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Abstract (English)

We consider the two-dimensional inverse electrical impedance problem without a-
priori information. There, we want to reconstruct the conductivity inside a conducting
object from currents and voltages applied at its exterior boundary. In our case we
model the conductivity as piecewise constant, i.e., we define closed nonintersecting
interface curves inside the object under consideration and require the conductivity to
be constant between these interfaces. For the data at the exterior boundary we consider
both the continuum model and the complete electrode model. In the first model we
assume the full Cauchy data to be given, whereas in the second model we are given
discrete values of currents and voltages at the electrodes.

We solve this problem by an boundary integral equation method. It is based on
a system of nonlinear integral equations arising from Green’s representation formula,
from which the unknown conductivities and the unknown shapes of the interfaces are
obtained iteratively via linearization. The method is an extension of a method that has
been suggested by Kress and Rundell [39] for the case of one perfectly conducting
inclusion.

For the dynamical adaptation of the regularization parameters occurring in the
method we propose an evolutionary algorithm. This algorithm is furthermore used
to provide an initial guess for the iterative solution by coupling it together with the fac-
torization method [9] for the continuum model and some Newton-type finite-element
method [51] for the complete electrode model. We describe the boundary integral
equation method and the evolutionary algorithm in detail and illustrate its feasibility
by various numerical examples.

At the end we also apply the evolutionary algorithm on real data. For this, some
additional modifications to the algorithm turned out to be necessary. We describe these
modifications, and finally two results for real data are presented.





Abstract (Deutsch)

Wir untersuchen das inverse elektrische Impedanzproblem ohne gegebene Vorab-In-
formationen. Dabei geht es darum, aus Strom- und Spannungsmessungen am Rande
eines leitenden Objektes die Leitfähigkeit innerhalb des Objektes zu rekonstruieren.
In unserem Fall modellieren wir die Leitfähigkeiten als stückweise konstant, d.h. wir
definieren geschlossene Kurven innerhalb des zu untersuchenden Objektes, die sich
nicht überschneiden dürfen, und nehmen an, dass die Leitfähigkeit zwischen diesen
Kurven jeweils konstant ist. Für die Eingangsdaten betrachten wir sowohl das kon-
tinuierliche Modell als auch das Complete Electrode Model. Bei ersterem nehmen wir
an, dass die vollständigen Cauchy-Randdaten gegeben sind, und bei letzterem gehen
wir von diskreten Werten für Strom und Spannung aus.

Wir lösen dieses Problem über eine Randintegralgleichungsmethode. Diese basiert
auf einem System nichtlinearer Integralgleichungen, die mit Hilfe der Greenschen
Formel hergeleitet werden. Durch Linearisierung und iterative Lösung dieses Sys-
tems erhält man die Werte der unbekannten inneren Kurven und Leitfähigkeiten. Die
Methode stellt eine Erweiterung einer Idee von Kress und Rundell [39] für den Fall
einer perfekt leitenden Inklusion dar.

Die dynamische Anpassung der Regularisierungsparameter, die bei dieser Methode
vorkommen, geschieht durch einen Evolutionären Algorithmus. Dieser wird weiterhin
dazu verwendet, eine Startlösung für die Randintegralgleichungsmethode zu bestim-
men. Dazu koppelt er die Methode im kontinuierlichen Fall mit der Faktorisierungs-
methode [9] und für das Complete Electrode Model mit einer Newton-artigen Fi-
nite Elemente Methode [51]. Die Randintegralgleichungsmethode und der Evolu-
tionäre Algorithmus werden ausführlich beschrieben und anhand zahlreicher Beispiele
getestet.

Am Ende wenden wir den Algorithmus auch noch auf reale Daten an. Dafür
mussten gewisse zusätzliche Modifikationen des Algorithmus vorgenommen werden.
Diese Modifikationen werden erläutert, und am Schluss werden zwei Beispiele für
reale Daten präsentiert.
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Introduction and outline

Electrical impedance tomography (EIT) is a novel noninvasive evaluation method that
creates images of the electrical conductivity σ of an inhomogeneous medium Ω by
applying currents I` at a number of electrodes E` at the boundary and measuring the
resulting voltages U` at the electrodes. This medium can be for example a drill core
where the conductivity provides information on the materials it contains, or the method
can be applied on the human brain or thorax to detect anomalies in the tissue.

In the first case we usually have a diagnostic situation. We do not assume to have
any a-priori information about the material contained in the drill core. On the other
hand the conductivity does not change in time. In the second case we have a moni-
toring situation, where the conductivity changes in time (due to breathing respectively
brain activity). On the other hand one already has some a-priori information about the
physiology, and very often only the change of conductivity between two moments in
time is of interest. These two examples illustrate that before starting with the mathe-
matical modeling we have to know

• if the conductivity is time-invariant (static conductivity) or it changes in time
(dynamic conductivity).

• if we are interested in the absolute values of the conductivity (absolute con-
ductivity reconstruction) or just in the change of the conductivity between two
different states or with respect to a reference conductivity (relative conductivity
reconstruction).

• if we have any a-priori information at hand.

These criteria are important for the decision which method is appropriate for the prob-
lem under consideration and which requirements it has to fulfill. If we have a dynamic
conductivity, we do not have the time to make lengthy computations. So usually no
iterative reconstruction methods should be used.

If only the relative change of conductivity is researched, the problem can be ap-
proximately linearized by a relatively simple approach like in the widely used method
described in [5]. Furthermore the systematic measurement errors1 are much smaller,
as the difference of two measurements with the same device is taken.

1which are errors that come from the measuring device (for further description see subsection 6.4.3)
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2 INTRODUCTION AND OUTLINE

Finally if some a-priori information is known, one should try to incorporate it into
the reconstruction algorithm. This can be done in the initialization of the method, or
this information also can be incorporated into the method itself like in [50].

In our case we will limit ourselves to static absolute conductivity reconstructions
with no a-priori information, which corresponds to the drill core example mentioned
beforehand.

Modeling the real-world problem

After the considerations made above one has to define how the real-world problem
is mathematically modeled. First one has to decide if the model is made in two or in
three dimensions. Obviously the 3D model is more realistic, but it is also more difficult
to be computed. Especially if the electrodes are only placed at one cross-section we
cannot expect to obtain good reconstructions above and below it. Therefore it seems
to constitute an acceptable loss of information if we only consider a two-dimensional
cross-section of the object under consideration. Furthermore we will see in chapter 6
that it is basically possible to approximate the 3D measurements by a 2D model.

Also the boundary measurements can be modeled in different ways. In subsection
1.1.2 we will introduce two different models for the boundary conditions: The contin-
uum model and the complete electrode model (CEM). In the first model currents and
voltages are considered as continuous functions f, g over the boundary. This means
that the potential function u fulfills the boundary conditions

u = f and σ
∂u

∂ν
= g on ∂Ω. (1)

In the second model currents and voltages are considered as discrete values at the
electrodes in the sense that

u+ z`σ
∂u

∂ν
= U` on E` (2)∫

E`

σ
∂u

∂ν
dS = I` (3)

σ
∂u

∂ν
= 0 on N , (4)

where z` denotes the contact impedance of the electrode E` and N the space between
the electrodes.

Although the complete electrode model is more realistic than the continuum model,
we will consider both of them. The reason is that the continuum model is theoretically
and numerically much easier to work with, and so certain aspects of our algorithm can
be tested more easily.
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Finally we have to decide how we model the conductivity inside the object. In our
case we consider it as being piecewise constant. This means that we define closed
non-intersecting curves Γi inside the object, and the conductivity σi between two
curves is assumed to be constant. So the curves are considered as interfaces between
different conductivities. The task in this case consists in the reconstruction of the
interface curves and the conductivities. Figure 1 shows an example configuration for
this modeling. Note that as indicated in the example we allow a finite number of layers
with different conductivities included in each other. The maximum number of those
layers we call the inclusion level.

Figure 1: Example of a configuration with 16 electrodes and three inhomogeneities.

Direct and inverse problem

The problem described above is the inverse EIT problem. By contrast the direct
EIT problem consists in the determination of the voltages with given currents and
a given conductivity distribution (direct Neumann problem) or the determination of
the currents with given voltages and a given conductivity (direct Dirichlet problem).
Physically the direct problem consists in the computation of the effect of a given cause,
whereas the inverse problem describes the determination of the cause from the effect.

Mathematically inverse problems are usually ill-posed. Especially the solution is
not stable, such that small changes or errors in the input data can lead to large changes
in the result. For that reason usually some kind of regularization (see for example
[16]) is required for the numerical solution. Also the uniqueness of the solution is not
always guaranteed. In our case there only exists a theoretical uniqueness result for the
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continuum model with infinitely many input data pairs (see [2]). So for the numerical
solution for our examples we have to rely on some experimental heuristics to choose
an appropriate number of boundary data pairs.

A boundary-element method

The main method used is a novel boundary-element method based on an idea recently
published by Kress and Rundell ([39]). It is described in detail in chapter 2.

We first need to introduce some notations. By Γ0 = ∂Ω we denote the exterior
boundary curve and by Γ :=

⋃N
i=1 Γi the union of the interior interface curves. De-

noting by h the trace of u on the interior interfaces we then define the double-layer
potentials over Γ as

(K0h)(x) :=

∫
Γ

∂Φ(x, y)

∂ν(y)
h(y) ds(y), x ∈ Γ0, (5)

(Kh)(x) :=

∫
Γ

∂Φ(x, y)

∂ν(y)
h(y) ds(y), x ∈ Γ. (6)

Over the exterior curve Γ0 we define the combined potential

w(f, g)(x) :=

∫
Γ0

(σ0
∂Φ(x, y)

∂ν(y)
f(y)− Φ(x, y)g(y))ds(y), x ∈ Γ. (7)

with f, g as in (1). By using Green’s integral theorem (see [37]) and taking care of the
jump relations of the double-layer potentials we then obtain

−1

2
σ0f +K0h = w0(f, g) on Γ0,

−1

2
µh+Kh = w(f, g) on Γ,

(8)

where µ depends on the (piecewise constant) conductivities σi and the potential
w0(f, g)(x) for x ∈ Γ0 is defined in an obvious way.

The equations (8) together with (1) in the continuum model and (2)–(4) in the
complete electrode model now constitute a system of integral equations, which can be
used for the solution of the direct problem as well as for the solution of the inverse
problem.

Following the idea of Kress and Rundell we use it for the solution of the inverse
problem. Then in the continuum case we are given the functions f, g, and in the CEM
case we are given the voltages and currents U, I . Therefore the unknowns are the
interface curves Γ (given through the operatorsK), the conductivities σ (given through
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µ) and the potential functions h. In the complete electrode model also f and g are
unknown.

The system is then linearized with respect to each unknown and approximately
solved in an iterative way. The linearization with respect to f, g, h and µ is straight-
forward, whereas with respect to Γ we have to determine the Fréchet derivatives (see
[44]) of (5)–(7). For this we further need a parameterization of each curve Γi, which
in our case is given by

zi(t) = ξi + ri(t)(cos t, sin t), t ∈ [0; 2π[,

with a center point ξi ∈ IR2 and a 2π periodic C2 function

ri(t) =

mi∑
k=0

aik cos kt+

mi∑
k=1

bik sin kt, (9)

where mi is a previously defined polynomial degree and aik, bik are the Fourier coeffi-
cients that determine the size and shape of Γi. Note that unlike in a usual Newton-type
iteration we do not need to solve the forward problem in each iteration step, as this
method linearizes integral equations rather than the boundary-to-data map.

It can be shown (see subsection 2.1.1) that only one boundary data pair is not
enough to uniquely determine a solution to the inverse EIT problem. Therefore we
always assume that we are givenM > 1 data pairs. Then for each of them we are given
one set of equations of the form (8) together with the respective boundary conditions.
The values of the potential function u, and therefore the unknowns f, g, h are different
for each data pair, but the values for σ and Γ have to be equal for all of them. Therefore
we patch the linearized equations for each boundary data pair together and solve them
for Γ and µ in a least-squares sense.

Regularization and a-priori information

As the inverse EIT problem is ill-posed the solution of the linearized system requires
regularization. In our case we use the well-established Tikhonov regularization, which
instead of solving an equation Aϕ = b solves the regularized equation

(α.Id+ A∗A)ϕ = A∗b (10)

where the notation α.Idmeans that we take the identity matrix and replace its diagonal
with the values of the penalty vector α. We allow different Tikhonov parameters for
each unknown, and we also keep the polynomial degree mi in (9) variable. Further-
more these parameters should not be kept fixed during the whole iteration, but they
rather should be adapted within each iteration step.

Secondly we note that in the presented form the method imperatively needs some
a-priori information. We have to supply it with the number of interface curves as well
as with their approximate position to create an initial guess for the iterative solution
of the linearized system. This implies that if we assume not to be given any a-priori
information we have to use a different method to obtain it.
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The evolutionary algorithm

To provide the necessary a-priori information to the boundary-element method and to
adapt dynamically its regularization parameters we use an evolutionary algorithm. The
basic ideas of this evolutionary algorithm also have been used in [15] for the solution
of an inverse scattering problem.

Evolutionary algorithms originate from the area of optimization as they try to
minimize a given functional. The two main differences to conventional optimization
methods are

• They contain random elements, such that when running them several times for
the same input data, the result is not necessarily always the same.

• They do not consider only one approximation to the given problem at each iter-
ation step, but a whole set of them (called a population).

A survey of the basic principles and notations of evolutionary algorithms can be found
in chapter 4.

Following the terms of evolutionary algorithms a population contains several in-
dividuals. In our case of piecewise constant conductivities an individual is a set of
interface curves together with their conductivities and regularization parameters. This
constellation will also be called a subdomain within this paragraph. The number and
position of the subdomains can vary within one population.

At the beginning of our evolutionary algorithm, we have to create a starting pop-
ulation, for which we need an initial guess for our boundary-element method. As
we assume not to be given any a-priori information, we introduce in chapter 3 two
methods which do not need any a-priori information. We use the factorization method
(see [9]) for the continuum model and some Newton-type finite element method from
[51] for the complete electrode model.

These methods provide us with some information about the conductivity on a pre-
defined grid. We then have to convert this representation into a domain representation
with piecewise constant conductivities. For this we define a strictly monotone sequence
of thresholds θ, and for each threshold we choose those points for which the result of
the method lies beyond this threshold. Each set of connected points found this way is
then converted into a subdomain. This way for each threshold we create a new indi-
vidual for our starting population. Figure 2 shows an example for a conversion from a
finite-element representation (left) into a domain representation (right).

Once we are given a population we can create new individuals for the next genera-
tion from the properties of the old ones by recombination. If we have multiple domain
constellations, not necessarily all subdomains are taken also for the new individual.
So especially if one individual contains artifacts which are not included in another in-
dividual, with a certain chance the recombination of those two does not contain the
artifact anymore.
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Figure 2: Example for a conversion between an FEM and a domain representation.

Then the newly created individuals are submitted to mutation. There, first its regu-
larization parameters are randomly changed. With these modified parameters we then
execute a given number of iteration steps of our boundary-element method. This way
we hope to find not only a better approximation to the solution of the inverse problem,
but also good regularization parameters.

We always create more individuals than we had before, so finally we have to se-
lect the best of them, which constitute our next generation. To evaluate them we have
to define a fitness functional, which assigns to each individual a positive real number.
In our case we solve for each individual the direct Neumann problem for the domain
constellation it represents. Then we take the norm of their difference to the given
(measured) input data ‖fcalc − fmeas‖ respectively ‖Ucalc − Umeas‖ as our fitness func-
tional. Although the problem is ill-posed, this measure usually seemed to be sufficient
to evaluate the quality of an approximation.

Numerical results

We tested our evolutionary algorithm for the continuum and the complete electrode
model with synthetic data created for different domain configurations. We chose
examples with one and with two inclusion levels. A detailed description can be found
in chapter 6 together with the plots of the results. In all cases there was no considerable
difference between the performance of the algorithm for the continuum model and for
the complete electrode model.

For those examples with one inclusion level and with exact input data, the algo-
rithm was always able to find the correct domain geometry (number and approximate
position of the subdomains). In most cases it was also able to find the exact shape and
almost the exact conductivity of the subdomains.

For noisy input data and one inclusion level the algorithm found the correct domain
geometry in almost all cases. Obviously it could not find the exact shape and conduc-
tivity of the subdomains, but it still found the correct contrast and the approximate size
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in all cases with the correct geometry.
For two inclusion levels, however, the results were less satisfactory. For exact data

the correct shape and conductivity was only found in those examples containing one
subdomain at the inner inclusion level with the same contrast as the outer subdomain.
This was not the case for those examples with more than one inner subdomain or where
the contrast of the inner subdomain was different. Of course those examples also could
not be reconstructed for noisy data. The configuration with one subdomain at the inner
inclusion level with the same contrast could be approximately reconstructed for 1%
and 2% noise, but not for 5%.

Finally we also applied our algorithm on real data provided by the Institute for
Anesthesiology at the medical faculty of the University of Göttingen. In this case
certain assumptions we made for the synthetic data were not valid anymore, such that
we had to modify the algorithm. These modifications are described in section 6.4.
Then, for the examples we chose, we were able to find the correct geometry and the
approximate size and conductivity of the unknown objects.

Organization of the chapters

In chapter 1 we introduce the basic notations of the general EIT problem, starting
from the mathematical modeling of the physical properties. Then the direct and inverse
EIT problem is defined, and the chapter is concluded with a survey of those methods
which have provided some ideas to the algorithm we developed. In chapter 2 we
describe a novel boundary element method for the inverse EIT problem with piecewise
constant conductivities. Then in chapter 3 we shortly describe two already existing
methods which compute the inverse EIT problem on a given grid. These methods
are used in our evolutionary algorithm to provide an initial guess for the boundary-
element method. In chapter 4 we give a short introduction into the general ideas
and notations of evolutionary algorithms. The concept and implementation of our
particular evolutionary algorithm is then described in chapter 5. Finally in chapter
6 we present different numerical results for various examples of synthetic data and
for different configurations to illustrate the feasibility of our evolutionary algorithm
for the EIT problem. The chapter will be concluded with some ideas to deal with
the difficulties for real data, and at the end we will also present an approximation for
certain real data. The main results of these numerical test are summarized again in the
conclusion , where we also give an outlook to some ideas for further investigation.



Chapter 1

The general EIT problem

In this first chapter we will first present the mathematical model for the real-world EIT
problem from which we will then deduce the formulation of the direct and the inverse
problem. This chapter will conclude with a survey of existing methods for the solution
of the inverse EIT problem.

1.1 Mathematical modeling of the physical properties
We will limit ourselves to the two-dimensional EIT model, which means that we con-
sider a cross-section of an object with infinite height. So we first define by Ω ⊂ R2 a
bounded and simply connected domain representing a cross-section of the object under
consideration. For simplicity we assume the boundary curve ∂Ω to be C2 smooth. At
the surface of the object L electrodes are attached. They are considered as L closed
subsets E` ⊂ ∂Ω, ` = 1, . . . , L such that Ei ∩ Ej = ∅ for i 6= j. We denote by
N := ∂Ω \ ∪E` the space between the electrodes.

The currents which are applied at the electrodes are given as a vector I ∈ RL where
by I` we denote the current applied at the `-th electrode. Analogously the voltages are
modeled as a vector U ∈ RL where U` is the voltage measured at the `-th electrode.

As the total current has to be conserved, we have

L∑
`=1

I` = 0, (1.1)

and to guarantee uniqueness for U we usually also require

L∑
`=1

U` = 0. (1.2)

The quantity we want to recover inside Ω is an isotropic electrical conductivity. It
is defined as a map Ω̄ → R+ that assigns for a given point x = (x1, x2) ∈ Ω a positive

9
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real number. For further simplicity we assume for most of the time that σ is piecewise
continuous inside Ω̄. We will now derive the mathematical conditions relating the
conductivity to the boundary measurements.

1.1.1 Interior conditions: Simplifying the full Maxwell equations
In general, electromagnetic effects are described by Maxwell’s equations [42] from
which we need the following relations:

rotE = −∂B
∂t

(1.3)

rotH = J +
∂D

∂t
(1.4)

E = − gradu− ∂A

∂t
(1.5)

where the electric field E, the electric displacement D, the electric current J , the
magnetic field H , the magnetic potential A and the magnetic induction B are vector
fields and the electric potential u is a scalar field. We assume that u is piecewise twice
continuously differentiable inside Ω.

Following [51] we will now simplify these equations by making some assumptions.
First we assume that the conducting medium is isotropic and also linear which leads
to the relations

D = εE, B = µH, J = σE

where ε is the electric permittivity and µ the magnetic permeability. Next we assume
that the injected currents are time-harmonic such that (1.3) and (1.4) can be simplified
to

rotE = −iωµH (1.6)

rotH = J + iωεE (1.7)

where ω is the frequency of the current. Finally at low frequencies the magnetic and
capacitive effects can be neglected such that we can omit−iωµH and iωεE and obtain
from (1.5), (1.6) and (1.7) that

E = − gradu (1.8)

rotH = σE (1.9)

Taking the divergence in equation (1.8) and substituting into (1.9) we obtain the basic
EIT equation for linear isotropic medium under quasistatic conditions

div σ gradu = 0 in Ω (1.10)

which from now on we will consider as our basic equation.
For certain theoretical considerations as well as for the finite-element method in

section 3.2 we need to allow weak solutions to (1.10).
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Definition 1.1 A function u ∈ H1(Ω) is a weak solution to the basic EIT equation
(1.10) if for all test functions v ∈ C∞0 (Ω) it satisfies the relation∫

Ω

σ gradu · grad v dx = 0. (1.11)

Here the notation v ∈ C∞0 (Ω) means that in addition to being infinitely differentiable v
is equal to zero in a neighborhood of ∂Ω.

1.1.2 Boundary conditions: From the continuum model to the
complete electrode model

Next we have to model the relation between the applied currents and measured voltages
on the boundary ∂Ω and the conductivity σ inside Ω. In all cases this relation passes
via the potential function u, which is related to σ by equation (1.10). Following [48]
we will start with the simple continuum model, which then will be transformed via
some intermediate steps into the complete electrode model.

In the continuum model we assume that voltage and currents are continuous func-
tions over ∂Ω. The voltages are given as the values of the potential function u on ∂Ω,
and the currents are given via its normal derivative, because by the Gauss divergence
theorem we have ∫

∂D

σ
∂u

∂ν
ds =

∫
D

div σ gradu dx = 0

for all test domains D ⊂ Ω. Therefore σ ∂u
∂ν

on ∂Ω corresponds to the local current
sources

σ
∂u

∂ν
= I on ∂Ω.

This also means that the total current that is induced at the surface of Ω has to be equal
to zero such that we have the zero flux condition∫

∂Ω

σ
∂u

∂ν
= 0 (1.12)

which we will assume to be always fulfilled by σ and u. In this context we further
introduce the subspaces

H
±1/2
0 (∂Ω) :=

ϕ ∈ H±1/2(∂Ω) :

∫
∂Ω

ϕdS = 0

 (1.13)

of the Sobolev spaces H±1/2(∂Ω).
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Now we can define

Definition 1.2 In the continuum model we are given two functions f, g, and the elec-
tric potential u has to fulfill the conditions (1.10), (1.12) and

u = f on ∂Ω (1.14)

and
σ
∂u

∂ν
= g on ∂Ω. (1.15)

For potential functions u ∈ H1(Ω) these boundary conditions have to be interpreted
in the sense of the trace operators, such that f ∈ H1/2(∂Ω) and g ∈ H−1/2

0 (∂Ω).

This model is theoretically and numerically easy to work with, and for that reason we
will use it for the first version of our algorithm. However it does not yet incorporate
the currents I and voltages U . To do this the first step is to replace the function g by a
piecewise constant function in the sense that we require

σ
∂u

∂ν
=

I`
|E`|

on E`, ` = 1, . . . , L (1.16)

and
σ
∂u

∂ν
= 0 on N , (1.17)

where |E`| denotes the length of the electrode. This is then called the gap model.
Physically condition (1.17) means that between the electrodes no current can enter or
leave the object. By condition (1.16) we assume that the total current flowing through
E` is equal to I`, and that this current is the same at each point of E`.

The gap model now models the currents I , but still not the voltages U . This is done
in the next step where we take into account that in practice the electric potential must
be constant over a whole electrode. This leads to the condition

u = U` on E`, ` = 1, . . . , L. (1.18)

Furthermore the assumption that the current is the same at each point of an electrode is
not fulfilled in practice, but we only know that the total current over E` must be equal
to I`. So (1.16) has to be weakened into∫

E`

σ
∂u

∂ν
= I` on E`, ` = 1, . . . , L. (1.19)

The resulting model is called the shunt model. In [48] it has been shown that when
the data which are numerically computed for that model are compared to experimen-
tal data, this model constitutes a considerable improvement compared to the previous
models.
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For the final complete electrode model (CEM) an additional effect is also taken
into consideration: Electrochemical effects lead to a thin high-resistive layer between
the object under investigation and the electrode surface. This creates an additional
resistance, which is proportional to the current that flows at that point. Therefore
equation (1.18) finally has to be replaced by

u+ z`σ
∂u

∂ν
= U` on E`, ` = 1, . . . , L,

where z` denotes the contact impedance of the electrode E`. In our case the contact
impedances are always supposed to be known, as they only depend on the measuring
device and not on the interior conductivity. The shunt model can be seen as the limiting
case for z` → 0. So summarizing for the CEM we have the following definition:

Definition 1.3 In the complete electrode model (CEM) for L electrodes we are given
a voltage vector U ∈ RL satisfying (1.2), a current vector I ∈ RL satisfying (1.1) and
a set of contact impedances z`, ` = 1, . . . L.

The electric potential u ∈ H1(Ω) has to fulfill the conditions (1.10), (1.12) and

u+ z`σ
∂u

∂ν
= U` on E` (1.20)∫

E`

σ
∂u

∂ν
dS = I` (1.21)

σ
∂u

∂ν
= 0 on N (1.22)

Following [48] the modeling error of the CEM when comparing the numerical
data to experimental data is only 0.1% such that this model seems to be a very good
approximation to reality. On the other hand there are more difficulties in treating this
model theoretically and numerically, as it is no longer a standard Dirichlet or Neumann
problem. Especially it can be shown that

Theorem 1.1 In the complete electrode model the normal derivative ∂u
∂ν

has singular-
ities at the edges of the electrodes. Denoting by d the distance to an endpoint of an
electrode E`, the behavior of these singularities in the vicinity E` is o( 1√

d
) for z` > 0.

If z` = 0, that is for the shunt model, the behavior is ∼ 1√
d
.

Proof. see [12]. 2

We will see in chapter 2 that this property leads to some difficulties for the numerical
implementation. In [12] even a sharper characterization of the singularities for z` > 0
has been proven, which however will not be exploited in our case.
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1.2 Formulation of the direct and the inverse problem
We will now continue with the formulation of the direct and inverse EIT problem, for
the continuum as well as for the complete electrode model. Although we are mainly
interested in the solution of the inverse problem we also need to define the direct prob-
lem, which has to be solved for the creation of synthetic data and will also be needed
during our evolutionary algorithm.

Looking at the definitions of the continuum and complete electrode model we see
that in both cases we have two different boundary data which are related to each other
via σ and u. So we can define

Definition 1.4 The tuple (f, g) is called a continuous boundary data pair or also a
Cauchy data pair, and the tuple (U, I) is called discrete boundary data pair. One part
of the tuple is called compatible with the other one if there exist some σ and u such
that the conditions (1.14)–(1.15) respectively (1.20)–(1.22) are fulfilled.

1.2.1 The direct problem
In the direct problem we are given the conductivity σ and one part of the boundary
data pair. The task is to compute the other one such that we have

Definition 1.5 In the continuum model the direct Dirichlet problem is:
Given f and σ, find g

The direct Neumann problem is:
Given g and σ, find f

In the complete electrode model the direct Dirichlet problem1 is:
Given U and σ, find I

The direct Neumann problem is:
Given I and σ, find U

Concerning the existence of a solution to the direct problem a proof for the con-
tinuum model in the weak formulation can be found for example in [26], and for the
CEM we refer to [48]. These proofs are based on the Lax-Milgram theorem. For the
uniqueness we will show

Theorem 1.2 The direct Dirichlet problem in the continuum model has at most one
solution. The solutions of the direct Neumann problem only differ by an additive con-
stant.

Proof. Let u1, u2 be two potential functions fulfilling u1 = u2 = f on ∂Ω in the
Dirichlet case or σ ∂u1

∂ν
= σ ∂u2

∂ν
= g in the Neumann case.

1Although one usually only speaks of ‘Dirichlet’ and ‘Neumann’ problem in the continuum case we
will also do this in the discrete case to have a uniform notation for both models.
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Then the function u := u1 − u2 fulfills u = 0 respectively σ ∂u
∂ν

= 0 on ∂Ω. We have

∫
Ω

σ| gradu|2dx =

∫
Ω

σ| gradu|2 + u div σ gradu︸ ︷︷ ︸
=0

 dx

=

∫
Ω

div (uσ gradu) dx =

∫
∂Ω

uσ
∂u

∂ν
ds

where the last equality results from Gauss divergence theorem. But in fact if either
u = 0 or σ ∂u

∂ν
= 0 on ∂Ω the last expression is also equal to zero, and so we have∫

Ω

σ| gradu|2dx = 0.

As σ > 0 and | gradu|2 ≥ 0 inside Ω we conclude that gradu = 0 inside Ω from
which follows that u ≡ const. In the Dirichlet case we additionally know that u = 0
on ∂Ω such that also u ≡ 0 inside Ω. 2

With the same idea we can also prove uniqueness for the complete electrode model,
which reads

Theorem 1.3 The direct Dirichlet and the direct Neumann problem in the complete
electrode model have both at most one solution.

Proof. Like in the proof of theorem 1.2 we denote by u1, u2 two solutions to the direct
problem, and their difference is denoted by u. We further denote by Ũ the difference
of the voltages obtained by inserting u1 and u2 into (1.20), and by Ĩ we denote the
difference of the currents by inserting them into (1.21).
As in the proof of theorem 1.2 we have∫

Ω

σ| gradu|2dx =

∫
∂Ω

uσ
∂u

∂ν
ds. (1.23)

In the Dirichlet case by construction we have that Ũ = 0, so from (1.20) we obtain

u+ σz`
∂u

∂ν
= 0 on E`. (1.24)

Together with (1.22) this implies that we can write (1.23) as∫
Ω

σ| gradu|2dx

︸ ︷︷ ︸
≥0

= −
L∑
`=1

1

z`

∫
E`

u2ds

︸ ︷︷ ︸
≤0

. (1.25)
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So we can conclude that ∫
Ω

σ| gradu|2dx = 0.

As in the proof of theorem 1.2 it then follows that u ≡ const in Ω. From (1.24)
we finally see that u = ∂u

∂ν
= 0 on ∂Ω, and inserting this into (1.21) yields Ĩ = 0.

Therefore we have uniqueness.
In the Neumann case we have Ĩ = 0 by construction, such that (1.21) leads to∫

E`

σ
∂u

∂ν
ds = 0. (1.26)

We further obtain from (1.20) that

u = Ũ` − σz`
∂u

∂ν
on E`. (1.27)

Inserting this into (1.23) and using again (1.22) yields∫
Ω

σ| gradu|2dx =
L∑
`=1

∫
E`

(
Ũ` − σz`

∂u

∂ν

)
σ
∂u

∂ν
ds


=

L∑
`=1

Ũ`

∫
E`

σ
∂u

∂ν
−

L∑
`=1

z`

∫
E`

σ2(
∂u

∂ν
)2ds. (1.28)

From (1.26) it follows that the first term in (1.28) is equal to zero. As the second term
must be smaller or equal than zero, we can conclude with the same argument as for the
Dirichlet case that u = ∂u

∂ν
= 0 on ∂Ω. Then from (1.27) we see that Ũ = 0. Therefore

we have uniqueness.
2

The mappings which for a given σ map one part of a boundary data pair onto the
other part are defined as follows:

Definition 1.6 The operator Λσ : H
−1/2
0 (∂Ω) → H

1/2
0 (∂Ω) mapping the Neumann

data g onto the Dirichlet data f is called the Neumann-to-Dirichlet operator (NtoD-
operator).

The matrix Rσ : RL → RL is called the resistivity matrix, mapping a current
pattern I onto a voltage pattern U .

So in the continuum model the direct Neumann problem can also be formulated as
applying Λσ to g, and the direct Dirichlet problem as applying Λ−1

σ to f . In the CEM it
is applyingRσ to I respectivelyR−1

σ to U . From the boundary conditions (1.14)–(1.15)
and (1.20)–(1.22) we can easily see that Λσ and Rσ are linear operators.
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1.2.2 The inverse problem
For the inverse problem both parts of a boundary data pair are given, and we are looking
for the conductivity inside Ω. We will see in 2.1.1 that even for an already simplified
case only one boundary data pair is not enough to uniquely determine σ. So we assume
that we are given a multiple number of boundary data pairs such that we can formulate

Definition 1.7 In the continuum model the inverse EIT problem is
Given M boundary data pairs (fk, gk), k = 1, . . . ,M , find σ

In the complete electrode model the inverse EIT problem is
Given M boundary data pairs (Uk, Ik), k = 1, . . . ,M , find σ

Concerning the uniqueness, until now it only has been proven that

Theorem 1.4 If the complete Neumann-to-Dirichlet map Λσ is known and σ ∈ L∞

then σ is uniquely determined.

Proof. see [2] 2

But unfortunately this question is still open for the inverse problem given only a
finite number of boundary data pairs - which is always the case in practical examples.
For the complete electrode model there is no uniqueness result available at all until
now.

1.3 A survey of existing methods
To conclude this chapter we will give a short survey of already existing methods to
solve the inverse EIT problem. As quite a lot of them have already been developed, we
will focus on those techniques, which have provided some ideas that will be used later
in our evolutionary algorithm.

An important classification is made between iterative and noniterative methods.
Iterative methods start from a given approximation for σ and compute an update δσ for
it. This step is repeated until some stopping criterion is satisfied. Noniterative methods
directly compute an approximation for σ. Following [7] a standard way for iterative
methods is trying to minimize the norm of the output data, that is, the operator norm

||Λσ − Λmeas|| (1.29)

between the true NtoD-map Λσ and the measured map Λmeas has to be minimized.
As the full NtoD-map is not known in practice, the functional ||f − fmeas|| respec-
tively ||U − Umeas|| has to be minimized instead. A standard way for doing this is
via a Newton-type method like the one which will be described in section 3.2. Other
methods can be found for example in [54], [11] or [55].
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Noniterative methods use some properties of the NtoD-operator, which is then
transformed in an adequate way. Usually they do not need any a-priori information
about the conductivity. The factorization method presented in 3.1 is one example for
this type of method. A related approach is suggested by Ikehata and Siltanen [29], and
the recently introduced d-bar method [34] is using some Fourier transform inside Ω.
All these methods compute σ inside the whole object Ω in one single step. The layer-
stripping method proposed in [49] first computes σ near the surface and then assumes
σ to be known at this outermost layer and proceeds the same way for the next inner
layer until arriving at the center of the object.2 We will see in 3.1.2 that the factoriza-
tion method can also be modified with a similar idea to deal with multiple inclusion
levels.

In the implementation of all of the methods cited above the conductivity σ is repre-
sented as values on a given grid. Depending on the method, this grid can be a cartesian
grid or a finite-element mesh. Usually if no a-priori information about σ is present,
the grid will be equidistant. This leads to the fact that areas of interest are discretized
in the same way as areas of non-interest. Furthermore the denseness of the grid is
also a mean for the regularization of the solution. So on a sparse grid the problem is
usually less ill-posed than on a dense one (see [32]). Starting from these two facts the
idea of adaptive multigrid methods as in [6] has been developed. They first perform
computations on a sparse grid before passing to a dense grid to obtain more precise
approximations. This dense grid is adapted on the basis of the solution found before.

An alternative to computing σ on a grid are boundary element methods (BEM).
They define some closed curves inside Ω and assume σ to be constant between two
curves. The computation is then done on these curves. This approach first has been
proposed for EIT by Hofmann [25, 26] who also used a Newton-type iterative method
for the inverse solution with continuous boundary data. Recently also some BEM
approaches for the complete electrode model have been proposed as in [3] or [4], where
in [3] only the direct EIT problem is solved via a BEM, and in [4] the three-dimensional
inverse problem is solved. For the inverse two-dimensional EIT problem with CEM
boundary conditions boundary-element methods have not been tried out yet.

To distinguish between boundary element-methods and the methods where σ is
computed on a grid, we will speak of grid-based methods when we refer to the latter
ones. Compared to grid-based methods, boundary-element methods have the advan-
tage that they concentrate on the regions of interest. The size of the inhomogeneities
is variable, and the spatial dimension of the problem to be solved is reduced by one.
On the other hand these methods in their initial form imperatively need some a-priori
information about the number and position of the inhomogeneities with piecewise con-
stant conductivities.

Finally level-set methods as in [13] are grid-based methods that also assume the
conductivity to be piecewise constant. In these methods for each subdomain a level-set

2Even if this method uses several steps where the output of the previous step is used the method is
considered as noniterative as for a given point inside Ω it computes σ only once.
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function is defined which is positive if the point lies inside the subdomain and negative
otherwise. Compared to boundary-element methods, they have the advantage that they
do not need to know beforehand how many inhomogeneities there are, as they are able
to split and merge areas together.



Chapter 2

A novel boundary-element method

We now start with the description of the novel boundary-element method, which will
be used as the main method in our algorithm. As already mentioned it is an extension
of a method previously proposed for the Dirichlet boundary condition by Kress and
Rundell [39]. The main difference of this method to usual Newton-type methods as
in [25] is that it linearizes the integral equations on the different curves rather than the
boundary-to-data map. This avoids having to solve the full forward problem in each
iteration step.

In boundary-element methods for EIT the conductivity inside Ω is considered as
piecewise constant and the EIT problem is reduced to the transmission problem. We
start this chapter with the definition of the transmission problem and present some
considerations about uniqueness for the inverse problem for one boundary data pair.
Then we describe the solution of the direct transmission problem before we proceed
with the solution of the inverse problem using our boundary-element method.

2.1 Modeling the EIT problem as a transmission prob-
lem

For the transmission problem we denote the boundary of Ω by Γ0 := ∂Ω and assume
that Γ1, . . . ,ΓN are N closed curves contained in Ω satisfying Γi ∩ Γj = ∅ for i 6= j.
By Bi we denote the interior of Γi for i = 0, . . . , N and set

Di := Bi \
⋃

Bj⊂Bi

Bj, i = 0, . . . , N.

Then we define a predecessor function p : {1, . . . , N} → {0, . . . , N} such that p(i) 6=
i and Γi ⊂ ∂Dp(i) for i = 1, . . . , N,, that is, Γi is an interior boundary curve of Dp(i)

and an exterior boundary curve of Di.
Figure 2.1 gives an example of a configuration with N = 4 and p(1) = p(2) = 0,

p(3) = p(4) = 1. Note that as indicated in the example we allow some of the interior

20
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Figure 2.1: Example of a configuration.

subdomains D1, . . . , DN to be multiply connected, i.e., we allow a finite number of
layers with different conductivities included in each other. The maximum number of
layers we call the inclusion level. We denote by ν the outward unit normal to each of
the curves Γi for i = 0, . . . , N . Furthermore, we set

Γ :=
N⋃
i=1

Γi. (2.1)

With each subdomain Di we associate a positive constant conductivity σi and define
the piecewise constant conductivity σ in D by setting σ|Di

= σi for i = 0, . . . , N . So
each curve Γi can be seen as an internal interface. We further define for each internal
interface the transmission quotient ai := (σi)/(σp(i)). For the potential function we
define the restrictions ui := u|Di

for i = 0, . . . , N . Analogously to (1.14) and (1.15)
on Γ0 = ∂Ω we set

f := u|Γ0 and g := σ
∂u

∂ν
|Γ0 .

We note that in Ω \Γ we can eliminate σ from equation (1.10) as σ is constant, and
we obtain the Laplace equation

∆u = 0 in Ω \ Γ. (2.2)

Since u is continuous inside Ω, we especially have

up(i) = ui on Γi, i = 1, . . . , N. (2.3)
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For the normal derivatives we require

σp(i)
∂up(i)
∂ν

= σi
∂ui
∂ν

on Γi i = 1, . . . , N, (2.4)

because we can prove

Theorem 2.1 If u ∈ H1(Ω) satisfies (2.2), (2.3) and (2.4), then u is a weak solution
of

div σ gradu = 0 in D. (2.5)

Proof. u is a weak solution of (2.5) if it satisfies for all test functions v ∈ C∞0 (Ω)∫
Ω

σ gradu · grad v = 0.

Using Green’s theorem indeed we have∫
Ω

σ gradu · grad v dx =
N∑
j=0

σj

∫
Dj

gradu · grad v dx

=
N∑
j=0

∫
Γj

(σp(j)
∂up(j)
∂ν

− σj
∂uj
∂ν

)︸ ︷︷ ︸
=0

vds = 0.

2

So summarizing

Definition 2.1 For the direct transmission problem in all cases we are given a set
{Γ1, . . . ,ΓN} of interface curves with their respective conductivities σi, and we have
to determine the potential function u. Also in all cases we require u to fulfill the
conditions (2.2), (2.3) and (2.4) as well as the zero flux condition (1.12). Additionally

• For the direct Dirichlet problem in the continuum case we are given the values
of the function f ∈ H

1/2
0 (Γ0), we require u to fulfill u = f on Γ0, and we have

to determine g = σ0
∂u
∂ν

on Γ0.

• For the direct Neumann problem in the continuum case we are given the values of
g ∈ H−1/2

0 (Γ0), we require u to fulfill σ0
∂u
∂ν

= g on Γ0, and we have to determine
f = u on Γ0.

• For the direct Dirichlet problem in the discrete (CEM) case we are given a
voltage vector U ∈ RL, we require u to fulfill

σ
∂u

∂ν
= 0 on N (2.6)
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and
u+ z`σ

∂u

∂ν
= U` on E`, (2.7)

and we have to determine
I` =

∫
E`

σ
∂u

∂ν
dS. (2.8)

• For the direct Neumann problem in the discrete case we are given a current
vector I ∈ RL, we require u to fulfill the conditions (2.6),∫

E`

σ
∂u

∂ν
dS = I` (2.9)

and
u+ z`σ

∂u

∂ν
− U` = 0 on E`, (2.10)

and we have to determine U , which is given through (2.10).

Note that in the first three cases the computation of the potential function u and the
computation of the unknown part of the boundary data pair can be done separately,
in the sense that we first compute u, which is then inserted into the equation that
determines the unknown part of the boundary data. This is not possible in the last
case, where condition (2.10) is needed for the computation of u as well as for the
computation of U . So u and U have to be computed simultaneously. This will be
relevant not only in our numerical computations, but also in the proof of existence and
uniqueness of our ansatz in theorem 2.3.

The inverse problem is given as

Definition 2.2 For the inverse transmission problem in the continuum model we are
given a finite number of boundary pairs (fk, gk) of Dirichlet and Neumann data on Γ0

with k = 1, . . . ,M. where the Neumann data gk require the zero flux condition (1.12).
For the inverse transmission problem in the complete electrode model we are given

a finite number of boundary pairs (Uk, Ik) of voltages and currents with k = 1, . . . ,M.
where the currents Ik require the zero flux condition (1.1).

In both cases the task consists in reconstructing the shape and location of the inter-
faces Γi and the conductivities σi for i = 1, . . . , N , such that theM potential functions
uk are required to satisfy (2.2), (2.3) and (2.4).

Note that in this formulation we assume the background conductivity σ0 to be known.
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2.1.1 Uniqueness of the inverse transmission problem for one
boundary data pair

To get an idea of how many data pairs we might need at least we will now look at
the case N = M = 1 in the continuum model, i.e. we have only one single Cauchy
data pair (f, g) and one unknown subdomain with unknown conductivity. Further in
this section we normalize by setting σ0 = 1. So we denote by a := a1 = σ1 the
transmission constant of the interior interface curve. First we show that one Cauchy
pair is not enough to uniquely determine one inclusion and its conductivity.

For this consider the simplified problem of Γ0 = ∂D being the unit circle and Γ1 a
circle with center 0 and radius r < 1 and transmission constant a > 0.

As Neumann boundary data we choose g(θ) = cos(mθ), θ ∈ [0; 2π[, m ∈ N. Then
the solution of the direct problem can be analytically computed from the Neumann
boundary condition and the two transmission conditions (2.3) and (2.4). We obtain
that the restrictions u0 = u|D0 for the electric potential inside D0 and u1 = u|D1 for the
potential inside D1 can be written in the form

u0 = A%m cos(mθ) +B%−m cos(mθ)

u1 = C%m cos(mθ)

with (%, θ) being the polar coordinates of a point in Ω̄ and coefficients A,B,C ∈ R
which can be explicitly computed knowing r and a.

This implies that for the inverse problem we are given the Dirichlet data in the form
f = (A + B) cosmθ. The coefficient α := A + B is the only variable part, but one
coefficient cannot be enough to determine both r and a.

With the same argument one can also prove that when two unknown concentric
circles are given and only one boundary data pair is available, the problem is not
uniquely solvable, even if either the radius or the conductivities are known.

Now if we assume that either the shape or the conductivity of the unknown in-
clusion is known, we can at least prove that the problem is unique for the unknown
conductivity.

Theorem 2.2 In the transmission problem with one interior subdomain D1 the trans-
mission constant a is uniquely determined by one Cauchy data pair (f, g) with f 6≡
const if the interior subdomain D1 is known.

Proof. Let a1 and a2 be two transmission constants with the same boundary data f and
g. We want to show that a1 = a2.

First we define functions u1, u2 in D0 and functions v1, v2 in D1 such that

u1 = u2 = f on Γ0 (2.11)

u1 = v1 and
∂u1

∂ν
= a1

∂v1

∂ν
on Γ1 (2.12)
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u2 = v2 and
∂u2

∂ν
= a2

∂v2

∂ν
on Γ1 (2.13)

as solutions to the direct Dirichlet problem. By assumption we have
∂u1

∂ν
=
∂u2

∂ν
= g on Γ0. (2.14)

We denote by w := u1 − u2 and w̃ := v1 − v2 the difference of both functions. From
(2.11) and (2.14) we see that w = (∂w)/(∂ν) = 0 on Γ0. So we can apply Holmgren’s
theorem (see e.g. [45]) for w in D0 and conclude that w ≡ 0 in D0, such that we
especially have that w = 0 on Γ1.

From (2.12) and (2.13) it now follows that also w̃ = 0 on Γ1. Then as w̃ is harmonic
inside D1 we can conclude from the maximum principle (see for example [37]) that
w̃ ≡ 0 in D1, and so also (∂w̃)/(∂ν) = 0. This implies that

∂v1

∂ν
=
∂v2

∂ν
on Γ1,

and so on Γ1 we can write

(a1 − a2)
∂v1

∂ν
= a1

∂v1

∂ν
− a2

∂v2

∂ν
=
∂u1

∂ν
− ∂u2

∂ν
=
∂w

∂ν
= 0

which means that a1 = a2 if (∂v1)/(∂ν) is not identically 0 on Γ1.
But if (∂v1)/(∂ν) = 0 on Γ1, then v1 must be equal to a constant in D1 (see

[37]). We denote this constant by c. We particularly have that v1 = c on Γ1. From
the transmission conditions (2.12) it then follows that on Γ1 we have u1 = c and
(∂u1)/(∂ν) = 0.

Next we define a function û := u1−c. This function is 0 on Γ1 as well as its normal
derivative. So we can apply Holmgren’s theorem in D0 and conclude that û ≡ 0 in D0

such that especially on Γ0 we have

f − c = u1 − c = û = 0.

But this implies that f is constant, which is a contradiction to the assumption of the
theorem. This means that (∂v1)/(∂ν) cannot be identically 0, and so we must have
a1 = a2. 2

For an unknown shape with known conductivities there is no general result avail-
able until now. Partial results requiring some restrictions on the shape can be found
in [19], [30] and [1]. Also note that the proof for the transmission constant cannot be
generalized for multiple subdomains in an obvious way.

2.2 Solution of the direct problem
We now start with the description of the method for the solution of the direct problem
where we begin with the solution of the direct Neumann problem in the continuum
model. Afterwards we describe the modifications for the other direct problems.
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2.2.1 Solution of the direct problem for the continuum model
To find a function that for given interface curves Γ1, . . . ,ΓN , given conductivities
σ1, . . . , σN and given Neumann boundary data g satisfies the conditions (2.2), (2.3)
and (2.4) we choose the single-layer approach

u(x) :=
N∑
j=0

∫
Γj

Φ(x, y)ϕ(y)ds(y) (2.15)

with an unknown density function ϕ. Here

Φ(x, y) := − 1

2π
ln |x− y| , x 6= y (2.16)

is the fundamental solution of the Laplace equation (2.2) in R2.
From the conditions (1.15) and (2.4) which u has to fulfill, we then derive a system

of linear integral equations. On the exterior boundary curve Γ0 equation (1.15) is
satisfied by the approach (2.15) if

N∑
j=0

∫
Γj

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y) +

1

2
ϕ(x) =

1

σ0

g(x) , x ∈ Γ0, (2.17)

where 1
2
ϕ(x) arises from the jump of the normal derivative of the single-layer potential

on Γ0 when the limit coming from inside D0 is taken. The jumps occurring on each
interior interface curve Γi lead to

∂u+

∂ν
(x) =

N∑
j=0

∫
Γj

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y)− 1

2
ϕ(x), , x ∈ Γi (2.18)

and
∂u−
∂ν

(x) =
N∑
j=0

∫
Γj

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y) +

1

2
ϕ(x), , x ∈ Γi. (2.19)

Setting ai := σi/σp(i) and using (2.18) and (2.19) shows that condition (2.4) is
satisfied provided

(1− ai)
N∑
j=0

∫
Γj

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y)− 1 + ai

2
ϕ(x) = 0, x ∈ Γi. (2.20)

The equations (2.17) and (2.20) now constitute a system of integral equations of the
second kind which can be solved for the unknown ϕ. Because of the continuity of the
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single-layer potential over all interface curves Γi the condition (2.3) is fulfilled for any
ϕ.

To write the system in operator form we define the derivative of the single-layer
potential as

(K ′
ij)ϕ(x) :=

∫
Γj

∂Φ(x, y)

∂ν(x)
ϕ(y)ds(y), x ∈ Γi. (2.21)

Then we can write the system as

1

2
Id+


K ′

00 K ′
01 . . . K ′

0N

−1−a1

1+a1
K ′

10 −1−a1

1+a1
K ′

11 . . . −1−a1

1+a1
K ′

1N
...

... . . . ...
−1−aN

1+aN
K ′
N0 −1−aN

1+aN
K ′
N1 . . . −1−aN

1+aN
K ′
NN


 ϕ0

...
ϕN

 =


g/σ0

0
...
0


(2.22)

where we denote by ϕi := ϕ|Γi
the density function restricted to the curve Γi and by Id

the identity matrix1. In [37] it is shown that the kernel ofK ′ := K ′
00 is weakly singular,

such that the Riesz theory can be applied. Further it is proven that the nullspace of the
operator 1/2Id + K ′ has dimension one. Then following [26] one can show that the
same is true for the nullspace of the system (2.22) and that the system is uniquely
solvable up to an additive constant.

To obtain a unique solution we additionally extend the system (2.22) with the con-
dition ∫

Γ0

ϕ(y)ds(y) = 0, (2.23)

which can be deduced from the zero flux condition (1.12) (see [37]).
The density function ϕ can then be inserted into the ansatz (2.15) to obtain the

potential function u. To write this in operator form we define the single-layer operator
as

(Sij)ϕ(x) :=

∫
Γj

Φ(x, y)ϕ(y)ds(y), x ∈ Γi (2.24)

such that f can be written as

f =
N∑
i=0

Si0ϕi.

For the solution of the direct Dirichlet problem we replace the single-layer ap-
proach (2.15) on Γ0 by a double-layer approach. This leads to

u(x) :=

∫
Γ0

∂Φ(x, y)

∂ν(y)
ϕ(y)ds(y) +

N∑
j=1

∫
Γj

Φ(x, y)ϕ(y)ds(y). (2.25)

1to avoid notational confusion with the current I
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The operators which are needed are the double-layer potential

(Kijϕ)(x) :=

∫
Γj

∂Φ(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γi (2.26)

and its derivative

(Tijϕ)(x) :=

∫
Γj

∂2Φ(x, y)

∂ν(x)∂ν(y)
ϕ(y) ds(y), x ∈ Γi. (2.27)

The system to be solved is deduced in the same way as for the Neumann problem and
can be written as

1

2
Id−


K00 S01 . . . S0N

1−a1

1+a1
T10

1−a1

1+a1
K ′

11 . . . 1−a1

1+a1
K ′

1N
...

... . . . ...
1−aN

1+aN
TN0

1−aN

1+aN
K ′
N1 . . . 1−aN

1+aN
K ′
NN


 ϕ0

...
ϕN

 =


f
0
...
0

 (2.28)

Following [37] the operator 1/2Id −K has zero-dimensional nullspace, and with the
same argument from [26] as for the Neumann case one can show that this is also the
case for the nullspace of the system (2.28). So from the Riesz theory it follows that
(2.28) is uniquely solvable.

The obtained density function ϕ is finally inserted into the normal derivative of
(2.25) which leads to

g = σ0

(
T00ϕ0 +

N∑
i=1

K ′
i0ϕi

)
.

2.2.1.1 Numerical discretization

For the numerical solution the system (2.22) has to be discretized, and therefore a
parameterization is required. For j = 0, . . . , N we parameterize each of the closed
curves in the form

Γj := {zj(t) : t ∈ [0; 2π[} (2.29)

with 2π periodic C2–smooth functions zj : IR → IR2 such that zj is injective on
[0; 2π[. In particular this implies that z′j(t) 6= 0 for all t ∈ [0; 2π[. We further set
ψ(t) := ϕ(z(t)). Then the parameterized form of the single-layer operator (2.24) is
given by

S̃(ψ, z)(t) = − 1

2π

2π∫
0

ln |z(t)− z(τ)||z′(τ)| ψ(τ) dτ, t ∈ [0; 2π[, (2.30)
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and the parameterized form of its normal derivative (2.21) is given by

K̃ ′(ψ, z)(t) =
1

2π

2π∫
0

[z′(t)]⊥ · [z(t)− z(τ)]

|z(t)− z(τ)|2
|z′(τ)|
|z′(t)|

ψ(τ) dτ, t ∈ [0; 2π[. (2.31)

Here, we used the notation a⊥ = (a2,−a1) for any vector a = (a1, a2), that is, a⊥ is
obtained by rotating a clockwise by 90 degrees. The dependence of the operators on
the boundary Γ through the parameterization z is indicated through the notation S̃(· , z)
and K̃ ′(· , z).

It can be verified that the kernel function in (2.21) is smooth for t = τ with diagonal
term

[z′(t)]⊥ · z′′(t)
4π |z′(t)|2

(2.32)

so that the system (2.22) does not contain any singularity to be treated. The same is
true for the system which has to be inverted for the solution of the Dirichlet problem.
There the double-layer potential (2.26) is parameterized as

K̃(ψ, z)(t) =
1

2π

2π∫
0

[z′(τ)]⊥ · [z(t)− z(τ)]

|z(t)− z(τ)|2
ψ(τ) dτ, t ∈ [0; 2π[. (2.33)

Its kernel is also smooth for t = τ with the same diagonal term (2.32).
So the operators in (2.22) can be discretized by the usual Nyström method (see e.g.

[37]) using the trapezoidal rule and equidistant discretization points.
However the kernels of the operators S00 and T00 used for the computation of

g respectively f for a given ϕ are not smooth. S00 is a singular operator, and T00,
parameterized as

T̃ (ψ, z)(t) =
1

2π

2π∫
0

{
[z′(t)]⊥ · [z′(τ)]

|z′(t)||z(t)− z(τ)|2

−2
[z′(τ)]⊥ · [z(t)− z(τ)][z′(t)]⊥ · [z(t)− z(τ)]

|z′(t)||z(t)− z(τ)|4

}
ψ(τ) dτ, t ∈ [0; 2π[.

is even hypersingular. These singularities - respectively hypersingularities - of S00 and
T00 have to be treated by splitting them off as described in [38].
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2.2.2 Solution for the complete electrode model
For the complete electrode model we slightly have to modify the ansatz (2.15) for u.
For notational convenience we define

(Mϕ)(x) :=


ϕ(x)− 1

|Γ0|

∫
Γ0

ϕ(y)ds(y), x ∈ Γ0

ϕ(x), x ∈ Γi, i = 1, . . . , N

(2.34)

and we use the ansatz

u(x) :=
N∑
j=0

∫
Γj

Φ(x, y)(Mϕ)(y)ds(y) +
1

|Γ0|

∫
Γ0

ϕ(y)ds(y) (2.35)

instead of (2.15). Then the boundary conditions (1.20), (1.21) and (1.22) are satisfied
provided

N∑
j=0

∫
Γj

(
Φ(x, y) + z`σ0

∂Φ(x, y)

∂ν(x)

)
(Mϕ)(y)ds(y)

+z`σ0
1

2
(Mϕ)(x)− 1

|Γ0|

∫
Γ0

ϕ(y)ds(y) = U`, x ∈ E`,
(2.36)

σ0

∫
El

 N∑
j=0

∫
Γj

∂Φ(x̂, y)

∂ν(x̂)
(Mϕ)(y)ds(y) +

1

2
(Mϕ)(x̂)

 ds(x̂) = I`, ` = 1, . . . , L

(2.37)
and

N∑
j=0

∫
Γj

∂Φ(x, y)

∂ν(x)
(Mϕ)(y)ds(y) +

1

2
(Mϕ)(x) = 0, x ∈ N . (2.38)

On the interior interfaces we have to replace ϕ by Mϕ in (2.20), and we obtain for
i = 1, . . . , N

(1− ai)
N∑
j=0

∫
Γj

∂Φ(x, y)

∂ν(x)
(Mϕ)(y)ds(y)− 1 + ai

2
(Mϕ)(x) = 0, x ∈ Γi. (2.39)

Following definition 2.1 and the considerations made afterwards we solve the discrete
Dirichlet problem by inverting the system consisting of (2.36), (2.38) and (2.39) to
obtain the density function ϕ. We then insert it into (2.37) to obtain the currents I . For
the solution of the discrete Neumann problem indeed we invert the system consisting
of (2.36)–(2.39) to obtain simultaneously the values for ϕ and U . In both cases the
system has exactly one solution, as we will prove now
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Theorem 2.3 For the ansatz (2.35) the direct discrete Dirichlet and Neumann problem
in the complete electrode model has exactly one solution.

Proof. We start with the discrete Dirichlet case. To write the system described through
(2.36), (2.38) and (2.39) in operator form we introduce the piecewise constant func-
tions χ, V on Γ0 defined as

χ :=


1

σ0z`
on E`, ` = 1, . . . , L

0 on N

and

V :=


U`
σ0z`

on E`, ` = 1, . . . , L

0 on N .

Next we define operators Ri : L2(Γi) → L2(Γ0) for i = 0, . . . , N by

Ri := K ′
0iM + χS0iM.

These operators are compact, as the operators K ′
0i and S0i are compact and the opera-

tors χ and M are bounded. If we have no inclusions inside Ω we can then write (2.36)
and (2.38) as

1

2
Mϕ+R0ϕ+ χ

1

Γ0

∫
Γ0

ϕds = V. (2.40)

By defining the operator R̃0 : L2(Γ0) → L2(Γ0) as

R̃0ϕ := R0ϕ+ (χ− 1

2
)

1

|Γ0|

∫
Γ0

ϕds

equation (2.40) can be transformed into

1

2
Id ϕ + R̃0ϕ = V

where R̃0 is still compact, as R0 is compact and any integral operator with constant
kernel is compact and χ is bounded.

For the inner inclusions we extend the system in a similar way as for the continuum
case. We introduce the operator R : L2(∪Γi) → L2(∪Γi) as

R :=


R̃0 R1 . . . RN

−1−a1

1+a1
K ′

10 −1−a1

1+a1
K ′

11 . . . −1−a1

1+a1
K ′

1N
...

... . . . ...
−1−aN

1+aN
K ′
N0 −1−aN

1+aN
K ′
N1 . . . −1−aN

1+aN
K ′
NN

 . (2.41)
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Then we can write the system consisting of (2.36), (2.38) and (2.39) as

1

2
Id ϕ +Rϕ = Ṽ (2.42)

where Ṽ is the extension of V onto the interior curves filled up with zeros. The operator
R is compact, as all its parts are compact. Therefore the Riesz theory can be applied to
(2.42), such that injectivity of the operator 1

2
Id+R implies existence and uniqueness

of a solution.
We note that the operator R maps L2(∪Γi) onto the set of piecewise continuous

functions on ∪Γi. This follows from the fact that the operators K ′
ij have continuous

kernels, such that they map L2(Γj) onto C(Γi) (see [37]). For the operators R̃0, Ri

(i = 1, . . . , N) we refer to [23], where it is proven that the single-layer potential S -
which has a weakly singular kernel - also maps L2(Γ) onto C(Γi). So the operators
χS0i and therefore also the operators R̃0, Ri map L2(Γi) onto the set of piecewise
continuous functions on Γ0. This particularly implies that the jump relations of the
potential operators remain valid on all Γi, i = 0, . . . , N in our case.

So if we now consider the homogeneous equation to (2.42) we especially see that
by construction u defined by (2.35) solves the homogeneous CEM-Dirichlet problem.
Using theorem 1.3 we then conclude that u = 0 inside Ω. Therefore also its normal
derivative on the interior curves are zero. From the jump relations of the operator K ′

we obtain
∂u+

∂ν
− ∂u−

∂ν
= −ϕ on Γi, i = 1, . . . N, (2.43)

and therefore we must have ϕ = 0 on all interior curves.
As furthermore the single-layer potential does not have any jump relations we con-

clude that for all x ∈ R2 we can write u as

u(x) =

∫
Γ0

Φ(x, y)(Mϕ)(y)ds(y) +
1

|Γ0|

∫
Γ0

ϕds.

From [37] we know that u tends to zero at infinity, so that we have uniqueness for
the exterior Dirichlet problem. This implies that u = 0 in R2, and like in (2.43) we
conclude from the jump relations of the normal derivatives that ϕ = 0 on Γ0. Therefore
from the Riesz theory it follows existence and uniqueness of a solution for the discrete
Dirichlet case.

For the discrete Neumann case we have to consider the system consisting of
(2.36)–(2.39), which has to be solved simultaneously for ϕ and U . Therefore we ex-
tend the operator R : L2(∪Γi) → L2(∪Γi) defined through (2.41) into an operator
R� : L2(∪Γi) × RL → L2(∪Γi) × RL such that the equations (2.36)–(2.39) are
equivalent to

1

2
Id

(
ϕ
U

)
+R�

(
ϕ
U

)
=

(
0
I

)
(2.44)
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with a compact operator R�. So the Riesz theory can be applied to (2.44). Now we
can proceed like in the Dirichlet case. When we consider the homogeneous equation
of (2.44) we particularly see that in that case by construction the function u defined by
(2.35) solves the homogeneous CEM-Neumann problem. From theorem 1.3 we again
conclude that u = 0 inside Ω, and with the same argument as for the Dirichlet case we
then obtain that ϕ = 0. Finally equation (2.36) yields that also U = 0. This implies
existence and uniqueness of a solution for the discrete Neumann case.

2

Note that as in the continuum case the density function ϕ can be inserted into (2.15)
or its derivative to obtain the Dirichlet and Neumann data f and g, which still have the
same meaning as in the continuum model. This will be useful when we proceed with
the system for the solution of the inverse problem.

2.2.2.1 Numerical discretization

For the numerical solution of the direct CEM problem we additionally require ϕ to
fulfill the condition ∫

Γ0

ϕds = 0,

so that Mϕ = ϕ and the representations (2.35) and (2.15) coincide. So we can write u
again in the form (2.15).

From [12] we know that g has singularities at the endpoints of each electrode,
but that nevertheless the integral (2.37) is finite. By expanding the representation
(I + 2K ′)ϕ = 2g into a Neumann series (see [37]) we see that the density ϕ must
have singularities at the same points as g. So following [36], to discretize the integrals
in (2.36)–(2.38) we have to choose a non-equidistant discretization of Γ0 which cancels
out the singularities in the integral.

For this we are looking for a strictly increasing bijective C∞ substitution function
ω : [0; 2π] → [0; 2π] fulfilling for all t̃ ∈ {t | g(z0(t)) has a singularity } and some
p ∈ N

ω(j)(t̃) = 0 , j = 1, . . . , p− 1 (2.45)

ω(p)(t̃) 6= 0. (2.46)

If we now have an integral ∫
Γ0

K(x, y)ϕ(y)ds(y)

with some smooth kernel K(x, y) and a singular density ϕ, the parameterized form

2π∫
0

K(z0(t), z0(τ))|z′0(τ)|ψ(τ)dτ
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is replaced via the substitution rule by

2π∫
0

K(z0(ω(t)), z0(ω(τ)))|z′0(ω(τ))ω′(τ)|ψ(ω(τ))dτ, (2.47)

and we expect that because of property (2.45) the singularities in the substituted in-
tegral (2.47) cancel out by multiplying ψ(ω(τ)) with ω′(τ). From the result cited in
theorem 1.1 we see that a function satisfying for all t̃

lim
z0(t)∈E`

t→t̃

ω′(t)√
|t− t̃|

= 0 (2.48)

cancels out the singularities. Note that from a theoretical point of view property (2.46)
is not necessary, but following [37] using substitution functions where all derivatives
are zero easily leads to numerical underflow.

The substituted integral can then be numerically computed with the usual trape-
zoidal rule. Note that also in the kernels for the derivatives of z0 we have to use the
chain rule. Therefore for z = z0 (2.31) now becomes

K̃ ′(ψ, z0)(ω(t)) =
1

2π

2π∫
0

[z′0(ω(t))]⊥ · [z0(ω(t))− z0(ω(τ))]

|z0((ω(t))− z0(ω(τ))|2
|z′0(ω(τ))ω′(τ)|
|z′0(ω(t))ω′(t)|

ψ(ω(τ)) dτ,

with diagonal term

[z′0(ω(t))]⊥ · [z′′0 (ω(t))(ω′(t))2 + z′0(ω(t))ω′′(t)]

4π |z′0(ω(t))|2|ω′(t)|
.

2.3 Solution of the inverse problem
We now proceed with the solution of the inverse problem. The basic idea is to use
Green’s formula (see e.g. [37]) to deduce relations between integrals over the exterior
boundary curve Γ0 and integrals over the interior interface curves Γi. We start with
the solution for the continuum model as also described in [14]. Then we describe the
extensions for the complete electrode model, which are similar to the extensions for
the solution of the forward problem.

Further we will see that the system which is used for the solution of the inverse
problem can also be applied for the solution of the direct problem.2 However, to avoid
an inverse crime when creating the synthetic data we deliberately solved the direct
problem by the approach described in section 2.2.

2In fact, a quite similar approach has been used in [3] to do this.
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2.3.1 Deriving a system of integral equations
In terms of the Cauchy data (f, g) on Γ0 and with Φ(x, y) being the fundamental so-
lution (2.16) of the Laplace equation we define the combined single- and double-layer
potential

w(f, g)(x) :=

∫
Γ0

{
σ0f(y)

∂Φ(x, y)

∂ν(y)
− g(y)Φ(x, y)

}
ds(y), x ∈ IR2 \ Γ0. (2.49)

For notational convenience we introduce the quotient

µi :=
σp(i) + σi
σp(i) − σi

, i = 1, . . . , N, (2.50)

and define the function µ : Γ → IR by setting µ|Γi
:= µi for i = 1, . . . , N . Further we

define the weighted traces hi of u on Γi by

hi := (σp(i) − σi)u|Γi
. (2.51)

Recalling that Γ is defined by (2.1) as the union of all interior interfaces, we define the
double-layer operators

(K0h)(x) :=

∫
Γ

∂Φ(x, y)

∂ν(y)
h(y) ds(y), x ∈ Γ0, (2.52)

and

(Kh)(x) :=

∫
Γ

∂Φ(x, y)

∂ν(y)
h(y) ds(y), x ∈ Γ. (2.53)

With these notations we will now prove

Theorem 2.4 If the piecewise harmonic function u in Ω satisfies the transmission con-
ditions (2.3) and (2.4) and has boundary values u = f and σ0

∂u
∂ν

= g on Γ0 then the
function h on Γ given by the traces h|Γi

:= hi, i = 1, . . . , N, satisfies the integral
equations

K0h = w+(f, g) on Γ0,

−1

2
µh+Kh = w(f, g) on Γ,

(2.54)

where the subscript indicates that w+(f, g) is the limit obtained when approaching Γ0

from outside Ω. Conversely, if h satisfies the integral equations (2.54) then

u(x) :=
1

σ(x)


∫
Γ

∂Φ(x, y)

∂ν(y)
h(y) ds(y)− w(f, g)(x)

 , x ∈ Ω \ Γ, (2.55)

solves the transmission problem and has boundary values u = f and σ0
∂u
∂ν

= g on Γ0.
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Proof. The function v := σu clearly is piecewise harmonic in Ω. Its normal derivatives
are continuous across Γi and its jumps are given by

vp(i) − vi = hi on Γi

for i = 1, . . . , N . Therefore applying Green’s integral theorem to v and the fundamen-
tal solution Φ(x, ·) over each of the subdomains Dj and summing up, we find

v(x) =

∫
Γ

h(y)
∂Φ(x, y)

∂ν(y)
ds(y)− w(f, g)(x), x ∈ Ω \ Γ. (2.56)

Letting x tend to Γ0 and observing the jump relations for the double-layer potentials
we obtain the first equation of (2.54). Analogously letting x tend to Γi from inside Di

we obtain the second equation of (2.54).
Conversely, we assume that the functions hj satisfy the integral equations (2.54)

and define the piecewise harmonic function u via (2.2) in all of IR2 \ (Γ ∪ Γ0). Then,
for v := σu the first integral equation of (2.54) implies that for the limit v+ when
approaching Γ0 from outside Ω we have v+ = 0 on Γ0. From the flux condition (1.12)
it can be deduced that v is bounded at infinity. Therefore, from the uniqueness for
the exterior Dirichlet problem it follows that v = 0 in IR2 \ Ω. The jump relations
for single- and double-layer potentials then imply that for the limits when approaching
from inside Ω we have

v− = σ0f and
∂v−
∂ν

= g on Γ0. (2.57)

Furthermore, from the jump relations for double-layer potentials, we deduce

σivp(i) − σp(i)vi = −(σp(i) − σi)

(
[Kh− w] +

1

2
µihi

)
on Γi,

and therefore, in view of the second integral equation of (2.54), it follows that

σivp(i) − σp(i)vi = 0 on Γi. (2.58)

Finally, since the normal derivative of the double-layer potential is continuous across
Γi we have

∂vp(i)
∂ν

− ∂vi
∂ν

= 0 on Γi. (2.59)

Summarizing, (2.57)–(2.59) imply that that u = v/σ fulfills the transmission condi-
tions (2.3) and (2.4) and has boundary values u = f and σ0

∂u
∂ν

= g on Γ0. 2

This system can be used for the solution of the direct problem with given interface
curves Γ and conductivities σ. Then the system is linear with respect to the unknown
functions h and also to the boundary data f and g. On the other hand - and this is our
purpose - it can be used for the solution of the inverse problems, as it can be easily
seen that for multiple boundary data pairs we have
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Corollary 2.5 Assume that (fk, gk), k = 1, . . . ,M , are compatible Cauchy pairs for
the transmission problem. Then solving the inverse transmission problem in the con-
tinuum model with these data is equivalent to solving the system of integral equations

K0hk = w+(fk, gk) on Γ0,

−1

2
µhk +Khk = w(fk, gk) on Γ.

(2.60)

These equations have to be satisfied for k = 1, . . . , L and the unknowns are the inter-
face curves Γ, the conductivity σ (given through µ) and the densities hk, k = 1, . . . ,M .

Now, for the solution of the inverse problem, the system is not linear anymore with
respect to all unknowns. Especially the interfaces Γ enter the system (2.60) through
the double-layer boundary integral operatorsK0 andK in a nonlinear fashion such that
the equations need to be linearized with respect to Γ.

Finally note that due to the lack of a uniqueness result for a finite number of Cauchy
pairs we also do not have unique solvability for the system of integral equations in
Corollary 2.5.

2.3.2 Linearization and iterative solution
We proceed by linearizing the system (2.60) for the unknowns Γ, µ and h where the
linearized system is then solved in an iterative way. The parameterization of Γ is
obtained by patching the parameterizations (2.29) together which gives

Γ := {z(t) : t ∈ [0; 2Nπ[} (2.61)

by setting z(t) = zj(t) for t ∈ [2(j − 1)π; 2jπ[ for j = 1, . . . , N . For ψ := h(z(t)),3

the parameterized versions w̃(f, g, z), K̃0(ψ, z) and K̃(ψ, z) of (2.49), (2.52) and
(2.53) are obtained by using the parameterizations (2.30) for the single-layer and (2.33)
for the double-layer operator.

Now given a current approximation for Γ, σ and hk the parameterized system is
given by

K̃0(ψk, z) = w̃+(fk, gk),

−1

2
µψk + K̃(ψk, z) = w̃(fk, gk),

(2.62)

The linearization with respect to µ and ψ is straightforward. For Γ we have to compute
the Fréchet derivatives of the integral operators w̃, K̃0 and K̃ with respect to z in

3where we reuse the notation of ψ from section 2.2, although it has a different meaning in this
section,
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direction ζ . In [44] it has been shown that the Fréchet derivatives can be obtained by
differentiating their kernels with respect to z. Therefore we have

dw̃(f, g, z; ζ)(t) =
1

2π

2π∫
0

{
[z′0(τ)]

⊥ · ζ(t)
|z(t)− z0(τ)|2

− 2[z′0(τ)]
⊥ · [z(t)− z0(τ)][z(t)− z0(τ)] · ζ(t)

|z(t)− z0(τ)|4

}
f(z0(τ)) dτ

+
1

2π

2Nπ∫
0

[z(t)− z0(τ)] · ζ(t)
|z(t)− z0(τ)|2

g(z0(τ)) |z′0(τ)| dτ, t ∈ [0; 2Nπ[,

dK̃0(ψ, z; ζ)(t) =
1

2π

2Nπ∫
0

{
2[z′(τ)]⊥ · [z(τ)− z0(t)][z0(t)− z(τ)] · ζ(τ)

|z0(t)− z(τ)|4

− [z′(τ)]⊥ · ζ(τ) + [ζ ′(τ)]⊥ · [z(τ)− z0(t)]

|z0(t)− z(τ)|2

}
ψ(τ) dτ, t ∈ [0; 2π[,

and

dK̃(ψ, z; ζ)(t) =
1

2π

2Nπ∫
0

{
2[z′(τ)]⊥ · [z(τ)− z(t)][z(t)− z(τ)] · [ζ(t)− ζ(τ)]

|z(t)− z(τ)|4

− [z′(τ)]⊥ · [ζ(τ)− ζ(t)] + [ζ ′(τ)]⊥ · [z(τ)− z(t)]

|z(t)− z(τ)|2

}
ψ(τ) dτ, t ∈ [0; 2Nπ[.

We note that the kernel of dK̃ is also smooth with the diagonal values given by

− [z′(t)]⊥ ·z′′(t) z′(t) · ζ ′(t)
2π |z′(t)|4

+
[z′(t)]⊥ ·ζ ′′(t) + [ζ ′(t)]⊥ ·z′′(t)

4π |z′(t)|2
.

Now we can write the linearized system, which for a given approximation z, µ and ψk,
needs to be solved for ζ , η and χk, to obtain the updates z+ ζ for the parameterization,
µ + η for the conductivity quotient (from which σ can be computed using (2.50)) and
ψk + χk for the densities.
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K̃0(ψk, z) + dK̃0(ψk, z; ζ) + K̃0(χk, z)

= w̃+(fk, gk),

−1

2
µψk −

1

2
ηψk −

1

2
µχk

+K̃(ψk, z) + dK̃(ψk, z; ζ) + K̃(χk, z)

= w̃(fk, gk) + dw̃(fk, gk, z; ζ).

(2.63)

After having obtained the new approximation, this procedure is iterated in an obvious
way. Also note that on the left-hand side of the resulting system all kernels that occur
are smooth, so that no kernel singularities have to be treated.

2.3.3 Extensions for the complete electrode model
The system (2.60) can also be used to solve the inverse problem for the complete elec-
trode model. Then the Cauchy data f and g also have to be considered as unknowns,
and the system (2.62) must also be linearized with respect to them. Hence (2.63)
becomes

K̃0(ψk, z) + dK̃0(ψk, z; ζ) + K̃0(χk, z)

= w̃+(fk, gk) + w̃+(f̃k, g̃k),

−1

2
µψk −

1

2
ηψk −

1

2
µχk

+K̃(ψk, z) + dK̃(ψk, z; ζ) + K̃(χk, z)

= w̃(fk, gk) + w̃(f̃k, g̃k) + dw̃(fk, gk, z; ζ).

(2.64)

such that now besides the updates ζ , η and χk also the updates f̃k and g̃k for fk and gk
are computed. Furthermore we have to include the CEM boundary conditions (1.20)
and (1.21) into the system which gives as linearized form

fk + z`gk + f̃k + z`g̃k = Uk
` on E` (2.65)

and ∫
E`

gkdS +

∫
E`

g̃kdS = Ik` (2.66)

with given discrete boundary data pairs (Uk, Ik). The third CEM boundary condition
(1.22) provides g = 0 on N , such that when solving the system (2.64)–(2.66) only the
restriction g|∪E`

has to be considered as unknown.
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As for the solution of the direct problem we also have to choose a non-equidistant
discretization to deal with the singularities of g at the edges of the electrodes. So we
have to choose again a substitution function ω : [0; 2π] → [0; 2π] fulfilling (2.45),
(2.46) and (2.48). Also note that now the singular kernel of the single-layer potential
in w is included in the left-hand side of the system, such that the kernel of the complete
system is not smooth anymore. However we will not use a different numerical method
to solve the system.

2.3.4 Regularization of the linearized system
Since the inverse problem is ill-posed, the system of linearized equations (2.63) re-
spectively (2.64) also inherits this property. So in order to restore stability the solution
requires regularization. For this we choose the well-established classical Tikhonov
method which instead of solving an equation Aϕ = b solves the regularized equation

(α.Id+ A∗A)ϕ = A∗b (2.67)

where α is a vector of penalty terms which are usually between 0 and 1. In our case
the notation α.Id means that we take the identity matrix and replace its diagonal with
the values of the vector α. We found out by numerical tests that it is necessary to
add penalty terms on the shape parameterization z and the density functions ψk. The
conductivity quotient µ only appears in the jump 1

2
µψ, so it does not require a penalty

term. The numerical tests also showed that for the solution of (2.64) no penalty term
is required for f and g.

An additional regularization parameter is created through the approximation of the
boundary curves. For further simplicity we assume that the boundary curves Γi are
starlike, that is, we express

zi(t) = ξi + ri(t)(cos t, sin t), t ∈ [0; 2π[, (2.68)

with a 2π periodic C2 function ri :→]0;∞[ and a center point ξi ∈ IR2. For
the numerical computations we approximate the radial functions ri by trigonometric
polynomials

ri(t) ≈
mi∑
k=0

ai,k cos kt+

mi∑
k=1

bi,k sin kt (2.69)

of degree less than or equal to mi ∈ IN. The polynomial degrees mi also need to be
considered as regularization parameters.

In addition, we found it necessary to work with different regularization parameters
on each of the boundary parts Γi, that is, we have 2N Tikhonov parameters for shape
and density. However, we kept the regularization parameter the same for all Cauchy
pairs. So together with the N polynomial degrees this leads to a total number of 3N
regularization parameters.
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As to be expected for that many regularization parameters, the trivial trial and error
selection cannot be employed anymore with a realistic chance for reasonable recon-
structions. In particular, the parameters should not be kept fixed throughout the com-
plete iteration process and should be decreased when the approximate solution gets
closer to the true solution.

This dynamical adaptation of the regularization parameters will be the second task
of our evolutionary algorithm - besides the determination of the number and geometry
of subdomains.



Chapter 3

Two methods for obtaining an initial
guess

We will now shortly describe two grid-based methods which will be used to obtain
an initial guess for the previously described boundary-element method. They do not
require any a-priori information except for the background conductivity σ0, which we
assume to be known.

The factorization method, which will be used for the continuum model, is a non-
iterative method and so it does not need any initial guess at all. For the complete
electrode model we will use a simple finite element method (FEM) taken from Marko
Vauhkonen [51] using some Newton-type iteration for which we can simply take the
homogeneous conductivity σ = σ0 as initial guess.

3.1 The factorization method
Originally the factorization method was introduced for inverse obstacle scattering prob-
lems by Kirsch [33]. It then has been extended to inverse impedance tomography by
Brühl and Hanke [8, 9, 24]. In this section we normalize the background conductivity
to σ0 = 1, which can be done without loss of generality.

3.1.1 Basic idea
As typical for the so-called sampling or probe methods, the main idea of the factoriza-
tion method is to provide an indicator function F : Ω → IR that decides on whether a
point x belongs to the area of background conductivityD0 or not. To describe this indi-
cator function, we denote by Λσ the Neumann-to-Dirichlet operator (as defined by defi-
nition 1.6) for the (unknown) true conductivity σ and by Λ1 the corresponding operator
for constant conductivity equal to one. The operator Λσ − Λ1 : L2(Γ) → L2(Γ) can
be shown to be compact and self-adjoint. Consequently it has a complete orthonormal
system vk, k = 1, . . . ,∞, of eigenfunctions with real eigenvalues λk.

42
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Now we introduce the dipole potential

Dx(ξ) :=
(x− ξ) · d
|x− ξ|2

, ξ 6= x, (3.1)

for a source point x ∈ Ω, an arbitrary direction d and a test function

ηx = Dx|Γ0 − Λ1
∂

∂ν
Dx − c (3.2)

with a constant c such that
∫

Γ0
ηx ds = 0. Then the indicator function of the factoriza-

tion method is given by the series

F (x) :=
∞∑
k=1

< ηx, vk >
2

λk
(3.3)

where < ·, · > denotes the usual L2 inner product on L2(Γ). Provided that all conduc-
tivities σi, i = 1, . . . , N satisfy either σi > 1, i = 1, . . . , N, or σi < 1 for i = 1, . . . , N ,
then as main feature of the factorization method the series in (3.3) converges if and only
if x 6∈ D0 (see [8]).

3.1.2 The factorization method for inner inclusion levels
In its original form presented above, the factorization method only works for one in-
clusion level, as it can only indicate if the conductivity at a given point differs from
the background conductivity or not. However starting from the theory presented in
[20] one can show [21] that basically the same principle can be employed if an inner
subdomain is known.

So we now consider the case of N ≥ 2, p(1) = 0 and p(i) > 0 for i = 2, . . . , N ,
i.e. we only have one inclusion D1 at inclusion level 1 containing at least one other
inclusion inside. This can be done without loss of generality, as the procedure can
be iterated for multiple subdomains at the same inclusion level. After this it can also
be iterated for several inclusion levels, following the basic idea of the layer-stripping
algorithm mentioned in section 1.3. For a given conductivity κ inside D1 (not neces-
sarily equal to the true conductivity σ1) we define the operator Λκ as the NtoD-operator
for conductivity κ inside Ω \ D0 and σ0 = 1 inside D0. If the shape of D1 is exactly
known, we can apply the factorization method again. First using [20] it can be shown
[21]

Theorem 3.1 If the transmission constants a1, . . . , aN all fulfill either ai > 1 or ai < 1
we have:
If σ1 > σ0 the operator Λσ − Λκ is negative definite if and only if κ ≤ σ1. If σ1 < σ0

the operator Λσ − Λκ is positive definite if and only if κ ≥ σ1.
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This implies that given the shape ofD1 we can determine σ1 at any precision by check-
ing the definiteness of Λσ−Λκ by a simple bisection algorithm. Once knowingD1 and
its conductivity we can then apply the factorization method again by using Λσ − Λκ

instead of Λσ − Λ1. Following [21] the dipole function (3.1) has to be replaced by
some function

Dκ
x(ξ) := Dx(ξ) +Kκ

x (ξ) (3.4)

with a function Kκ
x which is harmonic in Ω \ Γ1, continuous over Γ1 and fulfills on Γ1

the transmission condition

σ0

∂Kκ
x,+

∂ν
− κ

∂Kκ
x,−

∂ν
= (κ− σ0)

∂Dx

∂ν
(3.5)

such that the modified dipole function (3.4) fulfills the transmission condition (2.4) on
Γ1. The test function ηκx is then defined as in (3.2) with Dx replaced by Dκ

x and the
series (3.3) by

F κ(x) :=
∞∑
k=1

< ηκx , v
κ
k >

2

λκk
(3.6)

where vκk are the eigenvectors and λκk the eigenvalues of Λσ−Λκ. The series converges
if and only if x 6∈ D0 ∪D1.

3.1.3 Numerical implementation
As already mentioned before, in reality we do not know the full Neumann-to-Dirichlet
map but only a set of M Cauchy pairs (fk, gk). So we have to replace Λσ − Λ1 by its
projection on the finite-dimensional space span{g1, . . . , gM}. We will only describe
the standard factorization method, as the discretization for the inner inclusion levels
is done exactly the same way. If the gk are linearly independent, we then obtain an
M ×M matrix with M eigenvectors v(M)

k and eigenvalues λ(M)
k . The series (3.3) is

replaced by the finite sum

FM(x) :=
M∑
k=1

< η
(M)
x , v

(M)
k >2

λ
(M)
k

(3.7)

by which we now have to decide whether the corresponding infinite series converges
or not. This will be done via a threshold criterion which will be described in chapter 5.

Finally, although there is no theoretical justification for the factorization method
in the case when some of the interior conductivities are larger than σ0 and some of
them are smaller than σ0, we also applied it for this case using some slightly modified
version. So we replaced the eigenvalues λk by their absolute values and instead of (3.3)
we examined

F abs(x) :=
∞∑
k=1

< ηx, vk >
2

|λk|
(3.8)
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and computed its finite approximation F abs
M (x). To check convergence one can always

look at F abs(x) instead of F (x), because in the case of equal contrast all eigenvalues
have the same sign. This implies that F abs(x) = |F (x)|, and the only additional
information F (x) can provide is the sign, which indicates if we have a contrast smaller
or larger than 1. However, in case of different contrasts at one inclusion level the
criterion in theorem 3.1 cannot be applied anymore. So in this case all conductivities
have to be exactly known for the application of the factorization method for inner
inclusion levels.

3.2 A simple Finite Element method
Finite Element methods (FEM) are the most common form of methods used for the
solution of the EIT problem. However, as we only want to use them for an initial
guess for the boundary-element method, we will limit ourselves to a simple Newton-
type method implemented by M. Vauhkonen [51]. But note that for the evolutionary
algorithm presented in the next chapter any finite element method that does not need
a-priori information could be used instead.

For the FEM we start with the weak formulation (1.11) of the EIT problem. For
the complete electrode model we additionally have to define a discrete test function
V ∈ RL. Some computations, which can be found for example in [53], finally lead to
the FEM equation for the complete electrode model∫

D

σ gradu · grad vdx+
L∑
`=1

1

zl

∫
E`

(u− U`)(v − V`)dS =
L∑
`=1

I`V` (3.9)

where u, v ∈ H1(Ω).

3.2.1 Repartition of the domain and basis functions
Now the domain under consideration Ω has to be split into convex polyhedrons ∆i,
i = 1, . . . , Np. They are required to have the property that the intersection of two
different polyhedrons ∆i ∩∆j , i 6= j is either

• the empty set or

• exactly one corner of each polyhedron or

• one complete edge of each polyhedron.

This especially means that every corner of a polyhedron has also to be a corner of
any neighboring polyhedron. ‘Hanging’ vertices are not allowed. Figure 3.1 shows an
example of a valid and a non-valid repartition of domains.
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Figure 3.1: Example for a valid (left) and non-valid (right) FEM repartition. On the
right we have a ‘hanging’ vertex. Taken from [41].

This definition will be especially important for the grid refinement used in the
evolutionary algorithm described in chapter 5. Now we assume the conductivity σ
to be constant on each polyhedron where in this case we take the resistivity ρ := σ−1

instead.
Denoting by Nn the number of nodes in the FEM grid a set of basis functions φi,

i = 1, . . . , Nn is defined such that φi = 1 at node i and 0 at all other nodes. The
potential function u can then be approximated as

u ≈
Nn∑
i=1

αiφi (3.10)

with variable coefficients αi.
Here a set of triangles is chosen as the simplest case in 2D for the polyhedrons,

and for the basis functions the simplest case is to take piecewise linear functions.

3.2.2 Solution of the direct problem via an FEM
For the Newton iteration, which is used to solve the inverse problem, the solution of the
forward problem is also required in each iteration step. So we start with the description
of the forward solver introduced in [51]. The aim is to find the interior potential u and
the voltages U on the electrodes given the currents I and the resistivity ρ = σ−1. The
potential u is approximated as in (3.10). To assure the condition (1.2) the voltage U is
written as

U =
L−1∑
j=1

βjξj (3.11)

where ξ1 := [1,−1, 0, 0, . . . , 0], ξ2 := [1, 0,−1, 0, . . . , 0], . . . are L − 1 linearly in-
dependent vectors in RL and βj the unknown coefficients. Equation (3.9) can then
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be transformed into a linear system for the unknown coefficients α and β which are
written as b := (α, β)T . They are computed as the solution of the linear system

Ab = c (3.12)

where the stiffness matrix A is a block matrix of the form(
B C
CT D

)
.

The elements of these matrices are defined as follows

B(i, j) :=

∫
D

σ gradφi · gradφjdx+
L∑
`=1

1

z`

∫
E`

φiφjdS,

i, j = 1, . . . Nn

C(i, j) := −( 1

z1

∫
E1

φidS −
1

zj+1

∫
Ej+1

φj+1ds),
i = 1, . . . , Nn, j = 1, . . . , L− 1

D(i, j) :=
L∑
`=1

1

z`

∫
E`

(ξi)`(ξj)`dS

i, j = 1, . . . , L− 1

and the data vector c ∈ RNn+L−1 is given as

0
...
0∑L

`=1 I`(ξ1)`
...∑L

`=1 I`(ξL−1)`


Note that for most i, j we have φiφj = 0 so that also B(i, j) = 0.

3.2.3 Solution of the inverse problem by a Newton-type iteration
The Newton method is a well-known classical method for the solution of operator
equations (see for example [16]). The solution to the nonlinear operator equation

F (x) = 0
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is found by iteratively solving the linearized equation

F ′(xn)rn = −F (xn) (3.13)

to find the update rn to improve on a current approximation xn. Starting with some
first guess x0 we define xn+1 = xn + rn.

In our case we define the function as F (ρ) := Uapprox(ρ)− Umeas, i.e. we try to
adapt the approximated resistivity ρ such that for fixed I the resulting voltagesUapprox
by solving the direct EIT problem correspond to the measured voltages Umeas. This
means that the Jacobian matrix J := F ′(ρ(n)) has to be computed. It is a (KL ×Np)
matrix that describes the derivative of the voltages U with respect to the conductivity
inside each element

J =



∂U1
1

∂ρ1
. . .

∂U1
1

∂ρNp

∂U1
2

∂ρ1
. . .

∂U1
2

∂ρNp

... . . . ...
∂UK

1

∂ρ1
. . .

∂UK
1

∂ρNp

... . . . ...
∂UK

L

∂ρ1
. . .

∂UK
L

∂ρNp


In [56] it has been shown that the derivative of the stiffness matrix with respect to the
conductivity ρk inside element ∆k is equal to

∂A−1c

∂ρk
= −A−1 ∂A

∂ρk
A−1c = A−1 ∂A

∂ρk
b (3.14)

where ∂A
∂ρk

can be computed as

∂A(i, j)

∂ρk
=

1

ρ2
k

∫
∆k

gradφi · gradφj. (3.15)

From this representation the derivatives ∂β
∂ρ

can be extracted, and from them the deriva-
tives with respect to the voltages - and so the Jacobian - can be computed.

Also in this case the solution of the equation needs to be regularized. This time this
is done by some kind of generalized Tikhonov regularization (see [52])

ρ(n+1) := ρn + (JTJ + LT2L2α)−1(JTF (ρn)− αLT2L2ρ
(n)) (3.16)

where L2 is a regularization matrix depending on the structure of the FEM mesh.
In our case we choose a quite strong regularization parameter α, as we only need

a crude initial guess about the conductivity. Note that the computation of ρ via (3.16)
can lead to ρ(n) < 0 at some elements. As by definition of the conductivity this is not
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possible, in this case we set ρ(n) = ρ(n−1) at the corresponding elements - unlike in the
original method.

The computations are stopped and considered as successful if after less than a pre-
defined number µ̃ of iterations the change ‖ρ(n)−ρ(n−1)‖ between two iteration results
is smaller than a given ε. Otherwise, if after µ̃ iterations we still have ‖ρ(n)−ρ(n−1)‖ ≥
ε, we conclude that the method does not converge for the chosen regularization para-
meter α and restart the method with another α greater than the previous one.



Chapter 4

Basic concepts of evolutionary
algorithms

Evolutionary algorithms have been developed in the area of computational optimiza-
tion. Their main idea is to employ concepts of biological evolution like recombination,
mutation and selection to achieve the approximate solution of optimization problems.
As the main difference to conventional optimization methods they use stochastic com-
ponents for iteration, and they perform a parallel search on a whole population of
solutions.

Different main categories of evolutionary algorithms (EA) have been developed
independently from each other. The most common form of EA are genetic algorithms
(GA) developed by J. H. Holland [27], followed by evolutionary strategies (ES) by I.
Rechenberg [46] and H.-P. Schwefel [47] and evolutionary programming (EP) by Fo-
gel, Owens and Walsh [18]. Also genetic programming (GP) by Koza [35] is consid-
ered as a separate concept, even if it was developed on the basis of GA. The concepts of
these approaches differ by the representation of the solutions, notations and the focus
of each technique. From a mathematical viewpoint, they all employ the same princi-
ples and ideas - the differences are mainly on the level of implementation and software
technology. For more details about the differences between the different categories see
for example [43].

4.1 Principles and notation
As evolutionary algorithms are inspired by natural principles, the notations which are
used are taken from their biological equivalent. First an individual I is a represen-
tation of a possible or approximate solution to the given problem. An individual can
be seen as an ordered finite set of variables ςi which - depending on the category of
the EA and the problem under consideration - might be restricted to certain values.
These values can be for example natural numbers or even binary values, as it is the
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case in genetic algorithms. A set of individuals is then called a population and will
be denoted by P . In contrast to usual iterative schemes, evolutionary algorithms do
not only consider one approximation at each time but a whole population of several
approximations/individuals.

To be able to compare individuals we have to define a fitness functional, which
assigns to each individual I a positive real numberF(I), such that it turns a population
into a well-ordered set. This functional represents the criterion with respect to which
the problem under consideration is then minimized by the evolutionary algorithm. The
value of the fitness functional for a given individual I is also called fitness value of
that individual.

Evolutionary algorithms are iterative methods. After the creation of some initial
population the same steps are repeated until an individual satisfies a given criterion. In
each iteration the individuals of an existing population are used to generate individuals
of a new population. The existing population is then called parents, the resulting popu-
lation children. We will denote by P the size of the parent population and byQ the size
of the children population. The outcome of an iteration step is called generation, and
the iteration step is also called generation step. A generation steps typically consists
of recombination, mutation and selection. Figure 4.1 illustrates the main principles of
an EA.

Figure 4.1: Main steps of an evolutionary algorithm.
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4.2 Main parts of one generation step
The aim of each evolutionary algorithm is to find an individual with minimal fitness
value. So in each generation step it is the aim to create new individuals and change
them in a way that their fitness values are smaller than the fitness values of the last
generation. In the following we will summarize the realization of the three main steps
in each generation step: Recombination, mutation and selection.

Note that depending on the category of the EA and the problem under considera-
tion the focus can rather lie on the recombination or on the mutation where even one
of them can be completely omitted. This was especially the case in the first genetic
algorithm, which omitted the mutation, and the first evolutionary strategy, which
omitted the recombination.

4.2.1 Recombination
The creation of a new individual from two or more existing individuals by combination
of their properties is called recombination. If an new individual is created as a copy
of another individual this is called replication or cloning. In nature recombination is
realized by the process where a child inherits properties of both of its parents.

To create a new individual each parameter ς̃i of the new individual is set as a convex
combination of the parameters ςij , j = 1, . . . , P , of the parent population. This means
that we randomly choose weights 0 ≤ ϑij ≤ 1 such that

P∑
j=1

ϑij = 1 (4.1)

and we set the parameters of the new individual as

ς̃i :=
P∑
j=1

ϑijςij. (4.2)

Usually one does not take all parent individuals into account, so there are usually some
j for which ϑij = 0. Especially in discrete recombination there is only one index k
for which ϑik = 1, and consequently we have ϑij = 0 for all other j 6= k. Discrete
recombination often occurs if we do not have real or complex values and is especially
used for binary representations.

Another frequently used special case is the so-called line recombination, which
means that the weights ϑij are the same for all parameters ς̃i. Not covered by the above
definition is the recombination via crossover, which is used in genetic algorithms but
which will not be treated here (for more details see [27]).
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4.2.2 Mutation
In its original form mutation always meant a stochastical change of the individual’s
properties - analogously to natural mutation - and is normally executed after the cre-
ation of a new individual by recombination/replication. If the variable ςi of the indi-
vidual is real or complex, it is usually multiplied by a random real number r close to
1, or a quantity % is added to it, whose absolute value is relatively small compared to
ςi. In the discrete case some random natural number is added or subtracted, or in the
binary case the value of ςi is inverted with a certain probability.

However, with this definition mutation is totally random and blind, as it does not
take at all into account the properties of the problem under consideration. So the
definition of mutation has been extended (see for example [40]) to include also some
deterministic components, which are now adapted to the problem under consideration.
So in a more general (and less biological) sense, mutation is understood as a change of
the individual’s properties involving a stochastical component at some point. This also
means that unlike in the original definition of mutation the individual can be changed
considerably, and the mutation can lead to completely new individuals. As it will be
described in the next chapter, this type of mutation will also be used in our evolutionary
algorithm.

4.2.3 Selection
The choice of the individuals for the next generation is called selection. In biology se-
lection occurs if there are more individuals than resources which can aliment them. In
this case only those individuals which are the best adapted to the environment survive.
In EA this corresponds to those individuals with the lowest fitness value. Obviously
this only makes sense if during one generation step more individuals than the number
of those taken for the next generation have been created.

The most simple case of selection is the deterministic rank-based selection, which
will also be used in our algorithm. It simply consists of ordering the individuals of the
parent and children population with respect to their fitness values and then taking the
best P of them. Depending on the question whether the parents can be re-selected, we
call a (P,Q) selection a selection where only the children can be selected for the next
generation, a (P,Q+ 1) selection if also the best parent individual can be selected and
a (P,Q+P ) selection if all parents can be selected. The set of individuals from which
the next parent population is selected is called selection set.

Which selection set is chosen depends on the type of problem to be solved. In a
purely explorative search one should choose the (P,Q) selection to avoid getting stuck
in a local optimum too soon. On the other hand the (P,Q + P ) selection is used if
we want to avoid the approximation to get worse or if we want to store intermediate
results. The (P,Q + 1) selection is a compromise between them, which however
already assures that the best approximation ever found is always kept. In our case
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we will also use this kind of selection set, although with some small modifications (see
chapter 5).

Beyond this simple selection model there exist more sophisticated models, which
often include also stochastical components. Especially selection can also be postponed
to the recombination process of the next generation. This means that first all new
individuals (and - depending on the selection set - also some or all of the individuals of
the last generation) are taken for the next generation, but then the weights ϑij for the
recombination are not equally drawn but in favor of those individuals with a low fitness
value. This corresponds more to the biological equivalent of fitness being defined as
the capability to produce offspring. As these selection models will not be used here,
we refer for example to [43] for more information.

4.3 Further development of evolutionary algorithms
The considerable increase of computational power in recent years made it possible to
extend the classical concept of one population with a once given definition of recom-
bination, mutation and selection. So several extensional concepts for EA have been
developed, which will be shortly mentioned here.

One of these new concepts is the concept of multiple populations which use selec-
tion schemes and/or fitness functionals which are different from each other. In biology
this corresponds to different environment conditions which require other qualities from
an individual. This might be necessary if for example one has several optimization cri-
teria which are equally important. In this case, for each criterion a separate population
is created, where the fitness functional of each population is defined according to this
criterion. Another reason for using this concept can be that one wishes to consider only
individuals which fulfill certain restrictions and let them develop independently for a
certain time.

Obviously multiple populations only make sense if also a certain exchange between
them is allowed, at least under certain conditions. Corresponding to biological terms
this exchange is then called migration.

Another important concept is the so-called meta evolution. This means that the
parameters of the EA itself - like size of the population, definition of the selection
or the parameter setup - are submitted to an optimization process, which can itself be
again an evolutionary algorithm. The idea has already been pronounced by Rechenberg
in 1973 (see [46]) as a learning population but could not be reasonably realized at that
time due to limited computer power. Note that if the method for the Meta Evolution
is an EA we also have to consider several populations which are then considered as
individuals of the Meta-EA.



Chapter 5

The concept of our evolutionary
algorithm

We now describe the concept of our particular evolutionary algorithm, which combines
the different methods presented in the chapters 2 and 3. The boundary-element method
from chapter 2 is used as our main method, and the grid-based methods from chapter 3
are used to provide a-priori information about the number, approximate positions and
geometry of the unknown subdomains. Note that the basic ideas of our algorithm also
have been used in [15] for the case of the inverse scattering problem.

We will start with the definition of an individual and the fitness functional. Then
we proceed with the conversion of the results of the grid-based method into a boundary
representation and with the description of recombination, mutation and selection.

To the ’classical’ evolutionary algorithm two additional features have been added,
which will be described in section 5.4. The chapter will conclude in section 5.5 with a
flow diagram to illustrate the concept of our evolutionary algorithm.

5.1 Definition of an individual and of the fitness func-
tional

5.1.1 Definition of an individual
In our case an individual I represents a conductive medium, characterized by its ge-
ometry and piecewise constant conductivity. It also contains information about the
(discretized) potential functions and the regularization parameters. Within a popula-
tion containing P individuals we denote by Np the number of subdomains within an
individual Ip, p = 1, . . . , P . This number can be different for each individual.

Then for i = 1, . . . , Np each subdomain Dip is characterized through the
parameters

Dip (αr)ip (αψ)ip mip ξip rip σip ψip,1, . . . , ψip,M
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Here the Tikhonov parameter (αr)ip for the radial update, the Tikhonov parameter
(αψ)ip for the density update and the polynomial degree mip constitute the regulariza-
tion parameters associated with the subdomain Dip. The other parameters describe the
domain itself: ξip is the center and rip is the radial function for the exterior interface
curve Γip as described through its 2mip + 1 Fourier coefficients according to (2.69),
σip is the constant conductivity inside the subdomain, and ψip,1, . . . , ψip,M are the (dis-
cretized) density functions on Γip. In the case of the complete electrode model the
individual also contains the continuous Dirichlet and Neumann boundary data fp,k and
gp,k for k = 1, . . . ,M .

5.1.2 Definition of the fitness functional
For the computation of the fitness functional we solve the direct transmission problem
for the configuration that each individual represents, that is, for the corresponding in-
terface curves and conductivities. Then we look at the norm of the difference between
the computed solution and the given data. This norm will be denoted by ‖ · ‖, since
due to the fact that we work with discretized data there is flexibility in the choice of a
particular norm. Therefore for our particular choice we refer to chapter 6.

In the continuum case we consider the transmission problem with Neumann
boundary condition g, and with our direct solver we obtain for an individual I the
corresponding Dirichlet data fI(g). In the CEM case we analogously consider the
direct transmission problem with input data I , and we obtain the corresponding
voltages UI(I). Here, in a slight abuse of notation, we use the same symbols f, U
to denote the given input data and the result of the computation of the direct problem,
which depends on the input data g, I and the configuration the individual I represents.

Then we define the partial fitness functional as

Fk̃(I) := ‖fI(gk̃)− fk̃‖

respectively
Fk̃(I) := ‖UI(I k̃)− U k̃‖ (5.1)

with randomly selected k̃, 1 ≤ k̃ ≤M and the complete fitness functional as

F(I) :=
M∑
k=1

‖fI(gk)− fk‖

respectively

F(I) :=
M∑
k=1

‖UI(Ik)− Uk‖. (5.2)

Using the partial fitness functional we require less time to compute it, and we introduce
a certain stochastical component into the evaluation of the individual. The complete
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fitness functional instead is a more accurate measure, but if we have many data sets,
we require much more time to compute it. For exact data this measure usually seems
good enough to decide on the quality of the approximations, but also for noisy data it
is used, as no other information about the true solution is known.

We note that as an alternative one could also reverse the roles of the boundary
conditions and consider the transmission problem with Dirichlet boundary condition
with data f on Γ0 (respectively the voltages U on the electrodes), compute the Neu-
mann data gI(f) (respectively the current II(U)) and use the norm of the difference
gI(f)− g (respectively II(U)− I) as fitness functional.

5.2 Creation of the initial population
As we do not assume to be given any a-priori information, we first have to apply
one of the grid-based methods (factorization or FEM) from chapter 3. Usually we
obtain quite a heterogeneous set of values from it, and so we have several possibilities
to convert them into a domain representation. Therefore we start our evolutionary
algorithm with the creation of several subdomain sets. They are then transformed into
those individuals which will constitute our starting population.

In this section we will speak of configurations when we explicitly mean a set of
subdomains together with their conductivities, but without Tikhonov parameters and
density functions. We call an inhomogeneity each subset of Ω where the conduc-
tivity differs from the background conductivity σ0. Especially each subdomain Dip,
i = 1, . . . , Np, within an individual Ip is an inhomogeneity.

5.2.1 Selecting the points
For the factorization method we know that for those gridpoints x ∈ Ω, for which
the series F abs(x) defined through (3.8) converges, we have a contrast between the
conductivity at that point and the background conductivity. This is equivalent to x
being part of an inhomogeneity. The sign of the series F (x) defined by (3.3) indicates if
we have a positive (ai > 1) or a negative (ai < 1) contrast. Therefore when considering
the finite approximation F abs

M (x) we know that the probability that x is part of an
inhomogeneity increases if the value of F abs

M (x) decreases.
For the finite element method for each element ∆j we are directly given the differ-

ence between the initial conductivity σ(old)(j) and the conductivity σ(new)(j) obtained
via the Newton-type iteration described in section 3.2. However, to assure that changes
with positive and negative contrast are equally evaluated, we rather look at the loga-
rithmic change

LC(j) := ln
σ(new)(j)

σ(old)(j)
(5.3)
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instead. It is always well-defined, as we only have positive conductivities. Obviously
the probability that ∆j is part of an inhomogeneity increases if also |LC(j)| increases.
Furthermore the sign of LC(j) indicates if we have a positive or a negative contrast.

Starting from the above considerations we define a sequence of positive thresholds
{θq}, which we require to be strictly increasing in the case of the factorization method
and to be strictly decreasing in the case of the FEM. Then for each threshold θq we
collect all those points x satisfying

F abs
M (x) ≤ θq (5.4)

respectively all those elements ∆j satisfying

|LC(j)| ≥ θq. (5.5)

If for a predefined natural number S we now have a set of at least S connected points
(elements) with the same contrast, we consider this set as a subdomain and store it.
The number S should be chosen in such a way that we avoid getting small artifacts.

As thresholds we take the values of F abs
L (x) respectively |LC(j)| themselves in

the way that we order them by increasing (decreasing) values. This way we assure to
obtain a different set of points for each threshold and to cover all possibilities.

5.2.2 Converting the point sets into subdomains
From the points we collected for the different thresholds we now have to create the
individuals for our starting population. First we have to find a parameterization ac-
cording to (2.69) for the interface curves of each subdomain. Then we have to assign
to each subdomain a constant conductivity. Finally the missing parameters - density
functions and Tikhonov parameters - have to be set to some initial values to complete
the obtained configurations into individuals.

5.2.2.1 Creating an interface curve from a point set

In the case of the factorization method we determine for each set of connected grid-
points the boundary of its convex hull, and in the FEM case we determine the bound-
ary of the convex hull of the nodes of each set of connected elements. Denoting by
{x̃1, . . . , x̃n} ⊂ R2 the set of points we obtained this way, we now want to con-
vert it into an interface curve Γ of the form (2.68). Therefore we have to deter-
mine its center point ξ and, for a given polynomial degree m, the 2m + 1 coefficients
a0, . . . , am, b1, . . . , bm of the trigonometric radial function r according to (2.69).

The center point ξ is set as the mean of all points, that is

ξ :=
1

n

n∑
i=1

x̃i.
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Now each point x̃i can be represented in polar coordinates (r̃i, θi) with respect to ξ as
center. From this we can derive a system of equations by requiring that for each point
we have

r(θi)(cos θi, sin θi) = x̃i − ξ, i = 1, . . . , n. (5.6)

Since in general we have 2n > 2m+1, this system can then be solved in a least-squares
sense for the unknown coefficients a0, . . . , am, b1, . . . , bm of the radial function r.

5.2.2.2 Treating curve intersections

Now it can happen that some of the created curves intersect with others or also with
themselves. As this constitutes a non-valid configuration we have to create rules how
to treat this situation. These rules are also applied in other situations. Therefore we
will speak of ’individuals’ instead of ’configurations’.

First, to check for intersections we do the following: For two different curves
Γx,Γy we denote their discretization points by x1, . . . , xn and y1, . . . , yn. We say
that these curves intersect if there exist some indices i, j ∈ {1, . . . , n} such that the
lines from xi to xi+1 and from yj to yj+1 intersect (where we have set xn+1 := x1 and
yn+1 := y1). They intersect if and only if there exists a point z and two constants h1, h2

fulfilling 0 ≤ h1, h2 ≤ 1 such that z can be written as

z = xi + h1(xi+1 − xi) = yj + h2(yj+1 − yj). (5.7)

Therefore, we check for this property for all i, j = 1, . . . , n. To detect self-intersections
of a curve Γ discretized as x1, . . . , xn we proceed in a similar way. Here we check
for intersections between the lines from xi to xi+1 and the lines from xj to xj+1 for
i = 1, . . . , n and j = i+ 1, . . . , n.

In case of a self-intersection, the polynomial degree of the concerned curve is re-
duced, and a new curve is computed by a least-squares approximation of the system
(5.6). This is repeated until there are no more self-intersections - which is certainly the
case for m = 0.

For the intersection of different subdomains the idea is to shrink a subdomain by
multiplying its radial function by a predefined number 0 < β < 1. This is performed
for all concerned subdomains one by one, starting with the innermost inclusion level.
If afterwards there are still intersections, this procedure is repeated until there are no
intersections anymore or a predefined maximum number of shrinks is reached. If then
some subdomains still intersect, they are deleted from the individual.

If at the end of this process the individual does not contain any more subdomains,
it is deleted from the population.
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5.2.2.3 Setting the conductivity

Next we have to assign a conductivity to each created subdomain. In the case of the
FEM we are already given some a-priori information about the conductivity. For each
subdomain we compute the area of all constituting elements as

A(Γ∗) :=
∑
i∈Γ∗

|∆i|

and we set the initial conductivity as

σ∗(Γ∗) :=
1

A
∑
i∈Γ∗

σ(i)|∆i|.

In the case of the factorization method we define an ’initial‘ conductivity σ∗ > 1,
and if the sign of FL over the points constituting the subdomain is negative we assign
the conductivity σ∗ to the subdomain, otherwise we assign 1/σ∗.

5.2.2.4 Selecting and completing the best configurations

Usually by the procedure described before we obtain more than P different configura-
tions. Therefore to obtain an initial population consisting of P individuals we have to
perform a selection. This is done by computing the complete fitness functional (5.2)
for each configuration and then taking those P configurations with the lowest values.

Those configurations are then completed into individuals. For this we predefine
initial Tikhonov parameters (α∗ψ, α

∗
r) and assign them to each subdomain. They should

be rather strong, as they only constitute an initial guess, which will be weakened during
mutation. For the densities ψ in the continuum case we solve the system (2.62) for each
boundary data pair (fk, gk) for the unknown ψ and with fixed Γ, σ. In that case we have
an overdetermined system, so that we have to solve it in a least-squares sense. In the
CEM case we extend (2.62) with the CEM boundary conditions (1.20)–(1.22). This
way we obtain for each boundary data pair (Uk, Ik) an overdetermined system for the
unknowns ψ, f, g, which is also solved in a least-squares sense.

5.2.3 Global subdomain indices
We will see in subsection 5.3.1 that for the recombination we need to keep track
on the evolvement of the subdomains during the evolutionary algorithm. To do this
we introduce a set of global subdomain indices j = 1, . . . , N . For each configura-
tion/individual Iq we assign one of these indices to each of the subdomains it con-
tains, where we require that each index is assigned at most once within one configu-
ration/individual. If index j has been assigned to subdomain Diq we say (by using a
term of object-oriented programming) that subdomain Diq is an instance of the global
subdomain j. In this context we also define for each configuration/individual Iq a list
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of boolean variables includeq, where includeq(j) indicates if an instance of the global
subdomain j is contained in Iq or not.

We further define two lists of sets Split and Merge. Split(j) contains the indices
of those subdomains which have contributed to the creation of subdomain j. This is
equivalent to the possibility that an instance of subdomain j can be split into instances
of those subdomains. Merge(j) on the other hand indicates into which larger instances
of subdomains we can merge instances of the subdomain j.

If we have multiple inclusion levels we also define the lists predecessor and
successor. Recalling the definition of the predecessor relation from chapter 2 we say
that for a global subdomain index j the exterior curve of an instance of j is an interior
curve of an instance from predecessor(j). On the other hand, successor(j) contains
those indices j̃ satisfying j ∈ predecessor(j̃).

When creating the starting population we only have one inclusion level. Therefore
predecessor and successor still remain empty at the beginning of our evolutionary
algorithm. They are initialized when we look for subdomains at inner inclusion levels
as described in subsection 5.4.2.

5.2.3.1 Initialization of Split and Merge

When creating the starting population we build up Split and Merge simultaneously
with the initial configurations. If for the rest of this subsection we speak of ’points’ we
always mean ’gridpoints’ in the continuum and ’elements’ in the CEM case. For each
threshold θq (q ≥ 2) we check for each set Siq of connected points that we created if it
contains points that already have been chosen for the previous threshold θq−1.

• If Siq only contains points which have not been chosen for the previous con-
figuration, the resulting subdomain is considered as an instance of a new global
subdomain, which has no splitting or merging relation with the existing ones.
Therefore we increase the number of global subdomain indices N by one, set
includeq(N) to 1 for the actual configuration and Split(N) and Merge(N) to
the empty set.

• If Siq contains some points which already have been chosen for the previous
configuration, but all those points have been part of only one point set Sι,q−1,
we consider the subdomain resulting from Siq as an instance of the same global
subdomain as the subdomain created from Sι,q−1. Therefore no new global sub-
domain index is created. Denoting by j̃ the global subdomain index assigned to
the subdomain created from Sι,q−1, we set includeq(j̃) to 1.

• If Siq contains points which already have been chosen before and there have been
several point sets Sι1,q−1, . . . ,Sιl,q−1 containing some of those points, the subdo-
main resulting from Siq is considered as a merge of those subdomains resulting
from Sι1,q−1, . . . ,Sιl,q−1. Then, like in the first case, we increase N by one,
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set includeq(N) to 1 for the actual configuration and Merge(N) to the empty
set. Additionally, denoting by j1, . . . , jl the global subdomain indices associated
with the subdomains created from Sι1,q−1, . . . ,Sιl,q−1 we then set

Split(N) = {j1, . . . , jl} ∪

(
l⋃

i=1

Split(ji)

)
and for i = 1, . . . , l

Merge(ji) = Merge(ji) ∪ {N}.

For the first threshold θ1, obviously only the first case is possible.

5.2.3.2 Maximum number of subdomains

We further define for each global subdomain index j the maximum number of splits

M̃(j) := # {l | l ∈ Split(j) ∧ Split(l) = ∅} (5.8)

Then for a predefined maximum number of subdomains N̂ we require that each
configuration Iq satisfies

Ñq :=

Nq∑
i=1

max
(
M̃(global(i, q)), 1

)
≤ N̂ , (5.9)

where global(i, q) denotes the global subdomain index associated with the subdomain
Diq. The reason why we require (5.9) is that we want to assure that no possible re-
combination (see subsection 5.3.1) can lead to an individual containing more than N̂
subdomains.

When creating the starting population it can be verified that when passing from
threshold θq to θq+1 with the rules defined above we always have Ñq+1 ≥ Ñq. If for
θq+1 there is a set of connected points Si,q+1 which does not contain any points chosen
for θq (case 1), then Ñq+1 increases with respect to Ñq. If all sets of connected points
for θq+1 satisfy the cases 2 or 3, we have Ñq+1 = Ñq. Therefore, if for a given threshold
θq we have Ñq = N̂ , from there on we only select those point sets which contain some
points already chosen before. Point sets satisfying case 1 are ignored.

5.2.4 An example
We will now illustrate the previously described procedure by a simplified example.
Here, we use the finite-element method for the initial guess. The true configuration
consists of three subdomains and is shown on the left-hand side of figure 5.1. On the
right-hand side of figure 5.1 we see the result of the finite-element method.
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Figure 5.1: True configuration and result of the FEM.

Now we will show illustrations of all those configurations, for which the domain
constellation has changed with respect to the previous one. We will also present the
merging list as far as it has been built until then and the inclusion list for each of
the presented configurations. The minimum number S of connected points has been
set to 1 in this case to obtain better illustrations. The curve around the subdomains
corresponds to the curve obtained by the least-squares approximation of (5.6) for an
initial polynomial degree m∗ = 2. The color of the selected elements indicates the
constant conductivity assigned to that subdomain. The maximum number of subdo-
mains N̂ has been set to 4 in this case.
The first two domain configurations look as follows:

Figure 5.2: Domain configurations 1 and 2

We see that for configuration 2 the upper point set contains elements which have al-
ready been chosen for configuration 1. There, they are all contained in one point set.
Therefore case 2 of the rules from subsection 5.2.3 is applied, and the upper subdomain
of configuration 2 is considered as an instance of the same global subdomain 1 as the
subdomain from configuration 1. So the inclusion lists of the two configurations are

Subdomain 1
include1 1

Subdomain 1 2
include2 1 1
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Split and Merge are still empty at that moment. The next two domain configurations
are the following:

Figure 5.3: Domain configurations 3 and 4

Now the subdomain included in configuration 3 contains elements which are contained
in two different point sets of configuration 2. Therefore case 3 of the rules from 5.2.3
is applied. We create a new global subdomain index 3, and instances of that index are
considered as a merging of instances of 1 and 2. Note that this also implies M̃(3) = 2,
and therefore we have Ñ3 = 2. So now Split and Merge look as follows:

Subdomain 1 2 3
Split − − 1, 2
Merge 3 3 −

The inclusion list for configuration 3 is given as:

Subdomain 1 2 3
include3 0 0 1

For configuration 4 we have found one point set satisfying case 2 for the global subdo-
main number 3 and two point sets satisfying case 1. So they are considered as instances
of the new global subdomains 4 and 5. The inclusion list for configuration 4 is then

Subdomain 1 2 3 4 5
include4 0 0 1 1 1

Split and Merge did not receive any new entries, so that now they look like

Subdomain 1 2 3 4 5
Split − − 1, 2 − −
Merge 3 3 − − −

However, due to the fact that we have found two point sets satisfying case 1, we now
have Ñ4 = N̂ = 4. So, from now on we only consider those point sets satisfying the
cases 2 or 3.
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When the threshold is further decreased, we obtain the following configurations:

Figure 5.4: Domain configurations 5 and 6

After the creation of configuration 5 Split and Merge look as follows:

Subdomain 1 2 3 4 5 6
Split − − 1, 2 − − 1, 2, 3, 4
Merge 3, 6 3, 6 6 6 − −

After the creation of configuration 6 we have:

Subdomain 1 2 3 4 5 6 7
Split − − 1, 2 − − 1, 2, 3, 4 1, 2, 3, 4, 5, 6
Merge 3, 6, 7 3, 6, 7 6, 7 6, 7 7 7 −

The inclusion lists for configurations 5 and 6 are

Subdomain 1 2 3 4 5 6
include5 0 0 0 0 1 1

Subdomain 1 2 3 4 5 6 7
include6 0 0 0 0 0 0 1

Finally, when the search for new configurations is finished, we fill up the inclusion
lists of all configurations with zeros, such that all lists then contain the same number
of entries.

5.3 One generation step
We will now describe the realization of one generation step, consisting of recombina-
tion, selection and mutation.

5.3.1 Recombination
Each generation step starts with the creation of Q new individuals by recombination.
For each new individual we randomly draw with equal probability two parent indivi-
duals (which are also allowed to be twice the same individual). In this section they
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will be denoted by I1, I2. Then the inclusion list of the new individual I3 is created by
discrete recombination (see subsection 4.2.1) of the two parent individuals’ inclusion
lists, where the weights are drawn separately for each entry. This means that if for a
global index j an instance of j is contained in both parent individuals, also the new
individual has to contain an instance of j. If only one of the parent individuals con-
tains an instance of j, I3 contains an instance of j only with a 50% chance. After its
creation the inclusion list might have to be modified, because due the geometry of the
configurations we have to require that

• For each subdomain at an inner inclusion level contained in I3 also an instance
of one of its predecessors has to be contained in I3.

• An instance of j cannot be contained in an individual together with an instance
of any of those indices contained in Split(j) or Merge(j).

These rules will be illustrated by an example in 5.3.1.1.
For those subdomains whose global numbers are contained in the inclusion list of

both parent individuals, the parameters of the new subdomains are computed by a line
recombination (see subsection 4.2.1) of the parameters of the parents’ subdomains.
The other subdomains are copied from that individual that contains them. In the case
that some of the subdomains we have finally chosen for I3 intersect, the procedure
described in 5.2.2.2 is applied again.

5.3.1.1 An example for the recombination of the inclusion lists

We will now illustrate the rules for the creation of the inclusion lists via an example.
The two parent individuals are illustrated in figure 5.5 together with the global numbers
of their subdomains.

Figure 5.5: Example for two individuals
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The global lists predecessor, successor, Split and Merge are the following:

Subdomain 1 2 3 4 5 6 7
predecessor − − − − − 2, 3 1, 3
successor 7 6 6, 7 − − − −
Split − − 1, 2 − − − −
Merge 3 3 − − − − −

and the inclusion lists for the two parent individuals are

Subdomain 1 2 3 4 5 6 7
include1 0 0 1 1 0 1 0
include2 1 1 0 0 1 1 1

Then for the recombination of those inclusion lists we have the following conditions:

• An instance of subdomain 6 is included in both parent individuals, so also the
new individual has to contain an instance of 6. This instance is set as a convex
combination of the instances contained in I1 and I2.

• As subdomain 6 is at an inner inclusion level, either the instance of subdomain
3 from I1 or the instance of subdomain 2 from I2 has to be contained in I3.

• If the instance of subdomain 3 has been chosen, the instances of the subdomains
1 and 2 from I2 cannot be contained in I3, as Split(3) = {1, 2}. Otherwise, if
the instance of subdomain 2 has been chosen, I3 cannot contain the instance of
subdomain 3.

• The instance of subdomain 7 from I2 is chosen with a 50% chance. If it is
included in I3 also an instance of one of its predecessors has to be included. If
previously the instance of subdomain 2 has been chosen as predecessor of 6, we
now have to include the instance of subdomain 1 from I2 as instances of 3 are
excluded. Otherwise, if the instance of subdomain 3 from I2 has been chosen, it
is automatically set as the predecessor of the instance of subdomain 7 from I2.

• Finally the instance of 4 from I1 and the instance of 5 from I2 are both chosen
with a probability of 50%, independently from anything else.

5.3.2 Mutation
After their creation the Q children individuals are submitted to mutation. There, each
individual is mainly exposed to two actions:

• First the regularization parameters are submitted to a ’classical’ mutation: With
a predefined fixed probability p it is decided for each parameter if it is changed
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or kept the same. The Tikhonov parameters that are selected for being changed
are multiplied by a random number between previously defined positive values
smin and smax. The trigonometric polynomial degrees to be changed are ran-
domly either increased or decreased by 1. If they are increased, the new radial
coefficients am+1 and bm+1 are set to zero. If they are decreased, the new ra-
dial function r and the new center ξ are determined by a least-squares fit of the
system (5.6).

• Then, secondly, we execute a fixed number It of iteration steps of the Tikhonov
solution of (2.63) (respectively (2.64)–(2.66)) with the new parameters.

This way we hope to find not only a better approximation to the solution of the inverse
problem, but also regularization parameters which are better adapted to the actual con-
figuration.

After applying the boundary-element method we might obtain again some non-
valid configurations. In these cases we proceed as follows

• Negative conductivities are set back to their value before the execution of the
boundary-element method.

• Intersections between subdomains at different inclusion levels are treated the
same way as described in 5.2.2.2.

• In case of intersections of different subdomains at the same inclusion level we
merge the concerned subdomains together as it will be described in 5.3.2.1.

• In case of self-intersections we split the concerned subdomains as described in
5.3.2.2.

If a splitting or merging operation has been successfully performed, we execute again
It iteration steps of the boundary-element method with the modified configuration. If
we encounter intersections after this, we treat them as described in 5.2.2.2. However,
subdomains which still intersect after the maximum number of shrinks are not deleted
from the individual, but they are set back to their values before the mutation. The same
is done for their regularization parameters, as they obviously have not been strong
enough to lead to a valid configuration.

Finally, if the domain configuration has been changed due to a splitting or merging
operation, the global merging list is adapted as described in 5.3.2.3.

5.3.2.1 Merging of subdomains

Denoting by Γ1, . . . ,Γs the boundary curves of those subdomains which intersect with
each other, we first determine the exterior hull of their union ∪Γj . For this we compute
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for each discretization point x ∈ ∪Γj the potential

dj(x) :=

∫
Γj

∂Φ(x, y)

∂ν(y)
ds(y), j = 1, . . . , s (5.10)

Denoting by i(x) the index such that Γi(x) is the curve containing x and using the
properties of the double-layer potential we then look at the sign of dj(x). If for all
j 6= i(x) we have dj(x) ≥ 0, we add x to the exterior hull of the union.

Then, by taking points of the exterior hull as input set, we determine the center
point ξ and the radial coefficients a0, . . . , am, b1, . . . , bm for the curve of the merged
subdomain by solving (5.6) in a least-squares sense. The polynomial degree m is
set to the maximum encountered over all concerned subdomains. The remaining
parameters of the new subdomain are set as a convex combination of the parameters
of the composing subdomains, where the weights are chosen proportional to the area
of each subdomain. This way we guarantee that large subdomains are taken more into
account than small subdomains.

5.3.2.2 Splitting of a subdomain

For a subdomainD whose curve Γ contains self-intersections we denote by {x1, . . . , xn}
the set of discretization points for Γ. We further denote by z1, . . . , zs̃ the intersection
points of Γ and by (̃ik, j̃k), k = 1, . . . , s̃ those indices for which the lines from xĩk
to xĩk+1 and from xj̃k to xj̃k+1 intersect at zk according to (5.7). Then we order these
indices as i1, . . . , i2s̃ such that ij+1 > ij for j = 1, . . . , 2s̃− 1.

For the splitting procedure the set of discretization points {x1, . . . , xn} is first di-
vided into parts Ξ1, . . . ,Ξ2s̃, where Ξj := {xij+1, . . . , xij+1

} for j = 1, . . . , 2s̃− 1 and
Ξ2s̃ := {xi2s̃+1, . . . , xn, x1, . . . , xi1}. Then we patch some of these parts together in
the way that for each intersection point zk we connect the part ending at xĩk with the
part starting at xj̃k+1 and the part ending at xj̃k with the part starting at xĩk+1. Note
that there are always cases where these parts coincide. This way we always obtain a
set of s := s̃+ 1 closed curves Γ̃1, . . . , Γ̃s. For each of those curves containing at least
2 points we then determine a center point ξ and a radial function r via (5.6) to obtain a
new curve which can be written in the form (2.68). The polynomial degree m for r is
the same as for the original subdomain D. In the case that Γ̃j contains less than 2m+1
points, the polynomial degree is reduced for Γ̃j .

Now, denoting by Γj , j = 1, . . . , s the curves obtained via the newly computed
radial function and by {xj,1, . . . , xj,n} the discretization points for Γj , we compute for
each xj,k the potential

di(xj,k) :=

∫
Γi

∂Φ(x, y)

∂ν(y)
ds(y), i = 1, . . . , s , i 6= j. (5.11)
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If for all i 6= j and for all k = 1, . . . , n we have di(xj,k) ≥ 0, we know that Γj does
not lie inside another newly created curve Γi or intersects with it. In that case Γj is
completed into a subdomain Dj by assigning the remaining parameters of the original
subdomain D to it. Otherwise the curve Γj is deleted.

Figure 5.6 shows an example of a subdomain D, whose curve Γ contains s̃ = 2
intersection points. Therefore Γ is first split into 2s̃ = 4 parts Ξ1, . . . ,Ξ4, which are
then patched together into s = 3 closed curves Γ̃1, . . . , Γ̃3. Next, these curves are
transformed into starlike curves Γ1, . . . ,Γ3, which can be written in the form (2.68).
Finally one of those curves is deleted as it lies inside another curve.

Figure 5.6: Example for splitting

5.3.2.3 Modifications of the splitting and merging list

If a splitting or merging operation has been successfully performed, we also have to
adapt the global lists Split and Merge in an adequate way.

In case of a merging operation we denote by j1, . . . , js the global subdomain in-
dices of those subdomains which have contributed to the merging of the new subdo-
main. We look for an index j̃ satisfying {j1, . . . , js} ⊂ Split(j̃). If there exists such an
index we consider the new subdomain as an instance of the global subdomain j̃, and
we are finished.

Otherwise we have to create a new global subdomain index ς for the merged sub-
domain, and we have to set Split(ς) = {j1, . . . , js} and Merge(ji) = Merge(ji)∪{ς}
for i = 1, . . . , s. Then we also have to look for indices ĵ satisfying Split(ĵ) ⊂
{j1, . . . , js}. Subdomains which are instances of those global indices also can be
merged into an instance of ς . Therefore for each of those ĵ we set Split(ς) = Split(ς)∪
{ĵ} and Merge(ĵ) = Merge(ĵ) ∪ {ς}. Finally, if we have inner inclusion levels,
we set successor(ς) =

⋃s
k=1 successor(jk) and then for all j̃ ∈ successor(ς) we set

predecessor(j̃) = predecessor(j̃) ∪ {ς}.

In case of a splitting operation we now denote by s the number of subdomains
D1, . . . , Ds which finally have been created by the splitting procedure. We further
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denote by j the global subdomain index of the subdomain which has been splitted and
set t := M̃(j) with the maximum number of splits M̃(j) as defined by (5.8). Then
we are given t indices jk, k = 1, . . . , t satisfying jk ∈ Split(j) ∧ Split(jk) = ∅.
These are the global subdomain indices which can be assigned to the new subdomains
D1, . . . , Ds

To decide which global subdomain index is assigned to which new subdomain
we do the following: For each global index jk, k = 1, . . . , t we collect from the
individuals of the parent population all subdomains which are instances of jk . Then we
determine ξ̃jk as the convex combination of the center points ξ of all those subdomains
with equally chosen weights. We denote by ξi, i = 1, . . . , s the center points of the
subdomains D1, . . . , Ds created by the splitting procedure.

• If s ≤ t we start with the new subdomain D1. We look for an index k1 satisfying
|ξ1 − ξ̃jk1

| ≤ |ξ1 − ξ̃jk | for all k = 1, . . . , t. We then set the global subdomain
index of D1 to jk1 . Then we continue with D2 by looking for k2 satisfying
|ξ2 − ξ̃jk2

| ≤ |ξ2 − ξ̃jk | for all k = 1, . . . , t, k 6= k1, and so on. This way we
assign a different global subdomain index to all new subdomains D1, . . . , Ds.
The lists Split and Merge are not changed in this case.

• If s > t we start with index j1 and look for an index k̂1 satisfying |ξk̂1 − ξ̃j1| ≤
|ξk̂ − ξ̃j1| for all k̂ = 1, . . . , s. We then assign the global subdomain index j1 to
Dk̂1

. Then we continue with j2 by looking for k̂2 satisfying |ξk̂2−ξ̃j2| ≤ |ξk̂−ξ̃j2|
for all k̂ = 1, . . . , s, k̂ 6= k̂1, and so on. At the end of this procedure we are left
with s−t subdomainsDk̂ to which no global subdomain index has been assigned
yet. Therefore we have to create s − t new indices ς1, . . . , ςs−t and assign them
to the remaining subdomains. Then we set Split(j) = Split(j) ∪ {ς1, . . . , ςs−t}
and for l = 1, . . . , s− t we set Merge(ςl) = {j}.

If we have multiple inclusion levels, we now denote by j1, . . . , js those global indices
assigned toD1, . . . , Ds. We then look for those indices ĵ satisfying ĵ ∈ successor(j) ∧
ĵ 6∈

⋃s
k=1 successor(jk). To those indices we have to assign a predecessor from

j1, . . . , js. For this we collect again all instances of ĵ from the parent population
and determine ξ̃ĵ as the convex combination of the center points ξ of all those sub-
domains with equally chosen weights. Then, for k = 1, . . . , s, if the potential dk(ξ̃ĵ)
as defined by (5.11) is positive, we set predecessor(ĵ) = predecessor(ĵ) ∪ {jk} and
successor(jk) = successor(jk) ∪ {ĵ}.

5.3.3 Selection
Basically we use the deterministic rank-based selection, where the selection set is a
(P,Q + 1) selection. First we compute the partial fitness functional (5.1) for each
individual, where the index k̃ is chosen randomly, such that it is the same for all indi-
viduals. Then the best P individuals with respect to that fitness functional are chosen.
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However we always want to keep the best individual found so far in the population.
So we then compute the full fitness functional for the best newly selected individual
and compare it to the full fitness functional of the best parent individual. If the latter
one is better, we keep the best old individual as best individual in the population and
take only the best P − 1 new individuals.

5.4 Further extensions
The particular properties of the problem under consideration made it necessary to
modify the ‘classical’ scheme of an evolutionary algorithm as it has been described
in chapter 4. This was done by adding two additional features to our program: An
intermediate step between recombination and mutation in the case of different domain
constellations and the interruption of the iterative EA scheme for the creation of a new
population. Furthermore to reduce the computational effort we tried to use only a part
of the boundary data pairs for the solution of the inverse problem. These features will
be described now.

5.4.1 An intermediate step
For the mutation of each individual the whole boundary-element method has to be
executed several times, which is quite a time-consuming process. In addition, if we
have multiple domain constellations, the number of possible parameter combinations
is quite large, because we have several domain constellations as well as different regu-
larization parameters.

So to reduce the computational costs, we introduce some predefined Q̃ satisfying
P < Q̃ < Q. For theQ children individuals created via recombination we only execute
one step of the boundary-element method. Then we create an intermediate population
by selecting the best Q̃ children individuals with respect to the partial fitness func-
tional. We call this pre-selection. We then perform a full mutation step only on those
Q̃ individuals of the intermediate population.

Another problem we faced during the numerical tests was that sometimes the algo-
rithm found an artifact which was then part of all individuals in the population. As in
the recombination all subdomains included in both parent individuals are always taken,
these artifacts could not be deleted anymore. For that reason we delete with a given
probability p̃ from each of the Q̃ selected individuals of the intermediate population a
randomly selected subdomain which does not have any successor subdomains. This
is consciously done after the pre-selection, as now the individuals modified this way
are submitted to a full mutation step. So, if the deleted subdomain was really an ar-
tifact, there is some chance that the individual without the artifact is better than those
including the artifact.

If all individuals contain the same domain constellation, i.e. the inclusion list is
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the same for all of them, we create only Q̃ individuals via recombination and omit the
intermediate step. Then, also no subdomain is randomly deleted before the mutation.

5.4.2 Creating a new population for an inner inclusion level
If there are multiple inclusion levels the information about the subdomains’ geometry
cannot be extracted in one single step. If the grid-based method indicates a contrast at
a given point/element, it is not clear at which inclusion level the corresponding sub-
domain is located. So for multiple inclusion levels it is not enough to convert the grid
representation into a domain representation only once and then run the evolutionary
algorithm.

Instead we have to proceed layerwise, starting with the outermost inclusion level,
and then interrupt the EA at some point and newly apply the grid-based method to find
the subdomains at the next inner inclusion level. Additionally even if the number and
approximate location of all subdomains is a-priori known, our numerical experiments
showed that it is quite advantageous to proceed layerwise and to determine first the
shape and conductivity of the outermost layer’s subdomains.

First, we have to define at which point the EA is interrupted. For this, we define
a number Cmax ∈ N and count the number Cn of generations, for which the best
individual has not changed and all individuals of the parent population have contained
the same domain constellation (i.e. includep is the same for all p = 1, . . . , P ). If
this number has reached Cmax, we interrupt the EA, as then obviously the algorithm is
stuck in a local minimum for the actual domain configuration. So at that point we are
looking for new subdomains at the next inclusion level. We recall that N1 denotes the
number of subdomains in the best individual.

So we convert the configuration that the best individual represents into a grid-based
representation. For this we define for each subdomain Di, i = 0, . . . , N1, some kind
of level set function `i : Ω → {0; 1}, which is 1 for those points lying inside Di and
0 otherwise. Obviously for all x ∈ Ω we have `i(x)`j(x) = 0 for i 6= j. In the case
of the factorization method these level set functions are computed for all gridpoints x,
and in the case of the FEM they are computed for the center of each element ∆. In
both cases this computation is done by using the potential dj defined through (5.10).
Then we assign the conductivity

N1∑
i=0

σi`i(x) (5.12)

to each point or element, respectively.

Next, we newly execute the respective grid-based method from chapter 3. The
factorization method for inner inclusion levels is described in subsection 3.1.2. Before
executing the finite-element method we perform a grid refinement following the idea
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of adaptive multigrid methods mentioned in section 1.3. If for a predefined number ℵ
and for i = 1, . . . , N1 there are at most ℵ elements for which we have `i = 1, then we
divide each of those elements into four as illustrated by the lower left triangle on the
right-hand side of figure 5.7. To maintain the property of the FEM mesh that ’hanging’
vertices are not allowed we also have to divide the neighboring elements into two as
illustrated by the upper left triangle on the right-hand side of figure 5.7.

Figure 5.7: Refinement of the FEM partition The right lower triangle is part of the area
to be refined. To assure the property that no hanging vertices are allowed the upper left
triangle also has to be divided in two.

Then the Newton-type FEM method is executed in the same way as before with
the initial conductivity σ(old) set to (5.12) instead of σ0. Also the logarithmic change
(5.3) is now computed with respect to (5.12), such that now inner inclusions can be
detected.

The sequence of thresholds θ is chosen in the same way as before. For each
threshold θq we collect all those points x satisfying

(F κ
M)abs(x) ≤ θq

respectively all those elements ∆j satisfying

|LC(j)| ≥ θq.

Then for each subdomain index i = 0, . . . , Nk each set of at least S connected points
(elements) with the same contrast and with `i(x) = 1 is considered as a subdomain and
stored. The predecessor of the new subdomains created from these points is then set
to i, such that this way we can create subdomains at inner inclusion levels. As for the
creation of our starting population we then select the best P new domain constellations
with respect to the full fitness functional and complete them into individuals.

When we create new subdomains at inner inclusion levels, for Split and Merge
the same rules as for the creation of the starting population are applied. For the lists
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predecessor and successor we denote by jnew the global subdomain index of a newly
created subdomain and by j the global subdomain index of its predecessor subdomain.
Then we set predecessor(jnew) = {j} and successor(j) = successor(j) ∪ {jnew}.
Note that no other individual can contain an instance of some j̃ ∈ Split(j)∪Merge(j),
as by assumption when executing the above procedure all individuals of the parent
individual contain the same domain constellation. Therefore we do not have to make
other modifications to predecessor and successor.

Finally the newly created (parent) population (containing the new subdomains)
has to be merged together with the old (parent) population (not containing the new
subdomains). This is done by a modified version of the intermediate step described
in 5.4.1: Instead of creating Q2 individuals via recombination we create the first 2P
individuals of the intermediate population as a replication of the individuals contained
in the old and new parent population. The remaining Q2 − 2P individuals are then
created by recombination, where the parent individuals can be drawn from both parent
populations. The rest of the generation step is then performed in the usual way, such
that we end up with one population containing P individuals. So we can continue the
EA in the same way as before. Note that by proceeding this way it is possible that
none of the newly found subdomains are finally taken. This is done deliberately for the
case that the true configuration does not contain any more subdomains than we already
have found before the execution of the procedure described in this section.

5.4.3 Partial data sets
For the complete electrode model the use of the substitution function ω leads to the
need of a high discretization of the exterior boundary Γ0. Therefore also the computa-
tional costs for the iterative solution of (2.64)–(2.66) increase considerably. To reduce
them we try not to use all available boundary data pairs (Uk, Ik) for (2.64)–(2.66), but
only a randomly selected part of them. To compare the performance of this modifica-
tion with respect to using all data sets, we also try the same in the continuum case.

Following the considerations made in subsection 2.1.1 we admit that for each un-
known subdomain D we need at least one boundary data pair for the reconstruction
of its shape and another one to reconstruct its conductivity. Therefore if an individual
containsN subdomains we set the minimum number of data sets to 2N . The maximum
number is set to 4N .

When working with partial boundary data the previously described parts of the EA
are extended in the following way:

• In the creation of our starting population 5.2 we assign to each individual a ran-
domly created set of 2N indices for the boundary data pairs.

• For the recombination 5.3.1 we create for each parent individual a binary list
indicating for each boundary data index if it is included in the index list of that
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individual. For each new individual we create this list by discrete recombination,
analogously to the subdomain inclusion lists. As long as the number of indices
in the new list is not between 2N and 4N this recombination is repeated with
newly chosen weights.

• In the first part of the mutation 5.3.2 we add with probability p a randomly se-
lected index to the list, if it contains less than 4N indices. Equivalently a ran-
domly chosen index is removed from the list with probability p, if it contains
more than 2N indices.

In the second part of the mutation we then execute our boundary-element method
on the system consisting only of the linearized equations (2.64) respectively
(2.64)–(2.66) for those boundary data pairs, whose indices are contained in the
list. Analogously to the choice of the regularization parameters we hope that
this way we find not only better approximations to the given problem, but also
those boundary data pairs which contribute the most to the solution of the inverse
problem.

• Finally, if the number of subdomains within an individual changes - due to a
splitting or merging operation or by adding new subdomains by the procedure
described in 5.4.2 - we randomly add indices to the list or remove indices from
it, until it contains between 2N and 4N indices.

5.5 A flow diagram of the algorithm
To summarize this chapter we will finally illustrate our evolutionary algorithm by a
flow diagram to illustrate how the different components described previously are re-
lated to each other. This flow diagram of the ’final’ algorithm looks as follows:
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Figure 5.8: Flow diagram of the algorithm

• We start with the grid-based method (factorization method or FEM) and create
an initial population for the EA as described in section 5.2.

• Then the main generation step consisting of recombination, mutation and selec-
tion described in section 5.3 is iteratively executed. If the population contains
several domain constellations, we create Q children individuals via recombina-
tion and reduce the size of the children population to Q̃ by the intermediate step
described in 5.4.1. Otherwise we only create Q̃ children individuals via recom-
bination.

• If the best individual did not change during Cmax generations, we interrupt the
EA and look for new subdomains as described in subsection 5.4.2.

• The newly created population is then merged together with the old population.
The EA is then continued with the population we obtained via this merging pro-
cedure.

Concerning the stopping criterion, for exact data we execute a predefined number of
generation steps of our algorithm. For noisy data we interrupt the EA as soon as the
configuration which the best individual represents can only be distinguished from the
true configuration at a precision which is below the given noise level. For details we
refer to chapter 6.



Chapter 6

Numerical examples

In this last chapter we will now present various results of our algorithm for different
configurations to illustrate its capabilities, but also its limits. We implemented the
algorithm using MATLAB 7, and it was executed on Linux PCs with a 1.8 Ghz AMD
Opteron CPU and 3 GB memory.

We will start with the description of the setup and with the presentation of the ex-
amples before we then present the results obtained for synthetic data in the continuum
and the complete electrode model. In the last section we will describe the additional
difficulties that occur when dealing with real data before finally presenting the results
for a simple example with real data.

6.1 Parameter and example choice
As there are many parameters of the problem under consideration and also of the evo-
lutionary algorithm we cannot make enough tests to vary all of them. Instead we have
to choose which parameters of the EA should be kept fixed, and we have to choose
particular examples.

6.1.1 Parameters of the evolutionary algorithm
We start with a list of the parameters we used during our evolutionary algorithm. They
were used during all runs if not otherwise stated. We always set the exterior curve Γ0

as the unit circle. For exact data we ran the algorithm in all cases over 200 generations
and stored the result after each 10 generations.

78
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The following parameters apply for both the continuum and the complete electrode
model:

Parameter Symbol Value
background conductivity σ0 1

discretization points for inner curves
direct problem 128

inverse problem 32
minimum number of connected points

for domain conversion S 5

maximum number of subdomains N̂ 6
initial polynomial degree m∗ 2

maximum polynomial degree 5
initial Tikhonov parameter for ψ α∗ψ 0.01

initial Tikhonov parameter for r α∗r 1
number of parent individuals P 4

number of children individuals Q 40

size intermediate population Q̃ 12
probability of change in mutation p 0.4

interval for multiplication of Tikhonov
parameters for mutation [smin; smax] [0.1; 0.9]

number of iterations in mutation It 20
shrink factor in the intersection case β 0.9

maximum number of shrinks per subdomain 5
probability of random subdomain removal

in the intermediate step p̂ 0.4
number of generations before a new
application of the grid-based method Cmax 5

The following parameters only apply for the continuum model:

Parameter Symbol Value
discretization points on Γ0

direct problem 128
inverse problem 32

number of boundary data pairs M 16
gridpoints for factorization method 40× 40
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The following parameters only apply for the complete electrode model:

Parameter Symbol Value
number of electrodes L 16

discretization points per electrode
direct problem 40

inverse problem exact data 10
inverse problem noisy data 5

contact impedance z 0.005
relative length of an electrode 50%

initial regularization parameter for FEM α 0.001
maximum iterations for FEM µ̂ 30

number of layers in the initial FEM mesh 4
maximum change between two FEM iterations

to interrupt FEM ε 10−5

maximum number of elements for mesh refinement ℵ 40

As we will see in subsection 6.1.3 for the CEM the number of (maximum) boundary
data pairs is automatically determined by the number of electrodes.

6.1.2 Fitness functional and substitution function
The norms of the difference for the fitness functionals (5.1) and (5.2) are computed
pointwise. We denote by n the number of discretization points on Γ0 and by xj the
j-th discretization point of Γ0. We further denote by fI,k(xj) the value of fI(gk) at the
point xj and by (UI)

k
` the value of UI(Ik) at the `-th electrode. So we have for the

partial fitness functional

Fk̃(I) := ‖fI(gk̃)− fk̃‖1 :=
n∑
j=1

|fI,k̃(xj)− fk̃(xj)|

respectively

Fk̃(I) := ‖UI(I k̃)− U k̃‖1 :=
L∑
`=1

|(UI)k̃` − U k̃
` | (6.1)

with randomly selected k̃, 1 ≤ k̃ ≤M , and for the complete fitness functional

F(I) :=
M∑
i=1

‖fI(gi)− fi‖1 :=
M∑
i=1

n∑
j=1

|fI,i(xj)− fi(xj)|

respectively

F(I) :=
M∑
i=1

‖UI(I i)− U i‖1 :=
M∑
i=1

L∑
`=1

|(UI)i` − U i
` |. (6.2)
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We furthermore define the relative distinguishability G(I) of an individual as

G(I) :=
F(I)∑M
i=1 ‖fi‖1

(6.3)

respectively

G(I) :=
F(I)∑M
i=1 ‖U i‖1

. (6.4)

It indicates at which precision the input data has to be given to distinguish between
the approximation that the individual represents and the true configuration. For noisy
data this means that an approximation whose relative distinguishability is lower than
the noise level cannot be distinguished from the true configuration. This fact will be
used for the stopping criterion of our evolutionary algorithm in the case of noisy data.
For further description we refer to the subsections 6.2.4 and 6.3.2.

For the choice of the substitution function defined through (2.45)-(2.46) to treat the
singularities occurring in the complete electrode model we define by t` the parameter
such that the `-th electrode starts at z0(t`). We also define

$`(t) := 2π
t− t`
|E`|

for t ∈ E`. Then for the direct problem we choose the function

ω(t) =

{
t` + |E`| $`(t)

3

$`(t)3+(2π−$`(t))3
if z0(t) ∈ E`

t if z0(t) ∈ N
(6.5)

and for the inverse problem

ω(t) =

{
t− |E`|

2π
sin($`(t)) if z0(t) ∈ E`
t if z0(t) ∈ N

(6.6)

which both fulfill the condition (2.48).

6.1.3 Adjacent and trigonometric current patterns
As input current patterns we take trigonometric current patterns for the continuum case
and trigonometric and adjacent current patterns for the CEM case.

In [10] it has been shown that trigonometric current patterns are optimal for the
distinction of a circular inhomogeneity which lies at the center of D. Although it has
not been shown that they are also the best current patterns for general conductivity
distributions, we will use them as input current for the synthetic data.

In the continuum case they are given by

g2n−1(θ) = cos(nθ)
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and
g2n(θ) = sin(nθ) (6.7)

for n = 1, . . . ,M/2, and in the CEM case they are given by

I2n−1
` = cos(n

2π`

L
)

and
I2n
` = sin(n

2π`

L
) (6.8)

for n = 1, . . . , L/2. We note that IL = −IL−1 so we only have L − 1 linearly
independent current patterns and omit the last one.

However in practice the question which input current is used depends rather on
practical assumptions. For that reason very often adjacent current patterns are used
as physically they can be produced quite easily. This is also the case for the example
we considered for real data, and so we tried this kind of current patterns also for our
synthetic examples in the CEM case. For the adjacent patterns current is applied to
two neighboring electrodes such that for n = 1, . . . , L− 1 we have

In` =


1 ` = n
−1 ` = n+ 1
0 otherwise

(6.9)

and ILL = 1, IL1 = −1 for the L-th current pattern. So in this case we have M = L
different current patterns.

Intuitively one can also argue in favor of the adjacent patterns that if the inhomo-
geneity lies near the boundary, one should rather take current patterns, which are large
at the part of the boundary near the inhomogeneity and small on those parts which are
further away.

6.1.4 Presentation of the examples for the synthetic data
Now we present the configurations we used as examples. As the focus does not lie on
the reconstruction of different shapes but on different geometries and conductivities,
we limit ourselves in all examples to bean-shaped subdomains. Their shape is given
by the parameterization

z(t) = C
0.5 + 0.4 cos t+ 0.1 sin 2t

1 + 0.7 cos t
(cos t, sin t), t ∈ [0; 2π],

with a (varying) scaling factor C. They are non-convex but - as numerical tests showed-
can already be quite well approximated by a trigonometric polynomial of degree 4,
such that our choice of a maximum polynomial degree of 5 is justified. The capability
of the algorithm to reconstruct different shapes was already illustrated in the initial
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paper [39] for the Dirichlet case. Our numerical tests showed similar results for the
transmission case, which however will not be presented here.

Concerning the geometries we consciously also chose some more complicated
examples to look for the limits of the presented algorithm. The following examples
have been chosen:

Examples 1 and 2

σ1 = 6 σ1 = 2.5, σ2 = 3.6

We start with the simple example of one subdomain in the middle of D. Here we
do not expect any difficulties of the algorithm to find the correct configuration.

As a second example we choose two subdomains with equal contrast at the same
inclusion level. Also here we do not expect serious difficulties.

Examples 3 and 4

σ1 = 2.5, σ2 = 0.6 σ1 = 4, σ2 = 2, σ3 = 2.5

Then the conductivity of the second subdomain is changed from 3.6 to 0.6 such
that we now have two subdomains with a different contrast.

As our last example with one inclusion level we choose three subdomains.
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Examples 5 and 6

σ1 = 2.5, σ2 = 6 σ1 = 2.5, σ2 = 1

We then proceed with the examples with more than one inclusion level. We start
with the case of one larger subdomain containing a smaller one where the contrast
between the conductivities is positive on both interface curves.

Next we keep the interface curves and change the conductivity of the inner sub-
domain such that we now have a different contrast on the inner interface curve. We
also tested this example with some σ2 < σ0 = 1 but in these cases not even the outer
subdomain could be reconstructed correctly. So σ2 = 1 is the lowest value we were
able to choose.

Examples 7 and 8

σ1 = 2.5, σ2 = 6, σ3 = 4 σ1 = 2.5, σ2 = 6, σ3 = 3.6

Then we took example 5 again and added a second subdomain inside. Hence the task
is to distinguish two inclusions at the second inclusion level.

Finally we choose two subdomains on the first inclusion level where a third subdo-
main is contained in one of them.
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We also tested the algorithm for one example with three inclusion levels, but as the
relative distinguishability of the innermost subdomain was too small we were not able
to locate it, even with exact data.

6.2 Results for the continuum model
We start with the presentation of the results for the continuum model. Besides using
the algorithm in the form described in chapter 5 we also made some runs with modi-
fied versions to test some features of the algorithm. So for exact data we also tested the
performance of the splitting feature by starting with one subdomain in the middle as
initial guess instead of using the factorization method. For noisy data we ran the algo-
rithm 6 times for each example with and without the right domain configurations given
beforehand. In all cases we ran the algorithm once for all configurations using the
complete boundary data set and once we ran it using only a part of them as described
in subsection 5.4.3. However we will not show the plots of all runs in this chapter.

We further measured the computing time for example 1 (containing one subdo-
main) and example 4 (containing 3 subdomains). This was done for one iteration step
of the boundary-element method (including the creation of the system matrix) and for
one whole generation step with Q̃ = 12 children individuals. There, as most time-
consuming operations, we executed for each individual It = 20 iteration steps of the
BEM within the mutation, and we computed one partial fitness functional for the se-
lection.

For example 1 the computing time for one iteration step was about 0.4 seconds
when using all boundary data sets and about 0.2 seconds using only a part of them. For
example 4 we needed about 4 seconds using all data sets and 0.3 seconds using partial
data sets.

For one generation step the algorithm needed about 85 seconds for example 1 using
all data sets, but only about 9 seconds using partial data sets. For example 3 we even
had a more considerable speedup: The algorithm needed about 15 minutes using all
data sets and only about 80 seconds using partial data sets.

6.2.1 One inclusion level
For each of the four examples with one inclusion level we ran the algorithm as de-
scribed in chapter 5 using the factorization method, once with the complete boundary
data set and once with only a partial data set. The random number generator was set to
the same value at the beginning of the evolutionary algorithm in both cases.

For each figure the result for the first case will be shown on the left and the result
for the second case on the right. The solid blue lines indicate the interface curves of
the true configuration, and the dotted red lines indicate the approximation found by the
algorithm.
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Example 1:

All boundary data Partial boundary data

σ1 = 6.00 (6) σ1 = 6.00 (6)

Here the approximated configuration was exactly the same for both runs and practically
corresponds to the true configuration.

Example 2:

All boundary data Partial boundary data

σ1 = 2.50 (2.5) σ1 = 2.50 (2.5)
σ2 = 3.69 (3.6) σ2 = 3.67 (3.6)

Also in this case the exact shape has been practically found but there have been small
errors in the conductivity of the second subdomain.
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Example 3:

All boundary data Partial boundary data

σ1 = 2.42 (2.5) σ1 = 2.37 (2.5)
σ2 = 0.60 (0.6) σ2 = 0.60 (0.6)

Here the shape has not been exactly found. However the relative distinguishability is
only 2.25 · 10−4 for the left solution and 1.44 · 10−4 for the right solution.

Example 4:

All boundary data Partial boundary data

σ1 = 3.99 (4) σ1 = 3.99 (4)
σ2 = 2.10 (2) σ2 = 2.10 (2)
σ3 = 2.50 (2.5) σ3 = 2.50 (2.5)

Here the algorithm has found two of the three subdomains almost perfectly, but ob-
viously it had some problems with the shape of the smallest subdomain. The relative
distinguishability between the approximated and the true configuration is only 1.2·10−4

for both cases.
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6.2.2 Results without using the factorization method
We also tested the performance of the splitting feature to find out if the subdomains
can be found without using the factorization method for the initial guess. For this we
always started with a circle of radius 0.5 centered at the origin with initial conductivity
σ∗ = 2. As we did not use the factorization method, the algorithm was not interrupted
after Cmax generations, and we did not try to find inner inclusions. For that reason we
only ran the algorithm this way for the examples having only one inclusion level, i.e
the examples 1-4. Also here we ran the algorithm with the complete boundary data set
as well as with partial data sets.

For the examples 1, 2 and 4 the algorithm was able to find the right number of
subdomains, and the results looked similar to those presented previously. For that
reason we do not show the plots here. The configuration from example 3, however,
could not be found due to the different contrast of the two subdomains.

6.2.3 Multiple inclusion levels
When we tried to apply the algorithm as described in chapter 5 to the examples with
more than one inclusion level, it turned out that unfortunately the factorization method
did not work when the shape of the outer inclusion was not exactly known. So to
be able to solve these examples we have to provide some a-priori information to the
algorithm in another way. This was done in two different ways:

• We fixed the shape of the outer subdomain beforehand, approximated its conduc-
tivity by the bisection algorithm according to theorem 3.1 and then applied the
factorization method as described in subsection 3.1.2. Then the evolutionary al-
gorithm was applied to the population created this way without being interrupted
again. The shape of the outer subdomain remained fixed, but its conductivity was
allowed to vary.

• We predefined the location of all subdomains beforehand. For this at the begin-
ning we created for each original subdomain a circle with radius 0.1 centered at
the same place as the original subdomain. Its conductivity was set to σ∗ = 2 or
1/σ∗ = 0.5, depending on the contrast of the original subdomain.

However, when starting the algorithm we only created circles for the subdomains
at the outermost inclusion level. Then the algorithm was run until we had Cmax

generations without a change of the best individual. After that, instead of ap-
plying the factorization method, we inserted circles for the subdomains at the
next inclusion level into each individual and continued the algorithm with the
modified population. Here, unlike for the first method, the shape of all sub-
domains was allowed to vary over the whole run. However, in this case we
deactivated the splitting and merging feature.
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For the sake of completeness the second method was also applied to the examples 1-4
but did not produce any results which differed considerably from those presented in
6.2.1 and 6.2.2.

For the examples 5-8 we will plot on the left-hand side of each figure the result
obtained for the a-priori given shape of the outer subdomain (which will be called ’a-
priori 1’) and on the right sides the results for the a-priori given subdomain locations
(’a-priori 2’). They were obtained using the partial boundary data sets, but using the
complete boundary data sets was leading to similar results.

Example 5:

a-priori 1 a-priori 2

σ1 = 2.50 (2.5) σ1 = 2.50 (2.5)
σ2 = 5.98 (6) σ2 = 5.93 (6)

Here the shape of the inner subdomain has been exactly found, when the curve of the
outer subdomain was a-priori known and the factorization method was used to locate
the inner inclusion. When the outer subdomain was not fixed beforehand, we had to
increase the maximum polynomial degree for the outer subdomain to 8 to obtain the
result shown on the right.

Example 6:

For example 6 the conductivity was fixed beforehand, as theorem 3.1 does not apply
in the case of a contrast change. However it was allowed to vary afterwards during the
execution of the generation steps.
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a-priori 1 a-priori 2

σ1 = 2.50 (2.5) σ1 = 2.50 (2.5)
σ2 = 0.98 (1) σ2 = 0.93 (1)

Also here the location and then the shape of the inner subdomain was found exactly
when the outer subdomain was a-priori known, but some small errors occurred if this
was not the case. This time the approximation also did not improve when we increased
the maximum polynomial degree for the outer subdomain as in example 5. The relative
distinguishability for the configuration on the right-hand side is 2.25 · 10−4.

Example 7:

a-priori 1 a-priori 2

σ1 = 2.50 (2.5) σ1 = 2.45 (2.5)
σ2 = 6.05 (6) σ2 = 6.09 (6)
σ3 = 4.12 (4) σ3 = 4.93 (4)

For this example the second inner inclusion could not even be found when the outer
subdomain was a-priori known, and the result looked even worse when the shape of
the outer subdomain was also unknown. However the relative distinguishability to the
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true solution is only 1.6 · 10−4 for both solutions. So this example illustrates very well
the ill-posedness of the given problem.

Example 8:

a-priori 1 a-priori 2

σ1 = 2.50 (2.5) σ1 = 2.51 (2.5)
σ2 = 3.60 (3.6) σ2 = 3.60 (3.6)
σ3 = 6.13 (6) σ3 = 6.31 (6)

Finally for the last example no great difficulties occurred for exact data. The difficulties
for this example rather lie in the case of noisy data as we will see in the next section.

6.2.4 Noisy data
To simulate noisy data we added randomly created noise to the values of the Dirichlet
data f to obtain the noisy data f δ := f + δ. It was created such that it was equally
distributed and that for a given noise level δ̂ we have for the 2 norm

||f δ − f ||
||f ||

≤ δ̂ (6.10)

As the factorization method turned out to be very sensitive to noise and did not work
for most noisy cases, we tested the algorithm with a-priori given positions of the sub-
domains as in the second method of section 6.2.3. For the examples 2 and 4 we also
tested the algorithm with one a-priori given subdomain as in section 6.2.2. As noise
levels δ̂ we chose 1%, 2% and 5%.

Furthermore the algorithm was interrupted as soon as the noisy relative distin-
guishability

Gδ(I) :=

∑M
i=1 ‖fI(gi)− f δi ‖1∑M

i=1 ‖f δi ‖1

=

∑M
i=1 ‖fI(gi)− fi − δi‖1∑M

i=1 ‖fi + δi‖1

(6.11)
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of the best individual was lower than the given noise level δ̂ because obviously after
that the algorithm would only optimize with respect to the noise. Especially note that
as ‖δ‖ � ‖f‖ we have

M∑
i=1

‖f δi ‖1 =
M∑
i=1

n∑
j=1

|fi(xj)+ δi(xj)| =
M∑
i=1

n∑
j=1

|fi(xj)|+
M∑
i=1

n∑
j=1

sgn (fi (xj)) δi(xj)

where the second sum is quite small because the statistical mean of δ over all values
is zero. So we have ‖f δ‖ ≈ ‖f‖ which justifies the use of ‖f δ‖ in the denominator of
(6.11).

We also ran the algorithm 6 times for each configuration to illustrate the stochastic
character of the algorithm, where however over all runs the noise was kept the same
for each example.

In the following we will always present the results for the first run with partial
boundary data for each noise level with a-priori given subdomain locations, and for the
examples 2 and 4 we will also present the results for the configuration with one initial
subdomain. For the examples with two inclusion levels in some cases the algorithm
already stopped before the inner inclusions could be inserted. For these cases obviously
no plot will be shown.

Example 1:

1% noise 2% noise 5% noise

σ1 = 5.35 (6) σ1 = 4.72 (6) σ1 = 3.53 (6)
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Example 2:

1% noise 2% noise 5% noise

σ1 = 2.38 (2.5) σ1 = 2.01 (2.5) σ1 = 2.16 (2.5)
σ2 = 3.36 (3.6) σ2 = 2.30 (3.6) σ2 = 2.27 (3.6)

The results for one initial subdomain with application of the splitting feature look as
follows :

1% noise 2% noise 5% noise

σ1 = 2.44 (2.5) σ1 = 2.00 (2.5) σ1 = 3.92 (2.5)
σ2 = 3.67 (3.6) σ2 = 2.50 (3.6) σ2 = 6.86 (3.6)

The green dotted line indicates the initial guess.
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Example 3:

1% noise 2% noise 5% noise

σ1 = 2.10 (2.5) σ1 = 2.08 (2.5) σ1 = 2.27 (2.5)
σ2 = 0.52 (0.6) σ2 = 0.36 (0.6) σ2 = 0.31 (0.6)

Example 4:

1% noise 2% noise 5% noise

σ1 = 3.21 (4) σ1 = 3.06 (4) σ1 = 2.41 (4)
σ2 = 2.05 (2) σ2 = 2.00 (2) σ2 = 2.06 (2)
σ3 = 2.26 (2.5) σ3 = 2.36 (2.5) σ2 = 2.76 (2.5)
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The results for one initial subdomain look as follows :

1% noise 2% noise

σ1 = 5.14 (4) σ1 = 4.36 (4)
σ2 = 1.70 (2) σ2 = 1.48 (2)
σ3 = 2.40 (2.5) σ3 = 2.34 (2.5)

For a noise level of 5% the algorithm was not able anymore to find the right number of
subdomains.

Example 5:

1% noise 2% noise

σ1 = 2.63 (2.5) σ1 = 2.52 (2.5)
σ2 = 5.98 (6) σ2 = 5.26 (6)

Here for the noise level of 5% the relative distinguishability of the best individual
already was below the noise level before the inner inclusion was inserted.
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Example 6:

1% noise 2% noise

σ1 = 2.30 (2.5) σ1 = 2.05 (2.5)
σ2 = 0.90 (1) σ2 = 0.75 (1)

Also here for the noise level of 5% the relative distinguishability was below the noise
level before the inner inclusion was inserted.

Example 7:

1% noise

σ1 = 2.88 (2.5)
σ2 = 6.36 (6)
σ2 = 5.93 (4)

Here the relative distinguishability was already below the noise level of 2% before
introducing the inner subdomains. Also for the noise level of 1% only one generation
step could be executed after introducing the inner subdomains.

Example 8:

Finally for the last example the inner subdomain could not even be introduced for
a noise level of 1% as the relative distinguishability of the inner subdomain is only
0.0083. So obviously in this case the inner subdomain cannot be recovered from noisy
data.
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6.2.5 Summary and interpretation of the results
For exact data the boundary element method in combination with the evolutionary al-
gorithm was able to find an approximation which differed from the true configuration
with a relative distinguishability of about 10−4. For the examples 1,2 and 8 this ap-
proximation corresponded practically to the true configuration whereas for the exam-
ples 3-7 some errors occurred. Nevertheless for the examples 3-6 the reconstruction
was still quite good, which was not the case anymore for example 7. This example
particularly illustrates the ill-posedness of the given problem.

For noisy data we especially had difficulties with the examples with multiple inclu-
sion levels. For 5% noise the algorithm for any example was not able to locate the inner
subdomain. This particularly illustrates the difficulty to find inner inclusions and the
fact that the relative distinguishability is quite small in these cases. For the examples
with one inclusion level indeed the results for noisy data seem to be quite satisfactory.

At the first inclusion level the method was able to find the right number of sub-
domains via using only the splitting feature, as long as the contrast of all subdomains
was the same. This even still worked for most of the noisy cases. This illustrates that
the incorporation of a feature of the previously mentioned level-set methods into this
boundary-element method considerably increases its possibilities.

In all cases there was no significant difference between the results obtained using
always the full set of boundary data and those using only a varying partial set of them
whose size depends on the number of unknown subdomains. On the other hand we
saw that when using only partial data sets the computing time considerably decreased.
This fact will justify the use of partial data sets for the complete electrode model.

Concerning the factorization method it turned out to be extremely sensitive to noise.
In most cases it was neither able to locate the correct number of subdomains for noisy
Dirichlet data f , nor to find an inner inclusion when the shape of the outer subdomain
was not exactly known - which also corresponds to some type of noise. For exact data,
however, it seems to be a fast method for locating the number and position of a set of
unknown subdomains, which can be easily implemented. Especially it also seems to
work for contrast changes, although this case is still not justified theoretically.

6.3 Results for the complete electrode model using syn-
thetic data

In this section we will present the results for the complete electrode model. For the
continuum model we did not see any significant differences between the results using
the complete boundary data set and those using partial data sets. On the other hand
the computing time for one generation step was significantly lower. Therefore, for
the CEM we ran the algorithm only with partial data sets. Nevertheless, for those
examples with unsatisfactory results we then additionally tried to use the full data set,
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but the results did not improve. Unlike for the continuum model we only ran the
algorithm exactly as described in chapter 5 and did not look at special cases like a-
priori information or relying on the splitting feature. For that reason we will present
the results also in those cases where the correct configuration has not been found,
without testing how much a-priori information would be needed to find it anyway.

Like for the continuum model we also measured the computing time for one iter-
ation step of the boundary-element method and for one generation step of the evolu-
tionary algorithm for the examples 1 and 4. For example 1 the time needed for one
iteration step was about 4 seconds; the time for one generation step was about 7 min-
utes. For example 4 the boundary-element method needed about 17 seconds for one
iteration step, and for one generation step the evolutionary algorithm needed about 30
minutes.

6.3.1 Results for exact data
For exact data we ran the algorithm for each example once for adjacent current patterns
and once for trigonometric current patterns as input data. We discretized each electrode
with 10 discretization points. We also tried to use only 5 discretization points per
electrode but the results were less satisfactory. In all figures the left plot will show the
result for adjacent and the right plot the result for trigonometric current patterns. The
bold parts of the exterior boundary indicate the electrodes. Unlike the factorization
method the FEM was able to find inner inclusions also in those cases where the outer
subdomain was not exactly known. For that reason we will present the results for
multiple inclusion levels in the same section as those for one inclusion level.

Example 1:

adjacent patterns trigonometric patterns

σ1 = 5.98 (6.0) σ1 = 6.02 (6.0)
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As in the continuum model the algorithm did not have difficulties in the reconstruction
of one subdomain. However the conductivity is not exactly found this time.

Example 2:

adjacent patterns trigonometric patterns

σ1 = 2.49 (2.5) σ1 = 2.51 (2.5)
σ2 = 3.57 (3.6) σ2 = 3.59 (3.6)

Also for this example the results are not worse than for the continuum model.

Example 3:

adjacent patterns trigonometric patterns

σ1 = 2.39 (2.5) σ1 = 2.47 (2.5)
σ2 = 0.57 (0.6) σ2 = 0.61 (0.6)

Here the algorithm was not able anymore to find the correct shape of the subdomain
with the negative contrast as it has been able for the continuum model. The number of
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subdomains, their locations and the approximate conductivity have still been found.

Example 4:

adjacent patterns trigonometric patterns

σ1 = 3.97 (4.0) σ1 = 3.95 (4.0)
σ2 = 2.46 (2.5) σ2 = 2.48 (2.5)
σ3 = 1.96 (2.0) σ3 = 1.98 (2.0)

As for the continuum model the algorithm had also here some problems with the shape
of the smallest subdomain. For the trigonometric current patterns it also seemed to have
some problems with the area between the subdomains. However the reconstruction still
seems to be satisfactory.

Example 5:

adjacent patterns trigonometric patterns

σ1 = 2.50 (2.5) σ1 = 2.49 (2.5)
σ2 = 6.09 (6.0) σ2 = 6.35 (6.0)
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As for the continuum model we had to set the maximum polynomial degree up to 8 to
obtain the above results. After doing this the algorithm was able to find an exact re-
construction of the inner subdomain’s shape for adjacent patterns and an almost perfect
reconstruction for trigonometric patterns.

This example illustrates that the evolutionary algorithm for the complete electrode
model is basically able to find inner inclusions exactly without any a-priori informa-
tion.

Example 6:

adjacent patterns trigonometric patterns

σ1 = 1.73 (2.5) σ1 = 1.66 (2.5)
σ2 = 8.98 (1.0) σ2 = 10.25 (1.0)
σ3 = 5.25 (−) σ3 = 3.51 (−)

With this example, however, the algorithm has obviously been pushed beyond its capa-
bilities. The FEM was able to see that the conductivity was higher in the lower left half
of the bean than in the upper right half, but the algorithm always put a subdomain with
positive contrast in the lower left half. This did not even change when we explicitly
fixed the shape and conductivity of the outer subdomain. Obviously without the right
domain constellation the boundary-element method could only produce nonsense with
the subdomains it was given.
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Example 7:

adjacent patterns trigonometric patterns

σ1 = 2.92 (2.5) σ1 = 2.94 (2.5)
σ2 = 22.01 (6.0) σ2 = 6.75 (6.0)

Also for this example the algorithm was not able to find the correct domain constel-
lation. This time the conductivity of the second inclusion was obviously too small to
recognize the subdomain. As for the previous example the boundary-element method
could not find a good approximation without knowing the correct domain constellation.

Example 8:

adjacent patterns trigonometric patterns

σ1 = 2.50 (2.5) σ1 = 2.50 (2.5)
σ2 = 3.59 (3.6) σ2 = 3.53 (3.6)
σ3 = 6.35 (6.0) σ3 = 8.45 (6.0)
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Here the algorithm was again capable of finding the right domain constellation. The re-
construction of the subdomains at the first inclusion level is practically perfect, whereas
there are some errors with the subdomain at the second inclusion level. This is
probably due to the fact that the distinguishability of this subdomain is very small.

6.3.2 Results for noisy data
Also for the complete electrode model we tested the algorithm for noisy data. Unlike
in the case of the continuum model the simulated noise was created such that for each
noisy voltage value (Un

` )δ we have

|(Un
` )δ − Un

` |
|Un

` |
≤ δ̂ (6.12)

i.e. we apply the noise limit criterion pointwise because taking an 2 criterion would
not make sense for discrete data.

Unfortunately this means that the stochastical mean of δ is not necessarily zero
anymore, so that we cannot argue as for the continuum model and divide by ‖U δ‖
instead of ‖U‖ for the relative distinguishability. In fact, when we ran the algorithm
this stopping criterion seemed to be too strong: In some cases for a noise level of 2%
the algorithm already stopped with the initial population, although the approximation
could be improved clearly in the next few generations after we turned off the criterion.
Next, we tried to use the relative pointwise distinguishability

1

ML

M∑
i=1

L∑
`=1

|(UI)i` − (U i
`)
δ|

|(U i
`)
δ|

instead, but this time the algorithm often seemed to run too long and it found many
artifacts. Finally we tried the criterion

max
k=1,...,M

‖UI(Ik)− (Uk)δ‖1

‖(Uk)δ‖1

≤ δ̂, (6.13)

i.e. we stop the algorithm if the relative distinguishability with respect to each bound-
ary data pair is lower than the noise level δ̂. The thought behind this was that if the
configuration is still distinguishable for at least one boundary data pair the algorithm
can still distinguish when using the partial fitness functional. For our test examples
this criterion seemed to be the best of the three, so we kept it, although there is also no
proper theoretical justification for it.

For the examples 6 and 7, where the algorithm already had problems for exact data
we did not run it for noisy data. We also did not try it for example 8 because the
results obtained for the continuum model already showed that the distinguishability
of the inner subdomain is too small for noisy data. As for the continuum model we



104 CHAPTER 6. NUMERICAL EXAMPLES

also ran the algorithm 6 times for each example and for each noise level where the
noise values remained the same for each example and the random number generator
was set to different initial values each time. We also ran each configuration for 10
discretization points per electrode as well as for 5, and for those examples for which
this did not make a significant difference we will present the results for 5 points. As
for the continuum model we will always present the result of the first run for each
configuration.

Example 1:

Results for adjacent current patterns:

1% noise 2% noise 5% noise

σ1 = 5.96 (6.0) σ1 = 5.83 (6.0) σ1 = 5.06 (6.0)

Results for trigonometric current patterns:

1% noise 2% noise 5% noise

σ1 = 5.32 (6.0) σ1 = 5.25 (6.0) σ1 = 5.04 (6.0)
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Example 2:

Results for adjacent current patterns:

1% noise 2% noise 5% noise

σ1 = 2.32 (2.5) σ1 = 2.45 (2.5) σ1 = 2.18 (2.5)
σ2 = 2.79 (3.6) σ2 = 2.52 (3.6) σ2 = 2.48 (3.6)

Results for trigonometric current patterns:

1% noise 2% noise 5% noise

σ1 = 3.13 (2.5) σ1 = 2.50 (2.5) σ1 = 2.86 (2.5)
σ2 = 4.59 (3.6) σ2 = 5.22 (3.6) σ2 = 2.76 (3.6)

σ3 = 2.47 (−)
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Example 3:

Results for adjacent current patterns:

1% noise 2% noise 5% noise

σ1 = 2.16 (2.5) σ1 = 1.84 (2.5) σ1 = 1.90 (2.5)
σ2 = 0.61 (0.6) σ2 = 0.65 (0.6) σ2 = 0.73 (0.6)

Results for trigonometric current patterns:

1% noise 2% noise 5% noise

σ1 = 1.85 (2.5) σ1 = 1.87 (2.5) σ1 = 2.33 (2.5)
σ2 = 0.75 (0.6) σ2 = 0.76 (0.6) σ2 = 0.81 (0.6)

Example 4:

For this example we had to use 10 discretization points per electrode to obtain the
presented results.
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Results for adjacent current patterns:

1% noise 2% noise 5% noise

σ1 = 3.19 (4.0) σ1 = 3.17 (4.0) σ1 = 2.84 (4.0)
σ2 = 2.26 (2.5) σ2 = 2.20 (2.5) σ2 = 1.99 (2.5)
σ3 = 1.91 (2.0) σ3 = 1.93 (2.0) σ3 = 1.67 (2.0)

Results for trigonometric current patterns:

1% noise 2% noise 5% noise

σ1 = 3.18 (4.0) σ1 = 3.03 (4.0) σ1 = 3.25 (4.0)
σ2 = 2.58 (2.5) σ2 = 2.22 (2.5) σ2 = 2.72 (2.5)
σ3 = 2.10 (2.0) σ3 = 2.13 (2.0) σ3 = 2.56 (2.0)

Example 5:

For this example we had to use 10 discretization points per electrode to obtain the
presented results.
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Results for adjacent current patterns:

1% noise 2% noise 5% noise

σ1 = 2.48 (2.5) σ1 = 2.72 (2.5) σ1 = 2.93 (2.5)
σ2 = 8.14 (6.0) σ2 = 8.83 (6.0)

Results for trigonometric current patterns:

1% noise 2% noise 5% noise

σ1 = 2.52 (2.5) σ1 = 2.96 (2.5) σ1 = 3.02 (2.5)
σ2 = 35.47 (6.0)

6.3.3 Summary and interpretation of the results
For exact data - as for the continuum model - the algorithm did not have significant
problems to reconstruct the shape and the conductivity for the objects at one inclu-
sion level and with the same contrast. However, for example 3 the boundary-element
method was not able to find the correct shape of the subdomain with negative contrast
- as it was still possible for the continuum model. In all these examples there was
no significant difference between the results for adjacent and those for trigonometric
current patterns.

For noisy data at one inclusion level the FEM was still able to find the right number
of subdomains, especially for example 4 with 5% noise, where the splitting feature of
the boundary-element method had failed. Also the shapes of the subdomains do not
look worse than for the continuum model. So it seems that the boundary-element
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method is appropriate also for the complete electrode model and that the FEM is less
sensitive to noise than the factorization method..

For multiple inclusion levels the FEM - unlike the factorization method - was ba-
sically able to localize inner inclusions without exactly knowing the shape of the outer
subdomain. This might be due to the fact that it does not proceed layerwise but is
always executed on the whole grid. On the other hand knowing the exact shape of the
inner subdomain does not improve its performance, because the subdomain has to be
converted into an FEM-mesh representation - which discards the information about the
form. This could be especially seen for the examples 6 and 7, where the inner inclu-
sions could not even be localized when the exact shape and conductivity of the exterior
subdomain were fixed.

Concerning the shape reconstruction for multiple inclusion levels the adjacent cur-
rent patterns seem to be more appropriate than the trigonometric patterns. For example
5 as well as for example 8 the shape reconstruction is better in the adjacent case -
which is especially remarkable if we consider the fact that the trigonometric patterns
are theoretically the best ones.

For noisy data the algorithm was almost at its limits when we had multiple inclu-
sion levels. For example 8 it was not at all able to localize the inner inclusion, and for
example 5 already a noise level of 2% for trigonometric and 5% for adjacent patterns
was enough to make it fail. Also for the other noise levels the results were not very
good in this case. As for exact data also for noisy data using the adjacent patterns was
leading to better results than using the trigonometric patterns when we had multiple
inclusion levels. In any case it seems to be very difficult to find subdomains at several
inclusion levels without any a-priori information.

6.4 Testing with real data
In this last section we finally want to describe the modifications to our method when
applying the algorithm for real data. These real data have been provided by the Institute
for Anesthesiology at the medical faculty of the University of Göttingen. They were
obtained by placing electrodes around a saline tank and putting different objects into it.
Then adjacent current patterns were applied on the electrodes. For this configuration
some of the assumptions we made for the synthetic data are not valid anymore such that
the program has to be modified. We will describe these modifications in the following
subsections before finally presenting the results obtained for real data. To test the
effects of the modifications we limited ourselves to the examples 2 and 3 as generic
examples for one inclusion level.
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6.4.1 Preparing for real data: Incomplete adjacent current pat-
terns

The first difference to synthetic data is that with the device which generated the real
data it is not possible to measure the potential at the current-carrying electrodes. So
we only get incomplete data sets. Furthermore no absolute voltages but only potential
differences Υi

` can be measured.
These potential differences are modeled in the boundary-element method by the

fact that also the voltages U i
` are considered as unknowns and that the system (2.64)–

(2.66) is extended for i = 1, . . . ,M with the difference equations

U i
`+1 − U i

` = Υi
` (6.14)

for ` = 1, . . . L− 1 and
U i

1 − U i
L = Υi

L (6.15)

for ` = L. We note that the resulting system has range L − 1. So to guarantee
uniqueness for U , we also include the grounding condition (1.2) into the system, such
that we have for i = 1, . . . ,M

L∑
`=1

U i
` = 0. (6.16)

For complete patterns the character of the system does not change this way, as the
values for U can be directly computed from (6.14)–(6.16) in one single step. With
incomplete data, however, the equations for the potential at the current-carrying elec-
trodes are left out of the system, and so the values for the potential U really have to be
considered as additional unknowns.

We tested the algorithm for this modification with exact data for the examples 1-5
and for noisy data for the examples 1-4. For exact data we omit the results, as this
additional difficulty did not lead to significantly different results.

For noisy data the results looked as follows :

Example 1:

1% noise 2% noise 5% noise

σ1 = 5.71 (6.0) σ1 = 5.58 (6.0) σ1 = 4.13 (6.0)
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Example 2:

1% noise 2% noise 5% noise

σ1 = 2.44 (2.5) σ1 = 2.55 (2.5) σ1 = 1.86 (2.5)
σ2 = 3.09 (3.6) σ2 = 3.27 (3.6) σ2 = 2.09 (3.6)

Example 3:

1% noise 2% noise 5% noise

σ1 = 2.36 (2.5) σ1 = 2.13 (2.5) σ1 = 1.80 (2.5)
σ2 = 0.65 (0.6) σ2 = 0.65 (0.6) σ2 = 0.69 (0.6)
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Example 4:

1% noise 2% noise 5% noise

σ1 = 3.64 (4.0) σ1 = 3.25 (4.0) σ1 = 2.96 (4.0)
σ2 = 2.17 (2.5) σ2 = 2.06 (2.5) σ2 = 2.00 (2.5)
σ3 = 2.00 (2.0) σ3 = 1.90 (2.0) σ3 = 1.82 (2.0)

So surprisingly also for noisy data there are no significant differences to the results
obtained for complete data, and we obviously can omit the differences at the current-
carrying electrodes without obtaining considerably worse results. Also in the following
sections we will always use incomplete potential difference sets as input data.

6.4.2 Preparing for real data: Shrinking the electrode size
For our synthetic examples we always assumed the electrodes to cover 50% of the
boundary surface. But for the device which was used to create the examples for real
data they covered only about 10% of the surface. Therefore we had to examine what
happens if we shrink the electrode size. For this we created synthetic data for an
electrode coverage of 20% and 10% and then added exactly the same relative noise to
the potential difference Υ that we had added to the data in section 6.4.1.

We further compared the computing time for one iteration step of the boundary-
element method for example 2 with 50%, 20% and 10% electrode coverage. It was
about 1 second for 50%, 4 seconds for 20% and 17 seconds for 10%. This is due to the
fact that in all cases each electrode is discretized with 5 points, so that if we have less
coverage we need more discretization points for the spaces between the electrodes.

For an electrode coverage of 20% and 10% we obtained the following results:
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Example 2:

20 % electrode coverage

1% noise 2% noise 5% noise

σ1 = 2.42 (2.5) σ1 = 1.99 (2.5) σ1 = 1.78 (2.5)
σ2 = 3.21 (3.6) σ2 = 2.51 (3.6) σ2 = 2.28 (3.6)

10 % electrode coverage

1% noise 2% noise 5% noise

σ1 = 2.33 (2.5) σ1 = 1.98 (2.5) σ1 = 1.79 (2.5)
σ2 = 3.15 (3.6) σ2 = 2.55 (3.6) σ2 = 2.24 (3.6)
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Example 3:

20 % electrode coverage

1% noise 2% noise 5% noise

σ1 = 2.43 (2.5) σ1 = 1.98 (2.5) σ1 = 1.85 (2.5)
σ2 = 0.63 (0.6) σ2 = 0.70 (0.6) σ2 = 0.75 (0.6)

10 % electrode coverage

1% noise 2% noise 5% noise

σ1 = 2.50 (2.5) σ1 = 1.90 (2.5) σ1 = 1.87 (2.5)
σ2 = 0.53 (0.6) σ2 = 0.65 (0.6) σ2 = 0.63 (0.6)
σ3 = 1.47 (−) σ3 = 1.39 (−) σ3 = 1.41 (−)

We see that in three of the four cases the algorithm was still able to find the right
number of subdomains. But although there are no large aggravations compared to the
data for 50% coverage, in no case do we have a considerable improvement compared
to a larger surface. Especially the results for 1% noise look worse than for a coverage
of 50%. So summarizing it seems that taking smaller electrodes is certainly not an
advantage for our method. Additionally it considerably increases the computational
costs.

6.4.3 Preparing for real data: Systematic measurement errors
Although we already added pointwise noise to our synthetic data, the distribution of
the relative noise was still assumed to be a uniform white noise. In reality this is
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also not the case, but we rather have systematic measurement errors depending on the
measuring device.

So as the next step we added some systematic relative noise to our data. This
noise was obtained by using some phantom resistivity network described in [22]. It is
constructed in the way that theoretically each measurement should be zero, such that
the voltages which are measured can be interpreted as noise. The mean of this noise is
4.2%.

The most significant difference to the previously used white noise is that the sign
of this noise is always positive, i.e. the measuring device usually measures a larger
potential difference than there really is, but it never measures a smaller one. When we
ran the algorithm it seemed that the stopping criterion with respect to (6.13) was too
weak, so that we chose the stronger criterion with respect to (6.4) instead.

This time we will rather show the reconstruction as a colored plot without putting
the exact solution into the same figure because in any case the shape reconstruction
is very bad. So comparing the reconstructed shape to the given one within one figure
would not bring any additional information. Instead we illustrate the true configuration
again as a separate plot. When we applied the algorithm ‘as is’ to those data we
obtained the following results:

Example 2:

original solution result without treatment
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Example 3:

original solution result without treatment

We see that in both cases the algorithm has created quite a lot of artifacts in addition to
the real subdomains. Especially for example 3 the second subdomain with the negative
contrast cannot be distinguished very well from the artifacts, as their conductivities
are quite similar. A possible explanation for the artifacts is that for a noise whose
stochastical mean is not zero the given background conductivity does not correspond
anymore to the background conductivity we obtained via the FEM from section 3.2.

So we tried out two different modifications on the algorithm:

• During the creation of the starting population (as described in section 5.2) we
compute the relative distinguishability (6.4) with respect to the zero measure-
ment (no inclusions inside Ω) for each created subdomain. If it is lower than the
average relative noise level, we delete the subdomain from the individual.

• We subtract the relative mean of the given noise from each value, such that now
the mean of the new noise is close to zero.

When applying each of these two modifications separately we obtained the following
results:
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Example 2:

testing for distinguishability subtraction of mean value

Example 3:

testing for distinguishability subtraction of mean value

So we clearly see that both modifications have brought an improvement to the previous
results, as in both cases the configuration does not contain any more artifacts. If we
keep the mean of the noise as it is we see that for example 2 the conductivities are
much larger than in reality, and for example 3 the second subdomain is much larger
than it should be. So in this case the noise obviously leads to a stronger distinction
than we really have.

6.4.4 Preparing for real data: Approximate conversion from 3D
data to 2D data

Another problem with real data is that the model we use is a two-dimensional model,
whereas real measurements are always in three dimensions. This means that we cannot
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directly use the measured values, but we have to convert them in some adequate way.
Following [28] we looked at the case of a cylindrical tank with no objects inside (the
so-called zero measurement) and at the synthetically created values for Υ, once in a
2D and once in a 3D FEM model. For the first adjacent pattern the factors, with which
the 2D values for Υ have to be multiplied to obtain the 3D values, are the following:

electrodes factor
3− 4 5.13
4− 5 3.14
5− 6 2.31
6− 7 1.80
7− 8 1.53
8− 9 1.37
9− 10 1.33
10− 11 1.37
11− 12 1.52
12− 13 1.82
13− 14 2.29
14− 15 3.14
15− 16 5.14

For the zero measurement (as well as for a ball or a pole at the center of the tank) they
are translation-invariant, so that these factors can also be used for all other
measurements. Of course if the geometry is not translation-invariant - which is usually
the case - we cannot take these values anymore to have an exact conversion. But as we
do not assume to have any a-priori information, we cannot compute better values for
our special cases. Therefore we have to take the above ones anyway. This creates an
additional error in our data, which we call dimension-conversion error.

One of its effects seems to be that the value of the background conductivity σ0

is different for the 2D case. So although we suppose to know it beforehand we have
to consider it as an additional unknown. For this we extend the equations (2.64) in
an adequate way. Note that alternatively we could also have set f := σ0u, keep the
equations (2.64) unchanged and compute 1/σ0 from the equations (2.65) instead.

The fact that we do not know σ0 beforehand also creates problems in the domain
conversion from section 5.2, as the subdomains are created by starting from the con-
ductivity change (5.3) with respect to σ0. So to find a good starting value for σ0 when
using real data, we first started with the 3D value for σ0. Then if the best individual
that we found contained one big circle with a conductivity close to the initial σ0, we
created a new starting population with σ0 set to the new value instead.



6.4. TESTING WITH REAL DATA 119

6.4.5 Results for real data
In the presented examples two sponges were put into the saline tank. In the second
example a steel wire clew was additionally put in. For the algorithm we used we
put all previously described modifications together: We used incomplete adjacent cur-
rent patterns for electrode surfaces of 10% and divided the given data by the factors
from section 6.4.4. These values for Υ were considered as systematic measurement
errors, and we subtracted the admitted mean value of 5% from each Υi

`. This was done
although we do not know the exact noise level. During the creation of our starting
population we computed the relative distinguishability with respect to σ0 for all sub-
domains and deleted those subdomains whose distinguishability was smaller than the
admitted noise level of 5%.

The results we obtained are compared to those obtained by the SIRT algorithm
described in [31]. So on the left-hand side of the figures below we present the result
which our evolutionary algorithm obtained, and on the right-hand side we present the
result of the SIRT algorithm for the same input data. Instead of the conductivity σ we
plot the resistivity 1/σ because this is also done in the reference images.

The resistivity of the saline water was 4.9 Ωm, the resistivity of the sponges 8 Ωm
and of the wire clew 10−6 Ωm. The result without the wire clew was the following:

result of our EA result of the SIRT algorithm

and with the wire clew we got the following result:

result of our EA result of the SIRT algorithm
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In both cases the algorithm has identified the right number of subdomains at the ap-
proximately correct position and with the correct contrasts. For the initial background
conductivity we started in both cases with 1/4.9, but we finally ran the algorithm for
σ0 = 0.15. When running the algorithm it became even lower, i.e. the background
resistivity increased. Also the resistivities we found for the sponges are higher than in
reality.

Nevertheless if we take into account all the previously described difficulties we
see that the algorithm is basically able to deal also with real data. Compared to the
grid-based SIRT algorithm we can make a better distinction of different objects and
eliminate all small accidental conductivity changes and artifacts.



Conclusion and outlook

We introduced a novel boundary-element method to solve the inverse 2D electrical
impedance tomography problem for a piecewise constant conductivity distribution.
Then we incorporated this method into an evolutionary algorithm, which was used
to couple this method together with an already existing grid-based method. This grid-
based method was especially used to determine the number and geometry of the in-
homogeneities, which was supposed to be unknown. Additionally, by using an idea
from level-set methods, the boundary-element method was extended with a splitting
and merging feature within the evolutionary algorithm.

The algorithm was then tested on various examples, for the easy-to-compute con-
tinuum model as well as for the more realistic complete electrode model. These tests
illustrated that for exact data the boundary-element method is able to reconstruct the
shape and conductivity of one unknown subdomain. By coupling it together with a
grid-based method and extending it with a splitting feature we were also able to de-
termine correctly the number and geometry of an unknown number of subdomains.
Especially if we only have subdomains at one inclusion level and all with the same
contrast, either the grid-based method or the splitting feature alone were sufficient to
do that.

Also for noisy data the algorithm basically still worked, but especially for multiple
inclusion levels the results were less satisfactory in most cases. For one inclusion level,
however, the algorithm in most cases still found the correct number of subdomains as
well as their approximate size and conductivity.

Finally we also applied the algorithm on real data. There some of the assumptions
we made for synthetic data were not valid anymore. The changes to our algorithm
to deal with these additional difficulties were described in detail, and at the end we
successfully found the correct number and the approximative size and conductivity of
two and three objects within a saline tank. So our evolutionary algorithm is basically
able to be used also for real data.

Further investigations could be done in several areas:

• First, the three-dimensional case could be examined.

• On the theoretical level one could try to prove some convergence result for the
boundary-element method for some special cases where the uniqueness has al-
ready been shown (see [19, 30, 1, 2]).

121
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• Concerning the data, the next step would be a proper stochastical modeling of
the noise, including a stochastical formulation of the fitness functional. Espe-
cially the stopping criterion for pointwise noise should be reconsidered, as in
our examples it only has been chosen by trial and error.

• For the numerics a further investigation based on the results from [12] on how
to treat the singularities of g at the edges of the electrodes might be useful, as
in our implementation the exterior boundary has to be discretized very highly,
which leads to considerable computational costs.

• Finally, on the algorithmical level, one could try to incorporate more methods
into the evolutionary algorithm. Then they would be randomly chosen separately
for each individual for each mutation step. It might be interesting to investigate
if this leads to an addition of the advantages of each method or if the loss of
information that occurs when converting the data from one representation to
another is too high.

Summarizing we have shown that our boundary-element method is able to solve the
inverse transmission problem quite well and that the coupling of different methods can
considerably extend the possibilities of finding a solution without any a-priori infor-
mation.
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