a non-matching sample to the training set. For Bifrose, the purification
impact is minimal as well, as only two traces are removed, but 85% of the
samples exhibit traffic to blacklisted IPs. This supports the assumption that
the long traces are actually the malicious CéC communications. For Black-
energy, 34 samples exhibited 74 connections, whereby only 12% of the targets
were known, which explains the low reduction of traces by 7. Sasfis is similar
to Banbra as only 36% of the samples connected to a known CéC server but
all traces are used after standard purification. Each sample only exhibited one
trace of sufficient length.

Especially Dedler benefitted from the purification step as 395 traces are re-
duced to 46. This corresponds to two different Cé¢/C' server traces per sample.
Each Dedler sample exhibited connections to known malicious servers.

A significant reduction of traces is also achieved for Pushdo, where 190 traces
of 55 samples are reduced to 106 traces. Overall, 64 percent of all samples
connected to a known Cé(C server.

Ihttp://rules.emergingthreats.net/
’http://www.shadowserver.org
3http://www.spamhaus.org
‘http://www.dshield.org
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Figure 6.2: Trace length distribution.

Family Samples | Total | Traces after | C&C hits | CQ CcQ
Traces | Purification | in Blacklist | w P. | w/o P

Banbra 29 29 29 0.24 0.99 | 0.99
Bifrose 33 31 31 0.85 0.52 | 0.52
Blackenergy 34 74 67 0.12 0.47 | 0.57
Dedler 23 395 46 1.00 0.39 | 0.76
Pushdo 55 190 106 0.64 0.55 | 0.49
Sasfis 14 14 14 0.36 0.88 | 0.88
Average 32 122 49 0.54 0.63 | 0.70

Table 6.1: Malware families used for training. Purification is especially suc-
cessful if many traffic samples show traces matching blacklisted IPs. A high
quality indicates a low standard deviation within the clusters.
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6.2.2 Trace Length and Purification Correlation

To illustrate the high correlation between trace length and the property to
be a C¢C trace, lengths distributions for the different purification levels are
shown in Figure 6.2.

The first set consists of non-purified traces and is therefore build from all traces
of length 5 or larger — in total 11,046 traces. The histogram in Figure 6.2(a)
uses nine bins of exponentially increasing size and shows a peak in the trace
length region below 40 flows per trace. The CDF in Figure 6.2(d) highlights
this by showing that 83% of all traces are of length < 20, and 92% have < 40
flows per trace.

Applying the standard approach of purification significantly impacts the distri-
bution of trace lengths and their overall quantity, which is down to 490 traces
or 4.4%. As Figure 6.2(b) shows, longer traces are contributing significantly
more to the overall trace set. Only 38% of all traces are shorter than 40 flows
and the majority of traces is longer than 50. For the strict purification level,
the distribution remains tending towards higher trace lengths (Figure 6.2(c)),
but the CDF reveals that “only” 50% of the remaining 326 traces are of length
40 or longer. The explanation to this slight shift to shorter traces is the in-
completeness of the used blacklists, which is unavoidable in real life environ-
ments. Especially the Banbra malware samples exhibited highly regular and
long traces but connected to two different Cé/C servers. The IP address of
only one server was known so that roughly 70% of these traces are missing in
the strictly purified dataset.

As a first result it can be stated that the minimal trace length |7 |, is highly
related to the trace’s property to be a C&C communication trace. For the
training data of the six malware samples used in this thesis, the probability to
be a C&C trace if above length 50 is about 20%. Ignoring the vast amount of
Dedler traces and considering the remaining five malware families, the proba-
bility is more than 65%.

6.2.3 Detection Rate and False Positives

For the detection quality, the impact of purification and minimal trace length
variation is depicted in Figure 6.3. The first three figures (6.3(a)-6.3(c)) de-
pict the detection rate based on the purification level and the three minimal
length parameters. Figures 6.3(d)-6.3(f) illustrate the false positive rates in
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| | [T|min | No Purification | Standard | Strict |

Count | 10 8499 2044 733
Quality | 10 0.579 0.628 | 0.648
Count | 20 438 326 293
Quality | 20 0.650 0.685 | 0.770
Count | 50 289 180 154
Quality | 50 0.788 0.822 | 0.869

Table 6.2: Number of traces available for clustering and the clustering quality.

logarithmic scaling.

Generally, better detection rates correlate with higher minimal trace lengths.
This is consistent with the aforementioned high probability for a long trace
to be a Cé&C trace. Therefore, even without purification (as depicted in Fig-
ure 6.3(a)) high detection rates are achieved when the minimal trace length is
set to |T |min = 50. Similar detection rates are obtained for the standard purifi-
cation system but lower rates for the strict approach. This is counter-intuitive
as the strict approach only consists of confirmed CéC traces. However, by
dropping many actual CéC' traces that connect to not-known CéC' servers,
less traces contribute to malware clusters. If these missing traces actually were
of high quality as, e.g., the Banbra traces that connected to a not-known Cé&(C
server, good traces are not counted in the strict purification level. Therefore,
a stricter purification level can in fact decrease the overall performance.

Furthermore, as Table 6.2 illustrates, the cluster quality increases with increas-
ing minimal trace length requirements and increasing purification strictness.
However, the total number of input traces reduces. Interestingly, the false posi-
tive levels are only marginally impacted by such different cluster qualities. This
indicates that the exponentially decreasing impact of weaker clusters reduces
the effect of loose clusters.

6.2.4 Purification Independence and Cluster Quality

It is important to note that BOTFINDER is neither depended on the purifica-
tion step nor does a low purification ratio indicate weaker models. Even when
not many connections to known Cé&C servers are found, this does not neces-
sarily result in lower quality models: For example, all 29 samples of Banbra
connect to only two different destination IP addresses and only one address
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Figure 6.4: Influence of the cluster quality control parameter f3.

was known to the CéC blacklist used for purification. Still, the traffic pat-
tern and periodicity features are highly similar which leads to a very high
Clustering Quality (CQ) based on the exponentially decreasing quality rating
function of 0.99. This highlights that BOTFINDER does not require a data
purification process. In particular, as can be seen in Table 6.1, the difference
between the cluster qualities with and without purification is small (or zero)
for most families. A main exception is Dedler, for which the purification results
in a significantly better cluster quality which improved from 0.39 to 0.76. The
large number of potentially benign traces that are dropped for that specific
malware reduce noise and optimize the clustering.

6.3 The Cluster Quality Parameter

The § parameter allows to control the exponential decrease of the cluster qual-
ity rating function. Its purpose is the reduction of false positives balanced with
a high detection rate. Figure 6.4 shows the impact of varying cluster quality
parameters 5 = 0,5 = 1.0, 8 = 2.5, 6 = 5.0, and § = 10.0 for standard purified
data with respect to the detection acceptance threshold . The detection rate
remains stable until o > 1.5 and decreases slowly for further increasing a. The
larger 3 is chosen, the larger is the decrease of detection. Using # < 2.5 allows
detection rates greater than 85 percent. However, the impact of 5 on the false
positives is significant in the order of magnitudes. For $ = 0.0, which reflects
an increase of the model-matching scoring variable 7 (see Section 4.6.2) by 1.0
per cluster hit, only a minimal step at a = 2.0 is observed. However, a false
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Figure 6.5: Influence of the minimal feature hit requirement h.

positive rate for f = 0.0 of 16 percent is far from real world usability. In the
region of o = 1.5, increasing [ roughly reduces the false positive rate by an
order of magnitude.

The selection of an appropriate § is hard as one has to balance the decrease
of the detection rate with the intended reduction of false positives. For further
experiments, a threshold of g = 2.5 is selected that only minimally affects the
detection rate but reduces the false positives to 1% compared to a calculation

with 8 = 0.0.

6.4 The Minimal-Hits-Requirement

The introduction of an additional requirement for BOTFINDER to raise an
alarm is intended to reduce false positives that occur by having a benign trace
accidentally match one or two clusters. For standard purified training traces,
the detection rates and false positive rates for h = 0,..,5 are analyzed using
g = 2.5 and a minimal trace length of 50. As Figure 6.5(a) illustrates, the
detection rate is relatively high for i € [0, 3] and degrades for further increasing
h. The effect on the false positives is shown in Figure 6.5(b) in linear scaling.
h impacts the false positive rate only minimally for low values A < 3, but
becomes significant for larger values. However, the effect is highly correlated
to the a threshold and especially impacts results with lower «, as higher «
are only reached by traces that hit multiple clusters anyways. As a default for
BOTFINDER, h = 3 is chosen, which yields similar detection results than low
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Figure 6.6: Influence of the § parameter that rates the quality of traces in the
detection phase.

h but reduces the false positive rate for low a.

6.5 Trace Input Error Awareness

The introduction of an error factor § for the traces under investigation is
intended to decrease the amount of false positives (as CéC traces are assumed
to be quite periodic) and to sharpen the detection results.

Figure 6.6 shows the detection and false positive rates for four different ¢
values of 1.0,2.5,5.0 and 10.0. The minimal hit requirement parameter is kept
invariant at h = 3 and the standard purification method is used.

As can be seen in Figure 6.6(a), the detection rate is impacted by increasing
0, but remains relatively high. For § = 2.5 the detection rate remains above
70% for acceptance thresholds up to o = 2.0. However, as intended, the false
positive ratio significantly decreases compared to the false positive rate without
error consideration. Especially for higher acceptance thresholds in regions of
a > 1.5, the false positive rate is reduced to &~ 0.8% on average.

In summary, the consideration of the quality of the trace under investigation
yields similar detection rates, but significantly reduces false positive rates. As
a balance between detection rate reduction and false positive impact, 6 = 2.5
is chosen as the default value for BOTFINDER.
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Figure 6.7: Impact of the BOTFINDER parameters. All false positive values are
plotted on a logarithmic scale.

6.6 Overall Impact

Each additional parameter supports BOTFINDER’s detection rate and effec-
tively lowers the false positives. Combining all parameters to the general BoT-
FINDER setting of § = 2.5, § = 2.5, h = 3, and a minimal trace length of 50,
significantly lowers the false positives ratio while the detection ratio remains
stable. Still, all introduced parameters utilize the higher periodicity of real
world CéC traces.

Figure 6.7 illustrates the total effect of the parameters chosen. The plots show
that the parameters introduced efficiently reduce the false positives rate: Fig-
ure 6.7(a) depicts the false positive ratio with varying acceptance threshold
«. Although both curves show the same behavior of exponential degradation
— near linear in the logarithmic plotting — the overall distance is significant:
At the typical acceptance threshold range of BOTFINDER (o € [1.5,2.0]),
the false positive ratio using all parameters is of only 0.4% of the one using
no optimizations. This is an improvement of three orders of magnitude. Fig-
ure 6.7(b) shows the detection rate plotted against the false positive rate in
logarithmic scaling. A value near to the upper left corner is optimal (this is for
a € [1.5,2.0]) as it combines high detection rates with low false positive ratio.
At all times, the standard settings of BOTFINDER outperform the minimal
parameter settings. The curve is shifted towards better detection rates while
generating less false positives.



Chapter 7

Evaluation

To evaluate BOTFINDER, a number of experiments on the two datasets, Lab-
Capture and ISPNetFlow, is performed. As presented in Section 2.6, the Lab-
Capture dataset is a full packet capture of 2.5 months of traffic of the UCSB
security lab with approximately 80 lab machines and it should — by lab policy
— be malware trace free. As the full traffic capture is available, a manual verifi-
cation of bot reports can be executed. The ISPNetFlow dataset covers 37 days
of NetFlow data collected from a large network. Although no ground truth for
the second network dataset is available, as the underlying, full traffic capture
required for full content inspection is not available, relevant information can be
obtained from the experiments: The identified hits can be compared to known
malware IP blacklists and the usability of the approach for the daily operation
of large networks can be judged.

Using the prototype implementation presented in Chapter 5, the following ex-
periments (for a detailed description please refer to the respective subsections)
were performed:

1. A cross-validation experiment based on the ground truth training data
and the LabCapture dataset as already used in Chapter 6: In short, the
training data is split into a training set and a detection set. The latter
is then mixed with all traces from the LabCapture data that should not
contain bot traces. After BOTFINDER has learned the bots’ behavior on
the training set, the detection ratio and false positives in the dataset that
contained both the remaining known malicious traces and the LabCapture
data is analyzed. | Section 7.2 |
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Figure 7.1: Detection Rate of BOTFINDER in cross validation experiments.

2. Comparison to related work: Here, the most relevant related work is the
well-known, packet-inspection-based system Bothunter [31]. All experi-
ments are performed on a set of a fraction of ground truth CéC' traces
mixed with the LabCapture dataset. [ Section 7.3 |

3. ISPNetFlow analysis: BOTFINDER is trained on all malware training
traces and applied on the ISPNetFlow dataset in daily slices. The iden-
tified malicious traces are investigated and compared to blacklisted ma-
licious CéC server IPs. [ Section 7.4 |

7.1 Training BotFinder

BOTFINDER is trained on the six representative malware families of Banbra,
Bifrose, Blackenergy, Dedler, Pushdo and Sasfis as presented throughout this
thesis. A standard purification step (for details see Section 3.5.2) was performed
and results to, on average, 76 traces per malware sample that are used for
model creation. The model generation is based on the features extracted from
the selected traces.



CHAPTER 7. EVALUATION 75

[EEY

ety fale)
—— U.J
0.8
bl
e [
s ) 0.6
IS 0.5
5
o 0.4
a
0.3
0.2
0.1
‘ 0
0.000001 0.00001 0.0001  0.001 0.01 0.1 1

False Positives (Log. Scale)

Figure 7.2: Detection Rate of BOTFINDER in cross validation experiments
plotted against logarithmic false positives rate. Optimal values approach are
found in the higher left region.

To perform the clustering step, the CLUES algorithm with default values as
described in Chang et al. [11] with the aforementioned modifications — to
increase the maximum of allowed iterations from 20 to 200 and « from 0.05
to 0.2 — was used. The clustering completes after less than ten seconds and
generates on average 3.14 (median 3.00) clusters per feature for each family.
Most clusters show a relatively low standard deviation within the cluster, which
indicates — again — that the core assumption of BOTFINDER holds: Different
binaries of the same malware family produce similar C¢C traffic, and this
traffic can be effectively described using clustering techniques.

7.2 Cross Validation

The cross validation experiment is executed exactly as described in Chapter 6.
A fraction of the training traces (30%) is mixed with the LabCapture traces
and used for detection. The models are created on the remaining (70%) of
malware traces. Following the results from Chapter 6, the parameters are set



76 7.3 Comparison to Bothunter

to 5 =25, h =3, |T|mn = 50, 0 = 2.5, and the acceptance threshold « is
varied throughout the experiment.

For each a € [0,3], n = 50 cross validation runs are executed yielding the
results shown in Figures 7.1. Please note that the detection rate is depicted
in linear scaling whereas the false positive (secondary) axis is logarithmic.
Figure 7.2 shows the detection rate on the y-axis versus the false positive rate
in logarithmic scaling on the x-axis.

As can be seen in Figure 7.1, very low acceptance thresholds yield high detec-
tion rates of above 90%, but with high false positives. For example, the false
positive rate was greater than 1% for a < 0.6. But, the false positive rate de-
creases exponentially (near linear in logarithmic scaling) whereas the detection
rate decreases roughly linearly. This yields to a good threshold of a € [1.7,2.0]
— compare the upper left corner of Figure 7.2 — with good detection rates and
reasonably low false positives.

For an acceptance threshold of a = 1.8, 77% detection rate with 5- 1076 false
positives is achieved. For this parameter, Table 7.1 shows the detection rates
of the individual malware families, averaged over the 50 cross-validation runs.
Here, all Banbra samples and ~ 85% of the Blackenergy, Pushdo and Sasfis

samples were detected. The only false positives were raised by Blackenergy (2)
and Sasfis (1).

Another interesting experiment is the analysis of the LabCapture dataset in
daily intervals, similar to a system administrator checking the network daily.
More precisely, the traffic capture is split into separate one day slices and
analyzed with BOTFINDER. Overall, 14 false positives — 12 Blackenergy and 2
Pushdo — are observed over the whole 2.5 months time span.

7.3 Comparison to Bothunter

In this experiment, BOTFINDER is compared to its closest related work, Bot-
hunter [31]. Hereby, a significant difference is introduced by BOTFINDER being
a content-agnostic malware detection system, whereas the well-known Bot-
hunter is a sophisticated bot detection system that relies on a substantially-
modified Snort! intrusion detection system for flow (dialog) identification com-
bined with anomaly detection. The authors of Bothunter later released Bot-

"http://www.snort.org
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Malware BOTFINDER | BOTFINDER | Bothunter
Family Detection False Positives | Detection
Banbra 100% 0 24%
Bifrose 49% 0 0%

Blackenergy 85% 2 21%
Dedler 63% 0 n/a
Pushdo 81% 0 11%

Sasfis 87% 1 0%

Table 7.1: Detection rate and false positive results of BOTFINDER (accep-
tance threshold a=1.8) in the cross-validation experiment and compared to
Bothunter.

Miner [30], which adds horizontal correlation between multiple hosts (which
is not in scope of this thesis).

The decision to compare BOTFINDER to Bothunter is based on its applicability
and the fact, that — to the best of the authors knowledge — no other system al-
lows content agnostic malware detection of individual infections. An exception,
under certain conditions, is BotTrack [24]. However, works like BotTrack have
a different focus than BOTFINDER and they detect Peer-To-Peer (P2P) based
botnets similar to BotGrep [52] by observing a bot’s traffic that is caught in a
honeypot. By P2P-Distributed Hash Table (DHT) enumeration, other botnet
members are derived by network analysis.

BOTFINDER is compared to the production version 1.6.0 of Bothunter, which is
made publicly available? by the authors. Bothunter leverages detection mech-
anisms on the whole infection and malware execution life-cycle: Port scanning
activities and dangerous binary transfers (e.g., encoded or encrypted HTTP
POSTs or shell code) are used to detect the first step of the infection process.
Malware downloads (“egg downloads”) and, eventually, structural information
regarding the Cé&C server plus IP blacklisting of multiple list providers are
used to identify infected hosts.

For the comparison, Bothunter is run on full traffic dumps of the training sam-
ples and the LabCapture dataset. The system was installed strictly following
the User Guide® and configured for batch processing. This Bothunter version
was chosen as its release time (summer 2011) fits the time of execution of the

’http://www.bothunter.org/
3http://www.bothunter.net/OnlinePDF.html
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LabCapture traffic capture and approximates the execution time of our mal-
ware samples. As can be seen in Table 7.1, very few alarms were raised by
Bothunter for the training samples. The detection rate varies between 0 and
24 percent for the different families, and a high dependency on IP blacklisting
for successful detection is observed. Note that Bothunter had access to the full
payload for the experiments, whereas BOTFINDER only operates on flows.

Regarding the test with Bothunter on the mixed dataset, alarms were received
for 41 distinct IP addresses. For four IP addresses with a significant peak of
alarms, a manual confirmation of a bot infection was possible, as researchers
executed malware in a bridged VM. As BOTFINDER was not trained for the
specific bot family that the researcher was working on, it is not surprising that
BOTFINDER missed this infection. For most IP addresses (37), a manual con-
firmation for an actual infection failed. However, manual malware confirmation
is challenging and a failed confirmation does not exclude the possibility that
actual bot traffic was observed. Nevertheless, often the connections were made
to Internet Relay Chat (IRC) servers (BitCoin trades) or alarms were raised
because of the high NXDOMAIN activity of the University’s core router. In
another instance, Bothunter identified the download of an Ubuntu Natty ISO
as an exploit (Windows Packed Executable and egg download). This shows
that the number of false positives is significantly higher than those raised by
BOTFINDER on the same traffic.

7.4 ISPNetFlow Analysis

The ISPNetFlow dataset is, as aforementioned, most challenging to analyze
as not much information about the associated network and no full packet
capture is available. For this experiment, BOTFINDER is trained on all available
training malware traces and applied on the ISPNetFlow dataset.

Overall, BOTFINDER labeled 542 traces as evidence of bot infections, which
corresponds to an average of 14.6 alerts per day. This number of events can be
easily handled by a system administrator, manually during daily operations or
by triggering an automated user notification about potential problems. Figure
7.3 shows the evolution of infections over the analysis time frame, which varies
from days with no infections at all to days with a maximum of 40 reported
infections. Figure 7.4 illustrates the total number of reported incidents per
bot. Pushdo and Dedler are dominating the detected infections with 268 and
214 reports, respectively, followed by Sasfis with 14 and Blackenergy with 12.
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Bifrose was found only once in the traffic and Banbra was not found.

To judge the detection quality of BOTFINDER in the ISPNetFlow dataset,
the IP addresses involved in suspicious connections were investigated in detail.
After receiving the internal IP ranges from the ISPNetFlow system administra-
tors, the set of involved IPs was split into internal and external IP addresses.

Only two out of the 542 traces had their source and destination IP addresses
both inside the network. This indicates that BOTFINDER is not generating
many — most probably false — indications of internal infections where both the
bot and the CéC' server are inside the observed network.

The remaining 540 external IP addresses are compared to a number of pub-
licly available blacklists* and had a positive match for 302 IPs or 56%. This
result strongly supports the hypothesis that BOTFINDER is able to identify
real malware infections with a relatively low number of false positives.

Whereas the 302 blacklist-confirmed IP addresses do not cluster to specific
/24 or /16 networks, the 238 non-confirmed IP addresses show multiple large
clusters and in total, 85 IPs contribute to the Top-5 networks. Table 7.2 lists
the Top-5 organizations that were found in the list of not blacklisted destina-

4The RBLS http://rbls.org/ service allows to analysis a large number of blacklists
using a single query. “RFC-ignorant” listings are ignored.
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Figure 7.4: Total reported infections compared to the total number of blacklist
confirmed infections.

tion IP addresses. 46 destination IP addresses point to servers of the Apple
Incorporation and are most probably false positives. WebMagic® offers a vari-
ety of web services and WebNX advertises dedicated web servers for rent. It is
reasonable to speculate that malware authors rent dedicated servers and pay
using maliciously obtained payment information to have access to powerful
CéC servers while hiding their trails and evading law enforcement. However,
this assumption is unable to be verified in this thesis. The Avtomatizatsiya
Business Consulting Ltd, which is registered in Victoria, Seychelles offers ru-
tracker.org, a BitTorrent tracker. Neither legitimate nor illegitimate activities
were found.

If one adds Apple to the whitelist, effectively a blacklist-rate of 61% (302
of 496 destination IP addresses) is observed. Considering that various not
blacklisted destination IP addresses belong to rented dedicated servers or other
web providers, it is likely that a significant fraction of the 194 not blacklisted
IP addresses actually belong to malicious servers.

Shttp://www.webmagic.com/about . php
Shttp://webnx.com/
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| Size | Network | Organization |
46 17.0.0.0/8 Apple Inc.
21 | 67.207.64.0/19 WebMagic, Inc.
7 | 195.82.146.0/23 | Avtomatizatsiya Business Consulting Ltd
6 | 216.18.192.0/19 WebNX, CA, USA
5 124.40.51.0/24 NTT / Akamai International BV, JP

Table 7.2: Top-5 aggregated clusters of not blacklisted destination IP addresses.

mTime
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Normalized Contribution to Detection

Figure 7.5: Normalized contribution of the different features towards a success-
ful detection.

7.5 Contribution of Features towards Detec-
tion

To asses the quality of BOTFINDER’s detection algorithm and the weighting
of the different features towards a successful detection, the normalized con-
tribution of each feature to 7, is extracted. Figure 7.5 shows the averaged
contribution of each feature to successful trace identification as the correct
malware.

Interestingly, fundamentally different distributions for the bots under investi-
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gation are found: Whereas the bot families of Banbra and Sasfis are equally
periodic in each dimension, the remaining bots show significant discrepancies
between the features. For Pushdo, the duration and the FF'T is of lower signif-
icance and the detection is primarily based on the average time interval and
the number of bytes transmitted on average. The feature of destination bytes
is of low importance for the remaining three bot families Bifrose, Blackenergy
and Dedler, whereby Bifrose does not benefit from the feature at all. However,
the source byte destination — the request towards the CéC server — highly
contributes towards detection.

Of special interest is the impact of the Fast Fourier Transform, especially
considering that the FFT accounts for the vast majority of the overall com-
putational complexity of BOTFINDER. For all malware families except Dedler
and Pushdo, the FFT is the the most significant feature to detect a malware
infection in the network traffic. Hereby, Bifrose is of special interest, as the av-
erage time feature contributes only minimally towards detection whereas the
FFT contributes most. This indicates a much better quality and periodicity of
underlying frequencies compared to simple averaging — an indication that is
verified under inspection of the underlying models which cluster significantly
better for the FFT frequencies.

For the averaged contribution over all malware families (the rightmost bars),
a relatively balanced contribution is observed. Still, the FFT and the source
bytes dimension contribute slightly more towards successful detection than,
e.g., the average duration or the destination bytes. Considering the mode of
operation of typical bots, this outcome fits the assumption of bots to send
similar requests to the Cé/C' and receive answers of changing size. Additionally,
the detection superiority of underlying FFT frequencies over simple averages
for the flow interval times was shown.



Chapter 8

Bot Evolution

BOTFINDER is raising the bar for malware authors by detecting malware with-
out relying on deep packet (content) inspection. Thereby, it might trigger a
new round of bot evolution. This chapter presents potential evasion techniques
that malware authors might try to thwart BOTFINDER and it discusses how
the system handles such threats

8.1 Adding Randomness

A first approach to hinder BOTFINDER’s analysis is to tackle the core assump-
tion of regularity in the communication between bots and their CéC' servers.
For the bots under investigation, this assumption holds but malware authors
might intentionally modify the communication patterns of their bots to evade
detection, as suggested, for example, by Stinson et al. [69].

More specifically, botnet authors could randomize the time between connec-
tions from the bot to the C&C server or the number of bytes that are ex-
changed. For the botmaster, this comes at the price of loss of network agility
and degraded information propagation within the botnet. However, by using
randomization techniques, the malware author effectively increases the stan-
dard deviation for the property that is randomized (for example, the inter-trace
timing). This decreases the quality of the trace for BOTFINDER, which in turn
degrades the detection quality. Interestingly, BOTFINDER already operates on
fluctuating traces and is, as the detection results show, robust against signifi-
cant randomization (large standard deviations) around the average.
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Figure 8.1: Randomization Impact.

To further illustrate BOTFINDER'’s resilience against randomization, the Cé&C
trace detection rate with artificially increasing randomization is analyzed. In
this experiment, a randomization of 50% means that 50% of the mean value
is added or subtracted to each flow that composes a trace. For example, for a
perfect trace with no standard deviation and an average interval of 100 sec-
onds between connections, a randomization rate of 20% leads to new intervals
between 80 and 120 seconds.

Figure 8.1 shows the effect on the detection rate of BOTFINDER with

1. randomized time, which impacts the “average time” and the “FFT” fea-
ture,

2. randomization of time and “duration”, and

3. randomized “source bytes”, “destination bytes,” and “duration”.

As can be seen, BOTFINDER’s detection rate drops slightly but remains stable
above 60% even when the randomization reaches 100%. However, for complete-
ness one has to state that a randomization of all features quickly degrades the
detection results. A 40% randomization of all dimensions degrades the detec-
tion rate to 35%.
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Figure 8.2: FF'T detection quality degradation.

8.2 Introducing Larger Gaps

Malware authors might try to evade detection by adding longer intervals of
inactivity between Cé(C' connections. In this case, the Fast Fourier Transform
significantly increases BOTFINDER’s detection capabilities: Due to its ability to
separate different CéC' communication periodicities, the introduction of large
gaps into the trace (which impacts the average) does not significantly reduce
the FFT detection rate. For a randomization between 0 and 100 percent of the
base frequency, Figure 8.2 shows the fraction of FF'Ts that detected the correct,
underlying communication frequency. As can be seen, the introduction of large,
randomly distributed long gaps does not significantly reduce the detection
quality of the FFT-based models.

This is also illustrated for 10% and 50% randomization and the introduction
of gaps in Figure 8.3. For a time interval of 50 minutes, the expected peak at
f= 0.0Z% is still visible.
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Figure 8.3: Frequency recognition using the FF'T power spectrum. Despite
increasing randomization [a) 10%, b) 50%| and additional =~ 10 large gaps in c)
and d), the correct time interval of 50 minutes (Frequency=0.02) is identified.
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8.3 High Fluctuation of C&C Servers

Malware programs might try to exploit the fact that BOTFINDER requires
to collect a certain, minimal amount of data for analysis. If the Cé&C' server
IP addresses are changed very frequently, BOTFINDER cannot build traces of
minimal length |7 |, = 50. This behavior of quickly changing the Cé/C server
address or domain is referred to as IP-flux or domain flux respectively [54, 9].
Even a highly domain-fluxing malware, such as Torpig [71] uses two main
communication intervals of 20 minutes (for upload of stolen data) and 2 hours
for updating server information. Still, Torpig changes the C'¢/C server domain
in weekly intervals. Currently, high C&C server fluctuations (IP fluz) in the
order of hours are not observed in the collected malware data investigated in
this thesis.

Nevertheless, the following pre-processing step already presents a countermea-
sure against highly fluctuating Cé&C servers. This step, which is based on
elements of horizontal correlation, might finally also help to detect P2P based
botnets. The pre-processing step is an optional step that operates before the
full feature extraction (Step 4 in Figure 4.1). Hereby, longer traces are con-
structed from shorter traces, e.g, of length 20 to 49, which exhibit similar
statistical features. In this step, the observation that Cé(C communication
exhibits higher regularity than other frequent communication is used again.

8.3.1 Recombination

For all traces in a range of a new minimal trace length and |7,.;,| — 1, which
will be referred to as sub-traces in the following, a similarity definition analog
to BOTFINDER’s model matching algorithm is used. The decision to merge
two sub-traces T4 and Tp is based on the following:

e To consider two traces similar, the standard deviation of the combined
Taip has to be lower than the standard deviation of at least one of the
individual traces. Thereby, traces around a significantly different average
— even with relatively low fluctuations — do not match and are automat-
ically excluded.

ag

e To rate each feature, a quality rating function ¢ = exp (_ﬁg>’ with o

being the standard deviation of the specific feature of the trace, and avg
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Figure 8.4: Fraction of source IPs with more than one sub-trace of length
between the “Minimal Trace Length” and 49.

being the feature average, is used. If the sum over all feature-qualities of
the combined trace Tp is above a threshold ¢, the trace recombination
is accepted.

The lower the value of ¢ is, the more sub-trace combinations are accepted and
the higher is the additional workload for BOTFINDER.

8.3.2 Sub-Trace Distribution

To judge the feasibility of the pre-processing step in terms of computational
complexity and overhead, the amount of traces that require recombination and
their typical, internal trace distribution needs to be known. For this purpose,
10 days of traffic in the ISPNetFlow dataset were analyzed and the fraction of
source IPs that contributes to potential trace re-combination was extracted.

As can be seen in Figure 8.4, even considering a lower bound for the sub-trace
length of 15 connections, only 2.1% of all IP addresses require the application
of the pre-processing step in the 10 day timeframe.

Figure 8.5 shows the amount of sub-traces, that the different source IP ad-
dresses from Figure 8.4 have for a minimal sub-trace length of 15. More than
50% of all traces only have 2 sub-traces and more than 95% have less than 10
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Figure 8.5: Fraction of IP addresses having exactly a given “Number of Sub-
Traces”.

sub-traces. For the 10 day timeframe, only 58 IPs had 20 or more traces to
recombine.

8.3.3 Computational Complexity

The computational complexity of each comparison of two traces for a fitting
match is based on the calculation of the four features average time, average
number of source bytes, average number of destination bytes and the average
duration of flows. Therefore only 4 averaging operations and 4 standard de-
viation calculations are required for each matching operation. However, the
number of match-tests is heavily influencing the run time of the pre-processing
step.

The simplest approach is testing all possible trace combinations composed of
two or more traces. For n sub-traces, f operations given by

=3 () 81)

k=2

are required. Table 8.1 illustrates the amount of possible trace combinations.
Unfortunately, with f = 3.5 - 10'2 combinations for only 15 sub-traces and a
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8.3.3 Computational Complexity

Sub-Traces All Chronologically 4-Trace
n Combinations Ordered Combinations
2 3 2 1
3 12 5 4
4 60 12 11
5 320 27 25
6 1,950 58 50
7 13,692 121 91
8 109,592 248 154
9 986,400 503 246
10 9,864,090 1,014 375
20 6.6 - 108 1,048,556 6,175
30 7.2-10% 1,073,741,794 31,900

Table 8.1: Worst case amount of required combination steps using n sub-traces.

factorial run-time, this approach of analyzing all trace combinations is impos-
sible to deploy in real world applications.

To optimize the run-time of the match making, one can leverage the property
of two traces to commutate, meaning 7,75 is equivalent to Tg7T4 in its statis-
tical properties. Please note, that this effect becomes of significance for longer

combinations (TaTpTe=TaTcTe= TeTaTc=TsTcTa=TcTaTe= TcT5Ta).

Effectively, it is not required to investigate the commutations: Sub-traces con-
tain chronological information and can be sorted accordingly. Therefore, T4
and Tp are resolved to one sequence by concatenation in chronological order.
As Figure 8.6 illustrates for five sub-traces, each sub-trace allows combinations
with sub-traces that are “ordered behind”, e.g., by starting later in time. The
number of comparison operations can therefore directly be expressed as:

f(n)=2"—n (8.2)
The amount of individual traces are of no relevance (because each trace length
is < |T|min) leading to the substraction of n in Equation 8.2. Although this
modification significantly reduces the amount of possible trace combinations
as shown in Table 8.1, further optimization has to be done to limit negative
performance impacts for larger amounts of sub-traces.

Following the original assumption to require a minimal sub-trace length of



CHAPTER 8. BOT EVOLUTION 91

1 A B C D E
2 AB BC CD DE

AC BD CE

AD BE

AE

3 ABC BCD CDE
ABD BCE
ABE BDE

4 ABCD BCDE

Figure 8.6: Chronologically ordered potential combinations of five sub-traces

A to E.

15 and a full trace length of 50, it is justified to abort the recombination
procedure after combining a maximum of 4 sub-traces. The number of traces
that are combined of two sub-traces is given by:

n

fa(n) =) (n—i) = %(n2+n+i2—i)—m’ (8.3)

=1

The number of traces combined from 3 sub-traces is given by:

fam) = >3 (n =) (84

and the number of traces combined from 4 sub-traces by:

L) =YY" (n—1i) (85)

k=3 j=k i=j

The sum of the sub-traces combined from 2, 3 and 4 sub-traces results to:

fo.a(n) = fo(n) + f3(n) + fa(n) = 2—14714 — 22—4n3 + 7" %n (8.6)
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This leads to a low amount of match analysis operations and generated traces
compared to the previous solutions. By considering the ordering of traces and
a targeted trace composed of two to four sub-traces, the complexity is reduced
from factorial complexity over exponential to polynomial complexity. Never-
theless, the final algorithm still has — in the worst case that every trace matches
with every other — a complexity scaling in O(n*). Still, for a trace that has 50
highly similar sub-traces, ~ 250,000 new traces are generated.

As the re-combinations are performed without FFT or other costly operations
and just build around simple summation, averaging and standard deviation
calculation, the processing is sufficiently fast to handle even larger amounts
of sub-traces. Please note, that in a typical scenario, most sub-traces will not
be similar enough to be combined and the actual amount of operations is
significantly lower.

8.3.4 Real World Impact

The pre-processing step was applied on real-world data to investigate

1. the ability to reassemble real Cé¢C' traces,
2. the reassembly difference between real Cé/C' and other, long traces,

3. the amount of additional traces that actually need to be analyzed by
BOTFINDER and the implied additional workload, and

4. the false positive ratio of the newly generated traces.

Figure 8.7 illustrates the reassembly rates for bisected real Cé&C traces (strict
purification on the six malware families) compared to the the reassembly rate of
long non-Cé&C traces from the LabCapture dataset. The acceptance threshold
t is varied and for t = 1.9 BOTFINDER reassembled 91% of the real CE&C traces
and combined only 8% of non-C&C' long traces.

Furthermore, when running on the 2.5 months of LabCapture data, the system
reassembled 3.4 million new traces. Using the same detection threshold as in
the evaluation (o = 1.8), these traces do not introduce any new false positives.
In general, it can be observed that the false positive fraction of reassembled
traces is lower than the original false-positive fraction for normal long traces.
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Figure 8.7: The recombination rate using different thresholds ¢ during pre-
processing.

As pre-processing is targeted to be run over shorter time frames — as it is a
countermeasure against [P fast flux — even fewer new traces will be generated.
For example, in a ten day NetFlow traffic set, only 0.6% of the IP addresses
with more than one sub-trace generated additional traces. Computing these
traces increased the workload for BOTFINDER by 85% compared to normal
operation. Thus, with a modest increase in overhead, BOTFINDER also covers
cases where bots frequently switch IP addresses.

8.4 P2P Bots

BOTFINDER might be able to detect P2P networks by concatenating the com-
munication to different peers in one trace. Nevertheless, complementing BOT-
FINDER with elements from different existing approaches might be beneficial:
BOTFINDER could, for example, be expanded by a component that creates
structural behavior graphs, as proposed by Gu et al. [31, 30], or be com-
plemented by P2P net analysis techniques similar to BotTrack [24] or Bot-
Grep [52], which try to reveal members of a bot network by surveillance of
a single member of the network. Still, completely changing to a P2P-based
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botnet also imposes significant challenges for the botmaster. These include the
ease of enumeration of all participating bots by every member in the botnet
(for example, a honeypot-caught bot under control of a security researcher as
performed by BotGrep), and the time to disseminate commands. Hence, most
botnets today use a centralized infrastructure.

8.5 Bot-like Benign Traffic

Although unlikely, benign communication might accidentally exhibit a similar
traffic pattern as a bot family. For example, a POP3 mail server might get
queried in the same interval as a bot communicates with its CéC server, and
the traffic sizes might accidentally match. If these services operate on a static
IP, a system administrator can easily exclude these false positives by whitelist-
ing this IP address. A local BOTFINDER installation should be configured to
ignore communication between hosts under the same local authority. For pop-
ular web services with similar features, a generic whitelisting is possible.

8.6 Discussion

BOTFINDER is able to learn new communication patterns during training and
is robust against the addition of randomized traffic or large gaps. Furthermore,
given the pre-processing step, even changing the CéC' server frequently is
highly likely to be detected. Nevertheless, BOTFINDER is completely reliant
on statistical data and regularities. If the attacker is willing to:

1. significantly randomize the bot’s communication pattern, and

2. drastically increase the communication intervals to force BOTFINDER to
capture traces over longer periods of time, and

3. introduce overhead traffic for source and destination byte variation, and

4. change the CéC server extremely frequent, e.g., after each tenth com-
munication, and

5. use completely different traffic patterns after each C&C server change,
then
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BOTFINDER’s detection fails as minimal or no statistical consistency can be
found anymore. On the contrary, a malware author who implements such eva-
sion techniques, has to trade the botnets performance in order to evade BOT-
FINDER: Using randomization and additional traffic increases the overhead
and reduces synchronization and the network-agility of the botnet. In partic-
ular, especially the frequent change of CéC' servers is costly and requires an
increased amount of work and cost by the botmaster: Domains need to be pre-
registered and paid and new globally routeable IP addresses must be obtained.
Hereby, the bots need to know to which CéC server to connect, so the new
domains must either follow a pre-defined and malware-hardcoded pattern —
which allows take-over attacks by security researchers such as in Stone-Gross
et al. [71] (with a weekly changing domain) — or lists of new CéC servers need
to be distributed to the members of the botnet. Both ways increase the botnet
operator’s costs and reduce stability and performance of the malware network.






Chapter 9

Related Work

Research in bot detection using network traffic analysis can be classified into
two main directions as depicted in Figure 9.1: The first direction is that of ver-
tical correlation, in which network events and traffic are inspected for typical
evidences of bot infections such as scanning, C¢C' communication, or denial
of service attacks. A well known representative of vertical correlation is Bot-
hunter [31], which heavily relies on a modified Snort! and uses a combination of
signature and anomaly-based intrusion detection components. In detail, Bot-
hunter leverages detection mechanisms on the whole infection and malware
execution life-cycle: Port scanning activities and potentially dangerous binary
transfers (e.g., encoded or encrypted HTTP POSTs or shell code) are used to
detect a first step of the infection process. Malware loads (“egg downloads”)
and, finally, structural information regarding the Cé/C server plus IP black-
listing of multiple list providers are used to identify infected hosts. Bothunter
finally uses a threshold metric based on IP destinations, blacklisting and the
observed behavior to raise alarms and classify attacks. More classical vertical
approaches are employed by Goebel et al. [28] (Rishi) and Binkley et al. [7]
which examine and model IRC-based network traffic for nickname patterns
that are frequently used by bots. Karasaridis et. al [38] detects IRC bots using
fixed controller ports and flow information. Unfortunately, these techniques
are tailored to a specific botnet structure [28, 7] or rely on the presence of
a specific bot-infection life-cycle [31]. Moreover, these techniques rely on the
presence of noisy behavior such as scan, spam, or DoS traffic.

Wurzinger et al. [80] and Perdisci et al. [58] automatically generated signatures

"http://www.snort.org
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Figure 9.1: Vertical and horizontal correlation for malware detection.

that represent the behavior of an infected host. The key point in both strate-
gies is that bots receive commands from the bot master and then respond in
specific ways. The authors show that it is possible to identify bots’ responses
and use this information to encode a network signature that can be plugged
into a NIDS. The approaches are very interesting and promising, showing a
very high detection rate and a limited false positives ratio. Unfortunately, both
techniques require to inspect packet content and can thus be circumvented by
encrypting the C&C communication. Giroire et al. [27] presented an approach
to detect CéC communications by looking for temporal relationships in the
connections of an end-host. This approach is similar to BOTFINDER as both
focus on temporal relationships found in communication patterns. However,
BOTFINDER differs fundamentally in the way malware detection is performed.
In particular, [27] is based on the concept of destination atoms and persis-
tence. Destination atoms group together communications towards a common
service or web-address, whereas the persistence is a multi-granular measure of
destination atoms’ temporal regularity. The idea consists in observing the per-
host initiated connections for a certain (training) period and grouping them
into destination atoms. Subsequently, very persistent destination atoms, i.e.,
those whose persistence level is above a fixed threshold, form a host’s whitelist,
which will be compared against the very persistent destination atoms found
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once the training session ends. According to the authors, the resulting whitelist
is reasonably small as the majority of destination atoms a host is engaged with
are transient, i.e., non-persistent. Thus, very persistent destination atoms will
be flagged as anomalous and potentially identify a CéC host.

The second direction is the horizontal correlation of network events from two or
more hosts, which are involved in similar, malicious communication. Interest-
ing approaches are represented by BotSniffer [32], BotMiner [30], TAMD [82],
and the work by Strayer et al. [72]. Except the latter, which works on IRC
analysis, the main strength of these systems is their independence of the un-
derlying botnet structure, and thus, they have shown to be effective in detect-
ing pull-based, push-based, and P2P-based botnets. By contrast, correlating
actions performed by different hosts requires that at least two hosts in the
monitored network are infected by the same bot and that the bot behavior
exhibits characteristics that are statistically significant enough to correlate to.
As a consequence of the requirement to have multiple infections in the network,
these techniques cannot detect single bot-infected hosts, which is a significant
limitation, especially considering the trend toward smaller botnets [16]. In
addition, the detection mechanisms are usually triggered once malicious and
noisy behavior, such as scan, spam, and DDoS, is observed [30]. For BotMiner,
malware detection is performed by correlating events from a flow level control
plane (with traces similar to BOTFINDER) with malicious activities observed
in the so-called activity plane. Effectively, only malware that is already de-
tected via vertical correlation is considered in the control plane analysis. This
reliance on noisy behavior significantly reduces the advertised zero-day de-
tection ability and detection of stealthy bots. Moreover, low-pace, non-noisy,
and profit-driven behavior [23, 33| is getting predominant in current bots as
witnessed in the past few years [71].

A way to detect P2P botnets is shown in BotGrep [52] and BotTrack [24],
which leverage the underlying communication infrastructure in the P2P over-
lay. Whereas BotGrep uses specifics of the DHT interactions, BotTrack op-
erates on NetFlows only and is comparable to BOTFINDER in this aspect.
However, BotGrep and BotTrack need to be bootstraped with the botnet un-
der investigation, typically by utilizing a participating active malware sample
in a honeypot. Connections of this bot under surveillance reveal other mem-
bers of the network. This requirement of an active source in the honeypot is a
significant drawback. Nevertheless, concepts from these solutions might com-
plement BOTFINDER to allow detection of P2P based bots during NetFlow
analysis as well.
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Conclusion

This thesis demonstrated that bots — malware that is remotely controlled by
a Cé(C server — exhibit a network communication pattern, which significantly
differs from normal, benign traffic. This difference manifests in each of four
different dimensions of traffic that were analyzed. These dimensions are the
time interval between connections to a server, the number of bytes transferred
to and from the server, and the duration of connections. For each dimension,
a strong periodicity in bot traffic was observed, which distinguishes it from
benign traffic.

Based on this difference in network traffic, a malware detection system called
BOTFINDER was created. BOTFINDER utilizes five features — averages over
the aforementioned four dimensions and an additional Fast Fourier Transform
over the time intervals — to capture the statistical properties of a CéC com-
munication. To this end, traces of recurring communication between two IP
addresses on the same destination port are created.

BOTFINDER uses machine learning to train on malware traffic that is obtained
by executing malicious software in a controlled sandbox environment. The re-
sult of this training step are bot-models consisting of clustered features of
the communication, for example the time interval between connections. The
malware families clustered quite well, meaning typically around three clusters
per feature with low relative standard deviation. These models are finally ap-
plied to network traffic to detect potential malware infections without the need
of deep packet inspection. Especially the latter is a significant improvement
over related work, as it reacts on the trend of malware authors to encrypt
and stealth the Cé/C' communication. Moreover, deployment is simplified and
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privacy concerns are mitigated as end-user’s traffic is not inspected anymore.

The evaluation of BOTFINDER showed that it outperforms the content inspec-
tion based system Bothunter and has a high detection rate of 77% as well as
relatively low false positives. Applied to a dataset of a large ISP, BOTFINDER
indicated 542 end hosts to be infected with a bot. For 56% of the destination
IP addresses, entries were found in publicly available blacklists. A cluster anal-
ysis of the remaining non-blacklisted IP addresses revealed that a large cluster
connected to Apple, which should be added to the BOTFINDER whitelist, and
other clusters connected to websites that might host malicious CéC' servers.

With the additional means to counteract potential detection evasion strategies,
such as the introduction of randomness or larger gaps in the communication,
BOTFINDER is a robust malware detection system that effectively comple-
ments deployed end-host AV scanners.

Overall, BOTFINDER proved that the statistical anomalies investigated in this
thesis are sufficient to perform content agnostic network level malware de-
tection with high detection rates and low false positives. Thereby, this thesis
effectively raises the bar for malware authors and potentially lowers the effi-
ciency of future botnets.
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