
Compression of visual data into symbol-like
descriptors in terms of a cognitive real-time vision

system

Dissertation

ZUR ERLANGUNG DES MATHEMATISCH-NATURWISSENSCHAFTLICHEN DOKTORGRADES

“DOKTOR RERUM NATURALIUM” DER GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

vorgelegt von

Alexey Abramov

aus Moskau, Russland

Göttingen 2012

Referent: Prof. Dr. Florentin Wörgötter
Koreferent: Prof. Dr. Winfried Kurth
Tag der mündlichen Prüfung: 18/07/2012

Abstract

Humans have five main senses: sight, hearing, touch, smell, and taste. Most of
them combine several aspects. For example vision addresses at least three perceptual
modalities: motion, color, and luminance. Extraction of these modalities begins in
the human eye in the retinal network and the preprocessed signals enter the brain as
streams of spatio-temporal patterns. As vision is our main sense, particularly for the
perception of the three dimensional structure of the world around us, major efforts
have been made to understand and simulate the visual system based on the knowledge
collected to date.

The research done over the last decades in fields of image processing and computer
vision coupled with a tremendous step forward in hardware for parallel computing
opened the door to building of so-called cognitive vision systems and for their incor-
poration into robots. The goal of any cognitive vision system is to transform visual
input information into more descriptive representations than just color, motion, or
luminance. Furthermore, in most robotic systems “live” interactions of robots with
the environment are required, greatly increasing demands on the system. In such
systems all pre-computations of the visual data need to be performed in real-time
in order to be able to use the output data in the perception-action loop. Thus, a
central goal of this thesis is to provide techniques which are strictly compatible with
real-time computation.

In the first part of this thesis we investigate possibilities for the powerful compres-
sion of the initial visual input data into symbol-like descriptors, upon which abstract
logic or learning schemes can be applied. We introduce a new real-time video seg-
mentation framework performing automatic decomposition of monocular and stereo
video streams without use of prior knowledge on data and considering only preceding
information. All entities in the scene, representing objects or their parts, are uniquely
identified.

In the second part of the thesis we make additional use of stereoscopic visual infor-
mation and address the problem of establishing correspondences between two views of
the scene solved with apparent ease in the human visual system (for images acquired
with left and right eye). We exploit these correspondences in the stereo image pairs
for the estimation of depth (distance) by proposing a novel disparity measurement
technique based on extracted stereo-segments. This technique approximates shape
and computes depth information for all entities found in the scene. The most im-
portant and novel achievement of this approach is that it produces reliable depth
information for objects with weak texture where performance of traditional stereo
techniques is very poor.

In the third part of this thesis we employ an active sensor, producing indoors
much more precise depth information encoded as range-data than any passive stereo

iii

iv Abstract

technique. We perform fusion of image and range data for video segmentation which
results in better results. By this we can now even handle fast moving objects, which
was not possible so far.

To address the real-time constraint, the proposed segmentation framework was
accelerated on a Graphics Processing Unit (GPU) architecture using the parallel
programming model of Compute Unified Device Architecture (CUDA). All introduced
methods: segmentation of single images, segmentation of monocular and stereo video
streams, depth-supported video segmentation, and disparity computation from stereo-
segment correspondences run in real-time for middle-size images and close to real-time
for higher resolutions.

In summary: The main result of this thesis is a framework which can produce a
compact representation of any visual scene where all meaningful entities are uniquely
identified, tracked, and important descriptors, such as shape and depth information,
are extracted. The ability of the framework was successfully demonstrated in the
context of several European projects (PACO-PLUS, Garnics, IntellAct, and Xperi-
ence). The developed real-time system is now employed as a robust visual front-end
in various real-time robotic systems.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
Citations to Related Publications . vii
Acknowledgments . ix
Dedication . xiii
List of Symbols and Notations . xv

1 Introduction 1

2 Real-time Image Segmentation on a GPU 7
2.1 Introduction . 7
2.2 Real-time image segmentation on a GPU 13
2.3 Segmentation results and time performance 50
2.4 Discussion . 67

3 Real-time Segmentation of Monocular Video Streams 71
3.1 Introduction . 71
3.2 Real-time segmentation of monocular videos 75
3.3 Experimental results . 80
3.4 Discussion . 84

4 Real-time Segmentation of Stereo Video Streams 87
4.1 Introduction . 87
4.2 Real-time segmentation of stereo videos 88
4.3 Experimental results . 92
4.4 Implementation on a portable system 95
4.5 Discussion . 97

5 Disparity from Stereo-segment Correspondences 99
5.1 Introduction . 99
5.2 Texture as a crucial point . 103
5.3 Dense disparity from stereo-segment silhouettes 109
5.4 Experimental results . 118
5.5 Time performance . 125
5.6 Discussion . 127

6 Depth-supported Real-time Video Segmentation with the Kinect 131
6.1 Introduction . 131
6.2 Depth-supported video segmentation 133
6.3 Experimental results . 136

v

vi Contents

6.4 Discussion . 140

7 Conclusion and Outlook 143

A Appendix 147
A.1 GPU occupancy data . 147
A.2 General linear least squares . 148
A.3 Nelder-Mead simplex algorithm . 150
A.4 Kinect calibration . 152

B Curriculum Vitae 167

Citations to Related Publications

Large portion of Chapter 2 has appeared in the following paper:

Abramov, A., Kulvicius, T., Wörgötter, F., and Dellen, B. (2010). Real-
time image segmentation on a GPU. Facing the Multicore-Challenge, Lec-
ture Notes in Computer Science, 6310, 131-142.

Most of Chapters 3 and 4 has appeared in the following papers:

Abramov, A., Aksoy, E. E., Dörr, J., Pauwels, K., Wörgötter, F., and
Dellen, B. (2010). 3D semantic representation of actions from efficient
stereo-image-sequence segmentation on GPUs, Fifth International Sympo-
sium on 3D Data Processing, Visualization and Transmission (3DPVT).

Abramov, A., Pauwels, K., Papon, J., Wörgötter, F., and Dellen, B.
(2012). Real-time segmentation of stereo videos on a portable system
with a mobile GPU, IEEE Transactions on Circuits and Systems for Video
Technology (in press).

Most of Chapter 5 has been submitted as

Abramov, A., Pauwels, K., Kornewald, W., Wörgötter, F., and Dellen,
B. Real-time dense disparity from stereo-segment silhouettes for weakly-
textured images. Submitted to International Journal of Computer Vision
in June 2012.

Finally, Chapter 6 appears in its entirety as

Abramov, A., Papon, J., Pauwels, K., Wörgötter, F., and Dellen, B.
(2012). Depth-supported real-time video segmentation with the Kinect.
IEEE workshop on the Applications of Computer Vision (WACV), 457-
464.

vii

viii

Acknowledgments

This thesis would not have been possible without the support of many friends
and colleagues. First of all I would like to thank my supervisors Prof. Dr. Flo-
rentin Wörgötter and Dr. Babette Dellen for guiding me through my research by
sharing their experiences with me and for many fruitful discussions without which
this work would not have been done. I thank Prof. Dr. Florentin Wörgötter for
giving me a chance to work on computer vision in his group in Germany, for the
opportunity to present my research at conferences, and for the possibility of research
visits (Barcelona, Granada, Leuven, Odense, Innsbruck, Jülich). I also thank his wife
and secretary Ursula for always being very helpful and friendly. I thank Dr. Babette
Dellen for numerous useful advices during all these years and especially for spending
so much time on reviewing my thesis and giving such a valuable feedback.

My special thanks go to Dr. Tomas Kulvicius and Dr. Karl Pauwels who made an
outstanding contribution to this work. Also I thank all members of our very friendly,
creative, and talkative vision group: Eren Erdal Aksoy, Johannes Dörr, Waldemar
Kornewald, Jeremie Papon, Simon Reich, Markus Schöler, Johannes Widenka. I
would like to thank Prof. Dr. Eduardo Ros and Dr. Javier Dı́az from the machine
vision group in Granada as well as Dr. Anders Kjær-Nielsen and Dr. Lars Baunegard
With Jensen from the computer vision group in Odense.

I am very grateful to Dr. Christoph Kolodziejski, Dr. Tomas Kulvicius, Dr. Irene
Markelić, Christian Tetzlaff, and Alexander Wolf for helping me in the everyday life
during my first days in Germany. Thank you very much indeed!

I thank all members of Florentin’s group. It was a great pleasure to be a part
of it which was much more than a research group: Mohamad Javad Aein, Dr. Ale-
jandro Agostini, Martin Biehl, Jan-Matthias Braun, Dr. Markus Butz, Sakyasingha
Dasgupta, Faramarz Faghihi, Michael Fauth, Dennis Goldschmidt, Dr. Frank Hesse,
Dr. Guoliang Liu, Timo Nachstedt, Dr. KeJun Ning, Dr. Poramate Manoonpong,
Chanwit Musika, Vishal Patel, Harm-Friedrich Steinmetz, Dr. Minija Tamosiunaite,
Birk Urmersbach, Thomas Wanschik, Xiaofeng Xiong, and Steffen Zenker.

Also I am greatly appreciate everyone who helped me to fill the scientific breaks
with sports, traveling, fun, and beer. I thank all guys from our hobby football teams at
the Groner Freibad and in the university league of Göttingen, notably Niels Clausen,
Christoph Kornitzky, Patrick Mielke, Phillip Oberdorfer, Julian Plagemann, Karsten
Thieleking, and Dr. Qui Van. It was always a great fun to play despite the final
score. Beyond that, Kicker (tabletop football) games after lunch and in Thanner’s
including experts such as Felix von Denkowski, Phillip Kroehn, and Timo Reinhold
were indeed a very big part of my scientific work in Göttingen too!

Furthermore, I thank all my friends from Russia who never forgot me and were
very happy to see me every time in Moscow. The way how you supported me being
so far away is fantastic: Sergey Archangelskiy, Tigran Ayrapetyanc, Sergey Blago-
durov, Ekaterina Epik, Feodor Ivchenko, Olga Karpova, Stanislav Kolupanskiy, Sofia
Mikhailova, Natasha Panteleeva, Olga Pulkina, Yuri Shaykevich, Alexey Teesheen,

ix

x Acknowledgments

Vasily Troshkin, Andrey Yudakov. A special thanks goes to my German teacher
Olga Fomina from the Goethe-Institut in Moscow whose excellent professional skills
simplified a lot my life in Germany.

Last but not least, I want to thank my family. I am very grateful to my parents
Alexander and Liudmila without whom I would not have achieved all that in my life
what I have now. It is impossible to put into words how much your support means
for me. Also I would like to thank my sister Nadia who never forgot her younger
brother. Thank you very much for supporting me in all I am doing and being always
by my side no matter what!

“Life did not intend to make us perfect.

Whoever is perfect belongs in a museum.”

Erich Maria Remarque (1898 – 1970)

xi

xii

Dedicated to my father Alexander,

my mother Liudmila,

and my sister Nadia.

xiii

xiv

List of Symbols and Notations

The list below contains the mathematical symbols and notations that are used
most frequently throughout the thesis.

q – the number of spin states in the Potts model

g1, g2, . . . , gN – color vectors in the image of N pixels

σk – a spin variable

w1,w2, . . . ,wq – spin states

S1, S2, . . . , Sn – spin state configurations

Ω – the space of all spin state configurations

~ – a set of new possible spin state configurations

Λ – a graph structure defined on the domain Ω

Λ(S) – spin configurations that are neighbors of S ∈ Ω

H[S] – a global energy function of the spin state configuration S ∈ Ω

Jij – an interaction strength between two spins i and j

δij – the Kronecker delta

` – a constant defining 2D neighborhood

∆ij – the color difference between color vectors gi and gj

∆ – the mean color distance averaged over all neighborhoods in the image

α – a system parameter

r – a control parameter for the global inhibition

T – the system temperature

T0 – a starting temperature in the simulated annealing schedule

γ – the simulated annealing factor

xv

xvi List of Symbols and Notations

n1 – number of the basic Metropolis iterations

n2 – number of the relaxation Metropolis iterations

α1 – the factor used during the basic n1 spin updates

α2 – the factor used during the relaxation n2 spin updates

C – segmentation covering

θp – an orientation of the complex Gabor filter

ω0 – a peak frequency of the Gabor filter

σG – a spatial extension of the Gabor filter

fp(x) – the Gabor filter at pixel location x(x, y)T

Rp(x) – responses of the Gabor filter

ρp(x) – the amplitude of the quadrature filter pair

φp(x) – the phase component of the quadrature filter pair

v – the optical flow vector at pixel location x = (x, y)T

ψp(x) – the temporal phase gradient

vy – the vertical component of the optical flow vector

vx – the horizontal component of the optical flow vector

δp(x) – a disparity estimate at pixel location x = (x, y)T

d – a disparity map estimated by the phase-based technique

η – a sparsity level of the disparity map

µ – an entropy value of the neighborhood around the corresponding pixel

dC – an estimated disparity map

List of Symbols and Notations xvii

dT – a ground truth disparity map

dA – an average line disparity map

dE – an edge disparity map

χ2 – the merit function for the linear last squares

a1, . . . , aM – parameters of the surface model

ϑ – a measurement error for disparity from stereo-segment correspondences

ϕi(x, y) – a basis function

xviii

1
Introduction

“Vision is the art of seeing the
invisible”

– Jonathan Swift

Visual perception is the ability to interpret information from light reaching the
eye. The resulting perception is also known as vision. The human visual system
is of extreme complexity which is not yet fully understood and whose research can
still take many decades. However, it is known that the human visual system has
low, middle, and high levels of the visual perception. The low level deals with tasks
such as detecting colors, finding edges, locating objects in space. On the middle
level detected objects are segregated from the background and object features are
determined. Finally, the high level performs recognition of objects in the visual scene.
Last achievements in fields of image processing and computer vision in conjunction
with an enormous progress over the last decades in hardware for parallel computing
opened the door to building a so-called cognitive vision system and its incorporation
into robots.

Visual perception is a part of the perception-action loop which is the fundamental
logic of the nervous system. Perception and action processes are functionally inter-
related and feedback to each other in such a way that perception informs action and
action informs perception. Many robotic systems try to replicate the perception-
action loop with robots where the cognitive vision system does the cognitive visual
part to close the loop between sensors and robots. The goal of the vision system
is to transform input visual information presented by color, motion, or luminance
into some kind of descriptors presenting objects or their parts. Such a symbol-like
representation is a compression of the visual input where all entities of the scene are
detected, identified, and relations between various objects or their parts are estab-
lished. This representation of the visual input is quite sufficient and can be used for
performing actions aimed at objects.

Due to many sources of noise or uncertainty in the formation and processing
of the visual information, the cognitive visual system can erroneously perceive lo-
cations, appearances, and motions of detected objects. This effect is known as an

1

2 Chapter 1: Introduction

uncertainty principle in vision and includes the crucial aperture and correspondence
problems (Forsyth and Ponce, 2002). Establishing correspondences between images
acquired from different view points or adjacent frames of a video stream is one of
the most fundamental problems in computer vision, as information about correspon-
dences concludes about the 3D structure of the scene, its motion, and the state of
present objects.

Over the last decades various approaches for the computation of correspondences
have been proposed. Generally, correspondences can be classified in the two following
categories: local correspondences and region correspondences. Local correspondences
are established between certain pixels or local image features, whereas region corre-
spondences are established between whole regions or segments of input images that
need to be matched. Algorithms for the computation of disparity (Scharstein and
Szeliski, 2002) and correspondent feature descriptors (Snavely et al., 2008) are the
most famous approaches for computation of local correspondences between multiple
views, e.g., stereo image pairs. Optical flow algorithms estimate local correspondences
between sequential frames t and t+ 1 of a video stream (Wedel et al., 2008; Pauwels
et al., 2011; Brox and Malik, 2011). However, in many cases the ambiguity of lo-
cal descriptors does not allow an assignment of unique correspondences, especially in
weakly-textured areas (see Fig. 1.1(A)). This is known as the correspondence problem.
Region matching techniques, on the contrary, use region-based descriptors instead of
pixels or local image features, e.g., starting from an independent segmentation of the
images. The obtained segments are then matched based on their region features and
structure (Hedau et al., 2008; Brendel and Todorovic, 2009), local geometric relations
among regions (Lee and Lei, 1990), or graph-based representations (Wang and Abe,
1995). But if the visual scene undergoes even small changes in perspective, lighting,
or when objects in the scene are moving, the structure and shape of corresponding re-
gions might not match anymore, leading to ambiguous or wrong correspondences (see
Fig. 1.1(B)). Furthermore, the segmentation method itself might produce different
results (robustness problem) from image to image due to illumination or composition
changes in the scene. But despite these fundamental ambiguities and the complex-
ity of the problem, the human visual system solves these issues with a performance
unreachable by any state-of-the-art computer vision method in terms of the both
precision and time.

In this thesis a novel framework based on the combination of both local and region
correspondences for establishing matchings between stereo images, frames in monoc-
ular video streams, and frames in stereo video streams is proposed. This conjoint
framework is automatic, does not use prior knowledge about the data, and considers
only preceding information, as future perception is undefined. Local correspondences,
found using stereo or optical flow techniques, are used in the framework to find match-
ings between segments in multiple view images or frame sequences, respectively (see
Fig. 1.1(C)). The fusion of both correspondence types helps to improve and acceler-
ate the matching procedure as compared to both approaches applied separately. We

3

Figure 1.1: Establishing correspondences between two views of the same object in the
stereo image and in the video stream. (A) Local correspondences computed mainly at
points with high structure without considering object surfaces. (B) Matching of seg-
ments obtained via any segmentation technique faces the problem that segments can
be deformed between the reference and matching views due to perspective changes or
motion leading to the lack of segment matches. (C) Combining point correspondences
and image segmentation in a conjoint framework allows consistent segmentation of
stereo and sequential views.

4 Chapter 1: Introduction

Figure 1.2: A structure of the thesis. Numbers at blocks show the chapter numbers.
The chapters 2 and 3 should be read first. Other chapters can be read in an arbitrary
order.

5

present a novel approach for video segmentation based on a very efficient segmenta-
tion technique coupled with a mechanism for the transfer of found segments from one
view to another one in the case of stereo images and from frame t to frame t+1 in the
case of frame sequences. In both cases available local correspondences are employed
in order to transfer segments between images. Since most of robotic systems require
“live” interactions with the environment, demands on the framework in terms of the
processing time are extremely high. Therefore, all pre-computations of the visual
data need to be performed in real-time to use output data in the perception-action
loop.

An overview of the thesis is presented in Fig. 1.2. A novel image segmentation
technique based on fundamental principles known from classical physics is introduced
in Chapter 2. It is the central part of this work. The method can be used in a very
efficient way for the segmentation of monocular and stereo video streams (Chapters 3
and 4). Video segmentation supported by the depth information produced by an
active sensor is presented in Chapter 6. Matches between stereo images are used for
extraction of 3D information about the scene (Chapter 5). Time performance is a
very important issue in this study and only real-time or close to real-time solutions
were considered here 1. All parts of the thesis were integrated into the real-time
modular cognitive computer vision system which can serve as a visual front-end for
robotic applications (Papon et al., 2012).

Each chapter starts with its own Introduction section, where we discuss the state
of the art and our goals in relation to the topic, and ends with Discussion section
where our approach is compared to other conventional methods with respect to quality
of results and time performance. We will conclude the thesis with Chapter 7 where
all findings are summarized and an outlook for future investigations is given.

1By real-time we understand processing of a full frame at 25Hz or faster.

6 Chapter 1: Introduction

2
Real-time Image Segmentation on a GPU

“There are no lines in nature, only
areas of color, one against another”

– Édouard Manet

2.1 Introduction

Image segmentation, i.e., the partitioning of an image into disjoint parts based on
some image characteristics, such as color information, intensity, texture or range
data, is one of the most fundamental tasks in computer vision and image processing
and of large importance for many kinds of applications, e.g., object tracking, classi-
fication and recognition (Szeliski, 2010). A formal definition of image segmentation
can be given as follows (Pal and Pal, 1993): if Φ() is a homogeneous predicate defined
on groups of connected pixels Ψ, the segmentation is a partition of the set Ψ into
connected subsets or regions (R1, R2, . . . , Rn) in such a way that

n⋃
i=1

Ri = Ψ with Ri ∩Rj = ∅ (i 6= j). (2.1)

The uniformity predicate Φ(Ri) = true for all regions Ri, and Φ(Ri ∪Rj) = false,
when i 6= j and Ri and Rj are neighbors.

2.1.1 Conventional image segmentation techniques

Finding a suitable splitting of an image into regions is not a trivial task, since it is
pretty much unknown how the desired result should look like which depends very often
on a specific application. As a consequence, many different approaches for image seg-
mentation have been proposed during the past three decades. Based on the technique
used for finding segments all methods can be classified in the following groups: active
contours (Blake and Isard, 1998; Mortensen and Barrett, 1999), watershed (Vincent

7

8 Chapter 2: Real-time Image Segmentation on a GPU

and Soille, 1991; Beare, 2006), clustering (Ohlander et al., 1978; Brice and Fennema,
1970; Swendsen and Wang, 1987; Wolff, 1989; von Ferber and Wörgötter, 2000),
graph-based (Felzenszwalb and Huttenlocher, 2004), mean shift (Comaniciu et al.,
2002; Paris and Durand, 2007), graph cuts and energy-based methods (Estrada et al.,
2004; Boykov and Funka-Lea, 2006; Lempitsky and Boykov, 2007; Vicente et al.,
2008), normalized cuts (Shi and Malik, 2000; Cour et al., 2005), and contour relax-
ation (Mester et al., 2011).

Active contour methods, also known as snakes, tend to detect and track ob-
ject boundaries in the image. Active contours are initialized manually by boundary
guesses and optimal object boundaries are found iteratively due to minimization of
energy associated with initial contours (Blake and Isard, 1998). In some situations
erroneous initial boundaries require additional input information from the user to
get the desired curve. Mortensen and Barrett (1999) proposed so-called intelligent
scissors that optimize the contour simultaneously with the user initialization which
makes the whole procedure faster and leads to better results. Segments obtained by
active contours are represented by areas enclosed by contours.

Watershed computation is one of the oldest image segmentation techniques. It is
based on the thresholding of a grayscale image which is considered as a topographic re-
lief. Grayscale values of pixels represent the point elevations in the relief. The segmen-
tation is achieved by flooding water in each relief minimum and applying a threshold
to find a watershed line (Vincent and Soille, 1991). Watershed segmentation asso-
ciates a unique region with each local minimum which can cause over-segmentation.
Therefore, watershed segmentation requires the provision of seed locations (specified
interactively by a user) determining centers of desired segments (Beare, 2006).

Clustering is another old segmentation approach having various modifications.
The input image is divided into regions called clusters based on some image char-
acteristics such that any two pixels from the same region are more similar than any
two pixels belonging to different regions 1. Ohlander et al. (1978) proposed a region
splitting technique that first computes a color histogram for the whole image and
then partitions it into regions having bin differences higher than a pre-defined thresh-
old. An opposite procedure is region growing that first defines a similarity criterion
and then merges pixels and regions fulfilling it (Brice and Fennema, 1970). K-means
clustering is built upon a natural objective function based on the assumption that
the number of clusters k is known and each cluster is assumed to have a center. The
algorithm chooses cluster centers randomly and updates iteratively each cluster cen-
ter location considering pixels that are closest to each center (Bishop, 2006). This
process converges eventually to a local minimum of the objective function, but it is
not guaranteed to converge to its global minimum. The biggest drawback of this
method is that the number of clusters k is an input parameter and a bad choice of k

1Due to possible reflections and varying lightness within one object, it is more correct to say
“any two neighboring pixels”.

2.1 INTRODUCTION 9

may lead to poor clustering results. Superparamagnetic clustering methods describe
image pixels as interacting granular ferromagnets featured by oriented vectors called
spins. Depending on the temperature, i.e., disorder introduced to the system, the
spin system can be in the paramagnetic, superparamagnetic, or ferromagnetic phase.
In the ferromagnetic phase, all spins are aligned, while in the paramagnetic phase the
system is in a state of complete disorder. In the superparamagnetic phase regions of
aligned spins coexist and correspond to a natural partition of an image (Blatt et al.,
1996). Finding the image partition corresponds to the computation of the equilib-
rium states of the system (Geman and Geman, 1984; von Ferber and Wörgötter, 2000;
Swendsen and Wang, 1987; Wolff, 1989).

In graph-based methods an image is represented by a weighted undirected graph
where nodes define pixels or small groups of pixels and edge weights define simi-
larity between neighbors in the graph. To date the graph-based method proposed
by Felzenszwalb and Huttenlocher (2004) based on relative dissimilarities between re-
gions is one of the most powerful and fastest methods for segmentation. This method
segments an image by merging regions according to internal and external differences
defined for every region. The method produces a segmentation that is neither too
fine nor too coarse, i.e., there are no regions that need to be split in multiple regions
or merged to one region.

Mean shift techniques associate feature vectors with every pixel of an image (e.g.,
position, color, texture, range values, etc.). Feature vectors are used as samples for
estimation of the probability density function that needs to be segmented. Mean
shift computes initially a weighted mean of feature vectors within a local neighbor-
hood in feature space (centered at each pixel’s feature vector) and finds peaks in
the distribution. Regions of feature space climbing to the same peak tend to belong
to one segment. A crucial aspect of this approach is the determination of peaks in
the high-dimensional data distribution without computing the distribution function
explicitly (Cheng, 1995; Comaniciu et al., 2002; Paris and Durand, 2007).

Graph cuts and energy-based methods formulate the image segmentation task as a
binary Markov random field (MRF). In these methods a pixel-based energy function
is associated with an image consisting of the region and boundary terms. Despite
various existing techniques for MRF energy minimization, the graph-based approach
proposed by Boykov and Jolly (2001) is still the most commonly used for solving
binary MRF problems. More recent approaches use some knowledge about objects
and involve connectivity and shape priors in the segmentation process (Vicente et al.,
2008; Lempitsky and Boykov, 2007).

The normalized-cuts technique proposed by Shi and Malik (2000) uses a graph-
based representation of an image and tries to separate pixels or groups of pixels
connected by weak edges (low similarity). The quality of the segmentation results
depends on the segmentation measure defining the cut between regions (Cour et al.,
2005).

The contour relaxation approach introduced by Mester et al. (2011) combines a

10 Chapter 2: Real-time Image Segmentation on a GPU

target function, called also “energy function”, obtained from a statistical region-based
image model, and an optimization technique for “contour relaxation”. The method
is based on the two following assumptions: the feature values (texture, color, mo-
tion, etc.) at various pixel sites obey the same distribution within a region, they are
pairwise statistically independent; the feature values in the different feature chan-
nels at each pixel site are statistically independent of each other (between the chan-
nels) (Mester et al., 2011).

Among all these techniques we can distinguish between parametric (model-driven
or nonautomatic) (Vincent and Soille, 1991; Blake and Isard, 1998; Mortensen and
Barrett, 1999; Boykov and Jolly, 2001; Boykov and Funka-Lea, 2006; Beare, 2006;
Bishop, 2006; Lempitsky and Boykov, 2007; Vicente et al., 2008) and nonparametric
(data-driven, automatic, or unsupervised) techniques (Swendsen and Wang, 1987;
Wolff, 1989; von Ferber and Wörgötter, 2000; Shi and Malik, 2000; Cour et al., 2005;
Comaniciu et al., 2002; Felzenszwalb and Huttenlocher, 2004). Note that some tech-
niques (Mester et al., 2011) can run in both automatic and nonautomatic modes. If
little is known about the data being segmented, nonparametric methods have to be
applied, while parametric methods require user input or some prior knowledge about
objects in the scene.

Since the current study is focused on a condensed representation of the visual
scene over time without prior knowledge of the data (see Chapter 1), we are only
interested in image segmentation techniques which: (i) run without user input and
do not need assumptions about the number of objects present in the scene (i.e., au-
tomatic); (ii) can be used for the video segmentation problem; (iii) run in real-time
or close to real-time. Although the most famous and efficient image segmentation
techniques such as normalized-cuts (Shi and Malik, 2000; Cour et al., 2005), graph-
based (Felzenszwalb and Huttenlocher, 2004), and mean shift (Comaniciu et al., 2002)
are automatic, they operate on single images and cannot be applied directly to the
video segmentation problem because the segmentations of adjacent frames will be
incoherent, i.e., segments of the same object carry different labels. As a consequence,
some additional region matching techniques will be required to find correspondent
segments (Hedau et al., 2008; Brendel and Todorovic, 2009). But such techniques are
usually very time consuming which makes their usage in the context of the presented
framework almost impossible. Another problem is that the partitioning may vary
from one frame to the next due to small variations in lighting or other changes in
the scene making the region matching procedure not straightforward. Furthermore,
methods based on the normalized cuts do not run in real-time and need some seconds
to segment a single frame of size 300 × 400 pixels. The most efficient graph-based
and mean shift segmentation approaches (Felzenszwalb and Huttenlocher, 2004; Co-
maniciu et al., 2002) can handle more than one image per second having the following
frame rates: for image size of 320 × 256 pixels 28.5 and 40.0 Hz, respectively, and
for image size of 640 × 512 pixels 6.1 and 9.1 Hz, respectively. However, even these
frame rates are not enough for the pre-processing step in the real-time cognitive vision

2.1 INTRODUCTION 11

system, because both algorithms require in addition a region matching procedure to
find correspondent segments between adjacent frames.

The method of superparamagnetic clustering of data is automatic and does not re-
quire any prior knowledge about the visual scene or the number of objects. In contrast
to the previously mentioned techniques, it can be easily used for the segmentation
of video streams. As the segmentation problem is solved here by finding equilibrium
states of a spin system, there are no particular requirements to the initial states of
spins and they can take on any available values. The closer the initial spin states
are to the equilibrium, the less time the method needs for convergence. Due to this
fact temporal coherence in the segmentation of video streams can be achieved just
by using the previous segmentation result for the initialization of the current frame
and its adjustment to the temporal changes (Dellen et al., 2009). Here only shifts
between frames need to be taken into account. In such a way a final segmentation
result can be obtained much faster as compared to a complete resegmentation with
subsequent region matching, drastically reducing computation time. Note that any
other automatic segmentation technique can be used for segmentation of the very
first frame and labels of the obtained regions (segments) can be considered later as
spin states in the spin system. The superparamagnetic clustering of data has two evi-
dent disadvantages: the method does not produce consistent results on very textured
images resulting in a variety of tiny segments and all its previous implementations
are extremely slow requiring from seconds to minutes for the segmentation of one
frame (Swendsen and Wang, 1987; Wolff, 1989; von Ferber and Wörgötter, 2000;
Dellen et al., 2009). The former can be resolved by the use of special texture filters
that smooth highly-textured areas preserving region boundaries (Forsyth and Ponce,
2002), whereas the latter excludes the usage of the existing implementations in the
real-time vision systems despite all their advantages.

The contour relaxation technique in the automatic mode can also be employed
for the segmentation of video streams. Similar to the superparamagnetic clustering,
the contour relaxation uses prior knowledge obtained during the processing of the
previous images and the segmentation results obtained at time t − 1 can be used as
an initialization for the segmentation at time t (Mester et al., 2011). Despite fast
processing time, the contour relaxation in the automatic mode typically produces
an over-segmentation in the sense of a super-pixel representation of the input image
which is of significantly lower quality in comparison to other techniques.

2.1.2 Special hardware for acceleration

The real-time aspect is getting nowadays more and more important in image pro-
cessing and computer vision mainly for two reasons: first, the research done during
the last decades in computer vision and image processing allows transforming visual
information into more descriptive but nevertheless quite precise representations of
the visual scene for using them in a wide range of robotic applications, e.g., robot

12 Chapter 2: Real-time Image Segmentation on a GPU

movement, object grasping, and object manipulation (Klingbeil et al., 2011; Kjell-
ström et al., 2011; Aksoy et al., 2011). Second, new hardware architectures and
programming models for multi-core computing have been proposed in the last ten
years, through which many algorithms could be upgraded to real-time processing.

Currently different hardware platforms are used as accelerators for complex com-
putations in the domain of visual processing, such as multicore processors, Digital Sig-
nal Processors (DSP), the Cell Broadband Engine Architecture (CBEA), Field Pro-
grammable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs) (Brodtkorb
et al., 2010). For cognitive vision systems used by robots interacting with the environ-
ment, the real-time computations are of particular importance, since only real-time
algorithms can be employed in the perception-action loop. Image segmentation is
usually used only as a pre-processing step and hence it needs to run in real-time leav-
ing enough time for subsequent high-level computations (Meribout and Nakanishi,
2005).

In the area of visual processing, the evolution of Graphics Processing Units (GPUs)
during the last four years has been of particular importance. GPUs are specialized mi-
croprocessors which have been initially invented for image processing and acceleration
of 2D and 3D graphics rendering. GPUs are used in workstations, personal computers,
mobile phones and embedded systems. At present GPUs are a part of every computer
and can be used immediately without any additional hardware upgrades. Over the
last four years GPUs have evolved into highly parallel, multi-threaded, multi-core
processors with tremendous computational power and very high memory bandwidth.
For algorithms of high complexity, their parallel architecture makes them in many
cases more efficient than general-purpose CPUs. Therefore, GPUs can be used not
only for graphics processing but also for general-purpose parallel computing. Further-
more, the graphics capabilities of GPUs make the visual output of the processed data
directly from the microprocessor much simpler compared to other parallel platforms.
The parallel programming model of Compute Unified Device Architecture (CUDA)
proposed by Nvidia in 2007 makes parallelization of software applications on GPUs
quite transparent (Lindholm et al., 2008).

As mentioned above, all previous image segmentation approaches based on the
superparamagnetic clustering are very slow and, therefore, cannot be employed for
the real-time video segmentation. But all these algorithms have been implemented
on traditional CPU architectures without special hardware for acceleration. However,
considering all advantages of the superparamagnetic clustering in terms of the video
segmentation problem (automatic processing and fast temporal coherence without
block matching), a real-time implementation of this technique would be very desirable.
In this chapter we investigate opportunities for achieving efficient performance of the
superparamagnetic clustering of data and propose a real-time implementation of this
technique GPUs.

The chapter is organized in the following way. First we describe the method of
the superparamagnetic clustering of data. Then we present in more detail a new

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 13

real-time segmentation algorithm belonging to this class of segmentation techniques.
Next we introduce the GPU architecture and consider the parallel implementation
of the proposed algorithm. Finally, we discuss our results and conclude this chapter
with a comparison to conventional image segmentation methods.

2.2 Real-time image segmentation on a GPU

2.2.1 Superparamagnetic clustering of data

In the superparamagnetic clustering of data each pixel of the image is represented by a
spin in a Potts model. The Potts model (Potts, 1952), which is a generalization of the
Ising model (Ising, 1925), describes a system of granular ferromagnets or spins which
interact in such a way that neighboring spins corresponding to similar pixels tend
to align. In the Ising model spins can be either aligned or anti-aligned, while in the
Potts model spins can be in q different states, characterizing the pointing direction of
the respective spin vectors. Segments appear naturally as regions of correlated spins
at a given temperature (von Ferber and Wörgötter, 2000).

Depending on the temperature, i.e., disorder introduced to the system, the spin
system can be in the paramagnetic, the superparamagnetic, or the ferromagnetic
phase. In the paramagnetic phase the temperature is high and the system is in a
state of complete disorder. As the temperature is decreased a transition to a su-
perparamagnetic phase is observed and spins become completely aligned in every
homogeneous region, while different regions remain uncorrelated. In the ferromag-
netic phase all spins are aligned. Blatt et al. (1996) applied the Potts model to the
image segmentation problem in a way that in the superparamagnetic phase regions
of aligned spins correspond to a natural partition of the image data. Therefore, the
segmentation problem can be solved by finding the equilibrium states of the energy
function of a ferromagnetic Potts model (without data term) in the superparamag-
netic phase (Eckes and Vorbrüggen, 1996; Opara and Wörgötter, 1998; von Ferber
and Wörgötter, 2000; Dellen et al., 2009).

By contrast, methods which find solutions by computing the minimum of an en-
ergy function require a data term – otherwise only trivial solutions are obtained. A
data term puts by definition constraints on the solution which require prior knowl-
edge on the data. Hence, the equilibrium-state approach to the image segmentation
problem has to be considered as fundamentally different from approaches which find
the minimum energy configuration of energy functions in MRFs (Boykov and Kol-
mogorov, 2004).

The equilibrium states of the Potts model have been approximated in the past us-
ing the Metropolis-Hastings algorithm with annealing (Geman and Geman, 1984) and
methods based on cluster updating, which are known to accelerate the equilibration
of the system by shortening the correlation times between distant spins. Prominent

14 Chapter 2: Real-time Image Segmentation on a GPU

algorithms are Swendsen-Wang (Swendsen and Wang, 1987), Wolff (Wolff, 1989), and
energy-based cluster updating (ECU) (von Ferber and Wörgötter, 2000). All of these
methods obey detailed balance, ensuring convergence of the system to the equilibrium
state.

Using the Potts model an input image is represented in a form of color vectors
g1,g2, . . . ,gN arranged on the N = LxLy sites of a two-dimensional (2D) lattice. The
segmentation problem consists in finding regions of the similar color. In the Potts
model, a spin variable σk, which can take on q discrete values (q > 2) w1, w2, . . . , wq,
called spin states, is assigned to each pixel of the image. We define a spin state
configuration by S = {σ1, σ2, . . . , σN} ∈ Ω, where Ω is the space of all spin configu-
rations. A global energy function or a cost function of this particular q-state Potts
configuration S ∈ Ω is the Hamiltonian

H[S] = −
∑
<i,j>

Jijδσiσj +
r

N

∑
i,j

δσiσj . (2.2)

The segmentation problem is solved by finding regions or clusters of correlated
spins in the low temperature equilibrium states of the Hamiltonian H[S]. The first
term in (2.2) represents the system energy where <i,j> denotes the closest neighbor-
hood of spin i with ||i, j|| 6 `, where ` is a constant that needs to be set. 2D bonds
(i, j) between two pixels with coordinates (xi, yi) and (xj, yj) are created if

|(xi − xj)| 6 `,

|(yi − yj)| 6 `.
(2.3)

Jij is an interaction strength or coupling constant and δij is the Kronecker delta
defined by

δij =

{
1 if σi = σj,
0 otherwise.

, (2.4)

where σi and σj are the respective spin variables of two neighboring pixels i and
j, respectively. A coupling constant, determining the interaction strength between
two spins i and j, is given by

Jij = 1−∆ij/∆, (2.5)

where ∆ij = ||gi − gj|| is the color difference between respective color vectors gi

and gj of the input image (see Section 2.2.2). ∆ is the mean distance averaged over all
interaction neighborhoods N in the image. The interaction strength is defined in such
a way that regions with similar color values will get positive weights with a maximum
value of 1 for equal colors, whereas dissimilar regions get negative weights (Eckes

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 15

and Vorbrüggen, 1996). The mean distance ∆ represents the intrinsic (short-range)
similarity within the whole input image 2:

∆ = α ·

(
1

N

1

(2`+ 1)2 − 1

N∑
i=1

∑
<i,j>

||gi − gj||

)
, (2.6)

where (2`+ 1)2− 1 is the number of neighbors of one spin. The factor α ∈ (0, 10]
is a system parameter used to increase or decrease the coupling constants.

The second term in (2.2) is introduced in analogy to neural systems, where it is
generally called “global inhibition”. It is optional and only useful for cluster updating.
It serves to favor different spin values for spins in different clusters and r is a control
parameter that adjusts the strength of the global inhibition (r > 0). This concept
is employed in many neural systems that perform recognition tasks (von Ferber and
Wörgötter, 2000). If the global inhibition term was set to zero, the Hamiltonian
features the global energy function of the generic Potts model in its usual form.

Various techniques have been proposed in the literature to order spins in the
Potts model according to a pre-defined goal, as for example the detection of phase
transitions in ferromagnetic systems, or as in the current study, in order to segment
images. These algorithms differ mainly in the way how the interaction range between
spins is defined and how spins are iteratively updated. The following three approaches
are commonly used for the simulation of the Potts model: local update techniques,
cluster update algorithm, and the energy-based cluster update.

Local update algorithms (Geman and Geman, 1984; Eckes and Vorbrüggen, 1996)
are featured by small interaction ranges and modify only one spin variable per it-
eration. The algorithm proposed by Metropolis et al. (1953) is the most famous
local-update technique. Every iteration it rotates spin variables σk and tries to mini-
mize the global energy function employing simulated annealing. Simulated annealing
operates by simulating the cooling of a system whose possible energies correspond
to the values of the objective function being minimized (see the first term in (2.2)).
The annealing process starts at a relatively high temperature T = Tinit and at each
step attempts to replace the current solution Scur by a new spin configuration Snew
chosen according to the employed distribution. A set of potential new solutions
S1, S2, · · · , Sn ∈ Ω is generated by the Metropolis algorithm (see Section 2.2.3). Note
that the Metropolis algorithm is highly local and generates new spin configurations
proposing individual moves of spin variables. The temperature is a parameter that
controls the acceptance probability of new solutions and it is gradually decreased after
each iteration or after a group of iterations. At high temperatures almost all new solu-
tions are accepted, while at low temperatures only “downhill” solutions leading to the
energy minimization are considered. In the limit T = 0, only the lowest energy states

2Note that (2.5) is ill-defined in the case of ∆ = 0. But in this case only a single uniform surface
exists and segmentation is not necessary.

16 Chapter 2: Real-time Image Segmentation on a GPU

have nonzero probability. System perturbations at high temperatures are needed
to save the method from being trapped in local minima. The name of the method
originates from annealing in metals where the heating and controlled slow cooling
increase crystal sizes and reduce their defects (Salamon et al., 2010). It explains why
the method is called sometimes “simulated cooling” 3. The Metropolis local update
algorithm with simulated annealing solves the segmentation problem by propagating
a certain modification of the spin state configuration through the lattice step by step,
which makes it very slow. Furthermore, due to slowing down at low temperatures the
local update becomes very time consuming. Hence the original Metropolis algorithm
running on traditional CPU architectures is inapplicable to the real-time tasks. Even
optimizing the annealing schedule cannot accelerate the method, since an extremely
slow rate is needed to find the final spin state configuration Sfinal.

Cluster update algorithms (Swendsen and Wang, 1987; Wolff, 1989; Blatt et al.,
1996) introduce larger interaction ranges and at every iteration groups of spins, called
clusters, are updated simultaneously. The first widely used cluster update algorithm
was proposed by Swendsen and Wang (1987). In this algorithm, “satisfied” bonds,
i.e., those that connect nearest neighbor pairs of identical spins σi = σj, are identified
first. The satisfied bonds (i, j) are then “frozen” with some probability pij. Sites of
the lattice connected by frozen bonds define the clusters c1, c2, . . . , cM . Each clus-
ter is then updated by assigning to all its spins the same new value. This is done
independently for each cluster and the external bonds connecting the clusters are
“deleted”. Here the temperature remains fixed and no annealing takes place between
the iterations. Since a change in the current spin configuration can affect many spin
variables at the same time, cluster update algorithms running on traditional CPU
platforms are much faster compared to local update techniques. However, updating
of complete spin clusters often leads to undesired cluster fusions when regions that
should get different labels form one segment.

The energy-based cluster update (ECU algorithm) proposed by Opara and Wörgötter
(1998) combines the advantages of both local and global update techniques. Here the
same new value is assigned to all spins inside one cluster in consideration of the energy
gain calculated for a neighborhood of the regarded cluster. Similar to the Swendsen
and Wang cluster update algorithm (Swendsen and Wang, 1987), the temperature in
the ECU method remains fixed and no annealing takes place between the iterations.
Once the clusters of spins connected by frozen bonds are defined, a Metropolis update
is performed that updates all spins of each cluster simultaneously to a new spin value.
The new spin value for a cluster c is computed considering the energy gain obtained
from a cluster update to a new spin value wk, where the index k denotes the possible
spin value between 1 and q, respectively. Updating the respective cluster to the new
value results in a new spin configuration Sck. The probability for the choosing the new

3Webster’s Revised Unabridged Dictionary defines anneal as “to subject to great heat and then
to cool slowly”.

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 17

spin value wk for the cluster c is computed by taking into account the interactions of
all spins in the cluster c with those outside the cluster, assuming that all spins of the
cluster are updated to the new spin value wk with the Hamiltonian

H[Sck] = −
∑
<i,j>
ci 6=cj

εJijδσiσj +
r

N

∑
i,j

δσiσj , (2.7)

where <i,j>, ci 6= cj is a noncluster neighborhood of spin i and ε is a parameter
which allows us to “share” the interaction energy between the clustering and updating
steps (von Ferber and Wörgötter, 2000). Similar to a Gibbs sampler, the probability
P (Sck) of selecting the new spin value wk for the cluster c is given by

P (Sck) =
exp(H[Sck]/T)∑q
i=1 exp(H[Sci])

. (2.8)

All mentioned update techniques define segments as groups of correlated spins. As
was mentioned before, the spin states σi in the Potts model can take values between
1 and q, where q is a parameter of the system. The number of segments is not
constrained by the parameter q. Note that spins belonging to the same segment are
always in the same spin state, while the reverse is not necessarily true.

Local update algorithms are extremely slow requiring minutes to segment an im-
age of size 320× 256 pixels on traditional CPU platforms. Cluster updates are much
faster then local updates and need seconds instead of minutes to segment an image
of the same size. However, this time performance is not enough for the segmen-
tation technique to be employed for the real-time video segmentation. In terms of
parallelization on special hardware, local updates are more preferable, since each
spin update involves only local information about its closest neighborhood and, thus,
many updating operations can be done simultaneously. Furthermore, local updates
fit very well to the GPU architecture which does not require tremendous resources
and is commonly used in robotic systems. Cluster updates, on the contrary, can-
not be parallelized easily due to the very global spin update procedure of arbitrary
shaped clusters. Although cluster updates do not depend on each other and can be
done in parallel, one cluster update is sequential because its shape before update is
unknown. Sequential updates within each cluster are a bottleneck in parallelization
of cluster updates and their latency can be reduced only on very powerful computer
systems. Since our goal is an image segmentation technique applicable for the real-
time video segmentation running on common and not very expensive hardware, only
local update techniques for the simulation of the Potts model are considered in this
study (Abramov et al., 2010b).

18 Chapter 2: Real-time Image Segmentation on a GPU

2.2.2 Computation of coupling constants

In the homogeneous Potts model, all spins are interacting with the same strength
(Jij = const). In the inhomogeneous Potts model, the interaction strength is changing
over space (Jij 6= const). For image segmentation we use the inhomogeneous Potts
model and the interaction strengths Jij between the neighboring spins (see (2.5)) are
defined as the feature similarity of the respective pixels. Spins representing similar
image parts (same objects or their parts) interact strongly, while spins of nonsimilar
image parts will interact only weakly (Opara and Wörgötter, 1998).

Essentially three parameters R (red), G (green), and B (blue), called tristimulus
values, describe human color sensation. Red, green and blue color values are the
brightness values of the scene derived by integrating the responses of three distinct
color filters on the incoming light SR, SG, and SB according to

R =

∫
λ

E(λ)SR(λ)dλ, G =

∫
λ

E(λ)SG(λ)dλ, B =

∫
λ

E(λ)SB(λ)dλ, (2.9)

where E(λ) is a spectral power distribution and λ is the wavelength.

RGB color space

The RGB color space is a linear color space where a broad range of colors is derived
by adding R, G, and B components together in diverse ways. Geometrically the
RGB color space can be represented as a 3-dimensional cube where the coordinates
of each point inside the cube represent the values of red, green and blue components,
respectively.

Other color representations (spaces) can be derived from the RGB representation
by using either linear or nonlinear transformations (Cheng et al., 2001). Besides the
RGB color space, various other color spaces, such as HSV (hue, saturation, value)
and CIE 4 are frequently utilized in image processing. However, there is no superior
color space and the choice of the proper color space depends on the specifics of the
concrete problem.

Although RGB is a widely used color space, it is not ideally suitable for color
scene segmentation and analysis because of the high correlation between the R, G
and B components (Forsyth and Ponce, 2002). In the RGB space changes in intensity
lead to changes in the values of all three color components. The difference between
two color vectors gi = (ri, gi, bi)

T and gj = (rj, gj, bj)
T in the RGB space is given by

the Euclidean distance in the RGB cube

||gi − gj|| =
√

(ri − rj)2 + (gi − gj)2 + (bi − bj)2. (2.10)

4The “CIE XYZ color space” created by the International Commission on Illumination (CIE)
in 1931 is one of the first mathematically defined color spaces.

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 19

The representation of color distances in the RGB cube is not perceptually uniform
and, therefore, it is impossible to evaluate the similarity of two colors from their
distance in the RGB space. Furthermore, linear color spaces do not capture human
intuitions about the topology of colors. A common intuition is that hues form a
circle, in the sense that hue changes from red through orange to yellow and then
green and from there to cyan, blue, purple, and then red again. This means that no
individual coordinate of a linear color space can model hue, since that coordinate has
a maximum value which is far from the minimum value (Forsyth and Ponce, 2002).

In order to deal with the mentioned problems a color space is needed that reflects
these relations. By applying a nonlinear transformation to the RGB space, other,
more suitable color spaces can be created. CIE and HSV are the most commonly
used nonlinear color spaces in the image processing.

HSV color space

The HSV color space separates color information of an image from its intensity
information. Color information is represented by hue and saturation values, while
intensity (also called lightness, brightness or value) is determined by the amount of
light. Hue represents basic colors and saturation color purity, i.e., the amount of white
light mixed in with the hue. For example, if we want to check whether a color lies in
a particular range of reds, we can encode the hue of the color directly. Geometrically
the HSV color space can be represented by a cone where hue is described by the angle
on the circle with the range of values from 0◦ to 360◦. The saturation component
represents the radial distance from the center of the circle, which by definition has
zero saturation. The closer the point is to the center, the lighter is the color. Value
is the vertical axis of the cone and colors toward the point of the cone are dark (low
value), while colors further out are brighter (higher value). The conversion from the
RGB to the HSV color space is a well-defined procedure and images can be converted
without loss of information. The known color vector gi = (ri, gi, bi)

T in the RGB color
space is converted to the vector gi = (hi, si, vi)

T in the HSV color space through the
following equations (Kyriakoulis and Gasteratos, 2010):

vi = max(ri, gi, bi), si =

{
(vi −min(ri, gi, bi))/vi if vi 6= 0,

0 if vi = 0.
(2.11)

If si = 0 then hi = 0. If ri = vi then

hi =

{
60◦ · (gi − bi)/(vi −min(ri, gi, bi)) if gi > bi,

360◦ + 60◦ · (gi − bi)/(vi −min(ri, gi, bi)) if gi < bi.
(2.12)

In the case of gi = vi, we have

hi = 120◦ +
60◦ · (bi − ri)

vi −min(ri, gi, bi)
. (2.13)

20 Chapter 2: Real-time Image Segmentation on a GPU

If bi = vi, then

hi = 240◦ +
60◦ · (ri − bi)

vi −min(ri, gi, bi)
. (2.14)

Note that gray tones, from black to white, have undefined hue and 0 saturation.
Also the saturation is undefined when the intensity is zero. In order to segment objects
with different colors in the HSV space the segmentation algorithm can be applied
to the hue component only. Different thresholds can be set on the range of hues
that separate different objects easily, but it is difficult to transform these thresholds
into RGB values, since hue, saturation and intensity values are all encoded as RGB
values. Hue is especially useful in the cases where the illumination level varies from
pixel to pixel or from frame to frame in the video. It is very often the case in regions
with non-uniform illumination such as shadows, since hue is independent on intensity
values.

For two color vectors gi = (hi, si, vi)
T and gj = (hj, sj, vj)

T in the HSV color
space, the color difference between them is determined by Koschan and Abidi (2008)

||gi − gj|| =
√

(∆V)2 + (∆C)2, (2.15)

where

∆V = |v1 − v2|, ∆C =
√
s2

1 + s2
2 + 2s1s2cosθ, (2.16)

θ =

{
|h1 − h2| if |h1 − h2| 6 π,

2π − |h1 − h2| if |h1 − h2| > π
. (2.17)

CIE color space

The CIE color system is a three dimensional space and contains all colors that can
be perceived by the human eye. Thereby this color space is very often called the
perceptual color space. The CIE color space is based on the evidence that the human
eye has three types of cone cells. The first type responds mostly to large wavelengths
which correspond to yellowish colors, the second type responds mostly to medium
wavelengths which correspond to greenish colors, the third type responds mostly to
small wavelengths which correspond to bluish colors. The types of cone cells are
abbreviated due to the wavelength value as L for long, M for medium, and S for
short (Wyszecki and Stiles, 2000). In the CIE XY Z color space, the tristimulus
values are not L, M and S responses of the human eye, but rather a set of tristimulus
values X, Y , Z which are roughly red, green and blue. Note that X, Y , Z are
not physically observed red, green and blue colors. They rather can be thought of
as “obtained” parameters from the red, green and blue colors. Any color can be
represented by the combination of X, Y , and Z values. The values of X, Y , and

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 21

Z can be computed by a linear transformation from RGB tristimulus coordinates.
The transformation matrix for the NTSC 5 receiver primary system is determined
as (Cheng et al., 2001): X

Y
Z

 =

 0.607 0.174 0.200
0.299 0.587 0.114
0.000 0.066 1.116

 R
G
B

 . (2.18)

There are several CIE color spaces that can be established once the XY Z tristim-
ulus coordinates are known. CIE (L∗a∗b∗) and CIE (L∗u∗v∗) are the most commonly
used CIE color spaces. They can be obtained through nonlinear transformations of
X, Y , and Z values. In the current study we will consider only the CIE (L∗a∗b∗)
space which is defined as

L∗ = 116 ·

(
3

√
Y

Y0

)
− 16,

a∗ = 500 ·

[
3

√
X

X0

− 3

√
Y

Y0

]
,

b∗ = 200 ·

[
3

√
Y

Y0

− 3

√
Z

Z0

]
,

(2.19)

where X/X0 > 0.01, Y/Y0 > 0.01, and Z/Z0 > 0.01 and (X0, Y0, Z0) are X, Y ,
and Z values for the standard white. The CIE (L∗a∗b∗) is substantially uniform. In
many cases it is important to know how different two colors are for a human observer
and differences in the L∗a∗b∗ space give a good hint for that (Cheng et al., 2001). A
bunch of metrics have been proposed for the computation of color differences in the
CIE (L∗a∗b∗) color space. Perceptual non-uniformities caused refinement of metrics
due to the fact that the human eye perceives certain colors better than others and
a good metric should take this into account. In the current work we use the CIE94
metric (CIE-Publication-116-1995, 1995) which defines the difference between two
colors (L∗1, a

∗
1, b
∗
1) and (L∗2, a

∗
2, b
∗
2) as

∆E∗94 =

[(
∆L∗

KL

)2

+

(
∆C∗ab

1 +K1C∗1

)2

+

(
∆H∗ab

1 +K2C∗2

)2
]1/2

, (2.20)

where

∆L∗ = L∗1 − L∗2, (2.21)

5National Television System Commission, United States.

22 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.1: Coupling constants for the 8-connectivity case in the CIE (L∗a∗b∗) color
space. (A) Original image. (B) Mask for eight-connected connectivity. (C - F)
Matrices with coupling constants computed for horizontal, left diagonal, vertical and
right diagonal directions. Note that only coupling constants leading to the formation
of segments are shown here (J < 0).

C∗1 =
√

(a∗21 + b∗21), C∗2 =
√

(a∗22 + b∗22), ∆C∗ab = C∗1 − C∗2 , (2.22)

∆H∗ab =
√

∆E∗2ab −∆L∗2 −∆C∗2ab =
√

∆a∗2 + ∆b∗2 −∆C∗2ab , (2.23)

∆E∗ab =
√

(L∗2 − L∗1)2 + (a∗2 − a∗1)2 + (b∗2 − b∗1)2, (2.24)

∆a∗ = a∗1 − a∗2, ∆b∗ = b∗1 − b∗2, (2.25)

where KL, K1, and K2 are the weighting factors. Since the CIE (L∗a∗b∗) color
space is approximately uniform chromatic scale, it matches the sensitivity of the
human eyes with computer processing, while the RGB or XY Z color spaces do
not have this property (Tseng and Chang, 1992). Therefore, the perceptual color
attributes such as intensity, hue and saturation can be derived easily. CIE spaces
control color and intensity information more independently and simply than RGB
primary colors. Direct color comparison in CIE spaces is especially efficient in the
measurement of small color differences.

Interaction strengths computed in the CIE (L∗a∗b∗) color space for one testing
image are shown in Fig. 2.1. Since in the current study we use 8-connectivity of pixels,
interaction strengths for each pixel need to be computed for the 8 closest neighbors
in four different directions: horizontal, left diagonal, vertical, right diagonal. In order

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 23

to compute interaction strengths between all neighboring pixels once, only bonds
connecting the current pixel with the previous pixels (in terms of the image scan from
left to right and from top to bottom) are considered per pixel (see C1, C2, C3, and
C4 bonds in Fig. 2.1(B)). Remaining interactions are covered by the following pixels
resulting in four matrices containing coupling constants (see Fig. 2.1(C-F) where only
coupling constants affecting the formation of segments are shown, i.e., J < 0).

2.2.3 Metropolis algorithm with simulated annealing

As was already mentioned, simulated annealing is a heuristic algorithm based on
analogy to physical systems. The following three components are needed to define a
simulated annealing problem:

1. A configuration space Ω that is the domain of our objective function. The
elements S ∈ Ω, i.e., spin configurations in the image segmentation problem,
are called states of the system. Note that Ω is a discrete state space which is
large but finite.

2. The objective function H defined on this domain. For any state S ∈ Ω, H[S] is
called the energy of S.

3. A graph structure Λ defined on this domain that specifies which spin configu-
rations are to be one move apart; Λ: Ω → 2Ω is the collection of subsets of Ω.
For any spin configuration S ∈ Ω, the states in Λ(S) are called the neighbors
of S.

We can say that a simulated annealing problem is an ordered triple (Ω, H[·], Λ(·))
consisting of a set, a real valued function on the set, and a graph structure on the
set 6 (Salamon et al., 2010).

The Metropolis algorithm with simulated annealing works by simulating a random
walk on the set of spin states Ω looking for low-energy states. Primarily, spin variables
of the initial configuration Sinit are initialized randomly which results in a quite high
energy value. According to the Metropolis algorithm, one update iteration consists
of the following steps (Metropolis et al., 1953):

1. The system energy H[Scur] of the current spin configuration Scur is computed
as the global energy function of the generic Potts model (see 2.2) without the
inhibition term by

H[Scur] = −
∑
<i,j>

Jijδσiσj . (2.26)

6Sometimes in the literature this triple is called a Markov kernel (Azencott, 1992).

24 Chapter 2: Real-time Image Segmentation on a GPU

2. For each pixel i, a set of n (number of neighbors) new possible spin configu-
rations ~ = S ′1, S

′
2, · · · , S ′n ∈ Λ(Scur) is created by changing the spin state of

pixel i to the spin states of the neighbors. The number of new possible spin
configurations n does not depend on q.

3. Every spin configuration S ′i ∈ ~ is considered as a potential new configuration
of the system. Therefore, energy values of all configurations from the set ~ need
to be computed according to (2.26).

4. Among all new possible configurations from the set ~ the spin configuration
with the minimum energy value is selected according to

H[Snew] = min(H[S1], H[S2], · · · , H[Sn]). (2.27)

The respective change in energy between the current configuration Scur and
the selected configuration Snew ∈ ~ is defined as ∆H ≡ H[Snew] − H[Scur].
According to ∆H > 0 or ∆H 6 0, moves can be classified as uphill or downhill,
respectively.

5. To effect a bias in favor of moves that decrease the energy, downhill moves are
always accepted, whereas uphill moves are accepted only sometimes in order to
avoid getting trapped in local minima. Uphill moves with an energy gain ∆H
are accepted with probability x∆H , where x ∈ [0, 1] is a control parameter. Note
that for x = 1 all moves are accepted, while for x = 0 only downhill moves are
accepted. For intermediate values of x the probability of accepting an uphill
move decreases as x decreases. Simulated annealing proceeds by a random
walk through the configuration space Ω decreasing x from an initial value near
one to a final value close to zero. It means that progressively less time is
spent moving uphill as the algorithm proceeds. In the Metropolis algorithm
the parameter x is expressed in terms of the temperature T by x = e−1/T .
Therefore, the probability that the proposed move leading to increase in energy
will be accepted is given by

P (Scur → Snew) = exp

(
−|∆H|

Tn

)
. (2.28)

A number ξ is drawn randomly from a uniform distribution in the range of [0, 1].
If ξ < P (Scur → Snew), the move is accepted.

6. The temperature is gradually reduced after every iteration or after a group of
iterations according to the pre-defined annealing schedule (see further).

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 25

Metropolis updates (1) - (6) run until convergence, i.e., when no more spin flips
towards a lower energy state are being observed. The equilibrium state of the system,
achieved after several Metropolis iterations, corresponds to the image partition or
segmentation from which the final segments larger than a pre-defined threshold can
be extracted. The full update of a spin configuration, i.e., when all spins have been
updated, is usually referred to as a global Metropolis iteration. However, since we
will be interested further only in updates of all spins in the image, we use the term
iteration for the full Metropolis update.

The Metropolis algorithm is useful for finding average properties of the physical
system that moves in its states space Ω spending some time in each state. The
portion of time spent in any spin configuration S for a temperature T is proportional
to exp(−H[S]/T). The Metropolis algorithm visits spin configurations with exactly
these frequencies. The set of frequencies forms a distribution which is called the
Boltzmann distribution, given by (Salamon et al., 2010)

PT (S) =
e−H[S]/T∑
S∈Ω e

−H[S]/T
. (2.29)

The Boltzmann distribution contains only one parameter: the temperature T .
The lower the temperature, the more this distribution favors low-energy states. At
infinite temperature all spin configurations are equiprobable, while for T = 0 only
the configurations of lowest energy (corresponding to ideally segmented images) have
a nonzero probability. The Boltzmann distribution has two important properties for
global optimization tasks:

1. The system needs to be cooled through the full range of temperatures.

2. The Boltzmann distribution is uniform in terms of energy values, i.e., if two
spin configurations have the same energy, then they have the same probability.

Selecting the annealing schedule

The annealing schedule is usually a decreasing sequence of temperatures T (n) suc-
cessively employed in the transition probabilities of the Metropolis algorithm (see
(2.28)). In some cases the performance of the annealing does not depend on the form
of T (n) (Salamon et al., 1988; Johnson and McGeogh, 1997) and the number-one
exponential cooling schedule is employed (Kirkpatrick et al., 1983; C̆erný, 1985). But
there are problems for which the choice of annealing schedules makes a significant
difference (Mosegaard and Vestergaard, 1991).

Most annealing schedules give the user an opportunity to determine the overall
rate of cooling. A fast cooling leads to suppressing of the system’s degrees of free-
dom, whereas a slower cooling allows more of the spin configuration space Ω to be
explored. Consequently, the slower we cool, the better the final spin configuration

26 Chapter 2: Real-time Image Segmentation on a GPU

can be expected to be. The question is how fast to cool up the system with respect to
the time performance and eventually how much we care for the quality of the final so-
lution. A trade-off between acceptable time performance and quality of results needs
to be found. Independent from the chosen schedule, the start and stop criteria of
the annealing schedule need to be determined. The starting and ending temperatures
T0 and Tfinal, respectively, need to be set according to the considered problem. T0

needs to be chosen so that the system should initially be hot enough to allow large
fluctuations in the energy so that many uphill moves (see Section 2.2.3) leading to
increase in energy are accepted (White, 1984). The scale of these fluctuations is given
by the standard deviation of the energy at infinite temperature

σH|T=∞ =
√
〈H2〉T=∞ − 〈H〉2T=∞. (2.30)

If a priory is not known, this quantity can be estimated by randomly sampling
the configuration space. The same procedure gives a good random starting configu-
ration (Salamon et al., 2010). Practically T0 should be moderately larger than σH ,
e.g., twice as large. Having either a finite or an infinite number of copies of the sys-
tem, called ensemble, a set of random initial configurations is needed rather than just
one. It can be easily achieved by saving an appropriate number of spin configurations
obtained in the random sampling.

A simpler way is to set the starting temperature T0 so that most moves (downhill as
well as uphill) are accepted initially. Parameterizing the temperature by the reciprocal
temperature β = 1/T , it is reasonable to start with β = 0 where all spin moves will
be accepted. A more popular strategy is to set T0 so that exactly half of the spin
moves will be accepted. But it is not critical anyway, since relaxation is very fast at
high temperatures. The ending temperature Tfinal is usually set as follows. If the
energy does not change during the last Nfinal updates, which denotes convergence,
then it is time to stop the annealing procedure.

The choosing of schedules has both theoretical and practical aspects. Geman
and Geman (1984) introduced a schedule that guarantees convergence to the optimal
solution. If Hbest is the best energy observed during the walk of length t, the annealing
schedule has the property that

lim
t→∞

prob{Hbest = Hmin} = 1, (2.31)

where Hmin is the minimum energy. The schedule itself is determined by

T (t) = ∆Hmax
activation/ ln(t+ 1), (2.32)

where ∆Hmax
activation is the largest activation energy, i.e., the largest energy difference

that must be overcome along the paths leading out from the bottom of any suboptimal
basin (Salamon et al., 2010). The probability of not finding the minimum goes down
with time as P (Hbest > Hmin) ∝ t−x, where x is a suitable exponent (Azencott, 1992).

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 27

However, it is obvious that with such slow logarithmic decay of the temperature and
a large ∆Hmax

activation, the time required for the annealing procedure to stop is enormous
and inapplicable to problems with high claims to time performance. Instead of this
a schedule of the form (2.32) but having a smaller constant in the numerator can be
used:

T (t) = d/ ln(t+ 1). (2.33)

Such a schedule will drain the acceptance probability out of all basins with depth
less than d. The value of d needs to be chosen in relation to the total length tmax of
the simulation. As was already mentioned, an exponential schedule 7 given by

T (t) = T0 · γt, (2.34)

is the most commonly used annealing schedule. The annealing factor γ is usually
set to a number close to 1, such as 0.999. The temperature is updated after every
iteration or after a group of k iterations. The value of k is chosen empirically making
the actual functional form

T (t) = T0 · γ[t/k]
2 . (2.35)

This schedule allows partial equilibration at each temperature and corresponds to
a step function approximation to the exponential function in (2.34) with γ = γ

1/k
2 .

Note that γ can be determined if T0, Tfinal and tfinal are known.
Also many other simple functional forms have been employed for the annealing

procedure. It is quite common when β = 1/T is linearly increased as a function of
time (Salamon et al., 1988)

βt+1 = βt +m, m > 0. (2.36)

Similar to γ in (2.34), m can be determined from the values of T0, Tfinal and tfinal.
T can also be decreased linearly in time or as an inverse power T0 · t−x with almost
any x > 0.

Another type of annealing schedule is so called adaptive cooling. The main idea
of this approach is to collect data about the system and employ it to make sophis-
ticated assumptions how the temperature should be decreased. The more one uses
the system, the better is the feeling for the proper schedule. Adaptive schedules can
be implemented on-line or off-line. Off-line implementations consider data collected
during previous runs to find the desired schedule T (t). Here multiple coolings can
be executed concurrently, since no runtime communication between them is needed.
The decision about the most suitable schedule is made once all runs finished. Off-line
implementations tend to be more robust than on-line which cannot change previously

7Sometimes also referred to as a geometrical schedule.

28 Chapter 2: Real-time Image Segmentation on a GPU

Tn+1 = γ · Tn
Starting temperature Annealing factor Required iterations

Schedule T0 γ Nconv

(1) 9.0 0.9999 16× 103

(2) 5.0 0.9999 10× 103

(3) 3.0 0.9999 5× 103

(4) 3.0 0.999 103

(5) 9.0 0.999 15× 103

(6) 5.0 0.999 12× 103

(7) 9.0 0.99 4× 103

(8) 5.0 0.99 3× 103

(9) 1.0 0.9999 200
(10) 1.0 0.99 150
(11) 0.5 0.9999 250
(12) 9.0 0.9 100

Table 2.1: Simulated annealing schedules of the on-line adaptive cooling employed in
the Metropolis algorithm for the image segmentation problem.

made decisions. Hoffmann et al. (1991) proposed an adaptive annealing schedule
which is very simple to implement. The temperature is always decreased by a fixed
factor γ, but the time t spent at each temperature T , i.e., a number of performed
Metropolis updates, can vary in an adaptive way. Ideally, we would like to reach the
equilibrium at each temperature. Such a schedule is determined by Tn+1 = γ · Tn.

In this work we employ the on-line adaptive annealing schedule due to the fol-
lowing reasons: (i) this schedule is quite fast comparing to some other introduced
schedules; (ii) it is possible to find a schedule suitable for various images after some
experimental runs; (iii) as our aim is the real-time segmentation of video streams,
there is no opportunity to change previously made decisions, i.e., previously obtained
segmentation results. However, we perform only one Metropolis update at each tem-
perature without reaching the equilibrium on each cooling phase. It arises from strict
demands for the time performance. The starting temperature T0 is selected so that
most uphill moves are initially accepted. Note that there is no need to specify the
ending temperature Tfinal, since Metropolis updates run until convergence when no
more moves towards a lower energy state are observed. Thereby only a number of
iterations Nconv sufficient for convergence of the system needs to be determined.

Various schedules of the on-line adaptive simulated annealing employed in the
Metropolis algorithm for the image segmentation problem are shown in Table 2.1.

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 29

Figure 2.2: The effect of various schedules of the on-line adaptive simulated annealing
employed in the Metropolis algorithm for the image segmentation problem. Each
panel shows one group of annealing schedules from Table 2.1. See the text for more
details.

30 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.3: Segmentation results obtained by the Metropolis algorithm employing var-
ious schedules of the on-line adaptive simulated annealing (see Table 2.1 and Fig. 2.2).
(A) Original image of size 160 × 128 pixels. (B) Processing times of one Metropolis
iteration on CPU and GPU architectures as a function of the total number of pixels
in the image. (C) Segmentation results for various simulated annealing schedules
derived with α = 2.5. See the text for more details.

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 31

The schedules differ in values of the starting temperature T0 and the annealing factor
γ. The number of iterations Nconv required for convergence, i.e., complete image
segmentation, has been determined experimentally for each schedule. The effect of
each presented schedule used in the Metropolis algorithm to segment an image of size
160× 128 pixels is shown in Fig. 2.2 as a function of the iteration number where each
panel shows one group of annealing schedules from Table 2.1. Segmentation results
corresponding to all introduced annealing schedules obtained on one testing image
are presented in Fig. 2.3(A,C). We can see that only schedule (1) leads to a complete
segmentation of an image where all homogeneous image regions are represented by
a single segment. Note that the basket handle cannot be segmented in one segment
due to the light reflections on it. This schedule starts at a very high temperature
T0 = 9.0 and cools down very slowly (γ = 0.9999) allowing many uphill moves during
two thirds of the whole annealing walk. Namely these moves help the system to
explore more of the spin configuration space Ω resulting in a consistent segmentation
result. A bit faster schedule (5) (γ = 0.999) starting with the same temperature
cannot already resolve big regions (parts of the green background) dividing them into
multiple segments. The faster the cooling is, the less of the spin configuration space
Ω can be explored resulting in inconsistent segmentation results despite the reached
equilibrium state.

The next two best segmentation results are obtained by schedules (2) and (3).
Both schedules are slow (γ = 0.9999) and start with still relatively high temperatures
T0 = 5.0 and T0 = 3.0, respectively, allowing many uphill moves at the beginning
of cooling. Derived segmentation results are consistent except one part of the green
background divided into two segments. Schedules (4), (6), (7), (9) are either too fast
or start with very low temperatures making the exploration of the spin configuration
space Ω very limited. Such schedules lead to “overfrozen” spin configuration where
the low temperature excludes uphill moves completely, while homogeneous regions are
divided into multiple segments. Schedules (10), (11), (12) are even more critical, since
the spin configuration is “overfrozen” already after about 100 iterations and only a
few homogeneous regions are segmented properly. Although schedule (12) starts at
a high temperature T0 = 9.0, it is so fast (γ = 0.9) that no region can be segmented
properly and the final spin configuration represents a set of superpixels.

Drawing a conclusion, the best annealing schedule of the on-line adaptive cooling
employed in the Metropolis algorithm for the image segmentation is schedule (1) with
T0 = 9.0 and γ = 0.9999. All other schedules do not lead to complete segmentation
leaving some homogeneous regions divided into multiple segments. The Metropolis
algorithm with the simulated annealing schedule (1) applied to the image segmen-
tation problem is demonstrated in more detail in Fig. 2.4. Here both the synthetic
image “Colored blocks” and the real image “Various objects” of size 160 × 128 pix-
els are segmented employing the on-line adaptive cooling with the same fixed factor
γ = 0.9999 and the starting temperature T0 = 9.0. The factor α in the Metropolis
algorithm equals 2.5 for both images. The following spin configurations are shown

32 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.4: The Metropolis algorithm with on-line adaptive cooling applied to the
image segmentation problem is shown for two testing images of size 160× 128 pixels:
“Colored blocks” (A) and “Various objects” (B). For both images α = 2.5, the cooling
factor γ = 0.9999, and the starting temperature T0 = 9.0.

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 33

Processing time (ms)

Metropolis on CPU Metropolis on GPU

160× 128 (px) 6.5 0.7
320× 256 (px) 26.0 1.6
640× 512 (px) 105.0 6.1

1280× 1024 (px) 370.0 23.5

Table 2.2: Processing times of one Metropolis iteration for four various image sizes
on both CPU and GPU platforms.

on the annealing process: (1) initial configuration, when all spin variables are initial-
ized randomly, (2) - (6) intermediate configurations, and (7) final spin configuration
after convergence. We can see that configurations (1) - (4) for the “Colored blocks”
image and (1) - (5) for the “Various objects” are featured by a high disorder of spins
due to the high temperature values allowing many uphill moves. However, namely
extensive spin updates at high temperatures ensure convergence of the system to the
equilibrium state 8. The local nature of the Metropolis algorithm results in thousands
of updating iterations needed for convergence. As a result about 20× 103 iterations
are needed for segmentation of the “Colored blocks” and “Various objects” images,
respectively.

Processing time of one Metropolis iteration on the traditional CPU architecture
as a function of the total number of pixels is shown in Fig. 2.3(B). Processing times
for four commonly used resolutions are shown in Table 2.2. We can see that 20× 103

update iterations for an image of size 160× 128 pixels result in about 130 seconds on
the traditional CPU architecture. The same number of iterations applied to an image
of size 640 × 512 pixels will already result in 35 minutes. But 20 × 103 iterations
are definitely not enough to segment completely an image of this size. The given
time performance excludes the use of the Metropolis algorithm with the chosen an-
nealing schedule running on common computers for the real-time video segmentation.
However, in the meanwhile the local nature of the Metropolis updates is the key to
its acceleration on parallel hardware like GPU. Time performance of one Metropolis
iteration on the GPU GeForce GTX 580 as a function of the total number of pixels
is shown for comparison in Fig. 2.3(B) as well. Processing times for four commonly
used resolutions are given in Table 2.2. We can see that 20 × 103 update iterations
for an image of size 160 × 128 pixels require near 14 seconds on the GPU which is
9.3 times faster as compared to the CPU. The same number of iterations applied to
an image of size 640× 512 pixels require 32 seconds on the GPU which is 65.6 times

8In crystal physics it is denoted as a “steady state”.

34 Chapter 2: Real-time Image Segmentation on a GPU

faster. But even the runtime obtained on the GPU is not sufficient for the real-time
processing and additional solutions are needed for our aims.

2.2.4 Graphics processing unit architecture

A Graphics Processing Unit (GPU) is a symmetric architecture featured by a highly
parallel, multithreaded, manycore processors with enormous computational power
and very high memory bandwidth. GPUs are usually connected to the CPU via
the PCI Express bus resulting in a heterogeneous system where the GPU, called
the device, operates asynchronously from the CPU, referred as the host, enabling
simultaneous execution and data transfer. Parallel computations running on the
GPU or device are initiated and controlled by the CPU or host (Brodtkorb et al.,
2010). AMD, Intel, and Nvidia are the main GPU vendors, where AMD and Nvidia
dominate these days the market of the 2D and 3D graphics rendering. The parallel
programming model of Compute Unified Device Architecture (CUDA) proposed by
Nvidia in 2006 (Lindholm et al., 2008) makes software parallelization on Nvidia’s
graphics cards quite straightforward which turns Nvidia to the leader on the market
of general-purpose parallel computing with the GPUs. In the following, we will give
an overview of the up-to-date Nvidia GPUs architecture and the CUDA programming
model.

General-purpose parallel computing architecture

The most recent GPUs of Nvidia perform more than 1500 giga floating-point op-
erations per second (GFLOP/s) with single precision (GeForce GTX 580) and more
than 500 GFLOP/s with double precision (Tesla C2050) having a memory bandwidth
of 190 GB/s. In the sense of processing power and memory transfers GPUs consid-
erably outperform traditional CPUs which makes them very attractive for general
purpose programming. The reason behind the extremely high processing capabilities
of the GPU is that the GPU is designed for intensive, highly parallel computations
devoting more transistors to data processing rather than data cashing and flow con-
trol (NVIDIA-Corporation, 2011). Here we introduce the GPU architecture on the
first Fermi based GPU, the GeForce GTX 580 (NVIDIA-Corporation, 2009).

GeForce GTX 580 with compute capability 2.0, implemented with 3.0 billion
transistors, features up to 512 CUDA cores. A CUDA processor core executes a
floating point or integer instruction per clock cycle for a thread. The architecture of
the GTX 580 card is shown in Fig. 2.5. The 512 CUDA cores are organized in 16
streaming multiprocessors (SMs) of 32 cores each. The GPU has six 64-bit memory
partitions, for a 384-bit memory interface, supporting up to a total of 6 GB of GDDR5
DRAM memory. The GPU is connected to the CPU via PCI Express interface.

The GTX 580 is based on the third generation of SMs which are the result of
several architectural innovations making the GPU easier to program and more ef-

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 35

ficient. Each SM contains 32 CUDA processor cores - four times more comparing
to the previous generation. Each core has a fully pipelined integer arithmetic logic
unit (ALU) and floating point unit (FPU). Each SM has 16 load/store units which
make it possible to calculate source and destination addresses for sixteen threads per
clock cycle. Supporting units perform loads and stores of the data at each address to
cache or global memory. There are four special-function units (SFUs) that execute
transcendental instructions such as as sine, cosine, reciprocal, and square root. Each
SFU performs one instruction per thread, per clock cycle.

The SM schedules and executes threads in groups of 32 parallel threads, called
warps. Each SM has two warp schedules and two instruction dispatch units, allowing
two warps to be issued and executed at the same time. The dual warp scheduler of
the Fermi card selects two warps and sends one instruction from each warp to a group
of 16 cores, 16 load/store units, or 4 SFUs. Since warps execute independently, the
scheduler does not need to check for dependencies within the instruction stream.

On-chip shared memory is one of the key innovations that greatly improved
the programmability and performance of GPU applications. Shared memory al-
lows threads within the same block (see Section 2.2.4) to cooperate, greatly reducing
the off-chip data traffic. Usage of on-chip shared memory is a key for many high-
performance CUDA applications, since it is faster than local and global memory
spaces (DRAM). To achieve high read/write bandwidth, shared memory is organized
as a set of equally-sized memory modules, called banks, which can be accessed simul-
taneously. Any shared memory request made of n addresses that accesses n distinct
memory banks can, therefore, be serviced simultaneously leading to a bandwidth that
is n times higher than a bandwidth of a single module. G80 and GT200 architectures
have 16 KB of shared memory per SM. In the Fermi architecture each SM has 64 KB
of on-chip memory that can be configured as 48 KB of shared memory plus 16 KB of
L1 cache or as 16 KB of shared memory plus 48 KB L1 cache. For applications that
make extensive use of shared memory, this flexibility leads to significant performance
improvements.

Besides on-chip L1 cache the Fermi card features a 768 KB unified L2 cache that
services all load, store and texture accesses. L2 cache enables efficient and high
speed data sharing across the GPU. Algorithms for which data addresses are not
known in advance especially benefit from the cache hierarchy introduced in the Fermi
cards. Commonly used in computer vision and image processing convolution and
filter kernels, requiring multiple SMs for reading the same data, also benefit.

One of the most important innovations of the Fermi architecture is its two-level,
distributed thread scheduler. On the card level, the global scheduler, called GigaTh-
read, distributes thread blocks to various SMs, whereas on the SM level each warp
scheduler distributes warps of 32 threads to its processing units. The first genera-
tion GigaThread engine introduced in G80 cards can manage up to 12, 288 threads
in real-time. Furthermore, the Fermi architecture provides higher thread through-
put, significantly faster context switching, concurrent kernel execution and improved

36 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.5: Architecture of the first Fermi based GPU device GeForce GTX 580. 16
streaming multiprocessors (SMs) are located around a common L2 cache. Each SM
is shown as a vertical rectangular strip.

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 37

Figure 2.6: Heterogeneous programming with the CUDA programming model. Grid
of thread blocks and memory hierarchy.

thread block scheduling.

Highly parallel systems consisting of multicore CPUs and manycore GPUs follow
Moore’s law according to which the number of transistors that can be placed inexpen-
sively on an integrated circuit doubles approximately every two years (Moore, 1965).
The main issue is to develop a program that transparently scales its parallelism in
order to exploit the increasing number of processing cores similar to 3D graphics ap-
plications. For this purpose the CUDA programming model was designed in order to
solve this issue avoiding excessive demands on developer’s programming skills.

CUDA programming model

First attempts to exploit the GPU for non-graphical applications due to its high arith-
metic throughput and memory bandwidth have been done in 2003. Various data par-
allel algorithms have been moved to the GPU using high-level shading languages such
as DirectX, OpenGL, and Cg which led to remarkable performance speedups com-
paring to implementations on traditional CPUs. The first efforts of using the GPU
for the general purpose programming are known as GPGPU programming (Brodtkorb
et al., 2010). Whereas the GPGPU programming demonstrated great speedups, there
were several crucial drawbacks. First, it required from developers very deep knowl-
edge of graphics APIs and GPU architecture. Second, programming tasks had to
be expressed in terms of vertex coordinates, textures and shader programs, which
resulted in a high program complexity. Third, basic programming operations such as
random reads and writes to memory were not supported, restricting the programming
model. Finally, the lack of double precision support (until last four years) excluded
implementation of some scientific applications.

To overcome these problems, Nvidia introduced the software and hardware ar-

38 Chapter 2: Real-time Image Segmentation on a GPU

chitecture CUDA that makes the GPU available for programming with a variety of
high level programming languages. CUDA represents a new way of using the GPU.
Instead of low level programming of graphics units with graphics APIs, developers
can write now C programs with CUDA extensions for massively parallel processor.
Obviously only algorithms having parallel independent computations, which can be
implemented in a multithreaded mode, can be ported to the GPU. According to the
parallel CUDA model, a multithreaded program is partitioned into blocks of threads
running independently of each other. Therefore, a GPU with more cores needs less
time to finish the program than a GPU with fewer cores.

The CUDA programming model with a hierarchy of blocks and threads is shown
in Fig. 2.6. All computations, running in parallel on the GPU, are initiated by the
host CPU. Since the GPU cannot access CPU’s RAM memory directly, all input data
needs to be loaded first to the GPU’s global memory. Data transfers between CPU
and GPU are organized via the PCI Express bus. Once output data is ready, it needs
to be copied from GPU’s global memory back to the main CPU program. All blocks
run on the GPU the same program, called kernel, and threads within one block can
synchronize and communicate using shared memory. Blocks are organized into a grid
and the number of blocks depends on both the size of the data being processed and
resources of SMs.

When the main CUDA program running on the CPU invokes a kernel grid, the
blocks of the grid are enumerated and distributed to SMs with available card’s exe-
cution occupancy. Occupancy is the ratio of active warps to the maximum number of
supported warps (Brodtkorb et al., 2010). Threads of a thread block run concurrently
on one SM, while multiple thread blocks can execute at the same time on one SM.
Once previous blocks terminated, new thread blocks start on the free SM. Since SM
was designed to execute simultaneously hundreds of threads, it employs a unique ar-
chitecture called SIMT (Single Instruction, Multiple Thread). The SIMT architecture
is descended from the SIMD (Single Instruction, Multiple Data) organization in that
a single instruction operates on multiple data elements. A difference is that SIMD is
related to the software, while SIMT instructions specify the execution and branching
of a single thread (NVIDIA-Corporation, 2011). Each GPU architecture has a pre-
defined maximum number of resident blocks and a number of resident warps. The
total number of warps Wblock in a block is defined as

Wblock = ceil

(
NT

Wsize

, 1

)
, (2.37)

where NT is the number of threads per block, Wsize is the warp size, which is equal
to 32, and the function ceil(x, y) is equal to x rounded up to the nearest multiple of y.
The total number of registers Rblock allocated for a block for devices with a compute
capability 1.x is given by

Rblock = ceil(ceil(Wblock, GW)×Wsize ×RK , GT), (2.38)

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 39

and for devices with compute capability 2.x by

Rblock = ceil(RK ×Wsize, GT)×Wblock, (2.39)

where GW is the warp allocation granularity, equal to 2 (compute capability 1.x
only), RK is the number of registers used by the kernel and GT is the thread allocation
granularity. GT equals to 256 for devices of compute capability 1.0 and 1.1, to 512 for
devices of compute capability 1.2 and 1.3, and to 64 for devices of compute capability
2.0. The total amount of shared memory Sblock (in bytes) allocated by a block is given
by

Sblock = ceil(SK , GS), (2.40)

where SK is the amount of shared memory used by the kernel (in bytes) and
GS is the shared memory allocation granularity, which is equal to 512 for devices of
compute capability 1.x, and to 128 for devices of compute capability 2.x.

Memory hierarchy

Parallel threads running on CUDA processor cores can access data from multiple
memory spaces as shown in Fig. 2.6. Each thread has its private local memory
(register file) located on the chip which has the same lifetime as a thread. Each
thread block has on-chip shared memory visible to all threads of the block and with
the same lifetime as a block. All threads have access to the same global memory (see
Fig. 2.5). There are also two additional read-only memory spaces available for all
threads: the constant and texture memory spaces.

As was already mentioned, shared memory is on-chip memory and, therefore, it is
much faster than the local and global memory spaces. Shared memory of the Fermi
card has 32 banks that are organized such that successive 32-bit words are assigned
to successive banks. Each bank is featured by a bandwidth of 32 bits per two clock
cycles. A bank conflict only occurs if two or more threads try to access any bytes
within different 32-bit words belonging to the same bank. An access of any bytes
within the same 32-bit word by two or more threads does not lead to bank conflicts.
Unlike for devices of lower compute capability, in devices of compute capability 2.x
bank conflicts can occur between a thread belonging to the first half of a warp and a
thread belonging to the second half of a warp.

Device or global memory can be accessed from SMs directly as linear memory or
through the texture units that use the texture cache as CUDA arrays (see Fig. 2.5).
Textures are a computer graphics data concept representing data as a read-only 2D
image. Thus, texture access is optimized for 2D access keeping small 2D neighbor-
hoods in the cache as opposed to the linear caching of traditional CPUs. Global
memory access has a high latency and is optimized for linear access. Full bandwidth
is achieved only when the memory requests are coalesced into the read or write of

40 Chapter 2: Real-time Image Segmentation on a GPU

the full memory segment. Global memory can be accessed via 32-, 64-, or 128-byte
memory transactions which must be naturally aligned. Only 32-, 64-, or 128-byte
segments of global memory that are aligned to their size (i.e., whose first address is
a multiple of their size) can be read or written by coalesced memory transactions.
For devices of compute capability 2.x, the memory transactions are cached exploiting
data locality to reduce impact on throughput (NVIDIA-Corporation, 2011).

2.2.5 Parallel Metropolis algorithm

As was mentioned above, the Metropolis algorithm is highly local and, therefore, fits
perfectly to parallel hardware architectures. Barkema and MacFarland (1994) pro-
posed two parallel implementations of Ising model simulations with the Metropolis
algorithm on the KSR-1 parallel computer. According to their first implementation,
called a straightforward parallel Metropolis algorithm, the lattice is divided into do-
mains and each processor, operating on one domain, selects sites accepting or rejecting
spin flips on these lattice sites. Due to the nature of the Metropolis procedure it is
desirable to select sites on which moves are proposed in a random way, since it helps
to avoid biases caused by the pseudorandom nature of the random number gener-
ation (Compagner and Hoogland, 1987). However, a straightforward simultaneous
update of lattice sites leads to a conflict when two different processors select adjacent
sites %i and %j at the same time. In this situation the spin values at sites %i and %j
might be updated both based on old spin values. Such a “combined” spin update
does not fulfill detailed balance and produces biased results. The correct way to deal
with this situation is to update spin variables of adjacent lattice sites sequentially,
which in its turn requires additional constraints on the spin updates and slows down
the algorithm. In the straightforward parallel Metropolis algorithm by Barkema and
MacFarland (1994) such situations are avoided by using the same sequence of ran-
dom sites on each processor. Synchronization between processors must take place if
a border site is selected which means that we have to synchronize B times during
one Metropolis iteration if the border of each domain has B sites. According to this
updating strategy processors select sites that are periodic images of each other which,
therefore, are never adjacent. Although the lattice sites are not selected strictly at
random, this selection method causes no bias in the equilibrium properties.

The second parallel implementation of the Metropolis algorithm, called a smart
parallel Metropolis algorithm, limits considerably the number of times at which pro-
cessor synchronization has to take place. Each processor operates on lattice sites from
its own domain and has copies of the spin values on the adjacent sites of the neigh-
boring domains. As in the first implementation, the domain sites on which a spin
move is proposed are determined by a generated random pattern which is equal for
all processors. Spins of internal sites can be updated without an additional commu-
nication between processors. If a border site is selected, the copy of that site located
on the adjacent neighboring processor may be out of date. Since the site selection is

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 41

Figure 2.7: Update of a spin state configuration by the “smart” parallel Metropolis
algorithm proposed by Barkema and MacFarland (1994). The dotted sites indicate
copies of spin values located on the adjacent border of the neighboring domains. See
the text for more details.

synchronized between processors, each processor can control which copies of border
sites are still up-to-date. Synchronization between all processors takes place only
when information needed for accepting or rejecting a move is not up-to-date. Re-
ducing the frequency of synchronization operations results in a faster runtime. The
“smart” parallel Metropolis algorithm is illustrated in Fig. 2.7. Each processor selects
sequentially the lattice sites 1−9. When the site number 4 is selected, its spin value is
updated based among others on the copy of the spin value taken from the neighboring
domain. At the same time the site denoted by “4” is marked to be out of date in the
next processor. Spin updates continue and no synchronization is needed till site 9 is
selected. Here synchronization between all processors must take place, since the copy
of the spin value at the site marked “4” may have changed. After synchronization
copies of all border sites are current. This decreases the number of synchronizations
during one Metropolis iteration to

√
2B/π instead of B (Barkema, 1992).

Now we present a new implementation of the parallel Metropolis algorithm using
the GPU architecture for acceleration. The parallel Metropolis algorithm applied to
the image segmentation problem represents a very intensive computational process
where all data items (spin variables of pixels) repeatedly undergo the same procedure
(update of spin states). Such computations are exactly what GPUs with the SIMT
architecture (see Section 2.2.4) have been designed for. Similar to the implementations
considered before, an input image, represented by a 2D lattice with N = LxLy sites,
is divided into a number of domains where each domain is a rectangle containing one
image part. According to the CUDA programming model all domains are handled
on the GPU by thread blocks organized a thread grid. Before the CUDA kernel,
performing Metropolis updates, can be launched, pre-computed interaction strengths

42 Chapter 2: Real-time Image Segmentation on a GPU

and an initial spin state configuration are stored in the global memory of the GPU (see
Section 2.2.4). Due to the fact that global memory accesses are very time consuming,
we need to reduce its usage in the kernel as much as possible. Thereby each thread
block first loads input data from the corresponding domain to the shared memory
which is then repeatedly accessed during spin updates. Regarding read and write
accesses to the global memory there are some memory issues that need to be taken
into account for a better performance.

First, since each thread block can access only its own shared memory, informa-
tion about border pixels from the neighboring domains needs to be copied to the
shared memory of each block as well. Therefore, each block loads both a corre-
sponding domain and a so-called “read-only” overlap of border pixels from adjacent
domains. Second, global memory accesses need to be coalesced in order to achieve
high throughput (see Section 2.2.4). For this purpose memory transactions need to be
aligned which requires a rearrangement of the input data for the CUDA architecture
and a decomposition of the output data for the further processing on the host side.
A flow diagram demonstrating an execution of the parallel Metropolis algorithm on
the GPU with rearrangements of the input / output data is shown in Fig. 2.8(A). In
the proposed implementation a block of 16×16 threads is used and each thread loads
and updates four pixels. Such a configuration makes it possible to avoid idle threads
(only loading data from overlaps without performing any spin updates) and to use
the resources of the GPU in a very efficient way. Once all spin updates are complete,
the global memory is used again for saving the final spin state configuration which is
sent later back to the host.

The rearrangement of data in the device global memory is shown schematically
in Fig. 2.8(B-D). Note that the data rearrangement is needed only for maximization
of global memory throughput and both on the host side and within thread blocks
(in the shared memory) data is saved in a common image format in compliance with
the 8-connectivity of pixels (see Fig. 2.8(B,D)). For an image of size width× height
pixels we need to load coupling constants (a byte each) pre-computed for four different
directions (see Section 2.2.2) and a current spin value (one byte) as input data for each
pixel to the device global memory. It results in five matrices of size width × height
bytes. Since according to our loading strategy one thread loads and updates four
pixels, the simplest parallel implementation of the Metropolis algorithm is when one
thread loads and updates a square of 2×2 pixels (see Fig. 2.8(D)). Thereby each thread
needs to load four bytes from each matrix to the shared memory. In order to coalesce
accesses of the global memory, the best and obvious solution is a rearrangement of 2×2
pixel groups (in all five matrices) in segments of 4 consecutive pixels (see Fig. 2.8(C)).
Such segments meet the size and alignment requirements leading to efficient global
memory accesses.

The proposed CUDA kernel performing updates of spin configurations due to the
introduced loading strategy is shown schematically in Fig. 2.9. We can see that each
vertical overlap contains two pixel columns and each horizontal overlap contains two

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 43

Figure 2.8: The rearrangement of input / output data in the device global memory
shown schematically for a group of 32 pixels from one matrix. (A) Flow diagram of
the kernel function performing parallel Metropolis updates on the GPU architecture
with rearrangements of input / output data. (B) An input data in the regular image
format in the host memory. (C) A reorganization of the input data in the device
global memory for coalesced memory accesses. (D) An input data in the regular
image format loaded from the global memory to the shared memory by a thread
block.

pixel rows. Each thread block updates only inner pixels of the overlaps, whereas
outer pixels are updated by neighboring blocks. As an update of one spin involves
only its nearest neighbors from the 3× 3 mask, spin variables that are not neighbors
of each other can be updated simultaneously. It results in four parallel updates per-
formed in a sequence. Synchronization between thread blocks takes place once all
spin variables are updated, i.e., when four parallel updates finished and outer pixels
of all overlaps need to be reloaded before the next iteration can start. Here we do not
involve any random pattern for updates like in the “smart” parallel Metropolis algo-
rithm by Barkema and MacFarland (1994) and update as many spins as possible at
each step. Despite some biases caused by this updating strategy, Metropolis updates
are performed extremely fast without checking which spin values are out-of-date.
All border spins are out-of-date after one full iteration and synchronization between
thread blocks must take place. Synchronization runs over the device global memory
and takes place n times where n is the number of full Metropolis iterations. GPU
occupancy data and physical limits of the proposed CUDA kernel are summarized in
Appendix A.1.

44 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.9: Update of a spin state configuration of the input image by the proposed
parallel Metropolis algorithm on the GPU. Pixels depicted by the same pattern are
updated simultaneously. The dark blue region includes (2`+ 1)2 − 1 pixels from the
closest neighborhood of the pixel i (` = 1). The arrow shows an interaction between
pixels i and j – one of eight interactions of the pixel i in its neighborhood (see (2.5)).

Time performance of one Metropolis iteration on the GPU has been already given
in Section 2.2.3 (see Fig. 2.3(B) and Table 2.2) for comparison with the sequential
implementation on the traditional CPU. The presented GPU runtimes have been
obtained on the GeForce GTX 580. The parallel Metropolis update running in parallel
on the GPU is significantly faster as compared to its sequential version running on the
CPU. Thus, for image sizes of 160× 128, 320× 256, and 640× 512 pixels the rates of
acceleration are 9.3, 16.3, and 17.2, respectively. However, even these accelerations are
not enough for the real-time image segmentation by the parallel Metropolis algorithm
with the chosen simulated annealing schedule and, as a consequence, some additional
optimizations are required. While slow annealing leads to an undesired increase in
computation time, fast cooling faces the problem of fragmentation of homogeneous
regions into multiple segments (see Fig. 2.3 in Section 2.2.3). In the upcoming section
we introduce the parallel Metropolis algorithm that makes use of the “overfrozen”
spin configurations, produced by fast annealing schedules, applying a special short-

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 45

cut procedure for the real-time performance.

2.2.6 Parallel Metropolis algorithm with a short-cut

The flow diagram of the parallel Metropolis algorithm with a short-cut is presented
in Fig. 2.10(A). As in the full Metropolis procedure, at the beginning all spin states
are initialized by random values. After that the first group of n1 = 10 parallel
Metropolis iterations with the on-line adaptive annealing is applied to the image.
Note that here the updating procedure starts at a very low temperature (T0 = 0.5)
and a relatively fast annealing schedule is employed (Tn+1 = 0.999 · Tn). It leads
to the frozen state when an image is not segmented but all regions are featured by
well observable superpixels which emphasize region borders. Output results of all
processing steps are shown for the “Cluttered scene” image in Fig. 2.10(B).

This effect is known as domain fragmentation and describes the fact that large
uniform areas are being split into sub-segments despite high attractive forces within
them (Eckes and Vorbrüggen, 1996). It happens when the starting temperature T0

is very low or decreases rapidly (too fast annealing process) and the system arrives
too early at the “frozen” state. However, in the meanwhile the fragmented domains
carry all the required information needed to resolve this problem due to the property
that domain-fragment boundaries are unstable and clear-cut, whereas true segment
boundaries are stable and characterized by a noisy local neighborhood. It allows us to
distinguish true segment boundaries from those caused by domain fragmentation and
find potential segments as regions featured by closed contours. Since border detection
based on the described border properties of superpixels cannot resolve the image
segmentation problem completely giving inaccurate and unidentifiable segments, we
need to come back to the spin representation of the image for final processing. For
this purpose all connected components are identified and their labels are turned to
spin variables. Therefore, the short-cut consists of the following three steps: border
detection based on superpixels, labeling of connected components, and reassignment
of spins. Once the short-cut is over, the second group of n2 = 10 Metropolis iterations
with the same annealing schedule is applied to the image resulting in more accurate
segments. This procedure is also called system relaxation and runs until convergence.
After that final segments larger than a pre-defined threshold can be extracted.

The system convergence of the employed on-line adaptive cooling with the short-
cut is shown in Fig. 2.10(C). We can see that during the first group of Metropolis
iterations the system energy drops down very fast. However, the potential convergence
here means only that the spin configuration is frozen and no uphill moves are taking
place. Thus, the system convergence does not necessarily mean a solution of the image
segmentation problem. Right away after the short-cut the system energy slightly
increases due to disorder introduced into the system by randomly initialized spin
variables that fill gaps between found connected components. Additional Metropolis
relaxation iterations lead to convergence which in this case corresponds to the final

46 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.10: The parallel Metropolis algorithm with the proposed short-cut. (A) Flow
diagram of the algorithm. (B) Results obtained on each stage. (C) Convergence of the
Metropolis algorithm with the on-line adaptive cooling using the short-cut against the
number of iterations for the “Cluttered scene” image of size 320×256 pixels, α1 = 0.9,
α2 = 4.0, n1 = 10, n2 = 20, T0 = 0.5, and γ = 0.999.

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 47

segmentation result.

Note that in the short Metropolis algorithm we use different values of the factor
α for two groups of Metropolis updates (see (2.6)). The factor α1 used during the
first n1 updates influences a number of connected components, i.e., found segments,
therefore, it should be quite low in order to avoid undesired merges. The factor α2 is
used on the relaxation stage during the second n2 updates when all main segments
have been already found. In this respect values of α2 can be higher than α1 which
allows the system to arrive faster at the final segmentation solution getting rid of
noise in the spin configuration.

Resolving domain fragmentation

For illustration of the domain fragmentation problem the spin configuration with
q = 6 after n1 = 10 Metropolis iterations is presented for an example image in
Fig. 2.11(A,B). Spin updates are performed at a very low temperature T0 = 0.5
which remains constant during all iterations. Large interaction forces within the
apple and the background lead to the creation of domains that try to cover each
other. This effect has its origin in the finite interaction range and local dynamics
of the Metropolis algorithm (Eckes and Vorbrüggen, 1996). As already mentioned
above, the information about superpixels is used to resolve the domain fragmentation
due to the fact that domain-fragment boundaries are unstable and clear-cut, whereas
true segment boundaries are stable and characterized by a noisy local neighborhood
(Fig. 2.11(B)). This holds true for real images due to their finite image gradient at true
boundaries and it allows us to distinguish true segment boundaries from those caused
by domain fragmentation. For this we consider the spin configuration S obtained
after an initial fast cooling phase consisting of n1 = 10 Metropolis iterations only.

The procedure works as follows. After the first group of Metropolis iterations
we compute the spatial derivatives along the x and y direction of the spin state
configuration S(x, y) according to

S ′x =
∆S(x, y)

∆x
and S ′y =

∆S(x, y)

∆y
. (2.41)

In Fig. 2.11(C,D) functions Sx and S ′x are depicted for one row of the original
image. Each peak of S ′x represents a change in the spin state. Here we are interested
only in the number of peaks rather than in the derivative values, because the Potts
model does not penalize differences between certain spin states stronger than others
(see (2.4)). We can see that the frequency of peaks increases significantly at real
boundaries (depicted by dashed lines). Considering couples of pixels in parallel we

48 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.11: Detection of real boundaries after using the Metropolis algorithm with a
very low temperature T0 = 0.5. (A) Original input image. (B) Configuration of spin
states after n1 = 10 Metropolis iterations, α1 = 0.9. (C) Function of spin states for
one image row as marked by a horizontal line in panels (A) and (B). (D) Changes of
spin state for the same row where each peak represents a changing spin state. (E)
Detected object boundaries.

find boundaries

B(xi, yj) =

1 if S ′(xi, yj) 6= 0 and S ′(xi−1, yj) 6= 0,
1 if S ′(xi, yj) 6= 0 and S ′(xi, yj−1) 6= 0,
0 otherwise.

(2.42)

The result of this procedure is a binary image (see Fig. 2.11(E)). Since spatial
derivatives can be computed for all pixels at the same time, this processing step
has been implemented on the GPU as well. Erroneous noisy speckles arising from
this procedure are corrected by assigning again spin variables to all found segments
and applying additional Metropolis update iterations to a newly established spin
configuration for the system relaxation (see further).

Note that one cannot easily use a conventional edge detector for this. An edge
detector would indeed find many segment boundaries, but it would also find bound-
aries between superpixels which are unrelated to the segments and come out from
the Metropolis procedure. In order to reach the equilibrium state of the system, i.e.,
final image segmentation solution, as soon as possible, we should use only “correct”
segments. Otherwise the system relaxation would have to undo all wrong segments
performing a very long cooling which cannot be accomplished in real-time. Further-
more, the proposed procedure yields closed object boundaries while many edge detec-
tors produce borders having gaps. The method of using the noisiness to distinguish

2.2 REAL-TIME IMAGE SEGMENTATION ON A GPU 49

Figure 2.12: Fast connected-component labeling. (A) Computed region boundaries.
(B) Provisional labels assigned after the first image scan. (C) Representative labels
assigned after the second image scan.

real edges from domain edges is consistent within our algorithmic framework and, as
a consequence, allows continuation of the Metropolis procedure without problems.

Labeling of connected components

Once the domain fragmentation is resolved, all potential segments have closed con-
tours. However, a binary image obtained after the border detection can contain noisy
speckles, especially at object boundaries or in the textured areas. Furthermore, the
binary image contains only two values and does not identify all segments in a unique
way, i.e., it cannot be a solution for the image segmentation problem. To identify
uniquely all connected components, i.e., areas having a closed boundary, we employ
a procedure called labeling of connected components.

Since the considered segmentation algorithm has to be sufficient for real-time
applications, we decided to use for this purpose fast connected-component labeling
proposed by He et al. (2009) which is, to our knowledge, the fastest labeling algorithm
at the moment. It is a fast two-scan technique that performs labeling of connected
components in a binary image. The method has the following advantages: (i) it is
easy to implement (having less than 50 lines in the C language); (ii) it is faster than
all conventional labeling algorithms; (iii) it is featured by the ideal linearity property
versus image size having complexity O(N2) for images of size N ×N pixels.

All steps of the employed labeling procedure are shown in Fig. 2.12. The cho-
sen method completes labeling in two scans of an image: during the first scan it
assigns provisional labels to pixels belonging to regions, i.e., potential segments, (see
Fig. 2.12(B)) and records label equivalences for labels belonging to the same region.
Label equivalences are being resolved during the first scan choosing one of the equiva-
lent labels as a representative label for each region. All representative labels are stored
in the representative label table where provisional labels represent indices. During
the second scan, all provisional equivalent labels are replaced by the corresponding
representative label obtained from the representative label table (see Fig. 2.12(C)).
Detailed evaluations of the method with testing images can be found in the study
of He et al. (2009). Both image scans run on the CPU and are very fast for image
sizes that are being used in our work. However, the second scan can be accelerated

50 Chapter 2: Real-time Image Segmentation on a GPU

on the GPU architecture, since representative labels can be assigned simultaneously
to all pixels by independent parallel threads.

Employment of Metropolis for final relaxation

An image produced by the labeling of connected components could be already consid-
ered as a final segmentation solution. However, it can still contain some inaccuracies
caused by arbitrary shapes of superpixels resulting in false positives of the edge de-
tection. To get rid of noise within segments and to arrive at the final segmentation
result, assigned unique labels need to be converted back to spin variables. Then the
second group of Metropolis update iterations can be applied to the image leading to
smoother segments and ensuring convergence of the system to the equilibrium state.

Region labels can be used either directly in the Potts model as spin states or
converted to spin states if their number q is pre-defined and lower than the highest
region label. In the latter case spin states are assigned to all pixels based on region
labels according to

σ(xi, yj) = L(xi, yj) mod q, (2.43)

where mod means that the segment label L(xi, yj) of the pixel is divided by the
number of possible spin states q and the new spin state σ is the remainder of the
division. For consistent Metropolis updates spin states have to be assigned to all
pixels in the image even those belonging to region borders. As there are no pre-
requirements for spin values on region borders, randomly chosen values between 1
and q are assigned to them. After the image has again a spin state representation,
the second group of Metropolis update iterations n2 = 10 is applied to obtain the
final spin configuration after which final segments can be extracted (see Fig. 2.10(B)).

2.3 Segmentation results and time performance

2.3.1 Evaluation of the segmentation

Due to the fact that visual perception is not the same for all humans, each subject has
its own intuitions which parts of the scene are meaningful and which are not, which
parts are similar and represent one entity (segment) and which ones are dissimilar
and represent different entities (segments). For example, looking at a keyboard one
subject perceives it as one single object (or entity) and other subject sees all keys
on the keyboard as separate objects (entities). It depends largely on the aim of the
subject towards the object, e.g., whether the subject wants to move the keyboard on
the table a bit further or wants to type text with it. Another example could be a green
cup with stripes of slightly different color on it. This makes the problem of image

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 51

segmentation subjective and image segmentation techniques difficult to evaluate, since
there are multiple correct solutions.

In computer vision there are two main strategies for evaluation of vision algo-
rithms. The first strategy suggests that vision algorithms should be evaluated in
the context of particular task or application (Borra and Sarkar, 1997). In the case
of image segmentation for low- and mid-level vision tasks, it consists in evaluation
how much a particular algorithm contributes to the success of higher-level procedures
performing, for example, object recognition, tracking, or manipulation tasks (Estrada
and Jepson, 2009). Due to this strategy, in the case of the keyboard object, a seg-
mentation result where each key is represented by a segment is correct for text typing
tasks and incorrect for actions operating on the keyboard as on a single object. How-
ever, this strategy can only give an evaluation related to a specific application and,
therefore, the applicability of the method for other tasks remains unclear.

According to the second strategy vision algorithms can be evaluated in relation
to some properly defined ground truth data (Martin et al., 2001). Because of the
mentioned above ambiguities in the human visual perception, there is no uniquely
defined ground truth data for image segmentation as in stereo vision (Scharstein and
Szeliski, 2002). The ground truth segmentation S ′, called also human or target seg-
mentation, is defined as an average of manual annotations S ′i of an image produced
by different subjects. The ground-truth data for a large collection of natural im-
ages shows how humans perceive the visual scene and, therefore, can be considered
as the most suitable segmentation of the image data. In this chapter we use the
second strategy for evaluation of the proposed segmentation algorithm and present
the evaluation results on a large database of natural images for which the ground
truth is known. The image database, used in the current work consists of well-known
real world indoors and outdoors images from the Berkeley Segmentation Database
(BSD) (Martin et al., 2001) 9, Middlebury dataset (Scharstein and Szeliski, 2008) 10,
and some robotic vision databases. Some sample images from the database with three
different segmentations for each image are shown in Fig. 2.13 and 2.14. Each image
in the database has been segmented by 3 different people using a tablet computer.
In total 25 people produced the segmentation data. The ground truth data in the
database has been created based on color information only ignoring additional knowl-
edge about visible objects. In such a way an object consisting of differently colored
parts had to be divided into multiple regions due to color dissimilarities.

Note that the segments produced by different humans are not identical (see espe-
cially the segmentations of the green cover in Fig. 2.13 and the plant in Fig. 2.14).
But all of them are consistent, as each human observer has its own level of granularity.
Due to this fact we need only those measures for evaluation of image segmentation

9available under http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

10available under http://vision.middlebury.edu/stereo/

52 Chapter 2: Real-time Image Segmentation on a GPU

results that do not penalize such differences. Therefore, both the quantitative and
qualitative evaluations are needed to judge and compare various image segmentation
techniques. The quantitative evaluation gives a numerical valuation of the machine
segmentation results for the finite number of natural images taking the known ground
truth data into account. The qualitative evaluation shows outputs of different seg-
mentation methods on the same image dataset giving a chance to a user to judge the
techniques and select the most appropriate one.

Quantitative evaluation

Generally, there are two possible quantitative measures of segmentation quality: those
that compare the overlap between regions in multiple segmentations of the same
image and those that evaluate agreement between corresponding boundaries of found
segments (Estrada and Jepson, 2009). For the complete quantitative evaluation of
segmentation results we use here both measures: segmentation covering belonging to
the former and precision and recall belonging to the latter.

Segmentation covering

The idea of the segmentation covering metric introduced by Arbelaez et al. (2009)
evaluates the covering of a machine segmentation S by a human or ground truth
segmentation S ′. A machine segmentation is the result of the segmentation algorithm
under consideration. The covering of a segmentation S by a segmentation S ′ is defined
as

C(S ′ → S) =
1

N

∑
R∈S

|R| · max
R′∈S′

O(R,R′), (2.44)

where N denotes the total number of pixels in the image, |R| is the number of
pixels in region R, and O(R,R′) is the overlap between regions R and R′ defined as

O(R,R′) =
|R ∩R′|
|R ∪R′|

. (2.45)

The covering of a machine segmentation S by a family of ground truth segmen-
tations {S ′i} is computed by covering S separately with each human map from {S ′i}
and then averaging over the different humans. In this way the perfect covering of the
machine segmentation is achieved.

Precision and recall

The precision and recall evaluations have been proposed by Martin et al. (2002).
Precision measures the percentage of boundary pixels in the machine segmentation
that correspond to boundary pixels in the ground truth segmentation and, therefore,

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 53

Figure 2.13: Some samples from the image segmentation database (part I).

54 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.14: Some samples from the image segmentation database (part II).

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 55

is sensitive to over-segmentation. We say that an image is over-segmented if it is split
into too many regions versus the ground truth data. Recall measures the percentage of
boundary pixels in the ground truth segmentation that correspond to boundary pixels
in the machine segmentation and, therefore, is sensitive to under-segmentation. We
say that an image is under-segmented if it is split into too few regions as opposed to
the ground truth. Given a machine segmentation S, and a ground truth segmentation
S ′, precision is defined as the proportion of boundary pixels in S for which a matching
boundary pixel in S ′ can be found and recall is defined as the proportion of boundary
pixels in S ′ for which a matching boundary pixel in S can be found according to

Precision =
Matched(S, S ′)

|S|
, Recall =

Matched(S ′, S)

|S ′|
, (2.46)

where |S| and |S ′| are the total numbers of boundary pixels in the machine and
ground truth segmentations, respectively. To compute precision and recall a method
for determining correspondences between boundary pixels in the machine and ground
truth segmentations is needed. In the current study we use the procedure proposed
by Estrada and Jepson (2009) which is an improvement upon the original formulation
given by Martin et al. (2002).

2.3.2 Segmentation results

Here we present and evaluate segmentation results obtained by the proposed seg-
mentation technique and compare them to segmentations given by conventional seg-
mentation approaches. As conventional methods we chose the most efficient to date
segmentation techniques: graph-based segmentation 11 by Felzenszwalb and Hutten-
locher (2004) and mean shift segmentation 12 by Comaniciu et al. (2002); Paris and
Durand (2007). In the current study we aim to provide objective and fair performance
evaluation of all three segmentation techniques under the following conditions: (i) the
used image segmentation database consists of different image types acquired indoors
/ outdoors under various light conditions having both weakly and sufficiently tex-
tured regions; (ii) for each segmentation technique the best values of segmentation
parameters are defined (those leading to the best segmentation results) and all im-
ages from the database are segmented using these values excluding in this fashion
their tuning for each image. Note that this is very important, since we are interested
in the use of the image segmentation for automatic segmentation of video streams
where any interaction with a user is impossible and bad segments cannot be fixed
by the manual parameter tuning. (iii) Both qualitative and quantitative evaluations
of segmentation results are given. The qualitative evaluation shows outputs of the

11available under http://www.cs.brown.edu/∼pff/segment/

12available under http://people.csail.mit.edu/sparis/

56 Chapter 2: Real-time Image Segmentation on a GPU

considered segmentation techniques for the wide range of input images giving a user a
chance to select the most appropriate method for the given application. Quantitative
evaluation gives Covering, Precision, and Recall values for all images in the database
(see Section 2.3.1).

For the graph-based segmentation by Felzenszwalb and Huttenlocher (2004) we
have three parameters: σ used to smooth an input image before segmenting it, value
for the threshold function k, and minimum component size min enforced by post-
processing. In our experiments we use the combination of parameters recommended
by authors for segmentation of arbitrary images: σ = 0.5, k = 500, min = 20.

The mean shift segmentation by Paris and Durand (2007) takes three input pa-
rameters: the Gaussian parameter σrange used on the color axes, the Gaussian σspace
used on the x and y axes, and persistence threshold τp. The authors recommend the
following value ranges: σrange ∈ [5, 10], σspace ∈ [4, 256], τp ∈ [0, 5]. We determined
experimentally that the following combination of three parameters gives the best re-
sults on the used segmentation database: σrange = 2, σspace = 8, τp = 1, thus, we use
these values in our experiments.

For the proposed segmentation technique we have four parameters: number n1 of
the first Metropolis iterations, number n2 of the relaxation Metropolis iterations, the
factor α1 used during the first n1 spin updates, and the factor α2 used during the sec-
ond n2 updates. We tested the algorithm for the following value ranges: n1 ∈ [5, 20],
n2 ∈ [5, 105], α1 ∈ [0.6, 2.2], and α2 ∈ [1.0, 9.0]. Within these value ranges meaningful
segmentation results can be obtained and our goal is to find a combination of four
values that gives the best segmentation results. For this purpose we must test our al-
gorithm for different combinations of its four input parameters. Thereby the complete
database has been segmented by the algorithm for each combination of parameters
and average values of Covering and Precision/Recall scores have been computed
with respect to the available human segmentations. By the Precision/Recall score
of the algorithm for a particular combination of input parameters we understand the
median of the precision and recall scores obtained for the individual images. The
median is chosen because the distribution of precision/recall values is typically non-
Gaussian. But using the average instead of the median yields similar results (Estrada
and Jepson, 2009). Due to the computationally intensive nature of this procedure we
have carried out the evaluation on images of size 320× 256 and 256× 320 pixels for
horizontal and vertical images, respectively. The human segmentations contained in
the segmentation database have the same size as the original images.

The median precision and recall values obtained for different combinations of
input parameters in all considered color spaces result in tuning curves that fully de-
scribe the performance of the algorithm. Tuning curves of the parallel Metropolis
algorithm with the short-cut for various combinations of input parameters α1, α2, n1,
and n2 are shown in Fig. 2.15 for three color spaces: CIE (L∗a∗b∗)(A,B), HSV (C,D),
and RGB(E,F). Changing only one input parameter results in a single tuning curve,
whereas changing of more parameters result in multiple curves each of which corre-

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 57

sponds to Precision/Recall scores obtained by changing one input parameter while
holding all other parameters fixed. The left column shows scores obtained by chang-
ing factor values α1 and α2 holding iteration numbers n1 and n2 fixed. We set n1 = 20
and n2 = 100, since it is priori clear that 20 and 100 Metropolis iterations are more
than enough for the short-cut and system relaxation, respectively. In each color space
we chose the most favorable curve or curves. For the CIE (L∗a∗b∗) space we selected
the curves with α2 = 2.0 and α2 = 4.0 (see Fig. 2.15(A)), for the HSV space the
curves with α2 = 2.0 and α2 = 3.0 (see Fig. 2.15(C)), and for the RGB space the
curves with α2 = 2.0, α2 = 3.0, and α2 = 5.0 (see Fig. 2.15(E)). Scores for the
graph-based and mean shift segmentations are shown as well. Note that between two
curves one upon the other we always choose the upper one like in the CIE (L∗a∗b∗)
space between curves with α2 = 4.0 and α2 = 6.0 we choose the former. However,
it is not the case if two curves have both diverse recall and precision values. For
example we cannot say that between two curves with α2 = 2.0 and α2 = 4.0 the for-
mer is preferable, since we cannot say that a slight over-segmentation is better than
a slight under-segmentation. However, it is obvious that between the curves with
α2 = 1.0 and α2 = 2.0 the latter is preferable, as the former represents considerably
over-segmented images having precision lower than 0.65.

The second column, on the contrary, shows scores obtained by changing iteration
numbers of the first and second Metropolis updates n1 and n2, respectively, taking
values for α1 and α2 from the best curves of the left column and holding them fixed.
For the CIE (L∗a∗b∗) space we set α1 = 1.0 and α2 = 4.0 (see Fig. 2.15(B)), for
the HSV space α1 = 1.2 and α2 = 3.0 (see Fig. 2.15(D)), and for the RGB space
α1 = 1.4 and α2 = 3.0 (see Fig. 2.15(F)). We can see that the choice of the factor
α affects segmentation results more than the choice of iteration numbers resulting
in minor differences of precision and recall values. But nevertheless, segmentation
results obtained after n2 = 5 relaxation iterations preserve small segments and are
more over-segmented than results after n2 = 105 iterations. This is observed for all
considered color spaces.

The best tuning curves for the proposed image segmentation algorithm in all
considered color spaces are shown in Fig. 2.16. The left column shows scores obtained
by changing factor values α1 and α2 holding iteration numbers n1 and n2 fixed, where
again n1 = 20 and n2 = 100. The following curves are displayed: α2 = 1.0, α2 = 2.0,
and α2 = 4.0 for the CIE (L∗a∗b∗) space, α2 = 1.0, α2 = 2.0, and α2 = 3.0 for the
HSV space, α2 = 1.0, α2 = 2.0, and α2 = 3.0 for the RGB space. The right column
shows the best scores obtained after n2 = 55 iterations by changing the number of
first Metropolis updates n1 and holding the values of α1 and α2, taken from the best
curves of the left column, fixed. We can see that the proposed segmentation has
the highest Precision/Recall scores in the CIE (L∗a∗b∗) space with α2 = 2.0 and
α2 = 4.0. In terms of iteration numbers, n1 = 10 and n2 = 20 are enough to obtain
consistent segmentation results. Less iterations will lead to over-segmentation, while
more relaxation iterations n2 lead to under-segmentation eliminating small regions.

58 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.15: Tuning curves for the proposed image segmentation algorithm shown for
CIE (L∗a∗b∗)(A,B), HSV (C,D), and RGB(E,F) color spaces. The left column shows
Precision / Recall scores obtained by changing factor values α1 and α2 while holding
n1 and n2 fixed. The right column, on the contrary, shows Precision / Recall scores
obtained by changing iteration numbers n1 and n2 holding α1 and α2 fixed. Scores
for the graph-based and mean shift segmentations are shown as well.

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 59

Figure 2.16: The best tuning curves for the proposed image segmentation algorithm
shown for CIE (L∗a∗b∗), HSV , and RGB color spaces. The left column shows
Precision / Recall scores obtained by changing factor values α1 and α2 while holding
n1 and n2 fixed. The right column, on the contrary, shows Precision / Recall scores
obtained by changing the iteration number n1 holding α1, α2, and n2 fixed. Scores
for the graph-based and mean shift segmentations are shown as well.

With these parameters the method has the performance similar to the mean shift
while being slightly outperformed by the graph-based algorithm.

The highest values of the Segmentation covering measure obtained on the images
from the database with corresponding Precision/Recall scores and input parameters
are presented in Table 2.3 for all considered color spaces. The comparison of covering
values for the graph-based, mean shift, and proposed segmentation algorithms are
given in Table 2.4.

The proposed segmentation method has the highest covering value of 0.54 in the
CIE (L∗a∗b∗) space. In terms of the segmentation covering measure our technique
outperforms the mean shift and yields slightly to the graph-based segmentation. Con-
sequently, taking into account both Precision/Recall and Segmentation covering mea-
sures, in our experiments we work in the CIE (L∗a∗b∗) space and use the following
combination of input parameters: α1 = 1.0, α2 = 4.0, n1 = 10, and n2 = 20.

Image segmentation results obtained on the employed image database for the
mean shift segmentation, graph-based segmentation, and segmentation based on par-
allel Metropolis updates with the short-cut are shown for various image types in
four parts in Fig. 2.17, 2.18, 2.19, and 2.20. All images from the database have
been segmented automatically with the same fixed set of input parameters. Each
segmentation output is attended with the corresponding Precision (P), Recall (R),
and Covering (C) values. We can see that some segmentation outputs are not re-

60 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.17: Segmentation results on the employed image database (part I).

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 61

Figure 2.18: Segmentation results on the employed image database (part II).

62 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.19: Segmentation results on the employed image database (part III).

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 63

Figure 2.20: Segmentation results on the employed image database (part IV).

64 Chapter 2: Real-time Image Segmentation on a GPU

Color space n1 n2 α1 α2 Precision Recall Covering

CIE (L∗a∗b∗) 10 20 0.6 2.0 0.7 0.91 0.5
CIE (L∗a∗b∗) 10 20 0.6 3.0 0.72 0.9 0.5
CIE (L∗a∗b∗) 10 20 0.8 5.0 0.78 0.78 0.54
CIE (L∗a∗b∗) 10 20 1.0 1.0 0.62 0.96 0.5

HSV 10 20 1.0 3.0 0.73 0.85 0.50
HSV 10 20 1.0 4.0 0.76 0.85 0.50
HSV 10 20 1.0 5.0 0.76 0.84 0.50
HSV 10 20 1.0 6.0 0.74 0.83 0.50

RGB 10 20 1.0 3.0 0.76 0.86 0.53
RGB 10 20 1.0 4.0 0.77 0.82 0.53
RGB 10 20 1.0 5.0 0.77 0.8 0.53
RGB 10 20 1.2 5.0 0.77 0.78 0.52

Table 2.3: Input parameters of the proposed segmentation technique resulting in the
highest Segmentation covering values in each color space.

Technique Precision Recall Covering

Graph-based segmentation 0.8 0.86 0.58
Mean shift segmentation 0.77 0.84 0.48

Metropolis with the short-cut 0.78 0.78 0.54

Table 2.4: Segmentation covering values with the corresponding Precision/Recall
scores for the graph-based, mean shift, and proposed segmentation techniques.

ally reasonable containing either over- or under-segmented parts. Note that for each
testing image very high Precision/Recall scores and covering values can be derived
via adjustment of input parameters. However, it was not the goal of our study. Our
aim is to compare and evaluate the considered segmentation techniques in terms of
automatic, unsupervised segmentation excluding any interaction with a user. We
can see that our segmentation approach outperforms in many cases the mean shift
technique which has sometimes dramatic region splits and merges (see the third row
in Fig. 2.17, the second and fifth rows in Fig. 2.18, the first row in Fig. 2.19, and the
third row in Fig. 2.20). But the graph-based approach outperforms our method on
images featured by a high texture level (see the last row in Fig. 2.17, the third row in
Fig. 2.19, and the fourth row in Fig. 2.20). In some cases our approach suffers from
under-segmentation, whereas mean shift and graph-based produce more consistent

2.3 SEGMENTATION RESULTS AND TIME PERFORMANCE 65

segments (see the second row in Fig. 2.17, the fifth row in Fig. 2.19, and the second
and sixth rows in Fig. 2.20). But on other images the graph-based technique suffers
from over-segmentation (see the third row in Fig. 2.17, and the third row in Fig. 2.20).
Furthermore, sometimes it produces unexplainable region splits (see the first row in
Fig. 2.17). But the biggest disadvantage of the graph-based technique is that almost
all region contours or small shadows are identified as segments (it is particularly vis-
ible in the third row in Fig. 2.17, the last row in Fig. 2.19, and the third row in
Fig. 2.20). Bad news are that such artifacts do not influence quantitative measures of
the segmentation performance and can be detected only by the qualitative evaluation
of the segmentation output.

2.3.3 Processing time

The processing times obtained for all steps of the proposed image segmentation algo-
rithm (see Section 2.2.6) are shown in Table 2.5 for the following resolutions: 160×128,
320×256, and 640×512 pixels. The total processing times with frame rates are shown
as well. The computation times and frame rates have been measured by processing all
images from the database and averaging the results using the following experimental
environment: CPU 3.40 GHz Intel(R) Core(TM) i7-2600K (using a single core) with
15.6 GB RAM and GPU GeForce GTX 580 (with 1.5 GB device memory) consisting
of 16 SMs each having 32 cores, so 512 processor cores in total. For image sizes of
160× 128 and 320× 256 pixels the real-time performance has been obtained, whereas
for image size of 640× 512 pixels the frame rate is 10.9 which is still pretty fast.

Processing time (ms)

Algorithmic step 160× 128 (px) 320× 256 (px) 640× 512 (px)

Metropolis I (n1 = 10) 2.8 7.5 30.0
Border detection 0.2 0.83 5.2

Labeling 0.15 0.6 2.3
Metropolis II (n2 = 20) 5.7 17.2 54.0

Total 8.8 26.1 91.5

Frames per second 113.6 38.3 10.9

Table 2.5: Processing times of all stages of the proposed image segmentation algorithm
for multiple image sizes.

Among all algorithmic steps only the runtime of the labeling depends on the
structure of the input image, i.e., shapes and amount of connected components, but
deviations are in the range of two milliseconds for images up to 320 × 256 pixels

66 Chapter 2: Real-time Image Segmentation on a GPU

Figure 2.21: Time performance. (A) Computation time of all steps in the parallel
Metropolis algorithm with the short-cut in percentage of the total runtime. (B)
Runtime comparison for the proposed approach and the conventional segmentation
techniques.

and of ten milliseconds for images up to 1280 × 1024 pixels. Labeling of connected
components takes more time for very textured images containing many small arbitrary
shaped regions, since more provisional labels are required and more time is needed to
resolve label equivalences before representative labels can be assigned on the second
image scan. The most time consuming step in the method is the Metropolis update
procedure taking for both iteration groups more than 93% of the total runtime (see
Fig. 2.21(A)).

total (ms) / frames per second

Technique 160× 128 (px) 320× 256 (px) 640× 512 (px) 1280× 1024 (px)

Graph-based 10.0 / 100.0 35.0 / 28.5 165.0 / 6.1 820.0 / 1.2
Mean shift 15.0 / 66.7 25.0 / 40.0 110.0 / 9.1 390.0 / 2.6
Metropolis 8.8 / 113.6 26.1 / 38.3 91.5 / 10.9 359.3 / 2.8

Table 2.6: Comparison of computation times obtained for the graph-based, mean
shift, and proposed segmentation techniques.

In Table 2.6 time performance of the proposed algorithm is compared to the graph-
based and mean shift segmentation techniques. Note that in this work we use CPU
implementations of the graph-based and mean shift algorithms provided by their au-

2.4 DISCUSSION 67

thors and did not consider their potential accelerations on the GPU. Therefore, only
our method makes use of the parallel hardware here. The computation times and
frame rates have been measured by processing all images from the database and aver-
aging the results within the same experimental environment. The processing time as
a function of the total number of pixels in the image is shown for all three approaches
in Fig. 2.21(B). All three algorithms depend linearly on the number of pixels and
we can see that the proposed method is faster (especially for high resolutions like
640 × 512 and 1280 × 1024 pixels) than the graph-based segmentation and slightly
faster than the mean shift technique.

2.4 Discussion

In this chapter we introduced the novel automatic image segmentation algorithm
based on the method of superparamagnetic clustering of data. The superparamagnetic
clustering has been chosen as a technique for the image segmentation due to its
following advantages:

1. It is fully automatic allowing us to segment arbitrary images without any prior
knowledge about the visual scene and the number of objects.

2. The method can be applied to the segmentation of video streams in a very
efficient way, since the temporal coherence within a video stream can be achieved
just by warping the previous spin configuration to the current frame avoiding a
very expensive region matching procedure.

Segmentation techniques based on the superparamagnetic clustering have not be
applied before to the real-time segmentation of video streams because of their very
low processing speed (Opara and Wörgötter, 1998; von Ferber and Wörgötter, 2000;
Dellen et al., 2009). All made attempts toward the acceleration of the method
resolved into parallel implementations of local-update techniques on parallel hard-
ware (Barkema and MacFarland, 1994) or switching from local-update algorithms to
cluster updates on traditional CPU platforms. Cluster updates allow the method to
update much more pixels per one iteration based on pre-defined clusters. Despite
a significant acceleration of the processing time as opposed to implementations on
common computers, accelerated local-update methods still remained extremely slow
requiring minutes for segmentation of even quite small images with size of 160× 128
pixels. Such computational speed excludes the use of these implementations in terms
of real-time video processing. Although the cluster update approach has been success-
fully applied to segmentation of image sequences (Dellen et al., 2009), its processing
speed is still far from the real-time performance requiring some seconds to segment
one frame.

68 Chapter 2: Real-time Image Segmentation on a GPU

Since a real-time implementation of image segmentation based on the superpara-
magnetic clustering of data is of high importance for the real-time video processing,
various update techniques for approximation of the equilibrium states of the Potts
model (used for the image representation) and their potential accelerations on the
special hardware have been considered in this study. Despite the cluster update algo-
rithms are much faster than local-update techniques, they do not reach the real-time
performance on traditional CPU platforms and their latency can be overcome only by
the use of very powerful computer systems that are very expensive and massive. How-
ever, such platforms cannot be employed in many robotic systems which have strict
requirements to the system size and power consumption. And, as a consequence, eas-
ier solutions are desired. In this chapter we investigated the local-update technique
proposed by Metropolis et al. (1953) with simulated annealing for approximation of
the equilibrium states of the Potts model. The highly parallel, multi-threaded, and
multi-core GPU architecture has been considered as a parallel hardware for acceler-
ation because of the following reasons:

1. Powerful GPUs are currently a part of almost all computers, have a moderate
price, and can be used for general-purpose parallel computing without any ad-
ditional hardware upgrades. Also graphics capabilities of GPUs make the visual
output of the processed data directly from the card much simpler compared to
other parallel platforms.

2. Modern GPUs are featured by tremendous computational power and very high
memory bandwidth which makes them more efficient than traditional CPUs in
the case of very intensive parallel computations.

3. The CUDA parallel programming model makes parallelization of software ap-
plications on GPUs quite transparent drastically decreasing design time.

4. Metropolis updates, being very intensive and highly local, ideally fit to the GPU
architecture.

The simulated annealing procedure running on the GPU has an enormous ac-
celeration as compared to traditional CPUs, especially for relatively big images like
640 × 512 and 1280 × 1024 pixels. But the analysis of various simulated annealing
schedules has demonstrated that schedules performing the complete segmentation of
even very small images with size of 160× 128 pixels running in parallel on the GPU
require some seconds per image. Therefore, it still remains impossible to segment
images in real-time by the Metropolis algorithm with the simulated annealing only,
even on the parallel hardware. For that reason we introduced a short-cut procedure
into the annealing process. The proposed short-cut is based on superpixels obtained
after a very quick system cooling at the low temperature and allows us to detect all
regions (segments) accelerating the system convergence without performing the full

2.4 DISCUSSION 69

annealing. Some parts of the short-cut have been implemented on the GPU as well.
For the proposed image segmentation algorithm based on parallel Metropolis updates
with the short-cut we obtained processing times which are sufficient for the real-time
video processing. The real-time performance is derived for image sizes of 160× 128,
320 × 256, and 640 × 512 pixels, whereas for image size of 1280 × 1024 pixels only
close to real-time performance can be achieved.

The proposed image segmentation technique has been applied to various real im-
ages from the employed image segmentation database and compared to the conven-
tional segmentation techniques such as graph-based (Felzenszwalb and Huttenlocher,
2004) and mean shift (Comaniciu et al., 2002; Paris and Durand, 2007) segmenta-
tions both qualitatively and quantitatively. Since in our work we pursued the aim of
objective and fair performance evaluation of all three segmentation techniques, each
segmentation algorithm has been tested on the same images without manual tuning
of input parameters for each image. First, the best set of input parameters has been
defined for each algorithm and then results obtained using those values have been
evaluated. For the quantitative evaluation of segmentation results we used two differ-
ent measures: segmentation covering and precision/recall. Both of them compare the
machine segmentation with the ground truth segmentation given by humans. In com-
pliance with both measures the proposed segmentation produces the best results in
the CIE (L∗a∗b∗) color space achieving the performance of the mean shift technique.
Segmentation results produced by the graph-based have slightly higher covering and
precision/recall values. Algorithms based on the superparamagnetic clustering of data
suffer generally a lot from image areas featured by a high level of texture resulting in
a variety of tiny segments. The graph-based and mean shift methods incorporate a
pre-processing of texture producing more meaningful results in very textured regions.
However, the quality of the proposed segmentation technique can be improved on
very textured images by the use of special texture filters that smooth highly-textured
areas preserving boundaries between diverse regions.

Concerning the time performance, our algorithm is two times faster as compared
to the graph-based technique and a bit faster than the mean shift. Also it is necessary
to point out that the runtime of the parallel Metropolis with the short-cut is almost
independent of image structure, number of segments, and image density, i.e., the
relation between object and background pixels (He et al., 2009). The slowest part of
the proposed algorithm is the Metropolis update consisting of two iteration groups
(basic and relaxation iterations), whereas the short-cut itself is very fast. Unlike
the graph-based and mean shift algorithms, in terms of the video segmentation it
is not necessary to segment each frame from scratch resolving afterwards a region
matching for adjacent frames. The temporal coherence within a video sequence can
be achieved by using a spin configuration obtained for the previous frame as an initial
state for the current frame. Then the current frame just needs to undergo a short
Metropolis relaxation procedure after which final segments can be extracted. The
whole procedure of the video segmentation based on the superparamagnetic clustering

70 Chapter 2: Real-time Image Segmentation on a GPU

of data is considered in detail in the next chapter.

3
Real-time Segmentation of Monocular

Video Streams

“The only reason for time is so that
everything doesn’t happen at once”

– Albert Einstein

3.1 Introduction

Real-time cognitive vision systems have to process and structure abundant dynamic
visual information for enabling the robots to interact with the environment in a mean-
ingful way. For example, the understanding of the visual scene in terms of object and
object-action relations (Aksoy et al., 2011) requires objects to be detected, segmented,
tracked (Salembier and Marqués, 1999), and important descriptors, e.g., shape infor-
mation, to be extracted. This process corresponds to a dramatic compression of the
initial visual data into symbol-like descriptors, upon which abstract logic or learn-
ing schemes can be applied, e.g., for the execution of a grasping action (Klingbeil
et al., 2011; Kjellström et al., 2011). Finding this reduced symbol-like representation
without prior knowledge on the data (model free), thus, represents a major challenge
in cognitive-vision applications – this problem is also known as the signal-symbol
gap (König and Krüger, 2006). Furthermore, in most of robotic systems “live” in-
teractions of robots with the environment make this task even more challenging. In
such systems all pre-computations of the visual data need to be performed in real-time
which limits the applicability of many vision algorithms.

The video segmentation problem is generally formulated as the grouping of pix-
els into spatio-temporal volumes where each found object or object part is uniquely
identified and satisfies temporal coherence, i.e., carries the same label along the whole
video stream (Grundmann et al., 2010; Reina et al., 2010). Several approaches for
the video segmentation problem have been proposed over the last two decades. They
can be summarized shortly as follows.

71

72 Chapter 3: Real-time Segmentation of Monocular Video Streams

On-line and off-line methods. On-line video segmentation techniques use only
preceding information and do not need future data. Such methods can segment video
sequences of arbitrarily length in a continuous, sequential manner (Liu et al., 2008b,a;
Paris, 2008; Hedau et al., 2008; Wang et al., 2009; Breitenstein et al., 2009; Dellen
et al., 2009; Reina et al., 2010). However, those methods usually either perform
segmentation of all frames independently of each other applying a block matching
procedure at a time for temporal coherence (see Fig. 3.1(A)), or track segment la-
bels through the video stream considering preceding frames (see Fig. 3.1(B-D)). As
was mentioned in the previous chapter, block matching is a very slow operation al-
most excluding the real-time performance. Methods that consider only two frames
at a time (see Fig. 3.1(B)) are sensitive to segmentation errors that gradually ac-
cumulate over time. Taking into account the whole history (see Fig. 3.1(D)) leads
to more robust spatio-temporal volumes but it is very time and memory consuming.
The longer the frame sequence is, the more time and memory resources are required.
For that reason such approaches are efficient only for short sequences and cannot
be applied to arbitrary long videos. Considering only several preceding frames at a
time (see Fig. 3.1(C)) could be a trade-off solution, but it is still time consuming
and runs on the order of seconds per frame (Reina et al., 2010). Off-line methods,
on the contrary, require future data or even the entire video sequence as input (see
Fig. 3.1(E,F)) (Unger et al., 2009; Brendel and Todorovic, 2009; Huang et al., 2009;
Grundmann et al., 2010). Off-line techniques are more robust in terms of tempo-
ral coherence but they cannot be involved in perception-action loops, since future
perception is unknown.

Dense and sparse techniques. A video segmentation method is dense if it
treats all objects visible in the scene trying to assign each pixel in every frame to a
proper spatio-temporal volume (Liu et al., 2008b,a; Paris, 2008; Hedau et al., 2008;
Brendel and Todorovic, 2009; Huang et al., 2009; Dellen et al., 2009; Reina et al.,
2010; Grundmann et al., 2010). Techniques that perform segmentation of pre-selected
objects only are sparse (Wang et al., 2009; Unger et al., 2009; Breitenstein et al.,
2009). Focusing only on the tracking of pre-selected objects excludes an estimation
of object position relative to the environment which, as a consequence, excludes robot
movements aimed at objects.

Automatic and nonautomatic approaches. The method is automatic or un-
supervised if it runs without interaction with a user and does not need any prior
knowledge about objects in the scene (Liu et al., 2008b; Paris, 2008; Hedau et al.,
2008; Brendel and Todorovic, 2009; Dellen et al., 2009; Reina et al., 2010). Nonau-
tomatic or supervised techniques are very often driven by user input, use some prior
knowledge about the visual scene and make assumptions about the number of ob-
jects present (Liu et al., 2008a; Unger et al., 2009; Huang et al., 2009; Wang et al.,
2009; Breitenstein et al., 2009). Some segmentation techniques, e.g., the hierarchical
graph-based video segmentation proposed by Grundmann et al. (2010), can run in
both automatic and nonautomatic modes.

3.1 INTRODUCTION 73

Figure 3.1: Various strategies for the video segmentation problem in terms of the
used input data. (A-D) On-line methods using only the current and preceding frames
to find a solution. (E,F) Off-line methods requiring some future data or the whole
sequence.

Since robots are usually autonomous systems that interact with the environ-
ment, only on-line automatic video segmentation techniques can be employed in the
perception-action loop. Furthermore, complete information about the visual scene
and relations between present objects can be derived only by the use of dense meth-
ods. The following techniques are the most famous and up-to-date on-line dense
automatic video segmentation approaches:

The mean-shift video segmentation, proposed by Paris (2008), is based on the
popular image segmentation technique introduced by Comaniciu et al. (2002) and
discussed in Chapter 2. The temporal coherence is achieved by estimating the density
of feature points, associated with all pixels, with a Gaussian kernel using data from
all preceding frames (see Fig. 3.1(D)). The method has a real-time performance on
gray-level videos of size 640× 360 pixels.

Multiple hypothesis video segmentation (MHVS) from superpixel flows by Reina
et al. (2010) generates multiple pre-segmentations per frame considering only a few
preceding frames (see Fig. 3.1(C)). For each pre-segmentation it finds sequences of
time consistent superpixels, called superpixel flows or hypotheses. Each hypothesis is
considered as a potential solution and a hypothesis leading to the best spatio-temporal
coherence. In this approach the segmentation decision is postponed until evidence has
been collected across several frames. Despite quite accurate segmentation results the
MHVS needs seconds to process one frame which makes it inapplicable in real-time
robotic applications.

Video segmentation based on propagation, validation and aggregation of a preced-
ing graph by Liu et al. (2008b) exploits inter-frame correlations to propagate reliable

74 Chapter 3: Real-time Segmentation of Monocular Video Streams

groupings from the previous frame to the current (see Fig. 3.1(B)). A preceding graph
is built and labeled for the previous frame and temporally propagated to the current
frame using a global motion estimation, followed by validation based on similarity
measures. Pixels remaining unlabeled after the propagation are grouped into sub-
graphs by a simple color clustering. Although the method gives results of a very high
quality, it runs at frame rates inapplicable to real-time utilization.

Matching images under unstable segmentations by Hedau et al. (2008) is based
on the fact that object regions obtained by existing segmentation methods do not
always produce perceptually meaningful regions. In this approach the current frame is
segmented independently of preceding frames and the temporal coherence is achieved
by region matching between the current and previous frames (see Fig. 3.1(B)) using
the Partial Match Cost which allows fragments belonging to the same region to have
low match cost with the original region. However, the method cannot run in real-time
due to very slow region matching procedure.

The three last approaches provide very accurate spatio-temporal volumes and
can segment arbitrary long video sequences, but these methods do not run in real-
time and, as a consequence, cannot be employed in the real-time cognitive vision
system. The mean shift video segmentation approach, on the contrary, runs in real-
time but works only on gray-scale videos and needs all past data to achieve satisfactory
temporal coherence. But it is not always possible to keep all past data in the memory,
especially in mobile robotic systems having a very limited memory space.

Dellen et al. (2009) proposed a video segmentation technique based on the su-
perparamagnetic clustering of data using the energy-based cluster update (ECU) for
ordering spins in the Potts model according to the image data (see Section 2.2.1).
Being on-line, dense, and automatic, the method considers only the current frame
coupled with the very last previous frame at a time to reach the spatio-temporal
synchronization (see Fig. 3.1(B)). Segmentation of a frame sequence is performed as
follows. A sequence is split in pairs of two frames at a time, where the last frame
of the previous pair is identical with the first frame in the current pair. In such a
manner the spin states of each pair are initialized with the spin states of the previous
pair. Spin updates are applied to each pair considering both 2D bonds, i.e., the clos-
est neighbors of each pixel within the first frame, and 3D bonds, i.e., the neighbors
of each pixel in the last frame. 3D bonds are determined through the recovery of
visual motion or optical flow from a sequence of images. Despite the efficient linking
between segments of adjacent frames, cluster updates running on CPU still need some
seconds to process one frame which makes the real-time performance impracticable.

In this chapter we present a novel visual front-end for real-time spatio-temporal
segmentation of monocular videos which overcomes limitations of the considered ap-
proaches. The proposed visual front-end is on-line, automatic, dense, and solves the
following problems:

1. Video frames are segmented using the parallel Metropolis algorithm introduced

3.2 REAL-TIME SEGMENTATION OF MONOCULAR VIDEOS 75

Figure 3.2: The architecture of the framework for segmentation of monocular videos
on the heterogeneous computing system consisting of one CPU and one GPU.

in Chapter 2, avoiding time consuming region matching or ECU. Segmentation
is carried out in a consistent model-free way.

2. The temporal coherence in a video stream is achieved using a label-transfer
strategy based on estimated pixel motion, resulting in a consistent partitioning
of neighboring frames together with a consistent labeling. Only the results
obtained on the very last frame are employed at a time in order to guarantee
spatio-temporal coherence for the current frame (see Fig. 3.1(B)).

3. All computations run in real-time allowing the framework to be used in the
perception-action loop.

The chapter is organized as follows. First we introduce the framework for segmen-
tation of monocular videos. Then we present in detail a new real-time video segmen-
tation technique based on the parallel Metropolis algorithm presented in Chapter 2.
Finally, we present the results of an extensive experimental evaluation and conclude
the chapter.

3.2 Real-time segmentation of monocular videos

The architecture of the framework representing the proposed visual front-end for
segmentation of monocular videos is shown in Fig. 3.2. It consists of a video camera,
a computer with a GPU, and various processing components that are connected by
channels in the framework. Each component can access the output data of all other
components in the framework. The processing flow is described as follows. Images
are captured by a video camera and undistorted before they enter the framework.
Optical flow is pre-computed for each frame on the GPU in real-time and the results
are accessible from channel 2 for segmentation (see Section 3.2.1).

Segmentation of all frames is performed as follows. The very first frame is seg-
mented completely from scratch using the parallel Metropolis algorithm with the

76 Chapter 3: Real-time Segmentation of Monocular Video Streams

short-cut introduced in Section 2.2.6. Segmentation of each next frame relies on seg-
ments obtained for the previous frame. Thus, similar to the method by Dellen et al.
(2009), a pair of two adjacent frames is considered at a time where segments obtained
for frame t are used as an initialization of frame t + 1. However, as opposed to this
algorithm, we do not need to incorporate 3D bonds. Instead, spins from the previous
frame, residing already in the equilibrium state, are warped to the current frame tak-
ing shifts from the optical flow vector field into account. This new spin configuration
is much closer to the equilibrium state than a random initialization. Since no clus-
ter updating is performed, labels can be preserved, unlike in the method of Dellen
et al. (2009). To complete the segmentation of the current frame, i.e., to arrive at
the equilibrium state, initial spin states of frame t + 1 need to be adjusted to the
current image data by the parallel Metropolis running on the GPU. The adjustment
of initial spins to the current frame will be referred to as relaxation process and the
Metropolis updates in the relaxation mode as the image segmentation core. This way
the required time for segmentation of sequential frames can be reduced, and, even
more importantly, a temporally coherent labeling of the frames can be achieved, i.e.,
segments describing the same object or its part are likely to carry the same spin.
The final spin configuration (after convergence) is sent to the main program on the
CPU (channel 3) where segments larger than a pre-defined threshold are extracted.
After all these processing steps each object or each object part is represented by a
uniquely identified segment. This information can be exploited directly by a robot.
The framework guarantees that every found segment carries a spin value which is
unique within the whole image, therefore, the terms spin and label are equivalent
in this and next chapters. In the upcoming sections we will consider all processing
components in more detail.

3.2.1 Phase-based optical flow

Since fast processing is a very important issue in this study, the real-time optical flow
algorithm, proposed by Pauwels et al. (2011), is used to find pixel correspondences
between adjacent frames in a monocular video stream. The algorithm runs on the
GPU and belongs to the class of phase-based techniques, which are highly robust to
changes in contrast, orientation, and speed. According to this optical flow can be
obtained from the evolution of phase in time (Fleet and Jepson, 1990). The method
operates on the responses of a filterbank of quadrature pair Gabor filters tuned to
different orientations and different scales. The used filterbank consists of N = 8
oriented complex Gabor filters (Sabatini et al., 2010). The different orientations, θp,
are evenly distributed and equal to pπ

N
, with p ranging from 0 to N − 1. For a specific

orientation θp the 2D complex Gabor filter at pixel location x = (x, y)T equals:

fp(x) = e
−x

2+y2

2σ2
G ejω0(x cos θp+y sin θp), (3.1)

3.2 REAL-TIME SEGMENTATION OF MONOCULAR VIDEOS 77

with peak frequency ω0 and spatial extension σG. The filtebank relies on 11× 11
separable spatial filters that are applied to an image pyramid (Burt et al., 1983). The
peak frequency is doubled from one scale to the next. At the highest frequency a four
pixel period is used. The filters are separable and by exploiting symmetry considera-
tions, all 16 responses can be obtained on the basis of only 24 1D convolutions with
11 tap filters (Fleet and Jepson, 1990). The filter responses, obtained by convolving
the image I(x), with the oriented filter (3.1) can be written as:

Rp(x) = (I ∗ fp)(x) = ρp(x)ejφp(x) = Cp(x) + jSp(x). (3.2)

Here ρp(x) =
√
Cp(x)2 + jSp(x)2 and φp(x) = atan2(Sp(x), Cp(x)) are the am-

plitude and phase components, and Cp(x) and Sp(x) are the real and imaginary
responses of the quadrature filter pair. The ∗ operator depicts convolution. The
use of atan2 as opposed to atan doubles the range of the phase angle. As a result,
correspondences can be found over larger distances (Pauwels et al., 2011).

Phase-based techniques rely on the assumption that constant phase surfaces evolve
according to the motion field and points on an equi-phase contour satisfy φ(x, t) = c,
where c is a constant. Differentiation with respect to time gives

∇φ · v + ψ = 0, (3.3)

where

∇φ =

(
δψ

δx
,
δψ

δy

)T
(3.4)

is the spatial phase gradient, v = (vx, vy)
T the optical flow vector, and ψ =

δφ/δt the temporal phase gradient. Due to the aperture problem, only the velocity
component along the spatial phase gradient can be computed (normal flow). Under
a linear phase model, the spatial phase gradient can be substituted by the radial
frequency vector, ω0(cos θp, sin θp). Therefore, the component velocity, cp(x), can be
estimated directly from the temporal phase gradient, ψp(x):

cp(x) = −ψp(x)

ω0

(cos θp, sin θp). (3.5)

At each location, the temporal phase gradient is obtained from a linear least-
squares fit to the model

φ̂p(x, t) = a+ ψp(x)t, (3.6)

where φ̂p(x, t) is the unwrapped phase. Five subsequent frames are used in this
estimation. The intercept a is discarded. Each component velocity cp(x) provides
the linear constraint (3.3) on the full velocity

vx(x) · ω0 cos θp + vy(x) · ω0 sin θp + ψp(x) = 0. (3.7)

78 Chapter 3: Real-time Segmentation of Monocular Video Streams

The constraints given by several component velocities need to be combined to
estimate the full velocity. Provided a minimal number of component velocities at
pixel x are reliable (their mean squared error is below the phase linearity threshold),
they are integrated into a full velocity by solving the over-determined system of (3.7)
in the least-squares sense. A 3 × 3 spatial median filter is applied (separately to
each optical flow component) to regularize the estimates. To integrate the estimates
over the different pyramid levels a coarse-to-fine control scheme is employed (Pauwels
and Hulle, 2009). Starting from the coarsest level k, the optical flow field vk(x) is
computed, median-filtered, expanded, and used to warp the phase at the next level,
φk+1(x′, t), as follows:

x′ = x− 2 · vk(x) · (3− t). (3.8)

This effectively warps all pixels in the five frame sequence to their respective
locations in the center frame, i.e., frame three.

Although any other optical flow estimation technique can be used in the proposed
framework (Wedel et al., 2008), we decided on the mentioned phase-based approach
since it combines high accuracy with computational efficiency. A comparable quali-
tative evaluation of the method including test sequences from the Middlebury bench-
mark and implementation details with performance analyses can be found in studies
of Gautama and Van Hulle (2002) and Pauwels et al. (2011).

3.2.2 Monocular video segmentation

In the current framework optical flow is computed for the input video stream. The
algorithm provides a vector field

v(x) = (vx, vy)
T , (3.9)

which indicates the motion of pixels in textured region. Segmentation of a monoc-
ular video stream using the parallel Metropolis algorithm with optical flow is shown
in Fig. 3.3 on two adjacent frames out of the “Toy” sequence acquired with a mov-
ing camera. This sequence is taken from the motion annotation benchmark 1. An
optical flow vector field estimated for two adjacent frames t and t+ 1 is presented in
Fig. 3.3(A - C). Since the employed optical flow algorithm belongs to the class of local
methods, optical flow cannot be estimated everywhere (for example not in the very
weakly-textured black regions of the panda toy or on the white background). For
pixels in these regions, vertical and horizontal flows, i.e., vy and vx, do not exist. As
was mentioned above, the very first frame in the sequence is segmented from scratch
by the parallel Metropolis algorithm with the short-cut (see Section 2.2.6), while seg-
mentation of the following frames relies on segments obtained up to this point using

1available under http://people.csail.mit.edu/celiu/motionAnnotation/

3.2 REAL-TIME SEGMENTATION OF MONOCULAR VIDEOS 79

Figure 3.3: Segmentation of two adjacent frames in a sequence using n2 = 30 Metropo-
lis relaxation iterations and α2 = 2.5. Numbers at arrows show the sequence of com-
putations. (A) Original frame t. (B) Original frame t + 1. (C) Estimated optical
flow vector field from the phase-based method (sub-sampled 13 times and scaled 6
times) (step 1). (D) Extracted segments St for frame t (step 1). (E) Label transfer
from frame t to frame t + 1 (step 2). (F) Initialization of frame t + 1 for the image
segmentation core (step 3). (G) Extracted segments St+1 for frame t + 1 (step 4).
(H) Convergence of the Metropolis algorithm for frame t+ 1.

the procedure described below. Note that in the current example frame t cannot be
the first frame in the sequence, since the considered optical flow algorithm requires
five subsequent frames for the estimation and for this reason the framework does not
give any output for the first four frames. Furthermore, to avoid usage of future data,
optical flow vectors are warped from the center frame in the sequence of five frames
to the last frame.

Let us suppose frame t is segmented and St is its final label configuration, i.e.,
obtained segments (see Fig. 3.3(D)). An initial label configuration for frame t + 1
is found by warping all labels from frame t taking estimations from the optical flow
vector field into account as (see Fig. 3.3(E))

St+1(xt+1, yt+1) = St(xt, yt), (3.10)

xt = xt+1 − vx(xt+1, yt+1), yt = yt+1 − vy(xt+1, yt+1), (3.11)

where v(x) = (vx, vy)
T is the flow at time t+1. Since there is only one flow vector

per pixel, there will only be one label transferred per pixel. Note that it is not the

80 Chapter 3: Real-time Segmentation of Monocular Video Streams

case if the flow at time t is used for linking, since there can be multiple flow vectors
pointing to the same pixel in frame t+1. Pixels which did not obtain an initialization
via (3.10) are then given a label which is not occupied by any of the found segments
(see Fig. 3.3(F)). Once frame t+1 is initialized, it needs to be adjusted to the current
image data by the image segmentation core (see Section 3.2). This adjustment is
needed in order to fix erroneous bonds that can take place during the transfer of
spin states from frame t. Flow interpolations for weakly-textured regions are not
considered in this work because of the following reasons:

1. The image segmentation core inherently incorporates the data from all pixel
neighborhoods in the image during spin relaxation and, therefore, performs
interpolation.

2. An interpolation based on a camera motion estimation is only useful in static
scenes (with moving cameras), but cannot help when dealing with moving ob-
jects.

The relaxation process performed by the image segmentation core runs until con-
vergence and only after that the final segments are extracted (see Fig. 3.3(G) where
corresponding segments between frames t and t+ 1 are labeled with identical colors).
Convergence of the relaxation process against a number of iterations is shown in
Fig. 3.3(H). For the relaxation process we use an on-line adaptive simulated anneal-
ing (see Section 2.2.3) with the schedule determined by both the starting temperature
T0 = 1.0 and the simulated annealing factor γ = 0.999. As we can see the annealing
process with this schedule converges after 25 − 30 iterations making it possible to
segment monocular video streams with a frame size of 320× 256 pixels in real-time.
Longer annealing schedules can lead to better segmentation results but at the cost of
processing time.

3.3 Experimental results

Similar to the image segmentation evaluation (see Section 2.3.1) both the quantita-
tive and qualitative evaluations are needed to judge and compare video segmentation
techniques. The quantitative evaluation gives a numerical valuation of the machine
segmentation results taking the known ground truth data into account. The qual-
itative evaluation shows outputs of different video segmentation algorithms on the
same frame sequence or the same set of sequences giving a user a chance to judge the
techniques and select the most appropriate one.

Quantitative evaluation

The quality of video segmentation is measured based on the segmentation covering
metric, introduced in Section 2.3.1, which evaluates the covering of a human segmen-

3.3 EXPERIMENTAL RESULTS 81

tation, called also ground-truth segmentation, by a machine segmentation produced
by an algorithm under consideration. In the case of video streams ground-truth seg-
mentation is a manual annotation of a video with preserved temporal coherence. In
the current study the human-assisted motion annotation tool proposed by Liu et al.
(2008a) is used which allows a user to annotate video sequences very efficiently ensur-
ing the spatio-temporal synchronization 2. The covering of a machine segmentation
S by a human segmentation S ′ for a video stream is defined as

C(S ′ → S) =
1

N

∑
V ∈S

|V | · max
V ′∈S′

d(V, V ′), (3.12)

where N denotes the total number of pixels in the video, |V | is the number of pixels
in the spatio-temporal volume V and d(V, V ′) is the Dice coefficient in 3D between
the labeled spatio-temporal volumes V and V ′ within S and S ′, respectively (Reina
et al., 2010). The Dice coefficient between the compared spatio-temporal volumes V
and V ′ is defined as

d(V, V ′) =
2|V ∩ V ′|
|V |+ |V ′|

. (3.13)

The covering of a machine segmentation S by a family of ground truth segmenta-
tions {S ′i} is defined by covering S separately with each human map from {S ′i} and
then averaging over the different humans. In this way the perfect covering of the
machine segmentation is achieved (Arbelaez et al., 2009).

Qualitative evaluation

In Fig. 3.4 video segmentation results for the “Toy” video sequence (see Fig. 3.4(A))
acquired with a moving camera are presented. The ground truth segmentation cre-
ated with the human-assisted motion annotation tool is shown for some frames in
Fig. 3.4(B). Note that the ground truth segmentations provided on the web page of
the motion annotation benchmark cannot be used for the comparison in this work,
since they show layer segmentation based on motion only without considering color
differences. The video segmentation results for both the RGB and CIE (L∗a∗b∗)
color spaces are shown in Fig. 3.4(C) and in Fig. 3.4(D), respectively. In both cases
the same segmentation parameters and the same annealing schedule have been used.
As we can see, results obtained in the CIE (L∗a∗b∗) color space are more accurate
which is confirmed by the comparison of the segmentation covering values computed
for both color spaces and shown against the system parameter α2 in Fig. 3.4(E). Fur-
thermore, the image segmentation core in the CIE (L∗a∗b∗) space needs less time to
converge. Fig. 3.4(F) shows how the segmentation covering values are changing for
both color spaces depending on the number of iterations in the relaxation process.

2available under http://people.csail.mit.edu/celiu/motionAnnotation/

82 Chapter 3: Real-time Segmentation of Monocular Video Streams

Figure 3.4: Segmentation results for the “Toy” monocular video sequence with a
moving camera. (A) Original frames. (B) Ground-truth segmentation created by the
human-assisted annotation. (C) Machine segmentation performed in the input RGB
color space (n2 = 30 iterations, α2 = 2.5). (D) Machine segmentation performed in
the perceptual color space CIE (L∗a∗b∗) (n2 = 30 iterations, α2 = 2.5). (E,F) The
segmentation covering shown for both color spaces against the system parameter α2

and the number of relaxation iterations n2.

3.3 EXPERIMENTAL RESULTS 83

Figure 3.5: Segmentation results for monocular video sequences “Toy” (see
Fig. 3.4(A)) and “Phone” (C) with a moving camera and “Women” (F) with moving
objects. (A,D,G) Graph-based video segmentation results obtained at 70% (A,D) and
50% (G) of highest hierarchy level. (B,E,H) Segmentation results from the proposed
method derived after n2 = 30 iterations with α2 = 1.5 (B,E) and α2 = 2.0 (H),
respectively.

84 Chapter 3: Real-time Segmentation of Monocular Video Streams

More segmentation results in the CIE (L∗a∗b∗) color space are shown in Fig. 3.5.
Besides the already considered “Toy” sequence, segmentation results are presented
for two more videos: “Phone” (see Fig. 3.5(C)) from the same benchmark and the
well-known “Women” sequence containing moving objects (see Fig. 3.5(F)). Results
for all sequences obtained by the proposed framework are shown in Fig. 3.5(B,E,H).
Although all types of sequences can be successfully segmented using the same set of
parameters determined in Section 2.3.2, in the case of the video segmentation it is
advisable to use lower values for the system factor α2 as compared to segmentation
of single images. Lower values of α2 preserve first of all small segments which oth-
erwise can be absorbed by larger segments because of erroneous label transfers. The
recommended input parameters for the automatic segmentation of video streams are:
n2 = 30 iterations for the relaxation, α2 = 2.5, and Tn+1 = 0.999 · Tn starting with
T0 = 1.0. For the presented segmentation, α2 was slightly tuned for each sequence to
get the best possible segmentation results.

The proposed video segmentation technique is compared here to the hierarchical
graph-based video segmentation, proposed by Grundmann et al. (2010), which is to
our knowledge the most efficient spatio-temporal segmentation technique to date.
Since the publicly available implementation of the graph-based approach uses future
data for segmentation and our framework not, both methods cannot be compared
entirely and here we only show that our approach gives output comparable to results
of the conventional video segmentation methods. From three hierarchy levels available
on the web page 3 for the graph-based segmentation, the best segmentation result for
each sequence was chosen (see Fig. 3.5(A,D,G)). We can see that the graph-based
method leads sometimes to dramatic merges of segments or oversegmentations which
is not the case in the proposed approach (see both spherical objects in front of the
bears in the “Toy” sequence in Fig. 3.5(A), and a part of the fax machine and the
lying on the table papers in Fig. 3.5(D)). However, similar to the graph-based image
segmentation, the graph-based video segmentation deals in some situations better
with very textured objects (e.g., the background in the “Toy” sequence in Fig. 3.5(A),
or the phone in the “Phone” sequence in Fig. 3.5(D)). Also note that the gray-scale
“Women” sequence is an extremely difficult case for both techniques due to the lack
of color information. Time performance of the framework for various resolutions will
be given in Section 4.4.2.

3.4 Discussion

In this chapter we presented a novel framework for real-time spatio-temporal seg-
mentation of monocular video streams based on the parallel Metropolis algorithm
introduced in Chapter 2. The proposed visual front-end is on-line, automatic and

3available under http://neumann.cc.gt.atl.ga.us/segmentation/

3.4 DISCUSSION 85

dense. The performance of the framework has been demonstrated on real-world se-
quences acquired with moving cameras and containing arbitrary moving objects. The
GPU architecture is used as an accelerator for highly-parallel computations of the sys-
tem such as optical flow, and image segmentation core. For the frame resolutions of
160 × 128 and 320 × 256 pixels we achieved a processing time sufficient for many
real-time robotic applications. The framework manages to process bigger frames as
well, but not in real-time mode.

The following problems have been solved by the visual front-end: images from
monocular videos are segmented in a consistent model-free way (without prior knowl-
edge of data), the temporal coherence in a monocular video stream is achieved re-
sulting in a consistent labeling of the original frames. However, consistent labeling
for a long video sequence can be obtained by the proposed framework only under the
following conditions:

1. Objects should not get entirely occluded along the action, since the current
method can deal only with partial occlusions. If an object is occluded by any
other object, it will not be recognized when it reappears. In order to properly
track occluded objects, additional mechanisms are needed that perform high-
level analysis of objects (Nummiaro et al., 2002; Wang et al., 1994). It is not
possible to resolve such kind of problems on the pixel domain.

2. Objects should not move too fast. The phase-based optical flow used in the
current system has a speed limit of 2 pixels per scale, so using 4 scales, the limit
is 24 = 16 pixels (Pauwels et al., 2010). In the case of a very fast movement more
than 50% of the label transfers can be erroneous. This leads to a completely
erroneous initialization of the current frame, which cannot be resolved by the
relaxation process in the image segmentation core. The segmentation covering
value for such a segment will be dramatically low, which signals inaccurate
video segmentation. For the tracking of fast moving objects large displacement
optical flow is needed (Brox and Malik, 2011).

3. No disjoint parts of physically the same object should be joined during the
action. If two large parts of the same object represented by different segments
are merged, we face again the domain fragmentation problem (see Section 2.2.6).
In the current framework the domain fragmentation problem can be resolved
only by a very long annealing schedule (see Section 2.2.3) which cannot be
achieved in real-time.

An important goal of this work has been the improvement of the computational
speed of the system, since a low latency in the perception-action loop is a crucial
requirement of systems where a visual front-end is needed. Consequently, since the
proposed framework is running in real-time, it can be used in a wide range of robotic
applications such as object manipulation, visual servoing, and robot navigation. All

86 Chapter 3: Real-time Segmentation of Monocular Video Streams

these applications require object detection and tracking along with the extraction of
meaningful object descriptors as a pre-processing step.

In the future, the mentioned limitations need to be overcome. For very complex
scenarios where objects are getting occluded all the time, some high-level knowledge
about objects needs to be accumulated during that part of the sequence where objects
are present and visible.

4
Real-time Segmentation of Stereo Video

Streams

“Great things are done by a series
of small things brought together”

– Vincent Van Gogh

4.1 Introduction

In this chapter we present a novel visual front-end for real-time spatio-temporal seg-
mentation of stereo videos. Although stereo data has recently been employed for
segmentation (Ladický et al., 2010; Mutto et al., 2011), there is no method that per-
forms real-time spatio-temporal segmentation of stereo videos while simultaneously
establishing correspondences between left and right segments. The segmentation of
stereo videos is of high importance in computer vision, since segmented stereo videos
provide an additional information about the scene and allow us to derive 3D relations
between objects (Aksoy et al., 2011). Furthermore, the obtained correspondences
between segments in the left and right video streams can be used for depth compu-
tation (Dellen and Wörgötter, 2009).

The visual front-end proposed here is on-line, automatic, dense, and solves the
following problems (Abramov et al., 2012c):

1. Stereo images are segmented in a consistent model-free way using the image
segmentation core applied to segmentation of monocular video streams in Chap-
ter 3.

2. The temporal coherence in a stereo video stream is achieved using a label-
transfer strategy based on estimated motion within left and right video streams
and disparity data, showing the amount of horizontal motion between two views,
resulting in a consistent partitioning of neighboring frames together with a
consistent labeling. Only the results obtained on the very last left and right

87

88 Chapter 4: Real-time Segmentation of Stereo Video Streams

Figure 4.1: The architecture of the framework for segmentation of stereo videos on
the heterogeneous computing system consisting of one CPU and one GPU.

frames are employed at a time in order to guarantee spatio-temporal coherence
for the current left and right frames, respectively.

3. All computations run in real-time which allows the framework to be used in the
perception-action loop.

The chapter is organized as follows. First we introduce the framework for the
segmentation of stereo videos and extend the segmentation method for monocular
video streams to stereo video streams. We further present an implementation of the
framework on a portable system with a mobile GPU. Finally, we perform an extensive
experimental evaluation and discuss the results.

4.2 Real-time segmentation of stereo videos

The architecture of the framework for segmentation of stereo videos is shown in
Fig. 4.1. It consists of a stereo camera, a computer with a GPU, and various processing
components that are connected by channels in the framework. Each component in
the framework can access the output data of all other components in the framework.
The processing flow is as follows. Stereo images (synchronized left and right frames)
are captured by a stereo camera. The acquired images are undistorted and rectified
(in real-time with a fixed stereo-geometry (Bradski, 2000)) before they enter the
framework (channels 1 and 2). Optical flow is computed for the current left and right
frames together with the disparity map on the GPU using real-time algorithms and
the results are accessible from channels 3 and 4.

Segmentation of both left and right streams is performed as follows. Similar to the
segmentation of monocular video streams considered in the previous chapter, only the
very first frame of the left stream is segmented completely from scratch by the parallel
Metropolis algorithm with the short-cut introduced in Section 2.2.6. Segmentation of

4.2 REAL-TIME SEGMENTATION OF STEREO VIDEOS 89

the right stream relies on segments obtained for the left stream, while segmentation
of the left video stream is equal to the segmentation of monocular video streams
introduced in Chapter 3. The segmentation results of left frames can be accessed
from channel 5.

A label initialization of the current right frame is created by warping of both
the current left (channel 5′) and previous right segments using the optical flow and
disparity information (channel 4) (see Section 3.2.1 and Section 4.2.1). Similar to the
segmentation of the left stream, the initial labels are adjusted to the image data of
the current right frame by the relaxation process of the image segmentation core. The
segmentation results of the right frame, which is now consistently labeled with respect
to its corresponding left frame, are stored in channel 6. Once segmentation for both
left and right frames is achieved, the final spin configuration (after convergence) is
sent to the main program on the CPU (channels 5 and 6) where segments larger than
a pre-defined threshold are extracted. After all these processing steps each object or
object part is represented by uniquely identified left and right segments.

4.2.1 Phase-based stereo

Since fast processing is a very important issue in the present study, the real-time stereo
algorithm, proposed by Pauwels et al. (2011), is used to find pixel correspondences
between left and right frames in a stereo video stream. The algorithm runs on a
GPU and belongs to the class of phase-based techniques, which are highly robust
to changes in contrast, orientation and speed. According to this stereo disparity
estimates can be efficiently obtained from the phase difference between the left and
the right image (Fleet and Jepson, 1990). For oriented filters (see Section 3.2.1),
the phase difference has to be projected on the epipolar line. Since in the current
study we work with rectified images, this is equal to the horizontal. For a filter at
orientation θp, a disparity estimate is obtained as follows:

δp(x) =
[φLp (x)− φRp (x)]2π

ω0 cos θp
, (4.1)

where the []2π operator depicts reduction to the]− π; π] interval. These different
estimates are robustly combined using the median. As in the case of optical flow, to
reduce noise, a subsequent 3× 3 median filtering is performed that gives the median
as an output if the majority of its inputs are valid, otherwise it signals an invalid
estimate. Because of phase periodicity, the phase difference approach can only detect
shifts up to half the filter wavelength. To compute larger disparities, the estimates
obtained at the different pyramid levels are integrated by means of coarse-to-fine
control strategy (Bergen et al., 1992). A disparity map δk(x) is first computed at
the coarsest level k. It is upsampled to be compatible with the next level, using an

90 Chapter 4: Real-time Segmentation of Stereo Video Streams

expansion operator χ, and multiplied by two:

dk(x) = 2 · χ(δk(x)). (4.2)

This map is then used to reduce the disparity at level k+ 1, by warping the right
filter responses before computing the phase difference

δk+1
p (x) =

[φLp (x)− φRp (x′)]2π

ω0 cos θp
+ dk(x), (4.3)

where

x′ = (x+ dk(x), y)T . (4.4)

Consequently, the remaining disparity is guaranteed to lie within the filter range.
This procedure is repeated until the finest level is reached. The median filter is applied
at each scale of the pyramid.

Although any other stereo technique can be used in the proposed framework (Scharstein
and Szeliski, 2002), we decided to use phase-based approach since it combines high
accuracy with computational efficiency. Furthermore, the used implementation com-
bines both the phase-based optical flow, employed in segmentation of monocular video
streams (see Section 3.2.1), and stereo in a very efficient manner. A comparable qual-
itative evaluation of the method including test stereo pairs from the Middlebury
benchmark and implementation details with performance analyses can be found in
studies of Gautama and Van Hulle (2002) and Pauwels et al. (2011).

4.2.2 Stereo video segmentation

In the proposed framework disparity is computed for each input stereo pair. Segmen-
tation of a stereo video stream using the parallel Metropolis algorithm with optical
flow and stereo is shown in Fig. 4.2 on one stereo pair consisting of left and right frame.
The procedure is very similar to the segmentation of a monocular video stream. Here,
an initial label configuration for the right frame at time t is obtained by warping the
labels from both the corresponding left frame t and the previous right frame t − 1.
Labels from the left frame are transferred using the disparity map d (see Fig. 4.2(A
- C)) and labels from the previous right frame are transferred using the optical flow
vector field (see Fig. 4.2(E)). Since the stereo algorithm relies on phase (and not mag-
nitude), it can find correct matches even in weakly-textured regions. Also, ambiguous
matches are avoided by the use of a coarse-to-fine control mechanism. However, reli-
able information cannot be found under drastically changing light conditions (see the
reflection shift over the table).

Suppose the left frame Lt is segmented and SL is its final label configuration (see
Fig. 4.2(D)). Labels from the previous right frame Rt−1 are warped according to the

4.2 REAL-TIME SEGMENTATION OF STEREO VIDEOS 91

Figure 4.2: Segmentation of a stereo pair for the time moment t. Numbers at arrows
indicate the order of the computations. (A) Original left frame Lt. (B) Original right
frame Rt. (C) Disparity map estimated by the phase-based method (step 1). (D)
Extracted segments SL for frame Lt after n2 = 30 iterations with α2 = 2.5 (step 1).
(E) Segments and estimated optical flow vector field for right frame t−1 (sub-sampled
13 times and scaled 6 times). (F) Label transfer from frames Lt and Rt−1 to frame
Rt (step 2). (G) Initialization of frame Rt for the image segmentation core (step 3).
(H) Extracted segments SR for frame Rt after n2 = 10 iterations with α2 = 2.5 (step
4). (J) Convergence of the Metropolis algorithm for frame Rt.

92 Chapter 4: Real-time Segmentation of Stereo Video Streams

procedure described in Section 3.2.2, whereas labels from the current left frame Lt
are warped to the right frame as follows

SR(xR, yR) = SL(xL, yL), (4.5)

xL = xR + δp(xR, yR), yL = yR. (4.6)

The disparity map δp is computed relative to the right frame which guarantees
that there will only be one label transferred per pixel from the left frame. Both
warpings are performed at the same time (see Fig. 4.2(F)). In the case of multiple
correspondences, i.e., if a pixel in frame Rt has label candidates in frames Lt and
Rt−1, there are no preferences and we select randomly either the flow or the stereo.
In this way they can both contribute without bias and the segmentation core can
make the final decision. Pixels that did not obtain a label initialization via (4.5) are
given a label which is not occupied by any of the found segments (see Fig. 4.2(G)).
Once frame Rt is initialized, it needs to be adjusted to the current image data by
the image segmentation core (see Section 3.2). This adjustment is needed in order to
fix erroneous bonds that can take place during the transfer of spins. The relaxation
process runs again until it converges and only after that the final right segments
SR at time t are extracted (see Fig. 4.2(H) where correspondent segments between
frames Lt and Rt are labeled with identical colors). Convergence of the relaxation
process against a number of iterations is shown in Fig. 4.2(J) for the combined label
transfer and for the label transfer based only on disparity shifts without the use
of optical flow for the right stream. We can see that the use of the previous right
labels drastically reduces a number of iterations needed for convergence and already
after 5− 10 iterations the final right segments can be extracted. It makes it possible
to segment stereo video streams with a frame size of 320 × 256 pixels in real-time.
Using only stereo information about 25 − 30 iterations are needed in order to reach
the equilibrium state. This is because occlusions in stereo images are significantly
larger than occlusions between adjacent frames in one video stream if disparities
are large. For the relaxation process we use an on-line adaptive simulated annealing
(see Section 2.2.3) with the same schedule as for the segmentation of monocular video
stream with parameters T0 = 1.0 and γ = 0.999. Note that longer annealing schedules
can lead to better segmentation results but at the cost of processing time.

4.3 Experimental results

To evaluate segmentation results of stereo videos again both the quantitative and
qualitative measures, presented in Section 3.3, are used. In Fig. 4.3 segmentation
results for two stereo sequences are shown. Since the sequences are quite long, only
stereo pairs at a few key points of actions can be shown. In the first sequence,

4.3 EXPERIMENTAL RESULTS 93

Figure 4.3: Segmentation results for stereo frame sequences of the sample actions
“Moving an apple over plates” with moving objects (A) and “Cluttered scene” with
a moving stereo camera (B). Results are obtained using the following parameters:
n2 = 30 and n2 = 15 iterations are applied for the relaxation of left and right frames,
respectively, α2 = 2.5 for both the left and right streams, the annealing schedule is
Tn+1 = 0.999 · Tn starting with T0 = 1.0.

94 Chapter 4: Real-time Segmentation of Stereo Video Streams

called “Moving an apple over plates”, a hand moves an apple around the table and
places it on a plate (see Fig. 4.3(A)). In the second scenario, “Cluttered scene”, the
scene is static but the stereo camera moves (see Fig. 4.3(B)). As we can see the
spatial-temporal coherence is achieved in the segmentation of both stereo sequences
and the determined stereo segments correspond to the natural partitioning of the
original stereo pairs. Too small segments are completely removed from the final label
configuration.

Figure 4.4: Segmentation covering for the stereo sequence “Moving an apple over
plates” shown for the previous and current framework versions. The average values
are 0.77 (left stream) and 0.76 (right stream) for the previous version and 0.84 (for
left and right streams) for the current version, respectively.

The performance comparison of the proposed framework with its previous version
using the input RGB color space and optical flow for the left stream only (Abramov
et al., 2010a) is shown in Fig. 4.4 as the segmentation covering against the current
frame number. As we can see, in the proposed framework the left and right sequences
are segmented with higher accuracy (the average segmentation covering value is 0.84
for both streams as opposed to 0.77 in the previous version). Furthermore, the current
approach is more robust, having significantly smaller deviations of the segmentation
covering values along the whole sequence. Time performance of the framework for
various resolutions is given in Section 4.4.2.

4.4 IMPLEMENTATION ON A PORTABLE SYSTEM 95

4.4 Implementation on a portable system

Processing power, memory bandwidth and number of cores are not the only important
parameters in robotic systems. Since robots are dynamic, movable and very often
wireless systems, huge processing platforms with high power consumption (mostly
for cooling) are not practicable despite their high processing efficiency. Because of
this, mobile parallel systems running on portable devices are of growing interest for
computer-controlled robots. Nowadays mobile GPUs from the Nvidia G8X series
are supported by CUDA and can be used very easily for general-purpose parallel
computing. In Fig. 4.5, the dynamics of development for desktop and mobile GPUs
from the Nvidia G8X series until today are shown, demonstrating that desktop GPUs
are three times more powerful and have three times faster memory bandwidths than
mobile ones. However, powerful desktop GPUs consume so much power that it is
almost impossible to use them in small computer-controlled robots, while even the
most powerful mobile GPUs integrated into mobile PCs do not need an extra power
supply. Taking this fact into account we consider in the current study a mobile
PC with an integrated mobile GPU from Nvidia supported by CUDA as a portable
system. Such a system can run for up to three hours in autonomous mode being
supplied by the laptop battery.

Figure 4.5: Comparison of desktop (blue) and mobile (green) graphics cards for Nvidia
GeForce 8X, 9X, 100, 200, 400, 500-series GPUs with a minimum of 256 MB of local
graphics memory. The following parameters are compared: (A) Processing power in
floating point operations per second, (B) Maximum theoretical memory bandwidth,
(C) Number of CUDA cores, and (D) Graphics card power.

Here we present an implementation of the proposed framework for real-time spatio-
temporal segmentation of stereo videos on a mobile PC with an integrated mobile
GPU. The architecture of the mobile framework for segmentation of stereo videos is
shown in Fig. 4.6(A). The only difference to the framework introduced in Section 4.2
is that the segmentation core, the phase-based optical flow, and the stereo algorithm
run on the mobile GPU instead of the common desktop GPU and the main program
runs on the portable system. Uniquely identified left and right segments can be
exploited directly by a mobile robot. A prototype of a movable robot steered by a

96 Chapter 4: Real-time Segmentation of Stereo Video Streams

Figure 4.6: (A) The architecture of the framework for segmentation of stereo videos
on the portable system with a mobile GPU. (B) A movable robot steered by a mobile
system with stereo cameras and a laptop with an integrated mobile GPU.

mobile system including stereo cameras and a laptop with an integrated mobile GPU
is shown in Fig. 4.6(B).

4.4.1 Experimental environment

The proposed framework runs on a laptop with mobile Intel Core 2 Duo CPU with
2.2 GHz and 4 GB RAM. The mobile GPU used in the laptop is Nvidia GeForce GT
240M (with 1 GB device memory). This card has 6 multiprocessors and 48 processor
cores in total and belongs to the 200-series of mobile Nvidia GPUs. The card is shared
by all the framework components running on the GPU. As a desktop GPU (used for
the comparison of processing times) we use here Nvidia GeForce GTX 295 (with 896
MB device memory) consisting of two GPUs, each of which has 30 multiprocessors
and 240 processor cores in total. In this study we use only one GPU of this card.

4.4.2 Time performance

Time performance of all components of the proposed framework is shown as a function
of frame size in Fig. 4.7. Image resolutions 160×128, 320×256, and 640×512 pixels
are marked by black dashed lines. The processing times of components running on
the mobile GPU are compared to the respective runtime on the desktop GPU (Fig.
4.7(A - C)). Runtimes of the video segmentation are shown for monocular as well
as stereo video streams. For segmentation of monocular video streams n2 = 30
Metropolis relaxation iterations are used, whereas for stereo video streams besides
the same n2 = 30 iterations required for the left stream additional n2 = 15 iterations
are needed for relaxation of the right stream resulting in n2 = 45 iterations in total
(see Fig. 4.7(B)). Note that the relaxation process takes about 60% of the whole
runtime.

Although all computations on the mobile card are significantly slower (the speed
up factors derived on the desktop card in relation to the mobile one for optical flow /

4.5 DISCUSSION 97

Figure 4.7: Processing times of all stages of the framework for segmentation of monoc-
ular and stereo videos for both the mobile and desktop platforms. For computations
running on the mobile GPU, processing times derived on the desktop GPU are shown
for comparison (by dashed lines). (A) Runtime for optical flow with stereo and ex-
traction of stereo segments. (B) Processing time of monocular segmentation (n2 = 30
iterations) and stereo segmentation (n2 = 45 iterations). (C) Runtime for conversion
from the input RGB color space to the CIE (L∗a∗b∗) space for both monocular and
stereo streams.

stereo and image segmentation core are 2.1 and 2.4, respectively), it is still possible to
process several frames per second for all considered resolutions as shown in Table 4.1.

CPU GTX 295 GT 240M
Resolution (px) sec (Hz) msec (Hz) msec (Hz)

160× 128 0.8 (1.2) 40.0 (25.0) 47.4 (21.1)
320× 256 3.4 (0.3) 75.0 (13.3) 117.0 (8.5)
620× 512 13.9 (0.1) 230.0 (4.3) 376.0 (2.7)

Table 4.1: Processing times per frame and frame rates for the framework performing
segmentation of stereo videos on the CPU, desktop GPU, and mobile GPU platforms.

4.5 Discussion

In this chapter we presented a novel framework for real-time spatio-temporal seg-
mentation of stereo video streams and its implementation on a portable system with
an integrated mobile GPU. The proposed visual front-end is on-line, automatic and
dense. The performance of the framework has been demonstrated on real-world se-

98 Chapter 4: Real-time Segmentation of Stereo Video Streams

quences acquired with moving cameras and containing arbitrary moving objects. A
trade-off between processing time and hardware configuration exists. Since robotic
systems are usually dynamic, movable, and very often wireless autonomous systems,
huge computers with high power consumption not always can be considered as a
proper hardware architecture. As the most suitable platform for this task we chose
a mobile PC with an integrated mobile GPU. Being supplied by the laptop battery
such a system can run in autonomous mode up to three hours. A GPU is used as an
accelerator for highly-parallel computations of the system such as optical flow, stereo,
and image segmentation core. For the frame resolutions of 160× 128 and 320× 256
pixels we achieved a processing time which is sufficient for many real-time robotic
applications. For the resolution 640× 512 pixels only close to real-time performance
can be achieved. The system can process bigger frames as well, but not in real-time.

5
Disparity from Stereo-segment

Correspondences

“The art of painting can never
reproduce space because painting
lacks the relief of objects in space”

– Leonardo da Vinci

5.1 Introduction

Stereoscopic images are an important cue for computing depth. So closing each eye
alternately we can see that objects jump to left and right relative to background
and objects in front have larger displacements comparing to objects behind. In the
rectified stereo vision geometry, when both cameras are looking straight ahead, this
effect results in the amount of horizontal motion or disparity. Disparity is inversely
proportional to the distance from the observation point. The process of measur-
ing disparity by establishing pixel correspondences between left and right images is
known as stereo matching and is a widely studied topic in computer vision. Despite
a significant progress made during the past two decades it still remains a very active
research area because some problems could still not be resolved, e.g., correct depth
estimation in weakly-structured image areas. Accurate dense stereo is important for
many computer vision applications as 3D robotic navigation and manipulation, 3D
modeling, object tracking and image rendering (Szeliski, 2010).

5.1.1 Conventional stereo algorithms

Existing stereo matching algorithms can be classified in two major groups: global
and local methods (Scharstein and Szeliski, 2002; Szeliski, 2010). Global methods are
featured by a global cost function associated with an input stereo pair. The goal is
to find disparities minimizing a global energy (Geiger et al., 1995; Bobick and Intille,

99

100 Chapter 5: Disparity from Stereo-segment Correspondences

1999; Boykov and Jolly, 2001; Sun et al., 2003; Felzenszwalb and Huttenlocher, 2006;
Heo et al., 2011). Local methods are window-based and only use image information
in a finite shiftable window surrounding each pixel or a group of pixels (Veksler,
2003; Yoon et al., 2006; Tombari et al., 2007; Hirschmüller, 2008). Local methods
are easier to implement efficiently using parallel architectures and, as a consequence,
multiple real-time local techniques on various platforms have been proposed over the
last decades (Bradski, 2000; Dı́az et al., 2007; Lu et al., 2009; Pauwels et al., 2010).
Global methods are more accurate, but they are more difficult to parallelize and
real-time implementations exist only for low resolutions or for considerably simplified
algorithms (Brunton et al., 2006; MacLean et al., 2010; Liang et al., 2011). In the
meantime there are some techniques in between of global and local methods that are
commonly applied in real-time implementations. These methods are known as coarse-
to-fine algorithms operating on an image pyramid where estimations made at coarser
levels constrain a more local search at finer levels (Zitnick et al., 1999; Pauwels et al.,
2010; Sizintsev et al., 2010).

Global methods can be classified depending on the used computation technique
into following two categories: dynamic programming-based (Geiger et al., 1995; Bo-
bick and Intille, 1999) or Markov Random Fields (MRFs)-based (Boykov and Jolly,
2001; Sun et al., 2003; Felzenszwalb and Huttenlocher, 2006; Heo et al., 2011). At the
present time global optimization techniques achieve the highest ranking on the Mid-
dlebury stereo dataset (Scharstein and Szeliski, 2008), therefore, we consider them
in the current study as the most up-to-date and efficient stereo matching techniques.
Original energy minimization methods, such as iterated conditional modes (ICM) (Be-
sag, 1986) or simulated annealing (Barnard, 1989) are extremely slow and not very
efficient. During the last few years new powerful optimization algorithms such as
graph cuts (Boykov and Jolly, 2001; Kolmogorov and Zabih, 2004) and loopy belief
propagation (LBP) (Yedidia et al., 2000) have been proposed. These methods provide
more accurate results comparing to other stereo approaches and currently almost all
top-performing stereo methods rely on graph cuts or LBP (Scharstein and Szeliski,
2008).

Nowadays it is almost impossible to test and evaluate all existing stereo approaches
due to the following reasons: first, some techniques are not open source projects and
cannot be tested easily; second, too many approaches have been proposed during the
last two decades and some of them are not supplied with sufficient description of
system parameters that can dramatically affect disparity estimation. This makes the
comparison with these techniques unfair, since best results of the methods cannot
be derived for the arbitrary testing dataset. In the current study we will consider
the following well-known and widely used stereo matching algorithms as conventional
stereo methods: block matching (BM) (Hirschmüller, 2008), iterated conditional mode
(ICM) (Besag, 1986), swap-move (Swap) and expansion-move (Expansion) graph
cuts algorithms (Boykov and Jolly, 2001), sequential tree-reweighted message passing
(TRW-S) (Kolmogorov, 2006), belief propagation (BP) (Felzenszwalb and Hutten-

5.1 INTRODUCTION 101

locher, 2006), contrast space belief propagation (CSBP) (Yang et al., 2010), the max-
product loopy belief propagation (BP-M) (Tappen and Freeman, 2003) and sequential
loopy belief propagation derived from the TRW-S (BP-S), phase-based stereo (Pauwels
et al., 2010). Implementations of ICM, BP-M, BP-S, Expansion, Swap, TRW-S have
been taken from the Middlebury webpage 1. BM, BP and CSBP are fast stereo
methods from the open computer vision library accelerated recently on the GPU 2.
Phase-based stereo is a real-time stereo technique where phase differences between
the left and the right images are pooled across different orientations and propagated
from coarser to finer scales (see Section 4.2.1).

5.1.2 Performance evaluation

Performance evaluation and comparison of stereo algorithms is not a straightforward
procedure due to many factors that need to be taken into account. One important
evaluation criterion is the accuracy of a computed disparity map (Scharstein and
Szeliski, 2002; Brown et al., 2003; Seitz et al., 2006). It can be judged in two fol-
lowing ways. The estimated disparity values can be either compared with a ground
truth disparity map, obtained using tools such as a laser range finder, or an original
right image is compared with a synthetic image rendered by warping a left image by
a computed disparity map. Scharstein and Szeliski (2008) created the Middlebury
stereo benchmark containing a set of stereo images with acquired ground truth dis-
parity maps which is currently the most famous and widely used testing dataset in
stereo vision. It gives all scientists an opportunity to compare their own methods
with the others on the same set of data.

Unfortunately, the Middlebury dataset does not perform a complete comparison
and evaluation of stereo algorithms because of the following reasons. First, it does
not take time performance into account, nor the ability of the method to evaluate
the quality of its own estimates. The former determines how many stereo frames can
be processed by the algorithm per second, while the latter determines the density of
the computed disparity map. Second, available testing stereo pairs are very limited
and do not represent all variety of input images that stereo matching methods should
be able to deal with. Almost all stereo pairs in the dataset are featured by a high
level of texture which makes the matching procedure easier, while a lot of images
used in industry are weakly-textured. Therefore, some methods highly evaluated by
the Middlebury stereo benchmark might be very slow or provide only inaccurate and
very sparse disparity maps for weakly-textured scenes.

1available under http://vision.middlebury.edu/stereo/code/

2see http://opencv.itseez.com/modules/gpu/doc/gpu.html

102 Chapter 5: Disparity from Stereo-segment Correspondences

5.1.3 Motivation and scope

The most common reasons for obtaining bad depth estimates in stereo matching can
be summarized as follows: lack of texture or repetitive texture, object boundaries,
half-occlusions, i.e., regions visible only in one of two images, changing light condi-
tions, reflections, and image noise. In the current study we use a texture measurer to
classify an input image as weakly- or significantly-textured.

Most stereo algorithms perform well in textured image areas, but often fail when
there is only weak texture, due to the correspondence problem. Here local matching
fails, and, as a consequence, global methods do not deliver correct disparities either,
simply because the energy functions used in global methods remain under-constrained.
However, stereo from weakly-textured images is important for many applications,
which take place in urban or industrial settings, where little texture exists and active
techniques based on the structured-light suffer from the problems such as multiple
or glossy reflection, ambient light or light absorption (Zhu et al., 2011). Therefore,
novel solutions are required to the stereo problem.

While being ill-suited for stereo analysis, weakly-textured image parts can easily
be used for color-based segmentation and, in addition, it is often also possible to
find unique segment correspondences between two views in the stereo image. Stereo
segments provide an additional information limiting the search area for stereo tech-
niques.

5.1.4 Related work

In the past, color image segmentation (Yang et al., 2008; Dellen and Wörgötter,
2009) has been used to improve disparity estimation in weakly-textured scenes. The
method proposed by Yang et al. (2008) uses image segmentation to recover disparity
in textureless regions by fitting plane surfaces to the weak disparity information found
for these segments. Since this method also depends on texture, it fails in untextured
areas.

Dellen and Wörgötter (2009) proposed another method that obtains disparity
for weakly-textured images from found stereo segments. The method uses interpo-
lation algorithm based on a spring-mass model. It was tested on the Middlebury
stereo dataset including such poorly-textured images like Plastic and Lampshade (see
Fig. 5.1). The method can compute disparity also for completely untextured regions
because information from the segment boundaries is used as well. Computed disparity
maps have a density about 90% and are of acceptable quality. However, the method
has a number of drawbacks. Sparse disparity computed inside stereo segments by a
window-based matching algorithm can contain some inaccurate estimations that dra-
matically affect interpolation results. Reliable disparity data cannot be derived for
background / foreground segments whose boundaries are out of the image and image
edges are partly interpreted as their boundaries. Lastly, the method is extremely slow

5.2 TEXTURE AS A CRUCIAL POINT 103

requiring minutes to process a frame with a size of 320× 256 pixels.
The goal of the present study is to recover disparity in weakly-textured image

parts in real-time using the stereo image segmentation (Abramov et al., 2012b). Es-
tablishing unique correspondences between left and right segments gives an additional
information about objects present in the scene. A sparse disparity output of any con-
ventional stereo technique combined with an additional information and constraints
derived from found stereo regions make it possible to compute missing disparity data
based on pre-defined surface models associated with segments. Occlusions and related
problems such as segment-boundary ownership are considered during this procedure,
without which the method would not provide accurate results. This way we can
regenerate rather accurate disparity information in regions that are usually quite re-
sistant to stereo analysis, such as certain images from the Middlebury stereo dataset,
which are, for this reason, rarely being used for stereo algorithm benchmarking, and
other images containing little texture. The method should run in real-time giving a
dense disparity for all objects in the scene.

The chapter is organized in the following way. First we will present the tex-
ture quantification and evaluate performance of the conventional stereo algorithms
on images featured by diverse levels of texture. Then we will give a description of
the proposed real-time dense stereo approach. Afterwards the experimental results,
quantitative analysis, and time performance are given. Finally we will conclude the
chapter and discuss our results.

5.2 Texture as a crucial point

5.2.1 Texture quantification

First of all we need to ask us the following questions: What is texture? How can we
measure texture? Actually there is no general definition of texture in the literature and
all existing texture detectors are based on their own views what texture is. Tuceryan
and Jain (1998) say that ”We recognize texture when we see it but it is very difficult to
define” and give six different definitions of texture. The main purpose of the texture
analysis is to quantify intuitive qualities as rough, rugged, smooth, or grainy as a
function of the spatial variation in pixel intensities. For the texture quantification in
this work we use an approach based on entropy calculation of a grayscale image (Hong
et al., 2008). Entropy is a statistical measure of randomness defined for a region of n
pixels as

µ = −
n∑
i=0

p(xi) · log2p(xi), (5.1)

where p(xi) is the grayscale value of xi. The entropy function µ characterizes the
texture in such a way that smooth regions are featured by a small range of values in

104 Chapter 5: Disparity from Stereo-segment Correspondences

the neighborhood around a pixel, whereas in textured areas a range is larger 3. The
texture quantification assigns to each pixel an entropy value µ of the neighborhood
around the corresponding pixel where low and high values correspond to weakly and
sufficiently textured regions, respectively.

5.2.2 Testing dataset

For performance evaluation of conventional stereo methods and for testing purposes
we created our own testing stereo dataset. It consists of various stereo images with
diverse entropy values: images from the Middlebury stereo benchmark, images from
object manipulation scenarios, and images of plants. Some images from the dataset
with related outputs of the texture quantification and computed entropies are shown
in Fig. 5.1. In our dataset entropy values µ averaged over the image are in the range
of [1.0, 5.5] which represents a wide spectrum of images from weakly-textured Cups
(µ = 1.54) and Plastic (µ = 2.2) to sufficiently textured Aloe (µ = 5.12) and Cones
(µ = 4.83). Note that on the Middlebury webpage only highly-textured images with
µ > 4.0 are involved in the stereo evaluation 4. In our dataset images containing
numerous weakly-textured regions like Lampshade (µ = 2.86) or Plastic (µ = 2.2) are
considered as well.

There are two ways how to evaluate the performance of various stereo methods on
the current dataset. For images supplied with ground truth data (all pairs taken from
the Middlebury dataset) the accuracy of estimated disparity maps can be evaluated
with respect to the ground truth map. The root-mean-squared (RMS) error based
on known ground truth data is used in this work as a quality measure for these
images (Scharstein and Szeliski, 2002):

R =

 1

N

∑
(x,y)

|dC(x, y)− dT (x, y)|2
 1

2

, (5.2)

where N is the total number of pixels having estimates, dC and dT are the com-
puted and ground truth disparity maps, respectively. Amount of estimated pixels in
percentage is computed to evaluate the density of a computed disparity map.

In the case of stereo pairs without ground truth data (the rest of the dataset)
the synthetic images obtained by warping the left images by the computed disparity
map need to be evaluated. It is done by the RMS warping error that compares a new

3Here we use the entropyfilt utility from the Matlab toolbox for the texture analysis (Gonzalez
et al., 2003).

4available under http://vision.middlebury.edu/stereo/eval/

5.2 TEXTURE AS A CRUCIAL POINT 105

Figure 5.1: Texture quantification for several sample images from the proposed testing
stereo dataset with related entropy values. For convenience only original left images
are shown here.

rendered image with an original right image according to

Rw =

 1

N

∑
(x,y)

|I(x, y)− I ′(x, y)|2
 1

2

, (5.3)

where I and I ′ are original and synthetic images, respectively. Here the percentage
of rendered pixels is used as an evaluation of disparity density.

Fig. 5.2 shows the performance of the chosen ten conventional stereo algorithms
on the proposed dataset as a function of image entropy. Evaluations obtained for
the Middlebury images are shown separately from other samples due to differences
in the quality measures of computed disparity maps. RMS errors based on known
ground truth data and rates of found matchings for the Middlebury images are shown
in Fig. 5.2(A,B). RMS warping errors and rates of rendered pixels for stereo pairs

106 Chapter 5: Disparity from Stereo-segment Correspondences

Figure 5.2: Performance of the chosen conventional stereo algorithms as a function
of image entropy. (A) RMS error based on known ground truth data for images from
the Middlebury stereo dataset. (B) Percentage of pixels with found stereo matchings
for images from the Middlebury stereo dataset. (C) RMS warping error for stereo
pairs without ground truth data. (D) Percentage of rendered pixels for stereo pairs
without ground truth data.

5.2 TEXTURE AS A CRUCIAL POINT 107

without ground truth data are shown in Fig. 5.2(C,D). Performance of all conventional
methods and density of computed disparity maps tend to increase with increase of
textureness. Some techniques, e.g., phase-based and BM for the Middlebury images,
provide quite accurate disparity estimations but having very sparse maps. Therefore,
we need to take both the accuracy and density into account for the performance
evaluation of stereo methods. Also you can note that performance of some methods
like ICM, CSBP and BM is dissimilar on two groups of images. It can be explained
by a nature of texture in both image groups. So texture in the most Middlebury
images is caused by many tiny objects or differently looking object parts (see images
Aloe, Cones, Teddy in Fig. 5.1) that make the life of stereo methods easier. Texture
in other images is caused mostly by changes in lighting (see images Plant, Towel, Blue
pan in Fig. 5.1) which leads to more confusions in the process of stereo matching. In
the meanwhile we can see that techniques such as Expansion, Swap, TRW-S, BP-M
and BP-S seem to be quite robust for all kinds of images.

Decrease in performance with decrease of the image entropy is shown for eight
conventional stereo methods in Fig. 5.3. All methods have hard times estimating dis-
parity in poorly-textured areas like in Cluttered scene (µ = 3.6) and Plastic (µ = 2.2)
images. In extremely textureless regions as the green cover in Cluttered scene and
the yellow box in Plastic estimations either wrong or not available. However, even
very sparse disparity maps given by the phase-based technique contain estimations
uniformly distributed over the image, while estimations made by other methods have
large regions either without information at all or filled with considerably inaccurate
data (see the Plastic image in Fig. 5.3). The phase-based algorithm shows some dras-
tic differences to other methods. Firstly, the employed coarse-to-fine search gives the
algorithm the ability to use low frequency structures for matching (when operating on
low resolution scales the algorithm is using much larger windows than the other tech-
niques). Secondly, it uses phase as opposed to intensity which is entirely independent
of contrast differences between the images. The phase is also sensitive to small inten-
sity changes within the image, so very faint structures can also be exploited (Pauwels
et al., 2011).

Now we are ready to involve the classification of images based on amount of texture
in relation to performance of conventional stereo methods. Images having the entropy
value µ > 4.0 are treated pretty well by all methods and for such images disparity
maps with a density about 70 − 80% can be obtained. Images with the entropy
value µ 6 4.0 are tough and only a few methods can provide reliable disparity data
for some of their parts. As a result, obtained disparity maps are extremely sparse
having a density lower than 50%. Furthermore, some of their estimations can be very
inaccurate. It is eventually the reason why images having µ 6 4.0 are not used as
testing data in the most stereo approaches.

108 Chapter 5: Disparity from Stereo-segment Correspondences

Figure 5.3: Decrease in performance with decrease of image entropy for the most
efficient stereo matching methods shown on some images from the testing stereo
dataset.

5.3 DENSE DISPARITY FROM STEREO-SEGMENT SILHOUETTES 109

5.3 Dense disparity from stereo-segment silhouettes

The proposed method is based on the assumption that regional correspondences be-
tween stereo images provide additional and robust information about 3D structure
of the visual scene. This information can be used together with a sparse disparity
derived by any conventional stereo technique to obtain dense stereo information in
all image regions including weakly-textured ones. The block diagram of the method
is presented in Fig. 5.4.

The method takes a rectified stereo image as input. Disparity information is
estimated in relation to the left image, i.e., the left image is the reference image and the
right image is the matching image. Two disparity maps with different level of sparsity
η are obtained first for the input stereo pair by the phase-based stereo algorithm (see
Section 4.2.1 and step 1 in Fig. 5.4). This method runs in real-time and provides quite
reliable estimations even in textureless regions as compared to other stereo techniques
(see Fig. 5.3). The stereo pair is decomposed then into corresponding regions called
stereo segments (see step 2 in Fig. 5.4). Once stereo segments are extracted and
sparse disparity information is pre-computed, a map combining sparse disparity with
additional information from matched stereo regions can be built. We will call it
weighted initial disparity map. It includes sparse estimations from the map with the
lower sparsity (η = 0.4) and disparity values estimated for segment edges. Disparity
values from the sparse map that are close to the segment boundaries or located in
potential half-occlusions are excluded from the map. Potential half-occlusions are
detected by the use of the average line disparity computed for bunches of lines within
each segment. The average line disparity is also used for computation of edge disparity
mask used for exclusion of “imaginary edge disparity values” (see step 3 in Fig. 5.4).
Once the edge disparity map is ready (see step 4 in Fig. 5.4), the weighted initial
disparity map is created (see step 5 in Fig. 5.4). Due to the assumption that edge
values are more reliable than values from the binocular disparity, edge values receive
larger weights in the initial disparity map. On the last step the built weighted initial
disparity is used for the surface fitting and disparity recovery in each segment (see
step 6 in Fig. 5.4). In the next sections all steps are described in more detail.

5.3.1 Co-segmentation of stereo pairs

Since in the current study we are interested in the estimation of dense disparity for ev-
ery single object or its parts, input reference and matching images need to be divided
first into homogeneous regions, i.e., segments. Thereby a region-based segmentation
technique is needed. Furthermore, in order to extract an additional information from
segmented images useful for stereo, correspondences between found left and right
segments need to be established. To obtain correspondent left and right segments

110 Chapter 5: Disparity from Stereo-segment Correspondences

Figure 5.4: The proposed real-time dense stereo algorithm for weakly-textured images.
Numbers at arrows show the sequence of computations.

5.3 DENSE DISPARITY FROM STEREO-SEGMENT SILHOUETTES 111

Figure 5.5: Segmentation of a stereo pair. Numbers at arrows show the sequence of
computations. (A) Original left or reference image. (B) Original right or matching
image. (C) Disparity map estimated by the phase-based stereo technique. (D) Ex-
tracted segments for the left image after n1 = 10 and n2 = 10 Metropolis iterations.
(E) Label transfer from the left image to the right image. (F) Extracted segments
for the right image after n2 = 15 Metropolis iterations. (G) Convergence of the
Metropolis algorithm for both the left and right images.

we use the stereo segmentation technique based on the superparamagnetic clustering
of data performed by the parallel Metropolis on the GPU introduced in Chapter 2
and used for the segmentation of stereo video streams in Chapter 4. As was already
shown in the previous chapters, this method performs the real-time segmentation of
middle-size images without prior knowledge on the data (model-free).

The segmentation procedure for weakly-textured Plastic stereo pair (µ = 2.2)
from the Middlebury dataset is shown in Fig. 5.5. First the left image is segmented
completely by the parallel Metropolis algorithm with the short-cut (see Section 2.2.6)
and segments larger than a pre-defined threshold are extracted (see Fig. 5.5(A,D)).
In the meanwhile a sparse disparity map is obtained for the rectified stereo pair by
the phase-based stereo algorithm (see Fig. 5.5(A - C)). Since the current stereo pair
is poorly-textured, a consistency check in the stereo method runs with a pretty high
threshold (η = 1.0) giving so many disparity values as possible (see step 1 of Fig. 5.4).
It makes an estimated map almost dense containing estimations up to 85% of pixels
in unoccluded regions, i.e., those visible in the both left and right images. Pixels
that did not obtain a label initialization are given a label which is not occupied by
any of the found segments (see Fig. 5.5(E)). Once the right image is initialized, it

112 Chapter 5: Disparity from Stereo-segment Correspondences

needs to be adjusted to the current image data by the image segmentation core (see
Section 3.2). This adjustment is needed in order to fix erroneous bonds that can
occur during the warping of spins. The relaxation process runs until it converges and
only after that the final right segments consistent with left ones can be extracted
(see Fig. 5.5(F)). Since in the current chapter we are interested in stereo properties
of segments, segments which do not have correspondences in one of two images are
eliminated as well. Convergence of the relaxation process for the left and right images
as a function of the iteration number is shown in Fig. 5.5(G).

For segmentation of the reference image n1 = 10 and n2 = 10 iterations are
required, while n2 = 15 iterations are enough to reach the equilibrium state for
the matching image after the label warping. Therefore, 35 Metropolis iterations are
needed in total for segmentation of one stereo pair. Note that less iterations are needed
here as compared to the segmentation of stereo video streams (see Section 4.2.2). The
reason is that we deal here with only one single stereo pair without motion. Thus,
only spatial synchronization between left and right frames must be reached and there
is no temporal synchronization. For the relaxation process we use an on-line adaptive
simulated annealing (see Section 2.2.3) with the same schedule as for the segmentation
of monocular and stereo video streams presented in the previous chapters: the starting
temperature T0 = 1.0 and the simulated annealing factor γ = 0.999. Note that
longer annealing schedules can lead to better segmentation results (for example on
the border of the matching image where no label transfers are possible due to the
lack of information in the disparity map) but at the cost of processing time.

5.3.2 Average line disparity

Detection of potential half-occlusions (see Section 5.3.3) and exclusion of imaginary
segment boundaries (see Section 5.3.4) are done according to the pre-computed av-
erage line disparity map dA (see step 3 in Fig. 5.4). dA is computed for bunches of
lines within each segment based on the sparse disparity map with η = 0.4. The mean
value of sparse disparity values for a group of lines belonging to the segment S is
computed as

d =
1

NS

∑
di∈dη

δSi,S · di (5.4)

where NS is a number of pixels of the segment S in the current group of lines
having values in the sparse disparity map dη=0.4, and δSi,S is the Kronecker delta
producing 1 only if the current pixel i belongs to the segment S, i.e., Si = S, and 0
otherwise. The value d is assigned eventually to all pixels of the segment S within the
current group of lines. The average line disparity dA obtained for the sample stereo
pair Plastic is shown in Fig. 5.6(A - C).

Note that the computation of the average disparity based on windows sliding

5.3 DENSE DISPARITY FROM STEREO-SEGMENT SILHOUETTES 113

Figure 5.6: Computation of the average line and segment-edge disparities with the
occlusion map and the edge disparity mask for the Plastic stereo pair. Numbers at
arrows show the sequence of computations. (A) Sparse disparity map dη=0.4 esti-
mated by the phase-based stereo algorithm. (B) Spatially coherent left and right
segments. (C) Average line disparity map dA derived based on the found stereo seg-
ments and sparse disparity. (D) Approximate half-occlusion map. (E) Approximate
edge disparity mask. (F) Edge disparity map.

within each segment is naturally more correct, but working with sparse disparities
obtained for weakly-textured regions it is not really the case, since inaccuracies within
a window can be very dramatic leading to wrong reasonings about half-occlusions
and edges. You can see how inaccurate estimations could be in textureless areas in
Fig. 5.3 on sample images Cluttered scene and Plastic. Although estimations provided
by the phase-based technique are quite reliable, values at boundaries between poorly-
textured objects are very erroneous (see edges of the yellow box in Plastic image in
Fig. 5.6(A)).

5.3.3 Detecting half-occlusions

Due to the stereo vision geometry certain scene points are visible only in one view
of the stereo pair. As a result, no stereo correspondences can be found for these
points. Areas formed by such points are called half-occlusions, the image of half-

114 Chapter 5: Disparity from Stereo-segment Correspondences

occlusions is the half-occlusion map. Half-occlusions usually occur around object
edges and other scene discontinuities. These points are of high importance for the
stereo vision, since they can aid in the matching process. There are five major ap-
proaches for half-occlusion reasoning: Bimodality (Wildes, 1991), Match Goodness
Jumps (Anderson and Nakayama, 1994), Left-Right Checking (Trapp et al., 1998),
Ordering (Belhumeur, 1996), and Occlusion constraint (Geiger et al., 1995). However,
none of these approaches is superior and each technique has its pros and cons (Egnal
and Wildes, 2002).

The purpose of the half-occlusion map in this work is to determine pixels whose
disparity values taken from the sparse map should not appear on the final surface
fitting step (see step 3 in Fig. 5.4). The half-occlusion map marks these pixels and
removes them from the weighted initial disparity map. For detection of half-occlusions
we use the ordering constraints approach operating on the level of segments. Since
the left image is considered in this work as the reference image, half-occlusions can
occur only at left object borders if an object on the left side from the border is further
away, i.e., has lower disparity values, than an object on the right side from the border.
Half-occlusions for a synthetic stereo pair containing some objects located on the table
are shown in Fig. 5.7(A,B). Pixels belonging to the half-occlusions are marked by red
there. These pixels are not visible in the correspondent right image, thereby no stereo
matchings can be obtained for them.

Suppose a stereo pair is segmented (see Fig. 5.6(B)) and an average line disparity
is computed (see Fig. 5.6(C)). Similar to the computation of the average line disparity
map, we compute a half-occlusion map considering groups of lines. For example, in
the case of two neighboring segments Si and Sj (see Fig. 5.7(C)), where the segment
Sj is located on the left side from their mutual border, pixels, potentially occluded
by the segment Si in the right image, can be determined as follows. For all pixels
k ∈ Sj such that k ∈ Nl, where Nl is the close neighborhood along the x-axis to the
left of pixel i (see Fig. 5.7(C)), an occlusion mask O is defined according to

Ok = θ(dSi − dSj − τ) (5.5)

where θ is a step function defined as

θ(n) =

{
1 if n > 0,
0 if n 6 0.

. (5.6)

A number of neighboring pixels in Nl considered as half-occlusions is a system
parameter and needs to be tuned according to the currently used stereo setup. dSi
and dSj are average line disparity values of segments Si and Sj, respectively, computed
according to (5.4), τ is a threshold for the minimum disparity difference between two
segments. In most cases τ = 5 provides quite accurate results (see Fig. 5.6(D)).
However, even employment of τ cannot avoid some inaccuracies in the average line
disparity causing erroneous half-occlusions (see the junction of two sides of the yellow

5.3 DENSE DISPARITY FROM STEREO-SEGMENT SILHOUETTES 115

Figure 5.7: Registration of half-occlusions and imaginary object edges shown on a
synthetic image. (A) Top view of the scene. (B) Left image of a stereo pair with
marked half-occlusions. (C) Detection of half-occlusions and imaginary segment edges
caused by the segment Si. (D) Found left segments where imaginary object edges are
shown in black.

box). But it is not a big problem for the method, since disparity values excluded due
to occasionally detected half-occlusions will be recovered on the surface fitting stage.
It is much more important to eliminate disparity values from the real half-occlusions.

5.3.4 Edge disparity

Stereo-segment silhouettes correspondences provide important additional information
about depth. Given two corresponding segments, disparities of segment-silhouette
points can be found as long as the pixel does not belong to a segment boundary
oriented parallel to x-axis, i.e., the scanline. A pixel i having a segment label Si and
position xi is considered to be a left segment boundary pixel il if there is no pixel j
that xj < xi ∧ Sj = Si. A pixel i with segment label Si is considered to be a right
segment boundary pixel ir if there is no pixel j that xj > xi ∧ Sj = Si.

For each scanline and for each segment we find the boundary pixels il and ir in
the left image and the boundary pixels jl and jr in the right image. The left and
right edge disparity values are then defined as

dlE = il − jl, drE = ir − jr, (5.7)

and merged into the edge disparity map dE. However, it can contain information
about so called imaginary edges which are not necessarily object borders and need to
be excluded from the edge disparity map. What is meant by imaginary edges we will
explain again on the synthetic images shown in Fig. 5.7. Here the original left frame
(see Fig. 5.7(B)) is segmented (see Fig. 5.7(D)) and every object is represented by a
segment. In the image segmentation result each border between two regions consists
of two edges: one from each segment. But if two objects are not close to each other,
only edge of the segment in front corresponds obviously to the real object border,
while we cannot say anything about the edge of the segment behind (see for instance
the border between the red and green objects). In Fig. 5.7(D) all imaginary borders

116 Chapter 5: Disparity from Stereo-segment Correspondences

Figure 5.8: Formation of the weighted initial disparity map for the Plastic stereo pair.
(A) Extracted left segments and sparse disparity map (η = 0.4) estimated for the left
image. (B) Half-occlusion map and marked disparity outliers. (C) Inner disparity
map. (D) Edge disparity map. (E) Measurement errors associated with edge and
inner disparities. (F) Initial disparity map used for the surface fitting.

are marked by black. Image areas that can potentially contain imaginary edges are
determined similar to the half-occlusions based on the average line disparity with
the difference that imaginary edges can occur at both left and right object borders.
Therefore, the close neighborhood Nr along the x-axis to the right of border pixels
needs to be considered as well (see Fig. 5.7(D)). The edge disparity map dE computed
for the Plastic stereo pair is shown in Fig. 5.6(F).

5.3.5 Initial disparity

The initial disparity map combines the results obtained from all previous computa-
tional steps and can be used for the surface fitting (see step 5 in Fig. 5.4). The whole
procedure is shown in Fig. 5.8 for the Plastic stereo pair. A disparity map contain-
ing values taken from the sparse disparity map (η = 0.4) for each segment avoiding
half-occlusions and outliers we call the inner disparity map (see Fig. 5.8(A-C)). As
outliers we consider disparity values that are too close to segment boundaries. Note
that the inner and edge disparity maps are created independently of each other.

Finally the inner and edge disparity maps are combined into the weighted initial
disparity map. Due to the assumption that edge disparity values are more reliable
than inner disparity, edge values are featured in the initial disparity map by lower
measurement error as compared to inner values (see Fig. 5.8(C-E)). The measurement

5.3 DENSE DISPARITY FROM STEREO-SEGMENT SILHOUETTES 117

errors for edge disparity and inner disparity values are set to the values ϑ = 0.3 and
ϑ = 1.0, respectively.

5.3.6 Surface fitting

The created weighted initial disparity map is a sparse set of N data points (xi, yi, zi),
i = 1, . . . , N (see Fig. 5.8(F)). The goal of the surface fitting (see step 6 in Fig. 5.4)
is to fit a set of data points to a pre-defined surface model. Fitting of range data
to surface models is a well-known approach used for various tasks in computer vi-
sion (Besl and Jain, 1988; Bab-Hadiashar and Gheissari, 2006; Dellen et al., 2011).
In this work we fit a sparse set of data points within each segment to a surface model.
The resulting fitted model is used to compute unavailable disparity values and to fix
erroneous estimations from the inner disparity map.

Surface types

In the current work we use two types of surfaces as surface models: planes and a
general quadratic function which describes many kinds of curved surfaces including
cylinders, cones, and spheres. Planar surfaces are described by three parameters a1,
a2, and a3, where the disparity z can be expressed as a function of x and y through:

z = a1x+ a2y + a3. (5.8)

Curved surfaces are described by five parameters a1, a2, a3, a4, and a5, where the
disparity z can be expressed as a function of x and y through:

z = a1x
2 + a2y

2 + a3x+ a4y + a5. (5.9)

The general form of these surface models is a polynomial

z(x, y) =
M∑
k=1

ak · ϕk(x, y), (5.10)

where ϕ1(x, y), . . . , ϕM(x, y) are arbitrary fixed functions of x and y, called the
basis functions. To solve the surface fitting problem parameters ak for which the model
function z(x, y) looks like the data need to be determined. Once model parameters
for each segment are known, disparity values can be easily computed for all segment
pixels. To determine which parameter vectors give the best fit to the data for both
surface models we use the linear least squares fitting and fitting based on the Nelder-
Mead simplex algorithm due to their high time performance as compared to other
optimization techniques.

118 Chapter 5: Disparity from Stereo-segment Correspondences

Linear least squares

The basis functions ϕk(x, y) in (5.10) can be nonlinear functions of x and y, while
the dependence of the model on its parameters ak is linear. Therefore, “linear” refers
only to the model’s dependence on its parameters ak. The model parameters can be
found by the minimization of the merit function

χ2 =
N∑
i=1

[
zi(xi, yi)−

∑M
k=1 ak · ϕk(xi, yi)
ϑi

]2

, (5.11)

where N is the number of measurements, zi are disparity estimations taken from
the weighted initial disparity map, and ϑi is the measurement error of the i-th data
point, supposed to be known (see Fig. 5.8(E)). Parameters that minimize χ2 are
picked as the best model parameters. There are several approaches for finding this
minimum. In the current work we use the normal equations technique due to its
high time performance. The solution by use of the normal equations is given in
Appendix A.2.

Nelder-Mead

The Nelder-Mead method or downhill simplex method minimizes an objective func-
tion (see (5.10)) in a multidimensional search space without the need for calculating
derivatives. The method requires only function evaluations which makes it quite fast.
The method uses a multidimensional shape called a simplex. At every iteration all
simplex vertices are ordered according to the values at each test point:

z(x1, y1) 6 z(x2, y2) 6 . . . 6 z(xN+1, yN+1). (5.12)

With each iteration the simplex moves through the search space in a predefined
manner and replaces its worst vertex with a vertex which is better than any of its other
vertices. The new point is found using a set of pre-defined steps (see Appendix A.3).
After some iterations the method is guaranteed to find a minimum. The problem
of the Nelder-Mead method as compared to other optimization techniques is that it
usually finds a local minimum instead of the global minimum. It can be overcome by
choosing the correct size for the starting simplex so that local minima are skipped.

5.4 Experimental results

5.4.1 Proposed method

Disparity maps, estimated using the proposed stereo algorithm for some weakly-
textured images (µ 6 4.0) from the testing stereo dataset are shown in Fig. 5.9.
The results have been obtained for the planar and curved surface models using both

5.4 EXPERIMENTAL RESULTS 119

the linear least squares (LSQ) and Nelder-Mead simplex algorithm (NMD) for the
surface fitting. For each output the RMS error value (for stereo pairs having ground
truth data) or RMS warping error value (for stereo pairs without ground truth) is
given with the percentage of found matchings. None of the four versions (LSQ with
the planar surface model (LSQ planar), LSQ with the curved surface model (LSQ
quadric), NMD with the planar surface model (NMD planar), and NMD with the
curved surface model (NMD quadric)) is superior and the quality of the final disparity
map depends to a high degree on the concrete scene, i.e., objects and their shapes.

LSQ planar produces the best results for images Breakfast (µ = 2.3), Lampshade
(µ = 2.9), and Box (µ = 3.9), LSQ quadric has the lowest error values for images
Bowling (µ = 3.9) and Table (µ = 3.9), NMD planar has the highest score on image
Plastic (µ = 2.2), while NMD quadric performs best on image Baby (µ = 3.9). The
surface fitting using the planar model gives better results for images featured by a
large number of plane surfaces like Breakfast, Lampshade, Box, and Plastic. Quadric
surfaces can be recovered with a curved surface model (see the big white pillow in
Lampshade image, the book in Baby image, the green ball and the white bowling pin
in Bowling image). Furthermore, the quadric model allows deriving the curvature
(see the green plate in Breakfast image). However, in some cases fitting of curved
surfaces can lead to dramatic inaccuracies in final disparity maps (see for example
the background in Plastic image given by LSQ quadric, the yellow box in Plastic image
given by NMD quadric, the background in Lampshade image given by NMD quadric,
and the white plate in Table image given by LSQ quadric), because more surface
parameters need to be computed as compared to the planar case. The inaccuracies
in the final disparity maps are largely caused by objects with extremely low texture
(see the backgrounds in Lampshade and Box images and the floor and the background
in Table image). The problem is that estimations in the sparse disparity map dη=0.4

propagate out from more textured objects and their borders in front to less textured
objects in the background and even removal of outliers (see Section 5.3.5) in the initial
disparity map cannot prevent that.

The number of found pixels is about the same for all modes, since it depends on
the found segments and is independent of the minimization technique or the chosen
surface model. The more pixels in the image are covered by segments, the more dense
the final disparity map is. Also note that for some pixels at the left image border no
estimations can be made, since the left image is the reference image and those pixels
are not visible in the right image, i.e., the matching image, due to the stereo shift.
Stereo pairs in the used database have different baselines which results in various
stereo shifts. For example shifts in the Middlebury stereo pairs are larger than in the
rest of the dataset.

The quantitative comparison of four versions of the proposed stereo algorithm is
presented in Fig. 5.10. Again, evaluations obtained for stereo pairs from the Middle-
bury dataset are shown separately from the rest because of differences in the quality
measures of computed disparity maps (see Section 5.2.2). We can see that the al-

120 Chapter 5: Disparity from Stereo-segment Correspondences

Figure 5.9: Results of the proposed algorithm for weakly-textured stereo pairs.

5.4 EXPERIMENTAL RESULTS 121

gorithm performances on the Middlebury images and on the rest of the dataset are
different. On the Middlebury images NMD planar performs best (see Fig. 5.10(A)),
while on other images LSQ quadric and NMD quadric have the highest scores (see
Fig. 5.10(C)). The reason is that the other images contain more curved objects than
the Middlebury dataset. Hence, modes using the curved surface model produce more
precise outputs. Also for the considered two classes of images we observe different
behaviors on images with sufficient texture (µ > 4.5). For stereo pairs from the Mid-
dlebury dataset the RMS error values decrease, whereas the RMS warping error values
for the rest of the dataset increase. It happens because of various texture natures in
both image groups. As was already mentioned in Section 5.2.2, the texture in the
most Middlebury images is caused by many tiny objects or differently looking object
parts which leads to more precise estimations in the sparse disparity map dη=0.4. In
the rest of the dataset texture is caused mostly by changes in lighting which leads to
high entropy values but does not give more clues for estimation of sparse disparity.

5.4.2 Comparison to conventional techniques

We compare the proposed stereo algorithm with the conventional stereo approaches
from Section 5.2.2 in Fig. 5.11. For both the Middlebury images and the rest of
the dataset only the performance of the best mode is shown: NMD planar for the
former and LSQ quadric for the latter. For the weakly-textured Middlebury images
(µ 6 4.0) the proposed algorithm finds matchings for about 85% of pixels having
the RMS value significantly lower than other techniques (see Fig. 5.11(A,B)). Even
though the phase-based and BM techniques are featured by quite low RMS error
values, their disparity maps are much sparser producing less than 65% of matchings
for images with µ < 3.0 and less than 75% of matchings for images with µ 6 4.0. For
weakly-textured images from the rest of the dataset a number of techniques produce
more precise disparities than the proposed approach, but all of them contain less
than 65% of matchings for images with µ < 3.0 and less than 75% of matchings for
images with µ 6 4.0. The proposed approach, on the contrary, produces about 85%
of matchings for images with µ < 3.0 and about 75% for images with µ 6 4.0.

Disparity maps estimated by the BM, Swap, and phase-based techniques, having
on the Middlebury stereo pairs the highest scores among all the considered conven-
tional methods (see Fig. 5.11(A)), are compared to the results of the proposed method
in Fig. 5.12 for Plastic (µ = 2.2), Lampshade (µ = 2.9), Baby (µ = 3.9), and Bowling
(µ = 3.9). For each output the RMS error value is given together with the per-
centage of found matchings. Although disparity maps given by the BM technique
are extremely sparse, the available estimations are quite precise. So the BM has the
highest score for the image Bowling. The maps produced by the Swap algorithm
are featured by a very high density (giving even about 98% of matchings for images
Lampshade, Baby, and Bowling), but they have the highest RMS error values among
all four techniques. The outputs of the phase-based algorithm are quite sparse but

122 Chapter 5: Disparity from Stereo-segment Correspondences

Figure 5.10: Performance of the proposed stereo algorithm as a function of image en-
tropy shown for planar and curved surfaces using the linear least squares and Nelder-
Mead optimization techniques. (A) RMS error based on known ground truth data
for images from the Middlebury stereo dataset. (B) Percentage of pixels with found
stereo matchings for images from the Middlebury stereo dataset. (C) RMS warping
error for stereo pairs without ground truth data. (D) Percentage of rendered pixels
for stereo pairs without ground truth data.

5.4 EXPERIMENTAL RESULTS 123

Figure 5.11: Comparison of the proposed approach with the conventional stereo algo-
rithms as a function of image entropy. (A) RMS error based on known ground truth
data for images from the Middlebury stereo dataset. (B) Percentage of pixels with
found stereo matchings for images from the Middlebury stereo dataset. (C) RMS
warping error for stereo pairs without ground truth data. (D) Percentage of rendered
pixels for stereo pairs without ground truth data.

124 Chapter 5: Disparity from Stereo-segment Correspondences

Figure 5.12: Disparities for weakly-textured stereo pairs selected from the Middlebury
stereo dataset estimated by the block matching (BM), swap-move (Swap), phase-
based, and proposed stereo techniques with given RMS error values and percentage
of found matchings.

on the other hand produce the most accurate results for images Plastic and Lamp-
shade. However, the sparsity of estimations and their instability at object borders
(especially at borders of weakly-textured areas (see image Plastic)) are the major
drawback. The proposed method, producing about 85− 90% of matchings and hav-
ing quite low RMS error values (with the best score on Baby image), seems to be an
ideal trade-off between precision and density.

The disparity maps estimated by the BM, ICM, and TRW-S techniques, having
the highest scores among all the considered conventional methods on the rest of the
dataset (see Fig. 5.11(C)), are compared to the output of the proposed method in
Fig. 5.13. The results are shown for images Breakfast (µ = 2.3), Box (µ = 3.9),
and Table (µ = 3.9). For each output the RMS warping error value is given with a
percentage of found matchings. The disparity maps produced by the BM are again
very sparse and partially quite erroneous. But at the average available estimations

5.5 TIME PERFORMANCE 125

Figure 5.13: Disparities for weakly-textured stereo pairs selected from the testing
stereo dataset estimated by the block matching (BM), iterated conditional mode
(ICM), sequential tree-reweighted message passing (TRW-S), and proposed stereo
techniques with given RMS warping error values and percentage of found matchings.

are still quite accurate. The ICM technique, having the poorest performance on
the weakly-textured Middlebury images, has the lowest RMS warping error among
all four techniques. Although the final disparity maps given by the ICM look quite
disordered, they contain a large number of correct matchings. As compared to the BM
and ICM approaches, the TRW-S technique produces more dense disparity maps but
with less accuracy. The sparsity of estimations given by the BM, ICM, and TRW-S
techniques and their instability at object borders (especially at borders of weakly-
textured areas) make the usage of such maps in robotic applications problematic.
The proposed method, producing about 77− 90% of matchings and having quite low
RMS warping error values (with the best score on Breakfast image), again seems to
be an ideal trade-off between precision and density.

5.5 Time performance

The processing times obtained for the segmentation of an input stereo pair and the
disparity estimation from stereo-segment correspondences (see Section 5.3) are given

126 Chapter 5: Disparity from Stereo-segment Correspondences

in Table 5.1 for image resolutions of 160× 128, 320× 256, and 640× 512 pixels. The
total processing times with frame rates are shown in Table 5.2. The computation
times and frame rates have been measured by processing all images from the used
stereo dataset and averaging the results using the following experimental environment:
CPU 3.40 GHz Intel(R) Core(TM) i-2600S (using a single core) with 15.6 GB RAM
and GPU Ge Force GT 580 (with 1.5 GB device memory) consisting of 16 Ms each
having 32 cores, so 512 processor cores in total.

Processing time (ms)

Algorithmic step 160× 128 (px) 320× 256 (px) 640× 512 (px)

Segmentation 15.8 55.8 179.0
LSQ planar 1.4 11.3 46.9
LSQ quadric 1.5 11.5 47.8
NMD planar 12.3 175.4 591.5
NMD quadric 13.5 189.4 681.7

Table 5.1: Processing times of the proposed stereo algorithm for the segmentation
and disparity estimation obtained for planar and curved surfaces using both the least
squares and Nelder-Mead optimization techniques..

For image size of 160×128 pixels the real-time performance is obtained for all four
algorithmic modes (planar and curved surface models using both the least squares
and Nelder-Mead optimization techniques). The choice of the surface model does not
affect the runtime much and finding the parameters of curved surfaces (see (5.9))
takes only a bit longer as compared to planar surfaces (see (5.8)) for both function
minimization techniques. The choice of the optimization technique influences the
runtime quite a lot. As we can see, the Nelder-Mead simplex algorithm needs much
more time to find a minimum as opposed to the least squares. For an image size of
320 × 256 pixels we obtained the frame rate of about 14 fps and 4 fps for the least
squares method and Nelder-Mead method, respectively.

The most time consuming step in LSQ planar and LSQ quadric modes is the
segmentation of a stereo pair requiring more than 80% of the processing time. Also
note that the left and right images are segmented sequentially which means that
the relaxation procedure for the right image can start only when the left image is
completely segmented (see Section 5.3.1). In NMD planar and NMD quadric modes
the approximation by the Nelder-Mead simplex algorithm is the bottleneck taking
more than 70% of the runtime for image sizes of 320× 256 and 640× 512 pixels.

In the current study we do not compare the time performance of the proposed
stereo algorithm with the considered conventional approaches due to the following
reason. None of those methods can handle weakly-textured images (µ 6 4.0) better

5.6 DISCUSSION 127

total (ms) / frames per second

Techniques 160× 128 (px) 320× 256 (px) 640× 512 (px)

LSQ planar 17.2 / 58.1 67.1 / 14.9 225.9 / 4.4
LSQ quadric 17.3 / 57.8 67.3 / 14.9 226.8 / 4.4
NMD planar 28.1 / 35.6 231.2 / 4.3 770.5 / 1.3
NMD quadric 29.3 / 34.1 245.2 / 4.1 860.7 / 1.2

Table 5.2: Total computation times obtained for planar and curved surfaces using
both the least squares and Nelder-Mead optimization techniques.

in terms of the both estimation accuracy and density. Due to this reason it is not
important whether they are faster or slower, since they do not solve the problem that
our approach is aimed to. Among all implementations of the considered conventional
stereo techniques used in this chapter, only the phase-based and BM techniques run
in real-time, while other methods are much slower and require some seconds to pro-
cess one stereo pair. However, real-time implementations of BP are also currently
available (Brunton et al., 2006; Yang et al., 2006).

5.6 Discussion

In this chapter we presented a new stereo approach aimed at the recovery of disparity
information in weakly-textured images. For the texture quantification we used an
entropy calculation on the grayscale image. We classified input images having the
entropy value µ 6 4.0 as weakly-textured (see Section 5.2.1 for details). Conventional
stereo approaches, such as block matching, iterated conditional mode, graph cuts, tree-
reweighted message passing, belief propagation, and phase-based, have been used for
comparison with the proposed technique. Due to the fact that most of the images
in the Middlebury dataset contain texture (having the entropy value µ > 4.0), we
extended the Middlebury dataset by images having a little texture (µ 6 4.0) which
is required for a fair evaluation of stereo methods.

The proposed method is based on the co-segmentation of an input stereo pair
which establishes correspondences between segments in the left and right image. The
co-segmentation of stereo images is based on the real-time segmentation algorithm
based on the Metropolis updates with the short-cut introduced in Chapter 2. In order
to assign disparity values to all pixels of found stereo segments, the algorithm tries to
find the most suitable surface for each segment. An initial disparity map consisting
of sparse disparity values, estimated by the real-time phase-based technique, and an
additional stereo data provided by segment correspondences between the left and

128 Chapter 5: Disparity from Stereo-segment Correspondences

right image are used as input values for the surface approximation. Outliers, such
as disparity values which are too close to segment boundaries or located in potential
half-occlusions, are eliminated from the initial disparity map before the surface fitting
step (see Section 5.3.5). We investigated the least squares and Nelder-Mead simplex
optimization techniques for the surface approximation using the planar and curved
surface models.

The experiments have shown that the proposed stereo algorithm represents an
ideal trade-off between precision and density for images with µ 6 4.0. In weakly-
textured environments it produces quite accurate estimations with 80 − 90% and
75− 90% density of matches for the Middlebury images and the rest of the dataset,
respectively. The block matching and phase-based techniques, having a similar accu-
racy on the Middlebury images, are much sparser. Other conventional methods are
outperformed by the proposed algorithm on this data. On the rest of the dataset,
the iterated conditional mode, tree-reweighted message passing, block matching, belief
propagation, and phase-based approaches are featured by a higher precision but pro-
duce much less matchings as opposed to the introduced method. Despite the high
accuracy of some conventional techniques, the sparsity of estimations and their in-
stability at object borders in weakly-textured areas make the usage of such disparity
maps in robotic applications very limited. Our method, on the contrary, gives a dense
disparity map for each object or object part (identified as a segment on the segmen-
tation stage) together with the model describing its surface. Note that although our
algorithm produces quite accurate disparity maps for images with µ > 4.0 as well,
traditional approaches are more efficient in sufficiently textured regions producing
more accurate and dense results.

For the frame size of 160× 128 pixels we achieved a processing time adequate for
many real-time robotic applications using both the least squares and Nelder-Mead
optimization techniques with planar and curved surface models. For a frame size of
320× 256 pixels the real-time performance was obtained only for the approximation
with the least squares, while the Nelder-Mead algorithm required much more time
for finding a minimum. For the frame size of 640× 512 pixels the algorithm can still
process a few frames per second for all four modes. This is not sufficient in terms
of the real-time cognitive vision system but still can be employed by applications
having lower demands on the processing time. The presented stereo algorithm has
the following limitations:

1. The method depends on the co-segmentation of stereo pairs, the final disparity
maps can drastically suffer from inconsistent stereo segments.

2. Computed disparity values based on surface fitting can be quite inaccurate for
objects or object parts which are homogeneous in terms of the color but consist
of various surfaces, e.g., it can happen in image Plastic shown in Fig. 5.9 if all
yellow objects featured by different plane surfaces, are identified by one segment.

5.6 DISCUSSION 129

3. The performance of the method is very poor for objects with extremely low
texture (µ < 1.0). For such objects only a few estimations are available in
the sparse disparity map which are not enough for approximation of segment
surfaces.

The listed limitations will be addressed in the future work, especially the first two
points. Unfortunately, passive stereo techniques, considered in this chapter, cannot
recover disparity information in extremely untextured regions, and it is worth to
employ active methods for depth data acquisition in robotic applications operating
on scenes having µ < 1.0.

130 Chapter 5: Disparity from Stereo-segment Correspondences

6
Depth-supported Real-time Video

Segmentation with the Kinect

“Jet engines may not be how nature
did it, but it works - and does so far
better than flapping wings”

– Jeff Hawkins

6.1 Introduction

Video segmentation aims at representing image sequences through homogeneous re-
gions (segments), where according to the spatio-temporal coherence the same object
or object part should carry the same unique label along the whole video stream (see
Chapter 3). The segmented visual data can be used for higher-level vision tasks which
require spatial and temporal relations between objects to be established (Kjellström
et al., 2011; Rao et al., 2010; Aksoy et al., 2011). The major challenges faced in the
video segmentation problem are processing time, temporal coherence, and robustness.

The conventional video segmentation techniques considered in Section 3.1 as well
as the proposed real-time approach are based on color cues alone. Only color informa-
tion is incorporated into the computation of interaction strengths in the segmentation
core leading to the formation of segments (see Section 2.2.1). In the current chapter,
we will show that the inclusion of depth information improves the video segmenta-
tion results. We extend the framework for segmentation of monocular videos (see
Section 3.2) by including depth information into the segmentation core. The spatio-
temporal synchronization along the video stream is achieved through the label transfer
from one frame to the next using warping based on both the real-time optical flow
(see Section 3.2.2) and the depth information. This way improves the efficiency of
the method significantly and allows a soft tracking of segments to be carried out.

There are various ways how scene depth can be obtained. We distinguish passive
methods and active methods. The most well-known passive approach is stereo vision

131

132 Chapter 6: Depth-supported Real-time Video Segmentation with the Kinect

Figure 6.1: (A) The Kinect device. (B) Original frame acquired by RGB camera. (C)
Depth data derived from IR image (in meters). White patches in the image denote
pixels for which no depth information can be acquired. (D) Color pixels having depth
values.

which is least expensive and widely used (Scharstein and Szeliski, 2002). An overview
of existing stereo methods was given in Section 5.1.1. Despite significant progress
made over last few years in the domain of stereo vision, the fundamental problems
of all stereo approaches such as occlusion, lack of texture, and repetitive patterns
remain unsolved. Typical sensors are the time-of-flight (ToF) sensors, 3D scanning,
structured coded light approaches. Active approaches provide real-time or close to
real-time depth estimates under conditions where passive stereo techniques do not
work well, for example on white walls (Chen et al., 2008). However, the sensors
are noisy and perform poorly on the textured scenes where stereo is very robust.
Furthermore, passive techniques perform badly or do not work at all outdoors because
of the light interference.

The Microsoft Kinect device, released in the fall of 2010 for the XBox videogame
platform 1, is an active approach which is used in this study for depth acquisition.
Since the current work is aimed at robots operating indoors and manipulating weakly-
textured objects, the mentioned drawbacks of active methods are not crucial and the
Kinect, producing input images coupled with depth data for resolution of 640× 480
pixels in real-time, seems to be a perfect solution for our task. The new device has
immediately attracted the attention of the computer vision society because of its
technical capabilities and its very low cost compared to ToF sensors. The Kinect
device features an IR projector for generating infrared images and two cameras: an
RGB camera for capturing color images and an IR camera for capturing infrared
images under various light conditions (see Fig. 6.1(A)). The IR camera is based on a
monochrome CMOS sensor used in some ToF cameras (Zhu et al., 2011). However,
some ToF cameras can work outdoors, while the Kinect’s depth sensor performs
well only in shady regions being useless in sunlight, since the IR structured lighting
pattern, emitted by the projector, gets completely lost in ambient IR light. For indoor
environments the Microsoft Kinect proves to be an inexpensive and suitable device
for acquiring depth/color videos in real-time.

1Kinect for XBox 360: http://www.xbox.com/en-US/kinect

6.2 DEPTH-SUPPORTED VIDEO SEGMENTATION 133

However, it needs to be considered that indoors the depth data obtained by the
Kinect can suffer from the following side effects: multiple or glossy reflection, ambient
light, light absorption by objects in the scene, object boundaries. Some of mentioned
side effects are shown in Fig. 6.1(B,C); see white patches in panel C. The depth data
cannot be derived at all for a glass (multiple reflections), a light blue box on the table
(light absorption) and some object boundaries (color differences). A bit better data
can be obtained for a bottle of frosted glass that has less reflections. Note that the
RGB camera has a larger angle of view than the IR camera, it is the reason why
depth cannot be derived for pixels located close to image borders (see Fig. 6.1(D)).
Furthermore, in order to relate color and depth images a calibration of the Kinect is
required (see Appendix A.4).

In this chapter we present a novel real-time video segmentation algorithm based
on the superparamagnetic clustering of data which performs fusion of image and
range data acquired by the Kinect device. To our knowledge, the presented ap-
proach is the first method combining both depth and color information derived di-
rectly from the Kinect device for the on-line, dense, and automatic segmentation of
video streams (Abramov et al., 2012a).

The chapter is organized in the following way. First we present a real-time video
segmentation technique based on the parallel Metropolis algorithm introduced in
Chapters 2 and 3 supplemented by the depth information. Then we present exper-
imental results and time performance of the method. Finally we discuss our results
and conclude the chapter.

6.2 Depth-supported video segmentation

The presented in the current chapter depth-supported real-time video segmentation
is based on the segmentation core used for segmentation of monocular video streams
in Chapter 3. Depth information is incorporated into the Potts model and into the
label transfer procedure in a manner which is consistent with the color information,
giving an additional cue for segmentation. The inclusion of depth provides important
additional information about object boundaries which improves video segmentation.

6.2.1 Extended image segmentation core

In order to employ depth information for segmentation of video streams, the segmen-
tation core needs to be extended by depth data. In the parallel Metropolis algorithm
for image segmentation (see Section 2.2.1), interaction strengths between adjacent
pixels, leading to formation of segments, take only color information into account
(see 2.5).

Depth information, produced by the Kinect device and available for each video
frame, is incorporated into the considered image segmentation technique applying

134 Chapter 6: Depth-supported Real-time Video Segmentation with the Kinect

Figure 6.2: Color differences for the 8-connectivity case in the CIE (L∗a∗b∗) color
space. (A) Original frame. (B) Depth data (in meters). (C - F) Matrices with coupling
constants computed for horizontal, left diagonal, vertical and right diagonal directions
(here τ = 30 cm). Note that only coupling constants leading to the formation of
segments are shown (J < 0).

constraints to interaction ranges of pixels. Thus, the depth data acquired along with
the color image (see Fig. 6.2(A,B)) is used to prevent interactions between pixels
having a large range difference. This is done by replacing all interaction strengths
Jij (see (2.5) in Section 2.2.1 between pixels having a depth difference larger than a
pre-defined threshold τ with the very low value Θ = −5.0 according to

Jij =

{
Jij if |zi − zj| 6 τ,
Θ otherwise.

, (6.1)

where zi and zj are range values of pixels i and j, respectively. Matrices containing
color differences involved in the formation of segments under the introduced constraint
are shown in Fig. 6.2(C - F). Excluded interactions, marked by dark red, prevent
in most cases neighboring pixels to be assigned to the same segment. This way
segmentation of 2D images is supported by 3D data and merges of similar looking
objects or object parts are prevented.

6.2.2 Linking of segments

An estimated optical flow vector field for two adjacent frames t and t + 1 from a
test video stream is shown in Fig. 6.3(A - C). Having segments with correspondent
average range values for a time step t (see Fig. 6.3(D)) and estimated optical flow
vector field, labels of segments St are transferred to frame t + 1 excluding transfers
between pixels having a range difference larger than a pre-defined threshold τ (see

6.2 DEPTH-SUPPORTED VIDEO SEGMENTATION 135

Figure 6.3: Segmentation of two adjacent frames in a sequence. Numbers at arrows
show the sequence of computations. (A,B) Kinect data acquired at time steps t and
t+ 1, respectively. (C) Estimated optical flow vector field (sub-sampled 11 times and
scaled 10 times) (step 1). (D) Extracted segments St with correspondent average
range values z (step 1). (E) Initialization of frame t+ 1 after the label transfer from
frame t (step 2). (F) Extracted segments St+1 (step 3).

Fig. 6.3(E)). We obtain

St+1(xt+1, yt+1) =

{
St(xt, yt) if λ 6 τ,

0 otherwise.
, (6.2)

λ = |zt+1(xt+1, yt+1)− zt(xt, yt)|,
xt+1 = xt + vx(xt, yt),

yt+1 = yt + vy(xt, yt),

(6.3)

where z is a range data obtained from the Kinect and v = (vx, vy)
T is the optical flow

vector. Label transfers between segments having large range differences are excluded
as well, which yields:

St+1(xt+1, yt+1) = 0 if ξ > τ, (6.4)

ξ = |zt+1(xt+1, yt+1)− zt(xt, yt)|, (6.5)

and z is a matrix containing average range values for each segment (see Fig. 6.3(D)).
Spin variables of pixels without correspondences are initialized by labels which are
not occupied by any of the found segments (see Fig. 6.3(E)). Once frame t + 1 is

136 Chapter 6: Depth-supported Real-time Video Segmentation with the Kinect

initialized, it needs to be adjusted to the current image and depth data is required
by the extended image segmentation core (see Section 6.2.1). This adjustment is
needed in order to fix erroneous bonds which can take place during the transfer of
spin states from frame t. The relaxation process performed by the extended image
segmentation core runs until convergence and only after that the final segments can
be extracted (see Fig. 6.3(F) where corresponding segments between frames t and t+1
are labeled with identical colors). Only segments larger than a pre-defined minimum
size are extracted, thereby small segments at borders of the blue cup and at edges
of the big blue box formed due to reflections and changes in contrast are excluded
(see Fig. 6.3(D,F)). The use of range data allows us to distinguish between objects
having very similar color values like between the white moving object and the wall
and between the blue cup and the big blue box (see Fig. 6.2(A,B)).

6.3 Experimental results

In this section we present results of our method obtained for several depth/color videos
acquired with the Kinect showing human manipulations of objects. The method
is compared here with another state-of-the-art video segmentation technique. Our
approach is evaluated in terms of the quality of the segmentation, coherence of the
video segmentation, and computational speed. Again, both the quantitative and
qualitative evaluations, introduced in Section 3.3, are needed to judge and compare
video segmentation results.

Qualitative evaluation

Video segmentation results obtained in the CIE (L∗a∗b∗) color space for the test
sequence “Moving an object” without and with support of the depth data are shown
in Fig. 6.4. The first and second rows show the original color frames and estimated
optical flow for a few selected frames. The third row shows results obtained without
usage of the range data, i.e., produced by the framework proposed in Section 3.2.
We can see that video segmentation fails for fast moving objects. As was already
mentioned in the previous chapters, the optical flow method has a limit of 2 pixels
per scale, so using 4 scales, the limit is 24 = 16 pixels (see Section 3.2.1). For this
reason the white wooden object cannot be tracked along the whole sequence and
some of its parts are initialized improperly in frame 530 by the label taken from the
background. It occurs due to the lack of pixel correspondences between adjacent
frames. Such erroneous initializations cannot be resolved by the segmentation core
only. Note that both the moving object and the wall have in some frames very similar
color values which make the tracking extremely difficult.

Incorporation of range data (shown in the fourth row) into the segmentation core
and using it on the label transferring stage (see Sections 6.2.1 and 6.2.2) helps to

6.3 EXPERIMENTAL RESULTS 137

Figure 6.4: Segmentation of frame sequence “Moving an object”. Original frames and
estimated optical flow for selected time points are shown in the first and the second
rows, respectively. Segmentation results without usage of range data are shown in the
third row. The forth row shows depth data obtained from the Kinect. Segmentation
results obtained using a fusion of image and range data are depicted in the last row.

resolve such problems. Segmentation results of the same frame sequence derived with
the range data support are presented in the last row of the figure. Fast moving pix-
els cannot be initialized by labels of pixels having range differences larger than the
threshold τ (see (6.2)). In the current experiment we used τ = 30 cm. Furthermore,
similar pixels having large range differences do not tend to interact with each other
(see (6.1)). Thereby the segmentation core can recover even poorly-initialized seg-
ments which makes the tracking of the fast moving white object consistent along the
whole sequence.

Next, the segmentation results for a 2 min frame sequence of the sample action
“Building a pyramid” are presented in Fig. 6.5. The first and second rows show origi-
nal color frames with depth data from the Kinect. The third row shows segmentation
results obtained by the proposed depth-supported video segmentation method using
n2 = 30 relaxation iterations, α2 = 2.5, the starting temperature Tn+1 = 1.0, and
the simulated annealing factor γ = 0.999. As we can see our approach provides a
temporally coherent video segmentation, in which all segments carry their initially

138 Chapter 6: Depth-supported Real-time Video Segmentation with the Kinect

Figure 6.5: Results for frame sequence “Building a pyramid”. Original frames and
range data from the Kinect for selected time points are shown in the first two rows.
The third row shows the segmentation results of our method (n2 = 30 iterations,
α2 = 2.5). Graph-based video segmentation results obtained at 90% and 70% of the
highest hierarchy level are presented in the last two rows.

6.3 EXPERIMENTAL RESULTS 139

Figure 6.6: Segmentation covering for frames 430 – 630 out of the “Building a pyra-
mid” sequence.

assigned labels along the whole video stream. The proposed video segmentation tech-
nique is compared here again to the hierarchical graph-based video segmentation,
proposed by Grundmann et al. (2010), which is known as one of the most efficient
spatio-temporal segmentation techniques to date. Results derived by the hierarchi-
cal graph-based video segmentation at 90% and 70% of the highest hierarchy level
2 are shown in the fourth and the fifth row, respectively. Note that both meth-
ods cannot be compared entirely, since the publicly available implementation of the
graph-based approach uses future data for segmentation (off-line processing) and does
not incorporate the depth data. Therefore, here we only show that the proposed ap-
proach gives output comparable to results of the conventional video segmentation
methods. Depending on the hierarchy level of the graph-based method, a coarser or
finer segmentation is obtained. At coarse levels, merging problems leading to under-
segmentation are observed, while at finer levels, more segments are formed, leading,
however, to some temporal coherence problems.

Quantitative evaluation

Fig. 6.6 shows the performance of the system for frame sequence “Building a pyramid”
as the segmentation covering against the current frame number for frames 430− 630.
As we can see, the color/depth sequence is segmented with a quite high accuracy
having the average segmentation covering value 0.825.

2the online version of the hierarchical graph-based video segmentation for 90% and 70% of the
highest hierarchy level is available under http://neumann.cc.gt.atl.ga.us/segmentation/

140 Chapter 6: Depth-supported Real-time Video Segmentation with the Kinect

resolution (px) msec / frame frame rate (Hz)

128× 160 9 – 17 111 – 59
256× 320 21.5 – 39.5 47 – 25
512× 640 72.5 – 145.5 14 – 7

Table 6.1: Processing times and frame rates obtained for various image resolutions
with 20 – 60 relaxation iterations.

Time performance

The algorithm runs on the Nvidia GeForce GTX 295 card (with 896 MB device
memory). The total processing times, frame rates for various image resolutions are
summarized in Table 6.1. The proposed method runs in real-time for medium image
resolutions and can process video sequences of arbitrary length, while the graph-based
video segmentation needs about 20 min to process a 40 sec video and only sequences
that are not longer than 40 sec (with 25 fps) can be processed in the hierarchical
mode (Grundmann et al., 2010).

6.4 Discussion

We extended the image segmentation core based on the superparamagnetic cluster-
ing of data (see see Section 2.2.1) by the use of depth information in terms of the
constrained parallel Metropolis updates and label transfers between adjacent frames.
The Kinect device was used as a hardware setup for simultaneous real-time acquisition
of color images and correspondent depth information.

Usage of depth data makes it possible to track relatively fast moving objects by
preventing interactions between pixels having significant range differences. It could be
shown that the incorporation of the depth data into the segmentation process makes
the segmentation core more robust and reduces under-segmentation. Our method can
be at match with the graph-based technique (Grundmann et al., 2010) in terms of
segmentation quality for the types of movies considered. In terms of computational
speed, we passed the graph-based method, which works at lower frame rates than
ours. However, for complex actions and scenes, the coherence of the segmentation
may be impaired due to the following problems:

1. Objects are getting partly or completely occluded during the action. It can lead
to assignment of new labels when these objects reappear again which breaks the
temporal coherence.

2. Objects are getting joint/disjoint. If two large parts of the same object repre-

6.4 DISCUSSION 141

sented by different segments are merged, we face the already mentioned domain
fragmentation problem (see Section 2.2.6). In the presented algorithm the do-
main fragmentation problem can be resolved only by a very long annealing
schedule (see Section 2.2.3) which cannot be achieved in real-time. If one ob-
ject is divided into several pieces, all of them will keep an equal label even being
disjoint and independent which is inconsistent in terms of some applications.

3. Objects move extremely fast, causing optical flow to fail (see Section 3.4).

4. The usage of average range values for segments during the label transfer (see
Section 6.2.2) is not very accurate and can cause domain fragmentation and /
or temporal coherence problems in the case of objects or object parts whose
surfaces are not parallel to the image plane.

In the future, we aim to improve performance of the proposed method under these
circumstances.

142 Chapter 6: Depth-supported Real-time Video Segmentation with the Kinect

7
Conclusion and Outlook

“A good ending is vital to a picture,
the single most important element,
because it is what the audience
takes with them out of the theater”

– Walt Disney

Each previous chapter contained its own extensive “Discussion” section where
we discussed our results and compared our methods to other approaches. Thus, in
this chapter we will only briefly summarize presented work by highlighting all main
findings, provide an outlook for future investigations, and conclude this thesis.

In this thesis we were investigating one of the most fundamental problems in the
computer vision - establishing correspondences between images acquired from differ-
ent view points or adjacent frames of a video stream. We developed a framework
performing the automatic cognition of the visual scene in such a way that it trans-
forms input visual information into symbol-like representation where all objects or
object parts are detected, identified, and relations between them are determined. All
components of the framework are on-line, automatic, do not use prior knowledge
about the input data, and can run for some resolutions in real-time. Therefore, the
proposed framework is a cognitive visual system which can be used in on-line robotic
systems to close the replicated perception-action loop between sensors and robots.
The framework combines both local and region correspondences in order to improve
and accelerate the matching procedure as compared to both approaches applied in-
dividually.

The framework is built around the novel real-time image segmentation technique
developed in the first part of the thesis (see Chapter 2). This technique solves the
segmentation problem by the method of the superparamagnetic clustering of data
which performs the fusion of local and region correspondences in a very efficient way.
Spin states in the Potts model, designating partitioning of an image, can be easily
transferred between various views of the scene or adjacent frames of a video stream
taking local matchings into account. Region matchings are found then by the up-
date of the Potts model with the Metropolis algorithm. The Metropolis algorithm

143

144 Chapter 7: Conclusion and Outlook

with the simulated annealing was chosen for spin state updates due to its local na-
ture and ability for acceleration on the special hardware. As a special hardware for
acceleration we used a GPU architecture with the parallel programming model of
CUDA. The parallel real-time Metropolis algorithm running on the GPU with the
short-cut for acceleration of the annealing procedure is the main result of Chapter 2.
Extensive experimental results and evaluations shown in Section 2.3.2 demonstrate
the comparability of segmentation results produced by the proposed algorithm with
the conventional image segmentation techniques, such as mean shift and graph-based.
The graph-based technique is slightly more precise, but almost two times slower for
middle-size and large images as compared to our method. The major drawback of the
presented algorithm is that it does not produce consistent results on very textured
images, whereas both the mean shift and graph-based approaches perform better
there. However, this problem could be solved by pre-filtering of input images ap-
plying special texture filters which smooth texture preserving edges between diverse
regions.

In the second and third parts of the thesis the developed image segmentation
technique was used for the real-time segmentation of monocular and stereo video
streams (see Chapters 3 and 4). As opposed to the mean shift and graph-based
segmentation algorithms, our framework based on the parallel Metropolis updates
on the GPU does not require a very time consuming region matching procedure
for finding correspondences between frames from a video stream or images acquired
from different view points. The major limitation of the method is its inability to
maintain the spatio-temporal coherence in the case of full occlusions. This problem
cannot be resolved on the pixel domain in the context of the Metropolis algorithm,
and high-level tracking mechanisms operating on the level of segments are required
for that (Nummiaro et al., 2002; Wang et al., 1994). Furthermore, these techniques
should also help to resolve faster the domain fragmentation problem which arises
in the case of merging of previously disjoint objects or their parts. The current
framework can resolve it only by a very long annealing schedule.

In the forth part established stereo-segment correspondences were employed for
recovery of depth information in weakly-textured images (see Chapter 5). It was
shown that performance of all traditional passive stereo techniques is extremely poor
in weakly-textured environments with respect to the estimation accuracy and density
due to the lack of texture, as only a few correspondences between two views can be
found. However, it was shown that found stereo segments produce an additional and
quite accurate information limiting the disparity search in poorly-textured regions.
Using the linear least squares for optimization of surface model functions the method
runs in real-time for middle-size images and close to real-time for larger images.
Therefore, 3D information even in very untextured environments can be obtained
and considered in real-time robotic applications. The proposed stereo approach fails
only in extremely textureless regions where no local correspondences are available. It
makes the usage of passive stereo techniques in such environments meaningless and

145

active methods for acquisition of depth data are required there.
Finally, the fifth and the last part of this thesis (see Chapter 6) demonstrated an

improvement of the video segmentation by the use of depth information provided by
an active sensor, here the Kinect device. Video segmentation supported by the depth
data allows the tracking of relatively fast moving objects and increases the robust-
ness of the framework. The usage of depth information leads to more precise label
transfers resulting in less Metropolis iterations needed for the relaxation. Hence, the
segmentation of monocular video streams using the Kinect is faster than the original
framework based on the processing of color information only. But this extension does
not resolve occlusions and the domain fragmentation problem.

The main achievement of the thesis is an efficient compression of the input visual
data into symbol-like descriptors performed by the cognitive computer vision system
serving as a visual front-end for robotic applications. We have shown that even
very intensive pre-processing operations such as segmentation of the visual data,
maintaining of the spatio-temporal coherence of found descriptors, and extraction
of the 3D structure for weakly-textured scenes can be done fast enough in order to
be incorporated in the perception-action loop replicated by robots. While our input
scenarios have still some limitations, we think that the proposed framework may help
in obtainment of the reduced representation of the visual input. Aksoy et al. (2011)
have shown in their study that such a representation allows the encoding of various
types of actions by so-called semantic event chains.

The presented cognitive vision system can be extended by a more sophisticated
tracking considering full occlusions, very fast movements, or reappearance of previ-
ously observed objects maintaining the basic segmentation mechanism. The depth
information obtained by the modern active sensors needs to be used in future more
extensively which will allow us to incorporate the geometry of objects directly in the
image segmentation core and perform three-dimensional video segmentation (Rusu
and Cousins, 2011).

146 Chapter 7: Conclusion and Outlook

A
Appendix

A.1 GPU occupancy data

GPU occupancy data and physical limits for the CUDA kernel of the parallel Metropo-
lis algorithm (see Section 2.2.5) are summarized in Table A.1 for the GeForce GTX
295 and GTX 580 architectures of compute capabilities 1.3 and 2.0, respectively.
To compute the multiprocessor occupancy of a GPU by our CUDA kernel we used
the CUDA occupancy calculator 1. On devices of compute capability 1.3 a number of
active thread blocks, i.e., thread blocks running simultaneously on one streaming mul-
tiprocessor (SM), is limited by both the number of registers per SM and the amount
of shared memory per SM. Since the total number of 32-bit registers per SM is 16, 384
and the number of registers allocated for one block of the kernel is Rblock = 6, 565,
one SM has enough registers only for two thread blocks running at the same time. In
terms of shared memory one thread block allocates Sblock = 5, 632 bytes, while only
16 KB are available per SM. Therefore, one SM has enough shared memory only for
two thread blocks running at the same time. All these limitations lead to only 50%
occupancy of each SM. More thread blocks can run at the same time on devices of
compute capability 2.0 due to their hardware improvements (more shared memory
and more 32-bit registers per SM). Thus, the 67% occupancy of each SM can be
achieved on the GTX 580 card. This time the number of active blocks is limited by
a number of registers per SM. The total number of 32-bit registers is 32, 768, while
one block needs Rblock = 6, 565. Therefore, one SM has enough registers only for four
thread blocks running at the same time.

The warp occupancy of SMs as a function of threads per block, registers per
thread, and shared memory per block for both graphics cards is shown in Fig. A.1.
The resource usage of the proposed kernel is indicated by red rectangles on all graphs.
The other data points represent the range of possible block sizes, register numbers,
and shared memory allocation. Note that higher occupancy does not necessarily
lead to higher performance especially for kernels that are not bandwidth bound. If
the kernel is bottlenecked by computation and not by global memory accesses, then

1available under http://developer.nvidia.com/cuda

147

148 Appendix A: Appendix

Figure A.1: Multiprocessor warp occupancy as a function of threads per block (A),
registers per thread (B), and shared memory per block (C) for the proposed CUDA
kernel. The current resource usage is indicated by red rectangles on the graphs for
the GeForce GTX 295 and GTX 580 architectures.

increasing occupancy may have no effect. On the contrary, for bandwidth-bound
applications increasing occupancy can help to hide the latency of memory accesses,
and consequently improve performance.

GTX 295 GTX 580

Compute capability 1.3 2.0
Warps per Multiprocessor 32 48

Total number of warps in a block (Wblock) 8 8
Total number of registers allocated for a block (Rblock) 6, 656 6, 656
Shared memory (in bytes) allocated for a block (Sblock) 5, 632 5, 248

Active threads per Multiprocessor 512 1, 024
Active warps per Multiprocessor 16 32

Active thread blocks per Multiprocessor 2 4
Occupancy of each Multiprocessor 50% 67%

Table A.1: Physical limits of the proposed CUDA kernel on the GeForce GTX 295
and GTX 580 architectures.

A.2 General linear least squares

To present the solution by use of the normal equations for the general linear least
squares (see Section 5.3.6 of), we need to introduce some notation. Let A be a matrix

A.2 GENERAL LINEAR LEAST SQUARES 149

of N ×M components which are constructed from the M basis functions evaluated
at the N points (xi, yi), and from the N measurement errors ϑi as

Aij =
ϕj(xi, yi)

ϑi
. (A.1)

The matrix A is called the design matrix of the fitting problem. Not that in
general A has more rows than columns, i.e., N >M , since there must be more data
points than model parameters to be solved for (we can fit a straight line to two points,
but not a quintic). The design matrix for the least squares fit of a linear combination
of M basis functions to N data points looks as follows:

AM,N =

ϕ1(x1,y1)

ϑ1

ϕ2(x1,y1)
ϑ1

· · · ϕM (x1,y1)
ϑ1

ϕ1(x2,y2)
ϑ2

ϕ2(x2,y2)
ϑ2

· · · ϕM (x2,y2)
ϑ2

...
...

. . .
...

ϕ1(xN ,yN)
ϑN

ϕ2(xN ,yN)
ϑN

· · · ϕM (xN ,yN)
ϑN

 .

Also we define a vector b of length N by

bi =
zi
ϑi
, (A.2)

and denote the vector whose components are the M parameters to be fitted,
a1, a2, · · · , aM , by a.

The minimum of (5.11) in Section 5.3.6 occurs where the derivative of χ2 vanishes
with respect to all M parameters ak. This condition yields the M equations called
the normal equations of the least-squares problem (Lawson and Hanson, 1987; Press
et al., 1992)

0 =
N∑
i=1

1

ϑ2
i

[
zi(xi, yi)−

M∑
j=1

ajϕj(xi, yi)

]
ϕk(xi, yi), k = 1, · · · ,M. (A.3)

Interchanging the order of summations, (A.3) can be rewritten as the matrix
equation

M∑
j=1

αkjaj = βk, (A.4)

where

αkj =
N∑
i=1

ϕj(xi, yi)ϕk(xi, yi)

ϑ2
i

, or equivalently [α] = AT ·A, (A.5)

150 Appendix A: Appendix

where [α] is a M ×M matrix, and

βk =
N∑
i=1

zi(xi, yi)ϕk(xi, yi)

ϑ2
i

, or equivalently [β] = AT · b, (A.6)

where [β] is a vector of length M .
The equations (A.3) and (A.4) are called the normal equations of the least squares

problem. In matrix form, the normal equations can be written as either

[α] · a = [β], or as (AT ·A) · a = AT · b. (A.7)

They can be solved for the vector of parameters a by Choleksy decomposition, or
Gauss-Jordan elimination (Press et al., 1992). In the current study we use the latter
which gives us not only the solution vector a but also the covariance matrix.

A.3 Nelder-Mead simplex algorithm

A simplex is a multidimensional generalization of a triangle (2D) or a tetrahedron
(3D). A simplex is chosen as a starting point and with each iteration it moves through
the search space in a pre-defined manner. After each iteration its worst vertex is
replaced with a vertex which is better than any of its other vertices. This new vertex
is found using a set of pre-defined steps (Nelder and Mead, 1965). Mathematically
the steps are defined as follows:

1. All vertices are ordered according to the values at each vertex:

z(x1, y1) 6 z(x2, y2) 6 . . . 6 z(xN+1, yN+1). (A.8)

2. The center of gravity (x0, y0) of the simplex is calculated without the using the
worst vertex (xN+1, yN+1):

x0 = 0.5 ·
i=N∑
i=0

xi, y0 = 0.5 ·
i=N∑
i=0

yi. (A.9)

3. Calculate the reflected vertex:

xr = x0 + α · (x0 − xN+1), (A.10)

yr = y0 + α · (y0 − yN+1). (A.11)

A.3 NELDER-MEAD SIMPLEX ALGORITHM 151

where α represents the reflection coefficient, with a default and minimum value
of 1. The next step of the iteration is determined by evaluating the value of the
reflected vertex compared to the other vertices:

(a) if z(x1, y1) 6 z(xr, yr) < z(xN , yN) then replace (xN+1, yN+1) with (xr, yr)
and go to the next iteration

(b) if z(xr, yr) < z(x1, y1) then calculate the expanded vertex

(c) else calculate the contracted vertex.

4. Determine the expanded vertex:

xe = x0 + γ · (x0 − xN+1), (A.12)

ye = y0 + γ · (y0 − yN+1). (A.13)

with γ denoting the expansion coefficient, with a default value of 2 (always
larger than α). Then the following case is evaluated and afterwards the next
iteration will start:

xN+1 =

{
xe if z(xe, ye) < z(xr, yr),
xr otherwise.

, (A.14)

yN+1 =

{
ye if z(xe, ye) < z(xr, yr),
yr otherwise.

. (A.15)

5. Determine the contracted vertex:

xc = xN+1 + ρ · (x0 − xN+1), (A.16)

yc = yN+1 + ρ · (y0 − yN+1), (A.17)

with ρ denoting the contraction coefficient which lies between 0 and 1 with a
default value of 0.5. If the contracted vertex is better than the worst vertex
(z(xc, yc) 6 z(xN+1, yN+1)), then the worst vertex is replaced by the contracted
vertex.

6. Replace all vertices by the reduced vertices:

xi = x1 + σ · (xi − x1), where i ∈ {2, . . . , N + 1}, (A.18)

152 Appendix A: Appendix

yi = y1 + σ · (yi − y1), where i ∈ {2, . . . , N + 1}, (A.19)

with σ representing the reduction coefficient which lies between 0 and 1 with a
default value of 0.5.

When all these rules are followed, the method is guaranteed to find a minimum.
As with other optimization techniques, the problem of Nelder-Mead method is
that it usually finds a local minimum instead of the global minimum. However,
this can be prevented by choosing the correct size for the starting simplex so
that local minima are skipped. Another possibility is to choose multiple starting
simplices. The best vertex can be chosen as a true minimum of the objective
function after each simplex converges to a certain point.

A.4 Kinect calibration

In a normal stereo setup, images derived from the calibrated cameras are rectified in
order to obtain correspondent horizontal lines. In such a system, the relation between
disparity and depth is given by

z = b · f/d, (A.20)

where z is the depth value (in meters), b is the baseline between two cameras (in
meters), f is the focal length of the cameras (in pixels) and d is the disparity value
(in pixels). Thus, in the case of zero disparity values the rays from both cameras are
parallel and depth is infinite. However, the Kinect device returns raw disparity data
which is not normalized in this way. So zero disparity values do not correspond to
infinite distances. The relation of raw Kinect disparity to a normalized disparity is
given by

d = 1/8 · (doff− kd), (A.21)

where d is the normalized disparity (see (A.20)), kd is the Kinect disparity and
doff is the offset value particular to a given Kinect device. Values for kd and doff
are found at the calibration stage. Consequently, the relation between disparity and
depth for the Kinect is given by

z =
b · f

1/8 · (doff− kd)
. (A.22)

In order to relate color and depth images, pixels of the color image need to be
matched to pixels of the depth image. Therefore, a calibration between IR and RGB

A.4 KINECT CALIBRATION 153

Figure A.2: Calibration of the Kinect with OpenNI toolbox. (A) Original frame
acquired by RGB camera. (B) Depth data derived from IR image (in meters). (C)
Mapping of depth and color pixels without calibration. (D) Mapping of depth and
color pixels after calibration.

cameras needs to be performed 2,3. First, RGB and IR cameras are calibrated sep-
arately. Once intrinsic matrices Krgb and Kir and distortion parameters of both
cameras are derived, the geometrical relationship between two cameras needs to be
obtained. This relation is expressed by a matrix of parameters consisting of a ro-
tation matrix R and a translation vector t. R and t denote the coordinate system
transformations from 3D IR camera coordinates to 3D RGB camera coordinates. In-
trinsic and extrinsic parameters of both cameras can be obtained by any of existing
calibration toolbox (Bradski, 2000). A pixel pir from the IR image can be projected
to a 3D point in the IR’s camera coordinate system taking the depth value of pir as
a z coordinate:

Pir = K−1ir · pir,
P z
ir = z(pir).

(A.23)

Pir is transformed to the RGB’s camera coordinate system applying relative trans-
formation (R, t):

Prgb = R · Pir + t. (A.24)

The derived 3D point is projected to the RGB camera image by

prgb = Krgb · Prgb, (A.25)

obtaining the depth value corresponding to the location prgb in the RGB image as

z(prgb) = P z
rgb. (A.26)

2see http://nicolas.burrus.name

3see http://www.xbox.com/en-US/kinect

154 Appendix A: Appendix

In the current work the OpenNI toolbox was used for the Kinect calibration and
mapping of color pixels with range values 4.

4available under http://www.openni.org

Bibliography

Abramov, A., Aksoy, E. E., Dörr, J., Pauwels, K., Wörgötter, F., and Dellen, B.
(2010a). 3D semantic representation of actions from efficient stereo-image-sequence
segmentation on GPUs. In Fifth International Symposium on 3D Data Processing,
Visualization and Transmission (3DPVT 2010), Paris, France.

Abramov, A., Kulvicius, T., Wörgötter, F., and Dellen, B. (2010b). Real-time im-
age segmentation on a GPU. Facing the Multicore-Challenge, Lecture Notes in
Computer Science, 6310:131–142.

Abramov, A., Papon, J., Pauwels, K., Wörgötter, F., and Dellen, B. (2012a). Depth-
supported real-time video segmentation with the Kinect. In IEEE workshop on the
Applications of Computer Vision (WACV), pages 457–464.

Abramov, A., Pauwels, K., Kornewald, W., Wörgötter, F., and Dellen, B. (2012b).
Real-time dense disparity from stereo-segment silhouettes for weakly-textured im-
ages. International Journal of Computer Vision (submitted).

Abramov, A., Pauwels, K., Papon, J., Wörgötter, F., and Dellen, B. (2012c). Real-
time segmentation of stereo videos on a portable system with a mobile GPU. IEEE
Transactions on Circuits and Systems for Video Technology (in press).

Aksoy, E. E., Abramov, A., Dörr, J., Ning, K., Dellen, B., and Wörgötter, F. (2011).
Learning the semantics of object-action relations by observation. The International
Journal of Robotics Research (IJRR), Special Issue on ’Semantic Perception for
Robots in Indoor Environments’, (30):1229–1249.

Anderson, B. and Nakayama, K. (1994). Toward a general theory of stereopsis. Phys-
ical Review, 101(3):414–445.

Arbelaez, P., Maire, M., Fowlkes, C. C., and Malik, J. (2009). From contours to
regions: An empirical evaluation. In Computer Vision and Pattern Recognition
(CVPR), pages 2294–2301.

Azencott, R. (1992). Simulated Annealing: Parallelization Techniques. Wiley-
Interscience, New York.

Bab-Hadiashar, A. and Gheissari, N. (2006). Range image segmentation using surface
selection criterion. IEEE Transactions on Image Processing, 15(7):2006–2018.

Barkema, G. T. (1992). Ph.D. thesis. Utrecht University.

Barkema, G. T. and MacFarland, T. (1994). Parallel simulation of the ising model.
Physical Review E, 50(2):1623–1628.

155

156 Bibliography

Barnard, S. T. (1989). Stochastic stereo matching over scale. International Journal
of Computer Vision, 3(1):17–32.

Beare, R. (2006). A locally constrained watershed transform. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 28(7):1063–1074.

Belhumeur, P. N. (1996). A bayesian approach to binocular steropsis. International
Journal of Computer Vision, 19(3):237–260.

Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani, R. (1992). Hierarchi-
cal model-based motion estimation. In European Conference on Computer Vision
(ECCV), pages 237–252.

Besag, J. (1986). On the statistical analysis of dirty pictures. J. Royal Statistical
Soc., Series B, 48(3):259–302.

Besl, P. J. and Jain, R. C. (1988). Segmentation through variable-order surface fitting.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 10:167–192.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New
York, NY.

Blake, A. and Isard, M. (1998). Active Contours: The Application of Techniques from
Graphics, Vision, Control Theory and Statistics to Visual Tracking of Shapes in
Motion. Springer.

Blatt, M., Wiseman, S., and Domany, E. (1996). Superparamagnetic clustering of
data. Physical Review Letters, 76(18):3251–3254.

Bobick, A. F. and Intille, S. S. (1999). Large occlusion stereo. International Journal
of Computer Vision, 33(3):181–200.

Borra, S. and Sarkar, S. (1997). A framework for performance characterization of
intermediate-level grouping modules. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 19:1306–1312.

Boykov, Y. and Funka-Lea, G. (2006). Graph cuts and efficient N-D image segmen-
tation. International Journal of Computer Vision, 70(2):109–131.

Boykov, Y. and Jolly, M.-P. (2001). Interactive graph cuts for optimal boundary
and region segmentation of objects in n-d images. In International Conference on
Computer Vision (ICCV).

Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-
flow algorithms for energy minmization in vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 9:1124–1137.

BIBLIOGRAPHY 157

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier, E., and Gool, L. J. V.
(2009). Robust tracking-by-detection using a detector confidence particle filter. In
International Conference on Computer Vision (ICCV), pages 1515–1522.

Brendel, W. and Todorovic, S. (2009). Video object segmentation by tracking regions.
In International Conference on Computer Vision (ICCV), pages 833–840.

Brice, C. R. and Fennema, C. L. (1970). Scene analysis using regions. Artificial
Intelligence, 1:205–226.

Brodtkorb, A. R., Dyken, C., Hagen, T. R., Hjelmervik, J. M., and Storaasli, O. O.
(2010). State-of-the-art in heterogeneous computing. Scientific Programming,
18(1):1–33.

Brown, M. Z., Burschka, D., and Hager, G. D. (2003). Advances in computational
stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:993–
1008.

Brox, T. and Malik, J. (2011). Large displacement optical flow: descriptor matching
in variational motion estimation. In IEEE Transactions on Pattern Analysis and
Machine Intelligence, pages 500–513.

Brunton, A., Shu, C., and Roth, G. (2006). Belief propagation on the GPU for
stereo vision. In The 3rd Canadian Conference on Computer and Robot Vision,
Washington, DC, USA.

Burt, P. J., Edward, and Adelson, E. H. (1983). The laplacian pyramid as a compact
image code. IEEE Transactions on Communications, 31:532–540.

Chen, S., Li, Y. F., and Zhang, J. (2008). Vision processing for realtime 3-d data ac-
quisition based on coded structured light. IEEE Transactions on Image Processing,
17(2):167–176.

Cheng, H. D., Jiang, X. H., Sun, Y., and Wang, J. L. (2001). Color image segmenta-
tion: Advances and prospects. Pattern Recognition, 34:2259–2281.

Cheng, Y. (1995). Mean shift, mode seeking, and clustering. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17(8):790–799.

CIE-Publication-116-1995 (1995). Industrial colour-difference evaluation. Vienna:
CIE Central Bureau.

Comaniciu, D., Meer, P., and Member, S. (2002). Mean shift: A robust approach
toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 24:603–619.

158 Bibliography

Compagner, A. and Hoogland, A. (1987). Maximum length sequences, cellular au-
tomata, and random numbers. Journal of Computational Physics, 71:391–428.

Cour, T., Benezit, F., and Shi, J. (2005). Spectral segmentation with multiscale graph
decomposition. In Computer Vision and Pattern Recognition (CVPR), Washington,
DC, USA.

Dellen, B., Aksoy, E. E., and Wörgötter, F. (2009). Segment tracking via a spa-
tiotemporal linking process including feedback stabilization in an n-d lattice model.
Sensors, 9(11):9355–9379.

Dellen, B., Alenyà, G., Foix, S., and Torras, C. (2011). Segmenting color images
into surface patches by exploiting sparse depth data. In IEEE workshop on the
Applications of Computer Vision (WACV), Kailua-Kona, Hawaii.

Dellen, B. and Wörgötter, F. (2009). Disparity from stereo-segment silhouettes of
weakly-textured images. In British Machine Vision Conference (BMVC), London,
UK.

Dı́az, J., Ros, E., Carrillo, R. R., and Prieto, A. (2007). Real-time system for high-
image resolution disparity estimation. IEEE Transactions on Image Processing,
16(1):280–285.

Eckes, C. and Vorbrüggen, J. C. (1996). Combining data-driven and model-based
cues for segmentation of video sequences. In World Congress on Neural Networks,
pages 868–875.

Egnal, G. and Wildes, R. P. (2002). Detecting binocular half-occlusions: Empiri-
cal comparisons of five approaches. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24:1127–1133.

Estrada, F., Jepson, A., and Chennubhotla, C. (2004). Spectral embedding and
min-cut for image segmentation. In British Machine Vision Conference (BMVC).

Estrada, F. J. and Jepson, A. D. (2009). Benchmarking image segmentation algo-
rithms. International Journal of Computer Vision, 85(2):167–181.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Efficient graph-based image
segmentation. International Journal of Computer Vision, 59(2):167–181.

Felzenszwalb, P. F. and Huttenlocher, D. P. (2006). Efficient belief propagation for
early vision. International Journal of Computer Vision, 70(1):41–54.

Fleet, D. J. and Jepson, A. D. (1990). Computation of component image velocity from
local phase information. International Journal of Computer Vision, 5(1):77–104.

BIBLIOGRAPHY 159

Forsyth, D. A. and Ponce, J. (2002). Computer Vision: A Modern Approach. Prentice
Hall Professional Technical Reference.

Gautama, T. and Van Hulle, M. (2002). A phase-based approach to the estimation of
the optical flow field using spatial filtering. IEEE Transactions on Neural Networks,
13(5):1127–1136.

Geiger, D., Ladendorf, B., and Yuille, A. L. (1995). Occlusions and binocular stereo.
International Journal of Computer Vision, 14(3):211–226.

Geman, D. and Geman, S. (1984). Stochastic relaxation, gibbs distributions, and
the bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(6):721–741.

Gonzalez, R., Woods, R., and Eddins, S. (2003). Digital image processing using
matlab, chapter 11.

Grundmann, M., Kwatra, V., Han, M., and Essa, I. A. (2010). Efficient hierarchical
graph-based video segmentation. In Computer Vision and Pattern Recognition
(CVPR), pages 2141–2148.

He, L., Chao, Y., Suzuki, K., and Wu, K. (2009). Fast connected-component labeling.
Pattern Recognition, 42:1977–1987.

Hedau, V., Arora, H., and Ahuja, N. (2008). Matching images under unstable seg-
mentations. In Computer Vision and Pattern Recognition (CVPR).

Heo, Y. S., Lee, K. M., and Lee, S. U. (2011). Robust stereo matching using adaptive
normalized cross-correlation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(4):807–822.

Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual
information. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(2):328–341.

Hoffmann, K. H., Würtz, D., de Groot, C., and Hanf, M. (1991). Concepts in optimiz-
ing simulated annealing schedules: An adaptive approach for parallel and vector
machines. In Parallel and Distributed Optimization. Springer Verlag, Heidelberg.

Hong, B.-W., Soatto, S., Ni, K., and Chan, T. F. (2008). The scale of a texture
and its application to segmentation. In Computer Vision and Pattern Recognition
(CVPR).

Huang, Y., Liu, Q., and Metaxas, D. N. (2009). Video object segmentation by hyper-
graph cut. In Computer Vision and Pattern Recognition (CVPR), pages 1738–1745.

160 Bibliography

Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Z. Phys., 31:253–258.

Johnson, D. S. and McGeogh, L. A. (1997). The traveling salesman problem: A case
study. In Local Search in Combinatorial Optimization, pages 215–310.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220:671–680.

Kjellström, H., Romero, J., and Kragic, D. (2011). Visual object-action recognition
: Inferring object affordances from human demonstration. Computer Vision and
Image Understanding, 115(1):81–90.

Klingbeil, E., Rao, D., Carpenter, B., Ganapathi, V., Ng, A. Y., and Khatib, O.
(2011). Grasping with application to an autonomous checkout robot. In IEEE
International Conference on Robotics and Automation (ICRA), pages 2837–2844,
Shanghai, China.

Kolmogorov, V. (2006). Convergent tree-reweighted message passing for energy
minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(10):1568–1583.

Kolmogorov, V. and Zabih, R. (2004). What energy functions can be minimized
via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26:65–81.

König, P. and Krüger, N. (2006). Perspectives: Symbols as self-emergent entities in an
optimization process of feature extraction and predictions. Biological Cybernetics,
94(4):325–334.

Koschan, A. and Abidi, M. A. (2008). Digital color image processing. John Wiley
and Sons.

Kyriakoulis, N. and Gasteratos, A. (2010). Light-Invariant 3D object’s pose estima-
tion using color distance transform. In IEEE International Conference on Imaging
Systems and Techniques (IST 2010), pages 105–110, Thessaloniki, Greece.

Ladický, Ľ., Sturgess, P., Russell, C., Sengupta, S., Bastanlar, Y., Clocksin, W., and
Torr, P. (2010). Joint optimisation for object class segmentation and dense stereo
reconstruction. In British Machine Vision Conference (BMVC).

Lawson, C. L. and Hanson, R. J. (1987). Solving Least Squares Problems (Classics
in Applied Mathematics). Society for Industrial Mathematics.

Lee, H.-J. and Lei, W.-L. (1990). Region matching and depth finding for 3d objects
in stereo aerial photographs. Pattern Recognition, 23(1-2):81–94.

BIBLIOGRAPHY 161

Lempitsky, V. S. and Boykov, Y. (2007). Global optimization for shape fitting. In
Computer Vision and Pattern Recognition (CVPR).

Liang, C.-K., Cheng, C.-C., Lai, Y.-C., Chen, L.-G., and Chen, H. H. (2011).
Hardware-efficient belief propagation. IEEE Transactions on Circuits and Systems
for Video Technology, 21(5):525–537.

Lindholm, E., Nickolls, J., Oberman, S., and Montrym, J. (2008). Nvidia tesla: A
unified graphics and computing architecture. IEEE Micro, 28:39–55.

Liu, C., Freeman, W. T., Adelson, E. H., and Weiss, Y. (2008a). Human-assisted
motion annotation. In Computer Vision and Pattern Recognition (CVPR).

Liu, S., Dong, G., Yan, C. H., and Ong, S. H. (2008b). Video segmentation: Propa-
gation, validation and aggregation of a preceding graph. In Computer Vision and
Pattern Recognition (CVPR).

Lu, J., Rogmans, S., Lafruit, G., and Catthoor, F. (2009). Stream-centric stereo
matching and view synthesis: A high-speed approach on GPUs. IEEE Transactions
on Circuits and Systems for Video Technology, 19(11):1598–1611.

MacLean, W. J., Sabihuddin, S., and Islam, J. (2010). Leveraging cost matrix struc-
ture for hardware implementation of stereo disparity computation using dynamic
programming. Computer Vision and Image Understanding, 114(11):1126–1138.

Martin, D., Fowlkes, C., Tal, D., and Malik, J. (2001). A database of human seg-
mented natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics. In 8th Int’l Conf. Computer Vision, volume 2,
pages 416–423.

Martin, D. R., Fowlkes, C., and Malik, J. (2002). Learning to detect natural image
boundaries using brightness and texture. In Neural Information Processing Systems
(NIPS), pages 1255–1262.

Meribout, M. and Nakanishi, M. (2005). A new real time object segmentation and
tracking algorithm and its parallel architecture. Journal of VLSI Signal Processing,
39(3):249–266.

Mester, R., Conrad, C., and Guevara, A. (2011). Multichannel segmentation using
contour relaxation: Fast super-pixels and temporal propagation. In SCIA, pages
250–261.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of state calculations by fast computing machines. J. of Chem.
Phys., 21(11):1087–1091.

162 Bibliography

Moore, G. E. (1965). Cramming more components onto integrated circuits. Electron-
ics, 38(8).

Mortensen, E. N. and Barrett, W. A. (1999). Toboggan-based intelligent scissors
with a four-parameter edge model. In Computer Vision and Pattern Recognition
(CVPR), pages 2452–2458.

Mosegaard, K. and Vestergaard, P. D. (1991). A simulated annealing approach to
seismic model optimization with sparse prior information. Geophysical Prospecting,
39:599–611.

Mutto, C. D., Zanuttigh, P., Cortelazzo, G. M., and Mattoccia, S. (2011). Scene
segmentation assisted by stereo vision. In 3DIMPVT, pages 57–64.

Nelder, J. A. and Mead, R. (1965). A simplex method for function minimization.
Computer Journal, 7:308–313.

Nummiaro, K., Koller-Meier, E., and Van Gool, L. (2002). An adaptive color-based
particle filter. Image and Vision Computing, 21(1):99–110.

NVIDIA-Corporation (2009). Nvidia’s next generation CUDA compute architecture:
Fermi.

NVIDIA-Corporation (2011). Nvidia cuda c programming guide 4.0. 7:187.

Ohlander, R., Price, K., and Reddy, D. R. (1978). Picture segmentation using a
recursive region splitting method.

Opara, R. and Wörgötter, F. (1998). A fast and robust cluster update algorithm
for image segmentation in split-lattice models without annealing - visual latencies
revisited. Neural Computation, 10(6):1547–1566.

Pal, N. R. and Pal, S. K. (1993). A review on image segmentation techniques. Pattern
Recognition, 26(9):1277–1294.

Papon, J., Abramov, A. Aksoy, E. E., and Wörgötter (2012). A modular system ar-
chitecture for online parallel visual pipelines. In IEEE workshop on the Applications
of Computer Vision (WACV), pages 361–368.

Paris, S. (2008). Edge-preserving smoothing and mean-shift segmentation of video
streams. In European Conference on Computer Vision (ECCV), pages 460–473.

Paris, S. and Durand, F. (2007). A topological approach to hierarchical segmentation
using mean shift. In Computer Vision and Pattern Recognition (CVPR).

Pauwels, K. and Hulle, M. V. (2009). Optic flow from unstable sequences through
local velocity constancy maximization. Image Vision Computing, 27(5):579–587.

BIBLIOGRAPHY 163

Pauwels, K., Krüger, N., Lappe, M., Wörgötter, F., and Van Hulle, M. (2010). A cor-
tical architecture on parallel hardware for motion processing in real time. Journal
of Vision, 10(10).

Pauwels, K., Tomasi, M., Alonso, J. D., Ros, E., and Hulle, M. M. V. (2011). A
comparison of fpga and GPU for real-time phase-based optical flow, stereo, and
local image features. IEEE Transactions on Computers, 99.

Potts, R. B. (1952). Some generalized order-disorder transformations. Proc. Cam-
bridge Philos. Soc., 48:106–109.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numer-
ical recipes in C (2nd ed.): the art of scientific computing. Cambridge University
Press, New York, NY, USA.

Rao, D., Le, Q. V., Phoka, T., Quigley, M., Sudsang, A., and Ng, A. Y. (2010). Grasp-
ing novel objects with depth segmentation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

Reina, A. V., Avidan, S., Pfister, H., and Miller, E. L. (2010). Multiple hypothesis
video segmentation from superpixel flows. In European Conference on Computer
Vision (ECCV), pages 268–281.

Rusu, R. B. and Cousins, S. (2011). 3D is here: Point Cloud Library (PCL). In IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China.

Sabatini, S. P., Gastaldi, G., Solari, F., Pauwels, K., Hulle, M. M. V., Dı́az, J.,
Ros, E., Pugeault, N., and Krüger, N. (2010). A compact harmonic code for
early vision based on anisotropic frequency channels. Computer Vision and Image
Understanding, 114(6):681–699.

Salamon, P., Nulton, J. D., Robinson, J., Pedersen, J. M., Ruppeiner, G., and Liao,
L. (1988). Simulated annealing with constant thermodynamic speed. 49:423–428.

Salamon, P., Sibani, P., and Frost, R. (2010). Facts, Conjectures, and Improvements
for Simulated Annealing. Society for Industrial and Applied Mathematics.

Salembier, P. and Marqués, F. (1999). Region-based representations of image and
video: segmentation tools for multimedia services. IEEE Transactions on Circuits
and Systems for Video Technology, 9(8):1147–1169.

Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms. International Journal of Computer Vision, 47:7–
42.

164 Bibliography

Scharstein, D. and Szeliski, R. (2008). Middlebury stereo vision research page.
http://vision.middlebury.edu/stereo/eval/.

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. (2006). A compar-
ison and evaluation of multi-view stereo reconstruction algorithms. In Computer
Vision and Pattern Recognition (CVPR), pages 519–528.

Shi, J. and Malik, J. (2000). Normalized cuts and image segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 22(8):888–905.

Sizintsev, M., Kuthirummal, S., Samarasekera, S., Kumar, R., Sawhney, H., and
Chaudhry, A. (2010). GPU accelerated realtime stereo for augmented reality. In
3DPVT10.

Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world from internet
photo collections. International Journal of Computer Vision, 80(2):189–210.

Sun, J., yeung Shum, H., and ning Zheng, N. (2003). Stereo matching using belief
propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
25:787–800.

Swendsen, R. H. and Wang, S. (1987). Nonuniversal critical dynamics in Monte Carlo
simulations. Physical Review Letters, 76(18):86–88.

Szeliski, R. (2010). Computer Vision: Algorithms and Applications. Springer.

Tappen, M. F. and Freeman, W. T. (2003). Comparison of graph cuts with belief
propagation for stereo, using identical mrf parameters. In International Conference
on Computer Vision (ICCV), pages 900–907.

Tombari, F., Mattoccia, S., and di Stefano, L. (2007). Segmentation-based adaptive
support for accurate stereo correspondence. In PSIVT’07, pages 427–438.

Trapp, R., Drüe, S., and Hartmann, G. (1998). Stereo matching with implicit detec-
tion of occlusions. In European Conference on Computer Vision (ECCV), pages
17–33.

Tseng, D. and Chang, C. (1992). Color segmentation using perceptual attributes. In
International Conference on Pattern Recognition, volume 3, pages 228–231.

Tuceryan, M. and Jain, A. K. (1998). Texture Analysis in The Handbook of Pattern
Recognition and Computer Vision (2nd Edition). World Scientific Publishing Co.

C̆erný, V. (1985). Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and its Applications,
45:41–55.

BIBLIOGRAPHY 165

Unger, M., Mauthner, T., Pock, T., and Bischof, H. (2009). Tracking as segmentation
of spatial-temporal volumes by anisotropic weighted tv. In EMMCVPR, pages 193–
206.

Veksler, O. (2003). Fast variable window for stereo correspondence using integral
images. In Computer Vision and Pattern Recognition (CVPR), pages 556–561.

Vicente, S., Kolmogorov, V., and Rother, C. (2008). Graph cut based image seg-
mentation with connectivity priors. In Computer Vision and Pattern Recognition
(CVPR).

Vincent, L. and Soille, P. (1991). Watersheds in digital spaces: An efficient algo-
rithm based on immersion simulations. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13:583–598.

von Ferber, C. and Wörgötter, F. (2000). Cluster update algorithm and recognition.
Physical Review E, 62(2):1461–1464.

Wang, C. and Abe, K. (1995). Region correspondence by inexact attributed planar
graph matching. In International Conference on Computer Vision (ICCV), pages
440–446.

Wang, C., de La Gorce, M., and Paragios, N. (2009). Segmentation, ordering and
multi-object tracking using graphical models. In International Conference on Com-
puter Vision (ICCV), pages 747–754.

Wang, J., Wang, J. Y. A., Edward, and Adelson, H. (1994). Representing moving
images with layers. IEEE Transactions on Image Processing, 3:625–638.

Wedel, A., Pock, T., Zach, C., Cremers, D., and Bischof, H. (2008). An improved
algorithm for TV-L1 optical flow. In Dagstuhl Motion Workshop, LNCS. Springer.

White, S. R. (1984). Concepts of scale in simulated annealing. In IEEE International
Conference on Computer Design, pages 646–651.

Wildes, R. P. (1991). Direct recovery of three-dimensional scene geometry from binoc-
ular stereo disparity. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 13(8):761–774.

Wolff, U. (1989). Collective Monte Carlo updating for spin systems. Physical Review
Letters, 62(4):361–364.

Wyszecki, G. A. and Stiles, W. S. (2000). Color Science: Concepts and Methods,
Quantitative Data and Formulae (Wiley Series in Pure and Applied Optics). John
Wiley and Sons.

166 Bibliography

Yang, Q., Engels, C., and Akbarzadeh, A. (2008). Near real-time stereo for weakly-
textured scenes. In British Machine Vision Conference (BMVC), pages 80–87.

Yang, Q., Wang, L., and Ahuja, N. (2010). A constant-space belief propagation algo-
rithm for stereo matching. In Computer Vision and Pattern Recognition (CVPR).

Yang, Q., Wang, L., Yang, R., Wang, S., Liao, M., and Nistér, D. (2006). Real-time
global stereo matching using hierarchical belief propagation. In British Machine
Vision Conference (BMVC), pages 989–998.

Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2000). Generalized belief propagation.
In Advances in Neural Information Processing Systems, pages 689–695.

Yoon, K., Member, S., and Kweon, I. S. (2006). Adaptive support-weight approach
for correspondence search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28:650–656.

Zhu, J., Wang, L., Yang, R., Davis, J. E., and Pan, Z. (2011). Reliability fusion
of time-of-flight depth and stereo geometry for high quality depth maps. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 33:1400–1414.

Zitnick, C. L., Kanade, T., and Government, S. (1999). A cooperative algorithm for
stereo matching and occlusion detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22:675–684.

B
Curriculum Vitae

ALEXEY ABRAMOV

Research Assistant at the Bernstein Center for Computational Neuroscience
Georg-August-Universität Göttingen
III Physikalisches Institut - Biophysik
Friedrich-Hund Platz 1
37077 Göttingen

Date and place of birth: 17 May 1985
Moscow, Russian Federation

Citizenship: Russian
E-mail: abramov@physik3.gwdg.de
Tel.: +49(0) 551 3910 764

EDUCATION

2008 Apr – 2012 Jul PhD Student at the Department of Computer Science
Georg-August-Universität Göttingen
Germany

2002 Sep – 2008 Feb M.Sc. and B.Sc. in Computer Science
Moscow Ingineering Physics Institute (State University)
Faculty of Cybernetics
Moscow, Russia

167

168 Appendix B: Curriculum Vitae

PROFESSIONAL EXPERIENCE

2008 Apr – present Research assistant
Georg-August-Universität Göttingen
Germany

2005 Aug – 2007 Oct Research assistant
All Russian Scientific Research Institute
for Control Automatization in Unprofitable Field
Moscow, Russia

2004 Aug – 2005 Mar Software developer
Sputnik Labs
Moscow, Russia

RESEARCH INTERESTS

Computer vision and image processing
Parallel computing and architectures
Image segmentation
Video segmentation and object tracking
Stereo vision and depth perception
Real-time visual systems

LIST OF PUBLICATIONS

Journal Papers

• Abramov, A., Pauwels, K., Kornewald, W., Wörgötter, F. and Dellen, B. Real-
time Dense Disparity from Stereo-segment Silhouettes for Weakly-textured Im-
ages. International Journal of Computer Vision (submitted), 2012.

• Abramov, A., Pauwels, K., Papon, J., Wörgötter, F. and Dellen, B. Real-time
Segmentation of Stereo Videos on a Portable System with a Mobile GPU. IEEE
Transactions on Circuits and Systems for Video Technology (in press), 2012.

• Aksoy, E.E., Abramov A., Drr, J., Ning, K., Dellen, B. and Wörgötter, F.
Learning the semantics of objectaction relations by observation. International
Journal of Robotics Research (IJRR), Special Issue on Semantic Perception for
Robots in Indoor Environments, 30: 1229-1249, 2011.

169

Conference Papers

• Abramov A., Papon, J., Pauwels, K., Wörgötter, F., Dellen, B. Depth-supported
real-time video segmentation with the Kinect. IEEE workshop on the Applica-
tions of Computer Vision (WACV 2012), Breckenridge, Colorado, USA, Jan-
uary 9-11, 2012.

• Papon J., Abramov, A., Aksoy, E.E., Wörgötter, F. A Modular System Archi-
tecture for Online Parallel Visual Pipelines. IEEE workshop on the Applications
of Computer Vision (WACV 2012), Breckenridge, Colorado, USA, January 9-
11, 2012.

• Abramov A., Aksoy, E.E., Dörr, J., Pauwels, K., Wörgötter, F. and Dellen,
B. 3D Semantic Representation of Actions from efficient stereo-image-sequence
segmentation on GPUs. Fifth International Symposium on 3D Data Processing,
Visualization and Transmission (3DPVT 2010), Paris, France, May 17-20, 2010.

• Aksoy, E.E., Abramov, A., Wörgötter, F. and Dellen, B. Categorizing Object-
Action Relations from Semantic Scene Graphs. IEEE International Conference
on Robotics and Automation (ICRA 2010), Alaska, USA, May 3-8, 2010.

• Abramov A., Kulvicius, T., Wörgötter, F. and Dellen, B. Real-time image seg-
mentation on a GPU. Facing the Multicore-Challenge, Conference for young
scientists, Heidelberg, Germany, March 17-19, 2010.

Patent pending

• Abramov, A., Aksoy E.E., Dellen, B., Wörgötter, F. Method and Device for
Estimating Development Parameters of Plants, Public law foundation of the
Georg-August Universität Göttingen filed with European Patent Office, 2011.

Abstract

• Abramov, A., Papon, J., Wörgötter, F. Oculus Real-time Modular Cognitive
Vision System. Nvidia GPU technology conference (GTC), San Jose, California,
USA, May 14-18, 2012.

	Title Page
	Abstract
	Table of Contents
	Citations to Related Publications
	Acknowledgments
	Dedication
	List of Symbols and Notations
	Introduction
	Real-time Image Segmentation on a GPU
	Introduction
	Real-time image segmentation on a GPU
	Segmentation results and time performance
	Discussion

	Real-time Segmentation of Monocular Video Streams
	Introduction
	Real-time segmentation of monocular videos
	Experimental results
	Discussion

	Real-time Segmentation of Stereo Video Streams
	Introduction
	Real-time segmentation of stereo videos
	Experimental results
	Implementation on a portable system
	Discussion

	Disparity from Stereo-segment Correspondences
	Introduction
	Texture as a crucial point
	Dense disparity from stereo-segment silhouettes
	Experimental results
	Time performance
	Discussion

	Depth-supported Real-time Video Segmentation with the Kinect
	Introduction
	Depth-supported video segmentation
	Experimental results
	Discussion

	Conclusion and Outlook
	Appendix
	GPU occupancy data
	General linear least squares
	Nelder-Mead simplex algorithm
	Kinect calibration

	Curriculum Vitae

