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Chapter 1

Introduction

Complex systems are fascinating. They are an over-abundant subject of the modern
interdisciplinary sciences [18, 118, 418, 381, 285], including physics, biology, chemistry,
cybernetics, economics, computer and social sciences. These systems consist of several
components, interacting on an underlying network that frequently exhibit a complex and
time varying structure [401, 283, 60]. The individual units are possibly very different and
may change their properties in time and in response to the interactions with the other
units. A natural question that arises is how the properties of individual units within such
a complex system affect the global dynamical characteristics.

For instance, non-linear interactions among the units entail emergent collective behav-
ior that is qualitatively different and may not be anticipated from the single unit dynamics.
Examples include phase transitions in condensed matter physics [232], self-organization
and pattern formation in biological and chemical systems [382, 153, 228, 286], as well as
chaos [322], synchronization [298] and collective oscillations [407, 228] in excitable systems,
as observed in the activity of nerve cells in neuronal networks [128, 53]

The brain is a particularly complex system [219, 196] because both its structure and
dynamics are distributed over a large range of spatial and temporal scales. These range
from molecular sizes to the modular and hierarchical organization of brain regions, and
from the diffusion time of ions through cell membranes to the time scales of years en-
countered in neuronal development, learning, and memory. A central question, not only
in the neuro- and technological sciences, but also of high relevance in philosophy [266]
and even entering economics [201] and social sciences [409] is how perception, memory,
consciousness and behavior of humans and animals emerge from the collective neuronal
dynamics in the brain.

Fundamental building blocks of the brain are excitable nerve cells - neurons - that
generate stereotyped electrical pulses - action potentials or spikes. These are transmitted
between neurons via synaptic connections that form a complex neuronal network. Action
potentials are believed to be the primary signaling mechanism in nervous systems [196].
To understand how information is encoded in these signals and how information processing
and ultimately behavior is reflected in the collective dynamics of neuronal networks is an
important aspect of computational, theoretical and mathematical neurophysics [163, 304,
68, 274]. One may further ask, how different characteristics of single nerve cell dynamics
and network structure may be utilized for appropriate brain function, for example to
control collective neuronal dynamics, information routing and processing.

Neuronal networks show a rich diversity of collective dynamics [264]. These include
almost quiescent states of sparse neuronal activity in the cortex [337]; propagating ac-
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tivity waves, for example in the development of the visual system [413] or in connection
with migraine [135]; and highly irregular and chaotic dynamics [343] in networks of bal-
anced excitatory and inhibitory inputs [338, 402]. Also regular and rhythmic activity has
been observed, for instance in central pattern generators involved in motor actions [253],
during the daily sleep-wake cycle [115] and as collective oscillations over a broad range of
frequencies [26, 374, 53] for example in the hippocampus in connection with memory and
navigation tasks [288, 275].

Synchronization is a frequently occurring collective phenomenon not only in neuronal
networks but in complex systems in general [298]. Between individual neurons, synchro-
nization manifests itself in the simultaneous generation of action potentials [264, 212], on
larger spatial scales in collective oscillations of neuronal ensembles [92, 95, 128, 138, 259,
376]. In the latter case, individual neurons are often not synchronized spike to spike but
instead share strong time-varying correlations that arise form the synaptic interactions
within the network and lead to the macroscopic oscillations, observed for example in elec-
troencephalographic recordings [26]. The oscillating groups themselves may synchronize
or phase lock their rhythmic activity with other groups in the network not only locally
[90, 138, 113, 412] but also across distant brain areas [330, 339].

The omnipresence of synchronized neuronal activity in the brain led to several ex-
planations for its relevance in neuronal processing and coding. At the sensory stage
synchronous inputs and more generally correlated signals trigger action potential genera-
tion in neurons specialized on coincidence detection [192], most notably in the auditory
system [8]. At higher processing levels, synchronized spiking within a group of neurons
may lead to stable propagation of this activity through a sequence of subgroups along
embedded stronger feed-forward structures [77]. Also active conductances distributed
on dendritic trees of cortical pyramidal neurons non-linearly amplify synchronous inputs
[161, 300]. Thus the degree of synchronization modulates neuronal gain [367] and facili-
tates the propagation of signals within and across neuronal populations [326, 393, 111]. It
is hypothesized that synchronization of neuronal activity can effectively bind nerve cells
that represent different information aspects of a single perceptual object. This feature
binding [398, 399, 141, 140, 340, 342], i.e. the selective grouping of semantically related
stimuli by synchrony, could provide a mechanism for dynamically linking neurons into cell
assemblies [162, 94, 341] and thereby enlarging the representational and computational
capacity of a neuronal network.

Instead of directly coding information into neuronal correlations, in a more dynamic
picture [326, 393, 111] synchronization and phase-locking among neuronal oscillations
provides a basis for neuronal communication through coherence [111, 112]: Neurons in
oscillatory groups not only synchronize their outgoing spikes which then become more ef-
fective in evoking postsynaptic responses [161, 300], but also undergo rhythmic excitability
fluctuations that periodically change their sensitivity to inputs [396, 49]. Thus, oscilla-
tions rhythmically open and close the neurons group’s windows for communication and
may provide a flexible mechanism for neuronal communication. Experimental evidence
for this hypothesis comes from several studies [113, 330, 410, 412, 142, 408, 28]. In par-
ticular, in [412] it was shown that the mutual influence among neuronal groups depends
crucially on the phase relationship between the oscillations.

Despite being beneficial for neuronal processing on the on hand, strong synchronous
activity is associated with pathological effects on the other. For example it is thought
to trigger epileptic seizures [259] and is associated with Parkinson disease [92]. The
Parkinson resting tremor appears to be caused by a population of neurons located in the
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I Introduction

thalamus and the basal ganglia, which fire in a synchronized and intrinsically ryhtmic
manner. This synchronized firing acts as a pacemaker for activating pre-motor areas and
the motor cortex which in turn leads to the tremor with a similar frequency. Here it is
important to understand the synchronization mechanisms in detail and to find possible
mechanism to desynchronize these cells [302, 160].

Revealing fundamental principles and mechanisms underlying collective neuronal net-
work dynamics and in particular synchronization is thus an important aspect of neuro-
scientific research. Moreover, regulatory mechanism in the brain typically act locally by
changing the dynamical properties of individual neurons (e.g. due to neuro-modulators
[397]) or their synaptic connections (e.g. due to neural plasticity [2]). Therefore a mecha-
nistic knowledge of how local properties affect or even control the collective synchroniza-
tion dynamics may provide helpful tools in understanding e.g. pathological synchroniza-
tion and information transmission.

Since a single nerve cell already constitutes a complex system by itself [218] one of the
challenging tasks is to find reasonable simplifications of the neuronal dynamics in order to
enable the analysis on the network level. Therefore, physical and mathematical methods
of abstraction and modeling are useful tools. The idea is to keep the units and their
interactions as simple as possible [364], but at the same time to try to sustain and isolate
the characteristic features underlying the dynamical phenomenon of interest [1, 215].
Thereby mechanism underlying complex collective phenomena can be identified, but also
important characteristics of the dynamics and relevant interference effects between several
mechanisms may be overlooked. One thus has to analyze carefully which aspects of the
dynamics can be neglected and which have to be kept.

A celebrated mathematical model for the ionic mechanisms underlying the initiation
and propagation of action potentials are conductance-based models [167, 68], dating back
to the seminal work of A. Hodgkin and A. Huxley [171]. This biophysical model neglects
the detailed molecular dynamics1 and treats the cell membrane as an electrical capacitor
and the voltage gated ion channels as non-linear electrical conductances. Action poten-
tials are generated by an initial positive feedback of currents into the cell that raise the
membrane potential which in turn increases the conductance for the inward currents.
The further increase in the membrane potential activates slower outward currents and
consequently decreases the membrane potential again.

Two main neuronal excitability types of spike generation have been identified [170]:
While type I neurons show arbitrarily low periodic firing frequencies, type II neurons start
firing with a frequency clearly distinct from zero. The neuronal excitability type strongly
influences the collective network dynamics [157, 100, 177] as well as the coding and infor-
mation storage properties [239, 318, 166]. In particular, type I neurons have integrative
properties and tend to desynchronize, while type II neurons have resonance properties and
often undergo synchronization [316, 189]. Thus, given the strong interrelations between
synchrony and neuronal processing discussed above, it is important to identifying factors
and control mechanisms that influence the neuronal excitability type.

Several factors that determine neuronal excitability have been identified. They include
ion channel properties, such as the maximal conductances, the activation curves and
reversal potentials [245, 316, 167] as well as the mixture and density of ion channels
across the membrane [63, 68, 188]. Other factors are neuro-modulators [352], intrinsic
dynamical states of the neuron such as up and down states [165] and in vivo vs. in vitro

1We note that on the molecular scale interesting interactions with chemical and genetic networks arise
that contribute to a variety of regulatory mechanisms and are only partly understood so far.
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conditions [307]. However, despite the numerous numerical and experimental studies
that relate neuronal morphology to firing patterns and response properties of neurons
[250, 143, 387, 25, 130], the impact of the dendritic structure on the intrinsic neuronal
excitability type has not been studied so far.

Chapter 11 of this thesis is devoted to this question. We find that the morphologi-
cal structure and the active ion channels of the dendritic tree have a crucial impact on
the neuronal excitability type. For passive dendrites with arbitrary morphology we ana-
lytically determine the neuronal excitability type and show that linear extended shapes
tend to integrative and desynchronizing type I excitability, while stellar shapes show res-
onant and synchronizing type II properties. Our analysis identifies a passive effective leak
conductance as the underlying parameter that induces the excitability switch.

Previous experimental [165, 352, 306, 307, 359, 360] and theoretical [315, 316, 100,
117, 189, 188] work has identified type I and type II neuronal excitability and even in a
single neuron model for different parameter sets [100]. Also there is a wealth of numerical
bifurcation studies that investigate the dependence on the ion channel parameter [109, 316,
147, 100, 117, 379, 353]. In [306] it was shown that a combination of shunting inhibition
and adaptation can lead to a neuronal excitability switch and a biophysical explanation
was given. However, no detailed bifurcation study of how the leak conductance affects
the neuronal dynamics exists and is not clear how neuronal excitability transitions are
organized.

Part IV of this thesis addresses these two questions. Using multiple bifurcation theory,
a combination of normal form and center manifold reduction and numerical continuation,
we show analytically and numerically that leak-induced neuronal excitability transitions
are organized by a degenerate Bogdanov-Takens-cusp bifurcation of codimension three
[87]. We further give an intuitive explanation of the transition in terms of a non-linear
equation for oscillatory dynamics – a Liénard equation – that arises via conjugation from
a class of conductance based models.

Activation of inhibitory synapses provides shunting inhibition, that effectively imposes
an additional leak conductance on the neuron. Using our results on leak induced type I to
II transitions we therefore propose in part IV of this thesis that neuronal excitability and
as consequence synchronization and resonance properties can be controlled dynamically
via inhibitory synapses and study consequences for the collective network dynamics.

Experimentally, the change from type I and type II neuronal excitability has been
found, induced for example by the application of neuron transmitter [352] or changing
from in vivo to in vitro conditions [307]. Using the dynamic patch clamp method [281, 287]
we experimentally study the effect of leak conductances on the neuronal excitability type
in chapter 12 and confirm several predictions of our theory. We then show that the appli-
cation of a neuro transmitter that activates the receptors of inhibitory synapses (GABA)
is sufficient to induce a switch in the resonance and neuronal excitability properties. We
conclude that neuronal excitability may be controlled dynamically via activation of in-
hibitory synapses.

As mentioned above, simplifications of neuronal dynamics are important to facilitate
the analysis of collective network behavior. For periodic activity, found for example in
individual neurons as the repeated generation of action potentials [64, 245] caused by
supra-threshold stimuli or generated intrinsically (e.g. in pace-maker neurons [296, 269]
or rhythmic pattern generators [253]) and in ensembles of neurons showing oscillations,
the dynamics can be captured by a phase and amplitude variables. In situations where
the limit cycle is strongly attracting the amplitudes decay fast towards the limit cycle and
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I Introduction

the description of the oscillators may be reduced to their phase variable and their phase
response function that captures the change of the oscillator’s phase in response to external
stimuli or due to the interaction with other oscillators [228]. This reduction process leads
to the general class of coupled phase oscillators, that not only serve as models for the
dynamics of neuronal oscillator networks, but find wide applications in physics [5] and
biology [407], in particular to study synchronization and phase locking phenomena [298].

The communication-through-coherence hypothesis inspired recent experimental and
numerical studies [412, 48, 28, 112, 23, 408]. They show that alternative phase shifts
between different neurons or groups of neurons result in different information transfer
properties between the groups. But how are these phase shifts controlled? Given that
regulatory mechanisms in the brain act predominantly locally on the dynamical properties
of individual neurons and their synaptic connections, one may further ask how local
changes can contribute to the control of phase relations and information transfer.

In part IV of this thesis we study this question first analytically using coupled phase
oscillators and then semi-analytically and numerically in more realistic networks of spik-
ing model neurons. We quantify the information flow by analytically calculating the
time delayed mutual information between oscillators in a phase locked state. Further, we
present a theoretical framework to predict phase lag patterns within and between groups
of oscillators in hierarchical networks. Combining both results we derive the non-local
information flow between the groups as a function of structural and dynamical network
parameter. We use our results to reveal how information transfer is controlled by the un-
derlying physical connectivity and find that local changes of links or frequencies within a
group can control the non-local information flow from and to this cluster. Via this mech-
anism a group may thus “tune” to sources of relevant information and specify receivers of
its own information output. Interestingly, our analytics unravel that local changes in the
strength of a single link can also remotely control the information transmission between
two different physically unchanged oscillators. We finally also link our theoretical findings
to more realistic hierarchical networks of spiking neurons exhibiting gamma oscillations
(cf. also [23, 408]) and extend the study to information flow in spike patterns. We con-
clude this part of the thesis by hypothesizing that oscillations in hierarchical networks of
neurons not only provide a basis for communication-through-coherence but also for local
control mechanisms of this non-local communication.

A further model reduction from phase oscillators with continuous time coupling is
possible, if synaptic time scales are short compared to intrinsic oscillation period of the
neurons. In this situation the interactions may be described by the exchange of pulses
[248, 174]: Whenever the phase variable of a certain unit crosses a trigger threshold the
element sends a pulse to its connected units in the network where the pulses evoke a
response in the phase of the receiving unit after a possible transmission delay. Because
of their analytical tractability, pulse-coupled oscillator models are helpful tools to study
collective dynamics of neuronal oscillators and in particular synchronization [296, 269, 229,
3, 104, 33, 37, 372, 71]. In [269] such a model was used to demonstrate that in homogeneous
networks with excitatory all-to-all coupling biological oscillators always synchronize. A
strong synchronizing mechanism in these networks is the simultaneous reception of a pulse
by two initially non-synchronous oscillators which pushes both oscillators beyond their
firing threshold, i.e provides supra-threshold excitation. The subsequent reset of their
phases to the same value then synchronizes both units. Such a strong synchronizing
reset, which is also insensitive to the strength of the supra-threshold excitation, is found
in almost all previous studies using similar models with δ-pulse-coupling [33, 104, 229,
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333, 371, 66, 71, 174]. A small number of studies uses complete conservation of the supra-
threshold input which is added to the phases after the reset [229, 164, 174, 106]. However,
a systematic study on the influence of the reset on the collective network dynamics has
not been performed so far. In particular, an open question is how synchronization in
pulse-coupled networks depends on the reset mechanism.

In part III of this thesis we study these questions analytically. We introduce a partial
reset into the general class of pulse-coupled threshold units and study its effect on the
collective network dynamics. We first concentrate on interactions without transmission
delay and find that the partial reset controls a sequential desynchronization transition:
In globally coupled neurons an increase in the strength of the partial reset induces a
sequence of bifurcations from states with large clusters of synchronously firing neurons,
through states with smaller clusters to completely asynchronous spiking. This mechanism
for neural desynchronization differs strongly from known mechanisms that are based, e.g.,
on heterogeneity, noise, or delayed feedback [389, 388, 71, 251, 302] and might be used in
modified form to prevent pathological synchronization in neural systems like in Parkinson
tremor or in epileptic seizures.

Pulse-coupled oscillator models with delayed interactions have intriguing mathematical
and dynamical properties. For instance, networks of oscillators with global homogeneous
delayed pulse-coupling may robustly exhibit unstable attractors [104, 105, 371, 372], i.e.
invariant periodic orbits that have a non-zero measure basin of attraction (Milnor attrac-
tors [267, 268]) but are locally unstable. In the presence of noise, these systems exhibit a
dynamics akin to heteroclinic switching, a feature that may also have functional relevance
for coding and computation in neural systems [155, 17, 238, 237]. In ref. [16] it was shown
that invertible systems in general cannot have unstable attractors and that a saddle state
can in principle be converted to an unstable attractor by locally adding a non-invertible
dynamics onto the stable manifold. However, the potential relation of unstable attractors
to heteroclinic cycles is not well understood and it is unknown whether and how unstable
attractors may be created or destroyed via bifurcations.

In chapter 7 we provide analytical answers to these questions. In oscillator networks
with delayed pulse coupling we find that the partial reset controls a transition from net-
works of unstable attractors to heteroclinic switching. We present a mathematical tech-
nique of event-sequence-based domain analysis and prove for a small network the existence
of two unstable attractors that are completely enclosed by each other’s basin volume if
the reset mechanism is strong and non-invertible. We analytically show that upon con-
tinuously removing this local non-invertibility of the system, the two unstable attractors
become a set of two non-attracting saddle states that are heteroclinically connected. This
transition equally occurs from larger networks of unstable attractors to heteroclinic struc-
tures and constitutes a new type of bifurcation in dynamical systems.

This thesis is structured as follows (cf. also tab. 1.1). In part II, chapter 2 we provide
the neurobiological background, introduce and discuss the neuron models of different levels
of abstraction used in this thesis and show how they are related to each other by successive
reduction steps. We further introduce the dynamic patch clamp technique used for our
experiments. Chapter 3 provides the necessary mathematical background from dynamical
systems, bifurcation, normal form, phase reduction and averaging theory relevant for this
thesis.

In part III (chapters 4 - 8) we introduce the novel concept of a partial reset into
the general class of pulse-coupled systems and study its consequences for the collective
dynamics if the individual units are oscillatory. In chapter 6 we concentrate on instan-
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I Introduction

taneous interactions and analytically prove that the partial reset controls a sequence of
desynchronizing bifurcations. In chapter 7 we include interaction delays and analytically
find that the partial reset controls a novel type of bifurcation from networks of unstable
attractors to heteroclinic switching.

Part IV (chapters 9 - 14) is devoted to the theoretical and experimental study of
leak-induced dynamic neuronal excitability transitions and its consequences for collective
network dynamics. In chapter 10 we analytically and numerically study the bifurcations
that organize neuronal excitability transitions and give an interpretation of the underlying
mechanism by conjugating a neuron model to a Liénard type equation. We apply these re-
sults in chapter 11 to address the question how dendritic morphology influences neuronal
excitability. In chapter 12 we investigate leak-induced neuronal excitability transitions
experimentally using dynamic patch clamp experiments and confirmation our theoretical
predictions. We further show evidence that synaptic activity is sufficient to dynamically
induce neuronal excitability switches. In chapter 13 we then show how neuronal excitabil-
ity can be switched dynamically to control synchronization properties of collective network
dynamics.

In part V (chapters 15 - 18) we present a mechanism of how information flow between
different groups of neurons can be controlled by local modifications within the groups
only. In chapter 16 we derive for hierarchical networks of phase oscillators an analytical
expressions for the information flow between clusters as a function of the local cluster
properties. We use this theory to show how global information flow may be controlled
locally. Chapter 17 confirms these finding in a more biophysical realistic network model
of spiking neurons and extends the results to information transfer in spike patterns.

Parts III-V start with an introduction each and end with a discussion and outlook.
The final chapter VI gives overall summarizing conclusions and future directions.
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Table 1.1: Thesis overview.

Part III Part IV Part V

model networks of pulse-coupled
oscillators

conductance based
neuron models

hierarchical networks of
phase oscillators /
spiking neurons

oscillatory
dynamics

intrinsic oscillation bifurcations to periodic
spiking

intrinsic oscillation /
pyramidal interneuron
gamma oscillations

essential
component
property

partial reset leak / shunting inhibition local network structure /
frequencies / dynamical
states

collective
dynamics

• synchrony / multistable
cluster states /
asynchrony

• unstable attractor
networks and
heteroclinic switching

• synchrony / asynchrony

• bistable and partial
synchronization /
desynchronization

• phase locking

• phase locked gamma
oscillations

main
results

• introduced partial reset
in pulse-coupled oscilla-
tors
(chapter 5)

• proof for sequential
desynchronization of
multistable cluster
states induced by the
partial reset
(chapter 6)

• proof for a novel type of
bifurcation from unsta-
ble attractors to hetero-
clinic switching induced
by the partial reset
(chapter 7)

• leak-induced neuronal
excitability transition
(chapters 10 - 12)

• numerical and analytic
proof that leak induced
neuronal excitability
switches are arranged
in a threefold transition
which itself is orga-
nized by a degenerate
Bogdanov-Takens bifur-
cation
(chapter 10)

• dynamic patch clamp
experiments with real
neurons confirm theory
and show dynamic
excitability control via
shunting inhibition
(chapter 12)

• dynamic excitability
controlled (bistable)
synchronization /
desynchronization in
collective network dy-
namics
(chapter 13)

• analytical theory for in-
formation flow in net-
works of phase oscilla-
tors with arbitrary net-
work topology
(chapter 16)

• local and remote control
mechanisms (infor-
mation flow tuning,
plasticity and combina-
torics) in hierarchical
phase oscillator net-
works
(chapter 16)

• phase information flow
in clustered networks
of spiking neurons un-
dergoing gamma oscilla-
tions and its local (re-
mote) control mecha-
nisms
(chapter 17)

• control mechanisms for
the flow of information
in spike patterns in clus-
tered spiking oscillatory
networks
(chapter 17)
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Chapter 2

Principles of Theoretical and

Experimental Neuroscience

In this section the basic notions, concepts and models from neuroscience relevant for
this thesis are introduced. We start by briefly introducing the reader to morphological,
dynamical and functional properties of neurons and present a selection of neural models
of different levels of abstraction. We briefly introduce synapses and neuronal connectivity
and aspects of experimental neuroscience.

An in-depth treatment of the neurobiology and electrophysiology can be found for
example in the textbooks [284], [336] and [196]. Textbooks on neuronal modeling and
theoretical neuroscience are [68], [380] and [123].

2.1 Neuronal Morphology

Neurons are the elementary processing units in the central nervous system. They are
highly specialized in generating electrical signals – action potentials (also called spikes) –
and transmitting them via synaptic connections to other neurons. Cortical brain matter
consist of more than 104 neurons per cubic millimeter; the human has approximately
1011 − 1012 nerve cells and about 1014 synapses [196, 336, 284, 68]. Neurons receive on
the order of 104 inputs and make a similar number of connections to other neurons. Thus
neurons are embedded into a large and complex network structure as already suggested
from staining experiments done by S. Ramón y Cajal [311] in 1897 shown in fig. 2.1. In
fig. 12.1 stained neurons from the experimental part of this thesis are shown.

The action potentials are stereotyped electrical signals generated by neurons, which
encode and combine different modalities of information such as visual, auditory or so-
matosensory qualia within an uniform neuronal representation [284]. The origin and
destination of these signals specify the information content, for example fibers in the
optic nerve mainly carry visual information. Similarly the location and type of neurons
within the neuronal network is related to their functions, which include tasks as diverse
as receiving sensory information, initiating motor commands, processing information and
memory. As a consequence of these specializations a broad variety of morphologically
different types of neurons exists (cf. fig. 2.1).

Despite this diversity, almost all neurons consists of three parts: the dendrite, the soma
and the axon (cf. fig. 2.1). The often widely arborized dendrites mark the beginning of the
intracellular pathway. They receive most of the cell’s synaptic input form other neurons
and relay it to the cell body, the soma. The soma acts as a highly non-linear element, where
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(a) (b)

(c)

(d)

dendrite

soma

axon

Figure 2.1. Morphology of Neurons. (a) Reproduction of a drawing by Ramón y Cajal showing
a few neurons in the mammalian cortex [312]. Due to the Golgi staining method only a small
fraction of neurons is visible, nevertheless the complex neural network structure is apparent. (b)
Purkinje, (c) stellar and (d) pyramidal cell in cat cortex [311] consisting of three functional and
morphological parts: a dendrite receiving the input signals from other cells, a soma integrating
these inputs and an axon along which the output in form of an action potential is carried to
other neurons.

inputs are integrated and action potentials are generated, which then propagate along the
axons to the synapses. The synaptic connections transfer the presynaptic electrical signal
to the dendrites or soma to the postsynaptic neuron (cf. sec. 2.7).

2.2 Electrical Properties of Neurons

The cell membrane of nerve cells is a lipid bilayer which separates the intracellular cy-
toplasm from the surrounding extracellular liquid [68, 196]. The electrical signals of
neurons consist of changes in the membrane potential v defined as the difference between
the electrical potential vintra of the intra- and extracellular space which is set to ground
vextra = 0mV:

v = vintra − vextra

The membrane is essentially impermeable to most charged ions and thus acts as an capac-
itor by separating the charges on the interior and exterior surface. The specific membrane
capacitance is of the order of cs = 1 µF

cm2 . Multiplication with the cell membrane area
gives the total membrane capacity cm.

Embedded in the cell membrane there are ion channels or ion pumps, specific proteins
structures which allow mainly sodium, potassium, and chloride ions to pass the membrane
[167]. The channels make a contact between the intra- and extracellular media and allow
ions to cross the membrane via diffusion. Usually ion channels are selective in that they
allow only certain ion types to cross. Ion pumps consume energy to actively transport
ions across the cell membrane.

For a typical neuron under resting conditions a fraction of channels for sodium, potas-
sium and chloride are open. In this situation the Na+ and Cl− concentrations are higher
outside the cell, whereas the concentration of K+ is higher inside. In thermal equilibrium
there is no net current into or out of the cell, i.e. the difference in Gibbs free energy [232]
vanishes. Thus the contribution to the free energy from the chemical potential originating
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II 2 Principles of Theoretical and Experimental Neuroscience

in concentration gradients has to be canceled by an electrical potential difference. For a
single ion species x = K,Na,Cl,Ca, . . . with concentrations [xextra] and [xintra] in extra-
and intracellular space, at a temperature T this consideration yields the Nernst-equation
[380]

vx =
kBT

q
ln

(
[xextra]

[xintra]

)

(2.2.1)

where kB is the Boltzmann constant and vx is the equilibrium potential for ion type
x. Typically values for equilibrium potentials are vK = +55mV, vNa = −77mV and
vCl = −65mV.

In neuronal cells more than a single ion species is present and the membrane potential
in the steady state of the neuron, the resting potential vr, has to be determined from the
Goldmann formula [380], a generalization of the Nernst equation 2.2.1, and lies between
the equilibrium potentials of the participating ion species and typically takes values vr ≈
−60mV.

The equilibrium potentials are also called reversal potentials since for v < vx there
is a net positive inward current ix of ions x, whereas for v < vx it changes sign. By
convention, positive charges leaving the cell produce a positive membrane current and will
hyperpolarize the cell by decreasing the membrane potential, conversely, positive charges
entering the cell will depolarize it. Since the individual ion equilibrium potentials differ
from the resting potential, there are total inward or outward net currents of the different
ions. To maintain constant ion concentrations on either side ion pumps compensate these
currents by moving the ions actively against their diffusive flow.

In linear approximation the membrane current ix of ion species x is given by the Ohms
law:

ix = g̃x (v − vx) (2.2.2)

where g̃x is the membrane conductance of the ion x that can depend on the membrane
potential and other neurophysiological parameters, such as the single ion channel con-
ductance and the ion channel density that varies from a few to hundreds of channels in
a square micrometer of membrane. Hyper- and depolarizations of the cell can also be
induced by an external current ie inserted via an electrode or through synaptic currents
isyn (see also sec. 2.7). The chloride conductances are often combined with possible other
conductances through the membrane into a single constant leak conductance gL with leak
reversal potential vL giving rise to a leak current iL = gL (v − vL).

Combining all the described currents using Kirchhoff’s laws and assuming that the
ionic currents are all independent from each other this leads to the evolution equation for
the membrane potential

cm
d

dt
v = ie + isyn + iL +

∑

x

ix = ie + isyn + iL + iion (2.2.3)

where we defined iion =
∑

x ix as the total ion current. In using the total capacity cm
in this equation we assumed the neuron to be point-like. By replacing cm by cs and the
the conductances by specific conductances per membrane area, eq. (2.2.2) yields specific
currents per membrane area and eq. (2.2.3) becomes that of a patch of membrane and
can be generalized to spatially extended neurons. For a passive membrane iion = 0 and

cm
d

dt
v = ie + isyn + gL (vL − v) (2.2.4)
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(a) (b)v v

cm cm
gNa

vNa

gK

vK

gL

vL

ie + isyn

gL

vL

ie + isyn

Figure 2.2. Equivalent electrical circuits for (a) a passive membrane (2.2.4) used e.g. in the
leaky integrate-and-fire neuron eq. (2.6.4) and (b) for a active neuronal membrane (2.2.3), for
example given by the cortical neuron model eq. (2.4.5).

The evolution equations above correspond to equivalent electric circuit diagrams shown
in fig. 2.2. Here the potassium and sodium channels are conductances connected in series
to a battery resembling the reversal potentials. Both conductances are drawn adjustable
since they usually depend on the membrane potential rendering eq. (2.2.3) nonlinear and
serve as the basis of the action potential generation discussed in the next section.

2.3 Action Potential Generation

Depolarization of the cell may cause a sudden onset of a short voltage pulse, the ac-
tion potential. Action potentials are generated by nonlinearities associated with voltage-
dependent conductances.

A single channel has a voltage-dependent probability Px to be open. If the channel
density is high Px can be identified with the actual fraction of open channels and thus
the total conductivity may be written as g̃x(t) = gxPx (v(t)) where gx is the maximal
conductance when all channels are open.

Opening and closing of the channels usually involves conformational changes of more
than one subunit of the channel molecule. The probability for such a subunit to be
”open” is denoted by a single activation variable mx. Some types of channels can undergo
a further transition to an inactivated state in which the channel is blocked which is taken
into account by an inactivation variable hx giving the probability that the channel (or one
of its subunits) is not blocked. The variables mx and hx are also called gating variables
which we denote by ax,i. The total open probability is given by the product Px = mqx

x h
px
x ,

or more generally by Px =
∏

i a
qx,i
x,i where the exponents qx, px and qx,i are parameters

related to the number of subunits relevant for opening or blocking the channel respectively.
Thus, using (2.2.2), the active membrane current ix for ions of species x can be written
as

ix = gx
∏

i

a
qx,i
x,i (vx − v) (2.3.1)

Assuming that the transformational changes of an ion channel represented by a gating
variable a happen with voltage dependent rates αa = αa (v) for opening and with βa =
βa (v) for closing (or blocking) one obtains the master equation

d

dt
a = (1− a)αa − aβa (2.3.2)

for their evolution. Equation (2.3.2) can be rewritten as

τa (v)
d

dt
a = a∞ (v)− a (2.3.3)
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Figure 2.3. Action potential generation in conductance based neuron models. (a) Ion channels
can be closed, open or blocked due to conformational changes. (b) time constants τn, τm and
τh and (b) steady-state activations n∞, m∞ and h∞ as a function of the membrane potential
for the cortical neuron model in sec. 2.4.4. (d) action potential dynamics. The action potential
in the membrane potential (top row) was evoked by a brief depolarizing current (horizontal
bar). The second row shows the total ionic membrane current iion composed of the sodium
iNa (purple), potassium iK (green) and leak iL (gray) currents plotted in the row below. The
channel conductances for Na+ (purple) and K+ (green) are shown in the second last row and are
determined from the gating variables m, h and n, eq. (2.4.5), plotted in the bottom row.

showing that for fixed v the gating variables relax exponentially to a stationary value

a∞ (v) =
αa (v)

αa (v) + βa (a)
with a time constant τa (v) =

1

αa (a) + βa (v)
.

Equations (2.2.3), (2.3.1) and (2.3.3) define the class of conductance based neuron models.
Note that for some channel types the current voltage relations might be more appropriately
described by the Goldman-Hodgkin-Katz expression or a kinetic-barrier scheme [167] and
the dynamics of the gating variables might involve a multistate Markov chain [68].

To understand the mechanism underlying an action potential it is convenient to look
at the time evolution of the gating variables in the from of eq. (2.3.3) with voltage de-
pendent asymptotic values a∞ (v) and relaxation times τa (v) shown for a cortical neuron
model in fig. 2.3. Important for the onset of the action potential is the separation of
timescales between the fast activation variable m and the slower inactivation variable h.
A depolarizing input will cause the fast variable m to increase, resulting in an opening of
the sodium channels. As a consequence positive sodium ions will flow into the cell and
raise the membrane potential even further. If the initial depolarization is large enough
this establishes a positive feedback responsible for the fast rise of the action potential
(cf. fig. 2.3). Due to the high membrane potential the slower inactivation variable h will
decrease which shuts off the influx of Na+. On a similar timescale the potassium chan-
nels will open and K+ ions will leave the cell decreasing the membrane potential further
and even hyperpolarizing it until the potassium conductances close again and the resting
potential is reached. The overall effect of these currents is a short action potential with a
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2.4 Conductance Based Neuron Models

duration τap in the order of 2− 5ms (cf. fig. 2.3).
The after-hyperpolarization that follows the action potential is one reason for the

refractoriness of neurons. One distinguishes between an absolute refractory period in
which it is impossible to elicit another spike and a relative refractory period where it is
generally more difficult to cause a spike through excitatory inputs compared to the resting
state. Another reason for neural refractoriness is the large number of open channels shortly
after the potential peak which increases the membrane conductance so that depolarizing
current pulses will decay more rapidly.

In the following we list several conductance based neuron models used in this thesis.

2.4 Conductance Based Neuron Models

2.4.1 The Hodgkin Huxley Model

Using recordings from the squid giant axon Nobel laureates Alan Hodgkin and Andrew
Huxley [171] where the first to unravel the biophysical mechanisms behind the action
potential generation. From experiments with the giant squid axon they determined the
exponents for the gating variables, the voltage dependence of the transition rates as well
as the reversal potentials and maximal conductances. The Hodgkin-Huxley model is given
by

cm
d

dt
v = ie + isyn + gL (vL − v) + gNam

3h (vNa − v) + gKn
4 (vK − v) (2.4.1)

with activation variables m and n for Na and K and sodium inactivation h evolving
according to (2.3.3) and transition rates and constants listed in appendix D.1.

Though the Hodgkin-Huxley model captures the essence of spike generation, it is a
model for a squid axon which has electrophysiological properties that can be quite different
from those of a cortical neuron [279].

2.4.2 The Morris-Lecar Neuron Model

The Morris-Lecar neuron model was introduced by Morris and Lecar [273] to describe the
action potential generation in the barnacle giant muscle fiber from a series of experiments
from 1969 to 1979. In contrast to the HH model, not sodium but calcium is responsible
for the spike onset. Blocking either the Ca or K channels and changing the concentration
of the ions in the external media lead to the following model,

d

dt
v = ie + isyn + gL (vL − v) + gCam (vCa − v) + gKw (vK − v) (2.4.2)

with activation variables evolving according to (2.3.3)

m∞ (v) =
1

2

(

1 + tanh

(
v − v1
v2

))

w∞ (v) =
1

2

(

1 + tanh

(
v − v3
v4

))

λm (v) = τ−1
m (v) = Φ−1 cosh

(
v − v1
2v2

)

λw (v) = τ−1
m (v) = Φ−1 cosh

(
v − v3
v4

)

(2.4.3)
and no inactivation present. Parameters are given in appendix D.2. The form of the
activation dynamics (2.4.3) can be explained thermodynamically in terms of statistical
mechanics [218]. The activation dynamics for calcium, m, are fast and can therefore be
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II 2 Principles of Theoretical and Experimental Neuroscience

substituted by the steady state value m∞ (cf. also sec. 2.6) to give the version of the
Morris-Lecar model we use in this thesis:

cm
d

dt
v = ie + isyn + gL (vL − v) + gNam∞ (v) (vNa − v) + gKw (vK − v)

d

dt
w =

1

τw (v)
(w∞ (v)− w) (2.4.4)

The advantage of this model is that it is two dimensional which allows a representation of
the phase portrait and of the trajectories in the phase plane and is therefore commonly
used to study neuronal excitability from a dynamical systems point of view (cf. sec. 3.2).
The Morris-Lecar model can be viewed as a hybrid between the realistic Hodgkin-Huxley
and the abstract Fitzhugh-Nagumo model (cf. sec. 2.6.3). It is know that for different
parameter the model exhibits either type I or type II neuronal excitability [100, 316] (cf.
also chap. 9).

2.4.3 Wang-Buzsaki Neuron Model

The Wang-Buzsaki neuron is a conductance based model based on the Hodgkin-Huxley
model (cf. sec. 2.4.1) but with adapted parameters to match the properties of cortical
neurons [400]. It was used to study the mechanisms involved in the generation of gamma
oscillations in the hippocampus by interneurons. The model has a three dimensional state
space and is defined as the Hodgkin-Huxley equation (2.4.1) with m substituted by m∞
and (2.3.2) for the gating variables with activation functions, time constants and standard
parameter given in appendix D.3.

2.4.4 The Fast Spiking Cortical Neuron Model by Erisir

The neuron model by Erisir et al. [99] was introduced to study the role of Kv3.1-Kv3.2
ion channels for fast spiking neocortical interneurons with almost no adaptation. It is
given by

cm
d

dt
v = ie + isyn + gL (vL − v) + gNam

3h (vNa − v) + gKn
2 (vK − v) (2.4.5)

where m and h are the activation and inactivation variables of the sodium channels, and
n is the potassium activation that appears only quadratically in the equation. The gating
variables evolve according to eq. (2.3.2) with experimentally determined rate functions
given in the appendix D.4. The original model also includes a second slow potassium
current representing a small fraction of the total membrane current and is responsible for
weak adaptation effects of the spike rate [99, 123].

2.4.5 The Connor-Stevens and Rose-Hindmarsh Model with A-

type-current

Besides the sodium and potassium conductances encountered in the above models there
is a zoo of ion channels [167] modifying the properties of neuronal excitability. Connor
and Stevens [61, 62, 63] included a second transient potassium A-channel (see also [280])
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in their model with gating variables a and b to obtain:

cm
d

dt
v = ie + isyn + gL (vL − v) (2.4.6)

+gNam
3h (vNa − v) + gKn

4 (vK − v) + gAa
3b (vA − v)

to fit the dynamics of molluscan neurons [61, 62] and later crab neurons [63]. The form
of the steady state activation and time constants are given in appendix D.5. The A
channel is activated at rest and contributes to an outward current of potassium channels.
It slowly deactivates for increasing membrane potential and in this way delays the onset
of spiking. Other effects, such as rebound spikes after release of hyperpolarizations are
also attributed to the A-channel [323, 68].

The large phase space dimensionality of the Connor-Stevens model makes an analysis
of the dynamics difficult. A systematic simplification of the model similar to the reduction
process of the Hodgkin-Huxley equations in [220] was done by Rose and Hindmarsh [319,
320] to result in the Rose-Hindmarsh neuron model

cm
d

dt
v = ie + isyn + gL (vL − v)

+gNam
3
∞ [0.85− 3 (q − A ∗ b∞ (v))] (vNa − v) + gKq (vK − v)

with an effective activation variable q that evolves also via eq. (2.3.3). The parameters
and functions are given in appendix D.5.

2.4.6 Reduced Traub-Miles Pyramidal Neuron Model

A detailed neuron model for pyramidal neurons of the Hippocampus was developed by
Traub and Miles [377, 375]. A simplified version of this model [375] which we employ in
this thesis is given in appendix D.6 and was used to study synchronization in the pres-
ence of conduction delays [103]. Pyramidal neurons are larger cells that have a complex
morphology and a distribution of ion channels within the membrane that depends on the
precise location on the dendrite or axon. This allows for non-linear processing already in
the dendritic part of the neuron [309, 261]. To capture the dynamics the original Traub-
Miles model therefore divides the neuron in different compartments as discussed in the
next section.

2.5 Compartmental Neuron Models

Neurons have an extended morphological structure (cf. fig. 2.1 and fig. 12.1). As a con-
sequence the membrane potential can vary considerably when measured at different po-
sitions on the neuron, e.g. the potential at the dendrite usually differs from that at the
soma. Also the ion channel densities can vary as a function of the location. Compartment
models take into account these effects by subdividing the neuron into different resistively
coupled components representing parts of the nerve cell with negligible variation in the
membrane potential [309, 34] (cf. fig. 2.4).

The simplest multi-compartment model has two compartments consisting of a soma
and a dendrite (cf. fig. 2.4). If the density of active ion channels in the dendrite is smaller
than at the soma the dendritic membrane potential vD can be modeled as a passive leaky
integrator (eq. 2.2.4), whereas the potential at the soma vS is modeled using an active
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Figure 2.4. Compartmental neuron models. (a) a real neuron may be reduced to a multi-
compartment model which can consists of up to several hundreds of parts [34]. By choosing
coarser and coarser partitions two compartment models with dendrite and soma and finally
point models consisting only of a single somatic compartment are obtained. This simplification
decreases the accuracy of the models but facilitates the study of neuronal excitability and col-
lective effects in neuronal networks. (b) equivalent circuit for a two compartment model with
active soma and passive dendrite (assuming gDS = gSD).

membrane (e.g. eq. 2.2.3). For two compartments that are coupled with a intra-cellular
conductance gDS one obtains the system of differential equations

cS
d

dt
vS = itot,S + gSD (vD − vS)

cD
d

dt
vD = itot,D + gDS (vS − vD) (2.5.1)

Note that, as compartment models arise as a space discretized version of an underlying
space-continuous model, the coupling conductances gDS and gSD do not have to be the
same [68].

The extended structure of neurons has important consequences for the integration
of synaptic inputs. For example the location of synapses on the dendrite influences the
synaptic efficiency of evoking action potentials: Proximal synapses, i.e. synapses closer to
the soma, usually have a stronger effect on the somatic integration than distal ones [309,
310, 261]. Moreover, in the simple two compartment neuron above using a passive dendrite
the action potential generation and subsequent reset of the membrane potential at the
soma does not reset the dendritic membrane potential [38, 321]. Thus excitatory dendritic
inputs triggering a spike at the soma can contribute additional excitatory currents during
and after the reset of the soma thereby effectively resetting the neuron only partially (cf.
part III).

2.6 Simplified Models of Neuronal Activity

Detailed conductance-based models provide a high biophysical realism and almost all
parameters have a biophysical meaning. However, these models are generally not suit-
able for an analytical treatment, especially in the analytical study of collective network
dynamics that often leads to better insights into the mechanisms behind emergent phe-
nomena. Therefore we here introduce some systematic simplification methods that keep
the main characteristics of neuronal dynamics but are reduced in state and parameter
space dimension.
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2.6 Simplified Models of Neuronal Activity

2.6.1 Reduction of a Cortical Neuron Model to Integrate-and-

Fire Models

Here we show how the cortical neuron by Erisir (cf. sec. 2.4.4) can be reduced to a
non-linear integrate-and-fire model with a single variable using a reduction technique
introduced in [315, 1, 123].

In a first step we make use of the observation that reaching a large enough membrane
potential is sufficient to trigger the generation of an action potential and that its shape
is to first approximation insensitive to the way the threshold was reached [123]. We
thus replace the short period of action potential generation and membrane potential reset
involving complicated dynamical changes in the gating variables by a simple threshold
process: Upon reaching a threshold potential vθ the membrane is reset to a fixed value vr

v(t−) ≥ vθ ⇒ v(t) = vr (2.6.1)

To model the absolute refractory period it is pinned to this values for a time τap after
which the integration of the membrane potential is started again (cf. fig. 2.5). Additionally
the gating variables must also be reset to appropriate values.

In a second step we reduce the dimensionality of the system. Due to fact that the
relaxation time τm (v) of the activation variable m towards the asymptotic value m∞ is
small for all v (cf. fig. 2.5) we can approximate m(t) ≈ m∞ (v(t)) reducing the model to
three degrees of freedom. This reduction can mathematically be justified using Tikhonov’s
theorem [368]. From fig. 2.5 one observes further that the gating variables n and h vary
little outside the action potential region and thus can be replaced by constant average
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Figure 2.5. Simplification of neuronal models. (a) The neuron model eq. (2.4.5) has four
variables, the membrane potential v, and the gating variables m, n and h, and shows a periodic
spiking when driven by an external current ie = 3.5 (other parameters in appendix D.4). In
a first step the action potential generation involving rapid changes in the state variables (gray
shaded region) is substituted by a simpler threshold process with subsequent absolute refractory
period. In a second step the fast variable m is replaced by its asymptotic value m∞ and h and n
are approximated by constant average values. This yields a non-linear IF model with membrane
potential shown in orange. (b) The functions f for the non-linear IF, the QIF and LIF model
approximating the original model quadratically and linearly.
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II 2 Principles of Theoretical and Experimental Neuroscience

values hav and nav (cf. [123]). We arrive at an equation for the membrane potential only

cm
d

dt
v = ie + isyn + f (v) (2.6.2)

with a nonlinear function f (v) = itot (v,m∞ (v) , hav, nav) that is plotted in fig. 2.5. For
other neurons f usually has different nonlinear shapes and the general model (2.6.2)
accompanied with the reset condition (2.6.1) is know as the nonlinear integrate-and-fire
neuron [3, 110, 123, 107].

When approximating f by a quadratic function (cf. fig. 2.5) this results in the quadratic
integrate-and-fire (QIF) neuron [235, 236, 154, 101]

cm
d

dt
v = ie + isyn + g2 (v − vr) (v − vt) (2.6.3)

with a possible additional constant term of f absorbed in ie. Approximating f with
a linear function leads to the leaky integrate-and-fire (LIF) model [234, 217, 380] with
passive membrane time evolution eq. (2.2.4):

cm
d

dt
v = ie + isyn + gL (vL − v) . (2.6.4)

Note that all these models have a strongly nonlinear reset (2.6.1).
In the following we list further simplified neuron models used in this thesis.

2.6.2 Rinzel Model

In the Rinzel model [315] no artificial threshold is introduced, but instead it is made
use of the observation that in neuron models the h and the n activations evolve similar
but reflected along the x-axes (cf. e.g. fig. 2.5), so that both h and n are expressed as a
function of an effective activation w:

cm
d

dt
v = ie + isyn + gL (vL − v) + gNam∞ (v)3 (1− w) (vNa − v) + gK

(w

s

)2

(vK − v)

d

dt
w =

1

τw (v)
(w∞ (v)− w) (2.6.5)

with constants and functions given in appendix D.7.

2.6.3 The Fitzhugh-Nagumo Model

The abstract Fitzhugh-Nagumo model arises form a simplification of the neuronal dy-
namics similar to the steps shown above [108, 109], see also [278]. It is a widely used
prototype for excitable systems in biology and chemistry. As a two dimensional system
it is particularly useful for phase plane analysis and as its vector field is limited to cubic
polynomials it is applicable to normal form theory (cf. sec. 3.2.1). It is given by

d

dt
v = i+ (m1 − v) (m2 − v) (m3 − v)− w = i+ qm (v)− w (2.6.6)

d

dt
w = l1 (v − l2w)

with qm (v) = (m1 − v) (m2 − v) (m3 − v) and standard parameter

κ = (m1, m2, m3, l1, l2) =

(
1

3
, 1, 0,

1

10
, 1

)

for which the system shows the dynamics of an relaxation oscillator [188].
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2.7 Synapses and Neuronal Connectivity

2.6.4 From the QIF to the Theta Neuron Model

The theta neuron model [101, 177, 151] is the result of a coordinate and state space
transformation of the QIF neuron model. By an appropriate shift and rescaling of v and i
in the QIF model eq. (2.6.3) we can assume without loss of generality that cm = 1, g2 = 2,
vr = 0 and vt = 1 to give the normalized QIF model

d

dt
v = 2v (v − 1) + ĩ (2.6.7)

where ĩ is the rescaled version of ie + isyn. For ĩ > 1
2

the quadratic differential equation
(2.6.7) explodes to infinity in finite time. In this way a spike can be defined by this event
followed by a reset of the membrane potential to minus infinity

v
(
t−
)
= ∞ → v

(
t+
)
= −∞

By identifying ±∞, the potential v can be mapped onto a continuous phase θ on the unit
circle S1 ≃ R/Z ≃ [0, 2π] / (0 ∼ 2π) via the transformation

θ = 2 arctan (2v − 1) (2.6.8)

resulting in the theta neuron model

d

dt
θ = 1− cos (θ) + i (1 + cos θ) (2.6.9)

with θ ∈ S1 and i = ĩ−1/2
1/2

. The theta neuron model can be viewed as the canonical model
or the normal form of a saddle node on invariant cycle bifurcation (cf. sec. 3.2 below)
[101, 177, 176].

2.7 Synapses and Neuronal Connectivity

Synapses are sites of contact between the axon of a presynaptic neuron and the dendrite
or soma of a postsynaptic neuron responsible for the transmission of signals between these
cells. The most common type of synapse in vertebrates is the chemical synapse. Here
the axon terminal comes very close to the postsynaptic dendrite leaving only a small
synaptic cleft of roughly 40 nm between the neurons. Voltage transients due to the arrival
of action potentials in the terminal open ion channels causing an influx of Ca+. This in
turn forces vesicles to bind to the cell membrane and to release neurotransmitters into the
cleft. The transmitters bind to receptors on the postsynaptic side causing postsynaptic
ion channels to open (cf. fig. 2.6). The type of transmitter, the receptors and the channels
determine whether the unidirectional interaction is excitatory or inhibitory. In the first
case the membrane potential of the postsynaptic cell in the vicinity of the synapse is
depolarized and called excitatory postsynaptic potential (EPSP), whereas in the latter
case it is hyperpolarized and termed inhibitory postsynaptic potential (IPSP). Glutamate
and AMPA receptors lead to EPSPs while GABA [226] and NMDA receptors mediate
inhibition.

Using similar considerations as for the membrane currents through ion channels (cf.
sec. 2.2, eq. (2.2.2)) the synaptic current is effectively modeled by a synaptic conductance
gsyn and a synaptic reversal potential vsyn by

isyn = gsyn (vsyn − v) (2.7.1)
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Figure 2.6. Synaptic interaction of neurons. (a) action potentials arriving at a chemical synapse
cause the release of neurotransmitter in to the synaptic cleft. These bind to postsynaptic recep-
tors which open ion channels thereby evoking a postsynaptic current. (b) fit of the alpha-function
eq. (2.7.2) (red) to the average excitatory postsynaptic current (black) recorded from mossy fiber
input to a CA3 pyramidal cell in a hippocampal slice preparation (adapted from [73]).

Excitatory reversal potentials typically are around vsyn ≈ 0mV, inhibitory ones at vsyn ≈
vr ≈ −60mV. The time evolution of synaptic conductances can be modeled in detail
using Markov chains describing the morphological transitions from the closed to the open
state of the channels in response to the transmitter release [68]. However, as can be
seen from fig. 2.6, the synaptic conductance can be modeled to good approximation as
gsyn(t) = ḡsynα(t) where ḡsyn is the maximal synaptic conductance and

α(t) = Θ(t)κ

(

exp

(

− t

τdecay

)

− exp

(

− t

τrise

))

(2.7.2)

is called an alpha-function (cf. fig. 2.6). Here Θ(t) is the Heaviside step function

Θ(t) =

{

1 t > 0

0 t < 0
(2.7.3)

and κ a normalization constant chosen to set the peak value of α(t) to 1. The parameter
τr and τd are time constants determining the rise and decay of the postsynaptic potential
yielding a typical time scale τsyn for the synaptic interaction

τsyn = τrise + τdecay (2.7.4)

Typical time constants for fast excitatory synapses are τrise ≈ 0.1ms and τdecay ≈ 2−10ms.
Inhibitory synapses typically have a longer decay time constant of around τdecay ≈ 10ms
[68].

The propagation of an action potential from the presynaptic soma to the synapse with
a speed of roughly 0.4m/s causes transmission delays τd in the range of 0.1− 10ms [380].
Assuming linear additivity of the synaptic conductance, presynaptic spikes at times ts,
s ∈ Z, result in a time dependent conductance

gsyn(t) = ḡsyn
∑

s∈Z
α (t− ts − τd) (2.7.5)
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2.7 Synapses and Neuronal Connectivity

This equation reflects the pulse-coupled nature of neurons interacting via chemical synapses,
since only the discrete firing times ts of the presynaptic neuron enter the right hand side
of eq. (2.7.5). Pulse-coupling can lead to interesting and counter intuitive collective dy-
namics [370, 371, 372, 16, 203] (see also below).

2.7.1 Conductance Based Coupling in the Theta Neuron Model

In part IV of this thesis we use networks of theta neurons coupled via conductance base
synapses given by eq. (2.7.1) to investigate a mechanism for local control of informa-
tion flow. The conductance based neuron model can be derived by inserting synaptic
conductances into the QIF model eq. (2.6.7), setting

ĩ = ī+
∑

j

gsyn,j (vsyn,j − v)

and employ the transformation (2.6.8) to the phase θ which result in the conductance
base theta neuron model [31]:

d

dt
θ = 1− cos (θ) +

(

i+
∑

j

(2vsyn,j − 1) gsyn,j (t)

)

(1 + cos (θ))−
∑

j

gsyn,j (t) sin (θ)

(2.7.6)

2.7.2 Current Based Synaptic Coupling

Except during the short period of an action potential the membrane potential v is much
smaller than the synaptic reversal potential vsyn for excitatory synapses and thus the
driving potential vsyn − v for the synaptic current may be approximated as constant. In
this situation the constant κ in (2.7.2) is chosen to normalize the total charge transferred
into the postsynaptic neuron, i.e.

´∞
−∞ α(t)dt = 1. The synaptic current then becomes

isyn(t) = ε
∑

s∈Z
α (t− ts − τd)

where ε is the total charge transferred in a single synaptic event. For very fast synaptic
interactions, i.e. τrise → 0 and τdecay → 0 this current may be approximated by a sum of
Dirac δ-functions [44]

isyn(t) = ε
∑

s∈Z
δ (t− ts − τd) (2.7.7)

Usually a single neuron receives synaptic inputs from many other neurons. Due to
different locations of the synapses on the dendrite and different synapse types the post-
synaptic currents of neuron can vary and hence not all synapses evoke the same response
in the postsynaptic neuron and are said to have different synaptic efficiency.

2.7.3 Synaptic Shunting and Leak

For inhibitory synapses the reversal potential is close to the resting membrane potential
which is also often close to the leak reversal potential [196]. Thus an increase in inhibitory
synaptic activity effectively increased the leak conductance. As the synaptic activity is
typically on a time scale larger then the time scale of an action potential this shunting [88]
can effectively change the constant leak conductance to a higher value. We will employ
this fact in part IV of this thesis.
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2.7.4 Neuronal Connectivity

Neurons in the central nervous system are part of a larger network structure in which
each neuron receives synaptic inputs from and makes synaptic contacts to other neurons.
In fig. 2.7 the synaptic connections of neurons in the nervous system of the nematode
Caenorhabditis Elegans [6] are shown. One observes that each neuron only makes con-
nections to a small fraction of the total number of neurons. Such a network structure is
said to have a sparse connectivity and is also found in other neuronal networks [36, 347, 6].
In contrast there are parts of nervous tissues where neurons have a very high intercon-
nectivity [195] and are close to an all-to-all coupled network where each neuron makes
synaptic contacts to all other neurons in the network (cf. fig. 2.7).

Neuronal network connectivity is multi-scale. On the largest scale, the brain is orga-
nized into anatomically different modular regions each responsible for a certain informa-
tion processing tasks [196]. On smaller scales neuronal structure is found to be organized
in cortical columns [180], i.e.vertical aggregates of cells in the layered structure of cerebral
cortex with similar response properties or receptive fields sharing long range interconnec-
tions. On a cellular scale, experimental studies [344] show that the statistics of synaptic
connectivity may be viewed as a skeleton of strong connections with an over representa-
tion of recurrently connected motives embedded in a sea of weaker connections. In ref.
[294] it was shown that in neocortex, pyramidal neurons cluster in to several interlaced
groups of a few dozen neurons.

2.7.5 Modeling Neuronal Networks with Directed Graphs

A neural network is best described by a directed weighted graph [58, 78, 32], which consists
of N vertexes i ∈ {1, 2, . . . , N} representing the single neurons and directed links j → i
between them representing a synaptic connection from neuron j to neuron i. To each
link j → i we associate a weight εij rendering the synaptic efficiency. If there is no link
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Figure 2.7. (a) Synaptic connectivity of neurons in the nervous system of the nematode
Caenorhabditis Elegans containing roughly 300 neurons and 7000 synapses [6]. (b) Graph of
a small (N = 4) homogeneous network with all-to-all coupling but no self-interactions εij =
ε (1− δij).
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between neuron j to i we set εij = 0. The N×N matrix εij is called the adjacency matrix
of the network.

Most of this study is concerned with simple homogeneous all-to-all coupled networks
(cf. fig. 2.7) with adjacency matrix given by

εij = ε (1− δij) (2.7.8)

where the Kronecker symbol δij , taking the value 1 for i = j and zero otherwise, was
introduced to exclude self-coupling of neurons.

2.8 The Dynamic Patch Clamp Technique

Most of the above neuroscientific knowledge is the result of electrophysiological experi-
ments. Often the patch clamp technique [281, 287] is used to record the electrical activity
of a neuron (cf. fig. 2.8). In contrast to recent optical methods [270], this method is
invasive but yields a much higher time resolution to resolve the dynamics of single ac-
tion potentials. There are three sub-types of patch clamp experiments we will use in the
experimental part of this thesis:

(a) (b) (c)
pipette

cell

Figure 2.8. Patch-clamp recording technique. (a) to record the electrical activity from a cell an
electrode is positioned via an micro-manipulator close to the cell (b) when the electrode is on
the cell membrane the pressure in the electrode is lowered to obtain a high resistance between
between the external medium and the inner part of the electrode (giga-seal). This constitutes
the cell-attached configuration. By further lowering the pressure in the electrode or by electrical
stimulation the membrane patch within the electrode can be removed leading to (c) the whole-
cell recording configuration.

Voltage-Clamp: The neuron membrane voltage v is held constant during this type
of experiment by regulating the current ie through the patch-electrode. Measuring the
currents give rise to data on the voltage dependence of the currents. If a steady state is
reached the function ie (v) is know as the i− v-curve.

Current-Clamp: In this type of experiment a predefined external current ie is injected
via the patch-electrode and the trans-membrane voltage v is measured.

Dynamic-Clamp: Dynamic clamp experiments are patch-clamp experiments [334, 72],
where the voltage is recorded form the neuron and used to compute an current ie that is
injected back into the neuron in real time. In this way a closed biological-artificial loop
is obtained. This technique can be used to study the effects of different ion channels on
neuronal dynamics. In part IV of this thesis we use an artificial leak conductance to study
its effect on neuronal excitability.
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Chapter 3

Notions from Dynamical Systems and

Bifurcation Theory

In this chapter we present the background from dynamical systems theory relevant for
this thesis. An in depth treatment of the classical theory can be found in [199, 145].
Hybrid dynamical systems are described in [129] and non-smooth dynamical systems in
[76].

3.1 Unstable Attractors and Heteroclinic Networks

In this thesis we consider dynamical systems described by a set of states X together with
a semi flow F t : X → X that satisfies F t ◦F s = F t+s for s, t ≥ 0 and F0 (x) = x. Here t
is either continuous or discrete time. We assume that the state space X is a metric space
with Lebesgue measure λ (·).

In part IV we encounter dynamical systems describe by an ordinary differential equa-
tion of the form

d

dt
x = f (x) (3.1.1)

where x ∈ R
N is the state of the system in the state space R

N and f (x) ∈ TxR
N it’s

smooth vector field on the tangent bundle TRN = R
N . For vectors p, q ∈ R

N the Jacobian
Df and Hessian D2f are defined by

Df (x; p) := Df (x) p :=
∑

j

∂fi
∂xj

(x) pj and D2f (x; p, q) :=
∑

j,k

∂2fi
∂xj∂xk

(x) pjqk. (3.1.2)

In part III we consider hybrid dynamical systems where a continuous flow is interrupted
as discrete points in time and a map is applied.

The forward orbit O (x) is the set of states that are encountered during the time
evolution of a dynamical system starting at x, i.e.

O (x) =
{
F t (x) | t ≥ 0

}

For a fixed point x, O (x) = {x}. For a periodic point x there exists a T > 0 such that
FT+t (x) = F t (x) and O (x) is a periodic orbit. A set A is invariant if F t (A) ⊂ A for all
t ≥ 0.
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3.2 Bifurcation Theory and Normal Forms

Definition 3.1.1. A heteroclinic connection H12 is a collection of orbits that connects two
invariant sets A1 and A2 in a saddle-sink connection, i.e. for any open neighbourhoods
Ui ⊃ Ai, ∪t≥0F t (H12 ∩ U1) ∩ U2 6= ∅ and H12 ∩ U2 is invariant. A heteroclinic network is
a graph with vertices being invariant sets Ai, i ∈ {1, . . . , n} and directed edges Ai → Aj

if there is a heteroclinic connection Hij between them.

The invariant ω-limit set for a point x is defined by

ω(x) =
⋂

t≥0

{F s(x) | s ≥ t}

The basin of attraction B (A) of a invariant set A consists of all states in state space that
eventually stay in A, i.e.

B (A) = {x ∈ X | ω(x) ⊂ A} (3.1.3)

A Milnor attractor for F t is then an compact invariant set A with positive measure basin
λ (B (A)) > 0 and such that an proper invariant subset has a basin with stricitly smaller
measure [267, 268].

For a subset U ⊂ X we define the lingering set as consisting of points in U which do
not leave U in the future

L (U) =
{
x ∈ U | F t(x) ∈ U for all t > 0

}

Definition 3.1.2. (unstable attractor)[16]. A Milnor attractor A is an unstable attractor
if there is a neighbourhood U of A such that λ (L (U)) = 0

Thus an unstable attractor has a basin with positive measure but in its neighbourhood
almost all trajectories must leave this neighbourhood. Thus one unstable attractor can
lie within the basin of attraction of a second unstable attractor.

Definition 3.1.3. A set of unstable attractors Ai, i ∈ {1, . . . , n} forms a network of
unstable attractors given by the graph with vertices Ai and directed edges from Ai to Aj

if and only if for any neighbourhood Ui of Ai we have

λ (B (Aj) ∩ Ui) > 0

Thus there is a link between two attractors Ai → Aj if every neighborhood of Ai

contains a positive basin volume of Aj. The definition extends to networks consisting of
unstable as well as stable attractors.

3.2 Bifurcation Theory and Normal Forms

The use of bifurcation theory in this thesis is twofold: On the one hand we discover a
new type of bifurcation for a hybrid dynamical system in part III. On the other hand
bifurcation theory for smooth dynamical systems is used in part IV of this thesis to
study neuronal excitability. Therefore, in this section the notions from bifurcation theory
relevant for this thesis are introduced. A detailed introduction to the subject can be
found in [355], an in-depth treatment of the subject can be found in the text books
[145, 230, 133, 134]. Systematic treatments of versal deformations and normal form theory
are [13, 276, 327, 133, 134]. Aspects of bifurcation theory for continuous but non-smooth
dynamical systems are studied in [76].
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II 3 Notions from Dynamical Systems and Bifurcation Theory

Definition 3.2.1. (Bifurcation) For a dynamical system that depends on certain param-
eters µ in a d-dimensional parameter space, the bifurcation set Σ is the subset of param-
eter values for which there is no neighborhood in parameter space such that the phase
portraits of the corresponding dynamical system within this neighborhood are all topo-
logically equivalent. Thus, when passing a bifurcation point, the phase portrait changes
qualitatively.

This is the general concept we need in part III of this thesis to identify a novel type
of bifurcation in hybrid systems.

For part IV we need results from bifurcation theory for dynamical systems defined via
ordinary differential equations. A nullcline is the set in state space at which one specific
component of the vector field f in (3.1.1) vanishes. At intersections of all nullclines the
vector field vanishes identically and the corresponding point in state space is a fixed point.

The co-dimension of a bifurcation is defined as the minimal dimension of the parameter
space in which the bifurcation occurs in a persistent way, i.e. it cannot be removed by
a arbitrarily small deformation of the vector field and thus is a generic phenomenon.
A bifurcation-diagram is a map that assigns to each point in the complement of Σ the
corresponding representative of the phase portrait. A bifurcation is local if the changes
in the phase portrait are confined to a small neighborhood, and global if the changes also
involve larger invariant sets such as limit cycles or homoclinic and heteroclinic connections.

For parameter dimension d = 1 a generic bifurcation set consists of points of co-
dimension one. In one dimensional bifurcation diagrams we therefore include a meaningful
coordinate of the state space showing the values for fixed points or the minima and
maxima attained in the case of the existence of periodic orbits. For parameter dimension
d = 2 generic bifurcation sets are lines or points corresponding to co-dimension one
and two bifurcations respectively which we visualize in the plane. For a three dimensional
parameter space (d = 3) generic bifurcation sets are surfaces, lines or points corresponding
to co-dimension one, two and three bifurcations, respectively. We visualize these in a
three-dimensional plot.

3.2.1 Normal Forms and Unfoldings

Classification of dynamical systems is an important part of dynamical systems theory
[199, 276]. For example two dynamical systems A and B are topologically equivalent, if
there exists a homeomorphism sending A-orbits to B-orbits, i.e. the phase portraits are
qualitatively the same and can be grouped into a single equivalence class. Normal form
theory aims at finding the ’simplest’ representative of such a class. Both, the equivalence
relation, as well as the definition of ’simplest’ can vary depending on the questions one is
interested in.

Conjugacy as an equivalence relation is defined by the transformation of a vector field
f under a coordinate change s given by

s∗f (x) := Ds (x)−1 f (s (x)) (3.2.1)

where Ds (x) is the Jacobian of the transformation s. For local dynamical systems, i.e.
defined by Taylor expansions of the vector field around a certain point x0 the definition of
simplest is usually taken to be the largest number of monomials in the expansion that can
be removed without changing the equivalence class. The simplest normal form result is the
Hartman-Grobman theorem that assures that for a hyperbolic point, where the eigenvalues
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3.3 A Bifurcation Dictionary

of the Jabian have non-zero real part, the vector field is conjugated to a linear flow. In
general removable terms can be determined by the homological equation [276]. For fixed
points with degeneracies, e.g. zero eigenvalues of the Jacobian also called singular points,
only non-resonant terms can be removed and the normal form becomes non-linear.

Typically the vector field f also depends on parameters that deform the vector field.
An unfolding [13] of a normal form is the simplest system into which all systems close
to the original system can be transformed. This can be achieved by the introduction of
additional terms into the normal form that depend on a number of unfolding parameters µ.
Using parameter dependent coordinate transformations the unfolding parameters become
functions of the original parameters of the vector field f .

An example for an unfolding of a normal form is given in eq. (3.3.1) for the degenerate
Bogdanov-Takens point described in sec. 3.3.3 and encountered in the second part of this
thesis. In the following we provide a brief description of all bifurcations encountered in
this thesis.

3.3 A Bifurcation Dictionary

In this section a number of bifurcations relevant for this thesis are introduced. A detailed
mathematical treatment of all the bifurcations listed below can be found in [87, 145, 230].

Throughout this thesis we associate to each bifurcation a specific color in the bifurca-

stable unstable
fixed points
limit cycles

co type name symbol visualization reference page
dim 1d 2d 3d

1 local fold / saddle node SN 3.3.1.1 38
Hopf HB 3.3.1.4 40

global saddle node on invariant
cycle

SNIC 3.3.1.1 38

saddle node of limit cycle /
double cycle

DC 3.3.1.2 39

homoclinic / saddle loop SL 3.3.1.3 39
2 local cusp CP 3.3.2.1 41

Bogdanov-Takens
bifurcation

BT 3.3.2.2 41

degenerate Hopf DH 3.3.2.3 42
global saddle node loop SNL 3.3.2.4 42

neutral saddle loop NSL 3.3.2.5 44
3 local degenerate

Bogdanov-Takens
bifurcation

dBT 3.3.3 44

Table 3.1: List of bifurcations encountered in this thesis and their color code used in all
bifurcation diagrams.
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II 3 Notions from Dynamical Systems and Bifurcation Theory

tion diagrams with color-code given in table 3.1. The different bifurcations we encounter
in our study are described below in the context of the two-dimensional Morris-Lecar neu-
ron model (2.4.2) as its phase portraits can be visualized easily. Most of the bifurcations
found in the context of neuron models are also described in [316, 177, 188].

Here, however, we use different bifurcation parameters in the figures as they not only
serve for this introduction but also constitute results of part IV of this thesis.

3.3.1 Codimension-1 Bifurcations

3.3.1.1 Saddle Node or Fold Bifurcation and Saddle Node on Invariant Cycle
Bifurcation

In a fold or saddle node (SN) bifurcation two fixed points of a vector field coalesce and
vanish. In a saddle node on invariant cycle (SNIC) bifurcation the two fixed points lie

(a) ie < i∗e (b) ie = i∗e (c) ie > i∗e
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Figure 3.1. Saddle node on limit cycle (SNIC) bifurcation in the Morris-Lecar neuron model
(2.4.2) (parameter as in appendix D.2) with bifurcation diagram in fig. 10.1. Top row shows
sketches of the phase portrait. Second row shows actual phase portraits with nullclines (red),
stable fixed points (solid dots), unstable fixed points (open dots) saddle nodes (half open dots),
and sample trajectories (blue) with membrane potential evolution shown in the third row. (a)
for input currents ie below the bifurcation value i∗e there are three fixed points. The unstable
manifolds of the saddle approach the stable fixed point (black). Increasing ie moves the v-
nullcline (dark red) up so that (b) at the bifurcation value ie = i∗e the stable fixed point and the
saddle coalesce on an invariant orbit (black). (c) for ie > i∗e the two fixed disappear leaving the
system with a stable limit cycle around an unstable fixed point. Note that the dynamics on the
limit cycle is slow close to the point where the fixed points disappeared due to the vincinity to
the nullclines.
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on an invariant cycle and their disappearance leads to the creation of a limit cycle. This
bifurcation is illustrated for the Morris-Lecar neuron model (cf. sec. 2.4.4) in fig. 3.1. A
corresponding bifurcation diagram can be found in fig. 10.1.

3.3.1.2 Double Limit Cycle Bifurcation

In a double limit cycle (DC) or saddle node of limit cycle bifurcation two periodic orbits
coalesce and disappear. An example is shown in figure 3.1 with corresponding bifurcation
diagram in figure 10.4.

(a) ie < i∗e (b) ie = i∗e (c) ie > i∗e
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Figure 3.2. Double limit cycle (DC) bifurcation in the Morris-Lecar neuron model. Figure
syntax as in 3.1. At the bifurcation value i∗e a stable and unstable limit cycle (gray dashed line)
are generated simultaneously. In this model after the bifurcation the unstable periodic orbit
separates the basin of attraction of the stable limit cycle from the one of the coexisting stable
fixed point.

3.3.1.3 Homoclinic Bifurcation

At a homoclinic or saddle loop bifurcation (SL) the stable and unstable manifolds of a
saddle node form a homoclinic orbit that gives rise to the birth of a limit cycle. In neuron
models one discriminates [188] between a big homoclinic bifurcation that gives rise to a
large stable limit cycle surrounding the fixed points and reflecting periodic spiking dy-
namics (figs. 3.3, 10.2) and a small homoclinic saddle node loop that generates a unstable
limit cycle around the stable fixed point (figs. 3.4, 10.3).
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Figure 3.3. Big homoclinic or saddle loop (SL) bifurcation in the Morris-Lecar neuron model
(2.4.2). Upper three rows show the phase portraits and a zoom into the relevant area using figure
syntax as in 3.1, bottom row shows the corresponding spiking dynamics of the shown trajectories
(blue). The bifurcation diagram is shown in fig. 10.2. (a) below the critical input currents the
unstable manifold (black) of the saddle node ends up in the stable fixed point. (b) at the critical
value the unstable manifold approaches the saddle and merges with the stable manifold to form
a homoclinic loop (black). (c) above the critical value the homoclinic orbit has split off the
saddle node to form a stable periodic orbit (gray). Note that the dynamics near the saddle are
arbitrary slow so that the periodicity can become arbitrarily large by decreasing the bifurcation
parameter closer and closer to the critical value.

3.3.1.4 Hopf Bifurcation

In a Hopf (HB) bifurcation a limit cycle emerges from a focus or vice versa. Mathemat-
ically, it is characterized by two complex conjugate eigenvalues of the Jacobian crossing
the imaginary axis with nonzero imaginary part. A Hopf bifurcation for the Morris-Lecar
neuron model is illustrated in figure 3.5 and 10.5.
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(a) ie < i∗e (b) ie = i∗e (c) ie > i∗e
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Figure 3.4. Small homoclinic or saddle loop (SL) bifurcation in the Morris-Lecar neuron model
(2.4.2) with figure syntax and colors as in 3.1 but with and additional zoom of the relevant phase
space in the third row. The bifurcation diagram is shown in fig. 10.3. (a) below the critical input
currents the stable manifold of the saddle node (dashed) winds around the stable fixed point and
passes above the saddle. (b) at the critical value the stable manifold approaches the saddle node
again and forms a homoclinic loop (dashed). (c) above the critical value the homoclinic orbit
has split of the saddle node to form a unstable periodic orbit (gray, dashed).

3.3.2 Codimension-2 bifurcations

3.3.2.1 Cusp bifurcation

At a cusp (CP) bifurcation two fold bifurcations coalesce.

3.3.2.2 Bogdanov Takens bifurcation and Organizing Centers

A fixed point xBT of a dynamical system is a Bogdanov-Takens (BT) point if the Jacobian
matrixDf (xBT) has a two-dimensional invariant subspace on which Df (xBT) is nilpotent,
i.e. it can be transformed by a linear coordinate transformation into Jordan normal-form.
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(a) ie < i∗e (b) ie > i∗e
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Figure 3.5. Supercritical Hopf (HB) bifurcation in the Morris-Lecar neuron model (2.4.2) and
parameter as in fig. 10.5. The bifurcation diagram is shown in fig. 10.5. In a Hopf bifurcation a
limit cycle grows out from a focus as a parameter is changed; here form below (a) to above (b)
the critical input current i∗e . Figure conventions as is fig. 3.1.

For a two dimensional system we have

Df (xBT) ∼
(

0 1
0 0

)

where ∼ denotes conjugacy (cf. sec. 36). The generic unfolding of this singularity has
been studied in the seminal work by Takens [358, 42] and also by Bogdanov [29]. In their
work they determine the unfolding of this singularity and prove that the BT point acts
as an organizing center, in the way that its existence entails the existence of three co-
dimension one bifurcation lines emanating form the BT point: a SN, a SL and a HB curve
as illustrated in figure 3.6. In particular the local BT point organizes the existence of a
global homoclinic bifurcation. This phenomenon is a part of multiple bifurcation theory
[144, 145] which is concerned with bifurcation points of higher co-dimension that organize
the bifurcation diagrams in lower co-dimensions.

3.3.2.3 Degenerate Hopf bifurcation

At a degenerate Hopf (DH) bifurcation, the Hopf bifurcation interacts with a double limit
cycle bifurcation in which an stable and and unstable orbit are generated simultaneously
from a fixed point.

3.3.2.4 Saddle Node Loop

In a saddle node loop (SNL) bifurcation [328] a homoclinic orbit and a fold bifurcation
occur simultaneously, in which the homoclinic orbit is attached to the fold in its non-
central manifold. From this point a saddle node, a homoclinic and a saddle node on
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Figure 3.6. Bogdanov Takens (BT) bifurcation in the Morris-Lecar neuron model. Bifur-
cation diagram in the (ie, gL)-parameter plane and corresponding phase portraits around the
co-dimension-2 BT bifurcation point ( ) which organizes the SL ( ), the SN ( ) and the HB
( ) bifurcations of co-dimension-1. Note that the surrounding large stable limit cycle as well as
the third upper most unstable fixed point are not involved in the bifurcations but drawn here
for later reference as this is a typical situation in which a BT point is encountered in neuronal
models (cf. part IV).

invariant cycle bifurcation emanate as illustrated in fig. 3.7. In neuron models it acts as
an organizing center for type I neuronal excitability [177] by organizing the saddle node on
invariant cycle and homoclinic bifurcations, both leading to limit cycles with arbitrarily
large period.

i− i	
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➂
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( ) ➀

➁ ➂

Figure 3.7. Saddle node loop bifurcation in the Morris-Lecar neuron model. Bifurcation diagram
in the (ie, gL)-parameter plane and corresponding phase portraits around the co-dimension 2 SNL
point ( ) which organizes the SL ( ), the SN ( , above ) and the SNIC ( , below ) bifurcations
of co-dimension-1.
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Figure 3.8. Neutral saddle loop (NSL) bifurcation in the Morris-Lecar neuron model. Bifur-
cation diagram in the (ie, gL)-parameter plane and corresponding phase portraits around the
co-dimension-2 NSL point ( ) which organizes the SL ( ) and the DC ( ) bifurcations of co-
dimension-1. Note that the stability of the invariant cycle at the SL bifurcation changes from
stable below to unstable above the NSL bifurcation point. At the bifurcation point it has neutral
stability.

3.3.2.5 Neutral Saddle Loop

In a neutral saddle loop (NSL) bifurcation the invariant cycle created via a double limit
cycle bifurcation contains a fixed point forming a homoclinic loop. From the neutral
saddle node loop bifurcation two homoclinic and a double limit cycle bifurcation lines
emerge. In the homoclinic bifurcation at one side of the NSL point a stable limit cycle is
created while in on the other an unstable limit cycle emerges form a homoclinic loop. At
the bifurcation the homoclinic loop has neutral stability. We will argue in part IV of this
thesis that this point acts as a organizing center for type I to type II neuronal excitability
transitions. A bifurcation diagram is sketched in figure 3.8.

3.3.3 Co-dimension-3 Degenerate Bogdanov-Takens Bifurcation

At a degenerate Bogdanov-Takens (dBT) or Bogdanov-Takens-cusp bifurcation a cusp
point interacts with a Bogdanov-Takens point [86, 87, 85]. Three topological subclasses
have been identified: a saddle, an elliptic and a focus dBT point. Its normal form is
conjectured1 to be of the form.

d

dt

(
x
y

)

=

(
y

µ1 + µ2x− x3 + y (µ3 + ρx− x2)

)

= fdBT (x, y) (3.3.1)

with unfolding parameters µi and with a topological parameter ρ that for the focus type
takes the values 0 < ρ < 2

√
2 and does not alter the bifurcation diagram topologi-

cally. Figure 3.9 shows the three dimensional bifurcation set, which we constructed semi-
analytically with the methods described in sec. 3.3.4 for the dBT bifurcation of focus

1Note that [87] provides no complete proof for the unfolding of the dBT points and thus strictly
speaking the unfolding of the bifurcation point in (3.3.1) can only be conjectured. This points out the
limits of the tools established so far to study complex bifurcations.
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Figure 3.9. Bifurcation diagram of the degenerate Bogdanov-Takens-cusp (dBT) bifurcation in
(µ1, µ2, µ3)-parameter space. The colors encode the bifurcation surface or line using the color
code form 3.1. The diagram is a topological cone with tip being the dBT point ( ). The white
sphere shows the coordinate system used in fig. 3.10 to visualize the base of this cone.

type and cannot be found in the literature. The dBT bifurcation point in the center of
the diagram organizes the bifurcations of co-dimension one (planes) and two (lines). The
diagram has a conic structure with an intersection of a sphere centered around the dBT
point as shown in fig. 3.10.
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Figure 3.10. Cone-basis of the degenerate Bogdanov-Takens bifurcation. (a) Show is the
coordinate system as in fig. 3.9 with the intersection of the bifurcation surfaces here shown as
lines and bifurcation lines here shown as dots using the color code 3.1. In deformed stereographic
projection onto the plane with coordinates (p, q) this yields the (b) 2D-bifurcation diagram of
the cone-basis of the dBT bifurcation. (c) zoom and shift of the p coordinate by p	 = p	 (q) so
that the generation of a stable limit cycle via one of the shown bifurcations is at zero. Note that
there is an ordinary Bogdanov-Takens point as well as a cusp, a neutral saddle loop and three
saddle node loop bifurcations.
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3.3.4 Numerical Calculation of Bifurcation Sets

In this thesis we locate saddle nodes by solving the defining equations either analytically
or using the newton method to locate zeros of certain functions numerically. Hopf points
are located by solving for simultaneous zeros of the determinant and the determinant of
a bi-alternate product of the Jacobian matrix as described in [136, 224]. Cusp points
are located by solving for singular Hessians in direction of a zero-eigenvector. All non-
local bifurcations are located using the numerical continuation software AUTO [81, 82]
with HomCont [57] based on the basic algorithms described in [79, 80]. In essence, these
methods work by constructing conditions for the dynamical system under consideration,
that vanish at the points of interest (e.g. in the simplest case these are the fixed point
conditions). These conditions depend on the bifurcation parameter and starting at a point
for which these conditions are fulfilled, points in the vicinity of the initial point that also
fulfill the conditions are located by varying the parameters using numerically techniques
such as pseudo-arclength methods [136, 224].

For this thesis we developed a software-interface between AUTO and Wolfram’s Math-
ematica [205] which allows automated code generation of AUTO equations and constant
files for arbitrary systems of ordinary differential equations. It makes use of the sym-
bolic manipulation power of Mathematica to calculate Jacobians and several parameter
derivatives. It is part of a dynamical systems tool box for Mathematica [206] for the
study and organization of dynamical systems defined by an ordinary differential equation,
providing a large ensemble of tools for the investigation of dynamical systems, including
the detection of fixed points, periodic orbits and nullclines, solving the adjoint equations
and phase response calculations.

3.4 Phase Reduction and Averaging for Weakly

Coupled Oscillators

When driven by a sufficiently strong constant external current many neuron models gen-
erate periodic spiking dynamics (cf. fig. 3.11) and constitute a neuronal oscillator with
a stable limit cycle and period T . If synaptic interaction between the neurons is weak,
phase reduction and averaging methods [228, 407, 327, 102] can be used to analytically
investigate the collective dynamics of such neuronal oscillators. Here we introduce these
concepts as we make use of them in all parts of this thesis.

3.4.1 Phase Reduction and Phase Response Curves

Consider a dynamical system given by

d

dt
x = f (x) (3.4.1)

with x ∈ R
d that has a stable limit cycle solution

x	 (t) = x	 (t + T ) (3.4.2)

with period T . This limit cycle may be parametrized by a phase variable φ ∈ S1 =
[0, 1] / (0 ∼ 1) that increases monotonically in time such that
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d

dt
φ =

1

T
= ω (3.4.3)

This phase description can be extended to the basin of attraction of the stable limit cycle
by assigning to each point x0 a scalar phase φ (x0) such that limt→∞ φ (x (t))−(ωt+ φ) = 0
for the solution x (t) of (3.4.1) with x (0) = x0.2 By definition

d

dt
φ (x) = ω (3.4.4)

= ∇xφ (x) · ẋ = ∇xφ (x) · f (x)
Introducing a small perturbation p of order ε into the vector field, i.e. f (x) → f (x) +
εp (x) in (3.4.1) one obtains

d

dt
φ = ω + ε∇xφ (x) · p (x, t)

≈ ω + ε∇xφ (x	 (φ)) · p (x	 (φ) , t)

where in the second step we have neglected contributions of order O (ε2) by inserting
the limit cycle solution (3.4.2) to obtain a closed form expression for the effect of the
perturbation in the direction of φ. It shows that the phase response vector or phase
response curve (PRC)

z (φ) = ∇xφ (x	 (φ)) (3.4.5)

determines the oscillators response in the phase direction to a perturbation p applied at
φ. The systems’ time evolution thus has been reduced to a one dimensional phase model

d

dt
φ = ω + εz (φ) · p (x	 (φ) , t) (3.4.6)

in which the fast decaying amplitudes transverse to the limit cycle have been removed.
Differentiating equation (3.4.4) with respect to the phase shows that the phase response
can be calculated by solving the adjoint equation

d

dφ
z (φ) = −DfT (x	 (φ)) z (φ) (3.4.7)

with initial condition
z (0) f (x	 (0)) = ω (3.4.8)

and further d − 1 periodic boundary conditions. Here Df is the Jacobian matrix of the
vector field f.

In experimental praxis one can use a small pulse of strength ε applied to the oscillation
at phase φ into a phase space direction ei to determine the PRC. After this perturbation
the dynamics will relax back to its periodic firing but with a phase shift δφ with respect
to the unperturbed motion (cf. fig. 3.11) that depends on the perturbation strength ε, the
direction e ∈ R

d and perturbation time φT within the limit cycle. We define this to be
the non-infinitesimal phase response curve

z (φ, εe) := δφ (φ, εe) (3.4.9)

from which the infinitesimal phase response is then obtained via

e · z (φ) = lim
ε→0

1

ε
z (φ, εe)

2In mathematical terms the orbit has to be stable and normally hyperbolic so that there is a neigh-
borhood of the limit cycle which is invariantly foliated by isochrons, i.e. stable submanifolds to which a
constant phase value φ can be assigned such that eq. (3.4.3) holds [145, 177].
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3.4.2 Averaging of Weakly Coupled Oscillators

The phase response reduction can be used to obtain a simplified evolution equation for
weakly coupled oscillators. Here the coupling plays the role of the perturbation in the
previous section. Consider a system of N weakly coupled oscillators given by

d

dt
xi = fi (xi) + ε

∑

j

gij (xi, xj) (3.4.10)

where xi ∈ R
di is the state vector of each individual oscillator i ∈ {1, . . . , N}, fi it’s local

dynamics, gij the two-point coupling function from oscillator j to i, and ε the overall
coupling strength. We assume that for the uncoupled case, ε = 0, each individual system
i has a stable limit cycle solution xi,	 (t) with period Ti and frequencies ωi =

1
Ti

that differ
only by O (ε), i.e. ωi = ω + εδωi. Using the phase reduction method from above (3.4.6)
we obtain the N -dimensional system

d

dt
φi = ω + ε

(

δωi +
∑

j

zi (φi) · gij (xi,	 (φi) , xj,	 (φj))

)

(3.4.11)

A further reduction of the system may be achieved by taking into account that for
small ε≪ ω in (3.4.11) the interaction of the system may be averaged over one period to
obtain

d

dt
φi = ω + ε

(

δωi +
∑

j

γij (φi − φj)

)

(3.4.12)

with the effective coupling

γij (φi − φj) =

ˆ 1

0

zi (φi + t) gij (xi,	 (φi + t) , xj,	 (φj + t)) dt (3.4.13)

which only depends on the phase differences as the functions under the integral are periodic
in φ. The precise mathematical justification for this averaging step comes from normal
form theory (cf. sec. 3.2.1) for periodic vector fields [327].

Equation (3.4.12) is the general form of the celebrated Kuramoto system [228, 5], the
’standard model’ to study synchronization in coupled oscillators. For γij (φ) = kij sin (φ)
it becomes the phase part of the discrete network Ginzburg-Landau equation [125] that
describes the dynamics of coupled oscillators close to a multiple Hopf bifurcation [177]
(cf. sec. 3.3.1.4).

Consider two identical oscillators with phase difference ∆φ = φ1 − φ2 then

d

dt
∆φ = γ (∆φ)− γ (−∆φ) := γ̄ (∆φ)

and phase locked states ∆φ0 are given by the zeros of γ̄ which are linearly stable if
γ̄′ (∆φ0) < 0. The oscillators are phase synchronous if ∆φ0 = 0 .

3.4.3 Phase Response in Neuronal Models

Activation of a single synapse typically produces post synaptic potentials of the order of
≈ 1mV which may be considered as a weak perturbation [177] and thus the above theory
may be applied to interacting neurons.
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For systems close to a bifurcation in which a stable limit cycle is created, e.g. corre-
sponding to the onset of spiking, the phase response curve may be derived analytically
[100, 335]. For example a neuronal oscillator close to a saddle node on limit cycle bifurca-
tion (cf. fig. 3.1) with normal form given by the theta neuron model in sec. 2.6.4 equation
(2.6.9) compared with (3.4.6) shows that the phase response is given by z (φ) = 1+cos (φ),
which is non-negative. Thus for this class of models excitatory perturbations ε > 0 always
advance the phase. In contrast for a Hopf or a double limit cycle bifurcation the PRC
may be derived to be z (φ) = sin (φ) giving rise to both negative and positive parts. Thus
an excitatory perturbation may advance or delay the phase (cf. fig. 3.11). Experimentally
both types of phase response curve have been observed [314, 313, 116, 352].

The reduced phase description of neuron models is useful in the study the collective
dynamics of neuronal networks [156, 157] and optimal information coding in neurons
[239, 329].
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Figure 3.11. Phase response in neuronal models. (a) For a system with a stable limit cycle
a small perturbation ε will return back to its periodic motion but with a phase shift δφ. The
dotted lines show isochrons, i.e. points which asymptotically collapse onto the same phase on
the limit cycle for t→ ∞. (b) When driven by a constant external input ie the coritcal neuron
model by Erisir (sec. 2.4.4) shows periodic spiking with period T (gray). Adding a small pulse
at a phase φ advances the phase by δφ. (c) phase response curve z (φ) for the Erisir model (cf.
sec. 2.4.4) (gray) is purely positive while for the Hodgkin-Huxley model (cf. sec. 2.4.1) (black) it
has both signs.
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Part III

Dynamics of Pulse Coupled Oscillators

with Partial Reset
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In this part of the thesis we propose a model of pulse-coupled threshold units with
partial reset and study the collective network dynamics. We first motivate a partial
reset in pulse-coupled units from a theoretical and neuroscientific perspective. We then
concentrate on instantaneous couplings and numerically find and analytically proof that
the partial reset induces a sequence of cluster destabilization bifurcations that cause a
desynchronization transition. We then study effects of the partial reset in networks with
delayed interactions and give an analytical prove for a novel type of bifurcation from
networks of unstable attractors to heteroclinic switching.

Most of the results in this part are published in [210, 213, 211].
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Chapter 4

Introduction

Networks of pulse-coupled units serve as paradigmatic models for a wide range of physical
and biological systems as different as cardiac pacemaker tissue, plate tectonics in earth-
quakes, chirping crickets, flashing fireflies and neurons in the brain [47, 289, 33, 248, 269,
378]. In such systems, units interact by sending and receiving pulses at discrete times
that interrupt the otherwise smooth time evolution. These pulses may be sound signals,
electric and electromagnetic activations as well as packets of mechanically released stress.
Pulses are generated once the state of a unit crosses a certain threshold value (e.g. the
mechanical stress of a tectonic plate becomes sufficiently large or the voltage across a
nerve cell membrane becomes sufficiently high); thereafter the state of the sending unit
is reset.

Synchronization of oscillators is one of the most prevalent collective dynamics in pulse-
coupled systems [269, 104, 105, 37, 39, 157, 124, 369]. Often not all units are synchronized
but form clusters consisting of synchronized sub-groups of units which in turn are phase-
locked to other clusters [104, 371, 263, 20, 157, 155, 244, 297, 299].

In neuronal networks synchronization and clustering of pulses constitute potential
mechanisms for effective feature binding. In this paradigm, different information aspects
of the same object represented by activity of different nerve cells are pooled together by
temporal correlations and in particular due to synchronous firing [398, 341]. However,
strong synchronized firing of nerve cells can also be detrimental: synchrony is prominent
during epileptic seizures [259] and observed in the basal ganglia during Parkinson tremor
[92]. Here mechanisms for desynchronizing neural activity are desirable [362, 251, 160].

To study key mechanisms that are underlying (de)synchronization, e.g. in biological
neural networks, analytical tractable models of pulse-coupled oscillator are helpful tools
[296, 269, 229, 3, 104, 37, 372, 71]. Here the rise of the state variable of a free oscillatory
unit towards the threshold, the unit’s rise function characterizes the sub-threshold dy-
namics. If, after reception of a pulse, the state variable of the unit stays below threshold
it is said to receive sub-threshold input, whereas excitation above the threshold is supra-
threshold. Mirollo and Strogatz [269] showed that biological oscillators always synchronize
their firing in homogeneous networks with excitatory all-to-all coupling if the rise func-
tion has a concave shape. The synchronization mechanism they find has two parts: (i)
effective decrease of phase differences of units due to sub-threshold inputs and (ii) instant
synchronization due to supra-threshold inputs and subsequent reset to a fixed value.

In general, supra-threshold excitation and a subsequent reset is a dominant mech-
anism for synchronization of pulse-coupled oscillators because input pulses that force
non-synchronized units to cross threshold at nearby times are reset to the same value
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leaving the units in the same state or in very similar states afterwards. Although this
reset mechanism plays a crucial role in the synchronization process and the coordination
of pulse generation times, its implications for the collective network dynamics has not
been investigated systematically so far: most existing model studies reset the units with
supra-threshold inputs to a fixed value independent of the strength of supra-threshold ex-
citation [33, 104, 229, 333, 371, 66, 71, 174]. This results in a complete loss of information
about the prior state of the units and makes the dynamics non-invertible. Some other
studies consider the opposite extreme: a complete conservation of supra-threshold inputs
during pulse sending and reset [174, 37]. Here we aim at closing this gap by presenting
and analyzing a model with a partial reset where the reset value (and thus the loss of
information about the prior state and the strength of supra-threshold excitation) can be
varied systematically .

Motivation for our model comes from neuroscience. The brain processes information
in networks of neurons, which interact by sending and receiving electrical pulses called
action potentials or spikes. The response of a neuron to incoming signals strongly depends
on whether or not it has just sent a spike itself. After the initiation of a spike the
membrane potential at the cell body (soma) is reset towards some potential and the
response to further synaptic input is reduced due to the refractoriness of the neuron
[68, 196]. The dendritic part of the neuron where incoming signals are integrated, is
affected only indirectly by this reset due to intra-neuronal interactions [332, 321, 38].

Several multi-compartment models have been proposed, in which different parts of a
single neuron interact to characterize this effect [332]. For instance, in a two-compartment
model [38] of coupled dendrite and soma, the membrane potential at the soma is reset
after spike emission while the dendritic dynamics is affected only by the resistive coupling
from the soma to the dendrite. This accounts for the fact that in several kinds of neurons
residual charge remains on the dendrite (following the somatic reset) and is then trans-
ferred to the soma [321, 250]. Thus the dynamics of the individual neurons is modified
which severely affects the collective capabilities of networks of such neurons.

Here we propose a simple neuron model which captures this response to residual input
charges following spike emission in form of the partial reset and at the same time allows
an analytical study of the collective network dynamics. To reveal the basic mechanisms
underlying the collective dynamics of networks of such neurons we focus on globally and
homogeneously coupled neurons. Despite their simplicity these networks already exhibit
a rich variety of dynamics that is controlled by the partial reset. In particular we find
and show analytically that for a broad class of neurons there is a desynchronization
transition in the network dynamics determined by a sequence of bifurcations: For a strong
dissipative partial resets with a strong loss of supra-threshold inputs the fully synchronous
state coexists with a variety of cluster states consisting of differently sized groups of
synchronously firing neurons (cf. [198, 297]). With increasing partial reset strength states
with synchronized clusters of a certain size and larger become unstable in a sequence of
bifurcations. First the fully synchronous state loses stability followed by smaller and
smaller clusters until finally for conservative resets only an asynchronous state is left. We
investigate the main mechanisms generating this sequence of bifurcations analytically and
give an intuitive explanation. We also discuss key consequences of this desynchronization
mechanisms for biophysically more detailed systems.

The concepts of attractor and stability are at the core of dynamical systems theory
[199] because attractivity and stability determine the long term behaviour and often the
typical properties of a system. Attraction and stability which may change via bifurcations
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are thus fundamental to modeling in all of science and engineering. For systems with
smooth and invertible flows these concepts have long been studied and are well understood,
allowing classifications of dynamical systems and their bifurcations, for example by using
topological equivalence and normal forms.

Dynamical systems with non-smooth or non-invertible flows, such as hybrid [43], Fil-
lipov [76] or pulse coupled systems are far less understood although they model a variety of
natural phenomena, ranging from the mechanics of stick-slip motion through the switch-
ing dynamics of electrical circuits to the generation of earthquakes [289, 69, 269, 164, 104,
105, 333, 370, 371, 372]. These systems often have intriguing mathematical and dynamical
properties. For instance, pulse-coupled oscillator models with delayed interactions may
robustly exhibit unstable attractors [104, 105, 371, 372], i.e. invariant periodic orbits that
have a non-zero measure basin of attraction (Milnor attractors [267, 268]) but are locally
unstable. In the presence of noise, these systems exhibit a dynamics akin to heteroclinic
switching, a feature that may also have functional relevance for coding and computation
in neural systems [155, 17, 238, 237]. In ref. [16] it was shown that invertible systems
in general cannot have unstable attractors and that a saddle state can in principle be
converted to an unstable attractor by locally adding a non-invertible dynamics onto the
stable manifold. However, the potential relation of unstable attractors to heteroclinic
cycles is not well understood and it is unknown whether and how unstable attractors may
be created or destroyed via bifurcations.

In chapter 7 of the thesis we study partial reset models with delay and numerically and
analytically show the existence of two unstable attractors that are enclosed by the basin
of attraction of each other. We explain this counter-intuitive phenomenon: Changing
the partial reset continuously lifts a local non-invertibility of a system with two unstable
attractors and creates a standard heteroclinic two-cycle. This transition constitutes a new
type of bifurcation in hybrid dynamical systems.
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Chapter 5

Networks of Pulse-Coupled Threshold

Elements with Partial Reset

In this chapter we propose a general class of pulse-coupled threshold units with partial
reset and thereafter focus on units that oscillate intrinsically. Finally, motivation for and
a discussion on the validity of the partial reset models is given from a neuroscientific
perspective.

5.1 Pulse-Coupled Threshold Elements

Chapter 2.6 shows how the dynamics of single neurons can be approximated by single
variable threshold elements defined by eq. (2.6.1) and eq. (2.6.2). In chapter 2.7 we
saw how synaptic interactions between neurons can be described via pulse-coupling, eq.
(2.7.5).

We consider N threshold elements, which at time t are characterized by a single real
state variable ui(t) with i ∈ {1, 2, . . . , N}. In the absence of interactions the state variables
evolve freely according to the differential equation

d

dt
ui = F (ui) (5.1.1)

with a smooth function F : R → R specifying the intrinsic dynamics of the units. The free
dynamics are endowed with an additional nonlinear reset upon reaching a fixed threshold
θ from below

ui
(
t−
)
= θ ⇒ ui (t) = ρ (5.1.2)

where ρ < θ is the reset value and we used the notation ui (t±) = limsց0 ui (t± s). By an
appropriate shift and rescaling of the state variable and its dynamics we set ρ = 0 and
θ = 1 without loss of generality.

The units are pulse-coupled, i.e. the interactions only depend on the discrete time
events at times ts,i, s ∈ Z, when a neuron i crosses the threshold, i.e. ui (ts,i) ≥ θ. The
network dynamics is then governed by the system:

d

dt
ui = F (ui) +Q (ui)Pi (t) i ∈ {1, 2, . . . , N} (5.1.3)

together with the reset (5.1.2). Here

Pi(t) =

N∑

j=1

∑

s∈Z
εijKij (t− ts,i) (5.1.4)
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5.2 Partial Reset for δ-Pulse-Coupled Threshold Units

where εij is the connection weight from neuron j to i (cf. sec. 2.7.4). The Kij(t) are
causal (Kij(t) = 0 for t < 0) and normalized (

´∞
0
Kij(t)dt = 1) kernels characterizing,

together with the state dependent coupling function Q the unit’s response to a pulse at
time t = 0. The multiplicative form of the pulse coupling Q (ui)Pi (t) is motivated by eq.
(2.7.1). In writing (5.1.4) we have assumed linear additivity of the interactions which is
a good approximation at least for weak coupling (but cf. [264]).

Under weak conditions (e.g. Q(u) > 0 for all ρ ≤ u ≤ θ, see [3]) it is possible to
simplify eq. (5.1.3) to a constant coupling term Q (ui) = const. via the transformation

ûi(t) =
1

M

ˆ ui(t)

ρ

1

Q (u)
du M =

ˆ θ

ρ

1

Q (u)
du (5.1.5)

which yields
d

dt
ûi = F̂ (ûi) +

1

M
Pi(t) F̂ (ûi) =

1

M

F (ui (ûi))

Q (ui (ûi))
(5.1.6)

where ui (ũi) is determined by solving eq. (5.1.5) for ui.
Thus we may assume the following form of the dynamics

d

dt
ui = F (ui) + Pi (t) i ∈ {1, 2, . . . , N} (5.1.7)

where we have omitted the hats and absorbed the constant 1
M

into the synaptic weights
εij.

5.2 Partial Reset for δ-Pulse-Coupled Threshold Units

For δ-pulse-coupled threshold elements the response kernels Kij in eq. (5.1.4) are Dirac
δ-functions [44]

Kij(t) = δ (t− τij) (5.2.1)

with τij ≥ 0 representing a possible time delay for pulse transmission. In writing eq.
(5.2.1) we assume that the duration of the response of a unit i to an incoming pulse is

sufficiently small compared to the time scale τm = O
(

1
maxρ≤u≤θ|F (u)|

)

of the variations in

the state variable ui. For neurons this corresponds to the situation where the time scale
τsyn of the synaptic interactions (cf. eq. (2.7.7)) is much smaller than τm, i.e. τsyn ≪ τm.

Systems with δ-pulse-coupling are hybrid dynamical system [129] where the free con-
tinuous dynamics (5.1.1) is interrupted by discrete time dynamics at times ts,i due to a
pulse generating or spiking event si of unit i and at times tr,i,j by the pulse reception
events ri,j of unit j of a pulse generated by unit i.

5.2.1 Supra-Threshold Excitation and Absorption Rule

Using (5.2.1) in eq. (5.1.7), a pulse from unit i received by unit j at time tr,i,j causes a
change in the potential uj given by

uj (tr,i,j) = uj
(
t−r,i,j

)
+ εij (5.2.2)

If
uj
(
t−r,i,j

)
≥ θ − εij (5.2.3)
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III 5 Networks of Pulse-Coupled Threshold Elements with Partial Reset

a unit j crosses the threshold θ due to a pulse from neuron i and is said to receive supra-
threshold input . Since in this situation the unit crosses the threshold from below it fires
a pulse itself and has to be reset.

Previous models usually reset these units in the same way as if they reached the
threshold without this recurrent input, also referred to as the absorption rule (e.g. [269])

ui (t) ≥ θ ⇒ ui
(
t+
)
= ρ (5.2.4)

where the total supra-threshold input is lost. As a consequence two or more units initially
in different states ui and simultaneously receiving supra-threshold inputs will all be reset
to the same value ρ, making the absorption rule a strong instant synchronizing element
of the network dynamics.

An alternative considered in previous studies [229, 174] is total input conservation,

ui (t) ≥ θ ⇒ ui
(
t+
)
= ρ+ (ui (t)− θ) (5.2.5)

i.e. the total supra-threshold input charge ζ = ui (t)− θ is added to the potential ρ after
the reset.

5.2.2 Partial Reset

Here we propose a more general model where the reset value is given by a partial reset
function R(ζ) that depends on the supra-threshold input charge ζ = ui(t)− θ,

ui(t) ≥ θ ⇒ ui
(
t+
)
= ρ+R (ui(t)− θ) (5.2.6)

We assume that supra-threshold inputs only have excitatory effects and thus define:

Definition 5.2.1. A function R : R → R which is monotonically increasing and satisfies
R (0) = 0 is called a partial reset function.

For a linear partial response we set

Rc (ζ) = cζ (5.2.7)

with the remaining fraction 0 ≤ c ≤ 1 of supra-threshold input charge after the reset.
For c = 0 we recover the absorption rule (5.2.4) while c = 1 corresponds to total charge
conservation (5.2.5).

Motivation for this extension comes from neural networks. Neurons consist of function-
ally different compartments, including the dendrite and the soma. While synaptic input
currents are collected at the dendrite, the electrical pulses are generated at the soma.
Additional charges not used to excite a spike may stay on the dendrite and contribute to
the membrane potential after reset at the soma. Due to intra-neuronal interactions and
the reset at the soma a part of this supra-threshold input charge may be lost:

Definition 5.2.2. A partial reset function R is said to be neuronal, if 0 ≤ R(ζ) ≤ ζ for
all ζ ≥ 0.

We note that the partial reset is expansive if |φ− ψ| < |R (φ)−R (ψ)| for all φ and
ψ, which is in particular the case if |R′ (φ)| > 1 for all φ.
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5.2 Partial Reset for δ-Pulse-Coupled Threshold Units

5.2.3 The Avalanche Process

For instantaneous interactions, τij = 0, a pulse generated by unit j may lift other units
above threshold simultaneously. These then generate a pulse on their own and may push
further units above threshold, etc. This leads to an avalanche of pulses1 (cf. fig. 5.1):
Units reaching the threshold at time t due to the free time evolution define the triggering
set

Θ(0) =
{
j | uj

(
t−
)
= θ
}

(5.2.8)

The units j ∈ Θ(0) generate spikes which are instantaneously received by all the connected
units i in the network. In response, their potentials are updated according to

u
(1)
i := ui

(
t−
)
+
∑

j∈Θ0

εij (5.2.9)

The initial pulse may trigger certain other units k ∈ Θ(1) =
{

k | uk (t−) < θ ≤ u
(1)
k

}

to

spike, etc. This process continues n ≤ N steps until no new unit crosses the threshold.
At each step m ∈ {2, 3, . . . , n} the potentials are updated according to

u
(m+1)
i := u

(m)
i +

∑

j∈Θm

εij (5.2.10)

where
Θ(m) =

{

k | u(m−1)
k < θ ≤ u

(m)
k

}

The potentials immediately after the avalanche Θ =
⋃n

q=0Θ
(q) of size a = |Θ| are obtained

via

ui
(
t+
)
=

{

ui (t
−) +

∑

j∈Θ εij i /∈ Θ

ρ+R
(

ui (t
−) +

∑

j∈Θ εij − θ
)

i ∈ Θ
(5.2.11)

using the partial reset R for units having received supra-threshold inputs.2

The avalanche process and subsequent partial reset are illustrated in fig. 5.1. In chap.
5.3 we argue how these processes can be derived from underlying neuronal mechanism
and their time scale relations.

For non-zero partial reset functions potential differences of oscillators involved in a
single avalanche will in general not be fully synchronized after the reset. Thus despite
the fact that units are generating pulses simultaneously they can have different phases
afterwards. We therefore distinguish between phase synchrony where units have identical
phases and the weaker condition of pulse synchrony which corresponds to simultaneous
firing only but allows differences in the phases. When examining the system with a
higher time resolution phase synchronized units will stay synchronized whereas pulse
synchronized units fire within a short time interval.

1We note that avalanches of neuronal activity are observed in cortical networks [24] and studied in
connection with self-organized criticality [242].

2Note that there is an ambiguity in fixing the precise order of potential updates and resets during an
avalanche. Our choice is motivated by neuroscience for the situation where the time scale τap of the action
potential (and subsequent reset) is much faster than the time scale τsyn of the synaptic input currents.
These in turn should be faster than the time scale τref of the mechanism reducing the supra-threshold
input, e.g. the refractory period. Our model (5.2.11) then is the limit where all these time scales become
small compared to the time scale τm of the intrinsic interaction-free dynamics. See also sec. 5.3.1.
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III 5 Networks of Pulse-Coupled Threshold Elements with Partial Reset
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Figure 5.1. Model dynamics for instantaneous interactions. (a) sample traces of three units
with (i) network connectivity εji = εki > 0. (ii) At time t = t1 unit i reaches the threshold θ
and its membrane potential is reset to ρ. It generates a pulse which is send to the units j and
k. (iii) unit j receives the pulse and its membrane potential is increased to uj(t

−
1 ) + εji < θ,

the pulse is sub-threshold. (iv) unit k receives a supra-threshold pulse, uk(t
−
1 ) + εkj ≥ θ, its

membrane potential is reset to R(ζ) = R
(
uj(t

−
1 ) + εkj − θ

)
using the partial reset function R.

(b) sample avalanche process with Θ = {1, 2, 3} and n = 3 in a (i) N = 4 all-to-all network
εij = (1 − δij)ε. (ii) unit i = 1 reaches the threshold Θ(0) = {1} and sends a pulse to the

other units (arrows). Their potentials are updated to u
(1)
i = ui(t

−) + εi1, causing unit i = 2 to
generate a pulse, Θ(1) = {2}. (iii) the pulse is received by the other units yielding a potential

u
(2)
i = u

(1)
i + εi2 which brings unit i = 3 above threshold Θ(2) = {3}. (iv) the potentials become

u
(3)
i = u

(2)
i + εi3 and no further unit crosses the threshold, Θ(3) = ∅. (v) the avalanche stops

and units that received supra-threshold input are reset to ui(t) = ρ+R
(

u
(3)
i − θ

)

.

5.2.4 Phase Representation of Pulse-Coupled Oscillators with Par-

tial Reset

In the remainder of this chapter we will concentrate on units with strictly positive F > 0
in (5.1.1). Then the individual units become oscillatory as the strictly monotonically
increasing trajectory ui(t) of a unit i starting at ui(0) = 0 reaches the threshold after
a time T and is reset to zero again. By an appropriate rescaling of time we set T = 1.
Defining a phase like coordinate (cf. [269]) φi ∈ S1 = R/Z via

φi (t) = U−1 (ui (t)) :=

ˆ ui(t)

0

1

F (u)
du (5.2.12)

the interaction free dynamics simplify to

d

dt
φi(t) = 1 (5.2.13)

By definition U−1 is strictly monotonically increasing and has a strictly monotonically
increasing inverse U . By our choice of normalization they obey U−1 (0) = 0 = U (0)
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5.2 Partial Reset for δ-Pulse-Coupled Threshold Units

and U−1 (1) = 1 = U (1). Note that the function U (φ) captures the intrinsic rise of
the membrane potential towards the threshold and hence for the phases of the individual
units.

Definition 5.2.3. A smooth function U : [0,∞) → [0,∞) is called a rise function if it is
strictly monotonic increasing U ′ > 0 and is normalized to U (0) = 0 and U (1) = 1.

Definition 5.2.4. Given a rise function U and a partial reset function R we define for
ε ≥ 0 the (sub-threshold) interaction function Hε : [0, U

−1 (θ − ε)) → S1 by

Hε (φ) := H (φ, ε) := U−1 (U (φ) + ε) (5.2.14)

and the supra-threshold interaction function Jε : [U
−1 (θ − ε) ,∞) → S1 by

Jε (φ) := J (φ, ε) := U−1 (R (U (φ) + ε− θ)) (5.2.15)

The pulse-coupling in the potential representation eq. (5.2.11) after an avalanche Θ
at time t then carries over to the phase picture as

φi

(
t+
)
=







H
(

φi (t
−) ,

∑

j∈Θ εij

)

i /∈ Θ

J
(

φi (t
−) ,

∑

j∈Θ εij

)

i ∈ Θ
(5.2.16)

We remark that H−1
ε = H−ε.

5.2.4.1 Interaction Function and Phase Response Models

The interaction function H in (5.2.14) is related to the non-infinitesimal phase response
curve (3.4.9) via

z (φ, ε) = H (φ, ε)− φ (5.2.17)

Thus the rise function U may be also interpreted in a more general setting as defining
a phase response of a unit via eq. (5.2.14). From eq. (5.2.17) the infinitesimal phase
response (3.4.5) is given by

z (φ) = lim
ε→0

1

ε
(H (φ, ε)− φ) =

1
d
dφ
U (φ)

5.2.4.2 Rise Functions and Equivalence to Other Models

The integrate-and-fire neuron models introduced in chapter 2.6 show periodic firing for
sufficiently large input currents ie. For current based synapses isyn(t) = P (t) these models
are of the form (5.1.7) and their rise functions are easily determined from eq. (5.2.12).
For example for the leak integrate and fire model (2.6.4) we obtain

ULIF (φ) = veq
(
1− e−glTLIFφ

)
(5.2.18)

where TLIF = − 1
gl
ln (1− vl) is the non-normalized firing period of the non-interacting

neuron and veq = ie
gl
+ vl > 1 the equilibrium potential reached asymptotically if there

were no threshold and reset.
For conductance based synaptic currents isyn = gsyn (vsyn − u)P (t) we first have to

transform the system into the form (5.1.7) according to eq. (5.1.5). The general result is,
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Figure 5.2. Synchronizing and desynchronizing effects in pulse coupled-oscillator models. (a)
synchronization due to the absorption rule. A phase difference ∆φ− > 0 of two oscillators just
before the simultaneous arrival of a supra-threshold input pulse is reduced to ∆φ+ = 0. (b-c)
Depending on the curvature of the rise function U(φ) the phase difference ∆φ− is expanded
∆φ+ > ∆φ− or contracted ∆φ+ < ∆φ− on the simultaneous arrival of an excitatory pulse of
strength ε.

that if the rise function U for current based synapses is is known the conductance based
rise function UCB is given as

UCB (φ) =
ln
(
1− v−1

synU (φ)
)

ln
(
1− v−1

syn

) (5.2.19)

Rise functions for several integrate-and-fire models are derived in appendix B. Depending
on the IF model and coupling type convex, concave and sigmoidal shapes are possible
(cf. tab. B.1). Figure 5.2 shows how the curvature of the rise function synchronizes or
desynchronizes the phases of two units receiving simultaneous sub-threshold inputs.

For analytical investigations it is helpful to use a rise function originally introduced in
[269] and given by

Ub (φ) =
1

b
ln
(
1 +

(
eb − 1

)
φ
)

(5.2.20)

where b parametrizes the curvature of U . For b > 0 the function is concave (U ′′ < 0)
whereas for b < 0 it is convex (U ′′ > 0). In the limit b→ 0 it becomes linear Ub=0 (φ) = φ.
Ub has the important property that it yields an affine interaction function:

Hb (φ, ε) = ebεφ+
ebε − 1

eb − 1
(5.2.21)

for b 6= 0 and Hb=0 (φ, ε) = φ+ ε

5.3 Why Partial Reset?

In 1964 C.F. Stevens [351] already made a comment on the reset of a neuronal threshold
model [122] driven by synaptic input:

”Many neurophysiologists would have some additional reservations [...], the
most serious of which is probably the following: The model assumes that the
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5.3 Why Partial Reset?

neuron’s membrane potential is reset following each spike [...]. In physiological
terms this implies that the nerve impulse destroys all remaining postsynaptic
potentials.”

Here we show how the partial reset can be used to model these ”remaining postsynaptic
potentials” in pulse-coupled elements.

5.3.1 Time Scale Considerations

5.3.1.1 Time Scales in Neuronal Dynamics

Neuronal dynamics involve several mechanisms operating on different time scales [284]
(cf. also chap. 2). When approximating these dynamics with δ-pulse coupled threshold
elements there are five relevant time scales involved:

1. τm, the time scale of variations of the sub-threshold membrane potential due to the
intrinsic dynamics (cf. chap. 5.2),

2. τsyn, the time scale synaptic interactions (cf. chap. 2.7),

3. τap, the time scale for action potential generation and absolute refractoriness
(cf. chap. 2.3),

4. τref , the time scale for the relative refractory period (cf. chap. 2.3) and

5. τd, the time scale for transmission delays of spikes.

5.3.1.2 Validity of δ-Pulse-Coupled Threshold Models

Modeling neuronal dynamics via δ-pulse-coupled threshold elements (cf. chap. 5.2) both
the synaptic interaction and the action potential generation with subsequent reset of the
membrane potential are assumed to be fast compared to the sub-threshold membrane
potential dynamics, i.e.

τm ≫ τsyn and τm ≫ τap . (5.3.1)

Additionally we can assume
τm ≫ τref (5.3.2)

without loss of generality since otherwise the change of the response properties of the
neuron to synaptic inputs due to the refractoriness can be modeled by adjusting the
function Q in eq. (5.1.3).

In a δ-pulse-coupled model the Dirac-pulses exchanged between units (cf. (5.2.1))
represent the total charge transferred between pre- and postsynaptic neuron during the
synaptic interaction. Thus the integrated remaining synaptic input current after action
potential generation of the neuron is the supra-threshold input charge ζ in the pulse-
coupled model.

5.3.1.3 Partial Reset and Time Scale Relations for τsyn, τap and τref

The above conditions (5.3.1) and (5.3.2) leave the relations among τsyn, τap and τref un-
determined. However, as shown in the following three examples (cf. fig. 5.3), the precise
relations among these time scales determine the response of a neuron to the ”remaining
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Figure 5.3. Partial reset for time scales τap ≪ τsyn ≪ τref . Graph on the left shows the dynamics
of a δ-pulse-coupled threshold element receiving supra-threshold input and its subsequent partial
reset approximating the time resolved neuronal dynamics shown on the right. Green traces
show normalized membrane potential u, blue bar represents a Dirac δ-input pulse resembling
the integrated synaptic input current isyn of duration τsyn on the right. The fraction of the
integrated current, i.e. the charge, which lifts the membrane potential up to the firing threshold,
is represented in light blue. Due to action potential generation and refractory period of the neuron
further synaptic input, represented in dark blue, is effectively reduced to a charge represented
in red. Assuming that the relative refractoriness reduces the input current on average by a
constant factor c, a partial reset Rc, eq. (5.2.7) with 0 < c < 1 best resembles the detailed
neuronal dynamics.

postsynaptic potentials” after spike generation. If an accurate approximation of these neu-
ronal dynamics with a δ-pulse-coupled model is desired, this imposes restrictions on the
reset of a threshold unit receiving supra-threshold inputs, i.e. the partial reset function.

In the first example we assume that for the neurons under consideration the synaptic
interaction is much faster than the action potential generation:

τsyn ≪ τap . (5.3.3)

If the synaptic input is strong enough, the neuron is excited beyond the threshold and gen-
erates an action potential. In the absolute refractory period τap it is completely insensitive
to any remaining synaptic inputs that only last for the shorter time τsyn and hence has
no effect on the neuron. Since this current has no effect on the neuron a valid choice for
the partial reset function when modeling these detailed dynamics with a δ-pulse-coupled
is R = Rc=0 ≡ 0, i.e. the absorption rule (cf. eq. (5.2.4)) where all supra-threshold inputs
are lost.

In a second scenario we assume

τsyn ≫ τap and τsyn ≫ τref . (5.3.4)

In this situation the effect of action potential generation and refractory period of the
neuron on remaining synaptic input currents is negligible. Thus when approximating the
neuronal dynamics in this regime with δ-pulse-coupled threshold model, almost all supra-
threshold input charges will contribute to the membrane potential after reset and a partial
reset function close to R = id = Rc=1, i.e. total charge conservation (cf. eq. (5.2.5)), best
resembles the underlying dynamics.

The third example is concerned with time scales obeying the relations

τsyn ≫ τap and τsyn ≪ τref . (5.3.5)
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and is illustrated in fig. 5.3. Here if a neuron is forced to fire by synaptic inputs, remaining
input currents are not affected due the short absolute refractoriness but due to the longer
relative refractory period. In the relative refractory period of the neuron still a large
number of ion channels are open as a remainder of the action potential generation and
thus the membrane conductivity is increased. As a consequence synaptic input charges
will leave the cell without contributing to the membrane potential integration. Usually
the relative refractoriness of neurons varies in time, but for simplicity we here assume
that on average the synaptic inputs are reduced by a constant factor 0 ≤ r ≤ 1. We can
take into account this effect in δ-pulse-coupled models by using a partial reset with reset
function R = Rc using c = r.

Using the same arguments, validity of the avalanche mechanism in sec. 5.2.3 is obtained
for neuronal systems where the transmission delay τd is effectively zero, i.e. τd ≪ τm and
the time scale relations (5.3.5) for the neurons are satisfied. Additionally it has to be
assumed that the maximal duration τa of an avalanche involving all N neurons in the
network obeys

τa := N (τsyn + τd) ≤ τref ≪ τm . (5.3.6)

5.3.2 Spike Time Response

A sufficiently large tonic stimulus ie causes periodic spiking in many neuron models (cf.
chap. 2 and also part IV), i.e. they become a neuronal oscillator. The phase reduction
method (sec. 3.4) then reduces such oscillators to a phase variable and a phase response
function z that characterizes the change of the phase due to inputs. In particular, the
non-infinitesimal phase response z (φ, ε) (cf. (3.4.9) and also (5.2.17)) gives the asymptotic
phase change due to a stimulus of strength ε applied at a phase φ.

In this description the precise effect of the stimulus on the following spike times is
not accounted for. In particular supra-threshold synaptic inputs shortly before the spike
generation of the neuron, not only cause the neuron to fire earlier but also shorten the
following inter spike interval (ISI). To capture how total phase response is distributed
over the individual ISIs we introduce a spike time response (STR): Let T denote the
unperturbed ISI and write Ti, i ∈ {0, 1, 2, . . . } for the ith ISI after the perturbation, with
T0 being the ISI in which the perturbation of strength ε is applied at phase φ. Then the
ith spike time response curve z(i)sp is defined as

z(i)sp (φ, ε) :=
T − Ti
T

(5.3.7)

From this the phase response is recovered via

z (φ, ε) =

∞∑

i=0

z(i)sp (φ, ε) . (5.3.8)

This is illustrated in fig. 5.4a,b for the cortical neuron model eq. (2.4.5): A brief input
conductance a a later stage of the ISI not only shortens this one T0 < T but also the next
T1 < T . This effect is captured by the z(1)sp (φ, ε) attaining non-zero values close before
spiking of the neuron. For higher orders i ≥ 2 we find z(i)sp (φ, ε) = 0.

We can model this effect by a non-zero partial reset in a δ-pulse coupled oscillator
model. This is shown in fig. 5.4c,d where a good approximation to the spike time response
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Figure 5.4. Spike time response and partial reset. (a) membrane potential for the cortical
neuron model (2.4.5) with ie = 5nA (other parameter as in appendix D.4) shows periodic
spiking with T ≈ 65ms. A brief synaptic pulse into the dendrite of duration 1.5ms and strength
gsyn = 0.1mS forces the neuron to fire and shortens the actual ISI to T0 ≈ 53ms. In addition

also the next ISI is shorter T1 ≈ 57ms. (c) spike time response functions z
(0)
sp (bordeaux) and

z
(1)
sp (red) for the cortical neuron model. The dashed line (1 − φ) indicates instantaneous firing

after stimulus presentation. All responses z
(i)
sp i ≥ 2 are zero. (b) as in (a) using a pulse coupled

oscillator model with partial reset R (ζ) = 0.4
(

ζ
0.4

)1.3
and QIF rise function (B.1.3) (α = 1.3,

β = −0.7, vsyn = 2 ). (d) as in (b) for the QIF model in (c) with ε = 0.4 showing similar spike
time response functions to the cortical neuron model. Note that with absorption rule R ≡ 0 the

curve z
(1)
sp ≡ 0 would not capture the effect.

curves of the cortical neuron model is obtained using a non-zero, non-linear partial reset.
In general for a partial reset R and rise function U we have the identity

z(1)sp (φ, ε) = U−1 (R (U (φ) + ε− θ)) (5.3.9)

if the pulse is supra-threshold, i.e. U (φ) + ε ≥ θ. Moreover, the neuron fires instanta-
neously due to this input and hence z(0)sp (φ, ε) = 1− φ in this case. Note that in fig. 5.4b
the cortical neuron model does not fire instantaneously because the activation rates for
of the ionic currents are finite.

We also observed [204] non-zero z(1)sp (φ, ε) in two compartmental models of an active
soma and a passive dendrite as in eq. 2.5.1. Here only the soma is directly repolarized
after spike generation and remaining input charges on the dendrite contribute to the in-
tegration of the membrane potential in the next cycle. This is also observed in more
biophysically detailed compartmental models [250, 291] and captured in simpler two com-
partment integrate-and-fire neurons by resetting the somatic membrane after threshold
crossings only [38, 321].
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5.3.3 Theoretical Aspects

From the viewpoint of dynamical systems theory the analytical study of pulse-coupled
oscillator systems and their variations is an interesting topic in itself: The majority of
dynamical systems studied mathematically exhibit continuous interactions and most of the
theoretical framework and concepts that have been found to analyze, describe and classify
dynamical systems are based on the assumption of continuity or even differentiability [199].
Networks of δ-pulse-coupled units, which are dynamical systems with temporally discrete
and discontinuous interactions, are far less studied. Thus detailed analytical studies of
these systems may also help to develop general theoretical concepts in this area. For
example in pulse-coupled oscillator networks an event-based analysis has proven to be
useful [269, 333, 16]. In chapter 7 we extend this technique to an event-sequence-based
domain analysis.

Beside these general considerations, an open question in the theory of pulse-coupled
threshold elements is how the reset influences the collective network dynamics and in
particular synchronization. For example, after simultaneous supra-threshold excitation,
the absorption rule (5.2.4) has a strong synchronizing effect as shown in fig. 5.2. Via
a partial reset the response to supra-threshold inputs can be varied systematically and
implications for the collective network dynamics can be studied analytically. Furthermore,
an absorption rule introduces a non-invertibility into the pulse-coupled oscillator systems
as phases after an absorptive reset do not carry any information about their previous
state. In contrast, via a bijective partial reset function all information about the state
prior reset is kept and the system becomes invertible, at least locally. Consequences for
the dynamics of this aspect are subject to chapter 7.
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Chapter 6

Partial Reset and Collective Network

Dynamics – Sequential

Desynchronization Transition

In this chapter we study the impact of the partial reset mechanisms on the collective net-
work dynamics of pulse coupled oscillators when the interactions are instantaneous. We
concentrate on homogeneous networks. For concave rise functions we find synchronization
if the partial reset is not expanding and otherwise irregular dynamics. For convex and
sigmodial rise functions the partial reset controls a sequential desynchronization transi-
tion: An increase in the strength of the partial response induces a sequence of bifurca-
tions from states with large clusters of synchronously firing neurons, through states with
smaller clusters to completely asynchronous spiking. We also discuss key consequences of
this desynchronization mechanisms for biophysically more detailed systems.

6.1 Collective Network Dynamics – Numerical Results

To identify the effects of the partial reset on the collective network dynamics we here first
focus on homogeneous networks without interaction delays, τij = 0, consisting of N units
with all-to-all coupling and without self-interaction, i.e.

εij = (1− δij)ε (6.1.1)

i, j ∈ {1, 2, . . . , N}. We impose the condition
∑

j εij = (N − 1)ε < θ − ρ = 1 to avoid
self-sustained avalanches of infinite size.

6.1.1 Concave Rise Functions

We first briefly focus on networks consisting of oscillators with a strictly concave rise
function.

d2

dφ2
U (φ) < 0 (6.1.2)

resembling for example the dynamics of a LIF neuron eq. (5.2.18) or a conductance based
LIF neuron eq. (B.1.1) for parameter values vsyn > veq (cf. tab. B.1). We considered these
types of networks in detail in our earlier work [204].

Figure 6.1 shows a simulation of such a network using a strictly neuronal partial reset
with dynamics that converge towards a state of synchronous firing which is stable against
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Figure 6.1. Synchronization in homogeneous networks with concave rise function and strictly
neuronal partial reset. All-to-all coupled network (ε = 0.001) of N = 50 oscillators with rise
function Ub=1 and strictly neuronal partial reset R (ζ) = ζ. (a) oscillator phases φi (t

−
s ) just

before the sth spike of oscillator i = 1 at times ts. The system forms larger and larger groups of
synchronously firing neurons until finally a state of synchronous firing is reached, which is stable
against small perturbations (orange arrow). Inset: Although synchronous firing is reached the
phases are not fully synchronized but the maximal phase difference converges exponentially fast
towards zero. (b) avalanche sizes vs. time for the same dynamics: after a transient neurons
fire synchronously in a single avalanche of size N = 100. The inset shows the average times
〈Tsync〉 to reach synchronized firing for different values of the reset strength c (average over 100
simulations starting from random uniformly distributed initial phases).

small perturbations. Here larger and larger groups of synchronized neurons (clusters)
from until finally the system reaches the synchronized state. Numerically, we observe
stable synchrony for a variety of rise functions which are concave and partial resets that
are strictly neuronal. In particular, for the linear partial reset function Rc we observe
synchronization if c is chosen in [0, 1] as shown for c = 1 in fig. 6.1. The transient time
Tsyn needed to reach synchronous firing starting from random initial conditions depends
on the precise form of the partial reset. For Rc it scales almost linear with c (cf. inset fig.
6.1b). We note that during synchronized firing the precise phases values are typically not
fully synchronized as illustrated in the inset of fig. 6.1a. However, phase differences decay
exponentially and phase synchrony is reached asymptotically.

For a partial reset that is expanding synchronous firing is usually not reached. Instead
more complex periodically firing states are observed as shown in fig. 6.2. However when
increasing the concavity of the rise function sufficiently the network again reaches the
state of synchronous firing.

The analysis of Mirollo and Strogatz [269] shows that when the rise function is concave
(U ′′ < 0) and the absorption rule is used (R ≡ 0 but with a different avalanche process)
synchronization from almost all initial conditions is achieved. In fact, in our earlier work
[204] we gave a mathematical proof that their result can be generalized to the partial reset
model used here and any partial reset function R that is non-expansive (e.g. R′ ≤ 1).

For expansive R the stability of the synchronized stated depends strongly on the ex-
pansion rate of the partial reset, as shown in fig. 6.2. The synchronous firing state is
reached if the sub-threshold synchronization process compensates for the expansion of
the partial reset. If the expansion rate gets to strong the larger clusters get unstable and
we observe irregular spiking as shown in fig. 6.2. We also gave a detailed mathematical
analysis of this transition in [204] which showed that it is the result of an mutual inter-
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Figure 6.2. From synchronization to irregular dynamics in networks with concave rise functions
and expanding partial reset. Dynamics and phase diagram of a homogeneous network of N = 50
oscillators with coupling strength ε = 0.01, rise function Ub and partial reset Rp = Rp(ζ) =

(N − 1)ε
(

ζ
(N−1)ε

)p
with expansion parameter p. The insets show that the dynamics either

converges to the synchronized state (lower right b = 2.5, p = 2.5, phases φi (t
−
s ) as in fig. 6.1) or

to irregular spiking (upper left, b = 0.5, p = 2.75). The main plot shows beige dots at parameter
values p ∈ {1, 1.025, . . . 5} and b ∈ {0, 0.025, . . . , 3} where synchronized firing is reached after
106 spikes in 100 simulations starting from random initial conditions. The solid red line is the
analytical result obtained in our earlier work [204] that is solvable for the rise function Ub and

given by p = 1
ln(N−2

N−1)
ln

(
ln(eb(N−1)ε+eb(1−ε)−eb)

b(N−1)ε

)

. Black dots show the parameter values for the

insets.

action between the synchronization process due to the sub-threshold dynamics as in fig.
6.1 and the desynchronization due to an expanding partial reset.

6.1.2 Convex Rise Functions: A Sequence of Desynchronizing Bi-

furcations

In this section we concentrate on convex rise functions U , i.e.

d2

dφ2
U (φ) > 0 . (6.1.3)

This property holds for a large class of conductance based leaky-integrate-and-fire (LIF)
neurons and a class of quadratic-integrate-and-fire (QIF) neurons (cf. appendix B). Study-
ing convex rise functions is further motivated by the fact that for these rise functions we
already observe a rich diversity of collective network dynamics with a strong dependence
on the partial reset R. However, our results also apply to more general rise functions and
in particular to sigmoidal shapes (cf. sec. 6.7) as often found for neurons [100, 110].

Systematic numerical investigations indicate a strong dependence of the network dy-
namics on the partial reset R. In particular, we find synchronous states, cluster states,
asynchronous states and a sequential desynchronization of clusters when increasing the
partial reset strength, e.g. by increasing the parameter c when using R = Rc.
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Figure 6.3. Sequential desynchronization transition in a network of N = 50 neurons (U = Ub,
b = −3, ε = 0.0175). The phases φi of all neurons are plotted against the s-th spike of a reference
neuron. Starting from a synchronous state and perturbing at s = 5, the phase dynamics are

shown for (a) c1 = 0.025 < c
(N)
cr (inset: magnification), (b) c2 = 0.5 ∈

(

c
(N)
cr , c

(2)
cr

)

and (c) c3 =

0.7 > c
(2)
cr . (d) probability P(a) of observed cluster sizes a in the asymptotic dynamics of 1500

simulations for each c ∈ {0, 0.0125, . . . , 1} starting from random phases uniformly distributed
in [0, 1). red line: exact theoretical prediction (6.6.1) above which clusters are unstable. The

interval
(

c
(N)
cr , c

(2)
cr

)

constitutes the sequential transition region. The gap in the probability

distribution for small c and large cluster sizes is explained by lemma 6.4.2.

Starting in the synchronized state and then applying a small perturbation to the
phases we observe that the synchronized state is stable for sufficiently small c (fig. 6.3a).
When increasing the partial reset strength the synchronized state becomes unstable and
we observe smaller clusters in the asymptotic network dynamics (fig. 6.3b) where the
final cluster state depends on the precise form of the perturbation. The maximally ob-
served cluster sizes depend on the value of c (fig. 6.3d). For sufficiently large c only the
asynchronous splay state, i.e. a state with maximal cluster size a = 1 , is observed (fig.
6.3c).

Starting from random initial conditions we find that for sufficiently small c the syn-
chronous state coexists with a variety of cluster states and the asynchronous state. In-
creasing c, the states involving larger clusters become unstable until finally all random
initial conditions lead to the asynchronous state.

What is the origin of this rich repertoire of dynamics and which mechanisms control the
observed transition of sequential desynchronizing bifurcations? To answer these questions,
we analytically investigate the existence and stability of periodic states involving clusters
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of arbitrary sizes a ≤ N . The following analysis reveals that the sequence of bifurcations
is controlled by two effects: sub-threshold inputs that are always synchronizing and supra-
threshold inputs that are either synchronizing or desynchronizing depending on the partial
reset strength.

6.2 Strategy of the Analysis

We split up our analysis of the dynamics into two parts. First we assume that all
avalanches are invariant, i.e. the given clusters do not decay into smaller sub-clusters.
This assumption allows to group all oscillators firing in a single avalanche together into
a single “meta-oscillator” with increased firing strength and an effective self-interaction.
The analysis of the homogeneous all-to-all network (εij = (1− δij)ε) of N oscillators with
avalanche sizes as, s ∈ {1, 2, . . . , m}, ∑s as = N then reduces to analyzing a network of
m meta-oscillators with coupling strengths

εij = (1− δij)εi + δijεii (6.2.1)

and εi = aiε, εii = (ai−1)ε. Thus we employ symmetry and reduce the analysis of cluster
states to the dynamics of the corresponding quotient network [132].

In a second step we derive conditions under which an avalanche of a certain size will
indeed not decay into smaller groups.

6.3 Notations: State Space, Firing and Return Map

A state of a network of N pulse-coupled oscillators is completely specified by a phase
vector

Φ = (φ1, φ2, . . . , φN) ∈ X = T
N = S1 × · · · × S1

︸ ︷︷ ︸

N times

(6.3.1)

where φi ∈ S1 = R/Z are the phases of the individual units. Since the time evolution in
between avalanches is a pure phase shift (5.2.13) it is convenient to consider a Poincare
section P of TN with states just before the firing of one or more oscillators, i.e.

P =
{
Φ ∈ T

N | ∃j ∈ {1, . . . , N} , φj = 1
}
. (6.3.2)

It is convenient to relabel the oscillators after each avalanche such that 1 = φ1 ≥ φ2 ≥
. . . φN−1 ≥ φN > 0. To specify the state of the network completely the permutation
π−1 used for relabeling of the oscillators is remembered. The largest phase φ1 = 1 thus
belongs to the oscillator i = π(1), the second largest φ2 to i = π(2), etc. Thus an
equivalent description of the state space P is given by

Pp =
{
((φ2, . . . , φN) , π) ∈ SN−1 × SN | 1 ≥ φ2 ≥ . . . φN−1 ≥ φN ≥ 0

}
(6.3.3)

Here SN is the group of all permutations of N elements. We use the convention that all
index labels i are taken modulo the network size N , e.g. labels i and i + N denote the
same oscillator.

The Poincare map of the network dynamics for the Poincare section P is the firing-
map K that maps the state Φ ∈ P of the network just before the s-th firing time ts of an
avalanche to the state just before the next avalanche that occurs at time ts+1:

K
(
Φ
(
t−s
))

= Φ
(
t−s+1

)
∈ P (6.3.4)
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Having determined the next avalanche Θ from a state Φ ∈ P, the map K is a composition
of the avalanche map (5.2.16) and a subsequent shift of all phases by σ to a state in P.
Note that the firing map is fully determined by the pair (Θ, σ) which is a function of Φ.
We denote a phase shift of size σ by

S (φ, σ) := Sσ (φ) := φ+ σ (6.3.5)

The equivalent firing map acting on the state space Pp is denoted by Kp. For the phase
part we write

Kp
Φ

((

ψ
(0)
2 , . . . , ψ

(0)
N

)

, π(0)
)

=
(

ψ
(1)
2 , . . . , ψ

(1)
N

)

.

To track the network dynamics we consider a mapping of the state just before a fixed
reference oscillator k fires in an avalanche at time tr to the state just before this oscillator
fires again at tr+1:

M
(
Φ
(
t−r
))

= Φ
(
t−r+1

)
(6.3.6)

M is called the return-map and is the Poincaré return map of the system on the section
{Φ ∈ P | φk = 1}. Again the equivalent return map acting on Pp is denoted by Mp. The
number m of avalanches occurring in the application of the return map is a function of
the initial phase vector Φ = Φ (t−r ) and thus the return map M is a composition of m
firing maps K. Hence M is completely specified by an ordered firing sequence

F = F (Φ) = {(Θs, σs)}ms=1 (6.3.7)

where the pairs (Θs, σs) specify the avalanche set Θs and subsequent shift σs of the s-th
firing map.

Given a firing sequence (6.3.7), we set as = |Θs| and in the case of homogeneous
networks with coupling (6.1.1), εs = asε. A composition of shift and interaction maps is
denoted as

m⊙

s=1

(Sσs ◦Hεs) (φ) := Sσm ◦Hεm ◦ Sσm−1 ◦Hεm−1... ◦ Sσ2 ◦Hε2 ◦ Sσ1 ◦Hε1 (φ) (6.3.8)

6.4 Existence and Stability of Asynchronous Periodic

States in Meta-Oscillator Networks

Definition 6.4.1. An asynchronous periodic state of a network of N pulse-coupled oscil-
lators is a state Φ ∈ P which is invariant under the return map, i.e. M (Φ) = Φ, and with
avalanche sizes as = 1, s ∈ {1, 2, . . . , N}, i.e. each oscillator generates a pulse separately.

Initially assume that all clusters stay forward invariant, i.e. do not decay in to smaller
sub-clusters during the network dynamics (cf. sec. 6.2) and thus consider networks of meta-
oscillators with effective coupling matrix (6.2.1). A periodic cluster state in the original
model thus becomes an periodic asynchronous state in the reduced effective meta-oscillator
network. In the following we derive conditions for the existence of the asynchronous state
and its stability in a meta-network.

Lemma 6.4.2. Consider a network (5.2.13)-(5.2.16) of N oscillators with pulse coupling
matrix (6.2.1) and neuronal partial reset. Let Σ = (σ1, . . . , σN) ∈ R

N and define L :
R

N × S1 → R
N by

Li(Σ, φ) :=

N+i−1⊙

s=i+1

(Sσs ◦Hεs) ◦ Sσi
◦ Jεii(φ)
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for i ∈ {1, 2, . . . , N}. Then the asynchronous state exists if and only if there is a solution
Σ∗ ∈ R

N to the equation
L(Σ, 1) = (1, 1, . . . , 1) (6.4.1)

that satisfies σ∗
r > 0 for all r ∈ {1, 2, . . . , N}.

Proof. Assume there is a solution Σ∗, σ∗
i > 0. Set

φ∗
1 = 1, φ∗

i =
(

H−1
ε1 ◦ S−1

σ∗
1

)

◦
(

H−1
ε2 ◦ S−1

σ∗
2

)

◦ · · · ◦
(

H−1
εi−1

◦ S−1
σ∗
i−1

)

(1)

for i ∈ {2 . . . , N}. Using that Σ∗ is a solution to (6.4.1) we have
⊙N−1

r=1

(
Sσ∗

r
◦Hεr

)
◦

Sσ∗
N
◦ JεNN

(1) = 1 and φ∗
N = Sσ∗

N
◦ JεNN

(1) > 0 since σ∗
N > 0. Further using εi > 0

and σ∗
r > 0 the phases are ordered according to φ∗

1 = 1 > φ∗
2 > · · · > φ∗

N > 0 and
Φ∗ = (φ∗

1, φ
∗
2, . . . , φ

∗
N) ∈ P.

Starting from the state Φ∗ the first pulse of oscillator i = 1 results in potentials
u
(1)
1 = R (ε11), u

(1)
i = U (φ∗

i ) + ε1, i ∈ {2, 3, . . . , N}. Since R (εii) ≤ εii ≤ εi < εi + U(φ)

for all φ > 0 and Hεi(φ) < Hεi(ψ) for φ < ψ we have u(1)1 < u
(1)
N < u

(1)
N−1 < · · · < u

(1)
2 .

Further

u
(1)
2 = U (φ∗

2) + ε1 = U
((

H−1
ε1 ◦ S−1

σ∗
1

)

(1)
)

+ ε1 = U (1− σ∗
1) < 1

as σ∗
1 > 0. Thus oscillator i = 1 fires without triggering any further oscillators yielding

an avalanche set Θ1 = {1}. In addition the oscillators have to be shifted by σ∗
1 to

obtain φ2 = 1. Thus the first pair in the firing sequence is ({1} , σ∗
1). Applying the

same arguments to the new phases Φ∗(1) = K (Φ∗) yields ({2} , σ∗
2) for the second pair.

Repeating these steps N times one obtains a firing sequence

F (Φ∗) = {({r} , σ∗
r)}Nr=1

Thus

Mi (Φ
∗) =

N⊙

r=i+1

(
Sσ∗

r
◦Hεr

)
◦ Sσ∗

i
Jεii ◦

i−1⊙

r=1

(
Sσ∗

r
◦Hεr

)
(φ∗

i )

=
N⊙

r=i+1

(
Sσ∗

r
◦Hεr

)
◦ Sσ∗

i
Jεii(1)

=
(

H−1
ε1

◦ S−1
σ∗
1

)

◦
(

H−1
ε2

◦ S−1
σ∗
2

)

◦ · · · ◦
(

H−1
εi−1

◦ S−1
σ∗
i−1

)

(1)

= φ∗
i

using (6.4.1) in the third row. Hence M (Φ∗) = Φ∗ and the asynchronous state Φ∗ is
invariant under the return map.

Conversely a periodic asynchronous state yields a solution to (6.4.1), since each oscil-
lator fires separately and thus there are a phase shifts σi > 0 after each pulse generation
of the oscillators i ∈ {1, 2, . . . , N}. Invariance of the periodic asynchronous state then
shows that in fact Σ = (σ1, σ2, . . . , σN) is a solution to (6.4.1). Hence there is no periodic
asynchronous state if the solution does not exist. If there is a solution with σ∗

i ≤ 0, let s
be the smallest index such that σ∗

s ≤ 0. Starting in the state Φ∗ the first firing of oscillator
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i = s will cause oscillator i = s+1 to fire in the same avalanche since its potential at this
point is given by

u
(1)
s+1 = U

[
s−1⊙

r=1

(
Sσ∗

r
◦Hεr

) (
φ∗
s+1

)

]

+ εs

= U
[
H−1

εs ◦ S−1
σ∗
s
(1)
]
+ εs = U (1− σ∗

s) ≥ 1

i.e. {s, s+ 1} ⊂ Θs and the system is not in a periodic asynchronous state.

Corollary 6.4.3. In a network (5.2.13)-(5.2.16) of N oscillators with homogeneous all-
to-all coupling matrix (6.1.1) an asynchronous (splay) state exists.

Proof. Let

L(σ) :=

N−1⊙

s=1

(Sσ ◦Hε) ◦ Sσ ◦ J0(1)

Now since L(0) = U−1 (ε(N − 1)) < 1 and ∂
∂σ
L(σ) ≥ 1 the intermediate value theorem

ensures the existence of a σ∗ > 0 satisfying L (σ∗) = 1. Σ∗ = (σ∗, . . . , σ∗) is a solution to
(6.4.1). As εii = 0, no oscillator receives supra-threshold input in the asynchronous state,
i.e. ζ = 0, and this result is independent of the partial reset function R as R (0) = 0 (cf.
definition 5.2.1).

In fig. 6.3 we observe no cluster states involving avalanches of size 43 to 49. This
is precisely because (6.4.1) has no solutions when setting εi = aiε, εii = (ai − 1)ε for
a1 ∈ {43, 44, . . . , 49} and any further 0 < ai ∈ N, i ≥ 1 and m such that

∑m
s=1 as = 50.

Note that lemma 6.4.3 holds for any rise function U . If there are q different positive
solutions to (6.4.1) there coexist q different periodic asynchronous states. A convex U
ensures that the solution is unique because L (Σ, 1) then becomes invertible for all Σ ∈ R

N .
A further consequence of the convexity is that given the existence of an asynchronous

state in a meta-oscillator network it is linearly stable as the following theorem shows:

Theorem 6.4.4. Consider a network (5.2.13)-(5.2.16) of N oscillators with pulse cou-
pling matrix (6.2.1) and neuronal partial reset. If a periodic asynchronous state exists it
is linearly stable.

Proof. Existence of the asynchronous state (Φ∗, id) ∈ Pp with Φ∗ = (φ∗
2, . . . , φ

∗
N) implies

invariance under the return map Mp,

Mp (Φ∗, id) = (Φ∗, id) (6.4.2)

For the intermediate states we set
(
Φ(s), π(s)

)
:= (Kp)s (Φ∗, id) s ∈ {0, 1, 2, . . . , N}

If oscillator i generates a pulse all oscillators j 6= i receive the same input εi and oscillator
i receives an input εii ≤ εi. Hence, using R(ζ) ≤ ζ , we find that the oscillators do not
change their firing order and π(s) is a cyclic permutation to the left π(s)(i) = i− s.

We show that the asynchronous state is linearly stable: Adding a perturbation ∆(0) =(

δ
(0)
1 , ..., δ

(0)
N−1

)

to the asynchronous state such that initially the phases are given by

Ψ(0) :=
(

φ
(0)
1 , ..., φ

(0)
N−1

)

= Φ∗ +∆(0)
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We take the perturbation to be sufficiently small such that the oscillators still fire asyn-
chronously, i.e. the avalanches are of size as = 1 and the order of the events is preserved.

In the following, terms of order O
((

∆(0)
)2
)

are neglected which we indicate by a dot

above the equality sign (
.
=). After s firing events the phases are

Ψ(s) = Kp
Φ

(
Ψ(s−1), π(s−1)

) .
= Kp

Φ

(
Φ(s−1), π(r−1)

)
+∆(s) = Φ(s) +∆(s)

where
∆(s) = A(s)∆(s−1)

is the phase perturbation before the next firing and A(s) is the Jacobian matrix of Kp
Φ at

(
Φ(s−1), π(s−1)

)

A
(s)
ij =

dKp
i

dφj

(
Φ(s−1), π(s−1)

)
. (6.4.3)

Setting σ = 1−H
(
ψ2, επ(1)

)
the phase part of the firing-map for N ≥ 3 is

K
p
Φ (Ψ, π) =









H
(
ψ3, επ(1)

)
+ σ

H
(
ψ4, επ(1)

)
+ σ

. . .
H
(
ψN , επ(1)

)
+ σ

J
(
1, επ(1)π(1)

)
+ σ









T

(6.4.4)

Inserting (6.4.4) into (6.4.3) gives

A(s) =











−a(s)2 a
(s)
3 0 . . . 0

−a(s)2 0 a
(s)
4

. . .
...

...
...

. . . . . . 0

−a(s)2 0 . . . 0 a
(s)
N

−a(s)2 0 . . . 0 0











(6.4.5)

with

a
(s)
i =

d

dφ
Hεs

(

φ
(s−1)
i

)

=
U ′
(

φ
(s−1)
i

)

U ′
(

Hεs

(

φ
(s−1)
i

)) (6.4.6)

Since εj > 0 it follows that Hεj (φ) = U−1 (U(φ) + εj) > φ. Thus a(s)i < 1 since U is
convex. Also U ′ > 0 and hence

0 < a
(s)
i < 1 (6.4.7)

Now the Eneström-Kakeya theorem (cf. appendix A and [178]) applied to the matrix A(s)

shows that with these properties the spectral radius ρ
(
A(s)

)
of A(s) satisfies

ρ
(
A(s)

)
≤ r(s) = max

i∈{1,...,N−1}
a
(s)
i < 1

Thus

∥
∥∆(nN)

∥
∥ =

∥
∥
∥
∥
∥

(
N∏

r=1

A(s)

)n

∆(0)

∥
∥
∥
∥
∥
≤

N∏

r=1

ρ
(
A(s)

)n ∥
∥∆(0)

∥
∥→ 0 as n→ ∞ (6.4.8)

and the asynchronous state is linearly stable. For N = 2, ρ
(
A(s)

)
= a2 < 1.
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Figure 6.4. Stability of the asynchronous state (theorem 6.4.4). (a) graph of a network of N = 2
oscillators with connectivity εij = (1− δij) εj with 0 < ε2 < ε1. (b) firing of oscillator i = 1. For

the oscillator i = 2 with initial phase ψ
(0)
2 = φ

(0)
2 +δ(0) smaller than in the invariant asynchronous

state φ
(0)
2 (gray) the input advances the phase ψ

(0)
2 more in comparison with the advance of φ

(0)
2

in the asynchronous state due to the convexity of the rise function U . (c) after the interaction
a subsequent shift completes the firing map K. In total the derivation from the asynchronous
state δ(1) has become smaller. (d) firing of oscillator i = 2. Phases which are perturbed to
larger values than the asynchronous state are less advanced by inputs due to convexity of the
rise function. (d) in total the return map M decreases the phase perturbations

∣
∣δ(2)

∣
∣ <

∣
∣δ(0)

∣
∣.

These stabilizing dynamics of the asynchronous state due to the convexity of the rise function
generalizes to larger networks as proven in theorem 6.4.4.

This result is illustrated in fig. 6.4: Due to the convexity of the rise function oscillators
perturbed to larger (smaller) phases compared to the asynchronous state are less (more)
advanced by input pulses pulling the perturbed phases back to the invariant asynchronous
dynamics.

Combining corollary 6.4.3 and theorem 6.4.4 we obtain:

Corollary 6.4.5. In a network (5.2.13)-(5.2.16) of N oscillators with homogeneous all-
to-all coupling matrix (6.1.1), neuronal partial reset R and convex rise function U the
periodic asynchronous (splay) state exists and is linearly stable.

6.5 Impact of Partial Reset on Intra-Cluster Stability

In the state of synchronous firing all units in an all-to-all coupled network receive a
supra-threshold input pulse of strength (N − 1) ε suggesting a rather strong influence of
the partial reset R onto the network dynamics. Indeed, as shown in fig. 6.3 for the partial
reset Rc one observes a sequential destabilization of clusters starting at large cluster sizes
when increasing the reset strength c. In this subsection we study this behavior analytically
and explain the observed transition. The strategy is to focus on a single cluster of size a1
and derive general conditions which ensure the stability of this cluster under the return
map. As the return map depends on the firing sequence F we use best- and worst-case
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III 6 Partial Reset and Collective Network Dynamics – Sequential Desynchronization

scenarios to obtain bounds for the stability of cluster states. We introduce a property of
a rise function that allows to estimate the worst and best-case return maps by simpler
return maps that do not depend on all details of the firing sequence F . For a special class
of rise functions we find that a full analytical treatment is possible.

Definition 6.5.1. A firing sequence F is admissible if there is a state Φ ∈ S which
has firing sequence F = F(Φ). It is further called trigger invariant if for the oscillators
i ∈ Θ

(0)
1 = {j ∈ {1, 2, . . . , N} | φj = 1} triggering the first avalanche of the state Φ =

(φ1, . . . , φN) (cf. (5.2.8)) the return map satisfies Mi(Φ) = 1. Thus for a trigger invariant
firing sequence F with m intermediate avalanches Θ

(0)
1 ⊂ Θ

(0)
m+1. The set of all trigger

invariant firing sequences is denoted by T . The subset of F ∈ T with initial avalanche
size a1 = |Θ1| is denoted by Ta1 .

Let us focus on a single avalanche of size a1 in the network dynamics. To ensure that
all units in this avalanche fire together again after the return map is applied all units in
this avalanche which were triggered to fire by a ∈ {1, 2, . . . , a1 − 1} preceding spikes i.e.
with phases in

ITa =
[
U−1 (1− aε) , 1

]

have to be triggered again after applying the return map. Given a firing sequence F =
{(εr, σr)}mr=1 the return map for oscillators i ∈ Θ1 in the first avalanche is given by

MF (φ) =
m⊙

r=2

(Sσr ◦Hεr) ◦ Sσ1 ◦ Jε1 (φ)

Hence the conditions
MF

(
ITa
)
⊂ ITa (6.5.1)

for all a ∈ {1, . . . , a1 − 1} and all admissible firing sequences F ∈ Ta1 ensure a cluster
of size a1 to not split up under return. By finding the most synchronizing and most
desynchronizing firing sequences F ∈ Ta1 , i.e. the best- and worst-case scenarios these
conditions yield upper and lower bounds for the stability of a cluster of size a1 under the
return map:

Lemma 6.5.2. Consider a network (5.2.13)-(5.2.16) of N oscillators with homogeneous
all-to-all coupling matrix (6.1.1).

Set
wa1

a = inf
F∈Ta1

MF
(
U−1 (1− aε)

)

and
ba1a = sup

F∈Ta1
MF

(
U−1 (1− aε)

)

Then the conditions
wa1

a ≥ U−1 (1− aε) (6.5.2)

for a ∈ {1, 2, . . . , a1 − 1} are sufficient and

ba1a ≥ U−1 (1− aε) (6.5.3)

are necessary for a cluster of size a1 to be invariant under return.
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Figure 6.5. Rise functions with increasing change (icpd) and no change of phase differences.
(a-c) icpd rise function. An initial phase difference ∆(0) changes to ∆(1) after applying a combi-
nation of interaction maps Hεr (blue) of total strength ε =

∑m
r=1 εr and shifts Sσr (green) such

that the final maximal phase values are identical. (a) for icpd rise functions the difference ∆(1)

is the smallest when the interaction is applied in total before the shifts, i.e. Hε ◦ Sσl
and (c)

largest when applied after the shifts Sσu ◦ Hε. (b) All other maps
⊙m

s=1 (Hεs ◦ Sσs) produce
phase differences which lie in between these extremal values (cf. lemma 6.5.4). (d-f) the rise
function Ub is icpd and dcpd, i.e. the phase difference ∆(1) is independent of the order in which
the interactions and shifts are applied.

Proof. ∂
∂φ
MF (φ) > 0 and thus conditions (6.5.1) are equivalent to

MF
(
U−1 (1− aε)

)
≥ U−1 (1− aε)

for a ∈ {1, 2, . . . , a1 − 1} and all admissible F ∈ Ta1 .

Finding the wa1
a and ba1a for general U and R can be done numerically using opti-

mization techniques. However, there are two classes of rise functions (cf. definition 6.5.3
below) which allow further analytical investigation as the effect of their worst- and best-
case return maps can be estimated. Most of the commonly used rise functions, as e.g.
the rise function of the LIF neuron or the conductance based LIF neuron fall into one of
these classes (cf. appendix B).

The idea is to study the change of phase differences due to the application of the
interaction function. Two oscillators initially at phases φ and φ+∆φ receiving a pulse of
strength ε will have a new phase difference

∆H (φ,∆φ, ε) := Hε (φ+∆φ)−Hε (φ) (6.5.4)

where the domain of ∆H is given by

D :=
{
(φ,∆φ, ε) | 0 ≤ ε ≤ 1, 0 ≤ φ ≤ 1, 0 ≤ ∆φ ≤ U−1 (1− ε)− φ

}
.

Definition 6.5.3. A rise function U is increasing the change of phase differences (icpd)
iff

∂

∂φ
∆H (φ,∆φ, ε) ≥ 0 for all (φ,∆φ, ε) ∈ D . (6.5.5)
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Conversely, it is decreasing the change of phase differences (dcpd) iff

∂

∂φ
∆H (φ,∆φ, ε) ≤ 0 for all (φ,∆φ, ε) ∈ D . (6.5.6)

As shown in appendix B.2 the icpd (dcpd) property is related to the third derivative
of U . If the rise function is icpd or dcpd the change in phase differences after application
of the return map can be bounded as show in the following lemma and illustrated in fig.
6.5a-c for icpd rise functions.

Lemma 6.5.4. Let εr, σr ≥ 0, r ∈ {1, 2, . . . , m}, ε =∑m
r=1 εr, σl ≥ 0. Choose a σu ≥ 0

such that
m⊙

r=1

(Sσr ◦Hεr) (φ) ≤ Hε ◦ Sσu (φ) .

and let φ ≥ ψ. Then for an icpd rise function U

Sσl
◦Hε (φ)− Sσl

◦Hε (ψ) ≤
m⊙

r=1

(Sσr ◦Hεr) (φ)−
m⊙

r=1

(Sσr ◦Hεr) (ψ)

≤ Hε ◦ Sσu (φ)−Hε ◦ Sσu (ψ) (6.5.7)

For U that is dcpd (6.5.7) holds replacing ≤ with ≥.

Proof. Consider icpd rise functions first: To show the first inequality of eq. (6.5.7) we use
induction on m. The statement is clearly true for m = 1. Assume it is true for m ≥ 1
then

Sσl
◦Hε (φ)− Sσl

◦Hε (ψ)

=Hεm+1 ◦Hε−εm+1 (φ)−Hεm+1 ◦Hε−εm+1 (ψ)

=∆H
(
Hε−εm+1 (ψ) , Hε−εm+1 (φ)−Hε−εm+1 (ψ) , εm+1

)

≤∆H

(

Hε−εm+1 (ψ) ,
m⊙

r=1

(Sσr ◦Hεr) (φ)−
m⊙

r=1

(Sσr ◦Hεr) (ψ) , εm+1

)

≤∆H

(
m⊙

r=1

(Sσr ◦Hεr) (ψ) ,

m⊙

r=1

(Sσr ◦Hεr) (φ)−
m⊙

r=1

(Sσr ◦Hεr) (ψ) , εm+1

)

=

m+1⊙

r=1

(Sσr ◦Hεr) (φ)−
m+1⊙

r=1

(Sσr ◦Hεr) (ψ)

where we used the induction hypothesis and ∂
∂∆φ

∆H > 0 (cf. (6.5.4)) in the third, and in
the fourth again the icpd property and the fact that Hε−εm+1 (ψ) ≤

⊙m
r=1 (Sσr ◦Hεr) if

∑m+1
r=1 εr = ε, σi ≥ 0. Substituting ≤ with ≥ we obtain the result for dcpd rise functions.
For the second inequality we also use induction over m. The statement is trivially

true for m = 1. Let it be true for m ≥ 1 and let σu ≥ 0 such that
⊙m+1

r=1 (Sσr ◦Hεr) (φ) ≤
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Hε ◦ Sσu (φ). Then

Hε◦Sσu (φ)−Hε ◦ Sσu (ψ)

= Hεm+1 ◦Hε−εm+1 ◦ Sσu (φ)−Hεm+1 ◦Hε−εm+1 ◦ Sσu (ψ)

= ∆H
(
Hε−εm+1 ◦ Sσu (ψ) , Hε−εm+1 ◦ Sσu (φ)−Hε−εm+1 ◦ Sσu (ψ) , εm+1

)

≥ ∆H

(

Hε−εm+1 ◦ Sσu (ψ) ,

m⊙

r=1

(Sσr ◦Hεr) (φ)−
m⊙

r=1

(Sσr ◦Hεr) (ψ) , εm+1

)

≥ ∆H

(
m⊙

r=1

(Sσr ◦Hεr) (ψ) ,

m⊙

r=1

(Sσr ◦Hεr) (φ)−
m⊙

r=1

(Sσr ◦Hεr) (ψ) , εm+1

)

=

m+1⊙

r=1

(Sσr ◦Hεr) (φ)−
m+1⊙

r=1

(Sσr ◦Hεr) (ψ)

where in the third row we used the implication

m+1⊙

s=1

(Sσs ◦Hεs) (φ) ≤ Hε ◦ Sσu (φ) ⇒
m⊙

s=1

(Sσs ◦Hεs) (φ) ≤ Hε−εm+1 ◦ Sσu (φ) (6.5.8)

to apply the induction hypothesis. In the fourth row we again used ∂
∂∆φ

∆H > 0, eq.
(6.5.8) and the icpd property. Substituting ≥ with ≤ we obtain the result for dcpd rise
functions.

Using the previous result we can estimate the effect of worst and best case return maps
on avalanches of a certain size and thus determine bounds on the network parameters
which ensure invariance or decay of states that involve these cluster sizes:

Theorem 6.5.5. Consider a homogeneous excitatory all-to-all network of N pulse-coupled
oscillators evolving according to (5.2.13)-(5.2.16) with neuronal partial reset R.

For icpd rise functions U the conditions

U−1 (R ((a1 − 1)ε))− U−1 (R ((a1 − 1)ε− aε)) ≤ (6.5.9)

U (1− (N − a1)ε) −U−1 (1− (N − a1)ε− aε)

for all a ∈ {1, 2, . . . , a1 − 1} are sufficient to ensure the invariance of an a1-avalanche
under return. Necessary conditions are

U−1 (R ((a1 − 1)ε) + (N − a1)ε) −U−1 (R ((a1 − 1)ε− aε) + (N − a1)ε)

≤ 1− U−1 (1− aε) . (6.5.10)

Likewise for dcpd rise functions U sufficient conditions are (6.5.10) and necessary condi-
tions (6.5.9) for an a1-avalanche to not split up under return.

Proof. To prove the theorem we use lemma 6.5.4 and find for an icpd rise function and
F ∈ Ta1

MF (1) − MF
(
U−1 (1− aε)

)

=
m⊙

r=2

(Sσr ◦Hεr) (Sσ1 ◦ Jε1 (1))−
m⊙

r=2

(Sσr ◦Hεr)
(
Sσ1 ◦ Jε1

(
U−1 (1− aε)

))

≤ H(N−a1)ε ◦ Sσu ◦ Jε1 (1)−H(N−a1)ε ◦ Sσu ◦ Jε1
(
U−1 (1− aε)

)

= 1−H(N−a1)ε ◦ Su ◦ Jε1
(
U−1 (1− aε)

)
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if we choose

σu = U−1 (1− (N − a1) ε)− U−1 (R (a1 − 1) ε) (6.5.11)

and thus wa1
a = H(N−a1)ε ◦ Sσu ◦ Jε1 (U−1 (1− aε)) in (6.5.2) yielding conditions (6.5.9).

Similarly we find for (6.5.3), ba1a = 1 − H(N−a1)ε ◦ Jε1 (1) + H(N−a1)ε ◦ Jε1 (U−1 (1− aε))
which yields the necessary conditions (6.5.10). For dcpd rise functions the expressions for
wa1

a and ba1a are interchanged.

We used theorem 6.4.4 to determine for a convex LIF rise function UCB
LIF (cf. B.1.1 eq.

(B.1.3)) and linear partial reset Rc the regime where avalanches of different sizes become
unstable under return. The most strict condition in (6.5.9) is that for a = 1 which
yields an implicit equation for the lower bounds on the critical c values below which the
invariance of a1-avalanches is ensured. The upper bound is obtained by (6.5.10) also using
a = 1. Both bounds are plotted in fig. 6.6 and are in good agreement with the numerical
data.

Near the lower transition point c(N)
crit the system shows aperiodic behavior when starting

close to the synchronous state. A possible explanation for this dynamics is the competition
of two counteracting mechanisms: (i) Large avalanches become unstable under return and
thus tend to desynchronize the phases which results in a split of the avalanche into smaller
stable avalanches. (ii) The solution to equation (6.4.1) for these asynchronously firing
smaller clusters involves σ∗

r ≤ 0, i.e. the smaller avalanches tend to absorb each other
and resynchronize the system yielding again larger unstable avalanches. Note that here
irregular dynamics arise via a mechanism that differs from network heterogeneity [71] or
using balanced excitatory and inhibitory interactions [390].
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Figure 6.6. Sequential desynchronization in a network (N = 100) with icpd rise function UCB
LIF

(Eeq = 1.1, Esyn = 3) and linear partial reset Rc. (a) observed cluster sizes (dots) of periodic
states after a transient time t = 10000. For each c value 100 simulations were started in the
synchronous state with a small perturbation added. The upper line shows the bounds on a
obtained from (6.5.10) in theorem 6.5.5 above which a-clusters are unstable. The lower line is
the bound obtained via (6.5.9) below which a-clusters are ensured to be stable. The shaded area
marks the transition region where states other than the synchronous and asynchronous state are
observed. In the blue region we find no periodic asymptotic dynamics. The dashed lines show
the theoretical bounds for the transition region. (b) aperiodic dynamics for c1 = 0.18.
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6.6 Extensive Sequence of Desynchronizing Bifurcations

– A Solvable Example

Figure 6.5d-f illustrates that the rise function Ub is both icpd and dcpd. In fact,

∆Hb (φ,∆φ, ε) := Hb (φ+∆φ, ε)−Hb (φ, ε) = ∆φebε

is independent of φ and hence

∂

∂φ
∆Hb (φ,∆φ, ε) = 0 .

Thus for Ub equality holds in (6.5.7) and the best- and worst-case return maps become
identical. This property allows us to obtain exact analytical results.

Proposition 6.6.1. Consider a homogeneous excitatory all-to-all network of N pulse-
coupled oscillators evolving according to (5.2.13)-(5.2.16) with convex rise function Ub

(b < 0) and neuronal partial reset Rc.
Then for each 2 ≤ a ≤ N there exist a critical reset strength c

(a)
cr such that for all

c > c
(a)
cr avalanches of size greater or equal to a are unstable under return and avalanches

of size smaller than a are stable. For c ≤ c
(N)
cr all avalanches are stable under return. The

critical reset strengths are determined from the equation

e
b
(

1−
[

(N−a)+c
(a)
cr (a−1)

]

ε
)

=

(

e−bc
(a)
cr ε − 1

)

(e−bε − 1)
(6.6.1)

and satisfy 0 < c
(N)
cr < c

(N−1)
cr < · · · < c

(2)
cr < 1.

Proof. Since Ub is icpd and dcpd, equality holds in (6.5.7), i.e. for F ∈ Ta1

∆MF (∆φ) := 1−MF (1−∆φ) = 1− Sσl
◦H(N−a1)ε ◦ Ja1ε (1−∆φ) (6.6.2)

Thus the return map for the phase differences only depends on the avalanche size a1 and
is independent of the precise form of the other avalanches ai, i > 1 and intermediate shifts
σi. Explicitly

∆MF (∆φ) =
ebε(N−a1+c(a1−1))

1− eb
(
e−bc

(
eb +

(
1− eb

)
∆φ
)c − 1

)

for all F ∈ Ta1 . A straight forward calculation shows that ∆MF has the properties

∆MF (0) = 0 ,
d

d∆φ
∆MF (∆φ) ≥ 0 and

d2

d∆φ2
∆MF (∆φ) ≤ 0 (6.6.3)

Thus if the condition

∆MF
(
1− U−1 (1− ε)

)
≤ 1− U−1 (1− ε) (6.6.4)

is met all other conditions for 1 ≤ a < a1 in (6.5.9) are also satisfied. On the other hand
almost all perturbations will cause the avalanche to be triggered by a single oscillator.
Thus if condition (6.6.4) is not satisfied, i.e. ∆MF (∆φ) > ∆φ for all ∆φ ≥ U−1 (1− ε)−1
the avalanche will split up after a finite number of iterations of the return map. Thus
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III 6 Partial Reset and Collective Network Dynamics – Sequential Desynchronization

(6.6.4) is a necessary and sufficient condition for stability of an a-cluster under the return
map. We are interested in the critical strengths c(a)crit for which an a-cluster becomes
unstable and hence we use equality in (6.6.4) and basic algebra to obtain the implicit
expressions (6.6.1) for the c(a)cr .

Since we have assumed (N − 1) ε < 1, b < 0 and c ∈ [0, 1] we see that the left hand
side of (6.6.1) lies in the interval (0, 1) and decreases monotonically with increasing c.
The right hand side is 0 for c = 0 and increases monotonically with c until it becomes 1
for c = 1. Thus by continuity for all 2 ≤ a ≤ N there always exist a solution 0 < c

(a)
cr < 1

to this equation. Note that the special case a = 2 is explicitly solvable for c(2)cr and yields

c(2)cr =
1

bε
log
(
1 + e−b(N−2)ε+b

(
1− e−bε

))
(6.6.5)

For fixed 0 ≤ c < 1 the left hand side of (6.6.1) is strict monotonically decreasing as a
increases whereas the left hand side is independent of a, thus 0 < c

(N)
cr < c

(N−1)
cr < · · · <

c
(2)
cr < 1.

The theoretical prediction (6.6.1) for the desynchronization transition is plotted in fig.
6.3 and is in excellent agreement with the numerically observed transition.

Remark 6.6.2. Note that (6.6.1) involves all relevant network parameter. In particular,
choosing b → −∞ in equation (6.6.5) shows that c(2)cr can be made arbitrarily small.
This implies that the entire sequence of desynchronizing bifurcations may occur over an

arbitrary small interval
[

c
(N)
cr , c

(2)
cr

]

.

Remark 6.6.3. We also remark that the number of bifurcation points in this sequence is
N − 1. At each bifurcation point c(a)cr all periodic states with at least one cluster of size
a and all other cluster sizes less or equal to a, i.e. an extensive combinatorial number of
states, becomes unstable simultaneously.

The mechanism underlying the desynchronization transition are opposing synchroniza-
tion and desynchronization dynamics in the network as illustrated in fig. 6.7: (a) due to
the convexity of the rise function sub-threshold inputs are always synchronizing and stabi-
lize the avalanche, whereas depending on the strength of the partial reset supra-threshold
inputs in an avalanche can either (b) synchronize or (c) desynchronize the phases. Thus
for a weak partial reset (e.g. Rc with c ≈ 0) states with large avalanches are stable.
When the partial reset is stronger it desynchronizes the cluster and, depending on the
avalanche size, it may outweigh the synchronization effect due to sub-threshold inputs.
Larger avalanches receive less synchronizing sub-threshold input from other oscillators
and simultaneously produce a larger supra-threshold input than smaller ones. Thus they
lose invariance under return first when increasing the partial reset strength.

6.7 Robustness of the Desynchronization Transition

The desynchronization transition is robust against structural perturbations in the coupling
matrix and the rise function U .

6.7.1 Coupling Strength Inhomogeneity

With respect to perturbations in the coupling matrix εij numerical experiments show that
the transition is observed when using coupling strengths from a uniform distribution on
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Figure 6.7. Synchronization and desynchronization of avalanches in networks with convex rise
function and partial reset. (a) sub-threshold inputs synchronize the oscillators. The phase
difference of a cluster before pulse reception ∆φ+ is decreased to ∆φ− afterwards, i.e. ∆φ+ <
∆φ−. (a) weak partial reset (e.g. c ≈ 0 for Rc) synchronize phase differences: ∆φ+ < ∆φ−.
(b) due to the convexity of the rise function a strong partial reset (c ≈ 1) expands the phase
differences ∆φ+ > ∆φ−. Clusters lose stability if the mechanism in (c) becomes dominant over
the stabilizing effect in (a).

an interval [εmin, εmax] for a interval length ∆ε = εmax−εmin as large as 20% of the average
coupling strength ε̄ = (εmax − εmin) /2 . When ∆ε becomes larger usually complex spike
patterns and non-periodic states are observed.

The coupling inhomogeneity destabilizes clusters since also sub-threshold inputs of
different strengths desynchronize units initially at the same phase. In fact, already the
lower bound c(a)crit obtained for homogeneous networks via theorem 6.5.5 using the coupling
strength ε̄ over-estimates the stability of the clusters. The regime where we observe
aperiodic dynamics becomes larger in comparison to homogeneous networks with the
same average coupling strength. This is due to clusters with asymptotic phases which
are close to an absorption (i.e. where σ∗

i ≈ 0 for some i). A perturbation in the coupling
now enables the absorption and the restless competition between desynchronization and
synchronization (cf. sec. 6.5) induces the aperiodic dynamics.

6.7.2 Sigmoidal Rise Functions

Typically rise functions in biological or physical systems are neither purely concave nor
purely convex. In particular intrinsic neuronal dynamics are often best described with
a sigmoidal rise function. The quadratic-integrate-and-fire or exponential-integrate-and-
fire neuron [101, 110] (cf. also appendix B) constitute major examples. In networks with
sigmoidal rise functions a combination of the effects inherent to concave and convex rise
functions influences the network dynamics: Synchronization of units to larger clusters
due to the concave part (cf. [269, 212]) and stabilization of states with asynchronously
firing clusters due to the convex part (cf. theorem 6.4.4). Numerical studies show that for
strictly neuronal partial resets and rise functions with dominant concave part synchronized
firing of oscillators in the asymptotic state is typically found. In contrast, if the convex
part is larger it is more likely to find clusters of smaller sizes and the asynchronous state.
Indeed, for general rise functions U we still obtain the stability matrix A in (6.4.5) but
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Figure 6.8. Sequential desynchronization transition in networks of neural oscillators with a
sigmoidal rise function. Shown are the dynamics of a homogeneous network (N = 100, ε =
0.002) with linear partial reset Rc and (e) sigmoidal rise function UCB

LIF (Esyn = 2, α = −1,
β = 1). Starting with synchrony and inducing a small perturbation (arrow) the network shows
(a) aperiodic dynamics for c = c1 = 0.45, (b) clustering for c = c2 = 0.46 and (c) asynchronous
dynamics for c = c3 = 0.54. Note the damped oscillations of the phase which do not appear
for purely convex rise functions (cf. fig. 6.6). (d) cluster sizes of periodic states observed in the
dynamics at t = 5000 starting from 200 perturbed synchronous states for each value of c. Shaded
area marks the transition region with states other than solely synchronous or asynchronous. The
blue shaded are marks occurrence of aperiodic dynamics.

the non-zero entries (6.4.6) can become larger than 1 in the regime where U is concave.
Thus if the concave part becomes dominant the eigenvalues are no longer bounded by 1
and asynchronous clusters states become unstable.

In fig. 6.8 a desynchronization transition for the sigmoidal rise function UCB
QIF and

linear partial reset Rc is shown. In the synchronous state oscillators do not receive any
intermediate sub-threshold pulses between successive firing and the return map for an
oscillator with phase φ can be written as

M{{1,...,N},σ}(φ) = U−1 (R (U(φ) + (N − 1)ε− 1)) + 1− U−1 (R ((N − 1)ε))

for any partial reset R and any rise function U . After a perturbation the avalanche is
typically triggered by a single unit and thus the synchronous state becomes unstable if
M{{1,...,N},σ}(φ) < φ for all φ ∈ [1− U−1 (1− ε) , 1] which yields the condition (6.5.9) for
a1 = N . This can be used to determine the onset of a desynchronization transition in the
general case as shown in fig. 6.8 (dashed line). The stability of smaller avalanches a1 < N
can still be estimated with the help of theorem 6.5.5 if the rise function is dcpd but not
necessarily convex. Conditions for the sigmoidal rise functions UQIF and UCB

QIF to be dcpd
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6.8 Cluster Desynchronization in Biophysical Models

are given in appendix B.
Desynchronization due to a partial reset has three components: Translation of phase

differences into potential differences via the rise function U , the relative change of potential
differences due to the partial reset R after supra-threshold excitation and back-translation
of this potential difference into phase differences via U−1 (cf. fig. 6.7c). For convex rise
functions the slope in the reset zone IR = [0, U−1 (R ((N − 1)ε))] is always smaller than
in the supra-threshold zone IT = [U−1 (1− (N − 1)ε) , 1]. As a consequence the phase
differences in IT are translated via U to larger potential differences and the potential
differences after reset become larger phase differences during the back translation U−1.
This causes an effective phase desynchronization even for partial resets that are non-
expansive as depicted in fig. 6.7c.

For general rise functions and non-expansive partial resets the destabilization of a
cluster state due to a partial reset thus can only occur if the slopes in IT are sufficiently
larger than in IR. In fact if this ratio becomes to small the transition may not be observed
completely for non-expansive partial reset, e.g. for Rc in the range c ∈ [0, 1] and can be
shifted to partial resets that have to be expansive (e.g. for c > 1).

Finally note that, in contrast to convex rise functions, for sigmoidal rise functions
we always observe ”damped oscillations” in the Poincaré phase plots fig. 6.8b,c. The
amplitudes of these oscillations become larger when the slope of the rise function at the
point of inflection becomes smaller. We therefore attribute these oscillations to sub-
threshold inputs received by oscillators near the inflection point of the rise function.

6.8 Cluster Desynchronization in Biophysical Models

In this section we briefly discuss relations of the simple partial reset model to more realistic
neuron models.

We already discussed that time scale relations among the different neuronal processes
that have to be satisfied in order for our simple model to give a good approximation
to the dynamics (cf. sec. 5.3.1). Interestingly, in networks of more biological realistic
model neurons we find similar desynchronization transitions if these time scale relations
are satisfied. For example, we considered quadratic integrate-and-fire neurons (cf. eq.
(2.6.3)) driven by a constant external current such that the spiking period was τm =
τosc = 100ms and coupled synapses (eq. (2.7.2)) with a time extension of τsyn ≈ τd =
10ms. To model the refractoriness we included an additional after-hyperpolarizing current
iahp = gahp (vK − v) [235] that becomes active after spiking of a neuron and decays with
time constant of τref = τahp = 30ms. In this situation the times scale relations (5.3.1),
(5.3.2) and (5.3.5) are all satisfied. When decreasing the maximal conductance gahb we
numerically observe a desynchronization transition very similar to the one observed in
fig. 6.8. As an decrease of gahp lowers the relative refractoriness of the QIF neurons and
therefore raises the response to synaptic inputs shortly after action potential generation
this model may be regarded as a temporally extended version of the infinitely fast partial
reset model.

Moreover, we also numerically observed similar transitions in networks of conductance
based neuron models [99] (cf. sec. 2.4.4) when the synaptic time scale was increased but
stayed in the regime in which the partial reset model is valid. Here the dynamics typically
did not converge to periodic states but showed clustering of neurons, with maximal cluster
sizes that decayed with increasing synaptic time scale. This transition may as well be
explained by a partial reset effect when considering fig. 5.4 where the spike time responses
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Figure 6.9. Clustering in a homogeneous all-to-all coupled network of N = 50 two compartment
cortical neurons. Neuron model as in section 2.4.4 and appendix D.4 with passive dendrite (cf.
(2.4.5), (2.5.1), (2.2.4), (11.1.2) with gLD = −70mV, gDS = 0.2mS). (a-c) stroboscopic spike
time plots of the network dynamics for the different values of the somatic dendritic coupling
gDS: g1 = 0.55, g2 = 0.7 and g3 = 0.875. In (a) convergence of the dynamics towards a
periodic state of two alternate firing clusters with ã = 25 neurons each is observed whereas in
(b) and (c) the dynamics do not converge but show variable differently sized groups of nearly
synchronously firing units. Orange histograms show that number ã(∆t) of neurons firing in
the time interval [t1,s +∆t− δt/2, t1,s +∆t+ δt/2] with δt = 1ms at s = 750. The violet line
indicates the time difference between ti,249 − ti,250. (d) maximal cluster sizes max∆t ã(∆t),
∆t ∈ {200, 201, . . . , 1000} in 100 simulations for each gDS ∈ {0.5, 0.525, . . . 1.0} show a decrease
with increasing gDS. Blue shading indicates no convergence to a periodically firing state after
s = 25000 spikes.

for the same conductance based model are shown. Here already a short input current
shortly before firing not only shortened the time to the next spike but also the following
inter spike interval. Increasing the timescale of this pulse decreases the the next inter-
spike-interval even further and in this way increases the partial reset function when this
kind of dynamics is modeled by pulse-coupling. A similar effect is observed when adding
a passive dendrite (cf. sec. 2.5, eq. (2.5.1)) and injecting the synaptic currents into the
dendrite. The low-pass filtering property of passive dendrites then broadens the synaptic
pulse and causes a similar effect as when directly increasing the synaptic time scale. An
example is shown in fig. 6.9. However, the partial reset model can only give some insight
into the transition observed in these two compartment cortical neurons and further studies
are necessary for a detailed understanding (cf. also chapter 11).
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Chapter 7

From Networks of Unstable Attractors

To Heteroclinic Switching

In this section we study the impact of the partial reset on phase oscillator networks with
delayed pulse-coupling. We focus on homogeneous networks and purely excitatory in-
teractions. We first give a precise definition of the model and then present numerical
evidence for a transition from a network of unstable attractors (cf. def. 3.1.3) to hetero-
clinic switching dynamics (cf. def. 3.1.1) when the partial reset strength is increased from
zero. We then introduce the method of event-based domain analysis to prove the existence
of this novel type of bifurcation and reveal its underlying changes in phase space.

7.1 Network Dynamics – Unstable Attractors and

Heteroclinic Switching

In this section we present numerical evidence for a bifurcation from a network of unstable
attractors to heteroclinic switching dynamics when the partial reset strength is increased
from zero.

We focus on homogeneous networks of pulse coupled phase oscillators as described in
chapter 5.1 with interaction εij = ε (1− δij) and homogeneous delays τij = 0. For the
numerical simulations we use interaction functions H and J as defined in (5.2.14) and
(5.2.15) with a rise function Ub , eq. (5.2.20) and partial reset Rc (ζ) = cζ , eq. (5.2.7).
Note that J is invertible for all c 6= 0 and non-invertible for c = 0. Our analysis below
shows that the studied phenomena are insensitive against structural perturbations in the
parameter τ , ε and the rise function U . We therefore concentrate on the influence of the
partial reset strength c ∈ [0, 1] on the collective network dynamics.

For non-invertible resets (c = 0) the above system exhibits unstable attractors in form
of periodic orbits Oi in a large fraction of parameter space and for different network sizes
N [371, 372, 16]. The smallest system in which we observed unstable attractors has N = 4
units. Curiously, numerical simulations, e.g. fig. 7.1, indicate that such a system exhibits
two unstable attractors each of which is fully enclosed by the basin volume of the other
attractor.

If we remove the local non-invertibility (c > 0), the dynamics changes qualitatively as
shown in fig. 7.2: The two periodic orbits Oi still exist. However, starting in a state near
one of the Oi leads to trajectories with perpetual switching between both. The switching
times increase exponentially with the number of switches (cf. fig. 7.2b) indicating that
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Figure 7.1. Full reset (c = 0): Two unstable attractors enclosed by the basins of each other.
(a) phases φi (ts) (dots) of all units at just after after spike generation events at times ts of a
reference unit i = 1. Lines indicate the phases on an invariant orbit O1 (orange) and O2 (blue).
Arrows mark times of small phase perturbations which induce switches from O1 to O2 or vice
versa. The shaded area highlights a switch from O1 to O2 that is shown in detail in fig. 7.6. (b)
fraction νi of 5000 trajectories reaching the periodic orbit Oi (• : i = 1, × : i = 2) starting from
random phases distributed uniformly in a box of side width 2δmax centered around a state a1 on
the orbit O1. For 0 < δ < δcrit ≈ 0.05 all trajectories reach the orbit O2 (ν2 = 1), indicating
that O1 is enclosed by the basin volume of O2 and in particular that O1 is an unstable attractor.
Parameter values are ε = 0.23, τ = 0.02, and b = 4.2 for which the model exhibits short switching
times between periodic orbits which simplifies the analysis in sec. 7.2.

these dynamics originate from an orbit near a heteroclinic two-cycle. Furthermore the
switching times diverge as c→ 0 (cf. fig. 7.2b), suggesting the transition to a network of
unstable attractors at c = 0.

Recall the definition 3.2.1 for a bifurcation set as the set of parameter values at which
the dynamics change qualitatively. Applying this definition to the transition observed
here we conclude that there is a bifurcation from networks of unstable-attractors to het-
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Figure 7.2. Partial reset (c > 0): Heteroclinic switching. (a) phases φi (ts) (dots) as in fig. 7.1a
for c = 0.05. The invariant periodic orbits Oi, being unstable attractors at c = 0, still exist for
c > 0 (orange and blue line). Starting in a state near O1 leads to repeated switching between
the two states. (b) switching times Ti until the i-th switch (◦ : c = 0.1, × : c = 0.01) increase
exponentially with k, indicating that the dynamics evolve near a heteroclinic cycle between the
invariant states. Inset: Fitting Ti = γeιi to the switching times for several values of c we find a
divergence of ι as c→ 0.
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Figure 7.3. Order preservation and reversal in the heteroclinic switching dynamics. Network as
in fig. 7.1. Phase differences sign (φi − φj) |ln |φi − φj || for (i, j) = (1, 2) (black) and (i, j) = (3, 4)
(gray) at spike times ts of oscillator i = 1 for (a) c = 0.05 > 0 and (b) c = −0.05 < 0. Switching
times are visible as kinks. At these points one phase difference is large and starts to decrease
while the other is small and starts to increase, reflecting the contraction and expanding dynamics
near a saddle point. If the second difference becomes to large a switch is caused and the situation
reverses. The dynamics is order preserving for c > 0, i.e. always φ1 > φ2 and φ3 > φ4 while
for c < 0 the order is reversed after each cycle in the expanding part. This is also visible in the
return map R↑

i , eq. (7.2.22) derived in sec. 7.2.

eroclinic switching at the parameter value c = 0. We note, that for c < 0 we also observe
heteroclinic switching dynamics where the order of the oscillators is not preserved (cf.
fig. 7.3). Thus the unstable attractor network dynamics arise only at the singular bifur-
cation value c = 0. In total, we therefore observe a bifurcation from order-preserving
to non-order preserving heteroclinic switching dynamics through a network-of unstable
attractors.

The transition is neither restricted to small network sizes nor to the small network
structure of the two unstable attractors for non-invertible partial resets. In fact, large
networks of unstable attractors are found in networks of pulse-coupled oscillators for
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Figure 7.4. From networks of unstable attractors to heteroclinic switching in large networks.
N = 100 pulse coupled oscillators. (a) non-invertible dynamics (c = 0): A 4 cluster state
switches to a 5 cluster state after a small perturbation to the phases is applied at ts = 20
(arrow). Further switches to other 5 cluster states are induced by perturbations at ts = 100
and ts = 180. (b) locally invertible dynamics (c = 0.2): free network evolution after a small
perturbation is applied to the 4 cluster state in (a) in the beginning. Switching dynamics with
exponential growing switching times are observed. Parameter used are b = 3, τ = 0.15 and
ε = 0.02.
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c = 0 in a large fraction of parameter space (cf. e.g. [371] and fig. 7.4). For example,
in the N = 100 network used in fig. 7.4 the second attractor consist of five clusters of
synchronized neurons with sizes (21, 21, 21, 16, 21). After a small perturbation the cluster
of size 21 firing just after the cluster of size 16 desynchronizes and the system rearranges
to another invariant 5 cluster state with cluster sizes (21, 21, 16, 21, 21) which again is
an unstable attractor. The number of such five cluster states is 100!

(21!)416!
≈ 1065 and each

attractor is surrounded by the basins of at least 21!
5!16!

≈ 104 other unstable attractors.
In such a system the precise form of the perturbation determines to which attractor the
system will evolve next.

For c > 0, there is a transition from the network of unstable attractors to complex
heteroclinic structures with switching dynamics as shown in fig. 7.4. The switches along
the orbit now strongly depend on the initial conditions. Moreover, for small c switches
only occur between states for which we observed a switch in the network of unstable
attractors induced by arbitrarily small perturbations.

We also observe these transitions in systems with reduced symmetry, for example
in systems with a sub-symmetry of the full permutation symmetry of the oscillators. In
heterogeneous networks we did not find these transitions so far. This observation is related
to fact that in non-hybrid dynamical systems heteroclinic structures only exist robustly
in systems with symmetry [146, 225].

7.2 Bifurcation From Networks of Unstable Attractors

To Heteroclinic Switching

In this section we give an analytical proof for the existence and robustness of the bifur-
cation from networks of unstable attractor networks to heteroclinic switching observed
numerically in the previous section. Our main result of this section can be stated as
follows:

Theorem 7.2.1. In homogeneous networks of oscillators with delayed pulse coupling and
zero partial reset two cycles of unstable attractors exist robustly and bifurcate to hetero-
clinic two cycles when the partial reset strength is increased continuously.

The section is structured as follows: We first introduce the notations and state space
structure for pulse coupled oscillator networks with delay and then generally introduce
the method of even-sequence-based domain analysis. We then specify a small network
for which we prove the above theorem: We first show the existence of two periodic orbits
and derive a three dimensional representation for Poincare sections in state space near
these orbits. Using the the event-sequence-based domain analysis we show for zero partial
reset the existence of two unstable attractors that are completely enclosed in the basins
of attraction of each other, i.e. form a two cycle of unstable attractors. We then extend
the results to non-zero partial resets and show that the two unstable attractors become
saddle states in a heteroclinic two cycle.

7.2.1 State Space and Event Description for Pulse-Coupled

Oscillators with Delayed Interactions

Pulse coupled oscillator system as described in chapter 5.1 with delayed interactions for-
mally have an infinite dimensional state space. We here give a precise definition of this
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space and a description of the dynamics in terms of events including the partial reset. We
focus on networks with excitatory couplings εij ≥ 0 and homogeneous delays τij = τ > 0.

We first define the state space similar to [16, 265]. A state x ∈ X of the network is
fully described by the actual phases φi ∈ [0, 1), i ∈ {1, . . .N} and the pulse generation
times σi,k ∈ [0,∞) of the kth-last pulse of oscillator i. Thus the state space is given by

X := [0, 1)N × [0,∞)N ⊂ R
N

with states
x =

(

(φi)i∈{1,...N} , (σi,k)i∈{1...,N},k∈N

)

∈ X

Recall, that we write f (t−) = limsրt f (s). The hybrid time evolution of a state x is then
given by a continuous part, consisting of an uniform increase of all variables according to
(5.2.13), i.e.

d

dt
φi = 1

d

dt
σi,k = 1 (7.2.1)

interrupted at discrete times by the following pulse generation and receiving events:

1. (si1 , . . . , sik): simultaneous pulse generation of k oscillators i ∈ {i1, . . . ik} at time t
defined by

φi

(
t−
)

= 1 for i ∈ {i1, . . . ik}
φi

(
t−
)

< 1 for i ∈ {i1, . . . ik} (7.2.2)

For all i ∈ {i1, . . . ik} the phase are reset to φi (t) = 0 and the spike times are
updated according to

σi,k+1 (t) = σi,k
(
t−
)

k ∈ N and σi,k (t) = 0 . (7.2.3)

2. (rj1 , . . . , rjk): simultaneous reception of k pulses generated by oscillators j ∈ {j1, . . . jk}
at time t defined by σj,kj (t

−) = τ for some kj ∈ N. The phases are updated accord-
ing to the interaction function H (cf. e.g. (5.2.14)) as

φi (t) = H

(

φi

(
t−
)
,

k∑

l=1

εijl

)

where the conditions

H

(

φi

(
t−
)
,

k∑

l=1

εijl

)

< 1 for all i ∈ {1, . . . , N} (7.2.4)

apply. We further update the spike times of the received pulses j ∈ {j1, . . . jk} by

σj,kj (t) = σj,kj
(
t−
)
+ 1 (7.2.5)

as their precise value will not influence the future evolution.

3. (rj1 , . . . , rjk , si1, . . . sil): simultaneous reception of pulses generated by oscillators
j ∈ {j1, . . . jk} at time t defined by σj,kj (t

−) = τ for some kj ∈ N and spike
generation of oscillators i ∈ {i1, . . . il} receiving supra-threshold input. The phases
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are updated according to the interaction function H and partial reset function J
(cf. e.g. (5.2.15))

φi (t) =







H
(

φi (t
−) ,

∑k
l=1 εijl

)

i /∈ {i1, . . . il}
J
(

φi (t
−) ,
∑k

l=1 εijl

)

i ∈ {i1, . . . il}

where the conditions

H

(

φi

(
t−
)
,

k∑

l=1

εijl

)

< 1 for all i /∈ {i1, . . . il}

H

(

φi

(
t−
)
,

k∑

l=1

εijl

)

≥ 1 for all i ∈ {i1, . . . il} (7.2.6)

apply. The spike times σi,kj for j ∈ {j1, . . . jk} are update according to (7.2.5) and
for the spiking oscillators i ∈ {i1, . . . il} via (7.2.3).

We assume that Jε (φ) < 1 for all φ ∈ [0, 1] and ε ≤ ε̂ where the maximal interaction
strength ε̂ is defined as

ε̂ := max
i

∑

j

εij < 1

which excludes self excitations, i.e. ensures {i1, . . . il}∩ {j1, . . . jk} = ∅ in the third event.
Then the the above dynamics are well defined and give rise to a semi flow F t on X . We
note that similar to [265] we added a jump to the spike times at pulse reception in (7.2.5).
This does not influence the future dynamics but ensures that, when using the Euclidean
distance, states in a small neighborhood close to pulse reception will not have additional
spikes in the delay lines. Thus adding non-received spikes into the delay lines is rendered
in this way as a large perturbation.

We denote the forward orbit of a state x ∈ X generated by this flow as

O (x) =
{
F t (x) | t ≥ 0

}

The time evolution of the system is determined by the constant rise of the phases towards
the pulse generation-threshold and interactions that also increase the phase or lift the unit
above threshold. Thus for a state x ∈ X there exists a finite time t(1) (x) < ∞ at which
a discrete interaction event e(1) (x) is generated by the flow F t. Repeating this argument
there is an infinite sequence of such events e(k) (x) at times t(k) (x), k ∈ N. We define the
set of all admissible events by

E =
⋃

x∈X

{
e(l) (x)

}

l∈N

and an event based map
F (l) : X → X , x 7→ F t(l) (x)

that sends a state x to the state just after the lth event e(l) (x) has taken place.
We further denote by κi (x) the smallest k such that σi,k+1 > τ , i.e. the number of

pulses in the delay lines not received yet and define the subspace of states with at most
k traveling pulses in the delay lines by

XN
k = {x ∈ X : κi (x) ≤ k for all i ∈ {1, . . . , N}} ⊂

(

[0, 1)× [0,∞)k
)N

⊂ R
(k+1)N
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which is a finite dimensional space. Under weak conditions it can be shown that the
dynamics often evolve towards a finite dimensional state in XN

k and that for k sufficiently
large these spaces are invariant under the flow [16]. We endow these spaces with the
induced topology of open sets in R

(k+1)N , i.e. a set U ⊂ XN
k is open if there is a open set

U ⊂ R
(k+1)N such that U = U ∩ XN

k and choose the Lebesgue measure λ on the Borel
σ-algebra. The open sets and the measure are induced by any norm in R

(k+1)N , we here
choose the maximum norm, denoted by ‖·‖.

7.2.2 Event-Sequence-Based Domain Analysis

In this section we describe the general technique of a event-sequence based domain and pa-
rameter analysis which we will use to prove the existence of the bifurcation from networks
of unstable attractors to heteroclinic switching and to investigate the underlying phase
space structure. The idea is to derive conditions on the system’s states (and parameters)
that give rise to a predefined event sequence.

More concretely, given an predefined finite event sequence

E = (e1, . . . , ek) (7.2.7)

with ei ∈ E we define the domain Dom(E) ⊂ X to be the set of states x ∈ X that give
rise to the event sequence E, i.e.

Dom(E) =
{
x ∈ X | e(l) (x) = el, l ∈ {1, . . . , |E|}

}

For a given a set U ⊂ X then event-sequence based domain analysis then aims at deter-
mining the set U ∩ D (E) via the following steps:

1. find a suitable parametrization for all states of the set U ⊂ X under consideration

2. formally derive the pseudo event maps F̃ (l), l ∈ {1, . . . , k} for all the states x ∈ U
assuming the event sequence (7.2.7)

3. collect all conditions on the states x ∈ U that have to be satisfied so that the pseudo
event map coincides with the actual event map, i.e F̃ (l) (x) = F (l) (x).

4. reduce the conditions to the strongest conditions which then define Dom(E) ∩ U .

We note that the first step is facilitated by the fact that in the pulse-coupled oscillator
systems of sec. 7.2.1 all states often evolve towards a finite dimensional subspace in finite
time [16] or that there are finite dimensional invariant subspaces. The second step is then
most conveniently done using event-based analysis tables [371, 16]: Here the initial finial
dimensional state x ∈ XN

k is listed together with the event sequence and the results of the
maps F̃ (l) (x). An example is shown in tab. 7.1. At each step in this table conditions arise
for the pseudo map F̃ (l) to be valid: First, no other events should occur in the dynamics
between the predefined events el. Second for the different types of events the conditions
(7.2.2) for spike generation, (7.2.4) for sub-threshold and (7.2.6) for supra-threshold pulse
reception. Typically these conditions can be reduced to a smaller subset from which all
constraints follow. Moreover, also constraints on unspecified parameter may arise which
have to be satisfied in order for the system to have a particular event sequence. This
approach can be used for inverse engineering of pulse-coupled systems that show certain
sequences. For infinite periodic sequences this was done in [263, 262] to determine network
structures that exhibit such sequences.
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Here we concentrate on the domain of such sequences and use this non-local analysis
to prove the existence of a novel type of bifurcation from networks of unstable attrac-
tors to heteroclinic switching. Besides this first application, this technique has further
applications in estimating the domain size of certain sequences in order to estimate their
probability of occurrence and their stability against noise. The algorithmic nature of the
method also makes it suitable for computer based analysis and proofs using symbolic
computation software.

7.2.3 Non-Local Non-Linear Bifurcation Analysis in a Small

Network

In this section we give a proof of theorem 7.2.1. We first introduce a small network N 4

of N = 4 oscillators. Then we determine two periodic orbits in this system for which we
show that they are unstable attractors in the basin of each other. We then show that
this structure bifurcates to a heteroclinic two cycle. Most of the technical calculations are
deferred to appendix C.

7.2.3.1 Definition of the Network N 4

In this section we specify the network used in the analysis. We consider a homogeneous
network N 4 of N = 4 oscillators with homogeneous coupling strengths εij = ε (1− δij)
and interaction delay τ as in section 7.2.1.

We assume a general smooth sub-threshold interaction function H : [0,∞) → [0,∞)
with the following properties

∂

∂φ
H (φ, ε) > 0 and

∂

∂ε
H (φ, ε) > 0 (7.2.8)

which are satisfied if H originates from a pulsed-coupled system as in eq. (5.2.14). We
further assume that the reception of a pulse before a time shift σ ≥ 0 increases the phase
less than in the reversed situation, i.e.

σ +Hε (φ) < Hε (φ+ σ) (7.2.9)

for all φ > 0. If H is defined via a rise function U that is concave this property is satisfied.
For the partial reset function J = J (c) we assume a smooth dependence on a parameter

c so that for c = 0, J (0) (φ, ε) ≡ 0 and for c 6= 0

∂

∂φ
J (c) (φ, ε) > 0 and

∂

∂ε
J (c) (φ, ε) > 0 (7.2.10)

We usually suppress the dependence on c in the calculations and write Jε > 0 to indicate
a parameter c > 0. We further assume

J (φ, ε) ≤ H (0, ε) < 1 (7.2.11)

An particular example for J is given in (5.2.15) with R = Rc (5.2.7). We note that for a
given η > 0 we can obtain

max
φ[0,1]

max
ε∈[0,ε̂]

|J (φ, ε)| < η (7.2.12)
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by choosing c sufficiently small. For notational convenience we define

Hε,τ (φ) : = Hε ◦ Sτ (φ) = Hε (φ+ τ)

Jε,τ (φ) : = Jε ◦ Sτ (φ) = Jε (φ+ τ)

and
γ1 (φ) = 1−H2ε,τ ◦ Sφ ◦Hε,τ (0)

We assume the following conditions on the interaction function H and the network pa-
rameter ε and τ to facilitate the analysis

Hε,τ ◦Hε,τ ◦Hε,τ (0) < 1 < H2ε,τ ◦Hε,τ (τ)

Sτ ◦Hε,τ ◦Hε,τ (τ) < 1 < Hε,τ ◦H2ε,τ ◦Hε,τ (0)

H2ε,τ

(
τ + 1−H3

ε,τ (0)
)

< 1 < Hε,τ

(
Hε,τ (τ) + 1−H3

ε,τ (0)
)

(7.2.13)

Hε,τ (Hε,τ (0) + 1−H2ε,τ ◦Hε,τ (0)) < 1 < H2ε,τ (Hε,τ (0) + 1−H2ε,τ ◦Hε,τ (0))

These conditions imply

γ1 (0) > 0 (7.2.14)

γ1 (γ1 (0)) < 0 (7.2.15)

Figure 7.7 shows that all these conditions define an open non empty set in parameter space
when choosing a rise function Ub (cf. eq. (5.2.20)). Or results however are not restricted
to this choice of rise function.

7.2.3.2 Existence of Periodic Orbits Oi

In this section we show the existence of two periodic orbits whose local stability and
non-local attractivity properties strongly depend on the partial reset as we will see below.

Lemma 7.2.2. In the network N 4 defined in section 7.2.3.1 the states oi ∈ X 4
1 defined

by

o1 = ((0, 0, α, α) , (0, 0, T − τ, T − τ)) , o2 = ((α, α, 0, 0) , (T − τ, T − τ, 0, 0)) (7.2.16)

where α is determined implicitly by

α := Hε,τ ◦ J2ε,τ (α) + 1−H2ε,τ ◦Hε,τ (0) (7.2.17)

give rise to two periodic orbits Oi = O (oi), i = 1, 2 with period T = 2τ + γ1 (0).

Proof. The state o2 is obtained from o1 via the exchange of oscillators (1, 2) ↔ (3, 4) and
it thus suffices to prove the existence for O1. We set Oi to be the first three events in the
event sequence of oi and claim:

O1 = (s1, s2) (r1, r2, s3, s4) (r3, r4)

We use event-sequence based domain and parameter analysis to verify this. The event
table for the sequence O1 starting in o1 is shown in tab. 7.1. To obtain periodicity of
O (o1) the first and last row have to be identical, resulting in eq. (7.2.17). For the table
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(a) (b)
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Figure 7.5. Periodic orbit O1 of N 4. (a) oscillator phases φi (green) as a function of time
t starting at t = 0 in the state o1 (7.2.16) with the event (s1, s2). The pulses from oscillator
i = 1, 2 are received after a delay time τ inducing the supra-threshold event (r1, r2, s3, s4) with
partial reset of oscillators i = 3, 4 (red arrow). At t = 2τ their pulses are received in the event
(r3, r4) with only sub-threshold excitation (blue). The cycle repeats at t = 2τ + γ1 (0) with the
the event (s1, s2) (cf. also tab. 7.1). (b) phase difference α, eq. (7.2.17) (solid line) and width
w, eq. (7.2.24), of the image C′

i depend continuously on the partial reset strength c.

to be valid, we derive the condition 0 < α < 1 from the event (s1, s2). This is true as
γ1 (0) ≤ α and 0 < γ1 (0) by parameter condition (7.2.14). Further we assumed

α ≤ Hε,τ ◦H2ε (0) + γ1 (0) < Hε,τ ◦H2ε,τ (0) + γ1 (0) = 1

where in the first step we used (7.2.11) and in the second (7.2.8). From the event
(r1, r2, s3, s4) we obtain Hε (τ) < 1 and H2ε (α + τ) ≥ 1. The first inequality follows
from γ1 (0) > 0, the second one from

H2ε (α+ τ) ≥ H2ε (τ +Hε (τ) + γ1 (0)) = 1− γ1 (γ1 (0)) > 1

where the last inequality is obtained from (7.2.15). Finally, from the event (r3, r4) we get
H2ε (Hε (τ) + τ) < 1 and Hε (J2ε (τ + α) + τ) < 1 which both follow form (7.2.11) and
γ1 (0) > 0..

The orbit O1 is illustrated in fig. 7.5.

event time φ1, φ2 σ1, σ2 φ3, φ4 σ3, σ4

s1, s2 0 1 → 0 0 α −
r1, r2, s3, s4 τ φ1,1 := Hε (τ) τ → − φ3,1 := J2ε (α + τ) 0

r3,r4 2τ φ1,2 := H2ε (φ1,1 + τ) − φ3,2 := Hε (φ3,1 + τ) τ → −
s1, s2 2τ + 1− φ1,2 1 → 0 0 φ3,2 + 1− φ1,2 −

Table 7.1: Event table for the invariant periodic orbit O1. As the precise values of
σi,1 := σi > τ do not influence the future dynamics we indicate such values with a −.
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7.2.4 Local Finite Dimensional Poincare Representations of the

State Space

In this section we derive local representations of the state space and show that they
represent Poincare sections for the dynamics near the periodic orbits Oi, i ∈ {1, 2}

Note that the orbit Oi consists of three straight lines in state space (cf. fig. 7.5). We
consider the open sets Ui ⊂ X 4

1 for i ∈ {1, 2}

Uη
i =

{
x ∈ X 4

1 | ‖x− y‖ < η, y ∈ Oi

}
∩
[
[0, 1)4 × ([0, τ) ∪ (τ + 1− η,∞))4

]
(7.2.18)

where η is chosen sufficiently small and we explicitly excluded the interval [τ, 1 + τ − η] in
the pulse generation times σi,1 which according to (7.2.5) is not part of any orbit. Hence
this set is a open neighbourhood of the orbit Oi ⊂ Ui with positive measure λ (Ui) > 0.

Remark 7.2.3. Taking the product of this set with (1,∞)N(k−1) we obtain an open neigh-
bourhood Ui,k ⊂ X 4

k of Oi of positive measure in any finite dimensional subspace X .

We further define the sets

P1 = {(δ2, δ3, δ4) | |δ2| <, −α < δ3, δ4 < 1− α− τ} ⊂ R
3 (7.2.19)

and similarly P2 by exchanging the indices 1 ↔ 3 and 2 ↔ 4. We define the set valued
map

P1 : (δ2, δ3, δ4) 7→







(
(0, δ2, δ3, δ4) , {0} × (1 + τ,∞)3

)
δ2 > 0

(
(0, 0, δ3, δ4) , {0}2 × (1 + τ,∞)2

)
δ2 = 0

(
(δ2, 0, δ3, δ4) , (1 + τ,∞)× {0} × (1 + τ,∞)2

)
δ2 > 0

(7.2.20)

and
P4

1 =
⋃

δ∈P1

P1 (δ) ⊂ X 4
1

I.e. for states in P4
1 one or both oscillators i ∈ {1, 2} just have reached the threshold due

to their intrinsic rotation and where reset. Note that due to the restriction of the δ ∈ P1

these are not all states in X 4
1 of this type. We similarly define P4

2 via a map P2. Note
that we have oi ∈ Pi (0), i.e. the periodic orbits Oi are represented by δ = 0 in Pi

Lemma 7.2.4. There is a η > 0 so that for each x ∈ Uη
i there is a finite time t (x) such

that F t(x) (x) ∈ P4
i , i.e. the P4

i are Poincare sections of the flow near the orbits Oi. Via
the maps Pi these Poincare sections have three dimensional representations Pi.

Proof. For η sufficiently small the neighbourhood Uη
i consists of three connected compo-

nents around the three segments of the orbit Oi (cf. tab. 7.1). The evolution of these states
are derived in appendix C.1. The states evolve according to tab. C.1 and C.2 together
with a uniform phase shift in the third component where all pulses have been received.
This shows that these states cross P4

i in finite time. As received pulses do not influence
the future dynamics we may identify states that have the same phases and unreceived
pulses. In P4

i this results in equivalence classes given by the images of Pi.

Via this result we can reduce the study of the dynamics near the orbits Oi to the spaces
P4

i and their return maps, or the induced maps on Pi. We even go one step further and
also consider transient maps between these two spaces in order to capture the non-local
dynamics of the network. We first concentrate on zero partial reset.
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7.2.5 A Two Cycle of Unstable Attractors

Throughout this section we focus on zero partial reset functions Jε = 0. We fix η > 0 as
in lemma 7.2.4 and write Ui = Uη

i . Denoting the basin of attraction of Oi by B (Oi) we
will show the following:

Proposition 7.2.5. Under the conditions (7.2.13) and Jε = 0 the open positive measure
neighbourhoods Ui of the periodic orbits Oi satisfy

λ (U1 ∩ B (O2)) = λ (U1) λ (U2 ∩ B (O1)) = λ (U2) , (7.2.21)

i.e. the two orbits Oi are unstable attractors forming a two cycle (cf. .def. (3.1.3)).

Note that via remark 7.2.3 this also holds for any finite dimensional restriction of the
dynamics to X 4

k , k ∈ N.
In order to show (7.2.21) we use event-sequence-based domain analysis (cf. sec. 7.2.2)

to determine the domains of several event sequences in the Poincare sets P4
i (or Pi),

i ∈ {1, 2}. In particular, we consider the event sequences of several return maps Rz
i and

Qz
i , z ∈ {↑, a, b} from subsets of Pi back to Pi and transient maps T z

ij , z ∈ {a, b, c, d} from
a subset in Pi to Pj, i 6= j. If Xi is one of these maps starting in Pi with event sequence
E (Xi) we define its domain by

D (Xi) := Dom(E (Xi)) ∩ P4
i

We also write D (Xi) for the representation of this set in Pi.
The event sequences and the technical domain analysis for all maps is given in appendix

C.2.1 - C.2.3. Some of the domains are visualized in fig. 7.6. Also the trajectory that led
to a switch from a perturbed state near O1 to O2 as indicated in fig. 7.1 is drawn in this
three dimensional representation of the state space.

We first focus on the maps R↑
i and show that they have an expanding property:

Lemma 7.2.6. For all states x ∈ D
(

R↑
i

)

there is a t (x) < ∞ such that F t(x) (x) /∈
D
(

R↑
i

)

.

Proof. Consider the map R↑
1 analyzed in sec. C.2.1.1. In particular, application of the

map to δ(0) ∈ D1

(

R↑
1

)

gives

δ
(1)
2 = sign

(

δ
(0)
2

)[

H2ε,τ ◦Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

−H
2ε,τ+

∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

−
∣
∣
∣δ

(0)
2

∣
∣
∣

)]

δ
(1)
3 = Hε,τ ◦ Jε,∣∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α + δ
(0)
3

)

+ 1−H2ε,τ ◦Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

− α (7.2.22)

δ
(1)
4 = Hε,τ ◦ Jε,∣∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α + δ
(0)
4

)

+ 1−H2ε,τ ◦Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

− α

and thus for with δ(0)2 ≥ η > 0 we obtain
∣
∣
∣δ

(1)
2

∣
∣
∣ = H2ε,τ ◦Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

−H2ε,τ ◦ S∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

−
∣
∣
∣δ

(0)
2

∣
∣
∣

)

> Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

− S∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

−
∣
∣
∣δ

(0)
2

∣
∣
∣

)

> Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

−Hε,τ (0)

> (1 + ∆)
∣
∣
∣δ

(0)
2

∣
∣
∣
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where ∆ = minφ

(
H ′

ε,τ(φ)
)
η > 0. As for any δ(0) ∈ D

(

R↑
1

)

we can find η > 0 such that

δ
(0)
2 ≥ η > 0 it follows by repeated application of this argument that there is and n ∈ N

such that the nth iterate satisfies δ(n)2 > τ , i.e. δ(n) /∈ D
(

R↑
1

)

. A similar argument holds

for R↑
2.

Defining the lower dimensional synchronization manifolds S1 = {δ ∈ P1 | δ2 = 0} and
S2 = {δ ∈ P2 | δ4 = 0} we observe that the periodic orbit Oi represented by oi ∈ P4

i or

δ = 0 in Pi is enclosed by the set D
(

R↑
i

)

∪Si (cf. the domain definition (C.2.3)). Thus the

previous lemma shows that the orbits Oi are unstable. We now show that they are also

unstable attractors by inspection of the the time evolution of states in the sets D
(

R↑
i

)

.

Lemma 7.2.7. For Jε = 0, a state in D
(

R↑
i

)

is eventually mapped to a state on the

orbit Oj, i, j ∈ {1, 2} , i 6= j, i.e. D
(

R↑
i

)

⊂ B (Oj)

Proof. The image Ci = R↑
i

(

D
(

R↑
i

))

for Jε = 0 is a line in Pi due to the supra threshold

synchronization of two oscillators (cf. C.2.2). It is contained in the set ∪z∈{a,b,c}D (T z
i ) ∪

D
(

R↑
i

)

as can be verified using the domain definitions (C.2.12), (C.2.15) and (C.2.18)

together with the explicit expression for the map R↑
i in (C.2.2) (cf. also fig. 7.6). Lemma

7.2.6 then shows that all states in D
(

R↑
i

)

eventually leave D
(

R↑
i

)

and are mapped to

states in Ci \ D
(

R↑
i

)

. Application of the transient maps T a
i to these states then result in

the sets Ai = ∪z∈{a,b,c}T
z
i (D (T z

i ) ∩ Ci) which are part of the synchronization manifolds,
i.e. Ai ⊂ Sj . Closer inspection of the the set Ai and the domains of the maps Qz

i ,
z ∈ {↑, a, b} given by (C.2.3), (C.2.6) and (C.2.9) when setting δ2 = 0 then shows that

Ai ⊂
⋃

z∈{↑,a,b}
D
(
Qz

j

)

To complete the proof we finally show that states in D
(
Qz

j

)
are mapped to oj in finite

time. First consider Q↑
j that has the same event sequence as a single period of the orbit

Oj. In particular after one application of this map and using Jε = 0 all states in D
(

Q↑
j

)

are mapped to oj via (C.2.2). Lemma (C.2.4) and lemma (C.2.5) then show that states

in D
(
Qz

j

)
, z ∈ {a, b} are mapped to D

(

Q↑
j

)

in a single step and thus via a further step

also to oj .

We note that the maps Qz
j as return maps could give rise to further periodic orbits,

in particular in D
(
Qb

j

)
we find a periodic orbit if the parameter condition (7.2.13) is not

satisfied. In this case not all transients from D
(

R↑
i

)

end up in the orbit Oi but also in

the periodic orbit in D
(
Qb

j

)
.

We can now proof proposition 7.2.5:

Proof. The union D
(

R↑
i

)

∪D
(

Q↑
i

)

via (C.2.3) encloses the periodic orbit represented by

δ = 0 in Pi. We thus choose Ui small enough to lie within this union. As λ
(

D
(

Q↑
i

))

= 0

and D
(

R↑
i

)

is mapped to Oj the claim (7.2.21) follows.
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Figure 7.6. Structure of the three-dimensional reduced state space for the network in fig. 7.1
with c = 0, illustrating that the Oi are unstable attractors enclosed by the basins of each other.
(a) representations Pi in a neighbourhood of a1 ∈ P1 (orange cross) and a2 ∈ P2 (blue cross)
with the stable manifolds Si (left - orange plane, right - blue plane), domains of the return maps

R↑
i and Ra

i (left blue, right orange) and transient maps T a
i , T b

i and T c
i (gray). Also shown are

the images Ci = R↑
i

(

D
(

R↑
i

))

as lines (blue left, orange right) and the image of this line under

the transient maps T z
i , z ∈ {a, b, c} (brown lines). Trajectories starting in D

(

R↑
i

)

(close to O1)

lead to a switch to O2. The bordeaux line shows the trajectory of the marked switch in fig. 7.1a.
(b) Projection of P1 onto the δ2-δ3 plane and (c) onto the δ3-δ4 plane, illustrating that, except

for the lower dimensional subset S1, the attractor O1 is enclosed by D
(

R↑
i

)

, i.e. there is a full

measure neighbourhood of O1 which belongs to B (O2).
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τ

ε̂

γ↓

γ↑

UA cycle

num.

fig.

0.2 1.0
0.0

0.1

Figure 7.7. Robustness of the unstable attractor cycle and bifurcation to heteroclinic switching.
Results are for the network used in fig. 7.1 and 7.2. Parameters in this network are the curvature
b of the rise function Ub defining H, the total interaction strength ε̂ and the interaction delay τ .
The area between the curves (gray) is the open set in (ε̂, τ)-parameter space (b = 4.2) in which
a two cycle of unstable attractors exists and bifurcates to a heteroclinic cycle when the partial
reset is increased from zero. The red lines show the boundaries determined by the conditions
γ↑ : H2ε,τ

(
τ + 1−H3

ε,τ (0)
)
> 1 and γ↓ : H2ε,τ ◦ Hε,τ (τ) > 1 in eq. (7.2.13) which for this

particular choice of H define the region. For ε̂ ∈ {0.6, 0.602, . . . 1.0} and τ ∈ {0, 0.001, . . . 0.2}
we determined the existence of a two cycle of unstable attractors as in fig. 7.1b. Blue dots
show parameters where the estimated basin size δmax > 0. They are in full agreement with our
theoretical result. The black dot indicates the parameter values used for fig. 7.1-7.3. Note that
there are blue dots outside the predicted region indicating that there are more two cycles of
unstable attractors. Indeed, there are further transient maps between the spaces Pi that induce
a switch from one attractor to the other which we did not include in our analysis. In the lower
part there also is a region where dots occur irregularly. Here a third unstable attractor given by
a periodic orbit of the map Qb

i exists that partially absorbs the transients, i.e. in this region the
network of unstable attractors is larger than a two cycle.

Figure 7.7 shows that the conditions (7.2.13) define an open neighbourhood in the
(ε̂, τ)-parameter space using a the rise function Ub for fixed b = 4.2. As the conditions
depend smoothly on b we also obtain an open set in the full parameter space (b, ε̂, τ).
Thus the occurrence of a two cycle of unstable attractors is a robust phenomenon in these
types of models.

7.2.6 Bifurcation To a Heteroclinic Two Cycle

In this section we proof that the two cycle of unstable attractors becomes a heteroclinic
two cycle if the partial reset is increased from zero. In particular we take Jε > 0, i.e.
c > 0 throughout this section.

We assume that the parameter c is sufficiently small so that (7.2.12) holds, i.e.

|Jε (φ)| < η for all φ ≥ 0, ε ≥ 0 (7.2.23)

for some η > 0 which we specify during the following analysis.
Lemma 7.2.2 shows that the periodic orbits Oi still exists for Jε > 0 only the phase

difference α changes continuously with Jε (cf. also fig. 7.5b). We further note that the
domain boundaries of all return and transient maps derived in appendix C.2.1 - C.2.3 do

not depend on Jε. For example, the domain D
(

R↑
i

)

defined via (C.2.3) does not depend
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III 7 From Networks of Unstable Attractors To Heteroclinic Switching

on Jε. So the state space structure remains as illustrated in fig. 7.6. Moreover, as eq.
(7.2.22) shows, the expansion property of R↑

i (lemma 7.2.6) does not depend on Jε and
hence the orbits remain unstable.

However, since Jε becomes invertible for c > 0, according to (7.2.22) a phase difference
|δ3 − δ4| shrinks under the return map R↑

1, but does not collapse to zero as for c = 0; hence

the images C′
i = R↑

i

(

D
(

R↑
i

))

do not collapsed onto a line but stay three-dimensional.

They consists of tubes around the original lines C1 with a square cross-section of side
width

w(c) = Hε,τ ◦ J (c)
ε (1)−Hε,τ ◦ J (c)

ε (0) (7.2.24)

shown in fig. (7.5)b.

Lemma 7.2.8. For sufficiently small η > 0 in (7.2.23) the image C′
i is mapped to a

neighbourhood of Oj, i, j ∈ {1, 2} and i 6= j.

Proof. As the domain boundaries do not change with Jε, lemma 7.2.7 shows that the

image is almost contained in ∪z∈{a,b,c}D (T z
i ) ∪ D

(

R↑
i

)

except near the boundaries of

T b
i and T c

i that only meet in a line. We therefore include a fourth transient map T d
i (cf.

(C.2.20)) with a domain (C.2.21) that fills this gap. The expansion property of R↑
i ensures

that all states are eventually mapped to the set C′
i \ D

(

R↑
i

)

. As before, application of

the maps T z
i to this set results in a set A′

i ⊂ Pj centered around the image Ai for Jε = 0
but now extending into all δ-directions. Because of continuity of the maps this extension
can be made arbitrarily small by a sufficiently small η. In particular, we can chose it
such that that it is contained in the domains of the maps Rz

j and Qz
j with z ∈ {↑, a, b}.

This can be verified using the explicit expression for the domains (C.2.3), (C.2.6) and
(C.2.9). In lemma 7.2.7 we showed that states in D (Qz

i ) are mapped to the periodic orbit
oi for Jε = 0. Now observe, that the maps Qz

1 arise from the Rz
i via the continuous limit

δ2 → 0 (or δ4 → 0). Thus, via continuity of the maps we conclude that A′
i is mapped to

a neighbourhood of oj in D
(

R↑
j

)

We note that this explains the observed switching phenomena for nonzero partial
resets as observed in fig. 7.2: States near O1 are mapped to a neighbourhood of O2 and

then back near O1 and so forth. We remark further that states in D
(

Q↑
i

)

⊂ Si still

reach the point oi asymptotically. Thus the sets D
(

Q↑
i

)

are parts of a stable manifold of

the orbits Oi in this hybrid dynamical system. Furthermore, the states in D
(

R↑
1

)

with

δ3 = δ4 together with their images are mapped to D
(

Q↑
i

)

and thus form a heteroclinic

connection from O1 to O2. By a similar argument a further heteroclinic connection from
O2 to O1 is obtained. We thus conclude:

Corollary 7.2.9. For Jε > 0 sufficiently small the periodic orbits O1 to O2 are saddle
states on a heteroclinic cycle.

Together with the result in 7.2.5 this shows that in the network N 4 a two cycle of
unstable attractors for Jε = 0 continuously bifurcates to a heteroclinic two-cycle for Jε > 0
and thus proves theorem 7.2.1.

Corollary 7.2.9 only depends on the smallness assumption on Jε but not on its precise
form and not on H and the other parameter ε and τ as long as the conditions (7.2.13)
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7.2 Bifurcation From Networks of Unstable Attractors To Heteroclinic Switching

are satisfied. Figure 7.7 then shows that there is an open set of parameters in which the
bifurcation occurs robustly.

The underlying mechanism relies on the interplay of the local instability (lemma 7.2.6)
and the parameter c dependent contraction of state space volume induced by the reset
as visible in eq. (7.2.24), implying the same transition in larger systems as observed in
fig. 7.4 as well as in larger networks of unstable attractors. Recall from chapter 3 that in
these networks there is a link between two attractors Oi → Oj if every neighborhood of Oi

contains a positive basin volume of Oj . Based on our analytical result for the transition in
two cycles of unstable attractors and numerical observations (fig. 7.4), we conjecture that
in larger networks of unstable attractors each link is replaced by a heteroclinic connection
when lifting the non-local invertibility.
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Chapter 8

Summary, Discussion and Outlook

In summary, we proposed a model of pulse-coupled threshold units with partial reset -
an intrinsic response property of the local units - and studied its impact on the collective
network dynamics.

For instantaneous pulse-coupling this partial reset acts as a desynchronization mech-
anism in the collective network dynamics. It causes an extensive sequence of desynchro-
nizing bifurcations of cluster states in networks of pulse-coupled oscillators with convex
rise function. This sequential desynchronization transition is robust against structural
perturbations in the coupling strength and variations of the local subthreshold dynam-
ics. We found similar transitions in biologically more realistic neuron models and briefly
discussed relations to partial reset mechanisms.

For delayed pulse interaction we proved analytically that the partial reset induces a
robust transition from networks of unstable attractors to heteroclinic switching. This
constitutes a new type of global bifurcation in dynamical systems and establishes the first
known bifurcation of unstable attractors.

Previous studies have not particularly focused on the collective implications of partial
or graded resets. In network models with pulses that are extended in time typically a
full conservation of the input is considered [378, 389, 154]. Models with instantaneous
responses to inputs consider fully dissipative reset (R (ζ) ≡ 0 in our model) [269, 124, 33,
333, 370, 369], fully conservative reset (R (ζ) = ζ) [37, 39] as well as both extremes [174]
without discussing particular consequences of the reset mechanism. Here we closed this
gap and showed that in fact the reset mechanism influences the synchronization processes.

Partial reset in pulse-coupled oscillators keeps the collective network dynamics ana-
lytically tractable and at the same time describes additional, physically or biologically
relevant dynamical features of local units. In neurons, for instance, synaptic inputs are
collected in the dendrite and then transmitted to the cell body (soma). At the soma
the integration of the membrane potential takes place and spikes are generated. Remain-
ing input charges on the dendrite not used to trigger a spike at the soma may therefore
contribute to the potential after somatic reset [83, 321, 38].

Such features are effectively modeled by the simple partial reset introduced here. In
particular, spike time response curves (that may be obtained for any tonically firing
neuron [295, 314, 116]) encode the shortening of the inter-spike intervals (ISI) following
an excitatory input at different phases of the neural oscillation. An excitatory stimulus
that causes the neuron to spike will maximally shorten the ISI in which the stimulus is
applied. Additionally, the second ISI that follows is typically affected as well, e.g. due
to compartmental effects. Exactly this shortening of the second ISI is characterized by
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appropriately choosing a partial reset function in our simplified system (cf. fig. 5.4).
The desynchronization due to the partial reset, i.e. due to local processing of supra-

threshold input, differs strongly from that induced by previously known mechanisms based
on, e.g. heterogeneity, noise, or delayed feedback [389, 388, 251, 214, 301, 71]. Possi-
bly, this desynchronization mechanism may also be helpful in modified form to prevent
synchronization in neural activity such as in Parkinson tremor or in epileptic seizures
[362, 160].

We considered a partial reset mechanism for supra-threshold inputs due to excitatory
couplings. For inhibitory couplings one can define a lower threshold [70] below which
inhibitory inputs becomes less effective, i.e. a partial inhibition. In models of neurons,
for instance, this could characterize shunting inhibition [9]. If two units simultaneously
receive inhibitory inputs below a lower threshold, a zero partial inhibition, i.e. setting
the state of the units to a fixed lower value, is strongly synchronizing in analogy to a
full reset after supra-threshold excitation. Our findings suggest that similar to a partial
reset a less synchronizing non-zero partial inhibition may also have a strong influence on
the collective network dynamics. Our partial reset model might also find applications in
studying network dynamics of neurons with post-inhibitory rebound [317]. These neurons
get more excitable when hyperpolarized by inhibitory inputs, e.g. due to the opening of
slowly inactivating calcium channels. After the release from sufficient strong inhibition
the neurons generate a spike and thereafter may still exhibit stronger excitability. In
our simple model this enhanced excitability then could be modeled using a partial reset
mechanism for inhibition.

In biologically more detailed neuronal network models both excitatory and inhibitory
couplings as well as complex network topologies play important roles in generating irreg-
ular [390] and synchronized spiking dynamics [4]. It would therefore be an interesting
task to study the impact of partial resets in such networks.

To deal with dynamical effects due to the partial reset in networks with delayed pulse-
coupling, we developed a novel non-local nonlinear method of event-sequence based do-
main analysis. We used this method to give a full analytic proof for the existence of a
novel bifurcation from unstable attractor networks to hetero-clinic switching in a small
network. For local non-invertible dynamics, i.e. zero partial reset, we first showed the
robust existence of the intriguing phenomenon of two unstable attractors that are fully
enclosed by each other’s basin volume. Continuously removing the local non-invertibility
by increasing the partial reset strength induced the bifurcation to a heteroclinic cycle.
We numerically showed that larger networks of unstable attractors equally show this
transition to more complex heteroclinic structures.

Our results show that this bifurcation occurs upon continuously removing the non-
invertibility of the system, whereas both the non-invertible (c = 0) and the locally in-
vertible (c > 0) system exhibit equally discontinuous interactions. This explicitly demon-
strates that the local non-invertibility and not the discontinuity is responsible for the
creation of unstable attractors in pulse coupled oscillator networks. For (c < 0) we
showed a similar transition to heteroclinic switching where the ordering of the oscilla-
tors is not preserved, (cf. also [203]). Thus the unstable attractor network dynamics
arise at the singular bifurcation value c = 0 and in total there is a bifurcation from non-
order-preserving to order preserving heteroclinic switching dynamics through a network-of
unstable attractors.

The continuity of the bifurcation has theoretical and practical consequences: For in-
stance, one may investigate features of a system exhibiting heteroclinic switching [67, 303,
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Figure 8.1. Bifurcations from and to unstable attractors (UA). Sketches of bifurcations in state
spaces. Attractors are marked as Oi, basins of attraction as B (Oi). (a) bifurcation from a two
cycle of UAs (i) to a heteroclinic two cycle (ii) as observed and proved analytically in sec. 7.2.
(b) bifurcation of an attractor network involving stable as well as unstable attractors (i) to a
heteroclinic network (ii). (c) creation of an unstable attractor (iii) from a stable attractor (i) .

258, 156, 222, 15] by studying its limiting counterpart with unstable attractors. Further-
more, this may help designing systems with specific heteroclinic structure, for instance
in artificial neural networks, and guide our understanding of time series of switching
phenomena in nature, cf. [17]. The associated limiting systems with unstable attractors
may not only be analytically accessible, also numerical simulations can be performed in a
more controlled way because typical problems with simulations of heteroclinic switching,
e.g. exponentially increasing switching times and exponentially decreasing distances to
saddles, do not occur if the heteroclinic switching is replaced by networks of unstable
attractors.

In continuous time dynamical systems heteroclinic cycles exist robustly in systems
with symmetry [146, 225]. We here observed an analog phenomenon in a hybrid dy-
namical system. The transition from unstable attractor networks to heteroclinic cycles
robustly exists in systems with lower symmetry but we did not observe the occurrence
of unstable attractor networks and heteroclinic switching dynamics in systems with in-
homogeneous network structure, i.e. where all permutation symmetries of the oscillators
are broken. However, small symmetry breaking perturbations to the network structure
induce transitions from unstable attractor networks (or heteroclinic switching dynamics
for no zero partial reset) to periodic dynamics. This is in analogy to homoclinic and het-
eroclinic bifurcations in continuous time dynamical systems where for example periodic
orbits are generated from homoclinic orbits (cf. e.g. sec. 3.2). An interesting application
of our analysis therefore would be to investigate how such bifurcations are organized and
what kind of periodic or even more complex dynamics, such as chaos, can be generated
from an unstable attractor network.
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Figure 8.2. Basin bifurcations of unstable attractors. Sketches of bifurcations in state spaces.
Attractors are marked as Oi, basins of attraction as B (Oi). (a) basin bifurcation of an unstable
attractor Oi changing its location from basin B (O2) (i) to B (O3) (ii). (b) bifurcation of an
unstable attractor Oi moving into its own basin of attraction.

For the mathematical investigation of the bifurcation from unstable attractor to het-
eroclinic networks we developed an event-sequence based domain analysis that provides
a tool for the study of the dynamics and state space structure of pulse-coupled systems.
The analysis is non-linear and non-local. Despite the high technicality, it’s algorithmic
nature makes it optimally suitable for computer based analysis and proofs using symbolic
computation software. We used this tool for a global bifurcation analysis, but it finds
more applications in the study of pulse-coupled systems, for example in estimating the
domain size of predefined event sequences and to predict their probability of occurrence
and their stability against noise. A potentially interesting application could be to bet-
ter understand the flux-tube state space structure found in networks of pulse-coupled
integrate-and-fire neurons [271]: Here two states initially separated by a small distance
converge onto the same trajectory, i.e. the dynamics are stable with respect to small
perturbations. However, if larger perturbations are introduced an exponential separation
is observed reflecting chaotic aspects of the dynamics. An detailed analysis of the state
space structure using event-sequence based domain analysis for several trajectories might
help to unravel the underlying mechanisms.

We here, for the first time, fully analyzed a bifurcation involving unstable attractors in
a hybrid system. This opens a new field of bifurcation theory for unstable attractors. In
fig. 8.1 we have sketched some other possible bifurcations for the creation and destruction
of unstable attractors. The bifurcation from unstable attractor networks to heteroclinic
structures as analyzed in this chapter is depicted in (a) and may also occur in larger and
more general attractor networks involving both stable and unstable attractors (b). In (c)
the creation of an unstable attractor form a stable attractor is shown. A different possible
class of bifurcations involves the change of the unstable attractor network instead of the
unstable attractor itself. Two examples are shown in fig. 8.2. Here an unstable attractor
changes its location from one basin of attraction to another. This interesting field offers
many promising opportunities for future research, not only mathematically interesting
but also with applications to physical systems.
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Part IV

Leak-Induced Dynamic Excitability

Transitions in Neurons
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Chapter 9

Introduction

Neuronal excitability characterizes the dynamics of a neuron to generate an action po-
tential. It is one of the core ingredients of neuronal dynamics and strongly influences
the collective network dynamics [157, 100, 177] as well as coding and information storage
properties [239, 318, 166, 329]. A first classification of neuronal excitability of periodi-
cally spiking neurons [64, 245] into two classes goes back to Hodgkin [170] and is based
on earlier work on cancer pagurus axons [14] and nerves of frogs and squids [41]:

• Type I neurons show arbitrarily low periodic firing frequencies and thus can maintain
spiking with arbitrarily large inter spike intervals. There is a smooth dependence of
the firing frequency on the input current over a broad range of frequencies.

• Type II neurons start firing with a frequency clearly distinct from zero and cannot
maintain periodic firing below a certain frequency. The dependence of the firing
frequency on the input current is weak.

Whereas type I dynamics show an all or none stereotyped spike and are associated with
integration properties of the inputs, type II excitability is associated with graded spike
amplitudes and resonance [316, 183]. Type I neurons tend to desynchronize, while type
II neuron often undergo synchronization [316, 189]. Thus, given the strong interrelations
between synchrony and neuronal processing [140, 398, 113, 141, 341, 340, 342] it is impor-
tant to identifying factors and control mechanisms that influence the neuronal excitability
type.

Several factors that determine neuronal excitability have been identified [316, 305].
They include ion channel properties, such as the maximal conductances, the activation
curves and reversal potentials [245, 316, 167] as well as the mixture and density of ion
channels across the membrane [63, 68, 188]. Experimentally it has been shown that the
neuronal excitability type of neurons can also be influenced by neuro modulators [352],
the intrinsic states of the neuron such as up and down states [165] and in vivo vs. in vitro
conditions [307]. However, despite the numerous numerical and experimental studies
that relate neuronal morphology to firing patterns and response properties of neurons
[250, 143, 387, 25, 130], the impact of the dendritic structure on the intrinsic neuronal
excitability type has not been subject to a systematic investigation so far. In chapter 11
we study this question and find that the morphological structure and the density of active
ion channels on the dendritic tree have a crucial impact on the neuronal excitability type.
For passive dendrites with arbitrary morphology we show that linear extended shapes tend
to type I excitability, while stellar shapes show resonant type II properties. Our analysis
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IV 9 Introduction

identifies a passive effective leak conductance imposed onto the soma as the underlying
parameter that induces the excitability switch.

An excitable system in dynamical systems terminology is characterized by a stable
fixed point close to a large amplitude trajectory (pseudo-orbit) or an stable limit cycle,
indicating that the system is close to a bifurcation. Indeed, the neuronal excitability
type can been linked to the underlying bifurcation that generates a stable limit cycle
[100, 335, 189]. In particular, in two dimensional state space the co-dimension-1 saddle
node on invariant cycle and homoclinic bifurcations will show type I excitability as close
to the bifurcation the dynamics on the limit cycle gets arbitrarily slow in the region where
the fixed points are generated (cf. also sec. 3.3.1.1 and 3.3.1.3). For type II excitability the
underlying co-dimension-1 bifurcations are the double limit cycle and Hopf bifurcations
both having oscillatory nature (cf. also sec. 3.3.1.2 and 3.3.1.4).

Some of these bifurcations imply the coexistence of a stable fixed point together with
a stable limit cycle. This implies that the onset of spiking due to destabilization of the
fixed point followed by a jump onto the stable limit cycle may start with a different
frequency than the offset of spiking due to the destabilization of the limit cycle. This
hysteresis effect is accounted for by a more detailed classifications scheme discriminating
the neuronal excitability types for on- and offset of spiking [189, 137].

Bifurcation diagrams in different parameters have been studied for several neuron mod-
els, including the Hodgkin-Huxley [147], the Morris-Lecar [316, 100, 117, 379], the Connor-
Stevens [100], the Rose-Hindmarsh [353], the Traub-Miles [375], the Wilson-Cowan [177]
and the Fitzhugh-Nagumo [109] neuron models. Also different neuronal excitability types
in the same model for different sets of parameter have been identified (e.g. [100, 117]).
However, the leak conductance itself, which we identify as an effective parameter that con-
trols a switch in neuronal excitability in morphological extended neurons, has not been
subject to a systematic bifurcation analysis before. In particular, open questions are in
which neurons leak-induced switches between the neuronal excitability types are possible,
how these transitions are organized and what kind of intermediate dynamics arise. Fur-
ther, given that synaptic shunting inhibition imposes an effective leak conductance onto
the neuron, one can further ask, how this may be utilized to dynamically control neuronal
excitability and ultimately the collective neuronal network dynamics.

In this part of the thesis we theoretically and experimentally study these questions.
In chapter 10 we perform a systematic numerical and analytical bifurcation analysis and
find in a large number of neurons, ranging from fast spiking inter neurons to pyramidal
cells [273, 319, 320, 168, 400, 99, 61, 109, 315, 103, 406], that the strength of the leak
conductance controls a switch in neuronal excitability from type I to type II. We show
that this switch is via a threefold transition and always accompanied by a region of a
bistable coexistence of resting and periodic firing and a further transition from integra-
tion to resonance at peri-threshold membrane potentials. We show that this structure
can be explained by a degenerate Bogdanov-Takens-cusp (dBT) bifurcation [87] of codi-
mension three acting as an organizing center. Using a combination of normal form theory
and center manifold reduction, we then analytically prove that all conductance based
neuron models with type I neuronal excitability have a dBT point and thus are capable of
switching their neuronal excitability by an increase in leak conductance. On the contrary,
we show that by a decrease in leak conductance type II neurons cannot be switch to type
I neurons in general. For a class of neuron models we derive an equivalence to a Liénard
equation and use it to give an interpretation of the neuronal excitability switch in terms
of non-linear acceleration and dampening forces acting on a moving massive particle.
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In chapter 11 we apply our results to spatially extended neuron models. Taking
model neurons with the same surface area, total dendritic branch length, and underlying
biophysics, we vary the pattern of dendritic branching and change the number of primary
dendrites that attach directly to the soma. We find that a change from a long, linearly
extended configuration of a single primary dendrite (akin to the apical shaft in layer 5
pyramidal cells in neocortex) to starlike shapes with a profusion of proximal, primary
dendrites (akin to stellate cells) induces a transition from type I to type II behavior and
explain this by a change of the effective leak imposed onto the soma. By analyzing data
from experiments in which the dendritic tree can be pinched temporarily [25] we also find
a neuronal excitability transition fully consistent with our theoretical findings .

In chapter 12 we use the dynamic patch clamp technique [281, 287] to control the
leak conductance artificially in real neurons and experimentally confirm the main pre-
dictions of our general theory. We find leak-induced neuronal excitability switches, a
region of bistability and a transition at peri-threshold resonance. Application of an in-
hibitory synaptic transmitter likewise induces this transition. We therefore conclude that
in principle neuronal excitability can be controlled dynamically via shunting inhibition.

In chapter 13 we study several consequences of dynamic leak-induced neuronal ex-
citability switches for the control of collective network dynamics. As the neuronal ex-
citability is connected to synchronization properties of weakly coupled neurons [316, 100,
184, 177] we conclude that regulating neuronal excitability via changes in leak conduc-
tance provides an effective mechanism to dynamically control the collective synchroniza-
tion properties of neurons. We demonstrate this in a small circuit. In larger networks
consisting of neurons with different neuronal excitability types we show that the subgroup
of type II neurons synchronizes while the type I neurons remain asynchronous. We con-
clude, that dynamic switching of neuronal excitability may thus serve as a mechanism
for dynamic grouping of neurons with a wide range of applications in neuronal coding
[162, 398, 138, 111]. We further show that in the region of bistability complex dynamics
emerge for stronger couplings in homogeneous networks: For smaller leak conductances,
stronger pulses arising via synchronization induce silencing of neurons, while for larger
leak values the desynchronization causes irregular dynamics due to switching between
resting and spiking of the individual neurons.

We finally summarize and discuss our results in chapter 14.
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Chapter 10

Leak-Induced Neuronal Excitability

Transition in Model Neurons

In this chapter we show that the leak conductance controls a switch in neuronal excitability
in a large number of neuron models [273, 319, 320, 168, 400, 99, 61, 109, 315, 103, 406].
We start by motivating the choice of a leak conductance as a bifurcation parameter and
then systematically study the bifurcations underlying leak-induced neuronal excitability
transitions using numerical continuation in section 10.2, as well as analytical multiple
bifurcation and normal form theory in section 10.3.

10.1 Leak Conductance as a Bifurcation Parameter in

Conductance-Based Neuron Models

type we consider general conductance based neuron models as introduced in sections 2.2
and 2.4 of the functional form

cm
d

dt
v = ie + gL (vL − v) + ia (v, a) (10.1.1)

d

dt
aj =

1

τj (v)
(a∞,j (v)− aj)

where v is the membrane potential, cm the capacity, ie the external input current, gL and
vL the conductance and reversal potential of the leak current. The active ion currents are
given by

ia (v, a) =
∑

k

gka
lk,1
ik,1

. . . a
lk,pk
ik,pk

a
mk,1

∞,jk,1
. . . a

mk,qk

∞,jk,qk
(vk − v) (10.1.2)

and depend on the maximal conductances gk and reversal potentials vj as well as the
activation variables a = (a2, a2, . . . , aN)

T with steady state activations a∞,j and time
constants τj , Note that this formula is a generalization of (2.3.1) that also covers neuron
models for which certain fast activation variables have been replaced by their steady state
value a∞,j that may depend on v.

To study the bifurcations involved in the onset of spiking a canonical choice for a
single bifurcation parameter is the input current ie: Due to an increase of his parameter,
a stable resting state of the neuron typically becomes unstable and the neurons starts to
generate spikes. To study the impact on the leak current onto neuronal excitability we
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10.1 Leak Conductance as a Bifurcation Parameter

further concentrate with out loss of generality on the leak conductance gL as a change in
the leak reversal potential vL may be absorbed into a change in the input current ie. Our
study is motivated by the following observations and facts:

1. Despite the large number of theoretical and numerical bifurcation studies on neu-
ronal models in the literature, the leak current, and in particular the leak conduc-
tance gL has not been subject to a bifurcation analysis before. A reason for this
might be, that in the construction of neuronal models the leak current is the last
ingredient introduced to fit e.g. the resting potential and has therefore been payed
less attention.

2. As mentioned in the introduction and as we will show in chapter 11, the leak conduc-
tance can be systematically related to morphological properties in compartmental
neuronal models.

3. Akin to the external input current, gL is a universal parameter present in almost all
neuron models and therefore a comparison between bifurcation diagrams of different
neuron models is possible.

4. The leak equally well describes the conductance of a shunting inhibitory synapse
with a time scale τsyn much slower than the time scale τap of action potential gen-
eration. More generally, a situation in which both slow (compared to τap) synaptic
excitatory and inhibitory conductance’s are present can be mapped one-to-one to
effective parameters i′e and g′L via the relation

ie + gL (vL − v) = i′e + g′L (v
′
L − v) + gex (vex − v) + gin (vex − v)

which gives

ie = i′e + g′Lv
′
L + gexvex + ginvin − gLvL

gL = g′L + gex + gin .

5. The parameter gL appears linearly in the equations of motion, which facilitates an
analytical treatment (see sec. 10.3.2).

In the next section we give a detailed numerical study of the bifurcations encountered
by varying the leak conductance gL. We first consider bifurcation diagrams in the single
parameter ie for different values of the leak and then consider the two parameter (ie, gL)
as well as three parameter diagrams (ie, gL, cm) including the capacity cm.

Similarly to the leak conductance, the capacity is also present in all conductance-based
neuron models. In writing the general membrane evolution equation as

d

dt
v =

1

cm
(ie + gL (vL − v) + iion (v, a))

= ĩe + g̃L (vL − v) + αiion (v, a)

one observes that the inverse capacity α = 1
cm

controls the overall strength of the active

ion currents with respect to the relative leak g̃L = gL
cm

and external current ĩe = ie
cm

.
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Figure 10.1. Saddle node on limit cycle bifurcation in the Morris-Lecar neuron 2.4.4 determines
spike onset for small leak conductances (gL = 2, cf. also fig. 3.2 for the corresponding phase
portraits). (a) ie-bifurcation diagram with membrane potential values v of the fixed points
(stable: , unstable: ) and maximal and minimal amplitudes of periodic orbits (stable:

, unstable: ). There are two saddle node bifurcations ( ) of the fixed points, the second
one at i∗e ≈ 39.69 being on an invariant cycle giving rise to a stable periodic orbit. A second
unstable limit cycle is created in a Hopf bifurcation ( ) and coalesces with the stable orbit in a
double cycle bifurcation ( ). (b) frequency of the periodic orbits as a function of the external
input current ie which starts to rise continuously form zero at i∗e indicating type I neuronal
excitability.

10.2 Leak-Induced Neuronal Excitability Transitions –

Bifurcation Diagrams

In this section we study how the leak conductance affects the neuronal excitability type
by determining the bifurcations to period spiking using the semi-analytical and numerical
methods as described in section 3.3.4.

All bifurcations encountered here are introduced in detail in section 3.2. Their ab-
breviations together with the color code used in all the bifurcation diagrams are listed in
tab. 3.1.

10.2.1 Leak-Induced Neuronal Excitability Transition in the Morris-

Lecar Model Neuron

In this section we study how neuronal excitability is influenced by the leak conductance
in the Morris-Lecar (ML) model neuron [273] described in sec. 2.4.2. We start with ie-
bifurcation diagrams for different but fixed values of the leak conductance gL and then
summarize the results in a (ie, gL)-bifurcation diagram.

10.2.1.1 One Parameter Bifurcation Diagrams

The ML model has the advantage of being two dimensional which facilitates the visualiza-
tion of the phase portraits. For each bifurcation diagram in this section the phase-portraits
are shown in sec. 3.2 using exactly the same parameter values.

Figure 10.1a shows the bifurcation diagram with corresponding phase plane portraits
in fig. 3.2 for the original parameter values of the ML model with a small leak conductance
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Figure 10.2. Homoclinic bifurcation in the Morri-Lecar model 2.4.4 determines spike onset for
small to intermediate values of the leak (gL = 4.4). (a) ie-bifurcation diagram (syntax as in
fig. 10.1) with corresponding phase portraits shown in fig. 3.3. The limit cycle is created at
i∗e ≈ 126.267 via a homoclinic bifurcation ( ). (b) zoom of (a) close to i∗e . The homoclinic
bifurcation happens before the saddle node bifurcation of the fixed point ( ) implying a small
interval in which a stable limit cycle and a stable fixed point coexist. (c,d) frequency of the
periodic spiking as a function of the external input current ie starts to rise continuously form zero
at i∗e indicating type I neuronal excitability. Due to the bistability there is a hysteresis effect:
Increasing the input current from below the system remains on the fixed point and only when
the SN ( ) is passed the system starts spiking with a non zero frequency. Decreasing the input
current from above the system remains on the periodic orbit with arbitrarily small frequencies.

(gL = 2)1. The onset of periodic spiking is via a saddle node on limit cycle bifurcation
(SNIC), in accordance with previous results [316, 100, 117, 379]. As derived in [100, 335],
the neuron’s spike frequency ν starts continuously form zero with ν (ie) ∝

√
ie for ie ≥ i∗e

(cf. fig. 10.1b). In total this shows that the ML neuron has type I neuronal excitability
for small values of the leak.

Increasing the leak to gL = 4.4 the bifurcation scenario changes and onset of periodic
spiking is via a big homoclinic bifurcation as shown in fig. 10.2 and 3.3. In this regime
the creation of the limit cycle no longer coincides with the saddle node (SN) bifurcation
and there is a small region of bistability. This further implies that there is a hysteresis
effect: Increasing the input current from below the system remains on the stable fixed

1Here and in the following we will not indicate the physical units for the parameters gL, ie and cm as
depending on the interpretation of the model (10.1.1) these can be both specific parameters normalized to
a certain membrane surface area or the total conductance, input current and capacity for a point neuron
model (cf. also sec. 2.2).
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(a) (b)

ie

v

150 240

−40

20

ie

v

159.25 160.75
−40

20

(c) (d)

ie

ν

120 200
0

40

ie

ν

159. 160.

0

10

Figure 10.3. Saddle-node and small homoclinic bifurcation determines spike onset and sub-
threshold resonance in the Morri-Lecar model 2.4.4 for intermediate leak conductances (gL = 5.2).
(a,b) ie-bifurcation diagram (syntax as in fig. 10.1). The stable and an unstable limit cycle is
created at i∗e ≈ 160.35 via a double limit cycle bifurcation (DC) ( ). The unstable limit cycle
vanishes via a big homoclinic bifurcation. In addition there is a small homoclinic bifurcation in
which a small unstable limit cycle is created that shrinks towards the fixed point and destabilizes
it via a Hopf bifurcation ( ) indicating a non-zero sub-threshold resonance frequency (cf. also fig.
3.4 for the phase portraits). (c,d) frequency of the periodic orbit as a function of ie. Increasing
the external input form below the fixed point gets destabilized via the Hopf bifurcation ( ) and
jumps onto the stable periodic orbit with a non-zero frequency while due a decrease from above
the frequency jumps discontinuously to zero at the DC bifurcation ( ). Both jumps indicate type
II behavior.

point and only jumps onto the stable limit cycle with a non-zero frequency when the
stability of the fixed point is lost due to the SN bifurcation. On the contrary, decreasing
the external current form above the system stays on the limit cycle with arbitrarily small
frequencies. Thus the system is no longer purely type I but already shows aspects of type
II excitability.

Note that for a limit cycle close to a homoclinic bifurcation the dynamics near the
saddle point are slow and dominate the overall period. Close to the saddle the dynamics
can be linearized yielding exponential decay in the stable direction and exponential sepa-
ration form the saddle in the unstable direction. The distance of the limit cycle form the
saddle scales linearly with the bifurcation parameter [145]. Taken together we obtain the
frequency scaling ν (ie) ∝ − 1

log(ie−i∗e )
.

Increasing the leak even further to gL = 5.2 the bifurcation diagram changes again
in two aspects (cf. fig. 10.3 and 3.4): First, the generation of the stable limit cycle is
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Figure 10.4. Double limit cycle bifurcation in the Morri-Lecar model 2.4.4 determines spike
onset for intermediate to large leak conductances (gL = 6.0). (a,b) ie-bifurcation diagram
(syntax as in fig. 10.1). The limit cycle is created at i∗e ≈ 195.798 via a DC bifurcation ( )
with corresponding phase portraits shown in fig. 3.2. (c,d) Frequency of the periodic orbit as
a function of the external input current ie as in fig. 10.3 without the big unstable homoclinic
bifurcation. Again there are different frequencies for spike on- and offset due to bistability.

now via a double limit cycle bifurcation, i.e. the system starts to spike with a non-zero
frequency, indicating type II excitability. Second the destabilization of the fixed point is
no longer via a SN bifurcation but due to a Hopf bifurcation involving a small unstable
periodic orbit that is created via a small homoclinic bifurcation (cf. also fig. 3.4). This
has two consequences: First, as fig. 10.3d shows, there is again a hysteresis effect, but
now both the onset of periodic spiking as well as the offset of spiking when decreasing
the current occur at non-zero frequencies. Second, the destabilization of the fixed point
via a Hopf-bifurcation just before the onset of spiking implies that the fixed point has a
attained non-zero resonance frequency which we refer to as peri-threshold resonance.

For even larger leak conductances (gL = 6.0) the small homoclinic bifurcation vanishes
and one is left only with a DC bifurcation for the onset of spiking and a Hopf bifurcation
for the destabilization of the fixed point as shown in fig. 10.4 and 3.2. Thus again, the
system is type II with different on- and offset spiking frequencies and shows peri-threshold
resonance.

Finally, for very large leak conductances (gL = 8) the the onset of periodic oscillations
is via a Hopf bifurcation with an identical on- and offset frequency as the bistability is
no longer present (cf. fig. 10.5 and 3.5). Additionally, the amplitude of the limit cycle
increases continuously form zero.

In summary, we have shown that in the ML neuron, an increase in the leak conductance
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Figure 10.5. Hopf bifurcation in the Morri-Lecar model determines spike onset large leak con-
ductances (gL = 8.0). (a) ie-bifurcation diagram with notation as in fig. 10.1. The limit cycle is
created at i∗e ≈ 297.9 via a Hopf bifurcation ( ) with corresponding phase portraits shown in fig.
3.5. (b) the frequency of the periodic orbit as a function of the external input current ie. There
is no region of bistability.

induces a transition from type I to type II neuronal excitability. Interestingly, we here
encountered all possible generic co-dimensions 1 bifurcations that lead to a creation of a
stable limit cycle in the plane [145, 335].

10.2.1.2 The Threefold Organization of the Neuronal Excitability Transition

The results form the previous section show, that leak induces a switch form type I to type
II neuronal excitability. To get a better understanding of the transition we constructed
a full (ie, gL)-bifurcation diagram shown in fig. 10.6. The one-parameter bifurcation dia-
grams in figs. 10.1-10.5 found above are indicated by dashed lines of constant gL values.

Figure 10.6c shows that for the spike onset the transition in neuronal excitability from
type I to type II happens in three steps:

1. The generation of the stable limit cycle via a SNIC bifurcation (region Ia) changes to
a big homoclinic bifurcation (region Ib). This transition is organized by the saddle-
node-loop bifurcation (cf. fig. 3.3.2.4). It implies the creation of a region with
coexistence of a stable fixed point and stable limit cycle. This in turn implies the
hysteresis effect in the on and offset spiking frequencies for leak conductances above
the SNL point as observed in fig. 10.2. The neuron in this regime displays type II
neuronal excitability for the spike onset and type I excitability for the offset. Further
the frequency dependence of the limit cycle on ie close after the spike onset switches
form a square root scaling for a SNIC bifurcation [100] to an inverse logarithmic
one.

2. Spike onset via the homoclinic bifurcation (region Ib) switches to the onset via a
double limit cycle bifurcation (region IIa). This switch is organized by a neutral
saddle loop bifurcation (cf. also fig. 3.8). The bistable region is not affected but
above the NSL point the hysteresis effect shows type II behaviour for both on and
offset of spiking. This is the main step in the transition form type I to type II
neuronal excitability.

3. In a third step the DC bifurcation (region IIa) switches to a Hopf bifurcation (region
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Figure 10.6. Neuronal excitability transition in the ML neuron. Bifurcation diagrams in (ie, gL)-
parameter space are shown using the model eq. 2.4.4 standard parameters given in D.2. In
particular, there are SN and SNIC ( ), Hopf ( ), DC ( ) and homoclinic ( ) bifurcations (for
notations and color codes cf. also tab. 3.1). In addition we observe the following co-dimension-2
bifurcations: Bogdanov-Takens ( ), cusp ( ), degenerate Hopf ( ), saddle node loop ( ) and neutral
saddle node ( ). The area in which a stable periodic orbit exists is indicated with a gray shading
( ). (a) complete bifurcation diagram in (ie, gl)-parameter space. (b) zoom into the type I to
type II transition area (indicated by a dashed box in (a)). (c) same as is (a) but shifting the
input current ie by i	 = i	 (gL) such that a stable periodic orbit is generated at ie − i	 = 0 to
better resolve the fine-structure of the bifurcation diagram. Dashed lines indicate the values of
the leak used for the one-dimensional bifurcation diagrams shown in fig. 10.1-10.5. The neuronal
excitability transition is organized in three steps via a saddle node loop ( ), a neutral saddle node
( ) and a degenerate Hopf ( ) bifurcation. This leads to four different regions for the generation
of a stable limit cycle: The type I regions Ia (SNIC), Ib (homoclinic) and the type II regions IIa
(DC) and IIb (Hopf). The transition is accompanied with a transition at peri-thershold at the
BT point ( ) due to a change in the destabilization of the fixed point via a SN bifurcation in the
Ip region to a subcritical Hopf bifurcation in IIp.
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IIb) organized by a degenerate Hopf (DH) bifurcation. Above the DH point limit
cycle amplitudes grow continuously from zero and the bistability is lost. The on
and offset spiking frequencies become identical.

The transition above is accompanied by a transition to peri-threshold resonance. Here
the destabilization of the fixed point via a SN bifurcation (region Ip) changes to a sub-
critcal Hopf bifurcation (region IIp) which is organized by an ordinary Bogdanov-Takens
bifurcation (cf. fig. 3.6).

We proceed by investigating whether this transition can also be found in models for
cortical neurons and of higher state space dimensions, such as the Wang-Buzsaki neuron.

(a) (b)

ie

v

0 40

−80

40

ie

v

6.0 6.2

−60

0

(c) (d)

ie

ν

0 40
0.0

0.5

ie

ν

6.0 6.2
0.00

0.07

Figure 10.7. Double limit cycle and saddle node bifurcation determine spike onset in the Wang-
Buzsaki model (sec. 2.4.3) for gL = 0.65 and parameter as in appendix D.3. (a,b) bifurcation
diagram showing that a stable limit cycle is generated via a DC bifurcation ( ). The unstable
orbit vanishes at a homoclinic ( ) bifurcation, the stable cycle at a Hopf point ( ). The zoom (b)
shows that there is a region where the stable limit cycle coexists with a stable fixed point that
vanishes via a SN bifurcation ( ) . (c,d) frequency of periodic orbit as a function of the external
input current ie. Increasing ie the neuron starts firing when the fixed point vanishes via the fold
( ). Decreasing the input the neuron can maintain periodic firing only up to a finite frequency
determined by the DC bifurcation ( ). The frequency of the unstable periodic orbit is shown
(dashed) which terminates in a homoclinic bifurcation ( ).
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10.2.2 Leak Induced Neuronal Excitability Transition in the Wang-

Buszaki Neuron

In this section we study the effect of leak conductance changes on the bifurcation scenarios
for a cortical neuron model, the Wang-Buzsaki (WB) model [400] described in section
2.4.3. We use the original parameters as listed in appendix D.3.

For small leak conductances (gL = 0.55) the WB neuron shows a SNIC bifurcation
for the onset of periodic firing similar to the one observed in fig. 10.1. It therefore has
type I neuronal excitability. In contrast to the ML neuron model the termination of the
periodic spiking due to the conductance block at large input currents is here via a Hopf
bifurcation.

For gL = 0.65 the situation changes as shown in fig. 10.7. Creation of the limit cycle
is now via a DC bifurcation. The unstable orbit vanishes via a big unstable homoclinic
bifurcation. There is a region of a stable limit cycle coexisting with a stable fixed point
that leads via the hysteresis effect to different on and offset spike frequencies which are
both non-zero. Therefore the neuron is type II. In contrast to the situation in fig. 10.2 for
the ML model the fixed point gets still unstable via a saddle node bifurcation and hence
there is no peri-threshold resonance.

Increasing the leak further to gL = 0.718 we obtain the bifurcation diagram of fig.
10.8. Here the limit cycle is also generated via an DC bifurcation, the unstable orbit,
however, vanishes via an SNIC bifurcation. Additionally the neuron shows peri-threshold
resonance as the stable fixed point which coexists with the stable limit cycle becomes
unstable via a Hopf bifurcation. Spike on- and offset have different frequencies but are
both type II.

For even larger values of the leak gL = 0.8 the system shows a DC bifurcation followed
by a subcritical Hopf bifurcation as in the ML model.

In summary, an increase in the leak conductance induces a transition similar to the
one observed in the ML neuron (sec. 10.2.1). We resolved the fine structure of this
transition, via a two parameter bifurcation diagram shown in fig. 10.9. The organization
of the transition is as in fig. 10.6 via the three codimension two pints SNL, NSL and
DH accompanied by a transition to peri-threshold resonance via the BT point (cf. sec.
10.2.1.2).

In total, this shows, that the leak induced transition from type I to type II is also
present in cortical neurons with higher state space dimension. The high similarity between
the bifurcation diagrams in the ML and WB model suggest to study further neuron models
to check for a general principle underlying leak-induced type I to type II transitions.

10.2.3 Prevalence of Leak-Induced Excitability Transitions in

Type I Model Neurons

In this section we study the bifurcation diagrams for various neuron models developed for
different types of neurons in different regions of the brain and also consider models with
additional A-type current. In all these models we find that the transition in neuronal
excitability generally follows the scheme described in detail in section 10.2.1.2.

We start the bifurcation analysis directly in the (ie, gL)-plane. The bifurcation diagram
for the fast spiking neuron model by Erisir et al. (sec. 2.4.4) is shown in fig. 10.10, for
the reduced Traub-Miles pyramidal neuron (sec. 2.4.6) in fig. 10.11 and for the Rose-
Hindmarsh neuron model with A-type current (sec. 2.4.5) in fig. 10.12. Together with
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Figure 10.8. Double limit cycle and Hopf bifurcation determine spike onset in the Wang-
Buzsaki model for gL = 0.718. (a,b) bifurcation diagram as in fig. 10.7 with the difference that
the unstable periodic orbit terminates in a SNIC bifurcation ( ) and a second unstable limit cycle
is generated via a small homoclinic bifurcation ( ) which coalesces with the fixed point at a HB
point ( ). (c,d) Frequency ν of periodic orbit as a function of the external input current ie. On
( ) and offset ( ) of spiking happen with different non-zero frequencies.

the diagrams for the ML and WB neurons in figs. 10.6 and 10.9 all exhibit a transition
from type I to type II neuronal excitability organized in three steps via the SNL, the NLS
and DH bifurcation as described in detail in sec. 10.2.1.2. This transition involves the
creation of a region where a stable limit cycle coexists with a stable fixed point, resulting
in a mismatches for on- and offset frequencies of periodic spiking within the transition
region. Further more, this transition is always accompanied by a switch from integration
to resonance at peri-threshold, organized via the BT point. We also observe this behavior
in the Rinzel model (cf. sec. 2.6.2) and the somatic compartment of the Mainen-Senjowski
neuron [250].

Note, that all these models have in common, that they are intrinsically type I neurons.
The prevalence of this neuronal excitability transition in type I neurons suggest a common
underlying principle which we unravel in the next section.

10.2.4 A Degenerate Bogdanov-Takens Bifurcation Organizes

Neuronal Excitability Transitions

In the previous section we have seen that the three-step transition from type I to type
II neuronal excitability is always organized by the same co-dimension two bifurcations:
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Figure 10.9. Neuronal excitability transition in the Wang-Buzsaki neuron. Bifurcation diagrams
in (ie, gl)-parameter space are shown for the model in sec. 2.4.3 and remaining parameter as
in appendix D.3. Lines show the co-dimension-1 bifurcations: SN and SNIC ( ), Hopf ( ),
DC ( ) and homoclinic ( ) bifurcations. In addition we observe Bogdanov-Takens ( ), cusp ( ),
degenerate Hopf ( ), saddle node loop ( ) and neutral saddle node ( ) bifurcations of co-dimension-
2. Existence of a stable periodic orbit is indicated with a gray shading ( ). (a) complete
bifurcation diagram (ie, gl)-parameter space. (b) zoom into the area where the transition from
type I to type II appears (indicated by a dashed box in (a)). (c) same as is (a) but shifting the
input current ie by i	 = i	 (gL) such that a stable periodic orbit is generated at ie − i	 = 0 to
resolve the precise structure of the bifurcation diagram. Dashed lines indicate the values of the
leak used for the one-dimensional bifurcation diagrams described in the text and in figs. 10.7 and
10.8. Also the different excitability regions as described in sec. 10.2.1.2 are indicated.

A SNL, a NSL and a DH point (cf. sec. 10.2.1.2). Using the idea of multiple bifurcation
theory in which bifurcations of lower co-dimension are organized by higher degenerate
bifurcations of larger co-dimension [144, 276], one can ask the question whether there is a
higher degenerate bifurcation point that organizes the existence of the SNL the NSL and
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DH bifurcations.

To answer this question, observe that in all (ie, gL)-bifurcation diagrams there exists
a cusp point. Moreover, the transition in neural excitability is always accompanied by a
transition from integration to resonance at peri-threshold organized by a Bogdanov-Takens
point. In [85, 87, 86] it is shown that these two co-dimension-2 bifurcations can interact
in a co-dimension-3 degenerate Bogdanov-Takens-cusp (dBT) bifurcation as introduced
in sec. 3.3.3. The bifurcation diagram for the unfolding of the dBT point of focus type is
shown in figs. 3.9 and 3.10. It can bee seen that the dBT point organizes the two BT and
CP bifurcation lines and in addition also three SNL, a NSL and a DH bifurcation line,

(a) (b)
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gl
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Figure 10.10. Bifurcation diagram for the fast spiking inter-neuron model by Erisir et al. in
the (ie, gL)-plane. Model and parameters as in sec. 2.4.4 and appendix D.4. Figure syntax as in
fig. 10.9 and tab. 3.1. (a) full bifurcation diagram showing topologically the same structure as
for the WB model in fig. 10.9. Box indicates transition region shown in (b). (b) zoomed and
shifted diagram showing the fine structure of the transition from type I to II excitability. As in
the ML and WB model the SNL ( ), NSL ( ) and DH ( ) points organize the transition. Further
the existence of the BT point organizes the transition to peri-threshold resonance.
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Figure 10.11. Bifurcation diagram for the reduced Traub-Miles pyramidal neuron model 2.4.6 in
the (ie, gL)-plane. Model and parameters as in sec. 2.4.6 and appendix D.6. Figure color syntax
as in fig. 10.9 and tab. 3.1. (a) full bifurcation diagram. Box indicates transition region shown
in (b). (b) zoomed and shifted diagram showing the fine-structure of the transition from type
I to II excitability. As in the ML and WB model the SNL ( ), NSL ( ) and DH ( ) organize the
transition form type I to type II excitability and the BT point the transition to peri-threshold
resonance.
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Figure 10.12. Bifurcation diagram for the Rose-Hindmarsh neuron model with A-type current
in the (ie, gL)-plane. Model and parameter as in sec. 2.4.5 and appendix D.5. Figure syntax as
in fig. 10.9 and tab. 3.1. (a) full bifurcation diagram showing topologically the same structure
as for the WB model in fig. 10.9. Box indicates transition region shown in (b). (b) zoomed and
shifted diagram showing the fine-structure of the transition from type I to II excitability. As in
the WB model the SNL ( ), NSL ( ) and DH ( ) organize the transition and the BT point the
transition to peri-threshold resonance.

making the dBT bifurcation a potential candidate for an organizing center of type I to
type II transitions.

To check this hypothesis we have calculated a three dimensional bifurcation diagram
for the Wang-Buzsaki model using the capacity cm as a third bifurcation parameter. The
resulting three-dimensional bifurcation diagram is shown in fig. 10.13 and with a zoom
and rotation in fig. 10.14. They confirm the existence of a dBT point. Furthermore, one
observes that the bifurcation diagram forms a topological cone with base shown in fig.
10.15 which by comparison with fig. 3.10 shows that the point is a degenerate BT point
of focus type. Figures 10.13 and 10.14 demonstrate, that the dBT point is located above
the plane cm = 1, (the original capacity of the WB model) and organizes the structure of
the (ie, gL)-bifurcation diagram shown in fig. 10.9.

Note the striking similarity between the rotated and zoomed WB bifurcation diagram
in fig. 10.14 to the diagram shown in fig. 3.9. Especially, the SN bifurcation surface
has a very similar shape. One reason for this similarity is the choice of cm as the third
bifurcation parameter: As it multiplies the the vector field in v direction the position of
the fold points is not affected by cm and therefore the SN bifurcation lines do not depend
on cm.

In [87] it is conjectured that every system close to a dBT point of focus type is
equivalent (but not necessarily conjugated) to an unfolding of the normal form of a dBT
of focus type given by (3.3.1), i.e. is of the form

d

dt
x = y

d

dt
y = µ1 + µ2x− x3 + y

(
µ3 + ρx− x2

)
(10.2.1)

with unfolding parameter µi, i = 1, 2, 3 (cf. also sec. 3.2.1 and 3.3.3). Comparing the
bifurcation diagrams for the normal form in fig. 3.9 and for the WB neuron in fig. 10.14
one observes that µ3 is mainly controlled by cm, while µ2 and µ1 are controlled by a
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Figure 10.13. Neuronal excitability transitions are organized by a degenerate Bogdanov-Takens-
cusp (dBT) bifurcation. Three parameter (ie, gL, cm)-bifurcation diagram for the Wang Buzsaki
model in sec. 2.4.3 with standard parameter as in appendix D.3. The dBT point ( ) of co-
dimension-3 organizes the surrounding co-dimension two (lines) and one (surfaces) bifurcations.
The co-dimension-2 bifurcations lines are: cusp ( ), BT ( ), NSL ( ) , SNL ( ) and DH ( ).
The surfaces are SN or SNIC ( ) , Hopf ( ) , Homoclinic ( ) and double cycle ( ) bifurcations.
The gray shaded plane shows the section of the bifurcation diagram as shown in fig. 10.9.

combination of ie and gL. We confirm these findings in an analytical treatment of the
FHN model in section 10.3.4.

To conclude, we have found numerically that an increase in leak conductance induces
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Figure 10.14. Neuronal excitability transitions are organized by a degenerate Bogdanov-Takens-
cusp (dBT) bifurcation. Shown is the three parameter (ie, gL, cm)-bifurcation diagram for the
Wang Buzsaki model 2.4.3 as in fig. 10.13 but rotated and zoomed onto the degenerate BT point
( )In this representation the diagram is strikingly similar to the diagram of the unfolding of the
normal form of the dBT point as shown in fig. 3.9, indicating that the dBT point organizes the
transition from type I to type II neuronal excitability.
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Figure 10.15. Cone structure of the (ie, gL, cm)-bifurcation diagram for the WB neuron model
as in fig. 10.13 and 10.14. (a) Show are the intersections of the bifurcation surfaces and lines
(color syntax given in fig. 10.13, cf. also tab. 3.1) of the bifurcation diagram in fig. 10.14 with
an ellipsoid centered at the dBT point and coordinate system (p, q) used in (c,b). (b) The
bifurcation diagram on the ellipsoid in a 2D coordinate system showing the basis of the cone
structure. (c) zoom into the lower area of the ellipsoid showing the type I to type II transition
region.

a switch from type I to type II neuronal excitability which is organized by a degenerate
Bogdanov-Takens-cusp bifurcation for the Wang-Buzsaki model. Given the strong simi-
larity of the two parameter bifurcation diagrams for the different neuron models found in
sec. 10.2.3 we conclude that the leak induced transition is generally organized by a de-
generate Bogdanov-Takens bifurcation point of focus type in these type I neuron models.
Indeed, in sec. 10.3.2 we will give an analytically proof that every type I conductance
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based neuron model has a dBT point of focus type in the (ie, gL, cm) parameter space that
can serve as an organizing center for the observed neuronal excitability transitions.

10.2.5 Leak Induced Neural Excitability Transition in Type II

Neuron Models

In the previous section 10.2.3 we showed that generally a type I neuron can be switched
to type II via a three-fold transition organized by a degenerate Bogdanov-Takens point.
Thus starting with an initially larger leak conductance in one of the above models that
gives rise to type II excitability it is clear that they can be switched back to type I. But
what about other type II neurons?

A classical type II neuron is the Hodgkin-Huxley model [172, 171] introduced in sec.
2.4.1. The bifurcation diagram for this model in the (ie, gL)-plane is shown in fig. 10.16.
For small positive values of the leak conductance periodic spiking is generated via a
saddle-node of limit cycle bifurcation and the stable fixed point becomes unstable via a
subcritical Hopf bifurcation. In total this gives rise two non-zero frequencies for on- and
offset of spiking. The Hopf-bifurcation of the fixed point also indicates peri-threshold
resonance.

When increasing the leak we find a DH point in which the DC line ends and which
organizes the transition of limit cycle generation from DC to a Hopf bifurcation, similar to
the third part of the transition discussed in sec. 10.2.1.2. However, the DC curve is folded
twice and we observe a bifurcation to an invariant torus, a period doubling bifurcation
as well as a twisted saddle loop (not shown). The latter two bifurcations have also been
observed in (ie, gK) parameter space in ref. [147]. As the neuron is already type II in
this regime, we defer the study of the finestructure of these bifurcations involving mainly
unstable periodic orbits to future work and instead concentrate on a possible switch to

(a) (b)
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gL

−50 200
−1.0

2.0
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−25 −15
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Figure 10.16. Not all type II neurons can be switched to type I neurons. Bifurcation diagrams
of the Hodgkin-Huxley model as in sec. 2.4.1 and appendix D.1. (a) bifurcation diagram in the
(ie, gL)-plane. For positive leak the neuron is type II as a limit cycle is generated via a DC
bifurcation ( ). An increase of the leak leads to a switch of the limit cycle generation by a
Hopf bifurcation ( ) organized by a DH point ( ). Not shown are a period doubling bifurcation
and bifurcations to an invariant torus in the type II regime. (b) zoom into the a region of the
diagram with negative leak values. Remnants of the transition for type I neuron as are observed,
in particular a cusp ( ), a BT point ( ) and an NSL point ( ). However, the dynamics in this
region becomes unstable. See text for details.

131



IV 10 Leak-Induced Neuronal Excitability Transition in Model Neurons

type I by a subtraction of leak conductance.
Decreasing the leak conductance to zero does not change the DC-Hopf bifurcation

scenario (cf. fig. 10.16) and we thus conclude that for non-negative leak values the HH
model cannot be switched to type I. Despite the fact that a negative leak conductance lacks
biophysical plausibility, we decrease the leak to negative values to obtain further insight
into type I - II transitions. At large enough negative values the bifurcation structure
changes. In particular we find that the Hopf-bifurcation line ends in a BT point on a SN
curve that is created in a cusp. Furthermore the DC bifurcation line ends at an NSL point
on the homoclinic bifurcation line that starts at the BT point. The creation of a stable
limit cycle via the DC bifurcation is switched at the NSL point implying a switch from type
II to type I excitability akin to step (2) in sec. 10.2.1.2. Hence, we encounter remnants of
the bifurcation diagram observed previously for type I neuron models, consistent with a
dBT point still acting in the background. However, there is only single SN line emanating
form the cusp. The reason for this is that the negative leak destabilizes the dynamics and
the stable fixed point moves to infinity as the leak approaches the cusp point.

In summary, in the HH model a switch form type II dynamics to type I neuronal
excitability is not possible by reduction in the leak conductance. Parts of the transitions
structure observed for type I neurons remains, but in general a switch to type I is not
possible due to the destabilization of the dynamics by negative leak conductances.

10.3 Leak-Induced Neuronal Excitability Transitions –

Mechanism and Analysis

In this section we theoretically analyze neuronal excitability transitions using multiple
bifurcation theory and normal form theory. To prepare the analysis, we first give an
explanation of the biophysical mechanism underlying the neuronal excitability switch and
then proceed with the general theory. By transforming a class of neuron models into a
Liénard equation we further give a different interpretation of the mechanism in terms
of non-linear accelerating and dampening forces. Finally we consider higher degenerate
organizing centers for neuronal excitability .

10.3.1 Biophysical Mechanism Underlying the Neuronal

Excitability Switch

In this section we discuss the biophysical mechanism underlying the transition from type
I to type II neuronal excitability based on arguments in [316, 305] and obtain the critical
leak conductance at the NSL point, the main step in the neuronal excitability transition.

To generate an action potential a positive feedback mechanism is required (cf. sec.
2.3). If the steady state i-v-curve i∞ (v) has a positive slope (negative resistance) for some
values of the membrane potential this feedback mechanism works on arbitrarily slow time
scales and the neuron can sustain spiking with arbitrarily large inter-spike-intervals.

On the contrary, if the steady state i-v-curve has only negative slope the positive
feedback required for spike generation can only be established if the fast depolarizing
ionic currents iinst (e.g. the sodium current iNa) overcome the negative feedback of the
slower delayed rectifiers, e.g iK. Thus, in this situation the spike process cannot become
arbitrarily slow and the neuron exhibits type II neuronal excitability.
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Figure 10.17. Biophysical mechanism of neuronal excitability switches via an increase in leak
conductance. Curves are for the Morris-Lecar model, eq. 2.4.4 with standard parameter in
appendix D.2 leading to type I excitability for gL = 2.0 (a,b) and to type II for gL = 6.0 (c,d) .
The external input current for (b) is ie = 43.5 and for (d) ie = 196.0 resulting in similar spike
frequencies. (a,c) i-v-curves for the leak current iL, the instantaneous current iinst = iL + iNa,
the steady state potassium current iK,∞ = gKw∞ (v) (vK − v) and the steady state current i∞
(eq. (10.3.1)). (b,d) Voltage and currents at periodic spiking. Note the positive slope of the
total current itot in both figures indicating active spiking dynamics. See text for details.

Now, changing the leak conductance gL results in different negative slopes of the
instantaneous leak current iL (v) = gL (vL − v). As the steady state current i∞ is composed
of the leak and the active steady state currents ia,∞,

i∞ = ie + iL + ia,∞ (10.3.1)

an increase in the leak conductance decreases the slope of the steady state i-v-curve. Thus
for a type I neuron that has positive slope of ia,∞ in some region of potential values v the
condition

gL > gL,0 = max
v

d

dv
ia,∞ (10.3.2)

is sufficient for i∞ to only have negative slope. As a result the neuron switches to a type
II neuron if (10.3.2) is fulfilled. The process is illustrated in fig. 10.17. In the previous
sections we have shown that the actual transition process from type I to type II is more
complex and accompanied by a sequence of bifurcations. In particular there is a NSL
point that organizes the second step in the transition, at which the existence of limit

133



IV 10 Leak-Induced Neuronal Excitability Transition in Model Neurons

cycles with arbitrarily large period cease to exist. Thus eq. (10.3.2) gives the critical
value for the leak to be at the NSL point.

Having obtained this first analytical result from biophysical reasoning, we proceed to
a full analytical treatment in the next sections.

10.3.2 Existence of degenerate Bogdanov-Takens Bifurcations in

Conductance-Based Neuron Models

In this chapter we study the neuronal excitability transition induced by leak changes
analytically using a combination of a center-manifold reduction and normal form reduction
technique [231, 276] together with multiple bifurcation theory [144, 145].

There are three main ingredients that facilitate an analytical treatment: First, the
observation that the topological structure of the (ie, gL)-bifurcation diagrams computed
for the various type I neuron models in sections 10.2.1.2 and 10.2.3 are the same and
display properties akin to the degenerate Bogdanov-Takens bifurcation of focus type [87]
introduced and discussed in sec. 3.3.3. Second, the fact that the bifurcation parameters ie
and gL as well as a third parameter, the capacity cm, are general parameter that appear
in the vector fields of all conductance based neuron models, with ie and gL appearing
as coefficients of the constant and first order terms in v only. Third, in conductance
based neuron models the dynamics of the gating variables are coupled solely over the the
membrane potential. These facts allow to prove the following theorem:

Theorem. Every conductance based type I neuron of the form (10.1.1) has a degenerate
Bogdanov-Takens point of focus type in the (ie, gL, cm)-parameter space .

Proof. We make the biophysically plausible assumption, that all conductances gk in
(10.1.2) are positive, that the steady state activations are bounded and positive,

aj,∞ (v) ∈ [0, 1] for all v ∈ R (10.3.3)

and become sufficiently flat in the limits v → ±∞

lim
v→±∞

vl∂nv aj,∞ (v) = 0 n ∈ {1, 2} , l ∈ {0, 1} (10.3.4)

By introducing new parameters

α =
1

cm
i =

ie + gLvL
cm

and gl =
gL
cm

(10.3.5)

we rewrite the model (10.1.1) as

d

dt
x =

d

dt

(
v
a

)

=

(
i− glv + αia (v, a)

1
τ
(a∞ − a)

)

=

(
fv (v, a)
fa (v, a)

)

= f (v, a) = f (x) (10.3.6)

where we used the notation

1

τ
= diag

(
1

τ2
, . . . ,

1

τN

)

, a∞ (v) = (a2,∞ (v) , . . . , aN,∞ (v))T

and the convention that component wise multiplication of two vectors a and b is denoted
by ab = (a1b1, . . . , aNbN ). To indicate a scalar product we explicitly include the transpose,
i.e. aT b =

∑

i aibi.
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The idea of the proof is to show that one can always adjust the three parameters κ =
(i, gl, α) in such a way that the system is at a codimension three dBT point at parameter
values κdBT = κ0 = (i0, gl,0, α0) and some point in state space xdBT = x0 = (v0, aj,0). In
order to show this, we will consider step by step all defining conditions for a dBT point
in the following and show that they can be solved.

A dBT point is a fixed point and thus, setting the right hand side of (10.3.6) to zero
the fixed point values aj,0 for the activation variables are uniquely determined by

aj,0 = aj,∞ (v0) (10.3.7)

given the steady state voltage v0. Instead of solving for the membrane potential v0 to
satisfy the remaining fixed point equation obtained from (10.3.6) we use the observation
that this equation can uniquely be solved for i0 given the fixed point x0 and parameters
gl,0 and α0 as:

i0 = −gl,0v0 − α0ia (v0, a∞ (v0)) (10.3.8)

We define the steady state current reached when voltage-clamping the model at membrane
potential v, i.e. the steady state i-v-curve (cf. sec. 2.8) as

i∞ (v) := fv (v, aj,∞ (v)) (10.3.9)

Besids being a fixed point, an ordinary Bogdanov-Takens point [358, 29] is characterized
by a zero eigenvalue of algebraic multiplicity two (and geometric multiplicity 1), i.e. by a
nilpotent Jacobian for the reduced dynamical system within a center manifold. Thus, for
such a point x0 we must demand the existence of four generalized eigenvectors q0, q1, p0,
p1 of A = Df |x0

, the Jacobian at x0, such that

Aq1 = q0 Aq0 = 0 AT p1 = 0 AT p1 = 0 pTi qj = δij (10.3.10)

Note the effective exchange of the indices when exchanging q and p (and A↔ AT ).
We now use the fact that the dynamics of the activation variables aj in a conductance

based neuron model only couple via the membrane potential v. This is reflected in the
special structure of Df having a block diagonal matrix on the lower right:

Df =








∂vfv ∂a2fv . . . ∂aN fv
∂vfa2 − 1

τ1
0

...
. . .

∂vfaN−1
0 − 1

τN−1








=

(
∂vfv ∂af

T
v

∂vfa − 1
τ

)

(10.3.11)

We can thus solve the equations (10.3.10) using eq. (10.3.11) for all components pj,i and
qj,i, j ∈ {0, 1} and i ≥ 2 to obtain the qj and pj in the form

q0 = q0,1

(
1

τ∂vfa

)

p1 = p1,1

(
1

τ∂afv

)

q1 =

(
q1,1

(q1,1 − q0,1τ) τ∂vfa

)

p0 =

(
p0,1

(p0,1 − p1,1τ) τ∂afv

) (10.3.12)

The remaining equations for the first component i = 1 then become

q0,1
(
∂vfv + ∂af

T
v (τ∂vfa)

)
= 0

q1,1
(
∂vfv + ∂af

T
v (τ∂vfa)

)
− q0,1

(

1 + (τ∂afv)
T (τ∂vfa)

)

= 0

p1,1
(
∂vfv + ∂vf

T
a (τ∂afv)

)
= 0

p0,1
(
∂vfv + ∂af

T
v (τ∂vfa)

)
− p1,1

(

1 + (τ∂afv)
T (τ∂vfa)

)

= 0
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As the generalized eigenvectors should be non-zero, we must have q0,1 6= 0 6= p1,1 and thus
the above linear system can only be solved if the determinant of the coefficients for qj,1
and pj,1 vanish. This condition is equivalent to the following two equations

∂vfv + ∂af
T
v (τ∂vfa) = 0 (10.3.13)

(

1 + (τ∂afv)
T (τ∂vfa)

)

= 0 (10.3.14)

These equations render the fixed point x0 to be an ordinary Bogdanov-Takens point (cf.
also sec. 3.3.2.2). Using (10.3.6) and

∂vfa =
1

τ

(

∂va∞ − ∂vτ

τ
(a∞ − a)

)

and thus ∂vfa|x0
=

1

τ
∂va∞

∣
∣
∣
∣
x0

as a = a∞ at x0 via the fixed point condition (10.3.7). Hence the first BT point condition
(10.3.13) is equivalent to

d

dv
i∞|x0 = 0 (10.3.15)

Note that this equation is also equivalent to the condition that the determinant at x0
given by

det (Df)|x0
=

(−1)N−1

∏

j τj

(

∂vfv +
∑

j

∂vaj,∞∂ajfv

)∣
∣
∣
∣
∣
x0

=
(−1)N−1

∏

j τj

d

dv
i∞

∣
∣
∣
∣
∣
x0

(10.3.16)

evaluates to zero indicating the position of a fold point in general. Note further, that the
fold condition (10.3.15) is an equation linear in the two parameters gl and α and can be
solved uniquely for gl to give

gl,0 = α0
d

dv
ia (v, a∞ (v))

∣
∣
∣
∣
v0

= α0
d

dv
ia,∞ (v)

∣
∣
∣
∣
v0

(10.3.17)

The next step is to solve the second BT point condition (10.3.14) for the parameter α
which gives

α−1
0 = −

(

∂aia (v0, a∞ (v0))
T τ∂va∞ (v0)

)

(10.3.18)

Note that for a two dimensional system this condition becomes tr (Df)|x0
= 0 and together

with (10.3.16) this again shows that these are the conditions for a ordinary BT point.
Using this information the second equation for a 2d system then takes the form

α2d
0 = (τ2∂via)

−1 (1 + τ2gl,0)

Finally, we calculate the equation that forces the BT point to be degenerate. A BT
point is degenerate, if, in a two dimensional center manifold with coordinates (w0, w1),
the vector field f up to order O2 (w0, w1), also called the 2-jet [276], J2f of f , has the
following form

J2f ∼ w1
∂

∂w0
+
(
γw2

0 + βw0w1

) ∂

∂w1

with the degeneracy condition being either γ 6= 0, β = 0 or γ = 0, β 6= 0 [87, 86, 85].
A degenerate BT point of focus type falls into the second class. We therefore now show
that we can tune the fixed point value v0 such that γ = 0.
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The normal form coefficient γ can be calculated using center manifold theory and
imposing the Fredholm solvability conditions [231] (also cf. appendix F for a complete
derivation of this non-standard result). This yields an expression for γ in terms of the
generalized eigenvectors q and p as

γ =
1

2
pT1D

2f (x0, q0, q0)

where D2f is the Hessian quadratic form of the vector field f at x defined in eq. (3.1.2).
Using the expressions (10.3.12) for the generalized eigenvectors we obtain

1

q20,1
D2fv (q0, q0) = ∂2vfv + 2 (∂a∂vfv)

T (τ∂vfa) + ∂2afv (τ∂vfa, τ∂vfa)

1

q20,1
D2fa (q0, q0) = ∂2vfa + 2 (∂v∂afa) (τ∂vfa) + ∂2afa (τ∂vfa, τ∂vfa)

= ∂2vfa + 2

(
∂vτ

τ 2

)

(τ∂vfa)

where in the second equation we used ∂afa = − 1
τ

and ∂a
(
− 1

τ

)
= 0. Thus

2

p1,1q20,1
γ = ∂2vfv + 2 (∂a∂vfv)

T (τ∂vfa) + ∂2afv (τ∂vfa, τ∂vfa)

+ (∂afv)
T (τ∂2vfa

)
+ 2 (τ∂afv)

T

(
∂vτ

τ 2

)

(τ∂vfa)

Using

∂2vfa
∣
∣
x0

=
1

τ
∂2va∞ − 2

∂vτ

τ 2
∂va∞

∣
∣
∣
∣
x0

we obtain

2

p1,1q20,1
γ

∣
∣
∣
∣
x0

= ∂2vfv + 2 (∂v∂afv)
T ∂va∞ + ∂2afv (∂va∞, ∂va∞) + (∂afv)

T ∂2va∞

∣
∣
∣
x0

=
d2

dv2
i∞

∣
∣
∣
∣
x0

The degeneracy condition for the BT point thus becomes

d2

dv2
i∞

∣
∣
∣
∣
x0

= 0 (10.3.19)

Now we use the second ingredient, namely that the i and gl are coefficients of the constant
and linear part of the vector field f so that d2

dv2
i∞ does not depend on i and gl. It further

is proportional to α 6= 0, so that the condition can be solved for v0 independently of the
choice of the parameters (i, gL, α).

To show the existence of a solution of (10.3.19) we use the precondition that the
neuron has type I excitability and is capable of generating periodic spiking activity with
arbitrarily large inter-spike-intervals. This implies that there is a voltage regime with
positive feedback in the adiabatic limit, i.e. the steady state i-v-curve i∞ must have a
positive slope for some voltage v+ ∈ R (cf. also sec. 10.17). We thus have for the non-tuned
initial parameter set

d

dv
i∞ (v+) > 0 (10.3.20)

137



IV 10 Leak-Induced Neuronal Excitability Transition in Model Neurons

Observe that i∞ has the form i∞ = q (v)− p (v) v with q (v) and p (v) being polynomials
in the variables aj,∞ (v) only. As the steady state activations are bounded and positive
(10.3.3) and become flat for v → ±∞ (10.3.4) we have for n ∈ {1, 2}, l ∈ {0, 1}

lim
v→±∞

vl∂nv q (v) = lim
v→±∞

vl∂nv p (v) → 0.

and thus i∞ approaches a straight line for v → ±∞. Hence

lim
v→±∞

d2

dv2
i∞ (v) = 0 (10.3.21)

Furthermore, as all maximal conductances and activation variables are positive we have

p (v) ≥ gl > 0.

and thus

lim
v→±∞

d

dv
i∞ (v) ≤ −gl (10.3.22)

Combining equations (10.3.20) and (10.3.22) it follows that ∂vi∞ must have at least one

local maximum and hence there is a v0 ∈ R such that d2

dv2
i∞ (v)

∣
∣
∣
v0

= 0. Note here, that if

we take v0 at the maximum, eq. (10.3.17), expressed in the in original parameter, becomes
eq. (10.3.2) derived in sec. 10.17 from biophysical considerations.

Moreover, combining (10.3.20) with (10.3.17) shows that choosing v0 at such a maxi-
mum we have

sign (gl,0) = sign (α0) (10.3.23)

Finally, given v0 that solves the degeneracy condition (10.3.19) the equations (10.3.8),
(10.3.17) and (10.3.18) show that there exists a parameter set (i0, gl,0, α0) such that x0 is
a degenerate BT point.

This shows the existence of a dBT point in all type I conductance based neuron models.
In principle, one can calculate the remaining normal form coefficients analytically using
the method in [231] (cf. also appendix F) to construct conditions for the dBT point to
be of focus type. We use a simpler approach to show that the dBT point is of focus type
by employing the following two facts: For v → ±∞ the leak conductance gL dominates
the dynamics as the activation variables become flat. Using (10.3.23) implies via (10.3.5)
that

sign (gL,0) = sign (gl,0) sign (cm) = sign (gl,0) sign (α0) > 0 (10.3.24)

and hence gL,0 > 0 and the overall dynamics is bounded. In [87] it is shown that in the
bifurcation diagrams for the degenerate BT points there are always unbounded dynamics
in the the saddle and the elliptic case, leaving only the focus type point with bonded
dynamics as a consistent alternative.

Note also, that we had to demand type I excitability in order to ensure the existence
of a dBT point of focus type due to a positive value for gL,0 via (10.3.24) and (10.3.23).
For type II neurons a dBT may still exist, however, one cannot exclude negative values
of gL,0 leading to unbounded dynamics and to either an elliptic or saddle dBT point.

Note, that in general there can be more than one solution to eq. (10.3.19). For the
neuron models studied above we typically find two solutions where the second one cor-
responds to a minimum of d

dv
i∞. In this case gl,0 has the opposite sing of α0, rendering
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the leak conductance gL,0 negative, which due to the unbounded dynamics again indicates
less biophysical relevance of this point.

Note further that the existence of other degenerate bifurcation points closer to the
original parameter plane may alter the fine structure of the bifurcation diagram. For ex-
ample, in the original Connor-Stevens model, eq. (2.4.6), we observe that in the transition
from type I to type II the (ie, gL)-bifurcation diagram shows additional signatures of a
nearby swallow tail bifurcation (cf. [145] for a definition) as there are two additional cusp
points leading in some parts of the (ie, gL)-parameter space to the existence of five fixed
points of which four are unstable. However the three-fold transition from type I to type
II excitability as discussed earlier in sec. 10.2.1.2 remains present.

To summarize, we have analytically shown the existence of dBT points in all conduc-
tance based type I neuron models. The existence of such a point of focus type implies the
existence of the three organizing centers of co-dimension two, a NSL a SNL and a DH bi-
furcation that we observed in the transition from type I to type II neuronal excitability as
well as a BT bifurcation that organizes the transition observed in peri-threshold resonance.
We found that the presence of additional degenerate points can alter the fine-structure of
the transition but leave the overall organization of the transition intact. Combining these
facts together with the numerical results for the various neurons considered above, we
conclude that the structure of the transition from type I to type II neuronal excitability
is generally organized by a degenerate Bogdanov-Takens point in the background.

10.3.3 Neuronal Excitability, Morris-Lecar Type Neuron Models

and Liénard’s Equation

We have seen above that type I neuron models have a dBT point of focus type. The dBT
point has an unfolding given by eq. (10.2.1). This unfolding is versal [87] in the sense that
every two dimensional system (or a reduced system on a two dimensional center manifold)
that depends on three parameters (e.g. κ = (ie, gL, cm)) and is close to a dBT point can
be transformed2 into the unfolding (10.2.1), whereby the unfolding parameter µi become
functions of the original parameter κ.

Further more the unfolding eq. (10.2.1) can be directly transformed into a single second
order differential equation of the form

ẍ = F (x) + ẋG (x) (10.3.25)

This is a Liénard type equation originally introduced to study oscillating electrical circuits
[243]. The physical interpretation of a Liénard equation is that of a particle of mass
1 at position x with space dependent accelerating force F (x) and dampening −G (x).
Alternatively on can think of an electrical current x in an LRC-circuit with non-linear
resistance and inductivity. A special case of a Liénard type equation is the van der Pol
oscillator [385]. From a mathematical point of view the Liénard equation is interesting
since one can formulate precise conditions for the existence and number of limit cycles
[84]. Combining this observation and the versality of the unfolding with theorem (10.3.2)
shows:

Corollary 10.3.1. Every two dimensional type I conductance based neuron of the form
(10.1.1) can be transformed into a Liénard equation.

2For the dBT point the equivalence relation is defined via C∞-fiber equivalence [87], an even weaker
form of equivalence introduced in (3.2.1)

139



IV 10 Leak-Induced Neuronal Excitability Transition in Model Neurons

The general theory only asserts the existence of such a transformation [87, 276, 134].
The goal of this section is to derive this transformation for a sub-class of neuron models
analytically.

We will consider two dimensional neuron models of the form

fκ (x, y) =

(
aκ (x) + ybκ (x)
cκ (x) + ydκ (x)

)

(10.3.26)

where a, b, c and d are arbitrary smooth functions for some n ∈ N and the subscript
κ denotes an arbitrary parameter dependence. For example, the Morris-Lecar neuron
(2.4.2) is a special case of (10.3.26) when setting (x, y) = (v, w) and

aκ (v) =
1

cm
(i+ gL (vL − v) + gNam∞ (v) (vNa − v)) bκ (v) =

1

cm
gK (vK − v)

cκ (v) =
1

τw (v)
w∞ (v) dκ (v) = − 1

τw (v)
(10.3.27)

We therefore also refer to this class as Morris-Lecar type neurons.
Our goal is to transform (10.3.26) in to (10.3.25). A naive approach using the trans-

formation x → x, y → aκ (x) + ybκ (x) induces (via eq. (3.2.1)) a term proportional to
y2 in the second component of the transformed vector field and thus does not yield a
Liénard equation. However, we can employ normal form theory to solve this problem. It
suggests (via the homological equations [276]) to remove non-resonant terms of order y2

and higher in the second component of the vector field by introducing terms of order x2

and higher in the coordinate transformation for x [358, 145]. We thus consider the more
general transformation

x→ uκ (x) , y → rκ (x) + sκ (x) y (10.3.28)

It results in the transformed vector field

gκ (x, y) =

(
aκ(uκ(x))+bκ(uκ(x))(rκ(x)+sκ(x)y)

u′
κ(x)

cκ(uκ(x))+dκ(uκ(x))(rκ(x)+sκ(x)y)
sκ(x)

− (aκ(uκ(x))+bκ(uκ(x))(rκ(x)+sκ(x)y))(r′κ(x)+s′′κ(x)y)
sκ(x)u′

κ(x)

)

where ′ denotes the derivative with respect to x. To obtain y in the first component of
the vector field we must have

rκ (x) = −aκ (uκ (x))
bκ (uκ (x))

and sκ (x) =
u′κ(x)

bµ (uκ (x))
. (10.3.29)

As for the naive approach, the second component of the vector field is quadratic in y due
to the term

y2
bκ (uκ (x)) s

′
κ (x)

u′κ (x)

unless we determine uκ, sκ and rκ in such a way to make it vanish. Using (10.3.29) this
requirement becomes

b′κ (uκ (x)) u
′
κ (x)

2 − bκ (uκ (x)) u
′
κ (x)

bκ (uκ (x))u′κ (x)
=

d

dx
log

bκ (uκ (x))

u′κ (x)
= 0

which gives a differential equation for the transformation uκ of the form

u′κ (x) = Cκ,1 bκ (uκ (x))
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with some integration constant Cκ,1 > 0 that may depend on κ. The general solution to
this equation is

uκ (x) = t−1
κ (Cκ,1x+ Cκ,0) with tk (x) =

ˆ x

1

1

bκ (x̃)
dx̃ (10.3.30)

with another integration constant Cκ,0. By demanding uκ (0) = 0 and u′κ (0) = 1 to
obtain a near identity transformation we find Cκ,0 = 1 and Cκ,1 = 1

bκ(0)
. Now, choosing

the transformations according to (10.3.29) and (10.3.30) we obtain the following general
result of this section:

Proposition 10.3.2. A Morris-Lecar type neuron of the form (10.3.26) is conjugated to
a Liénard equation of the form (10.3.25)

ẍ = Fκ (x) + ẋGκ (x) (10.3.31)

with

Fκ (x) =
bκ (0)

bκ (uκ (x))
(cκ (uκ (x)) bκ (uκ (x))− aκ (uκ (x)) dκ (uκ (x)))

Gκ (x) = dκ (uκ (x)) + a′κ (uκ (x))−
aκ (uκ (x)) b

′
κ (uκ (x))

bκ (uκ (x))

Note, that this form can be used as a starting point to calculate the unfolding param-
eter µi in the dBT normal form (10.2.1). However, these steps involve removing further
non-resonant terms by applying the Weierstrass preparation theorem [345, 87] and can
be done only for a truncated expansion of the vector field in the variables and relevant
parameters. We refer the reader to the next section 10.3.4, where this procedure is applied
to the Fitz-Hugh-Nagumo model (2.6.6).

For the original Morris-Lecar neuron (10.3.27) bk (x) is linear in x, so that we can solve
(10.3.30) to explicitly obtain

v = uκ (x) = vK

(

1− exp

(

− x

vK

))

and thus

Fκ (x) =
1

cmτw (v)
e

x
vK i∞ (v)

Gµ (x) =
1

cm

(

− cm
τw (v)

− i′inst (v) +
1

vk
e

x
vK iinst (v)

)

(10.3.32)

for the Liénard equation (10.3.25) where i∞ (v) = iinst (v)+gKw∞ (v) (vK − v) and iinst (v) =
ie + gL (vL − v) + gNam∞ (v) (vNa − v) are the steady state and instantaneous currents as
discussed in sec. 10.17.

We thus obtained a conjugation between ML type neurons and the Liénard equation
(10.3.25). This provides a novel interpretation of neuronal dynamics in terms of a particle
of mass 1 at position x subject to a position dependent acceleration force F and dampening
−G as depicted in fig. 10.18. Moreover, besides the biophysical interpretation (cf. sec.
10.3.1) we obtain a second explanation of the mechanisms underlying type I to type II
neuronal excitability transition: For type I dynamics F has a region with positive slope
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Figure 10.18. Neuronal Excitability transition in the Morris-Lecar Neuron in Liénard form
(10.3.31) and (10.3.32) using standard parameter. (a) Acceleration force Fκ and dampening

−Gκ as a function of position x = vK log
(

vK
vK−v

)

for gL = 2.0, below (ie = 40,lighter color),

at (ie = 45), and above threshold (ie = 50, darker color). The type I excitability is present
by a region of positive slope in the accelerating force that leads to a saddle node bifurcation at
onset of spiking. (b) One period of the spiking activity for the parameters gL = 2.0, ie = 50
above threshold. Shown are the time dependence of the transformed potential x, the accelerating
force Fκ and the dampening −Gκ as a function of time t. In the early phase of the cycle x is
in the range where Fκ and −Gκ are of the same sign and similar in absolute value so that the
increase in x is slow. At x ≈ −30 the dampening gets negative while the acceleration increases
resulting in the fast rise of x at action potential onset. The situation reverts for large x ≈ 10
leading to the repolarization. (c,d) same as in (a,b) with gL = 6.0,ie = 186, 196, 206. While the
dampening has not changed qualitatively in comparison with (a,b) the acceleration force now
does monotonically decrease. The type II neuronal excitability at threshold in this picture can
be explained by the observation that a positive acceleration needed to generate a spike is only
possible via the negative part of the dampening. This demands a non-zero velocity which in turn
implies that a non-zero spike frequency is required for periodic spiking.

and a minimum. An increase in the input current mainly shifts F upwards and thus
induces a saddle node bifurcation at the point where the minimum touches the x-axis.
For input currents just above this point the acceleration force is arbitrarily small and as
for slow velocities the dampening term can be ignored the periodic spike generation can
be arbitrarily slow. In contrast, for type II dynamics F is monotonically decaying. In
this situation a positive acceleration needed to generate a spike is only achievable via the
negative dampening term. For the dampening to become effective a non-zero velocity is
required which in turn implies that a non-zero spike frequency is required for periodic
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spiking (cf. fig. 10.18).
In the next sec. 10.3.4 we apply the transformation in proposition 10.3.2 in the first

step when calculating the dBT unfolding for the Fitzthugh-Nagumo model.

10.3.4 Degenerate Bogdanov-Takens Points of Higher Codimen-

sion in Neuronal Models

So far we have focused on degenerate Bogdanov-Takens-cusp points with co-dimension-3.
From the viewpoint of multiple bifurcation theory higher degenerate points organize the
bifurcation diagrams of smaller co-dimension. It is therefore reasonable to ask if higher
degenerate bifurcation points in neuron models exists and what consequences for the
dynamics one can infer from such findings. Note however, that this approach is limited
by the fact that not much about bifurcation points of larger co-dimensions and especially
in higher dimensional state spaces are know [233, 405]. In this section we identify a
degenerate Bogdanov-Takens point of co-dimension-4 in the Fitzthugh-Nagumo model
(cf. sec. 2.6.3). This point has an unfolding conjugated to a cubic Linéard equation.

We employ the fact that the Fitzhugh-Nagumo model (2.6.6) is an abstract neuron
model that has a polynomial vector field given by the equations

cm
d

dt
v = ie + iL (v) + ia (v)− w (10.3.33)

d

dt
w = l1 (v − l2w)

with ia (v) = (m1 − v) (m2 − v) (m3 − v) and we have added an explicit leak current
iL = gL (vL − v) and a capacity cm in the first equation. Note that this model is of
Morris-Lecar type (10.3.26) with

aκ (v) =
1

cm
(ie + gL (vL − v) + ia (v)) bκ (v) = − 1

cm
cκ (v) = l1v dκ (v) = −l1l2

(10.3.34)

for κ = (ie, gL, vL, m1,m2, m3, l1, l2). Using the results form the previous sec. 10.3.3 we
find that the transformations

v → x w → ie + iL (x) + ia (x)− cmy

result in the vector field

f (x, y) =

(
y

− l1
cm

(x− l2 (ie + iL (x) + ia (x)− cmy)) +
1
cm
y (i′a (x)− gL)

)

of Liénard type. Inserting the definition of ia and iL shows that the vector field contains
only monomials in x and y that are present in the unfolding of the normal form (10.2.1) of
the dBT point plus an additional term in the ∂

∂y
component of the vector field proportional

to x2. Using normal form theory for polynomial functions [133, 134, 276] it follows that
we can remove this term by an appropriate coordinate shift and a rescaling:

x→ 1√
l1l2

x+
1

3
(m1 +m2 +m3) y → 1√

l1l2
y

143



IV 10 Leak-Induced Neuronal Excitability Transition in Model Neurons

By a second rescaling step including time3 given by

x→ √
cm
l1l2
3
x y → l21l

2
2

9
√
cm
y t→ 3cm

l1l2
t

we can further simultaneously normalize the coefficients of x3 ∂
∂y

and x2y ∂
∂y

to −1 yielding
in total the normal form (10.2.1),

fdBT =

(
y

µ1 + µ2x− x3 + (µ3 + ρx− x2) y

)

(10.3.35)

with unfolding parameters expressed in terms of the original parameters as

µ1 =
1

(cml1)
3
2 l

5
2
2

[l2 ([27 (ie + gLvL)− 9mΣgL +mΠ])− 9mΣ]

µ2 =
3

cml1l
2
2

[l2 (m∆ − 3gL)− 3] (10.3.36)

µ3 =
1

cml1l2
(m∆ − 3gL)− 3

with

mΣ = (m1 +m2 +m3) m∆ = m2
1 +m2

2 +m2
3 −m1m2 −m1m3 −m2m3

mΠ = (−2m1 +m2 +m3) (m1 − 2m2 +m3) (m1 +m2 − 2m3)

and, interestingly, with a topological parameter ρ = 0. This means that at µi = 0, i ∈
{1, 2, 3}, i.e at the dBT point, there is an additional degeneracy and thus the codimension
of the dBT point is 4 and not 3. We thus have encountered a degenerate Bogdanov-Takens
point of codimension 4 in the Fitzhugh-Nagumo neuron model, the main result of this
section.

The transformation of the FHN model into the normal form (10.3.35) also shows that
the FHN neuron is equivalent to a general cubic Liénard equation (10.3.25) with Fµ and
Gµ being polynomials of degree 2 and 3 respectively. In [202] the authors conjecture4

the four dimensional (µ1, µ2, µ3, µ4)-bifurcation diagram for these types of systems using
µ4 = ρ. The FHN model thus may be viewed as a three-dimensional slice through this
four dimensional bifurcation diagram at fixed µ4 = 0.

In addition to all the features encountered in the dBT point of codimension three the
four dimensional bifurcation diagram in [202] also involves a cupsodial loop [85, 86] and a
limit cycle of multiplicity four bifurcation, both predicting the coexistence of two stable
periodic orbits for some region in µ-parameter space. This observation might be useful for
studying neuronal excitability in systems that show coexisting sub-threshold oscillations
[183] and periodic spiking as well as possible interactions between both mechanisms. Be-
sides generating regular spikes, pyramidal neurons in the hippocampus also show spikelets
[197, 96], a small amplitude version of a spike. The exact origin of these spiklets is not
clear [96]. One possibility is that they are part of the intrinsic neural dynamics. In
this case a simple model description is lacking. Taking into account the occurrence of
two stable limit cycles in the FHG model in the form (10.3.35) for appropriate values of

3This is not a conjugacy but a C∞-equivalence (cf. sec. 3.2.1)
4The results are partly derived analytically, the final result is conjectured in [202] using consistency

arguments for the bifurcation diagram.
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ρ > 0 this observation might help in the construction of a simple model description for
the spikelet phenomenon.

Finally note, when using that the parameter satisfy li > 0 and cm > 0 for a biophysical
meaningful model, (10.3.36) yields that µ1 is proportional to the input current ie. Further
the resting potential in the FHN model is at vr = 0 so that we have for vL ≈ vr and mΣ > 0
that µ1 is also proportional to −gL. µ2 is controlled by gL. µ1 and µ2 only scale with cm
while µ3 can changes sign due to an increase in cm. These findings are fully consistent
with the observations for the WB model in sec. 10.2.4 and fig. 10.14.

To summarize, we have analytically transformed the FHN neuron model to a cubic
Liénard equation and thereby proved the existence of a degenerate Bogdanov-Takens point
of codimension 4 in this model. The unfolding of such a point includes regions in parameter
space with the coexistence of two stable limit cycles that might serve as a starting point to
construct simple models for studying the influence of the leak conductance on interactions
between sub-threshold oscillations and action-potential generation as well as on intrinsic
spikelet dynamics.

10.4 Summary

In this chapter we have found that an increase in leak conductance induces as switch in
neuronal excitability for a large number of type I neurons, including the models presented
in [273, 319, 320, 168, 400, 99, 61, 109, 315, 103, 406]. For type II neurons we showed that
decreasing the leak does not always lead to switch back to type I as the dynamics can
become unstable. We showed that the transition is organized by three steps as described
in section 10.2.1.2 and organized by a degenerate Bogdanov-Takens-cusp bifurcation.

We then proved that such a degenerate Bogdanov-Takens-cusp point exists in all type
I neuron models and concluded that leak induced neuronal excitability switches are gen-
erally organized by such a point. We derived a conjugation of Morris-Lecar type neuron
models to a Liénard equation and used this to give an interpretation of the excitability
switch in terms of accelerating and dampening forces. For an abstract neuron model
we found the existence of an even higher degenerate Bogdanov-Takens point that orga-
nizes neuronal excitability and discussed possible applications for the study of the leak
conductance in interactions between sub-threshold and spiking dynamics.
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Chapter 11

Morphology, Effective Leak and

Neuronal Excitability

In the previous chapter we have found that a change in leak can induce a switch in
neuronal excitability type I to type II behavior. In this chapter we apply these results to
predict effects of different neuronal morphologies on neuronal excitability.

We consider N -compartment models (cf. sec. 2.5) where each compartment k ∈
{1, . . . , N} is described by a trans-membrane voltage vk and a set of gating variables
{ak,j}nk

j=1 which are conductively coupled via the matrix gkl, representing the tree struc-
ture of the neuronal morphology with a somatic root at k = 1. The system evolves
according to

cm,k
d

dt
vk =

∑

l

gkl (vl − vk) + itot,k (vk, {ak,j}) (11.0.1)

together with the evolution equations of the gating variables ak,j as in (2.3.3). Here
itot,k = ie,k + iL,k + ia,k is the total current for the compartment k composed of the
external, the leak and the ionic currents.

11.1 Linear Shapes Integrate – Stellar Shapes Resonate

In this section we consider compartment models of neurons consisting of an active somatic
and ND = N − 1 passive dendritic compartments, i.e. ia,k = 0 for k ≥ 2. We investigate
how the dendritic morphology, i.e., the precise arrangement of the passive compartments
influences the neuronal excitability type.

We find that changing the morphology from a single linear dendrite to stellar like
shapes induces a switch from type I to type II excitability akin to the transition observed
in sec. 10.2.1.2. This is shown in fig. 11.1 where we considered ND = 5 dendritic com-
partments attached to a soma modeled by type I Morris-Lecar equations (2.4.4). We
fix all parameters and calculate for different arrangement of the dendritic compartments
(first column in fig. 11.1) the bifurcation diagrams for the canonical parameter ie (second
column) and corresponding spike frequencies (third column). For a single linear extended
dendritic tree the system shows a SNIC bifurcation with type I neuronal excitability. For
a more compact but still single dendritic tree the limit cycle is created by a homoclinic
bifurcation, showing a small hysteresis effect due to bistability, but still having type I
excitability. For two primary dendrites attached to the soma the stable limit cycle is
generated via a DC bifurcation and the neuron has switched to type II excitability. For
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Figure 11.1. Neuronal morphology determines neuronal excitability. ie-bifurcation diagrams
(second column, colors as in tab. 3.1) and frequency of the stable periodic orbit (third column) for
a compartmental neuron model, consisting of an active soma with Morris-Lecar type I dynamics,
sec. (2.4.2), eq. (2.4.4), and ND = 5 differently arranged passive dendritic compartments (first
column). Changing the morphology induces a transition of spike onset bifurcations from (a)
SNIC ( ), to (b) homoclinic ( ) to (c,d) DC ( ) accompanied by a change of the destabilization
of the fixed point from a (c) fold ( ) to a (d) Hopf ( ) bifurcation. The hysteresis effect for spike
on and off set is indicated by arrows in the frequency plots.
For all morphologies we use identical biophysical parameters as given in appendix D.2 for the
soma (gL,S = 0.5, cm,S = 10) and for the dendritic compartments cm,D = 1, gL,D = 1.0,
vL,D = vL,S and ie,D = 0. For linked compartments the coupling conductance is gI = 6.5.

147
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three primary dendrites we additionally observe a small homoclinic and Hopf bifurcation
indicating a transition in peri-threshold resonance. Finally, for the stellar shape we ob-
serve classical type II behaviour with a DC and a Hopf bifurcation. This transition is
very similar to the neuronal excitability transition observed in the previous sections.

This transition can be understood by considering the effective leak a passive dendrite
imposes on the soma. To see this, we consider the system (11.0.1) with a notation sepa-
rating the dendritic membrane potentials vD = (v2, . . . vN)

T form the somatic one vS = v1
and setting

gdLD = diag (gL,2, . . . gL,N) gD = (gij)
N
i,j=2

gTDS = (g2,1, . . . gN,1) gTSD = (g1,2, . . . , g1,N)
(11.1.1)

where gD is conductive coupling matrix between the dendritic compartments, and gDS is a
N−1 dimensional vector representing the coupling from the soma to the dendrite and gSD
the coupling from the dendrite to the soma. For convenience, we also define the diagonal
matrices cmD = diag (cm,2, . . . , cm,N) and gdDS = diag (gDS) and ND dimensional vectors
vTLD = (vL,2, . . . , vL,N), 1TD = (1, 1, . . . , 1). The system (11.0.1) with passive dendrite may
then be written as

cmS
d

dt
vS = ie,S + gLS (vLS − vS) + ia,S (vS, {aS,j}) + gTSD (vD − 1DvS)

cmD
d

dt
vD = ie,D + gLD (vLD − vD) + gdDS (1DvS − vD) + gDvD . (11.1.2)

From a dynamical point of view the leak conductance leads to an instantaneous current.
For electrotonically compact neurons [68] the compensation of membrane potential dif-
ferences between different compartments is fast. Thus, in this situation, we can enslave
[153, 152] the dynamics of the dendritic compartments to the dynamics of the soma by
substituting the steady state currents of the dendrites into the equation for the soma.

Given a somatic membrane potential vS the steady state of the dendritic compartments
v∗D = v∗D (vS) is determined by a vanishing vector field d

dt
vD = 0 and using eq. (11.1.2) we

can solve this for v∗D to obtain:

v∗D =
(
gdLD + gdDS − gD

)−1 (
iD + gdLDeLD + gdDS1DvS

)

This results in the enslaved system

d

dt
vS = ieffe + geffL (vL,S − vS) + ia,S (vS, {aS,j}) (11.1.3)

with effective leak conductance geffL,S and input current given by

geffL = gS,L + gTSD

(

1D −
(
gdLD + gdDS − gD

)−1
gDS

)

(11.1.4)

ieffe = iS + gTSD

((
gdLD + gdDS − gD

)−1 (
iD + gdLDeLD + gdDSeLS

)
− 1DeLS

)

Thus, under the assumption of a fast compensation of potential differences between
the soma and the dendritic compartments the morphologically extended neuron can be
modeled as a point neuron with an effective leak given in (11.1.4). This derivation shows
that changes in the dendritic topology result in changes in the effective leak and further-
more, that input currents into the dendritic tree are converted into effective input currents
at the soma. In fig. 11.2 we have plotted the effective leak conductances geffL given by eq.
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Figure 11.2. Dendritic morphology determines the effective leak conductance. Plotted is the
effective leak conductance (11.1.4) for different dendritic arrangements as a function of the inter-
compartmental coupling gI. The arrow indicates the value for gI used in fig. 11.3. The lines
represent the values of the leak conductances for the effective model (11.1.3) to be at the codi-
mension two bifurcation points indicated on the right and shown in fig. 11.3.

(11.1.4) as a function of the strength of the intracellular resistance gI between the linked
compartments for the dendritic topologies considered in fig. 11.1. For gI = 0 the effective
leak reduces to the somatic leak geffL = gL,S. For gI > 0, one observes that stellar like ar-
rangements of the dendrites result in a larger effective leak than extended linear dendrites.
This effect is illustrated on the right half of fig. 11.3 and has the following explanation:
The leak current through a dendritic compartment that is directly attached to the soma
is high as there is only a small inter-compartmental coupling resistance. For a stellar cell
with many primary dendrites these currents thus sum up to a large total effective leak.
On the contrary, for a linear dendrite, the contribution to the total leak from currents
through distal compartments is small as they have to pass several intracellular resistances.

As the reduced effective system (11.1.3) corresponds to a single compartment neuron
model, we can use the results on leak-induced neuronal excitability transitions studied in
sec. 10.2.1.2 to explain the transition here caused by changing the morphological shape
of the dendrite. Figure 11.3 shows the bifurcation diagram for the original single com-
partment model together with the effective leak conductances given by eq. (11.1.4) for
the multi-compartment models used in fig. 11.1. Comparison with the one dimensional
bifurcation diagrams in fig. 11.1 gives good agreement of the encountered bifurcation sce-
narios. Thus, the two-dimensional bifurcation diagram computed once, can be used to
predict the bifurcation scenario for any dendritic morphology that satisfies the assump-
tion of electrotonic compactness. In particular using (10.3.2) or (10.3.17) the neuron is
predicted to have type I neuronal excitability if

geffL ≤ gL,0 = max
v

d

dv
ia,∞ (v)

and type II otherwise.
We derived the effective leak from the assumption of a dendritic tree with small capac-

ity compared to the somatic capacity. However, the above calculations are the same for a
neuron in an equilibrium state and thus the fold bifurcation lines for the fixed points are
not affected by this assumption. Numerical investigation show that for the Morris-Lecar
model the conclusions stay valid, if the dendritic capacity is of the order of the somatic
capacity. For electrotonically large dendritic trees, the dynamics may become more com-
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Figure 11.3. Dendritic morphology determines neuronal excitability. Bifurcation diagram for
the Morris-Lecar neuron model in the (ie − i	, gL)-parameter space with standard parameter
D.2 but reduced capacity cm = 10. Dashed lines indicate the effective leak conductances for the
compartmental models of fig. 11.1 with topological arrangement of the dendritic tree as indicated
on the right and calculated by eq. (11.1.4). Comparison with fig, 11.1 yields excellent agreement
for the encountered bifurcation scenarios determining the neuronal excitability.
Arrows in the morphological representations of the dendrite on the right indicate the mechanism
resulting in different leaks: For the stellar like cell (top) the leak currents escaping through the
dendritic compartments only “feel” a single intracellular resistance due to the direct coupling to
the soma. For the linear extended shapes the leak currents to more distal compartments are
reduced as they have to pass intracellular resistances of several compartments.

plex due to back- and forth-propagation of spikes on the dendrites and active properties of
their membranes. However, our conclusions is still useful when concentrating on the local
dynamics close to the action potential generation site, i.e. the local neuronal excitability

soma axon

dendrite

leak axon

synapse

(a) (b) (c)

shunt

Figure 11.4. Local leak currents depend on morphology and synaptic shunting. Sketch of
possible mechanism changing the effective leak felt at the action potential generation site and
thereby influencing the neuronal excitability. (a) a single primary dendrite only contributes
little to the effective leak at the action potential generation site on the axon. (b) many primary
dendrites e.g. as observed in stellar cells and (b) shunting due to active inhibitory synapses can
increase this effective leak conductance.
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11.2 Recovery of Type I Neuronal Excitability by Active Dendrites

(cf. fig. 11.4). For such a site the effective leak is co-determined by the detailed mor-
phology and ion-channel properties of the soma together with the number, diameter and
electronic properties of the primary dendrites with a small electrotonic distance. Further-
more, activation of nearby inhibitory synapses may change the effective leak dynamically
due to shunting inhibition. We study such dynamic effects due to synaptic shunting in
chapter 13 and experimentally in section 12.4.

In section 10.2.1.2 we saw that the transition in neuronal excitability induced by
changes in the leak conductance is accompanied by a switch from integration to reso-
nance at peri-threshold, with an increase of the frequencies for higher values of the leak.
Thus, combining this fact with the results from this section, we conclude that dendritic
morphology also influences the resonance properties of the cell. While linear extended
shapes of the dendrite tend to integration, stellar morphology can induce resonate prop-
erties at peri-threshold.

11.2 Recovery of Type I Neuronal Excitability by

Active Dendrites

In the previous section we saw that passive dendritic trees, and in particular stellar like
shapes can switch a type I soma to a type II neuron. Here we show that active dendritic
conductances on the dendrite can compensate for this and switch the neuron back to type
I.

We consider compartmental neuron models of the form (11.0.1) with ND primary
dendritic compartments with a fraction α of the active somatic channels. Figure 11.5
shows a bifurcation diagram for an electrotonic compact neuron with ND = 2. For α = 0
we have a passive dendritic tree and the neuron shows type II excitability. Increasing α
we observe a transition to type I dynamics in the reverse order to the transition observed
when switching form type I to type II by increasing the leak. Thus by introducing active
conductances onto the dendrite, the neuron can be switched back to type I neuronal
excitability.

Note however, that similar restrictions apply as in the previous section, i.e. if the
electrotonic compactness is lost more complex dynamics will be observed [250]. But again

ie − i	ie

αα

(b)(a)

0.0 0.8200 360
0.0

0.0

1.2

1.2

Figure 11.5. Active dendritic conductances recover type I neuronal excitability. Bifurcation
diagrams for a three compartment Morris-Lecar neuron model with fraction α of active dendritic
ion-channels.
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IV 11 Morphology, Effective Leak and Neuronal Excitability

the local neuronal excitability at the action potential generation site can be influenced by
the local distribution of ion channels on the primary dendrites.

11.3 Neuronal Excitability and Morphology in

Experiments

In this section we show experimental evidence for the above reasoning that neuronal
morphology can induce neuronal excitability switches. In firing rate data from dendritic
pinching experiments [25], we find a switch in neuronal excitability form type II to type I
of Purkinje cells consistent with our theoretical predictions. For pyramidal neurons we do
not observed a switch as onset frequencies decrease little due to pinching for these cells.

One method to study the influence of the dendritic tree onto the spiking dynamics
of the soma and axon is by targeted dendrotomy [25], In these type of experiments the
dendritic tree can be occluded or amputated form the soma by pinching it adiabatically
between two pipettes. Using this method, in ref. [25] it is shown that the dendrite of
cerebellar Purkinje and cortical layer 5 Pyramidal neurons of rat acts as a passive electric
load if the excitation is weak excitation. For stronger excitation its active properties
contribute to burst firing and enhance excitability. Effects on neural excitability type are
not considered in their study.1

We therefore analyzed firing data from these dendrotomy experiments with emphasis
on how the neuronal excitability type of the soma is affected by occluding the dendrite.
The result is shown in fig. 11.6. For both cell types, the input current threshold for firing
is lowered when occluding the dendrite, confirming that the dendritic tree increases the
leak conductance [25]. Moreover, Prukinje cells only have a single, large dendrite and
thus occluding it removes all the effective leak form the soma. The ν − ie-curve increases
non-continuously from zero when the dendrite is present, whereas if it is pinched, we do
not detect a significant frequency offset (fig. 11.6). We thus conclude that the Purkinje
cells switch their excitability type form II to I when the dendrite is occluded. This finding
is fully consistent with our theoretical results from sections 10.2.1.2 and 11.1.

For layer 5 Pyramidal neurons we observe a change in the effective leak at the soma
when pinching the dendrite due to a left shift of the ν − ie-curve . However, we do
not observe a switch in neuronal excitability. In particular, we find that cells show a
weak form of type II neuronal excitability with an offset frequency around 5Hz, which
either decreases or does not differ significantly when the dendrite is occluded. Pyramidal
neurons have multiple primary dendrites, and in the experiments only the apical dendrite
is pinched, whereas the basal part remains intact. Despite the larger number of primary
dendrites, the only weak type II neuronal excitability for the pyramidal cells can be partly
explained by the recovery mechanism of type I neuronal excitability (cf. sec. 11.2) due
to their active dendritic conductances [89, 357, 247]. The absence of a switch to type
I excitability may be either due to the fact that the reduction in leak conductance by
occluding only the apical dendrite is to small or the soma is intrinsically type II (cf. sec.
10.2.5).

Note, that in [126] it is shown, that resonance properties of stellate cells in medial

1In fact in [25] a detailed model of a Purkinje cell is used to predict the input-frequency relationship
for high frequencies. However it fails to match the data at low frequencies. The model shows type I
excitability for the control and type II for the pinched situation. In contrast, the data shows the opposite
(cf. fig. 3 in [25]).
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Figure 11.6. Firing rate and onset frequencies for rat Purkinje and pyramidal neurons under
dentrotomy. (a) spike frequency ν vs. input current ie for a rat cerebellar Purkinje cell for
an intact (black) or a pinched (red) dendrite. Curves show a increase in the threshold current
for spiking, as well as an increase in the onset frequency ν0. Lines show best fits of the form
ν = c1 (ie − c2)

c3 + ν0, for ie > c2 and zero otherwise for parameters ci and v0. (b) fitted onset
frequency ν0 obtained as in (a) for all Purkinje in control (red) and pinched (black) situation. All
cells shown an increase in onset frequency which differs from zero only for cell 4. (c) ν− ie-curve
as in (a) but for layer 5 cortical Pyramidal neurons shows no significant change in the onset
frequency v0 between control and occluded dentrite. (d) offset frequencies as in (b) do not show
a significant change. Raw data courtesy of J. Bekkers (cf. [25] for methods of data acquisition).

entorhinal cortex of rat vary systematically along the dorsal ventral axis from lower to
higher frequencies. In [119] it is further shown that the leak conductance increases along
this axis as a result of a gradient in leak and HCN channels, as well as an increase in the
number of primary dendrites. Moreover, in [10] it is shown that at peri-threshold this
resonance does not require a special ion channel configuration but can be attributed to
the sodium channels alone. Taken together, these findings are fully consistent with our
findings of a change in resonance frequencies due to an increase in leak as discussed in
section 12.

To summarize, analyzing data from targeted dendrotomy experiments revealed strong
evidence, that a switch from type I to type II neuronal excitability can be induced by an
effective leak conductance imposed onto the soma by the passive load of a dendritic tree
as predicted in section 11.
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IV 11 Morphology, Effective Leak and Neuronal Excitability

11.4 Summary

In this chapter we have studied how neuronal morphology influences the neuronal ex-
citability type. We showed that for electrotonically compact neurons a passive dendritic
tree imposes an effective leak onto the soma and thus influences the neuronal excitability
type via the same mechanism found in chapter 10. We argued that for larger neurons the
local neuronal excitability type close to the action potential generation site is still affected
by effective leak conductances determined by the detailed morphology and ion-channel
properties of the soma together with the number, diameter and electronic properties of
the primary dendrites. By analyzing experimental data we showed that in Purkinje cells
a switch from type I to type II neuronal excitability is caused by the passive load of the
dendritic tree.
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Chapter 12

Leak Induced Neuronal Excitability

Switches in Real Neurons

In this section we study the neuronal excitability transition induced by a change in leak
conductance experimentally1. Using dynamic patch clamp recordings to change the leak
conductance artificially we find a switch form type I to type II neurons. We confirm
the main features of the transition predicted by the degenerate Bogdanov-Takens-cusp
bifurcation scenario in chapter 10. We further show that shunting conductances activated
by GABA2 are sufficient to induce a neuronal excitability switch. This implies that
neuronal excitability may be controlled dynamically by neuronal activity.

12.1 Experimental Methods

(a) (b)

Figure 12.1. Confocal images of gerbil neurons studied experimentally. (a) projection from a
stack of confocal images oft three neurons in the DNLL stained with Alexa488 (green), Alexa568
(red) or both (yellow). (b) picture of hippocampal pyramidal neurons and layer structure taken
with an Axio imager fluorescence microscope. Both pictures taken after fixating slices and
mounting them on slides.

To study the neuronal excitability switch experimentally we use the dynamic patch clamp
method [281, 287] (cf. sec. 2.8) to control the leak conductance artificially. We focus on
neurons in the dorsal nucleus of the lateral lemniscus (DNLL) and pyramidal cells in the

1Experiments where performed in collaboration with Julian Ammer, Dr. Felix Felmy, Dr. Martin
Stemmler and Prof. Dr. Andreas Herz at the LMU Munich, Germany.

2γ-amino-butyric-acid
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IV 12 Leak Induced Neuronal Excitability Switches in Real Neurons

CA3 area of the hippocampus in Mongolian gerbils as shown in fig. 12.1. The GABAergic
DNLL is part of the binaural system and receives projections from many lower brainstem
nuclei and projects to the contralateral DNLL as well as the ipsi- and contralateral inferior
colliculs of the midbrain [19]. It has a possible role in the precedence effect but its precise
function is not clear. The CA3 area of the hippocampus is involved in learning mechanisms
[91] and spatial navigation [288].

12.1.1 Slice preparation

All experiments complied with institutional guidelines, national and regional laws. Slices
were prepared from Mongolian gerbils (Meriones uniguiculatus) of postnatal day (P) 10 to
18. Animals were decapitated and brains were removed in dissection solution containing
(in mM) 50 sucrose, 25 NaCl, 25 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 3 MgCl2, 0.1 CaCl2,
25 glucose, 0.4 ascorbic acid, 3 myo-inositol and 2 Na-pyruvate (pH 7.4 when bubbled
with 95% O2 and 5% CO2). After removal of the brain either 200µm thick transverse
slices containing the DNLL (P10-11) or 300µm thick horizontal slices containing the
Hippocampus (P16-18) were taken with a VT1200S vibratome (Leica, Wetzlar, Germany).
Slices were incubated in extracellular recording solution (same as dissection solution but
with 125µM NaCl, no sucrose, 2mM CaCl2 and 1mM MgCl2) at 36 ºC for 45 minutes,
bubbled with 5% CO2 and 95% O2.

12.1.2 Electrophysiology

After incubation slices were transferred to a recording chamber attached to a microscope
(BX50WI, Olympus, Hamburg, Germany) equipped with gradient contrast illumination
(Luigs and Neumann, Ratingen, Germany) and continuously perfused with extracellular
solution. All recordings were carried out at near physiological temperature (34− 36 ºC).
Cells were visualized and imaged with a TILL Photonics system (Gräfelfing, Germany)
composed of an Imago CCD-camera, a Poly-IV monochromator, and its control unit. All
recordings were performed in current-clamp mode using an EPC10/2 amplifier (HEKA
Elektronik, Lambrecht, Germany). Data were acquired at 50 kHz and filtered at 3 kHz.
The bridge balance was set to 100% after estimation of the access resistance and was
monitored repeatedly during recordings. The internal recording solution consisted of
(in mM): 145 K-gluconate, 5 KCl, 15 HEPES, 2 Mg-ATP, 2 K-ATP, 0.3 Na2-GTP, 7.5
Na2-Phospocreatine, 5 K-EGTA (pH 7.2). 100µM Alexa 488 or 568 were added to the
internal solution to control for cell type and location. To change the resting leak con-
ductance during recordings, a constant conductance with a reversal potential equal to
the neurons resting potential was applied with an analogue conductance amplifier (SM-1,
Cambridge Conductance, Royston, UK). For some recordings, GABA (500µM in HEPES)
was applied via a puff electrode with continuous low pressure controlled by a picospritzer
(Picospritzer III, Science Products, Hofheim, Germany). Glycinergic and Glutamatergic
synaptic inputs were blocked with 0.5µM Strychnine, 20µM DNQX, 10µM R-CPP and
GABAergic inputs were blocked with 10µM SR95531 in all experiments except when
GABA was used as an agonist.

12.1.3 Data Analysis

Data obtained in the measurements were analyzed using a self-written software package
[208] for Mathematica 8.0, Wolfram Inc.
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Figure 12.2. Measured leak gL and capacitance cm as a function of applied leak gL,e for the
DNLL neuron in fig. 12.6. (a) gL scales linearly with gL,e. gray line: linear fit with R2 = 0.996.
(b) capacitance does not change for the four different externally applied leak conductances.

The leak was estimated from small negative step currents of amplitude δie and 0.5 s
duration introduced into the neuron. The average of 50 such traces was taken and an

exponential decay v ∝ exp
(

− t
τL

)

of this trace starting from the stimulus onset at voltage

v0 to the minimum voltage vmin was fitted. The leak was then estimated via gL = δie
vmin−v0

.
The capacitance cm was estimated from the fitted membrane time constant τL using the
relation ship cm = τLgL.

To check for validity of changing the leak conductance via the dynamic clamp method
we determined the relation ship between the imposed leak gL,e and the measured leak
gL. For all measured neurons this relation was linear with slopes close to 1 as shown for
a DNNL neuron in fig. 12.2a. Further more in all experiments the capacitance stayed
constant for different externally applied leak conductances as shown in fig. 12.2b.

Membrane voltage data from depolarizing step currents of 1 s duration were used to
determine the ν-ie-curve and the area of bistability. To ensure a good resolution around
the firing threshold, the current threshold was estimated with an automated procedure and
the current amplitude was increased from sub- to supra-threshold in very fine increments
(1− 20 pA). Peaks where determined using the peak detection algorithm in [373]. Spikes
where identified by having a peak amplitude > 50mV. The onset of periodic spiking
was determined by spikes throughout the duration of the stimulation with subsequent
inter spike interval (ISI) variability of less than 50%. Bistability was pre-detected by a
coefficient of variation (CV) of the inter spike intervals being 1.5 times larger than the CV
of the peaks and then by visual inspection of the traces. Spike frequency was determined
by the average ISI, in case of bistable dynamics by the average inter peak interval.

The spike onset frequency ν0 was determined by fitting the curve

ν = Θ (ie − c2) [c1 (ie − c2)
c3 + v0]

with parameters ci, i ∈ {1, 2, 3} and ν0 to the ν-ie-curve data. Here Θ is the Heaviside
step function, eq. (2.7.3). Errors where estimated using the parameter errors of this fit.

Resonance frequencies where estimated by inducing a zap stimulus [150, 184, 308, 185]
with a time dependent instantaneous frequency ν (t) of the form

Zap (t) = a sin

(

2π

ˆ t

0

ν (t′) dt′
)

+ ioff (12.1.1)

We used both, a linear increase of the frequency ν (t) = αt with Zap (t) = a sin (παt2)+iofff
and a similar expression for the linear decrease as a control with a frequency range form
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0 − 25Hz in td = 30 s. The amplitude of the zap currents was adjusted for each sweep
to give a membrane voltage deflection of ±5mV. The constant offset current ioff was
adjusted to make the cell be either just below or above spike threshold. Spikes where
determined as in the ν-ie-curves.

To measure the impedance we used eq. (E.2), i.e. the ratio of the Fourier transforma-
tions of the voltage signal divided by the stimulus. The frequency resolution is determined
by the recording time td to be 1

td
. The general form of the impedance for a conductance

based neuron model is derived in appendix E, eq. (E.1), showing that the impedance
takes the form of a parallel RCL circuit. To estimate the resonance frequency we fitted
the experimentally obtained absolute squares of the impedance to the ones of an RCL
circuit with a single inductivtiy, corresponding to a single slow delayed rectifier in the
neuron model, given by the equation

|Z (ν)|2 = a + bν2

ν4 + cν2 + d

with fit parameters (a, b, c, d). Low frequency components of 0.5Hz and less were dropped
for the fits to exclude slow drifts [97]. The resonance frequency v0 is then given by the
maximum of the impedance fit at

νmax =

√

−a +
√
a2 − abc + b2d

b

or νmax = 0 it the expression above is imaginary.

12.2 Leak Induced Neuronal Excitability Switches in

DNLL and CA3 Neurons

In section 10.2.1 we have seen that an increase in leak conductance induces as transition
from type I to type II neuronal excitability which is organized by a degenerate Bogdanov-
Takens bifurcation. Let us first discuss some implications of this bifurcation structure
that can be observed experimentally.

First, the creation of the limit cycles for small leak values gL is via the SNIC and
homoclinic bifurcation that both involve a fixed point which in its proximity slows down
the dynamics so that the spiking frequency ν rises continuously form zero as a function
of the input current ie for small leak conductances. Starting from the NSL point the
fixed point is no longer involved in the creation of the stable limit cycle and the neuron
shows type II excitability with a non-zero onset spiking frequency. This is shown in the
ν-ie-curves for different leak values in the Wang-Buszaki neuron in fig. 12.3a. Moreover
at the NSL point this offset frequency is zero and then increases along the DC line when
the leak is increased as depicted in fig. 12.3b.

The dBT scenario also predicts that the transition in neuronal excitability is accompa-
nied by a transition from integration to resonance at peri-threshold. This is organized by
the the ordinary BT point from which the resonance frequency starts to become non-zero
at threshold and increases for larger values of the leak conductance (cf. fig. 12.3b). The
frequency becomes identical with the spiking onset frequency at the DH point.

A third feature of the transition is the creation of a region of bistability starting at the
NSL point and terminating in the DH point. For the WB model the width in ie direction
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Figure 12.3. Frequencies and bistability in the WB neuron model. (a) spiking frequency ν0 of
stable periodic orbits as a function of external input current ie and leak conductance gL. Colors
indicate the underlying bifurcation: SNIC (red), homoclinic (green) and DC (orange). (b) spike
(gray) and resonance frequency (black) at threshold and width ∆ie (brown) of the region of
coexisting stable fixed point and limit cycle. The onset spiking frequency becomes non-zero at
the NSL point ( ) reflecting the transition from type I to type II excitability. The resonance
frequency starts to grow at the BT point ( ). The region of bistability begins at the SNL point
( ) and ends at the the DH point ( ) (cf. also the bifurcation diagram in fig. 10.9).

of the region of bistability is shown in fig. 12.3. It increases over a broad range of leak
values and then rapidly decreases to zero for large leak.

To study the spike frequency - input current ν-ie-relationship experimentally we in-
duced step currents into the neuron with varying amplitudes. The effect of these step
currents is illustrated for the Wang-Buzsaki model in fig. 12.5. For small leak conduc-
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Figure 12.4. Leak conductance controls onset spiking frequency in DNLL neurons. Each plot
shows the onset frequencies ν0 as a function of the measured leak conductance gL for n = 4
neurons (gray level, lines) each and different values of applied leak conductance gL,e (symbols)
(a) Intrinsic type I neurons with vanishing onset frequency ν0 < 2Hz (dashed line) at gL,e = 0nS
(�) switch to type II neurons when the leak is increased. This finding is consistent with theorem
10.3.2 and the shape of the curves qualitatively matches the curves in fig. 12.3b. Lightest gray
line is for neuron shown in fig. 12.6. (b) For intrinsic type II neurons the frequency increases
with increasing gL. Leak subtraction by gL,e = −3 nS (◦) reduces the frequency but does not
induce a switch to type I. Further leak reduction leads to unstable membrane potential dynamics
(not shown). Both facts are consistent with the findings in section 10.2.5.
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Figure 12.5. Leak induced neuronal excitability transition in the WB neuron predicts all features
observed experimentally in fig. 12.6. Parameters for the WB model as in appendix D.3 with a
cell surface area A = 10−4cm2 to match the units in fig. 12.6 and capacitance in fig. 12.2. (a-d)
each panel shows traces of membrane voltage v (top) and spiking dynamics in the v-dvdt plane
(bottom) for different input currents ie (middle) and different values of externally applied leak
conductance gL (a) 1 nS (b) 7 nS and (c) 8 nS and (d) 6 nS corresponding to a SNIC (a), DC (b,d)
and homoclinic (d) bifurcation (cf. fig. 10.9). In (c) we added small fluctuations to demonstrate
the dynamics in the bistable region. (e) periodic spike frequency ν vs input current ie for leak
conductances. (�) indicate the traces shown in (a-d). For gL = 7nS and gL = 8nS the regions
of bistability are also shown.

tances we see the typical features of type I behavior: Arbitrary large inter spike intervals
with integrative properties reflected in a monotonic increase of the membrane potential
to the spike. The spike shape and amplitude is stereotypical for all spikes and shows the
same trajectory in the phase space like v-dv

dt
-representation (fig. 12.5a).

For higher leak values periodic spiking is only possible starting from a non-zero fre-
quency. For input currents that are to weak to give rise to periodic firing the traces show
damped oscillations after the initial spikes indicating the resonance character of the dy-
namics. The initial spike amplitudes decay to some steady state value as can be seen in
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Figure 12.6. Leak induced neuronal excitability transition in a DNLL neuron. (a-d) each panel
shows traces of membrane voltage v (top) and spiking dynamics in the v-dvdt plane (bottom) for
different input currents ie (middle) and different values of externally applied leak conductance
gL (a) 0 nS (b) 20 nS and (c,d) 30 nS. (e) periodic spike frequency ν vs input current ie for the
four different externally applied leak conductances. The traces in (a-d) are indicated by squares.
Increase in leak conductance is reflected by the onset of periodic spiking at larger ie values and
an increase of onset frequencies ν0 from zero to non-zero values, indicating a neuronal excitability
transition from type I to type II. For gL,e = 30nS the neuron exhibits bistable dynamics as shown
in (c). For very large input currents spiking stops via the conductance block as shown in (d).

the v-dv
dt

-representation (fig. 12.5b). Adding small noise fluctuations to the input current
in the region of bistability shows switching between periodic spiking and non-spiking os-
cillatory sub-threshold dynamics. According to fig. 12.3 the spiking and the sub-threshold
oscillations have similar frequencies (fig. 12.5c).

The analysis of the response of a DNLL neuron to such step currents is shown in figures
12.2, (12.6) and 12.4. The results in fig. 12.2 show the dependence of the measured leak
gL and capacity cm for different artificially imposed leak conductances gL,e confirming the
validity of the dynamic clamp method. Figure 12.6 shows traces and ν − ie-curves for a
type I DNNL neuron subject to four different values of the leak conductance. The data
very well resembles the model predictions in fig. 12.5. In particular, for no external leak
gL,e = 0nS the neuron exhibits type I behavior, with arbitrary slow firing close to the
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detection threshold of 1Hz and weak spike-amplitude variability for periodic spiking (cf.
the v-dv

dt
plot in fig. 12.5a).

When increasing the leak conductance using gL,e = 9nS or gL,e = 20 nS the neuron
starts spiking with non-zero frequency, it shows decaying spike amplitudes and oscillations
after the initial spikes before the onset of periodic spiking (cf. fig. 12.5b) indicating type
II neuronal excitability. Furthermore, at gL,e = 20 nS we detect a region of bistability (cf.
fig. 12.5c and e). Comparison with fig. 12.5 shows that these experimental findings are
fully consistent with a leak induced type I to type II transition as found analytically in
chap. 10.

Note that the region to detect a homoclinic bifurcation is rather small (cf. fig. 12.5 and
12.3) and the steep frequency scaling ν0 ∝ 1

log(ie−i∗e )
makes it hard to discriminate it from a

type II situation. We therefore conclude that the neuron is already type II for gL,e = 9nS
and the transition appeared before this point. Furthermore, near the transition the region
of bistability is small but grows for larger values of the leak conductance (cf. fig. 12.3)
which makes it hard to detect it initially.

We find similar transitions in all type I neurons (n = 4) measured in the DNLL. With
natural leak conductance these neurons show an onset frequency below the detection
threshold of 1Hz and all the features of type I excitability while increasing the leak
artificially switches these neurons to type II excitability. Figure 12.4a shows the relation
between the onset periodic spiking frequency ν0 as a function of the measured leak gL for
all neurons. It is consistent with the theoretical finding in fig. 12.3b.

For type II neurons the onset frequency increases with increasing leak. Subtraction
of leak lead to smaller onset frequencies but a switch to type I was not observed as the
neuronal dynamics became unstable for strong leak subtraction (cf. fig. 12.4b). This
finding fully agrees with the finding that type II model neurons cannot be switched back
to type I neurons in general (cf. sec. 10.2.5 and theorem 10.3.2).

We also tested the effect of an increase in leak conductance in pyramidal neurons
in the CA3 area of the hippocampus. The results are shown in fig. 12.7. Intrinsically
these neurons showed type I excitability (cf. fig. 12.7a,c). An increase in leak conduc-
tance switched these neurons in all cases to type II (cf. fig. 12.7b,c) consistent with the
theoretical predictions.

The region of bistability in these neurons is much larger compared to the DNLL
neurons. We attribute this enlargement of the region of bistability to adaption currents
that reduce firing rate and keep the neuron dynamics in the bistable regime. Preliminary
bifurcation studies for neurons with additional adapting M-currents show that this is
indeed the case. Note also that in contrast the DNLL neurons, the curves almost fall on
top of each other. We attribute this to a broader diversity of cell properties in the DNLL
[414] while in the CA3 region we only studied pyramidal cells.

To summarize, dynamic clamp recordings of DNLL and pyramidal neurons show a
leak induced transition from type I to type II neuronal excitability. These experimental
findings are fully consistent with an underlying excitability transition organized by a de-
generate Bogdanov-Takens point as studied theoretically in sec. 10.2.1.2. We give further
evidence for this in the next section.
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Figure 12.7. Leak conductance switches hippocampal CA3 pyramidal neurons from type I to
type II. (a) neuron membrane potential v (top) and v vs. d

dtv (bottom) in response to a step
like input current (middle) with no external leak shows type I dynamics. (b) as in (a) but for
externally applied leak conductance gL,e = 20nS shows bistable type II dynamics. (c) frequency
ν vs. input current ie at different external leak conductances. The �’s show the data for traces
in (a),(b). (d) Onset frequencies ν0 as a function of the measured leak conductance gL for
n = 5 neurons (gray level, lines) and different values of externally applied leak conductance gL,e
(symbols). All neurons show type I dynamics with vanishing onset frequency ν0 < 2Hz (dashed
line) at gL,e = 0nS (�) and switch to type II neurons when the leak is increased. This finding
is consistent with theorem 10.3.2. The shapes of the curves are very similar for all neurons and
qualitatively match the curves in fig. 12.3b. Lightest gray line is for the neuron shown in (a-c).

12.3 Leak Induced Transition From Integration to Res-

onance at Peri-Threshold in CA3 Pyramidal Cells

The transition from type I to type II neuronal excitability organized by a dBT point
is always accompanied by a transition from integrative to resonance properties at peri-
threshold. Here we confirm this prediction experimentally.

The resonance frequency for the WB neuron model is shown in fig. 12.3b and shows
a similar shape as the onset spiking frequency. In particular, the resonance frequency
increases from zero starting at the NSL point and becomes identical to the onset frequency
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Figure 12.8. Leak induced integration to resonance transition at peri-threshold in CA3 pyrami-
dal cells. (a) voltage traces near to but below (middle row) and above threshold (bottom row)
in response to a zap stimulus (top) with current amplitude a adjusted to achieve a 4 − 5mV
voltage amplitude for gL,e = 0nS (first column, red) and gL,e = 20nS (second column, orange).
Arrows indicate the time in which the instantaneous frequency of the zap current attains the
resonance frequency determined via the impedance. (b) impedance curves for the traces in (a)
below (top) and above threshold (bottom) showing that for zero external leak there is no res-
onance (red) whereas for gL,e = 20nS (orange) the maxima (arrows) have shifted to non-zero
values. (c) resonance frequencies ν0 determined in (b) for all applied leak conductances of this
experiment plotted as a function of the measured leak gL. The graph shows that the resonance
frequency above threshold (light gray, dashed) is always slightly larger than the frequency below
(gray, dashed). To obtain the resonance frequency at peri-threshold we average both frequencies
(dark gray, solid). The curve shows a transition from integration with zero resonance frequency
to resonance for non-zero leak values above the detection threshold of 1Hz (dashed horizontal
line). (d) average resonance frequencies ν0 vs measured leak gL as in (c) for n = 6 CA3 neurons,
three of which show a switch from integration to resonance while the other three starting already
with non-zero frequency only increase their resonance frequency.

at the DH point.
We access the resonance frequency experimentally by measuring the impedance curve

of CA3 pyramidal cells from the response of the neuron to injection of zap currents cover-
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Figure 12.9. GABA induced integration to resonance transition at peri-threshold in CA3 pyra-
midal cells. (a) voltage traces near to but maximally 1mV below (middle row) and above
threshold (bottom row) in response to a zap stimulus (top) for control (first column, red) and
with GABA puffs close to the cell to activate inhibitory receptors (second column, orange). Ar-
rows indicate the time at which the zap stimulus attains the resonance frequency determined in
(b). (b) impedance curves for the traces in (a) for the control (red) and with GABA (orange),
below (top) and above threshold (bottom). The maxima (arrows) shift from zero to non-zero
values. (c) Resonance frequencies ν0 determined in (b) for control (red) and GABA (orange).
The curve shows a leak-induced transition from integration with zero resonance frequency to
resonance with a frequency above the detection threshold of 1Hz (dashed horizontal line). (d)
resonance frequencies ν0 vs measured leak gL for n = 9 CA3 neurons with and without GABA.
For 7 cells we observe a switch from integration to resonance, one cell has a high leak conductance
already in the control and GABA increases it’s resonance frequency, one cell stays non-resonant.

ing a frequency range form 0− 25Hz (cf. sec. 12.1). The maxima of this curve determine
the resonance frequency. To determine the resonance at peri-threshold a constant offset
current is added to the zap stimulus and adjusted to make the stimulus slightly below
and above spike threshold. The results are shown in fig. 12.8. For zero externally applied
leak the voltage amplitudes in response to the zap stimuli decay monotonically for offset
currents below threshold. Above threshold a spike is generated on the first peak of the
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stimulus. Due to an increase in the leak conductance the voltage amplitudes now attain
a maximum below threshold and spiking starts not at the first but at later peaks. This
change is reflected in the change of the impedance curves from an integrative character-
istic with a zero resonance frequency to a non-monotonic shape with non-zero resonance
frequency. In particular, non-resonant neurons become resonate with a frequency - leak
relation ship qualitatively similar to the prediction in fig. 12.3b. Moreover the resonance
frequencies are similar to the spiking frequencies at the same leak values and around
5 − 10Hz. For neurons that already showed a resonance an increase in the leak conduc-
tance increased the resonance frequency. Leak subtraction lead to unstable dynamics in
these cases.

To summarize, for type I CA3 pyramidal cells we found a switch from integration to
resonance by increasing the leak conductance as predicted and fully consistent with the
findings for a transition organized by a dBT point.

12.4 GABA Induced Transition From Integration to

Resonance at Peri-Threshold in CA3 Pyramidal

Cells

One question that arises form the above results is whether the change in leak conductance
needed to induce a neuronal excitability switch can be provided by shunting synapses. To
access this question we activated inhibitory GABA receptors by applying GABA puffs
close to the cell during the recordings. Applying GABA lead to an increase in leak
conductance by 5 − 10 nS which by comparison with the dynamic clamp results above
should be sufficient to induce a switch in neuronal excitability. Indeed, fig. 12.9 shows that
the application of GABA is sufficient to induce a switch from integration to resonance in
full analogy to the dynamic clamp results in fig. 12.8. Moreover, the resonance frequencies
for the induced leak change correspond to those found when artificially inducing the leak,
indicating that GABA acts via shunting only. We attribute the stronger inter-neuronal
variability in the resonance frequency vs leak curves to variations in effective leak caused
by different distances of the GABA puff electrodes to the measured neurons.

In summary, this shows that the transition in neuronal excitability and from inte-
gration to resonance at peri-threshold can be controlled by shunting synapses alone. In
particular, this opens the possibility to control the synchronization properties of neuronal
cell groups dynamically. Inhibition (mediated by GABA) could thus increase the propen-
sity of neuronal circuits to synchronize, supporting the role of GABAergic interneurons
in generating rhythms in the 2− 12Hz range. We will study further consequences for the
collective network dynamics in sec. 13.

12.5 Summary and Discussion

In this chapter we experimentally confirmed the theory for leak-induced neuronal ex-
citability transitions developed in chapter 10. In particular, in CA3 pyramidal cells and
neurons of the DNLL we found a type I to type II transitions by artificially imposing a
leak conductance via dynamic patch clamp experiments. As predicted by the theory the
experimentally observed transitions also showed a region of bistability and a transition
in peri-threshold resonance. We further showed that the transition can be induced by
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the application of GABA, providing evidence that neuronal excitability can be controlled
dynamically by synaptic shunting inhibition.

In hippocampal pyramidal neurons, both, type I [149] and type II neuronal excitability
[241, 240, 179] have been reported. Also switches between between the neuronal excitabil-
ity types due the application of neuro-modulators been identified [352, 415]. In [306, 307]
a switch from integration to resonance in these cells is shown when changing between in
vivo to in vitro conditions. This switch is attributed to an interplay between shunting
due to background synaptic activity [27, 74, 75, 293, 348] and adaption. Our findings
are consistent with these finding in that both effectively contribute to an increase in the
leak conductance at peri-threshold. Moreover, our bifurcation analysis gives an expla-
nation for the bistability observed in the pyramidal cells. Preliminary numerical studies
also indicate that the adaptation current may even increase the region of bistability. Our
results further indicate that shunting alone is sufficient to induce a switch from type I to
type II via activation of GABA-ergic synapses and therefore their excitability type can
be controlled dynamically.

In [359] an increase in onset frequency of fast spiking interneurons in type II neurons
due to an increased shunting conductance has been reported. This is in accordance with
our experimental results for type II neurons that show an increase in their onset spiking
and resonance frequency when increasing the leak conductance. It is also consistent with
the predictions from the dBT bifurcation diagram where the onset frequency increases
above the NSL point.

We found neuronal excitability transitions in hippocampal CA3 pyramidal cells as well
as DNLL neurons, indicating that this is a general mechanism. In chapter 10 we found
prevalence of excitability switches in a large number of neuron models further supporting
the generality of this mechanism. Theoretically we showed that type II neurons cannot
always be switched to type I excitability by leak subtraction because this destabilizes the
dynamics. We exactly find this behavior in the experiments for both the CA3 region as
well in the DNLL, further supporting the generality of our theory.

Interestingly, voltage independent Potassium leak channels exist in neurons [131] and
are also found to regulate spiking activity [40]. Our results indicate that such channels
in principle can provide a mechanism for neurons to regulate their neuronal excitability
type.

We observed that application of GABA induces a switch to type II excitability at
peri-threshold in CA3 pyramidal cells with a resulting resonance frequencies of 5− 10Hz.
This lies withing the frequency range of the theta rhythm 2− 10Hz in the hippocampus
[52, 53]. An intrinsic resonance is not required for entrainment of the pyramidal cells to
this rhythm but strongly influences the responsiveness of the cells to these oscillations
[159]. Switching the resonance properties of the pyramidal cells via shunting inhibition
may thus provide a mechanism to dynamically control their participation in this rhythmic
activity with further consequences for dynamic grouping [162, 158], sensimotor processing
[392], navigation [288] and learning and memory [394] associated with theta oscillations.

Our findings provide evidence that neuronal excitability can be controlled dynami-
cally via shunting inhibition. As neuronal excitability is connected to synchronization
properties of networks [157, 100, 177] (cf. also the next sec. 13), to the selective response
to different stimulus features [151, 256, 318, 359, 360, 361], information coding [329, 166]
and memory recall and storage [239] this mechanism may provide an efficient way to
dynamically control these collective properties.
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Chapter 13

Dynamic Neuronal Excitability and

Collective Network Dynamics

this chapter we study how dynamic neuronal excitability switches induced by changes in
leak conductance are capable of controlling collective network dynamics. We use well-
established results [100, 335] connecting neuronal excitability of neurons to their phase
response curves and infer a transition from synchronization to desynchronization. We
further study novel collective effects for stronger coupling arising from the bistable re-
gion encountered in the neuronal excitability transition. In networks of type I and II
neurons we further show that only the type II neurons synchronize. By changing the ex-
citability type via shunting inhibition dynamically this gives rise to a dynamic grouping
mechanism. Finally we present a small circuit in which the neuronal excitability type and
synchronization properties of excitatory neurons are controlled by a shunting inhibitory
interneuron.

13.1 Leak-Induced Neuronal Excitability Transition and

Phase Response

The neuronal excitability type of a neuron strongly influences their phase response [100,
335] (cf. also section 3.4). In the neuronal excitability transition of section 10.2.1.2 we
encountered four different co-dimension one bifurcations to periodic spiking. The shapes
of the phase response curves z (φ) (PRC) associated with these bifurcations are derived
in [100, 335]: Close to a SNIC or a homoclinic bifurcation the phase response is always
positive with approximate shapes given by z (φ) = c1 (1− cos (φ)) or z (φ) = c1 exp (−c2φ),
respectively. For double limit cycle and Hopf bifurcations the phase response attains
negative parts and is of the form c1 sin (φ− c2). Thus, it follows that the PRC changes
from a purely positive to a sinodial shape during the neuronal excitability transition.
This is illustrated for the ML model in fig. 13.1. In weakly homogeneously and excitatory
coupled neurons [177] these results imply that for small leak conductances the network
will tend to desynchronize, while for larger leak conductances a transition to synchrony
occurs. This is shown in fig. 13.2a,b.

Interestingly, in weakly coupled networks with both, type I neurons (due to a mall
leak) and type II neurons (due to a large leak), we observe that the type II neurons
synchronize their dynamics to form a single cluster, while the type I neurons show asyn-
chronous dynamics (cf. fig. 13.2d). Thus, the (de)synchronization properties of a subgroup
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Figure 13.1. Phase response curves and neuronal excitability transition induced by an increasing
leak conductance. Shown are the phase response curves z (φ) (solid) calculated via the adjoint
method [228] (cf. eq. (3.4.7)) at different stages of the neuronal excitability transition form
type I to II in the Morris-Lecar model together with the fits (dashed) predicted by underlying
bifurcation to periodic spiking [100, 335] for (a) a SNIC bifurcation at gL = 2.0, (b) a homoclinic
bifurcation at gL = 4.2 (c) a DC bifurcating at gL = 5.5 and (b) Hopf bifurcation at gL = 8.7.
The transition form type I to type II excitability is present in the PRC attaining parts with
negative values in the type II regime.

of neurons within a larger network can be controlled, by dynamically changing their leak
conductance. In particular a dynamically controlled leak conductance (e.g. by slow shunt-
ing inhibition) can render a neuron to become synchronized to other neurons with similar
leak values and thus may provide a mechanism for dynamic grouping of neurons [162, 341]
with further consequences for neuronal coding [140].

Note that there are some limitations to this reasoning. First, the PRC may change if
the input current ie attains large values far away form the bifurcation point i∗e for the onset
of spiking. In particular the bifurcation diagram in fig. 10.6 shows that the termination
of spiking due to the conductance block at large input currents is via a double limit cycle
bifurcation. This implies a change from type I neurons with purely positive PRCs to a
sinodial shape found in type II.

Second, the synchronization properties also depend on the precise relation between
the synaptic time constants and the spike frequency of the neurons. For slow synapses
and short inter-spike-intervals positive and negative parts of the PRC may be smeared
out due to averaging. Thus type II neurons coupled via slow synapses will not always
synchronize. On the contrary small negative parts of the PRC using fast synapses can be
very effective in stabilizing synchronous states.

Third, neurons are not always coupled weakly. Effects of stronger coupling are shown
in fig. 13.2b,c. In particular, in the (gL, ie)-bifurcation diagrams for the different neuron
models there are regions of bistability when the limit cycles are created via the homoclinic
or DC bifurcations. Stronger coupling in the DC bifurcation still leads to synchronization.
However, this synchronization results in an even stronger synchronized synaptic input
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Figure 13.2. Neuronal excitability transition and collective network dynamics. (a-c) dynamics
of homogeneously coupled εij = (1− δi,j) ε networks of N = 5 Morris-Lecar neurons with stan-
dard parameter as in appendix D.2 coupled via excitatory alpha synapses (2.7.2) with τr = 0.5,
τd = 20 and vsyn = 0. (a) at a SNIC bifurcation for small leak gL = 2.0, ie = 40 and weak
coupling ε = 0.15 the network desynchronizes as predicted by an non-negative phase response
curve in fig. 13.1. (b) At a DC bifurcation for leak gL = 5.5, ie = 196 and stronger coupling
ε = 1 the network synchronizes as predicted by the sinodial shape of the phase response. In
addition, at some degree of synchronization the combined pulse strength is strong enough to
kick several neurons into the basin of attraction of the coexisting fixed point. (b) for smaller
leak gL = 5, ie = 173, close to a homoclinic bifurcation the system desynchronizes. Due to the
strong coupling neurons are ’turned off’ an ’on’ by pulses that arrive when the neuron is close to
the boundary of the basin of attraction. This leads to very irregular, possibly chaotic dynamics.
(d) raster plot of a weakly (ε = 0.075) coupled inhomogeneous network of N = 10 neurons.
Neurons 1-5 have a leak as in (a), neurons 6-10 as in (b). Starting the system from random
initial conditions, the type II neurons synchronize into a single group while the type I neurons
get asynchronous.

.

pulse which can set some of the neurons into the basin of attraction of the stable fixed
point and make them silent. This process continues until the combined pulse strength
of the active neurons becomes to weak to further “turn off” neurons. For the homoclinic
regime the neurons desynchronize, but are also pushed into the basin of the fixed point.
This is due to the fact that in some parts of the state space the spiking dynamics are close
to the basin boundary of the fixed point (cf. fig. 3.4). Due to non-synchronous inputs the
neurons can additionally be kicked out of the fixed point basin. In total this leads to very
irregular and possibly chaotic dynamics. An example is shown fig. 13.2.
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13.2 A Synchronization-Desynchronization Circuit

13.2 A Synchronization-Desynchronization Circuit

An increase in leak conductance may arise via inhibitory interneurons due to shunting.
Thus using our results in chapter 10 and 12 neuronal excitability may be controlled
dynamically via synapses. In fig. 13.3 we show that this is indeed possible already in small
synchronization-desynchronization circuit consisting of two type I excitatory neurons that
receive inhibition form an inhibitory interneuron. For weak external input the excitatory
neurons being type I desynchronize. By increasing the external input the inhibition of the
interneuron with a larger synaptic time constant effectively increases the leak conductance
on the excitatory neurons that then switch their excitability type form I to II and start to
synchronize. By releasing the external drive the neurons switch back to type I and start
desynchronizing again. We also find this mechanism for inhibitory neurons only driven
by the excitatory neurons and for larger populations of both excitatory and inhibitory
neurons.
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Figure 13.3. Dynamic control of synchronization and desynchronization via dynamic neural
excitability switching in a neuronal circuit. (a) two mutually coupled excitatory neurons receive
shunting inputs from an inhibitory interneuron. All neuron receive common inputs ie from
external sources. (b) dynamics of the sync-desync circuit in (a) using Morris-Lecar neurons with
standard parameter as in D.2. Input currents are ie = 0 for the inhibitory and ie = 40 for the
excitatory neurons. Synapses for excitation are as in fig. 13.2, for inhibition the synaptic decay
time was larger (τd = 200ms) with reversal potential vsyn,inh = −60. Shown are the potential
traces vi, i = 1, 2 for the excitatory neurons (red) and the inhibitory neuron v3 (blue). The
input current ie (black) to all neurons is increased transiently. Top trace shows the synchrony

measure r = 1
2

∣
∣
∣
∑2

j=1 exp (2πiφj)
∣
∣
∣ for the excitatory neurons with phases φi estimated by linear

interpolation between the spike times. Thus r is 1 for the phase synchronized state and 0 for the
asynchronous state. Starting form random initial conditions the two excitatory neurons being
in the type I regime desynchronize their spiking. When the external current is turned on the
inhibition due to the activity of the interneuron increases the effective leak conductance and
shifts the excitatory neurons into the type II regime which makes them synchronize. Turning
the input off again decreases the shunting inhibition again and the almost synchronized system
starts to desynchronize again. We note the synchronization for larger external inputs is not due
to the transition. In fact it is stable even against strong perturbations (not shown).
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IV 13 Dynamic Neuronal Excitability and Collective Network Dynamics

13.3 Summary

To conclude, we have shown that an increase in leak conductance of excitatory coupled
neurons can change the dynamics from desynchronization for small to synchronization
for larger values of the leak conductance. We used this mechanism to construct a circuit
whose synchronization properties can be controlled by the strength of the external input
currents. Moreover, increasing the leak conductance only for a subgroup of neurons leads
to synchronization of this subgroup while the other neurons remained asynchronous. Thus,
changing the leak of individual neurons dynamically, e.g. due to shunting inhibition,
provides a mechanism for dynamic grouping of these neurons within a larger network.
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Chapter 14

Conclusion and Outlook

In this part of the thesis we theoretically and experimentally studied the impact of leak
currents onto the excitability type of neurons. We found that an increase in leak con-
ductance induces a switch from type I to type II neuronal excitability. In a large number
of conductance-based neuron models, including those presented in refs. [273, 319, 320,
168, 400, 99, 61, 109, 315, 103, 406], we showed numerically and analytically using a
combination of multiple bifurcation theory and normal form theory that this transition
consists of three intermediate steps via a saddle node loop, a neutral saddle node and
a degenerate Hopf bifurcation. We further showed that this transitions is accompanied
by a transition from integration to resonance at peri-threshold organized by an ordinary
Bogdanov-Takens point and a region of bistable coexistence of a fixed point and a limit
cycle. We explained this structure of the transition by a degenerate Bogdanov-Takens
bifurcation of codimension-3 acting as an organizing center and proved the existence of
such a point for all type I conductance based neuron models. We further showed that
type II neurons cannot be switched back to type I by leak subtraction in general as the
dynamics may lose stability.

We used normal form theory and the structure of the unfolding of the dBT point to
transform a class of neuron models, including the Morris-Lecar and the Fitzhugh-Nagumo
model, into a Liénard equation which gave rise to a novel interpretation of neuronal
spiking dynamics in terms of an acceleration force and a nonlinear damping. This also
facilitated an intuitive explanation for the switch in neuronal excitability. Using further
transformations we determined the unfolding of the dBT point for the Fitzhugh-Nagumo
model and proved the existence of an even higher degenerate Bogdanov-Takens point of
co-dimension-4.

We applied these theoretical findings to study the effects of neuronal morphology on
neuronal excitability. We explained a switch from type I to type II neuronal excitability
which we found by varying the neuronal morphological from linearly extended to stellar
like dendritic shapes in compartmental model neurons. Depending on the active dendritic
ion channel properties these changes induce a effective change in leak conductance at the
soma and cause the transition. We confirmed these theoretical results by analyzing data
from experiments where the dendritic tree can be pinched temporarily [25].

Using dynamic patch clamp recordings we further confirmed the main predictions of
our general theory in hippocampal CA3 pyramidal neurons and neurons of the dorsal lat-
eral lemniscus. We find leak-induced neuronal excitability switches, a region of bistability
and a transition at peri-threshold resonance. Application of an inhibitory synaptic trans-
mitter likewise induced this transition. We therefore concluded that in principle neuronal
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IV 14 Conclusion and Outlook

excitability can be controlled dynamically via shunting inhibition.
We then studied several consequences of these findings for the control of collective

network dynamics. Well-established results show that type I neuronal excitability leads
to desynchronization while type II to synchronization in weakly coupled neurons [316,
100, 184, 177]. We therefore concluded that regulating neuronal excitability via changes
in leak conductance provides an effective mechanism to dynamically control the collec-
tive synchronization properties of neurons. We demonstrated this in a small circuit and
further showed in larger networks of neurons with different neuronal excitability that the
subgroup of type II neurons synchronizes while the type I neurons remain asynchronous.
We concluded, that dynamic switching of neuronal excitability may thus serve as a mech-
anism for dynamic grouping of neurons with a wide range of applications in neuronal
coding [162, 398, 138, 111]. We further showed that in the region of bistability complex
dynamics emerge for stronger couplings in homogeneous networks: For smaller leak con-
ductances, stronger pulses arising via synchronization induce silencing of neurons, while
for larger leak values the desynchronization causes irregular dynamics due to switching
between resting and spiking of the individual neurons.

Neuronal networks in vivo can be highly active, resulting in a large fraction of open
ion channels. In these high conductance states [27, 74, 75, 293, 348] both, the excitatory
inputs as well as the leak conductance are strongly increased. Our results then imply,
that the neuronal excitability of the neurons may switch form type I at low activity, i.e.
in low conductance network states, to type II in the high conductance state with the same
consequences for the synchronization properties.

For future work it will be interesting to also investigate the impact of a change in leak
conductance on bursting neurons. For these neurons, several underlying bifurcations to
bursting activity are known [315, 189], but what are possible transitions between different
bursting types and to tonic spiking and how are they organized by higher degenerate
bifurcations? More generally, one can ask what higher degenerate bifurcations organize
neuronal excitability. This not only provides simple normal forms for the mathematical
analysis and efficient simulation of neuronal networks but may provide further insight into
the existence of possible complex dynamical properties in single neurons. For example,
we showed that an abstract neuron model [108, 278] is the unfolding of a degenerate
Bogdanov-Takens bifurcation of co-dimension-4 [202] which predicts parameter regions
with coexisting stable periodic orbits.

For future work our theoretical and experimental results provide a promising starting
point for studying the role of dynamic neuronal excitability switches in brain function. In
a first step a detailed study how dynamic neuronal excitability transitions influence the
collective network dynamics of excitatory and inhibitory neurons and how these dynamics
then act back in controlling the individual excitability types of the neurons may provide
useful insights into collective control mechanisms for neuronal synchronization and neu-
ronal dynamics in general. As the neuronal excitability type controls the phase response
of a neuron, a better understanding of such complex dynamics may be gained by studying
simpler pulse-coupled phase oscillator models (as used in part III of this thesis) with a
variable phase response that depends on the inhibitory inputs.

Furthermore, the neuronal excitability type influences the selective response of neurons
to different stimulus features [151, 256, 318, 359, 360, 361], the encoding of information
[329, 166] and the recall and storage of memory [239]. It would therefore be interesting to
see how dynamic transitions in neuronal excitability provide an efficient or even optimal
mechanism for the control of these functions.
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For future experimental research, it would be interesting to confirm a dynamic control
of neuronal excitability directly by stimulating inhibitory interneurons and simultaneously
measuring a change in excitability type in a postsynaptic neuron. Moreover, by employing
optical stimulation methods, it would be interesting to investigate how excitation of a
larger number of inhibitory neurons is capable of controlling the neuronal excitability
type of neurons in larger networks.
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Part V

Local Control of Non-Local Information

Flow
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Chapter 15

Introduction

Function of the brain is flexible. On a behavioral time scale dynamic routing of informa-
tion is important to ensure an appropriate combination of perceived signals, contextual
processing and activated memories of different entities and abstraction levels. Therefore
the information flow between different neuronal areas has to be organized dynamically, it
has to be controlled and learned.

Neuronal network connectivity is multi-scale. On the largest scale, the brain is orga-
nized into anatomically different modular regions each responsible for a certain informa-
tion processing task [196]. On smaller scales neuronal structure is found to be organized in
cortical columns [180], i.e. vertical aggregates of cells in the layered structure of cerebral
cortex with similar response properties or receptive fields and sharing long range connec-
tions. On a cellular scale, experimental studies [344] show that the statistics of synaptic
connectivity may be viewed as a skeleton of strong connections with an over representation
of recurrently connected motives embedded in a sea of weaker connections. In ref. [294] it
was shown that in neocortex, pyramidal neurons cluster into several interlaced groups of a
few dozen neurons. Given this organization of neurons into groups, a question that arises
in this context is how communication between the different components is organized and
controlled.

Several mechanisms for communication and information transmission between sub-
groups of neurons have been proposed. For example, there are studies showing that
synchronized neuronal spiking within a group of neurons can lead to stable propagation
of this activity through a sequence of subgroups along embedded stronger feed-forward
structures [77]. In neuronal networks with balanced inhibition and excitation [391], neu-
ronal communication using firing rates can be changed by altering the balance between the
long-range excitatory and inhibitory connections among two subgroups of neurons [395].
Both mechanisms rely on non-local adjustments of the long-range connections between
the subgroups along which the signals are transmitted.

A different mechanism [326, 393, 111] uses excitability fluctuations during neuronal
oscillations as the substrate for neuronal communication through coherence (CTC) [111]:
Neurons in oscillatory groups not only synchronize their outgoing spikes which then be-
come more effective in evoking postsynaptic responses [161, 300], but also periodically
change their sensitivity to inputs [396, 49]. Thus oscillations rhythmically open and close
the neurons group’s windows for communication and may provide a flexible mechanism for
neuronal communication. Only coherently oscillating, e.g phase-locked neuronal groups
can then communicate effectively if their communication windows for input and output
are open at the same time [111, 112].
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V 15 Introduction

This hypothesis emphasizes the role of oscillations in neuronal coding and information
transmission [50, 324, 411, 169, 341] and is underpinned by several experimental studies
[113, 330, 410, 412, 142, 408, 28, 56]. First evidence was found in [113] where neurons
in V4 activated by behaviorally relevant stimuli showed increased gamma frequency syn-
chronization compared to neurons activated by distractors at nearby V4 sites. In [330]
it was shown that neuronal coherence even facilitates long distance interactions between
the spinal cord and the cortex.

The impact of the phase shift among two neuronal groups on their mutual influence was
studied in [412]. There it was shown that the Spearman rank correlation coefficient of two
multi unit activities varied as a function of the phase shift in 60Hz gamma oscillations. At
a preferred phase shift this correlation was highest and low otherwise. Thus the effective
connectivity between two groups can be systematically varied by synchronization into
different phase locking patterns. This result was confirmed recently in a simple model of
two linearly coupled oscillators [98] and in a more biophysically plausible large scale model
[48]. The simulations also showed that the speed of information exchange increases as a
function of spectral power in specific frequency bands. In [365] it was further shown that
in a numerical model of two unidirectional coupled groups of neurons undergoing gamma
oscillations synchronous activation within the first group only spreads to the second for
certain phase relations between the oscillations.

In [56] the influence of phase locking distributions among different local field potentials
onto the spike generation of individual neurons was investigated. An inverse model based
on a symmetrically coupled network of oscillators [59] was used to predict the underlying
phase coupling network from the statistics of the measured phase differences [54]. It was
shown that these phase couplings influenced the spike timing of individual neurons and
that disperse neurons with a common preference for a certain phase coupling pattern
tended to synchronize. This may be viewed as an extension of the CTC hypothesis
originally proposed for two oscillating groups to many interlaced clusters.

To summarize, oscillations induce fluctuations in excitability and modulation of syn-
chronized activity in neuronal groups and thereby provide a substrate for neuronal com-
munication. In particular coherent oscillations and corresponding phase relations control
the interaction between the groups. But what are the underlying mechanisms that control
these phase relations and ultimately information flow in these oscillatory networks? How
are they related to the underlying neuronal connectivity structure? Given that regula-
tory mechanisms in the brain act predominantly locally on the dynamical properties of
individual neurons and their synaptic connections, one may further ask how local changes
can contribute to the control of phase relations and information transfer on a larger scale.

This part of the thesis is devoted to these questions. We first study information flow in
a general network model of coupled phase oscillators [228, 407, 5], that not only serves as
model for coupled oscillators in neuronal systems [251, 302, 177] and biology [407] but also
in physics and chemistry. We derive an analytical expression for the information flow in
these networks with arbitrary network topology. We then concentrate on hierarchical net-
works consisting of more strongly connected clusters with weaker inter-cluster couplings.
We analytically derive the non-local information flow between the clusters as a function
of all structural and dynamical network parameters. We use our results to reveal how
information transfer is controlled by the underlying physical connectivity and find that
local changes of links or frequencies within a group can control the non-local information
flow from and to this cluster. Via this mechanism a group may thus “tune” to sources of
relevant information and specify receivers of its own information output. Interestingly,
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15.1 Neuronal Oscillations

our analytics unravel that local changes in the strength of a single link can also remotely
control the information transmission between two other distant oscillators that are both
physically unchanged. We then link our theoretical findings to more realistic hierarchical
networks of spiking neurons exhibiting gamma oscillations (cf. also [23, 408]) and extend
the study to information flow based on spike patterns.

15.1 Neuronal Oscillations

Collective neuronal oscillations are frequently observed in many parts of the nervous sys-
tem, ranging from primary sensory circuits, through local cortical networks to larger inter
areal formations [26, 138, 374, 53, 128]. Neurons in these systems share strong time-
varying correlations that arise form external sources or synaptic interactions within the
network which then lead to the macroscopic oscillations observable in electroencephalog-
raphy recordings [26] or on a smaller scales in local field potentials [140] and multi-unit
activity [113]. A broad range of oscillation frequencies is observed. Slow and delta rhythms
(1− 3Hz) that are measured during slow wave sleep in the thalamus as well as in cortical
areas and are associated to synaptic plasticity and memory formation [350, 181]. Theta
oscillations (4− 8Hz) arise in the hippocampus for example in parallel to motor activity
and spatial navigation [51]. Alpha band activity (8−14Hz) observed in the occipital lobe
[26] is thought to represent an idle state of the brain [7] and to serve as a mechanism
for top-down inhibition [216]. Fast oscillations such as beta (20 − 30Hz) and gamma
(30 − 100Hz) are widely observed in hippocampal [35], thalamic [349, 348] and corti-
cal networks [140, 95, 374, 113, 94, 410, 412] and associated with learning, information
binding and communication.

Different mechanisms can give rise to fast oscillations in recurrent networks of spiking
neurons. Gamma oscillations can arise due to the interaction of inhibitory neurons (ING)
with slow synaptic time constants that receive tonic excitatory inputs [403, 400, 21]: A
strong inhibitory pulse then synchronizes these neurons and periods of silencing inhibi-
tion alternate with synchronous firing. A second mechanism [191, 404, 252, 31] is based
on a feedback loop between mutually coupled excitatory pyramidal cells and inhibitory
inter neurons (PING): Excitation of the inhibitory interneurons silences the excitatory
population. In turn the inhibitory neurons do not receive sufficient excitation to sus-
tain firing and inhibition decays. Remaining low excitatory activity then re-excites the
pyramidal cells and the cycle repeats. Both mechanism are not mutually exclusive [366].
Further ING and PING generalize to sparsely synchronous oscillations in which only a
small subset of neurons spike in a single cycle of the collective oscillation [45].

15.2 Measuring Information Flow

There exist several measures to quantify information flow between two or more time se-
ries, including bidirectional information [254], directed information [255, 223] and transfer
entropy [331] and its extensions [346]. In this work we mainly focus on delayed mutual
information (sec. 15.2.1) mainly because it is analytical tractable and has numerical ad-
vantages. However our study can be extended to a version of the transfer entropy measure
(sec. 15.2.2) with similar results.
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Figure 15.1. Delayed mutual information in the Ornstein-Uhlenbeck process. Shown are time
series and the delayed mutual information (dMI) for the system ẋ = −x+ ζx, ẏ = −y + 3x+ ζy
with uncorrelated white noise sources ζi with 〈ζi, ζj〉 = 0.1δij . Note that there is only a physical
connection from x → y. (a) sample of the time series xt (blue) and yt (red). Arrows indicate
correlations between and within the processes leading to non-zero dMI for negative delays despite
the absence of a physical coupling from y → x (cf. also text). (b) dMI between xt and yt+d

(orange) obtained numerically (dots) (time series of length t = 50000 with step size dt = 0.1,
estimation of the joint probability distributions uses a histogram with 1000 equally spaced bins
in the interval [−0.5, 0.5]) and theoretically (line) using the result (??). The dMI shows a strong
asymmetry towards positive delays indicating effective information flow from x → y consistent
with the underlying physical connectivity. Insets show joint probability distributions of x (t)and
y (t+ d) for d = −0.6 (left) and d = 0.6 (right) indicated by the gray dotted lines.

15.2.1 Delayed Mutual Information

Mutual information [MI], characterizes the information that two stochastic processes share
[249]. It is defined as the Kullback-Leibler divergence [227] between the joint probability
distribution of the two signals and the product of their marginals, i.e. the joint distribution
obtained if the two processes were independent. This quantity per se is fully symmetric
in the two signals. To obtain a measure of directionality between the signal xt and yt
one introduces a delay time d into one of the signals and calculates the joint distribution
p (xt, yt+d) of xt and the time shifted version of yt denoted by yt+d. Then the delayed
mutual information [dMI] is given by

MIx,y (d) =

¨

p (xt, yt+d) log

(
p (xt, yt+d)

p (xt) p (yt)

)

dxtdyt+d (15.2.1)

Assuming a causal world where signals can only flow forward in time, high values of
MIx,y (d) for positive delays d > 0 and small values for d < 0, i.e. an asymmetry of
the functional form of MIx,y (d) towards positive d then indicates an effective information
flowing from x→ y.

Figure 15.1 illustrates this for a multivariate Ornstein-Uhlenbeck process for which
the dMI is calculated analytically in appendix G. We note that this example also shows
that a single particular value of the dMI for a particular delay has little explanatory
power in general and only the full shape of the dMI, and in particular its asymmetry
characterizes aspects of the information flow. For example, consider the two processes xt
and yt in fig. 15.1 where there is only a physical connection from xt to yt but the MIx,y (d)
for small negative delays d < 0 yields non-zero values. The reason is a combination of
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15.2 Measuring Information Flow

the real physical influence of x on y and time correlations within the signal x itself that
give rise to non-zero correlations between yt and later xt+d (cf. fig. 15.1a). This in turn
gives rise to positive values for the dMI even for negative delays (cf. also eqs. (G.2.1)
and (??)). However the overall shape of the dMI in this example clearly shows a strong
asymmetry towards positive delays (cf. fig. 15.1a) and may therefore be used as a measure
of information flow.

Numerically we determine the delayed mutual information between two time series by
estimating the joint probability p (xt, yt+d) using a joint histogram of normalized counts
of occurrences of the pairs (xt, yt+d) within equally spaced bins in the xt-yt-space. In each
simulation the length of the time series was increased and the bin size was decreased until
convergence of the dMI curve was obtained. In each figure the length of the time series
and the binning is indicated. For the numerical integration of the stochastic differential
equations we use a stochastic Runge-Kutta algorithm of order 2 [173].

In contrast to other information transfer measures, the dMI has the advantage of
depending only on the joint probability p (xt, yt+d) of two variables only. This speeds up
numerical calculations as the amount of data needed to sample the probability distribution
accurately is much less than for joint distributions of three or more variables. At the same
time this fact also makes it a useful tool in analytical calculations and avoids lengthy
expressions.

15.2.2 Transfer Entropy

Our study below focuses on delayed mutual information to quantify information flow.
However, the analysis with some modifications but similar results can also be performed
for a delayed transfer entropy measure of the form

TEx→y (d) =

˚

p (yt+d, xt, yt) log

(
p (yt+d|xt, yt)
p (yt+d|yt)

)

dxtdytdyt+d (15.2.2)

where p (yt+d, xt, yt) is the joint distribution of the signal xt and yt and its time shifted
version yt+d. For a fixed d > 0 this is the transfer entropy for a time discrete signal [331]
with time resolution d. Calculating this quantity for all d gives more information about
the temporal structure of the signals and may serve as an alternative measure of transfer
entropy in systems with continuous time [193]. In appendix G.3.1 the transfer entropy
for the Ornstein-Uhlenbeck process is derived.
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Chapter 16

Local Control of Non-Local Information

Flow in Networks of Coupled Phase

Oscillators

In this section we study information flows in networks of coupled phase oscillators. For
dynamics near a phase locked state we first derive an analytic expression for the informa-
tion flow between any pair of oscillators and arbitrary network topologies. For systems
close to synchrony we also derive an analytical expression for the phase locking pattern.

We then focus on hierarchical network structures of more strongly coupled groups
of oscillators with weaker inter-cluster connections. We treat the clusters as individual
meta-oscillators and by performing a second phase reduction step we obtain the collec-
tive phase response curves for each cluster as a function of the intra-cluster connectivity
and individual frequencies of the cluster’s oscillators. By performing a second averaging
step we then deduce an analytical expression for the phase information flow between the
different clusters as a function of their collective phase response curves. This enables us
to study how local intra-cluster properties affect the global inter-cluster information flow.
In particular, we find that the information flow between two clusters can be controlled
via local network changes within the clusters only or even remotely by changes within a
third cluster only.

16.1 Model

To study control mechanisms for information flow analytically we use networks of coupled
phase oscillators. Such models arise in the phase reduction and averaging (cf. sec. 3.4) of
weakly coupled oscillators with a strong attraction towards their limit cycle. We model
external signals to the oscillators as white noise processes to keep analytical tractability
but keep in mind that they originate from physical signals that always have small but non-
zero time correlations [386]1. The resulting model is then given by a Langevin equation

1We note that the phase reduction for stochastic oscillators depends on the ratio of the correlation
time constants for the noise sources and the time constants associated with the attraction towards the
limit cycle in the limit where both tend to zero [363]. For real white noise sources extra terms arise in
the technically correct phase equation [417] while the deterministic reduction is valid in the limiting case
of colored noise sources. Interestingly, to our knowledge, there is no general theory for the averaging of
weakly coupled stochastic oscillators developed so far. See also section 18.3 for a detailed discussion.
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16.2 Information Flow in Networks of Coupled Phase Oscillators

for N oscillators with phases φ = (φ1, . . . , φN), with φi ∈ S1 = [0, 2π] /0 ∼ 2π of the form

dφi =

[

ωi +
∑

j

γij (φi − φj)

]

dt+ ξidwi (16.1.1)

with intrinsic oscillation frequencies ωi, coupling functions γij, and white noise sources wi

that obey
〈wi (t) , wj (s)〉 = δijδ (t− s) (16.1.2)

and have strength ξ = (ξ1, . . . , ξN). The real function γij is 2π periodic such that there
are no difficulties in defining the phase difference appearing in its argument. Moreover,
we thus can treat the φi as variables in R keeping in mind that points modulo 2π have
the same physical meaning. For later convenience we also define the N ×N matrix

Ξ = diag (ξ1, . . . , ξN) . (16.1.3)

We assume that for the noiseless deterministic model, ξi = 0 in eq. (16.1.1), there is
a stable phase-locked state with phase differences ∆φij = φi − φj = const. and collective
oscillation frequency Ω solving the equation

Ω = ωi +
∑

j

γij (∆φij) (16.1.4)

We further assume that the noise strengths ξi are small compared to the strength of
attraction towards the phase locked solution.

16.2 Information Flow in Networks of Coupled Phase

Oscillators

In this section we derive the information flow in networks of coupled phase oscillators.
In particular, we analytically calculate the delayed mutual information between phase
signals of two oscillators in the network (16.1.1) close to a phase locked state.

We denote the probability distribution of the phase signals φ (t) of all oscillators in
the network (16.1.1) by p (φt) and the joint distribution of these signals with the phase
signals φ (t+ d) shifted by a time d by p (φt, φt+d). For positive delay times d > 0 this
distribution may be calculated via the identity

p (φt, φt+d) = p (φt+d|φt) p (φt) (16.2.1)

and for negative delays by reversing the roles of φt and φt+d. The marginal distribution
for the phase signal φi (t) of oscillator i and the time shifted version φj (t+ d) of oscillator
j is obtained from this distribution by integration:

p (φi,t, φj,t+d) =

¨

p (φt, φt+d)
∏

k 6=i

dφt,k

∏

l 6=j

dφl,t+d (16.2.2)

The delayed mutual information (15.2.1) between these two oscillators is then given by

MIi,j (d) =

¨

p (φi,t, φj,t+d) log

(
p (φi,t, φj,t+d)

p (φi,t) p (φj,t)

)

dφi,tdφj,t+d (16.2.3)

183



V 16 Local Control of Non-Local Information Flow in Networks of Phase Oscillators

Our analysis proceeds in three steps: We first introduce new average phase and phase
deviation like coordinates suitable for linearization of the system and convenient for the
following analysis. We then calculate the joint distribution p (φt, φt+d) by deriving ex-
pressions for p (φt) and p (φt+d|φt) and preform the integration (16.2.2) over all but two
variables. Finally, we use this result to calculate the delayed mutual information as in
(16.2.3). The main result of this analysis is summarized in theorem 16.2.1.

16.2.1 Transformation to Average Phase and Phase Deviation

Variables

In this sub-section we transform the system (16.1.1) into a form suitable for linearization
and the following derivation of the dMI.

We first introduce shifted coordinates ψi = φi−∆φi where the constant ∆φi measures
the deviation of oscillator i from the average phase in the deterministic phase-locked state,
i.e. ∆φij = ∆φi −∆φj and ψi − ψj = φi − φj −∆φij . Equation (16.1.1) then becomes2

dψi =

[

ωi +
∑

j

γij (ψi − ψj +∆φij)

]

dt+ ξidwi (16.2.4)

:= fi (ψ) dt+ ξidwi

Note that the right hand side and in particular the vector field f of this equation only
depends on the phase differences ψi−ψj . In the noiseless case, these differences vanish in
the phase locked state and (16.2.4) reduces to (16.1.4). It is convenient to also transform
to a rotating frame via

ψ = Ωt + ϕ (16.2.5)

such that (16.2.4) becomes

dϕ = [f (ϕ)− Ω] dt+ Ξdw . (16.2.6)

We then introduce coordinates ϕ̃ = (ϕ̄, δϕ2, . . . , δϕN) = (ϕ̄, δϕ) with an average like
phase3

ϕ̄ =
1

N

∑

i

ϕi (16.2.7)

and phase difference like variables δϕi given by any orthonormal matrix O with O1k = 1√
N

for all k ∈ {1, . . . , N} such that OTO = OOT = 1 and

ϕ̃ =
1√
N
Oϕ, ϕ =

√
NOT ϕ̃ . (16.2.8)

2Note that here and in the following we use a Stratonovich interpretation [120] of the stochastic
differential equation (16.1.1) as we model physical input signals by the white noise sources. However, all
applied transformations in this section are linear affine and therefore the results remain valid also using
Ito’s stochastic calculus.

3We note that the average of phase variables on the circle is given by ϕ̄ = arg
∑

k exp (iϕk). As we
treat phases as variables on the real line (cf. sec. 16.1) this definition gives a good approximation to the
average phase if the ϕk are concentrated on a small interval. Generally, we treat (16.2.7) as a formal
definition of a coordinate transformation.
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16.2 Information Flow in Networks of Coupled Phase Oscillators

Then any phase difference can be written as a linear combination of the δϕi, i.e.

ψi − ψj = ϕi − ϕj =

N∑

k=2

oi,jk δϕk (16.2.9)

where
oi,jk =

√
N (Oki −Okj) (16.2.10)

Applying the transformation (16.2.8) the evolution equation for the new coordinates ϕ̃ is
given by

dϕ̃ =
1√
N

[

Of
(

OT
√
Nϕ̃
)

− Ω
]

dt+
1√
N
OΞdw (16.2.11)

=: f̃ (δϕ) dt+Bdw

where we defined the matrix

B =
1√
N
OΞ (16.2.12)

and f̃ via the second equation. The vector field f̃ depends only on the δϕ because f
defined in (16.2.4) depends only on the phase differences ψi − ψj which via (16.2.9) may
be expressed in terms of the δϕ only.

Note that in this representation the equations for δϕ decouple from the average phase
ϕ̄. The equation for ϕ̄ itself depends only on the processes δϕ and the white noise processes
wi and therefore can be solved formally as

ϕ̄ (t) = ϕ̄ (0) +

ˆ t

0

f̃ϕ̄ (δϕ) dt+
∑

j

ξj
N
wj (t) (16.2.13)

By transforming back to the original coordinates this shows that the collective rotation
of the system is driven by three purely additive parts, the deterministic rotation Ω of
the phase locked state, a rotation due to the deviations of the oscillators from the phase
locked state and a noise term being the average of the input noises to each oscillator.

16.2.2 Calculation of the Probability Distributions

In this section we derive the joint probability distribution p (φt, φt+d) for the system
(16.1.1) close to a phase locked state. Therefore we utilize eq. (16.2.1) to calculate
p (φt+d|φt) and p (φt) separately. In both derivations we use the more convenient co-
ordinates ϕ. We further employ the small noise assumption and first derive suitable lin-
earizations of the system around the phase locked state from which the distributions can
then be calculated analytically. We finally merge our results and perform the integration
(16.2.2).

16.2.2.1 Transition Probability

In this section we derive the transition probability p (φt+d|φt) using the ϕ coordinates
(16.2.5), i.e. p (ϕt+d|ϕt). To calculate this transition probability we employ the assump-
tion that the noise amplitudes ξi are small compared to the strength of attraction towards
the stable phase locked state. Then the phase differences ϕi − ϕj (which are zero when
the system is in the phase locked state) will stay small and we therefore may expand the
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V 16 Local Control of Non-Local Information Flow in Networks of Phase Oscillators

right hand side of (16.2.6) in these phase differences. Truncation at linear order in ϕi−ϕj

then gives
dϕ = Gϕdt+ ΞdW (16.2.14)

with the N ×N matrix G given by

Gij =

{

−γ′ij (∆φij) i 6= j
∑

k γ
′
ik (∆φik) i = j

Note that G has a zero eigenvalue λ0 with eigenvector e0 = (1, 1, . . . , 1) which reflects
the fact that (16.1.1) and (16.2.4) are invariant under simultaneous uniform shifts of all
phases.

Despite of the zero eigenvalue of G, a solution of the Ornstein-Uhlenbeck process
(16.2.14) for all finite times exists and is given formally by [120]

ϕ (t) = exp (Gt)ϕ (0) + η

ˆ t

0

exp (G (t− t′)) Ξdw (t′)

Starting at ϕ (0) = ϕ0 it follows that the mean 〈ϕ (t)〉 evolves according to

〈ϕ (t)〉 =Mtϕ0 where Mt := exp (Gt)

and the covariance matrix Σt =
〈

ϕ (t)ϕ (t)T
〉

is given by

Σt :=

ˆ t

0

exp (G (t− t′)) ΞΞT exp
(
GT (t− t′)

)
dt′ (16.2.15)

Denoting the multivariate Gaussian distribution with mean µand covariancesΣ by Nµ,Σ,
the transition probability is thus given by [120]

p (ϕt+d|ϕt) = NMdϕt,Σd
(ϕt+d) . (16.2.16)

In terms of the φ coordinates this becomes

p (φt+d|φt) = NMdφt,Σd
(φt+d −∆φ− Ωd)

16.2.2.2 Stationary Phase Distributions

In this section we derive the distribution p (φt) using the ϕ̃ = (ϕ̄, δϕ) coordinates in
(16.2.8). As before, the small noise amplitudes ensure that the phase differences δϕ
(16.2.9) are small and linearizing the δϕ-subsystem in (16.2.11) gives

dδϕ = δGδϕdt+ δBdw (16.2.17)

where the (N − 1)× (N − 1) matrix δG is defined via the equality

OGOT =

(
0 ḡT

0 δG

)

(16.2.18)

and the N − 1×N matrix δB has entries δBij = Bi+1,j. Note that in (16.2.18) ḡ is some
vector describing the influence of the phase deviations on the average phase of the system
in linear approximation.
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16.2 Information Flow in Networks of Coupled Phase Oscillators

As we assumed stability of the phase locked state, δG only has negative eigenvalues,
so there is a stationary solution to the Ornstein-Uhlenbeck process eq. (16.2.17) of the
form

δϕ (t) = η̃

ˆ t

−∞
exp (−δG (t− t′)) δBdw (t′)

Thus the phase deviations δϕ are Gaussian distributed with zero mean and covariances

Σδ =

ˆ 0

−∞
exp (−δGt) δBδBT exp

(
−δGT t

)
dt

i.e.
pst (δϕ) = N0,Σδ

(δϕ) .

Now eq. (16.2.13) shows, that for each realization of δϕ (t), ϕ̄ (t) has a Gaussian
distribution with variance ∝ t when starting with deterministic initial conditions. In
particular in the limit t → ∞ this distribution on R becomes flat. However, we can
now employ the fact that the oscillator network is in the same state if the ϕi differ by a
multiple of 2π and hence ϕ̄ defined by (16.2.7) has the same physical meaning for values
that differ by 2π

N
. Thus, regarding ϕ̄ as a variable on a circle with ϕ̄ ∈

[
0, 2π

N

)
, it follows

that its stationary distribution is uniform with

pst (ϕ̄) =
N

2π
(16.2.19)

This is a consequence of the invariance of the evolution equation (16.1.1) under uniform
global phase shifts.

We are interested in the full stationary distribution pst (ϕ̃). As the δϕ equations do
not involve ϕ̄ and using (16.2.19) we conclude that

pst (ϕ̃) = pst (δϕ) pst (ϕ̄) =
N

2π
N0,Σδ

(δϕ)

16.2.2.3 Joint Probability Distribution

We now merge our results form the previous two sections to obtain the joint distribution
as

p (ϕt, ϕt+d) = p (ϕt+d|ϕt) pst (ϕt)

∝ NMdϕt,Σd
(ϕt+d)N0,Σδ

(δϕt)

or more explicitly

ps (ϕt, ϕt+d) ∝ exp

(

−1

2
δϕT

t Σ
−1
δ δϕt −

1

2
(ϕt+d −Mdϕt)

T Σ−1
d (ϕt+d −Mdϕt)

)

.

(16.2.20)

16.2.2.4 Integration

We are interested in the marginal distribution ps (ϕi,t, ϕj,t+d) and thus have to integrate
out the remaining coordinates in the full joint probability distribution (16.2.20). The
Gaussian integrals over the ϕk,t+d, k 6= j yield

p (ϕt, ϕj,t+d) ∝ exp

(

−1

2
δϕT

t Σ
−1
δ δϕt −

1

2

(

ϕj,t+d − (Mdϕt)j

)2

(Σd)jj

)

(16.2.21)
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Now, as we can express any phase ϕj via the phase ϕi plus a linear combination of phase
differences δϕ using (16.2.9) we have

ϕj,t+d−(Mdϕt)j = ϕj,t+d−ϕi,t−
∑

k,l

(Md)jk o
k,i
l δϕt,l = ϕj,t+d−ϕi,t−

∑

l

aj,id,lδϕl,t (16.2.22)

with
aj,id,l :=

∑

k

(Md)jk o
k,i
l (16.2.23)

We may therefore insert (16.2.22) into (16.2.21) and integrate over the δϕt. The integra-
tion can be performed by first making an orthogonal transformation to a basis in which
Σδ is diagonal and then performing the individual Gaussian integrals. The result is

p (ϕi,t, ϕj,t+d) =
1

2π
N0,σ2

i,j,d
(ϕj,t+d − ϕi,t) (16.2.24)

where
σ2
i,j,d = (Σd)jj + aj,iTd · Σδ · aj,id .

Via the second term this expression still depends on the coordinate transformations O
which we can get rid of. Therefore we define [[A]]i,j to be the matrix obtained from the
matrix A by deleting its ith row and jth column. With this notation straightforward
algebra shows for δB and δG defined in (16.2.17) and (16.2.18) that

δBδBT =
[[
OΞ2OT

]]

1,1

δGn =
[[
OGnOT

]]

1,1

and thus also
exp (δGt) =

[[
O exp (Gt)OT

]]

1,1

For any N ×N matrices A and B we further have

[[
OAOT

]]

1,1

[[
OBOT

]]

1,1
=

[[

O

(

AB − 1

N
AJB

)

OT

]]

1,1

where J is the N×N matrix of ones, i.e Jij = 1. As G has an eigenvector e0 = (1, 1, . . . , 1)
with eigenvalue λ0 = 0 we have GJ = JGT = 0. Thus for any integers n,m ≥ 0

δGnδBδBT
(
δGT

)m
=

[[
OGnOT

]]

1,1

[[
OΞΞTOT

]]

1,1

[[
O
(
GT
)n
OT
]]

1,1

=
[[
OGnΞΞT

(
GT
)m

OT
]]

1,1

and it follows that

exp (δGt) δBδBT exp
(
δGT s

)
=
[[
O exp (Gt) ΞΞT exp

(
GT s

)
OT
]]

1,1
.

Hence

Σδ =

ˆ 0

−∞

[[
O exp (−Gt) ΞΞT exp

(
−GT t

)
OT
]]

1,1
dt

where it is essential to delete the first row and column before performing the integration
to ensure convergence of the integral.
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Using again that e0 = (1, 1, . . . , 1) is eigenvector of G with zero eigenvalue we have

∑

j

(Mt)ij =




exp (Gt)






1
...
1











i

= 1 (16.2.25)

for all i ∈ {1, . . . N} and setting

Ht = exp (Gt) ΞΞT exp
(
GT t

)
=MtΞΞ

TMT
t

together with (16.2.23), (16.2.10) and oi,k1 = 0 yields

1

η2
aj,iTd · Σδ · aj,id =

1

N

ˆ 0

−∞

∑

k,m

∑

l,p 6=1

(Md)jk o
k,i
l

[[
OH−tO

T
]]

lp
(Md)jm o

m,i
p dt

=
1

N

ˆ 0

−∞

∑

k,l,m,p

(Md)jk o
k,i
l

(
OH−tO

T
)

lp
(Md)jm o

m,i
p dt

=

ˆ 0

−∞

∑

k,l,m,p,s,r

(Md)jk (Olk −Oli)OlrH−t,rsOms (Omp − Omi) (Md)jm dt

=

ˆ 0

−∞

∑

k,p

(Md)jk (H−t,kp −H−t,ki −H−t,ip +H−t,ii) (Md)jp dt

=

ˆ 0

−∞

(
MdH−tM

T
d

)

jj
− 2 (MdH−t)ji +H−t,iidt

Note here, as before, that the sum has to be performed before integration to ensure
convergence of the integral. Using (16.2.15) we obtain the basis free expression

σ2
i,j,d =

ˆ d

0

(Ht)jj dt+

ˆ ∞

0

(Ht+d)jj + (Ht)ii − 2 (MdHt)ji dt . (16.2.26)

In the original coordinates the distribution (16.2.24) is given by

p (φi,t, φj,t+d) = N0,σ2
d,i,j

(φj,t+d − φi,t −∆φji − Ωd) .

Finally, note that the above results are for the pseudo phases on the real line. If we
identify the phases at all points modulo 2π the Gaussian distribution (16.2.24) becomes
a wrapped Gaussian distribution which for small standard deviations

σ =

√

1

k
≪ 2π (16.2.27)

is well approximated by a van Mises distribution for circular variables [44]. It is of the
form

Mµ,k (φ) =
1

2πI0 (k)
exp (k cos (φ− µ)) (16.2.28)

where In (k) denotes the nth modified Bessel function of the first kind [44], µ is the average
phase and k a concentration parameter. Thus, as the final result, we obtain

p (φi,t, φj,t+d) = M0,σ2
d,i,j

(φj,t+d − φi,t −∆φji − Ωd) (16.2.29)

= M∆φji+Ωd,σ2
d,i,j

(φj,t+d − φi,t)

with σ2
d,i,j given in (16.2.26).
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16.2.3 Delayed Mutual Information

For a van Mises probability distribution (16.2.28) of the from

p (φ1, φ2) =
1

2π
Mµ,k (φ1 − φ2)

we calculate

MIvM (k) =

¨

p (φ1, φ2) log

(
p (φ1, φ2)

p (φ1) p (φ2)

)

dφ1dφ2

=
1

(2π)2 I0 (k)

¨

exp (k cos (φ1 − φ2 +m)) [k cos (φ1 − φ2 +m)− log (I0 (k))] dφ1dφ2

=
kI1 (k)

I0 (k)
− log (I0 (k)) (16.2.30)

Combining the results from the previous derivations and using (16.2.27) we obtain the
main result of this chapter for the information flow in phase oscillator networks:

Theorem 16.2.1. The delayed mutual information MIi,j (d) between oscillator i and os-
cillator j in system (16.1.1) close to a phase locked state4 with phase differences ∆φij and
small noise fluctuations ξ is given by

MIi,j (d) =

{

MIvM
(
σ−2
d,i,j

)
d ≥ 0

MIvM
(
σ−2
−d,j,i

)
d < 0

(16.2.31)

with σ2
d,i,j as defined in (16.2.26) and MIvM given by (16.2.30).

Under the assumptions of theorem 16.2.1, the analytic solution (16.2.31) is in good
agreement with numerical simulations as shown for example oscillator networks in fig.
16.1 and 16.2. For larger values of the noise the numerical values show qualitatively the
same shapes as the theoretical prediction, but with systematically smaller values. This
blurring is due to the fact that the large noise frequently pushes the system out of the
phase locked regime.

There strong asymmetries in the shape of the dMI curves observed correspond to
anisotropic directed information flow patterns within the network. What is the mechanism
underlying this asymmetry in phase information flow in the networks? The next paragraph
answers this question by considering a simple example.

16.2.4 Example and Mechanism

In this section we consider networks of N = 2 oscillators to illustrate the mechanism
leading to a directed phase information transfer. For simplicity we assume equal noise
strength ξi = ξ. We obtain

G =

(
g1 −g1
−g2 g2

)

(16.2.32)

4Formally, if there are other stable dynamics in the deterministic systems the noise will set the stochas-
tic system into the basin of attraction of one of these states with probability one. We therefore here im-
plicitly restrict to time periods where the system is close to the phase-locked state under consideration.
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Figure 16.1. Delayed mutual information in networks of coupled phase oscillators close to a
phase locked state. (a) network structure of N = 5 oscillators (edge thickness proportional to
connection weight kij) (b) traces of stochastic phase evolution according to (16.1.1) with ξi = 0.1
and γij = kij sin (1.2 + φ). (c) delayed mutual information MIi,j (d). Dots indicate numerical
values, calculated from traces of duration t = 105 and dt = 0.02 from which the probability
distribution p (φi,t, φj,t+d), (φi,t, φj,t+d) ∈ [0, 2π]2 was estimated using a histogram with equally
spaced bins of size 2π/1000. Lines show theoretical prediction eq. (16.2.31) and (16.2.26) and
are in good agreement with the numerical values. (d) same as in (c) but for large noise ξ = 1.
The numerical values show qualitatively the same shapes as the theoretical prediction, but with
systematically smaller values. This is due to the fact that the large noise frequently pushes the
system out of the phase locked regime and the transients back blur the dMI.

where g1 = γ′12 (∆φ12) and g2 = γ′21 (∆φ21) = γ′21 (−∆φ12). G has eigenvalues λ0 = 0 and
λ = g1 + g2 < 0 as we assume a stable phase-locked state. One calculates

Mt = exp (Gt) =
1

λ

(
eλtg1 + g2

(
1− eλt

)
g1(

1− eλt
)
g2 eλtg2 + g1

)

from which Ht = ξ2 exp (Gt) exp
(
GT t

)
follows by a straightforward calculation. Using

(16.2.26) we obtain for i 6= j

σ2
i,j,d =

ξ2

λ3

{

dλ (g21 + g22)− λ2 − 2g2j
(
eλd − 1

)
d ≥ 0

|d|λ (g21 + g22)− λ2 − 2g2i
(
eλ|d| − 1

)
d ≤ 0

(16.2.33)

and

σ2
i,i,d =

ξ2

λ3
(
|d|λ

(
g21 + g22

)
− 2g1g2

(
eλ|d| − 1

))
(16.2.34)
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Figure 16.2. Delayed mutual information in coupled phase oscillators: Mechanism and dynamic
information flow switching. (a) network of N = 2 phase oscillators symmetrically coupled via the

coupling function γ (∆φ) = sin

(

1.2 + ∆φ+ 1.5 sin
(
∆φ
2

)2
)

(dark blue) and its antisymmetric

part γ̄ (∆φ) = γ (∆φ) − γ (−∆φ) (light blue). The zeros of γ̄ are phase locked states that are
stable if γ̄′ (∆φ) < 0 indicated by ∆φ1,2 and −∆φ12. g1 and g2 indicate the slopes of the the
coupling function, γ′ (±∆φ12). (b) stochastic time t evolution of the oscillator phases φi (upper
part) of system (16.1.1) with ξi = 0.1 and phase difference ∆φ12 (t) = φ1 (t)−φ2 (t) (lower part).
Phase differences ±∆φ12 predicted for the deterministic systems in (a) are indicated by black
solid lines. At t = 50 (purple arrow) a strong perturbation was applied to switch the system
to the opposite phase locked state. (c) delayed mutual information MIi,j (d). Dots indicate
numerical values, calculated from traces of duration t = 105 and dt = 0.05 from which the
probability distribution p (φi,t, φj,t+d), (φi,t, φj,t+d) ∈ [0, 2π]2 was estimated using a bin size of
2π/1000. Data for the system in the initial phase locked state in (a) (orange) and the final state
in (a) (dark orange) are shown. Lines show theoretical predictions eqs. (16.2.31) and (16.2.33)
for each phase locked state. (d) dMI as in (c) with ξ = 0.3. The larger noise level induces
switches between the two phase locked states resulting in blurred superposition of the individual
dMI’s for the phase locked states (orange darker orange lines). The average dMI (lighter orange)
and half of the average lightest orange) are shown for reference.

from which we obtain the delayed mutual information via (16.2.31). Under the assump-
tions that lead to (16.2.31), the analytical prediction is in good agreement with the nu-
merical simulations as shown in fig. 16.2.

The mechanism underlying a shift of the peak of the dMI into one direction, indicating
a directionality in the effective connectivity can be understood in this simple example:
Consider the interaction function γ and its antisymmetric part γ̄ in fig. 16.2a. The zeros
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16.2 Information Flow in Networks of Coupled Phase Oscillators

±∆φ of γ̄ with γ̄′ (±∆φ) < 0 indicate stable phase locked states (cf. sec. 3.4). Lets
assume we are in the state where oscillator 2 leads oscillator 1, i.e. the initial state in fig.
16.2b with ∆φ12 = φ1 − φ2 = −∆φ < 0. Figure 16.2a then shows that the slopes of the
coupling function, g1 = γ′ (∆φ12) = γ′ (−∆φ) and g2 = γ′ (∆φ21) = γ′ (∆φ) are different,
giving rise to different linearized dynamics (16.2.14) and (16.2.32). In our example g1 is
small and thus the dynamics of φ1 is mainly determined by the driving noise w1. On the
other hand, the dynamics for φ2 is coupled to φ1 via the large g2 and compensates for
deviations from the phase locked state by pulling φ2 to be at the preferred phase difference
φ1 +∆φ21 with a relaxation time constant 1

g2
. Thus the overall rotation of the system is

more strongly aligned to φ1 than to φ2 and, as a result of this, an effective information
flow from 1 → 2 is established.

Figure 16.2 also illustrates that this non-symmetric information transfer can arise in
an fully symmetric network. This is a result of symmetry breaking in a phase locked
state that is neither the synchronous nor the anti-synchronous state, 0 6= ∆φ12 6= π. Of
course, due to the overall symmetry the reversed phase locked state exists with a reversed
direction of information flow. This leads to the possibility of dynamic switching of the
information direction by a strong perturbation that moves the system from one phase
locked state to the basin of attraction of the other (cf. also [23, 408]).

16.2.5 Discussion

Our approach is limited by the assumption of small noise. For large noise amplitudes the
theoretical prediction typically shows deviations form the numerically obtained delayed
mutual information: In systems where the phase-locked state is a global attractor stronger
noise only reduces the amplitude of the numerically obtained dMI curves but their shape
stays qualitatively the same as predicted theoretically (cf. fig. 16.1d). This is due to
the fact that the strong noise makes it likely to push the system very far away from
the phase locked dynamics such that the linear approximations (16.2.14) and (16.2.17)
no longer remain valid and the transients back to the phase-locked state blur the dMI.
In systems with multiple phase-locked attractors strong noise pushes the system into a
different attractor from time to time and the dMI becomes a superposition of the dMIs
in each phase locked state weighted by the probability to be (or average time spend) in
each state. Additionally the transients between the phase-locked states may blur this
superposition (cf. fig. 16.2d).

The derivation that lead to theorem 16.2.1 also assumed the existence of a stable phase
locked solution in the absence of noise. However, even in the absence of a phase locked
solution some insights from our analysis can be gained by conditioning the time series of
the phases on a certain phase pattern that frequently appears in the dynamics, e.g. due
an underlying periodic or quasi-periodic motion in the noiseless case. For time delays
d smaller than the time scale in which the phase differences change in the underlying
deterministic system and further assuming small noise amplitudes our derivation remains
valid and may shed some light on information flow patterns in more irregular than phase-
locked dynamics. In particular, our method may then be used to detect time windows of
efficient information transfer. We leave a detailed study of this aspect to future work and
concentrate on the information flow in hierarchical networks in the next section.
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V 16 Local Control of Non-Local Information Flow in Networks of Phase Oscillators

16.3 Local Control of Information Flow in Hierarchical

Networks of Phase Oscillators

results from the previous section apply to phase oscillators coupled via any network struc-
ture. Motivated by the facts that neuronal connectivity has a hierarchical structure and
neuronal oscillations typically occur synchronously in groups of neurons we apply our
general results to networks of phase oscillators that are clustered into different groups. In
particular, we derive the collective phase response of each group as a function of its under-
lying network structure and intrinsic oscillation frequencies of the individual oscillators.
We show that the averaging method for these types of stochastic systems is applicable
and use the result to predict the delayed mutual information between the clusters as a
function of the cluster properties. We find that local changes within a single cluster, e.g.
by a changes in a local link, can control the non-local information transfer between two
clusters and even remotely, between two other physically unchanged clusters.

16.3.1 Information Flow in Hierarchical Networks of Phase

Oscillators

this sub-section we derive the information flow between weakly coupled clusters in hier-
archical networks of phase oscillators. We first reduce each individual cluster to a meta-
oscillator described by a collective phase and response function following refs. [200, 221].
We show that the resulting stochastic model is suited for the standard averaging method
which results in a stochastic phase oscillator model that has the same functional form
as the model we started with. We can therefore apply our results from section 16.2 to
obtain the delayed mutual information between the clusters as a function of the cluster
properties.

16.3.1.1 Hierarchical Networks of Phase Oscillators

Throughout this section we consider a hierarchical network of N phase oscillators as
described in (16.1). We assume that the oscillators are clustered into M different groups
such that each cluster X ∈ {1, . . . ,M} consists of NX oscillators so that

∑

X NX = N .
We denote the ith-oscillator in cluster X by iX . The network evolves according to

dφiX (t) =

[

ωiX +
∑

jX

γiXjX (φiX − φjX) +
∑

Y

∑

jY

γiXjY (φiX − φjY )

]

dt+ ξidwi (16.3.1)

where the first sum on the right hand side represents the stronger intra-cluster couplings
and the second sum the weaker inter-cluster couplings.

For the noiseless model ξi = 0, and uncoupled clusters, γiXjY = 0, we assume the
existence of a stable phase locked state φiX ,0 (t) = ΦX (t) + ∆φiX for each individual
cluster X where ΦX is the collective cluster phase and the temporally constant phase
offsets ∆φiX and phase differences ∆φiXjX = ∆φiX −∆φjX obey the equation

ωiX +
∑

jX

γiXjX (∆iXjX ) = ΩX = const. (16.3.2)

where ΩX is the collective cluster frequency. We further assume that the ΩX differ only
by a small amount so that in the noiseless fully coupled model the clusters themselves
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show a stable phase-locked pattern. Finally, we assume that noise strengths ξi are small
in comparison to the strength of attraction towards the phase locking.

16.3.1.2 Collective Phase Reduction

In this section we make use of the hierarchical network structure by first neglecting the
inter-cluster couplings and consider each cluster separately. Using the assumption that
in the noiseless system each cluster has a stable phase locked state, eq. (16.3.2), we may
regard each group as a single meta-oscillator, for each of which we can perform a further
phase reduction step (cf. sec. 3.4). A cluster X is then described by its collective phase
ΦX and its collective phase response curve ZX [200, 221]. We solve the adjoint equation
(3.4.7) together with the initial condition (3.4.8) which both arising from the theory of
phase reduction in order to determine ZX . Using (16.3.1) and (16.3.2) the adjoint equation
(3.4.7) in our notation becomes

d

dt
ZX = −LT

XZX (16.3.3)

with

LX =

{

−γ′iXjX
(φiX ,0 − φjX ,0) iX 6= jX

∑

kX
γ′iXkX

(φiX ,0 − φkX ,0) iX = jX

Note that LX is time independent and a Laplacian matrix. Thus, to solve (16.3.3) we can
choose ZX to be the constant left eigenvector of LX with eigenvalue λX,0 = 0. The initial
condition (3.4.8) then reduces to

∑

iX
ZX,iX = 1 and we thus obtain

ZX,iX =
det
(

[[LX ]]iX ,iX

)

∑

iX
det
(

[[LX ]]iX ,iX

) . (16.3.4)

Note that ZX is a constant vector independent of the phase ΦX . As the white noise
sources wi in our model represent physical input signals that always have correlations in
time [386] and we assumed strong, that is fast, attraction towards the phase locked state
the above phase reduction analysis for the deterministic situation ξi = 0 remains valid for
the stochastic system ξi > 0 as shown in [363].

The fully coupled stochastic system (16.3.1) in the reduced form then becomes

dΦX = ΩX +
∑

Y

ZT
XGX,Y (ΦX ,ΦY ) +

∑

iX

ZX,iXξiXdwiX (16.3.5)

where
GX,Y (ΦX ,ΦY )iX =

∑

iY

γiXjY (ΦX − ΦY −∆φiX ,jY )

For a deterministic system the standard approach at this stage is to further exploit the
weak coupling by performing an averaging step (cf. section 3.4). However, similarly
to modifications encountered in the phase reduction method for stochastic oscillators
[200] the averaging method for a stochastic system may also change. Interestingly, to our
knowledge, there is no general theory of stochastic averaging for weakly coupled oscillators
developed so far (cf. also the discussion in sec. 18.3 where we propose steps towards the
development of such a theory).
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For eq. (16.3.5), however, the ZX are constant vectors andGX,Y is already in a averaged
like form as it only depends on the cluster phase differences and we therefore immediately
obtain

d

dt
ΦX = ΩX +

∑

Y

ΓXY (ΦX − ΦY ) + ςXdWX (16.3.6)

where the inter-cluster coupling function ΓXY is given by

ΓXY (ΦX − ΦY ) =
∑

iX ,jY

ZX,iXγiXjY (ΦX + φiX ,0 − ΦY − φjY ,0) (16.3.7)

with white noise processes WX obeying 〈WX (t) ,WY (s)〉 = δXY δ (t− s) and noise levels

ς2X =
∑

iX

Z2
X,iX

ξ2iX .

16.3.1.3 Delayed Mutual Information between Collective Cluster Phases

Note that eq. (16.3.6) has the same functional form as eq. (16.1.1) thus implying equivalent
functional behaviour. Further using the assumption of phase-locking among the clusters in
the deterministic system we may write ΦX (t) = Ωt+∆ΦX with Ω the collective rotation
frequency of the system and phase locking offsets ∆ΦX satisfying ∆ΦXY = ∆ΦX −∆ΦY

the analog of eq. (16.1.4):

Ω = ΩX +
∑

Y

ΓXY (∆ΦXY ) = const. (16.3.8)

Now we are in a situation completely analogous to section 16.2. We thus immediately
obtain an expression for the delayed mutual information between the clusters via theorem
16.2.1:

Corollary 16.3.1. The delayed mutual information MIX,Y (d) between the time series of
the collective phases of cluster X and cluster Y in system (16.3.1) close to a phase locked
state with phase and small noises ξi is given by (16.2.31) when substituting φi with ΦX ,
∆φij by ∆ΦXY , ωi with ΩX , γij by ΓXY , and ξi by ςX .

In fig. 16.3 this result is illustrated for a network of N = 12 oscillators and M = 2
clusters. Under the assumptions of phase locking and small noise the theoretical predic-
tions are in good agreement with the numerically obtained delayed mutual information.
Similar limitations apply as discussed for the general result, theorem 16.2.1, in sec. 16.2.5.
In appendix H we use corollary 16.3.1 to derive an explicit analytical expression for the
dMI between two collective cluster phases, when the phase locking patterns defined by
equations (16.3.2) and (16.3.8) are close to the synchronous state. In particular for cou-
plings of the form γiXjY (φ) = KiXjY γ (φ) this gives an explicit expression of the dMI as a
function of the connectivity matrix Kij and in particular the local inter cluster connection
strengths KiXjX . These theoretical predictions are also in good agreement with numerical
simulations as shown in fig. 16.3.

To summarize, we have calculated the delayed mutual information between the time
series of the collective phases of each cluster in a hierarchical network of weakly coupled
oscillators. The result implies, that the delayed mutual information between the clusters
is a function of the local properties of each clusters. In particular, the local network
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Figure 16.3. Delayed mutual information in hierarchical networks. (a) hierarchical net-
work (16.3.1) with clusters X (red) and Y (blue), coupling function γij (∆φ) = gijγ (∆φ)
with γ (∆φ) = − sin (∆φ+ 0.2) − 0.1 (cf. (e)) and ωi = 1 and ξi = 0.1. (b) phase
traces starting from random initial conditions. (c) phase differences ∆φi,12 = φi − φ12 fluc-
tuate around the phase locked state (straight lines). (d) ZX and ZY calculated numeri-
cally (dark) and theoretically (light) using (16.3.4). (e) coupling functions 0.1γ, ΓXY and
Γ̄ (∆Φ) = ΓXY (∆Φ)− ΓY X (∆Φ) + ΩX −ΩY . ∆ΦXY indicates prediction for the cluster phase
difference (cf. (H.4)). (f) dMI between phase traces of a subset of individual oscillators obtained
numerically (orange dots, duration t = 3 · 105 with step size dt = 0.05 and bin size 2π/1000
for the estimation of the probability distribution) and analytically via theorem 16.2.1 (orange
lines). Also shown is the dMI between the collective cluster phase signals obtained numerically
(black dots) and using corollary 16.3.1. As the noise is large compared to the weak inter cluster
couplings the dMIs for the individual oscillators are slightly over estimated.

connectivity γiXjX and the intrinsic frequencies of the oscillators ωiX determine the phase
locking patterns ∆φiXjX within each clusters. These in turn via eq. (16.3.8) determine
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the collective rotation frequency ΩX of each cluster and via (16.3.4) the collective phase
response ZX . The collective phase response in turn together with the inter cluster cou-
plings γiXiY determine the effective inter cluster coupling ΓXY via (16.3.7). Thus, corollary
16.3.1 then gives the delayed mutual information between two clusters as a function of the
local network conductivities γiXjX and intrinsic frequencies of the oscillators ωiX . As a
consequence we obtain that local changes within a single cluster can control the non-local
phase information flow between different clusters.

The remainder of this chapter is devoted to this local control of non-local information
flow.

16.3.2 Local Control of Non-Local Information Flow

connectivity between different clusters may be changed. It is clear that by changing the
connectivity between two clusters the effective connectivity between them can be changed
(cf. theorem 16.2.1). More interestingly, the effective connectivity between different clus-
ters can also be changed by local changes within the cluster, i.e. without changing the
inter cluster structural connectivity. This is a consequence of the general result corollary
16.3.1. Here we investigate three mechanisms for a local control of non-local information
flow: First, changes in local frequencies of oscillators within a cluster, e.g. mediated by
a change in the local inputs. Second, changes of the local network structure within a
cluster. Intriguingly, we also show that changes within a cluster can remotely control
the information flow between two other clusters. Third, multistable states within each
cluster.

16.3.2.1 Control of Non-Local Information Flow via Local Intrinsic Oscilla-
tion Frequencies: Information Flow Tuning

The information flow measured by the delayed mutual information depends via corollary
16.3.1 strongly on the phase locking pattern between the clusters. One way of controlling
these inter-cluster phase differences is by changing the intrinsic oscillation frequencies
of oscillators within a single cluster. In particular, when changing all frequencies ωiX

uniformly within one group X, the phase differences ∆φiXjX of the phase locked state
for this cluster do not change. Thus via (16.3.8) the collective cluster frequency ΩX is
changed while the effective cluster couplings (16.3.7) stay unchanged. Hence via (16.3.6)
the phase locking of cluster X to the others will change and by corollary 16.3.1 this entails
a change in the delayed mutual information between cluster X and the other clusters. This
mechanism is illustrated in fig. 16.4a-e.

Changing the frequency of only a subset of oscillators within a clusters not only affects
the collective frequency of the cluster but also its phase locking pattern. Hence also its
collective phase response is changed. This effect is similar to the one caused by local
connectivity changes that will be discussed in sec. 16.3.2.2.

Following the arguments in sec. 16.2.4, the effective change of non-local information
flow via local frequency changes will be strongest if the slope of the collective coupling
function ΓXY varies strongly at locations where the phase differences between the clusters
change, i.e. the curvature of the coupling function is large. For systems close to the
synchronous phase-locked state this implies that the control of non-local information flow
is most effective if the ΓXY (Φ) show a strong variation in slope near φ = 0. Equation
(16.3.7) shows that in the near synchronous state ΓXY (Φ) is almost a superposition of
the single oscillator coupling functions γiXjY (φ). Thus a strong asymmetry in the slope
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of the single oscillator coupling functions near the origin will entail a strong asymmetry
in the slope of the collective cluster couplings and therefore will provide a basis for an
efficient local control mechanism of non-local information flow in these networks.

In numerical studies we find that locally increased frequencies in a single cluster mainly
affect its own phase relation to the other clusters and only has a weak effect on the phase
differences between the other clusters. This implies that for coupling functions with
smaller asymmetry in their slopes the information flow between the other clusters is hardly
altered. Thus, by changing its local frequency the cluster can tune its phase relation to
other clusters and hence can tune its information flow to and from others without affecting
the flow between the other clusters. In particular, this provides a mechanism for each
cluster to tune to information sources from other clusters or to provide information to
other clusters dynamically.

A change in the intrinsic frequencies in one cluster will not only change its phase
relation to the others but, depending on the network structure, may also induce small
changes in the phase locking between the other physically unchanged clusters. For cou-
pling functions with large curvature around the phase locking regime a small phase shift
already is sufficient to induce a stronger change in the delayed mutual information. Thus
in this situation a change of the intrinsic frequencies in one cluster can remotely control
the non-local information flow between two (or more) other clusters that are not directly
affected by the physical change. An example for this remote control of information flow
is shown in fig. 16.4f.

16.3.2.2 Control of Non-Local Information Flow via Local Structural Con-
nectivity: Information Flow Plasticity

A different mechanism to control the delayed mutual information between clusters is by
local modifications of the network structure. Such changes in a cluster X entail changes
in the phase-locking pattern ∆iXjX of the cluster’s oscillators via eq. (16.3.2) (cf. also fig.
16.5a-c). Both the change in phase locking as well as the link modification itself change
the collective phase response ZX of the cluster as can be seen form (16.3.4). Both ZX

and the phase differences ∆iX jX enter the expression (16.3.7) for the effective inter cluster
coupling functions ΓXY . As a consequence the phase locking pattern ∆ΦXY between
the clusters via (16.3.8) and also the shape of the coupling function itself changes. By
corollary 16.3.1 these changes then entail a change in the delayed mutual information
curve between the clusters.

An example of this mechanism by which local links control the non-local information
flow is shown in fig. 16.5. Here the change of a single link in cluster A (cf. fig. 16.5a,c)
induces a change of the phase locking pattern of this cluster (cf. fig. 16.5b,d,f) and as a
consequence also the cluster phase response changes (cf. fig. 16.5g). Both effects produce
a change in the inter cluster phase-locking (cf. fig. 16.5b,d,f) which in turn results in a
change of the delayed mutual information curves (cf. fig. 16.5e).

Note that in fig. 16.5e the delayed mutual information between the unchanged clusters
B and C is plotted. Thus a local change within cluster A is capable to remotely control
the information flow between the other clusters. Figure 16.5h shows how the switch in
the direction of the information flow between clusters B and C is controlled by a single
link strength within cluster A.

The control of non-local information flow in the phase oscillator models via local link
modifications is most effective if the phase locking pattern and the cluster phase response
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Figure 16.4. Remote control of non-local asymmetric information flow via local intrinsic os-
cillation frequencies. (a) connectivity matrix gij for a network of N = 15 oscillators, eq.
(16.3.1), with M = 3 clusters: A (red), B (blue) and C (green) and ξi = 0.1, ωiA = ωA,
ωiB = 1, ωiC = 0.9, γij (∆φ) = gijγ (∆φ). (b) coupling functions γ (∆φ) (yellow) and
γ̄ (∆φ) = γ (∆φ) − γ (−∆φ) (gray) showing stability of the synchronous state. (c) phase dif-
ferences ∆φi,15 (t) = φi (t) − φ15 (t). At t = 50 the intrinsic frequencies of cluster A (red) are
switched form ωA = ωA,1 = 1.3 (purple bar) to ωA = ωA,2 = 0.6 (dark purple bar). Cluster phase
differences in the noiseless case are indicated by lines. (d) dMI between oscillators 1 → 6, 2 → 8
and between clusters A → B for ωA = 0.6 (orange, gray) and ωA = 1.3 (dark orange, black).
Dots indicate numerical values obtained as in fig. 16.3. Lines show theoretical predictions using
(16.2.31) and (16.2.26). The local frequency change within cluster A shifts the maximum of
the dMI from positive to negative d effectively reversing the non-local information flow between
clusters A and B. (e) dMI between cluster A and B as a function of ωA using (16.2.31) and
(16.2.26). (f) dMI as in (d) but between oscillators 6 → 10, 7 → 11 and clusters B → C. See
text for details.
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Figure 16.5. Remote control of non-local information flow via local connectivity. (a,c) con-
nectivity gij of N = 10 oscillators and three clusters A (red), B (blue), C (green) in network
eq. (16.1.1), with ξi = 0.05, ωi = 1, γij (∆φ) = gijγ (∆φ), γ as in fig. 16.4(b). Local network
connectivity of cluster A is changed from g32 = g1 = 0.5 in (a) to g32 = g2 = 1.5 in (c) (purple
link). (b) phase differences ∆φi,1 (t) = φi (t)−φ1 (t). At t = 100 the link is changed. Lines show
phase differences in the noiseless case. (d,f) polar histograms of the cluster phase differences
∆ΦAB (purple), ∆ΦAC (brown) and ∆ΦBC (cyan) before and after the link change. (e) dMI
between clusters B → C for network (a) (orange) and (b) (dark orange). Dots indicate numerical
values obtained as in fig. 16.3. Lines show theoretical predictions using corollary 16.3.1. The
local link change within cluster A shifts the maximum of the dMI from negative to positive d
effectively reversing the remote information flow between clusters B and C. (g) phase response
vectors ZX of the clusters X as a function of the link strength g32. (h) dMI between clusters B
and C as a function of g32 using corollary 16.3.1. See text for details.
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Figure 16.6. Information flow combinatorics: Local control of non-local information flow via
multiple local phase locked states. (a) graph of a N = 4 oscillator network, eq. (16.3.1), with
two clusters A (red) and B (blue) with parameter ξi = 0.05, ωi = 1, γij (∆φ) = gijγ (∆φ),
giX jX = 1 within clusters and giY jY = 0.1 between clusters. (b) coupling function γ (∆φ)
(yellow) and anti-symmetric part γ̄ (∆φ) = γ (∆φ) − γ (−∆φ) (gray) that shows the existence
of two stable phase locked states ±∆φi,j within each cluster. (c) time t evolution of phase
differences ∆φi,1 (t) = φi (t) − φ1 (t). At t = 50 the a pulse is inserted into cluster A (purple
arrow) which switches its internal phase locking and as a result the inter cluster phase differences.
At t = 100 a pulse is applied to cluster B (dark purple arrow) changing its internal phase locking
and again the overall phase pattern. (d) Delayed mutual information between clusters A → B
for the three different states in (c). Dots indicate numerical values obtained as in fig. 16.3, lines
show theoretical predictions using corollary 16.3.1. For the initial state (orange) there is an
effective information flow from A to B. Switching the internal phase locking pattern of cluster
A essentially removes the directionality (lighter orange). Further switching the phase locking
pattern in cluster B turns the flow on again now in the opposite direction (darker orange).

are sensitive to these changes. We find that this sensitivity is increased if both the intra-
cluster connectivity is sparse and the coupling functions are heterogeneous. Also, similarly
to supporting the control mechanism via local frequency changes (sec. 16.3.2.1), strong
asymmetric slopes support the effectiveness of local structural changes for the control of
non-local information flow. Again, all these properties have been found in real neuronal
networks making them a possible candidate for local control mechanisms of non-local
information flow.
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16.3.2.3 Information Flow Combinatorics

A third mechanism for the local control of non-local information flow is an extension of
the dynamic switching mechanism between multi-stable phase locked states observed in
fig. 16.2 to hierarchical networks. As analyzed in the previous section, changes of phase-
locking patterns within a single cluster are capable of controlling non-local information
flows between clusters. Thus, local switching between phase locked states present in a
single cluster will induce changes in the non-local information flow between the clusters
in the full weakly coupled network. Moreover, if the different clusters in the network all
posses multistable phase locked solutions, different combinations of the local phase locking
patterns of the individual clusters will lead to different information flow patterns in the full
network. In particular, if each cluster X possess mX stable phase-locked solutions there
are
∏

X mX information flow patterns in the full network (assuming all combinations result
in phase locking among the clusters and give rise to different information flow patterns).
This local control of combinatorial information flow is illustrated in fig. 16.6.

16.4 Summary and Discussion

In this section we analytically derived the delayed mutual information between times series
of phase signals in networks of phase oscillators close to a phase locked state (theorem
16.2.1). The result is very general in that it applies to any coupling function and any
network topology that lead to a phase locked state. We found that delayed mutual
information curves arise that are asymmetric around the zero delay indicating an effective
directionality in the information flow. We showed that the underlying mechanism for this
directionality is an unbalance in the influence of the oscillators onto the overall rotation of
the whole system combined with an asymmetric relaxation towards the phase locked state.
We found that this mechanism is supported by a large curvature of the coupling functions
at the phase differences of the phase locking pattern. We then focused on hierarchical
networks consisting of stronger connected groups of phase oscillators with weaker inter
cluster connections and derived the delayed mutual information between the collective
cluster phases as a function of the underlying cluster properties (corollary 16.3.1).

Using this theoretical framework we found that local changes within a single cluster
can control the non-local information transfer between the clusters. We identified three
mechanism for the local control of non-local information flow:

1. Local Oscillation Frequencies – Information Flow Tuning
Uniform frequency changes of the oscillators within a single cluster cause changes
of its phase relations to the others which as a consequence result in changes of the
information flow to and from this cluster. In this way the cluster is able to tune to
information sources from or make its information available to other clusters.

2. Local Network Structure – Information Flow Plasticity
Local changes within the network structure of a single cluster alter the collective
cluster phase response and the effective inter-cluster couplings resulting in concert
in a change in the information flow even remotely between two distant, physically
unchanged groups.

3. Local Multistable Phase-Locking – Information Flow Combinatorics
Switching between stable intra-cluster phase locking patterns induce changes of the
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collective cluster phase response and the effective inter-cluster couplings which in
turn control the information flow between the clusters. Combinations of different
phase locking patterns of the individual clusters then endow the full network with
different information flow patterns.

We note that also a combination of the latter two or the first and the last are possible,
in that local changes of the network structure may destabilize a phase locked state so
that the clusters jumps into a different phase locked state. In this case already very small
changes within a single link may give rise to large changes in the information flow.

All local control mechanism are supported by a strong curvature of the collective
clusters coupling functions at values corresponding to the phase locking pattern. This can
be seen using the example in 16.2.4. A large curvature implies a large change of the slopes
of the interaction function for small changes of the phase-locking pattern. These slopes in
turn effectively determine the information flow. Thus a small change in the phase-locking
pattern gives rise to a stronger change in information flow if the curvature of the coupling
function is large. In particular, for phase locking patterns close to the synchronous state
such an asymmetry is induced by an asymmetry in the individual oscillator coupling
functions. Interestingly, type II neurons that synchronize their dynamics, have a phase
responses curve that is strongly asymmetric near the origin (cf. fig. 3.11 and [314, 361]
for experimental measured curves). The coupling functions obtained via averaging, i.e.
folding with a short synaptic pulse, preserves this property. Thus real neurons possess a
basic property required for effective local control of non-local information flow.

We note further that in chapter 13 we have shown that the shape of the phase response
curve of individual neurons can be changed dynamically via synaptic shunting (cf. fig. 13.1)
and thus in this way not only the synchronization properties of the collective dynamics
may be regulated (cf. sec. 13.1) but also the information flow between groups of neurons.
Control of information flow via local network structure is additionally supported by sparse
and heterogeneous inter-cluster connectivities also present in real neuronal networks.

The derivation of theorem 16.2.1 and corollary 16.3.1 relied on the existence of a
stable phase locked state. However, in the absence of such a solution our analysis remains
valid also for transient locking, by conditioning the time series on a certain initial phase
difference and restricting the time delay in the mutual information to values smaller than
the time scale on which these phase differences change in the underlying deterministic
system. Thus our analysis may even shed some light on information flow patterns in
more irregular collective dynamics and may find applications in detecting time windows
of efficient information transfer in phase oscillator networks. We propose a detailed study
of this aspect for future work.

Our analysis also relied on the assumption of noise levels that are small compared to
the strength of attraction towards the phase locked state. Larger noise amplitudes resulted
in stronger deviations from the phase locking pattern. In systems where this state was a
global attractor the transients back to the neighbourhood of the phase-locked state only
blurred the information flow by essentially shifting the delayed mutual information curve
to smaller values. In systems with multiple stable phase locked states the dMI curve
became a superposition of the dMI curves of each state due to noise-induced switching
between the attractors.

In our analysis we modeled external signals by independent white noise sources. In real
world applications however, correlations in space and time are ubiquitous. Our analysis
can be immediately extended to correlations among the white noise sources by substituting
the diagonal matrix Ξ (eq. (16.1.3)), representing the variances of the noise sources, with a
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non-diagonal correlation matrix. We also hypothesize that extensions of theorem 16.2.1 to
signals with correlations in time such as Ornstein-Uhlenbeck processes should be possible
and could provide further insight into the information flow in coupled phase oscillator
networks.

We observed that changes in certain links are more effective in controlling the non-
local information flow than others. An interesting application of our theory thus might
be to identify “high sensitivity” links and underlying network structures that are highly
optimal in controlling the information flow of the full network. This might not only have
applications to neuronal systems but also in regulatory networks of oscillatory chemical
reactions and gene expression.

The above theory deals with networks of phase oscillators and thus with information
flow between the phase signals of the oscillators. A natural extension of our work dealing
with coupled phase oscillators would therefore be to include amplitude variables for the
oscillators. Assuming symmetric couplings, amplitude oscillators near a Hopf bifurcation
are analytically tractable [59] and show relaxation towards phase locked states. This
property has been used in [175] to propose learning rules for phase locking patterns, and
in [54] to solve the inverse problem of estimating phase-coupling strengths from the phase
statistics assuming a maximum entropy model. We believe, supported by preliminary
studies, that our derivation of the delayed mutual information for phase oscillators in a
modified form may be applicable to these symmetrically coupled amplitude oscillators.
Generally, such models would have the advantage of a separation of the control of the
information flow (mediated by the phase) from the information flow itself (carried in the
amplitude channels).

An interesting question that arises in the context of our study is how the mechanisms
for local control of information flow found here may provide an efficient way in controlling
and coordinating information processing in the brain, given the omnipresent oscillatory
neuronal activity. In the next chapter we investigate this question in a network model
of spiking neurons that shows collective gamma oscillations. There we not only consider
information flows within phases but also its relation to amplitude-like channels associated
with spike timing.
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Chapter 17

Local Control of Non-Local Information

Flow in Spiking Neuronal Networks

Motivated by the findings of local control mechanisms for non-local information flows
in coupled phase-oscillators in the previous section, we here study such mechanism for
networks of spiking model neurons. We propose a hierarchical network model consisting
of clusters of neurons which each undergo a collective gamma oscillation mediated by
pyramidal inter-neuron interactions as modeled in [31]. We show that phase locking
patterns between the clusters arise in this model. In analogy to chapter 16 we study
the phase information flow between the clusters and find similar mechanisms for the
local control of non-local phase information flow. We then extend our study to the the
information flow in spike patterns. In particular, we show and explain that the information
flow in the ordering of the spikes has the same directionality as the phase information
flow and thus the same control mechanisms apply.

17.1 Model

We consider hierarchical model networks of N spiking theta (QIF) neurons (cf. sec. 2.6.4)
coupled via conductance based synapses (cf. sec. 2.7.1). The network consists of M
different clusters X ∈ {1, . . . ,M} each consisting of N e

X excitatory and N i
X inhibitory

neurons such that NX = N e
X + N i

X and N =
∑

X NX . We denote the indices of a
neuron i ∈ {1, . . . , N} in the network that belongs to cluster X by iX . Each individual
cluster is based on the model in [31] and undergoes pyramidal interneuron gamma [PING]
oscillations [404]. The clusters are coupled together by long range excitatory connections.

We next describe the structure and dynamics of a single cluster and then introduce
the full hierarchical network model.

17.1.1 Pyramidal Inter-Neuron Gamma Cluster

In this section, we describe the model for an individual PING cluster as introduced in
[31]. A single neuron iX in such a cluster X is described by its state variable θiX from

which the membrane potential viX is deduced via viX = 1
2

(

1 + tan
(

θiX
2

))

(cf. sec. 2.6.4)

so that the neuron spikes at θiX = π. To each neuron iX we associate a synaptic activation
variable siX that gives rise to conductance-based synaptic currents at the postsynaptic
neurons jX with maximal conductance giXjX and reversal potentials vsyn,iX (cf. sec. 2.7.1).
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17.1 Model

The time evolution of cluster X is then given by the equations:

d

dt
θiX = 1− cos (θiX ) + ie,iX (1 + cos (θiX ))

+
∑

jX

giXjXsjX
[
(2vsyn,jX − 1) (1 + cos (θiX )− sin (θiX ))

]
(17.1.1a)

:= fiX (θiX , sX)

and

d

dt
siX = − siX

τdecay,iX
+ e−η(1+cos(θiX ))

1− siX
τrise

. (17.1.1b)

Time is measured in ms. In the equation τrise = 0.1 is the synaptic rise time and the
parameter η = 5 controls the activation of the synaptic conductances sX = (siX )

NX

i=1.
Thus siX rises quickly toward 1 at θiX ≈ π and decays exponentially with time constant
τdecay,iX . For excitatory synapses τdecay,i = 2 and vsyn,i = 6.5, for inhibition τdecay,i = 10
and vsyn,i = −0.25 .

If not stated otherwise the constant input currents ie,iX for the excitatory neurons
are iexe,X = 0.05 and for the inhibitory neurons iine,X = 0.002. The synaptic conductances
from excitatory to excitatory neurons are giXjX = gex,ex/N ex

X with gex,ex = 0.0, from the
excitatory to inhibitory neurons giXjX = gex,in/N ex

X with gex,in = 0.05, from inhibitory
to excitatory neurons giXjX = gin,ex/N in

X with gex,in = 0.2 and from the inhibitory to
inhibitory neurons giXjX = gin,in/N in

X with gin,in = 0.0 All parameter values are justified
in detail from physiological considerations in [31].

The dynamics for a cluster evolving according to (17.1.1a) is illustrated in fig. 17.1.
The collective oscillation in the gamma frequency range (≈ 30 − 60Hz) arise due to
the interplay of excitation and inhibition: The excitatory neurons spike and force the
inhibitory neurons to also generate an action potential via the strong excitatory inhibitory
projections. Their spiking in turn inhibits the excitatory neurons and keeps them from
firing for a time window controlled by the inhibitory synaptic decay time constant τdecay.
After inhibition has decayed the excitatory neurons can fire again and the cycle repeats.
The period of this oscillation thus strongly depends on τd and only weakly on gin,ex and
iexe [31].

17.1.2 Hierarchical Networks of Pyramidal Inter-Neuron Gamma

Clusters

To study information flow between the oscillatory PING clusters we introduce synaptic
connections between the excitatory neurons of different clusters. The full system evolves
according to the equations

d

dt
θiX = fiX (θiX , sX) +

∑

Y

∑

jY

giXjY sjY ((2vsyn,jY − 1) (1 + cos (θiX )− sin (θiX )))

+
∑

a∈{ex,in}
ξaiXs

a
e,iX

(
2vasyn,e − 1

)
(1 + cos (θiX )− sin (θiX )) (17.1.2)

together with (17.1.1b) for the synaptic conductances. Here, if iX and jY label excitatory
neurons in cluster X and Y respectively, there is a synaptic conductance giXjY = gex,exiXjY

/NX
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Figure 17.1. Pyramidal inter neuron gamma (PING) oscillation for a single cluster. (a) network
connectivity matrix representing the maximal synaptic conductances gij between neuron i and
j in a network of N ex = 4 excitatory and N in = 1 inhibitory theta neurons eq. (17.1.1) with
standard parameter values as described in sec. 17.1.1. Neurons i = 1, . . . , 4 are excitatory and
project (black) onto the inhibitory neuron i = 5 that projects back (brown ) onto the excitatory
neurons. . (b) dynamics of the cluster showing PING oscillations. Time evolution of membrane
potentials vi (top row), the synaptic conductances si (middle row) and spikes (raster plot, bottom
row). The gamma oscillation is generated by the excitatory neurons that spike and force the
inhibitory neurons to also generate a spike. This in turn inhibits the excitatory neurons and keeps
them from firing for a time window controlled by the inhibitory synaptic decay time constant
τdecay. After inhibition has decayed the excitatory neurons can fire again and the cycle repeats.

from jY to iX . For all other combinations of long range connections between excitatory
and inhibitory neurons we set giXjY = 0 .

To account for synaptic input from external neurons we added excitatory and in-
hibitory synapses to the neurons with maximal conductances ξaiX , a ∈ {ex, in}, reversal
potentials vexsyn,e = 6.5 and vinsyn,e = −0.25 and synaptic conductances sae,iX that evolve
according to

d

dt
sae,iX = −s

a
e,iX

τ ad,e
+
∑

k

δ
(
t− taiX ,k

)

where the spike times taiX ,k are drawn from independent Poisson processes with rate λaiX =
λa and the synaptic decay time constants are as before τ exd,e = 2 and τ ind,e = 10.

If not stated otherwise we use gex,exiXjY
= 0.005 for the long range connections and input

noise ξaiX = 0.001 with rates λaiX = 0.3 corresponding to 300Hz as time is measured in
ms.1

17.2 Local Control of Non-Local Phase Information Flow

in Spiking Networks

In this section we employ the fact that each individual cluster undergoes a stable collective
oscillation which we describe by a collective phase and study local control mechanisms
for information flow between these phase signals.

1Numerical integration of these networks was performed with our network simulation software [209,
207] using a discrete time second order Runge-Kutta integration.
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17.2 Local Control of Non-Local Phase Information Flow in Spiking Networks

Similar to the analysis in section 16.3 we first perform a phase reduction of the cluster
dynamics to a collective phase and phase response curve semi-analytically and use the
result to predict the shape of the delayed mutual information curve. We find good agree-
ment of this result with the numerical simulations and in analogy to section 16.3 we use
it to study local control mechanisms for non-local phase information flow.

17.2.1 Phase Reduction Analysis

As illustrated in fig. 17.1 a single PING cluster without external noise sources exhibits
dynamics on a stable limit cycle in form of a gamma oscillation. Thus in analogy to section
16.3 we may perform a collective phase reduction of a whole cluster X and describe it by
its collective phase ΦX ∈ S1 and phase response curve ZX . Denote the stable limit cycle
solution of (17.1.1) parametrized by a collective phase ΦX by

(
θ	iX (ΦX) , s

	

iX
(ΦX)

)NX

iX=1

which can only be calculated numerically. To obtain the collective phase response ZX (ΦX)
we have to solve the adjoint equation (3.4.7). Again, this has to be done numerically. As
the equation is a linear, non-autonomous differential equation with boundary conditions
we used the chasing method [277] to find its solution2. Coupling of the the phase reduced
clusters then results in the system

d

dt
ΦX = ΩX + ZX (ΦX) ·

[
∑

Y

GXY (ΦX ,ΦY ) +Gex
ξ (ΦX , s

ex
e ) +Gin

ξ

(
ΦX , s

in
e

)

]

(17.2.1)

where ΩX is the collective cluster rotation frequency,

(GXY (ΦX ,ΦY ))iX =
∑

Y

∑

jY

giXjY hjY
(
θ	iX (ΦX) , s

	

jY
(ΦY )

)

with
hjY (θ, s) = s ((2vsyn,jY − 1) (1 + cos (θ)− sin (θ)))

and for a ∈ {in, ex}
(
Ga

ξ (ΦX , s
a
e)
)

iX
= he

(
θ	iX (ΦX) , s

a
e,iX

)

The robustness of the PING frequency [31] for each cluster ensures that the ΩX differ
only slightly due to possible heterogeneities in input currents and local network structure
between the clusters.

For the deterministic system, ξai = 0, and under the assumption of weak inter cluster
couplings we can then perform an averaging step according to eq. (3.4.13) to obtain

d

dt
ΦX = ΩX +

∑

Y

ΓXY (ΦX − ΦY ) (17.2.2)

with coupling function

ΓXY (ΦX − ΦY ) =
1

2π

ˆ 2π

0

ZX (Φ) ·GXY (Φ,ΦY − ΦX + Φ) dΦ (17.2.3)

Assuming a phase locked solution between the clusters the phase differences ∆ΦXY can
be obtained via eq. (16.3.8).

2Calculations where done with our dynamical system package [206] for Mathematica which supports
the detection of limit cycle solutions and the calculation of phase response curves.
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V 17 Local Control of Non-Local Information Flow in Networks of Phase Oscillators

17.2.2 Phase Locking of Coupled PING Clusters and Phase

Information Flow

Identical PING clusters that are symmetrically coupled in a hierarchical network that
evolves according to eq. (17.1.2) synchronize their oscillations. This can be understood
using the semi-analytical phase reduction of the previous section. For a network of two
clusters A and B (fig. 17.2a) the result of this analysis is shown in fig. 17.2c. Note that in
the collective phase response vector ZX the coordinates for the excitatory neurons differ
form the inhibitory ones and obtain their maxima near the spike times of the neurons. The
anti-symmetric part Γ̄ (∆Φ) = ΓAB (∆Φ) − ΓAB (−∆Φ) of the cluster coupling functions
ΓAB has a zero crossing with negative slope at zero phase lags ∆ΦAB = 0 confirming the
existence of stable synchronous state.

Introducing a difference in the input currents to the excitatory neurons in the clusters,
iexe,A < iexe,B, leads to a difference ∆ΩAB = ΩA − ΩB < 0 in the rotation frequencies of the
uncoupled clusters. Via eq. (16.3.8) the zero crossings of Γ̄ (∆Φ) + ∆ΩAB with negative
slope then predict stable non-zero phase locking ∆ΦAB < 0 in good agreement with the
numerically observed spiking pattern in fig. 17.2b (cf. also inset in c).

We also calculated the dMI between the cluster phase signals ΦX (t) estimated by
average phases of the cluster’s neurons, i.e. by

Φ̂X (t) = arg
∑

kX

eiθkX (t)

The result for the above example is shown in fig. 17.2d. We find that the delayed mu-
tual information MIA,B (d) shows systematic fluctuations in the delay time d within time
windows equal to the collective oscillation period of the system. The reason for these
oscillations in the dMI is the underlying interaction dynamics between the clusters: The
clusters are coupled via synapses between the excitatory neurons that have a synaptic
decay time constant τ exd that is small compared to the period of the PING cycle (cf. fig.
(17.1)b). Further, the excitatory neurons within a single cluster generate their spikes only
within a small time window with a length in the order of τ exd . Thus the clusters effectively
interact only in a small fraction of the PING cycle, namely at times when the excitatory
neurons generate their spikes. Only at these times information about the phase of the
cluster can be transmitted to the others. Thus at time delays d corresponding to these
interaction times the dMI MIX,Y (d) increases, while in the interaction free periods the
independent noise sources to the clusters causes a decrease in MIX,Y (d).

Besides these fast oscillations the dMI curve also shows variations on larger time scales
of the delay time d. This is highlighted in fig. 17.2d by plotting the moving average of
the dMI 〈MIX,Y (d)〉 using the fast oscillation period for the time window over which the
mean is taken. In symmetric networks with synchronized clusters these dMI curves are
symmetric about d = 0, indicating that there is no direction in the phase information
flow between the clusters. On the contrary, for systems with non-zero phase locking,
these curves are asymmetric, as shown for the example in fig. 17.2d, indicating a pre-
ferred information flow directionality. We explain these findings in the next section by
relating them to the results for phase oscillators obtained in section 16.3 and giving an
approximation for the averaged dMI curves.
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Figure 17.2. Phase information flow in hierarchical networks of PING clusters. (a) coupling
matrix gij representing the synaptic conductances between the neurons (black - local excitation,
brown local inhibition, gray long range excitation) in a network of N = 80 theta neurons with
M = 2 clusters A (blue) and B (red) evolving according to eq. (17.1.2). All parameters as
described in section 17.1 except for gin,in = 0.2 and input currents iexe,A = 0.09 to cluster A and
iexe,B = 0.1 to cluster B. The input current difference leads to a difference ∆ΩAB in the rotation
frequencies of the uncoupled two clusters. (b) raster plot showing the spikes when starting
the system from random initial conditions. After a transient phase locking between the two
clusters is observed. (c) cluster phase response ZX , X ∈ (A,B) for the inhibitory (green) and
excitatory neurons (darker green), averaged coupling function ΓAB (∆Φ) = ΓBA (∆Φ) (yellow)
and antisymmetric part Γ̄ (∆Φ) = ΓAB (∆Φ) − ΓBA (−∆Φ) + ∆ΩAB (gray). The predicted
phase shift ∆ΦAB (dashed line) is in good agreement with the shift of the spike timings between
the clusters (inset). Note the strong asymmetry of the coupling function ΓAB (∆Φ) around the
synchronous state ∆Φ = 0. (d) delayed mutual information [dMI] (squares) between the phase
signals ΦX (t) of the clusters of duration t = 106, time step dt = 0.1, and bin size 2500/2π for the
estimation of the probability distribution. Also averaged dMI (dots) over one oscillation cycle
and the approximation obtained in sec. 17.2.1, eq. (17.2.4) (solid line) are shown. See text for
details.

.

17.2.3 Approximation for the Delayed Mutual Information Curve

In section 16.3.1.2 we already discussed the lack of an averaging theory for stochastic
systems and referred to the discussion in section 18.3 where we propose steps towards the
development of such a theory. In contrast to section 16.3.1.2, where the phase reduced
system was already in the form of an averaged system, here it is not clear how to formally
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including the noise terms Ga
ξ in (17.2.1) into the averaged system (17.2.2).

However, we here argue, supported by numerical simulations, that for the systems
above an approximation for the delayed mutual information flow between the collective
phase signals of the clusters may be obtained by the following steps: First add white noise
sources to the system (17.2.2) with variances estimated from the variances of the input
signals when integrated over the mean oscillation period T = Ω/2π of the full system.
Then use this system in corollary 16.3.1 with phase differences ∆ΦXY derived form the
average inter spike intervals between the clusters to obtain an expression for the delayed
mutual information curve MIXY (d). Finally, rescale the delay time d in this expression
by τ exd /T , to obtain the approximation for the delayed mutual information as

M̂IX,Y (d) = MIX,Y

(
τ exd
T
d

)

(17.2.4)

These steps are justified by the fact that clusters interact only shortly during the
oscillation period as explained in the previous section. As the clusters exhibit phase-
locked states near the synchronous state this interaction is concentrated on a small time
interval of the full period. At these interaction periods the clusters are on average in a
phase locking pattern given by the average inter spike intervals. This justifies our choice
of ∆ΦXY . Further, in the rest of the oscillation cycle the interaction between the clusters
are effectively turned off. In contrast, in the system used for the derivation of the delayed
mutual information MIXY (d) the interaction is present permanently. To correct for this,
we have to rescale the delay time d by the fraction of the interaction time in the oscillation
period which is in the order of τ exd /T . This justifies the last step in the approximation.
Finally, during the interaction free time window the external noisy inputs are basically
integrated by the neurons membrane potential justifying the estimation of the variances
of the white noise processes by the variances of these integrated signals.

The resulting delayed mutual information curves obtained via this procedure are shown
in figs. 17.5, 17.6 and 17.7 together with the numerically obtained curves which show good
qualitative agreement of the shape of the dMI curve. In particular, the positions of the
peaks in both curves match well. The semi-analytical obtained curves are typically slightly
shifted in the vertical direction in comparison with the numerical results. We attribute
this shift to the crude approximation of the noise levels, in particular taking into account
that the theta neuron has a varying phase response curve and therefore does not simply
integrate the input noise. Changing the input noise levels basically shifts the dMI curve
in the vertical direction. This is supported by the fact that when we fitted the noise levels
much better agreement between the numerical data and our approximation was obtained.

We conclude, that the underlying mechanism for the phase information flow in the
spiking networks is similar to the one found in chapter 16 for coupled phase oscillator
models. In particular, a directionality in the phase information flow is generated as
revealed in section 16.2.4.

17.2.4 Local Control of Non-Local Phase Information Flow

Due to the analogy between the phase information flow in the coupled oscillator systems
of chapter 16 and in networks of coupled PING clusters as derived in the previous section,
we find the same mechanisms for the local control of non-local phase information flow as
in section 16.3.2. We here discuss two examples.

First, reconsider the two cluster network in fig. 17.2, discussed in section 17.2.2. There
we increased the local input currents to the excitatory neurons, iexe,X , within one cluster
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Figure 17.3. Remote control of non-local phase information flow in a hierarchical networks of
PING clusters via local network structure. (a) coupling matrix representing synaptic conduc-
tances gij (black excitation, brown inhibition) of N = 135 neurons and three clusters A (red),
B (blue) and C (green) evolving according to eq. (17.1.2). Parameter as described in sec. 17.1.
(b) as (a) with synaptic links flipped from off to on or vice versa at purple entries in cluster A.
(c,d) raster plots showing phase locking patterns for the networks in (a) and (b). (e,g) polar
histograms of the cluster phase differences ∆ΦAB (purple), ∆ΦAC (brown) and ∆ΦBC (cyan) for
the networks in (a) and (b). (f) delayed mutual information between phase signals of clusters B
and C in network (a) (orange) and (b) (dark orange). Squares: numerical values measured as in
fig. 17.2; disks: moving average; lines: approximation (17.2.4). The change of the local network
structure within cluster A shifts the maximum of the dMI from negative to positive d effectively
reversing the information flow between clusters B and C.
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V 17 Local Control of Non-Local Information Flow in Networks of Phase Oscillators

(a) (b)

Φ

Z
A

ZA,1...30

ZA,31...45

0 1

0.

0.015

Φ

Z
A

ZA,1...30

ZA,31...45

0 1

0.

0.015

Figure 17.4. Remote control of phase information flow in a hierarchical networks of PING
clusters via local network structure: phase response vectors. (a) phase response vector ZA of
the cluster A of the network in fig. 17.3a. (b) ZA for network in fig. 17.3b. The change in the
phase response vector causes changes in the cluster interactions which in turn cause a change in
the phase locking pattern (cf. fig. 17.3c,d). As a consequence also the phase information flow
between the clusters is changed (cf. fig. 17.3f).

to obtain a phase locking between the clusters with non-zero phase lags ∆ΦAB. This
caused an asymmetry in the dMI curve indicating a directed phase information flow from
the leading cluster to the lagging one. This mechanism is similar to the information flow
tuning discussed in section 16.3.2.1.

An analog example to the remote control of phase information flow via the local
network structure as observed in fig. 16.5 is shown for a clustered PING network in fig.
17.3. The mechanism is similar to the information flow plasticity discussed in section
16.3.2.2. In particular, changes in the local network structure induce changes in the
collective phase response vector ZX as shown in fig. 17.4 which results in changes in the
coupling functions ΓXY between the clusters resulting in a change of the global phase
locking pattern ∆ΦXY as shown in fig. 17.3c,d,e,g. This in turn causes changes in the
direction of the information flow even remotely between unchanged clusters as shown in
fig. 17.3f.

We conclude that the local control mechanisms found in section 16.3.2 are also effective
in clustered networks of spiking neurons undergoing collective oscillations.

17.3 Information Flow In Spike Patterns

In the previous section we studied information flow between the collective phase signals
of the clusters. Theoretically, as the phases are continuous time signals, the information
in these signals can be arbitrarily high and is only bounded by the resolution with which
the signals are measured. In real systems the maximal information content is limited by
the time scales of the underlying physiological processes an their potential noise sources.
Further, in the oscillatory system under consideration, the phases evolve close to periodic
dynamics and thus there is a limited potential for encoding large amounts of information
within the phases itself. In this section we therefore investigate how this limitation in the
phase information channel may be overcome by additional information channels that make
use of the precise timing of the action potentials of the neurones within each clusters. We
focus on the ordering of the spikes of the excitatory cells within a gamma cycle and show
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17.3 Information Flow In Spike Patterns

that there is an information flow in this spike permutation channel. We further find that
its direction is parallel to the phase information flow and explain this result.

17.3.1 Delayed Mutual Information in Permutations of Spike Times

During one oscillation cycle of a single PING cluster the excitatory neurons fire once if
the network heterogeneity is not to large [31]. Adding external Poisson inputs to the
neurons the ordering of these neurons changes from cycle to cycle. Coupling different
PING clusters together in a hierarchical network, a natural question that arises is how
the spike pattern in one cluster influences the pattern of a second connected cluster? To
quantify this influence we here propose a delayed mutual information measure based on
the ordering of spikes in a single cluster.

Given the spike times
{

t
(c)
iX

}

of the N ex
X excitatory neurons of a cluster X during a

single gamma oscillation cycle c, we associate to it the permutation π(c) ∈ SNex
X

in the
permutation group SNex

X
of the indices iX ∈ {1, . . . , N ex

X } that yields the time ordering of
the spikes, i.e.

t
(c)

π(c)(1)
< t

(c)

π(c)(2)
< · · · < t

(c)

π(c)(Nex
X )

For simultaneous spikes we chose a random ordering of these spikes and for cycles in
which not all excitatory neurons spike or spike twice we associate a symbol #. The result

is a mapping from the spike times
{

t
(c)
iX

}

in each oscillation cycle c to the discrete set

P = SNex
X
∪ {#} with N ex

X ! + 1 elements.
A cluster of neurons undergoing PING oscillations in this way produces a sequence of

symbols π(c) ∈ P. In a network of coupled PING clusters each cluster X produces such a

sequence
{

π
(c)
X

}

c
. For these sequences we denote by p

(

π
(c)
X , π

(c+d)
Y

)

the joint probability

distribution of the symbols in a sequence
{

π
(c)
X

}

with the symbols of the time d delayed

sequence
{

π
(c+d)
Y

}

and define the delayed mutual information between these sequences as

MIπX,Y (d) =
∑

π
(c)
X ,π

(c+d)
Y ∈P

p
(

π
(c)
X , π

(c+d)
Y

)

log




p
(

π
(c)
X , π

(c+d)
Y

)

p
(

π
(c)
X

)

p
(

π
(c)
Y

)



 (17.3.1)

As the amount of information transmitted through a channel is limited by the entropy
[249] of the source we normalize the MIπX,Y (d) by the entropy

HX =
∑

π
(c)
X ∈P

p
(

π
(c)
X

)

log
(

p
(

π
(c)
X

))

for d > 0, by HY for d < 0 and by min (HX , HY ) for d = 0.
This is illustrated in fig. 17.5 for a network of two clusters. Figure 17.5b shows the

association of the spike patterns to a permutation π
(c)
X for each group and fig. 17.5c the

delayed mutual information MIπX,Y (d) for the times series of these permutations. In this
example the dMI peaks at d = 0 due to a change in the underlying probability distributions
(fig. 17.5d insets).

The definition (17.3.1) is based on spike time orderings and therefore only captures
parts of the precise spike timing pattern. However, it has the advantage of a much smaller
space of possible symbols than encountered for the full spike timing patterns and does
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Figure 17.5. Control of information flow in spike time permutations in hierarchical networks
of PING clusters. (a) connectivity matrix representing synaptic conductances gij in a network
of N = 12 neurons with two PING cluster A (blue) and B (red). Parameter as described in
sec. 17.1 with input currents iexe,A = 0.1− δi and iexe,B = 0.1 + δi to the excitatory neurons which
depend on δi to control the phase difference between the clusters and smaller external spike rates
λae = 100Hz but larger amplitudes ξai = 0.002 to increase the variability in the spike patterns. (b)

raster plot for δi = 0.017 showing spike patterns and associated permutation code sequences π
(c)
X .

(c) delayed mutual information MIπA,B (d) between spike permutation sequences of the clusters
for δi = 0.017 (orange) and δi = 0.0 (darker orange). Insets show joint probability distributions

p
(

π
(c)
A , π

,(d)
B

)

of the permutations sequences for δi = 0.017 (left) and δi = 0.0 (right) and d = 0.

(d) phase differences ∆ΦAB between clusters as a function of δi determined numerically (purple
dots) via the average spike time differences and semi-analytically (purple line) using (16.3.8) for
the averaged system (17.2.2). Orange squares show MIπA,B (d) /H multiplied by sign (∆ΦAB) to
highlight the directionality of the information flow (see text). Orange shading shows the dMI
MIA,B (d) between the cluster phases (traces of duration t = 107, step size dt = 0.01 and bin
size 2000/2π for each δi). Note that when the phase locking breaks down (purple shaded area)
the MIπA,B (0) /H decays to the base level MIπA,B (5) /H (gray). Note further the large slope in
MIπA,B (0) /H near the synchronous state δi = 0.

not rely on a certain binning that may introduce further complications [356]. Further,
the fact that neurons are highly sensitive to inputs just before spike generation and only
weakly sensitive afterwards (cf. the phase response curves in fig. 3.11) shows, that the
spike ordering already captures some important aspects of neuronal communication.

We study the delayed mutual information MIπX,Y (d) and its control in the next section.
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17.3 Information Flow In Spike Patterns

17.3.2 Local Control of Non-Local Information Flow in

Permutations of Spike Times

In this section we numerically study the delayed mutual information MIπX,Y (d) in networks
of PING clusters.

We generally find that the MIπX,Y (d) is close to zero for non-zero cycle delays (cf. fig.
17.5c). This is also true for the auto mutual information MIπX,X (d). Thus across PING
cycles there is almost no information flow between the spike patterns (i.e. there are no
’echo’ effects due to a strong coherence across cycles as pointed out in fig. 15.1).

On the other hand, at d = 0, there is a peak with a value MIπX,Y (0) that strongly
depends on the precise phase relations between the clusters (fig. 17.5d). For synchronized
clusters the peak value MIπX,Y (0) is close to zero but shows a large increase for small
deviations in the phase difference controlled by the input currents to the clusters. Similar
to the argument for the directionally of the delayed information between the phase signals,
we assume that signals can only flow forward in time and therefore a large value of
MIπX,Y (0) for a positive phase difference ∆ΦXY = ΦX − ΦY > 0 indicates a information
flow from cluster X to Y and vice versa. We conclude that within a single oscillation
cycle the information flow for the spike permutations is strongly controlled by the phase
difference with a directionally from the leading cluster to the lagging one and across cycles
the information in the spike ordering is lost.

We further find that the information flow in the cluster phase signals has always the
same direction as the information flow in the spike patterns (cf. fig. 17.5c). The reason
for this is the asymmetry of the cluster’s phase response around the spike times of the
excitatory neurons (cf. fig. 17.4 and 17.6). Just before spiking the phase response is
high and if spikes from a different cluster arrive at this moment in time the cluster is
rotated strongly while it is only influenced weakly if the spikes arrive after spiking within
the cluster as then the phase response is small. Thus the same local mechanisms that

(a) (b)
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Figure 17.6. Control of non-local spike information flow in hierarchical PING networks via local
network structure: phase response and average coupling functions. (a) phase response ZA for
the network in fig. 17.7 change when the cluster’s network structure is changed from the synaptic
conductance g1 (gray) to g2 (purple). (b) averaged coupling functions ΓAB , ΓBA (purple), ΓAC ,
ΓCA (brown) ΓBC , ΓCB (cyan) also change (g1 lighter colors, g2 darker colors). Inset shows
periods for the oscillations of the uncoupled clusters. Due to the synaptic changes in cluster
A also its oscillation period TX is slightly changed. Combined with the change in the coupling
function this results in the different phase locking patterns in fig. 17.7b,c and in turn in the
differences in information flow shown in fig. 17.7d,e.
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Figure 17.7. Local and remote control of non-local spike information flow in hierarchical PING
networks via local network structure. (a) connectivity matrix representing synaptic conductances
gij in a network of N = 24 neurons with three PING clusters A (red),B (blue) and C (green)
evolving according to (17.1.2) (parameter as described in sec. 17.1 and iexe,A = 0.063, iexe,B = 0.062,
iexe,C = 0.065). Purple matrix entries indicate variable local inhibitory conductances with gij = g.
(b,c) raster plots for g = g1 = 0.01 (a) and g = g2 = 0.08 (b) showing spike patterns and

associated permutation code sequences π
(c)
X . (d) dots: phase differences ∆ΦAB (purple), ∆ΦAC

(brown), ∆ΦBC (cyan) as a function of g determined by the average spike time differences.
squares: MIπA,B (d) /H (lighter orange), MIπA,C (d) /H (orange) and MIπB,C (d) /H (dark orange).
orange shading: MIB,C (d) for cluster phase signals (measured as in fig. 17.5). To highlight the
parallel direction of the phase and spike information flows the points sign (∆ΦBC)MIπB,C (d) /H
where added (dark orange). (e) MIB,C (d) as in fig. 17.2d for g = g1 (orange) and g = g2 (dark
orange). Note that the local changes within cluster A caused a flip in the direction of information
flow between the remote clusters B and C.

218



17.3 Information Flow In Spike Patterns

control the non-local phase information flow can be used to control the directionality of
the information flow in the spike ordering.

In particular, changes of the local oscillation frequencies can revert the non-local infor-
mation flow associated with the spike ordering as demonstrated in fig. 17.5. Figures 17.7
and 17.6 show that also modifications of the local network structure can control non-local
information flow in spike patterns even remotely between unchanged clusters in analogy
to the information flow plasticity observed in fig. 16.5 and 17.3.

We note that high mutual information in the spike patterns within the same cycle
is favored by sparse, one-to-one and inhomogeneous long-range connections between the
clusters. This is clear when considering fully homogeneous inter-cluster couplings. Then
the effect of presynaptic spikes arriving from a distant cluster does not depend on the
ordering of these spikes and therefore no information about the ordering can be transmit-
ted.

Finally, we stress that the PING clusters show phase locking patterns close to the
synchronous state consistent with experimental findings [141, 113]. Interestingly, exactly
in this region the peak value MIπX,Y (0) is most sensitive to variations in the phase locking
pattern (cf. fig. 17.5b) and thus the control of information flow is most effective. Thus syn-
chrony may provide the basis for a high ability of neuronal systems to control information
flow.

We summarize and discuss our findings in the next chapter.
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Chapter 18

Summary, Discussion and Outlook

18.1 Summary

To summarize, in this part of the thesis we have studied local control mechanism for
information flow in oscillatory neuronal networks. We showed how directionality in infor-
mation flow can be measured via the delayed mutual information (dMI) curve. We then
derived a general analytic expression for the dMI between two phase signals in networks
of phase oscillators near a phase locked state (theorem 16.2.1). We explained how a di-
rection in information flow arises due to an imbalance in the influence of the oscillators
onto the collective rotation of the whole system combined with an asymmetric relaxation
towards the phase locked state. We then focused on hierarchical networks consisting of
strongly connected groups (clusters) of phase oscillators with weaker inter-cluster connec-
tions. For such networks using a collective phase reduction of the cluster’s dynamics led
to an equation of the same functional form as in theorem 16.2.1. We deduced the delayed
mutual information between the collective cluster phases as a function of the underlying
cluster properties (corollary 16.3.1).

Using this theoretical frame work we found that local changes within a single cluster
can control the non-local information transfer between the clusters, even remotely between
two other distant and physically unchanged groups. We identified three mechanism for
the local control of non-local information flow:

• Local Oscillation Frequencies – Information Flow Tuning
Uniform frequency changes of the oscillators within a single cluster cause changes
of its phase relations to the others and as a consequence the information flow to
and from this cluster is changed. In this way the cluster is capable of tuning to
information sources from or make its information available to other clusters.

• Local Network Structure – Information Flow Plasticity
Local changes within the network structure of a single cluster alter the collective
response of the cluster phases and the effective inter-cluster couplings resulting in
concert in a change of the information flow, even remotely between two distant
physically unchanged groups.

• Local Multistable Phase-Locking – Information Flow Combinatorics
Switching between different stable intra-cluster phase locking patterns induce changes
of the collective response of the cluster and of the effective inter-cluster couplings
which in turn control the information flow between the clusters. Combinations of
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18.2 Discussion and Outlook

different phase locking patterns of the individual clusters then endow the full net-
work with different information flow patterns.

We then developed a biophysical more detailed hierarchical network model of intercon-
nected clusters of excitatory and inhibitory spiking neurons where each individual cluster
is based on the model in [31] and undergoes collective gamma oscillations. We observed
that in this model the clusters arrange in phase-locking patterns close to a synchronous
state. Using a collective phase reduction for these clusters we semi-analytically derived an
expression for the average phase dynamics and used this result to derive an approximation
for the delayed mutual information that is based on theorem 16.2.1. We showed that the
same local control mechanisms found for the phase oscillator model are found in these
networks of spiking neurons.

We finally extended our study from information flow in phase signals to information
transmission in spike patterns. More specifically, we introduced a delayed mutual infor-
mation measure based on the ordering of the neurons’ spike times in each cluster and in
each oscillation cycle. We showed that the information flow in these channels for spike
timing has the same directionality as the flow in the phase signals and therefore can also
be controlled by the same mechanisms found for the phase oscillator model.

18.2 Discussion and Outlook

We already gave a detailed discussion of our theoretical results for the phase oscillator
network in sections 16.2.5 and 16.4. The same limitations on the noise levels and the
assumption of a stable phase locked state for the deterministic system apply to the results
in the spiking neuron model. If the clusters do not phase lock but still show intrinsic
oscillations, insight from our work can still be gained by conditioning the signals on a
certain phase relation and studying the information flow in time windows around this
phase pattern. This might lead to insights into dynamical information flow patterns with
time-varying direction and efficiency (cf. [325] for an interesting experimental study). We
propose a detailed study of this aspect for future work.

Strong heterogeneous input noise to a cluster typically destroys the PING oscillation
[30, 31]. Hence also the phase locking for this cluster breaks down and the delayed mutual
information between this and other clusters becomes zero. In this way incoherent stimuli
can effectively turn off communication. On the other hand, coherent input stimuli to a
cluster only affect its relative phase to others and as a consequence the information flow
(cf. fig. 17.2). This suggests mechanistic connections between neuronal communication
though coherence [111] and binding by synchrony due to coherent stimuli [398, 342] - an
interesting direction for future work in both theory and experiment.

We studied coupled groups of oscillatory neurons without interaction delays. Fast
coherent gamma oscillations are mostly observed between neuronal groups within one
cortical area [139, 114]. Conduction delays on these spatial scales are around 1 − 4ms
[127] and thus an order of magnitude smaller than the period of the gamma cycles of
10 − 30ms which may justify our approach of neglecting the delays. Longer conduction
delays of 5−8ms are observed between cortical areas with a separation of 1 cm and larger
[127]. This will not only affect the phase-locking pattern but also the information flow
structure. In particular, due to the strong variation of the phase response near the firing of
the excitatory neurons (cf. fig. 17.6), and especially due to the highly reduced sensitivity
after spiking, the transmission of spikes will be effective only if the phase differences are
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V 18 Local Control of Non-Local Information Flow in Networks of Phase Oscillators

large enough to compensate for the interaction delay. A starting point for a detailed future
analytical investigation of this point could be the Kuramoto model with delay [416].

Here we studied small hierarchical networks of spiking neurons that facilitated the
identification of mechanisms for locally controlling non-local information flows. Interest-
ingly, experimentally such small networks of interlaced groups of only a few dozen neurons
have been identified in neocortex [294]. However it is not clear whether they undergo co-
herent oscillations. Results in [56] point is such a direction. That study reports strong
correlations in the activity between dispersed neurons if they show a similar preference to
phase coupling patterns of surrounding local field potentials. However, future experiments
are needed to clarify this point.

In larger networks the gamma oscillations in each cluster become more robust against
noise and heterogeneities in the synaptic couplings [31]. As the local control of non-local
information flow is made more effective by structural heterogeneity (cf. sections 16.3.2.2
and 17.3.2), larger networks should even better support these mechanisms. Additionally,
in larger clusters, a division of the neurons into two specialized subgroups - one for the
control of information flow and the other for the information transmission itself - may
provide even more efficient ways for local control mechanisms.

We observed that changes in certain single links are more effective in controlling the
information flow than in others. An interesting application of our theory thus would be
to identify “high sensitivity” links and underlying network structures that are optimal for
an efficient control of non-local information flow. This might not only lead to the iden-
tification of potential neuronal systems that strongly support a local control of non-local
information flow but may be also useful in other systems, such as oscillating regulatory
gene networks [383, 354].

Sparse local heterogeneous connections within a cluster (as long as they do not destroy
the PING oscillations [31]), increase the sensitivity of the collective phase response to local
structural changes. This is due to the fact that in homogeneous networks the excitatory
neurons synchronize if external sources are turned off. Changes of a few internal links then
only lead to small deviations in the spike times of the individual neurons in an isolated
cluster. Thus also the change of the cluster’s collective phase response, which determines
the modification of the phase locking and ultimately the information flow, stays small.
On the other hand in more sparsely connected clusters the spike times of the neurons are
temporally more dispersed. Here changing a small number of links has a larger effect on
the internal dynamics and thus on the cluster’s phase response. Hence also the phase
locking and the information flow is changed more strongly (cf. fig. 17.3 and 17.4).

Moreover, sparse heterogeneous long-range connections between the clusters improve
the information flow in spike ordering patterns: For homogeneous inter-cluster connections
each neuron receives all spikes generated in a different cluster and for identical synaptic
strengths their effect on the neuron is independent on the time ordering of these spikes.
Hence no information about the spike ordering is transmitted between the clusters. In
contrast, if each neuron projects only to a single neuron in a connected cluster (cf. fig.
17.3) an earlier spike in the presynaptic neurons only affect the spike time of the single
postsynaptic neuron and thus information about the ordering is transmitted. Hence we
conclude that heterogeneity and sparseness in local as well as long-range connectivity
support local control mechanism of non-local information flow.

We observed phase locking of the PING clusters near synchrony. Interestingly, exactly
in this region the peak value in the delayed mutual information in both the phase signals
as well as the spike ordering is highly sensitive to variations in the phase locking pattern
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18.2 Discussion and Outlook

(cf. fig. 17.5b). One reason for this is the strong variation and asymmetry of the cluster’s
response to inputs to excitatory neurons near their spike times (cf. fig. 17.4 and 17.6).
In particular this excitability strongly decreases from large values to zero shortly before
spiking and stays close to zero afterwards. This implies that the control of information
flow is most effective near the synchronous state and thus synchronization of oscillatory
neuronal clusters may provide the basis for a high capability of neuronal systems to locally
control their information flow.

Figures 17.4 and 17.6 also show that a cluster’s sensitivity to inputs to the inhibitory
neurons is maximized at the spike times of the excitatory neurons. This suggests that
long-range excitatory-to-inhibitory connections, also found experimentally [121], may sub-
stantially influence the phase synchronization properties of the clusters and thereby pro-
vide another way to enhance the effectiveness of local control mechanisms for non-local
information flow. Preliminary numerical studies show that this is indeed the case.

We considered a model for gamma oscillations in which the firing frequency of the
neuron is similar to the frequency of the oscillation cycle. Such oscillations are observed
for example in the hippocampus [53]. In contrast, for collective oscillations in the cortex,
sparse neuronal activity with frequencies much lower than the rhythm frequency are ob-
served [246, 113]. It would therefore be interesting to see what local control mechanism
exists when several of such groups (e.g modeled as in [45]) are coupled together in a hi-
erarchical network. One promising step in this direction is [23] where multi-stable phase
locked states between the collective oscillations of the groups are found. Switching be-
tween these phase-locked states then induces changes in direction of effective connectivity
between the clusters. But how does the local network structure of each cluster affect the
non-local information flow? Are there different local dynamical states of such networks
that could lead to information flow combinatorics (section 16.3.2.3)? Future work will
answer these questions.

We studied interactions between groups of neurons undergoing oscillations with a
single frequency. Experimentally, also several simultaneous oscillations within a group
are observed [292, 55] that even show phase-locking between the different rhythms, e.g.
between high frequency gamma and low frequency theta [292]. Therefore studying how
multiple oscillations among different interacting groups could lead to more complex e.g.
parallel, information flow patterns and whether and what kind of local control mechanisms
exist in such systems could lead to further insights into neuronal communication.

We have shown that changes in synaptic links within the local network structure of a
group can control the information flow between groups. Synaptic connections are changed
via synaptic plasticity [196, 2]. Thus our study reveals a mechanistic link between plastic
changes of local synapses and the control of non-local information flows. Given that
effective connectivities systematically change during learning [22, 46] this may provide
a first step to attack the fascinating problem of how information flows in the brain can
be learned. But what are corresponding learning rules? Are the local learning rules
particularly suited to learn information transfer between groups? Or do “population
synaptic plasticity” rules exist by which a group of neurons can learn to receive relevant
information form other groups or to influence them most? Exciting questions for future
work.
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V 18 Local Control of Non-Local Information Flow in Networks of Phase Oscillators

18.3 Theoretical Challenges

Our analysis revealed further theoretically challenges. We already discussed extension
to amplitude oscillators in section 16.4 and outlined a possible route to an analytical
treatment in symmetrically coupled networks of oscillators close to a Hopf bifurcation
[59].

We considered networks of phase-oscillator models with coupling functions that depend
on the phase difference of the connected units. Such models typically arise via averaging
(cf. sec. 3.4) from networks of phase-reduced weakly coupled oscillators with an explicit
dependence on their rise function. In part IV, chapter 13 of this thesis we have shown
that these phase response curves can be changed dynamically via synapses. It would
therefore be interesting to see how this mechanism could be employed, to not only control
synchronization properties in networks (chapter 13) but also to provide a way for a local
control of non-local information flow. We therefore propose to study networks of oscillators
with tunable phase response curves [329] and to examine how their shape controls the
information flow and which shapes are optimal for local control mechanisms.

Our analysis of information flow in hierarchical networks of clusters of phase oscil-
lators was facilitated by the fact that the system of the phase-reduced clusters had the
same functional form as the system we started with. In particular we where able to apply
theorem 16.2.1 originally derived for phase-oscillator systems in averaged form. In section
17.2.2 the phase-reduced system of the spiking network no longer had this property. We
where able to deduce an approximate expression for the delayed mutual information in
this system assuming that the neurons interacted only for a short time within the oscilla-
tion cycle. For general systems, these special properties cannot be expected and a natural
step to proceed with the analysis would be to average these systems. Interestingly, to our
knowledge, there is no general analog of such a theory for stochastic oscillator systems.
Given that the phase reduction of stochastic oscillators agrees with the one for determin-
istic oscillators only in certain cases [417, 363] we expect also differences in a stochastic
averaging theory from the deterministic one. In [186] averaging for two stochastic oscilla-
tors is undertaken by reducing the system to two interacting probability distributions for
the phases neglecting their actual correlations. The result is a deterministic system of cou-
pled phase oscillators. This is in contrast to our analysis where we obtained a stochastic
system and observed strong correlations between the phase variables. Therefore a more
rigorous approach is needed for the formulation of a stochastic averaging theory. The con-
nection between normal form theory and averaging for deterministic systems [276, 327]
transferred to stochastic normal form theory [12] might be a promising ansatz.
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Chapter 19

Conclusion and Outlook

In this thesis on mathematical, computational and experimental neurophysics we studied
how properties of single units affect the collective dynamics of neuronal networks. For
that we took three different approaches.

First, we proposed and motivated a general model of pulse-coupled neuronal threshold
units with partial reset. We showed that this partial reset, being an intrinsic response
property of the local units, acts as a desynchronization mechanism for the collective net-
work dynamics. We further found that it induces a transition from networks of unstable
attractors to heteroclinic switching dynamics and gave a complete mathematical treat-
ment of the underlying novel type of global bifurcation.

Second, we showed theoretically for biologically more detailed conductance-based neu-
ron models as well as experimentally for real neurons that their neuronal excitability type
is influenced by their morphology and can be dynamically controlled via a change in leak
conductance or by shunting inhibition. We theoretically studied consequences of this tran-
sition for the control of synchronization and dynamic grouping in the collective network
dynamics.

Third, we moved from the single neuron level to clustered hierarchical networks of
groups of neurons undergoing neuronal oscillations and revealed that the local network
properties within each group are capable of controlling the non-local information flow and
the collective dynamics of the entire network.

In part III of this thesis (chapters 4 - 8) we introduced a partial reset mechanism
into the general class of pulsed-coupled threshold units that keeps the collective network
dynamics analytically tractable and at the same time describes additional, physically or
biologically relevant dynamical features of local units. We motivated the partial reset
neurobiologically by relating it to the spike time responses of conductance based neuron
models that receive supra-threshold excitation. In homogeneous networks of neuronal
oscillators with fast interactions we numerically described and mathematically proved
that the partial reset causes an extensive sequence of desynchronizing bifurcations of
cluster states. This transition is robust against structural perturbations in the coupling
strength and variations of the local sub-threshold dynamics [210, 213].

Previous studies of pulse-coupled threshold units have not particularly focused on
the implications of the reset onto the collective dynamics. They either considered full
conservation of supra-threshold inputs [378, 389, 154, 37, 39, 174] or, the opposite extreme,
a fully dissipative reset [269, 124, 33, 333, 370, 369]. Here we closed this gap and showed
that in fact the reset mechanism strongly influences the synchronization processes [210,
213, 211].
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The desynchronization due to the partial reset, i.e. due to local processing of supra-
threshold input, differs strongly from that induced by previously known mechanisms based
on, e.g. heterogeneity, noise, or delayed feedback [389, 388, 251, 214, 301, 71]. Possibly,
this desynchronization mechanism may also be helpful in modified form to prevent patho-
logical synchronization in neuronal activity such as in Parkinson tremor or in epileptic
seizures [362, 160]. Our analysis may thus serve as a starting point for interesting future
theoretical, neurobiological and medical research.

To study the impact of the partial reset on the collective dynamics we mainly con-
sidered homogeneous networks. Besides regular asynchronous splay states, we also found
complex irregular spike patterns in homogeneous globally coupled networks when two op-
posing dynamical effects were in competition: The desynchronization of neurons in larger
clusters caused by the partial reset and the synchronization of smaller clusters due to the
sub-threshold dynamics. Complex, irregular and even chaotic dynamics are also observed
in systems with inhomogeneous network structure [190, 272]. This raises the question to
what extend complex spike patterns, also observed in real neuronal networks [187], are
caused by the dynamical properties of the individual neurons or have their origin in the
complex network structure. Our analytically tractable partial reset model might therefore
serve as a candidate for future investigations of the role of single unit dynamics in the
generation of distributed spike patterns in complex networks.

In chapters 7 and 8 we studied the impact of a partial reset in pulse-coupled systems
with interaction delays. We found that in homogeneous networks the partial reset induces
a robust transition from networks of unstable attractors [371, 372, 16] to heteroclinic
switching. For the strict mathematical study of this phenomenon we developed general
mathematical methods applicable to pulse-coupled units to determine the regions in state
space that give rise to a predefined sequence of pulse generation and reception events. We
used this nonlinear non-local analysis to identify the state space structure underlying the
transition in a small network and showed that it is the result of an interplay between a
local instability and a contraction of state space volume that depends on the degree of
the partial reset [211].

The developed mathematical methods may find future applications in the study of
pulse-coupled systems: Estimation of the domain size of predefined event sequences could
be used to predict their probability of occurrence as well as their stability against noise.
Applied inversely, they can be used to find properties of networks that give rise to a certain
state space structure (cf. also [263, 262]). For example to design predefined heteroclinic
structures or even hybrid networks of stable and unstable attractors. This could become
very useful for finding optimized networks that compute via switching dynamics [17,
282, 15, 214, 290], as proposed for example in neuronal coding in the olfactory system
[238, 237]. A further potentially interesting application could be to facilitate a better
understanding of the flux-tube state space structure found in the balanced state of pulse-
coupled leaky integrate-and-fire neurons [271]. Here small perturbations decay while larger
perturbations lead to an exponential separation of trajectories akin to chaotic dynamics.
A detailed analysis of the state space structure using the developed event-sequence-based
domain analysis for different trajectories might help to unravel the underlying state space
structure and mechanisms.

The transition from networks of unstable attractors to heteroclinic switching estab-
lishes the first known bifurcation involving non-trivial unstable attractors. We provided a
complete rigorous mathematical treatment of this novel type of global bifurcation in hy-
brid dynamical systems. This can be considered as a first step in the field of bifurcation
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theory for unstable attractors. In figs. 8.1 and 8.2 we sketched further possible bifurca-
tion scenarios involving unstable attractors. A good understanding of these bifurcations
may facilitate the analytical investigation of system exhibiting heteroclinic switching by
studying their limiting counterpart with unstable attractors. This novel field offers many
promising opportunities for future research, not only mathematically interesting but also
with applications to complex physical systems and neuronal networks performing compu-
tational tasks.

In part IV (chapters 9 - 14) of this thesis we theoretically and experimentally studied
the impact of leak currents onto the excitability type of neurons. We found that an
increase in leak conductance induces a switch from type I to type II neuronal excitability.
In a large number of conductance-based neuron models, including those presented in
refs. [273, 319, 320, 168, 400, 99, 61, 109, 315, 103, 406], we showed numerically and
analytically, using a combination of multiple bifurcation theory and normal form theory,
that this transition consists of three intermediate steps that are organized by a degenerate
Bogdanov-Takens-cusp bifurcation [87]. We further showed that this implies a region of
a bistable coexistence of resting and periodic firing and also a transition from integration
to resonance in the sub-threshold dynamics. We explained the transition in neuronal
excitability by conjugating a class of neuronal models to a Liénard type equation which
gives an interpretation of the dynamics in terms of accelerating and dampening forces of
a non-linear oscillator.

The results explain a switch from type I to type II neuronal excitability which we
found by varying the neuronal morphological from linearly extended to stellar like den-
dritic shapes in compartmental model neurons. Depending on the active dendritic ion
channel properties these changes induce a effective change in leak conductance at the
soma and cause the transition. We confirmed these theoretical results by analyzing data
from experiments [25] where the dendritic tree can be pinched temporarily.

Using dynamic patch clamp recordings we further confirmed the main predictions of
our general theory in hippocampal CA3 pyramidal neurons and neurons of the dorsal
lateral lemniscus. We found leak-induced neuronal excitability switches, a region of bista-
bility and a transition at peri-threshold resonance. Application of an inhibitory synaptic
transmitter likewise induced this transition. We therefore concluded that in principle
neuronal excitability can be controlled dynamically via shunting inhibition.

We then studied several consequences of these findings for the control of collective
network dynamics. Well-established results show that type I neuronal excitability leads
to desynchronization while type II to synchronization in weakly coupled neurons [316,
100, 184, 177]. We therefore concluded that regulating neuronal excitability via changes
in leak conductance provides an effective mechanism to dynamically control the collec-
tive synchronization properties of neurons. We demonstrated this in a small circuit and
further showed in larger networks of neurons with different neuronal excitability that the
subgroup of type II neurons synchronizes while the type I neurons remain asynchronous.
We concluded, that dynamic switching of neuronal excitability may thus serve as a mech-
anism for dynamic grouping of neurons with a wide range of applications in neuronal
coding [162, 398, 138, 111]. We further showed that in the region of bistability complex
dynamics emerge for stronger couplings in homogeneous networks: For smaller leak con-
ductances, stronger pulses arising via synchronization induce silencing of neurons, while
for larger leak values the desynchronization causes irregular dynamics due to switching
between resting and spiking of the individual neurons.

For future research it will be interesting to also investigate the impact of a change in
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leak conductance on bursting neurons. For these neurons, several underlying bifurcations
to bursting activity are known [315, 189]. But what are possible transitions between
different bursting types or even to tonic spiking and how are they organized by higher
degenerate bifurcations? More generally, one can ask what higher degenerate bifurcations
organize neuronal excitability. This would not only provide simple normal forms for
the mathematical analysis and efficient simulation of neuronal networks but may also
give further insights into the existence of possible complex dynamical properties in single
neurons. For example, we proved for an abstract neuron model [108, 278] that it is the
unfolding of a degenerate Bogdanov-Takens bifurcation of codimension four [202]1 which
predicts parameter regions with coexisting stable periodic orbits.

Our theoretical and experimental results provide a promising starting point for future
research on the role of dynamic neuronal excitability switches in brain function. In a
first step it would be interesting to investiage how dynamic neuronal excitability transi-
tions influence the collective network dynamics of excitatory and inhibitory neurons and
how these dynamics then act back in controlling the individual excitability types of the
neurons. This may give useful insights into collective control mechanisms for neuronal
synchronization and neuronal dynamics in general. As the neuronal excitability type con-
trols the phase response of a neuron, a better understanding of such complex dynamics
may be gained by studying simpler pulse-coupled phase oscillator models (as used in part
III of this thesis) with a variable phase response that depends on the inhibitory inputs.

Furthermore, the neuronal excitability type influences the selective response of neurons
to different stimulus features [151, 256, 318, 359, 360, 361], the encoding of information
[329, 166] and the recall and storage of memory [239]. It would therefore be interesting to
see how dynamic transitions in neuronal excitability provide an efficient or even optimal
mechanism for the control of these functions.

In part IV of this thesis (chapters 15 - 18) we moved from single neurons to clustered
hierarchical networks of interacting groups of neurons and studied how local network
properties can control non-local information flows between the different clusters. To
measure information flow we focused on the delayed mutual information curve between
two time series. Motivated by recent experimental and theoretical findings that coher-
ent phase locked collective oscillations in different groups influence the communication
between these groups [412, 411, 111, 48, 56, 23, 408], we first concentrated on general
networks of coupled phase oscillators in a phase-locked state and analytically derived the
delayed mutual information between any pair of oscillators. We applied this general result
to hierarchical network structures to predict the information flow between groups of neu-
rons as a function of the underlying network properties within a local group. We identified
three different mechanism for the local control of non-local information flow: Tuning of
information flows from and to other groups via changes in the intrinsic collective group’s
rotation frequency (information flow tuning), via changes in the local network structure
(information flow plasticity) and changes in a single group’s dynamical state of collective
oscillation (information flow combinatorics). All mechanisms are based on an interaction
between a change in the phase response properties of the local group and a change in the
non-local phase-locking patterns between the groups.

We extended our work to biologically more realistic networks of coupled groups of
spiking neurons each undergoing collective pyramidal interneuron gamma oscillations [31].

1We note that such higher degenerate bifurcations are only partly understood mathematically and
subject to current research [148, 276, 230, 86, 87]
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We found the same three mechanisms for local control of non-local information flow. To
further account for information flow in the precise spike pattern [212] we proposed a
parameter-free mutual information measure based on the ordering of the spikes. Using
this measure, we showed that the information flow in the spike patterns between the groups
is weak across different oscillation cycles while for patterns generated in the same cycle
it is high and controlled by the phase-locking patterns between the clusters. Moreover,
its direction is then in parallel to the phase information flow. We discussed our results
in the context of experimental observations on coherent neuronal oscillations and gave
predictions on neuronal network properties that support local control mechanisms of non-
local information flow.

Intriguingly, our theoretical analysis in hierarchical networks was facilitated by the
fact that the functional form of the equations for the phase coupled oscillator system
stayed invariant under the collective stochastic phase reduction of the individual clusters.
For general systems this property cannot be expected and a natural step in the analysis
would be to perform a further averaging step. Interestingly, to our knowledge, no general
averaging theory for stochastic systems has been developed so far that results in a non-
deterministic system. In analogy to the differences encountered between the deterministic
and stochastic phase reduction [417, 363] we also expect changes for a stochastic averag-
ing theory. The connection between averaging and normal form theory in deterministic
systems [276, 327] transferred to results on stochastic normal form theory [12] might serve
as a promising ansatz for the development of such a general theory.

Future research concerning the control of information flows in neuronal networks
should include to consider more complex systems and dynamics. In particular, in networks
of coupled amplitude oscillators the control of information flow via the phases could be
separated from the actual flow in the amplitudes. Our results on the control of informa-
tion flow in spike patterns is a step into this direction. We considered neuronal networks
in which each group showed collective gamma oscillations generated by interactions be-
tween excitatory pyramidal and inhibitory interneurons. Here the collective oscillation
frequency is similar to the individual neuron firing frequencies akin to oscillations found
in the hippocampus [53]. Collective oscillations in the cortex often show sparse neuronal
activity with individual neuronal frequencies that are much lower than the frequency of
the collective rhythm [246, 113]. Also other mechanisms for the generation of oscillations
such as purely inhibitory interactions and mixtures between both exist [21, 374]. Fur-
thermore, several simultaneous oscillations within a group are observed that even show
phase-locking between the different rhythms [292, 55]. It therefore would be interesting
to identify control mechanisms for the information flow in these types of neuronal dynam-
ics. More generally, one could ask what control mechanisms for information flow exists
in systems with irregular spiking activity and how time windows during which efficient
directed information transfer takes place can be created (cf. [325] for an experimental
study in this direction).

Our theoretical analysis in part IV showed that the information flow is strongly in-
fluenced by the phase response of the individual neurons. The phase response of a neu-
ron is determined by its excitability type [100, 316, 188]. In part IV of this thesis we
demonstrated that the neuronal excitability type can be controlled dynamically via slow
inhibitory synapses. Therefore, an interesting task for future research is to combine these
findings and to study how slow shunting inhibition provides an efficient local control
mechanism for non-local information flows in hierarchical networks. Moreover, this study
might be facilitated by using pulse-coupled phase oscillator models studied in part III of
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this thesis.
Interestingly, we found that the control of information flow is most effective near the

synchronous state. Thus synchronization of oscillatory neuronal clusters may provide the
basis for a high capability of neuronal systems to locally control their information flow.
We further found that changes in the collective oscillation frequency of a group of neurons
control its information flow from and to other clusters. Coherent stimulation of a group
increases its frequency and therefore can be used to control the information flow. On the
other hand we found that incoherent stimuli break the phase locking and shut off the non-
local information flow. This suggests mechanistic connections between the two theories of
binding by synchrony due to coherent stimulation [398, 342] and neuronal communication
through coherence [111] - an interesting area for future research.

Our study shows that changes of synaptic links within a neuronal cluster can control
the information flow between groups. As synaptic connections are changed via synaptic
plasticity our results reveal a mechanistic link between plastic changes of local synapses
and the control of non-local information flows. Given that effective connectivities sys-
tematically change during learning [22, 46] this may provide a first step to attack the
fascinating problem of how information flows in the brain can be learned. In particular,
what are synaptic plasticity rules among single neurons that are suited to learn informa-
tion transfer between groups? Do population-plasticity-rules exist that act in order to
change the synaptic structures of a whole group collectively in order to learn information
flows? What kind of mechanisms facilitate learning of appropriate dynamic routing of
information in general? Exciting questions for future research.

Understanding brain function is an extremely hard task. A possible systematic way
towards a better insight into neuronal dynamics and complex systems in general would
be to find a chain or a network of interlinked models ranging from highly detailed and
close to experimental observations to highly abstract and mathematically tractable models
from which general dynamical mechanisms can be uncovered, disentangled and explained.
In this thesis we have studied aspects of how local properties influence the collective
dynamics. In principle this direction of study can also be reversed and one may ask
how collective dynamics impinge on single unit properties. Our hope is that we have
contributed a small part to the intricate and puzzling challenge of understanding the
fascinating collective phenomena in the brain and in complex systems in general. Adopting
a constructivist point of view, these emergent phenomena include science and the language
in which this thesis was formulated.
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Immer ängstlicher im Niederschreiben. Es ist begreiflich. Jedes Wort,
gewendet in der Hand der Geister - dieser Schwung der Hand ist ihre charak-
teristische Bewegung - wird zum Spieß, gekehrt gegen den Sprecher. Eine
Bemerkung wie diese ganz besonders. Und so ins Unendliche. Der Trost wäre
nur: es geschieht, ob du willst oder nicht. Und was du willst, hilft nur un-
merklich wenig.

Franz Kafka
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Appendix A

The Eneström-Kakeya Theorem

A.1 Spectral-Radius and Matrix-Norm

Let A = aij be a n× n matrix. The spectral radius ρ of a A is defined as [178]

ρ(A) = max
‖x‖=1

‖Ax‖ = max
i=1,..,n

|λi| (A.1.1)

where ‖‖ denotes a norm and {λi}ni=1 are the complex eigenvalues of A.If ‖−‖ is any
matrix norm (see [260]) the inequality

ρ(A) ≤ ‖A‖ (A.1.2)

is valid and in fact ρ(A) = inf ‖A‖ where the infimum is taken over all matrix norms
[178]. Here we only need the maximum-absolute-column-sum norm of A defined as

‖A‖ = max
j=1,...,n

n∑

i=1

|aij| (A.1.3)

A.2 Companion Matrices

A (n+ 1)× (n+ 1) companion matrix C has the standard form

C =








0 . . . 0 −c̃0
1 0 −c̃1

. . .
...

0 1 −c̃n








(A.2.1)

with characteristic polynomial

p̃n+1(z) = det (z −C) = c̃0 + c̃1z + ...+ c̃nz
n + zn+1 (A.2.2)

A.3 The Eneström-Kakeya Theorem

The Eneström-Kakeya theorem1 [93, 194, 182, 11, 178] can be stated in the following
form:

1In 1893 the Swedish actuary and mathematics historian Gustaf Eneström published this result of
roots of certain polynomials with real coefficients in a paper on pension insurance (in Swedish) [93]. This
result is now often called the Eneström-Kakeya theorem, since S. Kakeya published a similar result in
1912-1913 [194]. But Kakeya’s theorem contained a mistake, which was corrected by A. Hurwitz in 1913
[182].
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A.3 The Eneström-Kakeya Theorem

Theorem A.3.1. Let pn(z) =
∑n

j=0 cjz
j with cj > 0 then for all λ with pn (λ) = 0

|λ| ≤ max
0≤i<n

{
ci
ci+1

}

=: β

Proof. Note first that β > 0. We set

p̃n+1(z) :=
(z − 1)pn(βz)

cnβn
= zn+1 +

n∑

i=0

c̃iz
i (A.3.1)

where

c̃i =

{
ci−1−βci
cnβn−i+1 1 ≤ i ≤ n
−c0
cnβn i = 0

Using the definition of β one observes that c̃j ≤ 0. Comparing (A.2.2) with (A.3.1) the
companion matrix of p̃n+1 is given by (A.2.1). Since 1 +

∑n+1
j=1 c̃j = p̃n+1(1) = 0 if follows

that ‖C‖ =
∑n+1

j=1 |c̃j | = −∑n+1
j=1 c̃j = 1 when using the maximum-absolute-column-sum

norm (A.1.3) and hence from (A.1.2)

ρ(C) ≤ 1

Thus for all λ̃ with pn+1

(

λ̃
)

= 0 we have
∣
∣
∣λ̃
∣
∣
∣ ≤ ρ(C) ≤ 1. For a λ with pn (λ) = 0 it

follows from the definition of p̃n+1 that p̃n+1

(

λ̃
)

= 0 for λ̃ = λ
β

and thus |λ| ≤ β.

Corollary A.3.2. Let A be a matrix of the form (cf. (6.4.5))

A =










−an a1 0 . . . 0

−an 0 a2
. . .

...
...

...
. . . . . . 0

−an 0 . . . 0 an−1

−an 0 . . . 0 0










with ai > 0 then
ρ(A) ≤ max {ai}ni=1

Proof. By a permutation of rows and columns we can cast A into a matrix B = bi,j
with non-zero entries bi,(i+1) = ai, i ∈ {1, . . . , n− 1} and bi,n = −an, i ∈ {1, . . . , n}.
This does not change the spectral radius. The similarity transformation to C = Q−1BQ
with Q = diag (q1, . . . , qN−1) and q1 = 1, qi =

∏i−1
j=1 aj , i ∈ {2, . . . , n} also preserves the

spectral radius and C has the form of a companion matrix (A.2.1) with ci =
∏n

j=i+1 ai > 0,

i ∈ {0, . . . , n− 1}. Thus ρ(A) = ρ(C) ≤ max0≤i<n

{
ci

ci+1

}

= max1≤i≤n {ai}
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Appendix B

Rise Functions

In this section we derive rise functions for several integrate and fire type models as intro-
duced in sec. 2.6 and some of their properties.

B.1 Rise Functions for Integrate-and-Fire Models

In this section we derive the rise functions for single variable models of the form (2.6.2).
We distinguish between current based inputs isyn(t) = P (t) with P (t) =

∑

s εsδ (t− ts)
and the conductance based approach isyn (t) = gsynP (t) (vsyn − v(t)), vsyn > 1. If the rise
function U for current based inputs is known the conductance based rise function UCB is
calculated with the help of (5.2.19).

For the leaky-integrate-and-fire (LIF) model (2.6.4) U is given by (5.2.18) which yields

UCB
LIF (φ) =

ln
(
1− v−1

synULIF (φ)
)

ln
(
1− v−1

syn

) (B.1.1)

For the quadratic-integrate-and-fire (QIF) model (2.6.3) one obtains

UQIF (φ) =
α− tan (arctan (α)− φ (arctan (α)− arctan (β)))

α− β
(B.1.2)

where α = vr+vt
γ

, β = α− 2
γ
, γ =

√
4ie
g2

− (vt − vr)
2 > 0. Hence

UCB
QIF (φ) =

ln
(
1− v−1

synUQIF (φ)
)

ln
(
1− v−1

syn

) (B.1.3)

Note that depending on the IF model and coupling type convex, concave and sigmoidal
shapes are possible (cf. tab. B.1). We remark that as vsyn → ∞ we recover the potential
independent model from the conductance based version, i.e. UCB → U and the conditions
for the different properties of UCB become the conditions for U in tab. B.1.

B.2 Icpd and Dcpd Rise Functions

Usually it is difficult to verify the icpd or dcpd property (6.5.3) of a rise function. Here
we show that it is closely related to the third derivative of U .
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B.2 Icpd and Dcpd Rise Functions

U
parameter

domain
concave convex sigmoidal icpd dcpd

ULIF veq > 1
√

- -
√

-

UCB
LIF

vsyn > 1,

veq > 1
vsyn > veq vsyn < veq - vsyn ≥ veq vsyn ≤ veq

UQIF

0 ≤ α <∞,
−∞ < β ≤ 0,

α > β

β = 0 α = 0 β < 0 < α -
α ≤ 1

−1 ≤ β

UCB
QIF

vsyn > 1,

0 ≤ α <∞,

−∞ < β ≤ 0

-
0 ≤ 1+

α (α− 2η)

0 > 1+

α (α− 2η)
-

α2 ≤ η
η−α−α−1

β2 ≤ η−α+β
η−α−β−1

Ub b ∈ R \ {0} b < 0 b > 0 -
√ √

Table B.1: Properties of different rise functions. η = vsyn (α− β).

We first note that ∆H obeys the relations ∆H (φ, 0, ε) ≡ 0 and ∆H (φ,∆φ, 0) ≡ ∆φ
and hence ∂

∂φ
∆H (φ,∆φ, 0) = 0 and

∂

∂φ
∆H (φ,∆φ, ε) =

ˆ ε

0

ˆ ∆φ

0

∂

∂φ

∂

∂ε

∂

∂∆φ
∆H

(

φ, ∆̃φ, ε̃
)

d∆̃φdε̃

Thus U is icpd if

∂3

∂φ∂ε∂∆φ
∆H (φ,∆φ, ε) ≥ 0 for all (φ,∆φ, ε) ∈ D (B.2.1)

Using ≤ instead of ≥ yields an analogous condition for dcpd U . By definition of ∆H eq.
(B.2.1) yields the condition

∂3

∂φ∂ε∂∆φ
∆H (φ,∆φ, ε) = 3

U ′′ (H (φ+∆φ, ε))2 U ′ (φ+∆φ)2

U ′ (H (φ+∆φ, ε))5

−U
′′ (φ+∆φ)U ′′ (H (φ+∆φ, ε))

U ′ (H (φ+∆φ, ε))3

−U
′ (φ+∆φ)2 U ′′′ (H (φ+∆φ, ε))

U ′ (H (φ+∆φ, ε))4

≥ 0 ∀ (φ,∆φ, ε) ∈ D .

Substituting H (φ+∆φ, ε) → φ and φ+∆φ → ψ one obtains

U ′′′ (φ) ≤ 3
U ′′ (φ)2

U ′ (φ)
− U ′′ (ψ)U ′′ (φ)U ′ (φ)

U ′ (ψ)2
∀ 0 ≤ ψ ≤ φ ≤ 1 (B.2.2)

as a non-local sufficient condition for a rise function to be icpd. The condition for dcpd
U is given when replacing ≤ by ≥.

Now note that if (B.2.2) is satisfied locally for φ = ψ the sign of the derivative

∂

∂ψ

(

3
U ′′ (φ)2

U ′ (φ)
− U ′′ (ψ)U ′′ (φ)U ′ (φ)

U ′ (ψ)2

)

= U ′′ (φ)U ′ (φ)

(

2
U ′′ (ψ)2

U ′ (ψ)3
− U ′′′ (ψ)

U ′ (ψ)2

)
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B Rise Functions

is determined by U ′′(φ) since the term in brackets on the right hand side at φ = ψ is
positive using inequality (B.2.2) and U ′ > 0. Hence, if U is concave, a sufficient local
condition for a rise function to be icpd is

U ′′ (φ) ≤ 0 and U ′′′ (φ) ≤ 2
U ′′ (φ)2

U ′ (φ)
∀ 0 ≤ φ ≤ 1

Conversely a local condition for a convex rise functions to be dcpd is given by

U ′′ (φ) ≥ 0 and U ′′′ (φ) ≥ 2
U ′′ (φ)2

U ′ (φ)
∀ 0 ≤ φ ≤ 1 .

Different properties of commonly used rise functions are summarized in table B.1.

238



Appendix C

Event-Sequence-Based Domain

Analysis for N 4

In this section we state and proof technical results for the pulse coupled oscillator network
N 4 defined in section 7.2.3.1 using event-sequence-based domain analysis as described in
section 7.2.2.

C.1 Evolution of States in Uη
i to P4

i

Here we consider the evolution of states in the neighbourhood Uη
i , eq. (7.2.18), of the

periodic orbits Oi. As the results for Uη
2 can be obtained from the ones of Uη

1 by exchanging
indices (1, 2) ↔ (3, 4) we concentrate on Uη

1 . Note that via tab. 7.1 the orbit O1 consists
of three straight lines between the different events in state space and therefore Uη

1 consists
of three components. We consider states in each component. We note that for η small
enough, the definition of Uη

1 in (7.2.18) ensures that in each component the number of
not received pules is the same as in the orbit segment. Therefore it is sufficient to only
consider the deviations from the periodic orbit in the phases and in the spike times of not
received pulses.

We first observe that states in the component where all spikes have been received lead
to a state in P4

1 via the uniform phase shift (7.2.1). The evolution of states in the other
two components is then described by the event tables C.1 and C.2.

Tab. C.1 is valid if

H2ε,τ ◦Hε,ζ2−ζ1 ◦H0,τ−ζ1 (δ1) < 1

H2ε,τ ◦H0,ζ2−ζ1 ◦Hε,τ−ζ1 (δ2) < 1

Sζ2−ζ1 ◦Hε,τ−ζ1 (α + δ3,4) < 1

Hε,ζ2−ζ1 ◦Hε,τ−ζ1 (α + δ3,4) > 1

and tab. C.2 if

Hε,ζ3−ζ4 ◦Hε,τ−ζ3+δ1,2 ◦Hε,τ (0) < 1

Hε,ζ3−ζ4 ◦H0,τ−ζ3+δ3 ◦ J2ε,τ (α) < 1

H0,ζ3−ζ4 ◦Hε,τ−ζ3+δ3 ◦ J2ε,τ (α) < 1

For δi = 0 and ζi = 0 the conditions are all fulfilled via the parameter conditions (7.2.13)
and hence by continuity of the maps H , J and S there is a η > 0 such that these conditions
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Table C.1: Evolution of states in Uη
1 after the event (s1, s2) for ζ1 > ζ2

event time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

start 0 δ1 ζ1 δ2 ζ2 α+ δ3 - α+ δ4 -

r1 t1 := τ − ζ1 φ1,2 := H0 (t1 + δ1) τ → − φ2,2 := Hε (δ2 + t1) t1 + ζ2 φ3,2 := Hε (α+ δ3 + t1) φ4,2 := Hε (α+ δ4 + t1) -

r2, s3, s4 t2 := τ − ζ2 φ1,3 := Hε (φ1,2 − ζ2 + ζ1) - φ2,3 := H0 (φ2,2 − ζ2 + ζ1) τ → − φ3,3 := Jε (φ3,2 − ζ2 + ζ1) 0 φ4,3 := Jε (φ3,2 − ζ2 + ζ1) 0

r3,r4 t3 := t2 + τ φ1,4 := H2ε (φ1,3 + τ) - φ2,4 := H2ε (φ2,3 + τ) - φ3,4 := Hε (φ3,3 + τ) τ → − φ4,4 := Hε (φ4,3 + τ) τ → −

s1’ t3 + 1− φ1,4 0 0 φ2,4 + 1− φ1,4 - φ3,4 + 1− φ1,4 - φ4,4 + 1− φ1,4 -

Table C.2: Evolution of states in Uη
1 after the event (r1, r2, s3, s4) for ζ3 > ζ3

event time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

start 0 φ1,0 := Hε,τ (0) + δ1 - φ2,0 := Hε,τ (0) + δ2 − φ3,0 := J2ε,τ (α) + δ3 ζ3 φ3,0 := J2ε,τ (α) + δ4 ζ4

r3 t1 := τ − ζ3 φ1,1 := Hε,t1 (φ1,0) − φ2,1 := Hε,t1 (φ2,0) − φ3,1 := H0,t1 (φ3,0) τ → − φ4,1 := Hε,t1 (φ3,0) ζ4 + t1

r4 t2 := τ − ζ4 φ1,2 := Hε,ζ3−ζ4 (φ1,1) − φ2,2 := Hε,ζ3−ζ4 (φ2,1) − φ3,2 := Hε,ζ3−ζ4 (φ23,1) − φ4,2 := Hε,ζ3−ζ4 (φ4,1) τ → −

s1’ t2 + 1− φ1,2 0 0 φ2,3 + 1− φ1,2 - φ3,3 + 1− φ1,2 - φ4,3 + 1− φ1,2 -
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C.2 Event-Sequence-Based Domain and Parameter Analysis for N 4

also hold for |δi| < η and |ζi| < η. For ζ1 < ζ2 exchange indices 1 ↔ 2 and for ζ1 = ζ2 the
third condition becomes the weaker condition Sτ−ζ1 (α + δ3,4) < 1. For ζ3 < ζ4 exchange
indices 3 ↔ 4 and for ζ3 = ζ4 the form of the conditions does not change.

C.2 Event-Sequence-Based Domain and Parameter Anal-

ysis for N 4

In this section we derive several properties of maps withing and between the local Poincare
representations Pi, eq. (7.2.19).

C.2.1 Return Maps

C.2.1.1 Expanding Maps R↑
i

Lemma C.2.1. The return map R↑
1 : D

(

R↑
1

)

⊂ P1 → P1, δ
(0) 7→ δ(1) with event

sequence

E
(

R↑
1

)

= (s1) (s2) (r1) (r2, s3, s4) (r3, r4) (C.2.1)

is given by

δ
(1)
1 = 0

δ
(1)
2 = sign

(

δ
(0)
2

)[

H2ε,τ ◦Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

−H
2ε,τ+

∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

−
∣
∣
∣δ

(0)
2

∣
∣
∣

)]

δ
(1)
3 = Hε,τ ◦ Jε,∣∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α + δ
(0)
3

)

+ 1−H2ε,τ ◦Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

− α (C.2.2)

δ
(1)
4 = Hε,τ ◦ Jε,∣∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α + δ
(0)
4

)

+ 1−H2ε,τ ◦Hε,τ

(∣
∣
∣δ

(0)
2

∣
∣
∣

)

− α

with domain D
(

R↑
1

)

defined by the inequalities

|δ2| > 0

H2ε,τ ◦Hε,τ (|δ2|) < 1

S|δ2| ◦Hε,τ (α+ δ3,4) ≤ 1 (C.2.3)

Hε,|δ2| ◦Hε,τ (α+ δ3,4) ≥ 1

The map R↑
2 is obtained via exchange of indices (1, 2) ↔ (3, 4).

Proof. The analytical form follows from the event based analysis is given in tab. C.3 for
states (δ2, δ3, δ4) ∈ P1 assuming δ2 < 0. For δ2>0 the event sequence is given by relabeling
1 ↔ 2. The event table C.3 is valid if

0 < |δ2| < τ

0 < α + δ3,4 < 1− |δ2|
H2ε,τ ◦Hε,τ (|δ2|) < 1

H2ε,τ+|δ2| ◦Hε,τ (− |δ2|) + |δ2| < 1

Hε,τ (α + δ3,4) + |δ2| ≤ 1

Hε (Hε,τ (α + δ3,4) + |δ2|) ≥ 1

Hε (Jε (Hε (α + δ3,4 + τ) + |δ2|) + τ) < 1
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C Event-Sequence-Based Domain Analysis for N 4

which using the properties (7.2.8)-(7.2.9) reduces to the conditions (C.2.3). In particular,
the first inequality follows from (C.2.3) together with H2ε,τ ◦ Hε,τ (τ) > 1. The second
inequality follows from the third and fourth inequalities in (C.2.3). The third inequality
follows from property (7.2.9) and using Sτ ◦H2ε,τ ◦Hε,τ (0) < 1. To obtain Hε,τ ◦ Jε,|δ2| ◦
Hε,τ (α + δ3,4 + τ) < 1, consider Hε,τ ◦Hε (0) < 1.

C.2.1.2 The Return Map Ra
1

Lemma C.2.2. The return map Ra
1 : D (Ra

1) ⊂ P1 → P1, δ
(0) 7→ δ(1) with event sequence

E (Ra
1) = (s1) (s2) (r1) (r2, s3) (s4) (r3) (r4) (C.2.4)

is given by

δ
(1)
1 = 0

δ
(1)
2 = sign

(

δ
(0)
2

)[

φ1,6 −Hε,1−φ4,3 ◦Hε,τ ◦H0,
∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

−
∣
∣
∣δ

(0)
2

∣
∣
∣

)]

δ
(1)
3 = Hε,1−φ4,3 ◦H0,τ ◦ Jε,∣∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α + δ
(0)
3

)

+ 1− φ1,6 − α (C.2.5)

δ
(1)
4 = H0,1−φ4,3 ◦Hε,τ (−1 + φ4,3) + 1− φ1,6 − α

with

φ1,6 = Hε,1−φ4,3 ◦Hε,τ ◦Hε,
∣

∣

∣
δ
(0)
2

∣

∣

∣

◦H0,τ (0)

φ4,3 = H
ε,
∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α+ δ
(0)
4

)

with domain D (Ra
1) defined by the inequalities

0 < |δ2| < τ

S|δ2| ◦Hε,τ (α + δ3) ≤ 1

Hε,|δ2| ◦Hε,τ (α + δ3) ≥ 1 (C.2.6)

1− τ < Hε,|δ2| ◦Hε,τ (α + δ4) < 1

By exchanging indices 3 ↔ 4 we obtain a second map Rā
i with an additional domain, for

simplicity we will denote the map form the union of both domains Ra
1. The map Ra

2 is
obtained via exchange of indices (1, 2) ↔ (3, 4).

Proof. The analytical form follows from the event based analysis is given in tab. C.4 for
states (δ2, δ3, δ4) ∈ P1 assuming δ2 < 0. For δ2>0 the event sequence is given by relabeling
1 ↔ 2. The event table C.4 is valid if

Hε,1−φ4,3 ◦Hε,τ ◦Hε,
∣

∣

∣
δ
(0)
2

∣

∣

∣

◦H0,τ (0) < 1
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Table C.3: δ2-expansive map R↑
1 for δ2 < 0

Event Time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

s1 0 0 0 1 + δ2 - α+ δ3 - α+ δ4 -

s2 −δ2 −δ2 −δ2 0 0 α+ δ3 − δ2 - α+ δ4 − δ2 -

r1 τ φ1,2 := H0 (τ) τ → − φ2,2 := Hε (τ + δ2) τ + δ2φ3,2 := Hε (α+ δ3 + τ) φ4,2 := Hε (α+ δ4 + τ) -

r2, s3, s4 τ − δ2 φ1,3 := Hε (φ1,2 − δ2) - φ2,3 := H0 (φ2,2 − δ2)τ → − φ3,3 := Jε (φ3,2 − δ2) 0 φ4,3 := Jε (φ3,2 − δ2) 0

r3,r4 2τ − δ2 φ1,4 := H2ε (φ1,3 + τ) - φ2,4 := H2ε (φ2,3 + τ) - φ3,4 := Hε (φ3,3 + τ) τ → − φ4,4 := Hε (φ4,3 + τ) τ → −
s1’ 2τ − δ2 + 1− φ1,4 0 0 φ2,4 + 1− φ1,4 - φ3,4 + 1− φ1,4 - φ4,4 + 1− φ1,4 -

Table C.4: Return map Ra
1 for δ2 < 0 and δ3 > δ4

event time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

s1 0 0 0 1 + δ2 - α+ δ3 - α+ δ4 -

s2 −δ2 −δ2 −δ2 0 0 α+ δ3 − δ2 - α+ δ4 − δ2 -

r1 τ φ1,2 := H0 (τ) τ → − φ2,2 := Hε (τ + δ2) τ + δ2 φ3,2 := Hε (α+ δ3 + τ) - φ4,2 := Hε (α+ δ4 + τ) -

r2, s3 τ − δ2 φ1,3 := Hε (φ1,2 − δ2) - φ2,3 := H0 (φ2,2 − δ2) τ → − φ3,3 := Jε (φ3,2 − δ2) 0 φ4,3 := Hε (φ4,2 − δ2) -

s4 t4 := τ − δ2 + 1− φ4,3 φ1,4 := φ1,3 + 1− φ4,3 - φ2,4 := φ2,3 + 1− φ4,3 - φ3,4 := φ3,3 + 1− φ4,3 1− φ4,3 0 0

r3 2τ − δ2 φ1,5 := Hε (φ1,3 + τ) − φ2,5 := Hε (φ2,3 + τ) - φ3,5 := H0 (φ3,3 + τ) τ → − φ4,5 := Hε (−1 + φ4,3 + τ) τ − 1 + φ4,3

r4 t6 := t4 + τ φ1,6 := Hε (φ1,5 + 1− φ4,3) - φ2,6 := Hε (φ2,5 + 1− φ4,3) - φ3,6 := Hε (φ3,5 + 1− φ4,3) - φ4,6 := H0 (φ4,5 + 1− φ4,3) τ → −

s1’ t6 + 1− φ1,6 0 0 φ2,7 := φ2,6 + 1− φ1,6 - φ3,7 := φ3,6 + 1− φ1,6 - φ4,7 := φ4,6 + 1− φ1,6 -
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C Event-Sequence-Based Domain Analysis for N 4

and

0 < |δ2| < τ

Hε,1−φ4,3 ◦Hε,τ ◦H0,|δ2| ◦Hε,τ (− |δ2|) < 1

and

S|δ2| ◦Hε,τ (α+ δ3) ≤ 1

Hε,|δ2| ◦Hε,τ (α+ δ3) ≥ 1

Hε,1−φ4,3 ◦H0,τ ◦ Jε,|δ2| ◦Hε,τ (α+ δ3) < 1

and

0 < 1− φ4,3 = 1−Hε,|δ2| ◦Hε,τ (α+ δ4) ≤ τ

H0,1−φ4,3 ◦Hε,τ (−1 + φ4,3) < 1

which are satisfied if the domain conditions (C.2.6), the smallness condition 7.2.23 and
the parameter condition

Hε,τ ◦Hε,τ ◦Hε,τ (0) < 1

hold. The parameter condition holds via (7.2.13).

C.2.1.3 The Return Map Rb
1

Lemma C.2.3. The return map Rb
1 : D

(
Rb

1

)
⊂ P1 → P1, δ

(0) 7→ δ(1) with event sequence

E
(
Rb

1

)
= (s1) (s2) (r1) (r2, s3) (r3, s4) (r4) (C.2.7)

is given by

δ
(1)
1 = 0

δ
(1)
2 = sign

(

δ
(0)
2

)[

φ1,5 −Hε,τ ◦Hε,τ ◦H0,
∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

−
∣
∣
∣δ

(0)
2

∣
∣
∣

)]

δ
(1)
3 = Hε,τ ◦H0,τ ◦ Jε,∣∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α + δ
(0)
3

)

+ 1− φ1,5 − α (C.2.8)

δ
(1)
4 = H0,τ ◦ Jε,τ ◦Hε,

∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α + δ
(0)
4

)

+ 1− φ1,5 − α

with

φ1,5 = Hε,τ ◦Hε,τ ◦Hε,
∣

∣

∣
δ
(0)
2

∣

∣

∣

◦H0,τ (0)

with domain D
(
Rb

1

)
defined by the inequalities
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|δ2| > 0

Hε,τ ◦Hε,τ ◦Hε,τ (|δ2|) < 1

S|δ2| ◦Hε,τ (α + δ3) ≤ 1

Hε,|δ2| ◦Hε,τ (α + δ3) ≥ 1 (C.2.9)

Sτ ◦Hε,|δ2| ◦Hε,τ (α + δ4) ≤ 1

Hε,τ ◦Hε,|δ2| ◦Hε,τ (α + δ4) ≥ 1

The map Rb
2 is obtained via exchange of indices (1, 2) ↔ (3, 4).

Proof. The analytical form follows from the event based analysis is given in tab. C.5 for
states (δ2, δ3, δ4) ∈ P1 assuming δ2 < 0. For δ2>0 the event sequence is given by relabeling
1 ↔ 2. The event table C.5 is valid if

Hε,τ ◦Hε,τ ◦Hε,
∣

∣

∣
δ
(0)
2

∣

∣

∣

◦H0,τ (0) < 1

and

0 < |δ2| < τ

Hε,τ ◦Hε,τ ◦H0,|δ2| ◦Hε,τ (− |δ2|) < 1

and

S|δ2| ◦Hε,τ (α + δ3) ≤ 1

Hε,|δ2| ◦Hε,τ (α + δ3) ≥ 1

Hε,τ ◦H0,τ ◦ Jε,|δ2| ◦Hε,τ (α + δ3) < 1

and

Sτ ◦Hε,|δ2| ◦Hε,τ (α + δ4) ≤ 1

Hε,τ ◦Hε,|δ2| ◦Hε,τ (α + δ4) ≥ 1

H0,τ ◦ Jε,τ ◦Hε,|δ2| ◦Hε,τ (α + δ4) < 1

which are satisfied if the domain conditions (C.2.9), the smallness condition 7.2.23 and
the parameter condition

Hε,τ ◦Hε,τ ◦Hε,τ (0) < 1

hold. The parameter condition holds via (7.2.13).

C.2.2 Maps on the Synchronization Manifolds

In this section we consider several return maps of the synchronization manifolds S1 =
{δ ∈ P1 | δ2 = 0} and S2 = {δ ∈ P2 | δ4 = 0}.

The maps Qz
i , z ∈ {↑, a, b, c} on the synchronization manifold are obtained by taking

the limits of δ2 → 0 in sections C.2.1.1-C.2.1.3. This can be verified by direct calculation
of the event tables.
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Table C.5: Return map:Rb
1 for δ2 < 0

Event Time φ1 d1 φ2 d2 φ3 d3 φ4 d4

s1 0 0 0 1 + δ2 - α+ δ3 - α+ δ4 -

s2 −δ2 −δ2 −δ2 0 0 φ3,1 := α+ δ3 − δ2 - φ4,1 := α+ δ4 − δ2 -

r1 τ φ1,2 := H0 (τ) τ → − φ2,2 := Hε (τ + δ2) τ + δ2 φ3,2 := Hε (α+ δ3 + τ) - φ4,2 := Hε (α+ δ4 + τ) -

r2, s3 τ − δ2 φ1,3 := Hε (φ1,2 − δ2) - φ2,3 := H0 (φ2,2 − δ2) τ → − φ3,3 := Jε (φ3,2 − δ2) 0 φ4,3 := Hε (φ4,2 − δ2) -

r3, s4 2τ − δ2 φ1,4 := Hε (φ1,3 + τ) - φ2,4 := Hε (φ2,3 + τ) - φ3,4 := H0 (φ3,3 + τ) τ → − φ4,4 := Jε (φ4,3 + τ) 0

r4 3τ − δ2 φ1,5 := Hε (φ1,4 + τ) - φ2,5 := Hε (φ2,4 + τ) - φ3,5 := Hε (φ3,4 + τ) - φ4,5 := H0 (φ4,4 + τ) τ → −

s1 t5 + 1− φ1,6 0 0 φ2,6 := φ2,5 + 1− φ1,5 - φ3,6 := φ3,5 + 1− φ1,5 - φ4,6 := φ4,5 + 1− φ1,5 -

Table C.6: Transient map T a
12 for δ2 < 0

event time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

s1 0 0 0 1 + δ2 - α+ δ3 - α+ δ4 -

s2 −δ2 −δ2 −δ2 0 0 α+ δ3 − δ2 - α+ δ4 − δ2 -

r1 τ φ1,2 := H0 (τ) τ → − φ2,2 := Hε (τ + δ2) τ + δ2 φ3,2 := Hε (α+ δ3 + τ) - φ4,2 := Hε (α+ δ4 + τ) -

r2, s3, s4 τ − δ2 φ1,3 := Hε (φ1,2 − δ2) - φ2,3 := H0 (φ2,1 − δ2) τ → − φ3,3 := Jε (φ3,2 − δ2) 0 φ4,3 := Jε (φ4,2 − δ2) 0

r3,r4,s1 2τ − δ2 φ1,4 := J2ε (φ1,3 + τ) 0 φ2,4 := H2ε (φ2,3 + τ) - φ3,4 := Hε (φ3,3 + τ) τ → − φ4,4 := Hε (φ4,3 + τ) τ → −
r1,s2 3τ − δ2 φ1,5 := H0 (φ1,4 + τ) τ → − φ2,5 := Jε (φ2,4 + τ) 0 φ3,5 := Hε (φ3,4 + τ) - φ4,5 := Hε (φ4,4 + τ) -

r2 4τ − δ2 φ1,6 := Hε (φ1,5 + τ) - φ2,6 := H0 (φ2,5 + τ) τ → − φ3,6 := Hε (φ3,5 + τ) - φ4,6 := Hε (φ4,5 + τ) -

s3’ 4τ − δ2 + 1− φ3,6 φ1,7 := φ1,6 + 1− φ3,6 - φ2,7 := φ2,6 + 1− φ3,6 - 0 0 φ4,7 := φ4,6 + 1− φ3,6
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C.2 Event-Sequence-Based Domain and Parameter Analysis for N 4

Lemma C.2.4. Qa
i (D (Qa

i )) ⊂ D
(

Q↑
i

)

Proof. The image δ(1) of δ(0)under Qa
1 of a state in D (Qa

1) is given by

δ
(1)
2 = 0

δ
(1)
3 = Hε,1−φ4,1 ◦H0,τ ◦ J2ε,τ

(

α + δ
(0)
3

)

+ 1− φ1,4 − α

δ
(1)
4 = H0,1−φ4,1 ◦Hε,τ−φ4,1+1 + 1− φ1,4 − α

where

φ1,4 = Hε,1−φ4,1 ◦H2
ε,τ (0)

φ4,1 = H2ε,τ

(

α + δ
(0)
4

)

Via the smallness assumption on Jε we only have to check if this image is in the interior

of the domain D
(

Q↑
1

)

, i.e. we must have via (C.2.3)

Hε,τ

(
Hε,1−φ4,1 ◦H0,τ (0) + 1−Hε,1−φ4,1 ◦H2

ε,τ (0)
)

< 1

H2ε,τ

(
Hε,1−φ4,1 ◦H0,τ (0) + 1−Hε,1−φ4,1 ◦H2

ε,τ (0)
)

> 1

Hε,τ

(
H0,1−φ4,1 ◦Hε,τ+φ4,1−1 (0) + 1−Hε,1−φ4,1 ◦H2

ε,τ (0)
)

< 1

H2ε,τ

(
H0,1−φ4,1 ◦Hε,τ+φ4,1−1 (0) + 1−Hε,1−φ4,1 ◦H2

ε,τ (0)
)

> 1

which all follow as 1− φ4,1 < τ and using the parameter conditions

Hε,τ

(
Hε,0 ◦H0,τ (0) + 1−Hε,0 ◦H2

ε,τ (0)
)

< 1

H2ε,τ

(
H0,τ ◦Hε,0 (0) + 1−H3

ε,τ (0)
)

> 1

By an appropriate exchange of indices we obtain the result for Qb
2.

Lemma C.2.5. Qb
i

(
D
(
Qb

i

))
⊂ D

(

Q↑
i

)

Proof. The image δ(1) of δ(0)under Qb
1 of a state in D

(
Qb

1

)
is given by

δ
(1)
2 = 0

δ
(1)
3 = Hε,τ ◦H0,τ ◦ Jε,τ (α+ δ3) + 1−H3

ε,τ (0)− α

δ
(1)
4 = H0,τ ◦ Jε,τ ◦Hε,τ (α+ δ3) + 1−H3

ε,τ (0)− α

which analog to the previous lemma gives the two strongest conditions

Hε,τ

(
Hε,τ ◦H0,τ (0) + 1−H3

ε,τ (0)
)

< 1

H2ε,τ

(
H0,τ (0) + 1−H3

ε,τ (0)
)

> 1

which follow form the parameter conditions. By an appropriate exchange of indices
we obtain the result for Qb

2.
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C Event-Sequence-Based Domain Analysis for N 4

C.2.3 Transient Maps

In this section we derive all maps between the Poincare spaces Pi → Pj with i 6= j.

C.2.3.1 Transient Maps T a
ij

Lemma C.2.6. The transient map T a
12 : D (T a

12) ⊂ P1 → P2 δ
(0) 7→ δ(1) with event

sequence
E (T a

12)
.
= (s1) (s2) (r1) (r2, s3, s4) (r3, r4, s1) (r1, s2) (r2) (C.2.10)

for δ(0)2 < 0 is given by

δ
(1)
1 = Hε,τ ◦H0,τ ◦ J2ε,τ ◦Hε,

∣

∣

∣
δ
(0)
2

∣

∣

∣

◦H0,τ (0) + 1− φ3,6 − α

δ
(1)
2 = H0,τ ◦ Jε,τ ◦H2ε,τ ◦H0,

∣

∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

−
∣
∣
∣δ

(0)
2

∣
∣
∣

)

+ 1− φ3,6 − α

δ
(1)
3 = 0 (C.2.11)

δ
(1)
4 = Hε,τ ◦Hε,τ ◦Hε,τ ◦ Jε,∣∣

∣
δ
(0)
2

∣

∣

∣

◦Hε,τ

(

α+ δ
(0)
4

)

− φ3,6

where

φ3,6 = Hε,τ ◦Hε,τ ◦Hε,τ ◦ Jε,∣∣
∣
δ
(0)
2

∣

∣

∣

Hε,τ

(

α + δ
(0)
3

)

For δ(0)2 > 0 exchange indices 1 ↔ 2. The domain D (T a
12) is given by the inequalities

|δ2| < τ

H2ε,τ ◦Hε,τ (|δ2|) ≥ 1

S|δ2| ◦Hε,τ (α+ δ3,4) < 1 (C.2.12)

H
ε,|δ2| ◦Hε,τ (α+ δ3,4) ≥ 1

The map T a
21 is obtained by exchanging (1, 2) ↔ (3, 4).

Proof. The analytical form follows from the event based analysis is given in tab. C.6
for states (δ2, δ3, δ4) ∈ P1 assuming δ2 < 0. For δ2 > 0 the event sequence is given by
relabeling 1 ↔ 2. The event table C.6 is valid if

Sτ ◦Hε,|δ2| ◦H0,τ (0) < 1

H2ε,τ ◦Hε,|δ2| ◦H0,τ (0) ≥ 1

and

|δ2| < τ

Sτ ◦H2ε,τ ◦H0,|δ2| ◦Hε,τ (− |δ2|) < 1

Hε,τ ◦H2ε,τ ◦H0,|δ2| ◦Hε,τ (− |δ2|) ≥ 1

and
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C.2 Event-Sequence-Based Domain and Parameter Analysis for N 4

S|δ2| ◦Hε,τ (α+ δ3,4) < 1

H
ε,|δ2| ◦Hε,τ (α+ δ3,4) ≥ 1

Hε,τ ◦Hε,τ ◦Hε,τ ◦ Jε,|δ2| ◦Hε,τ (α+ δ3,4) < 1

These conditions are all satisfied if (C.2.12), the smallness condition on Jε and the pa-
rameter conditions

Sτ ◦H2ε,τ ◦Hε,τ (0) < 1

Hε,τ ◦H2ε,τ ◦Hε,τ (0) > 1

Hε,τ ◦Hε,τ ◦Hε,τ (0) < 1

We used property (7.2.9) for Sτ ◦H2ε,τ ◦H0,|δ2| ◦Hε,τ (− |δ2|) ≤ Sτ ◦H2ε,τ ◦Hε,τ (0) < 1.
The parameter conditions follow from (7.2.13).

Note that for Jε = 0, δ(1)3 = δ
(1)
4 .

C.2.3.2 Transient Maps T b
ij

Lemma C.2.7. The transient map T b
12 : D

(
T b
12

)
⊂ P1 → P2 δ

(0) 7→ δ(1) with event
sequence

E
(
T b
12

)
= (s1) (r1,s2) (r2, s3, s4) (r3, r4, s1) (r1, s2) (r2) (C.2.13)

is for δ(0)2 < 0 given by

δ
(1)
1 = Hε,τ ◦Hε,τ ◦ J2ε,τ ◦Hε,τ ◦H0,τ (0) + 1− φ3,5 − α

δ
(1)
2 = H0,τ ◦ Jε,τ ◦H2ε,τ ◦H0,τ ◦ Jε,τ

(

1−
∣
∣
∣δ

(0)
2

∣
∣
∣

)

+ 1− φ3,5 − α

δ
(1)
3 = 0 (C.2.14)

δ
(1)
4 = Hε,τ ◦Hε,τ ◦Hε,τ ◦ Jε,τ ◦Hε,τ

(

α + δ
(0)
4

)

− φ3,5

where
φ3,5 = Hε,τ ◦Hε,τ ◦Hε,τ ◦ Jε,τ ◦Hε,τ

(

α + δ
(0)
3

)

For δ(0)2 > 0 exchange indices 1 ↔ 2. The domain D
(
T b
12

)
is given by the inequalities

|δ2| ≥ τ

Hε,τ (1− |δ2|) ≥ 1

Sτ ◦Hε,τ (α + δ3,4) < 1 (C.2.15)

Hε,τ ◦Hε,τ (α + δ3,4) ≥ 1

The map T b
21 is obtained by exchanging indices (1, 2) ↔ (3, 4).
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C Event-Sequence-Based Domain Analysis for N 4

Proof. The analytical form follows from the event based analysis is given in tab. C.7
for states (δ2, δ3, δ4) ∈ P1 assuming δ2 < 0. For δ2 > 0 the event sequence is given by
relabeling 1 ↔ 2. The event table C.7 is valid if

Sτ ◦Hε,τ (τ) ≤ 1

H2ε,τ ◦Hε,τ (τ) ≥ 1

and

Sτ (1 + δ2) ≤ 1

Hε,τ (1 + δ2) ≥ 1

Sτ ◦H2ε,τ ◦H0,τ ◦ Jε,τ (1 + δ2) < 1

Hε,τ ◦H2ε,τ ◦H0,τ ◦ Jε,τ (1 + δ2) ≥ 1

and

Sτ ◦Hε,τ (α + δ3,4) < 1

Hε,τ ◦Hε,τ (α + δ3,4) ≥ 1

Hε,τ ◦Hε,τ ◦Hε,τ ◦ Jε,τ ◦Hε,τ (α + δ3,4) < 1

The first conditions are parameter conditions satisfied by (7.2.13). The second and third
conditions follow from (C.2.15), the smallness assumption of Jε (7.2.23) and the pure
parameter conditions

Sτ ◦H2ε,τ ◦H0,τ (0) < 1

Hε,τ ◦H2ε,τ ◦H0,τ (0) ≥ 1

Hε,τ ◦Hε,τ ◦Hε,τ (0) < 1

which follow from (7.2.13).

C.2.3.3 Transient Map T c
12

Lemma C.2.8. The transient map T c
12 : D (T c

12) ⊂ P1 → P2 δ
(0) 7→ δ(1) with event

sequence
E (T c

12)
.
= (s1) (r1, s2) (r2) (C.2.16)

for δ(0)2 < 0 is given by

δ
(1)
1 = Hε,τ ◦H0,τ (τ) + 1− φ3,2 − α

δ
(1)
2 = H0,τ ◦ Jε,τ

(

1 + δ
(0)
2

)

+ 1− φ3,2 − α

δ
(1)
3 = 0 (C.2.17)

δ
(1)
4 = Hε,τ ◦Hε,τ

(

α + δ
(0)
4

)

− φ3,2

where
φ3,2 = Hε,τ ◦Hε,τ

(

α + δ
(0)
3

)
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For δ(0)2 > 0 exchange indices 1 ↔ 2. The domain D (T c
12) is given by the inequalities

|δ2| ≥ τ

Hε,τ (1− |δ2|) ≥ 1

α + δ3,4 > 0 (C.2.18)

Hε,τ ◦Hε,τ (α + δ3,4) < 1

The map T c
21 is obtained by exchanging (1, 2) ↔ (3, 4).

Proof. The analytical form follows from the event based analysis is given in tab. C.8
for states (δ2, δ3, δ4) ∈ P1 assuming δ2 < 0. For δ2 > 0 the event sequence is given by
relabeling 1 ↔ 2. The event table C.8 is valid if

Sτ (1 + δ2) ≤ 1

Hε,τ (1 + δ2) ≥ 1

Hε,τ ◦ Jε,τ (1 + δ2) < 1

and

α + δ3,4 > 0

Hε,τ ◦Hε,τ (α + δ3,4) < 1

which are satisfied if (C.2.18), the smallness condition on Jε 7.2.23 and

Hε,τ ◦Hε,τ (0) < 1

is satisfied. The last inequality follows from the parameter conditions (7.2.13).

C.2.3.4 Transient Maps T d
ij

Lemma C.2.9. The transient map T d
12 : D

(
T d
12

)
⊂ P1 → P2 δ

(0) 7→ δ(1) with event
sequence

E
(
T d
12

) .
= (s1) (r1, s2) (r2, s3) (s4) (r3) (r4, s1) (r1, s2) (r2) (C.2.19)

for δ(0)2 < 0 and δ(0)3 > δ
(0)
4 is given by

δ
(0)
1 = Hε,τ ◦H0,τ ◦ Jε,1−φ4,2 ◦Hε,τ ◦Hε,τ ◦H0,τ (0) + 1− φ3,7 − α

δ
(0)
2 = H0,τ ◦ Jε,τ ◦Hε,1−φ4,2 ◦Hε,τ ◦H0,τ ◦ Jε,τ

(

1−
∣
∣
∣δ

(0)
2

∣
∣
∣

)

+ 1− φ3,7 − α

δ
(1)
3 = 0 (C.2.20)

δ
(1)
4 = Hε,τ ◦Hε,τ ◦H0,1−φ4,2 ◦Hε,τ (− (1− φ4,2)) + 1− φ3,7

where

φ4,2 = Hε,τ ◦Hε,τ (α + δ4)

φ3,7 = Hε,τ ◦Hε,τ ◦Hε,1−φ4,2 ◦Hε,τ (− (1− φ4,2))
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C Event-Sequence-Based Domain Analysis for N 4

For δ(0)2 > 0 exchange indices 1 ↔ 2, for δ(0)3 < δ
(0)
4 exchange indices 3 ↔ 4. The domain

D
(
T d
12

)
for δ3 > δ4 is given by the inequalities

|δ2| > τ

Hε,τ (1− |δ2|) ≥ 1

Sτ ◦Hε,τ (α + δ3) ≤ 1 (C.2.21)

Hε,τ ◦Hε,τ (α + δ3) ≥ 1

Hε,τ ◦Hε,τ (α + δ4) < 1

Hε,τ ◦Hε,τ ◦Hε,τ (1− φ4,2) < 1 (C.2.22)

together with the part determined by exchanging δ3 ↔ δ4. The map T d
21 is obtained by

exchanging indices (1, 2) ↔ (3, 4).

Proof. The analytical form follows from the event based analysis is given in tab. C.9 for
states (δ2, δ3, δ4) ∈ P1 assuming δ2 < 0 and δ3 > δ4. For δ2 > 0 the event sequence is
given by relabeling 1 ↔ 2 and for δ3 < δ4 by relabeling 3 ↔ 4. The event table C.9 is
valid if

S1−φ4,2 ◦Hε,τ ◦Hε,τ ◦H0,τ (0) ≤ 1

Hε,1−φ4,2 ◦Hε,τ ◦Hε,τ ◦H0,τ (0) ≥ 1

Hε,τ ◦H0,τ ◦ Jε,1−φ4,2 ◦Hε,τ ◦Hε,τ ◦H0,τ (0) < 1

and

Sτ (1 + δ2) ≤ 1

Hε,τ (1 + δ2) ≥ 1

Sτ ◦Hε,1−φ4,2 ◦Hε,τ ◦H0,τ ◦ Jε,τ (1 + δ2) ≤ 1

Hε,τ ◦Hε,1−φ4,2 ◦Hε,τ ◦H0,τ ◦ Jε,τ (1 + δ2) ≥ 1

and

Sτ ◦Hε,τ (α + δ3) ≤ 1

Hε,τ ◦Hε,τ (α + δ3) ≥ 1

Hε,τ ◦Hε,τ ◦Hε,1−φ4,2 ◦H0,τ ◦ Jε,τ ◦Hε,τ (α + δ3) < 1

and

Hε,τ ◦Hε,τ (α + δ4) < 1

0 < 1− φ4,2 = 1−Hε,τ ◦Hε,τ (α + δ4) < τ

Hε,τ ◦Hε,τ ◦H0,1−φ4,2 ◦Hε,τ (−1 + φ4,2) < 1

which are using properties (7.2.13) are all satisfied if (C.2.21), (7.2.23) and the parameter
conditions (7.2.13) hold.
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Table C.7: Transient map T b
12 for δ2 < 0

event time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

s1 0 0 0 1 + δ2 - α+ δ3 - α+ δ4 -

r1, s2 τ φ1,1 := H0 (τ) τ → − φ2,1 := Jε (1 + δ2 + τ) 0 φ3,1 := Hε (α+ δ3 + τ) - φ4,1 := Hε (α+ δ4 + τ) -

r2, s3, s4 2τ φ1,2 := Hε (φ1,1 + τ) - φ2,2 := H0 (φ2,1 + τ) τ → − φ3,2 := Jε (φ3,1 + τ) 0 φ4,2 := Jε (φ4,1 + τ) 0

r3,r4,s1 3τ φ1,3 := J2ε (φ1,2 + τ) 0 φ2,3 := H2ε (φ2,2 + τ) - φ3,3 := Hε (φ3,2 + τ) τ → − φ4,3 := Hε (φ4,2 + τ) τ → −
r1,s2 4τ φ1,4 := H0 (φ1,3 + τ) τ → − φ2,4 := Jε (φ2,3 + τ) 0 φ3,4 := Hε (φ3,3 + τ) - φ4,4 := Hε (φ4,3 + τ) -

r2 5τ φ1,5 := Hε (φ1,4 + τ) - φ2,5 := H0 (φ2,4 + τ) τ → − φ3,5 := Hε (φ3,4 + τ) - φ4,5 := Hε (φ4,4 + τ) -

s3’ 5τ + 1− φ3,5 φ1,6 := φ1,5 + 1− φ3,5 - φ2,6 := φ2,5 + 1− φ3,5 - 0 0 φ4,6 := φ4,5 + 1− φ3,5

Table C.8: Transient map T c
12 for δ2 < 0

event time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

s1 0 0 0 1 + δ2 - α+ δ3 - α+ δ4 -

r1, s2 τ φ1,1 := H0 (τ) τ → − φ2,1 := Jε (1 + δ2 + τ) 0 φ3,1 := Hε (α+ δ3 + τ) - φ4,1 := Hε (α+ δ4 + τ) -

r2 2τ φ1,2 := Hε (φ1,1 + τ) - φ2,2 := H0 (φ2,1 + τ) τ → − φ3,2 := Hε (φ3,1 + τ) - φ4,2 := Hε (φ4,1 + τ) -

s3’ 2τ + 1− φ3,2 φ1,3 := φ1,2 + 1− φ3,2 - φ2,3 := φ2,1 + 1− φ3,2 - 0 0 φ4,3 := φ4,2 + 1− φ3,2 -
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Table C.9: Transient map T d
12 for δ2 < 0 and δ3 > δ4

event time φ1 σ1 φ2 σ2 φ3 σ3 φ4 σ4

s1 0 0 0 1 + δ2 - α+ δ3 - α+ δ4 -

r1, s2 τ φ1,1 := H0 (τ) τ → − φ2,1 := Jε (1 + δ2 + τ) 0 φ3,1 := Hε (α+ δ3 + τ) - φ4,1 := Hε (α+ δ4 + τ) -

r2, s3 2τ φ1,2 := Hε (φ1,1 + τ) - φ2,2 := H0 (φ2,1 + τ) τ → − φ3,2 := Jε (φ3,1 + τ) 0 φ4,2 := Hε (φ4,1 + τ) -

s4 2τ + 1− φ4,2 φ1,3 := φ1,2 + 1− φ4,2 - φ2,3 := φ2,2 + 1− φ4,2 - φ3,3 := φ3,2 + 1− φ4,2 1− φ4,2 0 0

r3 3τ φ1,4 := Hε (φ1,2 + τ) - φ2,4 := Hε (φ2,2 + τ) - φ3,4 := H0 (φ3,2 + τ) τ → − φ4,4 := Hε (τ − 1 + φ4,2) τ − 1 + φ4,2

r4,s1 3τ + 1− φ4,2 φ1,5 := Jε (φ1,4 + 1− φ4,2) 0 φ2,5 := Hε (φ2,4 + 1− φ4,2) - φ3,5 := Hε (φ3,4 + 1− φ4,2) - φ4,5 := H0 (φ4,4 + 1− φ4,2) τ → −

r1,s2 4τ + 1− φ4,2 φ1,6 := H0 (φ1,5 + τ) τ → − φ2,6 := Jε (φ2,5 + τ) 0 φ3,6 := Hε (φ3,5 + τ) - φ4,6 := Hε (φ4,5 + τ) -

r2 t7 := 5τ + 1− φ4,2 φ1,7 := Hε (φ1,6 + τ) - φ2,7 := H0 (φ2,6 + τ) τ → − φ3,7 := Hε (φ3,6 + τ) - φ4,7 := Hε (φ4,6 + τ) -

s′3 t7 + 1− φ3,7 φ1,8 := φ1,7 + 1− φ3,7 - φ2,8 := φ2,7 + 1− φ3,7 - 0 0 φ4,8 := φ4,7 + 1− φ3,7 -
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Appendix D

Conductance-Based Neuron Models

Here we list all the parameters and functions for the different neuron models used in this
thesis. If no parameter values are specified explicitly the values listed here are used and
referred to as standard parameter.

D.1 The Hodgkin Huxley Model

The Hodgkin Huxley model [172, 171] is defined by equation (2.4.1) and (2.3.2) with

αm (v) = Φ (T )
0.1 (25− v)

exp (0.1 (25− v))− 1
βm (v) = Φ (T ) 4.0 exp

(

− v

18

)

αh (v) = Φ (T ) 0.07 exp
(

− v

20

)

βh (v) = Φ (T )
1.0

1 + exp (0.1 (30− v))

αn (v) = Φ (T )
0.01 (10− v)

exp (0.1 (10− v))− 1
βn (v) = Φ (T ) 0.125 exp

(

− v

80

)

(D.1.1)

and temperature dependence

Φ (T ) = 3
T−6.3

10 .

Specific standard parameters are cs = 1 µF
cm2 , gNa = 120 mS

cm2 , gK = 36 mS
cm2 , gL,HH = 0.3 mS

cm2 ,
vNa = 115mV, vK = −12.0mV,vL,HH = −10.599mV and T = 6.3 ºC. For the bifurcation
analysis we added an extra leak current gL (vL − v) mimicking a shunting synapse with
vL = −60mV and gL = 0 mS

cm2 . Time is measured in milliseconds.

D.2 The Morris-Lecar Neuron Model

The Morris-Lecar neuron model [273] is defined by equations (2.4.4).
The temperature constant Φ−1 = 15 equivalent to a room temperate of 22 °C is used

and specific standard parameters are cs = 20 µF
cm2 , gNa = 4.0 mS

cm2 , gK = 8.0 mS
cm2 , gL =

2.0 mS
cm2 , vNa = 120mV, vK = −80.0mV,vL = −60mV. Half-activation and slope of the

activation curves are v1 = −1.2mV, v2 = 18mV, v3 = 12mV and v4 = 17.4mV. These
parameters are from [316, 100].
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D Conductance-Based Neuron Models

D.3 The Wang-Buzsaki Neuron Model

The Wang-Buzsaki neuron model [400] is defined by equation (2.4.1) with m substituted
by m∞ and (2.3.2) for the gating variables. The rate constants are given by:

αm (v) =
0.1 (v + 35)

1− exp (−0.1 (v + 35))
βm (v) = 4.0 exp

(

−(v + 60)

18

)

αh (v) = 0.07 exp

(

−(v + 58)

20

)

βh (v) =
1.0

1 + exp (−0.1 (v + 28))

αn (v) =
0.01 (v + 34)

1− exp (−0.1 (v + 34))
βn (v) = 0.125 exp

(

−(v + 44)

80

)

.

(D.3.1)

Specific standard parameters are cs = 1 µF
cm2 , gNa = 35 mS

cm2 , gK = 9 mS
cm2 , gL = 0.1 mS

cm2 ,
vNa = 35mV, vK = −90mV and vL = −65mV.

D.4 The Fast Spiking Neuron Model by Erisir et al.

The fast spiking model by Erisir et al. [99] is defined by equation (2.4.5) and (2.3.2) for
the gating variables with

αm (v) =
(40v + 3020)

1− exp (− (v − 75.5) /13.5)
βm (v) = 1.2262 exp

(

− v

42.248

)

αh (v) = 0.0035 exp
(

− v

24.186

)

βh (v) = 0.017
(51.25 + v)

1− exp (− (51.25 + v) /5.2)

αn (v) =
(v − 95)

1− exp (− (v − 95) /11.8)
βn (v) = 0.025 exp

(

− v

22.2

)

.

(D.4.1)
Specific standard parameters are cs = 1 µF

cm2 , gNa = 112.5 mS
cm2 , gK = 225 mS

cm2 , gL = 0.25 mS
cm2 ,

vNa = 74mV, vK = −90mV and vL = −70mV.

D.5 The Connor-Stevens and Rose-Hindmarsh Neuron

Model

The Connor-Stevens model [61, 62, 63] is defined by 2.4.6 and (2.3.2) with rate functions

αm (v) = Φm
0.1 (v + 29.7)

1− exp (−0.1 (v + 29.7))
βm (v) = Φm4.0 exp

(

−(v + 54.7)

18

)

αh (v) = Φh0.07 exp

(

−(v + 48)

20

)

βh (v) = Φh
1.0

1 + exp (−0.1 (v + 18))

αn (v) = Φn
0.01 (v + 45.7)

1− exp (−0.1 (v + 45.7))
βn (v) = Φn0.125 exp

(

−(v + 55.7)

80

)

(D.5.1)
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and steady state activation and time constants for the A-type channel given by

a∞ (v) = 0.0761 exp

(

−(v + 94.22)

31.84

)

τa (v) = 0.3632 +
1.158

1 + exp ((v + 55.96) /20.12)

b∞ (v) =

[
1

1 + exp (γb (v + 53.3))

]4

τb (v) = 1.24 +
2.678

1 + exp ((v + 50) /16.027)

αn (v) =
0.01 (v + 45.7)

1− exp (−0.1 (v + 45.7))
βn (v) = 0.125 exp

(

−(v + 55.7)

80

)

.

(D.5.2)
The Rose-Hindmarsh neuron model [319, 320] is a reduction of the Connor-Stevens

model defined by equations (2.4.5) and (2.3.2) with effective activation q

q∞ (v) = n∞ (v)4 + Ab∞ (v) and τq (v) =
1

2
(τb (v) + τn (v))

Specific standard parameters for both models are cs = 1 µF
cm2 , gNa = 120 mS

cm2 , gK = 20 mS
cm2 ,

gA = 47.7 mS
cm2 , gL,CS = 0.3 mS

cm2 , vNa = 55mV, vK = vA = −72mV and vL,CS = −17mV.
As the reversal potential of the leak is to high for inhibitory shunting we added a second
leak current with standard values gL = 0 mS

cm2 and vL = −70 mS
cm2 . The dimensionless

parameter arising in the reduction in the Rose-Hindmarsh neuron model are A = 0.50085
and γb = 0.069. The temperature scalings are Φm = Φh = 0.26 and Φn = 0.52.

D.6 The Simplified Traub-Miles Pyramidal Neuron

Model

The simplified Traub-Miles [375, 103] model is defined by

d

dt
v = ie + isyn + gL (vL − v) + gNam∞ (v) h (n) (vNa − v) + gKn

4 (vK − v)

d

dt
n = (1− n)αn (v)− nβn (v)

The steady state functions and time constants are inferred form the rates

αm (v) =
0.32 (v + 54)

1− exp (− (v + 54) /4)
βm (v) =

0.28 (v + 27)

exp ((v + 27) /5)− 1

αn (v) =
0.032 (v + 52)

1− exp (− (v + 52) /5)
βn (v) = 0.5 exp

(

−(v + 57)

40

)

.

(D.6.1)

Specific standard parameters are cs = 1 µF
cm2 , gNa = 100 mS

cm2 , gK = 80 mS
cm2 , gL = 0.1 mS

cm2 ,
vNa = 50mV, vK = −100mV and vL = −67mV.

D.7 The Rinzel Neuron Model

The Rinzel neuron model [315] arises from a simplification of a Hodgkin-Huzley type
neuron model (cf. 2.6) and is defined by equation (2.6.5). The steady state voltages and
time constants are derived form the following transition rates

257



D Conductance-Based Neuron Models

αm (v) =
0.1 (v + 25)

exp (0.1 (v − 25))− 1
βm (v) = 4.0 exp

(

− v

18

)

αh (v) = 0.07 exp
(

− v

20

)

βh (v) =
1

1 + exp (− (51.25 + v) /5.2)

αn (v) =
0.01 (v + 10)

exp (−0.1 (v + 10))− 1
βn (v) = 0.125 exp

(

− v

80

)

.

(D.7.1)

The dynamics of the effecitve activation w is defined as

w∞ (v) =
s

1 + s2
(n∞ (v) + s (1− h∞ (v))) , τw (v) = 1 + 5 exp

(

−
(
v + 60

55

)2
)

.

Specific standard parameters are cs = 20 µF
cm2 , gNa = 120 mS

cm2 , gK = 36 mS
cm2 , gL = 0.3 mS

cm2 ,
vNa = 50mV, vK = −92mV and vL = −50.528mV and effective parameter s = 1.271.
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Appendix E

Resonance and Impedance in Neuron

Models

To estimate the resonance frequency of neuron models experimentally we fitted the impedance
to an RCL circuit. Here we derive the impedance for a general conductance based neu-
ron model. Using this method near the resting potential leads to simplified quasi-linear
neuron models [257] that are used to study resonant and fire dynamics as well dynamics
on extended dendritic trees [65].

Consider a conductance based neuron model of the form (cf. sec. 2.3)

cM
d

dt
v = ie + gL (vL − v) +

∑

j

gjm
pi
j h

qi
j (vj − v)

d

dt
aj,k =

1

τj,k (v)
(aj,k,∞ (v)− aj,k)

with mj = aj,1 and hj = aj,2. We denote a steady state of the dynamics for an external
current ie = i0 by x0 = (v0, m1,0, h1,0, . . . ), set ie = i0 + δi and define

gj,w,0 = gj,w (v0) = gjaj,1,∞ (v0)
pi aj,2,∞ (v0)

qi = gjm
pi
j,0h

qi
j,0 .

Linearization around the fixed point in the variables δx = x− x0 yields

d

dt
δx = Df (x0) δx

or explicitly

cm
d

dt
δv = −gLδv +

∑

j

gj,w0 (vj − v0)

(

pj
δmj

mj,0

+ qj
δhj
hj,0

− δv

vj − v0

)

+ δi (t)

d

dt
δaj,k = − δaj,k

τm,k,0

+

(

a′j,k,0
τj,k,0

− aj,k,0τ
′
j,k,0

τ 2j,k,0

)

δv =
1

τj,k,0

(
−δaj,k + ā′j,k,0δv

)

For periodic inputs of the form δi (t) = iδe
iωt we take the ansatz for the solutions of the

linearized system
x (t) = yeiωt

where y = (Z,Zm,1, Zh,1, . . . ). Inserting this into the linearized system yields

Zm,j =
m̄′

jZ

iωτm,j,0 + 1
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and thus for the impedance Z we get by setting iδ = 1 and

bj (v0) = gj,w,0 (vj − v0)

([

pj
m̄′

j,0

mj,0
+ qj

h̄′j,0
hj,0

]

1

1 + iωτm,j,0
− 1

vj − v0

)

Z (ω, v0) =
1

iωcm + gL +
∑

j bj (v0)

This is nothing else than the well know expression for a parallel RLC circuit:

1

Z
=

1

ZC
+

1

ZR
+
∑

j

1

Zj
(E.1)

Thus the nonlinear parallel circuit in fig. 2.2 has become a RLC circuit due to linearization
around a fixed holding potential. Note that for very fast currents one can approximate
τm,j → 0 and obtains a pure real contribution to the impedance.

For a small time dependent inputs with Fourier representation

δi (t) =
1√
2π

ˆ

δĩ (ω) e2πiωtdω

we get a linear response

δv (t) =
1√
2π

ˆ

Z (ω) δĩ (ω) e2πiωtdω

or
δṽ (ω) = Z (ω) δĩ (ω)

and thus for the impedance

Z (ω) =
δṽ (ω)

δĩ (ω)
(E.2)
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Appendix F

Normal Form Coefficients for the

Degenerate Bogdanov-Takens

Bifurcation

In this appendix we derive the normalform coefficients for the degenerate Bogdanov-
Takens bifurcation as calculated in [231]. The technique combines the center manifold
reduction with normal form reduction.

We start with a critical ODE with x ∈ R
d

d

dt
x = f (x) = Dfx+

1

2
D2f (x0; x, x) +O3 (x)

Being at a Bogdanov-Takens point at x0, the Jacobian A = Df (x0) has generalized
eigenvectors

Aq0 = 0 Aq1 = q0 ATp1 = 0 ATp0 = p1

with 〈pi,qj〉 = δij . Further there is a critical center manifold with coordinates (w0, w1)
given by

x = H (w0, w1) = x0 + w0q0 + w1q1 +
∑

j,k

1

j!k!
hjkw

j
0w

k
1 (F.1)

with hjk ∈ R
n. The critical normal form is then given by [87, 276]

d

dt
w0 = w1

d

dt
w1 = βw0w1 + γw2

0 + δw3
0 + ǫw2

0w1 +O4 (w0, w1) (F.2)

Differentiating (F.1) with respect to time we obtain

ẇ0∂w0H (w0, w1) + ẇ1∂w1H (w0, w1) = f (H (w0, w1)) (F.3)

In normal form theory this is equivalent to the homological equations used to determine
the terms that can be removed from the vector field [276]. Comparing coefficients of
(10.3.35) and (F.3) give singular linear systems for the hij from which the normal form
coefficients can be calculated. Here we are only interested in γ which can be derived by
comparing coefficients of w2

0 to give

Ah20 = 2γq1 −D2f (x0; q0, q0)
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Multiplying by pT1 from the right gives

γ =
1

2
pT1D

2f (x0; q0, q0) ,

the result used in theorem 10.3.2.
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Appendix G

Information Flow in the Ornstein

Uhlenbeck Process

In this section we derive the delayed mutual information and transfer entropy for an
multivariate Ornstein-Uhlenbeck (OU) process [384] of the form

dx = Gxdt +BdW (G.1)

with x = (x1, . . . , xn) ∈ R
n and G and B real n × n-matrices. We derive the delayed

mutual information in two steps: In section G.1 we first calculate the joint stationary
probability distribution for the process for all variables at two instances in time and
integrate this distribution over all but two variables to obtain a marginal distribution.
In section G.2 we use this distribution to derive the delayed mutual information in the
OU process. The result is illustrated in fig. 15.1. The derivation of the delayed transfer
entropy is very similar and we give a short outline in section G.3.

G.1 Stationary Joint Distribution

Here we assume that G has eigenvalues with negative real parts and derive the stationary
distribution of (G.1) of being in the state x0 = x (0) at time t = 0 and xd = x (d) at time
t = d given by

ps (xd, x0) = p (xd|x0) ps (x) (G.1.1)

The solution of (G.1) is [120]

x (t) = exp (Gt) x (0) +

ˆ t

0

exp (G (t− t′))BdW (t′) .

For deterministic initial conditions x (0) = x0 the mean is

〈x (t)〉 = exp (Gt) x0 =Mtx0 where Mt := exp (Gt)

and the variance is given by

〈
x (t) , xT (t)

〉
=

ˆ t

0

exp (G (t− t′))BBT exp
(
GT (t− t′)

)
dt′

Σt =

ˆ t

0

exp (Gt′)BBT exp
(
GT t′

)
dt′
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G Information Flow in the Ornstein Uhlenbeck Process

Thus the probability of being at xt = x (t) starting at x0 = x (0) is given by by the normal
distribution

p (xt|x0) = NMtx0,Σt (xt)

= NMt,Σt exp

(

−1

2
(xt −Mtx0)

T Σ−1
t (xt −Mtx0)

)

with some normalization constant NMt,Σt.
As G has eigenvalues with negative real parts only there is a stationary solution

xs (t) =

ˆ t

−∞
exp (G (t− t′))BdW (t′)

with stationary variance matrix given by

Σ∞ =
〈
xs (t) , x

T
s (t)

〉

=

ˆ 0

−∞
exp (−Gt′)BBT exp

(
−GT t′

)
dt′

Hence the stationary probability distribution is

ps (x) = N0,Σ∞
(x)

= NΣ∞
exp

(

−1

2
xTΣ−1

∞ x

)

Thus (G.1.1) explicitly reads

ps (x0, xd) = p (xd|x0) ps (x0)

= NMd,Σd,Σ∞
exp

(

−1

2
xT0Σ

−1
∞ x0 −

1

2
(xd −Mdx0)

T Σ−1
d (xd −Mdx0)

)

= NMd,Σd,Σ∞
exp

(

−1

2

(
xT0 , x

T
d

)
C−1

0,d

(
x0
xd

))

= N0,C0,d
(x0, xd) (G.1.2)

with covariance matrix

C0,d =

(
Σ−1

∞ +MT
d Σ

−1
d Md −MT

d Σ
−1
d

−Σ−1
d Md Σ−1

d

)−1

=

(
Σ∞ Σ∞M

T
d

MdΣ∞ Σd +MdΣ∞M
T
d

)

=

(
Σ∞ Σ∞M

T
d

MdΣ∞ Σ∞

)

where we used that variances add, i.e. Σd + MdΣ∞M
T
d = Σ∞, in the last equation.

Performing the Gaussian integral over all variables except x0,i and xd,j we obtain

p (x0,i, xd,j) = Nd,i,j exp

(

(x0,i, xd,j)C
−1
i,j,d

(
x0,i
xd,j

))

with covariance matrix

Ci,j,d =

(
(Σ∞)ii

(
Σ∞M

T
d

)

ij

(MdΣ∞)ji (Σ∞)jj

)

(G.1.3)
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G.2 Delayed Mutual Information

Using (15.2.1) the mutual information for a two dimensional Gaussian distribution cen-
tered around zero with covariance matrix C

p (x1, x2) =
1

√

(2π)2 det (C)
exp

(

−1

2
xC−1xT

)

and marginal distributions

p (xi) =
1

√

(2π)Cii

exp

(

− 1

2Cii

x2i

)

is given by

MIC =

¨

p (x1, x2) log

(
p (x1, x2)

p (x1) p (x2)

)

dx1dx2

= log

(√

C11C22

det (C)

)

+

¨

1
√

(2π)2 det (C)
exp

(

−1

2
xC−1xT

)(

−1

2
xC−1xT +

1

2C11
x21 +

1

2C22
x22

)

dx1dx2

= log

(√

C11C22

det (C)

)

− 1 +
1

2
+

1

2

= −1

2
log

(

1− C2
12

C11C22

)

Using the above expression (G.1.3) for the covariance matrix for the OU process we obtain
the delayed mutual information

MIi,j (d) = −1

2
log



1−
(
Σ∞M

T
d

)2

ij

(Σ∞)ii (Σ∞)jj



 (G.2.1)

In terms of the coupling matrix G and mixtures of the white noise processes B we obtain
the expression

MIi,j (d) = (G.2.2)

− 1

2
log



1−
(´∞

0

(
exp (Gt)BBT exp

(
GT (t+ d)

))
dt
)2

ij
(´∞

0
(exp (Gt)BBT exp (GT t)) dt

)

ii

(´∞
0

(exp (Gt)BBT exp (GT t)) dt
)

jj





This is the main result of this section. An example is shown in fig. 15.1.

G.3 Delayed Transfer Entropy

In analogy to the derivation of the delayed mutual information we can calculate the
delayed transfer entropy. For the conditional probabilities appearing in the definition of
the transfer entropy in (15.2.2) we can write

p (xd,j |x0,j , x0,i) =
p (xd,j, x0,j , x0,i)

p (x0,j , x0,i)
p (xd,j |x0,j) =

p (xd,j , x0,j)

p (x0,j)
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to obtain

TEi→j (d) =

ˆ

p (xd,j , x0,j, x0,i) log

(
p (xd,j , x0,j , x0,i) p (x0,j)

p (x0,j , x0,i) p (xd,j , x0,j)

)

dxd,jdx0,jdx0,i

Thus we have to calculate the distribution p (xd,j , x0,j, x0,i) and some of its marginals.
Using (G.1.2) and performing all Gaussian integrals except for the coordinates x =
(xd,j , x0,j , x0,i) we obtain for the Gaussian distribution

p (xd,j , x0,j, x0,i) = N0,Ci→j,d
(G.3.1)

with covariances

C = Ci→j,d =





(Σ∞)jj
(
Σ∞M

T
d

)

jj

(
Σ∞M

T
d

)

ij

(MdΣ∞)jj (Σ∞)jj (Σ∞)ij
(MdΣ∞)ji (Σ∞)ji (Σ∞)ii





For such a Gaussian distribution calculation of the marginals and Gaussian integrals in
analogy to sec. G.2 yields

TEi→j (d) = −1

2
log

(

1− (C12C23 − C13C22)
2

(C11C22 − C2
12) (C22C33 − C2

23)

)

and thus explicitly for the OU process

TEi→j (d) = −1

2
log




1−

((
Σ∞M

T
d

)

jj
(Σ∞)ij −

(
Σ∞M

T
d

)

ij
(Σ∞)jj

)2

(

(Σ∞)2jj − (Σ∞MT
d )

2

jj

)(

(Σ∞)jj (Σ∞)ii − (Σ∞)2ij

)




 .
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Appendix H

Information Flow in Hierarchical

Networks of Phase Oscillators Near

Synchronous Phase-Locked States

In this section we derive an explicit analytical expression for the delayed mutual informa-
tion between the cluster phases in a hierarchical network of the form (16.3.1) under the
assumption that the phase locked states (16.3.2) and (16.3.8) are close to the synchronous
state.

In this situation the phase differences ∆φiX ,jY = ∆φiX − ∆φiY in (16.3.2) are small
and neglecting terms of O

(
∆φ2

ix,jX

)
we may linearize it to obtain

ω + δωiX +
∑

jX

(
γiXjX (0) + γ′ixjX (0) (∆φiX ,jY )

)
= ΩX

where we have used ωiX = ω+δωiX . If the group consists ofNX oscillators, there areNX−1
unknown stationary phase differences δφiX = ∆φiX1X and the unknown collective oscilla-
tion frequency ΩX = ω + δΩX in this expression. In writing δX = (δΩX , δφ2X , . . . , δφNX

)
one can rearrange terms to obtain

PXδX = IX

where the NX ×NX matrix PX and the vector IX are given by

PiXjX =







1 jX = 1

−∑kX 6=iX
γ′iXkX

(0) iX = jX

γ′iXjX
(0) else

IiX =
∑

jX

γ′iXjX
(0) + δωiX

The phase differences are then obtained by inverting this equation to obtain

δX = P−1
X IX (H.1)

in each group X. Note that there are explicit formulas for the inverse of a matrix [260].
Further by setting δφ1X = 0 the matrix LX in (16.3.3) becomes

LX =

{

−
(
γ′iXjX

(0) + γ′′iXjX
(0)∆φiXjX

)
iX 6= jX

∑

kX

(
γ′iXkX

(0) + γ′′iXkX
(0)∆φiXjX

)
iX = jX

(H.2)

form which we obtain an explicit expression for ZX via equation (16.3.4).
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For the inter cluster phase coupling function we have assuming that also that the
clusters are close to synchrony, i.e. ∆ΦXY small and keeping only the linear terms

ΓXY (ΦX − ΦY ) =
∑

iX ,jY

ZX,iX

(
γiXjY (0) + γ′iXjY

(0) (ΦX − ΦY +∆φiXjY )
)

= IXY + (ΦX − ΦY ) JXY (H.3)

where

IXY =
∑

iX ,jY

ZX,iX

(
γiXjY (0) + γ′iXjY

(0)∆φiXjY

)

JXY =
∑

iX

∑

jY

ZX,iX

[
γ′iXjY

(0) + γ′′iXjY
(0)∆φiXjY

]

As for the individual clusters, we also linearize the collective phase locking equation
(16.3.8), and solve for ∆ = (∆Ω,∆Φ2, . . .∆ΦN ) where ∆ΦX = ∆ΦXA and ∆Ω = Ω − ω
to obtain

∆ = Q−1O (H.4)

where the M ×M matrix Q and the vector O are given by

QXY =







1 Y = 1

−∑Z 6=X JXZ X = Y

JXY else

OX =
∑

Y

IXY + δΩX

Eqs. (H.2), (H.3) and (H.4) give explicit expressions needed to determine the delayed
mutual information between the phase signals of two clusters via corollary 16.3.1. In
particular, we obtain a long but explicit formula for the delayed mutual information as a
function of the network parameter γiXjY (0), γ′iXjY

(0), γ′′iXjY
(0), δωiX and ξiX .

For couplings of the form γiXjY (φ) = giXjY γ (φ) this gives an explicit expression of
the dMI as a function of the connectivity matrix gij and in particular the local inter
cluster connection strengths giXjX . Under the above assumptions of a close to synchronous
collective oscillation these theoretical predictions are in good agreement with numerical
simulations as shown in fig. 16.3.
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Abbreviations used for all bifurcations are listed in tab. 3.1 on page 37.

abbreviation description reference page

dMI delayed mutual information 15.2.1 180

DNLL dorsal nucleus of the lateral lemniscus 12.1 155

GABA γ-amino-butyric-acid 12 155

LIF leaky integrate and fire neuron 2.6.1, eq. (2.6.4) 28

ML Morris-Lecar neuron model 2.4.2 23

PRC phase response curve 3.4, eq. (3.4.7) 47

QIF quadratic integrate fire neuron 2.6.1, eq. (2.6.3) 27

WB Wang-Buzsaki neuron model 2.4.3 24

List of symbols.

symbol description reference page

[[A]]i,j matrix obtained from A deleting row i and column j 16.2.2.4 187

⊙

i fi composition of maps fi 6.3, eq. (6.3.8) 73

ai,∞ steady state activation / gating 2.3, eq. (2.3.3) 21

ax,i ith gating variable of ion species x 2.3, eq. (2.3.1) 21

B (A) basin of attraction of invariant set A 3.1, eq. (3.1.3) 35

c
(n)
cr critical reset strength for clusters size n 6.6, prop. 6.6.1 83

cm membrane capacitance 2.2, eq. (2.2.3) 20

D (X) domain of map X 7.2.5 100

εij , ε coupling strength from oscillator j to i 2.7.4 32

E event sequence 7.2.2, eq. (7.2.7) 95

ei ith-event 7.2.2, eq. (7.2.7) 95

E space of admissible event sequences 7.2.1 92
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F (l) event-based map 7.2.1 92

F t semi flow of a dynamical system 3.1 34

F firing sequence 6.3, eq. (6.3.7) 73

gx maximal conductance for ion channel species x 2.3, eq. (2.3.1) 21

gL leak conductance 2.2, eq. (2.2.4) 20

gDS,gSD dendro-somatic intracellular conductance 2.5, eq. (2.5.1) 26

gsyn synaptic conductance 2.6, eq. (2.7.1) 29

γij coupling function between oscillator i and j 3.4, eq. (3.4.13) 49

ΓXY collective coupling function between cluster X and Y 16.3.1.2, eq. (16.3.7) 196

H ,Hε,Hε,τ sub-threshold pulse interaction function 5.2.4, eq. (5.2.14) 61

iX index of oscillator i in cluster X 16.3.1 194

ix membrane current carried by ion species x 2.3, eq. (2.3.1) 21

i∞ steady state current 10.3.1, eq. (10.3.1) 133

ie external current 2.2, eq. (2.2.3) 20

ia, iion total active membrane currents 2.2, eq. (2.2.3) 20

isyn synaptic membrane current 2.7, eq. (2.7.1) 29

I0 (k),I1(k) modified Bessel functions of the first kind 16, eq. (16.2.28) 189

J ,Jε,Jε,τ supra-threshold pulse interaction function 5.2.4, eq. (5.2.15) 61

K firing map 6, eq. (6.3.4) 72

λ (·) Lebesgue measure 3.1 34

Mµ,k van Mises distribution with mean µ and

concentration k

16, eq. (16.2.28) 189

M Poincaré return map 6, eq. (6.3.6) 73

MF firing map with firing sequence F 6.5, eq. (6.5.1) 78

MIi,j (d) delayed mutual information between unit i and j with

delay d

15.2.1, eq. 15.2.1 180

MIvM (k) mutual information for a multivariate van Mises

distribution with concentration k

16.2.2.4, eq. (16.2.28) 189
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17.3.1, eq. (17.3.1) 215

µi unfolding parameter 3.3.3, eq. (3.3.1) 44

N number of units in a network 6.3, eq. (6.3.1) 72

N 4 specific network of N = 4 oscillators 7.2.3.1 96

Nµ,Σ Gaussian distribution with mean µ and covariances Σ 16.2.2.1, eq. (16.2.16) 186

ν firing rate part IV 110
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O (x) orbit of x 3.1 34

Oi periodic orbit starting from oi 7.2.3.2, eq. (7.2.16) 97

p (·),p (·, ·) (joint) probability distributions part V 176

pst (·),pst (·, ·) stationary (joint) probability distributions part V 176

P Poincaré section 6.3, eq. (6.3.2) 72

Pi local Poincaré section near periodic orbit Oi 7.2.4, eq. (7.2.19) 99

Φ phase vector 6.3, eq. (6.3.1) 72

φi phase of oscillator i 6.3, eq. (6.3.1) 72

ΦX collective phase of cluster X 16.3.1.1 194

Qz
i maps on the synchronization manifold 7.2.5, C.2.2 100, 245

R partial reset function 5.2.2, eq. (5.2.6) 58

Rc linear partial reset function 5.2.2, eq. (5.2.7) 58

R↑

i ,R
z
i return maps 7.2.5, C.2.3 100, 248

ri,si pulse reception and sending event of oscillator i 7.2.1 92

Sσ phase shift by σ 6.3, eq. (6.3.5) 73

S1 one sphere 6.3, eq. (6.3.1) 72

SN permutation group of N elements 6.3, eq. (6.3.3) 72

Si synchronization manifold near orbit Oi 7.2.5 100

Σt time dependent correlation matrix 16.2.2, eq. (16.2.15) 186

σi,k time since kth-last pulse generation of oscillator i 7.2.1, eq. (7.2.1) 93

ζ supra-threshold input 5.2.2 58

T period of oscillation / limit cycle 3.4, eq. (3.4.2) 47

T z
i transient maps 7.2.5, C.2.3 100, 248

ts, ts,i sth-spike time of oscillator i 5.1 56

Θ,Θ(i) avalanche sets 5.2.3, eq. (5.2.8) 59

τx time constant of ion species / neuronal process x (2.3), eq. (2.3.1) 21

τ ,τij pulse transmission delay 5.2, eq. (5.2.1) 57

T
N N -torus 6.3, eq. (6.3.1) 72

θi phase of theta neuron i 2.6.4, eq. (2.6.9) 29

U rise function 5.2.4.2 61

Ub Mirollo-Strogatz rise function with curvature b 5.2.4.2, eq. (5.2.20) 62

ui potential of pulse-coupled unit i 5.1, eq. (5.1.1) 56

Ui neighbourhood of orbit Oi 7.2.4, eq. (7.2.18) 99
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v membrane potential 2.2, eq. (2.2.3) 20

vS ,vD somatic and dendritic membrane potential 2.5, eq. (2.5.1) 26

vsyn synaptic reversal potential 2.7, eq. (2.7.1) 29

vL leak reversal potential 2.2, eq. (2.2.4) 20

vx reversal potential of ion species x 2.2, eq. (2.2.1) 20

ωi oscillation frequency of oscillator i 3.4, eq. (3.4.3) 47

ΩX collective frequency of cluster X 16.3.1.1, eq. (16.3.2) 194

w, W white noise processes 16.1, 16.3.1.2 182, 195

ζi,ςX noise amplitudes 16.1,16.3.1.2 182,195

z (φ) phase response curve / vector 3.4, eq. (3.4.7) 48

ZX collective phase response curve / vector 16.3.1.2, eq. (16.3.4) 195

x	 (t) periodic solution 3.4, eq. (3.4.2) 47

X state space 3.1 34
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