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1 Introdution1.1 An OverviewThe aim of this thesis is the extension of the funtional renormalization group (FRG)formalism [64, 75, 76, 87℄ to treat non-equilibrium situations or, in other words,we reformulate the FRG-equations in terms of the Keldysh method [45℄ whih isthe standard tehnique to treat systems out of equilibrium. As simplest non-trivialappliation to test the potential and weakness of the non-equilibrium FRG we hoosethe single impurity Anderson model (SIAM) [4℄. This model represents the paradigmfor orrelation e�ets in ondensed matter physis and it is at the heart of a largerange of experimental and theoretial investigations. In partiular, the SIAM an beonsidered as the standard model for desribing the physial properties of ertainnanostrutures and mesosopi systems, suh as quantum dots. A quantum dotan be viewd as a small region (in the next setion we will preise what �small�means) onsisting of semiondutor material, where eletrons are on�ned by e.g.eletrostati potentials, by means of eletron beam lithography and moleular beamepitaxy. The next paragraphs are dediated to a short introdution regarding theexperimental senario and the theoretial interpretation of the harateristis ofquantum dots. At the end of the present hapter we give the reader a �roadmap�whih will guide him through this thesis.1.2 Experimental Aspets1.2.1 Introdution and Fabriation TehniqueA quantum dot is an arti�ially strutured system where the motion of partiles ison�ned in all three spatial dimension, that an be �lled with eletrons (or holes).The dot an be oupled via tunnel barriers to reservoirs, with whih eletrons anbe exhanged (see Fig. 1.1). By attahing urrent and voltage probes to the reser-voirs, we an measure the eletroni properties. The dot is also oupled apaitivelyto one or several gate eletrodes, whih an be used to tune the eletrostati po-tential of the dot with respet to the reservoirs. The previous desription showsthat a quantum dot is a rather general devie, there onsequently exist many dif-ferent realizations: For instane single moleules trapped between eletrodes [67℄,normal metal [68℄, superonduting [85℄, semiondutor lateral [49℄ or vertial dots5



1 Introdution

Figure 1.1: Shemati piture of a quantum dot in (a) a lateral geometry and (b) in avertial geometry. The quantum dot is onneted to soure and drain reservoirs via tunnelbarriers, allowing the urrent through the devie, to be measured in response to a biasvoltage, VSD and a gate voltage, VG.
[51℄. The eletroni properties of quantum dots are dominated by two e�ets. First,the Coulomb repulsion between the eletrons on the dot leads to an energy ost foradding an extra eletron to the dot. Due to this harging energy, tunneling of ele-trons to or from the reservoirs an be dramatially suppressed at low temperatures;this phenomena is alled Coulomb blokade [5℄. Seond, the on�nement in all threedimensions leads to quantum e�ets that strongly in�uene the eletron dynamis.One partiularly frequent and well reprodued realization starts from heterostru-tures of GaAs and AlGaAs grown by moleular beam epitaxy (see Fig. 1.1). Bydoping the AlGaAs layer with Si, free eletrons are introdued. These aumulateat the GaAs/AlGaAs interfae, typially 50 − 100 nm below the surfae, forminga two-dimensional eletron gas (2DEG), a thin (approx. 10nm) sheet of eletronsthat an only move along the interfae. The 2DEG an have a high mobility andrelatively low eletron density (typially 105 − 107cm2/V s and 1 − 5 ∗ 1015/m2, re-spetively. The low eletron density results in a large Fermi wavelength (approx. 40nm) and a large sreening length, whih allows to loally deplete the 2DEG withan eletri �eld. This eletri �eld is reated by applying a negative to metal gateeletrodes on top of the heterostruture (see Fig. 1.1 (a)). Eletron-beam lithogra-phy enables fabriation of gate strutures with dimensions down to a few tens ofnanometers (Fig. 1.1), yielding loal ontrol over the depletion of the 2DEG withroughly the same spatial resolution. Small islands of eletrons an be isolated fromthe rest of the 2DEG by hoosing a suitable design of the gate struture, thus reat-ing quantum dots. Finally, low-resistane (Ohmi) ontats are made to the 2DEGreservoirs. To aess the quantum phenomena in GaAs gated quantum dots, theyhave to be ooled down to 10-100mK.6



1.2 Experimental Aspets

Figure 1.2: Lateral quantum dot devie de�ned by metal surfae eletrodes. (a) Shematiview. Negative voltages applied to metal gate eletrodes (dark gray) lead to depletedregions (white) in the 2DEG (light gray). Ohmi ontats (light gray olumns) enablebonding wires (not shown) to make eletrial ontat to the 2DEG reservoirs. (b)-()Sanning eletron mirographs of a few-eletron single-dot devie (b) and a double-dotdevie (), showing the gate eletrodes (light gray) on top of the surfae (dark gray). Thewhite dots indiate the loation of the quantum dots. Ohmi ontats are shown in theorners. White arrows outline the path of urrent JDOT from one reservoir through thedot(s) to the other reservoir. For the devie in (), the two gates on the side an be used toreate two quantum point ontats, whih an serve as ele trometers by passing a urrent
JQPC . Note that this devie an also be used to de�ne a single dot.

7



1 Introdution1.3 Two Parameter Regimes: Coulomb Blokadeand Kondo1.3.1 Single Eletron Tunneling and Coulomb BlokadeAs we have already mentioned in the previous paragraph, experimental tehniqueslike eletron beam lithography and moleular beam epitaxy, permitted the realiza-tion of mesosopi struture where is possible to on�ne a small amount of eletronsin a spatial region of a few nanometers. One of the most interesting disovery, inthese mesosopi systems, was the single eletron tunneling (SET) ([17, 23℄), namelythe possibility to let �ow, in a ontrolled way, through the quantum dot one eletronat a time. The sope of this setion is to explain in whih parameter range one anobserve single eletron tunneling and from whih experimental quantity an be de-dued that SET is indeed happening. In the linear regime the transport propertiesof mesosopi systems an be represented by the ondutane G de�ned as
G = lim

(VL−VR)→0

[
J

VL − VR

]

,where J is the urrent �owing from the left to the right eletrode and VL,R arethe Fermi eletrohemial potentials µL,R divided by the eletroni harge. Beforeproeeding further we have to distinguish two parameter regimes. First we look atthe limit in whih the dot-leads oupling energy Γ is small ompared to the Coulombenergy U on the island (Coulomb-blokade regime, Fig. 1.3 and Fig. 1.3.2 ()) andthen the ase where Γ annot be negleted any more (see the next paragraph andFig. 1.5 (a)-(b)).The experimental evidene of the single eletron tunneling [43, 80℄ has been re-vealed for the �rst time by the periodi behaviour of the linear ondutane G asfuntion of the gate potential VG (see Fig. 1.3). The peaks in Fig. 1.3 orrespondto the �ow of an eletron from the left lead to the right one through the dot. Themodel explaining suh a behaviour is usually alled Coulomb blokade [43, 90℄. Itis based on simple eletrostati onsideration we are going to eluidate. If we haveeletroni harge Q on the island its energy is
E =

Q2

2CT
,where CT represents the total apaitane between of dot. Now, if the potentialdrop between the gate and the island is VG, the total eletrostati energy of the dotis given by

E = −QVG +
Q2

2CT
. (1.1)The �rst terms indiates the potential energy between the gate terminal (positivelyharged) and the entral region, while the seond takes into aount the repulsive8



1.3 Two Parameter Regimes

Figure 1.3: Condutane G as funtion of the gate voltage VG in the parameter regime(Coulomb blokade) where the leads-dot oupling energy Γ is negligible ompared to theCoulomb repulsion U.interation among the harges on the dot. Equation (1.1) an be reexpressed (apartfrom a onstant term) as
E =

(Q−Q0)
2

2CT

,with Q0 = CTVG. For any given value of VG (and thus of Q0), the harge on the dotadjustes itself to minimize the energy. Neverthless, beause of the harge quantiza-tionQ = Ne, for a givenQ0, we an only have disrete energy levels (see Fig. 1.4). As
N N+1N-1 N+2N-2

e2/2CT

E

Q(e)

(a) Q0 = Ne

N N+1N-1 N+2

E

Q(e)

(b) Q0 = (N+1/2)e

Figure 1.4: Total energy of a quantum dot plotted as funtion of the elementar eletroniharge. (a) Shows the ase with a non-degenerate energeti minimum: Q0 = Ne, (b)degenerate: Q0 = (N + 1/2)e.soon as Q0 = Ne, the energy is minimized by an integer number of eletrons and theinrease or the derease of the harge ±e osts an ativation energy orrespondingto (see Fig. 1.4 (a))
EA =

e2

2CT
. 9



1 IntrodutionOn the other hand, if Q0 = (N + 1
2
)e, then the states haraterized by Q = Ne and

Q = (N +1)e are degenerate (see Fig. 1.4 (b)) so that the harge �utuates betweenthese two values, even at zero temperature, without any energeti expense. Fromthe experimental point of view this means that the ondutane is di�erent fromzero for all value of VG with
VG = Q0/CT = (N +

1

2
)e/CT .For all other values of VG the ondutane is very small or zero. This is the reasonwhy, at low temperatures, we observe periodially spaed ondutane peaks. Theperiod is determined by VG = e

CT
and orresponds to the variation of VG whih isneessary to let Q0 pass from (N + 1

2
)e to (N + 3

2
)e.1.3.2 Kondo RegimeConsider now the situation in whih Γ the oupling parameter between dot and leadsis not negligible any longer (Kondo regime) [11, 22℄). In this limit G as funtionof the gate voltage presents di�erent features (see Fig. 1.3.2 (a) (b)) ompared tothe Coulomb blokade regime shown in Fig. 1.3 and in Fig. 1.3.2 (). The mostharateristi aspet is that the peaks now form pairs. Peaks belonging to the samepair show a omparable width (see Fig.1.3.2 (a) (b)) and their spaing is determinedby the Coulomb repulsion U = e2

2CT
. On the other hand, between di�erent pairs weobserve a spaing greater then U and di�erent peak widths.This behaviour an be explained assuming that in an eletroni state we annotinsert more then two eletrons with opposite spin. In fat, if we wish to add a thirdeletron, we are fored to insert it in a state whih is di�erent from the one oupiedby the previous pair. As diret onsequene the spaing between peak pairs takesinto aount both U and the energy di�erene between the two suessive energetilevels ∆ε [11, 22℄), resulting in a total spaing given by U + ∆ε. If we look atthe valleys in Fig. 1.3.2 (a) (b), we �nd that the intra-pair ones show a higherondutane ompared to the inter-pair valleys. The reason for this behaviour liesin the number of eletrons present on the island. The valley between two pairedpeaks orresponds to a dot oupied with an odd number of eletrons, therefore theunpaired eletron an interat with the harges at the Fermi level in the leads, givingrise to a Kondo singlet bound state between them (see next paragraph). The singletinreases the dot density of state (DOS) at the Fermi level (see next paragraphsand Fig. 1.8 ), whih inreases the ondutane too. If we lower the temperature

T the peaks tend to beome narrower and higher (even in the limit in whih Γ isnot small), neverthless the intra-pair ondutane valley inreases while the inter-pair one dereases, letting the ondutane beome small. We observe exatly theopposite phenomenon inreasing the temperature, beause an inrease of T tends10



1.3 Two Parameter Regimes

Figure 1.5: Temperature dependene of zero-bias ondutane G through two di�erentspatial states on the dot. (a), Paired peaks orresponding to the two spin states for eahspatial state beome better resolved with inreasing temperature from 90 mK (full line) to400 mK (dashed). The intra-pair valleys beome deeper and the peaks beome narrower.(b), From 400mK (dashed line) to 800mK (dotted) the paired peaks near VG = −70mVbroaden. The peaks near VG = −25mV are still beoming better resolved even at 800mK, as they have larger Γ. (), When Γ is redued (as illustrated by shorter and narrowerpeaks), U inreases relative to ∆ε, so peak pairing is no longer evident. Beause the Kondophenomenon is suppressed, peaks beome narrower as temperature is dereased at all Tdown to our base temperature of 90 mK. Full line is for 90 mK, dotted line for 800 mK.
11



1 Introdutionto destroy the spin orrelations between the eletrons of the entral region and theleads, letting the ondutane relative to the intra-pair valley ollapse.1.4 Theoretial Interpretation1.4.1 Quantum Dots and Magneti Impurities in MetalsGlazman and Raikh [21℄ noted that quantum dots an be related to metals dopedwith magneti impurities in suh a way that the dot, oupied by just one eletron,plays the role of the impurity and the eletrodes represent the metal matrix in whihthe impurity is embedded.They understood that, even if eletroni transport is in priniple forbidden bythe Coulomb blokade, it an still our by means of the Kondo e�et [47℄. Thisidea has been veri�ed experimentally later by Ralph and Buhrman [71℄ and thenby Goldhaber-Gordon [22℄ and Cronenwett et al. [11℄, [34℄. A detailed disussionof the Kondo e�et is far beyond the sope of this work (the interested reader isreferred to the book by A.Hewson [34℄), here we just give some basi introdutionon the Kondo Physis.The original problem stems from the anomalous behaviour of the resistivity ρ asfuntion of temperature T in metal doped with magneti impurities. Experimentallyit was observed that the the resistivity of suh metals does not simply derease,when the temperature is lowered, but it shows a minimum and then it begins togrow again before it saturates [24, 34, 59℄. The explanation of this behaviour anbe found in the spin-�ip sattering between the spins of the ondution eletronsand the magneti impurity. The latter an be seen as a sattering enter whoseinteration with the ondution eletrons auses the spin �ip sattering. This kindof interation appears when the temperature is low enough to suppress thermal�utuations, a diret onsequene is the anomalous resistivity behaviour.Below a harateristi temperature, also alled Kondo temperature TK , the spinof the impurity forms a many-body state with the band eletrons. This means thatif we want to reate a spin triplet between the host and the eletrons we must breakup the many-body state or in other words we should give to the system an energywhih is larger then the binding energy TK of this many-body state. Therefore thespin �ip sattering, at T < TK , is frozen out and the Kondo e�et saturates.1.4.2 Transport due to the Kondo E�etThe analogies between quantum dots and metals doped with magneti impurities[21, 22, 49, 71℄ permit us to explain the harge transport through quantum dots inthe Coulomb blokade regime by means of the Kondo e�et.12



1.4 Theoretial InterpretationThe standard approah to desribe the phenomenology of quantum dots is basedon the single impurity Anderson model SIAM [4℄, given by the Hamiltonian
H =

∑

~kσα

ε~kσαc
†
~kσα

c~kσα

+
∑

σ

εσd
†
σdσ + U

(

n↑ −
1

2

)(

n↓ −
1

2

)

+
∑

~kσα

[

V~kσαc
†
~kσα

dσ + h.c.
]

, (1.2)where c, d denote the operators for the ondution eletrons and the impurity degreesof freedom and nσ = d†σdσ. U represents the Coulomb repulsion on the impurity site,
V~kσα is the hopping term whih permits an eletron of the leads to jump onto thedot and vie versa. Finally α = L,R distinguishes the left and right reservoir. Thespin indies σ an take the values up or down (↑, ↓) and the band wavevetor ~k runsthrough all values of the �rst Brillouin zone of the leads.

Figure 1.6: Pitorial representation of the impurity Anderson model: The dot in the entralregion, subjet to the Coulomb repulsion U , is oupled via VK to the left and right leadswhih are here at the same eletrohemial potential. An additional eletrode Vg ontrolsapaitively the harge on the dot.Looking at Fig. 1.7 (a) (b) harge transport from the left eletrode to the rightone (whih are kept at a onstant bias VL −VR = µL−µR

e
) is permitted if the the dotlevel is loated in the following energeti interval (see Fig. 1.6)

µL < εd < µR.Now assume that the temperature is muh lower than the energeti spaing betweentwo levels |∆ε| of the entral region, therefore it an be treated as if it onsisted ofjust a single level. If we now let �ow another eletron on the dot then the level ispushed up by an energy
∆ε = εd + U. 13



1 Introdution

Figure 1.7: (a) Tunnel proess through the quantum dot. Transport an take plae if
µR < εd < µL. If the temperature T is low enough then the energeti spaing ∆ε is toolarge to permit an eletron to jump from an energeti level to the next one → single-levelquantum dot. (b) Pitorial desription of the transport in the Coulomb blokade regimethrough the Kondo e�et: virtual tunneling transition whose end e�et is always a dotoupied by a single eletron, but with opposite spin.
14



1.5 Guide to this WorkTherefore the level is shifted above the energy interval previously de�ned, thusmaking transport impossible at �rst sight. In reality we an have virtual tunnelingtransitions due to the dot-leads oupling whih an indue a spin �ip between theentral region (see Fig. 1.7 (b)) and the leads. Atually, these spin �ip proesses giverise to the formation of a singlet state between the eletron on the island end the onesin the leads (Kondo e�et [11, 22, 34℄). The presene of suh a singlet is onnetedto a sattering resonane at the Fermi level (see Fig. 1.8). Experimentally thisadditional spetral weight, due to manybody e�ets, manifests itself in an inreaseof the ondutane between the Coulomb peaks, i.e. in the intra-pair valley regionshown in Fig. 1.3.2 (a) (b).

Figure 1.8: Shemati energy diagram of the SET, showing an eletron droplet separatedby tunnel barriers from onduting leads. Sine the number of eletrons in the droplet isodd, the loal density of states exhibits a sharp Kondo resonane at the Fermi level. Thebroad resonane at energy ε0 represents a transition from nd = 0 → nd = 1, while the oneat ε0 + U orresponds to a transition from nd = 1 → nd = 2.
1.5 Guide to this WorkThe present thesis is divided into six hapters and two appendies. In the nexthapter we disuss in detail the Keldysh method, whih is the standard tehniquefor the desription of non-equilibrium quantum manybody problems. The thirdhapter is dediated to the renormalization group. It will fous on the extension ofthe funtional renormalization group (FRG) to non-equilibrium situations. First of15



1 Introdutionall we will show the di�erenes between equilibrium and non-equilibrium and thenthat the FRG an be extended to treat, at least formally, also time dependent non-equilibrium situations and not only the stationary ase (onstant external �eld).In the last three hapters we will aompany the reader through our results, forthe transport parameters, the urrent J and ondutane G, alulated with thenon-equilibrium FRG.We will onentrate on the simplest ase, namely a situation where we negletthe energy dependene of the quantities entering into the FRG equations. We alsodisuss the in�uene of an applied magneti �eldB, in order to distinguish the ontri-butions of di�erent spin hannels to the transport parameters, and the temperature
T. Summary and onlusion will �nish this work.
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2 The Keldysh Method2.1 IntrodutionThe physial properties of a system in equilibrium an be extrated from the Greenfuntion de�ned as1
G(1, 2) = −i〈T̂ ψH(1)ψ†

H(2)〉, (2.1)where ψH(1) represents a �eld operator in the Heisenberg piture whih annihilatesan ingoing partile at point x1 and at the time t1, while ψ†
H(2) reates an outgoingpartile at x2, t2. T̂ stands for the time order operator, whih plaes the operatorsaording to the time argument with the latest time to the left [29, 52, 59℄. Themean value is alulated with respet to the Gibbs distribution funtion. From thestatistial point of view it makes no no di�erene if we alulate the mean value ofa system in equilibrium with respet to the exat wave funtion of the stationarystate of the losed system or by means of the Gibbs distribution of the system in athermal bath. In the �rst ase the result will be a funtion of the energy and thenumber of partiles and in the seond of the temperature and the hemial potential.The situation hanges as soon as we treat systems out of equilibrium. We have toalulate averages with respet to states whih are not neessarely the ground stateor even eigenstates of the system, but resulting from initial onditions determined byexternal �elds, preparation, et [40, 45, 54, 82℄. As diret onsequene (see Setions2.2-2.4) we are obliged to introdue four Green funtions, taking into aount theexitation spetrum and the distribution funtion separately. Moreover, the orre-lation funtions we are going to analyze ontain only real variables. This permits usto avoid the analyti ontinuation (as neessary in the Matsubara tehnique), whihan be a umbersome task, in partiular if results are known only numerially.2.2 Greens Funtions in Non-EquilibriumBefore explaining the mathematial details of the non-equilibrium perturbation the-ory, we �rst prefer to present the basi idea and funtions on whih it bases. Inthe next setion we will then apply it to the easiest ase, namely to the non inter-ating Fermi gas and �nally in the Paragraph 2.4 we will explain the perturbative1For brevity we restrit ourselves to fermions. The formula for bosons is idential exept for adi�erent sign. 17



2 The Keldysh Methodexpansion. Let us start de�ning2
G(1, 2) = −i〈TKψH(1)ψ†

H(2)〉. (2.2)The quantity G(1, 2) depends separately on the pair of variables (1, 2) and notonly on their di�erene, as in equilibrium. Compared to the �usual� time orderingoperator the one in the Eq. (2.2) arries an index K, whih desribes a path startingat t = −∞ up to t = +∞ and then bak again in the opposite diretion. Suh apath is also alled Keldysh ontour (see Fig. 2.1) [45℄. Starting from the de�nition
Figure 2.1: The Keldysh ontour: Start the time evolution at time t = −∞ up to t = +∞(blue line) and then bak from t = +∞ up to t = −∞ (red line).Eq. (2.2) we now displae the times t1, t2, on the Keldysh ontour in all possibleways [29, 52℄. Sine we have only two times to play with, there are just four possibleombinations and to eah one orresponds a ertain Green funtion, whih will belabeled by means of two upper indies, eah of them representing the upper (−) orthe lower branh (+) of the Keldysh ontour. We obtain

G−−(1, 2) = −i〈TψH(1)ψH(2)†〉 = (2.3)
= −iθ(t1 − t2)〈ψH(1)ψH(2)†〉 + iθ(t2 − t1)〈ψH(2)†ψ†

H(1)〉,where t1, t2 ∈ CK−, (G time-ordered) and CK− is the upper branh of the ontour;
G++(1, 2) = −i〈T̃ ψH(1)ψH(2)†〉 = (2.4)

= −iθ(t2 − t1)〈ψH(1)ψH(2)†〉 + iθ(t1 − t2)〈ψH(2)†ψH(1)〉,with both times on the lower branh of the ontour t1, t2 ∈ CK+ (G antitime-ordered);
G+−(1, 2) = −i〈ψH(1)ψH(2)†〉, (2.5)(G greater) with t1 ∈ CK+ , t2 ∈ CK−, and �nally
G−+(1, 2) = i〈ψH(2)†ψH(1)〉, (2.6)(G lesser) where we have t1 ∈ CK−, t2 ∈ CK+. The last two Green funtions arenot time-ordered and moreover ouple the two branhes of the ontour. From the2Here and in the following we set ~ = 118



2.3 Greens Funtions for the Ideal Fermi Gasprevious de�nitions it follows that Eqs. (2.3)-(2.6) are not independent, but haveto obey the onstraint
G−− +G++ = G−+ +G+−. (2.7)One an introdue two more Green funtions

GA(1, 2) = iθ(t2 − t1)〈{ψH(1), ψ†
H(2)}〉 =

= θ(t2 − t1)[G
−+(1, 2) −G+−(1, 2)], (2.8)

GR(1, 2) = −iθ(t1 − t2)〈{ψH(1), ψ†
H(2)}〉 =

= θ(t1 − t2)[G
+−(1, 2) −G−+(1, 2)], (2.9)the retarded and advaned Green funtions de�ned exatly as in equilibrium. Theyan be written in terms of G+−, G−+ aording to

GR = G−− −G−+ = G+− −G++, (2.10)
GA = G−− −G+− = G−+ −G++. (2.11)From the de�nitions (2.3)-(2.4) follows, beause of the antihermiity of their argu-ments, that

G−−(1, 2) = −G++(2, 1). (2.12)The lesser and greater funtions, are antihermiti
G−+(1, 2) = −[G−+(2, 1)]∗ , G+−(1, 2) = −[G+−(2, 1)]∗. (2.13)This means that their Fourier omponents are purely imaginary. Consider now thenon-equilibrium stationary and spae-homogeneous ase. Thanks to the spae andtime transational invariane, all orrelation funtions, now again, depend only onthe di�erenes of their arguments t = t1 − t2,x = x1 −x2. It is then possible to takethe Fourier transform with respet to suh di�erenes, whih diretly leads to therelations

G−−(ω,p) = −[G++(ω,p)]∗,

GA(ω,p) = [GR(ω,p)]∗.2.3 Greens Funtions for the Ideal Fermi GasThe physial meaning of the previously introdued Green funtions an be illustratedthrough a simple example, namely the non interating Fermi gas in its homogeneousand stationary state [52℄. Start from the Eq. (2.5) in whih we substitute for the
ψ-operators the free-�eld expansion expliitely written in the variables x, t as

ψ̂H(t,x) =
1

V
1
2

∑

p

âpe
(i[px−ε(p)t+µt]), (2.14)
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2 The Keldysh Method
ψ̂†

H(t,x) =
1

V
1
2

∑

p

â†
p
e(−i[px−ε(p)t+µt]),where ap, a

†
p
are the usual annihilation and reation operators, ε(p) = p

2

2m
and µ isthe hemial potential. With this substitution we obtain

〈ψ(x, t)ψ†(x′, t′)〉 =
1

V

∑

p,p′

e{i[px−p
′
x
′]}e{−it[ε(p)+µ]−it′[ε(p′)+µ]}〈âpâ

†
p′〉. (2.15)For free �elds the antiommutation relation

{âp, â
†
p′} = δp,p′,holds, so that

〈âpâ
†
p′〉 = δp,p′{1 − 〈â†

p′ âp′〉} =

= δp,p′{1 − fp},where fp is the Fermi distribution funtion only for the ase in whih we treat a gasin equilibrium, otherwise it represents a-priori unkown fermioni non-equilibriumdistribution funtion. Inserting the last relation into Eq. (2.15) results in the ex-pression
〈ψ(x, t)ψ†(x′, t′)〉 =

1

V

∑

p

e{i[p(x−x
′)]}e{−i[ε(p)+µ](t−t′)}{1 − fp}. (2.16)By taking the Fourier transform with respet to x − x′ and t − t′ of Eq. (2.16) we�nally obtain

G−+
0 (ω,p) = −2πi{1 − fp}δ(ω − εp + µ). (2.17)We an now apply the same proedure to the other orrelation funtions with theresult
G+−

0 (ω,p) = 2πifpδ(ω − εp + µ), (2.18)
G−−

0 (ω,p) = [ω − ε(p) + µ+ iη]−1 ± 2πifpδ(ω − εp + µ), (2.19)
G++

0 (ω,p) = −[G−−
0 (ω,p)]∗, (2.20)

GR
0 (ω,p) = [ω − ε(p) + µ+ iη]−1 = [GA

0 (ω,p)]∗. (2.21)From the physial point of view Eqs. (2.17)-(2.18) ontain informations about thestate of the system (through the distribution funtion) and the exitation spetrum20



2.4 Perturbative Expansion(through the delta funtion). The speial form of Eq. (2.21) deouples the infor-mation about the exitation spetrum and the state of the system desribed bythe non-equilibrium distribution funtion fp [10, 12℄. Before �nishing this setion,it is worth to explain how the physial piture hanges when we return bak toequilibrium. The non-equilibrium distribution funtion fp then beomes the usualFermi distribution and onsequently the orrelation funtions beome funtions ofthe temperature and the hemial potential. This means that this formalism analso be applied to desribe systems in equilibrium at T 6= 0.2.4 Perturbative ExpansionThe onstrution of the perturbation theory for systems in non-equilibrium followsthe same steps as the equilibrium ase at T = 0 [52℄. In order to illustrate how thetehnique works we hoose, as example, Eq. (2.2) for the time-ordered Green fun-tionG−−.When we hange the representation from the Heisenberg to the interationpiture, we obtain [53℄
G−−(1, 2) = −i〈 ˆS−1TCK

[ψ̂(1)ψ̂†(2)Ŝ]〉, (2.22)where ψ̂, ψ̂† are free �elds and
Ŝ = Ŝ(−∞,+∞) = TKexp{−i

∫ +∞

−∞

V̂ (t)dt},

Ŝ−1 = Ŝ(+∞,−∞) = T̃Kexp{−i
∫ −∞

+∞

V̂ (t)dt}.

V̂ (t) is the interation operator in the interation piture. In the following we willonsider, just for simpliity reasons, a one-partile interation
V̂ (t) = ψ̂(t)

†
Û(t)ψ̂(t).The quantities Ŝ, Ŝ−1 represent the sattering matries on the two branhes of theKeldysh ontour and they ontain both the interation term and the external �eldwhih drives the system away from equilibrium. In other words the Keldysh pathan be seen as a representation of the sattering proesses indued by Ŝ, Ŝ−1. In Eq.(2.22) the average is alulated with respet to a state onsisting of non interatingpartiles and suh a state an be an any state, and not only the ground state. If wewere in equilibrium and at T = 0, then we should alulate the average with respetto the ground state, therefore the ation of ˆS−1 ould be negleted, beause it wouldorrespond just to a multipliation by a phase fator. On the other hand, any stateaway from equilibrium does not transform into itself under the ation of Ŝ−1, butthe resulting state an be thought as a superposition of exited states oming from21



2 The Keldysh Methodall possible di�usion proesses indued by the interation term and by the external�eld. This is the reason why Ŝ−1 annot be negleted any longer when we performthe perturbative expansion. As diret onsequene we have a dupliation of thedegrees of freedom beause we have now to perform a double expansion (one forboth sattering matries), whose ontrations will involve and mix both sides of theontour. This gives rise to the four di�erent Green funtions we have previouslyintrodued (Setion 2.2). At �rst glane it seems to be an expensive prie to pay,but it avoids us to handle the a priori unknown states at t = ∞ when propagatingthe system from t = +∞ to t = −∞, where the system's state is known [29, 41, 59℄.As already antiipated, the Feynmann diagrams of the non-equilibrium perturbationtheory are the result of the double expansion of the operators Ŝ, ˆS−1 appearing inEq. (2.22). Suh diagrams onsitute a sum of terms whose basi elements are theWik ontrations of operators pairs. Let us begin by expanding the Eq. (2.22) upto �rst order in the one-partile interation. We see that the resulting expressionan be divided in two parts
〈TKψ̂(1)ψ̂†(2)[−i

∫

ˆψ(3)†V (3)ψ̂(3)d4x3]〉+ (2.23)
+〈[TK̃i

∫

ψ̂†(3)V (3)ψ̂(3)d4x3]TKψ̂(1)ψ̂†(2)〉.The �rst one takes into aount the produt of the zero-order term of Ŝ−1 multi-plied by the �rst-order one of Ŝ, the seond term is built the other way round. Inequilibrium we would have only the �rst term of Eq. (2.23). The two terms mustthen be ontrated, resulting in the following produts
〈TKψ̂(1)ψ̂†(2)[−iψ̂†(3)U(3)ψ̂(3)]〉 = G−−

0 (3, 2)G−−
0 (1, 3), (2.24)

〈TK̃ [iψ̂†(3)Uψ̂(3)]TKψ̂(1)ψ̂†(2)〉 = G−+
0 (1, 3)G+−

0 (3, 2) (2.25)of bare Greens funtions. In Eq. (2.25) appear the lesser and greater free Greenfuntions sine we have taken two ontrations involving operators belonging to twodi�erent parts of the Keldysh ontour. Note that none of them is time-orderedbeause they mix the two sides of the ontour. On the other hand, in Eq. (2.24)all operators live on the upper side of the ontour, therefore we an have only timeordered funtions. Equations (2.24) and (2.25) are represented graphially in Fig.2.2. V denotes the interation potential, the arrows are the bare orrelation funtions
G0, and the signs (−,+), stand for the upper and lower branh of the ontour. Nowwe have all the elements to write expliitely the time ordered Green funtion up tothe �rst order in V

G
(−−)
(1) (1, 2) = −i4

+∞∫

−∞

d3x3dt3[G
−−
0 (1, 3)G−−

0 (3, 2)(−V (3))+
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2.4 Perturbative Expansion
+

=+iU(x)
-

=-iU(x)

1-

3- 3+

2- 2-1-Figure 2.2: The dashed lines represent the bare interation vertex, the ontinous lines thepropagators onneting two points on the Keldysh ontour.
+G−+

0 (1, 3)G+−
0 (3, 2)V (3)].The last equation indues a dependene in G−−

(1) not only on G−−
0 , but also on G(−+)

0 .As we will see in the following, the higher the order of the expansion and the moreompliated will be suh a dependene. If we proeed further and take a look at thenext order (O(V 2)), we �nd the graphs depited in Fig. 2.3 whose orresponding
- -

--

+ +

-- - -

+ -

- +

- -

Figure 2.3: Seond order sattering proess, for the one-partile, interation taking are ofall possible sign ombination of the internal indees.expression reads
G−−

(2) (1, 2) = −i6
+∞∫

−∞

d3x4d
3x3dt3dt4

[G−−
0 (1, 4)G−−

0 (4, 3)G−−
0 (3, 2)V (3)V (4)+ 23



2 The Keldysh Method
G−+

0 (1, 4)G+−
0 (4, 3)G−−

0 (3, 2)V (3)(−V (4))+

G−−
0 (1, 4)G−+

0 (4, 3)G+−
0 (3, 2)V (3)(−V (4))+

G−+
0 (1, 4)G++

0 (4, 3)G+−
0 (3, 2)V (3)V (4)].The external legs are haraterized by two �xed minus signs, while the two internalones must be ontrated in all possible ways. Out of all possible ontrations G−−

(2)aquires a dependene on all bare orrelation funtions, resulting in a lenghty andompliated analytial struture3. From the ontour point of view this orrespondsto plae the internal degrees of freedom in all possible ways on both sides of theontour.Up to now we have analyzed, just for simpliity reasons, only one-partile inter-ation, but the same arguments also hold for any kind of interation. From now wewill fous on two-partile interation
V (t) = ψ†(t)ψ†(t)U(t)ψ(t)ψ(t).Until now we have onsidered ontributions up to seond order, but it is possibleto represent the exat G−− in a ompat graphial way as shown by Fig. 2.44.
= + +

+ +

- - - - - -
- -

- + + -
+ +

+ - - +
-+----+-Figure 2.4: Compat diagrammati form of the Dyson equation for the exat G−− writtenin the Keldysh language.The bold arrows stand for the exat Green funtions, the thin ones denote the bareorrelation funtions and the irles represent the selfenergy ontributions. Oneagain the external legs have �xed signs, while the internal ones take into aountthe four possible ombinations of +,− signs, resulting in the selfenergies in Fig. 2.4depited. The full G−− an then be written as

G−−(1, 2) = G−−
0 (1, 2) +

+∞∫

−∞

d3x3d
3x4dt3dt4 (2.26)3The same holds also for the other three orrelation funtions ( Eqs. (2.4)-(2.6) )4The other exat orrelation funtions (Eq.(2.4)-(2.6)) have the same internal struture too, whathanges are just the signs of the external legs whih de�ne the Green funtion we are onsidering.24



2.5 A useful Transformation
[G−−

0 (1, 4)Σ−−(4, 3)G−−(3, 2)+

G−+
0 (1, 4)Σ++(4, 3)G+−(3, 2)+

G−+
0 (1, 4)Σ+−(4, 3)G−−(3, 2)+

G−−
0 (1, 4)Σ−+(4, 3)G+−(3, 2)].The selfenergy funtions or selfenergies are represented by graphs whih annot besepareted in two parts by utting just one ontinous line (one partile irreduible).They an be summed as bloks depending on the order of the perturbation theorywe are onsidering. In Fig. 2.5 we show as an example the diagrams up to theseond order in U for Σ−− and Σ+−.

Figure 2.5: Selfenergies: Σ−− and Σ−+ up to seond order.2.5 A useful TransformationIn order to render the previously presented formalism easier to handle it is onvenientto introdue a matrix notation, whih permits to treat all orrelation funtions atone. To this end we de�ne
Σ̂ =

(
Σ−− Σ−+

Σ+− Σ++

)

,

Ĝ =

(
G−− G−+

G+− G++

)

.With this matries it is possible to rewrite the set of Dyson equations for the variousGreen funtions in a ompat matrix form as
Ĝ(1, 2) = Ĝ0(1, 2) +

+∞∫

−∞

d3x3d
3x4dt3dt4[Ĝ0(1, 4)Σ̂(4, 3)Ĝ(3, 2)]. (2.27)
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2 The Keldysh MethodWe an now introdue the di�erential operator5
Ĝ−1

0,1 = i
∂

∂t1
+

∆1

2m
+ µ, (2.28)whih has the property [41, 53℄̂

G−1
0,1Ĝ0(1, 2) = σ̂zδ(1 − 2),where
σ̂z =

(
1 0
0 −1

)

.With this de�nition we an rewrite the Eq. (2.27) as
Ĝ−1

0,1Ĝ(1, 2) = σ̂zδ(1 − 2) +

+∞∫

−∞

d3x3dt3[σ̂zΣ̂(4, 3)Ĝ(3, 2)]. (2.29)This is a system of four integro-di�erential equations whih are formally indepen-dent of the non-interating state (sine G0 does not appear in Eq. (2.29)), whihnow enters as initial ondition. In passing we emphasize that Eq. (2.29) is om-pletely general, it for example holds in the non-stationary ase and also for spatiallyinhomogeneous situations.Equation (2.27) does not re�et expliitely the relation (2.29) among the Greenfuntions. It an be made manifestly by a linear transformation
R̂ =

1√
2

(
1 1
−1 1

)

,with whih we obtain
Ĝ′ = R̂−1ĜR̂ =

(
0 GA

GR GK

)

,

Σ̂′ = R̂−1Σ̂R̂ =

(
ΣK ΣR

ΣA 0

)

,where
ΣK = Σ−− + Σ++5If we di�erentiate with respet to the seond variable t2 then we must hange the sign of thetime derivative obtaining
Ĝ−1

0,2 = −i ∂
∂t2

+
∆2

2m
+ µ,

G−1
0,2G

−−

0 (1, 2) = δ(1 − 2).
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2.5 A useful Transformationand
GK := G−+ +G+− = G−− +G++,For ΣR and ΣA one �nally obtains, by means of Σ−− + Σ++ = −(Σ+− + Σ−+) [52℄,the relations

ΣR = Σ−− + Σ−+,

ΣA = Σ−− + Σ+−.We should remark that the transformation used here is not unique, in fat onven-tionally a di�erent transformation is adopted, whih leads to the Green funtion[72℄
Ĝ

′′

=

(
GR GK

0 GA

)

.Let us write expliitely Eq. (2.27) for the transformed matrix G′

(
0 GA

GR GK

)

=

(
0 GA

0

GR
0 GK

0

)

+ (2.30)
+∞∫

−∞

d3x3d
3x4dt3dt4

[
0 GA

0 ΣaGa

GR
0 ΣRGR (GR

0 ΣK +GK
0 ΣA)GA +GR

0 ΣRGK

]

.From the o� diagonal elements we obtain the expressions for the retarded and ad-vaned Green funtions as
GR,A(1, 2) = GR,A

0 (1, 2) +

+∞∫

−∞

d3x3d
3x4dt3dt4 (2.31)

[GR,A
0 (1, 4)ΣR,A(4, 3)GR,A(3, 2)].The solution to (2.31) desribes the exitation spetrum of the problem we arestudying. The lower right matrix element of Eq. (2.30) ontains the informationabout the thermodynami state of the system. Applying the di�erential operator

Ĝ−1
(0),1 to it, the ompliated expression simpli�es to

Ĝ−1
(0),1G

K(1, 2) =

+∞∫

−∞

d3x3dt3[Σ
K(1, 3)GA(3, 2) + ΣR(1, 3)GK(3, 2)], (2.32)where we made use of the relation ([41℄)

Ĝ−1
(0),1G

K
(0) = Ĝ−1

(0),1[G
−+
0 +G+−

0 ] = 0As before, the system (2.31) and (2.32) does not expliitely ontain the thermo-dynami state of the non-interating system. It enters only through the initialondition to (2.32), whih an be seen as a quantum mehani generalization of theBoltzmann equation. 27



2 The Keldysh Method
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3 Funtional RenormalizationGroup3.1 IntrodutionThe reliable alulation of physial properties of interating quantum mehanialsystems presents a formidable task. Typially, one has to ope with the interplay ofdi�erent energy-sales possibly overing several orders of magnitude even for simplesituations. Approximate tools like perturbation theory, but even numerially ex-at tehniques an usually handle only a restrited window of energy sales and arefurthermore limited in their appliability by the approximations involved or the om-putational resoures available. In addition due to the divergene of ertain lasses ofFeynman diagrams some of the interesting many-partile problems annot be takledby straight forward perturbation theory. The situation beomes even more involvedif one is interested in properties o� equilibrium, in partiular time-dependend situ-ations. As disussed in Chapter 2, the standard approah for suh ases is based onthe Keldysh formalism for the time evolution of Green funtions. In order to studyinterating systems, in parameter regimes that annot be aessed by perturbationtheory, novel theoretial methods have been devised reently. These approahesare based on the general onept of the renormalization group [88℄ by means ofwhih one starts from high energy sales, in order to avoid infrared divergenies,and works ones way down to the desired low energy region in a systemati way,whih depends on the partiular problem to analyze. In partiular, for interatingquantum many-partiles systems in equilibrium two di�erent shemes attempting aproblem independent presription have been developed during the nineties. One isthe �ow-equations tehnique [20, 86℄, the other is a �eld theoretial approah whihwill be explained in the ourse of the present hapter.This method starts from a funtional representation of the partition funtion ofthe system, serving as generating funtional for Green funtions. It has beomeknown as funtional renormalization group (FRG) [64, 69, 75, 87℄. The aim of thishapter is to derive an extension of the FRG formalism to non-equilibrium. Thegeneral idea is to set up a generating funtional, using an appropriate ation on theKeldysh ontour (see setion 3.2),through whih we obtain our orrelation funtionsas funtional derivatives. We will see that the extension to non-equilibrium does nothange the formal struture of the FRG. However, there is a prie to pay, viz one29



3 Funtional Renormalization Grouphas to are for the Keldysh indies. Eah of them takes into aount a branh of theKeldysh ontour. As diret onsequene we obtain a system of di�erential equations,whih shows a tensor struture with respet to the Keldysh indees resulting in moreompliated form ompared to the equilibrium ase. It is also important to point outthat the formalism we are going to present is ompletely general and therefore anbe applied to bosoni or fermioni systems in stationary state or to time-dependentproblems.Before �nishing this setion, it is important to mention that the Keldysh tehniqueontains the equilibrium theory (as soon as we turn o� the external �eld whih drivesthe system out of equilibrium) both at T = 0 and at �nite temperatures. Besides,sine the Keldysh method relies on real variables, we do not need, in ontrast to theMatsubara tehnique, any analytial prolongation from the imaginary axis to thereal one. This will permit to the non-equilibriumFRG to treat equilibrium situationstoo (see Setions 5.3 and 6.3.1), avoiding the analytial prolongation whih may be,for some problems, a umbersome step 1.3.2 Extension to Non-EquilibriumThe derivation of the non-equilibrium FRG sheme losely follows the general linesgiven in [30, 31℄. To this end, we will �rst develop a formulation that allows toexpress all interesting quantities via funtional derivatives of a generating funtionalwhose hoie has been inspired by Kameneev's approah [41℄. To set up a funtionalintegral representation of the generating funtional respeting the Keldysh timeordering, we de�ne the matrix
Ĝ(ξ, ξ′) :=

(
G−−(ξ, ξ′) G−+(ξ, ξ′)
G+−(ξ, ξ′) G++(ξ, ξ′)

)where the matrix elements are given by Eq. (2.3)-(2.6). The arguments ξ, ξ′ are aombination of all relevant quantum numbers, position and time. For all quantitiesliving on the Keldysh ontour we introdue the short hand notation
(
ψ̄,Oψ

)
= i

∫ +∞

−∞

dξdξ′ψ̄(ξ)O(ξ, ξ′)ψ(ξ′) ,1In ontrast to the Matsubara tehnique, where the frequeny and the temperature are arti�iallylinked by the relation (fermioni ase)
ωn =

π(2n+ 1)

β
,within the non-equilibrium FRG the dynamial degrees of freedom and the temperature aredeoupled.30



3.2 Extension to Non-Equilibriumwhere O is a matrix in the Keldysh indies and
ψ(ξ, ξ′) =

(
ψ−(ξ, ξ′)
ψ+(ξ, ξ′)

) (3.1)is a vetor of �elds (Grassmann for fermions or omplex for bosons) with the timeargument of ψ− on the upper branh of the Keldysh ontour and ψ+ a time argumenton the lower. Later it will also prove useful to Fourier transform from time t tofrequeny ω. One then has to replae t in ξ by ω. The integrals over ξ and ξ′stand for summations over the quantum numbers and integrations over spae andtime or frequeny. The following steps an be performed with ξ either ontainingtime or frequeny. The generalization of the funtional integral representation ofthe partition funtion to non-equilibrium is [41℄
Ξ =

1

Ξ0

∫

Dψ̄ψ exp

{

(ψ̄,
[

Ĝ0

]−1

ψ) − iSint

(
{ψ̄}, {ψ}

)
}

, (3.2)
Ξ0 being a normalization fator given by

Ξ0 =

∫

Dψ̄ψ exp

{

(ψ̄,
[

Ĝ0

]−1

ψ)

}

.The matrix Ĝ0 denotes the propagator of a suitably hosen referene system and Sintrepresents an arbitrary interation term. In order to build the generating funtionalfor the m-partile Green funtions we have to insert in Eq. (3.2) external soure�elds η, η̄ aording to (for the standard proedure in equilibrium see for example[65℄
W ({η̄}, {η}) =

1

Ξ0

∫

Dψ̄ψ exp

{(

ψ̄,
[

Ĝ0

]−1

ψ

)

− iSint({ψ̄}, {ψ})

−
(
ψ̄, η

)
− (η̄, ψ)

}
. (3.3)Taking the logarithm of the latter equation we �nally get the generator of the (on-neted) m-partile Greens funtions

Wc ({η̄}, {η}) = ln [W ({η̄}, {η})] . (3.4)The (onneted) m-partile Green funtion G(c)
m an be then obtained by taking thefuntional derivatives with respet to the vetors η

G(c)
m (ξ′1, . . . , ξ

′
m; ξ1, . . . , ξm) = (ζi)m δm

δη̄ξ′1
. . . δη̄ξ′m

δm

δηξm
. . . δηξ1

W(c) ({η̄}, {η})
∣
∣
∣
∣
η=0=η̄

.(3.5)At this point it's important to underline that, sine the �elds η have two omponents(depending on the branh of the Keldysh ontour), the (onneted) m-partile Green31



3 Funtional Renormalization Groupfuntions, resulting from Eq. (3.5), must be read as tensors with respet to theKeldysh indies. Before giving a pratial example of how suh a tensor form arises,let us perform one further step whih will bring us to the de�nition of the generatingfuntional for the one-partile irreduible vertex funtions γm. Introduing the �elds
φξ = i

δ

δη̄ξ

Wc ({η̄}, {η}) ,

φ̄ξ = ζi
δ

δηξ

Wc ({η̄}, {η}) ,where ζ = ±1 and the upper sign applies to boson �elds. We an perform a Legendretransformation
Γ
(
{φ̄}, {φ}

)
= −Wc ({η̄}, {η}) − i

(
φ̄, η
)
− i (η̄, φ) + i

(

φ̄,
[

Ĝ0

]−1

φ

)

. (3.6)With the help of Eq. (3.6), we de�ne γm as
γm (ξ′1, . . . , ξ

′
m; ξ1, . . . , ξm) = (i)m δm

δφ̄ξ′1
. . . δφ̄ξ′m

δm

δφξm
. . . δφξ1

Γ
(
{φ̄}, {φ}

)

∣
∣
∣
∣
∣
φ=0=φ̄

.(3.7)Note that in ontrast to the usual de�nition of Γ, whih onsists of the �rst threeterms in Eq. (3.6) only [65℄, we have added a term (

φ̄,
[

Ĝ0

]−1

φ

). The reason forintroduing this term will beome lear in the next setion. The general relationbetween the G(c)
m and γm an be found in text books [65℄. For the 1-partile Greenfuntion we obtain

G1(ξ
′; ξ) = Gc

1(ξ
′; ξ)

= i
δ

δη̄ξ′1

δ

δηξ1

Wc = −ζĜξ′,ξ ,

=

[

γ1 − ζ
[

Ĝ0

]−1
]−1

ξ′,ξwhere
Ĝξ′,ξ =

[[

Ĝ0

]−1

− Σ̂

]−1

ξ′,ξ

,with the proper one partile selfenergy Σ̂. This implies the relation Σ̂ = ζγ1. Notethat in the last equation the matrix struture appears not only with respet to ξand ξ′ but also with respet to the Keldysh indies. We now intend to show howthe tensor struure of the verties arises starting from the general expression
Gc

m (ξ′1 . . . , , ξ
′
m; ξ1, . . . , ξm) = (3.8)32



3.3 The Flow Equations
= (ζi)m δm

δη̄ξ′1
. . . δη̄ξ′m

⊗ δm

δηξm
. . . δηξ1

Wc ({η̄}, {η})
∣
∣
∣
∣
η=0=η̄

.We look at the easiest ase m = 1. We have two funtional derivatives with respetto the vetors η, whih an be made expliit by using a tensor produt notation
Gc

1(ξ
′, ξ) = (ζi)

δ

δη̄ξ′
⊗ δ

δηξ
Wc ({η̄}, {η})

∣
∣
∣
∣
η=0=η̄

,leading to the matrix
Gc

1 (ξ′1, ξ1) = (ζi)

(
δ2Wc

δη̄−(ξ′))δη−(ξ)
δ2Wc

δη̄−(ξ′)δη+(ξ)
δ2Wc

δη̄+(ξ′)δη−(ξ)
δ2Wc

δη̄+(ξ′)δη+(ξ)

)

= (3.9).
=

(
G−−

1 (ξ′, ξ) G−+
1 (ξ′, ξ)

G+−
1 (ξ′, ξ) G++

1 (ξ′, ξ)

)

.The extension to higher order is evident. For m = 2 we get a four index tensor andso on for higher values of m. In pratie we have to add, for eah m, two indeesoming from all the possible ombinations of the Keldysh omponents of the �eldsin the funtional derivative. One more we want to emphasize that our formalismhas been formulated without assuming translational invariane up to now.3.3 The Flow EquationsNow that we have pointed out how the Keldysh onept modi�es the struture ofthe Green funtions, we an start to derivate the FRG �ow equations, following thesteps in [30, 31℄. In Eq. (3.2) and (3.3) we replae the noninterating propagatorby a propagator ĜΛ
0 depending on a parameter Λ ∈ [Λ0, 0] and require

ĜΛ0
0 = 0 , ĜΛ=0

0 = Ĝ0 , (3.10)i.e. at the starting point Λ = Λ0 no degrees of freedom are �turned on� while at
Λ = 0 full system is reovered. In models with infrared divergenies Λ an be usedto regularize the problem. In equilibrium this is often be ahieved by implementing
Λ as an infrared uto� in momentum or energy. One of the advantages of theFRG approah over other RG shemes is that one is not restrited to these hoiesand other ways of introduing the parameter Λ have turned out to be useful forequilibrium problems [35, 61℄. All that is required to derive the fundamental �owequations are the onditions Eq. (3.10). In our appliation of the non-equilibriumFRG to the steady state transport through an interating quantum dot it is naturalto implement Λ as an energy uto�. However, suh a hoie must not be the naturalone in ases where one is interested in studying time-dependent phenomena. In33



3 Funtional Renormalization Groupthis situation the propagator and the vertex funtions in general depend on thevarious spatial and time variables individually and there is no obvious momentumor energy uto� sheme. Within the FRG several ways of introduing Λ an beworked out, ompared and the one best suited for the problem under investigationan be identi�ed.Through ĜΛ
0 the quantities de�ned in Eqs. (3.2) to (3.7) aquire a Λ-dependene.Taking the derivative with respet to Λ results in a funtional di�erential equationfor ΓΛ. From this, by expanding in powers of the external soures, an in�nitehierarhy of oupled di�erential equations for the γΛ

m is obtained. Although thesteps in the derivation are formally equivalent to Ref. [30, 31℄, beause of the real-time formulation additional fators i and signs appear in several plaes. We thusbelieve that it is helpful to present the details of the derivation.As a �rst step we di�erentiate Wc,Λ with respet to Λ, whih after straightforwardbut lenghty algebra (see Appendix 3) leads to
d

dΛ
Wc,Λ = ζ Tr (Q̂ΛĜ0,Λ

)

+ iζTr (Q̂Λ δ
2Wc,Λ

δη̄δη

)

+

(
δWc,Λ

δη
, Q̂Λ δWc,Λ

δη̄

)

. (3.11)Considering φ and φ̄ as the fundamental variables we obtain from Eq. (3.6)
d

dΛ
ΓΛ
(
{φ̄}, {φ}

)
= − d

dΛ
Wc,Λ

(
{η̄Λ}, {ηΛ}

)
−

−
(

φ̄,
d

dΛ
ηΛ

)

−
(
d

dΛ
η̄Λ, φ

)

+
(

φ̄, Q̂Λφ
)

.Applying the hain rule and using Eq. (3.11) this leads to
d

dΛ
ΓΛ = −ζ Tr (Q̂ΛĜ0,Λ

)

− iζTr (Q̂Λ δ
2Wc,Λ

δη̄ΛδηΛ

)

,where the last term in Eq. (3.6) anels a orresponding ontribution arising inEq. (3.11), thus a posterior justifying the inlusion of this term. Extending thewell known relation [65℄ between the seond funtional derivatives of Γ and Wc tonon-equilibrium we obtain the funtional di�erential equation
d

dΛ
ΓΛ = −ζ Tr (Q̂ΛĜ0,Λ

)

− Tr (Q̂ΛV1,1

φ̄,φ
(ΓΛ, Ĝ0,Λ)

)

, (3.12)where V1,1

φ̄,φ
stands for the upper left blok of the matrix

Vφ̄,φ(Γ
Λ, Ĝ0,Λ) =







i δ
2ΓΛ

δφ̄δφ
− ζ

[

Ĝ0,Λ
]−1

i δ
2ΓΛ

δφ̄δφ̄

iζ δ2ΓΛ

δφδφ
−
{

i δ
2ΓΛ

δφδφ̄
+

([

Ĝ0,Λ
]−1
)T
}







−1 (3.13)
34



3.3 The Flow Equationsand the upper index T denotes the transposed matrix. To obtain di�erential equa-tions for the γΛ
m whih inlude selfenergy orretions we express Vφ̄,φ in terms of ĜΛinstead of Ĝ0,Λ. This is ahieved by de�ning

Uφ̄,φ = i
δ2ΓΛ

δφ̄δφ
− γΛ

1and using
ĜΛ =

[[

Ĝ0,Λ
]−1

− ζγΛ
1

]−1

, (3.14)whih leads to
d

dΛ
ΓΛ = −ζ Tr (Q̂ΛĜ0,Λ

)

+ ζTr [ĜΛQ̂ΛṼ1,1

φ̄,φ
(ΓΛ, ĜΛ)

]

, (3.15)with
Ṽφ̄,φ

(

ΓΛ, ĜΛ
)

=

[

1 −
(
ζĜΛ 0

0
[

ĜΛ
]T

)(

Uφ̄,φ i δ
2ΓΛ

δφ̄δφ̄

(iζ) δ2ΓΛ

δφδφ
ζU t

φ̄,φ

)]−1

, (3.16)
Q̂Λ =

d

dΛ

[

ĜΛ
0

]−1

. (3.17)It is important to note that Uφ̄,φ as well as δ2ΓΛ

δφ̄δφ̄
and δ2ΓΛ

δφδφ
are at least quadrati in theexternal soures. The initial ondition for the exat funtional di�erential equation(3.15) an either be obtained by lengthy but straightforward algebra, whih we arenot going to present here, or by the following simple argument: At Λ = Λ0, Ĝ0,Λ0 = 0(no degrees of freedom are �turned on�) and in a perturbative expansion of the γΛ0

mthe only term whih does not vanish is the bare two-partile vertex. We thus �nd
ΓΛ0

(
{φ̄}, {φ}

)
= Sint

(
{φ̄}, {φ}

)
. (3.18)By expanding Ṽ in a geometri series

Ṽφ̄,φ = 1 + ζĜΛUφ̄,φ + ĜΛUφ̄,φĜ
ΛUφ̄,φ+ (3.19)

+ζ3i2ĜΛ δ2Γ

δφ̄δφ̄

[

ĜΛ
]T δ2Γ

δφδφ
+ . . .and ΓΛ with respet to the external soures

ΓΛ
(
{φ̄}, {φ}

)
=

∞∑

m=0

(iζ)m

(m!)2

∑

ξ′1,...,ξ′m

∑

ξ1,...,ξm

γΛ
m (ξ′1, . . . , ξ

′
m; ξ1, . . . , ξm)

×φ̄ξ′1
. . . φ̄ξ′mφξm

. . . φξ1 . 35



3 Funtional Renormalization Groupan exat in�nite hierahy of �ow equations for the γΛ
m an be obtained. Consideras simplest example the �ow equation for the single-partile vertex γ1 (selfenergy).It an be derived by taking the expansion Eq. (3.19) up to �rst order in U , insertit into Eq. (3.15), replae ΓΛ on both sides with the expansion (3.20) and ompareexpressions with the same powers in the �elds, i.e. for γ1 up to order m = 1. Thisproedure leads to the expression

d

dΛ
γΛ

1 (ξ′; ξ) = ζ
d

dΛ
Σ̂Λ(ξ′, ξ)

= Tr [ŜΛγΛ
2 (ξ′, ·; ξ, ·)

]

, (3.20)whih an be visualized by the diagram in Fig. 3.1. In order to avoid any possible
k k’ k k’Figure 3.1: Diagrammati form of the �ow equation for γΛ

1 . The slashed line stands forthe single sale propagator ŜΛ.misunderstanding it is worth to explain that the trae in (3.20) represents morethan the usual matrix trae. It ontains all possible sums (integrals, series, trae,ontrations) over the internal variables (quantum numbers, time, frequeny, et),or in other words, over all variables not expliitely written. In Eq. (3.20) appearsthe so-alled single sale propagator (the slashed line in Fig. 3.1)
ŜΛ = ĜΛQ̂ΛĜΛ , (3.21)and the quantity γΛ

2 (ξ′, ·; ξ, ·) denotes the matrix obtained by keeping the indies ξand ξ′ �xed. We thus arrive at an expression that is formally idential to Eq. (19) in[30, 31℄. The di�erene appears in the matrix struture, whih now also ontains theindex omponents for the branhes of the Keldysh ontour. To make this expliit,we write out Eq. (3.20) with respet to the Keldysh indies.
ζ
d

dΛ
Σαβ,Λ(ξ′, ξ) = Tr

∑

µν

Sµν,Λγαν;βµ,Λ
2 (ξ′, ·; ξ, ·) . (3.22)Apparently, the derivative of γΛ

1 is determined by γΛ
1 (impliitely through ŜΛ) andthe two-partile vertex γΛ

2 . Thus an equation for γΛ
2 is required. Here we only showthe diagrammati form of γΛ

2 in Fig. 3.2, its derivation will be given in the nextsetion.36



3.3 The Flow Equations
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Figure 3.2: Diagrammati form of the �ow equation for γΛ
2 . The slashed line stands forthe single sale propagator ŜΛ, the unslashed line for ĜΛ.Sine the only di�erene between the Eq. (3.20) and the analogous equation in[30, 31℄ are the two ontour indees, it an be interesting to have a more expliitexpression of Eq. (3.20) in order to see how these two indees hange the strutureof the �ow equation in non-equilibrium. We have to start again from Eq. (3.20) andwrite expliitely the right hand side in its tensor form

ζ
d

dΛ

(
Σ(ξ′, ξ)−−,Λ Σ(ξ′, ξ)−+,Λ

Σ(ξ′, ξ)+−,Λ Σ(ξ′, ξ)++,Λ

)

= Tr (SΛγΛ
2 (ξ′, · · · ; ξ, · · · )

)
= (3.23)

= Tr 


(
S−−,Λ S−+,Λ

S+−,Λ S++,Λ

)








(
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)−− (
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)−+

(
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)+− (
γ−−,Λ

2 γ−+,Λ
2

γ+−,Λ
2 γ++,Λ

2

)++













where the matrix elements γΛ

2 are tensors in the variables not expliitely written,i.e. [γΛ
2 (ξ′, · · · ; ξ, · · · )

]

q′,q
= γΛ

2 (ξ′, q′; ξ, q).In Eq. (3.23) the produt between ŜΛ and γΛ
2 (ξ′, · · · ; ξ, · · · ) must be read asa ontration among the Keldysh indees, resulting in a sum of produts amongbloks having the same index pair. It is also important to point out that beause ofthe hierarhial struture of our equations we get always a link between 2m-ordervertex funtion and 2(m+ 1)−order one. This means that ( ase m = 1) on the lefthand side of Eq. (3.23) we have a two index tensor and on the right hand side aontration between the Keldysh indees of a two index tensor ŜΛ and a four indexone γΛ

2 . The same ontration struture remains at higher orders but it is obviouslymuh more ompliated. This point will beome lear in the next setion, where westudy the �ow equation of γ2. 37



3 Funtional Renormalization Group3.4 Flow Equation for the Two-Partiles VertexTo obtain the �ow equation for ˆ̇Σ we have expanded Eq. (3.16) in a geometriseries up to �rst order and ΓΛ Eq. (3.20) in the external soures up to the or-der m = 2. In order to �nd the �ow equation for the vertex funtion, γ̇2, wejust have to proeed one step further, namely expand Eq. (3.16) up to the se-ond order and ΓΛ up to third (m = 3). After omparison of the terms withthe same power in the �elds we obtain a di�erential equation for γΛ
2 , whih doesnot only ontain γΛ

1 - impliitly via the propagators � and γΛ
2 , but also the three-partile vertex γΛ

3 . This three-partile vertex depends on the four-partile vertexet. It is generially impossible to solve the full set of in�nitely many oupleddi�erential equations. In appliations one has to trunate it, and this is usuallydone at m = 2, i.e. one replaes all verties with m > 2 by their initial values,whih for typial problems enountered means γm = 0 for m > 2. The trunatedequation for γΛ
2 then reads (see Eq. (15) by Karrash at al. [42℄ and Fig. 3.2):

d

dΛ
γαβγδ,Λ(ξ′1, ξ

′
2; ξ1, ξ2) =

∑

µ,ν,ρ,η

∫

dξ3dξ
′
3dξ4dξ

′
4

(

Gρη,Λ(ξ′3, ξ3)Sνµ,Λ(ξ4, ξ
′
4)
[
γαβρν,Λ(ξ′1, ξ

′
2; ξ3, ξ4)γ

ηµγδ,Λ(ξ′3, ξ
′
4; ξ1, ξ2)

]

− Gηρ,Λ(ξ3, ξ
′
3)Sνµ,Λ(ξ4, ξ

′
4)
[
γαµγη,Λ(ξ′1, ξ

′
4; ξ1, ξ3)γ

ρβνδ,Λ(ξ′3, ξ
′
2; ξ4, ξ2)

]

+ γαργν,Λ(ξ′1, ξ
′
3; ξ1, ξ4)γ

µβηδ,Λ(ξ′4, ξ
′
2; ξ3, ξ2)

− γβµγη,Λ(ξ′2, ξ
′
4; ξ1, ξ3)γ

ρανδ,Λ(ξ′3, ξ
′
1; ξ4, ξ2)

− γβργν,Λ(ξ′2, ξ
′
3; ξ1, ξ4)γ

µαηδ,Λ(ξ′4, ξ
′
1; ξ3, ξ2)

]
)

. (3.24)Equation (3.24) has a ompliated form onsisting of sums and integrals overtimes or frequenies and quantum numbers inluding spins and ontrations overthe Keldysh indies. The main di�erene to equilibrium is the presene of mixedontrations regarding the Keldysh indies of the matries Ĝ and Ŝ and the four-index tensors γ2. At this point it is worth to give some more insight onerningthe relation between the dynamial indees and the Keldysh ones appearing in theGreens funtions and in the tensor γ2.From the topologial struture of the �ow-equations (see Fig. 3.2) we see that eahKeldysh index is stritly onneted to a dynamial one. For instane, in Gνµ(ξ4, ξ
′
4)the index ν is linked to ξ4 and µ to ξ′4. This means that if we permute ︷︸︸︷νµ → ︷︸︸︷

µν ,then we have to rotate the orresponding dynamial indees ︷ ︸︸ ︷ξ4, ξ
′
4 →

︷ ︸︸ ︷

ξ′4, ξ4 too. Itis also important to note that the permutation of eah dynamial index indues afator ζ in the vertex, i.e. a minus sign for fermions , whih is not true for thepermutation of two Keldysh indies, beause they do not represent any physialvariable suh as impulse, spin et. In partiular we have to distinguish two ases38



3.4 Flow Equation for the Two-Partiles Vertexwhen we permutate the �rst or the seond pair of Keldysh indees in γΛ
2 . In the �rstase we have to transpose eah blok matrix (see Eq. (3.23) ), in the seond asethe blok matries remain unhanged but we must transpose the entire tensor.
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3 Funtional Renormalization Group
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4 Stationary Transport through aQuantum Dot4.1 IntrodutionIn the previous hapter we developed the formal extension of the FRG in non-equilibrium in a form whih was as general as possible. We obtained a hierarhyof di�erential equations, whih we had to trunate at a ertain level to obtain amanageable set of equations. Note that even within this trunated system theremaining set of di�erential equations must typially still be further approximatedto allow a numerial solution [2, 36℄.The goal of the present hapter is to apply our formalism to the single impurityAnderson model SIAM desribing the transport properties of a single-level quantumdot under a onstant bias at T = 0. As disussed in the introdution, the SIAMis the simplest model displaying non trivial many-body e�ets. Furthermore, theFRG equations are simple enough to in priniple allow for a full treatment of thetrunated system inluding all time or frequeny dependene. However, as �rst step,we will onentrate on the stationary ase and will introdue further approximationsto redue the omplexity of the FRG equations.Let us start by deriving the analytial expressions of the non-interating dot Greenfuntions of the SIAM, as next step we will approximate the vertex by a energy-indipendent one and disuss how the mathematial form of the non-equilibrium �owequations will hange. The limit VB → 0, will serve as test ase where we will showthat our non-equilibrium FRG is able to reprodue the results in equilibrium [2℄.We will show in partiular that, even with suh a drasti approximation, we areable to reprodue, at least qualitatively, the results regarding the urrent J andthe di�erential ondutane G, whih have been obtained by several authors withperturbation theory [16, 33℄.4.2 The Non-Interating CaseThe SIAM has already been introdued in detail in the �rst hapter (see Setion1.4.2). A partiularly simple ase, where we an alulate all Keldysh funtionsexatly, is the non-interating limit U = 0. Besides, serving as an exerise to obtaina feeling for the struture of these orrelation funtions, the results of the following41



4 Stationary Transport
Figure 4.1: Graphial representation of Σ̂(0)alulations are also neessary to initialize the FRG equations set up in the nextsetion. The starting point to derive the orrelation funtions is the Dyson equationwritten in a matrix form

Ĝd,(0)(ω) =
[(
ĝd,(0)

)−1 − Σ̂(0)

]−1

, (4.1)where Ĝd,(0), ĝd,(0), Σ̂(0) are the matries
Ĝd,(0) =

(
G−−

d,(0) G−+
d,(0)

G+−
d,(0) G++

d,(0)

)

, (4.2)
ĝd,(0) =

(
g−−

d,(0) g−+
d,(0)

g+−
d,(0) g++

d,(0)

)

, (4.3)
Σ̂(0) =

V 2

2N

∑

~kα

(
G−−

~kα(0)
G−+

~kα(0)

G+−
~kα(0)

G++
~kα(0)

)

, (4.4)(see Fig. 4.1 ) where we assume that εk,L = εk,R and VL = VR = V/
√

2. The meaningof the fator √2 will beome lear later. We need the expliit expressions of the freeGreen funtions for the dot and the eletrodes. They read [52℄
G−−

~kα(0)
(ω) =

1

ω − ε~k + µα + iδ

+2iπf(ε~k)δ(ω − ε~k + µα) ,

(4.5)
G++

~kα(0)
(ω) = −

[

G−−
~kα

(ω)
]∗

, (4.6)
G−+

~kα(0)
(ω) = 2iπf(ε~k)δ(ω − ε~k + µα) , (4.7)

G+−
~kα(0)

(ω) = −2iπf(−ε~k)δ(ω − ε~k + µα) (4.8)42



4.2 The Non-Interating Casefor the leads and
g−−

d(0)(ω) =
1

ω − ε+ µ+ iδ

+2iπf(ε)δ(ω − ε+ µ) ,

(4.9)
g++

d(0)(ω) = −
[

g−−
d(0)(ω)

]∗

, (4.10)
g−+

d(0)(ω) = 2iπf(ε)δ(ω − ε+ µ) , (4.11)
g+−

d(0)(ω) = −2iπf(−ε)δ(ω − ε+ µ) (4.12)for the dot. Inserting Eq. (4.5)-(4.8) into Eq. (4.4) and then into Eq. (4.1) togetherwith Eq. (4.9)-(4.12), we obtain the dot free Green funtion in a matrix form
Ĝd,0(ω) =

1

(ω − VG)2 + Γ2
(4.13)

(
ω − VG − iΓ[1 − F (ω)] iΓF (ω)

−iΓF (−ω) −(ω − VG) − iΓ[1 − F (ω)]

)

,where F (±ω) := fL(±ω) + fR(±ω) and fα(±ω) := f(±(ω − µα)) are the Fermifuntions of the reservoirs and Γ = πV 2NF , (with NF the density of states at theFermi level in the reservoirs) is the tunnel rate between the leads and the dot.We now explain the proedure to derive the matrix elements in Eq. (4.13). Letus, for instane, start by alulating the selfenergy omponent
Σ−−

(0) =
V 2

2N

∑

~kα

G−−
~kα(0)

. (4.14)First of all we transform the sum over ~k into an integral
1

N

∑

~κ

→
∞∫

−∞

dωN(ω)over the density of states N(ω). At this point we introdue a seond approximation(�at band) for the density of states in whih N(ω) is
N(ω) =

{

NF , if |ω| < D

0, else . (4.15)Therefore we may write Eq. (4.14) as
Σ−−

(0) =
V 2

2

∑

α

NF

D∫

−D

dω G−−
~kα(0)

(ω). (4.16)
43



4 Stationary TransportSubstitute Eq. (4.5) into the integral (4.16). The Dira delta, in the seond term ofEq. (4.5) simpli�es the alulation of (4.16), leading to the de�nition
∑

α

D∫

−D

dωf(ε~kα)δ(ω − ε~k + µα) = fL(ε~k) + fR(ε~k) := F (ω).The integral with respet to the �rst term of Eq. (4.5) an be easily alulated inthe limit D ≫ ε (wideband limit)
D∫

−D

dω
1

ω + µα − ε
= ln

[
D + ε

D − ε

]

→ 0,leading to the result
Σ−−

(0) =
V 2

2

∑

α

NF

D∫

−D

dω G−−
~kα(0)

(ω) = iΓ
∑

α

fα(ε~k) := iΓF (ω). (4.17)The same proedure has to be repeated in order to alulate the other omponents of
Σ̂(0). By inserting the matrix elements of Σ̂(0), together with equations (4.9)-(4.12)into Eq. (4.1), we obtain by a straightforward alulation the following matrixelements, whih orrespond to the free Green funtions of the dot

G−−
d,0 (ω) =

ω − VG − iΓ [1 − F (ω)]

(ω − VG)2 + Γ2
, (4.18)

G++
d,0 (ω) = −[G−−

d,0 (ω)]∗ , (4.19)
G−+

d,0 (ω) = i
ΓF (ω)

(ω − VG)2 + Γ2
, (4.20)

G+−
d,0 (ω) = −i ΓF (−ω)

(ω − VG)2 + Γ2
. (4.21)4.3 Flow equationsWe start from the equation (3.23)

ζ
d

dΛ
Σαβ,Λ(ξ′, ξ) = Tr

∑

µν

Sµν,Λγαν;βµ,Λ
2 (ξ′, ·; ξ, ·) (4.22)for the selfenergy and neglet the energy dependene in the vertex

γαν;βµ,Λ
2 (ξ′, ξ1; ξ, ξ2) → γαν;βµ,Λ

2,ξ′,ξ1,ξ,ξ2
. (4.23)44



4.3 Flow equationsThe single partile quantum numbers ξ in the right hand side of Eq. (4.23) representthe spin index only. As diret onsequene Σ̂ does not depend on energy any longer.The resulting �ow equation for the selfenergy beomes
ζ
d

dΛ
Σαβ,Λ

ξ′,ξ = Tr
∑

µ,ν

Sµν,Λγαν;βµ,Λ
2,ξ′,·;ξ,· . (4.24)Using the antisymmetry of γΛ

2 in the spin indies and the spin onservation imposedby the struture of the interation we an further simplify Eq. (4.24) by introduingthe �owing interation Uαβγδ,Λ de�ned as
γαβ;γδ,Λ

σ′
1,σ′

2;σ1,σ2
= δσ′

1,σ1
δσ′

2,σ2
Uαβ;γδ,Λ − δσ′

2,σ1
δσ′

1,σ2
Uβα;γδ,Λ . (4.25)As last step we speify how the parameter Λ is introdued. Sine we are interestedin a stationary situation, i.e. the propagators only depend on the time di�erene

t− t′, all equations an be transformed into frequeny spae and one natural hoieis a frequeny uto� of the form
ĜΛ

d,0(ω) = Θ (|ω| − Λ) Ĝd,0(ω) (4.26)with Λ0 → ∞ [30℄. Evaluating Ŝ by means of the Morris lemma [30, 64℄ results in(see Appendix 1 and 2)
ŜΛ(ω) → δ(|ω| − Λ)ĜΛ(ω), (4.27)with
ĜΛ

d (ω) =
1

[

Ĝd,0(ω)
]−1

− Σ̂Λ

, (4.28)where we used that Σ̂Λ does not depend on energy. Inserting Eq. (4.25)-(4.27) intoEq. (4.24), we arrive at the following expression
d

dΛ
Σαβ,Λ = − 1

2π

∑

γ,δ

∑

ω=±Λ

Gγδ,Λ
d (ω)

(
2Uαδβγ,Λ − U δαβγ,Λ

) (4.29)for the �ow equation of the selfenergy. Finally, the initial ondition for the self-energyis lim
Λ0→∞

Σ̂Λ0 = 0, whih means that we begin with an interation-free problem.Conerning the �ow equation for γ2 the starting point is Eq. (3.24) in whih wesubstitute Eq. (4.23). The result an be further simpli�ed by taking advantage ofspin and energy onservation, whih implies that Ĝ and Ŝ are diagonal with respetto ξ3 = ξ′3 and ξ4 = ξ′4. As far as Eq. (4.25) is onerned, spin onservation an bewritten as σ1 = σ′
1, σ2 = σ′

2 and σ1 = σ̄2. Note that suh relations do not hold forthe orresponding Keldysh indies (see Setion 3.4). The integrals over ω3′ and ω4′as well as the sums over σ′
3 and σ′

4 an then be performed straightforwardly. Using45



4 Stationary TransportMorris lemma [64℄, we an rewrite the matrix produt of Ĝ and Ŝ as (see Appendix1 and 2)
ĜΛ(ω)ŜΛ(ω′) → 1

2
δ(|ω′| − Λ)ĜΛ

d (ω)ĜΛ
d (ω′) ,where Ĝ is de�ned in Eq. (4.28). The δ-funtion an be used to perform another ofthe frequeny integrals, and the remaining one an be evaluated beause of energyonservation of the two-partile vertex. Using the spin independene of the Greenfuntion for zero magneti �eld, this leads to

d

dΛ
γαβγδ,Λ

σ′
1,σ′

2;σ1,σ2
=

1

4π

∑

ω=±Λ

∑

σ3,σ4

∑

µ,ν,ρ,η

(

Gρη,Λ
d (ω)Gνµ,Λ

d (ω)γαβρν,Λ
σ′
1,σ′

2;σ3,σ4
γηµγδ,Λ

σ3,σ4;σ1,σ2

−Gηρ,Λ
d (ω)Gνµ,Λ

d (ω)
[

γαµγη,Λ
σ′
1,σ4;σ1,σ3

γρβνδ,Λ
σ3,σ′

2;σ4,σ2
+ γαργν,Λ

σ′
1,σ3;σ1,σ4

γµβηδ,Λ
σ4,σ′

2;σ3,σ2

−γβµγη,Λ
σ′
2,σ4;σ1,σ3

γρανδ,Λ
σ3,σ′

1;σ4,σ2
− γβργν,Λ

σ′
2,σ3;σ1,σ4

γµαηδ,Λ
σ4,σ′

1;σ3,σ2

])

. (4.30)Comparing Eq. (4.30) to Eq. (20) in Karrash et al. [42℄, where similar approxima-tions were made in equilibrium, we see that we have two more terms beause of theKeldysh indies. In the �rst term appears G̃ρη,Λ
d , while its transpose G̃ηρ,Λ

d enterseverywhere else. As initial ondition we have to set
γαααα,Λ0

2 (ξ′1, ξ
′
2; ξ1, ξ2) = αiU

(
δσ1,σ′

1
δσ2,σ′

2
− δσ1,σ′

2
δσ2,σ′

1

)
. (4.31)Using the antisymmetry of γΛ

2 in the spin indies and spin onservation (Eq. (4.25))we an further simplify Eq. (4.30) �nally leading to the �ow equation
d

dΛ
Uαβγδ,Λ =

1

4π

∑

ω=±Λ

∑

µ,νρ,η

(

Gρη,Λ
d (−ω)Gνµ,Λ

d (ω)
[
Uαβρν,ΛUηµγδ,Λ + Uβαρν,ΛUµηγδ,Λ

]

−Gηρ,Λ
d (ω)Gνµ,Λ

d (ω)
[
2Uαµγη,ΛUρβνδ,Λ − Uαµγη,ΛUβρνδ,Λ − Uµαγη,ΛUρβνδ,Λ

+2Uαργν,ΛUµβηδ,Λ − Uαργν,ΛUβµηδ,Λ − Uραγν,ΛUµβηδ,Λ − Uµβγη,ΛUαρνδ,Λ

−Uρβγν,ΛUαµηδ,Λ
]
)

. (4.32)From the initial value of γΛ
2 at Λ = Λ0 → ∞ given in Eq. (4.31) we an read o� asthe initial value for Uαβγδ,Λ0

Uαααα,Λ0 = αiU ,while all other omponents are zero. In other words, we take as initial onditionsthe bare interation.The system of di�erential equations for Σ̂Λ and UΛ Eq. (4.29)-(4.32) will beanalyzed later this hapter. The selfenergy obtained from its numerial integration,must be inserted into the expressions for the urrent and the ondutane we aregoing to disuss in the next setion.46



4.4 Current4.4 CurrentFor the model (1.2) the urrent is given by the Meir-Wingreen formula [63, 89℄
J =

1

2
(JL + JR) =

ieΓ

2π~

+∞∫

−∞

dω [fL(ω) − fR(ω)]
[
G+−

d (ω) −G−+
d (ω)

] (4.33)with fL,R(±ω) := [1 + exp {±β(ω − µα)}] . The full interating one-partile Greenfuntions of the dot are denoted by G+−
d (ω), G−+

d (ω) and JL/R are the urrentsaross the left and right dot-lead ontats
JL(R) = ±ieΓ

π~

∞∫

−∞

dω
[

fL(R)(−ω)G̃−+
d (ω) + fL(R)(ω)G̃+−

d (ω)
]

,respetively. Substitute into Eq. (4.33) the expressions of the full Greens funtions
G+−

d (ω), G−+
d (ω) leading to the following expression for J

J =
ieΓ

2π~

+∞∫

−∞

dω [fL(ω) − fR(ω)]
2i[Γ − ℑmΣα,β]

∆̃
(4.34)with

∆̃ =
∣
∣ω − VG + iΓ [1 − F (ω)] − Σ−−(ω)

∣
∣
2
+
[
ΓF (ω) −ℑmΣ−+(ω)

]
,

F (ω) = fL(ω) + fR(ω).Equation (4.34) plays a entral role in the ourse of this work, sine it is the formulawe will adopt to alulate the transport parameters.Before going further it is neessary to explain in more detail how the energyindependent selfenergies a�et the original form of the Meir-Wingreen Formula. Letus ome bak now to Eq. (4.33). It has been written in a somewhat unusual form,not employing the original relation [63, 89℄
GR

d (ω) −GA
d (ω) = −2πiρd(ω), (4.35)where ρd(ω) = −ℑm[GR(ω)]

π
denotes the dot's one-partile spetral funtion. Thereason is that, as soon as we neglet the energy dependene of the selfenergies Σαβ ,

GR,(A)(ω) = G−−(ω) −G−+,(+−)(ω) 47



4 Stationary Transportdoes not hold any longer. This an be seen by inserting Gαβ(ω) in the previousequation to obtain
GR

d (ω) = −
ω − Vg − i

[

Γ + ℑmΣ−− − ℑmΣ−+

]

∆̃(ω)
, (4.36)

GA
d (ω) = −

ω − Vg − i

[

Γ + ℑmΣ−− + ℑmΣ−+ − 2Γ(F (ω) + F (−ω))

]

∆̃(ω)
.A simple omparison between the imaginary parts of these two relations diretlyshows that GR(ω) 6= [GA(ω)]∗, unless at least Σ−+, is energy dependent and absorbsthe last term in the brakets in the expression for GA

d (ω). However, what still holds,even in the energy-independent ase, is the relation G+− − G−+ = −2πiρd(ω) andthis is the reason why we have adopted G+−
d (ω) −G−+

d (ω).Before onluding this setion we ompare and disuss the expressions ofℑm[GR
d (ω)]and G+−

d (ω) −G−+
d (ω).

ℑm[GR
d (ω)] =

[

Γ + ℑmΣ−− − ℑmΣ−+

]

∆̃(ω)
, (4.37)

G+−
d (ω) −G−+

d (ω) =

[

Γ − ℑmΣ−+

]

∆̃(ω)
. (4.38)From the last two equations we observe that the di�erene between them lies in theterm ℑmΣ−−. In non-equilibrium, for not too large Coulomb interations (U/Γ ≈ 5)the imaginary part of Σ−− is negligible ompared to Γ and to ℑmΣ−+, therefore weould still write the Meir Wingreen formula in its original form. In any ase, forgenerality reasons we prefer to keep Eq. (4.33). Swithing o� the bias, but stayingat T = 0, we obtain ℑmΣ−+,ℑmΣ−− → 0 and thus reover exatly

GA
d (ω) −GR

d (ω) = 2πiρd(ω).In passing we note that, even in an equilibrium situation (see Chapter 6 for a detailedillustration), but at �nite temperature T 6= 0 the imaginary parts ℑmΣ−+, ℑmΣ−−are not zero, resulting again in the breaking of Eq. (4.35).Another quantity of interest, whih will be disussed more in detail in the followingis ∆J = JL − JR [33℄. Sine no harge is produed on the quantum dot, ∆J = 0in the exat solution. Using again the results of Meir-Wingreen [63℄ and Wingreenand Meir [89℄, the expression for ∆J beomes48



4.5 Lowest order approximation
∆J = −Γ

π

∞∫

−∞

dω
F (ω) [ℑmΣ−+(ω) − ℑmΣ+−(ω)] − 2ℑmΣ−+(ω)

∆̃(ω)
. (4.39)Depending on the type of approximation used ∆J = 0 might either hold for allparameters [84, 89℄ or not [33℄. We note that ful�lling ∆J = 0 is, however, notsu�ient for an approximation to provide reliable results. E.g. the self-onsistentHartree-Fok approximation ful�lls ∆J = 0, but nonetheless does not apture theorret physis even in equilibrium [34℄.4.5 Lowest order approximationBefore studying the oupled system for Σ̂Λ and γΛ

2 we begin with the simpler asewhere we replae γΛ
2 on the right hand side of Eq. (4.22) by the antisymmetrizedbare interation and onsider only the �ow of Σ̂. With this replaement Eq. (4.22)redues to

d

dΛ
Σ∓∓,Λ = ±iU

∫
dω

2π
S∓∓,Λ(ω) . (4.40)Within this approximation the selfenergy is always time or frequeny independentand no o�-diagonal terms, in the Keldysh ontour indies, are generated. It leads to,at least qualitatively, good results in equilibrium [2℄, where the �ow equations anin addition be solved analytially. With Σ̂Λ being diagonal in the Keldysh indies,a straightforward alulation permits us thus to rewrite Eq. (4.40) as

d

dΛ
Σ∓∓,Λ = ±iU

2π

∑

ω=±Λ

G∓∓
d,0 (ω)

∆(ω)
− Σ±±,Λ

(
G++

d,0 (ω)

∆(ω)
− Σ−−,Λ

)(
G−−

d,0 (ω)

∆(ω)
− Σ++,Λ

)

−
(

G−+
d,0 (ω)G+−

d,0 (ω)

∆(ω)2

) ,(4.41)where
∆(ω) = G−−

d,0 (ω)G++
d,0 (ω) −G−+

d,0 (ω)G+−
d,0 (ω)

= − 1

(ω − VG)2 + Γ2
.EquilibriumWe now fous on T = 0. In a �rst step we disuss the equilibrium situation, that is

VB = µL − µR → 0. Then we obtain the deoupled system
d

dΛ
Σ∓∓,Λ = i

U

π

VG ± Σ∓∓,Λ

[(Λ ± iΓ)2 − (VG ± Σ∓∓,Λ)2]
, (4.42)49



4 Stationary Transportwhih an be solved analytially. We �rst note that with Σ++,Λ = −
[
Σ−−,Λ

]∗ bothequations are equivalent. For Σ−−,Λ we obtain with the de�nition σΛ = VG + Σ−−,Λthe solution
iσΛJ1(

πσΛ

U
) − (Λ + iΓ)J0(

πσΛ

U
)

iσΛY1(
πσΛ

U
) − (Λ + iΓ)Y0(

πσΛ

U
)

=
J0(

πVG

U
)

Y0(
πVG

U
)
, (4.43)where Jn and Yn are the Bessel funtions of �rst and seond kind. The desiredsolution of the uto� free problem is obtained by setting Λ = 0, i.e.

σJ1(
πσ
U

) − ΓJ0(
πσ
U

)

σY1(
πσ
U

) − ΓY0(
πσ
U

)
=
J0(

πVG

U
)

Y0(
πVG

U
)
. (4.44)whih is preisely the result Eq. (4) obtained by Karrash et al. [2℄. It is, however,important to note that in the imaginary-time formulation of the fRG, the di�erentialequation has a di�erent struture. It is real and has a positive de�nite denominator.Thus, while the solutions at Λ = 0 are idential for the imaginary-time and real-timeformulations, the �ow towards Λ = 0 will show di�erenes. As we will see next, theomplex nature of the di�erential equation (4.42) an lead to problems onnetedto its analytial struture when attempting a numerial solution. For small U/Γ nopartiular problems arise. As an example the result for the �ow of Σ−−,Λ as funtionof Λ for U/Γ = 1 and VG/Γ = 0.5 obtained with a standard Runge-Kutta solver isshown in Fig. 4.2. Consistent with the analytial solution Eq. (4.44), the imaginarypart (dashed line) goes to zero as Λ → 0, while the real part (solid line) rapidlyapproahes the value given by formula Eq.(4.44).However, for larger values of U/Γ the numerial solution beomes unstable ina ertain regime of VG. A typial result in suh a situation is shown in Fig. 4.3.The di�erent urves were obtained as follows: The full and dashed ones from thenumerial solution starting with Σ−−,Λ0 = 0 at Λ0 → ∞, the dash-dotted and dottedby integrating the di�erential equation (4.42) bakwards from Λ = 0 with the orretsolution for Λ = 0 as given by formula Eq. (4.44) as initial value. The rosses �nallyare the results from the analytial solution Eq. (4.43). Evidently, there exists arossing of di�erent branhes of solutions to the di�erential equation for Λ/Γ ≈ 1and the numerial solution with starting point Λ = ∞ piks the wrong one as Λ → 0.The reason for this behavior is that for large U there exists a ertain V a

G suh that
V a

G + Σ−−,Λp = Λp + iΓ with real Λp, resulting in a pole in the di�erential equation(4.42). For VG 6= V a
G this pole does not appear for real Λp, but as shown in Fig. 4.4,

ℑmΛp hanges sign at V a
G, whih in turn indues a sign hange on the right hand sideof the di�erential equation, leading to the behavior observed in Fig. 4.3. There alsoexists a seond ritial value V b

G suh that for VG > V b
G we �nd ℑmΛp < 0 and theinstability has vanished again. Obviously, this instability, whih leads to problemsin the numerial solution, limits the appliability of the present approximation tosu�iently small values of U . This is di�erent from the imaginary-time approah by50



4.5 Lowest order approximation
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Figure 4.2: Flow of Σ−−,Λ/Γ with Λ/Γ for U/Γ = 1, VG/Γ = 0.5, and VB = 0. The fullurve shows the real part, the dashed the imaginary part of Σ−−,Λ.Andergassen et al.,[2℄ where this simple approximation leads to qualitative orretresults even for values of U signi�antly larger than Γ.4.5.1 Non-equilibriumWe now turn to the ase of �nite bias voltage VB. As a typial example, the �ow of
Σ−−,Λ for U/Γ = 1 (full and dashed urves) and 5 (dashed-dotted and dotted urves)for VG/Γ = 0.5 at VB/Γ = 0 (equilibrium) and VB/Γ = 1 is shown in Fig. 4.5. Sinethe results for Σ++,Λ are related to those for Σ−−,Λ by Σ++,Λ = −

[
Σ−−,Λ

]∗ we donot show them here. The VB dependene of the urves for ℜe [Σ−−,Λ
] (thik lines)looks sensible. For VB 6= 0 an imaginary part of order U2 is generated in the �owwhih does not vanish for Λ → 0 (see the thin dotted line). Causality requires thatthe relation [52℄

Σ−−(ω) + Σ++(ω) = −
[
Σ−+(ω) + Σ+−(ω)

] (4.45)must hold for the exat solution. Beause of Σ−+(ω) = Σ+−(ω) = 0, the �niteimaginary part of Σαα leads to a breaking of the ondition Eq.(4.45) to order U2 atthe end of the FRG �ow. This is onsistent with the fat that by negleting the �owof the vertex terms of order U2 are only partially kept in the present FRG trunationsheme. The weak breaking of ausality an also be understood as a onsequene ofour approximation leading to a omplex, energy-independent self-energy: The o�-diagonal omponents, being related to the distribution funtions for eletrons and51



4 Stationary Transport
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Λ = 0 → Λ = ∞, using the solution from (4.44) as initial value for Σ−−,Λ. The rossesdenote the analytial solution (4.43).holes, respetively, in general have di�erent support on the energy axis. The energyindependene makes it impossible to respet this struture here.For our further disussion the order U2 violation of Eq.(4.45) means that wemay not rely on relations like Eqs. (4.35) but have to work with Gαβ, thus thesomewhat unusual formula (4.33). A naive appliation of ΣR = Σ−− −Σ−+ and useof G+−

d −G−+
d = 2iℑmGR

d would have led to unphysial results. That working with
G+−

d −G−+
d is still sensible an be seen from a straightforward evaluation leading to

G+−
d (ω) −G−+

d (ω) = (4.46)
−2i

Γ

|ω − VG + iΓ [1 − F (ω)] − Σ−−|2 + Γ2F (ω)F (−ω)

F (ω) = fL(ω) + fR(ω)whih is purely imaginary with a de�nite sign. Inserting the expression Eq. (4.46)into the formula Eq. (4.33), one an alulate the urrent and thus the ondutane.Sine we are at T = 0, an expliit expression for the urrent of the uto� free problem(at Λ = 0) an be obtained by noting that with µL = VB/2, µR = −VB/2 one has
fL(ω)− fR(ω) = Θ(VB/2− |ω|) and F (±ω) = 1 for ω ∈ [−VB/2, VB/2], whih leads52
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π
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dω
1

|ω − VG − Σ−−|2 + Γ2

=
Γ

π

Γ

Γ∗

∑

s=±1

s arctan

(

V ∗
G + sVB

2

Γ∗

) (4.47)with the abbreviations
V ∗

G = VG + ℜeΣ−− , (4.48)
Γ∗ =

√

Γ2 + (ℑmΣ−−)2 . (4.49)Equation (4.47) for the urrent is equivalent to the noninterating expression butwith renormalized parameters V ∗
G and Γ∗, whih depend on the interation as wellas the bias and gate voltage.An example for the di�erential ondutane as funtion of VG obtained from Eq.(4.47) for U/Γ = 2 and several values of VB is shown in Fig. 4.6, where G0 = 2e2/h53
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2 as given by expression Eq. (4.30) in the alulation of the self-energy Eq.(5.1). By this we introdue an energy-dependene of the self-energy [30℄. However,beause the size of the resulting system of di�erential equations beomes extremelylarge if the full frequeny dependene is kept (for a disussion on this in equilibriumsee Hedden et al. [30℄), we only keep the �ow of the frequeny independent part54
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[
Σ−−,Λ
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Γ̃ = Γ −ℑmΣ−+ > Γ (4.51)
Γ∗ =

√

Γ̃2 + (ℑmΣ−−)2 .where Σαβ is taken at Λ = 0. Thus, the only hange to the expression (4.47) is aformal replaement Γ → Γ̃ in J/Γ. Equation (4.50) is of the same struture as for thenoninterating ase with VG and Γ replaed by renormalized parameters. However,the two self-energy ontributions Σ−− and Σ−+ enter distintively di�erent in theexpression for the urrent. While ℑmΣ−− solely plays the role of an additional life-time broadening, ℑmΣ−+ diretly modi�es the tunneling rate both in the prefatorof J and in the expression for the life-time broadening. A problem ours whenusing the results of the present approximation in Eq. (4.39), leading to
∆J =

2Γ

π

∞∫

−∞

dω ℑmΣ−+ [1 − F (ω)] (4.52)
1

|ω − VG + iΓ [1 − F (ω)] − Σ−−|2 + [ΓF (−ω) + ℑmΣ+−] [ΓF (ω) −ℑmΣ−+]1We remember the reader that, in the Eq 4.51, ℑmΣ−+ 6= 0 only when we take into aount thevertex ontributions. 57
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ℑmΣ−+ VB→0∼ V 2

B (see Fig. 4.10). Consequently, ∆J
VB→0∼ V 2

B and hene the violationof urrent onservation vanishes in the linear response regime VB → 0.In Fig. 4.11 we show the urrent at VG = 0 as funtion of VB for U/Γ = 1, 6 and
15. With inreasing U the urrent for intermediate VB is strongly suppressed. Inaddition there ours a struture at low VB, whih turns into a region of negativedi�erential ondutane with inreasing U . The appearane of suh a shoulder in theurrent was observed in other alulations as well [16, 32, 33℄. However, whetherthe negative di�erential ondutane we �nd for still larger values of U (.f. Fig.4.12) is a true feature of the model or rather an artifat of the approximations usedis presently not lear and should be lari�ed in further investigations. However,negative di�erential ondutane has also been observed in a slave-boson treatmentof the model [83℄.Keeping VG = 0 �xed, we an alulate the ondutane G = dJ/dVB as funtionof VB for di�erent values of U . The results are olleted in Fig. 4.12. In ontrastto the simple approximation without �ow of the vertex, the ondutane is now58



4.6 Flowing vertex

-1 0 1
V

B
/Γ

-2

0

Im
Σ 

 −
 +

Vg/Γ=0  U/Γ=3
Vg/Γ=2  U/Γ=3
VgΓ=0  U/Γ=9
Vg/Γ=2  U/Γ=9

Figure 4.10: ℑmΣ−+/Γ as funtion of the bias voltage VB/Γ for several gate voltages VGand Coulomb interations U/Γ. The plot shows a quadrati behaviour of ℑmΣ−+/Γ asfuntion of the bias voltage whih tends to zero in the limit VB/Γ → 0.strongly dependent on U , exept for VB = 0, where due to the unitary limit at
T = 0 we always �nd G = G0. As already antiipated from the urrent in Fig. 4.11, aminimum in G starts to form around VB/Γ ≈ 0.5 for U/Γ > 5, whih is aompaniedby a peak at VB/Γ ≈ 2. A similar behavior in the ondutane was observed in aperturbative treatment [16℄, whih in ontrast to our urrent approximation involvesthe full energy-dependene in the self-energy. This at least qualitative agreement� we of ourse annot resolve strutures like the Hubbard bands with an energyindependent self-energy � again supports our laim that despite the violation of therelation Eq.(4.45) we an obtain reasonable results from Gαβ.We �nally disuss the variation of the ondutane with VG for �xed U and VB.We again emphasize, that for VG 6= 0, ∆J = 0 only holds to leading order in U .In Fig. 4.13 we present the urves for two di�erent values of U , namely U/Γ = 1(upper panel in Fig. 4.13) and U/Γ = 15 (lower panel in Fig. 4.13). In the formerase, the variation of G with VB is rather smooth, as is to be expeted from theurrent in Fig. 4.11. For large U , we observe an extended plateau at zero bias,whih is a manifestation of the fat that in the strong oupling regime a pinningof spetral weight at the Fermi energy ours. This feature is also observed in theimaginary-time fRG as well as in NRG alulations.[42℄ Inreasing VB quikly leadsto a similarly extended region of negative di�erential ondutane, whih, assumingthat this result is a true feature of the model, therefore seems to be linked to the59



4 Stationary Transport

-8 -6 -4 -2 0 2 4 6 8
VB/Γ

-3

-2

-1

0

1

2

3

J/
J 0

U/Γ=1
U/Γ=6

U/Γ=15

Figure 4.11: Current normalized to J0 = G0
Γ
e (after reintroduing e and ~) as funtionof VB for U/Γ = 1, 6 and 15 and VG = 0. For U/Γ = 15 we �nd a region of negativedi�erential ondutane in the region |VB/Γ| ≈ 0.5 (.f. Fig. 4.12).�Kondo� pinning. We note that it is unlikely that the appearane of the negativedi�erential ondutane is related to the breaking of urrent onservation at order

U2 as it also appears for VG = 0 where ∆J = 0. For large VB multiple struturesappear in G, whih are related to the energy sales VB and U .

60
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5 Transport Properties in aMagneti Field5.1 IntrodutionThis setion is dediated to the analysis of the in�uene of an external magneti �eld
B on the transport properties of a single-level quantum dot under a onstant appliedbias VB at T = 0. We disuss how the urrent J and the di�erential ondutane Gare a�eted by B and by the ompetition between magneti �eld and bias voltage.We show in partiular that B is responsible for a swithing behaviour in J as funtionof VB. Interesting are also the individual ontributions of spin up and down eletrons,split by the presene of the magneti �eld, to the transport parameters. To testour non-equilibrium FRG we have again studied, as limiting ase, the equilibriumsituation (VB = 0), in order to ompare the results of the imaginary-time FRG[42℄. In the next paragraph we will show the �ow equations for the non-equilibriumFRG in an applied magneti �eld, then we present the results. The equilibriumlimit VB = 0 is shown and explained �rst, afterwards we disuss how the transportparameters J,G behave as funtions of the bias-voltage with magneti �eld. Finallywe onsider the range of appliability of the non-equilibrium FRG in the preseneof B.5.2 Flow Equations in a Magneti FieldA spin dependent quantum dot onsisting of a single level εσ, oupled to left and rightleads (whose eletrons are non interating and in equilibrium) through the energyindependent terms V~kσα, and subjeted to Coulomb repulsion U, an be desribedby the Anderson Hamiltonian [4℄ (see Setion. 1.4.2 ). The only di�erene withrespet to the non magneti ase is that the magneti �eld B splits the dot level inits �up� and �down� omponents

ε↑,(↓) = VG ±B/2introduing de fato a spin-dependene of the dot level, whih must be now takeninto aount as additional parameter. In Setion. 4.3 we have already disussed the�ow equations of a single-level quantum dot without magneti �eld, therefore we63



5 Transport Propertiesshow now only the hanges due to the spin dependene in the �ow equations. Asin the previous hapter, in addition to the trunation of the hierarhy of di�erentialequations, obtained in the FRG, we neglet the energy dependene of the selfenergy
Σ and the vertex funtion γ2. The system of di�erential equations we are going tointegrate is then given by

d
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Σαβ,Λ
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= − 1
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, (5.1)
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. (5.2)
In expressions (5.1) and (5.2) Ĝσ,d is given by Eq. (4.28). The initial onditionsfor the system (5.1)-(5.2) have been already disussed in Setion 4.3. Eq. (5.1)and (5.2), ompared to system obtained in Setion 4.3 (without the presene ofa magneti �eld), show a more ompliated struture whih manifests itself in aspin-dependent �ow for the selfenergy and the vertex. As further step, we applythe same parametrization for the vertex whih we have introdued in the previoushapter (see Eq. (4.25)) leading to the �ow equations

d

dΛ
Σαβ,Λ

σ = − 1

2π

∑

ω=±Λ,γ,δ

(

Gγδ,Λ
d,σ (ω) + Gγδ,Λ

d,σ̄ (ω)
)

Uαβγδ,Λ − Gγδ,Λ
d,σ (ω)Uβαγδ,Λ, (5.3)

64



5.2 Flow Equations in a Magneti Field
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. (5.4)By investigating the vertex struture of the full �ow at Λ = 0 it turns out, however,that symmetries, implied by the parametrization, are broken for large voltages andmagneti �elds. Due to the signi�antly redued numerial e�ort for integrating Eq.(5.3) and Eq. (5.4), it remains interesting to examine its value as an approximation.Comparing the full �ow aording to Eqs. (5.1) and (5.2) with the parametrizedone (Eqs. (5.3) and (5.4)) we observe a good agreement, at low VB, for Σ−+,Λ (seeFig. 5.1 (b)), while deviations appear in Σ−−,Λ (Fig. 5.1 (a)). However, sine
|Σ−+,Λ| ≫ |Σ−−,Λ|, this does not a�et the behaviour of experimentally relevantquantities like ondutane G as funtion of the gate voltage, even for larger B (seeFig. 5.2). Inreasing the bias voltage, we obtain, for small B (see Fig. 5.4, full urveand irles), again a good agreement.As soon as we inrease the magneti �eld, Im Σ−+,Λ shows deviations (see Fig.5.3) whih even a�et numerial values and the shape of the ondutane (see Fig.5.4). In partiular, the �ow of the parametrized system gives rise to a small realomponent of Σ+−,Λ at Λ = 0 (Fig. 5.3 (b)), whih atually should not exist, andleads to unphysial breaking of the partile-hole symmetry.After integration of system Eqs. (5.1)-(5.2) or Eqs. (5.3)-(5.4) we insert theresulting selfenergy into the Meir-Wingreen formula for the urrent [19, 63℄
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ieΓ

2π~
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d,σ (ǫ) −G−+
d,σ (ǫ)

)
. (5.5)In passing we observe that, with respet to the non-magneti ase, we have tosubstitute into the expressions of the free Green funtions of the dot (Eqs. (4.18)-65
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5.2 Flow Equations in a Magneti Field
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ε → ε↑,↓ = VG ± B/2.5.3 Results5.3.1 Equilibrium CaseBefore studying the stationary non-equilibrium ase at T = 0, we onsider theequilibrium situation, namely the limit VB = µL−µR = 0. The latter an be seen asa test for our non-equilibrium FRG whih should reprodue the imaginary-time FRGresults [42℄. Let us begin with the di�erential ondutane G as funtion of the gatevoltage VG with and without a magneti �eld in the strong oupling regime U

πΓ
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5 Transport Propertieswe note that also the individual spin ontribution agree perfetly with [42℄ as shownin Fig. 5.6.5.3.2 Non-EquilibriumSwithing on the bias voltage VB we observe di�erent behaviours of the ondutane
G as a funtion of the gate voltage VG depending on the ompetition between thevoltage and the magneti �eld. In Fig. 5.5, we present G as funtion of VG for a�xed Coulomb interation U/Γ = 5 and VB/Γ = 0, 1, 3, 5 for di�erent values of B.We observe a drasti hange of the struture due to the interplay of VB and B. Inpartiular, we see that for small bias (VB/Γ = 1) and �elds (B/Γ = 0.116), G onsistsof just two peaks separated by U. If we now inrease the value of the magneti �eld,the ondutane, at small VG, initially strongly inreases (dashed and dot-dashedurves in Fig. 5.5 (b)), the peaks disappear and a small plateau appears. Inreasing
B further, the plateau disappears and we get bak the two peaks separated by arather deep valley and two shoulders whose spaing is ∆ ≈ U + VB.This behaviour an be explained as follows: The spetral density is split by VB intwo peaks moving the spetral weight to higher frequenies and dereasing it in theregion ω ≈ 0. Swithing on B we observe an additional split of eah peak, due tothe spin ontributions. Inreasing then B, the two external peaks move away fromeah other and the internal ones get loser and even merge enhaning the spetralweight at ω ≈ 0. As diret onsequene we observe an enhanement of G, whihmanifests itself in a small plateau for VG/U ≈ 0 (see Fig. 5.5 (b)). With a furtherinrease of B, the "merged" peaks move away from eah other, leading to a ollapseof the ondutane, and disappearane of the plateau. Completely di�erent is thebehaviour for VB/Γ = 3 and VB/Γ = 5 (Fig. 5.5 () and (d)). We �nd a non-monotoni derease of G with the magneti �eld. In addition the �eld dependeneis initially weaker than in Fig. 5.5 (b). We interpret this behaviour in the followingway: For large VB, the Fermi window in eg. Eq. (5.5) will lead to an averagingover a large energy region. Thus strutures due to the magneti �eld at too smallenergies will be washed out.5.3.3 Current and Condutane as Funtion of the AppliedBiasThe non-monotoni behaviour of G(VG = 0) is an interesting feature we want toexplore in somewhat more detail in the following. To this end we alulated theurrent J and the di�erential ondutane G = dJ/dVB, at VG/Γ = 0 and U/Γ = 5,as funtion of the applied bias for di�erent values of B. The results are olleted inFig. 5.7. Compared to the non-magneti ase (full line) we see that a �nite magneti�eld B basially indues two features. First, as is also for the ase for B = 0, at large70
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U, we observe a small region of negative di�erential ondutane. More interesting isthe appearene of an almost unitary ondutane peak at VB ≈ 2B for intermediate�elds. For large �elds the features is suppressed again. Thus we observe that B anat as a swith, inreasing the urrent dramatially in the voltage range VB ≈ B.For VB ≫ B the urves tend to the same values, so that B does not in�uene theurrent any longer. This behaviour an be explained by noting that when VB ≈ 2B,the eletrohemial potentials µL,R of the leads are lose to the split dot levels,respetively, therefore the tunnel probability from the leads to the dot is enhanedas long as the VB = µL − µR ≈ 2B.Let us �nally disuss in whih range of parameters the non-equilibrium FRGfurnishes reliable results. In Fig. 5.8 we show the transport parameters plotted asfuntion of the magneti �eld for di�erent bias voltages in the weak ( U
πΓ

< 1, Fig.5.8 (a) ) and intermediate oupling regime ( U
πΓ
> 1, Fig. 5.8 (b) ). While for U

πΓ
< 1we did not �nd any parameter regime with a breakdown of the FRG, we see thatfor U

πΓ
> 1 the urves aquire a disontinuity in G (see Fig. 5.8 (b) urve with

VB/Γ = 1). Inreasing VB the disontinuity disappears but (for VB/Γ = 2..3) theondutane overshoots the unitary limit in the range 1 < B < 2. This means thatour approah is not reliable in this parameter range and possibly for larger magneti�elds. It would be interesting to see whether an energy-dipendent selfenergy andvertex funtion an extend the range of appliability of the non-equilibrium FRG.71



5 Transport Properties
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5.3 ResultsAt higher bias VB ≥ U the plot does not show this problem any longer.
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6 Temperature Dependene of theTransport Parameters6.1 IntrodutionThe aim of this hapter is the study of the in�uene of the temperature T on thetransport properties of a single-level quantum dot under a onstant applied bias VB.First, we will again onsider, as limiting ase, the equilibrium situation VB/Γ = 0.We will ompare our results regarding the ondutane G as funtion of the gatevoltage VG, for several values of T, to the ones oming from the numerial renormal-ization group (NRG) [88℄. Then we will see how T a�ets the selfenergies resultingfrom the numerial integration of the system Eq. (4.29)-(4.32). Furthermore, wewill show how the urrent J and the di�erential ondutane G are a�eted by thetemperature and we will see that the transport parameters, alulated by means ofthe non-equilibrium FRG, reprodue very well the ones obtained by Hersh�eld etal. [33℄ with perturbation theory up to seond order in the Coulomb repulsion U .At the end of this hapter we will show that the non-equilibrium FRG an be usednot only when a �nite temperature and the magneti �eld B are applied separately,but, as long as the Coulomb interation is not too large, B and T an be �swithedon� together. In partiular we will show how the interplay of these two sales a�etsthe transport through a single-level quantum dot.6.2 Temperature Dependene of the SelfenergiesIn this setion we disuss how the energy-independent selfenergies, at the end of the�ow Λ = 0, are a�eted by the temperature T, for the eletron-hole symmetri ase
VG/Γ = 0 and in a sligthly asymmetri situation where VG/Γ = 0.1 . The essentialstruture of the �ow equations Eq. (5.1)-(4.30) is not modi�ed by the introdutionof a �nite temperature T 6= 0.We note in partiular that the T−dependene appearsin the system of di�erential equations only through the Fermi funtions in the fourfree dot Green funtions Eq. (4.18)-(4.21).As usual we begin our analysis with the equilibrium ase VB/Γ = 0 (see Fig. 6.1(b)). What we see is that the real part of Σα,α,Λ=0 remains onstant in T and equalto zero for the eletron-hole symmetri ase. As soon as we move a little bit awayfrom VG/Γ = 0, ℜe[Σα,α,Λ=0] is no longer onstant, it inreases and saturates at75



6 Temperature Dependenelarger temperatures. The imaginary part of Σα,α,Λ=0 (for VG/Γ = 0.1) is equal tozero in the range T/Γ ≈ 0 . . . 1 and then it moves slightly away from zero like in thenon-equilibrium ase at T = 0.
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6.3 Results
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6.3 Resultsfar from the Fermi level and G ollapses.At larger temperatures (above T/Γ = 0.75), the spetral weight is far from theFermi level beause the resonane representing the orrelation between the dot andthe leads does not exist any longer [37℄. What remains is just a onstant ondu-tane signalling that T has washed out the entral resonane in the spetral density.Swithing on the bias voltage (see Fig. 6.8 (b)), we observe a disontinuity for small
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7 Summary and OutlookThis work was motivated by the question whether the FRG formalism an be ex-tended to desribe the non-equilibrium properties of an interating quantum many-body system. We were able to derive a formalism that an be used to set up asystem of di�erential equations for e.g. irreduible vertex funtionsAlthough the derivation of the non-equilibrium FRG �ow equations is formallyidential to the imaginary-time one, the �nal equations show a more ompliatedtensor struture. This additional tensor struture is due to the neessity to intro-due additional indies taking are of time ordering or, more formally, the di�erentbranhes of the Keldysh ontour. We saw that this formalism is su�iently gen-eral to treat both fermions and bosons at T ≥ 0. Moreover, the derivation of thenon-equilibrium FRG �ow equations does not depend on the assumption of a sta-tionary state of the system in question. This means that it an be adopted todesribe time-dependent phenomena, too. A further advantage, with respet to theimaginary-time FRG, is due to the fat that the non-equilibrium FRG relies on realquantities. This means that the non-equilibrium FRG does not need any analytialprolongation to the real axis whih an be a problemati step in ertain ases.Sine the FRG leads to an in�nite hierarhy of oupled di�erential equations, onehas to introdue approximations, at least a trunation at a ertain level. Typiallyone neglets the �ow of the three-partile vertex. As it has been demonstrated inRef. [30℄ for the imaginary-time FRG, one an solve the remaining system of �owequations for simple models like the single impurity Anderson model (SIAM) numer-ially, keeping the full energy-dependene. Due to the fat that the vertex funtionarries three ontinuous frequeny arguments in addition to the disrete quantumnumbers of the system, suh a alulation is omputationally quite expensive. Toredue the numerial e�ort, further approximations an be introdued. A partiu-larly important and suessful one is obtained by negleting the energy dependeneof the vertex funtions [2℄, whih already leads to a surprisingly aurate desriptionof loal and transport properties of interating quantum dots in the linear responseregime.As a simple but nontrivial appliation to test our non-equilibrium FRG, we hosethe single impurity Anderson model (SIAM). The reason for this hoie is that theSIAM represents the paradigm for orrelation e�ets in ondensed matter physis.Besides, it is the standard model for the desription of the transport properties ofinterating single-level quantum dots to whih this work has been dediated.First, we analyzed the �easiest� ase, namely we applied the non-equilibrium FRG85



7 Summary and Outlookformalism to the SIAM with �nite bias voltage in the stationary state at T = 0.It turned out, that for the simplest approximation where only the �ow of the self-energy is kept, the analyti struture of the di�erential equation leads to problemsin the numerial solution. In addition, this approximation leads to a violation of theausality relation (Eq. 4.45) to order U2. The �rst problem was resolved by inludingthe two-partile vertex in the �ow at least up to the largest interation onsideredhere (U/Γ = 15). At the present stage this was for omputational reasons done byassuming it to be energy-independent, yielding again an energy-independent self-energy. Although this approximation also violates Eq. (4.45) to order U2 for a �xed
VG and VB the error is signi�antly smaller ompared to the simplest sheme. Wewere able to obtain reasonable expressions and numerial results for the urrent andthe ondutane using the funtions Gαβ(ω) instead of GR(ω) in the urrent formula.We reprodued nonequilibrium features of the urrent and di�erential ondutaneknown from the appliation of other approximate methods to the SIAM.In the more advaned trunation sheme and for VG 6= 0, the urrent onservation
∆J = 0 only holds to leading order in U . This defet an be traed bak to the energyindependene of the two-partile vertex, leading to �nite, but energy-independent
Σ−+ and Σ+−. Unfortunately this de�ieny annot be ured by assuming a oarse-grained energy dependene of the form

F (ω) =







2, if ω < VB/2

1, if − VB/2 < ω < VB/2

0, if VB/2 < ω.

(7.1)sine suh a minimal energeti lattie is too raw to be able to apture the behaviourof the selfenergy, leading therefore to unphysial results.Furthermore, we applied an external magneti �eld B in order to observe thee�et of B on the transport properties of a single-level quantum dot. We saw that,even within our rude approximation, the non-equilibrium FRG furnished reasonableresults onerning the transport parameters J and G, as long as Coulomb energy andmagneti �eld are not too large. Besides, we introdued a further approximation,namely we negleted the spin-dependene in the vertex funtion γ2 (but not for theselfenergy) and we ompared the results with the spin-dependent ase, showing andexplaining in whih range of parameters this seond approximation an be adopted.A partiularly interesting observation is the swithing behaviour in the urrent,whih we ould explain with the interplay of the di�erent strutures we got in thespetra as funtion of the gate voltage and B. We also showed that, as soon as thebias voltage is swithed o� (VB → 0), we reobtain, as expeted, the linear responseresults [42℄. This means that the non-equilibrium FRG an be also applied to treatsystems in equilibrium.Finally, we onsidered the temperature dependene in the non-equilibrium FRG.As �rst we analyzed the equilibrium ase omparing our results with the ones oming86



from the numerial renormalization group (NRG). In ontrast to the imaginary-timeFRG, the non-equilibrium FRG furnishes rasonable results, in small and interme-diate oupling regime, at �nite temperatures. This ould be due to the fat that,within non-equilibrium FRG, no analytial prolongation is needed, while this is aproblemati step for the imaginary-time FRG. Afterwards, we studied the tempera-ture dependene of the transport parameters with and without an applied magneti�eld.More interesting is the fat that, for intermediate Coulomb repulsion U/Γ ≈ 5, thenon-equilibrium FRG an desribe the transport properties of a single-level quantumdot when several external parameters suh as the bias, the magneti �eld and thetemperature are swithed on. This is one of the most interesting results we haveobtained beause, up to now, a theory that allows to aess intermediate oupling,bias voltage, magneti �eld and temperature on a unique footing is missing.The main problem still to solve is the introdution of the energy dependene inthe non-equilibrium FRG �ow equations, in order to get rid of ausality problemsand to see whether the energy dependene an extend the range of appliability ofour method to larger U and to larger B and T.
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7 Summary and Outlook
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8 Appendies8.1 The Morris LemmaIn this appendix we want to show how to handle produts involving a Dira deltafuntion multiplied by a funtion whose argument ontains a Heaviside step funtion[64℄:
δ(x)f (Θ(x)) . (8.1)First of all introdue two "smeared" funtions
f (Θε(x)) , δε(x)where f(Θε)(x) is an any funtion whih remains ontinuous in the limit ε→ 0 and

δε(x) := − d

dx
Θε(x) → δ(x)as ε → 0. Out of the last two equations and from the Newton-Liebnitz theorem wean write Eq.(8.1) as

δ(x)f (Θ(x)) = lim
ε→0

δε(x)f (Θε(x)) = lim
ε→0

d

dx

∫ Θε(x)

0

dtf(t)

∣
∣
∣
∣
∣
x′=x

= (8.2)
=

d

dx

[

θ(x)

∫ 1

0

f(t)dt

]

= δ(x)

∫ 1

0

dtf(t) , (8.3)In order to obtain the Eq. (8.3), we have supposed that it is possible to exhangethe limit with the derivative, moreover we have used the following relation:
d

dx

[

lim
ε→0

∫ Θε(x)

0

f(t)dt

]

=

{
d
dx

∫ 1

0
f(t)dt for x > 0

0 for x < 0The r.h.s. of Eq. (8.3) is what we need to handle (as we will see in the nextparagraph) equations involving the single sale propagator SΛ and produts betweenit and the Green funtions GΛ. 89



8 Appendies8.2 Expressions Involving the Single SalePropagatorIn order to be able to treat and simplify produts involving SΛ GΛ we will applybasially what we have learnt in the previous setion regarding the Morris lemma.We begin with the easiest ase, namely the single sale propagator, then we will takeinto aount the produt SΛGΛ. In the following we won't use the hat to indiatethe matries, but keep in mind that SΛ and GΛ must be rad as matries with respetto the Keldysh indies. We start with the de�nition of the uto�-Green funtionsand single sale propagator
GΛ

0 (ω) = Θ(|ω| − Λ)GΛ
0 (ω), (8.4)

GΛ
( ω) =

1

(GΛ
0 (ω))

−1 − ΣΛ(ω)
,

SΛ(ω) = GΛ(ω)
d

dΛ

[(
GΛ

0 (ω)
)−1
]

GΛ(ω). (8.5)Inserting the Eq. (8.4) into Eq. (8.5)
SΛ(ω) = GΛ(ω)

d

dΛ
[G0(ω)]−1

[
(Θ(|ω| − Λ))−1]GΛ(ω) =

GΛ(ω)[G0(ω)]−1 [−δ(|ω| − Λ)]
[
(Θ(|ω| − Λ))−2]GΛ(ω) =Multiplying in the matrix sense G0 ∗G−1

0 = 1 to the right results in
GΛ(ω)

[
G−1

0 Θ(|ω| − Λ)
]
[−δ(|ω| − Λ)G0(ω)]

[
G−1

0 Θ(|ω| − Λ)
]
GΛ(ω) =

[

GΛ(ω)GΛ,−1
0

]

[−δ(|ω| − Λ)G0(ω)]
[

GΛ,−1
0 (ω)GΛ(ω)

]

,where we have used Eq. (8.4) in the last step. Applying the Dyson equation moroverdelivers
SΛ(ω) =

[
1

1 −GΛ
0 (ω)ΣΛ(ω)

]

[−δ(|ω| − Λ)G0(ω)]

[
1

1 − ΣΛ(ω)GΛ
0 (ω)

]Substituting the right square braket, by means of the Dyson equation using
1

1−GΛ
0 ΣΛ = G−1

0
1

1−ΣΛGΛ
0
and applying the matrix identity [AB]−1 = B−1A−1 to theprevious expression we obtain

SΛ(ω) =
1

[1 − ΣΛ(ω)GΛ
0 (ω)]

2G0(ω)δ(|ω| − Λ). (8.6)90



8.3 Derivation of Eq. (3.11)Eq. (8.6) must now be rewritten through the Morris lemma
1

[1 − ΣΛ(ω)GΛ
0 (ω)]

2G0(ω)δ(|ω| − Λ) → G0δ(|ω| − Λ)

∫ 1

0

dx
1

[1 − xΣΛ(ω)GΛ
0 (ω)]

2 =

= δ(|ω| − Λ)
1

(G0(ω))−1 − ΣΛ(ω)
.Therefore we an write

SΛ(ω) → δ(|ω| − Λ)
1

(G0)−1(ω) − ΣΛ(ω)
. (8.7)8.2.1 More Compliated ProdutsWe are now interested in simpli�ations of produts involving

SΛ(ω)GΛ(ω′) (8.8)Inserting Eq. (8.7) into Eq. (8.8) we obtain
SΛ(ω)GΛ(ω′) =

[

δ(|ω| − Λ)
1

(G0)−1(ω) − ΣΛ(ω)

]

∗ 1

(G0(ω′))−1 − ΣΛ(ω′)
.We then right right-multiply with G0(ω

′)Θ(|ω′| − Λ)

[

δ(|ω| − Λ)
1

(G0)−1 − ΣΛ(ω)

]

∗ G0(ω
′)Θ(|ω′| − Λ)

1 − ΣΛ(ω′)GΛ
0 (ω′)

=

[

δ(|ω| − Λ)
1

(G0)−1 − ΣΛ(ω)

]

∗ Θ(|ω′| − Λ)

(G0)−1(ω′) − ΣΛ(ω′)
.Out of the latter an we therefore write Eq. (8.8) as

SΛ(ω)GΛ(ω′) → δ(|ω| − Λ)Θ(|ω′| − Λ)GΛ(ω)GΛ(ω′). (8.9)8.3 Derivation of Eq. (3.11)The goal of this setion is the detailed derivation of Eq. (3.11). To this end startwith the logarithm of the generator of the onneted Green funtions
Ln

[

WΛ ({η̄}, {η})
]

:= Wc,Λ ({η̄}, {η}) = (8.10)91



8 Appendies
Ln

[
1

ΞΛ
0

∫

Dψ̄ψ exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)

− iSint({ψ̄}, {ψ}) −
(
ψ̄, η

)
− (η̄, ψ)

}
]

,with
ΞΛ

0 =

∫

Dψ̄ψ exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

.Di�erentatiating Wc,Λ with respet to Λ results in
dWc,Λ

dΛ
=

1

WΛ

∫

Dψ̄ψ d

dΛ

[
1

ΞΛ
0

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}]

× exp
{
−iSint −

(
ψ̄, η

)
− (η̄, ψ)

}

= Ẇc,Λ . (8.11)We now have to evaluate the derivative appearing in the integrand in Eq. (8.11)obtaining
d

dΛ

1

ΞΛ
0

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

=
1

ΞΛ
0

(

ψ̄, ˙[G0,Λ]−1ψ
)

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

−

−
(

Ξ̇Λ
0

(ΞΛ
0 )2

)

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

,leading us by insertion into Eq. (8.11)
dWc,Λ

dΛ
=

1

WΛ

−Ξ̇Λ
0

(ΞΛ
0 )2

∫

Dψ̄ψ exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

F ({η̄}, {η})+ (8.12)
+

1

WΛ

1

ΞΛ
0

∫

Dψ̄ψ
(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

F ({η̄}, {η}) ,where F ({η̄}, {η}) := exp
{
−iSint({ψ̄}, {ψ}) −

(
ψ̄, η

)
− (η̄, ψ)

}
. Expliitely writing

Ξ̇Λ
0 =

∫

Dψ̄ψ
(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

,92



8.3 Derivation of Eq. (3.11)by means of the substitution into Eq. (8.12) we obtain1
dWc,Λ

dΛ
=

1

WΛ

−WΛ

ΞΛ
0

∫

Dψ̄ψ
(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)

exp

{(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)}

+

1

WΛ

1

ΞΛ
0

∫

Dψ̄ψ
(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

F ({η̄}, {η}) .Let us look at the �rst term of the previous equation in terms of a oordinaterepresentation of a salar produt
(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)

= i
∑

m,l

ψ̄l ġ
Λ,−1
lm,0 ψm. (8.13)The fators ġΛ,−1

lm,0 do not depend on ψ, therefore they an be moved out of theintegral
dWc,Λ

dΛ
= −(iζ)

∑

m,l

ġΛ,−1
lm,0

∫ Dψψ̄
ΞΛ

0

(ψlψ̄m) exp

{(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)}

F ({η̄}, {η})+

+
1

WΛ

∫ Dψψ̄
ΞΛ

0

(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

F ({η̄}, {η}) . (8.14)The integral in the �rst term of Eq. (8.14) is exatly the de�nition of the 1-partileGreen funtion
[GΛ

0 ]ml = iζ〈ψlψ̄m〉0,whih we reexpress in a trae form
dWc,Λ

dΛ
= − Tr ([Ġ0,Λ

]−1

GΛ
0

)

+ (8.15)
1

WΛ

∫ Dψψ̄
ΞΛ

0

ψ̄ψ

(

ψ̄,

[

ˆ̇G
Λ

0

]−1

ψ

)

exp

{(

ψ̄,
[

ĜΛ
0

]−1

ψ

)}

F ({η̄}, {η}) .Let us take into aount the seond term of Eq.(8.15) and use again Eq. (8.13)together with
ψl = i

δ

δη̄l
,1Here we have used

WΛ =
1

(ΞΛ
0 )

∫

Dψ̄ψ exp

{(

ψ̄,
[

ĜΛ
0

]
−1

ψ

)}

F ({η̄}, {η}) .
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ψ̄m = −i δ

δηm

.Eq. (8.15) then beomes
dWc,Λ

dΛ
= − Tr ([Ġ0,Λ

]−1

GΛ
0

)

− (8.16)
−i3 1

WΛ

∑

l,m

(

ġΛ,−1
lm,0

δ

δψ̄l

δ

δψm

)(∫ Dψψ̄
ΞΛ

0

exp

{(

η̄,
[

ĜΛ
0

]−1

η

)}

F ({η̄}, {η})
)

.The seond term of Eq. (8.16) an be arranged as salar produt
dWc,Λ

dΛ
= − Tr ([Ġ0,Λ

]−1

GΛ
0

)

+ i
1

WΛ

(
δ

δη̄
, ˆ̇G

Λ,−1

0

δ

δη̄

)

WΛ, (8.17)whih an be furtherly transformed aording to
i

1

WΛ

(
δ

δη
,

˙[

ˆ 0,Λ
]−1

G
δ

δη̄

)

WΛ = ie−Wc,Λ

(
δ

δη
,

˙[

ˆ 0,Λ
]−1

G
δ

δη̄

)

eW
c,Λ

=

= i

(
δ

δη
,

˙[

ˆ 0,Λ
]−1

G
δ

δη̄

)

Wc,Λ + i

(
δWc,Λ

δη
,

˙[

ˆ 0,Λ
]−1

G
δWc,Λ

δη̄

)

, (8.18)where we used
Wc,Λ := Ln[WΛ]in the �rst step, from whih follows
WΛ = eW

c,Λ

.By applying the yli property of the trae to the �rst term of Eq. (8.18) we obtain
iTr ([ ˙[

ˆ 0,Λ
]−1

G

]t
δ2Wc,Λ

δηδη̄

)

= iζTr (δ2Wc,Λ

δη̄δη

˙[

ˆ 0,Λ
]−1

G

)

,where the ζ fator omes from the Grassmann rules. The latter expression, insertedinto Eq. (8.18), and then into Eq. (8.17) permits us to �nally obtain Eq. (3.11)
dWc,Λ

dΛ
= − Tr ([Ġ0,Λ

]−1

GΛ
0

)

+iζTr (δ2Wc,Λ

δη̄δη

˙[

ˆ 0,Λ
]−1

G

)

+i

(
δWc,Λ

δη
,

˙[

ˆ 0,Λ
]−1

G
δWc,Λ

δη̄

)

.
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