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Abstract

Neurons in the mammalian primary visual cortex (V1) are often preferentially driven by only
one of the two eyes and respond best to oriented bar stimuli at a particular position in the vi-
sual field. Most carnivorans and primates exhibit ordered columns of eye preference referred to
as ocular dominance maps (ODMs). Similarly, orientation preferences in the V1 of these species
are arranged into smooth and roughly periodic orientation preference maps (OPMs). Glires (ro-
dents and lagomorphs), although in part clearly visual animals, apparently lack any orderly ar-
rangement of preferred orientations. It is still controversial whether and how these dichotomic
V1 functional architectures can be explained by the self-organized activity-dependent develop-
ment of neuronal circuits and to what degree their development is influenced or dominated by
biological constraints. In this dissertation, I investigate how simple optimization dynamics and
biological constraints can be used to understand quantitative features of the V1 circuits in car-
nivorans and primates on the one side and Glires on the other. First, I focus on the interaction
between postnatal brain growth and the development of ODMs in cat V1. I find that cat ODMs
reorganize during a period of considerable postnatal growth. Characteristic features of this reor-
ganization as well as the time scale on which it evolves are in good agreement with the predicted
brain-growth-induced reorganizations in an optimization model for the activity-dependent for-
mation of ODMs. Second, I develop a general mathematical formalism to analytically calculate
OPMs predicted by optimization models for OPM development. I apply this formalism to one
of the most prominent optimization models for OPMs, the Elastic Network model. It is shown
that in all previously studied regimes the predicted OPM layouts are perfectly periodic and do
not reproduce the experimentally observed common OPM layout. In an extreme and biologically
unrealistic limit, aperiodic OPMs quantitatively resembling experimental observations emerge.
Stabilization of these layouts results from strong non-local interactions. Third, I reconcile two
contradictory recent findings on OPM layouts: On the one hand, they have been shown to exhibit
aperiodic statistics, apparently invariant among species widely separated in eutherian evolution
and in good agreement with prediction from self-organization models with long-range suppres-
sive interactions; on the other hand a recent study identifies a hexagonal arrangement underlying
OPM layouts which is explained by constraints arising from subcortical inputs. By analyzing a
large data set of experimentally measured OPMs, I find that the degree of hexagonal order in real
maps is statistically indistinguishable from the one in aperiodic isotropic control maps. Hence,
there is currently no empirical evidence for subcortical constraints on the development of OPM
layouts in primates and carnivorans. Fourth, I consider optimization models for the coordinated
development of OPMs and the system of long-range tangential connections in V1. I show that,
independent of the precise structure of the long-range coupling, the spatial organization of pre-
dicted OPMs is in good agreement with experiments, provided that the coupling exceeds a critical
strength and range. Consequently, according to these theories, only experimental or genetic per-
turbations that substantially weaken tangential interactions or restrict their range may alter the
spatially complex layout of OPMs. Finally, I for the first time show that very similar optimization
approaches can be invoked to explain both the emergence of disordered selectivity organizations
in Glires and of the ordered ones in carnivorans and primates. In the models studied, dominant
short-range, effectively inhibitory interactions are crucial for the transition from ordered to disor-
dered arrangements.
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Zusammenfassung

Die meisten Neuronen im primären visuellen Kortex (V1) der Großhirnrinde von Säugetieren rea-
gieren bevorzugt auf orientierte visuelle Stimuli, die sich an einer bestimmen Position im Gesichts-
feld befinden und in einem bestimmten Auge registriert werden. Bei Primaten und Raubtieren
variieren sowohl Augen- als auch Orientierungspräferenzen systematisch über der Sehrinde und
sind in sogenannten Augendominanz- bzw. Orientierungskarten angeordnet. Bei Nagern jedoch
zeigt die Anordnung von Orientierungspräferenzen keinerlei offensichtliche räumliche Struktur.
Es ist immer noch umstritten, ob und wie diese verschiedenen funktionalen V1 Architekturen
durch Optimierungsprinzipien für die selbstorganisierte aktivitätsabhängige Entwicklung neu-
ronaler Schaltkreise erklärt werden können und inwieweit biologische Zwangsbedingungen ihre
Entwicklung beeinflussen oder sogar dominieren. Im ersten Teil dieser Arbeit analysiere ich die
Wechselwirkung zwischen der Herausbildung von Augendominanzkarten (ODMs) und postna-
talem Hirnwachstum am Beispiel des V1 von Katzen. Ich zeige, dass sich ODMs zeitgleich mit
der stärksten Wachstumsphase umordnen. Charakteristische Eigenschaften dieser Reorganisation
sowie deren zeitlicher Verlauf sind in guter Übereinstimmung mit wachstumsinduzierten Reor-
ganisationsprozessen in Optimierungsmodellen für die aktivitätsabhängige Herausbildung von
ODMs. Zweitens entwickle ich einen allgemeinen mathematischen Formalismus zur Untersu-
chung von Optimierungsmodellen für die Entwicklung von OPMs. Mittels dieses Formalismus
untersuche ich eines der meist verwendeten Optimierungsmodelle, das sogenannte Elastische
Netzwerk. Dabei stellt sich heraus, dass in allen bisher untersuchten Parameterbereichen ledig-
lich räumlich periodische Muster zu erwarten sind, die die experimentell bestimmte universelle
Statistik nicht reproduzieren können. Lediglich in einem extremen und biologisch nicht realisti-
schen Bereich werden aperiodische Muster vorhergesagt. Im dritten Teil löse ich den Widerspruch
zwischen zwei jüngst erschienen Forschungsergebnissen zur Struktur von OPMs auf: Eine Studie
zeigt, dass OPMs eine universelle räumlich aperiodische Statistik aufweisen, die gut mit den Vor-
hersagen von Selbstorganisationsmodellen mit langreichweitigen Kopplungen übereinstimmt. Ei-
ne andere Studie kommt zum Ergebnis, dass OPMs hexagonal geordnet sind. Diese Struktur lie-
ße sich durch die räumliche Anordnung afferenter Verbindungen in V1 erklären. Anhand eines
großen Satzes funktionaler bildgebender Daten zeige ich, dass der Grad an hexagonaler Ordnung
in OPMs statistisch ununterscheidbar von isotropen räumlich aperiodischen Kontrollkarten ist.
Das Muster von Orientierungspräferenzen in Primaten und Raubtieren ist demnach nicht durch
die räumliche Struktur subkortikaler Verbindungen bestimmt. Ausgehend von obigen Ergebnis-
sen untersuche ich viertens, wie räumlich aperiodische Muster in Optimierungsmodellen für eine
gekoppelte Entwicklung von langreichweitigen Tangentialverbindungen in V1 und OPMs stabili-
siert werden können. Es zeigt sich, dass die Statistik optimaler OPMs gut mit den experimentellen
Daten übereinstimmt, solange lediglich Reichweite und Stärke der langreichweitigen Kopplung
kritische Werte überschreiten. Diesen Theorien zufolge kann also die Struktur von OPMs nur dann
wesentlich durch experimentelle Manipulation beeinflusst werden, wenn entweder Reichweite
oder Stärke der lateralen Wechselwirkung substanziell reduziert werden können. Schließlich zei-
ge ich, dass sich sowohl die Herausbildung räumlich ungeordneter Selektivitäten in Nagern als
auch die Entwicklung systematisch variierender Präferenzen in Primaten und Raubtieren durch
sehr ähnliche Optimierungsprinzipien beschreiben lassen. Entscheidend für einen Übergang von
geordneten zu ungeordneten räumlichen Anordnungen in den untersuchten Modellen ist eine
dominante kurzreichweitige effektiv inhibitorische Wechselwirkung.
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Introduction

Are biological structures such as cells, organs such as the lung and the brain, or even entire organ-
isms designed to optimally serve a specific functional demand? Wooden structures, for example,
seem to be laid out to obtain high twist-to-bend ratios [1]. The progression of branch diameters in
the vascular tree appears to minimize both the mass of blood needed to fill the vessel and the en-
ergy required to transport blood to the targets against flow resistance [2–4]. Similarly, the average
diameter of the airway elements in the human lung follows a “best dimension scaling law” [5]. Ar-
bor sizes and branching of neurons in mammalian brains fit a global volume-minimization model
[6, 7]. The spatial positions of neuronal elements in biological circuits such as the nervous system
of Caenorhabditis elegans and Drosophila melanogaster can be explained by wiring optimization prin-
ciples [8, 9]. Similar rules have even been invoked to explain the arrangement of functional areas
of the mammalian cerebral cortex [10]. Whenever one refers to optimization principles in biology,
the hope is to find potentially simple rules which underlie the design of the overwhelmingly rich
variety and complexity of shapes found in nature, ranging from unicellular algae to probably the
most complex structure on earth - the primate brain. The above examples suggest that complex bi-
ological structures may indeed, at least to some extent, be optimally adjusted to simple functional
needs.

However, optimization approaches to biology have raised intense debates [4] and certainly have
to be viewed with skepticism. First, there are numerous reasons why biological systems may not
be optimal. Organisms are neither “designed” nor “engineered”. Constraints and trade-offs may
be pervasive, thus completely preventing any kind of global or general optimality. Biological ma-
terials have limitations and natural selection is constrained to pre-existing structures, which might
not be perfectly suited for a particular novel functional requirement. Available resources have to
be parsimoniously used. Adequacy or sufficiency of biologically designed structures might hence
completely dominate optimality. Second, biological structures in most cases are multifunctional.
Observing that a structure or a system found in nature appears to violate seemingly obvious op-
timality requirements might merely reflect the fact that it predominantly serves a purpose yet
undiscovered or that it represents a complex compromise among a diverse set of requirements.
Third, theoretical predictions of optimality principles are often not unique, i.e. different optimal-
ity criteria may yield very similar outcomes, in which case they are of limited predictive power.

Despite all these caveats, optimization principles can be very useful to understand certain aspects
of the function of a biological system or its emergence in the course of evolution and development
in idealized terms. With life sciences becoming increasingly quantitative, optimization principles
are particularly informative if their predictions, i.e. their respective optima, can be quantitatively
established. This, however, poses serious and often intractable mathematical problems.



2 Introduction

This thesis is devoted to a quantitative understanding of aspects of postnatal development, struc-
ture, and function of the primary visual cortex (V1), the largest and best-studied cerebral corti-
cal area involved in early visual processing, in terms of simple optimization principles and con-
straints. For this particular brain region, recent comparative data on its functional architecture
[11, 12] have raised the urgency of investigating whether there are general layout principles that
govern the design of its neural circuits. A quantitative comparison of functional V1 circuit design
in a large data set from three species widely separated in the evolution of eutherian mammals
revealed that its aperiodic spatial statistics are quantitatively invariant [11]. This quantitative
match is particularly puzzling in view of the fact, that an entire mammalian taxon branch, namely
that of rodents and lagomorphs, has been recently discovered to obey apparently opposing rules
[13–15]. Have different general requirements for a versatile and powerful cortical circuit archi-
tecture resulted in this dichotomy of layout designs during evolution? How are these designs
influenced by developmental constraints? Can similar types of self-organization mechanisms for
constructing visual cortical circuitry explain the emergence of both functional architectures dur-
ing postnatal development? What is constitutive of their layout principles? Do the different types
of circuit architecture in some way optimally process visual information? These are the core ques-
tions underlying the present thesis. Some optimization approaches when considered with suitable
biological constraints will turn out to describe postnatal development of the primary visual cor-
tex surprisingly well. Other widely used principles will turn out to be too simple to adequately
model biological reality. And some seemingly obvious constraints on functional circuit design do
not appear to play any role at all in shaping V1 functional architecture.

Chapter 1 briefly outlines the neuroanatomical properties of the early visual system as well as
previous mathematical modeling approaches relevant to this work. In Chapter 2, I focus on the
interaction between the biological constraint of postnatal brain growth and the self-organized
development of functional architecture in cat V1. In Chapter 3, I develop a general mathematical
formalism to analytically calculate the optima of models for visual cortical development and apply
this formalism to one of the most prominent optimization models, the Elastic Network model. In
Chapter 4, I reconcile two contradictory recent findings on the spatial structure of V1 functional
architecture in primates and carnivorans: aperiodic statistics from self-organized development on
the one hand, and hexagonal order arising from subcortical constraints on the other. Chapter 5
is devoted to an analysis of models for the coordinated development of functional architecture
and the system of long-range tangential connections in V1. Finally, in Chapter 6, I show that very
similar optimization approaches can be invoked to explain both the development of disordered
selectivity organization in rodent and lagomorphs and of ordered representations in carnivorans
and primates.



Chapter 1

Fundamentals

In this chapter, I will first briefly sketch the neuroanatomical and physiological properties of the
early visual system relevant to this work. Particular emphasis will be placed on aspects of its
postnatal development and differences between carnivorans and primates on the one hand and
rodents and lagomorphs on the other. For a more comprehensive overview, I refer to [16]. Second,
I will outline two mathematical modeling approaches to the development of visual cortical circuit
architecture, which form the basis of the mathematical analyses in the present thesis.

1.1 The early visual pathway

Visual information processing in the mammalian nervous system begins in the retinas of the two
eyes. Light enters through the lenses and falls onto a layer of photo-receptors which convert the
light signals into electrical signals. These electrical signals are then transformed into a series of
stereotyped electrical pulses, the action potentials, emitted by the retinal ganglion cells (RGCs).
The axons of these cells form the optic nerve and conduct the RGC signals to the brain. In the
transfer of visual signals to the brain, the visual pathway (Fig. 1.1.1), the retina is vertically divided
in two parts, a temporal half (nearer to the temple) and a nasal half (nearer to the nose). The axons
from the nasal half cross the brain at the optic chiasma to join with axons from the temporal half
of the other eye before passing into the lateral geniculate nuclei (LGN). The signals from RGCs are
relayed through the LGN without substantial modification. Therefore receptive field properties of
LGN neurons are qualitatively similar to the receptive fields of retinal ganglion cells ([18, 19], but
see also [20]). The visual input into the two LGN is organized in such a way that information from
the right parts of the two retinas is relayed by the left LGN and vice versa. However, no binocular
responses are observed in LGN neurons. Instead, the LGN consist of several layers of neurons,
each containing cells that are driven by either the right or the left eye exclusively.

From the LGN, visual information is projected to the left and right primary visual cortex (V1)
via the optic radiation (Fig. 1.1.1). V1 is a part of the neocortex of about 2mm thickness and
several cm2 area in humans. It is the largest of all visual areas and often considered to be the first
stage of true visual information processing. Whereas the number of RGC cells and the number of
LGN neurons is of roughly the same order, the number of neurons in V1 is about a thousandfold
higher than the number of projection neurons in the LGN. Due to the organization of the LGN,
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Figure 1.1.1: Schematic illustration of the early visual pathway in carnivorans and primates. The visual pathway begins
with the eyes and extends through several interior brain structures before ascending to the primary visual cortex (V1).
At the optic chiasm, the optic nerves cross over partially so that each hemisphere of the brain receives input from the
temporal and nasal visual field of both eyes. The lateral geniculate nucleus (LGN), consists of layers of nerve cells that
each respond to stimuli from one eye only (mod. from [17]).

both hemispheres receive input from both eyes. In fact, neurons in V1 are the first along the
visual pathway to respond to stimuli from both eyes. However, while being responsive to both
eyes, many neurons are preferentially driven by the left or the right eye, a property called ocular
dominance (OD).

The sheet of neural tissue that is formed by the primary visual cortex contains a topographic
representation of visual space. This means that neighboring neurons in V1 respond to stimuli
coming from neighboring spots in the visual field. Along the vertical axis through the cortical
layers, spatial receptive field properties of neurons are very similar. Hence, there is a more or less
ordered mapping, called retinotopic map R(x) which maps the 2-dimensional cortical surface x
onto visual field coordinates R. While in some animals, e.g. tree shrews and mice, this mapping
is rather uniform [21–24], it has been found to be rather non-uniform in cats [25] and macaque
monkeys [26].

In contrast to neurons in the retina and LGN which are well-characterized by their spatial re-
ceptive field, neurons in V1 exhibit much more complex response properties. One such property,
namely ocular dominance, has already been mentioned above. A second important property is the
response to visual contours or bar stimuli of a particular orientation within the spatial receptive
field [27, 28]. This property is called orientation preference. The present thesis is exclusively con-
cerned with the spatial organization of the three response properties - spatial position, ocularity,
and orientation - of neurons in the primary visual cortex.
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1.2 Columnar organizations of visual response properties in primates
and carnivorans

In the primary visual cortex of carnivorans and primates, the response to orientations is spatially
organized into a 2-dimensional array of modules, called orientation columns1. An orientation
column is a local population of neurons extending through the entire cortical thickness that re-
spond to the same or similar orientation. Parallel to the cortical surface, orientation preference
varies smoothly from column to column [27, 28] apart from so-called pinwheel centers, around
which columns activated by different stimulus orientations are radially arranged like the spokes
of a wheel [40, 45–47]. The spatial pattern with which the preferred orientation changes parallel
to the cortical surface in carnivorans and primates is called orientation preference map (OPM).
Figure 1.2.1 shows a typical example of such an orientation map as revealed by optical imaging
of intrinsic signals [21, 46, 48] in tree shrew primary visual cortex. Figure 1.2.1a depicts the re-
sponses E(x|φ) to gratings recorded from V1 with orientations φ = {0◦, 45◦, 90◦, 135◦}. One can
summarize these responses by constructing a complex-valued field

z(x) = ∑
j

e2iφj E(x|φj) = e2iθ(x)|z(x)| .

The phase θ(x) = 1
2 arg z(x) then represents the preferred orientation at cortical position x, i.e.

the OPM. The magnitude |z(x)| is a measure for the selectivity of the responses at position x.
The OPM is visualized by plotting θ(x) and colorcoding the preferred orientation (Fig. 1.2.1b).
The OPM exhibits a roughly repetitive arrangement of preferred orientations, in which adjacent
columns preferring the same orientation are separated by a typical distance in the millimeter range
[21, 40, 46, 47, 49]. Within these repetitive arrangements, so-called linear zones (Fig. 1.2.1c, left)
with smooth progression of the preferred orientations as well as numerous pinwheel centers (Fig.
1.2.1c, right) are present. Mathematically, pinwheels are the zeros of the field z(x) and point-
singularities of the field θ(x) [50]. They come in two chiralities, depending on whether the pre-
ferred orientation rotates clockwise or counterclockwise around the pinwheel (Fig. 1.2.1c, right,
[50]).

Similar to orientation preference, ocular dominance (OD) in primates and carnivorans is organized
into columnar patterns. Figure 1.2.1d depicts the overall pattern of OD columns visualized by
transneural labeling of the afferents in layer IV from the ipsilateral eye with 3H-proline [29, 51].
Mathematically, the pattern of OD can be described by a real-valued field o(x) which is positive
at positions dominated by the contralateral eye, negative at positions dominated by the ipsilateral
eye, and close to zero for regions that are binocularly driven.

The spatial layout of OD columns is qualitatively different in cats compared to macaque monkeys
and humans (Fig. 1.2.1e,f). While in monkeys and humans, OD columns form parallel bands with
stripe-width in the millimeter range in large parts of the V1 surface area, they are more patchy and
spatially irregular in cat throughout the entire V1 [29, 51–53]. However, in both cats and monkeys,

1 More precisely, orientation columns have been found in several species of the primate order such as the squirrel
monkey [32], the macaque [33–35] and owl monkey [36, 37], the galago [38] and humans [39] as well as of the orders
Scandentia (tree shrews) [21] and Carnivora (carnivorans) such as the cat [28, 40] and the ferret [41–44]. Throughout
this thesis, primates and carnivorans is written instead of primates, carnivorans and tree shrews, for reasons of
readability.
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Figure 1. Optical imaging of intrinsic signals in tree shrew visual cortex. A, Difference images obtained for four stimulus angles (0!, 45!, 90!, 135!, shown in inset
of each panel) from one animal. Black areas of each panel indicate areas of cortex that were preferentially activated by a given stimulus, and light gray areas
indicate areas that were active during presentation of the orthogonal angle. The dashed line in the 90! panel indicates the approximate location of the V1/V2
border. B, Orientation preference map obtained by vector summation of data obtained for each angle. Orientation preference of each location is color-coded
according to the key shown below. C, Common features of the orientation preference maps. Portions of the orientation preference map shown in B have been
enlarged to demonstrate that the orientation preference maps contained both linear zones (left) and pinwheel arrangements (right).

Bosking et al. Specificity of Horizontal Connections in Striate Cortex J. Neurosci., March 15, 1997, 17(6):2112–2127 2115
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Materials and Methods). Figure 8 shows the spatial average com-
piled between patches and column borders in a representative area.
The bright central zone !500 !m in diameter (Fig. 8G) signifies that
relatively few column borders overlapped pixels located within

patches. This result indicates that patches are
situated within ocular dominance columns,
because they shun column borders. As a con-
trol, the spatial correlation was performed af-
ter rotating the column pattern by 90°. This
generated a low-contrast pattern with no geo-
metric structure (Fig. 8H). There was a signif-
icant difference between the variance of gray-
scale values of the pixels in the aligned versus
rotated spatial correlations ( p " 0.001, Lev-
ene’s test).

A different result was obtained, however,
in a separate region located at the same ec-
centricity on the other side of the horizontal
meridian, near the representation of the
lower vertical meridian. In this area, the col-
umns had a very distinctive appearance,
forming a fine maze rather than broad
stripes. These anomalous columns bore a
close resemblance to those identified in
some squirrel monkeys (Fig. 7, inset). To
confirm this impression, radially summed
Fourier spectra were plotted for the human
columns and the squirrel monkey columns.
They yielded similar power spectra, peaking
at a column width of !450 !m. Because col-
umns and patches are not aligned in the
squirrel monkey, we singled out this region
for analysis. A spatial cross-correlation
yielded a flat image, demonstrating no evi-
dence of alignment between patches and
columns (Fig. 9G). As a control, the cross-
correlation was repeated after rotating the
column pattern by 90° (Fig. 9H). There was
no significant difference in variance between
the aligned and rotated spatial averages
( p # 0.05, Levene’s test). From this compar-
ison, we conclude that, when human col-
umns lose their regular, stripe-like mor-
phology, their correlation with CO patches
can be lost.

Cortical representation of the macula
Within the representation of the central 15°,
the columns serving each eye occupied an
equal amount of cortex. However, from 15°
to the border of the monocular crescent, the
columns of the contralateral eye became
progressively larger, an effect also seen in the
macaque (LeVay et al., 1985; Horton and
Hocking, 1996b). In this peripheral binocu-
lar region of cortex, the columns of the con-
tralateral eye occupied 63% of layer 4C (Ta-
ble 1).

In every case, the representation of the
blind spot of the contralateral eye could be
discerned easily as an oval region in the mid-
dle of the cortex devoid of ocular dominance
columns. It provided a reliable retinotopic

data point: the intersection of the horizontal meridian and the 15°
eccentricity contour. The 15° eccentricity contour was extended
from the blind spot representation to the vertical meridian by
assuming equal cortical magnification for all polar angles (Van

Figure 5. Comparison of ocular dominance columns in the human and macaque. A, CO montage of layer 4C showing ocular
dominance columns after loss of the right eye in the right V1 of case 5. B, Thresholded columns. C, Macaque column pattern [Horton and
Hocking (1996b), their Fig. 3], magnified to equal the surface area of the human V1 illustrated above. The column patterns in these
human and macaque examples are extremely similar, but, in general, columns in humans exhibit greater heterogeneity.

Adams et al. Human Ocular Dominance Columns J. Neurosci., September 26, 2007 27(39):10391–10403

e

f

Figure 1.2.1: Orientation preference maps (OPMs) and ocular dominance (OD) maps in carnivoran and primate V1.
(a) Difference images obtained for the four angles 0◦, 45◦, 90◦, 135◦ of drifting gratings as revealed by optical imaging
of intrinsic signals in tree shrew V1 (mod. from [21]). Dark areas of each panel indicate areas that were preferentially
activated by a given stimulus. Light gray areas indicate areas that were active during presentation of the orthogonal
angle. (b) OPM obtained by vector summation of data in a. Orientation preference of each location is color-coded
according to the key below. (c) linear zones (left) and pinwheel arrangements (right) as common features in OPMs. (d)
Overall pattern of OD columns in cat visual cortex, visualized by transneural labeling of the afferents in layer IV from
the ipsilateral eye with 3H-proline. Scale bar equals 10mm. (mod. from[29]). (e) Overall pattern of OD columns in
macaque monkey, visualized with 3H-proline labeling (mod. from [30]). (f) Overall pattern of OD columns in human
V1, visualized by cytochrome oxidase histochemistry in subjects with monocular vision loss (mod. from [31]).
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Figure 1.2.2: Common design of orientation maps in ferret, tree shrew and galago. (a-c) Orientation maps recorded
with optical imaging of intrinsic signals in (a) ferret, (b) galago, and (c) tree shrew primary visual cortex. (d) Pinwheel
densities versus hypercolumn size in the three species. Solid lines indicate average pinwheel densities of the three
species. (e, f) Nearest neighbor distances for pinwheels of (e) arbitrary and (f) opposite and equal topological charge.
Black curves indicate fits to the data (mod. from [11]).

the pattern of ocular dominance columns exhibits a pronounced inter-individual variability [29]
and may even be qualitatively different in individuals of the same species [54, 55].

In contrast to the extreme inter-species variability in the spatial layout of ocular dominance pat-
terns, the pattern of orientation columns is very similar in the different species that have been
investigated so far [11, 21, 44, 46, 47, 49, 56]. Orientation columns always appear as organized by
a spatially complex aperiodic array of pinwheel centers. The arrangement of these pinwheel cen-
ters, although spatially irregular, has been shown to be statistically distinct from a pattern of ran-
domly positioned points [11] as well as from patterns of phase singularities in a random pattern of
preferred orientations [11, 57, 58] with spatial correlations identical to experimental observations
[11, 59]. This suggests that the layout of orientation columns and pinwheels, although spatially
aperiodic, follows a definite system of layout rules. In fact, recent comparative data strongly in-
dicates such a system of layout rules. Kaschube et al. [11] quantitatively compared pinwheel
arrangements in a large data set from ferret, galago, and tree shrew - three species widely sepa-
rated in the evolution of eutherian mammals (Fig. 1.2.2a-c). These authors found that the spatial
statistics of pinwheels are surprisingly invariant. In particular, the overall pinwheel density (Fig.
1.2.2d) was found to be virtually identical. Characterizing pinwheel layout on the scale of indi-
vidual hypercolumns, they found the distributions of nearest-neighbor pinwheel distances to be
almost indistinguishable in the three species (Fig. 1.2.2e,f). Similarly, the spatial configuration of
the superficial patch system [60] and the responses to drifting grating stimuli were recently found
to be very similar in cat and macaque monkey primary visual cortex [12], which further supports
common layout rules for orientation columns in carnivorans and primates.

Cortical columns can, in principle, exhibit almost perfectly repetitive order as exemplified by oc-



8 1 Fundamentals

Figure 1.3.1: Columnar arrangements vs. salt-and-
pepper layouts. (a) Cell-based orientation map
from 230µm depth in cat V1 obtained with two-
photon calcium imaging in vivo (from [61]). Se-
lective cells are colored according to their preferred
orientation. Orientation preferences are highly or-
dered around a pinwheel center. (b) Orientation
preferences as revealed by two-photon imaging in
rat visual cortex (from [13]) with no discernible lo-
cal spatial structure.

a b

ular dominance (OD) bands in the primate primary visual cortex (Fig. 1.2.1e,f). Therefore it is
a fundamental question for understanding visual cortical architecture, whether there are func-
tional requirements or constraints which lead to layout principles that prohibit a spatially exactly
periodic organization of orientation columns in primates and carnivorans and, instead, enforce
complex arrangements of these columns. This question is at the core of several chapters of the
present thesis.

1.3 Columnar versus salt-and-pepper arrangements

Recent progress in imaging techniques has revealed a fascinating dichotomy between carnivorans
and primates on the one hand and Glires on the other. Through two-photon calcium imaging
[62, 63], Ohki et al. were able to show [13] that while carnivorans and primates exhibit beautifully
ordered orientation preference maps up to single-cell scale (Fig. 1.3.1a), Glires apparently lack
any orderly arrangement of preferred orientations2 (Fig. 1.3.1b). The receptive fields of V1 cells
in rodents and lagomorphs, however, are very similar to those found in carnivorans and primates
[14, 66]. In particular the primary visual cortex of mice has recently attracted a lot of attention,
not least because of the promising genetic tools and methods available in mice to dissect cortical
circuits. The circuits underlying orientation selectivity in mice have been found to be intriguingly
unspecific. Orientation-selective neurons receive inputs with very different tunings even on the
same neuronal arbor (dendrite) so that adjacent dendritic segments are tuned to distinct orienta-
tions [68]. Inputs that share the same orientation preference are widely distributed throughout
the dendritic tree [68]. Somewhat contrary, connection probability between neurons seems related
to the similarity of visually driven neuronal activity. In mouse V1, neurons with the same prefer-
ence for oriented stimuli connect at higher rates, yet there is still a substantial fraction of strongly
connected neurons with orthogonal preferred orientation [15].

The apparent randomness of visual cortical networks in rodents and lagomorphs compared to
the highly ordered arrangements observed in carnivorans and primates together with their sim-
ilarities regarding response features is puzzling in many ways. How do the different types of

2 The lack of orderly arrangement of orientation preferences has been demonstrated since the 1970s in several species
of both Glires orders: (i) Rodentia (rodents), such as the rat [13, 64], the grey squirrel [14], and the mouse [65, 66] and
(ii) Lagomorpha (lagomorphs) such as the rabbit [67].
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Figure 1.4.1: Timeline of development of the visual system in (a) cats and (b) ferrets. Major events are plotted against
embryonic (E) and postnatal (P) age. At birth, the development of the ferret lags that of the cat by about 3 weeks. In
both species, plasticity dependent on visually driven activity sets on around the time of eye-opening, i.e. shortly after
maturation of the major response properties is completed (mod. from [69]).

circuit architecture process visual information? Can similar and well-established neural learning
mechanisms be taken as a basis to explain the two different designs? Have different general re-
quirements for a versatile and powerful cortical circuit architecture resulted in two fundamentally
different orientation preference layout designs during evolution? While numerous experimental
studies have quantitatively characterized the functional architecture of V1 in rodents and lago-
morphs, modelers so far still owe adequate explanations for their apparently random arrange-
ment of selectivities as well as their functional role. The results presented in Chapter 6 aim at
closing this gap, by constructing and analyzing models for the activity-dependent development
of orientation-selective cell arrangements that seemingly lack any spatial order.

1.4 Development and plasticity of visual cortical representations

How do the different types of functional organization emerge during the development of the ani-
mal? In fact, many aspects of the thalamo-cortical pathway in general and primary visual cortical
architecture in particular only emerge around the time of birth or thereafter. It is one of the old-
est and most controversial questions in neurobiology of vision to what extent the structure and
function of visual cortical circuits are determined by intrinsic factors such as genetic disposition,
and to what extent they can be influenced and shaped by the environment. Figure 1.4.1 illus-
trates some milestones of visual cortical development in the two most comprehensively studied
carnivoran species: cats (Fig. 1.4.1a) and ferrets (Fig. 1.4.1b). In both cats and ferrets, during
normal postnatal development, column representations emerge around the time of eye-opening
[42, 43, 70–72]. In the cat, ocular dominance can already be visualized at postnatal week 2 [71]
and a mature pattern of OD columns can be labeled over the full extent of V1 as early as week
3 [73, 74]. Orientation maps arise over roughly the same period [75]. In the ferret, Crowley and
Katz demonstrated segregated ocular dominance columns only few days after the innervation of
cortical layer 4. The emergence of cortical maps is accompanied by the formation and refinement
of a clustered network of long-range horizontal connections [21, 44, 76–78]. These patchy con-
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nections originate from an initially diffuse pattern of unbranched neuronal arbors and emerge
gradually through a process of selective axon elaboration and addition of new collaterals [79, 80].
Activity-dependent mechanisms guide this refinement [79, 81], yet the precise interplay between
the development of clustered horizontal projections and the emergence of orientation selectivity
is not understood. In Chapter 5, I study models in which the development of horizontal connec-
tions and orientation preference maps is viewed as a joint optimization (minimization) process
of an abstract energy functional. The model can also be used to examine what types of biologi-
cally plausible long-range interactions are able to mediate the stabilization of realistic orientation
preference maps during development.

Both, orientation preference maps and ocular dominance maps have been shown to remain plastic
over a phase of at least several weeks after their emergence [70, 75]. During this so-called critical
period, primary visual cortical circuits are particularly susceptible to artificial manipulations of
visual inputs [69, 71, 82, 83]. For instance, stripe-rearing of kittens during this period can cause
up to twice as much cortical surface area to be devoted to the experienced orientations [84, 85].
Similarly, if vision is occluded in one of the two eyes, geniculocortical afferents from the deprived
eye shrink and afferent arbors from the non-deprived eye show significant expansion [86, 87].
In the same line, in macaque monkeys, periods of monocular lid-suture can result in dramatic
changes in the distribution of input from the two eyes into cortical layer 4 in favor of the open eye
if applied during the critical period [88, 89].

It is highly remarkable that the onset of the critical period is delayed relatively to the onset of
visual experience [69, 90] (cf. Fig. 1.4.1a,b), and key features of neuronal response properties are
already present in almost adult form well before the onset of the critical period [44, 70, 71, 78,
91]. However, this poses a long-standing enigma: What is the functional role of relatively strong
plasticity at such a late stage of development and how is this plasticity during normal postnatal
development involved in shaping the adult cortical circuitry [92, 93]? A recent study has offered
an interesting possible answer to this question, suggesting that one function of critical-period
plasticity is to progressively coordinate the functional architectures of different cortical areas -
even across hemispheres [94]. In Chapter 2, I explore an alternative or complementary hypothesis
based on the observation that the primary visual cortex after establishing mature cortical feature
representations is still growing in size.

Growth represents a natural constraint arising during development, yet it has received relatively
little attention when considering visual cortical development of mammals. Cortical area increase
can be considerable during postnatal development. The human brain, for instance, weighs on
average 350 g in newborns and 1,400 g in adult males [95]. The neocortical volume of the cat in-
creases postnatally from ≈1,000 mm3 to ≈4,500 mm3 in adulthood [96]. Consistently, the surface
area of cat V1 increases postnatally by a factor of 2.5 between week 1 and week 12 [97]. Impor-
tantly, this growth takes place without a significant change in the number of neurons but is mainly
due to the generation of glial cells, the addition of more vasculature and connective tissue, and the
myelinization of axons. To a lesser extent it also reflects the outgrowth and elaboration of axonal
and dendritic processes [98]. Therefore, the distance between any two neuronal cell bodies in cat
V1, for instance, grows on average by a factor of 1.6 during postnatal development. In Chapter
2, I study a simple yet fundamental question: What happens to cortical columns when the cor-
tex is growing in size? Do neuronal processes such as axons and dendrites simply elongate and
columns merely expand or are larger changes needed to accommodate this growth? To answer
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these questions, I combine the analysis of imaging data from acute and chronic imaging experi-
ments in cats, obtained during a period of substantial postnatal growth with the investigation of
a classical optimization model for the activity-dependent formation of OD columns considered
under the constraint of a growing domain [99].

Is the development of salt-and-pepper arrangements in rodent and lagomorph V1 distinct from
the development of columnar representations in carnivorans and primates? Several early studies
have shown that essential features of postnatal cortical maturation are very similar to carnivorans
and primates. Response properties develop gradually during the first weeks after birth and dra-
matic shifts of the ocular dominance distributions obtained by monocular deprivations as well
as shifts in orientation preference obtained by dark rearing have been observed during a criti-
cal period delayed relatively to the emergence of feature responsiveness [100, 101]. Similarly, a
critical period for monocular deprivation has been identified [102, 103]. In the mouse, critical pe-
riods might even extend over weeks and month after mature selectivities have been established
[104, 105]. There seem to be, however, some interesting differences between the postnatal develop-
ment of rodents and carnivorans or primates. In mouse, for example, activity-dependent changes
induced by normal visual experience during the critical period, have been shown to gradually
match eye-specific inputs in the cortex [106]. In this way, neurons can rotate their orientation
preferences up to at least 45◦ during postnatal development. Another such difference concerns
direction selectivity, i.e. the selective response of neurons not just to gratings with a particular
orientation but drifting into a particular direction. In contrast to observations in ferret V1 [91],
in mouse just after eye-opening nearly all orientation-selective neurons appear to be also direc-
tion selective and direction selectivity develops normally in dark-reared animals [107]. In addi-
tion, at eye-opening, most selective cells respond to gratings of drifting in anterodorsal directions.
The fraction of neurons responding to drifting gratings, however, increases during the following
weeks of normal development and an equal representation of all orientations is observed in ma-
ture animals. As shown in Chapter 6, these findings can easily be included into a mathematical
model for the self-organization of orientation-selective responses in rodent and lagomorph V1 by
choosing appropriate initial conditions for the developmental dynamics.

1.5 Modeling the development of visual cortical architecture

Modeling the emergence of columnar patterns in the primary visual cortex (V1) of carnivorans,
primates, and their close relatives has been a challenging task since their discovery. Hubel and
Wiesel shortly after their discovery of orientation selectivity [27] proposed genetical predetermi-
nation of the required circuitry [108]. This view, however, was hard to reconcile with the high
degree of plasticity of the functional cortical architecture demonstrated later in numerous types
of deprivation experiments (see above). Additionally, as already recognized by von der Mals-
burg in 1973 [109], the amount of genetic information necessary to specify all the synaptic con-
tacts between the different neuronal layers involved very likely exceeds the capacity of the DNA.
Therefore, starting with the seminal paper by von der Malsburg [109], the study of mechanisms
of self-organization has been a promising route to understand cortical development. Three main
self-organization modeling approaches have been pursued to understand the development of vi-
sual cortical representation, which mainly differ in their degree of realism.
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In the first approach, networks of a large number of individual neuronal elements are modeled
by specifying initial feed-forward and lateral excitatory and inhibitory synaptic weights as well as
activity-dependent learning rules for the updates of these [109–118]. As the high degree of realism
in these models comes hand in hand with a high degree of complexity, it is then mostly assessed
by numerical simulations whether the specified mechanisms of self-organization are capable of
generating the experimentally observed functional architecture in the cortical layer. Furthermore,
the often large number of parameters in these models makes it hard to reveal simple and general
principles which might suffice to explain the emergence of functional V1 circuits. In the second
approach, one takes the opposite view and starts with general principles of neural learning and
observations about the emergence of visual cortical representations to postulate simple and highly
abstract mathematical models for the development of feature maps in V1 (e.g. [50, 119–130]). Very
often, only the development of a single feature representation, e.g. the orientation preference
map, is considered [11, 50, 122, 123, 126] and plausible symmetry assumptions, such as translation
symmetry, rotation symmetry or eye inversion symmetry are used to restrict the functional form
of possible dynamical equations and to enable the analytical calculation of stationary solutions.
It is argued that essential features of the dynamics of pattern forming systems are robust with
respect to the precise form of the equations. The power of such order parameter approaches lies
in their simplicity and analytical tractability. Their disadvantage, however, is that the mechanisms
postulated are often general to such degree that they constrain properties of possible mechanisms
of cortical development without specifying whether these mechanism are activity-dependent or
genetically based or both [131]. Additionally, despite some of the models being variational, i.e.
the dynamics minimizes (optimizes) a certain cost function, only little can be learned about the
functional role of feature maps in V1 because cost functions are too abstract to relate them to
cortical function.

The third type of approach aims at striking a balance between the complexity of detailed net-
work models and the lack of specificity of abstract order parameter models. Here, one proposes
simple optimization principles, such as the minimization of the total length of neuronal arbors
[132, 133], and compares (mostly numerically) obtained optimal solutions to experimentally ob-
served cortical maps. A paradigmatic example of such an approach that is studied in great detail
in this dissertation is called dimension reduction. In dimension reduction approaches, the re-
ceptive fields of individual units are also described by only a few variables, called features. The
columnar cortical organization is then assumed to emerge as an optimal trade-off between the
coverage of the space of visual stimulus features and the continuity of their cortical representation
[134–142]. On the one hand, each combination of stimulus features should be well represented in
a cortical map to avoid ‘blindness’ to stimuli with particular feature combinations. On the other
hand, the wiring cost to establish connections within the feature map should be kept low. This
can be achieved if neurons that are physically close in the cortex tend to have similar stimulus
preferences. These two design goals generally compete with each other. The better a cortical rep-
resentation covers the stimulus space, the more discontinuous it has to be. Some of the dimension
reduction models, such as the Elastic Network model [134, 142, 143] or the model by Scherf et al.
[144] possess an explicit energy functional to minimize. Others, like Kohonen’s self-organizing
feature map (SOFM) [145, 146] have been proven to lack such a functional [147, 148], yet are still
conceived as some kind of optimization model. An explicit variational structure of models for
the development of cortical representations allows for the formulation of a gradient descent dy-
namics. The emergence of cortical selectivity patterns and their convergence toward a minimal
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energy state in this dynamics often serves as a model for an optimization process taking place in
postnatal development. Interestingly, the developmental dynamics of dimension reduction mod-
els, although biologically not very detailed, constitute a straightforward idealization of the two
most important aspects of activity-dependent modifications: (i) afferent activity patterns induce
activity patterns in the visual cortex and (ii) the selectivities of activated neurons are modified
as a function of presynaptic and postsynaptic activity according to Hebbian learning rules [149].
Despite the great amount of idealization in dimension reduction models, a rigorous mathematical
analysis of optimal solutions of these models and their dynamics has often been impeded by the
mathematical difficulties of these problems.

This thesis is exclusively concerned with models of the second and third type. In Chapter 3, I de-
velop a mathematical formalism to analytically calculate the optimal solutions predicted by one
of the most prominent dimension reduction model, the Elastic Network model. In Chapter 5, I
study generalizations of an abstract order parameter model, introduced by Wolf [123], to inves-
tigate how different types of biologically plausible long-range interactions might influence the
formation of OPMs and shape their layout during development. Both models are shortly outlined
below.

Finally, it needs to be pointed out that there are currently no simple optimization principles avail-
able which could explain the emergence and stabilization of salt-and-pepper layouts in rodents
and lagomorphs. The only two modeling studies on rodent and lagomorph V1 architecture have
addressed this issue using detailed neural networks with balanced excitatory and inhibitory ac-
tivity [150–152].

1.5.1 The Wolf model

Model definition

Wolf approached the problem of modeling orientation map formation and development from
a rather abstract dynamical systems perspective. An initially non-selective 2-dimensional sheet
of neurons acquires a roughly periodic pattern of selectivities that stabilizes after its emergence.
This process is reminiscent of many systems exhibiting a pattern forming instability, such as in
Rayleigh-Benard convection, where a homogeneous state loses stability with respect to a finite
band of Fourier modes. Wolf employed the fact that essential properties of pattern forming sys-
tems are often independent of model-specific details but rather depend on the symmetries (or
equivariances) of the system [153, 154]. Starting with an equation of the type

∂tz(x) = F[z(·)] , (1.5.1)

equivariances restrict possible choices of F[z(·)]. Wolf assumed equivariance with respect to trans-
lations

T̂yz(x) = z(x + y)

rotations

R̂βz(x) = e2iβz
�
Ω−βx

�
,
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with 2×2 rotation matrix

Ωβ =

�
cos β − sin β
sin β cos β

�

and reflections

P̂z(x) = z̄(Ψx) ,

where Ψ = diag(−1, 1) is the 2×2 reflection matrix. In terms of the right hand side of the dynamics
(Eq. (1.5.1)), equivariance means that

T̂yF[z] = F[T̂yz] (1.5.2)
R̂βF[z] = F[R̂βz] (1.5.3)

P̂F[z] = F[P̂z] . (1.5.4)

It immediately follows that solutions of the model which can be converted into one another by
translation, rotation, or reflection of the cortical layers represent equivalent model solutions, by
construction. Wolf furthermore assumed the dynamics to be equivariant with respect to shifts in
orientation Sφz(x) = eiφz(x), i.e.,

eiφFz[z, r] = Fz[eiφz, r] . (1.5.5)

Thus, two patterns are also equivalent solutions of the model if their layout of orientation domains
is identical, but the preferred orientations differ everywhere by the same constant angle. To spec-
ify an analytically tractable instance of F[z(·)], Wolf incorporated basic features of intracortical
connectivity into the model and restricted himself to a linear and a cubic term:

∂tz(x) = LSH [z] + N3[z, z, z̄] . (1.5.6)

The linear term LSH was chosen as the Swift-Hohenberg operator LSH [z] = r − (kc + ∆)2, well-
known to phenomenologically describe a system exhibiting a supercritical bifurcation where the
homogeneous state loses stability with respect to a finite wavenumber [153–155]. As cubic non-
linearities, Wolf included both local and long-local interaction terms, inspired by the long-range
orientation-selective horizontal connectivity found in V1 (e.g. [21, 44, 156–158]):

N3[z, z, z̄] = (1 − g)|z(x)|2z(x)− (2 − g)
2πσ2

ˆ
d2y e−(x−y)2/2σ2

�
|z(y)|2z(x) +

1
2

z̄(x)z2(y)
�

.

The Wolf model is a variational model, i.e. ∂tz(x) = − δ
δz̄(x) F [z], with energy functional

F [z] = −
ˆ

d2x r|z(x)|2 +
ˆ

d2x
����∆ + k2

c
�

z(x)
��2 − (1 − g)

2
|z(x)|4

�

+
(2 − g)
4πσ2

¨
d2y d2x

�
|z(x)|2e−(x−y)2/2σ2 |z(y)|2 + 1

2
z̄2(x)

ˆ
d2y e−(x−y)2/2σ2

z2(y)
�

.

The Wolf model is the first model for OPM development which was rigorously shown to exhibit
quasiperiodic optima that quantitatively resemble experimentally observed OPMs [11, 123, 159].
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Figure 1.5.1: Essentially complex planforms (ECPs) and their stabilization by long-range interactions in the Wolf-model.
(a) The family of ECPs (redrawn from [123]). The number of nonzero wave vectors is indicated by n. The index i
enumerates non-equivalent configurations of wave vectors with the same n, starting with i = 0 for the most anisotropic
planform. For n = 3, 5, and 15, there are 2, 4, and 612 different ECPs, respectively. OPM layouts become more irregular
with increasing n. (b) Pinwheel densities of n-ECPs (from [123]). (c) Phase diagram of the Wolf-model. The graph
shows regions in the g − σ/Λ-plane, where n-ECPs have minimal energy.

Because of the simplicity of the model, its approximate stationary solutions close to pattern for-
mation threshold as well as their stability properties can be characterized completely by a mathe-
matical formalism called weakly nonlinear analysis, which is outlined in the following.

Weakly nonlinear analysis

The order parameter model proposed by Wolf represents a partial integro-differential equation
that is in general impossible to solve analytically. However, the symmetries (Eqs. (1.5.2)-(1.5.5))
can be employed to analytically determine two simple fixed-points of both dynamics: (i) the ho-
mogeneous non-selective state z(x) = 0 and (ii) the single Fourier mode pinwheel free orientation
stripe pattern z(x) = A0eikx (Fig. 1.5.1a). Other solutions may only be determined in approximate
form. To compute additional fixed points of (1.5.6), Wolf examined the stability of so-called plan-
forms [153, 154, 160], i.e. patterns that are composed of a finite number of Fourier components:

z(x) = ∑
j

Aj(t)eikx .

When the dynamics is close to a finite wavelength instability, the essential Fourier components
of the emerging pattern are located on the critical circle |kj| = kc. For a discrete number of N
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Fourier components of z(x) whose wave vectors lie equally spaced on the critical circle, the most
general system of amplitude equations compatible with the symmetry assumptions has the form
[123, 161]

Ȧi = rAi − Ai

N

∑
j=1

gij|Aj|2 − Āi−
N

∑
j=1

fij Aj Aj− , (1.5.7)

where j− denotes the index of the mode antiparallel to the mode j, kj = −kj− , and the coefficients
(ĝ)ij = gij = (1 − 1

2 δij)g(|αi − αj|) and ( f̂ )ij = fij = (1 − δij − δi− j) f (|αi − αj|) only depend on the
angle |αi − αj| between mode i and j. The angle-dependent interaction functions g(α) and f (α)
are obtained from the cubic nonlinearity Nz

3 [z, z, z̄] by a multi-scale expansion [153, 160] as

g(α) = −e−ik0x
�

Nz
3(e

ik0x, eih(α)x, e−ih(α)x)

+e−ik0x Nz
3(e

ih(α)x, e−ih(α)x, eik0x)
�

(1.5.8)

f (α) = −1
2

e−ik0x
�

Nz
3(e

ih(α)x, e−ih(α)x, eik0x)

+e−ik0x Nz
3(, e−ih(α)x, eih(α)x, eik0x)

�
, (1.5.9)

where k0 = kc(1, 0) and h(α) = kc(cos α, sin α). By definition, both angle-dependent interaction
functions are 2π-periodic. The function f (α) is also periodic with a period of π since the right
hand side of Equation (1.5.9) is invariant with respect to the transformation h(α) → h(α + π) =
−h(α). If the cubic nonlinearity gsr Nlocal [z] + glr N3[z, z, z̄] obeys the so-called permutation sym-
metry

Nz
3 [u, v, w] = Nz

3 [w, u, v] , (1.5.10)

the function g(α) is π-periodic as well (cf. also [162]). In this case, it can be shown that all real-
valued solutions of the amplitude equations are intrinsically unstable [123, 161]. The dynamics
of the amplitude as given by Equation (1.5.7) is potential if gij and fij are real-valued. The corre-
sponding energy is

UA = −r
N

∑
i=1

|Ai|2 +
1
2

N

∑
i, j=1

gij|Ai|2|Aj|2 +
1
2

N

∑
i, j=1

fij Āi Āi− Aj Aj− . (1.5.11)

What are nontrivial stationary solutions of these dynamic equations? The above orientation stripe
solution with one single nonzero wave vector z(x) = A0eikx and amplitude

|A0|2 =
r

gii
(1.5.12)

is the simplest such solution. In [123], the family of so-called essentially complex planforms (ECPs)
has been introduced as solutions of Eq. (1.5.7). This solution class encompasses a large variety of
quasiperiodic OPM layouts and is therefore an suitable candidate solution class for models of
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OPM development. An n-ECP solution is given by

z(x) =
n

∑
j=1

Ajeiljkjx ,

with n wave vectors kj = kc(cos(π j/n), sin(π j/n)) distributed equidistantly on the upper half of
the critical circle, complex amplitudes Aj and lj = ±1 determining whether the mode with wave
vector kj or −kj is active (nonzero). As these planforms cannot realize a real-valued function
they are called essentially complex [123]. For an n-ECP, the third term on the right hand side of
Equation (1.5.7) vanishes and the amplitude equations for the active modes Ai reduce to a system
of Landau equations

Ȧi = rAi − Ai

n

∑
j=1

gij|Aj|2 ,

where gij is the n × n-coupling matrix for the active modes. Consequently, the stationary ampli-
tudes obey

|Ai|2 = r
n

∑
j=1

�
g−1

�
ij . (1.5.13)

The energy of an n-ECP is given by

UECP = −1
2 ∑

i,j

�
g−1

�

ij
. (1.5.14)

The family of n-ECP solutions is depicted in Figure 1.5.1a. The 1-ECP corresponds to the pinwheel-
free stripe pattern. For fixed n ≥ 3, there are multiple planforms not related by symmetry oper-
ations, which considerably differ in their spatial layouts. For n ≥ 4, the patterns are spatially
quasi-periodic. Figure 1.5.1b depicts the pinwheel densities of planform solutions as a function of
the number of active modes. For n → ∞, the average pinwheel density of the set of n-ECPs ap-
proaches π [11, 94, 163]. For n ≥ 8, the family of n-ECPs has been shown to accurately reproduce
the pinwheel statistics found in experimentally measured OPMs (see Fig. 1.2.2 and [11, 159]). Fig.
1.5.1c shows the phase diagram of the Wolf model as obtained with the above introduced weakly
nonlinear analysis. Shown are the regions in parameter space in which n-ECPs have minimal en-
ergy. ECP solutions with the same number of active modes are energetically degenerate due to
the permutation symmetry (Eq. (1.5.10)) exhibited by the model [123]. The main observation is
that realistic aperiodic OPM layouts are stable solutions of the dynamics (Eq. (1.5.6)) if non-local
interactions are sufficiently strong and long-ranged. In Chapter 5, I generalize and extend these
results by considering optimization models for the joint development of the system of long-range
tangential connections and OPMs which include a variety of long-range interaction types.

I conclude this section by noting that the Shift symmetry assumption (Eq. (1.5.5)) has been chal-
lenged by recent investigations [58, 122, 124, 126, 164, 165] and dropping this assumption appears
to have interesting effects on pattern formation dynamics and the spatial layout of stationary solu-
tions [58, 126]. However, for reasons of simplicity, throughout this thesis, Shift-symmetric model
instances are considered.
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Figure 1.5.2: Retinotopic distortions and OPMs to-
gether form a dimension reducing mapping in the
classical Elastic Network (EN) model (mod. from
[134]). Left: Map in visual space, simultaneously
showing the retinotopic distortions and the rate of
change of preferred orientation (filled squares). The
distorted grid represents the cortical array of cells.
Each grid intersection is at the receptive field center
of the corresponding cell. The size of the squares is
proportional to the rate of change of the preferred
orientations. Right: OPM obtained in a the same
numerical simulation of the EN model.

1.5.2 The Elastic Network model

The Wolf model establishes that the refinement of the visual cortical architecture and the postnatal
emergence of orientation preference maps can be modeled as a dynamical optimization process.
Yet, given its high level of abstraction, many questions remain unanswered: How does the typical
scale arise during postnatal development? What functional significance does it have? Does the
observed aperiodic layout of OPMs serve a specific purpose in visual information processing?
These questions can only be answered by more detailed optimization models which postulate
explicit functional requirements for primary visual cortical architecture and whose analysis turns
out to be more difficult. One of the most promising optimization models of such type is the
so-called Elastic Network (EN) model first introduced by Durbin and Mitchison [134]. In this
dimension reduction model, the columnar cortical organization is hypothesized to represent an
optimal trade-off between the coverage of the space of visual stimulus features and the continuity
of their cortical representation [134–142] (cf. Sec. 1.5). The EN model has been used in numerous
numerical studies, and good qualitative agreement between the layout of numerically obtained
dimension reducing maps and experimental observations have been reported (e.g. [134, 140, 141,
143], cf. Fig. 1.5.2). Yet comprehensive analytical investigations of this model and, in particular,
the determination of its optimal solutions are still missing.

In Chapter 3, I give a mathematical analysis of the EN model for the joint optimization of po-
sition and orientation selectivity. In this classical version of the EN model, the retinotopic map
(RM) is represented by a mapping R(x) = (R1(x), R2(x)) which describes the receptive field cen-
ter position of a neuron at cortical position x. Decomposing the retinotopic map into an affine
transformation x �→ X from cortical to visual field coordinates and a superimposed vector-field of
retinotopic distortions r(x) yields

R(x) = X + r(x)

with appropriately chosen units for x and R. The OPM is represented by a second complex-
valued scalar field z(x) as introduced above. Solving the EN model requires to find pairs of maps
{r(x), z(x)} that represent an optimal compromise between stimulus coverage and map continuity
(Fig. 1.5.2). This is achieved by minimizing a free energy functional

F [z, r] = σ2C[z, r] +R[z, r] (1.5.15)

in which the functional C measures the coverage of a stimulus space and the functional R the
continuity of its cortical representation. The stimulus space is defined by an ensemble {S} of
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idealized point-like stimuli, each described by two features: sz = |sz|e2iθ and sr = (sx,, sy) which
specify the orientation θ of the stimulus and its position in visual space sr. C and R are given by

C[z, r] = −
�

ln
ˆ

d2y e−(|sz−z(y)|2+|sr−X−r(y)|2)/2σ2
�

S

R[z, r] =
1
2

ˆ
d2y η �∇z(y)�2 + ηr

2

∑
j=1

��∇rj(y)
��2 ,

with ∇ = (∂x, ∂y)T, and η ∈ [0, 1]. The ratios σ2/η and σ2/ηr control the relative strength of
the coverage term versus the continuity term for OPM and RM, respectively. �· · · �S denotes the
average over the ensemble of stimuli. Minima of the energy functional F are stable fixed points
of the gradient descent dynamics

∂tz(x) = −2
δF [z, r]
δz̄(x)

= �[sz − z(x)] e(x, S, z, r)�S + η � z(x) (1.5.16)

∂tr(x) = −δF [z, r]
δr(x)

= �[sr − X − r(x)] e(x, S, z, r)�S + ηr � r(x) , (1.5.17)

where e(x, S, z, r) is given by

e(x, S, z, r) =
e−(|sr−X−r(x)|2)/2σ2 e−(|sz−z(x)|2)/2σ2

´
d2y e−(|sr−X−r(y)|2)/2σ2 e−(|sz−z(y)|2)/2σ2 .

and ∆ is the Laplacian operator. This dynamics will be referred to as EN dynamics throughout
this thesis. When Equations (1.5.16,1.5.17) are viewed as a learning dynamics, e(x, S, z, r) repre-
sents the activity pattern, evoked by a stimulus S = (sr, sz) in a model cortex with retinotopic
distortions r(x) and OPM z(x). The development of the two cortical maps is then driven by an en-
semble of stimuli. Each stimulus S is assumed to cause a small plastic change in the receptive field
parameters at activated locations, which is proportional to their response e(x, S, z, r). The change
is such that the matching between receptive fields and afferent activity patterns is enhanced. This
represents a classical Hebbian learning scheme [142, 149, 166]. The Laplacian term can be derived
from interactions mediated by lateral spread of activity through excitatory cortical connections
[144].

In Chapter 3, I develop a mathematical formalism to compute approximate fixed-points of the
above coupled dynamics of retinotopic distortions and orientation preference maps via weakly
nonlinear analysis (cf. Sec. 1.5.1). This enables a precise characterization of optimal dimension
reducing mappings predicted by the EN model and a quantitative comparison to experimentally
measured OPMs.
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1.6 Retinal constraints on the spatial structure of orientation prefer-
ence maps

In an approach somehow opposing the various self-organization models for cortical development,
orientation-selective responses in V1 are viewed as a constraint imposed by the nature of retinal
inputs (relayed by the LGN) to the primary visual cortex. Recently, it has been shown that this
modeling approach makes distinct predictions as to the spatial arrangement of V1 orientation
columns [168]. To understand these implications, it is necessary to review some basic facts about
the response properties and spatial arrangements of RGCs in the mammalian retina.

There are two principle types of RGCs: those with ON-center receptive field that respond at the
onset of a small bright light centered in the right position (Fig. 1.6.1a, upper panels) and those with
OFF-center receptive field that respond at the offset of a small bright light (Fig. 1.6.1a, lower pan-
els). ON-center cells also respond at the offset of an annulus of light and OFF-center cells respond
at the onset of the annulus of light. Neither of the two cells responds well to an overall change in
brightness covering a large area. As Figure 1.6.1a illustrates, ON- and OFF-center ganglion cells
with superimposed receptive fields give complementary responses. When the ON-center cell re-
sponds strongly, the OFF-center cell is quiet and vice versa. ON- and OFF-receptive fields of RGCs
have been shown to be well-described by a difference of Gaussians [169]. Regarding their spatial
arrangement, Wässle and his collaborators have shown that RGCs of the cat are arranged in a
lattice-like fashion (also called RGC mosaics) with regular cell-to-cell spacings [167, 170] (see Fig.
1.6.1b). ON-center and OFF-center RGCs form their own lattices, and the ON- and OFF-lattices
are superimposed independently of each other [171]. Assuming that the signals from RGCs are re-
layed through the LGN without substantial modification (but see [20]), the ON/OFF-RGC mosaic
represents the pattern of visual input to the cortex. Thus, as already noticed by Wässle et al. [167],
the RGC mosaic may play an important role in constraining the construction of receptive fields
in visual cortical areas such as V1 [167]. Based on the results by Wässle and co-workers, Soodak
modeled receptive fields at visual pathway stages beyond the retina as a convergence of Gaussian
subunits [172]. He showed that a great variety of realistic receptive fields including orientation-
selective ones can be obtained by just a linear summation of Gaussian subunit responses. Using
the lattice structure of the ON-cell and OFF-cell mosaics, Soodak furthermore demonstrated that
such a purely feedforward theory of orientation preference also predicts its continuous spatial ar-
rangement as observed in V1 of carnivorans and primates [173]. Experimental support for OPM
models based on the receptive field arrangement of ON- and OFF-LGN inputs was provided by a
study in which the preferred orientation of a V1 column was shown to be rather well-predicted by
calculating the population receptive field of its thalamic inputs [174] (see also [175]). In a series of
papers, Ringach and co-workers have further elaborated Soodak’s hypothesis to account for the
precise functional organization of iso-orientation domains in V1 into OPMs [168, 176, 177]. Finally,
a very recent study by Paik and Ringach advances the above theoretical results by proposing how
maps with a typical column spacing can arise in feedforward models for orientation preference
via a Moiré interference mechanism between the mosaic of ON-cells and the mosaic of OFF-cells
[168, 178] (cf. Fig. 1.6.1c). Assuming that both of these mosaics have hexagonal statistics, the re-
sulting Moiré interference pattern exhibits a hexagonal arrangement of orientation columns [179]
with a typical column spacing, an example of which is depicted in Figure 1.6.1d. In support of
their model, Paik and Ringach presented evidence for hexagonal order in cortical OPMs of tree
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Figure 1.6.1: Hexagonal orientation maps by Moiré interference between ON- and OFF-RGC mosaics. (a) Schematic
illustration of the two principle response types of ON-center (upper) and OFF-center RGCs. The upper curve on the
right shows a time course of a light stimulus with light either in the center, the surround, or both. Spike trains below
indicate typical responses of ON- and OFF-cells. (b) Mosaic formed by the ON-cells in the cat retina (from [167]).
Cell positions are arranged in a lattice-like mosaic with regular cell-to-cell spacings. (c) (Left) The superposition of
two hexagonal lattices results in a periodic, hexagonal interference pattern. (Right) Pooling of inputs from an RGC
dipole results in oriented simple-cell receptive fields with side-by-side ON- and OFF-subregions (mod. from [168]). (d)
Hexagonal orientation map, predicted by the Moiré interference patterns between ON- and OFF-RGC mosaics (mod.
from [168]).
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shrews, macaque monkeys, ferrets, and cats [168].

It is noteworthy that both theories, the self-organization model with long-range interactions by
Wolf [123] and the theory of Moiré interference patterns by Ringach and co-workers [168] make
very different predictions about the spatial arrangement of orientation columns. In the Wolf
model, aperiodic pinwheel-rich states that lack any hexagonal symmetry by definition are pre-
dicted. The average pinwheel density for these states approaches π and distinct nearest neighbor
pinwheel statistics are predicted. These predictions were quantitatively confirmed in a large data
set of orientation maps of tree shrews, galagos, and ferrets [11, 159]. In contrast, Paik & Ringach
observed a predominantly hexagonal spatial arrangement of orientation maps in a small set of
experimental maps. Reconciling the above contradictory findings represents an obvious essential
step for understanding the general principles that shape the layout of functional visual cortical
organization. This step is carried out in Chapter 4 through the analysis of a large data set of ori-
entation maps (N>90 maps) from tree shrews, galagos, and ferrets in the search for signatures of
hexagonal organization. It should be emphasized at this point that about half of the theoretical
studies on the self-organization of OPMs in the past have predicted different types of hexagonal
organizations [109, 118, 125, 129], including the earliest one almost 40 years ago [109]. Hence,
hexagonal structure in OPMs, if present, does not distinguish the feedforward theory of OPMs as
Moiré interference patterns from many other models for self-organized orientation map develop-
ment. In view of this, the results of Chapter 4 are not only of importance for resolving the puzzling
contradictions between the findings of Paik & Ringach and Kaschube et al.. They also check the
predictions of a large number of past theoretical studies on the development of OPMs.
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Many cortical areas increase in size considerably during postnatal
development, progressively displacing neuronal cell bodies from
each other. At present, little is known about how cortical growth
affects the development of neuronal circuits. Here, in acute and
chronic experiments, we study the layout of ocular dominance (OD)
columns in cat primary visual cortex during a period of substantial
postnatal growth. We find that despite a considerable size increase
of primary visual cortext, the spacing between columns is largely
preserved. In contrast, their spatial arrangement changes system-
atically over this period. Whereas in young animals columns are
more band-like, layouts become more isotropic in mature animals.
We propose a novel mechanism of growth-induced reorganization
that is based on the “zigzag instability,” a dynamical instability ob-
served in several inanimate pattern forming systems. We argue
that this mechanism is inherent to a wide class of models for
the activity-dependent formation of OD columns. Analyzing one
representative of this class, the Elastic Network model, we show
that this mechanism can account for the preservation of column
spacing and the specific mode of reorganization of OD columns
that we observe. We conclude that column width is preserved
by systematic reorganization of neuronal selectivities during corti-
cal expansion and that this reorganization is well described by the
zigzag instability. Our work suggests that cortical circuits may re-
main plastic for an extended period in development to facilitate
the modification of neuronal circuits to adjust for cortical growth.

cortical growth ∣ ocular dominance columns ∣ postnatal development ∣
critical period ∣ zigzag instability

The brain of most mammalian species grows substantially dur-
ing postnatal development without a significant change in the

number of neurons. The human brain, for instance, weighs on
average 350 g in newborns and 1,400 g in adult males (1). In
cat, the neocortical volume increases from ≈1;000 mm3 at birth
to ≈4;500 mm3 in adulthood (2). Consistently, the surface area of
cat primary visual cortex (area 17 ¼ V1) increases postnatally by
a factor of 2.5 between week 1 and week 12 (3). This size increase
implies that the distance between any two neuronal cell bodies
grows on average by a factor of 1.6 during postnatal development.
Do neuronal processes such as axons and dendrites simply elon-
gate or are larger changes needed to accommodate this growth?
It is not known at present how the brain achieves permanent
adjustment of its functional wiring to the changing physical pro-
portions while at the same time being fully functional at every
moment. Whereas the importance of mechanical factors is appre-
ciated in a number of growth-related phenomena in biology such
as morphogenesis (4), heart development (5), and tumor growth
(6), their possible impact on functional aspects of neural circuits
has received relatively little attention.

In cat V1, much of the growth takes place during a period in
which most parts of the visual field are already represented (7)
and many neurons have already reached fairly mature levels of
selectivity. For instance, the selective response of visual cortical
neurons to inputs from one eye or the other, called ocular
dominance (OD), can already be visualized at postnatal week

2 in cat V1 (8) (Fig. 1A). OD is organized into columns that
can be labeled over the full extent of V1 as early as week 3 (9)
(Fig. 1B). For these properties, this system is well suited for
studying the impact of cortical growth on neural circuitry.

What happens to cortical columns when the cortex is growing
in size? The seemingly simplest scenario, in which new columns
are inserted into the cortex, appears rather implausible because
the number of neurons remains largely constant during this
period (10). In fact, most of the area increase is due to the gen-
eration of glial cells, the addition of more vasculature and con-
nective tissue, and the myelinization of axons. To a lesser extent it
also reflects the outgrowth and elaboration of axonal and dendri-
tic processes (11). Therefore, a different scenario has been
suggested, sometimes referred to as the “balloon effect,” in which
columns expand by a similar factor as the surrounding cortical
tissue [see, e.g., (3)]. In this study, we start out by testing the
balloon hypothesis for the case of OD columns in cat visual
cortex. We show that the expected expansion of columns during
cortical growth does not take place. Instead, columnar layouts
reorganize over the considered period and become more isotro-
pic in older animals. These observations strongly argue against a
simple balloon-like expansion and imply that cortical circuits can
respond to the constraints arising during growth by a different as
yet unknown mechanism.

In order to account for our empirical observations, a fraction
of neurons must either shift their relative spatial location or, al-
ternatively, alter their functional response properties. Although
appealing, the former possibility is difficult to address at present,
because little is known about coherent motion of groups of neu-
rons in response to mechanical tension (12–14). In contrast, a
large body of experimental and theoretical work exists addressing
phenomena related to cortical plasticity and demonstrating the
impressive susceptibility of neural circuits to changes in activity
patterns, frequently in the context of OD (15, 16). Furthermore,
it is noteworthy that in the two most intensely studied animal
models for cortical plasticity, namely the cat and the mouse,
the period of brain and body growth coincide with and end at
about the same time as the period that allows for intense restruc-
turing of neuronal connections (17–19). In this study, we there-
fore explore the latter possibility and analyze the predicted
reorganization in models for the activity-dependent formation
of OD columns. Based on general properties of these models,
we develop a scenario of growth-induced cortical reorganization.
Characteristic features of this reorganization as well as the time
scale on which it evolves are in good agreement with the changes
in columnar layout we observe during postnatal growth in cat V1.
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Results
The Spacing of OD Columns Is Preserved Over a Period of Cortical
Growth.We first measured the size increase of cat V1 during early
postnatal development (Fig. 1A). We labeled complete layouts of
OD columns in V1 visualized by either 2-½14C#-deoxyglucose
(2-DG) or ½3H#-proline in kittens at different ages between post-
natal day (PD) 28 and PD98 (N ¼ 18 hemispheres, Fig. 1B). V1 is
readily discernible by its distinctive columnar activation pattern in
comparison to the labeling in surrounding cortical areas (20). In
particular, V1 is distinguished from the secondary visual cortex
(area 18 ¼ V2) based on its considerably smaller column spacing.
We observed a size increase of about a factor of 1.3 between two
groups centered at PD30 and PD70 (r ¼ 0.62, p < 0.006)
(Fig. 1C). To reduce possible influences of genetic variability (21),
we analyzed a littermate couple on PD30 and PD72. Consistent
with our previous results, V1 area is a factor of 1.46 larger in the
older kitten. Thus, our analyses confirm previous studies (3, 9)
by observing a considerable size increase of V1 during cat post-
natal development.

We next asked whether the spacing of OD columns increases
by a corresponding factor over this period. First, we measured the
column spacing Λ of 2-DG/proline-labeled OD patterns in N ¼
41 hemispheres between PD28 and PD98 (data includes the N ¼
18 hemispheres used for the analyses of V1 sizes). To obtain ac-
curate estimations of column spacings, we used the wavelet meth-
od introduced in (21, 20) (SI Appendix). As shown in Fig. 1D,
column spacings vary between 1.05 mm and 1.28 mm, but do
not show a significant increase over this period (r ¼ −0.034, p <
0.83). Consistent with this observation, the column spacings of

the two littermates differ by <10%, despite their difference in V1
size of 46%.

To follow the development of column spacings in individual
hemispheres, we visualized OD columns by chronic optical ima-
ging (N ¼ 3 hemispheres; total age range PD30–PD98) (Fig. 1E).
We quantified their spacings by the above wavelet method
(Fig. 1F). Whereas column spacings based on optical recordings
exhibit larger variability compared to the 2DG/proline data
(Fig. 1F), we found no systematic increase of column spacings
in individual animals, thus confirming the conclusions drawn
from the 2DG/proline data. Increased variability might be ex-
plained by the substantial intraareal variability of OD column
spacings (20) together with the fact that the imaged regions were
much smaller than V1 and may have shifted with age.

Taken together, both the 2-DG/proline data and the chronic
optical recordings demonstrate that the postnatal growth of cat
V1 is not accompanied by a corresponding increase in the spacing
of OD columns, strongly arguing against the balloon scenario.

OD Columns Reorganize During Cortical Growth.An increase of area
without a change in column spacing indicates an increase in the
number of hypercolumns. The concept of a hypercolumn is re-
lated to that of a functional module and denotes a cortical unit
containing a full set of values for any given set of receptive field
parameters (22). We roughly estimated the typical size of a
hypercolumn by Λ2 (SI Appendix) and defined the number of hy-
percolumns in a map by NHC ¼ A∕Λ2 (20), where A is its total
area. Fig. 1G shows that for the N ¼ 18 completely reconstructed
hemispheres from Fig. 1C the number of hypercolumns NHC in-
creases significantly (r ¼ 0.77, p < 0.0002). At PD28, V1 contains
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Fig. 1. Reorganization of OD columns in
cat V1 over a period of cortical growth.
(A) Growth of cat V1, the representation
of the visual hemifield (blue area, V1; red
area, central visual field representation;
HM, horizontal meridian; VM, vertical me-
ridian), and the time line of cat OD develop-
ment. Our dataset includes 2-DG/proline-
labeled hemispheres from kittens between
PD28 and PD98 (2-DG, N ¼ 37; proline,
N ¼ 4) and chronic optical recordings be-
tween PD30 and PD98 (crosses mark indivi-
dual data points). (B) Two representative
examples of OD layouts. Left, at PD30 (2-
DG); right, at PD60 (proline). Yellow lines
mark V1 borders (scale bar, 10 mm). (C) Area
sizes of V1 for the N ¼ 18 kittens with com-
plete reconstructions of V1 (red-marked
crosses in A). Blue-orange dots represent
averages over pools of sizes denoted by
the gray numbers. Gray crosses mark values
for individual animals. Gray line shows line-
ar regression (r ¼ 0.62, p < 0.006). (D) OD
column spacings Λ do not increase over this
period (r ¼ −0.034, p < 0.83). (E) OD col-
umns in cat V1 by intrinsic signal optical
imaging [same animal; high-pass filtered
(SI Appendix); scale bar, 1.5 mm]. (F) Column
spacings Λ for the case in (E) (green trian-
gles; error bars by bootstrapping) and for
two other cases (red boxes, yellow dia-
monds) corroborating the results in (D)
(shown in light gray for comparison). (G
and H) Whereas the number of hypercol-
umns NHC increases over this period (G) (r ¼
0.77, p < 0.0002), the bandedness α de-
creases considerably (H) (r ¼ −0.58, p <
6 · 10−5). Note that error bars for pool
averages in C, D, G, and H are smaller than
the symbol size.
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on average 260$ 40 hypercolumns (N ¼ 5), increasing to 319$
17 (N ¼ 6) at PD72 (increase of 23%).

To reveal more directly the reorganization of OD columns, we
analyzed a third parameter called bandedness α that charac-
terizes the structural properties of local pattern elements (21, 20)
(Fig. S1). Large values of α indicate layouts composed of regular
stripe-like parallel domains, whereas small values indicate more
isotropic layouts such as bended stripes or patches. Such quanti-
tative evaluation of the spatial organization of columns was pos-
sible in N ¼ 39 hemispheres. We found that the bandedness α
decreases by almost a factor of 2 from an average of 0.14$
0.02 (N ¼ 13) at PD35 to an average of 0.083$ 0.006 at PD95
(N ¼ 5) (r ¼ −0.58, p < 6 · 10−5) (Fig. 1H). This systematic de-
crease in bandedness indicates that OD columns, while largely
preserving their initial spacing, reorganize and develop more iso-
tropic layouts over time.

Modeling OD Column Formation with Growth. To understand these
experimental observations, we studied cortical growth in models
for the activity-dependent self-organization of OD columns. For
specificity, we focussed on the well-studied Elastic Network (EN)
model (23–25) (Materials and Methods and SI Appendix). Solu-
tions in the absence of growth are shown in Fig. S2 and
Movie S1. Linear stability analysis around the initially nonselec-
tive cortex (ref. 24 and SI Appendix) identifies a control para-
meter r describing the distance from the pattern formation
instability threshold. A pattern of OD columns forms for r > 0.
The analysis also defines an intrinsic timescale τ ¼ 1∕r, on which
the segregation of columns takes place, and a spatial scale Λmax
that is roughly equal to the column spacing of the developing OD
pattern. As in other models for the self-organization of OD
columns (25–28), this spatial scale arises from the effective recur-
rent interactions that have a “Mexican-hat” structure (local facil-
itation, nonlocal suppression). In agreement with previous work
(24, 25), we find in simulations that an OD pattern emerges after
a few τ (Fig. S2 and Movie S1). The only steady state solutions we
observe are parallel OD stripes.

As a simple way to mimic cortical growth, we started from
steady state solutions and abruptly increased isotropically the size
of the simulated system without changing the other model para-
meters (i.e., without increasing the width of the Mexican-hat)
(Materials and Methods and SI Appendix). Fig. 2 displays snap-
shots of a typical example of such a simulation (see also
Movie S2). Upon size increase at t ¼ 10τ, stripes start to bend
sinusoidally (Fig. 2A, upper row). In the power spectrum, this
corresponds to the growth of new Fourier modes on both sides
of the original mode of the stripe pattern (Fig. 2A, lower row).

We quantitatively analyzed this reorganization by the wavelet
method used above. The column spacing Λ increases abruptly
at10τ, but subsequently decreases to close its initial value (Fig. 2B).
Thenumber of hypercolumnsNHC increases persistently (Fig. 2C),
whereas the bandedness α decreases significantly over this period
(Fig. 2D). Thus, the growth-induced bending of OD columns
largely restores the initial spacing and results in a bandedness drop
similar to what we observe in experiment (Fig. 1).

A General Mechanism of Growth-Induced Reorganization. We argue
that this type of expansion-induced reorganization of OD col-
umns in the EN model is caused by a zigzag (ZZ) instability (29),
a type of dynamical instability that has been widely studied in the
theory of pattern formation (30, 31). Fig. 3 A and B. This insta-
bility is typical for the wide class of relaxational, rotationally
symmetric models in which a two-dimensional pattern forms
by a finite wavelength instability (30). This class includes the
EN model, as we outline in the SI Appendix, and many other
OD models (e.g., refs. 25–28).

A theory (31, 32) for this model class exists predicting the re-
gime of the ZZ instability (Fig. 3C, Inset). However, strictly
speaking, this theory is valid only in a narrow parameter region
close to the point of instability threshold at r ¼ 0. We therefore
analyzed numerically the behavior of the EN model further away
from threshold by probing systematically a large set of instanta-
neous size increases and testing for growing ZZ modes (Fig. S3
and SI Appendix). We observed that the regime of ZZ instability is
very large (Fig. 3C). Similar to the theoretical predictions
(31, 32), even a slight expansion results in a ZZ instability and
its regime increases parabolically with the control parameter r.
Moreover, the induced reorganization evolves on a time scale
τZZ that for small expansions exceeds the time scale τ of OD
column segregation by more than an order of magnitude.

Realistic Growth Scenarios. Finally, we show that growth-induced
reorganization shows signatures of the ZZ instability even if
the initial OD layout is not a simple stripe pattern and the in-
crease in system size follows a continuous growth scenario. To
approximate realistic conditions, we initialized our simulations
with the nonselective state and linearly increased the linear extent
of the simulated regions by a factor of 1.6 (factor of 2.56 in area
increase) between t ¼ 0τ and t ¼ 100τ. Fig. 4A shows that layouts
appear to be more bended in a ZZ-fashion when compared to
simulations for which we stopped growth after t ¼ 10τ. Typically,
the column spacing Λ in growing systems increases only transi-
ently (Fig. 4B) implying that the hypercolumn number NHC in-
creases persistently (Fig. 4C). The bandedness α is relatively
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Fig. 2. Expansion-induced reorganization in models for
OD formation. (A) Snapshots of a simulation of the EN
model (23) starting from a near steady state solution; i.e.,
a stripe-like OD pattern (upper row) corresponding to a sin-
gle Fourier mode in the power spectrum (lower row)
(η ¼ 0.025, r ¼ 0.15). After instantaneous area increase
(linear extent by a factor of 1.18; i.e., δk∕kmax ¼ −0.15; at
10τ), OD domains bend sinusoidally and additional Fourier
modes appear at ≈ðkmax þ δkÞ ~x$ qy ~y. (B–D) This reorgani-
zation is captured by the column spacing Λ (B), the number
of hypercolumns NHC (C), and the bandedness α (D) (time in
units of the time scale τ of OD segregation).
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variable across solutions reflecting the large diversity of the evol-
ving OD layouts (Fig. 4D and Fig. S2). However, whereas in
virtually all simulations without growth α increases nearly mono-
tonically (Fig. S2 and Movie S1), in growing systems α typically
drops considerably reflecting the ZZ-type reorganization of OD
columns (Fig. 4A and Movie S3).

We systematically studied the growth-induced reorganization
by varying the control parameter r and testing different area in-
creases (factor of 1, 1.44, 1.96, 2.56, and 3.24, Fig. 4 F–H and
SI Appendix). We measured the difference Δα between the first
maximum in bandedness and the subsequent minimum and the
time interval Δt between these two bandedness extrema [Fig. 4E,
based on eighth-order polynomial least square fit (SI Appendix)].
Whereas dropswithΔα > 0.05 andΔt > 15τ occurred in only<6%
of the nongrowing systems, alreadywithmoderate growth, they are
present ina large fractionof systems (Fig. 4F).For smaller values of
r the drop is generally more pronounced. Both the average sizeΔα
and the durationΔt depend only weakly on the total area increase
and drops last on average >40τ (Fig. 4 G and H).

Thus, also for more realistic growth scenarios, the induced re-
organization exhibits key features of a ZZ instability, in particular
the only mild and transient increase in column spacing and the

prominent and long lasting drop in bandedness. Intriguingly,
these features also describe the mode of reorganization we ob-
serve in experiment (Fig. 1). Moreover, if we identify the model
time unit τ with roughly 1 d in cat postnatal development—an
assumption that may be justified by experiments showing that
OD columns segregate within a few days (e.g., ref. 8)—we
observe that even the time scales on which these changes evolve,
agree fairly well between model and experiment. This suggests
that the reorganization we observe in experiments is caused by
cortical expansion through a mechanism that is based on the
ZZ instability.

Discussion
Cortical Expansion, the Absence of the Balloon Effect and the Range of
the Mexican Hat.Our empirical data provides evidence against the
so-called balloon effect (3) by showing that OD columns do not
simply expand during cortical growth, but largely maintain their
spacing. At first sight, a balloon-like expansion may seem plau-
sible. For instance, in vitro connected neurons, when moderately
pulled apart, readily extend their axonal arbors to prevent disrup-
tion, thereby achieving neurite growth rates of up to 1 cm∕day
(13). However, mechanical tension on one axonal branch can
strongly influence the arborization of other branches of the same
neuron (14), indicating that expansion-induced responses can be
rich and may lead to nontrivial collective behavior in expanding
networks of interconnected neurons.

Models for the activity-dependent formation of OD columns
can reproduce the absence of the balloon effect if the width of the
lateral interactions is kept fixed during growth as we assume in
this study. In the EN model, an effective intracortical interaction
of Mexican-hat type (Fig. S2A) arises from the interplay between
the coactivation of cortical regions and a tendency for neighbor-
ing neurons to acquire similar response properties (23). Even if
the interaction range increases by only half the rate of the cortex,
we observe a ZZ-type reorganization accompanied by a banded-
ness drop (SI Appendix and Fig. S8). However, in this case also
the column spacing increases systematically. Thus, these models
can be reconciled with our data only if the interaction range does
increase only little during growth.

There are several possibilities of why the range of effective
lateral interactions might not increase during growth. It is con-
ceivable that the width of interaction could depend on the lateral
spread of dendritic arbors. Limits on an increase of the arbor size
during growth might be imposed by a tendency of neuronal
circuits to minimize the total length of wiring (e.g., ref. 32)
and could be achieved by synaptic pruning (10). Alternatively, in-
teractions of Mexican-hat type could arise if the time scales of the
dominant inhibitory synapses are small compared to excitatory
synapses (33). Thus, a possible shift from a dominance of smaller
toward larger synaptic timescales during the period of growth
could partly compensate for the increase of the distance between
neurons. Finally, Mexican-hat type interactions could arise by
excitatory connections that at larger distances preferentially tar-
get inhibitory interneurons. In this case, the width of interactions
may depend on the strength of inhibition (16), which, appropri-
ately adjusted, could keep the range of the Mexican-hat constant
during growth.

Reorganization vs. Displacement. In the scenario of growth-induced
reorganization proposed in this paper, increasing distances be-
tween cell bodies alter the effective lateral interactions between
neurons, thereby inducing shifts in the response properties in a
fraction of them. Alternatively, one may explore a scenario in
which neuronal response properties are preserved, and the ma-
ture columnar layout is obtained by an inhomogeneous displace-
ment of cells. Strong intracolumnar connections may provide the
necessary mechanical stability for keeping cells within columns
closer to one another. However, the ability of neurons to rapidly
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from (31); horizontally striped region, ZZ instability; vertically striped region,
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extend their axonal arbors in response to mechanical tension (13)
raises doubts about expansion-induced forces being strong
enough to promote inhomogeneous displacement of cells.
Following the spatial positions as well as functional response
properties of many cells experimentally (e.g., by chronic 2-photon
microscopy) could help to disentangle these two hypotheses.
Moreover, experiments that, instead of altering the patterns of
neural activity, measure and/or apply mechanical stress to cortical
tissue or individual neuronal processes in vivo may reveal further
insights into the role of mechanical tension in cortical develop-
ment. A better understanding of the interplay between tension-
mediated and activity-driven mechanisms in shaping neural
circuits in vivo could shed new light on normal development
and cortical growth, but potentially also on the response of neural
network function to cortical lesions and brain tumors.

The two scenarios have different implications for the hypercol-
umnasafunctionalcorticalunit.Ashift inODinindividualneurons
would alter the set of stimulus representations in a hypercolumn.
It would be interesting to monitor simultaneously other neuronal
selectivitiesandtestwhethertheycodevelopinasystematicfashion;
e.g., by improving coverage uniformity (34) over time.On theother
hand, a pure displacement of groups of neurons would distort the
original hypercolumn and result in systematic inhomogeneities in
the cortical representation of the visual field position. Such inho-
mogeneities may be detectable in the mature cortex even without
the necessity of technically very challenging chronic experiments.

Relation to Previous Work. A longitudinal optical imaging study
(35) of OD columns in a single strabismic cat reported an in-
crease of OD column spacing between PD27 and PD61 consistent
with the slight but not significant increase we observe over this
period (Fig. 1D). A chronic imaging study in ferret reported a
fairly stable spatial organization of orientation columns between
PD30 and PD55 (36). However, a more recent study (37) analyz-
ing orientation columns in the cat between PD35 and PD105 ob-

served changes in local column spacing that were coordinated
between V1 and V2. Consistent with the present study, the aver-
age spacings in V1 and V2 remained largely constant over this
period. A theoretical study (38) of a one-dimensional model
of OD development during cortical growth predicts a splitting of
OD stripes analogous to the Eckhaus instability (SI Appendix). As
we show here, two-dimensional models exhibit a much richer
dynamics and behave qualitatively differently.

A Novel Function of Plasticity in Normal Development. The impress-
ive ability of cortical circuits to reorganize during and after the
critical period has been demonstrated in numerous studies by ar-
tificially manipulating cortical activity; e.g., by monocular depri-
vation (see ref. 16 for a review). However, relatively little is
known at present about the role of cortical plasticity for normal
cortical development (8, 15), but see refs. 37, 39. As we point out
in this study, the period of cortical plasticity in cat visual cortex
overlaps with the period of postnatal cortical growth (17).
Whereas the peak of the classical critical period is around
PD30 (40), cortical plasticity does not cease after the critical per-
iod, but rather declines gradually (16). It is readily conceivable
that this plasticity may be exploited by the cortex to accommodate
for growth-induced changes. Interestingly, the reorganization we
report here is largest close to the peak of the critical period.
(Fig. 1H). Furthermore, key features of this reorganization are
reproduced by modeling OD formation as self-organization
based on cortical plasticity. Thus, we conclude that cortical plas-
ticity may play an important role in normal development through
facilitating growth-related modifications of neuronal circuits.

Materials and Methods
Experiment.OD patterns were labeled with 2-½14C#-deoxyglucose (2-DG) auto-
radiography after monocular stimulation of the animals or by ½3H#-proline
autoradiography after injection of the labeled proline into one eye that
labels the thalamocortical afferents of that eye in cortical layer IV
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Fig. 4. ZZ-type reorganization of OD columns in a realistic growth scenario. (A) Snapshots of EN model simulations with isotropic linear area increase by a
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(see ref. 20 and therein). OD columns were recorded by intrinsic signal optical
imaging following ref. 41.

Model. OD is described by a real valued field oðx;tÞ, where x represents the
position on the cortical surface and t time. Negative/positive values of oðx;tÞ
indicate a preference for inputs from the ipsilateral/contralateral eye. The
dynamics of this field is given by

∂toðx;tÞ ¼ h½so − oðx;tÞ#Aσðx;S;oð· ;tÞÞiS þ ηΔoðx;tÞ; [1]

where

Aσðx;S;oð· ;tÞÞ ¼
e−ðjsr−xj2þjso−oðx;tÞj2Þ∕2σ2

R
d2ye−ðjsr−yj2þjso−oðy;tÞj2Þ∕2σ2

is the cortical activity pattern, σ controls the receptive field size in the stimu-
lus parameter space, h·i denotes the average of the ensemble of visual stimuli
fSg, η measures the strength of lateral interactions and Δ is the two-dimen-
sional Laplacian. Visual stimuli S ¼ ðsr ;soÞ are point-like and characterized by
a location sr and an OD value s0, which describes whether the activated units
are forced to prefer the ipsilateral (so < 0) or the contralateral (so > 0) eye.

Numerical Integration. Simulations were performed on a 64 × 64 grid with
periodic boundary conditions. We used at least 4 grid points per Λmax and
an integration time step δt ¼ minf1∕ð20ηk2

maxÞ;τ∕10g. The first term on the
right hand side of Eq. 1 was treated by an Adams–Bashforth scheme, the
second term by spectral integration. sr and so were uniformly distributed
with hs2oi ¼ 1. Typically, between 4 × 104 and 2 × 105 stimuli were used per
integration step.

Instantaneous Area Increases. We rescaled the system length L as determined
from the desired value of δk∕kmax (no change in number of grid points;
see SI Appendix). We adjusted the number of stimuli, Ns, and, because
Δ ∼ 1∕L2, the matrix for the spectral integration step. The numerical value
of σ remained constant.

Continuous Area Increases. We linearly increased the linear extent L of the
simulated regions between t ¼ 0τ and t ¼ 100τ and updated the Laplacian
Δ and the number of stimuli Ns at every integration step.

Data Analysis Method. Column spacing Λ and bandedness α of both data and
simulations, were analyzed using the wavelet method introduced in ref. 21.
An overcomplete basis of complex Morlet wavelets at various scales and
orientations was compared to the OD pattern at each spatial location. Λ
was estimated by the scale of the best matching wavelet, α by the angular
variance of matching at that scale (SI Appendix).

Statistics. r-values denote Pearson’s linear correlation coefficient; p-values
were obtained with Student’s t tests.

All methods are described in detail in the SI Appendix.
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1 Optical imaging data

Surgery. Anaesthesia was induced with an intramuscular injection of ketamine (10 mg/kg Ke-

tanest®, Parke-Davis, Berlin, Germany) and xylazine hydrochloride (Rompun®, Bayer AG, Lev-

erkusen, Germany) and maintained throughout the experiment using nitrous oxide/oxygen anaes-

thesia (50% N2O / 50% O2), supplemented with halothane (0.8-1.2%, Eurim Pharma, Germany).

The ECG, pulmonary pressure, end tidal CO2 (3-4%), and rectal temperature (37-38°) were con-

tinuously monitored. The animal’s head was fixed in a stereotactic frame by means of a metal

nut cemented to the skull. For optical imaging of V1 a craniotomy was performed centered at

Horsley-Clarke coordinate P4. All experiments were performed when the animals were between

28 and 94 days old. Successive experiments in the same animal were performed with intervals of

7 days and in one case 42 days. All animal experiments have been performed according to the

German Law on the Protection of Animals and the corresponding European Communities Council

Directive of November 24, 1986 (86/609/EEC).

Visual Stimulation. Animals were stimulated monocularly with high-contrast square-wave

gratings (subtending 90°×60°visual field) of four orientations (0°, 45°, 90°, and 135°) moving at

a speed of 2cyc/s with a spatial frequency of 0.5cyc/deg. Stimuli were generated by EZV-Stim

software (Optical Imaging Inc., Rehovot, Israel) and presented on a LG Electronics Flatron 295

LCD-monitor (luminosity 180 cd/m²; contrast 300:1; refresh rate 85 Hz; resolution 1600×1200

pixel) at a distance of 25 cm. The eyes were treated with atropine and Neosynephrine® and

refracted appropriately using corrective corneal contact lenses with artificial pupils with a diameter

of 3 mm.

Data Acquisition. The cortical surface was illuminated by means of two adjustable light guides

attached to a tungsten-halogen lamp (Spindler & Hoyer, Göttingen, Germany) equipped with in-

terference filters for different wavelengths. The vascular pattern of the cortex was visualized at

546 nm ± 10 nm (green), cortical activity maps at 707 nm ± 1 nm (red). During data acquisition of

intrinsic signals, the camera was focused 650–750 µm below the cortical surface. A tandem-lense

was used for imaging [1]. The ORA 2001 system (Optical Imaging Inc.), equipped with a cooled

Theta CCD system (384×288 pixel chip from Thomson-CSF) was used for collecting the intrinsic
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signals. We acquired a series of frames every 12 s, whereby a grating of a given orientation was

presented for 2 s in a static mode, followed by 4.2 s of data acquisition during which the grating

was moved in both directions along the axis orthogonal to its orientation. We used episodic stim-

ulation during data acquisition (7 frames of 600 ms duration). The first frames were excluded from

further analysis. The stimulus presentation was monocular, an eye shutter was used to conceal

the eyes. A single stimulus trial consisted of 2×8 stimulus conditions (4 grating orientations for the

left and the right eye) and 8 isoluminant blanks presented in a random sequence. Twelve trials

were usually presented to obtain a map, so that every stimulus was shown 24 times. We first

calculated ‘single condition maps’ in which the images acquired during presentation of a particular

stimulus were divided by the sum of all different stimulus conditions (‘cocktail blank procedure’)

[2, 3]. Differential maps for ocular dominance (OD) were calculated by summing all left eye activity

maps and subtracting all right eye activity maps.

Data Preprocessing. All computed differential maps I �(x) were preprocessed in order to

remove overall variations in signal strength and measurement noise. We calculated a high-pass

filtered map I(x) = I �(x)− J(x) by subtracting the regional mean

J(x) =
1

W (x)
F−1

�
K̃hp(k)Ĩ �(k)

�
,

where F denotes the Fourier transform and the Fermi-function

K̃hp(k) =
1

1 + e−(khp−|k|)/βhp

is parametrized by the high-pass cutoff frequency khp and the steepness βhp. After transforming

back to real space, the signal outside the region of interest (ROI) was discarded. Normalizing by

W (x) =
�
ROI d

2x�Khp(x− x�) accounted for the boundary of the ROI. We used a Fermi filter with

β = 0.2khp and khp = 2π/λhp with λhp = 1.8mm. Lowpass filtering was done with a second Fermi

filter K̃lp(k) with parameters β = 0.2klp and klp = 2π/λlp with λlp = 0.7mm.

The resulting pattern I(x) was then centered to yield
�
ROI d

2x I(x) = 0 and its variance was

normalized to one. This overall bandpass filtering ensured that structures on a scale between 0.7

mm and 1.8 mm were only weakly attenuated by the preprocessing and enabled us to do further

quantitative analysis.
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2 Data analysis methods

Column spacing. For each preprocessed OD pattern I(x), we calculated a wavelet represen-

tation, using wavelets which covered only a few hypercolumns but exhibited a strong periodicity.

These representations were obtained from

Î(x,θ, l) =

�

ROI
d2y I(y)ψx,θ,l(y) ,

where x, θ, l are the position, orientation and scale of the wavelet ψx,θ,l and Î(x,θ, l) denotes the

array of wavelet coefficients. We used complex Morlet wavelets defined by

ψ(x) = exp

�
−(x21 + σ−2

2 x22)

2

�
eikψx

and

ψx,θ,l(y) = l−1ψ

�
Ω−1(θ)

y − x

l

�
,

where

Ω(θ) =

�
cos θ − sin θ
sin θ cos θ

�

is the two-dimensional rotation matrix. The characteristic wavelength of a wavelet with scale l is

Λψl with Λψ = 2π/|kψ|. σ2 denotes the anisotropy of the wavelet. We used relatively large isotropic

wavelets (kψ = (7, 0), σ2 = 1) to estimate local column spacing Λ(x). We used 12 equally spaced

orientations and 16 scales lj between 0.5 mm and 2.0 mm. For computational efficiency, 9 equally

spaced orientation were used to analyze model cortices. Test analyses with 12 orientation led to

almost indistinguishable results. We first calculated

Ī(x, l) =

� π

0

dθ

π
|Î(x, θ, l)|

of the wavelet coefficients for every position x and then determined the scale by computing l̄(x) =

argmax l(Ī(x, l)). The corresponding characteristic local wavelength was obtained by Λ(x) =

l(x)Λψ. l̄(x) was estimated as the maximum of a polynomial of 6th degree in l, fitting the Ī(x, lj)

(least square fit) for a given position x. Based on the local column spacing Λ(x), we calculated

the mean column spacing Λ = �Λ(x)�x, where here and in the following, �·�x denotes the average

over the ROI (e.g. V1 or simulated domain). In the case of 2-DG maps, we analyzed column
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spacings in N = 4 different brain slices for each hemisphere and averaged over slices to obtain

more accurate estimations of the mean column spacing [5, 4]. This procedure also provides an

estimation of the measurement error. On average errors were below 0.02mm implying a relative

error (error/column spacing) of less than 2%. For the optical imaging data, errors were estimated

by bootstrap resampling. For each map, a bootstrap sample of N=100 maps was generated from

the individual trials. The column spacing was calculated for each map in the sample. The error

was estimated by the standard deviation of the bootstrap distribution of column spacings.

Number of hypercolumns. We defined the number of hypercolumns NHC in an area A by NHC =

A/Λ2, where Λ = �Λ(x)�x is the mean column spacing in A. Note that we do not assume a specific

shape of the hypercolumn, but solely that its size is equal to cΛ2 where c is a constant close to

1. For simplicity, and because we are primarily interested in relative changes in NHC , we set

c = 1. Note further that for simplicity we are assuming �Λ(x)�−2
x ≈

�
Λ(x)−2

�
x
. Typical standard

deviations σΛ =
�
�Λ(x)2�x of OD column spacings in the cat are ≈ 0.1Λ [6] and in the model

< 0.03Λ. Based on these values, this approximation is accurate up to ≈ 3%.

Bandedness. The orientation dependence of the wavelet coefficients was used to calculate a

parameter measuring the anisotropy of local pattern elements as shown in Fig. S1. For a pattern

consisting of parallel stripes the magnitude of the wavelet coefficients depends strongly on the

wavelet orientation and is largest if the orientation of the wavelet matches the orientation of the

bands (Fig. S1, A and C). For a pattern consisting of more bended stripes or isotropic patches,

the wavelet coefficients depend only weakly on the orientation of the wavelet (Fig. S1, B and D).

Therefore, using only wavelets of wavelength Λ(x), we calculated

s�(x) =

� π

0
dθ|Î(x, θ)|2ei2θ

�� π

0
dθ|Î(x, θ)|2 , (1)

where we used relatively small and anisotropic wavelets (kψ = (2, 0), σ2 = 1.5) in order to resolve

the layout locally. We defined the local bandedness as

s(x) =

�

ROI
d2y K(x− y)s�(y)

��

ROI
d2y K(x− y) , (2)

where K(x) = 1
2πσ2 exp

�
−x2/2σ2

�
and σ = 1.3Λ. To estimate (1) and (2), wavelet coefficients

were computed for 9 equally spaced orientations for both model cortices and data. Test analyses
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Figure S1. Wavelet analysis of columnar layouts. (A) Examples of two wavelets superimposed
on a stripe-like region of a simulated OD pattern. The real parts of the complex-valued wavelet
are depicted. Positive regions are delineated by red lines, negative regions are delineated by
green lines. The two wavelets exhibit the best matching spatial frequency. One wavelet (solid line)
also exhibits an optimal orientation. (B) Wavelets superimposed on sinusoidally bended stripe
patterns, characteristic for the ZZ reorganization. (C-D) The normalized squared modulus of the
wavelet coefficients as a function of orientation θ for the pattern in A (C) and for the pattern in B (D).
Note that for the stripe-like pattern |Î(x, θ)|2 is strongly modulated and exhibits a pronounced peak,
whereas the sinusoidally bended stripes lead to a broader θ-dependence and a less pronounced
peak. This difference is captured by the bandedness parameter α.
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with 12 equally spaced orientations led to almost indistinguishable results. With the above choice

of σ, the function s(x) is sensitive to the occurrence of band-like regions that extend over the size

of more than a hypercolumn. Based on the local bandedness s(x), we computed the bandedness

α = �s(x)�x to characterize the overall layout of simulated and measured OD patterns. To estimate

measurement errors for 2-DG maps, the bandedness was calculated for N = 4 brain slices and

then averaged [5, 4]. Relative errors for bandedness estimation were below ≈ 5%.

3 The Elastic Network model - linear stability analysis and numerical
procedures

3.1 Model definition and linear stability analysis

In the continuous version [7] of the Elastic Network (EN) model [8, 9], the OD map in V1 at a given

time t is described by a real valued field o(x, t), where x represents the position on the cortical

surface. Negative values of o(x, t) indicate a preference for input from the ipsilateral eye, positive

values a preference for the contralateral eye. This field follows a dynamics

∂to(x, t) = �[so − o(x, t)]Aσ(x,S, o(·, t))�S + η � o(x, t) , (3)

where

Aσ(x,S, o(·, t)) =
e−(|sr−x|2+|so−o(x,t)|2)/2σ2

�
d2y e−(|sr−y|2+|so−o(y,t)|2)/2σ2 (4)

is the cortical activity pattern, σ controls the receptive field size in the stimulus parameter space,

�·�S denotes the average of the ensemble of visual stimuli {S}, η measures the strength of lateral

interactions and ∆ is the two-dimensional Laplacian. Selectivities o(x) are modified through the

cumulative effect of a large number of activity events, evoked by the complete stimulus ensemble.

Visual stimuli S = (sr, so) are point-like and characterized by a location sr and an OD value s0

which describes whether the activated units are forced to prefer the ipsilateral (so < 0) or the con-

tralateral (so > 0) eye. The stimulus parameters sr and so are uniformly distributed with densities

ρsr and ρso such that
�
s2o
�
= 1.

Linear stability analysis around nonselective fixed point. By linear stability analysis, we show

in the following that OD columns segregate by a finite wavelength instability. We linearize eq. (3)
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around the homogeneous nonselective state o(x) = 0 [7]. Inserting ohom(x) ≡ 0 into eq. (4) yields

Aσ(x, S, ohom) =
e−

|sr−x|2
2σ2

2πσ2
.

After averaging over the ensemble of stimuli with normalized uniform densities ρsr and ρso , we

obtain

∂to(x)|ohom =

�
d2sr ρsr

e−
|sr−x|2

2σ2

2πσ2

�
dso ρsoso = 0 .

This shows that ohom(x) ≡ 0 is a fixed point of the dynamics in eq. (3). The stability of this fixed

point can be studied by linearizing the r.h.s of eq. (3) [7, 10],

F [o,x,σ,S] ≈ F [ohom,x,σ,S] +

�
d2y

δF
δo(y)

����
ohom

o(y) .

This yields

∂to(x) ≈ η∆o(x)− o(x)

��
d2sr dso d

2y ρsoρsrAσ(y,S, ohom)

+o(x)

��
d2sr dso d

2y ρsoρsrAσ(y,S, ohom)
s2o
σ2

−
��

d2sr dso d
2y ρsoρsr

s2o
4π2σ6

e−(|sr−x|2+|sr−y|2)/2σ2
o(y) .

Assuming a uniform stimulus density ρsr across the cortical surface, this results in

∂to(x) =

�
η �+

�
s2o
�

σ2
− 1

�
o(x)−

�
s2o
�

4πσ4

�
d2y e−

(x−y)2

4σ2 o(y) . (5)

Note that the linearization is only governed by the variance of the stimulus ensemble, and not by

higher order statistical moments.

Due to translation and rotation invariance of the model, the eigenfunctions of its linearized

dynamics are Fourier modes ∼ eikx with eigenvalues [7, 10]

λ(k) = −1 +

�
s2o
�

σ2

�
1− e−k2σ2

�
− ηk2

only depending on the absolute value |k| = k (see Fig. S2A for an illustration). The homogeneous

nonselective state ohom(x) ≡ 0 is unstable, if some eigenvalue with k > 0 is larger than zero.

The amplitude of any small perturbation containing a Fourier mode with wave vector k will evolve

∼ exp(λ(k)t), and therefore spatial frequencies with λ(k) < 0 are exponentially damped, whereas
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those with λ(k) > 0 grow exponentially (shaded region in Fig. S2A). For η > 0 and σ > 0, λ(k)

has a single maximum at kmax = 1
σ

�
ln(1/η). The maximum λ(kmax) is positive if the width σ of

the activation function is smaller than σ∗ =
√
1− η + η ln η . Importantly, the maximum positive

eigenvalue r = λ(kmax) defines a time scale τ = 1/r on which OD columns segregate. We refer

to r as the control parameter. For r > 0, the homogeneous nonselective state is unstable and the

maximum is at some finite wavelength Λmax = 2π/kmax. This spatial scale is roughly the spacing

of columns in the developing OD map. Confirming this linear stability analysis, we find numerically

that the early pattern consists of Fourier modes with wavelength ≈ Λmax (see below). Thus, in

the EN model, OD columns segregate because the nonselective state o(x) = 0 becomes unstable

and Fourier modes with period ∼ Λmax grow exponentially if σ is below a critical value.

Generality of model definition. In the above definition of the Elastic Network model, the widths

of the activation function Aσ(x,S, o(·, t)) in OD space and retinotopic space are identified and set

to σ. In the following, we show that this can always be achieved by a proper rescaling of cortical

space, and hence does not imply a loss of generality.

With two different widths, σr for retinotopic space and σo for OD, the EN model becomes

∂to(x, t) = �[so − o(x, t)]Aσo,σr(x,S, o(·, t))�S + η � o(x, t) , (6)

where

Aσo,σr(x,S, o(·, t)) =
e−((|sr−x|2)/2σ2

r+(|so−o(x,t)|2)/2σ2
o)

�
d2y e−((|sr−x|2)/2σ2

r+(|so−o(x,t)|2)/2σ2
o)

.

For the spectrum of eigenvalues of the linearized dynamics we obtain

λ(k) = −1 +

�
s2o
�

σ2
o

�
1− e−k2σ2

r

�
− ηk2 .

and hence the critical wavenumber (i.e. the expected wavenumber of the emerging OD pattern) is

given by

kc =
1

σr

�

ln

�
�s2o�
σ2
o

σ2
r

η

�
.
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By a rescaling of cortical space according to

x → x� = αx

k → k� =
1

α
k

σr → σ�
r = ασr

η → η� = α2η ,

where the last transformation rescales the laplacian term in the r.h.s of eq. (6), we obtain

k�c =
1

α
kc

and hence Λ�
max = αΛmax. The typical column spacing of the emerging OD pattern is properly

transformed under the above rescaling. Importantly, the maximal growth rate

r� =
1

τ �
= λ�(k�c) = −1 +

�
s2o
�

σ2
o

�
1− e−k�2c σ�2

r

�
− η�k�2c

= λ(kc) =
1

τ
= r

is unaffected by the scaling transformation. In fact, one can show that not only the linearized

dynamics, but also all higher order terms determining pattern selection, are unchanged by this

rescaling.

These considerations imply that the numerical value of σr can always be identified with the

value of σo without loss of generality. In a final step, we choose to measure space in dimensionless

units which allows for setting σo = σr = σ and we arrive at the model definition as given in eq. (1)

of our manuscript.

The linear as well as higher order terms exclusively depend on the ratio between
�
s2o
�

and σ2
o ,

meaning that
�
s2o
�

just sets an arbitrary scale in OD space. For convenience, we chose
�
s2o
�
= 1

in our analytics as well as in our numerics.

In our simulations, we have applied the opposite direction of the above argumentation: fixing r

and η (e.g., when computing the diagram in Fig. 3C), implied a certain ratio between
�
s2o
�
/σ2 as

well as a numerical value of Λmax. The numerical value, L, of the system size was then set to a

multiple of Λmax, L = γΛmax, with γ ∈ R chosen according to the size of the cortical subregion (in

terms of hypercolumns) we wanted to simulate (see below).
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Figure S2. Development of OD column layout in the Elastic Network model without growth.
(A) Eigenvalues of the linearized dynamics around the homogeneous nonselective state, o(x) = 0.
For maximal eigenvalue r(σ, η) > 0, Fourier modes with positive growth rate form a band around
kmax, corresponding to an annulus in 2D. OD columns with spatial scale Λmax = 2π/kmax seg-
regate on a time scale τ = 1/r. (B) Development of OD columns starting from initial condition
o(x, t = 0) = 0 (η = 0.025, r = 0.2). At t = 4τ , the emerging pattern already exhibits character-
istics of OD columns. After 10τ , columns start to merge and progressively reorganize towards a
stripe-like layout. (C-F) Time courses of average OD segregation A (C) and of three parameters,
characterizing OD layouts during development: (D) mean column spacing Λ (E) number of hyper-
columns NHC (F) mean bandedness α (N = 50 realizations, gray: individual traces, black: example
from B, red: mean value). Whereas A, Λ, and NHC reach mature levels around 10τ and exhibit
only little variability, the bandedness α increases during the entire time course, expressing the fact
that solutions slowly converge towards ideal OD stripes. Furthermore, α-time courses display a
large variability, capturing differences between individual realizations of OD map development.
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3.2 Numerical procedures

Simulations were performed on a 64×64 grid with periodic boundary conditions. Simulated sys-

tems were spatially discretized with at least 4 grid points per Λmax to achieve sufficient resolution

in space. Test simulations with larger grid sizes (128×128, 256×256) did not lead to significantly

different results. Progression of time was measured in units of the intrinsic time scale τ . Here, the

integration time step δt is bounded by the relevant decay time constant of the Laplacian in eq. (3)

around kmax and by the intrinsic time scale τ of the system. We used δt = min
�
1/(20ηk2max), τ/10

�

to ensure good approximation to the temporally continuous changes of the OD patterns. Note that,

since τ = 1/r, simulation time diverges for r → 0. The EN model dynamics was simulated using an

Adams-Bashforth scheme for the first term on the r.h.s. of eq. (3). The second term was treated

by spectral integration, exhibiting unconditional numerical stability. To approximate the stimulus

ensemble, a large random sample of pointlike stimuli was drawn at each time step. Different real-

izations of OD development were obtained by presenting different stimulus samples. The stimulus

parameters sr and so were chosen to be uniformly distributed with densities ρsr and ρso such that
�
s2o
�
= 1 (see model definition above). The stimulus average in eq. (3) was approximated by

choosing a random representative sample of Ns stimuli at each integration time step, with

Ns =
N0Γ2

δt
ε−n
s

√
τg00 ,

where n is the number of dimensions of the feature space (in our case, n = 3), Γ2 = (L/Λmax)2

the size of the simulated system in units of Λ2
max, εs the resolution in feature space, N0 the number

of stimuli we required to sufficiently approximate the cumulative effect of the ensemble of stimuli

within each feature space voxel, and g00 = 9(η−1)4

40σ6 a factor that depends on the specific form

of nonlinear competition between Fourier modes in the EN model. √
τg00 is proportional to the

inverse of the expected mean amplitude of the OD pattern. With N0 = 50 and εs = 0.15, we

ensured a low amplitude to noise ratio for all the simulations. Typical values for Ns were between

40000 and 200000. To model development prior to OD segregation, we initialized simulations with

o(x, t = 0) = 0.
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4 Formation of ocular dominance in the Elastic Network model with-
out growth.

In this section, we briefly summarize the behavior of the Elastic Network model without cortical

expansion. Fig. 2B shows a typical simulation of OD development (η = 0.025, r = 0.2, no increase

in area). A structure strongly resembling the OD pattern observed in cat V1 emerges after a

few time steps. Already at t = 4τ the OD pattern exhibits a visible characteristic spacing which

becomes more dominant in the later time course. As a measure of the average cortical selectivity,

we monitored the mean field amplitude A(t) =
�
d2x |o(x, t)|. It shows a rapid increase during the

first 10τ and saturates thereafter (Fig. S2C).

We quantified each simulated OD development by the wavelet-method applied to our experi-

mental data and compute three parameters characterizing the map layouts. First, we estimated

the mean column spacing Λ. We find, that it reaches a constant value after approximately 10τ

close to the predicted value Λmax (Fig. S2D). Next, we computed the number of hypercolumns

NHC in a simulated area. This number changes only very little after OD columns have segregated

(Fig. S2E). Finally, we calculated the bandedness, α, which quantifies the tendency of OD do-

mains to form elongated parallel stripes. In all our simulations, the initial phase of OD segregation

is followed by a long stage of slow rearrangements leading to progressively more stripe-like OD

layouts. This behavior is captured by a monotonically increasing bandedness α (Figure S2F). In

fact, we numerically find that OD stripes, for which the bandedness is maximal, are stable solutions

of the EN model. We do not find any other stable solution.

5 Simulating growth

5.1 Instantaneous area increases

We started simulations with a predefined system length of L0 and used a parameter-dependent

sine-wave initial condition

o(x) = 1/
√
τg00 sin(kmaxx)

with periodicity Λmax = 2π/kmax and amplitude close to the amplitude of the expected stationary

state. The system was integrated keeping the length of the system fixed for the first 10τ . Within this
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period the amplitude A(t) =
�
d2x |o(x, t)| of the OD stripe patterns relaxed towards a stationary

value while OD layout underwent only minor random fluctuations. Next, we rescaled the system

length to L0 + δL (no change in number of grid points), where

δL =
(δk/kmax)

(δk/kmax)− 1
L0

is determined from the desired value of δk/kmax, thereby increasing (δL > 0) or decreasing

(δL < 0) the total area size covered by the OD pattern. Accordingly, we adjusted the number

of stimuli, Ns, and, since ∆ ∼ 1/L2, the matrix for the spectral integration step. Note that the nu-

merical value of σ, i.e. the width of the activation function Aσ(x,S, o(·, t)), remains unchanged by

this rescaling, but its extension relative to L decreases (and the number of grid points per activation

blob decreases as well). After rescaling, we continued simulations for another 190τ . Upon instan-

taneous isotropic area increase, OD stripes typically display a zigzag-like bending of domains (Fig.

S3A). As outlined below (sec. 6.3), a ZZ instability is characterized by the growth of two Fourier

modes (representing the zig and the zag respectively) with wave vectors k̃ZZ = (kmax+δk)x̃±qyỹ,

where kmaxx̃ is the wave vector of the original stripe pattern. A ZZ instability can therefore be reli-

ably identified by monitoring the power spectrum along the axis kx = kmax + δk and searching for

two characteristic peaks corresponding to the ZZ modes.

To estimate the time scales τZZ of this reorganization, we followed the growth of the two ZZ

modes over time (see Fig. S3B and C). At each time point, we fitted Gaussians (least square fit)

of variable size, width, and position to the original mode and the two growing ZZ modes along the

expected axis of the ZZ modes in Fourier space (Fig. S3B). The time scale of ZZ reorganization

was extracted by linear fitting (least square fit) the logarithm of the ratio between the peak height

of the ZZ modes, pZZ , and the central peak height stemming from the original pattern, pc (Fig.

S3C). We constrained the fit to values between 15% and 60% of the maximal peak ratio to capture

best the regime of exponential growth of the ZZ modes. The fitting procedure was only applied to

simulations with maximal peak ratio of at least 0.05. In Figure 3C of the manuscript, the inverse of

the estimated growth rate, i.e. the time scale of the ZZ instability, τZZ , is compared to the intrinsic

time scale τ of OD segregation for various changes of area (δk) and different values of the control

parameter r.
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Figure S3. Measuring the time scale of ZZ reorganization in the EN model. (A) Snapshots of a
simulation starting from a near steady state solution of the Elastic Network (EN) model [8], a stripe-
like OD pattern (upper row) corresponding to a single mode in the power spectrum (lower row)
(η = 0.025, r = 0.15) (redrawn from Fig. 2A in the manuscript). After instantaneous area increase
(by a factor of 1.18 (linear extent), i.e. δk/kmax = −0.15, at 10τ ), OD domains bend sinusoidally
and additional modes appear at (kmax + δk)x̃ ± qyỹ. (B) Measuring the growth rate of zigzag
modes for the simulation in A. Black crosses mark the power spectrum p(kx = kmax + δk, ky).
Most power is concentrated around the origin ky = 0, stemming from the initial stripe-like OD
pattern, and around two secondary peaks corresponding to the emerging ZZ modes (compare
to A, lower row). Red curve is a fit of three Gaussians (least square fit). (C) Ratios between
the height pc of the central peak and height pZZ of the side peaks at different time points (black
crosses). The growth rate of ZZ modes is estimated by fitting a linear slope to the logarithm of
pZZ/pc in the region of exponential growth (least square fit).
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5.2 Continuous area increases

Different simulation protocols for realistic cortical growth. We tested three different simulation

protocols to approximate the postnatal growth of cat V1 (see Fig. S4A, B):

(i) linear increase of the linear extent with slope α, starting from L0,

L(t) = L0 + αt ,

(ii) sublinear increase of the linear extent L, such that the simulated area A increases linearly with

slope β,

L(t) =
�
L2
0 + βt ,

(iii) and logistic increase [19] of the linear extent L

L(t) = L0
eεt

1 + ξ−1(eεt − 1)
lim
t→∞

L(t) = ξL0 .

In each protocol, we tested total increases between t = 0τ and t = 100τ by factors of 1.2, 1.4, 1.6

and 1.8 in linear extent of the simulated region (corresponding to isotropic total area increases by

a factor of 1.44, 1.96, 2.56 and 3.24). Note that according to [20], the area of cat V1 increases

between week 1 and week 12 by approximately a factor of 2.5 and thus our range of parameters

includes realistic growth conditions. In our simulations of OD development, we find that different

growth protocols yield similar results. In fact, the linear and sublinear increases describe virtually

identical growth scenarios (Fig. S4, A and B) and provide a close match to the data on V1 growth

shown in [20]. Our systematic quantitative characterization of OD development in the EN model

with growth (Fig. 4 in the manuscript) was based on the scenario of linear increase of the linear

extent (red traces in Fig. S4, A and B).

To model realistic growth conditions in our simulations, we linearly increased the linear extent

L of the simulated regions between t = 0τ and t = 100τ . System length L, the Laplacian ∆,

and the number of stimuli Ns were updated at each integration step. After 100τ , integration was

continued for another 100τ with fixed linear extent.

To capture and quantify the size of bandedness drops, we calculated their strength ∆α and

their duration ∆t, i.e. the time over which α persistently decreased (Fig. 4E). We fitted an 8th-

46



0 50 100 150 200
0

0.5

1

1.5

Time t [!]

L
in

e
a

r 
E

x
te

n
t 

L
/L

0

 

 

Linear Area Increase

Logistic Increase of Linear Extent

Linear Increase of Linear Extent

0 50 100 150 200
0

0.5

1

1.5

2

2.5

Time t [!]

A
re

a
 A

/A
0

 

 

Linear Area Increase

Logistic Increase of Linear Extent

Linear Increase of Linear Extent

A B

Figure S4. Three different simulation protocols of realistic cortical growth. (A and B) Time
courses of the linear extent L/L0 (A) and the area sizeA/A0 (B) for linear increase of area (green
traces), linear increase of the linear extent (red traces) and logistic growth (blue traces). Simula-
tions of OD development for all three growth protocols yield qualitatively similar time courses of
column spacing Λ, number of hypercolumns NHC and bandedness α. Linear area increase and
linear increase of the linear extent are virtually identical and both provide a reasonable fit to the
data on cat V1 growth in [20] when setting 1day ≈ 1τ . Our quantitative characterization of OD
development in the EN model with growth (Fig. 4 in the manuscript, Fig. S7) was carried out using
linear increase of the linear extent (red traces).

order polynomial to each α-time series (least square fit). Using an 8th-order polynomial, we en-

sured that the fit closely followed the coarse-grained bandedness time course for all simulations.

In our simulations, we approximated the stimulus average in EN model equation (eq. (3)) by a

representative sample of stimuli (typically between 4x104 and 2x105) drawn at each integration

step. Thus, our simulations provided a stochastic approximation to the deterministic dynamics of

the EN model as analyzed here. The time courses of wavelengths, bandedness and number of

hypercolumns were fluctuating around the "real" time course. Specifically, for simulations carried

out for small r), bandedness fluctuations were around 0.01. To reliably detect growth-induced re-

organizations, we only considered bandedness drops of minimum size ∆α > 0.05. Furthermore,

as growth-induced reorganization is expected to evolve on timescales several fold larger than the

intrinsic time scale τ of OD segregation (see Fig. 2 and 3 in the manuscript), we only included

drops with ∆t > 15τ in our analysis. The results presented in Fig. 4F-H of the manuscript were

not sensitive to this particular choice of parameters.
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6 Zigzag and Eckhaus instability - parameter regimes

In this section, we discuss two fundamental instabilities of stripe patterns subject to size increase

or decrease, namely the zigzag (ZZ) instability and the Eckhaus instability. We describe their basic

mechanisms and their expected parameter regime of occurrence. As it turns out, the ZZ instability

constitutes the generic behavior upon isotropic continuous area increase.

6.1 Zigzag instability

The ZZ instability has been observed in many inanimate dynamical pattern forming systems as, for

instance, Rayleigh-Benard convection, when these systems experience an instantaneous isotropic

size increase [13, 14, 15]. As pointed out in our manuscript, the result of a ZZ instability can be

understood best by considering a simple pattern of OD columns consisting of alternating stripes

(Fig. 3A in the manuscript). After an isotropic area increase, the spacing between the OD stripes

is larger than the spacing set by the Mexican-Hat. Subsequently, the structure rearranges in a si-

nusoidal fashion: Through a zigzag-like bending of stripes the original spacing is largely recovered

(see manuscript for details).

6.2 Eckhaus instability

The Eckhaus instability is a dynamical instability observed in systems that undergo drastic changes

in system size [13, 14, 15]. Rearrangements of domains consist either of inserting new domains

(area increase) or removing existing ones (area decrease). Even in two-dimensional systems, this

instability gives rise to an effectively one-dimensional reorganization. It does not require rotation

symmetry of the instability mechanism. A recent one-dimensional cortical growth study focused on

the Eckhaus instability [18]. However, in our simulations, we did not observe an Eckhaus instability,

even in the case of large instantaneous increase or decrease of area size.

The result of an Eckhaus instability can be understood best by considering a simple pattern

of OD columns consisting of alternating stripes (Fig. S5). After an isotropic area increase, the

spacing between the OD stripes is larger than the spacing set by the Mexican-Hat. Subse-

quently, new stripes of OD domains emerge between existing ones by which the original spac-
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Figure S5. Eckhaus reorganization upon large isotropic area increase (A, B) or area de-
crease (C, D). Upon area increase/decrease, OD stripes recover their initial spacing Λmax by
insertion/removal of OD stripes. (A) During isotropic area increase, the OD pattern transiently
acquires a spacing Λ2 = Λmax + δΛ, with δΛ > 0. By insertion of an new stripe the system re-
covers a spacing Λ3, roughly equal to Λmax. (B) In Fourier-space, the initial pattern is centered at
±kmaxx̃. δΛ > 0 corresponds to a shift of δk < 0. The initial spacing is recovered by the growth
of new Fourier modes close to modes of the original pattern ±kmaxx̃. (C) During isotropic area
decrease, the OD pattern transiently acquires a spacing Λ2 = Λmax+ δΛ, with δΛ < 0. By removal
of a stripe the system recovers a spacing Λ3, roughly equal to Λmax. (D) In Fourier-space, δΛ < 0
corresponds to a shift of δk > 0. The initial spacing is recovered by the growth of new Fourier
modes at the center of the original pattern, i.e. ±kmaxx̃. Note that these modes of reorganization
require strong and sudden changes in area.
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ing is eventually recovered (Fig. S5A). Fig. S5B illustrates this in Fourier space. The initial

stripe pattern is described by a wave ∼ eik̃maxx̂ with spatial wave vector k̃max and wave num-

ber |k̃max| = kmax = 2π/Λmax. Upon area increase, its wavelength increases, and therefore its

wave number differs by an amount δk < 0 from kmax. During an Eckhaus instability, two Fourier

modes with wave vector ±kmaxx̃ grow, representing the new OD pattern with similar spacing as

the original pattern.

Similarly, after an isotropic area decrease, the spacing between the OD stripes is smaller than

the spacing set by the Mexican-Hat. Subsequently, a fraction of the OD stripes is removed and

the original spacing is eventually recovered (Fig. S5C). Fig. S5D illustrates this in Fourier space.

Upon area decrease, the OD pattern’s wave number differs by an amount δk > 0 from kmax. Two

Fourier modes grow with wave vector ±kmaxx̃, representing the new OD pattern in Fig. S5C with

similar spacing as the original pattern.

6.3 Parameter regimes

In this section, we discuss the generic regions of occurrence of zigzag and Eckhaus instability

in the (δk, r)-parameter space, where r is the control parameter (or bifurcation parameter) of the

system expressing the distance from the instability threshold of pattern formation, i.e. the distance

from the primary finite wavelength instability, and δk controls the size of area increase/decrease.

Assuming a plane wave solution A(x, y, t)eikmaxx, close to the finite wavelength instability its be-

havior is governed by the Newell-Whitehead equation [16]

∂tA = rA+ (∂x − i∂y2)
2A− |A|2A . (7)

The form of Eq. (7) is independent of the microscopic details of the instability mechanism [14,

15]. Inserting the ansatz A = |A|ei(δkx+φ0) yields a uniform solution |A| =
√
r − δk2 as long

as |δk| <
√
r. The wave number of this solution differs by an amount δk from kmax, i.e. the

characteristic spacing of the solution is either smaller or larger than Λ. Linear stability analysis

yields the behavior of this solution depending on the control parameter r and the difference in

wave vector δk [17]. Considering general perturbations of the form δA ∼ eiqyyeiqxx, the uniform
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Figure S6. Generic regions of linear instabilities (Busse Balloon) of a stripe pattern in
the (δk, r)-plane (redrawn from [13, 15]). The diagram applies to the general model class of 2-
dimensional relaxational, isotropic dynamics with linear Mexican-Hat type interactions. The region
of the zigzag instability (ZZ, red) is to the left of the δk = 0-axis, and is bounded by a parabola.
EH (yellow) denotes the regions of the Eckhaus instability (see text) where a new OD stripe is
inserted (δk < −

�
r/3) or withdrawn (δk >

�
r/3). For −√

r < δk < −
�

r/3 these two regions
overlap (striped region). Note that the ZZ instability occurs for an arbitrarily small area increase.
Therefore, it is the generic behavior of models for OD column formation upon continuous isotropic
area increase.

solution is found to be unstable against perturbations with qx = 0 as soon as

δk < 0 .

This defines the domain of the ZZ instability (red regions in Figure S6). In contrast, for qy = 0

the uniform solution is only unstable if |δk| >
�
r/3. This is the domain of the so-called Eckhaus

instability (EH; yellow regions in Figure S6). For −√
r < δk < −

�
r/3 EH and ZZ overlap (striped

region in Fig. S6) and model specific properties determine which of the two behaviors is observed

in this regime. For |δk| > √
r, Eq. (7) has no uniform stationary solution. In this regime, the initial

stripe pattern decays exponentially and a new OD pattern emerges (pattern plowing, see Fig. S6).

In summary, the ZZ instability is expected to dominate the response of OD patterns if the area

increase is moderate. The Eckhaus instability is expected to occur only in systems with abrupt

and dramatic size changes. We note that the form of the diagram in Figure 6 is very general,

applying to the class of two dimensional translation and rotation symmetric relaxational dynamics

in which the pattern forming process is based on a finite wavelength instability [14, 15].
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7 ZZ reorganization during continuous isotropic area increase start-
ing from OD stripes

In our manuscript, we analyzed OD stripes subject to instantaneous size increase and continuous

expansion starting from the nonselective cortex in the EN model. In this section, we probe the

reorganization of OD stripes under continuous increase of the system size for two different values

of the control parameter r (Fig. S7). We initialized our simulations with a sinusoidal pattern

o(x) ∼ sin(kmaxx). After a brief relaxation period of 20τ , we linearly increased the linear extent

of the simulated regions by a factor of 1.2, 1.4, 1.6 and 1.8 between t = 20τ and t = 120τ

(corresponding to isotropic total area increases by a factor of 1.44, 1.96, 2.56 and 3.24). In

these simulations, columnar layouts generally show reorganization on similar time scales but more

irregular reorganization when compared to the scenario of instantaneous area increases (Fig. 2, 3

in the manuscript). As for the case of instantaneous size increase, the column spacing Λ increases

only transiently (Fig. S7, C and H). Thus, the number of hypercolumns NHC strongly increases

over the simulated time period (Fig. S7, D and I). The bandedness α decreases after onset of

reorganization as expected from the sinusoidal bending of OD domains (Fig. S7, E and J). Thus,

a sinusoidal bending of OD stripes which is characteristic for a ZZ instability also occurs upon

continuous increase of the system size.

8 Increasing the effective intracortical interaction width during sim-
ulations of realistic growth scenarios

To investigate growth-induced reorganization in our manuscript, we assumed constant EN model

parameters in simulations of cortical growth. This implies that the range of lateral interaction does

not change in size during cortical expansion. These interactions are of Mexican-Hat (MH) type

and arise from the interplay between co-activation of cortical regions of roughly columnar size and

a tendency of neighboring neurons to acquire similar response properties.

In this section, we examine the behavior of the EN model if the interaction width, i.e. the width

of the MH, is also expanding during cortical growth. We start by considering the extreme case,

where both, cortical size and interaction width increase at the same rate. Fig. S8A shows the
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Figure S7. ZZ reorganization during continuous isotropic area increase starting from OD
stripes. (A and B) Snapshots of OD layouts (A) and power spectra (B) of EN model simulations
with continuous expansion starting from OD stripes in a parameter regime relatively far away from
the pattern formation instability threshold (r = 0.16, η = 0.025, total area increase by factor of
2.56 between t = 20τ and t = 120τ ). Until t = 50τ the OD stripes remain almost unchanged.
Subsequently, a ZZ-type reorganization is apparent from the sinusoidal bending of domains (A)
and the growth of Fourier Modes at kmaxx̃ ± qỹ (B). (C to E) Time courses of column spacing Λ
(C, normalized), number of hypercolumns NHC (D), and bandedness α (E). (F) A simulation in a
regime closer to the pattern formation threshold (r = 0.04). Compared to A, the pattern acquires a
more isotropic layout over time. (G) Power spectra for (F). (H to J) Column spacing (H), hypercol-
umn number NHC (I), and bandedness α (J). Note, that despite a rather complex reorganization,
key signatures of a ZZ instability are visible, such as a sinusoidal bending of domains.
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development of OD layouts for one such simulation (r = 0.16, η = 0.025, total area increase by a

factor of 2.56 between t = 0τ and t = 100τ ). By mere visual inspection, an increase in column

spacing can be observed. Furthermore, the OD layout rapidly becomes stripe-like during the time

course. Quantifying these observations, the mean column spacing Λ increases considerably (Fig.

S8B), the number of hypercolumns NHC is roughly constant (Fig. S8C) and the bandedness α

increases persistently (Fig. S8D) as in the simulations without growth (Fig. S2F).

What happens if the interaction width increases at lower rate than the cortex? Fig. S8E shows

the typical development of OD layouts in a simulation for which MH growth rate was set to half of

the cortical area growth rate (r = 0.16, η = 0.025, total area increase by a factor of 2.56 between

t = 0τ and t = 100τ ). In contrast to Fig. S8A, the OD layout acquires a more bended and ZZ-type

shape during the time course, strikingly similar to Fig. 4A in the manuscript (see red frames in

Fig. 8E). The mean column spacing Λ increases considerably (Fig. S8F), though less than in Fig.

S8B. The number of hypercolumns NHC increases (Fig. S8G), however less than in Fig. 4C of the

manuscript. The bandednesses α exhibits a pronounced decrease, similar to the growing systems

simulated in Fig. 4 - a characteristic feature of the ZZ instability.

The above observations are consistent with our results on simulations with fixed interaction

width (see manuscript). There we have shown that even moderate cortical expansion rates can

induce substantial cortical reorganization, both in simulations with abrupt size increases as well

as in realistic growth scenarios. However, in the case at hand, this is accompanied by an increase

in mean column spacing, and a relatively small increase in the number of hypercolumns. As we

did not observe any increase in column spacing in cat V1 between week 4 and 14, this suggests

that the effective intracortical interaction width stays approximately constant (see discussion in the

manuscript).
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Figure S8. Increasing the width of interactions in the EN model during simulations of re-
alistic growth scenarios. (A) Snapshots of OD layouts of EN model simulations with continu-
ous cortical expansion and continuously increasing width of the effective intracortical interactions
(Mexican-hat) with the same rate (r = 0.16, η = 0.025, total area increase by a factor of 2.56
between t = 0τ and t = 100τ ). (B to D) Time courses of column spacing Λ (B), number of hyper-
columns NHC (C), and bandedness α (D) for N = 30 simulations (parameters as in A). The mean
column spacing Λ increases strongly between t = 10τ and t = 100τ . Consequently, the number
of hypercolumns NHC remains roughly constant. Cortical expansion does not induce a drop in
bandedness. α-time-courses show a monotonous increase as in simulations with non-growing
cortical size (Fig. S2). (E) Snapshots of OD layouts of EN model simulations with continuous
expansion and continuously increasing width of the effective intracortical interactions with half the
cortical growth rate (r = 0.16, η = 0.025, total area increase by a factor of 2.56 between t = 0τ
and t = 100τ ). (F to H) Time courses of column spacing Λ (F), number of hypercolumns NHC

(G), and bandedness α (H) for N = 30 simulations (r = 0.16, η = 0.025, total area increase by a
factor of 2.56 between t = 0τ and t = 100τ ). Growth typically induces a considerable drop in α.
However, in contrast to a fixed Mexican-Hat size (Fig. 4B in the manuscript), the mean column
spacing Λ increases considerably between t = 10τ and t = 100τ . Consequently the number of
hypercolumns NHC only increases moderately.
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Movies

Movie S1. Development of OD column layout in the EN model without growth, starting from
nonselective initial condition o(x, t = 0) = 0 (η = 0.025, r = 0.16). The video displays OD
maps (upper left) as well as the time courses of the parameters column spacing Λ (upper right),
number of hypercolumns NHC (lower left), and bandedness α (lower right), characterizing OD
layouts during development. At t = 4τ OD columns have segregated. After 10τ , columns start
reorganizing and merge progressively towards a stationary stripe-like layout. Whereas Λ and NHC

reach near mature levels around 10τ , the bandedness α increases during the entire time course
capturing the slow reorganization of OD columns towards stripes.
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Movie S2. Zigzag reorganization in the EN model after instantaneous isotropic area in-
crease (η = 0.025, r = 0.16). The video displays OD maps (upper left) as well as the time courses
of the column spacing Λ (upper right), the number of hypercolumns NHC (lower left), and the
bandedness α (lower right). After instantaneous area increase at t = 10τ , OD stripes bend sinu-
soidally, a behavior characteristic for ZZ instability. A jump in Λ is observed shortly after t = 10τ .
Subsequently, Λ decreases to almost the initial value and, consequently, NHC increases. The
bandedness α decreases reflecting the bending of OD domains.

Movie S3. OD development in the EN model with growth at near realistic growth rate. (total
area increase by a factor of 2.56 between t = 0 and t = 100τ , η = 0.025, r = 0.16). The video
displays OD maps (upper left) as well as the time courses of the column spacing Λ (upper right),
the number of hypercolumns NHC (lower left), and the bandedness α (lower right). Despite the
large area increase, the column spacing Λ increases only slightly and transiently, implying a strong
increase in NHC . Note that growth-induced reorganization of OD columns shows signatures of the
ZZ instability as captured by a drop in α.
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Supporting Information
Keil et al. 10.1073/pnas.0913020107
SI Movies

Movie S1 Development of ocular dominance (OD) column layout in the Elastic Network (EN) model without growth, starting from nonselective initial
condition oðx;t ¼ 0Þ ¼ 0 ðη ¼ 0.025; r ¼ 0.16Þ. The video displays OD maps (Upper Left) as well as the time courses of the parameters column spacing Λ (Upper
Right), number of hypercolumns NHC (Lower Left), and bandedness α (Lower Right), characterizing OD layouts during development. At t ¼ 4τ OD columns have
segregated. After 10τ, columns start reorganizing and merge progressively toward a stationary stripe-like layout. Whereas Λ and NHC reach near mature levels
around 10τ, the bandedness α increases during the entire time course capturing the slow reorganization of OD columns toward stripes.

Movie S1 (MP4)

Movie S2 Zigzag (ZZ) reorganization in the ENmodel after instantaneous isotropic area increase η ¼ 0.025; r ¼ 0.16Þ. The video displays ODmaps (Upper Left)
as well as the time courses of the column spacing Λ (Upper Right), the number of hypercolumns NHC (Lower Left), and the bandedness α (Lower Right). After
instantaneous area increase at t ¼ 10τ, OD stripes bend sinusoidally, a behavior characteristic for ZZ instability. A jump in Λ is observed shortly after t ¼ 10τ.
Subsequently, Λ decreases to almost the initial value and, consequently, NHC increases. The bandedness α decreases reflecting the bending of OD domains.

Movie S2 (MP4)

Keil et al. www.pnas.org/cgi/doi/10.1073/pnas.0913020107 1 of 2
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Abstract

Background: The primary visual cortex of many mammals contains a continuous representation of visual space,
with a roughly repetitive aperiodic map of orientation preferences superimposed. It was recently found that
orientation preference maps (OPMs) obey statistical laws which are apparently invariant among species widely
separated in eutherian evolution. Here, we examine whether one of the most prominent models for the
optimization of cortical maps, the elastic net (EN) model, can reproduce this common design. The EN model
generates representations which optimally trade of stimulus space coverage and map continuity. While this model
has been used in numerous studies, no analytical results about the precise layout of the predicted OPMs have
been obtained so far.

Results: We present a mathematical approach to analytically calculate the cortical representations predicted by the
EN model for the joint mapping of stimulus position and orientation. We find that in all the previously studied
regimes, predicted OPM layouts are perfectly periodic. An unbiased search through the EN parameter space
identifies a novel regime of aperiodic OPMs with pinwheel densities lower than found in experiments. In an
extreme limit, aperiodic OPMs quantitatively resembling experimental observations emerge. Stabilization of these
layouts results from strong nonlocal interactions rather than from a coverage-continuity-compromise.

Conclusions: Our results demonstrate that optimization models for stimulus representations dominated by
nonlocal suppressive interactions are in principle capable of correctly predicting the common OPM design. They
question that visual cortical feature representations can be explained by a coverage-continuity-compromise.

Introduction
The pattern of orientation columns in the primary visual
cortex (V1) of carnivores, primates, and their close rela-
tives are among the most intensely studied structures in
the cerebral cortex and a large body of experimental (e.
g., [1-13]) and theoretical work (e.g., [14-39]) has been
dedicated to uncovering its organization principles and
the circuit level mechanisms that underlie its develop-
ment and operation. Orientation preference maps
(OPMs) exhibit a roughly repetitive arrangement of pre-
ferred orientations in which adjacent columns preferring
the same orientation are separated by a typical distance
in the millimeter range [2-5,10]. This range seems to be
set by cortical mechanisms both intrinsic to a particular
area [40] but potentially also involving interactions

between different cortical regions [41]. The pattern of
orientation columns is however not strictly periodic
because the precise local arrangement of preferred
orientation never exactly repeats. Instead, OPMs appear
as organized by a spatially complex aperiodic array of
pinwheel centers, around which columns activated by
different stimulus orientations are radially arranged like
the spokes of a wheel [2-5,10]. The arrangement of
these pinwheel centers, although spatially irregular, is
statistically distinct from a pattern of randomly posi-
tioned points [38] as well as from patterns of phase sin-
gularities in a random pattern of preferred orientations
[32,36,38,42] with spatial correlations identical to experi-
mental observations [38,42]. This suggests that the lay-
out of orientation columns and pinwheels although
spatially aperiodic follows a definite system of layout
rules. Cortical columns can in principle exhibit almost
perfectly repetitive order as exemplified by ocular domi-
nance (OD) bands in the macaque monkey primary
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visual cortex [43,44]. It is thus a fundamental question
for understanding visual cortical architecture, whether
there are layout principles that prohibit a spatially
exactly periodic organization of orientation columns and
instead enforce complex arrangements of these columns.
Recent comparative data have raised the urgency of

answering this question and of dissecting what is consti-
tutive of such complex layout principles. Kaschube et al.
[38] quantitatively compared pinwheel arrangements in
a large dataset from three species widely separated in
the evolution of eutherian mammals. These authors
found that the spatial statistics of pinwheels are surpris-
ingly invariant. In particular, the overall pinwheel den-
sity and the variability of pinwheel densities in regions
from the scale of a single hypercolumn to substantial
fractions of the entire primary visual cortex were found
to be virtually identical. Characterizing pinwheel layout
on the scale of individual hypercolumns, they found the
distributions of nearest-neighbor pinwheel distances to
be almost indistinguishable. Further supporting common
layout rules for orientation columns in carnivores and
primates, the spatial configuration of the superficial
patch system [45] and the responses to drifting grating
stimuli were recently found to be very similar in cat and
macaque monkey primary visual cortex [46].
From an evolutionary perspective, the occurrence of

quantitatively similar layouts for OPMs in primate tree
shrews and carnivorous species appears highly informa-
tive. The evolutionary lineages of these taxa diverged
more than 65 million years ago during the basal radia-
tion of eutherian mammals [47-49]. According to the
fossil record and cladistic reconstructions, their last
common ancestors (called the boreo-eutherial ancestors)
were small-brained, nocturnal, squirrel-like animals of
reduced visual abilities with a telencephalon containing
only a minor neocortical fraction [47,50]. For instance,
endocast analysis of a representative stem eutherian
from the late cretaceous indicates a total anterior-pos-
terior extent of 4 mm for its entire neocortex [47,50].
Similarly, the tenrec (Echinops telfari), one of the closest
living relatives of the boreoeutherian ancestor [51,52],
has a neocortex of essentially the same size and a visual
cortex that totals only 2 mm2 [47]. Since the neocortex
of early mammals was subdivided into several cortical
areas [47] and orientation hypercolumns measure
between 0.4 and 1.4 mm2 [38], it is difficult to envision
ancestral eutherians with a system of orientation col-
umns. In fact, no extant mammal with a visual cortex of
such size is known to possess orientation columns [53].
It is therefore conceivable that systems of orientation
columns independently evolved in laurasiatheria (such
as carnivores) and in euarchonta (such as tree shrews
and primates). Because galagos, tree-shrews, and ferrets
strongly differ in habitat and ecologically relevant visual

behaviors, it is not obvious that the quantitative similar-
ity of pinwheel layout rules in their lineages evolved dri-
ven by specific functional selection pressures (see [54]
for an extended discussion). Kaschube et al. instead
demonstrated that an independent emergence of identi-
cal layout rules for pinwheels and orientation columns
can be explained by mathematically universal properties
of a wide class of models for neural circuit self-
organization.
According to the self-organization scenario, the com-

mon design would result from developmental con-
straints robustly imposed by adopting a particular kind
of self-organization mechanism for constructing visual
cortical circuitry. Even if this scenario is correct, one
question still remains: What drove the different lineages
to adopt a similar self-organization mechanism? As
pointed out above, it is not easy to conceive that this
adoption was favored by the specific demands of their
particular visual habitats. It is, however, conceivable that
general requirements for a versatile and representation-
ally powerful cortical circuit architecture are realized by
the common design. If this was true, the evolutionary
benefit of meeting these requirements might have driven
the adoption of large-scale self-organization and the
emergence of the common design over evolutionary
times.
The most prominent candidate for such a general

requirement is the hypothesis of a coverage-continuity-
compromise (e.g., [19,21,55,56]). It states that the
columnar organization is shaped to achieve an optimal
tradeoff between the coverage of the space of visual sti-
mulus features and the continuity of their cortical repre-
sentation. On the one hand, each combination of
stimulus features should be well represented in a corti-
cal map to avoid ‘blindness’ to stimuli with particular
feature combinations. On the other hand, the wiring
cost to establish connections within the map of orienta-
tion preference should be kept low. This can be
achieved if neurons that are physically close in the cor-
tex tend to have similar stimulus preferences. These two
design goals generally compete with each other. The
better a cortical representation covers the stimulus
space, the more discontinuous it has to be. The tradeoff
between the two aspects can be modeled in what is
called a dimension reduction framework in which corti-
cal maps are viewed as two-dimensional sheets which
fold and twist in a higher-dimensional stimulus space
(see Figure 1) to cover it as uniformly as possible while
minimizing some measure of continuity [21,57,58].
From prior work, the coverage-continuity-compromise

appears to be a promising candidate for a principle to
explain visual cortical functional architecture. First,
many studies have reported good qualitative agreement
between the layout of numerically obtained dimension
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reducing maps and experimental observations
[19,21,42,55-57,59-71]. Second, geometric relationships
between the representations of different visual features
such as orientation, spatial frequency, and OD have
been reproduced by dimension reduction models
[25,56,63-65,67,68,72].
Mathematically, the dimension reduction hypothesis

implies that the layouts of cortical maps can be under-
stood as optima or near optima (global or local minima)
of a free energy functional which penalizes both ‘stimu-
lus scotomas’ and map discontinuity. Unfortunately,
there is currently no dimension reduction model for
which the precise layouts of optimal or nearly optimal
solutions have analytically been established. To justify
the conclusion that the tradeoff between coverage and
continuity favors the common rules of OPM design
found in experiment, knowledge of optimal dimension-
reducing mappings however appears essential.
Precise knowledge of the spatial organization of opti-

mal and nearly optimal mappings is also critical for dis-
tinguishing between optimization theories and frozen
noise scenarios of visual cortical development. In a fro-
zen noise scenario, essentially random factors such as
haphazard wiring [73], the impact of spontaneous activ-
ity patterns [74], or an idiosyncratic set of visual experi-
ences [75] determine the emerging pattern of preferred
orientations. This pattern is then assumed to be ‘frozen’
by an unknown mechanism, capable of preventing
further modification of preferred orientations by
ongoing synaptic turnover and activity-dependent plasti-
city. Conceptually, a frozen noise scenario is diametri-
cally opposed to any kind of optimization theory. Even
if the reorganization of the pattern prior to freezing was

to follow a gradient descent with respect to some cost
function, the early stopping implies that the layout is
neither a local nor a global minimum of this functional.
Importantly, the layout of transient states is known to
exhibit universal properties that can be completely inde-
pendent of model details [25,32]. As a consequence, an
infinite set of distinct optimization principles will gener-
ate the same spatial structure of transient states. This
implies in turn that the frozen transient layout is not
specifically shaped by any particular optimization princi-
ple. Map layouts will thus in principle only be informa-
tive about design or optimization principles of cortical
processing architectures if maps are not just frozen
transients.
In practice, however, the predictions of frozen noise

and optimization theories might be hard to distinguish.
Ambiguity between these mutually exclusive theories
would result in particular, if the energy landscape of the
optimization principle is so ‘rugged’ that there is essen-
tially a local energy minimum next to any relevant ran-
dom arrangement. Dimension reduction models are
conceptually related to combinatorial optimization pro-
blems like the traveling salesman problem (TSP) and
many such problems are believed to exhibit rugged
energy landscapes [76-78]. It is therefore essential to
clarify whether paradigmatic dimension reduction mod-
els are characterized by a rugged or a smooth energy
landscape. If their energy landscapes were smooth with
a small number of well-separated local minima, their
predictions would be easy to distinguish from those of a
frozen noise scenario.
In this study, we examine the classical example of a

dimension reduction model, the elastic network (EN)

Figure 1 The dimension reduction framework. In the dimension reduction framework, the visual cortex is modeled as a two-dimensional
sheet that twists in a higher-dimensional stimulus (or feature) space to cover it as uniformly as possible while minimizing some measure of
continuity (left). In this way, it represents a mapping from the cortical surface to the manifold of visual stimulus features such as orientation and
retinotopy (right).
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model. Since the seminal work of Durbin and Mitchison
[21], the EN model has widely been used to study visual
cortical representations [25,42,62-65,69-72,79]. The EN
model possesses an explicit energy functional which
trades off a matching constraint which matches cortical
cells to particular stimulus features via Hebbian learn-
ing, with a continuity constraint that minimizes Eucli-
dean differences in feature space between neighboring
points in the cortex [63]. In two ways, the EN model’s
explicit variational structure is very appealing. First, cov-
erage and continuity appear as separate terms in the
free energy which facilitates the dissection of their rela-
tive influences. Second, the free energy allows for the
formulation of a gradient descent dynamics. The emer-
gence of cortical selectivity patterns and their conver-
gence toward a minimal energy state in this dynamics
might serve as a model for an optimization process tak-
ing place in postnatal development.
Following Durbin and Mitchison, we consider the EN

model for the joint mapping of two visual features: (i)
position in visual space, represented in a retinotopic
map (RM) and (ii) line orientation, represented in an
OPM. To compute optimal dimension-reducing map-
pings, we first develop an analytical framework for
deriving closed-form expressions for fixed points, local
minima, and optima of arbitrary optimization models
for the spatial layout of OPMs and RMs in which pre-
dicted maps emerge by a supercritical bifurcation as
well as for analyzing their stability properties. By apply-
ing this framework to different instantiations of the EN
model, we systematically disentangle the effects of indi-
vidual model features on the repertoire of optimal solu-
tions. We start with the simplest possible model version,
a fixed uniform retinotopy and an orientation stimulus
ensemble with only a single orientation energy and then
relax the uniform retinotopy assumption incorporating
retinotopic distortions. An analysis for a second widely
used orientation stimulus ensemble including also unor-
iented stimuli is given in Appendix 1. Surprisingly, in all
cases, our analysis yields pinwheel-free orientation
stripes (OSs) or stereotypical square arrays of pinwheels
as local minima or optimal orientation maps of the EN
model. Numerical simulations of the EN confirm these
findings. They indicate that more complex spatially
aperiodic solutions are not dominant and that the
energy landscape of the EN model is rather smooth.
Our results demonstrate that while aperiodic stationary
states exist, they are generally unstable in the considered
model versions.
To test whether the EN model is in principle capable

of generating complex spatially aperiodic optimal orien-
tation maps, we then perform a comprehensive unbiased
search of the EN optima for arbitrary orientation stimu-
lus distributions. We identify two key parameters

determining pattern selection: (i) the intracortical inter-
action range and (ii) the fourth moment of the orienta-
tion stimulus distribution function. We derive complete
phase diagrams summarizing pattern selection in the EN
model for fixed as well as variable retinotopy. Small
interaction ranges together with low to intermediate
fourth moment values lead to pinwheel-free OSs, rhom-
bic, or hexagonal crystalline orientation map layouts as
optimal states. In the regime of large interaction ranges
together with higher fourth moment, we find irregular
aperiodic OPM layouts with low pinwheel densities as
optima. Only in an extreme and previously unconsid-
ered parameter regime of very large interaction ranges
and stimulus ensemble distributions with an infinite
fourth moment, optimal OPM layouts in the EN model
resemble experimentally observed aperiodic pinwheel-
rich layouts and quantitatively reproduce the recently
described species-invariant pinwheel statistics. Unex-
pectedly, we find that the stabilization of such layouts is
not achieved by an optimal tradeoff between coverage
and continuity of a localized population encoding by the
maps but results from effectively suppressive long-range
intracortical interactions in a spatially distributed repre-
sentation of localized stimuli.
We conclude our reexamination of the EN model with

a comparison between different numerical schemes for
the determination of optimal or nearly optimal map-
pings. For large numbers of stimuli, numerically deter-
mined solutions match our analytical predictions,
irrespectively of the computational method used.

Results and discussion
Model definition and model symmetries
We analyze the EN model for the joint optimization of
position and orientation selectivity as originally intro-
duced by Durbin and Mitchison [21]. In this model, the
RM is represented by a mapping R(x) = (R1(x), R2(x))
which describes the receptive field center position of a
neuron at cortical position x. Any RM can be decom-
posed into an affine transformation x ↦ X from cortical
to visual field coordinates, on which a vector-field of
retinotopic distortions r(x) is superimposed, i.e.:

R(x) = X + r(x)

with appropriately chosen units for x and R.
The OPM is represented by a second complex-valued

scalar field z(x). The pattern of orientation preferences ϑ
(x) is encoded by the phase of z(x) via

ϑ(x) =
1
2

arg(z(x)).

The absolute value |z(x)| is a measure of the average
cortical selectivity at position x. Solving the EN model
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requires to find pairs of maps {r(x), z(x)} that represent
an optimal compromise between stimulus coverage and
map continuity. This is achieved by minimizing a free
energy functional

F = σ 2C + R (1)

in which the functional C measures the coverage of a
stimulus space and the functional R the continuity of
its cortical representation. The stimulus space is defined
by an ensemble {S} of idealized point-like stimuli, each
described by two features: sz = |sz|e

2iθ and sr = (sx,sy)
which specify the orientation θ of the stimulus and its
position in visual space sr (Figure 2b). C and R are
given by

C[z, r] = −
〈
ln
∫

d2ye−(|sz−z(y)|2+|sr−X−r(y)|2)/2σ 2
〉

S

R[z, r] =
1
2

∫
d2yη||∇z(y)||2 + ηr

2∑

j=1

||∇rj(y)||2 ,

with ∇ = (∂x, ∂y)
T, and h Î [0, 1]. The ratios s 2/h and

s 2/hr control the relative strength of the coverage term
versus the continuity term for OPM and RM, respec-
tively. 〈...〉S denotes the average over the ensemble of
stimuli.
Minima of the energy functional F are stable fixed

points of the gradient descent dynamics

∂tz(x) = −2
δF[z, r]
δz̄(x)

≡ Fz[z, r](x)

∂tr(x) = −δF[z, r]
δr(x)

≡ Fr[z, r](x)
(2)

called the EN dynamics in the following. These
dynamics read

∂tz(x) =
〈[

sz − z(x)
]
e(x, S, z, r)

〉
S + η&z(x) (3)

∂tr(x) =
〈[

sr − X − r(x)
]

e(x, S, z, r)
〉
S + ηr&r(x),(4)

where e(x, S, z, r) is the activity-pattern, evoked by a
stimulus S = (sr, sz) in a model cortex with retinotopic
distortions r(x) and OPM z(x). It is given by

e(x, . . .) =
e−(|sr−X−r(x)|2)/2σ 2

e−(|sz−z(x)|2)/2σ 2

∫
d2ye−(|sr−X−r(y)|2)/2σ 2e−(|sz−z(y)|2)/2σ 2

.

Figure 2 illustrates the general features of the EN
dynamics using the example of a single stimulus. Figure
2a shows a model orientation map with a superimposed
uniform representation of visual space. A single point-
like, oriented stimulus S = (sr, sz) with position sr = (sx,
sy) and orientation θ = 1/2 arg(sz) (Figure 2b) evokes a

cortical activity pattern e(x, S, z, r) (Figure 2c). The
activity-pattern in this example is of roughly Gaussian
shape and is centered at the point, where the location sr
of the stimulus is represented in cortical space. How-
ever, depending on the model parameters and the sti-
mulus, the cortical activity pattern may assume as well a
more complex form (see also ‘Discussion’ section).
According to Equations (3, 4), each stimulus and the
evoked activity pattern induce a modification of the
orientation map and RM, shown in Figure 2d. Orienta-
tion preference in the activated regions is shifted toward
the orientation of the stimulus. The representation of
visual space in the activated regions is locally contracted
toward the position of the stimulus. Modifications of
cortical selectivities occur due to randomly chosen sti-
muli and are set proportional to a very small learning
rate. Substantial changes of cortical representations
occur slowly through the cumulative effect of a large
number of activity patterns and stimuli. These effective
changes are described by the two deterministic equa-
tions for the rearrangement of cortical selectivities equa-
tions (3, 4) which are obtained by stimulus-averaging
the modifications due to single activity patterns in the
discrete stimulus model [25]. One thus expects that the
optimal selectivity patterns and also the way in which
cortical selectivities change over time are determined by
the statistical properties of the stimulus ensemble. In
the following, we assume that the stimulus ensemble
satisfies three properties: (i) The stimulus locations sr
are uniformly distributed across visual space. (ii) For the
distribution of stimulus orientations, |sz| and θ are inde-
pendent. (iii) Orientations θ are distributed uniformly in
[0, π].
These conditions are fulfilled by stimulus ensembles

used in virtually all prior studies of dimension reduction
models for visual cortical architecture (e.g.,
[19,21,25,64,65,71,72,80,81]). They imply several symme-
tries of the model dynamics equations (3, 4). Due to the
first property, the EN dynamics are equivariant under
translations

T̂yz(x) = z(x + y)

T̂yr(x) = r(x + y),

rotations

R̂βz(x) = e2iβz((−βx)

R̂βr(x) = (β r((−βx)

with 2×2 rotation matrix

(β =
(

cos β − sin β

sin β cos β

)
,
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and reflections

P̂z(x) = z̄()x)

P̂r(x) = )r()x),

where Ψ = diag(-1, 1) is the 2×2 reflection matrix.
Equivariance means that

T̂yFz[z, r] = Fz[T̂yz, T̂yr] (5)

R̂βFz[z, r] = Fz[R̂βz, R̂βr] (6)

P̂Fz[z, r] = Fz[P̂z, P̂r], (7)

x

y

x

y

x

y

x

y

a b

c d

sy

sx

Figure 2 The EN model. (a) Example OPM (color code) together with a uniform map of visual space (RM) (grid lines). (b) Position sr = (sx, sy)
and orientation θ of a ‘pointlike’ stimulus. (c) Cortical activity, evoked by the stimulus in b for the model maps in a. Dark regions are activated.
Note, that in contrast to SOFM models, the activity pattern does not exhibit a stereotypical Gaussian shape. (d) Modification of orientation
preference and retinotopy, caused by the stimulus in b. Orientation preferences prior to stimulus presentation are indicated with grey bars, after
stimulus presentation with black bars. Most strongly modified preferences correspond to thick black bars. Modifications of orientation
preferences and retinotopy are displayed on an exaggerated scale for illustration purposes.
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with mutatis mutandis the same equations fulfilled by
the vector-field Fr[z, r].
As a consequence, patterns that can be converted into

one another by translation, rotation, or reflection of the
cortical layers represent equivalent solutions of the
model equations (3, 4), by construction. Due to the sec-
ond assumption, the dynamics is also equivariant with
respect to shifts in orientation Sjz(x) = eijz(x), i.e.,

eiφFz[z, r] = Fz[eiφz, r] (8)

Fr[z, r] = Fr[eiφz, r]. (9)

Thus, two patterns are also equivalent solutions of the
model, if their layout of orientation domains and retino-
topic distortions is identical, but the preferred orienta-
tions differ everywhere by the same constant angle.
Without loss of generality, we normalize the ensem-

bles of orientation stimuli such that 〈|sz|2〉S = 〈|sz|2〉 = 2
throughout this article. This normalization can always
be restored by a rescaling of z(x) (see [25,69]).
Our formulation of the dimension-reduction problem

in the EN model utilizes a continuum description, both
for cortical space and the set of visual stimuli. This facil-
itates mathematical treatment and appears appropriate,
given the high number of cortical neurons under one
square millimeter of cortical surface (e.g., roughly 70000
in cat V1 [82]). Even an hypothesized neuronal mono-
layer would consist of more than 20 × 20 neurons per
hypercolumn area Λ2, constituting a quite dense sam-
pling of the spatial periodicity. Treating the feature
space as a continuum implements the concept that the
cortical representation has to cover as good as possible
the infinite multiplicity of conceivable stimulus feature
combinations.

The orientation unselective fixed point
Two stationary solutions of the model can be estab-
lished from symmetry. The simplest of these is the
orientation unselective state with z(x) = 0 and uniform
mapping of visual space r(x) = 0. First, by the shift sym-
metry (Equation (8)), we find that z(x) = 0 is a fixed
point of Equation (3). Second, by reflectional and rota-
tional symmetry (Equations (5, 7)), we see that the
right-hand side of Equation (4) has to vanish and hence
the orientation unselective state with uniform mapping
of visual space is a fixed point of Equations (3, 4).
This homogeneous unselective state thus minimizes

the EN energy functional if it is a stable solution of Equa-
tions (3, 4). The stability can be determined by consider-
ing the linearized dynamics of small deviations {r(x), z
(x)} around this state. These linearized dynamics read

∂tr(x) & Lr[r] =
1

16πσ 4

∫
d2y e

−

(
x − y

)2

4σ 2 Â r(y) + ηr ' r(x) (10)

∂tz(x) & Lz[z] =
(

1
σ 2 − 1

)
z(x) + η&z(x) − 1

4πσ 4

∫
d2ye− (x−y)2

4σ 2 z(y), (11)

where (Â)ij = (xi - yi)(xj - yj) -2s2δij with δij being Kro-
necker’s delta. We first note that the linearized
dynamics of retinotopic distortions and orientation pre-
ference decouple. Thus, up to linear order and near the
homogeneous fixed point, both cortical representation
evolve independently and the stability properties of the
unselective state can be obtained by a separate examina-
tion of the stability properties of both cortical
representations.
The eigenfunctions of the linearized retinotopy

dynamics Lr[r] can be calculated by Fourier-transform-
ing Equation (10):

∂t r̃i(k) = −
2∑

j=1

(
σ 2e−k2σ 2

kikj + ηrk2δij

)
r̃j(k),

where k = |k| and i = 1, 2. A diagonalization of this
matrix equation yields the eigenvalues

λr
L = −k2(ηr + e−σ 2k2

σ 2), λr
T = −ηrk2

with corresponding eigenfunctions (in real space)

rL(x) = kφeikφx + c.c.

rT(x) = kφ+π/2eikφx + c.c.,

where kj = |k|(cos j, sin j)T. These eigenfunctions
are longitudinal (L) or transversal (T) wave patterns. In
the longitudinal wave, the retinotopic distortion vector r
(x) lies parallel to k which leads to a ‘compression wave’
(Figure 3b, left). In the transversal wave pattern (Figure
3b, right), the retinotopic distortion vector is orthogonal
to k. We note that the linearized Kohonen model [61]
was previously found to exhibit the same set of eigen-
functions [80]. Because both spectra of eigenvalues λr

T ,
λr

Lare smaller than zero for every s >0, hr >0, and k >0
(Figure 3a), the uniform retinotopy r(x) = 0 is a stable
fixed point of Equation (4) irrespective of parameter
choice.
The eigenfunctions of the linearized OPM dynamics

Lz[z] are Fourier modes ~ eikx by translational symme-
try. By rotational symmetry, their eigenvalues only
depend on the wave number k and are given by

λz(k) = −1 +
1
σ 2

(
1 − e−k2σ 2

)
− ηk2
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(see [25]). This spectrum of eigenvalues is depicted in
Figure 3c. For h >0, lz(k) has a single maximum at

kc = 1
σ

√
ln
(
1/η

)
. For

σ > σ ∗(η) =
√

1 + η ln η − η , (12)

this maximal eigenvalue r = lz(kc) is negative. Hence,
the unselective state with uniform retinotopy is a stable
fixed point of Equations (3, 4) and the only known solu-
tion of the EN model in this parameter range. For s <
s*(h), the maximal eigenvalue r is positive, and the non-
selective state is unstable with respect to a band of
Fourier modes ~ eikx with wave numbers around |k| ≈
kc (see Figure 3c). This annulus of unstable Fourier
modes is called the critical circle. The finite wavelength
instability [83-85] (or Turing instability [86]) leads to
the emergence of a pattern of orientation preference
with characteristic spacing Λ = 2π/kc from the nonselec-
tive state on a characteristic timescale τ = 1/r.

One should note that as in other models for the self-
organization of orientation columns, e.g., [15,57], the
characteristic spatial scale Λ arises from effective intra-
cortical interactions of ‘Mexican-hat’ structure (short-
range facilitation, longer-ranged suppression). The
short-range facilitation in the linearized EN dynamics is
represented by the first two terms on the right-hand
side of Equation (11). Since s <1 in the pattern forming
regime, the prefactor in front of the first term is posi-
tive. Due to the second, Laplacian term, it is favored
that neighboring units share selectivity properties, a pro-
cess mediated by short-range facilitation. Longer-ranged
suppression is represented by the convolution term in
Equation (11).
Mathematically, this term directly results from the

soft-competition in the ‘activity-dependent’ coverage
term of Equation (1). The local facilitation is jointly
mediated by coverage (first term) and continuity (second
term) contributions.

kc

r = 1/

k=kc

unstable

b

kmax

a

c d

Figure 3 The linearization of the EN model dynamics around the unselective fixed point. (a) Eigenvalue spectra of the linearized
retinotopy dynamics for longitudinal mode (λr

L(k) , blue trace) and transversal mode (λr
T(k) , red trace). (b) Longitudinal mode

∼ kφeikφx + c.c. (left) and transversal mode ∼ kφ+π/2eikφx + c.c. (right). (c) Spectrum of eigenvalues of the linearized OPM dynamics (red
trace) for s < s*(h). Orange region marks the unstable annulus of Fourier modes (critical circle). (d) Stability regions of the nonselective state in
the EN model. The stability border is given by s*(h) (Equation (12)).
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Figure 3d summarizes the result of the linear stability
analysis of the nonselective state. For s > s*(h), the
orientation unselective state with uniform retinotopy is
a minimum of the EN-free energy and also the global
minimum. For s < s*(h), this state represents a maxi-
mum of the energy functional and the minima must
thus exhibit a space-dependent pattern of orientation
selectivities.

Orientation stripes
Within the potentially infinite set of orientation selective
fixed points of the model, one class of solutions can be
established from symmetry: {r(x) = 0, z(x) = A0e

ikx}. In
these pinwheel-free states, orientation preference is con-
stant along one axis in cortex (perpendicular to the vec-
tor k), and each orientation is represented in equal
proportion (see Figure 4a). Retinotopy is perfectly uni-
form. Although this state may appear too simple to be
biologically relevant, we will see that it plays a funda-
mental role in the state space of the EN model. It is
therefore useful to establish its existence and basic char-
acteristics. The existence of OS solutions follows directly
from the model’s symmetries (Equations (5) to (9)).
Computing

Ty[Fz[eikx, 0]] = Fz[Ty[eikx], Ty[0]] = Fz[eikyeikx, 0] = eikyFz[eikx, 0]

demonstrates that Fz[eikx, 0] is proportional to eikx.
This establishes that the subspace of functions ~ eikx is
invariant under the dynamics given by Equation (3). For
A0 = 0, we recover the trivial fixed point of the EN
dynamics by construction, as shown above. This means
that within this subspace A0 = 0 is either a minimum or
a maximum of the EN energy functional (Equation (1)).
Furthermore, for A0 ® ∞ the EN energy tends to infi-
nity. If the trivial fixed point is unstable, it corresponds
to a maximum of the EN energy functional. Therefore,
there must exist at least one minimum with A0 ≠ 0 in
the subspace of functions ~ eikx which then corresponds
to a stationary state of the EN dynamics.
Regarding the dynamics of retinotopic deviations, the

model’s symmetries equations can be invoked to show
that for the state {0, A0e

ikx}, the right-hand side of
Equation (4) has to be constant in space:

Ty[Fr[eikx, 0]] = Fr[Ty[eikx], Ty[0]] = Fr[eikyeikx, 0] = Fr[eikx, 0]

If this constant was nonzero the RM would drift with
constant velocity. This, however, is impossible in a var-
iational dynamics such that this constant must vanish.
The OS solution (Figure 4a) is to the best of our knowl-
edge the only exact nontrivial stationary solution of
Equations (3, 4) that can be established without any
approximations.

Doubly periodic and quasi-periodic solutions
In the EN model as considered in this study, the maps
of visual space and orientation preference are jointly
optimized to trade off coverage and continuity leading
to mutual interactions between the two cortical repre-
sentations. These mutual interactions vanish in the rigid
retinotopy limit hr ® ∞ and the perfectly uniform reti-
notopy becomes an optimal solution for arbitrary orien-
tation column layout z(x). As it is not clear how
essential the mutual interactions with position specificity
are in shaping the optimal orientation column layout,
we continue our investigation of solution classes by con-
sidering global minima of optimization models with
fixed uniform retinotopy. The mutual interactions will
be taken into account in a subsequent step.
In the rigid retinotopy limit, minima of the energy

functional are stable stationary states of the dynamics of
the OPM (Equation (3)) with r(x) = 0. To compute
orientation selective stationary solutions of this OPM
dynamics, we employ that in the vicinity of a supercriti-
cal bifurcation where the nonselective fixed point z(x) =
0 becomes unstable, the entire set of nontrivial fixed
points is determined by the third-order terms of the
Volterra series representation of the operator Fz[z, 0]
[35,84,85,87]. The symmetries given by Equations (5) to
(9) restrict the general form of such a third-order
approximation for any model of OPM optimization to

∂tz(x) ≈ Lz[z] + Nz
3[z, z, z̄], (13)

where the cubic operator Nz
3 is written in trilinear

form, i.e.,

Nz
3




∑

j

αjzj,
∑

k

βkzk,
∑

l

γlz̄l



 =
∑

j,k,l

αjβkγl Nz
3[zj, zk, z̄l].

In particular, all even terms in the Volterra Series
representation of Fz[z, 0] vanish due to the Shift-Sym-
metry (Equations (8, 9)). Explicit analytic computation
of the cubic nonlinearities for the EN model is cumber-
some but not difficult (see ‘Methods’ section) and yields
a sum

Nz
3[z, z, z̄] =

11∑

j=1

ajN
j
3[z, z, z̄]. (14)

The individual nonlinear operators Nj
3 are with one

exception nonlocal convolution-type operators and are
given in the ‘Methods’ section (Equation (38)), together
with a detailed description of their derivation.
Only the coefficients aj depend on the properties of

the ensemble of oriented stimuli.
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n=1
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n=5

n=15 ...
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i=0 i=611

...
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i=3

i=300

kx

ky

i=0

Figure 4 Exact and approximate orientation selective fixed points of OPM optimization models. (a) Pinwheel-free OS pattern. Diagram
shows the position of the wave vector in Fourier space. (b) rPWC with four nonzero wave vectors. (c) Essentially complex planforms (ECPs). The
index n indicates the number of nonzero wave vectors. The index i enumerates nonequivalent configurations of wave vectors with the same n,
starting with i = 0 for the most anisotropic planform. For n = 3, 5, and 15, there are 2, 4, and 612 different ECPs, respectively. OPM layouts
become more irregular with increasing n.
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To calculate the fixed points of Equation (13), we use
a perturbative method called weakly nonlinear analysis
that enables us to analytically examine the structure and
stability of inhomogeneous stationary solutions in the
vicinity of a finite-wavelength instability. Here, we exam-
ine the stability of so-called planforms [83-85]. Plan-
forms are patterns that are composed of a finite number
of Fourier components, such as

z(x) =
∑

j

Aj(t)eikjx

for a pattern of orientation columns. With the above
planform ansatz, we neglect any spatial dependency of
the amplitudes Aj(t) for example due to long-wave
deformations for the sake of simplicity and analytical
tractability. When the dynamics is close to a finiite
wavelength instability, the essential Fourier components
of the emerging pattern are located on the critical circle
|kj| = kc. The dynamic equations for the amplitudes of
these Fourier components are called amplitude equa-
tions. For a discrete number of N Fourier components
of z(x) whose wave vectors lie equally spaced on the cri-
tical circle, the most general system of amplitude equa-
tions compatible with the model’s symmetries
(Equations (5) to (9)) has the form [35,87]

Ȧi = rAi − Ai

N∑

j=1

gij|Aj|2 − Āi−

N∑

j=1

fijAjAj− , (15)

with r >0. Here, gij and fij are the real-valued coupling
coefficients between the amplitudes Ai and Aj. They
depend on the differences between indices |i - j| and are
entirely determined by the nonlinearity Nz

3[z, z, z̄] in
Equation (13). If the wave vectors ki = (cos ai, sin ai)kc
are parameterized by the angles ai, then the coefficients
gij and fij are functions only of the angle a = |ai - aj|
between the wave vectors ki and kj. One can thus obtain
the coupling coefficients from two continuous functions
g(a) and f(a) that can be obtained from the nonlinearity
Nz

3[z, z, z̄] (see ‘Methods’ section for details). In the fol-
lowing, these functions are called angle-dependent inter-
action functions. The amplitude equations are
variational if and only if gij and fij are real-valued. In this
case they can be derived through

Ȧj(t) = −∂UA

∂Āj

from an energy

UA = −r
N∑

i=1

|Ai|2 +
1
2

N∑

i, j=1

gij|Ai|2|Aj|2 +
1
2

N∑

i, j=1

fijĀiĀi−AjAj− . (16)

If the coefficients gij and fij are derived from Equation
(1), the energy UA for a given planform solution corre-
sponds to the energy density of the EN energy func-
tional considering only terms up to fourth-order in z(x).
The amplitude equations (15) enable to calculate an

infinite set of orientation selective fixed points. For the
above OS solution with one nonzero wave vector z(x) =
A0e

ikx, the amplitude equations predict the so far unde-
termined amplitude

|A0|2 =
r
gii

(17)

and its energy

UOS = − r
2gii

. (18)

Since gii >0, this shows that OS stationary solutions
only exist for r >0, i.e., in the symmetry breaking
regime. As for all following fixed-points, UOS specifies
the energy difference to the homogeneous unselective
state z(x) = 0.
A second class of stationary solutions can be found

with the ansatz

z(x) = A1eik1x + A2eik2x + A3e−ik1x + A4e−ik2x

with amplitudes Aj = |Aj|e
ijj and ∠(k1, k2) = a >0. By

inserting this ansatz into Equation (15) and assuming
uniform amplitude |A1| = |A2| = |A2| = |A4| = A ,
we obtain

A2 =
r

g00 + g0π + g0α + g0π−α − 2f0α
. (19)

The phase relations of the four amplitudes are given
by

φ1 + φ3 = φ0

φ2 + φ4 = φ0 + π .

These solutions describe a regular rhombic lattice of
pinwheels and are therefore called rhombic pinwheel
crystals (rPWCs) in the following. Three phases can be
chosen arbitrarily according to the two above condi-
tions, e.g., j0, ∆0 = j1 - j3 and ∆1 = j2 - j4. For an
rPWC parameterized by these phases, ∆0 shifts the
absolute positions of the pinwheels in x-direction, ∆1

shifts the absolute positions of the pinwheels in y-direc-
tion, and j0 shifts all the preferred orientations by a
constant angle. The energy of an rPWC solution is

UrPWC = − 2r
g00 + g0π + g0α + g0π−α − 2f0α

. (20)
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An example of such a solution is depicted in Figure
4b. We note that rPWCs have been previously found in
several other models for OPM development
[27,31,37,39,88]. The pinwheel density r of an rPWC, i.
e., the number of pinwheels in an area of size Λ2, is
equal to r = 4 sin a [54]. The angle a which minimizes
the energy UrPWC can be computed by maximizing the
function

s(α) = g0α + g0π−α − 2f0α (21)

in the denominator of Equation (20).
The two solution classes discussed so far, namely OS

and rPWCs, exhibit one prominent feature, absent in
experimentally observed cortical OPMs, namely perfect
spatial periodicity. Many cortical maps including OPMs
do not resemble a crystal-like grid of repeating units.
Rather the maps are characterized by roughly repetitive
but aperiodic spatial arrangement of feature preferences
(e.g., [5,10]). This does not imply that the precise layout
of columns is arbitrary. It rather means that the rules of
column design cannot be exhaustively characterized by
mapping a ‘representative’ hypercolumn.
Previous studies of abstract models of OPM develop-

ment introduced the family of so-called essentially com-
plex planforms (ECPs) as stationary solutions of
Equation (15). This solution class encompasses a large
variety of realistic quasi-periodic OPM layouts and is
therefore a good candidate solution class for models of
OPM layouts. In addition, Kaschube et al. [38] demon-
strated that models in which these are optimal solutions
can reproduce all essential features of the common
OPM design in ferret, tree-shrew, and galago. An n-ECP
solution can be written as

z(x) =
n∑

j=1

Ajeiljkjx,

with n = N/2 wave vectors kj = kc(cos(πj/n), sin(πj/n))
distributed equidistantly on the upper half of the critical
circle, complex amplitudes Aj and binary variables lj =
±1 determining whether the mode with wave vector kj
or -kj is active (nonzero). Because these planforms can-
not realize a real-valued function they are called essen-
tially complex [35]. For an n-ECP, the third term on the
right-hand side of Equation (15) vanishes and the ampli-
tude equations for the active modes Ai reduce to a sys-
tem of Landau equations

Ȧi = rAi − Ai

n∑

j=1

gij|Aj|2,

where gij is the n × n-coupling matrix for the active
modes. Consequently, the stationary amplitudes obey

|Ai|2 = r
n∑

j=1

(
g−1)

ij. (22)

The energy of an n-ECP is given by

UECP = − r
2

∑

i,j

(
g−1)

ij. (23)

We note that this energy in general depends on the
configuration of active modes, given by the lj’s, and
therefore planforms with the same number of active
modes may not be energetically degenerate.
Families of n-ECP solutions are depicted in Figure 4c.

The 1-ECP corresponds to the pinwheel-free OS pattern
discussed above. For fixed n ≥ 3, there are multiple
planforms not related by symmetry operations which
considerably differ in their spatial layouts. For n ≥ 4, the
patterns are spatially quasi-periodic, and are a generali-
zation of the so-called Newell-Pomeau turbulent crystal
[89,90]. For n ≥ 10, their layouts resemble experimen-
tally observed OPMs. Different n-ECPs however differ
considerably in their pinwheel density. Planforms whose
nonzero wave vectors are distributed isotropically on the
critical circle typically have a high pinwheel density (see
Figure 4c, n = 15 lower right). Anisotropic planforms
generally contain considerably fewer pinwheels (see Fig-
ure 4c, n = 15 lower left). All large n-ECPs, however,
exhibit a complex quasi-periodic spatial layout and a
nonzero density of pinwheels.
In order to demonstrate that a certain planform is an

optimal solution of an optimization model for OPM lay-
outs in which patterns emerge via a supercritical bifur-
cation, we not only have to show that it is a stationary
solution of the amplitude equations but have to analyze
its stability properties with respect to the gradient des-
cent dynamics as well as its energy compared to all
other candidate solutions.
Many stability properties can be characterized by

examining the amplitude equations (15). In principle,
the stability range of an n-ECPs may be bounded by two
different instability mechanisms: (i) an intrinsic instabil-
ity by which stationary solutions with n active modes
decay into ones with lower n. (ii) an extrinsic instability
by which stationary solutions with a ‘too low’ number of
modes are unstable to the growth of additional active
modes. These instabilities can constrain the range of
stable n to a small finite set around a typical n [35,87].
A mathematical evaluation of both criteria leads to pre-
cise conditions for extrinsic and intrinsic stability of a
planform (see ‘Methods’ section). In the following, a
planform is said to be stable, if it is both extrinsically
and intrinsically stable. A planform is said to be an opti-
mum (or optimal solution) if it is stable and possesses
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the minimal energy among all other stationary planform
solutions.
Taken together, this amplitude equation approach

enables to analytically compute the fixed points and
optima of arbitrary optimization models for visual corti-
cal map layout in which the functional architecture is
completely specified by the pattern of orientation col-
umns z(x) and emerges via a supercritical bifurcation.
Via a third-order expansion of the energy functional
together with weakly nonlinear analysis, the otherwise
analytically intractable partial integro-differential equa-
tion for OPM layouts reduces to a much simpler system
of ordinary differential equations, the amplitude equa-
tions. Using these, several families of solutions, OSs,
rPWCs, and essentially complex planforms, can be sys-
tematically evaluated and comprehensively compared to
identify sets of unstable, stable and optimal, i.e., lowest
energy fixed points. As already mentioned, the above
approach is suitable for arbitrary optimization models
for visual cortical map layout in which the functional
architecture is completely specified by the pattern of
orientation columns z(x) which in the EN model is ful-
filled in the rigid retinotopy limit. We now start by con-
sidering the EN optimal solutions in this limit and
subsequently generalize this approach to models in
which the visual cortical architecture is jointly specified
by maps of orientation and position preference that are
matched to one another.

Representing an ensemble of ‘bar’-stimuli
We start our investigation of optimal dimension-redu-
cing mappings in the EN model using the simplest and
most frequently used orientation stimulus ensemble, the
distribution with sz-values uniformly arranged on a ring
with radius rsz =

√
2 [57,64-66,91]. We call this stimulus

ensemble the circular stimulus ensemble in the follow-
ing. According to the linear stability analysis of the non-
selective fixed point, at the point of instability, we
choose s = s*(h) such that the linearization given in
Equation (11) is completely characterized by the conti-
nuity parameter h. Equivalent to specifying h is to fix
the ratio of activation range s and column spacing Λ

σ // =
1

2π

√
log(1/η) (24)

as a more intuitive parameter. This ratio measures the
effective interaction-range relative to the expected spa-
cing of the orientation preference pattern. In abstract
optimization models for OPM development a similar
quantity has been demonstrated to be a crucial determi-
nant of pattern selection [35,87]. We note, however, that
due to the logarithmic dependence of s/Λ on h, a slight
variation of the effective interaction range may

correspond to a variation of the continuity parameter h
over several orders of magnitude. In order to investigate
the stability of stationary planform solutions in the EN
model with a circular orientation stimulus ensemble, we
have to determine the angle-dependent interaction func-
tions g(a) and f(a). For the coefficients aj in Equation
(14) we obtain

a1 = 1
4σ 6 − 1

σ 4 + 1
2σ 2 a2 = 1

4πσ 6 − 1
8πσ 8 a3 = − 1

16πσ 8 + 1
8πσ 6

a4 = − 1
8πσ 8 + 1

4πσ 6 − 1
8πσ 4 a5 = − 1

16πσ 8 a6 = 1
8πσ 6 − 1

16πσ 8

a7 = 1
12π2σ 10 − 1

12π2σ 8 a8 = 1
24π2σ 10 a9 = − 3

64π3σ 12

a10 = 1
12π2σ 10 − 1

12π2σ 8 a11 = 1
24π2σ 10 .

The angle-dependent interaction functions of the EN
model with a circular orientation stimulus ensemble are
then given by

g(α) =
1
σ 4

(
1 − 2e−k2

c σ
2 − e2k2

c σ 2(cos α−1)
(

1 − 2e−k2
c σ

2 cos α
))

+
1

2σ 2

(
e2k2

c σ
2(cos α−1) − 1

)
+

8
σ 6 e−2k2

c σ 2
sinh4(1/2k2

c σ
2 cos α)

f (α) =
1
σ 4

(
1 − e−2k2

c σ
2 (

cosh(2k2
c σ

2 cos α) + 2 cosh(k2
c σ

2 cos α)
)

+ 2e−k2
c σ 2
)

+
1

2σ 2

(
e−2k2

c σ 2
cosh(2k2

c σ
2 cos α) − 1

)
+

4
σ 6 e−2k2

c σ
2

sinh4 (1/2k2
c σ

2 cos α
)

.

(25)

These functions are depicted in Figure 5 for two dif-
ferent values of the interaction range s/Λ. We note that
both functions are positive for all s/Λ which is a suffi-
cient condition for a supercritical bifurcation from the
homogeneous nonselective state in the EN model.
Finally, by minimizing the function s(a) in Equation

(21), we find that the angle a which minimizes the
energy of the rPWC fixed-point is a = π/2. This corre-
sponds to a square array of pinwheels (sPWC). Due to
the orthogonal arrangement oblique and cardinal orien-
tation columns and the maximized pinwheel density of
r = 4, the square array of pinwheels has the maximal
coverage among all rPWC solutions.
Optimal solutions close to the pattern formation threshold
We first tested for the stability of pinwheel-free OS
solutions and the sPWCs, by analytical evaluation of the
criteria for intrinsic and extrinsic stability (see ‘Methods’
section). We found both, OSs and sPWCs, to be intrinsi-
cally and extrinsically stable for all s/Λ. Next, we tested
for the stability of n-ECP solutions with 2 ≤ n ≤ 20. We
found all n-ECP configurations with 2 ≤ n ≤ 20 to be
intrinsically unstable for all s/Λ. Hence, none of these
planforms represent optimal solutions of the EN model
with a circular stimulus ensemble, while both OSs and
sPWC are always local minima of the energy functional.
By evaluating the energy assigned to the sPWC (Equa-

tion 20) and the OS pattern (Equation 18), we next
identified two different regimes: (i) For short interaction
range s/Λ ≲ 0.122 the sPWC possesses minimal energy
and is therefore the predicted global minimum. (ii) For
s/Λ ≳ 0.122 the OS pattern is optimal.
Figure 6a shows the resulting simple phase diagram.

sPWCs and OSs are separated by a phase border at s/Λ
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Figure 5 Angle-dependent interaction functions for the EN model with fixed retinotopy and circular orientation stimulus ensemble. (a,
b) g(a) and f(a) for s/Λ = 0.1 (a) and s/Λ = 0.2 (b).

Figure 6 Optimal solutions of the EN model with a circular orientation stimulus ensemble [57,64-66,91]and fixed representation of
visual space. (a) At criticality, the phase space of this model is parameterized by either the continuity parameter h (blue labels) or the
interaction range s/Λ (red labels, see text). (b, c) OPMs (b) and their power spectra (c) in a simulation of Equation (3) with r(x) = 0 and r = 0.1,
s/Λ = 0.1 (h = 0.67) and circular stimulus ensemble (see also Additional file 1). (d) Analytically predicted optimum for s/Λ ≲ 0.122 (quadratic
pinwheel crystal). (e) Pinwheel density time courses for four different simulations (parameters as in b; gray traces, individual realizations; black
trace, simulation in b; red trace, mean value). (f) Mean squared amplitude of the stationary pattern, obtained in simulations (parameters as in b)
for different values of the control parameter r (black circles) and analytically predicted value (solid green line). (g, h) OPMs (g) and their power
spectra (h) in a simulation of Equation (3) with r(x) = 0 and s/Λ = 0.15 (h = 0.41) (other parameters as in b, see also Additional file 2). (i)
Analytically predicted optimum for s/Λ ≳ 0.122 (orientation stripes). (j) Pinwheel density time courses for four different simulations (parameters
as in g; gray traces, individual realizations; black trace, simulation in g; red trace, mean value). (k) Mean squared amplitude of the stationary
pattern, obtained in simulations (parameters as in g) for different values of the control parameter r (black circles) and analytically predicted value
(solid green line).
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≈ 0.122. We numerically confirmed these analytical pre-
dictions by extensive simulations of Equation (3) with r
(x) = 0 and the circular stimulus ensemble (see ‘Meth-
ods’ section for details). Figure 6b,c shows snapshots of
a representative simulation with short interaction range
(r = 0.1, s/Λ = 0.1 (h = 0.67)) (see also Additional file
1). After the phase of initial pattern emergence (symme-
try breaking), the OPM layout rapidly approaches a
square array of pinwheels, the analytically predicted
optimum (Figure 6d). Pinwheel density time courses
(see ‘Methods’ section) display a rapid convergence to a
value close to the predicted density of 4 (Figure 6e). Fig-
ure 6f shows the stationary mean squared amplitudes of
the pattern obtained for different values of the control
parameter r (black circles). For small control para-
meters, the pattern amplitude is perfectly predicted by
Equation (19) (solid green line). Figure 6g,h shows snap-
shots of a typical simulation with longer interaction
range (r = 0.1, s/Λ = 0.15 (h = 0.41)) (see also Addi-
tional file 2). After the emergence of an OPM with
numerous pinwheels, pinwheels undergo pairwise anni-
hilation as previously described for various models of
OPM development and optimization [25,27,35]. The OP
pattern converges to a pinwheel-free stripe pattern,
which is the analytically computed optimal solution in
this parameter regime (Figure 6i). Pinwheel densities
decay toward zero over the time course of the simula-
tions (Figure 6j). Also in this parameter regime, the
mean squared amplitude of the pattern is well-predicted
by Equation (17) for small r (Figure 6k).
In summary, the phase diagram of the EN model with

a circular stimulus ensemble close to threshold is
divided into two regions: (i) for a small interaction
range (large continuity parameter) a square array of pin-
wheels is the optimal dimension-reducing mapping and
(ii) for a larger interaction range (small continuity para-
meter) OSs are the optimal dimension-reducing map-
ping. Both states are stable throughout the entire
parameter range. All other planforms, in particular
quasi-periodic n-ECPs are unstable. At first sight, this
structure of the EN phase diagram may appear rather
counterintuitive. A solution with many pinwheel-defects
is energetically favored over a solution with no defects
in a regime with large continuity parameter where dis-
continuity should be strongly penalized in the EN
energy term. However, a large continuity parameter at
pattern formation threshold inevitably leads to a short
interaction range s compared to the characteristic spa-
cing Λ (see Equation (24)). In such a regime, the gain in
coverage by representing many orientation stimuli in a
small area spanning the typical interaction range, e.g.,
with a pinwheel, is very high. Our results show that the
gain in coverage by a spatially regular positioning of

pinwheels outweighs the accompanied loss in continuity
above a certain value of the continuity parameter.
EN dynamics far from pattern formation threshold
Close to pattern formation threshold, we found only two
stable solutions, namely OSs and sPWCs. Neither of the
two exhibits the characteristic aperiodic and pinwheel-
rich organization of experimentally observed OPMs.
Furthermore, the pinwheel densities of both solutions (r
= 0 for OSs and r = 4 for sPWCs) differ considerably
from experimentally observed values [38] around 3.14.
One way toward more realistic stable stationary states
might be to increase the distance from pattern forma-
tion threshold. In fact, further away from threshold, our
perturbative calculations may fail to correctly predict
optimal solutions of the model due to the increasing
influence of higher order terms in the Volterra series
expansion of the right-hand side in Equation (3).
To asses this possibility, we simulated Equation (3)

with r(x) = 0 and a circular stimulus ensemble for very
large values of the control parameter r. Figure 7 dis-
plays snapshots of such a simulation for r = 0.8 as well
as their pinwheel density time courses for two different
values of s/Λ. Pinwheel annihilation in the case of
large s/Λ is less rapid than close to threshold (Figure
7a,b). The OPM nevertheless converges toward a lay-
out with rather low pinwheel density with pinwheel-
free stripe-like domains of different directions joined
by domains with essentially rhombic crystalline pin-
wheel arrangement. The linear zones increase their
size over the time course of the simulations, eventually
leading to stripe-patterns for large simulation times.
For smaller interaction ranges s/Λ, the OPM layout
rapidly converges toward a crystal-like rhombic
arrangement of pinwheels, however containing several
dislocations (Figure 24a in Appendix 1) [84]. Disloca-
tions are defects of roll or square patterns, where two
rolls or squares merge into one, thus increasing the
local wavelength of the pattern [83,85]. Nevertheless,
for all simulations, the pinwheel density rapidly
reaches a value close to 4 (Figure 7c) and the square
arrangement of pinwheels is readily recognizable. Both
features, the dislocations in the rhombic patterns and
domain walls in the stripe patterns, have been fre-
quently observed in pattern-forming systems far from
threshold [84,85].
In summary, the behavior of the EN dynamics with

circular stimulus ensemble far from pattern formation
threshold agrees very well with our analytical predic-
tions close to threshold. Again, orientation stripes and
square pinwheel crystals are identified as the only sta-
tionary solutions. Aperiodic and pinwheel-rich patterns
which resemble experimentally OPM layouts were not
observed.
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Taking retinotopic distortions into account
So far, we have examined the optimal solutions of the
EN model for the simplest and most widely used orien-
tation stimulus ensemble. Somewhat unexpected from
previous reports, the optimal states in this case do not
exhibit the irregular structure of experimentally
observed orientation maps. Our treatment however dif-
fers from previous approaches in that the mapping of
visual space so far was assumed to be undistorted and
fixed, i.e., r(x) = 0. We recall that in their seminal publi-
cation, Durbin and Mitchison [21] in particular demon-
strated interesting correlations between the map of
orientation preference and the map of visual space.
These correlations suggest a strong coupling between
the two that may completely alter the model’s dynamics
and optimal solutions.
It is thus essential to clarify whether the behavior of

the EN model observed above changes or persists if we
relax the simplifying assumption of undistorted retino-
topy and allow for retinotopic distortions. By analyzing
the complete EN model dynamics (Equations (3, 4)), we

study the EN model exactly as originally introduced by
Durbin and Mitchison [21].
We again employ the fact that in the vicinity of a

supercritical bifurcation where the nonorientation selec-
tive state becomes unstable, the entire set of nontrivial
fixed points of Equations (3, 4) is determined by the
third-order terms of the Volterra series representation
of the nonlinear operators Fz[z, r] and Fr[z, r]. The
model symmetries equations (5) to (9) restrict the gen-
eral form of the leading order terms for any model for
the joint optimization of OPM and RM to

∂tz(x) = Lz[z] + Qz[r, z] + Nz
3[z, z, z̄] + · · · (26)

∂tr(x) = Lr[r] + Qr[z, z̄] + · · · . (27)

Because the uniform retinotopy is linearly stable, reti-
notopic distortions are exclusively induced by a coupling
of the RM to the OPM via the quadratic vector-valued
operator Qr[z, z̄] . These retinotopic distortions will in
turn alter the dynamics of the OPM via the quadratic
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Figure 7 Numerical analysis of the EN dynamics with circular orientation stimulus ensemble and fixed representation of visual space
far from pattern formation threshold. (a) OPMs and their power spectra in a simulation of Equation (3) with r(x) = 0, r = 0.8, s/Λ = 0.3 (h =
0.028) and circular orientation stimulus ensemble. Pinwheel density time courses for four different simulations (parameters as in a; gray traces,
individual realizations; black trace, simulation in a; red trace, mean value) (c, d) OPMs and their power spectra in a simulation of Equation (3)
with r(x) = 0, r = 0.8, s/Λ = 0.12 (h = 0.57) and circular orientation stimulus ensemble. (d) Pinwheel density time courses for four different
simulations (parameters as in c; gray traces, individual realizations; black trace, simulation in c; red trace, mean value).
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complex-valued operator Qz[r, z]. Close to the point of
pattern onset (r ≪ 1), the timescale of OPM develop-
ment, τ = 1/r, becomes arbitrarily large and retinotopic
deviations evolve on a much shorter timescale. This
separation of timescales allows for an adiabatic elimina-
tion of the variable r(x), assuming it to always be at the
equilibrium point of Equation (27):

r(x) = −L−1
r
[
Qr[z, z̄]

]
. (28)

We remark that as λr
T/L(k) < 0 for all finite wave

numbers k >0, the operator Lr[r] is indeed invertible
when excluding global translations in the set of possible
perturbations of the trivial fixed point. From Equation
(28), the coupled dynamics of OPM and RM is thus
reduced to a third-order effective dynamics of the OPM:

∂tz(x) ≈ Lz[z] −Qz[L−1
r
[
Qr[z, z̄]

]
, z]

︸ ︷︷ ︸
Nr

3[z,z,z̄]

+Nz
3[z, z, z̄]

= Lz[z] + Nr
3[z, z, z̄] + Nz

3[z, z, z̄].

(29)

The nonlinearity Nr
3[z, z, z̄] accounts for the coupling

between OPM and RM. Its explicit analytical calculation
for the EN model is rather involved and yields a sum

Nr
3[z, z, z̄] =

12∑

j=1

aj
rN

j
r[z, z, z̄].

The individual nonlinear operators Nj
r are nonlinear

convolution-type operators and are presented in the
‘Methods’ section together with a detailed description of
their derivation. Importantly, it turns out that the coeffi-
cients aj

r are completely independent of the orientation
stimulus ensemble.
The adiabatic elimination of the retinotopic distortions

results in an equation for the OPM (Equation (29))
which has the same structure as Equation (13), the only
difference being an additional cubic nonlinearity. Due to
this similarity, its stationary solutions can be determined
by the same methods as presented for the case of a
fixed retinotopy. Again, via weakly nonlinear analysis we
obtain amplitude equations of the form Equation (15).
The nonlinear coefficients gij and fij are determined
from the angle-dependent interaction functions g(a) and
f(a). For the operator Nr

3[z, z, z̄] , these functions are
given by

gr(α) =

((
1 − σ 2 − 2e−k2

c σ
2
)

e2k2
c σ

2(cos α−1) + e−k2
c σ

2
)2

2σ 4
(
ηr + σ 2e−2k2

c σ 2(cos α−1)
)

fr(α) =
1
2

(
gr(α) + gr(α + π)

)
,

verifying that, Nr
3[z, z, z̄] is independent of the orienta-

tion stimulus ensemble. Besides the interaction range s/
Λ the continuity parameter hr Î [0, ∞] for the RM
appears as an additional parameter in the angle-depen-
dent interaction function. Hence, the phase diagram of
the EN model will acquire one additional dimension
when retinotopic distortions are taken into account. We
note, that in the limit hr ® ∞, the functions gr(a) and fr
(a) tend to zero and as expected one recovers the
results presented above for fixed uniform retinotopy.
The functions gr(a) and fr(a) are depicted in Figure 8
for various interaction ranges s/Λ and retinotopic conti-
nuity parameters hr.
Coupled essentially complex n-planforms
In the previous section, we found that by an adiabatic
elimination of the retinotopic distortions in the
dynamics equations (26, 27) the system of partial inte-
gro-differential equations can be reduced to a single
equation for the OPM. In this case, the stationary solu-
tions of the OPM dynamics are again planforms com-
posed of a discrete set of Fourier modes

z(x) =
N∑

j

Ajeikjx, (30)

with |k| = kc. However, each of these stationary plan-
form OPM solutions induces a specific pattern of reti-
notopic distortions by Equation (28). The joint mapping
{X + r(x), z(x)} is then an approximate stationary solu-
tion of Equations (26, 27) and will be termed coupled
planform solution in the following. In contrast to other
models for the joint mapping of orientation and visual
space (e.g., [31,33,92]), the coupling between the repre-
sentation of visual space and orientation in the EN
model is not induced by model symmetries but a mere
consequence of the joint optimization of OPM and RM
that requires them to be matched to one another.
For planforms given by Equation (30), it is possible to

analytically evaluate Equation (28) and compute the
associated retinotopic distortions r(x). After a somewhat
lengthy calculation (see ‘Methods’ section), one obtains

r(x) = −
n∑

k=1,j<k

!jk

λr
L(|&jk|)

(
1
σ 2

(
e−k2

c σ
2/2 − e−!2

jkσ
2/2
)2

− e−&2
jkσ

2
)

∗(,(AjĀk) cos(!jkx) + -(AjĀk) sin(!jkx)),

(31)

with ∆jk = kj - kk and λr
L(k) = −k2(ηr + e−σ 2k2

σ 2) .
These retinotopic distortions represent superpositions of
longitudinal modes (see Figure 3b). Hence, coupled
planform stationary solutions of the EN dynamics do
not contain any transversal mode components. Accord-
ing to Equation (31), the pinwheel-free coupled 1-ECP
state has the functional form {r(x) = 0, z(x) = A0e

ikx}.
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This means that the OS solution does not induce any
deviations from the perfect retinotopy as shown pre-
viously from symmetry. This is not the case for the
square pinwheel crystal (sPWC)

zsPWC(x) ∝ sin(kcx1) + i sin(kcx2) ,

the second important solution for undistorted retino-
topy. Inserting this ansatz into Equation (31) and

neglecting terms of order O
((

e−k2
c σ

2
)2
)

or higher, we

obtain

rsPWC(x) ∝ e−k2
c σ 2

σ 2λr
2(2kc)

(
kc sin(2kcx1)
kc sin(2kcx2)

)
.

These retinotopic distortions are a superposition of
one longitudinal mode in x-direction and one in y-
direction, both with doubled wave number ~ 2kc. The
doubled wave number implies that the form of retino-
topic distortions is independent of the topological
charge of the pinwheels. Importantly, the gradient of
the retinotopic mapping R(x) = X + rsPWC(x) is
reduced at all pinwheel locations. The coupled sPWC
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Figure 8 Angle-dependent interaction functions for the coupling between OPM and RM in the EN model. (a, b) gr(a) and fr(a) for hr =
0.005 and s/Λ = 0.3 (a) and 0.1 (b). (c, d) gr(a) and fr(a) for hr = 0.05 and s/Λ = 0.3 (c) and 0.1 (d). (e, f) gr(a) and fr(a) for hr = 0.5 and s/Λ =
0.3 (e) and 0.1 (f).
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is therefore in two ways a high coverage mapping as
expected. First, the representations of cardinal and
oblique stimuli (real and imaginary part of z(x)) are
orthogonal to each other. Second, the regions of high-
est gradient in the orientation map correspond to low
gradient regions in the RM.
In Figure 9, the family of coupled n-ECPs is displayed,

showing simultaneously the distortions of the RM and
the OPM. Retinotopic distortions are generally weaker
for anisotropic n-ECPs and stronger for isotropic n-
ECPs. However, for all stationary solutions the regions
of high gradient in the orientation map coincide with
low gradient regions (the folds of the grid) in the RM.
This is precisely what is generally expected from a
dimension-reducing mapping [21,62,63,91]. In the fol-
lowing section, we will investigate which of these solu-
tions become optimal depending on the two parameters
s/Λ and hr that parameterize the model.

The impact of retinotopic distortions
According to our analysis, at criticality, the nontrivial
stable fixed points of the EN dynamics are determined
by the continuity parameter h Î (0, 1) for the OPM or,
equivalently, the ratio σ // = 1

2π

√
log(1/η) and the con-

tinuity parameter hr for the mapping of visual space.
We first tested for the stability of pinwheel-free orienta-
tion stripe (OS) solutions and rPWC solutions of Equa-
tion (15), with coupling matrices gij and fij as obtained
from the nonlinearities in Equation (29). The angle
which minimizes the energy UrPWC (Equation (20)) is
not affected by the coupling between retinotopic and
OPM and is thus again a = π/4. By numerical evalua-
tion of the criteria for intrinsic and extrinsic stability,
we found both, OSs and sPWCs, to be intrinsically and
extrinsically stable for all s/Λ and hr.
Next, we tested for the stability of coupled n-ECP

solutions for 2 ≤ n ≤ 20. We found all coupled n-ECP
configurations with n ≥ 2 to be intrinsically unstable for
all s/Λ and hr. Evaluating the energy assigned to
sPWCs and OSs, we identified two different regimes: (i)
for shorter interaction range s/Λ the sPWC is the mini-
mal energy state and (ii) for larger interaction range s/
Λ the optimum is an OS pattern as indicated by the
phase diagram in Figure 10a. The retinotopic continuity
parameter has little influence on the energy of the two
fixed points. The phase border separating stripes from
rhombs runs almost parallel to the hr-axis. We numeri-
cally confirmed these analytical predictions by extensive
simulations of Equation (3, 4) (see ‘Methods’ section for
details). Figure 10c shows snapshots of a representative
simulation with small interaction range (r = 0.1, s/Λ =
0.1 (h = 0.67), hr = h). After the initial symmetry break-
ing phase, the OPM layout rapidly converges toward a

crystalline array of pinwheels, the predicted optimum in
this parameter regime (Figure 10c). Retinotopic devia-
tions are barely visible. Figure 10b displays pinwheel
density time courses for four such simulations. Note
that in one simulation, the pinwheel density drops to
almost zero. In this simulation, the OP pattern con-
verges to a stripe-like layout. This is in line with the
finding of bistability of rhombs and stripes in all para-
meter regimes. Although the sPWC represents the glo-
bal minimum in the simulated parameter regime, OSs
are also a stable fixed point and, depending on the
initial conditions, may arise as the final state of a frac-
tion of the simulations. In the two simulations with pin-
wheel densities around 3.4, patterns at later simulation
stages consist of different domains of rhombic pinwheel
lattices with a < π/2.
Figure 10d,e shows the corresponding analysis with

parameters for larger interaction range r = 0.1, s/Λ =
0.15 (h = 0.41), hr = h. Here after initial pinwheel crea-
tion, pinwheels typically annihilate pairwisely and the
OPM converges to an essentially pinwheel-free stripe
pattern, the predicted optimal solution in this parameter
regime (Figure 10e). Retinotopic deviations are slightly
larger. The behavior of the EN model for the joint opti-
mization of RM and OPM thus appears very similar
compared to the fixed retinotopy case. Perhaps surpris-
ingly, the coupling of both feature maps has little effect
on the stability properties of the fixed points and the
resulting optimal solutions.
As in the previous case, the structure of the phase dia-

gram in Figure 10a appears somewhat counterintuitive.
A high coverage and pinwheel-rich solution is the opti-
mum in a regime with large OPM continuity parameter
where discontinuities in the OPM such as pinwheels
should be strongly penalized. A pinwheel-free solution
with low coverage and high continuity is the optimum
in a regime with small continuity parameter. As
explained above, a large OPM continuity parameter at
pattern formation threshold implies a small interaction
range s/Λ (see Equation (24)). In such a regime, the
gain in coverage by representing many orientation sti-
muli in a small area spanning the typical interaction
range, e.g., with a pinwheel, is very high. Apparently this
gain in coverage by a regular positioning of pinwheels
outweighs the accompanied loss in continuity for very
large OPM continuity parameters. This counterintuitive
interplay between coverage and continuity thus seems to
be almost independent of the choice of retinotopic con-
tinuity parameters.
The circular orientation stimulus ensemble contains

only stimuli with a fixed and finite ‘orientation energy’
or elongation |sz|. This raises the question of whether
the simple nature of the circular stimulus ensemble
might restrain the dynamics of the EN model. The EN
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Figure 9 Coupled n-ECPs as dimension-reducing solutions of the EN model. Coupled n-ECP are displayed in visual space showing
simultaneously the distortion of the RM and the OPM (s/Λ = 0.3 (h = 0.028), hr = h, circular stimulus ensemble). The distorted grid represents a
the cortical square array of cells. Each grid intersection is at the receptive field center of the corresponding cell. Preferred stimulus orientations
are color-coded as in Figure 2a. As in Figure 4, n and i enumerate the number of nonzero wave vectors and nonequivalent configurations of
wave vectors with the same n, respectively. The coupled 1-ECP is a pinwheel-free stripe pattern without retinotopic distortion. Only the most
anisotropic and the most isotropic coupled n-ECPs are shown for each n. Note that for all ECPs, high gradients within the orientation mapping
coincide with low gradients of the retinotopic mapping and vice versa. Retinotopic distortions are displayed on a fivefold magnified scale for
visualization purposes.
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dynamics are expected to depend on the characteristics
of the activity patterns evoked by the stimuli and these
will be more diverse and complex with ensembles con-
taining a greater diversity of stimuli. Therefore, we
repeated the above analysis of the EN model for a richer
stimulus ensemble where orientation stimuli are uni-
formly distributed on the disk {sz, |sz| ≤ 2}, a choice
adopted by a subset of previous studies, e.g., [19,25,81].
In particular, this ensemble contains unoriented stimuli
with |sz| = 0. Intuitively, the presence of these unor-
iented stimuli might be expected to change the role of
pinwheels in the optimal OPM layout. Pinwheels’ popu-
lation activity is untuned for orientation. Pinwheel cen-
ters may therefore acquire a key role for the
representation of unoriented stimuli. Nevertheless, we
found the behavior of the EN model when considered
with this richer stimulus ensemble to be virtually indis-
tinguishable from the circular stimulus ensemble. Details

of the derivations, phase diagrams and numerically
obtained solutions are given in Appendix 1.

Are there stimulus ensembles for which realistic,
aperiodic maps are optimal?
So far, we have presented a comprehensive analysis of
optimal dimension-reducing mappings of the EN model
for two widely used orientation stimulus distributions
(previous sections and Appendix 1). In both cases,
optima were either regular crystalline pinwheel lattices
or pinwheel-free orientation stripes. These results might
indicate that the EN model for the joint optimization of
OPM and RM is per se incapable of reproducing the
structure of OPMs as found in the visual cortex. Draw-
ing such a conclusion is suggested in view of the appar-
ent insensitivity of the model’s optima to the choice of
stimulus ensemble. The two stimulus ensembles consid-
ered so far however do not exhaust the infinite space of

Figure 10 Phase diagram of the EN model with variable retinotopy for a circular stimulus ensemble [57,64-66,91]. (a) Regions of the hr-
s/Λ-plane in which n-ECPs or rPWCs have minimal energy. (b) Pinwheel density time courses for four different simulations of Equations (3, 4)
with r = 0.1, s/Λ = 0.13 (h = 0.51), hr = h (grey traces, individual realizations; red trace, mean value; black trace, realization shown in c). (c) OPMs
(upper row), their power spectra (middle row), and RMs (lower row) obtained in a simulation of Equations (3, 4); parameters as in b. (d) Pinwheel
density time courses for four different simulations of Equations (3, 4) with r = 0.1, s/Λ = 0.3 (h = 0.03), hr = h (grey traces, individual realizations;
red trace, mean value; black trace, realization shown in e). (e) OPMs (upper row), their power spectra (middle row), and RMs (lower row) in a
simulation of Equations (3, 4); parameters as in d.
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stimulus distributions that are admissible in principle.
From the viewpoint of ‘biological plausibility’ it is cer-
tainly not obvious that one should strive to examine sti-
mulus distributions very different from these, as long as
the guiding hypothesis is that the functional architecture
of the primary visual cortex optimizes the joint repre-
sentation of the classical elementary stimulus features.
If, however, stimulus ensembles were to exist, for which
optimal EN mappings truly resemble the biological
architecture, their characteristics may reveal essential
ingredients of alternative optimization models for visual
cortical architecture.
Adopting this perspective raises the technical question

of whether an unbiased search of the infinite space of
stimulus ensembles only constrained by the model’s
symmetries (Equations (5) to (9)) is possible. To answer
this question, we examined whether the amplitude equa-
tions (15) can be obtained for an arbitrary orientation
stimulus distribution. Fortunately, we found that the
coefficients of the amplitude equations are completely
determined by the finite set of moments of order less
than 5 of the distributions. The approach developed so
far can thus be used to comprehensively examine the
nature of EN optima resulting for any stimulus distribu-
tion with finite fourth-order moment. While such a
study does not completely exhaust the infinite space of
all eligible distributions, it appears to only exclude
ensembles with really exceptional properties. These are
probability distributions with diverging fourth moment,
i.e., ensembles that exhibit a heavy tail of essentially
‘infinite’ orientation energy stimuli.
Since the coupling between OPM and RM did not

have a large impact in the case of the two classical sti-
mulus ensembles, we start the search through the
space of orientation stimulus ensembles by considering
the EN model with fixed retinotopy r(x) = 0. The coef-
ficients ai for the nonlinear operators N3

i [z, z, z̄] in
Equation (14) for arbitrary stimulus ensembles are
given by

a1 = 〈|sz|4〉
16σ 6 − 〈|sz |2〉

2σ 4 + 1
2σ 2 a2 = 〈|sz|2〉

8πσ 6 − 〈|sz|4〉
32πσ 8 a3 = − 〈|sz|4〉

64πσ 8 + 〈|sz|2〉
16πσ 6

a4 = − 〈|sz|4〉
32πσ 8 + 〈|sz|2〉

8πσ 6 − 1
8πσ 4 a5 = − 〈|sz|4〉

64πσ 8 a6 = 〈|sz|2〉
16πσ 6 − 〈|sz|4〉

64πσ 8

a7 = 〈|sz|4〉
48π2σ 10 − 〈|sz|2〉

24π2σ 8 a8 = 〈|sz|4〉
96π2σ 10 a9 = − 3〈|sz|4〉

256π3σ 12

a10 = 〈|sz|4〉
48π2σ 10 − 〈|sz|2〉

24π2σ 8 a11 = 〈|sz|4〉
96π2σ 10 .

(32)

The corresponding angle-dependent interaction func-
tions are given by (see ‘Methods’ section)

g(α) =

〈
|sz|2

〉

2σ 4

(
1 − 2e−k2

c σ
2 − e2k2

c σ 2(cos α−1)
(

1 − 2e−k2
c σ 2 cos α

))

+
1

2σ 2

(
e2k2

c σ
2(cos α−1) − 1

)
+

2
〈
|sz|4

〉

σ 6 e−2k2
c σ 2

sinh4 (1/2k2
c σ

2 cos α
)

f (α) =

〈
|sz|2

〉

2σ 4

(
1 − e−2k2

c σ
2 (

cosh(2k2
c σ

2 cos α) + 2 cosh(k2
c σ

2 cos α)
)

+ 2e−k2
c σ 2
)

+
1

2σ 2

(
e−2k2

c σ 2
cosh(2k2

c σ
2 cos α) − 1

)
+

〈
|sz|4

〉

σ 6 e−2k2
c σ

2
sinh4 (1/2k2

c σ
2 cos α

)
.

(33)

Again, without loss of generality, we set 〈|sz|
2〉 = 2. At

criticality, both functions are parameterized by the conti-
nuity parameter h Î (0, 1) for the OPM or, equivalently,
the interaction range σ // = 1

2π

√
log(1/η) and the fourth

moment 〈|sz|
4〉 of the orientation stimulus ensemble. The

fourth moment, is a measure of the peakedness of a sti-
mulus distribution. High values generally indicate a
strongly peaked distribution with a large fraction of non-
oriented stimuli (|sz|

4 ≈ 0), together with a large fraction
of high orientation energy stimuli (|sz|

4 large).
The dependence of g(a) on the fourth moment of the

orientation stimulus distribution and f(a) suggests that
different stimulus distributions may indeed lead to dif-
ferent optimal dimension-reducing mappings.
The circular stimulus ensemble possesses the minimal

possible fourth moment, with 〈|sz|
4〉 = (〈|sz|

2〉)2 = 4. The
fourth moment of the uniform stimulus ensemble is 〈|
sz|

4〉 = 16/3. The angle-dependent interaction functions
for both ensembles (Equation (25), Figure 22 in Appen-
dix 1) are recovered, when inserting these values into
Equation (33).
To simplify notation in the following, we define

s4 =
〈
|sz|4

〉
−
〈
|sz|2

〉2 =
〈
|sz|4

〉
− 4

as the parameter characterizing an orientation stimu-
lus distribution. This parameter ranges from zero for
the circular stimulus ensemble to infinity for ensembles
with diverging fourth moments. Figure 11 displays the
angle-dependent interaction functions for different
values of s/Λ and s4. In all parameter regimes, g(a) and
f(a) are larger than zero. The amplitude dynamics are
therefore guaranteed to converge to a stable stationary
fixed point and the bifurcation from the nonselective
fixed point in the EN model is predicted to be supercri-
tical in general.
By evaluating the energy assigned to the rPWC and n-

ECPs, we investigated the structure of the two-dimen-
sional phase space of the EN model with an arbitrary
orientation stimulus distribution. First, it is not difficult
to show that the angle a which minimizes the energy
UrPWC (Equation (20)) of an rPWC is a = π/4 for all s/
Λ and s4. Hence, a square lattice of pinwheels (sPWC)
is in all parameter regimes energetically favored over
any other rhombic lattice configuration of pinwheels.
Figure 12 displays the phase diagram of the EN model
with an arbitrary orientation stimulus distribution. For
orientation stimulus distributions with small fourth
moments, optimal mappings consist of either parallel
pinwheel-free stripes or quadratic pinwheel crystals.
These distributions include the circular and the uniform
stimulus ensembles with s4 = 0 and s4 = 4/3. Above a
certain value of the fourth moment around s4 = 6, n-
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ECPs with n >2 become optimal mappings. For a short
interaction range s/Λ, hexagonal pinwheel crystals dom-
inate the phase diagram in a large region of parameter
space. With increasing interaction range, we observe a
sequence of phase transitions by which higher n-ECPs
become optimal. For n >3, these optima are spatially

aperiodic. In all parameter regimes, we found that the
n-ECP with the most anisotropic mode configuration
(Figure 4c, left column) is the energetically favored state
for n >3. Pinwheel densities of these planforms are indi-
cated in Figure 12 and are typically smaller than 2.0.
We note that this is well below experimentally observed

Π! Π Π! ΠΠ! Π Π! Π

a b

Π! Π Π! ΠΠ! Π Π! Π

Π! Π Π! ΠΠ! Π Π! Π

c

e

d

f

Figure 11 Angle-dependent interaction functions for the EN model with fixed retinotopy for different fourth-moment values of the
orientation stimulus distribution and effective interaction-widths. (a, b) g(a) and f(a) for s4 = 8 and s/Λ = 0.1 (a) and s/Λ = 0.3 (b). (c, d)
g(a) and f(a) for s4 = 20 and s/Λ = 0.1 (c) and s/Λ = 0.3 (d). (e, f) g(a) and f(a) for s4 = 100 and s/Λ = 0.1 (e) and s/Λ = 0.3 (f).

Keil and Wolf Neural Systems & Circuits 2011, 1:17
http://www.neuralsystemsandcircuits.com/content/1/1/17

Page 23 of 55
88



pinwheel density values [38]. Optimal mappings of
orientation preference for finite fourth moment in the
EN model are thus either orientation stripes, periodic
arrays of pinwheels (hexagonal, square), or aperiodic
pinwheel arrangements with low pinwheel density.

We numerically tested these analytical predictions by
simulations of Equation (3) (r(x) = 0) with two addi-
tional stimulus ensembles with s4 = 6 and s4 = 8 (see
‘Methods’ section). Figure 13a shows snapshots of a
simulation with (r = 0.1, s/Λ = 0.2 (h = 0.2)) and s4 = 6

Figure 12 Stripe-like, crystalline, and quasi-crystalline cortical representations as optimal solutions to the mapping of orientation
preference with fixed uniform retinotopy in the EN model. The graph shows the regions of the s4-s/Λ-plane in which n-ECPs or sPWCs
have minimal energy. For n ≥ 3, pinwheel densities of the energetically favored n-ECP configuration are indicated.
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(see also Additional file 3). After the initial phase of pat-
tern emergence, the OPM layout converges toward an
arrangement of fractured stripes which resembles the 2-
ECP state (Figure 13a, most right), the optimum pre-
dicted in this regime. In the power spectra, two distinct
peaks of the active modes are clearly visible in the final
stages of the simulation (Figure 13a, lower row). The 2-
ECP state is exotic in the sense that it is the only n-ECP
containing line defects and thus the pinwheel density is
not a well-defined quantity. This explains the pro-
nounced numerical variability in the measured pinwheel
densities in simulations during the convergence toward
a 2-ECP state (Figure 13b).
Figure 13c shows snapshots of a simulation with (r =

0.1, s/Λ = 0.2 (h = 0.2)) and s4 = 8, Gaussian stimulus
ensemble) (see also Additional file 4). After the initial
phase of pattern emergence, the OPM layout converges
toward a regular hexagonal arrangement of pinwheels
which resembles the anisotropic 3-ECP (Figure 13c, far
right), the optimum predicted in this regime. In the
power spectra, three distinct peaks forming an angle of
60 degrees are clearly visible in the later stages of the

simulation (Figure 13c, lower row). Pinwheel densities in
the simulations consistently approach the theoretically
predicted value of 2 cos(π/6) ≃ 1.73 (Figure 13d).
Permutation symmetric limit
In the previous section, we uncovered a parameter
regime for the EN model in which optimal solutions are
spatially aperiodic. This can be viewed as a first step
toward realistic optimal solutions. In the identified
regime, however, among the family of n-ECPs only
those with pinwheel densities well below experimentally
observed values [38] are energetically favored (see Figure
12). In this respect, the repertoire of aperiodic optima of
the EN model differs from previously considered
abstract variational models for OPM development
[35,36,38,39]. In these models, an energetic degeneracy
of aperiodic states with low and high pinwheel densities
has been found which leads to a pinwheel statistics of
the repertoire of optimal solutions that quantitatively
reproduces experimental observations [38,93]. What is
the reason for this difference between the two models?
In [35], the energetic degeneracy of aperiodic states with
low and high pinwheel densities was derived from a so-
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Figure 13 Approaching crystalline n-ECP optima in the EN model with fixed renotopy. (a) OPMs (upper row) and their power spectra
(lower row) in a simulation of Equation (3) with r(x) = 0, r = 0.1, s/Λ = 0.2 and s4 = 6 (see also Additional file 3). The predicted optimum is the
2-ECP (black frame). (b) Pinwheel density time courses for four different simulations (parameters as in a; gray traces, individual realizations; black
trace, simulation in a; red trace, mean value). (c) OPMs (upper row) and their power spectra (lower row) in a simulation of Equation (3) with r(x)
= 0, r = 0.1, s/Λ = 0.3 and s4 = 8 (see also Additional file 4). The predicted optimum is the anisotropic 3-ECP (black frame). (d) Pinwheel density
time courses for four different simulations (parameters as in c; gray traces, individual realizations; black trace, simulation in c; red trace, mean
value).
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called permutation symmetry

Nz
3[u, v, w] = Nz

3[w, u, v], (34)

of the cubic nonlinearities of the model. It can be
easily seen, that the cubic nonlinearities obtained in the
third order expansion of the EN model do not exhibit
this permutation symmetry (see ‘Methods’ section). As
shown by Reichl [94], the absence of permutation sym-
metry can lead to a selection of a subrange of pinwheel
densities in the repertoire of optima of OPM models.
Depending on the degree of permutation symmetry
breaking, the family of optima of such models, albeit
encompassing aperiodic OPM layouts, may consist of
layouts with either unrealistically low or high pinwheel
densities. Furthermore, for very strong permutation
symmetry breaking, stationary solutions from solution
classes other than the n-ECPs and rPWCs with low or
high pinwheel densities may become optima of models
for OPM development. In order to determine a regime
in which the EN model optima quantitatively resemble
experimentally observed OPM layouts, it is therefore
important to quantify the degree of permutation sym-
metry breaking in the EN model and to examine
whether permutation symmetric limits exist. As shown
in the ‘Methods’ section, any cubic nonlinearity
Nz

3[z, z, z̄] that obeys Equation (34) has a corresponding
angle-dependent interaction function g(a) which is π-
periodic. Therefore, we examine the degree of permuta-
tion symmetry breaking in the EN model by comparing
the angle-dependent interaction function g(a) of its
third order expansion (see Equation 33 and Figure 11)
to the π-periodic function gpm(a) = 1/2 (g(a) + g(a +

π)). This ‘permutation-symmetrized’ part of the angle-
dependent interaction function of the EN model for
general orientation stimulus ensembles reads

gpm(α) =
2
〈
|sz|4

〉

σ 6 e−2k2
c σ 2

sinh4(1/2k2
c σ

2 cos α)

−
〈
|sz|2

〉

2σ 4 e−2k2
c σ 2
((

cosh
(
2k2

c σ
2 cos α

)
− 2 cosh

(
k2

c σ
2 cos α

))
− 2ek2

c σ
2 − e2k2

c σ
2
)

+
1

2σ 2

(
1 + e−2k2

c σ 2
cosh(2k2

c σ
2 cos α)

)
.

(35)

A comparison between gpm(a) and g(a) is depicted in
Figure 14a-d. It shows that essentially insensitive to the
interaction range s/Λ, at large values of the fourth
moment original and permutation symmetrized angle-
dependent interaction functions converge. We quanti-
fied the degree of permutation symmetry breaking with
the parameter

d =
‖ g − gpm‖2

‖ g‖2
sgn(g(0) − g(π)). (36)

This parameter is zero in the case of a permutation
symmetric cubic nonlinearity. In the case of a g-function
completely antisymmetric around a = π/2, the para-
meter is either plus or minus one, depending on
whether the maximum of gpm is at zero or π. If d is
smaller than zero, low pinwheel densities are expected
to be energetically favored and vice versa. The values of
d in parameter space is depicted in Figure 14e. It is
smaller than zero in the entire phase space, implying a
tendency for low pinwheel density optimal states, in
agreement with the phase diagram in Figure 12. Permu-
tation symmetry breaking is largest for s/Λ around 0.25
and small fourth moment values of the orientation sti-
mulus distribution. It decays to zero for large fourth

e

Π Π

Π! Π Π! Π Π! Π Π! Π

Π Π

Figure 14 Quantifying permutation symmetry breaking in the EN model. (a-d) g(a) (red traces) and the ‘permutation symmetrized’ function
gpm(a) = 1/2(g(a) + g(a + π)) (blue traces, see Equation (35)) for s/Λ = 0.1 and 0.3 and s4 = 6 and 100. (e) Permutation symmetry parameter d
(Equation 36) in the EN model with fixed retinotopy. Permutation symmetry breaking is largest for s/Λ ≈ 0.25 and small s4. In the limit s4 ® ∞,
permutation symmetry is restored.
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moments proportionally to 1/s4 as can be seen by insert-
ing Equations (33) and (35) into Equation (36). In the
infinite fourth moment limit s4 ® ∞, the cubic nonli-
nearities of the third-order expansion of the EN model
become permutation symmetric.
In this case, the EN model is parameterized by only

one parameter, the effective intracortical interaction
range s/Λ and we obtain a rather simple phase diagram
(Figure 15). Optimal solutions are n-ECPs for increasing
s/Λ and we observe a sequence of phase transitions
toward a higher number of active modes and therefore
more complex spatially aperiodic OPM layouts. Impor-
tantly, for a subregion in the phase diagram with given
number of active modes, all possible n-ECP mode con-
figurations are energetically degenerate. It is precisely
this degeneracy that has been previously shown to result
in a pinwheel statistics of the repertoire of aperiodic
optima which quantitatively agrees with experimental
observations [38]. Therefore, our unbiased search in fact
identified a regime, namely a very large effective interac-
tion range and infinite fourth moment of the orientation
stimulus ensemble, in which the EN model formally pre-
dicts which quantitatively reproduce the experimentally
observed V1 architecture.
Unexpectedly, however, this regime coincides with the

limit of applicability of our approach. Permutation sym-
metry is exactly obtained by approaching stimulus distri-
bution with diverging fourth moment for which the
amplitude equations may become meaningless. We
would generally expect that the EN for very large but
finite fourth moment can closely resemble a permuta-
tion symmetric model. However, to consolidate the

relevance of this regime, it appears crucial to establish
the robustness of the limiting behavior to inclusion of
retinotopic distortions.

Optimal solutions of the EN model with variable
retinotopy and arbitrary orientation stimulus ensembles
In the EN model for the joint mapping of visual space
and orientation preferences, the angle-dependent inter-
action functions depend on four parameters: h, s, the
fourth moment 〈|sz|

4〉of the stimulus ensemble and hr.
By setting s = s*(h), we are left with three free para-
meters at criticality. Therefore, a three-dimensional
phase diagram now completely describes pattern selec-
tion in the EN model. For better visualization, in Figure
16, we show representative cross sections through this
three-dimensional parameter space for fixed hr. First, we
note the strong similarity between the phase diagram
for fixed retinotopy (Figure 12) and the cross sections
through the phase diagrams for the joint mappings
shown in Figure 16. This expresses the fact that retino-
topic mapping and OPM are only weakly coupled or
mathematically, gr(a) ≪ g(a) in all parameter regimes
(see Appendix 2). Again, for distributions with small
fourth moment, optimal mappings consist of either pin-
wheel-free orientation stripes or sPWCs. Above a cer-
tain fourth moment value around s4 = 6, higher coupled
n-ECPs are optimal. For small interaction range s/Λ,
hexagonal pinwheel crystals (coupled 3-ECPs) represent
optimal mappings in a large fraction of parameter space.
With increasing s/Λ, we observe a sequence of phase
transitions by which higher n-ECPs become optimal.
Anisotropic planforms at the lower end of the spectrum

Figure 15 Phase diagram of the EN model with fixed retinotopy in the permutation symmetric limit s4 ® ∞. The graphs show the
regions on the s/Λ-axis (lower axis) and the corresponding h-axis (upper axis), where n-ECPs or sPWCs have minimal energy. High n-ECPs (n ≳
10) exhibit universal pinwheel statistics. Note however the extremely small h-values for large s/Λ.
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of pinwheel densities are always energetically favored
over high pinwheel density layouts. The only difference
between the cross sections is that the region covered by
sPWCs increases for decreasing hr. The phase diagram
for large hr = 10 is virtually indistinguishable from the
phase diagram in Figure 16.
Optimal mappings of orientation preference are thus

either orientation stripes, periodic arrays of pinwheels
(hexagonal, quadratic) or quasi-periodic pinwheel arrays
with low pinwheel density. Retinotopic distortions lead
to lower gradients of the retinotopic mapping at high
gradient regions of the OPM. This is in line with some
of the experimental evidence [55,95] but contradicts
others [96].
Most importantly, we note that the results on permu-

tation symmetry breaking in the fixed retinotopy case
are not altered by allowing for retinotopic distortions.
Since gr(a) does not depend on the fourth moment of
the orientation stimulus distribution, non-permutation
symmetric terms decay as 1/s4 for large s4.
Hence, in the limit s4 ® ∞, permutation symmetry is

restored and we recover the phase diagram in Figure
15 also for the EN model with variable retinotopy
independent of hr. As the energy contribution of reti-
notopic deviations r(x) becomes negligible in the infi-
nite fourth moment limit, the optima are then simply
the corresponding coupled n-ECPs and these states are
energetically degenerate for fixed n. For very large
effective interaction range and infinite fourth moment
of the orientation stimulus ensemble, the EN model
with variable retinotopy is able to quantitatively repro-
duce the experimentally observed pinwheel statistics in
OPMs. It furthermore predicts reduced gradients of
the visual space mapping at high gradient regions of
the OPM.

Finite stimulus samples and discrete stimulus ensembles
Our reexamination of the EN model for the joint opti-
mization of position and orientation selectivity has been
so far carried out without addressing the apparently fun-
damental discrepancy between our results and the large
majority of previous reports. Since the seminal publica-
tion of Durbin and Mitchison [21], numerous studies
have used the EN model to simulate the development of
visual cortical maps or to examine the structure of opti-
mal mappings by numerical simulation
[58,62-65,79,97,98]. These studies have either used the
circular or the uniform orientation stimulus ensemble
for which, to the best of our knowledge, the only two
nontrivial stationary solutions are square pinwheel crys-
tals or orientation stripes. Furthermore, we found that
the gradient descent dynamics seems to readily converge
to the respective minima of the EN free energy. This
indicates that other local minima and more complex

intrinsically aperiodic states are not dominant in this
model. In fact, we found that all aperiodic stationary
solutions we could perturbative calculate analytically are
unstable and thus represent hyperbolic saddle points
and not local minima. As these stable solutions barely
resemble experimentally observed OPMs, it is not
obvious how the EN model in all of these studies could
appear as a model well suited to describe the complex
layout of real cortical orientation maps. Prior studies
however often used computational methods different
from our fixed parameter steepest descent simulations.
Two alternative approaches have been used predomi-

nantly to study dimension reducing mappings for corti-
cal representations. These methods have been applied to
both the EN model and the other widely used dimen-
sion reduction model, the self-organizing feature map
(SOFM), originally introduced by Kohonen [59]. The
simplest way to compute mappings from a high dimen-
sional feature space onto the two-dimensional model
cortex is by iterating the following procedure for a large
number of randomly chosen stimuli (e.g.,
[56,57,66-68,99,100]): (i) Stimuli are chosen one at a
time randomly from the complete feature space. (ii) The
activation function for a particular stimulus is com-
puted. In the case of the EN model, this activation func-
tion can acquire a rather complex form with multiple
peaks (see ‘Discussion’ section). In the case of an
SOFM, this activation function is a 2D-Gaussian. (iii)
The preferred features of the cortical grid points are
updated according to a discretized version of Equations
(3, 4) or the corresponding equations for the SOFM
model. Typically, this procedure is repeated on the
order of 106 times. The resulting layout is then assumed
to at least approximately solve the dimension reduction
problem. In many studies, small stimulus sets have been
chosen presumably for computational efficiency and not
assuming specifically that the cortex is optimized for a
discrete finite set of stimuli. In [21] for instance, a set of
216 stimuli was used, that was likely already at the limit
of computing power available at this time.
In a more refined approach, the EN model as well as

Kohonen’s SOFM model have been trained with a finite
set of stimuli (typically with on the order of 103 to 104)
and the final layout of the model map has been obtained
by deterministic annealing [101], i.e., by gradually redu-
cing the numerical value of s in a numerical minimiza-
tion procedure for the energy functional F at each
value of s (see e.g., [21,64,65,79] and see ‘Methods’ sec-
tion). In such simulations, often nonperiodic boundary
conditions were used. One might suspect in particular
the second approach to converge to OPM layouts
deviating from our results. It is conceivable in principle,
that deterministic annealing might track stationary solu-
tions across parameter space that are systematically
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missed by both, our continuum limit analytical calcula-
tions as well as our descent numerical simulations.
To assess the potential biases of the different

approaches, we implemented (i) finite stimulus sampling

in our gradient descent simulations and (ii) studied the
results of deterministic annealing simulations varying
both the size of the stimulus set as well as the type of
boundary conditions applied.

Figure 16 Stripe-like, crystalline, and quasi-crystalline cortical representations as optimal solutions to the joint mapping problem of
visual space and orientation preference in the EN. (a-d) Phase diagrams for the joint mapping of visual space and orientation preference in
the EN near criticality for hr = 0 (a), hr = 0.01 (b), hr = 0.1 (c), and hr = 10 (d). The graphs show the regions of the s4-s/Λ-plane in which
coupled n-ECPs or sPWCs have minimal energy. For n ≥ 3, pinwheel densities of the energetically favored n-ECP configuration are indicated.
Note the strong similarity between the phase diagrams and the phase diagrams in the fixed retinotopy case (Figure 12).
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We simulated Equations (3, 4) with finite sets of sti-
muli of different sizes (see ‘Methods’ section), drawn
from the circular stimulus ensemble. Following [21,25],
h was set to a small value (h = 0.025) such that the
optimal configuration for the joint mapping of visual
space and orientation preference is the coupled 1-ECP
(see Figure 10), i.e., a pattern of parallel orientation
stripes without any retinotopic distortion (see Figure 9).
Figure 17 displays representative simulations for stimu-
lus sets of size N = 216 (as used in [21]) (a), N = 105

(b), N = 106 (c) stimuli. Simulation time t is measured
in units of the intrinsic time scale τ (see ‘Methods’ sec-
tion). For N = 216 stimuli, RM and OPM quickly reach
an apparently stationary configuration with a large num-
ber of pinwheels at around t = 20τ. Power is distributed
roughly isotropically around the origin of Fourier space

(k = 0). The stable OPM lacks a typical length scale
and, expressing the same fact, the power spectrum lacks
the characteristic ring of enhanced Fourier amplitude.
Retinotopic distortions are fairly pronounced. Both
obtained maps resemble the configurations reported in
[21].
For N = 105 stimuli, we find that OPMs exhibit a

characteristic scale (see dark shaded ring in the power
spectrum) and a dynamic rearrangement of the maps
persists at least until t = 200τ. Stripe-like OP domains
are rapidly generated via pairwise pinwheel annihilation
for t >10τ. Retinotopic distortions are fairly weak. For N
= 106 stimuli, again OPMs exhibit a characteristic scale
(see dark shaded ring in the power spectrum) and the
map dynamics persists beyond t = 200τ. A larger frac-
tion of the pinwheels annihilate pairwisely compared to

a

c

b

d

ky

kx

Figure 17 Development of OPM and retinotopic distortions in EN simulations with fixed stimulus sets of different sizes. (a) OPMs (left),
their power spectra (middle) and RMs (right) for t = 10τ (upper row) and t = 300τ (lower row) obtained in simulations with fixed stimulus set (h
= 0.028, s/Λ = 0.3, s4 = 4/3, 216 stimuli). (b) 105 stimuli (all other parameters as in a). (c) 106 stimuli (all other parameters as in a). Large stripe-
like OP domains are generated via pairwise pinwheel annihilation for large simulation times. Retinotopic distortions are fairly weak.(d) Pinwheel
density time course for EN simulations with fixed stimulus sets of different sizes, including the simulations from a to c (red, green, blue traces
216, 105, 106 stimuli) (all other parameters as in a). Dashed lines represent individual simulations, solid lines an average over four simulations.
Note, that the pinwheel density rapidly decays below 2.0 in both cases, and in particular for 106 stimuli, the OPM pattern acquires large stripe-
like regions.
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N = 105 stimuli, leading progressively to a pattern with
large stripe-like domains. Retinotopic distortions are
fairly weak. For both cases with massive stimulus sam-
pling (N = 105, N = 106), the pinwheel density rapidly
drops below the range observed in tree shrews, galagos
and ferrets and than further decreases during subse-
quent map rearrangement. In summary, the more sti-
muli are chosen for the optimization procedure, the less
pinwheels are preserved in the pattern of orientation
preference and the more the resulting map resembles
the analytically obtained optimal solution. Deterministic
annealing approaches which change parameters of the
energy functional during the computational minimiza-
tion process differ more fundamentally from our gradi-
ent descent simulations than the iterative schemes used
with fixed parameters. Studies using deterministic
annealing in addition frequently used nonperiodic
boundary conditions (e.g. [64,65,79]). To study all
potential sources of deviating results, we implemented
deterministic annealing for the EN energy function (see
‘Methods’ section, Equation (46)) for periodic bound-
aries, nonperiodic boundary conditions as well as ran-
dom and grid-like finite stimulus ensembles (see
‘Methods’ section). We closely follow the refined meth-
ods used in [64,65,79] and performed deterministic
annealing simulations for the EN model with retinotopic
distortions and stimuli drawn from the circular stimulus
ensemble.
Figures 18a and 19a display representative simulations

for random stimulus sets of size N = 103, N = 104 and
N = 105 for periodic boundary conditions (Figures 18a)
and nonperiodic boundary conditions (Figures 19a).
Furthermore depicted are the pinwheel densities of sta-
tionary solutions as well as their energies, relative to the
energy of a pinwheel-free stripe solution (see ‘Methods’
section) for different annealing rates ξ (Figures 18b-d
and 19b-d). Figures 18e-g and 19e-g additionally show
the statistics of nearest neighbor (NN) pinwheel dis-
tances as well as the SD of the pinwheel densities for
randomly selected subregions in the OPM as introduced
in [38], averaged over four simulations with N = 105. To
facilitate comparison, we superimposed fits to the
experimentally observed statistics [38] for orientation
maps in tree shrews, ferrets and galagos.
When annealing with periodic boundary conditions,

the maps found with deterministic annealing essen-
tially resemble our gradient descent dynamics simula-
tions. The larger the set of stimuli, the more stripe-like
are the OPMs obtained (Figure 18a,b). Furthermore,
the more carefully we annealed, the lower the pinwheel
density of the obtained layouts (Figure 18c). For N =
105, the pinwheel density averaged over four simula-
tions with annealing rate 0.999 was r = 2.04 As
expected, the energy of the final layouts decreased

with slower annealing rates (Figure 18d). However,
when starting from random initial conditions, the
energy of the final layouts found was always higher
compared to the energy of a pinwheel-free stripe solu-
tion (see ‘Methods’ section for details), which is the
predicted optimum for the circular stimulus ensemble.
NN-pinwheel distance histograms are concentrated
around half the typical column spacing and in particu-
lar pinwheel pairs with short distances are lacking
completely (Figure 18e,f). For nonperiodic boundary
conditions and random stimuli, we found that retino-
topic distortions are more pronounced than for peri-
odic boundary conditions. They however decreased
with increasing number of stimuli. For large the stimu-
lus numbers, we observed stripe-like orientation pre-
ference domains which are interspersed with lattice-
like pinwheel arrangements (see Figure 19c), lower
row, upper left corner of the OPM). For N = 105, the
pinwheel density averaged over four simulations with
annealing rate 0.999 was r = 2.71.
Similarly to the results for periodic boundary condi-

tions, short distance pinwheel pairs occur less frequently
than in the experimentally observed maps, indicating an
increased regularity in the pinwheel distances compared
to real OPMs (Figure 19e,f). This regularity is further
indicated by a smaller exponent of the SD compared to
the Poisson process (Figure 19g). The perfect stripe-like
solution is not the optimum for nonperiodic boundaries.
The energy of the map layouts found with very slow
annealing rates is slightly lower than the energy of the
pinwheel-free OPM layout (Figure 19d). We note that
the layout of the OPM at the boundaries does not differ
substantially from the layout inside the simulated
domain, suggesting that boundary effects affect the
entire simulated domain for the relatively small region
treated. Finally, we performed simulations with grid-like
stimulus patterns as e.g., used in [64,65]. These simula-
tions displayed a strong tendency toward rhombic pin-
wheel arrangements, i.e., the second stable stationary
solution found for the circular stimulus ensemble. We
refer to Appendix 3 for further details. In summary, our
results for the discrete EN model with deterministic
annealing largely agree with the analytical results. Irre-
spective of the numerical methodology, the emerging
map structure for large numbers of stimuli is confined
to the states predicted by our analytical treatment of the
continuum formulation of the EN. This behavior is
expected because the energies underlying the determi-
nistic annealing and the steepest descent simulations are
mathematically equivalent (see ‘Methods’ section). In
any kind of deterministic annealing simulation we
tested, resulting patterns were patchworks of the two
fundamental stable solutions identified by the analytical
treatment: pinwheel free stripes and square lattices of
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pinwheels. Such patchworks are spatially more compli-
cated than perfect stripes or crystals. Nevertheless, they
qualitatively differ in numerous respects from the
experimentally observed spatial arrangements (see Fig-
ures 18, 19, and 28 in Appendix 3). How the fundamen-
tal stable solutions are stitched together somewhat
differs between the different kinds of simulations. For
instance, using a grid-like stimulus ensemble with non-
periodic boundary conditions apparently energetically
favors the rPWC compared to the pinwheel-free stripe
regions (see Figure 27 in Appendix 3). In summary,
while some of the patterns obtained by deterministic

annealing might be called ‘good-looking’ maps, all of
them substantially deviate from the characteristics of
experimentally observed pinwheel arrangements.
We conclude that the differences between our results

and those of previous studies are most likely due to the
small finite stimulus samples used largely for reasons of
computational tractability. Deterministic annealing using
stimulus samples that fill the feature space converges to
the same types of patterns found by perturbation theory.
We further conclude that our methods do not systema-
tically miss biologically relevant local minima of the
classical EN energy function.

Periodic boundary conditions 

N = 103

N = 104

N = 10
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Figure 18 The EN model with periodic boundary conditions, solved with deterministic annealing. (a) OPMs (left) and RMs (right) for N =
103 (upper row), N = 104 (middle row) and N = 105 (lower row) random stimuli and periodic boundary conditions (annealing rate c = 0.999, see
‘Methods’ section). b is the continuity parameter in the conventional definition of the EN model (see ‘Methods’ section, Equation 46) and is
scaled, such that a comparable number of columns is emerging in the simulations for each size of the stimulus set. (b) Pinwheel densities of EN
solutions for different numbers of stimuli, c = 0.999. (c) Pinwheel densities of EN solutions for 105 stimuli and different annealing rates. (d)
Energies of solutions for 105 stimuli, relative to the energy of a pinwheel-free stripe solution (see ‘Methods’ section) for different annealing rates.
(b-d) Crosses mark individual simulations, red line indicates average values. (e, f) Statistics of nearest neighbor pinwheel distances for pinwheels
of (e) arbitrary and (f) opposite and equal charge for 105 random stimuli and periodic boundary conditions, averaged over four simulations (red
curves). Black curves represent fits to the experimental data from [38]. (g) Standard deviations (SD) of pinwheel densities estimated from
randomly selected regions in the OPM. Black dashed curve indicates SD for a two-dimensional Poisson process of equal density.
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Discussion
Summary
In this study, we examined the solutions of what is per-
haps the most prominent optimization model for the
spatial layout of orientation and RMs in the primary
visual cortex, the EN model. We presented an analytical
framework that enables us to derive closed-form expres-
sions for hyperbolic fixed points, local and global
minima, and to analyze their stability properties for arbi-
trary optimization models for the spatial layout of
OPMs and RMs. Using this framework, we systemati-
cally reexamined previously used instantiations of the
EN model, dissecting the impact of stimulus ensembles
and of interactions between the two maps on optimal
map layouts. To our surprise, the analysis yielded vir-
tually identical results for all of these model instantia-
tions that substantially deviate from previous numerical
reports. Pinwheel-free orientation stripes and crystalline

square lattices of pinwheels are the only optimal dimen-
sion-reducing OPM layouts of the EN model. Both
states are generally stable but exchange their roles as
optima and local minima at a phase border. Numerical
simulations of the EN gradient descent dynamics as well
as simulations utilizing deterministic annealing con-
firmed our analytical results. For both processes, the
initially spatially irregular layouts rapidly decayed into a
patchwork of stripe-like or crystal-like local regions that
then became globally more coherent on longer time-
scales. Pinwheel-free solutions were approached after an
initial phase of pattern emergence by pairwise pinwheel
annihilation. Crystalline configurations were reached by
the generation of additional pinwheels and pinwheel
annihilation together with a coordinated rearrangement
toward a square lattice. These results indicate that lay-
outs which represent an optimal compromise of cover-
age and continuity for retinotopy and orientation do not

Non-periodic boundary conditions 
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Figure 19 The EN model with nonperiodic boundary conditions, solved with deterministic annealing. (a-g) As Figure 18, but for
nonperiodic boundary conditions.
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per se reproduce the spatially aperiodic and complex
structure of orientation maps in the visual cortex.
To clarify whether the EN model is in principle cap-

able of reproducing the biological observations, we per-
formed an unbiased comprehensive inspection of EN
optima for arbitrary stimulus distributions possessing
finite fourth moments. This analysis identified two key
parameters determining pattern selection: (i) the effec-
tive intracortical interaction range and (ii) the fourth
moment of the orientation stimulus distribution. We
derived complete phase diagrams summarizing pattern
selection in the EN model for fixed as well as variable
retinotopy. Small interaction ranges together with low
fourth moment values lead to either pinwheel-free
orientation stripes, rhombic or hexagonal crystalline
orientation map layouts as optimal states. Large interac-
tion ranges together with orientation stimulus distribu-
tions with high fourth moment values lead to the
stabilization of irregular aperiodic OPM layouts. These
solutions belong to a class of solutions previously called
n-ECPs. This solution class encompasses a large variety
of OPM layouts and has been identified as optimal solu-
tions of abstract variational models of OPM develop-
ment [35]. We showed that in the EN model due to a
lack of a so-called permutation symmetry, among this
family of solutions, states with low pinwheel densities
are selected as global minima. In the extreme and pre-
viously unexplored parameter regime of very large effec-
tive interaction ranges and stimulus ensemble
distributions with infinite fourth moment, permutation
symmetry is restored and spatially aperiodic OPM lay-
outs with higher pinwheel density are included in the
repertoire of optimal solutions. Only in this limit, the
repertoire of optima reproduces the recently described
species-insensitive OPM design [38] and quantitatively
matches experimentally observed orientation map lay-
outs. None of these findings depend on whether the EN
model is considered with variable or fixed retinotopy.

Comparison to previous studies
It is an important and long-standing question, whether
the structure of cortical maps of variables such as stimu-
lus orientation or receptive field position can be
explained by a simple general principle. The concept of
dimension reduction is a prominent candidate for such
a principle (see e.g., [58,102] for reviews) and the quali-
tative agreement between experimental data and pre-
vious numerical results from dimension reduction
models [21,42,60,62-66,68,98,102-104] can be viewed as
evidence in favor of the dimension reduction hypothesis.
Yet comprehensive analytical investigations of dimen-
sion reduction problems and in particular the determi-
nation of their optimal and nearly optimal solutions
have been impeded by the mathematical complexity of

these problems. For the EN algorithm applied to the
TSP, previous analytical results established the unselec-
tive fixed point above the first bifurcation point as well
as the parameters at which this solution becomes
unstable [105]. Subsequent work extended these results
to the EN model for cortical map formation. The peri-
odicity of solutions depending on the model parameters
has been obtained by computing the eigenvalues of the
Hessian matrix of the energy function [63,97,106]. Hoff-
sümmer et al. [72] confirmed these results, and com-
puted the periodicity of the emerging patterns in the
continuous EN model formulation by linear stability
analysis of the EN gradient descent dynamics as used in
this study. Our results extend these findings and for the
first time provide analytical expressions for the precise
layout of optimal and nearly optimal dimension-redu-
cing maps.
In the light of the qualitative agreement between

experimental data and numerical solutions of the EN
model previously described, it is perhaps our most sur-
prising result that the model’s optimal dimension-redu-
cing maps are regular periodic crystalline structures or
pinwheel-free stripe patterns in large regions of para-
meter space. In particular, the species-insensitive pin-
wheel statistics observed experimentally [38] are not
exhibited by optimal solutions of the classical EN in any
of the previously considered parameter regimes.
Our comparison of different numerical approaches

indicates that the differences to previous studies are
mainly attributable to differences in the sampling of the
stimulus manifold in the numerical optimization proce-
dures. In their seminal publication, Durbin and Mitchi-
son used sets of 216 stimuli from the circular stimulus
ensemble and applied a Gauss-Seidel procedure to
obtain stationary configurations [21]. A similar proce-
dure was used in [104]. Quite frequently, the number of
stimuli used for optimization is of the same order of
magnitude as the number of model neurons or centroids
in feature space. This provides a relatively sparse sam-
pling of the stimulus manifold [63-65]. Finite stimulus
sampling effects are expected to worsen when feature
spaces of higher dimension are considered.
The choice of small stimulus sets in previous dimen-

sion reduction studies was imposed mainly by the lim-
itations of computing power. Using a parallelized
implementation of the Cholesky method for determinis-
tic annealing [62-65] on a multicore architecture with 2
TB working memory, we explored the dependence of
the obtained near optimal solutions on the sampling of
the feature space manifold over two orders of magni-
tude. We find that, the more stimuli are sampled, the
closer the numerically obtained configurations resemble
our analytical predictions. Our results on the classical
EN model with deterministic annealing suggest that in
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the limit of large stimulus numbers, one would perfectly
recover our analytical results both for periodic condi-
tions or nonperiodic boundary conditions with realistic
system sizes. This dense stimulus sampling limit is also
readily visible in our reproduction of the original Durbin
and Mitchison sampling and the modification of the
predicted map structure with stimulus number (Figure
17). The finding that computational limitations pre-
vented Durbin and Mitchison from obtaining the genu-
ine predictions of their dimension reduction model
should not be viewed as diminishing the importance of
their contribution. The dimension reduction approach
has played a unique and extremely productive role in
guiding the conceptualization of cortical functional
architecture. It has established an abstract view on corti-
cal representations without which most of our current
theoretical knowledge about candidate theories for corti-
cal architectures could not have been obtained.
Our results about optimal states of the EN for the cir-

cular and uniform stimulus ensembles however agree
with some prior work. In [25], the gradient descent
dynamics of the EN model was used as a model for the
emergence and refinement of cortical maps during
development. Simulated visual stimulus features
included retinotopy, orientation and eye dominance.
The numerical procedures were similar to the one
developed in this study. Parameters were chosen such
that s4 = 4/3 and s/Λ ≈ 0.366. This study found that an
initially large number of pinwheels decayed via pairwise
annihilation of pinwheels with opposite topological
charge. Our analysis predicts a stripe-like OP pattern as
optimal solution in this regime, both in the case of a
fixed uniform retinotopy as well as with variable retino-
topy. In our simulations, this state is reached after an
initial phase of symmetry breaking with the generation
of numerous pinwheels via pairwise pinwheel annihila-
tion. Our analytical and numerical results thus confirm,
explain, and generalize these previous findings.
The previous results also indicated that the inclusion

of eye dominance in the EN model slightly slows down
but does not stop the pinwheel annihilation process (see
[25], Figure 3). This raises the possibility that the main
features of our analysis of optimal solutions for the EN
model may persist when additional feature dimensions
are taken into account. Reichl et al. in fact observed that
models with interacting OPM and OD maps (ODMs)
exhibit a transition from pinwheel-free stripes to peri-
odic pinwheel crystals similar to the transitions found in
the EN [37] and demonstrated that this transition is a
general feature of models with interacting OPM and
ODMs [107]. A rigorous characterization of map struc-
tures predicted by the simultaneous optimization of
multiple periodic feature representations such as orien-
tation preference and OD constitutes an important goal

for future studies. The recent study by Reichl et al. [37]
suggests that this issue can successfully be approached
using concepts from the nonlinear dynamics of pattern
formation. Finally, one recent study used the continuous
formulation of the EN model to investigate the impact
of postnatal cortical growth on the formation of OD
columns in cat visual cortex [69]. Consistent with our
results, this study also observed perfectly regular stripe-
like patterns as stationary states in gradient descent
simulations. The dynamics of the convergence of the
ODMs toward the stripes was modified by including
cortical growth into the model. However, as soon as
growth terminated, simulated ODM layouts readily con-
verged toward regular stripes. How cortical growth
interacts with the formation of orientation columns is
currently not understood and represents a further inter-
esting topic for future studies.

Geometric relationship between retinotopic distortions
and OPMs
Experimental results on the geometric relationships
between the map of visual space and the map of orien-
tation preference are ambiguous. Optical imaging
experiments in cat V1 suggested a systematic covaria-
tion of inhomogeneities in the RM with singularities in
the pattern of orientation columns in optical imaging
experiments [96]. Regions of high gradient in the map
of visual space preferentially appeared to overlap with
regions of high gradient of the OPM. In ferret, however,
it has been reported that high gradient regions of the
map of visual space correspond to regions of low gradi-
ent in the OPM [67]. In tree shrew V1, no local rela-
tionships between the mapping of stimulus orientation
and position seem to exist and the map of visual space
appears to be ordered up to very fine scales [108]. In
line with this, single unit recordings in cat area 17
revealed no correlation between receptive-field position
scatter and orientation scatter across local cell ensem-
bles [109,110].
Our analysis of the EN model shows that its optimal

states exhibit a negative correlation between the rates of
change of orientation preference and retinotopic posi-
tion, similar to what has been observed in the ferret
[67]. This is expected from the principle of dimension
reduction and in agreement with the original numerical
results by Durbin and Mitchison [21]. However, both in
simulations of the gradient descent dynamics and in
deterministic annealing simulations with periodic
boundary conditions as well as in analytically obtained
optimal solutions, deviations from a perfectly uniform
mapping of visual space are surprisingly weak (see Fig-
ures 9, 10, 18, and 25 in Appendix 1).
Deterministic annealing simulations with open non-

periodic boundary conditions showed a substantially

Keil and Wolf Neural Systems & Circuits 2011, 1:17
http://www.neuralsystemsandcircuits.com/content/1/1/17

Page 35 of 55
100



increased magnitude of retinotopic distortions. This
raises the possibility that different behaviors observed in
different experiments might be at least partially related
to the influence of boundary effects. The influence of
boundary effects is expected to decline into the interior
of an area, in particular for large areas as V1 (see [111]).
In the bulk of V1, we thus expect only a weak coupling
of orientation map and retinotopic distortions according
to the EN model. In this regime, the predictions from
models with reduced rotational symmetry (so-called
Shift-Twist symmetry [112]) about the coupling between
retinotopic distortions and OPMs [33] appear to be
more promising than the weak effects resulting from the
coverage-continuity-compromise. Consistent with the
measurements of Das and Gilbert [96], such models pre-
dict small but significant positive correlations between
the rates of change of orientation preference and retino-
topic position [33]. Moreover, the form of the retinoto-
pic distortions in such models is predicted to differ for
pinwheels with positive and negative topological charge

[92]. This interesting prediction of OPM models with
Shift-Twist symmetry deserves to be tested by measur-
ing the receptive field center positions around the two
types of pinwheels with single cell resolution [12].

Aperiodic OPMs reflect long-range intracortical
suppression
Our unbiased search through the space of stimulus
ensembles with finite fourth moment revealed the exis-
tence of spatially aperiodic optimal solutions in the EN.
It is important to realize that the selection of these solu-
tions is not easily viewed as resulting from an optimal
compromise between coverage and continuity. In fact,
the continuity parameter in the respective parameter
regime is so small that solutions essentially maximize
coverage (see Figures 12, 15, and 16). Instead, this phe-
nomenon reflects a different key factor in the stabiliza-
tion of pinwheel-rich aperiodic layouts, namely the
dominance of long-ranged and effectively suppressive
interactions. This is illustrated in Figure 20 which
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Figure 20 Different patterns of evoked activity for different effective ranges of intracortical interaction in the EN model. The
component 〈sz|z(x)〉 of the orientation map z(x) in the direction of the stimulus sz is plotted as a meshed 3D graph in a 6Λ × 6Λ patch. Color
code and height of the projection below indicate the strength of activation. The stimulus is presented in the center of the displayed cortical
subregion. (a) Evoked activity patterns e(x, S, z, r) for small interaction range s/Λ = 0.1 and weakly oriented stimulus with sz = 0.01 (left) and
strongly oriented stimulus with sz = 4 (right). rPWCs (see upper right) are optimal in this regime. (b) Evoked activity patterns e(x, S, z, r) for large
interaction range s/Λ = 0.9 and weakly oriented stimulus with sz = 0.01 (left) and strongly oriented stimulus with sz = 4 (right). Spatially
aperiodic 8-planforms (see upper right) are optimal in this regime. A uniform retinotopy was assumed in all cases for simplicity.
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depicts different forms of stimulus-evoked activity pat-
terns in the EN model. For a short-range interaction
(Figure 20a), the activity evoked by low as well as high
orientation energy stimuli is an almost Gaussian activity
peak located near the stimulus position. The peak is
shallow for low (left) and sharp for high ‘orientation
energy’ (right). In the corresponding parameter regime,
square pinwheel crystals are the optimal solution of the
EN. For a longer range of interaction where aperiodic
OPM layouts are the optimal states, the activity evoked
by a single point-like stimulus is qualitatively different.
Here, the activity pattern is extended and spans several
hypercolumns (Figure 20b). It is weakly modulated for
low orientation energy stimuli (left) and consists of sev-
eral distinct peaks for high orientation energy stimuli
(right). In this regime, neurons at a distance of several
columns compete for activity through the normalization
term in the EN which leads to a nonlocal and effectively
suppressive intracortical interaction.
It is presumably not a mere coincidence that recent stu-

dies of abstract variational models of OPM development
[35,38,93] mathematically identified this type of interac-
tion as a key mechanism for stabilizing realistic OPM lay-
outs. It has been shown that all models for OPM
development that share the basic symmetries (i) transla-
tional symmetry (ii) rotational symmetry (iii) shift symme-
try and (iv) permutation symmetry and in addition are
dominated by long-range suppressive interactions, form a
universality class that generates maps exhibiting a univer-
sal and realistic pinwheel statistics. In such models, sup-
pressive long-range interactions are key to stabilizing
irregular arrangement of pinwheels, which otherwise lar-
gely disappear or crystalize during optimization. We have
stressed that the EN model as considered here obeys the
symmetries (i) to (iii). In the limit of infinite orientation
stimulus ensemble fourth moment, permutation symmetry
(iv) is restored. The EN can thus be tuned into the above
universality class by sending the orientation stimulus dis-
tribution fourth moment to infinity and choosing an expo-
nentially small continuity parameter to realize effective
long-range coupling. Indeed, the phase diagrams for
abstract variational models of OPM development [35] and
those of the EN model found here are structurally very
similar. In both cases, a rather large orientation stripe
phase is complemented by a cascade of phase transitions
toward more complex, aperiodic and pinwheel-rich OPM
layouts induced by long-range suppressive interactions.
Using abstract variational models, it has been shown
recently that the stabilization of regular crystalline pin-
wheel layouts can alternatively be achieved by a strong
coupling between the map of orientation and the map of
eye dominance [37,107]. The structure of the phase dia-
grams of such models however appears fundamentally dif-
ferent from the structure of the EN phase diagrams.

The parameter regime in which the EN model’s optimal
solutions exhibit the experimentally observed pinwheel sta-
tistics is not at all intuitive and in our opinion questions
the conventional interpretation of the EN model for the
formation of cortical feature maps. Firstly, the extremely
small continuity parameter questions the fundamental role
of a tradeoff between coverage and continuity. We note
that such a parameter regime is currently not accessible to
numerical simulations. In addition, an apparently funda-
mental property for any adequate model for OPM optimi-
zation or development, namely a Turing-type finite
wavelength instability of the unselective state [32], is lost in
the limit h ® 0. At first sight the infinite fourth value
required may appear reminiscent of the power-law distri-
butions for orientation energy found in the statistics of nat-
ural images [113,114]. However, as visualized in Figure 20b,
the essential property of the EN model in the infinite
fourth moment regime is the occurrence of patterns of
activity spatially extended beyond a single hypercolumn
representing spatially localized point-like stimuli. These
activity patterns mediate the long-range interactions
between distant orientation columns which in turn cause
the stability of realistic pinwheel-rich aperiodic OPM lay-
outs. It is obvious that spatially extended stimuli provide a
much more plausible and realistic source of extended activ-
ity patterns in models for visual cortical development (for
an extended discussion see [54]). Optimization models for
cortical maps based on the representation of more complex
spatially extended visual stimuli, such as natural scenes,
rather than a model based on point-like stimuli with
extreme statistics would then be a more appropriate basis
for understanding visual cortical functional architecture.

Comparison to the SOFM model
Several alternatives to the EN model have been proposed
as optimization approaches that can account for the struc-
ture of visual cortical maps. One prominent alternative
dimension reduction model is the so-called SOFM, origin-
ally introduced by Kohonen [59]. It is widely believed that
this model, albeit lacking an exact energy functional [115],
implements a competition between coverage and continu-
ity very similar to the EN model [56,57,66,115]. The
SOFM has been reported to reproduce many of the
experimentally observed geometric properties of visual
cortical feature maps (e.g., [56,57,61,66-68]). The numeri-
cal procedures used in all of these studies were either the
deterministic annealing procedure or the nonrecurring
application of a stimulus set without systematic assess-
ment of pattern convergence. An analysis of the nontrivial
stationary states of a dynamical systems formulation of the
SOFM model is currently lacking. The main difference
between the SOFM model and the EN model is that the
activation function by definition has the form of a stereo-
typical Gaussian and competition is incorporated by a
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hard winner-takes-all mechanism. As a consequence, it is
not obvious that a long-range suppressive interaction
regime can be realized in this model. According to our
analysis, one would thus expect orientation stripes and
rPWCs as nontrivial stationary states of the SOFM model.
In a very recent study of the SOFM algorithm that used a
numerical procedure similar to the gradient descent simu-
lations developed in this article, both pinwheel annihila-
tion and rhombic pinwheel crystallization have been
observed [116]. In addition, one study that examined the
SOFM model for orientation and retinotopy found a fast
convergence to pinwheel-free stripe-like solutions for a
wide parameter range [25]. In view of these results, it
seems worthwhile to also reexamine the SOFM model
with respect to its stationary states.

Rugged or smooth energy landscape
As for many optimization problems in biology, the optimi-
zation of visual cortical functional architecture has been
considered a problem characterized by a rugged energy
landscape [76]. In case of the EN model the expectation of
a rugged energy landscape at first sight seems quite plausi-
ble. Originally, the elastic network algorithm was invented
as a fast analogue method to approximately solve NP-hard
problems in combinatorial optimization such as the TSP
[77,78]. In the TSP, the stimulus positions correspond to
the locations of cities a salesman has to visit on the short-
est possible tour. In problems such as the TSP, the energy
functionals to be minimized are known to possess many
local minima and the global minimization of these func-
tionals generally represents an extremely difficult problem
[78]. Our analysis reveals that the trade-off between cover-
age and continuity for the mapping of a continuous feature
space manifold leads to a much simpler structure of the
energy landscape. This is also indicated by the fact that
almost all of our gradient descent dynamics simulations
readily converged to the predicted global minimum of the
energy functional. Figure 21 illustrates the smooth struc-
ture of the EN energy landscape close to pattern formation
threshold for different model parameters for a one dimen-
sional path through the state space. In this landscape, the
small set of stable planforms correspond to local minima
of the EN energy functional, and unstable planforms to
saddle points in the energy landscape. The optimal states
correspond to global minima. Note that along the depicted
state space path, unstable stationary solutions may appear
as local minima if the unstable directions along which the
energy decreases are orthogonal to the path.
What is the origin of this qualitative difference in the

shape of the energy landscapes? In the traveling salesman
problem, the finite repertoire of possible tours consists of
all permutations of the N cities that the salesman has to
visit. By self-organized competition between the aim to
visit all cities and the aim to minimize the path length, the

elastic network algorithm converges to a specific ordering
of the cities that eventually yields a very short tour. Most
likely, the qualitative difference to the EN model for visual
cortical map architecture originates from the transition
from a finite number of cities to a continuum. When the
elastic network algorithm is considered with an ensemble
of cities (or stimuli) distributed according to a continuous
probability density function, there is no discrete repertoire
of tours. Both, the repertoire of tours as well as the path
through the landscape of cities or equivalently the space of
visual stimulus features are determined by self-organiza-
tion. The first is generated by the symmetry breaking
mechanism that leads to the instability of the homoge-
neous state. The second corresponds to the selection of
one of the many nontrivial stable steady states.
An interesting property of the EN model dynamics

that can be inferred from the energy landscape depicted
in Figure 21 is the type of competition between two
stable stationary states, where both are present in the
system with a wall or a domain boundary between
them. The motion of the wall or domain boundary is
predicted to proceed in the direction that increases the
fraction of the pattern with lower energy. An example
of such competition can be seen in Figure 23g in
Appendix. At t = 100τ, a small domain with an sPWC
state is present. The area of this region is gradually
reduced over the time course of the simulation until the
pinwheel-free optimal state is reached.

Are simple OPM layouts an artifact of model simplicity?
The perfectly periodic types of stationary solutions
(stripes, crystals) that appear to dominate the classical
EN model for retinotopy and orientation have been
found in other models of visual cortical layouts that are
relatively abstract. One might therefore suspect that
they represent a mere artifact of model simplicity. One
conceptually appealing approach where perfectly peri-
odic layouts have been found is wiring-length minimiza-
tion [27]. According to this hypothesis, the structure of
an OPM can be understood by minimizing the total
length of dendritic and axonal processes. Maps obtained
by stopping minimization of wire length exhibited quali-
tatively realistic layouts (see Figure 6 in [27]). Complete
optimization, however, leads to either stripe-like pin-
wheel-free patterns or rPWCs, identical to the ones
obtained in our investigation of optimal solutions of the
EN model [27]. Similarly, stripe-like and rhombic
optima have been found in several abstract vector-field
approaches for OPM development [31,33,117].
It is ruled out by two observations, that the crystalline

and perfectly periodic optima observed in all four opti-
mization models, the EN model, the SOFM, the wiring-
length minimization model, and the vector-field models
are a mere artifact of the abstract order parameter field
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description of cortical selectivity patterns that is com-
mon to these approaches. Firstly, equally simplistic
order parameter models for OPM development with
long-range interactions have been shown to reproduce
spatially irregular map layouts [35,38,93]. The occur-
rence of periodic optimal solutions is thus not a neces-
sity in this model class. Secondly, pinwheel
crystallization has also been observed in detailed net-
work models for the development of OPMs, notably in
the first ever model for the self-organization of orienta-
tion selectivity by von der Malsburg in 1973 [14,118].
Thus, on the one hand the phenomenon of pinwheel
crystallization is thus not restricted to simple order
parameter models and on the other hand abstract and
mathematically relatively simple models can exhibit
complex and biologically realistic optimal solutions.

Map rearrangement and layout optimization
Irrespective of the optimization principle invoked to
describe the structure of visual cortical maps, several com-
mon features of the resulting dynamics have been
observed. The dynamics of optimization models usually
starts with a phase of pattern emergence, where selectivity
to visual features arises from an initially homogeneous
unselective or weakly selective state. As we and others
have shown, feature maps in these models continue to
evolve after single cell selectivities reach mature levels. In
fact, the phase of initial pattern emergence is typically fol-
lowed by a prolonged phase of rearrangement of selectiv-
ities and preferences until a stable configuration is reached
that represents a genuine optimum. This is not an excep-
tional type of dynamics but rather constitutes the generic
expectation for a spatially extended system [83,84].

Figure 21 Illustration of the EN energy landscape close to pattern formation threshold. The variation of the energy between states of
ideal OS, the 2-ECP state, sPWC and possible mode configurations for 8-ECPs is shown for the case that (a) the OS state has the lowest energy
(s4 = 0, s/Λ = 0.3), (b) the sPWC state has the lowest energy (s4 = 0, s/Λ = 0.1), and (c) the most anisotropic 8-ECP has lowest energy (s4 = 100,
s/Λ = 0.8). The energy values between the state are computed from a state obtained by linear interpolation between two neighboring states
on the x-axis. Note that not all local minima in a-c correspond to a stable fixed point of the amplitude dynamics (see text).
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What drives the second phase of map rearrangement?
The initial emergence of feature selectivity is predomi-
nantly a local process in which merely neighboring units
interact with each other to roughly match their selectiv-
ities. In the resulting spatial layout, selectivities are
therefore far from being optimally arranged in space
with respect to the global organization of selectivities on
larger scales. Depending on the interactions incorpo-
rated in the model, local matching processes may (i)
effectively propagate through space optimizing the pat-
tern over gradually increasing spatial scales or (ii) dis-
tant sites may start to directly interact with each other
to guide a rearrangement toward a globally optimized
pattern after their initial emergence.
An illustrative example is provided by the emergence

of pinwheel-sparse orientation stripes. Qualitatively, it is
easy to see that a pattern of orientation stripes satisfies
the continuity constraint very well. In a stripe pattern,
preferred orientations are constant along one direction
in space, realizing the absolute minimum of the orienta-
tion gradient in this direction. Reaching such a config-
uration obviously requires to select the preferred
orientation at widely separated sites (along the stripe
axis) to be identical. Because initially such sites develop
independent preferred orientations, the optimized col-
umn layout can only emerge through a secondary rear-
rangement process. If the dominant low energy state has
low pinwheel density, the later phase is governed by pin-
wheel motion and pairwise pinwheel annihilation. If this
state is pinwheel-rich, e.g., a pinwheel crystal or an aper-
iodic pinwheel-rich state, both pinwheel annihilation
and pinwheel creation together with a coordinated rear-
rangement of pinwheels are expected to occur.
The local, essentially random processes during the initial

emergence of a fist pattern are in principle incapable of
directly generating an optimized layout. In fact, it has been
established that this initial so-called symmetry breaking
phase will in general produce a random arrangement of
selectivities of model-insensitive statistics [25,32,36]. The
occurrence of some form of secondary reorganization is
thus a qualitative prediction of any optimization model,
provided that the optimal map is not seeded by an innate
mechanism. The results presented in this study and many
reports demonstrate that Hebbian plasticity is capable and
often expected to achieve such rearrangements.
In gradient descent dynamics simulations of the EN

model for retinotopy and stimulus orientation with con-
ventional stimulus ensembles, pinwheel densities were
found to be strongly time-dependent after the initial col-
umn formation (see e.g. Figures 6, 7). In particular, the
timescale for the establishment of full orientation selectiv-
ity and the time needed for either annihilation of a sub-
stantial fraction of pinwheels or their crystallization into
periodic pinwheel crystals are in the same range of tens of

tau. A similar time dependence of pinwheel density has
also been observed in other models for OPM development
with periodic optima [35,38]. Pinwheel annihilation in the
EN can be slightly slowed down by additional features
such as retinotopy Figures 10 and 17 or OD [25,37] but
not by orders of magnitude. For this reason, signatures of
the periodic optima of a developmental dynamics become
visible at rather early simulation stages. Long-term mini-
mization is apparently not essential to express the main
layout features of the global minimum.
Because the main features of the dominant optimal solu-

tions become apparent immediately after orientation selec-
tivity saturates it appears not easy to reproduce the
species-independent map layout in models with periodic
crystalline optima by pattern freezing. In our simulations
to match even only the pinwheel density, a very precise
timing of the freezing point would be required. There is
currently no evidence for such a freezing mechanism in
early development. In cats and ferrets, cortical maps for
OD, orientation or direction arise on a timescale between
hours and a few days (e.g., [13,119,120]). The underlying
circuits can be rapidly modified, e.g. by deprivation experi-
ments, even on the timescale of hours [121,122] weeks
after full selectivity has been established. Recently, evi-
dence for long-term visual cortical circuit reorganization
after the emergence of feature selectivity during normal
development has emerged in diverse systems. In mouse,
for example, activity-dependent changes induced by nor-
mal visual experience during the critical period, i.e., long
after the primary emergence of orientation selectivity,
have been shown to gradually match eye-specific inputs in
the cortex [123]. Specifically, the data from mouse indi-
cates that preferred orientations in the two eyes initially
often emerge unmatched and subsequently change toward
one binocularly matched orientation preference. Because
preferred orientations in the two eyes initially are statisti-
cally independent, this suggests that neurons can rotate
their orientation preferences up to at least 45° during post-
natal development. This is reminiscent of pairing experi-
ments in kitten visual cortex in which Frégnac and
coworkers induced neurons to changed their preferred
orientation by up to 90° after pairing of a visual stimulus
with intracortical stimulation [124,125] (see also [126]).
Also in the cat, visual cortical orientation columns in
visual areas V1 and V2 have been found to undergo rear-
rangement during the late phase of the critical period [41].
In this process, columns in mutually connected regions of
areas V1 and V2 or in retinotopically matched regions in
left and right hemisphere areas become progressively bet-
ter matched in size. In the same species, a systematic reor-
ganization of OD columns during postnatal development
has been observed [69]. Essential features of this columnar
rearrangement are reproduced by the EN model for OD
patterns simulated in a growing domain.
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In view of these observations, it seems unlikely that
aperiodic orientation maps in the visual cortex represent
frozen transient states of a developmental dynamics whose
attracting layouts are pinwheel crystals or pinwheel free
states. In fact, models for the activity-dependent develop-
ment of OPMs with aperiodic optima predict only subtle
changes of the OPM layout during the convergence after
the establishment of selectivity [35,38]. This might also
explain the apparent stability of cortical maps during nor-
mal development over short periods [119]. Further studies
of the long-term rearrangement and stabilization of corti-
cal functional architecture are needed to exhaustively
characterize such processes. Given the fundamental role of
map reorganization for any optimization theory of visual
cortical development, chronic imaging experiments track-
ing the spatial arrangement of feature selectivities in indi-
vidual animals beyond the emergence of selectivity and
through later developmental stages are expected to be
highly informative about fundamental principles of visual
cortical optimization.

Conclusions
Together with recent progress on the quantitative char-
acterization of cortical functional architecture [38,69,93],
this study lays the foundation for a mathematically rig-
orous and biologically informative search for optimiza-
tion principles that successfully explain the architecture
of columnar contour representations in the primary
visual cortex. A mathematically controlled and quantita-
tively precise determination of the predictions of candi-
date optimization principles is demanded by
accumulating evidence indicating that geometrical fea-
tures of visual cortical representations are biologically
laid down with a precision in the range of a few percent
[38,127,128]. Such data is expected to substantially
reduce the range of candidate optimization principles
that are consistent with biological observations. In parti-
cular, for the principle that cortical orientation maps are
designed to optimally compromise stimulus coverage
and feature continuity, our analysis demonstrates that
the classical EN model for orientation preference and
retinotopy essentially fails at explaining the biologically
observed architecture. Our finding that the EN model
exhibits biologically realistic optima only in a limit in
which point-like stimuli are represented by complex
spatially extended activity patterns corroborates that
large-scale interactions are essential for the stabilization
of OPM layouts with realistic geometry [35,39,87,93]. In
the light of these results, principles for the optimal
representation of entire visual scenes by extended corti-
cal activity patterns appear as promising candidates for
future studies (see also [54]). In fact, there is recent evi-
dence that visual cortical activity becomes progressively
better matched to the statistics of natural stimuli but

not to simplistic artificial stimulus ensembles [129]. We
expect the methods developed here to facilitate a com-
prehensive characterization of such candidate principles.

Methods
Expansion of EN equation
In order to analytically calculate the approximate opti-
mal dimension-reducing mappings in the EN model
with fixed retinotopy, an expansion of the nonlinear EN
OPM dynamics (Equation (3)) up to third-order around
the unselective fixed point has to be derived. This
expansion is briefly sketched in the following. Equation
(3) with r(x) = 0 is of the form

∂tz(x, t) = Nx[z] + η&z(x, t),

where Nx[z] is a nonlinear functional of z(·, t), para-
meterized by the position x. Clearly, the diffusion term
contains no nonlinear terms in z(·, t) and therefore third
order terms of the dynamics ∂tz(x, t) exclusively stem
from third order terms of the Volterra series expansion
of the functional Nx[z] around the fixed point z(x, t)≡
0. By the Shift symmetry (Equation (8)), only third-order
contributions of the form N3[z, z, z̄] are allowed, i.e.,

N3[z, z, z̄] =
1
2

∫∫∫
d2yd2wd2v

δ3Nx[z]
δz(y)δz(w)δz̄(v)

∣∣∣∣
z≡0

z(y)z(w)z̄(v).

Collecting all the terms yields

N3[z, z, z̄] =
11∑

j=1

ajN
j
3[z], (37)

where

N1
3[z] =

∣∣z(x)
∣∣2z(x)

N2
3[z] =

∣∣z(x)
∣∣2
∫

d2yK2(y − x)z(y)

N3
3[z] = z(x)2

∫
d2yK2(y − x)z̄(y)

N4
3[z] = z(x)

∫
d2yK2(y − x)

∣∣z(y)
∣∣2

N5
3[z] = z̄(x)

∫
d2yK2(y − x)z(y)2

N6
3[z] =

∫
d2yK2(y − x)

∣∣z(y)
∣∣2z(y)

N7
3[z] = z(x)

∫∫
d2yd2wK3(y − x, w − x, y − w)z̄(w)z(y)

N8
3[z] = z̄(x)

∫∫
d2yd2wK3(y − x, w − x, y − w)z(w)z(y)

N9
3[z] =

∫∫∫
d2yd2wd2vK4(y − x, w − x, v − x, y − w, v − w, y − v)z̄(v)z(w)z(y)

N10
3 [z] =

∫∫
d2yd2wK3(y − x, w − x, y − w)

∣∣z(w)
∣∣2z(y)

N11
3 [z] =

∫∫
d2yd2w K3(y − x, w − x, y − w)z(w)2z̄(y)

(38)

and

K2(x) = e−x2/(4σ 2)

K3(x1, x2, x3) = e−(x2
1+x2

2+x2
3)/(6σ 2)

K4(x1, x2, x3, x4, x5, x6) = e−(x2
1+x2

2+x2
3+x2

4+x2
5+x2

6)/(8σ 2).
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The coefficients aj for various orientation stimulus
ensembles are given in ‘Results’ section.

Adiabatic elimination of r(x, t)
In order to analytically calculate the approximate optimal
dimension-reducing mappings in the EN model with vari-
able retinotopy, an expansion of the nonlinear EN retino-
topy and orientation map dynamics (Equations (3, 4)) up
to third-order around the nonselective fixed point has to
be derived and retinotopic distortions have to be adiabati-
cally eliminated. Both of these calculations are briefly
sketched in the following. Equation (3) is of the form

∂tz(x, t) = Nx[z, r] + η&z(x, t),

where Nx[z, r] is a nonlinear functional of z(·, t) and r
(·, t), parameterized by the position x. The diffusion
term contains no nonlinear terms in z(·, t) and therefore
third order terms of the dynamics of z(x, t) exclusively
stem from third-order terms of the Volterra series
expansion of the functional Nx[z, r] around the fixed
point {z(x, t)≡ 0, r(x, t)≡ 0}. By the shift symmetry
(Equation (8)), only terms in form of a cubic operator
N3[z, z, z̄] and a quadratic operator Qz[r, z] are allowed
when expanding up to third order. N3[z, z, z̄] is given in
Equation (37). Q[z, r] can be calculated via

Qz[r, z] =
∫∫

d2yd2w
(

δ2

δz(y)δr1(w) Nx[z, r]
∣∣
z≡0,r≡0r1(w) + δ2

δz(y)δr2(w) Nx[z, r]
∣∣
z≡0,r≡0r2(w)

)
z(y)

and this yields

Qz[r, z] =
(〈|sz|2〉 − 2σ 2)

16πσ 6 z(x)
∫

d2y〈r(y), Kr
2(y − x)〉

− 〈|sz|2〉
16πσ 6

∫
d2y〈r(x), z(y)Kr

2(y − x)〉 +
〈|sz|2〉
16πσ 6

∫
d2y〈r(y), z(y)Kr

2(y − x)〉

− 〈|sz|2〉
36π2σ 8

∫∫
d2yd2wz(y)〈r(w), Kr

3(y − x, w − x, y − w)〉,

where 〈·, ·〉 denotes the scalar product between two
vectors and

Kr
2(x) = e−x2/4σ 2

x (39)

Kr
3(x1, x2, x3) = e−

x2
1+x2

2+x2
3

6σ 2 [x1 + x3] . (40)

In complete analogy, by expanding the right hand side
of the dynamical equation for the retinotopic distortions
(Equation (4)) up to second-order, the vector-valued
quadratic operator Qr[z, z̄] can be obtained as

Qr[z, z̄] = −-
( 〈|sz|2〉

16πσ 6 z̄(x)
∫

d2yKr
2(y − x)z(y)

)

+
2σ 2 − 〈|sz|2〉

32πσ 6

∫
d2yKr

2(y − x)|z(y)|2

+
〈|sz|2〉

72π2σ 8

∫∫
d2yd2wKr

3(y − x, y − w, w − x)z(w)z̄(y).

(41)

Inserting r(x) = −L−1
r [Qr[z, z̄]] into Qz[r, z] and using

the linearity of L−1
r as well as the bilinearity of both,

Qr[z, z̄] and Qz[r, z], yields a sum

Nr
3[z, z, z̄] =

∑12
j=1 aj

rN
j
r , with

N1
r = z(x)

∫
d2y

〈
L−1

r

[
-
(

z̄(y)
∫

d2wK2(w − y)z(w)
)]

, Kr
2(y − x)

〉

N2
r = z(x)

∫
d2y

〈
L−1

r

[∫
d2wK2(w − y)|z(w)|2

]
, Kr

2(y − x)
〉

N3
r = z(x)

∫
d2y

〈
L−1

r

[∫∫
d2wd2vKr

3(w − y, w − v, v − y)z(w)z̄(v)
]

, Kr
2(y − x)

〉

N4
r =

〈
L−1

r

[
-
(

z̄(x)
∫

d2yKr
2(y − x)z(y)

)]
,
∫

d2yz(y)Kr
2(y − x)

〉

N5
r =

〈
L−1

r

[∫
d2yKr

2(y − x)|z(y)|2
]

,
∫

d2yz(y)Kr
2(y − x)

〉

N6
r =

〈
L−1

r

[∫∫
d2yd2wKr

3(y − x, y − w, w − x)z(w)z̄(y)
]

,
∫

d2yz(y)Kr
2(y − x)

〉

N7
r =

∫
d2yz(y)

〈
L−1

r

[
-
(

z̄(y)
∫

d2wK2(w − y)z(w)
)]

, Kr
2(y − x)

〉

N8
r =

∫
d2yz(y)

〈
L−1

r

[∫
d2wKr

2(w − y)|z(w)|2
]

, Kr
2(y − x)

〉

N9
r =

∫
d2yz(y)

〈
L−1

r

[∫∫
d2vd2wKr

3(w − y, w − v, v − y)z(w)z̄(y)
]

, Kr
2(y − x)

〉

N10
r =

∫∫
d2yd2wz(y)

〈
L−1

r

[
-
(

z̄(w)
∫

d2vKr
2(v − w)z(v)

)]
, Kr

3(y − x, y − w, w − x)
〉

N11
r =

∫∫
d2yd2wz(y)

〈
L−1

r

[∫
d2vKr

2(v − w)|z(v)|2
]

, Kr
3(y − x, y − w, w − x)

〉

N12
r =

∫∫
d2yd2wz(y)

〈
L−1

r

[∫∫
d2vd2uKr

3(v − w, v − u, u − w)z(v)z̄(u)
]

, Kr
3(y − x, y − w, w − y)

〉
.

The coefficients aj
r are given by

a1
r = −(〈|sz|2〉 − 2σ 2) 〈|sz|2〉

256π2σ 12 = −
(
1 − σ 2

)

64π2σ 12

a2
r =

(〈|sz|2〉 − 2σ 2)2

512π2σ 12 =

(
1 − σ 2

)2

128π2σ 12

a3
r =

(〈|sz|2〉 − 2σ 2) 〈|sz|2〉
1152π3σ 14 =

(
1 − σ 2

)

288π3σ 14

a4
r = − 〈|sz|2〉2

256π2σ 12 = − 1
64π2σ 12

a5
r = −(〈|sz|2〉 − 2σ 2) 〈|sz|2〉

512π2σ 12 = −
(
1 − σ 2

)

128π2σ 12

a6
r =

〈|sz|2〉2

1152π3σ 14 =
1

288π3σ 14

a7
r = − 〈|sz|2〉2

256π2σ 12 = − 1
64π2σ 12

a8
r = −(〈|sz|2〉 − 2σ 2) 〈|sz|2〉

512π2σ 12 = −
(
1 − σ 2

)

128π2σ 12

a9
r =

〈|sz|2〉2

1152π3σ 14 =
1

288π3σ 14

a10
r =

〈|sz|2〉2

576π3σ 14 =
1

144π3σ 14

a11
r =

(〈|sz|2〉 − 2σ 2) 〈|sz|2〉
1152π3σ 14 =

(
1 − σ 2)

288π3σ 14

a12
r = − 〈|sz|2〉2

2592π4σ 16 = − 1
648π4σ 16 ,

where the second equal sign is valid for 〈|sz|
2〉 = 2.
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Amplitude equations from Nz
3[z, z, z̄]

We catalog the numerous stationary solutions of Equa-
tion (13) following [35], by considering planforms

z(x, t) =
N∑

j=1

Aj(t)eikjx

with an even number N of modes with amplitudes Aj

and kj = kc(cos(2πj/N), sin(2πj/N )). In the vicinity of a
finite wavelength instability, where the nonselective state
z(x) = 0 becomes unstable with respect to a band of
Fourier modes around a finite wave number kc-by sym-
metry, the dynamics of the amplitudes Aj at threshold
has the form

Ȧi = Ai − Ai

N∑

j=1

gij|Aj|2 −
N∑

j=1

fijAjAj−Āi− , (42)

where j- denotes the index of the mode antiparallel
to the mode j, kj = −kj− , and the coefficients

gij = (1 − 1
2 δij)g(|αi − αj|) and

fij = (1 − δij − δi−j)f (|αi − αj|) only depend on the
angle |ai - aj| between mode i and j. The angle-depen-
dent interaction functions g(a) and f(a) are obtained
from Equation (13) by a multi scale expansion
[35,83,84,87] as

g(α) = −e−ik0x
[
Nz

3(eik0x, eih(α)x, e−ih(α)x)

+ Nz
3(eih(α)x, e−ih(α)x, eik0x)

] (43)

f (α) = −1
2

e−ik0x
[
Nz

3(eih(α)x, e−ih(α)x, eik0x)

+ Nz
3(, e−ih(α)x, eih(α)x, eik0x)

]
,

(44)

where k0 = kc(1, 0) and h(a) = kc(cos a, sin a). f(a) is
π-periodic, since the right hand side of Equation (44) is
invariant with respect to the transformation h(a) ® h(a
+ π) = -h(a). g(a) is 2π-periodic in general. If, however,
the nonlinearity is permutation symmetric (Equation
(34)) it can be seen from Equation (43) that g(a) is π-
periodic as well.

Stability of stationary planform solutions
To determine the stability of fixed points of the ampli-
tude equations (42), the eigenvalues of their stability
matrices have to be determined. In general, for any
fixed point A = A0 of the dynamical system Ȧ = F(A)
with complex-valued A and F, we have to compute
the eigenvalues of the Hermitian 2N × 2N matrix

M =

(
∂F
∂A

∂F
∂Ā

∂F
∂A

∂F
∂A

)∣∣∣∣∣
A=A0

.

For the system of amplitude equations, we obtain

∂Fi

∂Ak
= rδik − δik




N∑

j

gij|Aj|2


− AigikĀk − Āi− fik(Ak− + Ak)

∂Fi

∂Āk
= −AigikAk − δi−k




N∑

j

fijAjAj−



 .

Stability of a solution, or more precise intrinsic stabi-
lity is given, if all eigenvalues of M are negative definite.
Extrinsic stability is given, if the growth of additional
Fourier modes is suppressed. To test whether a plan-
form solution is extrinsically stable, we introduce a test
mode T such that

z(x) = Teikβ x +
N∑

j

Ajeikjx,

with kb = (cos b, sin b)kc. We insert this ansatz into
Equation 15 and obtain

∂tT = rT −
N∑

j

g(β − βj) |Aj|2T + O(T2)

as the dynamics of the test mode T, where g(b) is the
angle-dependent interaction function corresponding to
N3[z, z, z̄] . For the solution T = 0 to be stable, we there-
fore obtain the condition

r −
N∑

j

g(β − βj)|Aj|2 < 0, ∀α ∈ [0, 2π],

where we assumed kβ 2= kj, k−
j . These conditions for

intrinsic and extrinsic stability were numerically evalu-
ated to study the stability of n-ECPs and rPWCs.

Coupled essentially complex planforms
In ‘Results’ section, we presented a closed form expres-
sion for the retinotopic distortions associated via Equa-
tion (28) with stationary planform solutions of Equation
(29). Here, we sketch how to explicitly calculate this
representation. We start with the ansatz

z(x) =
n∑

j

Ajeikjx |kj| = kc (45)

for the OPM z(x). Note that this general ansatz
includes essentially complex planforms as well as
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rPWCs. To simplify notation, we denote the individual
terms in Equation (41)

Q1[z, z̄] = −-
( 〈|sz|2〉

16πσ 6 z̄(x)
∫

d2yKr
2(y − x)z(y)

)

Q2[z, z̄] =
2σ 2 − 〈|sz|2〉

32πσ 6

∫
d2yKr

2(y − x)|z(y)|2

Q3[z, z̄] =
〈|sz|2〉

72π2σ 8

∫∫
d2yd2wKr

3(y − x, y − w, w − x)z(w)z̄(y).

Each of the Qi[z, z̄] , i = 1, 2, 3 can be evaluated for
the planform ansatz in Equation (45) and we obtain

Q1




n∑

j

Ajeikjx,
n∑

k

Āke−ikkx



 =
〈|sz|2〉e−k2

c σ
2

2σ 2

n∑

k,j<k

{-(AjĀk)(kj − kk) sin((kj − kk)x)

+ ,(AjĀk)(kj − kk) cos((kj − kk)x)}

Q2




n∑

j

Ajeikjx,
n∑

k

Āke−ikkx



 = −(2σ 2 − 〈|sz|2〉)
2σ 2

n∑

j<k

e−(kj−kk)2σ 2
(kj − kk){-(AjĀk) sin((kj − kk)x)

+ ,(AjĀk) cos((kj − kk)x)}

Q3




n∑

j

Ajeikjx,
n∑

k

Āke−ikkx



 = −〈|sz|2〉e−
k2

c σ
2

2

σ 2

n∑

j<k

(kj − kk)e−
(kj−kk)2σ 2

2 {-(AjĀk) sin((kj − kk)x)

+ ,(AjĀk) cos((kj − kk)x)}.

All resulting terms are proportional to either (ki - kj)
sin((ki - kj)x) or (ki - kj) cos((ki - kj)x) i ≠ j. These func-
tions are longitudinal modes (see Figure 3b) which have
been identified as eigenfunctions of the linearized
dynamics of retinotopic distortions Lr[r] with eigenvalue

λr
L(|ki − kj|) = −|ki − kj|2(ηr + e−σ 2|ki−kj|2σ 2)

Hence, they are eigenfunctions of L−1
r [r] with eigenva-

lue 1
/
λr

L(|ki − kj|) . Using this when inserting in Equa-
tion (28) and setting 〈|sz|

2〉 = 2, we obtain expression
(31) for the retinotopic distortions belonging to an arbi-
trary planform.

Phase diagrams
To compute the regions of minimal energy shown in
Figures 6, 10, 12, 15, and 16 as well as Figures 23, 25 in
Appendix 1, we first computed the fixed points of Equa-
tion (42) at each point in parameter space. For n-ECPs,
we constructed the coupling matrix g in Equation (22)
for all mode configurations not related by any combina-
tion of the symmetry operations: (i) Translation:

Aj → Ajeikjy , (ii) Rotation: Aj ® Aj+∆j, (iii) Parity:

Aj → Ā(N−j)− . By Equation (22), we then computed the

absolute values of the corresponding amplitudes. If∑n
j=1 (g−1)ij ≥ 0 for all i, a valid n-ECP fixed point of

Equation 42 was identified. Its energy was then com-
puted by Equation (23). For orientation stripes and
rPWCs, the derived analytical expressions for their
energy (Equations (18, 20)) were evaluated. To analyze
the stability of the fixed points, the conditions for

intrinsic and extrinsic stability (see above) were numeri-
cally evaluated.

Numerical procedures-gradient descent simulations
To test our analytical calculations and explore their
range of validity, we simulated Equations (3) and (4) on
a 64 × 64 grid with periodic boundary conditions. Simu-
lated systems were spatially discretized with typically 8
grid points per expected column spacing Λmax of the
orientation preference pattern (see ‘Results’ section) to
achieve sufficient resolution in space. Test simulations
with finer discretization (16 and 32 grid points per
Λmax) did not lead to different results. Progression of
time was measured in units of the intrinsic timescale τ
(see ‘Results’ section) of the pattern formation process.
The integration time step δt was bounded by the rele-
vant decay time constant of the Laplacian in Equation
(3) around kc and by the intrinsic timescale τ of the sys-
tem, using δt = min{1

/
(20ηk2

c ), τ
/

10}. This ensured
good approximation to the temporally continuous
changes of the patterns. We used an Adams-Bashforth
scheme for the first terms on the respective r.h.s. of
Equations (3, 4). The second terms (diffusion) were trea-
ted by spectral integration, exhibiting unconditional
numerical stability. The stimulus positions sr were cho-
sen to be uniformly distributed in retinal coordinates.
The stimulus averages in Equations (3, 4) were approxi-
mated by choosing a random representative sample of
Ns stimuli at each integration time step, with

Ns = max
{

105,
N01

2

(εs)n
δt
τ

}
,

where n corresponds to the dimensions of the feature
space in addition to the two retinal positions (in our
case, n = 2), Γ2 = (L/Λmax)

2 the squared aspect ratio of
the simulated system in units of Λ2, εs the resolution in
feature space, N0 the number of stimuli we required to
approximate the cumulative effect of the ensemble of
stimuli within each feature space voxel εn+2 . With N0 =
100 and εs = 0.05, we ensured a high signal-to-noise
ratio for all the simulations. Typical values for Ns were
between 2.5 × 105 and 4 × 106. All simulations were
initialized with z(x, t = 0) = 10-6ei2πξ(x) and r(x, t = 0) =
0, where the ξ(x) are independent identically distributed
random numbers uniformly in [0, 1]. Different realiza-
tions were obtained by using different stimulus samples.
Stimuli were drawn from different distributions, each

with 〈|sz|
2〉 = 2. We considered (i) stimuli uniformly dis-

tributed on a ring with |sz|2 =
√

2 (circular stimulus
ensemble), (ii) stimuli uniformly distributed within a cir-
cle {sz, |sz| ≤ 2} (uniform stimulus ensemble), and (iii) a
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Gaussian stimuli ensemble with
ρsz = 1

/
(2π) exp(−|sz|2

/
2). In addition, we considered

mixtures of a high-fourth moment Pearson type VII dis-
tribution and the circular stimulus ensemble. The Pear-
son distribution is given by

ρsz =
1

αB(m − 1
2 , 1

2 )

[
1 +

|sz|2

α2

]−m

,

where B(·,·) is the Beta function [130] and

α =
√

2m − 3 , and m = 5
2 + 12

γ−12 such that 〈|sz|
2〉 = 2, 〈|

sz|
4〉 = g or equivalently s4 = g - 4.
In addition to simulations in which independent sets

of stimuli were used for evaluating the stimulus average
in Equations (3, 4) for every time step, we also per-
formed simulations in which the same fixed set of N sti-
muli was used (see ‘Results’ section). To determine the
time step δt in these simulations, we first calculated

Nτ =
N01

2

(εs)n

(parameters as in regular simulations) which yields the
number of stimuli presented to the model in one intrin-
sic time unit τ in regular simulations. To subject the
network to the same number of stimuli per intrinsic
time scale τ in fixed stimulus set simulations, the inte-
gration time step δt was in this case chosen as

δt = min
{

N
Ns

τ ,
1

20ηk2
c

,
τ

10

}
.

For small N, this resulted in very small integration
steps. For very large N, time steps were identical to the
regular simulations. Different realizations were obtained
by different but fixed stimulus sets. In all simulations
with fixed stimulus sets, stimuli were drawn from the
circular stimulus ensemble. All other numerical methods
were chosen as in regular simulations.

Numerical procedures - solving the EN model with
deterministic annealing
A large body of previous study has solved the EN
models for various aspects of visual cortical architec-
ture for discrete fixed sets of stimuli and using deter-
ministic annealing. We therefore also used
deterministic annealing with fixed discrete sets of sti-
muli to solve the EN model for the most frequently
used stimulus distribution. This allowed us to better
compare our analytical and numerical results based on
the gradient descent dynamics for a continuous stimu-
lus with prior results. For the discrete deterministic
annealing approach, cortical maps are described by a

collection of M centroids {ym}M
m=1 ⊂ d that can be

represented as a D × M matrix Y = (y1, . . . , yM).
Maps forming a compromise of coverage and continu-
ity are obtained for {xn}N

n=1 ⊂ d represented as a D ×
N matrix X = (x1, . . . , xM). In our case, d = 4. The
trade-off between coverage and continuity is formu-
lated by the energy function

E(Y, σ ) = −ασ

N∑

n=1

log
M∑

m=1

e
− 1

2

∥∥∥∥
xn−ym

σ

∥∥∥∥
2

+
β

2
tr(YTYS). (46)

The matrix S determines the topology of the network
as well as the boundary conditions and is typically
derived from a discretized derivative based on a finite
difference scheme or stencil (see below). For large N
and M, the energy function in Equation (46) is equiva-
lent to the energy functional of the continuum formula-
tion given in Equation (1) for b = hN and S
implementing the discretized Laplacian operator in two
dimensions.
Following [62-65,71] we minimized the EN energy

function (Equation (46)) by an iterative deterministic
annealing algorithm, starting with a minimization for
large s and tracking this minimum to a small value of
s. As in [4], we reduced s from sinit = 0.2 to the point
at which the amplitude of the orientation maps saturate
(s ≈ 0.03), following s = sinit × cj where j counts the
annealing step. This choice tracks stationary solutions of
the EN to parameters that are very far from threshold.
For high precision tracking of solutions, we used an
annealing rate of c = 0.999.
At each value of s, setting the gradient of Equation

(46) to zero yields a nonlinear system of equations

YA = XW with A = G + σβ

(
S + ST

2

)
, (47)

Here, the N × M-matrix W is given by

wnm =
e
− 1

2

∥∥∥∥
xn−ym

σ

∥∥∥∥
2

∑M
m′=1 e

− 1
2

∥∥∥∥
xn−ym′

σ

∥∥∥∥
2

and the M × M-matrix G is

gij = δij

N∑

n=1

wni.

A is a symmetric positive-definite M × M matrix. The
M × M matrix A is symmetric and positive-definite.
Since both G and W depend on Y, this equation is non-
linear in Y and has to be solved iteratively. Following
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[62-65,71], we solved Equation (47) at each value of s
and for each iteration directly via Cholesky-factorization.
We implemented periodic and nonperiodic boundary

conditions by appropriate choice of the matrix S. S
must be positive (semi)definite for the energy to be
bounded from below. We used the canonical 2D Lapla-
cian stencil of order 2, to construct the M × M matrix

S =





−4 + 2a 1 0 0 · · · 1 0 0 · · · 0 0 0 1
1 −4 + a 1 0 0 · · · 1 0 0 · · · 0 0 0
0 1 −4 + a 1 0 0 · · · 1 · · ·
...

...
1 −4 + 2a 1

1 −4 + a 1
0 · · · 1 −4 1 0 · · · 1
0 1 −4 1 0 · · · 1

...
0 1 −4 + a 1 0

0 1 −4 + a 1 0
1 1 −4 + 2a





,

Here, a = 0 for periodic boundary conditions and a =
1 for nonperiodic boundary conditions. In Appendix 3,
we also present simulation results for a fourth derivative
stencil, in which S2 was used for the continuity term.
We used random stimulus positions and orientations as
well as stimuli arranged on a grid in feature space. For
random stimuli, positions were drawn from a uniform
distribution in [0, 1] × [0, 1]. Orientations sz were
drawn from the circular stimulus ensemble, with |sz| =
0.08 as in [65]. Stimuli from grid-like ensembles were
distributed evenly-spaced in [0, 1] × [0, 1] and contained
2k evenly space orientations with |sz| = 0.08.
To compute the energy of pinwheel-free configuration,

we initiated simulations with a stripe-like orientation
preference pattern with the same typical spacing as the
observed orientation maps and annealed from s = 0.035
to s = 0.03.
To enable comparison between simulations with dif-

ferent numbers of stimuli, we scaled the continuity para-
meter proportionally to N such that the equivalent h
was approximately constant. The simulated domain then
contained a comparable number of hyper columns for
all stimulus numbers.

Pinwheel density from simulations
Pinwheels locations in models were identified by the
crossings of the zero contour lines of real and imaginary
parts of the orientation map. Estimation of local column
spacing Λ(x) was done using the wavelet analysis intro-
duced in [127,128]. In short, an overcomplete basis of
complex Morlet wavelets at various scales and orienta-
tions was compared to the OPM pattern at each loca-
tion. Λ(x) was estimated by the scale of the best
matching wavelet. The mean column spacing 〈Λ(x)〉x of
a given map was then calculated from the local column
spacing by spatial averaging. For details we refer to
[38,127,128]. Given Npw pinwheels in a simulated

cortical area of size L2, we defined the pinwheel density
[25,38,102]

ρ = Npw
〈/〉2

x

L2 .

The pinwheel density r is a dimensionless quantity
and depends only on the layout of orientation columns.
The pinwheel density defined in this way is large for
patchy and small for more band-like columnar layouts.

Appendix 1
The impact of nonoriented stimuli
The main text of this article contains a complete analy-
sis of optimal dimension-reducing mappings of the EN
model with a circular ensemble of orientation stimuli.
These optima are simple regular orientation stripes or
square pinwheel crystals. The circular orientation stimu-
lus ensemble, however, contains only stimuli with a
fixed and finite ‘orientation energy’ or elongation |sz|.
This raises the question of whether the simple nature of
the circular stimulus ensemble might restrain the realm
of complex dynamics in the EN model. The EN
dynamics are expected to depend on the characteristics
of the activity patterns evoked by the stimuli and these
will be more diverse and complex with ensembles con-
taining a greater diversity of stimuli. Therefore, we also
examined the EN model in detail for a richer ensemble
of stimuli. In this ensemble, called a uniform stimulus
ensemble in the following, orientation stimuli are uni-
formly distributed on the disk {sz, |sz| ≤ 2}, a choice
common to many previous studies, e.g., [19,25,81]. The
uniform ensemble in particular contains unoriented sti-
muli with |sz| = 0. Intuitively, the presence of these
unoriented stimuli might be expected to fundamentally
change the importance of pinwheels in the optimal
OPM layout. Pinwheels’ population activity is untuned
for orientation. Pinwheel centers may therefore acquire
a key role for the representation of unoriented stimuli.
As such an effect should be independent of retinotopic
distortions and to aid comparison with our previous
results, we will again start with a fixed uniform retino-
topy r(x) = 0.
The linear stability properties of the unselective fixed

point are independent of the ensemble of orientation
stimuli (〈|sz|

2〉 = 2 throughout this article). The coeffi-
cients in Equation (14), however, of course depend on
the fourth moment of the stimulus distribution. Insert-
ing 〈|sz|

4〉 = 16/3 into Equation (32), we obtain

a1 = 1
3σ 6 − 1

σ 4 + 1
2σ 2 a2 = 1

4πσ 6 − 1
6πσ 8 a3 = − 1

12πσ 8 + 1
8πσ 6

a4 = − 1
6πσ 8 + 1

4πσ 6 − 1
8πσ 4 a5 = − 1

12πσ 8 a6 = 1
8πσ 6 − 1

12πσ 8

a7 = 1
9π2σ 10 − 1

12π2σ 8 a8 = 1
18π2σ 10 a9 = − 1

16π3σ 12

a10 = 1
9π2σ 10 − 1

12π2σ 8 a11 = 1
18π2σ 10 .
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The angle-dependent interaction functions are then
given by

g(α) =
1
σ 4

(
1 − 2e−k2

c σ
2 − e2k2

c σ 2(cos α−1)
(

1 − 2e−k2
c σ 2 cos α

))

+
1

2σ 2

(
e2k2

c σ
2(cos α−1) − 1

)
+

32
3σ 6 e−2k2

c σ 2
sinh4 (1

/
2k2

c σ
2 cos α

)

f (α) =
1
σ 4

(
1 − e−2k2

c σ 2 (
cosh(2k2

c σ
2 cos α) + 2 cosh(k2

c σ
2 cos α)

)
+ 2e−k2

c σ 2
)

+
1

2σ 2

(
e−2k2

c σ
2

cosh(2k2
c σ

2 cos α) − 1
)

+
16

3σ 6 e−2k2
c σ

2
sinh4 (1

/
2k2

c σ
2 cos α

)
.

Both functions are depicted in Figure 22 for two dif-
ferent values of the effective intracortical interaction
range s/Λ. They qualitatively resemble the functions
depicted in Figure 5. Figure 23 displays the phase dia-
gram of the EN model with uniform stimulus ensemble.
As summarized in the main part of this article, it is
almost identical to that obtained for the circular stimu-
lus ensemble (Figure 6). Two different optimal states are
found, square pinwheel crystals (sPWCs) and orientation
stripes (OSs) separated by a phase border at s/Λ ≃ 0.15.
Both fixed points are stable for all s/Λ. Figure 23b-k
demonstrates, that these analytical results are confirmed
by direct numerical simulations of Equation (3) with r
(x) = 0. As for the circular stimulus ensemble, we also
tested the stability of stationary n-ECP solutions with 2
≤ n ≤ 20 by numerical evaluation of the criteria for
intrinsic and extrinsic stability (see ‘Methods’ section).
We find all n-ECPs with 2 ≤ n ≤ 20 intrinsically
unstable for all interaction ranges s/Λ. The simple
phase space structure furthermore apparently remains
unchanged if we consider the model far from pattern
formation threshold as shown in Figure 24. Simulations
bear a close resemblance to the simulations with circu-
lar orientation stimulus ensemble (Figure 7). Either con-
vergence to sPWC-like patterns or patterns with large
orientation stripe domains is observed. Again, pinwheel
annihilation in the case of large s/Λ is less rapid than
close to threshold (Figure 24a,b). The linear pinwheel-

free zones increase their size over the time course of the
simulations, eventually leading to a stripe pattern. For
smaller interaction ranges s/Λ, the OPM layout rapidly
converges toward a crystal-like rhombic arrangement of
pinwheels with dislocations and pinwheel density close
to 4.
Figure 25 shows that taking retinotopic distortions

into account yields an almost identical picture compared
to the circular stimulus ensemble. For small interaction
range s/Λ, the analytically predicted optimum is a quad-
ratic pinwheel crystal with pinwheel density r = 4. For
larger s/Λ, the analytically predicted optimum is an
orientation stripe pattern with pinwheel density r = 0.
Our results are confirmed by direct simulations of Equa-
tions (3, 4) (Figure 25b-e). The simulation results are
virtually indistinguishable from the circular stimulus
ensemble.
All together, the EN dynamic given by Equations (3, 4)

and in particular the set of ground states of the EN
model and their stability regions appear almost identical
when considering either a circular or a uniform orienta-
tion stimulus ensemble. We found two different optima
depending on the parameter regime, orientation stripes
for larger interaction ranges and quadratic pinwheel
crystals for shorter interaction ranges. In addition, the
EN dynamics appears to be unchanged by the presence
of unoriented stimuli.

Appendix 2
Strength of retinotopic coupling
In our manuscript, we have shown that retinotopic dis-
tortions only have a weak influence on the optima of
the EN model as well as its dynamics (see Figures 10
and 12). Here, we quantify the influence of retinotopic
distortions on the pattern formation process by compar-
ing the angle-dependent interaction function for

Π! Π Π! ΠΠ! Π Π! Π

a b

Figure 22 Angle-dependent interaction functions for the EN model with fixed retinotopy and uniform orientation stimulus ensemble.
(a,b) g(a) and f(a) for s/Λ = 0.1 (a) and s/Λ = 0.2 (b).
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retinotopic coupling gr(a) with angle-dependent interac-
tion function of the EN model with fixed retinotopy.
We use the ratio

c =
||gr(·)||2
||g(·)||2

as a measure to quantify the influence of retinotopic
distortions. || · ||2 denotes the 2-Norm,

|| f (·)||2 =
∫ 2π

0
f 2(α)dα.

If c is larger than one, gr(a) dominates the total interac-
tion function gr(a) + g(a) and retinotopic distortions may
strongly influence the layout and stability of solutions of
the EN model. On the other hand, if c is small, the solu-
tions and their stability properties are expected to not
change substantially when including variable retinotopy

into the EN model. Figure 26 displays the parameter c in
the s4-s/Λ-plane for the EN model at threshold for two
different conditions, h = hr and hr = 0. In the latter case,
retinotopic distortions are expected to have the strongest
impact. However, in both cases, c ≪ 1, in almost all of
the parameter space, implying little influence of retinoto-
pic deviations. Only for small s/Λ and small s4, c is larger
than one. As shown in Figure 12, this leads to slight
deformations of the stability regions for rhombs, and
stripes in this region of parameter space but does not
result in novel optimal solutions.

Appendix 3
Grid-like stimulus ensembles
References [64,65]) performed simulations with stimuli
distributed in regular intervals in feature space, called
grid-like ensemble. For comparison, we also performed
deterministic annealing simulations with grid-like

Figure 23 Optimal solutions of the EN model for uniform stimulus ensemble and fixed representation of visual space. (a) At criticality,
the phase space of this model is parameterized by either the continuity parameter h (blue labels) or the effective interaction range s/Λ (red
labels, see text). (b, c) OPMs (b) and their power spectra (c) in a simulation of Equation (3) with r(x) = 0, r = 0.1, s/Λ = 0.12 (h = 0.57) and
uniform stimulus ensemble. (d) Analytically predicted optimum for s/Λ ≲ 0.15 (rPWC). (e) Pinwheel density time courses for four different
simulations (parameters as in b; gray traces, individual realizations; black trace, simulation in b; red trace, mean value). (f) Mean squared
amplitude of the stationary pattern in simulations (parameters as in b) for different values of the control parameter r (black circles) and
analytically predicted value (solid green line). (g, h) OPMs (g) and their power spectra (h) obtained in a simulation of Equation (3) with r(x) = 0, r
= 0.1, s/Λ = 0.15 (h = 0.41) and uniform stimulus ensemble. (i) Analytically predicted optimum for s/Λ ≳ 0.15 (orientation stripes). (j) Pinwheel
density time courses for four different simulations (parameters as in g; gray traces, individual realizations; black trace, simulation in g; red trace,
mean value). (k) Mean squared amplitude of the stationary pattern in simulations (parameters as in g) for different values of the control
parameter r (black circles) and analytically predicted value (solid green line).
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stimulus sets of varying size with nonperiodic boundary
conditions (see ‘Methods’ section). For these grid-like
stimulus patterns, a competition between stripes and
rhombs is observed (Figure 27a). Notably, these are the
only two stable states identified by our analysis for the
circular stimulus ensemble. For nonperiodic boundary
conditions, rhombic pinwheel arrangements seem ener-
getically favored for grid-like stimuli, almost indepen-
dently of the size of the stimulus set. The average
pinwheel density for N = 100 × 100 × 8 stimuli was r =
3.4 (Figure 27b). As expected from the predominantly
rhombic arrangement of pinwheels, NN-pinwheel dis-
tances concentrate around half the typical column spa-
cing and pinwheel pairs at short distances are not
observed (Figure 27c). With these features, the maps
obtained substantially differ from the experimentally
observed pinwheel statistics [38].

The discrete EN model with fourth derivative
In previous studies of the EN model, alternative defini-
tions of the continuity term in the EN model have been

explored [64]. A general continuity term for the spatially
continuous formulation of the EN for OPM and retino-
topy is a linear differential operator which will suppress
the emergence of high-frequencies during the EN
dynamics. A finite-wavelength instability is expected in
this case, although the precise expressions for the criti-
cal s and the typical wavelength will differ. As linear
terms do not enter in the higher-order derivatives of the
EN functional, changing the continuity term is not
expected to alter the stability results obtained in this
study.
To numerically test this expected robustness of our

results for the EN model with discrete fixed sets of sti-
muli (see Figures 18 and 19), we also performed simula-
tions using deterministic annealing with a fourth
derivative stencil (see ‘Methods’ section). Figure 28 illus-
trates that the results almost perfectly match the ones
for the second-order derivative, considered in the main
part of this article (Figures 18, 19 and Figure 27).
When annealing with periodic boundary conditions,

the solutions very much resemble our gradient descent
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Figure 24 Numerical analysis of the EN dynamics with uniform orientation stimulus ensemble and fixed representation of visual space
far from pattern formation threshold. (a) OPMs and their power spectra in a representative simulation of Equation (3) with r(x) = 0, r = 0.8, s/
Λ = 0.3 (h = 0.028) and uniform stimulus ensemble. (b) Pinwheel density time courses for four different simulations (parameters as in a; gray
traces, individual realizations; black trace, simulation in a; red trace, mean value) (c) OPMs and their power spectra in a representative simulation
of Equation (3) with r(x) = 0 and s/Λ = 0.12 (h = 0.57), other parameters as in a. (d) Pinwheel density time courses for four different simulations
(parameters as in c; gray traces, individual realizations; black trace, simulation in c; red trace, mean value).
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Figure 25 Phase diagram of the EN model for the joint mapping of visual space and orientation with a uniform orientation stimulus
ensemble. (a) Regions of the hr-s/Λ-plane in which n-ECPs or rPWCs have minimal energy. (b) Pinwheel density time courses for four different
simulations of Equations (3, 4) with r = 0.1, s/Λ = 0.13 (h = 0.51), hr = h (grey traces, individual realizations; red trace, mean value; black trace,
realization shown in c). (c) OPMs (upper row), their power spectra (middle row), and RMs (lower row) in a simulation of Equations (3, 4);
parameters as in b. (d) Pinwheel density time courses for four different simulations of Equations (3, 4) with r = 0.1, s/Λ = 0.3 (h = 0.03), hr = h
(grey traces, individual realizations; red trace, mean value; black trace, realization shown in e). (e) OPMs (upper row), their power spectra (middle
row), and RMs (lower row) in a simulation of Equations (3, 4); parameters as in d.
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Figure 26 Strength of coupling between orientation map and retinotopy in the EN model. (a) Ratio of ||gr(·)||2/||g(·)||2 in the s4-s/Λ-plane
for the EN model at threshold and h = hr. (b) As a, but for hr = 0, i.e., strongest coupling. Note the logarithmic scaling of the colormap.
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dynamics simulations with Laplacian term. The larger
the set of stimuli, the more stripe-like are the OPMs
obtained (Figure 28a) and consequently pinwheel densi-
ties decrease (Figure 28b, upper right). The exponent
for the SD is considerably lower than for the Poisson
process (Figure 28b, upper right).Typical NN-pinwheel
distances concentrate around half the typical column
spacing and in particular pinwheel pairs with short dis-
tances lack completely (Figure 28b, lower left and right).

For nonperiodic boundary conditions and random sti-
muli, we found that retinotopic distortions are much
more pronounced. They however decreased with
increasing number of stimuli. For large stimulus num-
bers, we observed stripe-like orientation preference
domains which are interspersed with lattice-like pin-
wheel arrangements (see Figure 28c), lower row, upper
left corner of the OPM). Similarly to the periodic
boundary conditions, short distance pinwheel pairs

Nonperiodic boundary conditions 
(grid-like ensemble)

   s im li    

   s im li    

   s im li    

Pw-statistics, N = 100x100x8 stimuli

a

c

b

Figure 27 The EN model with deterministic annealing and stimuli, distributed on a grid in feature space. (a) OPMs (left) and RMs (right)
for N = 20 × 20 × 8 (upper row), N = 50 × 50 × 8 (middle row) and N = 100 × 100 × 8 (lower row) stimuli and nonperiodic boundary
conditions (annealing rate c = 0.999). b is the continuity parameter in the conventional definition of the EN model (see ‘Methods’ section,
Equation (46)) and is scaled, such that a comparable number of columns emerges in all simulation for each N. (b) Pinwheel densities of EN
solutions for different numbers of stimuli (annealing rate c = 0.999). Crosses mark individual simulations, red line indicates average values. (c)
Statistics of nearest neighbor pinwheel distances for pinwheels of (upper left) arbitrary and (upper right) opposite and equal charge for
100×100×8 stimuli and nonperiodic boundary conditions, averaged over four simulations (red curves). Black curves represent fits to the
experimental data from [38]. Lower left: SD of pinwheel densities estimated from randomly selected regions in the OPM. Black dashed curve
indicates SD for a two-dimensional Poisson process of equal density.
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occur much less frequently than in the experimentally
observed maps, indicating an increased regularity in the
pinwheel arrangements compared to realistic OPMs
(Figure 28d, lower left and right). This regularity also
manifests itself in a smaller exponent of the SD com-
pared to the Poisson process (Figure 28d).
Simulations with grid-like stimulus as, e.g., used in

[64,65] displayed a strong tendency toward rhombic pin-
wheel arrangements analogous to the second derivative
case (Figure 27e,f)

Additional material

Additional file 1: Rhombic pinwheel crystallization in the EN model.
The movie shows OPMs (left) as well as their power spectrum (right). In
the left panel, colors encode preferred orientation and brightness
orientation selectivity. The simulation of the EN model was obtained by
gradient descent dynamics with circular stimulus ensemble and fixed
retinotopy. The simulation was started from the unselective fixed point z
(x, t = 0) = 0 (parameters: r = 0.1, s/Λ = 0.1 (h = 0.67)).

Additional file 2: Pinwheel annihilation in the EN model. The movie
shows OPMs (left) as well as their power spectrum (right). In the left
panel, colors encode preferred orientation and brightness orientation

Periodic boundary conditions 
(random stimuli)

N = 103

N = 104

N = 10

Non-periodic boundary conditions 
(random stimuli)

Non-periodic boundary conditions 
(grid-like ensemble)

c e

b d f

a

N = 103

N = 104

N = 10

Figure 28 The EN model with deterministic annealing and fourth derivative stencil. (a) OPMs (left) and RMs (right) for N = 103 (upper
row), N = 104 (middle row) and N = 105 (lower row) stimuli, non-periodic boundary conditions, and annealing rate c = 0.999. b is the continuity
parameter in the conventional definition of the EN model (see ‘Methods’ section, Equation (46)) and is scaled, such that a comparable number
of columns is emerging in the simulations for each stimulus set. (b) Pinwheel densities (upper left) of EN solutions, SD of pinwheel densities
estimated from randomly selected regions in the solutions (upper right). Crosses mark individual simulations, red line indicates average values.
Black dashed curve indicates SD for a two-dimensional Poisson process of equal density. Statistics of nearest neighbor pinwheel distances for
pinwheels of arbitrary (lower left) and (lower right) opposite and equal charge for 105 random stimuli and periodic boundary conditions,
averaged over four simulations (red curves). Black curves represent fits to the experimental data from [38]. (c) As a but for nonperiodic boundary
conditions. (d) As b, but for non-periodic boundary conditions. (e) OPMs (left) and RMs (right) for N = 20 × 20 × 8 (upper row), N = 50 × 50 × 8
(middle row) and N = 100 × 100 × 8 (lower row) stimuli, nonperiodic boundary conditions, annealing rates c = 0.999. (f) As b, but for
nonperiodic boundary conditions and grid-like stimuli.
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selectivity. The simulation of the EN model was obtained by gradient
descent dynamics with circular stimulus ensemble and fixed retinotopy.
The simulation was started from the unselective fixed point z(x, t = 0) =
0 (parameters: r = 0.1, s/Λ = 0.3 (h = 0.028)).

Additional file 3: Convergence to fractured stripes in the EN model.
The movie shows OPMs (left) as well as their power spectrum (right). In
the left panel, colors encode preferred orientation and brightness
orientation selectivity. The simulation of the EN model was obtained by
gradient descent dynamics with fixed retinotopy. The simulation was
started from the unselective fixed point z(x, t = 0) = 0 (parameters: r =
0.1, s/Λ = 0.2 (h = 0.2), s4 = 6).

Additional file 4: Hexagonal pinwheel crystallization in the EN
model. The movie shows OPMs (left) as well as their power spectrum
(right). In the left panel, colors encode preferred orientation and
brightness orientation selectivity. The simulation of the EN model was
obtained by gradient descent dynamics with fixed retinotopy. The
simulation was started from the unselective fixed point z(x, t = 0) = 0
(parameters: r = 0.1, s/Λ = 0.3 (h = 0.028), s4 = 8).
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Orientation maps lack hexagonal order 
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Matthias Kaschube6*, and Fred Wolf1 
 

 
 
In recent years, D. Ringach (Ringach, 2004; 2007) has extended an intriguing hypothesis put forward 
by Soodak (1987) to account for the organization of iso-orientation domains in orientation preference 
maps  (OPMs) that are present in the visual cortex of primates and carnivores. The essence of this 
hypothesis is that the structure of OPMs is constrained by a sparse sampling of ON and OFF retinal 
ganglion cell (RGC) mosaics by subcortical visual pathways that provide input to the visual cortex. In 
a new paper, Paik and Ringach (2011) claimed that iso-orientation domains in the visual cortex are 
locally organized into hexagonal lattices (Paik & Ringach, 2011) and that this finding provides strong 
evidence in support of this hypothesis. We appreciate the merits of this hypothesis and we commend 
Paik and Ringach for emphasizing the potential contributions of subcortical structures to the 
organization of cortical maps, a consideration that is widely neglected in studies of developing cortical 
networks. However, here we show that what Paik and Ringach presented as evidence for hexagonal 
order in cortical OPMs simply results from an elementary fact of planar geometry and is even found in 
isotropic random maps that, by construction, are unconstrained by any RGC mosaic and lack any 
hexagonal organization. By testing for signatures of a retinal constraint towards hexagonal 
organization in cortical OPMs of large datasets from three species (>90 maps) we found that indicators 
of hexagonal order were statistically indistinguishable from isotropic random maps. We therefore 
conclude that the spatial structure of OPMs as assessed from current experimental data does not 
support the model proposed by Paik and Ringach (Paik & Ringach, 2011). 
 
Paik and Ringach calculated a spatial auto-correlation function from small patches of OPMs and used 
the relative angular positions of its secondary peaks as an indicator of hexagonal order (called PR-
analysis in the following; see Fig. 3a in Paik & Ringach, 2011). However, when reproducing the PR-
analysis, we found similar peaks not only in the correlation function of experimental maps (Fig. 1a and 
b), but also of isotropic control maps (Fig. 1, c and d), despite the fact that they lack any hexagonal 
order. These control maps were drawn from the ensemble of Gaussian random orientation maps 
(Schnabel et al., 2007) with rotation symmetric auto-correlation function and marginal power 
distribution matching tree shrew OPMs. This control ensemble is the maximum entropy ensemble 
consistent with the null hypothesis tested in Paik & Ringach (2011), critically making fewer additional 
assumptions than the control ensemble Paik and Ringach used. 
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We also applied PR-analysis to known solutions of self-organization models previously shown to 
accurately reproduce many spatial statistics of OPMs in the visual cortex (Kaschube, Schnabel, Löwel, 
Coppola, White, & Wolf, 2010), statistical features that are not addressed in Paik & Ringach (2011). 
These maps are roughly repetitive, but spatially irregular (i.e., non-hexagonal), and by construction 
completely unconstrained by a hexagonal RGC mosaic (Fig. 1e). The PR-analysis, however, again 
yielded secondary peaks suggestive of an apparent hexagonal order (Fig. 1f).  
 
For our non-hexagonal test maps (c-f), PR-analysis generates these peaks because i) it is based on 
relatively small map regions (identical to the maps shown in a, c, e), and ii) these maps, despite being 
spatially irregular, exhibit a typical column spacing (periodicity), i.e. their amplitude spectrum is 
concentrated on a narrow frequency band. Because of the latter, adjacent iso-orientation columns keep 
a typical distance from each other. Hence, the most likely arrangement of a set of three neighboring 
iso-orientation columns is an equilateral triangle (Fig. 1e for an example). Because of this triangular 
arrangement, the auto-correlation calculated for small subregions preferentially exhibits a roughly six-
fold modulation (Fig. 1f). When calculating the auto-correlation over larger map regions, this 
modulation becomes weaker, since the triangles from different subregions are not in register and their 
contributions cancel out (Suppl. Fig. 1). For maps not dominated by one typical scale, triangular 
arrangements are less likely even within small subregions and therefore the six-fold modulation is 
weak or absent (Suppl. Fig. 2). This explains why Paik and Ringach report absence of significant 
peaks for one particular model of activity-dependent development (Miller, 1994). This particular 
model is known to generate maps lacking a typical column spacing (Miller, 1994). Thus, we conclude 
that even in isotropic maps, PR-analysis produces an apparent hexagonal structure in the auto-
correlation function if the subregions that the analysis is based on are sufficiently small and the maps 
are dominated by a typical column spacing. 
 
Can this effect of featuring a typical column spacing already account for the peaks observed for 
experimental maps or are these significantly larger than those found for controls indicating a real 
underlying hexagonal organization? To answer these questions, we assessed whether the average auto-
correlation function at 60 and 120 degrees (at a distance of one column spacing) is significantly larger 
in tree shrews (N=21; Fig. 1g) than in groups of isotropic control maps, each consisting of N=21 
Gaussian random maps with matched marginal power spectrum (n=500 groups in total; Fig. 1h). Since 
experimental OPMs and controls have identical spectral widths, they have identical properties in terms 
of a dominant spatial scale and therefore its effect on the auto-correlation function does not affect the 
comparison. We found that average auto-correlation functions were very similar for tree shrew and 
control maps (Fig. 1g, h). In fact, when comparing average values in tree shrews to the distribution 
obtained by the n=500 control groups, they were statistically indistinguishable at both angles 60 and 
120 degrees (p=0.38, p=0.47, respectively, Suppl. Fig. 3). We obtained similar results when applying 
the same analysis to OPMs in both galagos (N=6, p60˚=0.06, p120˚=0.13) and ferrets (N=71, p60˚=0.35, 
p120˚=0.68). These analyses demonstrate that the peaks obtained by the PR-analysis of experimental 
maps are not indicative of a hexagonal organization of OPMs. Even with our relatively large data set 
of N=98 hemispheres (Paik & Ringach (2011) used N=8 hemispheres), we could not reveal any 
evidence for hexagonal organization that is not common to isotropic (non-hexagonal) maps. 
 
As a second indicator for hexagonal order in OPMs, Paik and Ringach calculated the histogram of 
peak angles (Fig. 3, b and d, in Paik & Ringach, 2011). For perfectly hexagonal OPMs, this histogram 
exhibits sharp peaks at 60 and 120 degrees with height 0.5. For non-hexagonal maps, peak heights at 
60 and 120 degrees are reduced. When applied to measured OPMs, Paik and Ringach found that the 
distribution of angles exhibited peaks at roughly 60 and 120 degrees with heights around 0.25. We 
performed the same analysis in a large database of OPMs from three species (>90 maps). We 
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confirmed the presence of such peaks for tree shrew maps (N=21; Fig. 1g). However, when applying 
the identical analysis to the isotropic Gaussian control maps (Fig. 1h) and self-organization model 
maps (Fig. 1j), we found that their histograms exhibited peaks at multiples of 60 degrees that were 
both comparable in height to those reported in Paik & Ringach (2011) (Fig.1k, l) and statistically 
indistinguishable from those observed for tree shrews (p=0.37 (Fig. 1k), and p=0.72 (Fig. 1l), 
respectively). Consistently, we found that neither galagos nor ferrets differed from control or model 
maps (pgalagos=0.16, pgalagos=0.23 (Fig.1m); pferrets=0.69, pferrets=0.97 (data not shown)). In sum, the PR 
analysis did not distinguish real OPMs from non-hexagonal control or model maps. Thus, we did not 
observe any evidence for hexagonal order in cortical OPMs.  
 
It is possible that hexagonal lattice is a transitory form in map formation that could be demonstrated in 
PR-analysis of maps from immature animals. In particular, if RGC mosaics would seed the initial 
OPM one might suspect stronger signatures of hexagonal organization in younger animals that are 
undergoing map formation. We therefore checked whether the apparent lack of specificity might be 
due to animal age by performing the PR-analysis in a subsample of immature ferrets (younger than 
postnatal day 43). Neither were differences between younger and older ferrets (p=0.23, Fig.1n) nor 
between young ferrets and their isotropic controls (p=0.77) or the model (p=0.95) significant. We thus 
conclude that hexagonal lattice structure is also not evident in the available examples of maps from 
developing ferret visual cortex. 
 
What can explain the present discrepancy with Paik & Ringach (2011), which reported that 
experimental maps exhibit larger secondary peaks in the auto-correlation than isotropic control maps? 
First of all, in their study, Paik and Ringach did not compare correlations of real and control maps at 
60 and 120 degrees. Instead they compared values at peaks in the auto-correlation of experimental 
maps (which are often not at 60 and 120 degrees, see Paik & Ringach (2011) Fig. 3a) to values 
attained at the same location in control auto-correlations. Thus, they compared an extreme value of the 
data (the peak) to arbitrary values of the control family (not necessarily peaks). Consequently, this 
statistical test is heavily biased towards low p-values. For instance, when applying this test to the 
isotropic control ensemble, we found that 20% of control maps have “significant” peaks with p-values 
of 0.01 or smaller (Suppl. Fig. 4). Thus, according to this test, a considerable fraction of the control 
maps differs “significantly” from the ensemble from which they were drawn. In contrast, a sound 
hypothesis test applied to a control group should attest such significance to only 1% of the control 
maps (Suppl. Fig. 5). A second possible source for the discrepancy might be that the control maps used 
by Paik and Ringach were confounded by noise to a larger degree than their experimental maps (see 
Suppl. Fig. 3 in Paik & Ringach (2011) for example maps). This could be due to the heuristic 
algorithm they used to generate control maps and the fact that their analysis is based on angle maps (as 
opposed to difference maps used in our study, see Suppl. Fig. 6). Noise reduces secondary peaks in the 
auto-correlation function, which could also explain why they appeared smaller in their controls then in 
the experimental data (see Suppl. Fig. 3 in Paik & Ringach (2011)).  
 
Taken together, our results show that there is currently no empirical evidence for hexagonal 
organization of OPMs in the visual cortex and the mechanism proposed in Paik & Ringach (2011), at 
least for three of the four species investigated in their study. There is ample evidence that activity-
dependent mechanisms are shaping the layout of OPMs in the visual cortex and are involved already 
during the initial emergence of orientation selectivity (White & Fitzpatrick, 2007). Recent studies of 
the development of orientation selectivity in cat and mouse visual cortex indicate that the preferred 
orientations of cortical neurons undergo significant reorganization over the critical period (Kaschube, 
Schnabel, Wolf, & Löwel, 2009, Wang, Sarnaik, & Cang, 2010). In mice, for instance, preferred 
orientations of binocular neurons emerge statistically independently for the left and the right eye and 
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are then progressively matched (Wang, Sarnaik, & Cang, 2010). Such evidence highlights that it is 
crucial for explaining the design of orientation selective circuits to understand their stabilization in the 
presence of ongoing developmental plasticity. As recently shown, the dynamics of network self-
organization can successfully and quantitatively account for the spatially complex arrangement of 
OPMs in the visual cortex  (Kaschube, Schnabel, Löwel, Coppola, White, & Wolf, 2010). It remains to 
be determined whether and how the self-organization of visual cortical circuits might be constrained 
by RGC mosaics.  
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Figure 1: 
(a) Example of a tree shrew orientation map inset of size 3x3! (! is the column spacing, i.e. map 
periodicity). (b) Auto-correlation of two tree shrew orientation maps following the analysis by Paik & 
Ringach (2011), Fig. 3 (PR-analysis). The black dots mark peaks within [0.66 1.33] mean column 
spacing (~map periodicity) from the origin. (c) 3x3!-inset of an isotropic Gaussian random orientation 
map with marginal spatial power distribution matching the tree shrew orientation map in a. (d) Same 
as in b for two such isotropic random maps. (e) 3x3!-inset of a solution of the long-range interaction 
model (8-ECP, see Kaschube et al., 2010). The most likely arrangement of a set of three neighboring 
orientation columns of the same preferred orientation in a, c and e is an equilateral triangle with edge 
size of one column spacing ! (black-white lines show an example). (f) Same as in b for two model 
maps. Despite the absence of hexagonal symmetry in the maps in c and e, PR-analysis generates peaks 
in the auto-correlation function at multiples of roughly 120 degrees in d and f, respectively. Green 
dashed lines reproduce the triangle from e. (g) Average tree shrew auto-correlation function based on 
PR-analysis  (N=21 hemispheres). The solid dots mark the peak locations in all individual correlations. 
(h) Same as in g for the isotropic random maps in c (N=500), randomly generated from the N=21 tree 
shrew maps. The solid black circles mark the peak locations for a subset of N=200 maps. (j) As in g 
for the model maps in e (N=500). The solid black circles mark the peak locations for a subset of 
N=100 maps. White contour lines are plotted at a correlation coefficient of 0.32 in g and h and at 0.46 
in j to illustrate the separation of local peaks. (k) Histogram of angular locations of peaks in individual 
autocorrelations from tree shrews  (red squares, N=21) and from the isotropic random maps in c (green 
circles, N=500). Error margins indicate standard deviation of bootstrap distribution obtained with 
subsamples of size N=21. (l) As in k, but for the model maps in e (blue diamonds, N=500). 
(m) Same as in k but for galagos (N=6), isotropic Gaussian random maps with matched marginal 
spatial power distribution (green circles, N=500), and model solutions (blue diamonds, N=500). (n) As 
m, but for young ferrets (N=13) imaged before postnatal day 43. Scale bars in a, b and g equal mean 
column spacing !. 
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Suppl. Figure 1:  
Six-fold modulation of the auto-correlation function increases with decreasing size of subregion. PR-
analysis in Paik & Ringach (2011) was based on relatively small subregions of 3x3 column spacings 
!.  
(a-d) PR analysis was performed on N=500 synthesized random isotropic maps based on the methods 
in Schnabel et al 2007 ("=10) (a), using subregions of size 3x3!, 5x5!, 7x7!, and 9x9! (b).  
(c) Individual auto-correlation functions for isotropic maps obtained for different subregion sizes. 
Black dots mark the peak locations. (d) Auto-correlation function averaged over N=500 maps. Black 
dots mark the peak locations for a subset of N=200 maps. (e) Extraction of the six-fold modulation 
from the average correlation functions in d. Average correlation values at a distance ! were extracted 
for 0°!#!180°. (f) Six-fold modulation for averaged auto-correlation functions from 
d. $odulation around 60° and 120° becomes small only for large subregion sizes.  
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Suppl.  Figure 2: 
A six-fold modulation of the auto-correlation function as reported in Paik & Ringach (2011) arises in 
isotropic random maps if dominated by a typical column spacing ! (i.e., if the power spectrum is 
nearly mono frequent). 
(a) Isotropic marginal power spectrum (see Schnabel et al. (2007)). The parameter "=1 controls the 
radial width of the spectrum. (b) 3x3! insets of orientation maps, generated with the power spectrum 
in a. (c) Auto-correlation functions obtained by PR-analysis of the synthesized random isotropic maps 
in b. Black dots mark peaks in auto-correlation function. (d) Histogram of angular locations of peaks 
in c (N=500 maps). (e-h) Same as a-d, but for "=10. (i-l) Same as a-d, but for "=100.  
The larger the width of the spectrum, the more dominant is the typical scale in the isotropic maps (b, f, 
j). For the ensemble with "=1, the histogram of angular peak locations is unimodal (d). For "=10 and 
"=100, histograms of angular peak locations exhibit peaks at 60° and 120° (h, l). The more prominent 
the typical scale is, the more bimodal is the angular histogram (h, l). For real maps the spectral width 
corresponds to "≈10. 
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Suppl.  Figure 3: 
Illustration of the hypothesis test for hexagonal organization used in the present study. (a-e) For each 
of the N=21 tree shrew maps (a, 3x3! insets), an auto-correlation function according to PR analysis 
was obtained. These auto-correlation functions were averaged to obtain the average tree shrew auto-
correlation function in b. Correlation values at an angle of 60°/120° and a distance of 
1! from the origin were extracted (b). For each tree shrew map, 500 isotropic Gaussian control maps 
with identical marginal power spectrum were generated (c). 500 average auto-correlation functions 
were computed, each obtained by averaging over N=21 auto-correlation functions, drawn from the tree 
shrew map controls (d). (e) Histogram of correlation values of the control maps at 60°/120° 
(upper/lower panel). To obtain the two p-values the values attained in the control average auto-
correlation functions were compared to the values in the average tree shrew auto-correlation function 
(red lines). 
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Suppl.  Figure 4: 
The hypothesis test in Paik & Ringach (2011) is biased toward low p-values. 
 
(a-e) Illustration of the hypothesis test used in Paik & Ringach (2011). For each measured orientation 
map (a), the auto-correlation function is computed by PR-analysis (based on 3x3! insets). The 
positions of the two highest secondary peaks within a range 0.66!% 1.33! from the origin (apart from 
the main peak at (0,1) to which auto-correlation functions were aligned) are extracted. At these 
positions, named P1 and P2, the correlation values are obtained (b). 500 isotropic control maps with 
marginal power spectrum matching the spectrum of the measured map are generated (c), their auto-
correlation functions computed (d) and the values at the same locations, P1 and P2, extracted (e) 
Histogram of the values at P1 (upper panel) and P2 (lower panel) for the controls. Comparing these to 
the values for the measured map at P1 and P2, respectively (red lines), yields the p-values. Note that 
the positions P1 and P2 do not necessarily correspond to peak positions in the control maps (see d). 
 
(f-i) Assessment of bias of this hypothesis test. 
We generated 500 control maps with Gaussian statistics and marginal power-spectrum matching the 
tree shrew orientation map power-spectrum in a. Their auto-correlation functions were computed by 
PR-analysis and peak positions P1 and P2 of the highest and second highest secondary peaks as well as 
the correlation values attained at P1 and P2 were extracted (g). 
The significance test used by Paik & Ringach (2011) (a-e) was performed for each control map, using 
the remaining 499 control maps as control ensemble (h). By doing so, 500 p-values for each of the two 
peaks were obtained. (i) The histograms of these p-values are strongly skewed toward low p-values, 
demonstrating that the hypothesis test is biased and results in erroneous significance levels. In contrast, 
a sound hypothesis test applied to this control ensemble should result in a uniform distribution of p-
values (see Suppl. Fig. 5).   
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Suppl.  Figure 5: 
An unbiased hypothesis test for hexagonal organization (compare with Suppl. Fig. 4). 
(a-e) Illustration of a hypothesis test for hexagonal organization of an individual orientation map. For 
each measured orientation map (a), the auto-correlation function is computed by PR-analysis and 
correlation values attained at 60°/120° are extracted (b). 500 isotropic control maps with marginal 
power spectrum matching the spectrum of the measured map are generated (c) and their auto-
correlation function is computed (d). (e) Histogram of the values attained at 60°/120° (lower/upper 
panel) in the family of control auto-correlations. These values are compared to values attained at 
60°/120° in correlation function of the measured map (red lines) to obtain p-values.  
(f-i) Assessment of bias of the hypothesis test for hexagonal organization. 
We generated 500 control maps with Gaussian statistics and marginal power-spectrum matching the 
tree shrew orientation map power-spectrum in a. Their auto-correlation functions were computed by 
PR-analysis and correlation values at 60°/120° were extracted (g). The hypothesis test for hexagonal 
organization (a-e) was performed for each control map, using the remaining 499 control maps as 
control ensemble (h). In this way, 500 p-values for each of the two peaks were obtained. (i) Histogram 
of p-values obtained for the correlation value at 60°/120° (left/right panel). Both distributions are 
uniform as expected for an unbiased hypothesis test (compare to Suppl. Fig. 4, i). 
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Suppl.  Figure 6: 
Control maps based on angular maps as used in Paik & Ringach (2011) are confounded by high-
frequency noise. 
(a) Tree shrew angular map obtained from single-condition maps. (b) Isotropic control maps used in 
the present study are calculated from single-condition maps. (c) Isotropic control maps used in Paik & 
Ringach (2011) were calculated from angular maps. Insets in a-c are 3x3!.  Note the pronounced 
contamination by high-frequency noise in c compared to a and b.  
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Chapter 5

Robustness of pinwheel stabilization by
long-range interactions

5.1 Motivation

The interplay between the emergence of cortical maps and the emergence and refinement of clus-
tered long-range horizontal connections has been a matter of long-standing debate [41, 44, 180]. In
cats horizontal connections are unclustered during the first postnatal week prior to eye-opening.
Around the time of eye-opening, crude clusters start emerging which are progressively refined
and elaborated over the following weeks [76, 80, 181]. This refinement of horizontal connections
has been shown to be influenced by alteration of activity patterns during this period [79, 81]. Sim-
ilarly, in ferrets the system of orientation-specific patches begins to develop around postnatal day
34 (P34), that is very shortly after eye-opening [77], and refines in subsequent weeks. In both
cats and ferrets, postnatal cortical maturation, which is characterized by the rapid construction
of neural circuits in supragranular layers of V1 and the refinement of clustered connections, oc-
curs synchronously with the maturation of orientation-selective responses and the emergence of
orientation preference maps (OPMs) [41–44, 78, 182, 183].

Is it a mere coincidence that these two features emergence in parallel during normal postnatal
development? Or do long-range connections and OPMs mutually influence each other during
their emergence and refinement? Can the simultaneous development of tangential connections
and orientation maps be viewed as a dynamical optimization process? In this chapter, I shed light
on these issues by studying optimization models for the coordinated development of long-range
tangential connections and orientation maps. Previously, Wolf demonstrated the existence of a
class of simple order parameter models in which orientation column patterns converge toward
realistic non-crystalline, spatially quasi-periodic arrangements. Pinwheel rich configurations in
this model class are stabilized by suppressive long-range interactions [123]. Wolf and Kaschube et
al. showed that the order parameter model analyzed by Wolf represents a one-parametric limit of
a model for the simultaneous development of tangential connections and orientation preference
patterns [11, 159]. In this chapter, I generalize these theoretical results by studying models with
different types of biologically plausible long-range interactions and investigate how these interac-
tions might mediate the stabilization of pinwheels in aperiodic irregular arrays. Two main causes
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Figure 5.2.1: Orientation-selective long-range connectivity as implemented by the function W(x, ycenter) (Eq. (5.2.5))
with exponentially decaying kernel K(x) ∼ exp(−|x|/γ) for different spatial ranges of interaction γ and orientation
specificities of the lateral connections σz. The red spot in the center is at ycenter with orientation preference of 135◦ (blue
color). Brightness encodes absolute value of W(x, ycenter). For σz = 1 connections are nearly unspecific with respect to
the difference in preferred orientation. For σz = 0.3 they almost exclusively connect domains with similar orientation
preference around 135◦.

may lead to a coordination of column development at widely separated sites in V1: (i) interactions
mediated by the above-mentioned long-range horizontal connections [21, 158] or (ii) long-range
correlations of visual input due to the statistics of natural scenes [184–187]. These two interaction
types may exhibit different spatial dependencies and respond differently to experimental manip-
ulations. To assess whether long-range interactions of different kinds can, in principle, mediate
pinwheel stabilization, I construct a variety of analytically solvable model instances in which long-
range interactions spatially decay either exponentially or with power-law dependence. I present
complete phase diagrams of stable solutions near the pattern formation threshold for these mod-
els. In addition, extensive numerical simulations of the different models are carried out to assess
potential differences in their dynamics during the emergence of orientation selectivity as well as
in the reorganizations taking place during later stages.

5.2 The development of orientation preference maps and long-range
connections as dynamical optimization process

The pattern of long-range tangential connections can be described by a positive-definite function
W(x, y). Here, x and y represent the positions of two columns within the cortex and W(x, y) gives
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the strength of connection between the neurons at x and y. As a function of x, W(x, y) describes
the area of projection of the neurons at location y. As a function of y, W(x, y) describes areas of
the regions of the visual cortex from which the neurons at location x receive synaptic inputs. I will
assume in the following that the coupling between the sites x and y is symmetric, i.e. W(x, y) =
W(y, x). Three phenomenological requirements are made in order to define a suitable variational
dynamics: (1) Both the system of tangential connections and the system of orientation preference
columns converge to a stationary state during development. (2) The development of orientation
preferences at distant locations within the cortex is coupled via long-range interactions. (3) In
the absence of these long-range interactions, the orientation preference pattern should converge
to a stable stripe pattern. The first requirement should ensure that the model reproduces the
experimentally observed structure of tangential connections. The second requirement ensures
causality. The last requirement implies that the model reproduces the behavior of models that
have local interactions only.

I start by proposing an energy functional F[z, W] from which the dynamics for the coupled dy-
namics of the connections W(x, y) and the orientation preference pattern z(x) can be derived via
gradient descent

∂tz(x) = −δF[z, W]
δz̄(x)

(5.2.1)

∂tW(x) = − δF[z, W]
δW(x, y)

. (5.2.2)

As an energy functional to be minimized, I propose

F [z, W] = −
ˆ

d2p r|z(p)|2 +
ˆ

d2p
���∆ + k2

c
�

z(p)
��2 − 1

2
gsr

ˆ
d2p |z(p)|4

+
1

2τ

¨
d2p d2q W2(p, q)− hlr

σ2
z

τ

¨
d2 p d2q W(p, q)K(p, q)e−|z(p)−z(q)|2/2σ2

z ,

with positive and symmetric kernel K(p, q) = K(q, p), and a time constant τ. From Equations
(5.2.1,5.2.2), the coupled dynamics of W(x, y) and z(x) is obtained:

∂tz(x) = LSH [z] + gsrz(x)|z(x)|2 (5.2.3)

+
hlr
τ

ˆ
d2y [z(y)− z(x)]K(x, y)W(x, y)e−|z(x)−z(y)|2/2σ2

z

τ∂tW(x, y) = −W(x, y) + hlr σ2
zK(x, y)e−|z(x)−z(y)|2/2σ2

z , (5.2.4)

with LSH being the Swift-Hohenberg operator LSH = r − (∆ + k2
c)

2. It follows that the param-
eter hlr is a coupling constant which describes the strength and sign of the interaction given by
W(x, y). If hlr = 0, the orientation preference pattern develops freely according to a standard
Swift-Hohenberg equation [153, 154]. For r > 0 the homogeneous state z(x) = 0 is unstable with
respect to a finite band of Fourier modes. After the emergence of an orientation preference pattern
with numerous pinwheels, convergence toward stripe patterns via pinwheel annihilation is the
expected model behavior. The system of long-range connections relaxes toward W(x, y) = 0, i.e.
no tangential connections, with time constant τ. If hlr �= 0 in Equations (5.2.3,5.2.4), W(x, y) and
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z(x) mutually influence each other during development. It will now be investigated whether this
mutual influence is able to stabilize the pinwheel-rich layouts, reproducing the experimentally
observed common design of orientation preference maps in V1 [11]. In order to do so, I introduce
the simplifying assumption that the tangential connections change much faster than the pattern
of preferred orientations. In this case, while the connections attain equilibrium, the pattern of
orientation preferences changes only slightly. The variable W(x, y) can then be adiabatically elim-
inated from the system of equations. From experimental data, this adiabatic elimination can be
justified by the fact that the tangential connections appear to link columns with similar orienta-
tion preferences early in the development of selective columns [76]. Such early selectivity would
not be expected if the orientation preference pattern changed faster than W(x, y). The pattern of
connections in the stationary state reads

W(x, y) = K(x, y)e−|z(x)−z(y)|2/2σ2
z . (5.2.5)

In the following, I assume translational and rotational invariance of K(x, y), i.e. K(x, y) = K(x −
y). For spatially decaying interaction kernel K(|x|), Equation (5.2.5) realizes the experimental
observation that the mature pattern of the long-range tangential connections selectively connects
orientation columns with similar orientation preferences if within a certain distance [21, 156, 158].
With the assumption of rotational symmetry effects of axial selectivity [21, 156] are neglected. The
system of long-range tangential connections given by Equation (5.2.5) links an orientation column
at a location y with the orientation columns in the area determined by the function K(x, y) that
have a similar preferred orientation as the position y. The parameter σz determines the selectivity
of the connections in Equation (5.2.5). The smaller σz is, the more orientation-selective they are.
The choice of the kernel K(x) will play the key role in the present chapter. As the model is rather
general, the spatial dependency of the lateral interactions is not easily inferred from experiment.
The main goal of the following analysis is therefore to investigate the influence of different choices
of K(x) on the dynamics of the model as well as its attractor states. Typical examples of W(x, y)
with an exponential kernel K(|x|) = 1/(2πγ2)e−|x|/γ are shown in Figure 5.2.1 for different spatial
ranges γ and connection specificities σz.

With the above “slaving” of W(x, y) to the dynamics of z(x), the coupled system of equations
(Eqs. (5.2.3,5.2.4)), reduces to an effective dynamics of z(x), given by

∂tz(x) = LSHz(x) + gsrz(x)|z(x)|2 + glr

ˆ
d2y [z(y)− z(x)] K(|x − y|)e−|z(x)−z(y)|2/σ2

z , (5.2.6)

with glr =
h2

lrσ2
z

τ and K(|x − y|) = K2(|x − y|). Note that the long-range interactions which enter
in the effective equation for z(x) involve the squared spatial dependence of W(x, y). It is worth
mentioning that this effective dynamics for the orientation preference map is again variational,
and can be derived via

∂tz(x) = − δG[z]
δz̄(x)

,



5.2 The development of OPMs and long-range connections as dynamical optimization process 141

from the energy functional

G[z] = −
ˆ

d2x
�

r|z(x)|2 +
���∆ + k2

c
�

z(x)
��2 − 1

2
gsr

ˆ
d2x |z(x)|4

�

−1
2

gsr

ˆ
d2x |z(x)|4 + glr σ2

z

¨
d2w d2y K(|w − y|)e−

|z(w)−z(y)|2
σ2z . (5.2.7)

5.2.1 Weakly nonlinear analysis of the long-range interaction model

Dynamics up to third-order terms in z(x)

In the vicinity of the bifurcation point of the orientation preference pattern, the steady states of
the model Equation (5.2.6) are determined by the third-order z(x)-terms [153, 154]. In order to
determine these third-order terms, the right hand side of Equation (5.2.6) has to be rewritten as a
Volterra series with respect to z(x), relative to the homogeneous state z(x) = 0 by series expansion
of the integrand of the interaction term in (z(x), z(y)). For small z(x) or relatively weak orientation
selectivity σz ∼ O(z) of the tangential connections, Equation (5.2.5) becomes

W(x, y| z) ≈ glrK(x − y)
�

1 − |z(x)− z(y)|2
σ2

z

�

and consequently, the terms up to third order in z(x) of Equation (5.2.6) which originate from the
non-local lateral interactions are given by

Nnonlocal ≈ glr

ˆ
d2y[z(y)− z(x)]K(x − y)

�
1 − |z(x)− z(y)|2

σ2
z

�

= glrL[z] + glr N3[z, z, z̄] .

Thus, one obtains a non-local linear operator

L[z] = −z(x) +
ˆ

d2y K(x − y)z(y)

and a non-local cubic operator

N3[z, z, z̄] =
1
σ2

z
|z(x)|2z(x) + 2

z(x)
σ2

z

ˆ
d2yK(x − y)|z(y)|2

−2
|z(x)|2

σ2
z

ˆ
d2yK(x − y)z(y)− z(x)2

σ2
z

ˆ
d2yK(x − y)z̄(y)

− 1
σ2

z

ˆ
d2yK(x − y)z(y)|z(y)|2 + z̄(x)

σ2
z

ˆ
d2yK(x − y)z2(y) . (5.2.8)

The linear term L[z] has a spectrum of eigenvalues

λ(k) = −1 + F0(k) , (5.2.9)
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where
F0(k) =

ˆ ∞

0
dr(rK(r))J0(rk)

is the Hankel transform of the kernel K(r) (J0(x) is the zeroth-order Bessel-function of the first
kind). The first term in Equation (5.2.9) is just a shift of the entire spectrum. The second term
depends on k and thus changes the form of the spectrum. However, if the kernel K(r) mediating
intracortical interactions is sufficiently long-range, its Hankel transform F0(k) is a rapidly decay-
ing function in k and F0(k = kc) ≈ 0. Thus, this term does not alter the linear growth rates for
sufficiently long-range interactions. To describe the formation of a repetitive orientation map, the
complete linear operator LSH [z] + glrL[z] must exhibit a single finite-wavelength maximum in its
spectrum. Near pattern formation onset, the precise shape of the spectrum does not impact on the
solutions and their stability [153, 160]. The third-order approximation of the model may thus be
written as

∂tz(x) = LSH [z] + +gsr Nlocal [z] + glr N3[z, z, z̄] . (5.2.10)

The above approximations result in partial integro-differential equation with non-local cubic non-
linearities which is valid in the vicinity of the bifurcation point. As explained in Chapter 1, ap-
proximate non-trivial fixed points of such dynamics as well as their stability can be determined
via weakly nonlinear analysis by calculating the so-called angle-dependent interaction functions
corresponding to the cubic nonlinearities (Sec. 1.5.1). This is carried out in the following.

Mapping the long-range interaction model to a one-parametric model

The nonlinearities in Equation (5.2.10) consist of a local and a non-local part which depend on
three parameters glr, σ2

z , and gsr in addition to possible parameters of the interaction kernel K(|x|).
To facilitate a complete characterization of the fixed point of this dynamics, a reduction of the
number of parameters is desirable. In fact, as the following calculation shows, for sufficiently
long-range kernel the number of parameters in addition to the kernel parameters can be effectively
reduced to one.

The six terms of the cubic part (Eq. (5.2.8)) are given by

N1
3 [z, z, z̄] = |z(x)|2z(x)

1
σ2

z

N2
3 [z, z, z̄] = 2

z(x)
σ2

z

ˆ
d2yK(x − y)|z(y)|2

N3
3 [z, z, z̄] = − |z(x)|2

σ2
z

ˆ
d2yK(x − y)z(y)

N4
3 [z, z, z̄] = − z(x)2

σ2
z

ˆ
d2yK(x − y)z̄(y)

N5
3 [z, z, z̄] = − 1

σ2
z

ˆ
d2yK(x − y)z(y)|z(y)|2

N6
3 [z, z, z̄] = +

z̄(x)
σ2

z

ˆ
d2yK(x − y)z2(y) .
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According to Equations (1.5.8,1.5.9) the angle-dependent interaction functions corresponding to
these operators are given by

g1(α) = − 2
σ2

z

g2(α) = − 2
σ2

z

�
1 + F0(kc

�
(2(1 − cos α)))

�

g3(α) =
4
σ2

z
F0(kc)

g4(α) =
2
σ2

z
F0(kc)

g5(α) =
2
σ2

z
F0(kc)

g6(α) = − 2
σ2

�
F0(kc

�
(2(1 + cos α)))

�

f1(α) = − 1
σ2

z

f2(α) = − 1
σ2

z

�
F0(kc

�
(2(1 + cos α))) + F0(kc

�
(2(1 − cos α)))

�

f3(α) =
2
σ2

z
F0(kc)

f4(α) =
1
σ2

z
F0(kc)

f5(α) =
1
σ2

z
F0(kc)

f6(α) = − 1
σ2

z
.

The complete angle-dependent g-function of Equation (5.2.10) then reads

g(α) = g2

�
g1

g2
+

�
F0(kc

�
(2(1 + cos α))) + F0(kc

�
(2(1 − cos α)))

��
, (5.2.11)

with effective coefficients (see also [159])

g2 = −2ĝlr

g1 = −2gsr − 4ĝlr (1 − 2F0(kc)) .

and ĝlr = glr/σ2
z . Only the shape and not the absolute value of g(α) is relevant to pattern selection,

i.e. the determination of stable solutions near threshold [153, 154, 160, 161]. The shape of g(α) only
depends on the ratio of g1 and g2. Furthermore, one of the effective coefficients g1, g2 can always
be absorbed by a rescaling of the field z(x). One can thus, without loss of generality, reparametrize
the model by introducing a single effective coupling parameter g, i.e. 2 − g = g2 and g = g1, such
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that

g(α) ≈ g + (2 − g)
�

F0(kc

�
(2(1 + cos α))) + F0(kc

�
(2(1 − cos α)))

�

f (α) = g(α)/2 , (5.2.12)

with 0 ≤ g ≤ 2. If the spatial kernel K(r) mediating intracortical interactions is sufficiently long-
range, its Hankel transform F0(k) is a rapidly decaying function in k, and F0(k = kc) ≈ 0. Hence,
with the above choice of parametrization, the parameter g is the minimal value of the angle-
dependent interaction function for large interaction ranges. The above results establish that the
complete set of attractor states of the long-range interaction model (Eq. (5.2.6)) is approximately
determined by a single parameter in addition to the parameters of the interaction kernel K(r).
From 2 − g = −2ĝlr, it is obvious that long-range interactions in the model are always suppres-
sive, as ĝlr has to be smaller than zero. The smaller the effective parameter g, the more strongly
suppressive are the long-range interactions. The equation gsr = 3

2 (
4
3 − g) − 2(2 − g)F0(kc), im-

plies that for large interaction ranges, i.e. F0(kc) ≈ 0, the coefficient of the local term gsr becomes
positive if g < 4/3. Hence, for g < 4/3 and large interaction ranges, the dynamics is exclusively
stabilized by the non-local interactions.

In the following, I analyze specific models with biologically plausible interaction kernels of dif-
ferent spatial dependance. The main question is, whether and how different types of long-range
interaction are able to stabilize pinwheel-rich aperiodic OPM layouts. This question is answered in
analytical calculations as well as numerical simulations. In the remainder of this chapter, phase di-
agrams are obtained analytically for the one-parametric limit corresponding to each of the specific
models. Weakly nonlinear analysis is always used to determine the essentially complex planform
(ECP) fixed points of such dynamics as well as their stability properties via the angle-dependent
interaction functions (cf. Chap. 1, Sec. 1.5.1). Numerical results, however, are obtained by simu-
lating all of the cubic nonlinearities (Eq. (5.2.8)) in the effective dynamics of z(x) (Eq. (5.2.10)).

5.3 Numerical procedures

The methods used to numerically solve Equation (5.2.10) were adapted from [125, 188] and are
only briefly summarized in the following. A fully implicit integrator was used to avoid numerical
instabilities and to enable the use of increasing step sizes when approaching an attractor state. The
equation

∂t z(x, t) = LSHz(x, t) + N[z(x, t)] , LSH = r −
�
k2

c + ∆
�2

was discretized in time using a Crank-Nicolson scheme:

zt+1 − zt

∆t
=

(LSHzt+1 + N[zt+1]) + (LSHzt + N[zt])
2

.
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This nonlinear difference equation was iteratively solved for zt+1 by finding the root of the func-
tion

G[zt+1] =

�
−LSH +

2
∆t

�
zt+1 − N[zt+1]−

��
LSH +

2
∆t

�
zt + N[zt]

�

with Newton’s method. 2-dimensional space was discretized with N × N grid points leading to
an N × N dimensional state vector u. The Newton iteration at step k is then given by

DG(uk)∆uk = −G(uk), uk+1 = uk + ∆uk , (5.3.1)

with DG being the Jacobian of G. With A = DG(uk), b = −G(uk), Equation (5.3.1) is a linear
equation of the form Ax = b. DG was not explicitly computed and instead the action of DG on
∆uk was approximated using finite differences (matrix-free method). To solve the linear system
(5.3.1), a Generalized Minimum Residual (GMRES) algorithm [189] combined with a preconditioner
to improve convergence was used. A preconditioner M is multiplied to Ax = b such that M−1A is
close to unity. A preconditioner suitable for the Swift-Hohenberg model is the inverse of the Swift-
Hohenberg operator in Fourier space with a small shift 0 < � � 1 in order to avoid singularities,
i.e.

M =

�
� +

�
k2 − k2

c
�2

+
2

∆t

�−1
.

In the integration scheme, a line search method was used to ensure global convergence of New-
ton’s method. Equation (5.3.1) is thus modified to uk+1 = uk + λ∆uk , where the function f (uk) =
1
2 G(uk)G(uk) is iteratively minimized with respect to λ. To increase speed, in particular when the
dynamics approached attractor states, an adaptive step size control was implemented as described
in [190]. The above integration scheme was implemented in c++ using the PetSc library.

5.4 Specific models and their phase diagrams

5.4.1 Gaussian interactions

Wolf as well as Kaschube et al. [11, 123] assumed the long-range interaction to decay as a Gaussian,
i.e.

K(r) =
e−r2/2σ2

2πσ2

(cf. Fig. 5.4.1a). The Hankel transform F0(k) of this kernel is F0(k) = e−k2σ2/2 and, hence, the
angle-dependent interaction function of this model according to Equation (1.5.8) is given by

g(α) = g + (2 − g)2e−k2
c σ2

cosh(k2
cσ2 cos α) .

The one-parametric limit of the long-range interaction model with Gaussian interactions corre-
sponds to the Wolf model [123] introduced in Chapter 1. The angle-dependent interaction func-
tion g(α) is depicted in Figure 5.4.1b for different interaction ranges. The function is parametrized
by only two variables, namely the coupling parameter g and the interaction range compared to
the size of the typical column spacing σ/Λ. According to weakly nonlinear analysis (cf. Sec.
1.5.1), pattern selection in this model can thus be summarized in a two-dimensional phase dia-
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Figure 5.4.1: Phase diagram of the one-parametric limit of the long-range interaction model with interactions decaying
as K(r) = e−r2/2σ2

. (a) Gaussian interaction kernels for different width of the intracortical interaction σ/Λ = 0.75
(blue line), σ/Λ = 1.0 (red line), and σ/Λ = 2.0 (green line). (b) Angle-dependent interaction functions for different
interaction ranges (colors as in a) and g = 0.9. (c) Phase diagram of the model. The graph shows the regions in the g-
σ/Λ-plane in which n-ECPs have minimal energy (n = 1 − 20, n > 20 dots). The letters a-c in the phase diagram mark
the values of g and σ/Λ that correspond to the parameters gsr, glr, and σ/Λ at which the numerical solutions in Figure
5.4.2 for the complete third-order approximation of the long-range interaction model (Eq. (5.2.10)) were obtained.

gram which depicts the regions in the g-σ/Λ-Plane in which n-ECPs have minimal energy. In
doing so, one exactly recovers the phase diagram obtained in [123] (Fig. 5.4.1c). Whereas for
g > 1 and for short-range interactions pinwheel-free stripe patterns exhibit minimal energy, they
lose stability for g < 1 and sufficiently large σ. In this regime, n-ECPs with several active modes
exhibit minimal energy. Solutions with the same number of active modes are energetically degen-
erate due to permutation symmetry [123]. For large n, n-ECP solutions quantitatively resemble
the experimentally observed common design of orientation preference maps.

Figure 5.4.2 depicts the dynamics of the long-range interaction model with Gaussian interactions
as well as the pinwheel distance statistics for states reached long after pattern emergence. For
strongly suppressive but short-range interactions (Fig. 5.4.2a) pinwheels generated during the
phase of pattern emergence annihilate quickly during development. The pattern becomes stripe-
like. Pinwheel density time courses for individual simulations display a fast decrease toward
pinwheel densities around zero. At t = 500τ, the statistics of nearest neighbor pinwheel dis-
tances strongly deviates from the experimentally observed curves (Fig. 5.4.2a, lower row, middle
and right). Pinwheels occur essentially along the domain boundaries between stripes of different
orientations. As a consequence, they most frequently have a distance of roughly half the col-
umn spacing to their next neighbors. Very similar dynamics arise when the model is considered
for long-range but only weakly suppressive interactions (Fig. 5.4.2b). This picture completely
changes, when the model is considered with strongly-suppressive and long-range interactions
(Fig. 5.4.2c). Rearrangements after the initial map emergence phase are subtle and pinwheels
are present in abundance in the later stages of development. Pinwheel density time courses for
individual simulations display little variation. Their values remain close to the experimentally
observed value of 3.14 [11]. At t = 500τ, pinwheel nearest neighbor statistics (Fig. 5.4.2c, lower
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row, middle and right, red lines) match the fits to the experiments from Kaschube et al. [11] (Fig.
5.4.2c, lower row, middle and right, black lines).

These results not only confirm the results from [11, 123]. Strongly suppressive long-range in-
teractions are able to stabilize pinwheel-rich OPM layouts during development, with pinwheel-
statistics matching the common design found in experimental data. If suppression is not strong
enough or, alternatively, interactions are not sufficiently long-range, pinwheels either annihilate
in pairs or arrange in periodic crystals. They also corroborate the strong correspondence between
the full effective dynamics of the orientation preference pattern given by Equation (5.2.6) and the
corresponding one-parametric limit.

5.4.2 Interactions derived from the statistics of long-range horizontal connections

The assumption in [11, 123] of long-range interactions spatially decaying as a Gaussian function
was introduced ad hoc, mainly for reasons of analytical tractability. I now consider a different
functional form for the long-range interactions which is derived from the statistics of synaptic
connections of the system of tangential connections in V1. The resulting model will turn out to be
equally analytically tractable.

In a seminal publication in 1997, Bosking et al. analyzed the arrangement of orientation maps
and horizontal connections in tree shrew striate cortex by combining optical imaging of intrinsic
signals with small injections of biocytin [21]. The biocytin injections resulted in the labeling of
neuronal processes and boutons of a small number of cell bodies thereby revealing the prominent
long-range patchy connectivity. Figure 5.4.3a shows the labeling obtained in a representative ex-
ample of such an experiment. Chisum et al. then quantitatively analyzed these data to assess the
statistics of the bouton density in relation to receptive field properties in V1 as well as cortical dis-
tances [158]. In particular, these authors analyzed the number of boutons as a function of cortical
distance (Fig. 5.4.3b,c). As can be inferred from the semi-logarithmic plot in Figure 5.4.3c, the
density decays roughly exponentially ∼ exp (−r/γ) (see also [180]). It seems therefore promising
to consider a model with exponentially decaying long-range interactions:

K(r) =
e−r/γ

2πγ2

(cf. Fig. 5.4.4a). The Hankel transform F0(k) of this kernel then is given by F0(k) = (1 + k2γ2)−3/2

and, hence, according to Equation (5.2.12), the angle-dependent interaction function g(α) of the
one-parametric limit of the model reads

g(α) = g + (2 − g)
�
(1 + 2k2

cγ2(1 − cos α))−3/2 + (1 + 2k2
cγ2(1 + cos α))−3/2

�
.

This function is plotted in Figure 5.4.5b for different interaction ranges. Again, it depends on only
two variables, namely the coupling parameter g and the interaction range γ/Λ which, like in the
Gaussian case, enables the calculation of a two-dimensional phase diagram. This phase diagram is
depicted in Figure 5.4.5c. It is virtually indistinguishable from the phase diagram obtained in the
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Figure 5.4.2: Dynamics of the long-range interaction model (Eq. (5.2.10)) with interaction strength decaying as a Gaus-
sian (cf. Fig. 5.4.1). (a) Upper row: Snapshots of a numerically obtained solution of the model for short-range strongly
suppressive interactions (gsr = −0.39, glr = −2.04, σ/Λ = 0.2) with weakly orientation-selective random initial con-
dition. Color encodes preferred orientation, brightness encodes selectivity. Lower row, left: Pinwheel density time
courses for N=20 simulations (colored solid traces, individual simulations; black dashed trace, simulation in upper
row; parameters as in upper row). Middle and right: Statistics of nearest neighbor pinwheel distances at t = 500τ,
averaged over N=20 simulations for pinwheels pairs of arbitrary (middle), opposite and equal sign (right) and param-
eters as in upper row. (b) As a, but for long-range weakly suppressive interactions (gsr = −0.1, glr = −1.2, σ/Λ = 1.7).
(c) As a, but for long-range and strongly suppressive interactions (gsr = 0.53, glr = −2.04, σ/Λ = 1.7). All snapshots
are insets from simulations with 22Λx22Λ aspect ratio on a 128x128 mesh. Initial conditions are the same in a, b, and c.
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a b

c

Figure 5.4.3: Horizontal connections in layer 2/3 of tree shrew V1. (a) A plot of labeled boutons within layer 2/3 of
area V1 resulting from a biocytin injection into a site with an orientation preference of 40° (mod. from [21]). The dorsal
surface of V1 is outlined. The axes of preferred (40°) and orthogonal (130°) orientation are indicated with black and
gray dashed lines, respectively, both in the icon of visual space to the right and translated onto the cortical surface.
Solid black and gray lines show the areas over which boutons were counted (±30° from the two axes). Scale bar, 500
µm. (b) Fall-off in bouton density with distance for the preferred (black) and orthogonal (gray) axes as a percentage of
maximum density; distance is shown both in millimeters across cortex and degrees of visual space (average of 10 cases)
(mod. from [158]). (c) The same data as b shown with a logarithmic y-scale.
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Figure 5.4.4: Phase diagram of the one-parametric limit of the long-range interaction model with interactions decaying
as K(r) = e−r/γ. (a) Exponentially decaying interaction kernels for different widths γ/Λ = 0.75 (blue line), γ/Λ = 1.0
(red line), and γ/Λ = 2.0 (green line). (b) Angle-dependent interaction functions for different interaction ranges
(colors as in a) and g = 0.9. (c) Phase diagram of the model with exponentially decaying interactions. The graph
shows the regions in the g-γ/Λ-plane in which n-ECPs have minimal energy (n = 1 − 20, n > 20 dots). The letters
a-c in the phase diagram mark the values of g and γ/Λ that correspond to the parameters gsr, glr, and γ/Λ at which
the numerical solutions in Fig. 5.4.5 for the full third-order approximation of the long-range interaction model (Eq.
(5.2.10)) were obtained.
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Gaussian case (Fig. 5.4.1c). Again, whereas for g > 1 and for short-range interactions pinwheel-
free stripe patterns exhibit minimal energy, they lose stability for g < 1 and sufficiently large γ/Λ.
Aperiodic n-ECPs with several active modes exhibit minimal energy in this regime. With the data
obtained by Bosking et al., one can roughly estimate the decay constant γ for the bouton density
as a function of cortical distance in tree shrew V1 with γ ≈ Λ (for the preferred orientation).
Surprisingly, this value perfectly fits into a regime, where aperiodic pinwheel-rich orientation
preference patterns realizing the experimentally observed common design are predicted by the
model.

Strong similarity with the Gaussian case is also observed in the numerically obtained solutions.
For strongly suppressive but short-range interactions (Fig. 5.4.5a) as well as weakly suppressive
long-range interactions (Fig. 5.4.5b), pinwheels generated during the phase of pattern emergence
annihilate quickly during subsequent simulation stages. Pinwheel density time courses for indi-
vidual simulations display a fast decrease towards almost zero pinwheel densities (Figs. 5.4.5a,b,
lower rows, left) and the patterns become stripe-like. The statistics of nearest neighbor pinwheel
distances exhibits strong peaks at a distance of roughly half the column spacing to their next
neighbors (Figs. 5.4.5a,b, lower rows, middle and right). Only when the model is considered with
strongly suppressive and long-range exponentially decaying interactions (Fig. 5.4.5c) pinwheels
are present in abundance in the later simulation stages. Pinwheel density time courses remain
close to the experimentally observed value of 3.14 and pinwheel nearest neighbor statistics at
t = 500τ agree well with experimental data (Fig. 5.4.5c, lower row, middle and right, red lines).

In summary, the model behaviors for Gaussian and exponential interactions are strikingly simi-
lar. Neither in the phase diagram of the one-parametric limit nor in the dynamics of orientation
preference patterns, substantial differences could be observed.

5.4.3 Non-orientation-selective local connectivity

So far, I have examined two types of biologically plausible orientation-selective interactions which
mainly differed in their spatial asymptotic behavior. Common to both of these long-range interac-
tions considered is that they most strongly connected sites at short distances. It is however unclear
at present and also difficult to extract from biocytin labeling experiments due to the extremely high
labeling density close to the injections sites, to which extent the connections to nearby sites are in
fact orientation-selective at all. Figure 5.4.6 illustrates this point for two different bouton-labeling
experiments in ferret and tree shrew visual cortex (redrawn from [44] and [21]). While at large
distances from the injection site (center of the red region), bouton density exhibits clear patches,
bouton density close to the injection site appears rather be isotropic and, thus, non-orientation-
selective.

To investigate the influence of this potential feature of the system of tangential connections, I now
consider an analytically tractable model in which the Kernel K(r) vanishes at r = 0, namely

K(r) =
1

2πγ2Γ(m + 1)

�
r
γ

�m−1
e−r/γ . (5.4.1)

Local interactions in such a model are exclusively mediated by the linear term LSH and the non-
linear term ∼ |z(x)|2z(x) in Equation (5.2.6). These interactions are independent of the local dif-
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Figure 5.4.5: Dynamics of the long-range interaction model (Eq. (5.2.10)) with exponentially decaying interactions (cf.
Fig. 5.4.4). (a) Upper row: Snapshots of a numerically obtained solution of the model for short-range strongly sup-
pressive interactions (gsr = −0.23, glr = −2.1, γ/Λ = 0.15) with weakly orientation-selective random initial condition.
Lower row, left: Pinwheel density time courses for N=20 simulations (colored solid traces, individual simulations; black
dashed trace, simulation in upper row; parameters as in upper row). Middle and right: Statistics of nearest neighbor
pinwheel distances at t = 500τ, averaged over N=20 simulations for pinwheels pairs of arbitrary (middle), opposite
and equal sign (right) and parameters as in upper row. (b) As a, but for long-range weakly suppressive interactions
(gsr = −0.1, glr = −1.2, γ/Λ = 2.2). (c) As a, but for long-range and strongly suppressive interactions (gsr = 0.53,
glr = −2.04, γ/Λ = 2.2). All snapshots are insets from simulations with 22Λx22Λ aspect ratio on a 128x128 mesh.
Initial conditions are the same in a, b, and c.
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r r

Figure 5.4.6: Plots of labeled boutons within layer 2/3 of resulting from a biocytin injection in ferret (left, mod. from
[44]) and tree shrew (right, mod. from [21]) area V1. The local bouton densities within the red regions appear isotropic
and connectivity at short distances may not depend on the difference in preferred orientation between connected sites.
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Figure 5.4.7: Phase diagram of the one-parametric limit of the long-range interaction model (Eq. (5.2.10)) with locally
non-orientation-selective interactions. (a) Interaction kernels (Eq. (5.4.1)) for different interaction ranges γ/Λ = 0.75
(blue line), γ/Λ = 1.0 (red line), and γ/Λ = 2.0 (green line). (b) Angle-dependent interaction functions for different
interaction ranges (colors as in a) and g = 0.9. (c) Phase diagram of the model. The graph shows the regions in the
g-γ/Λ-plane in which n-ECPs have minimal energy (n = 1 − 20, n > 20 dots). The letters a-c in the phase diagram
mark the values of g and γ/Λ that correspond to the parameters gsr, glr, and γ/Λ at which the numerical solutions in
Fig. 5.4.8 for the full third-order approximation of the long-range interaction model (Eq. (5.2.10)) were obtained.
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ferences in the preferred angle. As for the other two model instances, γ mediates the range of the
long-range interactions. For large distances, interactions still decay exponentially as suggested by
the bouton density analysis of Chisum et al. ([158], cf. Fig. 5.4.3).

For m = 2, 3, . . . , the angle-dependent interaction functions of the one-parametric limit can be
computed analytically and read

g(α) = g + (2 − g)
�

1
(1 + 2k2

cγ2(1 − cos α))1/2m+1/2 Pm

�
1

(1 + 2k2
cγ2(1 − cos α))1/2

�

+
1

(1 + 2k2
cγ2(1 + cos α))1/2m+1/2 Pm

�
1

(1 + 2k2
cγ2(1 + cos α))1/2

��
,

where Pm(x) denotes the Legendre polynomial of mth-degree. Note that it is possible to generalize
this model to arbitrary m ∈ R+. However, no analytical results regarding the angle-dependent
interaction functions can be obtained in this case. In the following, I focus on the case m = 1.

The kernel K(r) for m = 1 is depicted in Figure 5.4.7a for various values of the parameter γ. The
angle-dependent interaction function g(α) for this model is plotted in Figure 5.4.7b for different
interaction ranges γ. This function is again very similar to the ones of the previously considered
models (cf. Figs. 5.4.1b,5.4.4b). The same holds for the phase diagram (Fig. 5.4.7c). Again,
whereas for g > 1 and for short-range interactions pinwheel-free stripe patterns exhibit minimal
energy, they lose stability for g < 1 and sufficiently large γ. Aperiodic n-ECPs with several active
modes exhibit minimal energy in this regime. Finally, as Figure 5.4.8 shows, the dynamics of the
model with only non-orientation-selective local connections is very similar to the model instances
considered above.

5.4.4 Power-law interactions mediated by visual input?

So far, I have investigated two biologically plausible types of long-range interactions, Gaussian
and exponential decay. I have shown that both types of interaction lead to virtually indistinguish-
able dynamics and phase diagrams. The functional form of these interactions was, in particular in
the exponential case, inspired by the statistics of the system of long-range tangential intracortical
connections. The class of pattern formation theories considered in this chapter, however, is so gen-
eral that it can also be applied to study alternative mechanisms by which long-range interaction
could be mediated. One such mechanism is an interaction mediated by long-range spatial corre-
lations in the input patterns which activate the primary visual cortex during map development.
The pattern of activity evoked by visual experience has been shown to affect the architecture of
intracortical circuits and to be a critical factor in the maturation of orientation selectivity in the
developing visual cortex [44]. In fact, abnormal patterns of visually driven activity are far more
disruptive to the maturation of orientation-selective responses than the total absence of visually
driven activity [44, 78]. The normal visual inputs patterns to V1 are elicited by natural scenes. The
spatial statistics of natural scenes might therefore be a crucial determinant to understand visual
cortical development. In fact, there is recent evidence that visual cortical activity becomes pro-
gressively better matched to the statistics of natural stimuli but not to simplistic artificial stimulus
ensembles [191]. The statistics of natural images has been shown to exhibit long-range scale-free
spatial correlations decaying with power-law dependance[185–187, 192]. In view of this, it seems
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Figure 5.4.8: Dynamics of the long-range interaction model with non-orientation-selective short-range interactions (cf.
Fig. 5.4.7). (a) Upper row: Snapshots of a numerically obtained solution of the model Equation (5.2.10) for short-
range strongly suppressive interactions (gsr = −0.23, glr = −2.1, γ = 0.15) with weakly orientation-selective random
initial condition. Lower row, left: Pinwheel density time courses for N=20 simulations (left, gray traces, individual
simulations; black trace, simulation in upper row; parameters as in upper row). Middle and right: Statistics of nearest
neighbor pinwheel distances at t = 500τ, averaged over N=20 simulations for pinwheels pairs of arbitrary (middle),
opposite and equal sign (right) and parameters as in upper row. (b) As a, but for long-range weakly suppressive
interactions (gsr = −0.1, glr = −1.2, γ = 2.2). (c) As a, but for long-range and strongly suppressive interactions
(gsr = 0.53, glr = −2.04, γ = 2.2). All snapshots are insets from simulations with 22Λx22Λ aspect ratio on a 128x128
mesh. Initial conditions are the same in a, b, and c.
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Figure 5.4.9: Phase diagram of the one-parametric limit of the long-range interaction model with interactions decaying
as r−3. (a) Interaction kernels decaying as r−3 for different interaction ranges γ/Λ = 0.75 (blue line), γ/Λ = 1.0 (red
line), and γ/Λ = 2.0 (green line). (b) Angle-dependent interaction functions for different interaction ranges (colors as
in a) and g = 0.9. (c) Phase diagram of the model. The graph shows the regions in the g-γ/Λ-plane in which n-ECPs
have minimal energy (n = 1 − 20, n > 20 dots). The letters a-c in the phase diagram mark the values of g and γ/Λ that
correspond to the parameters gsr, glr, and γ/Λ at which the numerical solutions in Fig. 5.4.10 for the full third-order
approximation of the long-range interaction model (Eq. (5.2.10)) were obtained.

worthwhile investigating whether realistic OPM layouts can as well be stabilized by interactions
decaying as power-laws. In the following, I study two analytically tractable model instances in
which interactions decay as either ∼ r−3 or ∼ r−4 for sufficiently large interaction ranges.

The first model instance I consider is a model with long-range interactions of the form

K(r) =
1

2πγ2

�
1 +

�
r
γ

�2
�−3/2

.

Similarly to the exponential decay, the parameter γ determines the range of interactions. For
large distance, these interactions decay asymptotically proportionally to ∼ r−3 (Fig. 5.4.9a). The
angle-dependent interaction function g(α) of the one-parametric model limit according to Equa-
tion (5.2.12) then reads

g(α) = g + (2 − g)
�

e−kc
√

2(1−cos α)γ + e−kc
√

2(1+cos α)γ
�

.

This function is plotted in Figure 5.4.9b for different interaction ranges. It bears close resem-
blance with the angle-dependent interaction functions for Gaussian and exponentially decaying
interaction (Figs. 5.4.1b, 5.4.5b, 5.4.4b, and 5.4.7b). This similarity also manifests itself in the 2-
dimensional phase diagram of the model (Fig. 5.4.9c). It is strikingly similar to the phase diagram
obtained in the Gaussian (Fig. 5.4.1c) as well as the exponential cases (Figs. 5.4.5c, 5.4.8c). In
the same line, as Figure 5.4.10 illustrates, the dynamics of the model with power-law interactions
∼ r−3 is also not different from the three model instances considered above.

The second analytically tractable model instance with power-law interactions which I consider is
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Figure 5.4.10: Dynamics of the long-range interaction model (Eq. (5.2.10)) with interaction strength decaying as r−3

(cf. Fig. 5.4.9). (a) Upper row: Snapshots of a numerically obtained solution of the model for short-range strongly sup-
pressive interactions (gsr = −0.05, glr = −2.04, γ/Λ = 0.2) with weakly orientation-selective random initial condition.
Lower row, left: Pinwheel density time courses for N=20 simulations (colored solid traces, individual simulations; black
dashed trace, simulation in upper row; parameters as in upper row). Middle and right: Statistics of nearest neighbor
pinwheel distances at t = 500τ, averaged over N=20 simulations for pinwheels pairs of arbitrary (middle), opposite
and equal sign (right) and parameters as in upper row. (b) As a, but for long-range weakly suppressive interactions
(gsr = −0.1, glr = −1.2, γ/Λ = 3.0). (c) As a, but for long-range and strongly suppressive interactions (gsr = 0.55,
glr = −2.04, γ/Λ = 2.2). All snapshots are insets from simulations with 22Λx22Λ aspect ratio on a 128x128 mesh.
Initial conditions are the same in a, b, and c.
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Figure 5.4.11: Phase diagram of the one-parametric limit of the long-range interaction model with interactions decaying
as r−4. (a) Interaction kernels decaying as r−4 for different interaction ranges γ/Λ = 0.75 (blue line), γ/Λ = 1.0 (red
line), and γ/Λ = 2.0 (green line). (b) Angle-dependent interaction functions for different interaction ranges (colors as
in a) and g = 0.9. (c) Phase diagram of the model. The graph shows the regions in the g-γ/Λ-plane in which n-ECPs
have minimal energy (n = 1 − 20, n > 20 dots). The letters a-c in the phase diagram mark the values of g and γ/Λ that
correspond to the parameters gsr, glr, and γ/Λ at which the numerical solutions in Fig. 5.4.12 for the full third-order
approximation of the long-range-interaction model (Eq. (5.2.10)) were obtained.

defined by a kernel

K(r) =
2

π2γ2

�
1 +

�
r
γ

�4
�−1

for the spatial decay of interactions. The parameter γ determines the range of interactions (Fig.
5.4.11a). For large distance, these interactions decay asymptotically proportionally to ∼ r−4. The
angle-dependent interaction function of the one-parametric limit of this model reads

g(α) = g − (2 − g)
4
π

�
kei0(γkc

�
2(1 − cos α))) + kei0(γkc

�
2(1 + cos α)))

�
,

where kei0(x) denotes the Kelvin function of zeroth order, i.e. the imaginary part of K0
�

x ei3π/4�,
where K0(z) is the zeroth-order modified Bessel function of the second kind. This function is
plotted in Figure 5.4.11b for different interaction ranges. As expected from the results obtained
so far, the 2-dimensional phase diagram of the model (Fig. 5.4.9c) is very similar to the phase
diagram obtained in the Gaussian (Fig. 5.4.1c), the exponential case (Fig. 5.4.5c) as well as the
∼ r−3-case (Fig. 5.4.9c). As depicted in Figure 5.4.10, the dynamics of the model with power-law
interaction ∼ r−4 is not different from the four previously considered model instances.

5.5 Simultaneous development of horizontal connections and OPMs

At the beginning of this chapter, I started out by proposing an optimization model for the joint
development of the system of tangential connections and OPMs. However, so far, we have exclu-
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Figure 5.4.12: Dynamics of the long-range interaction model (Eq. (5.2.10)) with interaction strength decaying as r−4

(cf. Fig. 5.4.11). (a) Upper row: Snapshots of a numerically obtained solution of the model for short-range strongly
suppressive interactions (gsr = −0.27, glr = −2.04, γ/Λ = 0.25) with weakly orientation-selective random initial con-
dition. Lower row, left: Pinwheel density time courses for N=20 simulations (left, gray traces, individual simulations;
black trace, simulation in upper row; parameters as in upper row). Middle and right: Statistics of nearest neighbor
pinwheel distances at t = 500τ, averaged over N=20 simulations for pinwheels pairs of arbitrary (middle), opposite
and equal sign (right) and parameters as in upper row. (b) As a, but for long-range weakly suppressive interactions
(gsr = −0.1, glr = −1.2, γ/Λ = 2.2). (c) As a, but for long-range and strongly suppressive interactions (gsr = 0.55,
glr = −2.04, γ/Λ = 2.2). All snapshots are insets from simulations with 22Λx22Λ aspect ratio on a 128x128 mesh.
Initial conditions are the same in a, b, and c.
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Figure 5.5.1: Simultaneous development of OPMs and tangential connections in the model. (a, b) Snapshots of OPM
development (a) and the corresponding tangential connections W(x, ycenter) according to Equation (5.2.5) (b) for short-
range strongly suppressive connections decaying as a Gaussian function (parameters as in Fig. 5.4.2a). The red dot in b
indicates the position of ycenter. (c, d) As a, b but for long-range weakly suppressive interactions (parameters as in Fig.
5.4.2b). (e, f) As a, b but for long-range strongly suppressive interactions (parameters as in Fig. 5.4.2c).
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sively studied the dynamics of the OPM in the presence and absence of long-range interactions
of different types after the dynamics of the connections has been adiabatically eliminated (cf. Sec.
5.2). In the model, long-range suppressive interactions are critical where suppressive means sup-
pressing the development of the same orientation as the projecting neurons. What happens to the
tangential connections in this adiabatic limit during orientation preference map development?
Figure 5.5.1 qualitatively illustrates the types of connectivity rearrangements that occur in the
three main regimes of the model considered in this chapter. If connections are short-range (Fig.
5.5.1a,b), rearrangement during the convergence to stripe-like OPM patterns are subtle. The con-
nection profile slightly elongates along the axis of the stripes during the developmental dynam-
ics (Fig. 5.5.1b, most right). In the case of long-range but weakly suppressive interactions (Fig.
5.5.1c,d), connectivity sparsifies from an initially nearly isotropic system of connections and devel-
ops into a Gabor-function-like arrangement, in which stripe-like domains of the same orientation
preference are preferentially connected. In fact, for z(x) ∼ eikx, Gaussian kernel K(|x|), and fixed
y, Equation (5.2.5) describes a Gabor function. For long-range and strongly suppressive interac-
tions, the main change between the initially isotropic connectivity profile and the connections at
later stages is obtained through selective pruning of connections (Fig. 5.5.1e,f). This process very
much resembles the refinement of horizontal connections observed in experiment [76, 77, 80, 181].

5.6 General stability ranges for the one-parametric long-range interac-
tion models

In the following two sections, I generalize the results obtained in [193] and compute the extrinsic,
intrinsic, and asymptotic stability ranges of n-ECPs in order parameter models with long-range
interactions of arbitrary spatial dependance.

5.6.1 Intrinsic and extrinsic stability boundaries

In all of the models considered so far, the angle-dependent interaction function g(α) is π-periodic
(Eq. (5.2.11)) and, hence, the stability properties of n-ECPs do not depend on the specific configu-
ration of active modes [123, 161]. Following [161, 193], I refer to the stability of an n-ECP within its
system of modes as intrinsic stability. The stability against other Fourier modes on the critical circle
is referred to as extrinsic stability. To analyze the intrinsic stability of an ECP with n active modes
Ai and n inactive modes Bi, I linearize (1.5.7) around the fixed point |Ai| = |A0| = (∑j g0j)−1/2

and Bi = B0 = 0 for small deviations ai and bi. This results in the linear dynamics

∂tai = − 2
∑j g0j

∑
j

gijaj

∂tbi =
1

∑k g0k

�
1 − ∑

k
(1 + δik)gik

�
bi − 2 ∑

j
fij Aj Āibj .
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Figure 5.6.1: Extrinsic and intrinsic stability ranges in the one-parametric model limits with different types of bio-
logically plausible long-range interactions. Depicted are the stability ranges for a planform with five active modes
for (a) exponentially decaying interactions, (b) Gaussian interactions, (c) locally non-orientation-selective interactions
K(r) ∼ r e−r/γ, (d) interactions, decaying as r−3, and (e) interactions, decaying as r−4 . The left/right border of the
blue region is given by the condition for intrinsic/extrinsic stability. In the green region, the ECP with 5 active modes
possesses minimal energy among all other ECPs.
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The stability of the amplitudes Ai is ensured by requiring that the matrix gij has only positive
eigenvalues. The stability of the Bis requires that the matrix

Fij =
1

∑k g0k

�
1 − ∑

k
(1 + δik)gik

�
− 2 fij Aj Āi

= − gii

∑k g0k
− 2 fij Aj Āi

has only negative eigenvalues. According to [193], the condition g < 1 together with the minimal
eigenvalue ωn

min of gij being larger than zero, are, thus, necessary and sufficient for the intrinsic
stability of an n-ECPs provided that the interaction large is sufficiently large.

An n-ECPs is extrinsically stable if [161, 193]

g(0)/2 − g(α − α0) +
n−1

∑
j=1

(g(αj)− g(αj − α)) < 0 ,

with αj = jπ/n for all angles 0 < α < 2π. The above condition is equivalent to

g(0)/2 − g
� π

2n

�
+

n−1

∑
j=1

�
g
�

jπ
2n

�
− g

� π

2n
(1 − 2j)

��
< 0 .

In summary, for any given number of active modes n the conditions for extrinsic and intrinsic
stability define two stability borders g∗i

n (γkc) and g∗e
n (γkc) of an n-ECP 1:

0 = ωn
min|γ,g=g∗i

n (γk0)
(5.6.1)

0 = g(0)/2 − g
� π

2n

�
+

n−1

∑
j=1

�
g
�

jπ
2n

�
− g

� π

2n
(1 − 2j)

�������
γ,g=g∗e

n (γk0)

. (5.6.2)

The resulting extrinsic and intrinsic stability ranges for the one-parametric limit of all model in-
stances considered in this chapter are depicted in Figure 5.6.1 in the case of an ECP with five active
modes.

5.6.2 Asymptotic stability boundaries

In this section, I show that the stability boundaries asymptotically scale as

g∗i/e
n (γk0) = g∗i/e

�
γk0

n

�

and derive approximate expressions for the asymptotic stability boundaries g∗i/e of an n-ECP in
the limit of large n, and large interaction width γ/Λ. The derivation closely follows [193].

1 All angle-dependent interaction functions depend on the product of kcγ. In the Gaussian case, γ is replaced by σ.
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Figure 5.6.2: Asymptotic stability ranges of n-ECPs in long-range interaction models with (a) exponentially decaying
interactions (b) Gaussian interactions (c) locally non-orientation-selective interactions K(r) ∼ r e−r/γ (d) interactions
decaying as r−3 (e) interactions decaying as r−4 .
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I start by restating the angle-dependent interaction functions:

g(α) = g + (2 − g)
�

F0(kc

�
(2(1 + cos α))) + F0(kc

�
(2(1 − cos α)))

�

f (α) = g(α)/2 ,

with F0 denoting the Hankel transform of the interaction kernel K(r)2. For large interaction width
γ, Equation (5.6.2) is approximately given by

g(0)/2 + g(π/n) + 2g(π/(2n)) = 0 (5.6.3)

since in this case
n−1

∑
j=2

�
g
�

jπ
2n

�
− g

� π

2n
(1 − 2j)

��
�

n−1

∑
j=1

(g − g) = 0 .

Furthermore, for n large, g(α) is evaluated in Equation (5.6.3) only for very small angles, meaning

g(α) � g + (2 − g)
�

F0(kc
√

2) + F0(kcα)
�

and again, for (kcγ) large,
g(α) � g + (2 − g)F0(kcα) .

Thus, the condition for extrinsic stability reduces to

1 − g + (2 − g)
�

F0

�
kc

π

n

�
− 2F0

�
kc

π

2n

��
= 0 .

For rapidly decaying F0, one ensures

F0

�
kc

π

n

�
− 2F0

�
kc

π

2n

�
> −1

and finds the condition for extrinsic stability by solving for g:

g∗e
n (γkc) = 1 +

F0
�
kc

π
n
�
− 2F0

�
kc

π
2n
�

1 + F0
�
kc

π
n
�
− 2F0

�
kc

π
2n
� .

This function only depends on kcγ/n and, thus, confirms the above hypothesized scaling. The
border of intrinsic stability is given by the minimal eigenvalue of the cyclic matrix gij, which in
the limit kcγ being large can be approximated by

g0j = −δ0j + g + (2 − g)
�

F0

�
kc

�
2
�

1 − cos
�π

n
j
���

+ F0

�
kc

�
2
�

1 + cos
�π

n
j
����

� −δ0j + g + (2 − g)
�

F0

�
kc

π j
n

�
+ F0

�
kc

π

n
(n − j)

��
.

2 It has been have shown above that F0(kc) is always only a function of the product kcγ. Thus, in the following,
wherever it is written F0(kc) a dependence F0(kcγ) is assumed. In the Gaussian case, γ is replaced by σ.
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For the eigenvalues of gij one obtains

ωn
l =

n−1

∑
j=0

cos
�

2π

n
jl
�

g0j

= −1 + n g δl0 + (2 − g)
n−1

∑
j=0

cos
�

2π

n
jl
��

F0

�
kc

π j
n

�
+ F0

�
kc

π

n
(n − j)

��

� �� �
Ωn

l

.

The task now is to find the minimal eigenvalue ωn
min, i.e. to minimize the function

Ωn
l =

n−1

∑
j=0

cos
�

2π

n
jl
��

F0

�
kc

π j
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�
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�
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∑
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�

with respect to l. Solving

∂Ωn
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∞

∑
j=−∞

sin
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2π

n
jl
�

2π

n
j F0

�
kc

π j
n

�
= 0 ,

yields the two solutions l = 0 and l = n/2 for l ∈ [0, n − 1]. Since

∂2Ωn
l

∂l2 � −
∞

∑
j=−∞

cos
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2π
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jl
��

2π
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,

these two solutions can be expressed as

∂2Ωn
l

∂l2

�����
l=0

= −
∞

∑
j=0

�
2π

n
j
�2
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�
kc

π j
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�
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�����
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∑
j=∞

(−1)j
�

2π
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�2
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�
kc

π

n
j
�

,

always assuming that F0(k) decays faster than k−3 for k → ∞. In this case, it is not difficult to
show that Ωn

l has indeed a minimum at l = n/2. Thus, the minimal eigenvalue of gij can be
approximately given by

ωn
min � Ωn

n/2 = −1 + (2 − g)
∞

∑
j=−∞

(−1)jF0

�
kc

π j
n

�

and again scales with kcγ/n as assumed above. The resulting asymptotic stability ranges for all
model instances considered in this chapter are depicted in Figure 5.6.2. They demonstrate that
also the asymptotic stability ranges for the various types of biologically plausible interactions are
almost independent of the precise spatial dependency of the long-range interactions.
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5.7 Summary

In this chapter, I have examined a variety of optimization models for the joint development of the
system of long-range tangential connections and the pattern of orientation preferences. The main
questions were whether the parallel development of the system of tangential connections and the
OPM can be viewed as a dynamical optimization process and whether and how different types
of long-range interactions like those mediated in the visual cortex by the system of tangential
connections or mediated by visual inputs with long-range correlations are able to stabilize orien-
tation preference patterns with realistic pinwheel-rich layouts. I proposed a variational model for
the coupled dynamics of connections and OPM. Following [193], I adiabatically eliminated the
time-dependent system of tangential connections to obtain an effective integro-differential equa-
tion for the development of the OPM that includes non-local interactions. Series expansion of this
equation in the vicinity of the bifurcation point together with weakly nonlinear analysis led to am-
plitude equations with which pattern selection in these models could be analyzed. I calculated the
complete phase diagram of stable solutions near the pattern formation threshold for models with
Gaussian, exponential, power-law interactions as well as for models in which local connections
are non-orientation-selective. I found that

• the spatial organization of stationary maps is entirely insensitive to the structure of long-
range coupling;

• all types of long-range interactions are capable of stabilizing realistic patterns of orientation
columns, provided the relative strength of long-range interactions compared to local inter-
actions exceeds a critical strength;

• pinwheel stabilization by long-range intracortical interactions is highly robust and thus the
spatial layout of orientation columns is expected to be fairly insensitive to the nature of
long-range interactions.

The robustness of pinwheel stabilization could explain why in experiments orientation maps ap-
pear to be almost unaltered by dark-rearing or abnormal visual experience. Only genetic or ex-
perimental perturbations that are able to confine the lateral interactions in the visual cortex to a
range smaller than a hypercolumn are predicted to induce a breakdown of spatially complex ori-
entation maps into pinwheel sparse or crystal-like patterns [11]. According to the model, neither
dark-rearing nor any other experimental manipulation has so far been able to drive visual cortical
development into such a regime.



Chapter 6

Stimulus-driven optimization models for
rodent visual cortical development

6.1 Motivation

Since the discovery of orientation selectivity in cat V1 by Hubel and Wiesel in the early 1960s
[27, 28, 108], electrophysiologists have dedicated little attention to uncovering the organization,
development and plasticity of the functional visual cortical architecture in Glires, i.e. rodents and
lagomorphs, compared to primates and carnivorans. The reason for this negligence is probably
threefold. Firstly, primates, in particular, are considered closer relatives of humans and therefore
properties of primate brains are expected to be most easily transferable to the human nervous
system. Secondly, while the columnar system of receptive field properties in primates and car-
nivorans has turned out to be a fruitful playground for the study of plasticity and development
[27, 28, 45, 194], physiologists have failed to discover a similarly ordered selectivity organization
in rodents and lagomorphs [14, 23, 65]. Thirdly, carnivorans and primates are thought to crucially
depend on sharp and binocular vision whereas most rodents such as mice and rats as nocturnal
animals are believed to rely more on tactile information and olfactory cues. This situation has
almost reversed over the last few years, due to the advent of two-photon imaging techniques
[62, 63, 195–197] and transgenic mouse technology [198, 199] up to the point that the mouse visual
cortex is currently considered one of the most versatile model systems for the study of cortical
plasticity and critical periods [102, 104, 105, 200].

Several studies in the primary visual cortex of Glires species have revealed all the major receptive
field types that have been described in cats, ferrets or monkeys [13, 15, 23, 65–67, 201, 202]. Many
V1 neurons are orientation-selective, and, among these, simple and complex cells can be distin-
guished. The spatial scale of receptive fields in mouse, for instance, is up to one or two orders
of magnitude larger, but at the same time neurons show selectivity for stimulus parameters such
as orientation and spatial frequency close to that found in the cat or monkey [66]. Despite these
highly selective receptive fields, no apparent spatial clustering of response properties could be
identified [13–15, 65]. Instead, selectivities appear as if randomly distributed across the cortex (cf.
Chap. 1, Sec. 1.3). Additionally, connection probabilities between orientation-selective neurons
have been found to be only weakly dependent on the difference in the preferred orientations of
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connected neuron pairs [15, 203]. The lack of columnar organization the primary visual cortex
of in mice and rats has previously been hypothesized to stem from their relatively poor visual
acuity and contrast sensitivity as well as their poorly laminated visual brain areas. But the fact
that squirrels as highly visual animals with clear lamination of V1 and V2 [204] lack orientation
maps suggests that an elaborated visual system is neither sufficient for nor dependent on the de-
velopment of orientation maps in mammals [14]. In view of the uttermost confusing randomness
exhibited by rodent and lagomorph V1 circuitry, Priebe and Ferster were even tempted to doubt
that classical mechanisms such as Hebbian learning are at work in shaping such circuits during
postnatal development: “If this were so, during development, there would be no need for ’Heb-
bian Plasticity’ and instead neurons could wire together whether they fired together or not.” they
wrote in a review paper in 2010 [205]. In fact, currently no model exists that could explain the de-
velopment of the observed disordered organizations of selectivities in terms of classical Hebbian
paradigms.

In this chapter, I propose a simple optimization model for the activity-dependent development of
orientation selectivity to explain the disordered selectivity organizations observed in Glires V1.
The model is based on a simple and well-established Hebbian learning rule together with a nor-
malization of the total amount of cortical activity, which induces a soft competition for activity
among the neurons in the cortical layer. These two ingredients are shown to be sufficient to ac-
count for (1) the emergence of orientation selectivity and (2) the establishment of a spatially disor-
dered organization of these selectivities. This clearly demonstrates that the apparent randomness
and non-specificity in rodent and lagomorph visual cortical circuits is not at all in conflict with
classical Hebbian plasticity paradigms.

6.2 Model outline

The model proposed in this chapter mathematically idealizes two processes that are widely ac-
cepted to be critical for activity-dependent cortical development: Firstly, afferent activity pattern
from subcortical structures excite neurons in the cortical layer via feedforward connections and
secondly, the selectivities of neurons in the target layer are modified as a function of pre- and post-
synaptic activity via Hebbian learning. Similar to dimension reduction approaches for modeling
columnar organizations in V1, e.g. [142, 144, 146, 166], the model formalizes these two processes
on an intermediate level of description. Afferent activity patterns, called stimuli in the follow-
ing, are represented by only two variables - their position in visual field coordinates as well as
an orientation toward which the selectivities of units in the target layer are modified when being
activated by the stimulus. As throughout this thesis, the spatial organization of orientation pref-
erence is described by a complex-valued field z(x) and the preferred angle ϑ(x) of a cell at cortical
position x is obtained from z(x) via

ϑ(x) =
1
2

arg(z(x)) .

The model of stimulus-driven visual cortical development in Glires V1 is based on the modifica-
tion rule [166]

δz(x) = ε (sz − z(x)) e(x, S, z(·)) , (6.2.1)
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Figure 6.2.1: Schematic illustra-
tion of the stimulus-driven model.
(a) Example of a random ori-
entation preference pattern (color
code) z(x) = 10−2ei2πξ(x), where
the ξ(x) are independent random
numbers uniformly distributed in
[0, 1]. (b) Position sr = (sx, sy) and
orientation θ of a ‘point-like’ stim-
ulus. (c) Cortical activity, evoked
by the stimulus in b for the ori-
entation preference pattern in a.
Dark regions are activated. Note
that neighboring neurons are co-
activated. (d) Orientation pref-
erence pattern z(x) + δz(x) after
modification, caused by the stim-
ulus in b (cf. Eq. (6.2.1)). Orien-
tation preferences in the vicinity of
the stimulus position are adjusted
to better match the orientation of
the stimulus. A very high learning
rate (ε = 1.5) was chosen for illus-
tration purposes.

which specifies how the pattern of orientation selectivity z(x) is changed through a stimulus S =
{sr, sz}, with sz = |sz|e2iθ , and sr = (rx, ry). θ denotes the orientation of a stimulus and sr its
position. Every individual stimulus S is assumed to cause a plastic change in the receptive field
parameters at activated locations, which is proportional to their response e(x, S, z(·)) and which
enhances the matching between receptive fields and activity patterns. For simplicity and in good
agreement with experimental observations in mouse V1 [23, 24, 200], I assume an ordered one-to-
one topographic mapping between retinal and cortical coordinates. The activation rule is exactly
chosen as for the Elastic Network model with fixed retinotopy in Chapter 3 [142]:

e(x, S, z(·)) =
e−(|sr−x|2)/2σ2 e−(|sz−z(x)|2)/2σ2

´
d2y e−(|sr−y|2)/2σ2 e−(|sz−z(y)|2)/2σ2 . (6.2.2)

The parameter σ is the receptive field size measured in stimulus parameter space. Neurons which
are close together in the cortical target layer have similar spatial receptive fields and are there-
fore likely to be co-activated by an afferent activity pattern. The integral term in the denominator
leads to a normalization of the total amount of activity, and, hence, to a so-called soft competition
in the target layer [116]. This divisive form of the normalization can be derived from detailed net-
work models with recurrent inhibitory interactions [206–208]. Figure 6.2.1 illustrates the general
features of this model for a random pattern of orientation preferences (Fig. 6.2.1a). A single point-
like, oriented stimulus S = (sr, sz) with position sr = (sx, sy) and orientation θ = 1/2 arg(sz) (Fig.
6.2.1b) evokes a cortical activity pattern e(x, S, z(·)) (Fig. 6.2.1c). The stimulus and the evoked
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activity pattern induce a modification of the orientation preferences. Orientation preference in
the activated regions is shifted towards the orientation of the stimulus (Fig. 6.2.1d). As outlined
in Chapter 3, the repeated presentation of stimuli which each are assumed to have a very small
impact on the orientation preferences in the target layer leads to an effective developmental dy-
namics of the form (cf. [166])

∂tz(x) = F[z(·)] = �[sz − z(x)] e(x, S, z(·))�S . (6.2.3)

The only difference to the conventional Elastic Network model for the formation of ordered colum-
nar selectivity layouts is the lack of the phenomenological excitation term, usually a Laplacian
[99, 142, 166] or some other differential operator [142, 209]. It is known that these models exhibit a
phase transition for decreasing σ, by which roughly periodic stimulus representations emerge on
a characteristic timescale τ [99, 142, 166]. In this chapter, I study the dynamics given by Equation
(6.2.3), i.e. the Elastic Network model without lateral excitation term. The only lateral interaction
present in the model is therefore mediated by the soft-competition for activity between the units.
One of the key questions will be: What type of selectivity organization emerges in the absence
of lateral excitation? Again, it is critical to emphasize that neighboring neurons are likely to be
co-activated by an afferent activity patterns and intuitively one might expect ordered selectivity
organizations also in the absence of lateral excitation.

As in Chapter 3, I make three basic and widely accepted assumptions about the set of stimuli: (i)
The stimulus locations sr are uniformly distributed across visual space. (ii) For the distribution
of stimulus orientations, |sz| and θ are independent. (iii) Stimulus orientations θ are distributed
uniformly in [0, π]. As outlined in Chapter 3, these assumptions imply translational, rotational
and Shift-symmetry of the model dynamics. Thus, two patterns are equivalent solutions of the
model, if their layout is identical up to translations (Eq. (1.5.2)) and/or rotations (Eq. (1.5.3)) as
well as if their layout is identical but the preferred orientations differ everywhere by the same
constant angle (Eq. (1.5.5)). Without loss of generality, I set

�
|sz|2

�
= 2. This normalization can

always be restored by a rescaling of z(x) (cf. [99, 166]). Finally, I note that the model given by
Equation (6.2.3) is variational, with energy functional

C[z] = −2σ2
�

ln
ˆ

d2y e−(|sz−z(y)|2+�sr−y�2)/2σ2
�

S
, (6.2.4)

since

∂tz(x) = − δC[z]
δz̄(x)

. (6.2.5)

This free energy term corresponds to the measure of stimulus space coverage in dimension reduc-
tion approaches to cortical map development, e.g. [134, 138, 139, 143, 166]. The developmental
dynamics given by Equation (6.2.3) can therefore be interpreted as a dynamical optimization pro-
cess to minimize (i.e. to optimize) coverage.

In the next paragraph, I perform a linear stability analysis of the homogeneous non-selective state.
This stability analysis reveals the regions of parameter space, in which patterns of orientation
preference emerge via spontaneous symmetry breaking. Using these insights, I then numerically
solve the developmental dynamics (Eq. (6.2.3)).



6.3 Linear stability analysis 171

0 2 4 6 8

−1

−0.5

0

0.5

1

(k σ)

L
in

e
a

r 
g

ro
w

th
 r

a
te

 λ
(k

)

 

 

σ = 0.8

σ = 0.9  = 1.2

σ = 1.1

σ

Figure 6.3.1: Linear growth rates (Eq. (6.3.2)) of Fourier modes
∼ eikx as a function of the normalized wave number kσ = |k|σ as
calculated from linear stability analysis of the homogeneous fixed
point z(x) = 0 in the model dynamics given by Equation (6.2.3)
for four different receptive field widths σ. For σ < 1, the ho-
mogeneous non-selective state loses stability with respect to all
Fourier modes with wave vectors k larger than a critical value
kcσ =

�
− log (1 − σ2) .

6.3 Linear stability analysis

The Shift symmetry property (Eq. (1.5.5)) implies that the non-orientation-selective state z(x) = 0
is a fixed point of Equation (6.2.3). Whether from this homogeneous non-selective state a pat-
tern of orientation preferences emerges by spontaneous symmetry breaking is determined by the
properties of the linearized dynamics of small deviations z(x) around this state. This linearized
dynamics reads

∂tz(x) � Lz[z] =
�

1
σ2 − 1

�
z(x)− 1

4πσ4

ˆ
d2y e−

(x−y)2

4σ2 z(y) . (6.3.1)

By translational symmetry, the eigenfunctions of the linearization Lz[z] are Fourier modes ∼ eikx.
By rotational symmetry, their eigenvalues (or equivalently linear growth rates) only depend on
the wave number k = |k|. They are given by

λ(k) = −1 +
1
σ2

�
1 − e−k2σ2

�
. (6.3.2)

These linear growth rates are depicted in Figure 6.3.1 for four different values of σ. For all σ > 0,
the Fourier mode with infinite wave number possesses the largest eigenvalue

rcontrol = −1 +
1
σ2 . (6.3.3)

For σ > 1, this largest growth rate is negative, and, hence, the non-selective state is a stable fixed
point of Equation (6.2.3). For σ < 1, the maximal eigenvalue rcontrol is positive, and the non-
selective state is unstable with respect to all Fourier modes ∼ eikx with wave numbers |k| larger
than a finite critical value kc (cf. Fig. (6.3.1))

kc(σ) =
1
σ

�
− log (1 − σ2) .

This instability predicts the spontaneous emergence of orientation selectivity from the non-selective
state on a characteristic timescale τ = 1/rcontrol. Note, however, that the instability found in this
model is not an instability of Turing type [154, 210], because an infinite range of wave numbers is
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unstable for any finite value of rcontrol > 0. Methods such as weakly nonlinear analysis (cf. Chap-
ter 1) to analyze the behavior of the model in the nonlinear regime can therefore not be applied.
Therefore, the precise arrangement of the emerging selectivities and in particular their long-term
development has to be studied numerically.

6.4 The dynamics of the model

6.4.1 Methods

Adapting the methods from Chapter 3, I used a fourth-order Runge-Kutta scheme [190] to obtain
numerical solutions of the dynamics given in Equation (6.2.3). Simulations were performed on
32×32, 64×64, 96×96, and 128×128 grids with periodic boundary conditions. Progression of time
was measured in units of the intrinsic timescale τ = 1/rcontrol defined by the maximum growth
rate of the linearization (cf. Eq. (6.3.3)). The integration time step was chosen as δt = τ/20. This
ensured good approximation to the temporally continuous changes of the patterns. The stimulus
average in Equation (6.2.3) was approximated by choosing a random representative sample of Ns
stimuli at each integration time step with

Ns = max
�

105,
N0Γ2

(εs)n
δt
τ

�
,

where n corresponds to the dimensions of the feature space in addition to the two retinal po-
sitions (in our case, n = 2), Γ2 = (L/σ)2 the squared aspect ratio of the simulated system in
units of the squared width of the activation function σ2, εs the resolution in feature space, N0
the number of stimuli that were required to approximate the cumulative effect of the ensemble
of stimuli within each feature space voxel εn+2. The choices N0 = 100 and εs = 0.05 ensured a
high signal-to-noise ratio for all the simulations. A high signal to noise ratio in the simulations is
particularly important as the noise stemming from the finite sample stimulus averages is expected
to have low-pass statistics [148]. The noise statistics thus may result in an artificial tendency for
neighboring units to align their selectivities apart from potential alignments stemming from the
model dynamics. Typical values for Ns were between 2.5 × 105 and 4 × 106. To simulate the emer-
gence of orientation selectivity, simulations were initialized with a random weakly selective state,
z(x, t = 0) = 10−2ei2πξ(x), where the ξ(x) are independent identically distributed random num-
bers uniform in [0, 1]. Different realizations were obtained by using different stimulus samples.
When starting from ordered initial conditions, e.g. Figure 6.4.2, the amplitude �|z(x)|�x of the
initial states was set to the average value obtained in a simulation starting from the non-selective
state with the same model parameters. Stimuli were drawn from two different distributions, each
with

�
|sz|2

�
= 2: (i) stimuli uniformly distributed on a ring with |sz|2 =

√
2 (circular stimu-

lus ensemble), (ii) stimuli uniformly distributed within a circle {sz, |sz| ≤ 2} (uniform stimulus
ensemble). Similar to Chapter 3, the results for both stimulus ensembles were virtually indistin-
guishable. All results that follow were obtained with the circular stimulus ensemble.
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Figure 6.4.1: Dynamics of orientation preference layouts in the optimization model (Eq. (6.2.3)), starting from an initial
condition with small random selectivities. (a) Snapshots of a simulation with rcontrol = 0.1, circular stimulus ensemble
(cf. Chap. 3 and Sec. 6.4.1) on a 64x64 mesh. Color encodes the preferred orientation, brightness the selectivity of the
units. (b) Development of selectivities of 12 randomly chosen individual units in the simulation in a. (c) Orientation
preferences of the units in b.

6.4.2 The spontaneous emergence of disordered selectivity organizations

Firstly, the simulations confirmed the spontaneous emergence of selectivity for σ < 1 (Fig. 6.4.1a,b),
as expected from linear stability analysis. Figure 6.4.1a shows snapshots of a representative exam-
ple of a simulation, starting from an initially spatially uncorrelated pattern of orientation prefer-
ence with low selectivity (cf. Sec. 6.4.1 above). Selectivities rapidly increase during the first 10τ
until they saturate, fluctuating around a constant value of 0.5 (Fig. 6.4.1b). Orientation preferences
change substantially only within the first few τ and reach an almost stationary value thereafter
(Fig. 6.4.1c). Most interestingly, however, despite the tendency for neighboring neurons to be
co-activated (cf. Fig. 6.2.1), no ordered columnar structure develops. Instead, at first sight, the
numerically stationary state of the simulation at large values of τ appears to be a random spatial
arrangement of selectivities. This is very reminiscent of the selectivity layouts observed in rodents
(cf. Fig. 1.3.1 and [13, 14, 211]). It needs to be emphasized at this point that the disordered station-
ary states observed in the numerics are not a consequence of disorder in the dynamical equations,
for instance random coupling between the units on the 2-dimensional lattice. Unlike in spin glass
models, e.g. [212–214], where the disorder results from disordered connections between the spins,
Equation (6.2.3) is translation and rotation invariant. The spatial disorder in the numerically sta-
tionary states arises by inhibitory interactions between the sites. The effectively suppressive in-
teractions, mediated by the soft-competition for activity among the units, lead to a separation of
orientation preferences despite initial co-activation of neighboring units. These interactions favor
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the separation (misalignment) of selectivities of a pair of neighboring units. However, similar to
classical geometrically frustrated systems such as antiferromagnetically coupled spins on triangu-
lar and face-centered cubic lattices [215, 216], disorder arises when the preferred orientations of
multiple sites (within a range σ) attempt to simultaneously misalign due to the inhibitory interac-
tions during development. I conclude that Hebbian learning of feedforward connections together
with soft competition in the cortical layer naturally generates a salt-and-pepper layout of orienta-
tion selectivities via a type of geometric frustration during the developmental dynamics.

6.4.3 Starting from ordered initial conditions

In the last paragraph, a simple Hebbian learning scheme together with normalization of the to-
tal V1 activity has been demonstrated to be sufficient to explain the spontaneous emergence of
salt-and-pepper orientation selectivity layouts when initializing simulations with random initial
conditions. However, by the shift and translational symmetry alone, the orientation stripe pattern
(cf. Fig. 1.5.1) is a stationary solution of the developmental dynamics given by Equation (6.2.3)
(cf. Chapter 3). Furthermore, crystalline patterns of orientation preferences such as rhombic pin-
wheel crystals and orientation stripes have appeared in numerous models for OPM development
[109, 118, 122, 123, 125, 133]. They have also been identified as optimal dimension reducing map-
pings in the Elastic Network model (see Chapter 3), which bears striking similarity to the model
treated in this chapter. For these reasons, it is crucial to test whether ordered states are stable sta-
tionary states of the model dynamics (Eq. (6.2.3)). In order to do so, I initialized simulations with
the most widely found crystalline states: (i) orientation stripes (OS), (ii) rhombic pinwheel crys-
tals (rPWC), and (iii) aperiodic pinwheel rich layouts resembling experimentally observed maps
(for Methods see Sec. 6.4.1) with aspect ratios ranging from 6Λ × 6Λ to 12Λ × 12Λ on numeri-
cal grids with 64×64 and 128×128 grid points. Figure 6.4.2a shows snapshots of a representative
simulation starting from an OS initial condition. The OS pattern rapidly decays into an almost
randomly looking pattern, were neighboring neurons have very different orientation preferences.
A salt-and-pepper layout is dynamically reached from an ordered initial condition. A very simi-
lar picture emerges when rPWC and aperiodic orientation maps layouts are considered as initial
conditions (Fig. 6.4.2b,c). Hence, none of the canonical solutions of models for the development
of columnar orientation selectivity layouts appears to be stable with respect to the dynamics of
the model presented so far.

Finally, simulations were initialized with salt-and-pepper states obtained from simulations as in
Figure 6.4.1, but where a square subregion of neurons was set to have the same preferred orien-
tation (Fig. 6.4.2d, left). Such an initial configuration mimics a rodent or lagomorph orientation
preference layout after the preferred orientations in a small cortical subregion have been artifi-
cially aligned, e.g. by a pairing experiment [217–219]. In the model, the neurons in the aligned
subregion dynamically spread their preferred orientations to form part of the overall salt-and-
pepper arrangement (Fig. 6.4.2d). These changes occur on larger timescales compared to the
timescale of emergence of orientation selectivity from random initial conditions (Fig. 6.4.1). Such
long-term rearrangements after a pairing protocol represent perhaps the most easily testable pre-
diction of the stimulus-driven model presented in this chapter.
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a

b
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d

t = 0 t = 10 t = 30 t = 500

Figure 6.4.2: Dynamically obtained salt-and-pepper layouts in a stimulus-driven optimization model for visual cortical
development. (a) Orientation preference patterns obtained in a simulation of Equation (6.2.3) (rcontrol = 0.1) starting
from pinwheel-free orientation stripes. (b) As a but starting from a rhombic pinwheel crystals. (c) As a, but starting from
an aperiodic pinwheel-rich state with spatial layout similar to experimentally observed orientation maps in carnivoran
and primate V1. (d) As a, but starting from a dynamically obtained salt-and-pepper state as in Figure (6.4.1) with a
subregion in which selectivities are clustered (cf. Sec. 6.4.3).
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Figure 6.4.3: Illustration of the discrepancy
measure. Right: The discrepancy of a se-
quence of N random numbers distributed
in [0, π] is defined as the maximum dis-
tance between the cumulative distribution
of these numbers and the distribution func-
tion P(x) = x/π. Left: Schematic illus-
tration for the extraction of the distance-
dependent discrepancy (cf. Sec. 6.4.4).
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6.4.4 Quantifying the spatial structure of orientation preference patterns in the model

In the previous sections, I have studied a model for the development of orientation selectivity in
Glires visual cortex in which disordered states are dynamically reached as equilibria when starting
from random weakly orientation-selective states as well as from ordered initial conditions. In the
following, I address the question as to whether the disordered states obtained in our simulations
are quantitatively different from just random spatially uncorrelated layouts.

I used three different measures to quantitatively access the structure of the apparently random
stationary patterns obtained in numerical simulations. As a first measure, I used the radial part of
the conventional spatial correlation function

C(r) =
1

2π

ˆ
dφ C(r) , (6.4.1)

with
C(r) =

�z(x)z̄(x + r)�x
�|z(x)|2�x

.

To assess higher-order spatial statistical properties not captured by the correlation function, I used
the so-called root mean square discrepancy as a function of distance. The root mean square dis-
crepancy DN , simply referred to as “discrepancy” in the following, has been found to be a useful
measure of the equidistribution of a random sequence of numbers a1, a2, . . . aN in some interval.
The discrepancy with respect to the interval [0, π] is defined as

DN = sup
0≤a<b≤π

����
{a1, a2, . . . aN} ∩ [a, b]

N
− (b − a)

π

���� . (6.4.2)

The smaller the value of DN , the more uniform the sequence fills the interval [0, π]. Note that DN
does not depend on the order of the sequence. This fact was employed to obtain the discrepancy
as a function of distance, D(r), for a state reached by the numerical simulations. To calculate
D(r), I first constructed a sequence which consisted of all orientation preferences of units within
a distance r from the unit (i, j) (cf. Fig. 6.4.3) and computed its discrepancy. These discrepancies
were then averaged over all units (i, j) to obtain D(r). To reveal higher-order effects, discrepancies
of states obtained in the simulations were compared to the discrepancies of randomized states
with identical second-order statistics.

Finally, I adopted Swindale’s measure of stimulus coverage for cortical selectivity layouts. This
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measure of coverage is based on the variation of the total amount of neural activity A, evoked in
the striate cortex by a point-like stimulus [136, 220]. Swindale hypothesized that the columnar
architecture of the primary visual cortex of carnivorans and primates is designed in such a way
as to minimize the local variation in A. As a simple measure of non-uniformity he chose the ratio
between the standard deviation of the total amount of activity and the activity itself, i.e.

c =
�
�A2�
�A� , (6.4.3)

where the mean is taken over all contour orientations and spatial positions. When c is large,
coverage is bad, i.e. A is uneven. According to Swindale, coverage uniformity, as defined by
Equation (6.4.3), is a measure of one source of uncertainty in the amount of neural activity evoked
in V1 by a contour of a particular orientation lying in a particular receptive field position [220].

If the function e(x, S, z(·)) in Equation (6.2.3) was chosen as the expression for the neural activity
A, the total amount of neural activity

´
d2x e(x, S, z(·)) evoked by any stimulus S would be equal

to one for all the stimuli. Hence, with an activity definition including soft competition via divisive
normalization, coverage is zero by definition, i.e. perfect, for any map in the model. To neverthe-
less analyze the coverage of the simulated orientation preference patterns, I adopted Swindale’s
definition of evoked neural activity [220]. For a contour of a particular orientation θ present in a
particular visual field location (ψ, φ) he defines the activity A(θ, ψ, φ). This activity is computed
via the so-called cortical point image Pc(x, y), the distribution of activity in the cortex evoked by
stimulation of a point (ψ, φ) in visual space. Let θ(x, y) be the preferred orientation as a function
of cortical position and let Ω(θ − θc) be an averaged orientation tuning curve. Assuming that
the map of visual space is isotropic and the magnification factors relating (ψ, φ) to (x, y) are both
unity, one can define the activity A as

A(θ, ψ, φ) =
ˆ

dx�dy� Ω
�
θ − θc(x�, y�)

�
Pc(ψ − x�, φ − y�) .

Following Swindale, I chose

Pc(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
,

with the σ as given by the model parameters. For the Tuning Curves, I chose a von-Mises-function

Ω(θ − θc) =
eκ cos(2(θ−θc))

2π I0(κ)
,

with κ = π/8 and I0(κ) being the modified Bessel function of first kind. All other parameters
were chosen as in [220].

Figure 6.4.4 demonstrates how these measures distinguish the stationary states obtained in simu-
lations of Equation (6.2.3) from random arrangements. Figure 6.4.4a again depicts the emergence
of an orientation-selective salt-and-pepper layout. In Figure 6.4.4b, the correlation functions cor-
responding to the states in Figure 6.4.4a are depicted. During the simulation, the uncorrelated
random initial arrangement of weakly selective units develops into a pattern with strong local
anti-correlation. This quantitatively demonstrates that the effectively suppressive interactions,
mediated by the soft competition for activity among the units in the model, in fact lead to a local
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Figure 6.4.4: Quantifying salt-and-pepper layouts obtained in the model. (a) Redrawn from Fig. 6.4.1a. (b) Spatial
correlation function C(r) (Eq. (6.4.1)) for the maps depicted in a. (c) Discrepancy (Eq. (6.4.2)) as a function of distance
for N = 4 simulations with random weakly selective initial conditions (solid green lines) as well as for the final states
after t = 1000τ (solid red lines). The dashed green and red lines represent discrepancies for randomized initial states
and final states respectively (cf. Sec. 6.4.1). (d) Swindale coverage for N = 4 simulations (parameters as in a). The grey
lines represent Swindale coverage of phase randomized time courses with identical second-order statistics.

‘repulsion’ (or misalignment) of orientation preferences. Units in the immediate vicinity tend to
avoid each others preferred orientations. In Figure 6.4.4c, the discrepancies D(r) as a function
of distance for the initial and the final states at t = 1000τ are shown for four simulations. The
discrepancy of the final states is always lower than that of the uncorrelated initial conditions. Dis-
crepancies for randomized final states are considerably larger than those of their simulation coun-
terparts. This illustrates that the local anti-correlation (Fig. 6.4.4b) containing two-point statistics
only, does not fully account for the spatial structure of the salt-and-pepper layout of the model.
It is intuitively clear that a layout of orientation preferences with locally anti-correlated preferred
orientations achieves an excellent coverage of the space of stimuli. Units selective to all possible
orientation can be encountered within a very small subregion. Indeed, the development of the
pronounced anti-correlation is accompanied with a drop in coverage during development (Fig.
6.4.4d). However, again this drop is much more pronounced compared to the randomized states
with identical second-order statistics (Fig. 6.4.4d).

Equation (6.2.3), which describes the dynamics of orientation preference layouts as a function of
time, has only a single parameter, i.e., the width of the activation function σ. This parameter
modulates the distance to the instability of the homogeneous non-selective state. However, as
revealed by numerical simulations (Figs. 6.4.1,6.4.2,6.4.4), orientation preference layouts in the
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Figure 6.4.5: Characterization of numerically stationary salt-and-pepper states of the model as a function of the nu-
merical discretization. (a-d) Correlation functions (a), correlation functions normalized by their maximum value (b),
discrepancies as a function of distance (c), and Swindale coverage as a function of simulation time (d) for simulations
with control parameter rcontrol = 0.1 and different ratios px/σ (line colors, see legend on the right). (e-h) As a-d but for
rcontrol = 0.2. To enable comparison among different simulations, coverage values c in the simulations were normalized
with the values cs, obtained for a spatially randomized arrangement of the preferred orientations in the simulations.
For each set of parameter, N = 4 simulations are shown.

model rapidly exhibit spatial modulations on the scale of the discretization mesh used. It is there-
fore essential to clarify, whether the statistics of the solutions of the model critically depend on the
chosen grid size. To answer this question, I simulated Equation (6.2.3) for different numbers of
grid points px per width of the activation function σ, keeping σ at the same numerical value. In
all of the simulations, when starting from a weakly selective state (see Methods above), numeri-
cally stationary orientation selectivity layouts were of apparently random nature very similar to
Figure 6.4.1. Nevertheless, a quantification of the layouts for different values of px/σ revealed
substantial differences between them (Fig. 6.4.5). Local anti-correlations in the numerically sta-
tionary states decrease with increasing px/σ (Fig. 6.4.5a). Normalizing the correlations by the
maximum absolute value Cmax acquired outside of r = 0, reveals that the range of the correlation,
measured in units of σ, is rather invariant (with the exception of simulations with very few grid
points within a σ range (px/σ < 1.5, cf. Fig. 6.4.5b)) and essentially set by the range of soft com-
petition. Only the magnitude of the anti-correlations decreases with increasing number of grid
points per σ. According to these observations, one would expect a spatially uncorrelated pattern
for px/σ → ∞. The decrease in anti-correlation strength is not surprising, given the invariance of
its range as illustrated by the following simple calculation using the n × n covariance matrix M,

(M)ij =
�
z(xi)z̄(xj)

�
,

i, j = 0 . . . n − 1 for the preferred orientations of the n − 1 nearest neighbor grid points. Approx-
imating the anti-correlation as a constant around −γ in a certain range, then discretizing with n
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grid points within this range leads to the cyclic covariance matrix

M =





1 −γ −γ · · · −γ

−γ 1 −γ
. . . −γ

−γ −γ
. . . −γ

...
... . . . −γ 1 −γ

−γ −γ −γ −γ 1





for the n − 1 units within the range of anti-correlation. This cyclic matrix has eigenvalues

λm =

�
1 − (n − 1)γ m = 1
1 + γ m = 2 . . . n

and positive semi-definiteness of the covariance matrix implies that

γ ≤ 1
n − 1

.

With increasing number of grid points within the range of the local anti-correlation, the value of
the negative correlation necessarily has to decrease. In two dimensions, the strength of the local
anti-correlations should decrease ∼ 1/(px/σ)2, which is indeed observed.

Similarly to the second-order statistics, also the higher-order statistical quantities that have been
introduced above demonstrate that the numerically stationary states come closer to purely ran-
dom layouts with increasing px/σ. The discrepancy for the stationary states as a function of
distance, now measured in px to enable comparison between the simulations, tend to increase
with increasing px to σ ratio (Fig. 6.4.5c). Swindale’s measure of coverage shows a much stronger
decrease with respect to spatially randomized arrangement of the preferred orientations in the
simulations when px/σ is small (Fig. 6.4.5d). None of the above properties depends on the dis-
tance to instability threshold (compare Fig. 6.4.5a-d with Fig. 6.4.5e-g).

To summarize, the numerically stationary states obtained in simulations of a stimulus-driven
model for Glires cortical development were found to be distinct from random arrangement. They
could be characterized by a local anti-correlation of preferred orientations and a decreased dis-
crepancy and coverage compared to random selectivity arrangements as well as randomized
states with identical correlations. For increasing number of grid points per range of activation
in the model, the observed numerically stationary states become more similar to spatially random
layouts.

6.4.5 Modeling an initial bias in preferred orientations

Recent data suggests an interesting difference of the development of orientation selectivity be-
tween Glires on the one hand and carnivorans or primates on the other. Rochefort et al. dis-
covered that in mice, prior to any visual experience, a fraction of around 12% of neurons in V1
were orientation-selective [107]. Furthermore, almost all of these neurons appeared to prefer-
entially responded to anterodorsal directions. This corresponds to anterior and dorsal motion
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Figure 6.4.6: Initial bias of preferred orientation in a subpopulation of units vanishes via active self-organization of
salt-and-pepper layouts. (a) Snapshots of a simulation with rcontrol = 0.1, circular stimulus ensemble (cf. Chap. 3)
on a 64x64 mesh and initial condition mimicking the experimentally observed initial bias toward a preference for
anterodorsal directions [107] (cf. Sec. 6.4.5) (b) Histograms of preferred orientations of the 30% most selective cells
for the simulation in a. (c) Histograms of selectivities for the simulation in a. (d, e) Selectivities (d) and preferred
orientations (e) of initially orientation-selective units.
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Figure 6.5.1: Convolution kernels given by Equation (6.5.2). For S = 0,
the kernel is negative and the model thus contains only inhibitory in-
teractions. For increasing S, an excitatory component is added to the
kernel. For S = 1, the convolution kernel is purely excitatory. How-
ever, the model still contains both types of interactions, excitation me-
diated by the convolution and inhibition mediated by soft competition
for activity which is induced by the normalization of the total amount
of activity in the cortical layer.
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direction, i.e. 0◦ and 90◦ orientation, in visual coordinates. During later development, the fraction
of orientation-selective neurons increased to about 33% and the initial bias in preferred orien-
tations vanished. Orientation selectivity development and bias were found to be unaltered in
dark-reared mice, indicating that the early development of direction and orientation selectivity
is independent of visual experience. The authors speculate that such bias might originate from
the early formation of direction-selective retinal ganglion cells via a genetically predetermined
and experience independent asymmetric inhibition [221, 222]. In this view, the subcortical inputs
driven by direction-selective retinal ganglion cells with strong preference for motion toward ei-
ther the temporal or the ventral pole of the retina could be conceived as providing a seed for the
emergence of orientation selectivity in V1 [107, 221].

To include these findings into the model, I initialized simulations with states in which 20% of the
units had either 0◦ or 90◦ orientation preference with 50% of the expected selectivity of the final
states (cf. Fig. 6.4.6a-c). All other units had small random selectivities with ∼ 10−2ei2πξ(x), where
the ξ(x) are independent identically distributed random numbers uniform in [0, 1] (Fig. 6.4.6a).
When initialized with these conditions, the self-organization dynamics of the model almost ex-
actly reproduces the findings by Rochefort et al.. Within a few τ, the initially unselective neurons
reach mature selectivities (Fig. 6.4.6a,c) and the distribution of preferred angles for the most selec-
tive units quickly loses its bias to achieve a uniform distribution (Fig. 6.4.6b, most right). During
this dynamics, the preferred orientations and selectivities of the units seeded with strong prefer-
ences exhibit only small changes (Fig. 6.4.6d,e). This, in turn, means that the preferences of the
other units literally fill in the remaining angles to obtain an equal representation of the space of
orientations. Such type of dynamics represents an interesting prediction of the model, testable by
repeated 2-photon-imaging of the same group of cells in developing mice.

6.5 Adding lateral excitation to the model

The previous sections introduced a stimulus-driven model for Glires visual cortical architecture,
based on a Hebbian learning scheme and an activation rule normalization of the total amount
of V1 activity. Mathematically, the model dynamics has great similarities with classical feature
map models such as the Elastic Network (cf. Chap. 3), Kohonen’s self-organizing feature map
[145] or the convolution model by Scherf et al. [144]. These models have previously been used
to describe the development of continuous feature representation in the primary visual cortices
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of carnivorans and primates. The main difference between the model for rodent and lagomorph
cortical development studied so far in this chapter and conventional feature models is the lack of
any lateral intracortical excitation. In the model as introduced in Section 6.2, lateral interactions in
the cortical layer are exclusively mediated by the soft competition mechanism. This mechanism
effectively provides solely inhibitory intracortical interactions, and it is these interactions that lead
to the salt-and-pepper states during the self-organizing dynamics. However, certainly both lateral
excitation and inhibition play a role in shaping the activity in rodent V1 [223]. It is therefore of
fundamental importance to clarify, whether salt-and-pepper states continue to exist as numerically
stationary states of the dynamics of the model when lateral excitation is explicitly included into
the model and to work out the precise conditions for a potential transition from ordered selectivity
layouts to salt-and-pepper states.

One of the simplest ways of including different types of lateral interactions into models with
activity-dependent Hebbian learning and soft competition for activity is by introducing a convo-
lution of the competition term with a cooperative lateral neighborhood function:

∂tz(x) =

�
[sz − z(x)]

ˆ
d2yK(x − y)e(y, S, z(·))

�

S
, (6.5.1)

with e(x, S, z(·)) given by Equation (6.2.2). For a Gaussian kernel K(x), the resulting model is
analogous to the model by Scherf et al. for the formation of ocular dominance columns [144].
This model was shown to generalize several well-known feature map models, such as Kohonen’s
self-organizing feature map [145, 146] and the Elastic Network model [134, 143]. I now consider
Equation (6.5.1) with a more general convolution kernel of the form

K(x) =
(1 − S)

2π
δ(|x|)− (1 − S)

2π(1 − W)2 e−x2/(2(1−W)2) +
S

2πW2 e−x2/(2W2) , (6.5.2)

where 0 ≤ S, W ≤ 1 and δ(x) being Dirac’s delta function. For S = 1, the original model con-
sidered by Scherf et al. with a Gaussian kernel mediating the local spread of activation from
neighboring neurons is recovered and map-like selectivity arrangements are expected [144]. For
S < 1, both lateral excitation and inhibition are present. Auto-inhibition is prevented by the first
term of the kernel in Equation (6.5.2). Figure 6.5.1 depicts this convolution kernel for different
parameters S and W. Note that the above model (Eq. (6.5.1)) is non-potential.

There are three key questions to investigate now: (i) Is there a transition to a salt-and-pepper-like
spatial pattern of neural selectivities at a finite value of S < 1, i.e. when increasing lateral inhi-
bition but with non-vanishing excitation? (ii) If yes, are the resulting states statistically similar to
the states observed in the absence of excitation? (iii) What do the stationary orientation map pat-
terns in this model look like1? In order to answer these questions, I first analyze the dynamics of
the model (Eq. (6.5.1)), linearized around the homogeneous non-selective fixed point. Its asymp-
totic behavior will then be studied by numerical simulations adapting the methods presented in
Section 6.4.1.

1 Scherf et al. did not use a numerical method suitable to investigate long-term pattern dynamics.
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Figure 6.5.2: Linear growth rates (Eq. (6.3.2)) of Fourier modes ∼ eikx as a function of the normalized wave number kσ
in the model Equation (6.5.1) for different receptive field widths σ and different kernel parameters S and W. (a) Linear
growth rates for S = 1 (purely excitatory convolution kernel) and W = 0.7. For decreasing σ, the model undergoes a
Turing Bifurcation where the homogeneous non-selective fixed point becomes unstable and the spontaneous emergence
of ordered orientation selectivity layouts with a typical scale is predicted. (b) Linear growth rates for S = 0.4, W = 0.7
(short-range excitation plus strong but relatively long-range inhibition). For decreasing σ, the model first undergoes a
Turing Bifurcation. Further decreasing σ destabilizes all Fourier modes above a critical k-value. The maximum growth
rate, however, is acquired for finite k. (c) Linear growth rates for S = 0.45, W = 0.6 (weak long-range excitation plus
strong short-range inhibition). For decreasing σ, the homogeneous state loses stability with the maximum growth rate
acquired for k → ∞.

6.5.1 Linear stability analysis and numerical simulations

For rotationally symmetric kernel K(x) = K(r), the spectrum of eigenvalues of the linearized
dynamics of the convolution model model reads

λ(k) = −
ˆ

d2y K(y) +
�
|sz|2

�

2σ2

�
1 − e−k2σ2

�
F0(k) ,

where F0(k) is the Hankel transform of the kernel K(r). With the ansatz in Equation (6.5.2) and the
normalization

�
|sz|2

�
= 2, one obtains

λ(k) = −S +
1
σ2

�
1 − e−k2σ2

� �
(1 − S)− (1 − S)e−k2(1−W)2/2 + Se−k2W2/2

�
.

The growth rate at k → ∞ equals

λ∞ = −S +
1
σ2 (1 − S)

from which follows that, provided a certain strength of inhibitory interactions and sufficiently
small σ, the growth rate at infinity can be larger than zero. It is not possible to analytically de-
termine the maximum growth rate as well as the corresponding wave number kmax. Figure 6.5.2
depicts the linear growth rates of the convolution model for various parameter regimes. In all
three depicted regimes, the homogeneous non-selective states loses stability when σ is lowered
beyond a critical value. For purely excitatory kernel K(x) (S = 1, Fig. 6.5.2a), the linear instabil-
ity is of the classical Turing type [210], i.e. the homogeneous state gets unstable with respect to
Fourier modes with a finite wave number k. For intermediate values of W and S-values close to
one, the instability is again of Turing type, but above a certain value of σ, all Fourier modes with
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wave numbers larger than a critical value kc lose stability (Fig. 6.5.2b). The fastest growing mode
still has a finite wave number k. If S is further decreased, the first Fourier mode to lose stability
when decreasing σ is at k → ∞. In this case, it is also the fastest growing mode (Fig. 6.5.2c). This
instability is of the same type as in the original model with pure inhibition by soft competition.
Importantly, the transition between the two types of bifurcations generally occurs at a finite value
of S. According to the above considerations, the linearized dynamics of the convolution model can
be classified into four categories: (1) The non-selective state is stable. (2) The non-selective state
is unstable with respect to a finite band of Fourier modes. (3) The non-selective state is unstable
with respect to all Fourier modes with wave numbers larger than a critical value kc. The fastest
growing mode has a finite wave number. (4) The non-selective state is unstable with respect to
all Fourier modes with wave numbers larger than a critical value kc. The fastest growing mode
has infinite wave number. Figure 6.5.3 depicts each of these linear regimes as a function of the
kernel parameters S and W of excitation for σ = 1. For small S and large W, the linearity is of
salt-and-pepper type, i.e. (4). In such a regime, excitation is long-range but weak and short-range
strongly suppressive interactions dominate the model dynamics. For small S and small W, the
linearity is of type (1). The range of inhibitory interactions in this parameter regime is apparently
to large to result in disordered selectivity layouts. For large S and small W, the linearity is of type
(2). For large S and large W, the non-selective state is stable.

It is now particularly interesting to study the behavior of the model for times much larger than the
intrinsic timescale τ, i.e. beyond the linear regime, by numerical simulation. First, the stationary
states in regime (2) have to be determined. Do they resemble experimentally observed orientation
preference maps? Second, it is unclear how the nonlinear interactions between Fourier modes
alter the model dynamics in the regime (3). Third, it has to be analyzed whether the transition to
the disordered states in regime (4) as predicted by linear stability analysis is really observed in the
numerically stationary states of the model.

Figure 6.5.3b-d depicts two representative simulations in each of the three regimes where sponta-
neous symmetry is expected. In regime (4), numerically stationary states in the model are indeed
disordered (Fig. 6.5.3b) and show similar properties as previously observed in the S = 1, W = 0-
limiting case, as exemplified by the local anti-correlation in the final state (t = 500τ) of the simula-
tion (Fig. 6.5.3b, most right). The dynamics in regime (2) and (3) appear very similar (Fig. 6.5.3c,d).
In both cases, the emergence of a pinwheel-rich map-like orientation preference layout can be ob-
served. Via pairwise pinwheel annihilation, these acquire large stripe-like regions during the later
simulation stages. These dynamics strongly resemble the behavior of the Elastic Network model
(cf. [142, 166] and Chap. 3). In fact, for a different set of parameters (σ = 0.7, S = 1, W = 0.5) a
convergence toward rhombic pinwheel patterns was also observed.

6.6 Summary

In this chapter, I studied stimulus-driven models for the activity-dependent development of ori-
entation selectivity in the primary visual cortex of rodents and lagomorphs. I first considered a
simple optimization model describing the emergence of orientation selectivity by the interplay be-
tween Hebbian learning and soft competition for activity within the cortical layer. Linear stability
analysis of the non-selective state revealed a novel type of instability in which the first Fourier
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Figure 6.5.3: Types of linear instabilities as well as numerical solutions of the model defined by Equation (6.5.1). (a)
Diagram showing the different types of instabilities in the model including lateral excitation and inhibition with σ = 1.
In the blue region (S’nP), the maximum linear growth rate is at k → ∞; in the red region, the linear growth rate
is maximal for a finite kc and limk→∞ λ(k) < 0; in the green region, the linear growth rate is maximal for a finite
kc and limk→∞ λ(k) > 0; in the violet region, the homogeneous non-selective state is stable. (b) Snapshots of two
representative simulations of the convolution model with linearity of salt-and-pepper type (Fig. 6.5.2c, σ = 1, S = 0.45,
W = 0.5). Right: Correlation function at t = 500τ for the simulation in the upper panels. (c) Snapshots of two
representative simulations of the Scherf model in the red phase with linear growth rates similar to Figure 6.5.2a, red
curve (σ = 1, S = 0.48, W = 0.45). (d) As c but for the green phase with linearity similar to Figure 6.5.2b, red curve
(σ = 1, S = 0.51, W = 0.45). Note that the distance to the instability threshold differs in c and d.
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mode to lose stability has infinite wave number. For finite control parameter, i.e. growth rate of
the infinite wave number Fourier mode, all Fourier modes above a certain wave number kc are
unstable. Due to this particular type of instability, in the linear regime, the emergence of patterns
without any apparent structure or typical scale is expected. This was indeed confirmed by di-
rect numerical integration of the model equations. In simulations, layouts continued to exhibit
a disordered structure for large simulation times, compared to the timescale of the orientation
selectivity emergence. These features of the model dynamics are very reminiscent of what has
been observed in the rodent visual cortex [13–15]. Next, I numerically investigated the dynamics
of the model, for initial conditions that matched the stationary solutions classically observed in
similar approaches to the emergence of orientation selectivity in primates and carnivorans. None
of the ordered patterns seemed to be stable solutions of the model. In all cases, salt-and-pepper
layouts in which neighboring units show very different orientation preferences were dynamically
reached.

To quantify the apparently random numerically stationary patterns, I used three different mea-
sures: the marginal correlation function, the discrepancy as a function of distance, and Swindale’s
measure of stimulus space coverage. Stationary solutions of the model were found to be distinct
from spatially uncorrelated layouts. Orientation preferences were locally anti-correlated roughly
within the scale of the activation function width in the model. Both, discrepancy as function of
distance as well as Swindale’s coverage measure were considerably lower even when compared
to random arrangements with spatial correlations identical to observed solutions. The number of
pixels per width of the activation function was found to be the critical parameter for the strength
of distinction between the obtained solutions and truly random layouts.

As a second step, I generalized the model to include lateral excitation and inhibition of varying
strength and width by introducing a convolution term. Linear stability analysis uncovered that
the generalized model now in addition to the above linear instability also exhibits a classical Tur-
ing instability, which is usually invoked to model the emergence of patterns with a typical scale.
In fact, the model now exhibits two distinct and sharply separated phases: (1) a phase in which
the homogeneous non-selective state is stable and, thus, orientation selectivity does not emerge
(2) a phase in which orientation maps emerge. Notably, these are also the two fundamentally dif-
ferent visual cortical architectures found in Glires on the one hand and carnivorans and primates
on the other. Key ingredient for the transition from map-like to salt-and-pepper-like functional
architecture is the dominance of effective short-range inhibition over the excitatory interactions in
the dynamics.

The models considered in this chapter clearly show that the apparent randomness of spatial selec-
tivity arrangements and the lack of specificity in the lateral connections found in Glires primary
visual cortex is not at all in conflict with the classical Hebbian plasticity paradigms. As a matter of
fact, large parts of our current knowledge about the precise mechanisms of synaptic plasticity has
been derived from electrophysiological data obtained in slice preparations and in-vivo recordings
from rat and mouse cortex. It would have been more than surprising if the functional cortical
architecture in these paradigmatic model organisms could not be explained by the same mech-
anisms that have been shown to critically determine the feature maps found in carnivorans and
primates. In the map regime, the dynamics of the model is very similar to the EN model dynamics
studied in detail in Chapter 3. In fact, both models are based on a local activation of the cortical
layer by idealized point-like stimuli leading to effectively short-range interactions. As outlined in



188 6 Stimulus-driven optimization models for rodent visual cortical development

Chapter 5 and already pointed out in [11, 123], in such a regime, pinwheel annihilation and crys-
tallization represent the canonical dynamics. A suitable stimulus-driven model for the transition
from rodent-like arrangements to ordered layouts realizing the common design of experimentally
observed orientation preference maps [11] is yet to be found.



Chapter 7

Summary and Outlook

I now summarize the results of the present dissertation and discuss potential future lines of re-
search that, in my view, would be worth pursuing.

Chapter 2 was devoted to the analysis of the interaction between postnatal brain growth and the
development of ocular dominance (OD) columns in cat primary visual cortex (V1). By analyzing
data from numerous imaging experiments, I was able to show that the naively expected expan-
sion of columns during cortical growth does not occur. Instead, columnar layouts reorganize
over the considered period and become more isotropic in older animals. Driven by these experi-
mental findings, I analytically and numerically analyzed the predicted reorganization in a widely
used optimization model for the activity-dependent formation of OD columns which, originally,
was conceived for non-growing cortical domains. Based on general properties of this model, I
developed a novel scenario of growth-induced cortical reorganization based on the zigzag insta-
bility [160, 224, 225], a generic secondary instability which has been observed in many inanimate
pattern-forming systems. I found characteristic features of this reorganization as well as the time
scale on which it evolves to be in good agreement with the changes in columnar layout that are ob-
served during postnatal growth in cat V1. Most importantly, these results suggest a novel function
of plasticity in normal development, namely that cortical circuits remain plastic for an extended
period during development in order to facilitate the modification of neuronal circuits to adjust for
cortical growth.

Postnatal growth constitutes a naturally occurring constraint to cortical development, since the
addition of vasculature, blood vessels, and glial cells represents a necessity for ensuring nutri-
tion and homeostasis in the adult brain. However, the strategies chosen by different species to
adapt to cortical growth may vary greatly [226]. In fact, developmental programs of the cen-
tral nervous system and, in particular, the amount of postnatal brain growth varies considerably
between mammalian species [227]. Therefore, considering different and possibly evolutionarily
widely separated species that potentially utilize different strategies to account for brain growth
represents a crucial step to extend the results of Chapter 2. As a matter of fact, preliminary ex-
perimental results in ferret V1 indicate a different spatially anisotropic growth scenario for this
species [228]. Additionally, the investigation of growth-related reorganizations of other stimulus
feature representations, such as stimulus orientation and direction, seems highly promising. The
mathematical description of orientation preference, for instance, differs fundamentally from OD
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and different theoretical predictions are therefore likely. If the scenario of anisotropic growth in
ferret V1 consolidates, novel modeling approaches to pattern formation on anisotropically grow-
ing domains will be required to better understand possible modes of reorganization in orientation
preference and OD layouts induced by postnatal brain growth.

The remainder of the present dissertation is dedicated to optimization principles and constraints
that potentially govern the emergence of orientation selectivity and its spatial organization. In
carnivorans and primates, orientation selectivity is arranged in columnar patterns, so-called ori-
entation preference maps (OPMs, cf. Figs. 1.2.1 and 1.2.2) with apparently universal spatial statis-
tics among species with highly different genetic background ([11] and Chapter 1). In Chapter 3, I
studied one of the most widely used optimization hypotheses for the design of orientation maps
and retinotopic maps, namely that they incorporate the most uniform, yet smooth representation
of two visual feature combinations: (i) position in visual space and (ii) line orientation. Mathemat-
ically, this would imply that the apparently universal OPM layout can be interpreted as ground
states of a smooth mapping of a 4-dimensional space of visual stimulus features to an effectively 2-
dimensional array of neurons (dimension reduction hypothesis). I used a perturbative approach
to compute the ground states of perhaps the most prominent dimension reduction model, the
Elastic Network (EN) model, for the joint optimization of retinotopy and OPM. I showed that
the dynamics of both feature representations can be treated within a general theory for the sta-
bility of OPMs. I found various ground states in different regions of the parameter space of the
model. However, in all relevant parameter regimes, the ground states of the EN model are ei-
ther stripe-like, or crystalline representations of the two visual features. Summarizing pattern
selection, I calculated a complete phase diagram of the model where additional quasi-crystalline
ground states with low pinwheel densities are found in extreme parameter regimes. All analyti-
cal predictions were confirmed by direct numerical simulations. These results strongly question
previous numerical studies concluding that dimension reduction models correctly reproduce the
spatially aperiodic arrangement of visual cortical orientation columns.

One of the most encouraging results of the first two chapters of this thesis, together with recent
work on Kohonen’s self-organizing feature map algorithm [229, 230], is the striking analogy be-
tween the dynamics of optimization models for cortical representations and the dynamics of the
classical pattern generating systems of physics. The zigzag instability in response to growth, non-
linear mode competition, the occurrence of dislocations and defects in patterns far from the insta-
bility threshold - all these features have long been studied in many models for pattern formation
in inanimate systems phenomenologically described by equations of the Ginzburg-Landau type.
This raises hope that the lessons learned from much simpler and analytically more tractable mod-
els still hold, if less idealized optimization approaches are to be considered.

Aperiodic pinwheel-rich OPMs are nearly impossible to obtain in the classical Elastic Network
model, but is the statistics of real OPMs really aperiodic and spatially isotropic? A recent study by
Paik and Ringach indeed questioned the findings in [11] and identified a hexagonal arrangement
underlying the layout of orientation columns in ferret, macaque monkey, cat, and tree shrew [168].
The study explains this hexagonal arrangement by constraints arising from a limited number of
feedforward inputs to V1 cells provided by the regular mosaics of retinal ganglion cells (RGCs)
and relayed by the lateral geniculate nucleus. To reproduce OPMs with hexagonal order and
typical column spacing, the proposed model crucially relies on the presence of an almost perfectly
hexagonal lattice of RGC cells together with a so-called dipole assumption, i.e. the assumption
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that the input to a cortical cell is dominated by a single pair of one ON and one OFF cell, that
are one another’s nearest neighbors. Chapter 4 resolved the apparent controversy between the
finding of a universal aperiodic OPM statistics by Kaschube et al. [11] and the regular hexagonal
pinwheel lattices found by Paik and Ringach. In the search for hexagonal organization, I analyzed
a data set of experimentally measured OPMs which is more than 10 times larger than the set
analyzed in [168]. In addition, I tested different sets of control maps, including the maximum
entropy ensemble, i.e. the most general ensemble consistent with the null-hypothesis formulated
by Paik and Ringach. Importantly, the isotropic control ensemble used in their analysis is not the
most general one and is based on additional implicit assumptions.

First, by applying the exact same analysis as in [168] to essentially complex planforms1 that
lack any hexagonal symmetry by definition, I revealed that it is a general problem of Paik and
Ringach’s indicator for hexagonal order that it can suggest some degree of “hexagonality” even if
there is none at all. Hence, one has to act with great caution when interpreting the results of such
analysis applied to experimentally measured maps. Additionally, I identified a strong bias in the
hypothesis test for hexagonal order used in [168]. On the basis of these findings, I developed a
modified and unbiased hypothesis test to search for true signatures of an underlying hexagonal
organization in OPMs. According to this novel indicator, the degree of hexagonal order in real
maps is statistically indistinguishable from the one in artificial maps such as essentially complex
planforms. Experimental maps are also statistically indistinguishable from maximum entropy
control maps with completely isotropic power spectra. Thus, in contrast to the central claim of
Paik and Ringach, the degree of hexagonal order is not larger in real maps than in isotropic maps.
These results demonstrate that there is currently no evidence for hexagonal order in visual cortical
OPMs and, hence, clearly refute the central conclusions in [168]. But the importance of the findings
in Chapter 4 goes beyond the now again debatable contribution of RGC mosaics to OPM devel-
opment since hexagonal arrangements of orientation columns are not a distinctive signature of
such subcortical constraints. In particular it is known that a strong role of lateral intracortical con-
nections [11, 118], interactions between orientation and eye dominance column formation [125] or
even the mere coupling of contour orientation and retinotopic organization implied by Euclidean
symmetry [129] can give rise to hexagonal arrangements of orientation columns. Notably, already
the first theoretical study of the activity-dependent formation of orientation maps ever published -
4 decades ago - found maps of hexagonal organization [109]. Not least, as shown in Chapter 3, the
Elastic Network model for the joint optimization of retinotopic distortions and OPMs also shows a
parameter region in which hexagonal OPMs are optimal. Consequently, hexagonal structures are
abundant and can arise by very different mechanisms. The findings in Chapter 4 about the lack of
such hexagonal order in real OPMs thus also show that any of the above alternative mechanisms
for hexagonal orientation column arrangements plays, at most, a small role in shaping the layout
of V1 orientation maps.

Despite the lack of hexagonal organization in experimentally measured OPMs and the method-
ological problems identified in Chapter 6, many interesting questions are raised and remain unan-
swered by the study of Paik and Ringach. Presumably, the placement of ON- and OFF-center
retinal ganglion cells in the mammalian retina is better described by a pairwise interacting point
process (PIPP) than by a noisy hexagonal lattice [231]. When using such a description, the interac-

1 Note that essentially complex planforms (ECPs) are solutions of the self-organization models presented in Chapters
3 and 5.
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tions underlying the PIPP have been shown to exclusively arise from homotypic constraints (i.e.
constraints concerning the placement of cells of the same type) and the physical constraint that
no two somas of opposite type can occupy the same position [171, 231, 232]. Such placement of
model cells in the retina has been previously used by Ringach together with multiple (more than
two) LGN inputs to V1 cells [176, 177]. These approaches predicted spatially organized patterns
of orientation selectivity that appear to lack a typical scale much like those predicted by the model
of Miller [115]. It is unclear at present, whether OPMs exhibiting a typical column spacing can
be obtained when considering realistic placements of RGCs together with a dipole assumption,
or whether alternative point processes need to be invoked to explain the presence of such column
spacing in purely feedforward models.

There are certainly constraints on the layout of feature representations in V1 that originate from
the retina. Probably the most striking experimental evidence for retinal constraints on the layout
of OD columns was found by Adams and Horton in the V1 of the squirrel monkey [54, 233]. These
authors revealed that the pattern of retinal blood vessels can specifically determine the layout of
OD columns in squirrel monkey visual cortex. A modeling study using the Elastic Network model
indicates that such angioscotomas strongly influence the optimal solutions of the model as far as
OD is concerned but have little effect on OPMs [140].

Adopting the self-organization perspective, it remains to be determined whether and how the self-
organization of visual cortical circuits might be constrained by RGC mosaics. Such constraints
are expected to vary strongly with the number of LGN inputs. While in cat, this number has
been estimated to be around 30 [174, 234] there is currently little knowledge about the LGN to
V1 connectivity in rodents and lagomorphs [235]. To investigate the precise nature of subcortical
constraints and to include them into self-organization models for the emergence and refinement
of orientation-selective response and orientation preference layouts in carnivorans, primates, and
Glires (rodents and lagomorphs) represents an exciting route of research for future studies.

Chapter 3 also revealed a key mechanism in stimulus-driven models for stabilizing realistic OPM
layouts, namely long-range suppressive interactions. In the classical Elastic Network model, such
long-range interactions occur only in a limit in which point-like stimuli are represented by com-
plex spatially extended activity patterns. Despite its lack of biological realism, this regime is highly
informative. The fact that realistic aperiodic OPM layouts are stabilized in such a regime, corrob-
orates that large-scale interactions are essential for the stabilization of OPM layouts with realistic
geometry. Intuitively, in such a regime, the dynamics of dimension reduction models is governed
by long-range, effectively suppressive interactions, very similar to the interactions phenomeno-
logically incorporated into the order parameter equations studied in [11, 123] as well as Chapter
5. How could such types of interactions be mediated in stimulus-driven optimization models?
Activity patterns evoked by entire extended stimuli, such as natural visual scenes, are necessarily
extended. Therefore, it seems an obvious direction for future studies to investigate principles for
the optimal representation of entire visual scenes by extended cortical activity patterns. It is an
intriguing hypothesis that the common design of orientation preference maps in carnivorans and
primates might be optimally shaped for the mapping of contours of natural visual scenes onto
neural activity. In fact, recent data suggests that neural activity in the visual cortex becomes pro-
gressively adapted to the statistics of natural stimuli but not to artificial stimuli such as drifting
gratings [191, 236]. In the same line, orientation columns appear to be strategically positioned for
a reduction of redundancy in visual information [124]. It remains an exciting question, in what
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sense optimality is achieved by visual cortical representations, whether it is maximum capacity,
reduction of redundancies, minimal information loss, or some other principle yet to be discov-
ered. The analysis of optimization models for cortical development based on the representation
of random point-stimuli carried out in this thesis ask for a generalization to extended randomi
stimuli to understand these questions. While assuming Gaussian statistics for these extended
stimuli appears crucial for obtaining analytical results, numerical investigations of representative
model dynamics should be used to identify essential statistical features of natural images neces-
sary for stabilizing aperiodic pinwheel-rich layouts in the various optimization principles. The
mathematical methods developed in this thesis are expected to strongly facilitate a comprehen-
sive characterization of candidate optimization principles that aim at explaining the geometric
features of visual cortical architecture, even if they involve extended stimuli.

Chapter 5 represents a further step in this direction. There, I generalized previous results on the
stabilization of aperiodic pinwheel-rich orientation map layouts by long-range suppressive inter-
actions. In particular, I considered an optimization model for the coordinated development of
the system of tangential connections in V1 and the orientation preference map. Different biolog-
ically plausible interactions, for instance interactions mediated by long-range horizontal connec-
tions [21, 158] or by correlations of visual input due to long-range correlations in natural scenes
[185, 192], may lead to different effective types of long-range interactions with distinct spatial
dependencies. I constructed a variety of analytically solvable models in which long-range inter-
actions decay either exponentially or with power-law dependence and calculated the complete
phase diagram of stable solutions near the pattern formation threshold. I found that pinwheel
stabilization by long-range intracortical interactions is highly robust and thus the spatial layout of
orientation columns is expected to be fairly insensitive to the nature of long-range interactions. In
view of this robustness, any altering of the horizontal connectivity pattern, e.g. by genetic means,
has to be sufficiently strong to result in a measurable difference in the statistics of OPM layouts. An
interesting direction for future studies will be the inclusion of spatial heterogeneities into models
for OPM development that are derived from biologically plausible energy functionals. Kaschube
et al. have reported that the column spacing of cat orientation domains can vary within up to 35%
of the mean over the entire V1 [94, 237]. Such fluctuations in column spacing within V1 might
originate from heterogeneities in lateral interactions within the primary cortical area or from in-
terareal coordination of columnar development [94]. In a simple Swift-Hohenberg model with
linearity LSH [z] = r − (k2

c + ∆)2, as for instance Equation (1.5.6), an intuitive way of incorporating
such heterogeneities is by assuming a wave number field kc(x) that varies with a certain corre-
lation function around a mean wave number �kc�. Inevitably, such a description entails a spatial
variation in the effective control parameter, r → r(x). Such spatial variations of the control pa-
rameter have been examined in simple examples of order parameter equations and were found to
qualitatively change the type of the bifurcation and the nature of the unstable modes [238–240]. It
will be crucial to investigate the robustness of the selection of aperiodic pinwheel-rich layouts with
respect to spatial disorder in models with long-range suppressive interactions. The present thesis,
in which several perfectly homogeneous and isotropic optimization principles for neural circuit
self-organization are analytically studied for the first time, hopefully provides a solid ground for
disentangling the specific contributions of self-organization and constraints arising from spatial
heterogeneities.

The findings in Chapter 3 on the crystalline optima of the EN model together with the numerical
results in the same line on Kohonen’s self-organizing feature map [229] essentially rule out dimen-
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sion reduction as a potential optimization theory for explaining the complex spatial layout of ori-
entation preference maps. The second major hypothesis, i.e. wiring-length minimization, results
in similar crystalline and perfectly periodic optima [133]. As a consequence, since the two leading
models which assign a functional significance to OPMs seem to fail in reproducing their universal
statistics, their role in visual information processing still remains elusive. The gap between ex-
plaining the emergence of the structure of OPM in V1 and understanding their functional role in
visual information processing has not been bridged yet. But why should there be a single princi-
ple underlying the organization of orientation maps in V1? One of the main arguments in favor
of such a principle is evolutionary convergence. The lineages of primates and carnivoran species
diverged more than 65 million years ago [241–243] (cf. Fig. 7.0.1) and their last common ancestors
were small-brained, nocturnal, squirrel-like animals of reduced visual abilities [243, 244]. Anal-
yses of endocranial cavities of a representative stem eutherian from the late cretaceous around
85mya ago indicates a total anterior-posterior extent of 4mm for its entire neocortex (cf. Fig. 7.0.1,
[245–247]). Similarly, the tenrec (Echinops telfari), one of the closest living relatives of the boreo-
eutherian ancestor [248, 249], has a neocortex of essentially the same size and a visual cortex that
totals only 2mm2 [243]. Since the neocortex of early mammals was subdivided into several corti-
cal areas [243, 250] and orientation hypercolumns measure between 0.4 and 1.4mm2 [11, 237], it is
difficult to imagine ancestral eutherians with a system of orientation columns. In fact, no extant
mammal with a visual cortex of such size is known to possess orientation columns ([251], cf. Fig.
7.0.2). Therefore, it is very likely that systems of orientation columns independently evolved in
Laurasiatheria (such as carnivorans) and in Euarchonta (such as tree shrews and primates). In this
case, the quantitative precision with which orientation maps in both clades match strongly impli-
cates a common developmental mechanism. Evolutionary convergence of biological structures is
often assumed to provide a way to identify features of of such mechanisms. For instance, common
aspects of habitats and habits of the organisms involved may reveal insights into the functional
significance of the structure under consideration [252]. In view of this, it is even more puzzling
that the three species studied by Kaschube et al. widely differ in the their habits and habitats,
for instance galagos being nocturnal whereas tree shrews and ferrets are diurnal. To understand
potential developmental mechanisms that might have driven the different lineages to adopt quan-
titatively similar layouts, it appears crucial to characterize other mammalian species with regard
to their primary visual cortical architecture. Visual acuity and receptive field properties of neurons
in the V1 of several species belonging to the marsupial clade appear comparable to those of some
Glires and Scandentia species [253–255] and orientation selectivity has been found in all mammals
so far investigated [251]. But the spatial organization of the selectivities in representative species
of the Marsupialia, Monotremata, Afrotheria, and Xenarthra clades is still completely unexplored
(cf. Fig. 7.0.1). Furthermore, it is yet unexplored whether V1s in large rodent brains such as the
brains of agouti or capybara (cf. Fig. 7.0.2) that even show gyrification [256] exhibit ordered selec-
tivity layouts. Is mere V1 size key for the transition to columnar architecture? The likely answer
is no, because squirrels and ferrets have almost equal V1 sizes (Fig. 7.0.2). A quantitative under-
standing of the differences and similarities between V1 functional architecture from the extremes
of body and brain sizes of the various mammalian clades might ultimately clarify to what extend
the design of orientation column layouts is really universal.

The study of V1 circuitry in “exotic” mammalian species is also of general importance for investi-
gating the evolutionary origin of the neocortical column in general. The dorsal pallium in reptiles
as well as the allocortex in mammals is entered horizontally by thalamic inputs [257, 258]. In con-
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Figure 7.0.1: Columnar architectures for V1 in modern mammals may have independently evolved several times. Up-
per right: Evolution of typical body weight range in eutherian mammals [259, 260]. After the extinction of dinosaurs
at the Cretaceous/Tertiary (K/T) boundary around 65 mya ago a near-exponential increase of the upper body weight
range is observed. Phylogenetic relationships between ancestors of eutherian mammals [227, 241, 243, 261]. All species
from Laurasiatheria, Scandentia and Euarchonta (green) that have so far been investigated possess orientation columns.
In Glires (red) the organization of orientation selectivity is spatially disordered. Nothing is know about the spatial orga-
nization of orientation selectivity in Metatheria, Monotremata (gray), Xenarthra (gray), and Afrotheria (yellow). Lower
left: The anatomical scheme depicts the cranium of a representative late cretaceous stem eutherian (Asioryctitherian).
This close relative to the last common ancestor to extant mammals had a small V1, presumably lacking orientation
columns (mod. from [246]).

trast, afferents vertically enter the mammalian neocortex. This difference is known to originate
from genetic programs during embryonic development [257, 258]. Super and Uylings hypoth-
esize that vertical entrance of afferent fibers may have relieved a functional constraint limiting
early expansion of the cortex, cortical laminar differentiation as well as the physical segregation
into discrete axonal-dendritic systems which underly the neocortical column [258]. In this respect,
it is a conondrum why such columnar representations did not evolve in Glires, at least not on the
microscopic scale.

One might argue that the universality of orientation column layouts is already challenged by the
lack of any horizontal columnar organization in all Glires species so far investigated (Figs. 7.0.1,
7.0.2). Studies as long as to the 1970s showed that rabbits [67], hamsters [201], mice [66], rats [13],
and squirrels [14] exhibit orientation-selective responses in V1 without any apparent ordering and
apparently the size of V1 surface area is not key for possessing orderly arrangements of orientation
selectivity (cf. Fig. 7.0.2). The optimization approach introduced in Chapter 6 demonstrates for
the first time that the development of salt-and-pepper layouts in rodent and lagomorph visual cor-
tex can be modeled with very similar concepts as the emergence of columnar representations and,
hence, this approach may be viewed as a first step towards a “unifying theory of cortical compu-
tation” [251] or at least of mammalian primary visual cortical architecture. Much like in the Elastic
Network model, in the model for salt-and-pepper arrangements of orientation selectivity, visual
stimuli are represented by their position and orientation in visual field coordinates. Activity pat-
terns in the cortical layer are determined according to a simple activation rule by which neighbor-
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Figure 7.0.2: Both columnar and salt-
and-pepper arrangements of orien-
tation preference appear over wide
and overlapping ranges of V1 sur-
face area and body weight. The
two design-types are indicated by
schemes: Upper scheme, columnar;
lower scheme, salt-and-pepper. Or-
ganization of orientation preference
in Laurasiatherian and Euarchonta
(red), and Glires (green). Filled bars
indicate columnar (green) and salt-
and-pepper (red) organization re-
spectively. Hatched bars indicate un-
known spatial organization of ori-
entation preference (data collected
from [24, 74, 250, 251, 256, 262–264]).
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ing units tend to be co-activated. The selectivities of activated units are modified with a Hebbian
learning rule to better match the parameters of the stimuli. First, I showed that, by a symmetry
argument, the model has two stationary solutions: (i) the non-selective homogeneous state and (ii)
the pinwheel-free orientation stripe state. Linear stability analysis of the non-selective fixed point
showed that by a non-Turing-type instability, the non-selective state becomes unstable, leading to
the spontaneous emergence of orientation selectivity from the non-selective state in the model. By
extensive simulations, it was shown that the emerging states exhibit a salt-and-pepper arrange-
ment of orientation selectivities, despite the tendency for co-activation of neighboring units during
the learning process. The spatial layout of numerically stationary solutions is characterized by a
local anti-correlation of preferred orientations, a high stimulus coverage, and a low discrepancy.
Both high coverage and low discrepancy are more pronounced compared to a Gaussian random
field with negative correlations alone. These results indicate that the apparently random arrange-
ment of orientation selectivity in Glires might be the results of a dynamical activity-dependent
process that optimizes coverage of a space of local stimulus features. By including lateral excita-
tion into the model via a convolution term, I was able to show that a dominant and short-ranged
inhibition is critical for stabilizing Glires-like selectivity layouts.

This key factor is highly noteworthy in view of recent findings on the spatial distribution of exci-
tation and inhibition in mouse somatosensory cortex. Activity in layer 2/3 of the juvenile mouse
barrel cortex was shown to generate strong lateral suppression of spiking in layer 2/3 pyramidal
cells together with feedforward facilitation of layer 5 pyramidal cells [223]. As a possible reason
for this suppressive effect, the small ratio of excitation to inhibition in layer 2/3 (< 0.2) was identi-
fied. In the visual cortex it has been shown that the spatial firing patterns of fast-spiking broadly
tuned inhibitory interneurons were only weakly modified by visual stimulation [203]. This in-
dicates dense, strong, and unspecific inputs from nearby pyramidal cells with a wide range of
selectivity properties. The dense network of inhibitory interneurons in which sharply orientation-
tuned pyramidal cells are embedded might mediate the local suppressive interaction that, accord-
ing to the model, are essential to stabilize salt-and-pepper layouts of selectivities.

Numerically stationary states of the model are distinct from random spatial organization as re-
vealed by several statistical measures. The degree of distinction however was shown to critically



197

depend on the number of simulated units within the spatial range of inhibition. This range is hard
to estimate experimentally. If it only was to linearly extend over more than 10 cells, the arrange-
ment of cortical selectivities predicted by the model would already be hard to distinguish from a
random spatial distribution. Therefore, the precise organizations of selectivities in the model are
not a promising prediction to test experimentally.

Probably the most easily testable prediction of the model is the reestablishing of a disordered selec-
tivity layout after orientation selectivity in a small subregion has been aligned by a pairing experi-
ment, as e.g. [217, 218], in which a very brief visual stimulus is repeatedly paired with stimulation
within the visual cortex. With optogenetic tools in mice [265–267] as well as two-photon-imaging
techniques [62, 63, 195–197], that have become available in recent years, a selective activation of a
small set of neurons by photo-stimulation paired with the presentation of a grating of one orien-
tation and subsequent chronic imaging constitutes a feasible experiment to test the predictions of
the model.

As the discovery of the disordered salt-and-pepper-like functional layouts in rodents and lago-
morphs was made possible only by the advent of novel imaging techniques, a complete theoreti-
cal understanding of these layouts will almost certainly require different mathematical tools than
the analysis of ordered columnar layouts. The theoretical analyses presented in Chapter 6 are far
from being a complete description of the novel type of instability characterized by an infinite wave
number to first lose stability. An analytical treatment of the stability of patterns in 2-dimensional
or even 3-dimensional models of visual cortical architecture exhibiting such types of instability
does not appear to be not feasible at this moment. After all, the assumption of a columnar struc-
ture that has originally motivated a 2-dimensional description of visual cortical architecture seems
inappropriate for Glires V1. As a necessary and interesting step toward an understanding of the
novel phenomena expected, it appears promising to analyze simplified 1-dimensional order pa-
rameter models for Glires cortical development. In such models, an analytical study of the stability
of periodic solutions in the nonlinear regime using Bloch-Floquet theory [268] seems possible.

In the parameter range in which the model introduced in Chapter 6 exhibits ordered selectivity
layouts, its dynamics strongly resembles the dynamics of the Elastic Network model (cf. Chap. 3).
Initially aperiodic layouts develop into either pinwheel-sparse layouts with large stripe-like do-
mains or rhombic pinwheel crystals not resembling the experimentally observed common OPM
layout. In fact, due to the point-like stimuli which only locally activate the cortical layer, interac-
tions in the model are, similarly to the EN model, short-range. An investigation of the transition
from salt-and-pepper layouts to ordered selectivity organizations in the presence of long-range in-
teractions, for instance mediated by spatially extended stimuli, represents an interesting direction
for future studies.

Specifically, the data from mouse suggest a further obvious route for generalizations of the model.
Wang and co-workers discovered that in mice preferred orientations in the two eyes initially often
emerge unmatched and subsequently change toward one binocularly matched orientation prefer-
ence [106]. Because preferred orientations in the two eyes initially are statistically independent,
this suggests that neurons can rotate their orientation preferences up to at least 45◦ during postna-
tal development. To understand these findings, it seems natural to generalize the present model
to include two orientation selectivity variables, each for one of the two eyes. The matching of the
preferred orientations is then expected to depend on the correlation between the stimulus orien-
tations coming from each of the two eyes. How the interplay between the potentially ordering
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force induced by a positive correlation of the inputs from the two eyes and the disordering force
induced by the dominant local inhibition alters the solutions of the model is an interesting open
question.

A salt-and-pepper-like arrangement of cellular response properties in the neocortex of rodents and
lagomorphs seems neither restricted to orientation selectivity nor to the primary visual cortex. For
instance, although there is gross retinotopy on the macroscopic scale in mouse V1 [24, 269, 270], on
the scale of neighboring neurons retinotopic scattering is substantial [271]. Heterogeneously dis-
tributed local population of layer 2/3 neurons can exhibit precisely overlapping spatial receptive
fields. Larger receptive field subregions appear to be composed of non-overlapping smaller sub-
regions. Similarly, in rat and mouse auditory cortex, despite a large-scale tonotopic organization
[272, 273], local populations in A1 exhibit highly heterogeneous response properties [274–276].

Even more intriguing are the recent findings in mouse barrel cortex. There, neurons are selective
for the direction of vibrissa motion [277]. While in juvenile mice the spatial organization of these
direction selectivities is disordered [277], a late emergence of a direction selectivity map with a
pinwheel-like structure has been observed although substantial scattering of direction selectiv-
ity between neighboring neurons appears to remain [278, 279]. The pinwheel structure in adult
mouse barrel cortex emerges from a salt-and-pepper layout with highly selective individual cells.
In a detailed network model of layers 2/3 and layer 4 of the barrel cortex, this late transition to
a pinwheel-like map organization was attributed to a particular stimulations protocol, which de-
flected vibrissae in a regular spatio-temporal pattern [278]. However, the initial formation of the
spatially disordered directional selectivities has not been modeled in this study. It is therefore
currently unclear what factors determine the apparent transition from salt-and-pepper in juvenile
mice to maps in the adult mouse barrel cortex. A measurable shift in the relative strengths and/or
ranges of excitation and inhibition during development would constitute a confirmation of the
predictions of the model developed in the present dissertation.

The development of the organization of direction selectivity in rodents appears to be an ideal
model system to study optimization principles that may govern the self-organization of neuronal
circuits together with constraints imposed by a genetically predetermined developmental pro-
gram. Direction-selective responses of retinal ganglion cells largely develop independently of
visual experience and activity-dependent mechanisms, potentially as a result of complex molec-
ular interactions [221, 222]. While in adult mice these direction-selective responses cluster into
the four cardinal directions (dorsal, ventral, temporal, and nasal), the temporal and ventral direc-
tions seem highly overrepresented in visually inexperienced mice [221]. In mouse primary visual
cortex, direction selectivity also emerges without visual experience and selectivities in juvenile
mice are clustered around the dorsal and anterior directions which correspond to the temporal
and nasal directions in the retina. These results suggest that in the juvenile mouse visual system,
direction selectivity emerges in the retina and is relayed to the visual cortex. However, direc-
tion preferences in the adult mice do not cluster around cardinal directions [107]. The findings in
Chapter 6 provide an explanation for this in terms of circuit self-organization. The direction selec-
tivities relayed from the juvenile, visually inexperienced mouse retina might serve as a “seed” or
“drive” to increase robustness of the activity-dependent self-organized emergence of selectivities
at later stages in development.
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To summarize, in this dissertation I analyzed the reorganization of V1 columnar architecture dur-
ing postnatal brain growth and suggested a new role for the so-called critical period: the enhanced
plasticity in V1 observed over this period might facilitate the modification of neuronal circuits to
adjust for cortical growth. Furthermore, I developed a general mathematical formalism to analyt-
ically calculate OPMs predicted by optimization models for OPM development. Using this for-
malism I was able to obtain the first analytical expressions for the precise layouts of the predicted
OPMs in the Elastic Network model, 22 years after it was introduced by Durbin and Mitchison.
These results now set the stage for a mathematically rigorous and biologically informative search
for optimization principles that more successfully explain the architecture of columnar contour
representations in V1. In a subsequent study, I shed light on a still highly controversial aspect of
visual neuroscience, namely to what degree V1 response properties and functional architecture
can be explained by simple feedforward constraints arising from subcortical inputs. Surprisingly,
by analyzing a large data set of experimentally measured OPMs, I found no empirical evidence
for an influence of subcortical constraints on the layout of OPMs. Instead, I demonstrated that
the common design of experimentally observed OPM layouts is very robustly obtained in self-
organization models for the coordinated development of OPMs and the system of long-range
tangential connections in V1. This robustness offers an explanation for the strikingly precise
agreement between the statistics of OPMs in evolutionarily widely separated species with very
different habits and habitats. Finally, I developed and analyzed the first stimulus-driven model
for the emergence of disordered selectivity organizations in Glires. I showed that, depending on
the balance between local inhibitory and excitatory interactions, both types of experimentally ob-
served functional architectures, salt-and-pepper layouts and smooth OPMs, appear generically as
solutions of optimization models for the self-organization of cortical circuits.

The dichotomy of visual cortical architectures between Glires on the one hand and carnivorans
and primates on the other might turn out to be a real blessing not only for sensory neuroscience
but also for evolutionary neurobiology. Individual neurons in both functional layouts have many
response properties in common, which suggests the existence of general building principles for
local elements involved and that they are potentially optimized for processing visual information.
Yet, in the course of evolution nature has found two completely different solutions for connecting
these elements in order to construct functional circuits. Uncovering how these different network
structures might be specialized to serve specific computational tasks and how they adapt to a
changing environment during brain development may not only help us better understand the vi-
sual system. Very likely, it will reveal fundamental optimization principles of evolutionary cortical
circuit design and information processing in the brain that can also be applied to other sensory
areas.
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