
Prediction of Protein-Protein

Interaction Sites with

Conditional Random Fields

Dissertation

Zur Erlangung des wissenschaftlichen Doktorgrades

“Doktor rerum naturalium”

an der Georg-August-Universität Göttingen

vorgelegt von

Zhijie Dong

aus Jiangsu

Göttingen, 2012

1. Referent: Professor Dr. Stephan Waack

2. Korreferent: Professor Dr. Carsten Damm

Tag der mündlichen Prüfung: 27.04.2012

ii

To my family

Acknowledgements

First and foremost I would like to thank my supervisor Professor Stephan

Waack. This work can have never been done without his help and men-

toring. Besides, it is indeed appreciated for his understanding and support

since the birth of my son. I return thanks to my co-advisor Professor Carsten

Damm for the proof-reading of this thesis and his inspiring suggestions. I

am also grateful to Professor Mario Stanke for discussions and cooperations

by developing the new algorithm. I would like to thank my work group col-

leagues Mehmet Gültas, Roman Asper who provided meaningful features

for the prediction. Thanks should also be given to Moritz Maneke for the

implementation of the inference algorithm. Special thank goes to Liang Shi

for his suggestion about English writing.

I am grateful for the financial and scientific support by the DFG research

training group 1023 “Identification in Mathematical Models: Synergy of

Stochastic and Numerical Methods”.

Especially, I would like to thank my husband Keyu Wang who always sup-

ports me in both my research and my daily life.

Contents

List of Figures v

List of Tables vii

Glossary ix

1 Introduction 1

1.1 Biological Background . 2

1.2 Protein-Protein Interaction Sites Prediction 4

2 Statistical Models 7

2.1 Some Useful Notations . 8

2.2 Graphical Models . 8

2.3 Hidden Markov Models . 10

2.4 Conditional Random Fields . 11

3 Linear-Chain Conditional Random Fields 15

3.1 Definition of Linear-Chain CRFs . 16

3.2 Prediction with Viterbi Algorithm . 18

3.3 Parameter Estimation . 20

3.4 Optimization Techniques for Training the Model 22

3.5 Forward-Backward Algorithm . 25

3.6 Reducing Overfitting — Regularization 29

4 Pairwise Conditional Random Fields 31

4.1 Generalized Viterbi Algorithm . 33

4.2 Case 1: The Case of Isolated Node . 35

iii

CONTENTS

4.3 Case 2: The Case of Non-Isolated Node 37

4.4 Backtracking in Generalized Viterbi Algorithm 41

4.5 Complexity of Generalized Viterbi Algorithm 42

4.6 Finding an Efficient Node Order . 44

4.7 Parameter Estimation for Pairwise CRFs 46

5 Protein Data 49

5.1 A Protein Data Bank . 50

5.2 Nussinov Database and Data Set PlaneDimers 52

5.3 Surface Residues in Proteins . 53

5.4 Interface Residues . 54

5.5 Spatial Neighborhood and Protein Surface Graphs 55

6 Results and Discussion 57

6.1 Protein Characteristics Used in CRF Feature 57

6.2 Feature Functions in pCRF . 59

6.3 Performance of the Prediction . 61

6.4 Model Modification . 64

7 Conclusion 67

Bibliography 69

iv

List of Figures

1.1 A protein from primary to quaternary structure. 2

1.2 The general structure of an amino acid. 3

1.3 A protein complex consists of three proteins. 4

2.1 An undirected graph with 3 maximal cliques. 9

2.2 Architecture of an HMM with labels Yi and observations Xi. 10

2.3 Graphical structure of a CRF with observation X. 12

3.1 Graphical structure of a linear-chain CRF. 15

4.1 Example graph with H = {a, b, c, d} (green) and BH = {a, d} (red circled). 34

4.2 Case 1: the selected node v is isolated from all existing history sets. . . 35

4.3 Case 1: the isolated v (left) built itself a history set H4. 36

4.4 Case 2: the selected node has direct connections with some existing

history sets. 37

4.5 Case 2: the history sets H1 and H2 are merged together via node 5. . . 37

4.6 Calculation the Viterbi variables in case 2. 38

4.7 An example of backtracking (red arrow) of Algorithm 3. 41

4.8 Executing Algorithm 3 with different processing node orders. 43

4.9 A delaunay triangulation graph. 44

4.10 The first iteration in the method finding an efficient node order. 45

4.11 The second iteration in the method finding an efficient node order. . . 46

5.1 A piece of Nussinov database. 52

6.1 Patch of i with the first and the second level neighbors. 58

v

LIST OF FIGURES

vi

List of Tables

4.1 Edge queue and node queue in the first iteration. 44

4.2 Edge queue and node queue in the second iteration. 45

5.1 Van der Waals radii. 49

5.2 A part of PDB file of protein complex 1QDM. 51

5.3 Nominal maximum area of 20 amino acid residues. 54

5.4 Data overview in data set PlaneDimers. 55

6.1 Performance of pCRF with Nuss Def. 63

6.2 Performance of pCRF with Li Def. 64

6.3 Performances of webserver PresCont and modified pCRF. 64

vii

GLOSSARY

viii

Glossary

3D three dimensional

ASA accessible surface area

BFGS Broyden-Fletcher-Goldford-Shanno method

CRF conditional random field

DNA deoxyribonucleic acid

DSSP dictionary of secondary structure of proteins

FN the number of false negatives

FP the number of false positives

HMM hidden Markov model

i.i.d. independent and identically distributed

L-BFGS limited memory Broyden-Fletcher-Goldford-Shanno method

lCRF linear-chain conditional random field

MAP maximum a posteriori

MSA multiple sequence alignment

NER named entity recognition tasks

pCRF pairwise conditional random field

PDB protein data bank

ix

GLOSSARY

RASA relative accessible surface area

SVM support vector machine

TN the number of true negatives

TP the number of true positives

Å angstrom: 1× 10−10 metres

x

1

Introduction

Application of mathematics, statistics, and information theory to the field of molecular

biology is an established field of science. This work employs the statistical models and

computer science approach to study and analyze biological datasets with the help of

powerful computers. The aim is to predict protein-protein interaction sites which play

a central role in protein functions.

Numerical valued-based methods, like linear regression [24][29], support vector ma-

chine [3][6][10][15][25][31], neural network [4][20][23][41][50], have been widely used in

protein-protein interface prediction. Apart from these, many groups have also applied

probabilistic methods to the prediction, for example naive Bayesian [21], Bayesian net-

works [30], hidden Markov models [48], etc.

Our approach is based on conditional random fields (CRFs) which belongs to the

probabilistic methods. Recently there has been an explosion of interest in CRFs, with

successful applications including text processing [9][18][19], computer vision [5], and

bioinformatics [17][32]. Besides, the linear-chain conditional random field which is the

simplest example of the model has been used to predict protein interfaces [39]. However,

a linear-chain cannot represent the three dimensional (3D) structure of a protein. In

this work, we have been concentrating on pairwise conditional random fields based on

general graphs, since it can also describe the spatial neighborhood of a protein.

1

1. INTRODUCTION

1.1 Biological Background

Proteins are large organic compounded of 20 different amino acids arranged in a lin-

ear chain, folding themselves into a three-dimensional structure. Like other biological

macromolecules, proteins are essential parts of organisms and participate in every pro-

cess within cells. Proteins can also work together to achieve a particular function, and

often get clustered to form stable protein complexes.

Figure 1.1: A protein from primary to quaternary structure.

In general, there are four levels of protein structures shown in Figure 1.1. The

sequence of amino acids is called the primary structure which is considered as the

backbone of a protein. An amino acid comprising one nitrogen and two carbon atoms

is bound to various hydrogen and oxygen molecules (see Figure 1.2). The central carbon

(Cα) is linked to the unit “R”, single atom or a group of atoms. The R unit distinguishes

different amino acids. Two amino acids bind together by releasing a water molecule

and the remaining parts of the amino acids are called amino acid residues. Amino acids

bind into polymer chains, forming the primary structure of proteins which are typically

hundreds or thousands of amino acids long.

The next level is the secondary structure which is the substructure of local segments

2

1.1 Biological Background

Figure 1.2: The general structure of an amino acid.

of proteins. Different secondary patterns might present in one single protein. Two

common patterns are shown in Figure 1.1. On the right side, it is called α−helix,

whereas on the left side is β−sheet. However, secondary structure does not describe

specific atomic positions in three-dimensional space which are considered in the tertiary

structure. This level of structure defines the overall fold of a protein and finishes

the folding with a 3D form. Some proteins might be functional as monomers, while

more proteins assemble with others and build together a complex called the quaternary

structure. Protein complexes are a form of quaternary structure which is shaped by

protein-protein interactions.

Signals from the interactions between proteins play an important role in many bio-

logical processes. Identification of the interaction sites can improve our understanding

of protein functions and provide a basis for the new therapeutic approaches to treat

diseases (e.g. cancer).

As is mentioned earlier, a protein is composed of 20 types of amino acid residues.

For simplicity, we call them residues. Identifying the interaction sites is to detect the

residues involved in the interaction, which are called interface residues. If a protein

interacts with another protein, its corresponding interface residues form an interface of

this protein by this interaction.

Note that one protein can have more than one interfaces, because it can interact

with different proteins. For example, a protein complex shown in Figure 1.3 consists of

three proteins A, B and C. Protein B interacts with both protein A and C, resulting in

two different interfaces: the one in red and the other in magenta. Different interfaces

in one protein might overlap, while two proteins in the same complex can have no

3

1. INTRODUCTION

Figure 1.3: A protein complex consists of three proteins (taken from [40]).

interaction between each other. Protein A and C in the figure is an example. Although

both of them interact with protein B, they are not close enough to form an interface.

In this work, we focus on the interactions between protein pairs which are also

called protein dimers. Multiple interactions such as the example shown in Figure 1.3

will not be taken into account.

1.2 Protein-Protein Interaction Sites Prediction

Although protein-protein interaction sites can be determined experimentally, it is an ex-

pensive and time consuming process. Therefore, a large number of methods combining

bioinformatics and structral biology have been developed to predict protein interfaces.

Since our task is to predict the interaction sites (interface residues) involved in an

interaction between two proteins, the problem can be formulated as follows:

• Given a protein with three dimensional unbound structure, we assume that it

forms a complex (or more exactly a dimer) when it interacts with another protein.

• The goal is to find the residues of the given protein, which participate in the

interaction with the protein partner.

4

1.2 Protein-Protein Interaction Sites Prediction

It is a typical labeling problem and interface is generally a binary variable: a residue

is either in the interface, or not. Each residue in the given protein will be assigned a

state label, either I (interface residue) or N (non-interface residue).

In reality, proteins are mainly folded into three dimensional structures. Hence

the most important dependencies are the spatial relationships. Crucial is to make a

meaningful prediction using the given information, especially the 3D structure of the

protein. As we know, the 3D structure is represented by the atomic positions of the

residues which can be obtained from the Protein Data Bank. A residue is usually

described by a three dimensional point, the mass center of its heavy atoms. In this

way, a protein can be modeled by a graph with nodes referred to the three dimensional

residue positions. The edges in the graph represent the spatial neighborhood of the

residues in the protein.

Due to the important spatial information, we use a graphical model to solve the

labeling problem and we select the conditional random fields proposed by Lafferty

[26]. CRF is a stochastic model based on a graph. One of the benefits is that the

spatial information of a protein can be directly taken into the model. Moreover, CRF

calculates the conditional distribution instead of the joint distribution, which means

that the given protein is only considered as a condition in the model but not generated

from the model. In practice, it is not easy to apply a general CRF directly, because

training the model is intractable. Instead of the general CRF, we here develop a variant

called the pairwise conditional random field (pCRF) and apply the pCRF to predict

the protein interfaces.

5

1. INTRODUCTION

6

2

Statistical Models

The models in this thesis are mostly of statistical nature. Simply speaking, a statistical

model can be considered a pair (X,P) where X denotes the set of observations and

P is the set of possible probability distributions on X and (or) some properties of X.

Most of the statistical models are not white box models, which means they contain

more or less parameters to be estimated. These parameters will be used to fit the

model to the system it shall describe. The process of estimating the parameters in a

model is called training . In order to evaluate the performance of a model, we usually

divide the data into two disjointed sets. One set is used in the training, where the data

are called training data. The other is used to test the quality of the model and the

data are called test data. There are many different training principles and methods for

the applications. Choosing an appropriate one is very important to obtain meaningful

results.

To sum up, the following three main points should be taken into consideration by

using a statistical model:

• Describing the possible distributions on the observations

The discription of the distributions is given in a mathematical form and generally

contains some unknown parameters.

• Using optimization techniques to estimate the parameters in the model

The goal is to make the model best fit the training data.

• Evaluating the model on the test data

7

2. STATISTICAL MODELS

It will be checked based on some measures whether the model fits the system.

2.1 Some Useful Notations

Now we introduce some useful notations that will be used in this thesis. Let {Y1, Y2, . . . , Yn}
be a set of n discrete random variables and yi a possible realization of the random

variable Yi ∈ L, where L is a finite set of possible realizations. We consider the

sequence Y = (Y1, Y2, . . . , Yn) and a possible realization of this random sequence

y = (y1, y2, . . . , yn).

The joint probability mass function P (Y1 = y1, Y2 = y2, . . . , Yn = yn) is simply

written as P (y). Analogously, P (y|x) denotes the conditional probability that the

sequence is labeled y conditioned by a given observation x.

We also mention here the common inference problem by using a statistical model,

which is called maximum a posteriori (MAP) assignment. This problem is to find the

maximal probability assignment by a given observation x

y∗ = argmax
y

P (y|x). (2.1)

In the following chapters, I will introduce how to solve such an inference problem by

using a conditional random field.

2.2 Graphical Models

Since a statistical model represents the behavior of an object through random variables

and their associated probability distributions, the dependencies between the random

variables should be considered. The simplest way to highlight these relationships is

to get help from a graph. A statistical model represented via a graph is said to be

a graphical model which is widely used in many applications, because they naturally

accommodate the need to fuse multiple sources of information.

A graph is usually represented mathematically by a pair G = (V,E), consisting of a

set V of nodes and a set E of edges. G is called a directed graph, if the edges in G have

orientation; Otherwise G is an undirected graph. According to this, graphical models

can be classified into directed graphical models and undirected graphical models.

Let Y = (Y1, Y2, . . . , Yn) denote a sequence of random variables indexed by the set

V = {1, 2, . . . , n}. The corresponding graph of the model P (Y) is G = (V,E), where

8

2.2 Graphical Models

(i, j) ∈ E indicates the dependency between random variables Yi and Yj . Therefore,

the graph G also represents the conditional independencies between the variables.

We focus on the undirected graphical models and start with the definition of Markov

property:

Definition 2.1 (Markov, 1954).

A system is said to have the Markov property, if it holds

P (yi|{yk, k 6= i}) = P (yi|{yk, k ∈ N(i)}), (2.2)

where N(i) denotes the set of neighbors of node i in G.

The Markov property is used to limit the dependencies to a small number of vari-

ables, otherwise it could be intractable to compute the distribution if the local prob-

ability is represented over a large number of random variables. Besides, we introduce

some other definitions from the graph theory.

Definition 2.2.

Let G = (V,E) be an undirected graph. A clique C in G is a subset of the node set

C ⊆ V , so that for every pair of nodes in C, there exists an edge connecting the two.

A clique C is said to be a maximal clique, if every node not in C is missing an edge

to at least one node in C.

1

2

3

4 5 6

Figure 2.1: An undirected graph with 3 maximal cliques.

A graph may have many maximal cliques of different sizes. Figure 2.1 shows that

{1, 2, 3, 4} is a maximal clique with four nodes. Besides, {4, 5} and {5, 6} are the other

maximal cliques in the same graph, of size two respectively.

9

2. STATISTICAL MODELS

A commonly used representation of the distributions of an undirected graphical

model is factorized over the cliques of the graph G.

P (y) =
1

Z

∏
C

ΦC(yC), (2.3)

where C denotes a clique in G, and ΦC is referred to a potential function over the clique

C with

ΦC : L|C| → R,

where |C| denotes the size of C.

Z in Equation 2.3 is a constant, ensuring that the distribution sums to 1. This kind

of constant is called normalization factor.

Remark. Some references confine Equation 2.3 only maximal cliques C. But it does

not mean that we can ignore those potential functions whose arguments are not in-

dexed by a maximal clique. The maximal cliques are used to simplify the form of the

distribution, because they contain all of the cliques in the graph.

2.3 Hidden Markov Models

A hidden Markov model (HMM)[36] is a stochastic model based on sequential data. An

HMM consists of an alphabet of labels and emission symbols. It is assumed that the

labels are hidden from the observer, while only the emission symbols are observable. An

HMM is also a typical directed graphical model which can be described in the following

figure.

Y1

X1

Y2

X2

Y3

X3

Yi

Xi

Yn

Xn

Figure 2.2: Architecture of an HMM with labels Yi and observations Xi.

We denote L the set of labels and Σ the set of emission symbols or rather obser-

vations. An HMM is designed to make inference on the labels Yi ∈ L through the

10

2.4 Conditional Random Fields

observation of emissions Xi ∈ Σ. Besides, it is shown in Figure 2.2 that not only the

labels Yi but also the observations Xi are generated from the model.

A hidden Markov model obeys the Markov property that the local probability of a

random variable depends only on its parents, which means:

1. Each label Yi (excluding Y1) depends only on the previous label Yi−1, i = 2, . . . , n;

2. Each observation Xi depends only on the current label Yi, i = 1, . . . , n.

In this way, the parameters of an HMM are three types, namely starting probabili-

ties P (y1), transition probabilities P (yi|yi−1), i = 2, . . . , n, and emission probabilities

P (xi|yi), i = 1, . . . , n. Usually, the Baum-Welch algorithm [35] is used to find the

unknown parameters of a hidden Markov model.

The probability that an observation sequence x is labeled by a label sequence y,

can be written as follows

P (x,y) =
n∏
i=1

P (yi|yi−1)P (xi|yi), (2.4)

with P (y1|y0) := P (y1).

The next problem is how to use an HMM to make inference on the labels through the

given observations. This problem can be solved by the well-known Viterbi algorithm [7].

The Viterbi algorithm is a dynamic programming algorithm which efficiently finds the

most likely sequence of hidden labels. The complexity of this algorithm is O(n× |L|2).
Hidden Markov models are widely applied in pattern recognition and the field of

bioinformatics. However, sequence models are not suitable for graphical data. In the

following section, we will introduce the conditional random field which is a model based

on a general graph.

2.4 Conditional Random Fields

A conditional random field (CRF) is one of the notable undirected graphical models,

which is often used to solve the labeling problems explained as follows.

Let X be an input variable known as the observation. We use x to represent a

possible realization of the observations. The labeling problem is to assign a most

probable label to each input variable xi. In other words, we are looking for a most

11

2. STATISTICAL MODELS

probable label sequence for the observation. We use Y = (Y1, Y2, . . . , Yn) to denote

a random output label sequence and y = (y1, y2, . . . , yn) a possible realization with

yi ∈ L, where L is a finite set of labels.

In a CRF with respect to a graph G = (V,E), the output variables are indexed by

V and each Yi is considered to be conditioned upon the observation X.

X

1

2 3

4

5

6

Figure 2.3: Graphical structure of a CRF with observation X.

In Figure 2.3, every node i ∈ {1, 2, 3, 4, 5, 6} is referred to as an output variable Yi.

Although all the output variables are conditioned upon the observation X, but X itself

is not generated from the model. For clarity, we draw this relation with dashed lines,

which means that the node X is actually not included in the graph.

The remarkable characteristic of a CRF is to directly model the conditional dis-

tribution P (Y|X) instead of the joint distribution P (X,Y). This is a great benefit

compared to the traditional graphical models, because representing the joint distribu-

tion involves simulating the dependencies among input variables, which can lead to

intractable models.

Now we introduce the original definition of a conditional random field which was

proposed by John Lafferty [26] in 2001.

The random pair (X,Y) is a conditional random field, when conditioned on an

observation X, the random variable Yi obeys the Markov property with respect to the

graph:

P (yi|x, {yk, k 6= i}) = P (yi|x, {yk, k ∈ N(i)}), (2.5)

where N(i) denotes the set of the neighbors of i.

12

2.4 Conditional Random Fields

This is an abstract definition of a CRF with a general graphical structure. As

mentioned before, a CRF calculates the conditional distribution P (Y|X), and we can

describe a CRF with an explicit form as follows:

P (y|x) =
1

Z(x)
exp(

∑
C∈C
〈ΛC , fC(yC ,x)〉), (2.6)

where C denotes the set of all cliques in the related graph and Z(x) is a normalization

factor with

Z(x) =
∑
ỹ

exp(
∑
C∈C
〈ΛC , fC(ỹC ,x)〉). (2.7)

Similarly to the potential functions in Equation 2.3, we use feature functions fC

in a CRF. Generally, a feature function is a mapping from every possible label of the

clique to a real value. Since the observation x is a condition in the model, x behaviors

as a parameter in the feature functions. In addition, feature functions are evaluated

by a weight vector Λ which represents the importance of the corresponding feature

functions.

Using the scalar product in Equation 2.6, all of the weighted feature functions

add up over all cliques in the graph. Since the exponential function obeys the basic

exponentiation identity, exp(a + b) = exp(a) · exp(b), this conditional distribution can

be reformulated as the general representation in Equation 2.3:

P (y|x) =
1

Z(x)

∏
C∈C

ΦC(yC ,x),

with the specifically defined potential functions

ΦC(yC ,x) := exp(〈ΛC , fC(yC ,x)〉). (2.8)

In the application of a CRF, we should firstly define some feature functions through

the data analysis. The weight vector remains unknown in the model, which can be ob-

tained by training a CRF. In fact, one of the difficulties in applying a general CRF

is that training a CRF is intractable, because computing either the marginal distri-

butions or the normalization factor is very expensive. In the following chapters, we

introduce two variants of CRFs, namely linear-chain conditional random field and pair-

wise conditional random field. In a linear-chain CRF, the related graph is restricted

to a linear chain and a dynamic computing technique is used in the model training.

13

2. STATISTICAL MODELS

A pairwise CRF is however based on a general graph, which retains almost all spatial

information as a general CRF. In this case, we select an approximate training method

which splits the model into pieces, training independently, and combining the learned

parameters into a whole model. In applications, a suitable CRF-variant will be used

to solve different problems.

14

3

Linear-Chain Conditional

Random Fields

Firstly, we talk about the simplest but the most important example of CRFs, the

linear-chain conditional random field (lCRF), a sequence model based on a graphical

structure which is a linear chain. The corresponding graph G = (V,E) in a linear-chain

CRF has a particular shape with V = {1, 2, . . . , n} and E =
{
{i−1, i}, i = 2, 3, . . . , n

}
.

1 2 3 i n

X

Figure 3.1: Graphical structure of a linear-chain CRF.

There are two types of cliques in such a linear chain, node cliques and edge cliques.

It is shown in Figure 3.1 that the graph contains n node cliques {i}, i = 1, 2, . . . , n and

n− 1 edge cliques {i− 1, i}, i = 2, 3, . . . , n.

Like HMMs, linear-chain CRFs are also based on sequential data. However, a CRF

is an undirected model and the observation x is not generated from the model, which

is an advantage over an HMM, because x is anyway given in the application.

15

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

3.1 Definition of Linear-Chain CRFs

As we discussed in the section of general CRFs, feature functions over different types of

cliques should be defined first. In a linear-chain CRF, feature functions are defined over

node cliques and edge cliques, which are called state feature functions and transition

feature functions, respectively.

Let L denote a finite set of labels and x ∈ Σ an observation, which will be labeled

by a y ∈ Ln.

We assume that there are J state feature functions defined on nodes and let sj

denote some state feature function, j = 1, 2, . . . , J:

sj : L× Σ→ R

y × x 7→ sj(y,x).

Analogously, let tl be one of the L transition feature functions defined over edges,

l = 1, 2, . . . ,L:

tl : L× L× Σ→ R

y × y′ × x 7→ tl(y, y
′,x).

Furthermore, we use ωj and µl to denote the weight of state feature function sj and

transition feature function tl, respectively.

According to Equation 2.6, the conditional distribution of a linear-chain CRF can

be written as

P (y|x) =
1

Z(x)
exp
(n∑
i=1

J∑
j=1

ωjsj(yi,x) +
n∑
i=2

L∑
l=1

µltl(yi−1, yi,x)
)
.

The formula above can be simplified in terms of edge cliques that are maximal

cliques in the graph. First of all, we introduce an extra node 0 to the graph and define

tl(y0, y1,x) := 0, ∀l = 1, 2, . . . ,L.

Since the extra node y0 does not influnce the model, the conditional distribution can

be reformulated as

P (y|x) =
1

Z(x)
exp

(n∑
i=1

(J∑
j=1

ωjsj(yi,x) +
L∑
l=1

µltl(yi−1, yi,x)
))

.

16

3.1 Definition of Linear-Chain CRFs

Now we consider a set F of feature functions over a pair {yi−1, yi} conditioned on x.

This set is comprised of state feature functions and transition feature functions, that is

F = {sj , j = 1, 2, . . . , J} ∪ {tl, l = 1, 2, . . . ,L}.

The size of set F is then K = J + L and each f : L× L× Σn → R, f ∈ F refers either

to a state feature function f(yi−1, yi,x) = sj(yi,x) or to a transition feature function

f(yi−1, yi,x) = tl(yi−1, yi,x). Then we use fk to index each feature function in F and

λk ∈ R to denote its weight.

Using the above notations, a linear-chain CRF is defined as follows:

Definition 3.1 (Lafferty, 2001).

Let x be an observation over data and y = (y1, y2, . . . , yn) one of the possible label

sequences. Moreover, F = {fk, k = 1, 2, . . . ,K} denotes a set of real-valued feature

functions with a weight vector Λ = {λk}Kk=1. Then a linear-chain conditional ran-

dom field takes the form

P (y|x) =
1

Z(x)
exp
(n∑
i=1

K∑
k=1

λkfk(yi−1, yi,x)
)
, (3.1)

where the normalization factor

Z(x) =
∑

ỹ∈Ln

exp
(n∑
i=1

K∑
k=1

λkfk(ỹi−1, ỹi,x)
)
. (3.2)

Since linear-chain CRFs and HMMs are both based on sequential data, it is interest-

ing to make a comparison between them. The main difference between a (linear-chain)

CRF and an HMM is that one computes the conditional distribution, whereas the other

calculates the joint distribution. Actually, it is the main difference between a discrimia-

tive model and a generative model. A model based on the conditional distribution (e.g.

CRF) is considered to be discriminative, while a model based on the joint distribution

(e.g. HMM) is called generative including a representation of the distribution of the

observation sequences.

In practice, most real-world observations have multiple interacting features and

long-range dependencies and it is often difficult to model the distribution of P (x).

Some generative models, such as HMMs, use the independence assumption to make

the modeling easier, which is however not warranted. Therefore, we prefer to use a

17

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

discriminative model in our application. An important advantage of a discriminative

model is that we can remain agnostic about the form of P (x) which is not interesting

to the prediction, because the observations will be given anyway.

Nevertheless, a linear-chain CRF is not always contrary to an HMM. An HMM

can loosely be understood as a linear-chain CRF with very specific feature functions.

Likewise, a linear-chain CRF can be interpreted as a generalization of an HMM that

makes the constant transition probabilites into aritrary functions depending on the

observation sequence [12]. Besides, the inference algorithms for HMMs have direct

analogues to linear-chain CRFs, which will be discussed in the following sections.

3.2 Prediction with Viterbi Algorithm

We have mentioned two inference problems in Section 2.1. In this section, we focus on

the MAP assignment problem for a linear-chain CRF, which is to find a most likely

output label sequence y∗ = argmaxy P (y|x) for a given observation x. Using the form

in Definition 3.1, we have

y∗ = argmax
y

1

Z(x)
exp
(n∑
i=1

K∑
k=1

λkfk(yi−1, yi,x)
)
. (3.3)

Since the normalization factor Z(x) is a constant for a given x and the exponential

function is monotonically increasing, Equation 3.3 is equivalent to

y∗ = argmax
y

(n∑
i=1

K∑
k=1

λkfk(yi−1, yi,x)
)
. (3.4)

Like HMMs, we can use Viterbi algorithm to find a most probable label sequence y∗

in Equation 3.4. As usual, let L denote a finite set of possible labels and every output

variable yi ∈ L, ∀i = 1, 2, . . . , n. The dynamic variables δl,i used in this computation

are called Viterbi variables, where l ∈ L denotes every possible label for the node i.

First of all, we calculate the Viterbi variables for the first node. Each possible label

l ∈ L is taken into consideration and the sum of all weighted feature functions based

on the label l is stored in the corresponding Viterbi variable respectively:

δl,1 :=
K∑
k=1

λkfk(y0, l,x), l ∈ L. (3.5)

18

3.2 Prediction with Viterbi Algorithm

Then, for i = 2, 3, . . . , n:

δl,i := max
l′∈L

(δl′,i−1 +
K∑
k=1

λkfk(l
′, l,x), l ∈ L. (3.6)

The Viterbi variables of the first node are explicitly defined in Equation 3.5 and in

the further calculations, the previous Viterbi variables are used to compute the current

ones with the form 3.6. In this way, the Viterbi variables are computed efficiently by a

dynamic programming.

Finally, we obtain δl,n for every possible label l ∈ L. Among those possible labels, a

best label is yielded with l∗ = argmaxl∈L δl,n. The corresponding Viterbi variable δl∗,n

is called the Viterbi score with

δl∗,n := max
l∈L

δl,n. (3.7)

Now the problem is to find a most probable label sequence y∗ through the Viterbi

variables. This can be realized by the Viterbi recursion. For the last node, we have

already got the best label which maximizes the Viterbi score:

y∗n = l∗ = argmax
l∈L

δl,n. (3.8)

Starting from this end point, each best label y∗i can be obtained by the following

recursion which is also called backtracking:

y∗i = argmax
l∈L

(
δl,i +

K∑
k=1

λkfk(l, y
∗
i+1,x)

)
, i = n− 1, n− 2, . . . , 1. (3.9)

In general, solving the MAP assignment problem is computationally difficult, be-

cause each possible label sequence must be taken into account and the exhaustive

search requires O(|L|n) calculations, where |L| denotes the cardinality of the label set.

The Viterbi algorithm uses dynamic programming technique and has a computational

complexity O(n · |L|2).

Now we present the Viterbi algorithm that finds a best label sequence with a linear-

chain CRF. In the following algorithm, we assume that L is a finite set of Q possible

labels, that is L =
{
lq, q ∈ {1, 2, . . . ,Q}

}
.

19

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

Algorithm 1 Viterbi Algorithm in a Linear-Chain CRF

Input: observation x, set of labels L, feature functions fk with weights λk

Output: y∗ with y∗ = argmaxy P (y|x)

1. Initialize Viterbi variables at the first position

for q = 1, 2, . . . ,Q do

δlq ,1 =
∑K

k=1 λkfk(y0, lq,x)

end for

2. Compute all the other Viterbi variables dynamically

for i = 2, 3, . . . , n do

for q = 1, 2, . . . ,Q do

δlq ,i = maxq′
(
δlq′ ,i−1 +

∑K
k=1 λkfk(lq′ , lq,x)

)
end for

end for

3. Backtracking

y∗n = argmaxq δlq ,n

for i = n− 1, n− 2, . . . , 1 do

y∗i = argmaxq
(
δlq ,i +

∑K
k=1 λkfk(lq, y

∗
i+1,x)

)
end for

4. Output

return y∗ = (y∗1, y
∗
2, . . . , y

∗
n)

3.3 Parameter Estimation

A statistical model often contains some unknown parameters which can be calculated

through the training. In a linear-chain CRF, the weights λk are the parameters which

should be estimated to make the model fit the data.

It is assumed that we have a set of training data D = {(x(m),y(m)),m = 1, 2, . . . ,M},

which are independent and identically distributed (i.i.d.). Each pair (x(m),y(m)) in D is

comprised of an observation x(m) and its actual label sequence y(m) = (y
(m)
1 , y

(m)
2 , . . . , y

(m)
nm),

where nm denotes the length of y(m).

One of the best known estimation methods is maximum likelihood. Since a CRF

models the conditional distribution and is defined with log-linear potential functions

20

3.3 Parameter Estimation

(2.8), it is appropriate to maximize the so-called conditional log likelihood l : RK → R,

l(Λ) :=
M∑
m=1

logP (y(m)|x(m)). (3.10)

We can get a more detailed form using the conditional distribution (3.1):

l(Λ) =
M∑
m=1

log
1

Z(x(m))
exp
(nm∑
i=1

K∑
k=1

λkfk(y
(m)
i−1 , y

(m)
i ,x(m))

)
=

M∑
m=1

nm∑
i=1

K∑
k=1

λkfk(y
(m)
i−1 , y

(m)
i ,x(m))−

M∑
m=1

logZ(x(m)).

(3.11)

Lemma 3.2.

The log-sum-exp function g : Rn → R with

g(α) = log
n∑
i=1

expαi

is convex in α ∈ Rn.

Proof. See in Convex Optimization [Boyd & Vandenberghe, 2004].

Theorem 3.3.

The conditional log-likelihood function l(Λ) described in (3.10) of a linear-chain CRF

is concave in Λ ∈ Rn.

Proof. The first term in (3.11) is linear and concave in Λ.

Now we consider the second term
∑M

m=1 logZ(x(m)). According to the definition

of the normalization factor (3.2), logZ(x(m)) is a log-sum-exp function for every m,

which is shown convex in Lemma 3.2. With the fact that the sum of convex functions

is still convex, it follows that
∑M

m=1 logZ(x(m)) is convex in Λ ∈ Rn, and its negative

−
∑M

m=1 logZ(x(m)) is concave in Λ ∈ Rn.

So far, we have shown that l(Λ) is the sum of two concave functions. Hence it is

concave in Λ ∈ Rn.

Because of the concavity of l(Λ), every local maximum is also a global maximum.

In other words, if the gradient of the function is zero at a point Λ∗, the Λ∗ is a global

maximum of l(Λ).

21

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

Now we compute the partial derivatives ∂l
∂λk

, k = 1, 2, . . . ,K:

∂l

∂λk
=

M∑
m=1

nm∑
i=1

fk(y
(m)
i−1 , y

(m)
i ,x(m))

−
M∑
m=1

nm∑
i=1

∑
yi−1,yi∈L

P (yi−1, yi|x(m)) · fk(yi−1, yi,x(m)).

(3.12)

The first term in (3.12) is the expected value of
∑

i fk under the empirical distri-

bution of the training data in D, whereas the second term interprets the expectation

of
∑

i fk under the distribution of a linear-chain CRF. Setting this derivative to zero

means that the two expectations are equal.

Nevertheless, we cannot solve Λ in a closed form. Instead, numerical optimization

methods are often used, such as iterative scaling [26] and some gradient-based methods

[18].

3.4 Optimization Techniques for Training the Model

In this section, we will introduce a second-order technique which solves unconstrained

nonlinear optimization problems. The quasi-Newton method is based on Newton’s

methods and is to find the stationary points of a function, where the gradient is zero.

Let F : Rn → R be an objective function depending on a parameter vector x ∈ Rn.

Optimization requires to find the minimum of the function minx∈Rn F (x). The quasi-

Newton method solves the problem as follows:

First we calculate the gradient ∇F (x) of the objective function. Then we solve

the equations ∇F (x) = 0 in a high dimensional field by using Newton’s method which

is as far as I know the best method to find successively better approximations to the

roots of a real-valued function. The main idea is to update xk+1 = xk + dk with

dk = −H(xk)
−1 · ∇F (xk), where H is the Hessian matrix of the objective function.

The element of the Hessian matrix are the second derivatives of F .

In general, it is not easy to calculate the Hessian matrix H. One of the important

advantages of quasi-Newton methods is that they do not require to compute the Hes-

sian matrix exactly. Instead, we use an approximation and update them by analyzing

successive gradient vectors. There are several variants of quasi-Newton methods and

one of the most common algorithms is the BFGS method [14].

22

3.4 Optimization Techniques for Training the Model

The BFGS algorithm starts from some approximate inverse of the Hessian matrix,

say B0. B0 is often taken to be the unit matrix or a scaled unit matrix. A Newton’s

step dk is calculated using the current approximation Bk,

dk = −Bk · ∇F (xk). (3.13)

Then we use line-search method to find a step length αk ∈ R in the direction dk and

update the solution

xk+1 = xk + αk · dk. (3.14)

If it is necessary, we update Bk+1 with the vectors

sk := xk+1 − xk, yk := ∇F (xk+1)−∇F (xk), (3.15)

so that

Bk+1 = VT
k BkVk + ρksks

T
k , (3.16)

where

ρk :=
1

yTk sk
, Vk := I− ρkyksTk . (3.17)

A line-search is mentioned in the algorithm to find a step length, so that the function

ϕ(α) := F (x + α · d)

is minimized for fixed x and d.

Generally, we cannot minimize ϕ exactly. Instead, we solve this problem loosely

by asking for a sufficient decrease in ϕ. The Wolfe conditions are commonly used in

quasi-Newton methods.

Definition 3.4 (Nocedal and Wright, 1999).

We are given a function F : Rn → R, x 7→ F (x). For some fixed x ∈ Rn and d ∈ Rn,

we define

ϕ : R→ R

α 7→ ϕ(α) := F (x + α · d).

A step length α is said to satisfy the Wolfe conditions, if these two inequalities hold:

1. F (x + α · d) ≤ F (x) + c1 · α · dT · ∇F (x),

2. dT · ∇F (x + α · d) ≥ c2 · dT · ∇F (x),

23

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

Algorithm 2 BFGS Algorithm

Input: F : Rn → R and ∇F : Rn → Rn. It is also given a tolerance ε > 0.

Output: x∗, which is a local minimum (global minimum if F convex) of F .

1. Initialize x0 and B0. Set iteration counter k = 0.

2. Calculate dk in (3.13).

3. Perform a line-search to find αk in direction dk and update xk+1 in (3.14).

4. Check if the tolerance is reached.

if ‖∇F (xk+1)‖ < ε ·max
{
‖xk+1‖, 1

}
then

return x∗ = xk+1.

else

Update Bk+1 in (3.16),

k = k + 1,

and go to step 2.

end if

with 0 < c1 < c2 < 1.

Now we represent the BFGS algorithm in pseudocode:

If the optimization problem has a large number of parameters, it is recommended

to use the limited memory BFGS (L-BFGS) method [28]. We have seen that Bk is

completely fixed by B0 and the vector pairs {s0,y0}, {s1,y1}, . . . , {sk−1,yk−1} in (3.15).

Moreover, Bk is only used to get the direction dk in Equation 3.13 in each iteration and

it is possible to calculate dk explicitly with the k vector pairs [28]. Therefore, instead

of storing Bk completely, we can only store the k vector pairs.

Modified versions of Bk are updated from the most recent iterations k−m, k−m+

1, . . . , k − 1, thus it only requires storage for

{sk−m,yk−m}, {sk−m+1,yk−m+1}, . . . , {sk−1,yk−1}.

The number m ∈ N is suggested to be chosen between 3 and 7.

The implementation of the L-BFGS algorithm is more efficient, because it does

not store Bk which can be quite expensive. Especially for the modified versions, it

maintains a history of only the past m updates and saves much storage. In this sense,

L-BFGS method is very suitable for large-scale problems.

24

3.5 Forward-Backward Algorithm

3.5 Forward-Backward Algorithm

After discussing the second-order technique, we review the conditional log-likelihood

defined in (3.11)

l(Λ) =

M∑
m=1

nm∑
i=1

K∑
k=1

λkfk(y
(m)
i−1 , y

(m)
i ,x(m))−

M∑
m=1

logZ(x(m)).

Estimating the parameter vector Λ is to solve the following optimization problem:

max
Λ∈RK

l(Λ)⇐⇒ − min
Λ∈RK

−l(Λ)

Using the BFGS algorithm to minimize −l(Λ), we get a maximum of l(Λ). Since

l(Λ) has been proved concave in Theorem 3.3, every local maximum is also a global

maximum of l(Λ). We have seen in the previous section that the BFGS algorithm

requires computing of the gradient of the objective function, which has been analyzed

in (3.12)

∂l

∂λk
=

M∑
m=1

nm∑
i=1

fk(y
(m)
i−1 , y

(m)
i ,x(m))

−
M∑
m=1

nm∑
i=1

∑
yi−1,yi∈L

P (yi−1, yi|x(m)) · fk(yi−1, yi,x(m)).

The difficulty of computing l(Λ) and ∂l
∂λk

lies in calculating Z(x(m)) and P (yi−1, yi|x(m))

efficiently, which involves one of the inference problems mentioned in Section 2.1,

mamely the marginalization.

Now we concentrate on how to compute the marginal distributions P (yi−1, yi|x(m))

for each edge {i− 1, i}, i = 1, 2, . . . , n. There exists a forward-backward algorithm [36]

computing the marginal distributions efficiently for a linear chain. This algorithm also

performs a dynamic programming similar to the Viterbi algorithm. The main idea is

to define the forward variables and backward variables recursively.

We assume that there are Q possible labels in L with L =
{
lp, p ∈ {1, 2, . . . ,Q}

}
.

Then we define a set of forward variables αi with

αi =

αi,1
αi,2

...
αi,Q

 ∈ RQ, i = 0, 1, . . . , n.

25

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

α0 is initialized with α0 := (1, 1, . . . , 1)T ∈ RQ. αi is computed as follows:

αi :=

∑

pαi−1,p · Φ(lp, l1,x)∑
pαi−1,p · Φ(lp, l2,x)

...∑
pαi−1,p · Φ(lp, lQ,x)

 , i = 1, 2, . . . , n, (3.18)

where Φ(l, l′,x) = exp
∑K

k=1 λkfk(l, l
′,x).

Analogously, we define the backward variables βi with

βi =

βi,1
βi,2

...
βi,Q

 ∈ RQ, i = n, n− 1, . . . , 1.

We initialize the backward variables at the last position with βn := (1, 1, . . . , 1)T ∈ RQ.

Then the backward recursion is written as:

βi :=

∑

p Φ(l1, lp,x) · βi+1,p∑
p Φ(l2, lp,x) · βi+1,p

...∑
p Φ(lQ, lp,x) · βi+1,p

 , i = n− 1, n− 2, . . . , 1. (3.19)

The marginal distributions P (yi−1, yi|x) can be computed by forward- and backward-

variables in the following Lemma:

Lemma 3.5.

It is given that yi−1 = lq ∈ L, yi = lq′ ∈ L. Then it holds for i = 1, 2, . . . , n

P (yi−1, yi|x) =
1

Z(x)
·αi−1,q · Φ(lq, lq′ ,x) · βi,q′ . (3.20)

Proof. According to the definition of the marginal distribution (??), we have

P (yi−1, yi|x) =
∑

y\{yi−1,yi}

P (y|x).

P (y|x) can be formulated as follows:

P (y|x) =
1

Z(x)
exp
(n∑
t=1

K∑
k=1

λkfk(yt−1, yt,x)
)

=
1

Z(x)

n∏
t=1

Φ(yt−1, yt,x).

26

3.5 Forward-Backward Algorithm

It follows

P (yi−1, yi|x) =
1

Z(x)

∑
y\{yi−1,yi}

n∏
t=1

Φ(yt−1, yt,x). (3.21)

On the other hand, we compute αi−1,q and βi,q′ with forward recursion (3.18) and

backward recursion (3.19).

αi−1,q =
∑
p

αi−2,p · Φ(lp, lq,x)

=
∑
p

∑
p′

αi−3,p′ · Φ(lp′ , lp,x) · Φ(lp, lq,x)

...

=
∑

y1,y2,...,yi−2

Φ(y0, y1,x) · Φ(y1, y2,x) · . . . · Φ(yi−2, lq,x).

(3.22)

βi,q′ =
∑
p

Φ(lq′ , lp,x) · βi+1,p

=
∑
p

∑
p′

Φ(lq′ , lp,x) · Φ(lp, lp′ ,x) · βi+2,p′

...

=
∑

yi+1,yi+2,...,yn

Φ(lq′ , yi+1,x) · Φ(yi+1, yi+2,x) · . . . · Φ(yn−1, yn,x).

(3.23)

Then we compute the term on the right side (∗) of Equation (3.20):

(∗) =
1

Z(x)

(∑
y1,y2,...,yi−2

Φ(y0, y1,x) · Φ(y1, y2,x) · . . . · Φ(yi−2, lq,x)
)
· Φ(lq, lq′ ,x)

·
(∑
yi+1,yi+2,...,yn

Φ(lq′ , yi+1,x) · Φ(yi+1, yi+2,x) · . . . · Φ(yn−1, yn,x)
)

=
1

Z(x)

∑
y\{yi−1,yi}

n∏
t=1

Φ(yt−1, yt,x)

(3.21)
= P (yi−1, yi|x).

Note that the normalization factor Z(x) can also be computed with forward vari-

ables or backward variables.

27

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

Lemma 3.6.

We can use the forward variables to compute the normalization factor Z(x) as follows:

Z(x) =

Q∑
q=1

αn,q. (3.24)

Proof. We use Equation (3.22) with application to αn,q, q = 1, 2, . . . ,Q:

αn,q =
∑

y1,y2,...,yn−1

Φ(y0, y1,x) · Φ(y1, y2,x) · . . . · Φ(yn−1, lq,x).

The sum of all αn,q, q = 1, 2, . . . ,Q yields:

Q∑
q=1

αn,q =

Q∑
q=1

∑
y1,y2,...,yn−1

Φ(y0, y1,x) · Φ(y1, y2,x) · . . . · Φ(yn−1, lq,x)

=
∑

y1,y2,...,yn

Φ(y0, y1,x) · Φ(y1, y2,x) · . . . · Φ(yn−1, yn,x)

=
∑
y

n∏
i=1

Φ(yi−1, yi,x).

(3.25)

On the other hand, we compute Z(x) as follows:

Z(x) =
∑
y

exp
n∑
i=1

K∑
k=1

λkfk(yi−1, yi,x)

=
∑
y

(
exp

K∑
k=1

λkfk(y0, y1,x)
)
·
(
exp

K∑
k=1

λkfk(y1, y2,x)
)
· . . . ·

(
exp

K∑
k=1

λkfk(yn−1, yn,x)
)

=
∑
y

n∏
i=1

Φ(yi−1, yi,x)

(3.25)
=

Q∑
q=1

αn,q.

Remark. Similarly, Z(x) can be calculated by backward variables with

Z(x) =

Q∑
q=1

β1,q.

28

3.6 Reducing Overfitting — Regularization

From above we have seen that the objective function l(Λ) (3.11) can be computed

efficiently, because Z(x(m)) can be obtained using every αn defined for each x(m).

Besides, the marginal distribution P (yi−1, yi,x
(m)) can also be calculated efficiently.

Thus the computation of the derivatives (3.12) is not a problem any more.

As a summary of this section, both l(Λ) and ∇l(Λ) can be computed exactly

and efficiently with the forward-backward algorithm. Let n be the maximal length

of the observations in the training data. Z(x(m)) and P (yi−1, yi,x
(m)) can be obtained

efficiently, which uses a computational complexity O(nQ2) respectively. We need to run

forward-backward for each training instance x(m) and hence need a cost of O(nQ2M) to

get l(Λ) and ∇l(Λ). Then, BFGS algorithms can be applied to estimate a best weight

vector Λ. We assume that G is the number of iterations required by the optimization

procedure and the training uses a total computational complexity O(nQ2MG). If the

optimization problem has a large number of parameters, we shall prefer to choose L-

BFGS algorithms.

3.6 Reducing Overfitting — Regularization

As mentioned before, L-BFGS algorithms can reduce the complexity, if an optimiza-

tion problem has a large number of parameters. However, if the optimization problem

is formulated to estimate the parameter vector in the model with a large number of

dimensions, overfitting generally occurs. This may lead to a poor predictive perfor-

mance. In this case, additional techniques are often used to avoid overfitting, such as

regularization.

Regularization is usually a penalty for complexity, such as restrictions for smooth-

ness or bounds on the vector space norm. Here we consider the regularization as a

penalty on weight vector whose norm is too large. Instead of maximizing l(Λ) directly,

we regularize it first:

lR(Λ) := l(Λ)−
K∑
k=1

λ2k
2σ2

. (3.26)

The penalty in (3.26) is based on the quadratic Euclidean norm of Λ multiplied by

a regularization parameter 1/2σ2, where σ is a free parameter determining how much

to penalize the weight vector. The good point is that the accuracy of the model is

generally not sensitive to changes in σ. σ is often chosen to equal one [12].

29

3. LINEAR-CHAIN CONDITIONAL RANDOM FIELDS

Because quadratic functions are convex, the appending term −
∑K

k=1
λ2k
2σ2 is concave.

Therefore, the regularized objective function lR(Λ) in (3.26) retains the concavity. The

partial derivatives of lR(Λ) have the form:

∂lR

∂λk
=

∂l

∂λk
− λk
σ2
, k = 1, 2, . . . ,K. (3.27)

The optimization problem maxΛ∈RK lR(Λ) is equivalent to solving the problem

− min
Λ∈RK

−lR(Λ).

This regularized problem can be solved just like the original problem, because the

appending terms in (3.26) and (3.27) can be easily computed .

30

4

Pairwise Conditional Random

Fields

We have learned from the previous section that a linear-chain CRF has many limita-

tions, since simply be seen as a linear structure will lead to a lack of data, especially

in our application. To this end, we developed a variant of CRF called the pairwise

conditional random field (pCRF) presenting the useful dependencies in a real graph.

Firstly, we describe how to get the idea of the pairwise CRF model. As mentioned

in Section 2.4 that a general CRF is an undirected graphical model. One of its benefits

is that all dependencies between the nodes can be presented in the model. Nevertheless,

training for many large undirected models is intractable, because computing marginal

distributions of the model is very expensive. The more intricate dependencies we bring

into a CRF, the more difficult it is to train the model. Sometimes, it is even a tough

work to find the best label sequence if a CRF is too complicated. So this involves a

trade-off: On the one hand, we wish to retain as many as possible information in a

CRF. On the other hand, the model must be feasible in both prediction and training.

In a pCRF, we consider the dependencies between two nodes. The cliques with the

cardinality over two are not taken into account. That means, a pCRF is constructed

by only node cliques and edge cliques.

Definition 4.1.

Let X be a random observation over data and Y one of the possible label sequences

modeled by an undirected graph G = (V,E). Moreover, C = V ∪ E denotes the set of

cliques that are taken into consideration, and s(yC ,x) denotes a scoring function for

31

4. PAIRWISE CONDITIONAL RANDOM FIELDS

a clique C ∈ C with different possible labels. Then a pairwise conditional random

field (pCRF) takes the form

P (y|x) =
1

Z(x)
exp

∑
C∈C

s(yC ,x), (4.1)

where

Z(x) =
∑
ỹ

exp
∑
C∈C

s(ỹC ,x). (4.2)

is the normalization factor.

Compared to a linear-chain CRF, a pairwise CRF is more flexible, because it is not

limited to a linear graph. In contrast, we can model our problem with an arbitrary

graph. In this way, the edges can represent not only the neighborhood in a linear chain

but also many other dependencies, like spatial neighborhood.

For simplicity, here we introduce another concept, namely scoring functions. As we

know, several feature functions are defined on a clique and each feature function has

a weight. In order to simplify the form, the clique with possible labels is evaluated

through a scoring function which is the sum of the weighted feature functions defined

on the clique. In a pairwise CRF, it involves node scoring function and edge scoring

function.

Let ψς(i, yi,x) denote a node feature function, φτ (i, j, yi, yj ,x) an edge feature func-

tion with the edge e = (i, j) ∈ E, and λ(n), λ(e) are the corresponding weight vectors,

respectively. The scoring function of a node i ∈ V or an edge e = (i, j) ∈ E is defined

by

s(yi,x) =
∑
ς

λ(n)ς ψς(i, yi,x), (4.3)

or

s(yi, yj ,x) =
∑
τ

λ(e)τ φτ (i, j, yi, yj ,x). (4.4)

The scoring function s(yC ,x) in Definition 4.1 is referred to a node scoring function

or an edge scoring function.

Remark. A linear-chain CRF is a special case of a pairwise CRF whose related graph

is a linear chain.

32

4.1 Generalized Viterbi Algorithm

4.1 Generalized Viterbi Algorithm

In this section, we are going to solve the MAP problem for a pairwise CRF. The goal

is to find one of the most probable label sequences of an observation x:

y∗ = argmax
y

P (y|x)

= argmax
y

1

Z(x)
exp

∑
C∈C

s(yC ,x)

= argmax
y

∑
C∈C

s(yC ,x).

(4.5)

We have seen that the Viterbi algorithm provides us with an efficient dynamic

programming method to find the solution to the MAP problem of a linear-chain CRF.

The dynamic process proceeds along the direction of the linear chain. However, the

corresponding graph of a pairwise CRF is unrestricted, such that applying the original

Viterbi algorithm directly to a pairwise CRF is not suitable.

In order to find the most probable label sequence with a pairwise CRF, we use the

generalized Viterbi algorithm due to Mario Stanke. The generalized Viterbi algorithm

extends the idea of dynamic programming to a pairwise CRF. The difference is that the

dynamic programming proceeds not along a linear any more, but along the so-called

“history sets” which will be introduced in the following notation.

Notation 4.2.

Let G = (V,E) be an undirected graph.

• H ⊆ V which is a connected subset of nodes in V , is referred to as a history

set.

• BH =
{
v ∈ H|∃{v, w} ∈ E : w /∈ H

}
is called the boundary of history set H.

• The dynamic programming variables (Viterbi variables) are defined as

γH(yBH
) = max

yH\BH

∑
C∈C,
C⊆H

s(yC ,x). (4.6)

Taking an example in Figure 4.1, we have H = {a, b, c, d} with boundary BH =

{a, d}. The nodes v ∈ H \ BH , which belong to the “kernel” of H, have no contact

with other nodes outside H. Therefore, they are independent of other history sets. In

contrast, BH can be thought as the “antenna” which represents its history set H to

33

4. PAIRWISE CONDITIONAL RANDOM FIELDS

a

d
c

d

ab

e

f

g

Figure 4.1: Example graph with H = {a, b, c, d} (green) and BH = {a, d} (red circled).

communicate with outside nodes. Assuming that the label set L = {0, 1} and yBH
=

{ya, yd} ∈ L2, the dynamic programming variable γH(yBH
) of H with yBH

= {0, 0} is

then calculated as follows:

γH(yBH
= {0, 0}) = max

{yb,yc}

(
s(ya,x) + s(yb,x) + s(yc,x) + s(yd,x)

+ s(ya, yb,x) + s(yb, yc,x) + s(yc, yd,x)
)

= max
{yb,yc}

(
s(0,x) + s(yb,x) + s(yc,x) + s(0,x)

+ s(0, yb,x) + s(yb, yc,x) + s(yc, 0,x)
)
.

γH(yBH
= {0, 0}) represents the best score of H under the condition ya = 0 and

yd = 0. This score can be achieved if we choose y∗b , y
∗
c , so that

{y∗b , y∗c} = argmax
{yb,yc}

γH(yBH
= {0, 0}).

Analogously, we can compute the other three Viterbi variables with yBH
= {0, 1}, {1, 0}

and {1, 1}. They will be memorized in γH(yBH
= {0, 1}), γH(yBH

= {1, 0}) and

γH(yBH
= {1, 1}), respectively.

It is clear that the nodes in H \ BH are irrelevant in the further dynamic calcula-

tions. We put their information in the Viterbi variables and let the boundary represent

this whole history set in the further calculation. This idea is similar to the original

Viterbi algorithm. Computing current Viterbi variables at position i, we only take into

consideration the previous Viterbi variables at position i − 1. The reason is that only

node i− 1 belongs to the boundary of the unique history set {1, . . . , i− 1}.
Now, we present the generalized Viterbi algorithm for a pairwise CRF with the

following schema. The history sets are indexed by j = 1, 2, . . . ,m and we simplify the

notation of boundary BHj with Bj .

34

4.2 Case 1: The Case of Isolated Node

Algorithm 3 Generalized Viterbi Algorithm

Input:

• observation x and label set L

• a connected undirected graph G = (V,E)

• scoring functions s(yC ,x),∀C ∈ C

Output: y∗ with y∗ = argmaxy

∑
C∈C s(yC ,x).

1. Initialize the number of history sets m = 0.

2. Compute and update Viterbi variables:

choose a node v ∈ V \ (H1 ∪H2 ∪ . . . ∪Hm),

update the history sets according to the undermentioned case 1 or case 2,

and update γH1(yB1), γH2(yB2), . . . , γHm(yBm) in the corresponding case.

This process will be repeated until H1 = V .

3. Compute y∗ by backtracking.

In the following two sections, we are going to discuss the details involving case 1

and case 2 mentioned in the second step.

4.2 Case 1: The Case of Isolated Node

H2

H1
H3

v

Figure 4.2: Case 1: the selected node v is isolated from all existing history sets.

As is shown in Figure 4.2, the node v in step 2 is isolated from all history sets

H1, H2, H3, which means there is no direct connection between v and the existing

35

4. PAIRWISE CONDITIONAL RANDOM FIELDS

history sets. In this case, we can simply build a new history set with this single element

v. The number of history sets will then be increased by 1. H4 = {v} in Figure 4.3 is

such a new history set.

H2

H1
H3

vv

H4

Figure 4.3: Case 1: the isolated v (left) built itself a history set H4.

This case is quite simple. We build a further history set with this single node,

and the boundary is also itself. The Viterbi variables for the other history sets keep

unchanged. We only need to compute the Viterbi variables for the new history set,

which can be obtained by the node scoring functions.

Algorithm 4 Case 1 of Algorithm 3 in Step 2

if @{v, w} ∈ E : w ∈ H1 ∪H2 ∪ . . . ∪Hm then

m = m+ 1

Hm = {v}
Bm = {v}
for all possible assignments of yv ∈ L do

γHm(yv) = s(yv,x)

end for

end if

Remark. Because the input graph is connected, i.e. each node cannot be isolated in

the graph, the boundary of the new history set {v} will never be empty and always {v}
itself.

36

4.3 Case 2: The Case of Non-Isolated Node

4.3 Case 2: The Case of Non-Isolated Node

Alternatively, v can be connected with some existing history sets. Without loss of

generality, we assume that v is neighbor of H1, . . . ,Hk, 1 ≤ k ≤ m. In this case, all of

the involving history sets will be merged together via the node v to form a new history

set, but computing its Viterbi variables is much more complicated.

H1 H2

1

2

34

6

75

8

Figure 4.4: Case 2: the selected node has direct connections with some existing history

sets.

It is shown in Figure 4.4 an example of case 2. The existing history sets are H1 =

{1, 2, 3, 4} and H2 = {6, 7} with B1 = {2, 3} and B2 = {6, 7}. The selected node 5

is directly connected with H1 through edges {2, 5} and {3, 5}. Meanwhile, edge {5, 6}
connects node 5 and history set H2.

1

2

34

6

7
Hnew

5

8

Figure 4.5: Case 2: the history sets H1 and H2 are merged together via node 5.

We now merge all these history sets and the selected node into a new history set

Hnew = {1, 2, 3, 4, 5, 6, 7} and determine its boundary Bnew = {7} (Figure 4.5).

The difficulty is to calculate the Viterbi variables for the new history set. Let us

compute them step by step. First, we observe only the history set H1. If H1 is merged

37

4. PAIRWISE CONDITIONAL RANDOM FIELDS

with the node v, all nodes in H1 including those in B1 will be buried in the kernel

shown in Figure 4.6. That means, the nodes in B1 will not be representative any more.

H1 H2

1

2

34

6

75

8

Figure 4.6: Calculation the Viterbi variables in case 2.

Since the nodes in B1, namely node 2 and 3, will be buried in the kernel of the new

history set, their information will be put in the Viterbi variables. Firstly, we consider

the function

γH1(yB1) + s(y2, y5,x) + s(y3, y5,x),

which is the sum of the Viterbi variable of H1 and the edge scoring function evaluated

on two connection edges, {2, 5} and {3, 5}. Then, the function above is maximized over

y2 and y3 for every possible label of y5 ∈ L and the best score is saved in tmp1(y5):

tmp1(y5) = max
y2,y3

(
γH1(yB1) + s(y2, y5,x) + s(y3, y5,x)

)
.

Similarly, we compute tmp2 according to H2. After the union of H2 and node 5,

node 7 is survived in the boundary Bnew, while node 6 is buried in the kernel. We

obtain thus tmp2(y5, y7) for all possible assignments of {y5, y7} ∈ L2

tmp2(y5, y7) = max
y6

(
γH2(yB2) + s(y5, y6,x)

)
.

To generalize, the set of nodes that turn from the boundary of Hj to the kernel in

Hnew can be represented by Bj \Bnew. The nodes in Bnew∩Bj remain as representative

of Hnew. Then we compute tmpj with arguments yBnew∩Bj∪{v}. The node v will be

discussed at the end of the calculation. Its assignment appears temporarily in the

arguments of every tmpj .

38

4.3 Case 2: The Case of Non-Isolated Node

In general form, we compute for every Hj , j = 1, . . . , k:

tmpj(yBnew∩Bj∪{v}) = max
yBj\Bnew

(
γHj (yBj) +

∑
e=(v,w)∈E,

w∈Bj

s(ye,x)
)
. (4.7)

So far, the node scoring function s(yv,x) has not been taken into account. That is

because all of the involving history sets are merged together via node v and we add this

node scoring function once to the sum of tmpj in order to avoid duplicating. In the

next step, we obtain the “quasi-Viterbi variables” with arguments Bnew ∪ {v} instead

of Bnew:

γ̃Hnew(yBnew∪{v}) = s(yv,x) +
k∑
j=1

tmpj(yBnew∩Bj∪{v}). (4.8)

Further, we need to discuss two cases in the last step. If v is an element in Bnew,

we have Bnew ∪ {v} = Bnew and the Viterbi variables of the new history set is

γHnew(yBnew) = s(yv,x) +
k∑
j=1

tmpj(yBnew∩Bj∪{v}). (4.9)

However, it is also possible that v is not in the boundary Bnew, like node 5 in Figure

4.5. In this case, v is not a representative of the new history set Hnew and we do not

need to retain its assignment in the arguments of γHnew :

γHnew(yBnew) = max
yv

(
s(yv,x) +

k∑
j=1

tmpj(yBnew∩Bj∪{v})
)
. (4.10)

Looking back to the example, tmp1(y5) and tmp2(y5, y7) are calculated as in Equa-

tion 4.7. Here, the selected node 5 is not an element in Bnew = {7} and the Viterbi

variables of the new history set Hnew is computed according to Equation 4.10, yielding

γHnew(y7) = max
y5

(
s(y7,x) + tmp1(y5) + tmp2(y5, y7)

)
.

After this iteration, the v neighboring history sets H1, H2, . . . ,Hk are merged to-

gether into a new one and the number of history set is reduced to m−k+ 1. The other

m− k history sets are unchanged. So are their Viterbi variables.

39

4. PAIRWISE CONDITIONAL RANDOM FIELDS

To sum up, we present case 2 in the following pseudocode:

Algorithm 5 Case 2 of Algorithm 3 in Step 2

if v is neighbor of H1, . . . ,Hk then

/* merge the history sets via v */

Hnew = H1 ∪ . . . ∪Hk ∪ {v}
Bnew = boundary of Hnew

/* calculate tmpj for every Hj */

for j = 1, . . . , k do

compute tmpj according to 4.7 for every possible assignments of yBnew∩Bj∪{v}

end for

/* discuss v in two cases */

if v ∈ Bnew then

compute γHnew according to 4.9 for every possible assignments of yBnew

else

compute γHnew according to 4.10 for every possible assignments of yBnew

end if

/* replace H1 with the new history set */

H1 = Hnew

B1 = Bnew

γH1(yB1) = γHnew(yB1), for every possible assignments of yB1

/* shift index of unchanged history sets */

for j = 2, . . . ,m− k + 1 do

Hj = Hj+k−1

end for

/* update the number of history sets */

m = m− k + 1

end if

Remark. Because the input graph in Algorithm 3 is connected, we will deal with case 2

in the last iteration of the algorithm and get a single history set H1 = V with B1 = ∅.

The Viterbi score γ∗ is simply γ∗ = γH1. According to Equation 4.10, the optimal

label of the last selected node v is obtained by

y∗v = argmax
yv

(
s(yv,x) +

k∑
j=1

tmpj(yv)
)
. (4.11)

40

4.4 Backtracking in Generalized Viterbi Algorithm

4.4 Backtracking in Generalized Viterbi Algorithm

In order to find an optimal label sequence y∗, we should memorize the best labels

of yBHj
\Bnew

which maximize the tmpj in Equation 4.7, as well as the best label of

yv in Equation 4.10. Additionally, an one-to-one mapping between the best labels of

yBHj
\Bnew

and the arguments yBnew∩Bj∪{v} of tmpj in (4.7), and between yv and yBnew

in (4.10) must be constructed.

1
2

3
4

5

6

7

1
2

3
4

5

6

7

M1

M1

M2

M2

M3

M3

M4

M5

M5

M4

Figure 4.7: An example of backtracking (red arrow) of Algorithm 3.

Let’s take the example shown in Figure 4.7. We assume that Algorithm 3 runs

with a processing node order 1, 2, . . . , 7 and the method can be accomplished within 7

iterations. Since we are interested in backtracking in this section, the calculations

of Viterbi variables will not be presented here. We concentrate on the mappings

yBHj
\Bnew

←→ yBnew∩Bj∪{v}, and yv ←→ yBnew .

1. The number of history sets m = 1.

H1 = {1}, B1 = {1}

2. The number of history sets m = 1.

H1 = {1, 2}, B1 = {1, 2}

3. The number of history sets m = 1.

H1 = {1, 2, 3}, B1 = {2, 3}
Mapping: y1 ←→ y2, y3 (M1)

4. The number of history sets m = 1.

H1 = {1, 2, 3, 4}, B1 = {2, 4}
Mapping: y3 ←→ y2, y4 (M2)

41

4. PAIRWISE CONDITIONAL RANDOM FIELDS

5. The number of history sets m = 2.

H1 and B1 are not changed. H2 = {5}, B2 = {5}

6. The number of history sets m = 1.

H1 = {1, 2, 3, 4, 5, 6}, B1 = {4, 5}
Mapping: y2 ←→ y4, y6 (M3), y6 ←→ y4, y5 (M4)

7. The number of history sets m = 1.

H1 = V,B1 = ∅
Mapping: y4, y5 ←→ y7 (M5)

The optimal y∗7 can be simply obtained by (4.11) and we can track along the retrorse

direction of the mappings to get other optimal labels. The backtracking starts from

y∗7 to y∗4, y
∗
5, as is shown with the red colored M5 in Figure 4.7. Then y∗6 is obtained

from y∗4, y
∗
5 according to (M4). This process will continue along the retrorse direction

of mappings (M3), (M2), until (M1). Consequently, an optimal label sequence y∗ is

received.

An implementation of generalized Viterbi algorithm including backtracking is pre-

sented in [38].

4.5 Complexity of Generalized Viterbi Algorithm

The labeling problem for a general graph is NP-hard. Although the generalized Viterbi

algorithm provides a dynamic programming method, it is generally an exponential time

algorithm.

It is clear that the complexity of the second case discussed in Section 4.3 dominates

the other calculations in the generalized Viterbi algorithm. How many loops need to be

executed in this case depends on the number of existing history sets that are neighbors

of the observed node. However, it is not easy to know the number preliminarily as

they vary for different processing node orders. In order to analyze the complexity, we

use the upper bound N , which denotes the maximal degree of a node in the graph, to

represent the number of loops.

The generalized Viterbi algorithm is accomplished in n = |V | iterations. We suppose

|B(1)
1 |, |B

(2)
1 |, . . . , |B

(n)
1 | to be the sequence of boundary size of history set H1 in every

iteration. Furthermore, let d denote the number of possible labels in the label set, i.e.

42

4.5 Complexity of Generalized Viterbi Algorithm

d = |L|. Using these notations, an upper bound of the running time for the generalized

Viterbi algorithm can be expressed as follows:

Lemma 4.3.

The generalized Viterbi algorithm has a complexity of O(N
∑n

i=1 d
|B(i)

1 |).

Proof. See in Implementierung einer Verallgemeinerung des Viterbi-Algorithmus zur

Dekodierung von Conditional Random Fields [Maneke, 2009].

1
2

3

45

6

#B
(i)
1 : 1, 1, 1, 1, 3, 0

5
4

1

36

2

#B
(i)
1 : 1, 2, 3, 4, 3, 0

Figure 4.8: Executing Algorithm 3 with different processing node orders.

As we know, the processing node order influences the running time of the generalized

Viterbi algorithm. An example is shown in Figure 4.8, which presents two possible

processing node orders for the generalized Viterbi algorithm on the same graph.

If the algorithm is proceeded along the ordered nodes shown in the left graph, the

sequence of boundary set size |B(i)
1 |, i = 1, 2, . . . , 6 is

1, 1, 1, 1, 3, 0.

Instead, the sequence of |B(i)
1 |, i = 1, 2, . . . , 6 for the other processing node order

shown in the right graph becomes

1, 2, 3, 4, 3, 0.

It can be proved that the generalized Viterbi algorithm runs much faster with the

processing node order in the left graph than that in the right one.

Since the processing node order plays an important role on the running time of the

generalized Viterbi algorithm, it is meaningful to find an efficient one before executing

the algorithm. In the next section, a method will be introduced, which finds an efficient

node order for the generalized Viterbi algorithm.

43

4. PAIRWISE CONDITIONAL RANDOM FIELDS

4.6 Finding an Efficient Node Order

Developing a method to find an efficient node order is a problem in graph theory. In this

section, we focus on the Delaunay triangulation[8] graph, because in our application

a protein is modeled by such a graph and the details will be presented in the next

chapter.

The Delaunay triangulation constructs a set of points into a plane graph with

triangle as maximal clique. The benefit is that it maximizes the minimum angle of all

the angles of the triangles, such that every two adjacent nodes are not too far away

from each other. In this way, the important spatial information like the neighborhood

of spatial nearby residues can be presented in the graph, which shows great importance

in our application.

1

8

9

3

6

4
5

2

7

Figure 4.9: A delaunay triangulation graph.

In a Delaunay triangulation graph, each edge is an incident to maximal two triangles

as is shown in Figure 4.9. Our method takes pattern from the breadth-first search and

uses two queues, a working queue for the edges and an output queue for the nodes.

Furthermore, the coloring technique is used to ensure that every node and every edge

is added to the corresponding queue exactly once.

Edge Queue

{4, 5}
Node Queue

4, 5

Table 4.1: Edge queue and node queue in the first iteration.

Now we demonstrate the method with an example. First, the method randomly

chooses an edge. This edge is then added to the edge queue and its incident nodes to

44

4.6 Finding an Efficient Node Order

the node queue. Here we choose edge {4, 5} from the graph shown in Figure 4.9 and

add it to the edge queue. At the same time, its two incident nodes are added to the

node queue in Table 4.1. In Figure 4.10, edge {4, 5} is colored green and so are the two

incident nodes.

1

8

9

3

6

4
5

2

7

Figure 4.10: The first iteration in the method finding an efficient node order.

As long as the edge queue is not empty, the top edge is dequeued and its incident

triangles are taken into consideration. Then, the nodes involved in the triangles will be

put into the node queue, if they have not been in it, whether the nodes are in the node

queue can be determined quickly by the node color. Similarly, the involved edges will

be added to the edge queue, if they have not been colored green. Thereafter, a new top

edge will be selected. In the example, edge {4, 5} is dequeued, whose incident triangles

are {2, 4, 5} and {4, 5, 7}. Among the nodes, node 2 and 7 are not green and are added

to the node queue. Analogously, four edges are added to the edge queue after removing

edge {4, 5}. We select a new top edge {2, 4} and highlight it with blue color in Table

4.2.

Edge Queue

{2, 4}
{2, 5}
{4, 7}
{5, 7}

Node Queue

4, 5, 2, 7

Table 4.2: Edge queue and node queue in the second iteration.

In the graph, node 2 and 7 are colored green and so are the four edges. In order to

45

4. PAIRWISE CONDITIONAL RANDOM FIELDS

identify the top edge in Figure 4.11, it is displayed by a thicker green line.

1

8

9

3

6

4
5

2

7

Figure 4.11: The second iteration in the method finding an efficient node order.

This process should be repeated until every edge has been selected once or rather

the edge queue is empty. The node order stored in the node queue is the output. If we

go on with the example, the output node order will be 4, 5, 2, 7, 1, 3, 6, 9, 8.

An appropriate processing node order can reduce the running time of the generalized

Viterbi algorithm. With the help of the method introduced in this section, we can find

an efficient node order in the application. Another benefit is, if we are not satisfied

with one order, there is the opportunity to compute another one, because the first edge

is chosen uniformly at random.

4.7 Parameter Estimation for Pairwise CRFs

In this section, we solve the training problem for a pairwise CRF, which involves the

estimation of the weight vector λ(n) for the node feature functions and the weight λ(e)

for the edge feature functions.

As we discussed before, training a large undirected model is quite difficult. There-

fore, approximate training methods are often used instead of exact training. Here we

adopt the idea of piecewise training [13] which is to divide the whole model into pieces

which can be trained independently and paralleled, combining the learned parameters

from each local training into a global model. Our approach is to divide the graphs into

node set and edge set. Maximizing objective functions based on node set and on edge

set, we can get an optimal λ(n) and λ(e) respectively.

46

4.7 Parameter Estimation for Pairwise CRFs

Firstly, we estimate the weight vector of node feature functions over the node set.

Assume that we have a training data D = {(x(m),y(m))}. The weight vector can be

received by maximizing the following objective function:

ln(λ(n)) :=
∑
m

∑
i

∑
ς

λ(n)ς ψς(i, y
(m)
i ,x(m))−

∑
m

logZn(x(m), λ(n)), (4.12)

where Zn(x(m), λ(n)) is the local normalization factor

Zn(x(m), λ(n)) =
∑
y

exp
(∑

i

∑
ς

λ(n)ς ψς(i, yi,x
(m))

)
. (4.13)

Next, we define the objective function for the edge training as follows:

le(λ
(e)) :=

∑
m

∑
(i,j)∈E

∑
τ

λ(e)τ φτ (i, j, y
(m)
i , y

(m)
j ,x(m))−

∑
m

logZe(x
(m), λ(e)), (4.14)

with the corresponding local normalization factor

Ze(x
(m), λ(e)) =

∑
y

exp
(∑
(i,j)∈E

∑
τ

λ(e)τ φτ (i, j, yi, yj ,x
(m))

)
. (4.15)

In this way, the weight vectors of node feature functions and edge feature functions

can be trained independently over node set and edge set. Moreover, it can be proved

that both of the objective functions are concave such that using (L-)BFGS method is

also suitable in our training.

Since BFGS method requires the input of the gradient, we calculate the partial

derivatives of ln(λ(n)) and le(λ
(e)) respectively.

∂ln

∂λ
(n)
ς

=
∑
m

∑
i

ψς(i, y
(m)
i ,x(m))

−
∑
m

1

Zn(x(m), λ(n))

∑
y

(
exp
(∑

i

∑
q

λ(n)q ψq(i, yi,x
(m))

)
·
(∑

i

ψς(i, yi,x
(m))

))
.

(4.16)

∂le

∂λ
(e)
τ

=
∑
m

∑
(i,j)

φτ (i, j, y
(m)
i , y

(m)
j ,x(m))

−
∑
m

1

Ze(x(m), λ(e))

∑
y

(
exp
(∑
(i,j)

∑
q

λ(e)q φq(i, j, yi, yj ,x
(m))

)
·
(∑
(i,j)

φτ (i, j, yi, yj ,x
(m))

))
.

(4.17)

47

4. PAIRWISE CONDITIONAL RANDOM FIELDS

The local normalization factors are computationally much easier than the original

one. L-BFGS method will be used to train the two weight vectors independently.

Finally, all of the parameters will be combined into a single pairwise CRF to make a

global prediction.

48

5

Protein Data

Simply speaking, proteins are composed of (amino acid) residues and a residue consists

of several atoms. In this chapter, some distance-based definitions will be introduced.

The main point is to define the distance of two atoms.

Atom Type Symbol radius (Å)

Hydrogen H 1.20

Carbon C 1.70

Nitrogen N 1.55

Oxygen O 1.52

Fluorine F 1.47

Phosphorus P 1.80

Sulfur S 1.80

Chlorine Cl 1.75

Copper Cu 1.40

Table 5.1: Van der Waals radii (taken from [1]).

An atom can be considered as a ball which can be described by its three dimensional

center position (x,y,z) and a certain radius r, the van der Waals radius [1]. Let at1 and

at2 denote two atoms with centers (x1, y1, z1), (x2, y2, z2) and radii r1, r2, respectively.

Now, we focus on two atom-distance definitions from the literature. One of them defines

the distance of two atoms simply with the Euclidean norm of theirs centers [23][39]:

dist(at1, at2) :=
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (5.1)

49

5. PROTEIN DATA

The other definition takes the van der Waals radius into consideration [22][40]:

dist(at1, at2) :=
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 − r1 − r2. (5.2)

The van der Waals radii are listed in Table 5.1. The three dimensional information

of the atoms can be obtained from the so-called PDB file introduced in the following

section.

5.1 A Protein Data Bank

A reliable data set is essential to the research. The Protein Data Bank (PDB) is such a

data set which is avaliable online (www.pdb.org) for studying biological macromolecules.

The PDB contains information about experimentally determined structures of proteins,

nucleic acids, and complex assemblies.

Every protein complex deposited in the PDB has a unique ID. A PDB-ID consists

of 4 characters, the first of which is a digit in the range 0 - 9; the remaining 3 are alpha-

numeric, where letters are upper case only. A protein ID is a alpha-numeric character

which represents different proteins with upper case letter and lower case letter. Using

a PDB-ID, we can identify a protein complex and obtain its information from the PDB

by downloading the corresponding PDB file named PDB-ID.pdb which is a textual file

describing the 3D structures of the proteins in this complex.

A typical PDB file is presented in lines, such like the following example shown in

Table 5.2. Each line begins with a record type, e.g. HEADER, SEQRES, ATOM and

so on. The most important information for our research is contained in ATOM records

which contains the atomic coordinates for standard amino acid residues in the protein.

More detailly, the first ATOM record in protein complex with PDB-ID 1QDM

describes atom N contained in residue VAL (Valine) of protein A. The first three

floating point numbers are the x, y and z coordinate of the center position of atom N ,

which are in units of angstrom. The 6-th column of ATOM record is of our interest

as well. It is the residue ID consisting of a sequence number and sometimes with an

alphabetic insertion code. With this ID, we can identify every residue in a protein.

Thus residue VAL with the ID of 6P in protein chain A is composed of 7 atoms which

can be read from the first 7 ATOM records in the PDB file.

50

5.1 A Protein Data Bank

HEADER HYDROLASE 19-MAY-99 1QDM

TITLE CRYSTAL STRUCTURE OF PROPHYTEPSIN, A ZYMOGEN OF A BARLEY

TITLE 2 VACUOLAR ASPARTIC PROTEINASE.

COMPND MOL_ID: 1;

COMPND 2 MOLECULE: PROPHYTEPSIN;

COMPND 3 CHAIN: A, B, C;

: :

: :

REMARK 465 THE FOLLOWING RESIDUES WERE NOT LOCATED IN THE

REMARK 465 EXPERIMENT. (M=MODEL NUMBER; RES=RESIDUE NAME; C=CHAIN

REMARK 465 IDENTIFIER; SSSEQ=SEQUENCE NUMBER; I=INSERTION CODE.)

: :

: :

DBREF 1QDM A 6P 308 UNP P42210 ASPR_HORVU 31 508

DBREF 1QDM B 6P 308 UNP P42210 ASPR_HORVU 31 508

DBREF 1QDM C 6P 308 UNP P42210 ASPR_HORVU 31 508

SEQRES 1 A 478 VAL ARG ILE ALA LEU LYS LYS ARG PRO ILE ASP ARG ASN

SEQRES 2 A 478 SER ARG VAL ALA THR GLY LEU SER GLY GLY GLU GLU GLN

SEQRES 3 A 478 PRO LEU LEU SER GLY ALA ASN PRO LEU ARG SER GLU GLU

: :

: :

ATOM 1 N VAL A 6P 34.377 17.703 -3.619 1.00 47.86 N

ATOM 2 CA VAL A 6P 33.699 16.952 -4.717 1.00 32.58 C

ATOM 3 C VAL A 6P 32.380 16.431 -4.183 1.00 19.83 C

ATOM 4 O VAL A 6P 32.361 15.748 -3.171 1.00 24.36 O

ATOM 5 CB VAL A 6P 34.538 15.760 -5.152 1.00 32.00 C

ATOM 6 CG1 VAL A 6P 33.999 15.187 -6.444 1.00 32.82 C

ATOM 7 CG2 VAL A 6P 35.978 16.181 -5.298 1.00 41.70 C

ATOM 8 N ARG A 7P 31.292 16.725 -4.883 1.00 20.22 N

: :

: :

ATOM 157 N GLU A 2 27.407 -15.748 11.053 1.00 73.55 N

ATOM 158 CA GLU A 2 28.756 -15.727 11.703 1.00 82.41 C

: :

: :

END

Table 5.2: A part of PDB file of protein complex 1QDM.

51

5. PROTEIN DATA

Remark. The angstrom (Å) is an internationally recognized unit of length equal to

10−10 meters. It is commonly used in structural biology like expressing the size of

atoms.

5.2 Nussinov Database and Data Set PlaneDimers

Since our research is to investigate the interaction sites of two proteins, a data set of

protein-protein interacting pairs is foremost required. Large-scale experiments reveal

pairs of interacting proteins, among which there are many similar interfaces. Using

structure comparison algorithm, a non-redundant database has been compiled by the

group of R.Nussinov [40].

.-- PDB ID

| .-- ID of the first interacting protein

| |.-- ID of the second interacting protein

| ||

1APM EI

1NC3 AB

1A0C AC

1QDL AB

: :

: :

1ILU HM

Figure 5.1: A piece of Nussinov database.

Each entry in Nussinov database records the PDB-ID of a protein complex and the

IDs of two interacting proteins. The protein ID used in Nussinov database is identical

to the protein denomination in the PDB file, making the structure information very

conveniently accessible. For example, the first line in Nussinov database shown in

Figure 5.1 states that protein E interacts with protein I in protein complex 1APM.

Interacting protein pairs are also called the dimers which can be classified as homod-

imers and heterodimers. A pair of interacting proteins is called homodimer, if the two

proteins have the same residue sequences; Otherwise it is called heterodimer. Nussinov

database contains entries of both homo- and heterodimeric protein pairs.

52

5.3 Surface Residues in Proteins

The data set PlaneDimers provided by Zellner et al. [22] is our basis of comparison.

PlaneDimers is a subset of Nussinov database and contains of redundancy-free homod-

imers with flat protein-protein interfaces. It is publicly available (see http://www-

bioinf.uni-regensburg.de/.)

5.3 Surface Residues in Proteins

Proteins fold themselves into a three dimensional structure such that some residues

are folded in the core as interior residues, whereas the rest of residues remain on the

protein surface.

It is believed that residues on the protein surface are more useful in assigning

biochemical function than the use of the whole protein and interfaces are formed mostly

by residues that are exposed to the solvent if the partner protein is removed. We trimm

our data by removing the interior residues from the proteins and leave the surface

residues in the data set, which is also done in some other groups [22][23][39].

However, there is no uniform definition of surface residues. Most of the definitions

are based on the solvent exposure of a residue, which measures to what extent the

residue is accessible to the solvent. This solvent exposure can be numerically described

by some measures, e.g. the so-called accessible surface area (asa) which is quoted in

square angstrom (Å2).

For any residue a, the asa(a) can be deduced from the 3D structure of the protein

under study. We compute it by means of the software library BALL [2]. The relative

accessible surface area of a is defined as

rasa(a) :=
asa(a)

asamax(a)
, (5.3)

where asamax(a) is the nominal maximum area of a (see Table 5.3).

We classify a residue a as part of the protein surface, if its relative accessible sur-

face area rasa(a) is at least 5% [4]. Using this criterion, some of the residues are

removed from our data set. The fact is that only a little fraction of interface residues

defined in the following section do not pass the surface area threshold, which proves

the aforementioned argument.

Remark. In the asa calculation, only coordinates of the particular protein is used.

All other proteins in the PDB file should be stripped. Otherwise, the accessible surface

53

5. PROTEIN DATA

Residue Type Abbr. asamax Residue Type Abbr. asamax

Alanine ALA 113 Methionine MET 204

Cysteine CYS 140 Asparagine ASN 158

Aspartic acid ASP 151 Proline PRO 143

Glutamic acid GLU 183 Glutamine GLN 189

Phenylalanine PHE 218 Arginine ARG 241

Glycine GLY 85 Serine SER 122

Histidine HIS 194 Threonine THR 146

Isoleucine ILE 182 Valine VAL 160

Lysine LYS 211 Tryptophan TRP 259

Leucine LEU 180 Tyrosine TYR 229

Table 5.3: Nominal maximum area (Å2) of 20 amino acid residues (taken from [22]).

areas of the residues that eventually form the interface with another proteins may be

incorrectly calculated.

5.4 Interface Residues

Although pairs of interacting proteins can be experimentally characterized, there is

no high-resolution experimental information to capture interface residues. Generally,

there are two common methods to define interface residues: one is simply based on the

distance of each residue to the partner molecule [20][39], while the other on the loss of

surface accessibility when the proteins are separated [11][33].

We use the distance-based approach to define the interface residues. As we men-

tioned at the beginning of this chapter, this kind of definition is based on the distance

of two atoms. Using different atom-distance definitions, two classifications of interface

residues from Li et al. [39] and Nussinov et al. [40] can be obtained as follows:

A surface residue is considered to be an interface residue,

• (Li Def) if the distance (defined in Equation 5.1) between any of its heavy atom

and any heavy atom of its interacting partner is less than 5Å;

• (Nuss Def) if the distance (defined in Equation 5.2) between any of its atom and

any atom of its interacting partner is less than 0.5Å.

54

5.5 Spatial Neighborhood and Protein Surface Graphs

The set of all interface residues in one protein is then called the interface of this

protein.

Li Def Nuss Def

no. of protein pairs 63 63

no. of surface residues 22369 22369

no. of interface residues 3424 2402

no. of non-interface residues 18945 19967

Table 5.4: Data overview in data set PlaneDimers.

In the data set PlaneDimers, for example, there are 63 protein homodimers involving

22369 surface residues. Among them, 3424 and 2402 surface residues are classified

as part of the protein interfaces according to Li definition and Nussinov definition,

respectively. Hence, one of the difficulties in protein-protein interface prediction is that

there are much more non-interface residues with both definitions (see Table 5.4), which

makes the model incline to predict a residue as non-interface residue.

5.5 Spatial Neighborhood and Protein Surface Graphs

In order to use a CRF to predict protein interfaces, a protein should be converted into a

graph whose nodes represent the surface residues in the protein. By the application of a

linear-chain CRF [39], the edges are referred to as the “backbone” neighbors according

to the primary structure of the protein. However, in practice, it is better to model a

protein without neglecting its 3D structure. To this end, the edges represent the spatial

neighborhood between the residues, which leads to a more meaningful prediction than

“backbone” neighbors.

Several neighborhood notions for residues worth to be reminded here. One of them is

atom-distance-based definition: two surface residues in a protein are considered spatial

neighbors, if the distance (defined in Equation 5.1) between their alpha carbon atoms

is under 6Å [40]. Another one that relies on the Delaunay triangulation of the protein

surface, as is mentioned in Section 4.6.

Delaunay triangulations have already been shown useful in analyzing cavities in

proteins [27][42]. In our application, we represent a surface residue in a protein with

the mass center of its heavy atoms. Taking the centers-of-mass set of all surface residues

55

5. PROTEIN DATA

as the input, we obtain a Delaunay triangulation graph by using Fortune’s algorithm

[46]. Since the Delaunay triangulation maximizes the minimum angle of all the angles

of the triangles, the adjacent nodes in the graph represent mostly the spatial neighbors

in the protein. In general, the Delaunay triangulation yields a graph with a sizeable

number of edges. This is an inconvenience to the generalized Viterbi algorithm, because

a large number of edges directly affects the complexity of the algorithm. Based on this

observation, we get the protein surface graphs by removing nonsignificant edges from

the triangulation graphs. The edge reduction principle will be explained in the following

chapter.

56

6

Results and Discussion

In this chapter, we apply pairwise CRFs to predict protein-protein interaction sites.

Firstly, we define feature functions from protein characteristics, followed by the leave-

one-out cross-validation experiments on the data set PlaneDimers. The performance

of the predictions is discussed in the end.

6.1 Protein Characteristics Used in CRF Feature

We start by reviewing some protein characteristics in literature. The relative accessible

surface areas are commonly used. For example, this residue property was turned into

node feature functions by Li et al. in their linear-chain CRF [39].

Besides, multiple sequence alignments (MSAs) are an essential tool for protein struc-

ture and function prediction. An MSA of a protein is a sequence alignment of protein

sequences with the goal that residues in a given column are homologous or play a com-

mon functional role. Sometimes, one mutation in a certain column of an MSA influences

a compensating mutation in another column, which means that the two involved sites

are coevolved. The residues involved in the compensatory mutations may form key

sites for the interaction between proteins [16][34][43]. In order to use this signal, the

first task is to detect the coevolved positions in MSAs.

We used the dictionary of secondary structure of proteins database (DSSP) [49] to

get the MSA of each protein. Let i 6= j be two sites of protein surface. Under the

study of the associated colunms in the MSA, we calculated the normalized measure of

57

6. RESULTS AND DISCUSSION

mutual information according to [43]:

U(i, j) := 2 · H(i) + H(j)−H(i, j)

H(i) + H(j)
, (6.1)

where H(j), H(j) and H(i, j) are the entropy and joint entropy of the empirical amino

acid residue (pair) distribution of column i, of column j and of column pair (i, j),

respectively. The larger the U(i, j)-value is, the more i and j are coevolved. Position

pair (i, j) is considered as important, if their U(i, j)-value is above a threshold which

is chosen according to [37].

This information was then taken into the node by assigning each node in the protein

surface graph with a boolean variable:

coevolved(i) :=

{
1, if there is a j 6= i with (i, j) is important;

0, otherwise.
(6.2)

Another interface residue property of interest is based on the patch classifier [44].

The main idea is to distinguish between a random surface area of the protein (random

surface patch) and an area which consists mainly of the interface residues (interface

patch). For a node i, we generate a patch which is the node set with the first and the

second level neighborhood of i.

i
1

1

1

1

1

2

22

2

2

Figure 6.1: Patch of i with the first and the second level neighbors.

The first level neighbors marked with 1 in Figure 6.1 refer to the node k whose

corresponding residue ak is a spatial neighbor of ai according to the distance-based

definition in Section 5.5. The second level neighbors marked with 2 are the spatial

neighbors of the first level neighbors.

By using the patch classifier, we can distinguish the interface patch from the random

surface patch. Similar to the definition in Equation 6.2, we put the patch information

58

6.2 Feature Functions in pCRF

into a node i :

patch(i) :=

{
1, if the patch of i is an interface patch;

0, otherwise.
(6.3)

In addition, we use the presCont score which can be obtained from the webserver

PresCont [22]. The presCont score with the range of 0 to 1 represents the posterior

probability for the interface classification of a node i, which we refer to as presCont(i).

A higher presCont score means a more probable interface residue prediction.

6.2 Feature Functions in pCRF

According to [23] we average every raw residue characteristics over the neighborhood

N(ai) stabilizing the signals on grounds of the weak law of large numbers, where N(ai)

is the set of the spatial neighbors of residue ai due to the definition in Section 5.5.

Assume that we have a protein surface graph G = (V,E). For every node i ∈ V , we

define the average surrounding characteristics with consideration of the aforementioned

values of its neighboring residues:

Rasan(i,x) :=
1

#N(ai)

∑
k

rasa(ak), (6.4)

Coevolvedn(i,x) :=
1

#N(ai)

∑
k

coevolved(k), (6.5)

Patchn(i,x) :=
1

#N(ai)

∑
k

patch(k), (6.6)

PresContn(i,x) :=
1

#N(ai)

∑
k

presCont(k), (6.7)

where k ranges over all nodes such that ak ∈ N(ai).

In our application, we employ a standard step function technique to define the

CRF feature functions. Initially, we focus on the node features and take some node

characteristic C into consideration, e.g. Rasan,Coevolvedn,PresContn. We subdivide

the range of the characteristic C into γ intervals, where γ is not less than two. Let

s0 < s1 < . . . < sγ be the corresponding sampling points. It is reasonable to assume

that sι is the ι/γ−quantile of the empirical distribution of C with C(i,x) ∈ [s0, sγ].

59

6. RESULTS AND DISCUSSION

Then we define for each i ∈ V the following 2γ node feature functions associated with

the characteristic C :

ψ(C)
y,ι (i, yi,x) :=

{
1, if yi = y and C(i,x) ∈ [sι, sι+1];

−1, otherwise;
(6.8)

where y ∈ L = {I,N} and ι = 0, 1, . . . , γ − 1.

In order to define edge feature functions, we must make use of edge characteristics

which can be transformed from every node characteristic C into a uniform manner.

Let (i, j) ∈ E be an edge in the protein surface graph. As before, we consider the

average characteristics over the neighborhood N(i, j), which is the set of nodes k such

that residue ak is an element in N(ai) or in N(aj) Then, an edge characteristic D is

defined as

D(i, j,x) := cropul

(1

#N(i, j)

∑
k∈N(i,j)

C(k,x)
)
, (6.9)

where cropul is the crop function defined by cropul (s) = 1s∈[l,u] ·s, where [l, u] is referred

to as the crop interval. An appropriate crop function is sometimes effective to sharpen

the signal. The default crop interval is set to [0, 1].

As mentioned in Section 5.5, a protein surface graph is obtained by reducing non-

significant edges from its triangulation graph. In this work, we classify an edge as

significant, if its characteristic based on the presCont score is over 0.65. The corre-

sponding PresConte characteristic is defined as follows:

PresConte(i, j,x) := cropul

(1

#N(i, j)

∑
k∈N(i,j)

PresContn(k,x)
)
, (6.10)

where the crop interval is set to [0.65, 1]. In this way, all nonsignificant edges are

removed from the surface graphs.

Two additional applied edge characteristics are based on Coevolvedn and Patchn

with the default crop interval.

Analogously, we obtain for each (i, j) ∈ E the following 4γ edge feature functions

based on an edge characteristic D :

φ
(D)
yy′,ι(i, j, yi, yj ,x) :=

{
1, if yiyj = yy′, and D(i, j,x) ∈ [sι, sι+1];

−1, otherwise;
(6.11)

where yy′ ∈ {II, IN,NI,NN}, and ι = 0, 1, . . . , γ − 1.

60

6.3 Performance of the Prediction

6.3 Performance of the Prediction

In order to evaluate the performance of our pairwise CRF, we introduce firstly some

evaluation measures. Generally speaking, the prediction should cover as many of the

actual interface residues as possible. More important is that the model should predict

as few false positives as possible. We denote TP and FP the number of true and false

positives, which is the number of correctly and incorrectly labeled interface residues,

respectively. For correctly and incorrectly labeled non-interface residues, we use the

notation TN and FN. In the literature, the following measures are taken into account

[23][39][47]:

1. precision = TP/(TP + FP)

2. recall = TP/(TP + FN)

3. accuracy = (TP + TN)/(TP + FP + TN + FN)

The most important measure in our application is precision which represents the

ratio of correctly labeled interface residues to all labeled interface residues including

false positives. A higher precision means that fewer interface residues are incorrectly

labeled. Apart from this, recall returns the percentage of interface residues recognized

from all real interface residues. The more real interface residues are predicted, the

higher the recall. These two measure the performance for labeling interface residues.

The last one accuracy is used to evaluate the performance for the whole test data

including both interface and non-interface residues.

As mentioned earlier, the data set is unbalanced with respect to the number of

interface and non-interface residues. Therefore, it is necessary to manipulate the ratio

of these to parameters. Here we enhance the influence of the positive examples, rather

than select various sets of training data by deleting negative ones as done in [39].

Let νI , νN , νII and νNN be the number of interface nodes, the number of non-

interface nodes, the number of interface-interface edges, and the number of non-interface-

non-interface edges in a training data D = {(x(m),y(m))}, respectively. We define the

following enhancer functions for all nodes i and for all edges (i, j).

ηn(i) :=

{
νN
νI
− 1, if yi = I;

0, if yi = N.
(6.12)

61

6. RESULTS AND DISCUSSION

ηe(i, j) :=

νNN
νII
− 1, if yi = yj = I;

νN
νI
− 1, if yi 6= yj ;

0, if yi = yj = N.

(6.13)

To uniformly govern the influence of the enhancers, an enhancer control parameter

ηc ∈ [0, 1] is used to control the trade-off between precision and recall. Then, the

log-likelihood objective functions are set up by

ln(λ(n), ηc) : =
∑
m

∑
i

(1 + ηcηn(i))
∑
ς

λ(n)ς ψς(i, y
(m)
i ,x(m))

−
∑
m

logZn(x(m), λ(n), ηc),
(6.14)

le(λ
(e), ηc) : =

∑
m

∑
(i,j)∈E

(1 + ηcηe(i, j))
∑
τ

λ(e)τ φτ (i, j, y
(m)
i , y

(m)
j ,x(m))

−
∑
m

logZe(x
(m), λ(e), ηc),

(6.15)

where the local normalization factors

Zn(x(m), λ(n), ηc) =
∑
y

exp
(∑

i

(1 + ηcηn(i))
∑
ς

λ(n)ς ψς(i, yi,x
(m))

)
(6.16)

and

Ze(x
(m), λ(e), ηc) =

∑
y

exp
(∑
(i,j)∈E

(1 + ηcηe(i, j))
∑
τ

λ(e)τ φτ (i, j, yi, yj ,x
(m))

)
. (6.17)

The above defined objective functions are concave and are maximized by using

L-BFGS method to get the parameters.

Besides, leave-one-out cross-validation experiments are performed on our pairwise

CRF with the data set PlaneDimers. In every round, a protein dimer is selected and

removed from the data set. The remaining data are used to train the model which in

the next step predict the interacting sites of the selected protein dimer. This process

is repeated until each dimer has been tested once. The benefit of this strategy is that

it can avoid the overfitting problem.

The observed node and edge characteristics are (a) Rasan, (b) Coevolvedn, (c)

PresContn, (d) Patchn, (e) Coevolvede, (f) PresConte and (g) Patche. By defining

node feature functions with Rasan and Coevolvedn, we use the step functions with two

62

6.3 Performance of the Prediction

intervals (see Equation 6.8) according to the 1/2 quantile of the empirical distribution of

Rasan and Coevolvedn, respectively. The two intervals used in definition of PresContn-

features are set by s0 = 0, s1 = 0.82 and s2 = 1. Since the most nodes are evaluated

with 0 by Patchn, it is not necessary to assign the nodes into different intervals. We

simply define for y ∈ {I,N}:

ψ(Patchn)
y (i, yi,x) :=

{
Patchn(i,x), if yi = y;

−1, otherwise.
(6.18)

We now turn to the edge feature definition. Firstly, φ
(Coevolvede)
yy′,ι are defined by

Equation 6.11 with three intervals according to the 1/3 quantile of the empirical distri-

bution of Coevolvede. We use two intervals with s0 = 0.65, s1 = 0.80, s2 = 1 to define

the PresConte-step feature functions. With the same argument in Patchn-feature defi-

nition, we define edge feature functions with Patche and yy′ ∈ {II, IN,NI,NN}:

φ
(Patche)
yy′ (i, j, yi, yj ,x) :=

{
Patche(i, j,x), if yiyj = yy′;

−1, otherwise.
(6.19)

Our basic data set is PlaneDimers. The following tables list the performance of our

pCRF with some combination of features. The enhancer control parameter ηc is set to

0.3. We tabulate two sets of results according to the interface residue definition by Li

et al. and by Nussinov et al., respectively.

Node Chara. Edge Chara. precision recall accuracy

1. (c) (f) 44.89% 9.51% 88.83%

2. (a)(c) (f) 45.13% 12.29% 88.97%

3. (a)(b) (e) 23.88% 68.00% 72.97%

4. (a)(c)(d) (f)(g) 45.30% 12.41% 88.98%

5. (a)(b)(c)(d) (e)(f)(g) 41.67% 17.96% 88.48%

Table 6.1: Performance of pCRF with Nuss Def.

The first row in Table 6.1 and 6.2 shows the performance of the pCRF using only

feature functions based on the presCont score. By adding features of Rasan and Patchn,

Patche, the pCRF achieves the best performance with the bold-faced evaluation values.

Another interesting feature combination is presented in the third row. More than 60%

interface residues can be recognized from the data set, which is largely due to the

63

6. RESULTS AND DISCUSSION

Node Chara. Edge Chara. precision recall accuracy

1. (c) (f) 50.67% 7.29% 84.72%

2. (a)(c) (f) 51.57% 9.53% 84.79%

3. (a)(b) (e) 32.65% 63.14% 73.87%

4. (a)(c)(d) (f)(g) 51.86% 9.65% 84.80%

5. (a)(b)(c)(d) (e)(f)(g) 48.77% 14.23% 84.58%

Table 6.2: Performance of pCRF with Li Def.

coevolved -features. In case that the application requires a high recall, it would be a

good choice to use this feature combination in a pCRF.

6.4 Model Modification

We have seen that it is not easy to obtain a high precision of the prediction. One

of the reasons is that the edges with label IN or NI carry much noisy signal over the

characteristics. In this section, we follow the idea of interface-residue-connectedness [40]

that the neighbors of an interface residue very possibly also belong to the interacting

region. In this sense, only II- and NN-edge feature functions will be taken into account.

The edge feature functions defined in Equation 6.11 are limited to yy′ ∈ {II,NN}.

We still use the data set PlaneDimers with enhancer control parameter ηc = 0.3.

Since there are no IN- or NI-edge feature functions defined in our pCRF, we should

handle the edges with label IN or NI in the training. Due to the interface-residue-

connectedness, IN- and NI-edges are considered to be II-edges in the training. Since

our basic data set is the same one as the webserver PresCont, it is reasonable to make

a comparison of the performances. To be impartial, the features used in the pCRF are

only PresContn and PresConte.

Method Interface Def precision recall accuracy

Webserver PresCont NussDef 44.14% 20.51% 88.70%

Modified pCRF NussDef 48.37% 11.18% 89.13%

Webserver PresCont LiDef 51.30% 16.65% 84.69%

Modified pCRF LiDef 53.92% 8.71% 84.76%

Table 6.3: Performances of webserver PresCont and modified pCRF.

64

6.4 Model Modification

The result in Table 6.3 shows that our modified pCRF obtains a higher precision

with 48.37% by Nussinov definition and 53.92% by Li definition. As discussed before,

precision is the most important measure in our application, to this end, it is worth a

lower recall. Moreover, a slightly higher accuracy is achieved by our modified pCRF.

We have seen in the previous section that our pairwise CRF with the feature com-

bination of Rasan, PresContn, Patchn, PresConte and Patche obtained the best per-

formance (Table 6.1 & 6.2). It is interesting to use this combination in the modified

pairwise CRF. Nevertheless, this feature combination seems not so suitable for the mod-

ified pairwise CRF with a precision of 47.04% (52.41%) and a recall of 9.59% (7.47%)

by Nussinov (Li) definition. A possible reason is that we reduced the number of edges

in the protein surface graphs according to the presCont score (see Equation 6.10). The

removed nonsignificant edges can be significant for the other features. An II-edge in

the remaining edges has probably a relativly large PresConte-value, while an NN-edge

has probably a relativly small PresConte-value. This relation does not necessarily exist

in other features. In this situation, the modified pCRF with the feature combination

of PresContn and PresConte fits the data better. In our further work, the computing

capability of our generalized Viterbi algorithm should be enhanced. The goal is to use

the Delaunay triangulation graphs directly without edge reductions.

65

6. RESULTS AND DISCUSSION

66

7

Conclusion

Protein-protein interactions appear in almost every biological process. Proteins are

mainly folded into three dimensional structures, which requires that a meaningful pre-

diction should take consideration of the important spatial relationships of the amino

acid residues. In this regard, many research groups use the spatial neighborhood in-

formation to evaluate the residues in their predictions, but the model itself do not

consider the dependencies between the spatial neighboring residues. Our contribution

is modeling the spatial neighborhood information of a protein directly into a graphical

model based on the approach of conditional random fields.

CRF is a stochastic graphical model used for solving segmenting and labeling prob-

lems. Because training a general CRF is intractable, we developed pairwise CRFs in

our application. In order to find the best label sequence using a pairwise CRF, a gen-

eralized Viterbi algorithm was proposed. This algorithm extends the idea of dynamic

programming to a general graph. One of the best label sequences can be obtained by

processing the algorithm with an efficient node order. Furthermore, the parameters

in a pairwise CRF were estimated by dividing the graphs into nodes and edges. The

weights of node feature functions and of edge feature functions were trained separately.

In the protein-protein interaction sites prediction, we selected several protein prop-

erties in the CRF-feature definition. Each property was represented by the related node

and (or) edge feature functions. Due to the unbalanced data set, we manipulated the

ratio of the number of interface and non-interface residues with enhancer functions and

an enhancer control parameter. In addition, we applied a modified pairwise CRF with

the feature functions based on the same protein properties as the webserver PresCont.

67

7. CONCLUSION

By comparison, our pairwise CRF showed a higher precision evidencing its abilities in

handling the data of graphical structures.

Since the generalized Viterbi algorithm has a limited computing power, the number

of edges in the protein surface graphs should be reduced. Because of the edge reduction

according to the presCont score, the performance of our pCRFs is adversely affected.

In the future work, the computing capability of the generalized Viterbi algorithm will

be enhanced so that the edge reduction can be prevented. Besides, the triangle cliques

will be taken into account in the model. To this end, a new CRF variant is to be

developed. Meanwhile, more signals from the data analysis are required in order to

define more reasonable feature functions in the CRF, which is expected to result in a

better performance in the protein-protein interaction sites prediction.

68

Bibliography

[1] Bondi A. van der waals volumes and radii. J. Phys. Chem., 68(3):441451, 1964.

[2] Hildebrandt A, Dehof AK, Rurainski A, et al. Ball - biochemical algorithms library

1.3. BMC Bioinformatics, 11:531, 2010.

[3] Koike A and Takagi T. Prediction of protein-protein interaction sites using support

vector machines. Protein Eng.Des.Sel., 17:165–173, 2004.

[4] Porollo A and Meller J. Prediction-based fingerprints of protein-protein interac-

tions. Proteins, 66:630–645, 2007.

[5] Quattoni A, Collins M, and Darrell T. Conditional random fields for object recog-

nition. MIT Press, pages 1097–1104, 2004.

[6] Bordner AJ and Abagyan R. Statistical analysis and prediction of protein-protein

interfaces. Proteins, 60:353–366, 2005.

[7] Viterbi AJ. Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm. IEEE Transactions on Information Theory, 13(2):260–269,

1967.

[8] Delaunay B. Sur la sphere vide. Izvestia Akademii Nauk SSSR, Otdelenie Matem-

aticheskikh i Estestvennykh Nauk, 7:793–800, 1934.

[9] Settles B. Abner: an open source tool for automaically tagging genes,proteins,and

other entity names in text. Bioinformatics, 21(14):3191–3192, 2005.

[10] Wang B, Chen P, Huang DS, et al. Predicting protein interaction sites from residue

spatial sequence profile and evolution rate. FEBS Lett., 580:380–384, 2006.

69

BIBLIOGRAPHY

[11] Chothia C and Janin J. Principles of protein-protein recognition. Nature, 256:705–

708, 1975.

[12] Sutton C and McCallum A. An introduction to conditional random fields for rela-

tional learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical

Relational Learning. MIT Press, 2006.

[13] Sutton C and McCallum A. Piecewise pseudolikelihood for efficient crf training.

In International Conference on Machine Learning (ICML), pages 863–870. ACM

Press, 2007.

[14] Broyden CG. The convergence of a class of double-rank minimization algorithms.

Journal of the Institute of Mathematics and Its Applications, 6:7690, 1970.

[15] Yan CH, Honava V, and Dobbs D. Identification of interface residues in protease-

inhihitor and antigen-antibody complexes: a support vector machine approach.

Neural.Comput.Appl., 13:123–129, 2004.

[16] Yeang CH and Haussler D. Detecting coevolution in and among protein domains.

PLoS ComputBiol, 3(11):e211, 2007.

[17] DeCaprio D, Vinson JP, Pearson MD, et al. Gene prediction using conditional

random fields. Genome Res., 17:1389–1398, 2007.

[18] Sha F and Pereira F. Shallow parsing with conditional random fields. HLT-

NAACL, pages 213–220, 2003.

[19] Peng FC, Feng FF, and McCallum A. Chinese segmentation and new word detec-

tion using conditional random fields. COLING, pages 562–568, 2004.

[20] Chen H and Zhou HX. Prediction of interface residues in protein-protein complexes

by a consensus neural network mehtod: test against nmr data. Proteins, 61:21–35,

2005.

[21] Neuvirth H, Raz R, and Schreiber G. Promate: a structure based prediction

program to identify the location of protein-protein binding sites. J.Mol.Biol.,

338:181–199, 2004.

70

BIBLIOGRAPHY

[22] Zellner H, Staudigel M, Trenner M, Bittkowski M, Wolowski V, Icking M, and

Merkl R. Prescont: Predicting protein-protein interfaces utilizing four residue

properties. Proteins, 80(1):154–68, 2012.

[23] Zhou HX and Shan Y. Prediction of protein interaction sites from sequence profile

and residue neighbor list. Proteins, 44:336–343, 2001.

[24] Kufareva I, Budagyan L, Raush E, et al. Pier: protein interface recognition for

structural proteomics. Proteins, 67:400–417, 2007.

[25] Res I, Mihalek I, and Lichtarge O. An evolution based classifier for prediction of

protein interfaces without using protein structures. Bioinformatics, 21:2496–2501,

2005.

[26] Lafferty J, McCallum A, and Pereira F. Conditinal random fields: Probabilistic

models for segmenting and labeling sequence data. Proc. 18th International Conf.

on Machine Learning, pages 282–289, 2001.

[27] Liang J, Edelsbrunner H, and Woodward C. Anatomy of protein pockets and

cavities: measurement of binding site geometry and implications for ligand design.

Protein Sci, 7:18841897, 1998.

[28] Nocedal J. Updating quasi-newton matrices with limited storage. Mathematics of

Computation, 35:773–782, 1980.

[29] Li JJ, Huang DS, Wang B, et al. Identifying protein-protein interfacial residues in

heterocomplexes using residue conservation scores. Int.J.Biol.Macromol., 38:241–

247, 2006.

[30] Bradford JR, Needham CJ, Bulpitt AJ, et al. Insights into protein-protein in-

terfaces unsing a bayesian network prediction method. J.Mol.Biol., 362:365–386,

2006.

[31] Bradford JR and Westhead DR. Improved prediction of protein-protein binding

sites using a support vector machines approach. Bioinformatics, 21:1487–1494,

2005.

71

BIBLIOGRAPHY

[32] Sato K and Sakakibara Y. Rna secondary structural alignment with conditional

random fields. Bioinformatics, 21:237–242, 2005.

[33] Lo Conte L, Chothia C, and Janin J. The atomic structure of protein-protein

recognition sites. J Mol Biol, 285:2177–2198, 1999.

[34] Martin LC, Gloor GB, Dunn SD, and Wahl LM. Using information theory to search

for co-evolving residues in proteins. Bioinformatics, 21(22):4116–4124, 2005.

[35] Baum LE, Petrie T, Soules G, and Weiss N. A maximization technique occurring

in the statistical analysis of probabilistic functions of markov chains. Ann. Math.

Statist., 41:164171, 1970.

[36] Rabiner LR. A tutorial on hidden markov models and selected applications in

speech recognition. IEEE, 77(2):257–286, 1989.

[37] Gültas M, Haubrock M, Tüysüz N, and Waack S. Coupled Mutation Finder:

A new entropy-based method quantifying phylogenetic noise for the detection of

compensatory mutations. BMC Bioinformatics, 13:225, 2012.

[38] Maneke M. Implementierung einer verallgemeinerung des viterbi-algorithmus

zur dekodierung von conditional random fields. Master’s thesis, Georg-August-

Universität Göttingen, Germany, 2009.

[39] Li MH, Lin L, Wang XL, et al. Protein-protein interaction site prediction based

on conditional random fields. Bioinformatics, 23:597–604, 2007.

[40] Keskin O, Tsai CJ, Wolfson H, and Nussinov R. A new, structurally nonredundant,

diverse data set of protein-protein interfaces and its implications. Protein Science,

13(4):1043–1055, 2004.

[41] Fariselli P, Pazos F, Valencia A, et al. Prediction of protein-protein interaction in

heterocomplexes with neural networks. Eur.J.Biochem., 269:1356–1361, 2002.

[42] Medek P, Benes P, and Sochor J. Computation of tunnels in protein molecules

using delaunay triangulation. Journal of WSCG, pages 107–114, 2007.

72

BIBLIOGRAPHY

[43] Merkl R and Zwick M. H2r: Identification of evolutionary important residues

by means of an entropy based analysis of multiple sequence alignments. BMC

Bioinformatics, 9(1):151, 2008.

[44] Asper RY. Classifiers for discrimination of significant protein residues and protein-

protein interaction using concepts of information theory and machine learning.

Master’s thesis, Georg-August-Universität Göttingen, Germany, 2011.

[45] Boyd S and Vandenberghe L. Convex Optimization. Cambridge University Press,

2004.

[46] Fortune S. Voronoi diagrams and Delaunay triangulations. CRC Press, Inc., 1997.

[47] Qin S and Zhou H. meta-ppisp: a meta web server for protein-protein interaction

site prediction. Bioinformatics, 23:3386–3387, 2007.

[48] Friedrich T, Pils B, Dandekar T, et al. Modelling interaction sites in protein

domains with interaction profile hidden markov models. Bioinformatics, 22:2851–

2857, 2006.

[49] Kabsch W and Sander C. Dictionary of protein secondary structure: pattern recog-

nition of hydrogen-bonded and geometrical features. Biopolymers, 22(12):2577–

637, 1983.

[50] Ofran Y and Rost B. Predicted protein-protein interaction sites from local sequence

information. FEBS Lett., 544:236–239, 2003.

73

	List of Figures
	List of Tables
	Glossary
	1 Introduction
	1.1 Biological Background
	1.2 Protein-Protein Interaction Sites Prediction

	2 Statistical Models
	2.1 Some Useful Notations
	2.2 Graphical Models
	2.3 Hidden Markov Models
	2.4 Conditional Random Fields

	3 Linear-Chain Conditional Random Fields
	3.1 Definition of Linear-Chain CRFs
	3.2 Prediction with Viterbi Algorithm
	3.3 Parameter Estimation
	3.4 Optimization Techniques for Training the Model
	3.5 Forward-Backward Algorithm
	3.6 Reducing Overfitting — Regularization

	4 Pairwise Conditional Random Fields
	4.1 Generalized Viterbi Algorithm
	4.2 Case 1: The Case of Isolated Node
	4.3 Case 2: The Case of Non-Isolated Node
	4.4 Backtracking in Generalized Viterbi Algorithm
	4.5 Complexity of Generalized Viterbi Algorithm
	4.6 Finding an Efficient Node Order
	4.7 Parameter Estimation for Pairwise CRFs

	5 Protein Data
	5.1 A Protein Data Bank
	5.2 Nussinov Database and Data Set PlaneDimers
	5.3 Surface Residues in Proteins
	5.4 Interface Residues
	5.5 Spatial Neighborhood and Protein Surface Graphs

	6 Results and Discussion
	6.1 Protein Characteristics Used in CRF Feature
	6.2 Feature Functions in pCRF
	6.3 Performance of the Prediction
	6.4 Model Modification

	7 Conclusion
	Bibliography

