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Forschungsaufenthalt an der University of Southern California, Los Angeles, USA, der
entscheidend zur Entstehung dieser Arbeit beigetragen hat. In diesem Zusammenhang
danke ich auch Duncan Thomas und Juan Pablo Lewinger recht herzlich für ihre Be-
treuung in dieser Zeit, sowie dem Deutschen Akademischen Austauschdienst (DAAD)
für die finanzielle Unterstützung.
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1 Introduction

The investigation of complex diseases such as cancer, cardiovascular diseases, diabetes,
rheumatoid arthritis, allergies or Alzheimer’s disease is of high importance for public
health and economy because of their widespread in modern western populations.
Cardiovascular and cancer diseases are the main causes of death in such countries as
Germany and the USA, contributing 42% and 26%, respectively, to the German overall
mortality in 2008 (Robert Koch-Institut, 2011). Other common chronic diseases such
as allergies or diabetes affect a large proportion of young people and lead to enormous
medical and economical costs. Hence, it is important to understand complex diseases
by detecting pathogenic mechanisms that cause disease development and progress.
This will help to derive risk prediction models, preventive methods, medications and
therapies.
In general, a disease is defined as an abnormal medical condition affecting the body
of an organism, associated with specific symptoms and signs (Saunders Company,
1968). Many diseases, particularly most types of cancer, heart diseases and allergies,
develop due to an internal dysfunction in the human body, e.g. in immune response
or inflammatory process. These dysfunctions can arise from non-genetic factors that
are in Genetic Epidemiology denoted as “environment”, compassing lifestyle, external
exposures and therapies, but they may also be caused partly or completely by genetic
factors. For the latter we can differentiate the hereditary disposition transmitted from
the parents and occurring in all body cells from changes in the genetic information
occurring during lifetime affecting only some cells and their descendants. The latter is
especially relevant in cancer.
The relation of genetic factors to disease development arises from the fact that the
genetic information codes for proteins and regulates their synthesis. Proteins are the
basic molecules of life and are responsible for all necessary tasks of the human body,
e.g. metabolism, signal translation or regulation of cell growth. On the one hand,
proteins preserve life. On the other hand wrong or defect proteins appearing due to an
improper protein coding can be responsible for disease susceptibility and development
as well. The same holds for an insufficient or excessive amount of proteins due to
improper regulation of protein synthesis.
When examining the influence of genetic factors on disease development, we should
differentiate between classical genetic disorders and complex diseases. Classical genetic
disorders, called Mendelian diseases, are rare with a simple inheritance pattern in
affected families. They are determined by a single gene only (monogenic diseases),
e.g. Huntington’s disease, Cystic fibrosis or red green color blindness (Bickeböller and
Fischer, 2007). For such diseases, the defect or the loss of only one specific protein or
the construction of one wrong gene product directly causes the disease development and
provides a unique relationship between the genetic factor and the disease. In contrast,
complex diseases are characterized by the absence of clear inheritance patterns and
often by no obvious aggregation mechanism in families, resulting from a complicated
interplay of numerous genetic and environmental factors. Most complex diseases do
not show evidence for the presence of clear genetic causation, but rather a genetic
sensibility to the disease given by multiple genetic factors - with an additional strong
environmental component that leads to an ambiguous relation between the genetic
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make-up and the disease of interest (Office of Genetics and Disease Prevention, 2000).
Proteins in general do not work in isolation but together to fulfill the different biological
processes of the human body. Therefore, it is assumed that for complex diseases whole
biological pathways or complex molecular networks involving multiple interrelating and
competing pathways are implicated in disease susceptibility and progression (Elbers
et al., 2009; Schadt, 2009; Thomas, 2005; Wang et al., 2007). This implies that the
genes involved in disease etiology will be functionally related and that the corresponding
proteins cluster in several pathways, acting in concert to confer disease predisposition
(Carlborg and Haley, 2004; Elbers et al., 2009; Subramanian et al., 2005; Wang et al.,
2010). The pathological mechanism of these diseases is not based on the defect or loss
of a single gene product, but on multiple proteins altering the flux through a particular
pathway, finally resulting in its malfunction or drop out (Subramanian et al., 2005).
Beside the perhaps dozens of gene products a pathway comprises, environmental
substrates can be included in biological processes (Thomas, 2005). A lack or excess
of an environmental factor or the intervention of an improper environmental substrate
can lead to pathway defects and furthermore to diseases. In allergies for example,
the immune system reacts hypersensitive to harmless environmental substances called
allergens. The environmental factor plays an important role, since an allergic disease
becomes only noticeable in the presence of the allergen. Other examples of environ-
mental factors contributing to a multitude of diseases such as diabetes, cardiovascular
and cancer diseases are poor nutrition, lack of physical activity and smoking, where the
latter is the main cause for lung cancer. The important role of environmental factors in
complex diseases must not be neglected. The understanding of the underlying pathway,
involving genetic and environmental factors is essential to counteract diseases and thus
is an important research topic.
While Epidemiology concentrates on the investigation of environmental factors in
diseases, the discipline that is engaged in finding internal risk factors in form of
genetic predisposing factors is called Genetic Epidemiology. In Genetic Epidemiology,
genetic markers are analyzed to identify variants in DNA sequence related to a disease
of interest. These findings open insights into the pathological mechanism of the
disease, can be used to determine disease risk models and develop new therapies. The
direct examination of proteins is often inappropriate since their occurrence differs
between tissues and proteins are unstable underlying synthesis and degradation at all
times. In contrast, the genetic information appears to be stable and covers not only
protein coding regions but also sequences responsible for proper regulation of protein
biosynthesis. Therefore, the knowledge obtained by examining the genetic information
directly instead of working on the protein level is advantageous.
For the identification of genetic risk factors, two different principles can be used: linkage
and association. In linkage studies the cosegregation of genetic markers with the disease
of interest in families is examined, resulting in a coarse candidate region on a particular
chromosome. Genetic association studies investigate the joint occurrence of particular
genetic variants with the disease either on a family or population level, allowing a fine
mapping of the disease causing locus. The foundation for the performance of linkage
studies in humans was proposed by Botstein and colleagues in 1980. They suggested
that restriction enzymes could be used to obtain DNA sequence variants, characterized
by a variation in the length of the produced fragments (restriction fragment-length
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polymorphisms, RFLPs), that could be used to examine disease causing genetic factors
(Botstein et al., 1980; Maresso and Broeckel, 2008). In the following years, various other
types of genetic variants in humans, e.g. microsatellites, were discovered. In the 1990s,
by the development of high throughput genotyping methods determining standard
marker sets of 200-800 microsatellite polymorphisms to cover the whole genome, linkage
studies became available on a genome-wide level (Borecki and Province, 2008; Maresso
and Broeckel, 2008; Sham and Cherny, 2010).
For Mendelian diseases characterized by a large effect of one single gene and an
unambiguous relationship of this genetic factor and the disease, linkage studies were
successfully performed to detect the underlying genetic risk factors. Two early
examples are cystic fibrosis resulting from a defect in the gene CFTR (Cystic Fibrosis
Transmembrane Conductance Regulator) located on chromosome 7 (Riordan et al.,
1989) and Huntington’s disease caused by a gene coding for the protein huntingtin on
chromosome 4 (The Huntington’s Disease Collaborative Research Group, 1993).
Nevertheless, to discover the genetic risk factors of complex diseases provides a major
challenge with only small success before the 21th century. Reason for that was the
complexity of these diseases incorporating an unknown number of multiple genes with
often moderate to low effects interacting with various environmental factors (Smith
et al., 2005). Although linkage studies in families are successful to identify the rare
genetic variants of monogenic diseases, they seldomly have enough power to detect
susceptibility genes with low or moderate effects, with the complicated interplay of
numerous factors exacerbating the identification in addition. However, it is possible
to find genetic markers for clear disease subformes that have their origin in only one
single mutant gene (major gene) with a strong effect and are transmitted by a simple
inheritance pattern with characteristic transmission comparable to Mendelian diseases
(Scheuner et al., 2004). These monogenic subtypes of diseases are often characterized by
early age of onset in affected families and sometimes more severe clinical manifestations.
The most famous gene belonging to this class is the BRCA1 gene on chromosome 17
identified for breast cancer by Hall et al.. It plays an important role in DNA repair
and cell cycle control, and increases the breast cancer risk of mutation carriers during
lifetime to nearly 65% (Antoniou et al., 2003). Furthermore, it contributes to other
types of cancer such as ovarian, prostate, pancreatic and colon cancer (Hall et al., 1990;
Online Mendelian Inheritance in Man (OMIM), 2012 #113705). Another example is
Alzheimer’s disease, with 3 causal subtype genes detected for early onset, a gene called
APP coding for the amyloid precursor protein on chromosome 21 (Tanzi et al., 1987;
OMIM, 2012 #104300, #104760), the presenilin-1 gene on chromosome 14 (Clark
et al., 1996; OMIM, 2012 #607822, #104311) identified by linkage studies, and the
presenilin-2 gene on chromosome 1 detected by a sequence comparison with presenilin-1
(Sherrington et al., 1995; OMIM, 2012 #606889, #600759). However, this kind of
disease subtypes is responsible only for a small fraction of the diseased individuals.
Unfortunately, for identifying other non high-risk genes related to the disease, linkage
methods proved to be unsuccessful, so that the genetic mechanisms of the remaining
majority of the complex diseases remained unclear (Sham and Cherny, 2010).
In the late 1990s in response to this unsatisfying progress in studies of complex
diseases by linkage analysis, the era of genetic population-based association studies
started (Risch and Merikangas, 1996; Sham and Cherny, 2010). Although association
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studies are not able to find rare variants in families for Mendelian disease in contrast
to linkage studies, they provide much higher power to reveal common disease risk
factors with moderate and low effects as predominantly involved in complex diseases
(Sham and Cherny, 2010). Historically, association studies were only applicable in a
candidate approach, restricted to a selection of a small number of candidate genes,
regions or pathways. These candidates were derived from biological knowledge about
the disease development or statistical hypotheses from previous, e.g. linkage, studies
(Zondervan, 2010). Hence, association studies required a good choice of candidate
genes to be performed successful. For example, the APOE gene on chromosome 19,
coding for the Apolioprotein E that plays an important role in the lipid metabolism,
was detected by Strittmatter et al. in 1991 in an association study of Alzheimer’s
disease characterized by late onset. APOE was replicated in several subsequent studies.
Although the gene itself contributes to the risk of Alzheimer’s disease only moderately
in comparison to the effects of the genes in the monogenic subformes, it is responsible
for many affected individuals because of the common occurrence of the risk increasing
variant in the population (nearly 15%) (Bickeböller and Fischer, 2007; OMIM, 2012
#104310, #107741). Another gene, the TP53 (tumor protein p53 ) was found in
multiple association studies of different cancer diseases, compassing breast, cervical,
endometrial, head and neck, lung and ovarian cancer (Hirschhorn et al., 2002). The
TP53 is a tumor suppressor gene. It controls cell growth by inducing cell cycle arrest
when DNA is damaged, activates DNA repair and initiates programmed cell death if
irreparable DNA damages occur. The genetic variation contributing to disease risk
enables cell division despite DNA damages, leading to uncontrolled cell growth and
tumor formation.
Many susceptibility genes were revealed in candidate association studies of complex
diseases, with more than several hundreds of associations found in works published
between 1986 and 2000. However only for few of them successful replication was
possible (Hirschhorn et al., 2002). The lack of biological knowledge about many
complex diseases and hence about potential pathways and genes (Zondervan, 2010)
limited the ability to examine good candidates. New candidate regions could not be
discovered by linkage methods either, because of the moderate to low effects of the
genetic factors in the diseases of interest. Thus, the chance of missing genes that were
not expected to be involved in etiology of a particular disease was very high.
Generally the success to unveil the etiology of complex disease in large parts remained
limited due the lack of good candidates for association studies and due to the low power
of linkage methods to find susceptibility moderate and low effect genes (Sham and
Cherny, 2010; Zondervan, 2010). At the beginning of the 21st century a new, promising
approach was introduced. Increasing knowledge about the human genome from the
Hap Map (International HapMap Consortium, 2003, 2005) and the human genome
project (International Human Genome Sequencing Consortium, 2004), as well as the
technological progress in developing chips of genetic markers covering nearly the whole
genome, made it possible to carry out genome-wide association studies. Genetic markers
that are allocated on these genome-wide chips are single-nucleotide-polymorphisms
(SNPs) - DNA sequence variations resulting from a change of a single DNA base. The
new strategy of genome-wide association studies (GWAS) seemed to fulfill the needs for
examining complex diseases, and it expressed a new ray of hope to reveal pathological
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mechanisms of the diseases (Sham and Cherny, 2010; Zondervan, 2010). The idea of
this new methodology is supported by the common disease common variant hypothesis
(CDCV) (Pritchard and Cox, 2002). The CDCV states that the genetic burden of
a complex disease can be conveyed by common variants, since variants influencing
complex diseases harm people only later in life time, usually after reproductive years,
and therefore not eliminated by natural selection (Stranger et al., 2011). Common
variants are defined as DNA variants that occur for at least 1% in a population
(Frazer et al., 2009). This hypothesis was one of the fundamentals of the Hap Map
project, where the patterns of common genetic variations in different populations
were characterized and provided for the chip-technology of GWAS to facilitate the
genotyping of a huge number of SNPs at reasonable costs.
Although GWAS initially provided many new challenges, the first genome-wide
association study of age-related macular degeneration performed in 2005 showed
success and presented a promising start by identifying CFH (complement factor H)
(Klein et al., 2005) among 100,000 genotyped SNPs in only 96 cases and 50 controls.
Nowadays, many of the initial problems have been solved. However researchers are
still struggling with new issues resulting from GWAS and developing corresponding
methods. At the beginning of the GWAS era, two step (Bukszár and van den Oord,
2006; Satagopan et al., 2002; Skol et al., 2006; Thomas et al., 2004) and DNA pooling
methods (Sham et al., 2002) were of high interest promising to reduce genotyping costs.
Due to decreasing chip expenses they lost attractiveness over the years. Availability
of increased computer power and the help from computer sciences made the handling
of huge amount of data possible. To guarantee high quality of the genome-wide data,
different quality control criteria had to be assessed, with nowadays nearly consensus
found about this issue. Methods from other disciplines were borrowed and adapted to
solve such difficulties as multiple testing (Dudoit and Laan, 2008; Rice et al., 2008;
Westfall and Young, 1993) and meta-analyses (Trikalinos et al., 2008). Several new
methods were developed for new highly important challenges that specially arise in
genome-wide association studies such as population stratification (Devlin and Roeder,
1999; Price et al., 2006; Pritchard et al., 2000) or imputation (Browning and Browning,
2009; Li et al., 2009; Marchini et al., 2007). General GWAS software and packages were
created (Aulchenko et al., 2007; Herold et al., 2009; Purcell et al., 2007), providing the
main methods for quality control and analysis of GWA data with an efficient time and
memory consumption. Specific software addressing the special issues was developed as
well, e.g. EIGENSTRAT (Price et al., 2006) or MACH (Li and Wang, 2010).
Numerous successful GWAS were performed, with especially the investigations of the
Wellcome Trust Case Control Consortium (WTCCC) worth to mention. The WTCCC
analyzed 500,000 genetic markers for 7 common diseases within 1,500 – 2,000 cases
for each disease and 3,000 shared controls (Wellcome Trust Case Control Consortium,
2007). Until October 2010, 702 GWAS in humans were published, involving 421
different human traits with several hundreds of genetic markers replicated (Johnson
and O’Donnell, 2009; Hindorff et al., 2009, 2012; Stranger et al., 2011). Nevertheless,
for many complex diseases GWAS reached their limits. Although many genetic suscep-
tibility loci have been reported so far, many of them were not replicated. Furthermore,
in replicated findings, the effects are often weak and explain only a small proportion of
the disease, so that the medical relevance of the results remains small (Gibson, 2010;
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Ioannidis, 2007; Ioannidis et al., 2007; Janssens and van Duijn, 2010; Manolio et al.,
2009).
During the last years, this partially unsatisfying progress gave rise to the thought,
that GWAS involving only the analysis of single genes with common variants are not
as sufficient as expected and mark only one step along the road. It is necessary to
strike new complementary paths, e.g. compassing collaborative work, analysis of gene x
gene (GxG) and gene x environment (GxE) interactions, consideration of pathways in
the analysis and examination of other kinds of genetic markers not covered in current
GWAS (Juran and Lazaridis, 2011; Gibson, 2010; Manolio et al., 2009; Ober and
Vercelli, 2011; Park et al., 2008; Yang et al., 2010).
By forming large consortia and working together closely, sample sizes are enlarged and
an increase in power to find genetic components with only small effects is achieved
(Ingelsson, 2010). The collaboration assures consistent analyses for the different
participating studies, which can improve meta-analysis results further. Since several
genes are found to be responsible for multiple diseases, e.g. TP53 for numerous cancer
diseases, approaches that look at multiple phenotypes at once are of interest (Park
et al., 2011). Currently, special emphasis is placed on examining rare variants according
to the common disease/rare variant hypothesis (CDRV) (Asimit and Zeggini, 2010;
Basu and Pan, 2011; Dering et al., 2011; Manolio et al., 2009; Sun et al., 2011), that
opposites to the common disease/common variant hypothesis (CDCV) underlying the
GWAS concept. The CDRV hypothesis postulates that common disease are rather
caused by a high number of rare variants with high effects, what seems more consistent
with human pathologies and population biology than the CDCV (Pritchard, 2001).
Rare variants are defined by a frequency of less than 1% in a population (Frazer et al.,
2009). They are investigated in the ongoing 1,000 genomes project (1000 Genomes
Project Consortium, 2010), where nearly 2,500 genomes are completely sequenced.
Next generation sequencing will cover the whole genetic variation of a population.
This will comprise not only single nucleotide changes in form of SNPs as considered
in GWAS, but also structural variations. In addition, since the complexity of disease
development cannot be neglected, including this complexity into the analysis gains
importance. This is e.g. done by incorporating knowledge about biological pathways
into the analysis (Chasman, 2008; Wang et al., 2007) to relate several genes coding
for proteins that work together in the same pathway, so that analysis results of single
gene analyses can be improved. The examination of gene x gene (GxG) and gene x
environment interactions (GxE) is another important point that gains attraction as a
good complement to simple single marker analyses (Moore, 2003; Moore and Williams,
2005; Thomas, 2010a,b). Furthermore, haplotypes are considered (Liu et al., 2008).
Haplotypes encompass several genetic markers originating from the same parent at once.

The focus of this thesis is the integration of pathway information into the analy-
sis of genome-wide association studies and the examination of gene x environment
interactions to complement the simple single SNP results. We adapted and improved
for our purpose a hierarchical Bayes model originally proposed by Lewinger et al. in
2007 for integrating external knowledge into genome-wide association studies.
In the last few years, the consideration of pathway information in GWAS was mainly
performed by genes set analysis (GSA) methods (Chasman, 2008; De la Cruz et al.,
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2010; Hosack et al., 2003; Tintle et al., 2009b; Wang et al., 2007) originating from
gene expression analyses. These methods assign significance to whole sets of genes
or biological pathways, rather than single genetic marker, so that whole pathways
contributing to pathological mechanism can be identified. In contrast, the hierarchical
Bayes method (Chen and Witte, 2007; Heron et al., 2011; Hung et al., 2004; Lebrec
et al., 2009; Sohns et al., 2009) concentrates on using the pathway information to relate
the different genes to each other. Thereby, genetic markers in the same pathway can
be prioritized by supporting each other to be detected. This helps to reveal the full
spectrum of genes influencing the disease. Beside, the Bayesian approach provides the
possibility to consider any other external knowledge in addition to the pathways, e.g.
if the genetic marker directly results in a change of the corresponding protein or if the
marker was found in another study before. For GSA methods, this is not possible.
When integrating pathway information, we will not only focus on pathways expected
in disease etiology, but allow a global overall search by integrating the whole available
set of pathway knowledge.
Furthermore, GxE interactions play an important role in complex diseases and their
consideration can improve results (Thomas, 2010a,b), especially in diseases such as
lung cancer where the environmental factor smoking is known to have such a great
impact on disease development. Interaction of this particular environmental factor with
genetic factors, for example, could explain why some individuals who smoked during
their whole life do not develop lung cancer, while some never smokers get affected by
the disease.
GxE interaction can be investigated by a logistic regression model that includes a cor-
responding regression coefficient for the interaction term. The traditional case-control
test is based on the estimation of this coefficient. Unfortunately, this classical test
usually has low power to detect GxE interactions. Hence, the case-only approach,
based on diseased individuals only, was suggested by Piegorsch et al. in 1994. It results
in increased power but has one major drawback: the test is biased and leads to false
positive results in the presence of an underlying G-E association on a population level
independent of the disease of interest. Such population-based G-E associations can
for example occur when genes influence the choice of an environmental factor, e.g. in
lung cancer gene that favor smoking, but are not involved in the disease development
themselves. Unfortunately, G-E associations cannot be ruled out. They are even
expected to appear, especially in genome-wide context, where up to two million SNPs
are tested. Therefore, during the last years, several methods were developed, trying
to increase the power in finding GxE while taking G-E associations on a population
level into account, e.g. two-step procedures (Albert et al., 2001; Murcray et al., 2009)
testing first for a population-based G-E association and then in the second step for
the interaction, or by empirical Bayes methods (Mukherjee et al., 2008; Mukherjee and
Chatterjee, 2008).
We modified and improved the hierarchical Bayes model of Lewinger et al. (2007) for
the purpose of GxE analysis. This newly developed GxE test exploits the high power of
the case-only test while considering population-based G-E associations. We worked out
two strategies to combine the integration of pathway information and the analysis of
GxE interactions. The first strategy integrates the available pathway information into
the analysis to support markers that have only a minor interaction effect based on the
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case-control test for interaction but occur in the same pathway. In the second method
integrating pathway information with GxE interactions, we consider only pathways with
a known or highly expected relation to the considered environmental factor. These were
included into the analysis to support the correct control for population-based G-E asso-
ciations, since SNPs involved in such an environment associated pathway should rather
have a population-based G-E association then SNPs outside of such a pathway. For ex-
ample, smoking pathways related to nicotine dependency would belong to that category.

This dissertation starts with three introductory chapters providing the necessary
basic genetic and statistical concepts. In chapter 2, basic information about the human
genome, population genetics and genetic diseases is given. Chapter 3 includes the
statistical basics used in Genetic Epidemiology and principles of association studies.
In particular, genome-wide association studies and GxE interactions are considered.
Chapter 4 introduces the Bayesian approach and specifically the empirical Bayes
approach as the statistical basic concept for the method we used. The hierarchical
Bayes approach suggested by (Lewinger et al., 2007) for genome-wide association
studies, denoted as hierarchical Bayes prioritization (HBP), is discussed in the same
chapter. The fifth chapter is about the integration of pathway information into
genome-wide association studies. Different gene set analysis methods are presented
(Chasman, 2008; De la Cruz et al., 2010; Hosack et al., 2003; Tintle et al., 2009b;
Wang et al., 2007) and the comparison of the hierarchical Bayes prioritization using
several strategies integrating pathway information to other gene set methods based
on rheumatoid arthritis data is discussed (Lebrec et al., 2009; Sohns et al., 2009).
Chapter 6 focuses on GxE interactions in GWAs. Different GxE interaction methods
are explained (Albert et al., 2001; Mukherjee et al., 2008; Mukherjee and Chatterjee,
2008; Murcray et al., 2009) and an improved statistical method for GxE in GWAs
based on the hierarchical Bayes approach is provided. Simulation studies are presented,
investigating the performance of this new method in comparison to other existing
GxE approaches. In chapter 7 the hierarchical Bayes method for pathway integration,
the hierarchical Bayes method for detection of GxE interactions and two strategies
incorporating pathway information into the analysis of GxE interactions are applied
to several lung cancer studies from the international lung cancer consortium (ILCCO)
and the working group on transdisciplinary research in cancer of the lung (TRICL)
(International Agency for Research on Cancer (IARC), 2012; Amos, 2007). For
comparison purpose, Gene Set Enrichment Analysis (Subramanian et al., 2005; Wang
et al., 2007), the most popular gene set analysis method, and several GxE approaches
(Albert et al., 2001; Mukherjee and Chatterjee, 2008; Murcray et al., 2009; Piegorsch
et al., 1994) are applied to the same data. The last chapter gives a short summary and
contains an outlook for further investigations to extend and improve this work.
Since chapter 2 and 3 are restricted to the basics necessary for the mathematically
focused reader, more detailed information for several topics in genetics, genetic diseases
and genome-wide association studies is given in the appendix part A for the molecular
genetic comprehension and interpretation of the applications. In the appendix part
B additional information and results for our data applications can be found. Finally,
mathematical derivatives for the empirical hierarchical Bayes approach for GxE
interaction are given in the appendix part C.
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2 Fundamentals of genetics and genetic diseases

2.1 Genetic basics

“DNA makes RNA
RNA makes proteins

proteins make us”
(Ziegler and König, 2006)

2.1.1 The hereditary information

The genome is the entirety of the inheritable information of an organism that is nec-
essary for its development and the specification of characteristics, biological features
and traits. In organisms with cell nuclei (eukaryotes) the main part of the hereditary
information is located in the nucleus and organized in separate physical units, the chro-
mosomes, which build the control center of each cell. Human cells contain 23 pairs of
chromosomes including 22 autosomal pairs (autosomes) and 1 pair of sex-chromosomes.
The two copies of each pair are called homologous chromosomes because they have -
except for the sex chromosomes - the same length and structure and are responsible for
the same biological features. For the sex chromosomes, two different forms exist, the X
and the Y chromosome, determining the sex of an individual with an XX pair in females
and an XY pair in males.
Chromosomes consist of deoxyribonucleic acid (DNA) as carrier of the genetic in-
formation. A graphical presentation of the DNA is given in figure 2.1. The DNA
is composed of two long linear molecules (strands) of several individual elements called
nucleotides that form a double helix structure. Four different types of nucleotides oc-
cur, containing one of the bases adenine (A), cytosine (C), guanine (G) or thymine
(T). Each DNA strand has two different ends, the 3’ and 5’ end, and the bases between
the two strands form pairs by binding A to T and C to G, so that the DNA has two
complementary base sequences. In total, approximately 3 · 109 base pairs occur in the
human genome (U.S. National Library of Medicine, 2011).
The functional units of the DNA are called genes. They cover the genetic informa-
tion by containing blueprints for protein construction coded by their base sequence
(genetic code). More precisely the base sequence of a gene codes for amino acids,
which furthermore combine to specific proteins of particular function. Each of the 20
existing amino acids is coded by 3 successive bases (codon) with several different cod-
ings for some of them. Additionally, there is one start codon and three stop codons that
mark the beginning and the end of an amino acid sequence.

2.1.2 The synthesis of proteins

The biosynthesis of proteins using the genetic information in form of DNA gene-codes
is called gene expression. The DNA-sequence is first transcribed to mRNA, mes-
senger ribonucleic acid (transcription), while the mRNA sequence is translated
to a chain of amino acids that build the protein (translation). mRNA is only one-
stranded and differs from DNA by substituting thymine with uracil (U; bounds with A)
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Figure 2.1: DNA double helix and its composition

and containing a ribose instead of a desoxyribose in each nucleotide. In addition to the
DNA regions of a gene containing the information that is translated into an amino acid
sequence, called exons, there exist intragenic regions without coding function for the
protein, denoted as introns. At both ends of the gene we have untranslated regions
(UTR) that can contain regulatory elements. An overview of the different components
around and within a gene is given in figure 2.2.
Before translation, the introns are removed from the mRNA sequence in a process called
splicing. By alternative splicing different mRNA molecules can be obtained from the
same DNA sequence. Thus, one gene can code for different proteins, and the number of
possible proteins clearly exceeds the number of genes. For humans 20,000 – 25,000 dif-
ferent genes exist (International Human Genome Sequencing Consortium, 2004), coding
for more than 300,000 different proteins (Qiagen Sample and Assay Technology, 2012),
that make us who we are and how we look like.
Although each single body cell contains the whole genetic information, the gene activ-
ity differs depending on the particular cell type and current need. This effectiveness of
biosynthesis is guaranteed by regulatory DNA sequences located in the UTR or 3’ and 5’
flanking regions of a gene (gene regulation). These regulary units are furthermore con-
trolled by the specific interplay with numerous transcription factors. Transcription
factors are special proteins that can activate (activator) or block (repressor) the regula-
tory units and hence enable or inhibit the transcription. Other regulatory elements can
influence the translation, e.g. by promoting or enhancing the mRNA degradation and
hence determining how often the same mRNA is translated into protein.
Proteins can contain one or more amino acid chains, each comprising hundreds to several
thousand amino acids. Functionality and challenges of a protein are determined by the
sequence of the amino acids. Proteins are responsible for all tasks concerning sustain-
ment and function of the human body, e.g. for the transport of substances, the regulation
of ion concentrations, the catalyzation of chemical reactions or infection defense, with
many proteins acting together for the different tasks. Every moment, thousands of pro-
teins are produced.
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Figure 2.2: Structure of a gene

The protein-coding gene segments cover only around 1.2% of the DNA (International
Human Genome Sequencing Consortium, 2004), non-coding introns and UTRs within
the genes nearly 35%. Beside, we have about 62% intergenic regions without coding
function (Brown, 2002). These can partly comprise the already mentioned regulatory
units responsible for the control of the gene activity by regulating if and to which amount
genes are transcribed and translated into proteins. However, for the main part of the
intergenic regions, no function is known at all.

2.1.3 Genetic variability

An important process affecting the hereditary information is the cell division. Two
different kinds of cell division exist, the mitosis which is necessary for the progeny
of cells to achieve new somatic cells for growth, development and wound healing and
the meiosis, necessary for sexual reproduction. Both types of cell division incorporate
DNA replication: the mechanism of duplicating DNA. In this process, the double
helix structure is uncoiled and each of the single strands serves as a model for a new
complementary strand, so that two exact copies of the original DNA double helix are
produced.
In the basic cell division, the mitosis, all chromosomes of a cell are duplicated and
equally distributed to two daughter cells. Thereby, all body cells are identical clones of
the original fertilized ovum, adapted to their special tasks by structure and function.
In the meiosis, a special form of the cell division, germ cells (gametes: egg and sperm
cells) are produced. For the sexual reproduction that accomplishes the genetic informa-
tion of mother and father, the presence of only a single set of chromosomes (haploid) in
the responsible cells is necessary. Hence, in meiosis, only one chromosome of each pair
should be transferred to one germ cell.
Since in meiosis the homologous chromosomes are randomly distributed to two germ
cells, more than 8 million (223) different chromosome combinations in gametes exist.
This results in a high genetic variability, with each gamete being nearly unique. In fer-
tilization, a sperm and an egg cell fuse with each other and two haploid chromosome
sets are merged to a diploid set, enlarging the possible combinations of genetic material
as well.
Another biological phenomenon producing genetic variety during meiosis is the chromo-
somal crossover or crossing over. Before the actual cell division, the chromosomes
of a pair arrange next to each other and partly overlap. Breaks in the DNA strands
at homologous points can occur, which can be joined together the other way round,
permitting an exchange of DNA segments between the two homologous chromosomes
(chromosomal recombination). For each chromosome pair, multiple crossovers are
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possible, with on average 55 crossovers per male human cell and approximately 80 in
female cells (Ziegler and König, 2006). Highly related to the process of crossing over is
the principle of genetic linkage. Genes or DNA segments are in linkage, when they
tend to be inherited together over generations by staying together in meiosis and hence
not being distributed independently from each other to the gametes. Genetic linkage is
also known as cosegregation. The joint inheritance of loci on the same chromosome
can be disturbed by crossover, so that only loci physically close to each other are found
to be tightly linked, since the region between them where a crossing over can take place
is only small.
While the chromosome combination represents a mix of complete grand paternal and
grand maternal chromosomes, the crossover mixes this information in addition within
the chromosomes. The combination of genetic material from all four grandparents con-
stitutes a natural random process, leading to a large genetic variety and genetic dis-
similarity in siblings. The ability of a population to develop individuals with different
inheritable information is called genetic variability.
However, meiosis is not unfailing and can –beside other causes – lead to different kinds of
mutations. Mutations are permanent changes in the genetic makeup that occur from
time to time spontaneously or by external exposure (e.g. virus, radiation, chemicals).
In this thesis we will concentrate on genetic variants arising from mutations that affect
only one single base position, also denoted as point mutation. Therefore, we will skip
large scale mutations affecting whole chromosomes or large chromosome segments here
and address gene mutations that affect only one gene. Gene mutations manifest by
substitution, deletion, insertion or duplication of single bases or short base sequences.
Although such small-scale mutations can result from an exchange of non-homologous
sequences of a chromosome pair (unbalanced crossover), the main source is defects in
DNA replication. In general, most errors in DNA replication are immediately corrected
by an efficient repair mechanism. Sometimes it is not possible to detect or repair these
errors and mutations result. When a mutation occurs in a somatic cell, all descendants
of this particular cell in this organism will be affected. Consequences will only occur
when they influence the particular function of the cell tissue (e.g. transfer from a normal
body cell to a proliferating cancer cell). When a DNA modification occurs in germline,
it can be inherited to the offspring and all body cells of the new developing individual
will contain this mutation. Therefore, germline mutations lead to genetic variation and
are important for evolution and in the context of hereditary diseases.
The mutation rate, defined as the number of mutations per generation per gamete, for a
gene is given by 10−5− 10−6. Gene mutations occur very often and need not necessarily
implicate functional consequences. The potential function of gene mutations located in
intergenic regions without regulatory function is not well understood yet. While gene
mutations in regulatory regions can influence gene expression and completely turn of
protein synthesis, mutations in introns can alter the gene splicing. Mutations within
exons may lead to wrong or defect gene products. Mutations are an important evolu-
tionary factor responsible for the variety of species on earth. However, since mutations
can influence the regulation of gene expression and hence the amount and type of protein
produced, they can also affect the protein’s function. This can lead to protective effects
but also disadvantageous changes in the human body, the development of diseases and
even death.

12



2.1 Genetic basics

2.1.4 Polymorphisms and phenotypes

Mutations are DNA sequence changes away from “normal” and all sequence variations
start as a mutation. When such a variant induced by a mutation causes a disease with
neo-natal or childhood onset, it may reduce the fitness of the organism and therefore
stays rare. However, new mutations not negatively influencing the fitness can spread
out and establish in a population, what may result in a polymorphism. A polymor-
phism denotes a DNA sequence variation that is common in the population and an
“acceptable, normal” alternative for the corresponding DNA sequence, that cannot be
explained by a new mutation anymore. By definition, a polymorphism is a variation in
DNA sequence that occurs in at least 1% of the individuals of at least one human pop-
ulation. Polymorphisms are responsible for many “normal” differences between people
such as eye or hair color and blood type, with some also contributing to susceptibility
of certain disorders. Nevertheless, 99% of our genome is the same in all humans (U.S.
National Library of Medicine, 2011).
Depending on the underlying mutation, we can distinguish different kinds of polymor-
phisms. Insertion or deletion polymorphisms (INDELs) result from insertions
or deletions that contain in general less than 50 nucleotides. Copy number varia-
tions (CNV) vary in their number of copies of a particular DNA sequence. Single
nucleotide polymorphisms (SNPs) result from substitutions of a single base. The
latter are the most common type of genetic variation among humans, accounting for
90% of the genetic variation. Most of them show only two different variants. Their
mutation rate is relatively low with approximately 10−9 to 10−8. Although SNPs are
most commonly found in intergenic regions with no explainable consequences to health
so far, some variants however have proven their importance in human health studies,
influencing the risk of disease development or the susceptibility to environmental fac-
tors. This affects predominantly SNPs within genes or regulatory regions (U.S. National
Library of Medicine, 2011).
Alternative variants of a gene or gene sequence at one locus on a chromosome are called
alleles. A gene locus is the physical position of a gene in the genome. A locus is
monomorphic when only one allele exists, a locus is polymorphic given at least two
different alleles. A locus with exactly two different alleles is biallelic. The frequency
of the appearance of an allele is the allele frequency. The frequency of the less com-
mon allele occurring at a locus in a given population is called minor allele frequency
(MAF). A clearly identifiable polymorphism with a known location in the genome
where the different alleles can be determined is denoted as marker (U.S. National Li-
brary of Medicine, 2011). Markers can be used to study the relationship between a
disease and its genetic causes or e.g. to predict a person’s response to certain medica-
tion. The markers most commonly used in today’s genome-wide association studies are
SNPs.
Because human cells are diploid, we have two alleles for each genetic locus on our auto-
somes. The combination of such an allele pair at a particular locus is called genotype.
Assuming that two different alleles A and a for one locus exist, we have 3 possible
genotypes: AA,Aa and aa. When the two alleles at a person’s locus differ we have a
heterozygous genotype, when both homologous chromosomes have the same allele the
individual is homozygous at that locus. Because different alleles can lead to different
composition, structure and function of a protein, the genotype influences the appearance
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of an organism, comprising all morphological, biochemical, physiological, psychological
and behavioral properties. All these characteristics are denoted as phenotype. We can
differentiate continuous and discrete phenotypes, e.g. hair color, weight and cholesterol
level, or an affection status (affected/unaffected) by a disease such as obesity, hyper-
tension and cancer. In this thesis, we will concentrate on disease status and hence on
binary phenotypes.

2.1.5 Mendelian laws of inheritance

In the 1860s, before the physical basics of genetic factors were known, Gregor Mendel
formulated three statements about the way certain characteristics in diploid organism
determined by one gene are transmitted from one generation to another. His results
were based on large-scale cross-breeding experiments on pea plants. The regularities
for his derived inheritance patterns were later restated to describe the relationship of
genotype and phenotype and are still known as Mendelian rules. These rules are the
law of uniformity and the law of segregation with respect to a single gene and the
law of independence dealing with the observation of two different characteristics at
once. According to the first two rules, each individual transmits one of its two alleles
to the offspring randomly according to a Bernoulli distribution with a probability of
p = 1/2, with the inheritance from father and mother independent from each other.
The inheritance via sex chromosomes presents a specialized rule. Mendel introduced
the terms “dominant”, “recessive” and “codominant” characterizing different modes of
inheritance. To visualize the relationship of phenotype and genotype, let us consider a
simple example of eye color, assuming two alleles B and G coding for green and blue eye
color and the possible genotypes BB, BG and GG. Given a homozygous genotype, the eye
color is unambiguously blue or green. For a heterozygous genotype, a different situation
can occur. When we have a dominant-recessive inheritance, one of the alleles (e.g.
G) establishes itself compared to the other one (e.g. B), resulting in the same phenotype
as the corresponding homozygous genotype (e.g. green eyes). G is the dominant allele,
while B is called recessive. Nevertheless, when both alleles establish themselves, they are
codominant and we have a codominant inheritance, e.g. resulting in blue-green eyes.
An illustrating example is the ABO-blood type, with an allele for “A” and “B” resulting
in blood type AB. The third rule, the law of independence postulates that two genetic
factors are transmitted totally independent from each other, so that they can combine
randomly and form new combinations. However, this turned out to be true only under
certain conditions. Genetic factors located close to each other on a chromosome are not
independently inherited.

2.2 Population genetics

Population genetics deals with the exploration of genetic structures in populations
and consequences of different evolutionary factors to the genetic constitution of a popu-
lation. This includes the examination of allele and genotype frequencies on a population
level, including the reasons for the observed frequencies, in which population they occur
and how they behave. A population denotes a group of reproductive individuals of the
same species that live in the same area, speak the same language and have the same
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culture, connected by evolution (Bickeböller and Fischer, 2007).
In the following, let M be a biallelic autosomal marker with the two alleles A and
a with frequencies p(A) and p(a) = 1 − p(A). For an individual I of a popula-
tion such a locus can be presented by two Bernoulli distributed B(1, p(A)) random
variables XMIj for the two alleles of the homologous chromosomes j = 1 (paternal),
2 (maternal). When allele A occurs, XMIj = 0 and XMIj = 1 for allele a. The
genotype of the individual can be expressed as the sum of the two random variables
XMI = XMI1 +XMI2(AA = 0,Aa = 1,aa = 2).

2.2.1 Hardy Weinberg Equilibrium

The law of Hardy Weinberg is an important basic principle of the population genetics of
diploid organisms. It describes the relationship between allele and genotype frequencies
of an autosomal locus in a population. The Hardy Weinberg law indicates that the
allele and genotype frequencies are in a stable equilibrium, called Hardy Weinberg
Equilibrium (HWE), remaining constant from generation to generation under certain
assumptions. Given the biallelic marker considered above, we can derive the frequencies
for the genotypes AA (s = 0), Aa (s = 1) and aa (s = 2) from the allele frequencies
p(A) and p(a) by

P (XMI = s) =

(
2

s

)
p(A)2−s(1− p(A))s with

∑
s=0,1,2

P (XMI = s) = 1.

Allele frequencies can be derived from given genotype frequencies as well by p(A) =
P (XMI = 0) + 0.5P (XMI = 1) and p(a) = P (XMI = 2) + 0.5P (XMI = 1). A more
detailed derivation can be found in Bickeböller and Fischer (2007).
One of the assumptions that underlie the Hardy-Weinberg-Equilibrium is that we have
an infinite population where Mendel’s law of segregation holds and that all pairs of
different genotype carriers for reproduction are equally likely (random mating). Infinite
population in the context of population genetics means that the population is really
large so that the random loss of an individual does not influence the allele frequencies.
Random mating excludes inbreeding or a preferential selection of a partner due to its
genetic information (assortative mating). In addition, evolutionary forces which influ-
ence the allele and genotype frequencies are assumed to not occur, such as genetic drift,
natural selection, immigration or emigration, population stratification and mutation.
Natural selection of a particular allele results from an advantage or disadvantage for the
carrier of a specific genotype or phenotype, so that not all individuals reproduce by the
same probability. In contrast genetic drift is an entirely random stochastical process
which changes the allele frequencies of a population strictly by chance due to random
sampling. However, the effect of genetic drift is weak in large populations and therefore
only relevant in very small populations. Since mutation frequencies are usually low,
they also do not play such a relevant role.
Although in general the assumptions of Hardy-Weinberg-Equilibrium are not fulfilled,
the law proves useful in praxis, is widely applied and many statistical methods are based
on it. For testing HWE we can use a χ2 test, comparing the expected genotype fre-
quencies based on allele frequencies with the observed ones. Deviation from HWE may
indicate the degree of evolution and can represent mixtures of different populations. In
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addition, HWE deviations can be used to detect laboratory problems such as genotyping
errors that express in a disequilibrium as well.

2.2.2 Linkage Disequilibrium

Linkage Disequilibrium (LD) denotes the correlation of particular alleles at nearby
loci of a chromosome on a population level due to their tendency to be inherited together
(Ardlie et al., 2002). In the following we will concentrate on pairwise LD measures which
consider only two loci at ones.
Assume that we have the alleles A/a and B/b for the two loci M1 and M2, with allele
frequencies p(A) and p(B). For an individual I, let XM1I and XM2I be the genotypes
at these loci. The combinations of the two alleles from the same gamete (XM1I1, XM2I1)
and (XM1I2, XM2I2) are named haplotypes. More general, the term haplotype is not
restricted to two loci and can be extended to any number of loci, up to the whole genetic
information inherited from one of the parents. For the two loci M1 and M2, 4 possible
haplotypes can be formed: AB,Ab, aB and ab, with frequencies p(AB), p(Ab), p(aB) and
p(ab). Linkage disequilibrium expresses itself by alleles at the two loci that occur more
or less often together on gametes of a population than expected from the independent
combination according to their allele frequencies. Hence, the two loci M1 and M2 are in
linkage equilibrium when both alleles of a haplotype are independently distributed,
that means the haplotype frequencies correspond to the product of allele frequencies:
p(AB) = p(A)p(B), p(Ab) = p(A)p(b), p(aB) = p(a)p(B) and p(ab) = p(a)p(b). A
departure from independence representing a correlation of the loci is called linkage dis-
equilibrium.
Linkage disequilibrium can be measured by the disequilibrium coefficient DAB =
p(AB) − p(A)p(B), which equals 0 in case of linkage equilibrium and is unequal 0
when linkage disequilibrium is present. Linkage disequilibrium is a property of loci, not
their alleles and considering the other haplotypes of two loci we have DAB = Dab and
DaB = DAb = −DAB and hence only 1 degree of freedom. Because this measure highly
depends on the allele frequencies, different other measures for the strength of LD were
proposed, with r2 the recommended one that is most commonly used (Ardlie et al.,
2002). It corresponds to the square of the correlation coefficient of the 2x2 table of
haplotype frequencies, given by

r2 = D2/(p(A)p(B)p(a)p(b)) (2.1)

The LD measure r2 ranges from 0 to 1 and equals 1 when two markers provide identical
information. On the other hand, r2 = 0 denotes a perfect equilibrium. LD between two
loci can arise due to a new mutation at one of the loci resulting in a new haplotype.
By crossing over events between them, the loci may be inherited to different gametes
what results in a decay of LD from generation to generation. The rate of crossing over
between the loci determines the degree of LD reduction. Therefore, for loci physically
really close to each other, the LD reduces only slightly. The region inbetween for a
possible crossing over is only small, so that the loci tend to be inherited together and
the existing haplotypes remain. Another source of LD is the favoring of one of the
existing alleles at a locus, denoted as selection (Bickeböller and Fischer, 2007; Gillespie,
1998; Suarez and Hampe, 1994).
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LD patterns are further shaped by other evolutionary forces such as random genetic
drift (changing the allele and haplotype frequencies), migration, inbreeding, population
admixture and stratification (different allele frequencies) (Bickeböller and Fischer, 2007;
Rao and Gu, 2008). However, population admixture and stratification can cause a
correlation of loci independent from their location to each other (Bickeböller and Fischer,
2007; Ziegler and König, 2006).

2.3 Genetic origin of diseases

Although our genetic information crucially contributes to our appearance, our properties
and preserves our life, it also contributes to the susceptibility to diseases. Improper
protein coding or regulation by the genetic information can lead to a lack or excess
of the corresponding proteins, or the occurrence of wrong or defect proteins. This in
turn can cause disease or at least increase the risk to develop the disease. The better
understanding of participating genes and proteins in disease development can lead to
advances in abatement and healing and therefore the identification of such genetic factors
is of high importance. Additionally, our genetic makeup can not only partly explain the
predisposition to a disease, but also individual reactions to drugs.
In this chapter we will concentrate on the genetic origin of diseases. Therefore, we
will first describe simple monogenic diseases that follow quite straightforward the laws
of Mendelian segregation and are characterized by a unique gene-disease relation. In
section 2.3.2, factors complicating this simple pattern will follow and sections 2.3.3 and
2.4 focus on complex diseases.

2.3.1 Classical monogenic diseases

Genetic causes are easily determined for classical monogenic or Mendelian diseases.
This kind of diseases follows simple Mendelian inheritance patterns (section 2.1.5) and
is caused by one gene only with penetrances nearly 0 or 1. The penetrance relates a
genotype and a phenotype to each other and is defined as the conditional probability
that a person with a particular genotype develops the phenotype of interest. For dis-
crete phenotypes, we can express the penetrance by fgenotype = P (phenotype|genotype).
When a disease causing genotype always results in the development of the disease, the
conditional probability equals 1 and we have complete penetrance. In Mendelian
diseases where no further factors with an influence to the disease exist the penetrances
for the remaining genotypes equal 0. We can distinguish different Mendelian modes of
inheritance of the disease: dominant, recessive and codominant (section 2.1.5). Further-
more, the location of the genetic factor plays an important role. In the following, we
assume that we have a biallelic locus with normal allele A and disease causing variant a.
A classical monogenic disease is called autosomal dominant when the influencing gene
is located on one of the autosomes and only one a allele at that locus suffices to cause the
disease. Expressed in penetrances, we have fAA = 0 and fAa = faa = 1. When the gene
lies on an autosome but two disease causing a alleles are required for disease develop-
ment, we have a classical autosomal recessive disease. In that case, the penetrances
equal fAA = fAa=0 and faa = 1. Chorea Huntington is an example for an autosomal
dominant disease, while cystic fibrosis follows autosomal recessive inheritance patterns.
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However, since heterozygous genotypes need not necessarily express the same phenotype
as one of the homozygous, a codominant inheritance, with each genotype showing its
own phenotype, can occur as well. A particular form of codominance is an additive mode
of inheritance, with each susceptibility allele at a locus equally contributing to the phe-
notype or disease risk. An example for a codominant inheritance is a particular point
mutation in the beta-hemoglobin gene (HBB) that replaces the normal hemoglobin allele
HbA by a sickle cell hemoglobin allele HbS. This results in a sickle shape of red blood
cells (sickle cell disease). Sickle-shaped cells can cause pain and organ damage by block-
ing small blood vessels and they die prematurely (http://ghr.nlm.nih.gov/gene/HBB).
However, in heterozygous carriers we have genotype HbA/HbS so that both hemoglobin
types are expressed and only 25%-40% of the erythrocytes are affected by the modified
sickle-cell form. Therefore these persons show only few recognizable clinical symptoms.
On the contrary, in homozygous individuals with genotype HbS/HbS all red blood cells
are sickle-shaped, so that in general a shortage of red blood cells (anemia) occurs and
serious symptoms in further organs (sickle cell anemia). Hence, the severity of the dis-
ease differs between heterozygous and homozygous individuals. Disease causing loci can
be located on the sex chromosomes as well. However, we will not handle this here since
our methods are restricted to the examination of autosomal markers.
Monogenic diseases are in general rare, occurring in less than 1 out of 1000 persons.
This low disease frequency can be explained due to occurrence of the disease in early
childhood with severe chronic progress resulting in reduced fitness or even lethal con-
sequences. By investigating family data, genes of classical monogenic disease can be
easily detected and many are already successfully examined. Although only one gene is
involved in monogenic disease, one, several or even many alleles of that gene can cause
disease development.

2.3.2 Departure from simple Mendelian segregation

The model of Mendelian segregation is useful to demonstrate the principle of genetic
disorders. Unfortunately, even monogenic diseases are rarely subject to such straight-
forward models of inheritance (Bickeböller and Fischer, 2007). Several factors exist that
modify this simple pattern and make the model more complicated.
One of these issues is the deviation of penetrances from the simple 0 and 1 rule. On
the one hand it is possible, that not all individuals with a specific genetic predisposition
necessarily develop a corresponding phenotype, but that it establishes only in a fraction
of the carriers. This effect is denoted as reduced penetrance. Another phenomenon
concerning penetrances is phenocopies. This is the case when the affection occurs as
well in non-carriers of the genetic disposition, ascribed by other genetic and non-genetic
factors with an impact to the disease development. We observe penetrances 0 < f < 1.
Furthermore, the penetrance can vary by age, with a higher probability of disease de-
velopment with older age (e.g. in cancer).
In addition, heterogeneity can affect the inheritance of disease. This compasses al-
lelic heterogeneity, denoting that different alleles of one gene can be responsible for
the same disease, and locus heterogeneity, meaning there can be different responsible
genes for disease development. Phenotypic heterogeneity and pleiotropy is given
when the same disease shows diverse clinical characteristics in different individuals, or
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when one gene causes different symptoms or even different phenotypic traits. Hetero-
geneity can occur between different families (intra-familial heterogeneity), but also
within families (inter-familial heterogeneity). A useful tool to handle heterogeneity
is to homogenize study samples with respect to a disease by defining subgroups that can
be examined more easily. For many diseases, e.g. cancer diseases or Alzheimer’s disease,
concentrating on individuals with early-onset is useful for example.
Several other complicating factors exist, e.g. anticipation, genomic imprinting, gender
restriction, X-inactivation in women, germ cell and somatic cell mosaics. These factors
cannot be covered with the analysis methods in this thesis and are hence not covered
here.

2.3.3 Complex diseases

Most common diseases such as cancer, cardiovascular diseases, allergies or psychiatric
diseases are complex diseases that are not directly inherited according to classical
Mendelian mechanisms but characterized by a complicated interplay of numerous
genetic and environmental factors (Buselmaier and Tariverdian, 1999). This complexity
involves different forms of heterogeneity listed above, reduced penetrance and pheno-
copies, and can be complicated by additional other principles not handled in this thesis.
In most complex diseases we have no strict genetic causation, but rather a genetic
predisposition for the disease given by multiple genetic factors and the manifestation of
the disease depends on the influence of exogene factors during lifetime. This results in
a misty relationship of genotype and phenotype, with no apparent inheritance pattern
and even not necessarily an obvious aggregation in families. Disease etiology can
be compared to a Marshalling yard: while the direction and different possibilities to
change the switches are specified by the genetic factors, the environmental exposures
determine which track is taken (Buselmaier and Tariverdian, 1999).
When only a low number of genetic markers is responsible for disease development,
we say that the disease is oligogenic. When a high number of disease causing loci is
involved the disease is polygenic. Polygenic diseases with an additional environmental
contribution are denoted as multifactorial or complex. As already mentioned in the
introduction, from time to time, even for complex diseases clear Mendelian subforms
with one underlying mutant gene (major gene) with a strong effect can be identified.
However, since these major genes of complex diseases are extremely rare and affect only
a very small part of the affected people, we concentrate on oligogenes and polygenes
as well as further modifying factors. A modifying factor is defined as a factor that
influences the effect of another factor.
Although these genes have a much lower penetrance than the major genes, the suscep-
tibility gene variants occur more often and affect a larger proportion of the population.
Therefore, their investigation is highly important. For Alzheimer’s disease for example,
several oligogenes are identified besides the major genes, e.g. the Apolipoprotein-E
(OMIM, 2012 #107741,#104310). Although this gene has a much lower penetrance
than the major genes with a risk increased by factor 3, this gene mutation affects 15%
of the population and is responsible for 30%-50% of all Alzheimer patients (Farrer and
Cupples, 1998).

19



2 Fundamentals of genetics and genetic diseases

Detecting “non-major” genes of complex diseases may support our understanding
of the underlying pathogenic mechanisms. Furthermore, the hope for the future is that
it may facilitate to derive risk prediction models, new preventive strategies and more
effective therapies and medications. However, it is still a long way to get there and we
will concentrate here on the first step to identify the genetic risk factors. Unfortunately,
such “non-major” genetic factors in common diseases etiology are difficult to reveal due
to the complex mechanism involving the high number of factors with only small effects
and interactions between them.
In the following section we will take a more detailed look at the complexity of the
architecture of common diseases involving numerous genetic and non-genetic factors.
This complexity involves the coordinated work of genes within biological pathways,
genes interacting with each other (GxG) and the environment (GxE). Since the focus
of this thesis is the integration of biological pathway information into a genetic analysis
and the examination of GxE interactions, we will mainly focus on these two principles
and touch on the topic of GxG only shortly.

2.4 The interplay of genetic and non-genetic factors

2.4.1 Biological pathways

In general, proteins do not work in isolation, but coordinate their activities to fulfill
the different biological processes of the human body (Barabási and Oltvai, 2004; Li and
Agarwal, 2009). They are organized in biological pathways (Li and Agarwal, 2009) that
represent sequences of complex reactions at the molecular level in living cells to accom-
plish biological functions (Saraiya et al., 2005). These biological functions can compass
for example metabolism, signal transduction, immune response, as well as DNA replica-
tion and expression or cell growth and death (Kanehisa and Goto, 2000; Kanehisa et al.,
2012).
In metabolic pathways (e.g. glycolysis), a substrate has to coordinately pass a sequence
of chemical reactions, catalyzed by enzymes and connected via their substrates and
products. In a signal transduction pathway, information (e.g. nerve impulses) is trans-
ported from one cell to another. Since proteins are the main components in biological
pathways, and genes and their regulatory regions are responsible for the synthesis of the
proteins, the genetic information is connected by the pathways as well.
As an example of a biological pathway we can see a representation of the p53 signaling
pathway from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Kane-
hisa and Goto, 2000) in figure 2.3. This pathway plays a central role in the development
of all kinds of cancer and clearly illustrates how different proteins work together to fulfill
a particular task. For the interested reader, a more detailed description of the pathway
is given in the appendix A.3.

A defect of any of the proteins involved in a pathway can be responsible for the same
final pathway malfunction, that in turn may predispose disease. Since different proteins
may perform the same or a similar job, the loss of only one of these is often not relevant.
Depending on where in the pathway a protein is missing, different medical and clinical
consequences may results. Beyond, proteins are not only connected within pathways to
fulfill the different tasks, but also by different interrelating and competing pathways that
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Figure 2.3: p53 signaling pathway from the KEGG pathway database (Kanehisa and
Goto, 2000)

connect to even more complex larger networks. The p53 pathway for example is related
to several other biological pathways by forwarding signals to these. Additionally, distinct
alternative causal ways may lead to the development of the same disease (Brennan,
2002) and the disease complexity is enhanced by cross links between different pathways
involved in different aspects of a disease. A defect of the p53 pathway alone does not
cause cancer, but several other pathway defects have to accumulate in a cell and its
progeny (Breuer et al., 2005; Griffiths et al., 2008).
To gain insights into the normal cells activities and understand the biology underlying
the development of disease, it is of high importance to take a look at the relationship
of the different elements to each other within a pathway or network of pathways, rather
than single genes.

2.4.2 Gene x gene interactions

Beside the relationship of genes to each other defined by biological pathways, another
ubiquitous component in the genetic architecture of common human diseases contribut-
ing mainly to the underlying complexity, is gene x gene interactions (GxG) (Moore,
2003; Moore and Williams, 2005). GxG interaction, also denoted as epistasis, is defined
as one gene masking the effect of another gene (Cordell, 2002), so that the phenotype
for a particular genotype at one locus depends on genotypes at one or more other loci
(Moore and Williams, 2005).
From a biomolecular perspective, biological epistasis is defined as the result of physical
interactions among biomolecules within gene regulatory networks and biochemical path-
ways (Moore and Williams, 2005). A protein may for example bind to another one to
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modify its structure or transport it. At transcription level, transcription factors interact
with DNA regulatory units, other transcription factors and further proteins enhancing
or repressing their effect. Even molecules that do not directly physically interact may
have epistatic masking effects if they impact the same phenotype through a hierarchy of
biomolecules that affect various steps in a biochemical pathway (Chinnici, 1999). Even
different genes whose products are involved in different alternative biochemical path-
ways may have epistatic effects (Moore and Williams, 2005).
Although the examination of individual GxG interactions is an area of research, it is not
handled directly in this thesis. However, since the biological pathways relate potentially
interacting genes to each other, some kinds of GxG interactions are indirectly captured
by focusing on the incorporation of pathways information.

2.4.3 Environmental factors, gene x environment interactions and gene –
environment associations

Biological pathways comprise not only gene products but also environmental substrates
contributing to the human body functions (Thomas, 2010a,b). In the illustrated p53
pathway for example, environmental factors in form of external stress signals are re-
sponsible for the activation of the pathway.
That the development of diseases is highly driven by environmental factors as well
was known long before the conduction of genetic studies (Manolio and Collins, 2007).
In epidemiological studies environmental risk factors of diseases are studied with high
success. The importance of the environment should not be underestimated. Any en-
dogenous or exogenous non-genetic factor that influences the risk of disease is denoted
as environmental factor (Ober and Vercelli, 2011). This involves all physical (e.g. radia-
tion, temperature), chemical (e.g. air pollution, asbestos) and biological exposures (e.g.
viruses, bacteria), as well as life events (e.g. job loss, injury), social factors (Khoury and
Wacholder, 2009; Ottman, 1996; Schwartz, 2006; Vineis, 2007) and behavior patterns
(e.g. habits, late age at first pregnancy) including lifestyle (e.g. diet, physical activity,
stress or smoking). Therapies by drugs, hormones, chemo or radiation therapies belong
to the exposures as well.
In particular, environmental substances are involved in their corresponding metabolic
and signaling pathways. In a metabolic pathway, the environmental substrate, e.g. nu-
trients but also toxic substances, pass through a series of chemical reactions so that
they are degraded and an end product is obtained. In a signal transduction pathway,
a reaction to an environmental stimulus is given by a signaling cascade. Thereby all
external influences are perceived, such as hearing, smelling, tasting or sensing pain.
Numerous important environmental risk factors are known so far. An influence of phys-
ical inactivity and poor nutrition compassing high fat content, few vegetables and un-
balanced diet to the development of numerous diseases such as diabetes, cardiovascular
diseases and cancer could be shown. In cancer it is in particular known, that envi-
ronmental factors with the ability to damage the genome or disrupt cellular metabolic
processes contribute majorly to the disease development. Such environmental factors
are called carcinogens and encompass radiation, toxic substances as well as different
infectious agents and sex hormones. Since many years, asbestos exposure and smoking
are known for their high effect to lung cancer (Selikoff et al., 1968).
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Figure 2.4: Different models for Gene x Environment interaction (M1-M4) and Gene-
Environment association (M5) according to Ottman (1990)

The importance of environmental factors in the development of complex disease is indis-
putable, since the lack or excess of an environmental factor or the improper intervention
of a substrate can lead to pathway defects as well as gene coding or regulation defects.
In genetic epidemiological studies of complex diseases, the contribution of environmental
factors (Ottman, 1990) can explain reduced penetrances as well as phenocopies. While
environmental factors can have an effect of their own without any genetic predisposition,
the etiology of most common disease involves not only genetic and environmental main
effects, but also interactions between them (Hunter, 2005). We will concentrate in the
following on GxE interaction from a biological point of view, a statistical definition is
given in chapter 3.
A GxE interaction is given when a genetic and environmental factor work together to
cause a disease (Brennan, 2002), so that the effect of the environmental factor on disease
risk differs among individuals with respect to different genotypes (Brennan, 2002; Ober
and Vercelli, 2011; Ottman, 1996). It is rather the sensitivity to the influence of various
environmental risk factors that is inherited than the disease itself, so that differences in
genetic factors cause people to respond differently to the same environmental exposure
(National Institute of Environmental Health Sciences, 2011; Office of Genetics and Dis-
ease Prevention, 2000). In cancer for example, the “susceptibility” to potentially toxic
compounds is heavily dependent on the efficiency with which these can be metabolized
and excreted, but also on the efficiency with which small mistakes in DNA replication
are repaired. This susceptibility can strongly vary between individuals of a population.
The underlying susceptibility genes interact with the carcinogens. Another interpre-
tation of GxE is that the effect of a gene varies not only with respect to the genetic
background, but also by different environmental factors varying among persons (Ober
and Vercelli, 2011; Ottman, 1996).
GxE interactions can be visualized by direct physical interactions. An exposure for ex-
ample may react with a biomolecule initiating a signal transduction pathway (Ober and
Vercelli, 2011). In metabolic pathways, an environmental substrate directly interacts
with enzymes inducing its degradation. In particular, this plays a critical role in therapy,
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since the genetic information can affect the response to drugs via drug metabolism and
may lead to drug intolerance (Hunter, 2005). This highlights the fact that especially
genes involved in these pathways are very important spots in the context of GxE in-
teractions. However, the same biological mechanisms that apply to interactions within
genetic factors apply to GxE interactions as well, and gene and environment may also
interact at different steps within the same pathway or even in interrelating or competing
pathways (Hunter, 2005; Rothman et al., 1980).
In 1990 Ottman illustrated five different biologically plausible pathophysiological models
to visualize the relationship between genetic and environmental factors in terms of their
effects on the disease risk. First of all, it is possible that only one factor – either the
environmental (M1) or the genetic factor (M2) - show a direct effect on their own, with
the other one intensifying the effect. Furthermore, both exposure and the genotype each
can have some effect on disease risk on their own, but their joint occurrence leads to
an additional risk increase or reduction (M3). The fourth model describes that genetic
and environmental factor both show no effect on their own, but only when they occur
together (M4). In the last of these models, the genetic factor does not directly cause
disease, but is associated with a disease causing environmental factor by influencing the
internal dose of the exposure or the acceptance of an external dose (M5). In figure 2.4
the different types of interactions are illustrated. Examples of simple Mendelian disor-
ders for these models can be found in Ottman (1990).
In complex diseases, these forms of GxE interactions are embedded as a single compo-
nent within an even more complicated architecture. For lung cancer with smoking as the
most important environmental factor, we can transfer the different models as follows.
A gene involved in nicotine metabolism can exacerbate the effect of smoking – with no
direct effect in non-smokers (M1). A direct lung cancer gene can result in lung cancer
independent of environment, with smoking as a risk increasing agent with an effect on
its own (M3) or only in combination with that particular gene (M2). A smoker without
sensitivity to nicotine smoking will not have an increased lung cancer risk, as well as a
non-smoker with a mutated gene responsible for nicotine sensitivity. Only both occur-
ring at once, nicotine sensitivity and smoking, lead to a risk effect (M4). A smoking
addiction gene on the contrary regulates the level of exposure, while not influencing
disease directly (M5). Several examples of GxE in disease development were discovered
and evaluated so far. The MC1R for example is responsible for skin color, and a fair
skin color combined with UV radiation results in an increased skin cancer risk (Rees,
2004) (M1). The NAT2 gene coding for rapid acetylators increases the colorectal cancer
risk only in combination with red meat intake (Chen et al., 1998), while only one of
these risk factors on its own shows no effect (M4).
When taking a closer look at the models of Ottman (1990), only M1-M4 represent real
interactions between a genetic and environmental factor. In contrast, in M5 the genetic
factor impacts only the exposure to the environmental factor but not the disease sus-
ceptibility directly. Therefore, we have no interaction, but a correlation between the
genetic and environmental factor. Such a correlation totally independent of the disease
status that holds in the whole population is called population-based G-E associ-
ation. Population-based G-E associations occur when an underlying gene influences
the choice of an environmental factor, e.g. a smoking addiction gene that favors smok-
ing, or the other way around when an exposure determines genes. A population-based
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G-E association can result due to causal but also non-causal mechanisms. It is well
known that numerous environmental factors such as our behavior and lifestyle (e.g. so-
cial attitudes, alcohol, tobacco and other drug consumption or risk-taking behaviors)
as well as specific life events and circumstances (e.g. divorce, marital quality and life
support) are partially determined by our genetic make-up and heritable (Kendler and
Baker, 2007). Hence, our genetic information can influence our behavior to evoke an
environmental response or predispose to select or modify an environmental factor, and
a population-based G-E association is given. Genes involved in addiction for exam-
ple might produce causal associations, e.g. genes involved in nicotine dependency such
as GPR51 and CYPR51 (Caporaso et al., 2009; Thomas, 2010b; Thorgeirssson et al.,
2008; OMIM, 2012 #188890), or genes such as GABRA2 and ADH1C associated with
alcoholism (OMIM, 2012 #103780). In addition, our childhood environment is partly
influenced by the parent’s genetic make-up and behavior (e.g. parental discipline or
warmth, smoking of the parents, unsocial behavior), what can lead to a kind of indirect
population-based G-E associations as well (Kendler and Baker, 2007). Although not
that common, the environment can influence the genetic makeup. Radiation or smoking
in pregnancy for example can result in genetic changes and gene defects in the child,
what in turn may cause diseases. Population-based G-E associations due to non-causal
mechanism can be attributed to evolutionary processes resulting in a change of an allele
frequency in a particular environment. An example for this is the HbS variant of the
HBB gene that was already mentioned in section 2.3.1. Although this variant leads to
sickle-shaped cells in the human body and to a severe disease in homozygous individuals,
it also protects against malaria (Aidoo et al., 2002). Therefore, long time exposure to
malaria mosquitoes in tropical and subtropical region leads to an increase of the HbS
allele, and a population-based G-E association of the HBB gene and malarial environ-
ment can be observed.
Note, the difference between a population-based G-E association and a GxE interaction
is a highly important aspect of this work, so that both have to be strictly distinguished.
However, population-based G-E associations and GxE interactions are not mutually ex-
clusive, but can also occur together.
The mechanism underlying GxE is not completely understood yet and there is still a
long way to full knowledge about the relationship between the genetic makeup and the
environment (Ober and Vercelli, 2011). Nevertheless, due to the role of GxE interac-
tions in the development of a disease, understanding GxE is an important issue to invent
more effective strategies for prevention and treatment. Carriers of particular genes for
example may limit or prevent their exposure negatively interacting with the genetic
predisposition (National Institutes of Health (NIH), 2012) rather than non-carriers. A
regulated diet and sugar intake for example is in particular useful in genetic disposition
to diabetes.
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3.1 Association: Definition, study types and measures

In the following sections we will describe what a genetic association is, which study
designs can be used to examine genetic association and how it can be measured and
tested. As references we used two basic genetic epidemiological books of Bickeböller
and Fischer (2007) and Ziegler and König (2006).

3.1.1 Genetic association

An association between two characteristics exists if they occur more or less often to-
gether than expected by chance. Hence, in mathematical context an association is a
statistical dependency. In genetic epidemiology, genetic markers are examined with re-
spect to an association with a phenotype. Considering a particular disease, this can be
done for example by determining if a specific allele of a marker locus is over-represented
in the affected individuals, so that a correlation of the genetic variant to the disease
development can be assessed.
However, association does not necessarily implicate causality - hence it is important to
distinguish real causal associations from non-causal and false positive results. Only the
former are of biological interest in genetic studies. In genetic epidemiological studies,
two causal models can be distinguished: direct association and indirect associa-
tion. A direct association is given when the observed association reflects exactly
the causal relation of the marker locus and the disease, because the examined locus
contributes directly to the disease. However, more often an indirect association is
observed which is based on a more complex dependency that involves the principle of
LD as an important element. For an indirect association, the observed marker locus is
not the causal variant itself, but is located close to the susceptibility locus on the same
chromosome, so that LD between the marker and disease locus exists. In particular in
genome-wide association studies, indirect associations due to LD play a fundamental
role. Since nearby genetic variants are correlated with each other at a population level,
studies covering the whole genome can be performed without examining every existing
polymorphism. Due to LD, redundancies in genotyping can be avoided and the data
can be minimized to a subset of SNPs (tagSNPs) representing its neighboring variants
as well. Hence, even if a disease-causing variant is not genotyped directly, nearby SNPs
may attract attention to the corresponding genetic region.
Nevertheless, non-causal associations can be observed as well. Such non-causal associa-
tions in the context of Epidemiology and Genetic Epidemiology are denoted as spurious
associations. The correlation between the genetic variant and the disease is not due to
the genetic factor contributing to the disease susceptibility, but usually due to a third
factor not considered in the analysis, denoted as confounder. In general, a confounder
is an unconsidered disturbing factor that is associated with the outcome variable and
with the dependent variable under consideration. In the context of genetic epidemiol-
ogy where our outcome is the trait of investigation and the dependent variable a genetic
risk factor, an unconsidered environmental factor may act as a confounder. This can
be for example an environmental factor that is favored by a particular genetic variant
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(population-based G-E association, section 2.4.3) and has an association to the disease.
Genes related to nicotine independence with no causal influence to lung cancer may
show an association with the disease when smoking is not considered in the analysis,
due to the co-occurrence with smoking. Hence, smoking presents a confounder in that
context. In general, age and sex are potential main confounders, wherefore they are
often integrated into the analysis. Another important issue that can lead to spurious
associations is population mixture and stratification. To avoid spurious associations, it
is important to control for possible external influences. This can be done beforehand by
considering confounders in study design and recruitment or by integrating them into the
analysis. The latter is outlined in more detail in the context of genome-wide association
studies in section 3.2.
Before we will introduce the most important association measures in Genetic Epidemiol-
ogy in section 3.1.3 and association tests in 3.1.4, we will describe two typical population-
based study designs used to investigate genetic associations in the following: cohort
studies and case-control studies.

3.1.2 Study designs

As already mentioned in the introduction, in Genetic Epidemiology we can distinguish
linkage and association studies. This differentiation is based on the genetic principle
used for the analysis: in linkage studies the cosegregation of genetic loci with the disease
within families is examined, in association studies the joint occurrence of a particular
marker allele with a disease is considered. While linkage studies are exclusively based
on the examination of families, association studies provide the possibility to find an
association based on family data as well as on a population level, analyzing unrelated
people. In this thesis we will restrict ourselves to population-based data and outline two
typical study designs from Epidemiology that are most commonly used in GWAs, as in
our real data examples.
In a cohort study, a study population (cohort) without the disease of interest is re-
cruited. The individuals differ with respect to the potential risk factor to estimate
(genotype in genetic epidemiological studies). The cohort is prospectively observed
over a predetermined observation period, to see who develops the disease in that time-
frame. The aim is to find out if more persons with the exposition (e.g. a particular
genetic variant) get the disease relatively to the number of unexposed persons develop-
ing this specific phenotype (Ziegler and König, 2006).
Even more common, the case-control study design can be observed, which goes the
methodological reverse way by recruiting a sample of unrelated individuals with the
disease and an unrelated group of individuals without the disease. The affected persons
are denoted as cases, the unaffected as controls. After recruitment, the exposure of the
individuals within the groups is recorded retrospectively, what includes the determi-
nation of the genetic status in genetic association studies. Then, the distribution of the
potential risk factor can be compared between both groups.
In cohort studies, the proportion of affected individuals at the end of the time period
represents the proportion in the whole population. This has the advantage that epi-
demiological measures can easily be derived. Unfortunately, especially for rare diseases
very large cohorts observed over a long period are needed to obtain a sufficient number
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Table 3.1: Data for a cohort study with a genetic factor

exposure: genotype
G=2 G=1 G=0

disease affected D=1 n12 n11 n10 n1.

status unaffected D=0 n02 n01 n00 n0.

n.2 n.1 n.0 n

of affected individuals for the analysis. In case-control studies, the number of cases and
controls is fixed by the study investigator and hence does not reflect the population
ratio. Caution is required with respect to epidemiological measures, but the design is
adequate for rare disease, by directly selecting the cases and hence more cost effective.
Furthermore, the case-control design is less time intensive than a cohort study. One does
not have to wait for many individuals to e.g. acquire cancer, but can recruit persons
that already have the disease.
The main disadvantage of case-control studies is that in general the retrospective record-
ing of the exposure may lead to wrong or missing data (recall bias). However, in
genetic studies this is only relevant in the context of considered environmental fac-
tors, since the genetic information in general does not change over time but stays
stable (Ziegler and König, 2006). A common practice in genetic epidemiology is to
use self recruited cases and an available large population-based cohort as controls,
e.g. as UKBiobank (http://www.ukbiobank.ac.uk/), KORA (http://www.helmholtz-
muenchen.de/kora) or POPGEN (http://www.popgen.de/) despite possible problems
with such controls. When using this design, it is important that both groups are com-
parable with respect to other factors, since that could lead to a systematic bias. In
genetic studies, regional differences in the genetic information are for example of high
importance and can influence the results.

3.1.3 Measures of association: relative risks and odds ratios

An important epidemiological measure that is used in association studies to represent
a disease frequency is the risk. The risk is defined as the probability that a randomly
chosen person from a considered population at risk becomes newly affected by the disease
of interest in a temporal limited period. As population at risk all individuals of a
population are considered that are not yet affected by the disease and are potentially
capable to develop the disease.
To reveal risk factors of a particular disease, the risks of getting the disease for people
exposed to the potential risk factor and the risk for the unexposed individuals are related
to each other. The corresponding measure is the relative risk (RR), which is the ratio
of the risk in exposed and the risk in unexposed. A relative risk of 1 demonstrates that
the exposure has no influence to the disease, while a RR > 1 indicates a harmful effect
of the exposure and RR < 1 a protective one.
Transferred to the context of Genetic Epidemiology where the exposure is a genetic
factor, the risks are nothing else than the disease penetrances for the different genotypes
(section 2.3.1). Assuming a cohort study with n individuals and a biallelic marker with
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the 3 different genotypes 0, 1 and 2 counting the potential risk alleles, the data can
be illustrated in a 2x3 contingency table as shown in table 3.1. The entries ndg denote
the number of affected (d=1) and unaffected (d=0) individuals with the three different
genotypes g=0,1,2. The total number of affected and unaffected individuals is denoted
by n1. and n0., the total number of genotypes without considering the disease status by
n.0, n.1 and n.2.
We have 3 different risks rg = P (D = 1|G = g), g=0,1,2, that can be estimated by
r̂0 = n10/n.0, r̂1 = n11/n.1 and r̂2 = n12/n.2. We can form two relative risks with respect
to the reference genotype 0 denoted as genotype relative risks (GRR)

GRRhet = γ1 =
P (D = 1|G = 1)

P (D = 1|G = 0)
and GRRhom = γ2 =

P (D = 1|G = 2)

P (D = 1|G = 0)
.

The GRRs can be estimated by γ̂1 = r̂1/r̂0 and γ̂2 = r̂2/r̂0. The relation of the two
GRRs to each other gives information on the underlying mode of inheritance: while
γ1 = γ2 > 1 holds for a dominant allele, we have 1 = γ1 < γ2 for a recessive model. In
addition, an additive effect is given when γ2 = 2γ1−1, a multiplicative one with γ2 = γ2

1 .
In the latter, γ1 is also denoted as allelic relative risk and the relative risk is altered by
this factor for each additional risk allele. While in cohort studies the number of affected
and unaffected individuals per exposure group reflects the ratio in the population, this
is not the case in case-control studies since the proportion is of cases and controls is
arbitrarily chosen by the investigator. Therefore, it is not possible to estimate the RR
directly from the data of a case-control study. However, in place of the RR, another
measure, the odds ratio (OR) can be used. An odds or chance is the probability of an
event divided by the probability of its reverse event. The OR relates two odds to each
other. Considering a binary exposure E, we compare the odds of being exposed within
the cases Oddscases = P (E = 1|D = 1)/P (E = 0|D = 1) with the corresponding odds
in the controls Oddscontrols = P (E = 1|D = 0)/P (E = 0|D = 0) by the odds ratio

OR =
P (E = 1|D = 1)P (E = 0|D = 0)

P (E = 0|D = 1)P (E = 1|D = 0)
. (3.1)

Based on the genetic example in the table two different odds ratios ORhet and ORhom

can be estimated by

ÔRhet =
n11/n01

n10/n00

and ÔRhom =
n12/n02

n10/n00

.

When assuming a dominant or recessive model we may estimate

ÔRdom =
(n11 + n12)/(n01 + n02)

n10/n00

or ÔRrec =
n12/n02

(n10 + n11)/(n00 + n01)
.

Alternatively considering the allelic rather than the genotypic effect by counting the
alleles, we obtain

ÔRall =
(n11 + 2n12)/(n01 + 2n02)

(2n10 + n11)/(2n00 + n01)

In general, the OR overestimates the corresponding RR, with the OR approaching the
RR with decreasing occurrence of the disease. Therefore, given a disease that is rela-
tively rare among those with and without the risk factor of investigation (rare disease
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assumption) the OR provides a good approximation of the RR and can used in case-
control studies. In practice, even for a disease with a prevalence of 10%, physicians
and epidemiologists still build on this assumption. The prevalence is the proportion of
diseased people of the considered population at a given time point.

3.1.4 Testing for association

For the data given in table 3.1 comprising n1. cases and n0. controls, an association
analysis tests the null hypothesis that the genetic variant and the disease occur in-
dependently from each other. Statistical tests to examine this null hypothesis are all
methods known to analyze dichotomous outcome data, e.g. χ2 tests or logistic regression
models. In general, the χ2 test of independence checks if two categorical or qualitative
variables are independent from each other by comparing the observed frequencies for the
possible combinations of variable outcomes with the expected ones assuming no associa-
tion. With respect to our genetic data, we can distinguish different alternative χ2 tests.
The test can be performed allele or genotype based, with the latter providing several
more alternatives, distinguishing different genetic modes of inheritance. Comparing all
three genotype groups directly, we can calculate the test statistic

χ2
G =

∑
d=0,1;g=0,1,2

(ndg − edg)2

edg
,

with the expected counts calculated by edg = nd.n.g/n. This test statistic is asymp-
totically χ2 distributed with 2 degrees of freedom (df) under the null hypothesis of
independence. By assuming a dominant or recessive mode of inheritance, specific alter-
native hypotheses are given, that are restricted to the comparison of only two genotype
groups by collapsing the heterozygotes with one of the homozygous genotypes. The test
statistic assuming a dominant model is given by

χ2
dom =

∑
d=0,1

(nd0 − n.0nd.
n

)2

n.0nd.
n

+

(
(nd1 + nd2)− (n.1+n.2)nd.

n

)2

(n.1+n.2)nd.
n

 ,

which can be simplified to

χ2
dom = n

(n10(n01 + n02)− n00(n11 + n12))2

n1.n0.n.0(n.1 + n.2)
. (3.2)

The corresponding statistic when assuming a recessive model is

χ2
rec = n

((n10 + n11) + n02)− (n00 + n01)n12)2

n1.n0.(n.0 + n.1)n.2
.

Under the null hypothesis of no association, both statistics are asymptotically χ2 dis-
tributed with 1 df. As already mentioned, we can also test for association based on the
alleles rather than the genotypes. We count each occurring allele resulting in twice the
sample size, having 2n.0 +n.1 wildtype variants and 2n.2 +n.1 mutation variants. These
are distributed to cases and controls with 2n10 +n11, 2n00 +n01 and 2n12 +n12, 2n02 +n01.
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Plugging in these numbers in the general formula for a chi-square test and simplifying
results in the test statistic

χ2
all = 2n

((2n10 + n11) + (n01 + 2n02)− (2n00 + n01)(n11 + 2n12))2

2n1.2n0.(2n.0 + n.1)(n.1 + 2n.2)

which is again asymptotically χ2 distributed with 1 df. Furthermore, because of the
biological plausibility that the number of risk alleles has an influence to the disease
occurrence, the Armitage-Trend-Test is often used. This test distinguishes all 3
possible genotypes but assumes a trend in the effects with an increasing level of the risk
factor. The trend statistic is given by

χ2
tr =

(∑2
g=0 wg(n0gn1. − n1gn0.)

)2

n0.n1.

n

(∑2
g=0w

2
gn.g(n− n.g)− 2

∑2
g=0

∑2
h=g+1 wgwhn.gn.h

) ,
with w = (w0, w1, w2) weights that can be chosen to fit different association models. The
statistic is χ2 distributed with 1 df under the null hypothesis of no association. In GWAS
a linear trend with increasing number of the minor allele is often assumed, denoted as
additive effect. Therefore, we use w=(0,1,2) and the test statistic simplifies to

χ2
tr =

n(n(n11 + 2n12)− n1.(n.1 + 2n.2))2

n1.n0.(n(n.1 + 4n.2)− (n.1 + 2n.2)2)
(3.3)

In general, these weights are not only used when the trend is linear but also when the
change is assumed to be monotonically (Clarke et al., 2011). Weight of w=(0,0,1) would
correspond to a recessive model, w=(0,1,1) to a dominant one. The advantage of the
allele based approach is the doubling of the sample size. However, in general genotype
based tests should be preferred, because they are robust to deviations from HWE, while
the allele based test is only valid under the assumption of HWE. In addition, this is the
biologically more plausible variant. Depending on the assumed biological function and
mode of inheritance of a genetic variant, the corresponding test should be chosen. The
trend test is suggested when no biological knowledge exists, because it often reaches the
highest power (“locally optimal”). When sparse cells (expectation less than 5) occur,
Fisher’s exact test should be used instead of a χ2 test.
When additional variables, e.g. age or sex, should be considered in the analysis, a logistic
regression model offers a good alternative by including them as covariates. In general,
a regression model describes the influence of one or more risk factors X1...XK to an
outcome measure Y by an equation of the form

f(Y ) = α + β1X1 + · · ·+ βKXK + ε

with α denoted as intercept, regression coefficients β1, . . . , βK and ε ∼ N(0, σ2). Given
a quantitative phenotype e.g. blood pressure as outcome Y and only one influencing
genetic risk factor G, the model reduces to a simple linear regression of the form

Y = α + βG+ ε, ε ∼ N(0, σ2),

which is often rewritten as

E(Y |G) = α + βG.
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The equation describes which Y value is expected given a particular G with residuals
ε = Y −E(Y |G). Given a dichotomous outcome variable, in our context affected (D=1)
and unaffected (D=0) according to a disease of interest, we cannot model the outcome
directly by a linear equation anymore. Therefore, a logit transformation, that is the
logarithm of the odds of a disease, has to be used for D, resulting in a logistic regression
model of the form

ln

(
P (D = 1|G)

P (D = 0|G)

)
= α + βG+ ε, ε ∼ N(0, σ2). (3.4)

Hence, we can obtain the expected probability to become affected given genotype G

E(D|G) = P (D = 1|G) =
exp(α + βG)

1 + exp(α + βG)
.

The Armitage-Trend-Test tests the same information as a logistic regression model with
one regression variable for the genotype coded 0,1 and 2. Furthermore, the logistic
regression coefficients are directly related to the odds ratios measuring the strength of
association by

ORhet =
exp(α + β)

exp(α)
= exp(β) and ORhom =

exp(α + 2β)

exp(α)
= exp(2β). (3.5)

In this regression model ORhom = OR2
het, hence it is based on the assumption of a

multiplicative allele effect. However, when no multiplicity should be assumed, two
dummy variables Ghet and Ghom for the heterozygous and homozygous genotype can
be used alternatively

ln

(
P (D = 1|Ghet, Ghom)

P (D = 0|Ghet, Ghom)

)
= α + βhetGhet + βhomGhom + ε, ε ∼ N(0, σ2).

with Ghom = 1 and Ghet = 0 for G=1 and Ghom = 1 and Ghet = 0 for G=2. Then
ORhet = exp(βhet) and ORhom = exp(βhom). We will come back to the connection of
regression coefficients and OR in the context of GxE interaction in section 3.1.5 and for
the derivation of our approach in chapter 6. As mentioned before, the advantage of a
regression model compared to a χ2 test is that other influencing factors can be included
in the analysis as well. These can be e.g. sex and age or other confounders as additional
genetic or environmental factors necessary to adjust for. By including these additional
factors X1, ..., XK , the model expands to a multiple logistic regression model of the form

ln

(
P (D = 1|G,X1, ..., XK)

P (D = 0|G,X1, ..., XK)

)
= α+βGG+β1X1 + · · ·+βKXK + ε, ε ∼ N(0, σ2)

From this model, odds ratios adjusted for the covariates can be calculated as shown
before. The regression coefficients of a logistic regression model can be estimated by the
principle of maximum likelihood. In general, the maximization cannot be analytically
performed since no exact solution is available, so that an iterative approach such as
the Newton-Raphson algorithm for numerical optimization has to be used (Faraway,
2006). An influence of the genetic factor to the disease is given when the corresponding
estimated coefficient, e.g. β̂G, is significantly different from 0. This can be tested by
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dividing it by the corresponding estimated standard deviation (σ̂βG) and using a Wald
test, assuming a normal distribution under the null hypothesis of no effect. A stratified
analysis of case-control data according to categorical covariates is possible as well, e.g.
with the Cochrane-Mantel-Haenszel test (Agresti, 2002). Moreover, non-parametric
methods exist that we will not elaborate since we are concentrating on parametric
approaches.

3.1.5 Gene x environment interactions and gene-environment associations

A mathematical definition of a GxE interaction

In the following we will restrict our attention to a dominant genetic risk factor (car-
rier/non carrier of the susceptibility allele) and a binary environmental factor (ex-
posed/unexposed) since it is used that way in our GxE interaction methods. The disease
risks for the different risk factor combinations are given by

Table 3.2: Disease risks for individuals with different combinations of genetic and
environmental risk factor

environmental factor
exposed unexposed

genetic carrier r11 r10

factor non-carrier r01 r00

For the definition of a gene x environment interaction in a statistical sense, the principle
of conditional independence (Dawid, 1979; Jakulin and Bratko, 2004) is used. In gen-
eral, two factors X and Y are called conditionally independent with respect to a third
factor Z if and only if

P (X, Y |Z) = P (X|Z)P (Y |Z). (3.6)

An equivalent way to express this relationship is given by

P (X|Y, Z) = P (X|Z). (3.7)

In terms of gene x environment interactions, conditional independence is present when
the effect of one of the risk factors (genetic or environmental) on the disease risk is the
same across strata defined by the other risk factor. The absence of this independence
is called interaction. Hence, a gene x environment interaction in a statistical sense is
observed, when the effect of the environmental factor on disease risk differs depending on
the underlying genotype, or when the genotype effect on disease risk differs in subjects
depending on the environmental exposure (Ottman, 1996).
However, the existence of an interaction corresponding to this definition depends on
the scale of measurement used for the disease risks. Two different scales are commonly
used: additive and multiplicative. Based on a cohort, an interaction on an additive
measurement scale is defined when r11 − r10 6= r01 − r00, while an interaction on a
multiplicative scale is present when r11/r10 6= r01/r00. In terms of relative risks, an
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Table 3.3: Data for an unmatched case-control study with a binary genetic and envi-
ronmental factor

genetic factor
carrier noncarrier

environmental factor environmental factor
exposed unexposed exposed unexposed Total

cases n111 n110 n101 n100 Ncases

controls n011 n010 n001 n011 Ncontrols

interaction on an additive scale is given when RR11 6= RR01 + RR10 − 1, and RR11 6=
RR01RR10 represents an interaction assuming a multiplicative model. RR10 = r10/r00

denotes the relative risk for unexposed carriers with respect to unexposed non-carriers
of the susceptibility allele as a reference group, RR01 = r01/r00 for exposed non-carriers
and RR11 = r11/r00 for exposed carriers.
If we take a look at the possible kinds of biological interactions listed in section 2.4.3,
we can notice that interactions of type M1, M2 and M4 express themselves in statistical
interactions as defined above on both scales. A relationship of the three factors of
type M5 is not reflected in a statistical interaction at all, neither on an additive nor
a multiplicative scale. In this case, only the frequency of the joint occurrence of the
genetic and environmental factor are influenced, but the effect of the genetic factor
on the disease risk stays the same across strata of the environmental factor and the
other way around. A biological interaction as described by model M3 may manifest
itself in a statistical interaction, but not necessarily, and the scale of the risk measure
plays an important role. For instance, when we consider a multistage process like the
initiation or promotion in cancer, two factors that act at the same stage fit a risk model
on additive scale and an interaction results in a departure from additivity. When both
factors act at different stages, this better fits a multiplicative model, and an interaction
in this case can be observed as deviation from multiplicativity (Rothman et al., 1980;
Siemiatycki and Thomas, 1981). Hence, both scales can be adequate depending on
the underlying pathophysiological model and mechanism (Koopman, 1977; Kupper and
Hogan, 1978; Ottman, 1996; Walter and Holford, 1978). A point of view that might be
taken into account choosing the scale is determined by the goal of investigation, leading
to the preference of a multiplicative scale when the causes of disease should be revealed
(Rothman et al., 1980). For our further investigations, we used the definition of GxE
interaction on a multiplicative scale, which is the commonly used and adequate one in
a case-control study.

Measures and testing of GxE interactions and G-E associations

In this section we will restrict to the case-control study design since the data in our
applications and our simulation studies are based on that. Therefore, assume in the
following that we have an unmatched case-control study for the disease D with a binary
environmental exposure E and a binary genetic factor G. The data can be presented in
a 2x4 table as given in table 3.3. The entries ndge denote the number of cases (d=1) and
controls (d=0) that are carriers (g=1) or non-carriers (g=0) of the susceptibility allele
and exposed (e=1) or unexposed (e=0) to the environmental factor. The observed cell
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counts for cases n1 = (n111, n110, n101, n100) and controls n0 = (n011, n010, n001, n000) can
be viewed as realizations from two independent multinomial distributions

n1 ∼MN(Ncases, p1) and n0 ∼MN(Ncontrols, p0),

where p1 = (p111, p110, p101, p100) and p0 = (p011, p010, p001, p000) are the cell probabilities
of the underlying case-control population.
It is known that relative risks (RR) cannot be calculated for studies designed in case-
control manner. However, we can calculate Odds Ratios (OR) - with unexposed non-
carriers as reference group - given by

ORg =
p000p110

p010p100

genetic main effect,

ORe =
p000p101

p001p100

environmental main effect,

ORge =
p000p111

p011p100

joint effect of gene and environment.

(3.8)

Under a multiplicative model with no interaction effect, we have ORge = ORgORe, and
hence the interaction effect can be measured by the interaction parameter

Ψ = ORge/(ORgORe), (3.9)

with Ψ


> 1 positive interaction effect - more than multiplicative

= 1 no interaction effect - multiplicative

< 1 negative interaction effect - less than multiplicative

.

It should be noticed, that when a GxE interaction exists, it expresses itself not only in
form of the interaction itself, but also in dependent distributions of genetic factor and
exposure within the cases and within the controls. In presence of a positive interaction,
exposure and genetic susceptibility factor occur more often together in cases than ex-
pected and less often in controls, the contrary holds in presence of negative interaction.
The dependency of a genetic and an environmental factor is called gene-environment
association (G-E), and can be measured by OR as well, with

ORcases =
p100p111

p110p101

for cases

ORcontrols =
p000p011

p010p001

for controls.
(3.10)

In absence of G-E association in the corresponding group, ORcases = 1 and ORcontrols = 1
respectively. A departure from one indicates an association.
The exact relationship between Ψ and the stratified G-E association measures ORcases

and ORcontrols can be derived by simply rearranging the formula for Ψ, resulting in

Ψ =
ORge

ORgORe

=

p000p111
p011p100

p000p110
p010p100

p000p101
p001p100

=

p100p111
p110p101
p000p011
p010p001

=
ORcases

ORcontrols

. (3.11)

According to this formula, we can distinguish two different situations where Ψ = 1 and
hence no interaction occurs, namely when no G-E association is given at all

ORcases = ORcontrols = 1

35



3 Genetic association studies

or when the G-E association is present in the exact same magnitude in cases and controls

ORcases = ORcontrols 6= 1.

The latter is a population-based G-E association (section 2.4.3) and is given when we
have a correlation between G and E that exists in the whole population to the same
degree totally independent from the disease status. On the other hand, when we have a
G-E association only caused by an underlying interaction effect, ORcases and ORcontrols

depart from 1 in different directions. Hence, while a population-based G-E association
can be observed to the same extend in cases and controls, an interaction is given when
the G-E association is different in both groups.
With a decreasing prevalence of the disease, the departure from 1 of the ORcontrols due to
an interaction effect gets weaker and reduces to one under the rare disease assumption
(Schmidt and Schaid (1999)). Thus, for a rare disease the interaction effect is only
reflected in the association within the cases ORcases.
Since odds ratios are closely connected to logistic regression, with the coefficients of the
regression model corresponding to the logarithm of the respective Odds Ratios, we can
test an interaction effect by such a logistic regression model

logitP (D = 1 | g, e) = log

(
P (D = 1 | g, e)
P (D = 0 | g, e)

)
= α + βee+ βgg + βgege. (3.12)

The regression coefficient βg is a measure of the genetic main effect, βe measures the
environmental main effect and βge is a measure of the interaction effect between G and E.
The regression coefficients are related to the odds ratios and the interaction parameter
Ψ by

βg = log(ORg)
βe = log(ORe)
βge = log(Ψ).

(3.13)

A regression coefficient of 0 corresponds to no effect, a coefficient >0 indicates a positive
effect and a coefficient <0 a negative one. The G-E associations stratified by disease
status can be measured by logistic regression as well

logitP (E = 1 | D = 1, g) = log

(
P (E = 1 | D = 1, g)

P (E = 0 | D = 1, g)

)
= αcases + βcasesg (3.14)

logitP (E = 1 | D = 0, g) = log

(
P (E = 1 | D = 0, g)

P (E = 0 | D = 0, g)

)
= αcontrols + βcontrolsg,

(3.15)

with βcases = log(ORcases), βcontrols = log(ORcontrols) and

βcases − βcontrols = log(
ORcases

ORcontrols

)
(3.11)
= log(Ψ) = βge. (3.16)

The regression coefficients and hence the OR can be estimated from the data by their
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maximum likelihood estimators (MLE), given by

β̂g = log
(
n000n110

n010n100

)
β̂e = log

(
n000n101

n001n100

)
β̂cases = log

(
n100n111
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)
β̂controls = log

(
n000n011

n010n001

) (3.17)

and

β̂ge
(3.16)
= β̂cases − β̂controls = log

(
n001n100n010n111

n011n110n101n000

)
. (3.18)

These MLE asymptotically follow approximate normal distributions (Le, 1991; Mukher-
jee et al., 2008)

β̂g ∼ N(βg, σ
2
g)

β̂e ∼ N(βe, σ
2
e)

β̂cases ∼ N(βcases, σ
2
cases)

β̂controls ∼ N(βcontrols, σ
2
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β̂ge ∼ N(βge, σ
2
ge)

(3.19)

with variance estimators given by
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(3.20)

The classical case-control test for gene x environment interactions simply tests the in-
teraction coefficient βge with null hypothesis H0 : βge = 0. Because of its approximate
normal distribution, the case-control test statistic corresponds to a standardized normal
test for βge by normalizing the estimate β̂ge from the data by its estimated standard
deviation σ̂ge, resulting in

Zcc =
β̂ge
σ̂ge

=
β̂cases − β̂controls√
σ̂2

cases + σ̂2
controls

.

This test statistic is asymptotically N(βge, 1) distributed, with βge = 0 = βcases−βcontrols

(standard normal distribution) under the null hypothesis of no interaction. Furthermore,
we have that

βcases = βcontrols = 0

when genotype and environmental factor are independent from each other; given a
population-based G-E association

βcases = βcontrols 6= 0

holds.
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3.2 Genome-wide association studies (GWAS)

3.2.1 Genetic epidemiological study types

In genome-wide studies the whole genome is systematically examined by using nu-
merous genetic markers distributed through the complete genetic information to find
genes involved in disease development. The counterpart to the exploratory genome-wide
approach is the hypothesis-driven candidate gene studies. Candidate gene studies
focus on analyzing only genes or regions already known or expected to be involved
in disease etiology. Candidates can come from other, e.g. experimental, studies, from
knowledge in other species, or the information about functional relations of genes with
the disease. For autoimmune diseases for example, the HLA system on chromosome 6
is known as the most important candidate region. While candidate gene studies can
be successful when good candidates are known, a genome-wide search is the method of
choice when insufficient information about the biological and biochemical processes of
the disease is given and hence inadequate prior knowledge about potentially involved
genes is available. Furthermore, even when good candidates are known, genome-wide
studies can find additional new genes not expected before. Genome-wide studies are
totally independent from pathophysiological hypotheses and therefore keep all possibil-
ities open. As already mentioned before, two different genetic principles can be used
to find genes contributing to disease development: linkage and association. Linkage
studies are successful to find rare variants with high penetrances that strongly increase
disease risk. On the contrary, association studies have higher power in finding common
variants with a reduced penetrance and low to moderate risk effects, involved in a more
complicated interplay of numerous genetic and non-genetic factors. They allow a finer
mapping of potential disease causing factors while linkage analyses are only applicable
to identify a coarse region. Since association studies can be performed on a population
basis, the recruitment is simpler than for families. However, population approaches
are more prone to confounding e.g. by population stratification, possibly leading to false
positive results. Before the 21st century, only linkage studies were possible genome-wide.
Genome-wide linkage studies were tremendously successful for the identification of genes
underlying monogenic disease, characterized by their rare occurrence, high penetrance
and large relative risk (Hirschhorn, 2005; Thomas et al., 2005; Thomas, 2006). Major
genes involved in clear Mendelian subtypes of complex diseases showed similar proper-
ties and were detected as well, but beyond, the success in complex disease was limited
(Altmüller et al., 2001). For those factors of complex diseases involved in the interplay
of multiple genetic and environmental factors in a complicated way (Wang et al., 2005),
the power was much too low due to incomplete penetrances and relatively small effects
(Cardon and Bell, 2001; Hirschhorn, 2005; Risch and Merikangas, 1996; Risch, 2000;
Tabor et al., 2002; Thomas, 2006). Associations studies on the other hand, since only
possible as a candidate approach at that time, failed due to an imperfect understanding
about the fundamental biology of complex diseases and hence lack of ability to pick
good candidate genes (Pearson and Manolio, 2008; Sham and Cherny, 2010). Although
candidate gene association studies revealed many susceptibility genes, the replication
rate was only low (Patterson and Cardon, 2005; Sham and Cherny, 2010; Todd, 2006;
Zondervan, 2010). Reasons for that may be the overestimation of the ability to select
adequate candidates and too low thresholds for claiming an association (Khoury and
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Wacholder, 2009; Wacholder et al., 2004). In a review of 2002, Hirschhorn et al. il-
lustrated that in 603 candidate gene studies with a case-control design published from
1986-2000, only 6 results were independently replicated.

3.2.2 The upcoming of genome-wide association studies

Since association studies have potentially far greater power to detect genetic variants
with modest effects, Risch and Merikangas suggested in 1996 that genome-wide as-
sociation studies (GWAS) would be the answer to the problems in mapping genes
of complex diseases (Risch and Merikangas, 1996). GWAS could exploit the strengths
of association without having to guess the identity of causal genes (Hirschhorn, 2005).
They demonstrated GWAS to be potentially feasible, with SNPs as putative genetic
factors to identify. Unfortunately, at that time, GWAS were technically not feasible.
Linkage extends over large distances and therefore in linkage studies the genome can
be covered by only several hundred Sham and Cherny (2010) microsatellite markers.
On the other hand, linkage disequilibrium which is the basis of association studies can
only be observed over small distances so that an enormous large set of dense marker is
necessary to cover the whole genome. However, knowledge about the human genome,
common genetic variation and its LD patterns was still missing. Technologies to geno-
type a sufficiently comprehensive set of common variants in a large sample (Hirschhorn,
2005) for affordable costs did not exist. Then in the beginning of the 21st century,
mega advances in the genomic sciences set the stage for GWAS (Hirschhorn, 2005) and
offer much hope for the future (Rao, 2008). By the human genome project (U.S. De-
partment of Energy Genome Programs, 2011) and the SNP consortium (Thorisson and
Stein, 2003) (appendix A.1) in the late 90s and beginning of the new millennium, some
million common SNPs were discovered and publicly released. These constituted the
starting point of the new SNP era (Lander et al., 2001; McPherson et al., 2001; Sham
and Cherny, 2010). Seeing the good perspective of SNPs, the emphasis was further
shifted to the investigation of SNP characteristics such as genotype frequencies and the
nature of LD across the entire human genome (Sham and Cherny, 2010). This was
extensively done by the International Hap Map project (International HapMap Con-
sortium, 2003, 2005) (appendix A.1) initiated in October 2002 (Barrett, 2010; Weiss
and Terwilliger, 2000). Initially one population of each European and African ancestry
and two Asian populations were examined, with ongoing investigations covering addi-
tional populations (Sham and Cherny, 2010). All obtained information is published in
free databases (Sachidanandam et al., 2001), e.g. dbSNP database (Database of Single
Nucleotide Polymorphisms, 2009). Today, the dbSNP database contains more than 40
million validated human SNPs including nearly 15 million with a MAF>1% [29 February
2012]. By using the catalog of the millions of SNPs discovered across diverse popula-
tions and considering the LD block structures obtained by Hap Map, it was possible
to identify subsets of highly informative so called tag SNPs (Thomas et al., 2005) to
capture most of the genomic variation (Barrett, 2010; Rao, 2008; Ziegler et al., 2008)
without genotyping all possible SNPs. This was an important step that paved the way
for the efficient practical conceptual realization of future GWAS (Barrett, 2010; Rao,
2008). As already mentioned, the concentration so far lied mainly on common SNPs,
with common defined as at least 1% frequency of the minor variant in a population
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(Frazer et al., 2009). Nevertheless, that agrees with a substantial concept underlying
the idea of GWAS in complex diseases: the common disease common variants hypothesis
(CDCV) (Collins et al., 1997; Reich and Lander, 2001; Zondervan, 2010). The CDCV
states that the genetic origin of complex traits includes relatively common variants with
modest effects on risk (RR 1.3-2.5, Thomas (2010c)), increasing the susceptibility to the
disease rather than directly causing the disease (Zondervan, 2010).
However, to make GWAS possible, another major contribution was necessary: improve-
ments in ultra-high-throughput technology. SNP genotyping chip arrays made it com-
mercially feasible to investigate hundreds of thousands genetic SNP variants per sample
simultaneously in thousands of individuals at manageable costs (Grimm et al., 2011;
Syvänen, 2001; Thomas et al., 2005; Thomas, 2006; Thomas et al., 2009; Zondervan,
2010). Genome-wide SNP platforms started with modest 10,000 SNPs, but soon sev-
eral hundred thousands followed, with today’s latest technological achievement of high-
throughput chips comprising one million SNPs. While the number of SNPs per chip
increased with time, the costs of large scale studies became even cheaper (Hirschhorn,
2005; Thomas, 2010c). The current average costs for an Affymetrix chip with 1 million
SNPs are ∼ 400 (personal communication Affymetrix) including reagents and service.
More information about the genome-wide SNP chips used is given in the appendix A.1.
Finally, nearly one decade after Risch and Merikangas’ (1996) first suggestion to use
GWA scans to analyze complex diseases, large-scale association studies became reality
(Rao, 2008; Thomas, 2010c).

3.2.3 Data quality checks

SNP chips allow researchers to interrogate hundreds of thousands SNPs across the hu-
man genome (Weale, 2010) with the goal to identify true association signals in sea of
false positive results (Christensen and Murray, 2007). A good quality of the data is an
essential point to avoid false positive results and guarantee to draw accurate conclusions
from the analysis (Neale and Purcell, 2008). On the one hand, quality assurance during
study conduct is necessary, ensuring a good study design, good sampling protocols, good
quality DNA, adequate protocols for DNA extraction and preparation (Weale, 2010).
On the other hand, an additional exploratory data quality control is the first step of
a GWAS analysis to evaluate the genotyping performance and is indispensable (Neale
and Purcell, 2008; Thomas, 2010c). The process how to get from the chip signals to the
genotype for each SNP, a process called genotype calling, is described in the appendix
A.2. The assignment of a genotype to a SNP according to the corresponding chip signal
is denoted as call. Genotyping errors (miscalls) as well as missing data (no-calls) can
occur. Factors influencing the quality of genotyping are for example the concentration,
contamination or possible degradation of the input DNA, failures or degeneration of the
chip arrays, as well as differences in sample preparation (e.g. different laboratories) and
plating errors (Teo, 2008; Weale, 2010). As long as wrong and missing genotypes occur
at random and affect cases and controls equally, it will lead to some loss of power and
bias of effect estimates, but not to an increase in the type I error (Bickeböller and Fis-
cher, 2007; Thomas et al., 2005). However, problems occur when the genotype quality
differs with the phenotype because cases and controls are not genotyped in an identical
manner, e.g. on separate days, separate plates, by separate laboratory assistants or even
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in different laboratories (Bickeböller and Fischer, 2007; Hirschhorn, 2005). This may
lead to different systematic missings and misclassifications in cases and controls and
hence in bias and spurious associations (Thomas, 2010c). To avoid these problems, it
is recommended to plate cases and controls together (same laboratory assistant on the
same day under the same conditions) so that at least plate effects are evenly distributed.
Special attention is essential when controls from a predefined reference database are used
(Weale, 2010). In addition, genotyping errors and missing values can be not randomly
distributed among the different genotypes of a SNP but rather over-represented in a
particular genotype (Weale, 2010). By the identification of bad quality SNPs, as well
as individuals that do not fulfill several quality criteria and excluding them from the
analysis, inflated type I and type II errors can be avoided (Thomas, 2010c). In addi-
tion, reducing the number of SNPs leads to a decrease of the multiple testing burden
and therefore to higher power for the remaining SNPs (Weale, 2010) Criteria to filter
out SNPs are their proportion of missing genotypes (e.g. <95%), the MAF (e.g. <5%)
and strong deviations from HWE (in GWAS: p < 10−7). Persons should be excluded
from the analysis when they show missing genotypes for many SNPs (e.g. <90%) or
an excess of heterozygous or homozygous genotypes. When the reported sex is not the
same as the sex determined by the X chromosome, an incorrect alignment of genetic
and phenotypic data cannot be ruled out and it is recommended to remove the person
prior to the analysis. Furthermore, relatedness as well as population outliers and strat-
ification is usually investigated in the quality control step of GWAS and can lead to
further exclusions of individuals. For the interested reader, more detailed information
about the different quality criteria listed above is given the appendix A.2. However,
since population stratification plays an important role not only in quality control but
rather in the analysis of GWAS data and also for this thesis, we will consider this in the
following section.

3.2.4 Analysis of genome-wide association studies

Although GWAS analyses can build on valuable lessons learned from candidate gene
association and linkage studies (Pearson and Manolio, 2008), they brought also new
technological, practical and statistical challenges (Thomas, 2010c). Managing the
enormous amount of data was one of the first practical aspects (Neale and Purcell,
2008; Thomas, 2010c), needing large computer capacities with respect to CPU time and
storage (Ziegler et al., 2008). Sophisticated statistical, but also bioinformatical tools
for analyzing and interpreting the data were necessary (De Bakker et al., 2005; Clayton
and Leung, 2007; Falush et al., 2003; Marchini et al., 2006, 2007; Price et al., 2006;
Pritchard et al., 2000; Scheet and Stephens, 2006; Stephens et al., 2001; Teo et al.,
2007; Wellcome Trust Case Control Consortium (WTCCC), 2007), skills from computer
sciences essential. Due to the high number of SNPs, quality control checks need to be
performed in a highly automated way, as well as the following association analyses. In
this section we will outline the most important steps in the analysis of a genome-wide
association study. We will start with a short description of the single step analysis
methods that in general build the first step in a GWA analysis, as in the lung cancer
studies of chapter 7. In addition, the pathway based methods illustrated in chapter 5
are based such results. After this, different methods to correct for the most important
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confounder in genetic epidemiological studies, population stratification, are explained.
In our lung cancer application in chapter 7, a corresponding adjustment for a particular
study is shown in detail. Furthermore, the two most common graphical representation
methods for GWAS results are presented. Finally, we will outline how significance of
association signals in GWAS is assigned and how their validity is judged, since this
is the main challenge in GWAS. The hierarchical method that we address with this
thesis tries to improve GWAS at that point of assessing significance. The applications
presented in chapter 7 are done in the scope of a consortium (Amos, 2007; International
Agency for Research on Cancer (IARC), 2012), with the aim of good validation of results.

Single SNP association tests

For the association analysis, the standard first step in GWAS is to perform simple
single SNP association tests (Bickeböller and Fischer, 2007). Most commonly, an
additive model or a trend test is used (Pearson and Manolio, 2008). In addition, since
the underlying genetic model is unknown, it prevailed to perform tests for all three
standard models dominant, additive and recessive and to use their maximum. By
permutation methods (Freidlin et al., 2002) or a conditional test taking the correlations
of the statistics into account, an adjustment can be performed (Ziegler et al., 2008).
Furthermore since confounders play an important role in population-based association
studies, the consideration of those is an important point to avoid spurious associations.
Confounders can be already considered in the study design and recruitment, e.g. by
choosing homogenous groups. Alternatively, they can be integrated in the analysis by
stratification or adjusting, e.g. in a regression model. One of the main confounders in
population-based association studies is population stratification, also called ”confound-
ing by ethnicity” (Ziegler et al., 2008). We will consider this phenomenon in more
detail in the next section.

Population stratification

Population stratification is a population heterogeneity based on the presence of multiple
populations or subgroups according to ethnicity or geographic origin involved in a
population-based association study, where the disease prevalence differs between the
subgroups and the frequencies of the genetic marker alleles and LD patterns between
the markers vary (Cavalli-Sforza et al., 1994; Dawson et al., 2002; Hirschhorn, 2005;
Jorde et al., 1994; Patil et al., 2001; Phillips et al., 2003; Shifman et al., 2003; Teo,
2008; Watkins et al., 1994; Zavattari et al., 2000). When population structures are
undetected and not accounted in the analysis, this provides a serious issue since the
variation in disease rates across the groups and the different allele frequencies have
the potential to result in inflations of the test statistic (Ziegler et al., 2008). This
may lead to spurious associations (Palmer and Cardon, 2005). If e.g. cases tend to
be over-sampled for one of these groups, all alleles more common in that group will
appear to be associated with the disease. Already before the GWAS era, the problem
of population stratification was widely debated (Cardon and Palmer, 2003; Freedman
et al., 2004; Thomas and Witte, 2002; Thomas et al., 2005; Wacholder et al., 2000).
The simplest method to account for population stratification, the genomic control
approach (Devlin and Roeder, 1999; Devlin et al., 2001), corrects for the stratification
without identifying the sample structure. Since population stratification leads to an
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overdispersion of the statistics, the degree of inflation of the test statistics and hence
the extent of population heterogeneity can be estimated (Devlin and Roeder, 1999).
Therefore, χ2 association test statistics for all SNPs are calculated and the median
over all SNPs is compared with the expected theoretical median of the distribution
under the null hypothesis of no association. Since the fraction of false positive results
is expected to be increased, the quotient of the observed and the expected χ2 median,
denoted as inflation factor λ, is expected to be > 1 (Devlin and Roeder, 1999). All test
statistics are furthermore corrected for the inflation by dividing them by the inflation
factor, hence resulting in an adjusted test of association. In a study of Nelis et al.
(2009) about the genetic structure in Europe inflation factors for the comparison of 19
samples from 16 European countries were calculated. Between Southern and Northern
Germany (KORA and POPGEN cohorts) they obtained a lambda value of 1.08, both
being close to the European population of Hap Map with 1.06 and 1.07 respectively.
The largest genetic distance was observed for Spain and Kuusamo located in the middle
of Finland (4.21), with these having inflation factors of 1.34 and 2.89 with the European
Hap Map population. For the different Hap Map populations, inflation factors of 21.56
for the African and Asian population and a slightly smaller one for the African and
European population, 13.27 for the European and Asian population and 1.77 between
the two Asian populations were calculated. While an inflation factor of less than 1.05
is still acceptable, for higher factors a correction is recommended (Aulchenko, 2010).
Another possible strategy is to initially identify the underlying population structure
by determining the genetic similarity between the individual participants and then
correct for the particular structure. Therefore, the SNP data should be pruned first
so that only SNPs with no strong LD among them remain. A measure typically used
to express the genotypic similarity between two individuals is the kinship coefficient.
The kinship coefficient is defined as the probability that an allele of a particular locus
that is randomly chosen from an individual is identical by descent (IBD) with an
allele selected from the same locus of the other individual. Two alleles are IBD when
they are copies of the same ancestral allele. The kinship coefficients for all pairs of
individuals are collected in the kinship matrix and that matrix can be used as a part
of the model for the correlations of the outcomes in a random effects model (Yu et al.,
2006). Alternatively, a principle component analysis (PCA) (Patterson et al., 2006;
Price et al., 2006; Tian et al., 2008; Tiwari et al., 2008)) based on 0.5 - the kinship
matrix (distance matrix) can be performed. The leading eigenvectors, the principle
components (PC), can be extracted and describe informative ”axes of ancestry”. These
axes can be represented graphically so that different populations can be identified.
Furthermore, to correct for the population stratification that may exist in the data,
the axes can be used as covariates in the subsequent association analysis (Patterson
et al., 2006; Price et al., 2006; Tian et al., 2008; Tiwari et al., 2008; Weale, 2010).
The number of PC axes to consider in the analysis can be yield by testing them for
statistical significance (Weale, 2010). However, the PCA can not only detect and
correct for correlations due to ancestry, but also any source of correlation in the data.
Lab errors, e.g. systematic genotyping artifacts and many high-effect causal SNPs in
a case-control study can be picked up as well (Weale, 2010). To clarify the source of
correlation, it is possible to use external reference populations in the analysis and see
how the study individuals cluster to these. This can be done PCA, but also another
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approach, denoted as STRUCTURE (Pritchard et al., 2000), is dealing with this very
issue. In STRUCTURE, the study sample is compared with reference populations
and each individual is assigned to one of these populations (Pritchard et al., 2000).
The population membership is determined, but also outliers, migrants and admixed
individuals can be identified, not clearly belonging to one of the distinct populations.
Based on the obtained knowledge, a stratified analysis can be performed. When the
ancestry of all individuals is already known by the reported geographic location or
ethnicity, a stratified approach can be conducted as well. The approach of genomic
control has the disadvantage that a constant multiplicative factor is used to correct each
SNP test statistic. This assumes that the existing population structure has an uniform
influence across the whole genome (Teo, 2008). Hence, the method fails when the
stratification affects certain SNPs more than the average (Teo, 2008). In comparison,
the PCA correction is adjusted to each SNP individually, e.g. by the magnitude of SNP
variation along each axis of ancestry, and hence corrects not only for false positive but
also false negative results. PCA has been shown to be more powerful than genomic
control or structured association analysis. Furthermore, it is fast to implement, intuitive
and appealing (Price et al., 2006), so that using PCA axes as covariates is the preferred
method for handling population stratification in large genetic studies. Nevertheless,
PCA and a stratified analysis have to be treated with caution when cases and controls
come from different source populations. In that case the covariates could take up all
the possible variance between case-control status, including true association effects.
In the study of Nelis et al. (2009) the genetic structure within Europe showed a clear
correlation with the geographic location, with the first two PCs representing the genetic
diversity from northwest to southeast. In 2006, (Steffens et al., 2006) investigated the
genetic substructure in the German population and observed that only minor degree
of population substructure (Ziegler et al., 2008) exists. Nevertheless, the larger the
sample size of a GWAS, the more susceptible is the study to confounding from finer
levels of population differences (Teo, 2008). Hence, the greater is the potential bias
from the stratification (Freedman et al., 2004; Marchini et al., 2004).

Visualization of GWAS results

Two popular graphical representations of GWAS results are the Manhattan plot and
the Quantile-Quantile-plot (QQ-plot). The Manhattan plot is a type of scatter plot
that allows the display of a high number of data points as given in genome-wide
association studies. It provides a visual summary of the association test results for
the examined SNPs and clearly highlights (regions of ) significant markers. The plot
displays the negative logarithm (−log10) of the p-values for the single SNPs on the
y-axis as a function of the chromosomal location on the x-axis. For visual effect, the
different chromosomes are shown as blocks of different colors. Since the strongest
associations have the smallest p-values, the corresponding −log10 will be greatest, so
that SNPs with significant p-values will stand out. In figure 3.1 a Manhattan plot for
a meta-analysis of 4 different lung cancer GWAS is shown. We can see a clear peak by
numerous neighboring SNPs on chromosome 6, as it is expected by a truly associated
region. Furthermore, several genome-wide significant loci close to each other show up
on chromosome 15, pinpointing to another truly positive hit. On chromosome 5, 10
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Figure 3.1: Manhattan plot for a meta-analysis of four different lung cancer GWAS:
Central Europe lung cancer GWAS of the International Agency for Research on Cancer
(IARC, Prof. Brennan), Toronto lung cancer GWAS of the University of Toronto and
the Samuel Lunenfeld Research Institute (SLRI, Prof. Hung), Texas genome-wide lung
cancer study conducted by the M.D. Anderson Cancer Center (MDACC, Prof. Amos,
Prof. Spitz) of the University of Texas and UK lung cancer GWAS at the Institute of
Cancer Research (ICR, Prof. Houlston) [with kind permission of Prof. Amos]

and 21 we can see some more SNPs that reach genome-wide significance. Since these
are only single SNPs standing out, they rather indicate false positive results than
true associations. The Quantile-Quantile plot (figure 3.2) is a useful tool to check the
quality of the data on the one hand and assess the number and strength of the observed
associations on the other hand (Pearson and Manolio, 2008). Therefore, the expected
distribution of the association test statistics across all SNPs under the null hypothesis of
no association (x-axis) is compared to the observed value in the data (y-axis) (Pearson
and Manolio, 2008). In GWAS it is assumed that the vast majority of the genotyped
SNPs is not associated with the disease. Hence, their test statistics follow the null
distribution and only a minor deviation from the diagonal in the QQ-plot should be
observed. Only a handful of values that deviate in the upper tail of the distribution
may represent SNPs with strong evidence for a true association (Pearson and Manolio,
2008). For diseases highly associated with SNPs in a heavily genotyped region, such as
Rheumatoid Arthritis associated with the HLA region on chromosome 6p21 (Pearson
and Manolio, 2008), stronger deviations can be observed. However, large deviations of
the observed values indicate consistent differences between the cases and controls across
the whole genome. This systematic bias in the data can be due to e.g. relatedness,
population stratification or genotyping artifacts (Pearson and Manolio, 2008). By
filtering the data according to the different quality criteria listed in the previous section
and correcting for population stratification this type of bias can be avoided. Other
confounders, such as smoking in lung cancer can inflate the distribution as well when
not considered in the analysis. In figure 3.2 a QQ-plot for a lung cancer GWAS that is
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Figure 3.2: QQ-plot for three different regression models analyzing the Central Eu-
rope lung cancer GWAS of the International Agency for Research on Cancer (IARC,
Prof. Brennan). The study comprises individuals from six different central and eastern
European countries. The first regression model involved only sex as a covariate, model
2 includes the country by five dummy variables. The last regression model addition-
ally involved smoking status (never-ever) and packyears. [with kind permission of Prof.
Brennan]

composed of 6 different central and eastern European countries is shown to demonstrate
the effect of population stratification and smoking as important confounding factors.
Therefore, results from three different logistic regression models for the genetic markers
are compared: including only sex as a covariate, including sex and country as well as
including sex, country and smoking. We can clearly see that the inflation of results is
reduced by including both confounders in the analysis. This is also reflected by the
corresponding inflation factors of λGC = 1.042, λGC = 1.022 and λGC = 1.013.

Assigning significance of association signals and validity

The major challenge in GWAS is not the type of test to use but the number of tests.
Performing hundreds of thousands of tests brings a high computational and statistical
multiple testing burden. In addition, this can be complicated by having multiple phe-
notypes, considering further modifiers to the basic analysis (Neale and Purcell, 2008) or
testing within subgroups. In a study of 500,000 SNPs conducting one single SNP test
for each of them, 25,000 false positive results are expected using a nominal significance
level of 5%. Therefore assessing the significance of the SNPs is an important issue in
GWAS. Numerous methods to address the multiple testing problem were developed long
before the GWAS era. These methods can be distinguished in methods controlling the
family wise error rate (FWER) or the false discovery rate (FDR).
The FWER is the probability of making at least one false positive result and the classi-
cal methods for controlling the FWER are characterized by simple p-value adjustment
and post hoc corrections. Different popular multiple testing methods to control for the
FWER are given by Bonferroni (1935, 1936), Hochberg (1988), Holm (1979b,a), Hom-
mel (1988), Rom (1990) and Sidak (1967). In contrast, the FDR is the expectation
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of the proportion of false positive results in all reported associations (Benjamini and
Hochberg, 1995; Forner et al., 2008). Hence, for controlling the FDR the proportion of
significant associations that are actually false positives needs to be estimated (Hochberg
and Benjamini, 1990; Yang et al., 2005). Commonly used methods are by Benjamini
and Hochberg (1995), as well as Benjamini et al. (2001). Controlling the FDR is less
conservative than controlling the FWER (Benjamini et al., 2001; Efron and Tibshirani,
2002; Sabatti et al., 2003). In 2003, Storey and Tibshirani (2003) published a modified
version of the FDR, called positive false discovery rate (pFDR),motivated by a Bayesian
viewpoint. In this context, the q-value was introduced as the Bayesian posterior p-value
(Storey, 2003; Wakefield, 2007, 2008). This method was further developed by Storey
(2002) and Storey and Tibshirani (2003).
The methods listed so far assume independence between the different tests statistics.
However, in a GWAS a large correlation between the tests of different SNPs exists due
to linkage disequilibrium (Evans and Cardon, 2006; Pearson and Manolio, 2008; Ziegler
et al., 2008). Thus the effective number of tests in GWAS is substantially smaller. Zon-
dervan and Cardon (2007) proposed to assume a certain constant LD across all SNPs
to adjust for the effective number tests (Ziegler et al., 2008). The gold standard to
account for correlation structures however are resampling methods such as bootstrap or
permutation based approaches. These generate appropriate experiment-wide p-values
(Churchill and Doerge, 1994; Neale and Purcell, 2008; Ziegler et al., 2008). Troendle
(1996) and Westfall and Young (1993) proposed permutation based methods for control-
ling the FWER. Resampling approaches can be applied to the different FDR methods
as well. Unfortunately, permutation based methods are highly computer demanding
(Thomas, 2010c). A good overview of resampling methods for multiple testing is given
in Ge et al. (2003).
In Dudoit et al. (2003, 2008); Dudoit and Laan (2008) and Tusher et al. (2001) several
multiple testing techniques, encompassing FWER and FDR methods with and without
correlation consideration in the context of gene expression analysis are explored. Al-
though FDR methods in general are characterized by higher power than FWER strate-
gies, in the context of GWAS, FDR controlling methods show no remarkable difference
to FWER approaches (Dudoit et al., 2003; Ziegler et al., 2008), since the number of true
positive results is generally expected to be very low and the number of false positive
is too high. Hence, in the context of GWAS, all these methods are really conservative.
Extremely small p-values are required to achieve significance (Evans and Cardon, 2006)
and most GWAS studies are underpowered to achieve such stringent significance levels
for true positives (Evans and Cardon, 2006; Hunter and Kraft, 2007). For causal variants
in complex disease, relative risks of 2 and less are in general expected and true positive
association signals are not necessarily larger than background noise or confounding ef-
fects (Teo, 2008). Detecting true associations in a GWAS is as looking for the needle in
a haystack (Thomas, 2006). The investigation of the power in GWAS by Eberle et al.
(2007), Gail et al. (2008), Nannya et al. (2007) and Thomas et al. (2009) showed that
1,000 cases and 1,000 controls are necessary to detect SNPs associated with a disease
of OR of 1.7-2. The power to detect a SNP with an OR of 1.3, a MAF of 0.2 given
1,000 cases and 1,000 controls using a significance level of 10−6 is only 4% (Ziegler et al.,
2008). Hence, enormously large studies are necessary to detect variants of small OR
using such stringent significance levels (Bickeböller and Fischer, 2007).
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Although false positive results are the most visible problem in GWAS (Weale, 2010),
false negative results may be even more difficult to correct (Weale, 2010). Since GWAS
rather discover potential SNPs worthy for further investigations than end results (Ziegler
et al., 2008), false positive results are widely accepted (Hirschhorn, 2005) to avoid miss-
ing the true positive results, even though this leads to increased costs in follow-up studies
(Ziegler et al., 2008). Strategies common in praxis are to use a weak significance level,
e.g. 10−4 (corresponding to 50 expected false positive associations out of 500.000 SNPs)
as proposed by (Arking et al., 2006). Alternatively, a particular proportion of most
promising SNPs from the analysis can be chosen for further investigation, e.g. 10% of
the top markers or the top 500 (Neuman and Sung, 2009; Satagopan et al., 2002; Skol
et al., 2006). These top SNPs can be a selection of the highest ranked SNPs according
to the p-values, but also according to the population attributable risk (PAR) (Hunter
and Kraft, 2007; Thomas, 2010c). The latter is an estimate for the fraction of diseased
people that could be avoided if the exposure (a particular genetic variant) would not
exist. It measures the relative contribution of a particular genetic variant to the disease
by combining information about the effect size and the frequency of the genetic variant
(Hunter and Kraft, 2007). A plausible argument for a real association is when two or
more SNPs in modest or strong LD in a chromosomal region show an association even
for a weak threshold (Ziegler et al., 2008).
A common practice in GWAS is the usage of two-stage designs (Hirschhorn, 2005;
Thomas et al., 2009; Thomas, 2010c; Ziegler et al., 2008). In the first step, the screen-
ing process, a dense set of genotyped markers is tested in an initial part of the study
sample to prioritize SNPs for the successive stage. In step two, the focus is on a small
subset of most promising SNPs from step one to evaluate their effect, genotyped in the
remaining sample. While some of the proposed two stage designs use the second step
as a form of a statistical ”built-in” replication (Thomas, 2006) of the first stage (Kraft,
2006; Saito and Kamatani, 2002; Satagopan et al., 2002), others suggest to perform a
joint analysis combining the information from both stages (Bukszár and van den Oord,
2006; Satagopan and Elston, 2003; Satagopan et al., 2004; Skol et al., 2006; Thomas
et al., 2004; Wang et al., 2006; Yu et al., 2007; Ziegler et al., 2008). The joint analysis
proved to be more powerful than the replication based two-stage analysis (Skol et al.,
2006; Yu et al., 2007) since the additional information from the first stage is considered.
The advantage of the multistage design is the increase in efficiency since the same power
can be obtained with reduced genotyping effort or less sample (Satagopan et al., 2002).
Due to the necessity to separate numerous false positive results in genome-wide asso-
ciation studies from the few true positives, the consistency and coherence of results
in this context is of high importance to establish a causal relationship (Bradford Hill
criteria). Therefore, independent replication and follow-up studies are essential to con-
firm results and make them reliable (Neale and Sham, 2004; Palmer and Cardon, 2005).
Subsequent experimental studies are necessary such as functional tests in knockout/-in
animal models or expression analyses. The latter should be performed for replicated
variants to understand the biological function (Thomas et al., 2009) and hence the
molecular and physiological basis of the disease. To avoid failures in replication be-
cause of true differences between the original and follow-up populations, heterogeneity
between the different study samples should be minimized or avoided (Thomas et al.,
2009). For the confirmation, other GWAS, but also small scale confirmatory studies are
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possible (Ziegler et al., 2008). A further aspect after replication is the generalization of
the finding by investigating them in other studies allowing for between study hetero-
geneity (Thomas et al., 2009). This heterogeneity may comprise different populations,
different subtypes of the same disease (e.g. subgroups according to age of onset or family
history), other intermediate endpoints or even other diseases as well as different study
designs (Thomas et al., 2009). The generalization can be useful to confirm, refine and
extend the initial finding. Fine mapping and resequencing of interesting regions are fur-
thermore needed to find out if the detected SNP is the causing factor or another variant
that is in LD (Thomas et al., 2009). Not the strength of the p-value in an initial study
is important, but the consistency and strength across several replication studies (Hunter
and Kraft, 2007). Results from multiple studies can be combined in a meta-analysis,
e.g. by Fisher’s combination of p-values (Neale and Purcell, 2008).

3.2.5 Problems in GWAS

The detection of genetic susceptibility factors for complex diseases should shed light
on the genetic architecture of common human diseases (Ober and Vercelli, 2011). It
should lay the foundation for prevention and early diagnostic methods, as well as safer
and more effective treatments and better prognostic tools (Khoury, 2010). In the
last years, genetic factors for several complex diseases were identified. Through June
2011, 1,449 genome-wide associations with p ≤ 5 · 10−8 were published for 237 traits
in more than 900 publications (Hindorff et al., 2012). However, although GWAS were
successful in finding genetic risk factors, they were not that satisfying as expected. On
the one hand, failures in replication as already observed in candidate gene association
studies are high on the agenda (Ioannidis, 2007). On the other hand most susceptibility
factors identified and replicated so far explain only a small proportion of the disease’s
heritability (Ober and Vercelli, 2011).

Lack of replication

The lack of replication and reproducibility is discussed in many publications (Bickeböller
and Fischer, 2007; Botstein and Risch, 2003; Hirschhorn, 2005; Ioannidis, 2007; Palmer
and Cardon, 2005; Pearson and Manolio, 2008; Thomas, 2010c). Beside false positive
results in initial studies (Palmer and Cardon, 2005), many true genetic susceptibility
factors fail to replicate as well. The sample size in replications studies is often too
small and hence the power is not adequate to detect the risk variants (Palmer and
Cardon, 2005; Pearson and Manolio, 2008). Genotyping errors, cryptic relatedness and
population stratification may contribute to replication failures (Pearson and Manolio,
2008). Differences between populations such as different effect sizes, allele frequencies
and specific LD patterns (Bickeböller and Fischer, 2007; Palmer and Cardon, 2005) as
well as the allelic and genetic heterogeneity in complex diseases make the replication
even more difficult (Bickeböller and Fischer, 2007; Palmer and Cardon, 2005) and may
lead to different results in different studies. Heterogeneity between the different studies,
e.g. due to different phenotype definitions, study designs or SNP chips used (Bickeböller
and Fischer, 2007; Pearson and Manolio, 2008) as well as different statistical methods
(Working Group on Replication in Association Studies et al., 2007) increase the problem
of replication further.
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Missing and hidden heritability

Heritability is the proportion of the total phenotypic variation between the individu-
als of a population that is attributed to genetic factors. Most of the non-major genetic
variants identified so far are characterized by weak effects and explain only a small pro-
portion of the corresponding disease heritability (Janssens and van Duijn, 2008; Pearson
and Manolio, 2008). For most complex diseases a large fraction of the heritability is still
unknown. We can differentiate missing heritability from hidden heritability (Ober
and Vercelli, 2011). Missing heritability denotes that traditional GWAS may miss ge-
netic variants such as rare or structural variants (e.g. CNV) and interactions (Maher,
2008; Manolio et al., 2009; Ober and Vercelli, 2011), as well as chromosome changes not
determined by DNA sequence modifications (e.g. DNA methylation) that are investi-
gated in the so called epigenetics (Allis et al., 2007; Rakyan et al., 2011). In contrast,
hidden heritability (Gibson, 2010) denotes that the joint effect of several common risk
factors might exceed the simple sum of their individual SNP effects (Park et al., 2008;
Yang et al., 2010). For most complex diseases we expect that all of the different compo-
nents mentioned above are of high importance, and that they probably all will contribute
to the genetic architecture of complex disease (Ober and Vercelli, 2011). Therefore, a
new post-GWAS era, considering more than only single common SNPs is necessary.

3.2.6 The post-GWAS era

As already mentioned in the introduction, different new directions can complement
GWAS analyses of single SNPs, summarized as post-GWAS research. Post-GWAS re-
search is defined by the National Cancer Institute (NCI) of the US National Institutes
of Health (NIH) as “the transition from the initial GWA discovery to replication stud-
ies, epidemiologic examination of gene-gene and gene-environment interactions, and to
the biological validation of the GWAS findings”. Some of the methods complementing
the traditional single SNP analyses still stay in the context of genome-wide association
studies but consider more than only one SNP, while others go even beyond the GWAS
context. Based on the traditional GWAS data, haplotype and multilocus methods may
help to reveal the hidden heritability underlying complex diseases (Gibson, 2010). While
haplotype methods examine segments of DNA strands comprising several nearby SNPs,
multilocus methods consider several loci at once, e.g. in a regression model. It is possible
to pass over from the SNP to the gene level by performing a joint analysis for all SNPs of
a gene, or combine single SNP results to gene level statistics. Gene set methods go one
step further by identifying even whole significant groups of genes or pathways instead of
SNP markers. This may unite results from different studies and help to understand the
underlying mechanisms of the disease. Furthermore, results of GWAS can be improved
by integrating external information, e.g. the location or possible function of the genetic
variants, information from complementary disciplines such as gene expression, as well as
information about the interplay of different genes within biological pathways. By using
the pathway knowledge, true positive results can be supported in the analysis. Beside,
interactions are another important component in complex disease, as already discussed
in section 2.4.2, indicating that interactions may account for a large proportion of the
heritability. Neglecting the interplay of genetic factors with each other and environ-
mental factors will result in incomplete risk profiles and missing heritability. Still in
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the context of GWAS, but beyond the scope of today’s SNP chips is the investigation
of other types of variants. Rare variants and structural variants such as CNVs, short
insertions and deletions, as well as translocations may be important to find some of the
missing heritability. As an opposite to the CDCV hypothesis that builds a fundamental
of today’s GWAS, the CDRV hypothesis (common disease - rare variant) arises. The
CDRV postulates that common diseases are rather caused by rare variants occurring in
less than 1% of the population with much larger effects (Pritchard, 2001). CNVs for
example may change the gene dose or level of gene expression (Christensen and Murray,
2007; Ober and Vercelli, 2011; Pearson and Manolio, 2008) and therefore may play an
important role in disease development. More information about the importance of rare
variants in complex diseases can be found in Manolio et al. (2009), a good overview for
the analysis of rare variants can be found in (Asimit and Zeggini, 2010; Basu and Pan,
2011; Dering et al., 2011; Sun et al., 2011). Other disciplines such as epigenetics leave the
context of GWAS but should not be disregarded (Grimm et al., 2011). Epigenetics de-
notes the study of changes in gene expression independent from the DNA sequence that
are nevertheless inherited from a cell to its children. Methylation and acetylation for ex-
ample influence the activity of chromosome segments and hence affect gene expression.
Gene expression is an additional important factor to complement GWAS results, as well
as functional studies in animal models or experiments on a protein basis. To simplify the
replication of results and the performance of meta-analysis, data sharing is encouraged
to provide maximal information about association evidence (Neale and Purcell, 2008).
Furthermore, the collaborative work in consortia is recommended. Thereby, consistency
across the different analyses of the participating investigators can be assured and study
heterogeneity can be minimized. Sample sizes can be enlarged, meta-analyses can be
improved and higher power in finding the genetic disease risk factors can be achieved.
Our applications in chapter 7 were performed within an international consortium for
lung cancer research. The investigation of multiple related phenotypes, e.g. asthma
together with lung function and related intermediate immunological phenotypes (Los
et al., 2001), colorectal polyps together with colorectal cancer (Croitoru et al., 2004)
or diabetes and related metabolic syndrome traits (Saxena et al., 2007), may be useful,
since related traits may show similar results and joined conclusions about underlying
mechanisms.
In this thesis, we will concentrate on two of the complementary approaches based on
the current genome-wide genotyping data that incorporate the complexity of diseases:
the integration of biological pathway information into the analysis and the consideration
of GxE interaction. The importance of pathways and gene x environment interactions
in complex disease is already discussed in section 2.4, indicating that interactions may
account for a large proportion of the heritability. Neglecting the interplay of genetic
factors with each other and the environment will result in incomplete risk profiles and
missing heritability. Due to one focus on GxE interactions, we will give a short overview
of the benefits and challenges to detect GxE interaction in the genome-wide context in
the following section. A good summary about these so called gene-environment-wide
interaction studies (GEWIS) can be found in (Thomas, 2010a).
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3.3 Gene-environment wide interaction studies (GEWIS)

An important component when confronting rather than ignoring the complex etiology of
common diseases is the examination of GxE interactions (Moore, 2003). Traditionally,
interactions between genetic and environmental factors were investigated in candidate
gene studies. In particular, genes within biological pathways that are known to involve
the environmental factor, e.g. a pathway responsible for the metabolism of the expo-
sure, provide popular candidates to consider. In GWAS, one first approach to consider
GxE was to test only those SNPs showing a genetic main effect. However, we will con-
centrate here on the integrated analysis of genome-wide variation and environmental
factors (Khoury and Wacholder, 2009), scanning the whole available SNP data for GxE
interactions (Thomas, 2010a). The analysis of GxE in the genome-wide context is de-
noted as gene-environment-wide interaction studies (GEWIS) (Khoury and Wacholder,
2009) and provides a complementary and important avenue of investigation (Ober and
Vercelli, 2011).

3.3.1 Benefit of detecting GxE interactions in complex diseases

The investigation of GxE is worth for many reasons (Marchand, 2005; Marchand and
Wilkens, 2008; Thomas, 2010a). As already mentioned in section 3.2.5, GxE interac-
tions may account for some of the missing heritability of most complex diseases (Ober
and Vercelli, 2011; Thomas, 2010a). The joint effect of a genetic and environmental
factor may explain a larger proportion of the heritability (Thomas, 2010a) than the
genetic main effect on its own and may even help to identify novel genetic factors with-
out a main effect (Thomas, 2010a). Sources of heterogeneity across different studies
(Greene et al., 2009; Ioannidis, 2007) for the same disease may be detected, explaining
failures in replication of GWAS findings (Thomas, 2010a). The revealing of GxE may
substantially contribute to our understanding of the biological mechanisms underlying
the development of complex diseases (Khoury and Wacholder, 2009; Thomas, 2010a)
by providing insights into disease complexity and involved pathways (Thomas, 2010a).
Understanding the underlying pathway may further help to determine which compounds
in a complex mixture of environmental factors causes diseases (Hunter, 2005), e.g. when
the identified gene of the interaction is involved in the metabolism of one of the com-
ponents. In colorectal cancer for example, the interaction of the gene NAT2 with the
intake of red meat cooked at high temperature indicates heterocyclic amines as the caus-
ing component (Thomas, 2010a). Additionally, interactions may support the credibility
of environmental factors. Another exposure suspected to be an important cause in colon
cancer are the polycyclic aromatic hydrocarbons (PAH), which are formed in red meat
as well, but can also be found in cigarettes smoke and exhaust fumes. The identification
of interactions with genes involved in the PAH metabolism enhance the credibility of
a causal relation of PAH and cancer (Brennan, 2002). The identification of GxE may
further help to find environmental factor that only affect individuals with a particular
genetic predisposition (Thomas, 2010a) or to identify high-risk individuals (Brennan,
2002). Prediction models may be improved by the knowledge of GxE. New prevention
strategies may be derived and the reduction of an environmental exposure to prevent
disease for example may be restricted to carriers of an interacting genetic factor that
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contributes to disease susceptibility. New therapeutic agents may be developed and per-
sonalized depending on the underlying genetic information (personalized medicine) to
minimize adverse drug reactions and treatment failures while maximizing the response
(Hunter, 2005; Thomas, 2010a).

3.3.2 Challenges of GEWIS

The conduct of gene-environment-wide interaction studies is much more difficult than
the examination of purely genetic associations (Thomas, 2010a). One major additional
challenge is the necessary careful collection of high-quality environmental data (Thomas,
2010a). The assessment of environmental factors is complicated due to several different
reasons (Khoury and Wacholder, 2009). Many environmental factors have a multi-
dimensional character, e.g. air pollution consisting of several different gases and par-
ticles with different biological effects (Thomas, 2010a). Environmental exposures can
furthermore show different intensities, and in comparison to the genetic information, the
environmental influences may vary over time (Khoury and Wacholder, 2009; Thomas,
2010a). The age at exposure as well as the duration may have an impact (Thomas,
1988, 2010a). Accurate measures of exposure may not always be possible and uncertain-
ties in the environmental factors may occur, leading to spurious interactions (Thomas,
2010a). However, the obstacles on the environment side are not new, since for a long
time epidemiological studies investigating environmental factors are familiar with these
problems. Therefore, a multidisciplinary collaboration is useful to ensure good GxE
studies (Hunter, 2005). Standard study designs (Thomas, 2010a) from epidemiology
can be used. Another aspect already discussed in the context of GWAS is the problem
of replication. In GEWIS, heterogeneity between different studies is expected to be
even more severe, due to different measures of exposure, different distributions, charac-
teristics or even definitions of the environmental factors (Thomas, 2010a). Furthermore,
different confounding factors may exist. With respect to the environmental factor smok-
ing for example, the definition of ”never-smoker” is not that obvious and may in some
studies only include individuals that never took a pull on a cigarette, in others all peo-
ple that smoked less than a small number of cigarettes in their whole life, e.g. 100.
Therefore, especially in the context of GEWIS, consortia play an even more important
role, since they may ensure harmonization of study designs, exposure assessment and
analysis methods across the studies already at the stage of study planning (Brennan,
2002; Thomas, 2010a). Another problem that is even bigger in GEWIS in comparison
to GWAS is the lack of power to detect the influencing factors. To detect interactions,
even larger sample sizes than for main effects are necessary (Ober and Vercelli, 2011). It
is even more important to reproduce an interaction finding in two or more studies and
to find a plausible explanation at biological level (Hunter, 2005). To solve the problem
of low power, several methods were suggested so far. These are addressed in chapter 6,
where in addition a new test to detect GxE interactions by a hierarchical Bayes model
is derived. As a basis for this, the next chapter provides the fundamental concepts of
Bayesian theory and hierarchical models needed for this approach.
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The focus of this thesis is an empirical hierarchical Bayes model to consider the com-
plexity of common diseases in genome-wide association studies. Empirical hierarchical
Bayes models are characterized by a hierarchical modeling framework combined with a
Bayesian flavor given by the posterior based inference. The hierarchical structure has
the ability to easily include multiple sources of external information into the analysis.
The empirical Bayesian treatment allows to exploit a large amount of data, as given in
GWAS, more effectively by “borrowing information” between the different observations.
We used the empirical hierarchical Bayes model for two aims: the integration of path-
way information in GWAS of complex diseases and analysis of GxE interactions in the
genome-wide context. Due to the property of hierarchical models to involve external
information, they are excellently suited to consider biological pathway data in the anal-
ysis. Furthermore, in the context of GxE interaction analysis, the so called shrinkage
estimators obtained by the empirical Bayesian approach may help to increase the power
of detecting the interactions. Reason for that is that these shrinkage estimators are
characterized by a reduced variance in comparison to frequentist estimation.
We will start this chapter with a description of the Bayesian approach to provide the
reader the necessary basis for the following sections. We then move on to hierarchical
Bayes models and empirical hierarchical Bayes models in section 4.2, before we will
address the usage of Bayesian statistics and hierarchical modeling in the context of
genome-wide association studies in section 4.3. Finally, section 4.4 presents the hier-
archical Bayes model proposed by Lewinger et al. (2007) on which our extensions and
applications are build.

4.1 The Bayesian approach

The Bayesian approach is an effective and practical alternative to the classical fre-
quentist statistics for hypothesis testing and conducting statistical inferences.
In the classical statistical setting, an analysis is only based on the observed data cap-
tured by its conditional probability distribution given unknown parameters (likelihood).
The data are treated as random, even though they are known and the parameters are
viewed as unknown but fixed constants that are estimated by maximum likelihood
estimation (MLE), assuming a particular distribution.
In contrast, the Bayes approach is based not only on the observed data but also on
information about the parameters to estimate, which is known before the analysis of the
data, e.g. by previous studies. While here the observed data are treated as fixed, the
parameters are considered as random variables with an underlying distribution function,
the so called prior, specified by given a priori information. This given prior knowledge on
the parameters is updated by the observed data to form the posterior distribution. If no
prior information is available, this is adequately included in the analysis. In the Bayesian
approach, maximum a posteriori (MAP) estimation can be used to achieve point
estimates of the parameters instead of maximum likelihood estimation. Through the
explicit use of the prior distribution, which is the essential characteristic of the Bayesian
method, uncertainty on the parameters of interest can be quantified. This uncertainty
is passed to the inference based on the analysis (Gelman et al., 1995; Robert, 1994).
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While the frequentist approach answers the question “What parameter values make the
data most likely to occur?”, the Bayesian analysis addresses the question “What param-
eter values are most likely given the data?” by using the inverse conditional probability.
These very different viewpoints have always led to controversies between the frequen-
tists and the Bayesians. The classical approach is criticized because a significance test
does not answer the essential question if and with which probability a hypothesis is true
based on the observed data. The Bayesian analysis is accused of being very subjective
and unscientific because the prior distribution, the paradigm of Bayesian, is not only
based on objective data but is influenced by a subjective perception and belief. Actu-
ally, the frequentist and the Bayesian approach can lead to different practical inferences,
although based on the same observed data, because the prior in Bayesian analysis may
have a strong influence on the outcome (Robert, 1994). However, Bayesians counter
that even when different priors are used, the new evidence from observed data will tend
to bring their posterior probabilities closer together.
Before we will go into details of the Bayesian model and inference, we will start with
the fundamental equation and technical core of the Bayesian approach for parametric
inference, the Bayes’ theorem.

4.1.1 The Bayes’ theorem

The Bayesian method is based on the well-established theorem of Reverend Thomas
Bayes published in an essay of 1763 (Bayes, 1991) and relates two reverse conditional
probabilities with each other (Robert, 1994). Most should be familiar with the discrete
case of the Bayes’ Theorem, given in its simplest form by

P (A|B) =
P (B|A)P (A)

P (B)
, P (B) > 0

representing the relationship of the conditional probability of an event A given an event
B with the reverse conditional probability of event B given event A (Dehling and Haupt,
2004). The fundamental idea of the theorem is that the conditional probability of A
given B depends not only on the relatedness of A and B, but also on the marginal
probabilities for each of these events. By the theorem, the probability of the occurrence
of event A is updated from P (A) to P (A|B) once B has been observed (Robert, 1994).
A simple illustrative example from diagnostic testing is given by the probability P (A|B)
of having diabetes (A) given a positive result (B) in an urine glucose test (Werner, 1984).
This probability depends not only on the accuracy of the urine test in finding the diseased
people P (B|A), but also on the prevalence of diabetes P (A) and the probability for a
positive test P (B). The latter is composed of the sum of the probability of a positive
test given diabetes P (B|A) multiplied with the prevalence of the disease P (A) and the
probability of a positive test given no diabetes P (B|A), multiplied with 1-prevalence
(1 − P (A)). The prevalence for diabetes may vary e.g. depending on age or sex and
hence the interpretation of a positive test result may change.
In the following, the more complicated continuous case of the Bayes’ theorem for density
functions is considered, because this builds the base for our purpose. Let x and y be two
continuous random variables with conditional probability density functionf(x|y),
the probability of x given y, and with marginal probability density function g(y),
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the probability of y regardless of x. The continuous version of the Bayes’ theorem
states that the conditional probability density function of y given x is

g(y|x) =
f(x|y)g(y)∫
f(x|y)g(y)dy

, (4.1)

provided
∫
f(x|y)g(y)dy 6= 0 (Lee, 1997; Robert, 1994). A detailed derivation of this

theorem can be found in Papoulis and Pillai (2002).
The numerator of that formula is the joint probability density function h(x, y) =
f(x|y)g(y) of x and y, a bivariate distribution giving the probability of the joint oc-
currence of x and y. Integrating the joint distribution over all possible values of y as
done in the denominator yields the marginal probability density function f(x) of x.
This marginal probability can be interpreted as the probability of x regardless of y
f(x) =

∫
h(x, y)dy =

∫
f(x|y)g(y)dy. Analogously, we have that g(y) =

∫
h(x, y)dx.

This relationship of the marginal probabilities to the conditional ones is known as the
law of total probability. Note, when both random variables are independent from
each other, then f(x|y) = f(x), g(y|x) = g(y) and h(x, y) = f(x)g(y). The marginal
density g(y) is denoted as prior probability density function of y, because it re-
presents the prior belief about y neglecting any knowledge about x. The conditional
probability g(y|x) is denoted as posterior probability density function, because it
reflects the probability of y considering the information given about x (Pestman, 1998).
In the following, we will denote the different probability density functions shortly as
prior, marginal or posterior. Furthermore, we will use the term distribution inter-
changeable for the probability density functions. Since conditioning on constants is not
necessary, we will neglect fix values in the following notation. Traditional maximum
likelihood estimates in the frequentist context will be marked by ·̃ while estimates in
the Bayesian context will be marked by ·̂ . We will use f(·) for the model function,
m(·) for a marginal function, h(·) for a joint distribution and π(·) for prior as well as
posterior distributions.

4.1.2 The Bayesian model

In Bayesian inference, a prior probability of a hypothesis is combined with the compati-
bility of some observed data with this particular hypothesis, to determine the probability
of the hypothesis given the observed data.
Consider a general problem where we want to specify a sampling model for N ob-
servations y = (y1, ..., yN) depending on a vector of r unknown model parameters
θ = (θ1, ..., θr) in a known way. This dependency can be expressed in form of a proba-
bility density function f(y|θ), with f(y|θ) =

∏N
i=1 f(yi|θ) if the N observations y1, ..., yN

conditional on θ are independent from each other. The function f(y|θ) is a function of
y that theoretically represents the probability to observe the data y under given fixed
values of θ. However, in classical statistics it is regarded as a function of θ for fixed data
y, also denoted by L(θ) and called likelihood, representing the probability to observe
the given data y (Gelman et al., 1995; Robert, 1994). The frequentist statistic is based
on that likelihood. Estimates of the unknown parameters θ are yielded by choosing
the values which maximize the likelihood (MLE) and hence make the data most likely
to occur (Dehling and Haupt, 2004; Robert, 1994). For example, assuming normally
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distributed data with known variance σ2 and unknown expectation θ, the MLE for the
expected value is given by the mean of the data θ̃ = 1

N

∑N
i=1 yi.

In the Bayesian context we are interested in the unknown quantities θ as well, but we
do not want to know the parameters that make the data most likely to occur, but the
parameters, that are most likely given the data. Therefore, we need to reverse the con-
ditional probability f(y|θ) of y given θ to a conditional probability π(θ|y) of θ given y,
what can be done by Bayes’ Theorem. Hence, we need additional prior beliefs about
the parameter values θ which we want to take into account, expressed in terms of a
probability density function. We suppose θ is a random quantity, having a probability
distribution π(θ), which is formalized by the available prior information. This function
π(θ) is called prior density function of θ.
Regarding the prior information, two different interpretations can be opposed: the pop-
ulation interpretation and the knowledge interpretation. From the first perspective, the
prior represents a population of possible parameter values from which the model param-
eters have been drawn. From the latter, more subjective viewpoint, the prior expresses
the knowledge about the model parameters as if its values could be thought of as a
random realization from a prior distribution (Gelman et al., 1995).
Having specified the prior distribution and having observed the data, we can use Bayes’
Theorem to transfer the prior belief about the model parameters before the observation
into a posterior belief considering the new observed data.
Therefore, we multiply the prior π(θ) by the likelihood f(y|θ) (contribution of the ob-
served data) to obtain the joint distribution h(y, θ) = f(y|θ)π(θ) of y and θ. Normalizing
the joint distribution by the marginal m(y) of the data, we obtain the posterior

π(θ|y) =
h(y, θ)

m(y)
=

h(y, θ)∫
h(y, θ)dθ

=
f(y|θ)π(θ)∫
f(y|θ)π(θ)dθ

. (4.2)

In general, the posterior distribution has no closed form expression and in particular the
computation of the normalizing constant m(y) may be difficult due to the integration.
Therefore, the unnormalized posterior density function simply given by model times
prior π(θ|y) ∝ f(y|θ)π(θ) is often used (Gelman et al., 1995). The posterior distribution
is the main tool of the Bayesian inference (Robert, 1994). It summarizes the current
state of knowledge about the parameter of interest by updating or weighting the prior
opinion formalized by π(θ) according to the new evidence given by the experimental
data represented by the likelihood f(y|θ) (Gelman et al., 1995; Robert, 1994).
In comparison to simple maximum likelihood (ML) parameter estimates, the Bayesian
approach results in a whole distribution for the parameters from which any information
can be extracted and inferences concerning can be made. To give a closer understanding
of the Bayesian approach, two common simple models and corresponding examples are
illustrated in the following. Since the examples will be taken up later in this chapter,
we will numerate the different parts by 1a), 1b) and 2a), 2b).

Example 1a): Normal-normal model
(Gelman et al., 1995)

The simplest combination of model and prior is using normal distributions for both of
them. Assume that a woman wants to know her diastolic blood pressure and obtains
a value of y in a blood pressure measurement. This value is normally distributed with
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unknown mean θ presenting her true blood pressure and known variance σ2 due to
measurement errors

y|θ∼N(θ, σ2).

In a frequentist manner, the observed score would be used as an estimate for her true
blood pressure. However, experts say that the diastolic blood pressure in women of that
age in general is a random variable with known mean µ and variance τ 2. The woman
can use this information as a prior

θ∼N(µ, τ 2),

to get a Bayesian solution for her problem. We obtain the marginal distribution m(y)
by multiplying the model f(y|θ) and the prior π(θ) and integrating over the parameter
of interest θ. This results again in a normal distribution

y∼N(µ, σ2 + τ 2).

The posterior distribution π(θ|y) is obtained by dividing the joint distribution h(y, θ) =
f(y|θ)π(θ) by the marginal m(y) resulting in

θ|y∼N(
σ2

σ2 + τ 2
µ+

τ 2

σ2 + τ 2
y,

σ2τ 2

σ2 + τ 2
), (4.3)

another normal distribution.
Let us now assume that the woman repeated the measurement N times with values
y = (y1, ..., yN) that are independently and identical distributed (iid) conditioned on the
true blood pressure

yi|θ
iid∼N(θ, σ2) i = 1, ..., N.

The common distribution is given by f(y|θ) =
∏N

i=1 f(yi|θ). The MLE for her true

blood pressure is then given by the mean of the data θ̃ = ȳ = 1
N

∑N
i=1 yi. The marginal

distribution for the single scores is yi
iid∼N(µ, σ2+τ 2), with the marginal over all observed

data given by

m(y) =
1√

2π(σ2 + τ 2)
e
−

∑N
i=1(yi−µ)

2

2(σ2+τ2) .

The corresponding posterior distribution π(θ|y) is given by

θ|y∼N
(

(σ2/N)

(σ2/N) + τ 2
µ+

τ 2

(σ2/N) + τ 2
ȳ,

(σ2/N) τ 2

(σ2/N) + τ 2

)
.

Example 2a): Binomial-beta model
(Gelman et al., 1995)

Another Bayesian model that is often used in praxis is the combination of a binomial
distribution model with a beta distributed prior. Assume that we have a study to
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evaluate the risk of tumors in laboratory rats. The sample consists of N rats from the
same strand that were treated under identical conditions. Of these N rats y developed
a tumor. We can model the experiment as a realization of a binomial distribution
y|p∼ Bin(N, p). The MLE for the tumor risk is given by p̃ = y

N
.

From historical data we know that the tumor risk among laboratory rats from this strand
under varying experimental conditions is approximately beta distributed Beta(α, β) with
known mean µ and variance σ2. The parameters α and β of the distribution are related
to mean and variance by µ = α/(α+β) and σ2 = αβ/((α+β)2(α+β+ 1)). We can use
this information as prior p∼Beta(α, β) for our unknown probability p. For convenience,
we reparameterize the distribution by the expected mean µ and M = α+β as a measure
of prior precision, so that the prior density is given by

π(p) =
Γ(M)

Γ(Mµ)Γ(M(1− µ))
pMµ−1(1− p)M(1−µ)−1

.

The marginal distribution for y is a beta-binomial with density

m(y) =
Γ(M)

Γ(Mµ)Γ(M(1− µ))

(
N
y

)
Γ(y +Mµ)Γ(N −M(1− µ))

Γ(N +M) .

The posterior distribution of the tumor risk is again beta distributed given by

π(p|y) =
Γ(M)

Γ(Mµ)Γ(M(1− µ))
py+Mµ−1(1− p)N−y+M(1−µ)−1

.

The main advantage of the Bayesian approach in comparison to the classical fre-
quentist procedure is that it provides a simple conceptual framework with high
flexibility and generality that allows to deal with really complex problems (Gelman
et al., 1995). In addition, MLE estimates from classical statistics often have the
drawback, that the estimators can be quite unstable (Robert, 1994) and may lack
smoothness (Robert, 1994), whereas Bayes estimators are more stable. Furthermore,
a key aspect of Bayesian methods is that it is possible to easily perform sequential
analyses using Bayesian formula sequentially (Gelman et al., 1995). When a posterior
distribution is calculated and new data become available, the previous posterior can be
used as a prior for the new data (Lee, 1997). In the blood pressure example given differ-
ent measurements, we have that f(y1, y2|θ) = f(y1|θ)f(y2|θ) when y1 and y2 conditional
on θ are independent from each other. We can rewrite π(θ|y1, y2) ∝ π(θ)f(y1, y2|θ) by
π(θ|y1, y2) ∝ π(θ)f(y1|θ)f(y2|θ) ∝ π(θ|y1)f(y2|θ), treating the posterior given y1 as
prior for y2.

4.1.3 The prior

The prior distribution can be determined on a subjective or theoretical basis, e.g. from
previous analyses, or other external information and always includes partially subjective
considerations. Since the prior can clearly influence the posterior probability, the choice
of the prior is the most critical and most criticized point of Bayesian analysis. Hence,
the reasonable justification of the chosen prior by the statistician is really important,
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Figure 4.1: The posterior distribution of a parameter of interest is a compromise
between its prior distribution and the likelihood. With decreasing informativeness of
the prior (top) – represented by its variance – and with increasing sample size of the
data (bottom), the posterior gets closer to the likelihood. For the top row the data were
sampled from a normal distribution N(10,50) with fixed sample size N=5 and prior
probability N(0, σ2) with varying variance σ2=10,30,90. For the bottom row, data were
sampled from N(10,50) with varying sample size N=2,5,10 and prior probability
N(0, σ2) with variance σ2=20. Parameter of interest is the expected value of the data θ.

based on sound or repeatable arguments, e.g. information based on physical, economical
or biological mechanisms or experiments of the same type (Robert, 1994).
The influence of the prior informativeness to the posterior distribution can be clearly seen
in our example 1 assuming a normal model and normal prior. Our posterior expectation

(σ2/N)

(σ2/N) + τ 2
µ+

τ 2

(σ2/N) + τ 2
ȳ

converges to the prior expectation µ with decreasing prior variance τ 2, since
(σ2/N)/((σ2/N) + τ 2) converges to 1 and τ 2/((σ2/N) + τ 2) to 0. With increasing prior
variance on the contrary, (σ2/N)/((σ2/N)+τ 2) approximates to 0 and τ 2/((σ2/N)+τ 2)
to 1, so that the posterior expectation converges to ȳ and the sample information be-
comes predominant. The influence of the prior informativeness to the posterior is illus-
trated in figure 4.1 (top). With an increasing variance of the prior from left to right,
the informativeness decreases and the posterior approaches the likelihood.
In addition, the influence of the prior is affected by the sample size of the observed
data - with decreasing impact of the prior the larger the sample size (Robert, 1994).
From the posterior expectation of the normal-normal models this is obvious as well, with
increasing N causing the same behavior as the increasing τ 2. We can see a graphical
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presentation in figure 4.1 (bottom). The sample size increases from left to right and
hence the posterior approaches the sampling distribution. We can further see that even
for a relatively low sample size of only 10 observations the posterior is already very close
to the likelihood.
If there is no information to integrate into the analysis, so called noninformative or flat
priors can be used. These give imprecise prior information by having a large variance,
e.g. given by a uniform distribution (Carlin and Louis, 2000) or by the so called Jeffreys
uninformative priors Robert (1994) derived from the model distribution. In this case
the data speak for themselves, with a posterior nearly the same as the likelihood and a
solution close to the ML solution (Gelman et al., 1995).
A special, important kind of prior distributions are the conjugate priors. A prior is
called conjugate to a special model distribution, when the resulting posterior follows the
same parametric form as the prior, meaning they belong to the same distribution family
(Gelman et al., 1995). The advantage of choosing a conjugate prior is that it is com-
putationally more convenient, because the posterior distribution is given in closed form
and can be analytically obtained without numerical integration (Carlin and Louis, 2000;
Gelman et al., 1995). For the Bernoulli, binomial and negative binomial distribution,
with a probability as the unknown parameter, the beta distribution provides a conjugate
prior (rat example) with suitable properties: it ranges from 0 to 1, can be symmetric or
skewed, with a large or narrow peak or even U-shaped. When interested in the mean
of a normal distribution, a normal distributed prior leads to a normal posterior, and we
say that the normal distribution is self-conjugated (blood pressure example). For an
unknown variance, a scaled inverse χ2 prior or inverse gamma serve as conjugate priors.
Furthermore, the gamma distribution is a conjugate prior for the Poisson distribution,
the exponential distribution and itself (Lee, 1997; Robert, 1994).
When a non conjugate prior is given, the computation of the integrals in the posterior
are in general not tractable analytically, even for statistical models of moderate com-
plexity. Thus, they have to be evaluated numerically by good approximations. This can
e.g. be done by sampling-based methods such as Markov chain Monte Carlo (MCMC).
Although conjugate priors are mathematical convenient, more realistic priors should be
preferred when available even though they are more inconvenient (Gelman et al., 1995).
Nevertheless, conjugate priors are in general a good starting point and e.g. mixtures
of conjugate families can be useful when the simple conjugate distribution is not rea-
sonable (Gelman et al., 1995). In a noninformative setting, a compromise between a
noninformative distribution which sometimes may be difficult to use or justify and a
conjugate prior distribution with with analytical tractability should be found.

4.1.4 Bayesian inference

As mentioned before, Bayesian inference relies on the posterior distribution of the model
parameters and appropriate inference statements can be derived from this distribution
by calculating posterior quantities such as point estimates, interval estimates or proba-
bilities (Gelman et al., 1995; Robert, 1994).
While in classical frequentist statistics, point estimates for the unknown model param-
eters are derived by maximum likelihood estimation

θ̃ML = arg maxL
θ

(θ),
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Figure 4.2: Principle of the Bayesian approach

this may be replaced by maximum a posterior (MAP) estimation in Bayesian statistics.
MAP estimators are the values that are most likely given the data, hence the mode of
the posterior distribution

θ̂MAP = arg max
θ

π(θ|y).

Alternatively, the posterior mean or median of the posterior distribution may be used.
In order to obtain a measure of the accuracy of such a point estimate θ̂(y) we might use
the posterior variance with respect to the point estimate Eθ|y(θ− θ̂(y))2. Practically, the

posterior mean θ̂(y) = Eθ|y(θ|y) =
∫
θπ(θ|y)dθ as a point estimate for θ̂(y) is preferred

since it minimizes the posterior variance with respect to θ̂(y), given by Varθ|y(θ|y) =

Eθ|y(θ− θ̂(y))2 = Eθ|y(θ−Eθ|y(θ))
2. In the multivariate case, the same holds with respect

to the posterior covariance matrix Covθ|y(θ|y) = Eθ|y((θ − Eθ|y(θ))(θ − Eθ|y(θ))
′).

In the normal-normal example, our point estimate of the woman’s true blood pressure
θ is given by the posterior expectation that is mode and median at once

θ̂ = E(θ|y) =
σ2/N

σ2/N + τ 2
µ+

τ 2

σ2/N + τ 2
ȳ. (4.4)

We see that the estimate is a weighted average of the observed data itself (ȳ) and the

prior mean (µ) Bµ+ (1−B)ȳ, with weights proportional to the precisions B = σ2/N
σ2/N+τ2

.
Alternatively, the posterior mean can be expressed as the prior mean adjusted toward
the observed data µ + (ȳ − µ)(1 − B) or as the data ‘shrunk’ toward the prior mean
ȳ−(ȳ−µ)B. Therefore, B is often denoted as shrinkage factor, indicating how much the
prior mean contributes to the estimate. The final estimate θ̂ is also denoted as shrinkage
estimator (Heron et al., 2011).
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In the rat example, the posterior expectation that can be used as a point estimate of
the tumor risk is given by

θ̂ = E(θ|N, y) =
y +Mµ

N +M
.

This can be rewritten in the weighted average form

M

N +M
µ+

N

N +M

y

N
= Bµ+ (1−B)θ̃

with B = M/(M +N) and θ̃ the classical maximum likelihood estimate.
The posterior mean is related to the prior mean by E(θ) = E(E(θ|y)), the relation of the
posterior variance and prior variance is given by Var(θ) = E(Var(θ|y)) + Var(E(θ|y)).
Hence, the prior mean is the average over all possible posterior means over the distri-
bution of possible data. The posterior variance is on average smaller than the prior
variance by an amount that depends on the variation on posterior means over the dis-
tribution of possible data (Gelman et al., 1995).As a summary of the Baysian method,
the principle steps are illustrated in figure 4.2.

4.2 Empirical hierarchical Bayes methods

The main criticism of the Bayesian approach is that prior information is seldom rich
enough to exactly define a prior distribution of a single known form as done in the pre-
vious section (Robert, 1994). Instead, the extent of the prior knowledge is often subject
to uncertainty (Lee, 1997) and it may be necessary to involve this in the Bayes model.
A possibility to consider uncertainty within the Bayesian paradigm is a particular mod-
eling by decomposing the prior information into several distributional levels, denoted as
hierarchical Bayes modeling.
In Robert (1994), a hierarchical Bayes (HB) model is defined as a Bayesian sta-
tistical model (f(y|θ), π(θ)), where the prior distribution is decomposed in conditional
distributions π1(θ|η1), π2(η1|η2), ..., πl(ηl−1|ηl) and a marginal distribution πl+1(ηl) such
that

π(θ) =

∫
π1(θ|η1)π2(η1|η2)...πl(ηl−1|ηl)πl+1(ηl)dη1dη2...dηl. (4.5)

The parameters ηj are called hyperparameters of level j (j = 1, . . . , l) to distinguish
them from the model parameters θ.
From this definition, it automatically follows that the hierarchical Bayes is a special
case of a Bayesian model. Hence, hierarchical Bayes models are covered in the Bayesian
paradigm and underlie the conditions and properties of the Bayesian approach, with
some additional advantages related to the prior decomposition (Robert, 1994).
The model specification over different levels with each new level in the hierarchy formed
by a new distribution is in particular useful since statistical applications often involve
multiple parameters that can be regarded as related or connected in some way by the
structure of the problem. The hierarchical modeling allows the distinction between
structural and subjective items of information. A special kind of structural relatedness
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that we will focus on for our purpose is that the model parameters are independently
and identically distributed (iid) (Lee, 1997). This relationship can be modeled in a nat-
ural way by using a prior distribution in which the single model parameters are viewed
as a sample from a common population distribution, depending on unknown hyperpa-
rameters (Gelman et al., 1995). Given N observations y = (y1, . . . , yN) depending on
r unknown iid parameters θ = (θ1, . . . , θr), we can set up the hierarchical Bayes model
with density f(y|θ) on the data level and the hierarchical prior with first stage prior

θi
iid∼ π(θi|η) (i = 1, . . . , N) and second stage prior η ∼ π(η). While the first stage prior

represents the parameter relationship depending on hyperparameters η, the second stage
prior express our beliefs about possible hyperparameter values (Gelman et al., 1995; Lee,
1997). The second stage prior is also denoted as hyperprior.
In particular, in the following we will consider the case where the number of parameters
r is the same as the number of observations N , with

yi|θi
id∼ f(yi|θi), i = 1, ..., N

since we have exactly that case in our application of the empirical hierarchical Bayes
approach. For our normal-normal and binomial-beta example, we can image the
following hierarchical Bayes models of that form.

Example 1b): Normal-normal model
(Berger, 1985; Robert, 1994)

With respect to our normal-normal example, we assume that N independent blood
pressure measurements y = (y1, . . . , yN) of a woman for consecutive weeks are available.
These observed values are assumed to be observations from independent distributions
(id)

1st level yi|θi
id∼N(θi, σ

2), i = 1, . . . , N

with known variance σ2 (measurement errors). The true blood pressure may vary from
week to week but it is very reasonable that these weekly blood pressure values are from
a common prior distribution π1(θi|µ, τ), given by

2nd level θi|µ, τ
iid∼N(µ, τ 2), i = 1, . . . , N.

We can put a second stage prior π2(η) = π2,1(µ)π2,2(τ 2) on the hyperparameters η =
(µ, τ 2) assuming independence of µ and τ 2. For example, π2,1(µ) may be specified by the
overall distribution of diastolic blood pressure for a good studied population of women
with µ ∼ N(72, 120). When only vague knowledge about τ 2 is available, an appropriate
noninformative prior may be chosen, e.g. π2,2(τ 2) = 1.

Alternatively, y = (y1, ..., yN) may not be N blood pressure measurements for the
same individual, but measurements for N different women . In that case, the same
model may be used, but this time θi represents the true blood pressure of woman i,
i=1,...,N which all come from the same common normal prior π1(θi|µ, τ) representing
the corresponding population.
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Figure 4.3: Structure of the hierarchical Bayes model (left) and directed acyclic graph
for the rat example (right)

Example 2b): Binomial-beta model
(Gelman et al., 1995; Lee, 1997)

Assume that we study the risk of tumors among laboratory rats of a special type. From
J different groups of rats, we have data (yj, Nj), j = 1, . . . , J , with yj the number of
rats that developed a tumor from a total of nj rats in group j, that follow independent
binomial distributions. Due to differences between the rats and experimental conditions,
the probability of a tumor is believed to vary between the different groups, but it is
well reasonable to suggest these probabilities as random samples from a common beta
distribution. Hence, our model is given by data level

1st level yj|pj
id∼Bin(Nj, pj),

and prior distribution

2nd level pj|α, β
iid∼Beta(α, β).

with j = 1, . . . , J . However, the hyperparameters η = (α, β) are unknown and we take
some appropriate second stage prior, e.g. a noninformative hyperprior of the form

3nd level π2(α, β)∝(α + β)−5/2

as suggested in Gelman et al. (1995) to represent our ignorance about the hyperpa-
rameters. In figure 4.3 (left), the structure of this hierarchical model is schematically
displayed. The usual graphical tool to represent a hierarchical Bayes model is a directed
acyclic graph (DAG) shown in figure 4.3 (right). In such a graph, random variables are
represented as stochastic circles and known quantities are represented by squares, with
the data as root of the graph.
We see that by hierarchical Bayes modeling, prior information can be separated into
two parts, the structural prior knowledge and the more subjective standard form of
Bayesian prior belief about the parameters of this structure (Lee, 1997; Robert, 1994).
In principle, as given in the definition of a hierarchical model, the hyperprior of η can de-
pend on unknown hyper-hyper-parameters λ as well, having a second-stage prior π2(η|λ)
and a third-stage prior π3(λ) representing our beliefs about possible values of λ (Carlin
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and Louis, 2000; Lee, 1997). This process may be repeated more often, continually
adding randomness as moving down the hierarchy with parameters depending in turn
on additional parameters which require their own prior. The hierarchy must stop at
some point, with all remaining hyperparameters assumed to be known. On each level
of the hierarchy, covariates may be involved. While the hyperprior in hierarchical Bayes
models is often specified by a suitable non-informative distribution, conjugate priors are
commonly used (Berger, 1985; Lee, 1997; Robert, 1994).
For simplification and since this is only necessary for our application, we will restrict to
the simplest case and reduce the hierarchical structure to a 3-level model with a 2 stage
prior

1st level − model y|θ ∼ f(y|θ)
2nd level − prior θ|η ∼ π1(θ|η)

3rd level − hyperprior η ∼ π2(η).

(4.6)

Note that by definition all hierarchical Bayes models (formula 4.5) may be reduced to
a 3-level model by eliminating the intermediate steps and additional hyperparameters
π2(η) =

∫
π2(η1|η2)...πl(ηl−1|ηl)πl+1(ηl)dη1dη2...dηl when η1, ..., ηl are not of interest for

the inference (Robert, 1994).
The main inferential interest in hierarchical Bayes models may be the same as in the
Bayesian approach, the calculation of the posterior distribution of the model param-
eters θ and its features Berger (1985). The hyperparameters are only a tool for its
estimation Lee (1997). We can compute the posterior distribution for θ by additionally
marginalizing over the hyperparameters η resulting in

π(θ|y) =

∫
f(y|θ)π(θ|η)g(η)dη∫ ∫
f(y|u)π(u|η)g(η)dη du

=

∫
h(y, θ|η)g(η)dη∫ ∫
h(y, u|η)g(η)dη du

=
p(y, θ)

m(y)
=

∫
h(y, θ|η)g(η)dη∫
m(y|η)g(η)dη

=

∫
π(θ|y, η)h(η|y)dη.

(4.7)

and e.g. yield point estimates for θ from this distribution. In the alternative of our
blood pressure example 1b) given blood pressure measurements for different women,
the estimation of the vector θ = (θ1, . . . , θN) is of interest, representing the women’s
true blood pressures. The posterior distribution of each single model parameter θi
comes not only from the properties of those data which directly depend on it, but also
from the hyperparameters η which summarize the properties of the population of the
model parameters as a whole. However, in the first case of example 1 b) having different
measurements for one woman, the true blood pressure of the woman is represented
by the µ and we may rather focus on this hyperparameter. Hence, the interest in
hierarchical Bayes analyses is not necessarily restricted to the posterior distribution of θ
and corresponding quantities but may vary (Lee, 1997). Here, the posterior distribution
of the hyperparameters has to be calculated instead, given by

π(η|y) =

∫
f(y|θ)π(θ|η)dθg(η)∫ ∫
f(y|θ)π(θ|η)dθg(η)dη

=

∫
h(y, θ|η)dθg(η)∫ ∫
h(y, θ|η)dθg(η)dη

=
p(y, η)

m(y)
(4.8)

and we can obtain a point estimate of η. The rat example falls into this class of inference
as well, with the tumor rate in the different single groups of the experiment not of
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interest but the general tumor probability for this kind of rats. Another intention for
example may lie in finding a predictive distribution rather than parameter estimation.
For example, the prediction of a blood pressure measurement or the number of tumors
in a new experiment, obtained by the overall distribution in the population under
consideration m(y) =

∫
f(y|θ)π(θ|η)π(η)dηdθ may be of interest (Lee, 1997).

As in Bayesian analysis, integration steps may be explicitly carried out by a close-form
expression in a simple case, while more complex models require numerical approxima-
tion methods such as MCMC (e.g. WinBUGS) (Berger, 1985).

Hierarchical Bayes models can capture dependencies within the data more realis-
tically than non-hierarchical models (Gelman et al., 1995). Very complex and flexible
models can be generated and the hierarchical thinking may help to understand natural
multilevel structures and enable in particular to analyze them using the information
from all levels. Different sources of variability, clustered and correlated data can be
modeled as well as overdispersion. Hierarchical Bayes models have enough param-
eters to fit the data well, nevertheless avoiding the problem of overfitting (Gelman
et al., 1995). Furthermore, hierarchical Bayes models are appropriate for a wide
range of applications, e.g. in medicine, biology, animal breeding, economy, where
the population of interest can be perceived as a subpopulation of a population (e.g.
meta-analysis)(Robert, 1994).
From a practical point of view, hierarchical Bayes models play an important role in
developing computational strategies (Gelman et al., 1995). A computational advantage
of the hierarchical Bayes method is that Bayesian calculation may be simplified by
the hierarchical structure. The decomposition of the prior and the posterior may
compensate the apparent complexity induced by successive levels and allow easier
approximations of posterior quantities by simulations. Nevertheless, hierarchical Bayes
models usually prevent an explicit derivation of the corresponding Bayes estimators as
well, even when the successive levels are conjugate, and therefore they call for numerical
approximation (Robert, 1994).
By hierarchical Bayes models, aspects of a population distribution of model parameters
can be estimated, although these values are not directly observed (Gelman et al.,
1995). Hierarchical Bayes models permit the computation of individual-level parameter
estimates that fit the individual outcome reasonably well but are relatively stable
by borrowing information from other respondents. By this property of “borrowing
strength” from the entire ensemble, even for groups with small sample size inference can
be performed well. By the hierarchical modeling, the robustness of Bayes estimators
is improved from a frequentist point of view since the arbitrariness of choice of hyper-
parameters is reduced, while still incorporating prior information (Robert, 1994). The
more subjective aspect of the prior modeling is relegated to a higher level and thus the
hierarchical Bayes model provides an intermediary position between a straightforward
Bayesian analysis and frequentist imperatives (Robert, 1994). Nevertheless, estimators
of the hierarchical Bayes approach are not more and not less admissible than normal
Bayesian estimators (Robert, 1994).

In general, hierarchical modeling is not only known in the Bayesian context. Whenever
we specify a model over several levels with each stage defining a stochastic model for
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the previous stage, we have a hierarchical model, and the inference on such models can
be frequentist as well. The most famous, classical occurrence of hierarchical models
in the non-Bayesian context is the random effects model (Robert, 1994), appropriate
to represent nested data, e.g. pupils nested in classrooms nested within schools. For
observations yij, such a model may be given by

yij = µ+ θi + εij

with random error εij ∼ N(0, σ2) and random effects θi ∼ N(0, τ 2) modeled as drawn
from a distribution. In the frequentist framework, the inference is about the fixed effect
µ and the variability τ 2 of the random effects (Robert, 1994). The estimation of the
random effects θi is not possible, since they are considered as unobserved variables and
not as parameters. However, operating on the same model from a Bayesian perspective
the focus of interest can shift to the estimation of the individual effects θi by consider-
ing the second stage as information entering the model in form of a prior distribution,
specifying the uncertainty about the parameters (Robert, 1994). In a Bayesian fashion,
the Bayes theorem is used to compute the posterior distribution of the θi and point
estimates are obtained e.g. by the posterior mean. The example of the random effects
model illustrates the conceptual difference of hierarchical modeling in the frequentist
context to a Bayesian hierarchical modeling and that the boundary between classical
and Bayesian models is sometimes fuzzy and mainly depends on the interpretation of
the model (Heron et al., 2011; Robert, 1994).
Further on, there exists a hybrid method of estimation for hierarchical models some-
where between a full Bayesian solution and the classical frequentist proceeding, called
empirical Bayes (EB) (Robert, 1994). The empirical Bayes approach differs from the
complete Bayesian analysis by its strategy to construct the prior distribution. As illus-
trated before, regarding the hierarchical model in formula 4.5, in full Bayesian treatment
a hyperprior distribution is specified independently of the observed data, quantifying
some uncertainty about the hyperparameters (Berger, 1985; Gelman et al., 1995). The
full posterior distribution for the parameters of interest is then estimated by addition-
ally marginalizing over η (Carlin and Louis, 2000). Alternatively, the empirical Bayes
approach is a procedure for statistical inference in which the unknown hyperparameters
η of the hierarchical model are replaced by an estimate η̂ based on the observed data.
Instead of using a hyperprior distribution on these parameters, the obtained point es-
timates are substituted in the prior distribution. Hence, the empirical Bayes offers a
good possibility to define the model without introducing a further specification of the
hyperprior distribution.
In the empirical Bayes approach the estimation of the hyperparameter is done in a
frequentist sense by maximizing the marginal distribution m(y|η) of the observations
viewed as a function of η (marginal maximum likelihood estimate, MMLE).
Hence, the parameters are set to their most likely values (Berger, 1985; Carlin and
Louis, 2000; Heron et al., 2011).

Given data y = (y1, ..., yN) with yi|θi
id∼ f(yi|θi) and θi|η

iid∼ π(θi|η), i =1,. . . ,N, the
marginal likelihood of the data is obtained by marginalizing the likelihood function∏N

i=1 f(yi|θi)π(θi|η) over the parameters of interest
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m(y|η) =
N∏
i=1

m(yi|η) =
N∏
i=1

(∫
f(yi|θi)π(θi|η)dθi

)
. (4.9)

For simple distributions, an exact solution of the MMLE is possible by using standard
iterative ML methods like Nelder-Mead, Quasi-Newton or conjugate gradient. Other-
wise, numerical integration methods like Monte Carlo, Laplace approximation, Gibbs
Sampling, Newton Raphson Iteration or Expectation-Maximum algorithm (EM) have
to be used (Lee, 1997).
The empirical Bayes analysis continues as if the prior distribution is known by plugging
these point estimates η̂ in the prior distribution (formula 4.6) θ|η̂ ∼ π(θ|η̂). By using
this model with the prior specification based on the data, we obtain a model of Bayesian
form and we can proceed in the standard Bayesian fashion by calculating the posterior
for θi (4.2) (Berger, 1985; Heron et al., 2011)

π(θi|yi, η̂) =
fi(yi|θi)π(θi|η̂)

mi(yi|η̂)
. (4.10)

In comparison to the complete Bayesian analysis, the posterior for each of the parame-
ters depends not only on yi, those data directly related to the parameter θi, but also on
all data depending on a whole population of parameters θj, j = 1, . . . , N summarized
by the hyperparameters η̂. Note that the empirical Bayes approach of course can be
implemented for hierarchical models with any number of levels.

In our blood pressure example 1b), the marginal likelihood is given by

m(y|µ) =
1√

2π(σ2 + τ 2)
e
−

∑N
i=1(yi−µ)

2

2(σ2+τ2) .

Maximizing this yields the MMLE µ̂ = ȳ = 1
N

∑n
i=1 yi for the unknown hyperparameter.

Replacing the unknown µ by its MMLE, we obtain the posterior distribution π(θi|yi, µ̂)

θi|yi
iid∼N(

σ2

σ2 + τ 2
µ̂+

τ 2

σ2 + τ 2
yi,

σ2τ 2

σ2 + τ 2
).

An estimate for θi is given by the expected value of the posterior normal distribution

θ̂i =
σ2

σ2 + τ 2
µ̂+

τ 2

σ2 + τ 2
yi = Bȳ + (1−B)yi with B =

σ2

σ2 + τ 2
, (4.11)

which is a weighted average of the observed data itself and the corresponding estimated
prior mean µ̂. The inference about each single component depends not only on the
corresponding data itself, but on all given data. Our single observations yi are shrunk
towards the mean of observations µ̂, with the impact of the mean depending on ratio
of the variances (Heron et al., 2011). When τ 2 is additionally unknown, we have to
estimate this variance from the data as well. The total variance over all measured
values y = (y1, ..., yN) is estimated by

s2 =
1

N

N∑
i=1

(yi − ȳ).
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This is the sum of the variability between the different blood pressure measurements
(τ 2) and the known measurement error (σ2). Hence, we can estimate τ 2 by

τ̂ 2 = max(0, s2 − σ2) (4.12)

and plug this estimate into formula (equation 4.11)(Carlin and Louis, 2000).
In the tumor risk example, the marginal densities are

m(yi|µ,M) =
Γ(M)

Γ(Mµ)Γ(M(1− µ))

(
Ni

yi

)
Γ(yi +Mµ)Γ(Ni −M(1− µ))

Γ(Ni +M)
,

for the single observations. The marginal likelihood is obtained by building the product
of these densities over all groups i = 1, . . . , J . The hyperparameters µ and M can be
estimated by the MMLE, using a numerical method, or simpler by using the method
of moments. The hyperparameter µ is estimated by the overall tumor risk neglecting
group differences

µ̂ =

∑J
i=1 yi∑J
i=1Ni

.

The moment estimate for the variance is given by

s2 =
1

J

J∑
i=1

µ̂(1− µ̂)

Ni

[
1 +

Ni − 1

M̂ + 1

]
,

and solving this for M̂ results in

M̂ =
µ̂(1− µ̂)− s2

s2 − µ̂(1−µ̂)
J

∑J
i=1 1/Ni

with s2 =
J

J − 1

∑J
i=1Ni(p̂i − µ̂)2∑J

i=1 Ni

.

Our posterior distribution is given by

p(pi|yi, µ̂, M̂) =
Γ(M)

Γ(Mµ)Γ(M(1− µ))
pyi+Mµ−1
i (1− pi)Ni−yu+M(1−µ)−1

,

what leads to point estimates

p̂i = E(pi|yi, µ̂, M̂) =
yi + M̂µ̂

Ni + M̂
=

M̂

Ni + M̂
µ̂+

Ni

Ni + M̂

yi
Ni

= B̂iµ̂+ (1− B̂i)p̃i ,

which is a weighted average of the event estimate p̃i = yi/Ni and µ̂ (Carlin and Louis,
2000).

Since the empirical Bayes (EB) approach replaces the integration over the hyper-
parameters η by a maximization to obtain the most likely values η̂, it fails to account
for the uncertainty of η. The resulting posterior conditioned on η = η̂ is just an
approximation of the posterior density π(θ|y). This conditional posterior π(θ|y, η̂) is
also denoted as pseudo posterior distribution (Robert, 1994).
From a modeling perspective, the empirical Bayes approach does not partake in the
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Bayesian paradigm but is considered to be a problem in classical statistics since it
does not strictly distinguish between data and prior information and uses the data
to specify the prior (Berger, 1985; Heron et al., 2011). However, by frequentists and
practitioners, the empirical Bayes approach is usually classified as Bayesian (Robert,
1994). Empirical Bayes analyses naturally are very related to Bayesian methods, since
after the estimation of the prior, the analysis proceeds in a typical Bayesian fashion to
compute a posterior distribution and relevant posterior quantities (Berger, 1985). The
empirical Bayes approach can be viewed as an approximation to the complete Bayesian
treatment of a hierarchical model and is asymptotically equivalent (Gelman et al., 1995;
Robert, 1994). In particular in noninformative settings, EB techniques appeal (Robert,
1994).
Since the empirical Bayes approach includes both, classical estimation and a Bayesian
flavor, it can simultaneously draw strength from frequentist and Bayesian methods
(Robert, 1994). From the calculation perspective, the empirical Bayes approach re-
quires the solution of a likelihood equation, while hierarchical Bayes requires additional
numerical integration (Berger, 1985). This makes empirical Bayes computationally
more simple (Robert, 1994), resulting in a gain of estimation efficiency and simplified
treatment of complex problems. Therefore, in particular in problems where a genuine
Bayes modeling is too complicated or costly it may be an acceptable approximation.
However, in general the hierarchical Bayes approach has shown to be the superior
methodology. It is often preferable over the empirical procedure, since it has the
clear advantage that it measures standard errors (Robert, 1994). The main drawback
of EB is that it relies on classical frequentist methods such as ML to estimate the
hyperparameters (Lee, 1997; Robert, 1994) and fails to incorporate any uncertainty
in the prior information (Berger, 1985). Nevertheless, HB and EB often lead to
comparable results especially in context of point estimation. Furthermore, Morris
(1983) argues that EB analyses actually have a type of frequentist justification making
such analyses more attractive to non-Bayesians (Berger, 1985). Due to the popularity of
EB due to good frequentist properties of some resulting estimators (Robert, 1994), the
EB method is in praxis often employed in case where we have structural relationship
between parameters as described, allowing us the use of the data to estimate some
features of the prior distribution (Berger, 1985).
Since all Bayesian inference is driven by the conditional posterior and the posterior
distribution for each single parameter depends on all data, a point estimate θ̂i given by
the corresponding conditional posterior mean for example depend on all the observed
data too. It is known that the conditional posterior mean E(θi|yi, η̂) as an estimator for
θi is approximately equal to the correct posterior mean E(θi|yi). Nevertheless, it is also
well known that the corresponding conditional variance Var(θi|yi, η̂) underestimates the
correct posterior variance Var(θi|yi) (Kass and Steffey, 1989). Hence, an adjustment
to account for the uncertainty of η may be required to produce valid estimates for the
variance.

In our given outline about the empirical Bayes, we restricted to the situation
where we only had to chose a value for η to completely specify the estimated pos-
terior distribution Carlin and Louis (2000). This approach is in particular denoted
as parametric empirical Bayes (PEB), since it assumes a parametric form for
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the prior, given by a special type of distributions. Nevertheless, the underlying
cumulative distribution function π(θ|η) of θ may have an unknown form, known as
non-parametric empirical Bayes (NPEB). In general, non-parametric methods
have the advantage that no assumptions about the type of prior distribution have to
be made. This protects against violations of assumptions, but they are less powerful
than parametric approaches because they use less information in their calculations.
Parametric methods on the other hand are more efficient and result in higher power,
but they are only valid when the type of distribution is clear and no assumptions are
violated. Since the model of Lewinger et al. (2007) used in this thesis is a parametrical
method, with a reasonable justification of the choice of prior distribution, we will not
go into more detail of the NPEB.

4.3 Bayesian methods and hierarchical models in genome-wide
association studies

As already discussed in chapter 3, the main challenge of genome-wide association studies
is to identify the few causal variants of a disease in a large quantity of genetic data.
Usually, a genome-wide association study is used as an initial step for selecting a subset
of “most promising” markers that are examined more closely in later stages of a multi-
stage design or in a replication study Thomas (2006).
Traditionally, the measure most commonly used to flag SNPs as “noteworthy” in this
screening SNP is the p-value by selecting the markers with the most significant associa-
tions to the disease at some cut off (Wakefield, 2008). However, due to the large number
of performed tests and a low prior probability of a non-null association in a GWAS, the
chance that such a significant rated result is a true positive result is only low. That is
the case even in large well-designed and well-conducted studies (Wacholder et al., 2004;
Wakefield, 2008). The portion of false positive results in association studies is estimated
to be at least 95% (Colhoun et al., 2003). The chance that none of the variants further
investigated has a true effect to the disease is high, implicating extreme caution when
using p-value ranking (Wakefield, 2008). In addition, the truly associated SNPs are not
necessarily ranked among these top SNPs due to their small risks and interrelatedness
and therefore the chance to find these is only small – even with large samples.
To overcome these problems, several alternative quantities from a Bayesian perspec-
tive were suggested to decide if a finding deserves the attention of further investigation
by considering the prior probability of the null hypothesis (Wakefield, 2008). In 2004,
Wacholder et al. published the false positive report probability (FPRP). The FPRP
(Hunter and Kraft, 2007; Samani et al., 2007; Thomas, 2010b; Wacholder et al., 2004)
is the posterior probability that a statistical finding between a marker and the disease is
not a true association P(H0 is true|H0 is rejected). In addition to the observed p-value,
P (H0 is rejected|H0 is true), the FPRP incorporates two more factors: a prior assump-
tion about the fraction of tested variants that are truly associated with the disease,
P (H1 is true), and P(H0 is rejected |H1 is true), the statistical power of the test. The
latter depends on the sample size, the frequency of the genetic marker and its observed
odds ratio and in general is low (Wacholder et al., 2004). By considering the prior prob-
ability, the FPRP may protect from “over interpreting” statistically significant findings
that are not likely to be true (Wacholder et al., 2004).
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Another Bayesian alternative to assess whether an association is noteworthy is the
Bayes factor. The Bayes factor is defined as the probability to observe the data
given the null hypothesis divided by the probability of the data under the alternative,
P(data|H0)/P(data|H1), measuring the impact of the data to support H0 in preference
to H1 (Wakefield, 2007). The Wellcome Trust Case Control Consortium (WTCCC)
for example used the Bayes factor in its GWAS of seven different diseases (Wellcome
Trust Case Control Consortium, 2007). To overcome the difficulties of specifying a
prior distribution over all unknown parameters and evaluating multi-dimensional inte-
grals necessary to calculate the Bayes factor, Wakefield proposed in 2007 an approach
based on an approximated Bayes factor, denoted as Bayesian False Discovery Probabil-
ity (BFDP). By using the BFDP, the number of discoveries that are followed-up but
cannot be replicated in further investigation may be reduced (Wakefield, 2007).
Although these two methods, FPRP and BFDP, may improve the selection of SNPs for
follow-up, they both ignore any external information that might favor a less significant
association with supporting evidence over a more significant one without prior knowl-
edge (Thomas, 2010b). Each of the considered SNPs is a priori assumed to be equally
likely causal (Chen and Witte, 2007). Thereby, findings that are not likely to be true
may lead to false positive results, while true associations with biological support may be
still missed due to their small effects. However, giving higher priority to subsets of SNPs
with greater biological plausibility would improve the SNP selection by reducing false
positive findings and increasing true positive results (Botstein and Risch, 2003). By
this, true causal variants may be distinguished more clearly from the noise (Chen and
Witte, 2007). For example, a greater credibility of association may be given to coding
SNPs or markers already reported in another study and to SNPs that are located within
genes or identified linkage regions (Thomas, 2010a). Hence, by the external information
the assumption that all SNPs act similarly is overcome by allowing the SNP effects to
vary depending on the additional genetic information (Heron et al., 2011).
Addressing this problem, Whittemore (2007) and Roeder et al. (2006) suggested
Bayesian variants of the FDR framework (section 3.2.4) to allow for the consideration of
external knowledge to up- or down-weigh each of the SNPs (Roeder et al., 2006, 2007;
Whittemore, 2007). The Bayesian false discovery rate (BFDR) defined by Whittemore
(2007) combines the frequentist FDR approach of Benjamini et al. (2001) for multiple
testing correction with the FPRP strategy of Wacholder et al. (2004). Therefore, so
called “b-values” are used, which are based on the FPRP instead of simple p-values as
decision criterion to control the FDR. While Wacholder et al. (2004)’s FPRP assumes
that the prior probability of a true association for each tested SNP is the same, in the
BFDR this prior differs between the genetic variants, depending on the given external
information. Roeder et al. (2006) use a weighted FDR framework where information
from previous linkage studies is used to modify the rejection criterion. In this approach,
each p-value is divided by a weight, obtained from the linkage information known for
that location. By using this prior knowledge, the FDR is spread non-uniformly across all
tested markers (Thomas, 2006). Both approaches provide potentially useful frameworks
for integrating external data in genome-wide association studies. Furthermore, Roeder
et al. (2006) and Whittemore (2007) could show that the integration of uninformative
prior information results in relatively small loss of power in comparison to simple p-value
usage (Thomas, 2010a). When additional well-chosen prior knowledge is used, it can
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lead to substantially greater statistical power and less false positive results. Neverthe-
less, both methods require a pre-specification of priors or weights for every marker at
genome-wide level (Thomas, 2010a). This causes new problems, especially when several
sources of prior information are available but only little knowledge about their relative
informativeness (Lewinger et al., 2007).
To avoid tedious and judgmental pre-specifications, hierarchical modeling approaches
offer a valid way to incorporate multiple types of prior information into a general frame-
work to prioritize SNPs of an initial GWAS for further investigation (Chen and Witte,
2007; Hung et al., 2004; Lewinger et al., 2007; Pan, 2005; Thomas, 2010b).
In a hierarchical model, the external information can be integrated via covariates con-
taining this knowledge (prior covariates) in a prior or hyperprior distribution. Instead
of ranking the SNPs according to their original p-value, they are ranked by their poste-
rior expectation given by the hierarchical model. This re-ranking should achieve more
effective results by prioritizing SNPs according to the given prior knowledge that would
not have been selected before by pure p-value ranking. By using an empirical Bayes
approach, the method does not rely on the subjective input of the practitioner in setting
the prior parameters, but instead uses the available data to obtain the parameter esti-
mates. It exploits the attractive feature of a GWA scan, that the large quantity of data
(many hundreds of thousands of markers) makes it possible to let the data itself sug-
gest, which prior information is correlated with the association. Therefore, the method
provides a more flexible approach than the Bayesian or weighted FDR where weights
for the information sources have to be prespecified.
In general, hierarchical models have the ability to easily include relevant biological in-
formation in a coherent framework. They offer better and more stable estimates of the
parameters, since all data are considered for each single estimate. Thereby estimates
that were unstable or extreme before become more reasonable (Heron et al., 2011). Em-
pirical hierarchical Bayes effect estimates can potentially reduce false positive results.

In the following, we will present three hierarchical models proposed in the context of
GWAS. For all methods, the biological relevant external information will be modeled
by the covariate matrix Z. Given NM SNPs Mi, (i = 1, . . . , NM) and NC different
covariates Cr, (r = 1, . . . , NC) to represent the prior knowledge, Z has the dimension
NM × NC and the entry zMiCr contains the information about covariate Cr of SNP
Mi (Hung et al., 2004). The Z matrix is the key component of the hierarchical
model approaches, defined by the investigator to reflect similarities between the SNP
markers (Hung et al., 2004). By these similarities, strength among the SNPs can be
borrowed to enrich the overall GWAS signals (Chen and Witte, 2007). The possible
external information that could be incorporated might be about the functionality of
the SNPs (e.g. coding, nonsynonymous), the location (e.g. intron, exon, regulatory
region), conservation, previously reported linkage or association regions, information
on candidate genes and pathways, gene expression, in silico predictions of potential
functions (Chen and Witte, 2007; Hung et al., 2004) or location relatively to known or
predicted genes. This information can e.g. be used for categorization, with zMiCr = 1
indicating the membership of a SNP Mi to the particular category given by covariate Cr
and 0 else, given e.g. a previous association signal, a value related to the corresponding
statistic from the earlier analysis. Using different categories, SNPs assigned to the same
category are assumed to arise from a common distribution (Hung et al., 2004).
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An intuitive hierarchical model

An intuitive approach of a hierarchical model in genetic association studies was pub-
lished by Hung et al. (2004) and picked up by Chen and Witte in 2007 to show its
potential value in the context of genome-wide association studies. Furthermore, in 2011
Heron et al. examined the impact of the inclusion of informative and non-informative
information to this model in GWAS by simulation studies (Heron et al., 2011).
While Hung et al. (2004) and Heron et al. (2011) used a logistic version for the appli-
cation in case-control studies, Chen and Witte (2007) illustrated a linear version for
quantitative traits. In the following we will outline the logistic version since this thesis
focuses on case-control studies. However, the linear version is obtained by simply re-
placing the first stage logistic regression model by a linear one.
The first stage of the intuitive hierarchical model is the conventional approach to esti-
mate the main effects of each SNP Mi individually by a logistic regression model (Heron
et al., 2011; Hung et al., 2004)

1st level ln
(

pMi,In
1−pMi,In

)
= αMi

+XMi,InβMi
, i = 1, . . . , NM , n = 1, . . . , NI .

XMi,In is the genotype of individual In for SNP Mi. Different genetic models can be
assumed for the genotype, e.g. an additive model coded by 0,1,2, presenting the copies
of the minor allele. pMi,In is the probability of individual In being a case given the
genotype XMi,In (Heron et al., 2011). The intercept term αMi

represents the baseline
risk of disease in form of a log odds for an individual with the homozygote genotype of
the major allele (Heron et al., 2011). The regression coefficient βMi

represents the effect
of the particular genetic marker on the disease risk on a log odds scale (Hung et al.,
2004). More precisely, in the case of an additive model it represents the increase in odds
of being a case for each additional allele. Additional covariates, e.g. age or sex, may be
considered in the model as well – but we will present only the simple model without any
phenotypic covariates. For the traditional frequentist strategy, the coefficients of this
model are estimated by maximum likelihood estimation. A Wald statistic is formed by
dividing this estimate by the corresponding standard deviation (Chen and Witte, 2007;
Wald, 1943). Existing information about the SNPs is ignored and each SNP is assumed
to be equally likely associated with the phenotype (Chen and Witte, 2007).
To improve the estimation of the βMi

and the SNP ranking through the inclusion of
additional biological information in a Bayesian manner, a second stage model (prior)
is added that incorporates external marker information (Hung et al., 2004) to specify
the relations among the different genetic variants so that the markers can support each
other. This can be given by a second-level regression of the form

2nd level β = Zµ+ δ, δ ∼ N(0, τ 2W )

where β = (βM1 , . . . , βMNM
) is (Hung et al., 2004) the vector of the NM coefficients

from the first stage. δ = (δM1 , . . . , δMNM
) is a vector of residual effects of the different

markers, which are normally distributed with mean 0 and variance-covariance matrix
τ 2W . Correlations between the SNPs can be modeled in the off-diagonal entries of the
W matrix, assuming no correlation W simplifies to the identity matrix I (Heron et al.,
2011). Residual effects may arise due to interaction effects among the covariates of the
second step or unconsidered covariates (Hung et al., 2004). The external information is
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incorporated in the second stage, with the effects of these prior covariates on the first
stage estimates given in the vector of prior coefficients µ = (µC1 , ..., µCNC ) (Hung et al.,
2004).
The final estimate of the SNP effects is then given by

β̂EB = BZµ̂+ (I −B)β̃, (4.13)

which is the shrinkage estimator of the usual estimator β̃ = (β̃M1 . . . β̃MNM
) shrunk

towards the second-level mean Zµ̂ with shrinkage factor B = (Ṽ + τ 2W )−1Ṽ (Chen and
Witte, 2007; Heron et al., 2011). Ṽ is the conventional ML estimate of the variance-
covariance matrix based on the first level regression model and µ̂ are the empirical Bayes
estimates of the prior coefficients, obtained by maximization of the marginal maximum
likelihood (MML) of this model.

In her comprehensive simulation study, Heron et al. (2011) demonstrates that the
inclusion of biologically relevant information through this hierarchical empirical Bayes
model offers a more robust method of detecting associated SNPs. The resulting esti-
mates are more stable advancing from reduced variability. The method performs better
than the conventional p-values ranking. When uninformative covariates are given,
the hierarchical model still performs equally to the traditional approach with respect
to power and false positive rate, even given noisy information the method performs
well. Hence, the approach is not adversely affected by the inclusion of unreliable prior
information, thereby ensuring robustness when considering incorporating additional
biological information (Heron et al., 2011).

Linear regression on pathways (LRP) of Lebrec et al. (2009)

Lebrec et al. (2009) chose another strategy by not directly considering the genotype
and phenotype data in the first stage of his hierarchical model, but the effect estimates
of the different SNPs. First of all, the positive allelic effect on the log odds scale and
corresponding variance for each SNP is estimated by a logistic regression model. In the
following, these estimates are denoted by β̂Mi

and σ̂2
Mi

. These effect estimates β̂Mi
are

normally distributed with expectation µMi
representing the true underlying effect and

variance σ2
Mi

, with the latter set to its asymptotic estimate σ̂2
Mi

. This builds the first
stage of the hierarchical model

1st level β̂Mi
|µMi

∼ N(µMi
, σ̂2

Mi
) , i = 1, . . . , NM . (4.14)

Furthermore, these underlying SNP effects are assumed to depend on external informa-
tion modeled in the second stage by

2nd level µMi
|µ0, β, Z, τ

2 id∼N(µ0 + Zγ, τ 2) , i = 1, . . . , NM , (4.15)

with µ0 the overall average effect across all SNPs and τ 2 the between-SNP variance. γ =
(γC1 , . . . , γCNC )T denote the effects of the NC different external information components.
Since this hierarchical model has exactly the form given in example 1 in section 4.2,
we will refer to that example for the further calculations of the marginal distribution,
MMLE estimates of the hyperparameters and posterior distribution. The posterior
estimates of µMi

are given by

µ̂Mi
= BZγ̂ + (1−B)β̂Mi

with B =
σ̂2
Mi

σ̂2
Mi

+ τ̂ 2
. (4.16)
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Hierarchical Bayes prioritization (HBP) of Lewinger et al. (2007)

In 2007, Lewinger et al. published another parametric empirical Bayes approach inte-
grating external information in a GWAS. Similar to the method of Lebrec et al. (2009),
his hierarchical model for Bayesian SNP prioritization is based on a summary measure
for each SNP rather than the direct genotype and phenotype data. However, Lewinger
et al. (2007) chose a χ2 distributed test statistic for each SNP as starting point instead
of an effect estimate obtained by logistic regression. Since this empirical Bayes approach
of Lewinger et al. (2007) builds the basis for this thesis, we will explain that method in
more detail in the following section.

4.4 Lewinger’s hierarchical Bayes prioritization for genome-
wide association studies

In comparison to the two methods listed before, Lewinger et al. (2007)’s hierarchical
model for incorporating external information consists of three rather than two levels.
The prior covariates are integrated in the hyperprior distributions in the third level to
influence the estimates of the hyperparameters and prioritize SNPs that would not have
been selected by pure p-value ranking.
By careful considerations which model fits best in this context of integrating external
information into GWAS analyses, Lewinger et al. (2007) found a reasonable, obvious
prior distribution for modeling the parameters of interest for this purpose. Hence, the
choice of a parametric approach is justifiable, leading to higher efficiency than a non-
parametric approach, given a valid type of distribution and no assumption violations.
Lewinger et al. (2007) chose an empirical approach, so that no arbitrary additional last
level prior with fixed parameters has to be specified (Carlin and Louis, 2000). By sim-
ulation studies comparing the empirical approach with the full Bayesian method using
MCMC, Lewinger et al. (2007) showed that similar results can be obtained. However,
the empirical approach has the advantage that the computationally intensive MCMC
method for large number of makers given in GWAS could be avoided.
Because this model was already adapted to GWAS incorporating external information
and the model and prior distribution were reasonable in the given context, the model is
used for this thesis, having especially the possibility to integrate pathway information
into the analysis for improving the results. Furthermore, a reasonable modification for
the application to detect GxE (chapter 6) was developed. In addition, both versions
of the hierarchical model, the original HBP by Lewinger et al. (2007) and the modified
GxE version, can be used to combine the detection of GxE interactions with the con-
sideration of pathway information. All in all, this model provides a promising approach
to unveil the complex etiology of diseases, considering pathway information on the one
hand and GxE interactions on the other hand.

4.4.1 The hierarchical Bayes model

In this approach an association measure for each considered genetic marker is modeled
in the first stage of a hierarchical model. As measure for association, the χ2 statistic is
chosen, depending only on one parameter, the non-centrality parameter. In the second
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stage of the model, these non-centrality parameters are modeled by a prior composed
of a large mass at zero (unassociated markers) and a continuous distribution of nonzero
values (associations). The prior probability of nonzero values and their prior means
themselves are modeled on the third level as functions of the prior covariates reflecting
the prior knowledge that characterizes the markers.

For each SNPs Mi, i = 1, . . . , NM in our GWAS, a simple single SNP association test
with an asymptotic χ2 distributed test statistic T 2

Mi
with non-centrality parameter λ2

Mi

and one degree of freedom (χ2
1(λ2

Mi
)) is performed. For simplification and since the

direction of the effect is not of interest for our model, we will focus on the unsigned

statistics TMi
= +

√
T 2
Mi

which are asymptotically χ distributed with non-centrality

parameters λMi
= +

√
λ2
Mi

and 1 degree of freedom (χ1(λMi
)). The density of a 1 df

noncentral χ distribution χ1(λ) is given by f(y|λ) = ϕ(y − λ) + ϕ(y + λ), y ≥ 0, where
ϕ denotes the standard normal density. Thus, it is equal in distribution to the absolute
value of a normal random variable with mean λ and variance 1 (Evans et al., 2000). A
graphical presentation of the connection between the normal and χ distribution is given
in figure 4.4.
The test statistics build the first level of our hierarchical model

1st level TMi
|λMi

∼ χ1(λMi
) i = 1, ..., NM . (4.17)

The noncentrality parameters λMi
, i=1,. . . ,NM , are the main objects of interest and

will be modeled in the second level of the hierarchy. For the SNPs not associated
with the disease, we have that λMi

= 0 (null hypothesis), while the associated SNPs
have λMi

> 0. In GWAS usually 500.000 up to 2 million SNPs are considered. Most
of them will have no association, with perhaps only some to several hundred SNPs
associated. Since we have a strong prior belief that most of the SNPs are not involved
in the examined disease, we adopt for the λMi

, i = 1, . . . , NM , a mixture model of the
form

2nd level λMi
|pMi

, eMi
, σ ∼ pMi

σχ1(eMi
)+(1−pMi

)δ(0) i = 1, ..., NM . (4.18)

pMi
is the prior probability that marker Mi is associated with the disease. Given an

association (λMi
> 0), λMi

is assumed to be have a χ1 distribution with noncentrality
parameter eMi

as measure for its strength of association and a scaling parameter σ > 0.
δ(0) denotes a point mass concentrated at λMi

= 0 given no association. Simulation
studies showed that the positive square root of the non-centrality parameters λMi

=

+
√
λ2
Mi

can be reasonably modeled by a χ distribution with 1 degree of freedom.

eMi
and pMi

are not declared as constant across all SNPs, but can depend on some of the
prior knowledge that is given to characterize the markers. This prior information to be
incorporated for marker Mi is formalized by the vectors Zµ

Mi
= (zµMi0

, zµMiC1
, . . . , zµMiCNCµ

)

and Zβ
Mi

= (zβMi0
, zβMiC1

, . . . , zβMiCNCβ
), with NCµ and NCβ “prior covariates” and inter-

cept term zµMi0
= zβMi0

= 1. Zµ
Mi

and Zβ
Mi

may carry the same covariates and be identical
or involve different kinds of prior information. It is even possible, that only the prior
probabilities pMi

or the prior noncentrality parameter eMi
depend on prior information.

The information is included in two regression models for the prior probabilities pMi
and
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Figure 4.4: Connection between normal and χ distribution with ϕ denoting the standard
normal density and f the density of the χ distribution with one degree of fredom and
non-centrality parameter λ.

the prior expectations eMi
, building the third level to complete the hierarchical model

(i = 1, . . . , NM)

3rd level logit(pMi
) = logit Pr(λMi

> 0) = βTZβ
Mi

(4.19)

eMi
= |µTZµ

Mi
|. (4.20)

The regression parameters µT = (µ0, µ1, . . . , µNcµ ) and βT = (β0, β1, . . . , βNCβ ) represent

the influence of the different prior covariates to the prior probabilities of association
and the corresponding expectations. For identifiability we have the constraint that the
intercept term µ0 ≥ 0.
The hierarchical model can be reduced to 2 levels, by combining the 2nd and 3rd stage
to

2nd level λMi
|µ, β, σ, Zµ

Mi
, Zβ

Mi
∼ eβ

TZβMi

(1 + eβ
TZβMi )

σχ1(|µTZµ
Mi
|) +

1

(1 + eβ
TZβMi )

δ(0).

Note: The most straightforward method would be to model the signed version of the

test statistics
√
T 2
Mi

by a normal distribution N(θMi
, 1) and θMi

by a mixture of the

point mass at zero and N(µMi
, τ 2). Though, Lewinger et al. (2007)’s simulation studies

showed that the distribution of θMi
given an association is not symmetric and therefore

cannot be adequately modeled as normal. For a marker Mi in LD with a causal locus
Mcausal, we have that θMi

≈ rMiMcausal
θMcausal

with rMiMcausal
the correlation between Mi
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and Mcausal. Since new mutations are more likely to occur in phase with a major allele at
nearby loci, a major marker allele is more likely to be positively associated with a causal
allele. Hence the distribution of LD measures to a causal locus is not symmetric around
zero but has a higher proportion of small negative values and a smaller proportion of
large positive values. This results in a non-symmetric distribution of the θMi

. By using
the absolute value of both positive and negative values λMi

= |θMi
|, this unbalance

cancels out and an approximate χ distribution is obtained. Hence, to base the model
on a χ distribution and not a normal distribution seems reasonable.

4.4.2 The empirical Bayes analysis

Treating the hierarchical model in an empirical Bayes manner, we have to estimate the
hyperparameter σ and vectors β and µ from the data. Thus, the parameter estima-
tion is done on the basis of the observed data, what makes the used approach to an
empirical Bayes method. We can calculate the marginal distribution for each single
SNP test statistic TMi

, i = 1, . . . , NM , by multiplying stage one f(TMi
|λMi

) and two
π(λMi

|µ, β, σ, Zµ
Mi
, Zβ

Mi
) and integrating over the unknown distribution of λMi

. Thus the
likelihood for marker Mi is given by

LMi
= Pr(TMi

|µ, β, σ, Zµ
Mi
, Zβ

Mi
)

=

∫
f(TMi

|λMi
)π(λMi

|µ, β, σ, Zµ
Mi
, Zβ

Mi
)dλMi

= pMi

f(TMi
/
√

1 + σ2|µTZµ
Mi
/
√

1 + σ2)
√

1 + σ2
+ (1− pMi

)f(TMi
|0)

(4.21)

From this, the marginal likelihood of the data is given by L =
∏NM

i=1 LMi
. By maximizing

this likelihood L with respect to Θ = (µ, β, σ) using a standard numerical maximization
algorithm, we can obtain estimates Θ̂ = (µ̂, β̂, σ̂) for the unknown hyperparameters.
The posterior probability PMi

of an association of SNP Mi with the disease can be
derived by application of the Bayes formula

PMi
= Pr(λMi

> 0|TMi
, Zµ

Mi
, Zβ

Mi
,Θ)

=

(
1 +

(1− pMi
)

pMi

f(TMi
|0)
√

1 + σ2

f(TMi
/
√

1 + σ2|µTZµ
Mi
/
√

1 + σ2)

)−1

.
(4.22)

In addition, we can obtain a formula for the posterior expectation E+
Mi

of the underlying
noncentrality parameter λMi

given an association (λMi
> 0)

E+
Mi

=E(λMi
|λMi

> 0, TMi
, Zµ

Mi
, Zβ

Mi
,Θ)

=
σ√

1 + σ2

1

ϕ(E+(Mi)) + ϕ(E−(Mi))

[
2/π exp(−(σ2T 2

Mi
+ (µTZµ

Mi
)2)/(2σ2)

+ λ+(Mi)ϕ(E−(Mi))(2Φ(λ+(Mi))− 1) + λ−(Mi)ϕ(E+(Mi))(2Φ(λ−(Mi))− 1)
]

(4.23)
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with Φ the cumulative distribution function of a standard normal and

λ+(Mi) =(µTZµ
Mi

+ σ2TMi
)/(σ
√

1 + σ2)

λ−(Mi) =(µTZµ
Mi
− σ2TMi

)/(σ
√

1 + σ2)

E+(Mi) =(TMi
+ µTZµ

Mi
)/(
√

1 + σ2)

E−(Mi) =(TMi
− µTZµ

Mi
)/(
√

1 + σ2).

(4.24)

Then we can plug in the estimates Θ̂ into the formulae to yield PMi
and E+

Mi
for each

SNP Mi. One of these posterior quantities or their product

EMi
= PMi

E+
Mi

= E(λMi
|Zµ

Mi
, Zβ

Mi
, ZMi

, Θ̂) (4.25)

can be used for SNP ranking and selection for further investigations.

4.4.3 Evaluation of the approach

By simulation studies comprising different parameter settings, Lewinger et al. (2007)
evaluated the performance of the Bayes method. He compared the regular SNP rank-
ing based on the classical χ2 distributed statistics T 2

Mi
with the ranking according to

the three posterior quantities PMi
,E+

Mi
and EMi

. He included the covariate information
either in only one of the third level regression models, or in both of these submodels.
The power for the different ranking strategies was calculated by the proportion of true
positive SNPs within a given fraction of top SNPs selected for further research.
The simulation studies showed that ranking by E+

Mi
was less powerful than the other

ranking strategies for all parameter combinations. Thus E+
Mi

should not be used to select
SNPs for further investigation. In contrast, the performance of PMi

and EMi
depend

on the power situation and the informativeness of the prior covariate. In the situation
of medium to high power with respect to the GWAS χ2 results, both ranking strategies
reached nearly the same power as using the original test statistic T 2

Mi
. Because of a

really large effect, the raw T 2
Mi

statistic can already pick the true association signals
and the prior covariates cannot gain more power although highly informative. In the
case of low T 2

Mi
ranking power, PMi

and EMi
can improve the results when some of the

prior covariates are informative and have a strong effect to the prior probability of a
SNP to be associated and/or the corresponding prior strength of association. When all
covariates are non informative or have only a very small contribution, the ranking by
PMi

and EMi
shows slightly lower power than the initial ranking.

The informativeness of the covariates was shown to be the most important factor in-
fluencing the power. Furthermore, is also depends on the informativeness which Bayes
ranking strategy, PMi

or EMi
, shows best results. However, overall PMi

or EMi
should

be preferred, with both of them showing comparable output.
When the full Bayesian approach was used, the discrepancies in ranking compared to
the empirical Bayes procedure were large for SNPs with low χ statistics and only low
for SNPs with medium to large χ values. Hence, since the latter that remain consis-
tent build the top ranking and are of interest for our application, the empirical Bayes
approach offers a good alternative.
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4.4.4 Conclusion

Lewinger et al. (2007) presented a new method for SNP selection in a first step of a
genome-wide association study to control the number of false positive findings with-
out missing too many scientifically interesting associations. Therefore, an empirical
hierarchical Bayes appraoch was used, that re-ranks SNPs by prioritizing markers with
external support even if their corresponding test statistics show only low to moderate
association effects.
Depending on the informativeness of the covariates, this approach of marker re-ranking
can reach at least comparable or even higher power than the original ranking. Particu-
larly, in GWAS with a relatively large proportion of truly associated SNPs the method
can be superior. In the context of GWAS with only a few true associations, the regres-
sion models will be driven mainly by correlations with false positive markers, what will
not improve the resulting ranking. Nevertheless, this obvious problem of the approach
may be overcome by the incorporation of an additional prior about the proportion of
expected true associations or corresponding likelihood penalties.
The main advantage of the approach is that it is very flexible, since multiple sources of
information can be included in the analysis, without prespecifying any weights for the
covariates. The weights are estimated from the observed data itself. Results from earlier
studies can easily be considered as corresponding covariates. Wheen prior evidence for
only some specific SNPs is given, it can be included in the probability model in form of
an intercept offset. Ignoring LD between the SNPs does not affect validity and efficiency
of the method.
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5 Integration of pathway information in the analysis

of genome-wide association studies

5.1 Motivation

The importance of biological pathways in the etiology of complex diseases is obvious and
should not be ignored. A more detailed description of their prominent role in disease
development was outlined in section 2.4.1. Therefore, involving knowledge about biolog-
ical pathways in the analysis of GWAS can be seen as an attractive approach to utilize
the wealth of data more effectively to complement and improve the traditional single
SNP results. The ability to find further associations not detected by using the GWA
data alone is increased by the integration of the pathway data (Tintle et al., 2009a).
Weekly associated genetic variants that cluster in pathways can be identified using this
method. This has the potential to reveal a more detailed picture of the genetic causes
of diseases (Chasman, 2008; Sohns et al., 2009).
In the last years, various methods to utilize biological pathway information were sug-
gested to increase the power of GWAS. In this thesis, we are concentrating on those
approaches that need a preceding traditional single SNP analysis. However, according
to their main idea we can group them in two different classes: gene set identification
and gene or SNP prioritization (Tintle et al., 2009a).
The first class of methods directly focuses on the identification of whole sets of bio-
logically relevant genes (gene sets) significantly associated with the disease rather than
single SNPs or genes. This can be done by examining if a pathway is enriched with
genes represented towards the top of a ranking list based on the information from the
traditional GWAS analysis. These methods are denoted as gene set analysis methods
(GSA) and originate from gene expression. A gene set is defined as a set of genes related
to each other by function, structure, nomenclature or in particular biological pathways.
The conception of the second group of methods is to prioritize SNPs by re-ranking the
traditional analysis results using the pathway information. SNPs in the same pathway
with only small association effects can support each other to up-rank, resulting in a
better ranking and SNP list. This can be done by hierarchical Bayes methods integrat-
ing external information in form of covariates (see sections 4.3 and 4.4). The external
information we use is the knowledge about biological pathways. New associated SNPs
may be discovered by this proceeding and thus the selection of SNPs for further inves-
tigations improved.
In our research on the topic of integrating pathway information into GWAS analyses,
we concentrated on the HBP model of Lewinger et al. (2007) described in the previous
chapter. We worked out two advanced strategies: a two-step HBP method and a com-
bination of a gene set analysis method and the HBP. In an application, results of the
original “one-step” HBP, both derived strategies and the gene set analysis method were
compared to each other.
Before we will outline our new work in sections 5.4-5.6, we will address gene set methods
in more detail in the following section and explain the strategies used in our interna-
tional cooperations. General issues in pathway analysis will be handled in section 5.3,
including our choice how to address these questions. Section 5.4 illustrates our individ-
ual work based on a Rheumatoide Arthritis GWAS. Section 5.5 includes the comparison
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of our results to those of other investigators working on the same data with the same
aim. We will end with a closing discussion in section 5.6.

5.2 Gene set analysis methods

Gene set analysis (GSA) methods were initially used in gene expression studies (Subra-
manian et al., 2005). The basic principle of these approaches is to assign significance to
a priori defined sets of genes instead of single genes. The goal is to increase the power
for subtle but consistent effects within groups of genes of which several jointly account
for an association with a disease (Tintle et al., 2009a).
In 2007, Wang et al. introduced the idea of GSA methods in the field of GWAS, where
they became popular in the last years (Chasman, 2008). The basic principle of GSA in
the context of GWAS is to combine statistics from single SNP tests into a single statistic
per gene (Tintle et al., 2009a). This gene level statistics are used to evaluate gene set
significance. For the assessment of significance of pathways, two different principles are
commonly employed. Either, one can calculate the over-representation of each gene set
among the top ranked genes (over-representation analysis methods, ORA), or alterna-
tively compute an enrichment score for each pathway and assess the significance by a
permutation method (gene set resampling methods, GSR) (Lee et al., 2005).
Furthermore, we can distinguish GSA methods concerning the definition of the statistical
null hypothesis in competitive and self-contained testing (Fridley et al., 2010; Goeman
and Buehlmann, 2007; Tian et al., 2005; Wang et al., 2010). Competitive methods com-
pares the genes within a gene set to the other genes in the genome to see if the set
shows the same pattern and level of association with the disease than the complement
genes (Nam and Kim, 2008; Tian et al., 2005; Wang et al., 2011). Thereby, the relative
enrichment of the set compared with the background can be evaluated (Nam and Kim,
2008). So the researcher can determine whether the genes in a set tend to be more asso-
ciated with the given disease (Wang et al., 2010). On the contrary, a self-contained test
directly tests the gene set association with the disease by assessing if the gene set con-
tains any genes correlated with the disease (Tian et al., 2005; Wang et al., 2011). These
methods use only the results given for the genes in the set of interest and do not depend
on the genes outside the set (Nam and Kim, 2008; Wang et al., 2011). ORA methods
are competitive by definition, a GSR method may be competitive or self-contained.
When causal SNPs are fully contained in one particular gene set, both hypothesis as-
sumptions will lead to similar results (Wang et al., 2011). Given causal SNPs located in
multiple gene sets or genes shared by multiple gene sets, self-contained testing is more
powerful (Chai et al., 2009; Hong et al., 2009; Wang et al., 2011). However, a significant
fraction of associated genes may implicate that large but irrelevant gene sets that are
purely a random subset of the entire gene list contain many associated genes just by
chance and hence rank high (Tian et al., 2005). In addition, only a single gene can make
a whole set significant (Nam and Kim, 2008). Using competitive testing, gene sets with-
out any associated gene may be identified due to special association patterns resulting
from tightly correlated but unimportant genes. For both approaches, the interpretation
of results should be treated with caution (Tian et al., 2005).
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Table 5.1: Overview of gene set analysis methods discussed in this thesis.
ORA: over-representation analysis; GSR: gene set resampling

method underlying underlying software publication
principle hypothesis

Hypergeometric Chasman (2008),
Fisher’s test

distribution
competitive EASE

Hosack et al. (2003)

Modified Fisher’s
EASE score

exact test
competitive EASE Hosack et al. (2003)

Binomial

O
R

A

Binomial
distribution

competitive

SLAT Sum of -log(p-values) Self-contained De la Cruz et al. (2010)

Sum of χ2 Efron and Tibshirani (2006)
SUMSTAT

statistics
Self-contained

Tintle et al. (2009b)

Sum of squared Dinu et al. (2007),
SUMSQ

χ2 statistics
Self-contained

Tintle et al. (2009b)

Kolmogorov-Smirnov- Subramanian et al. (2005),

G
S

R

GSEA
like running sum

competitive GenGen
Wang et al. (2007)

In the next two sections we will present the over-representation analysis and gene set
resampling methods discussed in this thesis. These also represent the most important
gene set methods in GWAS so far. A short overview of the methods, their main prin-
ciple and underlying null hypothesis, as well as corresponding references and available
software are given in table 5.1. Although in the context of GWAS the most common
approach is to summarize the SNP associations in a first step to reach gene level statis-
tics, the presented methods will all work on a gene level as well as on a SNP level and
are easy to transfer. How to obtain the gene level statistics from the SNP results is
explained in section 5.3.2.

In the following we will assume that we have examined NG genes Gj with test statistics
tGj and corresponding p-values pGj , j = 1, . . . , NG. To demonstrate the idea of the differ-
ent gene set methods, we will consider only one gene set S involving NG(S) investigated
genes. In praxis, considering a higher number of gene sets, the described proceeding is
repeated for each of the sets.

5.2.1 Over-representation analysis

In these methods the over-representation of a particular gene set among the most
promising genes (top genes) is measured. Therefore, the genes in the list are classified
in two groups (promising genes, others) according to a particular selection criterion
(e.g. significance threshold) fixed by the study investigator in advance. The enrichment
of the pathway within the promising genes is then evaluated by determining if the
observed number of pathway genes among the top is greater than expected by chance.
This can be tested by comparing the proportion of top genes within the pathway with
the proportion of top genes not in the pathway. These methods are also denoted as
cut-off methods. The exact ranking positions and corresponding statistics or p-values
do not matter, only if the gene is above or below the threshold.
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Table 5.2: 2×2 table underlying over-representation analysis methods. There are NG

different genes covered by the analysis, with NG(T ) of these having a test statistic above
a certain threshold (top genes). Considering a gene set S that comprises NG(S) genes,
k genes of these occur within the top genes as well.

promising remaining total
genes genes genes

(above threshold) (below threshold) (covered by SNP chip)

genes in k NG(S) − k NG(S)

set S
genes not NGT

− k NG −NG(S) −NG(T ) + k NG −NG(S)

in set S

NGT
NG −NGT

NG

Assume in the following that the top list T in our example comprises NGT genes. These
NGT genes and the NG(S) genes involved in gene set S have k genes in common. Hence,
we have k top genes within S. We can present the data in a 2x2 table as given in 5.2.
Based on this table, over-representation can be calculated by Fisher’s exact test or the
binomial approximation.

Fisher’s exact test

The test of proportions is based on the cumulative hypergeometric distribution, repre-
senting sampling without replacement (promising genes, NG(T )) from a finite population
of two types of elements (within (NG(S)) and not within (NG−NG(S)) the gene set) (Chas-
man, 2008; Hosack et al., 2003).
To assign significance to the excess of gene set genes within the most promising ones,
we calculate the probability to observe k or more pathway genes among the top genes
when the latter are randomly drawn from the whole set of genes by

pS(Fisher)(X ≥ k) = 1−
k−1∑
x=0

(
NG(S)

x

)(
NG −NG(S)

NG(T ) − x

)
(

NG

NG(T )

) . (5.1)

This corresponds to the one-tailed Fisher’s exact test (FET) (Chasman, 2008; Hosack
et al., 2003; Tintle et al., 2009b), with random variable X denoting the number of genes
within the gene set of interest and the list of most promising genes.
In the GSA software EASE, a modified variant of Fisher’s exact test called EASE Score
is additionally implemented (Fehringer et al., 2012; Hosack et al., 2003). The EASE
Score is obtained by removing one gene that belongs to the gene set and the top list
and the modified gene set p-value pS(EASEScore) is calculated based on this. The EASE
Score is a more conservative method that eliminates the significance of unstable gene
sets by penalizing sets supported by only a small number of top genes. More robust
gene sets are only slightly penalized and therefore favored. The method is inspired
by the concept of jackknifing a probability that is used to evaluate the stability of a
test by repeatedly removing a single observation from the data and recalculating the
statistic. The resulting jackknife distribution is broad for highly variable results, while
robust results show a tight distribution (Tukey, 1958).
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Binomial test

When the number of examined genes is high, the hypergeometric distribution of Fisher’s
exact test can be approximated by the binomial distribution. The binomial distribution
is the equivalent to sampling with replacement. Using this asymptotic equivalent, the
p-value can be calculated more simply by

pS(Binomial)(X ≥ k) = 1−
k−1∑
x=0

(
NG(S)

k

)(
NG(T )

NG

)k (
1−

NG(T )

NG

)NG(S)−k

.

The over-representation methods directly result in a p-value for each of the gene sets,
with a correction for multiple testing necessary when several sets are tested. Therefore,
the traditional FDR and FWER approaches can be used.
For the over-representation methods, the threshold to separate the promising genes
from the rest plays an important role. Different thresholds lead to different results.
Furthermore, this binary classification of genes ignoring the exact test results of genes
and their order implies a great loss of information (Tian et al., 2005).

5.2.2 Gene set resampling

Gene set resampling (GSR) methods do not required a threshold specification for “gene
selection” but use the single gene results to produce a gene set score. Non-promising
genes can contribute to the score as well and more information is preserved than
in ORA methods (Lee et al., 2005). A greater gene set score represents a greater
enrichment with top resulting genes (enrichment score) and significance is assigned
using a permutation method (Curtis et al., 2005). GSR methods tend to be more robust
than over-representation methods (Lee et al., 2005). Several alternative methods were
proposed to obtain the gene set score and in the following we will explain a selection
of these used in our applications or by our cooperation partners relevant for this thesis.
The choice of the resampling strategy for assessing significance to gene sets is one of
the issues in pathway analysis and different possibilities are outlined in section 5.3.4.

Combining p-values

A popular method to combine results in meta-analyses is Fisher’s combination test.
In the context of gene set analyses, we can use this procedure to combine the p-values for
all genes within a particular gene set. For p-values pGj(S) , j = 1, . . . , NG(S) corresponding
to the genes within the gene set S, the Fisher’s combination test statistic is given by

ZS(Fisher) = −2

NG(S)∑
j=1

log(pGj(S)). (5.2)

Under the assumption of independence between the different genes, this score follows
a χ2-distribution with 2NG(S) degrees of freedom. However, since we cannot assume
that all genes are independent, permutation based methods have to be used to assign
significance.
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In 2010, De la Cruz et al. (2010) suggested a modified version of this test for the GWAS
analysis on a pathway level based on single SNPs rather than gene level p-values. This
method alters by using truncation to preselect p-values most likely to carry a true signal
and using weights to incorporate other prior information and deal with the SNP marker
correlation. Assume that NM(S) SNPs belong to the genes in gene set S and their ordered
p-values are given by pM(1)(S) ≤ · · · ≤ pM(NM(S))

(S). The combined statistic according to

De la Cruz et al. (2010), denoted as SLAT (set level association testing), is defined by

ZS(SLAT) = −
NM(S)∑
l=1

wl log(pM(l)(S))I{p(M(l)(S)<αl
}, (5.3)

where αl are the truncation thresholds and wl, l = 1, . . . , NM(S), the weights for the
different markers. We can fix a particular threshold for all SNPs with all p-values below
used for the statistic. Alternatively, we may set α1, . . . , αr = 1 and αr+1, . . . , αNM(S)

= 0,
corresponding to a rank truncation selecting a fixed number of r top SNPs contributing
to the statistic. In addition, the α values can be chosen inspired by the step-up method
of Benjamini and Hochberg (1995) to control the FDR or the higher-criticism method
that is used in model selection. More details for this can be found in De la Cruz et al.
(2010) and Donoho and Jin (2004). The weights can incorporate prior knowledge about
the markers, e.g. about their relevance or the accuracy of the p-value, and information
about the dependencies among SNPs (LD). Nonsynonymous SNPs for example should
have more relevance and can be up-weighted. LD structures can be considered by
applying lower weights to highly correlated SNP groups to compensate their inflating
effect to the overall statistic. A recommendation how to do this precisely can be found
in De la Cruz et al. (2010).
This method of De la Cruz et al. (2010) was used by one of our cooperating partners
to compare different gene set methods based on the same data as in our applications of
chapter 7. We will shortly outline his main results there as well. For the method of De
la Cruz et al. (2010) he used α1, . . . , αNM(S)

= 0.05.

Combining test statistics

Another simple method to combine gene results to gene sets enrichment scores is to
simply sum the corresponding test statistics. Efron and Tibshirani (2006) originally
suggested this strategy for expression data (MAXMEAN) and Tintle et al. (2009b) used
the same idea in the context of GWAS in 2009. For the gene set S involving genes
Gj(S), j = 1,. . . ,NG(S), with χ2 test statistics tGj(S) we can calculate the enrichment
score according to the sum of the test statistics (SUMSTAT) by

ZS(SUMSTAT) =

NG(S)∑
j=1

tGj(S). (5.4)

Based on another method originally suggested in the context of gene expression (SUM-
GS) (Dinu et al., 2007), Tintle et al. (2009b) furthermore proposed to alternatively use
the sum of the squared test statistics (SUMSQ)

ZS(SUMSQ) =

NG(S)∑
j=1

t2Gj(S). (5.5)

88



5.2 Gene set analysis methods

Weighted Kolmogorov-Smirnov-like running sum

The most popular GSR method is the gene set enrichment analysis (GSEA) based on a
weighted Kolmogorov-Smirnov-like running sum. This method was originally proposed
for gene expression by Mootha et al. (2003) and Subramanian et al. (2005) and trans-
ferred to the context of GWAS by Wang et al. (2007) in 2007, who first suggested to use
pathway based analyses to complement GWAS single-SNP analyses. In 2008, Holden
et al. (2008) published the GSEA-SNP, a SNP-based version of GSEA for GWAS.
In comparison to the previous methods which used only the test statistics or corre-
sponding p-values for the genes within the gene set, GSEA additionally considers the
distribution of these genes in the entire ranked list (Tian et al., 2005). Therefore, the
ordered gene list is processed gene by gene starting at the top of the ranking and in-
creasing the score of a gene set when a gene is in that set and decreasing it else (Curtis
et al., 2005; Tian et al., 2005). The magnitude of the increment depends on the test
statistic of the corresponding gene, while the decrease is of same size for all non-gene
set genes corresponding to 1/(number of non-gene set genes). The enrichment score is
then given by the maximum of the running-sum.
Given in total NG examined genes G(1), . . . , G(NG) with decreasing sorted test statistics
tG(1)

≥ · · · ≥ tG(NG)
, the enrichment score (ES) for gene set S of size NG(S) is

ES(S) = max
1≤j≤NG

 ∑
G(j∗)∈S,(j∗)≤(j)

|tG(j∗)|p∑
G(j∗)∈S |tG(j∗)|p

−
∑

G(j∗) /∈S,(j∗)≤(j)

1

NG −NG(S)

 , (5.6)

with parameter p that may be varied. Given p = 0 it is the regular Kolmogorov-Smirnov
statistic. However, using equal step sizes for all genes, gene sets clustering in the middle
of the ranked list yielded high scores, although not enriched. Therefore, Subramanian
et al. (2005) recommended in the original GSEA algorithm to use p = 1, so that the
steps correspond to the test statistics and high scores only occur when genes from a
set cluster on the top of the ranked list. The ES measures the maximum deviation of
concentration of the statistic values in a particular gene set S compared to a randomly
picked set. A high ES is obtained when a gene set is concentrated at the top of the
ranking list.
Since not all genes of a gene set necessarily participate in disease development but only
a subset, Subramanian et al. (2005) proposed a strategy to extract the core members of
the significant gene sets. These comprise all genes of the set that occur in the ranked
gene list before the point where the running sum reaches its maximum deviation from
zero and hence drive the enrichment signal. This gene subset is denoted as leading edge
subset (LES). Given the significant gene set S, the LES is given by

LESS = {G(j)}G(j)∈S,j≤jES(S) , (5.7)

with jES(S) the maximum position of the running sum

jES(S) = arg max
1≤j≤NG

 ∑
G(j∗)∈S,j∗≤j

|tG(j∗)|p

Nt

−
∑

G(j∗) /∈S,j∗≤j

1

NG −NG(S)

 .

For a better understanding, figure 5.1 presents the calculation of the running sum as
well as the graphical determination of the LES.
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5 Integration of pathway information in the analysis of GWAS

Figure 5.1: Principle of the gene set enrichment analysis (GSEA) method
top: The lines represent genes within the gene set S. The ranking list starts with the
gene having the highest test statistic on the left (top of the list). bottom: Kolmogorov-
Smirnov-running sum for the gene set S. The Enrichment Score ES(S) is the maximum
value of the running sum. The Leading Edge Subset (LES) genes are the genes within
the set occurring on the ranking list to the left of the Enrichment Score.
(adopted from Subramanian et al. (2005))

5.3 Practical issues in pathway based GWAS analysis

Although pathway based methods enjoy increasing popularity in the area of genome-
wide association studies, their application is still in its infancy and presents several
challenges. Different gene set sizes and gene lengths, as well as the strong correlation
of SNPs due to the LD patterns and the presence of overlapping genes may lead to
bias. Methodological issues start with assigning the single SNPs to genes and genes to
gene sets as well as summarizing marker information on a gene level. Gene set analysis
methods also include the construction of the test statistics and finally the assessment
of statistical significance to whole gene set by considering the potential sources of bias
(Wang et al., 2011). Moreover, when prioritization methods are used a really important
issue is how to code the covariates for the gene set information.
Except for the last point mentioned, the listed issues are not the central focus of our
work, but we had to deal with them in our applications and make decisions how to solve
them. Therefore, we will take a closer look at these different critical steps in pathway
based GWAS analyses in the following. We will process the different issues one by one,
present typical possibilities and illustrate our decision.
So far, these logistical aspects that accompany the pathway based methods demand
subjective choices since more intensive research on these critical points is still necessary
to come to an informed decision (Tintle et al., 2009a). Some of the challenges have
been explored in greater detail in other areas before and we can take advantage of the
lessons learned and use the available information. However, others are still inadequately
investigated. Since the coding of the pathway information given as covariates for gene
or SNP prioritization methods is a more central point of our work, it will be part of
our applications in section 5.4. A graphical overview about the different steps in the
analysis flow is given in figure 5.2.
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Figure 5.2: Steps in a pathway based genome-wide association study analysis

5.3.1 SNP to gene assignment

In comparison to gene set analysis in gene expression studies, one challenge of pathway
based methods in GWAS is that we do not have one test statistic per gene but several
test results for single SNPs within and close to a gene (Peng et al., 2010). Hence, as a
first step in a pathway based analysis, SNPs have to be assigned to genes to relate the
data to the pathway information. This holds in particular for our applications.
Several data bases, such as the National Center for Biotechnology Information (NCBI)
(2012) data base, the USCS genome browser (Kent et al., 2002) or the Ensembl genome
browser (Flicek et al., 2012), provide gene annotation information. This information
can include start and end position for the genes, SNP positions as well as direct SNP
to gene assignments. The information can be obtained by downloading correspond-
ing annotation files or extracting information from the data base e.g. by R (Melville,
2011) or programming languages for data management (SQL). In addition, Affymetrix
(http://www.affymetrix.com) and Illumina (http://www.illumina.com) directly provide
annotation files for their SNP arrays, including SNP position and the nearest gene. Since
different names can occur for the same gene, caution is necessary to ensure a consistent
notation.

When assigning SNPs to genes it is possible to restrict to those markers within gene
coding regions. SNPs that can be mapped to the coding region of several genes are as-
signed to all of them. However, restricting to the coding part does not cover regulatory
regions or consider LD. Therefore, the usual strategy to assign SNPs to genes is map
SNPs not directly located within a coding sequence to the nearest gene within a certain
distance window of +/- X kb down- and upstream. Thereby, the core gene part as well
as the boundary regions containing regulatory units are covered (Tintle et al., 2009a;
Wang et al., 2010, 2011). The reasonable window size is still unclear and the implica-
tions of different sizes are still unknown (Tintle et al., 2009a). Different distances were
proposed such as 500kb (Wang et al., 2007, 2010), 200kb (Perry et al., 2009), 100kb
(Wang et al., 2010), 20kb (Jia et al., 2010), 10kb (Wang et al., 2010) and 5kb (Chen
et al., 2010).
Assigning the SNPs to genes still poses problems for the analysis. So far, there is no
exact definition of a gene and the corresponding gene positions vary between different
databases and over time. Assigning SNPs to more than one gene induces correlation be-
tween them and may result in bias. Furthermore, SNPs may be located in a regulatory
region of a gene although this is not the nearest one, resulting in a wrong assignment.
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In gene set analysis methods, all SNPs that are not assigned to any gene because they
are not close to any one are excluded from further analysis. This can be a severe loss of
information. This especially holds when a small window size is used since it may affect
several hundreds of thousands of SNPs. A wide window size on the contrary allows the
assignment of numerous irrelevant SNPs without any effect to contribute to a gene set
and may dilute its potential single strengths (Wang et al., 2011).
To improve gene set analyses in GWAS one may use more sophisticated strategies for
SNP assignment. These may for example consider information about exact LD patterns
around a gene (Bush et al., 2009; Hong et al., 2009) or regulatory units from expression
studies (Wang et al., 2011). Veyrieras (Veyrieras et al., 2008) estimated that most ge-
netic variants that influence gene expression are located within 20 KB around the gene
(Wang et al., 2011).
For our application presented in section 5.4, we assigned SNPs to genes using the cor-
responding SNP annotation file available from Illumina upon request. Each SNP was
assigned to the nearest gene within +/- 500kb. This relatively large distance guaranteed
to miss no regulatory or LD region of the gene, even though that was accompanied by
assigning many non-relevant SNPs to the gene as well. By using 500kb the number of
SNPs not assigned to a gene and hence not considered at all in the gene set analysis is
reduced.

5.3.2 Gene-based test statistic

Since pathway based methods in GWAS are often performed based on genes rather than
SNPs, gene level summary measures of association have to be obtained from the sets of
underlying SNPs. Although the HBP in our application parts was based on the SNP
level, we performed the GSEA on the gene level so that this issue represents a practical
aspect of our work. The best strategy for the reduction of the SNP-level information
within each gene is still disputed and represents a whole area of research not pursued
here.
In the following assume that we have a gene G and NM(G) assigned SNPs with ordered
p-values pM(1)(G) ≤ · · · ≤ pM(NM(G))

(G) (ascending) and corresponding test statistics

tM(1)(G) ≥ · · · ≥ tM(NM(G))
(G) (descending) from a single SNP analysis. A very simple

approach to summarize the single SNP signals at the gene level is to represent each
gene by its most significant SNP (maximum SNP statistic, Sidak’s combination test,
Peng et al. (2010)) pG(Sidak) = pM(1)(G) and tG(Sidak) = tM(1)(G). According to Simes’s

(1986) combination method we could also chose pG(Simes) = minj

{NM(G)pM(j)(G)

j

}
(Peng

et al., 2010). Simes procedure was proposed as a more powerful alternative to the Bon-
ferroni correction for multiple testing. For J hypotheses H(1), . . . , H(J) with p-values

p(1) ≤ p(2) ≤ · · · ≤ p(J), H(j), j=1,. . . ,J, is rejected if p(j)(Simes) =
Jp(j)
j
≤ α. This

method is simple to apply and in particular advantageous over Bonferroni given highly
correlated test statistics. The combination method uses the minimum of these Simes
corrected p-values p(j)(Simes), j=1,. . . ,J, for the joint test of the whole set of hypotheses
(Simes, 1986).
However, for both gene summary methods the loss of information is huge, they do not
consider the correlation between the SNPs due to strong LD within a gene and are
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susceptible to genotyping errors. Several weakly informative markers within one gene
will not be detected (Sohns et al., 2009). Nevertheless, the maximum SNP statistic is
often used due to its simplicity.
Instead of picking the result of only one particular SNP to represent the gene, alterna-
tively the results of all or a subset of most significant SNPs assigned to a gene could
be combined in one statistic (Chen et al., 2010; Dudbridge and Koeleman, 2003; Hoh
et al., 2001; Yu et al., 2009; Zaykin et al., 2002). This may be done by Fisher’s combi-
nation method (equation 5.2) or other methods known for meta-analysis. However, the
assumption of independence between the different p-values is not fulfilled. Depending
on the number of SNPs involved, the resulting gene level statistics are distributed with
different degrees of freedom. Thus they are not directly comparable to each other. An
alternative may be a joint association test such as a multiple regression.
In general, the different gene size and hence different number of SNPs assigned per gene
poses a problem and may result in a potential bias. Larger genes are more likely to
have larger test statistics and more significant p-values, leading to favor large genes and
discriminate small genes (Tintle et al., 2009a). This again leads to privilege gene sets
with many large genes rather than gene sets primarily involving small genes. Therefore,
an adjustment of the gene level measures is recommended, e.g. captured by permutation
methods that are discussed in section 5.3.4.
In a comparison of Ballard et al. (2010) among seven multi-marker association tests, in-
cluding the maximum SNP statistic, principal component regression (Gauderman et al.,
2007; Wang and Abbott, 2008) demonstrates to be the most powerful (Wang et al.,
2011). Alternatively, the analysis can be performed on SNP level directly using SNP
sets instead of gene sets.
In our application given in section 5.4, the maximum test statistic among all SNPs of
each gene was chosen to represent the gene test statistic for the GSEA since it is the
method most commonly used so far and simple to apply. Our HBP was based on the
SNP level.

5.3.3 Pathway information

The most prominent component for pathway based analysis is the biological informa-
tion used. The quality of gene set analysis results is highly related to the quality of the
underlying gene set annotations.
Information about biological pathways can be found in different publicly available
databases. Since these sources provide different knowledge about gene sets, the choice
of gene set information is a challenge and has to be made arbitrarily. So far, there is
no consistent information and only little advice how to correctly choose the most rele-
vant accurate prior information (Tintle et al., 2009a). Despite the high availability of
gene set information, the pathway description is not yet sufficient and complete due to
our incomplete knowledge about the human genes and their relationships (Sohns et al.,
2009; Wang et al., 2011). Various human genes are not well understood or uncharac-
terized and cannot be mapped to pathways (Wang et al., 2010). Another problem is
that genes in general function in multiple ways and therefore appear several times in
different pathways. This overlap of gene sets results in redundant information among
the sets (Wang et al., 2011), leading to problems in the pathway analysis.
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For our analysis presented in this chapter, we used a file provided by Wang et al. (2007)
in the GenGen-package combining different Web resources (Wang, 2008). This collec-
tion involves information from 2076 pathways and gene sets from Biocarta, KEGG and
the Gene Ontology (January 14th 2008). Some more information about the gene set
databases mentioned in this thesis can be found in the appendix A.3.

5.3.4 Significance Assessment

One important issue in gene score resampling (GSR) methods is the calculation of the
empirical distribution of the score under the null hypothesis. The empirical distribution
is obtained by recalculating the gene set scores multiple times by a permutation
procedure. Disease labels as well as SNP or gene-level statistics can be used as
permutation units (Tintle et al., 2009a).
When a phenotype permutation (sample randomization) test procedure is used, the
case-control status is randomly shuffled keeping the total number of cases and controls
fixed (Sohns et al., 2009; Tintle et al., 2009a). SNP statistics, gene-level statistics and
gene set score are recalculated. In the SNP and gene permutation method, the SNP or
gene-level statistics are shuffled across the genome and gene set scores are calculated
based on these reallocated statistics (SNP or gene randomization). Hence, using gene
randomization, random gene sets of the same size are generated for comparison. A
comparison of advantages and disadvantages of the different permutation methods is
given the appendix B.1.
For each gene set, an empirical distribution of the corresponding score is obtained
by the permutations to represent the null distribution. The background distribution
established by phenotype permutations represents the null hypothesis underlying
self-contained GSA methods, that no SNP and hence gene is associated with the
disease. In practice however, some susceptibility SNPs will occur (Wang et al., 2010).
SNP and gene randomization permutation represent the compatible null hypothesis of
no enrichment as in competitive testing (Ballard et al., 2009; Tintle et al., 2009a,b).
Typically, the permutation strategy is chosen ignoring the compatibility with the
corresponding null hypothesis of the used gene set method (no association vs. no
enrichment) (Wang et al., 2011). This may lead to some bias.
Based on the empirical distribution for a gene set, a nominal p-value can be simply
calculated by the fraction of permutation scores for this set that are equal or larger
than the original score. Furthermore, since in GWAS numerous gene sets are tested,
permutation results may be used for a FWER or FDR method to correct for multiple
testing (Curtis et al., 2005). This affects GSR as well as ORA methods.
In the following we will present an example of a phenotype permutation method to
assign significance to GSEA scores and calculate the FDR and FWER in more detail.
This approach is used in our practical applications to avoid bias due to gene size and
keep the correlation structures in the data.

Sample-label permutation procedure in GSEA

This sample-label permutation procedure for GSEA in the context of genome-wide as-
sociation studies was proposed by Wang in 2007. Assume that we calculated the en-
richment score ES(Sk) for each of NS examined gene sets Sk, k=1,. . . ,NS. For each
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permutation b = 1, . . . B, we randomly assign the original disease labels to the sam-
ples, recalculate the SNP and gene-level statistics and recomputed the enrichment score
ES(Sk, b) for each gene set to obtain the null distribution of ES(Sk). The nominal
p-value is given by

pSk(nom) =

#
b=1,...,B

(ES(Sk, b) ≥ ES(Sk))

B
(5.8)

Since gene sets of varying size are not necessarily directly comparable to each other
(Wang et al., 2007), the permutations can be used to adjust for these differences between
gene sets. Therefore, we can calculate the mean and variance of the permutation scores
per gene set by µ̂Sk =

∑B
b=1 ES(Sk, b) and σ̂2

Sk
= 1

B−1

∑B
b=1(ES(Sk, b)− µ̂Sk)2 and each

enrichment score is normalized by subtracting the corresponding mean and dividing by
the standard deviation

NES(Sk) =
ES(Sk)− µ̂Sk

σ̂
Sk

, NES(Sk, b) =
ES(Sk, b)− µ̂Sk

σ̂
Sk

, b = 1, . . . , B.

To control the FWER, we can calculate the p-value by comparing the true NES of
the gene set of interest NES(Sk) with the highest NES score over all gene sets per
permutation

pSk(FWER) =

#
b=1,...,B

( max
l=1,...,NS

(NES(Sl, b)) ≥ NES(Sk))

B
. (5.9)

To control the FDR, the distribution of all NES(Sl, b) over all gene sets Sl, l = 1, . . . , NS

and permutations b = 1, . . . , B is used to estimate a FDR q-value for a given NES(Sk).
This is given by

qSk(FDR) =

#
b = 1, ..., B
l = 1, ..., NS

(NES(Sl, b) ≥ NES(Sk))

/
(BNS)

#
l=1,...,NS

(NES(Sl) ≥ NES(Sk))
/
NS

. (5.10)

Both FDR and FWER were calculated in our applications.
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5.4 Analysis of the NARAC data for Genetic Analysis Work-
shop 16

The Genetic Analysis Workshops are a collaboration of researchers in the whole world to
develop, evaluate and compare statistical methods for the detection of genetic effects in
complex diseases. For each workshop current analytical issues in Genetic Epidemiology
and Statistical Genetics are chosen and can be investigated by different groups based on
the same provided data sets. In a meeting, the results from the different investigators
are presented, compared and discussed (www.gaworkshop.org). The Genetic Analysis
Workshop 16 (GAW 16) held in September 2008 in St. Louis, Missouri, USA focused
on the analysis of genome-wide association scans (Cupples et al., 2009).
As a contribution for this workshop we worked on the incorporation of pathway in-
formation into GWAS. We investigated the hierarchical Bayes prioritization method of
Lewinger et al. (2007), since it is perfectly fitted for this purpose. Our focus was the
comparison and combination of the HBP with a gene set analysis approach. The GSEA
of Wang et al. (2007) was chosen as a representative GSA method since it is very popular
in expression analysis and was proposed for GWAS shortly before our investigation. We
worked out a HBP-two-step method and a combination of HBP and GSEA and applied
them to provided Rheumatoid Arthritis data. The results of the four strategies were
contrasted and compared with each other for coincidences and differences (Sohns et al.,
2009). Furthermore, the biological plausibility of the results was evaluated.
We will present our individual work and results in this section (Sohns et al., 2009),
starting with a short description of the provided data set we used (Amos et al., 2009).
The next section 5.5 describes our work within the group of all GAW 16 contributors
focusing on the incorporation of gene set information, comparing our results (Tintle
et al., 2009a). Therefore, the individual results of the other investigators will be shortly
outlined as well (Ballard et al., 2009; Lebrec et al., 2009; Tintle et al., 2009b). We will
close with an overall discussion about the methods for gene set integration in section
5.6, with the focus on the hierarchical Bayes approach.

5.4.1 Genome-wide data for Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic disease resulting from a complex interaction of
genetic and environmental factors. It is an autoimmune disorder causing chronic inflam-
mation primarily in joints but also other tissues and organs of the body. In RA patients,
the immune system normally responsible to protect our health by attacking foreign cells
mistakenly attacks the own body cells. RA is a progressive illness with painful and
disabling acute episodes alternating with periods without symptoms. Long-term, RA
may cause joint destruction and permanent functional disability. In Caucasians, the
prevalence of RA is 0.8% and the recurrence risk ratio for siblings is estimated to nearly
6. RA can occur at any age, with the mean age of onset in the fifth decade. Women are
more often affected than men.
For the diagnosis of rheumatoid arthritis, specific autoantibodies can be used, with
anti-cyclic citrullinated peptide (anti-CCP) as best disease predictor and the rheuma-
toid factor Immunoglobulin M (IgM) representing erosive arthritis. So far, the human
leukocyte antigen (HLA) region on chromosome 6p21 is known as a highly important
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genetic component in the disease susceptibility. This genomic region contains numerous
genes encoding for cell-surface antigens. HLA as a risk factor for RA was implicated by
a large number of studies, with consistent evidence for the contribution of alleles of the
HLA-DR genes. Beside high main effects of the HLA-DR genes, interactions with other
HLA loci are expected (Newton et al., 2004). Several other non-HLA genes that increase
risk of RA are known as well, all somehow related to immune response or playing a role
in inflammation processes and therefore biologically plausible. In table 5.3 a list of such
genes taken from Raychaudhuri (2010) is given. Only a few environmental factors are
known. Smoking increases risk by a factor of 2 (Jawaheer et al., 2002) and interacts
with predisposing HLA-DR alleles and high levels of anti-CCP (Klareskog et al., 2006).
The genome-wide RA data provided for GAW 16 were derived from a genome-wide
study to identify genetic risk factors of RA (Plenge et al., 2005) and involved 868 cases
and 1,194 controls assayed using the Illumina 550 k platform. The cases were com-
posed of 445 independent individuals from affected sibpairs from the North American
Rheumatoid Arthritis Consortium (NARAC) and 423 independent cases not selected
for family history recruited across the United States. The controls were derived from
the New York Cancer Project (Mitchell et al., 2004). While cases were predominantly of
Northern European origin, controls were slightly enriched with individuals of Southern
European or Ashkenazi Jewish ancestry. Individuals with an overall call rate <95%,
first degrees relatives, duplicated and contaminated samples were already removed.
The data were included in a previous publication showing significant effects for the HLA
region, non-HLA gene PTPN22 and identifying a disease causing risk locus between the
genes TRAF1 and C5 (Plenge et al., 2007). Beside affection status and sex, levels of
anti-CCP and IgM as well as further information for HLA-DRB1 were given. A more
detailed description of the dataset is given in Amos et al. (2009).

5.4.2 Preprocessing

Both GSEA and HBP are based on an initial ranking of single SNP association analysis.
Quality checks were performed to filter out SNPs and individuals of bad quality (miss-
ingness >5%, MAF <1%, pHWE < 10−7; CR < 90%, relatedness, sex inconsistencies).
For the remaining SNPs and individuals, Cochrane-Armitage’s trend test was performed
to obtain single SNP test statistics. In section 5.3 we presented how the different issues
that appear in GWAS pathway analysis were handled. An overview of that can be found
in table 5.4 (see page 108). For GSEA, 1,000 permutations were generated.
Since gene names are ambiguous, we used the Gene Name Service (GNS) (Lin et al.,
2007) to assure consistency of the gene names in the Illumina Annotation file and the
gene sets. Furthermore, gene sets with large overlap were combined and sets with less
than 11 genes excluded. Small gene sets are less informative when single SNP analyses
are considered and therefore no great loss. Often, they are not well understood, involv-
ing many genes not known so far. Since very large gene sets are generally non-specific
and hence little gain of information, they are often excluded as well. The reduction of
gene sets examined reduces the multiple testing burden and decreases the computation
time using resampling-based methods (Lee et al., 2005). Some more detailed informa-
tion about the preprocessing of the gene annotations and pathway information is given
in appendix B.1.
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We end up with a total of 876 gene sets for the analysis. Due to computational lim-
itations with the hierarchical model at that time we had to restrict the number of
considered pathways to 100. These were selected after the initial single SNP analysis,
so that at least one of the top ranked genes was involved in each pathway.

5.4.3 Analysis Strategies

Initially, we directly applied GSEA (I) and HBP (II). For the HBP, the gene set infor-
mation was only considered in the logistic regression model for the prior probability of
association (equation 4.19), but not in the linear model for the prior strength of asso-
ciation (equation 4.20). It was integrated into the model by the covariate vectors Zβ

Mi
,

with a coding of 1 for a SNP in the gene set and a coding of 0 when not (gene set
information). Since additional information about the SNP may be important as well,
information about the functional position of a SNP and its coding function (SNP infor-
mation) was considered. The SNP information was modeled in both, logistic (Zβ

Mi
) and

linear (Zµ
Mi

) regression (equations 4.19 and 4.20 ), having an impact on the probability
of association as well as the corresponding strength. SNPs within protein coding regions
for example are expected to be more likely associated and to have a larger effect on the
disease than SNP in intergenic regions without regulatory function. Information about
the SNP location and coding status was kept from Illumina’s annotation file. Illumina
classified the SNP location in 7 different mutually exclusive categories: 3’ UTR, 5’ UTR,
(other) UTR, flanking 3’ UTR, flanking 5’ UTR, intron and coding. The coding type is
distinguished in synonymous, non-synonymous and complex. A SNP is synonymous
when the corresponding codons code for the same amino acid, so that protein’s sequence
is not changed. When SNP variants lead to different amino acids, so that the SNP influ-
ences the protein’s composition, it is denoted as nonsynonymous. A complex coding
SNP results in even more complicated changes of a protein, e.g. by changing the start
or end point of the amino acid sequence. The membership of the SNP to the 10 cat-
egories was coded in the covariate vectors by 0/1 as well. In figure 5.3 an extract of
the covariate matrix Zβ = (Zβ

M1
Zβ
M2
, . . . , Zβ

MNM
)T is shown. Zµ = (Zµ

M1
Zµ
M2
... Zµ

MNM
)T

contains only the first 11 columns of that matrix. SNPs were ranked according to their
resulting posterior probabilities obtained by the hierarchical model.
Then we thought how HBP can be further improved by dwelling on both strategies
advantages. Depending on the research question, there may be an interest in obtaining
significance on the gene set rather than on the level of SNPs or genes. This was only
obtained by GSEA, but not by HBP. However, external knowledge additionally to the
gene set information could only be considered in the HBP but not in GSEA. Therefore,
we developed a third strategy that combines the HBP incorporating the SNP informa-
tion with the GSEA for assigning p-values to gene sets. In a first step, the HBP using
the information about SNP function as prior covariates was performed. The resulting
posterior probabilities from this model were then further used as the input ranking for
the GSEA instead of the initial ranking list. Hence, a gene set significance was obtained
while involving SNP information.
Next, HBP’s covariates simply indicating if SNPs are located within a gene set (1) or
not (0) may not be a particularly appropriate choice. Different other covariate values
are conceivable, e.g. considering the number of SNPs within a gene and hence gene set,

98



5.4 Analysis of the NARAC data for Genetic Analysis Workshop 16

Figure 5.3: Z matrix for the hierarchical Bayes prioritization method containing in-
formation about functional position, coding function and gene set membership for each
SNP. SNP 1 for example is an intron-SNP involved in gene sets 1, 3 and 4. SNP 6 is
nonsynonymous coding and involved in set 5, 6 and 7.

or even considering LD, to improve the analysis. However, we proceeded differently and
chose set-specific weights derived from the observed data (Sohns et al., 2009). We first
used the HBP with SNP information as external information. The resulting posterior
probabilities were then used in a second step to build weights for the pathways instead
of using the indicators. For each SNP the weight was calculated as a function of the
first step posterior probabilities to be associated given by the other genes involved in
the same gene set. We therefore picked for each gene Gj, j = 1, . . . , NG, the maximum
posterior probability of all assigned SNPs Mi(Gj), i = 1, . . . , NM(Gj), to represent the
gene (analogous to GSEA)

ppost−Gj = max
i=1...NM(Gj)

(
ppost−Mi(Gj)

)
,

with ppost−Mi(Gj)
= P (λi(Gj) > 0|TMi(Gj)

, ZMi(Gj)
, Θ̂) (formula 4.22).

For a SNP Mi(Gj(Sk))
that is assigned to a gene Gj(Sk) that in turn is involved in gene

set Sk, we calculated the gene set weight for this SNP

zβM
i(Gj(Sk))

,Sk
= 1−

∏
l=1,...,NGj(Sk)

; l 6=j

(1− ppost−Gl(Sk)
)
1/[(NGj(Sk)

−1)]
. (5.11)

This is one minus the average posterior probability to be not associated (geometric
mean) of all other genes in the same gene set leaving out the particular gene that
contains this SNP. Note, that p-values ppost−Gj = 1 are substituted by 0.99999, since
otherwise the weight would be 1 for all sets involving at least one gene with posterior
probability of 1, independent of the remaining gene information. For SNPs not assigned
to a gene involved in the particular gene set, the corresponding weight is set to 0.
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Figure 5.4: Strategies of data analysis
SNP info: additional information per SNP; gene set info: information about gene sets;
{}: ordered list of SNPs, regression parameters, genes or gene sets; βSk : parameter of a
logistic regression sub-model within HBP; P : posterior probabilities of association (page
80); zβ posterior gene set weights (equation 5.11); LES: leading edge subset of genes

Summarized, the four strategies we used for the data analyses were (see also figure 5.4):

I GSEA: GSEA based on single-SNP association test statistics, resulting in gene set
p-values

II HBP: HBP based on single-SNP association test statistics using SNP and gene set
information coded by 0/1 indicators as prior covariates, resulting in a re-ranking
of the SNPs by the posterior probability

III Two-step HBP (HBP+HBP): first HBP based on single-SNP association test
statistics using SNP information as prior covariates, second HBP based on single-
SNP association test statistics using gene set information as prior with posterior
probabilities of first step as gene set weights, resulting in re-ranking of SNPs by
final posterior probabilities

IV HBP followed by GSEA (HBP+GSEA): first HBP based on single-SNP association
test statistics using SNP information as prior covariates, second GSEA based on
obtained posterior probabilities, resulting in gene set p-values

5.4.4 Strategies for result comparison

Results of GSEA and HBP are presented at different levels. While GSEA allocates p-
values to gene sets, the output of HBP is a ranking of SNPs. Therefore presentation of
results needs to be harmonized to be able to compare the strategies. First we compared
the ranking of most promising genes. For strategy I and IV we used the leading
edge subsets of the top gene sets to obtain a list of 100 genes. For strategy II and III
we reduced the resulting list of ranked SNPs by considering only the highest ranked
SNP per gene to obtain a ranked list of top genes, limited to the top 100. As ranking
criterion, the a posteriori probability of association from the HBP model was used
(equation 4.22). We decided for this posterior quantity, since the pathway information
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was only included to influence the prior probability of association (equation 4.19), but
not the corresponding prior association strength (equation 4.20). Secondly we compared
the ranking of identified gene sets. For strategy I and IV we ranked the significant
gene sets according to their FWER. For strategy II and III we ranked the gene sets
according to their corresponding estimated regression coefficients β of the logistic sub-
model logit(p) = βZ (equation 4.19), which represent the increase or decrease of the
prior probability for each SNP involved in the corresponding gene set. For comparison
we considered the top 20 gene sets.
For the quantification of the overlap of the top 20 gene set or top 100 gene lists of the
different methods respectively, we calculated an overlap-index. The overlap-index of top
lists from different methods ⊆ initial, I, II, III, IV is calculated by

Imethods =
#lists

#lists− 1

(
total # elements in lists - different elements in lists

total # elements in lists

)
(5.12)

Within the brackets, we have the ratio of the number of duplicated elements within the
lists to the total number of elements. The preceding factor is a normalization factor,
so that we have an index of 0 when all lists are different and no element occurs twice
(worst case), while an index of 1 indicates that all lists have exactly the same elements
(best case). In total, the index describes the observed number of duplicated elements
in relation to the maximal possible number of duplicated elements. Given five different
lists of genes (including initial results) or four lists of gene sets, we can make pairwise
comparisons, as well as compare three, four or even all five of the lists at once (#lists
= 2,3,4,5). The number of elements per list equals 100 for the genes and 20 for the
gene sets. Comparing only two lists with each other, the index gives the proportion of
elements in list two that do occur in list one as well. Note, when comparing more than
2 lists, the index may be larger than for the corresponding subsets of lists.

5.4.5 Results

By single SNP analysis of the Rheumatoid Arthritis (RA) data, we observed 334 SNPs
with genome-wide significance. This large number of associated SNPs with very small
p-values is a specialty of the data that results from the important role of the HLA
region in RA development. The significant SNPs belong to 90 different genes including
81 genes of the HLA region. 153 of the 876 examined gene sets involve at least one of
these 90 genes. A Manhattan plot of the initial single SNP results is given in figure 5.5.
Taking a look at non-HLA genes known for an association with Rheumatoid Arthritis
(table 5.3), we found only PTPN22 (rank 55), C5 (rank 78) and TRAF1 (rank 82)
within the top 100 genes.
To reduce the number of pathways for the analysis to 100, we started selecting all
pathways that involve the top gene, then added the ones that include the gene on rank
two and so on, until we reached 100 selected pathways. We processed the top 75 genes
to reach that final number. Only two of these gene sets were without genes from the
HLA region. This leads to the preference towards HLA in our analyses.
I (GSEA): With the gene set enrichment method alone 47 gene sets reached a
FDR< 0.05 (that is nearly half of the considered 100 pathways) and still 20 of these had
a FWER< 0.05. These presented our top 20 gene sets used for the method comparison.
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Figure 5.5: Manhattan plots of single SNP results (initial GWAS).
left plot: includes all results; right plot: zoom into the left plot to get a better impression
of the non-HLA results

All gene sets had a nominal p < 0.05. To obtain 100 top genes, we started extracting
the leading edge subset of the best ranked set and added the genes of the LES for the
next best ranked gene set until we reached 100 genes. For this, the LES of gene set on
rank 20 is not considered since the top 100 genes were already filled.
IV (HBP+GSEA): When the HBP preceded the GSEA we observed 7 gene sets
with a FDR < 0.05 and 3 of these with FWER <0.05. The two best ranked pathways
involved 68 different genes in their LES that were used for the top 100 gene selection.
Thus only an additional 32 LES genes from the pathway on rank position 3 were
considered, although its LES even involved 67 genes.
II (HBP) and III (HBP+HBP): For the two pure hierarchical Bayes strategies the
SNP ranking was changed only slightly by the external gene set information. Taking
a closer look at the estimated hyperparameters, we can see that for both strategies
49 of the 100 gene sets involved as covariates in the hierarchical model had positive
beta-regression-coefficients in the prior probability model of association. A positive
regression coefficient represents an up-ranking of all SNPs involved in the corresponding
gene set. Since each of the 100 pathways incorporated in the model involves at least one
highly significant gene due to the strategy used for selection of these 100 gene sets, the
high number of positive regression coefficients is not surprising. Based on the re-ranked
SNP lists of strategies II (HBP) and III (HBP+HBP), a new ranking list on the gene
level was obtained by using the maximum posterior probability as a representative for
each gene. For comparison purpose, the top 100 genes of these lists were picked.

Comparison of most promising genes
The figures of 5.6 show the comparison of the top 100 genes of all 4 strategies with
the initial analysis and each other. In the left plot, the initial ranks of the top 100
genes for each of the the different methods is plotted on the y-axis. The figure on the
right displays a Venn-Diagram representing the top 100 gene overlap. As a general
overlap-index for all four strategies we obtain I

(genes)
I,II,III,IV = 0.51.

The gene list we obtained by strategy II (HBP) is nearly the same as the one we get
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Figure 5.6: Top 100 genes after applying GSEA, HBP, HBP+HBP and HBP+GSEA.
left: Comparison of the top 100 genes with initial ranking positions. The top 100 genes
per method were ordered by initial GWAS rank. right: Venn diagrams for the overlap
of top 100 genes between our four strategies

by simple single SNP test. Only 2 genes from original rank 112 and 127 are replaced
by two other genes and occurred newly in the top 100. The same behavior holds for
strategy III (HBP+HBP). The list of top genes is almost identical to the one from

strategy II (I
(genes)
II,III = 0.89) and stayed almost unchanged compared with the initial

list (I
(genes)
II,III,initial = 0.94, I

(genes)
II,initial = 0.98, I

(genes)
III,initial = 0.89). 11 new genes appeared

in the top 100 lists that were initially ranked between rank 229 and 586. Taking a
look at the non-HLA genes known for an association with RA (table 5.3), PTPN22,
CTLA4, CD28, CD40, PRKCQ and PTPRC reached mentionable higher ranks for
strategy III (HBP+HBP) than in the original ranking (table 5.3). For strategy II, no
such improvement is observed. Note that for strategies II and III 72 and 82 genes
respectively had a posterior probability of 100% and even 3,423 and 6,922 genes had
posterior probabilities >80%. Thus the HBP only strategies yielded nearly no change
on the gene level. This supports Lewinger et al.’s conclusion that the approach is not
helpful if highly significant associations occur. Because of the high impact of the HLA
genes on chromosome 6p21 and very low p-values occurring for SNPs of these genes,
the HBP approach cannot change the results by much. The leading edge subsets of the
GSEA strategies highlighted many new genes in comparison to the top 100, primarily
HLA genes, of the initial single SNP tests. Only 25 and 16 of the initial top 100 list are
also included in the top 100 genes of I (GSEA) and IV (HBP+GSEA) with an overlap

index of I
(genes)
I,IV,initial = 0.31 (I

(genes)
I,initial = 0.25 , I

(genes)
IV,initial = 0.16). The newly occurring genes

in the leading edge subsets had initially ranks of up to 10,789 and 21,361, respectively.
Additionally, the LES gene lists of the two GSEA methods also differ remarkable, with
an overlap index of I

(genes)
I,IV = 0.37. They have only 37 genes in common. As shown in

table 5.3, from the non-HLA genes known to be associated with RA, 11 genes belong
to the LES of the significant pathways (FDR <0.05) of GSEA. For HBP+GSEA, only
four of these plus one more were found in the LES.
Summarizing promising genes, the HBP only methods reveal the extraordinary impor-
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Figure 5.7: Venn diagrams for the overlap of top 20 pathways between our strategies

tance of the HLA region with more than 89 HLA genes retained in the top 100 lists.
The ranking of genes changed only slightly compared to the initial list. In contrast,
apart from only 29 and 19 HLA genes, respectively, the GSEA strategies include many
additional other genes, that could be a new starting point to identify yet unknown
factors influencing the disease.

Comparison of most promising gene sets
In total, we find 51 different gene sets in the four top 20 lists of the different strategies,
with an overall overlap-index of I

(gene sets)
I,II,III,IV = 0.48. Two gene sets, GO0002460 : the

adaptive immune response gene set (66 genes) and hsa04612 : the antigen processing
and presentation gene set (61 genes), appear in all four lists. Of the 61 genes in
hsa04612, 22 are from the HLA region, while GO0002560 contains only 3 HLA genes.
Both sets have 3 genes in common (HLA-DMA, CD74 and LTA). Since the non-HLA
genes in the latter gene set are involved in the activation or inhibition of immune
reactions, this set is a reasonable candidate for RA. We can see a tendency of hsa04612
to reach higher ranks with the GSEA methods (third and fourth rank), as with the
strategies with a final HBP step (rank 11 and 17). On the contrary, GO0002460 ranked
between 11th and 19th rank in all four strategies.
Figure 5.7 shows the overlap of the top 20 gene sets per strategy in a Venn diagram.
Strategy II yields essentially different results to the others, with list-to-list overlap
indices of I

(gene sets)
I,II , I

(gene sets)
II,III , I

(gene sets)
II,IV ≤ 0.25. The remaining strategies comprise

38 different gene sets, have an overlap-index of I
(gene sets)
I,III,IV = 0.53, (I

(gene sets)
I,III = 0.35,

I
(gene sets)
I,IV = 0.55, I

(gene sets)
III,IV = 0.55) and share 5 gene sets. The latter are composed

of 11 to 63 genes and have pairwise no more than 5 genes in common. Comparing
the strategies involving GSEA (I and IV) we have an overlap-index of I

(gene sets)
I,IV = 0.5,

while strategies II and III – both compassing HBP only have an overlap-index of
I

(gene sets)
II,III = 0.15. Hence, this indicates a more robust ranking of gene sets by GSEA

than HBP, although strategy I and IV even share 11 sets of their top 20.
Although the top 100 gene list of both strategies with HBP as last step (II and III)
are almost identical, their top 20 gene sets diverge considerable. Furthermore, it has
to be mentioned that the order of gene sets for the HBP only methods (II and III) is
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Table 5.3: Non-HLA genes known for an association with Rheumatoid Arthritis
(Raychaudhuri, 2010; Amos et al., 2009)

INITIAL I: GSEA II: HBP III: HBP+HBP IV: HBP+GSEA
gene rank LES gene rank gene rank LES

include exclude include exclude include exclude include include
HLA HLA HLA HLA HLA HLA HLA HLA

PTPN22 55 1 24,38 25 1 28
Begovich et al. (2004)
C5 78 4 17,19,20,25, * 80 2 75 *,
Plenge et al. (2007) 30,34,42,49
TRAF1 82 6 83 3 98
Plenge et al. (2007)
BLK 167 65 183 6187 273
Gregersen et al. (2009)
CTLA4 358 246 1 382 8452 219 2,*
Plenge et al. (2005)
CD28 400 286 1,6,8,15, * 407 67 97 1,2,*
Raychaudhuri et al. (2009) 25,31,38
CD40 489 374 1,6,8,15, * 510 3372 129 2,*
Raychaudhuri et al. (2008) 19,30,31,38
TNFAIP3 570 455 45 548 3835 679
Plenge et al. (2007)
IL2RB 618 503 809 5439 1168
Barton et al. (2008)
PRKCQ 625 510 31,38 603 2342 260 *
Barton et al. (2008)
REL 644 529 677 10746 711
Gregersen et al. (2009)
PRDM1 827 710 885 4409 1235
Raychaudhuri et al. (2009)
AFF3 1751 1633 1821 2497 1282
Barton et al. (2009)
PTPRC 1765 1647 19,24,30, * 1647 398 391 2,*
Raychaudhuri et al. (2009) 31,38,45
IL21 2517 2398 31,38 2694 3684 880 *
Zhernakova et al. (2007)
CD2 3579 3458 24,31 3895 3073 1011 *
Raychaudhuri et al. (2009)
IGSF2 3605 3484 25 * 3692 6212 3395
Raychaudhuri et al. (2009)
TAGAP 3674 3553 4084 954 3951
Raychaudhuri et al. (2009)
STAT4 4633 4511 4748 3310 4652
Remmers et al. (2007)
CCL21 4957 4835 4538 11506 5647
Raychaudhuri et al. (2008)
CD58 5718 5595 4023 4575 6627
Raychaudhuri et al. (2009)
IL2RA 6620 6496 8357 798 4616 *
Thomson et al. (2007)
IL2 8858 8733 8849 12306 1302 1
Zhernakova et al. (2007)
TNFSF14 10669 10542 9957 11365 13669
Raychaudhuri et al. (2008)
KIF5A 11263 11135 11793 11919 12079
Barton et al. (2008)
TRAF6 12186 12058 12234 14275 6199
Raychaudhuri et al. (2009)
RAG1 12216 12088 16628 1074 17017
Raychaudhuri et al. (2009)
FCGR2A 12256 12128 13650 10713 13361
Raychaudhuri et al. (2009)

For initial single SNPs analysis, HBP (II) and HBP+HBP (III) the corresponding gene ranks are
given. For GSEA (I) and HBP+GSEA (IV) the ranks of significant gene sets (FDR ≤ 0.05) are given
that involve these genes in their leading edge subset (LES). Genes belonging to the LES of sets
significant according to the nominal p-value are marked by *. For the GESA excluding the HLA
region, none of the gene sets is significant according to FDR.
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only build by the estimated regression coefficients (equation of 4.19 ) that represent the
increase or decrease of the prior probability for each SNP involved in the corresponding
gene set. The standard deviation of these estimates is neglected. However, for the
strategies with GSEA (I and IV), the order of the gene sets is based on gene set
significance. In general, taking a closer look at the gene sets that show up in the lists, of
both strategies with HBP as last step (II and III) are almost identical (I

(genes)
II,III = 0.89),

their top 20 gene sets diverge considerable. Many of them have biological plausibility.
For the biological interested reader, the lists of the different top 20 gene set lists are
given in appendix table B.1.
To see how the methods behave when we do not have such a huge number of very
high signals, we repeated the simple HBP and GSEA analyses excluding the HLA
region. Based on the recommendation of Lebrec et al. (2009), we excluded all genes
in the region between the genes MOG and KIFC1. These comprise 128 genes and
1,336 underlying SNPs. After the exclusion, 9 genome-wide significant genes remained,
including PTPN22, TRAF1 and C5 (table 5.3). For the HBP, taking a look at the
estimates for the posterior expectations of the noncentrality parameters that represent
the strength of association (equation 4.23), PTPN22, C5 and TRAF1 were located
on the three top ranks. C5 and TRAF1 were up-ranked in comparison to the initial
ranking. Their corresponding posterior estimates were given by 2.21, 1.70 and 1.67
(table 5.3). The estimates for all β parameters of the logistic regression model from
level 3 (equation 4.19) were positive, representing an increase of prior probability for
SNPs involved in any of the pathways. The basic prior probability from that model
for a SNP in none of the pathways was estimated by 0.9. Hence, all SNPs reached
a posterior probability to be associated of at least 90%. As it is not plausible that
everything is associated with the disease, results have to be considered with caution. In
comparison, for the analysis with the HLA region included, the basic prior probability
of a SNP involved in none of the genes sets was given by 0.175 and varied for the other
SNPs between 0.015 and 0.76 depending on the corresponding pathway membership
and SNP information. For GSEA, none of the considered pathways reached a FDR
or FWER < 0.05. Hence, GSEA was no help to select candidate genes for further
investigations when HLA is excluded.

5.5 Comparison with other results from the Genetic Analysis
Workshop 16

In GAW16 two more contributors (Ballard et al., 2009; Tintle et al., 2009b) worked on
gene set analysis methods and one other author used a hierarchical model to integrate
gene set information in the analysis of GWAS (Lebrec et al., 2009). In the following we
will outline the analyses and results of our joint work with these (Ballard et al., 2009;
Lebrec et al., 2009; Tintle et al., 2009b), which we carried out after GAW 16. In this joint
work, we compared the different investigated methods to integrate gene set information
in GWAS with each other. As background for this comparison, we will shortly specify
the methods used by the other investigators and illustrate the main findings in their
individual analyses. An overview how they handled the different practical issues is
given in table 5.4.
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5.5.1 Analysis

In contrast to our application of the HBP involving a global overall knowledge about
gene sets, Lebrec et al. (2009) concentrated on the integration of gene sets already
“known to be involved in rheumatoid arthritis” in his hierarchical method. We will
denote this approach in the following as linear regression on pathways (LRP). Initially,
Lebrec et al. (2009) used an empirical Bayes estimate for the between SNP-variance
τ 2 of the prior distribution (equation 4.15) and calculated the corresponding posterior
gene effects (“untuned” version). Since pathway information was overruled by the
strong signals within the HLA region, he repeated the analysis with a reduced relative
influence of the GWAS signals by setting τ 2

Gj
for each individual gene Gj, so that the

ratio σ̂2
Mi(Gj)

/τ 2
Gj

equaled 100. Thereby, the shrinkage factor B for the posterior gene

effect (equation 4.16) reduced to B=1/1,0001 and the posterior gene effects were almost
completely determined by the gene set knowledge (“tuned” version).
Ballard et al. (2009) chose to compare a competitive over-representation analysis
method with a self-contained gene set resampling method. Ballard et al. (2009) decided
to use the binomial to represent the class of competitive ORA methods and compared it
with a random set scoring method analog to Fisher’s combination method by combining
all gene p-values within a set by summing over their negative logarithms. To assess the
impact of the HLA region on the pathway results, Ballard et al. (2009) performed the
pathway analysis including and excluding the 156 genes located in the HLA region.
Tintle et al. (2009b) compared four gene set analysis methods with each other:
over-representation method FET, competitive gene set resampling method GSEA and
self-contained gene set resampling methods SUMSTAT and SUMSQ. In the context
of gene expression, GSEA and FET have been shown to be less powerful than other
methods (Dinu et al., 2007; Efron and Tibshirani, 2006; Tintle et al., 2008) such as
MAXMEAN (Efron and Tibshirani, 2006) and SAM-GS (Dinu et al., 2007). The
latter are the analogs to the SUMSTAT and SUMSQ (section 5.2.2). FET additionally
suffered from a lack of robustness (Allison et al., 2006; Tintle et al., 2008, 2009b). The
goal of Tintle et al.’s (2009b) investigation was the confirmation of these results from
gene expression in the context of GWAS. Tintle et al. (2009b) initially did not use
the NARAC data but data from the Framingham Heart Study (FHS) that included
original genome-wide FHS data (Cupples et al., 2009) and simulated data based on FHS
(Kraja et al., 2009). The Framingham Heart Study is a family-based, observational,
longitudinal study for the investigation of risk factors in cardiovascular diseases ongoing
since 1948.

To enhance the comparability of these methods for gene set incorporation, we
performed follow-up analyses for the GSA methods and hierarchical models. We
applied SUMSTAT, SUMSQ, GSEA and FET to the RA data using three different
permutation methods – SNP, gene and phenotype permutation. We incorporated 825
gene sets from the GO biological processes (Harris et al., 2004). The analysis was
repeated with and without HLA region. To allow a closer comparison of HBP and LRP,
we repeated our HBP analysis by refitting the hierarchical model using the same gene
set information as Lebrec et al. (2009), using gene level statistics (maximum statistic
per gene) and excluding the SNP information.
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5.5 Comparison with other results from the Genetic Analysis Workshop 16

5.5.2 Results

In the following we will summarize the main results from the individual analyses of
Tintle et al. (2009b), Ballard et al. (2009) and Lebrec et al. (2009), before we will go
into detail of our joint group work results. Some more information about the individual
analysis results can be found in the corresponding publications.
Ballard et al. (2009) observed for both his methods consistent top-scoring gene sets
dominated by HLA genes and related to immune response. The random set method
identified more significant pathways than the binomial approach. When HLA was
excluded, the number of significant gene sets for the random set method increased, still
involving many immune-related gene sets, while the binomial test identified only a low
number of sets.
In Tintle et al.’s (2009b) analysis of the simulated FHS data, SUMSTAT proved to be
most powerful, with all methods controlling the type I error rate. The results for the
original FHS data can be found in figure 5.8, with SUMSTAT identifying nearly all sets
found by SUMSQ, GSEA and FET as well. The results lead to the same conclusion for
GWAS as Efron and Tibshirani (2006) and Tintle et al. (2008) already stated for gene
expression, that SUMSTAT appears to provide the most powerful and robust results.
Using the forward-stepwise regression procedure, Lebrec et al. (2009) selected 8 out
of the 27 gene sets as relevant for RA. The gene set information is overruled by the
strong HLA GWAS results and HLA genes still remained at the top of the list using
the standardized posterior gene effects for ranking. The top 1% top ranked genes of the
tuned and unturned LRP version shared 17 genes. Four of these genes were confirmed
to be associated with RA (Harney et al., 2008; Raychaudhuri et al., 2008). Assuming
that 100 among approximately 20,000 human genes have already been identified for
RA, the probability to detect at least 4 of those 100 genes within 17 genes drawn at
random is only 10−6. Therefore, the list of these 17 genes seems not to be random.
Since these 4 genes were not all prioritized based on the GWAS data alone, this
indicates the ability of the hierarchical model to contribute new candidate genes.

In our joint group work we performed, the following results were obtained.
Regarding the comparison of the different permutation strategies in the follow-up
analysis, we contrast the respective numbers of significant gene sets in table 5.5. For
SUMSQ and SUMSTAT using phenotype permutation around 80% of 825 considered
gene sets showed significance. It is highly implausible that all these gene sets are
really involved in RA. However by highlighting everything, nothing is illuminated
and hence the results of the analysis are not useful to prioritize genes for follow-up.
When gene permutations were used, the number of significant sets was clearly reduced.
In general, gene permutation combined with SUMSQ, SUMSTAT and GSEA found
more significant sets when HLA is excluded than included. The GSEA with SNP
permutation including HLA detected only a very small number of gene sets, pinpointing
that this is not very sensitive. While the GSEA with phenotype permutation detects
many more gene sets including HLA than excluding this region, the reverse is true for
gene permutations. Comparing the results of SUMSQ and SUMSTAT with each other
overlaps more than GSEA compared to one of these.
FET finds decreasing numbers of significant sets with increasing cutoff when gene
permutations are used. This corresponds to the results observed by Tintle et al. (2008)
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5 Integration of pathway information in the analysis of GWAS

Figure 5.8: Venn diagram of the results in Tintle et al. (2009b) comparing the signifi-
cant sets of four different gene set analysis methods using the Framingham Heart study
data. (adopted from Tintle et al. (2009b))

before. However, this trend reverses with phenotype permutations. FET is fairly robust
to whether or not HLA region is included.
The 27 selected pathways of Lebrec et al. (2009) all occurred in the GSEA of our
follow-up analyses. When HLA was included and phenotype permutation was used,
one of these pathways (defense response) had a FWER and FDR< 0.05. Using SNP
permutations, this pathway reached nominal significance only. Using gene permu-
tations, not even this pathway was observed. Excluding HLA, gene and phenotype
permutations showed no significance for this pathway, however for SNP permutation
nominal significance was reached again.
Out of these 27 gene sets from Gene Ontology selected by Lebrec et al. (2009), only four
were found in our original gene set collection, of which only one was in our selected 100
used pathways. However, this pathway (cell adhesion pathway) occurred on rank 11 of
our 1-stage HBP when HLA was included, with an OR of 1.21. For the 2-stage HBP, a
negative logistic regression coefficient occurred, so that the pathway had reduced prior
probability of association. In our original GSEA analyses, the pathway reached no
significance.
When comparing the LRP results of Lebrec et al. (2009) and our refitted HBP model
including the same 8 gene sets selected in Lebrec et al.’s (2009) forward-stepwise
regression procedure as associated with RA, the gene set coefficients of the LRP
method showed a high correlation to the coefficients of the linear HBP submodel for
the strength of association.
Comparing the top 200 genes between our HBP and the untuned LRP version of Lebrec
et al. (2009), we have an overlap of 153 genes. Of this overlap, 102 genes are from the
HLA region and 139 were also included in the initial top 200 genes. 14 non-HLA genes
were newly identified by both methods. Comparing the top 200 genes of the tuned LRP
version to the initial top 200 genes, only 5 genes from HLA region and one non-HLA
gene were in common. These six genes were identified by HBP as well. Furthermore,
HBP and tuned LRP shared 18 more genes - all from the non-HLA region. Of the 17
genes identified by the tuned and untuned LRP (page 107), all were detected by the
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5.6 Discussion

Table 5.5: Number of significant gene sets identified by different GSA methods using
different permutation strategies considering 825 gene sets from Gene Ontology.

Method Permutation strategy Including HLA Excluding HLA

SNP 6 90

GSEA Gene 38 81

Pheno 87 26

FET Gene 98 94

(test statistic cutoff 5.992) Pheno 22 19

FET Gene 8 8

(test statistic cutoff 18.421) Pheno 203 121

SUMSQ Gene 38 60

Pheno 673 645

SUMSTAT Gene 39 107

Pheno 704 680

HBP gene level version as well.
By using the HBP on the SNP level, the consistency between the gene set parameter
estimates disappears and the overlap of the top 200 genes with the initial ranking
increases, while the number of newly identified genes by HBP and the two different
LRP versions decreases to only 1 gene in each case (RND3 ).
The same analyses and comparisons were conducted, excluding all genes from the
HLA region. The gene set coefficients between the two methods remained similar.
The overlap between the two versions of Lebrec et al. (2009) comprises 24 genes.
Surprisingly, the overlapping set results between the LRP and HBP described above
reversed. The overlap of the HBP with the untuned Lebrec et al. (2009) version includes
only 19 genes (in particular CD40), while it shared 161 genes with the tuned version.
CDKN1A is the only gene from the initial top 200 genes (including 88 HLA-region
genes) that occurs in both the 200 top genes of Lebrec et al. (2009) and Sohns et al.
(2009) as well. Considering the HBP based on SNPs yields 98 genes in common with
the untuned LRP version and only 2 genes in common with the tuned LRP version
(CDKN1A, RND3 ).

5.6 Discussion

The incorporation of gene set information into the analysis of GWAS offers an attrac-
tive approach to marry the pathway-driven candidate and exploratory genome-wide
association method (Thomas, 2006). GWAS aim to identify new genetic variants
predisposing to diseases. However, for complex diseases this represents a challenge
due to the multiplicity of genetic factors with only weak effects, locus heterogeneity,
interactions and other complicating factors. Knowledge about biological processes and
interrelation of genes as prior information in the analysis cannot replace the original
GWAS analysis (Sohns et al., 2009), but may lead to a better understanding of the
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5 Integration of pathway information in the analysis of GWAS

underlying biology (Ballard et al., 2009). The methods increase signals of markers
with weak effects that jointly occur within one gene sets, resulting in supporting,
complementing and completing results (Sohns et al., 2009). Locus heterogeneity within
one pathway can be considered and the replication problem can be reduced (Sohns
et al., 2009). It may help to structure results, distinguish truly associated from false
positive results and facilitate their interpretation (Chasman, 2008). Existing hypotheses
may be substantiated and new hypotheses provided.
A variety of methods to increase the GWAS power by gene set information have been
proposed (Tintle et al., 2009a; Wang et al., 2010, 2011). Two strategies are GSA
methods transferred from gene expression research to GWAS by Wang et al. (2007) and
(Chasman, 2008) or supporting GWAS data within hierarchical models to prioritize
candidate genes for further studies (Lebrec et al., 2009; Lewinger et al., 2007; Sohns
et al., 2009).

Hierarchical models

Our main interest are the empirical Bayes hierarchical models as simple and flexible
alternative framework to integrate external information in GWAS, particularly gene
set information. These methods to prioritize SNPs and genes supported by gene set
information result in a mix of known and novel genes identified as significant (Lebrec
et al., 2009; Sohns et al., 2009; Tintle et al., 2009a). Both hierarchical models presented
in this chapter (Lebrec et al., 2009; Sohns et al., 2009) allow a natural incorporation of
multiple prior gene set effects with GWAS. The weight of the GWAS data relative to
the prior gene set information may be varied (Lebrec et al., 2009).
For convenience Lebrec et al. (2009) fitted his model into a Gaussian framework.
Therefore, a few approximations were necessary. Although the positive allelic effect
of the maximal SNP representing a gene has a skewed distribution departing from
normality (section 4.4.1), a normal distribution is assumed. The variance estimates
σ̂2
Mi(Gj)

, where Mi the SNP with highest test statistic in gene Gj, are used to present the
gene variances. Although these variances are closely related, their exact relationship
is not clear. The robustness of the forward stepwise fitting procedure to the normal
assumption is still unknown. Initially, the between gene variance τ 2 was assumed to be
equal over all genes and estimated from the data (“untuned version”). Alternatively,
Lebrec et al. (2009) pre-specified gene specific values τ 2

Gj
to increase the contribution

of the pathway information to the final results (“tuned version”). In the context of
linkage and RA, the gene set information accounts for 50% of the variation between
the genes Lebrec et al. (2009). In GWAS however, only 1% could be explained (Lebrec
et al., 2009; Tintle et al., 2009a).
Lewinger et al. (2007) adapted his hierarchical model well to the data – accepting a
more complicated form of the model than Lebrec et al. (2009). He considered the fact
that the majority of the SNPs have no effect on disease susceptibility by a mixture of
a prior point mass concentrated on zero for the unassociated SNPs and a non-central
χ-distribution for the remaining SNP effects. That the latter is adequately modeled
was assessed in extensive simulation studies. In addition, not only the SNP effect is
influenced by the external information but also the prior probability that a SNP is
associated. However, Lewinger et al. (2007) assumed one unique variance for the SNPs
in the prior distribution as well. As Lebrec et al. (2009), we did not consider LD
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between the SNPs in the model but ignored the correlation. In HBP we considered all
markers of a gene to exploit all available data, while Lebrec et al. (2009) chose to use
the gene-level summaries instead due to computational limitations. Working on the
SNP level may penalize large genes since a high number of unassociated markers within
a gene may dilute true positive results (Sohns et al., 2009). By the more simplistic
model using the maximum association per gene, a lot of information may be discarded
and large genes are favored. Lebrec et al. (2009) included gene size as a predictor in the
marginal model and the modification left the selected model and top ranking nearly
unaltered.
Although LRP and HBP translate the same idea in very different models, in the
follow-up analysis presented we see large consistencies in their regression coefficients
(“untuned” LRP) and hence pathway based SNP supporting. However, due to many
and extremely high association signals in our data, the pathway information has
relatively small influence on the results and the top 100 gene lists are almost identical
to the original one. In Lewinger et al.’s (2007) paper proposing the HBP for integrating
external information in GWAS, he stated that HBP “can be superior when the
proportion of true positive associations is not too small, as in GWAS with hundreds
of truly associated SNPs”. However, “when the non-centrality parameters of the true
associations are large enough to be picked by the raw test statistics there is little to
be gained from prior covariates” Lewinger et al. (2007). Hence, it is not surprising
that the list of top genes did not change for HBP, since this GWAS of RA has several
hundred genome-wide significant SNPs assigned to nearly 100 different genes.
When we excluded the HLA region from the analysis, the results of the “untuned”
LRP and HBP diverged extremely. However, this time we observed a high similarity of
the HBP results to the results from the “tuned” LRP. This indicates that in HBP the
pathway information anyhow influences the results more strongly than in LRP.
While we used the whole wealth of pathways available in our initial analysis, Lebrec
et al. (2009) concentrated on a small number of expected pathways. Both strategies
have their advantages and disadvantages. Lebrec et al. (2009) argues, that in the
hierarchical Bayes context the risk of over-fitting is high when a large number of gene
sets is considered and one should restrict to a set of initial candidate pathways to
limit the number of sets. However, this prohibits the identification of totally new and
unexpected insights to the development of a disease.

Gene set analysis methods

For our individual analysis we chose GSEA with phenotype permutations as the gene
set method to compare our HBP results to. This method was proposed in the context
of GWAS shortly before our investigations (Wang et al. (2007)). The decision for the
phenotype permutation procedure was motivated by the ability to correct for several
kinds of bias. In a comparison of Chasman (2008) based on GWAS, it was shown that
gene sets containing a few highly significant genes are rather detected by FET, while
GSEA has more power to identify sets involving a high number of weakly associated
genes.
However, in the context of gene expression, GSA method comparisons had shown
that GSEA and FET are both less powerful then other GSA methods (Dinu et al.,
2007; Efron and Tibshirani, 2006; Tintle et al., 2008) and lack robustness (Allison
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5 Integration of pathway information in the analysis of GWAS

et al., 2006; Tintle et al., 2008). In the GSA analyses for GAW16, these results were
confirmed for GWAS data by Ballard et al. (2009) using a multilocus method to obtain
a gene level statistic, as well as by Tintle et al. (2009b) using the maximum SNP
statistic to represent a gene. Self-contained GSR methods such as SUMSTAT, SUMSQ
(Tintle et al., 2009b) and Ballard’s random set method (Ballard et al., 2009) identified
more significant gene sets than FET and its binomial approximation (Ballard et al.,
2009; Tintle et al., 2009b). This is expected, since several genes below the significance
threshold are necessary for an over-representation method to identify a gene set, while
sets with even one very significant gene or many genes slightly above a specified
cutoff may be identified by self contained GSR as well. SUMSTAT was more powerful
than SUMSQ. The analyses provide evidence that GSEA and over-representation
methods for gene set analysis in GWAS are not optimal and SUMSTAT or a similar
self-contained GSR method should be used instead. Based on simulated data, Tintle
et al. (2009b) showed that the type I error was controlled by all methods.
Excluding the HLA genes from the analysis, the number of gene sets found as significant
by the random set method, SUMSTAT, SUMSQ and GSEA using a gene permutation
procedure increased, while the number for the over-representation tests decreased. This
reflects the strategy of significance assessment. The removal of the highly significant
genes reduced the number of genes below a cutoff and hence the probability that a
pathway will involve such genes. This in turn leads to the identification of less gene
sets using an ORA method. Although SUMSTAT, SUMSQ and random set statistics
are self-contained by simply summing up the values for the single genes involved in
a gene set, the methods become automatically competitive by the gene permutation
procedure. The null distribution is generated based on statistics of genes not in the
gene set. By excluding the numerous highly significant genes from the analysis, there is
less competition for the gene sets containing only one or two significant genes compared
to random gene sets of the same size. This leads to a higher number of significantly
classified genes sets (Ballard et al., 2009).
Phenotype permutations on the other hand are not reasonable in combination with
SUMSTAT and SUMSQ, although they generate the correct self-contained null distri-
bution of “no genes associated with the disease” corresponding to the self-contained
statistics. Even one associated gene per set makes it significant resulting in the practical
problem that too many things are found. In the follow-up analysis, nearly all gene sets
reached significance using this combination. The problem has been documented before
by Efron and Tibshirani (2006). Although the combination of self-contained method
with competitive permutation procedure may lead to bias, our group work, (Wang
et al., 2007) as well as others (Tintle et al., 2008) have shown that assessing significance
with random gene sets provides reasonable results. For FET and GSEA we do not
see the same problems with phenotype permutations, since they are competitive by
nature, comparing the genes in a set to the gene complement. However, for GSEA in
our original analysis, we observed nominal p-values of < 0.05 for all involved gene sets.
Since all 100 sets were selected so that they involve at least one highly significant gene,
the set significance in comparison to the complement genes is not surprising. However,
for the FDR calculation, the enrichment score is compared to the other gene set scores
as well, so that only pathways more enriched than the others become significant.
Although phenotype permutations have the main advantage to correct for different
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types of bias, our group work has shown that this is not necessarily the best choice
anyway. Depending on which GSA method is chosen, gene permutations may be the
better choice. Nevertheless, the decision for the phenotype permutation for GSEA
in our individual work was justified by our group results comparing the different
permutation strategies. However, overall, the best choice of GSA method seems to be
SUMSTAT with gene permutations.

Gene set analysis methods versus Hierarchical Bayes models

Due to the different ideologies and methodologies underlying gene set analysis methods
and hierarchical models involving gene set information, none of them is a gold standard
for the integration of gene set information into GWAS (Sohns et al., 2009). While GSA
methods use the gene ranking to find enriched gene sets e.g. by cumulating the statistics
of the involved genes, hierarchical models use the prior gene set information to re-rank
SNPs or genes (Ballard et al., 2009; Sohns et al., 2009). Hence, GSA methods lead
directly to the identification of whole gene sets while hierarchical models obtain new
promising genes or SNPs. However, by the LES of GSEA for example, a list of top
genes can be obtained and by the regression coefficients corresponding to the different
gene sets hierarchical models can lead to a list of top gene sets (Sohns et al., 2009;
Lebrec et al., 2009).
The main advantage of the hierarchical Bayes models compared to the GSA methods
is that they can integrate not only the gene set information but also additional other
types of prior knowledge, e.g. SNP location, function or previous results. Hierarchical
models are therefore more flexible. Furthermore, all SNPs can be considered, while GSA
involves only SNPs within or close to a gene and only genes within the examined gene
sets. In HBP the SNPs excluded in GSA are at least modeled as one “remaining group”
and may be grouped by other additional external information (SNP information), so
that they still have the chance to stand out in the re-ranking.
In GSA, it is possible to correct for different kinds of bias due to different gene length,
gene set sizes or correlations by permutation methods. In hierarchical models, these
issues may be directly considered in the model, e.g. by involving LD structure in the
regression model or by corresponding weights. However, since the model was not exten-
sively studied before, especially in the context of pathway analysis, we concentrated on
the simplest case, considering no such correction.
The special challenge in this Rheumatoid Arthritis data set was to contrast genes within
the HLA region that play a predominant role in this disease and result in a large num-
ber of highly significant associations, but also identify new non-HLA susceptibility genes
(Sohns et al., 2009). Comparing GSEA and HBP in that particular context, the GSEA
strategies have shown to be superior to the HBP. While all four strategies of Sohns
et al. (2009) identified the well known association of HLA in RA, only the GSEA meth-
ods were successful to enrich the top gene list with non-HLA genes as well. HBP only
keeps the prominent role of the HLA complex (Sohns et al., 2009). This confirms the
statement of Lewinger et al. (2007) about the HBP, that when “true associations are
large enough to be picked by the raw statistics, there is little to be gained from prior
covariates, even highly informative ones”. Although this specific characteristic of the
HBP applied to the analyzed RA data set, GWAS normally show only small effects with
often no genome-wide significant SNPs. Hence, our results are not generally applicable.
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Comparing the results of the four different strategies, we found considerable differences
in the most promising genes and gene sets identified. The chance that a gene appears
in more than one of our top 100 gene lists or that a gene set appears in more than one
of our top 20 gene set lists is only 50%. Although the HBP and HBP+HBP had nearly
identical top 100 genes, their list of top 20 gene sets had only 3 sets in common. In
general, the high number of top genes after the pathway analysis located in the HLA
region and top pathways involved in immune response, inflammation or related other
theories with respect to RA was not surprising and biological plausible.
All in all, incorporating gene set information in the analysis of GWAS has demon-
strated to be a promising and useful approach (Ballard et al., 2009). The techniques
validate prior knowledge and produce new gene and gene set candidates not captured
by the single-SNPS analyses (Ballard et al., 2009; Tintle et al., 2009a). The prioriti-
zation methods in form of hierarchical models have the main advantage to integrate
other additional external information simultaneously to the biological pathways. Due
to the different rational underlying gene set analysis methods and hierarchical Bayes
approaches to integrate pathway information, the choice of methods depends on the
data, study aim and observed single SNP results. In the particular application of the
pathway integrating methods to the Rheumatoid Arthritis data, the hierarchical models
and GSA methods were able to validate the single-SNP results. Due to the high initial
effects, new candidates were only found by GSA methods. Therefore, GSA methods
should be preferred in that particular context.
Since we have seen in our group comparisons that the chosen method may have a large
impact on the results, further work in that area is still necessary to evaluate their rela-
tive usefulness for pathways identification and gene prioritization (Lebrec et al., 2009).
This comprises more comprehensive theoretical or simulation analysis to validate the
robustness of the different pathway analysis techniques and their ability to fulfill the
initial intention to provide increased power to find consistent but weak effect (Tintle
et al., 2009a). So far it is still unclear if newly identified pathways, genes or SNPs are
good new candidates or only false positive results. In addition, potential modifications
may help to further maximize power in GWAS (Tintle et al., 2009a). The incidental
issues discussed in section 5.3 are part of further research as well.
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6 The empirical hierarchical Bayes approach for

gene x environment interaction

6.1 Motivation

Since biological pathways comprise gene products as well as environmental substrates
that contribute to the human body functions, the important role of interactions between
genetic and environmental factors in the etiology of complex disease is indisputable (sec-
tion 2.4). Hence, the analysis of GxE interactions gains attraction as a good complement
to simple single marker analyses to improve GWAS results. Unfortunately, the detec-
tion of GxE still leaves much to be desired, as the classical case-control test outlined
in section 3.1.5 has insufficient power to detect the interactions and therefore requires
sample sizes of several thousands.
During the last years, several alternative GxE methods were proposed, trying to increase
the power for the detection of interactions, partly coming across other problems. An
important requirement for a GxE test is that interactions are clearly differentiated from
G-E associations on a population level (sections 2.4.3,3.1.5). An optimal solution has
not been found yet.
Based on an idea of Volk et al. presented in a conference poster in 2007 (IGES 2007,
abstract Volk et al. (2007) unfortunately does not contain main idea), we developed
a new promising approach for the analysis of GxE interactions. This test adopts the
hierarchical model of Lewinger et al.’s (2007) hierarchical Bayes prioritization (section
4.4) for the purpose of GxE interaction. The approach uses advantages from different
other methods and thereby reaches high power combined with the strict separation of
GxE interaction effects from population based G-E associations.
Before we will present our new method in section 6.3, the following section demonstrates
different alternative tests for GxE interactions established so far. We compared our new
approach to these other methods in comprehensive simulation studies. The simulation
set-ups and the corresponding results are given in section 6.4. We will end with a final
discussion in section 6.5.

6.2 Methods for GxE interaction analysis

In the following we restrict to an unmatched case-control study with a binary environ-
mental exposure E and a binary genetic factor G as given in table 3.3.
The coefficients from logistic regression models for a GxE interaction, a G-E association
within cases and a G-E association within controls are given by βge, βcases and βcontrols

(equations 3.12, 3.14 and 3.15), with MLE estimates β̂ge, β̂cases and β̂controls (equations
3.17 and 3.18). The corresponding variance estimates are given by σ̂2

ge, σ̂
2
cases and σ̂2

controls

(equations 3.20).
Recall that the test statistic of the classical case-control test for gene x environment
interactions is given by

Tcc =
β̂ge

σ̂ge

=
β̂cases − β̂controls√
σ̂2

cases + σ̂2
controls

.
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Tcc follows an approximate normal distribution N(βge, 1), with βge = 0 under the null
hypothesis of no interaction.

6.2.1 The case-only test

In 1994, Piegorsch et al. proposed the case-only approach for GxE interaction analysis
to reach higher power than the traditional case-control test. This method benefits
from a reduced variance by limiting to βcases instead of testing βge = βcases − βcontrols.
However, this test is based on two assumptions: the assumption of gene-environment
independence on the population level (section 3.1.5) and the rare disease assumption.
When these assumptions are fulfilled, βcontrols, that represents the association between
G and E among the disease-free subjects, reduces to 0 and can be neglected. Hence, βge

can be unbiasedly estimated by the association between G and E among the cases alone
(Piegorsch et al., 1994).
The case-only test statistic is given by

Tcases =
β̂cases

σ̂cases

.

It is approximately standard normally distributed under the null hypothesis of no in-
teraction and the assumptions stated above.
The case-only design can reach much more power than the case-control design. How-
ever, when the assumptions are not full filled, the method leads to bias and false positive
results. The presence of even a small population based G-E association greatly inflates
the type I error in the case-only test and makes it not recommendable. Especially in
the genome-wide context, population based associations cannot be ruled out, quite the
contrary, they are even expected to occur.

6.2.2 An intuitive two-step method

While low power is the weakness of the case-control method that holds type I error
level, population based G-E dependencies cause an inflated type I error when the more
powerful case-only method is used. Hence, an intuitive strategy is to test for G-E
independence first and based on this result to decide if in a second step case-only or
case-control method is used for single SNP GxE testing (Albert et al., 2001).
Given a rare disease, βcontrols measuring the G-E association in the control population
can be used as a representative for the population based G-E association. When genetic
and environmental factor are independent from each other, we have βcontrols = 0, given
a population based G-E association βcontrols 6= 0.
Hence, we can use this G-E association among controls in step 1 to test the null
hypothesis H0 : βcontrols = 0 with a significance level αtwo1 . The procedure in step 2
depends on the result of step 1. When the null hypothesis is rejected, a G-E dependency
is likely and the case-control statistic will be used to test for an interaction to avoid
false positive results. If one fails to reject the null hypothesis of G-E independence, the
case-only test is used in step 2, because a dependency between environmental factor
and genotype could not be shown (Albert et al., 2001).
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Step 1 − αtwo1 H0 : βcontrols = 0

reject
vv

accept
))

Step 2 − αtwo2 H0 : βge = 0 H0 : βcases = 0

This two-step test statistic can be expressed as

Ttwo = TccI[| Tcontrols |> Tαtwo1/2
] + TcasesI[| Tcontrols |≤ Tαtwo1/2

]

with Tαtwo1/2
percentile of the standard normal distribution and I[A] the indicator func-

tion if A holds and zero otherwise.
A problem of this test is the correlation of Tcontrols and Tcc, and hence a correlation
between step 1 and step 2 for these SNPs where H0 of step 1 has to be rejected. The
pretesting is ignored when significance is assessed in the second step. This may lead to
an inflated type I error rate for the overall procedure.

6.2.3 Murcray’s two-step approach

An alternative two-step approach to scan for interactions with a simple concept was
developed by Murcray et al. in 2009. This test combines the power of the case-only test
with the protection from bias of the case-control test in the two-step procedure with
independent test statistics.
The first step is again a screening for associations between G and E, but not based on
controls only, but on the combined sample of cases and controls. In this study sample
G-E association can be measured by the logistic regression model

logitP (E = 1 | g) = log

(
P (E = 1 | g)

P (E = 0 | g)

)
= αall + βallG .

As seen in section 3.1.5 for the other regression coefficients, the coefficient equals the
logarithm of the corresponding odds ratio ORall, that is given by

ORall =
(p000 + p100)(p011 + p111)

(p001 + p101)(p010 + p110)
.

The maximum likelihood estimator of βall is determined by

β̂all = log

(
(n000 + n100)(n011 + n111)

(n001 + n101)(n010 + n110)

)
.

It is approximately normally distributed

β̂all ∼ N(βall, σ
2
all) ,

with estimated variance

σ̂2
all =

∑
g=0,1

∑
e=0,1

1

(n0ge + n1ge)
. .
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Hence, the test statistic is

Tmur =
β̂all

σ̂all

.

Tmur is again approximately standard normally distributed when no interaction exists.
Only the subset of m SNPs exceeding a given significance threshold αmur in step 1 is
selected for step 2. A G-E association in the whole study sample can result from a
dependency between G-E not related to the analyzed disease or an underlying GxE
interaction with an effect on case-control status. To distinguish both kinds of selected
SNPs, in the second step they are further analyzed by the traditional GxE interaction
test with H0 : βge = 0. Therefore, a less stringent significance level adapted to the size
of the selected subset α

m
is used. Murcray’s two-step statistic

Step 1 − αmur H0 : βall = 0

reject
vv

accept
%%

Step 2 − α/m H0 : βcc = 0 −

can be written as

Tmur = TccI[| Tall |> Tαmur/2].

The screening for G-E association in the entire study sample in step 1 eliminates the
correlation between step 1 and step 2 test statistics and therefore preserves the overall
type I error rate. Although step 1 is sensitive to G-E independence assumption in the
population, step 2 is not and hence the overall two-step procedure provides a valid test
in the presence of population-level associations between genotype and exposure. This
test is more powerful than the one-step case-control test and robust in the presence of
G-E dependencies.
A disadvantage of the Murcray approach is that the first step depends on the ratio
of cases to controls in the sample. A higher number of controls than cases leads to a
decrease of the power in step 1 and hence to a loss of power for the overall method.
The choice of the step 1 significance level has a high influence on the results. Therefore,
it should be chosen carefully. However, the best choice highly depends on different
characteristics of the sample to analyzed and is not that clear (Mukherjee et al., 2012).

6.2.4 Mukherjee’s shrinkage estimator

The method for detecting GxE interactions proposed by Mukherjee and Chatterjee in
2008 is inspired by the idea of an empirical Bayes model and combines the robust case-
control estimator β̂ge and the powerful estimator β̂cases by their weighted average

β̂muk = (1−B)β̂cases +Bβ̂ge (6.1)

The weight B is chosen, so that when evidence for an underlying G-E independence in
the control population is given by the data B → 0 and hence β̂muk → β̂cases . When the
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G-E independence assumption is violated, the estimator β̂muk should converge to the
unbiased estimator β̂ge resulting from B → 1.
To obtain a shrinkage factor B of that characteristic, we assume that we cannot rule
out G-E dependence and provide a Bayesian framework for β̂controls, with the first level
model

β̂controls | βcontrols ∼ N(βcontrols, σ
2
controls)

and the prior

βcontrols ∼ N(0, τ 2) .

The same form of that model was given in example 1a on page 57 and for the linear
regression on pathways (LRP) method of Lebrec et al. (2009) (section 4.3). In the
particular context here, the hyperparameter τ 2 is a quantity for the uncertainty about
the G-E independence. An estimate for the asymptotic variance in the first level model
is given in formula 3.20.
We can derive the marginal distribution

β̂controls ∼ N(0, υ2), υ2 = σ2
controls + τ 2 .

Based on that marginal variance, τ 2 = max(0, υ2−σ2
controls) (equation 4.12) and a consis-

tent estimator of the unknown prior variance can be obtained by τ̂ 2 = max(0, β̂2
controls−

σ̂2
controls) (Morris, 1983; Greenland, 1993). For convenience regarding the variance esti-

mator of the Mukherjee statistic, τ̂ 2 = β̂controls was used instead, although it is more
conservative. However, simulation studies showed that the usage of this estimate does
not reduce efficiency (Mukherjee and Chatterjee, 2008).
Using the hyperparameter estimate, our weight B is set to

B(τ̂ 2, σ̂2
cc) =

τ̂ 2

τ̂ 2 + σ̂cc

. (6.2)

This results in the final estimator

β̂muk =
σ̂2

cc

τ̂ 2 + σ̂2
cc

β̂cases +
τ̂ 2

τ̂ 2 + σ̂2
cc

β̂cc .

When β̂controls is close to 0, indicating no G-E association, we have more weight on β̂cases;
with increasing β̂controls the estimator is shrunk towards β̂ge .
We can rewrite this new estimator by

β̂muk = β̂cases −
τ̂ 2

τ̂ 2 + σ̂cc

β̂controls . (6.3)

From this second perspective, β̂controls is not completely subtracted from β̂cases as for the
traditional case-control approach, but only partly, with the G-E association part within
controls shrunk to zero when G-E independence is given.
Although Mukherjee and Chatterjee’s (2008) estimator is constructed from a Bayesian
perspective, it is neither true Bayesian nor empirical Bayesian, but purely a simple
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function of the observed data (Mukherjee and Chatterjee, 2008).
To construct a test statistic for testing the null hypothesis H0 : βmuk = 0, an asymptotic
variance has to be calculated. For the sake of simplicity, the variation in σ̂2

ge is ignored
and treated as constant, since σ̂2

ge → 0 at the rate of O(1/n).
Based on formula (6.3), the first part of the estimator depends only on the cases and
the second one only on the controls, so that both parts can be considered independent
from each other. For the first term, the variance is simply given by σ̂2

cases. The second
term can be viewed as a function of τ̂ = β̂controls, and using the delta method we obtain

σ̂2
muk ≈ σ̂2

cases +

(
β̂2

controls(β̂
2
controls + 3σ̂2

cc)

(σ̂2
cc + β̂2

controls)
2

)2

σ̂2
cc. (6.4)

Using this approximate estimator, we can construct the Wald test statistic

Tmuk =
β̂muk

σ̂muk

. (6.5)

Simulation studies showed that this variance approximation works fairly well, even for
smaller sample sizes of 100 cases and 100 controls (Mukherjee and Chatterjee, 2008).

In Mukherjee et al. (2008), a slightly modified version of this test statistic was proposed,
by subtracting the posterior estimator of β̂controls from β̂cases instead of the maximum
likelihood estimator ˆβcontrols. Starting from the Bayesian framework stated above, we
can calculate the posterior distribution (see also 4.3):

βcontrols | β̂controls ∼ N(
τ 2

τ 2 + σ2
controls

β̂controls,
τ 2σ2

controls

τ 2 + σ2
controls

).

Using the estimate of the posterior expectation, we obtain

β̂muk2 = β̂cases −
τ̂ 2

τ̂ 2 + σ̂controls

β̂controls.

This estimator distinguishes from β̂muk (equation 6.3) only by using σ̂2
controls instead

of σ̂2
ge. The corresponding variance expression σ̂2

muk2 is of the same form as in 6.4,
substituting σ̂2

ge by σ̂2
controls. The alternative test statistic is given by

Tmuk2 =
β̂muk2

σ̂muk2

.

In our simulation studies we chose the first alternative Tmuk, since it is preferred over
Tmuk2 in terms of mean-squared error (Mukherjee et al., 2012) and was shown to reach
slightly higher power (Mukherjee et al., 2008).
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Table 6.1: Overview of the different GxE methods compared in our simulations

method test statistic

Case-control
(Breslow and Day, 1994) Tcc =

β̂cases − β̂controls

σ̂2
cases + σ̂2

controls

Case-only
(Piegorsch et al., 1994) Tcases =

β̂cases

σ̂2
cases

Simple two-step Ttwo = TccI[| Tcontrols |> Tαtwo1/2
]

(Albert et al., 2001) +TcasesI[| Tcontrols |≤ Tαtwo1/2
]

Murcray’s two-step
(Murcray et al., 2009)

Tmur = TccI[| Tall |> Tαmur/2]

Mukherjee’s shrinkage estimator
(Mukherjee and Chatterjee, 2008) Tmuk =

β̂cases −B(τ̂ 2, σ̂2
cc)β̂controls

σ̂2
muk

Empirical hierarchical Bayes
(alternative 1) TEHB =

β̂cases − λ̂√
σ̂2

cases + σ̂2
λ

Empirical hierarchical Bayes
(alternative 2) TEHB2 =

T̂cases − λ̂S√
σ̂2

cases + σ̂2
λS

β̂cases, β̂conrols and β̂all are estimates for G-E association within cases, controls and the whole sample

with corresponding variance estimates σ̂cases, σ̂conrols and σ̂all. B(τ̂2, σ̂2
ge) is a shrinkage factor, σ2

muk

denotes an approximate variance considering this factor. λ̂ and λ̂S are posterior estimates for β̂controls

and T̂controls, σ̂
2
λ and σ̂2

λS the corresponding posterior variance estimates.
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6 The empirical hierarchical Bayes approach for GxE interaction

6.3 Empirical hierarchical Bayes approach for GxE interaction
analysis

In 2007, Volk et al. presented an idea of an empirical hierarchical Bayes method to de-
tect GxE interactions in GWAS (conference poster). Similar to Mukherjee et al. (2008),
they proposed to use a compromise between the case-control and case-only test of GxE
interaction, by subtracting a posterior estimate of the G-E association within controls
from the G-E association within cases.
In contrast to Mukherjee et al. (2008), they chose a more complicated hierarchical mod-
eling framework for the G-E association within controls, analog to the model provided
for Lewinger et al.’s (2007) hierarchical Bayes prioritization (section 4.4.1). Further-
more, their posterior estimate for each marker is not only based on the data of the SNP
itself, but is obtained by borrowing G-E information across all SNPs and is therefore
characterized by a reduced variance. To normalize their resulting test statistic, they
calculated the variance across their simulation replicates.
For this work here, we adopted that basic idea of Volk et al. (2007) and derived an
appropriate variance for the statistic, to provide a new GxE interaction test applicable
to real data where no replicates are available. Additionally, based on distributional
considerations, we modified their idea to obtain better properties of the statistic.
Before we will outline our work on the new GxE test statistic in sections 6.3.1 and 6.3.2,
we will shortly summarize the basic idea of Volk et al. (2007).

Assume that we have a genome-wide association study with NM genetic markers Mi,
i = 1, .., NM . Let βcases

Mi
and βcontrols

Mi
be the corresponding regression coefficients for G-E

association among cases and among controls with standard deviations σcases
Mi

and σcontrols
Mi

.

The corresponding test statistics are T cases
Mi

= β̂cases
Mi

/σ̂cases
Mi

and

T controls
Mi

= β̂controls
Mi

/σ̂controls
Mi

.
Volk et al. (2007) suggested to model T controls

Mi
, the estimated statistic for the G-E asso-

ciation within the controls, by the hierarchical model

level 1
∣∣T controls
Mi

∣∣ | λSMi
∼ χ1(λSMi

) (6.6)

level 2 λSMi
| pS, σS, θS ∼ pSσSχ1(θS) + (1− p)δ(0). (6.7)

χ1(ζ) is the χ-distribution with 1 degree of freedom and non-centrality parameter ζ.
pS represents the proportion of SNPs with a population based G-E association, θS is
the non-centrality parameter for the strength of association and σS a scaling parame-
ter. The superscript S is used to distinguish this procedure modeling the test statistic
T controls
Mi

by the hierarchical model from our alternative recommended in the following
section.
By maximization of the corresponding marginal likelihood with respect to the hyperpa-
rameters ΘS = (θS, σS, pS), estimates for these quantities can be obtained. These can
be used in the a posteriori expectations E(λSMi

|T controls
Mi

, Θ̂T ) to yield adequate posterior

estimates λ̂SMi
for the non-centrality parameters.

The proposed test statistic T SMi
subtracts λ̂SMi

from the case-only statistic T cases
Mi

to re-
move the population based G-E association effect

V S
Mi

=
(T cases

Mi
− sgMi

λ̂SMi
)

sSMi

. (6.8)
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sgMi
is the sign of the corresponding control-only statistic T controls

Mi
. The normalizing

factors sSMi
are empirically computed by their simulation studies as follows. For each

replicate r = 1, ..., R, Ur = T cases
Mi

− sgMi
λ̂SMi

was calculated, with Ū and std(U)
the corresponding mean and standard deviation over the differen replicates. The
normalizing factor for the test statistic was then set to sSMi

= ρ std(U). In their
simulations, ρ = 1.2 was found to work well.

6.3.1 Modification of the empirical hierarchical Bayes approach

When we took a closer look at the idea of Volk et al. (2007), we recognized a distribu-
tional problem with their suggested proceeding.
Assuming a rare disease, we have the following approximate distributions for the differ-
ent types of SNPs:

no effect T cases
Mi
∼ N(0, 1), T controls

Mi
∼ N(0, 1)

G-E association T cases
Mi
∼ N

(
βcases
Mi

σcases
Mi

, 1

)
T controls
Mi

∼ N

(
βcontrols
Mi

σcontrols
Mi

, 1

)
,

βcases
Mi

= βcontrols
Mi

6= 0

GxE interaction T cases
Mi
∼ N

(
βcases
Mi

σcases
Mi

, 1

)
T controls
Mi

∼ N(0, 1)

βcases
Mi
6= 0

The two quantities T cases
Mi

and T controls
Mi

are used as basis for the empirical hierarchi-
cal Bayes statistic of Volk et al. (2007) by subtracting the a posteriori expectation of
T controls
Mi

of the case-only statistic T cases
Mi

. However, for G-E associated SNPs, σcases
Mi

is not
necessarily equal to σcontrols

Mi
. This is particularly the case, given a main effect of the

environmental factor or different numbers of cases and controls. In that situation T cases
Mi

and T controls
Mi

have different expected values, resulting in (T cases
Mi
−T controls

Mi
) not distributed

around 0 although the null hypothesis is true. As a consequence, the same holds for
(T cases

Mi
− sgMi

λ̂SMi
). Thereby, association effects may be misinterpreted as interaction

effects.
To overcome this weakness, we improved the empirical hierarchical Bayes test by apply-
ing the hierarchical model to β̂controls

Mi
instead of T controls

Mi
and calculating βcases

Mi
− sgMi

λ̂Mi

with λ̂Mi
the posterior estimator of β̂controls

Mi
.

The corresponding hierarchical model is given by

level 1
∣∣∣ β̂controls

Mi

∣∣∣ | λMi
∼ σ̂controls

Mi
χ1(λMi

) (6.9)

level 2 λMi
| θ, σ, p ∼ pσχ1(θ) + (1− p)δ(0).
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The corresponding density functions are given by

f(
∣∣∣β̂controls
Mi

∣∣∣ | λMi
) =

(
ϕ

(
| β̂controls

Mi
| −λMi

σ̂controls
Mi

)
+ ϕ

(
| β̂controls

Mi
| +λMi

σ̂controls
Mi

))
/σ̂controls

Mi

g(λMi
| θ, σ, p) = p

(
ϕ

(
λMi
− θ
σ

)
+ ϕ

(
λMi

+ θ

σ

))
/σ + (1− p)δ(0).

ϕ(·) represents the standard normal distribution.
To obtain estimates for the hyperparameters Θ = (θ, p, σ) of that model, we need the
marginal likelihood function. The marginal distribution can be written as

m(| β̂controls
Mi

|| θ, σ, p) =

∫
f(| β̂controls

Mi
|| λMi

)g(λMi
| θ, σ, p)dλMi

= p
ϕ(D+Mi

) + ϕ(D−Mi
)√

(σ̂controls
Mi

)2 + (σ)2
+ (1− p)2ϕ

(
| β̂controls

Mi
|

σ̂controls
Mi

)
/σ̂controls

Mi
,

with

D+Mi
=

∣∣∣β̂controls
Mi

∣∣∣+ θ√
(σ̂controls

Mi
)2 + (σ)2

D−Mi
=

∣∣∣β̂controls
Mi

∣∣∣− θ√
(σ̂controls

Mi
)2 + (σ)2

(6.10)

The likelihood of the hierarchical model is given by L =
∏

Mi
m(β̂controls

Mi
| θ, σ, p) and is

maximized with respect to Θ = (θ, σ, p) to obtain the MLE’s θ̂, σ̂, p̂.
The posterior expected value given λMi

> 0 equals

E+
Mi

= E
[
λMi
| λMi

> 0, β̂controls
Mi

,Θ
]

=
σσ̂controls

Mi√
(σ̂controls

Mi
)2 + (σ)2

(Q+ L+Mi
ϕ(D−Mi

)(2Φ(L+Mi
)− 1) + L−Mi

ϕ(D+Mi
)(2Φ(L−Mi

)− 1))

(ϕ(D+Mi
) + ϕ(D−Mi

))
.

The corresponding posterior probability is given by

PMi
= Pr(λMi

> 0 | β̂controls
Mi

,Θ)

=

1 +
(1− p)
p

2ϕ(| β̂controls
Mi

| /σ̂controls
Mi

)/σ̂controls
Mi

(ϕ(D+Mi
) + ϕ(D−Mi

))/
√

(σ̂controls
Mi

)2 + σ2

−1
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with

Q =
2

π
exp

(
−

(σ)2 | β̂controls
Mi

|2 +(σ̂controls
Mi

)2(θ)2

2(σ)2(σ̂controls
Mi

)2

)

L+Mi
=

(σ̂controls
Mi

)2θ + (σ)2 | β̂controls
Mi

|

σσ̂controls
Mi

√
(σ̂controls

Mi
)2 + (σ)2

L−Mi
=

(σ̂controls
Mi

)2θ − (σ)2 | β̂controls
Mi

|

σσ̂controls
Mi

√
(σ̂controls

Mi
)2 + (σ)2

and D+Mi
and D−Mi

as defined above.
Hence

E
[
λMi
| β̂controls

Mi
,Θ
]

= E
[
λMi
| λMi

> 0, β̂controls
Mi

,Θ
]
PMi

+ E
[
λMi
| λMi

= 0, β̂controls
Mi

,Θ
]

(1− PMi
)

= E+
Mi

+ PMi
.

By using the MLE estimates Θ̂ = (θ̂, σ̂, p̂), we obtain the posterior expectation of the
non-centrality parameter

λ̂Mi
= E

[
λMi
| β̂controls

Mi
, θ̂, σ̂, p̂

]
(6.11)

While Volk et al.’s (2007) test statistic version V S
Mi

subtracts the posterior estimate of
T controls
Mi

off the case-only statistic T cases
Mi

(equation 6.8), our newly proposed alternative

VMi
subtracts λ̂Mi

, the posterior estimate of βcontrols
Mi

, off the case parameter β̂cases
Mi

to
remove the population association

VMi
=

(β̂cases
Mi
− sgMi

λ̂Mi
)

srepMi

. (6.12)

We have sgMi
= sgn(β̂controls

Mi
) and normalizing factor srepMi

= ρ sd(β̂cases
Mi
− sgMi

λ̂Mi
)

obtained empirically as explained above.
Note that all corresponding formulae of the different distributions mentioned can be
achieved for the originally proposed version of Volk et al. (2007) by simply replacing
β̂cases
Mi

and β̂controls
Mi

by T cases
Mi

and T controls
Mi

and substituting σ̂cases
Mi

and σ̂controls
Mi

with 1.

6.3.2 Calculation of an appropriate variance for the statistic

To obtain a usable test statistic for the application to real data where no replicates are
available, an appropriate variance for (β̂cases

Mi
− sgMi

λ̂Mi
) and (T̂ cases

Mi
− sgMi

λ̂SMi
) has to

be calculated. For both T -based and β-based strategy we derived that variance. In the
following we will illustrate our variance derivations for the β-based statistic.
Case and control part of the differences (β̂cases

Mi
− sgMi

λ̂Mi
) are independent from each

other, and Var(β̂cases
Mi

) = (σcases
Mi

)2, estimated by (σ̂cases
Mi

)2.
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Hence, we only have to determine the variance for the control part, the λ̂Mi
, what we

calculate by Var
[
λMi
| β̂controls

Mi

]
. As already mentioned in chapter 4.2, the conditional

posterior expectation E
[
λMi
| β̂controls

Mi
, Θ̂
]

is approximately equal to the posterior mean

E
[
λMi
| β̂controls

Mi

]
, while the conditional posterior variance Var

[
λMi
| β̂controls

Mi
, Θ̂
]

under-

estimates Var
[
λMi
| β̂controls

Mi

]
. Both have the relationship:

Var
[
λMi
| β̂controls

Mi

]
= E

[
V ar(λMi

| β̂controls
Mi

,Θ)
]

+ Var
[
E(λMi

| β̂controls
Mi

,Θ)
]
.

To calculate the posterior variance Var
[
λMi
| β̂controls

Mi

]
for our statistic, we used an

approximation of Kass and Steffey (1989), given by

Var
[
λMi
| β̂controls

Mi

]
≈ Var

[
λMi
| β̂controls

Mi
, Θ̂
]

+
∑
j,h

τ̃jhδ̃Mij δ̃Mih.

τ̃jh is the (j,h)-component of the inverse negative Hessian of the marginal log-likelihood

evaluated at the marginal maximum likelihood estimator Σ̃ = (−D2log(L)(Θ̂))−1. δ̃Mik

is given by the Jacobian of the posterior expectation with

δ̃Mik = (∂/∂Θk)E
[
λMi
| β̂controls

Mi
,Θ
]
|Θ=Θ̂ (6.13)

at Θ̂. According to this first order approximation, we derived the specific variance for
our model using maple.
The approximation has two parts, the conditional variance and the correction term. For
the first part we have

Var
[
λMi
| β̂controls

Mi
, Θ̂
]

= E
[
λ2
Mi
| β̂controls

Mi
, Θ̂
]
− E

[
λMi
| β̂controls

Mi
, Θ̂
]2

.

E
[
λMi
| β̂controls

Mi
, Θ̂
]

is known already, so we only have to derive

E
[
λ2
Mi
| β̂controls

Mi
, Θ̂
]

= E
[
λ2
Mi
| λMi

> 0, β̂controls
Mi

, Θ̂
]
P
[
λMi

> 0 | β̂controls
Mi

, Θ̂
]
(6.14)

+E
[
λ2
Mi
| λMi

= 0, β̂controls
Mi

, Θ̂
]
P
[
λMi

= 0 | β̂controls
Mi

, Θ̂
]
.

(6.15)

P
[
λMi

> 0 | β̂controls
Mi

, Θ̂
]

is given in equation 4.22,

E
[
λ2
Mi
| λMi

= 0, β̂controls
Mi

, Θ̂
]

= 0.

For the unknown part we get

E
[
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| λMi

> 0, β̂controls
Mi

, Θ̂
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=
(σ)2(σcontrols

Mi
)2

(σ)2 + (σcontrols
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·
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) + (L−Mi
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))
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)
.
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The Jacobian and Hessian used in the correction term are given by

∇̃Mi
=

δ̃Miθ

δ̃Miσ

δ̃Mip

 and Σ̃ =

τ̃θθ τ̃θσ τ̃θp
τ̃σθ τ̃σσ τ̃σp
τ̃pθ τ̃pσ τ̃pp

 ,

with the detailed formulas for the individual parts listed in the appendix part C.
All together, we have

Var
[
λMi
| β̂controls

Mi

]
= E

[
(λMi

)2 | λMi
> 0, β̂controls

Mi
; Θ̂
]
PMi
−(E+b

Mi
PMi

)2+(∇̃Mi
)SΣ̃∇̃Mi

.

(6.16)

Our final test statistic is given by

TEHBMi
=

β̂cases
Mi
− sgMi

λ̂Mi√
(σ̂cases

Mi
)2 + Var

[
λMi
| β̂controls

Mi

] (6.17)

For the corresponding variance for the T -based version of the test statistic, we have to
replace β̂cases

Mi
and β̂controls

Mi
in all formulas by T cases

Mi
and T controls

Mi
and substitute σ̂cases

Mi
and

σ̂controls
Mi

by 1. The final statistic is given by

TEHB2
Mi

=
T cases
Mi
− sgMi

λ̂SMi√
1 + Var

[
λSMi
| T̂ controls

Mi

] . (6.18)

In the following, we will abbreviate our new empirical hierarchical Bayes approach by
EHB, while we denote the version based on T -statistics extended by our new estimated
variance with EHB2.

6.4 Simulation studies

For the investigation of the performance of our method, we generated data sets under
different parameter settings and compared the results of our approach with the results of
the case-control (CC), case-only (CASES), the two different two-step methods described
(TWO, MUR) and the approach of Mukherjee (MUK). An overview of the different test
statistics is given in table 6.1.
We will compare the ability of the methods to identify an interacting marker within the
top rankings according to the corresponding method. The first rank only, the top 10,
top 25, top 50 and top 100 are considered. We denote the percentage of replicates where
the interacting SNP is within the considered top positions by rank power.
We concentrated on the rank power and not on the type I error and power in a con-
ventional sense, since GWAS are typically considered as a screening process, selecting
a subset of top SNPs for further investigation (see section 3.2.4). The rank power ad-
dresses this issue, evaluating the quality of a method not to miss a true positive effect
for follow-up, even given a small effect not reaching significance. The discovery step
procedure should really guarantee to find true effects. False positive findings are weed
out in the following independent replication.
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Figure 6.1: Distribution of the G-E association effects for the 1,000 simulated mark-
ers with a G-E association. We distinguished between low, medium and high as-
sociation scenarios, with values sampled from log(ORG−E(low)) ∼ N(0, log(1.5)/2),
log(ORG−E(med)) ∼ N(0.7, 0.1) and log(log(ORG−E(high))) ∼ N(0, log(1.5)/2).

6.4.1 Simulation set-up

In our simulated data we restricted to one environmental factor and one interacting SNP.
For both, we varied the frequency for their corresponding risk variant between 10, 30 and
50%. For each combination of exposure and marker frequency, five different interacting
odds ratios ORGxE between 1.2 and 3 were chosen. Based on that information, cohorts
of the general population were generated by using the logistic regression model

log

(
p

1− p

)
= α + βGxEGxE, βGxE = log(ORGxE).

α was chosen such that the overall disease prevalence equals 1, 5 or 10%. Initially, main
effects were not considered.
From the generated cohort, cases and controls were randomly selected, with case:control
ratio 1,500:1,500, 1,000:2,000 and 2,000:1,000 (short: 1:1,1:2,2:1). For these cases and
controls, up to 1,000 SNPs with a population based G-E association were simulated
(NG−E ∈ {0, 1, 5, 10, 25, 50, 75, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1, 000}). The
strength of these population based G-E associations was varied between low, medium
and high associations by the following distributions

ORG−E(low) = exp(βG−E(low)) with βG−E(low) ∼ N

(
0,
log(1.5)

2

)
ORG−E(med) = exp(βG−E(med)) with βG−E(med) ∼ N(0.7, 0.1)

ORG−E(high) = exp(βG−E(high)) with log(βG−E(high)) ∼ N

(
0,
log(1.5)

2

) (6.19)

In figure 6.1 the generated ORG−E for all three situations are graphically represented.
The first distribution (low association) was adopted from simulation studies in Mukher-
jee et al. (2008), comparing their methods to CC, CASES and TWO. As we can see in
the corresponding histogram, there are positive and negative G-E associations. How-
ever, most of the SNPs will only have a really low effect close to 1, nearly representing

130
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G-E independence. To reach odds ratios varying around 2, we chose the second alter-
native (medium association). In that case, each of the G-E association markers has a
recognizable effect of at least ORG−E = 1.5. For environmental factors such as smoking,
associated strongly to numerous genetic factors, even more extreme G-E associations
may be given. To represent such a high association case, we used the exponential values
from the low association, reaching from an OR of 1 up to 10.
To reach a total number of 10,000 SNPs per generated data set, additional SNPs with
no effect to the disease and no underlying G-E independence were generated. Except for
the one GxE SNP, all other minor allele frequencies were randomly chosen from a Beta
distribution B(1,3) truncated to the interval [0.01 − 0.5]. For each parameter setting,
1,000 replicates were generated.

In view of our data application to lung cancer GWAS where a main effect of the en-
vironmental factor smoking is given, we furthermore performed simulation scenarios
including an environmental main effect ORe = 2, 5 or 10. Due to efficiency reasons, we
restricted to a subset of the scenarios given above. We varied the exposure frequency
between 30 and 50% and chose a frequency of 10% and 30% for the interacting marker.
The interaction effect ORGxE was given by 1.5, 2 and 3. We simulated two different dis-
ease prevalences, 1% and 10%. For each of the prevalences, we picked 3 scenarios with
respect to the numbers of cases and controls, fitting to our different analyzes in chapter
7. For 0.01 we chose 300 cases and 500 controls, 500 cases and 500 controls as well as
2,000 cases and 2,500 controls. Given a disease prevalence of 0.1, the samples consist of
250 cases and 250 controls, 500 cases and 250 controls or 1,500 cases and 1,500 controls.
In table 6.2, the relation of these scenarios to our data application is illustrated. We
restricted to NG−E ∈ {0, 50, 100, 200, 500, 1, 000} with G-E association effect sizes
given by ORG−E(low), ORG−E(med) or ORG−E(high). For comparison purpose, the same
situations were simulated given ORe = 1.

6.4.2 Simulation results

Behavior of the empirical hierarchical Bayes (EHB) approach

Before we will compare the performance of our new empirical hierarchical Bayes
approach to other GxE interaction methods outlined in this chapter, we will first take
a look at the behavior of the empirical hierarchical Bayes approach with respect to
different parameters.
Interaction effect: As expected of a GxE interaction testing procedure, the ranking
power of the EHB increases with increasing effect size of the interaction (ORGxE).
We can see this behavior in figures 6.2-6.4 for several settings of the other simulation
parameters. Furthermore, we see higher rank power with increasing frequency of the
environmental (pe) or genetic factor (pg) up to 50%. The underlying rational of this
is that a higher balance between the different risk groups is given with the frequency
approaching 50%. Note, we did not simulate environmental or genetic factors with a
frequency exceeding 50%. In that case, a decrease of rank power would be observed.
Prevalence: However, comparing the different prevalences assumed for the underlying
disease, we observe an uncommon characteristic with the rank power decreasing
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Figure 6.2: Rank power to detect a GxE interaction in the top 25 ranking SNPs using
the EHB method given different prevalence pd of the underlying disease. A varying
number of population based G-E associations NG−E with a high effect (ORG−E(high)) is
assumed. The environmental factor has a frequency of pe=0.3.

132



6.4 Simulation studies

Table 6.2: Connection of our simulated scenarios given an environmental main effect
to our data applications in chapter 7. GLC, CE-IARC, MDACC and SLRI denote
the four different lung cancer GWAS considered. Two analyses are performed for each
study, using never and ever smokers as binary classification of the environmental factor
or moderate and heavy smokers.

Simulated prevalence: 0.01
lung cancer in the general population

testing never vs. ever smokers

GLC CE-IARC MDACC SLRI

Given number cases:controls 467:468 1,901:2,503 - 331:499
Simulated number cases:controls 500:500 2,000:2,500 - 300:500

Simulated prevalence: 0.1
lung cancer within ever smokers

testing moderate vs. heavy smokers

GLC CE-IARC MDACC SLRI

Given number cases:controls 411:253 1,752:1,617 1,150:1,134 183:228
Simulated number cases:controls 500:250 1,500:1,500 1,500:1,500 250:250

with increasing disease occurrence. This behavior is given for nearly all different
combinations of other parameters and we can see some examples in figure 6.2. The
decrease ranges up to 10% comparing a prevalence of 1% and 5% and we reach up to
15% more rank power for the prevalence of 1% in comparison to 10%. This behavior
is adapted from case-only test, where the increase with decreasing prevalence is even
stronger. This characteristic can be explained by a stronger enrichment of individuals
with underlying genetic and environmental susceptibility factor in cases and hence a
better balance of the different risk groups. For case-control, rank power increases with
increasing prevalence.
Case-control ratio: The behavior of the method with respect to different given ratios
of cases and controls contained in the underlying sample highly depends on the number
of the given population based G-E associations and their effect size. In figure 6.3 we
compare the three different combinations of cases and controls to each other for low,
medium and high effects of the G-E association, given 5%, 10% and 30% frequency for
disease, environmental factor and interacting marker.
We clearly see, that given a low number of G-E associations (left plot of figure 6.3), the
test involving more cases than controls outperforms the two other situations. Having
twice as much controls as cases is the most unfavorable case. This behavior persists
independent of the number of G-E association effect.
However, given stronger G-E association effects, as in the middle and right plot of
figure 6.3, the rank power for the scenario with 2:1 ratio decreases clearly with an
increasing number of the population based associations. This effect is even stronger for
the medium association strength situation than for the high one. Since the case control
ratios of 1:2 and 1:1 decrease only slightly, 2:1 cannot keep the advantage in that case
so that 1:1 is the best proportion of cases and controls for a higher number of G-E
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Figure 6.3: Rank power to detect a GxE interaction in the top 25 ranking SNPs using
the EHB method given different ratios of the underlying cases and controls.
A varying number of population based G-E associations NG−E with different effect sizes
ORG−E(low),ORG−E(med) and ORG−E(high) is assumed. Frequency of disease, environmen-
tal factor and interacting marker are given by 5%, 10% and 30%. The case control ratios
1:1, 1:2 and 2:1 represent 1,500 cases and 1,500 controls, 1,000 cases and 2,000 controls
as well as 2,000 cases and 1,000 controls.

associations. For the medium association strength, this crosspoint is reached earlier as
for the high association case. Furthermore, for a smaller OR of the interaction effect,
where the rank power is generally lower and the difference between 2:1, 1:1 and 1:1
smaller, we also see an earlier advantage of the 1:1 ratio.
The situation in the plots is representative for all combinations of prevalence, environ-
mental factor and genetic factor combinations considered, with the concrete crosspoint
varying (data not shown).
G-E association effects: In figure 6.4 we see in each of the plots the comparison of
rank power between low, medium and high G-E association situation for fixed values of
the other parameters. On the left side, where we have the situation of 1,500 cases and
1,500 controls, we see that given an environmental factor with a frequency of 10%, the
low association case reaches most rank power. In the high association situation the rank
power is even larger than for medium association. Given a more common environmental
factor, the method even reaches highest rank power given high association effects, the
lowest rank power is reached given only low G-E effects. The same trend is visible in
the 2,000 cases : 1,000 controls situation shown on the right part of figure 6.4. The
underlying reason for that may be that given a more frequent environmental factor,
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Figure 6.4: Rank power to detect a GxE interaction in the top 25 ranking SNPs
using the EHB method given different strengths of the association effect
(ORG−E(low),ORG−E(med),ORG−E(high)). The underlying sample contains 1,500 cases and
1,500 controls for the four plots on the left and cases and 1,000 controls for the four
plots on the right. A disease prevalence of 5% is assumed.

high association effects are better detectable by our method and therefore a better
correction for the G-E association can be done. Comparing 1:1 with 2:1, we see clearly,
that the difference between the rank power of the association-strength situations
deviates much stronger from each other for 2:1 than for 1:1.
Environmental main effect: In figure 6.5 we can see how the rank power of the EHB
is influenced by an environmental main effect. We see that given an environmental
factor of frequency pe=0.3, the rank power for an environmental main effect of ORe=2
is larger than given no main effect. For higher strength of ORe=5 and 10, a decreased
rank power is observed. Given an exposure frequency of pe=0.5, the rank power
increase observed for ORe=2 diminishes. These plots are representative for the other
considered simulation scenarios as well. The trend of decreasing power with increasing
environmental main effect is also observed for the other GxE rank methods.

Comparison of the EHB to other GxE interaction methods

In table 6.3 we can see a part of the results comparing the top 25 ranking power for
the different GxE interaction methods with our EHB when no population based G-E
associations occur. With MUR, the interacting SNP ranks in the top 25 for every
situation and hence this test shows highest ranking power considering the top 25.
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Figure 6.5: Rank power to detect a GxE interaction in the top 25 ranking SNPs using
the EHB method given different environmental main effects. The underlying
sample contains 2,000 cases and 2500 controls, a disease prevalence of 5% is assumed.
The GxE interaction has an effect of ORGxE = 1.5 with marker frequency pg = 0.3.

Between EHB and EHB2 we see no difference in ranking power. In all situations, both
reach nearly the same ranking power as the case-only approach. MUK and TWO
always show a little less ranking power than EHB, with the rank power difference
depending on the case-control ratio. Given 1,000 cases and 2,000 controls, the EHB
reaches up to 5 and 10% more rank power than MUK and TWO, given 2,000 cases and
1,000 controls, the rank power advantage of the EHB increases further.
Of higher interest however, is the performance of the methods given G-E associations
on a population level. We observed that in nearly all situations EHB reaches similar or
even higher rank power than all other approaches including MUR. In particular when a
higher number of G-E associated markers or strong G-E association effects occur, EHB
is the superior method.
In table 6.4, 6.5 and 6.6 we see the comparison of the top 25 ranking powers of the
different methods representative for a prevalence of 1%, genetic and environmental
factor frequencies each of 10 and 30% and an effect size of the interaction of 1.5 and 2.
Table 6.4 shows the results for 1,500 cases and 1,500 controls. Since we observed that
the EHB2 has almost identical rank power as the EHB given a case control ratio of 1:1,
we neglected EHB2 in this table.
We see that for an interaction effect of size 2 and pe = pg = 0.3 the case-control
method reaches an adequate ranking power of around 85% to detect the interaction
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Table 6.3: Power to detect a GxE interacting SNP in the top 25 ranking when no
population based G-E associations occur. The underlying disease is assumed to
have a prevalence of 1%.

cases:controls pe pg ORGxE EHB CC CASES TWO MUK MUR

1,500:1,500 0.1 0.1 1.5 0.100 0.019 0.099 0.078 0.067 1
2 0.458 0.119 0.459 0.402 0.302 1

0.3 1.5 0.267 0.081 0.268 0.235 0.222 1
2 0.867 0.405 0.867 0.813 0.729 1

0.3 0.1 1.5 0.215 0.071 0.215 0.184 0.167 1
2 0.839 0.412 0.837 0.794 0.721 1

0.3 1.5 0.665 0.264 0.668 0.605 0.554 1
2 0.997 0.855 0.997 0.977 0.961 1

1,000:2,000 0.1 0.1 1.5 0.070 0.031 0.071 0.060 0.061 1
2 0.315 0.138 0.314 0.282 0.250 1

0.3 1.5 0.159 0.094 0.158 0.150 0.150 1
2 0.711 0.397 0.709 0.654 0.633 1

0.3 0.1 1.5 0.117 0.072 0.116 0.107 0.109 1
2 0.607 0.348 0.608 0.549 0.543 1

0.3 1.5 0.403 0.225 0.401 0.353 0.353 1
2 0.971 0.828 0.972 0.941 0.931 1

2,000:1,000 0.1 0.1 1.5 0.143 0.010 0.142 0.111 0.057 1
2 0.656 0.055 0.657 0.591 0.356 1

0.3 1.5 0.401 0.061 0.402 0.347 0.230 1
2 0.975 0.325 0.975 0.940 0.729 1

0.3 0.1 1.5 0.382 0.062 0.380 0.314 0.227 1
2 0.946 0.336 0.945 0.894 0.706 1

0.3 1.5 0.811 0.237 0.811 0.751 0.590 1
2 1 0.802 1 0.981 0.933 1

cases:controls = number of cases and controls, pe = frequency of environmental factor,
pg = frequency of genetic factor, ORGxE interaction effect, EHB = empirical hierarchical
Bayes, CC = case-control, CASES = case-only,TWO = intuitive two-step, MUK = Mukherjee,
MUR = Murcray

SNP within its top 25. For all other situations shown, the rank power of the CC is
substantially lower, so that the interacting marker is often missed for follow-up. In all
situations, EHB performs better than case-control, resulting in a high rank power to
find an interaction given the parameter combinations (pg = 0.1, pe = 0.3, ORGxE = 2),
(pg = 0.3, pe = 0.1, ORGxE = 2) and (pg = pe = 0.3 ORGxE = 1.5) and nearly 100%
rank power to detect the interaction marker with (pg = pe = 0.3, ORGxE = 2).
Comparing EHB to the case-only method, we see that given a low number of low effect
associations the rank power is very similar. However, with increasing size and strength
of association, the case-only method fails tremendously and is clearly inferior to EHB
that can nearly keep the rank power level.
TWO and MUK both show rank power slightly less than EHB. For TWO we can see
differences up to 5%, for MUK we observe in some situations up to 10% less rank power
than for EHB. This rank power increase of 5 to 10% given by the EHB may often be
crucial and responsible if the interacting marker is further investigated or not.
The performance of MUR highly depends on the number of population based G-E
associations and their strength. When the number or strength of G-E associations
increases, the rank power of MUR decreases extremely so that EHB is much better in
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Table 6.4: Rank power to detect a GxE interacting SNP in the top 25 ranking in
the presence of population based G-E associations. The underlying disease is
assumed to have a prevalence of 1%. The given sample consists of 1,500 cases and
1,500 controls.

pe ORG−E NG−E pg ORGxE EHB CC CASES TWO MUK MUR

0.1 low 100 0.1 1.5 0.099 0.019 0.097 0.078 0.067 0.998
2 0.443 0.119 0.446 0.401 0.302 0.992

0.3 1.5 0.258 0.081 0.256 0.231 0.217 0.996
2 0.856 0.405 0.856 0.809 0.727 0.997

500 0.1 1.5 0.080 0.019 0.067 0.069 0.062 0.022
2 0.414 0.119 0.389 0.384 0.291 0.128

0.3 1.5 0.234 0.079 0.203 0.213 0.206 0.050
2 0.830 0.408 0.812 0.792 0.719 0.403

med 100 0.1 1.5 0.074 0.017 0.003 0.069 0.069 0.010
2 0.433 0.115 0.099 0.415 0.336 0.121

0.3 1.5 0.204 0.079 0.016 0.190 0.204 0.031
2 0.841 0.438 0.331 0.825 0.745 0.429

500 0.1 1.5 0.045 0.017 0 0.045 0.058 0.004
2 0.332 0.114 0.008 0.336 0.318 0.089

0.3 1.5 0.158 0.080 0.003 0.132 0.193 0.022
2 0.768 0.437 0.055 0.746 0.727 0.365

high 100 0.1 1.5 0.072 0.021 0 0.061 0.058 0.006
2 0.471 0.114 0.001 0.447 0.355 0.109

0.3 1.5 0.258 0.080 0 0.219 0.202 0.033
2 0.898 0.445 0.012 0.861 0.767 0.442

500 0.1 1.5 0.059 0.019 0 0.054 0.057 0.003
2 0.414 0.116 0 0.428 0.345 0.079

0.3 1.5 0.218 0.079 0 0.194 0.201 0.021
2 0.867 0.446 0 0.836 0.763 0.376

0.3 low 100 0.1 1.5 0.199 0.070 0.178 0.177 0.162 0.418
2 0.823 0.411 0.814 0.792 0.720 0.538

0.3 1.5 0.645 0.264 0.622 0.599 0.550 0.463
2 0.996 0.858 0.996 0.976 0.961 0.889

500 0.1 1.5 0.169 0.072 0.068 0.150 0.150 0.031
2 0.794 0.411 0.607 0.765 0.710 0.316

0.3 1.5 0.597 0.264 0.363 0.562 0.530 0.187
2 0.991 0.858 0.976 0.975 0.960 0.843

med 100 0.1 1.5 0.226 0.059 0 0.206 0.190 0.033
2 0.812 0.365 0.009 0.771 0.681 0.343

0.3 1.5 0.646 0.266 0.001 0.599 0.556 0.156
2 0.998 0.856 0.301 0.978 0.965 0.865

500 0.1 1.5 0.200 0.060 0 0.198 0.183 0.021
2 0.762 0.364 0 0.759 0.677 0.291

0.3 1.5 0.610 0.263 0 0.586 0.551 0.113
2 0.998 0.855 0.025 0.978 0.964 0.857

high 100 0.1 1.5 0.231 0.074 0 0.202 0.179 0.042
2 0.833 0.393 0 0.783 0.705 0.324

0.3 1.5 0.653 0.277 0 0.611 0.539 0.170
2 0.993 0.864 0.001 0.977 0.961 0.852

500 0.1 1.5 0.219 0.074 0 0.201 0.177 0.023
2 0.815 0.393 0 0.781 0.700 0.274

0.3 1.5 0.653 0.279 0 0.609 0.535 0.127
2 0.993 0.866 0 0.976 0.961 0.838

pe = frequency of environmental factor, ORG−E = strength of G-E association effect,
NG−E = number of G-E association effects, pg = frequency of genetic factor,
ORGxE interaction effect, EHB = empirical hierarchical Bayes, CC = case-control,
CASES = case-only,TWO = intuitive two-step, MUK = Mukherjee, MUR = Murcray 138
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these situations. However, given 100 low associations MUR reaches nearly 100% rank
power. This is the case even for a very small effect of ORGxE = 1.5 and pg = pe = 0.1.
Hence, in this particular situation, MUR is clearly superior to all other methods. When
we take a look at the corresponding results given a higher prevalence, we observe this
high rank power of MUR for pe = 0.1 as well. Given a more frequent environmental
factor of pe = 0.3, this effect diminishes and EHB reaches better rank power in most
situations (results not shown).
Note, the corresponding conventional power for case-control test of GxE interaction
for the situations shown in table 6.4 is less than 36%. The power of MUR is at most
approximately 65%. The case-only test has only for ORGxE = 2 with pg = pe = 0.3
a power of 91-93%. For all other parameter combinations, genome-wide significance
is rarely reached. In reality, low power is commonly encountered. Therefore, there is
much higher practical value to detect interacting SNPs for follow-up using the top 25
markers.
When we take a look at table 6.5 presenting the corresponding results based on 1,000
cases and 2,000 controls and 6.6 for 2,000 cases and 1,000 controls , we observe the same
behavioral trends of the CC, MUR and CASES method with respect to EHB. Given
a high number or high effect of G-E association, CASES even performs worse than
case-control in most situations. For TWO and MUK we see again that they generally
show a little bit less rank power than EHB. However, this time in some situations we
see a really small superiority.
As expected, having an unbalanced number of cases and controls, EHB shows its
advantage compared to EHB2. With increasing number and strength of associations,
EHB reaches higher rank power than EHB2. While for 1:2 ratio, it makes only some
percent given pe = 0.1, the difference increases up to 16% for pe = 0.3 (table 6.6). For
2:1 ratio, between 10 and 25 % increase in rank power of the EHB compared to EHB2
is observed several times, with a maximum of nearly 50% rank power difference.
To make sure that all other simulation settings with pe = 0.5, pg = 0.5, ORGxE =
1.2, 2.5, 3 and prevalence of 5% and 10% behave to the same rules than seen for the
scenarios picked out, we plotted for each method the rank power of the EHB ranking
against the difference between the ranking power of EHB and other method (ranking
power EHB - ranking power other method) on the y-axis. Hence, positive values on the
y-axis represent a rank power improve by the EHB method. The corresponding plots
can be seen in figures 6.6-6.11. The different points represent all different simulated
scenarios according to disease prevalence, frequency of environmental and genetic factor
and OR of the GxE interaction. The results are presented separately for different
case-control ratios and different numbers and strength of association are distinguishable
by color and point symbol. Furthermore, we did not only consider the ranking power
of the top 25, but for the top 1, 10 and 25 in the different rows.
In figure 6.6 comparing the rank power of EHB and EHB2, we see that for 1,500 cases
and 1,500 controls and the medium association situation, sometimes EHB detects
the interacting SNP more often on its top rank, sometimes the EHB2. For low
associations, nearly no difference is observed, for the high association situation, EHB
is superior. Considering more of the top SNPs, these tendencies diminish - given a
high similarity of both within a range of +/- 5%. For the unbalanced case control
samples, we see no difference between the methods with respect to the low association
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6 The empirical hierarchical Bayes approach for GxE interaction

Table 6.5: Power to detect a GxE interacting SNP in the top 25 ranking in the presence
of population based G-E associations. The underlying disease is assumed to have a
prevalence of 1%. The given sample consists of 1,000 cases and 2,000 controls.

pe ORG−E NG−E pg ORGxE EHB EHB2 CC CASES TWO MUK MUR

0.1 low 100 0.1 1.5 0.068 0.066 0.031 0.068 0.059 0.059 0.996
2 0.315 0.311 0.138 0.312 0.277 0.249 0.995

0.3 1.5 0.158 0.16 0.094 0.157 0.148 0.150 0.997
2 0.704 0.702 0.396 0.702 0.649 0.633 0.997

500 0.1 1.5 0.063 0.066 0.031 0.058 0.056 0.059 0.010
2 0.301 0.301 0.136 0.286 0.273 0.248 0.050

0.3 1.5 0.146 0.149 0.093 0.135 0.141 0.144 0.013
2 0.685 0.688 0.397 0.645 0.636 0.623 0.135

med 100 0.1 1.5 0.069 0.065 0.033 0.020 0.057 0.062 0.002
2 0.311 0.311 0.135 0.132 0.293 0.258 0.042

0.3 1.5 0.139 0.138 0.071 0.038 0.134 0.141 0.011
2 0.641 0.642 0.393 0.310 0.611 0.594 0.104

500 0.1 1.5 0.054 0.053 0.034 0 0.053 0.059 0.001
2 0.265 0.264 0.135 0.016 0.274 0.250 0.029

0.3 1.5 0.136 0.122 0.072 0.004 0.120 0.137 0.011
2 0.606 0.584 0.394 0.065 0.591 0.582 0.082

high 100 0.1 1.5 0.066 0.062 0.033 0.002 0.064 0.052 0.005
2 0.300 0.299 0.126 0.011 0.287 0.256 0.037

0.3 1.5 0.156 0.148 0.079 0 0.133 0.141 0.008
2 0.685 0.676 0.412 0.043 0.642 0.608 0.130

500 0.1 1.5 0.064 0.050 0.033 0 0.063 0.051 0.004
2 0.287 0.252 0.129 0 0.284 0.248 0.024

0.3 1.5 0.149 0.115 0.078 0 0.131 0.139 0.003
2 0.679 0.622 0.400 0 0.639 0.602 0.105

0.3 low 100 0.1 1.5 0.111 0.112 0.073 0.105 0.105 0.107 0.369
2 0.595 0.598 0.350 0.579 0.546 0.539 0.385

0.3 1.5 0.391 0.396 0.223 0.378 0.348 0.352 0.384
2 0.968 0.968 0.827 0.962 0.939 0.930 0.582

500 0.1 1.5 0.105 0.101 0.072 0.058 0.099 0.106 0.010
2 0.571 0.570 0.345 0.446 0.533 0.535 0.077

0.3 1.5 0.367 0.371 0.221 0.261 0.334 0.346 0.047
2 0.958 0.959 0.828 0.929 0.933 0.930 0.352

med 100 0.1 1.5 0.129 0.123 0.054 0 0.114 0.119 0.007
2 0.597 0.584 0.347 0.019 0.557 0.546 0.090

0.3 1.5 0.449 0.432 0.234 0.005 0.400 0.400 0.043
2 0.968 0.963 0.823 0.295 0.943 0.949 0.336

500 0.1 1.5 0.118 0.082 0.052 0 0.111 0.116 0.002
2 0.582 0.533 0.345 0 0.553 0.541 0.074

0.3 1.5 0.444 0.361 0.234 0 0.398 0.393 0.032
2 0.965 0.947 0.823 0.036 0.942 0.949 0.331

high 100 0.1 1.5 0.124 0.099 0.072 0 0.107 0.113 0.004
2 0.571 0.536 0.349 0 0.539 0.534 0.093

0.3 1.5 0.430 0.391 0.214 0 0.380 0.387 0.042
2 0.967 0.958 0.798 0 0.936 0.930 0.360

500 0.1 1.5 0.122 0.054 0.073 0 0.105 0.110 0.003
2 0.565 0.399 0.349 0 0.539 0.532 0.087

0.3 1.5 0.428 0.268 0.213 0 0.380 0.384 0.032
2 0.965 0.925 0.797 0 0.934 0.926 0.350

pe = frequency of environmental factor, ORG−E = strength of G-E association effect,
NG−E = number of G-E association effects, pg = frequency of genetic factor,
ORGxE interaction effect, EHB = empirical hierarchical Bayes based on regression coefficient,
EHB2 = empirical hierarchical Bayes based on test statistic, CC = case-control, CASES = case-only,
TWO = intuitive two-step, MUK = Mukherjee, MUR = Murcray 140
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Table 6.6: Power to detect a GxE interacting SNP in the top 25 ranking in the presence
of population based G-E associations. The underlying disease is assumed to have a
prevalence of 1%. The given sample consists of 2,000 cases and 1,000 controls.

pe ORG−E NG−E pg ORGxE EHBZ EHB CC CASES TWO MUK MUR

0.1 low 100 0.1 1.5 0.133 0.133 0.010 0.133 0.108 0.057 0.994
2 0.641 0.641 0.055 0.641 0.583 0.353 0.99

0.3 1.5 0.382 0.385 0.061 0.383 0.34 0.227 0.994
2 0.970 0.971 0.325 0.971 0.939 0.721 0.997

500 0.1 1.5 0.096 0.090 0.010 0.084 0.081 0.054 0.043
2 0.58 0.569 0.056 0.553 0.546 0.339 0.336

0.3 1.5 0.299 0.286 0.061 0.272 0.289 0.214 0.144
2 0.947 0.942 0.325 0.936 0.926 0.701 0.761

med 100 0.1 1.5 0.083 0.067 0.005 0.002 0.084 0.064 0.03
2 0.478 0.452 0.066 0.076 0.504 0.328 0.26

0.3 1.5 0.222 0.181 0.059 0.007 0.246 0.219 0.096
2 0.906 0.882 0.340 0.347 0.913 0.731 0.729

500 0.1 1.5 0.024 0.021 0.005 0 0.009 0.057 0.012
2 0.234 0.207 0.067 0.008 0.161 0.304 0.16

0.3 1.5 0.101 0.047 0.059 0 0.030 0.187 0.047
2 0.728 0.638 0.337 0.052 0.544 0.699 0.592

high 100 0.1 1.5 0.098 0.077 0.01 0 0.103 0.061 0.019
2 0.555 0.497 0.061 0.001 0.556 0.353 0.28

0.3 1.5 0.328 0.224 0.061 0 0.314 0.221 0.099
2 0.928 0.864 0.313 0.008 0.909 0.707 0.684

500 0.1 1.5 0.044 0.018 0.008 0 0.055 0.059 0.009
2 0.390 0.241 0.060 0 0.422 0.342 0.165

0.3 1.5 0.209 0.054 0.060 0 0.184 0.214 0.047
2 0.826 0.566 0.313 0 0.8 0.693 0.556

0.3 low 100 0.1 1.5 0.338 0.333 0.062 0.321 0.293 0.219 0.424
2 0.926 0.917 0.336 0.913 0.883 0.704 0.793

0.3 1.5 0.760 0.763 0.236 0.753 0.734 0.583 0.631
2 1 1 0.801 1 0.981 0.931 0.996

500 0.1 1.5 0.250 0.211 0.063 0.079 0.216 0.197 0.087
2 0.876 0.844 0.333 0.658 0.835 0.679 0.641

0.3 1.5 0.667 0.626 0.236 0.387 0.642 0.559 0.416
2 0.998 0.999 0.799 0.998 0.979 0.926 0.993

med 100 0.1 1.5 0.298 0.254 0.046 0 0.286 0.213 0.089
2 0.876 0.856 0.332 0.006 0.883 0.692 0.624

0.3 1.5 0.757 0.686 0.217 0 0.721 0.539 0.401
2 0.994 0.998 0.790 0.281 0.978 0.932 0.988

500 0.1 1.5 0.182 0.087 0.046 0 0.211 0.203 0.045
2 0.759 0.659 0.330 0 0.823 0.683 0.494

0.3 1.5 0.667 0.425 0.214 0 0.644 0.524 0.276
2 0.988 0.985 0.788 0.016 0.978 0.927 0.967

high 100 0.1 1.5 0.336 0.238 0.062 0 0.294 0.21 0.068
2 0.917 0.871 0.304 0 0.879 0.683 0.626

0.3 1.5 0.807 0.689 0.211 0 0.749 0.558 0.383
2 1 1 0.808 0.001 0.976 0.941 0.984

500 0.1 1.5 0.291 0.042 0.060 0 0.268 0.205 0.031
2 0.858 0.592 0.302 0 0.871 0.675 0.480

0.3 1.5 0.781 0.293 0.207 0 0.744 0.549 0.269
2 0.998 0.986 0.807 0 0.976 0.941 0.960

pe = frequency of environmental factor, ORG−E = strength of G-E association effect,
NG−E = number of G-E association effects, pg = frequency of genetic factor,
ORGxE interaction effect, EHB = empirical hierarchical Bayes based on regression coefficient,
EHB2 = empirical hierarchical Bayes based on test statistic, CC = case-control, CASES = case-only,
TWO = intuitive two-step, MUK = Mukherjee, MUR = Murcray141
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Figure 6.6: Comparison of the rank power to detect a GxE interacting marker in the
top ranking positions between EHB and EHB2. On the x-axis, the EHB ranking
power is plotted against the difference between the ranking power of EHB and EHB2
(EHB - EHB2) on the y-axis. Hence, positive values on the y-axis represent a rank
power improve of the EHB method. The different points represent all different simulated
scenarios according to disease prevalence, frequency of environmental and genetic factor
and OR of the GxE interaction. The different ratios of cases and controls are represented
in the different columns, with first column 1,500 cases and 1,500 controls, second column
1,000 cases and 2,000 controls, third column 2,000 cases and 1,000 controls. In the upper
row, the ranking power considering only the first rank is given, in the middle row with
respect to the top 10, in the lower row with respect to the top 25.
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6.4 Simulation studies

strength, for the high one however EHB is highly favored with up to 60% more rank
power. Hence, the EHB has an enormous improvement compared to the EHB2. For
the medium association, we see a slight advantage of up to 10 % in most cases, only for
top 1 of 2,000:1,000 and 500 G-E associations EHB2 seems to be slightly better.
Taking a look at the CC plot 6.7, we see that EHB has more rank power for nearly
all situations, even when only looking at the top ranking SNP. The largest differences
can be seen for 2,000:1,000, followed by 1,500:1,500. In particular for the 2,000:1,000
samples, we see groupings of the points representing the same number and strength of
association.
The superiority of the EHB compared to CASES observed before, can be confirmed
by figure 6.8. In that figure comparing the rank power of EHB and CASES, a clear
triangular structure can be observed. The diagonal is build by the high association
scenarios, representing that independently of the choice of further parameters, CASES
reaches nearly no rank power in these situations. The horizontal red line represents the
similarity of CASES to EHB given a low number and strength of G-E associations. The
vertical line on the right represents situations where EHB reaches nearly 100% rank
power and CASES any number between 0 and 100%. This effects particular scenarios
of any association situation.
For the top 1 rank power of TWO in figure 6.9, we see no clear preference for EHB
or TWO. Both methods show situations reaching higher power than the other one.
However, in practice usually more than only a hand full of top SNPs from a GWAS
scan are selected. When we increase the number of selected top markers, an overall
advantage of EHB emerges.
Taking a look at the top 1 rank power between EHB and MUK in figure 6.10, EHB
performs better for the low association situation, while MUK has up to 30% more rank
power for medium association and part of high association. With increasing number of
top ranks considered, the superiority of MUK decreases clearly. For the top 25, EHB is
remarkably better.
Finally, for MUR in figure 6.11 we see that given 2,000 cases and 1,000 controls, the
interacting SNP is up to 50% more often on the top position for MUR than for EHB
in the medium association situation and some scenarios of high association. With
increasing number of top SNPs considered this effect disappears and reverse to a benefit
of the EHB. For the top 25 SNPs, the situations with 100 low associations profits
clearly in using the MUR. For a higher number of stronger association effects however,
EHB reaches up to 50% more rank power. Having 1,000 cases and 2,000 controls, MUR
has less rank power than EHB for nearly all situations when looking at no more than
the top 10 ranks. When the top 25 are considered we see again the 100 low association
situations showing clearly higher rank power of nearly 100% with MUR. In the top
25% of the 1,500 cases and 1,500 controls situations, we see the same pattern. Here,
we had a tendency of some stronger association situations to higher MUR rank power
within the top 1 as well. However, the effect was much lower than observed for 2,000
cases and 1,000 controls.
Taking a look at the corresponding plot for 200 and 1,000 population based G-E
associations (results not shown), we see the same overall behavior between the EHB
and the different methods as in our shown plots. The same is true looking at the top
50 and top 100 markers (data not shown).
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6 The empirical hierarchical Bayes approach for GxE interaction
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Figure 6.7: Comparison of the power to detect a GxE interacting marker in the top
ranking positions between EHB and case-control test.On the x-axis, the EHB ranking
power is plotted against the difference between the ranking power of EHB and CC (EHB -
CC) on the y-axis. Hence, positive values on the y-axis represent a power improve by the
EHB method. The different points represent all different simulated scenarios according
to disease prevalence, frequency of environmental and genetic factor and OR of the GxE
interaction. The different ratios of cases and controls are represented in the different
columns, with first column 1,500 cases and 1,500 controls, second column 1,000 cases
and 2,000 controls; third column 2,000 cases and 1,000 controls. In the upper row, the
ranking power considering only the first rank is given, in the middle row with respect to
the top 10, in the lower row with respect to the top 25.
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6.4 Simulation studies
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Figure 6.8: Comparison of the power to detect a GxE interacting marker in the top
ranking positions between EHB and case-only test. On the x-axis, the EHB ranking
power is plotted against the difference between the ranking power of EHB and case-
only (EHB - CASES) on the y-axis. Hence, positive values on the y-axis represent a
power improve by the EHB method. The different points represent all different simulated
scenarios according to disease prevalence, frequency of environmental and genetic factor
and OR of the GxE interaction. The different ratios of cases and controls are represented
in the different columns, with first column 1,500 cases and 1,500 controls, second column
1,000 cases and 2,000 controls; third column 2,000 cases and 1,000 controls. In the upper
row, the ranking power considering only the first rank is given, in the middle row with
respect to the top 10, in the lower row with respect to the top 25.

145



6 The empirical hierarchical Bayes approach for GxE interaction
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Figure 6.9: Comparison of the power to detect a GxE interacting marker in the top
ranking positions between EHB and simple two-step method. On the x-axis, the
EHB ranking power is plotted against the difference between the ranking power of EHB
and TWO (EHB - TWO) on the y-axis. Hence, positive values on the y-axis represent a
power improve by the EHB method. The different points represent all different simulated
scenarios according to disease prevalence, frequency of environmental and genetic factor
and OR of the GxE interaction. The different ratios of cases and controls are represented
in the different columns, with first column 1,500 cases and 1,500 controls, second column
1,000 cases and 2,000 controls; third column 2,000 cases and 1,000 controls. In the upper
row, the ranking power considering only the first rank is given, in the middle row with
respect to the top 10, in the lower row with respect to the top 25.
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6.4 Simulation studies
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Figure 6.10: Comparison of the power to detect a GxE interacting marker in the
top ranking positions between EHB and Mukherjee’s method. On the x-axis, the
EHB ranking power is plotted against the difference between the ranking power of EHB
and MUK (EHB - MUK) on the y-axis. Hence, positive values on the y-axis represent a
power improve by the EHB method. The different points represent all different simulated
scenarios according to disease prevalence, frequency of environmental and genetic factor
and OR of the GxE interaction. The different ratios of cases and controls are represented
in the different columns, with first column 1,500 cases and 1,500 controls, second column
1,000 cases and 2,000 controls; third column 2,000 cases and 1,000 controls. In the upper
row, the ranking power considering only the first rank is given, in the middle row with
respect to the top 10, in the lower row with respect to the top 25.
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6 The empirical hierarchical Bayes approach for GxE interaction
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Figure 6.11: Comparison of the power to detect a GxE interacting marker in the
top ranking positions between EHB and Murcray’s method. On the x-axis, the
EHB ranking power is plotted against the difference between the ranking power of EHB
and CC (EHB - MUR) on the y-axis. Hence, positive values on the y-axis represent a
power improve by the EHB method. The different points represent all different simulated
scenarios according to disease prevalence, frequency of environmental and genetic factor
and OR of the GxE interaction. The different ratios of cases and controls are represented
in the different columns, with first column 1,500 cases and 1,500 controls, second column
1,000 cases and 2,000 controls; third column 2,000 cases and 1,000 controls. In the upper
row, the ranking power considering only the first rank is given, in the middle row with
respect to the top 10, in the lower row with respect to the top 25.
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Figure 6.12: Comparison of the power to detect a GxE interacting marker in the
top 25 ranking positions between EHB and EHB2 given an environmental main
effect. On the x-axis, the EHB ranking power is plotted against the difference between
the ranking power of EHB and EHB2 (EHB - EHB2) on the y-axis. Hence, positive
values on the y-axis represent a power improve by the EHB method. The different points
represent all different simulated scenarios according to disease prevalence, frequency of
the genetic factor, OR of the GxE interaction and different case control ratios. The
different environmental main effects are represented in the different columns, with first
column ORe = 2, second column ORe = 5, third column ORe = 10. In the upper row,
the ranking power considering situation with pe=0.3 is given, in lower row pe = 0.5.
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6 The empirical hierarchical Bayes approach for GxE interaction
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Figure 6.13: Comparison of the power to detect a GxE interacting marker in the top 25
ranking positions between EHB and case-control method given an environmental
main effect. On the x-axis, the EHB ranking power is plotted against the difference
between the ranking power of EHB and CC (EHB - CC) on the y-axis. Hence, positive
values on the y-axis represent a power improve by the EHB method. The different points
represent all different simulated scenarios according to disease prevalence, frequency of
the genetic factor, OR of the GxE interaction and different case control ratios. The
different environmental main effects are represented in the different columns, with first
column ORe = 2, second column ORe = 5, third column ORe = 10. In the upper row,
the ranking power considering situation with pe=0.3 is given, in lower row pe = 0.5.
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Figure 6.14: Comparison of the power to detect a GxE interacting marker in the top
25 ranking positions between EHB and case-only method given an environmental
main effect. On the x-axis, the EHB ranking power is plotted against the difference
between the ranking power of EHB and case-only (EHB - CASES) on the y-axis. Hence,
positive values on the y-axis represent a power improve by the EHB method. The dif-
ferent points represent all different simulated scenarios according to disease prevalence,
frequency of the genetic factor, OR of the GxE interaction and different case control ra-
tios. The different environmental main effects are represented in the different columns,
with first column ORe = 2, second column ORe = 5, third column ORe = 10. In the
upper row, the ranking power considering situation with pe=0.3 is given, in lower row
pe = 0.5.
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Figure 6.15: Comparison of the power to detect a GxE interacting marker in the top
25 ranking positions between EHB and simple two-step method given an envi-
ronmental main effect. On the x-axis, the EHB ranking power is plotted against the
difference between the ranking power of EHB and TWO (EHB - TWO) on the y-axis.
Hence, positive values on the y-axis represent a power improve by the EHB method. The
different points represent all different simulated scenarios according to disease preva-
lence, frequency of the genetic factor, OR of the GxE interaction and different case
control ratios. The different environmental main effects are represented in the different
columns, with first column ORe = 2, second column ORe = 5, third column ORe = 10.
In the upper row, the ranking power considering situation with pe=0.3 is given, in lower
row pe = 0.5.
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6.4 Simulation studies

●

●

●

●

●●●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●
● ●●

●

●

●
●

●

●

●●
● ●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
● ●

−
0.

1
0.

1
0.

2
0.

3

●

●

●

●

●●● ●

●

●

●
●

●

●
●

●
●

●● ●

●

●

●
●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

−
0.

1
0.

0
0.

1
0.

2

●

●
●● ●
●●

● ●
● ●

●

●

●

●

●

●

●●
● ●

● ●

●

● ●

●

●

●

●

●●
●
● ●

●

●

●

●

●
●

●●
●

●

●
●

●

● ●

●●
●

●●
●

●

●
●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
● ●

●●
●

●

●
●

●

●

●

●

●

●

●

●●
●●

●
●

−
0.

15
0.

00
0.

10
●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

10
0.

00
0.

10

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

● ●

●●
●

●

●

●

●

●

●

●

● ●
●

●●●
●

●

●

●

● ●

●

●
●●●

●

●

●

●
●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●

●

●●
●

●

●
●

●

●
●

●
●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

06
−

0.
02

0.
02

●

●
●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●
●●

●

●

●●●●

●

●

●

●

●
●

●

●●●●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●●●

●

●

●

●●●
●
●

●

●

● ●

●

●

●

●
●●
●

● ●

●

●

●

●

●

●●
●●
●

● ●

●●●

●

●

●

●●●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

06
−

0.
02

 ORE=2  ORE=5  ORE=10

R
an

k 
po

w
er

 g
ai

n 
by

 E
H

B

Rank power of EHB

 p
E
=

0.
3

 p
E
=

0.
5

●

 ORG−E(low),  NG−E=100
 ORG−E(low),  NG−E=500 ●

 ORG−E(med),  NG−E=100
 ORG−E(med),  NG−E=500 ●

 ORG−E(high),  NG−E=100
 ORG−E(high),  NG−E=500

Figure 6.16: Comparison of the power to detect a GxE interacting marker in the top 25
ranking positions between EHB and Mukherjee’s method given an environmental
main effect. On the x-axis, the EHB ranking power is plotted against the difference be-
tween the ranking power of EHB and MUK (EHB - MUK) on the y-axis. Hence, positive
values on the y-axis represent a power improve by the EHB method. The different points
represent all different simulated scenarios according to disease prevalence, frequency of
the genetic factor, OR of the GxE interaction and different case control ratios. The
different environmental main effects are represented in the different columns, with first
column ORe = 2, second column ORe = 5, third column ORe = 10. In the upper row,
the ranking power considering situation with pe=0.3 is given, in lower row pe = 0.5.
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Figure 6.17: Comparison of the power to detect a GxE interacting marker in the top 25
ranking positions between EHB and Murcray’s method given an environmental
main effect. On the x-axis, the EHB ranking power is plotted against the difference
between the ranking power of EHB and CC (EHB - MUR) on the y-axis. Hence, positive
values on the y-axis represent a power improve by the EHB method. The different points
represent all different simulated scenarios according to disease prevalence, frequency of
the genetic factor, OR of the GxE interaction and different case control ratios. The
different environmental main effects are represented in the different columns, with first
column ORe = 2, second column ORe = 5, third column ORe = 10. In the upper row,
the ranking power considering situation with pe=0.3 is given, in lower row pe = 0.5.
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6.5 Discussion

With respect to our data applications in chapter 7, the performance of the EHB
given an environmental main effect is of high interest. In figures 6.12 - 6.17 the
corresponding method comparisons are investigated. For EHB vs. EHB2 (figure 6.12)
the advantage of the EHB seen before is confirmed and even expands clearly with
increasing environmental main effect for the medium and high association situations.
For CC illustrated in figure 6.13, EHB shows superiority in most situations. However,
given a frequent environmental factor of pe=0.5, the rank power advantage of the EHB
is higher the lower the environmental main effect is. Furthermore, several situations
show up where the case-control test has slightly increased ranking power than the EHB.
Since this affects only low rank power situations, the effect is negligible.
In figure 6.14, showing the comparison of CASES with EHB, the same trends as seen
before having no environmental main effect are observed. The same is true for MUR
given in figure 6.16. The advantage of EHB compared to TWO is confirmed as well
(figure 6.15). While for pe = 0.3 EHB reaches more ranking power than MUK in most
situations, MUK has a slight advantage given a more frequent environmental factor of
pe = 0.5.

6.5 Discussion

We proposed a new empirical hierarchical Bayes test for the detection of GxE inter-
actions in GWAS. Therefore, Lewinger et al.’s (2007) hierarchical Bayes prioritization
model (section 4.4) is adopted for the purpose of GxE interaction. By borrowing G-E in-
formation across all SNPs of a GWAS, posterior estimates for the G-E association within
controls are obtained, characterized by a reduced variance. These posterior estimates
are subtracted of the G-E association within cases, so that the empirical hierarchical
Bayes method is a compromise between the case-control and case-only test of GxE in-
teraction. The test reaches high power to detect markers with a GxE interaction effect,
while correcting for G-E associations on the population level.
The idea for this test was proposed by Volk et al. in a poster in 2007. However, their
test statistic was build on a variance estimate obtained by simulation replicates that are
not available in real applications. To obtain a usable test statistic for the application
in a real genetic epidemiological study, we calculated an appropriate variance by using
a variance approximation of Kass and Steffey (1989). Furthermore, based on distribu-
tional considerations, we modified the idea of Volk et al. to obtain better properties of
the statistic.
In comprehensive simulation studies comparing our new empirical hierarchical Bayes
test to different established GxE interaction methods, the EHB showed overall the best
performance.
As a measure for the methods’ performance, we used their power to detect an interacting
marker at the top ranking positions, denoted as rank power. We chose this quantity
since we do not need to be concerned about type I error in a first GWAS step and since
the selection of top ranking SNPs for further investigations is a common practice. This
choice to consider the ranking power and disregard the conventional power and type I er-
ror, was recently supported by an invited commentary of Thomas et al. (2012). Thomas
et al. (2012) argued that since a large amount of GWAS SNPs is neither related to the
disease nor the exposure and since an independent replication should be done anyway
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6 The empirical hierarchical Bayes approach for GxE interaction

before publication, it seems reasonable to use the powerful case-only test as a screening
tool in an initial discovery sample. The fact that interactions as well as associations are
detected with that test is weed out by performing the case-control test not relying on
the assumption of G-E independence in the replication data (Thomas et al., 2012).
When we do not care about the false positive results investigated in a replication sample,
the ability of a GxE interacting method to find interacting markers in the discovery step
within the top ranks is even of higher importance.
In our simulation studies we have shown that our EHB is a useful alternative strategy
for the selection of top SNPs in an initial GWAS. In all situations, EHB reaches higher
or at least the same ranking power as the case-only approach and is therefore the better
choice.
Thomas et al. (2012) added to his argumentation that in special circumstances where a
disease has a strong behavioral component and hence high expected number of G-E as-
sociations, caution is warranted. This is the case in particular for our data application,
with smoking as an environmental factor of lung cancer. However, in particular in this
situation given a high number of strong G-E association markers the EHB was superior
to all other methods. Investigating the behavior of our EHB method, we observed that
with increasing number of G-E associations, the ranking power remains nearly the same.
Given an exposure of 30% frequency we observe that the ranking power was even higher
given stronger G-E association effects. We assume that this is achieved since given a
more frequent environmental factor, the chance of the EHB model to identify the G-E
associations correctly is higher, and hence the correction for these can be better con-
ducted.
Another characteristic of the EHB is higher rank power for a case control ratio of
2,000:1,000 then for 1,500:1,500, at least when there is no high number of strong G-E
associations. Since the cases have the more impact to the EHB test statistic than con-
trols, this effect is not surprising. Vice versa, reducing the number of cases to 1,000
and increasing the number of controls, leads to the reverse effect. However, when a
high number of strong associations is given, the ranking power for 1:1 and 1:2 remains
similar, while the ranking power of 2:1 rather decreases.
Comparing the EHB and EHB2, EHB reaches higher power given an unbalanced num-
ber of cases and controls as expected while both perform similar given 1,500 cases and
1,500 controls. In all situations, the EHB outperforms the traditional case-control test
of interaction.
In simulation studies of Mukherjee et al. (2008), MUK was compared with CC, CASES
and TWO. MUK showed higher power than CC and was less powerful than CASES and
TWO. As expected TWO and CASES clearly exceeded the type I error. Given larger
population based G-E association effects, MUK also does not keep the type I error.
In our simulation studies considering the rank power, TWO and MUK performed similar
and were better than CC and CASES in most of the situations. EHB reached generally
slightly higher rank power than TWO and MUK, and a clear advantage in several sce-
narios.
In the original work of Murcray et al. (2009), they compared their approach to the tra-
ditional case-control method in simulation studies and found that it was more powerful
across a wide variety of parameter setting while keeping type I error in the presence of
population based G-E association effects. Therefore, they recommended it as preferable
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to case-control and case-only test of GxE interaction. In a recent paper of Mukherjee
et al. (2012), comparing CC, CA, MUK, MUR and MUR among others, MUR showed
higher power when no or positive G-E associations effects were simulated, while given
negative G-E associations, case-control method performs best. Overall, the results in-
dicate that there is no most powerful procedure across all possible model parameters
(Thomas et al., 2012).
In our simulations, when only a low number of weak G-E associations is given, Murcray
et al.’s (2009) methods reaches nearly 100% ranking power even for small interaction ef-
fects. However, the ranking power decreases clearly with increasing number or strength
of G-E associations. In these situations, the EHB is obviously superior.
Based on all results, for the selection of top SNPs from GxE analyzes in a GWAS study,
we recommend to use the EHB as a ranking tool, reaching the overall best ranking power
of the considered methods. When only a low number of weak G-E association effects
is expected, our advise is to use Murcray et al.’s (2009) method as a complementary
approach, since it has high ranking power to detect small interaction effects in that
situation. However, when a high number of G-E associations is expected, as given for
behavioral environmental factors such as smoking, EHB should be the first and only
choice.
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7 TRICL lung cancer GWAS integrating pathways

and GxE interaction

7.1 Motivation

Lung cancer is the most common cancer worldwide affecting nearly 1.35 million new
individuals each year. Due to the limited efficacy of treatment strategies and the result-
ing poor 5-year survival rate of only 10%, it is the leading cause of worldwide cancer
death (Parkin et al., 2005). In Germany, lung cancer is the third most common cancer
in both men and women after prostate, breast and bowel cancer. In 2008, nearly 34,000
men and 15,000 women newly developed lung cancer. The 5-year survival was given by
15 % in men and 19% in women (Robert Koch-Institut (RKI) und die Gesellschaft der
epidemiologischen Krebsregister in Deutschland e.V. (GEKID), 2012).
Numerous environmental factors increasing the risk of lung cancer are known, e.g. radon,
radiation, asbestos, air pollution or previous diseases affecting the lung such as tuber-
culosis (Aoki, 1993) or chronic respiratory diseases (Gao et al., 1987; Wu et al., 1995;
Mayne et al., 1999). However, the predominant factor increasing the lung cancer risk is
smoking, with 90% of German lung cancer cases in men and 60% in women attributed
to active tobacco smoking (RKI and GEKID, 2012). Tobacco smoke contains nearly
7,000 substances involving multiple carcinogens damaging DNA. To control and prevent
lung cancer, exposure to lung carcinogens should be avoided, with cessation of tobacco
consumption as the primary prevention method (Hung et al., 2008b,a). However, even
the risk among those who quit smoking remains elevated (Dresler et al., 2006).
Although smoking plays the major role in lung cancer, only around 10% of the heavy
smokers develop the disease (Sauter et al., 2008). This indicates that an interindividual
variability due to a genetic susceptibility to carcinogens leads to particularly higher risk
in some individuals (Amos, 2007; Sun et al., 2007; Matakidou et al., 2005). The aggre-
gation of lung cancer within families was evidenced in several studies (Tokuhata and
Lilienfeld, 1963; Amos et al., 1992; Yang et al., 1997; Etzel et al., 2003). Beside environ-
mental factors, heritability is an important component in lung cancer etiology (Sun et al.,
2007; Matakidou et al., 2005). Detecting genes involved in the disease development may
help to identify groups at high risk and find new chemoprevention targets (Hung et al.,
2008b). Rare Mendelian cancer syndromes such as Bloom’s and Werner’s syndromes
(Takemiya et al., 1987; Yamanaka et al., 1997) have shown to be related to lung cancer.
Bailey-Wilson et al. (2004) reported a region on chromosome 6q23-25 linked to strongly
familial lung cancer. Genes involved in carcinogen activation and detoxification, DNA
repair of damage caused by tobacco smoke and regulation of the inflammatory response
are furthermore biological plausible candidates (Sauter et al., 2008). TP53, RB1 (Amos
et al., 1992; Etzel et al., 2003) and MMP1 (Yang et al., 1997) for example are identified
so far. In three GWAS of lung cancer published in 2008 and subsequent pooled GWAS,
susceptibility variants on chromosome 15q25 (Hung et al., 2008b; Amos et al., 2008;
Thorgeirsson et al., 2008), 5p15 (McKay et al., 2008; Wang et al., 2008; Rafnar et al.,
2009) and 6p21(Wang et al., 2008) were identified with OR ≈ 1.2 − 1.3. Landi et al.
refined and confirmed these results in 2009 in a GWAS and meta-analysis examining
different lung cancer histologies, with 5p15 showing an effect only in adenocarcinoma.
The region on 15q25 involves genes coding for three nicotine acetylcholine receptor sub-



7.1 Motivation

units (Hung et al., 2008b). So far, the relative impact of these variants to the propensity
to smoke or a direct carcinogenic effect is not clear (Landi et al., 2009).

With the aim to share comparable data from ongoing lung cancer studies, to increase sta-
tistical power especially for subgroup analyses and to replicate novel findings, an inter-
national group of lung cancer researchers established in 2004 the International Lung
Cancer Consortium (ILCCO) under the leadership of the International Agency for
Research on Cancer (IARC) (Hung et al., 2008a; Truong et al., 2010). So far, 56 pri-
mary population- or hospital-based case-control studies from North America, Europe
and Asia/Oceania participate in ILCCO. Working groups for different research areas
such as genetic susceptibility, young onset or never smokers are build. The consortium
provides the opportunity to share results, plan pooled analyses and discuss replication
studies. It is a major step to improve our understanding of the causes and mechanisms
of lung cancer and the beginning of a longstanding cooperation (Hung et al., 2008a).
Furthermore, in 2010 a multidisciplinary project of worldwide lung cancer researchers
funded by a grant of the National Cancer Institute (NCI) was formed, called transdis-
ciplinary research in cancer of the lung (TRICL) (Amos, 2007). The NCI is the
US cancer research center that conducts and supports research in the area of cancer as
part of the National Institutes of Health (NIH). TRICL is one of five transdisciplinary
research projects within the Post-Genome-Wide Association Initiative (U19) funded by
the NCI with the goal to proceed from the initial GWAS findings to replication stud-
ies, examine gene-gene and gene-environment interactions, biologically validate GWAS
findings and translate findings into clinical and preventive applications. TRICL is lead
by Chris Amos at the MD Anderson Cancer Center, Houston, Texas, and its scientific
goals can be grouped in 3 independent research areas. Area 1, related to the work of this
thesis, is the discovery arm to identify new variants, replicate and pool GWAS findings
and conduct fine mapping. Specific subsets such as early onset cases, specific histo-
logical sets, gender-defined groups or never smokers are studied, as well as gene-gene
and gene-environment interactions. In addition, pathway based analyses are performed
in a genome-wide manner. A collaboration of 8 lung cancer GWAS established within
ILCCO contributes to this TRICL area. Area 2 concentrates on the biological under-
standing of precise mechanisms such as the tobacco carcinogenic process by evaluating
specific genes (e.g. nicotine acetylcholine receptor subunits). Area 3 works on the in
depth epidemiological modeling, characterizing genetic and environmental risk factors
and constructing risk assessment models in cohorts. Overall, new insights into the etiol-
ogy of lung cancer should be obtained, as well as public health benefits by identification
of individual groups at high risk for lung cancer for whom screening and early detection
would highly reduce the burden of lung cancer.

As a part of ILCCO and TRICL area 1, we analyzed four of the participating GWAS
studies with the hierarchical model proposed for pathway analysis and GxE interaction
analysis. We furthermore combined both tasks and applied other methods for compar-
ison. After these comparisons, the consortium intends to analyze all GWAS in 2012.
In the following a short description of the four analyzed genome-wide association studies
is given. The quality control procedure is exemplarily outlined for the German Lung
Cancer Study in section 7.3. In section 7.4 we give an overview of the different analyses
performed, that are then presented in more detail in the following three sections 7.5-7.7.
We will end with a closing discussion.
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7.2 Study populations

The German Lung Cancer Study (GLC) is a genome-wide, population-based case-
control study in Caucasians. The investigated sample compasses 514 cases diagnosed
before the age of 51 and 488 controls matched by sex and age genotyped on Illumina
HumanHap 550K SNP chips (Landi et al., 2009). It is composed of subsets from three
independent German studies: 201 cases from the Heidelberg lung cancer study, 313 cases
from the LUCY study and 488 controls form the KORA study (Sauter et al., 2008; Holle
et al., 2005; Wichmann et al., 2005).
The LUCY study, Lung Cancer in the Young, is a multicenter study with 31 par-
ticipating hospitals all over Germany, conducted by the Helmholtz Zentrum Munich
(HMGU, Prof. Wichmann) and the University Medicine Göttingen (Prof. Bickeböller).
Only patients with a new diagnosis of histologically or cytologically confirmed primary
lung cancer were included in the study. The data collection finished in 2011, with 847
recruited lung cancer patients and 5,524 family members. The data comprise detailed
information about family history, tobacco and smoking exposure, education, occupa-
tional exposure and blood samples (Sauter et al., 2008).
The Heidelberg lung cancer study is an ongoing hospital-based case-control study con-
ducted by the German Cancer Research Center (DKFZ, PD Risch). Since 1997, more
than 2,000 lung cancer cases were recruited in collaboration with the Thoraxklinik Hei-
delberg involving nearly 300 cases with onset of disease before the age of 51. Data
on occupational exposure, tobacco smoking, and educational status, as well as family
history of lung cancer for a subgroup of participants is available (Sauter et al., 2008).
The KORA study (Cooperative Health Research in the Augsburg Region) is a
population-based study in the area of Augsburg, Southern Germany, conducted by the
Helmholtz Zentrum Munich (Prof. Wichmann). 18,000 participants were recruited be-
tween 1984 and 2001 in four stages with the aim to examine environmental and genetic
risk factors of human diseases. The data comprise multiple phenotypes, medical and
laboratory data, as well as blood samples (Sauter et al., 2008). Since a major popu-
lation stratification between Southwest Germany and two other cohorts from Northern
Germany could not be detected in a genomic control approach, KORA is accepted as a
representative sample of German Caucasians (Steffens et al., 2006).

The Central Europe lung cancer GWAS of the IARC (CE-IARC) (Prof. Bren-
nan) is based on a multicenter hospital-based case-control study conducted with Cancer
Institutions from 6 central and eastern European countries between 1998 and 2002.
In total, 2,633 newly diagnosed lung cancer cases and 2,884 controls were recruited.
Controls were frequency matched to cases by sex, age, geographical area and period of
recruitment (Scélo et al., 2004). 1,989 of the lung cancer cases and a group of 2,625 com-
parable hospital controls were genotyped on Illumina HumanHap 300K platforms. Data
on lifestyle risk factors, occupational history, medical and family history is available
(Hung et al., 2008b).

The Texas genome-wide lung cancer study ascertained 1,150 histologically con-
firmed non-small cell lung cancer cases and 1,134 controls from an ongoing hospital-
based case-control study in Caucasians conducted by the M.D. Anderson Cancer Center
(MDACC) (Prof. Amos, Prof. Spitz) of the University of Texas, Houston. Lung cancer
cases were newly diagnosed at MDACC since 1991, controls were from routine care at
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Table 7.1: Overview of the different TRICL lung cancer GWAS analyzed in this thesis

GLC CE-IARC MDACC SLRI

Principal Wichmann, Brennan Amos Hung
Investigator Risch,

Bickeböller

Location Germany Czech Republic, Houston, greater Toronto
Hungary, Texas, USA area, Canada

Poland, Romania,
Russia, Slovakia

Design Population-based Hospital-based Hospital-based Hospital-based

Matching Age, sex, Age, sex, Age, sex, Age, sex,
Factors residence residence ethnicity, ethnicity

smoking

Control KORA Non-tobacco Cancer-free Hospital family
recruitment related diseases patients; only medicine clinic

ever smokers

Number of 514/488 1,989/2,625 1,181/1,184 332/505
cases/controls

Genome-wide HumanHap 550K HumanHap 300K HumanHap 300K HumanHap 300K
SNP chip

the Kelsey-Seybold clinics in the Houston Metropolitan area. Only former and current
smokers are involved in the sample with controls frequency matched to the cases accord-
ing to their smoking behavior including age, ethnicity and sex and years of cessation
for former smokers. For the genome-wide genotyping, Illumina HumanHap 300K SNP
chips were used (Amos et al., 2008; Wang et al., 2008; Hung et al., 2008a).

The Toronto lung cancer GWAS involves 332 cases and 505 controls of European
ancestry from a case-control study conducted by the University of Toronto and the
Samuel Lunenfeld Research Institute (SLRI) (Prof. Hung) in the greater Toronto area
between 1997 and 2002. The case-control study is hospital-based and involves 445
lung cancer cases recruited at the hospitals in the network of University of Toronto
and SLRI and 962 controls randomly selected from individuals visiting family medicine
clinics. Controls are frequency matched by age, sex and ethnicity. The data comprise
lifestyle risk factors, occupational, medical and family history as well as blood samples
of more than 85% of the participants. Genome-wide genotyping was done on Illumina
HumanHap 300K SNP chips (Hung et al., 2008b).

In the following we will abbreviate the different genome-wide studies by GLC (German
GWAS), CE-IARC (Central Europe), MDACC (Texas GWAS) and SLRI (Toronto
GWAS). A short overview of the studies is given in table 7.1.
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7.3 Preprocessing of the data

7.3.1 Quality Control

We conducted a systematic quality control as a first step of our analysis at each study
center separately, using comparable quality criteria (section 3.2.3). We will outline the
procedure for the German Lung Cancer Study.
Of the 514 cases and 488 controls selected for GLC study, genotyping failed for two of
the cases. 12 additional individuals (8 cases, 4 controls) were excluded since genotypes
for more than 10% of the 561,466 SNPs were missing. 966 of the remaining 988 persons
had a call rate of more than 95% and the overall genotyping rate was 99.4%. We started
checking the sex of the individuals based on the X-chromosomal information. For one
case, the determined sex did not agree with the reported one, so that we excluded this
person. Two cases showed a low rate of heterozygous genotypes in comparison to the
other individuals, two controls showed an excess of heterozygotes. These were excluded
as well. As a next step cryptic relatedness between the different participants was in-
vestigated by determining pairwise similarities. We identified 3 case pairs as duplicates
or monozygotic twins and 17 pairs of second degree relatives. For each of the identical
pairs the smoking status agreed and we removed one individual at random. The second
degree pairs included 13 different persons, most of them involved in a complex network
of relatedness as shown in figure 7.1. Of this group, we removed as few individuals
as possible (2 cases and 4 controls) so that no second degree relatives remained in the
sample.
As a last step of quality control for the individuals, we performed a principal component
analysis (PCA) on a subset of nearly 100,000 SNPs to assess population structure and
identify ethnic outliers (section 3.2.4). Therefore we used the software EIGENSOFT
(Price et al., 2006). Since we restricted our analyses to Caucasians, six individuals (4
cases, 2 controls) with a Non-Caucasian self-reported ethnicity (Arabs, Asians) were
removed in advance. For a previous analysis, STRUCTURE was applied to the data
set to assign the different probes to European, African or Asian ancestry with HapMap
Phase II data as reference sample (International HapMap Consortium, 2005). Two con-
trols with 40% African background were identified. These were the controls strongly
deviating from the sample heterozygosity distribution that was mentioned above and
they were already excluded. Furthermore, one of the self-rated Arabs was clearly identi-
fied. We also discovered that some of the cases and controls with an Eastern European
and Russian background include a low percentage of Asian background (up to 16%). A
graphical presentation can be seen in figure 7.2. The SNP subset used for EIGENSOFT
was obtained by selecting markers from the whole set, so that no high LD between
the chosen markers remained. Additionally, non-autosomal SNPs were removed as well
as monomorphic SNPs. The principle component axes were tested for statistical sig-
nificance by Tracy-Widom statistic (Tracy and Widom, 1992). Our PCA provided 20
eigenvectors with a p-value≤ 0.05, of whom 17 even had p-values ≤ 10−7. In figure 7.3
we can see plots of the first 8 principle components with the single individuals colored
according to their self-reported origin. All four plots show a main core cluster involving
most of the individuals with some outliers in the different directions.

We repeated the PCA using an iterative procedure integrated in EIGENSTRAT to au-
tomatically remove outliers. In the first iteration, 18 persons were removed and 15 more
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Figure 7.1: Overview of the 2nd degree relatives in the GLC. The nodes of this plot
represent the different individuals denoted by their study ID. The edges represent the
relatedness between the individuals with the given number the corresponding similarity
measure. For genetically identical individuals, this measure equals 1, while values close
to 0.5 denote first degree relatives and values close to 0.25 are given for second degree
relatives.

in a second iteration. Thereby, the number of significant eigenvectors was reduced to 4
with a p-value<0.05, involving 3 highly significant ones. In 4 more iteration steps, 3, 6,
1 and 1 more individuals were removed before the outlier removal terminated. 3 PC axes
still were significant. When checking the reported ethnicities for the identified outliers,
we found that several were of East European or Russian origin, as also observable from
figure 7.3. We decided to remove the outliers from the first two iterations and to use
the first 4 principle components (PCs) in following analyses when possible. These four
PCs are displayed in figure 7.4. Individuals are colored depending on the originating
study (LUCY, Heidelberg, KORA). We see no major genetic differences between these
groups. In total, the final sample involved 935 individuals for the analyses (467 cases
and 468 controls).
Subsequently SNPs were filtered according to their proportion of missings, minor allele
frequency or deviation from HWE within the controls. We removed 7,889 SNPs with
more than 5% missing genotypes, 23,778 SNPs with a MAF < 1% and 405 SNPs with
a HWE p-value within controls < 10−7. Furthermore, 2.728 heterozygous haploid geno-
types (SNPs on X or Y chromosome in men) were detected and set to missing. Finally,
after frequency and genotype pruning 529,730 SNPs remained.
All quality procedures – except of the identification of outliers and population structure
– were performed with the GWAS software PLINK. More detailed information on the
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Figure 7.2: Assignment of the GLC individuals to Caucasian, Asian and African
genetic background represented by Hap Map phase II reference populations CEU, HCB
and YRI using the population structure software STRUCTURE (Pritchard et al., 2000).

Table 7.2: Quality criteria used for our TRICL GWAS analyses

SNP specific quality checks

Call rate ≥ 95%
Minor allele frequency ≥ 1%
Hardy Weinberg Equilibrium in controls pHWE−controls ≥ 10−7

Individual specific quality checks

Call rate ≥ 90%
Sex mismatch female F < 0.2 and male F > 0.8
Heterozygosity [mean F +/- 6 standard deviation F]
Cryptic relatedness proportion alleles IBD < 0.20
Population outliers Caucasian ancestry,

| PLINKs nearest neighbor Z score | <4

motivation for the different filter criteria and the corresponding usage of PLINK can be
found in the appendix A.2. An overview of the thresholds used for the quality filtering
process is given in table 7.2.
Since we did not strictly fix how outliers should be identified, the methods varied for
the different studies. For the Central Europe study, STRUCTURE was used, defining
population outliers as individuals with an ancestry probability rate of being Caucasian
< 80%. MD Anderson used the outlier detection diagnostic in PLINK (absolute value
of the nearest neighbor Z score > 4).
For the SLRI, MDACC and CE-IARC study 331, 1,150 and 1,901 lung cancer cases,
499, 1,134 and 2,503 controls and 314,072, 312,452 and 310,045 SNP remained for the
analysis after excluding subjects and markers based on the different quality criteria.
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Figure 7.3: Principle component analysis of GLC. Plots of the first 8 principle com-
ponents with outliers included. The different colors represent the different reported eth-
nicities.
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Figure 7.4: Principle component analysis of GLC. Plots of the first 4 principle compo-
nents with outliers excluded. The different colors represent the three different underlying
studies.

7.3.2 Age, sex, smoking and ethnicity

Beside the information about case-control status, additional phenotypic data considered
as covariates are sex, age, smoking status and quantity as well as ethnicity. An overview
about the corresponding distributions of these characteristics within the different stud-
ies is given in table 7.3.
Sex and age as important confounders for clinical questions are typically considered.
Sex was coded by an indicator with 0 for men and 1 for women. With respect to age, we
defined five-year intervals for age at diagnosis for cases or at interview for controls. Age
intervals are usually used to give adequate odds ratios for the different groups. We chose
intervals < 50, 50− 54, 55− 59, 60− 64, 65− 69, 70− 74 and > 75 years. Within GLC,
involving young people only with age of diagnosis before 51, we furthermore splitted the
youngest age class and used < 45, 45− 49 and 50− 54. In SLRI, age was missing for 1
case and 1 control, in GLC 9 persons were without a record of age.
Since smoking is the most important risk factor in lung cancer, with a strong dose-
response relationship (Ruano-Ravina et al., 2003), smoking status as well as quantity
of smoking should be considered in the analysis. The smoking status was coded by
never, former, current or any smoker. Never smokers were defined as no more than
100 cigarettes in life when possible or by the original definition of the single studies
else. Former smokers were individuals that stopped smoking for at least 2 years. Any
smokers involved all individuals that had smoked before with the current smoking state
missing. Current, former and any smokers were combined to ever smokers. MDACC
involved only ever smokers. The number of never smoking cases in GLC, SLRI and CE-
IARC was low. Smoking status was missing only for 5 controls of SLRI and 2 controls
of CE-IARC. A usual measure for the smoking quantity is pack-years. Pack-years are
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7.3 Preprocessing of the data

Figure 7.5: Distribution of ever smoker pack-years for the different analyzed lung
cancer GWAS

defined by the number of packs smoked per day multiplied by the years as a smoker
(Amos et al., 2008). One pack was assumed to include 20 cigarettes. Hence, pack-years
describe the total amount of smoked packs. In figure 7.5 we can see the distribution
of pack-years for ever smokers of the different studies separately for cases and controls.
Cases tend to higher numbers of pack-years than controls. Using these numbers we
furthermore defined another binary variable for the smoking quantity, categorizing ever
smokers in moderate or heavy smokers. Moderate smokers were defined as less or equal
to 20 pack-years, while heavy smokers were defined with more than 20 pack-years. While
in heavy smokers the genetic predisposition for lung cancer is nearly negligible due to
the strong effect of smoking, in moderate smokers, protective or risk increasing genes
may have a meaningful contribution to the development of lung cancer. We observe
that the proportion of moderate smokers within the cases is lower in comparison to the
controls, what confirms our graphical impression of the increased smoking behavior in
cases. Note, for the SLRI data, only for 183 of the 240 ever-smoker cases information
about the smoking amount was given, while 228 of 279 controls had available pack-years
information. Most of the subjects with missing pack-years (about 100) are from the any
smoker category, with the current status unspecified since no smoking stop dates are
available. For a few more subjects from the other smoking categories either smoking
start or stop date was missing and hence pack-years could not be obtained. In the GLC
study pack-years were missing for 21 ever smoking cases and only 1 ever smoking control.
For CE-IARC, 5 ever smoking cases and 10 ever smoking controls had no specification
of smoking quantity.
The last covariate concerns the principal components for the genetic background repre-
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7 TRICL lung cancer GWAS integrating pathways and GxE interaction
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Figure 7.6: First two principle components of the IARC Central Europe study, CE-
IARC, comprising individuals from 6 different central and eastern European countries
(colors). The PCs reflect the genetic differences due to the individuals origin.

senting the ethnic origin of the individuals. For the different studies, we used 4 (GLC),
6 (CE-IARC), 2 (MDACC) and 3 (SLRI) PCs to adjust for population structure in anal-
yses where this was possible. For the CE-IARC, the first two PCs clearly represented
the 6 different European countries involved (figure 7.6).

7.3.3 Gene and biological pathway information

For our pathway based analyses, we decided to use biological pathways from one
systematic database and agreed on KEGG with TRICL. In February 2012, the KEGG
database comprised 245 pathways with 5,981 genes that we extracted for our purpose
using the R-package KEGGSOAP (Zhang and Gentleman, 2011).
For the SNP to gene assignment, we used the gene information available
on the NCBI homepage (ftp://ftp ncbi.gov/gene/DATA/GENE INFO /Mam-
malia/Homo sapiens gene info.gz, May 16th 2011). Information for 45,650 human genes
was available including 21.545 protein-coding genes, 12,163 pseudo-genes and different
kinds of non-protein-coding RNA genes. We defined a gene region as the given start
and end position extended by 20,000 base pairs in each direction. A SNP located
within this region was assigned to the gene. An assignment of one SNP to several genes
was possible. When no direct gene was available, a SNP was assigned to its nearest
gene within +/- 480,000 base pairs. Of the 538.860 SNPs on chromosomes 1-22, X and
Y that occurred in our studies, 9,025 SNPs could not be assigned to a gene since no
gene within +/-480,000 bp was available. In total 35,270 of the genes involved at least
1-1,767 SNPs directly or within the 480K neighborhood. The median number of SNPs
assigned per gene was 10.
For one of our strategies integrating pathway information for the analysis of GxE
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7.4 Aims of analysis and presentation of results

Table 7.3: Characteristics of the investigated lung cancer GWAS.
(QC = quality control);moderate smoker: ≤ 20 pack-years; heavy smoker: > 20 pack-
years

Study GLC IARC-CE MDACC SLRI
# SNPs after QC 529730 312452 314072 310045

cases controls cases controls cases controls cases controls
# individuals after QC 467 468 1,901 2,503 1,150 1,134 331 499

Sex
Male 286 237 1,493 1,821 655 644 159 190
Female 181 231 408 682 495 490 172 309

Age
<45 169 112
45-49 239 283

246 415 176 120 41 233

50-54 50 73 272 378 109 107 32 62
55-59 - - 329 394 158 210 28 46
60-64 - - 386 435 186 278 46 32
65-69 - - 353 430 202 236 62 35
70-74 - - 286 368 184 134 69 41
≥75 - - 29 83 135 49 52 49
missing 9 0 - - - - 1 1

Smoking status
Never 35 214 144 884 - - 91 215
Former 45 121 373 656 601 655 95 143
Current 377 133 1380 954 549 479 90 90
Any 10 - 4 7 - - 55 46
missing - - - 2 - - - 5

Smoking quantity (ever smokers only)
Moderate 83 152 248 619 160 230 38 122
Heavy 328 101 1,504 988 990 904 145 106
missing 21 1 5 10 - - 58 51

interactions, smoking related pathways were selected from the collection of biological
KEGG pathways by a specialist in this area (Xifeng Wu, MDACC) based on literature.
The gene and biological pathway information was applied identical to all four data sets.

7.4 Aims of analysis and presentation of results

In the four presented lung cancer GWAS our interest was the application of the empirical
hierarchical Bayes model for

1. analysis of main effects integrating pathway information (section 7.5),

2. analysis of GxE interaction effects (section 7.6),

3. analysis of GxE interaction effects integrating pathway information (section 7.7).

For comparison purpose, we applied two gene set analysis methods and carried out a
variety of tests for the analysis of GxE interactions. The pathway analyses as well as
the GxE analyses are building upon simple single SNP test results. Therefore, different
logistic regression models were used as an initial step, followed by the analyses with
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the empirical hierarchical Bayes method and other approaches for comparison. In the
following three sections, the different strategies for the analyses are outlined in more
detail and the corresponding results are presented.

For genome-wide significance in the initial regression results, we used a Bonferroni cor-
rection with a global alpha-level of 0.05.
When comparing different methods with each other, we used SNP lists if the approaches
work on the SNP level, as the different tests for GxE interactions do. However, for study
comparison we used gene rankings since not each SNP is available for every study and
furthermore it is sufficient if an effect of the same genetic region is detected within
different studies, not necessarily due to exactly the same SNP. Each gene was repre-
sented by the top SNP assigned to that gene, as done for GSEA and SUMSTAT. We
concentrated on the top ranked 100 SNPs or genes. For the HBP, the posterior quantity
EMi

, i = 1, . . . , NM , was used as re-ranking criterion (section 4.4.2). This decision was
based on the simulation results of Lewinger et al. (2007). He showed that the posterior
expectation of the strength of an association effect EMi

and the posterior probability of
association PMi

perform better than the conditional expectation E+
Mi

. We preferred EMi

since it considers both information, the posterior expectation for an association and the
corresponding probability (section 4.4.3). For GSEA, the LES genes are considered as
“significant” genes. We talk about a “replicated gene”, if it occurs in the top 100 or
LES for at least two different studies.
For the hierarchical Bayes prioritization, we considered pathways occurring at least for
two different studies in the top 10 when ranked according to their corresponding β or
µ coefficient as done in section 5.4. As a reminder, the β coefficients (equation 4.19)
represent the increase or decrease of the prior probability of association for each SNP
involved in the corresponding pathway. The µ coefficients (equation 4.20) represent the
increase or decrease of the prior strength of association for each SNP involved in the
corresponding pathway. We talk about a “replicated pathway” with respect to HBP, if
it occurs in the top 10 according to β or µ for at least two different studies.
For SUMSTAT and GSEA nearly none of the pathways reached FDR significance
(FDR ≤ 0.05). Therefore, we considered pathways with a nominal p-value ≤ 0.05
and denoted a pathway as “replicated”, when it was nominally significant in at least
two different studies.
For graphical representation of our results we used among others a list comparison plot
as recently proposed by Antosh et al. (2011) to assess the similarity of two ranked gene
lists. Starting with the highest ranks of two such ranking lists of NG different genes
each, a small number of top genes (tG) for each of the lists is selected. These top gene
subsets are then compared to each other. The fraction of the selected genes (tG/NG)
per list is plotted against the fraction of both lists’ common genes within these top ones
(cG/tG). In the following, the latter will be denoted as proportional overlap. Then,
we march down the ranks by adding further genes to the selected top ones step by step
and plot again the fraction of genes in common between the two lists of selected genes
as function of fraction of genes selected in each list. Furthermore, we investigated if
the proportional overlap for a particular number of top ranks between the two lists can
be explained by chance alone or if it is higher than expected, pinpointing to true gene
effects. In the first case the proportion of genes in the overlap should be roughly equal
to the fraction of genes selected. For this purpose, we simply used the hypergeometric
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distribution for the first top gene comparison to assess significance of the proportional
overlap. For any further step, not the proportional overlap itself is evaluated, but the
increase in the proportional overlap considering the situation of the last step. We used
that kind of plot not only for gene lists, but also for other kinds of ranking list, e.g.
based on SNPs or pathways.
Many results are exemplarily displayed for GLC, since this is the German GWAS. When
figures and tables for a second study are shown, we chose the Central Europe data as
the largest study with presumably highest power.

7.5 Analysis of main effects integrating pathway information

For the analysis of main effects integrating pathway information, two different logistic
regression models were carried out for each SNP assuming a log-additive effect (SNP =
0,1,2). In the first model, we adjusted for sex, age and principal components. In the
second model, smoking status coded by 0 for never smokers and by 1 for ever smokers
as well as the number of pack-years representing the dose-response relationship were
additionally involved. The models are given by

Model 1 (M1):

logit(case/control) =α + β1SNP + β2gender +
9∑
i=3

βiagei−2 +
15∑
j=10

βjPCj−9

Model 2 (M2):

logit(case/control) =α + β1SNP + β2gender +
9∑
i=3

βiagei−2 +
15∑
j=10

βjPCj−9

+β16smokingstatus+ β17packyears

age1, . . . , age7 are dummy variables representing the different age classes, PC1, . . . , PC6

the principle components with optionally PCj = 0 for j = 3, 4, 5, 6 depending on the
particular study. In the following results part, we will use the abbreviations M1 and
M2 to represent our two different pathway models.
Based on the logistic regression results, the hierarchical Bayes prioritization including
pathway information (Lewinger et al., 2007) and two other gene set analysis methods
were applied. We chose the GSEA as the most popular gene set method and the SUM-
STAT approach that has shown to be more powerful (Tintle et al., 2009a; Fehringer
et al., 2012). For both, 1000 permutations were performed using PLINK (Purcell et al.,
2007). FDR was calculated as described in section 5.3.4. Pathways with less than
5 genes occurring in the data were excluded from the analysis, so that 234 pathways
were analyzed. For the hierarchical Bayes prioritization, the Z matrix was built by 235
columns representing an intercept and the 234 pathways. The matrix entry for each
SNP-pathway combination was set to 1 for SNPs involved in the pathway and to 0
when the gene(s) corresponding to the SNP did not occur within the pathway.
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7.5 Analysis of main effects integrating pathway information

Figure 7.8: QQ plots of SNP main effects from both pathway regression models for
GLC and CE-IARC

7.5.1 Initial main effect results

In figure 7.7 the Manhattan plots for both pathway models of all studies are given to
convey an impression of the single SNP results. None of the studies showed a critical
inflation factor λGC, with the largest value of λGC = 1.041 occurring for CE-IARC M1.
The QQ-plots with the λGC inflation factors for GLC and CE-IARC are shown in figure
7.8. The other QQ-plots are given in the appendix figure B.1.
For GLC, we have some single SNPs spread across the genome with a p ≤ 10−5, but
no striking region. For MDACC and CE-IARC we clearly identify the two SNPs on
chromosome 15q25 that were published for lung cancer some years ago (Amos et al.,
2008; Hung et al., 2008b; Thorgeirsson et al., 2008). This is not surprising, since these
two data sets are underlying two of the corresponding publications (MDACC: Amos
et al. (2008) and CE-IARC: Hung et al. (2008b)). For the CE-IARC M1, rs8034191
reached genome-wide significance, the neighboring SNP rs1051730 barely missed the
genome-wide level with a p-value of 5.7 ·10−8. Although the signal is much weaker given
the pathway model considering smoking as covariate, both SNPs are the top ones in
that analysis as well. These SNPs furthermore stand out for both pathway models of
MDACC. They are the two top SNPs for M1 and within the top 10 SNPs for M2. For
CE-IARC, a peak of 10 moderately associated SNPs in the 6p22 region is furthermore
found. This was already mentioned in Hung et al. (2008b), but still has to be verified.

173



7 TRICL lung cancer GWAS integrating pathways and GxE interaction

Beyond that, only single SNPs reached a p-value ≤ 10−5 and no additional interesting
region was observed. For SLRI M1, none of the SNPs even reached a p ≤ 10−5.

7.5.2 Pathway hyperparameter estimates of HBP

Of the 234 investigated pathways, between 150 and 205 had positive β-regression co-
efficients for the different studies and pathway models and between 167 and 206 had
positive µ-regression coefficients, related to the prior probability of association and the
corresponding prior strength of association effect for SNPs within a pathway. For each
analysis, at least 80% of the pathways had the same sign of β- and µ-coefficient. For
a particular pathway, this means that for all its SNPs the prior probability and prior
strength of association are either both increased or both decreased. The same holds
for the µ coefficients between the different pathway models and studies. For β, we had
the same sign across studies for at least 70%. The prior probability of association for
SNPs belonging to none of the pathways (β0) was in the range of 10−9 for both pathway
models in all studies. For M1 of GLC and M2 of CE-IARC and SLRI, the corresponding
“baseline” µ was 0, for the others it ranged from 0.69 to 2.21.

7.5.3 Comparison of top pathways between studies

Hierarchical Bayes Prioritization
When comparing the pathway rankings according to β- or µ-coefficients, the correlation
between the different studies is high. In particular, the analyses split into two groups,
within which we see higher similarities on the top of the ranking lists than expected
by chance. The first group involves model 1 of GLC and model 2 of CE-IARC and
SLRI (group A), the second group compasses model 1 of CE-IARC, MDACC, SLRI and
model 2 of MDACC and GLC (group B). In all cases the correlation according to β is
higher than with respect to µ. In figure 7.9 we can see list comparison plots between the
models of GLC and CE-IARC representative for the correlation within both groups and
between them. The corresponding numbers of overlapping top 10 pathways between the
different studies and pathway models can be seen in table 7.4.
The possible reasons for this particular grouping may be the role of smoking as a con-
founding factor in the given context and the differences in populations underlying the
four studies. MDACC includes no never smokers, so that M1 and M2 differ only in the
adjustment for the amount of smoking. This results in a very similar pathway ranking
for both models, so that they fall into one group. For GLC, SLRI and CE-IARC the
pathway ranking for both models differs more severe, since the differentiation between
never and ever smokers is additionally relevant. For model M1, smoking status as a con-
founder is not considered at all, resulting in top pathways that may be rather related
to smoking than to lung cancer directly. M2 however accounts for the smoking status,
leading to different, lung cancer relevant pathways. Therefore, both models split to the
two groups. The list comparison plot comparing the pathway ranking of M1 and M2 for
GLC and MDACC can be seen in figure 7.10. The fact that GLC involves only young
individuals may result to the contrary distribution of the models to the groups, since
the importance of smoking may be different at younger ages.
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Figure 7.9: List comparison plots of pathway rankings according to β and µ of HBP
between different studies. The y-axis shows the proportion of common pathways for a
particular number of top pathways given on the x-axis. The stars indicate a significant
overlap.

Figure 7.10: List comparison plots of pathway rankings according to β and µ of HBP
between the different pathway models in GLC and MDACC. The y-axis shows the pro-
portion of common pathways for a particular number of top pathways given on the x-axis.
The stars indicate a significant overlap.
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Table 7.4: Numbers of common top 10 pathways between the different studies and
pathway models using β regression coefficients as ranking criterion on the upper triangle
or µ regression coefficients on the lower triangle.

β

GLC CE-IARC MDACC SLRI

M1 M2 M1 M2 M1 M2 M1 M2

M1 2 2 9 2 2 2 9
GLC

M2 0 7 2 10 9 9 2

M1 0 5 2 7 6 7 2
CE-IARC

M2 9 1 0 2 2 2 9

M1 0 9 4 1 9 9 2
MDACC

M2 0 2 6 0 2 9 2

M1 0 9 4 1 9 1 2

µ

SLRI
M2 6 1 0 7 1 0 1

Table 7.5: Numbers of common top 10 pathways between the different studies and
pathway models using β regression coefficients as ranking criterion or µ regression coef-
ficients. Both pathway models (M1 and M2) were combined for this comparison.

one study two studies three studies four studies

β 6 2 9 7
µ 10 7 11 5

Appendix tables B.2 and B.3 give lists of the pathways that belong to the top 10 for
at least two different studies. These are 16 pathways using β as pathway ranking
criterion and 15 using µ. All of these pathways were not even for 2 but at least 3 of the
studies in the top 10. Even 7 (β) and 4 (µ) of the pathways were in the top 10 for all 4
studies. In table 7.5 the numbers of pathways occurring in only one study, two, three
or four different studies regardless of the corresponding pathway model (M1 and M2)
are given. Comparing the top pathways for β and µ, 2 pathways occurred in both lists.

Gene set enrichment analysis
The gene set enrichment analysis identified overall only one pathway as significant
according to FDR≤ 0.05 in CE-IARC. The corresponding enrichment score was driven
by 35 of the 123 genes totally involved. However, this pathway not even reached a
nominal p-value ≤ 0.05 for any of the other studies.
Several pathways reached nominal significance for each of the studies (pnominal ≤ 0.05).
The number of significant pathways for each of the 8 analyses as well as the overlap
between model 1 and 2 per study is shown in table 7.6. The overlap between the
two different pathway models was significant for the two larger studies MDACC and
CE-IARC.
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Table 7.6: Number of nominal significant pathways for both smoking models of the
different lung cancer studies with GSEA and SUMSTAT. The gene set analysis is based
on single SNP main effects.

GSEA SUMSTAT

GLC CE-IARC MDACC SLRI GLC CE-IARC MDACC SLRI

model 1 8 14 5 10 26 51 15 16
model 2 8 15 10 14 5 49 14 19

model 1 ∩ 2 1 8 5 2 4 39 12 9
model 1 ∪ 2 15 21 10 22 27 61 17 26

In figure 7.11 we see the overlap of nominal significant pathways between the four
different studies for GSEA. In total, 8 pathways were identified in two different studies
and one pathway in three of the studies (CE-IARC M1+M2, SLRI M1, GLC M2). In
the appendix table B.4 a list of these 9 pathways and their corresponding nominal
p-values can be found. The overlap is significant for none of the study pairs considering
the sum of pathways for model 1 and model 2. However, considering the two different
models and separately looking at the common pathway per model, we have a significant
overlap for CE-IARC M1 and MDACC M1 with 2 common pathways, CE-IARC M1
and SLRI M2 with 3 shared pathways, SLRI M1 and GLC M2 with an overlap of 2.

SUMSTAT method
As for GSEA, the SUMSTAT method identified only for CE-IARC M1 significant
pathways according to FDR (≤ 0.05). These were the pathway that was found with
GSEA as well and two additional ones. Only one of the latter had a nominal significant
result in one of the other studies (SLRI M2).
Several pathways reached nominal significance for each of the studies (pnominal ≤ 0.05).
Their number is shown in table 7.6. We clearly see that the numbers are much
higher than for GSEA with exception of GLC M2. In particular, CE-IARC showed a
really high number of significant pathways, making more than 20% of all considered
pathways. The overlap between the two models was significant for all four studies
(p ≤ 0.05). Comparing the identified pathways between the different studies, only SLRI
and CE-IARC M2 had a significant overlap with 8 common pathways. This leads to
a significant overlap of the sum of pathways over model 1 and model 2 for SLRI and
CE-IARC as well. The consistency between the different studies is illustrated in figure
7.11b. In total, 26 pathways were identified in at least two different studies. Two of
these were detected in three of the studies and one pathway had a p-value ≤ 0.05 for
all four. The latter was found with both models for the larger studies CE-IARC and
MDACC, and with M1 only for SLRI and GLC. Most of the 26 pathways were found
with at least one of the models for the CE-IARC data. Appendix table B.5 gives the
26 pathways and their corresponding nominal p-values.

7.5.4 Comparison of top pathways between methods

Of the pathways in both HBP ranking lists (table B.2 for β, B.3 for µ) we find three of
them in the GSEA list (table B.4) as well. Two of them were found by SUMSTAT for
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(a) GSEA (b) SUMSTAT

Figure 7.11: Overlap of nominal significant pathways for the different lung cancer
studies. The analysis is based on single SNP main effects. We build the sum over both
pathways models.

two different studies as well (table B.5).
Comparing the numbers of pathways with nominal p-value ≤ 0.05 between GSEA and
SUMSTAT, many of the pathways found with GSEA were detected by SUMSTAT as
well. However, the GSEA pathways are not a subset of the SUMSTAT ones, but GSEA
also found some pathways not identified by SUMSTAT. In table 7.7 we can see the
corresponding numbers.
Comparing the lists of replicated results involving 9 pathways for GSEA and 26 pathways
for SUMSTAT (table B.4 and table B.5), we find more than half of the GSEA pathways
for SUMSTAT as well.

7.5.5 Resulting pathways

The two pathways occurring on both lists (β and µ) of replicated HBP pathways (ap-
pendix tables B.3 and B.2) were hsa000430 and hsa003020. hsa000430 (taurine and
hypotaurine metabolism) was within the β top 10 for all 8 analyses and in the µ top
10 for GLC model 2 and MDACC and SLRI model 1, with a maximum rank of 23 for
the other analyses. The other pathway, hsa003020 (RNA polymerase), was within the
β top 10 for GLC model 1 and CE-IARC and SLRI model 2 with a maximum rank of

Table 7.7: Number of nominal significant pathways for GSEA and SUMSTAT and the
corresponding overlap between both methods. The gene set analysis is based on single
SNP main effects.

GLC CE-IARC MDACC SLRI

M1 M2 M1 M2 M1 M2 M1 M2

GSEA 8 8 14 15 5 10 10 14
SUMSTAT 26 5 51 49 15 14 19 19

GSEA ∩ SUMSTAT 6 0 12 13 2 4 7 8
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32 and within the µ top 10 for GLC model 2, MDACC model 1 and SLRI model 1 and
ranked up to 59.
The pathways identified by GSEA and SUMSTAT as significant according to FDR
was the systemic lupus erythematosus pathway (hsa05322 ) in CE-IARC M1 (GSEA
FDR = 0.011, SUMSTAT FDR = 0.017). Additionally, using SUMSTAT, type 1
diabetes mellitus (hsa04940, FDR = 0.046) and Wnt signaling pathway (hsa04310,
FDR = 0.048) reached FDR significance for CE-IARC M1 as well.
With GSEA, the (alpha-Linolenic acid metabolism pathway; hsa00592 ) reached nomi-
nal significance in three of the studies (CE-IARC (M1+M2), SLRI (M1) and GLC (M2)
(appendix table B.4). Using SUMSTAT, 2 such pathways were detected, cholinergic
synapse (hsa04725 ) and HTLV-I infection (hsa05166 ). Neuroactive ligand-receptor in-
teraction (hsa04080 ), had a p-value ≤ 0.05 for all four studies. The latter was found
with both models for the larger studies CE-IARC and MDACC, and with M1 only for
SLRI and GLC (appendix table B.3). Of the pathways in both HBP lists in tables
B.3 and B.2, we find three of them in the GSEA list as well. These are hsa003450
(non-homologous end joining), hsa000270 (cysteine and methionine metabolism) and
hsa000592 (alpha-linolenic acid metabolism). hsa003450 was in the β top 10 for all
analyses of group B (see page 7.5.3), with maximum rank of 33 for the others, and was
detected by GSEA for GLC M2, as well as MDACC M1 and M2. hsa000270 was in the
β top 10 for group A with maximum rank of 54 and identified in MDACC and SLRI
M2 by GSEA. The third pathway, hsa000592 was in µ top 10 for the group B - except
for MDACC M2 (rank 11) - and ranked on 117, 118 and 120 for group A. Nominal
significance using GSEA was given for GLC M2, SLRI M1 and CE-IARC M1 as well
as model 2. The first two of these pathways were on the SUMSTAT list in table B.5 as
well.
Pathways additionally replicated by GSEA and SUMSTAT were neuroactive ligand-
receptor interaction (hsa04080 ), colorectal cancer (hsa05210 ) and cell adhesion
molecules (hsa04514 ).

7.5.6 Comparison of top genes between studies

Hierarchical Bayes Prioritization
As mentioned in section 7.4, we used EM for SNP re-ranking after the analysis with
HBP for pathway integration. In figure 7.12 we can see a comparison of the rankings
according to the three different posterior quantities PMi

, ,E+
Mi

and EMi
, i = 1, . . . , NM .

For all studies and both pathway models, PMi
and EMi

were highly correlated to each
other, while E+

M had a much lower similarity with both. This supports Lewinger et al.
(2007) observations in his simulation studies that PMi

and EMi
show similar power

while E+
Mi

performs worse. Although the results presented in the following are based
on EMi

, the results are representative for the ranking according to PMi
as well due to

the high correlation.
When comparing the initial regression gene ranking to the gene ranking after inte-
gration of pathway information, we have a gain of consistency between the studies.
In figure 7.13, the pairwise comparison of rankings between studies for HBP and
initial regression are graphically contrasted in list comparison-plot. Considering M1,
the concordance between CE-IARC, GLC and MDACC is clearly increased. SLRI
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Figure 7.12: List comparison plots of gene rankings according to different HBP pos-
terior quantities E+

Mi
,PMi

and EMi
. The y-axis shows the proportion of common genes

for a particular number of top genes given on the x-axis.

(a) Pathway model 1 (b) Pathway model 2

Figure 7.13: List comparison plots of gene rankings between different studies for HBP
(EM) and initial regression results. The y-axis shows the proportion of common genes
for a particular number of top genes given on the x-axis. The darker points indicate a
significant overlap.
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Table 7.8: Number of overlapping top 100 genes between studies and models contrasted
for initial regression results (upper triangle) and HBP (lower triangle)

Initial regression analysis

GLC CE-IARC MDACC SLRI
M1 M2 M1 M2 M1 M2 M1 M2

M1 - 32 2 1 5 4 3 3
GLC

M2 12 - 1 0 1 1 2 2

M1 2 8 - 56 3 3 2 1
CE-IARC

M2 52 2 5 - 3 3 1 0

M1 11 4 13 8 - 81 1 1
MDACC

M2 3 8 32 2 34 - 2 1

M1 0 4 11 0 20 10 - 34

H
ie

ra
rc

h
ic

a
l

B
a
y
e
s

P
ri

o
ri

ti
z
a
ti

o
n

SLRI
M2 60 3 1 55 13 2 0 -

is the only study behaving differently. For SLRI and GLC, similar consistencies are
observed with initial regression and HBP, comparing SLRI ranking with CE-IARC and
MDACC an improvement on the top ranks is observed, while the similarity gets worse
with increasing ranks. For M2, all pairs show a gain in consistency using HBP, with
CE-IARC and SLRI in particular worth to mention, with at least 40% overlap over the
whole gene ranking lists.
In table 7.8, the overlap of the top 100 genes between the different studies of initial
ranking and ranking based on the posterior quantity are shown. Again, we see a clear
increase in consistency by pathway integration. For the initial results, 3 overlapping
genes were given for CE-IARC and MDACC, for all other combinations we had only
1 or even no gene in common. After the integration of pathway information and
re-ranking of the SNPs, the number of common genes between the different studies
increased for most combinations to up to 60 genes. In particular, for all pairwise
comparisons of GLC M1, CE-IARC M2 and SLRI M2, as well as MDACC M1 with
CE-IARC M2 and SLRI M1 a high number of common genes is observed.
Between the two models per study a higher number of common genes was observed
with initial regression. A possible reason, as already mentioned before, may be that
the top results for M1, for all studies except of MDACC, are not necessarily related
to lung cancer directly but possibly to the unconsidered confounding factor smoking.
While this already affects the top genes for the initial regression, the effect may be even
increased by the additional pathway information used for the HBP. This even more
severe emerge of the smoking related genes for M1 leads to less common genes between
M1 and M2 per study.
Considering the top 100 genes for each of the analyses, we observe 521 different genes.
Of these, 112 occur in 2 different studies, 52 occur in 3 studies, and 4 are in top 100
for at least one model of all four studies. For the initial regression, 577 different genes
were observed considering the top 100 genes for each analysis. Only 20 of these occur
in 2 different studies. None occurred in 3 or four studies.

Gene set enrichment analysis
Table 7.9 shows the total number of LES genes extracted from the pathways with a
nominal p≤ 0.05 in the GSEA for each of the analyses. While GLC, CE-IARC and
SLRI had around 300-400 LES genes for each of the analyses, for the MDACC study
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Table 7.9: Number of LES genes of GSEA for the different studies

GLC CE-IARC MDACC SLRI

model 1 304 301 47 321
model 2 284 423 94 343

model 1 ∩ 2 108 204 48 66
model 1 ∪ 2 481 521 94 599

Table 7.10: Number of overlapping LES genes of GSEA between the different studies
and corresponding p-values for the overlap in brackets

GLC GLC GLC CE-IARC CE-IARC MDACC
CE-IARC MDACC SLRI MDACC SLRI SLRI

model 12 3 99 17 44 3
1 (0.8599) (0.4507) (2.2· 10-54) (6.7· 10-11) (8.1· 10-10) (0.4870)

model 38 10 24 17 70 14
2 (0.0001) (0.0151) (0.0396) (0.0003) (1.1· 10-16) (0.0010)

model 44 66 47 75 204 70
1 ∪ 2 (8.1· 10-10) (7.2· 10-21) (1.3· 10-06) (1.7· 10-29) (3.6· 10-179) (1.1· 10-16)

only 47 (M1) and 94 (M2) LES genes occurred. A reason for the identification of less
LES genes may be the lack of never smokers in the MDACC data.
In the same table we furthermore see the number of intersecting LES genes between
M1 and M2 per study. The intersect is highly significant for all studies. This is
not surprising since the same data are underlying the slightly different analyses. In
particularly noticeable is MDACC, with the LES genes for M1 a subset of these for
M2. This result fits well to our very similar HBP pathway ranking for both models
of MDACC and our hypothesis, that results are much more similar as for the other
studies due to the missing never smokers.
In table 7.10, the overlap of LES genes between the different studies is given. Measured
by the total number of genes occurring within the considered 234 pathways, the overlap
of LES genes between GLC and SLRI, SLRI and CE-IARC as well as CE-IARC
and MDACC M1 is significant. For model 2, between all pairs of studies we have
a significant overlap. The same holds for the combined sets of model 1 and model
2. Comparing the LES genes of M1 of one study and M2 of another study, for most
combinations (9 out of 12) significance is given as well. In total, 1354 different LES
genes occurred. Of these, 299 were LES genes for at least 2 different studies, 40 were
found by 3 different studies. Two genes were identified in the LES of all four studies.

SUMSTAT method
To evaluate the results of SUMSTAT on the gene level, we built for each analysis a
new ranking list containing only these genes occurring in the corresponding significant
pathways. Furthermore, the top 100 genes for each of the new lists was considered and
compared between the different studies. In table 7.11 the number of common top genes
between the different analyses is shown. We clearly see that the number of common
top genes is larger than based on the initial regression results - shown in the upper part
of table 7.8. However, the consistency given by HBP exceeds the one by SUMSTAT. In
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Table 7.11: Number of overlapping top 100 genes between studies and models contrasted
for initial regression results (upper triangle) and SUMSTAT (lower triangle)

Initial regression analysis

GLC CE-IARC MDACC SLRI
M1 M2 M1 M2 M1 M2 M1 M2

M1 - 32 2 1 5 4 3 3
GLC

M2 21 - 1 0 1 1 2 2

M1 6 2 - 56 3 3 2 1
CE-IARC

M2 5 3 55 - 3 3 1 0

M1 10 6 6 8 - 81 1 1
MDACC

M2 9 9 8 8 79 - 2 1

M1 11 3 5 5 4 9 - 34

S
U

M
S

T
A

T

SLRI
M2 4 4 3 3 2 1 43 -

total, 537 different genes occurred in the 8 different top 100 gene lists. 43 were found
for two and only 11 for three different studies. No gene is identified in the top 100 for
all four studies.

7.5.7 Comparison of top genes between methods

The overlap between the replicated genes of the different methods is shown in figure
7.14. The initial list of replicated genes has only one gene in common with GSEA and
SUMSTAT, as well as two more with SUMSTAT. While the initial regression has nearly
no overlap with any of the other methods, GSEA has multiple genes in common with
HBP and SUMSTAT. Two occurred in the replicated gene lists of GSEA, SUMSTAT
and HBP. Between SUMSTAT and HBP, no additional common genes occurred.
Of the 21 genes shared by GSEA and HBP, 9 genes occurred for 3 studies of one method
and 2 studies of the other method. One gene was for both methods within the top 100
genes for all four studies. The remaining 11 genes were found in both methods for two
different studies. Of the 33 genes shared by GSEA and SUMSTAT, 8 genes occurred
for 3 studies of GSEA and 2 studies of SUMSTAT or vice versa. 5 genes occurred for 3
studies in GSEA and SUMSTAT. One of the genes found with GSEA for all 4 studies
occurred on the replicated SUMSTAT gene list, identified for 2 of the studies. All other
genes were found with GSEA and SUMSTAT for 2 different studies.

7.5.8 Resulting genes

For HBP, the genes FADS1,FADS2, HES1 and MIR1908 occurred in the top 100 in all
four studies. FADS2 was in the LES of GSEA for all four studies as well, in addition to
GOT2.
Comparing the replicated genes between the different methods, the initial list of repli-
cated genes has the CHRNA3 gene in common with GSEA and SUMSTAT, as well as
TBL1XR1 and IL7 with SUMSTAT only. Note, CHRNA3 was initially detected for
CE-IARC and MDACC with both models. With SUMSTAT it was found for the same
two studies. The GSEA method however had this gene in the LES of the other two
studies, SLRI and GLC M2.
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Figure 7.14: Comparison of replicated genes between different methods. A gene is
replicated, when it occurs in the top 100 genes for at least two different studies for
initial, SUMSTAT and HBP or at least for two different studies in the LES genes for
GSEA. Initial = initial regression results of the pathway models for SNP main effect.

The genes ADCY3 and ADCY5 occurred in the replicated gene lists of GSEA, SUM-
STAT and HBP. The 8 genes that occurred for 3 studies of GSEA and 2 studies of SUM-
STAT or the other way around were HLA-C, PARD3, PGM2, PLCB1 and CTNNA2,
GALR1, GRIK1, GABRG3. CTH, EGFR, HLA-B, PGM1, PIK3R1 occurred for both
methods for 3 studies. GOT2 found with GSEA for all 4 studies occurred on the
replicated SUMSTAT gene list, identified for 2 of the studies. For HBP and GSEA 9
genes, FEN1, PRKAA2, ITPR1, ADCY2, ADCY3, ADCY8, ADCY9, ATP1B1 and
PRKACG, were for one of the methods within the top 100 genes of 3 different studies
and 2 different studies for the other method. FADS2 was for both methods within the
top 100 genes for all four studies.

7.6 Analysis of GxE interaction effects

Due to the high importance of smoking in lung cancer development not only as an
environmental main effect but also as a component interacting with genetic factors, we
investigated GxE interactions with smoking as the environmental factor. For smoking
classification we chose two different approaches, comparing never with ever smokers
(coded by 0/1) (NE) and moderate with heavy smokers (coded by 0/1) (MH). In the
following results part we will use the abbreviations NE and MH to distinguish the two
different smoking models.
Genetic effects were classified into a binary variable as well by choosing a dominant
inheritance model that pools the heterozygous genotype with the minor homozygous one.
The binary classification of the genetic factor is an assumption for our GxE approach
and we chose the dominant model since the power is much higher than based on a
recessive model, and it is also more plausible in cancer.
For each SNP, we tested for a G-E association separately in cases and controls. The
corresponding logistic regression models are given by

logit(exposed/not exposed) = αcontrols + βcontrolsG (7.1)
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and

logit(exposed/not exposed) = αcases + βcasesG. (7.2)

The latter corresponds to the case-only test of GxE interaction. The resulting parameter
estimates and their corresponding variance estimates were used as input for our empirical
hierarchical Bayes method for GxE interactions as given in section 6.3.
For comparison purpose, the simple case-control test for interaction

logit(case/control) = αge + βgG+ βeE + βgeGE, (7.3)

as well as the empirical Bayes approach of Mukherjee and the two-step approaches of
Albert and Murcray (sections 6.2.2-6.2.4) were applied. For the latter, we additionally
carried out the model testing for an overall G-E association ignoring the disease status

logit(exposed/not exposed) = αall + βallG. (7.4)

The different GxE methods are abbreviated as in chapter 6, with EHB for our new
empirical hierarchical Bayes approach, CC (case-control), CASES (case-only), TWO
(simple two-step), MUK (Mukherjee) and MUR (Murcray).

7.6.1 Initial GxE effect results

Using the traditional case-control test for GxE interactions, none of the SNP markers
reached genome-wide significance in any of the studies. For CE-IARC and SLRI, some
signals build by several SNPs with p < 10−5 were detected. Beyond that, only some
single SNPs reached a p-value level of 10−5. The corresponding Manhattan plots for
both smoking models of GLC and SLRI are shown in the upper row of figure 7.15. The
corresponding plots for CE-IARC and MDACC can be found in the appendix figure B.2.
Although the case-only test has been shown to be much more powerful than the case-
control test for interaction, only one genome-wide significant SNP showed up, testing
never vs. ever smokers in GLC. One more neighboring SNP just missed the genome-wide
significance level. We can see this signal in the corresponding Manhattan plot on the
right in the middle row of figure 7.15a. Furthermore, we see another prominent region
on chromosome 13 for this analysis, formed by 3 different SNPs. One of these SNPs
had a p < 10−5 for case-control test as well. In GLC smoking model MH, 3 SNPs on
chromosome 9 were at the top positions. For SLRI NE four SNPs on chromosome 18 that
were in the top for case-control test, showed up in case-only as well. For moderate vs.
heavy smokers, two SNPs on chromosome 16 are worth to mention. For CE-IARC, two
regions with three SNPs each for smoking model MH were noticeable on chromosome
14 and 3 on chromosome 16.
The plots in the lower row of figure 7.15 show the results testing for a G-E association
within controls only that is often used as representative for the population-based G-E
association. A strong G-E association signal is not observed in any of the studies and
smoking models. None of the SNPs at a top position of the case-only test of the different
studies pinpoints to a G-E association within controls.
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7.6 Analysis of GxE interaction effects

(a) never vs. ever smokers
(b) moderate vs. heavy
smokers

Figure 7.16: QQ plots for GxE interaction effects of GLC never vs. ever smokers and
moderate vs. heavy smokers. Upper row: Case-control test; Middle row: Case-only test;
Lower row: Control-only test

The QQ-plots for the several analyses do not show any inflation of case-only test results
although expected. All λ values for genomic control are even less than 1. For illustration,
the QQ-plots for GLC are shown in figure 7.16.

Due to the failure of even case-only test for GxE interaction to find genome-wide signif-
icant results in these studies, the selection of top SNPs for follow-up is an appropriate
proceeding. To obtain a better SNP ranking, our new empirical hierarchical Bayes
method (EHB) seems useful. In the following we will compare the top 100 SNPs with
respect to several different GxE interaction tests. Afterwards, we will take a look at the
consistency of the top findings between the studies.

7.6.2 Comparison of different GxE methods by their top SNPs

Comparing the top 100 GxE interacting SNPs of the different GxE methods within
study and smoking model, we see for all four lung cancer studies quite similar trends.
In tables 7.12 and 7.13 the data for the GLC and CE-IARC are shown exemplarily. For
all studies, the overlap of top 100 SNPs between the different methods is in general
larger for NE as for MH. While analyzing never vs. ever smokers the overlap of the top
100 SNPs between the different methods in Central Europe is always larger than for the
GLC, we see a reverse trend in moderate vs. heavy smokers. SLRI generally tends to
less common SNPs for both analyses, for MDACC no clear trend can be observed.
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Table 7.12: Comparison of the top 100 SNPs between the different G× E interaction
methods for GLC. CC: case-control, CASES: case-only, TWO: intuitive two-step, MUK:
Mukherjee’s, MUR: Murcrays, EHB: empirical hierarchical Bayes, HBP-GxE: hierarchi-
cal Bayes prioritization based on GxE interaction effects (see section 7.7), EHB-PW:
empirical hierarchical Bayes integrating pathway information (see section 7.7)

moderate vs. heavy
HBP-GxE CC CASES TWO MUK MUR EHB EHB-PW

HBP-GxE 59 9 4 15 0 9 2
CC 24 9 43 15 0 9 1

CASES 13 30 64 60 16 100 5
TWO 22 59 66 56 11 64 3
MUK 18 31 77 63 4 60 6
MUR 0 0 2 1 0 16 5
EHB 13 30 100 66 77 2 5n

e
v
e
r

v
s.

e
v
e
r

EHB-PW 12 28 96 65 78 2 96

Table 7.13: Comparison of the top 100 SNPs between the different G× E interaction
methods for CE-IARC. CC: case-control, CASES: case-only, TWO: intuitive two-step,
MUK: Mukherjee’s, MUR: Murcrays, EHB: empirical hierarchical Bayes, HBP-GxE:
hierarchical Bayes prioritization based on GxE interaction effects (see section 7.7), EHB-
PW: empirical hierarchical Bayes integrating pathway information (see section 7.7)

moderate vs. heavy
HBP-GxE CC CASES TWO MUK MUR EHB EHB-PW

HBP-GxE 57 7 32 13 0 7 8
CC 6 8 45 12 0 8 8

CASES 2 41 60 65 15 97 91
TWO 3 63 72 11 48 50 58
MUK 2 46 88 71 1 67 64
MUR 0 0 3 2 1 13 13
EHB 2 41 99 72 89 3 94n

e
v
e
r

v
s.

e
v
e
r

EHB-PW 2 43 94 72 88 3 95

Focusing on our new empirical hierarchical Bayes method, its results are nearly the same
as for the case-only test in all analyses. For both models of the smaller studies SLRI and
GLC, the top 100 SNPs are even identical, for CE-IARC and MDACC, 1-3 discordant
SNPs occurred. We also observe a really high correlation of both tests with the simple
two-step method and the approach of Mukherjee. For MUK the concordance in NE is
stronger than in MH. The simple two-step method also tends to the same effect, but not
as strongly as MUK. Around 75-90 of our empirical hierarchical Bayes top 100 SNPs for
never vs. ever smokers are in the top 100 of MUK, while we have 60-70 for moderate
vs. heavy smokers. For TWO, we observe 48-72 common SNPs with EHB for NE and
41-64 common ones for MH.
In particular, when comparing the empirical hierarchical Bayes approach to the tradi-
tional case-control test of interaction, we see a strong difference between never vs. ever
and moderate vs. heavy. While the similarity is even lower than 10% for never vs. ever
smokers, we have 20-40 common SNPs in the moderate vs. heavy model, constituting
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a higher consistency. Notably, in SLRI we see a strongly decreased number of common
SNPs for both models compared to the other three data sets. A possible reason for
that may be the low number of cases and controls. The similarity between Mukherjee
and Chatterjee’s (2008) method and the case-control test is only slightly enhanced in
comparison to the empirical hierarchical Bayes method. On the contrary, the simple
two-step method shows a much larger overlap of top 100 SNPs with case-control of 40-
60 SNPs for moderate vs. heavy smokers and around 60 SNPs for never vs. ever.
Although Murcray’s method has shown to be more powerful than other GxE interac-
tion methods (Murcray et al., 2009; Mukherjee et al., 2012) for none of the analyses a
significant result occurs. This is not surprising, since even the very powerful but biased
case-only test showed nearly no such results. We have no common top SNPs of that
method with case-control for any of the analyses. For never vs. ever, the overlap is
limited to only a few SNPs with other methods as well. However, for moderate vs.
heavy at least up to 17 common SNPs with empirical hierarchical Bayes are observed.
Hence, while comparing the other methods with each other, never vs. ever shows the
larger overlap, the effect is reversed for Murcray’s method.
Taking a closer look at the top 100 SNPs of case-only and empirical hierarchical Bayes
method, the ranking order stayed nearly constant. Only some single neighbor entries
switched their ranking positions (results not shown). We went further and took a look
not only at the top 100 SNPs of the different methods, but considered the overall rank-
ing as well. In figure 7.17 we see the list comparison plot of case-only, case-control,
Mukherjee’s and the simple two-step method with our new EHB for the top 1000, top
5000 and all SNPs exemplarily for GLC. For never vs. ever smokers we observed a
higher consistency of EHB and CC for the different studies than for moderate vs. heavy
smokers within the top 5,000. Note, this holds for case-control and case-only as well,
since EHB and CASES are highly correlated. While we start with 10-30% common
SNPs with never vs. ever and go up to 30 to 40% within first 1,000 and even 40-50%
for the top 5,000, moderate-heavy starts with 0-20%, stabilized at around 20% for the
top 1,000 in GLC, MDACC and CE-IARC and increases only slightly up to 30% within
top 5,000. For SLRI, the consistency reached only 5% within top 1,000 only around
15% for top 5,000. For all analyses, a strong increase of consistency is only seen in the
plots considering all SNPs. The case-only and EHB overlap is from the beginning at
around 100% and keeps that level with slight deviations only for all of the studies and
both models. The consistency of MUK as well as TWO and the EHB lies somewhere
between case-only and case-control. In all analyses, Mukherjee starts with a higher
consistency to EHB than the two-step method. However, since the overlap with EHB
ranking increases stronger for TWO than for MUK, we see a reverse of that effect in
each case. In general, this reversing is earlier seen in moderate-heavy than for never-
ever. For CE-IARC and SLRI, we see that switch for moderate-heavy already after the
top 1,000 and 4,000 SNPs, for the other studies it is somewhere around 10,000. For
Mukherjee’s method we observe for GLC, that for the top 50 SNPs we have a slightly
higher consistency to EHB (around 10% more), that then decreases a little bit, before
it increases slowly again. This is in particular outstanding in GLC analyzing moderate
vs. heavy smokers. Mukherjee starts here at around 70% and goes then back a little
bit, before it stabilizes at 60-65%. In comparison to all other analyses, we see this effect
for the two-step method in this analysis as well and even more strongly. The 9 of the
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Table 7.14: Comparison of top 100 genes between smoking models and studies for
case-control test (CC) (upper triangle) and HBP-GxE (hierarchical Bayes prioritization
based on GxE interaction effects, see section 7.7) (lower triangle).

CC

GLC CE-IARC MDACC SLRI
MH NE MH NE MH MH NE

MH - 1 0 2 2 3 0
GLC

NE 1 - 2 2 1 0 1

MH 3 0 - 4 4 3 3
CE-IARC

NE 1 3 8 - 2 2 3

MDACC MH 2 0 2 6 - 1 1

MH 2 7 4 0 0 - 3

H
B

P
-G

x
E

SLRI
NE 2 6 5 10 1 2 -

10 first ranked SNPs are identical and even 80% of the top 30 are the same. However,
considering a larger amount of top SNPs, the consistency decreases to around 50%,
where it nearly stays for the top 1,000.

7.6.3 Comparison of top genes between studies

When comparing the top 100 genes per GxE method between the different lung cancer
studies, we see a low number of common genes not exceeding 5 in all cases. Furthermore,
the consistency between the results of the studies is similar for all different methods.
Hence, we do not see any method harmonizing the different study results. For the tradi-
tional case-control test of GxE interaction and our new empirical hierarchical modeling
approach, the results are shown in the upper triangles of tables 7.14 and 7.15.
The number of genes occurring for at least two studies within the top 100 genes varies
per method between 14 and 26. In total we have 73 such genes across the different meth-
ods. 40 of these are replicated by one method (CC, TWO, MUK or MUR), 18 by two
different methods (mainly CASES and EHB or CC and TWO), 7 genes by CASES, EHB
and MUK or TWO, 1 gene by CC, MUK and TWO. We observe 6 genes supported by
four different methods. One gene occurred in the top gene lists for two different studies
for all methods with exception of Murcray. Five genes were identified with one method
only (MUR,2xCC,2xMUK), but for three different studies.

7.6.4 Resulting SNPs and genes

Taking a look at the case-control GxE test results with a p − value ≤ 10−5, we have
a noticeable signal of 3 SNPs (rs4563628, rs7708669, rs4392618 ) on chromosome 5
for CE-IARC MH. Two of these SNPs are within 500kb +/- of the gene TAG (tumor
antigen gene, miscellaneous RNA), that interacts with TP53, the third SNP is close to
CTNND2, involved in cell adhesion. Another signal of two SNPs (rs145910, rs4939359 )
for the same analysis is identified in gene OR4C15 of chromosome 11. For never vs.
ever smokers, two SNPs (rs404074 and rs403746 ) on chromosome 21 between micRNA
gene LOC100506471 and protein coding gene PSMG1 had p-values≤ 10−5. In the SLRI
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Table 7.15: Comparison of top 100 genes between the different smoking models and
studies for EHB (empirical hierarchical Bayes) (upper triangle) and EHB-PW ( empir-
ical hierarchical Bayes integrating pathway information, section 7.7) (lower triangle).

EHB

GLC CE-IARC MDACC SLRI
MH NE MH NE MH MH NE

MH - 2 1 0 2 0 0
GLC

NE 1 - 0 1 1 3 2

MH 0 0 - 4 2 0 2
CE-IARC

NE 0 1 3 - 0 0 1

MDACC MH 6 1 1 0 - 0 4

MH 0 0 2 2 2 - 5

E
H

B
-P

W

SLRI
NE 12 0 0 1 8 3 -

data, 3 SNPs in gene AGBL1 on chromosome 15 were identified for moderate vs. heavy
smoker (rs11631489, rs1452454, rs4608306 ), and two signals on chromosome 18 showed
up for SLRI never vs. ever smokers with rs12956176, rs1403762, rs1880113, rs9646509
and rs4486983 of gene KLHL14 and rs1005419 and rs573399 in TXNL1.
The SNP that showed up as genome-wide significant testing never vs. ever smokers
in GLC was rs13244987, with neighboring SNP rs13438768. Both SNPs belong to
the miscellaneous RNA gene LOC645249 located on chromosome 7. The 3 SNPs that
formed the prominent signal on chromosome 13 are rs7982922, rs10492573, rs10492572
of the gene ENOX1. In GLC moderate vs. heavy smokers testing, 3 SNPs in gene
TRPM3 (rs656875, rs1421156, rs672801 ) on chromosome 9 were at the top positions.
For SLRI never vs. heavy smokers, four of the SNPs in gene KLHL14 on chromosome 18
that were in the top for case-control test, showed up in case-only as well (rs12956176,
rs4486983, rs1880113, rs9646509 ). For moderate vs. heavy smokers, two SNPs
(rs1876761, rs9927953 ) close to WWOX on chromosome 16 are worth to mention. For
CE-IARC, two regions with three SNPs each for moderate vs. heavy smokers were
noticeable, rs2302591, rs175891, rs175888 in gene TTLL5 of chromosome 14, that
functions as a co-regulator in gene induction and repression and rs2112783, rs3803716,
rs200528 in gene TNRC6A on chromosome 16, responsible for gene silencing.
On our list of genes replicated by any of the different GxE methods (within top 100 for
at least two studies), the genes CSMD1, EML6, TRPM3 ; F3, ID100653216, MIR548G
and MIR548X2 were identified by CASES, EHB and MUK or TWO, DNAH5 by CC,
MUK and TWO. The genes ATP8A1, DAB1, ERBB4, KCNIP4, CDH2 and LRRC16A
were supported by four different methods. SPRY2 was in the top gene lists for two
different studies for all methods with exception of MUR. We have five genes that were
identified with one method only, but for three different studies. These are CTNND2
(MUR), FRMD4A and ID83879 (CC), KCNIP4 and MAGI2 (MUK).
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7.7 Analysis of GxE interaction effects integrating pathway in-
formation

Since the integration of pathway information can improve the results of GWAS single
SNP analyses, it may also help to find GxE interactions. Therefore, we developed two
strategies to detect GxE interaction effects integrating pathway information into the
hierarchical Bayes framework.

The first, “global” strategy uses the HBP for pathways as described in section 4.4, but
replaces the SNP main effect statistics TMi

as an input for the model by the according
traditional GxE effect statistics T cc

Mi
, i = 1, . . . , NM . Hence, the mixture distribution in

level 2 is composed of pMi
σχ1(eMi

) that represents a GxE interaction, and (1−pMi
)δ(0)

representative for no interaction effect. In the third level, general pathway information
is incorporated as prior information to strengthen GxE interactions that show only a
minor effect on their own but occur in the same pathway.

Level 1 | T cc
Mi
| | λMi

∼ χ1(λMi
)

GxE interaction no GxE interaction
Level 2 λMi

| pMi
, eMi

, σ ∼ pMi
σχ1( eMi

) + (1− pMi
)δ(0)

a priori probability

��

a priori expectation

��

Level 3 log(
pMi

1−pMi
) = βT ZMi

eMi
=| µT ZMi

| i = 1, . . . , NM

all KEGG pathways

For comparison purpose, the GSEA based on the interaction statistics instead of
main effect results was performed as well.

The second, “candidate G-E association” strategy to combine the integration
of pathway information with GxE interaction effects incorporates biological pathway
information into our new GxE interaction version of the empirical hierarchical model
EHB as described in section 6.3. The aim of that proceeding is to support the plausible
control for population-based G-E associations. Therefore, pathways with a known or
highly expected relation to the considered environmental factor smoking (e.g. nicotine
dependency) are incorporated into the model to strengthen the G-E associations within
such candidate pathways. SNPs involved in such smoking related pathway should
rather have a population-based G-E association, then SNPs in no such pathway. In our
hierarchical Bayes model for the detection of GxE interactions (section 6.3, formula
6.9) we change the proportion p of SNPs with a population-based G-E association
to individual SNP properties of having a population-based G-E association pMi

.
Furthermore, the strength of association, given by the noncentrality parameter of the
prior, is varied to individual values eMi

. A third level including pathway information as
in the original HBP is added to the model, so that the prior probability of a G-E as-
sociation and the corresponding strength depends on its candidate pathway membership:
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Level 1 | β̂controls
Mi

| | λMi
∼ σcontrols

Mi
χ1(λMi

)

G-E association no G-E association
Level 2 λMi

| pMi
, eMi

, σ ∼ pMi
σχ1( eMi

) + (1− pMi
)δ(0)

a priori probability

��

a priori expectation

��

Level 3 log(
pMi

1−pMi
) = βT Zcand

Mi
eMi

=| µT Zcand
Mi

|, i = 1, . . . , NM

KEGG pathways related to smoking

In the following we will abbreviate the first, global strategy by HBP-GxE since
it applies the HBP to GxE interaction test statistics. Strategy two, the candidate G-E
association strategy is shortly denoted as EHB-PW since it is our new EHB approach
extended by pathway information.

7.7.1 Pathway hyperparameter estimates

Global GxE pathway integration - HBP-GxE
Of the 234 investigated pathways, between 93 and 193 had positive β-regression
coefficients for the different pathway analyses and between 164 and 208 had positive
µ-regression coefficients. For each analysis 77-91% of the pathways had the same sign
of β and µ, except for MDACC with only 65%. For consistency between studies, we
observed 88 pathways with positive sign of β for all 7 analyses, and 22 with only
negative β regression coefficients. For µ we had 150 (=64%) pathways with only
positive and 15 with only negative signs. The prior probability of association for
SNPs belonging to none of the pathways was in the range of 10−8 to 10−11, again with
an exception for MDACC with 10−25. For never vs. ever of GLC, the µ0, the prior
strength of association for SNPs involved in none of the pathways, was 0 and 0.0215
for moderate vs. heavy, for the others studies it ranged from 0.64 to 2.32.

Candidate G-E association pathway integration - EHB-PW
While for the GxE pathway integration strategy 1, HBP-GxE, the pathway information
should strengthen GxE effects based on the traditional test of interaction, the second
strategy uses pathways with a known or highly expected relation to the environmental
factor smoking (candidate G-E association pathways) to support the plausible control
for population-based G-E associations. Hence, a positive regression coefficient indicates
in that case an increases of the prior probability of population-based G-E association
effect and an increase of this association effect strength.
Of the 40 candidate G-E association pathways considered, for each of the smoking
models and studies at least 30 lead to an increase in the G-E association effect of its
involved SNPs. For never-ever in CE-IARC, all pathways had a positive µ coefficient.
Between 28 and 31 pathways contributed positively to the prior probability of a
population-based G-E association. The exact numbers for the different analyses are
shown in table 7.16. The prior probability of population-based G-E association for
a SNP included in none of the pathways is really high with nearly 50% for all of
the different analyses. The basic non-centrality parameter for a SNP in none of the
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Table 7.16: Characteristics of the hyperparameter estimates of GxE pathway integra-
tion strategy 2. i = 1, ..., NM with NM number of SNPs. k = 1, ..., NS with NS number
of considered pathways.

GLC CE-IARC SLRI MDACC
MH NE MH NE MH NE MH

# µ > 0 32 31 37 40 32 31 35
µ0 10−6 0.00066 10−6 0.01261 10−6 10−6 10−6

min(µk) -0.11282 -0.16372 -0.97989 -1.0478 -0.22673 -0.12249 -0.66864
max(µk) 0.22062 0.33700 1.11496 1.57405 0.21946 0.93395 0.99900

min(µZMi
) -0.23434 -0.23885 -1.01674 -1.03519 -0.22673 -0.19777 -0.66864

max(µZMi
) 0.37351 0.50189 10.05976 15.12712 0.44207 1.16255 3.03554

# β > 0 30 30 28 28 31 28 28
β0 0.50205 0.50468 0.50000 0.500000 0.51066 0.50000 0.50000
min(βk) 0.07006 0.05672 1.29 · 10−8 8.7 · 10−25 0.10934 0.03521 0.00821
max(βk) 0.67267 0.67711 0.50000 0.50000 0.70343 0.58191 0.50098

min(βZMi
) 0.00104 7.53 · 10−5 8.56·10−41 3.41 · 10−128 0.00388 5.05·1006 1.58·10−08

max(βZMi
) 0.72949 0.682 0.50000 0.50000 0.84124 0.583 0.501

pathways given a G-E association however is extremely low - with 10−6 for never-ever
of GLC and CE-IARC, MDACC and both models for SLRI. This value was given as a
lower bound for µ in the nonlinear optimization method estimating the hyperparam-
eters from the marginal likelihood. For moderate-heavy of GLC and CE-IARC, the
basic effect is higher with 0.00066 and 0.0126. Although the prior probability of G-E
association is that high the really low µ values cause no remarkable difference to the
case of no G-E association. Taking a look at the contribution of the single pathways to
the prior probability of association and size of the corresponding effect, we observed
values between the ranges given in table 7.16. The minimal prior probability of G-E
association for a SNP that is involved in exactly one of the pathways ranged between
10% for moderate-heavy of SLRI and both models of GLC, and is nearly 0 for both
CE-IARC analyses. The corresponding maximal prior probability stays close to the
basic prior probability with 50% for CE-IARC and MDACC and 60-70% for SLRI and
GLC. The noncentrality parameter of model level 2 maximally increased to 1.57 for
CE-IARC NE and around 1 for CE-IARC MH and MDACC MH. For SLRI and GLC,
values between 0.2 and 0.35 are maximal reached. Accounting that the SNPs may
occur not only in one of the pathways but several, we observed for the different SNPs
lower as well as higher prior probabilities than these values. For µ, values up to 10 for
CE-IARC MH and 15 for CE-IARC NE can occur. For the other analyses, only a slight
increase is possible.

7.7.2 Comparison of top pathways between studies

Global GxE pathway integration - HBP-GxE
Comparing the overall rankings between the different smoking models and studies
pairwise, the correlation with respect to β is larger than according to µ for nearly all
situations. In particular, both models of CE-IARC and moderate-heavy of SLRI and
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Figure 7.18: List comparison plots of the HBP-GxE pathway ranking between different
studies. The y-axis shows the proportion of common pathways for a particular number
of top pathways given on the x-axis. The stars indicate a significant overlap.

GLC show a high consistency for β as well as µ. The same is observed for never vs. ever
smokers in GLC and SLRI. For β, we also see a high correlation of never-ever in GLC
and SLRI with their moderate-heavy analysis and both smoking models of CE-IARC.
The effect is larger for GLC than for SLRI. With respect to µ however, we have no
mentionable significant correlation. The ranking of the MDACC β coefficients has
much in common with GLC never vs. ever. This does not hold for the corresponding µ
rankings. For MDACC and the remaining analyses we see a moderate correlation with
respect to β, and no consistency for µ. Figure 7.18 shows the list comparison plots for
some combinations of analyses exemplarily.
In Appendix tables B.6 and B.7 lists of the pathways are given, that belong to the
top 10 pathways for at least two different studies. These are 9 pathways using β as
pathway ranking criterion and 14 using µ. For the µ ranking, none of the top 10
pathways of MDACC occurred in any of the other studies’ top 10. Nevertheless, 8 of
the 14 pathways replicated with respect to µ ranking occurred for all other 3 studies.
In general, we see for these that most either occur in the top 10 of moderate-heavy of
GLC, CE-IARC and SLRI, or never-ever of GLC and SLRI. Hence, we have not much
mix between pathways for never-ever and moderate-heavy. The only exception is seen
for the CE-IARC study, which may be due to the much larger size of that study in
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Table 7.17: Number of nominal significant pathways for different analyses with GSEA
based on GxE interaction effects.

GLC CE-IARC MDACC SLRI

NE 7 10 - 17
MH 17 10 17 7

NE ∩ MH 1 1 - 0
NE ∪ MH 23 19 17 24

comparison to GLC and SLRI. In particular, the number of never-smokers is generally
low. One pathway was in the top 10 even for both models of GLC, CE-IARC and
SLRI. That pathway was found on the β replicated pathway list as well, were it ranked
in the top ten for all analyses despite of GLC (rank 11). In general, all replicated β
pathways were in the top 10 of never-ever GLC and moderate-heavy CE-IARC. Four
more pathways were in the top 10 of all four studies, with three of them on the µ-list as
well. Furthermore, one more pathways is found on the µ and β list. This pathway and
all additional pathways on the β list were significant not in 2 but 3 different studies. In
addition, all pathways on that list are at least in the top 20 for all studies, despite of
twice a ranking of 29. In contrast, in the µ list we observe for the given pathways also
ranks in a higher double-digit up to triple digit level. This is in particular the case for
the pathways that are on the list due to moderate-heavy of SLRI and GLC and affects
mainly never-ever of SLRI, GLC and MDACC. The pathways supported by never-ever
of SLRI and GLC reach relatively high ranks for moderate-heavy of GLC and both
models of CE-IARC most of the time.

Candidate G-E association pathway integration - EHB-PW
Taking a look at the consistency of pathway ranking between the different studies,
we see that both models of CE-IARC show nearly the same results with respect
to µ and a significant overlap for the µ top 5 pathways. The overall β ranking
furthermore looks similar for SLRI MH and GLC MH, SLRI MH and GLC NE and
GLC MH and GLC NE. A significant overlap of β top 5 pathways is furthermore
observed for SLRI NE with these 3 analyses. The MH analysis for MDACC has a
significant number of β top 5 pathways with both SLRI and GLC MH. For GLC NE and
MDACC MH we do not observe a significant overlap of top 5 with respect to β, but for µ.

Gene set enrichment analysis
The gene set enrichment analysis identified overall two pathway as significant according
to FDR (≤ 0.05) in SLRI never vs. ever smokers. The corresponding enrichment scores
were driven by 21 and 20 out of the 37 and 49 involved genes. However, both pathways
did not even reach nominal significance for any of the other studies. Several pathways
reached nominal significance for each of the studies (pnominal ≤ 0.05).
The number of significant pathways for never vs. ever smokers and moderate vs. heavy
smokers of each study, as well as the overlap between both smoking models per study is
given in table 7.17. In figure 7.19 we see the overlap between the studies. The overlap
is significant for none of the study pairs. In total, 11 pathways were identified in two
different studies. None was significant in three or four of the studies. Between MDACC
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Figure 7.19: Overlap of nominal significant pathways for different lung cancer studies
with GSEA based on GxE interaction effects

and GLC we found no common pathways. In the appendix table B.8 a list of these
11 pathways and their corresponding nominal p-values can be found. We see that for
most of the pathways that are on the replicated pathway list due to GLC, CE-IARC or
SLRI, the significance was both times for NE or both times for MH. This was observed
for HBP as well. However, the pathways of MDACC that were found in another study
as well not necessarily occurred there in moderate vs. heavy smokers, but also using
the never-ever smoking as environmental factor.
Of the pathways on the replicated GSEA list (table B.8), we find none of them in any
of the two HBP-GxE lists (tables B.6 and B.7).

7.7.3 Pathway results

For the global GxE pathway integration strategy HBP-GxE, the taurine and hypotaurine
metabolism was in the µ and β top 10 for both smoking models of all three studies, except
for GLC MH with a β rank of 11. One carbon pool by folate, steorid biosynthesis, folate
biosynthesis and sulfur relay system were in the β top 10 of all four studies, with the
three latter pathways on the µ replicated pathway list as well. Furthermore, riboflavin
metabolism is found on the µ and β list.
The gene set enrichment analysis identified Tryptophan metabolism pathway (hsa00380,
FDR = 0.04) and the Taste transduction pathway (hsa04742 ; FDR = 0.037) in the
SLRI NE as significant according to FDR (≤ 0.05).

7.7.4 Comparison of top SNPs/genes between methods

Global GxE pathway integration - HBP-GxE
For the GxE pathway integration strategy 1, EM was used for SNP re-ranking as done
for main effects. We observed the same behavior as before - with EM and PM highly
correlated to each other and E+

M having much lower similarity to both. The results for
this are not shown.
While for the GxE interaction methods compared in the previous section, the con-
sistency between methods was generally larger for never vs. ever analysis than for
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moderate vs. heavy, we see the reverse effect for strategy 1 integrating pathway
information with GxE interaction effects. In tables 7.12 and 7.13 the comparison
of the top 100 genes of HBP-GxE to the other GxE interaction methods from the
previous section are exemplarily shown for GLC and CE-IARC. The highest overlap
is given with case-control test of GxE interaction, what is not surprising since exactly
this statistic is used as input for the HBP-GxE model. Considering the moderate vs.
heavy analyses, the largest overlap is seen for SLRI, with 82 common SNPs. GLC and
CE-IARC show a moderate consistency with nearly 60 shared SNPs. With respect
to the further GxE interaction test, this pathway integration strategy has a moderate
overlap with the simple two-step-method as well and no common SNPs with Murcray’s
method. For the other methods, only up to 15 SNPs overlap occur. MDACC behaves
different, with even having only 2 common genes with case-control test. For the never
vs. ever smoker analyses, we see the same trend as in moderate vs. heavy, with CC
and TWO having the highest overlap with the pathway integration method. However,
for CE-IARC these are no more than a handful of SNPs, at most 12 for SLRI and even
24 for GLC.

GxE candidate G-E association pathway integration - EHB-PW
For the second strategy integrating pathway information with GxE effects, we see that
for some of the analyses the top 100 SNPs are nearly identical to the ones with the
hierarchical empirical Bayes approach not integrating pathway information (tables 7.12
and 7.13). This is the case for never vs. ever smokers of CE-IARC and GLC, as well as
moderate-heavy of CE-IARC. Hence, we have no additional benefit due to the pathway
information for these analyses. For GLC and MDACC with environmental factor
moderate vs. heavy smoking as well as SLRI never vs. ever however, the situation looks
totally different. Here, EHB-PW leads to totally different top SNPs in comparison to
all other methods, with only a hand full of genes in common (table 7.12 exemplarily
for GLC moderate-heavy). For the remaining analysis of SLRI with moderate vs.
heavy smokers, the results lie somewhere in between. We have 60 common genes with
case-only method and empirical hierarchical Bayes without pathway information and
40 shared SNPs with Mukherjee and the two-step method. The overlap to the further
methods can be neglected (results not shown).

Gene set enrichment analysis
On the diagonal of table 7.18 we can see the total number of LES genes extracted
from the pathways with a nominal p ≤ 0.05 in the GSEA based on GxE interaction
effects for each of the analyses. Several hundred LES genes are available in each case.
The intersection of LES genes between the analyses of never-ever and moderate-heavy
smokers is shown in the same table and is highly significant in every case. Comparing
the LES genes with the results of the other different GxE interaction methods, we
find only a handful of these genes on the top rankings. The results are given in 7.19.
Exceptions are both GxE pathway integration strategies for GLC NE and MDACC
MH. For both models of SLRI, we see at least a tendency to that effect as well, for GLC
MH and CE-IARC NE only for the global pathway integration strategy HBP-GxE.
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Table 7.18: Overlap of LES genes for GxE GSEA between the different analyses

GLC CE-IARC MDACC SLRI

NE MH NE MH MH NE MH

NE 194 25 26 12 28 28 13
GLC

MH 245 19 39 26 53 26

NE 159 35 37 49 17
CE-IARC

MH 462 85 46 95

MDACC MH 368 64 41

NE 444 66
SLRI

MH 332

Table 7.19: Overlap of LES genes of GSEA based on GxE interaction statistics with
top 100 genes of other GxE methods

GLC CE-IARC MDACC SLRI

MH NE MH NE MH MH NE

CC 5 3 1 5 9 2 3
MUR 0 1 1 1 4 0 2
CASES 2 4 3 2 3 2 3
EHB 2 4 3 2 3 2 3
EHB-PW 2 12 3 1 21 5 7
HBP-GxE 7 23 9 0 13 6 5

7.7.5 Comparison of top genes between studies

Global GxE pathway integration - HBP-GxE
Comparing the results of the different studies to each other, we observe that the
consistency is slightly increased in using the global GxE pathway integration strategy
in comparison to the case-control GxE test only. The results are contrasted in table
7.14. However, the effect is less than observed for main effects before. The consistency
of results is higher in never vs. ever smokers than in moderate vs. heavy smokers.
Considering the top 100 genes for each of the smoking models and studies, we observed
in total 644 different genes, with 38 observed for two different studies and 3 for 3
studies. Of the genes occurring in the top 100 for two different studies, 14 were found
in the combination GLC and SLRI, 13 in the combination SLRI and CE-IARC.

Candidate G-E association pathway integration - EHB-PW
For the candidate G-E association pathway integration strategy sometimes nearly none
of the top 100 SNPs changed compared to the same approach not integrating pathway
information (EHB), sometimes it leads to totally different results than all other GxE
methods. The corresponding numbers are shown in table 7.15. Between SLRI NE, GLC
MH and MDACC MH we observe that some more common genes show up. However,
for the remaining analysis pairs, we see no improvement with still only 1-2 common
genes. For EHB-PW, we obtained a total list of 660 different top 100 genes among the
smoking models and studies, with 29 genes identified in two different studies - mainly
GLC-MH and SLRI-NE, and SLRI and MDACC. Only two genes were found for three
different studies.
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Figure 7.20: List comparison plots of gene rankings between the different studies for
GxE case-control test and HBP-GxE. The y-axis shows the proportion of common
genes for a particular number of top genes given on the x-axis. The darker points indicate
a significant overlap.

When comparing the overall ranking consistency between different studies, we
see no mentionable difference between CASES, TWO, MUK and our new EHB.
However, comparing the HBP method based on GxE interaction effect (HBP-GxE)
with the case-control test, a clear gain of consistency by this additional usage of
pathway information is reached. In figure 7.20, the comparison of both methods for
some chosen study/model combination is shown, representing the overall behavior. In
particular remarkable is the comparison of the ranking lists for the CE-IARC study
and SLRI never-ever analyses, with a strong increase of consistency between the two
studies especially on the top rankings, followed by SLRI NE and CE-IARC NE with
MDACC MH, as well as GLC NE with both models of CE-IARC and SLRI MH.
Taking a look at EHB-PW, we see minor increases of common top genes for some
comparisons of studies - as for moderate-heavy of GLC and MDACC (figure 7.20 upper
right graphic), for other situations nothing changes (left graphics) or even worsens
(lower right graphic).
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Figure 7.21: List comparison plot of gene rankings between the different studies for
GxE EHB test and EHB-PW. The y-axis shows the proportion of common genes
for a particular number of top genes given on the x-axis. The darker points indicate a
significant overlap.

Gene set enrichment analysis
In table 7.18, the overlap of LES genes between the different studies for GSEA based
on interaction effects is given. Measured by the total number of genes occurring within
the considered 234 pathways, the overlap of LES genes is significant for all situations
except for never ever of GLC with moderate heavy of CE-IARC and SLRI.
In total, 1607 different LES genes occurred. Of these, 333 were LES genes for 2 different
studies and 49 were found by 3 different studies. We have twelve genes identified in the
LES of all four studies.

Taking a look at the replicated genes of HBP-GxE and EHB-PW across differ-
ent methods, we find 3 of the HBP-GxE genes for other methods replicated as well.
Furthermore, 7 genes were in the replicated LES genes. 5 of the genes replicated with
EHB-PW were in the replicated gene set of CASES and EBH as well. Of these, 4 were
additionally in the MUK replicated set, one in TWO and two in GSEA. One more
gene occurred in the replicated set of MUR and GSEA. Furthermore, we have 10 more
replicated LES genes in the EHB-PW. One gene was replicated with MUK and GSEA.
For genes replicated with different methods, not necessarily the same studies were
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underlying. For example, a gene was on the replicated gene list of MUR due to GLC
and SLRI, for HBP-GxE however GLC and CE-IARC uncovered the gene. A situation
like this is observed in nearly half of the cases. A gene was even found in GLC and
SLRI with HBP-GxE, but MDACC and CE-IARC with GSEA. In addition, while one
strategy may find a genes due to never vs. ever testing, it may be the moderate-heavy
testing for another method. Furthermore, both phenomena occured together as well.

7.7.6 Resulting genes

For the global GxE pathway integration strategy HBP-GxE, the three genes observed
for three different studies within the top 100 are ELOVL6 (SLRI NE, MDACC MH,
CE-IARC NE), RFC3 (NE of GLC, SLRI, CE-IARC) and WRAP53 (SLRI NE, GLC
and CE-IARC MH). With the candidate G-E association pathway integration strat-
egy EHB-PW, CADM1 and ERBB4 were found for three different studies (GLC MH,
MDACC MH and SLRI NE).
Taking a look at the replicated genes of strategy 1 and strategy 2 across different meth-
ods, we find 3 of HBP-GxE genes for other methods replicated as well, namely ACCN1
(MUR), MAML2 (CC and TWO) and PDE10A (CC). Furthermore, 7 genes were in
the replicated LES genes (ATP1B2, BAAT, CLTCL1, GRIN2A, MAGOHB, SLC8A1,
THBS2 ). 5 of the genes replicated with EHB-PW were in the replicated gene set of
CASES and EHB as well (DAB1, ID100653216, MIR548G, NRG3, ERBB4 ). Of these,
4 were additionally in the MUK replicated set, one in TWO and two in GSEA. One more
gene, PLCB1, occurred in the replicated set of MUR and GSEA as well. Furthermore,
we have 10 more replicated LES genes in the strategy 2 set (ADCY8, CCL1, CTNNA3,
CTNNB1, CXCL13, ITGA11, ITGA9, SRC, TLR4, VAV3 ). One gene was replicated
with MUK and GSEA (TGFB2 ).
For genes replicated with different methods, not necessarily the same studies were un-
derlying. ACCN1 for example was on the replicated gene list of MUR due to GLC and
SLRI, for HBP-GxE however GLC and CE-IARC were responsible. A situation like this
is observed in nearly half of the cases. MAGOHB was even found in GLC and SLRI
with strategy 1, but MDACC and CE-IARC with GSEA. In addition, while one strategy
may find a genes due to never vs. ever testing, it may be the moderate-heavy testing
for another method, e.g. for ATP1B2 (MH of GLC and CE-IARC for strategy 1, NE of
these studies for GSEA). Furthermore, both phenomena occurred together, e.g. for the
gene GRIN2A, identified by HBP-GxE in CE-IARC NE and GLC MH and by GSEA in
MDACC MH. For GSEA, the twelve genes identified in the LES of all four studies are
ADCY2, ADCY8, ADCY9, CREBBP, GRIN2B, ITPR1, PIK3R1, PIK3R5, PLCB1,
PRKCA, PRKCB and PTK.

7.8 Discussion

The integration of pathway information and GxE interaction in four lung cancer GWAS
lead to new prospective insights into the development of the disease. Candidate genes
and pathways that may be involved in lung cancer etiology were identified and should
be further investigated.
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In particular, when integrating pathway information with main effects in the hierarchi-
cal Bayes prioritization approach, several pathways were found as main contributors to
the prior probability of association and to the corresponding association effect strength
across three or four different studies. The consistency of top genes between the different
studies was clearly increased compared to the initial single SNP regression results.
In the analysis of GxE interactions, EHB lead to similar results than the powerful case-
only test. The case-only test is biased in the presence of G-E association on a population
level. In our simulation studies, we found similar results for EHB and case-only when no
or only a low number of weak G-E association effects were given. Although population-
based G-E associations were expected in the context of smoking, we did not observe
strong G-E association effects in our data.
As observed for main effects, the integration of pathway information with GxE interac-
tion effects by the HBP increased the consistency between the top genes of the different
studies. Again, for each of the different studies, similar pathways were found on the
top 10 using the β and µ regression coefficients as ranking criterion. When integrating
the candidate G-E association pathways to the EHB to support the correct control for
the population-based G-E associations, we observed no change in the top 100 genes for
some of the analyses compared to EHB without pathway information. However, for
some other analyses totally different results appeared, with more common top genes
between the studies.

Analysis of main effects integrating pathway information

In table 7.20 the pathways consistently identified for all four studies with our HBP
or at least 3 studies with GSEA or SUMSTAT are given with some further biological
information. Nearly all can be somehow related to lung cancer risk and partly have
been even reported to be associated before. This biological plausibility of the results
supports the strength of our methods integrating pathway information.
In a recent publication of Fehringer et al. (2012), four different pathway approaches
were compared using the same lung cancer GWAS as well. For this comparison, GSEA,
SUMSTAT, SLAT and the modified Fisher test were chosen, since they are all widely
used and representative for others. Fehringer et al. (2012) built two data sets by
combining Central Europe study (CE-IARC) with the Toronto study (SLRI) (CETO)
and German (GLC) with MDACC study (GRMD) to reach adequate sample size and
higher statistical power. As pathway information, gene ontology level 4 pathways
(Ashburner et al., 2000) with 15-200 genes were used. SNPs were assigned to genes
within a region of +/- 20kb. A logistic regression was performed, assuming an additive
SNP effect, adjusted for sex, age and country of origin. As criterion for a replicated
pathway, a FDR≤ 0.05 in both data sets was used.
Table 7.21 gives the main results of Fehringer et al. (2012). With the GSEA, none of the
pathways reached a FDR≤ 0.05. This fits to the results we have seen in our analyses.
In comparison to us, they found several pathways with SUMSTAT, what is explainable
by the merge of the studies, larger sample size and hence higher power. Note, we
considered different pathway information, based on manually curated KEGG pathways
(Kanehisa and Goto, 2000), while Fehringer et al. (2012) used the predominantly
bioinformatically generated gene sets in GO. This may lead to discrepancies in results
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7 TRICL lung cancer GWAS integrating pathways and GxE interaction

Table 7.21: Number of significant pathways in Fehringer et al. (2012) for different
GSA methods. CETO = CE-IARC+SLRI, GRMD = GLC+MDACC

modified Fisher GSEA SUMSTAT SLAT

CETO 7 0 8 2
GRMD 5 0 1 0

CETO ∪ GRMD 2 0 1 0

as well. The pathway identified by SUMSTAT in CETO and GRMD - the acetylcholine
receptor activity pathway - for example is not involved in our analyses. However, this
pathway is a biologically highly plausible candidate, since it involves the CHRNA3
region that is known to be associated with lung cancer (Amos et al., 2008; Hung et al.,
2008b) and nicotine addiction (Thorgeirsson et al., 2008).
The two replicated pathways for the modified Fisher test were the nerve impulse
pathway and Ras-GEF. By investigating the influence of the number of SNPs per gene
to the pathway results, Fehringer et al. (2012) explored that the modified Fisher method
more likely detects pathways with a greater median number of SNPs per gene. This is
not surprising since the test statistic of the top SNPs per gene is used representatively
and thereby genes with a greater number of SNPs tend to higher association statistics
(gene size bias). Since a normalization routine and phenotype permutations was used
for GSEA and SUMSTAT, these methods were protected against the bias. SLAT uses
all SNPs in a pathway for the analysis and a phenotype shuffling routine.
For the hierarchical Bayes prioritization approach we found a very high consistency
in top pathways between the four different studies. Based upon the investigations of
gene size in Fehringer et al. (2012), we analyzed the influence of the number of SNPs
per pathway to its ranking according to β or µ coefficient. In figure 7.22, the β and
µ coefficients for the GLC study are plotted as a function of the number of SNPs of
the corresponding pathway. In the appendix figure B.3 the corresponding plot for
CE-IARC can be found. We see a clear tendency to higher regression coefficient given
a lower number of SNPs. Analyzing this behavior with a linear regression model with
β/µ as the outcome and number of SNPs as the dependent variable confirmed that
impression. We found a highly significant association for both models of all studies:
with increasing number of SNPs, the β and µ regression coefficients decrease. This is
not surprising, since an increasing number of SNPs indicates a higher number of SNPs
without any effect even given a pathway with some associated SNPs. Hence, for future
use of the HBP, it is highly recommended to consider the size of pathway in the model,
e.g. by appropriate weights in the pathway covariate matrix. We did not consider this
in our analyses presented here.

Fehringer et al. (2012) noted that their identified pathway was only driven by
signals within the CHRNA3 region on chromosome 15q25 (Amos et al., 2008; Hung
et al., 2008b). When this region was removed from the analysis, the pathway lost
its significance. However, when interested in the pathways resulting from a pathway
based analysis, the goal is not to find a pathway based on a single gene or signal only.
Furthermore, one may not be interest in the biological pathways itself but proceed
on SNP or gene level in further investigations with results supported by the pathway
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7.8 Discussion

Figure 7.22: Correlation of HBP β and µ regression coefficients and number of SNPs
per pathways in GLC study

information. For the GSEA method, one may use LES genes. For SUMSTAT we
selected the top genes at a ranking list containing only the genes from the nominal
significant pathways. However, a main drawback of that proceeding is that only SNPs
involved in any of the pathway have a chance for follow-up. SNPs too far from any
gene and genes involved in none of the considered pathways are neglected and may be
missed although having a high effect. For our given pathway set, only 1/4 of the genes
are involved. Hence, the hierarchical Bayes prioritization may have a big advantage
benefitting from the pathway information but keeping all SNPs as potential units
for further investigation. In our data application, we have seen that in comparison
to the initial regression ranking the consistency of top genes between the studies
was increased and hence genes found in at least two different studies are promising
candidates. In table 7.22 a list of these candidates obtained by HBP is given. Many of
these are biologically plausible as well. To name just a few: HES1 for example controls
cell proliferation (Murata et al., 2005) and is therefore a plausible candidate in lung
cancer. FEN1 was found to be over-expressed in lung tumors (Nikolova et al., 2009)
and functional polymorphisms were found to be associated with DNA damage and
lung cancer risk (Yang et al., 2009). The oncogene RAB13 may be another potential
candidate. RPA1 and RPA2 play an essential role in the replication, recombination and
repair of DNA. RPA2 was found to be implicated in non-small cell carcinoma (Murphy
and Borowiec, 2010). RFC4 was identified in a meta-analysis as over-expressed in lung
adenocarcinoma (Erdogan et al., 2009), and LIG1 participating in DNA repair was
recently shown to be modestly associated with lung cancer in smokers (Sakoda et al.,
2012).
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7 TRICL lung cancer GWAS integrating pathways and GxE interaction

Table 7.22: Genes occurring in the top 100 for at least 3 different studies based on
HBP analysis of main SNP effects

ACIN1 DPCR1 GTF2H4 LIG1 NUP210L RPA1 SMPDL3B
ACP2 EIF4A2 HES1 MADD PIGZ RPA2 SMYD4
BTK FADS1 HNRNPH2 MIOS PLA2G4C RPA3 SNORA4
C1orf38 FADS2 ID100529097 MIR135A1 PRKAA2 RPA4 SNORA63
CDH24 FEN1 ID152217 MIR1908 PSMB11 RPL36A SNORA81
CREB3L4 GCK ID729852 MIR611 PSMB5 RPS27 SNORD2
DDB2 GLA ID746 NCBP2 RAB13 SENP5 VARS2
DIAPH2 GLYCTK JTB NR1H3 RFC4 SFTA2 WDR82

Table 7.23: EHB hyperparameter estimates for the different smoking models and stud-
ies. p = exp(β)/(1 + exp(β))

GLC CE-IARC MDACC SLRI
NE MH NE MH MH NE MH

µ 3 · 10−6 10−6 0.017 0.066 0.079 10−6 10−6

p 0.004 0.005 0.152 0.039 0.003 0.004 0.006

Analysis of GxE interaction effects with and without integrating pathway
information

In our application of the different GxE interaction methods to the lung cancer data,
we found a high similarity between case-only test and our new empirical hierarchical
Bayes approach. Since the case-only approach is prone to false positive results due to
population based G-E associations, and the empirical hierarchical Bayes approach is
designed to be protected against that bias, these results are not obvious.
However, when taking a look at the controls only test of G-E association, no striking
signals were found pinpointing to a population-based G-E association, although such
effects are expected in this particular context with smoking as an environmental factor.
Taking a look at the estimates of hyperparameters of the empirical hierarchical Bayes
method, it is not surprising that the results are very similar to the ones of case-only
test. The estimates are shown in table 7.23. For the analyses of GLC and SLRI, the µ
estimate representing the strength of a population-based G-E association are less than
10−5. Combined with prior probabilities of association of around 0.005, the posterior
estimates λMi

for the single markers Mi that are subtracted of the βcases
Mi

are close to
0. As a consequence the top 100 SNPs are the same as for case-only. For the larger
studies MDACC and CE-IARC, the µ estimates reach values with a little more impact.
For never-ever of CE-IARC, µ = 0.017, for moderate-heavy of CE-IARC and MDACC
µ = 0.066 and 0.079. One possible reason is that the size of the study is responsible for
the larger µ values, and the larger estimates for MH in comparison to NE may be due
to a stronger effect of population-based G-E associations in that case. The β estimates
and hence estimates of the prior probability of a population-based G-E association are
larger for CE-IARC and MDACC as well. After all, for CE-IARC and MDACC we see
only 1-3 SNPs not identical between CASES and EHB top 100.
Integrating the pathway information with the GxE interaction effects, we see for the
global GxE pathway integration strategy HBP-GxE again a slight improve in consis-
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7.8 Discussion

Table 7.24: Number of top 100 genes involved in smoking related pathways

HBP-GxE CC CASES TWO MUK MUR EHB EHB-PW

M1 24 14 11 15 11 11 11 9
GLC

M2 25 10 6 5 9 10 6 62

M1 20 5 4 6 4 9 4 4
CE-IARC

M2 11 14 8 9 8 10 9 10

MDACC M2 7 15 15 12 14 16 15 69

M1 20 12 8 9 11 7 8 65
SLRI

M2 12 7 12 5 11 9 12 31

tency of the top genes between the different analyses analogously to the main effects.
Furthermore, interesting top pathways occurred, e.g. the taurine and hypotaurine
metabolism and folate biosynthesis. Both pathways are listed in table 7.20 with some
additional information about their connection to lung cancer. The former was within
the top 10 for nearly all studies with respect to β and µ coefficient. Taurine is known
to reverse damage done by smoking (Fennessy et al., 2003). The latter occurred within
the β top 10 for nearly all analyses and twice in the µ top 10, for GLC and SLRI never
vs. ever smokers. The pathway is related to smoking since folate status is decreased by
chronic cigarette smoking (Piyathilake et al., 1994).
For the EHB-PW pathway strategy integrating smoking related candidate pathways,
for some of the analyses we observed no difference in top 100 SNPs compared to
EHB without pathway information. One explanation could be that none of the genes
involved in these pathways occur at the top. The numbers of genes from the smoking
related pathways involved in the top 100 for the different GxE methods are shown
in table 7.24. The case-only and EHB method have even less of these genes in their
top 100 than the case-control method in most of the analyses. This supports that the
case-only method does not seem to have false positive results due to G-E associations
on a population level in our application.
Furthermore, regarding our candidate G-E pathway strategy EHB-PW for the situa-
tions where the pathway information changed the top 100 rankings we see that the
numbers of genes involved in smoking related pathways increase highly. Although this
was not expected, thinking about the nature of the model more sophistically, it is
not so surprising. The SNPs involved in the integrated pathways have different prior
probabilities and prior effect strengths of population-based G-E association compared
to the main bulk of general SNPs. However, this change can go both directions and
therefore does not necessarily mean an increase of the population-based G-E association
and hence a decrease of final test statistic. While some of the smoking related candidate
pathways may turn out to be true G-E effect clusters and hence will support the correct
control for G-E association of the corresponding SNPs , this may even completely
switch for pathways that involve SNPs with less evidence for a population-based G-E
association than the main part of SNPs involved in none of the incorporated candidate
pathways, so that the genes of these pathways will even occur at our top positions.
For the situations with no difference between the EHB and EHB-PW top results, we
also compared the overall rankings of both methods. An example for GLC never-ever
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7 TRICL lung cancer GWAS integrating pathways and GxE interaction

Figure 7.23: Comparison of SNP ranks between EHB and EHB-PW for both smoking
models of GLC.

can be seen in figure 7.23 on the left. Although the top positions did not change, a lot
of re-ranking can be observed all over the whole list. In particular noticeable is the line
on the top of the plot. This indicates, that a set of SNPs distributed across the whole
list with EHB was down-ranked to the last ranks with EBH-PW. For comparison, we
also checked the over all ranking list for the situations with a large difference of EHB
and EHB-PW, e.g. GLC MH in figure 7.23 on the right. Here, the re-ranking all over
the list is more extremely, and again this “top line ” is observed.

Overall, one of our main conclusions from the analyses of the different lung can-
cer studies is that the pathway information can indeed improve GWAS findings. This is
in particular supported by the biological plausibility of the results. We see that different
methods lead to different results and as already stated by Fehringer et al. (2012) so
far none of the pathway analysis methods can be clearly established as superior.
Therefore they should be considered for confirming results but also complementing
these. However, the high harmonization of the results between the different studies is
a remarkable characteristic of the HBP approach and made HBP a very useful tool
in this lung cancer application. Furthermore, depending on the goal of the pathway
integration method, a gene set method or the HBP method may be preferred. The
HBP may be in particular preferred when concentrating on the follow-up of a subset
of SNPs or genes of a GWAS as is currently done as the next step in TRICL, while
GSEA is perhaps a little bit more intuitive when the main interest is in pathways itself.
Nevertheless, also on the pathway level HBP has shown promising and plausible results.
Although the results of the GxE interaction analysis using our new EHB are nearly
the same as the potentially biased case-only results, the good performance of that
method is supported since no obvious population-based G-E associations can be seen.
Furthermore, these results have biological plausibility as well. This indicates that
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7.8 Discussion

no false positive results due to G-E associations are given in the top of CASES and
EHB and that EHB can reach the same true positive results as the powerful CASES
approach. Integrating pathway information with GxE effects may improve the results
as seen for main effects and therefore should be investigated as complement to the
simple single SNP GxE interaction analysis.
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8 Summary and Outlook

Complex diseases such as cancer result from a complicated interplay of multiple ge-
netic and environmental factors. To unveil their genetic component, simple single SNP
analysis as done in genome-wide association studies is not sufficient. Complementary
approaches considering the complexity of disease, such as the incorporation of biological
pathway information or detection of gene-environment interaction, are necessary.

In this thesis we focused on an empirical hierarchical Bayes model, the hierarchical Bayes
prioritization (HBP), originally proposed by Lewinger et al. (2007) for the integration
of external information into genome-wide association studies. We used the approach to
incorporate biological pathway information and provided a new test for GxE interaction
by adapting the method for that purpose. In an application, we furthermore integrated
pathway information with GxE interaction effects by two different strategies.
The integration of pathway information by the HBP in a GWAS for Rheumatoid Arthri-
tis that was characterized by an extremely high number of strong association signals
supported the initial results. In an application to four lung cancer GWAS it led to
higher consistency of resulting top genes between the different studies compared to the
initial ranking. In both cases, the strength of the HBP approach was supported by the
biological plausibility of the results.
In comprehensive simulation studies, our new empirical hierarchical Bayes approach
(EHB) for GxE interactions outperformed other GxE methods, having high power to
identify GxE interactions in the presence of population-based G-E associations. In our
real data application to the lung cancer GWAS, no strong G-E associations with smok-
ing as environmental factor were observed. Therefore, the EHB led to similar results as
the powerful case-only test. By additional integration of pathway information with GxE
effects, the consistency of results between the studies increased. Due to the biological
plausibility of the results, good candidates for further investigation were identified.

In the Rheumatoid Arthritis GWAS we integrated pathway information by the empirical
hierarchical Bayes model (Lewinger et al., 2007) and compared it the gene set analy-
sis (GSA) method GSEA. The hierarchical Bayes prioritization (HBP) approach uses
the pathway information to relate the different genetic markers to each other, so that
SNPs in the same pathway can support each other to up-rank. GSA focuses on the
identification of whole sets of genes rather than single markers and became popular for
GWAS in the last years. For the comparison of the methods, genes were ranked using
the posterior probability of association for HBP and the leading edge subset genes for
GSEA. Pathways were ranked by the β regression coefficients of HBP that represent the
increase or decrease of the prior probability of association for each SNP involved in the
corresponding pathway and by nominal p-value for GSEA.
Due to the high importance of the HLA-gene region in Rheumatoid Arthritis, a high
number of very strong genetic main effects was detected in that study by simple single
SNP analyses. Therefore, with HLA-SNPs included in the HBP analysis, other SNPs
with small to moderate effects had little chance to reach the top rank positions. Thus the
top ranking SNPs changed only slightly compared to the initial ranking based on prior
covariates. However, although we have no gain of information by the HBP in that case,
it supports the findings from the initial regression analysis by keeping the prominent
role of the HLA genes. To obtain some additional findings not detected by the single



SNP analysis, the HLA region had to be neglected in the HBP analysis. In contrast
to the hierarchical Bayes prioritization, the gene set analysis method highlighted many
new non-HLA genes that may be a good starting point for further research. Therefore,
in that particular context, GSA methods should be preferred.

Based on the same hierarchical model, Volk et al. (2007) proposed an idea for a test
of gene-environment interactions. By borrowing G-E information across all SNPs of a
GWAS, posterior estimates for the G-E association within controls are obtained, char-
acterized by a reduced variance. These posterior estimates are subtracted of the G-E
association within cases, so that the empirical hierarchical Bayes method is a compro-
mise between the case-control and case-only test of GxE interaction. The test reaches
high power to detect markers with a GxE interaction effect, while correcting for G-E
associations on the population level.
Incorporating this idea we build a test statistic usable in real applications by calculat-
ing an appropriate variance using a variance approximation of Kass and Steffey (1989).
Furthermore, based on distributional considerations, we modified the idea of Volk et al.
(2007) to obtain better properties of the statistic.
In comprehensive simulation studies, our new empirical hierarchical Bayes method was
compared to several other GxE interaction methods, including the traditional case con-
trol test and the powerful but biased case-only test. In all situations, compared to other
GxE methods our new test has similar or higher ranking power (ranking power = finding
the GxE SNP within the top ranking SNPs) to detect an interacting SNP when strong
population based G-E associations or a high number of these associations are present.
In the particular case where no or only a low number of weak G-E association effects
are given, a two-step method developed by Murcray performs better - in particular for
low interaction effects. Since population based G-E associations are highly expected in
genome-wide association studies, we recommend to use the empirical hierarchical Bayes
method so that true GxE interaction effects are not missed. In particular in a disease
such as lung cancer with the very strong environmental factor smoking that is known to
be associated to the genetic makeup (nicotine addiction), caution is warranted. When
such a strong association is not known, Murcrays method may be used as a complement
to the empirical hierarchical Bayes method.

We applied both, the HBP for pathway integration and the empirical hierarchical Bayes
method for GxE interactions to four lung cancer GWAS. Furthermore, we combined
both purposes by using traditional GxE interaction statistics as an input for the HBP,
and integrating candidate pathway information into the EHB.
Using the HBP integrating pathway information based on single marker main effects,
we observed an increase in consistency of the top genes between the different studies.
This and the biological plausibility of the results encourage the benefit of using HBP
for SNP prioritization. For the EHB for the identification of GxE interactions, we
observe that for all four studies the top genes are nearly the same as for the case-
only test. This is surprising since in our simulation studies the EHB and case-only
showed similar performance only given a low number of low association effects. In that
particular context however, large G-E association effects are expected. Nevertheless,
looking at the G-E association effects within controls, no evidence for population based
G-E associations was given.
Using the HBP based on the GxE interaction effects, a slight increase of concordance
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between the studies top genes is observed compared to case-control test and the other
GxE methods - although to a lower extend than observed for main effects. For the EHB
integrating biological pathways, the additional information changed the SNP ranking,
but not necessarily at the top positions. Also here an increased consistency between the
different study results is given.

Although HBP and EHB have shown to be promising tools for complementing GWAS
single SNP results, there are still open questions and further possible evaluations and
developments. In simulation studies Lewinger et al. (2007) showed that his hierarchical
Bayes prioritization method integrating external information performs well in compar-
ison to an initial single SNPs analysis. However, to evaluate the performance of the
HBP in particular in the context of pathway based analyses, simulation studies should
be investigated to validate the ability of the HBP to fulfill the initial intention to find con-
sistent but weak effects. Furthermore, the relative usefulness for pathway identification
and gene prioritization compared to GSA methods should be evaluated in simulations
as well (Lebrec et al., 2009). Compared to gene set analysis methods, the HBP has some
general advantages by nature. On the one hand, it is possible to integrate some addi-
tional external information in the HBP as well, such as information about SNP function
or information from a previous analysis. On the other hand, all SNPs are considered in
the pathway based analysis and have a chance to reach the top ranking positions. In
gene set analysis, only these genes involved in the analyzed pathways are considered.
This means a loss of a high number of SNPs and hence information and prohibits the
identification of new and unexpected genes with so far unknown function.
Since the hierarchical Bayes method prefers to up-rank SNPs in pathways with a small
number of SNPs, as seen for the lung cancer data, the consideration of the number
of SNPs or genes per pathway within the model would be another aspect of further
research. Additionally, linkage disequilibrium between the different SNPs may be inte-
grated. The model of the hierarchical Bayes prioritization approach is designed for an
input of χ-distributed test statistics with one degree of freedom. A generalization of the
model for two or more degrees of freedom could be worked out, e.g. for the application
of the HBP to a multilocus or haplotype analysis.

In our simulation studies to evaluate the performance of our new empirical hierarchical
Bayes approach for GxE interactions, we did not carry out the situation with a genetic
main effect of our interacting SNPs. We neglected these kinds of interacting markers,
since these SNPs should be detected and further investigated base on the analysis of
single SNP main effects. Given an important environmental factor, a subgroup analysis
with respect to this exposure will likely be performed. Our main focus in this thesis lies
on interacting SNPs that are missed by the analysis of single SNP main effects. Nev-
ertheless, the influence of an additional genetic main effect may be another interesting
aspect to investigate.
Furthermore, a marker may be associated to an environmental factor and have a GxE
interaction effect on disease development at the same time. In our lung cancer appli-
cation, the nicotine acetylcholine receptor CHRNA3 for example is involved in tobacco
dependence and has been identified as a lung cancer risk factor. This situation was also
not covered by our simulation studies and may be investigated.
Additionally, we did not simulate linkage disequilibrium between the different SNPs.
The behavior of the method given dependencies between the different observed SNPs
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is a another aspect that may be investigated in prospective simulations. Furthermore,
linkage disequilibrium may be integrated into the hierarchical model of the EHB.
In our empirical hierarchical Bayes model for GxE interactions, we did not consider co-
variate information. However, there may be the need to adjust for confounding factors,
e.g. a correction for population stratification may be necessary. Therefore, one further
challenge is the extension of the model to that case of having additional covariates in-
cluded in the analysis. Population stratification is an issue for GxE if the population
membership is associated with the disease, the genetic marker and the environmental
factor (Engelman et al., 2009). The impact of population stratification in the detection
of GxE interactions considering different GxE tests is currently investigated in our group
(Abstract to be published in Annals of Human Genetics, EMGM 2012).
Beside we restricted with our EHB to a binary classification of the genetic and environ-
mental factor. A generalization of the method to an additive genetic effect and more
complex considerations of the environmental factor is of practical interest and an issue
for further research.

As already mentioned in section 7, the analysis of further lung cancer GWAS from the
participating consortium is intended in the future. It will be very interesting to see how
their results approve the current findings. An aspect that will play a role in that context
and constitutes an interesting research area for the future is how the HBP and EHB
results across the different GWAS can be combined by a meta-analytical approach. For
gene set analysis methods, a member of our group is currently working on a meta-GSA
approach to combine GSA findings. The challenge is to combine the different pathway
results while considering the direction of the underlying single SNP effects across studies
(Abstract to be published in Annals of Human Genetics, EMGM 2012).
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Appendices

A Fundamentals of genome-wide association studies

and data resources

A.1 SNP databases and arrays

The human genome project
In 1990 the human genome project (HGP) coordinated by the National Institutes of
Health (NIH) started with the goal to sequence the whole human genome and to iden-
tify all approximately 25,000 genes in the human DNA. In 1998, as part of their last
years plan, they furthermore established the goal to identify genetic variants and build
a publicly available map of at least 100,000 common SNP markers by systematically
cataloging them. The HGP was completed in 2003 with great success (Human Genome
Project, 2003; Sham and Cherny, 2010; U.S. Department of Energy Genome Programs,
2011).

The SNP consortium
In 1999 a collaboration of large pharmaceutical companies and the UK Wellcome Trust
Case Control Consortium (WTCCC) formed the SNP consortium (TSC), with the aim
to discover 300,.000 SNPs of the human genome and provide them as a public resource.
Finally, more than 1,8 million SNPs were discovered in total, with 1,4 million SNPs
made publicly available at the end of 2001 (Thorisson and Stein, 2003; U.S. Department
of Energy Genome Programs, 2011).

The Hap Map project
Seeing the good perspective of SNPs in GWAS, the emphasis was further shifted to
study them in more detail. That was extensively done by the International Hap Map
project, initiated in October 2002, comprising researchers from 20 groups in 6 countries
(International HapMap Consortium, 2003, 2005). Aim of that project was to determine
genotype frequencies of millions of common DNA sequence variants (MAF >5%) and
investigate the nature of linkage disequilibrium (LD) across the entire human genome in
different populations of European, African and Asian ancestry (Barrett, 2010). In phase
I of the project, completed in 2005, 1,2 million common SNPs were validated in 270 in-
dividuals from Utah with European ancestry (CEU), Japan (JPT), China (CHB) and
Nigeria (YRI). Block–like patterns of LD that were already observed before were verified
to occur in the entire genome. Furthermore, crossing over hotspots were identified. In
the second phase of HapMap that ended in 2007 (International HapMap Consortium
et al., 2007), the project was extended to more than 2 million additional SNPs in the
same samples, to obtain more precise LD information, more insights into history of the
human populations and better tag SNP selection. In the ongoing third phase, additional
populations are genotyped (Barrett, 2010; Sham and Cherny, 2010). All obtained infor-
mation is published in free databases, e.g. dbSNP database of NCBI (National Center
for Biotechnology Information), with today nearly 12,5 million common SNPs (MAF
>1%) in the dbSNP database (NCBI).



A.2 Genotype calling and data Quality Checks

Genome-wide SNP chips
Two big companies lead the market of genome-wide SNP platforms, Affymetrix (http:
//www.affymetrix.com/) and Illumina (http://www.illumina.com/). While in the
beginning Affymetrix chose the markers on their chips physically randomly distributed
on the whole genome, Illumina based their SNP selection on the observed LD structures
(Bickeböller and Fischer, 2007). The 500K Affymetrix chip, comprising 500,000 SNPs
covers 65% of all known common SNPs in CEU with at least an r2 for LD of 0.8 with
one SNP, while the Illumina Human Hap 300, containing 300,000 SNPs, has an coverage
of 75% (Bickeböller and Fischer, 2007). Affymetrix’s 1 million SNP chip covers nearly
85% of the genetic variation in Europeans and Asians, and 62% in Africans, while the
Illumina chips of the same size covers nearly 93% and 68% (Li et al., 2008). Although the
great majority of SNPs are shared between different populations, significant differences
in allele frequencies and local LD structures due to different evolutionary development
exist (Li and Wang, 2010). Because of the older history of the African population,
they show more genetic diversity and tend to have less LD than European and Asians.
Recently, Affymetrix introduced a new generation of chips, the new Axiom Genome-
Wide array plates. These chips are population-optimized with different available plates
for the European, East Asian, Chinese and African population and offer best genetic
coverage of rare and common variants.

A.2 Genotype calling and data Quality Checks

Genotype calling
The main underlying principle of the chip technology is to measure hybridization in-
tensities for the two different occurring alleles of each SNP. Therefore, short specific
pieces of DNA for the different alleles of any SNP and the adjacent nucleotides (known
from the human genome project) are arrayed on the small chip. These DNA sequences
are called probes. Millions of copies of sample single strand DNA are put on the SNP
chip and can interact with the complementary probe strands on the chip (hybridization)
fitting to the present SNP alleles, but not with probes corresponding to non-occuring
alleles. Afterwards, fluorescent molecules are washed over the array and stick only to
hybridized DNA spots. These molecules glow when a laser shines on them, so that flu-
orescence signals can be read out that represent hybridization intensities for each allele
per SNP and show where the sample DNA has stucked to the probes. These measures
are normalized and genotypes are assigned to each individual according to the signal
intensities (genotype calling) (Ziegler et al., 2008).
For homozygous genotypes, one of the allele intensities is high and the other one is low,
while heterozygous subjects show similar intensities for both alleles (Ziegler et al., 2008).
The three different genotypes can be visualized as three clouds in a scatter plot of the
allele signal intensities of one SNP for all persons, with each cluster representing one
genotype. Due to the high number of SNPs in GWAS, this genotype calling step has to
be performed by an automated procedure (Ziegler et al., 2008). For this, different geno-
type calling algorithms were developed (M. Inouye, 2010), e.g. Birdseed (Korn et al.,
2008), BRLMM (Affymetrix, 2006) or Chiamo (Wellcome Trust Case Control Consor-
tium (WTCCC), 2007). Unfortunately, since the signal intensities between the subjects
can vary due to factors like DNA concentration or degradation, different preparation
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of the samples, e.g. in different laboratories, plating errors and hybridization failures of
the chips, e.g. by degeneration of arrays over time, overlaps of the three genotype clouds
may arise, leading to failure of the genotype calling algorithm at the cloud edges, re-
sulting in missing or even misclassified genotypes (Teo, 2008; Weale, 2010; Ziegler et al.,
2008). Affymetrix quotes the call rate for their Affymetrix 6.0 chip with 99,8%, with a
correct genotyping rate of 99,97% (Affymetrix, 2009).

Missingness
Since non-random missingness with respect to phenotype or genotype can lead to false
positive results, checking SNPs as well as individuals for the number of missings is of
high importance. The subject-wise missing frequency is also denoted as call rate. Low
call rates imply poor DNA quality or hybridization problems caused by faulty arrays
(Ziegler et al., 2008). As a threshold for filtering out individuals with low call rates,
Weale (2010) recommended 97% to 98 % as appropriate. In small studies 90% is often
used. The missing rate for a SNP is a good marker for genotyping accuracy and SNP
performance and hence identification of problematic SNPs (Weale, 2010). A high missing
rate indicates that the genotyping of the SNP failed for a high number of probands, i.e.
that the calling algorithm was not able to assign genotypes to signal intensities (Neale
and Purcell, 2008). This can be closely related to the overlap of clouds illustrated above.
Furthermore, since particular differences in missingness between cases and controls can
lead to false positive results, comparing the missing rates between cases and controls is
a popular strategy. When different study groups are considered, the missingness should
furthermore be separately investigated in each of these groups (Ziegler et al., 2008). A
common threshold for filtering out bad quality SNPs due to missingness is between 2%
and 5% (Weale, 2010).

Minor allele frequency
The data quality for SNPs tends to decrease with a decreasing minor allele frequency.
Less information for genotypes with a low MAF is available for the calling algorithm,
resulting in less certain results and hence only poor performance for SNPs with rare
alleles (Weale, 2010). Informative missingness can affect low MAF SNPs more strongly
and increase the chance for false positives. Furthermore, low MAF SNPs are generally
not informative in GWAS, since the power in these studies is too low to detect associa-
tions of such low frequency SNPs (Teo, 2008; Weale, 2010). Therefore, it is reasonable
to exclude these SNPs, which also reduces the multiple testing burden. Depending on
the sample size MAF thresholds of 1%-5% are generally used (Ziegler et al., 2008), with
Weale (2010) suggesting 10/n with n=number of samples as a reasonable threshold.

Hardy Weinberg Equilibrium
Since genotype calling algorithms can not only fail to assign a genotype and produce
missing values but have also the potential to make incorrect calls (Teo, 2008) leading to
genotype misclassifications, identifying such kinds of conspicuous SNPs is important as
well. Again, overlapping clouds is the origin of this problem. Such kinds of genotyping
errors express in deviations from HWE (Teo, 2008). HWE was described in detail
in chapter 2.2.1, relating the allele and genotype frequencies of a SNP to each other.
Nevertheless, not only genotyping errors can cause departures from HWE, but deviations
can also occur due to population stratification, selection and non-random mating. In
addition, strong signals of true association can express by HWE deviation as well due
to the fact that disease disposing alleles are favored in cases and hence corresponding
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genotypes are enriched (Weale, 2010; Neale and Purcell, 2008; Ziegler et al., 2008).
Therefore, HWE is often only checked within controls (Neale and Purcell, 2008; Ziegler
et al., 2008). Furthermore, since extreme departures are more likely caused by failures,
more stringent deviation thresholds (Neale and Purcell, 2008) are used to exclude SNPs
according to HWE deviations, often the significance level as for finding associated signals
is used.

Sex mismatches
A quality control on the subject level is to check if the genetic sex determined by the
X chromosome data matches with the sex given in the clinical data. This can help
to make sure that genetic and phenotypic data are correctly aligned (Weale, 2010). A
mismatch can occur due to labeling errors, where a wrong DNA probe is assigned to a
wrong clinical record, an error in ascribing the sex in the clinical record, due to sample
contamination, X chromosome mosaics in females or due to rare medical conditions (e.g.
Kinefelter’s XXY). The latter affects only less than 0.1% of the population and hence
occurs only in 1 out of 1,000 persons (Weale, 2010). The genetic sex can be determined
by the extent of heterozygous and homozygous genotypes for the X-chromosomal SNPs,
since no heterozygotes should occur in men. An estimate for the homozygosity is given
by Wright’s inbreeding coefficient F. The inbreeding coefficient F is the probability
that two alleles given at a randomly chosen locus are identical by descent (IBD), what
means that they are copies of the same allele from a common ancestor. An estimate
can be obtained based on the observed number of homozygous genotypes versus the
expected one under Hardy-Weinberg Equilibrium. A positive F indicates the excess of
homozygotes, while a negative F indicates the excess of heterozygous genotypes. For
females this value should be close to zero, while males show values near one, representing
no heterozygous genotypes. Intermediate values are often observed in women, what can
be explained by very large copy number variation deletions on the X-chromosome, but
can also indicate DNA contamination (Weale, 2010). Individuals with a mismatch that
cannot be clarified should be removed from the analysis (Weale, 2010). Recommended
values to assign the sex are <0.2 for females and >0.8 for males.

Heterozygosity
When checking sex a measure for the homo- and heterozygosity based on the X-
chromosome is calculated. Another useful indicator for poorly genotyped samples is
the extent of heterozygosity based on the autosomal SNPs. Negative F values represent
an excess of heterozygous genotypes due to contamination of the DNA probe (Weale,
2010; Teo, 2008; Ziegler et al., 2008). An excess of homozygotes expressed by a positive
F value can result from membership to different populations and inbreeding (Weale,
2010). A typical approach to exclude persons according to the heterozygosity measure
is to calculate the corresponding mean and standard deviation across all subjects in
the study and exclude individuals outside the range of mean +/- 3 standard deviations
(Ziegler et al., 2008).

Cryptic relatedness
An assumption of association statistics used in population-based studies is the indepen-
dence of observational units. The relatedness of the participants in a population-based
study may result in biased statistics (Weale, 2010) and false positive or false negative
results. Therefore, another important issue is to check if individuals are more closely
related than population average and hence are close family members (Weale, 2010). Fur-
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Table A.1: Recommended Quality Filters for population-based GWAS data

Individual specific quality checks

Call rate ≥ 90%

Sex mismatch female F<0.2 and male F>0.8

Heterozygosity within mean F +/- 3 standard deviation F

Cryptic relatedness proportion allele IBD <0.1875

Population stratification λGenomicControl<1.05

Population outliers | PLINKS nearest neighbor Z score | <4

SNP specific quality checks

Call rate ≥ 95%

Minor allele frequency ≥ 1%

Hardy Weinberg Equilibrium pHWE ≥ 10−7

thermore, in large-scale studies, sample duplications can occur by accident (Teo, 2008).
To uncover cryptic relatedness, a LD pruned data set with no strong LD among the
remaining SNPs has to be prepared, and the allele sharing by each pair of subjects is
calculated by the proportion of alleles identical to descent (IBD) for these SNPs (Weale,
2010). Two alleles are identical by descent when they originate from the same ancestral
allele. By comparing the observed proportion of alleles that are the same between both
individuals (identity by state, IBS) and the corresponding expectation for two unrelated
subjects given the allele frequencies, IBD can be estimated. A value of 1 denotes that
all alleles are IBD and represents monozygotic twins or a replicate. For first degree
relatives, we have pIBD = 0.5, for second degree relatives pIBD = 0.25 and so on. A
commonly used threshold is pIBD<0.1875.

Population outliers
The proportion of concordant alleles can furthermore be used to detect population out-
liers. Population outliers are characterizes by a different ethnicity than the remaining
sample and can lead to biased test statistics. While the previous part concentrates to
identify pairs of individuals with higher allele sharing than two unrelated persons from
the same population, outliers express by an outstanding low number of alleles IBS in
comparison to the rest of the sample. Population outliers have the potential to results
in inflation of the test statistic and false results and should therefore be removed from
the sample before the analysis of the data. A method to detect population outliers is
outlined in the main text (principle component analysis, section 3.2.4). Although this
method can be used to adjust for outliers as well, it is recommended to rather remove
than correct for them.

Population stratification is another important point handled in the process of
quality control. Due to its high importance in the association analysis as well, it is
outlined in the main text of this thesis (section 3.2.4).
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A.3 Pathway databases

One of the databases most commonly used and subject of our pathway based analyses in
chapter 7 is the Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa
and Goto, 2000). KEGG is a free access database with structured information about
biomolecules and genes, particularly involving a collection of 249 manually drawn maps
of biological pathways (release 61.1, February 1 2012). These represent our knowledge
on the molecular interaction and reaction networks in metabolism, genetic information
processing, environmental information processing, cellular processes, human diseases
and drug development. Of the more than 20,000 known human protein coding genes,
around 6,200 currently occur in at least one of these pathways.
Another popular pathway collection is Biocarta (BioCarta LLC, 2011). Biocarta pro-
vides molecular relationships of genes within pathways and their interactions by dy-
namic graphical models. More than 120,000 genes from different species are cataloged
and summarized. Information about the proteome collected by the research community
is integrated.
In addition, Gene Ontology (GO) is often used (Ashburner et al., 2000). GO classifies
genes into a hierarchy of categories (GO terms), placing gene products with familiar
function together. The GO consists of three biological domains: cellular component,
molecular function and biological process. Hence, the gene products are characterizes
by where they act, which function they have and in which process they are involved.
In total, 34,940 terms are defined (21,401 biological process, 2,896 cellular component,
9,063 molecular function), involving 37,957 human gene products (proteins, different
kinds of RNA) (GO version 1.248, September 13th 2011). To illustrate the hierarchical
concept, we will take a look on ”death”, one kind of the biological processes. Death
can be distinguished in cell and tissue death. Programmed cell death is a subitem of
the former, which in turn involves apoptosis. Apoptosis can be further differentiated
according to the kind of cells affected, e.g. leukocyte apoptosis. This furthermore refines
into positive or negative regulation of B cell apoptosis. Due to the hierarchical structure,
genes in a category are part of all parent classifications (Curtis et al., 2005). To reduce
the problem of high correlations between the gene sets, it is recommended to restrict to
one level of the hierarchy when using GO (Wang et al., 2010).
While KEGG and Biocarta are based on manually curated pathways, the gene sets in
GO are predominantly bioinformatically generated (Wang et al., 2010). The former
yields high-quality information for well-studied pathways, the latter ensures compre-
hensive coverage of pathways.
The molecular signatures database MSigDB (Subramanian et al., 2005) is a compre-
hensive collection of gene sets involving positional gene sets (chromosome, chromosome
region), curated pathways from other online databases, among others KEGG and Bio-
carta, publications and expert knowledge, gene motif gene sets, computational gene sets
defined by expression neighbourhoods and GO sets. In February 2012, the total number
of gene sets was close to 7,000.
The Gene Map Annotator and Pathway Profiler (GenMAPP) (Salomonis et al., 2007)
is a computer application for visualization of gene groups and pathway diagrams from
genomic data including software for pathway analysis. New custom pathway maps can
be constructed with the tool and existing pathways and gene sets are provided for down-
load. This archive contains 100 hand-curated human pathways created at GenMAPP.org
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or submitted by GenMAPP users based on textbooks or review articles, as well as a
pathways from public databases such as GO or KEGG.
A good overview of 325 different resources related to biological pathway or molecular
interaction information, including links to the several databases, is given by pathguide
(Bader et al., 2006). Pathguide lists manually curated pathway databases as well as
computationally predicted ones, open source providers as well as commercial ones and
general as well as more specialized pathway databases.

The p53 signaling pathway

The p53 signaling pathway is important in cell growth and health and is responsible for
genomic stability (Melino et al., 2002; Soussi, 2010; Vogelstein et al., 2000; Vousden and
Lu, 2002). The pathway is induced by stress signals, with p53 as its key protein. The
name of the corresponding gene is TP53. In normal, unstressed cells, the protein MDM2
binds to the p53 and inactivates it. p53 is a cell stress sensor molecule and responds
to numerous different stress factors such as DNA damage induced by e.g. radiation or
chemical agents (Soussi, 2010) or deregulations of genes responsible for cell metabolism,
growth and division (oncogenes). The stress signals are transmitted to p53 by various
upstream mediator proteins that induce splitting of the p53-MDM2 complex and acti-
vate the p53 as a transcription factor for numerous genes (Karp, 2002). These genes
are e.g. involved in cell cycle arrest during cell division (keeping damaged cells from
progressing through the cell cycle) (BioCarta LLC, 2011), DNA repair (repairing the
genetic damage before the DNA replication is initiated) and apoptosis (the programmed
cell death, initiated when the damage proves to be irreparable) (BioCarta LLC, 2011;
Karp, 2002).
Due to the important role in cell growth, malfunctions of the p53 can lead to enormous
negative consequences. A defect or missing p53 protein can inhibit the ability to bind
DNA regulatory regions in an effective way and activate specific gene’s expression. The
cell division of damaged cells will not be stopped, DNA damage cannot be repaired and
the cell is not destroyed by apoptosis (Karp, 2002), what leads to an unrestrained repli-
cation of the damaged DNA. This again involves the production of numerous abnormal
cells with the potential to divide uncontrollable, form tumors and become malignant
(Karp, 2002).
However, not only defects of the TP53 gene directly result in the replication of damaged
DNA, but also other proteins involved in the same pathway can be responsible for the
same final malfunction. Changes in MDM2 concentration or binding affinity for example
can influence the p53 pathway (Michael and Oren, 2002; Soussi, 2010), as well as defects
in the stress signal mediators and even failures in up- or downstream pathways.
The non-functioning of the p53 pathway destabilizes the cells genetic information (Busel-
maier and Tariverdian, 1999) by allowing its division and survival despite a DNA damage
(Alberts, 2004). This leads to an increased general mutation rate of that cell and its
progenitors, so that mutations that promote cell proliferation or block apoptosis can
arise more easily as well (Buselmaier and Tariverdian, 1999; Griffiths et al., 2008).
Although the p53 pathway plays a very important role in cancer development, a de-
fect of this pathway alone does not cause cancer. The mechanism underlying disease
development is even more complicated than only a drop out of one particular pathway.
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Cancer arises from a series of special mutations that accumulate in a cell and its progeny
(Griffiths et al., 2008) and lead to different specific properties. Beside the genomic insta-
bility and increased mutation rate achieved by p53 pathway defects, the characteristics
of a malign tumor are uncontrolled cell division and cell growth (proliferation), blocked
apoptosis, sustained angiogenesis, ability of invasion and metastazation (Alberts, 2004).
Angiogenesis denotes the development of new blood vessels. These are necessary to pro-
vide the tumor cells with oxygen and nutrients. Invasion is the ability of a cell and its
progeny to digest their way through the underlying tissue and to displace the “normal”
neighbors. Metastazation is the ability of cells to get in and out of the blood or lymph
circulation and spread to distant sites (Alberts, 2004).
The example of the p53 signaling pathway clearly illustrates how different proteins work
together in biological pathways to fulfill a particular task. Although in some cases a
damaged TP53 gene is directly responsible for the blocking of the DNA repair and
apoptosis, the malfunction needs not necessarily to be a consequence of the defected
tumor suppressor gene itself (Karp, 2002). Even if a “crucial” gene is not mutated, the
function of this gene can be affected as a result of an alteration in other genes whose
products are part of the same pathway or an upstream or downstream pathway. Proteins
at different positions within a pathway can drop out due to mutations in their coding
DNA sequences and regulatory regions or due to inadequate regulation of expression by
transcription factors, all finally leading to the defect of the pathway.
Several examples of GxG interactions are found in the p53 signaling pathway. MDM2
binds to the p53 to form a protein complex and inactivate it, the mediator proteins
interact with the MDM2-p53 complex to solve the connection, and finally p53 interacts
with the DNA regulatory sequences to induce gene expression.
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B.1 Genetic Analysis Workshop 16

Preprocessing

The Gene Name Service (GNS) (Lin et al., 2007) we used to assure consistency of gene
names in our application, retrieves and organizes data from different gene databases
(HUGO, NCBI and GeneCard) to provide gene aliases for gene identification. In our
SNP-to-gene assignment and gene set file, 99,896 different gene names occurred in total.
These were ascribed to 17,513 different genes in the human genome. 4 genes had to be
removed since they were deleted from the NCBI gene database or since they annotated
SNPs that were located on different chromosomes according to the NCBI SNP database
Database of Single Nucleotide Polymorphisms, 2009.
We further took a closer look at the gene sets to combine those with a large overlap
and excluded those with less than 11 genes to reduce the multiple testing burden. Five
gene sets were completely composed of other genes than the genes covered by the SNPs
and 381 sets included only one of the covered genes. These gene sets were removed. We
checked the overlap of any pair of the remaining 1,690 gene sets and found 772 gene
sets composed by less than 11 genes being completely part of a larger gene set. This
reflects the hierarchical structure of the gene ontology (GO) (Ashburner et al., 2000).
We excluded these small sets. To reduce the multiple testing problem in addition, we
merged pairs of gene sets where at least 90% of the genes from the smaller set were
shared with the larger set and these shared genes made up at least 66% of the larger
gene set. By this we replaced 83 sets with 41 merged ones and end up with a total of
876 gene sets for the analysis.

Comparison of different permutation strategies

The comparison of different permutation procedures was extensively discussed in the
context of gene expression (Efron and Tibshirani, 2006; Goeman and Buehlmann, 2007).
However, due to the hierarchical SNP to gene and gene to set assignment, in GWAS
context this challenge is even more complicated.
The permutation of phenotypes has the very important advantage that it adjusts for
the different gene sizes while the complex correlation structure of the data is preserved
(Wang et al., 2007)). Genes vary in size and LD block structure and especially when
using the maximum SNP statistic to represent a gene, the gene size is a potential source
of bias. Smaller p-values tend to occur more likely in larger genes just by chance and
therefore large genes are more likely to show a significant effect. As a consequence, gene
sets containing large genes may be inflated (Wang et al., 2007). In GWAS data, SNP
correlations occur due to LD and genes may overlap or interact with each other. To
keep the correlation structures between SNPs and genes when permuting potentially
may increase power, while ignoring the correlations may lead to biased results (Wang
et al., 2007)). Unfortunately, phenotype permutation is extremely time-consuming and
memory intensive. Furthermore, the hierarchical structure compassing SNP to gene
assignment and gene to gene set assignment is not straightforward modeled (Wang
et al., 2011). The alternatives of permuting the SNP or gene statistics (Wang et al.,
2011) are less computationally intensive than the disease label permutation and do not
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Table B.1: Results for our analysis of the NARAC data: Top 20 gene sets
after applying GSEA, one/two-step HBP, or HBP+GSEA
a in two strategies; b in three strategies; c in all four strategies.

rank Strategy I Strategy II Strategy III Strategy IV
GSEA HBP HBP+HBP HBP+GSEA

1 hsa04514a hsa04330a GO0032393a hsa04940a

2 hsa04640 GO0032395a GO0002504b hsa04514a

3 hsa04612c GO0006956a GO0048002b GO0008236
4 hsa04940a GO0016820 GO0051327 hsa04612c

5 inflamPathway GO0051028 asbcellPathwayb GO0032395a

6 th1th2Pathwaya GO0004004 GO0042287 GO0002504b

7 CSKPathway GO0030554 GO0032395 GO0048002b

8 ctla4Pathway GO0000279 GO0001569 GO0051249a

9 blymphoPathway GO0051276 GO0051249 hsa04512a

10 hsa04650a GO0019199 GO0002526b GO0032393a

11 tcraPathway GO0002460c GO0006957 th1th2Pathwaya

12 GO0048002b GO0007160 GO0002460c hsa04650a

13 GO0046982 hsa04940a ctla4Pathwayb hsa04610
14 GO0009405 hsa04612c hsa00310 GO0002526b

15 asbcellPathwayb hsa04010 hsa04512 GO0002460c

16 hsa04330a GO0043069 GO00051169 ctla4Pathb

17 GO0006956a GO0002521 hsa04612c GO0002443a

18 GO0002504b GO0002443a hsa04320 GO0004175
19 GO0002460c GO0006281 GO0006643 asbcellPathwayb

20 GO0002526b GO0009952 GO0016301 GO0003779

need the raw genotype data. However, these proceedings violate the key assumption of
permutation methods that the permuted units have to be independent from each other.
SNPs are correlated due to LD - even between different genes and genes may overlap or
interact. Although different individuals are distantly related as well (Wang et al., 2010),
this correlation is ineffectively compared to the strong SNP and gene dependencies.
The permutation of both, SNP and gene-level statistics, disrupts LD patterns, does not
consider GxG interactions and results in a biased null distribution. While permuting
SNP statistics at least considers gene size and preserves gene correlations due to an
overlap, permuting gene statistics do not keep this neither. Although ORA methods
not necessarily require a permutation routine, for the purpose of considering correlation
structures and other potential sources of bias, permutation methods are useful as well
(Wang et al., 2010).
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B.2 Supplementary results of the lung cancer GWAS

This appendix gives the following additional results:

• QQ-lots of the initial SNP main effect results from MDACC and SLRI

• Table of replicated pathways of HBP based on SNP main effects using β-regression
coefficients as pathway ranking criterion

• Table of replicated pathways of HBP based on SNP main effects using µ-regression
coefficients as pathway ranking criterion

• Table of replicated pathways of GSEA based on SNP main effects

• Table of replicated pathways of SUMSTAT based on SNP main effects

• Manhattan plots of the initial SNP interaction effects for CE-IARC and MDACC

• Table of replicated pathways of HBP-GxE based on SNP interaction effects using
β-regression coefficients as pathway ranking criterion

• Table of replicated pathways of HBP-GxE based on SNP interaction effects using
µ-regression coefficients as pathway ranking criterion

• Table of replicated pathways of GSEA based on SNP interaction effects

• Correlation of HBP regression coefficients and number of SNPs per pathways for
the CE-IARC study
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B.2 Supplementary results of the lung cancer GWAS

Figure B.1: QQ plots of initial SNP main effect results from both pathway regression
models for MDACC and SLRI
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B Data applications

Figure B.3: Correlation of HBP β and µ regression coefficients and number of SNPs
per pathway for the CE-IARC study
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C Correction term for the posterior variance

In the following we have ϕ(·) probability density function and Φ(·) probability distribu-
tion of the standard normal distribution and erf(x) = 2Φ(x

√
2)− 1.

Furthermore let

D+ =
(x+ θ)√
σ2
x + σ2

D− =
(x− θ)√
σ2
x + σ2

.

C.1 Jacobian of the posterior expectation

Posterior expectation (equation 4.25):

E = E [λ | x, θ, b, σ]

Jacobian:

∇̃ =
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δ̃b


We can split the posterior expectation:
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and

L+ =
σ2
xθ + σ2x√

σ2
xσ
√
σ2
x + σ2

L− =
σ2
xθ − σ2x√

σ2
xσ
√
σ2
x + σ2

.

We will further use

Pinv = 1/P+.

Derivative with respect to θ

∂E

∂θ
= E

(
∂Enum
∂θ

/Enum −
∂Eden
∂θ

/Eden −
∂Pinv
∂θ

/Pinv

)
with

∂Enum
∂θ

=
∂Enum1

∂θ
+
∂Enum2

∂θ
+
∂Enum3

∂θ
∂Enum1

∂θ
=− θ

σ2
Enum1

∂Enum2

∂θ
=L+ϕ(D−)

∂ erf(L+)

∂θ
+ L+

∂ϕD−
∂θ

erf(
L+√

2
) +

∂L+

∂θ
ϕ(D−) erf(

L+√
2

)

∂Enum3

∂θ
=L−ϕ(D+)

∂ erf(L−)

∂θ
+ L−

∂ϕD+

∂θ
erf(

L−√
2

) +
∂L−
∂θ

ϕ(D+) erf(
L−√

2
)

∂Eden
∂θ

=
∂ϕ(D+)

∂θ
+
∂ϕ(D−)

∂θ
∂Pinv
∂θ

=− (Pinv − 1)
∂Eden
∂θ

/Eden

and

∂L+

∂θ
=

√
σ2
x

σ
√
σ2
x + σ2

∂L−
∂θ

=

√
σ2
x

σ
√
σ2
x + σ2

∂D+

∂θ
=

1√
σ2
x + σ2

∂D−
∂θ

=− 1√
σ2
x + σ2

∂ϕ(D+)

∂θ
=− ϕ(D+)D+

∂D+

∂θ
∂ϕ(D−)

∂θ
=− ϕ(D−)D−

∂D−
∂θ

∂ erf(L+)

∂θ
=2ϕL+

∂L+

∂θ
∂ erf(L−)

∂θ
=2ϕL−

∂L−
∂θ

238



C.1 Jacobian of the posterior expectation
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∂D−
∂σ

∂ erf(L+)

∂σ
=2ϕ(L+)

∂L+

∂σ
∂ erf(L−)

∂σ
=2ϕ(L−)

∂L−
∂σ

Derivative with respect to b = logit(p/1− p)

∂E

∂b
= −E∂Pinv

∂b
/Pinv
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with

∂Pinv
∂b

=
−1

exp (b)
2ϕ

(
x√
σ2
x

)
/
√
σ2
x

√
σ2
x + σ2

f2

Eden
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C.2 Hessian of the marginal log likelihood

Marginal likelihood (equation 4.21):

L = m(x | θ, σ, b)

Hessian:

Σ̃ =

τ̃θθ τ̃θσ τ̃θb
τ̃σθ τ̃σσ τ̃σb
τ̃bθ τ̃bσ τ̃bb

 ,

We can split the likelihood

L = p(U + V ) + (1− p)2W = p
(Un + Vn)√
σ2
x + σ2

+ (1− p)2W

with

p =
exp (b)

1 + exp(b)

Un =ϕ(D+)

Vn =ϕ(D−)

W =ϕ

(
x

σx

)
/σx

Mixed second order partial derivatives of log(L):

∂2logL

∂θ∂θ
=

[
L
∂2L

∂θ∂θ
−
(
∂L

∂θ

)2
]
/L2

∂2logL

∂θ∂b
=

[
L
∂2L

∂θ∂b
−
(
∂L

∂θ

∂L

∂b

)]
/L2

∂2logL

∂θ∂σ
=

[
L
∂2L

∂θ∂σ
−
(
∂L

∂θ

∂L

∂σ

)]
/L2

∂2logL

∂b∂θ
=

[
L
∂2L

∂b∂θ
−
(
∂L

∂b

∂L

∂θ

)]
/L2

∂2logL

∂b∂b
=

[
L
∂2L

∂b∂b
−
(
∂L

∂b

)2
]
/L2

∂2logL

∂b∂σ
=

[
L
∂2L

∂b∂σ
−
(
∂L

∂b

∂L

∂σ

)]
/L2

∂2logL

∂σ∂θ
=

[
L
∂2L

∂σ∂θ
−
(
∂L

∂σ

∂L

∂θ

)]
/L2

∂2logL

∂σ∂b
=

[
L
∂2L

∂σ∂b
−
(
∂L

∂σ

∂L

∂b

)]
/L2

∂2logL

∂σ∂σ
=

[
L
∂2L

∂σ∂σ
−
(
∂L

∂σ

)2
]
/L2
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First partial derivative with respect to θ:

∂L

∂θ
= p

(
∂Un
∂θ

+
∂Vn
∂θ

)
/
√
σ2 + σ2

x

with

∂D+

∂θ
=

1√
σ2
x + σ2

∂D−
∂θ

=− 1√
σ2
x + σ2

∂Un
∂θ

=− ϕ(D+)D+
∂D+

∂θ
∂Vn
∂θ

=− ϕ(D−)D−
∂D−
∂θ

Second order partial derivative with respect to θ

∂2L

∂θ∂θ
= p

(
∂2Un
∂θ∂θ

+
∂2Vn
∂θ∂θ

)
/
√
σ2
x + σ2
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∂2D+

∂θ∂θ
=0

∂2D−
∂θ∂θ

=0

∂2Un
∂θ∂θ

=−
(
∂Un
∂θ
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+ ϕ(D+)

∂D+
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∂θ
+ ϕ(D+)D+

∂2D+

∂θ∂θ

)
∂2Vn
∂θ∂θ
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(
∂Vn
∂θ
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∂D−
∂θ

+ ϕ(D−)
∂D−
∂θ

∂D−
∂θ

+ ϕ(D−)D−
∂2D−
∂θ∂θ

)
Mixed second order partial derivative with respect to θ and σ:

∂L

∂θ∂σ
=
∂L

∂θ

(
∂Un
∂θ∂σ

+
∂Vn
∂θ∂σ

)
/

(
∂Un
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+
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∂θ

(
− σ

σ2
x + σ2

)
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∂D+

∂θ∂σ
=
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∂θ

−σ
σ2
x + σ2

∂D−
∂θ∂σ
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∂D−
∂θ

−σ
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x + σ2

∂Un
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)
Mixed second order partial derivative with respect to θ and b:

∂2L

∂θ∂b
=
∂L

∂θ

∂p

∂b
/p
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First partial derivative with respect to σ:

∂L

∂σ
= p
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∂Vn
∂σ

+
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∂σ

)
− (U + V )

∂sd
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/
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Mixed second order partial derivative with respect to σ and θ:
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with

∂2sd

∂σ∂σ
=

σ2
x

(
√
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3
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Mixed second order partial derivative with respect to σ and b:
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1
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First partial derivative with respect to b:
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Mixed second order partial derivative with respect to b and θ:
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Second order partial derivative with respect to b:

∂2L

∂b∂b
=
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T., Johnson, N., Kähäri, A. K., Keefe, D., Keenan, S., Kinsella, R., Komorowska,
M., Koscielny, G., Kulesha, E., Larsson, P., Longden, I., McLaren, W., Muffato, M.,
Overduin, B., Pignatelli, M., Pritchard, B., Riat, H. S., Ritchie, G. R. S., Ruffier,
M., Schuster, M., Sobral, D., Tang, Y. A., Taylor, K., Trevanion, S., Vandrovcova,
J., White, S., Wilson, M., Wilder, S. P., Aken, B. L., Birney, E., Cunningham, F.,
Dunham, I., Durbin, R., Fernández-Suarez, X. M., Harrow, J., Herrero, J., Hubbard,

253



REFERENCES

T. J. P., Parker, A., Proctor, G., Spudich, G., Vogel, J., Yates, A., Zadissa, A., and
Searle, S. M. J. (2012). Ensembl 2012. Nucleic Acids Res, 40(Database issue):D84–
D90.

Forner, K., Lamarine, M., Guedj, M., Dauvillier, J., and Wojcik, J. (2008). Universal
false discovery rate estimation methodology for genome-wide association studies. Hum
Hered, 65(4):183–194.

Frazer, K. A., Murray, S. S., Schork, N. J., and Topol, E. J. (2009). Human genetic
variation and its contribution to complex traits. Nat Rev Genet, 10(4):241–251.

Freedman, M. L., Reich, D., Penney, K. L., McDonald, G. J., Mignault, A. A., Patterson,
N., Gabriel, S. B., Topol, E. J., Smoller, J. W., Pato, C. N., Pato, M. T., Petryshen,
T. L., Kolonel, L. N., Lander, E. S., Sklar, P., Henderson, B., Hirschhorn, J. N.,
and Altshuler, D. (2004). Assessing the impact of population stratification on genetic
association studies. Nat Genet, 36(4):388–393.

Freidlin, B., Zheng, G., Li, Z., and Gastwirth, J. L. (2002). Trend tests for case-control
studies of genetic markers: power, sample size and robustness. Hum Hered, 53(3):146–
152.

Fridley, B. L., Jenkins, G. D., and Biernacka, J. M. (2010). Self-contained gene-set
analysis of expression data: an evaluation of existing and novel methods. PLoS One,
5(9).

Gail, M. H., Pfeiffer, R. M., Wheeler, W., and Pee, D. (2008). Probability of detect-
ing disease-associated single nucleotide polymorphisms in case-control genome-wide
association studies. Biostatistics, 9(2):201–215.

Gao, Y. T., Blot, W. J., Zheng, W., Ershow, A. G., Hsu, C. W., Levin, L. I., Zhang,
R., and Fraumeni, J. F. (1987). Lung cancer among chinese women. Int J Cancer,
40(5):604–609.

Gauderman, W. J., Murcray, C., Gilliland, F., and Conti, D. V. (2007). Testing as-
sociation between disease and multiple SNPs in a candidate gene. Genet Epidemiol,
31(5):383–395.

Ge, Y., Dudoit, S., and Speed, T. P. (2003). Resampling-based multiple testing for
microarray data analysis. Test, 12(1):1–77.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (1995). Bayesian Data
Analysis. Chapman & Hall, London.

Gibson, G. (2010). Hints of hidden heritability in GWAS. Nat Genet, 42(7):558–560.

Gillespie, J. (1998). Population genetics: a concise guide. A Johns Hopkins paperback.
The Johns Hopkins University Press.

Goeman, J. J. and Buehlmann, P. (2007). Analyzing gene expression data in terms of
gene sets: methodological issues. Bioinformatics, 23(8):980–987.

254



REFERENCES

Greene, C. S., Penrod, N. M., Williams, S. M., and Moore, J. H. (2009). Failure to
replicate a genetic association may provide important clues about genetic architecture.
PLoS One, 4(6):e5639.

Greenland, S. (1993). Methods for epidemiologic analyses of multiple exposures: a review
and comparative study of maximum-likelihood, preliminary-testing, and empirical-
Bayes regression. Stat Med, 12(8):717–736.

Gregersen, P. K., Amos, C. I., Lee, A. T., Lu, Y., Remmers, E. F., Kastner, D. L., Seldin,
M. F., Criswell, L. A., Plenge, R. M., Holers, V. M., and et al. (2009). REL, encoding
a member of the NF-kappaB family of transcription factors, is a newly defined risk
locus for rheumatoid arthritis. Nat Genet, 41(7):820–823.

Griffiths, A., Wessler, S., Lewontin, R., and Carroll, S. (2008). Introduction to Genetic
Analysis. W. H. Freeman.

Grimm, D., Blum, H. E., and Thimme, R. (2011). Genomweite Assoziationsstudien.
Deutsche medizinische Wochenschrift 1946, 713(3):407–409.

Hall, J. M., Lee, M. K., Newman, B., Morrow, J. E., Anderson, L. A., Huey, B., and
King, M. C. (1990). Linkage of early-onset familial breast cancer to chromosome
17q21. Science, 250(4988):1684–1689.
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Deutsch, S., Borel, C., Attar, H., Gagnebin, M., Macek, M., Krawczak, M., Remm,
M., and Metspalu, A. (2009). Genetic structure of Europeans: a view from the North-
East. PLoS One, 4(5):e5472.

Neuman, R. J. and Sung, Y. J. (2009). Multistage analysis strategies for genome-wide
association studies: summary of group 3 contributions to Genetic Analysis Workshop
16. Genet Epidemiol, 33 Suppl 1:S19–S23.

Newton, J. L., Harney, S. M. J., Wordsworth, B. P., and Brown, M. A. (2004). A review
of the MHC genetics of rheumatoid arthritis. Genes Immun, 5(3):151–157.

Nikolova, T., Christmann, M., and Kaina, B. (2009). FEN1 is overexpressed in testis,
lung and brain tumors. Anticancer Res, 29(7):2453–2459.

Nomori, H., Mori, T., Iyama, K., Okamoto, T., and Kamakura, M. (2011). Risk of
bronchioloalveolar carcinoma in patients with human T-cell lymphotropic virus type
1 (HTLV-I): case-control study results. Ann Thorac Cardiovasc Surg, 17(1):19–23.

Ober, C. and Vercelli, D. (2011). Gene-environment interactions in human disease:
nuisance or opportunity? Trends Genet, 27(3):107–115.

Office of Genetics and Disease Prevention (2000). Gene-environment
interaction fact sheet. Available at http://www.ashg.org/pdf/

CDCGene-EnvironmentInteractionFactSheet.pdf [Accessed 3 March 2012].

Online Mendelian Inheritance in Man (OMIM) (2012). McKusick-Nathans Institute of
Genetic Medicine, Johns Hopkins University (Baltimore, MD). Available at http:

//www.omim.org/ [Accessed 24 February 2012].

Ottman, R. (1990). An epidemiologic approach to gene-environment interaction. Genet
Epidemiol, 7(3):177–185.

Ottman, R. (1996). Gene-environment interaction: definitions and study designs. Prev
Med, 25(6):764–770.

Palmer, L. J. and Cardon, L. R. (2005). Shaking the tree: mapping complex disease
genes with linkage disequilibrium. Lancet, 366(9492):1223–1234.

Pan, W. (2005). Incorporating biological information as a prior in an empirical Bayes
approach to analyzing microarray data. Stat Appl Genet Mol Biol, 4:Article12.

Papoulis, A. and Pillai, S. (2002). Probability, random variables, and stochastic pro-
cesses. McGraw-Hill electrical and electronic engineering series. McGraw-Hill.

266

http://www.ashg.org/pdf/CDC Gene-Environment Interaction Fact Sheet.pdf
http://www.ashg.org/pdf/CDC Gene-Environment Interaction Fact Sheet.pdf
http://www.omim.org/
http://www.omim.org/


REFERENCES

Park, C. C., Ahn, S., Bloom, J. S., Lin, A., Wang, R. T., Wu, T., Sekar, A., Khan,
A. H., Farr, C. J., Lusis, A. J., Leahy, R. M., Lange, K., and Smith, D. J. (2008). Fine
mapping of regulatory loci for mammalian gene expression using radiation hybrids.
Nat Genet, 40(4):421–429.

Park, S. H., Lee, J. Y., and Kim, S. (2011). A methodology for multivariate phenotype-
based genome-wide association studies to mine pleiotropic genes. BMC Syst Biol,
5(Suppl 2):S13.

Parkin, D. M., Bray, F., Ferlay, J., and Pisani, P. (2005). Global cancer statistics, 2002.
CA -Cancer J Clin, 55(2):74–108.

Patil, N., Berno, A. J., Hinds, D. A., Barrett, W. A., Doshi, J. M., Hacker, C. R.,
Kautzer, C. R., Lee, D. H., Marjoribanks, C., McDonough, D. P., Nguyen, B. T.,
Norris, M. C., Sheehan, J. B., Shen, N., Stern, D., Stokowski, R. P., Thomas, D. J.,
Trulson, M. O., Vyas, K. R., Frazer, K. A., Fodor, S. P., and Cox, D. R. (2001).
Blocks of limited haplotype diversity revealed by high-resolution scanning of human
chromosome 21. Science, 294(5547):1719–1723.

Patterson, M. and Cardon, L. (2005). Replication publication. PLoS Biol, 3(9):e327.

Patterson, N., Price, A. L., and Reich, D. (2006). Population structure and eigenanalysis.
PLoS Genet, 2(12):e190.

Pearson, T. A. and Manolio, T. A. (2008). How to interpret a genome-wide association
study. JAMA, 299(11):1335–1344.

Peng, G., Luo, L., Siu, H., Zhu, Y., Hu, P., Hong, S., Zhao, J., Zhou, X., Reveille, J. D.,
Jin, L., Amos, C. I., and Xiong, M. (2010). Gene and pathway-based second-wave
analysis of genome-wide association studies. Eur J Hum Genet, 18(1):111–117.

Perry, J. R. B., McCarthy, M. I., Hattersley, A. T., Zeggini, E., Consortium, W. T.
C. C., Weedon, M. N., and Frayling, T. M. (2009). Interrogating type 2 diabetes
genome-wide association data using a biological pathway-based approach. Diabetes,
58(6):1463–1467.

Pestman, W. (1998). Mathematical statistics: an introduction. De Gruyter textbook.
Walter de Gruyter.

Phillips, M. S., Lawrence, R., Sachidanandam, R., Morris, A. P., Balding, D. J., Don-
aldson, M. A., Studebaker, J. F., Ankener, W. M., Alfisi, S. V., Kuo, F.-S., Camisa,
A. L., Pazorov, V., Scott, K. E., Carey, B. J., Faith, J., Katari, G., Bhatti, H. A.,
Cyr, J. M., Derohannessian, V., Elosua, C., Forman, A. M., Grecco, N. M., Hock,
C. R., Kuebler, J. M., Lathrop, J. A., Mockler, M. A., Nachtman, E. P., Restine,
S. L., Varde, S. A., Hozza, M. J., Gelfand, C. A., Broxholme, J., Abecasis, G. R.,
Boyce-Jacino, M. T., and Cardon, L. R. (2003). Chromosome-wide distribution of
haplotype blocks and the role of recombination hot spots. Nat Genet, 33(3):382–387.

Piegorsch, W. W., Weinberg, C. R., and Taylor, J. A. (1994). Non-hierarchical logistic
models and case-only designs for assessing susceptibility in population-based case-
control studies. Stat Med, 13(2):153–162.

267



REFERENCES

Piyathilake, C. J., Macaluso, M., Hine, R. J., Richards, E. W., and Krumdieck, C. L.
(1994). Local and systemic effects of cigarette smoking on folate and vitamin B-12.
Am J Clin Nutr, 60(4):559–566.

Plenge, R. M., Padyukov, L., Remmers, E. F., Purcell, S., Lee, A. T., Karlson, E. W.,
Wolfe, F., Kastner, D. L., Alfredsson, L., Altshuler, D., Gregersen, P. K., Klareskog,
L., and Rioux, J. D. (2005). Replication of putative candidate-gene associations with
rheumatoid arthritis in >4,000 samples from North America and Sweden: association
of susceptibility with PTPN22, CTLA4, and PADI4. Am J Hum Genet, 77(6):1044–
1060.

Plenge, R. M., Seielstad, M., Padyukov, L., Lee, A. T., Remmers, E. F., Ding, B.,
Liew, A., Khalili, H., Chandrasekaran, A., Davies, L. R. L., Li, W., Tan, A. K. S.,
Bonnard, C., Ong, R. T. H., Thalamuthu, A., Pettersson, S., Liu, C., Tian, C., Chen,
W. V., Carulli, J. P., Beckman, E. M., Altshuler, D., Alfredsson, L., Criswell, L. A.,
Amos, C. I., Seldin, M. F., Kastner, D. L., Klareskog, L., and Gregersen, P. K. (2007).
TRAF1-C5 as a risk locus for rheumatoid arthritis–a genomewide study. N Engl J
Med, 357(12):1199–1209.

Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., and
Reich, D. (2006). Principal components analysis corrects for stratification in genome-
wide association studies. Nat Genet, 38(8):904–909.

Pritchard, J. K. (2001). Are rare variants responsible for susceptibility to complex
diseases? Am J Hum Genet, 69(1):124–137.

Pritchard, J. K. and Cox, N. J. (2002). The allelic architecture of human disease genes:
common disease-common variant...or not? Hum Mol Genet, 11(20):2417–2423.

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population struc-
ture using multilocus genotype data. Genetics, 155(2):945–959.
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A. D., Fimmers, R., Lichtner, P., Ziegler, A., Wolf, A., Krawczak, M., Nürnberg, P.,
Hampe, J., Schreiber, S., Meitinger, T., Wichmann, H.-E., Roeder, K., Wienker,
T. F., and Baur, M. P. (2006). SNP-based analysis of genetic substructure in the
German population. Hum Hered, 62(1):20–29.

Stephens, M., Smith, N. J., and Donnelly, P. (2001). A new statistical method for
haplotype reconstruction from population data. Am J Hum Genet, 68(4):978–989.

Storey, J. D. (2002). A direct approach to false discovery rates. J R Stat Soc Series B
Stat Methodol, 64(3):479–498.

Storey, J. D. (2003). The positive false discovery rate: a Bayesian interpretation and
the q -value. Ann Stat, 31(6):2013–2035.

Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies.
Proc Natl Acad Sci U S A, 100(16):9440–9445.

Stranger, B. E., Stahl, E. A., and Raj, T. (2011). Progress and promise of genome-wide
association studies for human complex trait genetics. Genetics, 187(2):367–383.

Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J.,
Salvesen, G. S., and Roses, A. D. (1993). Apolipoprotein E: high-avidity binding to
beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer
disease. Proc Natl Acad Sci U S A, 90(5):1977–1981.

Suarez, B. K. and Hampe, C. L. (1994). Linkage and association. Am J Hum Genet,
54(3):554–9; author reply 560–3.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P.
(2005). Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc Natl Acad Sci U S A, 102(43):15545–15550.

Sun, S., Schiller, J. H., and Gazdar, A. F. (2007). Lung cancer in never smokers - a
different disease. Nat Rev Cancer, 7(10):778–790.

Sun, Y. V., Sung, Y. J., Tintle, N., and Ziegler, A. (2011). Identification of genetic
association of multiple rare variants using collapsing methods. Genet Epidemiol, 35
Suppl 1:S101–S106.

Syvänen, A. C. (2001). Accessing genetic variation: genotyping single nucleotide poly-
morphisms. Nat Rev Genet, 2(12):930–942.

Tabor, H. K., Risch, N. J., and Myers, R. M. (2002). Candidate-gene approaches for
studying complex genetic traits: practical considerations. Nat Rev Genet, 3(5):391–
397.

274



REFERENCES

Takemiya, M., Shiraishi, S., Teramoto, T., and Miki, Y. (1987). Bloom’s syndrome with
porokeratosis of mibelli and multiple cancers of the skin, lung and colon. Clin Genet,
31(1):35–44.

Tanzi, R. E., Bird, E. D., Latt, S. A., and Neve, R. L. (1987). The amyloid beta protein
gene is not duplicated in brains from patients with Alzheimer’s disease. Science,
238(4827):666–669.

Tennis, M., Scoyk, M. V., and Winn, R. A. (2007). Role of the Wnt signaling pathway
and lung cancer. J Thorac Oncol, 2(10):889–892.

Teo, Y. Y. (2008). Common statistical issues in genome-wide association studies: a
review on power, data quality control, genotype calling and population structure.
Curr Opin Lipidol, 19(2):133–143.

Teo, Y. Y., Inouye, M., Small, K. S., Gwilliam, R., Deloukas, P., Kwiatkowski, D. P.,
and Clark, T. G. (2007). A genotype calling algorithm for the Illumina BeadArray
platform. Bioinformatics, 23(20):2741–2746.

The Huntington’s Disease Collaborative Research Group (1993). A novel gene con-
taining a trinucleotide repeat that is expanded and unstable on Huntington’s disease
chromosomes. Cell, 72(6):971–983.

Thomas, D. (2010a). Gene-environment-wide association studies: emerging approaches.
Nat Rev Genet, 11(4):259–272.

Thomas, D. (2010b). Methods for investigating gene-environment interactions in candi-
date pathway and genome-wide association studies. Annu Rev Public Health, 31:21–36.

Thomas, D., Xie, R., and Gebregziabher, M. (2004). Two-stage sampling designs for
gene association studies. Genet Epidemiol, 27(4):401–414.

Thomas, D. C. (1988). Models for exposure-time-response relationships with applica-
tions to cancer epidemiology. Annu Rev Public Health, 9:451–482.

Thomas, D. C. (2005). The need for a systematic approach to complex pathways in
molecular epidemiology. Cancer Epidem Biomar, 14(3):557–559.

Thomas, D. C. (2006). Are we ready for genome-wide association studies? Cancer
Epidem Biomar, 15(4):595–598.

Thomas, D. C. (2010c). Design and analysis issues in genome-wide association studies.
In Human Genome Epidemiology, 2nd Edition. Khoury MJ, Oxford University Press.

Thomas, D. C., Casey, G., Conti, D. V., Haile, R. W., Lewinger, J. P. P., and Stram,
D. O. (2009). Methodological issues in multistage genome-wide association studies.
Stat Sci, 24(4):414–429.

Thomas, D. C., Haile, R. W., and Duggan, D. (2005). Recent developments in
genomewide association scans: a workshop summary and review. Am J Hum Genet,
77(3):337–345.

275



REFERENCES

Thomas, D. C., Lewinger, J. P., Murcray, C. E., and Gauderman, W. J. (2012). Invited
commentary: Ge-whiz! ratcheting gene-environment studies up to the whole genome
and the whole exposome. Am J Epidemiol, 175(3):203–7; discussion 208–9.

Thomas, D. C. and Witte, J. S. (2002). Point: population stratification: a problem
for case-control studies of candidate-gene associations? Cancer Epidem Biomar,
11(6):505–512.

Thomson, W., Barton, A., Ke, X., Eyre, S., Hinks, A., Bowes, J., Donn, R., Symmons,
D., Hider, S., Bruce, I. N., Consortium, W. T. C. C., Wilson, A. G., Marinou, I.,
Morgan, A., Emery, P., Consortium, Y. E. A. R., Carter, A., Steer, S., Hocking, L.,
Reid, D. M., Wordsworth, P., Harrison, P., Strachan, D., and Worthington, J. (2007).
Rheumatoid arthritis association at 6q23. Nat Genet, 39(12):1431–1433.

Thorgeirsson, T. E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K. P.,
Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A., Stacey, S. N., Bergth-
orsson, J. T., Thorlacius, S., Gudmundsson, J., Jonsson, T., Jakobsdottir, M., Sae-
mundsdottir, J., Olafsdottir, O., Gudmundsson, L. J., Bjornsdottir, G., Kristjansson,
K., Skuladottir, H., Isaksson, H. J., Gudbjartsson, T., Jones, G. T., Mueller, T.,
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