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Chapter 1

Introduction

In the context of the Seventh Framework Programme (EU-FP7) project Ener-
GEO (Earth observation for monitoring and assessment of the environmental
impact of energy use) strategies shall be developed to:

• assess the impact of increased energy use on the environment and on
ecosystems at a global scale, and to

• determine the optimal mix of energy sources to achieve sustainability.

The global observation strategy will assess the impacts of current and future
transitions in energy use on the environment by a combination of: 1) models
already available for various sources of energy, 2) existing global datasets from
which environmental indicators will be derived to quantify changes to earth
systems, and 3) existing and currently developed models capable of assess-
ing environmental impacts and costs of energy exploitation. The Biosphere
Energy Transfer Hydrology (BETHY/DLR) model, developed at the German
Aerospace Center (DLR), will be used to estimate bioenergy potentials for
agricultural and forest areas. For pilot studies, Germany and Austria were
chosen as areas of investigation and for validation.

1
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This thesis project focuses on three topics:

• The validation of agricultural and forest Net Primary Productivity (NPP)
modelled with BETHY/DLR,

• the estimation of sustainable energy potentials, based on modelled NPP,
and

• the development of a one-dimensional soil water transport model to im-
prove the soil water balance formulation in vegetation models such as
BETHY/DLR.

To provide an overview of the following seven chapters, and to introduce, at a
broad scope, the three main topics, a short introduction is given here.

Biomass modeling

Due to ongoing human activity over the past several centuries, many ecosys-
tems have been permanently changed. Current scientific research suggests that
these anthropogenic impacts will play an increasingly large role, and challenge
to contribute to the acquisition of natural and anthropogenic caused ecosystem
changes. Accurate models of the carbon uptake by vegetation (Net Primary
Productivity, NPP) are urgently needed to answer questions regarding the
carbon exchange between vegetation, the atmosphere, and pedosphere. Since
NPP is directly linked to biomass, NPP estimates can be used as proxies for
global and regional carbon sinks and sources. For these reasons biomass mod-
elling has gained a prominent position in models of the predicted effects of
climate change (IPCC (2007)).
In addition, the estimation of NPP has recently become a fundamental re-
search topic in areas of ecology and environmental science (e.g. Sala and
Austin (2000)). The photosynthetic ability of plants is essential to life on
Earth; it both builds organic molecules and produces oxygen, given only light
and carbon dioxide. Vegetation is a major component of the biosphere, and
because it constantly draws carbon dioxide from the surrounding atmosphere,
it significantly contributes to the regulation of the global carbon cycle. With
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the launch of the first Earth observation satellites in the early 1970s, research
studies became possible at a meso-scale level, and the power of these satel-
lites has increased enormously in the decades since. With modern scientific
techniques, it is increasingly possible to quantify changes at regional to global
scale, and to observe exchanges between subsystems such as the biosphere and
atmosphere. Worldwide, due to climate change, the biosphere is in danger of
becoming a net carbon source as a result of various positive feedback processes
(Treter (2000)). The rapid rise of greenhouse gases is now generally accepted as
posing a danger to humanity, and the "climate change discussion" has gained
an important role in both research and politics (IPCC (2007)).
The approaches used to assess NPP and biomass range from simple correlations
of parameters derived from satellite or airborne sensors to highly complex mod-
els which take into account many interactions. In particular, simple approaches
have been designed for a broad spectrum of sensors operating at medium to
high resolution. The Normalized Differenced Vegetation Index (NDVI), based
on optical sensors, is used for such correlation-based approaches (e.g. Tangki
and Chapalle (2008), Houghton et al. (2007), Myneni et al. (2001)). NDVI is a
parameter that describes vegetative greenness, and ranges from 0 (no vegeta-
tion) to 1 (fully covered with healthy vegetation). This parameter can thus be
directly linked to the photosynthetic capacity of plant canopies (Myneni et al.
(1995), Sellers et al. (1992)).
LIDAR and RADAR sensors can also be used to directly estimate biomass
(e.g. Lang et al. (2004), Svoray and Shoshany (2002)); such instruments can
be either airborne or spaceborne. Airborne sensors usually have the advan-
tage of relatively high resolution, but because they provide only a small swath
width and limited temporal cover, these methods are primarily used for local
to regional approaches. In contrast, spaceborne sensors generally have the ad-
vantage of providing data on a global scale. The temporal coverage is usually
also higher, but this depends on the spatial resolution. Simrad et al. (2011)
recently published a new global map of forest canopy height derived using LI-
DAR data from ICESat (Ice, Cloud, and land Elevation Satellite).
For modelling approaches, information about the development of vegetation
and the seasonal greenness of the Earth’s surface is essential. This information
can be derived both from in situ measurements and from satellite or airborne
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remote sensing observations. Sellers (1985) showed that plant-physiological
parameters such as the Leaf Area Index (LAI) and the fraction of Absorbed
Photosynthetically Active Radiation (fAPAR) can be derived from vegetation
indices such as NDVI. NDVI data has itself been derived from sensors such
as the AVHRR (Advanced Very High Resolution Radiometer) (Eidenshink
(1992)), MODIS (Moderate resolution Imaging Spectroradiometer) (Myneni
et al. (2002)), SPOT-VGT (Satellite Pour l’Observation de la Terre - Vege-
tation) (Baret et al. (2007)), and MERIS (Medium Resolution Imaging Spec-
trometer) (Günther and Maier (2007), Gobron et al. (2004)). LAI, in particu-
lar, plays a major role in most ecosystem and biogeochemical models in which
it is used, because of its correlation to Gross Primary Productivity (GPP)
(Sellers et al. (1996)).
Many simple models use a description of physical, chemical and plant physio-
logical processes, taking into account interactions with the atmosphere. Pho-
tosynthesis is modelled following the Light Use Efficiency (LUE) method of
Monsi and Saeki (1953) and Monteith (1965) (e.g. Richters (2005), Williams
(1995)). These model approaches are often applied in agriculture: typically,
when coupled with the analysis of management practices, they are used to
forecast agricultural outputs (e.g.: Li et al. (1992), Jones and Kiniry (1986),
Ritchie and Otter (1985)).
In contrast, more sophisticated models exist that take into account the conser-
vation of energy and momentum, based on the approaches of Farquhar et al.
(1980) and Collatz et al. (1992) (e.g. Krinner et al. (2005), Wißkirchen (2005),
Knorr (1997), Prentice et al. (1992)). Soil-Vegetation-Atmosphere Transfer
(SVAT) models such as BETHY/DLR track photosynthesis at the molecular
level and take into account environmental conditions that affect its efficiency.
Dynamic Global Vegetation Models (DGVM) additionally track competitive
vegetation growth and species succession.
For a more detailed overview on modelling approaches and literature see chap-
ter two (Validating modelled NPP using statistical yield data) and
chapter three (Validation of modelled forest biomass in Germany

using BETHY/DLR).



5

Bioenergy

Due to recent changes in German energy policy, renewable energy sources are
receiving greater attention due to their potential to replace nuclear power and
fossil fuels. With the latest decision to change the Atomic Energy Law and to
finally discontinue nuclear power in 2022, compensatory sources of energy are
needed.
The use of biomass as an energy source is highly controversial because of fears
that it would compete with food production. However, recent studies have
shown that regenerative, non-competitive residual energy potentials are avail-
able and could be used Thrän et al. (2010) without affecting important agri-
cultural desiderata such as soil fertility Zeller et al. (2011). Currently 10.9% of
the German energy mix comes from renewable sources, of which the majority,
7.7%, is from bioenergy (BMU (2011)). These rates compare favourably with
many other European countries. However, Germany plans for 18% of its mix
to come from renewables by 2020, and achieving that goal will be challenging.
Other countries, such as Sweden and Finland, not only already have a higher
share of renewables in their energy mix, but are also closer to their goals for
2020. Globally, in 2008 16.6% of the energy mix came from renewable sources,
dominated by biomass (12.2%), a trend which has been accelerated by the in-
creased production of liquid energy carriers such as biodiesel (BMU (2011)).
A recent study examined unused bioenergy potentials, concluding that for
Germany’s forests 52% of the technical fuel potential, which corresponds to
265PJ yr−1, remains unused (Thrän et al. (2010)). The same study calculated
that sustainable use of grain yield residuals could provide another 85PJ yr−1.
The technical potential describes the part of the theoretical potential which can
be used under given technical limitations and is thus depending on time and
location. An overview of definitions of potentials can be found in Kaltschmitt
and Hartmann (2001). According to German biomass regulations, several
biomass sources may be considered. From the perspective of sustainability,
biomass waste sources - mainly yield residuals such as straw and commercially
unusable tree parts - are of particular interest (BMU (2012)). However, the
assessment of potentials at the country or the continental level is still a chal-
lenging task. Such surveys are both costly and time-consuming, and are thus
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not usually conducted on an annual basis.
Remote sensing technologies, and especially the combination of these tech-
nologies with modelling approaches, have the potential to solve this problem.
Straw and forest biomass increases are both directly related to NPP, which can
be modelled as described above. In this study it will be shown how bioenergy
potentials can be assessed and how they are spatially distributed within the
areas studied.
For more detailed information and literature please see chapter two (Val-

idating modelled NPP using statistical yield data), chapter three

(Validation of modelled forest biomass in Germany using BETHY /

DLR) and chapter four (Estimating agricultural bioenergy potentials

for Germany using a process-based vegetation model).

Water Transport Models

The realistic prediction of hydrodynamics in vegetation models remains a chal-
lenging task, but it is important in order to accurately model physical processes
related to the soil water budget. Hydrodynamic processes also govern climate
because of its strong connections to the hydrologic cycle (Anderson (1992),
Parry (1992)) and the potential of vegetation to cover habitats (Köppen (1936),
Guetter and Kutzbach (1990)).
Often simple one-layer soil or "bucket" models are used to predict the soil
water balance in SVAT models (e.g. Boulet et al. (2000), Knorr and Heimann
(2001), Wißkirchen (2005)) based on the approach taken by Eagleson (1978).
The term "bucket" in this context means that soil water characteristics are
treated as analogous to the rising and falling level of water in a bucket. These
models usually employ a daily timestep and incorporate few climate variables
(Evans and Trevisan (1995)). In this approach the water available to plants is
equally distributed throughout the bucket; little attention is paid to the effects
of surface tension, water adhesion to soil particles, and the natural movement
of water through the soil.
To predict the movement of water into and through the unsaturated zone of
soils, more detailed approaches are needed. Models based on the Richards
equation have proved valuable; however, such models can only be used suc-
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cessfully if reliable estimates are available for the soil water retention curve
(SWRC) and the unsaturated hydraulic conductivity. The SWRC may be
described with different approaches (e.g. van Genuchten (1980), Campbell
(1974)), but in general many input parameters are needed. In practice, most
SVAT models and DGVMs instead use various multi-layer approaches (Bon-
deau et al. (2007), Krinner et al. (2005), de Rosnay and Polcher (1998)) to
describe soil water characteristics in a more realistic way.
Besides allowing the realistic representation of soil water flows in vegetation
modelling, there may be further applications of this approach. More realistic
soil water budget models could provide insight into the causes and conse-
quences of the depletion of fossil water reserves and the lowering of ground
water table levels, leading to a water-based sustainability perspective on agri-
culture and forestry. Modelling of other processes affected by soil water move-
ment, such as soil erosion and the soil degradation effects of different land use
practices, may also be enabled by this approach.
For more details please see chapter six (A 1D soil water transport model,

driven with van Genuchten parameters and remote sensing data).

Introduction to the following chapters

The purpose of this chapter is to give a broad overview of the following chap-
ters, their contents, and their logical connections. To assist in the location of
specific main topics, Figure 1.1 illustrates the structure of this thesis.
A detailed introduction to NPP modelling options and their advantages and
disadvantages is presented in chapter two and chapter three. The gen-
eral model description of BETHY/DLR can also be found here. More details
about the geobiochemical modelling approach used in BETHY/DLR are given
in Knorr (1997), Knorr and Heimann (2001) and Wißkirchen (2005).
All needed input datasets are described in chapter two and chapter three.
Time series analysis techniques were applied to derive gap-free, outlier-corrected
Leaf Area Index (LAI) time series from the CYCLOPES and geoland2 datasets,
which are based on SPOT-VEGETATION data and given as 10-day compos-
ites. Data gaps may be due to various reasons, mainly cloud obstruction and
solar angle. We used Harmonic Analysis (HA) to mathematically fill data gaps
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Figure 1.1: Overview of the dissertation.
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and to detect and eliminate outliers. This was done across the whole time se-
ries (1999 to 2010), although a gap remains for all of 2008 and 2009 since no
data was available here. A detailed description and validation of this process
can be found in chapter seven.
Meteorological data from the European Centre for Medium-Range Weather
Forecasts (ECMWF) was validated with measured data from 39 stations in
Austria. Land cover data (GLC2000) was also compared with another prod-
uct (CORINE 2000). For this validation, several model runs for a defined area
(Marchfeld, Austria) were conducted and crosschecked with the model output
of the already-validated EPIC model. More detailed information about this
procedure can be found in chapter five.
In order to validate the BETHY/DLR model, two comprehensive approaches
were developed and applied. For agricultural areas, empirical data on yield and
area use, taken from national statistics, were compared with model outputs.
The validation was conducted for Germany and Austria over 2000 and 2001.
As a first step, the yield data was recalculated to NPP using crop-specific
conversion factors such as shoot-to-root and yield-to-straw ratios. This was
done at a NUTS-3 resolution. NUTS is an abbreviation for "Nomenclature des
Unités Territoriales Statistiques," and is a system of hierarchically organised
territorial units used for statistical purposes. Then in a second step the mod-
elled NPP data was aggregated to the same NUTS-3 resolution and directly
compared with the empirical NPP estimates. This approach and its results
are explained and presented in chapter two.
Validation of BETHY/DLR for forests followed a comparable approach, using
empirical data on mean annual above-ground biomass increments (MAI). This
data was obtained from Germany’s national forest inventories, available at
NUTS-1 resolution. To allow modelled NPP to be compared to these MAI es-
timates, the NPP was transformed into current annual above-ground biomass
increments (CAI). The CAI data was then aggregated to NUTS-1 resolution
for comparison to the MAI data. This validation was conducted for 2000 and
2001, and was done separately for coniferous and deciduous trees by using
tree-species-specific conversion factors for above-to-below-ground biomass and
carbon content. In addition, a quality check of modelled GPP was carried
out using empirical GPP values calculated from measured Net Ecosystem Ex-
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change (NEE) time series obtained from two FLUXNET stations. More details
on these approaches and results can be found in chapter three.
To estimate sustainable bioenergy potentials for both agricultural and forest
areas, two approaches were developed. For agricultural areas it was assumed
that only grain yield residuals (straw, in this case) would be used for bioen-
ergy production, since the use of harvested grain would compete with the use
of grain for food, posing problems for sustainability. Competing uses of straw,
such as the humus balance and usage for animal housing, were also taken into
account. As a first step, empirical data on land use and mean yields of major
crops were used to calculate the potential production of straw, again using
conversion factors such as the shoot-to-root and yield-to-straw ratios. The
technical energy potential was then estimated using lower heating values. De-
tails on this approach and an example case study for Germany over 2006 and
2007 are presented in chapter four.
For forest areas the sustainable theoretical bioenergy potential was also esti-
mated. In this case, competing uses were not taken into account, since the
complexity of this problem would have necessitated the development of an en-
tirely new model; the estimated potentials are therefore theoretical maxima,
not realizable potentials. To generate these estimates, the available CAI data
were transferred to energy potentials using lower heating values. The lower
heating values were estimated for each tree class (deciduous and coniferous)
and for each NUTS-1 region separately, to respect local variation in tree age
and type across Germany. Further details are given in chapter three.
During the validation exercises, one model process was identified as having a
particularly large potential for improvement. The "bucket model" formula-
tion used in BETHY/DLR for the soil water budget is problematic because of
its potential to predict unrealistic water availability, as discussed above. To
contribute on the improvement on the prediction of soil water availability, a
non-linear percolation model was adapted. It follows the approach of Syring
and Kersebaum (1988) who originally developed their model for small scale
surveys. It utilizes the Richards equation and the approach of van Genuchten
(van Genuchten (1980)). A particular advantage of this new percolation model
is that it dynamically treats 128 different FAO soil types. For each soil type,
individual depth, layering and texture compositions were calculated, based on
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10,000 soil profiles. Van Genuchten parameters were also estimated using the
ROSETTA software package (Schaap et al. (2001)). For a quality assessment
the percolation model was compared with ECMWF soil water budget data.
Further information is given in chapter six.
Finally, in chapter eight a short conclusion and summary is given reflecting
on the findings from this research and proposing future directions for work.
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Chapter 2

Validating modelled NPP using

statistical yield data

Markus Tum, Kurt P. Günther, Biomass & Bioenergy, (2011), 35, 4665-4675

2.1 Abstract

The German Remote Sensing Data Center operates the Biosphere Energy
Transfer Hydrology Model, a process model that estimates the net primary
productivity of agricultural areas. The model is driven by remote sensing data
and meteorological data. Remotely sensed datasets including a time series of
the leaf area index, which describes vegetation condition, and a land cover
classification, which provides information about land use, are needed. Cur-
rently leaf area indices and land cover data derived from the sensor vegetation
are used. Both datasets have spatial resolutions of about 1 km × 1 km and
are freely available for the area of investigation (Germany and Austria). The
meteorological input parameters are air temperature (at 2m height), precip-
itation, cloud cover, wind speed (at 10m height) and soil water content (in
the four uppermost soil layers); these are obtained from the European Centre
for Medium-Range Weather Forecasts, with a spatial resolution of about 0.25 ◦

× 0.25 ◦ and a temporal resolution up to four times daily. The output of the
model, the gross primary productivity, is calculated at daily resolution. By
subtracting the cumulative plant maintenance and growth respiration, the net
primary productivity is then determined. In order to validate the modelled net

13
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primary productivity, crop yield estimates derived from the national statistics
of Germany and Austria are used. After estimating above-ground biomass
using plant-specific above- to below-ground ratios, conversion factors (corn-to-
straw and leaf-to-beet relations) are applied to estimate total biomass. Finally
the carbon content of dry matter is estimated. To correlate model results with
these statistical data, the modelled data are aggregated to net primary pro-
ductivity per administrative district. The results show that a process model
using remote sensing data as input can deliver reliable estimates of agricul-
tural biomass potential which are highly correlated with statistically derived
estimates of actual biomass produced.

2.2 Introduction

In one of the earliest forays into computational prediction of agricultural yield
Ritchie and Otter (1985) developed the Crop Environmental Resource Synthe-
sis (CERES) model for simulating the daily growth and development processes
of wheat and maize. Later this model was expanded to sorghum, millet, rice
and barley. Many factors including environment, nitrogen availability, water
stress, pests, genetics and management are considered in CERES to model
growth and development. The development processes are differentiated in two
stages: the vegetative stage with germination, emergence, end of juvenile and
leaf numbers, and the reproductive stage with floral induction, flowering, begin
of grain filling and maturity. Stress components, such as water stress, act in
different ways depending on the development stage.
The daily growth of plants is modelled in CERES according to the Radiation
Use Efficiency (RUE) approach, which is based on the concepts of Monsi and
Saeki (1953) and Monteith (1965). In this approach, the potential maximum
dry matter production is linearly correlated with the absorbed light. As in
most mechanistic models, RUE also varies with temperature, nitrogen and
water availability, CO2 level and fertilization. The allocation of assimilated
carbon to particular plant components is modelled, with daily time steps.
Phenology, the timing of biological processes, is driven by temperature, ex-
pressed as either thermal temperature or growing-degree-days. In order to
calibrate the CERES model, field data are needed, especially the number of
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plants planted per unit area and the timing of phenological events such as till-
ing, stem elongation, and maturation. Grain yield metrics are also mandatory.
The CERES model is now integrated in the Crop Simulation Model (CSM)
of the Decision Support System for Agrotechnology Transfer (DSSAT) dis-
tributed by the International Consortiumfor Agricultural Systems Applications
in Honolulu Jones and Kiniry (1986). In its earliest form the DSSAT model was
developed to simulate maize growth and development, but in the DSSATCSM,
27 different cropping system models are combined. At a minimum, it needs
input data regarding incoming solar radiation, minimum and maximum tem-
peratures, and rainfall. It can additionally utilize several soil-related metrics,
such as bulk density, carbon content, and pH, as well as management-related
metrics such as planting density, fertilization rates and irrigation data.
Another important crop growth model is the DeNitrification and DeCompo-
sition (DNDC) model, originally developed by Li et al. (1992). In DNDC,
crop growth is parameterized by generalized crop growth curves together with
a crop-specific potential maximum grain yield. The actual grain yield is de-
termined by the availability of nitrogen in the soil. Nitrogen uptake by the
plants is controlled by the soil temperature profile and soil moisture. With
this approach, the effects of differences in tilling, fertilizer use and irrigation
can be taken into account by DNDC, because all of these management prac-
tices modify the soil regime and thus affect plant growth. DNDC also inte-
grates crop growth processes with biogeochemical processes by including im-
portant nitrogen- and carbon related processes like mineralization, ammonia
volatilization, denitrification and nitrification, nitrogen uptake and leaching.
The DNDC model, presently implemented with a daily time step, has been val-
idated and used for many subnational and national case studies (e.g.: Stange
et al. (2000), Cai et al. (2003), Beheydt et al. (2007)).
The Environment Policy Integrated Climate (EPIC) model is a further Mon-
teith type parametric model which is driven by the International Institute for
Applied System Analysis. EPIC was originally designed to quantify the ef-
fects of erosion on soil productivity Williams et al. (1984), but has since been
expanded into a complex agro-ecosystem model that simulates the growth of
crops under complex rotation management operations, such as irrigation, fer-
tilization and tillage Williams (1995). EPIC’s main inputs are meteorological
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data, provided by the European Center for Medium-Range Weather Forecasts
(ECMWF), soil type information from the Food and Agriculture Organisation
(FAO) of the United Nations, and field management data.
A further example is the DAYCENT (Daily Century) model, developed by
Parton et al. (1994) and used by Del Grosso et al. (2001) and Parton et al.
(1998).
These examples show a broad scientific and practical acceptance of the mecha-
nistic modelling approach, particularly when coupled with analysis of manage-
ment practices, in order to forecast agricultural outputs. However, in contrast
to these mechanistic growth and development models, other approaches are
typically used to account for the interaction between plants, atmosphere and
soil. These so-called dynamic models calculate the uptake of atmospheric CO2

by plants and the release of CO2 by plants and soil in a physically consistent
way that respects the conservation of energy and momentum. In the litera-
ture one can find descriptions of established dynamic vegetation models for
use at scales from global to local. Examples are (LPJ), developed by Prentice
et al. (1992) and modified by Bondeau et al. (2007), ORCHIDEE, developed
by Krinner et al. (2005), and BIOME3, developed by Haxeltine and Prentice
(1996). These models are driven by meteorological input data and parame-
terized for all land cover/landuse classes, such as forest, grassland, shrubland
and agricultural areas. The spatial resolution for most dynamic models ranges
from a few degrees (global usage, e.g. Bondeau et al. (2007) and Haxeltine and
Prentice (1996)), to kilometres (regional usage, e.g. Wißkirchen (2005)). Their
main outputs are Gross Primary Productivity (GPP), Net Primary Produc-
tivity (NPP), Net Ecosystem Exchange (NEE), Total Ecosystem Respiration
(TER), and evapotranspiration. Plant development using plant-specific allo-
cation rules is modelled mainly for global climate change analysis or historic
plant development. Yield information of agricultural crops is not an output of
these dynamic vegetation models.
We here discuss the Biosphere Energy Transfer Hydrology (BETHY/DLR)
model, operated by the German Remote Sensing Data Center (DFD).
BETHY/DLR is based on the formulation of Knorr (1997) and modified by
Wißkirchen (2005); a description of the model can also be found in Knorr
and Heimann (2001). Besides meteorological input data, BETHY/DLR also
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requires land cover/land use maps and Leaf Area Index (LAI) time series as
input. These observational data are obtained from satellite images. Thus the
LAI time series of a pixel (typically 1 km2) represents the mean phenology of
the vegetation of that pixel. It is assumed that management practices as well
as plant development are reflected and observed by the LAI time series.
The primary objective of this study is to investigate a new approach to the vali-
dation of modelled NPP from BETHY/DLR, at 1 km2 spatial resolution, using
statistical yield data for major crops. The crops used in validation are the ma-
jor crops at level 3 of the ”Nomenclature des Unités Territoriales Statistiques”
(NUTS), a system of hierarchically organised territorial units intended for sta-
tistical purposes. For this validation approach, plant-specific yield data and
modelled NPP are both downscaled to NPP per NUTS unit, providing a com-
mon basis for comparison. The presented validation results were cross-checked
with the results of a validated EPIC run for a selected area (Marchfeld) in
Austria Schmid et al. (2004). Germany and Austria were selected as test areas
due to the availability of detailed statistical data for validation and availability
of the EPIC results. Computing time and hard disk storage issues restricted
our modelling to the years 2000 and 2001.

2.3 Model and input data

Model

BETHY/DLR models photosynthesis using the combined approach of Far-
quhar et al. (1980) and Collatz et al. (1992), which parameterizes the enzyme
kinetics of photosynthesis at the leaf level. In this context, so called C3 and C4
plants are distinguished because significant differences exist between the car-
bon fixation strategies of the two classes of plants (C3 and C4). In particular,
C4 plants (including corn and sugar cane) can fix more atmospheric carbon
dioxide at high temperatures than C3 plants (such as wheat and barley). In
either case, in the next step the rate of photosynthesis is extrapolated from
leaf to canopy level, taking into account the construction of the canopy as well
as interactions between soil, atmosphere and vegetation. Radiation absorption
in the canopy is approximated using the two flux scheme of Sellers (1985) with
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Figure 2.1: Model schematic for BETHY/DLR, left: input data, middle: internal

model processes, right: output data.

three canopy layers.
Stomatal conductance, evapotranspiration and soil water balance are also in-
cluded for calculating NPP on an annual basis. The water supply available to
plants is considered by calculating the demand for evapotranspiration using
the approach of Monteith (1965) against the criteria of Federer (1979), which
assumes that evapotranspiration cannot be greater than the possible soil water
supply to the roots. Water deficit (or water stress) is thus considered to occur
at a soil water content at or below the permanent wilting point (PWP).
Autotrophic respiration is modelled in BETHY/DLR as the sum of the main-
tenance and growth respiration. Maintenance respiration is mainly determined
by the plant-specific dark respiration, while growth respiration is assumed to
be proportional to the difference between GPP and maintenance respiration.
The output of BETHY/DLR is a time series, in daily steps, of NPP at the spa-
tial resolution and projection of the land cover classification (1 km2, latitude e
longitude projection with WGS84 (World Geodetic System 1984) datum). A
schematic overview of the currently used input data and the internal model
processes is presented in Fig. 2.1.
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Input data - meteorology

BETHY/DLR uses remote sensing data and meteorological data to model the
photosynthesis of plants, depending on weather and phenological conditions.
The meteorological data (see Table 2.1) are derived from the operational pro-
cessing chain of the ECMWF with temporal resolution up to four times daily
and a spatial resolution of 0.25 ◦ × 0.25 ◦. The meteorological data used are
model analysis of the temperature (at 2m height), wind speed (at 10m height),
soil water content (in the four uppermost soil layers), and cloud cover. Daily
precipitation values are also derived from the ECMWF re-analysis project
(ERA-Interim). From this dataset, the daily mean, minimum and maximum
temperatures are calculated, as well as the daily mean cloud cover in three
strata (high, medium and low) and the water vapour pressure. Daily tem-
peratures are scaled by the difference of ECMWF reference height and global
ETOP05 5-minute gridded elevation data and the temperature gradient of the
U.S. Standard Atmosphere, which is −0.65K/100m:

T ′ = TECMWF × 0.0065
K

m
× (hECMWF − hETOP ) (2.1)

TECMWF represents the reference temperature given by the ECMWF,
hECMWF for the ECMWF reference height (geopotential and hETOP for the
height given by ETOP05 (which has a spatial resolution of about 9 km2).
The daily average photosynthetic active radiation (PAR) is a function of global
irradiation, calculated following Burridge and Gadd (1974) from the geograph-
ical coordinates, the day and year, and the atmospheric transmission, which
depends on the degree of cloudiness. The daily average degree of cloudiness
is calculated as a weighted sum of the cloud strata. The advantage of this
approach, in contrast to the direct use of ECMWF radiation data, is the use
of analysis data of cloud coverage which leads to more exact results than the
direct use of radiation forecast data, as shown by Wißkirchen (2005). The
global irradiation is calculated for each location for each 1-h time step. The
volumetric soil water content was needed to calculate the soil water budged of
the model.
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Table 2.1: Summary of meteorological input data (including short names and code

numbers) derived from ECMWF.

Parameter Short name Code number

Volumetric soil water layer 1 SWVL1/(SWL1) 039
Volumetric soil water layer 2 SWVL2/(SWL2) 040
Volumetric soil water layer 3 SWVL3/(SWL3) 041
Volumetric soil water layer 4 SWVL4/(SWL4) 042
Geopotential Z 129
Large scale precipitation LSP 142
Convective precipitation CP 143
10m U-velocity 10U 165
10m V-velocity 10V 166
2m temperature 2T 167
Low cloud cover LCC 186
Medium cloud cover MCC 187
High cloud cover HCC 188

Input data - remote sensing

In addition to the meteorological data, the BETHY/DLR model is driven by
two satellite remote sensing datasets, time series of the LAI, and detailed and
homogeneous land cover / land use information. Phenology of the vegetation is
indicated by the LAI time series, which is based on CYCLOPES 10-day com-
positae datasets downloaded from the POSTEL (Pole d’Observation des Sur-
faces continentales par Teledetection) databank (www.postel.mediasfrance.org).
For each pixel, analysis of the LAI time series is conducted to fill data gaps
and eliminate outliers, using harmonic analysis (HA). HA decomposes a time
series into a linear combination of suitable trigonometric functions, i.e. sine
and cosine oscillations of particular periodicities. The HA technique corre-
sponds to an approximate deconvolution of the power spectrum by iteratively
finding and subtracting the highest peak of the time series power spectrum.
This method was adapted for the correction of LAI time series data.
CYCLOPES provides land cover and land use information in their GLC2000
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dataset. For the derivation of the GLC2000 land cover classes the ”Land Cover
Classification System (LCCS)” of the FAO was used Bartholome and Belward
(2005), DiGregorio and Jansen (2001). In the GLC2000 dataset a classifi-
cation with 22 different land cover classes is available representative for the
year 2000. The global LAI and GLC2000 data are available in tiles of 10 ◦

by 10 ◦ as maps in rectangular projection annotated with latitude, longitude,
and WGS84 date, with complete coverage of the study area (Germany and
Austria). The CYCLOPES dataset was chosen because it is thought to be the
most accurate dataset for agricultural areas Garrigues et al. (2008).
In order to use the GLC2000 land use/land cover classification for NPP mod-
elling with BETHY/DLR, the GLC2000 vegetation classes were translated
to one of the 33 inherent BETHY/DLR vegetation classes (Table 2.2) which
can be regarded as vegetation types. The translation will be discussed in the
following section.
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carboxylation rate at 25 ◦C; JM : maximum electron transport rate at 25 ◦C; height; rooting depth.

No. Vegetation types of BETHY/DLR VM [µmolm−2 s−1]CO2 JM [µmolm−2 s−1]CO2 Height [m] Rooting depth [m]

1 Trop. BL evergreen trees 62 118 30.0 6.9
2 Trop. BL deciduous trees 90 179 15.0 3.7
3 Temp. BL evergreen trees 41 82 15.0 3.0
4 Temp. BL deciduous trees 35 70 15.0 3.0
5 Evergreen coniferous trees 29 52 15.0 3.9
6 Deciduous coniferous trees 53 95 15.0 1.5
7 Evergreen shrubs 52 102 1.0 3.5
8 Deciduous shrubs 160 266 1.0 3.5
9 C3 short grasses 42 80 0.3 1.8
10 C3 long grasses 42 80 2.0 1.8
11 C4 short grasses 8 140 0.3 1.8
12 C4 long grasses 8 140 2.0 1.8
13 Tundra vegetation 20 37 0.3 0.5
14 Swamp vegetation 20 37 0.6 0.5
15 Arable crops 117 220 0.6 1.8
16 Irrigated crops 123 227 2.0 1.8
17 Trop. tree crops 60 106 2.0 6.9
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No. Vegetation types of BETHY/DLR VM [µmolm−2 s−1]CO2 JM [µmolm−2 s−1]CO2 Height [m] Rooting depth [m]

18 Citrus crops 60 106 2.0 3.7
19 Temp. deciduous tree crops 123 227 2.0 3.0
20 Sugar cane 39 700 2.0 1.8
21 Corn 39 700 2.0 1.8
22 Rice 98 190 0.3 0.3
23 Cotton 123 227 2.0 2.1
24 Sugar beet 129 226 0.5 1.8
25 Soy 94 168 0.8 1.8
26 Sunflower 80 213 2.0 2.7
27 Barley 68 169 1.2 1.8
28 Wheat 83 193 1.5 1.8
29 Rapeseed 61 187 1.0 1.8
30 Beech 46 109 15.0 4.0
31 Oak 40 72 15.0 4.0
32 Spruce/Fir 10 24 15.0 2.8
33 Pine 17 30 15.0 4.0
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Table 2.3: Translation of GLC2000 vegetation classes to BETHY/DLR vegetation

types with weighting factors.

GLC2000 class BETHY/DLR vegetation type Weighting
factor

Cultivated and managed ar-
eas (GLC-16)

Arable crops (Type 15) 1.0

Mosaic: cropland/shrub or Arable crops (Type 15) 0.5
grass cover (GLC-18) C3 short grasses (Type 9) 0.5

Plant parameters

In BETHY/DLR each vegetation type is linked with biochemical parameters
such as the maximum carboxylation rate, the maximum electron transport
rate, and other plant-specific photosynthesis related parameters. As can be
seen in Table 2.3, it is possible to describe one GLC2000 class using a weighted
average of two BETHY/DLR vegetation types. For this study only the two
GLC2000 classes which are directly linked with crops are used. The weighting
factors are set to 1.0 for the GLC2000 class ”Cultivated and managed areas”
(GLC-16). This is done under the assumption that this class describes a ho-
mogenously crop-covered area. The class ”Mosaic: cropland/shrub cover or
grass cover” (GLC-18) of GLC2000 was split between arable crops and grass
cover using a weighting factor of 0.5 for each. This is done under the assump-
tion that the area is completely vegetated, but only half with crops.

Validation data

To validate the modelled NPP of agricultural crops, empirical estimates of
corn yields from the Federal Statistical Office of Germany and from Statistics
Austria were used. In both countries farm structure surveys are conducted
yearly. The agricultural surveys contain information about arable land, vine-
yards, horticultural farms, field vegetable farms and commercial fruit planta-
tions, with associated yields. The ”NUTS” hierarchical spatial classification
starts with the member states of the European Community (EU) (NUTS-0),
followed by regions of the EU (NUTS-1), separated to basic administrative
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units (NUTS-2) and ends with subdivisions of those basic administrative units
(NUTS-3). As an example, Austria has been divided into three units, East-
ern, Southern and Western Austria (NUTS-1). Each NUTS-1 level comprises
the federal provinces (NUTS-2) such as the ”Burgenland”. The NUTS-2 level
is split into several NUTS-3 levels; in this case, the ”Nordburgenland”, ”Mit-
telburgenland” and ”Südburgenland”. Besides these NUTS levels, a further
subdivision is established in the empirical data indicating towns with charters,
political districts and judicial districts.
For Germany and Austria the empirical data are given in NUTS-3 resolution.
For Austria yields for summer rapeseed and grain maize are included, which
are not present in the Germany statistics; otherwise the datasets provide the
same information. As the German dataset contains gaps, necessitating a cri-
terion to fill such gaps; we assumed that gaps for a given crop may be filled
using the mean yield of the given crop from the German NUTS-3 units.
Before validating the modelled results, the 1 km2 resolution NPP model out-
put must be transferred to a Geographical Information System, taking into ac-
count the equi-rectangular map projection (latitude-longitude projection with
WGS84 datum). Finally, the model results are aggregated to higher NUTS
levels for comparison with the statistical data.

Validation strategy

The yield given by the empirical data does not represent the available biomass
or the biomass potential and thus cannot be compared directly with the mod-
elled yearly NPP sum, which represents the accumulated carbon of pixel over
one year. In order to make a comparison possible, the yield data were used to
estimate the above- and below-ground biomass, using simple growth allocation
schemes. As a first step, it is necessary to calculate the total above-ground
biomass, its dry matter and its carbon content. The literature gives a wide
selection of so-called conversion factors, which give estimated corn-to-straw
or leaf-to-beet ratios (Table 2.4) Köhler and Kolbe (2007), Kaltschmitt and
Hartmann (2001), Jackson et al. (1996), KTBL (2005).
For this study we used values from Köhler and Kolbe (2007), since they rep-
resent the latest available values, and also describe the greatest diversity of
plant species. These relations suggest that, for example, a grain yield of 10 t
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of winter wheat will correspond to 11 t of straw. To calculate the dry matter
for both the straw and yield fractions, standard estimates of water and carbon
content were used, also from Köhler and Kolbe (2007). In this way, the carbon
content of the dry matter of straw and yield can be estimated using formulae
2 and 3:

NPPyi = yi× (1−H2Oyi)× Cyi (2.2)

NPPstw = (yi× σstw)× (1−H2Ostw)× Cstw (2.3)

where yi represents the yield of a particular plant species. H2Oyi and H2Ostw

represents the water content, and Cyi and Cstw the carbon content, of the
yield and straw fractions, respectively, for that plant species. σstw represents
the plant specific conversion factor of yield-to-straw or leaf-to-beet (Table 2.4).
To calculate the total amount of above-ground NPP, NPPagb, one has to ag-
gregate the NPP for the straw and yield fractions for each crop according to
formula 4:

NPPagb = NPPyi +NPPstw (2.4)

This above-ground NPP is still not comparable with the modelled NPP, how-
ever. Because BETHY/DLR gives no information about where the accumu-
lated carbon is stored, it is also necessary to calculate the below-ground NPP,
NPPbgb, from the empirical yield data. Simple so-called ”shoot-to-root” ratios
can be found in, for example, Bolinder et al. (1997) or Jackson et al. (1996).
We used those of Bolinder et al. (1997) (Table 2.4), assuming that these es-
timates, found for crops in Canada, are also representative of Germany and
Austria. With these ratios one can estimate NPPbgb:

NPPbgb = NPPagb × σagb (2.5)

σagb represents the shoot-to-root conversion factor for a specific crop (Table
2.4). The total NPP can now be expressed as:
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NPP = NPPagb +NPPbgb (2.6)

To calculate the total carbon stored in a NUTS area, this total NPP is inte-
grated over the total cultivation area for each NUTS area and summed over
all crops:

NPPNUTS =
∑
i

NPPi × areai (2.7)

The NPPNUTS per administrative district can now be directly compared with
the modelled NPP, also aggregated per NUTS area as previously described.
A comparison with data from eddy covariance towers could not be performed
because our area of investigation, Germany and Austria, contains only three
agricultural FLUXNET towers. Only one gathered data in 2001, but it had
too small a footprint (<300m for wind speeds up to 4m s−1) to quantify CO2

fluxes on a km2 scale.
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and straw fraction.

Field fruit Yield/straw (*) Root/shoot (+) Cyi Cstw H2Oyi (*) H2Ostw (*)

Grain 1.13 0.14 0.45 ($) 0.45 ($) 0.14 0.14
Wheat 1.1 0.21 0.455 (#) 0.446 (#) 0.14 0.14
Maize 0.8 0.18 0.456 (#) 0.5 (#) 0.14 0.14
Barley 1.05 0.32 0.45 ($) 0.459 (#) 0.14 0.14
Rye 1.3 0.19 0.475 (#) 0.457 (#) 0.14 0.14
Oat 1.1 0.4 0.45 ($) 0.45 ($) 0.14 0.14
Triticale 1.2 0.19 0.436 (#) 0.436 (#) 0.14 0.14
Beet 0.33 0 0.45 ($) 0.45 ($) 0.88 0.88
Potato 0.2 0 0.45 ($) 0.45 ($) 0.78 0.75
Sugar beet 0.7 0 0.45 ($) 0.45 ($) 0.77 0.84
Oil fruits 1.75 0.14 0.45 ($) 0.605 (#) 0.09 0.14
Rape 2 0.14 0.45 ($) 0.605 (#) 0.09 0.14

+: after Bolinder et al. (1997), *: Köhler and Kolbe (2007), #: Kaltschmitt and Hartmann (2001), $: own estimations.
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2.4 Results

Before validating the annual sum of accumulated carbon as modelled with
BETHY/DLR for large regions (Germany and Austria), we compared the
BETHY/DLR NPP results with the output of the EPIC model over a smaller
region.

BETHY/DLR comparison with EPIC

The study site for this comparison was the Marchfeld region of Lower Austria,
which is part of the Vienna Basin. With an area of about 100,000 ha, it is one of
the largest plains in Austria, and about 75% of its area is used for agricultural
production. The Marchfeld’s natural boundaries are the river March to the
east (the Austrian border to Slovakia), the hills of Weinviertel to the north, the
Bisamberg mountains and the city of Vienna to the west, and the river Danube
to the south. The EPIC model has been validated for the Marchfeld Schmid
et al. (2004), making it worthwhile to compare BETHY/DLR to EPIC for
this region. Since land use practices are not homogenously distributed in this
area, five sectors were identified using cluster analysis methods Hofreither et al.
(2000). Each sector has an area between 85 km2 and 250 km2. For our analysis
one sector was not used, since its land cover is predominantly designated as
urban. The NPP of both models for 2000 and 2001 across the four sectors is
presented in Fig. 2.2.
Fig. 2.2 shows that BETHY/DLR estimates slightly more NPP (about 15%
higher) than the calibrated EPIC model. Indeed, only in one case, sector 2
in the year 2000, was BETHY/DLR’s estimate lower than EPIC’s. According
to Knorr and Heimann (2001), the calibration of the EPIC model for sugar
beets in the Marchfeld has a standard deviation of less than 10%. Similarly,
BETHY/DLR’s NPP estimate for 2001 for the NUTS-3 Gänserndorf region
(dominated by the Marchfeld) was about 10% higher than the estimated true
NPP (not shown). Looking at all results for the Marchfeld region, it can be
concluded that the modelled NPP from BETHY/DLR is in good agreement
with both empirical data and the calibrated EPIC results, although with a
tendency for minor overestimation.
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Figure 2.2: Comparison of modelled NPP derived from BETHY/DLR and EPIC

for all four sub-regions of the Marchfeld.

Validation of BETHY/DLR with statistical data

Modelled NPP, at 1 km2 resolution, for Austria and Germany was calculated
as the annual sum of accumulated carbon for 2000 and 2001 (Fig. 2.3). Yearly
NPP is clearly higher in the southern states of Germany than in Germany’s
northern and eastern regions, in both years. Statistical analysis revealed that
the mean annual NPP in carbon (over the whole area of investigation) is 253
[t km−2 y−1] with a maximum of 662 [t km−2 y−1] for 2000, and 239 [t km−2 y−1]
with a maximum of 577 [t km−2 y−1] for 2001. The annual NPP in carbon for
Germany is 76.4Mt for the year 2000 and 73.3Mt for 2001; for Austria, an-
nual NPP is 7.9Mt for 2000 and 6.2Mt for 2001. The conversion of statistical
yield data to NPP, as described above, delivers annual sums for Germany of
about 67.2Mt for 2000 and 71.5Mt for 2001. For Austria these values are
about 6.9Mt for 2000 and 6.3Mt for 2001. From this it may be seen that the
modelled NPP for Germany for both years is overestimated (≈13% for 2000
and ≈2% for 2001). For Austria the modelled NPP for 2000 is overestimated
(≈13%) for 2000, but underestimated (≈1%) for 2001. Also notable is the
very low annual NPP predicted for parts of eastern Germany (red pixels), par-
ticularly for 2001, but also, less strongly, for 2000. On the other hand, in 2001
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Figure 2.3: Yearly NPP from BETHY/DLR for agricultural areas in Germany

and Austria for 2000 (left) and 2001 (right). High NPP values are green, medium

values are beige, and low values are red. White represents areas that do not belong

to the GLC2000 classes GLC-16 or GLC-18 (Table 2.3). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of

this article.)

modelled NPP in the southern parts of the study area are markedly higher
than in 2000.
The sharp boundaries in the NPP maps (clearly visible for the year 2001 in
the Saxo-Thuringia region) reflect the coarse pixel size of the ECMWF meteo-
rological input data. This indicates that meteorology has a strong influence on
the simulation. Examination of the meteorological input data for both years
shows that large differences and leaps are not visible for most parameters; an-
nual precipitation for the Thuringia region, however, is 480mmy−1 for 2000,
and about 760mmy−1 for 2001.
Fig. 2.3 shows that the alpine regions of Germany and Austria have almost no
modelled NPP. In contrast, the statistics of Germany and Austria report yield
data for those areas. This is a consequence of the land cover data’s spatial
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resolution of about 1 km2, which is insufficient to describe the heterogeneous,
small-scale structure of mid-European land use practices. Land cover classi-
fications with higher-resolution exist for Europe, such as the CORINE land
cover map. But when using high-resolution land cover maps, LAI time series
data of the same spatial resolution are mandatory as input for BETHY/DLR.
Since no high-resolution LAI time series are available for Austria and Germany,
we selected the CYCLOPES LAI product together with the GLC2000, both
available at 1 km2, as best practice. Furthermore, the GLC2000 was derived
with the same satellite sensor (VEGETATION on SPOT 4) as the LAI time
series, providing data homogeneity.
To correlate empirical yields with BETHY/DLR’s modelled data, the esti-
mated biomass per pixel was aggregated to biomass per administrative district
(NUTS-3 level) as previously described. Linear regression was used to assess
the correlation between modelled and empirical yield, separately for 2000 and
2001, and separately for Germany and Austria (Fig. 2.4).

Figure 2.4: Correlation of modelled NPP with empirical NPP data for Germany

(left) and Austria (right) for the years 2000 (top) and 2001 (bottom). Crosses indi-

cate individual NUTS-3 administrative districts. Dotted lines indicate perfect corre-

lation; solid lines indicate the correlation found by linear regression.
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As shown in Fig. 2.4 BETHY/DLR underestimates the NPP for Germany
in both years and for Austria in 2001. With a coefficient of determination of
about 0.74 for 2000 and 0.78 for 2001, each bound with a slope of 1.21 and
0.86, respectively and an offset of 0.8 and 2.4, respectively, one can speak of a
high degree of correlation. For Germany, the coefficient of determination for
2000 is 0.79 and for 2001 0.58. The slopes and offsets are 0.96 and 28.97 for
2000 and 0.73 and 51.56 for 2001.
The different validation results for Germany and Austria might be explained
by differences in the distribution of cultivated plants between Germany and
Austria, and by the method used to convert yield to NPP. The residual of
miscellaneous crops for both statistics are 9% (Austria) and 13% (Germany).
This is because additional crops (grain maize and summer rapeseed) are re-
ported for Austria. Since the difference in the residuals can be regarded as
low, the validation result for 2000 must be argued in a different way. For 2000,
NPP in Austria is overestimated by BETHY/DLR for large NUTS-3 units as
Hollabrunn, Horn, Mistelbach, and Neusiedel am See by a factor of about 2.
A closer look at the empirical data reveals that up to 30% lower yields are
reported for 2000 (in comparison to 2001) for the main crops of these NUTS-
3 units. This yield reduction might be explained by a drought starting in
April and ending in mid-May when the transition to the reproductive stages
begins. Since the input data for BETHY/DLR (meteorological data and LAI
time series) do not show large differences between the two years in this re-
gion, it is obvious that BETHY/DLR will estimate the NPP for these regions
within the same order of magnitude. The ECMWF meteorological data show
precipitation of 19.3mm from April 3rd to May 18th, while the weather sta-
tion Laa Thaya (Mistelbach, Austria) only reported 4.6mm precipitation from
that period. This water deficit resulted in a reduction in yield which could not
be modelled by BETHY/DLR due to the unrealistic precipitation data from
ECMWF.
It can be seen in Fig. 2.4 that the scatter for the German data is markedly
greater than for the Austrian data, due to the difference in the number of
available validation data points (Germany: 412, Austria: 99).
A closer look at the validation results for Germany in 2001 shows two distinct
clouds within the scatter plot (Fig. 2.4). Detailed investigation reveals that
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most differences between the modelled and empirical biomass data in 2001 oc-
cur in regions which experienced low annual precipitation in 2000, especially in
the Saxo-Thuringia region. We therefore hypothesize that the parameteriza-
tion of the water cycle in BETHY/DLR might account for the underestimation
of annual NPP.

Figure 2.5: Comparison between the empirical mean plantavailable soil water con-

tent derived from ECMWF data (solid line) and computed mean available soil water

content of BETHY/DLR (dotted line) aggregated across the NUTS-3 regions Bur-

genland and Merseburg-Querfurt (Germany, Saxo-Thurinigia region) for the years

2000, 2001 and January 2002. January 1st, 2000, is represented by Julian day 0.

In BETHY/DLR the soil water budget is tracked using a simple "bucket
model" that represents the soil as a single layer. Modelling outputs show
that the modelled soil water content diminished to nearly dry conditions (be-
low the PWP) in 2000 in areas with relatively moderate annual precipitation.
In contrast, the empirical soil water content data of ECMWF is available as
a four-layered unequally spaced soil core. Fig. 2.5 shows a comparison of
measured (ECMWF) versus modelled (BETHY/DLR) soil water content for
2000, 2001, and January of 2002. This comparison is aggregated across the
NUTS-3 regions ”Burgenlandkreis” and ”Merseburg-Querfurt”, because those
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regions are situated in one ECMWF tile. The four-layered ECMWF data was
combined and adapted to a single layer with a soil water content having the
same soil core depth as used for the BETHY/DLR simulation, to make com-
parison possible.
The ECMWF soil water content data are clearly different from the BETHY/
DLR results. Differences of up to 100% can be found. The mean difference
over the two years is about 51%. With the beginning of the vegetation cy-
cle in 2000 (day 95), BETHY/DLR’s soil water content begins a continuous
decrease that lasts to the end of the year. As a consequence, the soil water
content remains unrealistically low in 2001, and is well below the PWP (zero)
at the end of the vegetation cycle (day 600). At the end of 2001 the soil
water content starts to recover, due to precipitation and the missing demand
from vegetation. This trend is continued in 2002 (not shown in Fig. 2.5). In
contrast to this pattern in the modelled soil water content, the ECMWF soil
water content shows only a small increase at the beginning of 2000 and a small
decrease from Julian Day 95 to Julian Day 180. From Julian Day 400 onward,
both datasets show similar patterns.
This indicates that in principle the soil water model of BETHY/DLR exhibits
the same patterns in soil water content as the ECMWF, but offset. This offset
in soil water content affects the modelled NPP only when the modelled soil
water content falls below the PWP, which reduces photosynthesis due to water
deficiency. This offset might have been triggered by low annual precipitation
rates for the region. As mentioned previously, ECMWF annual precipita-
tion in this region was only 480mmm2 in 2000, but jumped to 760mmm2

in 2001. We hypothesize that the parameterization of the soil water budget
in BETHY/DLR overestimates plant water use or evaporation from the soil,
leading to the unrealistically low soil water content at the beginning of 2001
(DOY = 365). Annual precipitation in 2001 in Burgenland and Merseburg-
Querfurt was insufficient to support soil water conditions adequate for plant
growth. We conclude that the red marked regions in Fig. 2.3 for 2001 may be
explained by an excessive loss of modelled soil water content during 2000, as
a consequence of low precipitation in 2000. This underestimation of soil water
content leads, as described above, to an underestimation of NPP in 2001. The
lower correlation cloud found in Fig. 2.4 for Germany in 2001 is strongly linked
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with the overestimated decrease of soil water in these regions.

2.5 Conclusions

The Net Primary Productivity for the territories of Germany and Austria for
2000 and 2001 were modelled using the dynamic vegetation model BETHY/
DLR. Inputs for the model were meteorological data from ECMWF, LAI time
series from vegetation, and land cover / land use data from GLC2000. We here
presented a new approach to validate modelled NPP using empirical data on
acreage and averaged grain yields of main crops at the NUTS-3 level. Using
conversion factors (corn-tostraw and shoot-to-root ratios), the statistical data
were converted to NPP per NUTS unit for comparison. This method yielded
high coefficients of determination (R2 up to 0.74), allowing strong conclusions
to be drawn about model validity. For German districts, BETHY/DLR sub-
stantially underestimated the NPP (17%), whereas for Austrian districts a
slight overestimation (8%) was observed.
In areas where the land cover classification (GLC2000) provided insufficient
information (particularly in the Alps), modelled NPP was significantly under-
estimated (even to zero), producing high discrepancies between modelled NPP
and empirical data in those regions. This indicates that a spatial resolution
of 1 km2 is insufficient to describe the heterogeneous small-scale structure of
mid-European land use practices. To improve modelling results, we recom-
mend the use of a higher-resolution land cover product such as the MERIS
GlobCover, with a resolution of 300m × 300m together with LAI time series
also derived from MERIS.
In the Saxo-Thuringian Basin very low NPP values were modelled for 2001.
Most of the large differences between modelled and observed NPP data for 2001
were found in regions with low annual precipitation in 2000. We demonstrated
that the parameterization of the water cycle in BETHY/DLR (in particular,
the use of a bucket model for estimating soil water content) was the underlying
reason driving low NPP estimates in these regions that had experienced low
precipitation the previous year. Finally, we showed that natural drought were
not reflected in the model results due to unrealistically precipitation rates re-
ported in the input data.
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This study illustrates a novel method of model validation that we believe will
be useful in estimating biomass potentials from modelled NPP products on a
medium resolution. This method could also be used as a downscaling approach
for empirically derived NUTS-level data, since the model results could help to
spatially represent the NUTS information.
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Chapter 3

Validation of modelled forest

biomass in Germany using

BETHY / DLR

Markus Tum, Marcel Buchhorn, Kurt P. Günther, Bejamin C. Haller,
Geoscientific Model Development, (2011), 4, 1019-1034

3.1 Abstract

We present a new approach to the validation of modelled forest Net Primary
Productivity (NPP), using empirical data on the mean annual increment, or
MAI, in above-ground forest stock. The soil-vegetation-atmosphere-transfer
model BETHY/DLR is used, with a particular focus on a detailed parame-
terization of photosynthesis, to estimate the NPP of forest areas in Germany,
driven by remote sensing data from VEGETATION, meteorological data from
the European Centre for Medium-Range Weather Forecasts (ECMWF), and
additional tree coverage information from the MODIS Vegetation Continu-
ous Field (VCF). The output of BETHY/DLR, Gross Primary Productivity
(GPP), is converted to NPP by subtracting the cumulative plant maintenance
and growth respiration, and then validated against MAI data that was calcu-
lated from German forestry inventories. Validation is conducted for 2000 and
2001 by converting modelled NPP to stem volume at a regional level. Our
analysis shows that the presented method fills an important gap in methods
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for validating modelled NPP against empirically derived data. In addition, we
examine theoretical energy potentials calculated from the modelled and vali-
dated NPP, assuming sustainable forest management and using species-specific
tree heating values. Such estimated forest biomass energy potentials play an
important role in the sustainable energy debate.

3.2 Introduction

Models of carbon uptake by plants play an important role in answering ques-
tions concerning the mechanisms driving the carbon cycle and the roles of
terrestrial carbon sinks and sources (Cox et al. (1999)). Carbon uptake by
plants, measured as Gross Primary Productivity (GPP), can be predicted by
simple models that describe the physical, chemical, and plant physiological pro-
cesses of plant development, as well as the interactions between plants and the
atmosphere. Such ”deterministic” models (sometimes also called ”mechanistic”
or ”Monteith-type” models) calculate photosynthesis following the methods of
Monsi and Saeki (1953) and Monteith (1965).
The idea behind these Monteith-type models is that the carbon uptake of suf-
ficiently watered and fertilized plants is linearly correlated with the energy
of the incident photosynthetically active radiation (PAR), or more precisely,
the fraction of the PAR that is actually absorbed by the plants (fPAR). Fol-
lowing this approach, it is possible to calculate GPP for each vegetation type
from the absorbed solar radiation (fPAR) and the light use efficiency (LUE)
of the vegetation type. The LUE can be affected by environmental stress
factors, particularly temperature, water limitation, and nitrogen availability.
Species-specific fPAR values may be estimated by measurement of dry biomass
accumulation, or may be derived from satellite data.
GPP, as estimated by such a model, can be converted to NPP by considering
temperature-dependent maintenance respiration. Maintenance respiration can
be estimated using allometric functions regarding leaf and root distribution
following the approach of Ryan et al. (1995), or using the Leaf Area Index
(LAI) of the vegetation following Running et al. (2000). In either case, NPP
is defined as the remainder after plant maintenance respiration is subtracted
from GPP. In a further step, Net Ecosystem Productivity (NEP) can be cal-
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culated by subtracting the heterotrophic respiration in an ecosystem from the
ecosystem’s NPP.
The Monteith-type model architecture has been used many times. For exam-
ple, the C-Fix model, a Monteith-type parametric model by Veroustraete et al.
(1994), was used by Verstraeten et al. (2006) to estimate net ecosystem fluxes
for all of Europe. C-Fix is driven by vegetation type data of the Normalized
Differenced Vegetation Index (NDVI) and meteorological data (temperature
and daily incoming global radiation) obtained from about 800 weather stations
administered by the World Meteorological Organization (WMO). Verstraeten
et al. (2006) validated their results with eddy covariance flux tower measure-
ments, obtaining an R2 of 0.84 for pine forests and 0.59 for mixed deciduous
forests. The Carnegie-Ames-Stanford Approach (CASA) model introduced by
Potter et al. (1993) and validated by Potter et al. (2001) and Potter et al. (2003)
is another example of a Monteith-type model. The CASA model is driven by
monthly NDVI data from the FASIR database of the Goddard Space Flight
Center, monthly temperature and precipitation data from the International
Institute for Applied Systems Analysis (IIASA), and monthly PAR data from
the Goddard Institute for Space Studies. Validation of CASA was performed
against atmospheric CO2 concentration data from NOAA and the Geophysical
Monitoring from Climate Change Flask Sampling Network, and obtained R2

values between 0.09 and 0.67.
When the LUE approach is integrated into a coupled soil-plant-atmosphere
model, such as the Atmosphere Land Exchange (ALEX) model, daily estimates
of evapotranspiration and carbon assimilation fluxes can also be obtained (An-
derson et al. (1997). Recently, more sophisticated models have begun to be
developed that take this integrative approach even further. In computing the
uptake of carbon by plants, these so-called ”dynamic” models take into ac-
count the complex interactions between plants, soil, and the atmosphere, but
also account for the carbon released by both plants and soil in a manner that
respects the conservation of energy and momentum. At present, only a few
dynamic models have been published. Examples are the Lund-Potsdam-Jena
(LPJ) model developed by Prentice et al. (1992) and modified by Bondeau
et al. (2007), the Equilibrium Terrestrial Biosphere Model (BIOME3) by Hax-
eltine and Prentice (1996), and the ORganizing Carbon and Hydrology in
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Dynamic EcosystEms (ORCHIDEE) model by Krinner et al. (2005). These
global models are driven by meteorological input data, and phenology is calcu-
lated internally from those inputs using per-species physiological parameters.
The spatial resolution for dynamic models can range from degrees, for global
models such as Prentice et al. (1992) and Haxeltine and Prentice (1996), to
kilometres, for regional models such as Wißkirchen (2005). Model outputs are
typically GPP, NPP and NEP, total ecosystem respiration, and evapotranspi-
ration.
This study used the Biosphere Energy Transfer Hydrology (BETHY/DLR)
model, a dynamic model based on the Jena Scheme of Atmosphere Biosphere
Coupling in Hamburg (JSBACH) by Knorr (1997), which was designed for
global applications (see also Knorr and Heimann (2001)). It was modified by
Wißkirchen (2005) for application to regional modelling.
Model validation is often conducted using data from devices called eddy co-
variance flux towers. The relationship between carbon and energy flux has
been studied in international networks such as FLUXNET (Baldocchi et al.
(2001)) and AmeriFlux, as well as in projects such as EUROFLUX (Valentini
(2003)) and CarboEurope. This research has shown that eddy covariance flux
tower measurements can be used to quantify NEP at the spatial scale of the
footprint of a tower (Baldocchi (1997)). As mentioned above, NEP may also
be calculated by subtracting heterotrophic respiration from NPP. Therefore,
robust methods have been developed to estimate heterotrophic respiration in
order to convert NEP, as measured by eddy towers, into NPP (or, by consid-
ering plant maintenance respiration as well, GPP).
For example, the MODIS GPP product (MOD17, C4.5) was validated with
eddy tower CO2 flux estimates across diverse land cover types and climates
(Heinsch et al. (2006)). The main test areas were forest ecosystems in North
America, but chaparral, oak savannah, northern grassland and Arctic tundra
were also included in the investigation. It was found that MODIS overesti-
mated GPP by about 20% to 30%, but this depended strongly on season and
ecosystem type. Comparison of annual MODIS GPP (modelled with global
meteorological data from NASA’s Global Modeling and Assimilation Office)
to tower-based GPP measurements yielded an R2 of 0.72.
The primary objective of this study is to present a new approach to the valida-
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tion of modelled NPP. We compare output from BETHY/DLR, run at 1 km2

spatial resolution, with empirical measurements of the mean annual increment
(MAI) in above-ground biomass (including bark) observed in forests in Ger-
many. The MAI data are available at a regional scale called the NUTS-1 level;
NUTS is an abbreviation for ”Nomenclature des Unités Territoriales Statis-
tiques” and is a system of hierarchically organised territorial units used for
statistical purposes. The NUTS-1 MAI data were obtained from the National
Forest Inventory (NFI) of Germany.
A secondary objective is to use our modelled and validated NPP to estimate
theoretical energy potentials, given sustainable forestry practices, for the area
of study. Sustainable energy potentials from forests are a key element in plan-
ning a sustainable energy economy for Germany (and, of course, the rest of the
world), and so developing methods for estimating, and ultimately forecasting,
these potentials is of great importance BMVBS (2010).

3.3 Model description

BETHY/DLR is a soil-vegetation-atmosphere-transfer (SVAT) model. SVAT
models track the plant-mediated transformation of atmospheric carbon diox-
ide into energystoring hydrocarbons such as sugars, a process known as carbon
fixation. BETHY/DLR models photosynthesis, and takes into account envi-
ronmental conditions that affect it. Photosynthesis is parameterized following
the combined approach of Farquhar et al. (1980) and Collatz et al. (1992), and
treats separately the ”light” and ”dark” reactions of photosynthesis at the leaf
level. A benefit of this design is that the photosynthetic rate can be mechanis-
tically limited either by light availability or by the abundance of the carboxy-
lation enzyme Rubisco, the key player in the Calvin cycle that fixes carbon.
In addition, so-called C3 and C4 plants are distinguished in BETHY/DLR
because significant differences exist between their carbon fixation physiologies;
in particular, C4 plants such as sugar beet and corn can fix more atmospheric
CO2 at higher temperatures than can C3 plants such as barley and wheat.
In a second step, the rate of photosynthesis is extrapolated from leaf to canopy
level taking into account both canopy structure and the interactions between
soil, atmosphere, and vegetation. For closed canopies (trees, shrubs, and
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crops) the photosynthetic rate depends on the Leaf Area Index (LAI), a per-
species metric of leaf upper surface area per unit ground area. To model
self-shading, photosynthetic rate is reduced exponentially from the canopy top
to the soil. In this approach, radiation absorption in the canopy is approxi-
mated in BETHY/DLR using the so-called ”two-flux scheme” of Sellers (1985)
with three canopy layers.
Besides photosynthesis, other energy transfers also need to be tracked. The
model’s energy balance takes into account heat fluxes between the vegetation
and the atmosphere above it, as well as the cooling effect of evapotranspiration
from the soil and vegetation. Soil heat flux is also estimated, and the storage
of heat in the canopy and in the air layer above the canopy is considered.
The coupling of these processes is of great importance, since temperature-
dependent photosynthesis transforms light energy into chemical energy, and
finally into carbohydrates, using water and CO2. Water is available for the
plants from the soil, while evapotranspiration by plants and soil determine the
water vapour deficit in the atmosphere, which is closely linked to the stomatal
behaviour of leaves. Thus when considering the dynamic interaction of, for
instance, the soil water balance and photosynthesis, the natural behaviour of
vegetation can be reflected; this is the motivating idea of the SVAT approach.
The water cycle must also be modelled and included in this interaction scheme.
In BETHY/DLR three water reservoirs are considered: soil water, snow, and
”skin” or ”intercepted” water on leaves and other parts of the vegetation. These
reservoirs change in time and space depending on precipitation, temperature
and evapotranspiration. A ”bucket model” is used for calculating soil water
dynamics, using the plant rooting depth as the depth of the soil core. In the
bucket model, water availability for plants is governed by the soil water content
above the permanent wilting point (at which water is so tightly bound by soil
particles that it is unavailable to plants) and below the field capacity (at which
the soil is full and further water added by precipitation or snowmelt runs off).
The distribution of water within the soil is not modelled in BETHY/DLR, al-
though this would be a worthwhile addition. Water limitation is considered by
calculating the demand for evapotranspiration using the approach of Monteith
(1965) with the criteria of Federer (1979), which state that evapotranspiration
cannot be greater than the limit set by the soil water supply and the water
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uptake physiology of a plant’s roots.
Autotrophic respiration is modelled in BETHY/DLR as the sum of main-
tenance respiration and growth respiration. Maintenance respiration is de-
termined by plant-specific dark respiration rates, while growth respiration is
proportional to the difference between GPP and maintenance respiration. For
estimating NEP, heterotrophic soil microbe respiration is calculated as a func-
tion of temperature, scaled by the annual NPP and the effect of soil moisture
(neglecting, for modelling purposes, other heterotrophic respiration).
The output of BETHY/DLR is a time series of NPP in daily steps, at the res-
olution and projection of the land cover classification. Here 1 km2 resolution
is used, in a latitude-longitude projection using the WGS84 (World Geodetic
System 1984) datum. An overview of the input data used in this study and
the internal model processes acting upon them is presented in Fig. 3.1.

Figure 3.1: Model overview for BETHY/DLR. Left: input data, middle: internal

model processes, right: outputs.

3.4 Input data

The inputs of the BETHY/DLR model are three remote sensing datasets de-
rived from SPOT-VEGETATION and MODIS, meteorological data provided
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by ECMWF, and two further datasets describing soil type and land elevation.

Remote sensing data

Per-pixel Leaf Area Index (LAI) time series were used to determine vegeta-
tion phenology. These time series were based on CYCLOPES (Carbon cYcle
and Change in Land Observational Products from an Ensemble of Satellites)
tenday composite datasets, which can be downloaded from the POSTEL (Pole
d’Observation des Surfaces continentales par TELedetection) database. Crite-
ria for the identification of gaps and outliers in the CYCLOPES datasets were
defined and crosschecked against a hand-validated dataset. For each identified
gap or outlier, harmonic analysis (HA), a type of superpositioning transfor-
mation, was applied to estimate a corrected value. Following this procedure,
a global meanerror of 9% was found across a longer time series. Despite these
gaps and outliers, the CYCLOPES dataset is the most consistent LAI dataset
available (Garrigues et al. (2008)); it was also chosen because it is available in
the needed form of ten-day composites.
The CYCLOPES dataset also provides land cover and land use information for
the year 2000, available as the product Global Land Cover 2000 (GLC2000).
The Land Cover Classification System of the Food and Agriculture Organiza-
tion of the United Nations (FAO), using 22 different land cover classes, was
used to derive GLC2000 (Bartholome et al. (2002); DiGregorio and Jansen
(2001)). The CYCLOPES LAI and GLC2000 datasets are both available as
10 ◦ × 10 ◦ maps in rectangular projection, with latitude and longitude using
the WGS84 datum. Complete coverage of the study area (Germany) is avail-
able.
In order to make the GLC2000 land use/land cover classification useable for
NPP modelling with BETHY/DLR, the GLC2000 vegetation classes were
translated to BETHY/DLR’s forest-related vegetation types. Each vegeta-
tion type in BETHY/DLR is described by biochemical parameters such as the
maximum carboxylation rate and the maximum electron transport rate, en-
capsulating the maximum rates of, respectively, the light and dark reactions of
photosynthesis. The internal parameterisation of BETHY/DLR allows a given
GLC2000 vegetation class to be represented as a fraction of two BETHY/DLR
vegetation types. In the context of this study, only four GLC2000 classes rep-
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Table 3.1: Translation of GLC2000 vegetation classes to BETHY/DLR vegetation

types with weighting factors.

GLC2000 class BETHY/DLR type Weighting
factor

Tree cover, broadleaved, de-
ciduous closed (glc-2)

Temperate broadleaved de-
ciduous trees

MODIS
VCF

Tree cover, broadleaved, de-
ciduous open (glc-3)

Temperate broadleaved de-
ciduous trees

MODIS
VCF

Tree cover, needle-leaved, ev-
ergreen (glc-4)

Evergreen coniferous trees MODIS
VCF

Tree cover, mixed leaf type
(glc-6)

Temperate broadleaved de-
ciduous trees

0.5

Evergreen coniferous trees 0.5

resented forest types found within Germany; the BETHY/DLR representation
of these four classes is shown in Table 3.1.
To obtain information about fractional land cover, an additional dataset was
used. The MODIS Vegetation Continuous Fields (VCF) dataset (DeFries et al.
(2000), Hansen et al. (2002), Hansen et al. (2003)) contains annual global data
on percent tree cover at a spatial resolution of 500m square, and is available
for 2000 to 2005. For use in BETHY/DLR, the highresolution VCF data were
aggregated to match the spatial resolution of the CYCLOPES data using a Ge-
ographic Information System (GIS). For GLC2000 class 6 (”Tree cover, mixed
leaf type”), a weighting factor of 0.5 between deciduous and coniferous forest
types was used (without scaling of those weights by the VCF fractional land
cover). This approximation was assumed to be adequate, since only 15% of
German forest areas are described as mixed forest in the GLC2000, and since
VCF contains no further information about the proportion of deciduous to
coniferous trees. A similar approach was described by Jung (2008) using the
AVHRR Continuous Field of Tree Cover dataset.
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Meteorological data

In addition to remote sensing data, BETHY/DLR needs meteorological in-
put data (Table 3.2). The ECMWF (Europeanv Centre for Medium-Range
Weather Forecasts) provides this data at a spatial resolution of 0.25 ◦ × 0.25 ◦

and a temporal resolution of up to four times per day. The data are produced
by ECMWF’s climate model analysis of meteorological station measurements
of air temperature (at 2m height), wind speed (at 10m height), soil water
content (in the four uppermost layers), and cloud cover. Daily precipitation
values were obtained from the ECMWF INTERIM dataset. From these data
we calculated daily mean, minimum and maximum temperatures, daily mean
cloud cover at three heights, and relative humidity. Daily temperature values
were reconstructed at the 1 km2 resolution of the land cover data, adjusting for
the elevation difference between the ECMWF data and the elevation of each
modelled pixel using the temperature gradient of the international standard
atmosphere (-0.65K per 100m).

Table 3.2: Summary of meteorological input data from ECMWF, including short

names and code numbers.

Parameter Short name Code number

Volumetric soil water layer 1 SWVL1/(SWL1) 039
Volumetric soil water layer 2 SWVL2/(SWL2) 040
Volumetric soil water layer 3 SWVL3/(SWL3) 041
Volumetric soil water layer 4 SWVL4/(SWL4) 042
Geopotential Z 129
Large scale precipitation LSP 142
Convective precipitation CP 143
10m U-velocity 10U 165
10m V-velocity 10V 166
2m temperature 2T 167
Low cloud cover LCC 186
Medium cloud cover MCC 187
High cloud cover HCC 188
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The daily average photosynthetically active radiation (PAR) was calculated
from global radiation following the method of Burridge and Gadd (1974). This
method calculates PAR from the incident sunlight for the given day and year,
modified by atmospheric transmission, which depends on the degree of cloudi-
ness. Daily average cloud cover was calculated using a weighted sum of each
cloud layer. This approach leads to more exact results than the direct use of
radiation forecast data, and is thus preferable to the direct use of ECMWF
radiation data (Wißkirchen (2005)). Global radiation was calculated for each
location at each one-hour time step.
Time series of the volumetric soil water content were needed to calculate the
soil water budget of the model. Information about the soil type was taken
from the International Soil Reference and Information Centre-World Inventory
of Soil Emission Potentials (ISRIC-WISE) dataset, which has a resolution of 5
× 5 arcminutes. It is a harmonization of the global FAO-UNESCO Soil Map
of the World (FAO (1974)).

3.5 Eddy crosscheck

Before validating BETHY/DLR’s modelled NPP for NUTS-1 regions across
all of Germany, we performed a crosscheck of BETHY/DLR GPP results with
eddy covariance flux tower measurements provided by FLUXNET. Two tower
sites were selected, one in the Hainich forest and one in the Tharandt forest.
The Hainich tower is to the west of Jena, Germany, in a mixed deciduous
beech forest, while the Tharandt tower is south of Dresden in a coniferous
forest. For both sites Level 4 data, providing information about GPP, are
available for 2000 and 2001. GPP was calculated by subtracting the estimated
ecosystem respiration from measured NEP) as described in Reichstein et al.
(2005). These data were crosschecked against BETHY/DLR’s modelled GPP,
as annual sums at each station (Table 3.3).
Because BETHY/DLR underestimated annual GPP sums by 20% to 30% for
both stations over both years, a further analysis of monthly GPP sums was
performed (Fig. 3.2).
BETHY/DLR’s GPP estimates qualitatively follow the measured GPP for the
coniferous forest at Tharandt over both years, but with a slight underestima-
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Figure 3.2: Monthly GPP sums modelled with BETHY/DLR (solid lines) and mea-

sured with eddy flux towers (dashed lines) for the Tharandt and Hainich stations for

2000 and 2001.

tion (Fig. 3.2a and b). This finding accords with the results of Wißkirchen
(2005), who also observed good agreement between measured and modelled
NEP at Tharandt. For the mixed deciduous forest of the Hainich station in
2000, BETHY/DLR’s estimated GPP is good up to May and from September
onwards. However, June, July and August exhibit a strong depression of the
modelled GPP, responsible for the overall underestimation for this year (Fig.
3.2c). For Hainich in 2001 the modelled GPP is overestimated in May, but
underestimated in all other months in the growing season (Fig. 3.2d).
Overall, BETHY/DLR models monthly GPP well for coniferous forest, with
an underestimation of yearly GPP of less than 30%. For deciduous forest
the underestimation of yearly GPP is also less than 30%, but monthly GPP
shows an RMSE of up to 25 (Table 3.3). In particular, BETHY/DLR seems to
strongly underestimate the peak of productivity during the middle of summer,
perhaps due to the more heterogeneous development patterns of the species in
this vegetation group.
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Table 3.3: Annual GPP sums in (gCm−2 a−1) modelled with BETHY/DLR and

measured with eddy flux towers at the Hainich and Tharandt stations for 2000 and

2001. The percent difference and RMSE are provided for each comparison.

Year Hainich

BETHY/DLR Tower ∆ RMSE

2000 1318 1649 20% 20.9
2001 1210 1576 27% 25.2

Year Tharandt

BETHY/DLR Tower ∆ RMSE

2000 1426 2025 30% 18.6
2001 1276 1655 23% 17.9

Comparisons of GPP calculated by other vegetation models, such as BIOME
BGC, ORCHIDEE and LPJ, with eddy covariance flux tower measurements
revealed an overall RMSE of 30% for forests in climate zones from boreal to
Mediterranean (Jung (2008)). This magnitude of error corresponds well with
our findings.

3.6 Validation strategy

To validate BETHY/DLR’s modelled NPP, we used empirical data on the
mean annual increment (MAI) of timbergrowing stocks. These data describe
the change in the aboveground woody parts of trees with a diameter greater
than 7 cm, given as solid tree volume (including bark), estimated during the
second National Forest Inventory (NFI2) and the first National Forest Inven-
tory (NFI1), divided by the time between the two inventories. We chose to
use MAI instead of current annual increments (CAI) because for Germany
no empirically-derived data with higher temporal resolution than the NFI is
available. For Germany, these timber stock increment data are provided by
the second National Forest Inventory, classified by forest, tree species, and
age class. The aim of this ongoing large-scale survey is to establish statisti-
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cally reliable central monitoring of the development of Germany’s forests, to
allow assessment of each forest’s status and production potential. The NFI
survey uses a permanent set of sampling sites, based on a nationwide 4 km ×
4 km grid. Samples are taken at randomly chosen sites from this set, using
a uniform procedure across all of Germany. This sampling procedure fulfills
accuracy requirements at the national level, but more intensive sampling is
conducted for greater accuracy in some smaller federal states, such as Bremen
and Hamburg. From a statistical point of view the maximum error of the NFI
survey regional level data is about 12% for coniferous forest and below 8% for
deciduous forest, calculated from the data of BMELV (2004).
For each sampling site, the NFI surveys about 150 characteristics, such as
tree species composition, timber volume, and growth, using an angle-count
sampling method at each corner of the site. Furthermore, sampling circles
with defined radii are drawn to survey tree species composition, tree heights,
deadwood, ground vegetation and other characteristics. A more detailed de-
scription can be found in BMELV (2004).
The first NFI survey was conducted between 1986 and 1988 and was restricted
to the ten states of the former West Germany. All data of the NFI1 are refer-
enced to the year 1987. The second NFI survey was carried out in 2001 and
2002 across all federal states of Germany. The reference year for NFI2 is 2002.
The NFI data are freely available at the NUTS-1 level (BMELV (2004).
In order to validate the modelled NPP against these NFI surveys, the highly de-
tailed NFI data had to be aggregated. In a first step, the tree species reported
in the NFI statistics were grouped into BETHY/DLR’s two temperate for-
est classes, coniferous and deciduous. Coniferous forest in Germany is mainly
composed of spruce (≈57%) and pine (≈33%), while Germany’s deciduous
forest is dominated by beech (≈48%) and oak (≈25%). It was therefore as-
sumed that all parameters (standing timber stock and mean annual increment
of timber stock, in particular) of these two forest classes could be estimated as
the sum of the metrics for the two principal species, plus an estimated value
for all of the secondary species.
The NFI data were then used to calculate the MAI of the total above-ground
biomass (MAIT ), which was then compared to the modelled NPP. To calcu-
late MAIT for a NUTS region, the increments of the above-ground biomass of
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coniferous (MAIc) and deciduous (MAId) trees were summed (Eq. 1).

MAIT = MAIc +MAId (3.1)

As described above, we calculated MAIc and MAId as the sum of the incre-
ments of the total above-ground biomass of the two dominan species (M̂) plus
an estimate for the tertiary species (M̃). Both MAIc and MAId, represented
simply as MAI, were thus calculated following Eq. (2).

MAI =
2∑
s=1

M̂s + M̃ (3.2)

The index s represents the two dominant species of the forest class.
Since tree biomass depends upon age, M̂ was calculated using per-species age-
dependent biomass increments, β, for the ten age classes in the NFI data, as
shown by Eq. (3).

M̂s =
10∑
a=1

βs,a × As,a (3.3)

The index a represents the age classes, and A represents the proportional area
occupied by each age class (given in the NFI data).
Since values for β are not given by the NFI, the NFI’s species- and age-
dependent net increments of the outer bark volume V , expressed in m3 a−1A−1,
are used. To convert timber stock biomass into absolute dry biomass, species-
dependent conversion factors (ε) are needed (Table 3.4). Furthermore, species-
and age-dependant conversion factors, P , are needed to estimate the total
above-ground biomass. P represents the fraction of total above-ground biomass,
including branches of less than 7 cm diameter and needles/leaves, that is outer
bark (Table 3.4). Given these values, β was calculated as shown in Eq. (4).

βs,a =
Vs,a × εs
Ps,a

(3.4)

Because the first NFI was conducted before 1989, values for V are only avail-
able for the ten states of the former West Germany. For the five states of
the former East Germany, values for V were taken from yield tables (Erteld
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(1963)).
For this study values of ε were taken from Dieter and Englert (2001). Since
only a single source of values for P was found, the accuracy of these values is
unknown.
To calculate M̃ it was assumed that a weighted average of the biomass incre-
ments of the two dominant tree species, M̂ , would be representative for the
tertiary species (Eq. 5). Statistical analysis indicated that the error of this
approach is less than 6%.

M̃ =
Ã× Ṽ × ε̃

P̃
(3.5)

P̃ and Ṽ represent the arithmetic averages of the weighted average means of P
and V , respectively. Since both depend on tree age and species composition,
they were thus calculated using Eq. (6) (P̃ being calculated analogously using
P ).

Ṽ =

∑2
s=1

(∑10

a=1
Vs,a×As,a∑10

a=1
As,a

)
2

(3.6)

ε̃ was calculated using the arithmetic mean of ε, following Eq. (7).

ε̃ =

∑2
s=1 εs
2

(3.7)

Before the modelled results could be validated, they needed to be aggregated
to the NUTS-1 level at which the NFI data are given. To accomplish this,
the modelled NPP was first transferred to a GIS, taking into account the equi-
rectangular WGS84 datummap projection. Then, in order to allow comparison
of the datasets, the CAI of the above-ground biomass of the modelled NPP
was calculated. Because the modelled NPP does not specify which parts of
the plant contain the accumulated carbon, the below-ground carbon content
had to be estimated and removed. Furthermore, the NPP (in units of carbon)
was converted to above-ground biomass (in units of dry weight) by applying a
conversion factor (Eq. 8).
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Table 3.4: Per-species percentage of timber stock biomass (without bark) to total above-ground biomass (P ) from Kramer and Krüger

(1981), max ε from Dieter and Englert (2001), and min ε from Kaltschmitt and Hartmann (2001). /=no value.

Species ε (tm−3) P per age class

min max I II III IV V VI VII VIII IX X

Spruce 0.38 0.43 0 0.48 0.25 0.17 0.17 0.13 0.12 0.13 / /
Pine 0.43 0.49 0 0.33 0.25 0.19 0.19 0.18 0.15 0.16 / /
Beech 0.56 0.66 0 0.00 0.49 0.32 0.19 0.16 0.14 0.13 0.15 /
Oak 0.58 0.64 0 0.56 0.21 0.19 0.12 0.11 0.12 0.11 0.08 0.08
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CAI =
NPP × λ
(1 +R)

(3.8)

R represents the ratio of the increment of below- to aboveground biomass,
while λ is a conversion factor from NPP to total biomass. Species-specific
values for R were taken from Pistorius and Zell (2005). Since the GLC2000
gives no information about tree species distribution, a mean value of R for
each of the two temperate forest classes modelled by BETHY/DLR (conifer-
ous and deciduous) was calculated (deciduous: 0.19 ± 0.08, coniferous: 0.23
± 0.04). To check the numbers upon which these calculations were based, the
corresponding allocation factors for above-ground biomass were also calculated
using the same dataset (deciduous: 0.81, coniferous: 0.84); these values agree
closely with previously reported values (Zhou et al. (2006)), supporting our
estimated values for R. The value for λ was set to 2, which is seen as repre-
sentative for both deciduous and coniferous trees (Houghton et al. (1997)).
After these calculations and conversions, the CAI derived from the model
output was compared to the MAI calculated from NFI statistics in order to
validate BETHY/DLR’s estimates of NPP.

3.7 Results

Figure 3.3 depicts annual modelled NPP for Germany in 2000 and 2001 at this
studys spatial resolution of 1 km2. For both years the major forests of south-
ern Germany (the Spessart, the Palatinate, and the Black Forests) are clearly
identifiable from their high NPP values, whereas the northern forested areas,
such as the Harz mountains, have substantially lower NPP. The mean annual
NPP for 2000 was 139 (tC km−2 yr−1) with a maximum of 547 (tC km−2 yr−1);
for 2001 the mean annual NPP was 137 (tC km−2 yr−1) with a maximum of
544 (tC km−2 yr−1). Total annual modelled NPP was thus 21.6 × 106 tC for
2000 and 21.3 × 106 tC for 2001.
Conversion of these NPP values to above-ground biomass as described above
gives annual totals of 52.3 × 106 t for 2000 and 51.8 × 106 t for 2001. The
value estimated from NFI’s data is 82.7 × 106 t (for both of 2000 and 2001).
Our modelled NPP thus shows an underestimation of 37% for both years com-



57

Figure 3.3: Annual NPP of forest areas in Germany for 2000 and 2001. High

NPP is shown in green, moderate NPP in yellow, and low NPP in red. Grey pixels

represent areas which do not belong to the GLC2000 classes glc-2, glc-3, glc-4 or glc-6

(see also Table 3.1). Blue pixels represent pixels designated as forest in GLC2000,

but that have less than 10% forest cover according to VCF; their modelled NPP is

therefore close to zero despite being considered forest.

pared to empirical data. Furthermore, large areas with very low NPP can be
identified, especially at the borders of larger forests such as the Black Forest of
southwestern Germany. This is because these areas are considered to be forest
according to GLC-2000, but MODIS VCF indicates very low forest cover frac-
tions (down to one part per thousand). Such areas of conflicting land cover
information are shown as blue pixels in Fig. 3.3.
Figure 3.4 shows that BETHY/DLR underestimates the net increment of
above-ground biomass for both deciduous and coniferous trees. The R2 values
of 0.74 and 0.76 for deciduous trees indicate a high degree of correlation, how-
ever. The correlation for coniferous trees is even stronger, with R2 values of
0.95 and 0.93, but the underestimation is also higher here. In order to quan-
tify the predictive accuracy of BETHY/DLR’s NPP estimates, the root mean
square error (RMSE) was calculated for all four panels; for deciduous trees the
RMSE is 1.53 (2000) and 1.48 (2001), and for coniferous trees, 1.87 (2000) and
1.93 (2001).
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Figure 3.4: Estimated above-ground biomass increment from modelled NPP (CAI)

versus empirical data from the NFI (MAI) for Germany’s deciduous and coniferous

trees for 2000 and 2001. Each cross represents one NUTS-1 region. Thick lines show

linear regressions. Values are given in megatons per NUTS-1 unit per year.

The MAI of above-ground biomass for deciduous trees in Germany for all
NUTS-1 regions is 821.9 tons per km2 (NFI), but the corresponding value
estimated with BETHY/DLR is 530.9 tons per km2, 35% less. For conifer-
ous trees these values are 804.7 tons per km2 (NFI) and 416.0 tons per km2

(BETHY/DLR), a 48% underestimate.
A reason for underestimation can be found in the land cover/land use classifi-
cation used (GLC2000). Figure 3.5 presents a comparison of the forest areas
derived from the NFI database, the forest areas of GLC2000, and the forest
areas for the intersection of GLC2000 and MODIS VCF.
From Fig. 3.5b it is apparent that NFI and GLC2000 deciduous forest area
estimates differ markedly; an underestimation of 66% for Schleswig-Holstein
(SH) and an overestimation of 106% for Bavaria (BY) is observed, for example.
For coniferous forest (Fig. 3.5a) the two area estimates are more comparable,
with a mean difference of 20%. These imbalances are reduced when looking at
the total forest areas for deciduous and coniferous trees across all of Germany;
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Figure 3.5: Comparison of coniferous and deciduous forest areas from NFI, from

GLC2000, and from the intersection of GLC2000 and MODIS VCF areas. Areas

are given in 1 000 km2 per NUTS-1 unit. BW: Baden Württemberg, BY: Bavaria,

BB: Berlin/Brandenburg, HE: Hesse, MV: Mecklenburg-Western Pomerania, NI:

Lower Saxony/Hamburg/Bremen, NW: North Rhine-Westphalia, RP: Rhineland-

Palatinate, SL: Saarland, SN: Saxony, NT: Saxony-Anhalt, SH: Schleswig-Holstein,

TH: Thuringia.

total coniferous forest area estimates are 42 400 km2 (NFI) and 47 100 km2

(GLC2000), and for the deciduous forest, 60 800 km2 (NFI) and 61 100 km2

(GLC2000). It can also be seen in Fig. 3.5a and b that the GLC2000 under-
estimates forest areas for the northern states of Germany such as Schleswig-
Holstein (SH) and Lower Saxony (NI), whereas it overestimates the forest areas
for southern states such as Bavaria (BY) and Baden-Württemberg (BW).
In aggregate, then, GLC2000 represents forest area well, but its spatial dis-
tribution is not comparable with the NFI data. We hypothesize that the
medium-scale forest structure found in most parts of Germany is not ade-
quately described by the GLC2000, due to the difficulty of accurately classi-
fying a heterogeneous land cover distribution even with a resolution of 1 km2

(Mayaux et al. (2006)). According to the Land Cover Classification System
(DiGregorio and Jansen (2001)) used in deriving GLC2000, the GLC2000 class
”Broadleaved Deciduous Closed to Open (100 to 40) Trees” includes all forest
areas with a forest fraction from 40% to 100% a very wide range. In order
to describe the forest cover fraction more precisely, the MODIS VCF product
was combined with the GLC2000 to produce the area estimates used as in-
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puts by BETHY/DLR. Figure 3.5a and b show the coniferous and deciduous
forest areas that result from this combination of MODIS VCF and GLC2000.
Clearly this approach led to underestimations of the forest area in Germany,
both for coniferous (47%) and deciduous (59%) forest. This underestimation
occurs because only areas reported as forested in the GLC2000 were carried
forward to be combined with the MODIS VCF coverage data; areas designated
as non-forest in GLC2000, but with a non-zero forest cover fraction in VCF,
were treated as non-forested. As a result, those forest areas which were un-
derestimated by GLC2000, such as Lower Saxony or Schleswig-Holstein, led to
substantial underestimations of the increment of above-ground biomass.
Other land cover datasets with higher resolution, such as CORINE (100m ×
100m) and MERIS GlobCover (300m × 300m), are available for Germany,
and their land use structures show a better agreement with the NFI data.
Since BETHY/DLR requires land cover and LAI inputs to be at the same
spatial resolution, and since no higher-resolution LAI products are available
yet for Germany, these finer grained land cover datasets unfortunately could
not be used. Exploratory analysis shows, however, that the combination of
GlobCover and VCF leads to an underestimation of forest area of 24%, while
the combination of CORINE and VCF yields an underestimation of only 7%.
This agrees with the findings of EEA (2006), which estimated the reliability
of the CORINE classes 311 (coniferous forest) and 312 (deciduous forest) at
better than 85%. We observe, therefore, that while area-wide land cover prod-
ucts at high resolution are needed and useful, high-resolution datasets for plant
physiology parameters such as LAI must also keep pace if these products are
to be of maximal utility.
Returning to Fig. 3.4, we note that when the number of observations is small,
the slope of a regression line is very sensitive to outliers. In the case of decid-
uous forests in 2000 and 2001 two outliers can be identified that have a strong
influence on the slope of the regression line: Bavaria and Baden Württemberg,
the two largest federal states of Germany. In Fig. 3.4 these states have the
largest values (on both axes), because of their large areas.
To compensate for the large effect of both: the potential outliers and forest
area underestimation, we normalized the CAI and MAI data for each NUTS-1
region by dividing these values by forest area, resulting in units of tons per km2
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Figure 3.6: Normalized estimated above-ground biomass increment from modelled

NPP versus empirical data from the NFI for Germany’s deciduous and coniferous

trees for 2000 and 2001. Each cross represents one NUTS-1 region. Thick lines show

linear regressions. Values are given in tons km2

per NUTS unit. For this the MAI data was devidid by the forest area reported
in the NFI and the CAI data by the combined area of GLC2000 and VCF as
used for the model run. The results are presented with linear regressions in
Fig. 3.6.
Figure 3.6 shows that BETHY/DLR does not exhibit an underestimation for
coniferous trees with these area normalized metrics, indicating that the un-
derestimation seen in Fig. 3.4 might indeed be explained by GLC2000’s area
underestimation, as discussed above. The R2 values of 0.61 and 0.53 still in-
dicate a reasonable degree of correlation.
The underestimated CAI for deciduous trees, observed in Fig. 3.4 and per-
sisting in Fig. 3.6 after area-normalization, might be explained by the models
internal model parameters related to carbon uptake: maximum carboxylation
rate and maximum electron transport rate. The values used for these parame-
ters were taken from Knorr (1997) (see also Knorr and Heimann (2001)), where
they were used for global carbon assessment; these values thus represent global
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mean values. However, forests in Germany are probably more productive than
the ”global mean” trees simulated by BETHY/DLR using these parameter val-
ues, because of their age. The last large reforestation programme in Germany
followed World War II, to mitigate the deforestation experienced during the
war. According to the NFI, the mean age of Germany’s forests is about 67
yr (81 yr for deciduous and 54 yr for coniferous trees), an age class that is
expected to exhibit a high rate of increase of timber biomass. Young and
old trees differ in their carbon allocation and fixation strategies; in particular,
carbon fixation and timber growth decreases with increasing tree age. In old
trees, the maintenance respiration rate is nearly as high as the carbon uptake
rate, and thus the large majority of GPP in older trees is dedicated to mainte-
nance. The carbon uptake of young trees, on the other hand, is mainly used for
growth. Studies show that the transition between these two metabolic regimes
occurs at about 60 to 80 yr of age (Zhou et al. (2006)). Therefore it is likely
that the values used for the maximum carboxylation rate and the maximum
electron transport rate are too low to accurately simulate the tree communities
of Germany (see Zähle et al. (2006) for further discussion of this issue).
Underestimations in the modelled NPP could also be the result of the neglect
of nitrogen deposition in the model. Luyssaert et al. (2010) showed an increase
in modelled NPP of up to 30% when nitrogen deposition is included in the
model formulation.
Uncertainties for deciduous trees are higher (R2 0.35 and 0.37) than for conifers,
which might indicate higher structural variability among deciduous tree species.
In particular, deciduous tree species exhibit greater variation in shape than do
coniferous tree species in nature.
Finally, it should be taken into account that NFI statistics can only produce
MAI values; these values were estimated from the difference between the first
NFI survey, in 1987, and the second, in 2002. Until NFI conducts a third
survey year, the effects of climatic variability cannot be captured by the NFI
statistics.
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3.8 Estimation of energy potentials

A further objective of this study is to derive energy potentials both from mod-
elled NPP and from NFI data. The energy potential of forests is of considerable
importance to the sustainable energy discussion and the development of sus-
tainable energy policy.
To estimate theoretical energy potentials, species-specific lower heating values
(H) can be used to convert from absolute dry above-ground biomass. Heat-
ing values represent the maximum energy obtainable from the combustion of
biogenic solid fuels, and are given in mega joules per kilogram. Since the
GLC2000 gives no information about tree species, but does differentiate be-
tween deciduous and coniferous trees, mean heating values representative of
each tree class were used. For this study, heating values for deciduous and
coniferous trees were calculated for each NUTS-1 unit (Table 3.5), taking into
account the relative abundance and age distribution of tree species in each
region. Heating values for the main deciduous (oak and beech) and coniferous
(pine and spruce) tree species can be found in many sources; see, for example,
Kaltschmitt and Hartmann (2001) and Grammel (1989). We assume sustain-
able management of forest biomass; following this assumption, only the mean
annual net increment of forest biomass is used to calculate theoretical energy
potential.
Since B (above-ground biomass; see Eq. (8) is determined for absolute dry
conditions, we calculated the energy potential (J) as shown in Eq. (9).

J = B ×H (3.9)

Using this equation, theoretical energy potentials for 2000 and 2001 were es-
timated from the above-ground biomass previously calculated from modelled
NPP (Fig. 3.7). Although the validation previously conducted had demon-
strated a systematic underestimation of NPP, no correction was applied here
to compensate for this, since such correction would have resulted in an incor-
rect spatial distribution of estimated energy potentials.
Comparison with Fig. 3.3 shows that those forest areas having the highest
NPP values also have the highest theoretical energy potentials. This is also
true, mutatis mutandis, for low NPP and energy potential, and is valid for
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Figure 3.7: Sustainable theoretically available energy potential, in terajoules per

1 km2 pixel, of forest areas in Germany for 2000 and 2001. Low energy potentials

are shown in blue, intermediate potentials in beige, and high energy potentials in

red. White represents, as in Fig. 3.3, areas which are not designated as forested by

GLC2000 (see Table 3.1).

both 2000 and 2001. Analysis revealed that the mean theoretical available
energy potential for coniferous forest is 17.5 (TJ km−2 yr−1) for 2000 and 2001,
while for deciduous forest these values are 25.0 (TJ km−2 yr−1) (2000) and
24.6 (TJ km−2 yr−1) (2001). Maximum values of 25.7 (TJ km−2 yr−1) (conifer-
ous forest) and 25.4 (TJ km−2 yr−1) (deciduous forest) were found.
The NFI data were also used to estimate empirical energy potentials, using Eq.
(10) for all thirteen NUTS-1 units in Germany (Table 3.5). These estimates
of energy potential are partitioned into the two main tree classes.
Since it was shown previously that underestimation existed both for the areas
of forests (as derived from remote sensing) and for modelled NPP, it is unsur-
prising that the empirical energy potential estimated from NFI data is 37%
higher than the theoretical estimate from modelled NPP.
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Table 3.5: Total forest areas, estimated increment of above-ground biomass from NFI data, heating values, and empirical energy

potentials of woody biomass for Germany’s NUTS-1 regions, partitioned into deciduous and coniferous tree classes.

NUTS-1 region Overall forest area Tree Type AGB increment Heating Value Empirical en-
ergy potential

(ha) (tons yr−1) (MJ kg−1) (PJ yr−1)

Hesse 813 092 deciduous 3 384 016 18.4 62.3
coniferous 3 037 591 19.3 58.7

6 421 607 18.8 121.0

Schleswig - Holstein 154 602 deciduous 876 626 18.4 16.1
coniferous 571 957 19.5 11.1

1 448 583 18.8 27.3

Lower Saxony, Hamburg & Bremen 1 081 248 deciduous 4 091 784 18.4 75.3
coniferous 4 966 180 19.9 98.9

9 057 965 19.2 174.2

North Rhine-Westphalia 835 763 deciduous 3 700 153 18.4 68.1
coniferous 3 733 869 19.1 71.3

7 434 021 18.7 139.4

Rhineland - Palatinate 794 432 deciduous 3 527 763 18.4 64.9
coniferous 2 972 838 19.3 57.5

6 500 601 18.8 122.4
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NUTS-1 region Overall forest area Tree Type AGB increment Heating Value Empirical en-
ergy potential

Baden - Württemberg 1 281 409 deciduous 4 869 976 18.4 89.6
coniferous 6 564 707 19.2 125.8

11 434 683 18.8 215.4

Bavaria 2 386 027 deciduous 7 253 796 18.4 133.5
coniferous 13 642 971 19.3 263.2

20 896 766 19.0 396.6

Saarland 92 131 deciduous 674 469 18.4 12.4
coniferous 318 401 19.2 6.1

992 871 18.7 18.5

Brandenburg & Berlin 973 017 deciduous 1 519 005 18.4 27.9
coniferous 4 058 284 20.9 84.7

5 577 289 20.2 112.6

Mecklenburg - Western Pomerania 492 673 deciduous 1 787 216 18.4 32.9
coniferous 1 817 119 20.3 36.9

3 604 336 19.4 69.8

Saxony 471 290 deciduous 1 090 393 18.4 20.1
coniferous 2 057 192 19.7 40.5

3 147 585 19.2 60.5
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NUTS-1 region Overall forest area Tree Type AGB increment Heating Value Empirical en-
ergy potential

Saxony - Anhalt 454 640 deciduous 1 241 898 18.4 22.9
coniferous 1 737 999 20.4 35.4

2 979 897 19.5 58.2

Thuringia 490 276 deciduous 1 356 655 18.4 25.0
coniferous 1 864 346 19.4 36.1

3 221 001 19.0 61.1

Germany 10 320 601 82 717 205 19.1 1579.9

Uncertainty ±1.25 ±103.5
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3.9 Conclusions

For this study we modelled the Net Primary Productivity (NPP) of German
forests for 2000 and 2001 using the dynamic biomass model BETHY/DLR. We
presented a new method for the validation of modelled NPP using empirical
data related to MAI of above ground biomass. Modelled NPP was converted
and aggregated to a net increment of above-ground biomass per NUTS-1 unit
for comparison to these empirical data. With this method we showed a high
degree of correlation between modelled and empirical NPP, although the mod-
elled NPP underestimated the empirical NPP. A comparison with data from
two eddy covariance flux towers revealed that BETHY/DLR represents an-
nual productivity patterns well (particularly for coniferous forest) but with
substantial underestimation.
In a second step, the sustainable theoretical energy potential of the above-
ground biomass was estimated, using heating values to convert estimated
above-ground biomass to energy units. For comparison, energy potentials were
also calculated from empirical data, which revealed that modelled energy po-
tentials are underestimated by 37%, a consequence of the prior underestimation
of modelled NPP.
Reasons for this pattern of underestimation were discussed; in particular, it was
shown that GLC2000 does not represent the spatial distribution of forest areas
well due to its limited resolution. We thus argue that 1 km2 resolution is in-
sufficient to describe the heterogeneous small-scale structure of mid-European
forests. For future modelling, the use of higher-resolution land cover products
might allow more accurate NPP estimation; this should be tested in future
research. To facilitate the use of such products, however, there is a need for
matching high-resolution datasets for vegetation metrics such as LAI.
Furthermore we hypothesize that the maximum carboxylation rate and maxi-
mum electron transport rate is age dependent and thus potentially responsible
for the underestimation of modelled NPP, since BETHY/DLR does not take
the tree age distribution into account. Further research in this area could thus
lead to more exact results.
Modelled NEP, NPP and GPP are typically validated using eddy flux tower
measurements, but such measurements are not available in many areas. Our
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presented validation method could therefore be helpful in the assessment of
model outputs both at a broader spatial scale, and in less developed coun-
tries. Our method will, additionally, allow the development of a downscaling
procedure for empirically derived NUTS-level data, allowing NUTS data to
be partitioned into smaller spatial units. Our MAI-based validation method
should, however, be tested in additional countries, and should be comprehen-
sively compared to validation using eddy measurements, so that the benefits
and drawbacks of each method are clearly understood.
This new MAI-based validation method will be useful in validating modelled
NPP; as we demonstrated here, that also allows the further estimation of
other metrics, such as bioenergy potentials. Such estimates of forest energy
potentials play an important role in planning for a sustainable economy. More
broadly, accurate and precise model results, crosschecked against empirical
data, are needed for a better understanding of optimal forest management and
the future possibilities of renewable energy.
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accepted for publication

4.1 Abstract

We present an approach to the estimation of sustainable straw energy poten-
tials using a modelled Net Primary Productivity (NPP) product validated by
empirical data on the managed area and mean yields for the main crops in
Germany. The Biosphere Energy Transfer Hydrology Model (BETHY/DLR)
is the theoretical framework to estimate NPP for agricultural areas in Ger-
many. It is driven by remote sensing data from SPOT-VEGETATION, mete-
orological data from the European Center for Medium-Range Weather Fore-
cast (ECMWF), and additional static datasets, as a land cover information
(GLC2000), a soil map (ISRIC-WISE) and an elevation model (ETOP05).
The output of BETHY/DLR, the yearly accumulated NPP, is first converted
to straw potentials using simple allocation rules (root-to-shoot and yield-to-
straw ratios) and then transferred to energy potentials using species-specific
lower heating values. The results for the years 2006 and 2007 are compared
with data from literature. With our method to estimating sustainable bio-
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energy potentials we found good agreements to established approaches, with
only little overestimations (up to 12%) and high correlations with R2 of up
to 0.78. Our analysis shows that the presented approach fills an important
gap in estimating energy potentials from modelled NPP. Such estimated straw
biomass energy potentials play an important role in the sustainable energy
debate.

4.2 Introduction

During the last sixty years the treatment of straw as a side product of cereal
production changed considerably in many developed countries. This is mainly
caused by the reduction of on field straw burning, which was done for improv-
ing fertilization, pest control and to avoid nitrogen immobilisation (Borresen
(1999)). The decreasing demand for straw as bedding litter in feeding lots
which is caused by changes in the housing systems (Jordan et al., 2008) also
resulted in an increase of available straw on fields in many regions. However
along positive effects of letting straw residues on field, like the stabilization of
the topsoil, specific crop rotations require the removal of the straw (Zebarth
et al., 2009). Cropping systems with a high straw supply rate can thus offer
the possibility of straw removal without changing the soil conditions.
The current politically motivated energy discussion has refocused the atten-
tion on renewable energy sources and thus on the energetic use of agricultural
by-products such as straw. Since no human food competition is related to its
use, it has a considerable potential, but is limited by several factors. For Cen-
tral Europe two major limiting factors can be stressed: animal husbandry and
demand for organic material for the humus-balance. During the last ten years
several studies have been conducted for Germany, all with the aim to assess
total and regional straw potentials (e.g.: Gauder et al. (2011), Zeller et al.
(2011), Pacan and Dröge (2010), Thrän et al. (2010), Fritsche et al. (2004)).
The general approach of these studies is to use empirical data on land use and
mean yields to estimate theoretical available straw potentials and sustainable
energy potentials after respecting use competitions. Thus a spatial limitation
to the resolution of the empirical data source is always given.
Besides these empirical approaches, remote sensing driven vegetation models,
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established to assess the carbon uptake by plants can also provide information
on the straw potential, but with spatial explicit resolution. Vegetation models
have become an important tool to answering questions concerning the mech-
anisms driving the carbon cycle and the roles of terrestrial carbon sinks and
sources (Cox et al. (1999)). Models as the Biosphere Energy Transfer Hydrol-
ogy (BETHY/DLR) model have already been tested to estimate sustainable
energy potentials for Germany forests (Tum et al. (2011)) and showed reason-
able good results. Reflecting on the current political discussion on renewable
energy sources, more detailed information on the local availability of straw
potentials are needed, if a sustainable and cost-efficiency use is aimed.
The primary objective of this study is to investigate an approach to the esti-
mation of straw potentials calculated from modelled NPP from BETHY/DLR,
at a 1 km2 spatial resolution. Statistical data on the land use and yields of the
main crops at level 3 of the "Nomenclature des Unite’s Territoriales Statis-
tiques" (NUTS) are used to calibrate the estimated straw potentials. For this
plant specific allocation schemes, as the root-to-shoot and yield-to-straw ratios
are used. Germany was selected as test areas due to data availability. Com-
puting time and hard disk storage issues restricted our modelling to the years
2006 and 2007.

4.3 Model description

BETHY/DLR is a special soil-vegetation-atmosphere-transfer (SVAT) model
that models photosynthesis, and takes into account environmental conditions
that affect it. SVAT models track the plant-mediated transformation of at-
mospheric carbon dioxide into energy-storing hydrocarbons such as sugars, a
process known as carbon fixation. BETHY/DLR was originally designed for
global applications (Knorr and Heimann (2001)) and was adapted for regional
use by Wißkirchen (2005).
The process of photosynthesis is parameterized following the combined ap-
proach of Farquhar et al. (1980) and Collatz et al. (1992). Dark and light reac-
tions of photosynthesis are calculated on leaf level and treated separately. With
this approach the photosynthesis rate can be limited either by light availability
or the carboxylation enzyme Rubisco, the key player in the Calvin cycle that
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fixes carbon. Because of their significant differences in their carbon fixation
physiologies so-called C3 and C4 plants are distinguished in BETHY/DLR. C4
plants such as sugar beet and corn can fix more atmospheric carbon dioxide
at higher temperatures than can C3 plants such as barley and wheat.
To extrapolate photosynthesis from leaf to canopy level, the canopy struc-
ture, and the soil-atmosphere-vegetation interaction is taken into account. For
closed and open canopies (forests, shrubs, grassland and crops) the photosyn-
thetic rate depends on the Leaf Area Index (LAI). Self shading is considered by
reducing the photosynthetic rate from canopy top to soil using the "two-flux
scheme" of Sellers (1985) with three canopy layers.
Besides photosynthesis, other energy transfers, such as heat fluxes between
vegetation and the atmosphere and the cooling effect of evapotranspiration,
are also considered. Furthermore the soil heat flux and the storage of heat in
the canopy is taken into account. The coupling of these processes is of great
importance, since temperature-dependent photosynthesis transforms light en-
ergy into chemical energy, and finally into carbohydrates, using water and
CO2.
The water cycle is also modelled and included in the interaction scheme. Three
reservoirs are considered: soil water, snow, and "skin" or "intercepted" water
on leaves and other parts of the vegetation, which change in time and space.
Soil water is available for vegetation, while evapotranspiration from vegetation
and evaporation from soil determine the water loss to the atmosphere. Water
limitation is modelled by calculating the demand for evapotranspiration using
the approach of Monteith (1965) with the criteria of Federer (1979), assuming
that evapotranspiration cannot be greater than the limit set by the soil water
supply and the water uptake of a plant’s roots. Thus when considering the
dynamic interaction of, for instance, the soil water balance and photosynthesis,
the natural behaviour of vegetation can be reflected, which is the motivating
idea of the SVAT approach.
Autotrophic respiration is modelled in BETHY/DLR as the sum of mainte-
nance respiration and growth respiration. Maintenance respiration is limited
by vegetation-specific dark respiration rates. Growth respiration is assumed
to be a constant fraction of NPP. The model output of BETHY/DLR is given
as a time series of NPP in daily steps, at the resolution and projection of the
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land cover classification. For this study the Global Landcover Classification
2000 (GLC2000) with a 1 km2 resolution is used.

4.4 Input data

The inputs of the BETHY/DLR model are two remote sensing datasets de-
rived from SPOT VEGETATION, meteorological time series data provided by
ECMWF, and two static datasets describing soil type and land elevation.

Meteorological data

BETHY/DLR needs meteorological time series with a temporal resolution of
at least once per day. The European Centre for Medium-Range Weather fore-
cast (ECMWF) provides this data with a spatial resolution of 0.25 ◦ × 0.25 ◦

and a temporal resolution of up to four times a day. The ECMWF INTERIM
dataset contains a broad variety of parameters from which air temperature
(at 2m height), wind speed (at 10m height), soil water content (in the four
uppermost layers), cloud cover and precipitation are used. The INTERIM re-
analysis combines meteorological station, satellite and airborne based measure-
ments. From these data we calculated daily mean, minimum and maximum
temperatures, daily mean cloud cover at three heights. Daily temperatures
were reprocessed at the 1 km2 resolution of the model output, adjusting for
the elevation difference between the ECMWF data and the elevation of each
model pixel, using a 1 km2 elevation map and the temperature gradient of the
international standard atmosphere (-0.65K per 100m).
We calculated the daily average photosynthetically active radiation (PAR)
from global radiation following the method of Burridge and Gadd (1974). Us-
ing this method PAR was calculated using the incident sunlight for the given
day and year, limited by atmospheric transmission, which depends on the de-
gree of cloudiness. Daily average cloud cover was calculated using a weighted
sum of each cloud layer. The advantage of this approach is to be seen in the
more exact results than the direct use of radiation forecast data (Wißkirchen
(2005)).
Daily volumetric soil water content data was needed to calculate the soil water
budged of the model. Soil type information was taken from the International
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Soil Reference and Information Centre-World Inventory of Soil Emission Po-
tentials (ISRIC-WISE) dataset, which is a harmonization of the global FAO-
UNESCO Soil Map of the World (FAO (1974)) and is available with a 5 × 5
arcminutes resolution.

Remote Sensing Data

In addition to meteorological data BETHY/DLR is driven by two remote sens-
ing based datasets. These are time series of the LAI and a detailed and ho-
mogenous land cover/land use product. LAI time series are used to indicate
the phenology of vegetation and are based on the CYCLOPES 10-day com-
posites dataset, provided by the POSTEL (Pole d’Observation des Surfaces
continentales par Teledetection) database.
For each 1 km2 pixel time series analysis, namely the harmonic analysis, was
applied to fill data gaps and eliminate outliers. The harmonic analysis de-
composes a time series into a linear combination of suitable trigonometric
functions, (sine and cosine oscillations) of particular periodicities. In principal
the power spectrum is deconvolved by iteratively finding and subtracting the
highest peak of the time series power spectrum.
The CYCLOPES database also provides a land cover and land use information,
given as the GLC2000 (Fritz et al. (2003), Bartholome and Belward (2005)).
For the derivation of the GLC2000 land cover classes the "Land Cover Classifi-
cation System (LCCS)" of the FAO was used (DiGregorio and Jansen (2001)).
The GLC2000 dataset is representative for the year 2000 and includes 22 differ-
ent land cover classes. The CYCLOPES / VITO dataset was chosen because
it is thought to be the most accurate dataset for agricultural areas (Garrigues
et al. (2008)).

4.5 Energy Potentials

The main objective of this study is to derive sustainable straw energy potentials
from modelled and validated NPP (Tum and Günther (2011)) for agricultural
areas in Germany, and to compare these with recently published estimates.
Straw energy potentials are of considerable importance to the sustainable en-
ergy discussion and the development of sustainable energy policy.
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Before estimating the energy content of straw the modelled NPP needs to be
transferred to dry above ground biomass. This can be done by using simple
crop specific allocation schemes. Because the GLC2000 only gives informa-
tion about the general land use an additional dataset, describing the area use
and yields for the main crops was needed, to differentiate straw crops, such
as wheat, barley and non-straw crops such as sugar beet and potatoes. We
used empirical data from the Federal Statistical Office of Germany. This farm
structure survey is conducted yearly. It contains yield and area use infor-
mation for the main crops on NUTS-3 resolution. The "NUTS" hierarchical
spatial classification starts with the member states of the European Commu-
nity (EU) (NUTS-0), followed by regions of the EU (NUTS-1), separated to
basic administrative units (NUTS-2) and ends with subdivisions of those basic
administrative units (NUTS-3). As the dataset contains gaps, a criterion was
needed to fill these. We assumed that gaps for a given crop may be filled using
the mean yield of the given crop from the German NUTS-3 units.
In a first step the modelled NPP of BETHY/DLR was aggregated to NUTS-3
units and put in relation to NPP values per NUTS-3 unites calculated from
empirical data, as described in Tum and Günther (2011). To calculate the
NPP of straw-providing crops (NPPs) the NPP of non-straw-providing crops
(NPPns) was subtracted from the aggregated modelled NPP per NUTS area
(NPPN) considering the percentage land use as described in the empirical
dataset.

NPPs = NPPN −NPPns (4.1)

The remaining NPPs was then transferred to above ground NPP (NPPa) by
subtracting the below ground NPP part (NPPb) using crop specific root to
shoot ratios:

NPPa = NPPs −NPPb (4.2)

In a next step the straw content (NPPst) of NPPa was calculated by subtract-
ing the yield content (NPPyi) using crop specific yield to straw ratios:
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NPPst = NPPa −NPPyi (4.3)

The final sustainable straw potential (Spot) was then calculated by adding non
carbon (nonC) and water (H2O) contents to NPPst. The empirical factor of
0.29 was taken from Gauder et al. (2011), to respect use competitions of the
harvested straw.

Spot = (NPPst +H2O +non C)× 0.29 (4.4)

Crop specific root to shoot and yield to straw ratios, water and non carbon
contents were taken from Tum and Günther (2011).
The now available Spot values per NUTS-3 region can directly be used to esti-
mate sustainable straw energy potentials. For this species-specific lower heat-
ing values (H) are needed to convert dry above ground biomass to energy.
Heating values represent the maximum energy output from burning biogenic
solid fuels and are given in mega joules per kilogram. Since the GLC2000 gives
no information about crop species a mean heating value per NUTS-3 unit was
calculated (〈H〉). For this study, heating values for rye-, wheat-, barley- and
rapeseed straw from Kaltschmitt and Hartmann (2001)) were used.
For each NUTS-3 unit we calculated the energy potential (Jn) as shown in Eq.
5.

Jn = Spot × 〈H〉 (4.5)

In a last step the energy potentials per NUTS-3 units were spatially reallocated
using the modelled NPP values. For this we assumed high NPP values of the
model output to be representative for high energy potentials and vice versa.
For each pixel (i) we calculated the energy content (Ji) as presented in Eq. 6.

Ji =
NPPi
NPPN

× Jn (4.6)

With this approach we have assumed that the percentage of straw-providing
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crops for each pixel is the same as for the full NUTS-3 region.

4.6 Results and Discussion

Figure 4.1 depicts estimated annual straw energy potentials for Germany in
2006 and 2007 at the study’s spatial resolution of 1 km2. For both years areas
with high energy potential values can be identified central Germany. This area
is located in the Magdeburger Börde which is well known for its extensive agri-
cultural use. Other areas as the Münsterland in Northwest Germany and parts
of Southeast Germany show a high variability over the two years of observation.
Overall the calculated energy potentials for 2006 are lower than for 2007, which
we assume to be caused by climate conditions. The mean annual energy po-
tential for 2006 was 0.52 [TJkm−2 y−1] with a maximum of 2.85 [TJkm−2 y−1];
for 2007 the mean annual energy potential was 0.70 [TJkm−2 y−1] with a max-
imum of 2.75 [TJkm−2 y−1]. Total annual estimated energy potential was thus
156PJ for 2006 and 217PJ for 2007.
Our estimates are in good agreement to values calculated from mean straw po-
tentials reported in literature (Zeller et al. (2011)). They used three different
methods to estimate annual straw potentials for Germany and the 16 federal
states taking into account the humus balance which is required for sustain-
able crop and soil management and which is the basis for the direct payment
obligation - accounting regulation. Depending on the method of estimation,
a mean annual energy potentials of 112 to 186 [PJy−1] is calculated for Ger-
many applying a mean heating value H of 14.05MJkg−1. The heating value
is representative for dry matter with 14% moisture.
In addition to the annual sum we analyzed the correlation of the modelled
sustainable energy potential of both years with the mean sustainable energy
straw potential for each Federal State of Germany as given in Zeller et al.
(2011). Therefore the biomass potential was transferred into energy potentials
using a mean H value of 14.05MJkg−1 as before. The results are presented as
linear regressions in Figure 4.2.
Figure 4.2 shows for both years that the calculated sustainable energy poten-
tial from BETHY/DLR model tends to slightly overestimate on the Federal
State level. The R2 values of 0.78 and 0.70 indicate a high degree of correlation
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Figure 4.1: Sustainable energy potential, in terajoules per 1 km2 pixels of agricul-

tural areas in Germany for 2006 and 2007, modelled by BETHY/DLR. Low energy

potentials are shown in blue, intermediate in beige, and high energy potentials in red.

Grey represents areas which are not designated as managed areas by GLC2000.

Figure 4.2: Correlation of sustainable energy potentials for the 16 Federal States

of Germany derived from modelled NPP with data from Zeller et al. (2011). Energy

potentials are modelled for 2006 and 2007. Data points indicate energy potential of

the Federal States. Doted lines indicate perfect correlation; solid lines indicate the

correlation found by linear regression. Energy potentials are given in PJ per Federal

State (FS) and year.
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for both years. In order to quantify the agreement of our estimations to the
literature data, the root mean square error (RMSE) was calculated for both
years; for 2006 the RMSE is 3.9PJFS−1 y−1 and for 2007 6.5PJFS−1 y−1. It
is obvious from Figure 4.1 that the sustainable energy potentials for most re-
gions of Germany are reduced compared to 2007. Our assumption that this
finding is related to meteorological conditions is supported by a note in the
agro meteorological bulletin of the MARS (Monitoring Agriculture with Re-
mote Sensing) project (JRC (2006)). There the year 2006 is characterized as
"a below-average cereal season explained by hot and dry summer followed by
over-wet conditions at harvest". For Germany a mean yield for wheat (in-
cluding soft and durum wheat) of 6.6 tons per hectare is reported while the 5
years moving average is estimated to 7.4 tons per hectare. This corresponds
to a reduction of about 11%. On the other hand barely and grain maize show
the same yield as for the previous years. Thus a slight reduction of the total
cereal yield for Germany is observed for 2006 compared to the 5 years average.
In the year 2007 the cereal production in "Germany was again limited by wet
conditions at harvest (winter cereals) but not on the same amplitude as in
2006" (JRC (2007)). The yield forecast for wheat in 2007 is in the range of
the 5 years average. For barely the forecast is about 3% lower while for grain
maize the yield forecast is about 8% higher than the average yield. In total,
2007 is a more productive year than 2006 according to the MARS bulletins.
This finding is supported by our results.
Looking again to figure 4.1, it is obvious an interesting feature with high en-
ergy potentials can be identified in central Germany, namely the Magdeburger
Börde. This region is also an area with extensive agricultural use. For this
area the ISRIC-WISE dataset reports cambisols and chernozems. Especially
chernozems are highly fertile soils and thus favourite agricultural areas. Thus
constantly high straw potential are expected as seen for both years.
In Northwestern Germany, namely the Münsterland, high energy potentials are
observed for 2006 and also to minor degree in 2007. In the Münsterland the
precipitation sum for the full year 2006 (732mm) is considerably lower than for
2007 (831mm) and even lower than the 10 years average (781mm). A similar
pattern for the precipitation is seen in the area around Landshut in southeast
Germany for 2006 and 2007. For the Landshut area the precipitation for the
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Table 4.1: Precipitation rates given in milimeters and mean temperature given in
◦C for the Münsterland and Landshut area for 2006 and 2007.

Münsterland Landshut area

10 year mean precipitation sum [mm] 781 779
10 year mean precipitation sum [mm] for the
growing season (15. Mar. - 30. Sept.)

432 422

10 year mean temperature (15. Mar-30.
Sept.) [◦C]

15.2 14.7

2006 2007 2006 2007

Precipitation sum (1. Jan.-31. Dec.) [mm] 732 831 736 971
Mean temperature (1. Jan.-31. Dec.) [◦C] 11.4 11.4 9.4 10.1

Precipitation (15. Mar-30. Sept.) [mm] 475 496 427 558
Mean temperature (15. Mar-30. Sept.) [◦C] 14.9 15.4 13.9 15.0

full year 2006 is about 736mm while for 2007 971mm of precipitation was
measured as presented in Table 4.1. When discussing the energy potential of
straw and in turn the biomass development the most important meteorological
parameters are the precipitation and the mean temperature in the growing sea-
son. For our analysis we defined the growing season from 15. April till end of
September. In the growing season the precipitation of both years is higher than
the 10 years average, for both regions. An analysis of monthly mean temper-
atures, which we calculated from daily values taken from ECMWF data, was
performed for both regions to investigate potential warming or cooling effects
on the plant growth and finally on the straw energy potential. The time series
of the mean monthly temperature for the Münsterland and Landshut area are
presented in Figure 4.3 for both years. The monthly mean temperatures for
2006 and 2007 are significantly different in the non productive time period
(January to mid March and October to December) for both regions. However
for the growing season (mid March to September) small changes can be found.
The mean temperature during the growing period from mid March to Septem-
ber is lower in 2006 than in 2007 for the Landshut region and equal for the
Münsterland region. Compared to the 10 years average, the mean temperature
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Figure 4.3: Monthly mean temperatures in ◦C for the Münsterland (left) and Land-

shut area (right) for 2006 (triangles) and 2007 (diamonds).

for 2006 is lower for both regions. An explanation for the high energy poten-
tials in the Münsterland in 2006 and in the Landshut region in 2007 can be
found when looking at the scatterplot of mean temperature and precipitation
in the growing season as shown in Figure 4.4 for the years 1999 to 2010. All
mean values of meteorological parameters are based on daily ECMWF data.
It becomes evident that for the Landshut region the growing season of 2006 is
relative cold and wet while the growing season of 2007 is relative warm and wet
(compared to the 10 years average, shown in Figure 4.4 as an open diamond).
For the Münsterland, the growing season of 2006 is only a little bit colder and
wetter than the 10 years average but the growing season of 2007 is a little bit
warmer and significantly wetter than the 10 years average. These findings can
be summarized that the meteorological conditions in the Münsterland in 2006
are more favourable than in 2007. For the Landshut region, the cold conditions
in 2006 reduce biomass growth and thus energy potential of straw.
When looking at the mean yields for two NUTS-3 units which are representa-
tive for the two described regions it becomes evident that our modelled NPP
data reproduce lower yields and thus lower straw potentials (Table 4.2) for the
Landshut region for 2006 and for the Münsterland for 2007. The mean yield
for the two NUTS-3 units comes from the agricultural statistical survey.
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Figure 4.4: Scatterplot of the precipitation sum [mm] and the mean temperature

[◦C] for the growing season (15. March - 30. September) for the 11 years (1999

- 2010). Data for the Münsterland are presented as squares (magenta) while data

for the Landshut region are given as diamonds (blue). The average values for both

regions are presented as open symbols.

Table 4.2: Mean yields for prominent straw-providing crops for two NUTS-3 units

in Germany for 2006 and 2007. Steinfurt is representative for the Münsterland area

while Landshut represents the Landshut area. Values are given in dt ha−1.

Winter
wheat

Rye Winter
barley

Summer
barley

Oats Triticale Other
Cereals

Landshut
2006 70.4 54.3 56.8 46.7 49.6 68.8 57.8
2007 78.6 62.1 65.3 51.0 50.0 76.2 63.9

Steinfurt
2006 68.4 60.4 59.2 44.5 39.7 54.7 54.5
2007 60.7 40.7 48.5 34.3 38.3 47.3 45.5
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4.7 Conclusion

Sustainable straw energy potentials for Germany for 2006 and 2007 were esti-
mated using modelled NPP from the vegetation model BETHY/DLR. Inputs
for the model were LAI time series from the VEGETATION satellite, meteo-
rological data from ECMWF and land cover/land use data from the GLC2000.
We here present an approach to estimate sustainable energy potentials using
empirical data on average grain yields and acreage of main crops on NUTS-3
level. Using conversion factors (root-to-shoot and corn-to-straw ratios), the
modelled NPP data was converted to harvested straw per NUTS unit, taking
into account NUTS specific land use practices. Compared to recently pub-
lished straw potential values this method yielded reasonable high coefficients
of determination (R2 up to 0.78) combined with a slight overestimation (up
to 12%), allowing strong conclusions to be drawn about the usability of the
presented method.
For individual areas changes in the rate of precipitation and mean annual tem-
perature could be shown. We furthermore proofed lower mean temperatures
and wet conditions, especially for the growing season to be correspondent with
lower mean grain yields. We hypothesize significant cooler mean temperatures
for the growing seasons combined with high precipitation rates to be the cause
of yield losses. In the corresponding signal of our calculated sustainable en-
ergy potential this phenomena can also be found. In this we see another good
indicator on the usability of our method.
This study illustrates an approach of calculating sustainable straw energy po-
tentials that we believe will be useful in estimating energy potentials from
modelled NPP products on a medium resolution. This method could also be
used as a downscaling approach for empirically derived straw potential data
on NUTS level, since the model results could help to spatially represent the
NUTS information.

4.8 Acknowledgements

This study was conducted under EU FP7 projects EnerGEO (Grant agreement
no.: 226364). Thanks are given to ECMWF, MediasFrance and IIASA for



86

providing their data. Thanks are extended to Prof M Kappas (Georg August
University, Göttingen) for supervision and invitation to this article.



Chapter 5
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carbon fixation in agricultural

models to input data?
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5.1 Abstract

Background

Process based vegetation models are central to understand the hydrological
and carbon cycle. To achieve useful results at regional to global scales, such
models require various input data from a wide range of earth observations.
Since the geographical extent of these datasets varies from local to global
scale, data quality and validity is of major interest when they are chosen for
use. It is important to assess the effect of different input datasets in terms of
quality to model outputs. In this article, we reflect on both: the uncertainty in
input data and the reliability of model results. For our case study analysis we
selected the Marchfeld region in Austria. We used independent meteorological
datasets from the Central Institute for Meteorology and Geodynamics and
the European Centre for Medium-Range Weather Forecasts (ECMWF). Land
cover / land use information was taken from the GLC2000 and the CORINE
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2000 products.

Results

For our case study analysis we selected two different process based models:
the Environmental Policy Integrated Climate (EPIC) and the Biosphere En-
ergy Transfer Hydrology (BETHY/DLR) model. Both process models show
a congruent pattern to changes in input data. The annual variability of NPP
reaches 36% for BETHY/DLR and 39% for EPIC when changing major in-
put datasets. However, EPIC is less sensitive to meteorological input data
than BETHY/DLR. The ECMWF maximum temperatures show a systematic
pattern. Temperatures above 20 ◦C are overestimated, whereas temperatures
below 20 ◦C are underestimated, resulting in an overall underestimation of
NPP in both models. Besides, BETHY/DLR is sensitive to the choice and
accuracy of the land cover product.

Discussion

This study shows that the impact of input data uncertainty on modelling
results need to be assessed: whenever the models are applied under new con-
ditions, local data should be used for both input and result comparison.

5.2 Background

Modelling the net carbon uptake by vegetation (Net Primary Productivity,
NPP) and estimating the yields of agricultural plants have become important
tools to study the mechanisms of carbon exchange between the atmosphere
and vegetation, as well as issues of food security. Different approaches are cur-
rently tracked which can be grouped to their approaches how photosynthesis
is modelled.
Models describing the chemical, physical and plant physiological processes of
plant development and the interaction of plants with the atmosphere can be
applied to simulate the rate of carbon dioxide uptake of the plant through
photosynthesis (called Gross Primary Productivity, GPP). These models fol-
low the concept of Monsi and Saeki (1953) and Monteith (1965) to simulate
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the process of photosynthesis. Moreover, carbon uptake of well-watered and
fertilized annual plants is linearly related to the amount of absorbed Photosyn-
thetically Active Radiation (PAR), which can be derived from satellite data
(i.e. the fraction of PAR which is absorbed by the canopy; cp. McCallum
et al. (2010) or calculated by the accumulation of dry matter.
NPP is defined as the difference between GPP and autotrophic respiration.
Therefore, it is important to estimate the autotrophic respiration of plants
following the determination of GPP. Autotrophic respiration is defined as the
oxidation of organic compounds found in roots, stems and leaves, to CO2 or
water. In the literature, different approaches to estimate autotrophic respira-
tion are discussed, taking into account the actual biomass or GPP (e.g. Knorr
and Heimann (2001), Running et al. (2000), Goetz et al. (1999)). When the
Light Use Efficiency (LUE) approach is integrated in a coupled soil - plant -
atmosphere model as in the EPIC (Environment Policy Integrated Climate)
model, daily estimates of evapotranspiration and carbon assimilation fluxes
can be obtained Williams (1995).
In contrast to these models, more sophisticated approaches are in use and un-
der development. These models track photosynthesis on the molecule level.
They take into account the interaction between plants, atmosphere and soil by
simulating the uptake and release of carbon by plants and soil in a physically
consistent way including conservation of energy and momentum.
In the literature one can find descriptions of established vegetation models for
use on different scales Bondeau et al. (2007), Krinner et al. (2005), Haxeltine
and Prentice (1996), Prentice et al. (1992). Each of these models is driven by
meteorological input data and parameterized for global use with special focus
on the long-term competition between the plant functional types when natural
disturbance and succession driven by light competition occur. Models with a
spatial resolution of kilometres and a time horizon of some years as e.g. the Ex-
amples are soil-vegetation-atmosphere-transfer (SVAT) model BETHY/DLR
(Biosphere Energy Transfer Hydrology Model) Wißkirchen (2005) can be used
for regional assessments of NPP or biomass development.
During the last decades, the use of both modelling approaches was often met
with resistance, mainly because of the need of calibration, validation and de-
termination of the level of uncertainty (e.g.: Battaglia et al. (2004), Sands
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et al. (2000), Vancley and Skovsgaard (1997)). Furthermore for many users,
i.e. policy makers, it is difficult to judge whether the model outputs are within
acceptable levels of uncertainty or not, mainly due to their limited background
in model development Jakeman et al. (2006). However, in this context it is of
importance to the policy maker to understand the validity of the model results
and their associated uncertainties.
Since empirical research traditionally advances in its data accuracy and va-
lidity - in contrast - process-based models do not always provide comparable
outputs, it is difficult to judge on the quality of modelled data, especially
with the traditional criteria for assessing scientific outcomes van Oijen (2002).
However, regardless of the data’s source, there will always be some uncertainty
associated with it.
To address these issues, we have assessed the variability of the soil-vegetation-
atmosphere-transfer model BETHY/DLR (Wißkirchen (2005)) and the bio-
physical process model EPIC (Williams (1995)) on three different meteoro-
logical input datasets and two land cover maps. Since the two models were
designed for different specific purposes, we do not intend to discuss advantages
or disadvantages but place special attention on the investigation of model sen-
sitivity to the spatial resolution of the input datasets. The Austrian Marchfeld
region has been chosen as case study analysis because many datasets (table
5.2) are readily available. The period of investigation is 2000 to 2003. It is
important to note that this study is not a classical sensitivity analysis for as-
sessing systematically the responses of models to changes in input data and
model parameters (e.g. Lamboni et al. (2009), Larocque et al. (2008), White
et al. (2000), Recknagel (1984)), but a model variability analysis.

5.3 Methods

Biophysical process models

EPIC is a comprehensive model under continuous development since 1981,
capable of simulating many agricultural processes that occur as a result of cli-
mate forcing, landscape characteristics, soil conditions and crop management
schemes (Williams (1995), Izaurralde et al. (2006), Williams et al. (1984)).
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Biophysical processes simulated with EPIC include among others plant and
crop growth, hydrology, wind and water erosion, and nutrient cycling. These
processes are simulated with daily time steps or smaller. EPIC contains al-
gorithms that allow for a complete description of the hydrological balance at
the small watershed scale (up to 100 ha) including snowmelt, surface runoff,
infiltration, soil water content, percolation, lateral flow, water table dynam-
ics, and evapotranspiration. Daily weather can be endogenously generated for
precipitation, temperature, solar radiation, wind, and relative humidity or it
can be input exogenously.
EPIC uses the concept of radiation-use efficiency by which a fraction of daily
photosynthetically active radiation is intercepted by the plant canopy and con-
verted into plant biomass. The leaf area index is simulated as a function of heat
units, crop stress and development stages. Daily gains in plant biomass are af-
fected by vapor pressure deficits and atmospheric CO2 concentration (Stockle
et al. (1992)). Crop yield is simulated using the harvest index which is affected
by the heat unit factor and includes the amount of the crop removed from the
field as well as the above-ground biomass. Stress indices for water, tempera-
ture, nitrogen, phosphorus and aeration are calculated daily using the value
of the most severe of these stresses to reduce potential plant growth and crop
yield. Similarly, stress factors for soil strength, temperature, and aluminum
toxicity are used to adjust potential root growth (Jones et al. (1991)).
The soil water balance depending on the potential water use, the root zone
depth and the water use distribution parameter is applied in a general water
use function where any water deficit can be overcome if a layer that is encoun-
tered has adequate water storage. The potential water use is reduced when
the soil water storage is less than 25% of plant-available soil water by using
dependencies on the soil water contents at field capacity and wilting point
(Williams (1995)).
BETHY/DLR belongs to the family of SVAT models, which track the trans-
formation of atmospheric carbon dioxide into energy storing sugars, a process
known as photosynthesis. BETHY/DLR is based on the Jena Scheme of At-
mosphere Biosphere Coupling in Hamburg (JSBACH) by Knorr and Heimann
(2001) and was modified by Wißkirchen (2005). The JSBACH model was
originally considered for global usage and computes the biosphere-atmosphere
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exchange within the Global Circulation Model ECHAM5 (European Centre
Hamburg). BETHY/DLR as well as JSBACH use the combined approach to
integrate photosynthesis (Farquhar et al. (1980), Collatz et al. (1992)), which
means that the enzyme kinetics are parameterized on the leaf level. In this
context, C3 and C4 plants are distinguished because of significant differences
in the way of their carbon-fixation: C4 plants (e.g. corn and sugar cane) are
able to fix more atmospheric carbon dioxide at high temperatures than C3
plants (e.g. wheat and barley). Thus, the photosynthesis of C3 plants is sat-
urated at higher temperatures. In a second step, the rate of photosynthesis is
extrapolated from leaf to canopy level by taking into account both, the canopy
structure as well as the interaction of the plant between soil, atmosphere and
vegetation. The two-flux scheme of Sellers (1985) which includes three canopy
layers, is used to approximate the radiation absorption in the canopy. Evapo-
transpiration, stomatal conductance and the soil water balance is included in
the model formulation. To compute NPP on an annual basis snow is included
in the water budget. Water stress is considered by calculating the demand
for evapotranspiration using the approach of Monteith (1965) limited by the
criteria of Federer (1979). Here it is assumed, that evapotranspiration can not
be higher than a certain soil water supply via roots. Autotrophic respiration
is evaluated as the sum of maintenance and growth respiration. The plant
specific dark respiration determines the maintenance respiration, while growth
respiration is assumed to be proportional to the difference between GPP and
maintenance respiration. The main outputs of BETHY/DLR are given by time
series of GPP, NPP, evapotranspiration, and of soil water content in daily steps
with the spatial resolution of the respective land cover classification. A more
detailed model description can be found in Wißkirchen (2005).
The general characteristics as e.g. main outputs and the general formulation
to compute NPP of the two models BETHY/DLR and EPIC are presented in
table 5.1.
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Table 5.1: General characteristics of the biophysical process models EPIC and

BETHY/DLR.

BETHY/DLR EPIC

Abbreviation Biosphere Energy Transfer
Hydrology Model

Environmental Policy Inte-
grated Climate

References Knorr and Heimann (2001);
Wißkirchen (2005)

Williams et al. (1984);
Williams (1995); Izaurralde
et al. (2006)

Model type Dynamic vegetation model Deterministic crop model
Time step Daily Up to < 1 day
Main simulation
processes

GPP, NPP, NEP, evap-
otranspiration, soil water
content

plant and crop growth, heat
and water balance, wind
and water erosion, nutrient
cycling

General formu-
lation to com-
pute NPP

NPP = GPP - autotrophic
respiration

NPP = (yield + straw +
roots) - (water content +
non carbon fraction)

5.4 Framework of Case Study Analysis

The Austrian Marchfeld region serves as case study area to assess the variabil-
ity of the two biophysical process models on alternative input datasets. The
EPIC model has already been applied and validated here Schmid et al. (2004),
and the data necessary for our study is readily available (see table 5.2). The
Marchfeld region is located in Lower Austria, part of the Vienna Basin, and
forms with around 100,000 ha one of the largest plains in Austria. Around
75% of the area is used for agricultural production. The natural boundaries
are to the East the river March (the Austrian border to Slovakia), to the North
the hills of the Weinviertel, to the West the mountain range of Bisamberg and
the city of Vienna, and to the South the river Danube. For locating the region
a map is presented in figure 5.1.
Since land use practices are not homogenously distributed in this area, five
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Figure 5.1: The case study area Marchfeld with the four sub-regions (upper figure),

with underlying CORINE land cover dataset 2000. Green pixels represent forest, red

and violet pixels urban areas, brown pixels shrub land, and yellow pixels agricultural

areas. The lower figure highlights the location of the Marchfeld region. The red square

represents the map extract of the upper figure.
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sub-regions have been identified using the cluster analysis methods Hofreither
et al. (2000). Each sub-region has an area of in between 85 km2 and 250 km2.
The urban land cover as well as forest and shrub lands have not been taken
into account in the variability analysis. Five typical soils have been selected
with respect to majority criteria for the agricultural land cover (four different
Chernozems and one black earth; Schmid et al. (2004)).
The biophysical process models have been applied with different meteorological
inputs (table 5.2) from the period 2000 to 2003. We have used meteorologi-
cal observations from weather stations of the Central Institute for Meteorology
and Geodynamics (ZAMG) in the Marchfeld region, reallocated meteorological
data from weather stations across Austria of ZAMG Strauss et al. (2012), and
meteorological data from the European Centre for Medium-Range Weather
Forecasts (ECMWF).
The meteorological observations (ZAMG) are from the weather station in Gross
Enzersdorf, and provide daily values of six weather parameters including mini-
mum and maximum temperatures, relative humidity, wind speed precipitation
and solar radiation.
Strauss et al. (2012) developed a reallocated meteorological dataset comprising
climate data for Austria and the period from 1975 to 2007 with temporal and
spatial resolution of one day and 1 km2. In addition climate change scenarios
have been developed for the period 2008 to 2040. They processed daily data
from 34 weather stations of ZAMG to 60 spatial climate clusters with homo-
geneous climates relating to mean annual precipitation sums and mean annual
temperatures from the period 1961-1990. Based on these precipitation and
temperature classes four climate clusters describe the climate in the March-
feld region (cluster 1: mean annual precipitation sums smaller than 500 mm
and mean annual temperatures between 8.5 ◦C and 9.5 ◦C; cluster 2: mean
annual precipitation sums smaller than 500 mm and mean annual tempera-
tures between 9.5 ◦C and 10.5 ◦C; cluster 3: mean annual precipitation sums
between 500 mm and 600 mm and mean annual temperatures between 8. 5◦C
and 9.5 ◦C; cluster 4: mean annual precipitation sums between 500mm and
600mm and mean annual temperatures between 9.5◦C and 10.5◦C). For each
homogenous climate cluster, Strauss et al. (2012) performed regression model
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Datatype Period
used

Resolution
of space
and time

Parameters used Characteristics References

Meteorology 2000-2003 weather
stations;
daily

Precipitation; Minimum temper-
ature; Maximum temperature;
Wind Speed; Radiation; Relative
Humidity

Measured time series Central Insti-
tute for Mete-
orolo6gy and
Geodynamics
(ZAMG)

Meteorology 2000-2003 1 km2 grid;
daily

Precipitation; Minimum temper-
ature; Maximum temperature;
Wind Speed; Radiation; Relative
Humidity

Reallocated time series
(from now on ’ZAMG
reallocated’)

Strauss et al.
(2012)

Meteorology 2000-2003 0.25 ◦; up
to 4 times
a day

Precipitation; Minimum temper-
ature; Maximum temperature;
Wind Speed; Cloud cover; Soil
Water Content

Time series of model re-
analysis (ERA-40)

European
Centre for
Medium-Range
Weather Fore-
casts (ECMWF)
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Datatype Period
used

Resolution
of space
and time

Parameters used Characteristics References

Vegetation
Indices

2000-2003 1 km2 grid;
36 time
steps per
year

Leaf Area Index (LAI) Global coverage Pôle
d’Observation
des Surfaces
continentals par
TELédétection
(POSTEL)

Landcover 2000 1 km2 grid,
year 2000

Land cover / land use informa-
tion; 22 classes

Global coverage (GLC2000) Bartholome
et al. (2002);
DiGregorio and
Jansen (2001)

Landcover 2000 1 ha grid,
year 2000

Land cover / land use informa-
tion; 44 classes

European coverage
(CORINE 2000)

Bossard et al.
(2000)

Census 1999
’Agrarstruk-
turerhe-
bung’

Marchfeld
sectors,
year 1999

Agricultural land use informa-
tion; Main soil type distribution
Land use data of farms aggre-
gated to municipalities

Schmid et al. (2004);
Schmid et al. (2007)
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analyses primarily to compute a set of daily climate data for the time pe-
riod 2008 to 2040. This method has also been applied for the time period 1975
to 2007 to provide a consistent dataset. The integral parts of the regression
model are i) the consideration (extrapolation in the period 2008 to 2040, re-
spectively) of the observed linear temperature trend from 1975 to 2007 derived
from a homogenized dataset, and ii) the repeated bootstrapping of tempera-
ture residuals and of observations for solar radiation, precipitation, relative
humidity, and wind speed to ensure consistent spatial and temporal correla-
tions. We have also used these reallocated data for the period 2000 to 2003 in
our variability analysis.
The third dataset is derived from ECMWF data and has a temporal resolution
of up to four times a day and a spatial resolution of 0.25 ◦ × 0.25 ◦. It includes
model analysis data of 2m air temperature, cloud cover, soil water content of
the four upper layers and wind speed at 10m above ground. From this dataset
the daily mean, as well as minimum and maximum temperatures and the daily
mean of cloud cover in all three strata (high, medium, low) are used. The daily
temperature values are scaled with the difference between ECMWF reference
height and the global ETOP05 (Earth Topography and Ocean Bathymetry
Database) 5-minute gridded elevation data by using the temperature gradient
of the U.S. Standard Atmosphere (-0.65K per 100m) in order to downscale
the ECMWF temperature data to km2 resolution. Precipitation values are
derived twice a day from the ECMWF re-analysis project (ERA-40). PAR is
not used directly from the corresponding ECMWF product data as it is only
available as forecast data and therefore rather uncertain. Thus, daily PAR is
determined from global radiation which is computed following the approach of
Burridge and Gadd (1974) taking into account the geographical coordinates of
the day, and using a transmission, which depends on the degree of cloudiness.
The degree of cloudiness is calculated as a weighted sum of each cloud strata
for each day, and the global radiation is calculated for each location in the time
step of one hour. The advantage of this approach is the use of analysis data of
cloud coverage to compute PAR data which leads to more exact results than
directly using the PAR forecast data Wißkirchen (2005).
Hence the BETHY/DLRmodel needs an initial soil water content, the ECMWF
soil water dataset is used only for the transient phase of the model. Afterwards
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the model simulates the soil water content independently, according to the
hydrological boundary conditions. Investigations of Wißkirchen (2005) have
shown that in most cases sufficient hydrological boundary conditions are avail-
able after a transient phase of about one year.
In addition to the meteorological data, the BETHY/DLR model is driven by
two sets of remote sensing data. Detailed and homogenous land cover /land use
information are used to get information about the vegetation types the model
is run for. Vegetation is represented by time series of the Leaf Area Index
(LAI). Time series of LAI were used from the "Carbon cycle and Change in
Land Observational Products from an Ensemble of Satellites" (CYCLOPES)
10 day composite datasets of POSTEL (Pole d’Observation des Surfaces conti-
nentales par TELedetection), which have a spatial resolution of 1 km × 1 km.
For each of the grid cells, time series analysis has been applied in order to
eliminate data gaps and outliers. In the framework of this study the harmonic
analysis has been used. The method of the harmonic analysis is based on
the method of superposition such as the Fourier transformation. This method
(Bittner (1993)) is used to process LAI time series at the German Remote
Sensing Data Center.
The CYCLOPES dataset additionally contains information of land cover and
land use and is available as GLC2000 (valid for the year 2000). The Land
Cover Classification System of the Food and Agriculture Organization of the
United Nations has been used to derive land cover classes of GLC2000 result-
ing in 22 different land cover classes (Bartholome et al. (2002), DiGregorio and
Jansen (2001)).
A translation of the GLC2000 vegetation classes had to be performed in order
to use the GLC2000 land use / land cover classification to model NPP with
BETHY/DLR. The actual model setup of BETHY/DLR includes 33 inherent
vegetation classes which can be regarded as vegetation types. Each vegeta-
tion type is linked with biochemical parameters as i.e. the maximum electron
transport rate and the maximum carboxylation rate, and other vegetation
specific parameters as maximum height and rooting depth. These parameters
describe the mechanism of photosynthesis of vegetation. In this study only
the GLC2000 class 16 "Cultivated and managed areas" has been used and
translated to the BETHY/DLR vegetation type "arable land" as no further
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detailed information about the land use (e.g. crop rotation) is available from
the GLC2000.
In addition to the GLC2000 dataset the Coordinated Information on the Eu-
ropean Environment (CORINE) 2000 land cover / land use classification has
been used, to validate the GLC2000 dataset. The CORINE 2000 data was
derived from LANDSAT satellite images and is also available for the year 2000
(Bossard et al. (2000)). The CORINE 2000 is available as raster datasets in
spatial resolutions of 100m× 100m, 250m× 250m and 1 km× 1 km for 32 Eu-
ropean countries, including Austria. For this study the dataset with resolution
100m × 100m has been used. The CORINE 2000 provides information about
44 vegetation classes which had also to be translated to BETHY/DLR vege-
tation types. We assumed that only the CORINE 2000 class "Non-irrigated
arable land" contains the needed information about agricultural land, since all
other classes which are available for the Marchfeld region report different land
use (e.g. forests and urban areas). The CORINE 2000 class "Non-irrigated
arable land" is then translated to the BETHY/DLR class "arable land".

5.5 From Yield to NPP

The crop yields of EPIC for the thirteen crops in the Marchfeld region have
been converted to NPP values (table 5.1) for comparison with the BETHY/DLR
outputs, which are given as time series of NPP. For this purpose, conversion
factors of the relation between yield and straw as well as the above- and below-
ground biomass are used. Empirical conversion factors about the relations be-
tween crop yield and straw yield can be found in e.g. Köhler and Kolbe (2007),
Kaltschmitt and Hartmann (2001). In a first step, the above-ground biomass
is computed for each crop using these empirical conversion factors. In a second
step the below-ground biomass is computed with the use of conversion factors
about the ratio of above- to below- ground biomass which are described in
Bolinder et al. (1997). These conversion factors which originally have been
derived for crops in Canada are assumed to be valid for the area of interest as
well, as it already was proposed by Tum and Günther (2011). After calculat-
ing the biomass of the whole plant, the remaining water content and the non
carbon content have to be subtracted, following crop specific values, which are
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also reported in e.g. Köhler and Kolbe (2007). A detailed description of the
approach and the used factors can be found in Tum and Günther (2011).
In order to compare the now available NPP per crop and sub-cluster of EPIC
with the BETHY/DLR results, statistical data about the land use of each of
the four sub-regions is used to aggregate the NPP of EPIC. These statistical
data provided by Schmid et al. (2004) and Schmid et al. (2007) give detailed
information about the distribution of agricultural area over the thirteen main
crops as well as the distribution of the five main soils being representative
for the Marchfeld region. The results of BETHY/DLR have been aggregated
to annual sums per sub-region with a Geographic Information System (GIS)
tool, taking into account the equi-rectangular projection (latitude - longitude,
WGS84 (World Geodetic System 1984) of the data.

5.6 Results and Discussion

The variability analysis consists of seven model setups to compare model re-
sponse to different input datasets. Three model simulations with the EPIC
model have been performed and four with the BETHY/DLR model. The
model setups are presented in table 5.3.

Table 5.3: Model setups for the variability analysis.

Model Meteorological input Land cover clas-
sification

Short Name

BETHY/DLR ZAMG CORINE 2000 BETHY(1)
ZAMG reallocated CORINE 2000 BETHY(2)
ECMWF CORINE 2000 BETHY(3)
ECMWF GLC2000 BETHY(4)

EPIC ZAMG - EPIC(1)
ZAMG reallocated - EPIC(2)
ECMWF - EPIC(3)

The EPIC model requires homogeneity with respect to data input (i.e. soil,
topography, weather, crop management) such that the model has been ap-
plied for all combinations of climate, soil, and crop management, separately.
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Thus, the variability analysis has been conducted mainly for the meteorologi-
cal datasets. In total 60 different model runs have been performed with EPIC
for each crop. In contrast, the BETHY/DLR model is driven with the two
different land cover classifications as well as the three different meteorological
input data sets. For the Marchfeld region the FAO soil map of the world,
which is used as input data for BETHY/DLR, reports one major soil type
(Haplic Chermozem) which occupies 89% of the area and four additional soil
types for the rest of the area. The EPIC model setup EPIC(1) is interpreted
as reference, as it represents the already validated model setup (Schmid et al.
(2004)). In figure 5.2, all model results fare compared to the EPIC(1) results
(table 5.3). The values of NPP are given in kilotonnes carbon per sub-region
and year.
Depending on the model setup, the NPP results of BETHY/DLR show a
variability of overestimations of up to 32% and underestimations of up to
12%, linked with coefficients of determination between 0.94 and 0.63, respec-
tively. The highest overestimation of NPP (32%) is modelled when using the
GLC2000 and meteorological input data from ECMWF (figure 5.2D). Figure
5.2D represents the results of both models with the typical setup which was
used in previous investigations (default setup). This overestimation is com-
bined with a high coefficient of determination of about 0.94. When changing
the land cover classification from GLC2000 to CORINE 2000 (while the meteo-
rological input remains unchanged) an underestimation of about 12% has been
found (figure 5.2C). From figure 5.2C it is evident that only 4 BETHY/DLR
results determine the underestimation and thus the coefficient of determination
of about 0.77. These four data points are all representative for sub-region 4,
whereas the rest is close to the 45 ◦ line. Using measured meteorological data
from ZAMG results in an overestimation of NPP of about 11% (figure 5.2A),
which is combined with the highest variability within the sub-regions and years
for all four model setups of BETHY/DLR. Nevertheless a high coefficient of
determination of about 0.68 is achieved. When using the reallocated ZAMG
data of Strauss et al. (2012) for BETHY/DLR combined with CORINE as
land cover an overestimation of the modelled NPP of about 15% (figure 5.2B)
has been found. A strong correlation of the simulation years is observed, which
indicates homogeneity in the meteorological data.
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Figure 5.2: Comparison of the model results (NPP) of BETHY/DLR and EPIC

for the four Marchfeld sub-regions and the period 2000 to 2003. The nomenclature

follows the scheme of table 5.3. Circles represent sub-region 1, triangles sub-region

2, crosses sub-region 3 and diamonds sub-region 4.
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The comparison between EPIC results with different weather input reveals that
the ECMWF data affects the EPIC model to underestimate NPP by 8% (figure
5.2F). The use of the reallocated meteorological dataset (figure 5.2E) results
in a little underestimation, linked with the highest coefficient of determination
(0.97). Figure 5.2E demonstrates that EPIC is not very sensitive to measured
or homogenized meteorological input data just in contrast to BETHY/DLR
which can be seen in figure 5.2A and 5.2B. Measured meteorological data dur-
ing the four years result in a high variability of the annual NPP of sub-region
1 and 4 while the homogenized meteorological data cluster the annual NPP of
all sub-regions resulting in low variability for all sub-regions.
Figure 5.2D and figure 5.2F show that the EPIC model as well as the BETHY/
DLR model react in a similar way when alternating between ECMWF and
ZAMG data. The BETHY/DLR model simulates 23% more NPP when using
the ZAMG data, and the EPIC model simulates around 7% more NPP when
using the ZAMG data.
A reason for investigating the influence of different land cover classifications
(GLC2000 versus CORINE 2000) is the higher spatial resolution of CORINE
2000. It is expected that CORINE 2000 represents the small scale land use
structure of the Marchfeld region better than the GLC2000 classification. In
figure 5.3 the agricultural areas reported in the statistical source (Schmid et al.
(2004), Schmid et al. (2007)), the GLC2000 and CORINE 2000 are presented
for all four Marchfeld sub-regions.



105

Figure 5.3: Comparison of agricultural areas described by statistical sources (Schmid

et al. (2004), Schmid et al. (2007)), GLC2000 and CORINE 2000 in km2 for the

four sub-regions of the Marchfeld region.

The agricultural areas presented in GLC2000 and CORINE 2000 have been
computed using GIS tools. As shown in figure 5.3, the GLC2000 considerably
overestimates the agricultural areas (sub-regions one, three and four) by 25%
to 57% compared to the statistical information. On the other hand, CORINE
2000 slightly over- (17%) or underestimates (6%) the agricultural areas com-
pared to the statistical sources. However, approximately the same agricultural
area is found for sub-region two for each land cover classification. For all sub-
regions of the Marchfeld region the statistical data report an agricultural area
of around 670 km2, GLC2000 of 881 km2, and CORINE 2000 of 718 km2. As
the difference in agricultural area between CORINE 2000 and the statistical
data is smaller than the difference between GLC2000 and the statistical data,
we conclude that the CORINE 2000 land cover represents the real situation
more precisely than GLC2000. The differences of the results described in figure
5.2D and figure 5.2C showing an NPP decrease when changing from GLC2000
to CORINE 2000 can thus be explained by the fact that the BETHY/DLR
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Figure 5.4: Comparison of the model results (NPP) of the BETHY/DLR runs

BETHY(3) and BETHY(4) for the four Marchfeld sub-regions and the period 2000

to 2003. The nomenclature follows the scheme of table 5.3. Circles represent sub-

region 1, triangles sub-region 2, crosses sub-region 3 and diamonds sub-region 4.

model was driven for a smaller agricultural area.
To proof this, the results for BETHY(3) and BETHY(4) are presented in fig-
ure 5.4 as a linear correlation. For both model setups meteorology was fix
(ECMWF), but the land cover classification was changed. With this direct
comparison it becomes clear that the reason for the highly different model
results presented in figure 5.2C and figure 5.2D lays in the uncertainty in the
two land covers.
When comparing the ECMWF data with the measured ZAMG data it is obvi-
ous that the ECMWF data underestimates the maximum and minimum tem-
perature (see figure 5.5). The comparison of daily weather measurements is
conducted for two of the 34 ZAMG weather stations which are situated closest
to the Marchfeld (Schwechat and Gross Enzersdorf) and for the time period
2000 to 2003.
For both stations the maximum temperature of the ECMWF data is underes-
timated by about 21% expressed by a high coefficient of correlation of up to
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Figure 5.5: Comparison of the ECMWF time series of minimum and maximum

temperature as well as precipitation with the corresponding daily measured data of

the ZAMG stations Gross Enzersdorf and Schwechat in the period 2000 to 2003.
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0.72. The minimum temperature is underestimated even slightly higher (up to
28%) but again combined with a high coefficient of correlation (up to 0.74).
In contrast, precipitation is not represented very well by ECMWF data as the
correlation for the precipitation reveals high uncertainties. Hence a comparison
of the ECMWF data for only two measurement stations is not very meaning-
ful. Therefore the analysis has been expanded to all of the 34 available ZAMG
weather stations. The analysis shows that the mean maximum and minimum
temperatures of ECMWF data averaged over daily values in the period 2000
to 2003 are about 24% and 29% lower, respectively, than the temperatures
recorded by the 34 ZAMG weather stations. However, minimum and maximum
temperatures are both linked with a coefficient of determination of about 0.65,
which is in good correspondence with the two presented observation stations
in figure 5.5. The comparison between sums of annual precipitation between
the ECMWF and the ZAMG data reveals over- and underestimations of up to
90% for single stations. The daily precipitation rates averaged over all ZAMG
observation stations show a coefficient of determination of about 0.27. This
very low coefficient corresponds with the presented stations in figure 5.5 and
indicates poor agreement of measured and simulated precipitation.
As ECMWF data significantly underestimate temperature, the increase of NPP
when using ZAMG data could be explained by longer vegetation periods in the
ZAMG data. We investigated the vegetation period by computing the growing-
degree-days (GDD). The basic equation is:
GDD = [(TMAX + TMIN) /2]−TBase, where TMAX and TMIN are daily max-
imum and minimum temperatures, respectively and TBASE is the base tem-
perature which can be fixed with at 10 ◦C McMaster and Wilhelm (1997).
Furthermore, the growing period in Austria is assumed to be from mid March
to mid October. The mean GDD averaged over all 34 ZAMG stations in Aus-
tria and the years 2000 to 2003 is about 1186.2, which is about 136.1 (≈11.5%)
more than the corresponding ECMWF GDD value (1050.1). In a third model
setup both models are driven with the reallocated ZAMG data to test the
model response to homogenized trend data. Figure 5.2B and figure 5.2E show
that both, the EPIC and the BETHY/DLR models respond in a consistent
way, concerning their annual variability, to the reallocated ZAMG data. The
variability in the NPP over the four years within one sub-region is about 4%
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(EPIC) and 3% (BETHY/DLR), respectively.
To give information about the annual variability of NPP within the model
results, annual sums of NPP over the whole area of investigation are presented
in figure 5.6. The values are given in kilotonnes carbon per year.

Figure 5.6: Annual sums of NPP in kilotonnes carbon for the Marchfeld region in

the period 2000 to 2003 simulated with the models BETHY/DLR and EPIC. The

nomenclature follows the scheme of table 5.3.

The nomenclature in figure 5.6 follows the scheme of table 5.1. When using the
reallocated weather data, the annual variability of NPP is very low for both
models BETHY(2) and EPIC(2), which can also be seen from figure 5.2B and
figure 5.2E. This is not surprising since they represent trend data with lower
inter-annual variability. When looking at the model setup for BETHY(1) with
measured ZAMG data, BETHY/DLR strongly responds to the climate data.
This is very prominent for the year 2003, for which a water stress situation
for the Marchfeld region is reported StartClim (2004). In comparison to the
NPP sum calculated for 2002, the annual NPP in 2003 is lower by about 23%.
However, this model response cannot be seen in the EPIC output, which might
be due to the reason that for one of the four climate clusters, which is repre-
sentative for most of the area of the Marchfeld region, higher crop yields have
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been simulated especially for winter crops in 2003. With the use of ECMWF
data in model setup EPIC(3), the EPIC output shows a massive NPP decrease
in 2003 compared to 2002. This could again be explained with the lower GDD
of the ECMWF. In addition, the ECMWF data represent around 8.5% less
precipitation over the days which have been counted as GDD. The reason for
the non equidistant annual differences between the BETHY/DLR model runs
BETHY(3) and BETHY(4) might be that the misclassified pixels of GLC2000
represent non agricultural areas which react in different ways to climate con-
ditions than agricultural areas.
It is notable that the variability of the model outputs can be as large as 36%
for BETHY/DLR and 39% for EPIC when changing major input datasets.
Furthermore, it is remarkable that both models response similarly when using
the same datasets. For instance, all three model setups with the ECMWF
data show for all four sub-regions a relative increase of NPP from 2000 to 2001
followed by a decrease in 2002 and again in 2003.

5.7 Conclusion

Net-Primary-Productivity (NPP) has been modelled using the SVAT model
BETHY/DLR and the biophysical process model EPIC for the Austrian March-
feld region and the period 2000 to 2003. Both models seem to be robust but
respond differently on alternative input datasets (i.e. meteorological and land
cover /use data). We have used meteorological data from the ECMWF and the
ZAMG as well as a reallocated dataset based on ZAMG weather observations.
Land cover / land use information have been taken from the GLC2000 and the
CORINE 2000 products. With these datasets, we have performed a variability
analysis with the two models BETHY/DLR and EPIC with respect to their
output responses. We show that lower NPP values were modelled when us-
ing ECMWF data as an input compared to ZAMG data. This is confirmed by
both models. The reason is traced to the underestimation of the GDD of about
11.5% in the ECMWF data. We observe that both models response similarly
to changes in input data, albeit with a different magnitude. For single years,
variabilities in the NPP of up to 36% for BETHY/DLR and of up to 39% for
EPIC can occure with alternative input data.
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Besides the variability analysis of alternative model input data sources, we
have also analysed the accuracy of the input data. We have found that the
GLC2000 land cover classification overestimates the agricultural area of the
Marchfeld region by 24%, whereas the CORINE 2000 dataset overestimates
land cover classification by only 7%. With this finding preference for land
cover datasets with higher resolution is recommended. The ECMWF data
has been compared with measured data from ZAMG. We have found high
uncertainties in the daily precipitation and small ones in daily maximum and
minimum temperatures, which is confirmed by other studies.
For further investigations in other regions, the finding of the bias in the
ECMWF data should be taken into account and crosschecked with local weather
station data. In addition, more detailed land cover products should be consid-
ered with respect to spatial resolution and reported land use practices. Thus
whenever the models (or any model) are applied under new conditions, local
data (if applicable) should be used for both input and result comparison.
This study shows that especially for process-based modelling approaches, not
only comprehensive validation and calibration approaches need to be applied,
but also knowledge of input data uncertainty and variability of the modelling
results need to be assessed. Process-based models have a potentially valuable
role for various applications. However their validity must be determined where
possible, especially when used for decision making processes.
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Chapter 6

A Conceptual Remote Sensing

based Interception-Infiltration

Model for Regional and Global

Applications

Markus Tum, Erik Borg, Hydrology and Earth System Sciences, under review

6.1 Abstract

We present a remote sensing driven modelling approach to simulate the one
dimensional water transport in the vadose zone of unsaturated soils on a daily
basis, which can be used for regional to global applications. Our model needs
van Genuchten parameters to calculate the hydraulic conductivity, which we
estimated using the ISRIC-WISE Harmonized Global Soil Profile Dataset Ver.
3.1 and the Rosetta programme. We calculated all needed parameters for
26 global main soil types and 102 soils of second order, which are based on
the original, global FAO 1974 soil classification. Soil depth and the layering
of one to six layers were defined for each soil. The parameters for the main
soils are presented in this paper. Interception by vegetation is also considered
using remote sensing calculated Leaf Area Index (LAI) time series from SPOT-
VEGETATION. Precipitation is based on daily time series from the European
Centre for Medium-Range Weather Forecasts (ECMWF). For Germany we

113



114

compared our model output with soil moisture data from the ECMWF, which
is based on the same precipitation dataset. We found a good agreement for
the general characteristics of our modelled plant available soil water with this
dataset, especially for soils which are close to the standard characteristics of
the ECMWF. Disagreements were found for soils under stagnant moisture and
for shallow soils, which are not considered in the ECMWF model scheme, but
can be distinguished with our approach. The proposed approach for combining
established model formulations for interception and one-dimensional vertical
water transport with time-series of remote sensing data intends to contribute
to the realistic parameterization of the soil water budged. This is especially
needed for the global and regional assessment of e.g. net primary productivity
which can be calculated with vegetation models.

6.2 Introduction

The prediction of hydrodynamics in unsaturated soils remains a challenging
task in the topic of soil physics and is important for modelling physical pro-
cesses which are related to the soil water content. During the last years the
development of models capable to simulate the water flow in soils has gained
an important role. In this context, computer models based on the numerical
solution of Richards’ equation has proved as being valuable. Their applica-
tion is often restricted by a lack of hydraulic property information involving
the soil water retention curve (SWRC) and the unsaturated hydraulic con-
ductivity. For modelling the SWRC many diverse empirical approaches can
be found (e.g.: Gardner (1958), Brooks and Corey (1964), Campbell (1974),
van Genuchten (1980), Hutson and Cass (1987), Russo (1988)). Usually many
input parameters are required to describe the soil processes. Due to inher-
ent temporal and spatial variability of hydraulic properties in nature, large
numbers of samples are generally required to properly characterize the spa-
tial distribution of these hydraulic properties. Therefore, direct measurements
are time-consuming and expensive. In contrast, indirect methods are increas-
ingly used to provide estimates. Presuming Richards’ equation can be applied,
the most crucial point is the exact measurement and description of hydraulic
properties, or to be more precise: the soil water retention curve Θ (h) and the
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hydraulic conductivity function k (Θ), where Θ is the volumetric water content,
h the pressure head and k the hydraulic conductivity. To solve this problem
diverse pedotransfer functions (PTFs) have been developed (e.g. Vereecken
et al. (1989), Wosten (1997), Mayer and Jarvis (1999), Minasny and McBrat-
ney (2000), Schaap et al. (2001), Jarvis et al. (2000), Tomasella et al. (2003),
Weynants et al. (2009), Wessolek et al. (2011)). A comprehensive overview of
developed pedotranfer functions in soil hydrology can be found in Pachepsky
and Rawls (2005),allowing a good understanding of state-of-the-art modelling
approaches with respect to advantages and restrictions of pedotransfer func-
tions to predict hydrological soil properties.
To couple these complex physics of water transport in soil with the atmosphere
and vegetation an interception model has to be considered. The capacity of
vegetation to intercept water is of great importance, since the rate of evapo-
ration from wet canopy is higher than from dry canopy conditions (Stewart
(1977)).Thus rainfall interception and its following rainfall evaporation may re-
sult in a net loss to the system, but depending on the surrounding conditions
(e.g.: coastal or mountain fog belts), could also lead to a net gain (Bruijnzeel
(1990)).As a consequence the presence or absence of vegetation strongly af-
fects the amount of rainfall reaching the soil surface. Model formulations to
describe interception of vegetation have been developed (e.g.: Rutter et al.
(1971), Gash (1979), Massman (1983), Xiao et al. (2000)) which use parame-
ters to describe the threshold amount of rain that can be stores in the canopy
and a descriptive parameter for the canopy structure. The Braden (1985)
and Calder (1986) models are further examples which use information of Leaf
Area Index (LAI) to describe the canopy instead of a descriptive parameter.
A review about approaches to model interception was recently published by
Muzylo et al. (2009).
The second interaction of vegetation with soil water, namely water suction via
roots and its following evapotranspiration by vegetation is a further influenc-
ing factor to the available soil water content. However in this study we will
not focus on the description of this process.
The primary objective of this study is to introduce our soil water transport
model, which is suitable to calculate the soil water balance on a regional to
global scale. It is driven by van Genuchten parameters and remote sensing
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data and distinguishes 128 soils, which follow the system of the original FAO-
UNESCO legend (FAO (1974)). We compared our model results with modelled
time series taken from the European Center for Medium Range Weather Fore-
cast (ECMWF), which are based on the same precipitation dataset we used.
With our approach to combine established model formulations with the use of
remote sensing data, we see the potential in our model to be applied in remote
sensing based vegetation models. In vegetation models the realistic parame-
terisation of the soil water budged is a challenging task, but of major interest,
since it is usually very simplified.

6.3 Theoretical background

In our model the water balance is considered regarding the two reservoirs which
influence the water availability and is affected by vegetation: soil water and
intercepted water on leaves and other parts of vegetation. These reservoirs
change in time and space depending on precipitation, temperature and evapo-
transpiration. Evaporation from soil is calculated daily following the approach
of Ritchie (1972). Transpiration is not considered in our model formulation.
The processes of interception and percolation, on which we focused on in this
study will be discussed in more detail in the next sections.

Interception

Interception (Pi ) is considered following the concept of Braden (1995). The
general assumption of this approach is that Pi is empirically related to the Leaf
Area Index (LAI, Λ), the fraction of canopy closure (fc) and the precipitation
sum (P ):

Pi = fc[1− (1 + b0 (P − Psn) /fc)
−1] (6.1)

where b0 is the fraction of soil covered by plants and Psn the share of precipi-
tation which reaches the ground as snow, which is not considered as available
for soil infiltration. Snowfall is calculated as linear function according to Wig-
mosta et al. (1994), falling linearly from P to 0 between -1.1 C and 3.3 C. Since
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b0 and fc are both related to Λ one might express b0 and fc following Eq.: 6.2
and Eq.: 6.3:

b0 = 1− exp (−0.5Λ) (6.2)

fc =
Λ

Λlimfcmax
(6.3)

where Λlim is the limiting LAI, which is set to 3 assuming LAIs greater than
3 do not influence the canopy fraction by raising it. fcmax represents the
maximum share of canopy fraction and is set to 0.9, assuming the maximum
fraction of cover per grid cannot be higher than 90%.
Evaporation from canopy is calculated taking into account both: the dropping
loss of water from leafs (Pd) the disposition of water in the skin reservoir (Ws),
but is limited by the evaporation from canopy (Ec):

Pd = Ws + Pi − 0.1Λ with Pd ≥ 0 (6.4)

Ec is calculated following the scheme of Philip (1957), assuming limitation at
the maximum potential evaporation rate (Ecpot):

Ec =

 Pi − Pd +Ws with Ec < Ecpot

Ecpot with Ec ≥ Ecpot
(6.5)

The skin reservoir is considered as a cumulative reservoir which is filled and
drained over time by precipitation, throughfall and evaporation from the canopy.
We assume the skin reservoir to be empty at time step j = 0:

W j
s =

 W j−1
s + Pi − Pd − Ec with W j

s < fc, j ≥ 1

fc with W j
s ≥ fc, j ≥ 1

(6.6)

Finally the ground reaching precipitation without being interfered by vegeta-
tion i.e. throughfall (Pt) can be expressed as:

Pt =

 Pd + P − Pi withWs < fc

Pd + P − Pi + (W j−1
s + Pi − Pd − Ec − fc) withWs = fc

(6.7)



118

Infiltration

The process of water, penetrating the soil surface is defined as infiltration.
It has a dominant role among the components of hydrological processes of
catchment areas (Dyck et al. (1980)). We base our approach on an adaption
of the one-dimensional vertical transport algorithm described by Syring and
Kersebaum (1988), which is based on the theoretical approach of Dyck et al.
(1980) and Anlauf et al. (1987). The vertical transport within the soil is
calculated using a combination of the Darcy-equation (Eq. 6.8) with the local
balance (or continuity) equation (Eq. 6.9).

qw = −k
(
dψ

dz
− 1

)
(6.8)

∂Θ

∂t
= −∂q

∂z
+ A (t, z) (6.9)

Here qw represents the water flux from a layer to its subjacent layer. k is the
hydraulic conductivity of the soil water flux, which is dependant on the matric
potential ψ and the depth of layer z. The local balance equation describes
the relation of time (t) dependant volumetric soil water content (Θ) and soil
layer depth depending water flux. Parameter A represents the source or sink
term as function of depth and time. When combining Eq. 6.8 and Eq. 6.9 the
problem can be described by Richard’s-equation:

∂Θ

∂t
= −

∂[k
(
∂ψ
∂z
− 1

)
]

∂z
+ A (t, z) (6.10)

The matric potential depending on volumetric soil water content Θψ and hy-
draulic conductivity kψ can be calculated following the approach proposed by
van Genuchten (1980):

Θψ = Θr + (Θs −Θr) [1 + (α|ψ|)n](
1− 1

n) (6.11)

kψ = ks

(
1− (α|ψ|)n−1 (1 + (α|ψ|)n)(

1− 1
n)
)2

1 + ((α|ψ|)n)
(1− 1

n)
2

 (6.12)
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where Θr is the volumetric soil water content at the permanent wilting point
(PWP), Θs, the volumetric soil water content and ks the hydraulic conductivity
at saturation. The parameters α and n represent two form parameters which
are needed for the van Genuchten parameters. Since α, n, k2, Θr and Θs are
highly empirically derived parameters it is discussed as challenging to derive
van Genuchten parameters on a broader scale Schaap et al. (2001) We used soil
core measurements and the ROSETTA program to define these parameters,
which will be discussed in more detail later. Because Θψ and kψ are functions
of the matrix potential ψ Eq. 10 can be used to determine ψ. Equation 10
itself is a differential equation of second order.
In a first step the starting conditions of the upper and lower boundary have
to be defined. At its upper boundary the whole amount of throughfall can
infiltrate until the soil dependant saturated condition is reached. The top layer
of each soil type is set to 3 cm, since it is assumed that only the upper 3 cm
can directly react to precipitation and thus evaporate water. At saturation ψ
is set to 0:

z = 0, t > 0 : Pt = k

(
∂ψ

∂z
− 1

)
and ψ ≤ 0 (6.13)

At the lower boundary ψL is set to zero in the case that a soil under stagnant
moisture condition as for instance gleyic soils is modelled. Otherwise ψL is set
to -15,000 to simulate a soil layer with dry conditions and to respect water run
off processes, or to be more precise: to allow water to leave the system.
In a second step for the layers (i) between the upper and lower boundary, with
the specific thickness ∆z, the water flux qi is calculated:

qi = ki+0.5

(
(ψi+1 − ψi)

∆z
− 1

)
(6.14)

To calculate the hydraulic conductivity of the inner compartments we followed
the approach of Syring and Kersebaum (1988), who used the arithmetic mean
of the two surrounded compartments are considered:

ki+0.5 = 0.5[k (ψi) + k (ψi+1)] (6.15)
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Thus for each inner layer n at time step t, ψ can be expressed as:

ψt = ψt−1 − 0.5∆z

(
1− qn

k0.5

)
with ψt ≤ 0 (6.16)

To solve this equation a variation of the Newton-algorithm (Remson et al.
(1971)) was considered to calculate the function f of ψ:

f (ψi) =

(
Θj
i −Θj−1

i

)
∆t

+

(
Θj
i −Θj

i−1

)
∆z

− At, z (6.17)

Following this one may approximate ψ as:

ψ∗i ≈ ψi −
f (ψi)(
∂f(ψi)
fψi

) (6.18)

6.4 Input data

van Genuchten Parameter

For our modelling approach we used, as described above, van Genuchten pa-
rameters, which were estimated by using the Rosetta program (Schaap et al.
(2001)). Rosetta contains a neuronal network to predict van Genuchten pa-
rameters which are based on estimates on grain size distribution (sand, silt
and clay content) of a soil. The original FAO legend distinguishes 26 main
soil types and 102 soils of second order. In order to estimate the mean grain
size distributions for the 128 FAO soils we used the ISRIC-WISE Harmonized
Global Soil Profile Dataset Ver. 3.1 Batjes (2009)), which contains data of
10,253 soil profiles and is classified following the system of original and revised
FAO-UNESCO legends (FAO (1974); FAO (1988)).
Since for the reported soils individual measurements had wide ranges of total
layers (2-12 layers) we decided to calculate - in a first step - the median of
reported soil layers for each soil type. This was done to minimize the com-
plexity of soils and to minimize the computational effort. In a second step
we calculated the average grain size distribution and layer depth for the soil
profiles which were selected in the first step. Other reported soil profiles with
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more or less layers than the median were not used for the calculation. For the
main soils these values and the correspondent van Genuchten parameters are
presented in 6.1.
To obtain spatial information for the global soil type distribution we used the
Harmonized World Soil Database (HWSD) provided by the International In-
stitute for Applied Systems Analysis (IIASA). The HWSD is freely available
as grid with 30 arc seconds resolution in a latitude-longitude projection using
the WGS84 (World Geodetic System 1984) datum (FAO/IIASA (2009)). It
contains information about the dominant soil type, following the systems of the
FAO from 1974, 1985 and 1990, depending on the location on earth. Since we
estimated our van Genuchten parameters for the FAO ’74 soil classification we
harmonized the HWSD dataset to this classification scheme, by transforming
newer classifications to the 74’ standard.
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Table 6.1: Soil properties for 26 FAO ’74 main soils, including total soil depth and

layering (d), sand (sa), silt (si) and clay (cl) content permanent wilting point (Θr),

field capcity (Θs), van Genuchten parameters (α,n) and hydraulic conductivity at

saturation (ks).

Soil d sa si cl Θr Θs α n ks

[cm] [%] [%] [%] [ cm
3

cm3 ] [ cm
3

cm3 ] [cm−1] [−] [ cm
d

]

Acrisol 145
1 13 58 23 19 0.058 0.389 0.024 1.369 18.9
2 20 54 21 25 0.068 0.395 0.023 1.340 11.9
3 28 48 20 32 0.076 0.406 0.023 1.301 7.6
4 41 43 19 37 0.082 0.419 0.023 1.280 7.1
5 43 44 20 36 0.081 0.416 0.023 1.287 6.8
Cambisol 134
1 15 36 38 26 0.073 0.421 0.011 1.462 8.2
2 17 32 40 28 0.077 0.431 0.010 1.469 10.5
3 24 33 41 26 0.074 0.426 0.009 1.489 11.3
4 33 35 38 26 0.074 0.425 0.011 1.458 8.3
5 39 37 39 24 0.070 0.417 0.010 1.478 8.8
Chernozem 169
1 31 16 52 31 0.086 0.458 0.008 1.514 12.6
2 26 16 53 31 0.085 0.461 0.008 1.516 12.2
3 24 16 54 30 0.084 0.458 0.007 1.528 12.2
4 35 17 55 28 0.081 0.452 0.007 1.550 12.3
5 53 20 54 26 0.078 0.443 0.006 1.566 12.7
Podzoluvisol 169
1 19 40 50 10 0.045 0.405 0.007 1.590 33.3
2 14 40 52 8 0.041 0.410 0.007 1.603 44.5
3 35 40 44 16 0.056 0.401 0.008 1.538 15.6
4 54 43 38 20 0.062 0.406 0.011 1.477 9.2
5 47 49 34 18 0.058 0.398 0.015 1.436 13.6
Rendzina 32
1 32 48 31 21 0.063 0.400 0.016 1.414 11.6



123

Soil d sa si cl Θr Θs α n ks

[cm] [%] [%] [%] [ cm
3

cm3 ] [ cm
3

cm3 ] [cm−1] [−] [ cm
d

]

Ferralsol 165
1 14 45 19 36 0.080 0.414 0.023 1.282 7.2
2 21 42 18 40 0.084 0.423 0.024 1.260 8.1
3 31 39 18 44 0.087 0.435 0.025 1.242 9.1
4 48 37 17 46 0.089 0.438 0.025 1.232 10.3
5 41 37 17 46 0.089 0.438 0.025 1.232 10.3
Gleysol 122
1 16 39 32 28 0.076 0.421 0.014 1.400 5.84
2 25 38 29 32 0.080 0.426 0.016 1.358 5.18
3 35 34 31 35 0.083 0.435 0.015 1.362 5.76
4 46 38 27 35 0.082 0.427 0.018 1.334 5.06
Phaeozem 142
1 22 31 40 29 0.078 0.434 0.010 1.463 10.6
2 20 29 36 35 0.085 0.446 0.013 1.396 8.2
3 25 25 33 42 0.090 0.460 0.015 1.334 9.0
4 31 24 34 42 0.091 0.463 0.014 1.339 9.5
5 44 30 35 35 0.084 0.444 0.013 1.389 7.6
Lithosol 10
1 10 75 11 14 0.052 0.378 0.032 1.451 42.8
Fluvisol 128
1 19 38 38 24 0.070 0.415 0.011 1.469 8.0
2 27 35 38 28 0.076 0.429 0.011 1.450 8.1
3 36 36 37 27 0.074 0.423 0.011 1.449 7.5
4 43 41 33 26 0.072 0.414 0.014 1.419 6.7
Kastanozem 122
1 18 31 46 23 0.070 0.422 0.007 1.543 13.9
2 19 29 45 26 0.075 0.431 0.008 1.519 12.8
3 23 18 40 42 0.094 0.475 0.013 1.370 13.4
4 24 20 46 34 0.087 0.461 0.009 1.464 12.3
5 38 25 49 26 0.076 0.436 0.007 1.544 12.9
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Soil d sa si cl Θr Θs α n ks

[cm] [%] [%] [%] [ cm
3

cm3 ] [ cm
3

cm3 ] [cm−1] [−] [ cm
d

]

Luvisol 119
1 16 74 14 12 0.048 0.381 0.034 1.456 48.0
2 23 70 12 18 0.057 0.378 0.030 1.372 26.3
3 25 62 11 27 0.068 0.383 0.027 1.294 13.3
4 45 54 12 34 0.076 0.396 0.027 1.260 11.3
Greyzem 179
1 23 21 55 24 0.074 0.437 0.006 1.588 13.2
2 22 15 58 27 0.081 0.452 0.006 1.566 12.3
3 42 15 52 33 0.088 0.467 0.009 1.494 12.4
4 33 15 54 32 0.087 0.467 0.008 1.501 12.0
5 59 20 50 30 0.083 0.453 0.008 1.516 12.3
Nitosol 149
1 14 40 26 35 0.081 0.426 0.019 1.326 5.2
2 19 33 22 45 0.089 0.446 0.021 1.259 8.7
3 27 28 21 51 0.093 0.462 0.022 1.233 14.5
4 39 28 19 53 0.094 0.464 0.023 1.218 14.8
5 50 27 19 54 0.094 0.467 0.023 1.216 15.4
Histosol 150
1 20 42 21 38 0.083 0.424 0.022 1.282 6.4
2 23 28 38 35 0.085 0.451 0.012 1.408 9.6
3 37 31 30 40 0.087 0.447 0.016 1.326 6.8
4 40 54 24 22 0.064 0.394 0.022 1.366 14.0
5 30 74 13 14 0.051 0.381 0.033 1.435 40.7
Podzol 134
1 14 77 16 7 0.041 0.385 0.040 1.564 72.8
2 17 79 16 5 0.038 0.387 0.042 1.655 91.1
3 16 80 15 6 0.040 0.387 0.042 1.667 91.5
4 27 81 13 6 0.042 0.384 0.040 1.726 102.8
5 50 85 11 4 0.043 0.384 0.040 2.033 168.0
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Soil d sa si cl Θr Θs α n ks

[cm] [%] [%] [%] [ cm
3

cm3 ] [ cm
3

cm3 ] [cm−1] [−] [ cm
d

]

Arenosol 170
1 19 88 7 6 0.050 0.380 0.035 2.203 213.7
2 24 88 7 6 0.050 0.380 0.035 2.203 213.7
3 34 88 6 6 0.051 0.377 0.034 2.236 223.0
4 93 86 8 7 0.049 0.380 0.035 1.992 157.3
Regosol 87
1 20 41 49 10 0.045 0.403 0.007 1.578 31.1
2 33 42 49 9 0.042 0.404 0.007 1.572 33.6
3 34 46 44 10 0.043 0.397 0.010 1.516 25.7
Solonetz 140
1 12 52 28 20 0.061 0.395 0.019 1.394 14.6
2 17 47 26 27 0.072 0.406 0.019 1.363 8.4
3 24 42 26 32 0.078 0.417 0.018 1.342 5.8
4 35 39 29 33 0.080 0.427 0.017 1.356 5.2
5 52 42 28 30 0.077 0.416 0.017 1.365 6.1
Andosol 151
1 23 50 36 14 0.050 0.392 0.014 1.451 18.6
2 25 55 32 12 0.046 0.387 0.019 1.421 27.1
3 29 56 33 12 0.045 0.391 0.020 1.420 27.9
4 30 55 32 13 0.048 0.389 0.019 1.419 25.1
5 42 59 28 13 0.047 0.387 0.024 1.400 28.3
Ranker 35
1 16 52 25 18 0.057 0.394 0.018 1.409 16.3
2 19 57 24 19 0.058 0.390 0.023 1.374 18.4
Vertisol 127
1 15 27 25 48 0.092 0.462 0.019 1.263 12.5
2 31 24 20 55 0.095 0.472 0.021 1.219 17.1
3 35 23 20 57 0.096 0.477 0.021 1.212 17.3
4 46 31 20 50 0.092 0.457 0.023 1.231 12.5
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Soil d sa si cl Θr Θs α n ks

[cm] [%] [%] [%] [ cm
3

cm3 ] [ cm
3

cm3 ] [cm−1] [−] [ cm
d

]

Planosol 103
1 17 55 28 17 0.055 0.391 0.021 1.397 19.4
2 21 57 24 19 0.058 0.390 0.023 1.374 18.4
3 27 41 25 35 0.081 0.424 0.020 1.320 5.4
4 38 42 26 32 0.078 0.417 0.018 1.342 5.8
Xerosol 122
1 17 34 45 21 0.066 0.414 0.007 1.543 14.5
2 25 33 42 25 0.072 0.424 0.009 1.501 12.1
3 38 31 43 26 0.074 0.428 0.009 1.504 12.4
4 42 36 41 23 0.069 0.416 0.009 1.500 10.9
Yermosol 131
1 13 48 41 11 0.044 0.394 0.012 1.487 22.4
2 20 47 41 13 0.005 0.396 0.011 1.491 18.2
3 25 44 36 20 0.062 0.403 0.012 1.458 9.6
4 36 50 32 18 0.058 0.395 0.016 1.424 14.9
5 37 33 49 18 0.061 0.411 0.006 1.589 18.0
Solonchak 123
1 8 41 23 37 0.083 0.425 0.021 1.298 5.7
2 17 45 18 37 0.081 0.414 0.024 1.272 7.7
3 23 27 35 39 0.088 0.457 0.014 1.362 8.6
4 21 33 32 36 0.084 0.441 0.015 1.361 6.2
5 54 35 27 39 0.086 0.439 0.018 1.313 5.5
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Remote Sensing Data

For our modeling approach we used LAI time-series of 10-days data-composites
derived using satellite remote sensing data. The LAI describes the phenology
of vegetation and thus controls interception. We used LAI time series based on
CYCLOPES which can be downloaded from the POSTEL (Pole d’Observation
des Surfaces continentales par Teledetection) database. This global dataset is
freely available for the period 1999 - 2007 with a spatial 1 km2 resolution. Since
the HWSD soil map is also available on this resolution no spatial interpolation
is needed to be applied. However, for each pixel analysis of the LAI time series
was conducted to fill data gaps and eliminate outliers, using harmonic analysis
(HA), which is based on Bittner (1993). This was needed since our model
needs gap-free and continuous time series. HA decomposes a time series into
a linear combination of suitable trigonometric functions, i.e. sine and cosine
oscillations of particular periodicities. The HA technique corresponds to an
approximate deconvolution of the power spectrum by iteratively finding and
subtracting the highest peak of the time series power spectrum. This method
was adapted for the correction of LAI time series data (Niklaus et al. (2012)).

6.5 Results and discussion

For a regional quality assessment we chose to compare our model results with
data taken from the ECMWF ERA-INTERIM re-analysis. The spatial resolu-
tion of this dataset is 0.25 ◦ × 0.25 ◦. The temporal resolution is a daily time
step. Since this dataset is based on the same precipitation dataset we presup-
pose in a general comparability of the two products. We chose the time period
of 2002 to 2007 as observation time and the German territory as simulation
area. The November and December 2007 were excluded from the analysis due
to massive changes in the ECMWF model approach. The ECMWF numerical
weather model subdivides a 289 cm soil core into 4 layers (7 cm, 21 cm, 72 cm
and 189 cm), with PWP at 0.171% and field capacity (FC) at 0.323% water
content, which is assumed to be valid global. Infiltration obeys the Darcy Law
and is effected by evaporation from the bare soil portion and evapotranspira-
tion from vegetation.
Our model - in contrast - treats each soil type depending on its calculated
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Figure 6.1: Main soil types for Germany following the FAO ’74 systematic (FAO

(1974)).

grain size distribution and layering. In figure 6.1 the distribution of the eleven
main FAO soil types for Germany is presented.
From figure 6.1 it is apparent that Germany’s soil cover can be characterized
using eleven soil types, from which Cambisols and Luvisols can be identified
as dominating. However, the spatial distribution is not homogenous. The
Northern and Eastern regions of Germany show the highest heterogeneity of
soil cover, whereas the middle regions of Germany are more homogeneous and
dominated by Cambisols and Luvisols. Mountain ranges as the northern Alps,
the "Fraenkische Alp" are covered with Lithosols, a very shallow soil which we
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assume to have only 10 cm depth.

Figure 6.2: Mean plant available soil water content given in millimetres for the

period 2002 to October 2007 for ECMWF (left) and own estimations (right). High

values are shown in blue, moderate values in yellow and low values in red. Whit

pixels represent no data.

In order to compare the soil water characteristics we calculated the mean plant
available soil water content for the observation time, for both: the ECMWF
soil water content product and our own model results (figure 6.2). Analy-
sis revealed that the mean plant available soil water content for ECMWF is
364 (± 59)mm. For our own estimates we found a corresponding value of
170 (± 83)mm, which is roughly half of the ECMWF, but combined with a
higher standard deviation. The lower water content might be explained with
the fact that our soil depth ranges soil dependant from 10 cm to 208 cm, but
the ECMWF soil is set static to 289 cm. Since the ECMWF data does not
show rough transitions, the higher standard deviation can be explained with
the fact that we take into account individual soil characteristics, based on the
soil distribution as shown in 6.1. Considering the costal zone of the ECMWF
result it becomes apparent that the lowest values can be found here. In addi-
tion for some areas no data are available, which is due to the global modeling
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Figure 6.3: Root Mean Square Error for the ECMWF and our own time series

(2002 to October 2007) for Germany. Low RMSEs are shown in blue, moderate in

yellow and high in red. White pixels represent urban areas.

scheme, in which costal zones are sometimes treated as water, although more
than 50 percent of the grid cell is covered with land, and vise versa.
To compare the ECMWF soil water product with our own estimates we calcu-
lated the root mean square error (RMSE) based on daily values for the whole
observation period and area. The result is presented in figure 6.3.
Areas which are symbolized with blue and yellow colours indicate a good agree-
ment of the model behaviour, whereas red colours represent areas of highly
different conformability. From figure 6.3 it can be deduced that the lowest
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Figure 6.4: RMSE (left) and main soil types (right) for the Oderbruch-regioin in

East Germany. The colour schme follows the scheme of figure 6.1 and figure 6.3.

RMSEs, and thus the highest degree of agreement, can be found for regions of
homogenous soils as e.g. the Cambisol-region in central Germany. The highest
RMSE up to 200 can mainly be found for areas which correspond to soils un-
der constant wet conditions, as for instance Gleysols and Fluvisols, and with
regions of shallow soils (Lithosols) are reported (see figure 6.1).This is again
due to higher detailed soil map which we used and our approach to respect
the individual characteristics of soils (see table 6.1). Therefore, our model can
represent regional conditions in more detail.
When zooming to the "Oderbruch-region" located at the North-Eastern boarder
of Germany this finding can be confirmed (figure 6.4). Here it can be seen that
the pixels which are described as Fluvisols and Gleysols show the highest level
of disagreement (red). The soil parameters for these heavy soils, also called
"minute soils", are highly discrepant to the ECMWF soil properties. Areas
with Arenosols, Podzols, and Podzoluvisols show intermediate (yellow) and
Cambisols the best agreement (blue). This can be explained with the spatial
resolution (0.25 ◦ × 0.25 ◦) of the ECMWF soil water content product. Het-
erogeneous soil landscapes, as situated here cannot be represented with this
coarse resolution. Therefore, the ECMWF product has to be seen as integra-
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tive, since these differences in hydrological behaviour and soil properties are
not represented.
In order to compare the inter-annual behaviour of the infiltration process of
the two models we focused on three soil examples. Since the ECMWF soil
bulk and compartments are not directly comparable to our individually cal-
culated soil characteristics, but are based on the same precipitation dataset,
we chose to compare the general behaviour for three soil examples (Cambisol,
Gleysol, and Lithosol). The results are presented in the figure 6.5, figure 6.6
and figure 6.7. The examples were chosen due to their importance to the
global and European soil distribution and because of our finding of high and
low agreement, as discussed above. According to the HSWD map around 9%
of global soils are Cambisols and 15% are under saturated conditions and 12%
are Lithosols. The ECMWF data was taken for latitude: 51.0 ◦ / longitude:
8.0 ◦ (Cambisol), latitude: 52.8 ◦ longitude: 13.0 ◦ (Gleysol) and latitude: 47.6 ◦

/ longitude: 11.3 ◦ (Lithosol).
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Figure 6.5: Volumetric water content for a Cambisol site at 8.0 ◦ longitude / 51.0 ◦ latitude. Left: own model results for six soil layers

(0-3 cm, 3-15 cm, 15-37 cm, 37-61 cm, 61-95 cm, 95-134 cm). Right: ECMWF results for four soil layers (0-7 cm, 7-28 cm, 28-100 cm,

100-289 cm). Both given in percent water volume per soil layer on a daily basis from January 2002 to October 2007.
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Figure 6.6: Volumetric water content for a Gleysol site at 13.0 ◦ longitude / 52.8 ◦ latitude. Left: own model results for five soil layers

(0-3 cm, 3-16 cm, 16-41 cm, 41-76 cm, 76-122 cm). Right: ECMWF results for four soil layers (0-7 cm, 7-28 cm, 28-100 cm, 100-289 cm).

Both given in percent water volume per soil layer on a daily basis from January 2002 to October 2007.



135

Figure 6.7: Volumetric water content for a Lithosol site at 11.3 ◦ longitude / 47.6 ◦ latitude. Left: own model results for two soil layers

(0-3 cm, 3-10 cm). Right: ECMWF results for four soil layers (0-7 cm, 7-28 cm, 28-100 cm, 100-289 cm). Both given in percent water

volume per soil layer on a daily basis from January 2002 to October 2007.
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From figure 6.5 and figure 6.6 it is apparent that the volumetric water con-
tent of the two topmost layers of both models are comparable in their general
characteristics, but with differences in their absolute values.
The first layer of both models is highly influenced by precipitation, which can
explain the high short time variability of water content. This is to some ex-
tend also valid for the second layer, which is still highly influenced by daily
precipitation events, but already shows little hysteresis effects. ECMWF third
layer still shows characteristics which are highly dependant on precipitation,
which was not expected, since this layer already represents the soil water con-
tent in 28 cm to 100 cm depth. Since we cannot find this behaviour in our soil
layers 3 to n this layer cannot be compared with our model results. Our third
and ECMWF forth layer can again directly be compared and show hysteresis
effects and the start of long term water movement behaviour in soil.
A closer look to figure 6.5 shows a decrease in our volumetric water content
from layer 1 to 6. This is due to our model formulation in which we assume a
complete dry layer beneath our last model layer, to respect water run off pro-
cesses, or to be more precise to allow water to leave the system. On the other
hand, as can be seen from 6.1, Cambisol has low ks values for all layers and
thus a strong water holding capacity, which results in not too steep negative
slopes during summer periods (e.g. 2003 and 2006). To model saturated con-
ditions, as necessary for Gleysols, we assume a saturated layer beneath the last
model layer. With this more or less steady state conditions can be achieved,
as can be seen in layer 5 of figure 6.6.
In contrast figure 6.7 shows that the soil water availability of the two mod-
elled layers of Lithosols cannot be compared with the characteristics of the
corresponding ECMWF plot. Since for Lithosols we assume a soil depth of
only 10 cm they are highly dependant on precipitation events and loose water
immediately under non precipitation conditions. However, due to the mathe-
matical limitations of our model, a total loss of soil water cannot be modelled.
A residue of minimum 3% water always remains in the soil core.
Generally, long term water characteristics as we can describe with soil layer
four to six, saturation conditions or strong water holding capacities cannot be
found in the ECMWFmodel results. This can be expected since this additional
information is not taken into account in the ECMWF model.
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6.6 Conclusions

We adapted, refined and presented a one-dimensional soil water transport
model for regional and global environmental applications, following the van
Genuchten approach. It uses remote sensing based time series of the Leaf
Area Index to treat interception. In addition we calculated for all 128 FAO ’74
soil types the individual soil depth, layering, grain size distribution and van
Genuchten parameters. In order to compare our model with other data, we
applied our model for the period 2002 to October 2007 for Germany and com-
pared the results with ECMWF soil water content data for the same period.
We found good agreements for regions of Cambisols and bad agreements for re-
gions of soils under stagnant moisture (e.g. Gleysols) shallow soils (Lithosols)
or regions of heterogeneous soil landscapes of strongly varying soil qualities
at small-scale. Reasons for different agreement levels can be seen in the more
detailed soil map, which was used in our adapted and refined modelling ap-
proach and in the fact that the ECMWF model only comprises one globally
generalized soil type.
Modelled characteristics of the plant available soil water in the unsaturated
zone are typically used for vegetation models. Therefore, our presented mod-
elling approach could be helpful in the assessment of the soil water at a broader
spatial scale. Our model will, additionally, allow assessing the soil water in
vegetation models on a global, regional and local scale, if all needed data
are available. However, for local applications our approach should be further
tested in additional countries and for specific small scale case studies as e.g.
lysimeter stations.
Furthermore, this new modelling approach could be seen as useful for ap-
plications which calculate the plant available soil water content in scenario
models. In particular, more reliable forecasts will be of great consequence for
the estimation of the impacts of global climate change upon vegetation species
distributions, water availability and thus food security.



138

6.7 Acknowledgements

This study was conducted under the FP7 projects EnerGEO (Grant agree-
ment no.: 226364) and ENDORSE (grant agreement no.: 262892). We thank
ECMWF, ISRIC, IIASA, and MediasFrance for providing data. The authors
are grateful to the anonymous reviewers.



Chapter 7

Generation of a global, gap-free

SPOT-VGT LAI dataset using

spectral analysis techniques

Markus Niklaus, Kurt P. Günther, Markus Tum, Michael Bittner,
International Journal of Remote Sensing, under review

7.1 Abstract

The application of time series analysis of vegetation indices for modeling pheno-
logical plant development usually requires continuous, gap-free data. Datasets
are often characterised by gaps that are caused by clouds, large solar zenith
angles, topology etc. A combination of mean phenology data, derived from the
original dataset, and harmonic analysis was used to fill these gaps with rea-
sonable data. From the LAI time series of CYCLOPES and geoland2 derived
from SPOT VEGETATION images, we were able to generate global gap-free
and outlier-corrected LAI time series for the period 1999 - 2007 and 2010. The
comparison of the smoothed LAI values with the original data shows a high
degree of agreement on a global scale. The LAI reference maps, elaborated in
the VALERI and BigFoot projects, were used to validate the reprocessed data.
This validation shows an accuracy of 83% compared to 82% of the original
data set.
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7.2 Introduction

When modelling the development of vegetation information about the seasonal
greenness of the earth’s surface is essential. This information can be derived
both from in-situ measurements and by satellite or airborne remote sensing
observations. Information products that are derived primarily from remote
sensing data are used at regional, national or global scales. The Normalized
Difference Vegetation Index (NDVI) is a well known and frequently used veg-
etation index. It is directly linked to the photosynthetic capacity of plant
canopies (Myneni et al. (1995), Sellers et al. (1992)). Sellers (1985) showed
that plant-physiological parameters such as Leaf Area Index (LAI) and the
Fraction of Absorbed Photosynthetical Active Radiation (fAPAR) can be de-
rived from vegetation indices. Remote sensing can provide products for all
three parameters, such as the AVHRR (Advanced Very High Resolution Ra-
diometer) NDVI (Eidenshink (1992)), MODIS (Moderate resolution Imaging
Spectroradiometer) NDVI, LAI and fAPAR (Myneni et al. (2002)), SPOT-
VGT (Satellite Pour l’Observation de la Terre - Vegetation) LAI and fAPAR
(Baret et al. (2007)) and MERIS (Medium Resolution Imaging Spectrometer)
NDVI and fAPAR (Günther and Maier (2007), Gobron et al. (2004)).
For mechanistic models such as the regional biosphere model (RBM) or C-Fix
(Richters (2005), Veroustraete et al. (2002)) is information about the develop-
ment of vegetation one of the major inputs. The uptake of CO2, referred to as
Net Primary Productivity (NPP), is usually computed as a function of the light
use efficiency (LUE) and a vegetation parameter such as LAI or fAPAR. For
dynamic vegetation models such as the Lund-Potsdam-Jena Dynamic Global
Vegetation Model (LPJ) (Sitch et al. (2003)), the Biome-BioGeochemical Cy-
cles model (Biome-BGC) or the Biosphere Energy Transfer Hydrology Model
BETHY/DLR (Knorr (1997), Knorr and Heimann (2001), Wißkirchen (2005),
Thornton (1998)) such input information is essential to also estimate the car-
bon balance between biosphere and atmosphere using a parameterization of
the photosynthetic activity.
For both model types, it is important to have information about the plant’s
development as a spatially and temporally continuous, gap-free dataset. How-
ever, this requirement is not often achieved. Clouds are the most common



141

reason for large data gaps. In winter and particularly in the Northern Hemi-
sphere solar zenith angles exceeding 60 ◦ often restrict the processing of remote
sensing data, or even prevent it. This is because the low solar altitudes above
the horizon result in increased atmospheric disturbances due to the non-linear
increase of the atmospheric path. There are also larger shadows and a gen-
erally lower illumination thus increasing the signal-to-noise ratio. Topological
effects caused by steep terrain, for example, can lead to physiologically unre-
alistic observations. Therefore, such data points need to be filtered, and gaps
need to be filled. The amount of applications using such processed data has
generated a large number of approaches to create them.
Jakubauskas et al. (2002) carried out Fourier time series analysis of AVHRR
NDVI data to quantify seasonal and inter annual land use / land cover changes.
Azzali and Menenti (2000) correlated the amplitudes of the Fourier Transform
with the aridity and the vegetation types in southern Africa. Dilmaghani et al.
(2007) applied the Lomb-Scargle periodogram (Lomb (1976), Scargle (1989))
to time series of air quality and water quality. They used datasets with ir-
regular sampling periods and missing data, and derived continuous and gap
free time series. The TIMESAT program, developed by Jönsson and Eklundh
(2002), Jönsson and Eklundh (2004), was first adapted to AVHRR data, pro-
viding smoothing functions using the methods of the asymmetric Gaussian,
double logistic or adaptive Savitzky-Golay method (Chen et al. (2004)). Fur-
thermore, it was used by Gao et al. (2008) to analyze MODIS-LAI time series
applying the asymmetric Gaussian smoothing function. Yuan et al. (2011)
used a combined approach of the modified Temporal Spatial Filter (mTSF)
method for filling data gaps and the Savitzky-Golay filter of the TIMESAT
algorithm to reprocess the MODIS LAI product.
Colditz et al. (2008) introduced the Time-Series Generator (TiSeG), which
checks the MODIS Quality Assurance (QA) flags in a first step. These are de-
termined by aerosol quantity, atmospheric correction conditions, cloud cover,
shadow, and sun-target-viewing geometry (Myneni et al. (2002), Huete et al.
(1999)). In a second step, the user compares several QA flags in order to mask
or interpolate data gaps using linear, polynomial or cubic spline functions in
space or time. The approaches shown here each have their advantages over
others, especially when considering the variety of applications the processed
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data are used for. This is discussed in several publications (Hird and McDer-
mid (2009), Musial et al. (2011), Moffat et al. (2007)). But only few (Yuan
et al. (2011)) are used to produce gap free datasets of LAI on a global scale.
The presented work in this paper is based on the Harmonic Analysis (HA)
approach (Bittner et al. (1994)). This technique has been used, for example,
to operationally process satellite based ozone column measurements (Bittner
et al. (1998), Meisner et al. (1999), Ebertseder et al. (2006)). We adapted the
HA in order to generate global LAI time series. With this scheme the SPOT-
VGT LAI time series is examined to receive a gap-free and outlier corrected
global data set. In this work the changes to the algorithm are described, the
quality of this approach is discussed and finally the global LAI data set is
presented, validated and discussed.

7.3 Data and Methods

As described above, LAI time series are often used as input for biophysical
process models. These models need equidistant gridded, continuous time series
(e.g. 8 days, 10 days or monthly composites). Since LAI time series contain
data gaps, a method is needed to generate continuous sequences of input data.

Data Description

For this study LAI time series of the CYCLOPES (Carbon cycle and change
in land observational products from an ensemble of satellites) archive for
the period 1999 - 2007 and of the geoland2 project for the year 2010 are
used. The geoland2 data were produced also using the CYCLOPES processor.
The products can be downloaded, as 10 day composites, from the POSTEL
database (http://postel.mediasfrance.org) and the geoland2-Biopar platform
(http://www.geoland2.eu) respectively. The spatial resolution is about 1 km2

and the files are available as 10 ◦ × 10 ◦ tiles (labelled H[0-35]V[0-17]). We
applied the HA method for each pixel to eliminate data gaps and outliers.
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Harmonic Analysis

The seasonal variability in LAI can be described as a superposition of oscilla-
tions with different periods (see figure 7.1). The first fundamental harmonic
can for example reflect for temperate vegetation the annual cycle of the mean
temperature or for sub-tropical vegetation the rain seasons. The HA follows
the concept to represent a time series as a linear combination of n sinusoids.

Figure 7.1: Decomposition of LAI time series for one year into five harmonics

using the technique of the HA. The LAI values are normalized to zero by subtracting

the mean LAI value of the time series.

Each oscillation is defined by its amplitude Ai, phase ϕi and frequency fi,
where i ranges from 1 to n. The technique corresponds to an approximate
deconvolution of the power spectrum by successively subtracting the highest
peak, then computing a new spectrum, and so on. The resulting linear com-
bination of sinusoids, however, turns out not to be unimodal when fitting the
data. To be more precise, the variance of the time series can be greatly reduced
if all parameters of the actual and former sinusoids are varied simultaneously.
For example, when fitting the second sine function, the period, amplitude and
phase of the first sine function are free parameters, and are therefore iterated.
The fitting is done by pixel based identification of dominant harmonic oscilla-
tions as e.g. changes within the seasonal cycles. Here the major challenge is
to discriminate natural and disturbance induced dominant spectral structures
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(Bittner et al. (1994)). It has to be taken into account that outliers within a
time series can strongly affect the model result.
To solve the linear system of equations, the Newton-Raphson (Ortega and
Rheinbold (1970)) and Cholesky (Golub and Van Loan (1996)) methods are
used. A set of several sinusoids with corresponding amplitudes, phases and fre-
quencies are computed with their sum representing a fit to the original data:

y (t) =
n∑
i=1

Ai × sin
(

2π

τi
t+ ϕi

)
(7.1)

y(t) represents the LAI value, Ai(t) the amplitude, τi(t) the period and ϕi(t))
the phase for the ith oscillation. This procedure of HA is applied for each time
step of the time series. Therefore a sequence of wave lengths which are oriented
in the length of the time series is distributed in equidistant sections. Within
this array the optimum amplitude and phase are determined to adapt the
oscillations. This results in a periodogram from which the variance of dominant
spectral characteristics can be deduced. The wavelength which describes the
data variability of the whole time series the best is selected and optimized
in addition of the measured values for each pixel, concerning amplitude and
phase. This is repeated for further oscillation detections. With each step
the previously found oscillations are optimized. The amount of oscillations to
describe a time series with maximum accuracy reaches saturation at a certain
point (Bittner (1997)).

Modifications to the program

The HA method was originally designed to process time series of ozone infor-
mation in the stratosphere (Bittner (1997)). In order to use the routine of HA
for LAI time series, an adaption had to be performed. This becomes apparent
when applying the original routine to the LAI data, as shown in figure 7.2.
The fitted function (solid line) is off the measured data over the whole period,
showing unrealistic plant development, especially during the dormant phase
of vegetation. This is mainly due to lack of data at the beginning and at the
end of the year. But also the vegetative phase is not fitted successfully by this
setup of the HA.
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Figure 7.2: Example for applying the original (solid line) HA to the CYCLOPES

data (crosses) for one pixel in Massachusetts, USA, for the year 2003. A value of -1

represents a data gap.

Pre-processing of the data

The situation shown in figure 7.2 requires a method to fill large data gaps,
since the original setup of the method was not suitable for extrapolating larger
periods. As already mentioned, data gaps are mainly due to cloud contamina-
tion of the pixel or due to high sun zenith angles. Most satellite data providers
limit the data processing to sun zenith angles of less than 60 ◦. Therefore, data
gaps are more frequent during the wintertime in the Northern Hemisphere. In
equatorial and tropical regions permanent cloud cover cause periods of missing
data over nearly the whole year. The number of missing data or the length
of data gaps thus depends on latitude and season. It turned out, that data
gaps of five and more missing composites result in unacceptable uncertainties
within the HA, whereas smaller gaps have no significant impact. Hence, the
criterion was included that large gaps of five or more missing composites should
be filled with LAI values derived from a mean phenology for the land cover
type under investigation. Therefore, for each 10 ◦ × 10 ◦ tile mean phenologies
were calculated for each land cover type by averaging all corresponding LAI
values for each compositing period independently. For the identification of the
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different land cover types the Global Land Cover GLC2000 (Bartholome et al.
(2002), Fritz et al. (2003)) was used, differentiating 24 land cover types. The
GLC2000 is included as an additional layer in the CYCLOPES dataset.
Filling gaps with mean values of phenologies is based on the assumption that
the phenology of each land cover type in a 10 ◦ × 10 ◦ tile is similar for all
pixels. This mean phenology is shown in figure 7.3 for a tree-cover class of
the tile ’H10V4’ covering the northeast of the US and south-eastern parts of
Canada (upper left corner: 80W 50N; lower right corner: 70W 40N) as it
would be used for the gaps in the time series shown in figure 7.2.

Figure 7.3: Mean phenology and standard deviation of tree-cover class for tile

H10V4.

A second step to improve the HA is to detect outliers within the LAI time
series. In order to understand the occurrence of outliers in LAI time series,
especially from SPOT-VEGETATION (SPOT-VGT), one has to be aware of
the different pre-processing steps that are performed in order to train and
feed the neural net for deriving LAI (Baret et al. (2007)). After cloud screen-
ing and atmospheric correction the Roujean BRDF (Bidirectional Reflectance
Distribution Function) model (Roujean et al. (1992)) is applied to normalize
the top of canopy reflectances of the three VEGETATION bands (B2, B3 and
MIR) to nadir viewing conditions. For the BRDF correction cloud-free obser-
vations collected over a time window of ± 15 days are needed. In an iterative
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process outliers in the reflectances due to cloud contamination or improper
atmospheric correction are detected and eliminated. Finally, the medians are
calculated for all three BRDF corrected bands as well as the median of the
sun zenith angle. These normalized reflectances are used as input for the neu-
ral network. Nevertheless, outliers in the LAI time series are observed. One
explanation might be, that the median input variables for the neural net do
not fit the input range which was used during the training of the neural net.
This deviation might occur when clouds, haze or shadows are not detected in a
reliable manner. Also, the atmospheric correction might fail when high aerosol
loads occurred which are not included in the aerosol climatology. In general,
outliers in the LAI time series as high-frequency oscillations can affect the
HA by modifying amplitudes and phases and thus resulting in major errors.
Outliers may be detected using a simple stochastic threshold. For example,
outliers can be defined as values deviating from the range of the mean phenol-
ogy ± 3σ (standard deviation). The 3σ-range includes 99.7% of all values as
confident and the rest as outliers. Tests confirmed that with this criterion not
all outliers can be detected.
A more sophisticated two step based approach is proposed and tested. In a
first step each gap is filled with its corresponding value from the mean phe-
nology. In a second step, a comparison of three consecutive data points of the
time series is done. Outliers are characterized when the gradients from the first
to the second value and from the second to the third value are opposite and
one gradient exceeds a value of 2m2m−2 10d−1. A continuous, steep increase
or decrease of the LAI does not result in outlier identification. Investigations
have shown, and other works confirm (Verger et al. (2011)), that the change
of sign of gradients combined with an in- or decrease of the LAI of more than
2m2m−2 10d−1 represents unreasonable fast changes in vegetation physiology.
Steeper slopes are marked as outliers and, henceforth, are excluded from the
HA. Since vegetation reacts more dynamically to its environment this method
is regarded as more suitable to detect outliers, which are due to errors in mea-
surements.
When all data gaps and outliers are detected, the data set is doubled and
placed one after another to get periodical boundary conditions (figure 7.4).
Hence, the missing data at the two ends can be analyzed in the middle of the
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Figure 7.4: Doubled data set of the time series shown in figure 7.2. A value of -1

represents a data gap.

doubled time series. Thus, the major data gap for the time series shown in
figure 7.2 covers, after doubling, eight data points (figure 7.4), consisting of the
one missing data point at the end of the year and seven missing data points
at the beginning of the year.

Method modifications

The third improvement of the HA is the selection of the number of oscillations,
n, and of their periods, τ . In the original HA version an upper and lower period
(τup, τlo) are to be selected in order to define the interval of allowed periods.
From these, the best fit curve is to be derived together with the number of
oscillations to be used for the linear combination of the selected sinusoids (see
Eqn. 1). The start values of the periods for the n oscillations to be selected are
distributed equally between the upper and lower period. Thus the ith period
is defined as (τup - τlo)×i/n. With this distribution of periods commonly only
two periods were identified before the exit conditions are met. However, two
periods are usually insufficient to describe the characteristics of the underlying
LAI time series. To solve this shortcoming a combination of two modifications
was used. First, the exit conditions for finding the harmonic oscillation have
been changed. To abort the iterations of computing the best fit, the residua of
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the actual calculation and of the previous step are compared. The difference of
the two variances of the residua is controlled by a quality factor ε. This factor
was set to a constant value of 0.5 in the original setup and is now changed to
0.001 at the beginning of the iterations. If this threshold is not met after four
iterations ε is doubled respectively.
The second step was rearranging the start values following the principles of the
Bessel-formula (Schönwiese (1985)). The new start values for the periods are
defined by selecting the smallest period and the number of oscillations. Thus
the distribution of the periods is no longer equidistant and the ith period
is defined as τlo/i. In the iteration to find the appropriate harmonic to the
residuals of the function, here oscillations with shorter periods are proven
before the exit conditions are met and thus considered for the description
of the time series. This procedure has the additional benefit to reduce the
computational time, since the modified HA will take significantly longer to
find a fit to the data, especially due to the doubling of the data set and the
decreased quality flag.
The number of computed harmonics is set to a minimum of two oscillations
and controlled by the restriction of a minimum period of 60 days, or six data
points. Technically the method allows for a total of n oscillations, but due to
the period limitation this is never met.
For checking the quality of the results of the modified HA the Root Mean
Squared Error (RMSE) is computed for each pixel and year.

RMSE =

√
sum (LAIinput − LAIHA)2

n
(7.2)

with LAIinput being the CYCLOPES or geoland2 input data, LAIHA the anal-
ysis results and n the number of good values (meaning without data gaps)
taken for the HA. To get a globally comparative value this RMSE is normal-
ized to the mean LAI value of the pixel resulting in a Normalized RMSE value
(NRMSE):

NRMSE = RMSE/LAI (7.3)

The NRMSE compares the results of the modified HA directly with the mea-
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sured LAI input data by calculating the sum of the squared differences between
the estimated LAI and the measured LAI. The normalization of the RMSE to
the mean LAI allows a better comparison of the error on a continental or global
scale. As an example, suppose a grassland pixel with an average LAI of 1 and
a deciduous tree pixel with an average LAI of 3 have the same RMSE of 0.1.
The NRMSE for the time series of the deciduous tree pixel is better (NRMSE
= 0.033) than for the grassland pixel (NRMSE = 0.1) indicating that the fit
for the deciduous tree pixel is more reliable.

7.4 Results

To analyze the impact of the changes to the HA technique the algorithm was
applied to the LAI time series shown previously in figure 7.2. The pixel under
investigation represents the temporal development of the LAI of a mixed forest
area in the Harvard Forest, Massachusetts, USA. Figure 7.5 shows the results
of the improved HA, where values of the mean phenology are denoted as trian-
gles. Only the first seven and the last value are used to fill the data gaps of the
input time series. It was found that small gaps of less than five data points
can be extrapolated by the modified version of the HA without filling with
mean phenology data. By inserting the mean phenology the plant’s dormant
phase during winter time is represented in a phenological more reasonable way.
The results of the modified HA fit the measured and inserted LAIs with good
accuracy, having a NRMSE of 0.10.
Figure 7.6 shows another example of the temporal evolution of the LAI for
a pixel in tile H19V4, covering Italy, the Alpine and the Balkan region (up-
per right corner: 10E 50N; lower right corner: 20E 40N) for the year 2001.
Following the scheme of GLC2000, this pixel represents the vegetation type
of temperate, broadleaved, deciduous trees (class 6 of the GLC2000 classifica-
tion). This time series includes two data gaps. One at the beginning of 2001
(twelve LAI composites = 120 days) and one at the end of the year (three
LAI composites = 30 days), where no LAI values were measured. The latter
can be handled by the HA and does not need to be filled with values from
the mean phenology. However, the bigger first gap was filled with values of
the mean phenology for the vegetation class of the pixel (triangles). The solid
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Figure 7.5: Results of the modified HA based processor (solid line) applied to the in-

put data (crosses) previously shown in figure 7.2. Triangles show the mean phenology

of a mixed forest area for this pixel. A value of -1 represents a data gap.

curve shows the result of the modified HA-processor for the year 2001. With
a total of 15 missing data points the NRMSE for this pixel is about 0.09.
The effect of applying the modified HA to a representative set of full tiles of
SPOT-VGT LAI data can be seen in figures 7.7 and7.8. The tiles shown are
H7V5 (North America), H19V4 (Europe), H12V8 (South America), H18V7
(Africa), H29V12 (Australia) and H29V4 (Asia). The examples are shown for
different years and different time steps, comparing the tiles before (SPOT-
VGT) and after (HA) applying the analysis. For land masked pixel data gaps
are due to cloud cover or snow, according to Baret et al. (2007). Looking to
the results, it is obvious that not all data gaps over land are fitted by the
HA (shown as white pixel). In tile H19V4 (figure 7.7, middle column) the re-
maining data gaps represent the Alps, which are masked out as bare areas by
GLC2000 classification, or are covered by snow most of the year. Gaps in the
results for tile H12V8 (figure 7.7, right column) stem from the amount of less
than ten available data points over the year, where no analysis is performed.
Although the algorithm allows for n harmonic oscillations, depending on the
number of data points, generally a maximum of five oscillations is sufficient,
by means of the criteria described in the methods chapter, to fit the LAI time
series by a superposition of harmonic functions. For the tile H19V4, about 5%
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Figure 7.6: Time series of CYCLOPES (crosses) and HA (solid line) data for one

pixel in northern Italy for the year 2001. Triangles show the filled values of the mean

phenology for the GLC2000 vegetation class temperate, broadleaved, deciduous trees.

A value of -1 represents a data gap.

of the processed pixel needed the minimum amount of two oscillations, about
25% were fitted with three, about 46% with four and about 24% with five
oscillations.
The modified HA was applied to the full, global CYCLOPES LAI archive and
the LAI product derived by VITO for geoland2, covering the time period from
1999 to 2007 and the year 2010, respectively. Hence, ten years of LAI data
have been processed, resulting in a global, spatio-temporal continuous dataset
with a spatial resolution of 1 km2. Figure 7.9a shows a global map of the LAI
for the 18th dataset, representative for end of June 2001. Here the vegetative
phase is at its maximum in the Northern Hemisphere and at the minimum
in the Southern Hemisphere. LAI values from 0 to 7.9m2m−2 are estimated
by the modified HA-processor. The effect of having less than ten data points
available for computation, as described earlier, can globally be found for Equa-
torial Guinea, Cameroon and Gabon in Africa and for the Amazon Basin in
Brazil, for Guyana, the west coast of Colombia and Ecuador. In these regions
huge gaps in the LAI time series result from cloud contamination over most
time of the year.



153

Figure 7.7: Comparison of representative SPOT-VGT tiles H7V5 (left, North

America), H19V4 (middle, Europe) and H12V8 (right, South America) before (first

row, SPOT-VGT) and after (second row, HA) applying the analysis to the data. The

different tiles and time steps are described above the figure, where C-xx stands for the

composite of the year. White spots represent pixel where no LAI data was recorded.

Sea masked pixel are also marked as no data but of no interest for LAI investigations.

In figure 7.9b the global NRMSE is shown for the year 2001. It turns out
that the HA-processor produces good results for wide areas, comparable with
the original data. The amount of NRMSE values higher than 0.5 for this
year is about 1.1%, with a global mean error of 0.12. For the period 1999
- 2007 and the year 2010 the highest global mean NRMSE is found for 2010
(NRMSE=0.14) with the fraction of values higher than 0.5 of 1.3%.
To directly assess the quality of our product independently, we compared it to
a global set of ground measurements (see table 7.1). These validation points
are taken from the datasets of the VALERI and BigFoot projects, available at
http://w3.avignon.inra.fr/valeri and http://www.daac.ornl.gov, respectively.
The reference maps were produced by extending local ground measurements
of true LAI to a wider area, using high spatial resolution satellite images and
a specific transfer function (Morisette et al. (2006)). VALERI sites are 9 km2
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Figure 7.8: Comparison of representative SPOT-VGT tiles H18V7 (left, North

America), H29V12 (middle, Europe) and H29V4 (right, South America) before (first

row, SPOT-VGT) and after (second row, HA) applying the analysis to the data. The

different tiles and time steps are described above the figure, where C-xx stands for the

composite of the year. White spots represent pixel where no LAI data was recorded.

Sea masked pixel are also marked as no data but of no interest for LAI investigations.

(3 km × 3 km) in size, BigFoot sites cover 25 km2 (5 km × 5 km), each site
surrounding an eddy flux tower (Cohen et al. (2006)).
Following the guidelines of Morisette et al. (2006) the LAI-Map values were re-
projected to the WGS-84 datum of the SPOT-VGT LAI products. Projections
from LAI-Map pixels fitting more than 2/3 of the corresponding SPOT-VGT
pixel were taken for the quality assessment. Taking into account errors from
reprojecting the LAI reference map to the SPOT-VGT projection, the mean
values of all pixels were calculated, referred to as Map, CYC and HA in table
7.1, for the reference map values, the SPOT-VGT values and the reprocessed
SPOT-VGT values, respectively.
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Figure 7.9: Global maps for (a) the LAI of the 18th composite and (b) the corre-

sponding NRMSE for 2001. White pixels represent no data values.
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"Lat" for latitude, "Lon" for longitude, "LC" for land cover. "Map" are the mean values of the LAI reference map data, projected

to the corresponding SPOT-VGT pixel. "CYC" are the mean values of the SPOT-VGT pixels and "HA" are the mean values of the

reprocessed SPOT-VGT pixels. Land cover classes are "EBF" for evergreen broadleaf forest, "MF" for mixed forest and "ENF" for

evergreen needleleaf forest.

Site Country Lat Lon LC Date Map CYC HA

AekLoba Sumatra 2.63 99.58 EBF 2001.06.01 3.3 3.1 3.4
Alpilles France 43.81 4.71 Crop 2002.07.20 1.4 1.2 1.2
Camerons Australia 32.6 116.25 EBF 2004.04.06 2.2 1.8 1.7
Counami French Guiana 5.34 -53.24 EBF 2001.10.18 4.8 2.7 3.1
Demmin Germany 53.89 13.21 Crop 2004.07.23 4.5 3.3 3.1
Donga Benin 9.77 1.75 Grass 2005.06.20 1.8 1.4 1.7
Fundulea Romania 44.41 26.59 Crop 2001.03.17 1.0 0.5 0.4
Fundulea Romania 44.41 26.59 Crop 2001.05.02 3.3 1.8 1.9
Fundulea Romania 44.41 26.59 Crop 2002.06.09 1.2 1.5 1.3
Gilching Germany 48.08 11.32 Crop 2002.07.08 5.5 2.7 2.8
Gnangara Australia -31.53 115.88 EBF 2004.03.03 1.0 0.6 0.6
Järvselja Estonia 58.3 27.26 MF 2000.08.26 3.0 3.0 3.0
Järvselja Estonia 58.3 27.26 MF 2002.07.13 4.2 2.9 3.2
Nezer France 44.57 -1.05 ENF 2001.06.20 3.4 2.9 2.9
Nezer France 44.57 -1.05 ENF 2002.04.21 2.4 1.2 1.5
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Site Country Lat Lon LC Date Map CYC HA

PlandeDieu France 44.2 4.95 Crop 2004.06.29 1.3 0.5 0.6
Puechabon France 43.72 3.65 MF 2001.06.12 3.0 1.9 1.9
Romilly France 48.45 3.8 Crop 2000.06.05 3.8 3.8 3.8
Sonian Belgium 50.77 4.41 MF 2004.07.28 5.6 2.6 2.6
Sud-Oest France 43.51 1.24 Crop 2002.07.20 1.7 2.1 1.8
Turco Bolivia -18.24 -68.19 Grass 2001.07.31 0.3 0.1 0.1
Turco Bolivia -18.24 -68.19 Grass 2002.08.29 0.1 0.0 0.1
Turco Bolivia -18.24 -68.19 Grass 2003.04.25 0.1 0.1 0.2
Wankama Niger 13.65 2.64 Grass 2005.06.22 0.1 0.1 0.0
Zhang Bei China 41.28 114.69 Grass 2002.08.23 1.2 1.2 1.3
AGRO USA 40.01 -88.29 Crop 2000.07.07 2.6 3.0 3.1
AGRO USA 40.01 -88.29 Crop 2000.08.11 3.2 3.0 3.0
HARV USA 42.53 -72.17 MF 2002.08.24 4.3 3.8 4.0
KONZ USA 39.09 -96.57 Grass 2000.06.06 2.2 2.1 2.1
KONZ USA 39.09 -96.57 Grass 2000.08.26 2.0 1.3 1.3
KONZ USA 39.09 -96.57 Grass 2001.06.18 2.8 2.4 2.3
KONZ USA 39.09 -96.57 Grass 2001.08.16 2.6 1.8 1.8
NOBS Canada 55.89 -98.48 ENF 2000.07.14 3.5 2.4 2.2
NOBS Canada 55.89 -98.48 ENF 2001.07.14 3.5 2.4 2.4
NOBS Canada 55.89 -98.48 ENF 2002.07.14 3.2 2.3 2.2
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SEVI USA 34.35 -106.7 Grass 2002.07.26 0.1 0.1 0.1
SEVI USA 34.35 -106.7 Grass 2002.08.22 0.3 0.1 0.2
SEVI USA 34.35 -106.7 Grass 2002.09.09 0.4 0.1 0.2
SEVI USA 34.35 -106.7 Grass 2002.11.15 0.3 0.1 0.1
SEVI USA 34.35 -106.7 Grass 2003.06.23 0.1 0.1 0.1
SEVI USA 34.35 -106.7 Grass 2003.07.28 0.1 0.1 0.1
SEVI USA 34.35 -106.7 Grass 2003.09.15 0.1 0.1 0.1
SEVI USA 34.35 -106.7 Grass 2003.11.21 0.1 0.0 0.1
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For this direct validation a total of 79 LAI values from 40 stations world-
wide were analyzed. Differences in land cover classification were considered as
false classification in the GLC2000 product, and the corresponding site was
excluded from the direct validation. Hence, there were 43 LAI values of 24
stations left to be used for the validation. The land cover types of these sta-
tions are evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF),
mixed forest (MF), crops and grassland. The scatter plot of the validation
data is shown in figure 7.10. From comparing the LAI data of the original and
the reprocessed SPOT-VGT data with the reference map values, it is obvious
that there is no significant change in the quality of the data. The R2 value
increases slightly from 0.82 to 0.83 and the calculated RMSE decreases from
0.92 to 0.88. So the good quality of the SPOT-VGT LAI product could be
preserved.

Figure 7.10: Scatter plot of the direct validation of original (blue diamonds) and

reprocessed (red triangles) SPOT-VGT LAI values with results of the LAI reference

map.
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To assess the temporal fit of the reprocessed data to the original time series,
the development over the nine year period from 1999 to 2007 and for 2010 is
shown in figure 7.11, as examples for the main land cover type. The repro-
cessed time series provides a smooth fit to the SPOT-VGT input data with
good agreement with the measurements of the LAI reference maps. However,
for the Fundulea site this only applies for the observed value in 2002. The
SPOT-VGT as well as the HA values for 2001 deviate from the observed data
by a factor of about 2. In Yuan et al. (2011) this is also observed when com-
paring the reference map data with original and improved MODIS LAI data.

Figure 7.11: Temporal development of the original (black crosses) and the repro-

cessed (green solid line) SPOT-VGT data for crop sites (a), grassland sites (b), mixed

forest sites (c) and evergreen forest sites (d). Blue triangles mark the reference map

LAI values of each site. The site and country names are labelled at each plot.

Some original data, as the Camerons and Nezer series show short term fluctu-
ations where the fit strongly deviates from the sensor data. Higher peaks with
slopes greater than 2m2m−2 10d−1 are marked as outliers, but still there are
smaller fluctuations left, which seem not to be representative for the natural
development of evergreen trees. Here, the HA provides smoothed LAI curves,
which, however, show features of these fluctuations.
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7.5 Discussion

The modification of the HA and the associated improvement will be discussed
in the following. Figure 7.12 compares the results of the original HA-algorithm
and the results of the modified algorithm for a pixel in the Harz, Germany,
representing a needle forest. Three outliers have been detected marked as filled
circles. The large gaps at the beginning and at the end of the year are filled
with the phenological mean of a needle forest before the HA is applied. The
error bars of the results from the modified HA show the NRMSE of 0.22 of this
pixel, calculated from the available input data and applied also to the results,
where no input data was present.

Figure 7.12: Comparison of applying the original (solid line) and modified (dashed

line) HA to the input data (crosses) for a pixel in the Harz, Germany, for 2001.

Error bars at the solid line show the NRMSE of the results of the modified HA for

this pixel and this year. Triangles show the mean phenology of a needle forest for this

pixel, filled circles are detected outliers of the input data. A value of -1 represents a

data gap.

To further discuss this example the amplitudes, phases and periods of the three
computed harmonics for the original and the modified HA are listed in table
7.2.
The three oscillations are drawn in figure 7.13, normalized to zero by sub-
tracting the mean LAI value. The most obvious difference relates to the first



162

Table 7.2: Amplitudes, phases and periods of the three computed harmonics by the

original and the modified HA, for the time series shown in figure 7.12.

A1 ϕ1 τ1 A2 ϕ2 τ2 A3 ϕ3 τ3

Original HA 4.82 1.11 7.45 1.01 1.49 1.90 0.05 -1.24 3.81
Modified HA 1.19 2.08 5.85 0.59 1.21 1.89 0.35 2.72 2.87

harmonic, where the original HA fits an amplitude four times higher than the
modified HA.

Figure 7.13: The three harmonics of the fitted oscillation computed by the original

(a) and the modified (b) HA, for the time series shown in figure 7.12.

The period of the first oscillation is also extended by 1.6 composites (i.e. 16
days). The second harmonics have again a difference of about 40% with the
higher amplitude found by the original HA, but correlate in respect to phase
and period. The third harmonic of the original setup, with amplitude of 0.05
(figure 7.13a), does not contribute much to the resulting oscillation. However,
from the modified setup the third oscillation was found being out of phase with
the first two harmonics damping the final curve in the maximum vegetative
phase. The comparison of the original and the modified HA shows that large
data gaps must be filled with reasonable background values. In our case, the
background values for each time step are determined for each land cover class
as the mean value calculated for the whole tile. This approach is similar to
the "per class mean" introduced by Yuan et al. (2011) for processing MODIS
LAI time series. But our approach for background filling can be applied for
time series even without the availability of quality control information.
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Considering the outliers and filling the bigger data gap with mean phenology
data (figure 7.12) we achieve a suitable fitting of the LAI time series over the
year. With a NRMSE of 0.22 a higher accuracy is obtained by the modified
HA compared to the results obtained with the original HA (dashed line), re-
vealing a NRMSE of 0.92.
This increase in quality is accompanied by an increase of computational de-
mand. By doubling the time series in order to improve stationary and the
consequent gap filling method resulted in an increased computing time by a
factor of 7 compared to the original HA.
Looking again to the set of representative tiles shown in the last section (see
figures. 7 and 8) we computed the absolute difference (SPOT-VGT - HA) of
the original and the reprocessed LAI data. The deviation of the reprocessed
data was calculated for available values in the SPOT-VGT product and can
be seen in the first row of figures. 14 and 15. Most of the pixels do not de-
viate more than 0.5m2m−2 with maximum differences of about ± 1m2m−2.
Higher values are observed at coastal lines that could stem from projection
errors during the reprocessing. The highest differences can be seen for ever-
green broadleaf forest at the Australian south-western coast (tile H29V12 in
figure 7.15). It becomes apparent that the fluctuations, described earlier for
this land cover class, are not limited spatially. In contrast, the NRMSE for
this region again shows low values, describing the smoothing of the time series
by the HA. In general, the NRMSE shows good agreement of the reprocessed
product with the original SPOT-VGT data over wide areas. High errors are
faced in the mountainous regions, as in the Alps, or areas with heterogeneous
meteorological conditions, as in the dry areas of Nigeria, which is part of the
Sahel. Looking at the global NRMSE map (figure 7.9b) this becomes appar-
ent for the whole transition zone of the Sahel desert. Here precipitation is
strongly coupled to monsoonal rain seasons in the south and trade winds in
the north (Tetzlaff and Peters (1986)) accompanied with short rainy seasons
(3 to 4 months), irregular rain events and long droughts during the rest of the
year (Kandij et al. (2006)). Hence, the temporal signature of the measured
LAI shows low values (< 0.1) during the dry period with a sharp increase to
nearly two orders of magnitude higher values (> 2.5) when the rainy season
starts, as can be seen in figure 7.16. With our criterion for the detection of
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outliers this sharp increase followed by a decrease is marked as an outlier and
thus set to missing value. During the next processing step, the same temporal
behaviour is observed for the next LAI values and therefore marked as second
outlier. The result of the modified HA shows the very short vegetation period
but with reduced maximum LAI of about 1.6 instead of about 3.0.
The fractions of filled gaps for the several tiles and the particular years are
shown in the third row of figures. 14 and 15. As an example, the gap filling
in tile H19V4 occurred for about 24% of the pixels. 57% of these pixels have
filled gaps of 5 to 7 data points and 10% of more than 18 data points, which
mainly represent mountainous regions (orange and red areas).
When looking closer to the upper left of the NRMSE map of this tile (Alpine
region) it can be seen that for some pixels the modified HA-processor yields
unreasonable results. For the tile H19V4 such results can be found mainly in
the Alpine region but also for some lakes (Lake Garda in the west and Lake
Balaton in the east). A detailed analysis showed a slight shift of about ± 1
pixel between the land water mask of the Land Cover GLC2000 and of the LAI
data itself. This shift becomes apparent in figure 7.17, where Lake Balaton
and Lake Neusiedl are shown. Overlaying the highly precise land-water mask
derived from the Shuttle Radar Topography Mission (SRTM) to the original
CYCLOPES data highlights an offset of the land cover map (figure 7.17a) to
the north-west. The SRTM Water Body Data (SWBD) includes water bodies
of a size less than 100m with a spatial accuracy of 20m in horizontal reso-
lution and 16 m in vertical resolution. The observed mismatch between the
GLC2000 and the LAI data can lead to low LAI values at the south-eastern
shore, obviously measured over water (figure 7.17b). Our approach leads to
high discontinuities in the time series. This high variation leads to oscillations
with higher amplitude even for the lower original input data, and the HA anal-
ysis would produce negative values. This is caught by setting these values to
zero (see figure 7.16), leading to an error of 100% even for very low values
causing high NRMSE values at the edges of lakes. Hence, the modified HA
tends to produce unreliable results due to mismatch of the land-water mask
and the GLC2000 (figure 7.17c). This shift is present for the CYCLOPES
products in the period 1999-2003, and obviously has been corrected from 2004
on. According to Carmona-Moreno (2000) and Sylvander et al. (2000) the
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Figure 7.14: Absolute difference (SPOT-VGT - HA), NRMSE and fraction of filled

values for the particular year of the tiles shown in figure 7.7. White pixels show areas

where no values have been filled. The different tiles are described above the figure.
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Figure 7.15: Absolute difference (SPOT-VGT - HA), NRMSE and fraction of filled

values for the particular year of the tiles shown in figure 7.8. White pixels show areas

where no values have been filled. The different tiles are described above the figure.
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Figure 7.16: LAI time series for a pixel in the transfer zone of the Sahel desert.

absolute geolocation accuracy for SPOT-VGT data is estimated to be in the
order of 300m while the multi-temporal registration accuracy is better than
325m. Sylvander et al. (2000) reported a maximum, multi-temporal registra-
tion inaccuracy of about 700m for 95% of all distance measurements. Thus a
shift of about ± 1 pixel between the LAI data and the GLC2000 is in agree-
ment with the published geolocation accuracy taking into account resampling
to rectangular grid map. In addition, the low performance of the modified
HA in the Alps can be linked especially with steep terrain and geolocation
accuracy.
Focusing on agricultural areas, one encounters two different harvesting meth-
ods in tile H19V4. In the temperate northern part agricultural areas are gener-
ally harvested once a year, whereas agricultural areas in southern Italy might
show two growth cycles for crops. Since the mean phenology is calculated from
all agricultural pixels in the entire tile this will lead to a mean phenology which
neither reflects one nor two growth cycles. Thus our gap filling procedure will
result in higher uncertainties for agricultural areas when different management
practices are performed. An improvement of the gap filling technique and thus
the modified HA processor could be a regionalization of the mean phenologies
for the vegetation classes with respect to e.g. climatic zones instead of calcu-
lating them for a full tile.
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Figure 7.17: Original land cover (a), LAI (b) and calculated NRMSE (c) for Lake

Ballaton (Hungary, centre) and Lake Neusidl (Austria, upper left) with SRTM water

mask (black lines). Abbreviations of the land cover types (a) are: DBF - Deciduous

Broadleaved Forest; ENF - Evergreen Needleleaved Forest; MF - Mixed Forest.
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In our example, the tile "H19V4" covers several climatic zones according to
the Koeppen-Geiger climate classification (Kottek et al. (2006)). The northern
and eastern part of the tile (southern Germany, Austria, Hungary) is classified
as warm summer continental or hemiboreal climate while Italy, Croatia and
Albania are classified as a dry summer subtropical or Mediterranean climate.
Nevertheless, gap-free time series of the LAI from SPOT-VGT for greater areas
can be achieved by the current setup of the modified HA-processor.

7.6 Conclusions

Cloud contamination, topographic effects and restriction to the solar zenith
angle lead to gaps or outliers in the SPOT-VGT LAI time series. To make this
data usable for vegetation modelling or other applications requiring continuous
data, we applied the technique of the HA to improve this dataset on a global
scale by filling and extrapolating the data gaps with reliable values.
For this study we first had to adjust the HA to the characteristics of the bio-
physical parameter LAI, since the original setup was built for processing time
series of ozone information in the stratosphere. The main adaption is the use
of a mean phenology to fill greater data gaps, since the method of the HA
is not suitable for extrapolating. Then the time series is cleaned from addi-
tional outliers that could strongly affect the results of the HA. Modifications to
the algorithm itself are the doubling of the input time series to get periodical
boundary conditions and the rearrangement of the start values of the periods
for saving computing time. Finally the quality factor ε as exit condition of the
fitting iteration has been improved to get higher accuracy for the resulting fit.
With this modified technique we globally computed continuous, gap free time
series for the period of 1999 - 2007 and the year 2010. This is, with the repro-
cessed MODIS LAI product introduced by Yuan et al. (2011), the second of
globally available gap free datasets.
The direct validation with the LAI reference map of the BigFoot and VALERI
databases shows high accuracy of the product (R2=0.83). The comparison of
the available input data with the corresponding results of the HA, using the
NRMSE, shows good agreement on a global scale, with regional constraints
(global mean for 1999-2007 and 2010: NRMSE=0.1). Sudden peaks from
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very low values can lead to negative values in the computation of the fitting
function. These are set to zero, leading to high values for the NRMSE.
The advantage of the technique of the HA is operational applicability. Further-
more small data gaps of less than five missing data points can be closed without
using any additional data for filling. Values for filling bigger data gaps are au-
tomatically estimated from the mean phenology of the associated vegetation
class using the GLC2000. This dependency to the land cover classification
on the other hand makes this approach vulnerable to false classifications or
land cover changes.Despite this are methods of time series analysis in general
dependent on the quality of the georeferencing of the analyzed data.
Having filled the data gaps in the CYCLOPES and geoland2 SPOT-LAI data,
we now can provide a spatiotemporal continuous data set, applicable as phe-
nological input data for global or regional vegetation models. The data is
available at http://wdc.dlr.de/.
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Chapter 8

Summary and Conclusions

In this thesis project the SVAT model BETHY/DLR was improved and used
to estimate sustainable theoretical bio-energy potentials for agricultural and
forest areas in Germany and Austria. To assess the quality of the modelled
data, two comprehensive approaches were developed to validate the model out-
put with empirical data on land use and biomass increase.
For quality assessment two independent studies were performed, one for agri-
culture and one for forestry. The years modelled were 2000 and 2001. For
agricultural areas, crop yield estimates derived from the national statistics of
Germany and Austria were used. It was found that BETHY/DLR slightly
overestimates (8%) the NPP for Austrian districts, while for Germany an un-
derestimation of 17% was found. A high R2 (up to 0.79) was observed for
both countries, indicating a strong correlation between modelled and empiri-
cal yields. The reason for the different results for Germany and Austria was
traced to the spatial resolution used (1 km2), which does not properly represent
the small-scale farm structure in Central Europe, as well as to misclassifica-
tions in the land cover dataset used (GLC2000). The validation strategy also
included a model comparison with an already validated model (EPIC) for a
small area (Marchfeld, Austria). This study revealed that BETHY/DLR re-
sponds comparably to EPIC when alternative input data are used, but tends
to model more NPP (up to 32%) in that area than EPIC.
Quality assessment for forest areas in Germany was performed by using mean
annual increment data taken from national forest inventories and calculating
current annual increments from the modelled NPP. With this method a rea-
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sonably good agreement was found at the state level (R2 up to 0.95), but
combined with underestimations of up to 34%. A major reason for this can be
seen in the age structure of Germany’s forest, which is younger than the global
average forest age. BETHY/DLR does not take into account the tree age dis-
tribution, but uses photosynthesis-limiting parameters which are valid for the
global mean age of untouched forests. The mean age of Canada’s forests, for
instance, is ≈100 years; for the rain forest it is even higher (200 - 300 years).
For this reason, the carbon accumulation of younger tree communities could
be underestimated. The validation approach was additionally cross-compared
with eddy covariance measurements, which supported the finding of underes-
timation, but also showed good agreement to the annual pattern of GPP (R2:
0.79).
To estimate sustainable bio-energy potentials, comprehensive approaches were
developed and applied. Based on the modelled and validated NPP, sustainable
theoretical energy potentials were calculated for both agricultural and forest
areas at a 1 km2 resolution. It was assumed that grain and beet yields are not
directed towards bio-energy uses; of agricultural crops, only the corn side prod-
uct straw was modelled as producing bio-energy. Use competitions for straw,
such as for animal housing and fertilizer, were taken into account. Following
a sustainable approach, for forest areas it was assumed that only the amount
of above-ground forest which grew during a year could be used for energy pro-
duction. Since the end uses of woody biomass are highly diverse, it was chosen
to calculate only theoretical potentials, which need further expertise on forest
management when they are used. For agriculture, annual energy potentials of
156PJ to 217PJ were calculated, which agrees with comparable studies.
During the validation exercises one important model process, the soil water bal-
ance, was identified as having potential for improvement. The simple "bucket
model" formulation which was used to describe the soil water balance only
allowed one soil layer per grid cell. This approach is widely used in vegetation
models, but is discussed controversial because of its potential to predict un-
realistic water availability. To improve on this, a new one-dimensional water
transport model, based on the van Genuchten pedotransfer formulation, was
applied. For all 128 FAO soil types the needed van Genuchten parameters were
estimated. Furthermore, the characteristics of individual soil layers, such as
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their depths and grain size distributions, were calculated based on more than
10,000 soil core measurements. With this modelling approach more realistic
soil water predictions will be possible in a future BETHY/DLR version.
The techniques employed and the results achieved in this study will help to
increase the level of confidence that decision-makers can place in model re-
sults. As models gain in accuracy, and are validated more thoroughly, reliable
simulations of bio-geo-physical processes will gain in economic and political
importance. In particular, more reliable forecasts will be of great consequence
for the estimation of the impacts of global climate change upon vegetation
species distributions, food security, and the availability of renewable energy
sources.
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