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1 Introduction

1.1 Motivation and Objectives

Regression techniques are among the principal tools of empirical scientists. Thereby,

we aim at inferring from a set of independent variables (also called covariates or re-

gressors) on a dependent measurement (the response variable). In applied research,

most models simplify the relationships between dependent and independent variables

to be parametric, i.e. it is a priori assumed that they are fully described by a finite

set of parameters (of known dimension). However, such restrictive parametric models

are rarely – or even almost never as Yatchew (1998) puts it in a well-cited article –

justified by subject-matter theory, and can lead to seriously misleading inference if they

are incorrect. Nonparametric regression techniques aim at relaxing these restrictions. In

principle, these techniques neither make an assumption on the functional form (besides

a smoothness condition) of an effect of a regressor nor the type and order of interactions

between variables. It is well known that in high-dimensional settings impractically large

data sets are then required due to the so-called curse of dimensionality. Therefore, the

dimension has to be reduced and (semiparametric) additive models assuming additive

separability of covariate effects (with possible two-dimensional interaction surfaces) have

proven to be valuable in practice and are considered throughout this thesis. Specifically,

we focus on variants of the (structured) additive model of the form

yi = u′iγ+f1(x1i)+. . .+fp1(xp1,i)+xp1+1,ig1(t)+. . .+xp1+p2,igp2(t)+fspat(si)+εi, i = 1, . . . , n

(1.1)

where u′iγ corresponds to usual parametric effects and f1(·),. . . ,fp1(·) are smooth but

otherwise unspecified functions of continuous covariates xi1, . . . , xip1 . Time-varying ef-

fects g1(t),. . . ,gp2(t) of covariates xi,p1+1,. . . ,xi,p1+p2 and a spatial effect fspat(si) of a

regional variable si are only considered in Chapter 3 (although they could also be sup-

ported in the remaining chapters). εi is an unobserved error term commonly assumed

to satisfy the conditional mean restriction E(εi) = E(εi|ui, x1i, . . . , xp1+p2,i, si, t) = 0.

For inference but not necessarily for estimation often they are further assumed to be
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independently and normally distributed with constant variance σ2, i.e. εi ∼ N(0, σ2).

These assumptions, however, are often not fulfilled in data situations in practice fre-

quently limiting the use of standard nonparametric techniques and their software im-

plementations. This may partly explain why the bulk of applied research still relies on

parametric models where methods with weaker assumptions on the error term are more

widely available. Further, although properties of nonparametric techniques are theo-

retically well understood, a lack of integrated powerful and reliable inferential tools in

common implementations might frequently form an obstacle to the use of these methods.

The aim of this thesis are thus to provide methods and implementations for estimation

of additive models relaxing some assumptions usually imposed in available approaches

and to provide tools for inference, i.e. means for quantification of estimation uncertainty

and significance tests. Specifically, the objectives are

• the development of flexible methods for estimation and inference in various complex

data situations. While all considered models allow to additively include smooth

covariate effects, in the different chapters generalizations of common assumptions

in model (1.1) are considered. In particular, in Chapters 3 and 4, flexible nonpara-

metric Bayesian methods in the presence of nonrandom sampling and endogenous

covariates are introduced, respectively.

• the provision of simultaneous confidence (credible) bands for all considered models.

These bands allow to appropriately quantify the estimation uncertainty of function

estimates. They can be used for assessing the statistical significance of an effect and

for hypotheses on its functional form. Further, a novel nonparametric specification

test is introduced in Chapter 2.

• the provision of easy accessible implementations of the models for computation in

a broadly automated fashion. To this end, all proposed methods are implemented

in easy-to-use R packages. Chapter 5 is devoted to their description.

• the investigation of the finite sample properties of the proposed approaches via

Monte Carlo simulations.

• last but not least the study of questions ranging from needs-relatedness of relief

supply in earthquake-affected communities accounting for temporal and spatial

dynamics in Pakistan over determinants of childhood undernutrition in Kenya to

the relationship between class sizes and scholastic achievements of students in

Israel.
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In the subsequent subsection, relevance of nonparametric estimation even in seemingly

simple shapes such as U-shaped curves is demonstrated followed by a brief introduction

to nonparametric regression. Then, an outline of the thesis closes the introduction.

1.2 A Case for Nonparametric Regression

Typical examples for relatively simple nonlinear relationships in (development) eco-

nomics are diminishing returns and the ever-recurring (inverse) U-shaped hypothesis.

In the latter, (economic) theory predicts some turning point in the relationship of a

covariate and a response before and after which the response falls (rises) and then rises

(falls) again, respectively. Interest of research is validation of the hypothesis and identifi-

cation of the turning point. Most prominent examples of such hypotheses are inequality

and environmental Kuznets curves. Specifically, the inequality Kuznets curve (Kuznets,

1955) postulates that inequality rises and then falls again with the increase of income per

capita. Similarly, the environmental Kuznets curve (see e.g. Stern, 2004) suggests that

indicators of environmental degradation first rise and then fall with increasing income.

Since certainly such trends may be intuitively outlined by a quadratic curve, most stud-

ies proceed by approximating the relationship by a quadratic function of the explanatory

variable (income) in a regression analysis. Then, conclusions are usually based on the

statistical significance of the quadratic term and on the prediction of the turning point

by the resulting regression coefficients. However, such a proceeding is potentially haz-

ardous and misleading inference due to model misspecification can result. In fact, theory

usually only predicts that the relationship will be smooth and monotonically increasing

and decreasing before and after the turning point, respectively. Very rarely theory gives

guidance on the shape of the curve, such as a linear first derivative and symmetry as

given by a quadratic function.

Simulated data examples in Figure 1.1 illustrate possible pitfalls when approximating the

relationship by a quadratic function. In Figure 1.1(a), we see that a quadratic function

cannot unbiasedly capture a relationship which is monotone and smooth before and after

the turning point but with an upward trend that gets stronger towards the turning point

and thus does not have a linear first derivative. A quadratic model fitted to the simulated

data resulted in an insignificant (p-value 0.776) quadratic term and suggested a U-shaped

(instead of inverted U-shaped) relationship and thus did not predict the true turning

point at all. Likewise, a skewed convex curve where growth is slower before the turning

point than the decline afterwards (as in Figure 1.1(b)) cannot be properly predicted by

a quadratic trend. Although a significant quadratic term was found, the skewness led to

a predicted turning point that is considerably before the true one. Figures 1.1(c) and (d)
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provide examples where quadratic models yield (significant) quadratic terms and predict

turning points although there are none.

Note that quadratic relationships are also used to model diminishing returns (i.e. data

situations as in Figure 1.1(c) and hypotheses without turning point). The same issue

as described before applies here: A quadratic function restricts the first derivative of

the apparently simple relationship to be linearly decreasing to zero (the turning point of

the quadratic function). When the turning point lies within the data range, the model

is misspecified afterwards. Further, in case of a nonconstant first derivative, estimated

coefficients will be biased and inference (tests) invalid.

Of course, it is no news that the parametrization of the relationship influences the results

(see for example Anand & Kanbur (1993) and Harbaugh, Levinson & Wilson (2002) for

discussions with respect to inequality and environmental Kuznets curves, respectively).

To deal with this, then usually specification searches over different parametric model

specifications (e.g. polynomials) are carried out in order to avoid the specification error.

Of course, specification searches are of great importance in many situations. However,

they have several drawbacks. First of all, the number of specifications is usually quite

restricted and thus the specification search might not include the right model. Secondly,

the used model selection criterion might not choose the right one (or competing crite-

ria might select different models). Finally, uncertainty due to model selection will be

neglected in the finally chosen model which invalidates statistical theory.

In contrast, in nonparametric estimation, the relationship is allowed to be very flexible

imposing only smoothness (ideally controlled by some data-driven criterion) in order

to limit the variance of the estimate. Thus, a specification search with its drawbacks

is mostly avoided. Nonparametric estimation was capable of properly capturing the

relationships and predicting the turning points (when appropriate) in all of the simulated

data examples.

Misspecified parametric models also affect the validity of significance tests. Let us con-

sider the model y = f(income) + ε. At first we want to know in fact whether or not

there is a significant deviation from a linear relationship between y and income. That

is, we are interested in the null hypothesis H0 : f(income) = γ1income (i.e. that f(·)
is a linear function) versus the alternative H1 : f(income) 6= γ1income. However, in

the procedure described above, we rather test against the alternative H?
1 : f(income) =

γ1income + γ2income2, i.e. a parametric alternative which is only a single special case

of H1. Now, since inference treats the model as if it were exact, the test based on the

parametric model cannot distinguish between a relationship with turning point and the

important case of a slope converging to a horizontal line, for example. This discrimina-

tion is of particular interest in the analysis of the environmental Kuznets curve in the

4



(a) (b) (c) (d)

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0−
0.

5
0.

5
1.

5
2.

5

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

−0.6 −0.2 0.2 0.4

−
1.

0
−

0.
6

−
0.

2

x

y

●

●

●

●

● ●
●

●
●

●

●

●

●
● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●
●

●

●

● ● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4 5

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

x

y

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

−2.0 −1.0 0.0 1.0

−
8

−
6

−
4

−
2

0
2

4

x

y

Figure 1.1: Examples of non-quadratic relationships in simulated data. In (a) and (b),
relationships are smooth and monotone before and after a turning point. In
the relationships in (b) and (c), no turning points are present. Dashed and
solid lines indicate the true curves and predicted curves by quadratic models,
respectively. In (b), the vertical line indicates the true turning point.

”race to the bottom” scenario (Dasgupta, Laplante, Wang & Wheeler, 2002). There-

fore, one preferred strategy would be to actually test against the alternative H1 using a

nonparametric specification test and to then potentially inspect the derivatives of non-

parametric estimates (and the corresponding simultaneous confidence bands in order

to check the significance of a possible turning point). In Chapter 2, a powerful non-

parametric specification test is proposed and applied to the investigation of U-shaped

hypotheses on the impacts of the mother’s nutritional status and the mother’s height on

child growth. More nonlinear relationships which can hardly be explained by parametric

specifications are found throughout the thesis.

1.3 Nonparametric Regression in a Nutshell

The ultimate goal of nonparametric regression is to estimate the mean of a dependent

variable y conditioned on covariates x1i, . . . , xpi in the model

yi = f(x1i, . . . , xpi) + εi, i = 1, . . . , n

where f(x1i, . . . , xpi) is a multidimensional unspecified function of interest describing

the relationship between yi and the covariates. εi is assumed to be an error term

capturing dependencies between yi and unknowns not included in (and uncorrelated

with) x1i, . . . , xpi. We first note that this implies that without further assumptions if

E(εi|x1i, . . . , xpi) 6= 0 it follows that E(yi|x1i, . . . , xpi) 6= f(x1i, . . . , xpi) which is com-

monly known as the endogeneity problem in econometrics (and mostly confounding in
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other disciplines) and will be of further interest later in this thesis. However, for the

remainder of this introduction we assume that the equality holds.

Secondly, in practice, if p is large (usually already in case of p > 2) nonparametric

estimation of f(x1i, . . . , xpi) becomes intractable since the amount of data needed to

obtain a desirable accuracy grows exponentially with p which is commonly referred to as

the curse of dimensionality. Structured additive models like the one given in Equation 1.1

aim at mitigating this problem. These are still more flexible than parametric models but

reduce the dimension of fully nonparametric models by making the additivity assumption

f(x1i, . . . , xpi) =
∑p

j=1 fj(xji). Moreover, they facilitate graphical representation and

interpretability of the results. See Hastie & Tibshirani (1990) and Wood (2006) for

extensive treatments of additive models. Many techniques for estimation of such models

exist and only some of them will be mentioned here.

A first class of nonparametric estimators are local smoothers of which nearest neigh-

bors, locally weighted regression (Loess) and local polynomial (kernel) regression (with

the Nadaraya-Watson estimator as the most well-known special case) are prominent

members. The idea of local polynomial regression in the one-dimensional case is to ap-

proximate the curve f(x) at some point x by locally fitting a polynomial of degree d in

the neighborhood of x such that less weight is assigned to observations far from x. To

do so, the weighted least squares criterion is minimized

min
γ0,...,γd

n∑
i=1

{
yi −

d∑
l=0

γl(xi − x)l

}2

K

(
xi − x
λ

)
(1.2)

with some kernel function K(·) (e.g. the standard Gaussian density) and bandwidth

parameter λ controlling how quickly the weights tend to zero. In the multivariate frame-

work p > 1, a backfitting-algorithm can be employed. The idea of backfitting is to

obtain estimates for f1, . . . , fp by iteratively smoothing the partial residuals for one

fj , j = 1, . . . , p in each step until the individual functions don’t change. That is, after

initialization, to approximate fj we replace yi in (1.2) by yi−γ0−
∑p

j=1 f̂j(xji) and cycle

through j = 1, . . . , p until convergence.

The advantages of local polynomial smoothers include their well-known theoretical prop-

erties (see e.g. Fan & Gijbels (1996) for an overview). However, in the additive model

framework, backfitting particularly complicates the construction of inferential tools for

these models which has led to the development of more complicated approaches.

In contrast, spline based procedures largely allow the direct fitting of additive models

by penalized least squares making them an attractive alternative in multidimensional

frameworks. Thereby, instead of the local formulation of the regression problem, a

6



global optimization problem is formulated. For p = 1, the smoothing spline estimator is

the minimizer of the penalized least-squares criterion

min
f∈Cq

[
n∑
i=1

{yi − f(xi)}2 + λ

∫
{f (q)(x)}2dx

]
(1.3)

over all q-times continuously differentiable functions f . The first term is the residual

sum of squares measuring closeness to the data and the second term penalizes curvature

in the functions. The latter is controlled by smoothing parameters λ > 0 similar to

the bandwidth in kernel regression with smoother fits for large values of λ and more

wiggly curves for small values of λ. Commonly, q = 2 is of interest in which case

it turns out that the unique solution to (1.3) is the natural cubic spline with knots

equal to the observations. The latter implies that direct fitting of smoothing splines is

computationally intensive in the multivariate setting because high dimensional matrices

have to be inverted. Penalized splines (see e.g. Ruppert, Wand & Carroll, 2003) can

be considered as a low-rank generalization of smoothing splines and enjoy increasing

popularity in recent years last but not least due to their advantages in additive models

(see Equation (2.2) for the optimization criterion). They allow to flexibly choose the

number of knots (typically considerably smaller than n), the spline basis (e.g. B-splines

or truncated polynomials) and the penalty (e.g. integrated squared derivatives of the

spline functions or their approximation by difference penalties). We will focus exclusively

on Bayesian and frequentist versions of penalized splines in this thesis and describe them

in more detail in the following chapters.

1.4 Outline

In Chapter 2, we study the determinants of chronic undernutrition (measured by the

WHO stunting Z-score, see WHO, 2006) of Kenyan children, with particular focus on

the highly non-linear age pattern in undernutrition. In particular, we are interested

in the possibility of catch-up growth, i.e. improvements of the nutritional status over

age. This is complicated by the fact that the age curve exhibits considerable functional

heterogeneity, i.e. the degree of smoothness of the curve varies over age with a rapid

deterioration in the first year of life and a relatively constant curse afterwards. This

cannot be captured by a usual global smoothing parameter (controlling the degree of

penalization of the roughness of the curve), but has to be modeled by ”locally adaptive

smoothing”. Further, we are interested in the shapes of the impacts of the mother’s body

mass index and her height, which were found to be inverse U-shaped in previous studies.

7



To answer these questions, simultaneous confidence bands for additive models with

locally-adaptive smoothed components and heteroscedastic errors are proposed. These

appropriately quantify the estimation uncertainty of function estimates and can be used

for assessing the statistical significance of an effect and for hypotheses on its functional

form. Further, a novel nonparametric specification test is introduced which is used for

the latter question where we are interested in the relevance of a deviation from a linear

specification of the effects. The confidence bands and the specification test are shown to

perform very well in extensive Monte Carlo simulations.

We find a statistically significant improvement of the stunting score between ages of

23 and 28 months which, however, is shown to be most likely picking up the fact that

children younger than 2 years were measured recumbent and children older than 2 years

were measured standing. A possible pitfall in the construction of the stunting Z-score is

revealed despite the extreme noisiness of the data which renders the comparison to the

implied reference population of healthy children problematic. As a consequence of the

construction of the stunting Z-score, the aggregated measure of stunting might underes-

timate the state of chronic undernutrition in the country. Our analysis emphasizes the

importance of nonparametric estimation of the age effect in order to avoid misspecifica-

tion bias in fully parametric models.

While in Chapter 2, the data is assumed to be randomly sampled, in Chapter 3 we

consider the case where observations are made non-randomly according to some selec-

tion mechanism described by an additional regression equation (explaining the selection

probability). In the case of correlations between unobservable determinants of the selec-

tion probability and unobservables influencing the variable of primary interest, standard

regression techniques yield biased estimates and (parametric) sample selection models

are usually applied. We propose a flexible Bayesian approach to correct for the sample

selection bias and model temporal and spatial dynamics of relief supply in earthquake

affected regions in Pakistan. Thereby, the decision to deliver goods and the factors that

determine the amount of goods supplied are analyzed simultaneously. Interesting results

include that effects of needs-related variables show a strong time dependence suggesting

organizational learning in the humanitarian community. Further, spatial patterns are

recovered that go beyond what heterogeneity in local damage can explain.

In Chapter 4, we relax the usual assumption in Equation 1.1 that

E(ε|u, x1, . . . , xp1) = 0 and allow one of the explanatory variables to be correlated with

the unobservable error term relying on the availability of an instrumental variable. A

violation of this assumption is prevalent particularly but not exclusively in the social

sciences in the case of non-experimental data where the correlation between regressors

and error term may result from confounders (omitted variables), measurement error,
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reverse causality and sample selection, for example. It is well-known that standard

regression techniques then yield biased estimates and instrumental variable regression to

correct for endogeneity bias is commonly applied. We propose a Bayesian nonparametric

instrumental variable approach where bias correction relies on a simultaneous equations

specification with flexible modeling of both the covariate effects and the joint error

distribution. This allows us to construct simultaneous credible bands (the Bayesian

analogue to confidence bands) without distributional assumption on the error terms.

The approach is used for the analysis of the relationship between class size and scholastic

achievements of students in Israel.

Finally, Chapter 5 is devoted to the practical use of the R packages providing imple-

mentations of all methods proposed in the thesis.

The thesis is based on the following papers:

• Wiesenfarth, M. and Kneib, T. (2010). Bayesian Geoadditive Sample Selection

Models. Journal of the Royal Statistical Society: Series C (Applied Statistics) 59

(3), 381–404.

• Wiesenfarth, M., Krivobokova, T., Klasen, S. and Sperlich, S. (2012). Direct Simul-

taneous Inference in Additive Models and its Application to Model Undernutrition.

Journal of the American Statistical Association, forthcoming.

• Wiesenfarth, M., Hisgen, C. M., Kneib, T. and Cadarso-Suarez, C. (2012). Bayesian

Nonparametric Instrumental Variable Regression based on Penalized Splines and

Dirichlet Process Mixtures. Working Paper.
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2 Direct Simultaneous Inference in Additive

Models and its Application to Model

Undernutrition

Abstract: This chapter proposes a simple and fast approach to build simultaneous con-

fidence bands and perform specification tests for smooth curves in additive models. The

method allows for handling of spatially heterogeneous functions and its derivatives as well

as heteroscedasticity in the data. It is applied to study the determinants of chronic under-

nutrition of Kenyan children, with particular focus on the highly non-linear age pattern

in undernutrition. Model estimation using the mixed model representation of penalized

splines in combination with simultaneous probability calculations based on the volume-of-

tube formula enable the simultaneous inference directly, i.e. without resampling methods.

Finite sample properties of simultaneous confidence bands and specification tests are in-

vestigated in simulations. To facilitate and enhance its application, the method has been

implemented in the R package AdaptFitOS.

2.1 Introduction

In empirical studies one is typically interested not only in estimation of parameters or

curves, but also in statistical inference about these estimators. Constructing confidence

intervals and performing corresponding specification tests are necessary tools for going

beyond the first steps of data exploration. Compared to the finite-dimensional para-

metric case, inference about a smooth function f , say, in the univariate nonparametric

regression context is much more involved. The pointwise confidence bands for f(x) that

are usually given do not assess the whole function. Another commonly used confidence

band based on Bayesian smoothing splines proposed by Wahba (1983) (see also Nychka,

1988) is only valid in the average coverage sense. That is, the nominal coverage prob-

ability results by averaging the coverage probabilities for f(x) at each sample point, so
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that the confidence band is valid neither at each point nor for the entire curve simulta-

neously. In general, both pointwise and Wahba (1983)’s confidence bands do not permit

statements about the statistical significance of certain features in the underlying curve.

Instead, one needs a simultaneous confidence band for f (from some suitable class of

functions F , say), which is typically based on its nonparametric estimator f̂ , and is

given by

{
f̂(x)− c

√
Var{f̂(x)}, f̂(x) + c

√
Var{f̂(x)}, ∀x ∈ X

}
, where c satisfies

α = inf
f∈F

Pf

 |f̂(x)− f(x)|√
Var{f̂(x)}

> c,∀x ∈ X


on some subspace of the predictor space X for a given α ∈ (0, 1). Such a confidence

band can be used, for example, in tests for functional form specification. Note that c

depends crucially on f , which is unknown in practice.

There is an extensive theoretical literature on simultaneous confidence bands for models

with a single curve. In a seminal paper, Bickel & Rosenblatt (1973) relate the asymptotic

distribution of supx∈X

∣∣∣f̂(x)− E{f̂(x)}
∣∣∣ (that is, ignoring the bias E{f̂(x)} − f(x) that

depends on the unknown f) to the distribution of the supremum of a Gaussian process.

However, the convergence of these normal extremes is known to be exceedingly slow with

log(n)−1 for sample size n, resulting in very poor performance in small samples. This

has led to the development of confidence bands based on bootstrapping techniques in

combination with slight undersmoothing, see for example Neumann & Polzehl (1998)

and Claeskens & Van Keilegom (2003). In general, such resampling methods are ex-

tremely numerically demanding and the data-driven choice of an appropriate smoothing

parameter is still an open (and difficult) issue. Hence, in applications with large number

of observations and a complicated model structure bootstrapping techniques introduce

an unacceptable computational burden.

For our study of undernutrition of children in Kenya we are confronted with a data set

of nearly 5, 000 observations. The aim is to investigate the relationship between the so-

called Z-score for height for age measuring chronic undernutrition (often called ’stunting’)

typically used by the WHO (see e.g. WHO, 1995) and various continuous covariates,

modeled additively. Initial explorative analysis has indicated heteroscedasticity in the

data and has shown that at least one component of the model needs to be estimated using

locally adaptive methods. Such a task is hardly feasible for bootstrap based techniques.

Another approach to building simultaneous confidence bands is to consider the tail prob-

abilities of suprema of Gaussian random processes, exploring its connection to the so-

called volume-of-tube formula, see Sun (1993), Sun & Loader (1994) and Johansen &
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Johnstone (1990). As long as f can be estimated without a bias, this method yields very

good results for c → ∞ even in small samples, making resampling methods redundant.

Recently, Krivobokova, Kneib & Claeskens (2010) have shown that using the mixed

model representation of penalized splines (for a comprehensive overview see Ruppert,

Wand & Carroll, 2003) for the curve estimation in combination with the approach of

Sun (1993) has several advantages compared to other available techniques. However,

they only consider univariate models with homoscedastic errors and do not allow for

functional heterogeneity. Certainly, in practice usually more complicated data situa-

tions arise which limits the use of their approach. Motivated by such a complex data set

concerning stunting by age in Kenya, our work aims at filling this gap. Specifically, we

extend the approach of Krivobokova, Kneib & Claeskens (2010) to much more involved

additive models with heterogenous functional components and heteroscedastic errors.

Further, a completely new specification test for the components of an additive model is

introduced that naturally takes a possibly varying residual variance as well as spatial

heterogeneity of additive model components into account.

Simultaneous inference in additive models has to date not received much attention in the

literature. Härdle, Huet, Mammen & Sperlich (2004) developed simultaneous confidence

bands and specification tests for generalized additive models in the kernel regression con-

text. Wang & Yang (2009) propose an oracally efficient spline-backfitted kernel smooth-

ing estimator for additive models and obtain asymptotic simultaneous confidence bands

around the additive components using results for kernel regression in line with Bickel &

Rosenblatt (1973). The main contribution of this work is an efficient estimation proce-

dure with preliminary spline smoothing followed by univariate kernel regression, which

allows for fast calculations. Extensions to additive autoregression models are pursued

in Wang & Yang (2007) and in Song & Yang (2010), while Ma & Yang (2011) treated

partially linear additive models. Härdle, Sperlich & Spokoiny (2001) proposed locally

adaptive (via wavelets) and bandwidth adaptive specification tests for additive models.

In our work, we employ penalized splines for estimation which avoids backfitting or

marginal integration in additive models and allows to obtain (adaptive) smoothing pa-

rameters from the corresponding (restricted) likelihood simultaneously with the main

parameters of interest. Moreover, estimation of the varying residual variance can be in-

corporated with little additional numerical effort. The main advantage of the method we

propose in this chapter is that one can obtain simultaneous confidence bands with very

good small sample properties for sophisticated models – such as additive models with

heterogeneous smooth components and heteroscedastic errors – instantly, i.e. without

resampling methods. Simple and fast calculations allow us also to perform model selec-

tion and specification tests in seconds. The approach is implemented in the R package
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AdaptFitOS, making it readily available for practitioners.

The chapter is organized as follows. In Sections 2.2 and 2.3 additive models with pe-

nalized splines and the data are introduced. In Section 2.4 uniform confidence bands

are considered, while a new model specification test is proposed in Section 2.5. The

performance of our approach is investigated in Monte Carlo simulations in Section 2.6.

The methods are used then to analyze the determinants of undernutrition of children in

Kenya in Section 2.7 before we conclude in Section 2.8. Some of the technical details are

deferred to the Appendix.

2.2 Additive Models with Penalized Splines

Let us start with a simple additive model

Yi = β0 +
d∑
j=1

fj(xji) + εi, εi ∼ N (0, σ2), i = 1, . . . , n, (2.1)

where the constant β0 is an intercept. Without loss of generality we assume non-random

covariates to be scaled to the unit interval, i.e. xj1, . . . , xjn ∈ [0, 1], j = 1, . . . , d. Each

corresponding fj ∈ Cq[0, 1] is a q times continuously differentiable function and is cen-

tered at zero to ensure identifiability, i.e. we assume E{fj(xj)} = 0. To estimate

fj with penalized splines, we define for each fj , j = 1, . . . , d a set of kj < n knots

τj = {0 < τj,1 < . . . < τj,kj < 1} and denote the corresponding spline space of degree

p as S(p; τj). This set consists of p− 1 times continuously differentiable functions, that

are polynomials of degree p on each [τj,i, τj,i+1). Then, the penalized spline estimator is

the solution to

min
sj(x)∈S(p;τj), j=1,...,d

 n∑
i=1

Yi − β0 −
d∑
j=1

sj(xji)


2

+
d∑
j=1

λj

∫ 1

0
{s(q)
j (x)}2dx

 , (2.2)

for some q ≤ p. Claeskens, Krivobokova & Opsomer (2009) studied asymptotic proper-

ties of univariate penalized spline estimators under very mild regularity conditions on

the distribution of the covariates and knots, which are further assumed to hold for (2.2)

as well. Note also that all subsequent results are directly adjustable to random designs.

In principle, one can choose different spline degrees for each S(p; τj) and different pe-

nalization orders q for each sj , but we do not consider this generalization here. To solve

(2.2), represent each sj(x) as a linear combination of kj + p + 1 spline functions that

form basis in S(p; τj). We use B-splines in our implementation, although others are
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also certainly possible. Denote a row vector Bj(x) = {Bj,1(x, τj), . . . , Bj,kj+p+1(x, τj)}
to be some spline basis for S(p; τj) and let Bj = {Bj(xj1)t, . . . , Bj(xjn)t}t be the corre-

sponding basis matrix. To obtain centered estimates for fj , one uses the centered basis

matrix B̃j = (In − 1n1tn)Bj , with 1n as an n-dimensional column vector of ones. Now,

representing each sj(x) = B̃j(x)βj allows to solve (2.2) as a minimization problem over

βj .

Smoothing parameters λj can be chosen using multivariate versions of cross-validation.

An alternative way to estimate smoothing parameters λj is to exploit the link between

penalized splines and linear mixed models. Decompose each B̃jβj = B̃j(F
j
b bj +F juuj) =

Xjbj +Zjuj in such a way that (F ju)tF jb = (F jb )tDjF
j
b = 0 and (F ju)TDjF

j
u = Ik̃j , where

Dj is such that
∫ 1

0 [{B̃j(x)βj}(q)]2dx = βtjDjβj and k̃j = kj+p+1−q. This decomposition

is not unique due to singularity of Dj . In our implementation we followed Durban &

Currie (2003). Assuming

Y |u1, . . . , ud = β0 +

d∑
j=1

(Xjbj + Zjuj) + ε, uj ∼ N (0, σ2
ujIk̃j ), j = 1, . . . , d, (2.3)

for Y = (Y1, . . . , Yn)t and ε ∼ N (0, σ2In) leads to the standard linear mixed model

with the best linear unbiased predictor being equal to the solution of (2.2) with λj =

σ2/σ2
uj . All mixed model parameters, including σ2/σ2

uj , are estimated simultaneously

by maximizing a single (restricted) likelihood function. In our further developments

we will use the estimators for fj that result from the mixed model representation of

penalized splines (2.3), so that our estimator will have the form f̂j(x) = `tj(x)Y , with

the smoothing matrix `j(x) given by

`j(x) = (I − S−j)Cj{Ctj(I − S−j)Cj + Λj}−1Ctj(x), (2.4)

where model matrix Cj = [Xj Zj ], penalty matrix Λj = σ2/σ2
ujdiag(0q, 1k̃j ) and S−j =

C−j(C
t
−jC−j + Λ−j)

−1Ct−j with C−j = [C1, C2, . . . , Cj−1, Cj+1, . . . , Cd] and

Λ−j = blockdiag(Λ1,Λ2, . . . ,Λj−1,Λj+1, . . . ,Λd). For practical implementation standard

mixed models software can be used (e.g. function lme in R).

2.3 Data on Childhood Undernutrition in Kenya

Using the model introduced in the previous section we aim to investigate the data on

undernutrition of Kenyan children. Acute and chronic undernutrition is among the most

serious health issues facing developing countries. It is not only an intrinsic indicator of
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well-being but also associated with morbidity, mortality, reduced labor productivity, etc.

Moreover, some estimates claim that undernutrition is implicated in more than 50% of

deaths in developing countries (Pelletier, 1994). Given the importance of nutrition for

child development, a particular focus is on promoting adequate nutrition for children.

Consequently, there is an abundant theoretical and empirical literature on the deter-

minants of childhood undernutrition in developing countries (see Horton, Alderman &

Rivera, 2009). However, most studies are limited to parametric approaches or simple

descriptive methods, not accounting for the complex functional forms of the relationships

and neglecting the high uncertainty due to the large variability in the data (e.g. Kabubo-

Mariara, Ndenge & Mwabu, 2009 and Victora, de Onis, Hallal, Blossner & Shrimpton,

2010).

We analyze the determinants of child undernutrition in Kenya, using the 2003 round

of the Kenyan Demographic and Health Survey (KDHS2003, see Central Bureau of

Statistics (CBS) Kenya, Ministry of Health (MOH) Kenya & ORC Macro, 2004). This

includes information on n = 4, 561 children, aged 0–60 months. The data are cross-

sectional, i.e. there are no repeated observations of the same individual. We focus on

the Z-score for stunting defined as

Zi =
Hi −med(H)√

Var(H)
,

where Hi is the height of the ith individual at a certain age and med(H) and Var(H)

are the median and variance of the heights in a reference population of well-nourished

and healthy children of the same age, respectively. By this normalization, a suitable

Gaussian response is obtained and international comparability is aimed for. Note that

our analysis is based on the new WHO child growth reference standard which was re-

cently developed based on the assessment of child growth in healthy populations in six

countries across the world. Roughly, as described in WHO (2006), to obtain med(H)

and
√

Var(H) a generalized additive model for location, scale and shape (GAMLSS)

was applied. Thereby, median heights and standard deviation were estimated as smooth

functions of age using cubic splines with degrees of freedom chosen by (G)AIC. Since

children younger than 2 years were measured recumbent and children older than 2 years

were measured standing, 0.7 cm were added to all observations of children older than 2

years prior to fitting the model. This estimated difference of 0.7 cm was obtained as the

mean differences between measurements of recumbent length and standing height of chil-

dren between 18 and 30 months from which both measurements are available. Further,

some power transformation was applied to age prior to fitting in order to expand the

age scale for low age values and compress it for larger age values. This was necessary in
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order to avoid oversmoothing for low age values where growth is much more rapid than

for larger age values. After fitting, 0.7 cm were subtracted from the estimated median

curve for all age values larger than 24 months.

Based on the literature on the determinants of chronic undernutrition (e.g. UNICEF,

1998), we start with the following simplified semiparametric model assuming i.i.d. Gaus-

sian errors

Zi = β0+f1(agei)+f2(bmii)+f3(mheighti)+z′iγ+εi, εi ∼ N(0, σ2), i = 1, . . . , n, (2.5)

where f1(age), f2(bmi) and f3(mheight) are smooth functions of the age of the child

in months, the Body Mass Index (BMI, defined as weight in kg divided by the squared

height in meters) of the mother and the mother’s height, respectively. Constant smooth-

ing parameters λj are assumed for all functions. Further, as control variables we add a

set of covariates z including the numbers of years of education of the mother, the sex of

the child as well as the location (rural/urban) and province of the household.

Some of the substantive questions for which a semi-parametric regression approach is

particularly suitable concern the age effect. As shown in the literature on undernutrition

(e.g. Belitz, Hübner, Klasen & Lang, 2010 and references therein), children in developing

countries are usually born with an anthropometric status that is close to the median of

the reference population. Due to poorer nutrition and a poorer health and sanitary

environment, many children begin to fall behind, first in weight, and then in growth

so that a growth deficit begins to emerge. This is usually intensified in the so-called

weaning crisis, which ranges from 4 to 8 months of age, when solid foods and liquids are

introduced and the poor quality of these foods and liquids in many poor countries worsens

the nutritional status of the child. As children’s bodies then partly adapt to poorer

nutritional and health environment (largely by becoming more resistant to pathogens,

partly by the reduced energy needs for a smaller body, and partly through lower activity

levels), stunting usually stabilizes at around age 2, i.e. no further deteriorations vis-a-vis

a reference population of healthy children is observed. One of the important questions

in the literature concerns the possibility of catch-up growth (see e.g. WHO, 1995),

i.e. improvements of the stunting Z-score over time, particularly after age 2. Thus an

important empirical question to ask is in which countries and under which contexts such

catch-up growth (usually assumed to be possible particularly between age 2 and 3) is

observed. This amounts to testing whether the slope of the age effect is significantly

above 0 in some interval.

A second substantive question concerns the impact of the mother’s nutritional status,

typically proxied by her BMI, on child growth. Some studies (see e.g. Kandala, Fahrmeir,
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Klasen & Priebe, 2009) have found an inverse U-shape, where initially the BMI serves

to improve the Z-score, but high levels of the BMI could signify poor quality nutrition

which then leads to a worse nutritional status for the child. Again the shape of the

curve is thus of interest here. Similar arguments can be made for the impact of mother’s

height on child height which is likely to be related to genetic transmission as well as

inter-generational transmission of the economic status. Also here the shape of the curve

is hard to guess in advance.

To answer these questions certain specification tests based on simultaneous confidence

bands for additive models developed in the subsequent sections need to be employed.

2.4 Simultaneous Confidence Bands

2.4.1 The Volume-of-tube Formula

Sun & Loader (1994) suggested to build simultaneous confidence bands for a smooth

function using the approximation to the tail probability of maxima of Gaussian random

processes, which turned out to be connected to the volume-of-tube formula. In this case

no bootstrap is necessary and the approach yields quite good results in small samples,

once a function estimator is unbiased. For completeness we give here some details.

Consider model (2.1) with d = 1. Let f̃(x) = ˜̀(x)tY be an unbiased estimator of f

and assume λ to be known. This implies that G(x) = Var{f̃(x)}−1/2{f̃(x) − f(x)} =
˜̀(x)tε/‖˜̀(x)‖ is a zero mean Gaussian process with variance one and

Cov{G(x1), G(x2)} =

(
˜̀(x1)

‖˜̀(x1)‖

)t(
˜̀(x2)

‖˜̀(x2)‖

)
=: ηt(x1)η(x2),

with manifold {η(x) : x ∈ [0, 1], η(x) = (η1(x), . . . , ηn(x))}. Then, according to Sun &

Loader (1994), it holds for c→∞

α = P

(
sup
x∈[0,1]

|G(x)| ≥ c

)
=
κ0

π
exp

(
−c2/2

)
+ 2{1− Φ(c)}+ o

{
exp(−c2/2)

}
, (2.6)

with κ0 =
∫ 1

0 ‖
d
dxη(x)‖dx the length of the manifold η(x) and Φ(·) the distribution

function of a standard normal distribution. With this, the 100(1 − α)% simultaneous

confidence band for f(x), x ∈ [0, 1] has the form

f(x) ∈
[
f̃(x)− c

√
Var{f̃(x)}, f̃(x) + c

√
Var{f̃(x)}

]
,∀x ∈ [0, 1],
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where c is found by inverting (2.6). In practice, however, all nonparametric estimators

of f are biased and the smoothing parameter λ is estimated from the data, introducing

extra variability. Both problems have been discussed in Krivobokova, Kneib & Claeskens

(2010) who suggested (in the univariate case) to use instead of c a critical value cm
obtained from the mixed model representation of penalized splines (2.3). Some heuristic

arguments and an extensive simulation study confirmed that this approach has very good

small sample properties. Also, they showed that the variability due to the estimation of

the smoothing parameter σ2/σ2
u is negligible, once a small q is used. Thereby, one has to

use enough knots (k proportional to nν/(2q+1), ν > 1) to ensure that the approximation

bias of the penalized spline estimator is negligible (approximation bias arises due to the

fact that a smooth function f is replaced by a spline; it converges to zero with k−p−1).

For more details on the bias structure of penalized splines see Claeskens, Krivobokova

& Opsomer (2009). In the next section we discuss how cm can be obtained for a general

additive model.

2.4.2 Simultaneous Confidence Bands for Additive Models

We consider model (2.3) and assume that sufficiently many knots are taken, so that the

approximation bias is small enough and one can replace fj(x) by Xj(x)bj + Zj(x)uj =:

Cj(x)θj directly. To obtain cm,j we consider the marginal distribution of Y , that is

Y ∼ N

β0 +
d∑
j=1

Xjbj , σ
2In +

d∑
j=1

σ2
ujZjZ

t
j

 .

With respect to this distribution we obtain a zero mean Gaussian process

Gm,j(x) =
Cj(x)(θ̂j − θj)√

Cj(x)Cov(θ̂j − θj)Cj(x)t
∼ N (0, 1),

where Cov(θ̂j − θj) = {Ctj(In − S−j)Cj + Λj}−1 and

Cov{Gm,j(x1), Gm,j(x2)} =

(
`m,j(x1)

‖`m,j(x1)‖

)t( `m,j(x2)

‖`m,j(x2)‖

)
=: ηtm,j(x1)ηm,j(x2),
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with `m,j(x) = {Ctj(I − S−j)Cj + Λj}−1/2Ctj(x). Since Gm,j(x) is a zero mean Gaussian

process, we can apply the volume-of-tube formula to obtain cm,j from

P

(
sup
x∈[0,1]

|Gm,j(x)| ≥ cm,j

)
=
κm,j
π

exp
(
−c2

m,j/2
)

+ 2{1− Φ(cm,j)}+ o
{

exp(−c2
m,j/2)

}
,(2.7)

with κm,j =
∫ 1

0 ‖
d
dxηm,j(x)‖dx as the length of the mixed model manifold. Now a

confidence band around fj based on a penalized spline estimator f̂j is built as[
f̂j(x)− cm,j

√
Var{f̂j(x)}, f̂j(x) + cm,j

√
Var{f̂j(x)}

]
,

where Var{f̂j(x)} = σ2‖`j(x)‖2 with `j(x) defined in (2.4). A careful check shows that

the proofs in Krivobokova, Kneib & Claeskens (2010) carry over to our complex case.

Hence, this confidence band should have coverage probability close to the nominal level

without further corrections. The critical value cm,j is obtained directly from (2.7) and

no bootstrap is necessary. The small sample performance of this band is investigated in

Section 2.6.1.

2.4.3 Simultaneous Bands for Additive Models with Spatially
Heterogeneous Components and Heteroscedastic Errors

So far we assumed a constant error variance σ2. This assumption of homoscedasticity

may often be violated when the variance changes with some covariate or depends on

E(Y ). Further, we assumed constant smoothing parameters λj , which may be too re-

strictive for functions that exhibit strong spatial heterogeneity. For example, the mean

function can change rapidly for low covariate values and remains rather constant af-

terwards. This makes it necessary to penalize little in one part of the covariate sup-

port and more severely in another, which is referred to as locally adaptive smooth-

ing. To relax these assumptions, we define ujs ∼ N{0, σ2
uj (τj,s)}, s = 1, . . . , kj and

εi ∼ N{0, σ2(x̃i)}, i = 1, . . . , n, where x̃ is one of the covariates or some linear com-

bination of them. Assuming that the variance processes σ2
uj (τj) and σ2(x̃) are smooth

functions, we model them with penalized splines and estimate using the link to mixed
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models. More precisely, we define a hierarchical mixed model

Y = β0 +

d∑
j=1

(Xjbj + Zjuj) + ε, ε|v ∼ N(0, σ2Σε), uj |wj ∼ N(0, Σuj ),

Σε = diag{exp(Xvγ + Zvv)}, v ∼ N(0, σ2
vIkv), (2.8)

Σuj = diag{exp(Xwjδj + Zwjwj)}, wj ∼ N(0, σ2
wjIkwj ),

where Xv and Zv are obtained by decomposing Bj in the same fashion as described in

Section 2.2, but based on a smaller number of knots kv � kj . In contrast, Xwj and Zwj
are obtained by decomposing the basis matrix Bj = {Bj(τj,1, τwj )t, . . . , Bj(τj,kj , τwj )t}t.
This basis matrix is obtained by treating knots τj as observations and choosing as knots

τwj a smaller subset of τj . All parameters of this model can be estimated from the

corresponding (restricted) likelihood. A similar idea was suggested in a fully Bayesian

framework with d = 1 and MCMC techniques by Crainiceanu, Ruppert, Carroll, Joshi

& Goodner (2007). To overcome the numerically intensive computations of the latter,

Krivobokova, Crainiceanu & Kauermann (2008) suggested to use the Laplace approxima-

tion of the likelihood. They have shown, that the resulting estimator is nearly identical

to the Bayesian one, but can be obtained with considerably smaller numerical effort.

In the following, we extend the method of Krivobokova, Crainiceanu & Kauermann

(2008) to the model with heteroscedastic errors and provide some details on the esti-

mation procedure. To keep the exposition as clear as possible we will cover the single

covariate case with varying residual variance and constant smoothing parameter. De-

tails on the estimation of a model with varying smoothing parameter and constant error

variance are given in Krivobokova, Crainiceanu & Kauermann (2008). The combination

of varying smoothing parameter with varying residual variance, as well as the extension

to additive models, is straightforward. Thus, we provide details only on the estimation

of the model

Y |u, v ∼ N(Xb+ Zu, σ2Σε), u ∼ N(0, σ2
uIk),

Σε = diag{exp(Xvγ + Zvv)}, v ∼ N(0, σ2
vIkv) (2.9)

The marginal likelihood of model (2.9) is given by

L(b, γ, σ2
u, σ

2, σ2
v) = (2π)−

(n+kv)
2 σ−kvv

∫
Rkv

exp{−g(v)}dv (2.10)

where 2g(v) = log |V |+ vtv/σ2
v + (Y −Xb)tV −1(Y −Xb), with V = σ2Σε + σ2

uZZ
t.
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Since the integral in (2.10) is not available analytically, we opt to use the Laplace ap-

proximation. This is justified because the approximation error is of order kv/n (see

Severini, 2000) and we assumed kv � n. After applying the Laplace approximation, the

log-likelihood corresponding to (2.9) results in

−2l(b, γ, σ2, σ2
v , σ

2
u) ≈ kv log σ2

v+log |V (v̂)|+log |Ivv(v̂)|+ v̂tv̂

σ2
v

+(Y −Xb)tV −1(v̂)(Y −Xb),

with v̂ as a solution to 0 = ∂g(v)/∂v = −Ztv
[
{(ZZt)−1Zb̂}2σ2Σε − diag(A1)

]
/2+vσ−2

v ,

where A1 denotes the vector of diagonal elements of matrix A = Z(Ztσ−2Σ−1
ε Z +

σ−2
u Ik)

−1Zt(ZZt)−1σ−2
u . The corresponding Fisher information matrix is given by Ivv(v) =

E
(
∂2g(v)/∂v∂vt|v

)
= Ztvdiag(A2)Zv/2 + σ−2

v Ikv . Here, A2 is the vector of diago-

nal elements of matrix A2. Introducing notations ω = (γ, v), Cv = [Xv Zv] and

Dv = diag(0, Ikv), one can obtain estimates γ̂ and v̂ simultaneously from the iterated

weighted least squares

ω̂ =
1

2

(
1

2
Ctvdiag(A2)Cv + σ−2

v Dv

)−1

Cvdiag(A2)α, (2.11)

with the working vector α = Cvω + diag(A−1
2 ){(ZZt)−1Zb̂}2σ2Σε − diag(A1). The

corresponding variance is estimated as

σ̂2
v = v̂tv̂/tr{Ztvdiag(A2)ZvI

−1
vv }. (2.12)

Thus, the parameters of model (2.9) can be estimated by iterating between estimation

of b̂, û, σ̂2, σ̂2
u for a fixed ω and σ2

v using standard linear mixed model software and

updating ω̂ and σ̂2
v from (2.11) and (2.12). To use the restricted likelihood, one has to

replace g(v) by gr(v) = g(v) + log |XtV −1X|/2.

The smoothing matrix for the penalized spline estimators in model 2.9 has now the form

`j(x) = Σ−1
ε (I − S−j)Cj{CtjΣ−1

ε (I − S−j)Cj + Λj}−1Ctj(x) (2.13)

with Λj = σ2 blockdiag(0q,Σ
−1
uj ) and S−j = C−j(C

t
−jΣ

−1
ε C−j + Λ−j)

−1Ct−jΣ
−1
ε . Note

that Var{f̂j(x)} = σ2`j(x)tΣε`j(x). Then, simultaneous confidence bands can be ob-

tained as described in Section 2.4.2. Since kwj and kv are both typically very small (5

– 10 subknots are usually sufficient), following the arguments of Krivobokova, Kneib &

Claeskens (2010) one can show that the variability due to estimation of Σε and Σuj is

negligible for sufficiently large n and small q. Our simulation study in Section 2.6.2 con-
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firms this. The approach can also be used for investigating the statistical significance of

features like dips and bumps. In order to do so, choose q ≥ 2 and build the simultaneous

confidence band around the estimated first derivative of fj using

`′j(x) = Σ−1
ε (I − S−j)Cj{CtjΣ−1

ε (I − S−j)Cj + Λj}−1C
′t
j (x),

where Cj(x) in (2.13) is replaced by the first derivative of the basis matrix C ′j(x) (see

Ruppert, Wand & Carroll, 2003, Chapter 6.8).Analogously, the critical value is obtained

by replacing `m,j(x) by `′m,j(x).

Thus, using the mixed model representation of penalized splines one can estimate com-

plex additive models with varying smoothing parameters and varying residual variance

easily and obtain simultaneous confidence bands for the corresponding functions without

additional effort.

2.5 A new Specification Test

The constructed simultaneous confidence bands can now be used for testing a parametric

regression specification versus a quite general nonparametric alternative modeled by

penalized splines. That is, we test the hypotheses

H0 : fj(x) = f0
j (x) vs H1 : fj(x) = f0

j (x) + gj(x), ∀x ∈ [0, 1],

with f0
j (x) as a pre-specified polynomial function, whereas gj(x) is an unspecified de-

viation. The idea is to write fj(x) = f0
j (x) + Zj(x)uj and to exploit the orthogonality

of f0
j (x) and Zj(x)uj . Then, the above test is equivalent to testing H0 : Zj(x)uj = 0.

This hypothesis can be checked by constructing a simultaneous confidence band around

gj(x) = Zj(x)uj . Since any spline function of degree q can be decomposed into a q−1 de-

gree polynomial and a remainder, we can always choose such ψl that f0
j (x) =

∑q−1
l=1 ψlx

l.

Obviously, the test procedure corresponds to checking whether the confidence band for

Zj(x)uj uniformly encloses the zero line coinciding with the test statistic

Tj = sup
x∈[0,1]

(
|Zj(x)ûj |/

√
Var{Zj(x)ûj}

)
.

Rejection of H0 takes place if Tj > c∗m,j . The critical value c∗m,j and Var{Zj(x)ûj} =

σ2‖`j(x)‖2 are obtained by replacing Cj and C−j in definitions (2.4) and (2.7) by

Cj := Zj and C−j := [X1, Z1, . . . , Xj−1, Zj−1, Xj , Xj+1, Zj+1, . . . , Xd, Zd], as well as

appropriately adjusting Λj and Λ−j . Adjustments to the cases of heteroscedastic errors
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and locally adaptive smoothed components follow from the definitions in Section 2.4.3.

Note that approximative p-values can be obtained by calculating the tail probabilities

using the volume-of-tube formula (2.7) replacing cm,j by Tj .

By exploiting the decomposition of a spline function, improved power is obtained com-

pared to the test strategy proposed in Claeskens & Van Keilegom (2003), for example.

They build their proposed test on the simultaneous confidence band around fj itself with

the hypotheses H0 : fj(x) = f0
j (x) vs H1 : fj(x) 6= f0

j (x), ∀x ∈ [0, 1], and rely on local

polynomials for estimation and bootstrapping to obtain the critical value. Thereby, the

data-driven choice of smoothing parameters is still an open problem.

Similar to our findings for the confidence bands, our test also has the advantage of

performing well in small samples and of being analytically available, i.e. no bootstrap or

Monte Carlo simulation is necessary (as in Härdle, Huet, Mammen & Sperlich, 2004, for

example).In particular, this test is preferable to F-type tests as used in the R package

mgcv, which tend to underestimate p-values when smoothing parameters are estimated.

As we will show in Monte Carlo simulations in Section 2.6.3, the proposed test not only

performs competitively compared to restricted likelihood ratio tests (RLRT, see e.g.

Crainiceanu, Ruppert, Claeskens & Wand, 2005),but also allows to incorporate spatially

adaptive smoothed curves without any additional effort.

2.6 Monte Carlo Studies

2.6.1 Simulation 1: Simultaneous Confidence Bands for Additive Models

First, we generate data from model (2.1) for d = 3 with homogeneous functions and i.i.d.

Gaussian errors. The covariates are taken to be independent and uniformly distributed

over [0, 1]. The true functions fj , shown in Figure 2.1(a) – (c) (centered to have zero

mean), are simulated according to

f1(x) = sin2{2π(x− 0.5)},

f2(x) =
6

10
β30,17(x) +

4

10
β3,11(x),

f31(x) = x(1− x),

with βl,m = Γ(l + m){Γ(l)Γ(m)}−1xl−1(1 − x)m−1. Functions f1 and f2 were also con-

sidered in Krivobokova, Kneib & Claeskens (2010), while f31 was used by Claeskens &

Van Keilegom (2003). We scaled all three functions such that their standard deviations

are all equal to one providing comparable signal-to-noise ratios (SNR).

We consider three different sample sizes (300, 600 and 1000), kj = 40, j = 1, 2, 3
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Figure 2.1: True functions in simulations 1 (top and bottom left) and 2 (top and bottom
right) scaled to have variance 1.

knots and σ ∈ {0.33, 0.5, 1.0}, corresponding to medium, low and very low SNR,

that is
√

Var{fj(xj)}/σ ∈ {3, 2, 1}. We used B-spline bases of degree three with

penalties on the integrated squared second derivatives (q = 2) of the spline functions.

Results for kj = 80 knots were very similar and are therefore discarded. Table 2.1 shows

the coverage rates based on a Monte Carlo sample size of 1000 and nominal coverage

100(1 − α)% = 95%. All coverage rates are very close to the nominal level of 0.95,

except for f2 in the case of σ = 1.0 and n = 300. In the latter case, the SNR is too

low for the given small sample size such that the second peak of function f2 could not

be recovered frequently. This led to coverage rates lower than the nominal level, since

the confidence bands were not correctly centered. Note, however, that this setting is

very extreme compared to common settings used in simulations to test the performance

of other approaches to simultaneous confidence bands (e.g. Claeskens & Van Keilegom,

2003), where usually considerably larger signal-to-noise ratios are used. Compared to

these studies, we thus find that our approach works rather well also in quite unfavorable

data situations.

Additionally, we replicated the simulation setting with covariates sampled randomly
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Table 2.1: Coverage rates in simulations together with average areas in parenthesis. For
simulation 2 results for either constant smoothing parameters and error vari-
ance (columns (i)) or varying error variance σ2(x2) and adaptive smoothing
parameter λ3(τ3) for f32 (columns (ii)) are given.

Simulation 1 Simulation 2

σ n f1 f2 f31 f1 f2 f32

(i) (ii) (i) (ii) (i) (ii)

0.33 300 0.94 0.94 0.95 0.93 0.94 0.89 0.94 0.92 0.93
(0.45) (0.49) (0.31) (0.46) (0.44) (0.51) (0.51) (0.69) (0.51)

600 0.95 0.94 0.95 0.95 0.95 0.89 0.94 0.93 0.95
(0.35) (0.38) (0.23) (0.36) (0.34) (0.39) (0.38) (0.52) (0.38)

1000 0.96 0.95 0.96 0.95 0.94 0.88 0.95 0.94 0.95
(0.28) (0.31) (0.19) (0.29) (0.27) (0.32) (0.31) (0.42) (0.29)

0.50 300 0.94 0.93 0.94 0.93 0.95 0.90 0.94 0.90 0.92
(0.61) (0.67) (0.42) (0.63) (0.62) (0.70) (0.69) (0.95) (0.73)

600 0.94 0.95 0.95 0.95 0.94 0.91 0.95 0.92 0.95
(0.48) (0.52) (0.32) (0.48) (0.47) (0.53) (0.53) (0.72) (0.55)

1000 0.95 0.95 0.96 0.95 0.95 0.91 0.94 0.93 0.95
(0.39) (0.42) (0.26) (0.39) (0.39) (0.43) (0.43) (0.59) (0.42)

1.00 300 0.93 0.88 0.95 0.91 0.94 0.87 0.90 0.71 0.81
(1.03) (1.12) (0.71) (1.05) (1.06) (1.16) (1.18) (1.54) (1.26)

600 0.95 0.93 0.96 0.95 0.94 0.92 0.93 0.86 0.92
(0.8) (0.87) (0.54) (0.81) (0.81) (0.89) (0.89) (1.22) (0.97)

1000 0.94 0.94 0.97 0.95 0.94 0.93 0.94 0.89 0.92
(0.66) (0.72) (0.44) (0.67) (0.66) (0.73) (0.73) (1.01) (0.76)

from the uniform distribution as well as with correlations between the covariates and

obtained almost identical coverage rates. For the latter, we replaced the covariates by

(x1i, x2i, x3i)
t = Φ(Zi) with Zi ∼ N(0,Σz) where Σz = (1 − ρ)I3×3 + ρ131t3 such that

ρ ∈ {0.3, 0.5, 0.7} relates to the correlation between the covariates which are marginally

uniform on [0, 1]. The results are given in Table 2.2.
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Table 2.2: Coverage rates and (average areas) for Simulation 1 with correlated covariates.

ρ = 0.3 ρ = 0.5 ρ = 0.7

σ n f1 f2 f31 f1 f2 f31 f1 f2 f31

0.33 300 0.96 0.94 0.96 0.94 0.94 0.95 0.94 0.94 0.95
(0.46) (0.5) (0.31) (0.46) (0.5) (0.32) (0.48) (0.52) (0.34)

600 0.96 0.95 0.95 0.93 0.94 0.95 0.95 0.94 0.95
(0.35) (0.38) (0.24) (0.35) (0.38) (0.24) (0.36) (0.39) (0.26)

1000 0.94 0.95 0.96 0.95 0.96 0.96 0.96 0.96 0.96
(0.28) (0.31) (0.19) (0.29) (0.31) (0.2) (0.3) (0.32) (0.21)

0.50 300 0.96 0.93 0.96 0.94 0.93 0.96 0.95 0.93 0.95
(0.63) (0.68) (0.43) (0.64) (0.69) (0.44) (0.67) (0.72) (0.48)

600 0.96 0.94 0.95 0.94 0.93 0.96 0.95 0.93 0.95
(0.48) (0.52) (0.32) (0.48) (0.53) (0.33) (0.5) (0.54) (0.36)

1000 0.94 0.95 0.96 0.95 0.95 0.96 0.96 0.96 0.96
(0.39) (0.43) (0.26) (0.4) (0.43) (0.27) (0.41) (0.45) (0.29)

1.00 300 0.94 0.88 0.95 0.93 0.88 0.95 0.94 0.89 0.95
(1.06) (1.14) (0.72) (1.08) (1.16) (0.75) (1.15) (1.23) (0.83)

600 0.96 0.92 0.94 0.94 0.91 0.95 0.95 0.92 0.95
(0.81) (0.88) (0.55) (0.82) (0.89) (0.57) (0.87) (0.93) (0.62)

1000 0.94 0.94 0.96 0.95 0.94 0.96 0.95 0.95 0.95
(0.66) (0.72) (0.45) (0.68) (0.73) (0.46) (0.71) (0.76) (0.5)

2.6.2 Simulation 2: Additive Model with Locally Adaptive Smoothed
Components and Heteroscedasticity

In the second simulation study, function f31 of simulation 1 is replaced by function f32

shown in Figure 2.1(d) which is defined as

f32(x) = exp{−400(x− 0.6)2}+
5

3
exp{−500(x− 0.75)2}+ 2 exp{−500(x− 0.9)2}.

This function was also considered e.g. in Krivobokova, Crainiceanu & Kauermann (2008)

and exhibits strong heterogeneity. Further, we introduce heteroscedasticity by specifying

σ(x2) = σ − 0.2(x2 − x2) where x̄2 denotes the arithmetic mean x̄2 = n−1
∑n

i=1 x2i. We

consider either (i) constant smoothing parameters and error variance or (ii) varying error

variance σ2(x2) and adaptive smoothing parameter λ3(τ3) for f32 (kw3 = kv = 5 knots).

All other settings remain the same as in Section 2.6.1.
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Table 2.1 shows the coverage rates for 100(1 − α)% = 95%. Coverage probabilities for

function f1 are very close to the nominal level regardless whether heterogeneities are

taken into account or not except for σ = 1, n = 300 where the apparently worse overall

model fit in (i) led to undercoverage. For function f2 coverage probabilities improve

considerably by taking heteroscedasticity into account such that rates of 0.94 or 0.95

are achieved except for the σ = 1, n = 300 case. Note the virtually identical average

areas in (i) and (ii), i.e. the improvement is not ascribed to overall wider confidence

bands. Locally adaptive estimation of f32 leads to a similar improvement and nearly

perfect coverage rates were obtained, except for n = 300 and the very low SNR. Further,

the average sizes of the bands are decreased notably, due to improved estimation of the

horizontal part of f32. However, estimation of the wiggly part of function f32 regularly

failed for the smallest sample size or high noise settings, resulting in slight undercoverage

in these cases. That is, although the volume-of-tube formula does not require n→∞, we

observe improved coverage probabilities for increasing sample sizes, due to more precise

function estimation.

Summarizing, the sample size must be large enough in low signal-to-noise settings such

that the functions can properly be recovered, which is, however, a feature common to all

approaches to confidence bands. Overall, we found the approach to perform very well

even in these relatively complex models and extreme settings.

2.6.3 Simulation 3: Nonparametric Specification Test

We now compare the performance of the proposed test with the restricted likelihood

ratio test of Crainiceanu, Ruppert, Claeskens & Wand (2005). We consider additive

models with i. i.d. Gaussian errors

Y = µj(x1, x2, x3) + ε, ε ∼ N (0, σ2I), j = 1, 2, 3 with

µ1(x1, x2, x3) = ϕf1(x1) + x2(1− x2) + f2(x2) + x3 + f32(x3)

µ2(x1, x2, x3) = f1(x1) + x2(1− x2) + ϕf2(x2) + x3 + f32(x3)

µ3(x1, x2, x3) = f1(x1) + x2(1− x2) + f2(x2) + x3 + ϕf32(x3)

where ϕ ∈ [0; 0.6] corresponds to the separation distance between the null and the

alternative. We test for no effect, second degree polynomial and for linearity of the

components f∗1 (x1) = ϕf1(x1), f∗2 (x2) = x2(1−x2)+ϕf2(x2) and f∗3 (x3) = x3+ϕf32(x3),

respectively. To do so, B-spline bases with (p = 1, q = 1), (p = 5, q = 3) and

(p = 3, q = 2), respectively, are used.

Further, we choose σ = 0.33, n = 300, kj = 40, j = 1, 2, 3 and kw3 = 5. (Results for
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n = 600 led to the same conclusions and are therefore not reported here.) Three Monte

Carlo simulations with 1000 replications each were carried out.

Critical values for the RLRT test were computed using the simulation based approxi-

mation to the RLRT distribution implemented in the R package RLRsim (see Scheipl,

Greven & Küchenhoff, 2008 which also includes a comprehensive comparisons of RLRT

with F-type tests). The power curves of the proposed test and the RLRT test are virtu-

ally identical. The rejection rates are given in Figure 2.2.
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Figure 2.2: Empirical power curves of the proposed test (solid lines) and RLRT test
(dashed lines) in simulation 3.

2.7 Studying Undernutrition in Kenya

We start by estimating the model (2.5). Figure 2.3 shows the estimated functions based

on B-splines with p = 5, q = 3 and k1 = 40, k2 = k3 = 30. In Figure 2.3(b), the

partial residuals seem to exhibit a larger variability for small BMI values than for large

BMI values. This could indicate a dependency between the Body Mass Index and the

variance of the error term, which we want to explore by modeling the error variance as

a smooth function of bmi. Further, the bump between the ages of 30 and 50 months in

the enlarged plot of f̂1(age) shown as grey line in Figure 2.4(a) could be an artefact due

to the constant smoothing parameter used. Since the Z-score decreases rapidly in the

first 20 months and remains nearly constant afterwards, it seems reasonable to estimate

the effect of age with a locally adaptive smoothing parameter, as discussed in Section

2.4.3. Note that WHO (2006) also faced this problem of functional heterogeneity in

their derivation of reference standards used to construct the Z-scores. However, instead

of locally adaptive smoothing, a rather crude approach was chosen to address the issue

(see Section 2.3). Naturally, neglecting these heterogeneities in smoothness and error
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Figure 2.3: Estimated effects with corresponding partial residuals in model (2.5).

variance could lead to wrong conclusions. Figure 2.4 shows the results for model (2.5)

supplemented by these two features. For completeness, parametric estimates are given

in Table 2.3.

The density plot in Figure 2.5(a) shows that now the residual distribution is reasonably

close to the Gaussian distribution. That is, we can consider the distributional assumption

for the validity of the given confidence bands to be fulfilled. The estimated smoothing

parameter function λ̂1(τ1) shown in Figure 2.5(b) penalizes the roughness of f1(age)

more strongly for larger age values. This ensures that the ’wiggliness’ of the age effect

between 30 and 50 month disappears. The estimated function of the residual standard

deviation in Figure 2.5(c) indicates a slightly decreasing trend with bmi, however, barely

affecting the width of the confidence bands in Figure 2.4.

The resulting estimated fit of the mother’s BMI is positive and statistically significant

based on a 5% significance level, since the zero line lies not entirely inside the simulta-

neous confidence band. However, the effect of bmi is more or less linear and, according

to the test proposed in Section 2.5, does not significantly deviate from the parametric

fit (with a p-value of 0.652). That is, the inverted U shape of the effect of the mother’s

BMI mentioned before is not confirmed for our Kenyan data. Similarly, the estimated

function of the mother’s height (mheight) is virtually linear and does not significantly

deviate from the parametric fit (p-value 1). Regarding the age effect, we find a clearly

nonlinear relationship and a significant deviation from the parametric linear fit (the p-

value of our test is < 0.0001). Note also that the hypothesis of a quadratic age effect

would be rejected indicating that the commonly used parametric models quadratic in

age are vulnerable to misspecification bias and inference for other variables of interest

could be misleading.
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Figure 2.4: Estimated effects in the final model. As gray lines, in (a) the fit assuming
constant smoothing parameter and in (b) and (c) the linear fits are superim-
posed. 95% simultaneous confidence bands assuming homoscedasticity (light
gray area) and heteroscedasticity (dashed lines) are practically identical and
can therefore hardly be distinguished.

The child’s nutritional status seems to be more or less constant for the first three or four

months of age, which is, however, associated with high uncertainty. Then, as already

been suggested by the nutritional literature, there is a virtually linear deterioration until

some inflection point at about 20 months of age after which there seems to be some

improvement. In order to investigate whether this catching-up is real, i.e. statistically

significant, we compute the first derivative of the function of age, which is given in

Figure 2.6. The slope observed after the inception point until approximately 28 months

is marginally significant on a 5% level, since the 95% confidence band around the first

derivative does not include the zero line for this range. Afterwards, the zero line is

included, meaning that we cannot reject the null hypothesis of no catching-up for ages

larger than 28 months.

Despite the efforts of the WHO to improve the comparability of Z-scores by age by

introducing a new reference standard derived from samples of comparable populations

of children younger and older than 24 months, there still could be some problems. For

example, the estimated derivative could also be picking up the fact that children younger

than 2 years were measured recumbent and children older than 2 years were measured

standing. To account for this, the reference standard was adjusted assuming a differ-

ence of 0.7 cm as described in Section 2.3. Note that this difference is associated with

high uncertainty. Also, using the mean differences between recumbent length and height

instead of the median could make the estimate sensitive to a very likely skewed distri-

bution. If this estimate is not appropriate or this difference is smaller for the Kenyan
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Table 2.3: Parametric estimates. Reference category for regional effects is Nairobi
province.

Estimate Std. Error t value p-value

(Intercept) -1.380 0.091 -15.090 0.000
yearsofedu 0.041 0.006 6.778 0.000
rural -0.100 0.060 -1.658 0.097
female 0.197 0.041 4.868 0.000
central -0.132 0.101 -1.300 0.194
coast -0.071 0.102 -0.700 0.484
eastern -0.163 0.106 -1.539 0.124
nyanza -0.129 0.102 -1.275 0.202
rift valley -0.151 0.098 -1.553 0.121
western -0.248 0.099 -2.495 0.013
north eastern 0.547 0.127 4.316 0.000

children (who were smaller in average than the sample of healthy children from well-to-

do families which form the reference standard), this could have led to the observed effect

which therefore has to be treated with caution. To see this, we show in Figure 2.6(b)-(c)

what would happen if the difference between children measured lying down and standing

was assumed to be only 0.3 cm. Given that the children in Kenya are generally much

worse nourished than children in the reference standard, this might well be the case. As

shown in the figure, if the difference were only 0.3 cm, the significant effect of catch-up

growth would disappear. Similarly, if there is substantial age misreporting around that

age group, the reliability of the finding of catch-up growth could be open to question.

2.8 Discussion

In this chapter we construct simultaneous confidence bands for additive models with

varying residual variance and spatially heterogenous smooth components. In doing so,

the use of the mixed model representation of penalized splines not only allows for the

fast and efficient estimation of such complex models, it also helps to build simultaneous

confidence bands with very good small sample properties instantly, that is without using

bootstrap or other numerically demanding techniques. Moreover, this technique can be

used to construct specification tests for the additive components. Our simulation study

confirmed that the resulted coverage probabilities are very close to the nominal level

even for small sample sizes and the specification test is competitive to simulation based
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Figure 2.5: In (a), the gray line corresponds to the standard normal pdf. In (b) and
(c), the estimated smoothing parameter function λ̂1(τ1) and the estimated
residual standard deviation σ̂(bmi) based on kv = kw1 = 5 knots are given.

alternatives. When studying data on undernutrition of children in Kenya the suggested

model, the simultaneous confidence bands, and corresponding specification tests gener-

ated useful insights into drivers of undernutrition of Kenyan children, particularly the

highly non-linear age affect. Our analysis indicates a statistically significant improvement

of the stunting score between ages of 23 and 28 months. This, however, could also be

due to differences in height measurements of children younger/older than 24 months and

therefore requires further investigation. For children older than 28 months, no evidence

for catch-up growth with respect to the reference population is found. From a model

selection point of view, our analysis emphasizes the importance of flexible estimation of

the age effect in order to avoid misspecification bias in the fully parametric models that

are frequently employed in this context. Note that the data exhibit both heterogeneity

in the functional form of some additive components as well as heteroscedasticity.

Possible further extensions are to include random effects and multidimensional compo-

nents into the additive model, as well as to account for possible serial correlations in the

data. It is important to note that the confidence bands considered rely explicitly on the

assumption of normality of the data. Even though for symmetric distributions and suf-

ficiently large sample sizes this assumption is less crucial and good results are typically

obtained (see Loader & Sun, 1997), some corrections would be needed for highly skewed

data. The proposed approach is quite fast and can readily be applied to large data

sets despite its nonparametric nature. It is implemented in the R package AdaptFitOS

described in Section 5.1.
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Figure 2.6: (a): Estimated first derivative of the age effect with 95% simultaneous confi-
dence band. (b) and (c): Estimated age effect and its first derivative assum-
ing that the recumbent length and standing height only differ by 0.3 cm.
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3 Bayesian Geoadditive Sample Selection

Models

Abstract: Sample selection models attempt to correct for the presence of non-randomly

selected data in a two-model hierarchy where, on the first level, a binary selection equa-

tion determines whether a particular observation will be available for the second level,

i.e. in the outcome equation. Ignoring the non-random selection mechanism induced by

the selection equation may result in biased estimation of the coefficients in the outcome

equation. In the application that motivated this research, we analyze relief supply in

earthquake affected communities in Pakistan, where the decision to deliver goods repre-

sents the dependent variable in the selection equation while factors that determine the

amount of goods supplied are analyzed in the outcome equation. In this application,

the inclusion of spatial effects is necessary since the available covariate information on

the community level is rather scarce. Moreover, the high temporal dynamics underly-

ing the immediate delivery of relief supply after a natural disaster calls for nonlinear,

time-varying effects. We propose a geoadditive sample selection model that allows us

to address these issues in a general Bayesian framework with inference being based on

Markov chain Monte Carlo simulation techniques. The proposed model is studied in sim-

ulations and applied to the relief supply data from Pakistan.

3.1 Introduction

A phenomenon frequently occurring in practice is non-randomly selected data with pos-

sibly severe impact on parameter estimates derived from statistical models ignoring this

sample selection. In the application that motivated our research (see Benini, Conley,

Dittemore & Waksman (2009) for a detailed introduction), we are faced with sample

selection in a data set on relief supply. On 8 October 2005, an earthquake struck the

northern part of Pakistan and Indian Kashmir, affecting a population of about 3.5 million
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people. Though national and international delivery of relief supply started immediately,

the distribution in the earthquake affected area was restricted, mainly due to constraints

in transport capacities both for road and air transport. As a consequence, not all re-

quests for relief supply could be satisfied but only a selected subset. We are interested in

analysing both the factors that drive the decision to deliver relief supply after a specific

request and the factors that determine the actual amount of delivered goods. Since it is

very likely that correlations between the probability of positive decisions and delivered

amounts will be present, it is important to avoid the introduction of sample selection

bias by analysing both quantities simultaneously. Moreover, our application calls for

flexible extensions of standard, parametric sample selection models (as applied to the

same data in Benini, Conley, Dittemore & Waksman, 2009). Our database consists of

delivery requests and actual deliveries for 87 Union Councils on 199 days. As a con-

sequence, time-varying effects as well as spatial effects induced by unobserved spatially

varying covariates should be included in a thorough analysis. We will therefore introduce

geoadditive sample selection models and Bayesian inferential schemes based on Markov

chain Monte Carlo (MCMC) simulation. Note that the structure of our data with a low

number of observations corresponding to positive amounts delivered and a high number

of zero deliveries, may also be modeled in different contexts. Zero-inflated models and

two-part models are such alternatives (see Min & Agresti (2002) for a survey). However,

unlike the sample selection model, their standard formulations do not include correlations

between the two processes which is a crucial assumption in our reasoning. Therefore, we

will formulate our model in the context of sample selection models in the following.

Reflecting the two-stage mechanism underlying the selected sampling process, the clas-

sical sample selection model consists of two model equations. The selection equation is

formulated in terms of a binary probit model

P (y∗i1 = 1) = Φ(ηi1), i = 1, . . . , n,

where the binary indicator y∗i1 indicates whether observation i is selected (y∗i1 = 1) or

not (y∗i1 = 0), Φ is the standard normal cumulative distribution function and ηi1 is a

predictor formed of covariates. In our application, y∗i1 = 1 relates to a positive decision

to deliver relief supply and ηi1 is correspondingly combined from covariates influencing

this decision.

The outcome equation defines a Gaussian linear model for those observations that have

been selected in the first place, i.e.

yi2 = ηi2 + εi2 observed only if y∗i1 = 1, (3.1)
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where yi2 is a real-valued response variable, ηi2 is a second predictor combination of

covariates, and εi2 ∼ N(0, σ2
2) are random errors. Often, the sample selection model is

also defined in such a way that yi2 is equal to zero instead of unobserved if y∗i1 = 0. This

interpretation in some sense fits better to our application (where yi2 will be the amount

of goods delivered upon a request) than the classical definition (3.1) and also provides a

connection to zero-inflated models.

It is often plausible to assume correlations between the response variables of the two

equations. For example, in our analysis it will turn out that a positive decision to

deliver is associated with smaller amounts delivered. Such correlations can be included

into the model formulation when considering the latent Gaussian model representation

of the probit model where a linear model

yi1 = ηi1 + εi1, εi1 ∼ N(0, 1)

is assumed for the latent response yi1 and

y∗i1 = 1 ⇔ yi1 ≥ 0.

The principal idea behind this formulation is to consider yi1 as a latent variable generally

interpreted as some kind of utility associated with y∗i1 = 1. In our application, yi1 may be

interpreted as a continuous score that is assigned to a specific request for relief supply and

determines whether goods will be delivered. This score will be determined by different

influential factors such as the urgency of the request but also availability of the required

resources. The latent Gaussian representation now allows to correlate selection and

outcome equation by assuming a correlated bivariate normal distribution for the error

terms, i.e. (
εi1
εi2

)
∼ N

((
0
0

)
,

(
σ2

1 = 1 σ12

σ12 σ2
2

))
. (3.2)

In addition, the latent formulation of the probit model also facilitates Bayesian inference

where the imputation of the unobserved latent variables yi1 yields simple Gibbs sam-

pling steps and avoids the necessity to derive suitable proposal densities in a Metropolis

Hastings sampler.

Since their introduction by Heckman (1979), sample selection models have been heavily

employed in particular in the econometric literature but also in the social sciences (see

for example Winship & Mare, 1992, or Sigelman & Zeng, 1999). Most of these papers

considered parametric sample selection models where the predictors are formed as linear

combinations of covariates, i.e. ηij = utijγj , where uij and γj are a vector of covariates

and a corresponding vector of regression coefficients for either selection (j = 1) or out-
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come (j = 2) equation. Especially if some or all of the covariates in the selection and

the outcome predictor are the same, severe consequences have to be expected when ig-

noring non-random selection in the outcome equation. Estimation in parametric sample

selection models is typically based on the two-step estimation procedure proposed by

Heckman (1979). Based on estimates for the selection equation, a correction component

(the inverse Mills ratio) is added to the outcome equation to obtain valid estimates.

The two-step estimates require that the model specifications for selection and outcome

equations are different, i.e. at least one covariate has to be excluded from the outcome

equation and this is referred to as an exclusion restriction in the literature. Our sim-

ulations indicate that estimates obtained by the Bayesian approach considered in this

chapter can still be reliable (at least in case of symmetric error distributions) when no

exclusion restriction is available and two-step estimation gets increasingly instable.

In our application, a parametric model is deemed insufficient for several reasons. First

of all, the data have been collected over time and besides a general temporal change in

both the frequency and amount of deliveries, it is also expected that covariate effects are

changing over time. This reflects, for example, the varying impact of transport capacity

limitations or changing knowledge about the requirements for relief supply. Such tempo-

ral changes in covariate effects can be addressed in the framework of varying coefficient

models (Hastie & Tibshirani, 1993) requiring nonparametric modeling strategies for the

temporal effects. Moreover, the covariate database may be expected to miss important

covariates, at least some of which follow a spatial pattern. This results in spatially

correlated data and can (at least partly) be accounted for by including a spatial effect.

Consequently, we consider predictors of the form

ηij = utijγj + xij1gj1(t) + . . .+ xijpgjp(t) + fj,spat(si)

in our application, where utijγj corresponds to usual parametric effects, gj1(t),. . . ,gjp(t)

are time-varying effects of covariates xij1,. . . ,xijp, and fj,spat(si) is a spatial effect of a

regional variable si. While most of the literature on semiparametric sample selection

models focusses on relaxing the distributional assumption on the error terms (see Vella

(1998) or Lee (2000) for overviews), we are interested in making the predictor equation

more flexible. Das, Newey & Vella (2003) consider the estimation of flexible, nonlinear

effects and extend the two-step estimation procedure to this situation. Chib, Greenberg

& Jeliazkov (2009) propose a Bayesian estimation scheme also for sample selection models

with flexible nonlinear effects. The latter are modeled through Bayesian versions of

smoothing splines and estimation is based on Markov chain Monte Carlo simulation

techniques. We will further extend this approach to a Bayesian estimation scheme based
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on low-rank penalized splines for nonlinear effects, varying coefficient terms and Markov

random field priors for spatial effects.

The rest of this chapter is organized as follows: Section 3.2 systematically introduces

geoadditive sample selection models within a unifying framework. Section 3.3 describes

Bayesian inference and the associated MCMC sampling steps. The derived methodology

is validated in simulation studies in Section 3.4 and applied to the relief supply data

in Section 3.5. The final Section 3.6 provides comments on possible extensions and

directions of future research.

3.2 Geoadditive Sample Selection Models

The most general sample selection model that will be relevant for our work is defined by

predictors

ηij = utijγj+fj1(zij1)+. . .+fjq(zijq)+xij1gj1(zij,q+1)+. . .+xijpgjp(zij,q+p)+fj,spat(si), j = 1, 2,

that extend the model considered in the introduction by including nonparametric effects

fj1(zij1),. . . ,fjq(zijq) of continuous covariates zij1, . . . , zijq and also admit continuous

effect modifiers zij,q+1, . . . , zij,q+p other than time t. Of course, in practice the predictor

specifications for selection and outcome equation do not have to be the same and in

particular will in general not contain the same number of nonparametric effects or varying

coefficient terms. However, to ease notation, we will suppress this in the following.

3.2.1 Parametric Effects

For parametric effects γj , we assume flat, noninformative priors p(γj) ∝ const throughout

this chapter. This assumption could easily be replaced by informative Gaussian prior

distributions but in the absence of further prior knowledge, we prefer the noninformative

prior choice that avoids specification of hyperparameters.

3.2.2 Nonparametric Effects

To obtain a low-rank representation with relatively few parameters for the nonparametric

effects, we adopt the Bayesian P-spline specification introduced by Lang & Brezger

(2004). The idea builds on the frequentist penalized spline approach popularized by

Eilers & Marx (1996), where each of the nonparametric effects f(z) (dropping indices

for the sake of simplicity) is approximated by a B-spline basis B1(z), . . . , BK(z), of degree
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D, i.e.

f(z) =
K∑
k=1

βkBk(z).

While the degree D of the spline basis can typically be chosen according to subject

matter considerations about the differentiability of f(z), the number of basis functions

K is harder to determine. A large number of basis functions yields a very flexible basis,

but is prone to overfitting the data. On the other hand, choosing a low-dimensional

basis risks missing important features in the functional form of f(z). As a remedy,

penalized splines are built upon a moderately sized basis with 20 to 40 basis functions

as a suitable default choice, but add a penalty term to the estimation criterion. In the

approach of Eilers & Marx (1996), simple squared differences of the basis coefficients

are shown to approximate the integrated squared derivative penalty well-known from

smoothing splines.

From a Bayesian perspective, adding a penalty to the likelihood corresponds to assigning

an informative prior distribution to the basis function coefficients β = (β1, . . . , βK)t. To

be more specific, the difference penalty corresponds to a random walk (RW) assumption,

with

βk = βk−1 + uk, and βk = 2βk−1 − βk−2 + uk

for first and second order random walks, Gaussian innovations uk i.i.d. N(0, τ2), and

noninformative priors for the initial parameters. The variance of the random walk acts

as a smoothing parameter that governs the trade off between fidelity to the data (τ2

large) and smoothness of the function estimate (τ2 small).

The joint prior distribution for the coefficient vector β can be shown to be a multivariate

Gaussian distribution of the form

p(β|τ2) ∝
(

1

2τ2

) rank(∆)
2

exp

(
− 1

2τ2
βt∆β

)
. (3.3)

The penalty or precision matrix ∆ is given by the cross-product of a difference matrix

of appropriate order, i.e. ∆ = DtD. Due to the noninformative prior for the initial

parameters, a polynomial of order d − 1 remains unpenalized by a d-th order random

walk. As a consequence, the joint prior distribution is partially improper, reflected in

the fact that ∆ is rank-deficient.

The vector of function evaluations f = (f(z1), . . . , f(zn))t can be written as f = Zβ,

where Z contains the evaluations of the basis functions.
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3.2.3 Varying Coefficient Terms

Penalized splines are also useful in the context of varying coefficient terms xg(z), where

the effect of x is varying smoothly over the domain of z (Hastie & Tibshirani, 1993).

Since g(z) is assumed to be a smooth function of z, we can again apply penalized

splines for their estimation. As a consequence, the vector of function evaluations g

is again given by Zβ. When considering the vector of contributions to the predictor, i.e.

g∗ = (x1g(z1), . . . , xng(zn))t, the matrix Z has to be multiplied row-wise with the values

of the interaction variable leading to

g∗ = diag(x1, . . . , xn)Zβ = Z∗β

where Z∗ = diag(x1, . . . , xn)Z. Again, a random walk prior can be assigned to the

vectors of regression coefficients.

3.2.4 Spatial Effects

In our application, we require a suitable prior distribution for spatial effects based on

areal data. As a consequence, we require a prior that takes spatial closeness between

areas into account. This can be conceptualized by considering a neighborhood structure

for the areas and by defining a Markov random field prior based on this neighborhood

structure (Rue & Held, 2005). We define two areas to be neighbors if they share a

common boundary and assign separate coefficients βs representing the spatial effect in

region s.

The assumption of a Markov random field for the coefficient vector β = (β1, . . . , βS)t,

where S denotes the number of areas, corresponds to the assumption that the effect of

an area s is conditionally Gaussian, with the mean of the effects of neighboring areas as

expectation and a variance that is inverse proportional to the number of its neighbors

Ns:

βs|βr, r 6= s ∼ N

 1

Ns

∑
r∈δs

βr,
τ2

Ns


where δs contains all neighbors of region s. From the conditional prior specification,

the joint prior distribution can be derived and is again of the multivariate Gaussian

form (3.3). The precision matrix is now given by an adjacency matrix that reflects the

neighborhood structure underlying the areas. The vector of evaluations of the spatial

function fspat = (fspat(s1), . . . , fspat(sn))t can again be written as Zβ, where Z is an

incidence matrix of zeros and ones that links each observation to the corresponding
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spatial effect.

3.2.5 Generic Model Representation

In summary, we find the same structure for all effects contained in our geoadditive

sample selection model: The vector of function evaluations can be written as the product

of a design matrix and a possibly high-dimensional vector of regression coefficients.

Combining all observations in the predictor vectors ηj = (η1j , . . . , ηnj ,j)
t with dimension

nj corresponding to the number of observations for selection and outcome equation,

therefore allows us to introduce a general matrix-vector representation of the model.

After appropriate re-indexing, we obtain the model equations

ηj = Ujγj + Zj1βj1 + . . .+ Zjrβjr, j = 1, 2,

where r denotes the overall number of nonparametric effects (smooth, varying coefficient

or spatial) and Uj is a fixed effects design matrix. Similarly, all priors for nonparametric

effects are multivariate Gaussian and can therefore be written as

p(βjl|τ2
jl) ∝

(
1

2τ2
jl

) rank(∆jl)

2

exp

(
− 1

2τ2
jl

βtjl∆jlβjl

)
, l = 1, . . . , r.

This very general structure will considerable facilitate the description of inferential pro-

cedures in the following section and is also extremely helpful when developing MCMC

samplers that can be used regardless of the specific type of an effect.

The prior specification for nonparametric effects is completed by assigning a suitable

hyperprior to the smoothing variance τ2
jl. For the sake of convenience, we will consider

conjugate inverse gamma priors τ2
jl ∼ IG(a, b) throughout this chapter.

3.2.6 Priors for the Error Term Covariance Matrix

Finally, a suitable prior distribution has to be assigned to the covariance matrix of the

error terms in (3.2). Since the variance of the selection equation is restricted to one, the

standard choice of a conjugate inverse Wishart prior is not available. Instead, following

Omori (2007) we consider a reparameterisation that allows to assign standard prior

distributions of the free parameters. Therefore we write

Cov(εi) =

(
σ2

1 = 1 σ12

σ12 σ2
2|1 + σ2

12

)
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where εi = (εi1, εi2)t, σ12 = Cov(εi1, εi2), and σ2
2|1 = Var(εi2|εi1). In this parameter-

isation, a Gaussian prior can be assigned to the covariance, i.e. σ12 ∼ N(mσ12 , s
2
σ12

),

while an inverse Gamma prior can be employed for the conditional variance σ2
2|1, i.e.

σ2
2|1 ∼ IG(aσ2|1 , bσ2|1). See Chib, Greenberg & Jeliazkov (2009) for a derivation of this

prior specification based on an inverse Wishart prior for the covariance matrix.

3.3 Bayesian Inference

Employing the latent Gaussian formulation of the probit model (Albert & Chib, 1993)

yields two Gaussian regression models with correlated error terms. After imputing the

unobserved latent variables yi1, the model definition therefore would equal a seemingly

unrelated regression model, and Bayesian inferential schemes as developed in Lang, Ade-

bayo, Fahrmeir & Steiner (2003) could in principle be used. However, due to sample

selection, observations on the outcome equation are only available for parts of the ob-

servations. If all covariates of the outcome equation are also observed for the missing

response variables, it is possible to impute also the missing response variables yi2 and

to construct a complete data set in each MCMC iteration. This, in turn, then enables

the application of methodology for seemingly unrelated regression, see for example Kai

(1998) or van Hasselt (2005). However, we found in preliminary analyzes that this im-

putation approach typically shows mixing and convergence problems and, in particular,

does not yield satisfactory estimates for the error covariance and therefore frequently

fails to correct for the bias induced by sample selection.

We therefore follow Chib, Greenberg & Jeliazkov (2009) and Omori (2007) and con-

sider a sampler that imputes latent Gaussian variables for the selection equation but

uses only the observed responses from the outcome equation. Besides providing better

estimation results, this also speeds up computation times since the imputation of un-

observed outcomes is avoided. The full conditionals for all model parameters are then

given as follows:

• The full conditionals for latent response yi1 are truncated normal

yi1|· ∼

{
TN(−∞,0)(ηi1, 1) if y∗i1 = 0

TN[0,∞)(myi1 , s
2
yi1) if y∗i1 = 1

where TN[a,b](m, s
2) denotes a normal distribution with mean m and variance s2
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truncated to the interval [a, b] and

myi1 = E(yi1|yi2, y∗i1 = 1) = ηi1 +
σ12

σ2
2|1 + σ2

12

(yi2 − ηi2),

s2
yi1 = Var(yi1|yi2, y∗i1 = 1) = 1− σ2

12

σ2
2|1 + σ2

12

= σ2
1|2.

• The full conditionals for parametric effects γj are Gaussian γj |· ∼ N(mγj , P
−1
γj )

with precision matrix

Pγj =


[

1
σ2

1|2
U t1U1

]
y∗i1=1

+
[
U t1U1

]
y∗i1=0

if j = 1[
1
σ2

2|1
U t2U2

]
y∗i1=1

if j = 2

and mean

mγj =


P−1
γ1

([
1
σ2

1|2
U t1(y1 − o1)

]
y∗i1=1

+
[
U t1(y1 − η̃1)

]
y∗i1=0

)
if j = 1

P−1
γ2

([
1
σ2

2|1
U t2(y2 − o2)

]
y∗i1=1

)
if j = 2

where [. . .]y∗i1=1 is used to denote that the matrices and vectors contained in the

brackets are restricted to observations with y∗i1 = 1 (and analogously for y∗i1 = 0)

and σ2
1|2 denotes the conditional variance Var(εi1|εi2) that was already involved

in the full conditional for latent responses from the selection equation. The offset

vectors oj are given by

oj =

{ σ12

σ2
2|1+σ2

12
(y2 − η2) + [η̃1]y∗i1=1 if j = 1

[σ12(y1 − η1)]y∗i1=1 + [η̃2]y∗i1=1 if j = 2

and η̃j = ηj − Ujγj denotes the predictor vector excluding the parametric effects.

• The full conditionals for regression coefficients of nonparametric effects, varying

coefficients and spatial effects are Gaussian βjl|· ∼ N(mβjl , P
−1
βjl

) with precision
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matrix

Pβjl =


[

1
σ2

1|2
Zt1lZ1l

]
y∗i1=1

+
[
Zt1lZ1l

]
y∗i1=0

+ 1
τ2
1l

∆1l if j = 1[
1
σ2

2|1
Zt2lZ2l

]
y∗i1=1

+ 1
τ2
2l

∆2l if j = 2

and mean

mβjl =


P−1
β1l

([
1
σ2

1|2
Zt1l(y1 − o1)

]
y∗i1=1

+
[
Zt1l(y1 − η̃1l)

]
y∗i1=0

)
if j = 1

P−1
β2l

([
1
σ2

2|1
Zt2l(y2 − o2)

]
y∗i1=1

)
if j = 2

where the offset vectors oj are given as for parametric effects and η̃1l = η1−Z1lβl1
denotes the predictor of the selection equation excluding the l-th effect.

• The full conditionals for the smoothing variances are inverse gamma distributions

τ2
jl|· ∼ IG(ãjl, b̃jl) with parameters

ãjl = a+
rank(∆jl)

2
, b̃jl = b+

1

2
βtjl∆jlβjl.

• The full conditional for the error covariance is Gaussian σ12|· ∼ N(m̃σ12 , s̃
2
σ12

) with

m̃σ12 = s̃2
σ12

(
mσ12

s2
σ12

+

[
1

σ2|1
(y1 − η1)t(y2 − η2)

]
y∗i1=1

)

s̃2
σ12

=

(
1

s2
σ12

+

[
1

σ2|1
(y1 − η1)t(y1 − η1)

]
y∗i1=1

)−1

.

• The full conditional for the conditional variance of the outcome equation is inverse

gamma σ2
2|1|· ∼ IG(ãσ2|1 , b̃σ2|1) with

ãσ2|1 = aσ2|1 +
n2

2

b̃σ2|1 = bσ2|1 +
(

[σ12(y1 − η1)]y∗i1=1 − (y2 − η2)
)t (

[σ12(y1 − η1)]y∗i1=1 − (y2 − η2)
)
,

where n2 denotes the number of observations in the outcome equation.
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Since all full conditionals reduce to well-known distributions, a Gibbs sampling scheme

can be set up to perform Bayesian inference. We will use the mean of the posterior sam-

ples as an estimate for the posterior mean and will consider Bayesian credible intervals

constructed from sample quantiles.

The two computational bottle necks of the sample selection Gibbs sampler are the gen-

eration of the latent Gaussian responses for the selection equation and the draws from

high-dimensional Gaussian distributions to sample the parameter vectors βjl. For draw-

ing from truncated normals, we employed improved sampling schemes that do not rely

on simple rejection sampling (Robert, 1995) but the corresponding simulation step still

remains computationally demanding if the number of observations in the selection equa-

tion is high (as in our application). For drawing the regression coefficients βjl we make

use of sparse matrix algorithms that rely on the special structure of the precision matrix

of the full conditionals (Lang & Brezger, 2004).

3.4 Simulations

3.4.1 Simulation Study 1: Parametric Sample Selection Models

In order to compare the proposed method with separate univariate regressions and Heck-

man models based on two-step estimation (computed by using package sampleSelection

(Henningsen & Toomet, 2008) in R), a simulation with linear effects is conducted. Uni-

variate regression estimates are calculated by maximum likelihood probit estimation and

ordinary least squares estimation, respectively.

The model is specified through the predictors

ηi1 = 2ui11 + ui12, ηi2 = 1.5ui21 + 2ui22

All covariate values (ui11, ui21)t and (ui12, ui22)t are samples from bivariate Gaussian dis-

tributions with means 0.5, variances 1 and correlation ρdm. We examine correlated design

matrices (ρdm = 0.5) and identical design matrices (ρdm = 1.0, i.e. ui11 = ui12, ui12 =

ui22). Further, bivariate Gaussian errors are considered with zero means, variances one

and correlations ρε = 0.5 and ρε = 0.9, respectively. The simulation consists of 250 repli-

cations with 1000 observations each. According to the high amount of censoring in our

application, approximately 95 percent of the total number of observations are censored

in the first stage of the model such that only 50 observations remain in the outcome

equation. In the case of the Bayesian sample selection model, the initial 5, 000 iterations

are discarded (burn-in period) and from the subsequent 40, 000 iterations, every 40th

iteration is recorded for inference. The high degree of thinning is applied to avoid pos-
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ρdm = 0.5 ρdm = 1

ρε True Univ. SSM 2-step Univ. SSM 2-step

ρε = 0.5 (Int Selection) −5.5 -0.1803 -0.1985 -0.1803 -0.1007 -0.1189 -0.1007
u11 2.0 0.0653 0.0690 0.0653 0.0412 0.0418 0.0412
u12 1.0 0.0382 0.0427 0.0382 0.0169 0.0200 0.0169
(Int Outcome) 0.0 0.4652 -0.0011 0.0158 1.9177 0.7989 0.2893
u21 1.5 -0.0422 0.0019 0.0018 -0.5321 -0.2198 -0.0791
u22 2.0 0.0047 0.0025 0.0035 -0.2561 -0.1157 -0.0501

ρε = 0.9 (Int Selection) −5.5 -0.1481 -0.1368 -0.1481 -0.1124 -0.1196 -0.1124
u11 2.0 0.0508 0.0453 0.0508 0.0467 0.0425 0.0467
u12 1.0 0.0318 0.0263 0.0318 0.0170 0.0157 0.0170
(Int Outcome) 0.0 0.8343 -0.0312 0.0097 3.4446 0.4582 0.2649
u21 1.5 -0.0720 0.0046 0.0057 -0.9587 -0.1323 -0.0774
u22 2.0 0.0054 0.0044 0.0057 -0.4478 -0.0616 -0.0421

Table 3.1: Simulation study 1: Averaged estimation bias in the cases of correlated and
identical design matrices. In the third column the true values are shown, while
the other values are the difference of the averaged estimated values minus the
true value.

sible sample autocorrelations. Nevertheless, sample autocorrelations of estimates in the

selection equation (and to a lesser extent of the estimated components of the covariance

matrix) do not completely disappear depending on the values of ρdm and ρε. This is a

well-known general issue in Bayesian (parametric) sample selection models (see Omori,

2007). However, since we did not observe consequences for the point estimates, we did

not increase the given number of iterations.

Table 3.1 gives the estimation bias obtained by separate univariate regressions (Univ.),

Bayesian sample selection model (SSM) and two-step estimation (2-step) averaged over

the simulation runs. Table 3.2 shows empirical root mean squared errors (RMSE).

Results for the estimated correlation between the errors and the variance of the error in

the outcome equation σ2
2 are given in Table 3.3.

The following conclusions can be drawn from the results of the simulation study (focusing

on the outcome equation since in the selection equation estimation bias and mean squared

errors are comparable in all methods):

• Using univariate regression, the estimation bias and RMSE increase with increasing

correlations of the error terms and increasing correlations of the design matrices

(Tables 3.1 and 3.2). In the case of ρdm = 0.5, considerable selection bias occurs

only in the intercept, while in the case of identical design matrices all coefficients
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are highly biased when using univariate regression. All sample selection models

considerably reduce the estimation bias and mean squared errors in all settings.

• With increasing ρdm, both sample selection models increasingly underestimate ρε
and the associated selection bias (Table 3.3), i.e. the estimated coefficients get

closer to those in univariate regression but are still less biased (Table 3.1).

• While the averaged estimation bias is lower for two-step estimation than for the

Bayesian approach in the case of ρdm = 1, it is the other way round for the mean

squared errors (Tables 3.1 and 3.2). Hence, two-step estimation appears to be less

efficient (but less biased on average) than the Bayesian sample selection model in

this case. In the case of low correlations of the design matrices, the differences are

minimal. The two-step estimator is known to suffer from identification problems

in the case of highly correlated design matrices resulting in instable estimates. The

lower variability of the estimates in the Bayesian approach (reflected by the lower

mean squared errors) might indicate that our approach is less prone to this issue.

• The RMSE of the estimated correlation is relatively high for both methods and in

particular for identical design matrices. However, it is always lower in the Bayesian

approach than in two-step estimation (Table 3.3).

• While the estimation bias for σ2
2 only varies minimally over the different settings

in the Bayesian approach, the bias is higher for the two-step estimator in the case

of identical design matrices (Table 3.3). Regarding the RMSE of σ2
2, there is an

increase for both methods in the case of identical design matrices but to a much

lesser extent in the Bayesian approach than in two-step estimation.

• In general, the value of ρdm has a higher impact on mean squared errors and

estimation bias in all methods than the value of ρε.

Additionally, we conducted a simulation study with lower degree of censoring (approx.

25% to 29%) which yielded similar results. In summary, the proposed Bayesian approach

appears to be at least competitive to two-step estimation in the parametric setting and

performs better in case of high correlations between the design matrices.
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ρdm = 0.5 ρdm = 1

Estimate Univ. SSM 2-step Univ. SSM 2-step

ρε = 0.5 (Int Sel.) 0.6372 0.6568 0.6372 0.5874 0.5948 0.5874
u11 0.2716 0.2758 0.2716 0.2444 0.2465 0.2444
u12 0.1693 0.1698 0.1693 0.1626 0.1646 0.1626
(Int Out.) 0.5415 0.3633 0.3479 2.0228 2.1439 2.7959
u21 0.1581 0.1489 0.1499 0.5826 0.6215 0.7974
u22 0.1163 0.1109 0.1117 0.3017 0.3068 0.3840

ρε = 0.9 (Int Sel.) 0.6475 0.6240 0.6475 0.6020 0.5694 0.6020
u11 0.2719 0.2583 0.2719 0.2507 0.2355 0.2507
u12 0.1668 0.1544 0.1668 0.1590 0.1527 0.1590
(Int Out.) 0.8715 0.2918 0.3049 3.4831 1.6861 2.5795
u21 0.1524 0.1152 0.1204 0.9784 0.4995 0.7359
u22 0.1068 0.0938 0.0961 0.4688 0.2467 0.3545

Table 3.2: Simulation study 1: Empirical root mean squared errors.

ρdm = 0.5 ρdm = 1

Estimate SSM 2-step SSM 2-step
Bias RMSE Bias RMSE Bias RMSE Bias RMSE

ρε = 0.5 σ̂2
2 0.0365 0.2492 -0.0503 0.2307 -0.0305 0.3360 0.1658 0.5684
ρ̂ε -0.0365 0.1867 -0.0101 0.1921 -0.2568 0.4519 -0.1511 0.5726

ρε = 0.9 σ̂2
2 0.0470 0.2477 -0.0375 0.2270 -0.0298 0.3958 0.1315 0.7569
ρ̂ε -0.0248 0.0924 -0.0006 0.1238 -0.1846 0.3541 -0.1634 0.4635

Table 3.3: Simulation study 1: Estimation bias (true σ2
2 = 1) and root mean squared

errors for the correlation between the errors and the variance in the outcome
equation.

3.4.2 Simulation Study 2: Geoadditive Sample Selection Models

In this simulation study, the performance of the Bayesian semiparametric sample selec-

tion model is compared to separate univariate regressions based on generalized additive

models. More precisely, results of the sample selection model are compared to an addi-

tive probit model in the selection equation on the one hand and to a Gaussian additive

model in the outcome equation on the other hand. The estimation of the separate mod-

els is also Bayesian and carried out with the same sampling scheme as for the sample

selection model but with the correlation of the errors fixed at zero. This allows all hy-

perparameters to be set equally, ensuring that the prior information is the same in both
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methods.

The investigated model is specified through the predictors

ηi1 = f11(xi1) + f1,spat(si)

ηi2 = f21(xi1) + f22(xi2) + f23(xi3) + f2,spat(si).

The included functions are given as follows:

f11(x) = 2Φ(x)− 1, f21(x) = 1− 1

8
(x+ 2)2,

f22(x) = sin(x) + 1.5 · exp(−10x2), f23(x) = 1.5 · sin(πx)2

where Φ(x) denotes the standard Gaussian distribution function. The functions fj,spat(si)

are bivariate functions of the centroids of regions in a map of Baden-Württemberg and

Bavaria shown in the top graphs of Figure 3.1, where the black colored regions in the

left panel indicate a negative effect on selection, i.e. they are more likely to be censored.

The covariate values are i.i.d. uniformly distributed

xi1 ∼ U(−2, 2); xi2 ∼ U(−2, 2); xi3 ∼ U(0, 1).

Note that functions f11(x) and f21(x) as well as the spatial functions enter the model

with the same covariates in selection and outcome equation. The error terms are i.i.d.

bivariate Gaussian with zero means, variances Var(εi1) = 1 and Var(εi2) = 2 and correla-

tion ρε = 0.9. Again, 250 replications of the model each with n = 500 observations in the

selection equation are simulated. Approximately 50% of the observations are censored.

In all models, the first 5, 000 iterations are discarded and the 40, 000 following iterations

are thinned by 40. The estimated nonparametric functions are based on cubic P-splines

with 30 knots, second order random walk penalties and the choice a = b = 0.001 for the

hyperparameters of variances.

Figure 3.2 shows posterior means of the smooth functions averaged over the simulation

runs. Fits obtained by the Bayesian sample selection model (dashed lines) are compared

to those obtained by univariate regression (dotted lines). Solid lines show the true

function. The estimation bias for the spatial effects in the outcome equation is illustrated

for both methods in the bottom graphs of Figure 3.1. For the spatial effects in the

selection equation no differences were visible. Therefore, the corresponding graphs are

omitted.

In Table 3.4, empirical root mean squared errors averaged over the simulation runs for

separate univariate regressions and the sample selection model are given, where the
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Figure 3.1: Simulation study 2: The first row shows the true spatial effects in the se-
lection equation (left) and the outcome equation (right). In the second row,
maps of the estimation bias of the spatial effects in the outcome equation for
the sample selection model (left) and univariate regression (right) are shown.
In shaded regions, no data were simulated.

empirical root mean squared error for estimates f̂r from simulation run r is defined as

RMSE(f̂r) =

√√√√ 1

200

200∑
i=1

(f̂r(xi)− f(xi))2.

Note that the RMSE for the nonparametric functions is based on estimates for 200 fixed

covariate values which is necessary due to different missing values of y2 = (y12, . . . , yn22)t

and consequently of the covariate values. The RMSE of the spatial function f2,spat is

based on estimates for all regions including those missing in observations available for

the outcome equation. For missing spatial regions, estimates are obtained by sampling

from the corresponding full conditional, i.e. by predicting estimates also for these regions.

Thus, uncertainty in the estimate for the complete spatial function is adequately reflected
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and results are comparable between simulation runs with different missing regions.

The following conclusions can be drawn:

• For functions f21 and f2,spat which enter the outcome equation with the same

covariates as in the selection equation, estimates are severely biased and the mean

squared errors are high when using univariate regression. More precisely, when

using univariate regression strong true spatial effects f2,spat are not recovered and

the magnitude of the effects is underestimated. This is particularly the case in

regions that are likely to be unobserved and that have negative effects in the

outcome equation as well as in regions where censoring is less likely and that have

positive effects in the outcome equation. The sample selection model considerably

reduces the estimation bias and the RMSE for both functions.

• For the remaining functions, no clear differences between the fits and mean squared

errors obtained by univariate regression and the sample selection model can be

observed, although the sample selection model yields minimally better results.

Also the average coverage rates of pointwise credible intervals based on nominal levels

of 80% and 95% were calculated. For the biased fits of functions f21 and f2,spat in

univariate regression, the coverage rates were clearly below the nominal level, while those

in the sample selection model were above the nominal level. For the other functions, the

coverage rates of both methods were virtually equal and except for function f22 above

the nominal level.

Summing up, compared to separate univariate regressions, the sample selection model

reduces the estimation bias and the mean squared error for effects of covariates that are

included in both equations and leads to reliable uncertainty estimates.
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Figure 3.2: Simulation study 2: Averaged fits of the nonparametric functions. The
dashed lines show averaged posterior mean estimates of the Bayesian sam-
ple selection model and the dotted lines show those obtained by Bayesian
univariate regression. The solid lines are the true functions. Note that the
curves only differ minimally in some cases which is why the lines overlay and
the curves can hardly be distinguished.

Selection Equation Outcome Equation

f11 f1,spat f21 f22 f23 f2,spat
Univ. 0.1308 0.4053 0.4491 0.2504 0.1456 0.5164
SSM 0.1224 0.3986 0.1556 0.2421 0.1432 0.4166

Table 3.4: Simulation study 2: Empirical root mean squared errors for univariate regres-
sions (Univ.) and the sample selection model (SSM).
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3.5 Relief Supply in Earthquake-Affected Communities in

Pakistan

3.5.1 Data Sources and Data Preparation

On October 8, 2005, Pakistan was hit by a magnitude 7.6 earthquake centered in Azad

Jammu Kashmir (AJK) province. The earthquake killed at least 73,000 people and

made millions homeless. A large-scale internationally coordinated response followed

to provide the affected communities with relief supply. Approximately 90 distribution

agencies asked the United Nations Joint Logistics Center (UNJLC) to coordinate the

movements of their cargo while other agencies coordinated the response independently.

The data set considered in the following contains information only on the deliveries co-

ordinated by the UNJLC. This restriction, for example, implies that larger settlements

are underrepresented in the data since these were mainly accommodated by providers

not coordinated by the UNJLC (particulary the Pakistani armed forces). Between 28

October 2005 and 18 May 2006, the UNJLC coordinated deliveries of goods from 32

origins to 219 destinations within 87 Union Councils in the operation zones Batagram,

Mansehra, Muzaffarabad and Bagh. The October observations were considered incom-

plete and have therefore been removed from the data set, resulting in observations for a

time span of 199 days.

The deliveries are divided into commodity types such as food, kitchen supplies and

water (commodity type 1) or tools, shelter and clothing (commodity type 2). In the

following, we will consider the quantities delivered for each of the two commodity types

as response variables in the outcome equations of two separate models (844 and 430

observations, respectively) although it would in principle be possible to combine both

commodity types into one joint model as outlined in Section 3.6. Both responses are

measured in metric tons and were transformed logarithmically to match the assumption

of a Gaussian distribution. The dependent variables in the selection equations represent

the decision to deliver the considered commodity type on a given day. To be more

specific, the binary selection indicator equals one, if in a certain region on a certain

day a movement of the respective commodity type took place, otherwise it is coded as

zero. In summary, we obtain 87 · 199 = 17, 313 observations for the 87 Union Councils

and 199 days constituting the observation period, leading to degrees of censoring of

approximatively 95% and 97.5%, respectively.

Covariates from external sources were added to the UNJLC database for the analyzes.

The covariates can be grouped into needs-related and logistics-related variables. Since no

immediate measures for survivor needs are available, estimated pre-disaster population
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size is employed as a proxy variable for the size of the affected population in a Union

Council. In addition, the modified Mercalli index (MMI) measuring seismic strength is

considered a proxy of vulnerability. Rugosity is included as a proxy for poverty since

mountain villages and dispersed-homestead communities are assumed to be poorer than

valley-floor communities. Logistics-related covariates measure the height above sea level,

the distance to the responsible supply hub, the available helicopter capacity (in metric

tons) and the accessibility of the community by road on a particular day. Note that the

latter two covariates change over time although we will suppress time-dependency in the

notation. For a more detailed description of the data and a discussion of its implications

like the construction of commodity types and the choice of needs and logistical factors

see Benini, Conley, Dittemore & Waksman (2006) and Benini, Conley, Dittemore &

Waksman (2009).

3.5.2 Model and Prior Settings

For both commodity types, we estimated geoadditive sample selection models. All

needs-related variables are included as time-varying effects, distance from supply hub

is included nonlinearly and the remaining logistics-related variables enter the model

parametrically. The predictor specification is completed by including a spatial effect

based on the Union Council, leading to the predictor

ηij = γj0 + γj1height i + γj2lnheli i + γj3acci + fj(dist i)

+popigj1(t) + MMI igj2(t) + rug igj3(t) + fj,spat(si), j = 1, 2,

where γj0, . . . , γj3 correspond to intercept and parametric effects for elevation above sea

level (height), logarithm of helicopter capacity (lnheli) and road access (acc, binary).

fj is the nonparametric effect of distance to the next supply hub (dist), gj1, gj2, gj3 are

the time-varying effects of population size (pop), seismic strength (MMI ) and rugosity

(rug) and fj,spat represents the spatial effect. Time-varying effects were assigned to the

needs-related variables to determine the temporal variation of the impact of survivor

needs (as compared to logistic convenience) within the observation time.

Cubic splines with second order random walk prior and 30 knots were considered for both

the nonparametric and the time-varying effects. For the hyperpriors of smoothing and

error variances, the prior parameters are fixed at a = b = 0.001 and aσ2|1 = bσ2|1 = 0.001,

respectively. For the normal prior of the covariance, we set mσ21 = 0 and s2
σ12

= 10.

After a burn-in period of 20, 000 iterations, 80,000 additional iterations were conducted,

recording only every 80th iteration to reduce autocorrelations. Inferences are therefore

based on 1,000 samples considered to be approximately independent.
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Food, Kitchen Supplies & Water Construction Material & Tools

Estimate Std.Dev. p-value Estimate Std.Dev. p-value
Selection equation
(Intercept) −10.0451 2.1097 0.000 −8.7294 2.6672 0.000
height 0.0014 0.0005 0.000 0.0001 0.0005 0.870
lnheli 0.7169 0.2909 0.022 0.2857 0.3559 0.460
acc 0.0759 0.0707 0.302 0.2023 0.0731 0.006

Outcome equation
(Intercept) 35.3435 6.5789 0.000 31.2483 9.1100 0.000
height −0.0004 0.0006 0.492 −0.0005 0.0005 0.276
lnheli −1.1028 0.9751 0.290 −1.4555 1.3672 0.252
acc −0.1831 0.1751 0.286 0.0749 0.1820 0.642

Correlation -0.9105 0.0299 -0.8662 0.0851

Table 3.5: Parametric estimates with standard deviations and two-sided Bayesian p-
values.

3.5.3 Results

Parametric estimates for both commodity types are summarized in Table 3.5. Graphs of

the estimated nonparametric effects are given in Figures 3.3 and 3.4. Maps of UNJLC

operation zones Batagram, Mansehra, Muzaffarabad and Bagh with estimated spatial

effects are given in Figures 3.5 and 3.6 where the top graphs show the posterior mean

estimates of Union Council-specific regional effects and the bottom graphs show maps

of significance based on nominal levels of 80%. To obtain the latter from the sam-

pled parameters, 80% credible intervals based on the corresponding sample quantiles

were derived. If the credible interval was strictly positive, this is coded as +1 whereas

strictly negative intervals are coded as −1. Intervals containing zero are coded as 0.

Consequently, regions with nonsignificant regional effects are colored in grey, those with

negatively significant effects are colored in black and those with positively significant

effects are colored in white. Note that the maps show a larger part of Pakistan to ease

the localization of the earthquake-affected regions. Shaded Union Councils have not

been used in the estimation process.

In both models, a correlation of the errors of about −0.9 indicates the presence of se-

lection bias and a strong influence of the delivery probability on the amount delivered.

In other words, it is suggested that communities with rarer deliveries were compen-

sated with larger amounts in each delivery or, vice versa, that frequent deliveries came

along with lower amounts in each delivery. An alternative explanation might be that

smaller requests were honored more easily while larger requests had to be rejected more
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Figure 3.3: Food, kitchen supplies & water: Estimated nonparametric effects in the se-
lection equation (top graphs) and outcome equation (bottom graphs). The
right column shows the effect of the logistics-related variable distance and
the remaining show time-varying effects of the needs-related variables. Shown
are posterior means with 95% pointwise credible intervals. The dotted lines
show the mean levels of the functions.

frequently.

Regarding the logistics-related covariates with linear effects, helicopter capacity has a

positive effect with posterior probability larger than 95% on the decision to deliver food,

kitchen supplies and water. Road access has a positive effect with posterior probability

larger than 95% on the decision to deliver construction material and tools. This may

reflect a preference to carry construction material by trucks and food by helicopters.

Base elevation has a positive effect with posterior probability larger than 95% on the

decision to deliver which might also capture the consideration of expected poverty. While

all coefficients are positive in the selection equation, their counterparts in the outcome

equations are mostly negative. This might imply that a high number of deliveries comes

along with less weight in every delivery which coincides with the interpretation of the

correlation between the errors. The nonparametric effect of the distance from the re-

sponsible supply hubs does not obey a clear structure. In commodity type construction

material and tools, there might be an indication of a positive effect of distance on both

56



50 100 150 200

−
2

0
2

4
6

8

Days since disaster

R
ug

os
ity

 e
ffe

ct
 o

ve
r 

tim
e

23 50 100 150 200

−
0.

4
0.

0
0.

2
0.

4
0.

6

Days since disaster

M
M

I e
ffe

ct
 o

ve
r 

tim
e

23 50 100 150 200−
0.

00
01

5
0.

00
00

0
0.

00
01

0

Days since disaster

P
op

ul
at

io
n 

ef
fe

ct
 o

ve
r 

tim
e

23 0 20 40 60 80 100 120

−
2.

0
−

1.
0

0.
0

1.
0

Distance from supply hub (km)

E
ffe

ct

50 100 150 200−
20

−
15

−
10

−
5

0
5

10

Days since disaster

R
ug

os
ity

 e
ffe

ct
 o

ve
r 

tim
e

23 50 100 150 200

−
3

−
2

−
1

0
1

Days since disaster

M
M

I e
ffe

ct
 o

ve
r 

tim
e

23 50 100 150 200

−
2e

−
04

0e
+

00
2e

−
04

4e
−

04

Days since disaster

P
op

ul
at

io
n 

ef
fe

ct
 o

ve
r 

tim
e

23 0 20 40 60 80 100

−
2

−
1

0
1

2

Distance from supply hub (km)

E
ffe

ct

Figure 3.4: Construction material & tools: Estimated nonparametric effects. Graphs are
arranged as in Figure 3.3.

response variables, however with wide pointwise credible intervals overlapping zero.

We now turn to the needs-related variables whose effects are assumed to vary over time.

While no clear effect of population can be observed for commodity type food, kitchen

supplies and water, the graph for commodity type construction material and tools shows

positive effects on the amount delivered at the beginning and end of the time period.

This suggests that Union Councils with a large population received bigger deliveries

than Union Councils with a smaller population at the beginning and end of the time

period. Regarding the effects of rugosity and MMI on the decision to deliver relief,

the same pattern described by Benini, Conley, Dittemore & Waksman (2009) can be

observed: Initially, Union Councils close to the epicenter of the earthquake obtained

priority by the agencies, but approaching winter, the influence of rugosity (proxying

poverty) increased. Regarding the effects of these factors on the amount of delivered

supply, this pattern appears to be reversed, but is associated with high uncertainty.

The mean levels of rugosity and MMI are negative. Together with their effect on the

decision to ship, this might suggest that poor settlements and Union Councils close to

the epicenter received more frequent but smaller deliveries.

The maps of the spatial effects in both equations and models show positive effects in

Union Councils close to the epicenter. This might suggest that the MMI does not fully
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explain the influence of local damage. The black-colored Union Councils in the very east

of the Azad Jammu Kashmir region on the maps for construction material and food on

the decision to ship did not receive deliveries at all.

3.5.4 Discussion

One of the major aims in delivering relief supply will be that the delivered goods reach

the people in need while logistical factors such as capacity restrictions impose natural

restrictions. Our results indicate that in fact not only logistical but also needs-related

factors seem to have been taken into account particularly when deciding whether to

deliver. Intuitive interpretations of the results are possible in most cases. However,

some questions arise concerning the validity of the model and the data used.

The first issue is the construction of the dependent variable in the selection equation.

For both commodity types, the number of censored observations is very high, contrasting

16, 469 censored with 844 uncensored observations and 16, 913 censored with 430 uncen-

sored observations for food, kitchen and water supply and construction material and

tools, respectively. The high amount of censoring is induced by the construction of the

decision indicator where it is assumed that on every day in every Union Council there is

a need (and therefore an implicit request) for relief supply. Of course it would be more

realistic to work with actual delivery requests but these are not recorded in the data and

can hardly be imagined to be collected in a natural disaster area as post-earthquake Pak-

istan. Moreover, we expect the construction of decision indicators to be related mostly

to a shift in the intercept of the selection equation while the covariate effects should be

less affected. A second problem with the preparation of the data is that deliveries taking

more than one day are counted as observations on each day during the delivery. This

might induce bias in the estimates due to observations in Union Councils that are far

from the supply hubs and might in particular impact the coefficient associated with the

variable distance.

Several of the explanatory variables considered in our models are only proxies for the

covariates of interest. For example, rugosity is considered to approximate poverty while

the modified Mercalli index proxies vulnerability. While the use of proxy variables leaves

some doubts about the estimated effects for covariates such as poverty and vulnerability,

the inclusion of the spatial effect actually allows to cover some of the associated uncer-

tainty. For example, we found that the spatial effects hint at both increased probabilities

of positive delivery decisions and higher delivery amounts close to the epicenter. This

might be related to the fact that the modified Mercalli index fails to capture the full

picture of local damage.
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Uncertainty about the general validity of our results arises also from the fact that our

data set only contains data from agencies coordinated by the UNJLC. In particular,

this led to an underrepresentation of larger cities that were mostly accommodated by

the Pakistani armed forces. We therefore reestimated the geoadditive sample selection

models excluding cities with a population larger than 100, 000. Parametric estimates

partly differed (in their magnitude but not their sign) while time-varying effects showed

a shift of the overall level but not of the general functional form. In summary, there are

no dramatic changes in the interpretation of the estimation results, despite the differences

in numerical values.

A final issue is concerned with a general phenomenon in Bayesian sample selection mod-

els: Autocorrelations of parameters sampled in the MCMC algorithm typically do not

disappear even with large numbers of iterations in particular for the estimates in the se-

lection equation and the components of the covariance matrix and when the correlation

between outcome and selection equation is high. We have tried to alleviate the problem

by considering quite long simulation runs and considerable thinning but still uncertainty

estimates might be affected by the autocorrelation. Again note that this is a common

phenomenon in Bayesian sample selection models and is not induced by the geoadditive

structure of the predictors.

Due to these problems, the analysis should be considered exploratory. However, the

results are intuitively interpretable and the analysis is an interesting example of the

application of the geoadditive sample selection model.

3.6 Outlook & Extensions

We have developed a Bayesian geoadditive sample selection model that allows us to

analyze sample selection models with considerable flexibility in setting up the model

equation. Based on the same types of prior distributions as considered in this chapter,

extensions to surface estimation or the inclusion of random effects could be considered

along the lines of structured additive regression as suggested in Fahrmeir, Kneib &

Lang (2004). For example, temporal correlations could easily be dealt with by including

i.i.d. random effects for the Union Councils if a conditionally Gaussian random effects

distribution is chosen. In that case, by assigning an inverse Wishart hyperprior to

their variance, also correlations between the random effects of the two equations could

be accounted for. However, we refrained from this in our application because of the

high degree of censoring and the resulting small number of observations available in the

outcome equation.

Another extension, also dealing with the issue of modeling temporal correlations more
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explicitly, would be the inclusion of an AR-type component for the error terms. However,

since the error is actually bivariate, one would also have to include cross-correlations

leading to a large number of correlation parameters that would only be weakly identified

by the data. Still, this issue might deserve further attention and could be a subject of

future research.

Due to the latent Gaussian formulation, the sample selection model could also be ex-

tended to contain more than two equations. However, with a rising number of equations

the number of covariance coefficients gets large such that updating an inverse Wishart

type prior easily becomes numerically unstable. As a consequence, the construction of

an MCMC sampler that mixes well despite the large number of weakly identified corre-

lation parameters would be a challenge. The latent Gaussian representation could also

be used to allow for binary or categorical responses in the outcome equation along the

lines of Albert & Chib (1993).

The suggested approach has been implemented in an R package, see Section 5.2.2 for

details.
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Figure 3.5: Food, kitchen supplies & water: Estimated spatial effects in the selection
equation (left column) and outcome equation (right column). The top graphs
show posterior means and the bottom graphs show maps of significance based
on nominal levels of 80%. The arrow in the top left graph points at the
approximative location of the epicenter. In shaded regions no observations
were made. Thus, they are excluded from the analysis.
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Figure 3.6: Construction material & tools: Estimated spatial effects. Graphs are ar-
ranged as in Figure 3.5.
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4 Bayesian Nonparametric Instrumental

Variable Regression based on Penalized

Splines and Dirichlet Process Mixtures

Abstract: We propose a Bayesian nonparametric instrumental variable approach that

allows us to correct for endogeneity bias in regression models where the covariate effects

enter with unknown functional form. Bias correction relies on a simultaneous equa-

tions specification with flexible modeling of the joint error distribution implemented via a

Dirichlet process mixture prior. Both the structural and instrumental variable equation

are specified in terms of additive predictors comprising penalized splines for nonlinear

effects of continuous covariates. Inference is fully Bayesian, employing efficient Markov

Chain Monte Carlo simulation techniques. The resulting posterior samples do not only

provide us with point estimates, but allow us to construct simultaneous credible bands for

the nonparametric effects, including data-driven smoothing parameter selection. In ad-

dition, improved robustness properties are achieved due to the flexible error distribution

specification. Both these features are extremely challenging in the classical framework,

making the Bayesian one advantageous. In simulations, we investigate small sample

properties and an investigation of the effect of class size on student performance in Is-

rael provides an illustration of the proposed approach which is implemented in an R

package bayesIV.

4.1 Introduction

One of the most frequently encountered problems in regression analysis in particular

in case of observational data common in the social sciences are endogenous regressors,

i.e. explanatory variables that are correlated with the unobservable error term. Sources

of this correlation include omitted variables that are associated with both regressors

and response (confounder), measurement error, reverse causality and sample selection.
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Neglecting the resulting asymptotically not vanishing endogeneity bias by using stan-

dard regression techniques can lead to severely misleading inference. In the parametric

regression context, the omnipresence of this problem has led to a vast corresponding lit-

erature. Two-stage least squares (2SLS) and generalized methods of moments (GMM)

estimators in combination with instrumental variables, i.e. additional covariates that

are uncorrelated to the error term but reasonably strongly associated to the endogenous

covariate, are then routinely applied (see e.g. Wooldridge, 2002). These approaches do

not necessarily make distributional assumptions for the error term (for point estima-

tion) but intrinsically rely on linearity of all effects, which is frequently not justified by

subject-matter considerations (see also Kleibergen & Zivot (2003) for an overview over

Bayesian parametric methods and their association to the related frequentist methods).

Thus, in recent years an increasing number of approaches to nonparametric instrumental

variable regression has appeared, see Blundell & Powell (2003) for an excellent survey

and also Horowitz (2011) including a discussion on implications on inference in misspec-

ified parametric models making a strong case for nonparametric estimation. However,

still these methods are rarely used in practice mainly due to a lack of easily available

implementations and the need of user assistance, i.e. they typically strongly depend on

tuning parameters that can hardly be estimated automatically. This chapter addresses

these issues by providing a Bayesian framework which routinely allows the automatic

choice of tuning parameters and the construction of simultaneous credible bands for the

quantification of the uncertainty of function estimates. Simultaneous credible bands are

the Bayesian analogue to simultaneous confidence bands which are important in order

to assess the uncertainty of an entire curve estimate and study the relevance of an ef-

fect, for example. Pointwise confidence bands, which are almost exclusively used for this

purpose, will understate this uncertainty and can thus lead to erroneous identifications

of nonlinear effects.

In general, the available nonparametric frequentist approaches can be split into two

groups that are based on different identification restrictions: control function approaches

and instrumental variable approaches.

The control function approach (Newey, Powell & Vella, 1999, Pinkse, 2000 and Su &

Ullah, 2008) is directly related to the simultaneous equations literature. For simplicity,

for the remainder of the introduction we consider the model with a single endogenous

covariate

y2 = f2(y1) + ε2, y1 = f1(z1) + ε1 (4.1)

with response y2, covariate y1 and instrumental variable z1 with effects of unknown

functional form f2 and f1, respectively, and random errors ε2 and ε1. Endogeneity
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bias arises if E(ε2|ε1) 6= 0. Then, assuming identification restrictions E(ε1|z1) = 0 and

E(ε2|ε1, z1) = E(ε2|ε1), it follows

E(y2|y1, z1) = f2(y1)+E(ε2|y1, z1) = f2(y1)+E(ε2|ε1, z1) = f2(y1)+E(ε2|ε1) = f2(y1)+v(ε1)

(4.2)

where v(ε1) is a function of the unobserved error term in the first equation. This has

motivated the following two-stage estimation scheme: In a first step, estimated residuals

ε̂1 are determined from y1 − f̂1(z1) using any nonparametric estimation technique for

estimating the nonlinear function f̂1(z1). In a second step, an additive model (e.g. Hastie

& Tibshirani, 1990) with response variable y2 is estimated, where in addition to y1 the

estimated residuals ε̂1 are included as a further covariate. Disadvantages of this two-stage

approach include the difficulty to incorporate the uncertainty introduced by estimating

the parameters in the first step when constructing confidence bands in the second step.

In particular, no approach for simultaneous confidence bands that accounts for this

uncertainty has been proposed to date. In addition, automatic smoothing parameter

selection for the control function v(ε1) is difficult since common selection criteria like

cross-validation or plug-in estimators focus on minimizing the error in predicting the

response variable y2 while we are interested in achieving a precise estimate for v(ε1)

to yield full control for endogeneity. Finally, outliers and extreme observations in ε1

may severely affect the endogeneity correction and therefore some sort of robustness

correction (such as trimming of the residuals) might be necessary (Newey, Powell &

Vella, 1999).

A completely different strategy is to assume E(ε2|z1) = E(y2 − f2(y1)|z1) = 0 leading

to the instrumental variables approach, see for example Newey & Powell (2003). Here,

an ill-posed inverse problem has to be solved creating the need for an additional reg-

ularization parameter. Data-driven simultaneous selection of the smoothing parameter

and the regularization parameter is still an open question (Darolles, Fan, Florens & Re-

nault, 2011). Again, also construction of simultaneous confidence bands is difficult, with

Horowitz & Lee (2009) being the first attempt. In the remainder of this chapter this

approach will not be discussed further.

In the Bayesian framework, most available nonparametric approaches are based on repre-

senting the model as simultaneous equations and are thus related to the control function

approach. All of these assume bivariate normality of the errors (ε1, ε2) ∼ N(0,Σ) (e.g.

Chib & Greenberg, 2007, Chib, Greenberg & Jeliazkov, 2009 and Koop, Poirier & Tobias,

2005). Then, both equations in (4.1) are estimated simultaneously in a Gibbs-sampling

scheme, facilitating the estimation of smoothing parameters and credible bands. Thus,

the control function is not explicitly estimated but is given implicitly by the conditional

65



error distribution. However, bivariate normality implies linearity of this conditional ex-

pectation since E(ε2|ε1) = σ12

σ2
1
ε1, where σ12 = Cov(ε1i, ε2i) is the covariance of the error

terms and σ2
1 = Var(ε1i). As a consequence, the control function is implicitly restricted to

be linear in ε1, corresponding to the assumption that a hypothetical (unknown) omitted

variable inducing the endogeneity bias has a linear effect on the response. This assump-

tion seems to be rather restrictive, in particular when allowing for effects of unknown

functional form for all of the observed explanatory variables. Relaxing the distributional

assumption (as we will do in the following) results in allowing the omitted variables to

have an effect of unknown functional form as well. Note that although 2SLS procedures

interpreted in their control function representation in the fully parametric context (where

all functions are restricted to be linear and estimation is based on ordinary least squares)

do not make assumptions on the marginal distributions of ε1 and ε2. However, they still

rely on linearity of the conditional expectation E(ε2|ε1). Another common source for

non-normality of the error terms are outliers and thus robustness issues of methods re-

lying on bivariate normality are a serious concern. As a consequence, Conley, Hansen,

McCulloch & Rossi (2008) propose the application of a Dirichlet process mixture (DPM)

prior (Escobar & West, 1995) to obtain a flexible error distribution, but they still rely

on linear covariate effects.

In this work, we extend their approach by proposing a Bayesian approach based on

Markov chain Monte Carlo (MCMC) simulation techniques employing Bayesian P-splines

(Lang & Brezger, 2004) for the estimation of flexible covariate effects and a DPM prior

for the estimation of a flexible joint error distribution. Univariate regression models

with smooth covariate effects and a DPM prior for the error density have been previ-

ously considered among others by Chib & Greenberg (2010). Thus, neither we make

an assumption on the functional form of the effects (besides a smoothness condition)

nor on the distribution of the error terms. Further, we will allow a more flexible choice

of prior distributions than Conley, Hansen, McCulloch & Rossi (2008). The Bayesian

formulation will enable us to automatically estimate the smoothing parameters in both

equations and to construct simultaneous credible bands that do not depend on distri-

butional assumptions. Moreover, through the use of the DPM prior, outliers in the

error terms will automatically be downweighted such that improved outlier robustness

is provided.

The approach is used to analyze the effect of class size on scholastic achievements of

students in Israel following Angrist & Lavy (1999). Thereby, a clearly non-normal bi-

variate error density warrants nonparametric estimation of the error density in order to

ensure proper endogeneity bias correction and valid confidence bands. As already sug-

gested by Horowitz (2011), nonparametric estimation of the relationship in combination
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with simultaneous credible bands is important for proper evaluation of the estimation

uncertainty and is able to reveal new insights into the relationship.

The remainder of the chapter is organized as follows. In Section 4.2 the considered

model is introduced and prior distributions are discussed. Section 4.3 describes Bayesian

inference including smoothing parameter determination and construction of simultaneous

credible bands. In Section 4.4, small sample properties are explored through simulations

and the approach is compared to existing approaches. In Section 4.5, an application to

class size effects on student performance is provided and the chapter concludes in Section

4.6.

4.2 Additive Simultaneous Equations Model

We consider an additive simultaneous equations model

y2i = γ20 + f21(y1i) +

q2∑
`=1

x2`iγ2` +

p2∑
`=1

f2,`+1(z2`i) + ε2i (4.3)

y1i = γ10 +

q1∑
`=1

x1`iγ2` +

q2∑
`=1

x2`iγ1,q1+` +

p1∑
`=1

f1`(z1`i) +

p2∑
`=1

f1,p1+`(z2`i) + ε1i, i = 1, . . . , n(4.4)

where y2 denotes the outcome of primary interest affected by one continuous endogenous

variable y1, q2 exogenous variables x2`, ` = 1, . . . , q2 with linear effects (typically cate-

gorical covariates in dummy or effect coding), and p2 exogenous continuous covariates

z2`, ` = 1, . . . , p2. Both the effect of the endogenous variable y1 and the effects of the

continuous covariates z2` are allowed to be of unknown, nonlinear form represented by

smooth functions f21(y1) for the endogenous variables and f`(z2,`+1), ` = 1, . . . , p2 for

the exogenous covariates. The same model structure applies to the endogenous variable

which is related to parametric effects of covariates x1`, ` = 1, . . . , q1 and x2`, ` = 1, . . . , q2

as well as potentially nonlinear effects of continuous covariates z1`, ` = 1, . . . , p1 and z2`,

` = 1, . . . , p2. To ensure identifiability of the additive model structure, all functions

fr`(·) are centered around zero.

Endogeneity bias in function f21(y1) arises when the residuals ε1 and ε2 are not indepen-

dent and the outcome equation is estimated without taking the model for the endogenous

variable into account. In the simultaneous equations model, identification relies on the

instrumental variables x11, . . . , x1q1 and z11, . . . , z1p1 (with the same identification re-

strictions as in the control function approach). While a bivariate normal distribution for

the error terms (ε1i, ε2i) is a convenient model that enables the inclusion of correlated

errors (see for example Chib & Greenberg (2007), Chib, Greenberg & Jeliazkov (2009)
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or Koop, Poirier & Tobias (2005)) it implies strong implicit assumptions on the control

function as discussed in the introduction. We therefore follow Conley, Hansen, McCul-

loch & Rossi (2008) and employ a Dirichlet process mixture prior (Escobar & West,

1995) for the joint error distribution which basically allows to specify a hyperprior on

the space of potential error distributions. More specifically, our prior choices will yield

an infinite mixture of bivariate normals prior for the joint error distribution which is

able to virtually cater any (continuous) distribution.

In the following, we discuss prior choices for the parameters involved in our additive

simultaneous equations model in more detail.

4.2.1 Parametric Effects

For parametric effects γr`, r = 1, 2, ` = 0, . . . , qr, we use diffuse priors p(γr`) ∝ const in

case of complete lack of prior knowledge. Note that there is abundant literature show-

ing that flat priors in combination with very weak (or even superfluous) instrumental

variables (i.e. instruments are not or only very weakly related to y1) can lead to identi-

fication problems (see Chao & Phillips, 1998, Hoogerheide, Kaashoek & Van Dijk, 2007,

Kleibergen & Van Dijk, 1998 and Kleibergen & Zivot, 2003) and the use of Jeffrey’s prior

is then recommended. However, when using Dirichlet process mixtures for the joint er-

ror distribution, Jeffrey’s prior does no longer take the well known form proportional

to the determinant of the cross-product of the design matrix that arises in case of nor-

mal error terms. Therefore, we will restrict our analyses to flat priors and recommend

to check the explanatory power of instrumental variables in advance (similar as in the

frequentist framework). Note, however, that the simulations conducted in Section 4.4

indicate that our simultaneous equations approach works well even in the case of quite

weak instruments confirming simulations results of Conley, Hansen, McCulloch & Rossi

(2008).

Note that inclusion of random effects for clustered or panel data is straight-forward using

normal priors (with zero mean and conjugate prior on the variance parameter).

4.2.2 Nonparametric Effects

Since their introduction by Eilers & Marx (1996), penalized splines have become increas-

ingly popular for representing effects of continuous covariates with unknown, nonlinear

form but with a global smoothness assumption on differentiability. While the original

motivation was mainly based on computational convenience, the properties of penalized

splines have now been thoroughly investigated and are well understood, see for exam-

ple Kauermann, Krivobokova & Fahrmeir (2009), Reiss & Ogden (2009) and Claeskens,

68



Krivobokova & Opsomer (2009). We will consider the Bayesian analogue to penalized

splines as introduced by Lang & Brezger (2004). Therefore we assume that each of the

smooth functions fr`(x) of some covariate x ∈ {y1, z11, . . . , z1p1 , z21, . . . , z2p2} can be rep-

resented by a suitable spline function, i.e. fr`(x) ∈ S(dr`, κr`), where S(dr`, κr`) denotes

the space of spline functions of degree dr` with knots κr` = {xmin < κ1 < κ2 < . . . <

κKr` < xmax}. Since S(dr`, κr`) is a (Kr`+dr`+1)-dimensional vector space (a subspace

of all dr`-times continuously differentiable functions), fr`(x) can then be represented as

a linear combination of suitable basis functions Bk(x), i.e.

f(x) =

Kr`+dr`+1∑
k=1

βr`kBk(x) = Xr`βr`.

Due to their simplicity and numerical stability, we will utilize B-spline basis functions in

the following.

Although the global smoothness properties are determined by the degree of the spline

basis dr`, the variability of the resulting estimates heavily depends on the location and

number of knots. Instead of directly aiming at optimizing the number and position of the

knots in a data-driven manner, the penalized spline approach relies on using a generous

number of equidistant knots (with the common rule of thumb Kr` = min(n/4, 40)) in

combination with a penalty that avoids overfitting. In the frequentist framework, Eilers

& Marx (1996) proposed to penalize the squared q-th order differences of adjacent basis

coefficients, thereby approximating the integrated squared q-th derivative of the spline

function. In the Bayesian framework, this corresponds to assigning a random walk prior

to the spline coefficients with

βr`k = βr`,k−1 + uk or βr`k = 2βr`,k−1 − βr`,k−2 + uk

for first- and second-order random walks with uk
i.i.d.∼ N(0, τ2

r`) and non-informative priors

for the initial parameters. In this specification, the random walk variance τ2
r` acts as an

inverse smoothing parameter with small values corresponding to heavy smoothing while

large values allow for considerable variation in the estimated function. In the limiting

case of τ2
r` → 0, the estimated function approaches a constant or a linear effect for first

and second order random walk priors, respectively. From the random walk specification,

the joint prior distribution for the coefficient vector βr` can be derived as a partially
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improper multivariate Gaussian distribution with density

p(βr`|τ2
r`) ∝

(
1

2τ2
r`

) rank(∆r`)

2

exp

(
− 1

2τ2
r`

βtr`∆r`βr`

)
where ∆r` is the penalty matrix given by the cross-product of a difference matrix Dr` of

appropriate order, i.e. ∆r` = Dt
r`Dr`.

To complete the fully Bayesian prior specification, a prior on τ2
r` has to be assigned to

include estimation of the smoothing variance and therefore to allow for a data-driven

amount of smoothness. We choose a conjugate inverse-gamma distribution with shape

and scale parameters aτr` and bτr` , i.e. τ2
r` ∼ IG(aτr` , bτr`), and will discuss the choice

of smoothing parameters in more detail in Section 4.3.3.

4.2.3 Joint Error Distribution

The standard approach in the Bayesian nonparametric simultaneous equations literature

for modeling the joint error distribution of (ε1i, ε2i) is to assume bivariate normal errors

(ε1i, ε2i) ∼ N(0,Σ), i = 1, . . . , n with constant covariance matrix Σ which is assumed to

be a priori inverse-Wishart distributed Σ ∼ IW(sΣ, SΣ) where IW denotes the inverted-

Wishart distribution parameterized such that (for the bivariate case) E(Σ) = S−1
Σ /(sΣ−

3).

As mentioned in the introduction, assuming bivariate normality induces strong implicit

assumptions on the control function and a violation of these assumptions can have severe

impact on the general results and in particular the endogeneity correction. An obvious

first relaxation is to use a finite mixture of K∗∗ Gaussian components with mixing

proportions π1, . . . , πK∗∗ and component-specific (nonconstant) means and covariances

µc, Σc, c = 1, . . . ,K∗∗:

(ε1i, ε2i)|π1, µ1,Σ1, . . . , πK∗∗ , µK∗∗ ,ΣK∗∗ i.i.d.

K∗∗∑
c=1

πc N(µc,Σc),

K∗∗∑
c=1

πc = 1.

Though being already quite flexible, this model introduces the problem of selecting the

number of mixture components K∗∗. In addition, the number of components is assumed

to be fixed as n → ∞ which is an undesired property in the given setting. To remedy

both issues, we consider a Gaussian Dirichlet Process Mixture (Escobar & West, 1995)

which can be interpreted as the limiting case of a finite mixture model as K∗∗ → ∞
(Neal, 2000). More specifically, we assume an infinite mixture model with the following

70



hierarchy:

(ε1i, ε2i) i.i.d.

∞∑
c=1

πc N(µc,Σc)

(µc,Σc) i.i.d. G0 = N(µ|µ0, τ
−1
Σ Σ) IW(Σ|sΣ, SΣ)

πc = vc

1−
c−1∑
j=1

(1− πj)

 = vc

c−1∏
j=1

(1− vj), c = 1, 2, . . .

vc i.i.d. Be(1, α).

In this specification, the mixture components are assumed to be i.i.d. draws from the

base measureG0 (given by a normal-inverse Wishart distribution) of the Dirichlet process

(DP) while the mixture weights are generated in a stick-breaking manner based on a Beta

distribution depending on the concentration parameter α > 0 of the Dirichlet process.

The concentration parameter α determines the strength of belief in the base distribution

G0, which is the expectation of the Dirichlet process around which more mass will be

concentrated for large α since the variance of the Dirichlet process decreases with α.

In order to emphasize the capability of the prior to model means and covariances vary-

ing with observations, we can also express the implied hierarchy by (ε1i, ε2i)|(µi,Σi) ∼
N(µi,Σi), i = 1, . . . , n, with (µi,Σi)|G

i.i.d.∼ G and G ∼ DP(α,G0) with constructive rep-

resentation G =
∑∞

c=1 πcδ(µc,Σc) (Sethuraman, 1994), where δθ is a unit point mass at θ.

Although we are dealing with an infinite mixture, there can be at most n components

affiliated with data and therefore most components will in fact be empty and only deter-

mined by the prior. More precisely, in a specific data set errors will be clustered together

into K∗ ≤ n clusters with means µl = (µ1l, µ2l)
t and covariances Σl =

(
σ2

1l σ12,l

σ12,l σ2
2l

)
,

l = 1, . . . ,K∗. This can be nicely seen by considering the so-called polya-urn scheme

(Blackwell & MacQueen, 1973). Let θ1 = (µ1,Σ1), θ2 = (µ2,Σ2), . . . be an (infinite)

sequence of i. i.d. draws from G. Then, the predictive distribution of a new θk+1 condi-

tional on the previous values θ1, . . . , θk marginalizing out G is given by

θk+1|θ1, . . . , θk ∼
α

α+ k
G0 +

1

α+ k

k∑
i=1

δθi (4.5)

with δθi denoting a unit point mass at θi. That is, θk+1 equals to any of the k previous

θ1, . . . , θk with probability 1
α+k and is drawn from the base distribution G0 with proba-

bility α
α+k . Moreover, Equation (4.5) can also be reexpressed in terms of the distribution
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of the distinct values known as a so-called Chinese restaurant process. By doing so,

it can be shown that a new θk+1 equals to some θl with probability nl
α+k with nl the

number of values already corresponding to θl, i.e. the probability is proportional to

the cluster size. Besides the clustering property of the Dirichlet process, these proba-

bility expressions also demonstrate the important role of the concentration parameter

α: The probability to draw a new value and thus the number of distinct components

depends on α. Specifically, the expected number of components for a given sample size

n is approximatively given by E(K∗|α, n) ≈ α log(1 + n/α) (Antoniak, 1974). Thus, the

concentration parameter α is directly related to the number K∗ of unique pairs (µl, Σl)

in the data. In order to avoid fixing K∗ we therefore estimate α from the data and con-

sequently have to assign a prior on it. The standard conjugate prior for α is a Gamma

prior α ∼ Ga(aα, bα). Alternatively, a discrete prior on K∗ as in Conley, Hansen, Mc-

Culloch & Rossi (2008) can be used (which is equally supported by our software). See

Conley, Hansen, McCulloch & Rossi (2008) for details.

Since our model includes constants γ10 and γ20, we have to ensure that E(ε1i, ε2i) =

0 for identifiability. Though centered Dirichlet Process Mixtures could generally be

applied for this purpose, we opt to achieve this by choosing µ0 = (0, 0)t and constraining∑n
i=1 µ1i =

∑n
i=1 µ2i = 0. This simple solution allows us to use efficient algorithms for

estimation. Note that from an a priori zero mean µ0 = (0, 0)t alone, it does not follow

that G has a posterior zero mean. Note also that for incorporation of categorical variables

(dummies) in the regression equation, this constraint is equally required. Conley, Hansen,

McCulloch & Rossi (2008) avoid the identifiability constraint by omitting the global

intercepts, but oversee the unidentifiability of the dummy coefficients in this case. In

fact, this fully explains the deviation of their estimated returns to education (Card,

1995) from the 2SLS estimate and replicating their analysis of the relationship between

education and wages imposing E(µ1) = E(µ2) = 0 results in an estimate barely differing

from the 2SLS estimate.

With respect to priors on the parameters in the base distribution G0, Conley, Hansen,

McCulloch & Rossi (2008) propose to choose parameters µ0, τΣ, sΣ and SΣ as fixed

in order to reduce the computational burden. They argue that by standardizing y1

and y2, zero means µ0 = (0, 0), a diagonal SΣ as well as parameters sΣ and τΣ chosen

such that components of Σc and µc may take even extreme values given the data was

standardized beforehand, introduce negligible prior information. However, as Escobar &

West (1995) emphasize, the prior variance τ−1
Σ (which is closely linked to the bandwidth

in kernel density estimation in case of a constant Σ) has a strong impact on the degree

of smoothness of the density. For a given number of distinct mixture components in the

data (K∗), a small value of τΣ allows the means (µ1l, µ2l), l = 1, . . . ,K∗ to vary more
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strongly resulting in a greater chance of multimodality in the error term distribution for

fixed Σl. Also, τΣ may have an effect on the down-weighting of outliers in the conditional

mean E(ε2i|ε1i) and thus on the influence of outliers on endogeneity bias correction as

we will see in Section 4.3.3. In order to express uncertainty about τΣ, Escobar & West

(1995) therefore propose to choose a conjugate prior τΣ ∼ Ga(aΣ/2, bΣ/2).

Finally, the choice of an inverse Wishart prior on SΣ, SΣ ∼ IW(sSΣ
, SSΣ

), might be

desirable.

Our method allows to flexibly choose between fixed and uncertain hyperparameters.

4.2.4 Hyperparameter Choices

From the properties of the inverse Wishart distribution (see e.g. Link & Barker (2005)

for a related discussion) it follows that the residual variances (diagonal elements of Σl)

are a priori inverse gamma distributed, σ2
rl ∼ IG((sΣ − 1)/2, SΣrr/2), r = 1, 2 with

SΣrr the r-th diagonal element of SΣ. Further, given SΣ is diagonal, it follows that

the correlation coefficient ρl in component l is a priori beta-distributed, (ρl − 1)/2 ∼
Be((sΣ−1)/2, (sΣ−1)/2). Thus, the prior of the correlation coefficient has a symmetric

density around 0 (since the beta distribution parameters are equal) and consequently

choosing a diagonal SΣ results in a zero prior mean for the correlation E(ρl|·) = 0.

However, the prior distribution of ρl also depends on sΣ. For sΣ = 3, we obtain a

Be(1, 1) distribution which is the uniform distribution, for sΣ < 3 we obtain a U-shaped

distribution and for sΣ > 3 a unimodal distribution. Conley, Hansen, McCulloch & Rossi

(2008) use as default specification sΣ = 2.004 and thus a prior on ρl with a U-shaped

density. Thus, although in their prior choice errors are uncorrelated in the mean, more

probability mass is assigned to correlations close to −1 and 1 than to values close to

zero. To avoid such a prior information, we rather choose sΣ = 3 such that the prior on

ρl is uniform over [−1, 1]. Alternatively, in certain situations one might want to choose

sΣ > 3 such that the prior on ρl is unimodal and symmetric around zero in order to a

priori favor no endogeneity in case of only weak information in the data (and thereby

stabilize estimation similar to regularization techniques).

Given sΣ = 3 we obtain σ2
rl ∼ IG(1, SΣrr/2) as prior on the residual variances. Taking

into account that responses are centered and standardized, we choose diagonal SΣ, with

equal elements such that the inverse Gamma introduces only weak information on the

residual variances. In order to choose these elements, we follow Conley, Hansen, Mc-

Culloch & Rossi (2008) and choose default SΣrr such that P (0.25 < σrl < 3.25) = 0.8

based on the inverse gamma distribution of σ2
rl keeping in mind that y1 and y2 were

standardized beforehand. With sΣ = 3 we obtain SΣ = 0.2I2 and thus σ2
rl ∼ IG(1, 0.1)
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as a weakly informative default. Note that with sΣ = 2.004 and SΣ = 0.17I2, Con-

ley, Hansen, McCulloch & Rossi (2008) choose as default a IG(0.502, 0.085)-prior on

the residual variances. Although imposing an IW-prior on SΣ instead is conceptually

and computationally straight-forward, associated hyperparameter choice is unclear and

is therefore not followed in the remainder of the chapter.

Still, specification of τΣ remains to be discussed. Given the possible impact of τΣ on

the smoothness of the density and weighting of outliers, we might want to impose a

hyperprior on τΣ, τΣ ∼ Ga(aΣ/2, bΣ/2). We will follow Escobar & West (1995) and

impose a diffuse gamma prior with default hyperparameters aΣ = 1 and bΣ = 100 which

is in contrast to Conley, Hansen, McCulloch & Rossi (2008) who choose a fixed τΣ. The

impact of estimating τΣ versus fixing it will be studied in our simulation study in Section

4.4.1.

With respect to the concentration parameter α, we follow the recommendation of Ish-

waran & James (2002) and choose a Gamma prior with hyperparameters aα = bα = 2 as

defaults. This allows both small and large values of α corresponding to many and few

mixture components, respectively.

For the smoothing parameters τ2
r` of nonparametric effects we choose the standard non-

informative prior τ2
r` ∼ IG(0.001, 0.001) in the following.

4.3 Bayesian Inference

4.3.1 Estimation

Both equations (4.3) and (4.4) can be written in the generic form yr = ηr + εr, r = 1, 2,

with predictors

ηr = Vrγr +

p̃r∑
`=1

Xr`βr`

where all parametric effects (including the intercept) in each equation are combined in

the design matrix Vr with regression coefficients γr whereas the nonparametric effects

are represented using B-spline design matrices Xr` with corresponding basis coefficients

βr` and p̃1 = p1 + p2, p̃2 = p2 + 1.

Estimation is carried out by using Gibbs sampling steps in an efficient Markov Chain

Monte Carlo implementation. Specifically, given the parameters of the error distribution,

full conditionals for the covariate effect parameters in each equation resemble those for

the normal heteroscedastic regression model and sampling techniques proposed in Lang

& Brezger (2004) (with heteroscedastic errors) can be applied. On the other hand, given

the parameter vectors βr`, τ
2
r`, ` = 1, . . . , p̃r and γr, r = 1, 2, the components of the error
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distribution can be obtained using any algorithm for Bayesian nonparametric estimation

of bivariate densities based on DPM priors (see Neal (2000) for an overview). Thus,

our software allows to choose efficiently implemented algorithms that are called on top

of our sampler. More precisely, we use the implementation provided by the R package

DPpackage (Jara, Hanson, Quintana, Müller & Rosner, 2011) of two Gibbs sampling

algorithms with auxiliary variables given in Neal (2000). In addition, the implementation

accompanying Conley, Hansen, McCulloch & Rossi (2008) is integrated.

Full details on all full conditionals are given in the following.

4.3.2 Full Conditionals

In the following, full conditionals for the parameters in the r-th equation, i.e. r = 1 for

equation (4.4) and r = 2 for equation (4.3), are given.

Nonparametric effects The full conditionals for the regression coefficients of the smooth

functions are Gaussian

βr`|· ∼ N(µβr` , P
−1
βr`

)

with precision matrix

Pβr` = Xt
r`Σ
−1
r|−rXr` +

∆r`

τ2
r`

where ∆r` is the penalty matrix of nonparametric effect (r`) based on a random walk

prior and mean

µβr` = P−1
βr`
Xt
r`Σ
−1
r|−r(yr − η̃r − E(εr|ε−r))

where η̃r = ηr−fr` when fr` is to be estimated. Further, E(εr|ε−r) with εr = (εr11, . . . , εrnnn)t

is the conditional mean of the error terms with

E(εrij |ε−r,ij) = µrij +
σ12,ij

σ2
−r,ij

(y−r,ij − µ−r,ij − η−r,ij)

and Σr|−r is the conditional covariance matrix with Σr|−r = diag(σ2
(r|−r),11, . . . , σ

2
(r|−r),nnn)

and

σ2
(r|−r),ij = Var(εrij |ε−r,ij) = σ2

rij −
σ2

12,ij

σ2
−r,ij

.

Note that the posterior mean of some function fr` is given by (subject to centering

constraints)

fr`(·) = (Xt
r`Σ
−1
r|−rXr` +

1

τ2
r`

∆r`)
−1Xt

r`Σ
−1
r|−r(yr − η̃r − E(εr|ε−r)).
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Here, it can be easily seen that the DPM prior induces different variances and therefore

Σr|−r weighs observations accordingly just as in the case of heteroscedasticity.

The full conditionals for the smoothing variance parameters τ2
r`, ` = 1, . . . , pr, r = 1, 2

follow inverse Gamma distributions

τ2
rl|· ∼ IG(a′τr` , b

′
τr`

)

with parameters

a′τr` = aτr` +
rank(∆r`)

2
, b′τr` = bτr` +

1

2
βtr`∆r`βr`.

Parametric effects The full conditionals for the coefficients γr of parametric effects are

Gaussian

γr|· ∼ N(µγr , P
−1
γr )

with precision matrix Pγr = V t
r Σ−1

r|−rVr

and mean µγr = P−1
γr V

t
r Σ−1

r|−r(yr − η̃r − E(εr|ε−r))

where η̃r = ηr − Vrγr.

Components of the error distribution In our default implementation, we make use of

R function DPdensity (Jara, Hanson, Quintana, Müller & Rosner, 2011) for error density

estimation adopting algorithm 8 of Neal (2000) with one temporarily existing auxiliary

parameter. In the following, the full conditionals are summarized, for more details see

Neal (2000).

• Let ci ∈ {1, . . . ,K∗}, i = 1, . . . , n indicate the cluster observation i belongs to.

For i = 1, . . . , n:

– If ci = ch for some h 6= i, create auxiliary component c∗ with (µc∗ ,Σc∗) drawn

from G0.

– If ci 6= ch for all h 6= i, let c∗ = ci with (µc∗ ,Σc∗) = (µci ,Σci).
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– Draw a new value for ci using

ci|c−i, y1i, y2i, µ1,Σ1, . . . , µK∗ ,ΣK∗ , µc∗ ,Σc∗ ∼ b

k−∑
l=1

n−il
n− 1 + α

F ((ε1i, ε2i), µl,Σl)

+b
α

n− 1 + α
F ((ε1i, ε2i), µc∗ ,Σc∗)

where k− is the number of distinct ch for h 6= i, n−il is the number of ch for

h 6= i that are equal to l, b is a normalizing constant and F ((ε1i, ε2i), µl,Σl)

the likelihood for observation i.

• Discard those µl,Σl that are not associated with one or more observations.

• For all l ∈ {c1, . . . , cn}: Update µl and Σl using µl|· ∼ N(mµl , P
−1
µl

) and Σl|· ∼
IW(s′Σ, S

′
Σ) with

mµl = (τΣ + 1)−1

τΣµ0 +
∑
i:ci=l

((y1i, y2i)− (η1i, η2i))
t


P−1
µl

=
τ−1

Σ

1 + τ−1
Σ

Σl/nl = (τΣ + 1)−1Σl/nl,

s′Σ = sΣ +
nl
2

S′Σ = SΣ +
1

2

1

1 + τ−1
Σ

∑
i:ci=l

((y1i, y2i)− (η1i, η2i)− µ0)t ((y1i, y2i)− (η1i, η2i)− µ0)

• In case τΣ is not fixed, the full conditionals of τΣ are

τΣ ∼ Ga

(
aΣ +K∗

2
,

1

2

(
bΣ +

K∗∑
l=1

Σ−1
l (µl − µ0)2

))

• The concentration parameter α in case of a gamma prior is drawn from a mixture

of two gamma distributions
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α|· ∼ aα +K∗ − 1

n(bα − logω)
Ga (aα +K∗, bα − logω)

+

(
1− aα +K∗ − 1

n(bα − logω)

)
Ga (aα +K∗ − 1, bα − logω)

where ω is a latent variable sampled from a beta distribution ω ∼ Be(α+ 1, n).

In case of a discrete prior for α as in Conley, Hansen, McCulloch & Rossi (2008),

α is drawn from a multinomial distribution. See Conley, Hansen, McCulloch &

Rossi (2008) for details.

4.3.3 Smoothing Parameter Estimation

In general, all nonparametric smoothing techniques involve a smoothing parameter con-

trolling the roughness of the fit, may it be the bandwidth in kernel smoothing, the

number of knots or components in regression splines or series estimators or a param-

eter controlling the impact of some penalization term in penalized splines smoothing.

This smoothing parameter has a strong impact on the estimate and has to be carefully

chosen in the finite sample context. However, data-driven choice is rather overlooked in

many theoretical works on nonparametric instrumental variable estimators focusing on

asymptotic properties.

In the control function approach, smoothing parameter choice for the control function

E(ε2|ε1) and of the covariate functions have to be addressed differently. Here, smoothing

parameter choice is even more problematic, since smoothness of functions in the first

stage and of the control function influence the way of endogeneity bias correction for

f21(y1). Thereby, the major problem is to find the smoothing parameter for the control

function. Given this smoothing parameter is correctly chosen, it seems plausible that the

remaining ones can be found using common criteria like cross-validation. Newey, Powell

& Vella (1999) minimize the cross-validation (CV) criterion over a multidimensional grid

and thus treat the control function in the same way as f21(y1). That is, the MSE of the

additive predictor as a whole is (asymptotically) minimized instead of the MSE of f21(y1)

given E(ε2|ε1). Marra & Radice (2011) take the same route using penalized splines

with quadratic roughness penalties and minimize a multivariate version of generalized

cross-validation (GCV). In Section 4.4.2, we show that this can lead to a confounded

estimate of f21(y1) due to inappropriate choices for the smoothing parameter of the

control function. Choosing the smoothing parameter from a global optimization criterion

often induces insufficient smoothness, although situations with oversmoothing may also
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occur. In general, global optimization criteria are not suitable for determining smoothing

parameters that minimize the MSE of f21(y1).

Su & Ullah (2008) propose a ”plug-in” estimator for the smoothing parameter in a mul-

tidimensional function f(y1, ε1) (in the model with q1 = q2 = p2 = 0, p1 = 1) where

f(·, ·) is a two-dimensional function using kernel regression with a product kernel with

single bandwidth, and a pilot bandwidth for estimating f̂1(z1). Here, choosing the pilot

bandwidth and the assumption of a single bandwidth for f(y1, ε1) might be problematic.

Our Bayesian approach is closely related to the control function approach. For compar-

ison with Equation (4.2), consider the conditional distribution of y2 given y1, then

y2i = γ20 + f21(y1i) +

q2∑
`=1

x2`iγ2` +

p2∑
`=1

f2,`+1(z2`i) + E(ε2i|ε1i) + ξi, ξi ∼ N(0, σ2
(2|1),i)

with conditional variance σ2
(2|1),i = σ2

2,i−
σ2

12,i

σ2
1,i

and ”control function”v(ε1i) = E(ε2i|ε1i) =

µ2i +
σ12,i

σ2
1,i

(ε1i − µ1i). Estimates for parameters in E(ε2i|ε1i) result from the DP mixture

and covariate effects f2`(·) are estimated by penalized splines. Compared to parametric

frequentist approaches and Bayesian approaches assuming bivariate normality,
σ12,i

σ2
1,i

may

vary with observation i rather than being constant. This formulation of the conditional

mean of the error terms also shows that in the presence of heteroscedasticity, endogeneity

bias correction may fail when bivariate normality with constant variance is assumed.

Compared to nonparametric frequentist approaches,
σ12,i

σ2
1,i

acts like a varying coefficient

allowing the degree of endogeneity correction to be different over observations. The

nonconstant variances σ2
1,i and means µ1i shrink the error terms of the first stage equation

towards their (nonconstant) mean and thereby automatically down weight outliers in ε1i.

Here, on the one hand the ”smoothing parameter” is the number of mixture components

governed by the data and prior on the concentration parameter α. On the other hand,

τΣ plays an important role for the smoothness of the error density. As mentioned before,

a small τΣ allows the µ1i to vary more strongly around its mean which translates in a

possibly stronger downweighting of outliers in ε1i depending on τΣ. Note that control

function approaches can be extremely sensitive to outliers in the error distribution if these

are not explicitly handled, since they do not account for the high variability of the control

function at extreme values of ε1 (outliers) where observations are scarce. Performance of

the DPM approach in case of residual outliers and capability of explaining unobserved

heterogeneity will be investigated in Section 4.4.2. However, note that there is no such

thing as a free lunch and the downweighting of outliers can also turn into a disadvantage
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in specific situations. If y1 or y2 are discrete and concentrated very strongly on only a few

numbers, rarer measurements may be misinterpreted as outliers and variability can then

completely be explained by the error distribution leaving no variation to be explained

by the covariates (in particular in case of binary covariates). We observed this problem

in a re-analysis of the relationship between years of education (as discrete endogenous

covariate) and wages in the US (Card, 1995) with nonparametric effect of the control

variable age (or transformations thereof). Here, half of the observed number of years of

schooling were 12 and 16 (corresponding to usual years of schooling in the US education

system) resulting in an extremely imbalanced weighting of the observations. In the

present example, the omitted variable ”education system” can be understood as inducing

unobserved heterogeneity (clustering at 12 and 16 years of schooling is unexplained by

the included covariates) which is then absorbed by the predicted error terms leaving

little variation to be explained by the remaining explanatory variables. Note that this

issue is not specific to our proposed approach but applies to all regression approaches

with DPM prior on the error density as in Chib & Greenberg (2010) and in Leslie, Kohn

& Nott (2007). A rough diagnostic check is to check the estimated error density for

discreteness. In this case, estimates should be treated with caution.

Note that in contrast to the frequentist approaches, we do not impose dependencies

between values of v(ε1i) for adjacent ε1i and
σ12,i

σ2
1,i

is also not a function of ε1. Also

note that the DP prior specification allows ”for different degrees of smoothing across the

sample space through the use of possibly differing variances” (Escobar & West, 1995)

and thus the ”smoothing parameter” of the conditional mean can be considered to be

locally adaptive. See Escobar & West (1995) for connections between DPM and kernel

density estimation with varying bandwidth.

The smoothness of functions fr`(·) is controlled by the smoothing variance τ2
r` which

acts like an inverse smoothing parameter to which a prior distribution is assigned and

which is thus also prior-data driven. Since weakly informative priors for τ2
r` are chosen,

the degree of smoothness chosen is generally quite insensitive against hyperparameter

choices as shown in Lang & Brezger (2004) for the single equation case.

4.3.4 Simultaneous Bayesian Credible Bands

The Bayesian counterpart to simultaneous confidence bands are simultaneous credible

bands. Simultaneous inference is important in order to assess the estimation uncertainty

for the entire curve allowing us to make statements about the significance of an effect or

feature significance and to perform specification tests. While a frequentist (1− α)100%

simultaneous confidence band is defined such that in case of multiple replications of the
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data with the same mean function, (1−α)100% of the estimated functions will be entirely

inside the band, a Bayesian simultaneous credible band is defined as the region Iα such

that Pf |Y (f ∈ Iα) = 1 − α, i.e. the posterior probability that the entire true function

f is inside the region given the data equals to 1 − α. Note that the commonly used

(frequentist) pointwise bands usually only provide that on average (1 − α)100% of the

data points of the true function are inside the band (in an experiment where the data is

sampled with the same f many times).

In general, Bayesian simultaneous credible bands are slightly broader than the frequentist

simultaneous confidence bands (Krivobokova, Kneib & Claeskens, 2010). This is partially

explained by the different construction where the level can not be interpreted in the

usual frequentist way but can also partially be attributed to the fact that uncertainty

about all model parameters is appropriately reflected in the Bayesian credible intervals.

However, in the instrumental variable regression context, their advantage is that they

naturally incorporate uncertainty from the estimation of all the unknowns in the model

including those of the ”first stage” equation explaining the endogenous covariate, which

is particularly difficult in the frequentist framework. Even uncertainty due to estimating

the corresponding smoothing parameters is taken into account. Moreover, no hard-to-

find asymptotic distribution of the estimator is necessary as in the frequentist framework

and we do not have to make any distributional assumption, i.e. also asymmetric bands

can be obtained.

We follow Krivobokova, Kneib & Claeskens (2010) and obtain Bayesian simultaneous

credible bands from scaling the pointwise credible intervals derived from the α/2 and

1 − α/2 quantiles of the function samples from the MCMC output with a constant

factor until (1 − α)100% of the sampled curves are contained in the credible band.

Thereby, the information on the possibly nonnormal error distribution is preserved and

the complete variability is taken into account without overly demanding computationally

effort. Simulations in Section 4.4.2 show that they preform very well even in rather small

samples and complex settings.

4.4 Simulations

4.4.1 Parametric Model

Settings

In this section, settings with linear covariate effects are simulated with the following

goals: First, the Bayesian approach is compared to the well-established two-stage least

squares estimator showing that it is capable of correcting endogeneity bias. Second, it is
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Figure 4.1: Joint and marginal densities in one Monte Carlo draw of simulation setting
(iii) (top panels) and setting (iv) (bottom panels).

shown that in certain unfavorable situations, more precisely in the cases of outliers in the

error distribution and nonlinear conditional means, the Bayesian approach outperforms

the 2SLS procedure. Thus, this section supplements the studies of Conley, Hansen, Mc-

Culloch & Rossi (2008) where normal and log-normal error distributions were simulated.

Note however, that in their settings comparisons to 2SLS have to be treated with caution

since they use settings with 10 instruments (the ”many instruments” case), where 2SLS

is known to be inconsistent (as given in their own appendix).

In all parametric settings, we consider the following basic model

y2 = y1 + z2 + ε2

y1 = z1 + z2 + ε1

where z2 and z1 are independently uniformly distributed on [0, 1] and all coefficients are

equal to 1. We consider four different bivariate distributions for the error terms:
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(i) a simple bivariate normal distribution with a quite high degree of endogeneity(
ε1

ε2

)
∼ N

((
0

0

)
,

(
1 0.7

0.7 1

))
.

(ii) a mixture of two normal distributions that adds outliers (with very small correla-

tion ρ = 0.1) on (i):(
ε1

ε2

)
∼ 0.95 N

((
0

0

)
,

(
1 0.7

0.7 1

))
+ 0.05 N

((
0

0

)
,

(
5 0.5

0.5 5

))
.

(iii) a mixture of four bivariate normals with weights 0.3, 0.2, 0.3 and 0.2, means

(2, 2)t, (1.5, 0.5)t, (−0.3, 0)t and (−1,−1)t, all variances (in each mixture com-

ponents and both equations) equal to 0.1 and correlations 0.5, 0.2, 0.6 and 0.8

between the equations. This setting is an example of (unobserved) heterogeneity

with varying degrees of endogeneity in each cluster. Densities of an example draw

are shown in Figure 4.1.

(iv) a symmetric bivariate distribution which is conditionally normal with nonlinear

conditional mean, i.e. ε1|ε2 ∼ N
(

4
ε22+1

, 1
ε22+1

)
and vice versa for ε2|ε1 (Meng &

Gelman, 1991). Note that the degree of endogeneity varies over observations.

Densities of an example draw are shown in Figure 4.1.

Obviously, the strength of the instruments as well as the degrees of endogeneity vary

over the settings. In each setting, we simulated 500 Monte Carlo replications with rather

small and moderately large sample sizes n = 100, 400. For our DPM approach, the ini-

tial 3000 iterations are discarded for burn-in and every 30th iteration of the subsequent

30.000 iterations is used for inference. As discussed in Section 4.2.4, we choose a weakly

informative prior on the error distribution with sΣ = 3, SΣ = diag(0.2, 0.2), µ0 = (0, 0)t

and aα = bα = 2. Labeled as ”DPM1”, we consider first a fixed τΣ chosen according to

Conley, Hansen, McCulloch & Rossi (2008)’s assessment strategy based on the observa-

tion that the errors are marginally t-distributed and thus µr ∼
√
SΣrr/τΣ(sΣ − 1) tsΣ−1.

Considering that the data were centered and standardized, τΣ is then chosen such that

P (−10 < µr < 10) = 0.8 which results in τΣ = 0.036 given sΣ = 3 and SΣ = 0.2I2.

Second, we consider a weakly informative gamma distribution for τΣ with aΣ = 1 and

bΣ = 100, labeled as ”DPM2” in the following.
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Table 4.1: Parametric simulation setting (i): Bivariate normality.

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS 0.65 0.64 0.65 0.09 0.00 0.29 0.28 1.00
2SLS -0.18 -0.02 0.79 0.53 0.93 3.22 1.47 0.61
DPM1 -0.08 -0.05 0.40 0.49 0.97 2.03 1.73 0.43
DPM2 -0.03 -0.01 0.32 0.42 0.97 1.76 1.55 0.51

n = 400
OLS 0.65 0.65 0.65 0.05 0.00 0.14 0.14 1.00
2SLS -0.01 0.00 0.18 0.24 0.96 0.72 0.69 0.98
DPM1 -0.04 -0.03 0.19 0.25 0.97 0.80 0.75 0.91
DPM2 -0.04 -0.02 0.19 0.24 0.96 0.78 0.74 0.94

Results

In simulation settings (i) (Table 4.1) and n = 100, the DPM approach performs overall

better than 2SLS especially in terms of variability of the point estimates. Particularly, the

RMSEs (evaluated at the design points) are considerably lower for the DPM approach.

Note that 6.6% of the 2SLS estimates even had a negative sign (versus virtually none in

the DPM approach with 0.6% and 0.2%, respectively). In setting (i), the DPM approach

with gamma prior on τΣ performs only slightly better than with fixed τΣ. This becomes

more pronounced in setting (ii) (Table 4.2, n = 100), however, where in presence of

outliers, assigning a hyperprior is clearly preferable. While RMSEs of 2SLS increase in

presence of outliers in setting (ii), this was not the case for the DPM estimator. For

the larger sample size n = 400, 2SLS and the DPM approach perform almost identically

well and as expected, the impact of the prior on τΣ diminishes. Note that in settings (i)

and (ii) instruments are very weak with a population R2 of R2
pop = Var(z1)

Var(z1)+Var(z2)+σ2
1

=

1/12
1/12+1/12+σ2

1
≈ 0.07 and even slightly lower in setting (ii).

In settings (iii) and (iv) (Tables 4.3 and 4.4), both actually examples of nonlinear condi-

tional residual means, bias, RMSE and IQR of the 2SLS estimators are excessively large

in the case of n = 100 while those of the DPM estimator are considerably lower. Due to

the strongly increased widths of the 2SLS confidence intervals, coverage probability of

the intervals are, however, still close to the nominal level. Still, this also has an impact on

the power of detecting a significant positive effect: On a 5% level, rejection rates of 59%

and 32% for the 2SLS estimator for settings (iii) and (iv), respectively, were observed

versus 100% for the DPM estimator. In these two settings, the DPM estimator with

fixed τΣ performed best, since estimation of τΣ increased variability in DPM2. Here,
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Table 4.2: Parametric simulation setting (ii): Bivariate normality with outliers.

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS 0.55 0.56 0.56 0.16 0.00 0.32 0.32 1.00
2SLS -0.00 -0.01 3.10 0.56 0.94 93.40 1.55 0.59
DPM1 -0.06 -0.04 0.39 0.46 0.96 2.04 1.79 0.42
DPM2 0.01 0.03 0.31 0.42 0.95 1.57 1.37 0.63

n = 400
OLS 0.54 0.55 0.55 0.08 0.00 0.16 0.16 1.00
2SLS -0.01 0.01 0.20 0.26 0.95 0.80 0.76 0.96
DPM1 -0.04 -0.01 0.19 0.24 0.96 0.80 0.76 0.93
DPM2 -0.03 -0.01 0.18 0.23 0.96 0.77 0.74 0.95

Table 4.3: Parametric simulation setting (iii): Mixture of bivariate normals (unobserved
clusters).

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS 0.77 0.77 0.77 0.06 0.00 0.17 0.17 1.00
2SLS -0.50 0.01 10.41 0.50 0.92 193.46 1.55 0.59
DPM1 0.11 0.11 0.16 0.17 0.92 0.61 0.60 1.00
DPM2 0.12 0.13 0.18 0.18 0.93 0.69 0.68 1.00

n = 400
OLS 0.77 0.77 0.77 0.02 0.00 0.08 0.08 1.00
2SLS -0.04 -0.00 0.24 0.26 0.94 0.90 0.79 0.89
DPM1 0.03 0.03 0.07 0.08 0.94 0.27 0.26 1.00
DPM2 0.03 0.04 0.07 0.09 0.95 0.28 0.28 1.00

also for n = 400, due to the nonlinear conditional means, the DPM approach performs

better than 2SLS in terms of efficiency (MSE and IQR) and interval widths. Again, the

importance of the prior on τΣ diminishes for increasing sample size.

4.4.2 Nonparametric Model

Settings

In our first two settings with nonparametric covariate effects, we replicate DGPs 1 and 4

of Su & Ullah (2008) aiming at getting some insight into the comparison of our Bayesian

approach with Pinkse (2000)’s, Newey & Powell (2003)’s and Su & Ullah (2008)’s ap-
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Table 4.4: Parametric simulation setting (iv): Nonlinear conditional mean.

point estimates confidence intervals
mean bias median bias RMSE IQR coverage ave.width med.width rej. rate

n = 100
OLS -0.82 -0.82 0.82 0.07 0.00 0.22 0.22 0.87
2SLS -0.81 -0.08 16.66 0.79 0.91 557.31 2.24 0.32
DPM1 -0.05 -0.05 0.14 0.18 0.94 0.57 0.56 1.00
DPM2 -0.06 -0.07 0.15 0.20 0.98 0.74 0.72 1.00

n = 400
OLS -0.81 -0.81 0.81 0.04 0.00 0.11 0.11 1.00
2SLS 0.06 -0.04 0.38 0.38 0.93 1.45 1.09 0.94
DPM1 -0.02 -0.02 0.07 0.10 0.95 0.27 0.27 1.00
DPM2 -0.03 -0.03 0.08 0.10 0.96 0.31 0.31 1.00

proaches. Moreover, we compare our results with Marra & Radice (2011)’s approach

(extending the control function approach of Newey, Powell & Vella (1999) to penalized

splines). More precisely, we consider settings

(a) DGP1 of Su & Ullah (2008):

y2 = log(|y1 − 1|+ 1)sgn(y1 − 1) + ε2

y1 = z1 + ε1

with z1
i.i.d.∼ N(0, 1) and

(
ε1

ε2

)
i.i.d∼ N

((
0

0

)
,

(
1 θ

θ 1

))
.

(b) DGP4 of Su & Ullah (2008):

y2 = 2Φ(y1) + ε2

y1 = log(0.1 + z2
1) + ε1

with Φ(·) the cdf of the standard normal and ε2 = θw + 0.3v2, ε1 = 0.5w + 0.2v1

and z1i = 1 + 0.5z1,i−1 + 0.5vz. w, v1, v2 and vz are i.i.d. sums of 48 independent

random variables each uniformly distributed on [−0.25, 0.25] and thus according

to the central limit theorem nearly standard normal but with compact support

[−12, 12].

In settings (b.ii) and b.iii) the error distribution in (b) is replaced by the distributions in

settings (ii) and (iii) of the previous section, respectively. In setting (b.v), the distribution
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in (b) is replaced by one of the distributions given in Marra & Radice (2011) which

exactly resembles the structural assumptions of the control function approach:

ε1 = g1(w) + v1 ε2 = g2(w) + v2

with w ∼ U(0, 1), g1(w) = − exp(−3w) and g2(w) = −0.5(w + sin(πx2.5)) standardized

to have variance one and v1, v2
i.i.d.∼ N(0, 1). Note that in settings (b) and (b.v), w can

be considered as an omitted variable with linear and nonlinear effects, respectively.

Again, 500 Monte Carlo replications with n = 100, 400 are considered. For the Bayesian

approach, we use a burn-in of 5.000 iterations and use 1.000 of the subsequent 40.000

iterations for estimation. Further, cubic B-splines based on 25 and 40 knots for sample

sizes of 100 and 400, respectively, and a second-order random walk prior were used for

the Bayesian P-splines.

Results

In Table 4.5, mean RMSEs and coverage rates of 95% simultaneous credible bands (when

available) for DGP 1 and 4 of Su & Ullah (2008) (settings (a) and (b)) are given. We

compare naive (i.e. without bias correction) estimation using local linear regression

(with normal kernel) and LSCV smoothing parameter selection (as Su & Ullah (2008)

did) and the two step control function approach using penalized splines (we used cubic

B-splines with second order difference penalty and same number of knots as for the DPM

approach) with GCV smoothing parameter selection following Marra & Radice (2011) to

our DPM approach (with hyperparameter settings DPM1 and DPM2 as in the previous

subsection). As a benchmark, we give the results for the models using the true but

unobserved y2 − E(ε2|ε1) as response.

We find RMSEs for all estimators that are considerably smaller than those given in

Su & Ullah (2008). Note that we even obtained better results for the naive estimator

using LSCV. This is most probably due to the fact that while we used a numerical

minimization algorithm with a random starting value to minimize the LSCV criterion,

Su & Ullah (2008) (personal communication) chose the bandwidth h according to h =

c
√

Var(y1)n−1/5 with a limited grid search over c. Thereby, they obtained RMSEs that

only slightly changed with increasing degree of endogeneity which is rather implausible.

While both the control function and DPM approach decreased the mean RMSE com-

pared to the naive estimator, the DPM approach performed slightly better with negligible

impact of the prior choice.

Table 4.6 gives results for settings (b.ii), (b.iii) and (b.v). In settings (b.ii) and (b.iii)

(outliers and multimodal error density, unobserved heterogeneity) the control function
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Table 4.5: Setting (a) and (b): DGPs of Su & Ullah (2008)

DGP1 DGP4
n=100 n=400 n=100 n=400

θ RMSE coverage RMSE coverage RMSE coverage RMSE coverage

0.2 naive (LSCV) 0.242 – 0.183 – 0.154 – 0.136 –
naive (Bayes) 0.228 0.912 0.173 0.766 0.145 0.466 0.131 0.012
DPM1 0.213 0.980 0.117 0.978 0.075 0.976 0.042 0.988
DPM2 0.213 0.982 0.117 0.980 0.075 0.972 0.042 0.980
CF with GCV 0.242 – 0.129 – 0.087 – 0.045 –
benchmark (GCV) 0.211 – 0.117 – 0.067 – 0.038 –
benchmark (Bayes) 0.182 0.980 0.105 0.988 0.061 0.992 0.037 0.992

0.5 naive (LSCV) 0.395 – 0.361 – 0.336 – 0.322 –
naive (Bayes) 0.389 0.408 0.365 0.000 0.331 0.010 0.318 0.000
DPM1 0.206 0.970 0.113 0.982 0.108 0.968 0.058 0.982
DPM2 0.207 0.968 0.113 0.978 0.108 0.968 0.058 0.976
CF with GCV 0.231 – 0.122 – 0.127 – 0.064 –
benchmark (GCV) 0.188 – 0.105 – 0.067 – 0.038 –
benchmark (Bayes) 0.165 0.968 0.094 0.988 0.061 0.992 0.037 0.992

0.8 naive (LSCV) 0.585 – 0.564 – 0.519 – 0.505 –
naive (Bayes) 0.582 0.002 0.571 0.000 0.521 0.002 0.507 0.000
DPM1 0.186 0.960 0.100 0.974 0.149 0.960 0.079 0.974
DPM2 0.187 0.958 0.100 0.970 0.149 0.962 0.079 0.970
CF with GCV 0.209 – 0.106 – 0.175 – 0.090 –
benchmark (GCV) 0.138 – 0.076 – 0.067 – 0.038 –
benchmark (Bayes) 0.122 0.976 0.069 0.984 0.061 0.992 0.037 0.992

approach is clearly outperformed by the DPM approach. Figure 4.2 shows the estimated

curves in the first 50 simulation runs of setting (b.iii) illustrating that estimates of the

control function approach can be seriously confounded when E(ε2|ε1) is not a smooth

function. Clearly, this cannot be only attributed to the higher variability of the cross-

validated smoothing parameter of f̂21(y1). Also in setting (b.v), the DPM approach

performs better although not as pronounced.

In all settings, the DPM approach provides simultaneous credible bands with frequentist

coverage rates above the nominal level. That is, the credible bands were successful in

taking into account all the variability in the estimation. On the other hand, the credible

bands are slightly conservative in a frequentist coverage sense which is unsurprising since

this is a well-known property of Bayesian credible bands also observed in Krivobokova,

Kneib & Claeskens (2010) in the single equation case. Note that for the control function

approach as well as for the approaches compared in Su & Ullah (2008), no simultaneous

confidence bands are available.

In summary, the proposed approach outperformed the control function approach based
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Table 4.6: Settings (b.ii), (b.iii) and (b.v): More complex distributions

(b.ii): Outliers (b.iii): Mixture Distribution (b.v): Omitted Variable
n RMSE coverage RMSE coverage RMSE coverage

100 naive (Bayes) 0.610 0.030 0.922 0.000 0.634 0.084
DPM1 0.268 0.976 0.124 0.980 0.395 0.958
DPM2 0.262 0.974 0.121 0.974 0.393 0.962
CF with GCV 0.409 – 0.339 – 0.435 –
benchmark (GCV) 0.258 – 0.063 – 0.226 –
benchmark (Bayes) 0.213 0.836 0.060 0.990 0.195 0.974

400 naive (Bayes) 0.580 0.000 0.926 0.000 0.616 0.000
DPM1 0.154 0.974 0.059 0.982 0.228 0.940
DPM2 0.153 0.974 0.058 0.982 0.224 0.938
CF with GCV 0.355 – 0.163 – 0.243 –
benchmark (GCV) 0.196 – 0.034 – 0.128 –
benchmark (Bayes) 0.142 0.742 0.034 0.994 0.115 0.974

on GCV smoothing parameter selection and the estimators of Pinkse (2000), Newey

& Powell (2003) and Su & Ullah (2008) (relying on the results given in Su & Ullah,

2008). This shows the extreme importance of the smoothing or tuning parameter which

can hardly be estimated in the frequentist approaches. Moreover, only our Bayesian

approach provided us with simultaneous credible bands which performed extremely well

even in the case of rather complex error distributions and small sample sizes.

4.5 Application: Class Size Effects on Student Achievements

In a very influential paper, Angrist & Lavy (1999) analyzed the effect of class size on 4th

and 5th grades students tests scores in Israel. Their main analysis relies on 2SLS using

a specific instrumental variable in the context of a linear regression model with random

effects. More precisely, among others they consider the model

tscoreji = γ20 + γ21csizeji + γ22disadv ji + νj + ε2ji

where tscoreji is the class level average of a reading comprehension test score, csizeji
the number of students and disadv ji the fraction of disadvantaged students in class i of

school j, respectively. Further, νj is a school-specific random effect.

As discussed in Angrist & Lavy (1999), endogeneity of csizeji due to non-random as-

signment of class sizes complicates estimation of the class size effect. To deal with the

endogeneity of csizeji, Angrist & Lavy (1999) exploit an exogenous assignment rule based
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Figure 4.2: Setting (b.iii): Estimated curves in first 50 simulation runs for n = 100.

on governmental recommendations of 40 students as the maximum class size. That is,

they define the predicted class size pcsizeji of class j in school i as an instrument given

by

pcsizeji =
enrol j

int[(enrol j − 1)/40] + 1
,

where enrol j is the beginning of the year enrollment in school j for a given grade and

int(k) is the largest integer less or equal to k. pcsize implies the rule that schools facing

an enrollment size less or equal to 40 must have only one class. Similarly, schools with

enrollment between 41 and 80 must accommodate students in two classes, and so on.

Using a sample of 2019 public schools and assuming a first stage equation

csizeji = γ10 + γ11pcsizeji + γ12disadv ji + ε1ji

they fit the model using 2SLS and find, for fourth and fifth graders, class size effects of

−0.110 and −0.158, respectively, with standard errors of 0.040 each resulting in the con-

clusion of a significantly negative effect on the reading comprehension test score. When
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applying our DPM approach to the parametric model specification, i.e. when simply

replacing the Gaussian errors with DPM error terms but leaving the model equations

unchanged, we obtain class size effects of −0.103 and −0.108 (with hyperparameter set-

ting ”DPM2”). Hence, we find virtually no difference between 4th and 5th graders and

estimates close to the 2SLS estimate for 4th graders.

As a robustness check for validity of the instrument, Angrist & Lavy (1999) add linear,

quadratic and piecewise linear effects of enrollment to the equations and find that this has

quite an impact on the estimated coefficients for class size (ranging between −0.074 and

−0.147 and between −0.186 and −0.275 for fourth and fifth graders, respectively). That

is, inclusion of enrol and the functional form of its effect (which is roughly approximated

by a few parametric specifications) affects the estimated class size effect. Furthermore,

a violation of the linearity assumption on the class size effect cannot be ruled out and

there may be a positive effect for small classes which vanishes for larger classes above

some kind of threshold. This would correspond to a nonlinear effect, which could not

properly be identified by a simple linear model. To address these issues, we relax the

assumption of linear effects and extend the model of Angrist & Lavy (1999) to the

following specification

tscoreji = γ20 + f21(csizeji) + f22(disadv ji) + f23(enrol j) + ε2ji, (4.6)

csizeji = γ10 + γ11pcsizeji + f12(disadv ji) + f13(enrol j) + ε1ji. (4.7)

Note that inclusion of random school effects νrj ∼ N(0, σ2
νr) with inverse gamma priors

on the variance parameters σ2
νr ∼ IG(aσνr , bσνr ), r = 1, 2 in both equations capturing

within-school correlations of class average scores did not change the results substantively

but basically only increased the widths of the confidence bands slightly and are therefore

not discussed further. Also note that within-school correlations will be generally positive

and thus will increase confidence band width (given point estimates do not change) such

that given confidence bands will not underestimate estimation precision.

Figure 4.3 shows estimated smooth effects for 4th graders (top panels) and 5th graders

(bottom panels) in Equation (4.6) (solid black lines) jointly with 95% pointwise credible

intervals (gray areas) and 95% simultaneous credible bands (areas between black dashed

curves). On the left hand side, class size effects together with 2SLS estimates in the model

excluding enrol (gray solid line) and including a linear (gray dashed line) and quadratic

effect (gray dotted line) of enrol are given. All results are based on hyperparameter

specification ”DPM2”, results with ”DPM1” were very similar. Recall that curves are

centered around zero (with respect to the covariate values) to ensure identifiability.

Regarding 4th grade students, no significant class size effect is found. This does not
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Figure 4.3: Estimated effects for 4th (top) and 5th grade (bottom) students. Solid black
lines show smooth curves in Equation (4.6) with 95% pointwise (gray areas)
and simultaneous (areas between dashed lines) credible bands. 2SLS results
for different parametric specifications of enrolment are given by gray lines.

mean, however, that there is none, the data (and instrument) might just be not informa-

tive enough. Note that using 2SLS, the functional form specification of the enrolment

effect (not included, linear, quadratic or piecewise linear) has a relatively strong impact

on the class size coefficient. In contrast, using the nonparametric DPM approach, inclu-

sion of a smooth effect of enrolment barely influenced the class size effect and therefore

results for the model without enrolment are omitted. Revealed by the simultaneous cred-

ible bands, estimation uncertainty is excessively high particular for class sizes smaller

than 20 casting interpretability of point estimates into doubt. If, however, one is willing

to do so, we find indeed a negative relationship between class size and student perfor-

mance for small class sizes (less then 25 students) and no association as soon as this

”threshold” is exceeded.

For fifth grade students, again estimation uncertainty is too high to draw reliable conclu-
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Figure 4.4: Estimated marginal and joint error densities for 4th (top) and 5th grade
(bottom) students.

sions on the impact of csize on students performance and its functional form. However,

note that we find a significant deviation from the linear 2SLS fit. Also note that point-

wise intervals (gray areas in Figure 4.3) clearly understate the uncertainty (for the whole

curve) and interpreting them would lead to the conclusion of a significant effect, which

is however not justified.

For both grades, the estimated curves f̂22(disadv) (see Figure 4.3 middle plots) signifi-

cantly deviate from the linear estimates obtained from 2SLS (gray straight lines). Such

a misspecification of the functional form of the effect of a control variable can of course

also affect the estimated class size effect. The smooth effects of enrolment are highly

nonlinear but not significant for both grades.

In Figure 4.4, error densities are given which are clearly nonnormal. In particular, the

error density for the first equation has a distinct peak while both densities show some

slight indication of asymmetry.

It is also interesting to note that using the proposed approach we obtain γ̂11 ≈ 0.99

in the first stage equation which is very close to the theoretically expected coefficient
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equal to 1. Angrist & Lavy (1999) obtained coefficient estimates of 0.772 and 0.670 and

of 0.702 and 0.542 for fourth and fifth graders, respectively, and depending on whether

(a linear effect of) enrol was included or not. Thus, they obtain substantially smaller

coefficients than expected leading to different bias correction. Differences most likely

occur due to different handling of outliers in 2SLS and the Bayesian model based on the

DPM prior.

Finally, note that Horowitz (2011) analyzed the same data with a bivariate smooth

function of csize and disadv . They also find no significant class size effect (though only

reporting results for disadv = 1.5).

4.6 Conclusion

We presented a flexible, nonparametric approach for models with one endogenous re-

gressor. The advantages include the availability of simultaneous credible intervals, which

naturally incorporate the variability of estimation of the instrumental variable equation.

They also work well in small samples and are not only asymptotically correct. We do not

rely on a normality assumption such that violations of bivariate normality will not affect

estimates and more efficient interval estimates are provided. In our simulation study,

we show that the approach based on the DPM is quite robust in case of outliers making

the Bayesian approach advantageous even in the parametric context, where although

2SLS methods are consistent they are sensitive to outliers in finite samples. Further,

the smoothing parameters controlling the wiggliness of the curves are estimated from

the data. In contrast to two-step frequentist approaches we do not have to worry about

the difficult smoothing parameter selection for the control function. Our method can

also easily be extended to incorporate additive spatial effects based on Gaussian Markov

random field priors, smooth interaction terms and varying coefficients based on the

framework of structured additive regression (Fahrmeir, Kneib & Lang, 2004).

In our application, we found that without imposing linearity on effects, no reliable con-

clusions on the relationship between class sizes and student performance can be drawn.

Interesting questions for future research include the incorporation of discrete endogenous

variables and binary/categorical outcomes of interest as well as nonparametric sample

selection models adjusting the error density estimation in Wiesenfarth & Kneib (2010).

Our results can also be used for seemingly unrelated regression (SUR) extending Lang,

Adebayo, Fahrmeir & Steiner (2003).

The approach is implemented in an R package aiming at providing the method to a wide

range of practitioners, see Section 5.2 for details.
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5 Software

5.1 Package AdaptFitOS

The approach proposed in Chapter 2 is implemented in a comprehensive R package

AdaptFitOS based on package AdaptFit (Krivobokova, 2009) (which is itself based on

the SemiPar package (Wand, 2010)). Particular differences to AdaptFit include the

availability of simultaneous confidence bands and B-spline basis functions and different

functionality of the plot() function. However, random effects, autocorrelations and

interaction surfaces as well as non-Gaussian responses are only limitedly supported.

Note that in contrast to AdaptFit and SemiPar, estimated curves are centered to have

zero mean and unlike SemiPar, categorical covariates are automatically detected. The

package comes with a comprehensive documentation and examples which can be accessed

via the common R help system (i.e. using ?AdaptFitOS-package for instance).

Generally, to fit the model the core fitting function asp2() is used which fits semipara-

metric regression models using the mixed model representation of penalized splines with

possibly spatially adaptive penalties. Using the resulting object, fitted curves or their

derivatives can be plotted using plot(). The usual information on parametric effects as

well as results from the specification test proposed in 2.5 can be printed using summary().

In the remainder, the functionality of the package is illustrated by the analysis of un-

dernutrition in Kenya. For more details on the individual functions and additional

capabilities consult the help documentation. We suppose that the data (available at

http://www.measuredhs.com) with appropriate labeling of the variables is loaded and

attached.

5.1.1 Fitting a Non-adaptive Model

First, we consider the basic model (2.5) in Section 2.3 and display the corresponding

plots (Figure 2.3).

At first, vectors of knots for nonparametric effects have to be created. Since we will

use B-splines, actually only the length of the vectors will be used as information on the

number of knots. Vectors of knots can be created by using
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> kn.age = default.knots(age, 40)

> kn.bmi = default.knots(bmi, 30)

> kn.mheight = default.knots(mheight, 30)

In order to fit the model, function asp2() is used with an aspFormula object specifying

the model formula as main argument. Thereby, nonparametric effects are specified by

f(.). Within the parenthesis, the covariate, the basis ("os" for B-splines as the rec-

ommended default), the degree (and possibly the penalty order in case of B-splines), a

vector of knots and a logical argument adap specifying whether locally adaptive smooth-

ing should be applied, are given. For the first model we use nonadaptive smoothing

parameters and B-splines with degree p = 5 and penalty order q = 3 for all nonparamet-

ric curves

> fit1= asp2(

Z ~ f(age, basis="os", degree=c(5,3), knots=kn.age, adap=FALSE)

+ f(bmi, basis="os", degree=c(5,3), knots=kn.bmi, adap=FALSE)

+ f(mheight, basis="os", degree=c(5,3), knots=kn.mheight, adap=FALSE)

+ yearsofedu + rural + female + region)

If no basis and knots are given, B-spline bases with p = 3, q = 2 and the number of

knots according to a rule of thumb are used. Note that region is a categorical variable.

In Figure 2.3, we were not interested in confidence bands (bands=FALSE), but wished to

display the partial residuals (residuals=TRUE). This can be accomplished by specifying

> plot(fit1, bands=FALSE, residuals=T, residuals.col=grey(0.4), pages=1)

By specifying pages=1, all components are plotted in one window, use pages=0 (default)

in order to leave all graphics settings as they are.

5.1.2 Fitting a Model with Locally Adaptive Smoothing Parameters and
Heteroscedastic Errors

The model in Section 2.7 is fitted in two steps. First, we refit the previous model with

locally-adaptive smoothing parameter for f1(age). This is accomplished by

> kn.lambda= default.knots(kn.age, 5)

> fit2= asp2(

Z ~ f(age, basis="os", degree=c(5,3), knots=kn.age,

var.basis="tps", var.degree=3, var.knots=kn.lambda, adap=TRUE)

+ f(bmi, basis="os", degree=c(5,3), knots=kn.bmi, adap=FALSE)

+ f(mheight, basis="os", degree=c(5,3), knots=kn.mheight, adap=FALSE)

+ yearsofedu + rural + female + region, niter.var=300)
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Here, kn.lambda is the vector of knots τw1 of length kw = 5 for the smoothing parameter

function for age, which is modeled with radial basis functions (var.basis="tps") of

degree 3 (var.degree=3).

In the second step, the varying residual variance (with respect to bmi) is estimated with

cubic B-splines and kv = 5 knots using

> fit2B= aspHetero(fit2, xx=bmi, basis="os", degree=c(3,2), nknots=5)

We can now plot all fitted curves jointly with heteroscedasticity adjusted simultaneous

confidence bands (Figure 2.4) using

> plot(fit2B, level=0.95,

xlab= list("age (in months)",

expression("bmi (in "* kg/m^2*")"), "mheight (in mm)"))

Here, labels for the x-axes were specified in a list of length equal to the number of smooth

curves in the model. Otherwise, axes are labeled in an automatic fashion. Of course,

the layout can be adjusted with additional arguments such that confidence bands are

shaded or lines are thicker.

Since in large data sets, estimation of V̂ar(f̂) can be memory intensive and take a couple

of minutes, we can also first create an scbm object using scbM() which can then be

plotted much faster using the same arguments as above.

> scb2B= scbM(fit2B)

> plot(scb2B)

The varying residual variance can be extracted with the auxiliary function sigma()

which can be used for plotting purposes (Figure 2.5(b))

> plot(sort(bmi), sigma(fit2B)[order(bmi)], type="l",

xlab=expression("bmi (in "* kg/m^2*")"),

ylab=expression(sigma(bmi)))

Estimated derivatives (as in Figure 2.6) are plotted by specifying the derivative order in

the plot function

> plot(fit2B, select=1, drv=1)

Since we are only interested in the first derivative of the first function, we specified

select=1.

Coefficient estimates with corresponding standard errors and p-values are printed using

the common summary() function
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> summary(scb2B)

Using additional logical arguments test1 and test2, tests for no-effect and the nonpara-

metric specification test proposed in Section 2.5 can be printed (with significance level

given by argument signif), respectively. The test for no-effect corresponds to checking

whether the zero line can be drawn inside the simultaneous confidence band around the

nonparametrically estimated curve and – in contrast to the specification test – does not

depend on the used penalty order q. Its test statistic is defined as

T 0
j = sup

x∈[0,1]

(
|f̂j(x)|/

√
Var{f̂j(x)}

)
.

Rejection of H0 takes place if T 0
j > cm,j . Note that this test coincides with the non-

parametric specification test in Section 2.5 for q = 1. Thus, for q = 1 its power will be

close to the RLR test, but for q > 1 improved power can be expected due to stronger

smoothness assumptions imposed.

> summary(scb2B, test1=TRUE, test2=TRUE, signif=0.05)

Summary for linear components:

coef se ratio p-value

intercept -1.38000 0.091430 -15.0900 0.0000

yearsofedu 0.04063 0.005995 6.7780 0.0000

rural -0.10030 0.060440 -1.6590 0.0972

female 0.19740 0.040550 4.8680 0.0000

regioncentral -0.13160 0.101300 -1.3000 0.1936

regioncoast -0.07125 0.101800 -0.6999 0.4840

regioneastern -0.16290 0.105900 -1.5380 0.1240

regionnyanza -0.12930 0.101500 -1.2740 0.2026

regionrift valley -0.15140 0.097520 -1.5530 0.1205

regionwestern -0.24750 0.099190 -2.4950 0.0126

regionnorth eastern 0.54690 0.126700 4.3160 0.0000

Summary for non-linear components:

basis deg pen adap knots | tstat crit(0.05%) pval

f(age) os 5 3 TRUE 40 | 20.001 3.101 0

f(bmi) os 5 3 FALSE 30 | 8.217 2.968 0

f(mheight) os 5 3 FALSE 30 | 14.519 2.900 0
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Test for a polynomial of degree...:

degree adap tstat crit(0.05%) pval

f(age) 2 TRUE 11.044 3.176 0.000

f(bmi) 2 FALSE 2.415 3.090 0.339

f(mheight) 2 FALSE 1.279 3.167 1.000

Results for parametric effects are given in the first block, tests for no-effect of nonpara-

metrically estimated effects in the second and results using the nonparametric specifica-

tion test are given in the last block. Since we used q = 3 for all curves, we tested for

deviations from quadratic fits in all cases.

To assess test results of the nonparametric specification test in case of large data sets,

function scbTest() can also be used which can be convenient in combination with

argument select when results are only needed for a subset of the additive components.

The resulting object can also be plotted using plot(), returning the estimated deviation

from the function under the null hypothesis with corresponding simultaneous confidence

bands which can help to get an idea about the intuition of the test.

Recall that random effects, autocorrelations and interaction surfaces as well as non-

Gaussian responses are not supported by asp2() since simultaneous confidence bands

are not yet available for these cases. The package contains, however, two functions

aspOS() and spmOS() extending functions asp() (package AdaptFit) and spm() (pack-

age Semipar) to incorporate B-splines with penalty with respect to an integrated squared

derivative. These can be used for instance to conduct the RLRT-test using the RLRsim

package as done in Section 2.5.

5.2 Package bayesIV

Both the geoadditive sample selection model (Chapter 3) and the model with continuous

righthand side endogenous variable (Chapter 4) are implemented in an R package, called

bayesIV. Full description and examples are provided in its documentation which can be

accessed via the usual R help system.

There are four estimation routines: am() for estimation of (single equation) geoaddi-

tive regression models, ssm() for estimation of geoadditive sample selection models and

bayesIV() and bayesIVgauss() for estimation of (geo-)additive instrumental variable

regression models with DPM and normal-inverse Wishart priors on the error densities,

respectively. Plotting and diagnostic capabilities are shared by all estimation routines.
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In the next subsection, function am() for estimation of univariate (geo-)additive regres-

sion models is briefly introduced. In Sections 5.2.2 and 5.2.3 computation of a Bayesian

geoadditive sample selection model and of a nonparametric instrumental variable re-

gression problem are explained via the analysis of relief supply in Pakistan and the

relationship between class size and student performance, respectively.

5.2.1 Bayesian Geoadditive Regression Models

Function am() provides an implementation for estimation of univariate Bayesian

(geo-)additive regression models as described in Lang & Brezger (2004). Componentwise

simultaneous credible bands as proposed by Crainiceanu, Ruppert, Carroll, Joshi &

Goodner (2007), Besag, Green, Higdon & Mengersen (1995) and Krivobokova, Kneib

& Claeskens (2010) can be added to the fits (adjusting function scbB() of package

ConfBands). Plotting capabilities of package BayesX are exploited for the drawing of

spatial effects. It was mainly implemented to provide a method for comparison of single

equation estimates (without sample selection or endogeneity bias correction) with the

methods proposed in Chapters 3 and 4.

Its usage follows the basic syntax of all estimation routines in the package

> am(form, random = list(NULL), data,

numKnots = 20, degree = 3, rw.order = 2,

numBurnIn = 2000, numSamples = 20000, thin = 20)

The model formula is given in form. Smooth functions are specified by s(.), varying-

coefficients by s(., by=.) and spatial effects by sp(.). Smooth curves are modeled

with B-splines of degree degree and random walk penalty of order rw.order. In argu-

ment random, cluster IDs can be given for inclusion of random intercepts. numBurnIn

describes how many iterations are discarded for burn-in. numSamples is the number of

subsequent iterations from which only every thin-th iteration is used for inference. See

the documentation on how to specify hyperparameters for prior distributions.

A summary() function provides information on parametric estimates. Resulting smooth

curves can be plotted using plot() and spatial effects can be plotted using plotmaps().

For diagnostics, plotacf() and plotpaths() provide tools to plot the posterior sample

autocorrelations and sampling paths, respectively. plotpost() provides posterior den-

sities of parametric effects. Further plotting capabilities are described in the following.

5.2.2 Bayesian Geoadditive Sample Selection Models

Sample selection models are estimated with function ssm(). The Gibbs sampling scheme

involved is based on the joint posterior distribution marginalized over unobserved ob-
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servations as described in Chapter 3. Its usage is close to the am() function replacing

the form argument by two formula objects selection and outcome for specification of

selection and outcome equation, respectively. Thus, smooth curves, varying coefficients

and spatial effects are specified in the same way as above. The dependent variable in the

selection equation determines whether the dependent variable in the outcome equation is

observed. It is assumed to be binary with 0 when the response of the outcome equation

is unobserved and 1 if the response variable of the outcome equation is observed. The

response variable of the outcome equation is assumed to be Gaussian when it is observed.

In the following, the analysis of relief supply in Pakistan (commodity type ”food, kitchen

supplies & water”) is used to illustrate the functionality of function ssm(). The model

equations with variable labels as given in Section 3.5.2 are given by

> sel = selectfood ~ height + lnheli + acc +

s(dist) + s(t, by=rug) + s(t, by=MMI) + s(t, by=pop) + sp(s)

> out = lnfood ~ height + lnheli + acc +

s(dist) + s(t, by=rug) + s(t, by=MMI) + s(t, by=pop) + sp(s)

Then, the model can be fitted using

> food= ssm(selection=sel, outcome=out, numKnots=30, rw.order=2,

numBurnIn=20000, numSamples=80000, thin=80,

graph.sel= "neighborstruct")

Since spatial effects of regional variable s are present, a graph object (see package

BayesX) – called ”neighborstruct” here – containing information on neighborhood struc-

tures is given. Regional variables on different administrative levels in the two equations

are also supported (in which case an additional graph.out argument has to be specified).

It is recommended to choose large numbers of numBurnIn, numSamples and thin and

to check sample autocorrelations (using plotacf()) due to a tendency of high sample

autocorrelations of parameters in the selection equation. By default, uninformative

priors are used as described in Chapter 3. For adjustments of the prior settings, consult

the manual.

Besides information on the parametric coefficients, the summary() function addition-

ally returns information on (co-)variance estimates and the DIC (Deviance Information

Criterion) for model selection.

> summary(food)

Formulas:

Selection equation: selectfood ~ height + lnheli + acc + s(dist) + s(t, by=rug)
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+ s(t, by=MMI) + s(t, by=pop) + sp(s)

Outcome equation: lnfood ~ height + lnheli + acc + s(dist) + s(t, by=rug)

+ s(t, by=MMI) + s(t, by=pop) + sp(s)

17313 observations (16469 censored and 844 observed)

Number of samples discarded (burn-in): 20000;

Number of Samples used: 1000 of 80000 Samples (thinning=80)

Parametric coefficients:

Selection equation:

Estimate Std.Dev. 2.5%quant. Median 97.5%quant. p-value(2sided)

(Intercept) -10.0451 2.1097 -13.9828 -10.0279 -5.8167 0.000

height 0.0014 0.0005 0.0005 0.0013 0.0024 0.000

lnheli 0.7169 0.2909 0.0926 0.7109 1.2530 0.022

acc 0.0759 0.0707 -0.0617 0.0768 0.2152 0.302

Outcome equation:

Estimate Std.Dev. 2.5%quant. Median 97.5%quant. p-value(2sided)

(Intercept) 35.3435 6.57887 21.5883 35.7198 47.1118 0.000

height -0.0004 0.00061 -0.0016 -0.0004 0.0008 0.492

lnheli -1.1028 0.97514 -2.7650 -1.1924 0.9345 0.290

acc -0.1831 0.17507 -0.5200 -0.1762 0.1626 0.286

SIGMA:

[,1] [,2]

[1,] 1.00000 -1.62918

[2,] -1.62918 3.18026

Quantiles of the covariance components and correlation between disturbances:

Mean 2.5 5% 50% 95% 97.5%

cov(sel,out) -1.62918 -1.90950 -1.86462 -1.63446 -1.38252 -1.30204

Var(outcome) 3.18026 2.43474 2.56105 3.18884 3.88065 4.01938

Correlation -0.91356 -0.95394 -0.94936 -0.91533 -0.85606 -0.83437

DIC: 33510.69

Smooth curves as in Figure 3.3 are displayed using plot(food). Note that simultaneous

credible bands as described in Section 4.3.4 are also provided for the sample selection

model (which has not yet been discussed in Chapter 3). The spatial effects in the outcome

equation (Figure 3.5 right column) are plotted using

> plotmaps(food, equation=2, map=mapobject)

where mapobject is an object containing the required boundary information (as obtained

by a call to read.bnd of package BayesX).
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5.2.3 Bayesian Nonparametric Instrumental Variable Regression

Function bayesIV() provides an implementation of the DPM approach proposed in

Chapter 4. An implementation of the Bayesian nonparametric instrumental variable re-

gression model assuming bivariate normal errors as standard in the literature is provided

by function bayesIVgauss() with essentially the same syntax.

In the following the functionality is illustrated via the analysis of the effect of class size

on student performance given in Section 4.5. The data is available on

http://emlab.berkeley.edu/users/card/data_sets.html and is assumed to be loaded

as object data with appropriate variable labeling.

The model equations are given by

> first = csize ~ pcsize + s(disadv) + s(enrol)

> second = tscore ~ s(csize) + s(disadv) + s(enrol)

The model is fitted (with hyperparameter specification ”DPM2”) using

> bivDPM2= bayesIV(first=first, second=second,

numBurnIn=5000, numSamples=40000, thin=40,

priorDPM= list(

# fixed parameters in G0

s.Sigma=3, S.Sigma=0.2*diag(2),

# hyperprior on tau

a.Sigma=1, b.Sigma=100,

# gamma prior on alpha

a.alpha=2, b.alpha=2 ))

Thus, formula objects selection and outcome in function ssm() are replaced by for-

mula objects first and second specifying ”first stage” (with right hand side endogenous

variable y1 as response) and ”second stage” equation (the equation of primary interest),

respectively. The model assuming bivariate normal errors is fitted in the same way us-

ing function bayesIVgauss() (with hyperparameters s.Sigma and S.Sigma only). The

priorDPM argument is the default and could thus be omitted. Hyperparameter setting

”DPM1” is obtained by adding tau.Sigma=.036 to the list (discarding the parameters

a.Sigma and b.Sigma for the gamma prior on τΣ). See the documentation for further

possibilities of hyperparameter adjustments.

By default, adjusted routines of package DPpackage are exploited for density estimation.

Alternatively, the sampling algorithm of Conley, Hansen, McCulloch & Rossi (2008)

can be used (with different Gibbs sampler and discrete hyperprior on the concentration

parameter α) by specifying density.method="conley".
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The summary() function prints information on parametric effects such as coefficient

estimates, credible intervals and posterior probabilities. For grade 4, we obtain (slightly

shortened for the sake of brevity)

> summary(bivDPM2)

Formulas:

First equation: classize ~ func1 + s(tipuach) + s(c_size)

Second equation: avgverb ~ s(classize) + s(tipuach) + s(c_size)

2049 observations

Number of samples discarded (burn-in): 2000;

Number of Samples used: 1000 of 40000 Samples (thinning=40)

Distribution of error terms flexibly estimated

Parametric coefficients:

First equation:

Estimate mgcv Std.Dev. 2.5%quant. Median 97.5%quant. p-value(2sided)

(Intercept) -0.2977 15.4531 0.2362 -0.7452 -0.3031 0.1802 0.198

pcsize 0.9837 0.4769 0.0073 0.9686 0.9838 0.9975 0.000

Second equation:

Estimate mgcv Std.Dev. 2.5%quant. Median 97.5%quant. p-value(2sided)

(Intercept) 72.484 72.4894 0.1271 72.2426 72.4822 72.7202 0

All smooth curves in the model including 95% simultaneous and pointwise credible bands

(Figure 4.3) can be plotted by using

> plot(bivDPM2)

In order to plot only the curves in one equation, use additional argument equation. If

only a single curve is to be fitted the covariate name can be additionally given, e.g. in

order to plot the endogenous class size effect only, we type

> plot(bivDPM2, equation=2, covariate="csize").

We plot the marginal and joint error densities (Figure 4.4) using

> density(bivDPM2)

For layout adjustments of the plot functions we refer to the help documentation. Note

that spatial effects (based on Markov random field priors as described in Section 3.2.4)

are also provided for instrumental variable regression models and can be plotted using

plotmaps().

104



References

Albert, J. H. and Chib, S. (1993). Bayesian analysis of binary and polychotomous

response data. Journal of the American Statistical Association 88, 669–679.

Anand, S. and Kanbur, S. (1993). Inequality and development a critique. Journal of

Development economics 41 (1), 19–43.

Angrist, J. and Lavy, V. (1999). Using Maimonides’ Rule to Estimate The Effect

of Class Size on Scholastic Achievement. Quarterly journal of economics 114 (2),

533–575.

Antoniak, C. (1974). Mixtures of dirichlet processes with applications to bayesian

nonparametric problems. The Annals of Statistics 2 (6), 1152–1174.
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