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Abstract

In the near future, Wireless Sensor Networks (WSNs) are expected to play an im-

portant role for sensing applications, in the civilian as well as in the military sector.

WSNs are autonomous, distributed, self-organised networks consisting of multiple sen-

sor nodes. Usually, the limited radio range of the nodes, arising from energy constrains,

is overcome by the cooperation of nodes.

As the Combinatorial Optimisation Problem (COP) of routing is computationally hard,

often approximation algorithms are preferred, which are capable of finding near optimal

solutions within polynomial time. A simple but robust way of solving the routing

COP is the application of Ant Colony Optimisation (ACO)-based routing algorithms.

When multiple (conflicting) objectives should be considered, ACO algorithms can be

extended to Multi-objective Ant Colony Optimisation (MOACO) algorithms that are

capable of considering multiple objectives at the same time within the optimisation

process.

Normally, the routing in WSNs is susceptible to adversaries due to their deployment in

unattended or in hostile environments. Particularly, attacks from compromised nodes

(insider attacks) are a severe problem in WSNs. As insider attacks cannot be alleviated

by classical security measures, often soft security measures (trust and reputation) are

applied to mitigate the impact of these attacks.

In this thesis, the idea of using trust as security measure against insider attacks is

seized and interweaved with an MOACO-based routing approach. The Multi-objective

Ant Colony Optimisation Routing Framework for WSNs (MARFWSN) is developed,

a routing framework for WSNs that provides an interface for the docking of MOACO-

based algorithms that can be used for the routing. Different MOACO-based algo-

rithms – including ASMOACO, MMASMOACO, ACSMOACO and SRMOACO – are implemented and

tested, considering multiple objectives incorporating trust. In the first step, several

pre-experiments are conducted to find the best input parameters for the MOACO-based

WSN routing algorithms. Subsequently, further experiments aim for comparing the

MOACO-based routing algorithms to the well-known Dynamic Source Routing (DSR)

protocol regarding several performance criteria. Different topologies and traffic pat-

terns are taken into account to obtain heterogeneous results, depending on the specific

application area of the tested routing algorithms.

The simulation results show that the MOACO-based routing algorithms perform sim-

ilarly compared to the DSR-based protocol, implicating the possibility for their util-

isation in WSNs. The additional benefit of the mitigation of insider attacks for the

MOACO-based algorithms, though result in a slightly higher routing overhead and

end-to-end delay.
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Introduction

Technology has become as ubiquitous as the

air we breathe, so we are no longer conscious

of its presence.

Godfrey Reggio (1940 - )

Wireless Sensor Networks (WSNs) are expected to play an important role

in the upcoming era of pervasive computing, i.e. the integration of in-

formation processing into every object and activity. Due to advances in

wireless communication and micro-electronics, the development of small

low-cost, low-power wireless communication devices, so called sensors,

became focus of attention. These sensors are small-sized lightweight de-

vices that are capable of interacting with their environment by sensing

or controlling physical parameters, performing simple computations and

communicating with other nodes typically via radio frequency channel.

The main goal of sensor networks is to detect events or phenomena, col-

lect data about those events, process and aggregate the data and finally

transmit the data to a final destination such as a database server or an

interested end-user. To achieve this goal, sensor nodes collaborate by

forming a highly distributed network for sensing tasks that a single node

could not do. The sensor nodes can be deployed either in a random fash-

ion, e.g. the sensors are dropped from an air-plane, or placed manually,

e.g. fire alarm sensors in a building.

The interest in sensor applications and the use of sensors is increasing so

that the market forecast of BCC Research from March 2011 estimated the

global market of sensors at $56.3 billion in 2010, increasing to $62.8 billion

in 2011 and already about $91.5 billion by 2016 reaching a Compound

Annual Growth Rate (CAGR) of 7.8 % [14].

Sensor networks have certain characteristics that distinguish them from

other (wireless) networks. The fundamental characteristics of WSNs are

the resource constraints, the self-organisation capabilities and the use of

1
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the wireless broadcast medium for the communication. The sensor nodes

are strictly constrained in their use of resources in terms of low com-

putational power, small memory, limited transmission range and severe

energy constraints. Although the sensors in WSNs are often statically de-

ployed, i.e. without later movement, the topology of a WSN needs to be

adapted dynamically to changing environment. This is mainly because of

failing nodes that are running out of energy, getting destroyed in hostile

environments or being temporary unable to communicate due to inter-

ferences. The use of the wireless broadcast medium as communication

channel leads, on the one hand, to an unreliable communication that is

prone to interferences and, on the other hand, to security issues because

every node in the radio range can eavesdrop the network traffic. While the

single characteristics of WSNs might not be completely new, the combi-

nation of small sensor nodes that form a self-configuring network to fulfil

a certain sensing task under strong resource constraints can be seen as

rather novel and challenging.

Mobile Ad Hoc Networks (MANETs), Peer-to-Peer (P2P) overlay net-

works and also WSNs, which are the main focus in this thesis, are the most

prominent approaches of highly dynamic wireless networks, which resulted

from the paradigm shift from centralised static wired networks, such as

Local Area Networks (LANs), to distribute, highly dynamic wireless net-

works. In these highly dynamic wireless networks, each network entity

acts autonomously and self-organised so that networks can be formed in

a distributed fashion and on-demand. This is essential in most of to-

day’s dynamic environments because the network topology may change

frequently due to several reasons such as moving, joining and leaving of

nodes, but also due to environmental changes. Furthermore, the number

of participating network nodes in such networks is increasing, as a result

scalability is becoming a major concern.

As highlighted by Abraham et al. [1, p. 50], there is however a trade-off

between scalability and determinism that has to be taken into account by

the paradigm shift from systems with centralised control over distributed

systems to self-organising systems, which is depicted in figure 1.1. In

general, it can be stated that while the scalability is increasing towards

self-organising systems, the determinism decreases.
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Figure 1.1: Scalability vs. determinism (cf. [1, p. 50])

One of the important research questions in the field of WSNs is how

data packets can be transmitted from a source to a destination node,

particularly when the sensor nodes are deployed in a random fashion and

the radio range of single nodes is strictly limited. Or to be more precise:

what makes a routing algorithm effective that meets all challenges of

WSNs.

As the desired key factors for WSN routing algorithms, such as self-

organisation, robustness, adaptivity and scalability, can also be observed

in nature in several contexts, biologically inspired approaches are a

promising starting point to get inspiration from for the development of

routing algorithms. Although the idea of using Biologically-inspired Al-

gorithms (BIAs) in the context of information technologies is not new,

the key-success of those properties in nature makes them interesting for

further considerations in the area of networking. There are several re-

search areas in which BIAs are successfully applied to solve Combinato-

rial Optimisation Problems (COPs), such as the TSP [15], the knapsack

problem [16], the vehicle routing problem [17], scheduling problems [18]

etc. Due to the fact that routing algorithms can be considered as COP

slightly modified BIAs could be applied to the area of routing in WSNs.

One of the most interesting approaches that seems to be directly trans-



4 CHAPTER 1. INTRODUCTION

ferable from nature to the area of networking are ACO algorithms [11]:

the basic observation that can be made in nature is that ants are capable

of finding the shortest path between their nest and food source by coop-

erating with each other via stigmergy. This idea can be transferred to

the area of networking in which artificial ants are sent from a source node

to a destination node in the network finding the shortest path. When

more than one objective should be considered, ACO algorithms can be

extended to MOACO algorithms [19] that are capable of considering mul-

tiple (conflicting) objectives at the same time within the optimisation

process.

1.1 Research Question

The distributed nature of WSNs, their severe resource constraints as well

as their application in hostile and unattended areas lead to the need of

new security concepts to protect the network, particularly the routing of

data messages. Common security mechanisms that are applied in wired

networks, but also wireless networks, cannot be applied one-to-one to

WSNs without modifications. Particularly, malicious nodes that are al-

ready part of the network are a serious problem that should be considered

in WSNs. While common security mechanisms, such as cryptography and

authentication, can help to protect the network against external attacks,

those mechanisms cannot be used alone to deal with internal adversaries

or faulty nodes that are a ‘valid’ part of the network. As a result, novel

counter measures need to be found that can deal with these types of in-

ternal attacks, particularly to guarantee a sensible and economic routing

in WSNs. One security mechanism that may help to solve this problem

is the use of trust mechanisms.

One of the main challenges in WSNs is to combine resource-efficient rout-

ing with the use of secure and trustworthy routes, while obtaining a good

performance. As the application of MOACO algorithms for the routing

in WSN seems to be reasonable, one can pose the following question: why

the idea of ant-based routing cannot be combined with the incorporation

of trust?

The resulting main hypothesis of this thesis is that
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MOACO-based routing algorithms, which are capable of con-

sidering multiple optimisation criteria at the same time, can

solve the problem of trusted routing in WSNs, while provid-

ing a reasonable performance that is comparable to existing

routing protocols.

1.2 Thesis Contributions

The main contributions of this thesis can be summarised as follows:

• Identification of security issues of WSN routing protocols, particu-

larly considering malicious sensor nodes that are already part of the

network, the so called insider attacks.

• Analysis of the current state of the art biologically-inspired algo-

rithms that are suitable for the routing in WSNs with a special focus

on ant-based routing approaches, in particular algorithms that are

capable of dealing with multiple objectives, the so called MOACO

algorithms.

• Review of the use of ACO-based algorithms for the routing in wired

networks, MANETs and WSNs.

• Development and implementation of a MOACO-based framework

for the routing in WSN that is able to optimise routes regarding

multiple objectives, including trust.

• Experimental analysis and evaluation of the implemented MOACO-

based routing framework for WSNs regarding several performance

metrics and trust.

1.3 Thesis Scope

This thesis is divided into the following chapters (see figure 1.2):

Chapter 2 gives an overview of the theoretical foundations of the

thesis that will provide a common basis to make the remaining chap-

ters of the thesis comprehensible. After reading this chapter you will
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Chapter 1

Introduction

Chapter 2

Theoretical 
Foundations

Chapter 3

Application of ACO
to the Routing 

in WSNs

Chapter 4

Implementation

Chapter 5

Experiments and
Evaluation

Chapter 6

Conclusion and
Future Work

Figure 1.2: Overview of chapters of the thesis

have a basic understanding of Wireless Sensor Networks (WSNs), Trust

and Reputation (TnR), Combinatorial Optimisation Problems (COPs),

Multi-objective Combinatorial Optimisation Problems (MCOPs), Deci-

sion Maker (DM), Ant Colony Optimisation (ACO) and Multi-objective

Ant Colony Optimisation (MOACO).

Chapter 3 discusses the use of ACO algorithms in the area of routing in

WSNs. The chapter covers a general introduction to the general routing

challenges in WSNs as well as the network layer attacks that can influence

the routing performance in WSNs. Moreover, related works from the

research area of ACO-based routing algorithms are presented, including

their origin in wired networks, their use in MANETs and finally, the

current state of the art in WSNs. After that latest findings in the area of

MOACO-based routing algorithms are presented.

Chapter 4 presents the implementation of the Multi-objective Ant

Colony Optimisation Routing Framework for WSNs (MARFWSN), a

MOACO-based routing framework for WSNs that is implemented in the

network simulator OMNeT++ as part of the conducted research. The

used methodology is presented and a detailed description of the imple-
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mented application layer and network layer will be given. Moreover, the

parameters that influence the implemented layers are discussed.

Chapter 5 explains the configuration of MARFWSN simulation sce-

narios and the conducted experiments using the network simulator OM-

NeT++. The simulation results are analysed and evaluated regarding

several network metrics.

Chapter 6 summarises the conducted research and draws conclusions

of the results and findings from the conducted experiments. Besides,

future work is presented that can enhance this research in the future.

Readers that are familiar with the research area of WSNs and MOACO

algorithms in general may skip the second chapter and continue directly

with chapter 3.





2

Theoretical Foundations

You can’t build a reputation on what you are

going to do.

Henry Ford (1863 - 1947)

In this chapter, the theoretical foundations of the thesis will be presented

that should enable the reader to get the required background knowl-

edge on which the following considerations of this thesis will be based

on. Starting with a general introduction about the Wireless Sensor Net-

work (WSN) basics, including challenges and corresponding security is-

sues, the concept of soft security will be introduced, which is closely linked

to the terms of trust and reputation. Due to the fact that routing can

be considered as an optimisation problem, the theoretical foundations

of Combinatorial Optimisation Problems (COPs) and their extensions

Multi-objective Combinatorial Optimisation Problems (MCOPs) will be

introduced. Subsequently, the metaheuristic of Ant Colony Optimisa-

tion (ACO), a biologically-inspired approach, is introduced that can be

used to solve COP problems as well as its extension Multi-objective Ant

Colony Optimisation (MOACO), which is capable of taking multiple ob-

jectives into account. Finally, the presented theoretical foundations will

be summarised.

2.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a network that consists of small

low-cost, low-power wireless communication devices, so called sensors or

sensor nodes, which are capable of interacting with their environment by

sensing or controlling physical parameters and performing simple compu-

tations on them. The main idea of WSNs is that sensors detect events

or phenomena at a certain place or in a certain region, collect, process,

aggregate and finally transmit these data to the final destination in the

network, e.g. an interested end-user’s notebook. As the sensors are be-

9
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coming smaller and smaller and thus also cheaper, WSNs are expected to

play an important role in the upcoming era of pervasive computing [20],

i.e. the integration of information processing in everyday things and ac-

tivities.

The communication between sensors in a WSN is realised using the wire-

less channel. Due to the fact that the radio range of each sensor is limited

because of strict energy constraints the sensor nodes need to cooperate

with each other to transport data via multiple hops from the source to

the destination by using intermediate nodes. Also considered here as one

of the main research questions in this thesis is the routing in WSNs, i.e.

how data can successfully be transported from a source to a destination

node in an efficient and secure way through the network.

In the following section some basics about the application areas of WSNs,

the sensor node hardware and the network architecture of WSNs will

be discussed in more detail. Thereafter, a short comparison between

WSNs and Mobile Ad Hoc Networks (MANETs) is drawn because both

network types are often put on the same level, though there are significant

differences. Finally, the unique constraints and challenges of WSNs are

summarised.

2.1 Application Areas of WSNs

There are several application areas in which WSNs can be used. An

overview of basic application areas of WSNs is shown in the following1

(cf. [21]).

• Disaster relief applications: A typical scenario is a wildfire de-

tection in which sensor nodes are deployed over a certain area by

an air plane. Sensors collect temperature information and produce

collaboratively a temperature map, which then can be read out by

fire fighters equipped with a smart phone.

• Environment control and biodiversity mapping: WSNs can

be used, for example, to monitor the erosion processes on the ground

1Though, here only peaceful applications of WSNs from the civilian sector are listed,
WSNs are also used in the military sector, e.g. sensors could be dropped from planes
to monitor hostile areas, which are too dangerous to access by humans. However, in
this thesis a peaceful use of WSNs is assumed.
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of the ocean. Closely related is biodiversity mapping in which a

number of plants or animals in a certain region is monitored.

• Intelligent buildings: To reduce the energy use of buildings,

WSNs could be deployed to measure temperature, humidity and

airflow, which then could be used to adapt the temperature within

the building automatically. Also sensors could be used to monitor

the mechanical stress level of buildings, such as bridges, to find out

the likelihood of a collapse.

• Facility management: In larger facilities with multiple buildings

sensors could be used to track vehicles in that area or to detect

intruders. Another application could be the deployment of sensors

in a chemical plant to detect leaking chemicals.

• Machine surveillance and preventive maintenance: Sensor

can also be placed at industrial machinery, such as industrial robots,

that cannot be accessed easily by humans. Vibrations could be

measured to find out the need for maintenance.

• Precision agriculture: By placing humidity and soil sensors in

the field, the amount of irrigation and fertiliser can be precisely

determined.

• Medicine and health care: Sensors can be used to monitor pa-

tients after an operation. Also long-term surveillance of patients,

e.g. for elderly people, which triggers an alarm in the case of emer-

gency could be a useful application.

• Logistics: Sensors can be placed at certain items, such as parcels,

to allow a simple tracking of objects during transportation or within

a warehouse.

• Telematics: Sensors can be embedded into streets to collect in-

formation about current traffic conditions. These sensors could be

read out by passing cars so that they could get alarmed in case of

dangerous traffic situations.

In WSN applications there are two common interaction patterns: event-

driven and time-driven. Time-driven WSNs provide snapshots of relevant
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data at periodic intervals, i.e. the sensor nodes periodically switch on their

sensors, sense the specified attributes and transmit the result in certain

time intervals to other interested nodes. In contrast, event-driven WSNs

react immediately to occurrences of specified events that are monitored.

Also hybrid networks using a combination of both types are possible, for

example, an event triggers a periodic reporting of a certain attribute.

2.1 Sensor Node Hardware Components

Depending on the application of the WSN, the hardware components of

the sensor nodes have to be chosen carefully regarding several properties

such as size, cost and energy consumption. In figure 2.1 the general

components of a sensor node are depicted.

Position Finding System

Processor
 

Storage

Mobilizer

Power Unit

Sensor      ADC Transceiver

Sensing Unit Processing Unit Transmission Unit

Figure 2.1: Components of a sensor node (cf. [2])

Basically, a sensor node consists of a sensing unit, a processing unit, a

transmission unit and a power unit. The sensing unit is used for the

measurement of one or more physical phenomena such as temperature, hu-

midity, pressure, acceleration, visual, infra-red, acoustic, vibration, mag-

netism etc. The sensing unit includes an ADC that converts the contin-

uous quantity of the measured parameter to a discrete digital number.

The processing unit temporarily stores the converted digital numbers in

its memory and processes the data, e.g. by aggregating the data with

data of other nodes. Using the transmission unit, the aggregated data

can be transferred to neighbouring nodes or correspondingly data can be
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received from surrounding nodes. Additionally to the basic components,

a position finding system, such as the Global Positioning System (GPS),

can be attached to the sensor node as well as, in special application cases,

a mobiliser if the sensor node should be able to move. The position finding

system of the nodes can be a useful tool for location-based routing. How-

ever, the disadvantages of an additional GPS are its costs and the limited

indoor functionality. Besides, a GPS device uses additional energy that

cannot be neglected. All components of a sensor node are powered by

a power unit, in most cases a simple battery. Due to the fact that sen-

sor nodes are often deployed in unattended or hostile environments, the

power source cannot be replaced. As a result, the sensor’s lifetime is a

crucial design factor in hard and software design of WSNs. A detailed

investigation and discussion of current sensor node hardware can be found

in references [22–24].

2.1 Network Architecture of WSNs

Sink

Sensor Node
Source

Figure 2.2: Architecture of a WSN

In figure 2.2 the basic architecture of a WSN is depicted. The sensor nodes

are scattered in a certain area which is to be monitored. Neighbouring

nodes that are within each other’s radio range can communicate with each

other through wireless channel. Apart from the ‘normal’ sensor nodes,

which are measuring physical parameters, there are two types of special

nodes in the network: the source and the sink.
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The source is an entity in the network, typically a sensor node, that

provides certain information about an event. In contrast, the sink is an

entity that has an interest in a particular information in the network2.

The sink can be either a part of the network or an entity outside the

WSN. In the former case, the sensor node is just a ‘normal’ sensor node

in the network having the same features as all the other sensing nodes.

In the latter case, the data of the WSN is accessed by a device which is

located outside the network, such as a Personal Digital Assistant (PDA)

or smartphone. The device is normally directly connected to one of the

sensor nodes in the network to obtain data. Furthermore, the sink can

also be a device at the edge of the WSNs, such as a gateway, to allow

remote connections to the WSN via other networks such as the Internet.

As consequence of power restrictions and the use of the radio communi-

cation, the communication between the sensor nodes is limited so that

adequate distance between the sending and receiving node has to be con-

sidered. Also, obstacles or interferences have to be taken into account,

which may additionally decrease the possible communication range. As

a result, it is in most cases not possible to establish a direct connection

between source and sink. To overcome the limitation of radio range, the

transmission of data via multiple hops, operating in a store-and-forward

fashion, is an obvious solution. A side effect of using multiple hop com-

munication is that the sensor nodes can operate more energy efficient

regarding their transmission power. This is based on the fact that the at-

tenuation of radio signals is at least quadratic in most environments. How-

ever, the additional energy that is required for store-and-forward needs

also be taken into account because if the distance between the nodes is

getting too small, the energy for storing and forwarding is bigger than

the energy saved by the reduced transmission power (cf. Min and Chan-

drakasan [25]). Nevertheless, the multiple hop approach also allows to

focus large raw-data streams by doing in-network processing so that in-

formation can be aggregated.

2However, due to the fact that in other networks, such as LANs, WLANs and
MANETs, the end points of a connection are referred to as source and destination, in
the following a sink-source-pair is used synonymously with a source-destination-pair
so that processes in the network can be described understandably for the ‘common’
reader with networking background.
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2.1 Difference between MANETs and WSNs

MANETs and WSNs are often mentioned in the same context or even

said to be equivalent, but although there are some similarities, there are

some differences that make both types of networks clearly distinguishable:

While MANETs are rather made for the interaction with humans, WSNs

are made for the interaction with the environment. In general, in a

MANET a ‘normal’ TCP/IP network stack is used that enables the trans-

mission of data packets between network participants allowing diverse ap-

plications. In contrast, WSNs are rather tight to exactly one application

fulfilling a certain application task. However, due to the predefined appli-

cation task the traffic in WSNs is more predictable than in MANETs in

which traffic burst and resulting congestion may become an issue. While

for WSNs best-effort services are in most cases sufficient, in MANETs

some application need some sort of Quality of Service (QoS), e.g. for

Voice over IP (VoIP). For the lower layers in MANETs Institute of Elec-

trical and Electronics Engineers (IEEE) 802.11 is used, where in contrast

for WSNs often IEEE 802.15.4 is utilised.

In general, it can be stated that WSNs are used for answering ques-

tions instead of just transferring data so that WSNs can be considered

as data-centric, while MANETs can be considered as node-centric. As

a consequence, a single sensor in a WSN is not as important as a node

in a MANET. Due to the application case of WSNs, WSNs are working

unattended and the number of nodes as well as the node density is much

higher than in MANETs. WSNs are often deployed in a random fashion

and also redundant so that hundreds or even thousands of sensors per

network are no rarity. Thus, scalability issues are more severe in WSNs

than in MANETs.

The network nodes in MANETs are normally more powerful devices, such

as smart phones, PDAs or notebooks, whereas in WSNs special sensor

nodes are utilised that have strong resource constraints. As future vision

often Smart Dust [26] is mentioned, in which sensor nodes of milimeter-

scale are assumed as long-term goal. Although the self-organisation of

the network topology is a feature MANETs and WSNs share, there are

different reasons why the topology is changing: while in MANETs the
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topology changes due to joining/leaving nodes as well as the movement of

the nodes, in WSNs the topology changes due to node failures, temporary

interferences or the sleep-awake cycles of the sensor nodes. In most WSN

scenarios the nodes are deployed in a static fashion so that movement is

not an influence factor of the network topology. In WSNs the energy is a

major concern because normally each sensor node is equipped with a bat-

tery that has to last the sensor’s entire life, i.e. months or even years. In

contrast, nodes in MANETs are normally connected to a stronger energy

source with a direct connection to power supply or with the possibility

of recharging the battery so that energy constraints are not really exist-

ing. Although multi-hop is a feature of both network types, multi-hop is

a stronger concern in WSNs because the radio range of sensor nodes is

significantly smaller than in MANETs so that more hops are required to

span the same distance.

2.1 Unique Constraints and Challenges of WSNs

Due to the wide range of different applications it is impossible to specify

a single WSN implementation that satisfies all needs. Nevertheless, there

are several characteristics that should be taken into account for WSN

applications:

• Type of service: The purpose of traditional communication net-

works is to transfer raw bits from a source to a destination. In con-

trast, WSNs are expected to perform better in terms of delivering

meaningful information for a given task instead of just transferring

raw bits – as Steven Glaser, UC Berkeley points out “People want

answers, not numbers” [27]. For that reason, new ways of providing

services in WSNs have to be found taking this additional require-

ment into account.

• Quality of service: The QoS in WSNs depends also heavily on

the application area of the network: for periodic measurements with

small data transmission some packets lost or delay may not be cru-

cial, whereas in applications that have real-time requirements those

packet losses could cause fatal results. On the whole, the amount

and quality of information received at the sink are important.
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• Fault tolerance: Node failures are quite likely in WSNs because

nodes may run out of energy, get destroyed or the wireless com-

munication between nodes may be disturbed for a long period of

time. Thus, fault tolerance is an important challenge that needs to

be taken into account for WSNs.

• Lifetime: Due to the fact that sensors in WSNs are normally

battery-powered, the sensors are severely limited in their energy

source. In most application scenarios it is not possible to exchange

the battery, e.g. if the sensors are deployed in an unattended or

hostile environment. For that reason, an energy-efficient operation

of sensor nodes is required to maximise the nodes lifetime and thus,

the network’s lifetime.

• Scalability: The architecture and protocols that are used in WSNs

have to take scalability into account because for most application

scenarios, it is envisioned that hundreds up to thousands of nodes

are deployed for an application.

• Density: Particularly, if nodes are placed in a random fashion, e.g.

dropped from an air-plane, the density varies heavily. Furthermore,

the sensor density is permanently changing due to node failures or

node movements. Therefore, WSNs need to be capable of adapting

to varying sensor densities.

• Programmability: During the operation of a WSN, its require-

ments may change, i.e. another task may get more important than

the previous one. Thus, a fixed way of information processing is not

suitable for WSNs so that it is useful to provide programmability

to react to the changes whenever required.

• Maintainability: A WSN must be able to adapt to both: changes

in the environment as well as changes in the WSN itself such as node

failures, new tasks etc. For that reason, the WSN must be capable

of monitoring itself and automatically change certain parameters.

The remote management functionality should be minimised so that

the network is rather self-maintaining.

• Unreliable communication: Due to the use of the wireless

medium as communication channel, the transfer of data packets is
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unreliable, i.e. packets can get damaged and lost because of channel

errors or packets are dropped due to congestions. Also the probabil-

ity of packet collisions increases in dense networks. Another issue is

the latency of transmissions caused by the multi-hop routing, node

processing as well as network congestions.

• Unattended operation: WSNs are often deployed in unattended

and hostile areas so that the sensor nodes are vulnerable against

physical attacks of adversaries, but also severe weather or other

natural disasters. Due to the fact that the sensors are normally not

accessible by the owner, physical damage or tampering of sensor

nodes can hardly be detected.

As a result, several characteristics of WSNs have to be considered:

If data need to be transferred over long distances using wireless links a

huge transmission power is required. To reduce the transmission power of-

ten multihop communication is used, i.e. intermediate nodes are relaying

the data until it reaches the destination.

As stated before, sensor nodes are strongly energy limited. Thus, energy-

efficient operation is a key factor to achieve long lifetime.

Due to the vast amount of sensor nodes in the network, the changing

environment, the issues of node failures and the fact that the locations of

sensor nodes are in most cases unclear before the deployment, the sensors

should configure autonomously in an auto-configuration fashion to form

a functioning network, i.e. without any additional human interaction.

Another special characteristic of WSNs is that the sensors collaborate to

do certain tasks a single node could not do on its own. Moreover, in-

network processing is often used to aggregate data, reducing the amount

of data that needs to be transferred through the network.

In contrast to traditional communication networks in which the transfer

of data is rather address-centric, most of the WSNs are shifting to a new

data-centric addressing paradigm. In a data-centric network the data

itself is important rather than the node the data is coming from. The

huge amount of nodes and thus, the redundancy of nodes supports this

approach in WSNs.
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To support scalability the principle of locality is often used, i.e. the nodes

consider only surrounding nodes that are located in their direct neigh-

bourhood for making decisions. This approach limits the amount of in-

formation that needs to be stored at single nodes and transmitted to other

nodes and therefore, leads to more efficient protocols.

Finally, there are always trade-offs that have to be considered, such as

higher energy requirement for more accuracy or longer network lifetime

against the lifetime of individual nodes etc.

2.1 Security in WSNs

Security plays an important role in WSNs due to the fact that the sensors

are often deployed for mission critical tasks in unattended and hostile

environments. In such environments a certain level of security is required.

In contrast to traditional wired computer networks, the implementation

of security for WSNs is more difficult: the major problem is the use of the

shared wireless medium for communication which leads to privacy issues

and provides adversaries with an easy target. In most cases it is not

possible to apply traditional security techniques that have been in wired

networks for years, such as cryptographic techniques, directly without any

modification to WSNs.

The main implementation difficulties of security mechanisms for WSNs

are the constrained hardware resources in terms of limited energy, com-

putational power and memory. The main goals for WSNs security imple-

mentations are low communication costs and low resource utilisation to

minimise the energy consumption of the sensor nodes.

Besides, the problem of physical attack needs to be considered, if the sen-

sors are deployed in hostile environments. In this case, adversaries can

easily access the sensor nodes physically that are deployed on their own

terrain. Also the scalability of security mechanisms must be taken into

account, for instance, the distribution of keys has to be considered if cryp-

tographic measures are to be applied. All in all, the implementation of

security mechanisms in WSNs is always a trade-off between the mutually

exclusive factors of security maximisation and energy minimisation.

In the following, first, the basic security requirements for WSNs are dis-
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cussed. After that, the term ‘soft security’ is introduced. Then, the

fundamentals of trust and reputation are presented.

Basic Security Requirements
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Figure 2.3: Basic security requirements for WSNs

To achieve secure WSNs there are several basic requirements that need to

be taken into account (cf. [28–30]). The major requirements that should

be considered are depicted in figure 2.3. In the following, these basic

requirements are explained briefly:

• Confidentiality: The sensed data as well as any other control

information, such as routing information, which is transported

through the network needs to be protected from disclosure. More-

over, information that is stored on each sensor node, such as public

or symmetric keys, needs to be protected against adversaries.

• Integrity: The integrity of data that is transported in the network

should be ensured so that any modification, insertion, deletion or

replay of data can be detected. This should also cover shared keys

needed for cryptographic measures.

• Authentication: To achieve authentication it should be assured

that a communicating sensor is the one that it claims to be and that

the origin of the data received by another node is as claimed.
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• Authorisation/ access control: Unauthorised use of network

resources has to be prevented by assigning access rights to valid

network participants. Sensor nodes that cannot be successfully au-

thorised should be isolated form the network.

• Availability: The service provided by the WSN should be perma-

nently available, i.e. unnecessary processing has to be minimised.

For that reason, WSNs need to be protected against attacks that

target the network availability such as Denial of Service (DoS) at-

tacks. Also the security mechanisms should be available all the time,

particularly single points of failure should be avoided.

• Robustness: The structure of the WSN should be robust so that

single node failures or interferences do not affect the overall network

functionality. Also counter measures against more sophisticated

attacks e.g. against the Media Access Control (MAC) layer, for

instance intentionally transmitting while the other node is trans-

mitting, need to be taken into account. Spread-spectrum tech-

niques [31] could be used to make the WSN less susceptible to those

types of attacks.

• Freshness: The freshness of data has to be guaranteed in WSNs

because sensed values that are already outdated are useless in al-

most every application scenario. For security reasons this should be

considered as well to avoid replay attacks, e.g. by reusing shared

keys.

• Secrecy: In more sophisticated WSNs it should also be ensured

that leaving sensor nodes cannot read any further messages in the

network. Likewise new joining nodes should not be able to read any

messages that been transferred before their joining.

• Non-repudiation: For some application scenarios it may be re-

quired to explictly prove the authorship of a particular message.

Ideally all of them should be considered, but it is more likely that due to

latency issues or energy constraints only certain requirements are chosen

regarding the application area and the level of security that is required

for the WSN.
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2.2 Trust and Reputation

Trust and Reputation (TnR) are two supportive tools that can be used

to improve the decision making by reducing the risk of interactions and

transactions between entities. From the social perspective, since the be-

ginning of mankind trust and reputation were two important factors to

assess the trustworthiness between human beings. With the forming of

civilisation the original concept of interpersonal trust was then extended

and transferred to a commercial context so that trust relationships be-

tween sellers and buyers could be assessed using these tools.

Thousands of years later, in the age of computer science, new challenges

arose with the development of electronic devices and corresponding com-

munication networks in terms of finding means to assess the trustwor-

thiness of devices or virtual agents before exchanging information. How

trust and reputation can be used in the context of WSNs will be discussed

in the following.

2.2 Hard vs. Soft Security

Most of earlier researches in the area of networking assumed that all

nodes of a network are cooperative and trustworthy. Rasmusson and

Jansson [32] took a more differentiated look at security by introducing

the distinction between hard security and soft security.

While traditional security mechanisms, such as authentication and access

control, are classified as hard security, a new perspective of security, the

social control component, was introduced as soft security. In contrast

to hard security mechanisms, which try to keep adversaries out of the

system by all available means, soft security mechanism accept that there

might be intruders in the system. However, the goal of the social control

component is that it should identify the intruders and try to restrain them

from causing harm to the system.

Jøsang et al. [33] take up the point of soft security and define it as “col-

laborative enforcement of, and adherence to common ethical norms by

participants in a community”. To identify misbehaving members in a

community, i.e. members breaching ethical norms, soft security mecha-
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nisms use collaborative methods for assessing the members’ behaviour.

One of the mechanisms that implement the idea of soft security is the

use of Trust and Reputation Systems (TRSs), which enable participating

entities in a community to find misbehaving ones based on trust and rep-

utation. There are several applications of TRSs in the area of electronic

commerce (e-commerce) and communication networks such as MANETs

and Peer-to-Peer (P2P) networks.

2.2 Notion of Trust and Reputation

In the area of computer science the notion of trust and reputation is

ambiguous due to the fact that there are various definitions by several

authors that differ in their meaning and complexity. A detailed discussion

of this issue can be found in the research of McKnight et al. [34].

For a consistent view of trust and reputation and related terms in this

thesis the basic terms are briefly introduced again in the following para-

graphs:

Trust In this thesis, the following definition of trust is used, as defined

in the Oxford English Dictionary [35]:

Trust is the “confidence in or reliance on some quality or at-

tribute of a person or thing, or the truth of a statement”

Basically, trust is a directional relationship between two parties or entities,

the trustor and the trustee. The trustee can be anything from a person,

to an organisation or to a physical entity. The trustor makes assessments

and decisions based on received information and past experience (cf. [33]).

A trust relationship is context sensitive, i.e. trust is always applied in a

certain scope or context . Consequently, a trust relationship is applied to

a specific purpose or domain of action, such as “being the person claimed

to be” or “providing correct information”. If both parties of a trust

relationship trust each other within the same scope, this is referred to as

mutual trust .
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In the first place, trust is unidirectional , i.e. an entity can assess another

entity and can have trust in it based on the gathered knowledge about

that entity. However, this relationship does not necessarily has to be

reciprocal because the other entity may have another opinion about the

other party.

Trust is a personal and subjective phenomenon based on various factors

or evidences with different weightings. In general, personal experiences

have more weight than recommendations from others. The subjectivity

of trust is based on the fact that an entity’s trustworthiness does not only

depend on its behaviour, but rather on how its behaviour is perceived by

other entities.

There are two main interpretations of trust: Reliability trust and decision

trust . Reliability trust is the reliability of something or somebody inde-

pendently of any actual commitment. In contrast, decision trust is the

willingness of a party to depend on something or somebody in a given sit-

uation, even knowing negative consequences may occur. Both, reliability

trust and decision trust, are a positive belief about something on which

the trustor depends for his welfare (cf. [33]).

Uncertainty Trust plays an important role, particularly in environ-

ments in which entities depend on each other to reach a certain goal, but

in which at the same time uncertainty is present (cf. [36]). Uncertainty

is defined in the Oxford English Dictionary [35] as

“The state of not being definitely known or perfectly clear;

doubtfulness or vagueness”

In a communication network uncertainty means that an entity is unclear

about the environment and communication partners so that it cannot

anticipate or accurately predict the outcome of interactions.

Uncertainty originates from two sources: information asymmetry and op-

portunism. Information asymmetry may occur if a party does not have

all of the information it needs, while opportunism describes the fact that

both parties behave opportunistically to serve their self-interest.
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Transitivity of Trust A trust relationship can be transitive, though it

does not necessarily has to be. For example, if Alice trusts Bob, and Bob

trusts Carol, then Alice can also trust Carol (see figure 2.4). This chained

trust is possible due to the assumption that Alice trusts Carol because of

Bob’s recommendation on Carol.

 
Alice Bob Carol

Direct referral trust Direct functional trust

Indirect functional trust

Recommendation

① ①

③

②

Figure 2.4: Trust transitivity

As highlighted by Jøsang and Pope [37], trust is conditionally transitive,

i.e. trust is only transitive under certain semantic constraints: one crucial

factor for trust transitivity is that trust can only be derived if the scope of

trust is the same between all involved parties. Based on this assumption

recursive ‘referral’ trust paths of arbitrary length can be established, also

referred to as transitive trust chains.

The ability to refer trust to a third party is called referral trust and that

is what makes trust become transitive in the first place. However, at the

end of each trust chain there has to be functional trust, i.e. the trust that

a certain function can be fulfilled by this party.

Based on the direct referral trust between Alice and Bob as well as the

direct functional trust between Bob and Carol, an indirect functional trust

between Alice and Carol can be established (see figure 2.4).

Multidimensionality of Trust Due to the complexness and multidi-

mensionality of trust, there are multiple research streams dealing with this

topic. The major research streams include calculus-based trust, knowledge-
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based trust and institution-based trust.

The idea of calculus-based trust is, for example, used in economic trans-

actions in which trust is developed by the participating parties in a cal-

culative manner [38]. One party calculates the costs and benefits of other

party’s cheating or cooperating in a transaction. If the probability that a

party is performing a beneficial action to the first party is high, trust can

be developed.

In first researches in the area of knowledge-based trust, trust is devel-

oped by aggregating trust related knowledge of involved parties [39]. The

knowledge is either accumulated first-hand or second-hand. Gefen et

al. [40] introduce the concept of familiarity, i.e. considering the experience

‘with what’, ‘who’, ‘how’, and ‘when of what’ is happening. With famil-

iarity the social uncertainty can be reduced through knowledge gained

from previous interactions.

In institutional-based trust a party believes that the necessary impersonal

structures are in place to enable acting in anticipation of a successful

future endeavor [41]

Reputation Strongly linked with the concept of trust is the term rep-

utation. The Oxford English Dictionary [35] describes the term ‘reputa-

tion’ as:

“the condition, quality, or fact of being highly regarded or es-

teemed; credit, fame, distinction; respectability, good report.”

In the context of communication networks, reputation can be seen as

global perception of a node’s trustworthiness in a network (cf. [36]). In

contrast to trust, reputation can be considered as collective measure of

trustworthiness (reliability) based on recommendations from members of

a community.

Reputation can be either group related or individual related. For example,

the group reputation can be computed by the arithmetic mean of a group

members’ individual reputations.
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2.2 Classes of Trust

Grandison and Sloman discuss in their survey classes of trust [42] based

on literature review. Though, the authors emphasize that the presented

taxonomy is not exhaustive, it provides a useful tool for the classifica-

tion of trust. The following five major classes of trust were identified by

Grandison and Sloman:

• Access trust: A trustor trusts a trustee to access a resource, the

trustor owns or controls. Access trust is strongly related to the

security paradigm of access control.

• Provision trust: A trustor trusts a trustee to provide a service.

This does not include the access to the trustor’s resources.

• Certification trust: The trustworthiness of a trustee is based on

certification by a third party, i.e. a set of certificates is presented

by the trustee to the trustor.

• Delegation trust: A trustor trusts a trustee to make decisions on

its behalf, with respect to a resource or service that the trustor owns

or controls. As Grandison and Sloman point out, delegation trust

can be seen as a special form of provision trust.

• Infrastructure trust: The trustor must trust the basic infrastruc-

ture, such as a network or a server, to support transactions with a

certain level of security.

In this thesis, the class of provision trust is mainly considered because for

the routing of packets in WSNs, the sensor nodes need to trust the other

nodes in the network that provide the service of packet forwarding.

2.2 Trust in WSNs

While most researches consider trust in WSNs from a communication-

centric point of view, it should be noted that the major functionality of

WSNs is the sensing of data. Therefore, additionally to the communi-

cation angle of trust, also the trust of sensed data should be taken into

account. Figure 2.5 shows an extended version of how trust in WSNs can

be classified based on the idea presented by Srinivasan et al. [3].
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WSN Trust

Communication Trust Sensed Data Trust

●Faulty Node
●Environmental
Issues (e.g. noise)

Malicious Selfishness

●Non-forwarding
●Self-exclusion

●Forwarding
●Routing
●Interfering
 Signal

intentional unintentional intentional unintentional

●False Reporting
●Interfering Signal

●Faulty Node
●Environmental
 Issues (e.g. noise)

Figure 2.5: Trust in WSNs (cf. [3])

Basically, trust in WSNs can be subdivided into communication trust and

sensed data trust. While communication trust covers the correct routing

and forwarding of packets in the network, sense data trust deals with

the correctness of the sensed data provided by the sensor nodes. Both,

the communication trust as well as the sensed data trust, are affected by

intentional and unintentional issues.

In the case of communication trust, the intentional misbehaviour can be

sub-classed into malicious and selfish behaviour. Malicious behaviour

includes adversary attacks on the forwarding and routing mechanisms in

the WSN such as dropping, modifying or fabricating packets (see section

2.1.6 for network layer attacks). In contrast, a node that behaves selfishly

tries to maximise its own benefit in terms of saving power, CPU cycles

memory etc. Though, selfish nodes act on their own, they are harming the

network and it is difficult to figure out whether a node is acting selfishly

or ‘just’ harming the network. However, in most scenarios selfishness of

nodes can be neglected due to the fact that the sensor nodes are deployed

by a single entity to fulfil a certain task so that nodes which have not

been modified never act selfishly, except when they are programmed to

do so. There are also some exogenous factors that have an effect on

the communication such as faulty nodes or environmental issues such as

thermal noise.

On the other hand, the sensed data trust is affected by intentional false
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reporting on sensed data or interfering signals sent out by adversaries,

who try to manipulate the overall result. Moreover, environmental issues

may take influence on sensed data.

2.3 Combinatorial Optimisation Problems Fundamentals

As routing can be considered a Combinatorial Optimisation Problem

(COP), in this section the fundamental concepts that are related to COPs

are introduced and discussed.

2.3 Global Optimisation

In many practical fields, such as advanced engineering design, data anal-

ysis, risk management, communications and others, problems need to be

solved that involve global optimisation, i.e. finding optimal parameters

for complex systems.

But what does the term ‘optimal’ in this context mean? From the view of

applied mathematics global optimisation for a single-objective optimisa-

tion problem is the determination of the global optimum of a continuous

or discrete cost function, the so called single-objective function, of an ar-

bitrary number of independent variables in the presence of multiple local

optima.

More formal an optimisation problem can be defined as follows:

Definition 1 (Optimisation problem) An optimisation problem

can be represented as tuple (S, f) in which S is as set of feasible solu-

tions and f is a cost function that assigns to each feasible solution an

objective function value from R.

f : S → R (2.1)

The goal of the optimisation process is to find an optimum s∗ ∈ S that

minimises or respectively maximises the cost function.

Normally, optimisation problems are defined as minimisation problems
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due to the fact that Maximisation problems can be solved by minimising

f ’s negation (−f)3.

In the next step, the local and global minimum as well as the global

optimum for the single-objective function f are formally introduced:

Definition 2 (Local minimum) An objective function f is said to

have a local minimum at the point x∗ in a certain ε-neighbourhood if:

∀x ∈ S, ∃ε > 0 : |x− x∗| < ε, f(x∗) ≤ f(x) (2.2)

Definition 3 (Global minimum) An objective function f is said to

have a global minimum at the point x∗ if:

∀x ∈ S : f(x∗) ≤ f(x) (2.3)

An example of local and global maxima and minima is depicted in figure

2.6.

local maximum

local minimum

global minimum

global maximum

Figure 2.6: Local and global maxima and minima

3Without loss of generality in the following only the minimisation problem is con-
sidered
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Definition 4 (Global Optimum) A global optimum x∗ of an ob-

jective function f is, depending on the optimisation problem, either a

global maximum or respectively a global minimum.

The major problem of global optimisation is the ubiquity of local optima,

which are increasing with the size of the problem. For that reason, one

of the basic requirements of global optimisation algorithms is that they

must avoid to remain in local minima and instead, continue to search for

the best possible optimum. [43]

Phases of Optimisation

Mathematical optimisation consists of two phases: modelling and solving

(see figure 2.7). In the modelling phase three major aspects have to be

considered: the selection of design variables, the selection of an objec-

tive function according to the optimisation goal and the specification of

constraints that should be taken into account.

constraints

design variables

objective

Modelling Solving

Optimisation

Algorithm

Figure 2.7: The concept of mathematical optimisation: modelling and
solving

There is a close relationship between the different aspects of the mod-

elling of an optimisation problem: the design variables should quantify

the objective function as well as the constraints. The constraints and

the objective function are often exchangeable e.g. it can be optimised for

‘cost’ with the constraint of ‘quality’ or vice versa. Subsequently to the
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modelling phase there is the problem solving phase in which an optimisa-

tion algorithm is applied to the modelled optimisation problem. It should

be highlighted that both phases are strongly related: on the one hand, a

suitable optimisation algorithm needs to be chosen for a specific optimi-

sation problem and, on the other hand, the optimisation problem needs

to be adjusted to the optimisation algorithm that should be applied. [44]

2.3 Combinatorial Optimisation Problems

A special subset of global optimisation problems are COPs, which are

concerned with finding optimal solutions for discrete problems. The term

‘optimal solution’ refers to the best among all feasible solutions of a given

problem according to a given cost function. The set of solutions of a

COP is finite and any solution has some combinatorial property such as a

permutation, an arrangement of objects or a tree/graph which indicates

a relationship between those objects [45].

Formally, an instance of a COP can be defined as follows:

Definition 5 (Instance of a combinatorial optimisation problem)

An instance of a combinatorial optimisation problem can be denoted

as P = (S,Ω, f) with

• S = {s1, s2, ..., sk}, k ∈ N, a finite set of feasible solutions

• Ω(t), set of constraints among the variables

• f(t), objective function f : S → R, which assigns a real-valued

cost f(s, t) to each feasible solution s ∈ S

The purpose of the optimisation process is to find the element s∗ ∈ S,

which minimises the function f and satisfies all constraints in Ω, the

so called global optimum of this instance.

s∗ = arg min
s∈S

f(s) (2.4)

The constraints Ω(t) as well as the objective function f can be time-

dependent on t.
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Figure 2.8 depicts an example of the mapping between the decision vector

x and the objective function f .

Objective Space

x f

Decision Space

YX x

f  x

Figure 2.8: Mapping from decision space to objective space

Based on that the definition of a combinatorial optimisation problem can

be derived:

Definition 6 (Combinatorial optimisation problem) A combi-

natorial optimisation problem is a set of instances of an optimisation

problem.

However, instead of using the introduced notation, in practice, often a

rather compact representation of instances of a combinatorial problem is

used, which is based on solution components.

Definition 7 (Compact representation of an instance of a COP)

A compact representation of an instance of a combinatorial problem

can be denoted as triple < C,Ω, J > with

• C = {c1, c2, ..., cnC}, nC ∈ N, finite set of variables (decisions)

to select, the so called solution components

• Ω, finite set of constraints

• J(S) real-valued cost function

The set of feasible solutions S is a subset of solution components that

are satisfying the relations in Ω: S ⊆ P(C) ∩ Ω(C). The instance of
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such a combinatorial problem can be solved by finding the element s∗

such that

s∗ = arg min
s∈{P(C)∩Ω(C)}

J(s) (2.5)

In the following a short side note on problem complexity is given, which

is a worthwhile topic to discuss for solving COPs.

A side note: Problem complexity

In context of solving an optimisation problem, the complexity of a prob-

lem should be considered. Therefore, in following a brief side note on this

topic will be made:

If a computational problem is solved by an algorithm, it is interesting to

determine its efficiency to make it comparable to other algorithms. There

are two aspects that affect an algorithm’s efficiency: (i) the amount of

time that is required to execute the algorithm and (ii) the memory space

it consumes. However, as Garey and Johnson already emphasised in 1979:

“Efficiency concentrates primarily on time as it usually dom-

inated over other computing resources.” [46]

Therefore, normally just the required time for an algorithm is considered.

This is most often done by determining the time complexity function for

an algorithm, which measures the time requirement of the algorithm. Due

to the fact that the execution time of an algorithm depends heavily on the

input, generally the worst-case time complexity, denoted as T (n), is used

that measures the maximum amount of time needed by the algorithm to

solve a problem instance of size n.

The general execution time of an algorithm is an estimate of the number

of operations performed on a particular number of input values. This can

be determined for an algorithm by counting primitive operations, such

as arithmetic operations, assignments etc. However, usually the order of

growth or rate of growth of an algorithm is a more interesting concept

of complexity analysis, i.e. instead of considering the exact number of
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arithmetic operations the rate of growth of the complexity function is

considered as the size of the problem n increases.

One of the most popular notations in the complexity analysis that is used

to compare complexity functions of two algorithms is the Big-O notation.

It is defined as follows:

Definition 8 (Big O notation) For the two non-negative functions

f(n) and g(n) of the non-negative variable n it can be stated that f(n)

has the order of g(n), if the following equation is fulfilled:

f(n) = O(g(n))⇔ ∃n0 ∈ N ∧ c > 0,∀n ≥ n0 : |f(n)| ≤ c|g(n)| (2.6)

It can also be stated that g(x) is an asymptotic upper bound of the

function f(x).

If the execution time of an algorithm is bounded by a polynomial in the

size of the input n for the algorithm, i.e. T (n) = O(nk) for a constant k,

the algorithm is called polynomial. Algorithms that cannot be bounded

that way are called at least exponential. Problems that cannot be solved

within polynomial-time complexity are called intractable.

Algorithms for Solving COPs

Many combinatorial optimisation problems are hard to solve. The prob-

lem of ‘hardness’ is part of the research area of computational complex-

ity theory, which deals with the classification of complexity. The set of

problems that are hard to solve are collected in the complexity class of

NP-hard. This class contains problems of which the worst-case time

complexity of a problem’s instance is at least exponential.

A famous example of a combinatorial problem, which is NP-hard, is

the Travelling Salesman Problem (TSP) which is studied quite often in

operations research and theoretical computer science. The goal of the

salesman is to find the shortest possible tour that includes all cities, each

exactly once, from a given list, i.e. finding a Hamiltonian circuit4. The

4named after Sir William Rowan Hamilton (1805 - 1865), Irish physicist, as-
tronomer, and mathematician
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frequent use of the TSP in the context of testing algorithms for COPs

derives from the fact that the problem is easy to understand so that the

researcher can concentrate on the algorithm that should be applied rather

than being distracted by complicated details of the problem. Furthermore,

a lot of algorithms, that have been tested on the TSP and that have

been proven to be efficient, showed also good results on various related

problems.

In contrast to small-scale problems for which exact methods are a good

choice, for large instances approximation methods are better suited to

obtain near optimal results at low computational costs. In the area of

mathematics and computer science often heuristics are used to find fea-

sible solutions for (multi-objective) COP. Therefore, in the following the

terms ‘heuristic methods’ and ‘metaheuristic’ are discussed.

Heuristic Methods Heuristic methods5 in computer science are used

to provide good solutions for a specific problem at low computational costs

and within a reasonable computation time. While traditional algorithms

try to guarantee optimal solutions within an optimal runtime, heuris-

tic methods reduce one or both of these requirements. Instead heuristic

methods try to find a good trade-off between computational costs and

accuracy of the solution of a problem so that a ‘good’ solution can be

provided within a reasonable time without promising an optimal solution.

To reach this goal techniques, such as estimation, trial-and-error meth-

ods, ‘rule of the thumb’, educated guess, intuitive judgement or common

sense, are applied.

Heuristics can be divided into: constructive algorithms and iterative im-

provement algorithms.

1. Improvement Heuristics Start with ‘some’ solution and continue

to change it into a better one as long as possible.

2. Construction Heuristics Start building a solution from scratch.

5Heuristic, from greek heuriskein “to discover” or “to find”
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Definition 9 (Construction Heuristics) A construction algo-

rithm builds a solution to an instance of a COP, as defined in

Definition 7, in an incremental way. Starting with an empty partial

solution x0 = ∅, step-by-step a solution component c ∈ C is added to

the partial solution until a complete solution s ∈ S is generated. List-

ing 2.1 shows python-inspired pseudo-code of a generic construction

algorithm.

def generic_construction_algorithm:

s = []

while (s not in complete_solutions) or abort_criterion:

c = select_component ()

s.append(c)

return s

Listing 2.1: Generic construction algorithm

The starting point is the initial empty partial solution s. At each step,

the function select component returns a solution component c, which

is then added to the partial solution s. Afterwards, it is checked if the

solution is complete or an abort criterion is met such as the current

partial solution cannot be converted to a complete feasible solution.

Finally the function returns either a feasible solution s ∈ S or a partial

solution s /∈ S, if the abort criterion is met.

Due to the fact that constructive algorithms are, on the one hand, quite

fast, but on the other hand, their solutions are not of high quality, con-

structive algorithms are often used to generate an initial solution on which

afterwards local search methods are applied.

A graphical tool for visualisation and analysis, which can be used to

represent the sequence of decisions in a construction or decision process,

is the construction graph, firstly introduced by Dorigo et al. [47]. Formally
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a construction graph can be defined as follows:

Definition 10 (Construction graph) A given COP < C,Ω, J >

can be represented by a completely connected finite directed graph, the

so called construction graph:

GC = (C,L) (2.7)

with

• C = {c1, c2, ..., cn}, n ∈ N, as finite set of nodes

• L = {lcicj |(ci, cj) ∈ C̃} as finite set of edges that are connecting

the nodes, the so called connections or transitions

• C̃ ⊆ C × C set of possible connections

A solution of the COP can be expressed as feasible path on the Graph

GC .

For example, in the Travelling Salesman Problem (TSP)6, one of the most

often studied problems in the area of COPs, is C the set of cities, L the

set of edges connecting the cities and a solution s ∈ S is an Hamiltonian

circuit (see figure 2.9).

Metaheuristic

A metaheuristic is a set of algorithmic concepts that can be applied to a

wide set of various problems. For that reason a metaheuristic can be seen

as ‘general-purpose heuristic’. Normally, only a very few modifications

have to be made to adapt the general algorithmic framework to a specific

problem. A metaheuristic optimises a problem by iteratively improving

a candidate solution with regard to a measure of quality. Local search

and other high level strategies are often used to find global near-optimal

6In the TSP a salesman is given a list with cities and their pairwise distances. Based
on this the salesman is supposed to find the shortest possible tour that visits all cities,
but each city exactly once. The TSP is also often used as benchmark for different
optimisation methods.
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Figure 2.9: Four cities Travelling Salesman Problem (TSP)

solutions instead of local optimum solutions. The term ‘meta-heuristic’

was introduced by Glover to describe that a heuristic is “superimposed

on another heuristic” [48].

There are several famous metaheuristics that are used to find good so-

lutions to difficult, but relevant combinatorial optimisation problems.

Well-known metaheuristics are: iterated local search [49], variable neigh-

bourhood search [50], Simulated Annealing (SA) [51, 52], shortest path

finding algorithm A∗ [53], Tabu Search (TS) [54, 55], Ant Colony Op-

timisation (ACO) [56, 57] etc. A sub-class of those metaheuristics, the

nature-inspired approaches, will be discussed in more detail later in this

chapter.

2.3 Multi-objective Combinatorial Optimisation Problems

In the real-world optimisation problems are often dependent on multiple,

conflicting, objectives. Traditional approaches often try to combine all

objectives in a single objective function that can be optimised regarding

the resulting single cost value. However, due to the fact that the dif-

ferent objectives have often varying representations and meanings, this

combined objective function is a rather artificial construct that may not

consider the overall problem adequately.
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Another option, as used here, is to consider this sort of problem as MCOP,

i.e. a combinatorial optimisation problem in which two or more (conflict-

ing) objectives that are subject to certain constraints are simultaneously

optimised. As in COPs the set of feasible solutions is finite and they own

a combinatorial property. An example of an MCOP would be to optimise

a travel in terms of minimising the cost and at the same time the duration

of journey.

Formally an MCOP can be defined as follows (cf. [58]):

Definition 11 (Multi-objective combinatorial optimisation problem)

A multi-objective combinatorial optimisation problem maps a tuple of

parameters (decision variables) to a tuple of objectives. This can be

formally denoted as:

~x ∈ X ⊆ Rk, ~f ∈ Y ⊆ Rn, n ≥ 2

arg min
~x

~f(~x)
(2.8)

with

• X ⊆ Rk, the multi-dimensional space of feasible solutions consti-

tuted by the decision variables of ~x, the so called k-dimensional

decision space

• Y ⊆ Rn, the multi-dimensional space that is constituted by the

objective functions from ~f , the so called n-dimensional objective

space

• ~x = (x1, x2, ..., xk) ∈ X, the vector of decision variables, the so

called decision vector

• ~f = (f1(~x), f2(~x), ..., fn(~x)) ∈ Y , the vector of objective func-

tions, the so called objective vector

The main goal of an MCOP is to optimise the objective vector ~f .

Figure 2.10 depicts an example of the mapping between the k-dimensional

decision vector and the n-dimensional objective vector.
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Figure 2.10: Mapping from decision space to objective space

In contrast to single-objective COP, for an MCOP there is typically no

single best solution, but instead an MCOP’s solution is composed of a

set of solutions that represent the best possible trade-off among those

objectives. For such a solution it is necessary to find a quality criterion

that takes all objective functions into account to find a compromise among

those objectives. Such a criterion, the Pareto Optimality, is discussed in

the following subsection.

Pareto Optimality

A notion of optimality that is most commonly adopted for multi-

dimensional objective-spaces is Pareto optimality, named after Vilfredo

Pareto7.

In the following a few definitions are introduced that are helpful in the

context of Pareto optimality:

Definition 12 (Pareto domination) An objective vector ~f∗ ∈ Y

dominates another ~f ∈ Y in terms of Pareto’s domination, in short
~f∗ � ~f , if it is better for one criterion and better or equal for the

7Vilfredo Pareto (1848 - 1923), Italian engineer, sociologist, economist, and philoso-
pher
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others. Formally this can be denoted as follows:

∀i ∈ {1, 2, ..., n} : f∗i ≤ fi
∧∃j ∈ {1, 2, ..., n} : f∗j < fj

(2.9)

Accordingly, it can be stated that the decision vector ~x∗ ∈ X dominates

the decision vector ~x ∈ X, in short ~x∗ � ~x, if f(~x∗) � f(~x).

Definition 13 (Pareto optimal) A decision vector ~x∗ ∈ X is called

Pareto-optimal, efficient or non-dominated, if and only if, there is no

vector ~x ∈ X such that ~x dominates ~x∗.

Definition 14 (Weakly Pareto optimal) A decision vector x∗ ∈
X is weakly Pareto optimal if there is no other decision vector ~x ∈ X
for which all the components are better. Formally this can be denoted

as:

@~x ∈ X,∀i ∈ {1, 2, ..., n} : fi(~x) < fi(~x
∗) ~x∗ ∈ X (2.10)

Definition 15 (Pareto set) The set of all Pareto-optimal solutions,

which is a subset of the decision space, is named Pareto set or efficient

set. The Pareto set can be formally denoted as:

X∗ ⊆ X

X∗ := {~x∗ ∈ X|@~x ∈ X : ~x � ~x∗}
(2.11)

Definition 16 (Pareto front) The set of elements in the objective

space that is corresponding to the set of elements of the Pareto set

in the decision space is named Pareto front, Pareto frontier or Non-

dominated set. Formally denoted as follows:

Y ∗ = f(X∗) ⊆ Y (2.12)
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Figure 2.11 depicts an example of the mapping between Pareto set in the

decision space to Pareto front in the objective space.
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Figure 2.11: Mapping from Pareto set in the decision space to Pareto
front in the objective space

In the case, in which an MCOP has multiple competing objective func-

tions, there is always more than one Pareto optimal solution8. Therefore,

solving an MCOP in terms of Pareto optimality, means finding the Pareto

set. Although, the Pareto set contains multiple solutions, in general one is

only interested in exactly one solution as in single-objective COPs. How

to select a single solution from the Pareto set will be discussed in the

following.

2.3 Decision Making

Due to the fact that each element of the Pareto front is a valid solution,

as compromise between all objective functions, the question arises which

single solution to choose (see figure 2.12)?

In the simplest case automatically a simple algorithm is applied that is

capable of finding the final single solution. This approach is also referred

8Note: correlating multiple-objective functions are resulting in a single Pareto op-
timal solution, which makes them identical to COPs with a single-objective function,
which are not considered here
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Figure 2.12: Finding the final solution

to as no-preference method because the algorithm can not be influenced

by any given preferences. For more details of this trivial approach see [59].

For more complex approaches to select a final single solution from the set

of Pareto optimal solutions some sort of additional information is required

that is not part of the objective functions. This can be achieved by

adding an additional component, the so called Decision Maker (DM), to

the process, which can claim desired preferences to find the best solution

regarding those. The DM is assumed to know the problem and must be

able to give some input, in terms of additional information to the problem

regarding objectives and/or solutions, so that a preferred solution can be

found.

Basically, there are three possibilities to incorporate the decision maker’s

preferences into the optimisation process (cf. [4, 10, 58, 60]) (see figure

2.13):

1. In a priori approaches the decision maker specifies the relative

importance of certain criteria before the optimisation process is

started. Only a single optimisation is required to obtain a sin-

gle solution, which makes this approach really fast. However, in

this case the time for the modelling has to be taken into account.
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Figure 2.13: Three approaches to incorporate the DM in the decision
making process (cf. [4])

At the worst, the decision maker is not satisfied with the solution

found then the whole modelling and optimisation process needs to

be started again.

2. In progressive approaches the decision maker expresses the desired

preferences during the optimisation process. The expressed prefer-

ences are immediately used to guide the search. In this case, the

desired preferences can be accurately taken into account, but a lot

of interaction is required during the optimisation process.

3. In a posteriori approaches the decision maker obtains a set of (non-

dominated) solutions generated by a chosen optimisation method

and then, chooses the final solution that is most suitable. An advan-

tage of this approach is that the time-consuming modelling phase of
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preferences before starting the optimisation process can be omitted.

However, those sort of approaches require a lot of computational ef-

fort.

Depending on the specific problem one of the presented approaches should

be carefully chosen9. For MCOPs mostly multi-objective metaheuristics

are traditionally used so that a posteriori approaches are often applied.

Multi-Criteria Decision Making

A research area that addresses the assistance of one or multiple decision

makers in taking an optimal decision, i.e. finding an optimal solution,

is Multi-Criteria Decision Making (MCDM). The basic idea of MCDM

models is to rank the performance of a finite set of alternatives, the so

called decision criteria, i.e. finding an optimal solution among existing

solutions.

A comprehensive overview about this topic is given by Triantaphyloou [61]

who is presenting multi-criteria decision making methods as well as a com-

parative study of those models. Due to the fact that MCDM is one of the

fastest growing research areas that is touching various application areas,

there is a vast number of researches available, proposing several MCDM

models. It is clear that not all MCDM models can be presented in depth

in this thesis. However, a short overview about some classical MCDM

approaches that are widely used in practice is given in the following, fo-

cussing mainly on a posteriori approaches:

Weighted Sum One of the most commonly used MCDM models is the

Weighted Sum Model (WSM), originally proposed by Fishburn [61, 62].

In this model a weighting coefficient is assigned to each objective function

and then, the corresponding weighted sum of objectives is minimised. For

a decision problem the best solution satisfies the following equation:

A∗WSM−score = arg min
i

n∑
j=1

wjfij , i = 1, 2, 3, ...,m (2.13)

where
9In some cases also multiple approaches can be chosen to form a hybrid approach.
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• A∗WSM−score is the alternative with the best WSM score

• n number of decision criteria

• m number of alternatives

• wj relative weight of importance of the jth criterion

with 0 ≤ wj ≤ 1;
∑n
j=1 wj = 1

• fij objective of the jth criterion and the ith alternative

In the case of a single-dimension, i.e. all units of measurements are identi-

cal, (e.g. km, s, $), the WSM method can be simply applied. However, if

a multi-dimensional problem should be solved, in which different units are

used, WSM cannot be applied because the additivity utility assumption

will be violated otherwise10.

Weighted Product Another method, which is very similar to the

WSM, is the Weighted Product Model (WPM). The main difference

between both models is that instead of an addition, as used in WSM, a

multiplication is used in WPM. The first reference to this model can be

found in Bridgman [63] as well as Miller and Starr [64].

P (Ai) =

n∏
j=1

(fij)
wj , i = 1, 2, 3, ...,m (2.14)

where

• P (Ai) the (absolute) performance value of alternative Ai consider-

ing all criteria

• n number of criteria

• m number of alternatives

• wj weight of importance of the jth criterion

with 0 ≤ wj ≤ 1;
∑n
j=1 wj = 1

• fij objective function of the jth criterion and the ith alternative

10The additive utility assumptions implies that the total value of each alternative is
equal to the sum of the products given in equation 2.13
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In contrast to WSM, WPM is dimensionless, i.e. any units of measure are

eliminated due to the structure of the formula. For that reason, WPMs

can be applied for single and multidimensional decision problems.

Weighted Metrics The goal of Weighted Metrics Model (WMM) [59]

is to minimise the distance between the ideal criterion vector z∗, whose

entries consists of the optima of the objective functions, and the solutions

on the criteria space. If the ideal criterion vector is from the admissible

solutions space, the best solution will be the ideal criterion vector itself.

However, this is only possible if there are only non-conflicting criteria.

The weighted approach is also referred to as comprise programming [65].

A multi-objective problem with m objectives can be transformed to a

single objective problem by applying the following Lp-metric:

s∗p = arg min
x∈S

( m∑
i=1

wi
∣∣fi(x)− z∗i

∣∣p)1/p

(2.15)

• m number of objectives

• 1 ≤ p <∞; Commonly used values for p are:

p = 1 (Manhatten), p = 2 (Euclidean) and p =∞ (Tchebycheff )

• S is the feasible decision variable space

• z∗ ∈ Rn ideal objective vector, obtained by minimising each objec-

tive z∗i separately; z∗ is not a feasible vector because the objectives

are conflicting.

• wi as the ith component of the weight vector

with 0 ≤ wj ≤ 1;
∑n
j=1 wj = 1

• fi objective function of the ith criterion

The solution of 2.15 is Pareto optimal, if all weights are positive or the

solution is unique.

For p =∞ the equation 2.15 can also be written as:

s∗∞ = arg min
x∈S

max
i=1,2,3,..,m

[
wi|fi(x)− z∗i |

]
(2.16)
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This method is also referred to as Weighted Tchebycheff Metric (WTM).

The solution of 2.16 is weakly Pareto optimal for positive weights. Fur-

thermore, there is at least one Pareto optimal solution for 2.16.

Achievement Scalarizing Function Approach: Wierzbicki [66, 67]

introduced the Achievement Scalarizing Function Approach (ASFA) that

utilises a special type of scalarizing functions, the so called achievement

(scalarizing) functions. This sort of functions are of the form sz̄ : Z → R,

where z̄ ∈ Rn is an arbitrary reference point. Due to the fact that Z is not

known explicitly, instead the function sz̄(f(~x)) with ~x ∈ S is minimised.

The idea of the approach is to project the reference point z̄ consisting of

desirable aspiration levels onto the set of Pareto optimal solutions.

Achievement functions can be formulated in different ways, as an example

the following function is considered:

s(f(~x)) = max
i=1,...,n

[wi(fi(~x)− z̄i)] + ρ

n∑
i=1

wi(fi(~x)− z̄i) (2.17)

where

• wi fixed normalising factor

• ρ augmentation multiplier (small positive scalar)

An advantage of this approach is that the decision maker can obtain

different Pareto optimal solutions by just moving the reference point.

ε-Constraint Method: In the ε-Constraint Method (eCM), originally

proposed by Haimes et al. [68], a multi-objective problem is transformed

into several single-objective problems with constraints. In each single-

objective problem one objective function is optimised as follows:

arg min fl(x), l ∈ {1, 2, 3, ..., k}

fj ≤ εj , ∀j = 1, 2, 3, ..., k j 6= l,

x ∈ S

(2.18)

with
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• εj upper bounds for the objective l

• S feasible region

To ensure Pareto optimality, either k different problems have to be solved

or a unique solution needs to be found. Due to the fact that uniqueness

of solutions is not easy to verify, Chankong and Haimes [69] propose

systematic ways of perturbing the upper bounds to obtain different Pareto

optimal solutions.

Multi-Criteria Decision Summary: In table 2.1 a summary of the

described MCDM methods is given.

WSM♣ WPM WMM♥ ASFA♦ eCM♠

a priori method
√ √ √ √

a posteriori method
√ √ √ √ √

any Pareto optimal
solution is found

(
√

)
√ √

solutions always
Pareto optimal

(
√

) (
√

) (
√

) (
√

)

type of preference
weights

√ √

bounds
√

reference point
√

Table 2.1: Summary of described MCDM methods (cf. [10, p. 22])

♣ ⊕ solution is Pareto optimal, if it is unique or all weights wi > 0

	 small change in weights may change solution dramatically

	 evenly distributed weights do not produce evenly distributed repre-

sentation of Pareto optimal set
♠ ⊕ a unique solution is Pareto optimal

⊕ a solution x∗ is Pareto optimal if εj = f(x∗) (i = 1, .., k∧ j 6= l) for

all objectives to be minimised

	 it may be difficult to specify the upper bounds
♥ ⊕ solution is Pareto optimal, if it is unique or all weights are positive

	 not all Pareto optimal solutions may be found
♦ ⊕ if lexicographical ordering is used (see [70]) Pareto optimality can

be guaranteed
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2.4 Ant Colony Optimisation

In the following, Biologically-inspired Algorithms (BIAs) that can be used

for solving COPs will be discussed with a special focus on the ACO meta-

heuristic. Therefore, in the first step, a short introduction to the idea

of using nature inspired algorithms to solve COPs will be given and the

most prominent examples of BIAs will be presented. Afterwards, the spe-

cial case of Ant Colony Optimisation (ACO) will be discussed in depth,

starting from its natural origin to the derivation of artificial ants to the

most famous ACO algorithms and their application areas.

2.4 Biologically-inspired Algorithms for Optimisation Problems

Apart from successful metaheuristics, such as Tabu Search (TS) [54,55],

Iterated Local Search (ILS) [49, 71, 72] and Simulated Annealing (SA)

[51,52], there is a class of metaheuristics that is inspired by the studying

of life and living organisms in nature, the so called Biologically-inspired

Algorithms (BIAs) [73,74], in short bio-inspired algorithms.

Due to the wide variety of BIAs it is hard to find a strict classification

of those approaches. Besides, there are some approaches that combine

different BIAs in hybrid approaches. Nevertheless, in figure 2.14 a basic

taxonomy of BIAs is depicted that covers the most important approaches.

Biologically-inspired
Algorithms

Artificial
Neural Networks

Evolutionary
Algorithms

Artificial
Immune Systems

Swarm
Intelligence

●Particle Swarm Optimisation
●Ant Colony Optimisation
●Intelligent Water Drops
●River Formation Dynamics
● ...

●Clonal Selection Algorithm
●Negative Selection Algorithm
●Immune Network Algorithm
●Dendritic Cell Algorithms
● ...

●Genetic Algorithms
●Genetic Programming
●Evolutionary Programming
●Evolution Strategies
● ...

●Self-Organizing Maps
●Multi-layer Perceptron
●Growing Neural Gas
●Adaptive Resonance Theory
● ...

Figure 2.14: Taxonomy of biologically-inspired algorithms

It is clear that this thesis cannot discuss all BIAs in depth; however, a
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short overview about the different approaches is provided in the following:

Artificial Neural Networks: Artificial Neural Networks (ANNs) in

the area of BIAs imitate the behaviour of networks or circuits of bio-

logical neurons as can be found in the nervous system of humans and

animals. This is achieved by composing and interconnecting artificial

neurons, i.e. algorithmic functions that simulate the properties of their

biological ancestors, to a network. While biological neurons are highly

complex, artificial neurons are simplified by focussing on the information

processing part that is relevant in this context. Today, most of the used

ANNs are making strong use of control theory, statistical estimation as

well as classification optimisation. Important approaches in the area of

ANNs are self-organising maps, multi-layer perceptrons, growing neural

gas and adaptive resonance theory. More details about ANNs can be

found in [75,76].

Artificial Immune Systems: Artificial Immune Systems (AISs) are

BIAs that are inspired by the principles and processes observed in the

immune system of vertebrates. Basically, an immune system is in the

continuous process of adapting antibodies to the antigens that should be

combated. From the computational point of view the two main character-

istics immune learning and memory are significant. The most important

approaches in the area of AISs are clonal selection, negative Selection,

dendritic cell algorithms and immune network algorithms (more details

can be found in [77]).

Evolutionary Algorithms: Evolutionary Algorithms (EAs) are based

on the theory of evolution, i.e. the survival of the fittest. EAs are inspired

by mechanisms of biological evolution, utilising mechanisms such as repro-

duction, mutation, recombination and selection. Candidate solutions are

mapped to individuals of a population and a fitness function determines

the environment the population lives in. Due to the repetitive applica-

tion of the fitness function an evolution of the population takes place.

The most important Evolutionary Algorithm (EA) paradigms are: Evo-

lutionary Programming (EP) [78–80], Evolution Strategies (ES) [81–83],
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Genetic Programming (GP) [84–87] and Genetic Algorithm (GA) [88–90].

Swarm Intelligence: Swarm Intelligence (SI)11 [92], i.e. the decen-

tralised, but self-organising and collective behaviour of autonomous

individuals acting by following simple rules to form a powerful commu-

nity, can be observed in bird flocks, animal herds, ant colonies, bacterial

growth and fish schooling. Based on studies of social animals and

insects several computational models of SI, so called Swarm Intelligence

Algorithm (SIA), were developed that imitate the observed swarm

behaviour to solve complex problems. Various approaches make use

of the concept of SI. The most famous representatives of this sort of

algorithms are Particle Swarm Optimisation (PSO) [93–95] and Ant

Colony Optimisation (ACO) [11, 56, 96]. Other interesting approaches in

this area are River Formation Dynamics (RFD) [97], Stochastic Diffusion

Search (SDS) [98], Intelligent Water Drops (IWD) [99] and Gravitational

Search Algorithm (GSA) [100].

BIAs, such as GA, EP, PSO and ACO, share some common character-

istics: all approaches work on a set of feasible solutions for a particular

problem. The solutions need to be evaluated regarding a fitness value

to obtain some kind of quality measure. Based on this measure a selec-

tion mechanism is used to select the solution with the best fitness value.

The selected solution is subsequently used to generate new solutions by

varying them.

BIAs have been applied in the last few years to several combinatorial

and continuous optimisation problems in the area of scheduling, robotics,

communication networks etc. Particularly SI approaches were successfully

applied to the area of communication networks [101].

In the following a special case of BIA, the Ant Colony Optimisation

(ACO) algorithm, will be discussed in detail as it is the foundation of

the research conducted in this thesis.

11The term ‘swarm intelligence’ was firstly introduced by Beni and Wang [91] in the
area of computer science in the context of cellular robotic systems.
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2.4 Ant Colony Optimisation

Ant Colony Optimisation (ACO) was inspired by the observation of the

behaviour of real ants. Thus, in the following, first, its biological origin

will be discussed. Afterwards, the formal basis of ACO will be explained

as well as some applications of ACOs will be presented.

Biological Origins of Ant Colony Optimisation

Ants are social insects that live together in colonies. The colonies are

highly organised, i.e. ants behave collaboratively in a complex way to

solve difficult tasks, a single ant, as a simple individual, could not solve.

One of the interesting and important behaviours that can be observed in

ant colonies is the foraging, particularly, how ants can find the shortest

path between the nest and food sources.

One of the first researchers who investigated the social behaviour of in-

sects was the French zoologist Pierre-Paul Grassé12. During his research

trips to Africa he focused on studying termites and became one of the

experts on those insects. He discovered that the two studied species of

termites (Cubitermes sp. and Bellicosotermes natalensis) react to ‘signif-

icant stimuli’ [102] while rebuilding a nest. The response to stimuli leads

to reactions by the termites that “[..] explain(s) the synchronisation of

various individual tasks”. For the indirect communication, which Grassé

describes as “[..] stimulation of workers by the very performances they

have achieved”, he introduced the term stigmergy , which was later used

for similar phenomena by other social insects.

According to Dorigo et al. [12] stigmergy differs from other forms of com-

munication in two main characteristics:

• Stigmergy is an indirect, non-symbolic form of communi-

cation mediated by the environment → insects exchange

information by modifying their environment

• Stigmergic information is local→ it can only be accessed

by those insects that visit the locus in which it was re-

12Pierre-Paul Grassé (1895 - 1985), editor of the 28-volume ”Traite de Zoologie”,
chair of evolutionary biology at Sorbonne University and ex-president of the French
Academy of Sciences.
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leased (or its immediate neighbourhood)

In many ant colonies of different ant species stigmergy can be observed:

ants that are moving between the nest and food sources are depositing

a chemical substance, so called pheromone, on the ground; thus, modify-

ing the environment. Ants that are perceiving the deposited pheromone

are influenced by its presence. While without pheromone trails the

movements of the ants is essentially random, ants that are perceiving

a pheromone trail are tending to follow the paths with higher pheromone

concentrations. As a result, the ants can effectively make use of the short-

est paths between the nest and the food sources.

The pheromone laying is complemented in the natural environment by

evaporation, i.e. the decaying of the pheromone after some time. The

evaporation of pheromone depends on several factors such as the chemical

composition of the terrain, the ant species, the weather conditions and

the amount of pheromone deposited etc. However, pheromone can stay

for several hours or even months depending on the given circumstances.

As consequence of evaporation less promising paths that are not used

frequently will disappear over time.

The self-organising behaviour of ants is based on autocatalysis, i.e. pos-

itive feedback is exploited to control the overall behaviour of the ant

colony. The risk generally involved with autocatalysis, i.e. premature

convergence (stagnation), is mitigated by evaporation and the additional

stochastic choice of paths by the ants. As a result, the exploration of new

paths is never ceased.

Basically, the trail-laying and trail-following behaviour can be sum-

marised as follows:

• When an ant moves it lays a pheromone trail

• Each ant moves as follows:

– when no pheromone trail is perceived → random walking

– when an ant perceives a pheromone trail → random walk,

but stochastic decision is biased by the amount of pheromone
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for the trail, i.e. higher likelihood to follow trails with high

pheromone concentration

• Pheromone evaporates over time → Unused paths will vanish.

Several researchers investigated the pheromones laying and following pat-

terns of ants experimentally and quantifying it to gain deeper insights.

Two of the most famous exerimental works in this research area are dis-

cussed in the following.

Experiments with two bridges: To investigate the ants’ exploratory

trails Deneubourg et al. [5] setup an experiment with a “Diamond-shaped

bridge” that connects the nest with an unexplored area, the so called

arena, via two bridges of the same length. The bridges provide the ants

a binary choice, i.e. between the upper or lower bridge at each decision

point 1 and 2 (see figure 2.15).

15 cm

60°

1 cm

nest arena1 2

Figure 2.15: Experimental setup of the diamond-shaped bridge experi-
ment (cf. [5])

The ants had a free choice using the bridges to get from the nest to the

arena and vice versa. The ratio of the ants using the upper and the lower

bridge were observed over time. For the evaluation of the experiment

two simplifications were made: first, the evaporation of pheromone was

ignored because the experiments were run shorter than the mean lifetime

of the pheromone; and second, an average amount of pheromone that

is laid by the ants was assumed, instead of considering the individual



2.4. ANT COLONY OPTIMISATION 57

amount of pheromone.

The main result of the experiment observations was that, while initially

both branches were chosen equally, after a certain time, the ants preferred

one of the branches. This result can be explained as follows: at the

beginning there are no pheromones on the two bridges so that the ants

select their way randomly. However, each ant that is passing one of the

bridges deposits some pheromone on the used bridge. Due to random

fluctuation a few ants will select the same bridge so that the density of

pheromone is increased on this bridge. Consequently, the following ants

will be influenced by the deposited pheromone so that the probability of

choosing the path with the higher pheromone concentration is increased.

Finally, the described mechanism leads to a convergence of using one of

the bridges, breaking the symmetry. In multiple experiments Deneubourg

et al. found out that each of the two bridges was used in about 50% of

the cases.

A similar experiment was conducted by Goss et al. [6] in which ants were

given access to a food source that was connected by a bridge consisting

of two identical modules, each having two branches of different length

providing the ants at each module a choice between a longer and a short

path at each decision point 1 and 2 (see figure 2.16).

The results of the experiment show in this case, after a while, the ants

chose the shortest path between the nest and the food source. The results

of the second experiment can be explained as follows: similar to the pre-

vious experiment the ants have to choose at each decision point one of the

branches of a bridge, i.e. either the short or the long branch. When at

the beginning there is no pheromone on the bridges the decision is taken

randomly – as in the first experiment, one of the path may be preferred

over time. However, in the second experiment another factor accelerates

the creation of the shortest path: ants that select the shortest branch will

first reach the food source and then head home to the nest. When the

ant reaches a decision point, its decision is biased by the pheromone con-

centration, which is obviously higher on the short branch each time. Due

to the more frequently used short branches the pheromone concentration

on the short branches increased rapidly, making the majority of following

ants use the shortest path between the nest and the food source. Addi-
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food

nest

1
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2

2

Figure 2.16: Experimental setup of the bridge experiment with two mod-
ules in which each module has two branches of different lengths (cf. [6])

tionally to the autocatalytic mechanism observed in the first experiment,

in the second experiment an implicit evaluation of solutions can be found,

i.e. shorter paths will be completed earlier and thus, these paths are re-

inforced quicker with higher pheromone concentration. In comparison to

the first experiment, the initial random fluctuation is reduced.

Stochastic Ant Colony Model: Goss et al. [5, 6] proposed a simple

stochastic model that describes the dynamics of the observed ant colony

behaviour in the double bridge experiments.13

As described in the experiment, the ants cross the bridges selecting at

each decision point either the lower or the upper branch. An ant with

a constant speed of v cm/s traverses the lower branch of length ll in a

13As in the real experiment the evaporation of the pheromone was ignored for the
stochastic model due to the fact that the mean lifetime of pheromone in the real
experiment was ' 30 min.
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time of tl = ll/v, while the ant requires tu = rtl seconds with r = ll
lu

for

traversing the upper branch.

pib(t) is the probability that at the time of t an ant arriving at the decision

point i ∈ {1, 2} is selecting the branch b ∈ {u, l}, i.e. the upper or

respectively lower branch. The total amount of pheromone at branch b at

the time of t is ϕib(t), which is proportional to the number of ants that

used the branch up to that time t.

The probability pil(t), i.e. of choosing the lower branch at the decision

point i is given by

pil(t) =
(tl + ϕil(t))

α

(tl + ϕil(t))α + (tu + ϕiu(t))α
(2.19)

while, piu, the probability of choosing the upper branch at decision point

i, is piu = 1− pl.

A comparison of Monte Carlo simulations of the model and real measured

data showed that the results are corresponding. The suitability for the

model described by equation (2.19) for the double bridge experiment was

found in the case of the empirically fitted value of α ≈ 2 [6]. For two

branches of equal length r = 1, the modelled results show the observed

behaviour as in the real experiment that one of the branches is selected

randomly after a while.

In the considered model, ants deposit pheromone on their forward as well

as the backward paths. This turns out to be a necessary behaviour to

converge to the shortest path between nest and food source.

2.4 From Real Ants to Artificial Ants

As the two experiments with real ants have shown, ant colonies have some

kind of optimisation capability to find the shortest path between two

locations based on probabilistic rules using local information. Inspired

by this observation of real ant colonies, the Ant Colony Optimisation

(ACO) metaheuristic was developed, which imitates the behaviour of real

ant colonies by artificial ant colonies to solve combinatorial optimisation

problems.
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Based on the descriptions of Dorigo et al. and Cordon et al. [56, 57] the

most important similarities and differences between real and artificial ants

are discussed in the following.

Similarities Between Real and Artificial Ants

The main characteristics of real ant colonies that are leveraged by ACOs

algorithms can be summarised as follows (cf. [56, 57]):

Colony of cooperating individuals: As in real ant colonies, ACO

algorithms make use of artificial ant colonies, consisting of simple au-

tonomous agents that are working cooperatively together to find a good

solution for a specific problem. Though, a single artificial ant is capable

of finding a feasible solution for a problem, just as a real ant can find a

path between the nest and a food source, a high quality solution can be

obtained due to the cooperation of all ants of the colony.

Pheromone trail and stigmergy: The communication between real

as well as artificial ants is enabled by the use of stigmergy, i.e. by modi-

fying certain aspects of the environment. While real ants are depositing

a chemical substance called pheromone at places they have visited, arti-

ficial ants are modifying some kind of numeric information that is locally

stored at the problem states they are visiting. This numeric information

contains details about the current agents performance/history. Each ant

that is visiting the same problem state can access, i.e. read and write,

this additional state information. As analogy to real ants, this numeric

information is also referred to as artificial pheromone trail.

In nature, pheromone evaporation leads to a slow decay of the pheromone

over time and thus, the forgetting of paths found in the past. To alleviate

the effect of past decisions in artificial ant colonies, a similar mechanism

is often implemented to allow the exploration of new problem solutions.

Shortest path searching and local movement: Both, artificial as

well as real ants share the common task of finding the shortest path,

in terms of minimum costs, between a source and a destination. While
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real ants walk through the surrounding adjacent terrain to find the short-

est path between the nest and a food source, artificial ants iteratively

construct a minimum cost solution by moving between adjacent states,

starting from a start state they reach a final state. Due to the various

application areas of artificial ants the terms ‘state’ and ‘adjacent’ differ

from problem to problem.

Stochastic decision policy for state transition: In natural as well

as in artificial ant colonies, the ants use a probabilistic decision policy to

move from one to another adjacent state. In both cases, the probabilistic

decision policy solely makes use of local information without any sort of

look-ahead functionality to predict subsequent states. As a result, the

probabilistic decision policy is completely local in space and time. For

the artificial ants the probabilistic decision policy can be formally seen

as function of the a priori defined information given by the problem’s

specifications and the a posteriori local modifications of the environment

caused by the ants that passed the same environment.

What Makes Artificial Ants Different?

However, there are also some special characteristics of artificial ants that

have no counterpart for real ants in nature (cf. [56, 57]).

Heuristic information: Compared with real ants, artificial ants can

make use of heuristic information in addition to the pheromone informa-

tion in the probabilistic decision process. The heuristic information is

problem specific.

Discrete world: In contrast to real ants, artificial ants are moving in

a discrete world. A move for an artificial ant is the application of the

transition rule, which is the transition from one discrete problem state

to another discrete problem state from a set of feasible adjacent states in

the neighbourhood. The transition rule is a function of locally available

pheromone, heuristic information, the ant’s internal state and the problem

constraints.
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Internal state: Each artificial ant has an internal state, also referred

to as memory, to store information about the visited states so far. The

memory can be used for a couple of things such as building a feasible

solution, evaluate a generated solution and to trace back a path from the

current state to the initial state.

Quality of solution: Artificial ants can make use of weighting to pre-

fer good solutions, i.e. the artificial ants are adjusting the amount of

pheromone at certain states depending on the quality of a solution found.

Timing of pheromone deposit: In contrast to real ants, the laying of

pheromones of artificial ants is problem dependent. For example, artificial

ants often do not lay any pheromone until they constructed a feasible

solution and then, they start to deposit pheromone on their way back to

the origin.

Extra capabilities: Additionally to the highlighted characteristics, ar-

tificial ants can be enhanced with further features such as look-ahead,

local optimisation, backtracking etc. However, the use of this sort of fea-

tures is only worthwhile if the chosen feature matches the problem to be

solved and the costs for the feature is lower than the cost for just doing

the next move.

2.4 Ant Colony Optimisation Algorithms

Each ACO algorithm is based on one or more colonies of artificial ants,

i.e. autonomous agents that are working together in a cooperative to solve

a combinatorial problem (see section 2.3).

In the last few years several ACO algorithms have been proposed. Table

2.2 shows a selection of pioneering ACO algorithms (cf. [11, 96]).

In the following, the first ACO algorithm Ant System will be discussed

as well as its direct descendants Elitist Ant System and Rank-based Ant

System. After that the two most successful approaches MAX −MIN
Ant System and Ant Colony System are presented and the reasons why

they outperform other ACO approaches are discussed. To have a common
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ACO Algorithm Authors Year
Beam-ACO [103,104] Blum 2004
Population-based ACO [105,106] Guntsch, Middendorf 2002
Hyper-cube ACO (HC-ACO) [107,108] Blum et al. 2001
Best-Worst Ant System [109–111] Cordón et al. 2000
ANTS [112] Maniezzo 1999
Rank-based Ant System (ASrank) [113] Bullnheimer et al. 1997
Max-Min Ant System (MMAS) [114–116] Stützle, Hoos 1996
Ant Colony System (ACS) [117–119] Dorigo, Gambardella 1996
Ant-Q [120,121] Gamardella, Dorigo 1995
Elitist Ant System (ASelite) [122,123] Dorigo 1992
Ant System (AS) [122–125] Dorigo, Maniezzo, Colorni 1991

Table 2.2: Selection of pioneering ACO algorithms (cf. [11])

basis and to make the different ACO algorithms comparable, the basic

ideas of the algorithms will be explained as application on the TSP.

Ant System

The first ant algorithm in the research area of ACO algorithms was pro-

posed by Dorigo [122–125], the so called Ant System (AS)14. The basic

idea of using artificial ants to solve combinatorial problems and the first

prototype implementation triggered a lot of related researches dealing

with various interesting ACO algorithms and their applications.

The main idea of the first AS algorithm was that m artificial ants should

build concurrently a solution of the TSP by traversing the construction

graph, i.e. making probabilistic decisions from vertex to vertex or corre-

spondingly from city to city.

The basic AS algorithm can be subdivided into two different phases: the

construction of a solution and the pheromone update. At the beginning

of the construction phase, each ant is assigned to a random city. At each

step, each ant needs to decide which city should be visited next. This

is done by applying the random proportional rule that is specifying the

probability of the k-th ant moving from city i to city j. To avoid ants

visiting the same city multiple times, each ant stores a list of all cities

visited so far. The random proportional rule can be formally defined as

14In the original research paper [125] three different ant algorithms were proposed:
ant density, ant quantity and ant cycle algorithm. However, due to the fact that
experiments have shown that ant-cycle is superior to the other two algorithms in
succeeding publications the ant cycle algorithm is referred to as Ant System (AS).
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follows:

pkij =


[τij ]

α[ηij ]
β∑

l∈Nk
i

[τil]α[ηil]β
if j ∈ N k

i

0 otherwise
(2.20)

where

• m number of ants

• τij is the pheromone value that is changing during construction of

solutions

• ηij = 1/dij is a heuristic value that is know a priory

(dij is the distance between the cities i and j)

• α and β are two parameters that define the relative influence of

pheromone and heuristic information

• N k
i is the feasible neighbourhood of ant k, i.e. the set of cities that

can be reached from city i and that have not been visited yet by

ant k

The probability of choosing a certain arc(i, j) increases with the value of

the associated pheromone information τij and the value of the associated

heuristic information ηij . The relative value of the parameters α and

β define the relative importance of the pheromone and corresponding

heuristic.

After all ants have constructed their tour the second phase, the pheromone

update, can be triggered. The special characteristic of AS is that all ants

are involved in the pheromone updating process. The pheromone update

can be formally denoted as:

τij ← (1− ρ)τij +

m∑
k=1

∆τkij (2.21)

where

• m number of ants

• ρ ∈ (0, 1] evaporation rate
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• ∆τkij quantity of pheromone on the arc (i, j)

To avoid local minima, pheromone evaporation is used. The evaporation

is applied uniformly to all arcs with the evaporation rate ρ.

The ∆τkij , the quantity of pheromone on the arc (i, j), is defined as follows:

∆τkij =

{
Q
Lk

if ant k used edge (i, j) in its tour

0 otherwise
(2.22)

where

• Q is a constant (in most cases Q := 1)

• Lk is the length of the tour build by the k-th ant, i.e. the sum of

all the length of arcs in the tour

As a result, arcs that are part of short ants’ tours will obtain more

pheromone than the arcs that are part of longer tours so that pheromone

is increased proportional to the quality of the tour. This impact is in-

tensified due to the fact that arcs that are part of short tours and are

used by many ants, will have more pheromone and thus, following ants

are biased by choosing the same arcs with high pheromone concentration

in the future.

Elitist Ant System

One of the first improvements of AS was proposed by Dorigo et al. [122,

123] with the Elitist Ant System (EAS). The modified EAS algorithm

provides an additional reinforcement mechanism that deposits additional

pheromone on the arcs that are belonging to the best-so-far tour found

by the ants.

The additional adding of pheromone is achieved by sending a group of

elitist ants along the best-so-far tour and placing a certain amount addi-

tional pheromone at each arc they visit. Formally, the pheromone updat-

ing equation from AS (see equation 2.21) is adapted to:

τij ← (1− ρ)τij +

m∑
k=1

∆τkij + e∆τ bestij (2.23)
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where

• e is the number of elitist ants

• ∆τ bestij quantity of pheromone on the arc (i, j) of the best-so-far

tour

The additional amount of pheromone ∆τ bestij that is deposited by the

elitist ants is defined as follows:

∆τ bestij =

{
Q

Lbest
if edge (i, j) is part of the best-so-far tour

0 otherwise
(2.24)

where

• Q is a constant (in most cases Q := 1)

• Lbest is the length of the best-so-far tour build by an ant

As a result, the best-so-far tour reinforced by elitist ants influences all

other ants with a certain probability to construct solutions using edges

of the best-so-far tour. Simulation results [122, 123] showed that with a

well-balanced amount of elitist ants, better tours can be found quicker

than with the AS algorithm.

Rank-based Ant System

Another modification of AS was proposed by Bullnheimer et al. [113], the

so called Rank-based Ant System (ASrank). In this variation, the amount

of pheromone that is deposited by the ants is depending on the rank of

the ant. Moreover, just as in the EAS algorithm, the ant that has found

the best-so-far tour deposits the largest amount of pheromone at each

iteration.

To obtain the rank of each ant, the ants are sorted in descending order

by their tour length. The quantity of pheromone that is deposited by

an ant is weighted by the ant’s rank. Formally, the pheromone updating

equation from AS (see equation 2.21) is adapted to:

τij ← (1− ρ)τij +

w−1∑
r=1

(w − r)∆τ rij + w∆τ bestij (2.25)
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where

• r is the rank of the ant

• w is the number of ants that are updating the pheromone informa-

tion

• ∆τ rij quantity of pheromone on the arc (i, j) of r-ranked ant

The quantity of pheromone ∆τ rij that is deposited by the r-ranked ant is

defined as follows:

∆τ rij =

{
Q

Lrank
if edge (i, j) is part of the r-ranked ant’s tour

0 otherwise

(2.26)

where

• Q is a constant (in most cases Q := 1)

• Lrank is the length of the r-ranked ant’s tour

As a result, at each iteration the (w − 1) best-ranked ants as well as the

ant that has found the best-so-far tour15 are updating the pheromone

information. The rank of an ant does directly influence the amount of

pheromone by the weight (w − r).

Bullnheimer et al. [113] showed in their experiments that ASrank seems

to provide a good compromise between exploitation, in terms of the rein-

forcement of good paths, and exploration, in terms of reinforcing several

good paths instead of only the best. As a result, ASrank significantly

outperforms AS and is slightly better than ASelite.

MAX −MIN Ant System

The Max-Min Ant System (MMAS) proposed by Stützle and Hoos [114–

116,126], is the first major modification of the original AS algorithm. The

proposed changes aim, on the one hand, at a better exploitation of the

15note: the best-so-far tour does not necessarily has to be found in the current
iteration.
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best solutions found to direct the ants to high quality solutions and, on

the other hand, at avoiding premature convergence of ants’ searches.

Basically, MMAS differs from AS in the following three main points:

• Emphasising best solutions: In MMAS the best solution found

is heavily exploited because after each iteration only the best ant is

allowed to add pheromone to its path. The ‘best ant’ can either be

the iteration-best ant, i.e. the ant that found the best solution in

the current iteration, or the best-so-far ant that found the overall

best solution until now. In each iteration one of the modes is used

exclusively, i.e. either the iteration-best ant or the best-so-far ant

is allowed to update the pheromone. Nevertheless, in some applica-

tions a mixture of the iteration-best ant and the best-so-far ant is

used.

• Restriction of pheromone values: Due to the first modification

the algorithm may enter quickly a stagnation state in which only

good, but not optimal, paths are used. This effect is mitigated by

introducing a limit for the pheromone values so that a pheromone

value has to be within the range [τmin, τmax].

• High exploration at bootstrapping phase: To achieve a high

exploration of different solutions in the bootstrapping phase of the

algorithm, the initial pheromone value is set to τmax, the upper

boundary of the introduced interval.

In MMAS the pheromone is updated as follows:

τij ← (1− ρ)τij + ∆τ bestij (2.27)

with

∆τ bestij =

{
Q

Lbest
if edge (i, j) is part of the best tour

0 otherwise
(2.28)

where

• Q is a constant (in most cases Q := 1)
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• Lbest is the length of the best tour, i.e. in case of iteration-best ant

Lbest is assigned the length of the tour Lib found by the iteration-

best ant (Lbest := Lib) or, in case of best-so-far ant, Lbest is assigned

the length of the tour Lbs found by the best-so-far ant (Lbest := Lbs)

The frequency of the application of the different pheromone updating

rules, which are depending on the iteration-best ant or best-so-far ant, in-

fluences the greediness of the search: while the pheromone updating rule,

based on the best-so-far ant, rapidly concentrates on the search close to

the best-so-far tour; the pheromone updating rule, based on the iteration-

best ant, provides a more exploratory fashion by updating different good

edges. Experiments have shown that the best results can be obtained

when using both pheromone updating rules with a gradual increase of the

frequency of the iteration-best ant’s rule [116,126].

Stützle and Hoos suggest to determine the lower bound τmin and upper

bound τmax experimentally for the specific problem. Nevertheless, they

also present an approach to calculate these boundaries analytically. To

get an idea of the analytical approach a shortened version is presented

here (for details cf. [116]):

If the length of the optimal tour Lopt is known, the upper bound τmax

can be simply calculated as follows:

τmax =
1

ρLopt
(2.29)

Due to the fact that in most cases the optimum tour length is unknown,

often the best-so-far tour length Lbest is used as approximation of the

optimum tour length. So every time an improved Lbest is found τmax is

updated as follows:

τmax =
1

ρLbest
(2.30)

The lower boundary τmin has to be chosen carefully because it has a huge

impact on the performance of the algorithm. The presented analytic cal-

culation of τmin is based on the probability pbest, which is the probability

for choosing the ‘right’ edge in every step, resulting in the best possible

solution. When pdec is the probability of choosing the ‘right’ edge directly,
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then if n-times the ‘right’ decision is made pdec = n
√
pbest.

16. Based on

this and the fact that an ant needs to choose on average among avg edges,

τmin can be calculated as follows:

τmin =
τmax(1− pdec)

avg pdec
(2.31)

To increase the exploration of new solutions, in MMAS occasionally the

pheromone trails are reinitialised, i.e. τij := τmax. The reinitialisation is

triggered when the algorithm enters the stagnation phase, e.g. determined

by analysing additional statistics, or if a certain number of iterations did

not lead to any improvement of the best-so-far solution [115,116,126].

Finally, after each iteration it needs to be guaranteed that τij is within

the defined range [τmin, τmax]. Therefore, the following rule is applied to

set a valid value for τij :

τij =


τmin if τij < τmin

τij if τmin ≤ τij ≤ τmax
τmax if τij > τmax

(2.32)

Due to the fact that MMAS is outperforming the original AS significantly,

MMAS is one of the most studied algorithms in the research area of ACO

algorithms. It has also been applied to several application areas starting

from the original TSP [115] to further areas such as Quadratic Assignment

Problem (QAP) [116], University Course Timetabling Problem (UCTP)

[127] etc.

Ant Colony System

Ant Colony System (ACS), proposed by Dorigo and Gambardella [117–

119], is another ACO algorithm that was inspired by the original AS algo-

rithm. However, in contrast to the previously discussed ACO algorithms,

the modifications made in ACS are crucial so that ACS can be rather seen

as a novel ACO algorithm, instead of a direct descendant of AS.

The key features of ACS can be summarised as follows:

16assumptions: heuristic information is neglected; pdec is constant during tour con-
struction
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• Pseudo-random proportional rule

• global pheromone update

• Local pheromone update

The pseudo-random proportional rule specifies how an ant k, currently

located at city i, can move to city j. Formally the pseudo-random pro-

portional rule can be defined as follows:

j =

{
arg maxl∈Nki {τil[ηil]

β} if q ≤ q0 exploitation

J otherwise (biased exploration)
(2.33)

where

• q is a random variable uniformly distributed in [0, 1]

• q0 is a parameter (0 ≤ q0 ≤ 1), which determines the relative im-

portance of exploitation vs. exploration. Higher q0 leads to greedier

decisions.

• J is a random variable selected according to the probability distri-

bution in equation 2.20

Based on the pseudo-random proportional rule, an ant can make the best

possible move, in terms of learned pheromone and heuristic information,

with a probability of q0 or it explores new arcs with a probability of

(1− q0). Thus, the parameter q0 allows to set the degree of exploitation

and correspondingly the degree of exploration for the algorithm, i.e. it

can be adjusted whether the ants should concentrate on finding better

tours near the best-so-far solution or rather explore new tours instead.

The global pheromone update in ACS is triggered after each iteration by

the best-so-far ant only. Formally the update in ACS can be denoted as

follows:

τij ← (1− ρ)τij + ρ∆τ bestij (2.34)

with

∆τ bestij =

{
Q

Lbest
if edge (i, j) is part of the best tour

0 otherwise
(2.35)
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where

• Q is a constant (in most cases Q := 1)

• Lbest is the length of the best-so-far tour

In contrast to AS, in ACS the pheromone update as well as the evapo-

ration does solely affect the best-so-far tour17 so that the computational

complexity for updating the pheromone trails is dramatically reduced.

Furthermore, in ACS the new pheromone trail is a weighted average

between the old pheromone value and the newly deposited amount of

pheromone.

Additionally to the global pheromone update, in ACS local pheromone

update is applied that is triggered during the tour construction each time

an ant passes an arc (i, j). Every time an ant k adds a component to

its partial solution, the pheromone value is decreased by applying the

following formula:

τij ← (1− ξ)τij + ξτ0 (2.36)

with

• τ0 is the initial value of pheromone trails (normally a small constant)

• ξ (0 < ξ < 1) is the pheromone decay coefficient that controls the

ants’ degree of exploration

As a result, the pheromone concentration of traversed edges is decreased

to encourage following ants to choose another edge than the previous

ant. This is done to increase the exploration of different solutions so that

stagnation can be avoided.

Finally, it should be mentioned that ACS is based on the earlier algorithm

Ant-Q [120, 121]. The main difference of the algorithms is the setting of

the parameter τ0. Because it was found that if τ0 was set to a small value,

ACS provides similar results as Ant-Q with less complexity, Ant-Q was

abandoned.

17Dorigo and Gambardella did also experiments with the iteration-best tour, but the
results showed that the best-so-far tour outperformed the iteration-best tour variant
so that only the best-so-far tour was used in subsequent experiments [118].
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2.4 Theoretical Works on Ant Colony Optimisation Algorithms

The first works on ACO algorithms were experimentally driven with the

goal to show the successful use of this sort of algorithms. Starting from

these practical works, the researchers started to have a look on the theo-

retical foundations of ACO algorithms.

One of the first questions that was raised by researchers was whether ACO

algorithms are converging to an optimal solution or not, i.e. whether there

is a situation in which the ACO algorithms generate the same optimal

solution over and over again.

The first work on ACO algorithms’ convergence was presented by Gut-

jahr, who worked on a formal extension of AS, the so called Graph–based

Ant System (GBAS), a metaheuristic capable of handling arbitrary static

combinatorial optimisation problems. For GBAS Gutjahr proved its con-

vergence with a probability ≥ 1− ε to the optimal solution with an arbi-

trary small ε [128] and later, its convergence to an optimal solution with

probability exactly one [129]. However, due to the fact that the presented

proof was Graph–based Ant System (GBAS) specific, the results could

not be generalised to other ACO algorithms.

For the two best experimentally performing ACO algorithms, MMAS and

ACS, Stützle and Dorigo could show their convergence to an optimal

solution [96,130].

Nevertheless, all presented convergence proofs for ACO algorithms are not

saying anything about the speed of convergence, i.e. the computationally

required time, to find an optimal solution.

While convergence proofs are providing a mathematical insights on the

ACO algorithms’ properties, best-practices for their implementations can-

not be derived directly.

2.4 Applications of Ant Colony Optimisation Algorithms

There are various application areas in which ACO algorithms can be ap-

plied. Table 2.3 shows a nice overview about those main application areas

of ACO algorithms. Although it is clear that this list is not comprehen-

sive, it shows the diversity of application areas in which ACO algorithms
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can be used.

Problem Type Problem Name Authors
Routing Travelling Salesman Dorigo et al. [124]

Dorigo, Gambardella [117]
Stützle, Hoos [115,116]

Vehicle Routing Gambardella et al. [131]
Reimann et al. [132]

Sequential Ordering Gambardella, Dorigo [133]
Communication Networks Di Caro, Dorigo [134]
Routing in MANETs Ducatelle et al. [135]

Di Caro et al. [136]
Assignment Quadratic Assignment Stützle, Hoos [116]

Maniezzo [112]
Course Timetabling Socha et al. [127,137]
Graph Colouring Costa, Hertz [138]

Scheduling Project Scheduling Merkle et al. [139]
Total Weighted Tardiness Den Besten et al. [140]

Merkle, Middendorf [141]
Open Shop Blum [104]

Subset Set Covering Lessing et al. [142]
k-Cardinality Trees Blum, Blesa [143]
Multiple Knapsack Leguizamón, Michalewicz [144]
Maximum Clique Fenet, Solnon [145]

Other Constraint Satisfaction Solon [146,147]
Classification Rules Parpinelli et al. [148]

Martens et al. [149]
Bayesian Networks Campos et al. [150,151]
Protein Folding Shmygelska, Hoos [152]
Protein-Ligand Docking Korb et al. [153]

Table 2.3: Selected applications of ACO algorithms (cf. [12])

Although, there are a lot of variations of ACO algorithms in different

application contexts, it can be stated that MMAS and ACS are belonging

to the best known ACO algorithms so far.

2.5 Multi-objective Ant Colony Optimisation

Recently, different researches propose the extension of ACO algorithms

to support multi-objective problems, the so called Multi-objective Ant

Colony Optimisation (MOACO) algorithms. Most of the proposed

MOACO algorithms tend to be based on well-known single-objective ACO

algorithms such as ACS or MMAS.

In the following a taxonomy of MOACO algorithms is discussed that can

be used to classify these algorithms by their main criteria. Besides, the
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identified main components of the MOACO algorithms will be later used

in the implementation part of the thesis (see chapter 4).

2.5 Taxonomy of Multi-objective Ant Colony Optimisation Algo-

rithms

There are some approaches to classify MOACO algorithms by their

main characteristics including the researches of López-Ibáñes and Stützle

[154–156], Garcia-Martinez et al. [157], Angus and Woodward [19] and

Angelo and Barbosa [158]. To get an insight into these characteristics of

MOACO algorithms and to ease the identification of the different compo-

nents, which are required for the implementation of a MOACO algorithm,

in the following a taxonomy of MOACO algorithms is presented based on

those researches:

Pheromone and Heuristic Information: For MOACOs pheromone

information needs to be stored in some kind of pheromone structure.

Without loss of generality in the following it is assumed that the

pheromone information is stored in a matrix. There are basically two

options how to store pheromone information:

• Single matrix: If a single pheromone matrix is used, the algorithm

works similar to a traditional single-objective ACO algorithm. How-

ever, due to the fact that multiple objectives should be managed at

the same time, those objectives needs to be aggregated to obtain a

combined value, which is then stored in the matrix.

• Multiple matrices: If multiple pheromone matrices are used, typ-

ically each objective is assigned to one matrix. In this case, each

pheromone matrix reflects the solution components’ advantage for

a certain objective.

The same applies to the heuristic information, which either can be stored

in a single matrix or in multiple matrices.
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Number of Ant Colonies Another important characteristic of

MOACO algorithms is the number of ant colonies that is used18. In

general, there are two options:

• One colony This is the trivial case in which one ant colony is

optimising multiple objectives at the same time.

• Multiple colonies If multiple ant colonies are used, normally

each colony is responsible for the optimisation of one objective.

Consequently, in most cases each ant colony operates on its own

pheromone matrix. However, a disadvantage of using multiple ant

colonies is that the overhead is increased.

When the multiple ant colonies should cooperate with each other, either

solutions found can be exchanged via a common shared archive of solu-

tions to find the best solution; or, solutions found by one ant colony affect

other ant colonies by modifying the pheromone information of the other

ant colonies. Each ant colony can have a certain number of ants that is

belonging to a colony.

Aggregation of Pheromone and Heuristic Information: In the

case of using multiple pheromone/heuristic matrices, these matrices need

to be aggregated. Different aggregation strategies can be used for com-

bining these matrices, the most common strategies are the following:

• Weighted sum: The matrices are aggregated by a weighted sum:∑n
l=1 λlτ

l
ij

• Weighted product: The matrices are aggregated by weighted

product:
∏n
l=1(τ lij)

λl

• Random: At each construction step, randomly one of the matrices

is chosen.

18The term ‘ant colony’ is not used consistently in the literature. In this thesis the
definition introduced by Iredi et al. [159] is used which defines ant colonies as multiple
instances of single-colony algorithms. Consequently, each colony acts independently,
using separate pheromone information and a separate group of ants. To exchange
information, the ant colonies are able to communicate with each other.
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The number of weights that is used in the aggregation is normally corre-

sponding to the number of ants or the number of objectives. The weights

λl per objective can be set either fixed, i.e. the weights for each objective

are set a priori based on prior knowledge and remain unchanged the en-

tire time; or, the weights are set dynamically, i.e. different objectives can

be weighted differently at different times. For the latter case, for instance,

different ants can assign different weights at different iterations.

Pheromone Update: The updating of pheromone information can be

done in several ways. In most algorithms only the backward ants are

allowed to update the pheromone information. Basically there are five

main ways to specify which ants are allowed to update the pheromone

information:

• Elite solution: If only a single matrix is used for all objectives, a

similar approach as for the normal ACO algorithms can be used by

only allowing the best-so-far ant or the iteration-best to update the

pheromone matrix.

• Best-of-objective solutions: If multiple matrices are used, also

an elite like strategy can be used by choosing the best-so-far and or

the iteration-best ant with respect to each objective.

• Best-of-objective-per-weight solutions: An elite solution is

picked in respect to each objective, while considering the weight

λ.

• Non-dominated solutions: In this case the ants store all non-

dominated solutions in the set. Only the ants that provided a non-

dominated solution are allowed to update the pheromone. Addi-

tionally, an elite solution of the non-dominated solutions could be

picked by specifying additional knowledge of how to find the best

solution from this set.

• All solutions: This is the trivial case, in which ants of all solutions

found are allowed to update the pheromone information.

Hybrid solutions are also conceivable, for example, all ants deposit

pheromone on their way, while the best-so-far ant adds an additional
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amount of pheromone to the path of the best solution.

Evaluation of Solutions: Although in the area of MCOPs there are

several methods to evaluate a solution regarding different criteria, in the

area of MOACO algorithms it is important whether a Solution is Pareto-

optimal or not. The following distinction for a solution can be made:

• Pareto solutions: For finding Pareto solutions, the domination

criterion (see section 2.3.3) is considered to find the best solutions

taking all objectives equally into account.

• Non-Pareto solutions: For finding non-Pareto Solutions either

the solutions take only one of the objectives into account or by

aggregating all objectives and considering the combined value.

Archival of Solutions: When a solution is found its storage needs to

be considered. Basically, there are four options how a solution can be

stored:

• Offline storage: When a new solution is found, it is used to up-

date the pheromone information. Afterwards, it is added to an

offline storage, also referred to as archive. When looking for Pareto

solutions, all non-Pareto solutions are removed from the archive.

The archive does not influence any further decisions, but it is used

to store historic data by time in the ‘hall of fame’. At the end of

the algorithm, the hall of fame is returned as list of solutions.

• Online storage: When a new solution is found, it is directly added

to the population of solutions. The change of the population of so-

lutions triggers directly the pheromone update procedure using the

improved solution set. In the case of Pareto solutions, all dominated

solutions are removed. Consequently, the population of solutions

contains always the best solutions found19. The last population

of solutions is returned at the end of the algorithm as set of final

solutions.
19In some cases the Pareto set is only used to return the final solutions after the

completion of the algorithm, while during the online storage non-Pareto solutions are
considered.
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• Elite storage: Only a single solution, the elite solution, is stored.

The stored elite solution can be used to update the pheromone in-

formation and it can also be returned as best-so-far solution after

completing the algorithm.

• No storage: New solutions are used to update the pheromone

information, but are discarded subsequently. Only when ending the

algorithm the last solution found is considered as final solution.

Table 2.4 shows an overview of all components derived from the presented

characteristics of the MOACO algorithms taxonomy.

Component Options
Pheromone Information ([τ ]) one matrix, multiple matrices
Heuristic Information ([η]) one matrix, multiple matrices
Number of Ant Colonies single colony (single), multiple colonies (multiple)
Aggregation of Pheromone/
Heuristic Information

weighted sum (
∑

), weighted product (
∏

),
random (rand)

Pheromone Update elite solution (es), best-of-objective solutions
(boo), best-objective-per-weight solutions (bopw),
non-dominated solutions (nd), all solutions (all)

Evaluation of Solutions Pareto solutions (p), non-Pareto solutions (np)
Archival of Solutions offline storage (offline), online storage (online),

elite storage (elite), no storage (none)

Table 2.4: Taxonomy-based components of MOACO algorithms

Based on the identified components of the provided taxonomy, the most

common MOACO algorithms can be classified as shown in table 2.5.

2.5 Performance Metrics

When considering different MOACO algorithms the question arises how

different solutions can be compared regarding their performance? While

the performance analysis of ACO algorithms is rather straight forward,

because only the single best solution needs to be considered, the analysis

of performance metrics of MOACO algorithms is more difficult because

in most cases an entire set of solutions is returned.

In other researches often unary quality metrics, also referred to as unary

quality indicators, are used to compare different solution sets. Unary

quality metrics are able to assign quality values (real numbers) to solution

sets to make them comparable with each other. However, although unary
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Algorithm [τ ] [η] Col. Aggr. Weigh. τ Upd. Eval. Arch.
MOAQ [160] 1 d multiple

∏
,
∑

d nd p offline
MACS-
VRPTW
[131]

d 1 multiple − − boo np elite

BicriterionAnt
[159]

d d single
∏

m nd p offline

COMPETants
[161]

d d multiple
∑

d+ 1 boo p none

ACOAMO
[162]

1 1 single − − all np elite

SACO [163] 1 1 single − − elite np none
MACS [164] 1 d single

∏
m nd p online

MONACO
[165]

d 1 single
∏

d all np offline

PACO-
MO [106]

d d single
∑

m all p online

P-ACO [166] d d single
∑

m boo np offline
M3AS [167] 1 d single

∏
d nd p offline

MOA [168] 1 1 single
∏

d nd p offline
CPACO
[169]

d d single
∑

d nd p online

MOACSA
[170]

1 1 single
∏

d elite np none

mACO-
1 [171]

d d multiple rand d+ 1 bopw p offline

mACO-
2 [171]

d d multiple
∑

d+ 1 bopw p offline

mACO-
3 [171]

1 1 single − − nd p offline

mACO-
4 [171]

d 1 single rand d boo p offline

Table 2.5: Taxonomy of MOACO algorithms with d as number of objec-
tives, m number of ants
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quality indicators seem to be a suitable tool to assess solution sets, those

indicators are difficult to develop. One of the main problems, as Zitzler et

al. [172] highlight, is that for MCOPs the optimisation goal itself consists

of multiple objectives:

• The distance of the resulting non-dominated set to the Pareto-

optimal front should be minimized.

• A good (in most cases uniform) distribution of the solutions found

is desirable (may be based on certain distance metric).

• The extent of the obtained non-dominated front should be max-

imized, i.e., for each objective a wide range of values should be

covered by the non-dominated solutions.

Due to the fact that in this thesis not all quality indicators can be dis-

cussed comprehensively, in the following, just a short introduction to the

main approaches will be given:

Zitzler et al. [173] and Knowles et al. [174] present in their works several

unary quality indicators and discuss their limitations and the problems

that can occur and may lead to false or misleading assessments of the

quality of solution sets. Based on their findings Knowles et al. [174]

recommend three widely accepted unary quality indicators that can be

applied to assess the quality of Pareto sets:

1. The hypervolume indicator IH [175]

2. The unary Epsilon Indicators I1
ε and I1

ε+ [173]

3. The I1
R2 and I1

R3 indicators [176]

Those three unary quality indicators are described briefly in the following:

Hypervolume Indicator

The hypervolume indicator (IH) [175], proposed by Zitzler and Thiele,

measures the hypervolume spanned by the non-dominated front and a

bounding point z that is at least weakly dominated by all points (see

figure 2.17).
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A
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point

minimize
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(B) > I

H
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Figure 2.17: Example of hypervolume indicator

The hypervolume is to be maximised. The hypervolume difference of

the solution set A can also be considered to a reference set R, then the

hypervolume indicator is defined as follows:

I−H = IH(R)− IH(A) (2.37)

However, as While et al. [177] showed with an increasing number of ob-

jectives the computational cost of this indicator grows exponentially.

Unary Epsilon Indicators

The unary epsilon indicator [173], proposed by Zitzler et al., exists in a

multiplicative (I1
ε ) and in an additive (I1

ε+) version. Both unary epsilon

indicators can be directly derived from their binary versions. Thus, in

the first step, the binary version of the Iε-indicator is defined as follows:

Iε(A,B) = inf
ε∈R+

{∀b ∈ B ∃a ∈ A|a �ε b} (2.38)

with the ε-relation (�ε) for the multiplicative case defined as

a �ε b⇔ ∀i ∈ N : fi(ai) ≤ ε · fi(bi) (2.39)
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The binary multiplicative epsilon indicator I(A,B) provides the minimum

ε-factor by which the objective vector associated with B can be multiplied

such that it is weakly dominated by the objective vector associated with

A, which represents the approximation of the Pareto front.

Correspondingly, for the additive case, the binary version of the Iε+-

indicator can be defined using the following relation:

a �ε+ b⇔ ∀i ∈ N : fi(ai) ≤ ε+ fi(bi) (2.40)

From the binary version, the unary indicators I1
ε = Iε(A,R) and I1

ε+ =

Iε+(A,R) can be derived by using the reference set R. The binary as well

as the unary epsilon indicators are to be minimised.

R2 and R3 Indicators

The I1
R2 and I1

R3 indicators [176], proposed by Hansen and Jaszkiewicz,

are based on a set of utility functions. A utility function u is defined as

a mapping from the set Rn of the n-dimensional objective vectors to the

set of real numbers, in short:

u : Rn 7→ R (2.41)

If the decision maker’s preferences are given as parametrised utility func-

tion uλ with λ1, ..., λn ∈ Λ as vector of weights, the binary quality indi-

cators IR2 and IR3 can be derived from this family of utility functions as

follows:

IR2(A,B) =

∑
λ∈Λ u

∗(λ,A)− u∗(λ,B)

|Λ|
(2.42)

IR3(A,B) =

∑
λ∈Λ[u∗(λ,B)− u∗(λ,A)]/u∗(λ,B)

|Λ|
(2.43)

where u∗ is the maximum value reached by the utility function uλ with

the weight vector λ on the solution set A, in short:

u∗(λ,A) = max
z∈A

uλ(z) (2.44)

From the binary indicators, the unary indicators I1
R2 and I1

R3 can be

derived using a reference set, i.e. I1
R2(A) = IR2(A,R) and I1

R3(A) =
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IR3(A,R).

For the utility function uλ there are several options. Often a weighted

linear function, the nonlinear weighted Tchebycheff function or the com-

bination of both the augmented Tchebycheff function is used.

Remarks on Quality Indicators

In some of the discussed approaches reference points or reference sets need

to be chosen. Based on the research of Knowles et al. [174] the following

guidelines can be derived for finding such reference points or sets:

Finding reference points: If the bounds of the objective space are

known, use these as reference points. Otherwise, all solution sets can be

combined and then the ideal and Nadir points can be computed. The

found ideal or nadir point can then be shifted until it strictly dominates

all points in the solution sets.

Finding reference sets: If the Pareto front is known, use it as refer-

ence set. Otherwise, a reference set from the literature can be chosen,

if it is known as good approximation of the Pareto front. Also the 50%

attaintment surface of random search can be used, i.e. half of all points

in the decision space will weakly dominate this surface. However, some

software tool is needed to generate this.

As final remark, it can be stated that due to the fact that each quality

indicator takes different preference information into account, no ‘best’

quality indicator can be highlighted. Knowles et al. recommend to take

multiple quality indicators into account to get the most information. Be-

sides, the selection of reference points or reference sets has an influence

on the quality indicators. For further information about the presented

quality indicators see [174].

2.6 Summary

In this chapter the theoretical foundations of the thesis were discussed

that should enable the reader to get the sufficient theoretical background
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information that is required to understand the following chapters of this

thesis. Furthermore, these basics should help to understand the decisions

that will be made later in the implementation of this thesis (see chapter

4).

In the first step, the basic idea of Wireless Sensor Networks (WSNs)

was introduced starting with the various application areas of WSNs, the

hardware components of the sensor nodes and the distributed network

architecture of WSNs. Due to the fact that MANETs and WSN are

often mentioned in the same breath, afterwards, the differences between

MANETs and WSNs were elaborated for a clear distinction between both

network types. Moreover, the unique constraints and challenges of WSNs

were discussed that need to be considered in the research area of WSNs.

Subsequently, the basic security requirements of WSNs were emphasised

that should be taken into account for a secure WSN.

In the next step, the terms of trust and reputation were introduced, high-

lighting the difference between hard and soft security. Afterwards, the for-

mal notion of trust, uncertainty, transitivity of trust, multidimensionality

of trust and reputation were presented. Subsequently, different classes of

trust were discussed as well as the meaning of TnR in WSNs.

Due to the fact that routing in WSNs can be treated as COP, in the next

step, the fundamental concepts of COPs were introduced. Starting with

a basic introduction to optimisation problems and the general phases of

the optimisation process, COPs were formally introduced. After that, the

problem of complexity was discussed and basic algorithms were presented

that can be used to solve COPs.

COPs were extended to MCOPs, i.e. optimisation problems consider-

ing multiple (conflicting) objectives at the same time, which are subjects

to certain constraints. MCOPs were formally introduced and the idea

of Pareto optimality was explained. To select a final solution from the

Pareto set, the concept of decision making was discussed, specifically the

approach of Multi-Criteria Decision Making (MCDM), covering some ba-

sic methods that are widely used for different decision problems.

In the next step, a closer look was taken on biologically-inspired algo-

rithms that can be applied to solve optimisation problems. A special
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focus was laid on Ant Colony Optimisation (ACO), a swarm intelligence

based metaheuristic, which can be applied to solve COPs. The covered

topics included the natural origin of ACO, the transition from natural

ants to artificial ants as well as the presentation of well known ACO al-

gorithms, such as AS, MMAS and ACS.

To be able to consider multiple (conflicting) objectives at the same time,

ACO was extended to MOACO, i.e. ACO-based algorithms that are ca-

pable of solving MCOPs. The main characteristics of MOACO algorithms

were discussed and a taxonomy was created in which existing, well-known

MOACO algorithms were classified. Besides, a selection of performance

metrics was introduced that can be used to compare solution sets of dif-

ferent MOACO algorithms.

In the following chapter 3, the application of ACO-based as well as

MOACO-based algorithms to the routing in WSNs will be discussed.







3

Application of Ant Colony Opti-

misation to the Routing in WSNs

Ants are good citizens, they place group

interests first.

Clarence Day (1874 - 1935)

In this chapter, the application of ACO algorithms to the routing in WSNs

is discussed. Therefore, in the first step, the general characteristics of the

routing in WSNs will be explained, including the basic routing challenges

in WSNs, a taxonomy of WSN routing algorithms and the basic require-

ments for WSN routing algorithms. Subsequently, in the second step,

the idea of ACO-based routing algorithms will be presented with a spe-

cial focus on WSNs. Starting with the basic idea of ACO-based routing

and its origin in wired networks, a special focus is set on the current

use of ACO-based algorithms in wireless networks such as MANETs and

WSNs. Afterwards, recent researches from the area of MOACO-based

routing algorithms will be discussed, which extend the idea of ACO-based

algorithms by considering multi-objectives at the same time during the

routing process. Finally, the related works in the area of ACO-based and

MOACO-based routing algorithms will be summarised.

3.1 Routing in WSNs

Due to the discussed resource constraints of the sensor nodes and the use

of the wireless channel as communication medium for the exchange of

information, the routing in WSNs is quite challenging. In the following,

the characteristics of the routing in WSNs are discussed. After that, a

taxonomy of WSN routing algorithms is presented that can be used to

classify routing algorithms regarding certain criteria. Derived from the

routing characteristics some routing requirements are presented that can

89
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be used as guidelines for ‘good’ WSN routing algorithms. Finally, attacks

on the network layer are presented, a routing protocol developer should

be aware of.

3.1 Characteristics of the Routing in WSNs

Because of the sensors’ energy constraints the radio range of each sensor

node is limited. Consequently, the sensor nodes need to cooperate with

each other to forward packets via multiple hops from a source to a remote

destination node. Therefore, WSN routing protocols should be capable

of forwarding packets via multiple hops.

Due to the use of the wireless channel, which is a broadcast medium

shared by all radio devices, additional challenges arise that are affecting

the routing in WSN: for example, if multiple devices are sending data at

the same time, packet collisions or interference can occur. Furthermore,

interferences from the environment can attenuate the wireless signal so

that it cannot be received correctly at the receiver side. This can be

either unintentional due to environmental conditions or intentional due

to adversaries that try to influence or jam the signal. Though, the basic

negotiation of the medium access as well as the retransmission of packets

in the case of transmission errors should be handled by the MAC-Layer,

such as IEEE 802.15.4 [178] or IEEE 802.11 [179], a WSNs routing proto-

col should be capable of re-routing packets around problematic network

regions.

Also from the security point of view the routing in WSNs has several

challenges:

For instance, due to the fact that the wireless channel is a broadcast

medium, everything that is transmitted can be simply eavesdropped by

any adversary that is in radio range. Also the modification or injection

of packets is a problem in this sort of environment. Depending on the

application, cryptographic measures can be used, on the one hand, to

achieve confidentiality so that data packets cannot be read in plain text

and, on the other hand, to achieve message integrity e.g by using message

digests.

Also the use of multiple hops to reach a remote destination is a security
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challenge because an adversary could compromise a sensor on a route or

add additional sensors to the network to capture the network communi-

cation. Directly related to this area are insider attacks, i.e. compromised

nodes that are seen as ‘valid’ nodes by their neighbours, but which are

misbehaving in some way. While some sort of authentication mechanism

should be used to ensure the validity of nodes’ identities, TRSs can be used

as counter measure against insider attacks by providing trusted routes.

The discussed security challenges should also be taken into account while

designing secure routing protocols for WSNs.

Additionally, the performance as well as the reliability of a routing proto-

col plays an important role, particularly if time-critical applications are

considered. In general, the end-to-end delay as well as the Packet De-

livery Ratio (PDR) are important metrics that can be used to evaluate

WSN routing protocols.

3.1 Taxonomy of WSN Routing Algorithms

Routing algorithms for WSNs have several characteristics that depend on

the specific application area they are being used in, or more precise the

services they are providing. The main characteristics of WSN routing

algorithms are discussed in the following (cf. [2, 180–182]):

Proactive vs. Reactive Routing: In a proactive – also referred to as

table-driven – routing approach, routing information is periodically mon-

itored and then distributed among the network nodes. A disadvantage of

this approach is that the amount of data caused by the update of routing

information is rather high so that additional routing overhead is created.

Furthermore, the reaction to topology or traffic changes is slow because

new routing information needs a while to spread out in the network. An

example of a well-known proactive routing protocol is Optimised Link

State Routing Protocol (OLSR) [183].

In a reactive – also referred to as on-demand – routing approach, routes

are only established on request. In the meantime the nodes are idle in

terms of routing functionality so that energy can be saved. Normally, in

reactive approaches the discovery of a path is implemented with some sort
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of broadcasting functionality. A disadvantage of this approach is that the

latency is increased because each path has to be established before any

data can be sent. Also extensive flooding can become a problem in dense

networks leading to congestions. Examples of famous reactive routing

protocols are Ad hoc On-Demand Distance Vector Routing (AODV) [184]

and Dynamic Source Routing (DSR) [185].

Hybrid routing approaches try to combine the advantages of proactive and

reactive routing: initially, some known routes are distributed proactively,

while later on demand new routes are added reactively.

Due to the frequently changing topology and the data on request function-

ality reactive or hybrid routing approaches are preferred for most WSN

application scenarios.

Centralised vs. Distributed Routing: In a centralised routing ap-

proach a central entity manages the routing table of all sensor nodes in

the network. Based on the global view of the network, the central point is

responsible for distributing routing information to the nodes in the net-

work so that all routing decisions within the network rely on the central

entity. A disadvantage of this approach is that the central entity is a bot-

tleneck and single point of failure, i.e. if the central entity fails or cannot

be reached, no routing decisions can be taken and thus, no data can be

transferred at all. Furthermore, the routing updates sent by the central

entity are causing overhead and delays.

On the contrary, in a decentralised network the nodes can take decisions

autonomously so that the node itself is responsible for any sort of rout-

ing decisions. The routing tables, which normally contain only routing

decisions for the neighbouring nodes, are managed locally at each node.

The decentralised approach is often preferred for WSNs because of the

better scalability and the robustness in case of node failures. In this thesis

only the decentralised approach is considered.

Static vs. Dynamic Routing Tables: When static routing tables are

used, network connections are a priori defined by optimising the network

regarding some cost-function; such as end-to-end delay, number of hops



3.1. ROUTING IN WSNS 93

etc.; in an offline fashion. Once the routing entries of the routing table

are created, these connections are used for the entire lifetime of the net-

work. However, the static routing table approach has some disadvantages,

e.g. a priori knowledge is required for the creation of the routing table.

Moreover, static routing tables cannot react to topology or traffic changes

during the lifetime of the network.

In contrast, dynamic routing tables are created based on current events

that are occurring in the network, i.e. traffic changes and topology

changes. During the lifetime of the network, those routing entries can

change and adapt to new situations in the network, i.e. the routing ta-

bles are updated in an online fashion.

Data Centric vs. Address Centric Routing: In address centric

routing the routing is based on the fact that communication should take

place between two endpoints identified by unique addresses, i.e. data

packets are transferred from one addressable node, the source, to another

addressable node, the destination.

In contrast, in data centric routing the focus is set on the data itself,

i.e. it does not matter from which endpoint the data comes, but rather

just to get the data from some node in the network to answer the posed

question. In most cases queries with attribute-value pairs are used to get

named data from the network.

Although in WSNs address centric routing can be used for several appli-

cation scenarios, the data centric routing approach is often better suited

because the sink that poses the question does not necessarily know which

source can answer the question. Consequently, it is impossible for the

sink to address the source directly that can answer the posed question.

Flat vs. Hierachical Routing: In hierarchical routing an additional

layer of abstraction is added to the routing, normally by forming clusters.

Among the nodes in the cluster a cluster head is chosen that is responsi-

ble for the nodes in the cluster and can be used for aggregation of data

of the cluster’s nodes. The transmission of data between two clusters

can either be done via gateway nodes, i.e. nodes of two different clusters
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which are neighbours, or via cluster heads. While for node to cluster head

communication the radio range can be reduced to save energy, for cluster

head to cluster head communication the radio range must be larger, re-

sulting in a higher energy consumption. Often, cluster rotation is used,

i.e. a new cluster head is elected after a while to distribute the higher

energy consumption. Although, an hierarchical routing approach has the

advantage that data aggregation leads to less transmissions and therefore

to less energy consumption, the cluster heads require significantly more

energy for managing the cluster.

In flat routing each network node is a peer with exactly the same func-

tionality as all other nodes in the network. Due to the fact that all nodes

have the same capabilities, single node failures do not have a huge impact.

Moreover, the management and thus overhead is low because each node

just needs to communicate with the nodes in its neighbourhood.

Single Path vs. Multiple Paths: In single path routing approaches,

only a single path between the source and the destination is used. In gen-

eral, this single path is the optimal path between source and destination,

which provides the best performance regarding the chosen criteria.

In contrast, in multi path routing approaches multiple paths are used con-

currently between the source and the destination. In most cases, multiple

paths are found in the route discovery process by using some sort of flood-

ing mechanism. The found paths can then be used to achieve a better

load distribution, a higher data throughput or a better failure recovery.

One-to-One vs. Many-to-One vs. Many-to-One: Additionally

to the common traffic patterns such as one-to-one, which is a simple

connection between a source and a destination, and one-to-many traffic,

i.e. one source is multicasting to a group of destination nodes, in WSNs

the many-to-one traffic pattern is used, i.e. multiple sources are reporting

events to a single sink that is interested in certain information.

Quality of Service vs. Best Effort: Depending on the application

scenario the routing algorithm may have certain demands in terms of
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Quality of Service (QoS). This is particularly important if real time data,

such as audio or video streams, are transferred. In other cases a best

effort service is sufficient, i.e. the delivery of packets without guarantee.

It is clear that the discussed routing characteristics are neither compre-

hensive nor mutually exclusive, but this overview can highlight the most

important features and design choices that need to be considered when

developing a routing protocol for WSNs.

3.1 WSN Routing Requirements

The described characteristics of WSNs leads to several requirements that

should be taken into account for successful WSN routing algorithms (cf.

[186]):

• Optimality: a (near) optimal path should be found between any

source-destination pair regarding the desired criteria such as fastest

transmission or most secure transmission. If no optimal path can

be found between source and destination at least one path should

be found (if the network is not partitioned) to guarantee the reach-

ability within the network.

• Robustness: the routing algorithm needs to be robust so that

unforeseen situations such as failures caused, on the one hand, un-

intentionally by nodes’ movement, environmental changes or trans-

mission issues and, on the other hand, failures caused intentionally

by adversaries, cannot harm the overall functionality of the routing.

• Distributed: ideally the routing algorithm should be distributed

so that no central entity is required. A flat hierarchy of nodes as

peers make the routing decentralised.

• Self-organised: each node should work as a simple agent that can

join the network to cooperate in the overall structure of the network.

• Simplicity: the routing algorithm should be simple in terms of

low resource utilisation at each node and in terms of low protocol

overhead.
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• Scalability: due to the fact that in WSNs the number of sensors

may become high, e.g. a few hundreds, the routing algorithm should

be well-performing even when the amount of nodes is increasing.

• Adaptivity: the routing algorithm needs to be flexible so that it

can adapt to a variety of different network situations in terms of

network topology, but also data traffic changes. Both may even

change during the network’s lifetime.

• Multi-hop: due to the limited radio range of each sensor node the

routing algorithm should be capable of making use of multiple hops

to transfer a data packet between the source and the destination.

• Multipath: the routing algorithm can use multiple paths so that,

on the one hand, the data transfer rate can be increased and, on

the other hand, the data load is spread among the network nodes.

• Energy efficiency: due to the fact that the sensor nodes are re-

stricted in terms of available energy resources, the routing algorithm

itself should take the energy consumption into account.

• Security: the routing algorithm should also consider security mech-

anisms to mitigate attacks from adversaries. This is particularly im-

portant because data is transferred via wireless broadcast medium.

3.1 WSN Network Layer Attacks

Basically, attacks on WSNs can be classified into one or more of the

general categories shown in table 3.1 (cf. [28, 30]).

As stated before, routing in WSN is one of the crucial services that should

be protected. Therefore, in the following the most important attacks on

the network layer in WSNs will be discussed:

There are several attacks that can be launched against the network layer

in WSNs. Most of the attacks on the network layer can be classified into

one of the following categories:

• Information disclosure: Disclosure of routing information by passive

or active participation in the WSN
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Attack Description
Outsider vs. Insider
attack:

In an outsider attack , a malicious node harms the
WSN without being part of it. In contrast, in an
insider attack the malicious node harms the WSN
as (authorised) participant of it.

Physical vs. remote
attack:

In a physical attack an adversary physically accesses
the sensor node that should be harmed by tamper-
ing or destroying the sensor’s hardware. In contrast,
a remote attack is implemented from a (large) dis-
tance, e.g. by emitting a high-energy signal to inter-
rupt the communication.

Passive vs. active at-
tack:

In a passive attack an adversary just eavesdrops or
monitors the communication within the WSN. In
contrast, in an active attack the adversary directly
influences the communication in the WSN by modi-
fying, fabricating or suppressing packets.

Laptop-class vs. mote-
class attack:

A mote-class attack is an attack against a WSN that
is implemented from a mote, i.e. the attacking de-
vice is of same type of hardware as the sensor nodes
that are targeted by the attack. In contrast, in a
laptop-class attack , the adversary utilises a device
which is superior, in terms of computational power
and transmission power, to the sensor nodes of the
attacked network.

Table 3.1: General types of attacks in WSNs

• Physical attack : Unauthorised access to sensor node through phys-

ical intervention

• Energy exhaustion: Intentional waste of energy resources by adver-

saries, e.g. by requesting unnecessary routes

• Denial of service: Flooding of the network with unnecessary routing

requests

• Spoofed, altered or replayed routing information: Changing the rout-

ing behaviour by spoofing, altering or replaying routing information

• Routing table overflow : Flooding of the routing table by creating

multiple non-existing routes to make the routing algorithm collapse

• HELLO flood attack : Intentionally inject bogus HELLO messages

to remote nodes to confuse the routing protocol

• Sybil attack : Creating a large number of pseudonymous entities to

gain a greater influence on the network
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• Sinkhole/ blackhole attack : Trying to obtain all network packets in

a certain network area by ‘looking attractive’ to surrounding nodes

• Wormhole attack : Making to nodes believe that they are neigh-

bours, though they are far apart by tunnelling packets using a low

latency link

• Selective forwarding : Forwarding only certain packets in the net-

work to save resources

For an in-depth study of WSN network layer attacks see [30,187–192].

3.2 Routing Based on Ant Colony Optimisation

As highlighted before, the desired key factors for WSN routing algorithms,

such as self-organisation, robustness, adaptivity and scalability, can also

be observed in nature in several contexts. Due to the fact that routing

algorithms can be viewed as COPs, it seems to be a reasonable option to

apply BIAs to the routing problem in WSNs. One of the most promising

approaches of BIAs are ACO-based algorithms, which have been applied

successfully to several COPs, such as the TSP, the knapsack problem,

scheduling problems etc. As routing can be seen as COP, ACO-based

algorithms can also be used to solve the problem of routing in WSNs.

To understand the growing interest in ACO-based routing algorithms

in the following, first, a small introduction to the basic idea of ACO-

based routing algorithms in WSNs is given. Afterwards, related works

in the area of ACO-based routing algorithms are discussed, followed by

MOACO-based routing approaches, i.e. ant-based approaches that take

the optimisation of multiple-objectives into account.

3.2 Basic Idea of ACO-based Routing Algorithms in WSNs

For the application of ACO-based algorithms in the area of WSN routing

there is some sort of mapping required, i.e. how the terms used in ACO

for COPs can be transferred to the area of routing: first, the ants are

modelled as data packets on the network layer. The moving of an ant

from one node to another node is modelled as the sending of an ant
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packet from one node to another node. The deposition of pheromone

is done by modifying one or multiple pheromone matrices. Due to the

fact that WSNs are acting completely distributed there are no central

pheromone matrices, instead each sensor node needs to manage its own

pheromone matrices for its neighbouring nodes. Furthermore, to avoid

loops each ant needs to memorise the nodes it has visited already. This is

done by storing a list of visited nodes in each ant packet at each time an

ant arrives at the next node. The choice of the next hop is implemented

on the network layer by applying the probabilistic rule provided by the

ACO-based algorithm.

The basic idea of ACO-based routing algorithms in WSNs, i.e. how data

packets can be transferred through WSN by using ants, is depicted in

figure 3.1. The general process is as follows:

If a data packet should be transported from the sink to the source, but

the sink does not have a route to the source yet, forward ants are sent out

to discover new routes in the network (see 3.1a). Each forward ant moves

by a probability rule through the network, i.e. each ant chooses next hops

randomly biased by the pheromone along the path. The ant appends each

visited node to the list of visited nodes, which is stored in the ant packet.

As a result, at any time each ant is aware of the route it took so far. Ants

can die due to interferences or running into a loop (see 3.1b)1. When

all ants arrived at the destination2, i.e. when the iteration is over, the

‘optimal’ route regarding a cost function is chosen from all routes received

by the ants (see 3.1c). Depending on the chosen approach, one or more

ants are converted to backward ants and sent back on the route they came

from (see 3.1d). During the return, each ant places pheromone along the

route it is using. In the following iterations this pheromone influences the

forward ants that are sent out for discovery. To improve the quality of

routes and to remove broken routes from time to time ants can be sent

out in a new iteration.

1Another option would be that the ants that run into a loop would simply forget this
part of the route and continue with the path discovery. However, to obtain a shorter
end-to-end delay the dying of single ants is preferred in the presented approach.

2When ants are dying, not all ants can reach the destination so it is reasonable
to implement some other mechanism e.g. a timer that completes the iteration after a
certain time.
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Sink

Source

Forward Ant

(a) Forward ants are sent from the sink
towards the source to discover a route

Sink

Source

Forward Ant

Ant 
died

(b) Forward ants are randomly choosing
next hops biased by pheromone. Ants
may die, if they run into a loop or due to
interferences

Sink

Source

Forward Ant

(c) Of all forward ants reaching the des-
tination, the ‘optimal’ path regarding a
cost function is chosen

Sink

Source

Backward Ant

(d) One or more forward ants are con-
verted to a backward ant, which is then
sent back on the same way the forward
ant came to the sink.

Figure 3.1: Basic idea of MOACO-based routing algorithms
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In the following the related works in the area of ACO-based and MOACO-

based routing are discussed, starting from its origin in wired networks to

wireless networks such as MANETs and WSNs.

3.2 Wired Networks

The first ideas of using ACO-based algorithms for the routing in telecom-

munication networks emerged at the end of the Nineties. Due to the fact

that at this time the majority of telecommunication networks were wired,

first approaches dealt with applying ACO-based routing approaches to

wired networks. The ACO-based routing algorithms were applied to

circuit-switched as well as packet-switched telecommunication networks.

Due to the fact that since then there were at lot of improvements on these

first approaches, just for the sake of completeness the ‘great grandfathers’

of ACO-based routing are described in the following.

Circuit-switched Networks

One of the first ACO-based routing approaches in the area of circuit-

switched telecommunication networks was the Ant-based Control (ABC)

algorithm, proposed by Schoonderwoerd et al. [193]. The original idea of

this approach was to achieve a decentralised and adaptive control system

for the load balancing in circuit-switched telecommunication networks.

A small number of experiments were conducted to test the basic idea of

the proposed algorithm and as it showed some promising first results the

ACO-based routing idea was picked up by other researchers.

Packet-switched Networks

With the huge growth of the Internet in the Nineties, packet-switched net-

works came to the fore. Dorigo and Di Caro [194] proposed with AntNet

one of the first ACO-based routing approaches for packet-switched net-

works. The goal of the approach was to create a new adaptive routing

algorithm for packet-switched communication that is robust and shows

good performance. Simulations were conducted to compare AntNet to

five (at this time) state-of-the-art shortest path algorithms (OSPF [195],

BF [196], SPF [197], SPF 1F [197] and Daemon, an approximation of an

ideal algorithm). The simulation results showed that AntNet was always
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among the best performing algorithms. In contrast to the other algo-

rithms, AntNet showed a robust behaviour by rapidly reaching a stable

level of performance. As one of the first ant-based algorithms for packet-

switched communication networks, AntNet was often used as a starting

point for following researches and also for comparison purposes.

Almost at the same time Subramanian et al. [198] proposed two rout-

ing algorithms that are based on ACO. The first algorithm targets at

telephone call routing in telephone networks with symmetric path costs,

while the second algorithm is a multi-path routing algorithm for data net-

works with symmetric or asymmetric path costs. Convergence theorems

for both algorithms were presented as well as an empirical evaluation.

The simulation results show that the proposed algorithms provide good

results compared to Distance Vector (DV) and Link State (LS) routing

protocols.

Lu et al. [199] proposed an adaptive ant-based dynamic routing (ADR)

algorithm for packet-switched wired communication networks to improve

the QoS in the network and to reduce congestions. The algorithm is

based on the idea of ACO. Simulations are conducted to compare ADR

to AntNet [194]. The simulation results show that ADR outperforms

AntNet [194] in terms of less delay and higher throughput, while having

faster convergence.

3.2 Wireless Networks

With the spreading of wireless networks, the focus of research shifted from

ACO-based routing for wired networks to the domain of wireless networks.

At the beginning of the twenty-first century MANETs emerged as one of

the pioneering technologies in this domain for which ACO-based routing

algorithms were adapted and evaluated. A little later first applications of

ACO-based routing algorithms for WSNs were proposed.

In the following, a selection of important related researches in the area

of ACO-based routing algorithms for MANETs as well as WSNs are dis-

cussed.
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ACO Routing Algorithms in MANETs

The idea of using ACO-based algorithms for the routing in MANETs

matured during the last years so that there is a huge amount of existing

researches that deal with this topic. In the following a selection of those

approaches is discussed:

Güneş et al. [200] present the Ant-colony-based Routing Algorithm

(ARA), an on-demand routing algorithm for MANETs. The main goal

of this ACO-based routing approach is to reduce the overhead of rout-

ing. The simulation results show that ARA performs almost as good as

DSR [185], while outperforming AODV [184] and DSDV [201]. An ad-

vantage of ARA is its small routing overhead, which is equal or smaller

than the DSR routing overhead.

Marwaha et al. [202] propose Ant-AODV a hybrid routing technique for

MANETs that is combining the on-demand capability of AODV [184]

with a distributed topology discovery mechanism based on ant-like agents.

The simulation results show that Ant-AODV can provide a low end-to-

end delay and a high connectivity compared to AODV [184], which make

Ant-AODV suitable for the transmission of real-time data and multime-

dia content. However, the low end-to-end delay and high connectivity

comes with the cost of higher overhead caused by the ants. Although the

goodput is almost the same as for AODV [184].

Hussein and Saadawi [203] discuss in their paper the Ant Routing Algo-

rithm for Mobile Ad-hoc networks (ARAMA), which is a ACO algorithm-

based routing approach considering the optimisation of more than one

QoS parameter to achieve good network performance. The routing is

based on a local normalised node index that is a weighted sum of the

chosen optimisation parameters such as number of hops and remaining

energy. The presented OPNet simulation scenario shows some interest-

ing results, although there is no comparison to existing MANET routing

algorithms. However, in a later paper Hussein et al. [204] test ARAMA

in five scenarios with two different configurations considering the number

of hops and the remain energy of the battery as input parameter. The

results of the experiments show that in comparison to AODV [184], in

ARAMA the first node failure time is higher. Also the maximum energy
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standard deviation is about 60% lower in the case of ARAMA. Finally,

the number of delivered packets is higher and the network failure time

is lower than in AODV so that ARAMA outperforms AODV [184] in all

tested scenarios.

Islam et al. [205] propose an on-demand routing algorithm called source

update for MANET that is based on the ACO metaheuristic. The pre-

sented approach considers the MANET routing problem as irregular ap-

plication of parallel computing. Thus, a parallelized version of the routing

algorithm is developed and executed on a network of workstations using

the Message Passing Interface (MPI). The experiment, considering all-

pair routing between the nodes, shows that the parallel algorithm based

on source update scales well for the increasing number of nodes and pro-

cessors. Best results, in terms of execution time, were observed when

the number of ants equals the number of processors. Another interesting

observation is that the percentage of communication among the ants is

much higher than the percentage of computation by each ant.

Heissenbüttel and Braun [206] present an ant-based routing algorithm for

large-scale MANETs in terms of a large number of nodes and a huge

coverage area. Before the ant-based routing algorithm is used the Topol-

ogy Abstracting Protocol (TAP) is applied to obtain ‘logical routers’ and

‘logical links’ (can span multiple hops). On top of this overlay structure

Mobile Ants Based Routing (MABR) is run to determine logical paths.

Finally Straight Packet Forwarding (SPF) is used to transmit packets

over such a logical link. However, in this paper the approach is discussed

theoretically only; simulations were not conducted.

Baras and Mehta [207] propose the ant-based routing approach Proba-

bilistic Emergent Routing Algorithm (PERA) for MANETs. In simula-

tions PERA was compared to AODV [184] regarding throughput, goodput

and end-to-end delay. The simulation results show that while the end-to-

end delay was rather low for PERA, AODV [184] had a higher goodput

particularly for scenarios with high mobility. The throughput for both al-

gorithms was almost the same, though PERA performce slightly weaker.

Jawahar [208] proposes a probabilistic multi-path routing algorithm for

MANETs inspired by the colony of harvester ants observed in nature. The
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main focus of the approach is to optimise the following factors: routing

efficiency, congestion avoidance and load balancing. The proposed routing

is based on the pheromone count of a route which is defined as route

efficiency metric (i.e. the product of all node congestion values of all

intermediate nodes between source and sink) by the power of the length

of the route. The presented experiment shows that in comparison to

DSR [185], the presented approach has a similar performance in terms

of delivery ratio and average hops, while the package overhead is higher.

However, the congestion and network load is better for the new ant-based

approach.

Zheng et al. [209] discuss a novel ant-based distributed route algorithm

for ad hoc networks (ADRA). For their algorithm, the quality of the link

as well as congestion is taken into account. To mitigate the impact of

congestions an anti-ant is introduced that can be sent by intermediate

nodes in the direction of the upstream to reduce the pheromone of the

route, if a certain threshold is reached. The simulation results show that

in contrast to DSR [185], the novel ADRA approach has a lower end-to-

end delay. For dynamic networks ADRA performs better than DSR [185]

in terms of a better packet delivery ratio, while the overhead in ADRA is

less than in DSR [185].

Di Caro [210] discusses in his dissertation ACO and its application to

adaptive Routing in telecommunication networks. This covers a wide

spectrum of different applications presented by four different routing al-

gorithms: two delivering best-effort traffic in wired IP networks, one that

deals with QoS traffic in Asynchronous Transfer Mode (ATM) networks

and one for best-effort traffic in MANETs. The two wired IP based algo-

rithms were extensively tested and compared to popular state-of-the-art

algorithms as well as the MANET approach, which is however still un-

der development. For the QoS approach no results are reported because

it has not been fully tested yet. In general, all tested ACO-based algo-

rithms provide good results, particularly for the wired IP networks the

ACO-based algorithms, which outperform the state-of-the-art-algorithms

or perform on a similar level.

Di Caro et al. [136, 211, 212] propose AntHocNet a routing algorithm for

MANETs that is based on the idea of ACO. The new approach is a hy-
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brid algorithm that combines reactive components (for the path setup)

and proactive components (for the path maintenance): while in the ini-

tial phase a purely ant-based approach is used to find a path between the

source and the destination, for the path maintenance and improvement a

combination of path sampling and slow-rate pheromone diffusion is used.

To update the routing information the sampled information is distributed

by ants using a special bootstrapping mechanism. The simulation exper-

iments show that in comparison to AODV [184], AntHocNet has a better

performance in terms of delivery ratio, average end-to-end delay and aver-

age jitter. The measured communication overhead is comparable between

both algorithms.

Ahmed [213] proposes a routing protocol for MANETs that combines

ant colony behaviour and queuing network analysis to evaluate end-to-

end packet delay. A small experiment is conducted to test the proposed

algorithm. Though the results show that the algorithm can deal with the

tested dynamic mobility models, a general statement about its use cannot

be made due to a missing comparison to other existing algorithms.

Kamali and Opatrny [214] present in their paper a Position based Ant

Colony Routing Algorithm (POSANT) a new reactive routing algorithm

for MANETs that combines the idea of ACO and the use of informa-

tion about the nodes’ positions as heuristic values to increase the routing

efficiency. Additionally POSANT is developed as multipath routing al-

gorithm, in contrast to most of the other position-based algorithms. The

simulation results show that POSANT has a higher delivery rate with a

shorter average packet delay than GPSR [215]. Furthermore, POSANT

shows a faster stable behaviour in comparison to ANTNET [194].

In his thesis Ducatelle [216] considers an improved version of AntHocNet

[136], an ACO-based hybrid approach that is combining reactive and

proactive mechanisms. In contrast to the previous version of AntHocNet,

multiple routes are set up in the reactive route setup process. Further-

more, a special mechanism is added that make ants choose as first hop

only a node that has not been visited yet by another ant. This results

in the creation of more disjoint paths and thus, in a more robust routing

in the case of failures. However, to reduce the overhead in later experi-

ments the reactive routing setup was restricted to find only a single route,
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while for the proactive route maintenance multiple routes are obtained.

Several simulations were conducted in different environments and evalu-

ated regarding several performance metrics. The simulation results show

that AntHocNet can outperform important reference algorithms such as

AODV [184] and OLSR. Besides, some simulations in a realistic urban

environment were carried out as well as the implementation of AntHocNet

in a real world testbed is discussed.

Woo et al. [217] propose an ant-based routing algorithm for MANETs,

which is based on AntHocNet [136]. The main goal of the proposed rout-

ing algorithm is to support multipath routes and to reduce the overhead

that is required for the management of the ants. The simulation results

show that the proposed routing algorithm can achieve a faster end-to-end

delay and an improved packet delivery ratio with a reasonable control

overhead in comparison to AntHocNet so that it outperforms AntHocNet

for all tested metrics, particularly when the mobility of the nodes is high.

Liu et al. [218] propose a parallel ant colony algorithm (PACO) to estab-

lish multiple paths between a source and a destination node to improve

the packet delivery ratio. The results of the simulations show that PACO

reduces the route discovery latency and the end-to-end delay while provid-

ing a high connectivity. In the simulations PACO outperforms the routing

protocols AODV [184] and DSR [185]. The parallel ant colony algorithm

improves the probability of route discovery and the constringency speed.

Asokan et al. [219] propose a QoS Dynamic Source Routing protocol based

on ACO, the so called Ant DSR protocol (ADSR). ADSR is a routing pro-

tocol that takes three QoS parameters into account namely delay, jitter

and energy. In the simulations ADSR is compared to DSR [185] regard-

ing several performance metrics such as end-to-end delay, throughput,

routing overhead, jitter and residual energy. The simulation results show

that ADSR outperforms DSR [185] in terms of delay, energy, jitter and

throughput.

Yu et al. [220] propose a new hybrid routing algorithm for MANETs that

is based on ACO, the so called ACO-AHR algorithm. It uses a hybrid

approach in terms of combining a reactive path setup with proactive path

probing and maintaining mechanisms. Simulations are conducted to com-
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pare ACO-AHR to AODV [184]. The results of the simulations show that

ACO-AHR outperforms AODV [184] in terms of end-to-end delay, packet

delivery ratio and throughput.

Sivajothi and Naganathan [221] propose AntHocNetM, a routing algo-

rithm based on ACO for multimedia communication in MANETs. Re-

active as well as proactive components are applied in the algorithm. A

reactive path setup is used to establish multiple paths between the source

and the destination, which are subsequently used for the transmission

of multimedia data. During the transmission the paths are monitored

and improved in a proactive fashion. The simulation results for different

scenarios show that AntHocNetM outperforms AODV [184] in terms of

end-to-end delay, packet delivery ratio and jitter.

Wang et al. [222] propose HOPNET, a hybrid routing algorithm for

MANETs based on ACO and ideas from the zone routing protocol (ZRP)

[223]. The algorithm is based on the idea that ants hop from one zone

to the next using local proactive route discovery, while reactive commu-

nication is used between neighbouring nodes. HOPNET is simulated and

compared to AODV [184] and AntHocNet [136]. The simulation results

show that HOPNET has a lower end-to-end delay, but higher control

overhead and lower packet delivery ratio than AODV [184]. In contrast

to AntHocNet [136], HOPNET performs much better, particularly for

large networks.

Attia et al. [224] present two routing algorithms for MANETs that are

inspired by ACO, a Hybrid Multi-Ant routing algorithm (HMAnt) and a

Hybrid Multi-Ant algorithm with QoS provision (HMAnt-QoS). HMAnt

utilises multiple paths that are established reactively, while their main-

tenance is done proactively. HMAnt-QoS additionally deals with certain

QoS requirements of the incoming traffic. The simulation results show

that HMAnt outperforms AODV [184], AntNet [194] and AntHocNet [136]

in terms of end-to-end delay and packet delivery ratio, while having an

acceptable routing overhead. HMAnt-QoS achieves the goal of providing

paths that fulfil the request QoS constraints for real time applications.

Kadono et al. [225] propose an ACO-based routing algorithm for

MANETs incoporating GPS. The focus of the routing approach is the
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robustness of paths which is evaluated by each ant using GPS information

of visited nodes. Corresponding to the degree of robustness pheromone

is deposited. Furthermore, a prediction mechanism based on GPS in-

formation is used to predict possible disconnections. Based on the pre-

diction pheromone will be transferred from links that are likely to be

disconnected to other links so that alternative paths can be found more

quickly. The simulation results show that in comparison to LAR [226]

and AntHocNet [136] the proposed algorithm provides a higher packet

delivery ratio with lower communication costs.

ACO Routing Algorithms in WSNs

Lately, there have also been several researches in the area of WSNs that

make use of ACO algorithms for routing purposes. A selection of inter-

esting approaches is presented in the following:

Zhang et al. [227] show in their paper why existing ACO-based algo-

rithms do not work well for WSNs. Subsequently, three new ant-routing

algorithms; Sensor-driven and cost-aware ant routing (SC), Flooded for-

ward ant routing (FF) and Flooded piggybacked ant routing (FP); are

presented. The simulation results show that the proposed ant-based al-

gorithm perform well and each of them has certain advantages: while SC

is energy efficient, FF has shorter delays and FP has the highest success

rates.

Camilo et al. [228] present the Energy Efficient Ant-Based Routing Algo-

rithm (EEABR), a WSN routing protocol based on ACO and optimised

regarding the energy constrains of WSNs. In EEABR paths are optimised

regarding the distance and the energy level. Simulations are conducted

in which EEABR is compared to the basic ant-based routing algorithm

(BABR) and the improved ant-based routing algorithm (IABR). In com-

parison to BABR and IABR, EEABR performs better in the static as

well as in the mobility scenario in terms of minimising the communica-

tion load, while maximising the energy savings. However, due to the fact

that EEABR is not compared to well-known routing protocols it is hard

to say whether the presented results are significant.

Chen et al. [229] propose an improved ant-based routing algorithm for
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WSNs that should overcome the flaws of conventional ant-based data-

centric routing algorithms, such as dead-locks of forward ants or slow

convergence. An additional ant type is introduced, the so called search

ant, that provides prior information to following ants. To accelerate the

convergence of the algorithm a global pheromone update strategy is pro-

posed as well as a retry rule to avoid protocol dead-locks. Simulations

are conducted with a Java implementation, but only different scenarios

for the proposed routing algorithms are tested instead of comparing the

results to existing routing protocols.

Iyengar et al. [230] investigate in biologically inspired mechanisms and

associated techniques that can be used for the routing in WSNs including

ant-based approaches and genetic approaches. The mathematical back-

ground of biological computations in the area of WSNs is presented as well

as some ideas for a generalised routing framework for WSNs. However,

the paper has a survey-like character so that rather existing approaches

and ideas are discussed, but no experiments were conducted.

Ghasem Aghaeu et al. [231] present two adaptive routing algorithms based

on swarm intelligence: Adaptive Routing (AR) and Improved Adaptive

Routing (IAR). The originally for packet-switched communication devel-

oped routing algorithm [199] AR was slightly modified and combined with

the routing algorithm proposed in [227] to make it suitable for WSNs.

For IAR some modifications were made to the AR algorithm including

the addition of a coefficient that takes the cost between the neighbouring

node and the destination node into account. In simulations AR and IAR

were compared to Basic Ant Routing [194], Sensor-driven Cost-aware Ant

Routing, Flooded Piggybacked Ant Routing [227]. The simulation results

show that AR has a good performance and IAR an even better perfor-

mance in terms of low energy consumption, high energy efficiency and

less latency, while having a high success rate.

Wang et al. [232] propose ACLR, a novel adaptive intelligent routing

scheme for WSNs that is based on ACO. In contrast to other ACO-based

routing algorithm the search range of an ant is limited to a certain sub-

sets of neighbouring nodes for selecting the next hop. A new probability

transition rule, which is used by the ants to select the next hop, is in-

troduced that is based on the residual energy and the global as well as
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the local location information of the nodes. Simulations were conducted

in which ACLR was compared to Basic Ant Routing (BAR), Sensor-

driven Cost-aware Ant Routing (SCAR), Flooded Piggybacked Ant Rout-

ing (FPAR) [227] as well as IAR [231]. The simulation results show that

ACLR has a better performance in terms of energy consumption, energy

efficiency and packet delivery latency.

Ren et al. [233] propose a multipath routing approach based on Ant

Colony System [117] (MACS) for WSNs with the purpose of increasing

the overall lifetime of the network. The proposed routing algorithm is

compared to Directed Diffusion (DD) [234], ACS and Max-Min Ant Sys-

tem (MMAS). The simulation results show that MACS has the lowest

energy consumption compared to the other algorithms as well as the low-

est average transmission delay.

Wen et al. [235] propose a novel Energy*Delay model based on ant algo-

rithms (E&D ANTS) with the goal of providing a real-time data transmis-

sion service instead of maximising the lifetime of the network. A reinforce-

ment learning algorithm is used to train the model regarding the trade-off

between energy and delay. Simulations are conducted to compare the pro-

posed E&D ANTS algorithm to AntNet [194] and AntChain [236]. The

simulation results show that in the Energy*Delay comparison E&D ANTS

performs better than AntNet [194] and AntChain [236]. Furthermore, the

routing load for E&D ANTS is the smallest of all tested algorithms.

Okdem and Karaboga [237] propose an ACO-based routing algorithm for

WSNs consisting of stable nodes. To consider the nodes’ energy consump-

tion the heuristic value of the ACO-based algorithm is used to take the

energy consumption into account. Simulations were conducted to com-

pare the proposed routing algorithm to EEABR [228] using MICAz’ mote

specifications for the physical layer. The proposed routing approach out-

performs EEABR [228] in terms of a significant reductions of the energy

consumption. Furthermore, the ACO-based routing algorithm was im-

plemented on a small sized hardware component as a router chip. The

hardware implementation showed some promising results in terms of quick

response times of the router chip.

Hui et al. [238] propose an ACOs-based routing approach for WSNs con-
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sidering path delay, node energy and the frequency on which a node is

acting as router. The energy level of the nodes is expressed as heuristic

value. The main goal of the approach is a dynamic and adaptive rout-

ing behaviour that can effectively balance the power consumption in the

WSN to increase the overall lifetime of the network. The proposed rout-

ing algorithm was compared to EAR [239] and SPEED [240] regarding

average energy consumption and node operational time. The simulation

results show that the proposed ACO-based algorithm has the lowest av-

erage energy consumption and the highes node operational time for all

tested scenarios so that the life time of the network could be improved

significantly.

Saleem et al. [241] present an overview of recently proposed ACO-based

routing protocols for WSNs. Based on this a new ACO-based routing

algorithm for WSNs is proposed that takes delay, energy and velocity as

relevant routing features into account. The main goal of the proposed

algorithm is to improve the overall data throughput, e.g. for real-time

traffic, while the energy consumption of the routing should be minimised.

Furthermore, a reinforcement approach is used to get a superior optimal

decision and a loop avoidance mechanism is introduced to avoid dead-

locks. Although a simulation section is provided, the results are rather

limited to a special scenario and are not compared to other existing rout-

ing protocols. In [242] the basic idea of this approach is extended to

support multipath routing in WSNs with the goal of maximising the data

throughput, while minimising the data loss rate.

Wang et al. [243] propose EAQR, a new routing protocol for WSNs that

is based on ACO. The main goal of the proposed routing protocol is

the provision of QoS and a balanced energy consumption over the whole

network. The proposed algorithm takes the minimum path energy as well

as the distance in terms of number of hops into account. Furthermore two

heuristics are proposed: one for real-time (RT) traffic and the other for

best-effort (BE) traffic. Different simulations were conducted to test the

different variations of the algorithm and compare them to EEABR [228].

The simulation results show that EAQR outperforms EEABR [228]: a

lower delay for real-time traffic could be achieved and the network lifetime

could be increased.
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Saleem et al. [244] propose BIOSARP, a ACO-based routing approach for

WSNs based on a cross layer design. The link quality, the energy level and

the velocity are taken into account to find the optimal route. Additionally,

the signal strength, the remaining power and time stamp metrics are used

as information from the physical layer. The proposed routing protocol is

targeting the improvement of the overall data delivery ratio, particularly

for real time traffic. Simulations were conducted to compare BIOSARP to

RTLD [245], a protocol that considers the same parameters to make next

hop decisions in WSNs. The simulation results show that BIOSARP has

a higher delivery ratio than RTLD [245], but consumes a bit more energy.

Besides, a small test-bed scenario was created with 6 Telosb nodes. The

results of the experiment show that the simulated packet delivery ratio is

slightly higher ( 5%) than the delivery ratio measured in the test bed.

Jiang and Hong [246] propose the ACO-based Energy-Balance Routing

Algorithm (ABEBR) for WSNs to balance the energy consumption in

the network. A new pheromone update operator was introduced that

includes energy consumption and the number of hops into routing deci-

sions. Experiments were conducted to compare ABEBR to LEACH [247],

Directed Diffusion (DD) [234] and Flooding. The simulation results show

that ABEBR provides the lowest energy consumption rate for all tested

network scales. Also the lifetime of ABEBR networks is higher than that

of the compared algorithms.

Yang et al. [248] propose a multipath routing protocol (MRP) for WSNs

based on clustering and ACO. The goal of the routing approach is to

maximise the network’s lifetime and to reduce its energy consumption.

The proposed routing algorithm was compare to TEEN [249], MP [250]

and MACS [233]. The simulation results show that in comparison to the

other algorithms MRP could efficiently balance the energy consumption

so that the network’s lifetime could be increased significantly, while MRP

has the lowest energy consumption.

Okazaki and Fröhlich [251] propose the Ant-based Dynamic Zone Routing

Protocol (AD-ZRP), a routing protocol for WSNs that is based on HOP-

NET [222]. The proposed routing protocol combines the idea of ACO-

based routing with the utilisation of a dynamic zone-based approach. In

comparison to HOPNET [222], AD-ZRP uses dynamic zones to minimize
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the latency while reducing the network overhead. Furthermore, instead

of using two routing tables, one for intra and one for inter zone communi-

cation, in AD-ZRP only one routing table is used to reduce the complex-

ity. In the conducted experiments AD-ZRP was compared to the original

HOPNET [222] routing algorithm. The simulation results show that AD-

ZRP outperforms HOPNET [222] in terms of better data delivery ratio,

smaller routing overhead and a better congestion avoidance for dynamic

topologies.

3.2 Multi-objective Ant Colony Optimisation Algorithms for Routing

As the diversity of presented approaches has shown, the idea of us-

ing ACO-based routing algorithms for dynamic communication networks

seems to have become rather popular over the last years. In contrast, the

routing approaches that optimise multiple objectives simultaneously are

still rare when considering the ‘real’ MOACO-based approaches that are

not simply combining multiple objectives into a single objective function

as used in many other approaches e.g. [221,252–254] and a lot more.

A few researches that touch the research area of MOACO-based routing

are discussed in the following:

Cardoso et al. [165] are some of the first researchers that proposed to use

ACO algorithms for multi-objective network optimisation. The authors

propose a computational model named MONACO that is based on the

classic AS approach which was extended to support multiple pheromone

matrices, for each objective one matrix. Each ant, represented by a mes-

sage, chooses the next hop by a probabilistic rule that takes into account

the multiple pheromone values as well as a single heuristic information.

MONACO was implemented in C++ as proof-of-concept to test the gen-

eral idea. Small tests with 18 nodes and 27 edges as well as with 25 nodes

and 40 edges were conducted that show that the basic idea seems to be

working, although no further generalised conclusions can be drawn from

these small tests.

Sim and Sun [255] present in their paper the Multiple Ant Colony Opti-

mization (MACO) algorithm in which multiple ant colonies are used for

routing and load balancing. However, just the basic idea is discussed, but
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there are no simulation results presented.

In the closely related domain of multicast traffic distribution, Pinto et

al. [256] present a new ACO-based algorithm for the multicast traffic en-

gineering problem in networks that takes multiple objectives into account.

The proposed algorithm is inspired by the MOACS approach presented

by Baran et al. [164]. Three objectives are considered the cost of the

multicast tree, the average delay and the maximum end-to-end delay.

Experiments were conducted to test the proposed MOACS-inspired algo-

rithm as well as MMA [257] on a NTT network [258] with 55 nodes and

144 links. The simulation results show that MOACS is able to find 69.9

% of the best solutions in average, while MMA [257] found 42.1 %. In

proceeding researches [167, 259] the experiment was extended by consid-

ering additionally the maximum link utilisation of the tree as a fourth

objective. Furthermore, M-MMAS is presented, an MMAS-inspired [114]

approach, which is then tested and compared to the previously mentioned

approaches. The conducted experiments show that the MOACS found

better solutions in average than M-MMAS and MMA [257].

3.3 Summary

In this chapter, the application of ACO-based algorithms in the area of

WSNs routing was discussed. In the first step, the basic topic of WSNs

routing was presented, including the basic characteristics of the routing in

WSNs, a taxonomy of WSN routing algorithms as well as general require-

ments for the routing in WSNs. After that, some network layer attacks

were discussed that can be launched in WSNs to harm the network and

thus, should be considered when developing a WSN routing algorithm.

In the second section, related works that make use of ACO-based routing

algorithms were discussed, starting from the origin of ant-based routing

algorithms in wired networks to their extensions to the wireless domain,

particularly to the area of MANETs and WSNs. Finally, related works

that make use of MOACO-based routing algorithms were discussed.

Concluding, from the findings in the related works it can be said that the

use of ACO-based algorithms for the routing became popular over the

last few years, starting from the wired to the wireless domain. A general
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observation that can be made on the investigated related works is that

in most cases ACO-based routing algorithms outperform the well-known

routing approaches, such as AODV, DSR etc., in terms of end-to-end de-

lay and packet delivery ratio. On the other hand, ACO-based routing

is causing a higher control overhead in comparison to the other routing

protocols. This is often based on the fact that ACO-based routing algo-

rithms are mainly relying on unicast communication, while other routing

protocols, such as DSR, are for the most part based on broadcast mecha-

nisms. In contrast, in the area of MOACO-based routing algorithms only

a very few related works can be found. Consequently, the answering of

the posed research questions in this thesis can contribute to the body of

knowledge in this research area.







4

Implementation

Plan specifically so you can implement

flexibly.

Dallin H. Oaks (1932 - )

In this chapter, the implementation of the Multi-objective Ant Colony

Optimisation Routing Framework for WSNs (MARFWSN) and its re-

lated protocols will be discussed. First, the problem definition that is

precisely specifying the problem that should be solved in this thesis will

be presented. Afterwards, the used methodology and the basics of the

chosen simulation environment OMNeT++ [260] will be explained. Sub-

sequently, the implementation of the application layer and the network

layer will be discussed in detail. The latter includes an in-depth discussion

of MARFWSN as well as a DSR-based routing protocol, which is used for

comparison. Finally, the implementation chapter will be summarised.

4.1 Problem Definition

The main problem that is considered in this thesis is how the routing in

dynamic WSN networks1 can be optimised, while at the same time the

network can be protected against insider attacks.

In the pursued approach the routing in WSNs is considered as MCOP

taking several objectives, such as energy, duration and trust, into account.

While the energy objective is responsible for a long-lasting liftetime of the

WSN, the duration in terms of end-to-end delay aims at using the fastest

routes, resulting in quick response times. The trust objective is meant to

influence the finding of trustworthy routes so that misbehaving nodes are

preferably avoided in the routes. To solve the routing MCOP different

MOACO-based algorithms are examined for their suitability to optimise

1The term ‘dynamic’ in this context includes the joining and leaving of nodes and
temporarily unavailable nodes, rather than moving nodes because the nodes’ positions
are static in the considered scenarios.
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the routing in WSNs.

It is assumed that the MOACO-based algorithms have a similarly good

performance as existing WSN routing algorithms, while having slightly

more overhead due to the continuous use of unicast messages. At the

same time, it is expected that more trustworthy routes will be found due

to the consideration of trust as optimisation objective.

4.2 Methodology

Due to the fact that a physical deployment of sensor nodes make the

reproducibility of experiments too difficult and the use of an algebraic

analysis approach would have too many unrealistic and incomplete as-

sumptions about the WSN, in this thesis a simulation-based approach is

pursued to test the proposed Multi-objective Ant Colony Optimisation

Routing Framework for WSNs (MARFWSN).

4.2 Simulation Environments for WSNs

Different simulation environments with their corresponding frameworks

that can be used for the simulation of WSNs were compared [13]. An

overview of these simulation environments is given in table 4.1.

Simulation

Environment

Version License Programming

Language

WSN support

GloMoSim/

QualNet

2.0 (Dec

2000)/

5.0 (Nov

2009)

free for

academic

research/

commer-

cial

C and Parsec GloMoSim: basic

mobility and ra-

dio propagation

models; 802.11;

QualNet: addi-

tionally battery

and energy model;

ZigBee → Glo-

MoSim seems to be

outdated; QualNet

seems to be more

up-to-date, but

commercial
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OPNET

Modeler

Wireless

Suite

16.0 (Dec

2009)

commercial configuration

by GUI;

internals C++

Different propaga-

tion models; 802.11,

ZigBee; some

MANET protocols,

but no special WSN

support → powerful

tool with a nice

GUI, but expensive

TOSSIM

(part of

TinyOS)

2.1.1

(Apr

2010)

BSD nesC All TinyOS-based

WSN protocols

can be simulated

with TOSSIM

without modifi-

cations → good

approach especially

if implementation

should also be used

with TinyOS-based

nodes

OMNeT++ 4.0

(March

2009)

Academic

Public

License

basic modules

C++; larger

structures

NED

Several frameworks

that add WSN

functionality to

OMNet++ such as

MiXiM, Castalia,

etc. → active

project with a

huge user base;

Eclipse-based IDE

for development

NS-2 2.34 (Jun

2009)

GPL C++; configu-

ration OTcl

Huge amount of

protocols available

contributed by

NS-2 users → com-

plex configuration;

unclear situation

due to large num-

ber of different

user contributed

implementations
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Avrora Beta

1.7.106

(Aug

2008)

BSD AVR micro-

controller

binaries

Particularly for

programs written

for AVR micro-

controller with

support for Mica2

and MicaZ → very

special application

area; project seems

to be still active -

still changes in CVS

J-Sim 1.3 +

patch4

(Jul

2006)

BSD-like Java; config-

uration Tcl/-

Java

Includes sensor net-

work package con-

taining models such

as propagation, bat-

tery, radio model

and sensor proto-

col stack including

AODV and 802.11

→ project seems to

be abandoned

ATEMU 0.4 (2004) BSD AVR micro-

controller

binaries

Complete emulation

of the AVR instruc-

tion set with par-

tial Mica2 support;

TinyOS based code

can be run → very

special application

area; slow simula-

tion speed; project

seems to be aban-

doned

EmStar 2.5 (Oct

2005)

unknown C Provides network

functionality for

wireless embedded

systems; EmTOS

can be used to run

TinyOS applica-

tions as EmStar

module → project

seems be aban-

doned (download

links broken)
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SENS jan31-

2005b

(Jan

2005)

unknown C++ Provides very basic

network and phys-

ical layer support.

Source can be com-

piled for TinyOS.

→ project does not

seem to be devel-

oped any further

SENSE 3.1 (Nov

2008)

BSD-like C++ Includes battery

and power mod-

els, MAC layers

(802.11) as well as

network protocols

(AODV, DSR,

SSR, SHR) →
does not seem to

be developed any

further

Shawn Continuous

SVN

devel-

opment

(May

2010)

BSD C++ Algorithmic ap-

proach that con-

centrates on lower

layers, no special

WSN protocols →
very active project

- lot of recent

changes in SVN

Table 4.1: Overview of simulation environments for WSNs (cf. [13])

Based on this comparison OMNeT++ was selected for the implementation

of the experiments in this thesis. As addtional framework MiXiM [261,

262] was used to support wireless and mobile functionality in OMNeT++.

In the following a short introduction to OMNeT++ as well as the MiXiM

framework will be given.

4.2 OMNeT++

OMNeT++ [7,260, 263,264] is an object-oriented discrete network simu-

lation framework that can be used to simulate various network scenarios.

The architecture of OMNeT++ is rather general so that various prob-

lem domains can be simulated such as protocol modelling, validation of

hardware architectures and modelling of wired and wireless communica-
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tion networks. It is highly portable so that it can be run on the most

common operating systems such as Windows, Linux and Mac OSX. The

current stable version 4.2 of OMNeT++ was released in November 2011,

though new test versions are released every few months. OMNeT++ is

free for academic and non-profit use – for commercial purposes OMNEST,

a commercially supported version, can be licensed by Simulcraft Inc [265].

Compound Module

Simple Modules

Network

Figure 4.1: OMNeT++: simple and compound modules (cf. [7])

One of the fundamentals of the OMNeT++ framework is its component-

based architecture for simulation models: a model can be combined in

various ways from reusable components, so called modules. The modules

can be connected using gateways and multiple modules can be combined

to form a compound module (see figure 4.1) – the nesting depth is unlim-

ited.

The communication between modules is done via message passing, where

each message can contain arbitrary data structures. The messages can be

passed either using pre-defined paths via gateways or a direct connection

to the destination. Each module can have several parameters to customise

its behaviour and/ or customise the topology of the model. The modules

at the lowest level of the hierarchy, also referred to as simple modules, are

programmed in C++ and make use of the simulation library. The larger

components are assembled using the high-level language NED.

A simulation with OMNeT++ can be run utilising various interfaces:
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from a simple command-line interfaces, which well-suits batch execution,

to a tcl-based graphical animated user interface, which can be used for

debugging or demonstration purposes. The parameters of each module

can be easily adjusted by the omnetpp.ini configuration file, which is

read for each simulation run. As a result, different configurations can be

tested without recompiling the simulation again. Starting from version

4.0, OMNeT++ provides an Eclipse-based simulation IDE (see figure 4.2)

to replace the previous standalone GUI programs gned, scalars and

plove.

Figure 4.2: OMNeT++ 4.0 IDE [8]

OMNeT++ also supports the execution of parallel distributed simulations

by providing several communication mechanisms between partitions. To

run a parallel distributed simulation no special modifications to the mod-

els are necessary – only the configuration has to be modified correspond-

ingly.

There are a couple of simulation frameworks that enable OMNeT++ to

be used for WSNs. The most common of these frameworks are discussed

in [13]. One of the most up-to-date frameworks is the MiXiM [261]

framework that provides some mechanisms to support the lower layers

of WSNs. Therefore, in the following subsection the MiXiM framework

for OMNeT++ will be discussed in detail, which is then used for the

implementation of the simulations in this thesis.
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MiXiM framework for OMNeT++

MiXiM [261, 262], the abbreviation of mixed simulator, is a framework

for OMNeT++ that provides wireless and mobile functionality. MiXiM

combines multiple existing frameworks that were developed in this area

to a common approach by providing detailed models, protocols and the

supporting infrastructure. The general structure of MiXiM is used from

the Mobility Framework (MF) [266], the radio propagation models from

CHannel SIMulator (Chsim) [267] and the protocol library from MAC

Simulator & Positif [268] as well as the Mobility Framework (MF) [266].

The current stable version of MiXiM 2.2, released in November 2011, was

recently updated to support OMNeT++ 4.2.

The MiXiM framework can be divided into five basic components (cf.

[262]):

• Environment model: Provides ‘relevant’ parts of the real world,

such as obstacles, that influence wireless communication

• Connectivity and mobility: Tracks the movement of the nodes

and the corresponding connectivity among neighbouring nodes

• Reception and collision: Takes care of changes of the signal on

the way from the sender to receivers; also considering multiple send-

ing nodes

• Experiment support: Supports different evaluation methods

• Protocol library: Includes a set of already implemented proto-

cols that enable researchers to compare results based on common

protocols

Additionally to the combination of existing approaches MiXiM was ex-

tended to support features such as full 3D support, models for walls and

obstacles, support for attenuation of radio signals, different frequencies

and transmission media, full multi-channel support in space and frequency

(enabling Orthogonal Frequency Division Multiplexing (OFDM) and Mul-

tiple Input and Multiple Output (MIMO) simulations) as well as many

MAC protocols including IEEE 802.11 [269] and IEEE 802.15.4 [270].
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Figure 4.3: MiXiM: base node

The general structure of a node using the MiXiM framework (see fig-

ure 4.3) is corresponding to the common OSI network model [271], i.e.

the node utilises the following layers: application layer (appl), transport

layer (tranl), network layer (netwl) as well as the physical layer and

the MAC layer which are combined in the Network Interface Card (NIC)

module (nic) to enable a strong coupling regarding the used communi-

cation technique2. The adjacent layers are connected by gates, one for

data messages and the other for control messages. Control messages are

used to trigger certain actions in adjacent layers, for instance, the MAC

layer can request the physical layer to perform carrier sensing.

Furthermore, the node contains a mobility module (mobility) for the

movement of nodes and objects, a battery module (battery) and a bat-

tery statistics module (batteryStats) dealing with energy related issues

and an arp module (arp) for the address resolution between the NIC and

the network layer.

Additionally to the described layers that are provided by the MiXiM

framework, a MOACO module (moaco) and a maliciousness module

(maliciousness) are introduced by the presented approach. The

MOACO module is a supportive module that provides the MOACO-based

2As a consequence, a node could have multiple NICs, e.g. 802.11 and Bluetooth,
which is however not pursued in the presented approach.
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algorithms that can be used by the network layer. The maliciousness

module assigns at the beginning of the simulation a trust value, from the

range between 0 and 1, to the node, where 1 means completely trustwor-

thy and 0 means untrustworthy3. If a node has a trust value below 0.5

the node will be malicious, i.e. it will drop incoming packets with the

specified probability. Besides, the maliciousness module has influence on

the MOACO-based algorithms in terms of being one of the considered

optimisation objectives.

Figure 4.4 shows the BaseNetwork scenario that is provided as one of

the examples in the MiXiM framework. The screenshot of the tkenv-

GUI shows the network topology including the BaseNodes; the World

utility module that provides the global environment parameters, e.g.

size of the simulated area; and the ConnectionManager that dynamically

adapts the connections between nodes. Moreover, it is possible to add

objects, such as ObjectHouse or ObjectWall, to the scenario and an

ObjectManager that decides which objects are interfering. However, for

reasons of simplicity additional objects and their interferences are omitted

in the following simulations of this thesis.

Figure 4.4: MiXiM: base network

The protocol library that is provided by the MiXiM framework can be

divided into two parts: the base framework and the protocol library.

3In the future a TRS could be implemented that adapts the trust values dynamically
depending on the behaviour of the nodes.
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While the base framework provides general functionality; such as the

connection management, mobility and wireless channel modelling; the

protocol library provides a set of standard protocols such as 802.11b/g

and 802.15.4 for the MAC layer or the ‘Ley Line Routing Protocol’ for

the network layer.

4.3 Implementation of the Application Layer and the

Network Layer

In this section the implementation of the application layer and the network

layer are described in a top-down fashion, as implemented in OMNeT++

using the MiXiM framework. The description of the application layer

includes the basic application protocol that is used for the simulations

as well as the traffic generator that is used to imitate the querying of

multiple sources by a sink node. For the network layer Multi-objective Ant

Colony Optimisation Routing Framework for WSNs (MARFWSN), which

includes the different MOACO-based algorithms, is discussed as well as

the DSR protocol, which is used for comparison in the later experiments.

Both protocols on the network layer use the assumption of symmetric

connections, i.e. if a sensor node A can receive messages from sensor

node B, then B can also receive messages from A respectively. Due

to the fact that the lower layers are used from the MiXiM framework

(Nic802154 TI CC2420) without any modifications, no further details are

provided here. For more information about the lower layers see the MiXiM

documentation [261].

The rest of this section is organised as follows: first, the details of the

application layer; and then, the details of the network layer are discussed.

4.3 Application Layer

To test the WSN routing functionality of the proposed MARFWSN, on

top of the network layer a simple application layer is developed that imi-

tates a simple WSN scenario application namely the querying of multiple

sources for data by a sink node.
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Basic Functionality

The basic functionality of the application protocol is to allow a sink,

which has an interest in certain information, to send a query to one or

more sensors which have some knowledge about this information, the data

sources. As a consequence, the sink sends a request message (GetDataReq)

in the direction of each data source. The request message is forwarded,

as presented later in this chapter, by the underlying routing algorithm

until it reaches the data source. On receiving the request, the data source

creates a response message (DataResp) with the desired information and

sends this response message back towards the source.

Application Message Flow

Figure 4.5 shows a simple request-response application message flow be-

tween a sink and a source using multiple intermediate nodes.

Sink Source
Intermediate

Node 1
Intermediate

Node n

GetDataReq

GetDataReq

...

DataResp

DataResp

...

Figure 4.5: Application protocol message flow



4.3. IMPLEMENTATION OF APP. AND NETW. LAYER 131

packet ApplPkt

{

int destAddr = -1; // destination address

int srcAddr = -1; // source address

}

Listing 4.1: ApplPkt message

Application Messages

The application messages GetDataReq and DataResp are both derived

from the basic application packet class (ApplPkt) that is provided by the

MiXiM framework (see figure 4.6).

ApplPkt

GetDataReq DataResp

Figure 4.6: Application messages

The parent class ApplPkt packet (listing 4.1) provides just the basic

packet fields destAddr and srcAddr for the destination and the source

address of the packet, both as application layer addresses.

packet GetDataReq extends ApplPkt

{

int interval; // interval in which data should be

sent

simtime_t expiresAt; //time when get data request should

expire

}
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packet DataResp extends ApplPkt

{

int dataValue; // simple data value that is the payload

int payload []; //some additional payload data to make it

more realistic

}

Listing 4.3: DataResp message

Listing 4.2: GetDataReq message

The derived GetDataReq packet (listing 4.2) provides additionally two

fields: the expiresAt and the interval field. The expiresAt field spec-

ifies the point in time until which data should be sent from the source to

the sink. The interval field specifies in which interval those data should

be sent.

The derived DataResp packet (listing 4.3) provides the dataValue field

and the payload[] field. The dataValue field contains the data that

should be sent back to the sink, which provides some human-readable

value. Furthermore, the payload[] field is used to simulate some addi-

tional payload bytes that may occur in a real application, e.g. if more

complex data such as arrays of measurements should be transferred.

Traffic Generator

To generate network traffic with the described application layer protocol,

a traffic generator is created, which can be assigned to each node in the

WSN to handle the application traffic. The traffic generator has basically

two usages: the generation of GetDataReq messages and the generation

of DataResp messages.
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Generation of GetDataReq Messages: The generation of

GetDataReq messages is activated for nodes that are interested in

certain data of one or multiple other nodes, i.e. the sink. It can be

simply enabled by setting the active flag to true. An overview of the

other parameters that influence the generation of GetDataReq messages

is shown in table 4.2.

Parameter Description
payloadSize Number of random bytes that are generated

as payload
activated Flag to turn the traffic generator either on

or off
initTime Initial time of waiting before the generation

of GetDataReq messages begins.
getDataReqGenerationInterval Interval the GetDataReq messages should be

generated
dataReqInterval Interval for sending DataResp messages

from the final destination, resulting from
GetDataReq message arriving at the final
destination

dataReqDuration Duration of sending DataResp messages
from the final destination, resulting from
GetDataReq message arriving at the final
destination

dstAddresses List of destination addresses to which the
sink should send GetDataReq messages, leave
this empty for random destinations

randomDstAddressesCount Number of random destinations (used in
random mode)

trafficType Type of the traffic that is generated. This
can be one of the following: uniform,
exponential, periodic

Table 4.2: Traffic generator parameters for the generation of GetDataReq
messages

Generation of DataResp Messages: All nodes were assigned a traffic

generator to answer GetDataReq messages, i.e. behave like a data source:

if such a node receives a GetDataReq message, it reacts to it by sending

a DataResp message for the duration and with the frequency specified in

the received GetDataReq message4.

4In the current implementation the ‘requested data’ is an integer value that is
increased by one each time a new DataResp message is sent. The payload field is filled
with random data to imitate a larger payload.
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4.3 Network Layer: Multi-objective Ant Colony Optimisation Rout-

ing Framework for Wireless Sensor Networks

The network layer is responsible for the forwarding of packets via mul-

tiple hops from the sink to the source and vice versa. In this thesis an

MOACO-based routing approach is presented that makes use of ant-based

routing algorithms that are capable of taking multiple objectives into ac-

count in the route optimisation process. The routing problem in WSNs

is considered here as MCOP in terms of a minimisation problem.

Instead of implementing a specific MOACO-based routing algorithm,

the Multi-objective Ant Colony Optimisation Routing Framework for

WSNs (MARFWSN) is implemented, a framework for MOACO-based

WSN routing algorithms. The framework provides the fundamental ant-

based routing functionality and a docking site to which different MOACO

algorithms can be docked and then used in the context of WSNs routing.

The details of the implementation of MARFWSN as well as the related

challenges, such as finding a node’s neighbours, will be discussed in the

following.

Generic Multi-objective Ant Colony Optimisation Algorithm

In the first step, based on the identified components of MOACO algo-

rithms (see table 2.4) and inspirations from the general MOACO frame-

work proposed by Lopez and Stützle [155], a generic MOACO algorithm

is developed that takes Pareto optimal solutions into account (see listing

4.4).

The proposed generic MOACO algorithm supports multiple colonies

and correspondingly multiple pheromone and heuristic information that

are assigned to each ant colony. The multiple colonies are interacting

with each other, on the one hand, by exchanging solutions to update

pheromone information and, on the other hand, by using a common

archive of non-dominated solutions.

In the initialization function the pheromone and heuristic matrices

are set to their initial values. Furthermore, the set of weights is defined

that is used in the algorithm.
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initialization ()

while (termination condition not met):

for colony in colonies:

for ant in colony.get_ants ():

weight = next_weight(weights , ant , iteration)

tau = aggregation(weight , tau_matrices)

eta = aggregation(weight , eta_matrices)

s = probabilistic_solution_construction(tau , eta

)

s = weighted_local_search(weight , s) #optional

global_solutions.append(s)

for colony in colonies:

s_c = multi_colony_update(global_solutions)

s_c_update = selection(sc)

update_pheromones(s_c_update , n_update)

Listing 4.4: Generic MOACO algorithm

Each ant colony constructs probabilistically a solution biased by

pheromone and heuristic information. To store the pheromone and re-

spectively heuristic information one or multiple matrices can be used. In

the case of multiple matrices those matrices need to be aggregated. This

is done by the aggregation function, which is incorporating the use of

a weight. The sequence of weights that is applied is determined by the

next weight function which takes the current ant as well as the current

iteration into account.

Based on the aggregated pheromone and heuristic informa-

tion a solution can be constructed probabilistically by the

probabilistic solution construction function. Optionally, a

local search (weighted local search) can be applied to improve the

solution. After that the constructed solution can be added to the set of

global solutions.

When all ant colonies have finished constructing solutions, the solutions

can be exchanged between the colonies by the multi colony update

function. From all solutions the selection function chooses the

solution that will be used for updating the pheromone information

(update pheromones).
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The MOACO algorithm continues until the termination condition is met,

e.g. a certain time span exceeds or a certain number of iterations is

reached.

Basic Idea of the Multi-objective Ant Colony Optimisation Routing Framework

Based on the presented generic MOACO algorithm MARFWSN is de-

veloped, a framework for MOACO-based WSN routing algorithms. It

provides the basic packet forwarding functionality using ants as well as

the management of the corresponding data structures for heuristic values

and pheromones. Additionally, MARFWSN provides a flexible interface

for MOACO algorithms so that specific functionality, such as the deposi-

tion of pheromone or the movement of ants by some sort of probabilistic

rule, can be simply exchanged by selecting another MOACO algorithm.

As a result, a very flexible framework is created that enables the testing

of different MOACO algorithms in the context of WSN routing by simply

docking them to the MOACO-based network layer.

The MARFWSN pursues a hybrid approach, i.e. on the one hand, a re-

active approach is used to find new routes on demand; and, on the other

hand, a proactive approach is used for the maintenance and improvement

of existing routes. For this reason, two different types of ants are used:

forward ants and backward ants. While forward ants are used in the ex-

ploration phase, in terms of route discovery and route maintenance phase,

backward ants are used to exploit routes previously found by the forward

ants. Backward ants can be either used to notify the node that was re-

questing a route about a route found by the forward ants, or backward

ants can be used to transport an application packet, i.e. data payload,

from a source to a destination node.

Implementation of Multi-objective Ant Colony Optimisation Algorithms

Basically, all MOACO algorithms are implemented via IMOACO interface

that is provided by MOACONetwLayer, the network layer of MARFWSN.

The provided interface allows to exchange the MOACO algorithm of a

sensor node simply by implementing a corresponding MOACO algorithm

and assigning this algorithm in the omnetpp.ini configuration file to the

node.
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To avoid the need for a complete reimplementation of the basic MOACO

functionality for each MOACO algorithm, a GenericMOACO class is im-

plemented that provides this fundamental MOACO functionality. This

includes the management of possible routes with corresponding heuristic

and pheromone matrices as well as the updating of the pheromone ma-

trices and the management of solutions. The GenericMOACO class is quite

flexible, i.e. it can deal with multiple objectives, multiple ant colonies as

well as multiple pheromone and heuristic matrices.

The GenericMOACO class provides the virtual functions

update pheromone, local update pheromone, get bwd ants and

get next hop that need to be overridden by every derived MOACO

algorithm class. Although providing the basic functionality, the

GenericMOACO class is not a MOACO algorithm itself, it can be rather

seen as some kind of abstract class5. The basic functionality of those

virtual functions is shown in table 4.3.

Virtual Function Description
get bwd ants Returns one or multiple backward ants, i.e. the solu-

tions found by the current MOACO algorithm, which
should be sent back to the original source node that
started the route request. Depending on the algo-
rithm this can be the best-so-far ant, the iteration
best ant, all ants or any other subset of ants that
reached the destination.

get next hop Returns the next hop to get to the final destina-
tion node, based on the probabilistic choice of the
MOACO algorithm taking the current pheromone
and heuristics matrices into account.

update pheromone Updates the pheromone for a certain objective of a
node, based on the information stored in the back-
ward ant.

local update pheromone Local updates of the pheromone for a certain objec-
tive of a node based on the information stored in a
forward and/or backward ant.

Table 4.3: Virtual functions of the GenericMOACO class

Moreover, several parameters can be configured to set up an MOACO

algorithm. An overview of all parameters for GenericMOACO is shown in

table 4.4.

5note: strictly GenericMOACO is not an abstract class as defined by the C++
abstract keyword; however, this results from the fact that GenericMOACO is an OM-
NeT++ class instead of a pure C++ class, which needs to be able to fit into the basic
OMNeT++ module structure.
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Parameter Description
antColonyCount Number of ant colonies
antsPerColony Number of ants per colony
objectiveCount Number of objectives considered by the

MOACO
aggregationType Type of aggregation used for combining

pheromone and heuristic matrices. This
can be a weighted sum (weighted sum), a
weighted product (weighted product) or a
random choice (random)

heuristicType Type of heuristic that should
be used, i.e. one per objec-
tive (one heuristic per objective)
or one for all objectives
(one heuristic for all objectives)

pheromoneHeuristicWeightsType Type of weights that should be used in the
aggregation of pheromone and heuristic
matrices. This can be either one weight
per iteration (one weight per iteration)
or all weights per iteration
(all weights per iteration)

pheromoneHeuristicWeights List of weights separated by space that
are used for aggregation of pheromone and
heuristic matrices

decisionMakerType Type of decision maker (currently only
weighted product metric is available)

decisionMakerWeights Weights separated by space that are used
for the decision maker

pheromoneEvaporationRate Rate in which the pheromone will evapo-
rate

initialPheromoneValue Pheromone value that is used for the ini-
tialisation of the pheromone matrices

initialHeuristicValue Heuristic value that is used for the initial-
isation of the heuristic matrices

alpha Specifies the relevance of the pheromone
matrices in the MOACO algorithm.

beta Specifies the relevance of the heuristic ma-
trices in the MOACO algorithm.

localPheromoneUpdate If flag is set to true, the local pheromone
update is activated

onlyParetoOptimalSolutions If flag is set to true, only Pareto optimal
solutions are considered as valid solutions
of the MOACO

Table 4.4: Parameters for the GenericMOACO class
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From the GenericMOACO class the following specific MOACO algorithms

were derived (see figure 4.7): ASMOACO, MMASMOACO, ACSMOACO and

SRMOACO. The main differences between those implemented MOACO al-

gorithms are discussed briefly in the following:

• Ant System Multiple-objective Ant Colony Optimisation:

The ASMOACO implements the basic idea of the AS [122–125] while

considering multiple objectives. After an iteration is completed,

every forward ant is converted to a backward ant and then sent

back to the source. On the way back, each backward ant updates

the pheromone value at each node it is visiting. No local updating

is performed in this MOACO algorithm.

• Min-Max Ant System Multiple-objective Ant Colony Op-

timisation: The MMASMOACO implements basically the MMAS

[114–116] approach for multiple objectives. Globally only the best

route found is emphasised by depositing pheromone. No local up-

dating is performed in this MOACO algorithm. Furthermore, the

pheromone value is restricted to a certain range by the parameters

minimumPheromoneValue and the maximumPheromoneValue. At the

beginning the initial pheromone value is set to the maximal possi-

ble value from this range (maximumPheromoneValue). By setting the

antType parameter either the best-so-far ant or the iteration-best

ant can be used to update the pheromone.

• Ant Colony System Multiple-objective Ant Colony Optimi-

sation: The ACSMOACO implements the idea of the ACS [117–119]

approach, a modification of AS regarding three points: a better ex-

ploitation of search experience, pheromone deposition and evapora-

tion on best-tour and a local update rule that removes pheromone

each time an ant moves from the current node to the next node.

Consequently, at the end of an iteration, only the ant that found

the best route is allowed to deposit pheromone on the way back to

the source. Additionally, a local pheromone update is triggered each

time an ant is sent from the current to the next hop6. This leads

6While in the original proposal the pheromone is updated on the arrival of the
ant at the next node, in the current implementation the local pheromone update is
triggered in advance at the current node, i.e. before ant is sent to the next node. This
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to a faster evaporation of the pheromone at visited nodes resulting

in also using unvisited nodes (stronger exploration). Besides, the

parameter q0 specifies the ratio between exploration of new routes

and exploitation of existing routes.

• Simple Random Multiple-objective Ant Colony Optimisa-

tion SRMOACO: provides a very simple random ant-based algorithm

that was created just as reference point to compare it to the other

MOACO-based algorithms. Basically, the concept of sending for-

ward ants to the source and receiving backward ants with the re-

quested information is kept, while the depositing of pheromone is

completely omitted. As a consequence, the forward ants always se-

lect the next hop randomly. Neither global nor local updating is

performed in this approach.

GenericMOACO

IMOACO

ASMOACO SRMOACOMMASMOACOACSMOACO

Figure 4.7: Derived classes from GenericMOACO all implementing the
IMOACO interface

Ant Messages

MARFWSN is based on the exchange of ants, represented by Ant packets.

Ant packets are derived from the NetwPkt class (listing 4.5) provided by

the MiXiM framework.

is because the pheromone should influence future decisions at this node, instead of
influencing the decision at the next hop.
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packet NetwPkt

{

int destAddr; // destination address

int srcAddr; // source address

int ttl = 1; //time to live field (IP)

unsigned long seqNum = 0; // sequence number

}

Listing 4.5: NetwPkt packet

The NetwPkt class provides basic fields such as the destAddr and srcAddr

for the destination and source address in terms of network address. More-

over, a ttl field for the ‘time to live’ information as well as a field seqNum

for the sequence number is provided7.

Forward as well as backward ants are represented by the Ant class (list-

ing 4.6). The Ant class adds additionally an original source address

(originSrcAddr) and a final destination address (finalDestAddr) to the

message. This is required to distinguish the network addresses used for

the next hop (srcAddr and destAddr) and the overall source and destina-

tion addresses (originSrcAddr and finalDestAddr) of a multiple hops

route.

Additionally, each Ant is identified by the colony it belongs to

(antColonyNo), the number of the ant in this colony (antNo) and the

iteration the ant belongs to (iterationNo). Due to the fact that ants

are converted from forward to backward ants, the backward ants need an

additional identification number, the bwdAntNo field. The antType spec-

ifies whether the ant is a forward ant (FORWARD ANT) or a backward ant

(BACKWARD ANT).

The rank of the ant (antRank) is used in the pheromone update process

because certain MOACO algorithms give certain updating privileges to

certain ants. The rank of an ant can characterise the ant as ‘normal’ ant

7In the current implementation the seqNum field as well as the ttl field are not
used. Consequently, both could be omitted to save some bandwith; however, to have a
consistent MiXiM-based design the Ant packet is nevertheless derived from the NetwPkt
packet.
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enum ANT_TYPE {

FORWARD_ANT = 1;

BACKWARD_ANT = 2;

}

enum ANT_RANK {

DEFAULT_ANT = -3;

ITERATION_BEST_ANT = -2;

BEST_SO_FAR_ANT = -1;

}

packet Ant extends NetwPkt {

int originSrcAddr; // origin network address

int finalDestAddr; //final destination network address

int antColonyNo; //ant colony number

int antNo; //ant number in the ant colony

int iterationNo; // number of the iteration

int bwdAntNo; //bwd ant number

int antType enum(ANT_TYPE); //type of the ant , either

FORWARD_ANT

//or BACKWARD_ANT

int antRank enum(ANT_RANK); //rank of the ant , either

// DEFAULT_ANT ,

ITERATION_BEST_ANT ,

// BEST_ANT_SO_FAR or rank >=

0

int visitedNodes []; //list of nodes that were visited by

the ant

double objectives []; //list of objectives

}

Listing 4.6: Ant packet
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(DEFAULT ANT), best ant in the iteration (ITERATION BEST ANT) or best

ant over all iterations so far (BEST SO FAR ANT). In addition to the pre-

defined ranks, other ranks can be introduced by assigning a positive value

to the antRank field, if required by the MOACO algorithm.

The visitedNodes[] field is used to store all nodes that have been visited

by an ant. While in the discovery phase forward ants add each node they

visit to that list, backward ants just use this list to return to the original

source. Besides, the visitedNodes[] list is used to avoid loops8. Due

to the fact that multi-objective optimisation problems are considered,

ants are capable of transporting information about multiple objectives,

represented by double values, in the objectives[] list.

Finding the Best Solutions within an Iteration

Apart from the first ACO algorithm, AS, in which all ants are contributing

to the process of depositing pheromone, the later ACO algorithms rely

on emphasising only certain (best) paths. Depending on the chosen ACO

algorithm, only the best-so-far ant, the iteration-best ant or the k-best-

ranked ants are allowed to place pheromone along the way.

While finding out the best-so-far ant is a minor problem, finding the

iteration-best or the k-best ranked ants is a major problem in a WSN

scenario due to its dynamic nature. In contrast to many other applica-

tions of ACO algorithms, the considered WSN scenario is not turn-based,

but rather time-dependent. Moreover, the use of the wireless channel

as transmission medium leads to additional problems such as packet loss

resulting in ‘dying ants’ that never arrive at their final destination. For

that reason, it has to be specified for the WSN scenario when an iteration

starts and when it is completed. The problem of finding the beginning

and the end of an iteration in a non-round-based network is tackled as

follows:

The start of a route discovery is triggered with the sending of the first

ant of the iteration at the original source. However, due to the fact that

8In the current implementation forward ants that are visiting a node that is already
in the visitedNodes[] list, are simply dying, i.e. the ant message is dropped by that
node. An alternative would be that the ant forgets the loop and continues with the
exploration – this is however not pursued here to keep the end-to-end delay low.
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finding solutions is the main goal of the ACO algorithms, the first arriving

ant at the final destination marks the start of the iteration.

In the next step, the end of the iteration has to be found, which is the

most difficult thing in this context. To find out whether an iteration has

ended at the final destination there are three options:

1. All ants of the current iteration reach the final destination

2. An iteration timer expires

3. An ant of the following iteration arrives at the final destination

The first case, in which all ants that were sent out by the original source

are reaching the final destination, is the ideal and trivial case9. However,

due to the already discussed issues that are leading to packet losses, this

case is rather unlikely. To address the issue of ants that are never arriving

at the final destination, an iteration timer is introduced. This timer starts

with the arrival of the first ant at the destination for the current iteration

and lasts for the given time span. If the timer expires before all ants of

the current iteration have reached the destination, the iteration will be

completed anyway. The third case occurs when an ant of the following

iteration reaches the final destination before the previous iteration has

been completed. In this case, the first ant of the following iteration that

is arriving at the destination node completes the previous iteration and

subsequently, triggers the beginning of the next iteration.

Objectives and Ant Colonies

In the implementation of MARFWSN there are two possibilities consid-

ered regarding the number of objectives and the number of corresponding

ant colonies (see table 4.5). As a result, either one ant colony is managing

all objectives or for each objective a separate ant colony can be used.

Although, the MARFWSN is quite flexible regarding the number of ob-

jectives and the number of ant colonies, for the implementation one ant

colony is used to update all objectives. This is justified in the fact that

9To find out whether the last ant has arrived the final destination, a counter checks
the incoming ants of the iteration and compares the counter to the total number of
ants in the colony.
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Objectives Ant Colonies Comment
n 1 All objectives are updated by a single ant

colony.
n n Each objective is updated by an independent

ant colony

Table 4.5: Number of objectives and number of ant colonies (n number
of objectives)

the overhead should be minimised that is required for storing the matrices

as well as the overhead caused by the ants that need to be sent for each

colony.

The following three objectives are considered in the implementation:

1. Residual energy

2. Duration of transmission

3. Trust value

The residual energy (abbr. energy) is the current energy of a sensor node

that is remaining before it dies. Due to the fact that the routing problem is

considered as minimisation problem the reciprocal of the residual energy

is used. The residual energy values are combined by multiplication at

each node.

The duration of transmission (abbr. duration) is calculated at each node

as the current time minus the timestamp from the packet, i.e. the time

it was sent.

The trust value (abbr. trust) is the value that was assigned to the node10.

Again the reciprocal of the trust value is considered as part of the min-

imisation optimisation problem. The trust values are combined by mul-

tiplication at each node.

10In the current work there is no exchange of trust information so that the trust
value is assigned by the maliciousness module at the start of the simulation. More
sophisticated TRSs are thinkable to be used in this context, but due to the complexity
the management of trust is neglected here.
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Flowcharts of the Behaviour of Forward and Backward Ants

As described before, if a route to a certain destination node is unknown,

forward ants are sent out to discover a route to that destination. The

basic approach is depicted in the flowchart in figure 4.8.

On the way back, depending on the chosen MOACO-based routing algo-

rithm, one or multiple backwards ants are sent back to the original source

node. The general approach is depicted in the flowchart in figure 4.9.

Data Structures

The GenericMOACO class uses the MOACONodeManager to manage the

neighbours of the node with its corresponding heuristic and pheromone

structures. For each destination node a MOACONodeMapEntry is provided

that contains the corresponding pheromone and heuristic values. For the

aggregation of pheromone/heuristic matrices an aggregation function is

provided that considers the current ant, the current iteration as well as the

assigned weights. Furthermore, the solutions found so far are managed

by MOACONodeManager using the SolutionManager class.

Figure 4.10 depicts an overview of the main data structures that are

used by the MOACO-based algorithms in an example. Basically, a for-

ward ant that should be transmitted by the forwarding node 1 checks

the destination of the packet and selects the corresponding destination

node e.g. node 10. Based on the chosen destination node, the possi-

ble neighbours (node 2, node 3 and node 4 ) are stored as possible next

hops. For each neighbour there is a pheromone and a heuristic vector

that contains the corresponding values for each objective. Depending on

the chosen MOACO algorithm a probabilistic choice is made based on the

given pheromone and heuristic values for each neighbouring node. The

ant is then forwarded to the chosen next hop neighbour.

Know your neighbourhood

When the sensor nodes are deployed in a random fashion, the nodes will

not know the other nodes in their neighbourhood. Consequently, the

nodes are not capable of sending unicast messages to certain nodes in the

neighbourhood, as required for the MOACO-based routing algorithms.
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Figure 4.8: Flowchart of the route discovery with forward ants
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To solve that problem, a simple broadcast mechanism is introduced to let

nodes announce their presence in the neighbourhood: in defined intervals

a HELLO message is broadcasted by each node so that nodes in the corre-

sponding neighbourhood are aware of the other nodes’ presences. When a

node receives a HELLO message, the address of the sending node is stored

in the table of neighbours for later use, i.e. as prospective next-hop des-

tination.

In case that a node disappears, e.g. due to running out of energy or other

interferences, the node needs to be removed from the neighbours list of the

nodes in the neighbourhood. This is achieved by a timer which checks in

certain time intervals for each known neighbour whether a HELLO message

was received within the specified time interval, if not the node is deleted

from the list of neighbours. Of course, if a node reappears it will be added

again to the list of neighbours.

tn

Normal
phase

Start up
phase

ts

t

HELLO

fs

HELLO

fn

Figure 4.11: Two phases of HELLO messages

To reduce the data traffic of HELLO messages a two phase strategy is

chosen (see figure 4.11). The entire simulation time t is divided into two

phases: the start up phase and the normal phase. Due to the fact that

after the deployment of the WSN the nodes’ neighbourhoods are unclear,

the frequency of HELLO messages fs is at the beginning rather high. After

completing the start up phase, i.e. after the duration of ts, the normal

phase is started for the duration of tn, i.e. to the end of the simulation

time. In the normal phase HELLO messages are send with a lower frequency

tn because the neighbourhood of each node should be clear in general so
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that each node just needs to send an ‘I am alive’ signal from time to time.

This approach results in a lower data traffic caused by HELLO messages.

Simulation Parameter Description
helloTimerStartUpDuration Duration of the start up phase.
helloTimerStartUpFrequency Frequency of HELLO messages in the start

up phase.
helloTimerFrequency Frequency of HELLO messages in the normal

phase.
helloTidyUpTimerFrequency Frequency of the tidy up mechanism that

removes neighbours that did not sent a
HELLO within this time.

Table 4.6: Simulation parameter for HELLO messages used in the simula-
tion

An overview of the parameters that are affecting the broadcasting of

HELLO messages is shown in table 4.6.

Application Message Queue

In general, a network layer receives packets from the application layer,

which then should be routed through the network from a source node to

a destination node. However, a problem arises when the application layer

is sending packets, which cannot be routed to the destination because the

route to the destination node has not been found yet. To solve this prob-

lem, an application packet message queue is introduced that deals with

the buffering of application packets that cannot be routed immediately.

When an application packet arrives from the application layer at the

network layer, the application packet is added to the corresponding ap-

plication packet queue for the destination node (see figure 4.12). If the

maximum queue length is exceeded (maxQueueLength), the oldest packet

will be removed from the queue and the newly arrived packet will be

added. For each destination node an application packet queue timer is

started. When this timer is triggered the application packet at the front

of the queue is tried to be delivered to the destination. If there is still

no route available the timer will be started again with an exponential

back-off mechanism. If the maximum number of retries is exceeded, the

application packet at the front of the queue will be removed. When there

is still a packet in the application packet queue, the timer is restarted

again for the packet that recently became the first packet in the queue.
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Figure 4.12: Basic idea of the application message queue

Table 4.7 shows the parameters that are influencing the behaviour of the

application packet queue.

Simulation Parameter Description
appPktMaxQueueLength Maximum Number of application packets

in the queue per destination node.
appPktMaxRetryAttempts Maximum number of retry attempts for

transmitting an application packet from
the queue.

appPktExponentialBackoffSlot Time slot that is used for the exponential-
backoff mechanism

Table 4.7: Simulation parameter for the application packet queue used in
the simulation

4.3 Network Layer: Dynamic Source Routing

For the comparison of MARFWSN to an existing routing protocol for

WSNs, additionally an DSR-based protocol is implemented. The im-

plemented protocol is inspired by the original DSR protocol [185], but

removes the requirement of Internet Protocol (IP) so that it can run di-

rectly as network layer, making it directly comparable to MARFWSN

using the same application protocol on top. At the current state the
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DSR-based protocol has just the basic functionality without special fea-

tures such as salvaging etc. In the following the basic DSR functionality

will be explained.

Dynamic Source Routing Messages

DSRBase

RRep RErrRReq

NetwPkt

RAck RAckReq

Figure 4.14: Derived DSR message classes

Figure 4.14 depicts all messages that are used in the DSR-based routing

protocol. As in the MARFWSN network layer, all messages are derived

from the NetwPkt class (see listing 4.5). For the two main message classes

RReq and RRep the common DSRBase class was introduced as parent mes-

sage class to group some of the common fields that are required in both

message classes. In contrast, the RAck, the RAckReq and the RErr mes-

sages that are used for the route maintenance are directly derived from

the NetwPkt class.

The DSRBase class contains some important fields that are required

in the RReq as well as the RRep messages. This is, on the one

hand, the initialSrcAddr that specifies the origin of the message and

finalDestAddr, the address of the final destination. The routeRecord[]

array stores all nodes that have been visited by the packet. The trust

field is neither part of the original DSR nor it is used in any way for

the DSR-based protocol, but it is rather used to make the trust values

comparable to the trust values of MARFWSN.

The RReq message, derived from the DSRBase message class, adds only the

additional field of requestId that is used to make RReq messages clearly
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packet DSRBase extends NetwPkt{

int initialSrcAddr; // initial source that started the

request

int finalDestAddr; //final destination address

int routeRecord []; //list of nodes that were visited

float trust; //trust value for statistics [NOT part

of DSR]

}

Listing 4.7: DSRBase packet

packet RReq extends DSRBase {

int requestId; // unique request id

}

Listing 4.8: DSRReq packet

identifiable in the broadcasting process.

The RRep message is also derived from the DSRBase message class; how-

ever, no additional fields are added so that it provides exactly the same

fields as the DSRBase message class. Nevertheless, this message class was

added to make this packet type better distinguishable among the other

message classes.

The RAck, RAckReq and the RErr message classes are both used for the

route maintenance.

packet RRep extends DSRBase {

}

Listing 4.9: DSRRep packet
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packet RAckReq extends NetwPkt {

int ackId; // acknowledgement id

}

Listing 4.10: RAck packet

packet RAck extends NetwPkt {

int ackId; // acknowledgement id

}

Listing 4.11: RAck packet

The RAckReq message just has an additional ackId field so that the ac-

knowledgement messages can be clearly distinguished.

The RAck message usess the same ackId field that is corresponding to the

same field in the RAckReq message.

The RErr message provides an aditional errorType field in which one of

the defined error types can be used. In the case of a NODE UNREACHABLE

error, the unreachableNodeAddr can be used to specify the unreachable

node.

Route Discovery and Route Maintenance

The DSR-based routing protocol can be divided into two phases: the

route discovery phase and the route maintenance phase. In the route

discovery phase, new routes are discovered for a given destination to which

no routes exist in the routing table yet. In the route maintenance phase,

existing routes are checked for availability. In the case of unavailable

routes links can be marked as ‘broken’ and all routes that are containing

the broken link are removed. Both phases are explained in more detail in

the following:
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enum ErrorTypes {

NODE_UNREACHABLE = 1;

FLOW_STATE_NOT_SUPPORTED = 2;

OPTION_NOT_SUPPORTED = 3;

}

packet RErr extends NetwPkt {

int errorType enum(ErrorTypes); //type of error

int unreachableNodeAddr; //used in the case of

NODE_UNREACHABLE

}

Listing 4.12: RErr packet

Route Discovery: If an application packet should be send from a

source to a destination node, but until now no existing route is known,

the route discovery process is triggered. This is done by the source node

by simply broadcasting a RREQ message for the destination. A node re-

ceiving the RREQ message has several actions to take, as depicted in figure

4.15.

In the first step, the receiving node updates its routing table by routes

and partial routes that are stored in the record list of the RREQ message.

Based on the unique ID of the RREQ message, the receiving node checks

if the packet was seen recently – in this case the RREQ message is simply

discarded. Also in the case that the RREQ message has travelled already

to many hops, the RREQ message is discarded. In the other case, the

node checks if the destination in the RREQ message is the node itself or

if the node knows a route to the destination. If this is the case, a RREP

message is send back on the way the RREQ message came. Otherwise,

the node appends its address to the route stored in the record list of the

RREQ message and then broadcasts the packet again to the nodes in its

neighbourhood.

When a node receives a RREP message, the node has to check several

options, as depicted in figure 4.16:

In the first step, the routing table of the node is updated by the route
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Figure 4.15: DSR route discovery: on receiving RREQ
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Figure 4.16: DSR route discovery: on receiving RREP
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and partial routes that can be derived from the record list in the RREP

message. Subsequently, the node checks if it is the destination node – in

this case, the found route can be used to transfer the application packet

from the send buffer. If the node is not the destination node, the node

sends the RREP message to the next hop of the route from the record list

that is stored in the RREP message.

Figure 4.17 shows an example of the route discovery process in the DSR-

based protocol.

Route Maintenance: Additionally, a route maintenance mode can be

activated in the DSR-based routing algorithm that is capable of detecting

broken links. The soft acknowledge mechanism provides the RAckReq

message to ask a certain node for an acknowledgement. If the requested

node responses with an RAck message everything is impeccable, i.e. the

link is available. For a certain time span the requested node will not be

asked again.

However, if the requested node is not responding, the requesting node uses

an exponential back-off mechanism to repeat the sending of the RAckReq

message again. If the number of maximum request attempts is exceeded

and the node does not respond with a RAck message, the link will be

marked as broken. Subsequently, the routing table of the node will be

checked for routes that contain the broken link. All routes that include

the broken link will be removed from the routing table.

The route maintenance mode in DSR is optional because the underlying

layers can often provide a mechanism for the detection of broken links.

4.4 Summary

In this chapter, the implementation of MARFWSN and its related proto-

cols were discussed. Taking up the research question, the basic problem

definition was transferred to the implementation task developed for this

thesis. After that, the used methodology was presented including the

justification of the chosen simulation environment OMNeT++ and the

MiXiM framework for the support of WSN scenarios. Subsequently, the
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Figure 4.17: Basic idea of the DSR routing algorithm
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developed application layer was presented including the underlying pro-

tocol and the traffic generator as sample application. Furthermore, two

different network layers were discussed, on the one hand, MARFWSN, a

routing framework that supports multiple MOACO-based routing algo-

rithms; and, on the other hand, DSR, an adaption of the famous DSR pro-

tocol that can be used in WSN. While MARFWSN targets directly the

research question by supporting the MOACO-based routing algorithms

ASMOACO, MMASMOACO, ACSMOACO and SRMOACO; the latter DSR was imple-

mented as well-known routing algorithm for comparison purposes.

In the following chapters, the presented implementation will be used in

several simulation scenarios and then, the outcomes will be analysed and

evaluated.







5

Experiments and Evaluation

A theory is something nobody believes,

except the person who made it. An

experiment is something everybody believes,

except the person who made it.

Albert Einstein (1879 - 1955)

In this chapter, the implemented WSN routing approaches will be exam-

ined and compared in various simulation experiments. As described in

the previous chapter 4, the routing algorithms were implemented for the

network simulator OMNeT++ [260] using the MiXiM framework [261].

In several experiments, the performance of the implemented routing algo-

rithms will be tested for different simulation scenarios with configurations.

For this reason, in the first step, the general experiment settings will be

described, including the used scenario configuration and sensor node con-

figuration. Subsequently, the configuration of the routing algorithms,

i.e. the MARFWSN-based routing algorithms as well as the DSR-based

routing algorithm, will be discussed. Moreover, the performance metrics

that will be used to compare the different routing algorithms will be ex-

plained. In the next step, the different experiments will be presented:

this includes some pre-experiments, which deal with finding the best pa-

rameters for the MOACO-based algorithms for the different scenarios,

and subsequently, the comparison of the MARFWSN-based routing algo-

rithms to the DSR-based routing algorithm, applying the best parameters

of the pre-experiments found. The simulation results will be evaluated

and conclusions will be drawn.

5.1 Experiment Settings

In this section, the general settings of the experiments are discussed,

which are common to all tested simulation scenarios. This includes the

configuration of the simulation scenario in terms of used parameters and

165
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the configuration of the sensor nodes.

5.1 Simulation Scenario Configuration

In the following, the configuration of the simulation scenarios is discussed,

i.e. the basic parameters that apply to all conducted experiments such as

the playground, the network topologies, the data traffic pattern etc.

The Playground

For all simulation scenarios a square area, also referred to in OMNeT++

as playground, is used. Based on the IRIS Mote specifications [9] and

some simulation test-runs, a playground area of 1000 m × 1000 m was

defined for 10 nodes, which provides a reasonable connectivity for different

random topologies.

Based on this definition the node density, i.e. number of nodes per area,

can be calculated as follows:

node density =
10 nodes

1000 m ∗ 1000 m
=

1

100000
(5.1)

For all simulations with different amount of nodes the node density should

be kept the same so that the side length (x) of the playground area can

be calculated as follows, depending on the number of nodes:

node density =
10 nodes

1000 m× 1000 m
=

1

100000

x2 = #nodes× 100000

x =
√

#nodes× 100000

Depending on the chosen topology the exact playground sizes are pre-

sented later in table 5.1 for the grid topology and in table 5.2 for the

random topology.
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Network Topologies

For the different experiments two different types of network topology are

used: the grid topology and the random topology.

(a) Grid topology (b) Random topology

Figure 5.1: Examples of a grid and a random topology

For the first set of experiments a grid topology is used to obtain a uniform

distribution of the sensor nodes in a grid (see figure 5.1a). This limits one

of the factors of randomness in the scenarios so that less fluctuations in

the results are expected. For each scenario the number of nodes is chosen

based on square numbers (9, 16, 25, ..., 100) allowing the alignment of the

nodes in a uniform, fully occupied grid in the squared playground area.

Consequently, the direct neighbours of each node are always in the same

distance, and it is clear that the WSN does not fall into multiple partitions

because every node has the fixed amount of surrounding neighbours in the

grid.

As highlighted in the previous section, the node density is kept consistent

for all experiments. The resulting playground sizes for the corresponding

number of nodes in the grid topology are shown in table 5.1.

For the second set of experiments a random topology is used, i.e. each

sensor node is randomly placed on the playground (see figure 5.1b). As

a result, the distances between the nodes’ neighbours vary and thus, also

the number of neighbours per node due to the limited radio range of

each node. Though, this scenario seems to be more realistic, it has the

disadvantage that at worst the network gets partitioned and no valid route
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#Nodes Playground Size
9 949 m × 949 m
16 1265 m × 1265 m
25 1581 m × 1581 m
36 1897 m × 1897 m
49 2214 m × 2214 m
64 2530 m × 2530 m
81 2846 m × 2846 m
100 3162 m × 3162 m

Table 5.1: Playground sizes for different number of nodes using a grid
topology

can be found between the source and the destination nodes.

For each experiment a different number of nodes is used, starting from 10

up to 60 nodes in steps of five (10, 15, 20, ..., 60). Again a constant node

density is used in the experiments. The resulting playground sizes for the

different number of nodes are presented in table 5.2.

#Nodes Playground Size
10 1000 m × 1000 m
15 1225 m × 1225 m
20 1414 m × 1414 m
25 1581 m × 1581 m
30 1732 m × 1732 m
35 1871 m × 1871 m
40 2000 m × 2000 m
45 2121 m × 2121 m
50 2236 m × 2236 m
55 2345 m × 2345 m
60 2449 m × 2449 m

Table 5.2: Playground sizes for different number of nodes using a random
topology

Data Traffic Patterns

Instead of using a Constant Bit Rate (CBR) traffic, a simple request-

response protocol is used that imitates a common network traffic pattern

in WSNs. The basic flow of the protocol in the tested scenarios is as

follows: a source node starts to send out data requests to one of multiple

possible destination nodes. When one of the destination nodes receives

such a request, it answers with the corresponding data response. For each

simulation scenario a traffic pattern with one source and five destinations
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is examined (see figure 5.2a).

D

D

D

S

D
D

(a) One source – five destinations

Figure 5.2: Distribution of source and destinations

The node placed first (node0) is defined as source node (S), while the

multiple destination nodes (D0, ..., D5) are chosen randomly, before the

scenario is started.1

Furthermore, two traffic types are considered in the experiments: Real-

time Multimedia Data Traffic (RTM) and Reliable Best-Effort Data Traf-

fic (RBE). While RTM data traffic is simulating video and audio data,

in which a fast and continuous transmission of multimedia streams is im-

portant; RBE data traffic simulates a reliable transfer of data in which

the arrival of data is more important than the time window within which

it arrives.

Further Simulation Settings

The duration for each simulation is set to 1200 s (=̂20 minutes). Per sim-

ulation scenario 25 repetitions for the pre-experiments and 50 repetitions

for the experiments were simulated, which were then averaged to obtain a

more generalised view on the results. Furthermore, each scenario is tested

1It should be remarked that due to the fact that the destination nodes are chosen
in a random fashion, in some scenarios the source cannot reach the destination(s). In
the case that no traffic is arriving at any destination node during the entire simulation
time, the meaningfulness of the results is limited so that in this case these results are
omitted. Due to the fact that the scenarios are repeated multiple times and the results
are averaged, single omitted results are not crucial for the overall result.
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with a different percentage of malicious nodes (0 %, 25 %, 50 %, 75 %)2.

As discussed before, a grid and a random topology is used in the different

scenarios. No mobility is considered so that the sensor nodes stay at the

same position for the entire simulation time after their deployment.

Table 5.3 shows an overview of the main parameters that were used for

the different scenarios.

Parameter Value
Simulation Time 1200 s
Number of Repetitions per Scenario 25 (pre-experiments), 50 (experiments)
Number of Malicious Nodes 0 %, 25 %, 50 %, 75 %
Deployment grid and random
Mobility static, i.e. no mobility

Table 5.3: Scenario parameters overview table

5.1 Sensor Node Configuration

The sensor node configuration includes the parameters that affect each

node individually. As discussed in section 4.2.2, a network node in MiXiM

uses a layered approach. Figure 5.3 shows the layers of the network stack

as used by the sensor nodes in the simulation scenarios.

Application Layer

Network Layer

NIC

Simple application protocol
based on request-response
scheme

MOACO-based routing protocols:
SRMOACO, ASMOACO, MMASMOACO,
ACSMOACO [or DSR]

IEEE 802.15.4 based MAC layer
including CSMA/CA

MAC Layer

PHY Layer

Figure 5.3: Network stack of a sensor node

From a top-down perspective, the main parameters of each layer are dis-

cussed briefly in the following:

2The term ‘malicious node’ refers here to a node which is dropping packets with a
likelihood of 50 %; correspondingly, the trust value is set to a positive random value
below 0.5, marking the node as untrusted.
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Application Layer

As stated before, a simple request-response protocol is used on the ap-

plication layer to imitate a realistic WSN data traffic pattern. For the

generation of data traffic a traffic generator is used, as described in sec-

tion 4.3.1. Table 5.4 shows the basic parameters that were used for the

traffic generator in the different simulation scenarios.

Parameter Value
initTime 5 s
getDataReqGenerationInterval 10 s
dataReqInterval 1 s
dataReqDuration 6 s
randomDstAddressesCount 5
trafficType periodic

Table 5.4: Traffic generator parameters

Depending on the role of the sensor node it must be distinguished between

the sink that is generating data requests and the sources that generate

data response messages on request:

The generation of data requests is managed by the sink in terms of gener-

ating and sending of GetDataReq messages to one of the a priori selected

sources. This is done as follows: after an initial start up time of 5 s, the

generation of data request messages will start. From this point in time

data requests are sent out periodically in intervals of 10 s to one of the

destinations until the simulation stops.

When a data request arrives at one of the sources, the data response

generation is triggered. From this point in time DataResp messages are

periodically send out back to the sink. The sending of data response

messages is repeated every second and lasts for an overall time of 6 s.

Network Layer

For the routing of the application packets through the network, two dif-

ferent network layers were used in the experiments: a MARFWSN-based

network layer (see section 4.3.2) and a DSR-based network layer (see sec-

tion 4.3.3). While the MARFWSN-based routing algorithms, as main con-

tribution of this thesis, are used for the examination of different MOACO-

based routing algorithms; the DSR-based routing algorithm is used solely
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for comparison purposes. Due to the fact that the configuration of the

network layer is the most important part, it is discussed in-depth in the

next section 5.2.

Physical and Media Access Control Layer

In the simulation scenarios the IEEE 802.15.4 standard [270] is used,

which specifies the physical and the Media Access Control (MAC) layer

for low-rate wireless personal area networks. The MAC layer utilises a

Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) (in the

non-beacon variant) to avoid collisions. IEEE 802.15.4 is provided by the

MiXiM framework for OMNeT++ [261] so that those layer were used

without any modification.

The simulation parameters that are related to the hardware are based on

the specification of the IRIS Mote [9]. The IRIS mote is a 2.4 GHz Mote

module (see figure 5.4) that can be used for the creation of low-power

WSNs.

Figure 5.4: IRIS mote [9]

As successor of the famous MICA Motes [272] it provides a three times

improved radio range and twice the program memory. An overview of the

most important parameters for the simulation scenarios that were derived

from the IRIS Mote datasheet is shown in table 5.5.

For all other parameters in this layer the default values were used as

provided by the MiXiM framework.
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Parameter Value
Frequency band 2405 MHz to 2480 MHz (ISM band)
Transmit (TX) data rate 250 kbps
RF power 3 dBm
Receive sensitivity -101 dBm
Current Draw Receive Mode 16 mA
Current Draw Transmit Mode 10 mA
Battery 2x AA batteries (à 1250 mAH and 1.5 V)

Table 5.5: Hardware related parameters based on IRIS mote [9]
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5.2 Routing Algorithms

In this section the simulation parameters of the MARFWSN-based and

the DSR-based network layer are discussed, which are common to all

simulated scenarios.

5.2 MARFWSN-based Network Layer

As discussed in section 4.3.2, the MARFWSN-based network layer pro-

vides an interface so that different MOACO-based algorithms can be

docked to it and hence, easily adapted for their use in WSN routing.

For the experiments four different MOACO-based algorithms were imple-

mented: SRMOACO, ASMOACO, MMASMOACO and ACSMOACO.

Due to their common origin the MOACO-based algorithms have, on the

one hand, some common parameters and, on the other hand, some unique

parameters depending on the modifications made to the original algo-

rithms. Both sorts of parameters are discussed in the following:

General Parameters

For all MOACO-based routing algorithm three objectives are considered

in the conducted simulations:

1. Residual energy

2. Duration

3. Trust

The residual energy is the product of all residual energy values collected

by an ant at all visited nodes on the route from the source to a destina-

tion node. The duration is the overall time an ant needs to get from a

source to a destination node. The trust value is the product of all trust

values collected at the visited nodes on the path from a source to a desti-

nation node. For each objective a separate pheromone matrix is used. To

reduce the overhead caused by the ants only a single ant colony is used

that manages all pheromone matrices at the same time. To combine the

pheromone value a weighted sum is used.
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When the route discovery mechanism is activated every 5 s, new forward

ants are sent out to discover new or to improve existing routes. An it-

eration timer makes sure that if not all ants arrive within 0.8 s at the

destination, the iteration is ended automatically. This is necessary be-

cause ants can get lost or run into a loop, and thus never arrive at the

destination to complete the iteration.

An overview of the general parameters that were used for all tested

MOACO-based routing algorithms is shown in table 5.6.

Parameter Value
Number of objectives 3 (→ Energy, Duration, Trust)
Number of ant colonies 1
Type of aggregation Weighted sum
routeMaintenanceTimerFrequency 5 s
iterationTimerDuration 0.8 s

Table 5.6: General parameters for the MOACO algorithms

MOACO Algorithm Specific Parameters

Table 5.7 shows an overview of the main parameters that influence the dif-

ferent MOACO algorithms. Depending on the chosen MOACO algorithm

the available parameters slightly differ.

MOACO al-
gorithm

#ants α β ρ ξ τ0 τmin τmax q0

ASMOACO X X X X X
MMASMOACO X X X X X X X
ACSMOACO X X X X X X X
SRMOACO X

Table 5.7: Parameters for MOACO algorithms

with

• #ants is the number of ants per colony

• α relative influence of the pheromone information

• β relative influence of the heuristic information

• ρ evaporation rate used for global pheromone updating

• ξ pheromone decay coefficient used for local pheromone updating

• τ0 initial pheromone value

• τmin minimal pheromone value
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• τmax maximal pheromone value

• q0 relative importance of exploitation vs. exploration

Due to the fact that SRMOACO is acting completely randomly, i.e. with-

out considering any pheromone or heuristic values, no parameters take

influence on this algorithm, except the number of ants. In contrast, the

common parameters α, β, ρ and τ0 are used in ASMOACO, MMASMOACO and

ACSMOACO due to their common origin. While MMASMOACO introduces the

additional parameters τmin and τmax for limiting the pheromone values

by a lower and an upper boundary, ACSMOACO introduces q0 to specify the

relative importance of the exploitation and the local pheromone decay

coefficient ξ .

Although, MARFWSN is capable of handling heuristic values and com-

bining them in the probabilistic rule with the pheromone values, in the

current implementation the heuristic value is not considered. This re-

sults from the fact that it is difficult to find a meaningful heuristic value

for a WSN routing scenario with random deployment3. Deactivating the

heuristic part is achieved by setting α to 1 and β to 0 for all MOACO-

based routing algorithms so that only pheromone information is taken

into account in the ants’ decision process. As a result, it is expected that

at the beginning the route discovery phase will take a little bit longer be-

cause there is no additional guidance from the heuristic values available.

However, in the long run, this should not be a problem.

Due to the assumption that the recommended parameters from other

COPs, such as TSP or QAP, cannot be directly transferred to the unique

area of WSN routing, several pre-experiments will be conducted to find

the optimal parameters for the tested scenarios. For the MOACO algo-

rithms ASMOACO, MMASMOACO and ACSMOACO the available parameters are

tested in different combinations to figure out which parameters will deliver

the best results. In the end, the best parameters for each MOACO-based

algorithm will be chosen based on the findings of the pre-experiments and

then compared to each other and the DSR-based routing algorithm.

3If the distances between the sensor nodes are known, e.g. by GPS or by manual
deployment, the inverse of the distance could be used as heuristic, as often applied in
the TSP. However, this sort of assumptions are not considered in the following.
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Application Packet Queue Parameters

As mentioned before, an application packet queue is used to buffer ap-

plication packets that cannot be sent directly to the destination node.

An exponential back-off mechanism is used that tries to deliver the same

packet for three times. When the application packet cannot be deliv-

ered successfully it is removed from the packet queue. Moreover, when

there are more than five packets in the queue, the oldest packet will be

discarded on the arrival of a new packet.

The application packet queue parameters are shown in table 5.8.

Parameter Value
appPktMaxQueueLength 5
appPktMaxRetryAttempts 3
appPktExponentialBackoffSlot 1 s

Table 5.8: Application packet queue parameters for MARFWSN

Neighbourhood Discovery Parameters

As mentioned in section 4.3.2, for the MOACO-based network layer a

neighbourhood discovery mechanism is required so that each sensor node

is aware of the other nodes in its neighbourhood. In the start up phase of

the neighbourhood discovery, every 0.5 s a HELLO MESSAGE is broadcasted

by each node so that all nodes in the neighbourhood are made aware of

its existence. To reduce the data traffic load, after 5 s the start up phases

ends and from this point in time only every second a new HELLO MESSAGE

is broadcasted. Every 20 s a tidy up timer is called that removes all

neighbours which did not sent a HELLO MESSAGE within this timespan.

The configuration parameters for the neighbourhood discovery mechanism

are summarised in table 5.9.

Simulation Parameter Value
helloTimerStartUpDuration 5 s
helloTimerStartUpFrequency 0.5 s
helloTimerFrequency 1 s
helloTidyUpTimerFrequency 20 s

Table 5.9: Simulation parameter for the neighbourhood discovery mech-
anism
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5.2 DSR-based Network Layer

For comparison purposes the DSR-based network layer was implemented,

as presented in section 4.3.3. There are couple of parameters that are

used for the basic configuration of the DSR-based algorithm, which are

discussed in the following:

General DSR Parameters

To reduce the broadcasting in the DSR networking layer the maximum

number of hops is set to 10. Per destination node 5 routing entries are

managed, and as maximum there are 3 messages in the route request

table. If no route can be found for a destination, an exponential back-

off mechanism is triggered that tries 10 repetitions with a 5 s back-off

slot. If still no route could be found the route finding request is omitted.

The route maintenance functionality is activated; and, ack messages are

repeated every second. When no ack message arrived within 5 s, the ack

request is repeated. When within 3 repetitions no ack message arrived

the link will be marked as broken.

The general parameters that were used for the DSR-based network layer

can be found in table 5.10.

Parameter Value
ttl 10
routingTableSizePerDst 5
routeRequestTableSize 3
routeRequestTableMaximumAttempts 10
exponentialBackoffSlot 5 s
routeMaintenance true
ackRequestInterval 1 s
ackRequestMaximumUncheckedInterval 5 s
ackRequestMaximumAttempts 3

Table 5.10: General parameters for the DSR algorithm

Application Packet Queue Parameters

As in the MOACO-based routing approach the same application packet

queue is used. The queue stores five packets at the maximum before the

oldest packet will be dropped and replaced by the newly arriving one. Up

to three retransmissions with an exponential back-off mechanism will be
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tried to send the application packet again, using an exponential-backoff

timeslot of 1 s. If the packet can still not be delivered, the application

packet is simply dropped.

The summary of application packet queue parameters is shown in table

5.11.

Parameter Value
appPktMaxQueueLength 5
appPktMaxRetryAttempts 3
appPktExponentialBackoffSlot 1 s

Table 5.11: Application packet queue parameters for DSR

5.2 Performance Metrics

To compare the routing algorithms with each other and to say something

about their performance, it is necessary to agree on a set of network

goodness measures, so called metrics.

For the experiments the following metrics are considered:

• Average end-to-end delay: The average end-to-end delay is the

average time (in s) that is needed to deliver an application packet

from a source to a destination node. This value should be as small

as possible.

• Average hop count: The average hop count is the average number

of subsequent intermediate nodes (hops) that is used along the path

from a source to a destination node. This value should be as small

as possible.

• Routing overhead: The routing overhead is the ratio of the num-

ber of network control packets that are required for a successful

delivery of an application packet (in %). This value should be as

small as possible.

• Average residual energy: The (relative) average residual energy

is the average of remaining energy of all nodes in the WSN (in %) at

the end of the simulation. This value should be as near as possible

to the 100 % mark.
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• Trust: The trust value is the product of all trust values that were

obtained at each hop of the route between a source and a destination

node4. This value should be as close as possible to 1.

• Packet Delivery Ratio (PDR): The PDR is defined as the ratio

of the number of successfully delivered packets to the total number

of packets sent from a source to a destination. The PDR should be

as close as possible to 1.

• Distinct Packet Delivery Ratio (DDR): The DDR is defined

as the ratio of the number of different application response packets

that arrive at the original source, in comparison to the application

request packets that were sent. This value should be as large as

possible.

Packet Sizes and Data Types

For the calculations of the packet sizes, which are used in various metrics,

some assumptions have been made regarding the used data types. Those

assumptions are summarised in table 5.12.

Data Type Size
int 4 byte
double 8 byte
simtime t 8 byte (= 64-bit integer)

Table 5.12: Assumptions for calculating the packet sizes

Metrics and Data Traffic Patterns

The variety of different (conflicting) performance metrics makes it hard

to define how well a routing algorithm performs. Instead of considering

each metric individually, in the following, the metrics are considered in

the context of data traffic patterns, i.e. depending on the type of data

traffic that is used (RTM or RBE) a subset of the presented metrics is

consulted. Table 5.13 shows an overview of the relevance of each metric

as used for the analysis of the experiments, where X means important for

this traffic pattern class.

4Due to the fact that each node’s trust value is in the interval of (0, 1] the resulting
product will also be in this range.
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Metric RTM RBE
Average end-to-end delay X
Average hop count X
Routing Overhead X X
Average Residual Energy X X
Trust X X
PDR X
DDR X

Table 5.13: Relevance of the metrics depending on the application

5.3 Experiments and Evaluation

In the following, various experiments with different configurations are

conducted to draw comparisons between the routing algorithms’ perfor-

mances and to answer the question, if the MOACO-based algorithms of

MARFWSN are suitable for the routing in WSNs. Due to the fact that the

MOACO-based algorithms have several configuration parameters them-

selves, in the first step, some pre-experiments are conducted to find the

best parameters for the MOACO-based algorithms. After that, further ex-

periments are conducted to compare the MARFWSN-based algorithms to

the DSR-based routing algorithms, considering different network topolo-

gies and traffic patterns. Finally, the results of the experiments are dis-

cussed and conclusions are drawn.

5.3 Pre-Experiments: Finding Optimal Parameters for MOACO Al-

gorithms

As discussed before, it is expected that the recommended ACO pa-

rameters from other COPs, such as TSP or QAP, cannot be directly

transferred to the area of WSN routing. Therefore, a couple of pre-

experiments were conducted to test in which WSN routing scenarios which

MOACO parameters perform best5. An overview of the tested parame-

ters is shown in table 5.14. The pre-experiments cover both, the grid and

the random topology. For each topology the traffic patterns RTM and

RBE were simulated with one source and five destinations. For all pre-

5Due to the fact that each simulation run needs highly computational power and
takes multiple days for completion, not every possible combination of parameters can
be tested. However, for each parameter a couple of different values were tested, which
were derived from literature research and seemed to be reasonable.
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experiments a balanced weighting of the considered objectives is used, i.e.

[energy = 0.33, duration = 0.33, trust = 0.33].

Parameter Value
#ants per colony 5, 10, 15, 20, 25, 30 (in % of nodes)

ρ 0.05, 0.1, 0.15, 0.2, 0.25
τ0 0, 0.1, 0.25, 0.5, 0.75, 1
τmin 0, 0.15, 0.2, 0.25, 0.3
τmax 0.25, 0.5, 0.75, 1
ξ 0.05, 0.1, 0.15, 0.2, 0.25
q0 0.5, 0.6, 0.7, 0.8, 0.9, 0.98

Table 5.14: MOACO-related input parameters for the pre-experiments

Depending on the traffic type that is used in the simulation scenario,

the corresponding metrics are considered, as discussed in the previous

section. For each of the metrics from the corresponding subset of met-

rics, the best value of the considered parameter is chosen. To obtain the

final aggregated result parameter, simply all selected parameters are av-

eraged.6. It is clear that averaging the output parameters is not ideal,

but some sort of trade-off needs to be made to choose the parameters for

the next experiments.

Evaluation of the Pre-Experiments

As stated before, the pre-experiments aim at finding the best parameters

for the MOACO-based routing algorithms. Because of the large amount of

conducted pre-experiments and due to the fact that these pre-experiments

are not the main focus of this research, in the following the results of the

pre-experiments are only discussed briefly. Table 5.15 summarises the

results of the conducted pre-experiments, which are subsequently used as

parameters for the following experiments.

Number of Ants: The number of ants plays a central role for all

MOACO-based routing algorithms because the more ants are used, the

more ant packets for the routing need to be sent through the network7.

6The averaging of the best parameters is done for simplicity reasons, of course
other criteria could be used to find the final ‘best’ parameter. Additionally, it needs
to be highlighted that in some cases the best parameter for a metric cannot be clearly
identified. In this case, the parameter is ignored and not considered in the average.

7To be more precise, the number of ants (#ants) is given as percentage of the
total number of nodes, e.g. for a scenario with 50 nodes, #ants = 10 means 10 %
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Topo. Traffic Dsts. MOACO Alg. Parameters
SRMOACO #ants = 5
ASMOACO #ants = 5, ρ = 0.1, τ0 = 0

MMASMOACO #ants = 5, ρ = 0.1, τ0 =
0.25, τmin = 0.3, τmax = 0.5

RTM 5

ACSMOACO #ants = 10, ρ = 0.25, τ0 =
0.5, ξ = 0.15, q0 = 0.8

SRMOACO #ants = 20
ASMOACO #ants = 10, ρ = 0.1, τ0 = 0.1

MMASMOACO #ants = 10, ρ = 0.2, τ0 =
0.25, τmin = 0.15, τmax =
0.75

grid

RBE 5

ACSMOACO #ants = 20, ρ = 0.2, τ0 =
0.25, ξ = 0.2, q0 = 0.8

SRMOACO #ants = 10
ASMOACO #ants = 5, ρ = 0.1, τ0 = 0.1

MMASMOACO #ants = 10, ρ = 0.1, τ0 =
0.25, τmin = 0.3, τmax = 0.5

RTM 5

ACSMOACO #ants = 20, ρ = 0.15, τ0 =
0.5, ξ = 0.2, q0 = 0.98

SRMOACO #ants = 20
ASMOACO #ants = 10, ρ = 0.1, τ0 = 0

MMASMOACO #ants = 10, ρ = 0.2, τ0 =
0.25, τmin = 0.15, τmax =
0.75

random

RBE 5

ACSMOACO #ants = 20, ρ = 0.2, τ0 =
0.25, ξ = 0.2, q0 = 0.8

Table 5.15: Results of the pre-experiments (note: #ant in % of nodes)
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However, each transmission of an ant packet requires energy for its trans-

mission so that for a large number of ants more energy is required which

is not desirable for WSNs. Additionally, the more ant packets are sent,

the likelihood of packet collisions will increase so that the overall per-

formance of the network will be reduced by handling those on the lower

layers. Consequently, a trade-off needs to be found between good routing

performance, energy requirements and low number of packet collisions.

In general, it can be stated that for all tested MOACO-based algorithms

the best results of the pre-experiments were obtained when the number

of ants was between 5 and 20. For the grid topology, the RBE traffic

pattern requires about twice as much ants for getting the optimal per-

formance in comparison to the RTM pattern. For the random topology

this observation can be a little bit weakened, though still for almost all

MOACO-based routing algorithms more ants perform better in the RBE

case.

On average, slightly more ants are required in the random topology than

in the grid topology to obtain an optimal performance. This may be

related to the fact that for the random topology it is more difficult to

find optimal routes, in contrast to the uniformly distributed grid topol-

ogy. Another interesting observation that can be made is that although

SRMOACO does not rely on any other parameters, the algorithm performs

best with a similar number of ants as for the other MOACO-based routing

algorithms.

Evaporation Rate (ρ): To avoid a rapid convergence to a local optima,

i.e. a globally suboptimal path, the evaporation of pheromone is utilised,

controlled by the evaporation rate parameter ρ. However, a fine balance

needs to be found between the depositing of new pheromone and the

decaying of pheromone: on the one hand, if the evaporation rate is too

high, the pheromone will disappear too quickly so that in the end the

effect of the positive feedback tends to zero and, on the other hand, if the

evaporation rate is too low, the amount of newly deposited pheromone

will be too high so that the pheromone evaporation will have no influence

of 50 nodes, which are effectively 5 ants or more precise 5 ant packets. However, for
simplicity reasons in the following just the term ’number of ants’ is used.
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at all.

In the pre-experiments the best results could be obtained by setting the

evaporation rate between 0.1 and 0.25. For the experiments with grid

topology the optimal evaporation rate is on average smaller or equal to

the evaporation rate for the experiments with random topology. The

requirement of a smaller evaporation rate for the grid topology may result

from the fact that the routes in the grid can be found more easily due to

the uniform distribution of the nodes so that the forgetting of suboptimal

routes is not as important as in the random topology case. For both

topologies, on average, the RTM traffic pattern performs better with a

lower evaporation rate in comparison to the slightly higher ρ values for

the RBE traffic pattern. It can be assumed that in the case of the RBE

traffic pattern, the rapid forgetting of suboptimal routes leads to better

optimised routes in terms of diversity, and thus to better results.

The evaporation rate for ASMOACO is for all tested scenarios set to 0.1 as

optimal value. This may result from the fact that all forward ants are

converted to backward ants, which then contribute to the updating of the

pheromone. Consequently, a small evaporation rate is sufficient to obtain

good results because all backward ants are contributing to the pheromone

updating process by depositing new pheromone, also considering its evap-

oration. In contrast, for MMASMOACO and ACSMOACO the evaporation rate

is in most cases higher than the 0.1 of ASMOACO, i.e. both perform best

with roughly the same evaporation rate. Only two times, 0.25 performed

best, while in the other cases a value between 0.1 and 0.2 was sufficient

as evaporation rate.

Initial Pheromone (τ0): The initial pheromone influences the ants

that start with the first iteration. τ0 is strongly linked to the evaporation

rate ρ that is influencing the pheromone decay. When a small evaporation

rate is set in combination with large initial pheromone, there is only a

small difference on each pheromone update so that the exploration phase

at the start is extended.

The best results in the pre-experiments were obtained by setting τ0 to

a value from the range between 0 and 0.5. In contrast to the pre-
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experiments conducted with the random topology, on average, a better

performance was obtained for the grid topology, when a higher τ0 value

was set. Consequently, it can be assumed that the longer exploration

rate seems to be better exploitable in the grid topology. For the most

experiments a larger τ0 value leads to better results if only one destina-

tion is considered, particularly in the grid topology. The RTM and the

RBE traffic pattern behave quite similar; however, for most cases RBE

performs better with smaller τ0 values.

Maximum Pheromone (τmax): MMASMOACO limits the amount of

pheromone by the parameter τmax as pheromone upper bound. This

avoids that the pheromone value is getting too high, resulting in a too

strong convergence to the best-so-far route without considering any al-

ternatives. The results of the pre-experiments show that the best results

can be obtained when the value of τmax is between 0.5 and 0.75.

The type of topology does not seem to have an influence on the perfor-

mance, when setting the τmax value. The only observation that can be

made is that depending on the chosen traffic pattern a different τmax

value performs better: while in case of RTM a τmax value of 0.5 provides

the best simulation results, for RBE the best results could be obtained

by setting τmax to 0.75.

Another interesting observation of the conducted pre-experiments is that,

differently from what was proposed in the original paper of MMAS, setting

the initial pheromone value to τmax, i.e. τ0 = τmax, did not result in the

best performance of MMASMOACO for the tested scenarios.

Minimum Pheromone (τmin): Additionally to the upper bound,

MMASMOACO limits the pheromone by the parameter τmin as lower bound.

Depending on the chosen τmin value, it can be avoided that the pheromone

value becomes smaller than a certain value. The best results of the pre-

experiments could be obtained in the case of setting τmin in the range of

0.15 and 0.3

In comparison to the RTM traffic pattern, the RBE traffic performs on

average better with smaller values of τmin. All in all, the results of the
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pre-experiments show that all tested MOACO-based algorithms perform

best if τmin is set to a value larger than 0, i.e. all the time there is

some amount of pheromone in the network that is influencing the ants’

decisions.

Local Pheromone Update Rate (ξ): The local pheromone update

rate is only utilised by ACSMOACO to update each path locally, i.e. di-

rectly after using it, the amount of pheromone is reduced. Consequently,

a fast convergence to certain paths is avoided so that a more explo-

rative behaviour is encouraged. The best performance values in the pre-

experiments were obtained for ξ values in the range between 0.15 and

0.25.

For almost all tested scenarios ACSMOACO performs best if the ξ value

is smaller or equal to the ρ value. This make sense because if the ξ

value is too high, the pheromone evaporation gets unbalanced so that

the influence of ρ tends to zero. In the tested grid topology experiments

ACSMOACO performs best for slightly smaller ξ values than in the random

topology experiments. While for the RTM traffic pattern a higher ξ value

leads to better results, for the RBE slightly lower values perform best.

Relative Importance of Exploitation vs. Exploration (q0): In

ACSMOACO the relative importance of exploitation vs. exploration can be

set by the parameter q0 in the range between 0 and 1, in which the values

near 1 lead to a faster convergence to existing routes. Due to the fact

that q0 counteracts ξ, a fine balance between these parameters has to

be found. The best results of the experiments for ACSMOACO could be

obtained by setting q0 to a value from the range of 0.6 and 0.98. More

precise, when not considering the pre-experiment with grid topology and

the RTM traffic pattern, all other pre-experiments perform best for ξ

values from the range 0.8 and 0.98. All in all, obviously, the searching

of good paths near the best-so-far paths results in a better performance

than searching for completely new routes instead.
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5.3 Comparison of MARFWSN-based and DSR-based Routing Algo-

rithms

In the experiments, the MOACO-based routing algorithms of MARFWSN

are compared to the DSR-based routing algorithm. The parameters

gained from the pre-experiments are applied correspondingly to the

MOACO-based algorithms. All routing algorithms are compared on dif-

ferent topologies (grid and random topology), with different traffic pat-

terns (RTM and RBE traffic pattern) and with different percentages of

malicious nodes (0 %, 25 %, 50 %, 75 %)8.

Grid with Real-time Multimedia Data Traffic

In the following the experiments with a grid topology and the RTM data

traffic pattern are discussed:

Application Packet End-to-End Delay: Figure 5.5 shows the aver-

age application packet end-to-end delay with standard deviation for the

grid topology with the RTM traffic pattern. The graphs show the end-

to-end delay in seconds on the y-axis and the number of nodes on the

x-axis.

For the scenario with 0 % of malicious nodes (see figure 5.5a), it can be

observed that the delay for the DSR-based routing algorithm is much

smaller (< 0.1 s) than for the MOACO-based algorithms (between 0.05 s

and 0.5 s) for all tested network sizes. The reason for this is that both

routing approaches are based on different route discovery phases: while

in DSR the first route that was found is used for the lifetime of the net-

work, the MOACO-based algorithms trigger periodically the route dis-

covery process so that the routes can be improved over several iterations.

This results in a larger average end-to-end delay for the MOACO-based

algorithms. MMASMOACO has a similarly low average end-to-end delay as

the DSR-based algorithm. While SRMOACO and ACSMOACO are very slowly

increasing (staying below 0.25 s), ASMOACO is increasing strongly starting

from 64 nodes on, going up to 0.5 s. On average, the standard deviation of

8Note: for each used network metric the same scale is applied to all diagrams of the
same type. The main reason for this is to ease the comparison between the different
simulation scenarios.
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ACSMOACO is much higher than for the other MOACO-based algorithms.

This can be explained by the fact that the local updating in ACSMOACO

leads to a more explorative behaviour and hence, to a greater variety in

the end-to-end delay.

If the percentage of malicious nodes in the network is increased to 25 %,

to 50 % and to 75 % a similar end-to-end delay can be observed as for

0 % malicious nodes. Only the average end-to-end delay of ASMOACO is

decreasing so that it converges to a similar average end-to-end delay as

SRMOACO.

Application Packet Delivery Ratio: Figure 5.6 shows the average

application PDR with standard deviation for the grid topology with the

RTM traffic pattern. The graphs show the PDR on the y-axis and the

number of nodes on the x-axis.

When there are no malicious nodes in the network (see figure 5.6a), it

can be observed that from 9 to 36 nodes DSR outperforms all MOACO-

based algorithms; only SRMOACO performs almost as good as the DSR-

based algorithm. From 49 to 100 the MOACO-based algorithms, except

ASMOACO, outperform the DSR-based algorithm in terms of average ap-

plication PDR. ASMOACO shows the worst average application PDR for a

low as well as for a high number of nodes, only for 36 and 49 nodes it

performs similarly good as the other routing algorithms.

As expected, with the increasing of the percentage of malicious nodes

to 25 %, to 50 % and to 75 %, it can be observed that the average ap-

plication PDR is decreasing for all tested routing algorithms (see figures

5.6b, 5.6c and 5.6d). The average application PDR of the DSR-based and

the MOACO-based algorithms becomes closer with each increasing of the

malicious nodes. The only real difference can be observed between 9 and

49 nodes, in which the DSR-based algorithm performs best, followed by

SRMOACO, ACSMOACO and MMASMOACO, and finally, ASMOACO as worst. From

49 nodes on all routing algorithms have a similar average application

PDR so that they are not distinguishable any more, particularly if there

is a high number of malicious nodes in the network. For most MOACO-

based algorithms it can be observed that the lower the number of ants
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Figure 5.5: Application packet average end-to-end delay with different
percentages of malicious nodes for grid topology with RTM traffic pattern
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Figure 5.5: Application packet average end-to-end delay with different
percentages of malicious nodes for grid topology with RTM traffic pattern
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used for the algorithm, the lower the average application PDR. However,

SRMOACO performs in this case astonishingly good, though it is just based

on random movement with a small number of ants.

Number of Hops: Figure 5.7 shows the average number of hops with

standard deviation for the grid topology with the RTM traffic pattern.

The graphs show the number of hops on the y-axis and the number of

nodes on the x-axis.

For 0 % of malicious nodes (see figure 5.7a) it can be observed that all

MOACO-based algorithms required on average between ∼ 2.3 and ∼ 3.2

hops. In contrast, for the DSR-based algorithm up to 36 nodes only

between ∼ 1.5 and ∼ 2.6 hops are required, for more than 36 nodes the

number of hops stays around 3.

When the percentage of malicious nodes is increased to 25 %, to 50 % and

to 75 %, it can be observed that the average number of hops for MOACO-

based algorithms is slightly decreased so that they are, on average, located

rather constantly around 2 hops. In contrast, the average number of hops

for the DSR-based algorithm is only very slightly decreased so that it

needs a little bit less than 3 hops on average. However, the distance

between the average number of hops for the DSR-based algorithm and the

MOACO-based algorithms is larger, the more malicious nodes are in the

network, for network sizes with more than 25 nodes. The observation that

the average number of hops of the MOACO-based algorithms is rather

constant can be explained by the fact that the ant-based algorithms seem

to converge much faster to (near) optimal routes because the diversity of

routes is decreased by loosing ants on routes with malicious nodes, while

the good routes are reinforced by pheromone. This is also supported by

the decreasing standard deviation of the MOACO-based algorithms the

more malicious nodes are in the network.

Residual Energy: Figure 5.8 shows the average residual energy with

standard deviation for the grid topology with the RTM traffic pattern.

The graphs show the residual energy in % on the y-axis and the number

of nodes on the x-axis.
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Figure 5.6: Application PDR with different percentages of malicious nodes
for grid topology with RTM traffic pattern
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Figure 5.6: Application PDR with different percentages of malicious nodes
for grid topology with RTM traffic pattern
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Figure 5.7: Number of hops with different percentages of malicious nodes
for grid topology with RTM traffic pattern
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Figure 5.7: Number of hops with different percentages of malicious nodes
for grid topology with RTM traffic pattern
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The results show that for the DSR-based routing algorithm more residual

energy is left than for the MOACO-based algorithms for all tested sce-

narios. While the residual energy for the DSR-based algorithm is slightly

increased, when increasing the number of nodes in the network, for the

MOACO-based routing algorithms the residual energy stays quite con-

stant for all tested scenarios. However, the standard deviation in the

DSR-based routing algorithm is much higher than for the MOACO-based

algorithms. Interestingly, the MOACO-based algorithms can not be dis-

tinguished, although they are influenced by different parameters and act

differently. That slightly more energy is required for the MOACO-based

algorithms can be explained by the fact that these algorithms use several

iterations of sending multiple forward ants in the discovery process, while

the DSR-based algorithm is based on a single broadcasting and there are

no further iterations for improving a route, when already one working

route was found. Besides, the required broadcasting of HELLO-messages

that is required to indentify neighbours in the MOACO-based routing

algorithms, is requiring additional energy. Increasing the percentage of

malicious nodes does not seem to have a great impact on the residual

energy for all tested routing algorithms.

Although, the residual energy for the DSR-based algorithm looks much

more than for the MOACO-based algorithms in the diagrams, it has to be

highlighted that this difference is for the absolute values is very small9.

Routing Overhead: Figure 5.9 shows the average routing overhead

with standard deviation for the grid topology with the RTM traffic pat-

tern. The graphs show the routing overhead in % on the y-axis and the

number of nodes on the x-axis.

For 0 % of malicious nodes (see figure 5.9a) it can be observed, that the

DSR-based routing algorithm has a slightly lower average overhead (∼
5 %) in comparison to the MOACO-based routing algorithms (between ∼
5 % and ∼ 23 %). The average routing overhead for the MOACO-based

algorithms is slightly increased, when the number of nodes in network is

increased, while the DSR-based algorithm stays on a constantly low level.

9For a better evaluation of the energy, in the future, the simulation time needs to
be increased to obtain more significant values. The results of the current simulations
should be rather seen as tendency.
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Figure 5.8: Residual energy with different percentages of malicious nodes
for grid topology with RTM traffic pattern
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Figure 5.8: Residual energy with different percentages of malicious nodes
for grid topology with RTM traffic pattern
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While MMASMOACO and SRMOACO show a maximum average overhead of ∼
10 %, ASMOACO and ACSMOACO have an average overhead around 23 %, with

ASMOACO having the highest average overhead of the tested algorithms.

For 25 % of malicious nodes (see figure 5.9b) it can be observed that the

average overhead of MMASMOACO and SRMOACO is only very slightly increas-

ing, while the average overhead for ASMOACO and ACSMOACO is increasing,

up to 30 % for ACSMOACO and up to 25 % for ASMOACO.

Interestingly, for 50 % and 75 % of malicious nodes (see figures 5.9c and

5.9d), the average overhead of MMASMOACO and SRMOACO increases up to

∼ 18 %, while the average overhead for ASMOACO stays almost the same,

and the overhead of ACSMOACO increases again up to ∼ 40 % in worst

case. The average overhead of the DSR-based routing algorithm stays

low, when the percentage of malicious nodes is increased. The strongest

rise can be observed for ACSMOACO in comparison to the other MOACO-

based algorithms.

The great difference between the DSR-based and the MOACO-based rout-

ing algorithms can be explained by the fact that the MOACO-based al-

gorithm use several iterations to improve the routes so that the ratio be-

tween network layer packets and application layer packets becomes worse,

in contrast to the DSR-based algorithm that is using the first route found

in the route discovery process. The difference in the overhead of the

MOACO-based algorithms is mainly based on the number of ants that

are used in which algorithm.

Trust: Figure 5.10 shows the average trust value with standard devia-

tion for the grid topology with the RTM traffic pattern. The graphs show

the trust value on the y-axis and the number of nodes on the x-axis.

For 0 % of malicious nodes (see figure 5.10a) it can be observed that all

MOACO-based routing algorithms have an average trust value between

0.5 and 0.7. Considering the different number of nodes, ASMOACO provides

the best average trust values for almost all tested scenarios, except for 64

and 100 nodes ACSMOACO performs better. The DSR-based algorithm per-

forms significantly worse in comparison to the MOACO-based algorithms.

This result is as expected because the DSR-based routing algorithm does
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Figure 5.9: Routing overhead with different percentages of malicious
nodes for grid topology with RTM traffic pattern
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Figure 5.9: Routing overhead with different percentages of malicious
nodes for grid topology with RTM traffic pattern
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not optimise its route regarding trust, while for the MOACO-based algo-

rithms this is one of the desired optimisation features.

With 25 % and 50 % of malicious nodes (see figures 5.10b and 5.10c),

the average trust values of all tested routing algorithms get significantly

worse and are moving closer together. The average trust values are then

in the range between 0.1 and 0.3. For more than 36 nodes the DSR-based

algorithms performs worst (except the outlier of ASMOACO for 64 nodes).

With 75 % of malicious nodes (see figure 5.10d) the average trust value of

DSR is again reduced (∼ 0.1) on average, while the MOACO-based algo-

rithms perform similar to 25 % or 50 % of malicious nodes. As expected,

the MOACO-based algorithms outperform the DSR-based algorithm re-

garding the trust value, particularly in networks with many malicious

nodes.
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Figure 5.10: Trust with different percentages of malicious nodes for grid
topology with RTM traffic pattern
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Figure 5.10: Trust with different percentages of malicious nodes for grid
topology with RTM traffic pattern
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Grid with Reliable Best-Effort Data Traffic

In the following the experiments with a grid topology and the RBE data

traffic pattern are discussed:

Application Packet End-to-End Delay: Figure 5.11 shows the av-

erage application packet end-to-end delay with standard deviation for the

grid topology with the RBE traffic pattern. The graphs show the end-

to-end delay in seconds on the y-axis and the number of nodes on the

x-axis.

In comparison to the RTM traffic pattern, the average end-to-end de-

lay of the MOACO-based algorithms for the RBE traffic pattern on the

grid topology with 0 % malicious nodes is slightly higher, whereas the

DSR-based routing algorithm stays on a constantly low level (see figure

5.11a). The largest increase can be observed for ACSMOACO and SRMOACO

which have a worst average end-to-end delay of ∼ 0.6 s. MMASMOACO and

ASMOACO have a slightly better average end-to-end delay reaching an aver-

age application packet end-to-end delay of ∼ 0.4 s at worst. The increase

in the average application packet end-to-end delay of the MOACO-based

algorithms can be explained by the increased amount of ants that is used

in the RBE scenario compared to the previous RTM scenario (see table

5.15).

When the percentage of malicious nodes is increased to 25 %, to 50 % and

to 75 %, the average end-to-end delay of the MOACO-based algorithm

is slightly decreased in each step (see figures 5.11b, 5.11c and 5.11d).

The worst case average end-to-end delay for SRMOACO and ACSMOACO is

decreased to ∼ 0.52 s and for MMASMOACO and ASMOACO to ∼ 0.25 s. The

reduced average end-to-end delay for the MOACO-based algorithms may

result from the fact that more packets are dropped and hence, the con-

vergence to (near) optimal paths is faster. Besides, when packets are

dropped, less packets need to be forwarded, resulting in less packet colli-

sions, which cause additional delay.

Application Packet Delivery Ratio: Figure 5.12 shows the average

application PDR with standard deviation for the grid topology with the
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Figure 5.11: Application packet average end-to-end delay with different
percentages of malicious nodes for grid topology with RBE traffic pattern
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Figure 5.11: Application packet average end-to-end delay with different
percentages of malicious nodes for grid topology with RBE traffic pattern
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RBE traffic pattern. The graphs show the PDR on the y-axis and the

number of nodes on the x-axis.

For the scenario with 0 % of malicious nodes, it can be observed that

for ASMOACO the average application PDR is really high compared to the

other algorithms (see figure 5.12a). Moreover, it can be observed that

starting from 25 all other routing algorithms perform on a similar level,

and starting from 50 nodes all MOACO-based algorithms even outperform

the DSR-based algorithm in terms of average application PDR.

When the number of malicious nodes is increased to 25 % (see figure 5.12b)

the average application PDR of all tested routing algorithms becomes

worse, but all MOACO-based algorithms outperform the DSR-based rout-

ing algorithm for network sizes with more than 25 nodes. After a decrease

from ∼ 0.38 for 9 nodes to ∼ 0.18 for 36 nodes, the MOACO-based algo-

rithms stay almost constant around ∼ 0.1 from 50 nodes on.

For 50 % and 75 % of malicious nodes, the average application PDR is

again a little bit decreased for all tested routing algorithms (see figures

5.12c and 5.12d). Except ASMOACO, the other routing algorithms perform

similarly bad so that they cannot be distinguished any more.

As expected, the tuning of the MOACO-based algorithms’ parameters

lead to a slight improvement of the average PDRs at the cost of sending

more ants. The largest effect could be observed for ASMOACO, which shows

a significant improvement for the average application PDR in case of the

RBE traffic pattern.

Number of Hops: Figure 5.13 shows the average number of hops with

standard deviation that are required for the grid topology with the RBE

traffic pattern. The graphs show the number of hops on the y-axis and

the number of nodes on the x-axis.

Similar to the previous experiment with the grid topology and the RTM

traffic pattern, the average number of hops for the MOACO-based algo-

rithms stays almost constant when the number of nodes in the network is

increased (compare figure 5.7). On average the most hops are required by

ASMOACO (∼ 3.5), while the least hops are required by ACSMOACO (∼ 2.8) .

In comparison the MOACO-based algorithms, the DSR-based algorithm
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Figure 5.12: Application PDR with different percentages of malicious
Nodes for grid topology with RBE traffic pattern
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Figure 5.12: Application PDR with different percentages of malicious
Nodes for grid topology with RBE traffic pattern
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has the lowest average number of hops up to 25 nodes (between ∼ 1.5

and ∼ 2.1) and then, it raises further so that it is on a similar level as the

other MOACO-based algorithms (between ∼ 2.8 and ∼ 3.3).

When the percentage of malicious nodes is increased, from 25 % to 50 %

to 75 %, the average number of hops for the MOACO-based algorithms

is slightly reduced so that they are getting closer together (between 2.5

and 2 hops), while the average number of hops for the DSR-based algo-

rithms stays between 1.5 and 3 hops. It can be observed that the more

malicious nodes are in the network, the larger gets the gap between the

MOACO-based algorithms and the DSR-based algorithms in terms of av-

erage number of hops.

As explained before, the rather constant behaviour of the MOACO-based

algorithms can be explained by the fact that the MOACO-based algo-

rithms converge to (near) optimal solutions with a small number of hops,

while the broadcasting of the DSR-based algorithm also utilises longer

routes with multiple hops.

Residual Energy: Figure 5.14 shows the average residual energy with

standard deviation for the grid topology with the RBE traffic pattern.

The graphs show the residual energy in % on the y-axis and the number

of nodes on the x-axis.

Again, as in the previous scenario based on the grid topology, very similar

values of the average residual energy can be observed (compare figure 5.8)

so that it can be assumed that the traffic pattern for the grid topology

does not have a great influence on the residual energy of the nodes.

Routing Overhead: Figure 5.15 shows the average routing overhead

with standard deviation for the grid topology with the RBE traffic pat-

tern. The graphs show the routing overhead in % on the y-axis and the

number of nodes on the x-axis.

For the scenario with 0 % of malicious nodes (see figure 5.15a), the average

routing overhead of the MOACO-based algorithms is between ∼ 2 % and

∼ 52 %, in worst case. SRMOACO and ACSMOACO increase a little bit more

strongly (up to ∼ 52 %), while MMASMOACO and ASMOACO increase more
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Figure 5.13: Number of hops with different percentages of malicious nodes
for grid topology with RBE traffic pattern
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Figure 5.13: Number of hops with different percentages of malicious nodes
for grid topology with RBE traffic pattern
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Figure 5.14: Residual energy with different percentages of malicious nodes
for grid topology with RBE traffic pattern
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Figure 5.14: Residual energy with different percentages of malicious nodes
for grid topology with RBE traffic pattern
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slowly (up to ∼ 21 %). The DSR-based routing algorithms has the lowest

average overhead around 7 % and stays rather constant starting from 25

nodes.

By increasing the number of malicious nodes in the network from 25 %

to 50 % to 75 % (see figures 5.15b, 5.15c and 5.15d), the routing over-

head of the MOACO-based algorithms is additionally increased. At

worst, ACSMOACO and SRMOACO have the highest overhead around 78 %.

MMASMOACO and ASMOACO are the MOACO-based algorithms with the low-

est overhead with around 38 % in worst case. In contrast, the DSR-based

algorithm stays constant, when the percentage of malicious nodes is in-

creased.

Basically, it can be observed that the increase in the number of ants for the

MOACO-based algorithms leads to a larger routing overhead, in contrast

to the previous scenario with the RTM traffic pattern. The more ants are

used by the MOACO-based algorithms, the higher is the average routing

overhead.

Trust: Figure 5.17 shows the average trust value with standard devia-

tion for the grid topology with the RBE traffic pattern. The graphs show

the trust value on the y-axis and the number of nodes on the x-axis.

The average trust values that can be observed in the scenario with the

RBE traffic pattern are similar to the average trust values from the RTM

traffic pattern (compare figure 5.10). The main difference is that the

tested MOACO-based algorithms are a little bit clearer separated from

each other. For 0 % of malicious nodes, the following ranking, from highest

to lowest trust value, can be created: ACSMOACO, SRMOACO, MMASMOACO and

ASMOACO. The DSR-based algorithm has again the lowest trust values.

When increasing the number of malicious nodes from 25 % to 75 % all

average trust values decrease and get closer together (∼ 0.2). The DSR-

based algorithms has on average, as expected, always the lowest average

trust values, when the number of malicious nodes is increased. The more

ants are used by the MOACO-based algorithm, the better the obtained

average trust value. This may be explained by the fact that more ants

lead to a greater diversity of routes, which results then in finding more
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Figure 5.15: Routing overhead with different percentages of malicious
nodes for grid topology with RBE traffic pattern
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Figure 5.15: Routing overhead with different percentages of malicious
nodes for grid topology with RBE traffic pattern
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trusted routes.

As stated for the previous scenario, the difference between the MOACO-

based algorithms and the DSR-based algorithms regarding the trust value

can be explained by the fact that the MOACO-based algorithms take trust

into account, while the DSR-based algorithm is not aware of this.
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Figure 5.16: Trust with different percentages of malicious nodes for grid
topology with RBE traffic pattern
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Figure 5.16: Trust with different percentages of malicious nodes for grid
topology with RBE traffic pattern
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Random with Real-time Multimedia Data Traffic

In the following the experiments with a random topology and the RTM

data traffic pattern are discussed:

Application Packet End-to-End Delay: Figure 5.17 shows the av-

erage application packet end-to-end delay with standard deviation for the

random topology with the RTM traffic pattern. The graphs show the

end-to-end delay in in seconds on the y-axis and the number of nodes on

the x-axis.

For the scenario with 0 % of malicious nodes (see figure 5.17a), it can

be observed that the average application packet end-to-end delay for the

DSR-based routing algorithm is smaller (< 0.1 s) than for the MOACO-

based algorithms (between 0.1 s and 0.5 s) for all tested network sizes. The

reason why the average application packet end-to-end delay of the DSR-

based algorithm is much smaller in comparison to the MOACO-based

algorithms is based on the different approaches in the route discovery

phase: while in the DSR-based algorithm the first route that was found is

used, the MOACO-based algorithms wait until all forward ants reached

the destination or the expiration timer exceeds, causing the difference in

the end-to-end delay. In comparison to the grid topology with the RTM

traffic pattern, the average application packet end-to-end delay is for the

random topology with the RTM traffic pattern slightly increased. This

may be based on the fact that the nodes in the random topology are not as

uniformly distributed as in the grid topology hence longer delays are more

likely. Besides, slightly more ants are used in the MOACO algorithms as

for the random topology causing some additional delay.

When the percentage of malicious nodes is increased to 25 % to 50 % to

75 %, a slightly lower average application packet end-to-end delay can be

observed for the MOACO-based algorithms as for the scenario with 0 %

of malicious nodes. This can be explained by the fact that the diversity

of routes is reduced by malicious nodes dropping packets so that the ants

converge faster to (near) optimal routes with lower end-to-end delay.
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Figure 5.17: Trust with different percentages of malicious nodes for grid
topology with RBE traffic pattern
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Figure 5.17: Application packet average end-to-end delay with different
percentages of malicious nodes for random topology with RTM traffic
pattern
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Application Packet Delivery Ratio: Figure 5.18 shows the average

application PDR with standard deviation for the random topology with

the RTM traffic pattern. The graphs show the PDR on the y-axis and

the number of nodes on the x-axis.

When there are no malicious nodes in the network (see figure 5.18a), it can

be observed that starting from 20 nodes all MOACO-based algorithms as

well as the DSR-based algorithms are close to each other, except ASMOACO

which is slightly oscillating. When the network size is increased, the

average application PDR is decreasing for all tested algorithms. While

the DSR-based algorithm is strongly decreasing, the MOACO-based al-

gorithms decrease more slowly so that for network size with more than

45 the MOACO-based algorithms outperform the DSR-based algorithm.

As expected, with the increasing of the percentage of malicious nodes to

25 % to 50 % to to 75 % it can be observed that for all tested routing

algorithms the average application PDR is decreasing. The general trend

of the routing algorithms is similar to the one observed with 0 % of mali-

cious nodes, but here the PDR values are closer together so that no real

difference between the algorithms can be observed, the more malicious

nodes are in the network.

Number of Hops: Figure 5.19 shows the average number of hops with

standard deviation required for the random topology with the RTM traffic

pattern. The graphs show the number of hops on the y-axis and the

number of nodes on the x-axis.

For the scenario with 0 % of malicious nodes in the network (see figure

5.19a) it can be observed that all MOACO-based algorithms require on

average between 2 and 3.8 hops. In contrast, for the DSR-based algorithm

less hops are required between 10 and 25 nodes, while a similar average

number of hops as for the MOACO-based algorithms is required starting

from 30 nodes.

When the number of malicious nodes is increased to 25 %, to 50 % and

to 75 %, the average number of hops for the MOACO-based algorithms

is decreased so that it is located around 2 hops. Although, the average

number of hops is also decreased for the DSR-based algorithm, the de-
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Figure 5.18: Application PDR with different percentages of malicious
nodes for random topology with RTM traffic pattern
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Figure 5.18: Application PDR with different percentages of malicious
nodes for random topology with RTM traffic pattern
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crease is smaller: with already 25 % of malicious nodes in the network,

the number of hops for the DSR-based algorithm, for more than 30 nodes,

is always higher than the average number of hops for the MOACO-based

algorithms. This basic tendency can be explained by the fact that the

MOACO-based algorithms converge after a while to the (near) optimal

route with a few hops, while the broadcasting mechanism in the discovery

phase of the DSR-based algorithm leads to routes with multiple hops.

Residual Energy: Figure 5.20 shows the average residual energy with

standard deviation for the random topology with the RTM traffic pattern.

The graphs show the residual energy in % on the y-axis and the number

of nodes on the x-axis.

The average residual energy in the random scenario is similar to the

one observed in the grid scenario with the RTM traffic pattern, i.e. the

MOACO-based routing algorithms have a slightly higher energy consump-

tion than the DSR-based algorithm. When the number of malicious nodes

is increased in the network, the average residual energy stays almost as it

was.

Routing Overhead: Figure 5.21 shows the average routing overhead

for the random topology with the RTM traffic pattern. The graphs show

the routing overhead on the y-axis and the number of nodes on the x-axis.

When there are no malicious nodes in the network (see figure 5.21a), it can

be observed that ASMOACO has the lowest average routing overhead, fol-

lowed by the DSR-based routing algorithm. Slightly more average routing

overhead have the MOACO-based algorithms SRMOACO and MMASMOACO,

which both increase up to ∼ 17 % in worst case. Significantly more over-

head can be observed for ACSMOACO, increasing more strongly up to ∼
32 %. The stronger increase of ACSMOACO can be explained by the fact

that it uses the largest number of ants in the scenario.

By increasing the percentage of malicious nodes in the network from 25 %,

to 50 %, to 75 %, it can be observed that the average routing overhead

for the DSR-based algorithm stays almost constant on the same level,

while the average application routing overhead for the MOACO-based
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Figure 5.19: Number of hops with different percentages of malicious nodes
for random topology with RTM traffic pattern
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Figure 5.19: Number of hops with different percentages of malicious nodes
for random topology with RTM traffic pattern
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Figure 5.20: Residual energy with different percentages of malicious nodes
for random topology with RTM traffic pattern
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Figure 5.20: Residual energy with different percentages of malicious nodes
for random topology with RTM traffic pattern
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algorithm is increased. The strongest rise can be observed for ACSMOACO,

which reaches ∼ 53 % in worst case, whereas SRMOACO and MMASMOACO go

up to ∼ 25 % and ASMOACO up to 10 % at worst (see figure 5.21d).

The increase of the average routing overhead of the MOACO-based algo-

rithms in the case of an increase of malicious nodes can be explained by

the fact that the more ants are dropped by malicious nodes, the worse be-

comes the ratio between routing and application packets. Due to the fact

that the DSR-based algorithm in the tested scenarios only starts the route

discovery once, the influence of dropped packets in the routing packet to

application packet ratio is not as crucial as for the MOACO-based algo-

rithms.

Trust: Figure 5.22 shows the average trust value with standard devia-

tion for the random topology with the RTM traffic pattern. The graphs

show the trust value on the y-axis and the number of nodes on the x-axis.

In the case of 0 % of malicious nodes in the network (see figure 5.22a), it

can be observed that the MOACO-based routing algorithms outperforms

the DSR-based routing algorithm for all tested scenarios in terms of the

average trust value. This is as expected because the DSR-based algo-

rithms does not consider any sort of trust in its decision making process,

while for the MOACO-based algorithms this is one of the optimisation

critera. The best MOACO-based algorithms is ACSMOACO with an aver-

age trust value around 0.7, followed by SRMOACO, MMASMOACO and ASMOACO

with a trust value between ∼ 0.6 and ∼ 0.45). The DSR-based algorithm

performs significantly weaker (around 0.4 on average). An interesting fact

is that the number of nodes in the network does not seem to have a large

influence on the average trust value.

When the percentage of malicious nodes is increased up to 25 %, on av-

erage, the trust value of all approaches is halved. Still ACSMOACO outper-

forms all other algorithms for most network sizes, followed by the other

MOACO-based algorithms and then, the DSR-based algorithm, which is

only slightly weaker. For 50 % and 75 % of malicious nodes, the MOACO-

based algorithms performs similar to the scenario with 25 % of malicious

nodes, while the average trust value for the DSR-based algorithm is de-
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Figure 5.21: Routing overhead with different percentages of malicious
nodes for random topology with RTM traffic pattern
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Figure 5.21: Routing overhead with different percentages of malicious
nodes for random topology with RTM traffic pattern
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creasing dramatically so that a significant gap between the average trust

values can be observed.
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Figure 5.22: Trust with different percentages of malicious nodes for ran-
dom topology with RTM traffic pattern
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Figure 5.22: Trust with different percentages of malicious nodes for ran-
dom topology with RTM traffic pattern
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Random with Reliable Best-Effort Data Traffic

In the following the experiments with a random topology and the RBE

data traffic pattern are discussed:

Application Packet End-to-End Delay: Figure 5.23 shows the av-

erage application packet end-to-end delay with standard deviation for the

random topology with the RBE traffic pattern. The graphs show the

end-to-end delay in seconds on the y-axis and the number of nodes on the

x-axis.

When there are no malicious nodes in the network (see figure 5.24a), the

MOACO-based algorithms have on average a higher application packet

end-to-end delay (up to 1.1 s than the DSR-based algorithm (≤ 0.1 s).

When not considering the outlier of ASMOACO for 100 nodes, all MOACO-

based algorithm stay below 0.5 s. The difference between the DSR-based

and the MOACO-based algorithms can be explained by the fact that

the MOACO-based algorithms are sending regularly new ants for the

discovery of new routes or the improvement of existing routes, while the

DSR-based algorithms sticks with the first route that was found. On

average, ACSMOACO and SRMOACO have the highest application packet end-

to-end delays around 0.5 s. A significantly lower end-to-end delay can

be observed for MMASMOACO, which requires in worst case 0.25 s. ASMOACO

slightly oscillates between MMASMOACO and the other two MOACO-based

algorithms, except for 100 nodes where the application packet end-to-end

delay gets much higher than for the other tested algorithms. The slightly

longer delay for ACSMOACO and SRMOACO can be mainly explained by the

fact that both use two times more ants than the other two MOACO-based

algorithms.

When the percentage of malicious nodes is increased to 25 % the aver-

age application packet end-to-end delay of the tested algorithms does not

change much, except for ASMOACO, which has in this case a lower end-

to-end delay than all other MOACO-based algorithms at a similar level

as MMASMOACO (see figure 5.23b). For 50 % and 75 % of malicious nodes,

the average application packet end-to-end delay of all MOACO-based al-

gorithms is slightly reduced. (see figure 5.23c and 5.23d). The slightly
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decreasing application packet average end-to-end delay for the MOACO-

based algorithms can be explained by the fact that the ants converge

faster to (near) optimal routes because the other routes cannot be used

due to malicious nodes. Furthermore, the dropping of packets leads to

less data traffic in the network and thus, less packet collisions.

Application Packet Delivery Ratio: Figure 5.24 shows the average

of the application PDR for the random topology with the RBE traffic

pattern. The graphs show the PDR on the y-axis and the number of

nodes on the x-axis.

When there are 0 % of malicious nodes in the network all tested rout-

ing algorithms have a similar average application PDR, except ASMOACO,

which performs significantly worse (see figure 5.24a). With an increase

of the nodes in the network, the average PDR is decreasing. The max-

imum average PDR is reached by SRMOACO (∼ 0.5), while the minimum

is reached by ASMOACO (∼ 0.05). It can be observed that in compari-

son to the MOACO-based algorithms (except ASMOACO) the DSR-based

algorithm is strongly decreasing starting from 50 on.

With the increase of the percentage of malicious nodes to 25 %, 50 % and

75 % the average PDR is decreased for all tested algorithm so that it varies

in the range of ∼ 0.02 and ∼ 0.38 (see figures 5.24b - 5.24d). For 75 % of

malicious nodes, all algorithms have an average application PDR below

0.2. The measurements of all tested algorithms are coming closer together

and the standard deviation is getting smaller so that for almost all network

sizes the algorithms can hardly be distinguished. Consequently, it can be

assumed that similar routes, namely the only routes that are working

without malicious nodes, are used by all algorithms, resulting in a similar

average application PDR. Except ASMOACO, which performs worst for all

scenarios, the MOACO-based algorithms perform on a similar level than

the DSR-based algorithm and starting from 50 nodes in the network, the

MOACO-based algorithms even outperform the DSR-based algorithm so

that it would be interesting to test scenarios with more nodes in the future

to see whether this tendency is ongoing.
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Figure 5.23: Application packet average end-to-end delay with different
percentages of malicious nodes for random topology with RBE traffic
pattern
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Figure 5.24: Application PDR with different percentages of malicious
nodes for random topology with RBE traffic pattern
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Figure 5.24: Application PDR with different percentages of malicious
nodes for random topology with RBE traffic pattern
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Number of Hops: Figure 5.25 shows the average number of hops with

standard deviation required for the random topology with the RBE traffic

pattern. The graphs show the number of hops on the y-axis and the

number of nodes on the x-axis.

When there are no malicious nodes in the network (see figure 5.25a), the

number of hops for the MOACO-based algorithms varies between ∼ 2.25

and ∼ 3.5. Although, the average number of hops for the MOACO-

based algorithms are close together, it can be stated that on average the

MMASMOACO requires the most hops, while ASMOACO and ACSMOACO require

the least hops. While for networks with 10 or 15 nodes, the number of

hops for the DSR-based algorithm is lower than for the MOACO-based

algorithms, for more than 25 nodes the average number of hops for the

DSR-based algorithm is in a similar range as for the MOACO-based al-

gorithms.

When the percentage of malicious nodes is increased up to 25 %, to 50 %

and to 75 % of malicious nodes, it can be observed that the average num-

ber of hops for the MOACO-based routing algorithms is slightly decreas-

ing (down to 2.2 hops) (see figures 5.25b, 5.25c and 5.25d), while average

number of hops for the DSR-based algorithm is rather constant, resulting

in a larger gap between the DSR-based algorithm and the MOACO-based

algorithms. This can be explained by the fact that the MOACO-based al-

gorithm are biased by the pheromone to stick to the (near) optimal paths

found with less hops, while the DSR-based routing algorithm will always

have unnecessary routes with more hops due to the broadcasting mecha-

nism used in the route discovery phase. All in all, the average number of

hops is similar to the ones observed in the previous scenarios.

Residual Energy: Figure 5.26 shows the average residual energy with

standard deviation for the random topology with the RBE traffic pattern.

The graphs show the residual energy in % on the y-axis and the number

of nodes on the x-axis.

No big difference can be observed for the average residual energy in com-

parison to the previously evaluated scenarios: while the DSR-based rout-

ing algorithm has slightly more residual energy with a greater standard
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Figure 5.25: Number of hops with different percentages of malicious nodes
for random topology with RBE traffic pattern
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deviation, the MOACO-based routing algorithms have a little less residual

energy with a smaller standard deviation. The percentage of malicious

nodes does not seem to influence the residual energy much within this

short runtime of the scenario. For a better analysis of the residual en-

ergy, further simulations with a longer runtime need to be conducted.

Routing Overhead: Figure 5.27 shows the routing overhead with stan-

dard deviation for the random topology with the RBE traffic pattern. The

graphs show the routing overhead in % on the y-axis and the number of

nodes on the x-axis.

When there are no malicious nodes in the network (see figure 5.27a), the

average routing overhead of the MOACO-based algorithms is slightly in-

creased for all MOACO-based algorithms, except ACSMOACO, compared to

the random scenario with the RTM traffic pattern. ACSMOACO, ASMOACO

and SRMOACO have very similar overhead (∼ 38 % at worst). In contrast,

MMASMOACO has only a little bit more routing overhead (∼ 16 % in worst

case) so that for scenarios with more than 50 nodes it has slightly more

overhead than the DSR-based routing algorithm, which stays rather con-

stant around 8 %.

When the number of malicious nodes in the network is increased to 25 %

to 50 % to 75 %, (see figures 5.27b, 5.27c and 5.27d), the average routing

overhead of all MOACO-based algorithms is increased. The worst average

routing overhead can be observed for SRMOACO (∼ 55 %) for the scenario

with 75 % of malicious nodes – a similar overhead can be observed for

ACSMOACO (∼ 50 %). Slightly less routing overhead has ASMOACO (up to

30 %) and MMASMOACO (up to 22 %) for 60 nodes. The overhead for the

DSR-based algorithm stays constantly low no matter how many malicious

nodes are in the network.

The additional overhead for the MOACO-based algorithms can be ex-

plained by the fact that for almost all MOACO-based algorithms, the

number of ants was doubled, resulting in an additional overhead. An in-

teresting observation can be made for MMASMOACO, which has an higher

overhead as with the RTM traffic pattern on the same random topology,

though the number of ants is the same: it is likely that the larger overhead
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Figure 5.26: Residual energy with different percentages of malicious nodes
for random topology with RBE traffic pattern
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Figure 5.26: Residual energy with different percentages of malicious nodes
for random topology with RBE traffic pattern
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is resulting from the tuned evaporation rate, pheromone boundaries, but

also the randomness of the scenario.

Trust: Figure 5.28 shows the trust value with standard deviation for

the random topology with the RBE traffic pattern. The graphs show the

trust value on the y-axis and the number of nodes on the x-axis.

The average trust values that can be observed for the RBE traffic pattern

for the different scenarios with different percentages of malicious nodes

are very similar to those observed for the RTM traffic pattern on the same

topology (see figures 5.28 and 5.22). The only obvious difference is the

volatile behaviour of ASMOACO, which seems to be strongly influenced by

the randomness of the scenario. The large changes can be explained by

the fact that ASMOACO is the only MOACO-based algorithms that sends

all forward ants back as backward ants, all contributing to the average

trust value. Consequently, high trust values are amplified if trustworthy

routes are found by many backward ants, while , inversely, low trust

values are amplified by untrustworthy routes. This amplification seems

to be particularly the case for the scenarios with 35 and 50 nodes.
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Figure 5.27: Routing overhead with different percentages of malicious
nodes for random topology with RBE traffic pattern
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Figure 5.27: Routing overhead with different percentages of malicious
nodes for random topology with RBE traffic pattern
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Figure 5.28: Trust with different percentages of malicious nodes for ran-
dom topology with RBE traffic pattern
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Figure 5.28: Trust with different percentages of malicious nodes for ran-
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5.3 Remarks

In this subsection a few remarks on the conducted experiments are made

that should help to put the results in a certain context:

Pre-Experiments

As stated before, it was assumed that the parameters from existing

MOACO researches could not be transferred directly to the area of WSNs

due to their unique constraints. Consequently, in a set of pre-experiments

the ‘optimal’ parameters for the MOACO-based WSN routing algorithms

should be found, which however involved several challenges:

Firstly, it must be stated that finding the ‘optimal’ parameters for the

MOACO-based algorithms is an MCOP itself, namely finding the opti-

mal parameters out of all possible parameter combinations. This involves

also dependencies between certain parameters that are not obvious at first

glance. Due to the fact that the simulation of each MOACO-based algo-

rithm scenario took multiple days, it is clear that only a subset of param-

eter combinations could be tested in an experimental manner. Therefore,

the conducted simulation results cannot give an exhaustive answer to the

optimal MOACO parameters for the routing in WSNs, but rather some

sort of tendency.

Another challenge was the aggregation of values obtained from the pre-

experiments to a final best parameter because for different metrics, dif-

ferent parameter values performed best. The used averaging of the pa-

rameter values, leads to some final results, but depending on the desired

focus other parameter values may perform better for certain application

scenarios.

Besides, it should be highlighted that the obtained values for the MOACO

parameters look static, but it can be assumed that, depending on the

actual network situation, a dynamic finding of parameters that adapts to

the current network situation may be reasonable.

Experiment

Also the subsequent experiment involved several challenges:
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A flaw in the experiments is also that at the current implementation state,

the iterations of the MOACO-based routing algorithms are triggered by

a timer, causing in scenarios that are less dynamic a too large overhead.

In the future one could imagine a more adaptive approach, which starts

new iterations triggered by certain events.

A general problem of the conducted experiments is the quantity of ran-

domness involved in the experiments: in the experiments, the connec-

tions between source and destinations, the topology (in case of random

topology), the malicious nodes, the packet dropping likelihood and the

probabilistic behaviour of ants are based on randomness so that even on

the same topology an almost unlimited number of different results can

be created. Particularly, the selection of the source and destinations has

a strong influence on the performance of the algorithms because in best

case, source and destination are direct neighbours, while in worst case

multiple hops are required to reach the destination. The only possibility

to generalise these experiments is to repeat them for several runs and

then, average the results – as done in this thesis. Although, the number

of repetitions for each experiment is with 50 runs already quite high, for

more stable results more repetitions are required, which however, need

significantly more simulation time and result in large amounts of output

data that need to be analysed. Nevertheless, the conducted experiments

shows some interesting results for a set of realistic scenarios, which have

a more generalisable significance than providing results for completely

pre-defined simulation scenarios.

5.3 Conclusions

For the application packet end-to-end delay it can be stated that the

MOACO-based algorithms are suitable for both, the grid and the ran-

dom topology, as well as for the tested traffic patterns, RTM and RBE.

Although, the DSR-based algorithm has a lower application packet end-

to-end delay for almost all scenarios, the MOACO-based algorithms stay

even on average below 0.6 s. The difference in the delay between the DSR-

based and the MOACO-based algorithms can be mainly explained by the

different route discovery approaches: while the MOACO-based algorithms

always need to wait until all forward ants have reached the destination
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or a timer exceeded (required if ants get lost), whereas the DSR-based

algorithm uses broadcasting and the first route found is used. As shown

by the experiments, the number of ants used by the MOACO-based algo-

rithms plays an important role for the application packet end-to-end delay

because more ants result in more network packets, a higher likelihood of

packet collisions and thus, delayed transmissions. As the expiration timer

of the MOACO-based routing algorithms can be controlled by a timer, the

application packet end-to-end delay might even be reduced in the future

by optimising this timer depending on the network size.

For the application PDR it can be observed that in the grid topol-

ogy with the RTM traffic pattern, the DSR-based algorithm outper-

forms all MOACO-based algorithms up to 36 nodes, afterwards the DSR-

based algorithm is outperformed by all MOACO-based algorithms, except

ASMOACO. For the RBE traffic pattern on the grid topology the DSR-based

algorithm is outperformed by all MOACO starting from 49 nodes on, also

when the percentage of malicious nodes is increased. For the random

topology it can be observed that all routing algorithms have on average a

similar PDR for networks with more than 35 nodes. However, in compari-

son to the MOACO-based algorithms, the DSR-based algorithm seems to

decrease dramatically for higher number of nodes (> 45). It seems to be

likely that this effect continues so that the MOACO-based algorithms will

outperform the DSR-based algorithm for larger network sizes; however,

this should be examined in future experiments. A not so good application

PDR can only be observed for ACSMOACO in the random topology with the

RBE traffic pattern. However, it is likely that this results from the ran-

domness of the scenario so that future experiments should be conducted

to examine this assumption. In general it can be observed that, as ex-

pected, with the increasing number of malicious nodes the overall average

PDR is reduced, while the algorithms get closer together so that a real

difference between the routing algorithms cannot be observed. However,

on average the MOACO-based algorithms have a similarly good applica-

tion PDR as the DSR-based algorithm, particularly for larger networks

and also when there are many malicious nodes in the network.

The average number of hops for the DSR-based and the MOACO-based

routing algorithms behave quite similar no matter which topology is cho-
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sen and no matter which traffic pattern is selected: up to 50 nodes, the

number of hops for the DSR-based algorithm is slightly increasing from

∼ 1.5 up to ∼ 3.2, after that the average number of hops stays around 3.

In contrast, the average number of hops for the MOACO-based algorithms

is between 2.5 and 3, depending on the chosen MOACO-based algorithm.

The number of hops stays almost constant for the MOACO-based algo-

rithms when the number of nodes in the network is increased. For all

tested scenarios it can be observed that when the number of malicious

nodes is increased, the average number of hops of the MOACO-based

algorithm is slightly decreased, while the DSR-based algorithm stays ap-

proximately on the same level so that the MOACO-based algorithms out-

perform the DSR-based algorithms for scenarios with more than 35 nodes.

The constant number of hops for the MOACO-based algorithms can be

explained by the fast convergence of the ants to (near) optimal routes

with less hops due to their biased used of routes with pheromone.

For the average residual energy of the tested routing algorithms it can

be observed that for the different topologies and traffic patterns simi-

lar results are obtained: while the average residual energy for the DSR-

based algorithm is slightly increasing the more nodes are in the network,

the MOACO-based algorithms have a little less residual energy. How-

ever, the standard deviation of the DSR-based algorithm is much higher

than the one observed for the MOACO-based algorithm. Interestingly, all

MOACO-based algorithms have the same residual energy so that the dif-

ferent algorithms cannot be distinguished regarding the average residual

energy. The reason why the MOACO-based algorithms require slightly

more energy than the DSR-based algorithm is based on two facts: beacon-

ing and iterations. Due to the fact that the MOACO-based algorithms

use unicast messages for the communication, each sensor node needs to be

aware of its neighbours; therefore, additional broadcast beaconing mes-

sages are used to make all nodes in the radio range aware of the nodes’

existence, which, however, require additional energy. The other thing is

the number of iterations used in the MOACO-based algorithms: while the

DSR-based algorithm just uses one broadcasting mechanism to discover

the routes, the MOACO-based algorithms try to improve their routes after

a certain timespan by sending out forwarding ants for discovery purposes

again, leading to multiple iterations and thus, more sending and receiving
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power.

In general it can be stated that the overhead of the DSR-based routing

algorithm is lower than for the MOACO-based algorithms for all tested

topologies and traffic patterns. This can again be explained by the fact

that the DSR-based routing algorithm is doing exactly one route discov-

ery, while the MOACO-based algorithms use several iterations. However,

for the grid topology with the RTM traffic pattern, the maximum over-

head is around 20 % for the worst MOACO-based algorithm, when there

are no malicious nodes in the network. Due to the fact that for the RBE

traffic pattern more ants are used, the overhead increases on the same

topology to ∼ 51 % in worst case. A similar overhead can be observed

for the random topology; however, in case of RTM traffic the ACSMOACO

performs worst and in case of RBE traffic ASMOACO performs worst, while

all other MOACO algorithms are close to the DSR-based algorithm, par-

ticularly up to 35 nodes. In general it can be observed that when the

percentage of malicious nodes in the network is increased, the average

overhead of MOACO-based algorithms is increased: the more malicious

nodes, the stronger the increase in the overhead. Particularly, if a lot of

ants are utilised by a MOACO-based algorithm and a lot of them gets

dropped by the malicious nodes, the overhead gets worst.

As expected, the average trust value of the MOACO-based routing al-

gorithms is significantly higher (between ∼ 0.45 and ∼ 0.7) than of the

DSR-based (between 0.38 and 0.6) when there are no malicious nodes

in the network for all tested scenarios; though, the trust value interval

seems to be similar, the MOACO-based algorithms the trust value of the

DSR-based routing algorithm is decreasing, while the trust value of the

MOACO-based algorithms stays constant or oscillates around one value.

The only outlier can be observed for ASMOACO for the random topology

with the RBE traffic pattern, which has an oscillating behaviour, which

is likely to result from the discussed amplification problem created by the

backward ants. The difference between the MOACO-based algorithms

and the DSR-based algorithm can be explained by the fact, that the DSR-

based algorithm is not aware of the trust values, while for the MOACO-

based algorithms trust is one of the objectives used for route optimisation.

As expected, when the number of malicious nodes in the network is in-
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creased, the trust values for all routing algorithms is decreased by around

two third. Since there are not so large differences for the MOACO-based

algorithms when increasing the percentage of malicious nodes to 25 % to

50 % to 75 %, the DSR-based algorithm decreases more and more when

increasing the number of nodes in the network resulting in a larger gap

between the MOACO-based algorithms and the DSR-based algorithm.

Additionally, it should be highlighted that for almost all scenarios the

number of ants was increased from the RTM to the RBE traffic pattern.

This leads, on the one hand, to a better reliability and a higher PDR

for the RBE traffic, but, on the other hand, the application packet end-

to-end delay was increased as well as the overhead. Consequently, one

of the most important factors for the MOACO-based algorithms is the

number of ants that is used, because each ant equals a routing packet and

thus, increases the overall data traffic in the network. In dense networks

the huge amount of routing packets leads to collisions and therefore, to

additional delay and a higher likelihood of lost packets.

Although, the MOACO-based algorithms perform as good as the DSR-

based scenario or even better in some cases, it should be again stated that

the DSR-based routing algorithm was only utilising exactly one discovery

phase, while the MOACO-based routing algorithms was using multiple

iterations. For more dynamic networks, it can be assumed that the DSR

broadcasting discovery process needs to be triggered more often so that

the distance between the MOACO-based algorithms and the DSR-based

algorithm, particularly regarding the overhead, will be reduced. Further

simulations should be conducted in the future to get an answer to the

question what will happen in more dynamic network scenarios.

5.4 Summary

In this chapter, the experiments were conducted and evaluated, which

should deliver some empirical data to answer the question if the

MARFWSN-based routing algorithms, based on MOACO algorithms, are

suitable for the use in WSNs in terms of performing as good as existing

routing protocols, while additionally mitigating the effect of insider at-

tacks.
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Therefore, in the first step, the settings of the experiments were explained

including the general simulation scenario configuration such as the play-

ground, the network topologies and the data traffic pattern. Afterwards,

the general sensor node configuration was discussed including the used

network stack containing the application layer, the network layer, the

MAC and the physical layer. Subsequently, a more detailed look was

taken on the configuration of the routing algorithms as most crucial part

of the experiments. This included the MARFWSN-based routing ap-

proaches (SRMOACO, ASMOACO, MMASMOACO and ACSMOACO) and the DSR-

based routing algorithm, used for comparison purposes. Furthermore, the

performance metrics were discussed that were used to compare the differ-

ent routing approaches depending on the traffic pattern. In the next step,

the configuration of the pre-experiments and their results were discussed,

which was conducted to find the best parameters for the MOACO-based

parameters. Then, based on the pre-experiments, a set of experiments was

conducted to compare the different MOACO-based routing algorithms us-

ing MARFWSN to the DSR-based routing algorithm in different scenar-

ios. In the experiments two different network topologies (grid and random

topology) as well as two different traffic patterns (RTM and RBE) were

considered, leading to four sub-experiments. The results of the exper-

iments were discussed and complemented by some remarks that should

explain the context of the results, which should be considered when inter-

preting the experimental results. Finally, the results of the experiments

were summarised and conclusions were drawn showing the suitability of

the MOACO-based routing algorithms in WSNs as well as the challenges

that need to be met.





6

Conclusions and Future Work

Science never solves a problem without

creating ten more.

George Bernard Shaw (1856 - 1950)

In this chapter the conclusions of the thesis will be drawn and possible

future work will be discussed:

In this thesis MARFWSN was proposed, a routing framework for WSNs

that utilises MOACO-based algorithms for the optimisation of routes

in WSNs. The MOACO-based algorithms are a subset of biologically-

inspired algorithms that are based on the idea of using artificial ant

colonies to solve MCOPs, i.e. combinatorial problems with multiple (con-

flicting) objectives. As the routing in WSNs can be seen as such a prob-

lem, the robust features of the MOACO-based algorithms seem to be

well-suited.

As insider attacks, i.e. compromised nodes that are a valid part of the

network, are one of the big challenges in WSNs, the proposed routing

algorithms consider trust as soft security measure to mitigate the impact

of these attacks. This is achieved by using the trust value of each node

as one of the objectives the MOACO-based algorithm is optimising for.

6.1 Contributions

In the following the contributions of this thesis are summarised:

6.1 Foundations

In the first step, the security issues of WSN routing protocols were iden-

tified, particularly considering insider attacks. Subsequently, the idea

of BIAs were discussed as suitable approaches for the routing in WSNs

with a special focus on ant-based algorithms. The origin of ACO and
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its extension MOACO were explained as well as their applications. The

related works in this field were reviewed for the area of wired and wireless

networks, including WSNs and MANETs.

6.1 Multi-objective Ant Colony Optimisation Routing Framework for

WSNs

Based on the findings MARFWSN, a MOACO-based routing framework

for WSN, was designed and implemented. MARFWSN aims to be a

common framework that enables the testing of different MOACO-based

algorithms in the context of WSNs routing.

Design Goals

The main design goals that were considered in the development of

MARFWSN are as follows:

• Deployment: Based on the layered approach, the framework

should integrate seamlessly as network layer into the WSN network

stack without the need for modification of other network layers.

• Dockability: The framework should provide a docking interface so

that different MOACO algorithms can be easily added, exchanged

and examined, without the need to modify the framework itself.

• Extendability: The framework should be extendable in terms of

that additional MOACO algorithms can be easily added to test their

performance in WSN routing.

• Flexibility: The framework should not be restricted to a certain

amount of objectives so that any number of objectives should be

usable by the MOACO-based algorithms.

• Common features: The framework itself should deal with the

functionality that is common to all MOACO algorithms such as

sending of ants, management of pheromone and heuristic informa-

tion etc.

• Soft security: The framework should support some integration of

soft-security to mitigate the impact of insider attacks.



6.1. CONTRIBUTIONS 267

Implementation

Based on the design goals, MARFWSN was implemented in the simu-

lation tool OMNeT++ [260] using the MiXiM framwork [261] that pro-

vides wireless and mobile functionality. Four MOACO-based algorithms

were implemented for MARFWSN (SRMOACO, ASMOACO, MMASMOACO and

ACSMOACO) based on their ACO ancestors. Besides, a traffic generator

was implemented that uses a simple request-response protocol imitating

common WSN application network traffic, i.e. the querying of a source

by a sink node.

6.1 Experiments and Evaluation

MARFWSN, with the four implemented MOACO-based algorithms, was

tested in several WSN scenarios with different parameter settings. The

conducted experiments considered different topologies (random and grid)

as well as different traffic types (RTM and RBE). Several network sizes

were tested each for different percentages of malicious nodes (0 %, 25 %,

50 % and 75 %). By comparing the MARFWSN-based network layer to

the DSR-based network layer conclusions were drawn regarding the per-

formance differences and the general use of MOACO-based routing algo-

rithms in WSNs.

The main outcomes of the evaluations can be summarised as follows:

• The pre-experiments showed that the parameters for MOACO-

based algorithms are unique for WSNs and thus, cannot be directly

transferred from other MCOPs, such as TSP or QAP.

• The number of ants used in the MARFWSN-based routing algo-

rithms significantly influenced the performance of the MOACO-

based algorithms because each ant is equivalent to one network

packet that needs to be sent.

• The end-to-end delay of the MARFWSN-based network layer is

on average slightly higher than for the DSR-based routing proto-

col because of the iterations and corresponding timer used in the

MOACO-based algorithms.

• In terms of application PDR, the MARFWSN-based routing proto-
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cols perform on average similarly good as the DSR-based protocol;

in some cases MARFWSN even outperforms the DSR-based proto-

col for large network sizes. More ants lead to a better application

PDR, but also to more overhead and delay.

• While the average number of hops of the MARFWSN-based net-

work layer stays rather constant for all network sizes due to the

convergence by the pheromone, the number of hops of the DSR-

based protocol is less for small network sizes, but similar or even

larger for networks with many sensor nodes.

• The residual energy for the DSR-based protocol was better than for

the MARFWSN-based protocol, which uses multiple iterations and

additionally beacons for neighbourhood discovery. Longer simula-

tions need to be conducted to examine this tendency.

• Using trust as third objective allowed the MARFWSN-based net-

work layer to find more trustful routes in the network in comparison

to the DSR-based routing protocol so that the impact of insider at-

tacks can be mitigated for the MARFWSN-based network layer.

• The DSR-based routing algorithms outperform the MARFWSN-

based routing algorithms, utilising several iterations, in terms of

overhead, particularly for larger networks.

All in all, it can be stated that the MARFWSN-based routing algorithms

are basically suitable for the use in WSNs by performing similarly good as

the DSR-based protocol in the tested scenarios. The idea of incorporating

trust in the routing process for MARFWSN showed promising results to

mitigate insider attacks.

However, the results of the conducted simulation experiments should be

seen as first tendency because more repetitions and a longer duration of

the simulations could lead to more robust results, particularly for the

scenarios with high randomness. Due to the long simulation time a vast

number of additional hours need to be spent to improve the simulations

results.
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6.2 Future Work

In this thesis at several points limitations, challenges and ideas were pre-

sented that could lead to following researches. Therefore, in this section

only a few ideas for future work will be discussed briefly, which go be-

yond the scope of this thesis, but can be used as starting point for further

research.

Parameters

In general, it would be interesting to find out more about the parame-

ters that can be used in the MOACO-based routing algorithms and their

interactions. Additional values of parameters could be checked and anal-

ysed to gain new insights into their influence on the WSN routing pro-

cess. However, as stated before, finding the optimal parameters for the

MOACO-based algorithms is a MCOP itself so that it would also be in-

teresting to investigate in a more formalised approach of ‘solving’ this

problem. It may also be worthwhile to conduct research on adaptive pa-

rameter settings that are capable of reacting to changes in the network.

Scalability

Due to the limited time frame, only a limited subset of different network

sizes could be simulated. However, based on the obtained results and

the tendencies that could be observed for the different routing algorithms

towards the upper limit of the network size, it would be interesting to

investigate how the routing algorithms perform if the number of nodes

in the network is increased up to multiple hundreds of sensor nodes. It

is expected that the MOACO-based algorithms perform better or more

efficient, while the DSR-based protocol becomes inefficient because of the

used broadcasting mechanism.

Network Attacks

Regarding the security in the WSN it would also be interesting to make

the malicious behaviour in the WSN more sophisticated. As a result,

it could be investigated how the performance changes when ‘real’ WSN

networks attacks emerge, such as wormhole attacks or Sybil attack, in-
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stead of just observing the performance in the network when packets are

dropped, as done in the simplified attacker model used in this thesis.

Trust and Reputation

As one of the main features of the presented MOACO-based algorithms

is the consideration of trust as one of the objectives in the route optimi-

sation process, it should be investigated in a real TRS that deals with the

management and exchange of trust values in the WSN. Based on such a

system, MARFWSN should be modified so that the trust values of the

next hop can already be obtained at the current hop by each ant. This

should lead to an even better performance of the MOACO-based routing

algorithm because less ants will get lost by visiting malicious nodes, as

this is often the case in the simplified current implementation. However,

when adding a TRS it needs to be considered that the overhead of such

a system should be kept small in terms of the computational power and

memory required at each node as well as the amount of messages that

needs to be additionally sent, which are increasing the overall network

traffic load. Also the TRS itself can be an interesting target for adver-

saries so that new challenges will arise to protect these systems.

Hardware Implementation

As the configuration of the sensor nodes used in the simulations were

already based on the Iris Mote specifications [9], as next logical step it

would be interesting to implement MARFWSN on real hardware sensor

nodes in a test-bed and then, to compare these results to the obtained

results of the experiments conducted in OMNeT++.
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