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introduction 1

Shortly after the discovery of High-TC superconductivity in the copper compound Ba −
La− Cu−O in 1986 [BM86] Phil Anderson proposed an insulating quantum disordered
state as basis for a new mechanism of superconductivity [And87]. In the abstract of his
paper he wrote:

«This insulating phase is proposed to be the long-sought "resonating-valence-
bond" state or "quantum spin liquid" hypothesized in 1973.» (introduced by
Anderson [And73] as well)

Since then many classes of materials, e.g., heavy-fermion materials [SS10, Ste84, even
before the cuprates],1 iron-based compounds [CEE08], and organic composites [LWB+00,
McK97] have shown superconductivity at comparably high temperatures (TC > 20K).
However, from the theoretical point of view, despite many efforts, there is still no final
answer to the question of the true nature of such unconventionally superconducting states
[And92, And97, LNW06, Nor11, Sac12, ZCS+06]. Quite the contrary, it is clear nowadays
that no single mechanism is responsible for the superconductivity in different types of
High-TC materials. In Copper compounds showing superconductivity two features are
very prominent.

Firstly the undoped compounds are insulating [And97]. This fact has motivated the
research on quantum spin models since the 1980s [LMM11, ML05, RSH04]. These models
of strongly correlated electrons are defined in the insulating state of matter and only the
spin degrees of freedom of the electrons contribute. The focus lies thus on the magnetic
properties of the material rather than on its electronic character.

Secondly a strong spatial anisotropy both in the chemical structure and the physical
properties is observed; i.e., the materials consist of two-dimensional layers and also the
magnetic and electronic characteristics exhibit the same spatial anisotropy [And97]. In
quantum spin models the dimensionality also plays a crucial role in the context of ordering
processes. The conditions under which a quantum spin liquid most likely exists, were
characterized by Anderson [And87]:

«This insulating magnetic phase is favored by low spin, low dimensionality,
and magnetic frustration.»

The quantum spin liquid is a superposition of quantum mechanically entangled states
without any long-range order [And73]. This quantum entanglement is mediated by quan-
tum spin fluctuations of the corresponding spins which may exceed the classical magnetic
interactions in particular for small spins and in low-dimensional models [RSH04, Sac04].
The smallest unit is a quantum entangled pair of spins (a singlet) which, according to An-
derson, becomes the charge carrier in the superconducting phase if the insulator is doped
sufficiently [And87]. In the insulating phase, these singlets cover the lattice and can be

1To any literature cited in the this chapter, the abbreviation ’e.g.’ and the comment ’plus references
therein’ should be added, as articles, reviews and books listed may have good substitutes.
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2 chapter 1. introduction

arranged in a regular configuration giving rise to quantum long-range order. However, the
absence of long-range order in the spin-liquid state even for T ց 0 makes the detection
and validation of such a disordered ground state very complicated. No local symmetry is
broken and, hence, no local order parameter exists for this phase [Gol93]. According to
the Mermin-Wagner theorem [MW66] in isotropic models (i.e., quantum fluctuations and
classical interactions are scaled with the same parameter) a long-range ordered ground
state in two dimensions can only be stable at zero temperature. At higher temperatures
the order is destroyed by thermal and quantum fluctuations. By breaking the isotropy
or taking the classical limit of the quantum models long-range order can be established
at finite temperatures [Joy67, KT73]. For dominating homogeneous magnetic interac-
tions – either ferromagnetic or antiferromagnetic – the system is forced into a long-range
magnetically ordered state [RSH04]. However, the introduction of competing interactions
between different spins by involving, for example, magnetic exchange on longer distances
results in frustration. I.e., there is no global configuration of spins that satisfies all local
magnetic interactions [Die05]. For frustrated systems the importance of quantum fluc-
tuations is thus enhanced again and may lead to the emergence of quantum ordered or
disordered states [Bal10, BBB+05, ML05].

The case of two-dimensional quantum spin liquids has in particular attracted a lot of
interest in recent decades, because of its relation to topological ordered states [JYB11,
KL87, ML05, Wen91]. The order for these states does not only depend on the internal
parameters but also on the topology of the system, e.g., boundary conditions, shape, and
size of the system. The topological order cannot be verified by a local order parameter,
neither, and therefore the spin liquid is a promising candidate to represent such a state.
Topologically ordered states and especially their excitations are discussed as possible
candidates for the implementation of so called qubits, i.e., quantum bits that serve as the
smallest unit of a quantum computer [LMSS12, OP99].

Motivated by these two major topics of modern condensed matter physics, i.e., High-
TC superconductivity and quantum computation, the search for quantum spin liquids has
become a very active field since the 1990s, both experimentally [CTTT01, ONAKT07,
SMK+03] and theoretically [CL98, MS01]. Promising candidates to exhibit a spin-liquid
ground state from the theoretical point of view are spin-1/2 Heisenberg models in frus-
trated two-dimensional systems [JYB11, WGWV11, YHW11]. One focus of this thesis
is a detailed analysis of the ground-state phase diagrams of a two-dimensional frustrated
quantum Heisenberg model with anisotropic exchange parameters on the square and hon-
eycomb lattice (more details in section 1.2).

A good starting point for exploring the physics of the quantum-mechanical spin models
is a deeper understanding of the underlying classical spin models that are obtained by
taking the limit of zero quantum fluctuations. The ground states of these frustrated Ising
models are easily identified, but the ordering processes and phase transitions are still
subject of ongoing research and will be the topic of chapters 5 and 6 of this thesis.

ordering processes in the 2D Ising model2 1.1

The simple Ising model which adds up the interactions of two-state variables on a D-
dimensional lattice has served as a pioneer in many physical problems, especially in sta-

2Some results of this part are published in [KHM11] and the following introduction is partially based
on this manuscript.



section 1.1. ordering processes in the 2D Ising model 3

tistical mechanics and solid-state physics [Isi25, Len20]. It was one of the first models to
mimic the magnetic exchange interactions in condensed-matter theory, and the behavior
of phase transitions has been studied extensively for this model in different dimensions
and by numerous approaches. It was solved for the one-dimensional chain by Ising [Isi25]
and for the square lattice with nearest-neighbor interaction by Onsager [Ons44]. In two
dimensions the model with nearest-neighbor interactions J1 undergoes an ordering pro-
cess at a finite temperature which is well understood and establishes the Ising universality
class for second-order phase transitions [Bax82, Gol93, Ons44, see also next chapter].

However, for additional frustrating interactions J2 on next-nearest neighbor bonds the
phase diagram of the model becomes richer and the physics of the occurring phase transi-
tions becomes more complicated. These complications originate from the competition of
different ground states that occur for certain parameters in the phase diagram. At these
critical points a large degeneracy of macroscopic order often arises and this hampers the
analysis of the system [KHFP08].

A fully analytic solution of the frustrated J1-J2 model has not been found. However,
the behavior of the model in the vicinity of the phase transition can be analyzed by
applying different numerical and analytic techniques, e.g., renormalization-group trans-
formations [Bax82, Car96], Monte-Carlo simulations [Ber04, LB05, see also section 3.2.1],
transfer-matrix calculations [Bax82, section 3.3] for the lattice model and mean field
[Gol93], and conformal field theory [dFMS97, Mus10, section 4.2] for the continuous ver-
sion of the model. With the exception of renormalization and mean-field techniques, all
of these methods will be applied in this thesis and will be introduced in chapters 3 and
4. Monte-Carlo simulations in particular have been very successful for the investigation
of the Ising model [KHFP08, KHFP09, LB05] and will serve as primary method in this
work. However, Monte-Carlo simulations suffer severe thermalization problems due to
the ground-state degeneracy in the vicinity of the critical point. To overcome these prob-
lems in this thesis an additional exchange Monte-Carlo step [Han97, HN96, KTHT06] is
introduced. For this purpose, sets of simulations with the same parameters (system size,
exchange parameters) are computed simultaneously at different temperatures, and accord-
ing to a probability function, which depends on the temperature and the energy of the
system, the spin configurations of different simulations can be exchanged. Because of the
possible large changes in the configuration each simulation thermalizes more rapidly; the
algorithm is also referred to as parallel tempering since many simulations are thermalized
parallelly.

Using this improved algorithm two cases are studied in the context of this work: firstly
an isotropic version of the model, where all next-nearest neighbor interactions are set to
the same constant value J2, and secondly an anisotropic version where two different values
for the next-nearest neighbor coupling Ja

2 = −J b
2 are used.

isotropic Ising model

In chapter 5 the focus lies on the phase transition from the high-temperature paramagnetic
phase to an antiferromagnetic collinear phase that is favored by an isotropic antiferromag-
netic coupling J2 on next-nearest neighbor bonds in the square lattice, i.e., J2 > J1/2.
This transition has attracted a lot of interest in the past. In the late 1970s renormalization-
group calculations and Monte-Carlo simulations for the Ising model with frustrating in-
teractions were performed by Nightingale [Nig77], Swendsen & Krinsky [SK79], and later
on by Oitmaa [Oit81] as well as by Landau & Binder [BL80, Lan80, LB85, LB05]. For
this particular model they assumed a continuous phase transition and computed tran-
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sition temperatures and critical exponents. Throughout the 1980s it was commonly ac-
cepted that the exponents are weakly universal but vary for different degrees of frustration
[Bax82, page 254], i.e., only the scaling relations for the exponents are fulfilled but the
absolute values are not universal.

A different point of view is adopted by describing the corresponding continuous model
using conformal field theory [CS09, dFMS97, Mus10, see also section 4.2]. This field
theory is characterized by a central charge c which can be calculated via the free energy
of the system [Aff86, BCN86]. However, a continuous phase transition with non-universal
exponents is only possible if the central charge of the underlying conformal field theory
is c ≥ 1 [FQS84]. Meanwhile theories with discrete c < 1 define universality classes with
universal exponents such as the two-dimensional Ising model (c = 1/2) [BPZ84a, BPZ84b].
The frustrated J1-J2 Ising model can be described by two identical independent copies
of nearest-neighbor J2 Ising models at the point J1 = 0 with a total central charge of
c = 1. Furthermore, for increasing J1 > 0 a decrease of the central charge is expected
according to the c theorem [Zam86], and hence, the universality of the phase transition
was under debate. In 1993 López et al. presented a mean-field calculation for the model
[MLAGS93, MLAGS94] where they find a first-order transition for a finite parameter
region of 0.5 < J2/J1 . 1.1. Recent Monte-Carlo simulations by the group of Malakis
et al. contradict this scenario at least for the value J2/J1 = 1 [MKT06]. On the other
hand, Monte-Carlo results in published in [KHFP08, KHFP09] strengthen the argument
of a first-order transition for small values of 0.5 < J2/J1 ≤ 0.7.

Using Monte-Carlo simulations it will be shown in the chapter 5 that the region of
validity for the first-order transition is increased up to J2 . 0.9 J1. However, the Monte-
Carlo simulations do not give a conclusive picture for larger values of J2 due to increasing
length scales. Hence, it was necessary to apply further techniques to understand the na-
ture of the phase transition for these parameters. To compute the central charge of the
model a finite-size analysis will be performed for the free energy which was calculated
via transfer-matrix techniques. In a last step the limit of two decoupled Ising models
with antiferromagnetic coupling J2 is assumed and an antiferromagnetic nearest-neighbor
interaction J1 is added perturbatively between the two copies. In second-order perturba-
tion theory an Ashkin-Teller model is obtained which is in agreement with a scenario of
non-universal exponents.

anisotropic Ising model

For the anisotropic case, where J2 is not the same for all next-nearest neighbor bonds,
the phase diagram of the Ising model on the square lattice exhibits an additional ground
state for ferromagnetic interactions Ja

2 along one direction of diagonal couplings and
antiferromagnetic interactions J b

2 = −Ja
2 along the perpendicular direction [CG05]. The

same state was earlier described by Landau and Binder for the axial-next-nearest neighbor
Ising model (ANNNI) [LB85]. The finite-temperature phase transition to this ground state
was discussed by Chitov and Gros using mean-field arguments [CG05]. They predict an
intermediate phase that exhibits incommensurate ordering, i.e., the smallest unit of a set
of spins that show a regular alignment is incompatible with the system size for this phase.
Therefore, the ordering process and the topology of the system are closely connected for
these states and the concept of topological excitations is discussed in that context [Bak82].

The concept of incommensurate phases and phase transitions from incommensurate
to commensurate ordered states is also discussed in different versions of the Ising model
in two and three dimensions, see for example [Bak82, BvB80, MI11, Sel88, SM99, VB81,
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ZC11]. In the same context the scenario of floating phases, those that are characterized
by different order parameters and combine different commensurate phases, is described
in [Bak82] for two-dimensional systems. The incremental change of the corresponding
ordering wave vector (see section 2.1) with an external parameter such as temperature or
coupling is often referred to as the devil’s staircase [Bak82]. The number of steps depends
not only on the systems size but also on the remaining parameters, and thus the staircase
reflects the intrinsic properties of the system. This devil’s staircase has also been observed
experimentally (see, e.g., [FML+78]).

In chapter 6 Monte-Carlo results of the anisotropic Ising model will be presented for
energies, correlation functions and their Fourier transform – the structure factor. Strong
evidence of a floating phase within the anisotropic two-dimensional Ising model is given
which has not been observed before. The results are compared to the predictions of Chitov
and Gros [CG05] and it is shown that their calculations for the ordering wave vector yield
an upper limit for the staircase of ordering vectors observed in the simulations.

disorder by quantum fluctuations3 1.2

By introducing quantum fluctuations into the classical Ising model and keeping the dis-
crete values of the spin variables at the same time the quantum mechanical Heisen-
berg model is defined [Hei28]. A first solution was given by Bethe [Bet31] for the
one-dimensional spin-1/2 chain. Already in two dimensions no analytic solution has
been found. To study the ground-state behavior of such a two-dimensional quantum
spin model a variety of methods are applicable in principle, e.g., exact diagonaliza-
tion [BF64, LP04, OB78, see section 3.1], perturbative methods like series expansion
[Kog79, OHZ06, see section 4.1] or linear spin waves [HP40, IS04], the coupled cluster
method [BLDR08, FB04] or the density matrix renormalization group and its further
developments [Sch11, Whi92] (all at T = 0), and quantum Monte-Carlo [SK91, see also
section 3.2.2] (at finite temperature). Each method exhibits its advantages and drawbacks
such as, for example, the limitation on accessible system sizes (exact diagonalization, vari-
ational methods) or the uncertainty of the underlying assumptions (perturbative methods,
some variational methods). The major drawback of the quantum Monte-Carlo approach
is the sign-problem4 which is severe for completely frustrated spin models. However, by
lifting the frustration for some magnetic interactions and accepting the loss of isotropy of
the original spin model, the sign problem can be avoided and statistically exact results
can be obtained for reasonably large systems. The quantum spin models studied in this
work are anisotropic, i.e., the quantum fluctuations stem from ferromagnetic interactions,
and can be simulated without the sign problem. These spin models can then be inter-
preted alternatively as models of hard-core bosons [MM56] with non-frustrating kinetic
energy and repulsive interaction on a two-dimensional lattice (a more detailed description
is given in section 2.3). The same perspective was adopted in earlier works for several
frustrated lattice problems [BS00, CMWK08, HBS+01, NC08]. However, the particular
models studied in this work include hopping and interactions on all considered bonds, and
they have not been analyzed previously at half-filling.

3Most results of this part are published in [KAC+12, KHFP11a, KHFP11b] and the following intro-
duction is based on these manuscripts.

4This special problem of quantum Monte-Carlo simulations is explained in section 3.2.2.
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Similarly to the classical case the remaining frustration for the repulsive interactions
of the model leads to thermalization problems in the quantum Monte-Carlo simulations
which can be overcome in the same manner by introducing an exchange Monte-Carlo step,
whereby the probability distribution for the acceptance of the exchange step has to be
adopted to the quantum Monte-Carlo algorithm [SSC02, Mel07].

The bosonic interpretation also opens a new possibility to compare theoretical results
to experimental realizations of the model on optical lattices [LSA+07, SOL+11]. These
artificial perfect lattices are constructed by standing waves of laser beams and can be
used as simulators for quantum mechanical models of interacting particles. The mech-
anism works particularly well for bosonic systems. However, a construction of lattices
with frustrating interactions has only been achieved recently [JGT+12] and needs further
investigation.

In the quantum spin model for limiting cases of small and large quantum fluctuations
magnetic phases are expected to be stable: antiferromagnetic states resemble the Ising
ground states for small quantum fluctuations and a ferromagnetic long-range correlation
in the perpendicular plane for large quantum fluctuations. In bosonic language, the
antiferromagnetic states are described by boson-density waves. The ferromagnetic in-
plane order is interpreted as Bose condensation of the magnons and hence corresponds
to a superfluid order in the bosonic model [Blo32, Hoe50, LF73, MM56]. A combination
of both is referred to as supersolid and has been discussed in previous works for similar
models [CMWK08, HD05, LF73, MPB+05, NC08, WT05]. The name originates in the
bosonic description of the model where this kind of ordering combines superfluid order
with density-wave order. Apart from the magnetic phases the emergence of a disordered
spin-liquid state (or resonating valence bond) and a variety of quantum phases showing
long-range order is discussed for quantum spin models [BBB+05]. The configurations of
such states are given, e.g., by a parallel alignment of singlets which represent a quantum
mechanically entangled state of two spins (see, for example, figure 2.5 on page 19). These
singlets or valence bonds can be either arranged in a fixed regular configuration yielding
valence bond solids or the lattice is covered by a dynamic disordered assembling which is
described by different singlet configurations (hence the name resonating valence bond).
The search for these quantum states in frustrated quantum spin models on the square
and honeycomb lattice is the subject of chapters 7 and 8 of this thesis.

square lattice

One of the most interesting and challenging problems in the field of frustrated quantum
spin models is the J1-J2 spin-1/2 isotropic Heisenberg model on the bipartite square
lattice [BLDR08, CBPS03, ML05, MLPM06, OW96, RDS+10, RMP09, RS09, RSH04].
In the vicinity of the point of highest frustration a variety of phases is discussed and
recently evidence for a spin-liquid ground state was given in [JYB11, WGWV11]. As
described above, non-variational quantum Monte-Carlo simulations have a severe sign
problem for the frustrated model and are thus very limited for such a system. In chapter
7 a bosonic model which maps onto the Heisenberg model for a certain set of parameters
is investigated and may give some crucial hints for the completely frustrated model. For
similar models, quantum ordered phases have been predicted [BBB+05].

Starting from the classical model without quantum fluctuations, which is analyzed
in chapter 5, the quantum model is examined for finite temperatures and the quantum
Monte-Carlo results are extrapolated to T = 0 to form a ground-state phase diagram. For
the equivalent anisotropic Heisenberg model, two classical antiferromagnetically ordered
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phases (Néel and collinear state) are found to be stable as ground states for small quan-
tum fluctuations. A direct transition between these two antiferromagnetic configurations
is verified by means of quantum Monte-Carlo simulations and series expansion. For large
fluctuations the system becomes ferromagnetic in the xy plane. Close to the highly frus-
trated point, which is accompanied by a large ground-state degeneracy in the classical
limit, a region with no finite order parameter is identified and this state is interpreted
as quantum disordered after excluding long-range dimer order by additional Monte-Carlo
calculations for higher correlation functions [San92]. Furthermore, the low-energy spec-
trum of a small lattice is calculated via exact diagonalization to exclude topological order
in the disordered phase of the ground-state phase diagram [ML05, MLMS02].

honeycomb lattice

The honeycomb lattice has received much attention in the past years because of its elec-
tronic structure, which gives rise to interesting behavior observed in graphene [CGP+09].
However, this two-dimensional bipartite lattice with its two-site unit cell was investi-
gated long before it was realized in a real material. It is particularly interesting for
quantum mechanical models of strongly correlated electrons, since its coordination num-
ber n = 3 is the lowest allowed in a two-dimensional system [FSL01, RSH04]. Hence,
the influence of quantum fluctuations on the ground state properties is expected to
be more important than, for example, in the also bipartite square lattice. Recently,
it was found that the Hubbard model on the honeycomb lattice exhibits a spin liquid
state at the edge of the metal-insulator transition for an intermediate value of the on-
site repulsion [CAS11, MLW+10]. Since then the investigation of spin models that can
be derived perturbatively from the Hubbard model [YLMS10, YS11], or stated directly
inside the insulating phase, has yielded many interesting features. The ground-state
phase diagrams include disordered and valence bond solid phases for different parame-
ters [ASH+11, CLR11, MB12, MGCP10, MR11, RAT11]. Furthermore, in the context of
heavy-fermion physics, Iridium compounds have been investigated that can be described
by frustrated spin models on the honeycomb lattice and exhibit antiferromagnetic order
[KY11].

In chapter 8 a spin model on the honeycomb lattice is investigated, including nearest,
next-nearest and third-nearest neighbor anisotropic Heisenberg interactions, a geometry
analyzed in previous works for the isotropic Heisenberg model [ASH+11, CLR11, FSL01,
RAT11]. The starting point is again the limit of small fluctuations, where Sz interactions
along a preferred direction are all antiferromagnetic, leading to frustration. The quantum
fluctuations in the transversal plane are non-frustrating and, hence, ferromagnetic as
for the square lattice. Thus, the predictions for possible ground states are very similar
and indeed, the phase diagram obtained by quantum Monte-Carlo simulations in chapter
8 resembles the latter case qualitatively. A stability estimation of the several phase
boundaries calculated by linear spin wave theory and series expansion reproduces the
numerical results very well. On a quantitative level, the region without any magnetic
order differs from the square lattice model, and again the calculation of higher correlation
functions does not provide any evidence for a long-range ordered quantum phase.
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interacting spin systems
in two dimensions 2

summary

In section 2.1 of this chapter some crucial concepts of statistical mechanics are repeated.
These will be used to describe the spin models and to analyze the physical properties of
them. For this work the classical Ising model and the quantum mechanical Heisenberg
model are of particular interest and will be introduced in sections 2.2 and 2.3, respectively.
For the Ising model ground-state configurations and phase-transition scenarios are out-
lined for the frustrated square lattice. The Heisenberg model is defined as spin and boson
system on the square and honeycomb lattice, and possible ground states are discussed.

statistical mechanics 2.1

The framework for analyzing the theoretical models that will be introduced in the follow-
ing sections is the theory of statistical mechanics, because the number of particles and
hence the number of available states is generally extremely large1. The ensemble concept
allows for the derivation of thermodynamic properties on the basis of all accessible mi-
crostates that contribute for a certain set of parameters [Sch00]. Throughout the present
work the temperature T and the number of particles N is fixed for each calculation,2

which are the prerequisites to work in the canonical ensemble. The value of interest for a
model defined by its Hamiltonian H will then be the canonical partition function

Zcan. = Tr exp (−βH) =
∑

k

exp (−βEk) , β = 1
kB T

, (2.1)

which sums over the Boltzmann weights of all states k at the inverse temperature3 β. The
representation of Zcan. given above requires: (a) a discrete spectrum of energies which is
always the case for the discrete spin models that are the subject of this thesis and (b) the
knowledge of all eigen-energies Ek of the system. For quantum systems the derivation of
these eigen-energies will be a challenging task, confer section 3.1 on page 21.

1Usually at this point the Avogadro constant is introduced which defines the number of particles in
an amount of one mol of material to be in the order of N ∼ 1023. However, the maximal number of spins
that will be taken into account in this work is much lower N ∼ 106. Nevertheless, due to the exponential
growth of states with N this task is already quite challenging with today’s computer power.

2The word calculation refers to the attempt to extract concrete data from the model for certain
parameters. Hence, it is mostly a computational approach – a simulation – and only in some cases actual
analytic calculations will be performed.

3In the following the Boltzmann constant will be set kB = 1, as well as the Planck constant ~ = 1.
However, it is important to keep in mind that β actually represents an inverse energy.

9
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thermodynamics 2.1.1

The expectation value of an observable A using the partition function is given by

〈A〉 = 1

Zcan.

∑

k

Ak exp (−βEk) . (2.2)

The internal energy4 E = 〈E〉 (and the entropy S) can be deduced from the thermody-
namical potential F which defines the free energy

F = E − TS = − 1
β
lnZcan. → E =

∂(βF )

∂β
= −∂Zcan.

∂β
. (2.3)

The free energy is the corresponding thermodynamic potential and it connects the con-
cept of statistical mechanics with the thermodynamic observables. All thermodynamic
observables can be derived from it using Legendre transformations and further derivatives
[Sch00]. Furthermore, the concept of phase transitions, which will be explained briefly
below, is connected with the behavior of the free energy.

order parameter

To detect and distinguish different phases of a system that exhibit different local symme-
tries, observables are introduced that are sensitive to the ordering processes that happen
at a phase transition [Gol93, Sch00]. For spin models these local order parameters are
connected with the internal magnetic properties of the system. The spin-spin correlation
functions Si Sj can be used to track different long-range ordered configurations in the
lattice by taking the Fourier transform at different momenta q – the spin structure factor
[Mah00]:

S(q) = 1
N

∑

i,j

exp (q(ri − rj))Si Sj , ri: position of Si (2.4)

Each momentum vector q classifies a different spin configuration, e.g., for q = (0, 0) a
ferromagnetic alignment of all spins gives a maximal signal in the structure factor which
in that case resembles the magnetization

q = (0, 0) : mferro. =

√
S(q)
N

=

√∑
i,j Si Sj

N
= 1

N

√
∑

i

Si

∑

j

Sj =
1
N

∑

i

Si . (2.5)

The order parameter is chosen such that it gives a finite signal in the corresponding
ordered phase and equals zero for the remaining region of the phase diagram [Gol93]. The
calculation of higher moments and cumulants of these order parameters plays a crucial
role for the accurate analysis of the phase transitions.

phase transitions

A thermodynamical system aims to be in a state of minimal energy and maximal entropy;
the combination of both is given by the free energy as shown in equation (2.3). The

4Throughout this work the notion of an observable will always refer to the expectation value of this
observable if not stated otherwise explicitly.
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importance of the maximization of the entropy decreases with temperature and, hence, a
state with higher order and less symmetry that minimizes the internal energy is favored
as a ground state. This symmetry breaking manifests itself in the free energy as a phase
transition at a certain critical temperature TC ; the characteristics of the free energy and
its derivatives in the vicinity of that critical point classify the phase transition. If the free
energy F shows non-analytic behavior at T ≈ TC the phase transition is not continuous
but of first-order. The energy gap stemming from the discontinuity is called latent heat
and manifests itself in a two-peaked structure in the energy distribution at the critical
point. This feature can be observed in energy histograms and will be used in chapter 5
to verify a first-order phase transition in the two-dimensional Ising model.

For continuous transitions the scaling of F with the reduced temperature τ = T−TC

TC

can be described by continuous power laws which also applies for the order parameter,
correlation functions and other observables, for more details see [Car96, Gol93, Sch00].
The result of a scaling analysis is a set of critical exponents for these power laws. Critical
exponents are universal for classes of phase transitions that share similar properties: the
symmetry of the order parameter, the local number of states, the dimensionality and the
range of the interactions define different universality classes. One of the most important
magnitudes for the scaling analysis is the correlation length ξ which scales with the expo-
nent ν and diverges at the critical temperature. Because the divergence in a finite system
is limited, a finite-size analysis is inevitable for the investigation of critical behavior on
finite lattice systems. However, this same analysis can be used to extract ν and the re-
maining critical exponents. A further feature of the critical exponents can be derived by
going back to their origin; the scaling of the free energy imposes scaling (and in some
cases hyper-scaling) relations on the critical exponents, i.e., they are not independent and
have to fulfill certain relations [Car96, Gol93]. At this point the concept of continuously
varying exponents may be introduced. There are continuous phase transitions with crit-
ical exponents that obey these scaling relations but vary continuously. The ratios of the
exponents with ν are universal again [Bax82]. Hence, these transitions sometimes are
referred to as weak-universal [Suz74].

The individual exponents specify the scaling for the order parameter (β), its suscep-
tibility (γ), the specific heat (α), the correlation functions (η) and the corresponding
correlation length (ν). Hence, higher moments of the order parameter m scale with mul-
tiples of β and in particular the fourth order cumulant

U4 =
3

2

(

1− 〈m4〉
3 〈m2〉2

)

, where U4(T = TC) ∝ L0 , (2.6)

gives the same value for different system sizes L× L at the critical temperature, i.e., TC
can be determined from the single intersection point of the cumulants, as was pointed out
by Binder [Bin81a, Bin81b]. The cumulant U4 is chosen such that the signal in the ordered
phase tends towards a finite constant value5 and in the disordered phase the signal equals
zero. This behavior originates in the distinct distribution of the order parameter in the
ordered and disordered phase and the particular prefactors given in equation (2.6).

Furthermore, fluctuations of the order parameter and the energy are enhanced in the
vicinity of the critical point and, thus, the susceptibility χ the specific heat C are good
indicators for phase transitions:

χ =
〈m2〉 − 〈m〉2

T
and CV =

〈E2〉 − 〈E〉2
T 2

. (2.7)

5The constant value depends on the model, the order parameter, and the normalization.
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Ising model 2.2

The basic assumptions of the Ising model are that every site of the lattice is occupied by
a two-state spin variable6 Si = ±1 and that spins on different sites interact only pairwise
– with ferromagnetic (Ji,j < 0) or antiferromagnetic exchange (Ji,j > 0) – and with an
optional magnetic field hi. The Hamiltonian and, hence, the energy of the system is given
by summing over all possible interactions and sites, respectively:

HIsing,gen. =
∑

i 6=j

Ji,jSiSj +
∑

i

hiSi . (2.8)

In the following the magnetic field will always be zero and the interaction strength Ji,j will
be fixed to a homogeneous value for a given distance of the sites i and j. In particular, the
focus will be on the two-dimensional square lattice with N = L×L sites and interactions
J1 for all nearest neighbors (NN) and J i,j

2 for next-nearest neighbors (NNN):

HIsing,square = J1
∑

NN

SiSj +
∑

NNN

J i,j
2 SiSj . (2.9)

For antiferromagnetic interactions on the next-nearest neighbor bonds in the square lattice
the model is frustrated, and no global configuration minimizes all interactions contributing
to the Hamiltonian.

In chapter 5 both J1 > 0 and J2 > 0 will be chosen antiferromagnetic whereas in
chapter 6 the coupling J2 will be anisotropic, i.e., ferromagnetic in one direction (con-
necting next-nearest neighbors) and antiferromagnetic in the perpendicular direction. In
both cases the focus will be on analyzing the phase transition for dominating next-nearest
neighbor interactions J2.

ground states 2.2.1

For high temperatures – compared to the energy scale T ≫ J1 ∼ J2 – the spins on different
sites are nearly independent because thermal fluctuations overrule the potential energy of
the interactions and the system is in a disordered paramagnetic state. At lower tempera-
tures the system minimizes its overall energy by aligning spins (anti-)parallel on nearest
and/or next-nearest neighbor bonds, respectively. In the non-frustrated nearest-neighbor
Ising model (J2 = 0) a (anti)-ferromagnetic ground state is stable in two dimensions. For
isotropic antiferromagnetic J1 > 0 and J2 > 0 two ground states with a total magneti-
zation of M = 〈∑i Si〉 = 0 are obtained: a Néel ordered state (figure 2.1 (a) left) and a
collinear ordered state (figure 2.1 (a) right). A comparison of both ground state energies

ENéel = −2N(J1 − J2) and Ecoll = −2NJ2 (2.10)

yields a critical point at J2 = J1/2. The ground state at this point is largely degenerate
and this degeneracy has a strong influence on the physics in the vicinity of the critical

6The absolute value of Si has no influence on the physical properties of the model, rather it fixes the
energy scale of the system.
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NN       NNN
interactions

Néel order collinear order

(a) isotropic model

superferro−antiferromag.

2J  a

2J b

(b) anisotropic model

figure 2.1: (a) Shown on the left hand side is the Néel ordered state for a 4×4 square lattice, on
the right hand side the collinear configuration. In the middle a transition state is shown which is
part of the degenerate ground state manifold of the frustrated model at the critical point (sketch
taken from [Kal08, p. 6]). (b) Ground state for the anisotropic model for 2|J1| < |Ja

2 |+ |Jb
2 |.

point, see [Kal08, KHFP08, KHFP09]. Appropriate order parameters for these states are
given by the spin structure factor (see section 2.1) for specific momenta:

Néel order: q = (π, π) mNéel =

√

S(q)

N
=

1

N

∑

i

(−1)rxi +ryi Si (2.11)

collinear order: q = (π, 0) ∧ (0, π)

mcoll.,x =
1

N

∑

i

(−1)rxi Si ∧mcoll.,y =
1

N

∑

i

(−1)ryi Si . (2.12)

The latter is a combination of two different order parameters measuring the configurations
that differ by an angle of 90◦.

For an anisotropic choice of J i,j
2 , i.e., ferromagnetic in one direction (Ja

2 < 0) and
antiferromagnetic in the perpendicular direction (J b

2 > 0) another ground state consist-
ing of ferro- and antiferromagnetic structure arises (shown in figure 2.1(b) and called
superferro-antiferromagnetic state – SFAF) and competes with a Néel state (for J1 > 0):

ENéel = −N(2J1 + Ja
2 − J b

2) and ESFAF = −N(Ja
2 + J b

2) . (2.13)

The critical point is given by 2 J1 = J b
2 − Ja

2 and in the special case of −Ja
2 = J b

2 this is
reduced to J1 = J b

2 . The ordering wave vector is q = (π/2, π/2).
Equivalently, for a negative (ferromagnetic) J1 the competing state is the ferromagnetic

ground state for both models.

phase transitions 2.2.2

For the non-frustrated case (J2 = 0) the critical temperature TC = 2J1arsinh−1(1) ≈
2.269 J1 can be calculated exactly [Ons44] and the phase transition between the param-
agnetic phase and the magnetically ordered state is a continuous one with well defined
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figure 2.2: (Published in [KHFP09].)
Phase diagram for the isotropic frustrated
J1-J2 Ising model. The phase transition on
the left-hand side is continuous and Ising
universal whereas the phase transition on
the right-hand side is under debate and
will be discussed in chapter 5.

critical exponents [Ons44]. The set of Ising critical exponents define the two-dimensional
Ising universality class [Gol93] and are also valid for many other phase transitions, for
example, the static critical behavior of the gas-liquid transition. It was shown earlier
[KHFP08, LB05] that for small J2 < J1/2 this universality holds also for the phase tran-
sition from the paramagnetic state into the Néel state for the frustrated system; however,
the critical temperatures are reduced by the influence of the competing interactions, see
figure 2.2 and [KHFP08, LB05].

The phase transition from the high-temperature phase into the collinear state (right-
hand side in figure 2.2) is one major subject of this thesis and will be discussed in detail
in chapter 5; possible scenarios are either continuous transitions with Ising exponents, or
varying exponents, or a weak first-order transition (see [KHFP08, LB05, MLAGS93] and
the introduction of this thesis).

The direct transition from the Néel state to the collinear state is only possible at
T = 0 and is first order since the symmetries of the two configurations are different. This
transition will be discussed in more detail for the quantum case because the degeneracy
of the classical ground state may give rise to interesting phenomena for non-zero quantum
fluctuations.

For the anisotropic case there are predictions that the phase transition to the SFAF
phase is not direct, but there may exist an intermediate temperature regime where in-
commensurate ordering sets on before the system orders completely in the ground state,
see [CG05].

Ashkin-Teller model

A very similar model is the Ashkin-Teller model. This lattice model was introduced as
a generalization of the Ising model to a four-component system [AT43]. However, in the
1970s it was shown that the model can be mapped onto a system of two Ising models (A
and B) residing on the same lattice and interacting via an additional four-spin interaction
[FW70]:

HAT = J
∑

NN∈µ=A,B

Si,µSj,µ + J4
∑

NN

Si,ASj,ASi,BSj,B . (2.14)

The phase diagram is rather complicated and can be found, e.g., in [Bax82]. More
important in the context of this thesis is the behavior of the phase transition from a
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high-temperature disordered state to magnetically ordered ground state: for a certain
parameter region (in the J vs. J4 space) weak universal behavior is observed.

Furthermore, the two limiting cases of (1) the Ashkin-Teller model with J4 = 0 and
(2) the frustrated Ising model with J1 = 0 are equivalent and represent two decoupled
Ising models on sublattices A and B.

Heisenberg model 2.3

The above introduced Ising model is of purely classical nature and its finite spin variables
are defined in one dimension and have only two possible states. The generalization of the
spin with a fixed absolute value S to a three-dimensional vector leads to the definition of
the classical Heisenberg model:

HHM =
∑

i 6=j

Ji,jSiSj ; , (2.15)

where the exchange integral Ji,j has also become a vectorial quantity. For classical spins
Si all possible local states are now classified by a sphere of radius S at site i. However,
in this work the spins will be quantized, i.e., the value of Si is quantized and the spin
operators are defined by the commutation relations of Sx,y,z

i ,

e.g.
[
Sx
i , S

y
j

]
= iδi,jS

z
i and

[
Sn
i , S

n
j

]
= 0 (2.16)

The basis of the Hamiltonian (2.15) is chosen to be in z direction, thus, the quantization
applies to the Sz values of the spin operators. Only semi-integer values in the range of ±S
are allowed.7 Throughout this whole thesis the local spins have a value of Si =

1
2

and hence
Sz
i = ±1

2
. In a next step ladder operators can be introduced which increase/decrease the

local magnetic moment Sz
i by ±1 if possible and change the state accordingly:

S+
i = Sx

i + iSy
i , S−

i = Sx
i − iSy

i → Sx
i S

x
j + Sy

i S
y
j = 1

2

(
S+
i S

−
j + S−

i S
+
j

)
(2.17)

S+| ↓〉 = | ↑〉 , S−| ↑〉 = | ↓〉 , S+
1 S

−
2 | ↓↑〉 = | ↑↓〉 , S−

1 S
+
2 | ↑↓〉 = | ↓↑〉. (2.18)

The Hamiltonian (2.15) for Jx = Jy = Jx,y then reads:

HHM =
∑

i 6=j

Jx,y
i,j

2

(
S+
i S

−
j + S−

i S
+
j

)
+ Jz

i,jS
z
i S

z
j . (2.19)

Because all operators Sz
i commute with each other and both the quantum spin-

1/2 Heisenberg model and the classical Ising models are locally two-state models, the
anisotropic limit with Jx,y = 0 of (2.15) is given exactly by an Ising model with Si = ±1

2

and Jz = J . For non-zero interactions Jx = Jy 6= 0 quantum fluctuations are introduced
as shown above and change the physics of the limiting Ising case. This point of view will
be the subject of the second part of this thesis: what happens if quantum fluctuations
perturb the classical ground state of a frustrated Ising model – in particular in the vicinity
of a highly frustrated point.

7Thus, for the quantum case the absolute value of S is relevant for the physical properties as the
number of states depends on S. In the limit of large S the quantization of Sz ceases to be important and
the model resembles its classical limit.
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Jz
k > 0 will be chosen antiferromagnetic as for the Ising case, but Jx,y

k < 0 will be
chosen ferromagnetic. In that way the frustration is lifted for the interactions in x and y
directions which allows a simulation of the model using quantum Monte-Carlo techniques
without a sign problem.8

hard-core bosons 2.3.1

With the negative sign of the exchange interaction Jx,y
k < 0 a mapping of the spin model

onto a system of hard-core bosons [MM56] can be defined by the following operators:

[

bi , b
†
j

]

= i δi,j , ni = b†ibi ,
(

b
(†)
i

)2

= 0 (2.20)

mapping: S+
i → b†i , S−

i → bi , Sz
i → ni − 1

2
. (2.21)

The Hamiltonian (2.19) thus represents a model of bosons residing on the same geometric
lattice as the spin model (with a bosonic exchange rate tk = Jx,y

k /2) with the restriction
that every site can be occupied by one boson at most – hence the expression hard-core
boson – that experience a repulsive interaction (Vk = Jz

k ) if two bosons occupy neighboring
sites. The mapping also yields a constant term and terms for the chemical potential
proportional to the density operators ni,j which scale with the interaction strengths Vk.
At fixed half filling – the point of interest in this work – these terms only yield a constant
irrelevant contribution. An additional magnetic field in the original spin Hamiltonian
would change the filling of the bosonic model as it acts as an chemical potential, too.

square lattice

The definition of neighboring sites depends on the particular choice of the lattice and range
of the interactions. In chapter 7 the quantum case of the above mentioned square lattice
(sketched in figure 2.1) is investigated and nearest and next-nearest neighbor interactions
are included:

H� =
∑

NN

t1

(

b†ibj + bib
†
j

)

+ V1 ninj

+
∑

NNN

t2

(

b†ibj + bib
†
j

)

+ V2 ninj . (2.22)

honeycomb lattice

A very similar model is analyzed in chapter 8 for the honeycomb lattice. For this bipar-
tite Bravais lattice with a two-site basis, quantum fluctuations are even more important
because the number of nearest neighbors – the coordination number of the lattice is n = 3
– is smaller than for the square lattice and is smallest for a two-dimensional lattice. How-

8This particular point will be explained in section 3.2.2.
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ever, here additional third-nearest neighbor (NNNN) interactions are taken into account
motivated by earlier works on similar models (see introduction 1.2):

H7 =
∑

NN

t1

(

b†ibj + bib
†
j

)

+ V1 ninj

+
∑

NNN

t2

(

b†ibj + bib
†
j

)

+ V2 ninj

+
∑

NNNN

t3

(

b†ibj + bib
†
j

)

+ V3 ninj . (2.23)

The interactions between next-nearest and third-nearest neighbors is set to the same value
V2 = V3 and all fluctuations scale with a ratio of t = tk/Vk.

In this thesis the focus will be on the spin interpretation of the models. However, for
convenience and to emphasize the anisotropy of the models the parameters tk and Vk will
be employed:

HHM =
∑

k, i,j

[
tk
(
S+
i S

−
j + S−

i S
+
j

)
+ V z

k S
z
i S

z
j

]
=
∑

k, i,j

[
2 tk

(
Sx
i S

x
j + Sy

i S
y
j

)
+ V z

k S
z
i S

z
j

]
,

(2.24)

whereby the index k represents the range of the interactions.

ground states 2.3.2

In quantum mechanics not only thermal but also quantum fluctuations may suppress the
ordering of the system into a long-range ordered ground state. This mechanism is even
more important in low-dimensional systems. For isotropic quantum models in one and
two dimensions that inhabit a continuous symmetry – in the isotropic Heisenberg model
this symmetry is given by spin rotational invariance – the Mermin-Wagner theorem states
that no long-range order is stabilized for non-zero temperatures, see [Hoh67, MW66].

In the present model the interaction is chosen to be strongly anisotropic and, hence,
the Mermin-Wagner theorem does not apply. Thus, starting from the classical limit of
zero quantum fluctuations a classical magnetic long-range order – the Néel and collinear
configuration – may also be stabilized in the quantum system, even at finite temperatures.
Even if the classical states are no exact eigen-states of the quantum Hamiltonian the order
parameter can be finite if long-range correlations are stable.

For the square lattice the antiferromagnetic configurations are exactly as shown in
figure 2.1 and the critical point is also the same; However, the energies in (2.10) are scaled
by a factor S2 = 1

4
which will be important for the perturbational approach presented in

section 7.1. The static structure factor serves as order parameter for the same momentum
vectors too.

For the honeycomb lattice the classical ground states are shown in figure 2.3. In
the Néel state all spins of the same sublattice A are aligned parallel and anti-parallel
to the spins of the sublattice B, hence the ordering wave vector is given by q = (0, 0).
The collinear state favored by the nearest-neighbor interactions – also minimizing the
third-nearest neighbor interactions of the same strength (V2 = V3) – is given by a parallel
alignment of all spins inside a row and anti-parallel alignment for the perpendicular row of
spins. The state is sixfold degenerate and at three wave vectors the structure factor gives
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(a) Néel state with all spin
interactions Jk

(b) collinear state with
M7 = 0

figure 2.3: Classical anti-
ferromagnetic ground states of
the honeycomb lattice for differ-
ent strengths of frustration – Jk
connecting nearest, next-nearest
and third-nearest neighbors. (a)
Néel state with spins in one sub-
lattice aligned parallel and anti-
parallel to the other sublattice.
(b) collinear state with parallel
aligned spins along one direction
and anti-parallel spins along the
perpendicular direction.

a finite signal: q = π√
3
(
√
3, 1) and q = π√

3
(
√
3,−1) with sublattices A and B parallel,

q = 2π√
3
(0, 1) with A and B anti-parallel. The total magnetization of each hexagon holds

M7 =
∑

i∈7 Sz
i = 0. The energies of the classical limit for a lattice of N = 2 × L × L

sites are:

ENéel = −1
8
N (3V1 − 6V2 + 3V3)

V2=V3= −3
8
N (V1 − V2) , and

Ecoll =
1
8
N (V1 − 2V2 − 3V3)

V2=V3= −1
8
N (5V2 − V1) (2.25)

The transition point is thus at V3 = V2 = V1/2. This is the same value as for the square
lattice and similarly the ground state is largely degenerate at the critical point. A collinear
state with non-zero magnetization per hexagon may yield a lower energy for models with
V2 6= V3 although the total magnetization will still be zero [MB12].

For both lattices, away from the critical point (V2 6= V1/2) the antiferromagnetic states
are expected to be stable against small quantum fluctuations tk 6= 0. A perturbational
estimation for the stability of the two phases is presented in sections 7.1 and 8.1 for the
square and honeycomb lattice, respectively.

For large fluctuations, which correspond to large ferromagnetic spin interactions in x
and y direction in (2.15), a ferromagnetic order in the xy plane is expected. The equivalent
bosonic model is then dominated by the kinetic energy of the bosons and the repulsive
interactions are negligible. However, due to the hard-core constraint the movement of the

0 0.2 0.4 0.6 0.8 1
V

0

0.1

0.2

0.3

- 
t

collinear order

in-plane ferromagnetic order

Néel order

quantum phases?

figure 2.4: (Published in [KAC+12].)
Schematic phase diagram for the frus-
trated anisotropic Heisenberg model on
the honeycomb lattice. The axes repre-
sent the frustration V = V2/V1 = V3/V1

and the relative amplitude of the quan-
tum fluctuations t = tr/Vr. Red circles
refer to actual transition points calculated
by quantum Monte-Carlo simulations (see
chapter 8).
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bosons has to be correlated and the ground state is a superfluid phase. The relation of
ferromagnetic and superfluid order can be derived from the condensation of the bosonic
excitations – magnon modes – of the magnetic model when it undergoes the transition
into the ferromagnetic ground state, see [Blo32, Hoe50, MM56]. An upper bound for the
energy of this state can be obtained by assuming a product state of spins aligned in the
x (or y) direction and rewriting the Hamiltonian in (2.24) in the basis of Sx as

HHM =
∑

k, i,j

[
2 tkS

x
i S

x
j + 2 tk+Vk

4

(
S+
i S

−
j + S−

i S
+
j

)
+ 2 tk−Vk

4

(
S+
i S

+
j + S−

i S
−
j

)]
. (2.26)

In the described product state the energies only depend on the Sx interaction due to the
rotational invariance of the ferromagnetic state:

Eferro,� = N(t1 + t2) and Eferro,7 = 3
4
N(t1 + 2 t2 + t3)

t2=t3= 3
4
N(t1 + 3 t2) . (2.27)

The limit of zero Sz interactions yields the xy model which is known to exhibit a finite
magnetization in the xy plane [Jia11, SH99].

A superposition of antiferromagnetic Sz order and ferromagnetic in-plane order is
referred to as a supersolid state, which stems from the bosonic description where superfluid
order and a boson-density wave are established at the same time. This kind of intermediate
configuration manifests itself by showing finite signals for multiple order parameters and
has been discussed in earlier works for similar models [CMWK08, HD05, LF73, MPB+05,
NC08, WT05] where a stable ground state was verified away from half-filling.

A possible ground-state phase diagram is sketched in figure 2.4; the red circles represent
quantum Monte-Carlo data for the frustrated anisotropic model on the honeycomb lattice
but the sketch applies for both systems. The most interesting case for the quantum models
is the intermediate regime of high frustration (J2 ≈ J1/2) and small but finite quantum
fluctuations. As was outlined in the introduction the appearance of quantum ordered
phases is most probable for these parameters.

quantum phases

The building blocks of these phases are not single spins but rather entangled states of
multiple spins; the smallest and most discussed unit is a dimer consisting of two spins
with total spin Sz

total = 0

|S0〉 = |Stotal = 0, Sz = 0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) or

|S1〉 = |Stotal = 1, Sz = 0〉 = 1√
2
(| ↑↓〉+ | ↓↑〉) (2.28)

(a) columnar dimer state (b) staggered dimer state (c) plaquette state

figure 2.5: Three different quantum phases with a long-range ordered covering of the lattice
with superpositions of multiple spins represented by the colored shapes.
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which minimizes not only its potential but also its kinetic energy:

[
Jx,y/2

(
S+
1 S

−
2 + S−

1 S
+
2

)
+ JzSz

1S
z
2

]
|S0〉 = (−Jx,y/2− Jz/4) |S0〉

[
Jx,y/2

(
S+
1 S

−
2 + S−

1 S
+
2

)
+ JzSz

1S
z
2

]
|S1〉 = (Jx,y/2− Jz/4) |S1〉 . (2.29)

The covering of the whole lattice with these dimers allows for different phases such as the
columnar or staggered dimer phase sketched in figure 2.5 or phases with larger periods
of long-range ordered configurations. Furthermore, larger building blocks as plaquettes
of four spins are possible (figure 2.5c). The long-range order of these phases breaks a
symmetry of the Hamiltonian and can be detected by calculating higher order correlation
functions. However, another possibility is a dimer covering without long-range order – the
so-called spin-liquid state. The covering of the lattice is not given by a static configuration
of dimers but represents a superposition of all possible dimer coverings. The state is fully
symmetric and cannot be detected by any local order parameter [And73, Bal10]. Thus, a
verification is only possible by excluding any kind of long-range order. There are two types
of spin liquids – the algebraic and gapped form [Bal10] – that show different excitations.
The excitations for the algebraic form in two dimensions are of particular interest because
their distribution function can reflect fermionic or bosonic character, or alternatively
neither of them [Kit06]. The test for a topological ordering in such a disordered state can
be accomplished by calculating these low-lying excitations. For a periodic system (with
an aspect ratio close to one) which exhibits topological order a ground-state degeneracy
is expected [MLMS02].
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summary

The specific methods used throughout this work will be described: to solve the models
given in section 2.3 numerically one can diagonalize the matrix representation of the
quantum mechanical Hamilton operator for small system sizes. This method – scaling
exponentially in the system size N – and some options how to extend the accessible lattice
size (up to N = 36 sites) are described in section 3.1. In order to analyze larger systems
the concept of Monte-Carlo simulations is introduced for the statistical evaluation of the
partition function and calculation of physical observables as energy and order parameters.
The Monte-Carlo simulations scale in powers of N , and the exact order of the scaling also
depends on the observables that are computed. The classical implementation for the
Ising model with up to four million sites will be the subject of section 3.2.1. For the
quantum model a more sophisticated and time-consuming approach is necessary that will
be introduced and explained in section 3.2.2. A numerical calculation of the free energy
using transfer-matrices is presented at the end of the chapter.

exact diagonalization 3.1

Because the Hamilton operator of a quantum mechanical system is in general not diagonal
in a common basis like the Sz basis, the Hamiltonian has to be diagonalized to obtain
the eigen-energies and states of the model. The transformation of a Hamiltonian in the
thermodynamic limit into its diagonal form using only analytic expressions is only possible
for very special systems. For all other models this task has to be performed numerically

21
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and is thus limited to finite systems. As a short example, the transformation of the singlet
and triplet state for the anisotropic Heisenberg coupling of two spins is shown:

H = Jx,y

2
(S+

1 S
−
2 + S−

1 S
+
2 ) + Jz Sz

1S
z
2

=









−Jz

4
Jx,y

2
0 0

Jx,y

2
−Jz

4
0 0

0 0 Jz

4
0

0 0 0 Jz

4









basis:

| ↑↓〉
| ↓↑〉
| ↑↑〉
| ↓↓〉

(3.1)

diagonalize−→









−Jx,y

2
− Jz

4
0 0 0

0 Jx,y

2
− Jz

4
0 0

0 0 Jz

4
0

0 0 0 Jz

4









basis:

1√
2
(| ↑↓〉 − | ↓↑〉)

1√
2
(| ↑↓〉+ | ↓↑〉)
| ↑↑〉
| ↓↓〉 .

(3.2)

This transformation becomes more complicated for two-dimensional lattices and long-
range interactions due to the increasing number of non-zero entries in the matrix. The
dimension of the matrix is given by the total number of states m = qN where N is number
of sites and q is the number of states per site. In the particular case of a spin-1/2 model
holds q = 2.

symmetries 3.1.1

The computational effort to diagonalize matrices does not scale linearly with dimension m
but in higher powers [GvL96]. The details of different algorithms will be discussed in the
next subsection. However, for all cases it is useful to split the matrix into smaller parts
which can be diagonalized more efficiently, i.e., a block-diagonal form is constructed. This
splitting is directly connected with the symmetries of the Hamilton operator, i.e., only
basis states that are connected by off-diagonal matrix elements have to be diagonalized
simultaneously.

Every symmetry is connected with an operator A commuting with the Hamiltonian;
the most obvious conserved symmetry inside the Heisenberg model is the conservation of
the total spin A =

∑

i S
z
i , i.e., the commutator holds

∑

i

[HHM , Sz
i ] = 0 . (3.3)

The Hamiltonian for a spin-1/2 system is split into N + 1 subspaces which have a di-
mension

(
N
k

)
where k = N

2
− Sz

total. To bring the Hamiltonian into the corresponding
block diagonal form a simple rearrangement of the basis states may be necessary but no
basis transformation is needed. For most cases throughout the present work the subspace
Sz

total = 0 is the most interesting since the dominating interactions will be chosen anti-
ferromagnetic. However, this subspace is the largest and needs further divisions to allow
for a diagonalization of larger systems. The implementation of periodic boundary con-
ditions yields a further symmetry in momentum space, i.e., the model is invariant under
certain translations. To use this symmetry, the basis has to be transformed by applying a
Fourier transformation, for more details see [Sch03, GvL96]. Other symmetries depending
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on the momentum subspace may be conserved and can yield further simplifications, as
for example, inversion or rotation symmetries. The remaining smaller subspaces can be
diagonalized by different algorithms.

algorithms 3.1.2

A full diagonalization of the Hamilton operator for a spin-1/2 Heisenberg model is only
possible for N ≤ 24 (the accessible size depends on the symmetries of the model as
described above). For this purpose the Householder algorithm is used that is based
on orthogonal matrix transformations and scales with the third power of the matrix
dimension m3 independently on the number of empty entries in the matrix [GvL96]. The
result is a complete spectrum and the corresponding set of eigen-vectors.

For larger systems – keeping in mind the exponential scaling of m with N – the goal of
the diagonalization has to be chosen less ambitiously. In general this is in agreement with
the interest in the ground-state behavior of the models. The most common approach to
calculate the lowest eigen-values of a large sparse1 matrix is the Lanczos algorithm. Within
the Lanczos algorithm an effective tridiagonal Hamiltonian is constructed that is based on
a Krylov space [GvL96, Par98] and has a significantly smaller dimension than the original
Hamiltonian. It can be shown that the lowest eigen-values and related eigen-vectors of
this effective Hamiltonian are very good approximations of the lowest eigen-values and
eigen-vectors of the original Hamiltonian [GvL96, Par98]. This effective Hamiltonian can
be set up efficiently by applying a matrix-vector multiplication recursively and, therefore,
allows for larger system sizes than accessible within a complete exact diagonalization. The
more entries of the original matrix that are non-zero the slower the convergence of the
algorithm. Thus, by applying the method to the models given in section 2.3 the accessible
system size for the honeycomb lattice will be smaller than for the square lattice, because
in the square lattice only four bonds per site contribute to the Hamiltonian where on the
honeycomb lattice twelve bonds are considered.

The program for the full diagonalization and the Lanczos method that is used to
calculate the lowest eigen-values of the anisotropic Heisenberg model for some parameters
was developed by Jörg Schulenburg within his PhD thesis [Sch, Sch03].

Monte-Carlo simulations 3.2

In section 2.1 it was stated that the thermodynamic properties of a model can be deduced
from the canonical partition function. This partition function is not available as a closed
analytic expression for the two-dimensional models discussed in the previous chapter. A
well-established method to approximately calculate integrals or large sums is the Monte-
Carlo algorithm. The essential idea of the algorithm is based on the stochastic evaluation
of random events.2

In the context of condensed matter theory the algorithm is used to sample the configu-
ration space of a model and to calculate observables in the sampled configurations, thus, a

1A sparse matrix is considered to contain mostly entries that equal zero which is given for models that
couple only a few neighboring sites.

2The name stems from an urban district in the principality of Monaco which is widely known for its
large casino.
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measurement is simulated. The sampling itself is a Markov process and can be performed
in different ways according to the underlying problem or observables of interest [Ber04].
The importance sampling is based on choosing different configurations in phase space
by a weighting function and evaluating observables in these configurations statistically.
Two crucial requirements should be fulfilled by an implementation of an importance sam-
pling Monte-Carlo simulation according to the master equation of the sampled process:
ergodicity and detailed balance [Ber04, LB05].

classical Monte-Carlo algorithm 3.2.1

The algorithm proposed by Metropolis et al. in reference [MRR+53] meets the required
standards of ergodicity and detailed balance, and is used for the classical simulations in
chapters 5 and 6. The transition is divided into two steps: selecting a new state and
accepting or rejecting it. The probability to select a new state is the same for all starting
and end points, i.e., new states will be proposed following a uniform distribution. However,
the acceptance rate is directly coupled to the weight of both states inside the canonical
ensemble, i.e., the transition probability u(i, j) is connected to the Boltzmann weight of
the energy difference pi,j = exp(−β(Ej − Ei)) of both states i and j. Per definition the
probability holds 0 ≤ u(i, j) ≤ 1 and thus for negative energy difference every new state
is accepted:

u(i→ j) = min {1, exp (−β(Ej − Ei))} . (3.4)

For the Ising model a single-spin flip of the Metropolis algorithm is performed as such:

1. select a lattice site, either randomly or systematically, and propose to flip the spin
located at the site

(2.) calculate the Boltzmann weight pi,j for the energy difference

(3.) generate a random number 0 < r ≤ 1 using a uniform distribution

(4.) if r < pi,j accept the spin flip and change the configuration accordingly, otherwise
reject the change

5. calculate observables (measurement)

Steps 2 - 4 are only necessary if the energy of the proposed new state is higher than the
original energy.

A Monte-Carlo simulation is performed in units of sweeps (N single spin flips) and
observables should only be calculated when the overall configuration has changed suffi-
ciently, i.e., the correlation between subsequent measurements of an observable should
be minimized [Ber04]. In addition, each simulation needs to thermalize in the beginning
from its initial (random) state into a state of equilibrium according to the fixed temper-
ature, i.e., after a reasonable number of sweeps only small fluctuations of the energy are
expected, see also [LB05].
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improvements

In the vicinity of a critical temperature the configuration of the system undergoes drastic
changes. The energy and other observables show large fluctuations and hence the single-
spin update may suffer critical slowing down since the proposed changes are very small
[LB05]. In addition to this usual problem, because of the degeneracy at the critical point
of the discussed models (see subsection 2.2.1) the free-energy landscape has many local
minima for parameters close to the critical point. As a consequence, it is very complicated
to reach the correct equilibrium state without further enhancements to the algorithm.

Possible improvements depend on the model and the nature of the critical point. A
typical approach is cluster updates [SW87, Wol89], but these are not suitable for the
antiferromagnetic Ising model with long-range interactions as the clusters cover the com-
plete lattice quickly. However, because the ground-state degeneracy of these models can
be tracked down by flipping complete lines of spins (see subsection 2.2.1), the update of
such a predefined cluster can be used to improve the convergence of the algorithm in the
vicinity of the degenerate point.

A second possible improvement is an exchange of the complete configuration – called
exchange Monte-Carlo or parallel tempering. Here a set of simulations at different temper-
atures are computed simultaneously and swaps between these configurations are proposed,
see [Han97, HN96, KTHT06]. The acceptance probability of such a swap once again has
to fulfill the detailed balance:

pswap = exp (−∆β ·∆E) , ∆β = βi − βj and ∆E = Ei − Ej . (3.5)

This procedure enhances the thermalization process drastically, in particular in the vicin-
ity of critical points which exhibit a large degeneracy. The degeneracy allows for many
configurations with similar energies (representing local minima) which can be exchanged
rapidly by the parallel-tempering procedure to saturate in the configuration with the
global minimal energy.

More details on the implementation of the classical Monte-Carlo algorithm can be
found in appendix A.1.

quantum Monte-Carlo algorithm 3.2.2

The representation and simulation of quantum mechanical models is more cumbersome
than the classical Monte-Carlo. The reason for this are the non-commuting operators that
contribute to the quantum Hamiltonian and hamper the decomposition of the partition
function.

An idea by Handscomb for an expansion of the partition function [Han62] was the
basis for the development of an algorithm by Sandvik which is known as directed loop
stochastic series expansion [San92, SK91, SS02]. The subsequent outline of the method
is following the description given in reference [SS02].

Since the partition function is a sum over exponential functions a reasonable ansatz
is simply expanding these functions:

Zcan. = Tr [exp (−βH)] =
∑

n

βn

n!
Tr [(−H)n]

=
∑

α

∑

n

βn

n!
〈α|(−H)n|α〉 (3.6)
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where |α〉 represents a complete set of basis vectors for the system. For the anisotropic
spin-1/2 Heisenberg models, which will be the subject of investigation in chapters 7 and 8
of this work, a suitable and accessible basis is given by the Sz

i product representation. The
Hamiltonian is then split up into diagonal parts Hdia, i.e., Sz operators, and off-diagonal
parts Hoff that change the Sz product state. Furthermore, the sum is divided up into
operators Hbi which only act upon a single bond bi of the lattice:

Zcan. =
∑

α

∑

n

∑

Sn

βn

n!
〈α|

n∏

i=1

(−Hbi)|α〉 . (3.7)

The index Sn represents a series of indices bi, also called operator-index sequence, which
introduces an additional dimension, since the state of the quantum spin system is no
longer described by a single configuration |α〉 but requires this supplemental sequence of
operators acting upon |α〉. The initial state |α(0)〉 is evolved by applying a product of
operators Hbi

|α(p)〉 ∝
p
∏

i=1

Hbi |α(0)〉 . (3.8)

weights and sign problem

The sign in front of the off-diagonal Hamiltonian segments Hoff
bi

in equation (3.7) plays a
crucial role. The sampling of this representation of the partition function using Monte-
Carlo update schemes is only possible in principle if all weights

pα,Sn
= βn

n!
〈α|

n∏

i=1

(−Hbi)|α〉 (3.9)

are positive. Hence, for positive exchange rates in the off-diagonal parts Hoff an overall
negative sign may remain ans this hampers the application of stochastic evaluations. For
a bipartite lattice – such as the square or honeycomb lattices – the additional condition
of periodicity in the evolution of the states |α(n)〉 = |α(0)〉 guarantees that an even
number of off-diagonal operators appears in the operator sequence. However, because of
the frustration in the models presented in chapter 2 this guarantee does not hold, and
the exchange rates for the operators acting upon bonds which connect sites of the same
sublattice have to be chosen to be negative to avoid the sign problem completely.3 The
sign for operators connecting sites of different sublattices can be mapped onto each other
via a sublattice rotation, and can therefore be chosen freely.

directed loop update

The expansion order n of the partition function can be linked directly to the internal
energy of the system using equations (2.3) and (3.6):

E = − 1

Z

∂Z

∂β
= −

〈
n

β

〉

. (3.10)

3It is also possible to apply Monte-Carlo techniques if the overall sign is negative by taking all weights
positive and keeping track of a so-called average sign. However, in most cases this average sign decreases
exponentially with the system size and inverse temperature β. Thus, an evaluation including the reciprocal
average sign is hampered by poor statistics. This effect is usually referred to as the true sign problem for
quantum Monte-Carlo simulations [Wie93].
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Because the finite system has a negative upper bound for the internal energy, the ex-
pansion order has a positive upper bound and the expanded version of Zcan. allows for a
statistically exact representation. This detail is very useful for the practical implementa-
tion of the Monte-Carlo update and also shows that the expansion order grows with the
inverse temperature β.

As mentioned above, the basis for such an implementation is a starting configuration
in the Sz

i basis for the spin system and a sequence of operators acting upon that state.
The length of this sequence is given by a fixed number m ≥ n which can be increased if
necessary. All operators are initially set to identity 1. The update consists of two steps.

1. The Monte-Carlo step regulates according to a weight function [SS02] – obeying
detailed balance – the number of non-identity operators in the sequence Sm by
exchanging local diagonal operators and identity operators.

2. In a second step a directed closed loop is built inside the operator sequence which
connects non-identity operators in a determined manner. The update of this loop in-
terchanges per definition diagonal and off-diagonal operators and flips the connected
spins.

The setup of the directed loop is the crucial part of the Monte-Carlo simulation. For each
addressed vertex describing a local operator and the adjacent four spins (all operators
represent two-spin interactions, hence, two spins come in and two come out) the exit leg
has to be calculated regarded to the incoming leg. The procedure stops when the loop
reaches the starting leg of the initial vertex. The periodicity in the operator sequence is
thus necessary.

In this work an implementation of this algorithm by Alet et al. [AWT05] is used which
is embedded in the ALPS project [AAC+07, ADG+05, BCE+11]. For more details of the
implementation see appendix A.2.

improvements

The efficiency of the loop update can be enhanced by imposing further requirements on
the setup of the loop, e.g., the conservation of the total spin, and the prohibition of
selecting the incoming leg as exit leg to decrease the probability of short loops. Thus, a
faster thermalization can be reached.

Concerning the thermalization problems at phase transitions, the quantum fluctua-
tions introduce a kinetic energy in the system which helps to overcome small energy bar-
riers and. However, because the quantum models are frustrated and the additional kinetic
energy also reduces the transition temperatures, further improvements of the algorithm
are necessary. Once again an exchange Monte-Carlo helps to reduce the thermalization
time of low-temperature simulations significantly. For the stochastic series expansion an
exchange of different configurations i and j at different temperatures is connected with
the expansion order n [SSC02, Mel07]:

pswap = min

{

1,

(
βi
βj

)nj−ni

}

. (3.11)

The interesting physics for the quantum models happens at lower temperatures than for
the classical models, and hence the inverse temperatures increase very quickly. To ensure
a proper acceptance rate even at low temperatures a dense set of configurations is thus
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necessary. The drawback of this method is that the simulation time for all temperatures
is dictated by the highest value of β, since the expansion order n and the simulation time
grow with β. Therefore, in non-frustrated systems a single simulation that reaches the
desired temperature stepwise, i.e., in an annealing procedure, may be sufficient. This
approach is also useful for the present case to prethermalize the simulations before the
time-consuming exchange Monte-Carlo algorithm is applied.

observables 3.2.3

In this work the focus is on static measurements, i.e., observables that can be evaluated
directly in the configurations that are accessed by the Monte-Carlo simulation.

For classical simulations, energies and corresponding histograms and higher moments,
as well as magnetic observables like the structure factor and correlation functions (de-
scribed in section 2.1) can be calculated directly in the sampled states that are given in
the Sz basis. The expectation value of an observable A is calculated as an average of
consecutive measurements in the configurations i as

〈A〉 = 1

N

N∑

i

Ai . (3.12)

This also holds for quantum Monte-Carlo simulations. However, here the statistics can be
improved further not only by measuring in the initial state but also in the configurations
evolved by the operator sequence. Since the differences between these configurations
are very small, a technical optimization is introduced by gathering these measurements
separately so that the contribution counts as a single value in the time series.

A more complicated task is the determination of ordering processes that give no signal
in the Sz basis. For the models discussed in section 2.3 a ferromagnetic ordering is
expected for large quantum fluctuations in the xy plane of the spin representation. Such
a phase corresponds to a superfluid condensation of the equivalent hard-core bosons. Thus,
a correlated movement of these bosons is expected and this can be detected by measuring
the average direction of the bosonic hopping on the lattice. However, in the quantum
Monte-Carlo simulation the loop updates and the outcoming operator sequence should
be independent from each other and, hence, it is necessary to measure the absolute or
squared value of the overall direction of off-diagonal operators in the operator sequence.
Therefore, two counters nx,y are implemented (for a two-dimensional system) and are
increased or decreased according to the direction of every off-diagonal operator in Sn,
e.g.:

S+
i S

−
j = b†ibj : n

′
x = nx + (ix − jx) and n′

y = ny + (iy − jy) . (3.13)

The superfluid density is then given by the normalized combination of these two values
[PC87]:4

ρS =
n2
x + n2

y

2Nβ
. (3.14)

4It is also often referred to as winding number which stems from the introduction of this quantity in
the context of liquid helium in a cylinder.
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For a spin system ρS represents the spin stiffness with respect to Sz; it is not a direct
order parameter for a ferromagnetic alignment of the spins in the xy plane but provides
clear evidence for a correlated configuration in the plane.

The ordered quantum phases discussed in section 2.3 consist of correlated dimers ar-
ranged in a long-range ordered configuration. To detect such a configuration it is necessary
to estimate the correlation of more than two spins. Because the dimers on some bonds
– in particular the bonds upon which the Hamiltonian acts directly – gain their energy
from local diagonal and off-diagonal operations, it is possible to estimate the correlation
of such dimers by analyzing the operator sequence. More precisely a direct sub-sequence
of two operators inside the operator string Sn indicates a correlation between these opera-
tions. Thus, a counter for every possible correlation between two operations on the bonds
has to be implemented. Because the lattice is periodic only for every given distance of
two bonds a counter is required. Furthermore, the effort is reduced by concentrating on
the nearest-neighbor bonds which yield the strongest energy gain. The general estimator
proposed by Sandvik in reference [San92] and also described in [Sch04] is given by

〈
m∏

i=1

Hbi

〉

= 1
(−β)m

〈
(n− 1)!

(n−m)!
C(b1, . . . , bm)

〉

, (3.15)

whereby C(. . .) is the counter of the above described sub-sequences. For m = 1 this
estimator measures the local potential or kinetic energy depending on the type of Hb1

(diagonal or off-diagonal). The most relevant case here is m = 2; three different combi-
nations of diagonal and off-diagonal operators have to be taken into account and result
in a net of measurements for dimer correlations on all nearest-neighbor bonds.

error analysis

The Monte-Carlo results are supposed to be exact with the exception of statistical errors.
To exclude systematic errors due to the random sampling of micro states, the random

number generator has to be checked. For this purpose, two completely different types of
generators have been used to calculate the model for some parameters and the results
were crosschecked, see appendix A and [Kal08]. The presented Monte-Carlo results in
this work were produced with an implementation of the Mersenne Twister [MN98] from
the Boost library.5

For M independent Monte-Carlo runs the estimator for the expectation value and its
variance for an observable A are given as [Ber04]:

A =
1

M

M∑

i=1

Ai and ∆A =

√
√
√
√ 1

M(M − 1)

M∑

i=1

(Ai − A)2 . (3.16)

The Ai represent the average values from the each run i. For the classical simulations
performed in part I at least ten independent runs are computed and the errors for the
observables are calculated as described above.

As the quantum Monte-Carlo simulations are much more time consuming, it is worth
to put extra effort into the data analysis of each run. The main goal of such an analysis
is to detect correlations between consecutive measurements and to avoid an underesti-
mation of the overall error due to these correlations. Two types of error examinations

5The boost library is freely available at http://www.boost.org.

http://www.boost.org
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are distinguished. Firstly, for the binning analysis the time series of length l is divided
into an increasing number – powers of two m = 1, 2, 4, . . . – of bins each containing
k = l/m values of the observable yielding an average Ai and these are evaluated as de-
scribed above [equation (3.16)]. The binning analysis is complete if the error (∆A)m is
converged with respect to the number of bins m. Secondly, the jackknife method is usually
applied for non-linear functions of measured observables like the fourth-order cumulant
given in equation (2.6). A resampling of the different values is applied by omitting single
values and estimating the average and the error for the reduced set of correlated mea-
surements. A comparison of the average for different sets yields a reliable error estimate
for these observables. Both methods are described in more detail in reference [Ber04] and
are implemented within the ALPS libraries [AAC+07].

histogram reweighting

Sometimes it is useful not only to rely on the average value of an observable but to analyze
its distribution at a certain temperature. Therefore, the recording of a histogram or of
the complete time series is necessary. However, the knowledge of the distribution of an
observable at a certain temperature T0 also allows for conclusions about the system at
nearby temperatures T ≈ T0 to be drawn, because the distributions at these temperatures
have a large overlap. In particular for large systems, which demand a great amount of
computing time, it can be helpful to reweight the measured distribution according to a
slightly different temperature. Thereby, informations can be extracted more from the
reweighted distribution which were already encoded in the original histogram [Ber04].
The concept relies on an energy-based representation of the partition function

Zcan. =
∑

E

n(E) exp (−β0E) (3.17)

where n(E) signifies the density of states in energy space. This distribution enters the
recorded histogram Pβ0

(E) at a certain inverse temperature in the Monte-Carlo simula-
tion:

Pβ0
(E) = cβ0

n(E) exp (−β0E) with a normalization constant cβ0
. (3.18)

For a different inverse temperature β1 the histogram can now be reweighted using this
representation as an estimator for n(E):

Pβ1
= Pβ0

cβ1

cβ0

exp (−∆βE) . (3.19)

The interval ∆β = β1 − β0 for which a reliable reweighting of the histogram can be
achieved, is directly related with to the width of the original histogram, and hence also
with fluctuations of the energy, see [Ber04]. It is also possible to involve histograms
for different temperatures to provide a broader support of the accessible energy region
[GGLM08].

To distinguish different types of phase transitions the shape of the energy histogram
at the critical temperature TC can be used. Since the critical temperature is not known
in principle for the Ising systems investigated in chapters 5 and 6, it is complicated to
simulate a system exactly at its size-dependent critical temperature. For this reason the
reweighting technique will be applied. It is also possible to extract further observables
from the new histogram as it provides an estimator for the partition function.
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transfer-matrix calculations 3.3

A different ansatz is given by the transfer-matrix technique to understand the physics
of many particle Hamiltonians with short-range interactions. This technique is based
on a factorization of the partition function [Bax82]. The complexity of this factorization
depends on the lattice structure and the corresponding interaction terms. For the classical
two-spin Ising interactions the exponential function of the Hamiltonian can be written as
a product of matrices that only couple smaller subspaces of the complete lattice, e.g., for
a one-dimensional periodic chain:

Zcan.,N =
∑

{Si=±1}
exp

(

−βJ
N∑

i

SiSi+1

)

=
∑

{Si}
V (S1, S2) . . . V (SN , S1)

= Tr V N with V =

(

e−βJ eβJ

eβJ e−βJ

)

. (3.20)

The summation over all states thus corresponds to the calculation of the trace of this
matrix product. The crucial point of this method is the determination of the subspaces
and the corresponding dimension of the matrices that connect the states of two subsequent
subspaces. This procedure allows for an exact description of the one-dimensional and two-
dimensional square lattice Ising models in the thermodynamic limit with only nearest-
neighbor interactions [Bax82, Isi25, Nig77, Ons44].

For the present case (see section 2.2) with next-nearest neighbor interactions a numer-
ical evaluation is inevitable and limited to finite systems W×L. In principle, the subspace
consists of a column of L spins, hence, a matrix M of dimension 2L is required to couple
the subspaces. The partition function is then given by the trace of the matrix product of
W such matrices. The calculation of the product is trivial for a diagonal matrix – and
the cyclical behavior of the trace allows for such a transformation – but the diagonal-
ization itself is limited to small L. A better approach yields the successive application
of the matrix M onto a random initial state, because a matrix vector multiplication is
much faster (see also section 3.1). The fact that only a few spins are actually coupled
between adjacent columns allows for a decomposition of this matrix vector multiplication
into smaller blocks reducing the computational effort. It is not necessary to set up the
complete matrix and the memory cost is minimized by saving and altering the weights
for all possible states of a single column coupled to its neighboring column only. How-
ever, due to the diagonal next-nearest neighbor coupling in the frustrated Ising models
this state has to be enlarged at one point by two additional spins. For the details of the
implementation please confer [dNNS82] and appendix A.3.

In chapter 5 this technique will be used to calculate the free energy of the frustrated
Ising model on a finite cylindric lattice with circumference L. The finite-size scaling of
the free energy is related to the continuous underlying theory of the lattice model, as will
be explained in section 5.2.
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summary

In this chapter two analytic methods will be outlined which are based on perturbation
theory for quantum mechanical systems. Section 4.1 quickly recaps an expansion ansatz
for the Hamiltonian of the quantum Heisenberg model around a classical ground state
limit. In section 4.2 the concept of perturbative renormalization for a quantum field
theory describing the classical two-dimensional Ising model is outlined. In this context
some tools from conformal field theory will be introduced which will be required to execute
the perturbative computations in chapter 5.

One basic concept of all three presented computational methods is the calculation of
physical observables for finite and rather small systems and a subsequent analysis of the
size dependence of the results. This ansatz has become very powerful in the last decades
due to increasing computer power and the development of very efficient algorithms. How-
ever, an exact closed description of the system in the thermodynamic limit is not achieved.
Therefore, the derivation of analytic expressions that are independent on the system size
is a desirable task. For complex models, an initial attempt to describe particular observ-
ables analytically is a perturbational ansatz. Starting from a known exact description of
a part of the model the rest is treated as a small perturbation to that description. The
procedure only yields reliable results if the perturbation – the coefficient that scales the
strength of the perturbing part of the model – is small compared to all other scales and
if the perturbation is well controlled, i.e., if no divergences appear.

Ising series expansion
for weak quantum fluctuations [Kog79] 4.1

For the Heisenberg models discussed in section 2.3 the ground states are known for the
limit of zero quantum fluctuations as described by a classical Ising model. These clas-
sical ground states yield a good starting point for the derivation of energies for small
fluctuations. The Hamiltonian is divided into two parts (see equation (2.19)):

HHM =
∑

i,j

Jz
i,j S

z
i S

z
j

︸ ︷︷ ︸

H0

+
∑

i,j

Jx,y
i,j

2

(
S+
i S

−
j + S+

j S
−
i

)

︸ ︷︷ ︸

Hpert.

. (4.1)

The unperturbed model H0 is the classical Ising model whose ground-state energies and
properties are known. The eigen-states of this model – the Sz product basis – will be used
to calculate corrections to the ground state energy induced by Hpert., i.e., small quantum
fluctuations |Jx,y/2| < Jz.

33
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Following the concept of time-independent Rayleigh-Schrödinger perturbation theory
in quantum mechanics [Kog79] the perturbative part of the model is rewritten as a series
expansion around the unperturbed limit. The individual terms consist of matrix elements
between the ground state and exited states that are accessed by applying the perturbation
and are divided by the energy cost for the excited state. The computation to first order
gives zero because the perturbationHpert. is purely off-diagonal in the present case. Hence,
the first relevant perturbation is second order:

E
(1)
0,pert. = 0 , E

(2)
0,pert. =

∑

k

〈0|Hpert.|k〉 〈k|Hpert.|0〉
E0 − Ek

. (4.2)

The sum is over all accessible states, given by the number of bonds with anti-parallel
spins in the ground state. In higher orders the bonds at which the perturbation acts
form closed loops and all energies of the intermediate states contribute as a product of
∆E. The derivation of higher order terms also requests some combinatorial considera-
tions on the configuration and multiplicity of these loops. The evaluation of higher-order
terms is mostly performed numerically using the concepts of the linked-cluster theorem
[OHZ06]. In the present work analytic series up to fourth order and numerical results for
the honeycomb lattice up to eighth order [OS11] are compared to Monte-Carlo results.

If the ground state is degenerate – as it is for the Ising model at the maximally
frustrated point – an additional step is necessary to avoid a divergence of the series
expansion; the basis of the degenerate subspace has to be chosen such that Hpert. is
diagonal. However, for the given models these processes are of higher order, i.e., of order
L (the linear extent of the lattice) and are therefore negligible in the thermodynamic
limit.

The calculation of the perturbed energies is reliable only for small fluctuations, as only
then the basic assumption of a perturbed classical state can be valid. The starting point
H0 for the perturbational approach is wrong for dominating fluctuations. In particular
calculations for both classical configurations – Néel state and collinear state – at the highly
frustrated point may give different energy corrections and, hence, the stability region may
differ from the classical assumption. By comparing both energies at this point the direct
transition between these states can be evaluated for non-zero fluctuations up to the given
order and a phase boundary is obtained.

conformal field theory 4.2

«Conformal field theory has found applications in string theory, statistical
physics, condensed matter physics, and has been an inspiration for develop-
ments in pure mathematics as well.» Statement of the authors in [dFMS97,
preface].

The aim of the present section is to motivate the connection of conformal field theory
with the classical two-dimensional Ising model and to introduce some concepts and cal-
culational tools for these quantum fields, rather than provide a comprehensive introduc-
tion into field theoretical methods which can be found for example in [dFMS97, GNT04,
Mus10, Tsv95]. The established concepts and tools will be applied to derive an effective
field theory for the frustrated Ising model at criticality for a certain set of parameters in
section 5.2 of this thesis.



section 4.2. conformal field theory 35

side note: conformal transformations

The special class of quantum fields which are interesting in the present context are in-
variant under conformal transformations. These transformations are characterized by the
fact that local angles between different arbitrary curves through the space are conserved.
In particular rotations, translations and dilatations (scaling) are included in the group of
conformal transformations. The scaling invariance is a crucial point in the calculation of
conformal field theories and, hence, every field has an intrinsic scaling dimension ∆. In
two dimensions the transformations can be mapped onto analytic functions in the com-
plex plane and are understood very well. In this case the conformal invariance provides
useful tools, especially for the derivation of correlation functions that are important in
the analysis of phase transitions. For mathematical details on conformal transformations
see [dFMS97, chapter 4 and 5].

conformal field theory for a statistical model 4.2.1

The evolution of a d−1-dimensional quantum model in imaginary time τ can be rewritten
as the statistic evaluation of a d-dimensional classical model, see [Mus10, p. 218]:

Z =
∑

{Si}
exp (−βH({Si}) = Tr{φi}

∏

τ

exp (−τH({φi})) . (4.3)

The Si represent classical spin variables and the φi corresponding quantum fields.
A crucial step from a classical lattice model to a quantum field theory is the continuum

limit. Therefore, the dominating length scales in the system have to be analyzed. One
length scale is the lattice spacing a and the corresponding range of the interactions, and the
other is the correlation length ξ. Only in the vicinity of a critical point of a continuous
phase transition, where the correlation length is diverging, can the lattice spacing be
neglected and scaling invariance is fulfilled. This is why the classical lattice model can be
described by a conformal quantum field theory only at criticality [Mus10].

The two-dimensional Ising model can also be described as a quantum field theory of
free fermions (see section 4.2.4 below) which is conformally invariant and has a central
charge (or conformal anomaly) of cIsing = 1/2 [dFMS97, chapter 12].

central charge

his magnitude is characteristic for a conformal quantum field theory in two dimensions and
can be derived from the correlation function of the stress-energy tensor (of the quantum
field theory) with itself, see [Mus10, p. 259 and 329]. The central charges of different
conformal theories add up (based on the extensivity of the energy [dFMS97, section 5.4])
and for two independent Ising models it holds that c2×Ising = 1/2+1/2 = 1. Furthermore,
there exists a theorem on the behavior of the central charge for two-dimensional field
theories stating that under certain conditions c can only decrease along the flow of a
renormalization group transformation, see [Mus10, p. 504] and [Zam86]. This will be
important in the context of criticality and corresponding universality classes because every
unitary theory with c < 1 yields a universality class with constant universal exponents. It
is only possible to obtain a phase transition with varying critical exponents for a conformal
field theory with c ≥ 1 [Gin88].
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perturbative renormalization 4.2.2

The concept of renormalization group transformations in the context of continuous phase
transitions relies on the fact that the correlation length ξ is diverging at the critical point.
Thus, the idea of renormalization is based on the scaling invariance of the system at its
critical point and yields a flow diagram with different parameters in the model, such as
temperature and coupling constants as coordinates [Car96, Gol93]. Flows start and end
at fixed points and these represent field theories with a definite phase transition behavior,
i.e., representing a universality class. The exact positions of these points and the flow
diagram itself result from the solution of the renormalization group equations. However,
a rough analysis of the scaling parameters and their corresponding fields is sometimes
sufficient to identify the fixed-point action of the underlying field theory [Car96].

Each scaling parameter scales with a set of fields from the conformal field theory
and their importance for the phase transition behavior depends on the intrinsic scaling
dimension ∆ of these fields. Three cases are distinguished and in two dimensions for these
cases holds: ∆ < 2 is relevant and drives the system away from the original fixed point
to a new fixed point; for ∆ = 2 the coupling is marginal and a careful analysis of the
renormalization group flow may be necessary; fields with ∆ > 2 are irrelevant and the
flow along the corresponding parameter ends in the original fixed point.

The reference to an original fixed point emphasizes that the starting point for the
perturbative renormalization analysis is a well known model which in the present case is a
theory of two independent Ising models. The coupling of these two models is then treated
perturbatively. While the first order perturbation is given directly by the derivation of the
continuum limit of the coupled lattice models, higher order perturbations are calculated
using the tools from conformal field theory, as outlined below.

The set of fields derived from the perturbation can be compared to known conformal
field theories to identify the most relevant fixed point. Alternatively the renormalization
group equations have to be solved to identify the fixed point action.

For more details on the renormalization group concepts please confer [Car96, Gol93].

operator product expansion 4.2.3

One powerful tool for explicit calculations in conformal field theories is the operator
product expansion. Basic concepts of quantum field theory and the consequences of
the underlying conformal symmetries are unified in a set of calculational rules for the
evaluation of correlation functions of multiple quantum fields.1

A detailed derivation of these tools in two dimensions is given, for example in [dFMS97,
chapter 5 and 6]. Here only a short road-map is presented that outlines the crucial
steps for the computation of the correlation functions. In a first step the two-point
correlation functions are constructed on the basis of the underlying conformal symmetries
and the scaling dimensions of the correlated fields. They have to fulfill the rotational
and translational invariance and are connected to the scaling behavior of the original

1The explicit computation of the correlators which is not shown here can be performed either in path-
integral formalism or in operator formalism. However, in operator formalism additional mathematical
methods can be employed [dFMS97, chapter 6]. The tools presented below are based on the operator
formalism, and hence the fields are referred to as operators from now on.
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fields.2 The scaling dimension of the fields can be extracted from the critical exponent of
the correlation functions, e.g., for a correlation function for identical spin operators σ at
(z, z̄) and (w, w̄)

〈σ(z, z̄)σ(w, w̄)〉 = C

|z − w|η , C = constant (4.4)

holds η = 1/4 (critical exponent for the two-dimensional Ising model), and hence ∆σ =
η/2 = 1/8 [dFMS97, p. 221]. Furthermore, the conformal dimensions h and h̄ are defined
for each operator with

∆ = h+ h̄ and s = h− h̄ (4.5)

where s is the conformal spin.

Throughout this work the focus lies on spin operators σ, energy operators ε (which
are present in all theories and couple to the temperature), and their derivatives. The con-
formal dimensions for these operators are summarized in table 4.1, confer also [BPZ84a,
Gin88].

operator h h̄ ∆ s

σ(z, z̄) 1/16 1/16 1/8 0

ε(z, z̄) 1/2 1/2 1 0

∂z 1 0 1 1

∂z̄ 0 1 1 −1

table 4.1: Conformal dimensions h and h̄
for operators needed in the context of the two-
dimensional Ising model. In addition the resultant
magnitudes ∆ (scaling dimension) and s (confor-
mal spin) are listed, see equation (4.5).

For the calculation of higher-order correlators fusion rules are applied [dFMS97, chap-
ter 8.4 and 12]

[σ] [σ]→ [1] + [ε] (4.6)

[σ] [ε]→ [σ] (4.7)

[ε] [ε]→ [1] (4.8)

and expressed as an expansion around the two-point correlator (here up to first order in
the partial derivative ∂{w,w̄})[dFMS97, chapter 12]:

σ(z, z̄)σ(w, w̄) =Cσσ1|z − w|−
1
4 + Cσσε|z − w|

3
4 ε(w, w̄)

+ Cσσε

2
(z − w)

11
8 (z̄ − w̄)

3
8∂wε(w, w̄) + Hermitian conjugate (4.9)

σ(z, z̄)ε(w, w̄) =Cσεσ|z − w|−1σ(w, w̄)

+ Cσεσ

2
(z − w)

1
2 (z̄ − w̄)−

1
2∂wσ(w, w̄) + H.c. (4.10)

ε(z, z̄)ε(w, w̄) =Cεε1|z − w|−2 (4.11)

2For two-dimensional field theories the conformal invariance imposes constraints on the correlation
functions that are also called Ward identities [dFMS97, chapter 5].
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where the Cs are structure constants which can be derived from certain limits of higher-
order correlators [dFMS97, chapter 12]. In particular Cεε1 = cIsing = 1/2. The other
constants are chosen to be

Cσσ1 = 1 and Cσσε =
1

2
= Cσεσ . (4.12)

Furthermore, it is notable that the scaling behavior in the operator product expansion
is conserved, i.e., if the overall conformal dimensions h and h̄ of the operators on the
left and right hand sides of the equations (4.9)-(4.11) differ, the scaling exponent of the
corresponding variables (z, w) and (z̄, w̄), are changed accordingly.

statistical models 4.2.4

In the context of this work the mapping of two-dimensional statistical models at crit-
icality onto conformal field theories is employed. Two models in particular and their
corresponding field theories will be important.

Ising model

The two-dimensional Ising model can be mapped onto a one-dimensional quantum spin
chain which again can be transformed into a model of free fermions using the Jordan-
Wigner transformation [dFMS97, GNT04, Mus10, Tsv95].

Thus, the Ising model can also be described by an action A of a field theory of free
fermions ψ and an additional mass term:

AIsing =

∫

dzdz̄ (ψ∂z̄ψ + ψ̄∂zψ̄) +m

∫

dzdz̄ ψψ̄ . (4.13)

The mass term represents the energy (ε = ψψ̄) and is tuned by its scaling factor m exactly
to zero at the critical temperature, i.e., m ∝ (T − TC) [dFMS97].

The fermionic theory will not be further discussed in this work. However, the intro-
duced field theoretical methods will be used in chapter 5 to calculate the underlying field
theory of an isotropic frustrated model at criticality for large J2 > J1. The limit of this
frustrated model is given by two independent Ising models.

Ashkin-Teller model

The field theory of this lattice model (introduced in section 2.2.2) is given by two copies
of the Ising field theory from equation (4.13) plus an additional marginal energy-energy
coupling

AAT = AIsing,A +AIsing,B + k

∫

dzdz̄εAεB . (4.14)

The central charge is given by cAT = 1 [Gin88] which together with marginal coupling
allows for phase transitions with continuously varying critical exponents [FQS84, KW71].



ordering processes

in the 2D Ising model





analysis of the phase transition
for the Ising model

on the frustrated square lattice 5

The main results of this chapter were published under the same title in Physical Re-
view B [KHM11]. Coauthors of this work were Andreas Honecker from the University
of Göttingen as scientific advisor and Marion Moliner from the Karlsruher Institut für
Technologie. The numerical work (Monte-Carlo and transfer-matrix calculations) was
performed by me. Marion Moliner presented a first ansatz for the continuous theory;
all subsequent calculations for the continuum limit and the operator product expansion
for higher-order perturbative terms were performed by me and crosschecked with Marion
Moliner’s results.
It may be that some parts of the following chapter resemble the manuscript of refer-
ence [KHM11] which has been written together with the above mentioned coauthors.

abstract

The frustrated J1-J2 Ising model on a square lattice has two different ground states as
described in section 2.2. In this chapter the finite-temperature phase transition from
the high-temperature paramagnetic phase to the collinear ordered ground state will be
analyzed by means of Monte-Carlo simulations – in particular energy histograms and spin-
spin correlation functions will be presented in section 5.1. Furthermore, the underlying
conformal field theory of the model at criticality, i.e. T = TC(J2/J1) will be characterized
using transfer-matrix calculations and a perturbative renormalization calculation in the
limit of small J1 < J2 by means of conformal field theory.

As a result a phase transition scenario is obtained which includes a weak first order
transition for intermediate values of J1/2 < J2 < J1 and a continuous phase transition
with varying critical exponents for larger values of J2/J1 →∞. This latter phase transi-
tion is described by an underlying Ashkin-Teller field theory.

For convenience the Hamiltonian of the frustrated isotropic Ising model on the square
lattice is given here again:

HIsing = J1
∑

NN

SiSj + J2
∑

NNN

SiSj . (5.1)

Both coupling constants Jk are positive and the antiferromagnetic exchange on nearest and
next-nearest neighbor bonds introduces a competition of the Néel ordered and collinear
ordered configuration at a critical point J2 = J1/2. The focus will be on the thermal
phase transition for J2 > J1/2 whose character has been under debate since the 1980s.

An initial analysis of the model with Monte-Carlo simulations exhibits the emergence
of a first-order phase transition for an intermediate range of frustration J1/2 < J2 . 0.9 J1.
However, it is also observed that the length scales for increasing J2 are diverging and,
hence, further analysis of finite lattices with Monte-Carlo simulations would not be promis-
ing. That is why, in section 5.2, the field theoretic point of view is introduced. To charac-
terize the underlying field theory of the frustrated model at criticality, firstly a calculation

41
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figure 5.1: (Slightly different version
published in [KHFP08]). Binder cumu-
lants for the collinear order parameter
versus temperature at J2 = 0.6 J1. The
intersection point of the cumulants for
different linear lattice sizes L yields an
estimation of TC = 0.9715(10) J1, as
shown clearly in the inset.

of the central charge of the finite lattice system is performed before the continuum limit
is computed at J1 = 0, which is then subject to a perturbative renormalization procedure
for increasing J1 ր J2.

Monte-Carlo simulation 5.1

The simulation of the frustrated model was performed using a single-spin flip Metro-
polis update with an additional line-flip update as was described in section 3.2.1. For an
optimized thermalization process and high-quality data an exchange Monte-Carlo update
[Han97, HN96, KTHT06, also see section 3.2.1] was also implemented. The simulations
were run on large-scale clusters using OpenMP and MPI. The statistical errors of the data
were obtained from multiple independent Monte-Carlo runs.

phase diagram

A first step for the analysis of a phase transition is the exact determination of the critical
point for different values J2/J1. For the frustrated Ising model this critical temperature
is only known analytically in the limits J2 = 0 and J1 = 0 where the value of TC is given

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.28  1.29  1.3  1.31  1.32

1.
5(

1 
- 

<
m

4 >
/3

*<
m

2 >
2 )

T

binder cumulant for m = mx + my

L = 8
L = 16
L = 32

L = 64
L = 128
L = 256

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1.28  1.29  1.3  1.31  1.32

2(
1 

- 
<

m
4 >

/2
*<

m
2 >

2 )

T

binder cumulant for m2 = mx
2 + my

2

L = 8
L = 16
L = 32

L = 64
L = 128
L = 256

figure 5.2: Two different
types of Binder cumulants
for the different collinear or-
der parameters versus tem-
perature at J2 = 0.7 J1.
The intersection points yield
the same critical tempera-
ture TC = 1.289(1) J1 but
different values for U4(TC).



section 5.1. Monte-Carlo simulation 43

0 0.5 1 1.5 2
J
1
 / J

2

0

0.5

1

1.5

2

2.5

T
 / 

J 2

∞ 5 2 1.5 1 0.8 0.6 0.5

J
2
 / J

1

T
C
 / J

2

2 4 6 8 10
0

0.5

1

1.5

2

2.5

T
 / 

J 1

0.25 0.15 0.12 0.1

T
C
 / J

1

collinear order Néel order

paramagnetic
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Critical temperatures for the phase tran-
sition from the paramagnetic to the mag-
netically ordered phases divided by the
strength of frustration J1/J2. The en-
ergy scale of the temperature is adapted
for J1/J2 < 2 to J2 and for J1/J2 > 2
to J1. Note that the frustration is also
given in units of J2/J1 on the upper x
axis.

in the relevant energy scale J1 and J2, respectively, i.e., TC = 2.269 J1,2 [Ons44]. For
all other values of J2/J1 the determination can be achieved numerically by calculating
the intersection point of the Binder cumulant (given in equation (2.6)) of the appropriate
order parameter for different lattice sizes L×L. In the present case the order parameters
for the Néel and collinear phase are given by the structure factors which were introduced
in chapter 2. As an example the Binder cumulants and the estimation of the critical
temperature is shown in figure 5.1 for J2 = 0.6 J1 and yields TC = 0.9715(10) J1. The
sum of the two equivalent structure factors mcoll.,x and mcoll.,y from equation (2.12) is used
as order parameter.

By using a different order parameter, namely the sum of squares m2 = m2
coll.,x+m

2
coll.,y

the definition of the Binder cumulant has to be adapted to the distribution of the moments,
see also [JSS12]. Thus, the shape of the cumulants is changed in the vicinity of the critical
temperature. The intersection point, however, yields the same critical temperature but a
different value for the cumulant, as is shown in figure 5.2. This demonstrates that both
order parameters serve for an accurate detection of the transition temperature. However,
an analysis of the phase transition by referring to universal amplitudes of the Binder
cumulant at the critical point is not straightforward [Sel06, JSS12].

The critical temperatures for 0 ≤ J1 ≤ 10 J2 (or 0.1 J1 ≤ J2 <∞) are summarized in
the phase diagram in figure 5.3. The energy scale of the transition lines are adapted to the
relevant scale, i.e. for the transition to the Néel phase to the nearest-neighbor interaction
J1 and to J2 for the collinear phase transition.

phase transition analysis 5.1.1

The phase transition from the paramagnetic high-temperature phase to the Néel ordered
region is continuous for all ratios of J2/J1 < 0.5, as was already shown, for example,
by Landau and Binder [LB05]. The computation of critical exponents and histograms
for these parameters was presented also in [Kal08, KHFP08] and confirmed the earlier
statements that the critical model and, hence, the phase transition belongs to the two-
dimensional Ising universality class, which is based on the limiting case J2 = 0 [Gol93].

The calculation of critical exponents for larger values J2/J1 > 0.5 yields controversial
results [KHFP08] and, as introduced in sections 1.1 and 2.2, the phase-transition sce-
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figure 5.4: Energy histograms for
a continuous phase transition shown for
J2 = 0.3 J1 and increasing linear lattice
sizes L. All histograms can be fitted
rather accurately by Gaussian distribu-
tions (black lines).

nario is under debate. Energy histograms and correlation functions will be presented for
different values of J2/J1 > 0.5 to analyze the nature of this phase transition.

histograms

The shape of histograms for first order and continuous phase transitions was discussed
in section 2.1: For a continuous phase transition a nearly Gaussian distributed energy is
expected at the critical temperature TC . The energy histograms for a value of J2 = 0.3 J1
and different lattice sizes L are shown as examples in figure 5.4. For all L a Gaussian
fit resembles the shape of the histogram quite accurately. However, in the case of a first
order transition the shape of the energy histogram also contains the information about
the energy discontinuity at TC which is manifested as a latent heat and is represented by a
two-peak structure. Such a two-peak structure was found in the frustrated Ising model for
the phase transition from the paramagnetic phase to the collinear ordered phase, i.e., for
J2 > J1/2. The histograms for small values J2 = 0.6 J1 and J2 = 0.65 J1 were presented
in references [KHFP08, KHFP09] and clear evidence for a two-peak structure and first
order transition was given. However, already for J2 = 0.7 J1 simulations with L ≤ 500
were not sufficiently large to resolve two-peaks structures in the energy distribution.

Since López et al. [MLAGS93, MLAGS94] claim the first-order transition scenario
to be valid up to J2 ≃ 1.1 J1 the recording of histograms for larger values of J2 was
necessary. Therefore, larger lattices needed to be simulated and the results for J2 = 0.8 J1
with L = 1000 and J2 = 0.9 J1 with L = 2000 are shown in figure 5.5. It is worth
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Energy histograms (solid black lines) for
two values of J2 = 0.8 J1 (left) and
J2 = 0.9 J1 (right) for a L = 1000 (left)
and L = 2000 (right) lattice at tem-
perature T1. The reweighted histograms
(dashed red lines) are more symmetric
because the temperatures T2 < T1 are
closer to the size-dependent critical tem-
perature. The two-peaked structure em-
phasizes the first-order character of the
phase transition.
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figure 5.6: Evolution of the two-
peak structure in the histogram for J2 =
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L. Furthermore the energies show in-
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mentioning that for a small step in the parameter space (0.1 J1) it is necessary to double
the linear size of the simulated lattice to achieve a similar resolution for the recorded
histogram. The shapes of these histograms show a strong deviation from the almost
Gaussian shape that is expected for a continuous phase transition, yet for the simulated
temperatures the structure is not symmetric. For this reason, reweighted histograms are
also presented (as dashed red lines) for slightly lower temperatures, i.e., the size-dependent
transition temperatures. The histograms are thus shifted to lower energies and exhibit
a more distinct and symmetric two-peak structure. The simulation and recording of a
new histogram for this temperature would have been too time consuming and, hence, the
standard reweighting technique [Ber04, GGLM08, see also section 3.2.1] was applied to
confirm the first-order character of the phase transition.

In a recent publication by Jin et al. [JSS12] it is claimed that the first-order transition
is only stable for 0.5 J1 < J2 . 0.67 J1 and indications for discontinuous phase transitions
for larger values of J2 are not trustworthy. They used mainly arguments stemming from
the universality of Binder cumulants and doubt the stability of the two-peak structure in
the histograms. Therefore, the finite-size scaling of the two-peak pattern in the energy
histograms is analyzed in the left-hand side of figure 5.6. In detail the evolution of two
distinct peaks in the histograms is shown at J2 = 0.7 J1 and the minimum in between
increases for larger systems (500 ≤ L ≤ 1000). In addition, the development of the
energies in the direct vicinity of the critical temperature is shown for different lattice
sizes. The increasing steepness of the slope also indicates a first-order transition.

The above presented data for 0.5 J1 < J2 ≤ 0.9 J1 gives evidence that the phase
transition is discontinuous in this region of the phase diagram. However, for larger values
of J2 the increasing length scales do not allow for such an analysis of the histograms and,
hence, no concrete statement about the nature of the phase transition is possible from
such an analysis.

correlation functions

Up to now the phase transition has been investigated for increasing ratios J2/J1 > 0.5.
However, a different perspective can be adopted by analyzing the transition for increasing
0 ≤ J1/J2 < 2. In the limit of J1 = 0 and J2 > 0 the original square lattice can be
interpreted as two separate square lattices – the sublattices A and B – rotated by an
angle π/4 with a rescaled lattice spacing a =

√
2a′ whose nearest-neighbor bonds are the

original next-nearest neighbor bonds (sketched in figure 5.10 below). The physics of the
model is then described by two identical copies of the simple square lattice Ising model
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with a coupling J2. Hence, as mentioned above and shown in the phase diagram (figure
5.3) the transition temperature is known exactly; the phase transition is continuous and
exhibits the 2D-Ising critical exponents. One of these exponents (η) describes the scaling
of the correlation functions at the transition temperature [Gol93]:

G(r)TC
= SiSj ∝ r−η with r = |ri − rj| . (5.2)

For Monte-Carlo simulations on finite periodic lattices (L × L) the scaling can only be
evaluated for an intermediate region of r since for r ր L/2 the correlations are enhanced
due to the periodic boundary conditions. For temperatures T > TC an exponential decay
is expected and in the ordered phase, i.e., T < TC , a fast saturation towards a finite value
that reflects the long-range order should be found.

In figure 5.7 the absolute correlation functions |SiSj| are plotted on a doubly logarith-
mic scale versus the distance r for the case of two coupled Ising models that undergo an
Ising-phase transition from the paramagnetic to the Néel phase (J2 = 0.2 J1). The critical
exponent η = 0.2498(7) is extracted via an algebraic fit and the result is in very good
agreement with the Ising value ηIsing = 0.25 [Gol93].

For the decoupled case the correlations are shown in figure 5.8a separately for i and j
being part of the same sublattice (reven, top) and different sublattices (rodd, bottom) in a
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figure 5.8: A joint plot for both sublattices for the decoupled models, i.e., reven and rodd are
not meaningful. Thus, the correlations are plotted separately in a linear scale (a) which clearly
shows that the models are independent. Plots for several temperatures are shown and in the
upper panel a clear difference can be seen between the ordered and disordered state. (b) The
scaling analysis of the correlations versus reven in a doubly-logarithmic plot reveals the Ising
character of the phase transition; the critical exponent η = 0.2504(9) is extracted (L = 100).
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figure 5.9: (Published in [KHM11].) Spin-spin correlation functions in one direction at J1 = J2
for a 100×100 periodic lattice. Maximal distance is thus given by r = 50. Top left: Correlations
inside the same sublattice for different temperatures around TC . Bottom left: Correlations
between spins on different sublattice sites on a magnified scale. The correlations decay rapidly
and go to zero for all temperatures. Hence, no long-range correlation is observed between the
two sublattices. Right: Doubly logarithmic plot of the correlation functions inside the same
sublattice for three exemplary temperatures and related fits [for the highest temperature (yellow
triangles) values for r > 32 are not shown]. The critical exponent η = 0.20(1) is significantly
below the Ising value.

linear scale; the decoupling is clear. Again the critical exponent can be derived from the
behavior of the correlation functions at distances reven at the transition temperature and
yields η = 0.2504(9), where the error stems from the algebraic fit.

Following now the limit J1 ր J2 (see figure 5.3, bottom panel) the critical exponent is
first stable under the introduction of competing interactions on nearest-neighbor bonds,
i.e., η(J1/J2 = 0.2) = 0.256(7). For the point J1 = J2 the correlation functions are
shown in figure 5.9. Comparing the separately plotted correlations in figure 5.9a with
the results given in figure 5.8a an enhancement in the inter-lattice coupling is clearly
visible. Nevertheless, for increasing distances the coupling tends towards zero for all
temperatures, i.e., the two sublattices are also nearly decoupled in the ordered phase.
This behavior is observed for all values J1 < 2 J2, i.e., for all transitions to the collinear
phase. Hence, the doubly logarithmic plot in figure 5.9b contains only correlations for
reven and the evaluation of the phase transition is also performed for these correlations.
As shown in figure 5.9b the scenario of an Ising-type phase transition is no longer valid
because η = 0.20(1) differs significantly from the Ising value.

In conclusion, the Monte-Carlo data yield a clear picture only for 0.5 J1 < J2 . 0.9 J1
where a first-order phase transition scenario is established by the doubly peaked structure
of the energy histograms. For larger values of J2 the analysis of the correlation functions
indicates a decoupling of the two sublattices and a continuous phase transition. However,
a detailed examination of the scaling behavior at the critical temperature and a reliable
calculation of critical exponents are hampered by large crossover scales.
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conformal field theory 5.2

Because the system is exactly described by two decoupled two-dimensional Ising models on
sublattices A and B in the limit J1 = 0, the critical behavior can be tackled by conformal
field theory, see section 4.2. A conformal field theory is characterized by its central charge
c which in this particular case of two Ising models equals c = 1/2 + 1/2 = 1, see section
4.2.1.

The identification of the underlying field theory for parameters 0 < J1 . J2 by com-
puting the central charge can help to understand the phase transition scenario of the
frustrated Ising model.

transfer matrix 5.2.1

In the 1980s it was shown that, for a lattice model, the free energy f per site of a cylinder
of infinite length and finite circumference L shows a finite-size scaling in 1/L with a
proportionality factor depending on the central charge of the corresponding field theory
[Aff86, BCN86]:

f = b− cπ TC
6L2

+O(L−4) , b = const. . (5.3)

To calculate the free energy, Monte-Carlo simulations are not suitable because they cannot
be used to directly sample the entropy. Therefore, a transfer-matrix algorithm has been
implemented [Bax82, dNNS82, see also section 3.3 and appendix A.3].

J2/J1 c J1/J2 c

0.0 0.4999(1) 0.9 1.0450(6)

0.2 0.4994(3) 0.8 1.0327(5)

0.4 0.4923(7) 0.7 1.0232(4)

0.6 [1.5811(18)] 0.6 1.0159(4)

0.8 [1.1273(10)] 0.4 1.0062(5)

0.9 [1.0863(7)] 0.2 1.0012(4)

1.0 1.0613(6) 0.0 0.9996(1)

table 5.1: Central charge of the un-
derlying field theory for different J2/J1
(left) and J1/J2 (right) calculated with a
transfer-matrix computation of the free en-
ergy. The width of the computed systems
satisfies L ≤ 22. In parentheses c-values
for J1/2 < J2 < J1 are included where
according to the Monte-Carlo analysis the
phase transition is of weakly first order.

The free energy for systems of size L × B were calculated. Although the circumfer-
ence of the cylinder was limited to L ≤ 22, because of the exponential growth of the
computational effort, the length could be chosen easily up to B = 10000 (linear scale). A
finite-size scaling of the free energy at the critical temperature TC (obtained by Monte-
Carlo simulations, see figure 5.3) and the fit with the equation (5.3) yield an estimate of
the central charge plus error bar for different sets of parameters. The results for different
J2/J1 are summarized in table 5.1. For large values of J2 (or small values of J1/J2, bot-
tom of right column) the central charges converge to the value of two independent Ising
models, c = 1. Although at intermediate parameters 0.6 J2 ≤ J1 ≤ J2 the values for c > 1
already suffer finite-size problems, the results from the fits tend towards c = 1. However,
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for decreasing J2 < J1 (bottom of left column) they do not converge, and the central
charge c is increasing which is not allowed by the c theorem which states that the central
charge cannot increase under the influence of a renormalization-group transformation if
the corresponding field theory is critical [Zam86, see also section 4.2]. Indeed, the Monte-
Carlo data indicate a weak first-order transition for J2 = 0.6 J1[KHFP08], J2 = 0.8 J1 and
J2 = 0.9 J1 (figure 5.5) accompanied by large crossover scales. Thus, the system is not
critical for these parameters and it is not surprising that this weak first-order transition
is not detected by the transfer-matrix computations for cylinders with circumferences
L ≤ 22 and thus the resulting values for c are not meaningful.

continuum limit 5.2.2

Since the numerical methods are limited in the analysis of the phase transition for J1 ≈ J2
and not fully understood for J1/J2 ց 0, the next step taken is to derive an equivalent
continuum model where the concept of perturbative renormalization is applied.

The starting point is the conformally invariant fixed point J1 = 0 (see figure 5.10) and
a coupling J1 between the two decoupled Ising models A and B is added perturbatively.
In a first step, the spin variables on discrete lattice sites are replaced by continuous
fields which resemble the underlying Néel order of the two decoupled antiferromagnetic
Ising models. Thus, the staggered spin variables SI (I = A,B sublattice) have to be
transformed into smooth variables defined by

σI(m,n) ∝ (−1)m+nSI(m,n) , (5.4)

where (m,n) are the lattice coordinates. Note that the transformation in equation (5.4) is
based on a specific choice of gauge but this does not affect the macroscopic properties of
the system. The choice of the unit cell is shown in figure 5.10 and the coordinate system
is rotated by an angle of π/4; i.e., the axes point along the next-nearest neighbor bonds.
For each unit cell nine sites enter the calculation of the Hamiltonian (see figure 5.10); of
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figure 5.10: (Published in [KHM11]
and prepared by Marion Moliner.)
Collinear phase of the J1−J2 square lat-
tice. Red dots indicate up spins, and yel-
low dots indicate down spins. The two
copies A and B of the Ising model with
magnetic couplings J2 and lattice spac-
ing a are, respectively, represented with
dashed clear and dotted dark blue lines,
while the black thin lines correspond to
the J1 square lattice. The shaded area
represents the unit cell used to derive the
continuum limit (section 5.2.2). The co-
ordinates are indicated with respect to
the x and y axis of the A sublattice.
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these five A sites have weights 1 + 41
4
= 2 and four B sites have weights 41

2
= 2. Hence,

an overall factor of 1/4 must be introduced. The Hamiltonian can then be evaluated per
unit cell:

hA = −J2
4
σA(x, y) [σA(x+ 1, y) + σA(x− 1, y)

+ σA(x, y + 1) + σA(x, y − 1)] (5.5)

hB = −J2
4
{σB(x+ 1

2
, y + 1

2
)[σB(x+

1
2
, y − 1

2
) + σB(x− 1

2
, y + 1

2
)]

+ σB(x− 1
2
, y − 1

2
)[σB(x+

1
2
, y − 1

2
) + σB(x− 1

2
, y + 1

2
)]} (5.6)

hAB = J1
4
{σA(x, y)[σB(x+ 1

2
, y + 1

2
) + σB(x− 1

2
, y − 1

2
)

− σB(x− 1
2
, y + 1

2
)− σB(x+ 1

2
, y − 1

2
)]

− 1
2
σB(x+

1
2
, y + 1

2
)[σA(x+ 1, y) + σA(x, y + 1)]

− 1
2
σB(x− 1

2
, y − 1

2
)[σA(x− 1, y) + σA(x, y − 1)]

+ 1
2
σB(x+

1
2
, y − 1

2
)[σA(x+ 1, y) + σA(x, y − 1)]

+ 1
2
σB(x− 1

2
, y + 1

2
)[σA(x− 1, y) + σA(x, y + 1)]} . (5.7)

A Taylor expansion up to second order is applied on the σI = σI(x, y) fields around the
unit-cell center:

σI(x+ma, y + n a) = σI + a [m∂x + n∂y] σI

+
a2

2

[
m2∂2xx + n2∂2yy + 2mn∂2xy

]
σI +O(∂3σI) , (5.8)

where a represents the lattice spacing. Expanding all products in equation (5.7) up to
second order leaves only two terms (a detailed derivation can be found in appendix B.1):

hAB = −J1
4
a2[∂xσA∂yσB + ∂yσA∂xσB] . (5.9)

Note that partial derivatives are understood to act only on the subsequent operator. In
particular all terms of zeroth order (σAσB) and first order (e.g., σA∂xσB) are canceled out
due to the symmetry of the underlying ground state.1 These symmetry arguments will
also be discussed later for higher order terms. The pure models hI in equations (5.5) and
(5.6) yield in zeroth order the expected spin-spin coupling (see appendix B.1 for details):

hI = −J2
4
[4σIσI + a2σI∂xxσI + a2σI∂xxσI ] . (5.10)

These terms represent the unperturbed model and its conformal theory and phase tran-
sition behavior is known. The focus is now on the perturbation introduced by hAB given
in equation (5.9).

In a next step the sum of the Hamiltonian (5.1) is converted into a two-dimensional
integral where the values of σI(x, y) at the limits (±∞,±∞) are equal because of the
periodic boundary conditions imposed on the model:

∑

m,n

→ 1

a2

∫ ∞

−∞
dxdy . (5.11)

1As mentioned above the calculations rely on a specific gauge of the unit cell. However, all calculations
were also performed for a symmetric choice of the unit cell and yielded the same results. This is also
discussed briefly in appendix B.1.
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For further calculations it is convenient to rewrite the interaction in equation (5.9) in
complex coordinates z = x+ iy and z̄ = x− iy (see appendix B.1):

HAB = −iµ2J1
x
dzdz̄

(

O1(z, z̄)−O2(z, z̄)
)

with µ = 1
2

(5.12)

O1(z, z̄) = ∂zσA∂zσB , O2(z, z̄) = ∂z̄σA∂z̄σB . (5.13)

As described in section 4.2 the σI fields of the theory have conformal dimensions (hσ, h̄σ) =
(1/16, 1/16), scaling dimension ∆ = h+ h̄ = 1/8, and conformal spin s = h− h̄ = 0. The
full model is then described by the action

A = A0
A +A0

B + τ
x
dzdz̄

(

εA(z, z̄) + εB(z, z̄)
)

(5.14)

+ g
x
dzdz̄

(

O1(z, z̄)−O2(z, z̄)
)

, g ∝ J1 , (5.15)

where A0
I are the fixed-point actions of the Ising models A and B. Furthermore εI is the

usual thermal operator of the conformal field theory on the two-dimensional Ising model
with (hε, h̄ε) = (1/2, 1/2) and the corresponding mass τ ∝ (T − T J1=0

C ) [dFMS97, Mus10,
see also section 4.2.4].

The operators O1 and O2 are kept, despite being irrelevant with a scaling dimension
∆ = 9/4, due to their non-zero conformal spins s = ±2. The presence of such chiral
terms was previously reported in other frustrated systems such as the anisotropic square
lattice [SB04], the checkerboard [SFB05] and the Kagomé [SSB08] lattices. These twist
terms [NGE98] are known to be likely to generate relevant or marginally relevant terms
at higher-order expansions [AAL01, Tsv01].

symmetries

Before calculating higher-orders terms of the perturbative interaction, it is valuable to
discuss the underlying symmetries of the model and the consequences for the continuous
field theory. The Hamiltonian (5.1) is invariant under translations by multiples of the
lattice spacing a. Although in the continuous form the lattice spacing only represents a
lower cutoff to the integrals, the symmetry is preserved for the continuous form of the
field theory because the same periodic boundary conditions are imposed on the integrals.
Furthermore, the model is symmetric under rotation of angles π/2 and reflection on the
lines (x, y = 0), (x = 0, y), (x, y = x) and (x, y = −x) (corresponding to the diagonals
and the vertical and horizontal line through the origin in figure 5.10 residing on an A site
of the lattice). Note that the rotations and reflections are not independent. In addition
the model is symmetric under the exchange of the two sublattices, which is equivalent to
the translation by one lattice spacing of the original lattice.

The reflections are summarized in table 5.2. The σI fields are completely symmetric in
z and z̄ and the Hamiltonian integrates over the whole complex plane for both variables.

dir. (x, y) (z, z̄) (∂z, ∂z̄) (σA, σB)

ւ (−x, y) (−z̄,−z) (−∂z̄,−∂z) (σA,−σB)
ց (x,−y) (z̄, z) (∂z̄, ∂z) (σA,−σB)
↓ (−y,−x) (−iz̄, iz) (i∂z̄,−i∂z) (σA, σB)

← (y, x) (iz̄,−iz) (−i∂z̄, i∂z) (σA, σB)

table 5.2: Symmetry opera-
tions for the reflections on the
diagonal, vertical and horizontal
lines [directions (dir.) are given
as perpendicular arrows] of the
unit cell presented in figure 5.10.
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Crucial points of these transformations are: the additional sign that occurs for the B
sublattice (ւ andց), and the rotation of the partial derivatives onto the imaginary axis
(↓ and ←). Thus, operators that contribute to the continuous field theory either have
to be quadratic in the sublattice fields or contain an asymmetric contribution of fields
residing on different sublattices, like those in equation (5.9). Furthermore, the rotation of
the partial derivatives onto the imaginary axis ensures that by symmetry only operators
containing an even number of partial derivatives are allowed.

Following these symmetry arguments, the appearance of certain operators in higher
orders can be discussed. A highly relevant (∆ = 1/4) spin-spin coupling σA(z, z̄)σB(z, z̄)
such as the one appearing in the two-layer Ising model [DM98, SRT00] is not allowed,
whereas energy operators εI and combinations εIεJ are allowed since they transform like
products of spin fields on the same sublattice.

operator product expansion 5.2.3

The higher-order perturbation terms were calculated via the standard operator prod-
uct expansion [BPZ84a, dFMS97, Mus10, see also section 4.2.3]. This operation allows
for replacing, inside a correlation function, a product of two or more operators by a
combination of scaling operators consistent with the underlying theory. This closes the
renormalization-group equations in the operator algebra of the model before discarding
irrelevant perturbations. For the two-dimensional Ising model, the field content of the
product of two fields is encoded in the fusion rules given in equations (4.6)-(4.8). However
only products of operators acting upon the same lattice yield non-zero results, because
both lattices are independent at the starting fixed point:

[σI ] [σJ ] = δI,J
(
[1] + [εI ]

)

[εI ] [εJ ] = δI,J [1]

[σI ] [εJ ] = δI,J [σI ] . (5.16)

Together with the general normalized form of the operator product expansion given in
equation (4.9) one obtains

σI(z, z̄)σJ(w, w̄) =
δI,J

|z − w|1/4 +
δI,J
2
|z − w|3/4εI(w, w̄)

+
δI,J
4

(z − w)11/8(z̄ − w̄)3/8∂wǫI(w, w̄) + H.c. . (5.17)

Note that marginal terms with non-zero conformal spin are kept consistent with previous
comments about the relation of the eventual importance of chiral terms in frustrated
systems.

By calculating the operator product expansion between the O1,2 operators of equa-
tion (5.13) one generates higher-order terms. At second order this generates terms
[ε = ε(w, w̄)]:

∝ εI , ∝ ∂{w,w̄}εI , ∝ εIεJ (5.18)

∝ εI∂{w,w̄}εJ and ∝ ∂{w,w̄}εI∂{w,w̄}εJ (I 6=J) . (5.19)



section 5.2. conformal field theory 53

In detail, the calculations presented in appendix B.2.1 yield the following terms:

[O1(z, z̄)−O2(z, z̄)] [O1(w, w̄)−O2(w, w̄)] =

α0

[

(z − w)− 17

4 (z̄ − w̄)− 1

4 + H.c.
]

− 2

4096
|z − w|− 9

2 (5.20)

−
{

α1

[

(z − w)− 15

4 (z̄ − w̄) 1

4 + H.c.
]

− 9

4096
|z − w|− 7

2

}

(εA + εB) (5.21)

+

{

α2

[

(z − w)− 13

4 (z̄ − w̄) 3

4 + H.c.
]

− 81

8192
|z − w|− 5

2

}

(εAεB) (5.22)

−
(

α3(z − w)−
3

4 (z̄ − w̄)− 7

4 + α4(z − w)−
11

4 (z̄ − w̄) 1

4 + α3(z − w)
5

4 (z̄ − w̄)− 15

4

)

×
(∂wεA + ∂wεB) + H.c. (5.23)

+
(

α5(z − w)−
9

4 (z̄ − w̄) 3

4 − α6(z − w)−
1

4 (z̄ − w̄)− 5

4 + α5(z − w)
7

4 (z̄ − w̄)− 13

4

)

×
(∂wεAεB + εA∂wεB) + H.c. (5.24)

+
∑

k

βk(z − w)vk(z̄ − w̄)tk
(
∂wεA∂wεB)

)
+ H.c. , vk 6= tk . (5.25)

The coefficients αi, βk and exponents vk, tk are rational constants, and the terms in
equations (5.24) and (5.25) are irrelevant but could – as shown before – produce relevant
terms in higher-order expansions.

Before computing third order terms it is important to discuss the structure of the
prefactors ∝ (z − w)p · (z̄ − w̄)q appearing in all equations above. After the integration
of the prefactors (details presented in appendix B.2.2) only terms from equations (5.20),
(5.21) and (5.22) are left that fulfill p = q:

− 2

4096
|z − w|− 9

2 ,
9

4096
|z − w|− 7

2 (εA + εB) , − 81

8192
|z − w|− 5

2 (εAεB) . (5.26)

The third-order terms (∝ J3
1 ) are obtained by multiplying the above operators with the

original perturbation given in equation (5.13). The following operator product expansion
applies (see equations (4.10) and (5.16)):

εJ(w, w̄)σI(s, s̄) =
δI,J
2
|w − s|−1σI(s, s̄)

+
δI,J
4

(w − s) 1

2 (w̄ − s̄)− 1

2∂sσI(s, s̄) + H.c. (5.27)

This yields only three different types of operators: these are primary and secondary
operators from the spin family

∝ σIσJ , ∝ σI∂{s,s̄}σJ (5.28)

and ∝ ∂{s,s̄}σI∂{s,s̄}σJ . (5.29)

Calculating the third-order perturbation by multiplying every remaining operator from
the second order [equation (5.26)] with [O1 − O2] yields the prefactors for these spin
operators (derivation in appendix B.2.3). However, for each of the relevant operators in
equation (5.28) the prefactors are canceled by the polar integration for dwdw̄, which is
in agreement with the symmetry considerations presented above. Thus, the third-order
perturbation does not give any new operators since the irrelevant terms in equation (5.29)
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are the same as in the first order of the perturbation. Thus, the operator algebra is closed
[dFMS97, chapter 6] and only the terms of equation (5.26), in particular the thermal
operators εA + εB and the marginal operator εAεB are left:

−9µ4J2
1

4096

∫

|z−w|>a

dzdz̄dwdw̄ |z − w|− 7

2 (εA + εB) (5.30)

+
81µ4J2

1

8192

∫

|z−w|>a

dzdz̄dwdw̄ |z − w|− 5

2 εAεB . (5.31)

The signs of these operators stem from the squares of the coupling given in equation (5.12)
and the derived signs of the perturbative calculations given in equations (5.21) and (5.22),
respectively. The pure energy terms in equation (5.30) and the mass term in equation
(5.14) are necessary to tune the model onto criticality. The new critical temperature up
to second order in perturbation theory is given by

TC(J1) = TC(0)− γ J2
1 , (5.32)

which is in agreement with the behavior of the critical line on the left-hand side of the
phase diagram presented in figure 5.3. The rescaled mass term is equal to zero on the
critical line. Thus, the most relevant perturbation is the marginal energy-energy coupling
[equation (5.31)]. Together with the action of the unperturbed Ising models from equation
(5.14) the Ashkin-Teller field theory is readily identified [AT43, DM98, see also section
2.2.2]:

AAT = A0
A +A0

B + k

∫

dwdw̄ εAεB (5.33)

where k ∝ J2
1 is the renormalized coupling constant. The sign of the marginal perturbation

in principle can matter, but for the present case it does not affect the conclusion that one
stays on the critical line. Since the free fermionic theory is located in the middle of a line
of c = 1 conformal field theories (see, for example, reference [Gin88, confer the vertical
line in figure 14 on page 134]), the theory is critical on either side of the fixed point of
two decoupled Ising models.

Ashkin-Teller model 5.2.4

The lattice model consists of two Ising models with internal coupling J which are addi-
tionally coupled via a four-spin interaction J4 (confer 2.2.2). The field-theoretic action
of this model is the same as in equation (5.33) with a coupling constant k = f(J, J4).
Thus, the four-spin interaction is mimicked by the perturbative onset of the energy-energy
coupling, which is, in the present case, proportional to the square of the original nearest-
neighbor coupling J1. The rich phase diagram of the Ashkin-Teller model given in coupling
constants J and J4 in references [Bax82, DG04] includes a critical line which represents
the one-dimensional flow diagram of the corresponding field theory [equation (5.33)] at
criticality with a single parameter given by the renormalized coupling k. It starts for
k = 0 at the conformally invariant fixed point of two decoupled Ising models and ends
at a Potts-critical end point. The presented calculations yield a conformal field theory
with c = 1 in the presence of a marginal operator. Both are necessary conditions to fulfill
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so that the theory can exhibit varying critical exponents [FQS84, KW71]. This scenario
would be consistent with the numerical results for large J2 and earlier descriptions of
the frustrated Ising model [LB05]. The Potts-critical end point would also allow for an
onset of a non-critical line of first-order phase transitions as observed in the Monte-Carlo
simulations.

summary 5.3

The frustrated J1-J2 Ising model on the square lattice was investigated using classical
Monte-Carlo simulations, transfer-matrix calculations and field-theoretic methods known
from conformal field theory. The focus was on the analysis of the finite-temperature phase
transitions, in particular from a collinear ordered state into the paramagnetic state. The
phase-transition scenario obtained in this chapter is sketched in figure 5.11.

The evaluation of large-scale histograms indicates a first-order transition for parame-
ters 0.5 J1 < J2 . 0.9 J1, but correlation functions prove a strong decoupling of the two
sublattices of the square lattice model for J2 ≥ J1 and hint towards continuous phase
transitions in this region of the phase diagram. In-between (J2 ≈ J1) a more detailed
analysis is hampered by large crossover scales and reliable results cannot be obtained
from the finite-size lattice simulations.

0 0.5 1 1.5 2
J
1
 / J

2

∞ 5 2 1.5 1 0.8 0.6 0.5

J
2
 / J

1
Ashkin-Teller

2 4 6 8 10

0.25 0.15 0.1

first order Ising universal2 Ising models
c = 1 c = 1/2

figure 5.11: Phase transition sce-
nario for the frustrated J1-J2 Ising
model. The transition into the Néel
phase for J1 > 2 J2 is Ising univer-
sal whereas the transition into the
collinear phase shows first-order be-
havior for 2 J2 > J1 & J2 and con-
tinuous but non-universal behavior for
smaller J1 which is explained by the
underlying Ashkin-Teller field theory.

Because the critical two-dimensional model can be mapped onto a quantum field theory
which is characterized by a central charge c, transfer-matrix calculations were performed
to derive the central charge of the underlying field theory. The results for J1/J2 ց 0 are
consistent with c = 1 as expected for two decoupled Ising models. However, for J1/J2 ր 1
the findings are not consistent and probably suffer the same finite-size problems as the
Monte-Carlo simulations.

For this reason the continuum limit of the model was derived and the coupling of the
two sublattices was investigated perturbativly using operator product expansions. As a
result, in second-order perturbation theory relevant energy terms rescale the transition
temperature of the decoupled case (J1 = 0) towards lower values and a marginal energy-
energy coupling arises which is also known as Ashkin-Teller term. Thus, a critical model
with c = 1 is recovered, which together with the marginal coupling allows for non-universal
critical exponents.
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incommensurate ordering
in a spatially anisotropic Ising model 6

This project was initiated by Gennady Chitov from the Laurentian University in Sud-
bury (Canada) who proposed to calculate correlation functions for a spatially anisotropic
version of the J1-J2 Ising model. In this chapter Monte-Carlo results for this model are
reported that are not yet published.

abstract

The anisotropic version of the J1-J
a,b
2 Ising model is investigated by means of Monte-

Carlo simulations. In particular the ordering process from the paramagnetic into an
antiferromagnetic phase with diagonal ferromagnetic stripes (ordering wave vector q =
(π, 2, π/2)) is analyzed, and the finite-temperature behavior of energies, specific heats and
correlation functions is presented. A comparison of structure factors for different lattice
sizes reveals an incommensurate ordering for intermediate temperatures.

The model of interest in this chapter is given by a specific choice of the square lattice
Ising model presented in equation (2.9):

HIsing, aniso. = J1
∑

NN

SiSj + J2
∑

NNN,�

SiSj − J2
∑

NNN,�

SiSj (6.1)

where � and � indicate the two perpendicular next-nearest neighbor bonds and the
opposite sign for these couplings distinguishes the present model from the isotropic version
discussed in the previous chapter. Three different ground states are readily identified: a
ferromagnetic state or Néel ordered state for dominating nearest-neighbor interactions
|J1| > |J2| and a superferromagnetic-antiferromagnetic (SFAF) state for |J1| < |J2|; all
three states are sketched in figure 6.1. The phase transitions to the ferromagnetic and
Néel ordered state are continuous and belong to the Ising universality class. However,
for the remaining finite-temperature phase transition into the SFAF state the analysis
is more complicated. Chitov and Gros performed mean-field calculations [CG05] and
proposed a scenario that includes an onset of incommensurate ordering before the system
is thermalized into its ground state. However, it is known that mean-field calculations

NOFO SFAF figure 6.1: Three
different ground state con-
figurations: Néel order (NO)
for J1 > |J2|, superferro-
antiferromagnetic order
(SFAF) for −|J2| < J1 < |J2|
and ferromagnetic order
(FO) for J1 < −|J2|.
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figure 6.2: Phase diagram
of the anisotropic Ising model
for varying nearest-neighbor interac-
tions J1/|J2|. Critical temperatures
are determined using Binder cumu-
lants for |J1| > |J2| and estimated
from energies and specific heats for
|J1| < |J2|, and strongly depend on
the system size – here L ≤ 200 (see
text for more details). The agree-
ment with a qualitative sketch in
[CG05] is very good.

in low-dimensional systems (d < 4) are limited in the description of phase transitions
[Gol93] and, hence, the main task of the following chapter is to check their prediction
by a complementary method. For this purpose, Monte-Carlo simulations are preformed
and the ordering process is evaluated by calculating correlation functions for different
system sizes and analyzing their Fourier transform – the structure factor for particular
wave vectors q = (qx, qx).

phase diagram 6.1

The phase diagram for the model was introduced in reference [CG05] for varying parame-
ters J1, J

a
2 and J b

2 . The result is a three-dimensional qualitative phase diagram including
ferromagnetic and various antiferromagnetic phases (figure 2 of [CG05]). In the present
work the focus lies on a one-dimensional cut through this phase diagram with a varying
nearest-neighbor coupling J1 and a fixed value Ja

2 = −J b
2 . The finite-temperature phase

diagram TC−J1/|J2| was qualitatively sketched in figure 6 of reference [CG05, mean-field
calculations] and the equivalent is presented here in figure 6.2 by means of Monte-Carlo
simulations and the qualitative agreement is very good. Note that the transition tem-
peratures are invariant under the change of the sign J1 → −J1; this was double-checked
in particular for |J1| < |J2|. For the interactions |J1| > |J2| the critical temperatures
were determined using the Binder cumulants for different lattice sizes as for the isotropic
model. On the other hand for |J1| < |J2|, the extraction of critical temperatures is more
complicated since the order parameter for the SFAF state and its Binder cumulants show
a strong finite-size dependence. Thus, the values in figure 6.2 are estimated by an analysis
of the energy and specific heat. Furthermore, at this point no distinction between the
SFAF and incommensurate ordering temperatures is made for the same reasons.

energy and specific heat 6.2

The behavior of the energy already indicates that the ordering processes for the two phase
transitions differ significantly. In figure 6.3 the temperature dependence of the energy is
shown for three cases (a)-(c) with J1 < |J2| and compared to the energy (d) of an Ising
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figure 6.3: Energies for some values of nearest-neighbor coupling J1 > 0. In figures (a)
- (c) multiple steps appear which differ for different system sizes before reaching the ground-
state energy ESFAF = −2 |J2|. As a comparison a converged energy development for the phase
transition into the Néel ordered state is shown in (d) – ENéel = −2 J1.

phase transition at J1 = 1.5 |J2|. The multiple steps in the energies, which in addition
are shifted for different system sizes L, hint towards an unusual ordering in the model
that involves different size-dependent intermediate states. This strong size dependence
already hints towards incommensurate ordering.

Because such phase transitions are also accompanied by large energy fluctuations, an
investigation of the specific heat (defined in section 2.1) could yield more insight. In figure
6.4 specific heats for increasing systems are compared for J1 = 0.2 |J2| and J1 = 1.5 |J2|.
In figure 6.4a one can distinguish different peaks arising for larger lattices L ≥ 80 for
the phase transition into the SFAF phase. This emphasizes that indeed not only one
phase transition occurs but several. Therefore, a set of different intermediate states – the
number depends on the system size – are present in the anisotropic Ising model on a finite
lattice. The behavior of a normal continuous phase transition is recovered in the specific
heat at J1 = 1.5 |J2| as expected for the transition into the Néel phase.
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figure 6.4: Specific heats for different system sizes. (a) As already indicated by the energy,
multiple peaks are distinguished the specific heat for increasing system sizes. (b) The position
of the peak is nearly fixed and the height scales moderately with the system size as expected for
a continuous phase transition.

For the characterization of these various phase transitions energy histograms are
recorded. In figure 6.5 two sets of histograms are shown that clearly prove the first-
order nature of the emerging transitions. On the left-hand side histograms for the ulti-
mate phase transition into the ground state (SFAF state) are shown at J1 = 0.2 |J2| for
L = 100, 200, i.e., the temperatures at which the histograms are recorded correspond
to the last step and peak in the energies and specific heats respectively. Although the
transition temperature is shifted to a lower value, the double-peaked structure becomes
more pronounced. Furthermore, the scaling of peak-to-peak distance is consistent with

 0

 5

 10

 15

 20

 25

-1.7 -1.6 -1.5

co
un

ts

 energy per site / |J2|

J1 = 0.2 |J2|

L = 100, T = 2.128 / |J2|
L = 200, T = 2.0176 / |J2|

(a) J1 = 0.2 |J2|, SFAF transition

 0
 10
 20
 30
 40
 50
 60
 70
 80

-1.92 -1.9 -1.88 -1.86 -1.84 -1.82 -1.8 -1.78

co
un

ts

 energy per site / |J2|

J1 = 0.8 |J2|

L = 100

T = 1.17444 / |J2|
T = 1.18978 / |J2|
T = 1.20533 / |J2|

T = 1.30299 / |J2|
T = 1.32002 / |J2|
T = 1.33727 / |J2|

(b) J1 = 0.8 |J2|, L = 100, intermediate transitions

figure 6.5: Normalized histograms for some phase transitions in the anisotropic Ising model
that clearly prove the first-order character of the transitions. (a) Phase transitions into the SFAF
ground state; for larger lattices the transition temperature is shifted to a lower value. (b) Two
different phase transitions – both of first order – can be distinguished. In the middle some nearly
Gaussian shaped histograms were left out for clarity.
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the inverse lattice sizes. On the right-hand side, i.e., in figure 6.5b various histograms at
J1 = 0.8 |J2| and for L = 100 are plotted. Two transitions are separated only by a small
energy range and both show doubly-peaked histograms. Thus, the intermediate states on
the finite lattice are also separated by first-order phase transitions, as was expected by
the step-like development of the energy.

order parameter and correlation functions 6.3

To gain further insight into the ordering process of the system it is useful to define order
parameters and analyze their behavior around the phase transition. The wave vector of
the SFAF phase is given by q = (π/2, π/2) because the unit cell is a 4 × 4 state (confer
figure 6.1 middle). Hence, the square root of the normalized structure factor at this wave
vector yields a good order parameter. The calculation of this order parameter can be
implemented using a staggered magnetization

mSFAF,k =

√

S(π/2, π/2)

N
=

1

N

∑

i

(−1)fk(rxi .ryi )Si (6.2)

f0(rx, ry) = [(rx + ry)/2]% 2 ∧ f1(rx, ry) = [(rx + ry + 1)/2]% 2 (6.3)

The modulo operation ’%2’ yields values zero and one, and the two versions f0,1 account
for the degeneracy of the ground state, i.e., a shift of all spins by one lattice spacing. In
addition both states can be flipped completely. In figure 6.6 this order parameter and
its Binder cumulant are shown for increasing lattice sizes and a small nearest-neighbor
coupling J1 = 0.2 |J2|. The order parameter reflects the same behavior as observed in the
energies, i.e., the onset of a non-zero signal is size-dependent. Even more instructive is
the behavior of the Binder cumulant; already for small lattices L ≤ 100, for which the
order parameter seems to converge towards a fixed transition temperature, the cumulants
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figure 6.6: (a) The onset of the order parameter becomes more pronounced for larger lattices
and is shifted to lower temperatures. (b) Because the transition temperature depends strongly
on the system size the cumulants do not intersect in a single point. The large errors are caused
by the abrupt transitions which are not well captured by the Monte-Carlo simulations.
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figure 6.7: For every lattice size various transitions are revealed at different temperatures
in the order parameter as well as in the cumulants. The large error bars are due to the sharp
transitions.

do not intersect, and at lower temperatures for the largest system (L = 200) different
steps appear in the cumulant. The abrupt transitions in the large system makes a good
statistic evaluation of the Monte-Carlo data complicated and causes large errors. However,
it is evident that the transition temperature is not universal. For larger values of J1 the
ordering process becomes more complicated. In figure 6.7 various steps are identified in
the evolution of the order parameter and the Binder cumulant, although both plots are
dominated by the large error bars that stem again from the statistical analysis of the
sharp transitions.

correlation functions

The correlation functions SiSj are measured along rows and columns of the square lat-
tice, i.e., iy = jy or ix = jx. Since Si = ±1, they can adopt values between −1 and +1.
However, to demonstrate the modulation of the amplitude in dependence of the distance
r = im − jm it is more convenient to plot the absolute value of the correlation functions.
Furthermore, like in the previous chapter, a separate illustration for even and odd dis-
tances r is given. In figure 6.8 the amplitudes of the correlations are plotted with a color
code for a finite temperature and lattice interval for a very small (L = 20, rmax. = 9) and
a larger lattice (L = 80, rmax. = 39) both at J1 = −0.8 |J2|. The maximum distance is
limited to L/2 due to the periodic boundary conditions. In the small system only two
amplitude modulations can be clearly distinguished: for high temperatures two peaks and
for intermediate temperatures (T ≈ 1.5 |J2|) a single minimum at a medium even distance
r is obtained (where correlations at odd distances are enhanced). Both amplitude modu-
lations are marked by black horizontal lines. In addition the SFAF state yields constant
correlations for even distances at low temperatures. For the larger system (figure 6.8b,
L = 80) several modulations are visible that are divided by sharp transitions. Indeed,
five different patterns are identified with a decreasing number of extrema (indicated by
black horizontal lines). The ground state is classified in both cases by constant maximal
correlations for even distances and zero correlations between neighboring sites. Thus,
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figure 6.8: Absolute values of correlation functions SiSj for even and odd distances r =
im − jm (the other lattice coordinate is fixed) and different temperatures. The modulation of
the amplitude is clearly visible and for the larger lattice (b) a sequence of distinct wave vectors
for the modulation are identified. Black lines indicate prominent stable patterns.

the two sublattices of the original square lattice are decoupled and both sublattices are
ordered in a collinear antiferromagnetic state which yields the SFAF state in the original
lattice.

structure factors

By analyzing the correlation functions it is obvious that a mixed phase of incommensurate
and commensurate ordering is present for intermediate temperatures (above the ground
state) which causes the development of superstructures in the correlation amplitude. To
identity the exact wave vectors a Fourier analysis is necessary. However, according to
Chitov and Gros [CG05, see, e.g., figure 5] the wave vectors of this incommensurate order
lie on the very same line q = (qx, qx) as the already known vectors: ferromagnetic order
q = (0, 0), SFAF order (π/2, π/2) and Néel order (π, π). Moreover they find from their
mean-field calculations that the incommensurate order is characterized by a single wave
vector [CG05, page 726]

qax = qay = arccos(− J1
2|J2|) . (6.4)

Motivated by this statement, the structure factor was calculated for all wave vectors
q = (qx, qx). In figure 6.9 a color coded plot of all discrete normalized structure factors
S(qx, qx) is shown for L = 20 and L = 80 for two cases J1 = −0.5 |J2| and J1 = +0.8 |J2|.
In the upper part for the small lattice S(q) shows only a finite signal for two (left) and
three (right) neighboring wave vectors, respectively. A saturated signal S = 1 appears
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(d) L = 80, J1 = 0.8 |J2|

figure 6.9: Structure factors in color code for all q = (qx, qx) and different temperatures. The
ground state is clearly given at (π/2, π/2). The limit for the wave vectors is given by the value
qax (confer equation (6.4) and [CG05]), however, for all values between qax and π/2 a finite signal
is observed as well.

for the ground state at (π/2, π/2) only. For a larger lattice (L = 80, figure 6.9 bottom)
a whole cascade of signals appears in the structure factor; this is in agreement with the
signatures in the correlation functions presented above. Furthermore, it is noteworthy
that for a ferromagnetic coupling J1 < 0 (figure 6.9 left) the wave vectors of the in-
commensurate ordering tend towards lower values, i.e., lie between the vectors indicating
commensurate ferromagnetic and SFAF order. For an antiferromagnetic coupling (right)
the opposite behavior is observed, π/2 < qm < π. Thus, the unconventional order of the
intermediate states stems from the competition of different ground states (SFAF order
and Néel/ferromagnetic order) that are favored by the nearest and next-nearest neighbor
coupling respectively. In addition two different magnitudes for the nearest-neighbor cou-
pling were investigated: on the left-hand side a smaller absolute value of |J1| = 0.5 |J2|
yields a wave vector qa which is closer to (π/2, π/2) than qa(|J1| = 0.8 |J2|) (right) and,
thus, a smaller number of intermediate states is allowed for the large systems (figure 6.9
bottom). However, it is observed that the incommensurate order is not described by a
single wave vector but rather a series of vectors qinc. which satisfy two properties:

qinc. = (qinc.
x , qinc.

x ) and

{

qax ≤ qinc.
x < π/2 for J1 < 0

π/2 < qinc.
x ≤ qax for J1 > 0

. (6.5)

Thus, the obtained features could represent a devil’s staircase [Bak82] which manifests
itself in a sequence of signals for neighboring wave vectors for decreasing temperatures.
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figure 6.10: Structure factor for qx =
qy and a particular set of lattice size L =
28 and nearest-neighbor interactions J1 =
−0.867768 |J2| such that qax equals a lattice
vector (confer (6.6)). The same behavior as
for different qax is observed.

The condition (6.4) for qax can hold only in a finite lattice exactly for particular sets
of values J1 and L. To ensure that the above described behavior which includes multiple
wave vectors is also valid for these special sets one additional plot is given in figure 6.10.
The parameters are chosen such that qax equals a lattice vector of the finite lattice:

L = 28 , qSFAF
x = 7

14
π and qax = 5

14
π

(6.4)→ J1 = −0.867768 |J2| . (6.6)

The behavior is the same as for the non-fitting parameter sets, i.e., for the middle wave
vector qinc.

x = 6
7
π a signal also appears at lower temperatures. However, the limiting

property of qax (in this case as a lower bound for the wave vectors) is very prominent here.

summary 6.4

An anisotropic version of the frustrated J1-J2 Ising model was investigated using Monte-
Carlo simulations. In particular the phase transition into an antiferromagnetic state
consisting of two sublattices in collinear order was analyzed. As predicted by Chitov
and Gros [CG05] via mean-field theory, an incommensurate ordered phase appears for
intermediate temperatures before the ground state is reached. The nature of this state
was analyzed using correlation functions and the corresponding structure factors. In
contrast to earlier statements the incommensurate order is not described by a single wave
vector but rather a set of neighboring wave vectors resembling a devil’s staircase on the
finite lattice system.

The nature of the various phase transitions between the different incommensurate and
commensurate states and the ground state was evaluated by means of energy histograms
and Binder cumulants. On the one hand the energy histograms show very clear double
peaks for all transitions; on the other hand all transitions are strongly dependent on
the simulated system size, i.e., the transition temperatures are shifted to lower values
for larger lattices and, hence, the Binder cumulants do not yield any crossing points.
This particular behavior is more prominent for crossover phenomena rather than genuine
phase transitions. However, this may be caused by the incommensurate order since the
relevant wave vector is strongly temperature dependent and in the thermodynamic limit
an interval of continuous momenta describes the incommensurate state.
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quantum disordered ground state
for hard-core bosons

on the frustrated square lattice 7

The main content of this chapter was published under the same title in Physical Review
B [KHFP11a]. Some additional notes were later published in the proceedings for the
conference on strongly correlated electron systems (SCES 2011) [KHFP11b] with the same
coauthors: Sebastian Fuchs who implemented some crucial improvements to the quantum
Monte-Carlo code that was used for the simulations, Andreas Honecker as scientific advisor
who performed the third- and fourth-order series expansion and Thomas Pruschke as
additional scientific advisor. For the exact diagonalization an implementation of Jörg
Schulenburg was employed [Sch].

It may be that some parts of the following chapter resemble the manuscript of reference
[KHFP11a] which has been written mainly by me and was revised by Andreas Honecker
and the two other coauthors.

abstract

In this chapter the ground-state phase diagram for a model of hard-core bosons on a
frustrated square lattice is investigated. The model is equivalent to an anisotropic version
of the frustrated J1-J2 spin-1/2 Heisenberg model. Starting at a classical limit of zero
quantum fluctuations two different methods – series expansions and quantum Monte-Carlo
– are applied to analyze the stability of classical ordered states against the influence of
small fluctuations. In the opposite limit – large kinetic energy of the bosons – a superfluid
phase is identified. However, in the vicinity of the critical point of this frustrated model a
finite region in the phase diagram is found where no conventional order arises. The analysis
of higher order correlation functions using quantum Monte-Carlo and the evaluation of
the low-energy spectrum gained from exact diagonalization indicate a quantum-disordered
ground state.

The Hamiltonian of the model was introduced in section 2.3 in the boson and spin-
operator description. The content of this chapter mainly refers to the spin-1/2 Heisenberg
model with parameters ti and Vi:

HHM = t1
∑

NN

(
S+
i S

−
j + H.c.

)
+ V1

∑

NN

Sz
i S

z
j

+ t2
∑

NNN

(
S+
i S

−
j + H.c.

)
+ V2

∑

NNN

Sz
i S

z
j . (7.1)

The model resides on a N = L × L square lattice with periodic boundary conditions.
The Vi > 0 are chosen antiferromagnetic and V2 introduces frustration into the model.
The fluctuation parameters ti < 0 are negative and represent ferromagnetic and, hence,
non-frustrating spin exchange.
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methods

In the classical limit, i.e., for ti = 0, the Hamiltonian represents the antiferromagnetic
J1-J2 Ising model (Ji = Vi) which is highly frustrated in the region J2 ≈ J1/2 and was
discussed in the chapter 5. The stability of the classical ground states – Néel order for
J2 < J1/2 and collinear order for J2 > J1/2 – is tested by means of quantum Monte-
Carlo simulations for fluctuations ti < 0. At the frustrated point V2 = V1/2 perturbative
derivations are performed to calculate the direct transition between the two perturbed
classical states. For large |ti| a ferromagnetic long-range correlation in the xy plane is
expected. This corresponds to phase for the hard-core bosons with a finite superfluid
density which is calculated within the Monte-Carlo simulations.

For the most interesting region (intermediate |ti| and V2 ≈ V1/2) the emergence of
new quantum states will be investigated by means of quantum Monte-Carlo and exact
diagonalization.

Ising limit 7.1

The purely classical ground states of the Ising limit are no eigenstates of the quantum
Hamiltonian given in (7.1) as the spin-exchange terms are off-diagonal in the Sz-product
basis. However, for small fluctuations the quantum mechanical ground state may show a
finite but reduced signal in the order parameter of the original antiferromagnetic states.1

The temperature-dependent behavior of the order parameter and accordingly the Binder
cumulant can be calculated with quantum Monte-Carlo simulations in the same manner
as in the classical case.

quantum Monte-Carlo

For the present work an implementation of the stochastic series expansion [Han62, San92,
SK91, see also section 3.2.2] with a directed-loop update [SS02] from the ALPS project
[AAC+07, ADG+05, AWT05] was used for all quantum Monte-Carlo simulations.

However, the frustration in the model produces a critical slowing down in the Monte-
Carlo simulation and the large degeneracy in the vicinity of the critical point V2 = V1/2
causes severe thermalization problems in the standard implementation. To overcome
these problems an exchange Monte-Carlo update [HN96, KTHT06, Mel07, see also section
3.2.2] in temperature space was added by Sebastian Fuchs to the ALPS directed-loop
application. To guarantee a good thermalization within the exchange Monte-Carlo step it
is important to adjust the temperature steps and number of sweeps between the exchanges
of configurations (swaps) of neighboring simulations.

In addition to the exchange Monte-Carlo, an annealing procedure was performed for
each copy independently during the thermalization process. This kind of algorithm helps
to prethermalize the simulations at lower temperatures to ensure a better swap rate for
the exchange Monte-Carlo algorithm.

It is noteworthy that the accessible system sizes for the quantum model are much
smaller than for the classical case due to the higher complexity of the quantum Monte-
Carlo simulation. However, the finite-size effects are reduced by the influence of the

1In the following the antiferromagnetic states will be referred to as Néel and collinear state as in the
classical case, although they are not eigenstates.
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figure 7.1: (Slightly different version
published in [KHFP11a].) Temperature
dependence of the fourth-order cumulants
for the Néel order parameter for differ-
ent lattice sizes at V2 = 0.2 V1 and ti =
−0.15 Vi. In the inset the estimate of
the error for the transition temperature
TC = 0.378(3)V1 is given.

fluctuations and already for small systems a reliable estimation of transition temperatures
is possible.

The static structure factors introduced in section 2.1 can easily be evaluated in the
Sz configuration space of the quantum Monte-Carlo simulation. For example, the Binder
cumulants of the Néel-order parameter for different lattice sizes L ≤ 20 are shown in
figure 7.1; as in the classical case the intersection point yields the critical temperature
TC(V2/V1).

A comparison of the critical temperatures at fixed frustration V2/V1 for different values
of ti shows that the influence of quantum fluctuations reduces the temperature at which
the phase transition from the disordered paramagnetic state to the ground state with
antiferromagnetic long-range correlations takes place. Thus, classical order is suppressed
by quantum fluctuations. In figure 7.2 the finite-temperature phase diagram is presented
for different ti. It is already notable that close to the highly frustrated point the critical
temperatures decrease more drastically and are completely suppressed for large |ti| >
0.10 Vi.

Indeed, the Néel and collinear state are no longer the ground states for increasing
quantum fluctuations and close to the critical point V2 = V1/2 a detailed analysis of
the direct transition between both states is necessary. Therefore, the energies of both
antiferromagnetic states are compared by means of a perturbational ansatz: a series
expansion of the quantum fluctuations perturbing the classical Ising model as sketched in
section 4.1.
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figure 7.2: (Published in
[KHFP11a].) Phase diagrams at
finite temperatures for different values
of ti. For increasing |ti| the transition
temperatures are shifted to lower
values and conventional order is
suppressed. To guide the eye, the full
(blue) line shows the known phase
boundary for the classical appropri-
ately scaled Ising model [KHFP08,
see also chapter 5]. For ti = −0.1 Vi

(broadly dashed (green) line) only
transition temperatures close to the
critical point were calculated.
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figure 7.3: (Published in [KHFP11a] without fourth-order SE and inset.) Ground-state phase
diagram calculated with quantum Monte-Carlo simulations. On the horizontal axis the degree of
frustration V2/V1 is plotted, and on the vertical line the magnitude of the quantum fluctuations
−ti/Vi is plotted. The dashed blue line and dotted green line indicate the direct phase boundary
between Néel and collinear order derived by means of series expansion (SE, see section 7.1).
The gray area represents the approximate region where no finite signal in the conventional order
parameters arises. In the inset a small section around V2 = V1/2 is shown in a larger scale to
illustrate the series expansion results more clearly.

perturbation theory

To estimate the influence of small quantum fluctuations on the classical ground states,
second-order perturbation terms are calculated in the degenerate ground state manifold
at the critical point V2 = V1/2 [BSFB07, SO83]. For V2 = V1/2 every state with Sz

total = 0
per plaquette (square of 4 lattice sites) has the same classical energy. Thus, for the whole
lattice, which consists of overlapping plaquettes, this local degeneracy yields a global
degeneracy of the order of the lattice length L, as explained in reference [KHFP08] for
the classical limit. The degenerate perturbation theory distinguishes between diagonal
perturbations which leave the system in exactly the same state and off-diagonal per-
turbations which transfer the system into another state of the degenerate manifold. In
the case of the frustrated square lattice different ground states are connected via flips
of antiferromagnetic spins in a whole line or row of the lattice. Thus, the order of off-
diagonal perturbations scales with the length of the lattice L. Off-diagonal perturbations
are therefore negligible in the thermodynamic limit with L → ∞. However, non-zero
diagonal perturbations appear already in the second order and are different for the two
classical starting points – the Néel and collinear configurations. In the Néel state only
nearest-neighbor hopping t1 is possible on 2L2 bonds of the lattice and thus yields an

energy gain of ∆E1 = −2L2 t2
1

V1

. In the collinear state nearest-neighbor hopping on L2

bonds and next-nearest-neighbor hopping on 2L2 bonds is possible which gives an en-

ergy gain ∆E2 = −2L2 t2
2

3V2

− L2 t2
1

V1

. Thus, small fluctuations decrease the energy of the
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ground states in the vicinity of the critical point. Calculating the transition line between
the Néel and collinear state – taking into account only second-order corrections to the
classical energies and using t2 ≈ t1/2 and V2 ≈ V1/2 – yields the relation

|ti|
Vi

=

√

3

2

V2
V1
− 3

4
, (7.2)

which is shown in the final ground state phase diagram (figure 7.3) as the dashed blue line
for small |ti|/Vi. Because equation (7.2) does not depend on the sign of ti it also holds for
antiferromagnetic xy interactions and can be compared to the result of a series expansion
by Oitmaa et al. [OW96] where for positive fluctuations ti > 0 the direct transition
between the classical antiferromagnetic states survives in this completely frustrated model
as well for small fluctuations.

Higher-order perturbations (up to fourth-order) were calculated by Andreas Honecker
also away from the critical point, i.e., a series expansion for all values of V2/V1. By
equating the energy functions – given by rational functions with higher order dependencies
in t = ti/Vi and V = V2/V1 and expanded around V2 = V1/2 – at the critical point a more
accurate estimation of the direct transition is obtained

V (t) =
1

2

2730859 t4 − 388800 t3 + 81000 t2 − 8100

2802739 t4 − 40400 t3 + 91800 t2 − 8100
(7.3)

which is also shown in figure 7.3 as the green dotted line. The difference between both
lines is clearly visible in the inset of figure 7.3.2

The results for the energies for different values of t and V are compared below to the
results of Monte-Carlo simulations.

ferromagnetic limit 7.2

The parameters ti scale the magnitude of the spin fluctuations that correspond in the orig-
inal notation of the Hamiltonian [confer, e.g., (2.24)] to the magnetic exchange in the Sxy

components. Thus, for negative ti a ferromagnetic configuration in the xy plane reduces
the overall energy. In section 2.3.2 a variational product ansatz for such a ferromagnetic
order was given and yields an energy

Eferro/N = (t1 + t2) . (7.4)

At the point V1 = V2 = t2 = 0 and t1 = −0.5 the energy eferro = −0.5 can be compared to
the pure xy model, i.e., an anisotropic Heisenberg model without Sz interactions and only
nearest-neighbor interactions, from reference [Jia11, SH99]: energy exy = −0.548824(2).
This shows that already for the non-frustrated case the approximation of the product
ansatz does not fit very well. The order parameter for this phase requires a more subtle
definition since the quantum Monte-Carlo operates in the Sz basis. The observable was
presented in section 3.2.3 and is called – based on its bosonic origin – superfluid density ρS
(or spin stiffness). In figure 7.4 the development of ρS is shown for (apart from the sign)
isotropic choice ti = −Vi/2 and V2 = V1/2. The convergence of the order parameter for
different lattice sizes (L = 8, 14) proves the long-range ferromagnetic order. The absolute

2An expansion of equation (7.3) up to second order in t around t = 0 yields the relation (7.2) again.
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figure 7.4: (Published in [KHFP11a].)
Comparison of the superfluid density
(spin stiffness) ρS (right) and cumulants
for antiferromagnetic order parameters
(left) – Néel order (NO) and collinear
order (CO) – for ti = −Vi/2 and V2 =
V1/2. The clearly converged signature in
the superfluid order parameter indicates
a finite-temperature phase transition.

value for ρS = 0.508(2) can be compared to the result for the xy model ρxy = 0.26974(5).
Hence, the additional ferromagnetic coupling on the next-nearest neighbor bonds enhances
the signal in the order parameter. In conclusion, evidence for long-range magnetic order in
the two limits |ti| ր Vi/2 (ferromagnetic in-plane order) and |ti| ց 0 (antiferromagnetic
Néel and collinear order) is found.

The calculations for all three order parameters at a medium value ti = −0.25Vi and
varying frustration is shown in figure 7.5. Also included are the energies obtained by
quantum Monte-Carlo and series expansion up to fourth-order. The agreement for the
energies from series expansion and quantum Monte-Carlo is very good in the region where
antiferromagnetic order is present. For the remaining values of V2/V1 the quantum Monte-
Carlo yields a lower energy than the series expansion.

However, for even smaller values of |ti| and intermediate range of frustration the con-
vergence of the ferromagnetic order parameter breaks down and only for small systems
a residual signal is found for intermediate temperatures. Thus, the ferromagnetic cor-
relations are not stable in a finite-size analysis as demonstrated in figure 7.6, where the
energy converges to its ground state value.

A finite-size analysis for all magnetic order parameters is necessary in some finite
parameter region to exclude the conventional order of the introduced limits. Therefore, in
figure 7.7 order parameters and energies for two different parameter scans are presented:
(a) at fixed ratio ti = −0.1Vi a range of V2 ∼ V1/2, i.e., close to the critical point,
and (b) at the critical point V2 = V1/2 a set of increasing values of 0 ≤ |ti|/Vi ≤ 0.5.
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figure 7.5: (Published in [KHFP11a]
without series expansion (SE).) Ground-
state values of the order parameters for
Néel order (NO), collinear order (CO),
in-plane ferromagnetic order (FO) and
the energy density (from quantum Monte-
Carlo (QMC) and SE for both Néel and
collinear configuration) at ti = −0.25Vi

and varying frustration V2/V1. The agree-
ment for the energies is very good in the
region where antiferromagnetic Sz order is
stabilized. (Symbols are larger than error
bars and values converge for 20 ≥ L ≥ 16
and T ≤ 0.02V1).
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From figure 7.7a it is clear that the system for small values ti neither orders in the
antiferromagnetic Ising states nor shows long-range ferromagnetic correlations in the xy
plane. The comparison of the energies from quantum Monte-Carlo and series expansion
which is based on the Ising ground states enforces the breakdown of antiferromagnetic
order for the given values of V2/V1. An estimation of the finite region in the ground-state
phase diagram where no conventional order is stabilized can be extracted from figure
7.7b. At V2 = V1/2 the phase boundary between the antiferromagnetic states splits at
ti = −0.08(1)Vi. However, the above mentioned size dependence of the superfluid order
parameter permits only a rough evaluation of the upper critical value of ti = −0.175(25)Vi.
In addition, the energy of the simple variational ansatz (7.4) is compared to the ground-
state energies obtained by quantum Monte-Carlo. The agreement is rather bad which
is explained by the complete neglect of quantum fluctuations in the ansatz. The energy
eS = −0.8808(2)V1 of the ferromagnetic state at V2 = V1/2 and ti = −0.5Vi can again
be compared to the value for the xy model with only nearest-neighbor interactions from
[SH99]: exy = 0.548824(2) J . The energy is significantly decreased by the influence of the
additional coupling on the next-nearest neighbor bonds.

Combining all results, a ground-state phase diagram can be drawn which is shown in
figure 7.3. The shape of the phase diagram is very similar to the one obtained by Oitmaa
et al. in reference [OW96] for positive values ti/Vi. They argued that between the two
antiferromagnetic states a spin-liquid phase arises above some value of ti.

The phase transitions between the different ground states are not analyzed in detail
but from the classical case it is known that the direct transition between both antifer-
romagnetic states is of first order. The behavior of all three order parameters, shown
in figure 7.5, at the transitions to the ferromagnetic phase also hints towards first-order
transitions, as the onset of the different observables is rather abrupt. For the remaining
phase boundaries with the unidentified phase an analysis of figure 7.7 helps. According
to the same argument the transition from the antiferromagnetic phases is discontinuous.
However, the transition into the ferromagnetic phase seems to be rather smooth and is
probably continuous. Due to the strong finite-size dependence of the system in this region
a reliable investigation of the phase transition, e.g., the calculation of critical exponents,
is not possible at this point. However, a more detailed analysis of the unidentified phase
is presented in the following section.
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figure 7.6: (Published in
[KHFP11b].) The superfluid density
ρS shows a small signal for an in-
termediate temperature only in the
12 × 12 lattice at V2 = 0.51V1 and
ti = 0.1Vi. For a larger lattice
no finite signal is found (left) where
the energies are saturated to their
ground state value for T < 0.05V1

(right).
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figure 7.7: (Published in [KHFP11a] without SE and variational ansatz (VA), respectively.)
Ground-state values of the order parameters for Néel order (NO), collinear order (CO), in-plane
ferromagnetic order (FO) and the energy density for two different parameter scans. (a) A finite
region without conventional order is identified for the intermediate value of ti = −0.1Vi. (b) The
lower bound ti = −0.08(1)Vi is given by the opening of the two antiferromagnetic phases which
can be calculated accurately. The upper bound ti = −0.175(25)Vi, however, is given by the
onset of the superfluid order parameter (FO) which exhibits large errors obtained by finite-size
scaling. Furthermore, the energy of the variational ansatz (VA) given in equation (7.4) is shown
and well above the Monte-Carlo values. (Symbols are larger than error bars (if not given) and
values are converged for 20 ≥ L ≥ 16 and T ≤ 0.02V1.)

intermediate regime 7.3

The lack of conventional order in a finite region of the ground state phase diagram moti-
vated further simulations and calculations of new order parameters. Since from classical
frustrated models it is known that incommensurate ordering may also occur for certain pa-
rameters (see previous chapter), a calculation of the complete structure factor for a finite
20× 20 lattice was performed. The ground-state result for ti = −0.1Vi and V2 = 0.51 .V1
is shown in figure 7.8 for all momenta q = (qx, qy) with 0 ≤ qi ≤ π. Apart from a small
enhancement of the signal for larger qi which originates from the finite size of the lattice
and the non-zero temperature T = 0.02V1 the flat structure factor rules out any magnetic
order – of commensurate or incommensurate type – in Sz direction.

S(q)/V10 π/4 π/2 3π/4 πqx

0

π/4

π/2

3π/4

π

q y

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

figure 7.8: For ti = −0.1 Vi and
V2 = 0.51 V1 the complete structure
factor of a 20 × 20 lattice is shown
and only a vanishingly small signal
at q ≈ (π, π) is identified – probably
due to finite-size effects and the finite
temperature (T = 0.02V1).
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figure 7.9: Local measurements of magnetization and kinetic bond energy in gray (magneti-
zation, small absolute values) and blue (bond energy) scale for a 12× 12 lattice at ti = −0.1Vi

in the ground state (T = 0.01V1). (a) In the Néel phase a residual staggered magnetization and
only small kinetic energies are visible. (b) The local magnetization shows very small disordered
signals and the kinetic energy is enhanced. However, the ratio between nearest and next-nearest
bond energies is smaller than the ratio t2/t1 = V2/V1 = 0.51.

quantum correlations

As explained in the introduction of this thesis, a particular interest in frustrated quantum-
spin models is the possible emergence of quantum mechanically ordered and disordered
phases. Possible configurations of such phases – like columnar or staggered dimer order
– were introduced in section 2.3.2 and the derivation of an appropriate estimator of their
order parameter in the quantum Monte-Carlo, i.e., an estimator of a four-spin correlation
function

〈Si · Sj Sk · Sl〉 (7.5)

with i− j and k − l indexing sites of nearest-neighbor bonds, was given in section 3.2.3.
For these phases both the potential energy from the Sz interactions and the kinetic energy
that stems from the fluctuation terms are important. For this reason the local average
magnetization and kinetic energy of each site and bond respectively, in gray and blue
scale for two different cases at ti = −0.1Vi is shown in figure 7.9. The local magnetization
yields nearly zero for all sites for both cases – Néel order (a) and disordered region (b) –
as expected due to the two-fold degeneracy of the Néel state and the vanishing structure
factor in the disordered region. A residual Néel configuration can be seen in figure 7.9a
on a very small scale. The local energies are equally distributed in both cases and no
particular ordering appears. However, the average local kinetic energy is enhanced in
the disordered phase by a factor of two by comparing the numbers on the upper scale,
although the exchange parameters for nearest-neighbor fluctuations are the same for the
two cases. It is noteworthy that a further analysis of the kinetic energies on nearest
and next-nearest neighbor bonds yields different ratios ekin.

NN/e
kin.
NNN for the cases of a Néel

ordered, ferromagnetic ordered and disordered system. In the Néel ordered phase the
fraction equals approximately 20% of the actual ratio of the exchange parameters t2/t1,
whereas in the ferromagnetic region a fraction of roughly 60% is obtained. For large
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figure 7.10: (Published in [KHFP11a]
in gray scale.) Correlations between
spins and dimers sited on nearest-
neighbor bonds on a periodic 12×12 lat-
tice; hence, up to six neighboring spins
and bonds are shown. The top left site
and its adjacent right bond yield the ref-
erence points for the measurement. All
other sites and bonds of the plot repre-
sent the correlations of spins and dimers
in the illustrated distance to the refer-
ence site/bond coded in gray and blue
scales, respectively. For V2 = 0.51 V1

and ti = −0.1 Vi, i.e., in the region
without conventional order, the ground
state (T = 0.01V1) exhibits no long-
range order, indicated by the rapidly de-
caying correlations functions of spins and
dimers.

lattices, i.e., L = 16, 20 with parameters inside the disordered region, a rate of ∼ 35%
remains. Thus, in the disordered phase the kinetic energy on nearest-neighbor bonds is
enhanced compared to the next-nearest neighbor bonds.

Motivated by this fact, the correlation of dimers residing on nearest-neighbor bonds
were calculated as described in 3.2.3. The result is shown in figure 7.10 on a representative
lattice for parameters in the disordered region of the phase diagram: all sites and bonds
of the lattice represent in gray and blue scale, respectively, the strength of the correlations
of spins and dimers in the given distance to the spin and dimer located on the top left site
and bond. The autocorrelation of the top left dimer yields the normalization for the dimer
correlations. The rapid decay of the Sz spin correlations to zero confirms the absence of
any magnetic order in the z direction at ti = −0.1Vi and V2 = 0.51V2, as was seen before
in the calculations for the structure factor (figure 7.8) and for the local magnetization
(figure 7.9b). However, more interesting are the dimer correlations. The autocorrelation
is larger than all other correlations to different dimers. Beyond that only a short-range
correlations are present, i.e., for bonds in the direct vicinity of the reference bond (top
left bond in figure 7.10) a reduction (perpendicular bonds and the fist parallel neighbor
bond) and an enhancement (other parallel bonds) are detected. For larger distances
(three bonds) all correlations on parallel and perpendicular bonds decay to a constant
value and, hence, no long-range dimer order is present. This also agrees with the constant
local kinetic energies on all bonds shown in figure 7.9b. The same applies for the results
shown in figure 7.11 for L = 16 at (a) ti = −0.12Vi and V2 = V1/2 and (b) ti = −0.15Vi
and V2 = V1/2. Thus, all evidence points to a quantum disordered ground state in the
whole region of the phase diagram without conventional magnetic order (gray area in
figure 7.3).
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figure 7.11: Spin and dimer correlations for 16× 16 lattices at V2 = V1/2 in the ground state
(T = 0.01V1). No long-range order is present for dimers residing on nearest-neighbor bonds.
((a) was published in [KHFP11b].)

low-energy spectrum3

A topologically ordered state could be another possibility for the phase without any sig-
natures for order. To check for this kind of non-local ordering, the calculation of the
spectrum is necessary because a degeneracy of the ground state is expected for a topo-
logically ordered state on a symmetric periodic lattice with an aspect ratio close to one
[ML05, MLMS02]. The spectrum is not accessible via quantum Monte-Carlo simulations
and therefore an exact diagonalization is performed for a 6×6 lattice with periodic bound-
ary conditions – as on a torus – at ti = −0.1Vi, V2 = V1/2 and in the subspace Sz

total = 0.
The computation of the spectrum was performed using an existing implementation of an
exact diagonalization by Jörg Schulenburg [Sch].
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figure 7.12: (Published in [KHFP11a].)
Exact diagonalization data for a 6 × 6 lat-
tice with periodic boundary conditions at
ti = −0.1Vi and V2 = V1/2. Shown are the
energy differences ∆E = Eq − E0 for differ-
ent q-values (only qy ≤ qx) in a gray scale
(∆Emin(π, π) = 0.1609 V1). The spectrum
shows no tendency for degeneracy and there-
fore a topologically ordered state is unlikely.
In the inset the same values are shown along
the path (0, 0)→ (π, 0)→ (π, π)→ (0, 0).

The lowest eigenvalues in the different q sectors of the Sz
total = 0 subspace were cal-

culated and the energy differences to the lowest eigenvalue E0(0, 0) = −10.2854 V1 are

3The original version of this paragraph in [KHFP11a] was revised and partially rewritten by Andreas
Honecker.
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shown in figure 7.12. For symmetry reasons, it is sufficient to concentrate on the region
0 ≤ qx ≤ π, 0 ≤ qy ≤ qx of the Brillouin zone. The main panel of figure 7.12 shows a
gray scale plot of the energy differences in this region, the inset a different representation
of essentially the same data. A minimal energy gap ∆Emin = 0.1609 V1 is obtained for
q = (π, π) above a unique ground state on the 6×6 lattice. This is comparable to the dis-
persion along the qx direction, where there is a maximum gap ∆Emax(2π/3, 0) = 0.3482 V1.
Accordingly, the large value of ∆Emin is interpreted as evidence against a ground-state
degeneracy. An additional check of the lowest eigenvalues in different spin sectors yields
no further information as all resulting energy differences are higher than the largest gap
∆Emax.

The spectrum shown in the inset in figure 7.12 is also qualitatively different from
the spectrum of the Heisenberg model (see, e.g., references [Maj10, RSH04]). Indeed, in
the latter case one would expect a behavior close to qx = 0, qy = 0 which is similar to
the vicinity of the ordering wave vector (which is qx = π, qy = π for the Néel state).
The excitation spectrum shown in figure 7.12 is therefore consistent with the absence of
classical order, as demonstrated by the quantum Monte-Carlo simulations.

While it would be desirable to perform a finite-size analysis, the 6 × 6 lattice was
selected as the only accessible lattice which has the symmetries of the infinite system and
is compatible with the expected ordered states (the 4×4 ‘square lattice’ is not necessarily
representative for two dimensions since it can also be interpreted as a four-dimensional
torus and was therefore not analyzed). Still, the gap ∆Emin is comparable to the dispersion
of the excited states even on the 6 × 6 lattice which suggests that the gap will also stay
finite in the thermodynamic limit. As a result, no ground-state degeneracy and for this
reason no topological order, is present.

summary 7.4

The ground-state phase diagram of an anisotropic Heisenberg model with competing in-
teractions on the square lattice was investigated. Extensive quantum Monte-Carlo simu-
lations were performed and in the limit of vanishing quantum fluctuations perturbation
theory was applied on the classical antiferromagnetic ground states – Néel and collinear
ordered configurations. These configurations were found to be stable under the influence
of small fluctuations. A direct phase boundary exists for non-zero fluctuations which was
estimated by means of series expansion. In the limit of strong fluctuations a phase of fer-
romagnetic order in the xy plane was verified which corresponds to a superfluid phase in
the equivalent model of hard-core bosons. The signal of the appropriate order parameter
was even stronger than for the pure xy model.

In the vicinity of the critical point (where frustration is strongest) and for intermediate
values of the spin exchange, a region without magnetic order was found. Motivated by
earlier work on similar models [BBB+05] the correlations of dimers on nearest-neighbor
bonds was calculated and no long-range order could be detected. Additionally, the low-
energy spectrum was computed by exact diagonalization on a small finite periodic lattice
for parameters from the disordered region and no ground-state degeneracy was found.
Thus, all evidence for the anisotropic frustrated spin-1/2 Heisenberg model on the square
lattice indicates a quantum disordered ground state without topological order.
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The content of this chapter is published as a regular article in Physical Review B [KAC+12].
The presented work was a collaboration with Andreas Honecker (Göttingen) and Marcelo
Arlego, Daniel Cabra and Gerardo Rossini from the University of La Plata (Argentina).
The project was initiated by the group from La Plata who contributed the linear spin-
wave calculations, and calculated Padé approximations for higher-order series expansion
results from Oitmaa and Singh [OS11]; the fourth order series expansions were performed
by Andreas Honecker. The quantum Monte-Carlo and exact-diagonalization results were
computed by me.

It may be that some parts of the following chapter resemble the manuscript of reference
[KAC+12]. The manuscript was written mainly by me apart from the methodological
introduction to linear spin waves and series expansion, and revisions to all sections by all
coauthors.

abstract

Similar to the last chapter, the phase diagram of a frustrated spin model with anisotropic
interactions is analyzed on the honeycomb lattice. The ground-state phase diagram is
analyzed by means of quantum Monte-Carlo simulations and the results are compared to
the findings from different methods: linear spin-wave calculations in the limit of small
and large quantum fluctuations, and series-expansion computations for two different Ising
limits of the frustrated model. The investigation of a remaining disordered region is again
performed by applying Monte-Carlo simulations and exact diagonalization.

The model was defined in equation (2.23) in its bosonic form, but in the following the
anisotropic spin-1/2 interpretation will be used:

H =
3∑

r=1

∑

i,j

[
tr(S

+
i S

−
j + S−

i S
+
j ) + VrS

z
i S

z
j

]
. (8.1)

The index r = 1, 2, 3 represents the nearest, next-nearest and third-nearest neighbor
connections of a periodic honeycomb lattice with N = 2 × (L × L) sites. All exchange
parameters tr < 0 are chosen ferromagnetic whereas the Vr are positive and, hence,
frustration is introduced by the next-nearest neighbor Sz interaction. In the present work
the parameter space is reduced to V = V2/V1 = V3/V1 and t = tr/Vr which allows for two
antiferromagnetic ground states in the classical limit t = 0 – again a Néel and collinear
configuration. The critical point is given for V = 1/2 and the expected phase diagram is
similar to the square-lattice case from the previous chapter.

For the ferromagnetic phase, which is expected to be stable for large |tr|, an in-plane
ferromagnetic product-wave function yields the energy:

Eferro/V1 =
3

4
t(1 + 3V )N . (8.2)
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Furthermore, an intermediate regime without magnetic order is obtained as was the case
for the square lattice.

methods

To determine the phase diagram in the V −t plane, and to analyze the intermediate region
of the phase diagram, primarily quantum Monte-Carlo simulations were performed. In
the limit of small quantum fluctuations, i.e., in the Ising limit additional series expansion
results are presented and will be compared to linear spin-wave results (confer for details
[HP40, IS04]) which were calculated by the group in La Plata. The same method is
also applied in the ferromagnetic limit and stability arguments provide good estimates
of the phase boundaries. Series expansion results were analytically computed in the
context of [KAC+12] up to fourth order and numerically up to eighth order in a recent
work by Oitmaa and Singh [OS11]. The low-energy spectrum is only accessible by exact
diagonalization and yields an insight into the physics of an unidentified ground state in
the phase diagram – similar to the square lattice.

Ising limit 8.1

The Ising limit is given by setting all quantum fluctuations tr = 0 and exhibits two an-
tiferromagnetic ground states for V2 = V3, as described in section 2.3. Even for small
fluctuations the quantum mechanical ground states are expected to consist of these clas-
sical states plus some quantum fluctuations that reduce the overall energy and order
parameters.

A comparison for the energy per site from quantum Monte-Carlo simulation with
perturbative results from series expansion and linear spin wave approximations is given in
figure 8.1 for quantum fluctuations governed by t = −0.05 and t = −0.10. The agreement
for small V < 0.45 and large V > 0.7 is very good and only in the intermediate regime
can discrepancies be observed; these will be discussed below.

Both methods – series expansion and linear spin waves – assume the classical order
(Néel or collinear state) as the underlying configuration which is only weakly perturbed
by quantum fluctuations. For the series expansion two different calculations up to fourth
order [KAC+12] and up to eighth order at discrete points (Oitmaa and Singh [OS11])
are shown in figure 8.1. Both expansions agree very well away from the critical point
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figure 8.1: (Published in [KAC+12].)
Comparison of energies calculated from dif-
ferent methods at small quantum fluctuations
t = −0.10 (top) and t = −0.05 (bottom):
quantum Monte-Carlo (QMC), series expan-
sion (SE, see text also) and linear spin waves
(LSW). In the direct vicinity of the critical
point V ≈ 1/2 both series expansions become
rather unreliable due to an increasing number
of divergences. The linear spin wave results
underestimate the influence of quantum fluc-
tuations, as can be observed for larger |t|.
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V = 1/2. However, the corrections to the classical energies include an increasing number
of divergences for higher orders and, thus, become unreliable for larger |t| and V ր 1/2
(Néel case) or V ց 1/2 (collinear case), respectively. From the fourth-order series results,
which are available in analytic form (see supplemental material of [KAC+12]) one can
derive the direct transition between the two antiferromagnetic states for small t 6= 0. The
energies are expanded linearly at V = 1/2 and yield a transition line

V (t) =
1278676 t4 − 69750 t3 + 6300 t2 − 225

2665577 t4 − 148050 t3 + 13950 t2 − 450
, (8.3)

which is shown in figure 8.2 as the blue line. Furthermore, from the series given in
[OS11] for the order parameters an estimate of the upper phase boundaries is obtained
by applying Padé approximations [GG74]. The corresponding error bars are confidence
limits obtained by considering the dispersion of predicted critical points for different Padé
approximations.

The linear spin-wave expansions were calculated on a finite lattice with 2 · 104 sites
around the classical phases. They are stable for −t < 1−V

1+3V
(the Néel phase) and −t <
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figure 8.2: (Published in [KAC+12].) Ground-state phase diagram for the anisotropic Heisen-
berg model on the honeycomb lattice. The Ising ground states survive and are separated by
a direct first-order transition for small fluctuations |t|. Only for values of |t| > 0.175(25) can
ferromagnetic order in the xy plane be detected. The full blue line represents the first-order tran-
sition line between the antiferromagnetic states (equation (8.3)), determined from fourth-order
series expansion calculations (SE). Magenta crosses represent phase boundaries determined by
the condition of vanishing order parameters, provided by eighth order series expansions [OS11]
(see text for more details). The Monte-Carlo results (QMC, red circles and interpolation thereof
the dashed red line), where order parameters are computed, provide a very similar phase dia-
gram. The linear spin waves (LSW, green dash-dotted lines in the inset) yield phase transition
lines from stability arguments and from the comparison of energies between antiferromagnetic
states.
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− 1−5V
1+11V

(the collinear phase). Hence, a direct transition is given at V ≈ 1/2 by comparing
energies and the transition is almost independent of t. The three approximate phase
boundaries are plotted in the inset of figure 8.2.

For the Monte-Carlo simulations no assumptions for the ground state are necessary
apart from computing the appropriate order parameters. To identify the regions which
show antiferromagnetic order, the structure factors for the Néel and collinear configuration
are calculated. The wave vector is given by q = (0, 0) with antiparallel spins on the A
and B sites of the unit cell for the Néel state, i.e., each sublattice is ferromagnetically
ordered but they are aligned anti-parallel to each other. The collinear state is six-fold
degenerate with three wave vectors: q = π√

3
(
√
3, 1) and q = π√

3
(
√
3,−1) with A and

B parallel, and q = 2π√
3
(0, 1) with A and B anti-parallel. Additionally all spins can be

flipped in the ordered states giving an additional two-fold degeneracy. An example of the
temperature-dependent behavior of the order parameter is shown in figure 8.3a for the
Néel state. The energies and order parameters are well saturated for different lattice sizes
at T < 0.1V1.

As expected from the series expansions for small |t|, a direct transition between both
antiferromagnetic states is obtained. This is probably of first order as the states exhibit
different symmetries (figure 8.2). This transition line splits into two for a small value of
0.025 < |t| < 0.05 and a new ground state emerges. This critical value of |t| is smaller
than for the square lattice (see figure 7.3 in the previous chapter). This is in agreement
with the fourth-order series expansion results. By comparing the slopes of the transition
lines V (t) given in equations (7.3) and (8.3) graphically in the V − t plane, the steeper
slope for the square lattice suggests a larger stability range for the direct transition.
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figure 8.3: (Published in [KAC+12].) Monte-Carlo results for the evolution of energies and
magnetic order parameters are shown for decreasing temperatures in two different points of the
phase diagram, exhibiting Néel order (NO, left) and ferromagnetic order (FO, right).

ferromagnetic limit 8.2

In the opposite limiting case with large |t|, the structure of the ground state is not as
simple as for the Ising limit. The starting configuration for the approximate linear spin
waves will only be a variational ansatz (a ferromagnetic Sx product wave function with
energy given in equation (8.2)).
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figure 8.4: (Published in [KAC+12].) Energy and order parameters (FO: ferromagnetic in-
plane order, NO: Néel order, CO: collinear order) are shown for a horizontal cut (a) through the
phase diagram (figure 8.2) at t = −0.05 where classical order is absent for 0.48 . V . 0.54, and
a vertical cut (b) at V = 0.45 where there is no finite order parameter for 0.075 . −t . 0.15.

The appropriate order parameter for the ferromagnetic state in the quantum Monte-
Carlo simulations is the same as for the square lattice and the spin stiffness can be
estimated from the winding number. An example of the convergence of energy and order
parameter is shown in figure 8.3b. Careful calculations of the order parameter for the non-
antiferromagnetically ordered regions of the phase diagram show a non-vanishing signal
only for |t| > 0.15. Two different parameter scans are shown in figure 8.4. In the left
panel order parameters and energies from Monte-Carlo simulations and series expansions
are shown for t = −0.05 and varying frustration V from Néel to collinear behavior; a
finite region without any magnetic order is identified, which also explains the discrepancy
of the energies from quantum Monte-Carlo and series expansions shown here and in figure
8.1. In the right panel a similar scan is presented, here for fixed V = 0.45 and t varying
from Néel to ferromagnetic behavior, where the Monte-Carlo energy is compared with
the classical variational ansatz [equation (8.2)] and linear spin-wave calculations. The
agreement between the Monte-Carlo and spin-wave energies is remarkably good.

The resulting phase diagram is given in figure 8.2 and looks very similar to the result of
the previous chapter for the square lattice. However, the region without magnetic order is
different on a quantitative level and the classical antiferromagnetic states are only stable
for smaller values of t.

intermediate regime 8.3

As for the square lattice, the finite-size effects in the intermediate regime are very strong
and Monte-Carlo simulations on small lattices indicate ferromagnetic order. However, for
low temperatures and larger lattices (L > 12) the signal disappears. Thus, the estimation
of the second critical value for t(V ) – at which ferromagnetic order arises – is rather
difficult and only calculated at the point V = 0.45.
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(c) disordered state at V = 0.45 and t = −0.1
(T = 0.02 J)

figure 8.5: (Published in [KAC+12].) Quan-
tum Monte-Carlo results: each bond (and site)
represents the strength of the correlation of a
dimer (or spin) at the corresponding distance
to the top left dimer (or spin) in blue (dimers,
top) or gray (spins, bottom) scales, respectively.

quantum correlations

Further quantum Monte-Carlo simulations were performed to check for long-range dimer
order. Such configurations were reported in earlier works in particular for the honeycomb
lattice ,e.g., in [ASH+11, e.g.]. A normalized version of the four point correlator

〈Si · Sj Sk · Sl〉 − 〈Si · Sj〉〈Sk · Sl〉 (8.4)

was calculated. The indices i & j, and k & l, refer to sites at two separate nearest-neighbor
bonds.

In figure 8.5 these correlations are presented on a representative lattice where the
strength of the correlation is given in a color code (blue scale, top) and distances of
the two bonds i − j and k − l are given by the distance between each bond to the top
left reference bond. In addition, the Sz correlation functions are shown in gray scale
(bottom scale) on the sites with respect to the top left site of the lattice. Three different
plots are given: as a reference figure 8.5a shows a Néel-ordered configuration where the
values of the Sz correlations oscillate for different sublattices and show a constant nearly
maximal amplitude. The dimer correlations are small and show no sign of ordering. For
parameters inside the in-plane ferromagnetic region (figure 8.5b) in either the spin or
the dimer correlations no signature can be detected, i.e., spin correlations drop rapidly
to zero and dimer correlations adopt a constant distance-independent value. The same
applies for the disordered region (figure 8.5c) and only a minor detail distinguishes the two
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figure 8.6: (Published in [KAC+12].)
The direct comparison of dimer correla-
tions – in an enlarged illustration of the top
left hexagon of figure 8.5b and c – shows a
small enhancement of correlations on two
bonds for the disordered phase (V = 0.45,
original lattice L = 12). The upper bond
is again the reference bond for all dimer
correlations.

calculations: apart from the different scales (see numbers at the upper (blue) scale) which
are explained by the different strength of the quantum correlations (t = −0.1, −0.5),
there is a small discrepancy in the relative values of the dimer correlations inside the top
left hexagon. To clarify this statement figure 8.6 shows only these top left hexagons of
figures 8.5b and 8.5c. A small enhancement of the dimer correlations on the two bonds
neighboring the opposite bond of the reference bond (top) compared to the correlation on
the opposite bond itself is observed. Thus, an extremely short-ranged ordering of dimers
is observed in the disordered phase, which is absent in the ferromagnetic state.

low-energy spectrum

The calculation of the low-energy spectrum is performed by using exact diagonalization
with the code package of Jörg Schulenburg [Sch]. For parameters V = 0.45 and t = −0.1,
which mark a point inside the disordered region of the phase diagram, the lowest eigenval-
ues are calculated in the Sz

total = 0 spin sector for several lattices (N = 18, 24, 28, 32, 34)
with periodic boundary conditions. The spectrum of energy differences ∆Ek = Ek − E0

for the largest lattice is shown in figure 8.7. This measures the gap from the ground state
energy E0 (which belongs to the q = 0 subspace and its scaling is shown in the upper
panel of figure 8.8) to the lowest eigenvalues Ek in the different q 6= 0 sectors and to the
first excited state in the q = 0 subspace. As for the square lattice the smallest gap is
found in the q subspace of the Néel ordering wave vector (square lattice qNéel = (π, π),
honeycomb lattice qNéel = (0, 0)). This gap stays finite in both cases as shown in figure
8.8 (middle, AF gap) for the honeycomb lattice.

However, a calculation of the lowest eigenvalues for higher Sz
total subspaces reveals that

the gap between E0 and the lowest eigenvalue in the Sz
total = 1 subspace vanishes in a

∆E

N = 34

E0(0,0) = -9.60253906
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figure 8.7: (Published in [KAC+12].) Spectrum
of energy gaps ∆Ek = Ek − E0 for the Sz

total = 0
subspace for N = 34 at V = 0.45 and t = −0.1.
The smallest gap at q = 0 is stable in a finite-size
analysis (see figure 8.8 middle).
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finite-size scaling for system sizes N = 18 to N = 34 (plotted in the lower panel of figure
8.8). In the square lattice this energy difference was larger than the gaps in the Sz

total = 0
subspace. This ferromagnetic correlation in the honeycomb lattice, which is also observed
in the correlation functions of the Sxy components in the exact-diagonalization results,
was also observed in the quantum Monte-Carlo simulations on small lattices but for larger
lattices ferromagnetic order was ruled out. This emphasizes that the finite-size effects in
the disordered state are stronger on the honeycomb lattice that on the square lattice.
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figure 8.8: (Published in [KAC+12].)
Scaling of the ground state energy and two
gaps with the system size N from exact di-
agonalization at V = 0.45 and t = −0.1.
The antiferromagnetic gap (AF) inside the
Sz

total = 0 subspace stays finite. How-
ever, the ferromagnetic (FE) gap between
the ground state energy and the lowest eigen-
value of the Sz

total = 1 subspace scales to
zero.

Nevertheless, for the present model a topologically ordered state can be excluded
in the disordered phase because of the clearly finite antiferromagnetic gap which was
found by exact diagonalization. For a topologically ordered state a four-fold ground-
state degeneracy is expected in the Sz

total = 0 subspace for a spin-1/2 model an a two-
dimensional periodic lattice with an aspect ratio close to one, i.e. on a torus with similar
circumferences in both directions [MLMS02].

summary 8.4

The phase diagram for an anisotropic Heisenberg model on the honeycomb lattice with
up to third-nearest neighbor interactions was calculated by means of quantum Monte-
Carlo simulations and compared to results from perturbative methods (series expansions
and linear spin-wave approximations). The phase boundaries of three predicted magnetic
phases – Néel and collinear phase in the Ising limit and in-plane ferromagnetic order for
large quantum fluctuations – were computed. The agreement of the Monte-Carlo results
with spin-wave approximations is rather good. In the Ising limit, in addition, the results
from series expansion up to fourth order (analytically) and up to eighth order (numerically,
by Oitmaa and Singh [OS11]) were compared with quantum Monte-Carlo simulations and
the energies and phase boundaries matched very well.
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The Monte-Carlo simulations predict a finite parameter region without any magnetic
order in the phase diagram, as was also found for the square lattice system (confer previous
chapter). This phase does not show any sign of long-range dimer order and the low-energy
spectrum is gapped in the Sz

total = 0 subspace.
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concluding remarks 9

The investigation of two-dimensional frustrated spin models was motivated by two ma-
jor topics of modern condensed matter physics: a theoretical explanation for High-TC
superconductivity [ZCS+06] and the theoretical design of quantum computation devices
[LMSS12]. Although these subjects are very complex and involve a lot of details that
go far beyond this work, the better understanding of phase transitions and ground-state
phase diagrams in frustrated spin models promotes research in these topics. The present
work contributes in particular (i) a thorough analysis of the influence of frustration on
the ordering process in the two-dimensional Ising model and (ii) a detailed research of
the interplay of frustration and quantum fluctuations for anisotropic quantum spin-1/2
Heisenberg models on the square and honeycomb lattices.

phase transitions in the Ising model 9.1

In part I of this work the finite-temperature phase transition from the high-temperature
paramagnetic phase to an antiferromagnetically ordered state was investigated for frus-
trated J1-J2 Ising models on the square lattice. Methods employed were Monte-Carlo
simulations, transfer-matrix calculations and conformal field theory. While controversial
predictions about the nature of a particular phase transition were discussed in the litera-
ture for the isotropic case (constant homogeneous J2) [JSS12, KHFP08, KHFP09, LB05,
MKT06, MLAGS93], the anisotropic case has attracted fewer attention as the isotropic
case [CG05].

isotropic model

The findings presented in chapter 5 and [KHM11] are summarized in figure 5.11 (see
below). The phase transition scenario includes (i) Ising-universal behavior for small cou-
plings J2 < J1/2 and at the point J1 = 0, i.e., where two Ising models on sublattices
A and B are decoupled, (ii) non-universal continuous phase transitions with varying ex-
ponents for dominating next-nearest neighbor coupling J2 ≥ J1 which is originated in
an underlying Ashkin-Teller field theory, and (iii) first-order non-critical behavior for the
frustrated region J1 ≥ J2 > J1/2. These results stem from an analysis of Monte-Carlo
simulations for the lattice model and conformal field theory for the continuous version.

Thus, the presented results satisfy both the old predictions of a continuous phase
transition with varying critical exponents (see [LB05]), and the mean-field calculations
by Lopéz et al. [MLAGS93] that claim a first-order transition in a finite region of the
phase diagram. However, the region of validity of both predictions has changed. In
addition, the origin of the non-universal behavior is explained by an underlying Ashkin-
Teller field theory which is known to exhibit varying critical exponents. The exact crossing
point between the first-order and non-universal transition could not be derived for two
reasons: firstly, the numerical evaluation is hampered by increasing length scales in the
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figure 5.11: Phase transition scenario
for the frustrated J1-J2 Ising model. The
transition to the Néel phase for J1 > 2 J2
is Ising universal whereas the transition
to the collinear phase shows first-order
behavior for 2 J2 > J1 & J2 and con-
tinuous but non-universal behavior for
smaller J1 and is explained by the under-
lying Ashkin-Teller field theory. (figure
from chapter 5)

vicinity of the crossing point J2 ≈ J1, and secondly, the Ashkin-Teller field theory was
derived perturbativly and, hence, the region of its validity can not be accurately estimated.
Nevertheless, two scenarios can be proposed: either a level crossing of higher-energy
states drives the system from criticality into a non-critical region, or the Ashkin-Teller
model reaches a Potts-critical end point which is accompanied by the onset of non-critical
behavior [Bax82]. The latter point of view is also adopted heuristically in a recent paper
[JSS12] and a critical point at J2 = 0.67 J1 is claimed, in contradiction to the rough
estimate of J2 ≈ J1 presented in this work. The result of [JSS12] is derived by comparing
universal values of Binder cumulants on small lattices from the different models (frustrated
Ising and Potts models). On the one hand the universality of the absolute value of the
Binder cumulant is under debate [Sel06], which questions the findings of [JSS12]. On the
other hand a scaling invariance of the distance of the two peaks in the histograms, which
would strengthen the first-order scenario, is hard to prove for large J2 ≥ 0.7 J1 due to the
increasing length scales. The ansatz of numerical finite-size calculations is probably not
suitable to solve this conflict.

In conclusion, it is proven that the phase transition from the paramagnetic into the
collinear state for the frustrated Ising model in two dimensions exhibits both a non-
universal critical region and a non-critical region. This result should also be valid if small
quantum fluctuations are included. In [RFC+04] anisotropic quantum fluctuations are
added to the frustrated Ising model and similarly a phase transition is identified which
shows first-order behavior in the vicinity of the critical point J2 = J1/2 and turns into a
continuous transition for larger couplings J2.

anisotropic model

The spatial anisotropy in the next-nearest neighbor coupling introduces a new ground
state for which the two sublattices of the original square lattice exhibit collinear order.
For the transition from the paramagnetic phase into this state Chitov and Gros predicted
an incommensurate ordering for intermediate temperatures [CG05]. The wave-vector of
the structure factor giving a signal for this state depends on the specific value of the
isotropic nearest-neighbor interaction.

In chapter 6 this phase transition was analyzed by means of Monte-Carlo simulations.
In particular the results for spin-spin correlation functions and the corresponding struc-
ture factor prove the existence of such an incommensurate ordering. Moreover, it was
shown that the wave vector that describes the phase on finite lattices also depends on
the temperature. The structure factor of the finite system shows a signals for a set of
wave vectors depending on the nearest-neighbor coupling and the temperature, as shown
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figure 6.10: Structure factor for qx = qy and
a lattice of size L = 28 and nearest-neighbor
interactions J1 = −0.867768 |J2|. A staircase
of signals is observed for varying decreasing
temperatures and the wave vectors tend to-
wards (π/2, π/2). (figure from chapter 6)

for example in figure 6.10. The wave vectors with a finite signal in the structure factor
vary for decreasing temperatures between a limiting value qa predicted in [CG05] and
the wave vector indicating the ground state (π/2, π/2). The number of signals depend
on the system size. Thus, a floating phase with varying order parameter is verified that
resembles a devil’s staircase [Bak82].

quantum disordered ground states 9.2

By introducing quantum fluctuations into the frustrated spin models the determination of
the ground state phase diagram becomes a challenging task and demands the application
of different methods to the classical case. Quantum Monte-Carlo simulations have been
performed, which only work for non-frustrating fluctuations. In addition, series expansions
and exact diagonalization have been applied in specific regions of the phase diagram.
The phase boundaries of three magnetic ground states that are stable in the limit of
small and large fluctuations, respectively, were identified. A comparison of both phase
diagrams – for the square and honeycomb lattice – reveals that the stability region of
the classical antiferromagnetic states is smaller in the honeycomb lattice. Thus, the
influence of quantum fluctuations is more important for this lattice, as was assumed in
the introduction by arguing that the coordination number is lower for this lattice. In both
cases – for the square lattice with couplings J1 and J2, and for the honeycomb lattice with
additional J3 – a finite region in the phase diagram was determined for which no classical
magnetic order could be found (see figures 7.3 and 8.2).

Motivated by earlier works on similar frustrated quantum spin models on the same
lattices [BBB+05, OW96, for the square lattice] and [CLR11, FSL01, for the honeycomb
lattice], calculations of higher order correlation functions were performed to detect long-
range ordered quantum phases, i.e., valence-bond solids. However, no finite signal was
observed in any order parameter and, hence, all evidence hint towards a quantum dis-
ordered ground state in these anisotropic models. In isotropic models such disordered
ground states without any finite order parameter are referred to as spin liquids [Bal10].
The state is described by a superposition of dimer coverings whereas the dimers are given
by the S = 0 spin singlets of two spins, however, for the anisotropic models dimers with
lowest energy are given by the S = 1, Sz = 0 triplet state. The correlations between spins
and dimers are expected to show only an enhanced signal for short distances, this was
also obtained in the present anisotropic models.
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Ground-state phase diagrams for the anisotropic spin-1/2 Heisenberg models: (a) on the square
lattice with nearest and next-nearest neighbor interaction, and (b) on the honeycomb lattice with
additional third-nearest neighbor interactions (quantum fluctuations t = ti/Vi over frustration
V = V2,3/V1). (figures from chapters 7 and 8)

square lattice

An intermediate disordered phase is discussed for the isotropic J1-J2 spin-1/2 Heisenberg
model as well [JYB11, RDS+10, WGWV11]. The ground state phase diagram for this
model also exhibits the two antiferromagnetic states which are stable in the anisotropic
case for small fluctuations. In the vicinity of the critical point J2 = J1/2 the order
parameters of these phases vanish and a new phase emerges. Thus, the isotropic case
shows the same behavior as the model discussed in this thesis at an intermediate value of
ti ≈ −0.15Vi (see figure 7.3). The characterization of this intermediate phase has been
approached by numerous methods: very recently a density-matrix renormalization study
[JYB11] classifies the state as a spin liquid by calculating the lowest excitations, and a
different tensor-network approach [WGWV11] excludes valence-bond solid order for the
questioned region and argues in favor of a spin liquid state by comparing ground-state
energies to exact diagonalization results. In an older work by Oitmaa et al. [OW96]
a ground-state phase diagram is given by means of series-expansion calculations for all
values 0 ≤ t ≤ 0.5 and the result is very similar to figure 7.3: for small fluctuations a
direct transition between the antiferromagnetic states is given, and for intermediate values
of t the transition line splits and a spin liquid emerges which is stable up to t = 0.5 (the
isotropic point).

In the context of spin liquids also the emergence of topological order is discussed. For
the anisotropic model analyzed here topological order was excluded by the absence of
a degenerate ground state for a periodic lattice with an aspect ratio of one. However,
for the isotropic case a study of non-periodic lattices with aspect ratios different from
one yielded finite gaps as well but the outcome was interpreted differently, i.e., for a
non-periodic asymmetric lattice topological order follows from the finite gaps [JYB11].

honeycomb lattice

Similarly on the honeycomb lattice the ground-state phase diagram was investigated for
the isotropic model. Several quantum ordered and disordered phases were identified in
the phase diagram [ASH+11, CLR11, OS11, RAT11]. For the case with equal couplings
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J2 = J3 a quantum disordered intermediate phase is claimed by applying bosonization
techniques [CLR11] and series expansion [OS11]. In addition a thorough analysis of the
isotropic model is given in [ASH+11] where valence-bonds solids and disordered phases
are predicted by applying finite-size scaling to exact diagonalization results on lattices
with N ≤ 40. Thus, the ground-state phase diagram with an intermediate disordered
phase calculated in this work for anisotropic Heisenberg coupling fits very well into the
overall picture of frustrated spin-1/2 models on the honeycomb lattice.

However, the comparison of exact diagonalization and quantum Monte-Carlo results
in chapter 8 has shown that finite-size effects play a crucial role in the vicinity of the
critical point. In-plane ferromagnetic order was excluded by Monte-Carlo simulations but
gave a finite signal in the exact diagonalization on smaller lattices. Nevertheless, the
finite singlet gap which was obtained within exact diagonalization for periodic lattices
with an aspect ratio close to one is interpreted as absence of topological order which was
not discussed in earlier approaches for the isotropic case.

hard-core bosons

So far in the numerical analysis of hard-core bosonic models on frustrated lattice ge-
ometries an emergence of quantum ordered or disordered phases was not reported. A
stable disordered phase was reported previously only for models with intrinsic disorder,
i.e, spatially varying chemical potential [BBT02]. For the square lattice with frustrating
repulsive interactions [CMWK08, BS00, HBS+01, NC08] the stability of supersolid phases
for variable fillings was discussed, however, at half-filling (the case which was studied in
chapter 7) the phase diagram of a very similar model (t2 = 0) includes no disordered phase
[BS00]. For similar studies on the triangular lattice which is also highly frustrated the
formation of a stable supersolid phase is reported [HD05, MPB+05, WT05]. It is argued
that the phase is stabilized by an order-by-disorder mechanism [VBCC80] and, hence, a
quantum disordered phase was not observed on the triangular lattice.

Thus, the results from chapters 7 and 8 provided also new insights into the physics of
frustrated bosonic models, which may be particularly interesting for possible realizations
in optical lattices [LSA+07, SOL+11].

future prospects 9.3

The objective of the present thesis was to provide a better understanding of phase transi-
tions in classical frustrated Ising models and the derivation of ground-state phase diagrams
for anisotropic frustrated quantum spin-1/2 models. Both aims were accomplished.

A possibility for a future project is the combination of both topics by analyzing the
finite-temperature phase transition into the magnetic states and the quantum phase tran-
sitions [Sac99] occurring in the ground-state phase diagram of the quantum models in
detail. The transition from the disordered state into the ferromagnetic region of the
phase diagram is a promising candidate for continuous quantum phase transition because
of the very smooth behavior of the energy and the order parameter at the phase transition
which was observed in this work.

Another interesting project would be the analysis of the stability of the disordered
phase against a magnetic field or additional ring-exchange terms which are known to
strengthen valence-bond solid order [BBB+05, San12, SS02].
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Finally, to analyze a possible connection of the disordered state with High-TC super-
conductivity, the model has to be changed by removing spin variables on single sites and
allowing for a hopping of the remaining spins onto these holes. This model is referred to
as t−J model [And87, EKL90] and enables the dimers which are formed in the disordered
phase to propagate through the lattice.
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computational details A

Some details on the implementation of the applied numerical methods which have been
developed or refined in the context of the present thesis are given here.

classical Monte-Carlo A.1

The algorithm for the classical Monte-Carlo simulation was implemented by me. Some
parts of the program were already implemented during the Diploma thesis [Kal08] and
used to perform large-scale Monte-Carlo simulations on the square lattice Ising model.

The program provides an optional parallelization using OpenMP [CDK+00, CJvdP07]
which distributes simulations at different temperatures to a set of CPUs with a shared
memory. An additional MPI [GFB+04, e.g.] parallelization enables the simultaneous com-
putation of independent runs each with its own (independent) random-number generator.

The source code is available at http://www.theorie.physik.uni-goettingen.de/

~kalz. The package contains four C++ source files, a readme.txt explaining all (non-
)optional parameters, and a makefile which has to be adopted to the local computer
structure by providing the locations for necessary libraries (boost, MPI, SPRNG).

Different versions of random-number generators are integrated: the basic C-rand()

function in the single CPU version, a lagged Fibonacci generator [MCPR95] from
the SPRNG library [MS00], and the Mersenne-Twister [MN98] from the Boost library
(http://www.boost.org/).

The program is able to simulate the square lattice Ising model with nearest and next-
nearest neighbor interactions, a bilayer Ising model and the Ashkin-Teller model. In
addition a line update and the exchange Monte-Carlo (or parallel tempering) algorithm
are implemented as optional features. The temperature distribution can be chosen linear
between the initial and final temperature or logarithmic around a fixed critical tempera-
ture with Ti < Tc < Tf ; also annealing procedure can be included and the temperature
steps can be optimized during the thermalization process.

Furthermore, the program contains checkpointing and can store time series of some
observables (energy, magnetization, different magnetic order parameters).

The calculation of the complete structure factor is possible but in the basic version
only ferromagnetic, Néel and collinear antiferromagnetic order parameters are computed.

A runtime estimation was given in the Diploma thesis [Kal08, appendix A.2].

quantum Monte-Carlo A.2

For the quantum Monte-Carlo simulations an existing code package from the ALPS library
[AAC+07, ADG+05, BCE+11] was used and improved by integrating an exchange Monte-
Carlo update. The original packages are available at http://alps.comp-phys.org/,

III

http://www.theorie.physik.uni-goettingen.de/~kalz
http://www.theorie.physik.uni-goettingen.de/~kalz
http://www.boost.org/
http://alps.comp-phys.org/
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along with instructions and tutorials concerning the installation and usage. The ALPS

library also includes a class for the evaluation and error estimation of observables.
The application employed in chapters 7 and 8 is based on the implementation of the

Stochastic Series Expansion (dirloop_sse_v1) by Alet et al. [AWT05]. The additional
exchange Monte-Carlo algorithm was implemented by Sebastian Fuchs and refined by me
and is included in a package available at http://www.theorie.physik.uni-goettingen.
de/~kalz. Furthermore, an annealing procedure is implemented which allows for prether-
malization before the time-consuming parallel tempering is applied. The content is given
by some source files and in addition two files with instructions are included:

• HOWTO: describes how to install the program and how to start a run

• EXAMPLE: gives an exemplary input file

observables

The package also includes the implementation of the observables employed in chapter 7
and 8 which can be calculated optionally. In detail the following additional (not included
in the original version) observables are implemented:

• Néel and collinear order parameter for the square and honeycomb lattice

• spin correlation functions for both systems

• complete structure factor for the square lattice

• spin stiffness measurements (superfluid density)

• local magnetization and bond energy

• bond correlation between nearest-neighbor bonds

transfer-matrix implementation A.3

The transfer-matrix program is available in two versions: a matrix diagonalization for
small systems, and a matrix vector multiplication using a decomposition of the sparse
matrix. For the first one a lapack library is necessary and needs to be linked against
the program. The package contains the source code and a makefile which perhaps
needs to be adapted to the local machine (available at http://www.theorie.physik.

uni-goettingen.de/~kalz).
The algorithm is based on the technique presented in reference [dNNS82, confer ap-

pendix]. In contrast to a transfer-matrix for the nearest-neighbor square lattice Ising
model, for the frustrated case with diagonal couplings the smallest block is not a 2 × 2
matrix (connecting two spins from adjacent columns with each other) but a 2× 8 matrix
(connecting one with three spins from the neighboring column). Thus, the most efficient
implementation which operates with states of size 2L (L is the width of the strip) has to
be extended in an intermediate step: the state is enlarged by a factor four (two additional
spins are taken into account) and afterwards reduced again by summing up the weights.
Therefore, the accessible system sizes are smaller than for the nearest-neighbor model.

http://www.theorie.physik.uni-goettingen.de/~kalz
http://www.theorie.physik.uni-goettingen.de/~kalz
http://www.theorie.physik.uni-goettingen.de/~kalz
http://www.theorie.physik.uni-goettingen.de/~kalz
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The successive multiplication of the transfer-matrix yields the canonical partition func-
tion and, hence, the free energy of the system. The program can calculate the free energy
for periodic and antiperiodic boundary conditions, for different temperatures and pa-
rameters (J1 and J2) and different lattice sizes (width and length). For large systems a
checkpoint is implemented.
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conformal field theory B

Explicit calculations for the conformal field theory part of chapter 5 are presented here.

continuum limit derivations B.1

The derivation of the continuum limit for the frustrated Ising model is presented using
a specific unit cell (shown in figure 5.10) and a continuous representation of the spin
variables expanded up to second order around the center of the unit cell. Starting points
are the equations (5.5)-(5.7) and the Taylor expansion in (5.8).

unperturbed models

With σI(x, y) = σI and ∂ij = ∂i∂j the unperturbed Ising models are obtained [equation
(5.10)]:

hA = −J2
4
σA[σA + a∂xσA + a2

2
∂xxσA + σA − a∂xσA + a2

2
∂xxσA

+ σA + a∂yσA + a2

2
∂yyσA + σA − a∂yσA + a2

2
∂yyσA]

= −J2
4

[
4σAσA + a2σA∂xxσA + a2σA∂yyσA

]
(B.1)

hB =− J2
4
{[σB + a

2
∂xσB + a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)]×

[σB + a
2
∂xσB − a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)

+ σB − a
2
∂xσB + a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)]

+ [σB − a
2
∂xσB − a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)]×

[σB + a
2
∂xσB − a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)

+ σB − a
2
∂xσB + a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)]}

=− J2
4
{[σB + a

2
∂xσB + a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)]×

[2σB + a2

4
(∂xxσB + ∂yyσB − 2∂xyσB)]

+ [σB − a
2
∂xσB − a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)]×

[2σB + a2

4
(∂xxσB + ∂yyσB − 2∂xyσB)]}

=− J2
4

[
4σBσB + a2σB∂xxσB + a2σB∂yyσB

]
(B.2)

VII
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perturbation term

For the perturbation terms in equation (5.7) some more calculations are necessary:

hAB = J1
4
{σA · [σB + a

2
∂xσB + a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)

+ σB − a
2
∂xσB − a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)

− σB + a
2
∂xσB − a

2
∂yσB − a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)

− σB − a
2
∂xσB + a

2
∂yσB − a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)]}

+J1
8
{−[σB + a

2
∂xσB + a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)]×

[σA + a∂xσA + a2

2
∂xxσA + σA + a∂yσA + a2

2
∂yyσA]

− [σB − a
2
∂xσB − a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB + 2∂xyσB)]×

[σA − a∂xσA + a2

2
∂xxσA + σA − a∂yσA + a2

2
∂yyσA]

+ [σB + a
2
∂xσB − a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)]×

[σA + a∂xσA + a2

2
∂xxσA + σA − a∂yσA + a2

2
∂yyσA]

+ [σB − a
2
∂xσB + a

2
∂yσB + a2

8
(∂xxσB + ∂yyσB − 2∂xyσB)]×

[σA − a∂xσA + a2

2
∂xxσA + σA + a∂yσA + a2

2
∂yyσA]}

= J1
4
{a2σA∂xyσB}

+J1
8
{2σA · [2σB − 2σB + a∂xσA − a∂xσB + a∂yσB − a∂yσA

+ a2

4
(∂xxσB − ∂xxσB + ∂yyσB − ∂yyσB − 4∂xyσB)]

+ a∂xσA[2σB − 2σB + a∂xσB − a∂xσB − 2a∂yσB

+ a2

4
(∂xxσB − ∂xxσB + ∂yyσB − ∂yyσB)]

+ a∂yσA[2σB − 2σB − 2a∂xσB + a∂yσB − a∂xσB
+ a2

4
(∂xxσB − ∂xxσB + ∂yyσB − ∂yyσB)]

+ a2

2
(∂xxσA + ∂yyσA)[2σB − 2σB]

= J1
4
{a2σA∂xyσB}

−J1
8
{2a2σA∂xyσB + 2a2∂xσA∂yσB + 2a2∂yσA∂xσB}

= − J1
4
a2(∂xσA∂yσB + ∂yσA∂xσB) . (B.3)

This result is given in equation (5.9).
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complex mapping

The transformation of hAB from real variables x and y onto the complex plane which is
the basis for the conformal operations in two dimensions with variables z and z̄ involves

z = x+ iy , z̄ = x− iy ∧ x = 1
2
(z + z̄) , y = 1

2i
(z − z̄)

∂z =
1
2
(∂x − i∂y) , ∂z̄ =

1
2
(∂x + i∂y) ∧ ∂x = (∂z + ∂z̄) , ∂y = i(∂z − ∂z̄)

dzdz̄ =

∣
∣
∣
∣
∣

(

1 1

i −i

)∣
∣
∣
∣
∣
dxdy = 2dxdy ∧ dxdy = 1

2
dzdz̄ (B.4)

and yields:

hAB =− J1
4
a2[∂xσA∂yσB + ∂yσA∂xσB]

=− J1
4
a2[(∂z + ∂z̄)σAi(∂z − ∂z̄)σB + i(∂z − ∂z̄)σA(∂z + ∂z̄)σB]

=− iJ1
4
a2[∂zσA∂zσB + ∂z̄σA∂zσB − ∂zσA∂z̄σB − ∂z̄σA∂z̄σB

+ ∂zσA∂zσB − ∂z̄σA∂zσB + ∂zσA∂z̄σB − ∂z̄σA∂z̄σB]
=− iJ1

2
[∂zσA∂zσB − ∂z̄σA∂z̄σB] . (B.5)

The total perturbation is then given by:

HAB =

∫ ∫

dxdyhAB = −iJ1
4

∫ ∫

dzdz̄[∂zσA∂zσB − ∂z̄σA∂z̄σB] . (B.6)

This result is given in equations (5.12) and (5.13).

gauge invariance

Here a short comment – without detailed calculations – is given about the choice of the
unit cell. The unit cell shown in figure 5.10 is a rather asymmetric choice since the center is
given by one of the sublattice sites. The calculations for this unit cell were straightforward
and yielded a symmetric set of operators for the perturbation (as seen above). However,
a different more symmetric choice was also checked and is shown in figure B.1 below. The
two sublattices are treated equally but the result is a set of asymmetric operators

hAB ∝ σA∂xyσB + σB∂xyσA (B.7)

However, using partial integration and respecting the periodic boundary conditions for
HAB, which imply that terms at the boundaries cancel each other out, these operators
can be mapped exactly onto the set of operators for the asymmetric unit cell given in
equation (B.3).

operator product expansion B.2

In the following the operator product expansion for the second and third order perturba-
tion will be applied. The rules were outlined in section 4.2 and operators were derived in
section 5.2.
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figure B.1: (Prepared by Marion Mo-
liner.) A different more symmetric unit
cell for the derivation of the continuum
limit for the frustrated Ising model.

second order perturbation B.2.1

The calculation of the second order terms given in (5.21)-(5.25) is shown for the terms
(5.21) and (5.22):

[O1(z, z̄)−O2(z, z̄)] [O1(w, w̄)−O2(w, w̄)]

=O1(z, z̄)O1(w, w̄)−O1(z, z̄)O2(w, w̄)−O2(z, z̄)O1(w, w̄) +O2(z, z̄)O2(w, w̄)

=∂zσA(z, z̄)∂zσB(z, z̄) ∂wσA(w, w̄)∂wσB(w, w̄)

− ∂zσA(z, z̄)∂zσB(z, z̄) ∂w̄σA(w, w̄)∂w̄σB(w, w̄)
− ∂z̄σA(z, z̄)∂z̄σB(z, z̄) ∂wσA(w, w̄)∂wσB(w, w̄)
+ ∂z̄σA(z, z̄)∂z̄σB(z, z̄) ∂w̄σA(w, w̄)∂w̄σB(w, w̄) . (B.8)

Using the fact that only products of operators on the same sublattice yield a non-zero
expansion and extracting the partial derivatives the last line is rewritten before applying
the general normalized operator product expansion (given in (5.17)) for the spin-operator
products:

=∂z∂wσA(z, z̄)σA(w, w̄) ∂z∂wσB(z, z̄)σB(w, w̄)

− ∂z∂w̄σA(z, z̄)σA(w, w̄) ∂z∂w̄σB(z, z̄)σB(w, w̄)
− ∂z̄∂wσA(z, z̄)σA(w, w̄) ∂z̄∂wσB(z, z̄)σB(w, w̄)
+ ∂z̄∂w̄σA(z, z̄)σA(w, w̄) ∂z̄∂w̄σB(z, z̄)σB(w, w̄) (B.9)

=∂z∂w

(

|z − w|− 1

4 + 1
2
|z − w| 34 εA(w, w̄) + 1

4
(z − w) 11

8 (z̄ − w̄) 3

8∂wεA(w, w̄) + H.c.
)

× ∂z∂w
(

|z − w|− 1

4 + 1
2
|z − w| 34 εB(w, w̄) + 1

4
(z − w) 11

8 (z̄ − w̄) 3

8∂wεB(w, w̄) + H.c.
)

− ∂z∂w̄(. . .A)∂z∂w̄(. . .B)− ∂z̄∂w(. . .A)∂z̄∂w(. . .B) + ∂z̄∂w̄(. . .A)∂z̄∂w̄(. . .B) . (B.10)
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In the following only the regular terms and the pure energy terms are regarded for the
sake of clarity. Note that |z − w|x = (z − w)x

2 (z̄ − w̄)x
2 enters into the calculation of the

partial derivatives.

=
(

− 9
64
(z − w)− 17

8 (z̄ − w̄)− 1

8 + 15
128

(z − w)− 13

8 (z̄ − w̄) 3

8 εA(w, w̄) +O(∂{w,w̄}εA)
)

×
(

− 9
64
(z − w)− 17

8 (z̄ − w̄)− 1

8 + 15
128

(z − w)− 13

8 (z̄ − w̄) 3

8 εB(w, w̄) +O(∂{w,w̄}εB)
)

(B.11)

− 2
(

− 1
64
(z − w)− 9

8 (z̄ − w̄)− 9

8 + 9
128

(z − w)− 5

8 (z̄ − w̄)− 5

8 εA(w, w̄) +O(∂{w,w̄}εA)
)

×
(

− 1
64
(z − w)− 9

8 (z̄ − w̄)− 9

8 + 9
128

(z − w)− 5

8 (z̄ − w̄)− 5

8 εB(w, w̄) +O(∂{w,w̄}εB)
)

(B.12)

+
(

− 9
64
(z − w)− 1

8 (z̄ − w̄)− 17

8 + 15
128

(z − w) 3

8 (z̄ − w̄)− 13

8 εA(w, w̄) +O(∂{w,w̄}εA)
)

×
(

− 9
64
(z − w)− 1

8 (z̄ − w̄)− 17

8 + 15
128

(z − w) 3

8 (z̄ − w̄)− 13

8 εB(w, w̄) +O(∂{w,w̄}εB)
)

.

(B.13)

The calculation of the products (×) and summing over (B.11)-(B.13) yields

[O1(z, z̄)−O2(z, z̄)] [O1(w, w̄)−O2(w, w̄)]

= 81
4096

(

(z − w)− 17

4 (z̄ − w̄)− 1

4 + H.c.
)

− 2
4096

(z − w)− 9

4 (z̄ − w̄)− 9

4 (B.14)

−
(

135
8192

(

(z − w)− 15

4 (z̄ − w̄) 1

4 + H.c.
)

− 9
4096

(z − w)− 7

4 (z̄ − w̄)− 7

4

)

(εA + εB) (B.15)

+
(

225
16384

(

(z − w)− 13

4 (z̄ − w̄) 3

4 + H.c.
)

− 81
8192

(z − w)− 5

4 (z̄ − w̄)− 5

4

)

εAεB (B.16)

+O(∂{w,w̄}εI)

which corresponds to the terms given in equations (5.20), (5.21) and (5.22).

integration of prefactors B.2.2

Before the computation of third order terms is performed, the structure of the prefactors
∝ (z −w)p · (z̄ − w̄)q appearing in all second order terms is discussed. The integration of
the prefactors is given in different orders by:

first order:
x
dzdz̄

second order:
x
dzdz̄

x
dwdw̄

third order:
x
dzdz̄

x
dwdw̄

x
dsds̄ .

Thus, the relation of the exponents p and q plays an important role. The only constraint
for the integrals in second and third order is given by the lower cutoff |z − w| > a and
|w − s| > a, respectively.
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In second order the integration over z and z̄ can be carried out with respect to constant
values of w and w̄ which leaves primary and secondary fields of ε(w, w̄) untouched:

∫

|z−w|>a

dzdz̄dwdw̄ (z − w)p(z̄ − w̄)qf(ε(w, w̄))

u=z−w
=

∫

|u|>a

dudūdwdw̄ upūqf(ε(w, w̄))

u=reiϕ
=

∫

r>a

dr

2π∫

0

dϕ

∫

dwdw̄ 2r · rp+qeiϕ(p−q)f(ε(w, w̄)) . (B.17)

The transformation into polar coordinates r and ϕ in equation (B.17) and in particular
the integration over the whole complex plane – except for a small circle around zero r > a
– leaves only terms which satisfy either p = q or p − q 6= n with n ǫ Z. Thus, from the
second order perturbation only the terms from equations (B.14), (B.15) and (B.16) are
left that fulfill p = q, namely:

− 2

4096
|z − w|− 9

2 ,
9

4096
|z − w|− 7

2 (εA + εB) , − 81

8192
|z − w|− 5

2 (εAεB) . (B.18)

third order calculations B.2.3

For the derivation of the third order perturbation all terms given in (B.18) are multiplied
by the original operators from (5.13)

[O1(s, s̄)−O2(s, s̄)] = [∂sσA(s, s̄)∂sσB(s, s̄)− ∂s̄σA(s, s̄)∂s̄σB(s, s̄)] . (B.19)

Since the regular term in (B.14) does not change the original spin operators it will be
neglected here. For the operator product expansion of the bare energy terms in (B.15)
one obtains (using (5.27) and naming σI = σI(s, s̄):

9
4096
|z − w|− 7

2×
[∂s(εA(w, w̄)σA(s, s̄))∂sσB(s, s̄)− ∂s̄(εA(w, w̄)σA(s, s̄))∂s̄σB(s, s̄)
+ ∂sσA(s, s̄)∂s(εB(w, w̄)σB(s, s̄))− ∂s̄σA(s, s̄)∂s̄(εB(w, w̄)σB(s, s̄))]

= 9
4096
|z − w|− 7

2×
{[1

4
(w − s)− 3

2 (w̄ − s̄)− 1

2σA∂sσB + 1
2
|w − s|−1∂sσA∂sσB + 1

8
|w − s|−1∂sσA∂sσB

− 1
8
(w − s)− 3

2 (w̄ − s̄) 1

2∂s̄σA∂sσB +O(∂2{s,s̄}σA)∂sσB − H.c.]

+ [1
4
(w − s)− 3

2 (w̄ − s̄)− 1

2∂sσAσB + 1
2
|w − s|−1∂sσA∂sσB + 1

8
|w − s|−1∂sσA∂sσB

− 1
8
(w − s)− 3

2 (w̄ − s̄) 1

2∂sσA∂s̄σB + ∂sσAO(∂2{s,s̄}σB)− H.c.]} . (B.20)
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The only terms with prefactors that will not be canceled by integrating over dwdw̄ have
the exact same structure as the first order terms. The Ashkin-Teller term from equation
(B.16) yields

− 81

8192
|z − w|− 5

2×
[∂s(εA(w, w̄)σA(s, s̄))∂s(εB(w, w̄)σB(s, s̄))− ∂s̄(εA(w, w̄)σA(s, s̄))∂s̄(εB(w, w̄)σB(s, s̄))]

=− 81

8192
|z − w|− 5

2×

{[1
4
(w − s)− 3

2 (w̄ − w̄)− 1

2σA + 3
8
|w − s|−1∂sσA − 1

8
(w − s)− 3

2 (w̄ − s̄) 1

2∂s̄σA] · [. . .B]− H.c.}

=− 81

8192
|z − w|− 5

2×
{[ 1

16
(w − s)−3(w̄ − s̄)−1σAσB + 3

32
(w − s)−2(w̄ − s̄)−1(σA∂sσB + ∂sσAσB)

− 1
32
(w − s)−3(σA∂s̄σB + ∂s̄σAσB) +

9
64
|w − s|−2∂sσA∂sσB

− 3
64
(w − s)−2(∂sσA∂s̄σB + ∂s̄σA∂sσB)]− H.c.} (B.21)

which again leaves only the irrelevant first order terms after the integration.
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