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Abstract

Gene prediction is an essential step in the annotation of metagenomic sequencing reads.

Since most metagenomic reads cannot be assembled into long contigs, specialized gene pre-

diction tools are required for the analysis of short and anonymous DNA fragments.

This work describes the metagenomic gene prediction method ’Orphelia’. It consists of a

two-stage machine learning approach. In the first stage, linear discriminants for monocodon

usage, dicodon usage and translation initiation sites are used to extract features from dna

sequences. In the second stage, an artificial neural network combines these features with

open reading frame length and fragment GC-content to compute the probability that this

open reading frame encodes a protein. This probability is used for the classification and

scoring of gene candidates. Orphelia is available to the scientific community as an intuitive

web server application, and as a command line tool.

Furthermore, a detailed evaluation of gene prediction accuracy of Orphelia and other tools

with respect to sequencing errors an read length is presented. It is demonstrated that

ESTScan, a tool for sequencing error compensation in eukaryotic expressed sequence tags,

outperforms some metagenomic gene prediction tools on reads with high error rates although

it was not designed for the task at hand. The integration of error-compensating methods into

metagenomic gene prediction tools would be beneficial to improve metagenome annotation

quality.
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Chapter 1

General Introduction

Prokaryotes are single-cell organisms that lack a cell nucleus and other membrane-bound

organelles. They form the biggest group of living organisms on earth and encompass the king-

doms Bacteria and Archaea. The total number of prokaryotic species is unknown but prelim-

inary estimates allow a glimpse at the dimension of their diversity: Curtis et al. (2002) expect

2 × 106 bacterial taxa in the sea, and about 4 × 106 different taxa in soil [1]. Single bacterial

or archaeal species are usually scientifically investigated by techniques that require the cul-

tivation of a species under laboratory conditions. The problem here is that only few species

are culturable. Even the application of a wide range of available growth conditions has so

far led to the successful cultivation of only ∼1% of all species [2, 3, 4]. A large fraction of

prokaryotic species can therefore not be investigated by conventional methods.

To overcome this problem, a set of molecular techniques has been developed that allows the

investigation of microbial genomes without cultivation. Using this so-called metagenomic

approach, the genomes of a microbial community are analyzed simultaneously. Genomic ma-

terial (deoxyribonucleic acid, abbreviated as DNA) is directly isolated from the environment

and sequenced. Typically, one out of two sequencing techniques are applied to metagenomes:

• chain termination sequencing, also known as Sanger sequencing [5], or

• pyrosequencing, also named 454 sequencing [6].

The characteristic workflows for each technique are depicted in figure 1 on page 4. In the

case of Sanger sequencing, it consists of extracting genomic DNA from a habitate, cloning

the obtained DNA fragments into a vector, transforming the vector into a host strain (e.g.

Escherichia coli), cultivating many transformed hosts with different vector inserts, and

finally sequencing the inserts with chain termination technique. Most of the reads obtained
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CHAPTER 1. GENERAL INTRODUCTION

Figure 1.1: Metagenomic workflow for Sanger sequencing (left) and pyrosequencing (right
arrow).

this way are ∼700 to 1000 bases (b) long. It is also possible to sequence an insert from both

vector ends and construct a longer consensus sequence. However, not all possible inserts

can be sequenced. An insert that carries a gene with a promotor e.g. encoding a compound

that is toxic for the host cell, will not be found because the host dies after transformation.

The resulting effect is named the cloning bias. Nevertheless, chain termination sequencing

is due to its read length often used for sequencing metagenomes. It has e.g. been applied to

a soil metagenome [7], the Sargasso sea metagenome [8], and the hypersaline microbial mat

metagenome [9].

The cloning bias can be circumvented by pyrosequencing where the extracted environmental

genomic DNA is directly sequenced. In comparison to Sanger sequencing, pyrosequencing

can be massively parallelized and thus allows the sequencing of much bigger amounts of

genomic material. In the beginning, the read length of 454 sequencing was ∼120 b. It has

recently increased to ∼400 b. Sanger- and pyrosequencing are described in detail in section

1.4 on pages 8ff.

Regardless of the technique that is used for sequencing a metagenome, the result is a large

collection of sequencing reads from several species. The taxonomic origin of each read is

unknown, and it is unclear whether and which stretches on the reads carry protein coding

genes (PCGs). However, both types of information are crucial for further metagenome

analysis, which usually aims at the estimation of a functional and phylogenetic profile of the

microbial community under investigation.
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1.1. ASSEMBLY CHAPTER 1. GENERAL INTRODUCTION

Figure 1.2: Gene prediction workflows in metagenomics. The conventional workflow is
shown in yellow. Two types of tools that are specialized on metagenomic single read data
exist: homology based methods and statistical modelling methods (both shown in green).

This work addresses the problem of identifying PCGs in metagenomic sequencing reads.

Figure 1.2 gives an overview on possible approaches, which are described in the following

sections in detail.

1.1 Assembly

Assembly is the recruitment of single reads into long stretches of DNA (“contigs”) by overlap

of reads. In genomics, assembly is usually the first step after genome sequencing, and genes

are subsequently identified in long sequences. Assembly is often also applied to metagenomics

but an assessment has demonstrated that this is not trivial [10]. One major problem is

the reliability of a contig. Due to the number of species in a community it can easily

happen that reads from different species that carry parts of homologous genes are assembled

into a chimeric contig. With a high sequencing coverage for a single species, this risk

decreases and the resulting “long contigs” (>8 knt) are likely to be homogeneous. Thus, long

contigs are useful for further analysis with standard genomics tools. However, sequencing

with sufficient coverage is only possible for species that dominate the community. In some

microbial communities, there are no dominating species (e.g. for the hypersaline microbial

mat metagenome, assembly was impossible [9]). In the best case, one ends up with a

proportion of long contigs and few single reads. But in most cases, the proportion of single
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1.2. SEQUENCE SIMILARITY CHAPTER 1. GENERAL INTRODUCTION

reads will be large. Therefore, specialized methods for read analysis are needed in order to

assess the genetic potential of a community.

1.2 Gene Identification through Sequence Similarity

The most common way of identifying genes in anonymous metagenomic reads is to perform a

BLAST search with metagenomic sequences against databases of known proteins [11]. This

strategy will reveal already known genes that are present in the metagenome. The problem

is that many genes are most probably not present in the databases, yet, due to the bias

towards culturable organisms in the databases. Those novel genes cannot be detected with

a BLAST search.

Another set of methods relies on the assumption that PCGs are better conserved than

noncoding regions in prokaryotic genomes because mutations in PCGs may end fatally for the

organism. Therefore, it is possible to find genes by searching for highly conserved sequence

regions within a metagenome. Several methods have been developed for this purpose, among

them an algorithm that is similar to BLAST [12] and a clustering algorithm on the basis

of cd-hit, a cluster program for producing a set of non-redundant representative sequences

[13, 14].

All these “intra“ sample homology methods are computationally expensive and thus time

consuming. They are not an option for research groups that are not equipped with suitable

hardware. However, in comparison to other gene finding methods, most sequence similarity

based approaches have the advantage to be relatively robust to sequencing errors.

1.3 Model-based Gene Prediction

The prediction of genes with statistical models is usually fast, and bears the potential to

detect novel genes. In general, model-based methods require an initial training phase on data

from the target genome in order to adapt to species-specific characteristics of protein coding

regions. Several gene prediction tools of this kind have been developed and successfully

applied to (near to) complete prokaryotic genomes, e.g. GLIMMER [15] or GeneMark [16].

However, their direct application to metagenomes is difficult because a metagenome contains

anonymous reads from more than one species. This makes assembly difficult and thus, the

analysis of single reads is often necessary (see section 1.1 on page 5). Only in some habitates,

one or few species dominate the microbial community and it is possible to assemble the reads

of those species into long contigs. A long contig may offer sufficient training data but the
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1.3. STATISTICAL MODELS CHAPTER 1. GENERAL INTRODUCTION

trained model will in most cases only be applicable to the training contig and some other

few contigs that are known to originate from the same species.

A different strategy is to train numerous different models on the genomes of groups of known

and closely related species. Reads of a metagenomic sample are binned into taxonomic

groups (e.g. with Phylopythia [17]), and genes in the reads of a bin are predicted with an

appropriate pre-trained model. The limiting factor for gene prediction accuracy here is the

binning accuracy, which is not very high for single reads. Another problem is that models

cannot be pre-trained for yet unknown taxonomic groups.

To overcome all these problems, several model-based gene prediction methods have been

developed for the application to anonymous single read data, e.g. GeneMark with heuristic

models [18], MetaGene [19], and MetaGeneAnnotator [20]. The principles of these methods

are described in the following sections.

1.3.1 GeneMark with Heuristic Models

Besemer and Borodovsky built heuristic models on the basis of 17 bacterial genomes for

usage with the already existing gene prediction programs GeneMark [21] and a combination

of GeneMark and GeneMark.hmm [16]. The heuristic models use the relationships between

positional nucleotide frequencies and global nucleotide frequencies, e.g. the occurrence fre-

quency of thymine at the first position of a codon in a genome with an overall thymine

frequency of 20%. Furthermore, they utilize the relationships between amino acid frequen-

cies and the guanin-cytosin-content (GC-content) of a genome, e.g. the occurrence frequency

of proline in genomes with a GC-content of 40%. The suitable model for predicting genes in

short and anonymous sequences is derived from their individual GC-contents and nucleotide

frequencies.

The heuristic models do not include any differentiation between bacteria or archaea, and

they are reported to work well for input sequences above a length of 400 b [18].

1.3.2 MetaGene and MetaGeneAnnotator

MetaGene is a stand-alone gene prediction program with statistical models that were esti-

mated from 116 bacterial and 15 archaeal species to distinguish PCGs and non-coding open

reading frames (nORFs). An open reading frame (ORF) is a stretch of DNA that begins

with a start codon and ends with an in-frame stop codon. In metagenomic sequencing reads,

ORFs frequently exceed the fragment ends. Therefore, also incomplete ORFs are considered

(see Figure 1 in chapter 3 for illustration). The core of MetaGene is a ORF scoring system
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1.4. SEQUENCING TECHNIQUES CHAPTER 1. GENERAL INTRODUCTION

on the basis of logistic regressions between GC-content and monocodon as well as dicodon

frequencies (codon frequencies are illustrated in figure 1.3 on page 8). In addition, Meta-

Gene calculates log-odd ratios for the ORF length and for the distance of a start codon to

the left-most start codon. These sub-scores are combined and a dynamic program is used

to compute an optimal high scoring combination of ORFs in an input sequence, also taking

ORF orientation and distances to neighboring ORFs into account.

A B

Figure 1.3: Illustration of the features (A) monocodon frequencies and (B) dicodon fre-
quencies. Both features are likely to differ between PCGs and nORFs because the selective
pressure on PCGs is higher than on nORFs.

In contrast to the heuristic models of GeneMark, MetaGene has different logistic regression

models for Archaea and Bacteria. They are simultaneously applied to a metagenomic se-

quence and predictions achieved with the highest scoring model are selected. MetaGene is

a very sensitive method, i.e. it finds most of the actually existing genes, but it tends to

overpredict genes, i.e. often predicts too many genes that do not exist.

The MetaGeneAnnotator is an extension of MetaGene. In addition to the original models,

it contains a gene prediction model for prophage genes and a ribosomal binding site model.

MetaGeneAnnotator is slightly more accurate than MetaGene on fragmented DNA as it

occurs in metagenomes although it was mainly developed for predicting genes in longer

sequences, e.g. fosmids.

1.4 Sequencing Techniques

All model based gene prediction programs utilize codon usage as an important feature and

are thus susceptible to sequencing errors that alter the codon frequency. For a better un-

derstanding of sequencing errors, Sanger and pyrosequencing are described below.

1.4.1 Sanger Sequencing

For Sanger sequencing, a DNA polymerase, a primer, and four types of deoxynucleotide

triphosphates (dNTPs) are used to synthesize the complementary strand to the template
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1.4. SEQUENCING TECHNIQUES CHAPTER 1. GENERAL INTRODUCTION

sequence. dNTPs usually contain deoxyadenosin triphosphate (dATP), deoxyguanin triphos-

phate (dGTP), deoxythymin triphosphate (dTTP), and deoxycytosin triphosphate (dCTP).

All dNTPs have a 3’hydroxygroup that is required by the DNA polymerase to attach the

phosphate group of the following nucleotide during strand synthesis.

Dideoxynucleotide triphosphates (ddNTPs) lack this hydroxygroup. If a ddNTP is incorpo-

rated into the sequence, synthesis is terminated. This effect is used in Sanger sequencing,

where a small proportion of ddNTPs is added to the sequencing reaction. The result is a

number of fragments with different lengths and different terminal ddNTPs (hence also the

name ”chain termination sequencing“). The ddNTPs are labelled, e.g. radioactively or flu-

orescently, to allow sequence visualization on a gel. Initially, Sanger and his colleagues split

the reaction into four different vials, adding only one type of radioactive ddNTP to each

vessel, carrying out four different sequencing reactions. The resulting DNA fragments were

visualized in four lanes on a gel and it was possible to reconstruct the DNA sequence by

knowing which ddNTP was used for the fragments on each lane. Nowadays, the sequencing

reaction is performed in a single vessel with different fluorescently labelled ddNTPs (e.g.

ddATP may be green, ddCTP may be red, and so on). The DNA fragments are separated

by size through capillary electrophoresis. A laser and a detector are utilized to first excite

and then read the fluorphores of each sequence fragment at the end of the capillar, typically

producing a chromatogram with four different colors [22].

Sequence quality is low for the first ∼50 b because unreacted primers and unreacted ddNTPs

migrate at comparable speed. The following ∼700 to ∼900 b are of higher quality. The

most common sequencing errors here are caused by secondary structure formations that

increase the migration speed of a fragment through the gel, resulting in deletion errors of

the terminal nucleotide at its actual position, and in insertion errors of the same nucleotide at

an earlier position in the sequence. For very long sequence fragments, a new problem arises:

long fragments need more time to migrate through the gel, thus allowing more time for

random diffusion to take place. In addition, the relative mass difference between subsequent

fragments decreases, and the number of labelled fragments of a given size decreases, making

it increasingly more difficult to differentiate between signal and noise [23]. For this reason,

Sanger read length rarely exceeds 1000 b.

1.4.2 Pyrosequencing

Pyrosequencing is a “sequencing by synthesis” technique. A single stranded DNA molecule

is hybridized with a primer sequence and incubated with the enzymes DNA polymerase, ATP

sulfurylase, luciferase, and apyrase. Additionally, the compounds adenosine-5-phosphosulfate
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1.5. OBJECTIVE CHAPTER 1. GENERAL INTRODUCTION

(APS) and luciferin are added. The building blocks for DNA synthesis, dNTPs, are added

to the reaction one type at a time. If the current position in the template sequence is com-

plementary to the dNTP, it will be incorporated, releasing pyrophosphate (PPi). PPi and

APS are then converted to ATP by ATP sulfurylase. The ATP is further used by luciferase

to convert luciferin to oxilucerfin, a reaction that emitts visible light, which is recorded by a

camera. Apyrase is added to degrade all unused dNTPs and ATP after a single dNTP flow.

In order to avoid constant light production by luciferase, a special form of dNTPs that are

not a template for luciferase are used (dNTPαS).

Sequencing errors primarily arise in the case of homopolymer incorporation. The light signal

of luciferase is proportional to the amount of dNTP that is incorporated into the synthesized

strand but the proportionality ratio is only correct for short homopolymers. Thus, the major

type of errors are deletions and insertions in homopolymer stretches. [24]

In contrast to Sanger sequencing, where numerous DNA fragments are synthesized to se-

quence one piece of DNA, pyrosequencing quality is also affected by DNA polymerase ac-

curacy because in contrast to Sanger sequencing, where many copies of the same template

are used for sequence visualization, only few strands are synthesized during 454 sequencing

[25].

1.5 Objective

The objective of this work is to support the development of a new and more accurate

metagenomic gene prediction method that is based on machine learning techniques. Machine

learning generally encompasses methods for the reconstruction of statistical relations or

regularities with the help of training examples. Once learned, the statistical relations can be

applied for predictions in new data [26]. In the case of gene prediction, biological expertise

is required to pre-select features that could potentially be used to discriminate between

coding and non-coding regions in metagenomic DNA fragments. Also an accuracy evaluation

during all developmental stages is important to select only those features and combinations

of features that actually improve prediction quality. For the process of accuracy evaluation,

suitable criteria, training data and test data are designed to enable the assessment of gene

prediction accuracy.

An important question concerning the applicability of metagenomic gene prediction tools to

real data is, to which extent the accuracy of metagenomic gene prediction methods is affected

by naturally occurring sequencing errors caused by using different sequencing techniques.

This is a largely uninvestigated field for all model based metagenomic gene prediction tools.

10



1.5. OBJECTIVE CHAPTER 1. GENERAL INTRODUCTION

Therefore, this thesis also focus on investigating the sequencing error problem.
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genomes of single species. In particular, the large size of metagenomic samples requires fast and
accurate methods with small numbers of false positive predictions.

Results: We introduce a novel gene prediction algorithm for metagenomic fragments based on a
two-stage machine learning approach. In the first stage, we use linear discriminants for monocodon
usage, dicodon usage and translation initiation sites to extract features from DNA sequences. In
the second stage, an artificial neural network combines these features with open reading frame
length and fragment GC-content to compute the probability that this open reading frame encodes
a protein. This probability is used for the classification and scoring of gene candidates. With large
scale training, our method provides fast single fragment predictions with good sensitivity and
specificity on artificially fragmented genomic DNA. Additionally, this method is able to predict
translation initiation sites accurately and distinguishes complete from incomplete genes with high
reliability.

Conclusion: Large scale machine learning methods are well-suited for gene prediction in
metagenomic DNA fragments. In particular, the combination of linear discriminants and neural
networks is promising and should be considered for integration into metagenomic analysis
pipelines. The data sets can be downloaded from the URL provided (see Availability and
requirements section).
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Background
Communities of natural microorganisms often encom-
pass a bewildering range of physiological, metabolic, and
genomic diversity. The microbial diversity in most envi-
ronments exceeds the biodiversity of plants and animals
by orders of magnitude. Phylogenetic surveys of complex
ecosystems such as soils and sediments have demon-
strated that the multitude of discrete prokaryotic species
represented in a single sample goes far beyond the
number and phenotypes of known cultured microorgan-
isms [1,2]. Direct cultivation or indirect molecular
approaches have been used to explore and to exploit this
enormous microbial diversity. Cultivation and isolation
of microorganisms are the traditional methods. It has
been estimated that less than 1 % of environmental
microorganisms are culturable using standard cultivation
methods. Thus, only a tiny portion of the gene pool of
natural microbial communities has been analyzed so far
[2-4].

To circumvent some of the limitations of cultivation
approaches, indirect molecular methods, such as metage-
nomics have been developed. Metagenomics is based on
the direct isolation, cloning, and subsequent analysis of
microbial DNA from environmental samples without
prior cultivation [5-7]. Function- and sequence-based
analysis of metagenomic DNA fragments have resulted in
the identification of a variety of novel genes and gene
products [6,8,9]. In addition, partial sequencing of
metagenomes, such as those from the acid mine biofilm
(75 Mbp) [10], Minnesota farm soil (100 Mbp) [11], and
Sargasso Sea (1,600 Mbp) [12], have provided a better
understanding of the structure and genomic potential of
microbial communities.

A major goal of metagenomic sequencing projects is the
identification of protein coding genes. Most genes in
metagenomic fragments are currently identified by
homology to known genes by employing other methods,
e.g. BLAST [13]. The disadvantage of such an approach is
obvious: it is impossible to find novel genes that way. Par-
ticularly in cases where metagenomic studies aim to dis-
cover new proteins, homology search is an inadequate
tool for gene prediction.

The computational ab initio prediction of genes from
microbial DNA has a long history, and a number of tools
have been developed and employed for gene prediction
and annotation of genomic sequences from single
prokaryotic species (e.g. GLIMMER [14] and Gene-
Mark.hmm [15]). A minor restriction in the application of
some conventional approaches to metagenomes is that
they are based on the identification of open reading
frames (ORFs), which begin with a start codon and end
with an in-frame stop codon. Sequenced metagenomes

comprise a collection of numerous short sequencing reads
of varying length depending on the employed sequencing
technique. A typical metagenomic fragment derived by
Sanger sequencing [16] is approximately 700 bp long and
contains two or fewer genes. The majority of these genes
are incomplete, meaning one or both gene ends extend
beyond fragment end(s). Therefore, most ORFs in metage-
nomic sequencing reads will be overlooked by ORF-based
gene finders. A more profound problem is that most gene
finders for prokaryotic genomes rely on statistical
sequence models that are estimated from the analyzed or
a closely related genome. Most metagenomic fragments
do not bear sufficient sequence information for building
statistical models able to distinguish coding from non-
coding ORFs. One might consider to derive models from
a complete metagenome but the resulting gene prediction
quality in fragments from underrepresented species in the
metagenome is questionable.

Up to now, there are three approaches for predicting genes
from metagenomic DNA fragments. One of these meth-
ods is based on BLAST search, where the search is not only
applied against databases of known proteins but also
against a library constructed from the metagenomic sam-
ple itself [17]. In principle, this computationally expen-
sive approach is able to find novel genes, provided that
homologues of these genes are contained in the sample.
However, it is not clear whether interesting genes will
always be conserved in a metagenomic sample. The first
method that was developed for ab initio gene prediction
in short and anonymous DNA sequences is a heuristic
approach of GeneMark.hmm that derives an adapted
monocodon usage model from the GC-content of an
input sequence [18].

Another method that was developed for ab initio gene
prediction in metagenomic DNA fragments is MetaGene
[19]. Similar to GeneMark.hmm, MetaGene employs GC-
content specific monocodon and dicodon models for pre-
dicting genes. The time-efficient two step gene prediction
algorithm first extracts ORFs and scores them on the basis
of statistical models estimated from fully sequenced and
annotated genomes. Subsequently, a dynamic program
calculates the final ORF combination from different
scores. Additionally, MetaGene utilizes ORF length, the
distance from the annotated start codon to the left-most
start codon, and distances to neighboring ORFs. Two sep-
arate models were estimated from bacterial and archaeal
genomes, respectively. The domain specific models are
simultaneously applied to each fragment and the higher
scoring model is selected for final gene prediction. Results
in randomly sampled fragments from annotated genomes
indicate that MetaGene provides a high sensitivity in find-
ing genes in fragmented DNA, while the specificity of the
predictions is slightly lower. In addition, the performance
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of GeneMark.hmm in 700 bp fragments and for complete
genomes was investigated (supplementary table S3 and
table 1 of [19]). Comparable performance results were
obtained for both methods for both types of input
sequences.

Here, we present a novel approach for gene prediction in
single fragments, which is based entirely on machine
learning techniques. In bioinformatics, state-of-the-art
machine learning methods are usually applied to prob-
lems where, at most, several thousands of examples exist
for training and evaluation. In our application, learning
has to be performed on large data sets with millions of
examples. This requires the use of a learning architecture
that is capable of large-scale training and testing. Here, we
propose a combination of neural networks and linear dis-
criminants. While linear discriminants are used for the
extraction of features from high-dimensional data which
characterize codon usage and potential gene starts, a small
neural network is used for non-linear combination of
these features with additional information on length and
GC-content of gene candidates. Neural networks in com-
bination with linear discriminants or positional weight
matrices have also been applied to other gene prediction
problems, for instance in promoter recognition [20].

To provide comparability in our experimental evaluation,
we use a setup that is similar to the one used for the initial
evaluation of MetaGene. We test our program on frag-
ments from thirteen species. However, we provide some
important extensions: We use a higher number of frag-
ments which are randomly sampled from the test
genomes to avoid any bias that may result from a particu-
lar fragmentation technique. The higher number of frag-
ments is used to cope with the variance across different
(repeated) sampling experiments. In addition, we provide
a detailed analysis of the translation initiation site (TIS)
prediction performance and we also investigate the ability
to discriminate between complete and incomplete genes.

Methods
Most prokaryotic protein coding genes consist of a start
codon, followed by a variable number of consecutive in-
frame codons and are terminated by a stop codon. This
particular arrangement of codons is commonly referred to
as open reading frame (ORF). The sole identification of
ORFs is not sufficient for prokaryotic gene prediction
because the majority of ORFs in a genome are, in fact,
non-coding.

In DNA fragments, ORFs frequently exceed the fragment
ends. We therefore extend the ORF definition to incomplete
ORFs.

The fact that start codons are identical to some regular
codons results in a high number of related ORFs that
share a stop codon but have different start codons. We
term such a set of related ORFs an ORF-set and we name
the possible start codons of an ORF-set translation initia-
tion site (TIS) candidates. Figure 1 illustrates possible
cases of ORF occurrence in a DNA fragment: In case 1, the
complete ORF-set is located in the fragment. Additional
TIS candidates for this ORF-set can not occur because of
an upstream in-frame stop codon. Predicted genes from
this ORF-set will always be complete. In case 2, only TIS
candidates are located inside the fragment. The range for
upstream TIS is again limited by an in-frame stop codon.
This candidate, if classified as coding, would result in the
prediction of an incomplete gene. In case 3, the stop is
located in the fragment. Some TIS candidates are con-
tained in the fragment but there might exist TIS candidates
outside the fragment. An ORF-set of this type may result
either in a complete or in an incomplete gene. Case 4 is
complementary to case 2. Only a stop codon is located
inside the fragment. Case 5 and 6 are fragment-spanning
ORF-sets, where 5 also includes TIS candidates inside the
fragment. Predictions from case 5 will be incomplete but
may have a start codon. Case 5 and 6 can both result in the
prediction of incomplete genes without start and stop
codons.

Our gene prediction algorithm is designed for the discrim-
ination of coding from non-coding ORFs. After the iden-
tification of all ORFs in a fragment, we extract features
from those ORFs using linear discriminants. Subse-
quently, we use a neural network that has been particu-
larly trained for the classification of ORFs as coding or
non-coding. Classification is based on a gene probability
that the neural network assigns to every ORF. Because
gene-containing ORF-sets usually comprise of more than
one candidate, several ORFs of such an ORF-set may be
assigned a high probability by the neural network. The
final gene prediction is achieved by a »greedy« method
that selects the most probable ORFs that overlap by, at
most, 60 bases.

Machine Learning Techniques
To predict whether a particular ORF actually corresponds
to a protein coding region or to a non-coding region, we
use a neural network for binary ORF classification. In the
following sections, we will first describe the features uti-
lized as inputs for the neural network. Subsequently, we
will depict the neural network architecture and the meth-
ods we used for large scale training and validation from
labeled ORFs in artificial fragments.

Features
For realization of the neural network, we use seven fea-
tures based on sequence characteristics of ORFs. As net-
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work inputs, these sequence features are subject to a
separate preprocessing step. Below, we explain the meth-
ods for computation of these features in detail.

Codon and Dicodon Usage
The perhaps most important features for the discrimina-
tion between coding and non-coding ORFs can be derived
from codon usage, in particular from 43 monocodon and
46 dicodon frequencies. These frequencies represent the
occurrences of successive trinucleotides (non-overlap-
ping) and hexanucleotides (half-overlapping), respec-
tively. For the characterization of monocodon and
dicodon usage, we compute two features based on linear
discriminant scores.

Linear discriminants were obtained from training with
annotated sequence data. We used coding and non-cod-
ing regions from annotated genomes as positive and neg-
ative examples, respectively (see section »Training Data
for Feature Preprocessing«). Examples are represented by
vectors of frequencies of 43 and 46 possible monocodons
and dicodons, respectively. In the following, we describe
discriminant training for the monocodon case. The same
training procedure was applied to the dicodon case.

For the i-th example, we denote a monocodon frequency

vector as , which is the i-th column of the data

matrix XM, containing all training vectors. To remove

length information from these data, all training vectors
are normalized to unit Euclidean norm. The correspond-

ing label  ∈ {-1, 1}, which is the i-th element of the

label vector yM, indicates whether the example represents

a coding (  = 1) or non-coding (  = -1) region. For

training of the discriminant weight vector wM, we use a

regularized least squares approach, i.e. we minimize the
following regularized error:

where » · « denotes the dot product. The minimizer of E
is obtained by [21]:

with d × d identity matrix I and with upper T and -1 indi-
cating matrix transposition and inversion, respectively.
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The figure illustrates possible localizations of open reading frames (ORFs) in a fragment (shown only for the forward strand)Figure 1
The figure illustrates possible localizations of open reading frames (ORFs) in a fragment (shown only for the 
forward strand). ORFs are shown as grey bars, »«denotes stop codons, »|« indicates the position of translation initiation site 
candidates. ORFs that are related by a common stop codon are grouped and we refer to them as ORF-sets. The box symbol-
izes the fragment range. Everything that might be located outside the box is invisible to gene prediction algorithms. Further 
explanations are given in section »Methods«.
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The computational cost scale linearly with the number of
examples, which makes the approach well suited for large
scale learning. Doing the same for the dicodon frequency
discriminant vector wD, we obtain two discriminant
scores that serve as the first two input features of the neu-
ral network:

x1 = wM · xM, x2 = wD · xD. (3)

To adjust the regularization parameter λ, we measure the
discriminative power of the respective classifier by means
of the area under precision recall curve (»auPRC«) as
explained in section »Measures of Performance«. Thereby,
we choose a λ ∈ {10m|m = -8, -7, ..., 6} to maximize the
auPRC on an independent validation set (see section
»Training Data for Feature Preprocessing«).

Translation Initiation Site
A discriminant is derived from up- and downstream
regions of translation initiation site (TIS) examples. Here
we use a 60 basepair (bp) window centered on a potential
start codon at window position 31 (see section »Training
Data«). We encode the trinucleotide occurrences in that
window to yield binary indicator vectors. In each of its
3712 dimensions (64 trinucleotides × 58 positions), a
vector indicates whether a certain trinucleotide occurs at a
particular window position. Training of the discriminant
proceeds in the same way as for the previous two discrimi-
nants based on codon usage. Again, we select the regular-
ization parameter λ ∈ {10m|m = -8, -7, ..., 6} by
maximization of the auPRC on an independent validation
set.

Because not all genes have a potential TIS region we do
not use the TIS score s = wT · xT directly, but instead we
take the posterior probabilities of being a TIS or not. For
computation of the posterior probabilities, we use Gaus-
sian probability density functions of the score:

where μ stands for mean and σ for standard deviation.

The features x3 and x4 were obtained from a mixture of two
Gaussians

p(s) = π+p(s|μ+, σ+) + π-p(s|μ-, σ-) (5)

with parameters estimated from scores of positive and
negative training examples, respectively (π + and π - are the
a priori probabilities of the two classes):

If no TIS candidate is present, both probabilities are set to
zero for that ORF. Note that this case is different from the
case of missing values, which can be solved by assigning a
priori probabilities for true and false TIS. Here we encoun-
ter the possible case where we know that none of the two
categories is adequate.

Length features
Another feature for discrimination between coding and
non-coding ORFs is the sequence length of the ORF. Here,
it is important to distinguish between complete and
incomplete ORFs. For incomplete ORFs, the observable
»incomplete length« is merely a lower bound for the
unobservable »complete length« of that ORF and there-
fore should be treated in a different way. Consequently,
we use one »incomplete« and one »complete length« fea-
ture. For a particular ORF, only the feature that corre-
sponds to the type of ORF has non-zero value. The value
is simply the observed length divided by the maximal
length lmax. In our evaluation, we set lmax to 700 bp. In this
way we obtain two more features x5, x6 ≥ 0 for complete
and incomplete length.

GC-content
As a last feature x7 ∈ [0, 1], we use, for each ORF, the GC-
content estimated from the whole fragment in which this
ORF occurs.

Neural Network

We use standard multilayer perceptrons with one layer of
k hidden nodes and with a single logistic output function.
Within a binary classification setup with labels yi = 1

(»true«) or yi = 0 (»false«) the output of the neural network

can be viewed as an approximation of the posterior prob-
ability of the »true« class [22]. In our case, the »true« class
represents coding ORFs and therefore the network output
can be interpreted in terms of a gene probability. For an
input feature vector x, the k hidden layer activations zi

based on input weight vectors  and bias parameters 

are

Putting the zi into a vector z, the output of the network, i.e.
its prediction function based on weight vector wO and bias
bO, is
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Given a training set x1, ..., xN and a network with weight
and bias parameters collected in the vector θ, we now
write the corresponding network output as f(x1; θ), ...,
f(xN; θ). With diagonal matrix A containing the regulariza-
tion parameters, the training objective is to minimize the
regularized error:

The diagonal matrix A = diag(α1, ..., α1, α2, ..., α2, α3, ...,

α3, α4) of the regularization term involves four hyperpa-

rameters α1, α2, α3, α4 > 0 for separate scaling of the

parameters , , wO, bO. Note that the regularization

term penalizes the squared magnitude of the weights. For
the adaptation of hyperparameters, we utilize the evi-
dence framework [23] based on a Gaussian approxima-
tion of the posterior distribution of network weights. The
evidence-based adaptation of hyperparameters can be
incorporated into the network training procedure and
does not require additional validation data. For the mini-
mization of (9) with respect to weight and bias parame-
ters, we use a scaled conjugate gradient scheme, as
implemented in the NETLAB toolbox [24]. While weight
and bias parameters were initialized randomly according
to a standard normal distribution, the hyperparameters

were initially set to α1 = α2 = α3 = α4 = 0.01. The complete

training scheme performs 50 iterations where each itera-
tion comprises 50 gradient steps and two successive
hyperparameter adaptation steps.

Final Candidate Selection

Application of the neural network to a certain fragment
results in a list of potential gene candidates with a pre-
dicted gene probability above 0.5. Most of these predic-
tions are mutually exclusive in terms of overlap. Many
predictions even belong to the same ORF-set, differing
only in the position of the start codon. In order to obtain
a list  of final genes for a particular fragment, predic-

tions with maximal probability are iteratively selected
from the list of candidates , which is successively
reduced according to a maximum overlap constraint.
Starting with an empty list  and an initial list  con-

taining all fragment-specific ORFs i with gene probability

Pi = f (xi; θ) > 0.5, we apply the following »greedy« selec-

tion scheme:

While  is nonempty do

• determine  with respect to all ORFs i in

• remove ORF imax from  and add it to 

• remove all ORFs from  that overlap with ORF imax by

more than omax bp

In our evaluation, we set omax to 60 bp, which corresponds
to the minimal gene length we consider for prediction.

Training Data
Our machine learning approach for gene prediction in
metagenomic DNA fragments is based on learning the
characteristics of coding and non-coding regions from
131 fully sequenced prokaryotic genomes [see Additional
file 1] and their GenBank [25] annotation for protein cod-
ing genes. The training genomes correspond to the ones
that were used for building the statistical models of Meta-
Gene except that we excluded Pseudomonas aeruginosa
from the training set because a subset of reliably anno-
tated genes that is valuable for the determination of TIS
correctness is available for this species. All training and
test data sets described in this article are based on the ini-
tial extraction of ORFs with a minimal length of 60 bp.
Two types of ORFs are distinguishable: Complete ORFs
begin with a start codon (ATG, CTG, GTG or TTG), and are
followed by a flexible number of subsequent codons and
conclude with a stop codon (TAG, TGA or TAA). Incom-
plete ORFs stretch from one fragment end to a stop or start
codon or to the other fragment end without being inter-
rupted by another in-frame stop codon (compare Figure
1).

In the following paragraphs, we first describe the prepara-
tion of training data sets for feature preprocessing and for
training of the neural network. Subsequently, we specify
the compilation of a test data set for performance evalua-
tion.

Training Data for Feature Preprocessing
Monocodon, dicodon and TIS feature extraction from
ORFs require a preprocessing step that is based on the sep-
arate training procedure described in section «Codon and
Dicodon Usage». Training examples for feature preproc-
essing were randomly sampled from complete genomes
to a coverage of 50 %. Two separate training sets were
compiled. For the mono- and dicodon frequencies train-
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ing set, DNA sequences of genes defined by their exact
start and stop codon position served as positive examples
(≈1.9 × 105). The longest candidate out of each non-cod-
ing ORF-set was selected for the composition of negative
examples (≈2.8 × 106).

Training of the TIS discriminant was carried out on sym-
metric 60 bp sequence windows around start codons. The
sequence windows of annotated start codons served as
positive examples (1.9 × 105) while the windows around
other possible start codons of the same ORF-sets were
used as negative examples (5.6 × 106).

The examples for both training data sets were randomly
split into 50 % for discriminant training and 50 % for val-
idation of the regularization parameter.

Training Data for the Neural Network
The neural network was trained with the extracted features
from ORFs in 700 bp fragments that were randomly
excised to a 1-fold genome coverage from each training
genome. We define an n-fold coverage as the amount of
sampled DNA that is in total length (bp) n times longer
than the original genome sequence. Annotated genes in
these fragments were used as positive examples for coding
regions (≈2.6 × 106) while one candidate out of each non-
coding ORF-set was randomly selected for the negative
examples (≈4.5 × 106). The data sets were randomly split
into 50% for neural network training and 50 % for valida-
tion of the network size (see section »Neural Network«).

Test Data and Experimental Evaluation
The performance of our gene prediction algorithm was
evaluated on artificial DNA fragments from three archaeal

and ten bacterial species (see Table 1) whose genera were
not used for training. Fragments of the lengths 100 to
2000 bp (in intervals of 100 bp) were randomly sampled
from each genome to a 5-fold genome coverage for each
length. We used the fragments of all lengths to investigate
gene prediction performance of our method, which was
trained on fragments with the length 700 bp.

A more detailed analysis was carried out on 700 bp frag-
ments (also sampled to a 5-fold coverage), including a
comparison to MetaGene. In order to determine statistical
significance, we used 10 replicates of each randomly sam-
pled fragment stack.

Gene prediction performance was evaluated by compar-
ing predictions of our method to known annotated genes
in fragments. The GenBank annotation for protein coding
genes was used to measure general gene prediction per-
formance. However, the GenBank gene start annotation
has previously been suspected to be inaccurate [26].
Therefore, we used »reliable gene annotation subsets« [27]
for the evaluation of translation initiation site (TIS) pre-
diction performance: all genes with an experimentally ver-
ified TIS from »EcoGene« for Escherichia coli [28],
experimentally verified genes of the Bacillus subtilis Gen-
Bank annotation (all non-y genes) and the »PseudoCAP«
(Pseudomonas community annotation project) annota-
tion of Pseudomonas aeruginosa [29].

Measures of Performance
The capability of detecting annotated genes (and genes
including their annotated TIS) was measured as sensitiv-
ity:

For gene prediction sensitivity, TPgene (true positives)
denotes correct matches and FNgene (false negatives) indi-
cate overlooked genes. We counted all predictions as
TPgene that match at least 60 bp in the same reading-frame
to an annotated gene.

In one experiment, we compared gene predictions to a
subset of genes that have a reliably annotated gene start in
the fragment. For this subset, we measured TIS prediction
sensitivity. Here, TPTIS are genes with correctly predicted
TIS and FNTIS are genes whose correct start codons were
not predicted.

The reliability of gene predictions was measured by specif-
icity:

Sens
TP

TP FN
=

+
(10)

Table 1: Genomes of microbial species that were used for the 
evaluation of our method. The upper three species are archaea 
while the lower ten species belong to the bacterial domain. The 
table shows GenBank accession numbers (GenBank Acc.), and 
genome sizes (Size).

Species GenBank Acc. Size (Mbp)

Archaeoglobus fulgidus NC_000917 2.2
Methanococcus jannaschii NC_000909 1.7
Natronomonas pharaonis NC_007426 2.6

Buchnera aphidicola NC_002528 0.6
Burkholderia pseudomallei NC_006350, NC_006351 7.2
Bacillus subtilis NC_000964 4.2
Corynebacterium jeikeium NC_007164 2.5
Chlorobium tepidum NC_002932 2.2
Escherichia coli NC_000913 4.6
Helicobacter pylori NC_000921 1.6
Pseudomonas aeruginosa NC_002516 6.3
Prochlorococcus marinus NC_007577 1.7
Wolbachia endosymbiont NC_006833 1.1
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Gene prediction specificity was calculated with predicted
genes that do not correspond to any gene in the annota-
tion as FPgene (false positives).

To provide a suitable composite measure of sensitivity
and specificity we use the harmonic mean, which corre-
sponds to a particular realization of the F-measure [30]:

To measure the discriminative power of the codon usage
and TIS discriminants for feature extraction (see »Fea-
tures«), we use the area under precision recall curve
(auPRC). The precision recall curve shows for each possi-
ble score threshold the relation of sensitivity (on the x-
axes) and specificity (on the y-axes). Sensitivity and specif-
icity are not sufficient for measuring TIS prediction per-
formance. When applied to TIS prediction, these measures
rather reflect general gene prediction performance than
accuracy of TIS prediction. 'TIS correctness' was therefore
measured by the percentage of correctly predicted TIS
within a subset of true positive gene predictions TPgene
that have an annotated start codon within the fragment
(TPgene that have annotated start codon wihin the frag-
ment (TPgene*):

Accuracy of complete/incomplete gene type prediction
was calculated on the basis of correctly predicted genes
with an existing true TIS:

where TPcomplete and TNcomplete account for the number of
genes within TPgene that have correctly been predicted as
complete and incomplete.

Results and Discussion
In the following sections, we first describe and discuss the
results of discriminant and neural network validation
which led to the choice of a hyperparameter λ and a suit-
able number of nodes for the neural net. Subsequently, we
show and discuss gene prediction performance results of
the neural network on several fragment lengths and in
700 bp fragments.

Discriminant Validation
Training of the linear discriminants for monocodon, dico-
don and TIS features requires the validation of the regular-
ization parameter λ . For each of the three discriminants,
we chose λ from the set of values {10m|m = -8, -7, ..., 6}
by maximizing the area under precision recall curve
(auPRC) on separate validation data. While for the TIS
discriminant, a well-defined maximum was achieved for
an intermediate λ = 10-2, for the monocodon and dicodon
case the maximum was achieved for the smallest value λ =
10-8. However, as shown in Additional file 2, for small λ
values the auPRC performance in these cases reaches a
plateau and therefore we did not try smaller values. The
resulting discriminant weights for the 64 monocodons are
shown in Additional file 1. The high negative weights for
the three stop codons TAA, TAG, TGA are due to the large
fraction of negative examples. Because negative examples
are, by a factor 10, more frequent than positive examples
in the training set, a negative shift of the discriminant
score is induced by codons that, like stop codons, are
present in any example in any of the two classes.

Network Validation
In principle, the evidence-based hyperparameter adapta-
tion (see section »Neural Network«) obviates the search
for an adequate size of the network, i.e. to find a suitable
number k of hidden nodes. The network size has just to be
large enough to provide maximum performance, while
larger nets would automatically be subject to stronger reg-
ularization in terms of larger regularization parameters.
Nevertheless, network size is crucial in terms of computa-
tional cost for training and testing.

In order to find a small network with sufficient perform-
ance, we started to train networks of increasing size. Try-
ing networks with k = 5, 10, ..., 25 nodes, we found the
performance to reach a nearly flat plateau within that k-
range, with only very slight increase above k = 15 [see
Additional file 2]. Performance was measured in terms of
the harmonic mean criterion (see section »Measures of
Performance«), computed on an independent validation
set (see section »Training Data«). For the final predictions
on the test data, we used the largest network with k = 25
nodes.

While training of neural networks is a time consuming
process, computing predictions with a trained network on
new data is very fast. In our case, training a network with
k = 25 hidden nodes from ≅ 3.6 × 106 examples took about
190 cpu hours (AMD Opteron, 2 GHz). The training
scheme described above was applied in parallel to 5 net-
works with different (random) initialization of parame-
ters to avoid weak local minima of the regularized error
(9). According to the lowest error, the best resulting net-
work was selected for the final predictions within the test

Spec
TPgene

TPgene FPgene
=

+
(11)

HarmonicMean
Sens Spec

Sens Spec
=

+

∗ ∗2
. (12)

TIS correctness
TP

TP
TIS
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=
∗

. (13)

GeneTypeAccuracy
TPcomplete TNcomplete

TPgene
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(14)
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setup. In contrast, testing of the same number of exam-
ples, i.e. prediction on more than three million candi-
dates, only took ≅ 16.5 seconds on the same machine.

The parameters of the neural network with 25 nodes that
we used for further evaluation are given in Additional file
1.

Gene Prediction Performance in DNA fragments
To evaluate the performance of our machine learning
approach, we tested the method on artificially fragmented
genomes. In the following section, we present the results
in general gene prediction performance on various frag-
ment lengths. Subsequently, we analyze gene prediction
performance, TIS prediction correctness and complete/
incomplete gene type prediction accuracy in detail for
fragments of length 700 bp, which corresponds to the
fragment length on which the neural network was trained.

Performance in Fragments of Different Lengths
The predictions of our method in DNA fragments with
lengths ranging from 100 to 2000 bp from thirteen species
were compared to the GenBank [25] annotation for pro-
tein coding genes. Note that on average 15 % of 100 bp
fragments do not contain any annotated gene matching
the 60 bp minimal length criterion (complete or incom-
plete), for 700 bp fragments, this fraction of fragments
accounts 3 %, for 2000 bp fragments 0.8 %. The average
percentage of complete genes within all annotated genes
in our test fragments is 0 % for 100 bp fragments, 8 % for
700 bp fragments and 40 % for 2000 bp fragments [see
Additional file 2]. The mean of gene prediction sensitivity
and specificity for all fragment lengths is shown in Figure
2. On 700 bp fragments, our method has an average gene
prediction sensitivity of 89 % and an average specificity of
93 %. Sensitivity and specificity slightly increase with
growing fragment size. This can be explained by the fact
that ORFs carrying distinct mono-/dicodon and TIS sig-
nals occur more often in longer fragments. Gene predic-

Average gene prediction performance of the neural network in fragments of the lengths 100 to 2000 bpFigure 2
Average gene prediction performance of the neural network in fragments of the lengths 100 to 2000 bp. The 
performance values from thirteen test species were averaged by arithmetic mean.
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tion performance decreases with length and sharply drops
for fragments shorter than 200 bp.

Before application of our method on real metagenomes,
the neural network should be trained and thoroughly
evaluated on fragments of a length that corresponds to the
real fragments of interest. Metagenomic sequencing
projects differ in their aims and in the applied sequencing
and annotation strategies. Improved Sanger sequencing
from one or both vector insert ends is applied in many
metagenomic projects (examples are listed in review [31])
and yields sequencing reads roughly ranging from 500 to
1000 bp. Based on the current results, our method might
be particularly useful for improving gene annotation and
discovery on Sanger sequencing reads. However, pyrose-
quencing [32] has also been introduced to metagenomics
[33]. The pyrosequencing approach does not involve any
cloning step. With recent improvements, pyrosequencing
now yields a read length between 200 and 300 bp [34]. In
principle, it should be possible to predict genes in such
short fragments with our fragment-based techniques but
environmental pyrosequencing projects may rather be
focused on phylogenetic studies and habitat comparison
than on the discovery of new genes. In some metagenomic
sequencing projects, long metagenomic inserts (up to 40
kbp) are fully sequenced [35]. Although gene prediction
performance of the neural network does not decrease on
longer fragments [see Additional file 2], other methods
like MetaGene [19] or GeneMark.hmm [18], which also
consider the context of putative genes (e.g. operons), may
be more suitable for fragments of this size.

Performance in 700 bp Fragments
Predicted genes in fragments with a length of 700 bp from
three archaeal and ten bacterial species were compared to
the GenBank annotation for protein coding genes. The

mean and standard deviation for sensitivity, specificity
and the harmonic mean of 10 repetitions per species are
shown in Table 2. The neural network has high sensitivity
(ranging from 82 to 92 %) and specificity (ranging from
85 to 97 %) in fragments from all species. We could not
observe a major performance difference for sensitivity and
specificity between archaeal and bacterial fragments but
the variation between different species in general is large.

In comparison to MetaGene, the neural network has a
higher specificity in fragments from all test species (on
average 4.6 % higher). On the other hand, MetaGene has
a higher sensitivity in fragments from most species (on
average 3.8 % higher). The neural network only shows a
higher sensitivity in Bacillus subtilis and Helicobacter pylori.
The overall performance of both methods calculated by
harmonic mean is very similar. For some species, the neu-
ral network yields a better overall gene prediction per-
formance while MetaGene performs better on other
species. In particular, MetaGene performs better in all
tested archaea. All local pairwise differences in sensitivity,
specificity and harmonic mean between the neural net-
work and MetaGene are significant to a confidence level of
95 % according to Wilcoxon's signed rank test [36] (R-
package exactRankTests [37]).

A precise TIS prediction is very important in metagenom-
ics since the aim of many environmental sequencing
projects is the identification and subsequent experimental
investigation of novel genes. For example, the expression
of a metagenomic protein in a host organism may fail or
yield incorrect results if the predicted start codon is incor-
rect. Accurate TIS prediction is a difficult task, even for
conventional gene finders on complete genomes [38-42].
This is because ATG, CTG, GTG and TTG also occur inside
genes.

Table 2: Mean and standard deviation for gene prediction performance of our method (Neural Net) and MetaGene. Performance was 
measured on 700 bp fragments that were randomly excised from each test genome to 5-fold coverage (ten replications per species). 
The harmonic mean is a measure that combines sensitivity and specificity.

SENSITIVITY SPECIFICITY HARMONIC MEAN
Species Neural Net MetaGene Neural Net MetaGene Neural Net MetaGene

Archaeoglobus fulgidus 87.2 ± 0.21 93.7 ± 0.15 93.4 ± 0.16 92.7 ± 0.16 90.2 ± 0.17 93.2 ± 0.14
Methanococcus jannaschii 91.7 ± 0.17 95.8 ± 0.14 96.2 ± 0.13 92.7 ± 0.19 93.9 ± 0.10 94.3 ± 0.15
Natronomonas pharaonis 87.9 ± 0.22 95.1 ± 0.09 93.9 ± 0.10 92.7 ± 0.17 90.8 ± 0.16 93.9 ± 0.12
Buchnera aphidicola 90.6 ± 0.37 96.7 ± 0.24 95.3 ± 0.31 91.1 ± 0.29 92.9 ± 0.28 93.8 ± 0.21
Burkholderia pseudomallei 87.9 ± 0.11 94.1 ± 0.11 90.1 ± 0.09 85.1 ± 0.13 89.0± 0.08 89.4 ± 0.10
Bacillus subtilis 91.4 ± 0.16 89.8 ± 0.14 95.3 ± 0.09 89.3 ± 0.19 93.3 ± 0.10 89.5 ± 0.14
Corynebacterium jeikeium 89.7 ± 0.24 91.9 ± 0.12 93.8 ± 0.19 89.2 ± 0.21 91.7 ± 0.19 90.5 ± 0.13
Chlorobium tepidum 82.1 ± 0.25 85.7 ± 0.27 91.2 ± 0.17 88.4 ± 0.26 86.4 ± 0.19 87.0 ± 0.22
Escherichia coli 91.7 ± 0.16 93.3 ± 0.07 95.3 ± 0.09 90.9 ± 0.10 93.5 ± 0.12 92.1 ± 0.07
Helicobacter pylori 92.1 ± 0.11 90.2 ± 0.14 96.6 ± 0.15 89.6 ± 0.23 94.3 ± 0.11 89.9 ± 0.15
Pseudomonas aeruginosa 90.4 ± 0.14 96.2 ± 0.07 92.5 ± 0.11 91.4 ± 0.09 91.4 ± 0.12 93.7 ± 0.07
Prochlorococcus marinus 87.2 ± 0.21 93.7 ± 0.25 95.9 ± 0.14 90.8 ± 0.20 91.4 ± 0.15 92.2 ± 0.19
Wolbachia endosymbiont 87.2 ± 0.27 90.6 ± 0.42 85.2 ± 0.44 71.2 ± 0.54 86.2 ± 0.29 79.7 ± 0.45
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One gene may for example contain several ATGs but only
one corresponds to a TIS. Our approach includes a TIS-
model that is based on a linear discriminant. We meas-
ured TIS prediction performance of our algorithm for all
correctly predicted genes that have annotated start codons
within a fragment. First, we investigated TIS performance
on our complete set of test species fragments according to
GenBank annotation. The results are shown in Table 3.
TIS correctness of our algorithm varies remarkably
between different test species. On some bacterial species,
our algorithm reaches a TIS correctness of 87 % (e.g. in
Helicobacter pylori). The lowest TIS performance can be
observed in fragments from the bacterium Chlorobium
tepidum (68 %). The average TIS correctness of our algo-
rithm is around 78 %. In comparison to this, the highest
performance of MetaGene can be observed for fragments
of Prochlorococcus marinus (89 %), the lowest for fragments
of Bacillus subtilis (66 %). Note that TIS correctness
depends on the number of correctly predicted genes with
an annotated TIS. Therefore, TIS correctness of our algo-
rithm is not directly comparable to the one obtained by
MetaGene, which detects a higher number of genes. How-

ever, the variation in TIS correctness of both methods is
large.

A reason for this variation might be that the GenBank
gene annotation contains many hypothetical and not
experimentally verified genes [26]. Therefore, we also
evaluated TIS prediction performance on »reliable anno-
tation subsets« of the bacteria Escherichia coli, Bacillus sub-
tilis and Pseudomonas aeruginosa (see section »Test Data
and Experimental Evaluation«). Evaluating gene predic-
tion performance in fragments according to these annota-
tion subsets, our algorithm achieves a highly consistent
TIS prediction performance between 81 and 87 % in frag-
ments from all three test species. The TIS prediction sensi-
tivity varies from 68 % to 80 % (see Table 4). In
comparison, MetaGene's TIS performance shows a higher
variation, ranging from 70 to 84 % while the TIS sensitiv-
ity ranges from 62 to 80 %.

The nature of fragmented DNA results in the occurrence of
complete and incomplete genes. A gene may be incor-
rectly predicted as complete or incomplete if it has several
TIS candidates of which at least one is located outside the

Table 4: Translation initiation site prediction performance of the new gene prediction algorithm (Neural Net) and MetaGene 
according to »reliable annotation subsets« (A subset of »verified genes« from »EcoGene« for Escherichia coli [28], all non-y genes of 
the Bacillus subtilis GenBank annotation and the »PseudoCAP« annotation of Pseudomonas aeruginosa [29]). TIS prediction sensitivity 
and correctness were measured on artificial 700 bp fragments that were randomly excised from each test genome to 5-fold coverage. 
Mean and standard deviation over 10 replicates per species are shown.

SENSITIVITY TIS TIS CORRECTNESS
Species Neural Net MetaGene Neural Net MetaGene

Bacillus subtilis 73.4 ± 1.79 62.1 ± 1.43 84.1 ± 0.51 70.2 ± 0.64
Escherichia coli 80.0 ± 0.68 75.1 ± 0.61 86.6 ± 0.57 77.5 ± 0.67
Pseudomonas aeruginosa 68.0 ± 0.22 79.7 ± 0.44 80.7 ± 0.20 83.7 ± 0.36

Table 3: Translation initiation site prediction correctness (TIS correctness) and complete/incomplete classifi-cation accuracy (Gene 
Type Accuracy) of the Neural Net and MetaGene according to GenBank annotation. Performance was measured on 700 bp fragments 
that were randomly excised from each test genome to 5-fold coverage (mean and standard deviation for 10 replicates per species are 
given).

TIS CORRECTNESS GENE TYPE ACCURACY
Species Neural Net MetaGene Neural Net MetaGene

Archaeoglobus fulgidus 69.8 ± 0.32 73.6 ± 0.32 98.1 ± 0.05 97.2 ± 0.07
Methanococcus jannaschii 69.4 ± 0.52 73.3 ± 0.52 99.0 ± 0.09 97.6 ± 0.12
Natronomonas pharaonis 75.2 ± 0.58 82.9 ± 0.28 96.9 ± 0.16 97.6 ± 0.09
Buchnera aphidicola 86.5 ± 0.40 88.6 ± 0.64 99.1 ± 0.09 98.3 ± 0.21
Burkholderia pseudomallei 70.1 ± 0.45 73.0 ± 0.28 97.6 ± 0.08 96.9 ± 0.09
Bacillus subtilis 79.7 ± 0.32 66.1 ± 0.42 98.6 ± 0.05 97.0 ± 0.08
Corynebacterium jeikeium 78.2 ± 0.49 73.4 ± 0.68 98.1 ± 0.08 96.6 ± 0.11
Chlorobium tepidum 68.1 ± 0.46 71.9 ± 0.45 98.1 ± 0.08 96.7 ± 0.13
Echerichia coli 84.5 ± 0.31 78.2 ± 0.15 98.7 ± 0.06 97.0 ± 0.08
Helicobacter pylori 87.3 ± 0.40 77.1 ± 0.33 99.2 ± 0.09 96.4 ± 0.16
Pseudomonas aeruginosa 78.4 ± 0.22 81.0 ± 0.36 97.7 ± 0.03 97.2 ± 0.07
Prochlorococcus marinus 86.6 ± 0.40 88.6 ± 0.47 99.0 ± 0.07 97.8 ± 0.10
Wolbachia endosymbiont 79.3 ± 0.77 79.9 ± 0.42 98.7 ± 0.13 96.9 ± 0.17
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fragment. Due to the short fragment length of 700 bp, the
vast majority of annotated genes (≈90 %) in our test frag-
ments is incomplete. The experimental strategy of many
metagenomic projects relies on sequencing the fragment
from one or both ends of the vector insert. Although the
insert is not always sequenced completely, sequencing of
the entire fragment is possible in case the biologist is
interested in further analysis of an incomplete gene.
Therefore, it is important to know whether a gene is con-
tained in a sequencing read completely or incompletely.

We evaluated the percentage of genes that were correctly
classified as complete or incomplete within the correctly
identified genes according to GenBank annotation. Our
method achieves an average accuracy of 98 % with little
variation (see Table 3). It can be noted that MetaGene
slightly more often misclassifies genes concerning their
completeness. Note here that the performance indices of
the neural network and MetaGene in Table 3 are not
directly comparable because they rely on different num-
bers of correctly identified genes.

Remarks on the Experimental Setup
The evaluation of computational methods for metagen-
omic gene prediction is troubled by the fact that reliably
annotated metagenomes are not available. Some metage-
nomes have been subject to annotation for several years
by now, but their gene annotation is far from complete.
Particularly, the exact location of gene starts on metagen-
omes has been verified experimentally only in rare cases.
Currently, the only way to reliably investigate gene predic-
tion accuracy is the evaluation on DNA fragments from
complete microbial genomes. For the evaluation of our
method, we used an experimental setup similar to the one
proposed by the authors of MetaGene in order to keep
both methods comparable. MetaGene relies on statistical
models built from 116 bacterial and 15 archaeal genomes.
These species were selected to represent every genus from
GenBank in the year 2006. By now, species belonging to
many additional genera have been fully sequenced and
annotated. Members of these genera should be included
in the training set of a future gene prediction tool version
in order to collect as much information about the charac-
teristics of coding and non-coding ORFs as possible.

It remains an open question, which criteria are most suit-
able for the selection of training species. In general, taxon-
omy does not reflect phylogeny properly. Some species of
different genera for example exhibit highly similar codon
usage patterns. Particularly for the identification of novel
genes in metagenomes whose biological diversity is yet
unknown, the transfer of the GenBank bias toward single
species should be avoided in the training data set. To
reduce this bias, training genomes could be selected
according to other criteria, e.g. GC-content, oligonucle-

otide frequencies or monocodon/dicodon frequencies in
protein coding regions.

The experimental setup chosen here also differs from real
metagenomes with respect to sequencing errors. The effect
of sequencing errors in terms of base-changes on gene pre-
diction performance of our method would depend on the
frequency of such kind of error. The effect of a usually
small number of base-errors (less than one error per 10
000 bp after routine fragment end removal [19]) can be
neglected. As for other alignment-free methods, like Meta-
Gene, our method is susceptible to frame shifts. Only cer-
tain alignment-based methods can be expected to be more
robust with regard to this kind of error [17].

Conclusion
Large scale machine learning is well suitable for gene pre-
diction in metagenomic DNA fragments. Due to perform-
ance results obtained with the current experimental setup,
we suggest that our machine learning approach, with its
high gene prediction specificity, TIS correctness and com-
plete/incomplete prediction capabilities, complements
MetaGene with its high gene finding sensitivity well. Thus,
a combination of both methods should be considered.

Software availability
Linear discriminants and the trained neural network are
available as MATLAB files for download at [43]. A com-
mand line tool for gene prediction in DNA fragments
(Linux, 64-bit architecture) is available from the authors
on request.
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Orphelia: http://orphelia.gobics.de/datasets/
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ABSTRACT

Metagenomic sequencing projects yield numerous
sequencing reads of a diverse range of uncultivated
and mostly yet unknown microorganisms. In many
cases, these sequencing reads cannot be
assembled into longer contigs. Thus, gene predic-
tion tools that were originally developed for whole-
genome analysis are not suitable for processing
metagenomes. Orphelia is a program for predicting
genes in short DNA sequences that is available
through a web server application (http://orphelia.
gobics.de). Orphelia utilizes prediction models that
were created with machine learning techniques on
the basis of a wide range of annotated genomes. In
contrast to other methods for metagenomic gene
prediction, Orphelia has fragment length-specific
prediction models for the two most popular
sequencing techniques in metagenomics, chain ter-
mination sequencing and pyrosequencing. These
models ensure highly specific gene predictions.

INTRODUCTION

Metagenomics is an approach to the characterization
of microbial genomes without the cultivation of individual
species under laboratory conditions. In metagenomic
sequencing projects, DNA is directly isolated from the
environment and sequenced. Currently, the most
common sequencing methods utilized in this field are
chain termination sequencing (also named Sanger sequenc-
ing) (1), which yields an average read length of �700 bp,
and the more cost efficient pyrosequencing (2), which
results in reads of average length �300 bp. Regardless of
the read length, it is in many cases impossible to reliably
assemble metagenomic sequencing reads into longer con-
tigs because diversity in metagenomic samples is often
too large to provide a high sequencing coverage of single
species. To answer one of the major questions of metage-
nomic sequencing projects, which parts of the sequencing

reads encode for proteins, methods are required that can
identify genes directly in short and anonymous DNA
fragments.
In principle, metagenomic gene prediction is accom-

plished by two approaches. One is the identification of
genes through homology-based methods, for instance by
BLAST search of the input sequence against a database of
known proteins (3). This approach is limited to the pre-
diction of genes that are highly similar to already known
genes. By the clustering of open reading frames (ORFs),
homology-based methods can also find novel genes which
are conserved within the metagenomic sample (4,5).
However, these methods become computationally expen-
sive for large samples. A different approach is gene pre-
diction by means of statistical models. Model-based gene
prediction methods have the advantage that they can dis-
cover novel genes at lower computational cost and with-
out the prerequisite of a high conservation of these genes
within the sample. On the other hand, most model-based
methods are sensitive to sequencing errors in form
of frame shifts. Up to now, three model-based gene
prediction tools for metagenomic DNA fragments are
available, namely MetaGene (6), its successor, the
MetaGeneAnnotator (7), and GeneMark with a heuristic
model (8). All three tools are available as web server
applications. In contrast to the MetaGene and
MetaGeneAnnotator web servers, the GeneMark web
server was not designed to treat single entries of a multiple
fasta file separately, which limits its applicability to meta-
genomic data. Nevertheless, all tools achieve a good per-
formance on fragments of Sanger read length. Prediction
accuracies on 300 bp DNA fragments are lower.
Here, we introduce the ab initio gene prediction web

server application ‘Orphelia’, which is based on our pre-
viously published machine learning approach to metage-
nomic gene prediction (9). While the other three tools
utilize the same prediction model for all read lengths,
Orphelia currently supports two separate models for the
most common sequencing techniques in metagenomics,
thereby also providing highly specific gene predictions in
fragments <300 bp. A high gene prediction specificity can
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be very important for high-throughput metagenome ana-
lysis, because the large number of sequences usually makes
a manual curation of the predictions impossible.

METHODS

In a first step, Orphelia identifies all ORFs in the input
sequence. By our definition, ORFs begin with a start
codon (ATG, CTG, GTG, or TTG), are followed by at
least 18 subsequent triplets, and end with a stop codon
(TGA, TAG, or TAA). Due to the short input sequence
length, we also consider incomplete ORFs of at least 60 bp
input length that lack a start and/or stop codon. After
extraction, all ORFs are scored by a gene prediction
model that is based on machine learning techniques.
Finally, a greedy method with a maximal overlap con-
straint selects a combination of highly probable genes.
The gene prediction model is sketched in Figure 1. At

first, features for monocodon usage, dicodon usage and
translation initiation sites are extracted from the ORF
sequence using linear discriminants. The discriminants
were trained on 131 fully sequenced prokaryotic genomes
(9). After feature extraction, an artificial neural network
combines the sequence features with ORF length and frag-
ment GC-content, and computes a posterior probability of
an ORF to encode a protein. The neural network was
trained on randomly excised DNA fragments of a speci-
fied length from the genomes that were used for linear
discriminant training. In our previous publication, we pro-
vided a prediction model in which the neural network was
trained on 700 bp fragments for predicting genes in Sanger
read length fragments. We showed that this model is
robust with respect to varying sequence length (above

�300 bp). On fragments as short as �300 bp, we observed
a drastic decrease in performance. Therefore, the Orphelia
web server also provides an additional prediction model
that was trained on 300 bp fragments, which corresponds
to the average read length of pyrosequencing.

Besides the discriminant-based translation initiation
site (TIS) probability as inferred from a 60 bp TIS
region around the potential start codon, we now use the
‘TIS coverage’ as an additional feature. The TIS coverage
is the fraction of the TIS region, which is actually con-
tained in the sequence fragment. This feature accounts for
incomplete TIS regions and completely missing start
codons, which imply a zero coverage.

WEB SERVER

Input

The Orphelia submission page is shown in Figure 2.
Orphelia requires as input data a set of DNA sequences
in standard multiple FASTA format. Small data sets can
be pasted into the sequence window, larger data sets
should be uploaded via the ‘Browse’ button. Currently,
the upload is limited to 30MB. If a data set exceeds this
size, we recommend either the splitting into smaller files,
or the usage of our standalone command-line tool for
64-bit architecture Linux systems.

Further, the prediction model to be utilized can be spe-
cified: Net700 should be selected for Sanger reads, Net300
for reads shorter than 300 bp. For calculating the final
combination of predicted genes per fragment, Orphelia
by default allows a maximal overlap of 60 bp between
genes. The maximal overlap can be varied through the

Figure 1. Orphelia’s ORF scoring model. In Step 1, 7 ORF/fragment
features are computed. Step 2 calculates a final gene probability, com-
bining the features by means of a neural network.

Figure 2. Screenshot of the Orphelia web server application submission
page.
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web interface. Finally, the user must provide a valid e-mail
address to which an URL with a link to results will be
sent.

Output

A typical run of Orphelia takes several minutes (for 10MB
input). Upon completion of the job, Orphelia sends an
e-mail with two files to the user: the original input
sequences, seq.fna, and the predicted genes, gene.
pred. Predicted genes are given in a one-line-per-gene
format:

>FragNo, GeneNo, Coord1_Coord2_Str_Fr_C_FH

FragNo is the fragment number in the input file,
GeneNo is a numerical identifier of a Gene within the
fragment. Coord1 and Coord2 indicate the positions of
a predicted gene in the fragment, starting with position 1
at the beginning of the fragment. Str is the strand on
which a predicted gene is encoded. The input sequence
from 50 to 30 direction is assigned the ‘+’ strand. Fr
gives the reading frame of a gene counted from the
50-end of the sequence. Reading frame 1 begins at the
first nucleotide position of the input sequence, frame 2
at the second position and frame 3 at the third position.
C is a label which indicates whether a candidate is com-
plete (C) or incomplete (I). FH stands for the FASTA
header of the input sequence. The first three entries are
separated by a comma (,), all subsequent entries are sepa-
rated by an underscore (_).

EXPERIMENTAL RESULTS

Evaluation on simulated data

We evaluated the accuracy of Orphelia’s prediction models
on DNA fragments of 300 and 700 bp, respectively. The
fragments were randomly excised to a 10-fold genome
coverage from 12 annotated test genomes that were not
contained in the training set of Orphelia and that were
first proposed by Noguchi et al. in 2006 (6). We measured
sensitivity, which reflects how many of the existing genes
were detected, and specificity, which shows how many
of the predicted genes are annotated. In addition, the
harmonic mean, which combines sensitivity and specificity
within a single measure was used according to:
2� (Sensitivity� Specificity)/(Sensitivity+Specificity).

All predicted genes that match at least 60 bp in the same
reading frame on the same strand with the annotation were
counted as true positives. Table 1 shows the mean and stan-
dard deviation of performance over all species. Orphelia
(Net700) has a prediction sensitivity of 88%, a specificity
of 93% and a harmonic mean of 90.5% on 700 bp frag-
ments. On 300 bp fragments (Net300), sensitivity (82%),
specificity (92%) and the harmonic mean (86.6%) are
lower than on 700 bp fragments, but the specificity is still
very good.
In comparison to MetaGene, Orphelia has a lower

sensitivity but shows a higher specificity, while the har-
monic mean of both methods differs by <1%. The
MetaGeneAnnotator shows a slightly higher harmonic
mean than Orphelia and MetaGene, particularly on
300 bp fragments. Orphelia still has a higher specificity
than the MetaGeneAnnotator. A direct comparison of
GeneMark and Orphelia on the test setup shown here
seems unfair if one considers that the model used by
GeneMark was built using some of the test species.
Keeping this in mind, GeneMark has a harmonic mean
that is similar to MetaGeneAnnotator but has a specificity
that is comparable with Orphelia.
In order to determine input sequence length-specific

optimal models, we evaluated gene prediction accuracy
of both models on fragments ranging in length from
200 bp to 500 bp in 20 bp intervals. The fragments were
randomly excised to a 1-fold genome coverage from
the test species mentioned above. While Net700 shows
a softly decreasing sensitivity and specificity on shorter
fragments, and a good performance on fragments as
long as 60 000 bp (previously demonstrated in supplemen-
tary materials, Figure 4 of (9)), Net300 drastically drops
in accuracy for fragments >300 bp. We therefore recom-
mend the usage of Net300 for fragments ranging from
200 bp to 300 bp length, and Net700 for all longer frag-
ments. More details can be seen in Supplementary Data,
Figures 1 and 2.
In order to determine the effect of sequencing errors

on gene prediction accuracy, several scenarios were simu-
lated using the MetaSim software (10) and the same test
species as before. We simulated error-free Sanger reads
(with a mean length of 700 bp), and Sanger reads with
error rates of 1� 10�2, 1� 10�3, 1� 10�4 and 1� 10�5

at the beginning of the read and error rates of 2� 10�2,
2� 10�3, 2� 10�4 and 2� 10�5 at the end of the read,

Table 1. Mean and standard deviation of sensitivity, specificity and harmonic mean on 300 and 700 bp DNA fragments that were randomly excised

from 12 test species

300 bp fragments 700 bp fragments

Sensitivity Specificity Harmonic mean Sensitivity Specificity Harmonic mean

Orphelia Net300 82.1� 3.6 91.7� 3.8 86.6� 2.7 49.5� 13.8 79.3� 6.9 59.4� 10.2
Orphelia Net700 83.8� 3.4 88.1� 4.9 85.8� 3.9 88.4� 3.1 92.9� 3.2 90.6� 2.9
MetaGene 89.3� 3.3 84.2� 6.0 86.6� 4.3 92.6� 3.1 88.6� 5.9 90.4� 4.0
MetaGeneAnnotator 90.1� 2.8 86.2� 5.7 89.1� 3.1 92.9� 3.0 90.0� 6.0 91.5� 3.3
GeneMark 87.4� 2.8 91.0� 4.2 89.1� 3.1 90.9� 2.7 92.2� 5.1 91.5� 3.1

Orphelia Net300 represents Orphelia with the 300 bp prediction model, Orphelia Net700 represents the 700 bp prediction model. In addition, the
performance of MetaGene, MetaGeneAnnotator and GeneMark is shown.
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respectively (more details are given in the Methods section
of Supplementary Data).
For a comprehensive evaluation of the effect of

sequencing errors on gene prediction performance, pre-
dicted nucleotide sequences were translated to amino
acid sequences using the standard translation table for
prokaryotes. Predicted sequences were then aligned
to annotated protein sequences using BLAT (11) with
standard parameters. Matching amino acids were counted
as true positives, amino acids that occur only in the anno-
tation were counted as false negatives and amino acids
that occur only in the prediction were counted as false
positives. Based on these counts, we observe a decrease
of sensitivity and specificity for Orphelia Net700 on
Sanger reads with increasing error rates (see Supplemen-
tary Data, Table 1). For an error rate of �10�4, which was
suggested by (6) as a realistic error rate, Orphelia shows a
drop in accuracy of <1%.

Application to real data

The hypersaline microbial mat metagenome consists of
samples from 10 spatially successive layers of Guerrero
Negro (12). Each sample was Sanger sequenced and
contains �13 000 reads. The original gene annotation of
those reads was created with the commercial program
FGENESB (http://www.softberry.com). Note that
FGENESB integrates model-based gene prediction with
homology-based annotation. In contrast to Orphelia and
MetaGene, FGENESB also annotates rRNA and tRNA
genes. For the following comparison of gene predictions,
all RNA genes were removed from the FGENESB
annotation.
We applied Orphelia (Net700) and MetaGene to the

hypersaline microbial mat metagenome (all samples).
The number of nucleotides that were predicted as protein
encoding was counted and all possible intersections of
nucleotides that were predicted as protein coding by
Orphelia MetaGene, and FGENESB were calculated.
The results are shown in Figure 3. All three methods pre-
dict �62.3� 106 nt as protein coding. FGENESB predicts
�1.2� 106 nt, MetaGene predicts �2.4� 106 nt and

Orphelia predicts �3.1� 106 nt as protein coding that
were not predicted by any other method. FGENESB has
an intersection of �4.9� 106 nt with Orphelia, and an
intersection of �1.2� 106 nt with MetaGene. Both
Orphelia and MetaGene predict about �4.9� 106 nt as
protein coding that were not predicted by FGENESB.
Mavromatis et al. (13) reported FGENESB to overlook
�20% of the genes on single sequencing reads from anno-
tated genomes, and that FGENESB ‘newly predicted’
�10% genes in the same reads. We think that the inter-
section of nucleotides that were predicted by all methods
contains highly reliable genes, and that at least the nucleo-
tides commonly predicted by Orphelia and MetaGene, but
not by FGENESB, are worth further investigation
because they are likely to contain genes that were over-
looked by FGENESB. Gene predictions of Orphelia and
MetaGene on this dataset are available through the
Orphelia web site.

IMPLEMENTATION

Orphelia’s ORF finder is implemented in Java, while
the ORF scoring routine and the greedy strategy for cal-
culating the final gene combination are implemented in
MATLAB using fast C (‘mex’) code for time critical sub-
routines. MATLAB routines are integrated as a
MATLAB compiler generated program. The web server
is based on Java Servlet technology. Submitted jobs are
scheduled via a batch queuing system which allows simul-
taneous processing of several requests.

CONCLUSION

The evaluation on simulated data sets demonstrates that
Orphelia shows high gene prediction accuracy on short
DNA fragments and has—compared with the other web
servers for metagenomic gene prediction—a particularly
high gene prediction specificity. We showed that realistic
sequencing error rates influence prediction performance
only mildly. Therefore, the Orphelia web server applica-
tion can be a valuable tool for predicting genes in meta-
genomic sequencing reads.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Abstract

Background: Gene prediction is an essential step in the annotation of metagenomic sequencing reads. Since

most metagenomic reads cannot be assembled into long contigs, specialized statistical gene prediction tools

have been developed for short and anonymous DNA fragments, e.g. MetaGeneAnnotator and Orphelia. While

conventional gene prediction methods have been subject to a benchmark study on real sequencing reads with

typical errors, such a comparison has not been conducted for specialized tools, yet. Their gene prediction

accuracy was mostly measured on error free DNA fragments.

Results: In this study, Sanger and pyrosequencing reads were simulated on the basis of models that take all

types of sequencing errors into account. All metagenomic gene prediction tools showed decreasing accuracy with

increasing sequencing error rates. Performance results on an established metagenomic benchmark dataset are

also reported. In addition, we demonstrate that ESTScan, a tool for sequencing error compensation in

eukaryotic expressed sequence tags, outperforms some metagenomic gene prediction tools on reads with high

error rates although it was not designed for the task at hand.

Conclusions: This study fills an important gap in metagenomic gene prediction research. Specialized methods

are evaluated and compared with respect to sequencing error robustness. Results indicate that the integration of

error-compensating methods into metagenomic gene prediction tools would be beneficial to improve

metagenome annotation quality.

Background

Metagenomes are analyzed through simultaneous sequencing of all species in a microbial community

without prior cultivation under laboratory conditions. The result is usually a large collection of sequencing

reads from many species, and the phylogenetic origin of each read is unknown. A major goal in all

metagenomic studies is the identification of potential protein functions and metabolic pathways. Reliable

gene predictions are the basis for correct functional annotation, and for the discovery of new genes with

their functions.

Several gene prediction methods have been developed for the ab initio identification of protein coding
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genes in complete microbial genomes (e.g. GLIMMER and GeneMark [1,2]). These methods require an

initial training phase on some data from the target genome, or training on the genome of a closely related

species. Such conventional gene finders can in principle be applied to metagenomic data, given that single

sequencing reads can be assembled into longer contigs in order to provide sufficient training data. The

applicability of conventional gene finders to metagenomic contigs can be improved by binning contigs and

reads into separate phylogenetic scaffolds, e.g. by their oligonucleotide signature [3]. However, the

assembly of metagenomic sequencing reads is problematic. Mavromatis et al. (2007) demonstrated on

artificial metagenomes that assembly quality highly depends on the sequencing coverage of single species

within the metagenome [4]. They also showed that short contigs are at high risk of chimerism, i.e. a read

from species A is joined with a read of species B, which limits the use of contigs for further analysis. Some

proportion of most metagenomes remains in single unassigned sequencing reads after assembly and

binning, and in some cases, metagenome assembly fails completely, e.g. for the hypersaline microbial mat

metagenome [5]. For this reason, the ability of predicting genes in single and anonymous sequencing reads

is essential to fully explore a metagenome.

This problem can be solved by two strategies. One possibility is the identification of protein coding regions

through sequence similarity. An example is to conduct a BLAST search [6] with metagenomic sequences

against a database of known proteins. Annotation success is here limited to already known genes and their

close relatives. This problem is particularly prominent for viral sequences that are poorly represented in

databases [7–9]. Clustering of open reading frames (ORFs) in principle enables sequence similarity based

methods to identify novel genes that are conserved within the metagenomic sample [10,11]. Considering

the size of most metagenomes, computational cost is a limiting factor for these methods.

A different strategy is based on gene prediction with statistical models. GeneMark with heuristic

models [12], MetaGene [13], Orphelia [14,15] and MetaGeneAnnotator [16] fall into the category of

model-based metagenomic gene prediction tools. The common advantage of these tools is the capability to

predict known and novel genes at a lower computational cost. Their mostly unexplored disadvantage is the

susceptibility to sequencing errors - which methods that are based on sequence similarity may

automatically compensate to a certain extent.

The possible effect of sequencing errors on model-based metagenomic gene prediction depends on the

actual error rates. The two major sequencing techniques that are commonly used in metagenomics have

different sequencing accuracy. Chain termination sequencing [17] was the first method to be used for

metagenome sequencing. It produces an average read length of ∼700 nucleotides (nt). The error rates
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reported for Sanger sequencing vary from 0.001% [13,18] to more than 1% [19,20] and seem to depend on

the software that is used for post processing of reads. Pyrosequencing, also known as “454 sequencing”,

produces shorter reads [21,22]. In the beginning, read length was about 110 nt and has now increased to

more than ∼450 nt. Huse et al. (2007) reported an error rate of 0.49% for reads of the length 100-200

nt [23], the read simulation software MetaSim [20] produces reads with an error rate of 2.8% with

parameters that are adjusted according to an original 454 publication [22]. Pyrosequencing is still subject

to constant research. In the near future, a further increase in read length can be expected.

For all techniques, sequencing accuracy is high at the beginning of a read and decreases with read length.

Three error types can occur: (1) substitution errors, that means a wrong nucleotide is read out, (2)

deletion errors, in which one or more nucleotides are omitted, and (3) insertion errors, where one or more

nucleotides are falsely added to the sequence during the reading process.

All statistical gene prediction tools utilize codon usage as an important feature to identify protein coding

genes. If a nucleotide is deleted or inserted into the sequence, this causes a shift in the reading frame.

Methods that do not compensate for frame shifts cannot predict affected genes accurately. Substitution

errors will only affect one codon and their influence on gene prediction accuracy is therefore generally

smaller. All types of errors may also result in additional stop codons. False stop codons may have an even

more severe effect on gene prediction than a frame shift because they will definitely terminate a predicted

gene.

The robustness with respect to sequencing errors in Sanger reads has been investigated and discussed for

MetaGene and Orphelia [13,14], other tools have not been evaluated with regard to this property. In

particular, no studies about the effect of sequencing errors in 454 reads on metagenomic gene prediction

are available. Three benchmark data sets that were supposed to facilitate the accuracy evaluation of

metagenome analysis tools on real data were introduced [4] but so far, metagenomic gene prediction tools

have not been evaluated on these data sets.

In this work, we demonstrate the extent to which typical errors in Sanger and pyrosequencing reads affect

metagenomic gene prediction. The effect strongly depends on the actual error rate. For investigation, we

utilize sequences simulated with MetaSim, a metagenome simulator [20]. Gene prediction quality on the

metagenomic benchmark data sets is also shown and discussed. ESTScan [24], a tool for the curation of

expressed sequence tags (ESTs), was trained for the application to metagenomes, and gene prediction

accuracy results of ESTscan lead us to the conclusion that the integration of error compensating methods

into metagenomic gene prediction tools might significantly improve their performance, and with this
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metagenome annotation quality.

Results
Simulated reads

The evaluation of metagenomic gene prediction tools is complicated by a lack of reliably annotated

metagenomic reads. The annotation quality of complete genomes can be expected to be much better. For

this reason, we used simulated reads from annotated genomes for the evaluation of metagenomic gene

prediction tools.

The models underlying all metagenomic gene prediction tools were built on the basis of genomes from

selected training species. Generalization capabilities of those models can only be analyzed if training

species and their close relatives (we define close relative as species from the same genus) are excluded from

the evaluation setup. In this study, we did not aim at the simulation of realistic microbial communities,

but instead, we wanted to encompass a wide range of phyla. Therefore, a set of prokaryotic microorganisms

was selected according to this criterion (see Table 1). None of these species has a genus relative in the

training data of metagenomic gene predictions tools investigated in this study.

Sanger sequencing reads with the average length of 700 nt were simulated with error rates ranging from 0

to 1.5%, and 454 reads that are on average 450 nt long were simulated with error rates ranging from 0 to

2.8%. All simulated reads are available at http://metagenomic-benchmark.gobics.de.

ESTScan matrix

ESTScan is a tool that was originally developed to detect coding regions in eukaryotic ESTs and

simultaneously correct sequencing errors [24]. In contrast to metagenomic gene prediction methods,

ESTScan cannot detect overlapping coding regions as they frequently occur in prokaryotic genomes. We

were interested in ESTScan’s sequencing error correction capabilities. In order to test if ESTScan would

also compensate errors in coding regions on metagenomic sequencing reads, we trained an ESTScan scoring

matrix on prokaryotic genomes that were also used for training MetaGene and Orphelia. The matrix is

availabe at http://metagenomic-benchmark.gobics.de.

Accuracy on unassembled simulated reads

Gene prediction accuracy can be estimated by measuring the overlap of predicted and annotated genes in

the same reading frame. A comparison on amino acid sequence level reflects overlap and reading frame if
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the basic requirement that the sequences are highly similar (almost identical) is fulfilled. An amino acid

sequence alignment with only few missmatches and gaps shows this kind of similarity. We used BLAT [25]

alignments of predicted and annotated genes to assess gene prediction accuracy. Three classes of genes

were defined: (1) predicted genes that had a BLAT alignment of at least 20 amino acids (aa) length and at

least 80% sequence identity were called true positives, (2) annotated genes that did not fall into the first

category were counted as false negatives, and (3) predicted genes that did not have a match with the

annotation according to the first criterion were counted as false positives. With these counts, we measured

the proportion of annotated genes that were predicted (sensitivity) and the proportion of predicted genes

that match genes in the annotation (specificity). Further details are given in section Methods.

On simulated Sanger sequencing reads, MetaGene and MetaGeneAnnotator show the highest gene

prediction sensitivities (∼ 94% over all species on error free reads and ∼80% on reads with the highest error

rate) while Orphelia has the best specificity values with ∼96% on error free reads and ∼92% on reads with

the highest error rate (compare Table 2). This result is in agreement with previous publications [14,15].

To estimate overall gene prediction accuracy, sensitivity and specificity were combined in a harmonic mean.

Results are visualized in Figure 1. Generally, the MetaGeneAnnotator shows the highest accuracy. The

accuracy of all tools decreases only very mildly (by ∼1.4%) on reads from 0.0015% to 0.15% errors. Also

common to all tools is a drastic drop in accuracy of ∼10% from reads with 0.15% errors to reads with 1.5%.

For a concise picture, we also measured amino acid prediction accuracy. For this, all amino acids that were

captured into a BLAT alignment of prediction and annotation were counted as true positives. All amino

acids in the annotation that were not predicted by the true positive criterion were counted as false

negatives, and the remaining predicted amino acids were counted as false positives.

All tools have an amino acid sensitivity of ∼95 to 96% on error free reads. Orphelia and

MetaGeneAnnotator have with 97% the highest specificity [see Additional file 1, Table S1]. These values

are higher than the corresponding gene prediction accuracy, indicating that long genes on error free reads

are more likely to be predicted correctly than short genes. On reads with high error rates (0.15% and

1.5%), we observed that gene prediction rates were higher than amino acid prediction rates. The reason is

that long open reading frames are likely to be affected by sequencing errors in form of in frame stop

codons. Consequently, only shorter genes can be predicted, which is also confirmed by length boxplots of

genes predicted in reads with different error rates [see Additional file 1, Figure S1].

ESTScan had with ∼87% a lower harmonic mean (gene prediction level) than metagenomic gene prediction

tools on reads with few errors (see Figure 1). Interestingly, the decrease in performance on reads with

6



0.015% errors to 0.15% errors was only 0.7%, which is smaller than the decrease observed for metagenomic

gene prediction tools (ranging from 0.8 to 1.4%). From reads with 0.15% to 1.5% errors, a decrease in

accuracy of 9% was observed, which is also a smaller accuracy drop than measured for metagenomic gene

prediction tools.

On error free 450 nt pyrosequencing reads, gene prediction sensitivity and specificity of all tools is similar

to accuracy on Sanger reads (see Table 3). Also here, MetaGeneAnnotator has the highest gene prediction

harmonic mean (94%) as depicted in Figure 2. From error free reads to reads with 0.49% errors, a drop in

harmonic mean of ∼9% is observed for all gene prediction methods (except for Orphelia with 12%).

Opposed to this, ESTScan again showed a smaller decrease of 7%. Continuing to reads with an error rate

of 2.8%, a further accuracy decrease of ∼35 (MetaGeneAnnotator, MetaGene, GeneMark) to ∼42%

(Orphelia and ESTScan) follows. On amino acid level, we observe the same effects as for Sanger reads [see

Additional file 1, Table S2].

On the example of 454 reads with an error rate of 0.49%, we further investigated to which extent the

GC-content of a read influences gene prediction accuracy. (GC-content is the percentage of bases cytosine

and guanine in all bases of a sequence.) Table 4 shows that GeneMark has a higher gene prediction

accuracy on low-GC species than on species with a high GC-content. For MetaGene and

MetaGeneAnnotator, this effect is smaller, and for Orphelia and ESTScan, we can not find an obvious

difference. On the same dataset, we also measured gene prediction sensitivity and specificity for different

gene lengths. For measuring sensitivity, we evaluated predicted genes with all lengths against annotated

genes of certain length categories (up to 40 aa length, 41 to 80, 81 to 120, 121 to 160, 161 to 200).

Specificity was measured by evaluating predicted genes of the length categories against annotated genes of

all lengths. All tools most accurately predict genes of 160 aa length or longer (those genes mostly span the

complete read). MetaGene and MetaGeneAnnotator have the highest sensitivity on shorter genes while

Orphelia has the highest specificity among gene prediction tools on shorter genes [see Additional file 1,

Figure S2].

Accuracy on FAMeS reads

The “Fidelity of Analysis of Metagenomic Samples” (FAMeS) benchmark data sets consist of sequencing

reads from single species genome projects [4]. The benchmark data sets were designed to measure the

accuracy of assemblers, binning methods and gene prediction methods. Particularly for assessing assembly

and binning accuracy, the reads were combined into three sets with different degrees of representation for

7



each species. The low-complexity data set (simLC) consists of reads from mostly one species with a few

reads from less abundant species. The medium-complexity data set (simMC) resembles a moderately

complex community with more than one dominant population and also has few reads from less abundant

species. The high-complexity data set (simHC) lacks dominant populations. However, detecting a

difference in gene prediction accuracy between the three different sets will only show that a tool is better

for predicting genes in one species than in others. We used the unassembled reads of all FAMeS data sets

to test gene prediction accuracy of tools that were mainly designed for the application to single reads or

short contigs. Regarding the results, one must consider that the sequence quality of FAMeS raw reads is

rather low because the reads are untrimmed, meaning that their low-quality ends have not been removed.

On all three data sets, GeneMark shows the highest harmonic mean (∼81%) [see Additional file 1, Figure

S3]. The most sensitive method on all data sets was MetaGene (78% on simMC and simHC, 80% on

simLC), and the highest specificities were observed for GeneMark (86% on simLC, 85% on simMC, 83% on

simHC, see Table 5).

Interestingly, ESTScan performs almost as good as GeneMark on FAMeS reads (most likely due to the low

sequence quality of the FAMeS data set).

Discussion

The major question of this study was how sequencing errors affect metagenomic gene prediction accuracy.

On Sanger reads, prediction accuracy is only mildly affected by error rates of up to 0.15%. Sequencing

accuracy in this range is realistic for most combinations of chain termination sequencers and read

postprocessing software. In general, all tools are therefore applicable to metagenomic Sanger sequences.

The FAMeS data set gives an example for low quality Sanger sequences. On those reads, the accuracy of

specialized metagenomic gene prediction tools is not much higher than the performance of conventional

gene prediction tools (see [4]). The quality of these reads is very likely to be improved by read

postprocessing steps, e.g. by trimming read ends. The results on the FAMeS data set demonstrate that

such postprocessing steps are important to ensure a high gene prediction accuracy.

In 2008, Wommack et al. showed that a read length of 400 nt significantly weakens BLAST analysis results

from metagenomic data [9]. For gene prediction tools that use statistical models, our findings on simulated

450 nt pyrosequencing reads suggest that the actual read length of 450 nt has almost no impact on gene

prediction accuracy results when compared to accuracy on 700 nt Sanger reads (compare Tables 2 and 3).

Sequencing errors lead to a decrease in gene prediction accuracy, though. On reads with a realistic error
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rate of 0.49% for pyrosequencing, the harmonic mean is around 82%, which leaves much room for

improvement. The identification of short gene fragments, particularly gene fragments shorter than 120 aa

(360 nt), is a major shortcoming of metagenomic gene prediction tools. Therefore, gene prediction in

pyrosequencing reads would benefit from further development of models specialized on the accurate

detection of short gene fragments.

Another interesting question is whether metagenomic gene prediction tools that were trained on a limited

set of species genomes are able to predict genes in reads from distantly related species, and whether it is

possible to name a ’best tool’ for this purpose. The simulated reads used in this study were sampled from

species that belong to many different phyla. Members of some phyla were used for training of all tools,

other phyla were not represented by a training species. We show that gene prediction accuracy varies over

reads from different test species but we believe that this variation is independent from the degree of

relatedness to training species. Dictyoglomus thermophilum is an example whose phylum was excluded

from training of all tools. No significant drop in accuracy can be observed for reads from this species (see

Table 4).

On the simulated reads here, it looks like MetaGeneAnnotator is the best tool. In contrast to this,

GeneMark has the highest accuracy on FAMeS reads - which are constituted from different species than

the simulated data set. Also the results of Hoff et al. (2009) demonstrated a high prediction accuracy for

GeneMark on a different simulated data set [15]. From the presented data, it is not possible to conclude

whether metagenomic gene prediction tools work better or worse for reads from particular phyla because

most phyla are represented by only one species. However, it seems that gene prediction accuracy of single

tools depends on the species contained in a metagenome.

The accuracy of metagenomic gene prediction tools on real sequencing reads affects further steps of

metagenome analysis that generally depend on the predictions. For example, the functional annotation of

genes is often achieved by using HMMER [26] or fast tools like UFO [27] for sensitive protein domain

database search, e.g. to detect Pfam domains (e.g. [28,29]). The profile hidden Markov models for HMMER

or the UFO algorithm cannot detect domains correctly if the predicted genes that are used for database

search are affected by frame shift errors within the domain region. In addition, gene prediction sensitivity

directly influences the number domains that can potentially be detected. A high gene prediction accuracy

ensures that such gene prediction dependent steps of analysis can also be carried out with high accuracy.

We showed that ESTScan, although not designed for metagenomic gene prediction, is in principle capable

of compensating for frame shift errors in metagenomic data to some extent. Therefore, metagenomic gene
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prediction accuracy could be greatly improved by the integration of methods that are robust with respect

to sequencing errors.

Conclusions

In conclusion, the integration of error compensating methods into metagenomic gene prediction tools as

well as the development of suitable models specialized on the accurate detection of short gene fragments

would be beneficial to improve metagenome annotation quality.

Methods
Read simulation

Sanger and 454 sequencing reads were simulating with MetaSim from the genomes of species given in Table

1 with 1-fold genome coverage as defined in [14,15].

Sanger reads were simulated with the error rates 0%, 0.0001% at the read start and 0.0002% at the read

end, 0.001% to 0.002%, 0.01% to 0.02%, 0.1% to 0.2%, and 1% to 2%, and an average read length of 700 nt.

Pyrosequencing reads were simulated with MetaSim from the same genomes, with an average read length

of 450 nt, and with the error rates 0%, 0.22%, 0.49%, and 2.8% (1-fold genome coverage).

Further details on the simulation parameters of MetaSim are given in Additional file 1, section

Supplementary methods.

Benchmark data set

The FAMeS benchmark data sets simLC, simMC and simHC were retrieved from

http://fames.jgi-psf.org/Retrieve data.html in September 2008. For gene prediction accuracy assessment,

the “genes that are included in the reference genomes” (further referred to as amino acid annotation file),

and the “overlap of the genes with the sequencing reads” were also downloaded. The amino acid

annotation file contains the full length amino acid sequences from genes in all genomes.

Gene prediction

Genes in simulated reads and reads of the FAMeS data set were predicted with Genemark heuristic version

1.1, MetaGene and MetaGeneAnnotator as provided at http://metagene.cb.k.u-tokyo.ac.jp/metagene on

February 1st 2009, respectively, and Orphelia as provided at http://orphelia.gobics.de/download.jsp on

May 1st 2009. Concerning the two different models of Orphelia, we applied Net300 to all reads shorter or

equal the length of 300 nt. Net700 was used for all remaining reads.
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Genemark was run with the parameter -a to produce an amino acid sequence output. Amino acid

sequences for the other tools were translated from nucleotide sequences that were excised from the

simulated reads according to the predicted gene coordinates using BioPerl with the standard translation

table [30].

ESTScan training

For the application to metagenomic data, ESTScan 2.1 (available at

http://sourceforge.net/projects/estscan) was trained with the annotated genes from the training genomes

of MetaGene and Orphelia. Full coding regions were excised from the genomes with a flanking region of 50

nt. To directly obtain predicted amino acid sequences, ESTScan was applied to simulated and benchmark

data with the option -t.

Accuracy Assessment

Gene prediction accuracy was assessed through the alignment of amino acid sequences with BLAT. For

simulated reads, the translation of annotated protein coding genes in the error free version of simulated

reads were used as a reference. For the benchmark data set, full length amino acid sequences that

completely or partically overlap with the reads were used as a reference.

True positives, false negatives and false positives are described in section ’Results’, paragraph ’Accuracy on

simulated genes’. Sensitivity and specificity are defined in equations 1 and 2:

sensitivity =
true positives

(true positives + false negatives)
(1)

specificity =
true positives

(true positives + false positives)
(2)

Sensitivity and specificity were combined into one measure by the harmonic mean (3):

harmonic mean =
2 × sensitivity × specificity

sensitivity + specificity
(3)

Authors’ contributions

KJH designed, conducted and evaluated all experiments. The author wrote, read and approved the final

manuscript.

11



Acknowledgements

I would like to thank Dr. Peter Meinicke, Dr. Maike Tech, and Dr. Mario Stanke for fruitful discussions

about this study, Fabian Schreiber for programming assistance, Dr. Rolf Daniel for advice concerning

current sequencing error rates, and Dr. Peter Meinicke for proofreading of the manuscript. I am also very

grateful for the instructive comments of two anonymous reviewers.

KJH was financially supported by a Georg-Christoph-Lichtenberg stipend granted by the State of Lower

Saxony, Germany.

References
1. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL: Improved microbial gene identification with

GLIMMER. Nucleic Acids Res. 1999, 27(23):4636–4641.

2. Lukashin A, Borodovsky M: GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 1998,
26(4):1107–1115.

3. Woyke T, Teeling H, Ivanova N, Huntemann M, Richter M, Gloeckner F, Boffelli D, Anderson I, Barry K,
Shapiro H, Szeto E, Kyrpides N, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin E, Dubilier N:
Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 2006,
443:950–955.

4. Mavromatis K, Ivanova N, Barry K, Shapiro H, Goltsman E, McHardy A, Rigoutsos I, Salamov A, Korzeniewski
F, Land M, Lapidus A, Grigoriev I, Richardson P, Hugenholtz P, Kyrpides N: Use of simulated data sets to

evaluate the fidelity of metagenomic processing methods. Nat. Meth. 2007, 4(6):1548–7091.

5. Kunin V, Raes J, Harris J, Spear J, Walker J, Ivanova N, von Mering C, Bebout B, Pace N, Bork P,
Hugenholtz P: Millimeter-scale genetic gradients and community level molecular convergence in a

hypersaline microbial mat. Molecular Systems Biol. 2008, 4:198.

6. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic local alignment search tool. J. Mol. Biol. 1990,
215:403–410.

7. Angly F, Felts B, Breitbart M, Salamon P, Edwards R, Carlson C, Chan A, Haynes M, Kelley S, Liu H,
Mahaffy J, Mueller J, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle C, Rohwer F: The Marine Viromes

of Four Oceanic Regions. PLoS Biol. 2006, 4(11):e368.

8. Bench S, Hanson T, Williamson K, Ghosh D, Radosovich M, Wang K, Wommack K: Metagenomic

Characterization of Chesapeake Bay Virioplankton. Appl Environ Microbiol. 2007, 73(23):7629–7641.

9. Wommack K, Bhavsar J, Ravel J: Metagenomics: read length matters. Appl Environ Microbiol. 2008,
74(5):1453–1463.

10. Krause L, Diaz NN, Bartels D, Edwards RA, Pühler A, Rohwer F, Meyer F, Stoye J: Finding novel genes in

bacterial communities isolated from the environment. Bioinformatics 2006, 22(14):e281–e289.

12

4 Low-complexity simulated data set with one dominating species and few reads from less abundant species.

5 Medium-complexity simulated data set with several dominating species and reads form less abundant

species.

6 High-complexity simulated data set without dominating species.

Appendix: footnotes

1 Error rates are given as ’error rate at the read start’ to ’error rate at the read end’.

2 Sensitivity (Sens.) expresses how many of the annotated genes were predicted.

3 Specificity (Spec.) shows how many of the predicted genes were true.



15. Hoff KJ, Lingner T, Meinicke P, Tech M: Orphelia: predicting genes in metagenomic sequencing

reads. Nucleic Acids Res. 2009, 37:W101–W105.

16. Noguchi H, Taniguchi T, Itoh T: MetaGeneAnnotator: detecting species-specific patterns of

ribosomal binding site for precise gene prediction in anonymous prokaryotic and phage genomes.
DNA Res 2008, 15(6):387–396, [http://dnaresearch.oxfordjournals.org/cgi/content/abstract/15/6/387].

17. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad.

Sci. USA 1977, 74(12):5463–5467.

18. Ewing B, LaDeana H, Wendl MC, Green P: Base-calling of automated sequencer traces using Phred I.

accuracy assessment. Genome Res. 1998, 8:175–185.

19. Keith CS, Hoang DO, Barrett BM, Feigelman B, Nelson MC, Thai H, Baysdorfer C: Partial sequence

analysis of 130 randomly selected Maize cDNA clones. Plant Physiol. 1993, 101:329–332.

20. Richter DC, Ott F, Auch AF, Schmid R, Huson DH: MetaSim – a sequencing simulator for genomics

and metagenomics. PLoS ONE 2008, 3(10):e3373.

21. Ronaghi M, Uhlén M, Nyreén P: A sequencing method based on real-time pyrophosphate. Science

1998, 281(5375):363–365.

22. Margulies M, Egholm M, Altman WE, Attiya S, Bader J, Bemben L, Berka J, Braverman M, Chen YJ, Chen
Z, Dewell S, Du L, Fierro JM, Gomes X, Godwin BC, He W, Helgesen S, Ho C, Irzyk G, Jando S, Alenquer M,
Jarvie T, Jirage K, Kim JB, Knight J, Lanza J, Leamon J, Lefkowitz S, Lei M, Li J, Lohman K, Lu H,
Makhijani V, McDade K, McKenna M, Myers E, Nickerson E, Nobile J, Plant R, Puc B, Ronan M, Roth G,
Sarkis G, Simons J, Simpson J, Srinivasan M, Tartaro K, Tomasz A, Vogt K, Volkmer G, Wang S, Wang Y,
Weiner M, Yu P, Begley R, Rothberg J: Genome sequencing in microfabricated high-density picolitre

reactors. Nature 2005, 437:376–380.

23. Huse SM, Huber JA, Morrison HG, Sogin ML, Welch DM: Accuracy and quality of massively parallel

DNA pyrosequencing. Genome Biol. 2007, 8:R143.

24. Lottaz C, Iseli C, Jongeneel CV, Bucher P: Modeling sequencing errors by combining Hidden Markov

models. Bioinformatics 2003, 19:ii103–ii112.

25. Kent WJ: BLAT – the BLAST-like alignment tool. Genome Res. 2002, 12(4):656–664.

26. Durbin R, Eddy SR, Mitchison G: Biological sequence analysis: probabilistic models of proteins and nucleic

acids. Cambridge: Cambridge University Press 1998.

27. Meinicke P: UFO: a web server for ultra-fast functional profiling of whole genome protein

sequences. BMC Genomics 2009, 10:409.

28. Harrington E, Singh A, Doerks T, Letunic I, von Mering C, Jensen L, Raes J, Bork P: Quantitative

assessment of protein function prediction from metagenomics shotgun sequences. Proc. Natl. Acad.

Sci. USA 2007, 104(35):13913–13918.

29. Gilbert J, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint I: Detection of large numbers of novel

sequences in the metatranscriptomes of complex marine microbial communities. PLoS ONE 2008,
3(8):e3042.

30. Stajich J, Block D, Boulez K, Brenner S, Chervitz S, Dagdigian C, Fuellen G, Gilbert J, Korf I, Lapp H,
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Figure 2 - Average gene prediction accuracy on simulated 454 reads.

The harmonic mean is a measure that combines sensitivity and specificity (mean and standard deviation

over all species in the simulated metagenome are shown).

Tables
Table 1 - Test species.

Species whose genomes were used to simulate sequencing reads.

Species Phylum GC-content
Acholeplasma laidlawii PG-8A Termicutes 31%
Buchnera aphidicola str. APS Proteobacteria (β) 30%
Burkholderia pseudomallei K96243 Proteobacteria (γ) 68%
Chlorobium tepidum TLS Bacteriodetes/Chlorobi group 56%
Corynebacterium jeikeium K411 Actinobacteria 61%
Desulfurococcus kamchatkensis 1221n Crenarcheota 45%
Dictyoglomus thermophilum H-6-12 Dictyoglomi 33%
Exiguobacterium sibiricum 255-15 Firmicutes 47%
Herpetosiphon aurantiacus ATCC 23779 Chloroflexi 50%
Hydrogenobaculum sp. Y04AAS1 Aquificae 34%
Natronomonas pharaonis DSM 2160 Euryarchaeota 63%
Nitrosopumilus maritimus SCM1 Crenarcheota 34%
Prochlorococcus marinus str. MIT 9312 Cyanobacteria 31%
Wolbachia endosymbiont strain TRS of Brugia malayi Proteobacteria (α) 34%

14

Figures
Figure 1 - Average gene prediction accuracy on simulated Sanger reads.

The harmonic mean is a measure that combines sensitivity and specificity (mean and standard deviation

over all species in the simulated metagenome are shown).



Table 2 - Accuracy on simulated Sanger reads.

The gene prediction accuracy (mean and standard deviation over all species in the simulated metagenome) results of four metagenomic gene
prediction tools GeneMark, MetaGene, MetaGeneAnnotator (MGA) and Orphelia, and of the EST processing tool ESTScan on simulated
Sanger reads is shown.

GeneMark MetaGene MGA Orphelia ESTScan
Error rate1 Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3

0 to 0 91.9 ± 3.2 93.8 ± 4.9 94.4 ± 3.0 93.0 ± 2.9 94.7 ± 2.9 94.1 ± 2.9 89.7 ± 3.5 96.5 ± 1.7 78.9 ± 7.2 98.5 ± 1.2
1 to 2 × 10−5 91.9 ± 3.3 93.7 ± 5.2 94.8 ± 2.8 93.0 ± 3.0 94.8 ± 2.9 94.0 ± 3.1 90.1 ± 3.3 96.7 ± 1.6 79.2 ± 6.5 98.6 ± 1.1
1 to 2 × 10−4 91.8 ± 3.3 93.5 ± 5.2 94.5 ± 2.9 92.6 ± 3.2 94.5 ± 3.0 93.7 ± 3.1 89.6 ± 3.5 96.5 ± 1.7 79.0 ± 7.0 98.4 ± 1.3
1 to 2 × 10−3 90.5 ± 3.2 92.6 ± 4.8 93.3 ± 2.8 92.1 ± 3.0 93.3 ± 3.0 93.3 ± 2.8 87.2 ± 3.6 96.0 ± 1.7 78.0 ± 7.2 98.2 ± 1.2
1 to 2 × 10−2 77.7 ± 4.4 86.6 ± 6.9 79.8 ± 3.6 85.6 ± 3.9 81.2 ± 4.3 87.6 ± 3.1 65.7 ± 6.4 91.9 ± 1.8 66.2 ± 11.1 96.2 ± 1.8
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Table 3 - Accuracy on simulated 454 reads.

The gene prediction accuracy (mean and standard deviation over all species in the simulated metagenome) of four metagenomic gene prediction
tools GeneMark, MetaGene, MetaGeneAnnotator (MGA) and Orphelia, and of the EST processing tool ESTScan on simulated 454 reads is
shown.

GeneMark MetaGene MGA Orphelia ESTScan
Error rate Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3

0 91.0 ± 3.6 93.8 ± 4.8 95.4 ± 2.8 92.8 ± 2.4 94.6 ± 2.7 94.1 ± 2.5 88.4 ± 3.5 96.7 ± 1.7 81.3 ± 7.8 97.9 ± 1.4
0.0022 85.3 ± 4.2 90.4 ± 5.6 89.3 ± 3.1 89.2 ± 3.5 89.6 ± 3.3 90.8 ± 2.6 80.0 ± 4.2 94.7 ± 2.1 77.2 ± 9.0 97.2 ± 1.5
0.0049 79.5 ± 4.9 87.6 ± 6.4 83.7 ± 3.5 85.9 ± 3.9 84.7 ± 4.0 87.7 ± 2.8 70.9 ± 5.9 92.5 ± 2.1 71.7 ± 11.5 96.2 ± 1.7
0.028 36.8 ± 4.9 68.3 ± 8.0 39.6 ± 3.9 60.6 ± 8.8 43.3 ± 5.5 61.9 ± 3.6 26.3 ± 9.1 68.3 ± 5.0 26.4 ± 11.2 86.2 ± 4.7
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Additional file 1

GeneMark MetaGene MGA Orphelia ESTScan
Species Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3

GC-content 30 - 39%
B. aphidicola 81.7 92.6 88.5 88.1 90.1 88.6 66.0 93.5 71.4 98.3
A. laidlawii 86.2 94.6 90.4 89.9 91.9 91.3 75.3 96.2 81.4 97.3
P. marinus 81.8 91.3 84.0 87.1 84.2 87.9 61.9 92.5 69.3 97.3
D. thermophilum 85.1 94.2 84.7 90.5 86.6 91.2 71.8 94.6 70.5 98.5
N. maritimus 85.7 90.4 86.2 86.7 87.7 87.7 68.1 92.4 76.9 96.1
W. endosymbiont 80.1 81.0 83.6 84.0 84.7 85.6 65.2 90.9 67.6 94.5
Hydrogenobaculum sp. 83.9 93.9 84.3 89.9 85.5 90.8 67.2 93.1 73.0 98.1
GC-content 40 - 49%
D. kamchatkensis 73.3 94.3 77.1 89.5 79.5 90.4 61.4 93.1 35.0 94.4
E. sibiricum 78.9 90.0 81.7 88.2 81.8 89.4 78.3 93.9 74.4 95.1
GC-content 50 - 59%
H. aurantiacus 70.2 80.1 80.2 84.9 78.6 86.1 74.0 92.7 76.4 95.5
C. tepidum 74.0 76.6 78.6 81.0 79.0 83.0 72.7 89.9 72.7 93.7
GC-content 60 - 69%
C. jeikeium 77.2 83.7 84.2 83.3 86.6 88.2 79.7 93.2 76.1 96.3
N. pharaonis 77.0 83.5 83.3 81.6 83.9 84.8 72.8 91.3 75.3 94.4
B. pseudomallei 77.7 80.5 85.2 77.6 85.9 83.3 77.0 87.8 84.5 97.7

Table 5 - Accuracy on FAMeS reads.

The gene prediction accuracy of four metagenomic gene prediction tools GeneMark, MetaGene,

MetaGeneAnnotator (MGA) and Orphelia, and of the EST processing tool ESTScan on FAMeS reads [4] is

shown.
simLC4 simMC5 simHC6

Method Sens.2 Spec.3 Sens.2 Spec.3 Sens.2 Spec.3

GeneMark 78.8 85.9 77.3 85.1 77.1 83.0
MetaGene 80.0 78.4 78.8 77.5 78.0 74.9
MetaGeneAnnotator 79.6 80.2 78.4 79.4 77.3 75.6
Orphelia 76.7 85.0 74.9 82.5 74.8 82.0
ESTScan 70.2 96.0 69.3 96.1 69.0 95.0

Additional Files

supplementary figures.
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Table 4 - Accuracy by Species

of four metagenomic gene prediction tools GeneMark, MetaGene, MetaGeneAnnotator (MGA) and

Orphelia, and of the EST processing tool ESTScan on pyrosequencing reads (450 nt) with 0.49% errors.
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This pdf-file contains supplementary details to the section Methods, supplementary tables and

The gene prediction accuracy (mean and standard deviation over all species in the simulated metagenome)
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Chapter 6

General Discussion

Orphelia is an accurate metagenomic gene prediction tool. In comparison to other metage-

nomic gene prediction methods, Orphelia has several unique features:

• We showed with Orphelia that the GC-content of an input sequence is not necessary in

order to derive a suitable model for scoring the codon usage of this sequence. Instead,

one generalized codon usage model and one generalized di-codon usage model are

applied to sequences with all GC-contents.

• In contrast to MetaGene and MetaGeneAnnotator, Orphelia also shows that a good

gene prediction accuracy can be achieved for Bacteria and Archaea without utilizing

different scoring models for sequences from the two domains.

• Due to its very generalized codon usage models, Orphelia predicts ’typical’ genes with

a uniquely high specificity. In turn, some ’atypical’ genes that more sensitive tools will

detect, are overlooked. The question is whether a high reliability of the predictions or

the (over-) prediction of genes is more desirable for metagenomic projects. Considering

that the manual curation of metagenomic gene predictions is often not feasible, the

specificity of a method is probably of higher importance.

Apart from the unique features of Orphelia, several general aspects of current metagenomic

gene prediction research need to be discussed. The following sections deal with the selection

of appropriate training data, the inclusion of additional genomic features of PCGs into

metagenomic gene prediction programs, and with the applicability of metagenomic gene

prediction tools to different kinds of real data.
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6.1 Training Data

The Orphelia gene prediction tool as presented in chapters 3 and 4 was trained on a set

of fully sequenced genomes from 131 species that were initially selected by Noguchi et al.

to represent every genus from GenBank in the year 2006 [19]. By now, species belonging

to many other genera have been fully sequenced and annotated. In addition, many other

microbial genome projects in progress could provide valuable training data. Members of

these new genera should be included in the training set of a future gene prediction tool

version in order to collect as much information about the characteristics of coding and

non-coding orfs as possible.

Another topic is whether the ’one species per genus’ criterion is actually suitable for selecting

training species. Generally, taxonomy does not reflect phylogeny properly. Some species of

different genera for example exhibit highly similar codon usage patterns. In addition, the

species whose genomes were sequenced and deposited in public databases, e.g. GenBank, are

biased in the sense that most of those species can be kept in culture under laboratory condi-

tions [27]. This phenomenon is called the ’GenBank bias’. Particularly for the identification

of novel genes in metagenomes whose biological diversity is yet unknown, the transfer of the

GenBank bias toward single species should be avoided in the training data set. To reduce

this bias, training genomes could be selected according to other criteria, e.g. GC-content,

oligonucleotide frequencies or monocodon/dicodon frequencies in protein coding regions.

6.2 More Features of Protein Coding Genes

Gene prediction algorithms are designed to distinguish between PCGs and non-coding open

reading frames (nORFs) using suitable features. In agreement with Noguchi et al. (2006),

we show in chapter 3 that mono- and dicodon frequencies (illustrated in figure 1.3 on page 8)

are useful features. The ORF length is another intuitive feature that is used by our method

(chapter 3) and in MetaGene.

Other hints at whether an ORF is a protein coding or not can be derived from signals that

are necessary to drive the transcription and translation machinery. Translation initiation

signals, which are located in close proximity to the translation start codon, turned out to

be very useful, particularly for predicting a gene with its correct start site. This feature

has been implemented in Orphelia (chapters 3 and 4). In a slightly different manner, it has

also been incorporated into the MetaGeneAnnotator [20]. In theory, other signals, like the

transcription start site, or the transcription termination signal could also be useful. Here,

we encounter the problem that both types of features are not necessarily located close to
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the actual coding region. Signals that are distant from the actual coding region are unlikely

to be captured within a metagenomic sequencing read, and thus, the incorporation of such

signals is unlikely to improve gene prediction in metagenomic Sanger and pyrosequencing

reads.

Figure 6.1: The translation initiation site (TIS) of a gene is a useful feature for discriminating
true and wrong start codons of a gene, but it also gives further evidence at whether an ORF
is protein coding at all. In Orphelia, 60 b window around the start codon is used to extract
the TIS feature.

6.3 Applicability to Real Data

All metagenomic gene prediction tools aim to predict PCGs in sequences that originate from

probably completely unknown microorganisms with models that were derived from already

characterized organisms. In chapters 3 and 4, but also in the publications of MetaGene

and MetaGeneAnnotator, it was shown that metagenomic gene prediction models can suc-

cessfully be applied to reads from unknown species by excluding certain ’test genera’ from

the ’set of training species’. The evaluation was later carried out on DNA fragments of

species that belong to the ’test genera’. This analysis gives a hint at whether the models

will work for predicting genes in reads from entirely new species. However, a certain level of

uncertainty remains. The experimental verification of predicted genes in metagenomes, e.g.

with help of the metatranscriptome, will give further clues, but to date, the required data

are not available.

The previously mostly unexplored question, to which extent metagenomic gene prediction

tools are affected by sequencing errors, is addressed in chapter 5. The conclusion of this

chapter is that all tools in principle work well for Sanger reads, and that the sequencing

errors in 454 reads pose a significant problem. However, this does not yet tell whether the

tools are applicable or not applicable to all real data sets. Metagenomic sequencing projects

differ in their aims and in the applied sequencing strategies. Sanger- and pyrosequencing

are frequently used for metagenome sequencing (examples can be found in [7, 8, 28, 9,

29]). However, in some metagenomic sequencing projects, completely different strategies are

applied. One example is the sequencing of long metagenomic inserts (up to 40 knt) with

multiple coverage, leading to long DNA fragments with low error rates (e.g. demonstrated

by Voget et al., 2003 [30]). Such long fragments are in comparison to short reads easily
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classified into phylogenetic categories (e.g. using TETRA [31], Phylopythia [17] or TACOA

[32]), which makes even the application of conventional gene finders with pre-trained models

possible (see section 1.3 on page 6).

With increasing read length and an even cheaper price per base than the 454 system, other

next generation sequencing (NGS) techniques than 454, for instance the Illumina sequencing

system [33], will become attractive for metagenomics. Every NGS technique has its own,

typical kind of sequencing errors and error rates. Therefore, it will be necessary to re-evaluate

the effect of sequencing errors on metagenomic gene prediction for each NGS system.

Also in short future, another approach for sequencing very long reads will become available.

This is going to be the system of Pacific Biosciences [34]. Those reads are going to be tens of

thousands of b long but in contrast to the long-insert sequencing with multiple coverage, they

are going to contain sequencing errors. One can speculate that gene prediction techniques

that are applicable to Sanger reads might also perform well on those reads but for making

definite conclusions, the methods need to be evaluated on data sets that are simulated

according to the properties of the new sequencing techniques.
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Chapter 7

Summary and Conclusions

Metagenomic sequencing projects generate huge amounts of single read data that cannot

be analyzed efficiently with conventional gene prediction tools that were designed for long

genomic sequences. Often, a six frame translation of the single reads is searched against

databases of known proteins with BLAST but this can only lead to the detection of genes

that are highly similar to already known genes. Novel genes, that are to be expected in

microbial communities, cannot not be identified.

Two principle approaches have been developed to solve the problem of gene prediction

in metagenomic single read data. One is the identification of PCGs by intra and inter

metagenome sequence homology. These methods are computationally very expensive. An-

other approach is the prediction of PCGs with statistical models. These methods are defi-

nitely faster by several orders of magnitude.

In this work, the metagenomic gene prediction method Orphelia is introduced. Orphelia

consists of a two-stage machine learning approach. In the first stage, linear discriminants for

monocodon usage, dicodon usage and translation initiation sites are used to extract features

from dna sequences. In the second stage, an artificial neural network combines these features

with open reading frame length and fragment GC-content to compute the probability that

this open reading frame encodes a protein. This probability is used for the classification

and scoring of gene candidates. In comparison to other model-based metagenomic gene

prediction tools, Orphelia has a very high specificity and a slightly lower sensitivity on

Sanger and 454 reads. Orphelia was the first tool that incorporated the detection of TIS

signals into the gene prediction process, thereby also ensuring the reliable prediction of the

correct gene start.

During the investigation of the applicability of metagenomic gene prediction tools to real

data, sequencing errors have often been neglected. Here, we show that the effect of typical
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Sanger sequencing errors is in most cases minuscule but that pyrosequencing errors can

decrease prediction accuracy drastically. We also demonstrate that ESTScan, although not

designed for the task at hand, outperforms some metagenomic gene prediction tools on reads

with high error rates by its built-in error compensating capabilities.

Overall, Orphelia is demonstrated to be a valuable tool for metagenomic gene prediction

in Sanger and 454 reads if a high prediction specificity is desired. This is likely to be the

case because the manual curation of predictions in metagenomics is often impossible due

to the sheer amount of data. However, the integration of error-compensating methods into

Orphelia - and actually all other metagenomic gene prediction tools - is desirable in order

to improve the applicability to real 454 data.
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