
Three Essays on Application of
Semiparametric Regression:

Partially Linear Mixed Effects Model
and

Index Model

Dissertation

zur Erlangung des wirtschaftswissenschaftlichen Doktor-
grades der Wirtschaftswissenschaftlichen Fakultät der Uni-
versität Göttingen

vorgelegt von

OHINATA Ren

aus Kawasaki, Japan

Göttingen, 2012



Erstgutachter: Prof. Dr. Stefan Sperlich

Zweitgutachter: Prof. Stephan Klasen, Ph.D.

Drittgutachter: Prof. Dr. Thomas Kneib

Tag der mündlichen Prüfung: 3 Mai, 2012



Acknowledgments

I owe it to countless people that I finally stand at the end of this journey.

First and foremost, I am sincerely and heartily grateful to my first supervisor Prof.
Dr. Stefan Sperlich for his guidance and encouragement. I am grateful for the
dissertation topics he suggested to me which keep fascinating me. I wish to thank
him for his utmost generosity and patience I surely stretched to the limit. I am
truly indebted and thankful to my second supervisor Prof. Stephan Klasen, Ph.D.,
who was the supervisor of my master’s thesis as well, for his advice and his way of
working I learned a lot from. Without his generosity and patience throughout, this
dissertation would not have seen daylight. I would also like to extend my gratitude
to Prof. Dr. Thomas Kneib, who generously accepted my request at short notice
that he act as my third examiner.

I would like to offer my special thanks to Prof. Dr. Walter Zucchini for initiating
me into statistics. I am proud of having taken virtually all the available courses of
his at University of Göttingen, which built the base of this dissertation. Even years
later, I still feel the excitement and the heat of the battle in the lecture room. I
wish to thank Prof. Dr. María José Lombardía for valuable advice and discussions.
I am most grateful for her warm welcome to me on my research trip to Universidade
da Coruña. She kindly introduced me to Prof. Dr. Mario Francisco Fernández, the
author of one of the most relevant papers to my work. I also wish to thank him for
invaluable discussions. I would like to express my appreciation to Prof. Dr. Carmen
María Cadarso for her assistance. She gave me a precious opportunity to present
my work to her staff members at Universidade de Santiago de Compostela. I would
like to extend my deep gratitude to Prof. Dr. SENGA Shigeyoshi, who was the
supervisor of my bachelor’s thesis at Yokohama City University, for encouragement
I always felt during my doctoral study.

I wish to thank Dr. Boris Branisa for many hours of valuable conversations and sug-
gestions. I would like to acknowledge the help provided by Dr. Nils-Hendrik Klann,
who took over indispensable and yet the most tedious work of data preparation. I
also thank Tatiyana Apanasovich, Ph.D. and Dr. Antonello Maruotti for helpful
discussions.

iii



I am much obliged to my colleagues at the Institute for Statistics and Econometrics
and the Center for Statistics at University of Göttingen. I have been very lucky to
share with my foreign colleagues good times and hard times of studying at university
as foreigners. My special thanks go to Dr. Jing Dai and Dr. Duygu Savaşci for
many productive conversations, Dr. Yesilda Balavarca for her assistance in preparing
for the dissertation defense, Tinoush Jamali for providing me with knowledge of
computer tools that have greatly facilitated my work, and Dr. Ta-Chao Kao for
being the best office mate during a long doctoral study. I also thank Daniel Adler
for his friendliness and expert programming knowledge he shared with me.

I am aware that there are many more people I should express my gratitude to, and
that I am even unaware of invaluable support I received from people to whom I
owe this dissertation. Lastly I express my gratefulness to my family. Without their
support I couldn’t have arrived at the end of this long journey. Just before beginning
and ending this journey, I lost two of my family members. My grandfather passed
away a few months before I came to Göttingen and my grandmother passed on one
and a half months after I defended this dissertation in the grandfather’s suit. This
dissertation is dedicated to them.

iv



Contents

1 Introduction 1

2 Survey of Mixed Effects Model 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The "Base Model" and Literature in Brief . . . . . . . . . . . . . . . 9

2.2.1 Basic linear mixed effects model . . . . . . . . . . . . . . . . 9
2.2.2 Existing reviews . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Relaxation of the Distributional Assumptions . . . . . . . . . . . . . 12
2.3.1 Parametric extensions of the distributional assumption . . . . 13
2.3.2 Non- and semiparametric estimation of the random effects dis-

tribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Extensions of the Covariance Structure . . . . . . . . . . . . . . . . . 19

2.4.1 Spatial correlation among random effects . . . . . . . . . . . . 19
2.4.2 Serial correlation between errors . . . . . . . . . . . . . . . . 20
2.4.3 Heteroscedasticity in errors . . . . . . . . . . . . . . . . . . . 21

2.5 Relaxation of the Functional Form . . . . . . . . . . . . . . . . . . . 23
2.5.1 Generalized linear mixed model . . . . . . . . . . . . . . . . . 24
2.5.2 Semiparametric linear mixed models . . . . . . . . . . . . . . 29

2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Partially Linear Mixed Effects Model 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 Model Specification and Estimation Procedure . . . . . . . . . . . . 47

3.2.1 Model specification . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.2 General estimation procedure . . . . . . . . . . . . . . . . . . 49

3.3 Estimation of the Fixed Components . . . . . . . . . . . . . . . . . . 51
3.3.1 Estimation of the parametric component . . . . . . . . . . . . 51
3.3.2 Estimation of the nonparametric component . . . . . . . . . . 53
3.3.3 Cross validation and binning . . . . . . . . . . . . . . . . . . 54

v



Contents

3.4 Variance Components Estimation . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Homoskedastic and heteroskedastic case with known α . . . . 56
3.4.2 Heteroskedastic case with unknown α . . . . . . . . . . . . . 58

3.5 Prediction of Random Effects . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Test of Regression Coefficients . . . . . . . . . . . . . . . . . . . . . 61
3.7 Finite Sample Performance: Simulation Studies . . . . . . . . . . . . 63

3.7.1 Influence of the model-reduction bandwidths and effects of the
iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.2 Comparison between OLS and GLS estimators . . . . . . . . 66
3.7.3 Convergence of the parameter estimators . . . . . . . . . . . . 66
3.7.4 Efficiency gain by GLS using nonparametric weight function 68

3.8 Estimator’s Performance in Practice . . . . . . . . . . . . . . . . . . 70
3.8.1 Application 1: Panel wage equation . . . . . . . . . . . . . . . 70
3.8.2 Application 2: Health expenditure . . . . . . . . . . . . . . . 74

3.9 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.10 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.10.1 Calculation of V−1 by spectral decomposition . . . . . . . . 81
3.10.2 Derivation of VC estimators in the homoskedastic case . . . . 82
3.10.3 Derivation of VC estimators in the heteroskedastic case . . . 86
3.10.4 Derivation of the random intercept predictor . . . . . . . . . 92
3.10.5 Extended generalized cross validation (GCVc) . . . . . . . . . 93
3.10.6 Binning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.11 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.12 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4 Index Model 107
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2.1 Estimation of single index model . . . . . . . . . . . . . . . . 110
4.2.2 Bootstrap inference . . . . . . . . . . . . . . . . . . . . . . . . 112
4.2.3 Use of categorical variables . . . . . . . . . . . . . . . . . . . 113
4.2.4 Bandwidth selection for nonparametric link function estimation 116

4.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.1 Data and models . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.3.2 PC and DPC single index model analysis . . . . . . . . . . . 121
4.3.3 Bootstrap inference . . . . . . . . . . . . . . . . . . . . . . . . 127
4.3.4 Comparison between PC and DPC index models . . . . . . . 128
4.3.5 Analysis using cluster average data . . . . . . . . . . . . . . . 133

vi



Contents

4.3.6 Multi index model . . . . . . . . . . . . . . . . . . . . . . . . 137
4.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.5 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
4.6 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
4.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

vii





List of Figures

3.1 Histograms of SA VC estimates from small samples. . . . . . . . . . 67
3.2 Histograms of SA VC estimates from large samples. . . . . . . . . . 67
3.3 Histograms of β estimates from small samples. . . . . . . . . . . . . 68
3.4 Histograms of β estimates from large samples. . . . . . . . . . . . . 68
3.5 GLS β estimates under homoskedasticity assumption. . . . . . . . . 69
3.6 Histograms of GLS β estimates using a weight function (ROT) . . . 69
3.7 Histograms of GLS β estimates using a weight function (CV) . . . . 69
3.8 Bootstrap sampling distributions of the estimated coefficient of ttl_exp2 72
3.9 Plots of the estimated nonparametric functions γ̂(age), γ̂(tenure) . . 73
3.10 Plots of the estimated nonparametric function γ̂(age, tenure). . . . 73
3.11 Estimated conditional variance function. . . . . . . . . . . . . . . . 76
3.12 Estimate of nonparametric function γ(age). . . . . . . . . . . . . . . 77
3.13 Estimate of nonparametric function γ(age) using GCVc . . . . . . . 79
3.14 Histogram of the predicted random intercepts (Section 3.8.1) . . . . 101
3.15 Estimated conditional variance function (Section 3.8.2). . . . . . . . 102
3.16 Histogram of the predicted random intercepts (Section 3.8.2) . . . . 102

4.1 Example of bandwidth selection using binning techniques . . . . . . 117
4.2 Histograms of the sample data . . . . . . . . . . . . . . . . . . . . . 120
4.3 Barplots of the averages of the variables for each quartile group . . . 121
4.4 Scree plot of the eigenvalues. . . . . . . . . . . . . . . . . . . . . . . 122
4.5 Coefficients of the PC and the DPC . . . . . . . . . . . . . . . . . . 124
4.6 Estimated link function m̂ for model (4.19) . . . . . . . . . . . . . . 125
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1 Introduction

Whether parametric or nonparametric, statistical models have three fundamental
aspects: flexibility, dimensionality and interpretability. In general, parametric re-
gression models have an advantage in estimability and interpretability of parameters
of research interests. However, this advantage is conditional on appropriate assump-
tions about the model, particularly the functional form of the relationship between
the response variable and the regressors. Nevertheless knowledge of the true func-
tional relationship is seldom available. A misspecified model may incur severe bias
and thus invalid inference. This problem motivates nonparametric regression, which
has the advantage of flexibility in model specification. However, it has an inherent
problem with dimensionality, known in literature as the “curse of dimensionality”.

Semiparametric regression embodies the strength of nonparametric and parametric
regression models. In this dissertation I study two types of semiparametric regres-
sion: partially linear model and index model. The former circumvents the curse of
dimensionality by additively combining a linear parametric component and a non-
parametric component. This is a natural way to maintain interpretability of para-
metrics and flexibility of nonparametrics to avoid specification bias. The latter model
evades the curse by reducing the dimension of the design space. This approach is
especially useful when data are effectively concentrated in a space of a reasonably
small number of dimensions. Index model estimation centers on a subspace (index
space) spanned by a set of orthogonal index vectors and a nonparametric function
linking the subspace and the response.

The dissertation consists of three essays presented in the subsequent three chapters.
Chapter 2 presents a survey essay “Some Recent Advances in Modeling with Mixed
Effects for Small Areas, Multi-level and Panel Models”, which is a joint work with
Prof. Dr. Stefan Sperlich. Mixed effects models, often known by different names in
different scientific disciplines, are popular in various fields and rich in model exten-
sions. A wide variety of data types and research interests have promoted development
of model extensions and relaxation of rigid model assumptions. The mixed effects
model deals with correlations in data by explicitly modeling random effects, not by
incorporating the correlations into the covariance structure of the regression error.

1



1 Introduction

Thus the model renders itself convenient not only for practical model extension but
even for the purpose of smoothing a function estimate in the spline regression frame-
work. Among others, an important direction of recent advances is semiparametric
modeling, which is the topic of Chapter 3. In view of extensive developments in the
last few decades, we believe that a survey conducted in an interdisciplinary manner
will benefit researchers in diverse scientific communities.

Chapter 3 is devoted to an essay on “Partially Linear Mixed Effects Model without
Distributional Assumptions”. This model integrates two classes of regression: para-
metric linear mixed effects model and nonparametric regression model. There has
been a well-studied estimation method based on the penalized spline with normality
assumptions for the random terms. I propose an alternative estimation which does
not rely on distributional assumptions. The new approach faces a series of chal-
lenges including bias in parameter estimators due to estimation of a nonparametric
component, bandwidth selection in the presence of correlations in data, the test of
significance of regression coefficients, and computational difficulties in practice. The
essay addresses these challenges and provides a simulation study and practical ap-
plications, which demonstrate improvement over the standard linear mixed effects
model and another semiparametric estimation recently proposed. A program package
plmm is provided in the statistical software R to implement the procedures discussed
in the essay.

Chapter 4 presents the third essay “Comparison of Principal Component and Di-
rected Principal Component Index Models: An Empirical Study” in cooperation
with Dr. Nils-Hendrik Klann, who processed and provided household survey data
for this study. In this essay, index models are applied to construct an indicator of
the household’s welfare status. Theoretical interests lie in comparison of index mod-
els differentiated by the types of index vectors, specifically, principal components
and “directed principal components”. Principal components can be used to reduce
the dimension of the design space. However, they span a subspace which certainly
contains a maximal amount of information in terms of regressors, but not necessar-
ily information relevant to the functional relationship between the response and the
regressors. In contrast, directed principal components are estimated simultaneously
with the link function that models the relationship. Consequently the index space
relates the most to the response, and thereby the quality of the indicator is expected
to improve. Prior to analysis, an important data-type problem is discussed: how to
apply to categorical data the index model with directed principal components, which
requires continuous data. As a practical solution I suggest using a data transforma-
tion method proposed for principal component analysis. The empirical comparison
illustrates the potential of an index model with directed principal components as a

2



tool of exploratory, preliminary analysis.

The empirical results presented in Chapter 3 and 4 are obtained using R and Stata.
Program codes are available on request. The R package plmm is available at
http://cran.r-project.org/ .
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2 Survey of Mixed Effects Model

Some Recent Advances in Modeling with Mixed Effects
for Small Areas, Multi-level and Panel Models

Ren Ohinataa and Stefan Sperlichb

a) Institut für Statistik und Ökonometrie, Georg-August Universität
Göttingen

b) Département des sciences économiques, Université de Genève

Abstract

While mixed effects models are widely available effective tools in small area esti-

mation, the complexity of real data structure and the necessity of models that are

specifically tailored for the objectives of data analysis require a variety of mixed

effects model extensions. We review extensions of the classical linear mixed model

and bring together knowledge of different research fields where those extensions

are frequently used. Our focus is mainly set on giving an overview of a variety

of major model extensions rather than of ongoing researches of their asymptotic

properties. The survey concentrates on typical relaxation of distributional assump-

tions and of the classical covariance structure for the error terms, and making the

functional form more flexible. This survey includes parametric and nonparametric

approaches.

Key words: Mixed effects models; Small area statistics; Longitudinal data; Repeated
Measurement; Semiparametric regression.
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2 Survey of Mixed Effects Model

2.1 Introduction

The linear mixed effects model (LMM) has been established as a linear regression
model which takes correlation between observations into account. In a wide range
of research fields LMMs have been developed and extended to accommodate data
of different types found, for example, in biomedical, forestry, agricultural, economic
and social sciences. LMMs are especially popular for panel data analysis; see Laird
and Ware (1982), Ghosh et al. (1996) and Diggle et al. (2002). More recently, they
have attracted a considerable attention in small area statistics; see for example Ghosh
and Rao (1994), Rao(1999, 2003), Pfeffermann (2002), Jiang and Lahiri (2006), Jiang
and Ge (2006) and Datta (2009). Recent development is centered around the mixed
effects models which are categorized into the model-based approach. Fay and Herriot
(1979) is a seminal paper based on a model-based mixed model. See Longford (2010)
for some new development of design-based approaches. In the Bayesian framework
Ghosh et al. (2006) studied cases where covariates were measured with errors in the
small area estimation context. Their predictor of the small area means was further
developed to realize more efficient use of data by Torabi et al. (2009).

While different research areas favor different terminologies, for example, small area
statistics, multi-level (regression) models or repeated measurement problems (mostly
in biology and medicine), it seems to us that little effort has been spent until now
on bringing together these different areas although many of the statistical problems
of modeling, estimation and testing are basically the same. We believe that the
potential synergy is enormous since, to our understanding, most of the differences
arise mainly in the subsequent inferences. Different research areas have in common
that they try to account for certain clustering, may it be due to space, time, climate,
administrative areas or districts, villages or even large families, genetic groups or
species.

The above mentioned research fields are even less connected to the more recent phe-
nomena of using mixed effects models in nonparametric statistics as a kind of smart
(mostly spline) smoothing; see Ruppert et al. (2003) and Wand (2003). Semipara-
metric Bayesian methods using mixed models should be considered as a special case
since they treat functions and parameters as random which would otherwise be con-
sidered as fixed, see Adebayo and Fahrmeir (2005), Kneib and Fahrmeir (2006) and
Fahrmeir and Lang (2001) among others. In probably most of the literature on semi-
parametric models the idea has always been to separate the nonparametric function
into a deterministic (fixed effects) and a random part (random effects) so that the
smoothing parameter of a spline estimator can be written in terms of the variances of
the random effects and the error term. Considerations of additional random effects

6



2.1 Introduction

can be found especially in the Bayesian literature. The recent non-Bayesian literature
often concentrates on longitudinal studies with functions (like varying coefficients)
of time, see for example Wu and Zhang (2006). Only recently has literature come
out on smooth function estimation of covariate impacts in longitudinal studies (Gu
and Ma, 2005), repeated measurement data (Lin and Carroll, 2006), with a focus
on small areas (Lombardía and Sperlich, 2008 or Opsomer et al., 2008) and testing
(Sperlich and Lombardía, 2010).

The main aim of this review article is to bring together these different research fields.
This implies (a) that we will concentrate on aspects which we believe are well known -
if at all - only to one of these statistical sub-communities but should be of interest for
all, and (b) that we put less emphasis on topics of interest for only one of the research
areas. More specifically, we concentrate on the following three aspects: extensions in
distributional assumptions, extensions in covariance modeling, and extensions of the
functional form. As the estimation of the mean squared prediction error (MSPE) is
of strong interest in small area statistics, we will briefly address this aspect for each
of the reviewed papers and methods.

Since random effects modeling with longitudinal data in biometrics seems somewhat
better known to the statistical community than small area statistics, we would like
to add some comments only to the latter. Small area estimation (SAE), especially
the model-based approach has received considerable attention during the last two
decades. The term “small area” may refer to a small geographical area, (county,
district or neighborhood) but it may equally well describe a small domain like a spe-
cific group of people or a climatic cluster. SAE makes use of LMMs by specifying a
general model as fixed, adding afterward random effects related to the specific area.
Note that the interest is not directed toward the estimation of model parameters
but area parameters such as the area mean or certain quantiles (for example for
poverty mapping). For the prediction of these area parameters the random effects
and their predictors are explicitly needed. The squared prediction error estimation
is an additional challenge which we do not include in this review due to space re-
strictions and also because it is of less interest for the other research areas. In the
exclusively model-based framework, interesting researches have been done using both
Bayesian and frequentist methodologies. In official administrative statistics, small
area statistics is standard practice. Indeed, since 2003, the member states of the
European Union have been required to supply Eurostat with small area statistics,
on provinces, districts, departments, etc. In the USA and Canada the statistical bu-
reaus use this technique for more than a decade. For example, the US Department
of Agriculture publishes annual estimates of farm real estate values for 48 states,
based on the Agricultural and Land Values Survey, which is characterized by a low
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2 Survey of Mixed Effects Model

response rate. Thus the topic has become a focus of statistical research, see Battese
et al. (1988) and Pfeffermann and Barnard (1991) for early studies in this filed.

In this essay we review extensions of the basic LMM, whose assumptions are often
too restrictive in practice. The focus of this review is set on the specification and
estimation of extended models. We decided to leave out detailed discussion of the
properties of the estimators and predictors of the models, partly for briefness and
partly because research is still going on in this direction. Even for a widely known
method such as the generalized linear mixed effects model (GLMM), the asymptotic
properties of the maximum likelihood (ML) estimators in general still seem to need
to be established (Jiang and Ge, 2006). As we will see, although the MSPE is one
of the most important topics, it is also open to research in the context of model
extension discussed in this review. Statistical inference including hypothesis tests,
confidence or prediction interval building, model diagnostics and model selection
are also left out for brevity. Instead we refer to the recent articles of Claeskens
and Hart (2009) for a review on testing distributional assumptions and Sperlich and
Lombardía (2010) for functional form specification tests. There is a large amount of
literature on computational methods needed to implement model extensions. They
are mentioned only briefly in relation to individual models in question. While some
simulation techniques used typically in the Bayesian framework are often mentioned,
Bayesian mixed models are left out of scope, except for in the GLMM where Bayesian
approaches have certain technical advantages over frequentist approaches.

The rest of the essay is organized as follows. In Section 2.2 we set out the Gaussian
linear mixed model which serves as the basic model and is extended in the following
sections. It is linear in the fixed and random effects. The normal distribution is
assumed for the random effects and the regression error. The covariance structure of
those random terms is based on homogeneity and absence of between-cluster correla-
tion. Extensions of the basic model toward more flexible distributional assumptions
will be introduced in Section 2.3. Section 2.4 deals with the error term structure
especially in the light of longitudinal data. Some approaches are presented which
model correlations between within-cluster errors and allow for heterogeneity of the
error variance. In Section 2.5 we turn to the functional form of the model. We
discuss the GLMM, which allows the response variable of non-continuous types such
as count or binomial. The semiparametric LMM and the semiparametric GLMM
are also reviewed. Throughout our review, we are interested only in models where
the impact of random effects is explicitly modeled. This means that, for example,
the generalized estimating equations (GEE) remains out of scope. For the details of
GEE, we refer, for example, to Diggle et al. (1994).
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2.2 The "Base Model" and Literature in Brief

2.2.1 Basic linear mixed effects model

Although the basic LMM is well known and studied, we start with a brief introduction
to clarify notation and summarize the assumptions typically made. It is exactly this
set of assumptions that motivate extensions we will review and discuss in subsequent
sections.

Let yij be the jth observed response of the ith cluster. The notation “cluster” is
exchangeable with terms such as “subject”, “group”, “block” or “area”, which are used
in different statistical contexts. It simply indicates a set of observations that are
correlated even after being conditioned on the covariates. Suppose that there are m
clusters with ni observations in the ith cluster, and n =

∑m
i=1 ni. The basic LMM

for the observations in the ith cluster is specified as

yi = Xiβ + Ziui + ei; i = 1, . . . ,m , (2.1)

where yi is an ni-dimensional vector of the response variable and Xi, Zi ⊂ Xi are
design matrices with conforming dimensions, and ei is the vector of regression errors
with covariance Ri = σ2eIni . Further, β is a p-dimensional vector of parameters and
ui is a q-dimensional vector of unobservable random effects with zero mean and co-
variance Di. In matrix notation, by setting y = (yT1 , . . . ,y

T
m)T , X = (XT

1 , . . . ,X
T
m)T ,

Z = diag(Z1, . . . ,Zm), u = (uT1 , . . . ,u
T
m)T and e = (eT1 , . . . , e

T
m)T , (2.1) can equiva-

lently be given as y = Xβ + Zu + e .

For the basic model it is assumed that these random effects are independent and
identically distributed (i.i.d.) for each cluster with covariance Di, and are indepen-
dent of Xi and ei. Often, ei and ui are assumed to be normally distributed as
follows: (

u

e

)
∼ N

((
0

0

)
,

(
D 0

0 R

))
, (2.2)

where D = diag(D1, . . . ,Dm) and R = σ2ediag(In1 , . . . , Inm). Let V denote the
variance of y given X, Var[y|X]. V can be written as V = ZDZT + R, where V is
assumed as a function of a parameter vector ϕ, i.e. V = V(ϕ). Implications of the
above assumptions are:

A1 Normal distributions of u and e with mean zero.

A2 Cov[ui, ek] = 0 for k (= 1, . . . ,m), and Cov[u,X] = 0, and no correlation in
random effects between clusters.
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A3 Cov[eij , eil] = 0 (j 6= l), Cov[ei, ek] = 0 (i 6= k) and Cov[e,X] = 0.

A4 Homogeneous within-cluster variance for e, i.e. σ2eIn.

A5 Homogeneous random effects variances with respect to clusters.

A6 The functional form of the conditional expectation of y is linear additive sepa-
rable.

A7 The random terms u and e are independent from the covariates of the model.

Certainly, the normality is often replaced by different distributional assumptions.
Extensions to relax assumption (A1), affecting also (A4) and (A5), will be discussed
in Section 2.4. Section 2.3 studies more in detail extensions of assumptions (A2),
(A3), (A4) and partly (A5). Assumption (A6) will be relaxed in Section 2.5 with
some discussion of perspectives for (A2). Finally, assumption (A7) is hardly dis-
cussed in the literature although fundamental for the use of mixed effects models,
see Lombardía and Sperlich (2012) for a first rigorous attempt.

There are several ways of fixed parameter estimation and random effects prediction
that lead to basically the same outcomes. We present here Henderson’s method
based on the joint distribution of y|u and u. The best linear unbiased estimator
(BLUE) β̃ and the best linear unbiased predictor (BLUP) ũ are given by(

β̃

ũ

)
= argmin

β,u
(y −Xβ − Zu)T R−1 (y −Xβ − Zu) + uTD−1u . (2.3)

It follows that β̃ = (XTV−1X)−1XTV−1y and ũ = DZTV−1(y −Xβ̃) . “best”
means that they minimize the mean squared error (MSE) of the estimator of β
and that of prediction of E[u|y]. The best predictor coincides with the best linear
predictor in the case of normality but otherwise not necessarily.

Note that, even though normality for the random and error terms is assumed for
convenience, the BLUE and BLUP can be derived without assuming the distribu-
tional family for either the random effects or the error term, see for example Searle
et al. (1992).

The normality assumptions (or alternatively, moment methods) allow us further to
estimate the elements of V, which are usually unknown. Under the distributional
assumptions the (profiled) log-likelihood function for V can be maximized with β
replaced by the BLUE estimator β̃, i.e.

lp(V) = −1

2

{
n log(2π) + log |V|+ (y −Xβ̃)TV−1(y −Xβ̃)

}
(2.4)

with respect to ϕ. When V is estimated and plugged in the BLUE, the empirical
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BLUE (EBLUE) β̂ = (XT V̂−1X)−1XT V̂−1y and the empirical BLUP (EBLUP)
û = DZT V̂−1(y −Xβ̂) are obtained.

Another likelihood-based estimation is the restricted maximum likelihood (REML)
estimation. It is based on linear transformation of data with a matrix of error
contrasts K of dimension n by (n − p) such that K′X = 0 and thus E[K′y] = 0.
Then, under the normality assumption, the variance components can be estimated
without knowing (or any prior knowledge of) β. The REML automatically accounts
for the loss of degrees of freedom due to the estimation of these unknown parameters.

2.2.2 Existing reviews

We discuss briefly some of the existing reviews, may they be articles or books, about
mixed effects models with a special focus on small area statistics and longitudinal
data. In the past fifteen years the mixed effects model has been a hot topic in applied
statistics so that a new book came out almost every year. However, little effort has
been spent so far to bring together different research areas in statistics working with
basically the same model.

Ghosh and Rao (1994) presented a comprehensive overview of the SAE. They re-
viewed the EBLUE, the empirical Bayes and the hierarchical Bayes methods, includ-
ing their extensions. Model diagnostics of model-based methods was also within the
scope of their survey.

Verbeke and Molenberghs (2000) provided a thorough exposition of the LMM for
longitudinal data. Their discussion included potential problems arising from the
classical normality assumptions as well as the use of mixture distributions as an
approach to the problems. Topics such as data exploration, model building, and
missing data handling were also discussed.

McCulloch and Searle (2001) studied in detail linear models, LMMs and GLMMs
with a main focus on likelihood-based methods, including a brief discussion about
nonlinear mixed models.

From a perspective of SAE, Rao (2003) gave an extensive account of the LMM
including some basic parametric extensions. Specifically, the MSE (including its es-
timation) of small area predictions was discussed in detail throughout. The empirical
Bayes and hierarchical Bayes methods were given a thorough examination.

Longford (2005) provided a comprehensive description of the SAE based on likelihood-
based techniques with detailed case studies. The book also dealt with practical issues
such as small-sample properties of small area estimators as well as missing data and
model selection.
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In the context of SAE, Jiang and Lahiri (2006) gave an extensive review of mixed
effects models of which the area level and unit level models were special cases. They
surveyed a broad range of variance components estimators of LMMs and their asymp-
totic variances as well as prediction of the random effects and/or the mixed effects.
They also discussed approaches to estimate the MSPE of the EBLUP, which is of
paramount importance for SAE. Difficulties involved in estimation, inference, predic-
tion and MSPE of the GLMM were also given detailed description. The scope of the
review further included topics such as interval prediction (especially its asymptotic
behavior), model building, model selection and model diagnostics.

Similarly to Jiang and Lahiri (2006), but from a more general perspective, Jiang and
Ge (2006) reviewed mixed effects models including the nonlinear mixed effects models
of which the GLMM is a subset. In addition, they briefly covered semiparametric
relaxation of the assumptions on the random effects distribution.

Jiang (2007) gave a comprehensive exposition of the LMM and GLMM including
inference methods, model diagnostics, model selection and the MSPE. In addition
to likelihood-oriented methods, Bayesian methods were covered. Jiang paid a spe-
cial attention to non-Gaussian LMMs which assume knowledge of the mean and
covariance structure of the random effects and the error but not their distributional
families.

2.3 Relaxation of the Distributional Assumptions

This section is dedicated to some of the contributions to relax the distributional
assumptions typically imposed on the random effects and error terms. Certainly,
in many cases, no distributional assumption is necessary for a feasible generalized
least squares estimation of the fixed effects or for moment estimators of the variance
components. One could rely, for example, on the so-called Henderson’s 3rd (or
fitting of constants) method, for which an early reference is Fuller and Battese (1973)
for the homoscedastic case and Stukel and Rao (1997) for the heteroscedastic case.
Nevertheless, not only for estimation but even more for further inference, we should
also care about a sensible likelihood formulation of the problem. In some contexts
such as SAE, prediction is the main goal of analysis and thus MSPE is of great
interest. MSPE estimation without distributional assumption has been proposed by
Hall and Maiti (2006a) who used bootstrap methods to estimate the MSPE.
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2.3.1 Parametric extensions of the distributional assumption

The "convenience" of assumption (A1) consists in the fact that, even if it may be
too restrictive in practice, it has a mathematical advantage that given (A1) the
marginal distribution of the response as well as the conditional distribution of the
random effects are normal, which simplifies the maximization of the likelihood and
the prediction of the random effects enormously. Certainly, similar things can be
said about several of the other assumptions.

Obviously, the normality assumption may lead to misspecification of the model. The
prediction of the random effects often strongly depend on distributional assumptions.
As far as the estimation of the fixed effects is concerned, the wrongly assumed normal
distribution for the random effects has much weaker impact on their estimation, see
Butler and Louis (1992), Neuhaus et al. (1992) and Verbeke and Lesaffre (1996).
In spite of robustness, the correct specification of the random effects is important
not only for efficient estimation but moreover for correct inference for all parameter
estimates, see Verbeke and Molenberghs (2000), Butler and Louis (1992), or Ghidey
et al. (2004).

Another reason for the need of relaxation of (A1) is the shrinkage effect toward zero
observed for predictions. Predicted random effects typically show less variability than
actually present in the population. Apart from the problem of prediction arising
from inappropriate distributional assumptions, it may be quite difficult to detect
deviations from the normality based on predicted random effects.

An attractive approach to relax the normality assumption is to use a mixture of
normal distributions so that the true random effects distribution can be flexibly de-
picted, whether uni-modal or multi-modal, asymmetric or skewed. Each component
of the mixture represents a certain proportion of the whole population. This type of
model is thus called "heterogeneity model". Such a mixture distribution is particu-
larly useful when the deterministic part of the model is misspecified due to omission
of certain categorical variables. An estimated random effects distribution may detect
such kind of misspecification and guide the practitioner. In such a case, the number
of components of the estimated mixture distribution will correspond to the number
of categories of the omitted covariate, see Verbeke and Lesaffre (1996), Ng et al.
(2006). This implies that it can serve as a tool for exploratory cluster analysis as
well as a test on the Gaussian assumption.

Verbeke and Lesaffre (1996) discussed the heterogeneity model applied to longitu-
dinal data assuming that the random effects ui are sampled from a mixture of K
normal distributions (at this stage let’s assume the number of components K to be
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known), i.e.

ui ∼
K∑
k=1

pk N (µk,D) , (2.5)

where pk (k = 1, 2, . . . ,K) is defined as such that
∑K

k=1 pk = 1. In order to ensure
E[ui] = 0 , a constraint E[ui] =

∑K
k=1 pkµk = 0 is imposed. Then E[yi] = Xiβ

holds as in the basic model. The marginal distribution of yi is directly given by

yi ∼
K∑
k=1

pkN (Xiβ + Ziµk,Vi), Vi = ZiDZTi + σeIni . (2.6)

The parameters β,µk, pk and D can be estimated with the likelihood method using
the expectation maximization (EM) algorithm. Verbeke and Lesaffre (1996) carried
out simulations for a balanced panel with 1,000 subjects over five periods. The
random effects for the individual intercept were drawn from a mixture of two normal
distributions 0.5N (−2, 1)+0.5N (2, 1). This is meant to represent two heterogeneous
sub-populations. They analyzed the data under the assumption of simple normality
for the random effects, and also under the assumption of a two-component (K = 2)
mixture of normal distributions. The estimation under the former assumption yielded
predictors which clearly failed to capture the true distribution. Depending on the
relative size of the variance components, a uni-modal density of the predictors was
obtained (when the regression error variance was large relative to the random effects
variance) or an almost bi-modal density (when the regression error variance was
relatively small). The structure of the design matrix Z can also contribute to this
effect. Not surprisingly, under the second assumption one obtains predictors which
reflect the true underlying distribution of the random effects. Note that in the
context of cluster analysis, Mcnicholas and Murphy (2008) extended this idea to a
model with additive mixture components each of which has a different mean and
variance.

Ng et al. (2006) applied the idea of heterogeneity modeling to a multi-level model
with repeated measurements of subjects found in groups. It was assumed that ran-
dom effects specific to subjects as well as groups to which subjects belong were
mutually independent, and that they possess some mixture distributions. All model
parameters and variances were estimated using a special EM algorithm.

Unfortunately, there are serious difficulties for the heterogeneity model in deter-
mining the number of mixture components. Watier et al. (1999) carried out a
simulation study on a normal mixture distribution without specifying the number
of mixture components. They used a random intercept model with 180 clusters,
yij = x1ijβ1 + x2ijβ2 + ui + eij (i = 1, . . . , 180) where x2ij = 0 for all j in 90 clus-

14



2.3 Relaxation of the Distributional Assumptions

ters and 1 for the rest. In the hierarchical Bayesian framework, they assumed prior
distributions for model parameters and hyper-parameters including the number of
components K. They compared two model specifications for the random intercept;
model (i) with the normal distribution and model (ii) with a normal mixture distri-
bution. The models were fit to simulation data generated with a random intercept
of two-component normal mixture distribution. In spite of misspecification, model
(i) did not show much difference in the fixed effects estimates. However, model (ii)
resulted in a 24% decrease of the posterior standard deviation for β̂2 and 33% de-
crease of its MSE. This kind of decrease was not observed for β̂1. On the other hand,
when the simulated random effects were normally distributed, model (ii), which was
over-parametrized, did not lead to poorer performance than model (i). For both
simulation data sets, model (ii) yielded the mode of the posterior distribution of K
converging in the true number of the components.

Finally it should be mentioned that neither Verbeke and Lesaffre (1996) nor Verbeke
and Molenberghs (2000) included discussion about the MSPE. Watier et al. (1999)
studied only the MSE of model parameters but not the MSPE. No discussion about
the MSPE can be found in Ng et al. (2006) either.

2.3.2 Non- and semiparametric estimation of the random effects
distribution

So far we only considered fully specified random effect and error distributions. Even
though the normal mixtures are a clear improvement compared to the simple normal
assumption, the simulation study of Watier et al. (1999) showed some limitations
due to the necessity of knowing the number of mixture components. Note first that
allowing for an arbitrary number of mixture components is indeed a safe remedy for
misspecification and that having m mixture components actually corresponds to a
Gauss-kernel density with local bandwidths. However, we then run into identification
problems yielding huge (finally infinite) variances for the estimates. In other words,
we face the typical dilemma in statistics to find an appropriate trade-off between
variance and bias. In the following we will summarize different proposals from the
literature to attack this problem.

Assuming a normal mixture distribution with an unknown number of mixture com-
ponents for the random effects distribution of a longitudinal model, Magder and
Zeger (1996) proposed an ML estimation subject to a constraint that the variance
of the mixture components is greater or equal to some minimum value v. The idea
is to set a lower boundary for the within-cluster variability in order to avoid an un-
dersmoothed mixture distribution estimate resulting from an inappropriate number
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of components. The parameter v plays a role similar to the bandwidth of the kernel
density estimation. The ML is found when the variances of the Gaussian compo-
nents are all equal to the specified value of v. The model does not require strong
distributional assumptions for random effects, but flexible shape and smoothness of
its distribution estimate can be attained by controlling the parameter v. This model
can be extended to the case of multivariate random effects. Magder and Zeger (1996)
included simulation results about the MSE of the model parameter estimators as well
as the random effects predictions, but not the MSPE of the response.

Tao et al. (1999) looked at a longitudinal random intercept model yij = xTijβ+ui+eij

with model parameters θ = (βT , σe)
T . They suggested a nonparametric estimation

method of the random effects distribution based on what is called the predictive
recursion algorithm which goes back to Newton and Zhang (1999). The idea is as
follows. The objective function to be maximized is the marginal profile likelihood

L (θ, f |y) =

m∏
i=1

ˆ b

a
li (θ|u,yi) f (u) du , (2.7)

where li is the likelihood for the ith subject, and the interval (a, b) approximately
supports all the probability mass of the random effects distribution. To estimate the
density of the random effects f (u), consider the posterior distribution

f (u|yi,θ) =
f i−1θ (u) li (θ|u,yi)

ci (θ)
, (2.8)

where ci (θ) is a normalizing constant. For a given θ, the function f (u) is estimated
recursively from i = 1 to m (randomly reordered) by

f i (u) = (1− wi) f i−1θ (u) + wi
f i−1θ (u) li (θ|u,yi)

ci (θ)
, (2.9)

where f i−1θ (u) is the density estimate from the previous recursion; wi = (i + 1)−ρ

is a user-specified weight which is a function of constant parameter ρ ∈ (0, 1] and
decreases as i increases. The initial density function f0θ (u) can be chosen as, for
example, uniform or normal. Parameter ρ affects the smoothness of the density
estimate. When it is set close to zero, the current observations in li (θ|u,yi) receive
smaller weights and f i (u), which is a weighted average of the prior f i−1θ and the
Bayesian posterior density obtained from the current observations, will be closer to
its prior and therefore smoother. When fmθ from the final recursion is obtained,
the parameters in θ are estimated by maximizing the marginal profile likelihood
L (θ, fm|y) to which Powell’s conjugate direction search method was applied. The
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authors did an extensive simulation study obtaining mainly expected findings: their
semiparametric approach outperforms parametric specifications if and only if the
chosen specification was wrong. The authors also conducted a simulation study of
their method in the GLMM framework using ordinal response data. They obtained
results similar to the LMM case about the MSE of fixed parameter estimates. Note
that they did not study any MSPE. They also applied it to real ordinal data. They
argued that the use of random effects density estimate can be effective in identifying
misclassified responses (i.e. measurement error in the response) if it is unlikely that
there are any omitted covariates, and that such detection is one of the benefits of
relaxation of the normality assumption as argued by other researchers. In addition,
the authors suggested the use of a density estimate to check the model fit since it
plays a role similar to that of the distribution of residuals in ordinary regression
analysis.

Zhang and Davidian (2001) proposed representing the density function of the random
effects by truncated series expansion. First, formulate random effects ui as

ui = Lvi , (2.10)

where L is an unknown (q × q) lower triangular matrix and vi is a random vector
of dimension q. It is assumed that vi has a sufficiently differentiable smooth density
function such that it can be approximated by

P 2
K(vi)φ(vi) = (

∑
|λ|≤K

aλv
λ
i )2φ(vi) , (2.11)

where λ = (λ1, . . . , λq) is a vector of non-negative integers, vλi = vλ1i1 · · · v
λq
iq , which is

a monomial of order |λ| :=
∑q

k=1 λk, and φ(vi) is a q-dimensional standard normal
density function. K is the order of the polynomial PK . To ensure that we obtain
a density function, the normalization

´
P 2
K(vi)φ(vi)dvi = 1 is imposed. Then, in

a case with K = 2 and q = 2, (λ1, λ2) = {0, 1, 2} and PK(vi) = a00 + a10vi1 +

a01vi2 + a20v
2
i1 + a11vi1vi2 + a02v

2
i2. If K = 0, then PK(vi) = a00 = 1 such that ui

is N (0,LLT ) (i.e. basic model). Let θ be a vector of parameters to be estimated.
θ contains a vector a, which is (a00, a10, . . . , a02)

T in the above example, and the
elements of L in addition to the parameters in the basic model. An advantage of
their methods is that the marginal log-likelihood function l (θ; y) can be expressed in
a closed form so that the standard optimization routine can be used for estimation.
Note that K plays the role of a parameter controlling the flexibility of the shape of
the density function estimator. K is selected based on model selection criterion such
as AIC, BIC and Hannan-Quinn criterion. The authors applied their method to a
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longitudinal cholesterol levels data set. With the baseline effects of fixed covariates
being controlled, the model with K = 1 resulted in a bi-modal random effects density
function estimate suggesting the possibility of sub-populations among subjects. The
authors also investigated some properties of the model parameter estimators and the
random effects predictions by simulation. However, the MSPE was not included.

A Gaussian mixture model requires determination of the components and their
weights and estimation of the means and standard deviations. However, the de-
termination of the number of components is not straightforward due to boundary
problems. The maximization of the likelihood of the mixture model with varying
means and standard deviations is not an easy task as was pointed out by Verbeke
and Molenberghs (2000) and Ghidey et al. (2004). Zhang and Davidian (2001) pro-
posed a method they called the penalized Gaussian mixture linear mixed model,
which was developed further by Ghidey et al. (2004) as follows. Assume ui ∈ R2

for simplicity, and that vi in (2.10) extends over a square of [−b, b] by [−b, b] with
some b and practically vanishes outside of this square. Suppose a grid of equally
spaced points on the interval [−b, b] in both directions. The points are indexed by
j (j = 1, . . . , J) in one direction and l (l = 1, . . . , L) in the other, where J and L

may be different. Denote each grid point in the square by index jl. Place at each
grid point jl a bivariate normal density of N

(
µjl,Ds

)
, where µjl = (µ1j µ2l)

T and
Ds = diag

(
τ21 , τ

2
2

)
. τ1 and τ2 are 2

3 (µ1j − µ1,j−1) and 2
3 (µ2j − µ2,j−1), respectively.

This setting is “based on the assumption that a Gaussian density which extends over
µ± 3τ can be approximated by a B-spline function of degree 3 which extends over 4
equidistant sub-intervals.” Then

f(ui) =
J∑
j=1

L∑
l=1

cjlN
(
Lµjl,LDsL

T
)
, (2.12)

where cjl = exp(ajl)/(
∑J

h=1

∑L
k=1 exp ahk) are mixing proportions a = (a11, . . . , aJL)T

and thus
∑J

j=1

∑L
l=1 cjl = 1. The estimation is performed via marginal ML. In order

to avoid over-fitting by using an inappropriately large number of grids, a penalty
term is considered in the ML-based estimation. Note finally that while Ghidey et al.
(2004) carried out simulation studies to investigate the MSE of the model parameter
estimators, the MSPE was not considered.

To conclude this section, we should refer to Celeux et al. (2005) considering a large
family of mixtures of mixed effects models to bring together flexible parametric
methods to model the mean, the distribution, and the variance structure.

18



2.4 Extensions of the Covariance Structure

2.4 Extensions of the Covariance Structure

It is obvious to think about serial correlation in longitudinal data analysis and spatial
correlation in small area statistics. In the case of having longitudinal small area
data, even both may need to be addressed. Additionally, heteroscedasticity can be
an issue in many applications, sometimes among the error terms, sometimes among
the random effects (then often one speaks of heterogeneity in the random effects).
In the following we review original articles that studied these kinds of covariance
modeling.

2.4.1 Spatial correlation among random effects

In the context of SAE, Saei and Chambers (2003, 2005a) pointed out inappropri-
ateness of ignoring spatial correlation of areas. Based on the model parameters
estimated from the data of the sampled areas, the response variable is predicted for
units not sampled in the sampled area as well as those in non-sampled areas. Under
the assumption of no correlation between areas, the random effects predictions for
areas left out of sample will be zero, which are the means of the random effects.
In reality, however, bordering areas are likely to be correlated. The authors argued
that estimators and predictors for areas in sample as well as out of sample can be
calculated consistently with the aid of a reasonable spatial correlation model.

Suppose a random intercept model yij = xTijβ+ ui + eij . In order to capture spatial
correlation between areas i and i’, the (i, i′) element of the covariance matrix of the
random effects can be given by

σ2u

(
1 + δii′ exp

d(i, i′)

ρ

)−1
, (2.13)

where ρ is an unknown parameter, d(i, i′) is a predetermined function of the distance
(not necessarily Euclidean) between the areas i and i′, and δii′ is 0 for i = i′ and 1
otherwise.

One way of incorporating the covariance structure is the simultaneous auto-regressive
model (SAR) (Salvati, 2004; Saei and Chambers, 2005a). The model is constructed
starting from y = Xβ + Zv + e with a random variable v. It is assumed that
v = ρWv + u where W is a matrix of proximity of neighboring areas, and ρ is the
spatial dependence parameter and u is a vector of error terms with zero mean and
unknown variance. With v = (I− ρW)−1u the SAR model is formulated as

y = Xβ + Z(I− ρW)−1u + e , (2.14)
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which is a special case of the basic LMM with the covariance matrix

D = σ2u[(I− ρW′)(I− ρW)]−1 . (2.15)

Model parameters can be iteratively estimated using ML or REML.

Saei and Chambers (2003, 2005a) provided simulation results assuming correlation
of random effects only for directly neighboring areas. Their results showed decreases
in MSE and increases in prediction efficiency. Salvati (2004) also conducted sim-
ulation studies to compare the spatial models and the basic LMM, and concluded
that the larger the spatial correlation in absolute terms, the better is the accuracy
of estimation measured in MSE.

Saei and Chambers (2003, 2005a) gave analytical formulas of the MSPE estimator
of the EBLUP of unit level models. MSPE estimators were given under various
assumptions for the covariance structure including area effects and auto-correlated
time effects, time varying area effects, and spatial correlated area effects. Saei and
Chambers (2005a) provided simulation studies and Saei and Chambers (2005b) stud-
ied area level models. Salvati (2004) also provided simulation studies of efficiency
gains from using the spacial model in terms of the MSPE of the EBLUP.

An alternative to the SAR model is the conditional autoregressive model which mod-
els random effects distribution conditional on those of spatially neighboring areas.
See e.g. Salvati (2004) and Kang et al. (2009).

2.4.2 Serial correlation between errors

It is unrealistic to assume for longitudinal data that measurements on the same
subject are uncorrelated. One way of modeling the within-subject serial correlation
is to modify the error term of the basic model.

Chi and Reinsel (1989) investigated the longitudinal LMM specified as yi = Xiβ +

Ziui + ei with serial correlation among the within-subject errors ei. Assume the
first-order auto-regression, AR(1), so that

eij = φei,j−1 + rij ; rij ∼ N (0, σ2); j = 1, . . . , ni . (2.16)

The variance of yi is Var[yi] = ZiDZTi + σ2Ri where Ri is not an identity matrix
as in the basic model. Parameters β, the variance components and φ are estimated
iteratively using the ML. The subject-specific random effects are predicted based on
the empirical Bayes estimator. The authors applied four models to medical data.
Model (i): LMM with subject specific random intercepts; model (ii): model (i) with
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AR(1) for the error term; model (iii): LMM with subject specific random intercepts
and slopes; model (iv): model (iii) with AR(1) for the error term. As far as this
application was concerned, model (ii) turned out preferable in terms of the log-
likelihood of the fitted model. The authors also mentioned an alternative model
considering MA process instead of AR process. They gave the MSPE for the BLUP
of the random effects and the response variable, noting that replacement of the known
variance components by their estimates will lead to underestimation in the case of
EBLUP.

Following Diggle et al. (1994) or Verbeke and Molenberghs (2000), the error term
may be decomposed in such a way that ei = e1i + e2i as follows:

yi = Xiβ + Ziui + e1i + e2i; i = 1, . . . ni . (2.17)

Here e1i is a term capturing serial correlation distributed as N (0, τ2Hi) and Hi is
a correlation matrix, and e2i is a measurement error term with N (0, σeIi). These
terms are mutually independent, and thus the variance of eij is constant τ2+σ2e . The
variance of yi is Var[yi] = ZiDZ>i + τ2Hi + Ri with Ri = σ2eIni . The (j, k) element
of Hi is a decreasing function of time interval between jth and kth measurements
at time tj and tk such as h(|tj − tk|) with h(0) = 1. h is often assumed to be an
exponential or Gaussian function, that is, h(u) = exp(−φu) or h(u) = exp(−φu2),
respectively, with φ > 0. Note that Var[ei] of the model discussed by Chi and
Reinsel (1989) can be given in this general framework by Var[ei] =τ2Hi + σ2eIni =

σ2e(τ
2/σ2

eHi + Ini) = σ2eRi.

It is worth noting, however, that serial correlation may be confounded with the ran-
dom effects and may also be explained by random effects. For example, Jones (1990)
studied longitudinal data which showed increasing variances over time. While serial
correlation estimated in a linear model was significant, an LMM under conditional
independence assumption resulted in a better fit, which, the author argued, would
often happen to relatively small data sets. Moreover, as is discussed in Verbeke and
Molenberghs (2000), modeling in the above form imposes restrictions on the vari-
ance components estimates. On the other hand, modeling the serial correlation in
addition to random effects can reduce the number of random effects which would
otherwise be needed. The MSPE was not considered at all.

2.4.3 Heteroscedasticity in errors

The models in the previous sections assumed homogeneity for the within-cluster vari-
ance (i.e. Var[eij ] = σ2e ∀i, j) although this assumption may be unrealistic. Research
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interests may lie in potential heterogeneity in individual variations and identifying
variables related to those variations. While heterogeneity of the random effects has
been studied quite a lot, less attention has been paid to this classical type of het-
eroscedasticity, i.e. a non-constant variance of the error term. If heteroscedasticity
is taken into account, then mostly in a rather restrictive way with a fully paramet-
ric known variance function. A classical reference is Stukel and Rao (1997). In
the following we review three, perhaps less known but much more flexible ways of
addressing this - at least in social sciences - quite crucial issue.

Li and Stengos (1994) considered the case where the variance of the error term was
simply an unknown nonparametric function of a d-dimensional covariates wij . They
proposed first estimating the variance of the random effect σ2u making use of the
independence of the error terms as follows. Let’s denote Var[eij ] and yij − x>ijβ by
σ2e(wij) and Uij , respectively. Since it holds that

Cov[Uij , Uij′ ] = E
[
UijUij′

]
= σ2u ∀i, j 6= j′ , (2.18)

σ2u can be estimated by

σ̂2u =
1∑m

i=1 ni (ni − 1)

∑
i

∑
j 6=j′

ÛijÛij′ , (2.19)

where Ûij is the OLS residual yij − x>ijβ̃OLS . Noting Var[Uij |wij ] = σ2u + σ2e(wij),
denoted here by σ2ij , the variance function can be estimated by the Nadaraya-Watson
(or the local polynomial regression) via

σ̂2ij =

∑m
i′=1

∑ni′
j′=1KijÛ

2
i′j′∑m

i′=1

∑ni′
j′=1Ki′j′

, (2.20)

where Kij is a (multivariate) kernel weight Kij = K(H−1(wi′j′ −wij)) with a diag-
onal matrix of bandwidths H = diag(h1, . . . , hd) and a kernel weighting function K.
The variance function estimator is simply given by σ̂2e(wij) = σ̂2ij − σ̂2u. The MSPE
was not studied.

Lin et al. (1997) proposed a model that specifies within-cluster variances as random.
In some cases this specification is of importance because the variance components
estimates are affected by whether or not the within-cluster variance is random, while
fixed effects estimates are not. The authors proposed heterogeneous within-cluster
error variances σ2iRi under normality assumption, where Ri is a correlation matrix.
Further, σ2i is inverse-gamma distributed with mean σ20i and variance δσ40i, where
δ is a heterogeneity parameter. σ20i is determined by a vector of covariates wi and
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unknown parameters α in the form of log(σ20i) = wT
i α. Note that, with δ = 0 and

wi = 1, the model is reduced to the basic LMM. The authors circumvented complica-
tion of the full marginal likelihood function due to additional specification of random
within-cluster variances by using the quasi-likelihood for the estimation of the fixed
effects, the pseudo-likelihood for the estimation of ϕ (parameters of the covariance
matrix V) and α, thereby only the first and second moments of yi need to be cor-
rectly specified for the consistency of the estimators. δ is estimated by the method of
moments. Under the regularity conditions the estimators obtained are consistent and
asymptotically normally distributed. While consistency and asymptotic normality
of estimators were considered, MSPE issues were not discussed.

In contrast to the basic model, the mixed effects model of Fay-Herriot type in the
SAE context provides difficulty in estimating the variance of the error term due to
lack of replications in each area. In order to account for heterogeneity in the error
variances, González-Manteiga et al. (2010) proposed a non-parametric estimation
method using kernel estimation. Their model is

yi = xTi β + ui +
√
wiei , (2.21)

where ei
iid∼ N (0, σ2). σ2 is estimated from the sampling variance of the estimates of

yi. The heteroscedasticity weight wi is assumed to be an unknown function of either
a covariate, that is, wi = w(xi) or the marginal expectation of the response variable,
that is, wi = w(xTi β), where w(·) is some smooth function. The error variance of
the ith area is then wiσ2. This is estimated using observations close to the ith area
weighted by the kernel function. The authors provided proof for the consistency
of the estimators of the parameters β and σ2u. Note that the authors investigated
the MSPE of the EBLUP for their Fey-Harriot model. They proposed two boot-
strap methods to estimate the MSPE. In the first method the estimate is obtained
with variance components estimates given above. The other takes into account the
bias in the first method due to the estimation of the variance components. They
provided a simulation study to compare their bootstrap methods and the analytical
approximation given by Prasad and Rao (1990).

2.5 Relaxation of the Functional Form

Most of the inference in small area statistics is model based. Therefore, not only
an adequate modeling of the random effects and error term distributions and their
covariance structure should be demanded but also correct specification of the mean
function is crucial. Misspecification of the mean function can easily lead to endo-
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geneity of the covariates and the fundamental assumption of independence between
covariates and random effects as well as error terms is violated. Moreover, the nature
of response variable may require generalization of the LMM, for example, for discrete
responses such as binary or Poisson.

SAE often has as its objective the prediction of the area means or totals. An LMM
may need to be specified in terms of transformed variables, so that predictors need to
assume appropriate forms according to the transformation. Chambers and Dorfman
(2003) considered predictors for such cases.

In this section we will first review generalization of the LMM to the GLMM and
then turn to nonparametric mean functions.

2.5.1 Generalized linear mixed model

The basic LMM assumes a continuous response variable. For a response variable
that is not continuous but of other types such as binary, multi-categorical or count,
the basic LMM needs to be extended to the GLMM. The GLMM is an extension of
the generalized linear model (GLM) and inherits the main feature of the LMM that
within-cluster correlations are accounted for by random effects. The GLMM can also
serve as a tool to account for overdispersion in the GLM. We refer to Agresti et al.
(2000) for several interesting applications of the GLMM in social science.

Assume that the jth observation of the ith cluster yij is conditionally independently
distributed given the random effects ui, and its distribution is a member of the fully
parametric exponential family. The GLMM is formulated as

G(µij) = xTijβ + zTijui , (2.22)

where G is a known link function, and µij is the conditional expectation E[yij |ui].
The random effects are typically assumed to possess a known distribution. The
likelihood function to be maximized is

L (β,D, φ; y) =

m∏
i=1

ˆ ni∏
j=i

fi (yij |ui) f (ui) dui , (2.23)

where density functions fi and f are all specified accordingly and D is the covari-
ance matrix of the random effects. However, if the dimensions of the random effects,
say q, are large, estimation of the unknown model parameters involves the compu-
tational difficulty of facing a q-dimensional integral. Often, this does not have an
analytically closed form expression and ML-based parameter estimators are difficult
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to obtain. There are mainly two approaches that circumvent the difficulty. One
is numerical approximation which theoretically allows for convergence to the ML
estimation, such as the quadrature method and the Monte Carlo expectation max-
imization (MCEM). The other is based on linearization of the GLMM such as the
penalized quasi-likelihood (PQL) or the pseudo maximum likelihood (PML). These
are essentially equivalent to the approach using Laplace approximation.

One way of approximation is the Gauss-Hermite quadrature technique, which can be
used to approximate an integral of products of functions involving a term exp(−u2).
See, for example, Liu and Pierce (1994). A disadvantage of the Gauss-Hermite
quadrature method is that it is difficult to approximate a high-dimensional integral
and thus a model with crossed random factors or random factors nested in high
multi-levels often cannot be handled. Another numerical approximation approach
is an iterative procedure MCEM method in which unobserved random effects are
considered as missing values. In the rth iteration, the expectation step calculates
E[log f (y|u;β) f (u; D) |y;β(r−1),D(r−1)], that is, the expectation of the conditional
log-likelihood with respect to the conditional distribution of the random effects given
y and model parameters estimated in the (r − 1)th iteration, β(r−1) and D(r−1).
The conditional distribution of u given y, and estimates β(r) and D(r) is necessary
in the expectation step and needs to be estimated using the Markov chain Monte
Carlo (MCMC) algorithm. The expected conditional log-likelihood is maximized
with respect to β and D in the maximization step. This process is iterated until
convergence. For more details of the MCMC algorithm used for the MCEM, see
Booth and Hobert (1999), McCulloch (1994, 1997), Zeger and Karim (1991), Malec
et al. (1997) or Ghosh et al. (1998). A more recent extension can be found in Song
et al. (2005), which proposed maximization by parts.

Breslow and Clayton (1993) proposed the PQL based on the maximization of quasi-
likelihood with a penalty to prevent arbitrary prediction of random effects. The PQL
is based on linearization and analogous to the iteratively reweighted least squares
for the GLM. The model is linearized by the first order Taylor expansion around
µij and then reduced to an LMM form tij = xTijβ + zTijui + ∆ij(yij − µij), where
tij is the so-called working response variable or pseudo data and ∆ij is the first
derivative of G(yij) evaluated at µij . With the working response variable obtained,
β, u and D are iteratively estimated and predicted using LMM estimation methods.
This procedure is iterated until convergence. Issues about inconsistency of PQL
estimators are discussed for example in Breslow and Lin (1995), Lin and Breslow
(1996).

One way of extending the GLMM is to allow for non-normal distributions for the
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random effects. Such a model is often called the hierarchical LMM. Motivated by the
idea that the distribution of the random effects should be better determined by data
or the purpose of inference, Lee and Nelder (1996) proposed models in which the
random effects distribution is conjugate to the distribution of the response variable.
Combinations of the distributions between the response variable and the random
effects include Poisson and gamma, binomial and beta, gamma and inverse gamma,
and inverse Gaussian and gamma. This approach has a technical advantage that
estimation does not depend on the marginal likelihood and hence integral calculation.
See also Antonio and Beirlant (2007) for application to actuarial risk data analysis.

The Bayesian framework provides another approach to the GLMM. In contrast to
the frequentist methods, the fixed effects β and the covariance matrix of the ran-
dom effects D are considered as random. By specifying a joint diffuse prior density
f (β,D), the joint posterior distribution can be formulated as

f (u,β,D|y) =
f (y|β,u) f (u|D) f (β,D)

f (y)
. (2.24)

The Bayesian approach allows for not only a linear predictor involving a complicated
random effects structure but also various distributions for the random effects. For
conditional posterior distributions of u, β and D that are generally intractable due
to high-dimensional integrals, MCMC techniques are used to obtain the posterior or
predictive distributions for estimation and prediction. See Zeger and Karim (1991),
and Booth and Hobert (1998) for discussion about the MSPE in the GLMM.

For the longitudinal GLMM, Li et al. (2004) proposed an alternative approach to
predict the random effects and estimate the variance components without assum-
ing any distribution for the random effects. Their idea is based on the sufficiency
score and conditional score functions. Earlier GLMM estimation methods without
distributional assumptions are for example Aitkin (1999) or McCulloch (1997).

Let us come to detailed examples of discrete response models with random effects.
McNeil and Wendin (2003) looked at portfolio credit risk modeling. The authors
discussed a generalized random intercept model to analyze yearly defaults data of
obligors and credit rating classes. Besides the response variable type, their model is
different from the standard LMM for longitudinal data in that the clustering factor
is the year and thus observational units are nested within year. Each level of the
year-specific random intercept represents the general state of the economy of the year
under consideration. Because yearly economic situations are likely to be related over
some years, the model needs to account for correlation between random intercepts
of neighboring years.
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Let the response variable ytj be the default case of obligor j (= 1, . . . , nt) in year
t (= 1, . . . ,m), and let ηtj = µj + ut be the linear predictor, where µj is a dummy
variable for credit rating class to which obligor j belongs and ut is a year-specific
random intercept for year t. A binomial GLMM can be applied with ut which is
assumed to be the first order autoregressive time series as follows:

ut|ut−1 ∼ N
(
αut−1, σ

2
u

)
, u1 ∼ N

(
0,

σ2u
1− α2

)
, |α| < 1 . (2.25)

As before, the marginal joint density of yt is

f (yt) =

ˆ nt∏
j=1

f (ytj |ut) f (ut) dut . (2.26)

However, since f (ut) is not i.i.d., the marginal likelihood for the whole sample is

f (y) =

ˆ
· · ·
ˆ m∏

t=1

nt∏
j=1

f (ytj |ut) f (u1, . . . , um) du1 · · · dum . (2.27)

In order to deal with the difficulty in maximizing the likelihood, the authors suggested
estimation using MCMC techniques. They fit the model to real defaults data by
specifying a uniform prior distribution over (0, 1) for α, a Gaussian prior with a
large variance for the fixed effects, and an inverse-gamma prior for σ2u. Similarly,
the number of defaults ytk of credit rating class k in year t can be modeled with
the Poisson GLMM. With the model parameters estimated, random effects can be
predicted for year m+ 1 and then used for the prediction of the response conditional
on the past random effects. These models can be generalized with additional variables
such as obligor-specific covariates, global covariates and other random effects so that
the linear predictor is given by ηtj = xTtjβ + zTtjut.

When considering counting data, the possibility of extending the model by zero-
inflation is an important issue in many applications. Hall (2000) studied extensions
of the zero-inflated Poisson model (ZIP) and zero-inflated binomial model (ZIB). The
ZIP is a mixture of distributions for two states, i.e. a Poisson distribution (Poisson
distribution state) and a degenerate distribution with a point mass of zeros (zero
state). Analogously to the ZIP extension, the ZIB consists of binomial and zero
states. More specifically, the ZIP extended with a random intercept is given by

yij |ui ∼

0 with probability pij

Poisson(λij) with probability 1− pij
, (2.28)
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where ui ∼ N
(
0, σ2u

)
, λi = (λi1, . . . , λini)

T and mixing probabilities pi = (pi1, . . . , pini)
T .

The Poisson distribution state and the mixing probabilities are modeled by log(λi) =

Xiβ+ 1niui (1ni is an ni-dimensional vector of one’s) and logit(pi) = Wiγ, respec-
tively, with design matrices Xi and Wi and regression coefficients β and γ. The
marginal log-likelihood is

l (ψ; y) =

m∑
i=1

log

ˆ ∞
−∞

ni∏
j=1

f(yij |ui;ψ)f (ui;ψ) dui , (2.29)

where ψ = (β>,γ>, σ2u)T and

f(yij |ui;ψ) = [pij + (1− pij) exp (−λij)]sij
[

(1− pij)
exp (−λij)λ

yij
ij

yij !

]1−sij
(2.30)

with sij = 1 if yij = 0 and sij = 0 otherwise.

Similarly, the ZIB random intercept model is formulated as

yij |ui ∼

0, with probability pij

binomial (nij , πij) with probability 1− pij
(2.31)

with log(πi) = Xiβ + 1niui and logit(pi) = Wiγ. The marginal log-likelihood is

f(yij |ui;ψ) = [pij + (1− pij) (1− πij)nij ]sij

[
(1− pij)

(
nij

yij

)
π
yij
ij (1− πij)nij−yij

]1−sij
.

(2.32)
The model parameters are estimated by the EM algorithm with Gaussian quadrature,
which is used to approximate the marginal distribution f(yi). The author applied
the ZIP and ZIB mixed models to longitudinal count data and obtained better fits
than a GLMM and a ZIP/ZIB without random effects terms.

Certainly, zero-inflation can be combined with most of the other extensions we are
discussing in this article. For a quite recent contribution, the combination of zero-
inflation with different extensions in the GLMM context, see Alfò and Maruotti
(2010) and references therein.

Olsen and Schafer (2001) applied a strategy similar to Hall (2000) to semi-continuous
longitudinal data, that is, data containing a random variable whose distribution com-
bines a continuous distribution with point masses at one or more locations. However,
a mass of zeros are valid self-representing data, not proxies for negative or missing
data typically handled with censored or truncated variable models. Similarly to the
ZIB and ZIP models, semi-continuous response variable is assumed to be a result
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of two processes: one process determining whether the response is zero or non-zero
and the other determining the non-zero values. The authors modeled the former
process using the logit with random effects and the latter using the LMM. The ran-
dom effects included in the two processes were assumed to be jointly normal and
possibly correlated. The authors used Laplace’s approximation to deal with integral
calculation in the likelihood maximization.

Hall and Wang (2005) considered a two-component mixture of GLMMs, which can
be understood as an extension of a two-component mixture of GLMs or an extension
of a GLMM to which a second component is added. This type of model is useful
when there is heterogeneity in the population so that the data represent a small
number of sub-populations that cannot be directly identified. Assuming two latent
sub-populations underlying the data, the distribution of the conditional response is
given by

yij |ui ∼

F1(yij |ui; θ1ij , φ1) with probability pij

F2(yij |ui; θ2ij , φ2) with probablity 1− pij
, (2.33)

where F1 and F2 are distributions from the exponential family with the density
function conditional on random effects ui:

fk(yij |ui; θkij , φk) = exp

{
yijθkij − bk(θkij)

φk
+ ck(yij , φk)

}
, (2.34)

where k = {1, 2}, b and c are known functions; θ is the canonical parameter; and
φ is a dispersion parameter. The linear predictors of the two GLMM components
may be correlated through random effects. Mixing probabilities pi = (pi1, . . . , pini)

>

are modeled in the form Gp(pi) = Wiγ, where Gp is a known link function such
as logit; W is a design matrix; and γ is a vector of regression coefficients. Model
parameters involved in the two GLMM components and γ are estimated using the
EM algorithm with quadrature techniques.

Finally it should be mentioned that almost none of the cited articles considered the
problem specific to the small area statistics of estimating the MSPE.

2.5.2 Semiparametric linear mixed models

Semiparametric regression is useful to capture complicated relationship between the
response variable and covariates for which parametric models fit poorly. An LMM
combined with the semiparametric regression is capable of capturing such relation-
ship nonparametrically while accounting for the correlation structure of the response
variable. A semiparametric LMM corresponding to the random intercept model can
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be formulated as
yij = ξ(xij) + ui + eij , (2.35)

where ξ is a smooth function and ui is the ith cluster-specific random intercept
and eij is the error term. One semiparametric way of modeling ξ is the use of the
piecewise polynomial spline regression of order p:

ξ(xij ;β,v) = β0 + β1xij + · · ·+ βpx
p
ij +

K∑
k=1

vk(xij − κk)p+ , (2.36)

where

(x− κk)+ =

0 , for x ≤ κk
x− κk , for x > κk

(2.37)

and κk (k = 1, . . . ,K) are knots. v = (v1, . . . , vK)T is assumed to be a random
vector distributed as v ∼ N (0, σ2vI). This assumption serves to provide smoothness
of the fitted spline regression. The covariance structure of (uT vT eT )T is then

Cov

 u

v

e

 =

 σ2uI 0 0

0 σ2vI 0

0 0 σ2eI

 . (2.38)

The BLUE of β and the BLUP of u are given by(
β̃

ũ

)
= argmin

β,u

(
||y −Xβ − Zu− Z∗v||2 + α1 ‖u‖2 + α2 ‖v‖2

)
, (2.39)

where Z∗ is a matrix whose (i, k) element is (xij − κk)
p
+; α1 = σ2e/σ

2
u and α2 =

σ2e/σ
2
v . Note that α2 is a smoothing parameter. When σ2v and σ2e are unknown, α2

is determined with (RE)ML estimates of σ2v and σ2e . Then, with an estimate of σ2u,
the EBLUE and EBLUP β̂ and û are obtained.

The semiparametric modeling in the mixed model framework has an advantage that
standard LMM estimation and prediction methods can be used. This means that
the (E)BLUE of β and (E)BLUP of u are obtained for a mixed effects model with a
regression spline. See Gu and Ma (2005) for the generalized cross-validation method
to search for a smoothing parameter.

In the context of SAE, Opsomer et al. (2008) applied the LMM with spline smoothing
to survey data. In addition to area random effects, they adopted two-dimensional
geographical coordinates as covariates using splines with radial basis functions. Their
model assumption of no correlation among area effects implies that the area effect is
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predicted to be zero for an area where no sample is available. However, use of spatial
splines allowed to utilize information from neighboring areas to improve small are
predictions. Ugarte et al. (2009) proposed a mixed effects model using B-spline
bases. They investigated the behavior of the MSPE analytically as well as by using
bootstrap methods.

Zhang et al. (1998) investigated a semiparametric model for longitudinal data

yij = xTijβ + ξ(tij) + zTijui + e1 (tij) + e2,ij , (2.40)

where tij is a time point and ξ is a fixed smooth function; potential within-subject
correlation is accounted for by an error term e1(tij) for which nonstationarity is
allowed. This can be further extended by allowing a nonparametric smooth function
for the random effects. For longitudinal data, Wu and Zhang (2002) suggested a
local polynomial mixed model

yij = η(tij) + vi(tij) + eij , (2.41)

where η is the population mean curve and vi is a subject-specific random effects curve.
vi is assumed to have mean zero and a covariance function γ (t, t′) = E [vi (t) vi (t′)].
ei = (ei1 ei2 . . . eini)

T is assumed to have mean zero and a covariance structure
Ri = diag(σ2(ti1), . . . , σ

2(tini)) with a variance function σ2(tij), which means that
in contrast to the methods described in Section 2.4.1 the within-subject correlation
structure is modeled in the random effects specification, not in the error term. In
contrast to the algorithm of Wu and Zhang (2002), which estimated the population
mean function and subject-specific random effects curves simultaneously using the
same bandwidth, Park and Wu (2006) used different bandwidths for each to improve
efficiency of the algorithm.

Let us turn to semiparametric extension of the GLMM. The linear predictor ηij of the
GLMM can include semiparametric terms in the form called the generalized partially
linear model

G(E[yij | xij , sij , ui]) = xTijβ +m(sij) + ui , (2.42)

where G is again a known link function, and m is a nonparametric smooth function
of covariate sij . As is the case for the GLMM, the conditional response yij |ui belongs
to the exponential family. The linear predictor above can further be extended to an
additive model form

ηij =
l∑

h=1

fh(xhij) + ui , (2.43)

where fh is smooth nonparametric function of covariate xhij .
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Gurrin et al. (2005) applied the GLMM with a predictor including additional terms
of a linear spline function. Even though a parametric model fit turned out appropri-
ate, the authors concluded that the use of spline smoothing in a mixed effects model
framework allowed them to discern the shape of the relationship between variables.
Lombardía and Sperlich (2008) used a generalized partially linear model and esti-
mated the nonparametric function m using the kernel smoothing technique. They
further suggested other extensions of the basic LMM to semiparametric models such
as the generalized partially linear single-index model, the generalized additive par-
tially linear model and the semiparametric separable model. See González-Manteiga
et al. (2012) for further references to different nonparametric extensions of the LMM
with a comparison between them.

We finally turn once again to the specific problem of analyzing the MSPE. Gu and
Ma (2005) did not discuss the issue. Opsomer et al. (2008) gave an analytic formula
of the MSPE of the EBLUP as well as its estimator. They also discussed the use
of bootstrap procedure to obtain the MSPE. Zhang et al. (1998) investigated the
model parameter estimates and their standard errors by simulation. However, they
did not refer to the MSPE. Wu and Zhang (2002) also did not mention the MSPE
while giving a thorough argument to the (asymptotic) MSE of the nonparametric
fixed effect function, which is also found in Park and Wu (2006). Lin and Carroll
(2006) also considered the semiparametric GLMM providing asymptotic discussion
of different estimation approaches.

2.6 Concluding Remarks

This brief and selective review intended to bring together the literature on mixed
effects models from different areas where statisticians have developed models and
methods to relax various limitations of the classical simple LMM. Depending on
disciplines, one speaks of random effects or mixed effects models, models for multi-
levels or small areas, of longitudinal or panel data studies or simply the analysis of
data with repeated measurements. Certainly, at the moment of application, each
model may be special and particular depending on disciplines. This is not only
because of the nature of data analyzed in biometrics and medicine, econometrics
or social sciences, official (administrative) statistics -in all the fields mixed effects
models are still an uprising popular topic- but also or even more because of the focus
of interest. Nevertheless, they all refer to the same type of model and pose rather
similar questions from the statistical point of view.

With the literature being too abundant, no paper, maybe not even a single book
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could give a comprehensive review of even the most important contributions. Bear in
mind that we completely excluded a whole section about the Bayesian contributions,
which are particularly plentiful in this field. Neither have we discussed the large
literature of computational statistics dealing with the utmost complex problem of
implementing estimation for multi-level (we refer here to models with several random
effects) GLMM. We mentioned that LMMs are a popular computational tool for
penalized spline smoothing in nonparametric statistics but are interpreted as fully
deterministic although quite flexible functions.

The idea of including random effects was originally to improve efficiency by esti-
mating the model through more adequate covariance structure modeling. Even if
there is no place for specific examples, we should emphasize the usefulness of mixed
effects models for prediction, in particular data matching and data mapping. Here
the objectives of small area statistics should be mentioned, and we could equally
well speak of the prediction of macro-parameters. We conclude this brief review
with a remark that, for most of the model extensions and methods introduced, still
very little is known about the estimation of the mean prediction error, i.e. the error
we make when predicting level parameters (probably the main challenge of small
area statistics), data matching or data mapping. Datta and Lahiri (2000) provided
the second-order accurate MSPE of the EBLUP obtained with maximum-likelihood-
oriented variance components estimators. In contrast to estimation methods based
on analytical approximation, Hall and Maiti (2006b) proposed bias-corrected MSPE
estimators and prediction intervals using parametric bootstrap methods. In Hall
and Maiti (2006a), nonparametric bootstrap methods were proposed that require no
distributional assumptions for the random terms to obtain bias-corrected estimators.
Datta et al. (2002) investigated from the Bayesian perspective the prediction interval
of the response and proposed bias-corrected intervals. However, it still seems to be
an open field requiring future research. Finally we should also mention that, as mean
level prediction is often of interest in small area statistics, the use of robust methods
is pretty well motivated. For a recent work see Sinha and Rao (2009).
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Abstract

An iterative estimation procedure is introduced for partially linear mixed effects

models. In contrast to existing likelihood-based methods, no distributional as-

sumptions are made for the random terms. The variance of the regression error

can be heteroskedastic and is modeled either parametrically or nonparametrically.

Efficient estimation of the parametric component is achieved along the Speckman

(1988) approach. Estimation of the nonparametric component is kernel based. For

bandwidth selection, cross validation methods are provided one of which should be

more appropriate for correlated data. Bootstrap is used for subsequent inference.

The derivation of different variance components estimators and fast implementa-

tion are discussed in detail. The numerical performance is studied by simulation,

and the usefulness of the model and estimation procedure proposed is illustrated

in two practical applications.

Key words: Mixed effects models; Partial linear models; Small area statistics; Lon-
gitudinal data; Repeated Measurement; Semiparametric regression
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3.1 Introduction

In this essay we consider a partially linear mixed effects model (PLMM), specifically
the partially linear random intercept (also called nested error) model. The model
incorporates two classes of regression models: one is the parametric linear mixed
effects model (LMM), typically used for analysis of hierarchical, clustered data; the
other is the nonparametric regression model. As Stone (1985) stated, statistical
models have three fundamental aspects: flexibility, dimensionality and interpretabil-
ity. The LMM, specified parametrically, offers clear and practical interpretability.
Modeling with random effects serves to capture heterogeneity in population which
is not explained by regressors. There have been developments in statistical testing
to support interpretation of the LMM. On the other hand, as is the case for any
parametric regression model, the LMM requires prior knowledge about the func-
tional form of the regression. However, the precise functional form is unlikely to
be known a priori. Parametric functions with a finite number of parameters often
lack in flexibility to depict the true functional relationship. A misspecified regression
will suffer loss of efficiency, and coefficient estimators may incur inconsistency due
to omitted-variable bias unless the regressors are uncorrelated. In reality, except for
experimental data, a data design with uncorrelated regressors will seldom be avail-
able to empirical researchers. As for the functional form, Yatchew (1998) pointed
out, “... most implications of economic theory are nonparametric. Typically, theo-
retical arguments exclude or include variables, they imply monotonicity, concavity,
or homogeneity of various sorts, or they embody more complex structure such as the
implications of the maximization hypothesis. They almost never imply a specific
functional form (the pure quantity theory of money equation being one exception)”.1

Interpretability of the nonparametric regression may be limited in comparison with
the parametric regression. Nonetheless, it has an advantage of flexibility well beyond
that of a parametric regression. Being free of a prior assumption about the functional
form, nonparametric regression circumvents functional misspecification. However,
nonparametric estimation is prone to incur imprecision of estimation which is well-
known in the nonparametric estimation literature as the “curse of dimensionality”.
Suppose a nonparametric regression yi = ξ(wi) + ei (i = 1, . . . N), where ξ is an
unknown smooth function and the error e is independent and identically distributed
(i.i.d.) with zero conditional mean and finite variance. As Stone (1980) showed, the
asymptotic mean squared error of a nonparametric estimator for ξ(wi) is of order
O(N−4/(4+d)) if ξ is twice continuously differentiable with d denoting the dimension
of the regressors wi. This implies firstly that the convergence of the nonparametric

1Italic shape is as in the original text.
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regression estimator is slower than that of the parametric regression of order O(N−1);
and secondly that the higher the dimension of wi, the larger sample size is required
to maintain the same precision of estimation. In practice, the number of variables
of interest is often too large for nonparametric regression to yield estimation of
reasonable precision.

One way of alleviating this problem is the use of a semiparametric model, for exam-
ple, partially linear model. The nonparametric regression above can be re-specified
semiparametrically as yi = x>i β+ γ(ti) + ei where (x>i t>i ) = w>i so that the dimen-
sion of ti is low enough to evade the curse of dimensionality. Such a model makes
sense from a practical point of view as well. For example, the researcher is inter-
ested in not all regressors but only some of them and interpretability is important
only for those variables of interest. In addition, prior knowledge of the functional
form may be available for some variables. It will be natural to model such variables
parametrically. To the contrary, nonparametric specification will suit variables of
little interest or with insufficient prior knowledge about their functional form. Semi-
parametric models can also be used as a means of preliminary, exploratory analysis
before a fully parametric model is constructed.

Extensions of the LMM to nonparametric modeling has already been studied by
many authors. For recent reviews, see for example Su and Ullah (2010) and Ohinata
and Sperlich (2012). Among others, a computationally attractive alternative ap-
proach is implementation using spline smoothing techniques based on distributional
assumptions; see Ruppert et al. (2003) and Opsomer et al. (2008). What all the
semiparametric approaches have in common is a concern about possible misspecifi-
cation of the functional form with consequently invalid inference; mixed effects model
inference is always too heavily model based to claim model unbiasedness.

In this essay we discuss an extension of the partially linear model proposed by Speck-
man (1988) and Robinson (1988), so that the error term assumes a structure typical
for the random intercept model. For the standard LMM, the random terms are often
assumed to be jointly normally distributed, which provides technical convenience
for maximum likelihood estimation. In contrast, we estimate the PLMM relying on
the method of moments. In estimation we encounter three complications inherent
in a model combining the nonparametric and mixed effects regressions. The first
complication arises from the estimation of the variance components (VCs) in the
semiparametric regression framework. While Speckman (1988) and Robinson (1988)
discussed the partially linear model given independent data, the LMM, constructed
for correlated data, is conventionally fit using generalized least squares (GLS) with
the VCs. In the PLMM framework, the VC estimation needs to account for loss of
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the degrees of freedom (d.f.) due to not only the estimation of the parametric func-
tion but also the nonparametric one. Neglecting the loss of the d.f. causes bias in
the VC estimation in small samples. This may in turn have an influence on the GLS
estimator for the parametric function in the model. To appropriately account for
the d.f. in the VC estimation, we propose an iterative estimation procedure in which
the VC estimator is corrected in successive rounds of iteration. Iterative procedures
also serve to deal with one of the central issues discussed in Speckman (1988) and
Robinson (1988), that is, key bandwidth selection required for their estimation pro-
cedures. We observed in simulation studies that without iterative estimation some
estimators are quite seriously affected by bandwidth selection, and that their effects
diminish through iteration process.

Secondly, while the PLMM is to analyze correlated data, conventional bandwidth
selection methods for nonparametric regression estimation are constructed for in-
dependent data. They will therefore choose too small bandwidths without taking
correlation structure into account, which results in undersmoothing of the nonpara-
metric function estimate. We approach this problem with the proposal by Carmack
et al. (2011), which extends the generalized cross validation.

Thirdly, asymptotic distributions of the regression coefficient estimators are difficult
to derive analytically. Even in the standard LMM framework, the asymptotic distri-
bution of the coefficient estimators relies on complicated approximations when the
VCs need to be estimated. In addition, difficulty also arises from the fact that the
effective d.f. of correlated data are not clearly defined. We turn to the bootstrap
resampling method to provide approximate sampling distributions of coefficient es-
timators.

A practical concern about the use of a non-/semiparametric estimation is the com-
putability of estimation algorithm and the availability of tailored software. With to-
day’s increasing computing power, the former is in general a relatively small concern.
Nonetheless, given a large data set, some calculation in nonparametric estimation
turns out prohibitively computer-intensive. For the purpose of practical implemen-
tation, we employ binning techniques to clear computational hurdles. As for the
latter concern, we provide a program package plmm in the statistical software R for
the statistical inference discussed in this essay.

The structure of the essay is as follows. Section 3.2 provides the model specification
and the overview of the estimation procedure. Section 3.3 describes the estimation
of the parametric and nonparametric functions of the model. The VC estimators are
presented in Section 3.4 where we consider homoskedastic as well as heteroskedas-
tic regression errors. Since the functional form of the conditional heteroskedastic
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3.2 Model Specification and Estimation Procedure

variance is unlikely to be known in practice, its nonparametric estimation is also
discussed. Section 3.5 provides the random intercept predictor, followed by Section
3.6 where we discuss the testing of regression coefficients based on bootstrap resam-
pling. In Section 3.7 we present some simulation results. In Section 3.8 the PLMM
is illustrated with two empirical examples. Conclusions and further perspectives are
provided in Section 3.9. Derivations omitted from the main text are collected in
Appendix A.

3.2 Model Specification and Estimation Procedure

3.2.1 Model specification

We consider the random intercept model for data structured hierarchically over two
levels: cluster level (denoted by subscript i) and individual observational level (sub-
script j). Allowing for heteroskedasticity, the model is generally specified as

yij = x>ijβ + γ(tij) + vij (i = 1, . . . ,m; j = 1, . . . , ni; N =
m∑
i=1

ni) (3.1)

vij = ui + αijeij , (3.2)

where yij is a continuous response variable; xij is a p-dimensional vector of continuous
or discrete regressors; tij is a d-dimensional vector of continuous regressors; ui is
the random intercept of cluster i and eij is the regression error. The number of
observations in the ith cluster is denoted by ni. Data can be unbalanced, that
is, the number of observations in a cluster may vary from cluster to cluster. The
fixed component consists of two subcomponents: parametric x>ijβ and nonparametric
γ(tij).2 For identification, xij does not contain one for the intercept. β is a vector
of regression coefficients and γ is a smooth, at least twice continuously differentiable
function. αij is a positive nonzero constant that determines heteroskedasticity in
the variance of the regression error. The model with homoskedastic regression errors
is a special case of (3.1) with αij = 1. Another special case is the between-cluster
heteroskedastic model which is specified with αij = αi.

Model (3.1) can be equivalently given in stacked forms:

yi = Xiβ + γ(Ti) + ui1ni + (⊕jαij)ei (3.3)

y = Xβ + γ (T) + Zu + (⊕ijαij)e , (3.4)
2In this essay the term “fixed” is used as in the traditional mixed effects model literature, not as
in the panel data analysis literature. Thus, in equation (3.1) there are “fixed” components x>ijβ
and γ(tij) and “random” components ui and αijeij in vij .
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3 Partially Linear Mixed Effects Model

where yi = (yi1 . . . yini)
> is stacked in y = (y>1 . . .y

>
m)>; regressors Xi = (xi1 . . .xini)

>

packed in matrix X = (X>1 . . .X
>
m)> and also Ti = (t1 . . . tni)

> in matrix T =

(T>1 . . .T
>
m)>; random effects u = (u1 . . . um)>; and random errors ei = (ei1 . . . eini)

>

stacked in e = (e>1 . . . e
>
m)>; 1ni is a ni-dimensional vector of ones, and Z = Im⊗1ni .

Here, ⊗ denotes the Kronecker product3 and ⊕ the Kronecker sum. Throughout the
essay, when appropriate, we present models using these three forms of equations at
discretion.

It is assumed that Xi and Ti have full column ranks of p and d, respectively, and
that no column of X is a linear combination of the columns of Z. Variables in xij

are not necessarily independent of variables in tij , which implies that a misspecified
parametric function of tij may cause serious bias in the estimator of β. For the
random terms ui and eij , we only assume zero conditional means E[ui|Xi,Ti] = 0

and E[eij |Xi,Ti] = 0; and finite variances (σ2u, σ
2
e) ={R2|σ2u ≥ 0, σ2e > 0} where

σ2u = Var[ui] and σ2e = Var[eij ] (conventionally called variance components).4 It is
further assumed that the random intercept ui is independent of those of other clusters
(between-cluster independence) and also independent of regression errors eij (∀i, j);
and that the regression errors are independent.5 For the homoskedastic model these
assumptions are summarized in matrix form as follows:

Var

[
u

e

]
=

(
σ2uIm 0

0 σ2eIN

)
, (3.5)

where I is an identity matrix. Dependence between yij and yij′ for j 6= j′ is caused
through the random intercept ui they share. Let vi = ui1ni + ei be stacked in
v = (v>1 . . .v

>
m)>. Then Var [vi] denoted by Vi and Var [v] by V are given by

Vi = σ2uJni + σ2eIni (3.6)

V = ⊕mi=1Vi , (3.7)

where Jni is a matrix of ones with dimension ni × ni. Let D denote Var[u]. V

and D are block diagonal matrices and assumed to be positive definite and positive

3By abuse of the notation for the Kronecker product, we denote a block diagonal matrix whose
block elements are {B1, . . . ,Bm} by Im ⊗i Bi where Bi is a matrix of an arbitrary dimension
provided matrix operation permits.

4The estimation presented in this essay does not rely on a distributional assumption such as
normality of the random terms. Nor is assumed that the random terms are symmetrically
distributed, which is required for an LMM to yield “unbiased” response predictions in small
samples as shown by Kackar and Harville (1981). “unbiased” is in the sense that the expectation
of the response prediction is equal to the expectation of the response.

5Note that consistency of the generalized least squares (GLS) estimator for β requires Xi and Ti

being strictly exogenous in the sense of E[eij |Xi,Ti] = 0. This implies that E[eij |X,T] = 0
under between-cluster independence assumption.
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semi-definite, respectively. Extensions to heteroskedasticity are discussed in Section
3.4.

3.2.2 General estimation procedure

Our estimation procedure is motivated by a method proposed by Speckman (1988)
and Robinson (1988) for the partially linear model yij = x>ijβ + γ(tij) + eij where
eij are independent homoskedastic errors. We apply their proposal to (3.1) with
αij = 1. The first step of estimation is conceptually similar to the partial correlation
coefficient estimation in the classical regression. Suppose there exist finite conditional
expectation functions E[yij |Ti] and E[x>ij |Ti]. The expectation of (3.1) conditional
on Ti is

E[yij |Ti] = E[x>ij |Ti]β + γ(tij) (3.8)

since it holds that

E[γ(tij)|Ti] = γ(tij) (3.9)

E[ui|Ti] = EXiE[ui|Xi,Ti] = 0 (3.10)

E[eij |Ti] = EXiE[eij |Xi,Ti] = 0 (3.11)

by the law of iterative expectation and model assumptions. If the conditional expec-
tations E[yij |Ti] and E[x>ij |Ti] are known, subtracting (3.8) from (3.1) reduces the
PLMM to an LMM

yij − E[yij |Ti] = (x>ij − E[x>ij |Ti])β + ui + eij . (3.12)

This is a standard random intercept model and β can be estimated with GLS. Let y0

be a vector whose ijth element is yij − E[yij |Ti] and also let X0 be a matrix whose
ijth row is x>ij − E[x>ij |Ti]. The GLS estimator of β for model (3.12) is given by

β̃(0) = (X>0 V−1X0)
−1X>0 V−1y0 . (3.13)

An estimator of the nonparametric component γ̃(0)(tij) can be obtained by applying
kernel regression to yij − x>ijβ̃(0) = γ(tij) + ui + eij as Speckman (1988) suggested.6

The VCs (and hence matrix V) as well as conditional mean functions E[yij |Ti] and
E[x>ij |Ti] are typically unknown in practice. It is natural to replace these unknowns
by their estimates. Let ỹ0ij = yij − Ê[yij |Ti] and x̃0ij = x>ij − Ê[x>ij |Ti] where Ê[·] is

6Alternatively, γ can also be estimated by γ̃(0)(tij) = E[yij |Ti]−E[x>ij |Ti]β̃(0) as Robinson (1988)
suggested.
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3 Partially Linear Mixed Effects Model

an estimator of the mean function. Model (3.12) is rewritten as an LMM:

ỹ0ij = x̃>0ijβ + ui + eij . (3.14)

The feasible GLS estimator is then given by

β̂(0) = (X̃>0 V̂−1(0)X̃0)
−1X̃>0 V̂−1(0)ỹ0 , (3.15)

where V̂(0) is an estimator of V with the VCs replaced by their estimators. Given
β̂(0), kernel regression estimator of γ is given by

γ̂(0) (T) = S0(y −Xβ̂(0)) , (3.16)

where S0 is a smoother matrix which depends on a bandwidth vector h of length d.7

A problem of the GLS estimator (3.15) is that the VC estimators in V̂(0) were
calculated without taking into account the loss of d.f. due to the estimation of γ by
(3.16). The VC estimators are therefore biased (though not asymptotically). This
bias will affect the GLS estimation of β and the succeeding estimation of γ involving
the GLS estimator. The bias in the VC estimators can be of nontrivial size, at least
in small samples. As a remedy for this problem, we propose an iterative estimation
procedure to correct the VC estimators for bias. The iterative estimation consists of
two stages: the initial stage symbolized by subscript (0) and an succeeding iterative
stage.

In the initial stage, β̂(0) and γ̂(0) are first estimated and then residuals v̂(0)ij =

yij−x>ijβ̂(0)− γ̂(0)(tij) are calculated. The rth iteration (r = 1, 2 . . .) in the iteration
stage, symbolized by subscript (r), proceeds as follows.

1. Estimate the VCs σ2u(r) and σ
2
e(r) for V(r) from the residuals v̂(r−1)ij whereby

the d.f. of the estimator γ̂(r−1) is accounted for. When VC estimation has
converged, the iterative procedure ends without going through the following
steps.

2. Estimate β(r) by feasible GLS:

β̂(r) = (X>V̂−1(r)X)−1X>V̂−1(r)(y − γ̂(r−1) (T)) (3.17)

3. Estimate γ(r) by γ̂(r) (T) = Sr(y−Xβ̂(r)) with a smoother matrix Sr described
in Section 3.3.2.

7Smoother matrix S also depends on the kernel function. However, since the choice of the kernel
is known to have little influence on estimation, we use the Gaussian kernel throughout this essay
and confine our discussion to bandwidths.
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4. Obtain residuals v̂(r)ij = yij − x>ijβ̂(r) − γ̂(r)(tij).

5. Iterate the steps from 1. to 4. until the convergence of the VC estimates.

In the heteroskedastic regression error case, the conditional error variance function
is nonparametrically estimated from v̂ij of the last iteration. β is then reestimated
by semiparametric GLS with V̂ constructed from the estimated variance function.
Finally, function γ is reestimated by γ̂ (T) = S(y −Xβ̂) with a smoother matrix S

given in Section 3.3.2 and the semiparametric GLS estimator β̂.

We emphasize that our iterative estimation starts with initial feasible GLS β esti-
mation as in (3.15), not OLS estimation. Li and Ullha (1998) studied a two-step
estimation in which OLS β estimation is followed by GLS estimation; You et al.
(2010) proposed a similar two-step approach with GLS β estimation in the second
step using a nonparametrically estimated variance function. We demonstrate by sim-
ulation (Section 3.7) and application to real data (Section 3.8.2) that our algorithm
improves the efficiency of the β estimator.

3.3 Estimation of the Fixed Components

3.3.1 Estimation of the parametric component

The feasible GLS estimators (3.15) and (3.17) require taking the inverse of matrix
V̂. Direct calculation of the inverse involves computational difficulties when the
dimension N is prohibitively large. However, since V is a block diagonal matrix,
inversion can be taken blockwise, assuming each cluster’s size ni is adequately small.
For the random intercept model with homoskedastic errors, Fuller and Battese (1973)
proposed an OLS estimation on transformed data. We apply their transformation to
the PLMM.

Suppose the VC and function γ are known. Premultiplying both sides of the regres-
sion yi = Xiβ + γi(Ti) + vi by

σeV
−1/2
i = Ini −

(
1−

(
σ2e

σ2e + niσ2u

) 1
2

)
J̄ni (3.18)

yields a new regression with an error covariance matrix σ2eIni . Stukel and Rao (1997)
similarly proposed a transformation for the heteroskedastic error case. Using their
transformation, regression (⊕α−1ij )yi = (⊕α−1ij )(Xiβ + γi(Ti) + vi) is premuliplied
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by

σe(Var[(⊕α−1ij )yi])
−1/2 = Ini −

(
1−

(
σ2e

σ2e + ηiσ2u

) 1
2

)
η−1i α

−1
i (α−1i )> , (3.19)

where α−1i = (α−1i1 . . . α−1ini
)>, ηi = (α−1i )>α−1i =

∑ni
j=1 α

−2
ij , and heteroskedasticity

parameter αij is assumed to be known. The new transformed regression also has an
error covariance structure σ2eIni . The transformed regressions are both fit by OLS.
Derivation of (3.18) and (3.19) is given in Section 3.10.1. The above OLS estimators
can be equivalently expressed as a GLS estimator

β̃ = (
∑
i

X>i V−1i Xi)
−1
∑
i

X>i V−1i (yi − γi(Ti)) (3.20)

in the homoskedastic case and

β̃ = (
∑
i

X>i ⊕jα−1ij V−1i ⊕jα
−1
ij Xi)

−1
∑
i

X>i ⊕jα−1ij V−1i ⊕jα
−1
ij (yi − γi(Ti)) (3.21)

in the heteroskedastic case.

In practice, the VCs, γ and heteroskedasticity parameter α are usually unknown;
the feasible GLS estimators of (3.20) and (3.21) are obtained by replacing those
unknowns with their estimators. In the heteroskedastic case, the diagonal elements
of V are determined by the conditional variance function Var[αijeij |wij ] where wij

is a vector of conditioning variables. This unknown variance function needs to be
estimated either parametrically or nonparametrically. Section 3.4.2 presents a non-
parametric estimation proposed by Li and Stengos (1994). V̂−1i required for the
feasible GLS estimator (3.21) is given by

V̂−1i = ⊕ν̂−2ij −
σ̂2u

σ̂2u
∑
ν̂−2ij + 1

(ν̂−2i1 , . . . , ν̂
−2
ini

)>(ν̂−2i1 , . . . , ν̂
−2
ini

) , (3.22)

where ν̂−2ij is an estimator of ν2ij = Var[αijeij |wij ] = α2
ijσ

2
e (see Section 3.10.1 for

derivation).8

Li and Stengos (1994) showed for the random intercept model that the semiparamet-
ric feasible GLS estimator β̂ is

√
N -consistent, asymptotically normally distributed,

and adaptive, which means that the estimator of β is asymptotically as efficient as
the estimator that would be obtained using the parametric estimator of the correctly
specified variance function.

8Stukel and Rao transformation (3.19) can be equivalently used by setting σ2
e to one and αij to

the square root of estimated ν2ij without losing generality (recall αij > 0).
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3.3.2 Estimation of the nonparametric component

The model estimation we propose requires nonparametric regression estimation be-
fore the initial stage. The original PLMM model (3.1) first needs to be reduced to an
LMM by plugging estimates of conditional expectations E[yij |tij ] and E[x>ij |tij ] in
(3.12). We estimate them by kernel regression with a set of bandwidths. We select
these bandwidths by cross validation. While kernel regression estimators are con-
sistent, effects of the selected bandwidths on the subsequent estimation are of great
interest especially in small samples.9 In simulation studies presented in Section 3.7,
we observed that they indeed affect the subsequent estimation, and that their effects,
however, diminish through iterative processing.

In both initial and iteration stages, γ is also estimated by kernel regression. The
multivariate local linear estimator is briefly presented below for the case of d =

2. Extension for the case of d > 2 is analytically straightforward. For ease of
presentation, let a new index k denote the original index ij; k runs through 1, 2, . . . , N

without altering the order of the original index. Suppose β is given, then γ is
estimated at point t = (t1 t2)

> by

γ̂ (t) = e>1 (T∗>t KtT
∗
t)
−1T∗>t Kt(y −Xβ) , (3.24)

where e>1 = (1, 0, 0); T∗t is an (N × 3) matrix {1, t1k − t1, t2k − t2}Nk=1; and Kt is
the following multiplicative kernel weighting matrix. For a given set of bandwidths
h = (h1 h2)

>,

Kt = ⊕kK1kK2k with Kdk = K

(
tdk − td
hd

)
, d = 1, 2 , (3.25)

where K is the Gaussian kernel function. Selection of the bandwidths h is discussed
in the following section. The estimators of γ at N observation points in T are given
by

γ̂(T) = S(y −Xβ) , (3.26)

9In general, the expectation functions estimated nonparametrically are biased in small samples.
As Robinson (1988) discussed, it holds after the replacement of the unknown functions that

yij − Ê[yij |Ti] = (x>ij − Ê[x>ij |Ti])β + γ(tij)− γ∗(tij) + vij (3.23)

where γ∗ is defined as Ê[x>ij |Ti]β − Ê[yij |Ti]. This implies that the estimator of β will be
biased due to the additional error term γ(tij) − γ∗(tij) unless consistent estimators Ê[yij |Ti]
and Ê[x>ij |Ti] converge fast enough. Robinson (1988) used a higher-order kernel to enable
fast convergence and showed that under regularity conditions the estimator of β achieves

√
N -

consistency in spite of the nonparametric component in the model. Speckman (1988) also showed√
N -consistency of the β estimator.
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where S is a linear smoother

S = {s>tk}
N
k=1 (3.27)

s>tk = e>1 (T∗>tk KtkT
∗
tk

)−1T∗>tk Ktk . (3.28)

The Nadaraya-Watson (NW) estimator of γ (t) and its smoother S can be obtained
by replacing T∗t by 1N in (3.28).

3.3.3 Cross validation and binning

One of the methods widely used for bandwidth selection is the leave-one-out cross
validation (CV). For ease of presentation, we drop the fixed parametric component
from the original model (3.1) to consider a regression yk = γ(tk) + vk with index k
(k = 1, 2, . . . N).10 The CV method selects a bandwidth vector h that minimizes the
following statistic

CV (h) =
1

N

N∑
k=1

(
yk − γ̂(−k)(tk)

)2
=

1

N

N∑
k=1

(
yk − γ̂(tk)

1− skk

)2

, (3.29)

where γ̂(−k)(tk) is the kernel regression estimate obtained from the data with the
kth observation left out and skk is the kth diagonal element of the smoother matrix
S.11 An alternative bandwidth selection method is the generalized cross validation
(GCV) proposed by Craven and Wahba (1979)

GCV (h) =
1

N

N∑
k=1

(
yk − γ̂(tk)

1− tr(S)/N

)2

. (3.30)

Because the minimum of the residual sum of squares
∑N

k=1(yk − γ̂(tk))
2 can be

achieved by interpolation with small bandwidths, dependence of estimator γ̂(tk)

on yk would lead to an undersmoothed estimate of γ. While the leave-one-out CV
circumvents undersmoothing by leaving out the kth observation, the GCV deals with
the dependence using a penalizing function.12

A challenge in bandwidth selection for the PLMM arises from correlations in data.
Both CV and GCV were originally developed for independent data. Thus they tend

10For d > 1, in order to to deal with scale differences of the variables in t, we specify one band-
width value h and set each element of h by multiplying h with the standard deviation of its
corresponding variable. When d = 2, for example, h1 = h · sd[t1] and h2 = h · sd[t2].

11The second equality holds due to the fact that S is a linear smoother.
12Since function γ is estimated by kernel regression, the GCV defined above is asymptotically

equivalent to the CV. See Härdle and Müller (2000).

54



3.4 Variance Components Estimation

to select too small bandwidths resulting in undersmoothed estimates of γ. Bandwidth
selection for correlated data is an ongoing research field in nonparametric regression
estimation. Carmack et al. (2011) proposed an extension of the GCV for correlated
data. Their extended GCV is given by

GCVc (h) =
1

N

N∑
k=1

(
yk − γ̂(tk)

1− tr(2SR− SRS>)/N

)2

, (3.31)

where R is the correlation matrix of the errors (v1, v2, . . . , vN )> (see Appendix 3.10.5
for more details).

The d.f. of the nonparametric estimator of γ is often defined as tr(2S − SS>)

(see Hastie and Tibshirani, 1990). Carmack et al. (2011) proposed an alternative
definition of the d.f. tr(2SR − SRS>). Note that for independent data tr(2SR −
SRS>) is reduced to tr(2S − SS>). If, in addition to independence, symmetric
idempotency is assumed for S, then tr(2SR−SRS>) is equal to tr(S) and GCVc is
equivalent to GCV by (3.30).

When the sample size is large, CV may be prohibitively computer-intensive and time-
consuming. Even in a one-dimensional case (d = 1), calculation of the CV statistic
for one value of h requires N kernel function evaluations at each tk. Thus the total
computation will be of order O(N2). For the estimation we propose, computer-
intensiveness will be aggravated due to iterative estimation. To circumvent com-
putational difficulties, the plmm package offers bandwidth selection using binning
techniques through function h.select provided in the sm package in R. Since our
smoother S is not symmetric idempotent, binning is also used in plmm to approximate
tr(S) and tr(SS>) for calculation of the standard d.f. tr(2S − SS>) of γ̂. Binning
techniques are briefly described in Appendix 3.10.6.

3.4 Variance Components Estimation

This section presents methods for estimating unknown VCs. We use quadratic esti-
mators, which are obtained by equating the sum of squared residuals to its expected
value and solving the equations for the parameters to be estimated. The estimators
considered here are of Swamy-Arora (SA) type13 and fitting-of-constant (FC) type,
also called Henderson’s 3rd method. We iteratively estimate the VCs and succeed-
ingly β and γ. Through the iterative process, the initial VC estimates are corrected

13Baltagi and Chang (1994) extended the VC estimators proposed by Swamy and Arora (1972) for
a balanced two-way model to the case of an unbalanced one-way model.
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for the loss of d.f. due to nonparametric function estimation, and thereby β and γ
estimators are also corrected.

For both the FC and SA VC estimators, the σ2u estimate may become negative. A
negative estimate is conventionally set to zero in the LMM literature.14 While the
σ2e estimator is unbiased, the σ2u estimator is therefore biased in the sense that it
needs to be corrected to zero with some unknown probability. In a simulation study
on the random intercept model, Maddala and Mount (1973) investigated various
VC estimators for balanced data, including the SA and FC estimators. Baltagi and
Chang (1994) conducted a simulation study for unbalanced data. These studies
showed that among various estimators there is little advantage of one estimator
over the others; and that a negative estimate of σ2u is most likely to occur when
the true σ2u is very small compared to σ2e , and hence setting a negative estimate to
zero will not lead to significant loss of efficiency in estimating regression coefficients.
Prasad and Rao (1990) showed in a context of the general LMM that the quadratic
VC estimators are

√
m-consistent, and further that the probability of obtaining a

negative σ2u estimate converges to zero as m increases.15

3.4.1 Homoskedastic and heteroskedastic case with known α

This section presents VC estimators for homoskedastic and heteroskedastic cases with
known heteroskedasticity parameters α. Both of the SA and FC estimators are based
on the quadratic form of certain residuals. Both estimate σ2e using the residuals which
are known as within-residuals or least squares dummy variable (LSDV) residuals in
the literature of panel data analysis. The SA estimator of σ2u is constructed as a
quadratic function of the residuals called between-residuals. On the other hand, the
FC estimator of σ2u is based on the OLS residuals. We follow the convention of setting
the estimate of σ2u to zero if it turns out to be negative in the initial or iteration
stage.

Initial stage: Let ỹij and x̃ij denote a working response and a working regressor
vector, respectively. In the initial stage, ỹij is defined as yij − Ê[yij |tij ] and x̃ij as
xij − Ê[xij |tij ]. In the homoskedastic case, the initial estimator of σ2e is given by

σ̂2e =
ê>wQêw

N −m− p
, (3.32)

14For strategies to deal with a negative VC estimate, see, for example, Searle et al. (1992) and
references therein.

15Restricted maximum likelihood VC estimators under normality assumption were also shown to
be
√
m-consistent by Jiang (1996), and also the maximum likelihood VC estimator by Datta

and Lahiri (2000).
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where Q = Im⊗Qi with Qi = Ini − J̄ni , J̄ni = Jni/ni, and êw is a vector of within-
residuals from the reduced model (3.12). The FC and SA estimators of σ2u are given
by

σ̂2u,FC = max

 v̂>v̂ − (N − p)σ̂2e
N − tr

(
(X̃>X̃)−1

∑m
i=1 n

2
i
¯̃xi· ¯̃x>i·

) , 0

 and (3.33)

σ̂2u,SA = max

 v̂>b Pv̂b − (m− p) σ̂2e
N − tr

(
(X̃>PX̃)−1

∑m
i=1 n

2
i
¯̃xi· ¯̃x>i·

) , 0

 , (3.34)

respectively. Here P = Im ⊗ J̄ni ; v̂b and v̂ are the between-residual vector and the
OLS residual vector from (3.12), respectively. Details of notation and derivation are
given in Appendix A 3.10.2.

The SA and FC estimators for the homoskedastic case can be generalized to the
heteroskedastic case. First, ỹ = X̃β + Zu + (⊕ijαij)e is transformed into an LMM

(⊕ijα−1ij )ỹ = (⊕ijα−1ij )X̃β + (⊕jα−1ij )Zu + e . (3.35)

The estimator of σ2e is given by

σ̂2e =
ê>wQêw

N −m− p
, (3.36)

where êw is the within-residual vector of (3.35). The SA and FC estimators are

σ̂2u,FC = max

(
(v̂>v̂ − (N − p)σ̂2e)∑

i,j α
−2
ij − CFC

, 0

)
and (3.37)

σ̂2u,SA = max

(
v̂>b Pv̂b − (m− p)σ̂2e∑

i ηi − CSA
, 0

)
, (3.38)

respectively. Here v̂ and v̂b are the OLS residual vector and the between-residual
vector of (3.35), respectively. Details of notation and the derivation of the estimators
are given in Appendix A 3.10.3.

Iteration stage: In the iteration stage, the estimation procedure differs from that
in the initial stage in construction of the working variables, denoted by ỹij and x̃ij

as before. In the rth iteration (r = 1, 2, . . .) the working response is in matrix form
ỹ(r) = y − γ̂(r−1)(T) and X̃(r) is the same as the original design X. The estimator
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3 Partially Linear Mixed Effects Model

of σ2e in the rth iteration is given by

σ̂2e(r) =
ê>w(r)Qêw(r)

N −m− r(QX)− d.f.(γ̂(r−1))
, (3.39)

where d.f.(γ̂(r−1)) is the d.f. of freedom of the estimator of γ in the (r−1)th iteration
and êw(r) is the within-residual vector. Here γ̂(0) is the estimate of γ in the initial
stage. Details of notation and derivation are given in Appendix A 3.10.2. The FC
and SA estimators of σ2u are given by the same formulas as (3.33) and (3.34) with
v̂ and v̂b replaced by the OLS residual vector v̂(r) and the between-residual vector
v̂b(r), respectively.

In the heteroskedastic case, the estimator of σ2e in the rth iteration is given by

σ̂2e(r) =
ê>w(r)Qêw(r)

N −m− r(QX)− d.f.(γ̂(r−1))
, (3.40)

where X = (⊕ijα−1ij )X. The FC and SA estimators of σ2u are given by the same
formulas as (3.37) and (3.38), respectively, where v̂ and v̂b are replaced by v̂b(r) and
v̂(r). Details of notation and the derivation of the estimators are given in Appendix
A 3.10.3.

The iterative process is continued until convergence. We regard convergence of the
whole estimators as achieved when the following inequality is fulfilled

max

(
σ̂2u(r+1) − σ̂

2
u(r)

σ̂2u(r)
,
σ̂2e(r+1) − σ̂

2
e(r)

σ̂2e(r)

)
< ε (3.41)

with ε being some positive small value (the default in the plmm package is 0.003).

3.4.2 Heteroskedastic case with unknown α

In practice the vector of heteroskedasticity parameters α is typically unknown and
needs to be estimated either parametrically or nonparametrically. This section
presents nonparametric estimation of the conditional variance function of αijeij .
The variance function is assumed to be a function of conditioning variables w ∈ Rq,
whose elements are q continuous variables of regressors x and t. To estimate the
variance function Var[αijeij |wij ], we apply the method Li and Stengos (1994) pro-
posed for the random intercept model for panel data. A test of heteroskedasticity
in the PLMM framework is provided by You et al. (2010). An extension to include
dummies in w is also possible.
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3.5 Prediction of Random Effects

Let σ2ij and ν
2
ij be respective conditional variances of vij and αijeij , where vij is the

residual obtained after convergence of the iterative estimation. σ2ij can be estimated
by Nadaraya-Watson (local constant) kernel regression

σ̂2ij(w) =

∑m
i=1

∑ni
j=1Kh(wij −w)v̂2ij∑m

i=1

∑ni
j=1Kh(wij −w)

, (3.42)

where h is a q-dimensional vector of bandwidths and Kh(•) is a multiplicative kernel
weights function K(H−1(•)) with H being a diagonal matrix of the bandwidths,
⊕qq′=1h

LS
q′ . Since σ

2
ij = σ2u + ν2ij holds, ν

2
ij can be estimated by

ν̂2ij(w) = σ̂2ij(w)− σ̂2u , (3.43)

where σ̂2u is the FC or SA estimate obtained under homoskedastic error assumption.

Bandwidths hLSq′ can be chosen by cross validation or as in Li and Stengos (1994) by
the rule of thumb specified as

hq′ = sd[wq′ ]N
−1/(4+q) (q′ = 1, . . . q) , (3.44)

where hq′ is the bandwidth for variable wq′ ∈ w. A potential problem is that ν̂2ij can
be negative. To circumvent the problem, we arbitrarily set ν̂2ij smaller than 0.001 to
0.001, which is the default setting in the plmm package.

While we use the FC or SA estimator of σ2u, Li and Stengos (1994) originally proposed
estimating σ2u as follows. Since E[vij ] = 0, Cov[ui, ui′ ] = 0 (i 6= i′), and Cov[ui, eij ] =

0 by assumption, Cov(vij , vij′)= E[vijvij′ ]= σ2u for j 6= j′. Using the method of
moments, σ2u can be estimated by

σ̂2u =
1∑m

i=1 ni (ni − 1)

∑
i

∑
j 6=j′

vijvij′ , (3.45)

where vij = yij − x>ijβ − γ(tij). You et al. (2010) showed that this estimator is also
√
m-consistent in the PLMM framework.

3.5 Prediction of Random Effects

Random effects themselves are often of interest. For instance, random effects predic-
tions are an integral part for the so-called small area estimation,16 where typically
the mean or total of a variable of interest is to be efficiently estimated for observed
16Refer to Rao (2003) for an extensive overview of the small area estimation.
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3 Partially Linear Mixed Effects Model

or unobserved areas (clusters) despite of their “small” area data sizes.17 For the
standard LMM y = Xβ + Zu + e, random effects predictors are widely known
and used as the best linear unbiased predictor (BLUP).18 The BLUP is given by
ũ = DZ>V−1(y −Xβ̂) where β̂ is the best linear unbiased estimator. It should be
noted that the BLUP does not require any distributional assumption.19

For the model of our interest, we analogously construct a random effects predictor:
ũ = DZ>V−1(y −Xβ̂ − γ̂ (T)) where β̂ and γ̂ are consistent estimators. The ith
cluster’s random intercept is predicted by

ũi = σ2u1
>
ni

V−1i

(
yi −Xiβ̂ − γ̂(Ti)

)
∀i , (3.46)

which is a consistent linear predictor. The derivation of (3.46) is given in Appendix
A 3.10.4.

In practice the VCs, and hence V, are unknown. Following the convention of the
LMM literature, we simply replace the unknown VCs with their consistent estimators
to obtain the estimated (empirical) version of (3.46)

ûi = σ̂2u1
>
ni

V̂−1i

(
yi −Xiβ̂ − γ̂(Ti)

)
∀i . (3.47)

Here V−1i is replaced in the homoskedastic case by

V̂−1i =
1

σ̂2e

(
Ini −

niσ̂
2
u

niσ̂2u + σ̂2e
J̄ni

)
(3.48)

and in the heteroskedastic case by

V̂−1i = ⊕ν̂−2ij −
σ̂2u

σ̂2u
∑
ν̂−2ij + 1

(
ν̂−2i1 , . . . , ν̂

−2
ini

)> (
ν̂−2i1 , . . . , ν̂

−2
ini

)
. (3.49)

See Appendix A 3.10.1 for the derivation of V−1.

17Predictions can also be used as a tool for informal checking of whether relevant cluster-level
regressors are omitted from the model. If a significant cluster-level regressor is omitted, the
shape of the distribution of random intercept predictions may reflect the effects of that omitted
regressor. However, this way of model checking calls for caution due to so-called “shrinkage
effect”. For more details of this issue, see, for example, Verbeke and Molenberghs (2000).

18Here “best” is in the sense that ũ minimizes the mean squared prediction error E[(ũ − u)2];
“unbiased” in the sense that E [ũ] = E [u]; and ũ is “linear” in y of the form b+ c>y for constant
b and vector c.

19For details of the BLUP for the LMM, see, for example, Searle et al. (1992).
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3.6 Test of Regression Coefficients

3.6 Test of Regression Coefficients

We now propose a simple test for the parametric component parameters β. For
ease of presentation we consider model (3.1) with d = 1 and αij = 1: yij = x>ijβ +

γ(tij) + vij where vij = ui + eij . Let’s write possible dependence between xq,ij and
tij (q = 1, . . . p) in terms of a functional relationship as follows:

xq,ij = ξq(tij) + δq,ij , (3.50)

where ξq is some nonparametric smooth function and δq,ij is an i.i.d. deviation.
(3.50) can be rewritten as

xij = ξ(tij) + δij , (3.51)

where ξ(tij) = (ξ1(tij), . . . ξp(tij))
>, xij = (x1,ij , . . . xp,ij)

> and δij = (δ1,ij , . . . δp,ij)
>.

Deviations δij are such that E[δij |tij ] = 0 and Var[δij |tij ] is a finite diagonal matrix.
In matrix form (3.51) is expressed as

X = Ξ(t) + ∆ , (3.52)

where X, Ξ and ∆ are matrices whose ijth row is x>ij , ξ
>(tij) and δ>ij , respectively.

Inserting (3.51) into yij = x>ijβ + γ(tij) + vij yields

yij = (ξ(tij) + δij)
>β + γ(tij) + vij

= ξ>(tij)β + γ(tij) + δ>ijβ + vij . (3.53)

Let ξy(tij) denote the conditional expectation E[yij |tij ]:

ξy(tij) = ξ> (tij)β + γ(tij) . (3.54)

By subtracting (3.54) from (3.53), it follows that

yij − ξy(tij) = δ>ijβ + vij ,

which can be expressed in matrix form

y − ξy = (X−Ξ(t))β + v

= ∆β + v . (3.55)
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3 Partially Linear Mixed Effects Model

Thus, if ξy and Ξ are given, the coefficients vector β can be estimated by GLS with
an estimate of V−1 as follows:

β̂gls =
(

(X−Ξ)>V̂−1(X−Ξ)
)−1

(X−Ξ)>V̂−1(y − ξy)

= (∆>V̂−1∆)−1∆>V̂−1(∆β + v)

= β + (∆>V̂−1∆)−1∆>V̂−1v (3.56)

with covariance matrix
V̂ar[β̂gls] = (∆>V̂−1∆)−1 . (3.57)

Alternatively, OLS estimator can be obtained by

β̂ols =
(

(X−Ξ)>(X−Ξ)
)−1

(X−Ξ)>(y − ξy)

= (∆>∆)−1∆>(∆β + v)

= β + (∆>∆)−1∆>v . (3.58)

For this OLS estimator, a robust covariance matrix estimator is given by

V̂arrobust[β̂ols] = (∆>∆)−1
m∑
i=1

(∆>i v̂iv̂
>
i ∆i)(∆

>∆)−1 . (3.59)

In practice, however, ∆ needs to be estimated through nonparametric estimation
of smooth functions ξy, ξ1, . . . ξp. Given consistent estimators of ξy and Ξ, equality
of (3.55) holds asymptotically. Thus, asymptotic properties of β̂ depend on the
asymptotic properties of ξ̂y and Ξ̂ (and thus ∆̂) that in turn depend on bandwidth
selection, kernel function selection including the order of kernel, and distribution of
variable t. The distribution of x also plays a role. If a regressor x is not a continuous
but, for example, binary or count variable, its ξ function needs to be estimated
accordingly.

Moreover, even if ∆ is known, the covariance matrix estimator (3.57) needs to be
adjusted. It is a well-known problem in the mixed effects model literature that the
variance of the estimator of β, which depends on the covariance matrix V, will be
biased when unknown V is simply replaced by its estimator. Kenward and Roger
(1997) proposed an adjustment to obtain an approximately unbiased estimator. Also
well-known in literature is the difficulty in determining the effective number of in-
dependent observations in correlated data and hence the d.f. for constructing test
statistics.

Given the difficulties in determining appropriate asymptotic distributions, we employ
a residual resampling method, the wild bootstrap. For the wild bootstrap, see Wu
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3.7 Finite Sample Performance: Simulation Studies

(1986) and Shao and Tu (1995) among others. In the resampling process, predicted
random effects and regression residuals are each separately multiplied by a realization
of independent standard normally distributed variable. This procedure retains the
first three moments of the random intercepts and the regression error as well as
the independence of the random intercept and the regression error. Wild bootstrap
resampling of size B is conducted as follows:

1. Obtain estimates β̂, γ̂ and (σ̂2u, σ̂
2
e) in a homoskedastic error case or (σ̂2u, ν̂

2
ij)

in a heteroskedastic case.

2. Predict the random effect ûi and calculate the residuals by yij−x>ijβ̂−γ̂(tij)−ûi
∀i.

3. For the bth bootstrap sampling (b = 1, . . . B), obtain an N -dimensional vector
of bootstrap response by y(b)ij = x>ijβ̂ + γ̂(tij) + z

(b)
1,i ûi + z

(b)
2,ij ê

∗
ij where z(b)1,i ∼

N (0, 1) and z(b)2,ij ∼ N (0, 1); z(b)1,i and z
(b)
2,ij are mutually independent; ê∗ij is the

residual obtained in step 2.

4. Update the initial bandwidth for the estimation of E[y
(b)
ij |tij ] and obtain the

bth bootstrap estimate β̂
(b)
from the bth bootstrap sample {y(b)ij ,xij , tij}

5. Repeat step 3. and 4. for B times.

The bootstrap procedure provides an approximation to the sampling distribution of
β̂ from which a bootstrap confidence interval can be constructed. An illustration of
bootstrap confidence intervals is given in Section 3.8.

3.7 Finite Sample Performance: Simulation Studies

This section presents simulation studies conducted to investigate the following issues:
(1) effects of the bandwidths selected for model reduction on the estimation of the
VC and β; (2) comparison of β estimators between GLS and OLS in the initial stage;
(3) consistency of VC and β estimators; and (4) efficiency gains through the Li and
Stengos procedure when regression errors are heteroskedastic.

The data generating process was designed for a partially linear random intercept

63



3 Partially Linear Mixed Effects Model

model with a one-dimensional nonparametric function:

yij = β0 + β1xi,1 + β2xij,2 + β3x3,ij + γ(tij) + ui + eij

β = (1, 1, 0.5, −1)>

x1 ∼ binom (0.5)

x2 ∼ N
(
15, 32

)
x3 ∼ unif(1, 4)

t ∼ unif (0.3π, 2π)

γ (t) = sin (t)

ui ∼ N (0, 4)

eij ∼ N (0, 1) . (3.60)

x2 and t were generated with a correlation of about 0.7. Unbalanced data were gen-
erated with ni chosen randomly from uniform distribution U(3, 37). The number of
clusters m is set to 20 for small samples while m = 100 for large samples. Simulation
size was 500. In selecting bandwidths by CV, binning techniques were used with the
number of bins being the rounded number of 8 log(N).20

3.7.1 Influence of the model-reduction bandwidths and effects of the
iteration

To investigate the influence of the bandwidths selected for model reduction on the
succeeding estimation of the VCs and β, we experimented with three bandwidths:
bandwidth selected by CV denoted by h0, and its scaled bandwidths 0.3h0 and 3h0.
Table 3.1 and 3.2 show the average and standard deviation of 500 estimates of each
model parameter using the SA VC estimator. Table 3.1 illustrates influence of differ-
ent bandwidths on the estimation in the initial stage, especially on VC estimation.
β estimators were robust to bandwidth selection in spite of variations in the VC
estimates. Continuing with the estimation from the initial stage, we obtained 500
after-iteration estimates, summarized in Table 3.2. The iteration process ended with
almost the same estimation values regardless of differences in the bandwidths se-
lected. For this simulation, all the estimators resulted essentially unbiased by the
end of iteration process.

20This number of bins is the default setting of R function h.select, which selects a bandwidth
by CV using binning techniques. For N > 100, its default is the rounded number of
8 log(N)/d.
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3.7 Finite Sample Performance: Simulation Studies

σ̂u σ̂e β̂1 β̂2 β̂3

0.3h0 3.507 (1.364) 1.083 (0.106) 0.989 (0.107) 0.494 (0.021) -0.988 (0.065)
h0 3.644 (1.401) 1.054 (0.084) 0.997 (0.104) 0.498 (0.018) -0.996 (0.061)
3h0 3.697 (1.417) 1.107 (0.088) 0.998 (0.108) 0.500 (0.018) -0.998 (0.063)

Table 3.1: Influence of the model-reduction bandwidths on the initial stage parameter
estimation using the SA VC estimator.

σ̂u σ̂e β̂1 β̂2 β̂3

0.3h0 3.938 (1.481) 1.063 (0.088) 1.000 (0.108) 0.488 (0.036) -1.000 (0.065)
h0 3.939 (1.481) 1.063 (0.088) 1.000 (0.108) 0.489 (0.036) -1.000 (0.065)
3h0 3.939 (1.481) 1.063 (0.088) 1.000 (0.108) 0.489 (0.036) -1.000 (0.065)

Table 3.2: Influence of the model-reduction bandwidths on the parameter estimation
after iteration using the SA VC estimator.

We estimated the model parameters using the FC VC estimator as well. The effects
of different bandwidths on the following estimation (Table 3.3) almost disappeared
by the end of iteration as seen in Table 3.4. For this simulation, estimators with the
FC VC estimators can also be regarded as unbiased.

The average squared error of the σ2u estimates was 1.956 for the FC VC estimator
while 2.194 for the SA VC estimator. It is not clear whether one estimator should
be preferred to the other for the iterative PLMM estimation. As Maddala and
Mount (1973) and Baltagi and Chang (1994) argued, it will be sensible to estimate
the PLMM with both VC estimation methods to see if they yield largely different
estimates. Robustness of the β estimator against the biased VC estimators in the
initial stage is in agreement with the bootstrap simulation studies on the random
intercept model by Bellmann et al. (1989).

σ̂u σ̂e β̂1 β̂2 β̂3

0.3h0 3.563 (1.278) 1.083 (0.106) 0.989 (0.107) 0.494 (0.021) -0.988 (0.065)
h0 3.697 (1.314) 1.054 (0.084) 0.997 (0.104) 0.498 (0.018) -0.996 (0.061)
3h0 3.752 (1.333) 1.107 (0.088) 0.998 (0.108) 0.500 (0.018) -0.998 (0.063)

Table 3.3: Influence of the model-reduction bandwidths on the initial stage parameter
estimation using the FC VC estimator.
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σ̂u σ̂e β̂1 β̂2 β̂3

0.3h0 3.909 (1.397) 1.063 (0.088) 1.000 (0.108) 0.488 (0.036) -1.000 (0.065)
h0 3.909 (1.397) 1.063 (0.088) 1.000 (0.108) 0.489 (0.036) -1.000 (0.065)
3h0 3.909 (1.397) 1.063 (0.088) 1.000 (0.108) 0.489 (0.036) -1.000 (0.065)

Table 3.4: Influence of the model-reduction bandwidths on the parameter estimation
after iteration using the FC VC estimator.

3.7.2 Comparison between OLS and GLS estimators

The estimation procedure we propose relies on GLS β estimation. On the other hand,
the procedure proposed by You et al. (2010) estimates β by OLS after reducing the
PLMM to an LMM.21 This section compares the performance of the GLS and OLS
β estimators in the initial stage. As in the previous section, we experimented with
three model-reduction bandwidths (h0, 0.3h0, 3h0). Table 3.5 shows the mean and
standard deviation of 500 OLS estimates for each model parameter. Results about
the σ2e estimator are not given because the variance function of eij was nonparamet-
rically estimated in You et al. (2010). In terms of the average of the estimates, Table
3.5 shows patterns similar to Table 3.1 and 3.3: the σ2u estimator (3.45) was affected
by bandwidth selection; the OLS β estimator turned out unbiased being insensitive
to the bandwidths selected. However, all the standard deviations of the OLS esti-
mators resulted larger than those of the GLS estimators. These results imply that
our estimation procedure provides more efficient β estimator (and smaller bias in
the iterative σ2u estimator in a small sample) than the one discussed in You et al.
(2010).

σ̂2
u β̂1 β̂2 β̂3

0.3h0 3.472 (1.446) 0.989 (0.224) 0.493 (0.041) -0.987 (0.130)
h0 3.606 (1.494) 0.997 (0.224) 0.498 (0.039) -0.995 (0.126)
3h0 3.657 (1.517) 0.999 (0.226) 0.500 (0.039) -0.998 (0.126)

Table 3.5: Influence of the model-reduction bandwidths on the OLS parameter esti-
mation. The VC were estimated by (3.45).

3.7.3 Convergence of the parameter estimators

Here we examine the consistency of the model parameter estimators by plotting
sampling distributions (the mean and standard deviation are given in each figure).

21After OLS β estimation, γ is nonparametrically estimated, followed by VC estimation by the
formula given in (3.45). See Section 3.8.2 for more details of You et al. (2010).
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3.7 Finite Sample Performance: Simulation Studies

Figure 3.1 displays histograms of the SA VC estimates for small samples. Histograms
of SA VC estimates obtained from large samples are shown in Figure 3.2. For both
of σ2u and σ2e , the average of the estimates became closer to the true parameter value
with a smaller standard deviation. Also the histograms are less skewed and more
bell-shaped for large samples. As for the FC VC estimator, the simulation study
produced results similar to the SA VC estimator.

The GLS β estimator (using the SA VC estimator) turned out unbiased for small
samples (Figure 3.3) as well as large samples (Figure 3.4). As expected, the stan-
dard deviation of the estimates became smaller as the number of clusters (or more
precisely, the number of observations N) increased. The GLS estimator with the FC
VC estimator showed similar results.
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Figure 3.1: Histograms of SA VC estimates from small samples.
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Figure 3.2: Histograms of SA VC estimates from large samples.
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Figure 3.3: Histograms of β estimates from small samples.
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Figure 3.4: Histograms of β estimates from large samples.

3.7.4 Efficiency gain by GLS using nonparametric weight function

This section demonstrates the efficiency performance of the GLS estimator using a
weight function obtained nonparametrically through the Li and Stengos method. We
simulated heteroskedastic data by generating regression errors with heteroskedastic-
ity parameter αij = x23,ij . γ and the heteroskedastic variance function were estimated
nonparametrically by local linear and Nadaraya-Watson (NW) kernel regression, re-
spectively. The SA VC estimator was used for all the results. The FC VC estimator
yielded similar results. Figure 3.5 shows histograms of the GLS β estimates obtained
under homoskedasticity assumption. As expected, the figures indicate unbiasedness
of the estimators. Figure 3.6 and 3.7 display histograms of GLS β estimates obtained
by using a weight function. The variance function was estimated using the rule-of-
thumb type bandwidth selection for Figure 3.6 and CV for Figure 3.7. The sampling
distributions show unbiasedness of the GLS estimator using weights and also confirm
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efficiency gain, given the heteroskedasticity conditioning variable specified correctly.
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Figure 3.5: GLS β estimates under homoskedasticity assumption.
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Figure 3.6: Histograms of GLS β estimates using a weight function. The rule of
thumb type bandwidth selection was used.
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Figure 3.7: Histograms of GLS β estimates using a weight function. CV was used
for bandwidth selection.

69



3 Partially Linear Mixed Effects Model

3.8 Estimator’s Performance in Practice

3.8.1 Application 1: Panel wage equation

This section illustrates the PLMM by comparing analyses by PLMM and LMM. We
analyze a National Longitudinal Survey (NLSY) data set on 4,697 women at the age
of 14-26 in 1968, which is unbalanced panel data over 21 years.22 The data consists
of 28,091 observations, where each woman forms a cluster of time-series observations.
The variables used in the analysis are described in Table 3.6. Correlations between
variables are given in Table 3.7. There are relatively large correlations between
ttl_exp and age (0.76) as well as ttl_exp and tenure (0.67). This implies that a
misspecified function of age and tenure will cause correlation between ttl_exp and
the error terms, i.e. endogeneity of the regressors.

ln_wage logarithm of wage min. 0, max. 5.263916
grade completed years of schooling min. 0, max. 18
age current age min. 14, max. 46

ttl_exp total work experience min. 0, max. 28.88461
tenure job tenure, in years min. 0, max. 25.91667
race whether black or not 1 if black, 0 otherwise

not_smsa whether residing in SMSA or not 1 if not SMSA, 0 otherwise
south whether south or not 1 if south, 0 otherwise

Table 3.6: Description of the variables. Source: Stata Longitudinal-Data/Panel-Data
Reference Manual Release 11, pp.6.

grade age ttl_exp tenure race not_smsa south

ln_wage .44 .28 .42 .37 -.14 -.22 -.19
grade .19 .24 .15 -.17 -.12 -.13
age .76 .44 -.02 .02 .03

ttl_exp .67 -.03 -.01 -.00
tenure .01 .00 -.02
race -.07 .27

not_smsa .18

Table 3.7: Correlations between variables.

Given a large number of women (number of clusters), a mixed effects model is ap-
pealing for construction of a parsimonious parametric model. Here we consider a

22Data are from StataCorp (2009) in Longitudinal/Panel-Data Reference Manual Release 11.
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parametric random intercept model:

ln_wageij = β0 + β1grade+ β2ageij + β3age
2
ij + β4ttl_exp+ β5ttl_exp2 +

β6tenure+ β7tenure
2 + β8race+ β9not_smsa+

β10south+ ui + eij , (3.61)

where the regression error eij is assumed to be homoskedastic. Note that the effects
of continuous variables age, ttl_exp and tenure are each modeled as a quadratic
function. The estimated parameters of model (3.61) are displayed in the first column
(LMM) in Table 3.8.23 The VCs were estimated using the standard SA estimator
for the LMM.

The coefficient estimate of ttl_exp2 appears puzzling. Since the marginal effect of
work experience on wage typically decreases, one would expect a negative coefficient
for its squared term. However, the estimated coefficient (0.000312) was significantly
positive with a bootstrap standard error of 0.000160; robust estimate of the standard
error was 0.000163. The Hausman specification test on this LMM rejected the null
hypothesis. This implies either that the specification of the fixed components of
the model is correct but the random effects are correlated with regressors; or that
functional forms of regressors are misspecified and hence correlations with random
terms resulted through correlations between age, ttl_exp and tenure.

To examine the latter implication, we constructed three PLMMs: age was nonpara-
metrically modeled in plmm (1), tenure in plmm (2), and both age and tenure in
plmm (3). We used local linear kernel regression to estimate the nonparametric func-
tions. Estimation results are given in the 2nd, 3rd and 4th columns of Table 3.8. We
obtained standard errors given in parentheses using the wild bootstrap described in
Section 3.6 with a simulation size of 500. While the estimated coefficient of ttl_exp2

was significantly positive for plmm (1), it was positive but insignificant for plmm (2)
and negative and insignificant for plmm (3). Figure 3.8 displays bootstrap sampling
distributions of the estimator of ttl_exp2 for the three PLMMs. Figure (a) and (b)
in Figure 3.9 plot the estimated nonparametric functions of plmm (1) and (2). Figure
3.10 (a) is the estimated nonparametric function of plmm (3), where the curve lacks
smoothness, capturing too much noise. We reestimated plmm (3) by increasing the
bandwidths selected for plmm (3) by 100% in each direction (age and tenure) in
the iterations and obtained Figure 3.10 (b). The estimated coefficient of ttl_exp2

was −0.000125.24 From the results of plmm (3) and its reestimate, we conclude that

23StataCorp (2009), pp.448-456 and 471-473 provides more estimates using various panel data
models and discussion.

24The other coefficient reestimates were grade 0.0676, ttl_exp 0.0315, race −0.0466, not_smsa −
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there is no statistical evidence for increasing marginal effects of work experience. A
histogram of random intercept predictions and summary of bootstrap samples are
provided in Appendix B.

LMM plmm (1) plmm (2) plmm (3)

grade .0646 (.0021) .0644 (.0017) .0647 (.0017) .0669 (.0017)
age .0369 (.0045) .0375 (.0034)
age2 -.0007 (.0001) -.0007 (.0001)

ttl_exp .0287 (.0031) .0278 (.0027) .0258 (.0027) .0299 (.0028)
ttl_exp2 .000312 (.000160) .000270 (.000127) .000162 (.000132) -.000034 (.000141)
tenure .0396 (.0024) .0398 (.0017)
tenure2 -.0020 (.0002) -.0020 (.0001)
race -.0536 (.0088) -.0507 (.0084) -.0535 (.0084) -.0466 (.0084)

not_smsa -.1336 (.0095) -.1319 (.0070) -.1326 (.0070) -.1291 (.0070)
south -.0881 (.0094) -.0889 (.0065) -.0859 (.0065) -.0847 (.0064)
σu .2395 .2388 .2393 .2382
σe .2907 .2903 .2909 .2907

Table 3.8: Estimates of LMM and three PLMMs. Standard deviations were esti-
mated from 500 bootstrap samples.
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Figure 3.8: Bootstrap sampling distributions of the estimated coefficient of ttl_exp2

by plmm (1), (2) and (3).

0.1294, south − 0.0847.
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(a) γ̂(age) (b) γ̂(tenure)

Figure 3.9: Plots of the estimated nonparametric functions.

(a) h = (0.880, 1.572) (b) h = (1.764, 3.150)

Figure 3.10: Plots of the estimated nonparametric function γ̂(age, tenure).

The results suggest that the parametric specification of age and tenure in (3.61)
were possibly inappropriate. On rejection of the null hypothesis by the Hausman
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test, a mixed effects model is often replaced by an alternative fixed effects model
with cluster-specific dummy variables; a fixed effects model will be used all the more
when it is difficult to find an appropriate functional specification to avoid endogeneity.
However, inference based on fixed effects models is limited to the sample. In addi-
tion, they incur the incidental parameter problem, that is, inconsistency of dummy
coefficient estimators unless the cluster sizes increase. Even though a Hausman type
statistical test needs to be conducted on a PLMM, the results above indicate an alter-
native approach to a simple fixed effects model “solution” when correlation between
regressors and random effects are suspected.

3.8.2 Application 2: Health expenditure

This section compares two partially linear random intercept models: our proposal
and the one proposed by You et al. (2010). They provided not only estimation
procedures but also testing methods for random effects specification as well as het-
eroskedasticity of the regression error. While their model specification is the same
as (3.1), which is reduced to an LMM given by (3.12), their succeeding estimation
procedures differ from ours in certain ways. Below is a summary of notable differ-
ences.

• Fixed component parameters β are estimated from a reduced model by the
“semiparametric least squares estimation” (SLSE), which is an OLS estimator
β̂ = (X̃>0 X̃0)

−1X̃>0 ỹ0 as apposed to the feasible GLS estimator (3.15). Fol-
lowing the SLSE, nonparametric component γ is estimated by the local linear
kernel regression y −Xβ̂ = γ (T) + v.

• After the fixed components estimation, the VCs are estimated nonparamet-
rically. Whether regression errors are homoskedastic or heteroskedastic, the
variance function is estimated with the method proposed by Li and Stengos
(1994) from the residuals v̂ = y−Xβ̂− γ̂ (T) and the estimate of σ2u by (3.45).

• The bandwidths used for model reduction as well as nonparametric γ function
estimation are selected by the so-called “leave one block out cross-validation”.
The bandwidths for the conditional variance function estimation were obtained
by the rule-of-thumb method proposed by Yu and Jones (2004).

It should be emphasized that their SLSE relies on the OLS estimator, which can
have serious consequences as we will shortly see. You et al. (2010) illustrated their
estimation procedures by analyzing Australian medical expenditure data. The data
set is a balanced random sample of 200 individuals collected annually over 5 years;
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each individual forms a cluster with ni = 5.25 Table 3.9 describes the variables used
in the analysis. Correlations between regressors (linc, age, insur) displayed in Table
3.10 suggest little linear dependence between them.

medexp response variable: annual medical expenditure in hundreds of
dollars

linc logarithm of annual income in thousands of dollars
age age in years
insur binary variable: 1 if the individual has private health insurance

Table 3.9: Description of the variables. Source: Hill et al. (2008), p.414.

linc age insur

medexp .089 .665 .284
linc .080 -.091
age .073

Table 3.10: Correlations between variables.

A parametric random intercept model is specified follows:

medexpij = β0 + β1lincij + β2ageij + β3age
2
ij + β4insurij + ui + eij . (3.62)

The estimated model parameters are displayed in the first column (LMM) of Table
3.11. The effect of linc was statistically insignificant; the effect of age was statistically
significant taking a quadratic convex form; and insur was also significant.

You et al. (2010) analyzed the data using the PLMM with the effect of age modeled
as a nonparametric function. The second column of Table 3.11 shows the estimates
by SLSE. In contrast to the insignificant effect obtained by the LMM, the coefficient
of linc turned out significantly positive. The authors further tested the hypothesis
of homoskedastic variance of the regression error and obtained rejection of the hy-
pothesis. Figure 3.11 (a) is their estimate of the regression error variance function.
They reestimated the model by “weighed semiparametric least squares estimation”
(WSLSE), which is based on an estimated variance function through the Li and
Stengos method. The results are given in the third column (WSLSE). The sign and
significance of the coefficients remained approximately the same as the SLSE.26

25Data are from Hill et al. (2008).
26The strongly positive and highly significant effect is little credible for the Australian health

(insurance) system. One would rather expect no significance since the difference in expenditures
due to income does not make much sense once insurants have decided on either compulsory
insurance only or private insurance additionally.
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LMM SLSE WSLSE plmm (1) plmm (2)

linc -.1494 (.2802) .5624 (.0297) .6137 (.0193) -.0102 (.2811) -.0137 (.2856)
age -.0903 (.0458)
age2 .0024 (.0005)
insur 1.3621 (.0960) 1.5830 (.1619) 1.2129 (.0934) 1.4161 (.0948) 1.4743 (.1315)
σu 1.615 1.511 1.511 1.500 1.500
σe 1.031 NA NA 1.078 NA

Table 3.11: Estimates of the coefficients and VCs. Standard error in parentheses
were estimated by bootstrap resampling for LMM, plmm (1) and plmm
(2). Analytic asymptotic standard errors provided by You et al. (2010)
are given for SLSE and WSLSE.

(a) Source: You et al. (2010) p.1100 (b) plmm(1)

Figure 3.11: Estimated conditional variance function.

Figure 3.12 (a) is a plot of the nonparametric function of age estimated by You et al.
(2010). Difference in significance of linc between the LMM and WSLSE (or SLSE)
would suggest that the LMM (3.62) was misspecified with respect to the functional
form of age. However, the shape of the estimated function appears perplexing.
Judging from the figure, the quadratic functional form of age in the LMM does
not appear inappropriate. A quadratic function is almost what the nonparametric
estimate suggests as a parametric form, and thus the nonparametric estimation of
the function of age could not explain the difference in the estimated coefficient of
linc between the LMM and the SLSE (or WSLSE). In addition, given the relatively
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low correlations between regressors, estimation of the coefficient of linc is unlikely
to be affected so much by misspecification as implied by the results of SLSE and
WSLSE.

(a) Source: You et al. (2010) p. 1100
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Figure 3.12: Estimate of nonparametric function γ(age).

We applied our PLMM proposal to the same semiparametric model specification as
in You et al. (2010). We obtained the estimates for the homoskedastic error model
shown in the fourth column (plmm (1)) of Table 3.11. Note that the estimates
coincided with those of the LMM in sign and insignificance. Using the residuals
obtained from plmm (1), we also estimated the heteroskedastic variance function by
the NW kernel regression. The estimate is displayed in Figure 3.11 (b). Both figures
in Figure 3.11 capture heteroskedasticity as a function of age and detect a bimodal
shape with a valley between the modes around the middle of age 40 and 50.27 We
reestimated the model using the variance function estimate. The coefficient estimates
in the fifth column (plmm (2)) remained similar to those of plmm (1) in terms of sign
and significance. Figure 3.12 (b) displays the local linear kernel regression estimate
of γ(age) with the bandwidth selected using binning techniques. The shape of the
estimated function would also suggest a quadratic function.

To investigate the cause of the difference between our results and those of You et al.
(2010), we estimated the fixed component coefficients by OLS (with V̂−1(0) = IN in

27The range above 2 along the vertical axis is cut off. The entire figure is given in Appendix B.
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(3.15)) without subsequent iteration. We obtained estimates of 0.6050 and 1.5910

for linc and insur, respectively, and 1.477 for the estimate of σu by (3.45). These
estimates are all close to the results of the SLSE. We further examined the updating
process of the estimates by plmm (1). Table 3.12 clearly shows that the estimates
were far apart from the above OLS estimates already at the initial stage. This
disagreement of the estimates is plausible as is suggested by the simulation study in
Section 3.7, where we observed a larger MSE of OLS estimators.

Initial 1. iteration 2. iteration 3. iteration
linc -.00006 -.00628 -.00830 -.01019
insur 1.37668 1.41503 1.41606 1.41605

Table 3.12: Updating process of the plmm (1) estimates.

A histogram of the random effects predictions and a summary of bootstrap estimates
of the sampling distributions of the β estimators are given in Appendix B.

To complete this section, Table 3.13 presents the bandwidths selected by different
CV methods for the estimation of the nonparametric component γ. The function
γ is estimated by local linear kernel regression (and the variance function by NW
kernel regression). For both plmm (1) and plmm (2), the extended GCV (GCVc) by
Carmack et al. (2011) selected larger bandwidths than those by other CV methods.
Figure 3.13 shows the estimate of γ(age) for plmm (2) obtained using GCVc, which
appears smoother and more appropriate than the estimate in Figure 3.12 (b).

CV(1) CV(2) GCV GCVc
plmm (1) 1.454 2.049 2.031 2.561
plmm (2) 1.456 2.049 2.032 2.495

Table 3.13: Bandwidths selected by different CV methods. CV(1) is CV with binning
and CV(2) is the leave-one-out CV.
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Figure 3.13: Estimate of nonparametric function γ(age) by plmm(2) using the band-
width 2.495 obtained by GCVc.

3.9 Concluding Remarks

In this essay we have considered the PLMM, specifically, the partially linear ran-
dom intercept model without distributional assumptions for the random terms of
the model and introduced an iterative estimation procedure. We showed by sim-
ulation that our iterative procedure worked well even for relatively small samples
and yielded consistent estimators. Simulation studies also showed that iterative pro-
cedures alleviate concerns about the potential effects that the bandwidth selection
for model reduction of the PLMM to the LMM may have on the succeeding es-
timation. It was also demonstrated that, if regression errors are heteroskedastic,
the PLMM estimation using a nonparametrically estimated variance function im-
proves the mean squared error. We illustrated the PLMM by analyzing two real
data sets. We first investigated an empirical case in which coefficients estimated
by the LMM were not amenable to economic interpretation. On rejection of the
null hypothesis by the Hausman test, we fit a PLMM as an alternative approach to
model misspecification and obtained interpretable coefficient estimates. In the other
data analysis, we compared our PLMM estimation with the one proposed by You
et al. (2010). The result indicated that our iterative GLS estimation yields more
reasonable coefficient estimates than their OLS-type semiparametric estimation. For
this application, we obtained more sensible bandwidths using the extended GCV to
prevent undersmoothing due to correlations in data.

We have provided detailed derivations of estimators under different sets of assump-
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tions on the variance structure, data adaptive choice of bandwidths, efficient im-
plementation through binning, matrix decomposition and model transformation to
reduce computational burdens. We also offered a resampling scheme for subsequent
statistical inference. All the procedures are implemented in the statistical software
R.

Our empirical applications point to directions of further research, in particular, two
types of specification test for the PLMM. One is an extension of the Hausman test
applied to the LMM. In the NLSY data example, even though the PLMM yielded an
interpretable model estimate as opposed to the LMM, its specification with random
effects still needs to be tested. The other specification test is with respect to the
appropriateness of a parametric function instead of nonparametric one. In practice,
it will be of interest whether a parametrically specified function is acceptable as
an alternative to nonparametric function. In the medical data example, it was left
untested whether the parametric function specified in the LMM suffices in place of
the nonparametric function. In the partially linear model framework, Härdle and
Mammen (1993) proposed a statistic based on the wild bootstrap to test whether
the parametric function estimate is significantly different from the nonparametric
estimate. The idea has been extended in Sperlich and Lombardía (2010). This type
of specification test in the PLMM framework is another issue of future research.

One immediate extension of the partially linear random intercept model is a partially
linear random coefficient model that models not only the intercept but also slope
coefficients as cluster-specific random variables. This will be an semiparametric
extension of Swamy (1970). Moreover, researchers are often interested in whether
the form of an unknown smooth function differs between some fixed groups. Another
natural extension will thus be to model an interaction between a discrete factor
variable and the nonparametric function.

Concerning the use of kernel regression, we used a global bandwidth. As one sees
in Figure 3.10 (a), the bandwidth selected is too small in boundary regions of the
support. An extension that allows the use of local bandwidths will help to avoid local
undersmoothing. In practice, one could also look for adequate prior transformations
of the regressors that enter the model nonparametrically, and then use a global
bandwidth.

Another extension possibility is application of Vilar Fernández and Francisco Fernán-
dez (2002). They proposed a nonparametric kernel regression to improve asymptotic
efficiency based on the standard GLS concept. Recall that, while we use the feasi-
ble GLS estimation for β, we estimated nonparametric function γ with the standard
kernel regression ignoring the correlation structure of the errors. Application of their
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proposal will produce an estimator given by

γ̂ (t) = e>1

(
T∗>t Ω>KΩT∗t

)−1
T∗>t Ω>KΩ (y −Xβ) , (3.63)

where Ω is such that Ω>Ω = V−1. In fact, (3.24) can be expressed as a special case
of (3.63) with Ω = I. The estimator was originally proposed for the nonparametric
kernel regression with an auto-regressive error structure.28 The authors reported im-
provement in the mean integrated squared error through simulation. We conducted
simulation studies in which we experimented with different decompositions of V−1

to construct Ω (obviously, Ω is not unique). However, we haven’t observed promising
results yet. Regarding the use of a GLS type estimator, Ruckstuhl et al. (2000) and
Lin and Carroll (2000) argued that incorporation of the correlation structure would
not lead to asymptotically more efficient estimation. On the other hand, Su and
Ullah (2007) proposed a different way of incorporating the correlation structure to
achieve higher efficiency over the standard kernel regression.

Finally, our future research will address the small area estimation, where the estima-
tion of the mean squared prediction error of the response is of paramount importance.
In particular, application of the PLMM to offer reliable, easy-to-handle estimators
for area specific parameters and their confidence/prediction intervals will be one of
the focal points of our research.

3.10 Appendix A

3.10.1 Calculation of V−1 by spectral decomposition

Homoskedastic case (ui + eij):

V−1i = (niσ
2
u + σ2e)

−1J̄ni + σ−2e (Ini − J̄ni) (3.64)

V−1 = (⊕(niσ
2
u + σ2e)

−1)⊗ J̄ni + σ−2e Im ⊗ (Ini − J̄ni) . (3.65)

Between-cluster heteroskedastic case (ui + αieij):

V−1i = (niσ
2
u + α2

i σ
2
e)
−1J̄ni + (α2

i σ
2
e)
−1(Ini − J̄ni) (3.66)

V−1 = (⊕(niσ
2
u + α2

i σ
2
e)
−1)⊗ J̄ni + (⊕(α2

i σ
2
e)
−1)⊗ (Ini − J̄ni) . (3.67)

28For a review, see González-Manteiga et al., 2012 among others.
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Within-cluster heteroskedastic case (ui + αijeij): because of the structure of Vi

Vi = niσ
2
uJ̄ni +⊕jα2

ijσ
2
e

= ⊕j(niσ2u + α2
ijσ

2
e)J̄ni +⊕jα2

ijσ
2
e(Ini − J̄ni) , (3.68)

such a spectral representation as the other cases is not available except for the vari-
ance of transformed data (⊕α−1ij )yi. Due to the idempotency of η−1i α

−1
i (α−1i )> and

Ini − η−1i α
−1
i (α−1i )>,

Var[(⊕α−1ij )yi] = (ηiσ
2
u + σ2e)η

−1
i α

−1
i (α−1i )> +

σ2e(Ini − η−1i α
−1
i (α−1i )>) (3.69)

(Var[(⊕α−1ij )yi])
−1 = (ηiσ

2
u + σ2e)

−1η−1i α
−1
i (α−1i )> +

σ−2e (Ini − η−1i α
−1
i (α−1i )>) , (3.70)

whereα−1i = (α−1i1 . . . α−1ini
)> and ηi = (α−1i )>α−1i =

∑ni
j=1 α

−2
ij . Since (Var[(⊕α−1ij )yi])

−1

= ⊕αijV−1i ⊕ αij ,

V−1i = ⊕α−1ij
(

(ηiσ
2
u + σ2e)

−1η−1i α
−1
i (α−1i )> + σ−2e

(
Ini − η−1i α

−1
i (α−1i )>

))
⊕ α−1ij

= ⊕α−1ij

(
1

σ2e

(
Ini −

ηiσ
2
u

ηiσ2u + σ2e
η−1i α

−1
i (α−1i )>

))
⊕ α−1ij

=
1

σ2e

(
⊕α−2ij −

σ2u
ηiσ2u + σ2e

(α−2i1 , . . . , α
−2
ini

)>(α−2i1 , . . . , α
−2
ini

)

)
= ⊕ν−2ij −

σ2u
σ−2e ηiσ2u + 1

1

σ2e
(α−2i1 , . . . , α

−2
ini

)>
1

σ2e
(α−2i1 , . . . , α

−2
ini

)

= ⊕ν−2ij −
σ2u

σ2u
∑
ν−2ij + 1

(ν−2i1 , . . . , ν
−2
ini

)>(ν−2i1 , . . . , ν
−2
ini

) , (3.71)

where ν2ij = α2
ijσ

2
e .

3.10.2 Derivation of VC estimators in the homoskedastic case

This section presents the derivation of the homoskedastic VC estimators used in the
initial stage and the iterative process. The VCs are estimated for an LMM specified
with working variables ỹ and x̃ as

ỹ = X̃β + Zu + e . (3.72)

Note that ỹ and X̃ change according to the estimation stage: in the initial stage ỹ

is a vector whose ijth element is yij − Ê[yij |tij ] and X̃ is a matrix whose ijth row
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is x>ij − Ê[x>ij |tij ]. It holds that Qi1ni = 0 and QZ = 0 (recall Qi = Ini − J̄ni ,
Q = Im ⊗Qi and P = Im ⊗ J̄ni). Transforming (3.72) with Q yields

Qỹ = QX̃β + QZu + Qe

= QX̃β + Qe . (3.73)

Let β̂w be the within-estimator (LSDV estimator) for regression (3.73). The within-
residual vector denoted here by êw is given by

êw = ỹ − X̃β̂w

= (IN − X̃(X̃>QX̃)−1X̃>Q)ỹ

= (IN − X̃(X̃>QX̃)−1X̃>Q)e . (3.74)

Since the trace of idempotent matrix (Q−QX̃(X̃>QX̃)−1X̃>Q) is N −m− r(QX̃)

and E[ee>] = σ2eIN , the quadratic estimator of σ2e is obtained as follows:

E[ê>wQêw] = E[e>(Q−QX̃(X̃>QX̃)−1X̃>Q)e]

= tr
(

(Q−QX̃(X̃>QX̃)−1X̃>Q)E[ee>]
)

=
(
N −m− r(QX̃)

)
σ2e (3.75)

∴ σ̂2e =
ê>wQêw

N −m− r(QX̃)
, (3.76)

where r(•) denotes the rank of •.

FC estimator of σ2u: Let v̂ be a vector of OLS residuals from ỹ = X̃β+ v, where
v = Zu + e. It holds that

v̂ = ỹ − X̃β̂ols

= (IN − X̃(X̃>X̃)−1X̃>)ỹ

= (IN − X̃(X̃>X̃)−1X̃>)v . (3.77)
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Then it follows that

E[v̂>v̂] = E[v>(IN − X̃(X̃>X̃)−1X̃>)v]

= tr
(

(I− X̃(X̃>X̃)−1X̃>)E[vv>]
)

= tr
(

(I−X̃(X̃>X̃)−1X̃>)(σ2uZZ> + σ2eIN )
)

= σ2utr(ZZ>)− σ2utr
(

(X̃>X̃)−1X̃>ZZ>X̃
)

−σ2etr(IN−X̃(X̃>X̃)−1X̃>) . (3.78)

The first, second and third terms of (3.78) have respective traces of

tr(ZZ>) = tr(Im ⊗i Jni)

= N (3.79)

tr
(

(X̃>X̃)−1X̃>ZZ>X̃
)

= tr
(

(X̃>X̃)−1X̃>(Im ⊗i 1ni)(Im ⊗i 1>ni
)X̃
)

= tr((X̃>X̃)−1
m∑
i=1

n2i ¯̃xi ¯̃x
>
i ) (3.80)

tr(IN−X̃(X̃>X̃)−1X̃>) = N − p , (3.81)

where ¯̃xi is a p-dimensional vector of the cluster means of the regressors x̃i. Inserting
(3.79), (3.80) and (3.81) in (3.78) yields

E[v̂>v̂] = Nσ2u − σ2utr((X̃>X̃)−1
m∑
i=1

n2i ¯̃xi ¯̃x
>
i )− (N − p)σ2e . (3.82)

The FC estimator of σ2u is thus given by

σ̂u,FC = max

 v̂>v̂ − (N − p)σ̂2e
N − tr

(
(X̃>X̃)−1

∑m
i=1 n

2
i
¯̃xi ¯̃x>i

) , 0

 . (3.83)

SA estimator of σ2u: With the between-estimator denoted by β̂b for regression
(3.72), the vector of between-residuals denoted here by v̂b is given by

v̂b = ỹ − X̃β̂b

= (I− X̃(X̃>PX̃)−1X̃>P)ỹ

= (I− X̃(X̃>PX̃)−1X̃>P) (Zu + e) .

84



3.10 Appendix A

It follows that

E[v̂>b Pv̂b] = E[(Zu + e)> (P−PX̃(X̃>PX̃)−1X̃>P) (Zu + e)]

= tr
(

(P−PX̃(X̃>PX̃)−1X̃>P)E[(Zu + e) (Zu + e)>]
)

= tr
(

(P−PX̃(X̃>PX̃)−1X̃>P)(σ2uZZ> + σ2eIn)
)

= σ2utr(PZZ>)− σ2utr(PX̃(X̃>PX̃)−1X̃>PZZ>)

−σ2etr(P−PX̃(X̃>PX̃)−1X̃>P) . (3.84)

The first, second and third terms have respective traces of

tr(PZZ>) = tr(ZZ>)

= N (3.85)

tr(PX̃(X̃>PX̃)−1X̃>PZZ>) = tr((X̃>PX̃)−1X̃>ZZ>X̃)

= tr((X̃>PX̃)−1
m∑
i=1

n2i ¯̃xi ¯̃x
>
i ) (3.86)

tr(P−PX̃(X̃>PX̃)−1X̃>P) = m− p . (3.87)

Inserting (3.85), (3.86) and (3.87) in (3.84) gives

E[v̂>b Pv̂b] = Nσ2u − σ2utr((X̃>PX̃)−1
m∑
i=1

n2i ¯̃xi ¯̃x
>
i ) + (m− p)σ2e . (3.88)

Thus the SA estimator of σ2u is given by

σ̂2u,SA = max

 v̂>b Pv̂b − (m− p)σ̂2e
N − tr

(
(X̃>PX̃)−1

∑m
i=1 n

2
i
¯̃xi ¯̃x>i

) , 0

 . (3.89)

Note that, in the iteration stage, estimators are obtained with the working variables
ỹ and x̃ in (3.72) modified as follows: ỹ is a vector whose ijth element is yij − γ̂(tij)

and X̃ is the same as the original design X.

By taking into account the loss of d.f. due to the estimation of γ, the estimator of
σ2e is given by

σ̂2e(r) =
ê>w(r)Qêw(r)

N −m− r(QX)− d.f.(γ̂(r−1))
, (3.90)

where the subscript (r) indicates the rth iteration (γ̂(0) is the estimator of γ in the
initial stage). r(QX) is p if none of the regressors in x is invariant within the cluster.
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The d.f. of the nonparametric estimator of γ is defined here as

d.f.(γ̂(r)) = 2tr(S(r))− tr(S(r)S
>
(r)) , (3.91)

where S(r) is the smoother matrix for γ estimation. Alternatively, the d.f. can be
defined following Carmack et al. (2011) by

d.f.(γ̂(r)) = 2tr(S(r)R(r))− tr(S(r)R(r)S
>
(r)) , (3.92)

where R(r) is the correlation matrix of the random terms. See Appendix A 3.10.5
for more details.

Replacing the estimator of σ2e in (3.83) and (3.89) by (3.90) yields the estimators in
the rth iteration:

σ̂u(r),FC = max

(
v̂>(r)v̂(r) − (N − p)σ̂2e(r)

N − tr
(
(X>X)−1

∑m
i=1 n

2
i x̄ix̄

>
i

) , 0

)
(3.93)

σ̂2u(r),SA = max

(
v̂>b(r)Pv̂b(r) − (m− p)σ̂2e(r)

N − tr
(
(X>PX)−1

∑m
i=1 n

2
i x̄ix̄

>
i

) , 0

)
. (3.94)

3.10.3 Derivation of VC estimators in the heteroskedastic case

This section presents the derivation of the heteroskedastic VC estimators used in the
initial and iteration stages. Note that working variables ỹ and X̃ change according
to the estimation stage. In the initial stage ỹ is a vector whose ijth element is
yij− Ê[yij |tij ] and X̃ is a matrix whose ijth row is x>ij− Ê[x>ij |tij ]. Estimation starts
with premultiplying the heteroskedastic model ỹij = x̃>ijβ+ui+αijeij by the inverse
of the heteroskedastic parameter αij to obtain α−1ij ỹij = α−1ij x̃>ijβ+α−1ij ui + eij or in
matrix form

(⊕jα−1ij )ỹi = (⊕jα−1ij )X̃iβ + ui(⊕jα−1ij )1ni + ei

= (⊕jα−1ij )X̃iβ + uiα
−1
i + ei , (3.95)

where α−1i = (α−1i1 α−1i2 . . . α−1ini
)>. The spectral decomposition representation of

Var[(⊕jα−1ij )yi] is

Var[(⊕jα−1ij )ỹi] = σ2uα
−1
i (α−1i )> + σ2eIni

= (ηiσ
2
u + σ2e)η

−1
i α

−1
i (α−1i )> + σ2e(Ini − η−1i α

−1
i (α−1i )>) ,

(3.96)
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where ηi = (α−1i )>α−1i =
∑ni

j=1 α
−2
ij . Rewrite (3.95) as

y
i

= Xiβ + uiα
−1
i + ei

= Xiβ + vi , (3.97)

where y
i

= (⊕jα−1ij )ỹi, Xi = (⊕jα−1ij )X̃i and vi = uiα
−1
i + ei. (3.97) is further

rewritten as

y = Xβ + 1m ⊗i (uiα
−1
i + ei)

= Xβ + v . (3.98)

Let Qi be Ini − η−1i α
−1
i (α−1i )>, which appears in the second term of (3.96). (Qi

defined here is generally different from the one in the previous section. The Qi

of the homoskedastic case is a special case with αij = 1 ∀ij.) Let’s define Pi as
η−1i α

−1
i (α−1i )>. Since Pi is symmetric idempotent, Qi = Ini −Pi, P = Im⊗Pi and

Q = Im ⊗Qi are all symmetric idempotent.

In order to obtain the within-estimator of β, we apply the following heteroskedastic
within-transformation to (3.97) using Qi:

Qiyi = Qi(Xiβ + uiα
−1
i + ei)

= QiXiβ + Qiei . (3.99)

The second equality is due to uiQia
−1
i = ui(α

−1
i − α

−1
i ) = 0. This transformation

yields analogs to the homoskedastic within-transformation as follows:

Qi(⊕jα−1ij )ỹi = (⊕jα−1ij )ỹi − η−1i α
−1
i (α−1i )>(⊕jα−1ij )ỹi

= (⊕jα−1ij )ỹi − ȳiα−1i , (3.100)

where ȳi =
∑

j α
−2
ij ỹij∑

j α
−2
ij

;

Qi(⊕jα−1ij )X̃i = (⊕jα−1ij )X̃i − η−1i α
−1
i (α−1i )>(⊕jα−1ij )X̃i

= (⊕jα−1ij )X̃i −α−1i x̄>i , (3.101)

where x̄>i =

(∑
j α
−2
ij x̃ij,1∑
j α
−2
ij

∑
j α
−2
ij x̃ij,2∑
j α
−2
ij

. . .
∑

j α
−2
ij x̃ij,p∑
j α
−2
ij

)
; and

Qiei = ei − ēiα−1i , (3.102)

where ēi =
∑

j α
−2
ij eij∑

j α
−2
ij

.
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The heteroskedastic within-estimator of β is given by β̂w = (X>QX)−1X>Qy. The
heteroskedastic within-residual vector is obtained by

êw = y −Xβ̂w

= (I−X(X>QX)−1X>Q)y

= (I−X(X>QX)−1X>Q)e . (3.103)

Since the trace of idempotent matrix Q−X(X>QX)−1X>Q is N −m−r(QX) and
E[ee>] = σ2eIN , the quadratic estimator of σ2e is obtained as follows:

E[ê>wQêw] = E[e>(Q−QX(X>QX)−1X>Q)e]

= tr
(

(Q−X(X>QX)−1X>Q)E[ee>]
)

= (N −m− r(QX))σ2e (3.104)

∴ σ̂2e =
ê>wQêw

N −m− r(QX)
, (3.105)

where r(•) denotes the rank of •.

FC estimator of σ2u The FC estimator of σ2u is obtained using the OLS residuals
of regression (3.98). Given the OLS estimator β̂ols = (X>X)−1X>y, the vector of
residuals v̂ is expressed as

v̂ = y −Xβ̂

= (I−X(X>X)−1X>)y

= (I−X(X>X)−1X>)v . (3.106)

Since I − X(X>X)−1X> is a symmetric idempotent matrix and Var[v] =σ2uIm ⊗
α−1i (α−1i )> + σ2eIN , the quadratic estimator of σ2u is obtained as follows.

E[v̂>v̂] = E[v>(I−X(X>X)−1X>)v]

= tr
(

(I−X(X>X)−1X>)E[v>v]
)

= tr
(

(I−X(X>X)−1X>)(σ2uIm ⊗α−1i (α−1i )> + σ2eIN )
)

= σ2utr(Im ⊗α−1i (α−1i )>)− σ2utr(X(X>X)−1X>
(
Im ⊗α−1i (α−1i )>

)
)

+σ2etr(I−X(X>X)−1X>) . (3.107)
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The first, second and third terms have the respective traces of

tr(Im ⊗α−1i (α−1i )>) =
∑
i

tr(α−1i (α−1i )>)

=
∑
i,j

α−2ij , (3.108)

tr
(
X(X>X)−1X>(Im ⊗i α−1i (α−1i )>)

)
= tr

(
(Im ⊗i α−1i )>X(X>X)−1X>(Im ⊗i α−1i )

)
= tr

(
(1m ⊗i (α−1i )>Xi)(1⊗X>X)−1(1>m ⊗i X>i α

−1
i )
)

= tr
(
Jm ⊗i

(
(α−1i )>(⊕jα−1ij )X̃i(X

>X)−1X̃>i (⊕jα−1ij )α−1i

))
= tr{Jm ⊗i ((

∑
j

α−2ij x̃>ij)(
∑
k,j

α−2kj x̃kjx̃
>
kj)
−1(
∑
j

α−2ij x̃ij))}

=

m∑
i=1

((
∑
j

α−2ij x̃>ij)(
∑
k,j

α−2kj x̃kjx̃
>
kj)
−1(
∑
j

α−2ij x̃ij)) , (3.109)

tr(I−X(X>X)−1X>) = N − p . (3.110)

By inserting (3.108), (3.109) and (3.110) in (3.107), it follows that

E[v̂>v̂] = σ2u(
∑
i,j

α−2ij − CFC) + σ2e(N − p) (3.111)

∴ σ̂2u,FC = max

(
v̂>v̂ − (N − p)σ̂2e∑

i,j α
−2
ij − CFC

, 0

)
, (3.112)

where CFC =
∑m

i=1

(
(
∑

j α
−2
ij x̃>ij)(

∑
k,j α

−2
kj x̃kjx̃

>
kj)
−1(
∑

j α
−2
ij x̃ij)

)
.

SA estimator of σ2u Estimation starts by transforming regression (3.98) with the
heteroskedastic between-transformation matrix P to obtain the between-estimator
β̂b, which is given by β̂b = (X>PX)−1X>Py. The between-residual vector, here
denoted by v̂b, is expressed as

v̂b = y −Xβ̂b

= (I−X(X>PX)−1X>P)y

= (I−X(X>PX)−1X>P)v . (3.113)

89



3 Partially Linear Mixed Effects Model

Since Var[v] =σ2uIm⊗α−1i (α−1i )>+σ2eIN , the quadratic estimator of σ2u,SA is obtained
as follows. It holds that

E[v̂>b Pv̂b] = E[v>(P−PX(X>PX)−1X>P)v]

= tr
(

(P−PX(X>PX)−1X>P)E[vv>]
)

= tr
(

(P−PX(X>PX)−1X>P)(σ2uIm ⊗α−1i (α−1i )> + σ2eIn)
)

= σ2utr
(
P(Im ⊗α−1i (α−1i )>)

)
−σ2utr

(
PX(X>PX)−1X>P(Im ⊗α−1i (α−1i )>)

)
+σ2etr

(
P−PX(X>PX)−1X>P

)
. (3.114)

Since Piα
−1
i (α−1i )>= α−1i (α−1i )>, the traces of the first and third terms of (3.114)

are

tr
(
P(Im ⊗α−1i (α−1i )>)

)
= tr

(
Im ⊗α−1i (α−1i )>

)
=

∑
i,j

α−2ij =
∑
i

ηi and (3.115)

tr(P−PX(X>PX)−1X>P) = m− p , (3.116)

respectively. Calculation similar to (3.109) yields the trace of the second term of
(3.114):

tr
(
PX(X>PX)−1X>P(Im ⊗α−1i (α−1i )>)

)
= tr

(
(Im ⊗i α−1i )>X(X>PX)−1X>(Im ⊗i α−1i )

)
= tr

Jm ⊗i

(
∑
j

α−2ij x̃>ij)(X
>PX)−1

∑
j

α−2ij x̃ij


=

m∑
i=1

(
∑
j

α−2ij x̃>ij)(X
>PX)−1

∑
j

α−2ij x̃ij

 . (3.117)

Inserting (3.115), (3.117) and (3.116) into (3.114) yields

E[v̂>b Pv̂b] = σ2u(
∑
i

ηi − CSA) + σ2e(m− p) . (3.118)

Therefore,

σ̂2u,SA = max

(
v̂>b Pv̂b − (m− p)σ̂2e∑

i ηi − CSA
, 0

)
, (3.119)
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where CSA =
∑m

i=1

(
(
∑

j α
−2
ij x̃>ij)(X

>PX)−1(
∑

j α
−2
ij x̃ij)

)
. Here X>PX can be

expressed as

X>PX = (1>m ⊗k X>k )(Im ⊗k ηkα−1k (α−1k )>)(1m ⊗k Xk)

= m⊗k (X>k ηkα
−1
k (α−1k )>Xk)

=
m∑
k=1

ηkX̃kα
−2
k (α−2k )>X̃k

=
m∑
k=1

ηk(
∑
j

α−2kj x̃kj)(
∑
j

α−2kj x̃>kj) . (3.120)

In the iteration stage, estimators are obtained with the working variables ỹ and x̃ in
(3.95) modified as follows: ỹ is a vector whose ijth element is yij − γ̂(tij) and X̃ is
the same as the original design X.

By taking into account the loss of d.f. due to the estimation of γ, the estimator of
σ2e is given by

σ̂2e(r) =
ê>w(r)Qêw(r)

N −m− r(QX)− d.f.(γ̂(r−1))
, (3.121)

where the subscript (r) indicates the rth iteration (γ̂(0) is the estimator of γ in the
initial stage). r(QX) is p if none of the columns of X is cluster-wise invariant. The
d.f. of the nonparametric estimate of γ is defined as

d.f.(γ̂(r)) = 2tr(S(r))− tr(S(r)S
>
(r)) , (3.122)

where S(r) is the smoother matrix of γ estimation. An alternative definition of the
d.f. following Carmack et al. (2011) is given by

d.f.(γ̂(r)) = 2tr(S(r)R(r))− tr(S(r)R(r)S
>
(r)) , (3.123)

where R(r) is the correlation matrix of the random terms. See Appendix A 3.10.5
for more details.

Replacing the estimator of σ2e in (3.112) and (3.119) by (3.121) yields the estimators
in the rth iteration:

σ̂2u(r),FC = max

(
v̂>(r)v̂(r) − (N − p)σ̂2e(r)∑

i,j α
−2
ij − CFC

, 0

)
, (3.124)
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where CFC =
∑m

i=1

(
(
∑

j α
−2
ij x>ij)(

∑
k,j α

−2
kj xkjx

>
kj)
−1(
∑

j α
−2
ij xij)

)
; and

σ̂2u(r),SA = max

(
v̂>b(r)Pv̂b(r) − (m− p)σ̂2e(r)∑

i ηi − CSA
, 0

)
, (3.125)

where CSA =
∑m

i=1

(
(
∑

j α
−2
ij x>ij)(X

>PX)−1(
∑

j α
−2
ij xij)

)
with

X>PX =
∑m

k=1 ηk(
∑

j α
−2
kj xkj)(

∑
j α
−2
kj x>kj).

3.10.4 Derivation of the random intercept predictor

This section presents the derivation of the random intercept predictors ũi. The
predictors are consistent and linear in the form of

ũ = b+ c>y (3.126)

with some scalar b and vector c. ũ is such that minimizes the following mean squared
prediction error

E[(ũ− u)2] = E[b2 + 2b(c>y − u) + (c>y − u)2]

= b2 + 2bE[c>y − u] + E[(c>y − u)2] . (3.127)

b and c required for the best predictor are obtained as follows. Differentiating (3.127)
with respect to b and setting the derivative ∂E[(ũ− u)2]/∂b to zero yields

2(b+ E[c>y − u]) = 0

∴ b = −E[c>y − u] . (3.128)

By inserting (3.128) into (3.127),

E[(ũ− u)2] = E[(c>y − u)2]− (E[c>y − u])2

= Var[c>y − u]

= c>Vc− 2c>Cov [y, u] + σ2u . (3.129)

Differentiating (3.129) with respect to c and setting the derivative ∂E[(ũ − u)2]/∂c

to zero gives

2Vc− 2Cov[y, u] = 0

∴ c = V−1Cov[y, u] . (3.130)

92



3.10 Appendix A

Thus inserting (3.128) and (3.130) into (3.126) yields

ũ = µu + Cov[y>, u]V−1(y − µy)

= Cov[u>, u]Z>V−1(y − µy) , (3.131)

where µy = E[y|X,T] and µu = E[u] = 0 by assumption. The last equality holds
due to the assumption of between-cluster independence. Taking the expectation of
(3.131) shows the unbiasedness of the predictor in the sense that E[ũ] = E[u]. Note
that predictor (3.131) requires knowledge of only the first two moments of y and u,
but not a distributional assumption such as normality.

From (3.131), the ith random intercept predictor is given by

ũi = Cov[u>, ui](Im ⊗ Z>i )(Im ⊗V−1i )
(
1m ⊗ (yi − µyi

)
)

= σ2ue
>
i

(
1m ⊗ 1>i V−1i (yi − µyi

)
)

= σ2u1
>
i V−1i (yi − µyi

) , (3.132)

where ei ∈ Rm is a vector of zero except for the ith element being one. Replacing
µyi

with Xiβ − γ(Ti) gives

ũi = σ2u1
>
ni

V−1i (yi −Xiβ − γ(Ti)) ∀i = 1, . . . ,m . (3.133)

Replacing unknown VC, β and γ with their consistent estimators yields (3.47).

3.10.5 Extended generalized cross validation (GCVc)

Suppose a one-dimensional kernel regression estimation of yk = γ(tk) + vk where
E[vk|tk] = 0 holds (k = 1, 2, . . . , N). Here we consider the mean squared prediction
error (MSPE), E[(yk− γ̂(tk))

2]. Let γ̂cv denote an estimate of γ with the bandwidth
h selected by either CV (γ̂cv(tk) = γ̂(−k)(tk)) or GCV (γ̂cv(tk) = γ̂(tk)). Here γ̂(tk)

is an estimator obtained using the whole sample. The MSPE of γ̂cv(tk) is

E[(yk − γ̂cv(tk))
2] = E[(yk − γ(tk))

2] + E[(γ(tk)− γ̂cv(tk))
2]

+2E[(yk − γ(tk)) (γ(tk)− γ̂cv(tk))]

= σ2v + E[(γ(tk)− γ̂cv(tk))
2] + 2E[vkγ̂cv(tk)] . (3.134)

Provided the last term of (3.134) is zero, minimization of the MSPE of γ̂cv is equiv-
alent to minimization of the MSE E[(γ(tk)− γ̂(tk))

2]. This implies that the average
squared prediction errors (ASPE), N−1

∑N
k=1 (yk − γ̂(tk))

2 is expected to minimize
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the average MSE, N−1
∑N

k=1 E (γ(tk)− γ̂(tk))
2. If the errors are independent, the

last term will be (asymptotically) zero for the CV due to E[vkγ̂(−k)(tk)] = 0 and for
the GCV due to the penalization of the term E[

∑N
k=1 skkv

2
k] involved in E[vkγ̂cv(tk)],

where skk is the kth diagonal element of the smoother matrix S.

For correlated data, however, E[vkvl] for (k 6= l) is not necessarily zero and therefore
neither the CV nor the GCV has the last term of (3.134) being zero. Therefore, if
correlations are positive, CV and GCV tend to select a smaller bandwidth than the
optimal that minimizes the average MSE, N−1

∑N
k=1 E[(γ(tk)− γ̂(tk))

2].

In order to correct the GCV for correlations between errors, Carmack et al. (2011)
proposed an alternative definition of the residual degrees of freedom. First, note that
for the GCV, the second term of (3.134) is

E[(γ(tk)− γ̂(tk))
2] = Var[γ(tk)− γ̂(tk)] + (E[γ(tk)− γ̂(tk)])

2

= Var[
∑
j

skjyj ] + (E[γ(tk)−
∑
j

skjyj ])
2

= Var[
∑
j

skjyj ] + (E[γ(tk)−
∑
j

skjγ(xj)−
∑
j

skjvj ])
2

=
∑
j

∑
l

skjsklCov[vj , vl] + (γ(tk)−
∑
j

skjγ(xj))
2 (3.135)

and that the third term is

E [vkγ̂(tk)] = Cov[vk, γ̂(tk)]

= Cov[vk,
∑
j

skjyj ]

=
∑
j

skjCov[vk, vj ] , (3.136)

where skj is the (k, j) element of smoother S. Then (3.134) is rewritten as

E[(yk − γ̂(tk))
2] = σ2v +

∑
j

∑
l

skjsklCov[vj , vl] + (γ(tk)−
∑
j

skjγ(xj))
2

−2
∑
j

skjCov[vk, vj ] . (3.137)
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Thus the expectation of the APSE is given by

E [ASPE(h)] =
1

N

N∑
k=1

E (yk − γ̂(tk))
2

=
1

N

∑
k

(γ(tk)−
∑
j

skjγ(xj))
2 +

1

N
(Nσ2v +

∑
k

∑
j

∑
l

skjsklCov[vj , vl]− 2
∑
k

∑
j

skjCov[vk, vj ])

=
1

N

∑
k

Ck +

σ2v
N

(N +
∑
k

∑
j

∑
l

skjsklCorr[vj , vl]− 2
∑
k

∑
j

skjCorr[vk, vj ]) ,

(3.138)

where Ck denotes (γ(tk) −
∑

j skjγ(xj))
2. Let R denote the correlation matrix of

the errors. The second term in the parentheses in (3.138) is tr(SRS>) and the third
term −2tr(SR). Therefore it holds that

E [ASPE(h)] =
1

N

∑
k

Ck +
σ2v
N

(
N + tr(SRS> − 2SR)

)
E[

N∑
k=1

(yk − γ̂(tk))
2] =

∑
k

Ck + σ2v

(
N − tr(2SR− SRS>)

)
. (3.139)

From this observation, Carmack et al. (2011) proposed an alternative definition of
the residual degrees of freedom given by N − tr(2SR − SRS>). This is reduced to
N−tr(2S−SS>) when data are uncorrelated (R = I), and further to N−tr (S) when
data are uncorrelated and S is symmetric idempotent (SS> = S). As an alternative
to the GCV statistic (3.30), they proposed the following extended GCV statistic:

GCVc (h) =
1

N

N∑
k=1

(
yk − γ̂(tk)

1− tr(2SR− SRS>)/N

)2

. (3.140)

In practical implementation, if the dimension of S and R is large, calculation of
tr(SR) and tr(SRS>) may encounter computational difficulties. Even though bin-
ning techniques cannot be used, calculation of trace becomes manageable through
the use of the diagonal structure of R. First, note that smoother S can be rewritten
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as

S = (s1s2 · · · sN )> (3.141)

s>k = (s>k1s
>
k2 · · · s>km); k = 1, . . . N , (3.142)

where s>k is the kth row vector of S, composed of m subvectors s>ki whose length is
each ni. It holds that

tr(SRS>) = tr(RS>S)

= tr(R
N∑
k=1

sks
>
k )

=
N∑
k=1

tr(Rsks
>
k )

=

N∑
k=1

s>k Rsk . (3.143)

Since R is a block diagonal matrix ⊕iRi,

s>k Rsk = (s>k1s
>
k2 · · · s>km)⊕i Ri(s

>
k1s
>
k2 · · · s>km)>

=
m∑
i=1

s>kiRiski . (3.144)

tr(SRS>) is therefore given by

tr(SRS>) =

N∑
k=1

m∑
i=1

s>kiRiski . (3.145)

The (k, k) element of SR can be expressed as s>k [R],k = s>ki[Ri],k, where i is the
index of the cluster to which kth observation belongs ([R],k and [Ri],k are the kth
column vector of R and Ri, respectively). Thus tr(SR) is given by

tr(SR) =

N∑
k=1

m∑
i=1

s>ki[Ri],kI(yk ∈ yi) , (3.146)

where I is an indicator function.
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3.10.6 Binning

For ease of description, we consider a one-dimensional kernel regression yk = γ(tk) +

ek where E[ek|tk] = 0 holds (k = 1, 2, . . . , N). The Nadaraya-Watson and local linear
estimators of γ(t) are given by

γ̂(t) =
T0(t)

S0(t)
(Nadaraya-Watson) (3.147)

γ̂(t) =
S2(t)T0(t)− S1(t)T1(t)
S2(t)S0(t)− S1(t)2

(Local linear) , (3.148)

respectively, where

Tl(t) =
N∑
k=1

Kh(tk − t)(tk − t)lyk l = 0, 1 (3.149)

Sl(t) =

N∑
k=1

Kh(tk − t)(tk − t)lyk l = 0, 1, 2 (3.150)

with kernel function Kh which depends on a bandwidth h. N kernel function values
need to be evaluated for the estimate of γ at point t. Thus computation of order
O(N2) is required for the estimation of γ at N points of t. The same argument is
also true for the calculation of tr(S) and tr(SS>) where S is a smoother matrix for
the estimation of γ. CV repeats this order of calculation for each of the candidate
bandwidths.

The basic idea of binning is to reduce the number of kernel evaluations by using only
a set of summary data created by binning. Here we consider the so-called “simple
binning”.29 Suppose G grid points τg (g = 1, . . . G) equi-spaced with bin width λ,
and G bins Bg = (τg − λ/2, τg + λ/2) over the support of t. Let Ig denote an index
set such that Ig = {k : yk ∈ Bg}. The binned data set is then {ȳg, τg, cg}Gg=1 where
ȳg is the simple average of {yk : yk ∈ Bg} and cg is the number of indeces in Ig.

Let τg(k) denote the grid point of the bin into which tk is binned. Tl(t) in (3.149) is

29Function h.select of R package sm, which is used in plmm, also employs simple binning for CV.
Calculation of tr(S) and tr(SS>) in the plmm package is also implemented using simple binning
if the sample size is large (N > 100 in the default).
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approximated by T̄l(τ) defined as follows:

T̄l(τ) =

N∑
k=1

Kh(τg(k) − τ)(τg(k) − τ)lyk

=
G∑
g=1

∑
k∈Ig

Kh(τg − τ)(τg − τ)lyk

=

G∑
g=1

Kh(τg − τ)(τg − τ)lcgȳg . (3.151)

Likewise, Sl(τ) in (3.150) is approximated by S̄l(τ):

S̄l(τ) =
G∑
g=1

∑
k∈Ig

Kh(τg(k) − τ)(τg(k) − τ)l

=
G∑
g=1

Kh(τg − τ)(τg − τ)lcg . (3.152)

γ estimators (3.147) and (3.148) are obtained by replacing Tl and Sl with their
binning analogs T̄l and S̄l. It follows that the leave-one-out CV statistic (3.29) is
approximated by

CV (h) =
1

G

G∑
g=1

(
ȳg − γ̂(−g)(τg)

)2
, (3.153)

where γ̂(−g) is the estimator obtained with the gth grid point being left out. Note
that, since the grid points are equally spaced, the estimation of γ at G grid points
requires computation of order O(G) instead of O(G2). One dimensional binning
techniques can be extended to a multi-dimensional case (d > 1).

tr(S) and tr(SS>), which are required for computation of the d.f. of γ̂, can also
be approximated using binning techniques (see Turlach and Wand, 1996). T∗(t), K

given in Section 3.3.2 are approximated by their binning analogs. Continuing with
a one-dimensional case, define a (G× 2) matrix T̄∗(t) and a weight matrix K̄(h) as
follows:

T̄∗τ = {1, τg − τ}Gg=1 (3.154)

K̄τ = ⊕gK
(
τg − τ
h

)
. (3.155)

At point τ , the local weighted least squares estimator is obtained by minimizing the

98



3.10 Appendix A

following objective function:

G∑
g=1

(ȳg − ζ0 − ζ1(τg − τ))2 cgK
(
h−1(τg − τ)

)
. (3.156)

This can be rewritten in matrix form as

(C−1y· − T̄∗τζ)>K̄τC(C−1y· − T̄∗τζ) , (3.157)

where y· is a G-dimensional vector {cgȳg}Gg=1 and C = ⊕gcg. Minimizing (3.157)
with respect to ζ yields the estimator of ζ0:

ζ̂0 = e>1 (T̄∗>τ K̄τCT̄∗τ )−1T̄∗>τ K̄τy· . (3.158)

The binning analogs to (3.27) and (3.28) are therefore given by

S̄ = {s̄>τg}
G
g=1 (3.159)

s̄>τg = e>1 (T̄∗>τg K̄τgCT̄∗τg)−1T̄∗>τg K̄τg . (3.160)

Since the kth diagonal element skk of S is obtained by

skk = e>1 (T∗>tk KtkT
∗
tk

)−1T∗>tk Ktkek

= K(0)e>1 (T∗>tk KtkT
∗
tk

)−1e1 , (3.161)

tr(S) =
∑N

k=1 skk can be approximated as follows:

tr(S) ≈
G∑
g=1

s̄ggcg , (3.162)

where s̄gg, binning analog to (3.161), is given by

s̄gg = K(0)e>1 (T̄∗>τg K̄τgCT̄∗τg)−1e1 . (3.163)

Similarly, the kth diagonal element of SS>, denoted here by [SS>]kk, can be approx-
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imated as follows:

[SS>]kk =

N∑
k′=1

s2kk′

≈
G∑

g′=1

s̄2gg′cg

= [S̄CS̄>]gg , (3.164)

where skk′ is (k, k′)th element of S and s̄gg′ is the (g, g′)th element of S̄. Then it
follows that

tr[SS>] ≈
G∑
g=1

[S̄CS̄>]gg . (3.165)

A high dimensional extension (d > 1) of the trace calculations above can be similarly
obtained and they are implemented in the plmm package.

The accuracy of binning techniques depends on the number of bins G. In the plmm

package, we set the number of bins to the rounded number of 8 log(N)/d if N > 100

and otherwise binning is not employed. This number is the default setting of the
R function h.select for the CV using binning. For accuracy of binning and more
details, see Turlach and Wand (1996), Fan and Marron (1994), Hurvich et al. (1998),
and references therein.
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Figure 3.14: Histogram of the predicted random intercepts by plmm (3) (Section
3.8.1).

plmm grade age age2 ttl_exp ttl_exp2 tenure tenure2 race not_smsa south

(1) mean .0650 .0271 .000276 .0398 -.0020 -.0501 -.1316 -.0890

sd .0017 .0027 .000127 .0017 .0001 .0084 .0070 .0065

(2) mean .0649 .0379 -.0007 .0258 .000142 -.0538 -.1326 -.0860

sd .0017 .0034 .0001 .0027 .000132 .0084 .0070 .0065

(3) mean .0691 .0284 -.0000296 -.0444 -.1281 -.0839

sd .0017 .0028 .000141 .0084 .0070 .0064

Table 3.14: Summary of the bootstrap sampling distributions (Section 3.8.1).
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Figure 3.15: Estimated conditional variance function (Section 3.8.2).
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Figure 3.16: Histogram of the predicted random intercepts by plmm (2) (Section
3.8.2).

plmm linc insur
(1) mean -.0137 1.417

sd .2811 .0948
(2) mean -.0191 1.470

sd .2856 .1315

Table 3.15: Summary of the bootstrap sampling distributions (Section 3.8.2).
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Comparison of the Principal Component and Directed
Principal Component Index Models: An Empirical

Study

Ren Ohinata

Institut für Statistik und Ökonometrie, Georg-August Universität Göttingen

Abstract

Principal component regression is widely used to construct a household’s welfare

indicator from a number of variables. This approach has an intrinsic weakness

that principal components, thus weights crucial to building an indicator, are de-

termined outside the regression. An alternative approach, use of directed principal

components, provides optimal weights with respect to the response. In this essay

these approaches are used in semiparametric index model estimation and compared

through an analysis of household survey data. Bootstrap inference is also illustrated

for the alternative approach. The data analysis demonstrates the potential of the

alternative approach as a tool of exploratory data analysis. The directed principal

component index model requires continuous data. Category means data approach

proposed by Kolenikov and Angeles (2009) is applied to deal with categorical vari-

ables.

Key words: Index model; Principal component analysis; Semiparametric regression;
Welfare indicator
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4.1 Introduction

In a study of micro-economic data, it is often of great interest to construct a welfare
“indicator” of the socio-economic status (SES) of a household. Income or expendi-
ture data can be used, alone or combined with other variables, as a measure of a
household’s welfare. When those data are unavailable or unreliable due to report-
ing errors, researchers turn to variables that serve as proxies. Because one single
proxy variable does not fully capture SES, it is a conventional practice to construct
a welfare indicator composed of many proxy variables. As Kolenikov and Angeles
(2009) and references therein pointed out, a number of categorical variables are used
as proxies in empirical studies. While categorical data are typically easier to collect
and less prone to reporting errors than income or expenditure data, their use as a
measure of the SES tends to involve large measurement errors. This problem is also
alleviated by incorporating into the indicator as many proxy categorical variables
as possible. This approach reduces measurement errors and improves reliability and
stability of the indicator.

Given a number of regressors, one way to construct a welfare indicator is to estimate
a regression model

y = m(x>β) + u , (4.1)

where x is a d-dimensional vector of regressors; β is a vector of weights, called “index
vector”; and the regression error u has zero conditional mean E[u|x] = 0. Here m
is some unknown smooth link function which links the response y ∈ R and “index”
x>β ∈ R. Once model (4.1) is estimated with a given set of weights, SES is predicted
by the indicator m̂(x>β). Prediction quality mainly depends on the appropriateness
of two components: link function m and index vector β.

Even though a parametric form can be assumed for m, it is reasonable on many
occasions to assume no functional form for m and estimate it nonparametrically.
This is because, without reliable knowledge about the functional form, a restrictive
parametric specification of m may result in a severely biased indicator. In nonpara-
metrics, model (4.1) with a nonparametric function m is called a single index model
(SIM). Model (4.1) is a useful alternative to a fully nonparametric model such as
y = m∗(x) + u. The estimation of m∗ faces a challenge of the so-called “curse of
dimensionality”: with an increasing number of the design space dimension d, the
estimation of m∗ loses precision and becomes even infeasible. Use of an index helps
to avoid the curse by reducing the number of function arguments from d to one.
The SIM can be extended to a multi-index model (MIM) which has M function
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arguments:
y = m(x>β1,x

>β2, . . . ,x
>βM ) + u , (4.2)

where β1,β2, . . . ,βM are orthogonal index vectors andM is assumed to be less than
d and reasonably small. For the construction of a welfare indicator from a large
number of regressors, index models serve as a “semiparametric” compromise between
restrictive parametric and flexible but hardly estimable fully nonparametric model.

Creating M indices from d regressors means reducing the dimension of the design
space of regression from d to M . Dimension reduction is meaningful and useful
when there are relatively strong correlations between regressors, in other words,
when information in a d-dimensional design space is concentrated effectively in a
smaller M -dimensional subspace. As is seen in model (4.1) and (4.2), dimension
reduction is an intrinsic process of estimating an index model. Dimension reduction
methods to determine the optimal index vectors are therefore of great concern.

In order to obtain appropriate index vectors, one may turn to, for example, some
weighting scheme, expert opinions, or monetary values. Among others, principal
component analysis (PCA) is a widely used statistical method. For model (4.2)
PCA provides M eigenvectors (also called principal components, PC) corresponding
to the largest eigenvalues of the covariance or correlation matrix of x; these vectors
are used as index vectors. We call this type of model “PC MIM”, and likewise we say
“PC SIM” when M = 1.

Use of PCA appears reasonable because such eigenvectors can identify the subspace
which concentrates most of the information contained in the regressors. However, an
important potential weakness of the PCA in the determination of index vectors is
that eigenvectors are calculated without any reference to the response variable. Even
though the subspace spanned by those M eigenvectors retain as much information
contained in the design space as possible, it may have lost information relevant to
the functional relationship with the response. While the performance of an index
model depends on the choice of index vectors, it is not known a priori which PC is
the most associated, or even whether PCs are associated, with the response. Even
if each regressor relates enough with the response, an inappropriate index vector
may distort the estimation of their functional relationship. This problem may be
mitigated by increasing the number of indices in the index model. Nonetheless the
essential weakness remains the same.

Let’s call an index vector “directed principal component” (DPC) that relates the
most to the response variable through a certain functional relationship and consider
an alternative SIM

y = g(x>γ) + e , (4.3)
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which we will call “DPC SIM”. Use of a DPC as the index vector γ overcomes
the weakness of the PC SIM. In estimation of model (4.3), the DPC is determined
simultaneously with the link function g as a vector that is “directed” to the gradient
of g. The DPC SIM can also be extended to a “DPC MIM” withM DPCs and hence
M indices. DPC index models are expected to provide a better welfare indicator in
comparison with PC index models. Another advantage of the DPC index model is
that it enables a statistical test of the effects of regressors. This is impossible for the
PC index model because PCs are determined independent of the response.

In this essay we apply index models to Bangladesh demographic and household sur-
vey data and compare PC and DPC models. The analysis illustrates the potential
of the DPC model to capture latent data structure. We use the statistical soft-
ware R, in particular, the sm package for kernel regression and the EDR package for
implementation of the DPC index model estimation.

The rest of the essay is structured as follows. Section 4.2 describes some theoretical
background of our data analysis. We sketch the idea and estimation procedure of the
DPC SIM in Section 4.2.1 and bootstrap inference in Section 4.2.2. Use of categori-
cal proxy variables poses a problem to the DPC index model because its estimation
requires data to be continuous. Section 4.2.3 presents techniques to deal with cate-
gorical regressors, followed by Section 4.2.4 where we describe a technical problem of
bandwidth selection for regression involving categorical regressors. Applications of
index models are presented in Section 4.3. Concluding remarks follow in Section 4.4.
More technical details of the DPC index model estimation are given in Appendix A.

4.2 Method

4.2.1 Estimation of single index model

In this section we sketch the basic ideas and estimation procedure for the DPC SIM.
More details of the estimation procedure are given for the MIM in Appendix A.

Suppose a SIM takes the form

y = f(x) + e

f(x) = g(x>γ) , (4.4)

where f and g are smooth functions f : Rd → R, g : R → R; γ is a d-dimensional
index vector. γ is normalized for model identification, i.e. ‖γ‖ = 1 (‖·‖ is the
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Euclidean length). A real-valued d-dimensional vector x is assumed to have a support
of [−1, 1]d (if necessary, data are transformed accordingly).

Several estimation approaches are known in semiparametrics literature. An M-
estimation-type approach estimates γ by solving a minimization problem

γ̂ = arg min
γ

n∑
i=1

φ(yi, ĝ(x>γ)) , (4.5)

where n is the sample size; ĝ is some estimate of the link function g; and the contrast
function φ is, for example, − logL(ĝ,γ; yi,xi) for the semiparametric maximum like-
lihood estimation or (yi− ĝ(x>i γ))2 for the semiparametric least squares estimation.

The analysis of this essay is based on an alternative approach called the average
derivative estimation (Stoker 1986, Powell et al. 1989), which we briefly present
below. The gradient vector of (4.4) at point xi is given by

∇f (xi) = g′(x>i γ)γ , (4.6)

where g′(x>i γ) = dg/d(x>i γ). This implies that the gradient is proportional to
the index vector γ, directed in the same direction as γ at each point of x. Since
E[∇f (xi)] = E[g′(x>i γ)]γ, a natural idea is to estimate the index vector from a linear
functional of the gradient b = 1

n

∑n
i=1∇f (xi), which will be estimated by

b̂ =
1

n

n∑
i=1

∇̂f (xi) . (4.7)

Then the estimator of the index vector is obtained by

γ̂ = b̂/
∥∥∥b̂∥∥∥ . (4.8)

The estimation of γ requires the estimation of b, which in turn requires the estima-
tion of ∇f (xi) at each point. The following kernel regression simultaneously estimate
f(xi) and ∇f (xi):(

f̂(xi)

∇̂f (xi)

)
= arg min

ξ0∈R,ξ∈Rd

n∑
j=1

(
yj − ξ0 − (xj − xi)

>ξ
)2
K

(
‖xj − xi‖2

h21

)
,

(4.9)

where K is a kernel weighting function and h1 a bandwidth of a spherical window
around xi. Estimation by (4.9) faces the curse of dimensionality when d is large.
Hristache, Juditsky, and Spokoiny (2001) proposed an iterative estimation by kernel
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regression with an ellipsoidal window rather than a spherical window so that the
number of observations falling in the window becomes large enough for estimation.
The basic idea is as follows.

Approximation of g(x) by the tangent hyperplane ∆y = ∇f (x)>∆x in the directions
orthogonal to the gradient is relatively good because f(x) and hence ∇f (x) do not
change much in those directions. This implies that estimation can be improved using
an ellipsoidal window {x :

∥∥(x− xi)
>γ
∥∥ ≤ h} which contain enough observations

inside. Such a window is obtained by expanding a spherical window in the directions
orthogonal to the gradient and shrinking it in the direction of the gradient.1

In practice, estimation is improved by iterative estimation using an ellipsoidal win-
dow. After obtaining a pilot estimate γ̂1 through (4.9), γ is reestimated with an
estimator of ∇f (xi) by(

f̂ (2)(xi)

∇̂(2)
f (xi)

)
= arg min

ξ0∈R,ξ∈Rd

n∑
j=1

(
yj − ξ0 − (xj − xi)

>ξ
)2
K

(
‖S2(xj − xi)‖2

h22

)
,

(4.10)

where S2 = (I + ρ−22 b̂1b̂
>
1 )1/2 creates an ellipsoidal window {x| ‖S2(x− xi)‖ < h2}

with a bandwidth h2 > h1 and a parameter ρ2 < 1 to control the shape of the
ellipsoid.2

Estimation of γ is repeated in iteration process with an increasing h and a decreasing
ρ and an iteratively updated S. The estimator of the index vector γ is shown to
be consistent with the parametric convergence rate

√
n. Finally, after the iterative

process, the link function g is estimated with γ̂ by kernel regression.

4.2.2 Bootstrap inference

When the effect of regressors on the response variable is of interest, the DPC index
model has an advantage over the PC model. Because PCs are determined without
any reference to the relationship between the response and regressors, a test of the
significance of index vector coefficients does not provide any statistical evidence on

1
∥∥(x− xi)

>γ
∥∥ = 0 < h holds for a vector (x − xi) lying orthogonal to the index vector. To the

contrary, the smaller the angle which (x − xi) and the index vector make, it is less likely that∥∥(x− xi)
>γ
∥∥ ≤ h holds.

2Since I + ρ−2γ̂γ̂> is symmetric and positive definite, (I + ρ−2γ̂γ̂>) can be given by (I +
ρ−2γ̂γ̂>)1/2(I+ ρ−2γ̂γ̂>)1/2. (I+ ρ−2γ̂γ̂>) has the largest eigenvalue 1 + ρ−2 > 1 whose eigen-
vector γ̂ and the other eigenvalues are all 1 with eigenvectors being orthogonal to γ̂. Therefore,
the minor axis of this ellipsoid, to which direction the ellipsoid is compressed, is along γ̂. In
literature S2 is sporadically given by S2 = (I + ρ−2γ̂γ̂>)−

1/2. However, with (I + ρ−2γ̂γ̂>)−
1/2,

γ̂ will be along the major axis, to which direction the window is expanded.
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the effect of regressors. In contrast, DPCs are determined in relation to the response;
the effect of a regressor can be statistically evaluated by testing the significance of
DPC coefficients.

However, their sampling distributions are generally hard to obtain analytically. Thus
we use a resampling method, the wild bootstrap, to simulate the distributions. We
note that the wild bootstrap retains the first three moments of the regression er-
rors and thus potential heteroskedasticity. For the wild bootstrap, see Wu (1986)
and Shao and Tu (1995) among others. In case of the SIM, we conduct bootstrap
resampling of size R as follows.

1. Obtain estimates γ̂ and ĝ from the original sample.

2. Calculate the residuals êi by yi − ĝ(x>i γ̂).

3. For the rth bootstrap sampling (r = 1, . . . , R), obtain an n-dimensional vector
of the bootstrap responses by y(r)i = ĝ(x>i γ̂) + z

(r)
i êi with z

(r)
i ∼ N (0, 1).

4. Obtain the rth bootstrap estimates γ̂(r) and ĝ(r) from the rth bootstrap sample
{y(r)i ,xi}ni=1.

5. Repeat step 3. and 4. for R times.

Bootstrap resampling for the MIM is analogous to the above. The bootstrap pro-
cedure provides an approximation to the sampling distributions of DPC coefficient
estimators, and a bootstrap confidence interval can be built from the R bootstrap
estimates.

4.2.3 Use of categorical variables

Kolenikov and Angeles (2009) studied problems of the use of categorical data in PCA.
Since indices are constructed by linear transformation of regressors, indices are not
necessarily independent unless the regressors are normally distributed. Orthogonal
transformation certainly guarantees zero sample correlation between the indices, but
not their independence. In addition, the moment (Pearson) correlation of categorical
variables is an underestimation in absolute value of the “true” correlation between
their underlying joint standard normal variables. This downward bias may influence
the standard PCA, which is based on sample covariances or correlations. On the
other hand, recall that the DPC index model is based on the average derivative
estimation and it requires continuous variables (or at least real-valued variables of
interval-scale type). Lack of interpretable numerical distance between categories is
a serious problem for the DPC index model.
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In the PCA framework Kolenikov and Angeles (2009) investigated several approaches
to those problems. Their approaches include: PCA using polychoric and polyserial
correlations and PCA using moment correlations of “category means data”. Horowitz
and Härdle (1996) proposed an approach to handle categorical regressors in the index
model framework. However, their approach is infeasible for more than one or two
categorical regressors involved in the model. In our data analysis, we use category
means data for regressors of index models.

Polychoric correlation: Analogously to the standard assumption made for the
response variable in the ordered probit or logit regression model, it is reasonable to
assume a latent multivariate standard normal distribution which underlie categorical
variables.

Suppose a latent variable X∗p ∼ N (0, 1) underlying a categorical variable Xp with
Kp categories {kp}

Kp

kp=1. Then divide the range of X∗p into Kp subranges with a set
of cutpoints: αp = (αp,0, αp,1, . . . , αp,Kp) with αp,0 = −∞ and αp,Kp = ∞. It is
assumed that the outcome Xp = kp is observed if αp,k−1 < x∗p < αp,k. Likewise, sup-
pose a latent variable X∗q ∼ N (0, 1) for a categorical variable Xq with Kq categories
and Kq + 1 cutpoints. Their joint distribution is given by(

X∗p

X∗q

)
∼ N

(
0,

(
1 ρpq

ρpq 1

))
. (4.11)

ρpq is the polychoric correlation between Xp and Xq. The probability of observing
an outcome (xp = kp, xq = kq) is given by

Pr[Xp = kp, Xq = kq] = Φ2(αp,k, αq,k; ρpq)− Φ2(αp,k−1, αq,k; ρpq)−

Φ2 (αp,k, αq,k−1; ρpq) + Φ2 (αp,k−1, αq,k−1; ρpq) ,

(4.12)

where Φ2 (·) is the cumulative distribution function of two-dimensional standard
normal distribution. The cutpoint vector αp and αq, and correlation coefficient ρpq
are simultaneously estimated by maximizing the following likelihood:

L(αp,αq, ρpq; xp,xq) =

n∏
i=1

π(xpi, xqi;αp,αq, ρpq) , (4.13)

where π(xpi, xqi;αp,αq, ρpq) is the probability for the ith observation (xpi, xqi).
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Polyserial correlation: The polyserial correlation between a categorical variable
Xp and a standard normal variable Xq is given by ρpq as in the following:(

X∗p

Xq

)
∼ N

(
0,

(
1 ρpq

ρpq 1

))
. (4.14)

Probability of observing an outcome {Xp = kp, Xq = xq} is given by

Pr[Xp = kp, Xq = xq] = Pr[αp,k−1 < X∗p < αp,k|Xq = xq]φ(xq)

=
(
Φ(αp,k − E[X∗p |Xq = xq])− Φ(αp,k−1 − E[X∗p |Xq = xq])

)
φ(xq)

= (Φ(αp,k − ρpqxq)− Φ(αp,k−1 − ρpqxq))φ(xq) , (4.15)

where φ is the standard normal probability density function. The likelihood to be
maximized is given by

L(αp, ρp,q; xp,xq) =
n∏
i=1

π(xpi, xqi;αp, ρpq) , (4.16)

where π(xpi, xqi;αp, ρpq) is the probability of observing the ith observation (xpi, xqi).

Since the polychoric and polyserial correlations are estimated by maximum likeli-
hood estimation, their estimators are consistent, asymptotically normal and efficient.
In practice, likelihood maximization is often computationally infeasible for a high-
dimensional multivariate distribution with parameters (α>1 ,α

>
2 , . . . ,ρ

>). One way
to circumvent computational difficulties is to use a “two-step estimation” approach.
The two-step approach proceeds as follows. First, the cutpoints {αp,k} are estimated
by

α̂p,k = Φ−1
(
−0.5 + I(xp ≤ kp)

N

)
∀ p, k , (4.17)

where I is an indicator function. Then ρ is estimated by maximizing the joint normal
likelihood function (4.13) or (4.16) with respect to ρ where αp and αq are replaced
with their estimates by (4.17).

A polychoric/-serial correlation matrix is constructed by replacing the off-diagonal
elements of the moment correlation matrix with the corresponding estimates of ρ. It
has been shown that the deviation of a two-step estimate of ρpq from its ML estimate
is negligible (Olsson, 1979; Maydeu-Olivares et al., 2009).

Category means data: PCA can also be conducted using the moment correlation
matrix of category means data. A category mean is defined for each category of
a categorical variable as the mean of its underlying standard normal distribution
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conditional on the category in question. For example, the category mean of the kth
category of variable Xp is given by3

E
[
X∗p |Xp = kp

]
=

ˆ αp,k

αp,k−1

uφ (u) du

=
φ(αp,k−1)− φ(αp,k)

Φ(αk)− Φ(αk−1)
. (4.18)

For implementation, cutpoints {αp,k} are estimated by (4.17). In contrast to crude
category data, category means reflect the underlying normal distribution and dis-
tances between category means are more informative.

Kolenikov and Angeles (2009) compared PCA based on the polychoric/-serial cor-
relation matrix and the moment correlation matrix of category means data. They
found no major difference between these alternatives. Their study also showed that
PCA based on the moment correlation matrix of crude categorical data yielded a
comparable result. This means to us that the DPC index model using category
means data can reasonably be compared with PC index models based on any of the
three types of correlation matrix (crude, polychoric/-serial and category means).

4.2.4 Bandwidth selection for nonparametric link function estimation

Along with the index space estimation, the link function is estimated by kernel re-
gression. In literature and practice, the ordinary leave-one-out cross validation is one
of the most widely used bandwidth selection methods for kernel regression. However,
link functions estimated in our studies often gave an optical impression that the or-
dinary cross validation chose too small a bandwidth, resulting in undersmoothing of
function estimates. Categorical variables with a relatively small number of categories
collect masses of observations at specific points in the data space. This fact leads
to a problem that, no matter how much undersmoothing may result, the ordinary
cross validation tends to select too small a bandwidth which yields a curve passing
through the middle of each observation mass.

As a remedy for this problem, we turned to binning technique. This technique is
usually used to deal with a large data set that makes the ordinary cross validation
prohibitively computer-intensive and time-consuming. Binning-based cross valida-
tion circumvents computational problems by creating a reasonable number of bins
and collecting neighboring observations into their nearest bin. The optimal band-
width is selected by cross-validating the bin averages of binned data. For details of

3The category mean is defined incorrectly on p.137 in Kolenikov and Angeles (2009) and is given
modified above.
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binning, see, for example, Turlach and Wand (1996), Fan and Marron (1994). In our
data analysis, after the estimation of the indices we estimated the link function m
of (4.1) with bandwidths obtained using binning techniques.

With binning technique applied, a mass or masses of observations collected in a
bin are represented by one average. A crucial aspect of binning applied to a model
involving categorical regressors is that bandwidth selection becomes overly sensitive
to the bin width (i.e. the number of bins). This is because a small change of bin
width makes observation masses suddenly fall in or out of a bin. In our studies we
used an arbitrary “rule of thumb” number of bins to stabilize bandwidth selection.4

See Figure 4.1 for an example of large fluctuations and stabilization of the selected
bandwidths in response to the number of bins. In general, when the number of bins
increases, the bandwidth selected converges in general to the one selected by the
ordinary cross validation. However, this is not the case when data contain masses of
observations at specific points like in our studies. This implies that cross validation
statistics used in our study are not approximations to the ordinary cross validation
statistics.

Figure 4.1: Example of bandwidth selection using binning techniques for a model
involving categorical regressors. The bandwidth selected is on the vertical
axis and the number of bins on the horizontal axis.

4We used function h.select of R package sm. The default number of the bins is set to 8∗log(n)/M
(binning is used only for n > 100). In our studies we set the number of bins arbitrarily to 5
times the default.
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4.3 Application

4.3.1 Data and models

This section presents an empirical comparison of PC and DPC index models. We
analyze a data set of 1,451 households from the Bangladesh Demographic and Health
Survey. We search for an indicator to predict the body mass index (BMI) of the
mother of a household.5 The variables used as regressors for the construction of our
indicator consist of two education variables, five housing characteristics variables
and two durable goods variables. BMI and the education variables are considered
continuous; the housing characteristics and the durable goods variables are ordered
categorical variables. Table 4.1 describes the variables.6

BMI mother’s body mass index Response

faEdu father’s years spent in school Education
moEdu mother’s years spent in school Education
water 3 ordered categories of the source of water Housing characteristics
toilet 3 ordered categories of the type of toilet Housing characteristics
cook 3 ordered categories of the type of main cooking fuel Housing characteristics
floor 2 categories of the main floor material Housing characteristics
roof 3 ordered categories of the main roof material Housing characteristics
trans 3 ordered categories of the ownership of transport means Durable goods
hhItem 4 ordered categories of the ownership of durable goods Durable goods

Table 4.1: Data description. Data were prepared and provided by Dr. Nils-Hendrik
Klann.

Prior to analysis, we assumed positive association between BMI and each of the
regressors. Categories were ordered in number according to this prior assumption.
The continuous variables were standardized (BMI was only normalized). We trans-
formed all the categorical data into category means data.7

5The BMI is used not only as a direct measurement of nutritional status. A mother’s BMI can
be used as a proxy measure for her child’s nutritional status whose measurements are of poor
quality or unavailable.

6The moment correlations, histograms and scatter plots of the original data as well as the poly-
choric/serial correlation matrix are given in Appendix B.

7Since category means data depend on the cutpoints estimated by (4.17), we performed a rough test
on their accuracy. In general, if there are d regressors including at least one categorical variable,
there will be d− 1 bivariate likelihood functions of either (4.13) or (4.16) to estimate a cutpoint
of a categorical variable, say, α∗. Consequently there will be d− 1 ML estimates {α̂∗j}d−1

j=1 . The

118



4.3 Application

Table 4.2 is the correlation matrix of the category means data. BMI is positively,
although generally weakly, correlated with all the regressors; positive correlations
are in agreement with our prior assumption.

faEdu moEdu water toilet cook floor roof trans hhItem

BMI .23 .20 .10 .25 .27 .37 .25 .04 .31
faEdu .62 .16 .37 .31 .36 .33 .17 .33
moEdu .14 .30 .27 .31 .30 .13 .29
water .23 .28 .29 .20 -.04 .19
toilet .43 .47 .40 .08 .43
cook .50 .35 .05 .41
floor .47 .04 .51
roof .14 .32
trans .17

Table 4.2: Sample correlation matrix. Category means data are used for the cate-
gorical variables.

Figure 4.2 displays the histograms of all the variables. Effect of the transformation
of categorical variables can be seen, for example, in the histogram of hhItem. Its
categories were originally denoted by (“1”, “2”, ”3”, “4”). As a result of assigning a real
category mean value to each category, bars of the histogram are not equispaced. Even
though the education variables clearly deviate from normality, we only standardized
them without any further transformation.

intersection of their d− 1 95% confidence intervals is roughly
⋂d−1

j=1 [α̂∗j − 2se(α̂∗j ); α̂∗j + 2se(α̂∗j )].
For the data we considered (d = 9), any cutpoint estimate was contained in this intersection of
the confidence intervals. Thus we regard our cutpoint estimates as reasonable approximations
to maximum likelihood estimates.

119



4 Index Model

4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

BMI

D
en

si
ty

−1 0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

faEdu

D
en

si
ty

−1 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

moEdu

D
en

si
ty

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

water

P
ro

ba
bi

lit
y

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

toilet

P
ro

ba
bi

lit
y

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

cook

P
ro

ba
bi

lit
y

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

floor

P
ro

ba
bi

lit
y

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

roof

P
ro

ba
bi

lit
y

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

trans

P
ro

ba
bi

lit
y

−2 −1 0 1 2

0.
0

0.
1

0.
2

0.
3

0.
4

hhItem

P
ro

ba
bi

lit
y

Figure 4.2: Histograms of the sample data. Dashed lines are drawn at cutpoints in
the plots of the categorical variables.

In spite of statistical confirmation of the positive relationship between BMI and
the regressors, a closer look into data provides somewhat complicated perspectives.
Let’s define “the 1st quartile group” as a group whose members are households with
BMI values less than the first quartile of BMI data and let it be denoted by
“Q1”. Likewise, let Qj denote the “jth quartile group” (j = 2, 3), which is a group
composed of the households with BMI between the jth and (j − 1)th quartiles of
BMI data; and finally let “Q4” contain the households with BMI above the third
quartile.8 Table 4.3 presents the quartile group averages of data with respect to each
variable. Figure 4.3 visualizes these quartile group averages. Heights of the bars are
adjusted so that the height of the average of Q1 is unity.

BMI faEdu moEdu water toilet cook floor roof trans hhItem

Q4 7.625 .415 .399 .176 .362 .396 .435 .294 .070 .410
Q3 6.327 .013 -.071 -.094 -.037 -.052 -.047 -.014 .025 -.016
Q2 5.784 -.250 -.198 -.046 -.073 -.152 -.168 -.095 -.001 -.117
Q1 5.209 -.177 -.130 -.035 -.252 -.191 -.219 -.184 -.094 -.277

Table 4.3: Averages of the variables for each quartile group.

8There are 484 households in each of the first, second and third quartile groups and 483 households
in the fourth quartile group.
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Figure 4.3: Barplots of the averages of the variables for each quartile group. Heights
of the bars are adjusted so that the average of Q1 is unity.

Quartile group averages show interesting variation patterns. For most of the re-
gressors, the difference between Q3 and Q4 was disproportionately larger than the
differences between the first three quartile groups. This can partly be attributed
to the skewed distributions of regressors. However, relatively little skewed variables
such as water, toilet and roof also follow this variation pattern. It will certainly be
reasonable to assume for Q4 some positive relationship between BMI and regressors.
However, their relationships in the first three quartile groups seem rather ambiguous;
the averages of the education variables and water are not even in increasing order.
Figure 4.3 suggests that BMI and regressors are related partly but not over the
whole sample. It may be sensible to interpret the barplot patterns as an indication
of some unobserved factor on which the effects of regressors on BMI are conditional,
may it be household-related, region-related or otherwise.

4.3.2 PC and DPC single index model analysis

This section presents estimates of the SIM. PC and DPC SIMs are specified as

PC: BMI = m(x>β) + u (4.19)

DPC: BMI = g(x>γ) + e , (4.20)

where a vector of regressors x is (faEdu, moEdu, water, toilet, cook, floor, roof ,
trans, hhItem)>. m and g are smooth link functions. For regression error terms
u and e, we assume zero conditional mean and fulfillment of regularity conditions.
In the following, all the index vector estimates are presented normalized so that the
length of each vector is unity. To evaluate model fitting, we refer to a nonparametric
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version of R2 statistic which is defined as

R2 = 1−
∑

i

(
êi − ¯̂e·

)2∑
i (yi − ȳ·)2

. (4.21)

We used the R package EDR for estimation of DPC index models.9

Table 4.4 shows the eigenvalues of the correlation matrix (Table 4.2) and their cu-
mulative proportions in the total variance of 9. About 40% of the total variation
in the regressors is explained by the first PC and 52% by the first two PCs. The
corresponding scree plot appears in Figure 4.4. Judging from the scree plot and the
fact that only the first two eigenvalues exceed one, it will be reasonable to compare
DPC index models with PC models with at most the first two index vectors.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Eigenvalue 3.48 1.17 .94 .80 .69 .57 .56 .42 .37
Cum.Prop. .39 .52 .62 .71 .79 .85 .91 .96 1.00

Table 4.4: Eigenvalues and cumulative proportions of the variation explained by the
PCs.
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Figure 4.4: Scree plot of the eigenvalues.

9To deal with categorical data, we modified the function edr. We changed the ini-
tial bandwidth for iterative kernel regression estimation from the package specification of
0.85(d/n

∏d
j=1 IQR(xk))

1/d
√
d to 0.85(d/n

∏d
j=1 1.34σ̂j)

1/d
√
d, where IQR(xk) is the sample in-

terquartile range of xk and σ̂k =
√

(n− 1)−1
∑

i (xik − x̄k)2. The modification was done using
the R function trace.
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The first row of Table 4.5 shows the first PC estimate. Since all the variables are
positively weighted, the first PC score can be interpreted as an index of the overall
welfare of a household. Relative sizes of PC coefficients (weights) happen to be
similar to the correlations between BMI and the regressors: for example, the pair of
the variables with the largest and smallest PC weights (floor and trans) correspond
to the variables pair with the largest and smallest correlations.

The second row of Table 4.5 is the first DPC estimate. The pattern of signs stand in
contrast to that of the first PC: five coefficients have positive weights and the other
four have negative ones. It also differs in terms of the relative sizes of coefficients.
In the first DPC, for example, cook and floor are loaded much more heavily than
the others in comparison with the first PC. In addition, a remarkable dissimilarity
to the first PC lies in the education variables: they are weighted with opposite signs
to each other, implying opposite effects of the education of father and mother even
though they are positively correlated (correlation coefficient 0.62). As opposed to
the first PC, the coefficients of the fist DPC are hard to interpret.

faEdu moEdu water toilet cook floor roof trans hhItem

PC1 .361 .330 .221 .378 .365 .409 .350 .109 .366
DPC1 -.235 .117 -.074 -.144 .438 .792 .210 -.037 .203

Table 4.5: 1st PC and DPC.

Figure 4.5 plots the coefficients of both principal components. The dashed line is a
45 degree line. It is clearly seen that their weight structure is very different. Table
4.6 lists all the PCs. None of the PCs seems to be directed in a direction similar to
that of the 1st DPC (even though some linear combination of a few PCs may be).
This means that the original data of the regressors are projected onto very different
spaces in model (4.19) and (4.20).
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Figure 4.5: Coefficients of the PC and the DPC. The dashed line is a 45-degree line.

faEdu moEdu water toilet cook floor roof trans hhItem

PC1 .361 .330 .221 .378 .365 .409 .350 .109 .366
PC2 -.394 -.418 .440 .115 .248 .220 .026 -.593 .039
PC3 -.413 -.506 -.189 .120 .089 .109 .155 .620 .309
PC4 -.010 -.027 -.837 .189 .082 .164 .071 -.451 .145
PC5 .056 .050 .020 -.013 .210 -.019 -.833 .017 .506
PC6 .015 -.039 .140 .464 -.795 -.048 -.001 -.117 .340
PC7 -.058 .097 .019 -.747 -.258 .349 .203 -.102 .435
PC8 -.155 .155 .035 -.048 .215 -.772 .326 -.144 .422
PC9 .716 -.650 .015 -.135 .031 -.156 .081 -.068 .098

Table 4.6: PC coefficients.

After obtaining each household’s first PC score by x>β̂ (β̂ = PC1), we estimated
the link function m nonparametrically. The estimate is plotted in Figure 4.6. Non-
parametric R2 was 0.150.10 In the figure a dashed line is drawn at the PC score
which yields the third quartile of BMI prediction, i.e. B̂MI0.75 = m̂(x>β̂) with
x>β̂ at the point of the dashed line.
10To make sure that the function estimate and the resultant R2 are not influenced by an inappro-

priately large bandwidth, we experimented with a 30% smaller bandwidth. The newly estimated
function was optically unchanged and its R2 was 0.151.
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Figure 4.6: Estimated link function m̂ for model (4.19). The dashed line is at the
PC score corresponding to the third quartile of predicted BMI.

With each household’s 1st DPC score obtained by x>γ̂ (γ̂ = DPC1), we estimated
the link function g nonparametrically. Figure 4.7 displays the estimated function with
a dashed line at the DPC score which yields the third quartile of the BMI values
predicted by ĝ(x>γ̂). The nonparametric R2 was 0.185, about 23% larger than the
corresponding R2 of the PC index model. Estimated function ĝ is obviously not
linear in the DPC score and almost constant up to a DPC score about zero.11

11To make sure that the function estimate and the resultant R2 are not influenced by an inap-
propriately small bandwidth, we experimented with a 30% larger bandwidth. The estimated
function was still optically very similar to Figure 4.7 and R2 was 0.183.
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Figure 4.7: Estimated link function ĝ for model (4.20). The dashed line is at the
DPC score corresponding to the third quartile of predicted BMI.

To investigate the shape of the estimated function ĝ, we reestimated model (4.19)
and (4.20) for a subsample composed of only two quartile groups Q3 and Q4. The
reestimated coefficients of the PC and DPC are given in Table 4.7. The direction of
the first PC remained almost the same: the signs were unchanged and the relative
sizes of the coefficients remained very similar. This implies that the first PCs are
almost the same for the whole sample and the subsample (Q3 ∪ Q4). On the other
hand, the first DPC has changed: the sign of water was reversed and the relative
size of the coefficients changed. Figure 4.8 displays the reestimated link functions
m̂ and ĝ for the subsample. There is relatively clear relationship between BMI and
PC/DPC scores in both figures. In contrast to Figure 4.7, there is no structural
break in the right figure of Figure 4.8. We interpret these results as follows. First,
the change in the DPC suggests that function f is essentially different depending
on subsamples.12 The flat part of the estimated link function in Figure 4.7 is a
reflection of little relationship between the BMI and regressors in Q1 and Q2 (and
Q3). Secondly, the DPC for the whole sample with four negative coefficients are not
necessarily distorted by the observations in the Q1 and Q2; it is rather a depiction
of a complicated association among variables.
12Recall DPC SIM: BMI = f(x) + e = g(x>γ) + e .
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4.3 Application

faEdu moEdu water toilet cook floor roof trans hhItem

PC1 .340 .320 .227 .388 .381 .407 .352 .102 .368
DPC1 -.145 .281 .198 -.221 .150 .850 .104 -.079 .223

Table 4.7: 1st PC and DPC for a subsample.
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Figure 4.8: Reestimated link functions m̂ (left) and ĝ (right) for a subsample.

4.3.3 Bootstrap inference

We tested significance of the DPC coefficients using the wild bootstrap as described in
Section 4.2.2. The bootstrap simulation size R was set to 1,000. Table 4.8 is a matrix
of the estimated correlations between DPC coefficient estimators. Some estimators
have relatively strong correlations (for example, floor and cook, and faEdu and
moEdu). However, we present only marginal bootstrap sampling distributions in
Figure 4.9 and the 0.025 and 0.975 quantiles of the bootstrap estimates for each
variable in Table 4.9. None of the coefficients except that of faEdu was significantly
different from 0 at the 5% level.
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moEdu water toilet cook floor roof trans hhItem

faEdu -.50 .01 .01 -.08 -.25 -.18 -.00 -.18
moEdu -.07 .07 .00 .06 .05 -.19 -.02
water .01 -.32 -.25 -.11 .15 -.24
toilet -.17 -.20 -.17 -.06 -.28
cook .58 .24 -.03 .35
floor .37 -.07 .47
roof -.18 .35
trans -.24

Table 4.8: Estimated correlations between the DPC coefficient estimators.
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Figure 4.9: Bootstrap sampling distribution of γ̂. Vertical solid lines indicate the
original DPC coefficient estimates. Kernel density estimates are added
to the histograms.

faEdu moEdu water toilet cook floor roof trans hhItem

2.5% -.417 -.114 -.262 -.338 -.385 -.824 -.179 -.257 -.178
97.5% -.013 .319 .230 .299 .688 .915 .537 .198 .403

Table 4.9: 0.025 and 0.975 quantiles of the bootstrap sampling distributions.

4.3.4 Comparison between PC and DPC index models

In general, it will be of interest to statistically test the significance of deviation be-
tween the two index vectors, i.e. PC and DPC. However, due to their clearly different
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structures and the insignificance of the DPC coefficients except for faEdu, here we
compare only the prediction performance of the models. We refer to the following
statistics: Spearman’s and Kendall’s rank correlation coefficients, and proportion of
correct predictions. A household’s BMI was predicted by the estimated conditional
expectation, m̂(x>β̂) and ĝ(x>γ̂). Spearman’s and Kendall’s rank correlation coef-
ficients were based on the order of the original BMI observations and that of the
predicted BMI values.

Similarly to the the quartile groups Qj (created according to the original BMI obser-
vations), we classified the households into four “prediction quartile groups” according
to BMI predictions. The jth (j = 1, . . . , 4) prediction quartile group is denoted by
“Pj”. The size of Pj is the same as Qj . We denote by pi the predicted quartile group
index {1, . . . , 4} of the ith household (i = 1, ..., 1451), and likewise qi (index of the
quartile group {1, . . . , 4} to which the ith household belongs). Correct prediction
is defined as such that pi is the same as qi. We counted correct predictions for the
whole sample (i.e.

∑
i I(pi = qi) where I is an indicator function).

Table 4.10 shows the statistics including the nonparametric R2. For a comparison
purpose we additionally estimated model (4.19) using polychoric/-serial correlations.
As far as R2 is concerned, the DPC SIM produced a better fit than the PC models.
However, Spearman’s and Kendall’s rank correlation coefficients slightly favored the
PC SIM. No method showed an advantage over the others in terms of the proportion
of correct predictions. It should be noted, however, that the predicted BMI values
in the negative range of the DPC score are almost the same (see Figure 4.7), and that
BMI predictions in this range should therefore be ascribed to randomness rather
than systematic functional relationship. As a whole, the prediction performance of
the DPC SIM was comparable with that of the PC models in spite of little functional
relationship estimated in the negative DPC score range.

Method R2 Spearman Kendall Prediction
PC SIM (Polychor.) .153 .327 .223 33.56 %
PC SIM (Cat.Mean) .150 .326 .222 34.46 %

DPC SIM .185 .294 .200 35.77 %

Table 4.10: Nonparametric R2, Spearman’s and Kendall’s rank correlation coeffi-
cients and proportion of correct predictions for the whole sample. “Poly-
chor.” and “Cat.Mean” mean polychoric/-serial and category means data,
respectively.
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We further examined the proportions of correct predictions in each prediction quartile
group (Table 4.11).13 Patterns of prediction performance are quite similar among the
different approaches: both PC and DPC models achieved relatively large proportions
for P4; and neither of them showed good performance in the rest of the quartile
groups, particularly in P2 and P3.14 In the case of the DPC model, the DPC scores
that resulted in relatively good prediction lie in the range on the right of the dashed
line where a linear relationship with the BMI is observed (see Figure 4.7). This
contrasts with the PCA-based prediction: regardless of group-wise differences in
prediction performance, a linear relationship is observed over the whole PC score
range across the parting dashed line (see Figure 4.6).

Method Total P1 P2 P3 P4

PC SIM (Polychor.) 33.56 32.51 27.27 24.24 50.28
PC SIM (Cat.Mean) 34.46 34.16 28.65 24.52 50.55

DPC SIM 35.77 32.78 30.85 28.93 50.55

Table 4.11: Proportions of correct predictions (%) in each prediction quartile group.

Distributions of group averages provide a further insight into the prediction perfor-
mances. Similarly to Table 4.3, we calculated the averages of the variables in each
prediction quartile group (Table 4.12 and 4.13). Note the averages in P4 resulting
from the DPC model (Table 4.13): all the regressors have a positive average in spite
of some negative coefficients of the DPC. The averages in P4 are by far larger than
those in the other quartile groups. This means that negative coefficients in the DPC
do not contradict our prior assumption about positive effects of regressors on BMI.
This implies that the coefficients of the DPC were determined in relation to BMI

in such a manner that, for example, a negative effect of faEdu on BMI was com-
pensated with counter-positive effects produced by certain regressors through some
linear or nonlinear relationship between faEdu and those regressors.

Figure 4.10 is a plot of the PC SIM-based prediction quartile group averages given in
Table 4.12. The figure provides a clear functional association between the BMI and
13For Pj , proportion of correct predictions is

∑
i I(qi = j, pi = qi)/

∑
i I(qi = j).

14To evaluate this prediction performance, let t be a hyper-geometrically distributed random vari-
able with population size 1,451 and probability 0.25. Then, 0.25% and 97.5% percentiles of
t of 363 drawings are 77 and 105, respectively. This means that, when we consider just one
prediction quartile group and randomly assign 363 households to this group, we would expect
with a 95% probability a proportion of correct predictions from 21.21% to 28.93%. In this sense,
predictions in P2 and P3 are hardly different from random assignment.
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the regressors over the whole quartile groups: the averages of all the regressors are
in the same increasing order as the predicted BMI. These figures are in agreement
with a linearly increasing function estimate m̂ (Figure 4.6).

On the other hand, in the first three quartile groups DPC SIM predicted almost
no variation for the BMI group averages nor for the group averages of most of
the regressors (Figure 4.11). Lack of ordering in the averages of regressors is also
remarkable. This is in accordance with almost constant BMI predictions in the
negative DPC score range (Figure 4.7). When we recall the indication from Table
4.3 and Figure 4.3 that there is no simple overall association between the BMI and
regressors, the DPC SIM estimate seems to verify that indication.

Our interpretation of the prediction performance of the DPC model is that, in search
of the optimal index vector and link function, it found a functional relationship
only in a subsample consisting mostly of P4. In this sense, poor overall prediction
performance was not because of an inappropriate index vector estimate. To the
contrary, poor prediction performance of the PC model was rather because the first
PC, determined without regard to BMI, happened to be relevant only to subsample
P4 and irrelevant to the rest of the sample.

BMI faEdu moEdu water toilet cook floor roof trans hhItem

P4 6.821 1.025 .878 .409 .813 .778 .926 .686 .187 .889
P3 6.243 .141 .161 -.094 -.017 .123 -.154 -.092 .119 .174
P2 6.051 -.397 -.403 -.152 -.201 -.190 -.354 -.133 .039 -.320
P1 5.881 -.766 -.634 -.163 -.593 -.709 -.415 -.460 -.344 -.741

Table 4.12: Averages of prediction quartile groups by the PC SIM.

BMI faEdu moEdu water toilet cook floor roof trans hhItem

P4 6.936 .620 .559 .361 .671 .809 1.244 .632 .058 .817
P3 6.062 -.052 -.217 -.098 -.167 -.543 -.382 -.302 .008 -.322
P2 6.029 -.476 -.330 -.114 -.293 -.457 -.429 -.184 -.090 -.270
P1 6.012 -.091 -.010 -.147 -.209 .194 -.429 -.145 .024 -.222

Table 4.13: Averages of prediction quartile groups by the DPC SIM.
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Figure 4.10: Averages of prediction quartile groups by the PC SIM. Heights of the
bars are adjusted so that the average of P1 is unity.
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Figure 4.11: Averages of prediction quartile groups by the DPC SIM. Heights of the
bars are adjusted so that the average of P1 is unity.

As far as the data set analyzed is concerned, we have found little evidence that the
DPC index model outperforms the PC counterpart in prediction. However, we note
that, if the effects of regressors on the BMI are conditional on unobserved household
characteristics, further investigation into household characteristics with the aid of
the households’ DPC scores may lead to finding of influential latent factors.
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4.3.5 Analysis using cluster average data

The 1,451 households analyzed in the previous sections belong to 336 clusters in the
sample. This section presents PC and DPC index model analysis using cluster-wise
averaged category means data (obtained by taking the average of category means
data for each cluster, and henceforth called “cluster average data”). Large residuals
seen in Figure 4.6 and 4.7 and relatively low nonparametric R2 statistics suggest a lot
of noise in data. If households in the same cluster are relatively homogeneous, cluster-
wise averaging will help to reduce noise without losing relevant information about
the functional relationship. Moreover, if there are factors underlying the structural
break in the link function g found by the DPC SIM, and if they are related with
cluster characteristics, a similar structural break will be observed in the analysis of
cluster average data.

Figure 4.12 is a histogram of the cluster size. The cluster size is highly unbalanced.
It may be necessary to assign an appropriate weight to each cluster. However, we
present only an analysis using crude cluster-wise averaged category means data.
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Figure 4.12: Histogram of the cluster size.

Table 4.14 shows the correlation matrix of cluster average data. Table 4.15 is a table
of the eigenvalues and their cumulative proportions of the total variation explained
by the PCs. 45% of the variation is explained by the first PC, which is by 5% larger
than in the original data (Table 4.4). We fit the SIMs corresponding to model (4.19)
and (4.20).
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faEdu moEdu water toilet cooking floor roof trans hhItem

BMI .37 .35 .17 .44 .38 .48 .34 .07 .42
faEdu .66 .19 .48 .32 .46 .43 .19 .44
moEdu .19 .38 .32 .40 .40 .18 .35
water .28 .35 .39 .25 -.04 .25
toilet .54 .54 .40 .10 .49

cooking .64 .43 -.02 .46
floor .51 .08 .62
roof .18 .42
trans .14

Table 4.14: Correlation matrix of the cluster average data.

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9

Eigenvalue 3.99 1.22 .83 .75 .60 .54 .46 .32 .29
Cum.Prop. .44 .58 .67 .75 .82 .88 .93 .97 1.00

Table 4.15: Eigenvalues and cumulative proportions obtained from cluster average
data.

The first PC and DPC are shown in Table 4.16. As was the case for the original
category means data, the first PC can be interpreted as a measure of overall welfare
of a household. The DPC contrasts with that obtained from the original category
means data: most of its coefficients are positive; only those of water and trans are
negative with relatively small size. The structures of the coefficients are visually
presented in Figure 4.13. Compared with Figure 4.5, the coefficients of the PC and
DPC are plotted now closer to the 45 degree line.

faEdu moEdu water toilet cooking floor roof trans hhItem

PC1 .361 .330 .233 .372 .363 .414 .346 .100 .368
DPC1 .050 .309 -.030 .376 .378 .670 .026 -.095 .398

Table 4.16: 1st PC and DPC obtained from the cluster average data.
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Figure 4.13: Coefficients of the PC and the DPC obtained from the cluster average
data. The dashed line is a 45-degree line.

Figure 4.14 is a plot of the estimated link function corresponding to m of model
(4.19). The nonparametric R2 was 0.288.15 Figure 4.15 shows the estimated func-
tion corresponding to g of model (4.20). The estimated function looks partly under-
smoothed. Nonparametric R2 was 0.345.16 There seems to be no systematic break in
the shape of the estimated function ĝ and it shares an upward-sloping tendency with
the estimate by the PC model. These results suggest that cluster-wise averaging has
filtered out not only noise in data but also households’ characteristics that yielded
the DPC for the original sample; and that potential factors underlying the structural
break are unlikely to be related with clusters.

15The estimated link function may seem oversmoothed. However, even with a 70% smaller band-
width, the function estimate, although somewhat curvy, yielded a R2 0.292.

16Undersmoothing is because of the use of a global bandwidth, which is determined without regard
to the local density of the DPC score. A large R2 is partly due to undersmoothing. However,
R2 remained 0.320 even with a 70% larger bandwidth, which produced a more smooth function.

135



4 Index Model

−2 0 2 4

5
6

7
8

9

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

PC score, xTβ̂ (x=cluster average)

B
M

I

Figure 4.14: Estimated link function m̂ for the cluster average data.
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Figure 4.15: Estimated link function ĝ for the cluster average data.
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4.3.6 Multi index model

This section briefly covers application of the MIM to the same category means data
as in Section 4.3.2. The PC and DPC MIMs are specified with M = 2 as

PC: BMI = m(x>β1, x>β2) + u (4.22)

DPC: BMI = g(x>γ1, x>γ2) + e , (4.23)

where m and g are smooth functions; and u and e are regression errors with E[u|x] =

E[e|x] = 0. The coefficients of the first two PCs are listed in Table 4.17. In the sec-
ond PC, education variables and some housing characteristics variables were loaded
negatively and relatively heavily. As opposed to the first PC, interpretation of the
second PC seems difficult. The third and fourth rows of Table 4.17 are the first and
second DPC estimates, respectively. The first DPC retained the same pattern of
signs as the DPC SIM estimate; relatively large-sized coefficients of cook and floor
are also in common. Neither of the two DPCs is amenable to interpretation with
respect to the BMI. Figure 4.16 gives a visual image of the structures of the first and
second PC and DPC. The index spaces spanned by those vectors seems to be quite
different.

faEdu moEdu water toilet cook floor roof trans hhItem

PC1 .361 .330 .221 .378 .365 .409 .350 .109 .366
PC2 -.394 -.418 .440 .115 .248 .220 .026 -.593 .039

DPC1 -.148 .058 -.130 -.108 .593 .751 .035 -.067 .157
DPC2 .261 -.244 .365 .238 -.067 .096 .491 .259 .600

Table 4.17: 1st and 2nd PC and DPC.
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Figure 4.16: Coefficients of the 1st and 2nd PCs and DPCs. The dashed lines are
45-degree lines.

Figure 4.17 displays the estimated function m̂ for model (4.22). The left figure shows
m̂ from the perspective of the first PC score and the right figure from the second PC
score perspective. On the whole, the estimated function retained a linearly increasing
tendency although it shows downward-sloping shapes near boundary areas of the the
second PC score.
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Figure 4.17: Estimated link function m̂ for model (4.22): (left) from the first PC
perspective and (right) from the second PC perspective.

The estimated function ĝ is plotted in Figure 4.18. Potential factors underlying a
structural break found in the DPC SIM may have been split between the two DPC
index vectors. The structural break in ĝ along the first DPC direction has become
somewhat ambiguous even though its functional form in this direction still resembles
that of the DPC SIM estimate.

Figure 4.18: Estimated link function ĝ for model (4.23): (left) from the first DPC
perspective and (right) from the second DPC perspective.
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To evaluate the MIMs, we calculated the same set of statistics as before (Table
4.18). Nonparametric R2 of the PC model increased from 0.150 to 0.174. On the
other hand, the increase in R2 of the DPC model was marginal (from 0.185 to
0.190). This implies that information about the functional relationship is effectively
concentrated in one-dimensional space given by the first SIM index vector. Rank
correlation coefficients increased only slightly for all the methods. In terms of the
proportion of correct predictions there was no improvement over the SIM estimation
(or slight deterioration).

Method R2 Spearman Kendall Prediction
PC MIM (Polychor.) .174 .339 .232 32.32 %
PC MIM (Cat.Mean) .174 .342 .233 33.77 %

DPC MIM .190 .321 .218 33.49 %

Table 4.18: Nonparametric R2, Spearman’s and Kendall’s rank correlation coeffi-
cients and proportion of correct predictions.

We further examined the prediction performance in each prediction quartile group
(see Table 4.19). For both PC and DPC MIMs, the pattern of proportions of correct
prediction was similar to that of the SIM prediction: proportions were low in the first
quartile groups, particularly P2 and P3; and prediction in P4 was relatively good.
Overall, there was no improvement in prediction by the MIM.

Method Total P1 P2 P3 P4

PC MIM (Polychor.) 32.32 33.06 25.34 20.94 50.00
PC MIM (Cat.Mean) 33.77 34.71 28.65 22.04 49.72

DPC MIM 33.49 34.99 25.34 23.69 50.00

Table 4.19: Proportions of correct predictions (%) in each prediction quartile group.

To complete this section, Table 4.20 and 4.21 show the prediction quartile group
averages of the variables. Their barplots are given in Figure 4.19 and 4.20. There
was little difference between the average structures between the PC SIM and PC
MIM. As for the DPC MIM, the group average structure has diverted from that of
the DPC SIM and become similar to that of the PC counterpart.
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BMI faEdu moEdu water toilet cook floor roof trans hhItem

P4 6.851 .889 .747 .452 .785 .836 .987 .647 .104 .877
P3 6.260 .110 .217 -.126 -.027 .093 -.177 -.052 .036 .179
P2 6.062 -.280 -.376 -.168 -.182 -.182 -.378 -.159 .059 -.268
P1 5.905 -.717 -.585 -.157 -.574 -.744 -.429 -.434 -.199 -.785

Table 4.20: Averages of prediction quartile groups by the PC MIM.

BMI faEdu moEdu water toilet cook floor roof trans hhItem

P4 6.931 .654 .569 .382 .694 .851 1.206 .632 .088 .851
P3 6.172 -.055 -.178 -.045 .013 .124 -.345 -.013 .235 .401
P2 6.050 -.060 -.165 -.093 -.202 -.411 -.429 -.111 .055 -.401
P1 5.944 -.538 -.224 -.243 -.503 -.562 -.429 -.507 -.377 -.849

Table 4.21: Averages of prediction quartile groups by the DPC MIM.
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Figure 4.19: Averages of prediction quartile groups by the PC MIM.
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Figure 4.20: Averages of prediction quartile groups by the DPC MIM.

4.4 Concluding Remarks

Construction of a reliable welfare indicator of a household’s SES is of great research
interest. PCA has been a conventional tool to obtain a few indices that summarize
information contained in a large number of variables. However, PCs are determined
without regard to the response variable the fact of which undermines the prediction
performance of PC-based regression models. Motivated by this intrinsic disadvantage
of PCA approaches, we turned to DPCs, which are determined in relation to the
response. The index model provides a regression framework which balances rigidness
of the parametric model and flexibility of the nonparametric one. We compared the
performance of PC and DPC index models by applying them to demographic and
health survey data.

As Kolenikov and Angeles (2009) discussed, categorical variables require special
treatment for PC-oriented methods. This is true for the DPC index model all the
more because it is applicable by definition only to continuous data. We addressed this
issue by using category means data proposed by Kolenikov and Angeles (2009). We
consider that the results presented in this essay generally justify the use of category
means data for DPC index models.

Contrary to our expectation, PC index models did not underperform their DPC
counterparts. Comparable prediction performances of the PC models are partly ex-
plained by the fact that PCA is applied implicitly in accordance with prior knowledge
about the association between the response and regressors. Indeed, we recoded orig-
inal unordered categorical data, for example, roof material, into ordered data based
on prior knowledge of correlation between the BMI and the material. Each regressor
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was a priori coded so that its increases in value are positively related with the BMI.
Thus, the first PC score, which represents overall availability of the determinants of
a positive BMI, cannot be a bad index.

In our study we have found little evidence that the DPC index model outperforms
the PC counterpart in prediction. However, our analysis illustrated the potential
of the DPC index model to serve as a tool of exploratory analysis. We interpret
the result obtained by the DPC SIM as an indication of some unknown structure
underlying the population. If the effects of regressors on the BMI are conditional on
unobserved household characteristics, further investigation of households and their
DPC scores may lead to finding of latent structure.

The fact that the DPC index model did not outperform the PC counterpart may
partly be due to relatively weak association between the response and regressors,
which was indicated by our test using bootstrap simulation (even though it is un-
likely that the regressors are jointly insignificant). We studied similar household
survey data from other countries without finding remarkable difference between PC
and DPC models. More empirical researches, especially using data containing more
continuous variables and stronger association between the response and regressors,
will shed light on the performance of the DPC index model.

4.5 Appendix A

Suppose a MIM of the form

y = f(x) + e

f(x) = g(x>γ1,x
>γ2, . . . ,x

>γM ) = g(Γx) , (4.24)

where x ∈ Rd, f : Rd → R, g : RM → R and Γ : Rd → RM . {γj}Mj=1 are orthogonal
index vectors. Γ is thus a linear orthogonal mapping. The M -dimensional subspace
spanned by {γj} is referred to as index space (also called effective dimension space).
The d-vector is further assumed to have a support of [−1, 1]d (if necessary, data are
transformed accordingly). M is assumed to be known and M < d.

The gradient vector of (4.24) at point xi is given by

∇f (xi) = g′1γ1 + g′2γ2 + · · ·+ g′MγM , (4.25)

where g′j is the partial derivative of g with respect to its jth argument. (4.25)
implies that the gradient at any point is a linear combination of the index vectors
and therefore belongs to the index space.
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Samarov (1993) discussed the use of derivatives to explore regression structure by
nonparametric functional estimation. The following two observations are relevant
for the MIM in consideration:

E[∇f∇>f ] =
M∑

j,k=1

E[g′jg
′
k]γjγ

>
k (4.26)

E[∇2
f ] =

M∑
j,k=1

E[g′′jk]γjγ
>
k , (4.27)

where ∇2
f is the Hessian of f ; g′′jk is the second-order (cross) partial derivative of

g with respect to its jth and kth arguments; and expectation is with respect to
x. (4.26) and (4.27) are both a matrix of dimension d × d constructed by a linear
combination of outer products γjγ>k . Since M < d, (4.26) and (4.27) imply that
the index vectors γ1,γ2, . . . ,γM lie in an M -dimensional subspace spanned by the
eigenvectors of E[∇f∇>f ] or E[∇2

f ] corresponding to their nonzero eigenvalues. It is,
however, more convenient to base the estimation of the index space on (4.26) from
the following observation. Let’s denote E[∇f∇>f ] by M∗. The directional derivative
of f in the direction of a (a 6= 0) is given by

df(x)

da
= ∇>f (x)a (4.28)

and it follows that

E

[
df(x)

da

>df(x)

da

]
= a>M∗a . (4.29)

M∗ can be spectral-decomposed into CΛC>, where diagonal matrix Λ has M
nonzero eigenvalues sorted in decreasing order (λ1 ≥ λ2 ≥ . . . ≥ λM ). Thus, if
a is the eigenvector of M∗ corresponding to λ1, a>M∗a takes the maximum value,
which means that a is directed to the same direction as the gradient vector in expec-
tation. On the other hand, if a is an eigenvector corresponding to zero eigenvalue,
a is orthogonal to that gradient vector. Note also, that, since a>j M∗aj = λj for jth
eigenvector aj , nonzero eigenvalue λj reflects the extent to which f is expected to
vary due to dx along the direction of jth index vector.

The observation above leads to the basic idea of the average derivative estimation,
that is, estimating the index space from the first M eigenvectors of a sample analog
matrix of M∗ given by

M =
1

n

n∑
i=1

∇f (xi)∇>f (xi) . (4.30)
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Several approaches to the calculation of M have been proposed in literature. M is a
quadratic functional of the gradient of f and is harder to calculate than the following
linear functional suggested by Ibragimov et al. (1986). Hristache, Juditsky, Polzehl,
and Spokoiny (2001) applied the idea of estimating linear functional as follows.

Consider a set of orthonormal basis functions for finite sum {ψl(xi)} (l = 1, 2, . . . , L),
that is,

n∑
i=1

ψl(xi)ψl′(xi) = δll′ , (4.31)

where δll′ is the Kronecker delta. Suppose that the gradient function ∇f (xi) can be
approximated by an orthogonal series expansion using {ψl(xi)}:

∇f (xi) = b1ψ1(xi) + b2ψ2(xi) + · · ·+ bLψL(xi) , (4.32)

where b1,b2, . . . are d-dimensional vectors. From (4.31) and (4.32), bl is obtained
by

bl =

n∑
i=1

∇f (xi)ψl(xi) . (4.33)

Since bl is a linear functional of gradients of f and all the gradients of f belong to
the index space, bl also belongs to the index space.

Let B denote a (d× L) matrix (b1 b2 · · ·bL). Then it holds r(B) ≤ M (r(•) is the
rank of •). Suppose further that {ψl(xi)} is such that r(B) = M . Then (b1 b2 · · ·bL)

spans the index space. Let ML be a (d× d) matrix such that

ML =
L∑
l=1

blb
>
l = BB> . (4.34)

Since r(ML) = M , the firstM eigenvectors of ML corresponding nonzero eigenvalues
estimate the index space.

Let CM be a (d×M) matrix of the first M eigenvectors of BB>(= ML). Singular
value decomposition of B yields

B = CMΛ
1/2
M O>M

BOM = CMΛ
1/2
M , (4.35)

where OM is a (L ×M) matrix of the first M eigenvectors of B>B, and Λ
1/2
M is a

diagonal matrix of elements (
√
λ1,
√
λ2, . . . ,

√
λM ). Note thatM nonzero eigenvalues
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are the same for both BB> and B>B. Rewrite CMΛ
1/2
M as

CMΛ
1/2
M = (

√
λ1θ1

√
λ2θ2 · · ·

√
λmθM ) . (4.36)

Then a linear orthogonal mapping Γ can be expressed so that (4.24) is uniquely
identified by

Γ = (γ1,γ2, . . . ,γM )> = (
√
λ1θ1

√
λ2θ2 · · ·

√
λmθM )> = (CMΛ

1/2
M )> . (4.37)

Γ = (CMΛ
1/2
M )> can be obtained equivalently as in Hristache, Juditsky, Polzehl, and

Spokoiny (2001) from the spectral decomposition of the L× L matrix B>B:

B>B = OLΛLO>L . (4.38)

Thus, using the first M eigenvectors of OL, Γ = (BOM )> = (CMΛ
1/2
M )> is ob-

tained. O>MB>BOM= ΛM follows from (4.38), which implies that γ1,γ2, . . . ,γM

are orthogonal. Use of the spectral decomposition (4.38), instead of the calculation
of CMΛ

1/2
M from the spectral decomposition of BB>, has an advantage. In practice,

the estimate of B has a rank d, not M . The optimal estimate of B is obtained from
spectral decomposition of B̂>B̂ where B̂ is an estimate of B.

In order to estimate the index space, unknown B needs to be estimated by B̂ =

(b̂1 b̂2 · · · b̂L) with

b̂l =

n∑
i=1

∇̂f (xi)ψl(xi) , (4.39)

which requires estimation of the gradient ∇f (xi). The following kernel regression
simultaneously estimates f(xi) and ∇f (xi):(

f̂(xi)

∇̂f (xi)

)
= arg min

ξ0∈R,ξ∈Rd

n∑
j=1

(
yj − ξ0 − (xj − xi)

>ξ
)2
K

(
‖xj − xi‖2

h21

)
(4.40)

= (X>i KXi)
−1X>i Ky (4.41)

with

Xi =

(
1 1 · · · 1

x1 − xi x2 − xi · · · xn − xi

)>
(4.42)

K = ⊕nj=1K(h−21 ‖xj − xi‖2) , (4.43)

where K is a kernel weighting function and h1 is a bandwidth of a spherical window
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around xi. This estimation will face the curse of dimensionality when d is large
because there will not be enough observations within a spherical window with radius
h1. Nonetheless, B̂ obtained from ∇̂f (xi) in (4.40) contains information about the
index space. Hristache, Juditsky, Polzehl, and Spokoiny (2001) proposed an iterative
estimation of B by exploiting the assumed orthogonal structure of index vectors.

Approximation of g(x) by the tangent hyperplane ∆y = ∇f (x)>∆x in the directions
orthogonal to the index space is relatively good (in those directions f(x) and hence
∇f (x) do not change much). This leads to an idea of improving the estimation by
using an ellipsoidal window which will contain enough observations inside. Such an
ellipsoidal window is obtained by expanding the spherical window in the direction
of the space orthogonal to the index space and shrinking it in the directions of the
index space. Using the orthogonal structure of index vectors, an ellipsoid given by
{x : ‖Γ(x− xi)‖ ≤ h} serves as an appropriate window.

After obtaining a pilot estimate by (4.40), f(x) and ∇f (x) are reestimated by kernel
regression with an ellipsoidal window. Since Γ is unknown, the window is replaced
by {x| ‖S2(xj − xi)‖ < h2} with

S2 = (I + ρ−22 Γ̂
>
1 Γ̂1)

1/2

= (I + ρ−22 B̂1O1(B̂1O1)
>)

1/2

= (I + ρ−22 B̂1B̂
>
1 )

1/2 , (4.44)

where ρ2 < 1 and h2 > h1 . Reestimation by kernel regression is given by(
f̂ (2)(xi)

∇̂(2)
f (xi)

)
= arg min

ξ0∈R,ξ∈Rd

n∑
j=1

(
yj − ξ0 − (xj − xi)

>ξ
)2
K

(
‖S2(xj − xi)‖2

h22

)
.

(4.45)

In the iterative estimation process, the expansion and compression of a kernel window
takes place through an increasing parameter h and a decreasing parameter ρ so that
there remain enough observations in the window. The iterative estimation proceeds
as follows. Let k denote the iteration round (k = 1, 2, . . .).

1. Initialize parameters: ρ1, ρmin (minimum value of ρ), aρ < 1, h1, ah > 1 and
{ψl}. Set k = 1 and B̂0 = 0.

2. Compute Sk = (I + ρ−2k B̂k−1B̂
>
k−1)

1/2.
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3. Estimate f(xi) and ∇f (xi) by(
f̂ (k)(xi)

∇̂(k)
f (xi)

)
= arg min

ξ0∈R,ξ∈Rd

n∑
j=1

(
yj − ξ0 − (xj − xi)

>ξ
)2
K

(
‖Sk(xj − xi)‖2

h2k

)
= (X>i KkXi)

−1X>i Kky , (4.46)

where Kk = ⊕nj=1K(h−2k ‖Sk(xj − xi)‖2).

4. Compute b̂
(k)
l =

∑n
i=1 ∇̂

(k)
f (xi)ψl(xi) to obtain B̂k = (b̂

(k)
1 b̂

(k)
2 · · · b̂

(k)
L ).

5. Update the parameters: hk+1 = ahhk, ρk+1 = aρρk. Set k to k + 1 and repeat
step 2. to 5. until ρk+1 < ρmin.

Finally, after the iterative estimation process, link function g is estimated by kernel
regression for the estimated index space Γ̂.

Since b̂l =
∑n

i=1 ∇̂g(xi)ψl(xi), estimation of b requires well-defined estimator of
∇̂g(xi). In order to prevent the variance of ∇̂f (xi) from becoming too large, data
points around the neighborhood of xi need to satisfy some local regularity. Hristache,
Juditsky, and Spokoiny (2001) and Hristache, Juditsky, Polzehl, and Spokoiny (2001)
proposed a modified estimation using a weighting scheme applied to the terms of b̂l

depending on the local design. Polzehl and Sperlich (2009) proposed a further mod-
ification, assuming the prior knowledge of the dimension of index space M . Their
algorithm penalizes a search of an index space outside the presumed space of dimen-
sion M or somewhat larger than M . It has been shown that these modifications,
especially the penalized algorithm, reduces the error in estimation of the link func-
tion.
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Figure 4.21: Correlation matrix, histograms and scatter plots of the original data.

faEdu moEdu water toilet cook floor roof trans hhItem

BMI .23 .20 .15 .31 .31 .51 .33 .05 .36
faEdu .62 .23 .46 .36 .50 .44 .21 .37
moEdu .21 .36 .31 .43 .40 .17 .33
water .38 .40 .47 .33 -.08 .28
toilet .58 .71 .63 .13 .57
cook .73 .50 .07 .50
floor .77 .07 .69
roof .23 .45
trans .24

Table 4.22: Polychoric/-serial correlation matrix.
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