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“Wisdom lies neither in fixity nor in change,
but in the dialectic between the two.”

Octavio Paz (1914 - 1998)





Abstract

The human brain consists of more than a billion nerve cells, the neurons, each having sev-

eral thousand connections, the synapses. These connections are not fixed but change all

the time. In order to describe synaptic plasticity, different mathematical rules have been

proposed most of which follow Hebb’s postulate. Donald Hebb suggested in 1949 that

synapses only change if pre-synaptic activity, i.e. the activity of a synapse that converges

to the neuron, and post-synaptic activity, i.e. activity of the neuron itself, correlate with

each other. A general descriptive framework, however, is yet missing for this influential

class of plasticity rules. In addition, the description of the dynamics of the synaptic con-

nections under Hebbian plasticity is limited either to the plasticity of only one synapse

or to simple, stationary activity patterns. In spite of this, Hebbian plasticity has been

applied to different fields, for instance to classical conditioning. However, the extension to

operant conditioning and to the closely related reinforcement learning is problematic. So

far reinforcement learning can not be implemented directly at a neuron as the plasticity of

converging synapses depends on information that needs to be computed by many neurons.

In this thesis we describe the plasticity of a single plastic synapse by introducing a new the-

oretical framework for its analysis based on their auto- and cross-correlation terms. With

this framework we are able to compare and draw conclusions about the stability of several

different rules. This makes it also possible to specifically construct Hebbian plasticity rules

for various systems. For instance, an additional plasticity modulating factor is sufficient

to eliminate the auto-correlation contribution. Along these lines we also generalize two al-

ready existing models, a fact which leads to a novel so-called Variable Output Trace (VOT)

plasticity rule that will be of further importance. In a next step we extend our analysis to

many plastic synapses where we develop a complete analytical solution which characterizes

the dynamics of synaptic connections even for non-stationary activity. This allows us to

predict the synaptic development of symmetrical differential Hebbian plasticity. In the last

part of this thesis, we present a general setup with which any Hebbian plasticity rule with

a negative auto-correlation can be used to emulate temporal difference learning, a widely



used reinforcement learning algorithm. Specifically we use differential Hebbian plasticity

with a modulating factor and the VOT plasticity rule developed in the first part to prove

their asymptotic equivalence to temporal difference learning and additionally investigate

the practicability of these realizations. With the results developed in this thesis, it is pos-

sible to relate different Hebbian rules and their properties to each other. It is also possible

for the first time to calculate plasticity analytically for many synapses with continuously

changing activity. This is of relevance for all behaving systems (machines, animals) whose

interaction with their environment leads to widely varying neural activation.
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Chapter 1

Introduction

In this thesis we are mainly concerned with the mathematical details of differential Heb-
bian plasticity and its relation to learning. This chapter will introduce these aspects
asking first of all what the difference is between them? Plasticity means that there is a
deformable or shapeable entity and in the nervous system this refers to the connections be-
tween the neurons which can change. Connections can totally relocate (structural plasticity
- Chklovskii et al. (2004); Fox and Wong (2005); Butz et al. (2008)) but in the context of
this work, plasticity stands for the variation of the connection strength. Learning on the
other hand is a more abstract term. It is used in a general way in school, e.g. when you
memorize vocabulary or when trying new sports in order to acquire new skills. Thus, learn-
ing is a word used at the level of behavior. In the following we will start with plasticity
and afterwards try to link these rather biological mechanisms to behavior.

1.1 Plasticity mechanisms and their relation to

learning

In 1949 Donald Hebb (Hebb, 1949) wrote a statement that is still influencing the neuro-
sciences:

When an axon of cell A is near enough to excite cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

A simple equation can be deducted from Hebb’s idea: ∆wBA = uA ·uB, where w stands for
the efficiency of a connection between cell A and B, and uA and uB for the activity of A
and B respectively. There would be no changes induced in the efficiency of the connections
between cell A and B whenever only one of the two cells is active. Only if both cells are
active at the same time, thus when both activities coincide, efficiency increases. That is
also the reason, why these kind of plasticity rules are called correlation rules or coincidence
detecting rules.
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Dendrites/
Dentridic tree

Soma

Axon

self−connection
Synapses

Axon of
pre−synaptic cell

Branches

Figure 1.1: Basic structure of a neuron (which has a self-connection). Usually informa-
tion arrives at the dendritic tree and is summed up at the soma. From there on information
reaches other neurons transferring a signal via the axon (which can also split into branches).
The connections between axons and dendrites are called synapses.

In the following we exchange the old terminology of “cells” and “connections” by the
modern “neurons” and “synapses”. The efficiency of a connection is therefore the synaptic
strength, or in short weight. The name weight results from the fact that a neuron usually
has more than one synaptic connection and the synaptic efficiency tells you how to weigh
the activity of neurons connected to a specific target neuron. This idea of a neuronal
network is depicted in more detail in Figure 1.2 left. A neuron consists not only of the cell
body, the soma, as Figure 1.2 left may suggest, but also of parts that collect activity from
other neurons, the dendrites, which belong to the dendritic tree and it has an axon, which
transmits the activation to other neurons or even back to itself (recurrent connection). At
the soma the activity of all dendrites is summed and further processed. This is sketched
in Figure 1.1.

pre−synaptic
site/ activity

post−synaptic
site/ activityΣ

neuron B

neuron C
activity A

activity C

activity B
neuron A

synapse AB

synapse AC

synapse

Figure 1.2: Basic scheme of a neuronal network. On the left a single neuron A receives
activity from different neurons (among others B, C) via synapses (among others AB, AC).
The right panel shows a close up of one synapse. The site where activity reaches the synapse
is called pre-synaptic site and that where activity is collected by the neuron is called the
post-synaptic site.
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Hebb made his postulate in the middle of the last century, and it has long remained
unknown whether such a mechanism would really exist in the nerve cells of our brain. In
1973 Bliss and Lømo were the first to report a mechanism called long-term potentiation
(LTP) which is directly related to Hebbian plasticity. The first problem Bliss and Lømo
faced was how to measure the synaptic efficiency. It turns out that the only way to do
this is by measuring an excitatory post-synaptic potential (EPSP) which is the positive
activity at the post-synaptic site of a synapse (see right panel of Figure 1.2 for details
and Figure 1.3 B for example EPSPs). Bliss and Lømo measured an EPSP after they
activated the pre-synaptic site and compared this control result to the same measurement,
however now using high-frequency (∼ 100 Hz) stimulation of the pre-synaptic site (compare
with second stimulus of Figure 1.3 A). The EPSP amplitude increased after the high-
frequency stimulation. Bliss and Lømo had only stimulated the pre-synaptic site (cell B
in our introductory example). Still, the found effect can be related to Hebbian plasticity,
because high-frequency activation at the pre-synaptic site drives activity also at the post-
synaptic site (hence at cell A in our introductory example) leading to the required pre-post
correlation.
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Figure 1.3: Measurements of LTD and LTP in the Schaffer collateral-CA1 pathway in the
Hippocampus. In panel A amplitudes of the EPSP are plotted against time. At 0 minute
a low frequency (∼ 1Hz) stimulus was given to the collaterals, and the EPSP amplitude
decreased. After about one hour a high frequency stimulus (TBS - theta burst stimulus -
∼ 100Hz) was applied which leads to an increase. In panel B particular EPSPs (negative
peaks) are shown for the indicated times. Recompiled from Dudek and Bear (1993).

After the discovery of LTP, many theoreticians suggested that also a decrease in effi-
ciency should take place at synapses, long before Dudek and Bear in 1992 finally found
a reduction in synaptic efficiency, called long-term depression (LTD). To capture LTD by
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the basic Hebb rule, it was altered in many different ways in order to incorporate negative
changes in the synaptic strength. The three most prominent ways to do this are anti-Hebb
(e.g. Lisman (1989)) where just a minus sign is included, threshold (or covariance) mod-
els (e.g. BCM rule by Bienenstock et al. (1982)) where a threshold is introduced. Here
either pre- or post-synaptic activity needs to exceed the threshold in order to drive pos-
itive weight changes whereas otherwise, changes are negative as intended. The last way
by which weights decrease is achieved by a decay (or leakage) term (e.g. Oja (1982)) that
drives the synaptic efficiency to zero without any activity. This method also leads to so-
called weight-normalization for which indirect evidence was also found later (Bi and Poo,
1998).

How did Dudek and Bear (Dudek and Bear, 1992) achieve a negative change in the
efficiency? They varied the frequency of the stimulations at the pre-synaptic site and
found that long-lasting low frequency (∼ 1 Hz) stimuli induced negative changes (see the
first stimulus of Figure 1.3 B). To verify that the cause for the change of synaptic strength
was also at the post-synaptic site, Feldman altered the post-synaptic potential by a special
technique (voltage patch clamp) while stimulating the pre-synaptic site. Without a change
at the post-synaptic site the EPSP amplitude remained constant. However, by putting the
potential to different levels he either increased or decreased the amplitude of the EPSP
(Feldman, 2000).

The level that we have covered until now was only phenomenological, describing meth-
ods responsible for changes in the synaptic strength. What really happens at, or rather
within a synapse is, however, not so clear, yet1.

Most often responsible for synaptic plasticity at the post-synaptic site are so-called
N-Methyl-D-Aspartat ion-channels (NMDA, Malenka and Nicoll (1999); Dudek and Bear
(1992)) and the Ca2+ ion (Yang et al., 1999; Bi, 2002). The NMDA channel is permeable
to Ca2+ but only if a certain type of neurotransmitter (Glutamate) binds to it and a
certain post-synaptic voltage level is reached. The first requirement is fulfilled whenever
an action potential reaches the pre-synaptic site (see Figure 1.4 A). The latter holds if
either the neuron at the post-synaptic site also produces an action potential or a total sum
of the post-synaptic potentials of nearby synapses are high enough to produce a dendritic
spike (Colbert (2001); Golding et al. (2002); see Figure 1.4 B). The Ca2+ ion depending
on its concentration or rather the change in concentration (Yang et al., 1999; Bi, 2002)
within the post-synaptic membrane then initiates a biochemical cascade which increases
the number of NMDA channels. Note that this very short introduction has oversimplified
the physiological complexity. The actual kind of plasticity (LTP or LTD) also depends on
the synapse type, modulatory substances, the type of neurotransmitter used and the order
in which the pre- and post-synaptic action potentials arrive at the synapse. Some of these
aspects are of relevance for this study, most others will not be further considered.

An influence of the temporal signal order onto plasticity was proposed by Gerstner et al.
(1996) and experimentally confirmed by Markram et al. (1997). Markram and his colleges
found that not only the activity as such matters but also the timing. Whenever there

1For details on the biophysics see appendix A
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Figure 1.4: Sketch of a synapse with (A) and without (B) sufficient post-synaptic activity.
Whenever there is pre-synaptic activity vesicles bind to the membrane and release their
neurotransmitter (e.g. Glu - Glutamate). The transmitter binds to ion-channels which then
become either open (AMPAa) or are still blocked (NMDA) by other ions (Mg2+). As at least
some of the ion-channels open, ions (e.g. Na2+) can penetrate into the post-synaptic site,
thus changing the potential (e.g. EPSP). However, in panel A the change in the potential
is not enough to release the Mg2+ block at the NMDA channels which hinders Ca2+ to flow
into the post-synaptic site. Only if there is a substantial depolarization (panel B) of the
post-synaptic potential (e.g. because of a back-propagating action potential), the Mg2+

block at the NMDA is released and Ca2+ can flow into the post-synaptic region where
it initiates different chemical reaction cascades that change the synaptic efficiency of this
synapse.

aα-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate

is a spike at the post-synaptic site after there was a spike at the pre-synaptic site, the
strength of the synapse increases (LTP). However, if the timing is acausal, which means
there is a post-synaptic spike before there was a pre-synaptic spike, efficiency of the synapse
decreases. This phenomenon is therefore called spike-timing-dependent plasticity (STDP).
One way to model this aspect of plasticity is by including the change of post-synaptic
activity: ∆w = uB ·∆uA. If pre is before post, we correlate the pre-synaptic activity mostly
with the rising phase of the post-synaptic activity and if pre is after post, we correlate pre-
synaptic activity with the falling phase (see Figure 1.5 for a sketch or Figure 2.1 for a more
detailed plasticity example). As changes at the post-synaptic site were used, this rule is
called differential Hebbian plasticity.

However, one important question remains. How would we know that plasticity, i.e.
the change of synaptic efficiency, is really related to learning? In 2002 Martin and Morris
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Figure 1.5: Schematic diagram demonstrating STDP modeled by differential Hebbian
plasticity (∆w = pre ·∆post) using a triangular shaped activity profile. If the pre-synaptic
activity is before the post-synaptic one, the positive derivative is correlated with higher
pre-synaptic activity. On contrary if the timing is inverted (second sequence), the higher
pre-synaptic activity correlates more with the negative derivative. The colored horizontal
bars are representing ∆post where blue indicates a positive and red a negative value.

in a review suggested four different criteria supporting that plasticity is the basic
mechanism for learning: detectability, mimicry, anterograde and retrograde alternation
(Martin and Morris, 2002). Detectability means that there are changes at the synapse
levels after an animal has learned or memorized something. One example is the work
of Rioult-Pedotti et al. (1998). In this study they prevented a rat from moving its left
forelimb where the right one was freely movable while performing a skilled reaching task.
Then they found that the EPSP amplitude of synapses in the motor cortex of the left
hemisphere was higher compared to the right hemisphere. If we took the detailed results
about the changes in the motor cortex of one rat and implemented these changes into
another rat, then we would invoke the mechanism of mimicry. So far mimicry can not
be experimentally induced. By the mechanism of an anterograde alternation you prevent
synaptic plasticity which should then also prevent the animal from memorizing or learning
something. This is the most prominent method to prove the relation between plasticity
and learning and one of the proofs was shown by Morris (1989) in his experiment. A
rat had to find a platform within a circular box filled with water (Morris water maze).
After blocking NMDA receptors the rat was no longer able to learn the location of the
platform. Retrograde alternation implies that you could vary the synaptic strength
in such a way that, for instance, a rat that learned the platform at a certain position
could be ’reprogrammed’ to find the platform at another location. This is also not yet
experimentally possible. Hence so far, it has been shown in two ways that a relation
between plasticity and learning exists.

Nonetheless, only a few theoretical learning rules can be directly related to the bio-
physics of Hebbian plasticity. Apart from the Hebbian learning rule one important example
is the classical conditioning rule which we will discuss in the next section in the context
of open-loop and closed-loop systems. The “open” means that there is no feedback to the
system. In behaving systems the environment in which the system operates closes the loop
leading to feedback. In this case we are talking about closed-loop systems.



1.2 OPEN LOOP VERSUS CLOSED LOOP 15

1.2 Open-loop versus closed-loop learning using the

example of classical and operant conditioning

In the previous section we discussed plasticity mostly at the synapse level and related plas-
ticity to learning. One of the learning paradigms which is related to biophysical plasticity
mechanisms is conditioning. In the late 19th century Pavlov (Pavlov, 1927) investigated
the gastric function of dogs and recognized that his dogs were not only salivating when he
presented food but often earlier. He found out that responses, e.g. the salivation, occur
after stimuli which directly cause such a response, e.g. food; or after stimuli, e.g. a bell,
which were repeatedly presented before the behavior-eliciting stimulus (see Figure 1.6 A).
He called the stimulus which directly causes the response the unconditioned stimulus and
the stimulus which was initially unrelated the conditioned stimulus. Besides this basic
experiment Pavlov conducted different others. He, for instance, showed that dogs can un-
learn the connection between the unconditioned and the conditioned stimulus if the latter
was not followed by the first. This paradigm is called extinction. It is also possible to chain
stimuli, i.e. the response shifts to a second unconditioned stimulus which was presented
before the first. Secondary conditioning will become more important in chapter 4.

Σ

conditioned
stimulus

unconditioned
stimulus

after learning

bell

sal.

sal.

food

v

u

u
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actionsexternal states
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context

Environment

Agent
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internal states

Behavioral feedback

A

before learning

x

Figure 1.6: Specific open-loop controller and schematic closed-loop system. In panel A
we show a way to model classical conditioning with a correlation based learning rule. Here
the bell is the conditioned stimulus u0 and the food the unconditioned stimulus u1. The
response v represents the salivation of the dog, hence its action. In the course of learning
the connection strength w1 increases as both stimuli overlap. The connection w0 between the
unconditioned stimulus u0 and the response v is fixed from the beginning as this stimulus
needs to be sufficiently strong to elicit a response. In panel B an agent is embedded in
its environment. By means of the controller the agent produces actions, which in turn
influences the states the agent receives. The states usually consists of external and internal
(e.g. memory) states and context information.

All experiments described above were open-loop experiments. This means that Pavlov’s
dog had no influence on the behavior of Pavlov in particular on the presentation of the stim-
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ulus predicting food. Operant (or instrumental) conditioning was investigated in around
the same time by Thorndike (1933) and Skinner (1933). The latter also coined the name
for the Skinner box. In this box an animal, usually a rat, needs to press a lever to receive
food. The opposite of such a confronting task is when the rat needs to avoid the lever
in order to avoid receiving electric shocks. For the latter Porr and Wörgötter (2003a) ex-
tended the work on differential Hebbian learning. In their learning rule, called Isotropic
sequence order (ISO) learning, the output activity influences the behavior of the system
by interacting with the environment which in turn is responsible for the stimuli the system
receives. As they closed the loop with the environment this is called closed-loop learning
in contrast to open-loop paradigms like classical conditioning. A basic schematic is shown
in Figure 1.6 B where an agent is embedded in its environment. As the loop is closed,
the states the agent senses are related to the action it conducted. The controller could
be, for instance, the diagram in panel A or rather a modification that is better suited for
closed-loop operant conditioning.

In ISO learning the system’s target is to avoid the conditioned stimulus which automat-
ically evokes an unwanted response (or reflex). To this end, the system learns a temporal
sequence of stimuli, i.e. it uses an earlier occurring stimulus to learn to predict the occur-
rence of a later stimulus. The resulting behavioral response then leads to the avoidance of
the later stimulus. Additionally Porr et al. proved in Porr et al. (2003) that ISO learning
by eliminating the later stimuli implements an inverse controller which is an important
finding in an engineering sense.2

As Hebbian learning rules, including differential Hebbian learning, in general are not
stable, i.e. the weight would, without additional mechanisms, increase to infinity, it makes
more sense to investigate the properties of the different rules in a general way. For this we
will develop a new theoretical framework (see chapter 2). However, closed-loop systems
can guide us in the search and evaluation for useful, hence meaningful, plasticity rules and
their parameters. For instance, a certain class of plasticity rules yields good results in the
closed-loop paradigm of avoidance learning (see sections 2.1, 2.4, 2.5 and 3.1) and another
class is more suitable for a goal-directed paradigm (see chapter 4).

1.3 Neuronal activity: Membrane potential, spikes or

rates?

There are three different representations of neuronal activity: membrane potential (EPSP),
spikes (action potentials), and rates (frequency). The first is the most accurate representa-
tion as it incorporates the complete time development of the membrane potential. In the
next section we are, however, only interested in the timing of the spikes. As a consequence
the representation becomes a point process and we are now speaking about temporal cod-
ing. To finally arrive at a rate code, we average over spikes in a given time window and take

2It should be noted that the first relation of differential Hebbian learning to machine learning is by
Kosco (1986) who examined features of differential Hebbian learning in the context of machine learning.
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merely the number of spikes into account normalized by the width of this time window.
Obviously there is no way back from rates to spikes. Starting from a temporal (spikes)
code, there exists, however, a way to recover some aspects of the membrane potential. For
this purpose each spike needs to be convolved with an EPSP kernel. These kernels (or
filters) have various shapes. Most prominent are alpha functions, damped sine waves and
difference of exponentials. The first was invented by Rall (1967) in order to describe EPSP
at different potentials and is of the form h(t) = t

a
exp(1 − t

a
) Θ(t). With the second, or-

thogonality among kernels is achieved by using different parameters (Porr and Wörgötter,
2003a, 2006). It writes as h(t) = 1

b
sin(b t) exp(a t) Θ(t). The third (difference of exponen-

tials) will be mainly used within this thesis because of its mathematical properties. It is
given by:

h(t) =
1

σ
(e−at − e−bt) Θ(t). (1.1)

with Θ(t) being the Heaviside function and a, b, and σ being parameters that define the
rising (a) and the falling (b) phase and the amplitude (σ) of the kernel. Actual parameters
are given later, however, only a < b results in positive values of h. As this kernel is used
throughout this thesis, different shapes are plotted in Figure 1.7.

time[step]

ac
tiv

ity
in

pu
t

0.0

0.2

0.4

0.6

0.8

1.0

4000 6000 80000 2000 10000

1.0
0.0

Figure 1.7: Kernels with different parameters using equation 1.1 are shown. For the first
group we convoluted the kernels with a delta peak and for the second group with a rectangular
function (bottom). The green function spreads the input signal most strongly, however it
also takes most time to reach its maximum. The parameters for the green functions are
a = 0.0025, b = 0.005, and σ = 0.25/200 (for first and second signal, respectively). By
contrast the red function is shorter and faster. The parameters for the red functions are
a = 0.01, b = 0.02, and σ = 0.25/5. The blue functions lies in between with parameters
a = 0.005, b = 0.01, and σ = 0.25/50. A nice feature of this type of kernel is that the
amplitude depends only on the ratio a

b
. Therefore the amplitude for a ratio of 0.5 is 1

4 σ
.

Furthermore we note that when activity is spread out over time we need to provide some
kind of memory mechanism without which individual events (spikes) can not be related
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to each other. This can be explained in the most basic way when discussing classical
conditioning models (Figure 1.6 A). In order to learn to react to the earlier conditioned
stimulus, it has to be remembered in the system. To this end, the concept of eligibility traces
had been introduced (Hull, 1939, 1943; Klopf, 1972, 1982; Sutton, 1988; Singh and Sutton,
1996), where the synapses belonging to the earlier stimulus remain eligible for modification
for some time until this trace fades. To implement such an eligibility trace one would need
to convolute the stimuli with filters that spread out over time. In fact these filters are
not different from the kernels used to emulate the EPSP except that they would need to
cover seconds or minutes and not milliseconds. For simplicity we could just assume one
process, thus one set of kernel parameters, which equally affects the neuron’s output and
its plasticity. Only in section 2.1 and section 4.2.3 we will discuss properties of different
kernel processes.

1.4 Definitions and roadmap

In this thesis we will present all plasticity rules following the example of Figure 1.8. There
the definitions for the symbols we will use throughout the text can be found as well. We
use the kernel functions (equation 1.1) to convolve them with the input xi. This will then
be used for either the plasticity pathway alone or the plasticity and the output v pathway
(see Figure 1.8 for the latter). In general a convolution is given by

(ξ ∗ η)(t) =

∫ ∞

0

ξ(z) η(t− z) dz. (1.2)

Additionally, we model a spike as a delta function δ(t − ti) for spike time ti, thus the
convolution simplifies to a temporal shift in the kernel function h:

h(t− ti) =

∫ ∞

0

δ(t− ti − z)h(z) dz. (1.3)

In chapter 2 we will first investigate the properties of differential Hebbian plasticity
if only one synapse is plastic and all the others are kept fixed. This is done by using
the theoretical framework of auto- and cross-correlations which we will describe in this
chapter. The constraint of having only a single plastic synapse is lifted in chapter 3
where we derive analytical solutions for systems with many synapses. In chapter 4 we first
introduce reinforcement learning which is similar to operant conditioning. Then we relate
plasticity mechanisms to reinforcement learning and show three concrete realizations to
asymptotically emulate temporal difference learning, which is a prominent reinforcement
learning algorithm. The last chapter completes this thesis by concluding and discussing
the results of this study and by providing an outlook including further ideas.
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Symbol Description

i neuron
t time
xi unfiltered input
ui filtered input
hi filter/kernel function
wi weight

ẇi := d
dt
wi weight change

µ, α plasticity/learning rate
v output
r reward

ac, cc auto- and cross-correlation
G functional

Figure 1.8: Schematic diagram of a plasticity rule. The table describes the most important
symbols used throughout this thesis. For a complete overview see list of symbols on page 137.
The rounded box with the kernel function h describes a convolution (see equation 1.2) with
the input xi. The diamond-shaped box with the functional G which defines a mathematical
operation using this functional. For instance, for differential Hebbian plasticity we need to
set G = d/dt. The symbol Σ describes a linear summation of the inputs and the ×-symbol a
multiplication. The solid lines are used for the output pathway and the dashed lines for the
plasticity pathway. The semicircle at the end of a dashed line indicates a direct influence
on the plasticity of a weight w.
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Chapter 2

Single-Plastic-Synapse Systems

In this chapter we will focus mainly on Hebbian plasticity ẇi(t) = µui(t) v(t), in particular
on differential Hebbian plasticity ẇi(t) = µui(t) v̇(t), and its mathematical description.
The synaptic connection wi changes through the correlation of pre-synaptic input ui and
post-synaptic output v. For the definition of the symbols see Figure 1.8. The underlying
plasticity properties are partly used to investigate neuronal data but it is important to
mention that all of the rules used here are at a much higher level of abstraction as compared
to the biophysics of synapses. They can however be directly transfered to behaving systems.

In the following sections, sequences of two delta-pulses x0/1 will be repetitively presented
to the different systems, where x1 comes earlier in time than x0 with an interval of T =
tx0 − tx1 steps between them. The final weight change ∆ω is calculated by integrating the
respective learning rule: ∆ω =

∫∞

0
ẇ(t) dt (see appendix B). From this the development

of the weights can be plotted for multiple pulse pairs. In addition, we will investigate
the different weight change curves plotting the weight change against the interval between
inputs T . For negative T the temporal order of the pulses is inverted.

In general, plasticity is regulated by a plasticity rate (learning rate) which is usu-
ally below 1. In the following, we will use µ for the plasticity rate when talking about
correlation-based learning and α for reinforcement learning. In this chapter the synap-
tic weight w will always be plotted in dimensions of the plasticity rate. Additionally, we
demand a quasi-static or adiabatic condition, i.e. changes in synaptic strength are much
smaller than the changes in the signals: ẇi

wi
≪ u̇i

ui
. This condition can be assured by setting

the plasticity rate to values much smaller than 1: µ ≪ 1. This approach is commonly
assumed for such systems (Dayan and Abbott, 2001) and it allows us to analytically calcu-
late the weight change by neglecting the derivative of the weight w on the right hand side
of the plasticity rule (see equation B.2). We also neglect the variability of the homogeneous
solution for the calculation of the inhomogeneous part. For a detailed discussion on the
differences which emerge when not using this assumption see appendix B.

We are especially interested in the stability of the plasticity rules. All rules considered
here learn by cross-correlating two signals with each other (x1 with x0). Positive correlations
of x1 with itself (auto-correlations) are normally unwanted. As will be seen later, this leads
to weight divergence. Negative auto-correlations on the other hand act as a decay term
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Figure 2.1: Step by step explanation how the weight w1 changes when using differential
Hebbian plasticity (see section 2.1). In the bottom right corner, the architecture is shown
where different paths have different colors. These colors will be used for the signals, too.
The left column shows the pure input signals and their weighted sum v which is the output.
In the middle column, we see the derivative of the input signals and the output. The upper
right panel shows the multiplication of the input signal u1 and the derivative of the output,
thus the derivative of the weight w1 (green panels, the dashed vertical line indicates the
maximum of u1). The integration of this panel is shown one panel below which, then, is
the time development of the weight.

which drive the synaptic weight to zero. Such leakage terms are commonly assumed in
spiking neuron models (Gerstner and Kistler, 2002a). Hence to investigate these properties
separately it makes sense to subdivide the contributions of the plasticity rule into a cross-
correlation term ∆wcc and an auto-correlation term ∆wac by: ∆w1 = ∆wac

1 ·w1+∆wcc
1 , the

latter term drives the weight change of w1 during the occurrence of x0, whereas the auto-
correlation term ∆wac

1 also changes the weight in the absence of the x0 signal. Hence, the
pure auto-correlation contribution becomes visible when switching x0 off (see Figure 2.1
for a step by step example how the weight actually changes). If the auto-correlation is
zero, this should stop weight change as there is no more cross-correlation existing. In
the following diagrams we set x0 = 0 at a certain time-step (mostly after 40 % of weight
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development, i.e. t = 8000) to show how auto-correlation influences the weight change for
a given rule.

We will start with plain homosynaptic differential Hebbian plasticity comparing it to
an older model and creating a hybrid version of both models. This chapter also includes
an excursion which extends our investigations to homosynaptic Hebbian plasticity. The
section covering temporal difference learning can be compared later with chapter 4. The
analysis of the auto-correlation contribution will show that plain homosynaptic differen-
tial Hebbian plasticity (ISO learning) has unwanted (divergent) characteristics. Then we
present two modifications that overcome this problem, namely heterosynaptic differential
Hebbian plasticity (ICO learning) and homosynaptic Hebbian plasticity with a third factor
(ISO3 learning), analyzing their properties in more detail.

2.1 Homosynaptic differential Hebbian plasticity -

S&B model, ISO learning and VOT plasticity

The first model we investigate in more detail was designed by Sutton and Barto (1981). By
presenting their model we break with our simplification that the plasticity and the output
obey the same dynamics. In their original contribution they also use a different way to
model these eligibility traces, namely a recursion. Although we start with their equations
we will implicitly change to convolutions afterward. We will call their model S&B model.
The synaptic weight change is governed by

ẇ1(t) = µu1(t) [v(t) − v(t)] , (2.1)

where they have introduced one eligibility trace at the input xi and another at the output
v given by:

u1(t+ 1) = aSB u1(t) + x1(t) (2.2)

v(t+ 1) = bSB v(t) + (1 − bSB) v(t), (2.3)

with control parameters aSB and bSB. Mainly, they discuss the case of bSB = 0 where
v(t) = v(t − 1) which results in the discrete form of a derivative: v̇(t). Thus their rule
(Figure 2.2 A) turns into:

ẇ1(t) = µu1(t) [v(t) − v(t− 1)] (2.4)

= µu1(t) v̇(t). (2.5)

This rule is Hebbian as the weight change is driven by a correlation of input and output
and it is differential as not the output as such but its difference is taken into account.
Furthermore, it is homosynaptic as weight w1 changes due to the activity of the input
connected to w1, namely x1. In section 2.4 we will discuss heterosynaptic plasticity where
the activity of inputs not connected to the synapse under consideration drives the plasticity.
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An important aspect of this rule was mentioned in the beginning which is the different
dynamics for output and plasticity. Hence, the output needs to use either different kernel
parameters (aSB) or, even simpler, does not need to use any kernel at all:

v(t) = w0 · x0(t) + w1 · x1(t), (2.6)

Before learning, this neuron’s output will only respond to the signal x0, while after learning
it will respond to x1 as well.
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Figure 2.2: Architecture and weight development of the S&B model. Panel A shows the
architecture where only the plasticity path (dashed line) uses kernel functions. In panel B
we plot the weight change for different timings of x0 with respect to x1 where a positive value
of T means that x0 is after x1. Note that this curve only represents the cross-correlation
part. Panel C shows an example of weight development in time of many x1/x0 pairs with
(blue) and without (black) switching off the x0 signal after time t = 8000. In the inset
we plot a magnification of a single weight development step at certain times to show the
difference between auto- and cross-correlation. Parameters were w0 = 1, a = 0.1, b = 0.2,
σ = 0.25, and T = 20.

Let us now calculate the auto- and cross-correlation contributions for the S&B model,
equation 2.5, when using spikes as inputs for x0/1 at time t = T and t = 0 respectively.
Because we model spikes as a delta functions δ(t − ti) for spike times ti, the convolution
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simplifies to a temporal shift in the kernel function h (see equation 1.3). In a simplified
way one writes

∆w1
∼=
∫ ∞

0

u1(t) v̇(t) dt

=

∫ ∞

0

u1(t)
d

dt
(w0 · x0(t) + w1 · x1(t)) dt

∼=
∫ ∞

0

h(t)w0 δ̇(t− T ) dt+

∫ ∞

0

h(t)w1 δ̇(t) dt

= −ḣ(T )w0 − ḣ(0)w1 (2.7)

where we have assumed from line two to line three (indicated by the ∼=) a quasi-static
approach (see appendix B) and used

∫∞

0
δ̇(t − t0)f(t) = −ḟ(t0) (Boykina, 2003). This

gives us

∆wac
1 = −ḣ(0) ∆wcc

1 = −w0ḣ(T ) (2.8)

Note that the time derivative of the kernels used (e.g. equation 1.1) are always larger than
zero at time t = 0. This leads to a negative auto-correlation of the S&B model, thus, to
an intrinsic stability where the weight always drops to zero when no correlative signal is
given. This is illustrated in Figure 2.2 C where we see the blue curve converging to zero
after x0 was switched off. By contrast the black curve develops asymptotically to the final

weight which can be approximately calculated by w∞
1 =

∆wcc
1

∆wac
1

= −w0ḣ(T )

ḣ(0)
(see appendix G

for more details). We will use this property when relating differential Hebbian plasticity
to reinforcement learning in chapter 4. Additionally, one sees that the unfiltered input
x0 and its derivative lead to strong, needle-like excursions of the weight growth for every
step, which let the line in the diagram appear broaden. These structures are caused by the
cross-correlation part ∆wcc which is shown in the insets of Figure 2.2 C. The first close-up
of the time development is at time t = 0, thus without any auto-correlation as weight w1 is
still zero. One can also see from these close-ups and from equation 2.8 that the amplitude is
constant. These cross-correlation needle-like excursions disappear as soon as x0 is switched
off, however, the auto-correlation peaks are still there, decaying to zero in an exponential
way. From equation 2.8, in particular ∆wcc, we also learn that the direction of plasticity,
i.e. whether the weight converges against a positive or a negative value, depends on the
phase of the kernel at the time input x0. If the timing is inversed (x0 before x1, i.e. T < 0)
the weight will not change at all. If the occurrence time of x0 is before the maximum of
the kernel response h to x1, the final weight will be negative and only if x0 occurs after
the maximum of the kernel, weights will reach a positive value. This is summarized in
Figure 2.2 B.

Assuming the same temporal characteristics for the plasticity and the output pathway,
we arrive at the diagram Figure 2.3 A, which is called ISO learning (Porr and Wörgötter,
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2003a). The ISO learning rule is identical to equation 2.5 from the S&B model, however,
with a different output equation

v(t) = w0 · u0(t) + w1 · u1(t). (2.9)

The weight change of a single signal pair for the ISO rule (equation 2.5 and equation 2.9)
can be written as (see appendix D):

∆wac
1 = exp

∫ ∞

0

h(t)ḣ(t)dt− 1 = exp
1

2
h2(∞) − 1 = 0 (2.10)

∆wcc
1 = w0

∫ ∞

0

h(t)ḣ(t− T ) dt = sign(T )w0
b− a

a+ b

1

2σ2
h(|T |) (2.11)

where the auto-correlation term converges to zero for t → ∞ as the kernels h eventually
decay to zero.

Additionally, we calculate the time development of the cross-correlation part to give an
insight into the exact weight change:

wcc
1 (t) =

Θ(t− T ) Θ(t)w0

2 (a+ b)σ2
(− sign(T )σ (a− b)h(|T |)

− 2e−t(a+b)(aea T + beb T )

+ (a+ b)(e−a(2 t−T ) + e−b(2 t−T ))). (2.12)

Figure 2.3 C shows the step-by-step behavior of ISO learning. Weight growth is quite
linear, however, due to a substantial numerical artifact, which we will discuss later, the
weight increases exponentially indeed. This is also the reason why, after switching off x0,
weights will drift upwards. This drift decreases for very small integration step sizes ∆t and
large relaxation times t.

The bottom insets of Figure 2.3 C show the relaxation behavior of the weight for a
single input pulse pair at different times. At time t = 0 only the cross-correlation part
is visible whereas at time t = 8000 an early auto-correlation component is followed by a
big, cross-correlation dominated hump as soon as x0 occurs (see also Figure 2.1 for a detail
example). The curve relaxes to the final weight value after some time depending on the
filter characteristic of h. In the insets at the upper left of panel C, we compare the auto-
correlation component of the weight change for narrow and wide kernel functions. The right
curve shows that, following equation 2.10, the auto-correlation indeed approaches zero for
wider kernels and longer times. This is different for the left curve which represents the
auto-correlation contribution when using coarser sampling. Here we see a potentially very
strong source of error: The auto-correlation contribution does not vanish anymore. This
is a purely numerical artifact of the integration procedure (see appendix C for a further
discussion), but - as high sampling rates are often too costly (for example in real-time
applications) - this artifact can strongly interfere with the convergence of ISO learning.
Hence, we are facing two potential sources of error: (1) The tardy relaxation behavior of
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(essentially) the cross-correlation term (insets of Figure 2.3 panel C). This error becomes
relevant when pulse pairs follow each other in time too quickly. And (2) the non-negligible
numerical error that renders the auto-correlation to non-zero values even for long relaxation
times. In this and the following sections we will discuss other differential Hebbian rules
which have been invented to solve these problems.
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Figure 2.3: Architecture and weight development of ISO learning. Panel A shows the
architecture where both paths use the same kernel function. In panel B, we plot the weight
change for different timings of x0 with respect to x1 where a positive value of T means
that x0 is after x1. As the auto-correlation is ideally zero, this curve represents the whole
weight change. Panel C shows an example of weight development in time of many x1/x0

pairs with (blue) and without (black) switching off the x0 signal after time t = 8000. In
the inset we plot a magnification of a single weight development step at certain times to
show the difference between auto- and cross-correlation, and, additionally, the difference
between different time scales (upper left part). Parameters were w0 = 1, a = 0.1, b = 0.2,
σ = 0.25, and T = 20.

The weight change curve (Figure 2.3 B) of ISO learning is anti-symmetrical
(Porr and Wörgötter, 2003a). As long as kernels for input and output are the same, this
curve will have identical shapes on both sides (Figure 2.3 B). This is interesting, because
with this rule a completely isotropic setup can be designed, in which both synapses are
allowed to change as will be discussed later when investigating multi-synapse systems (see
section 3.1 and section 3.2).
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In the S&B model we used delta functions for the output (equation 2.6) and in
ISO learning the same kernel functions as in the plasticity pathway (equation 2.9). In
order to generalize we define the output as

v(t) = w0 · (x0 ∗ hv)(t) + w1 · (x1 ∗ hv)(t)

= w0 · uv,0(t) + w1 · uv,1(t) (2.13)

where we indicate different parameter values av, bv and σv of the kernel function hv (equa-
tion 1.1) with an index v. Figure 2.4 A shows the architecture of the rule which in the
following we will refer to as Variable Output Trace (VOT) plasticity as it uses variable
output traces, which leads to different time scales for plasticity and output. In the limit
of av and bv to infinity, this model resembles the S&B model, and for av = a and bv = b,
ISO learning The calculation of the weight change results now in

∆wac
1 =

(a− b)(av − bv)(a b− av bv)

σ2(a+ av)(av + b)(a+ bv)(b+ bv)
(2.14)

∆wcc
1 = −(aξ − bη)w0

signT σ2

(
aη e

−aη |T |

(aη + aξ)(aη + bξ)
− bη e

−bη |T |

(bξ + bη)(aξ + bη)

)

(2.15)

where ξ = v, η = ø if T ≥ 0 and ξ = ø, η = v if T < 0

where ø indicates that no index needs to be used (e.g. aø = a).
In order to have a weight decay, ∆wac needs to be negative. As our parameters (aη,bη,

and ση) are strictly positive the denominator is positive, too. Further, as we need aη < bη
for positive values of h, the first two terms in the numerator are negative, however, their
product is positive. Therefore, only the last term will decide whether the weight change of
the auto-correlation is negative or not. When assuming a certain relation Υη = bη

aη
, which

needs to be strictly larger than one, we get Υ a2 −Υv a
2
v < 0 which gives us a condition for

av in relation to a to achieve negative auto-correlations:

ρ :=
av

a
>

√

Υ

Υv

(2.16)

If Υv is of the same order as Υ, we find that it suffices for the output kernels to have
parameters av and bv larger than the plasticity kernels, i.e. the output pathway needs to
have a shorter time scale than the plasticity pathway1. This is shown in Figure 2.4 B, where
we plot the auto-correlation part of the weight change for different ratios of av

a
. Ratios

larger than 1 produce negative auto-correlations, so that such systems are convergent, and
ratios smaller than 1 produce positive auto-correlations, which leads to divergent systems.

For the weight development in Figure 2.4 C, we set ρ = 5, which gives us still needle-like
excursions, however, not as pronounced as in the S&B model. This also shows that the

1For instance, to achieve a delta-function like in the S&B model, av needs to reach infinity.
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Figure 2.4: Architecture and weight development of a model with different time scales
(VOT plasticity). Panel A shows the architecture where the plasticity path (dashed line)
uses kernel functions different from the output pathway (solid line). In panel B we plot
the weight change for different ratios of av

a
by varying the output trace. Note that this

curve only represents the auto-correlation part and is independent of T . Panel C shows an
example of weight development in time of many x1/x0 pairs with (blue) and without (black)
switching off the x0 signal after time t = 8000. In the inset, we plot a magnification of a
single weight development step at certain times to show the difference between auto- and
cross-correlation. Parameters were w0 = 1, a = 0.1, b = 0.2, σ = 0.25, ρ = 5, and T = 20.

decay is adjustable by means of the ratio. In the close-ups we again find the two separate
phases of plasticity which are governed by the two inputs x0/1 of the output which has a
smaller time scale than the plasticity kernel for u1.

Additionally, we show in panel B of Figure 2.4 the weight change curves of the cross-
correlation part for different ratios of av

a
. The zero-crossing (zero weight change) shifts

from zero at ρ = 1 (ISO learning) to positive values ρ → ∞. At infinity we would find
that the weight change for T < 0 has vanished (S&B model).

We note that biologically realistic neuron models commonly use different time scales
for output and plasticity. Such models where usually the shape of the kernels is varied
(Saudargiene et al., 2004) are used to describe site-specific plasticity (Saudargiene et al.,
2005; Tamosiunaite et al., 2007), hence plasticity which is different for different locations
of synapses on a dendrite.
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correlation. The zero-crossing shifts from T = 0 at ρ = 1 which resembles ISO learning
(dashed line) to T > 0 for ρ → ∞. At infinity, we would find that the weight change
for T < 0 has vanished which corresponds to the S&B model. Parameters were w0 = 1,
a = 0.01, b = 0.02, σ = 0.25.

Next we investigate the question of convergence. When do all these different algorithms
converge? Trivially, weight growth at w1 will stop as soon as x1 = 0 in all cases. Theoret-
ically, plasticity rules with identical time scales like ISO learning converge as soon as the
second signal x0 vanishes. This corresponds to the fact that the auto-correlation is zero.
However, as discussed, this particular plasticity rule is highly sensitive to errors, which can
easily destroy convergence. Additionally, we find that weights will converge if T = 0 (see
Figure 2.3 B). Hence these systems will be essentially stable if small positive values of T
are followed by small negative ones (or vice versa). For plasticity rules with negative auto-
correlations, e.g. VOT plasticity, weights convergence as soon as equation 2.16 is fulfilled.
Namely, weights will either reach

w∞
1 =

∆wcc
1

|∆wac
1 | (2.17)

if both signals x0 and x1 are existent, or zero if only x1 is given.
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2.2 Homosynaptic plain Hebbian plasticity -

Hebb learning

Although we are mainly focusing on differential Hebbian plasticity in this thesis, we would
like to take a short glance at plain Hebbian plasticity here (Gerstner and Kistler, 2002b).
The only difference to differential Hebbian plasticity is that we use the plain output of
the neuron instead of its derivative. The rule is schematically shown in Figure 2.6 A and
writes as

ẇ1(t) = µu1(t) v(t). (2.18)

where the output is the weighted sum of both inputs (equation 2.9).
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Figure 2.6: Architecture and weight development of Hebbian plasticity. Panel A shows
the architecture where both paths use the same kernel function. In panel B, we plot the
weight change for different timings of x0 with respect to x1 where a positive value of T
means that x0 is after x1. Note that this curve only represents the cross-correlation part.
Panel C shows an example of weight development in time of many x1/x0 pairs with (blue)
and without (black) switching off the x0 signal after time t = 8000. In the inset, we plot
a magnification of a single weight development step at certain times to show the difference
between auto- and cross-correlation. Parameters were w0 = 1, a = 0.1, b = 0.2, σ = 0.25,
and T = 10. Note as the positive auto-correlation causes the system to self-amplify, the
plasticity rate needs to be a small number. Here, we set it to µ = 0.001.



32 CHAPTER 2 SINGLE-PLASTIC-SYNAPSE SYSTEMS

The auto- and cross-correlation contributions of Hebbian plasticity are calculated to

∆wac
1 =

(α− β)2

2αβ (α+ β)σ2
∆wcc

1 =w0
α− β

2 (α+ β)σ
H(|T |) (2.19)

where H(t) is the antiderivative of h(t). As the difference in the numerator is squared, the
auto-correlation is strictly positive and always causes weight divergence to infinity. This is
shown in Figure 2.6 C, where it does not really matter anymore whether there is a cross-
correlation or not. The steepness of both (with and without x0) curves representing the
weight development is similar and weights diverge. The weight change curve in Figure 2.6 B
is not temporally asymmetrical anymore, thus, independent of whether x1 comes before
or after x0, the weight changes only according to the absolute value of T . The maximal
weight change is achieved when both signals occur at the same time.

2.3 Temporal difference learning - TD learning

TD learning (Sutton, 1988) was developed a few years after the S&B model (Sutton and Barto,
1981) in order to have a model for the prediction of delayed rewards. One centrally new
aspect at that point had been to introduce a reinforcement signal r, which affects the
plasticity, but not the output of the system (Figure 2.7 A). The synaptic weight changes
according to:

ẇ1(t) =µu1(t) [r(t) + γ v(t+ 1) − v(t)]

≈µu1(t) [r(t) + v̇(t)]

≈µu1(t) δr(t). (2.20)

where we define
δr(t) = r(t) + γ v(t+ 1) − v(t) (2.21)

as the δ error of TD learning, which is the mismatch between predicted (expected) and
actual reward. The parameter γ ≤ 1 is called the discount factor which accounts for the
fact that distant rewards should usually be valued less. For simplicity we set it here to
γ = 1, thus having no discounting. Additionally we set r = r̃ δ(t − T ), where r̃ is the
reward amplitude.

Figure 2.7 C shows the temporal development of the weight change for TD learning.
Note in TD the reward does not enter into the output of the neuron, but only influences the
learning and the rule becomes identical to the S&B rule if we remove r or x0, respectively.
To this end we also investigate the properties of TD learning at r = x0 = 0.

The auto- and cross-correlation contributions of the TD learning rule (equation 2.20)
look similar to the contributions of the S&B model:

∆wac
1 = − ḣ(0) ∆wcc

1 = + r̃ h(T ) (2.22)
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The only difference is a changed sign and the derivative of the kernel h associated with
the x0, or rather r, signal. The reason for the missing derivative at the cross-correlation
kernels is that the r signal enters the plasticity pathway directly and does not take the
detour through the output where the derivative comes from.
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Figure 2.7: Architecture and weight development of temporal difference learning. Panel A
shows the architecture where only the plasticity path (dashed line) uses kernel functions.
In panel B we plot the weight change for different timings of r with respect to x1, where
a positive value of T means that r is after x1. Note that this curve only represents the
cross-correlation part. Panel C shows an example of weight development in time of many
x1/r pairs with (blue) and without (black) switching off the r signal after time t = 8000.
In the inset, we plot a magnification of a single weight development step at certain times to
show the difference between auto- and cross-correlation. Parameters were w0 = 1, a = 0.1,
b = 0.2, σ = 0.25, and T = 10.

Therefore in TD learning (Figure 2.7 C), weights grow about ten times faster than in
the S&B model (Figure 2.2). When we switch r (or x0) off, we find in both cases that w1

drops in the same way. Note, this is not what ought to be done in a TD rule. Switching
off δr would be the appropriate convergence condition,2 and obviously weights will be -
by construction - stable then. Still, as mentioned before, we want to look at the r = 0
case, because it directly corresponds to the x0 = 0 condition of the differential Hebbian
plasticity rules and shows the behavior of the pure auto-correlation contribution.

2If δr = 0 then the output v correctly predicted upcoming rewards
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TD learning produces an asymmetrical weight change curve (Figure 2.7 B). This is a
consequence of the missing kernel in the reward pathway. If early, the reward has already
vanished before x1 occurs and the correlation result remains zero.

For TD learning there exist two different types of convergence. The first one occurs
at the end of our temporal development (Figure 2.7 C) where, similar to the S&B model,

weights converge according to equation 2.17 with w∞
1 =

∆wcc
1

∆wac
1

= − r̃ h(T )

ḣ(0)
. It is interesting

that this does not correspond to the condition δr(t) = 0. This difference emerges from the
fact that we use different kernels or rather eligibility traces compared to the original idea
proposed by Sutton (1988). There, constant (γ = 1) or exponentially decaying (γ < 1)
eligibility traces with an amplitude of γt h at time t have been applied. If we change the
kernel functions to the kernels used in Sutton (1988), we can calculate the value to which
the weight will converge in a simple way. For this we need to determine the following
expressions: ḣ(0) and h(T ) (see above). To get the correct value ḣ(0), we need to take
the positive limit of this derivative: limt→0+ ḣ(t) = −h(0) = −h and the value h(T ) which
depends on the discount factor γ and the temporal difference T : h(T ) = γT h. This causes

the weight to converge to w∞
1 = − r̃ h γT

−h
= γT r̃, which is the intended solution of temporal

difference learning. However, even here the weight will not be stable but change during the
occurrence of a x1/r pair but in such a way that both contributions sum up to zero. This is
shown in the inset of Figure 2.7 C where the absolute change of the weight is much higher
than the individual changes at the beginning and the end of the pulse pair (at t = 8000).

The second way that convergence can be guaranteed concerns the δ error as such and,
obviously, as soon as the δr signal is zero, weight w1 will not change anymore. It has
been long discussed that TD learning could be related to dopaminergic responses in the
brain. Especially the behavior of some cells in the substantia nigra and ventral tegmen-
tal area (VTA) suggest that they represent the δ error of TD learning. Models which
behave in a similar way have been made by Suri and co-workers (Montague et al., 1996;
Suri and Schultz, 1998, 1999, 2001; Suri et al., 2001). The δ error decays to zero during
learning as the negative derivative of the output always cancels out with the reward. This
is shown in Figure 2.8, where a filter that stops when the reward occurs was used. Usually
the occurrence of the reward is not known and to overcome this problem you need to em-
ploy more weights and a serial compound representation (see panel C of Figure 2.8) which
is similar to a bank of kernels (see section 3.1). The problem with these models, however,
is that it is difficult to find appropriate biophysical equivalents for the implementation of
the TD rule.

Note, for the δr = 0 condition, the output v, or rather its derivative, needs to take
on a certain value as opposed to ISO learning, where the input x0 needs to become zero.
Hence, we have TD learning where convergence is guaranteed by output-control as op-
posed to ISO learning, which uses input-control to guarantee convergence. Looking back
at Figure 2.7 C, it becomes clear that setting r = 0 does not enforce convergence to a
positive weight value. Setting r = 0 was only done for auto-correlation term evaluation.
Furthermore, we note that there is no generic way to rephrase the TD-specific convergence
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Figure 2.8: Neuronal response in the basal ganglia showing the firing of a Dopamine
neuron before (A) and after (B) learning. Both panels show in the upper part the spike
patterns of a single neuron. The lower part shows the signal structure according to temporal
difference learning which tries to connect the δ error with the Dopamine response. Panel A
shows the Dopamine response and the signals before learning. The reward was not expected
and therefore the δ error is nonzero shortly after (about 100ms delay) the Dopamine neuron
fires. After learning (panel B), the output predicts the reward and therefore the Dopamine
neuron does not fire and the δ error stays zero at time point 2. However, the δ error and
also the Dopamine firing shift before time point 1, which leads to no correlation between
the u1 signal and the δ error, thus, learning stops. Note that for v̇ we used the difference
between v(t+1) and v(t). This figure was recompiled from Schultz et al. (1997). In panel C,
we depict a serial compound representation. Each of the filtered inputs ui is delayed by
∆t = i− 1.

criterion δr = 0 into an input convergence condition. In order to attempt this, we would
have to use input terms (x0/1, r) only, which can not be achieved.

2.4 Heterosynaptic differential Hebbian plasticity -

ICO learning

In order to address the above stated problem about the sensitivity to numerical errors,
we need to design a plasticity rule for which the auto-correlation term truly vanishes. For
this, we modified the ISO learning rule in the following way.

Figure 2.9 A shows an architecture where we have replaced the derivative of the output
in ISO learning with the derivative of the (later) input x0. Hence, we are only correlating
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inputs with each other, thus, the name of this rule: Input correlation learning (ICO,
Porr and Wörgötter, 2006). The plasticity rule is given by

ẇ1(t) = µu1(t) u̇0(t) (2.23)

and, as output and plasticity use the same kernels, the output follows equation 2.9 of
ISO learning. Note that the output is not needed to drive plasticity.

Apart from the missing w0 equation 2.23 looks exactly like the cross-correlation term
of equation 2.5. Thus the overall weight change with this exception is identical to equa-
tion 2.11. We note that the auto-correlation is not existent. This is summarized by the
following equations:

∆wac
1 ≡ 0 ∆wcc

1 =
b− a

a+ b

signT

2σ2
h(|T |). (2.24)

The corresponding results are shown in Figure 2.9 B,C. The learning window is identical
to that of the ISO rule (Figure 2.9 B), but now weights are stable for x0 = 0. The insets
in (C) show the relaxation behavior for a single pulse-pair. In comparison to ISO learning
(inset in Figure 2.3 C) the shallow initial rising phase is missing here as there is no auto-
correlation contribution. For the same reason the hump is a little bit smaller. This effect,
however, is barely visible even when we would overlay the curves. Incidentally, ICO is
identical to ISO in the limit of µ→ 0. The ICO rule has been proven to be very useful in
difficult learning tasks (Porr and Wörgötter, 2006). In fact this rule reliably works even
with very high learning rates and will always converge if one manages to bring x0 down to
zero.

One should, however, notice that ICO learning is a form of non-Hebbian (heterosy-
naptic) plasticity, which may be less realistic from a biological point of view. Such het-
erosynaptic learning was only found at a few specialized synapses (Humeau et al., 2003;
Tsukamoto et al., 2003). Heterosynaptic plasticity is usually associated with modulatory
processes and not directly with Hebbian plasticity.

2.5 Homosynaptic differential Hebbian plasticity

with a third factor - ISO3 learning

ICO learning is very stable but, as mentioned above, it is a form of non-Hebbian plasticity,
where the output does not influence the learning. This may be undesirable in certain cases.
Therefore, efforts have been made to stabilize the ISO learning rule (Porr and Wörgötter,
2007). This can be achieved using a third factor, which has been called the “relevance
signal” R (Figure 2.10 A). For practical purposes, most of the time we set it equal to x0,
but one should realize that - like the reward line in TD learning - R is indeed an independent
signal. The signal R is meant to arise when for the animal/agent a behaviorally relevant
event occurs.
The learning rule is similar to the ISO rule (equation 2.5):
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Figure 2.9: Architecture and weight development of ICO learning. Panel A shows the
architecture where both paths use the same kernel function. In panel B we plot the weight
change for different timings of x0 with respect to x1, where a positive value of T means
that x0 is after x1. As the auto-correlation is zero, this curve represents the whole weight
change. Panel C shows an example of weight development in time of many x1/x0 pairs
with (blue) and without (black) switching off the x0 signal after time t = 8000. In the inset,
we plot a magnification of a single weight development step at certain times to show the
difference between auto- and cross-correlation. Parameters were w0 = 1, a = 0.1, b = 0.2,
σ = 0.25, and T = 20.

ẇ1(t) = µu1(t) v̇(t)R̄(t) (2.25)

with an additional factor R̄ which is the filtered version of R with kernel haR,bR
. The weight

change is:

∆wac
1 =

∫ ∞

0

h(t)ḣ(t)haR,bR
(t− TR)dt (2.26)

∆wcc
1 = w0

∫ ∞

0

h(t)ḣ(t− T )haR,bR
(t− TR)dt (2.27)

where we introduced a new time interval TR, which regulates the timing of the third
factor. It is interesting that the auto-correlation term for ISO3 is, in general, unequal to
zero, when using a single plastic synapse pointing to a possible instability. This is shown
in Figure 2.11 B.



38 CHAPTER 2 SINGLE-PLASTIC-SYNAPSE SYSTEMS

0

14

28

42

56

70

84

98

112

126

w
 [ 

  ]µ
1

∆w
 [ 

 ]µ
1

1u1x

1w

0w

0x u0

0
time[steps]

20000015000010000050000

T=58
T=60

T=56

0.
2

0.
1

at t=0 at t=8000 at t=19900
at

 t=
19

90
0

fo
r 

T
=

58
T [steps]

0−1000 200
−0.1
0.0

0.1

0.2

0.3
0.4

0.5 B

CA

Σ

RR

v

−600 −200 600 1000

for T=56 for T=58 for T=60

1000 steps 1000 steps 1000 steps

1000 steps 1000 steps 1000 steps

ac
cc

ac only

cc only

h

h

x

hR

d/dt

>0

Figure 2.10: Architecture and weight development of ISO3 learning. Panel A shows the
architecture, where both paths use the same kernel function. In panel B we plot the weight
change for different timings of x0 with respect to x1, where a positive value of T means that
x0 is after x1. Note that this curve only represents the cross-correlation part for TR = T
(black) and TR = 58 time steps (blue). See Figure 2.12 for all possible values of TR.
Panel C shows an example of weight development in time of many x1/x0 pairs with (blue)
and without (black) switching off the x0 signal after time t = 80000. We chose T = 58 on
purpose as this value brings the auto-correlation contribution closest to zero. Therefore we
additionally plot the development for T values with ±2 time steps. In the inset we plot a
magnification of a single weight development step at certain times to show the difference
of the auto-correlation part between the different T values (upper left part). Parameters
were w0 = 1, a = 0.01, b = 0.02, aR = 0.1, bR = 0.2 and σ = 0.25. Note that we needed to
broaden the kernels to find a T value with sufficient small auto-correlation contribution.

To explain the optimal position of T , Figure 2.11 A shows the signal structure. Let
us assume that u1 reaches its maximum exactly at T . As v̇(t) = u̇1(t) for t < T and
T > 0, we have lim

t→T−

v̇(t) = u̇1(T ) = 0. This is the situation for the time-development in

Figure 2.10 C when setting T = 58 time steps. If we furthermore assume that the R signal
is very short (e.g. using a delta-pulse for R) and that it also happens at T , then learning
only takes place at this moment in time, hence for t = T . As u̇1(T ) = 0 we have totally
eliminated the auto-correlation contribution. The outcome of panel C in Figure 2.10 is
obtained under this condition and ISO3 is stable (compare the close-up signal structures
of ISO in the inset of Figure 2.3 C and ISO3 in the inset of Figure 2.10 C). The insets
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Figure 2.11: Sketch of the signal structure if the auto-correlations of ISO3 learning is
zero and weight change plot for the auto-correlation part of ISO3 learning. In panel A
the timing is chosen in such a way that the auto-correlation contribution does not exist
as the third factor occurs at the time when the derivative of the auto-correlation part is
zero. Panel B shows the contribution of the auto-correlation for different values of TR. If
the relevance signal R had been a delta peak, the weight change for TR < 0 would be zero.
Parameters were w0 = 1, a = 0.01, b = 0.02, aR = 0.1, bR = 0.2, σ = 0.25.

show the relaxation behavior of ISO3, which is more like a step, for a single pulse-pair in
comparison to ISO, which is curved. This demonstrates instantaneous relaxation of ISO3.
Clearly, this example is constructed as T is usually unknown such that lim

t→T−

v̇(t) = 0 can

not be generally assured. This is shown in Figure 2.10 C, where we vary T by only ±2 time
steps. Also the weight change curve changes with different values of TR. Figure 2.10 B
only shows it for T = TR, but for different values of TR we receive many learning curves,
which is shown in Figure 2.12. It reveals that the zero crossing (zero weight change) moves
along T ≈ TR + 58 for positive values of TR and along T ≈ −58 for negative TR values.
The shift of ∼ 58 corresponds to the TR, for which the auto-correlation is zero (compare
to Figure 2.11).

Due to the problem that the situation in Figure 2.11 can not be generally assured (un-
known T ), it seems we have not gained anything so far by introducing ISO3. However, the
situation changes when using a kernel bank to spread signal x1 out in time (see section 3.1).
Then, one can prove that the condition lim

t→T−

v̇(t) = 0 will self-emerge as a consequence of

the learning when using enough kernels (see section 3.1). Thus, when using a kernel bank,
ISO3 becomes a very stable method, indeed. Obviously, when coupling the relevance signal
R with input x0, weight development will also be stable as soon as x0 is switched off.
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Figure 2.12: Weight change plot of the cross-correlation part for different time intervals T
and TR. Colors indicate different contributions of the cross-correlation. The zero crossing
moves along T ≈ TR + 58 for positive values of TR and along T ≈ −58 for negative
TR values. Parameters were w0 = 1, a = 0.01, b = 0.02, aR = 0.1, bR = 0.2, σ = 0.25.

2.6 Discussion

The here developed framework based on auto- and cross-correlation terms made it possible
to compare different plasticity rules in a coherent way. The analysis so far has revealed
several important common aspects.

Overall weight development

The final weight of plasticity rules without an auto-correlation contribution (ISO/ICO
learning) is just the sum of all single weight change contributions with a given time delay
T . Hence, in general the analyzed rules are linear: If the weight change curve for all given
temporal differences T is known and all the temporal differences which will occur in the
future are known, too, the final weight can be determined to w∞

1 =
∑

n ∆wcc
1 (Tn). On the

other hand if the auto-correlation contribution is negative (S&B model, VOT plasticity
for ρ < 1), the overall weight development follows the difference equation G.1 and the

final weight is calculated w∞
1 =

∆wcc
1 (T )

|∆wac
1 | (see equation 2.17). However, this is only true for

constant T values as the cross-correlation depends on temporal difference T between the
two pulse pairs. Last, a positive auto-correlation contribution always leads to divergent
weights. This is summarized in Figure 2.13 where we sketch fixed points (i.e. w∞

1 ) of the
weight w1 against the auto-correlation contribution.
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correlation contribution in red, and without a cross-correlation contribution the fixed points
are in green. Solid lines indicate stable and dashed lines unstable fixed points.

Relation to spike-timing-dependent plasticity

To what degree are the above discussed models related to temporal sequence learning
mechanisms in the brain? For example, we note that the learning curve of ISO learning,
ICO learning and some curves of ISO3 learning and VOT plasticity resemble curves mea-
sured for spike-timing-dependent plasticity (Markram et al., 1997; Magee and Johnston,
1997; Bi and Poo, 2001). Hence, it is possible to model STDP with such a formalism
(Saudargiene et al., 2004; Roberts, 1999). However, there is one problem. Until now we
only have looked at neurons with only one plastic synapse, where the other was kept
fixed. In real neuronal systems usually more than one synapse is plastic, if not all. Does
this make a difference, and if it does, what would thus change? These questions will be
covered in the next chapter.

Biophysical aspects of ISO3 and TD learning

The instability of the ISO rule was the reason to design ISO3, which is a form of (dif-
ferential) Hebbian plasticity using a three-factor learning rule (Miller et al., 1981). Such
three-factor rules have recently also been discussed in conjunction with the Dopaminergic
system of the brain (Schultz, 1998). Also, since it is a Hebb rule, it is better suited to be
matched to our knowledge about LTP and LTD. Furthermore, we found, quite unexpect-
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edly, that for weight stabilization ISO3 can use one interesting aspect of the behavior of
dopamine cells in the substantia nigra and VTA (Schultz et al., 1997). These cells appear
to learn to anticipate a reward, whereby the temporal occurrence of their response shifts
from tx0 to tx1 . When doing this with our relevance signal in ISO3, learning stops and the
weights become essentially stable even without setting x0 = 0 (see chapter 4). Bringing
the average TD error δr down to zero does require the dopamine responses to take a very
specific shape, whereas for stabilizing weights in ISO3 it is enough to roughly adjust the
timing. This seems to be better in conjunction with the properties of neuromodulator
responses, which do not appear to fulfill high accuracy requirements.
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Chapter 3

Many-Plastic-Synapse Systems

Here, we will investigate many plastic synapses, where the change of one synapse influences
the plasticity of other synapses. Similar to chapter 2, we will concentrate on differential
Hebbian plasticity; however, subsection 3.2.2 is an exception of this rule, where a general
solution for linear Hebbian plasticity of many-synapse systems is developed.

Up to now, all rules and figures (up to Figure 2.11) have always shown how the different
plasticity rules behave when maximally one synapse is plastic. It is, however, important to
also know whether the properties we found in the last chapter also hold for multi-synapse
systems. There are two different extensions one could think of. In the first extension, we
stick to our two signal setup (x0 and x1) and extend the number of kernels. This applies
if knowledge about the actual timing T is limited. In the previous chapter, we indirectly
assumed that we know the temporal difference between the incoming stimuli and if we
abandon this assumption, we need to use a set of kernels or eligibility traces for spreading
out the earlier stimulus across time to make sure that at least some of these signals can be
related to the later occurring x0 signal. This will be the first situation discussed here.

The other extension is to extend the setup and allow arbitrary input signals xi, which
converge onto all plastic synapses. This will be investigated later on for all linear Hebbian
plasticity rules. However, before we extend our system to arbitrary many-synapses, in
subsection 3.2.1 we will investigate symmetrical ICO learning (see section 2.4) with two
plastic synapses.

3.1 Multiple plastic synapses for a single input

The usefulness of all these rules as presented so far remains limited as most of the time
the interval T between incoming inputs is not known well enough and might even vary to
some degree in a behaving agent. Hence, it is required to use a set of different eligibility
traces h1,...,N to make sure that the earlier input is spread out over a sufficiently long time
such that the later input (x0) can be correlated to it. Figure 3.1 A depicts such a kernel
bank architecture for the ISO rule; and panel B shows what the signals u1,...,N look like for
a set of kernels h.
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Figure 3.1: Architecture and example kernels for ISO learning with a bank of kernels.
Panel A shows the architecture with different kernels, however, always using the same
input x1. The parameters for the kernels (see equation 1.1) in panel B are a = 0.001 η,
b = 0.002 η, and σ = 0.25, where the value of η is 20 (black), 15 (gray), 10 (blue), 5 (red),
and 1 (green).

Interestingly, convergence properties for the ISO rule are theoretically not affected
when using a kernel bank. It can be shown that a set of kernels h exists that fulfills certain
orthogonality criteria, and ISO will then still converge for x0 = 0 (Porr and Wörgötter,
2003a; Porr et al., 2003). The problem is that this is only an existence proof and nothing
is currently known of how to actually construct this kernel bank. Hence, when wanting to
use ISO, one has to fall back onto heuristic assumptions for the kernel bank. Generally,
this leads to the situation that the error sensitivity of ISO can become larger, rendering
this rule instable. The properties of ICO and ISO3 are better. The ICO rule is stable per se
for x0 = 0, even when using a kernel bank (Porr and Wörgötter, 2006). For ISO3 learning
it is possible to eliminate the auto-correlation. This is shown in the following.

Eliminating the auto-correlation of ISO3 learning We will now show that the
recursive properties of ISO3 learning using a bank of kernels will self-organize into the
constructed case shown in Figure 2.11 A, which was specifically constructed to demonstrate
the idea of three-factor learning. This is an extension of Porr and Wörgötter (2007).

A closer look at Figure 2.11 reminds the reader that it was constructed with the first
maximum of v exactly at t0, which is the moment when u0 sets in. Hence, at the beginning
of learning, we get for the left derivative v̇t→0− = 0, while the right derivative v̇t→0+ 6= 0.
The idea of this section is to show that the system will self-organize to generically create
such a situation and that by this way the auto-correlation term will become zero. The
learning rule writes in a more general way having N inputs
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ẇk(t) =µuk(t) v̇(t)R(t) (3.1)

∼=µ
(

uk(t)
N∑

j=1

wj(t) u̇j(t) + uk(t)w0 u̇0(t)

)

R(t) (3.2)

with a non-filtered relevance signal R, which needs to occur at time TR = T : R(t) =
δ(t − TR) = δ(t − T ). This also applies for x0 = δ(t − T ), whereas x1 is set to x1 = δ(t).
The output generalizes to

v(t) =
N∑

j=0

wj(t)uj(t). (3.3)

The overall weight change for wk is in a simplified way (see appendix B and note that the
argumentation still holds with an additional factor)

∆wk = µ

∫ ∞

0

uk(t) v̇(t)R(t)dt. (3.4)

This integral is split into a cross- and auto-correlation term so that we get:

∆wk = µ

∫ ∞

0

uk(t)
N∑

j=1

wj(t)u̇j(t)R(t)

︸ ︷︷ ︸

ack

dt+ µ

∫ ∞

0

uk(t)w0u̇0(t)R(t)

︸ ︷︷ ︸

cck

dt (3.5)

and is solved by including the delta functions and integrating over them to

∆wk =µ




hk(T )

ġv(T )
︷ ︸︸ ︷
∑

j>0

wjḣj(T )






︸ ︷︷ ︸

ack

+µhk(T )w0 ḣ0(0)
︸ ︷︷ ︸

cck

=µhk(T ) ġv(T ) + µhk(T )w0 ḣ0(0) (3.6)

which means that weight change only occurs at time T .

The second step is to show that at time T the auto-correlation term ack remains zero.
Since this is a recursive system, we can start with the initial condition wk = 0, k > 0,
where ack = 0 (equation 3.6). Hence, at that moment weight development only depends
on cck. Thus, we need to ask whether weights wk will from there on develop such that
ack remains zero, which guarantees stability of the system. Dependency on cck renders
∆wk proportional to w0, ḣ0(0), hk(T ), the plasticity rate, and the number of plasticity
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experiences W , where only the term hk(T ) changes the distribution of the weights. This
means that we replace wj in the ack term in equation 3.6 with Λhj getting

gv(t) = Λ
N∑

j=1

hj(t)hj(T ) (3.7)

where Λ = W µw0 u̇(0) accounts for a constant term. Thus, the auto-correlation term will
be zero if ġv(T ) = 0. Ultimately, this can only be achieved with an infinite number of
kernels so that all possible T are covered, which turns the sum into an integral:

gv(t) = Λ

∫ ∞

0

hη(t)hη(T ) dη (3.8)

where η scales the frequency of the kernels which are defined slightly differently from the
previous sections with given rise time a and decay time b

hη(t) =
e−a η t − e−b η t

ση

=
e−a η t − e−b η t

√

η (b− a)
. (3.9)

We defined the normalization as ση =
√

η(b− a), which will guarantee ack = 0, as will be
shown next. Substituting equation 3.9 into equation 3.8 gives us

gv(t) = Λ

∫ ∞

ǫ>0

(e−a η t − e−b η t)(e−a η T − e−b η T )

η(b− a)
dη (3.10)

where ǫ is infinitely small but non-zero to avoid a singularity in the integral. This amounts
to removing the constant component from the frequency distribution of the used kernel
bank. The integral equation 3.10 writes as:

gv(t) =Λ

(∫ ∞

ǫ>0

e−a η t−b η T

η(a− b)
dη −

∫ ∞

ǫ>0

e−a η (t+T )

η(a− b)
dη

+

∫ ∞

ǫ>0

e−a η T−b η t

η(a− b)
dη −

∫ ∞

ǫ>0

e−b η (t+T )

η(a− b)
dη

)

(3.11)

These four integrals are essentially of the form1

E(ξ(t)) =

∫ ∞

ǫ>0

e−ξ(t) η

η
dη (3.12)

1These integrals are a special case of the exponential integral En(ξ) =
∫
∞

1
e−ξ η/ηn · dη with n = 1.
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and its derivative for ǫ → 0 is Ė(ξ(t)) = −ξ̇(t)/ξ(t) (see appendix E for a detailed calcu-
lation). This results in

ġv(t) =
Λ

(a− b)

(
a

a t+ b T
− a

a (t+ T )
+

b

a T + b t
− b

b (t+ T )

)

(3.13)

and when bringing it in a more compact form with a common denominator, we arrive at
the final solution

ġv(t) =
ΛT (t− T )(a− b)

(a t+ b T )(a T + b t)(t+ T )
. (3.14)

This term becomes zero for t = T , which is the desired result rendering the auto-correlation
zero at the moment the third-factor signal R is triggered.
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Figure 3.2: Characteristics of function gv and its time derivative ġv for three different
intervals T . The parameters are Λ = 1, a = 0.1, b = 0.2 and T = 5, 10, and 20.

Figure 3.2 A shows a plot of equation 3.13 for different values of T . The choice of a
and b is not critical as long as they are not identical. It is clear that the zero crossing is at
the desired position t = T .

The integral equation 3.10 has no closed form solution, but can be integrated numer-
ically, where the results are shown in Figure 3.2 B. We have chosen T = 5, 10 and 20 as
the time between x1 and x0.

Finally we have to show that at time T the cross-correlation part cck is unequal zero,
without which no learning would take place. Here, we refer back to the difference of right
versus left derivative: v̇t→0− = 0 versus v̇t→0+ 6= 0. Hence cck will produce a contribution
for t → T+, which will lead to learning. As a final step, we need to assure that ġv is
non-divergent around t = T . The Taylor expansion around this point

ġv(t) =
∞∑

n=1

An

T n+1
(t− T )n with A1 = −Λ (a− b)

2 (a+ b)2
(3.15)
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shows that for n = 1 the function ġv follows 1/T 2, which only results in divergence if
T → 0. Note the bigger T is (see different curves in Figure 3.2 A), the more stable is
ISO3 learning when not using ideal δ functions.
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Figure 3.3: Architecture and weight development of ISO3 learning with a bank of kernels.
Panel A shows the architecture where all paths use the same kernel function equation 3.9. In
panel B we see the time development of 20 weights wi, each using the same kernel; however,
with different parameters. It was produced by many x1/x0 pairs, where the x0 signal was
switched off after time t = 80000. Parameters were w0 = 1, a = 0.01 i, b = 0.02 i,
i = 1, 2, . . . , 20, aR = 4, bR = 8, and T = TR = 20.

Hence, we showed that by introducing a bank of kernels which need to follow equa-
tion 3.9 with the proposed normalization the auto-correlation contribution stays zero when
using a δ-function as relevance signal. However, even if we extend the width of the inputs
to a finite value, the auto-correlation stays close to zero which is shown in Figure 3.3. This
completes the considerations on many different kernels for the same input.

3.2 Multiple plastic synapses for many inputs

Next we drop the single synapse condition and allow all synapses to be plastic. We start
with our basic setup having two synapses, which gives us symmetrical architectures. How-
ever, we wait with the discussion of symmetrical ISO learning, as the general solution of
multi-synapse systems gives us ISO learning as a special case for free. Therefore, symmet-
rical ICO learning will be the first system to be investigated.
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3.2.1 Symmetrical rules: ICO learning

These investigations should also answer whether it is possible to implement learning (LTP)
at one synapse and unlearning (LTD) at the other synapse at the same time. In principle
this should be possible because one synapse experiences +T while the other experiences
−T for any given input pair. Thus, causality is inverted for the two synapses and with the
right design one synapse should grow, while the other would shrink.

In Figure 3.4 the isotropic setup for the coupled ICO learning is shown and the plasticity
rule is given by:

ẇ0(t) =u0(t) u̇1(t)w1(t) (3.16)

ẇ1(t) =u1(t) u̇0(t)w0(t) (3.17)

We solve the weight change analytically to:

∆w0/1 = ∓ b− a

a+ b

sign (T )

2σ2
h(|T |) (3.18)

which is, except the ∓ sign, identical to equation 2.11.

0/
1

w
   

[  
 ]µ

−15

−10

−5

5

10

0

15

1x

0x u0

1u

0w

1w

0 5000 1500010000
time[steps]

20000

A

Σ v

B

h

d/dt

h

x

x

Figure 3.4: Architecture and weight development of symmetrical ICO learning. Panel A
shows the architecture where both paths use the same kernel function. Panel B shows an
example time development of many x1/x0 pairs, where both weights w0 (black) and w1

(blue) learn, each starting from a value of 0.1. The time interval between x1 and x0 is
T = 60. Both weights develop in an anti-symmetrical way independent of the time interval
used. Parameters were a = 0.1, b = 0.2, and σ = 0.25.

Symmetrical ICO learning (Figure 3.4 A) produces a linear phase-relation, which is
not shown here, but Figure 3.4 B shows instead that both weights develop in an anti-
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symmetrical way. It is interesting that this only holds for the overall weight development.
The individual time development is different, as equation 3.31 of subsection 3.2.3 shows.

There is a problem, however; symmetrical ICO learning no longer has one shared con-
trol parameter for the weight change, which for symmetrical ISO learning would be the
derivative of the output. For symmetrical ICO learning, two totally independent control
parameters exist (the derivatives of the inputs). This can possibly lead to problems when
wanting to control behavior with such a symmetrized ICO rule.

When looking at ISO learning things are not so simple anymore. Therefore we first
develop a complete description, from which we come back to symmetrical ISO learning as
a special case.

3.2.2 General many-synapse systems

In this subsection we will follow a different aim as we are not investigating the stability
or the convergence of weights. Here we will develop a method to solve such weight devel-
opment for an arbitrary number of input signals xi under linear Hebbian plasticity rules.
This also means that we generalize in this subsection from differential Hebbian plasticity
to all possible linear Hebbian plasticity rules. It is known that in behaving animals sen-
sory inputs are highly non-stationary (Kayser et al., 2003). This generically applies to all
systems (animals, machines, robots, etc.) which interact with their environment as their
own behavior will lead to continuously changing inputs and, thus, to an ongoing synaptic
weight change. The solution provided here may allow for the first time to calculate Hebbian
plasticity in such systems without restrictions. Such restrictions are for instance averaging
over input signals or neglecting the plasticity of synapses like we have done so far.

The general system is shown in Figure 3.5 on the right side and similar to our previous
definitions it consists of N synapses with strength wi that receive input from neurons i
with its continuous values xi. Each input produces an excitatory post synaptic potential
(EPSP), which is modeled by kernel functions hi (see Figure 1.7). The output of the neuron
is, thus:

v(t) =
N∑

i=0

(xi ∗ hi)(t) · wi(t) (3.19)

where (ξ ∗ η)(t) again describes a convolution. The synapses change according to a general
formalized Hebbian plasticity rule

ẇi(t) = µF [xi ∗ hi](t)G[v](t) (3.20)

where F [ · ] and G[ · ] are linear functionals.

We already know conventional Hebbian plasticity with F = G = 1 (where 1 is the
identity) and differential Hebbian plasticity with F = 1 and G = d

d t
.

To avoid that weight changes will follow spurious random correlations we also assume
that plasticity is a slow process, where inputs change much faster than weights, with
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Figure 3.5: This figure shows our general setup and example input values that are fed to
the neuron. Inputs are denoted as xi, kernel functions as hi, synaptic strength as wi and
the output of the model neuron as v. The example inputs shown on the left side are spike
trains, although any arbitrary continuous function can serve as an input. Note that the
plasticity pathway is not shown.

d wi

wi
≪ d (xi∗hi)

xi∗hi
, µ→ 0. This simplifies equation 3.20 and we neglect all temporal derivatives

of wi on the right hand side:

ẇi(t) = µF [xi ∗ hi](t)
N∑

j=0

wj(t)G[xj ∗ hi](t) (3.21)

where we used G[
∑
ξi] =

∑
G[ξi] as G[ · ] is linear.

If we take wi as the i-th component of a vector www, we write

ẇww(t) = µAAA(t)www(t) (3.22)

with Aij(t) = F [xi ∗ hi](t)G[xj ∗ hi](t) or in matrix form

AAA(t) = F [(xxx ∗ h)(t)] ·G[(x̄xx ∗ h)(t)] (3.23)

=






F [(x0 ∗ h)(t)]G[(x0 ∗ h)(t)] · · · F [(x0 ∗ h)(t)]G[(xN ∗ h)(t)]
...

. . .
...

F [(xN ∗ h)(t)]G[(x0 ∗ h)(t)] · · · F [(xN ∗ h)(t)]G[(xN ∗ h)(t)]






where ξξξ denotes the transposition of matrix ξξξ.

The solution of equation 3.22 is not trivial as the matrix AAA(t) is also a function of time.
This problem is often found in quantum mechanics, and the main problem is that matrices
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usually do not commute. However, there exists a solution which includes an infinite series,
called the Magnus series (see Magnus (1954) for more details), with

www(t) = expΩΩΩ(t) ·www0 (3.24)

where www0 is the synaptic strength before plasticity, and ΩΩΩ(t) is the solution of following
equation

Ω̇ΩΩ(t) =

{

µAAA(t),
ΩΩΩ(t)

1 − exp (−ΩΩΩ(t))

}

=
∞∑

n=0

βn {µAAA(t),ΩΩΩn(t)}. (3.25)

Here the braces {η, ξn} = [· · · [[η, ξ], ξ] · · · ξ] are nested commutators [η, ξ] = η ξ − ξ η and
βn are the coefficients of the Taylor expansion of ΩΩΩ

1−exp (−ΩΩΩ)
around ΩΩΩ = 0. equation 3.25 is

solved through integration by iteration to the Magnus series:

ΩΩΩ(t) = µAAA(t) +
µ2

2

∫ t

0

[AAA(z1),AAA(z1)] dz1

+
µ3

4

∫ t

0

[

AAA(z1),

∫ z1

0

[AAA(z2),AAA(z2)] dz2

]

dz1 +
µ3

12

∫ t

0

[[AAA(t),AAA(z1)] ,AAA(z1)] dz1

+ o(µ4) (3.26)

with AAA(t) =
∫ t

0
AAA(z)dz. Thus, equation 3.24 combined with equation 3.26 gives us analyt-

ically the time development of all weights connected to a neuron under Hebbian plasticity
in the limit of small plasticity rates µ. With this, we are principally able to calculate
the synaptic strengths of N synapses without simulations, given N different spike trains,
membrane potentials, or firing rates.

Next we transform the solution into a computable form and provide error estimates. As
the commutators in the infinite series in equation 3.26 are generally non-zero we truncate
the series and neglect iterations above degree (k). We write the truncated solution as:

www(k)(t) = expΩΩΩ(k)(t) ·www0 (3.27)

For two synapses, this is solved directly in the next subsection; most often, however,
equation 3.27 needs to be calculated by expanding the exponential function. We denote
this approximation with a prime, i.e. (k′)

www(k′)(t) =

(

III +

p·q≤k
∑

p=2,q=1

(
ΩΩΩ(p)(t)

)q

)

·www0 = BBB(k′)(t) ·www0 (3.28)

where III is the identity matrix and BBB(k′)(t) the transformation of order (k) from the initial
synaptic strength www0 to the synaptic strength at time t. This solution is computable for
arbitrary input patterns. Notice that in the limit k → ∞ the approximation (equation 3.27)
transforms into the general solution (equation 3.24).
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Now as we know the complete analytical solution of equation 3.22 we investigate the
approximations and their errors in order to judge their usefulness for further considerations.
We will switch to spikes as the inputs to the system and assume that all hi = h are
equal. As earlier, spikes are modeled as delta functions δ(t− ti) for spike times ti and the
convolution is simplified to a temporal shift in the kernel function h: h(t− ti). This leads
to Aij(t) = F [h](t−ti)G[h](t−tj) for elements ofAAA(t) where ti and tj are the spike timings
of neuron xi and xj respectively. We will use our standard kernel functions (equation 1.1).

The different approximation errors are exemplified in Figure 3.6. For this, we are using
a single spike pair at two synapses, for which we calculate the final synaptic strength
ŵww = lim

z→∞
www(z) (equation 3.24). This has been performed for differential Hebbian plasticity,

but we point out that the error is identical for Hebbian plasticity as the order of the error
is not affected by the actual (linear) Hebbian rule used. This is because the only source
of the error is the plasticity rate µ, which is independent from the choices of F and G.
For this setup weight changes are computed in three ways: without any approximations,
yielding ŵww (equation 3.24 and equation 3.26); using the truncated solution only, yielding
ŵww(k) (equation 3.27); and using the truncated solution while also expanding the exponential
function, yielding ŵww(k′) (equation 3.28). Thus, we use ŵww and compare it to approximations
ŵww(·), calculating the error as: ∆(·) =

∣
∣ŵww(·) − ŵww

∣
∣. This is plotted in Figure 3.6 against the

plasticity rate µ for different approximations on a log-log scale. As approximations (k)
and (k′) become very similar for k > 2, only four curves are shown. We observe that
the behavior of the difference-error ∆(·) follows the order of the approximation used. The
error for the linear expansion approximation (k = 2′, equation 3.28) is slightly higher than
that of its corresponding truncation approximation (k = 2, equation 3.27). However, using
a plasticity rate of µ = 0.001 already results only in a difference-error value of 10−8 as
compared to 10−2 when using µ = 1. Therefore, in most applications one can use even
the simplest possible linear approximation (k = 2′) to calculate the change in synaptic
strength.

As this calculation has been based on two spikes at two synapses only, we need to ask
how the error develops when using N synapses and complex spike trains. For this we first
consider spike trains (see Figure 3.5 left), which are grouped ’vertically’ into groups with
each input firing at most once. Kernels of spikes within a group will overlap, but we assume
that grouping is possible such that adjacent groups are spaced with a temporal distance
sufficient to prevent overlap between kernel responses of temporally adjacent groups. Thus
we calculate www in the same way as above, leading to: B̂BB(k′) = lim

z→∞
BBB(k′)(z) in equation 3.28.

When using such a temporal tiling, B̂BB(k′) depends only on the spike timing matrix TTT with
elements Tij = tj − ti, and we get the synaptic strength after H groups by calculating the
product over all groups m:

wwwM,(k′) =
H∏

m=1

B̂BB(k′)(TTTm) · www0. (3.29)
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Figure 3.6: Here we show the degree of consistency between our general solution and the
proposed approximations. To this end, we plot the difference ∆(·) between the approximation
and the exact solution of equation 3.22 for one input spike pair against the plasticity rate µ
on a log-log scale. A kernel function h with a = 0.1, b = 0.2, σ = 0.25, and maxt h(t) = 1
is used. The temporal difference T = t1 − t0 between the two input spikes was varied
over the length of the used kernel functions (here between 1 and 100 steps), and error bars
representing the standard deviation are given.

Physiologically such a grouping decomposition can be performed for so-called non-
bursting neurons, which, for example, constitute the majority of cortical cells. The solution
(equation 3.29) is easy to compute. As a product of matrices results in a summation of
matrix elements, the error does not increase exponentially but only linearly in M . Due
to this it follows that even after 10000 spikes the error is still of an order of only 10−4

given any of the approximations in the example above (see Figure 3.6). Thus, the easily
computable group decomposition suggested by equation 3.29 will yield results accurate
enough even for long, non-bursting spike trains.

Finally we estimate how the error behaves when kernels overlap. This mainly happens
during bursts of spikes with temporarily high spiking frequencies which in general are
rare events. However, using the solution which assumes independent temporal intervals
(equation 3.29) instead of the time-continuous calculation (equation 3.28) only includes an
additional error of order (k = 2) due to the linearity of the kernel functions h. The error
after matrix multiplication (equation 3.29) results in the square of the lowest term of the
Magnus series (equation 3.26).

In this subsection we elaborated analytical solutions with different degrees of approxi-
mation. Finally we will briefly compare the algorithmic complexity of the required analyt-
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ical versus the numerical calculations. In general, for the analytical solutions we need to
perform a matrix multiplication for every moment in time at which we want to analyse the
weights. This multiplication costs 2 ·N ·N steps with N being the number of inputs. The
numerical calculation is linear in N (see appendix F) and, thus, costs 9 · N + n calcula-
tions where we have n = 1 for plain Hebbian plasticity and n = 2 for differential Hebbian
plasticity as this demands an additional subtraction. Thus, with more than six inputs the
numerics are preferable as it only costs 54 computations per weight calculation compared
to 72 for the analytics. This, however, is only the naive assessment of the algorithmic com-
plexity. Realistically, we can always benefit from the fact that analytics are to be calculated
”per spike” whereas numerics require calculations ”per sampling step”. This difference can
be dramatic especially for many synapses with sparse spike trains. Numerical calculations
require fine sampling to avoid numerical errors (see appendix C) and the step size ∆t needs
to be very small (e.g. 10−3). If we liked to compute the synaptic changes after 10000 spike
groups (as defined for equation 3.29) with an average firing rate of 2 Hz, similar to cortical
cells, having a sampling rate of 103 Hz, we would need to perform the complete numerical
integration procedure for 10000/2 Hz ·103 Hz = 5 ·106 times. By contrast, for the analytics
we would only need 10000 complete calculations. In general, if S is the number of sampling
steps that can be skipped between time t and time t + S · ∆t, the analytical solution is
advantageous as soon as we exceed S = N . This shows that the analytical solution is in
almost all cases preferable as compared to numerics.

3.2.3 Symmetrical rules: ISO learning

Next we look in more detail at symmetrical homosynaptical differential Hebbian plasticity,
i.e. ISO learning with two plastic synapses (see Figure 3.7), which is analytically fully
solvable. We have also based the error analysis provided in Figure 3.6 on these calculations.
For this case the matrix BBB(t) results in

BBB(t) =

(
1 + µ

2
h2(t) µ νT,−1(t)

µ νT,+1(t) 1 + µ
2
h2(t− T )

)

(3.30)

where νT,−1(t) =
∫ t

0
h(z) ḣ(z − T ) dz and νT,+1(t) =

∫ t

0
h(z − T ) ḣ(z) dz. Here we use two

input neurons (N = 2), which received a spike at t = 0 and at t = T respectively.

Using the kernel function h (equation 1.1), we analytically integrate the secondary
diagonal entries of equation 3.30 which are:

νT,η(t) =
Θ(t− T ) Θ(t)

2 (a+ b)σ2
(η sign(T )σ (a− b)h(|T |)

− 2e−t(a+b)(aea T + beb T )

+ (a+ b)(e−a(2 t−T ) + e−b(2 t−T ))). (3.31)

which is identical to equation 2.12 for η = −1.
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In the limit of t to infinity matrix BBB(t) changes into B̂BB and so do the secondary diagonal
elements (compare with equations 2.11, 2.24, and 3.18)

ν̂T,η = lim
t→∞

νT (t) = η sign(T )
a− b

2 (a+ b)σ
h(|T |). (3.32)

Furthermore, we find that ν̂T = ν̂T,+1 = −ν̂T,−1. For the considered kernel function ν̂T is

positive definite as a is smaller than b. Therefore ÂAA results in

ÂAA = lim
t→∞

AAA(t) =

(
0 ν̂T

−ν̂T 0

)

= νT

(
0 1
−1 0

)

. (3.33)

The diagonal elements become zero as the chosen kernel function decays to zero in the
limit to infinity.

As the square is ÂAA
2

= −ν̂2
T III, we calculate the exponential solution equations 3.27 for

an error of order (k = 2). The exponential function is then:

B̂̂B̂B(2) = expµ ÂAA =
∞∑

n=0

1

n!
(µ ÂAA)n =

∞∑

n=0

(−1)n

(2n)!
(µ ν̂T )2n III +

∞∑

n=0

(−1)n

(2n+ 1)!
(µ ν̂T )2n+1 JJJ

(3.34)

= cos (µ ν̂T )III + sin (µ ν̂T )JJJ =

(
cos(µ ν̂T ) sin(µ ν̂T )
− sin(µ ν̂T ) cos(µ ν̂T )

)

where JJJ =

(
0 1
−1 0

)

. This results in

ŵww(2) = B̂BB(2) ·www0 =

(
cos(µ ν̂T ) sin(µ ν̂T )
− sin(µ ν̂T ) cos(µ ν̂T )

)

www0. (3.35)

Both equation 3.33 and equation 3.35, were used to calculate the difference ∆(·) for different
values of T in Figure 3.6.

Having found the analytical solution, we can now investigate the weight development
of symmetrical ISO learning (see Figure 3.7 A). This is plotted in Figure 3.7 C, where
we find that both weights oscillate around zero. In Panel B, close-ups of the development
are shown. The second close-up shows clearly how the second weight interacts and thus
changes the development of the first weight. It is interesting that the amplitude of the
individual time development (panel B) is plasticity rate dependent and, by contrast, the
amplitude of the overall development (panel C) is not. However, as equation 3.35 gives us
a coupled differential equation which is easy to solve, we determine the frequency ω of the
oscillation to ω = sin (µ ν̂T ), which is again plasticity rate dependent.
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Figure 3.7: Architecture and weight development of symmetrical ISO learning. Panel A
shows the architecture, where both paths use the same kernel function. Panel C shows
an example time development of many x1/x0 pairs, where both weights w0 (black) and w1

(blue) learn starting from a value of 10 and −1, respectively. The time interval between x1

and x0 was T = 10. In Panel B close-ups of the time development at different times are
shown. Parameters were a = 0.1, b = 0.2, σ = 0.25, and µ = 0.05.

3.3 Discussion

In this chapter we investigated the plasticity of multiple synapses, however, in two
different systems. In the first, we only had one input that splits into many pathways,
where all have different kernels. By contrast the second system had many inputs, each
also influencing a different weight. For both systems there exist solutions, however,
the solution for the second setup is more complex. This is because besides the inter-
action of synapses that change all the time comes the interaction of varying input patterns.

Single input

For different rules, namely ISO, ICO and ISO3 learning, proofs exists that the auto-
correlation contribution can be eliminated (Porr and Wörgötter, 2003a, 2006, 2007).
Additionally, they have now been successfully tested in a variety of different applica-
tions (Porr and Wörgötter, 2003b; Kolodziejski et al., 2006, 2007; Manoonpong et al.,
2007), and even chains of learning neurons can be constructed in a convergent way
(Kulvicius et al., 2007). All these applications show that the extension to multiple kernels,
hence to multiple plastic synapses, is important if the temporal shift between the two
inputs x0/1 was not known.
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Many inputs
Real neurons often display rich, non-stationary firing patterns, by which all synaptic
weights will be affected. The same is true for neurons in artificial neural networks, es-
pecially when embedded in closed-loop (acting, behaving) systems. The solutions existing
so far which describe Hebbian learning, on the other hand, restrict the temporal dynamics
of the system or limit plasticity to a subset of synapses (see chapter 2). With the solution
presented here, we can calculate weight changes time without these restrictions for the
first. This is a valuable step forward in our understanding of synaptic dynamics in differ-
ent networks. Specifically, we have presented the time-continuous solution for the synaptic
change of general Hebbian plasticity (equation 3.24 and equation 3.26), its approximation
for general spiking or continuous inputs (equations 3.27 and 3.28) as well as a specific
solution for non-bursting spike trains (equation 3.29). Of practical importance is the fact
that the error of the computable approximations (equations 3.27, 3.28, 3.29) remains small
even for long spike trains.

The temporal development of multi-synapse systems and the conditions of stability are
still not well understood. Some convergence conditions have been found (see for exam-
ple Hopfield (1982); Miller and MacKay (1994); van Rossum et al. (2000); Roberts (2000);
Kempter et al. (2001); Burkitt et al. (2007)); however, in general the synaptic strengths
of such networks will diverge or oscillate. This is undesired, because network stability is
important for the formation of (e.g.) stable memories or receptive fields. Using the time-
continuous solution for linear Hebbian plasticity described here, could serve as a starting
point to better understand mechanisms, structures and conditions for which stable network
configurations will emerge. The rich dynamics, which govern many closed-loop adaptive
(network based) physical systems can, thus, now be better understood and predicted, which
might have substantial future influence for the guided design of network controlled systems.
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Chapter 4

The Relation of Differential Hebbian
Plasticity to Reinforcement Learning

In the last chapter, we described the mathematical properties of differential Hebbian plas-
ticity or learning. We put this kind of plasticity in the context of real neurons, trying to
point to the similarities between synaptic plasticity and differential Hebbian plasticity and
in particular the properties that relate to spike-timing-dependent plasticity. Further on,
when talking about learning, we gave examples about the relation of differential Hebbian
learning and Pavlovian (or classical) conditioning. One should ask whether it is not possi-
ble to extend this relation to operant (or instrumental) conditioning in a straightforward
manner. There, the action of the learner influences the stimuli the system receives and, in
turn, the stimuli by means of corresponding weights decide about the next action to take.
We have already discussed the first aspect in the Pavlovian context of closed-loop systems
(see section 1.2). Now we will discuss operant conditioning. With reinforcement learning
(see Sutton and Barto (1998) for an overview), the change of values is guided by rewards
or punishments (negative rewards), and the actions that lead to the reward are reinforced.
Hence, this kind of learning is the method of choice to model operant conditioning.

Given a stimulus or rather a state and its weight learned by differential Hebbian plas-
ticity, we can not evaluate by means of the current weight strength what comes next. That
the weight is positive just tells us that there is positive correlation with another state,
thus with some probability there will be another state. To judge whether a given state
predicts something “good” is only possible if an evaluative process adjust a certain value,
for instance the corresponding weight. However, correlation-based learning of which also
(differential) Hebbian plasticity is part, is only able to handle non-evaluative changes of
weights as neither an explicit (supervised learning) nor an implicit (reinforcement learning)
error signal is used. Indeed it belongs to the class of unsupervised learning rules.

In order to realize reinforcement learning in a biological more realistic way, we need to
embed the learning rule into a network structure. For instance, we presented an implemen-
tation of temporal difference learning, which belongs to the class of reinforcement learning
algorithms, in section 2.3. There the δ error (see equation 2.21) is an entity that can not
be computed directly at the neuron but needs to be calculated elsewhere in the network.
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On the other hand, weight changes in (differential) Hebbian plasticity follow biophysically
realistic mechanisms, namely the correlation of pre- and post-synaptic activation. Now the
question arises whether it is possible to emulate the first, reinforcement learning, with the
latter, differential Hebbian plasticity. In order to emulate reinforcement learning, we will
concentrate on a widely used algorithm, i.e. temporal difference learning, and give a more
technical (i.e. machine learning) introduction in the following.

Emulating reinforcement learning by temporal difference Learning Reinforce-
ment learning maximizes the rewards r(x) an agent will receive in the future when following
a policy π traveling along states x. The return R is defined as the sum of the future rewards:
R(xi) =

∑

k γ
kr(xi+k+1), where future rewards are discounted by a factor 0 < γ < 1 i.e. a

reward n time steps in the future is only worth γn. One central goal of RL is to determine
the values V (x) for each state given by the average expected return Eπ{R}, which can be
obtained when following policy π. Many algorithms exist to determine the values, almost
all of which rely on the temporal difference (TD) learning rule (equation 4.1) (Sutton,
1988).

Every time the agent encounters a state xi, it updates the value V (xi) with the dis-
counted value V (xi+1) and the reward r(xi+1) of the next state associated with the con-
secutive state xi+1:

V (xi) → V (xi) + α [r(xi+1) + γV (xi+1) − V (xi)] (4.1)

where α is the learning rate. This rule is similar to equation 2.20, however, with two
differences. First, weight w and output v are represented by the same value V and
secondly, as equation 4.1 does not represent neuronal activity, there is no dependence on
the pre-synaptic input u anymore. This rule is the general TD(λ = 0) rule, short TD(0),
as it only evaluates adjacent states. For values of λ 6= 0 more of the recently visited states
are used for value-function update. TD(0) is by far the most influential RL learning rule
as it is the simplest way to assure optimality of learning (Dayan and Sejnowski, 1994;
Sutton and Barto, 1998).

Whether such a learning algorithm does what it is supposed to do, i.e. weights develop
and converge in the right way, is an important question and convergence proofs exist
for many algorithms (see Hertz et al. (1991) for an overview). It is even possible that
different algorithms fulfill the same task although the method used and the solution found
are completely different. Alternatively, it is possible that, although the methods are not
conform, the solution is. Two methods are asymptotically (after convergence) equivalent
if at least in the mean the solutions are identical.

Recently there have been several contributions towards finding the equivalence be-
tween spike-timing-dependent plasticity and the here discussed temporal difference learn-
ing. Izhikevich (2007); Roberts et al. (2009); Florian (2007); Potjans et al. (2009) pre-
sented specific solutions, which we will discuss in more detail in section 4.3. Thus, there
is more and more evidence emerging that Hebbian plasticity (such as STDP) and rein-
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forcement learning can be brought together under a more unifying framework. Such an
equivalence would have substantial influence both on our understanding of network learn-
ing and the biological mechanisms of reinforcement learning as these two types of learning
could be interchanged under certain conditions.

Thus, the goal of this chapter is to prove that the temporal difference (TD) learning rule
(Sutton, 1988), is asymptotically equivalent to differential Hebbian plasticity under certain
rather general conditions, like having a negative auto-correlation contribution. This can
be achieved either by using a third factor (in a global way - subsection 4.2.1 or in a local
way - subsection 4.2.2) or by using different time scales for the plasticity and the output
pathway (subsection 4.2.3). We will also show that equivalence holds over wide parameter
ranges.

Biophysical considerations about how such a third factor might be implemented in real
neural tissue are of secondary importance for this thesis. At this stage we are concerned
with a formal proof only. Some biophysical aspects have already been treated in section 2.3
and will be extended in section 4.3, though.

ΣΣ

BA

v
u

v
u

M M

Figure 4.1: Here the difference between a global and a local third factor M is exemplified.
Panel A shows the global third factor, where the output activity v drives the third factor M
which in turn influences all synaptic connections. In contrast, panel B depicts a local third
factor M triggered by the input u and only influencing a single synaptic connection.

Concerning the third factor, there are two different ways to use it and this also modifies
the influence of the third factor on the weights. These two ideas are depicted in Figure 4.1.
The first method to use the third factor is through the output activity of a neuron. Here
the third factor will globally influence all synaptic connections that converge onto this
neuron, thus calling it a global third factor (Figure 4.1 A). On the other hand, it is also
possible to use the input activity as a trigger for the third factor. With this method only
the synaptic connection, whose input triggered the third factor, will be affected. Because
now the third factor acts locally, it is called a local third factor (Figure 4.1 B).

In the following we will start with the more general global third factor and continue
with the local third factor by pointing out differences in our analytics. We will find that
the local third factor has advantages over the global factor with respect to convergence
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and computations. The last part of our analysis section shows a possibility to achieve
equivalence without a third factor. We will, however, see that a shorter time scale at the
output pathway acts similarly to a third factor.

The next section discusses the aspects of the setup that are fundamentally important
to achieve the equivalence between differential Hebbian plasticity and temporal difference
learning. Having this in mind, we show the equivalence for the three above-mentioned
modifications of the basic differential Hebbian plasticity rule. To achieve this we solve
the resulting differential equation and use these to show the asymptotic equivalence in
a straightforward manner. The solution of the differential equation gives us constraints
which we will investigate for generally applicable signal shapes. A simulated network will
then show some practical aspects before we finish with a technical discussion of the given
modifications. A general discussion is given at the end of this chapter.

4.1 General setup

In the introduction to this chapter we saw that in temporal difference learning both a
TD value V and a reward r is assigned to a discrete state x. This is shown in Figure 4.2 A,
where we see three states (x1 − x3) having non-zero TD values V and one state xr having
a non-zero reward r. For simplification we do not show the zero-valued rewards and the
TD value at xr. As temporal difference learning is an algorithm which uses discrete time
and space, the agent travels per time unit from one state to the next. On the other hand,

V(  ) V(  ) V(  ) w w ww

∆ dtt

r(  )
BA

x1 x2 x3
x x x1 x1 2 2 3 3 r rxr

Figure 4.2: Typical state structure used for temporal difference learning (A) and the
here proposed setup (B). Temporal difference learning usually uses discrete time and space
(indicated by the broken arrows and ∆t). By contrast, the Hebbian plasticity operates in
continuous time and space (indicated by the continuous arrow and dt). Both panels show
four states having either a value V or a reward r. The corresponding variables for the here
proposed setup are plastic weights wi and fixed weights wr, respectively. The discrete states
correspond to continuous regions, where the corresponding input xi is active.

we have Hebbian-like plasticity which uses the correlation of an inputs x and an output v
to change a synaptic weight w. In panel B of Figure 4.2 we depict in continuous space the
area with circles which corresponds to an input xi. Whenever the agent enters a circle, the
corresponding input will be active and the corresponding weight changes continuously in
time. Thus, if we want to emulate temporal difference learning with Hebbian-like plasticity,
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we need to relate states to inputs and values to weights. This is indicated in Figure 4.3.
Along these lines rewards are represented by rewarded states which have fixed non-adaptive
weights, which is their reward value. That these weights are fixed and non-zero represents
the fact that rewards are usually associated with unconditioned stimuli, which will lead to
strong, insuppressible responses.

Continuous versus discrete space and time As Hebbian-like plasticity uses contin-
uous time, in the following we have to integrate over the whole time where the signal u of
state x is significantly unequal zero. This then results in the new weight value of the corre-
sponding state x. The temporal difference between two states is thus achieved through the
cross-correlation contribution between temporal adjacent states and their signals. There-
fore it makes sense to rearrange in the following the states into a temporal and not a spatial
order, i.e. state xi+1 comes after state xi although these states might be located far apart.

Here, we introduce another constraint concerning the rewarded states xR which we
define as terminating states. Therefore a temporal state sequence always ends with a
rewarding state xR. The drawback of this constraint will be discussed at the end of this
section.

We already implied that there is a relation between states and signals and similar to
the last chapters we convolve states x(t) with a kernel function h, which leads to our
signal u(t) =

∫∞

0
x(z)h(t − z) dz. We define the kernel functions to be identical for all

states. Note that in subsection 4.2.3 we differentiate between the plasticity and the output
pathway (compare to VOT plasticity in section 2.1). This will change the parameters a
and b of the kernel function h (see equation 1.1), which will be used for the output pathway.
We will indicate this with an index v. As we are using only states that are either on or
off during a long enough visiting duration S, the input functions u(t) essentially do not
differ between states. Therefore we will use ui(t) (with index i) having a particular state in
mind and u(t) (without index i) when pointing to functional development. If we assume,
guided by biophysics, that our kernels are stereotypic with a rising phase of length PE and
a falling phase of length PF (compare Figure 1.7 where PF = PE), long enough means that
the signal was able to reach the plateau before falling again, hence S > PE.

Hence, in general the overall change of the weight wi after integrating over the significant
non-zero values of ui (i.e. simplified over the visiting duration S of xi−1(t), xi(t) and xi+1(t))
results in ∆wi =: ∆i = ∆cc−

i +∆ac+
i +∆ac−

i +∆cc+
i . Note that we defined ∆ac±

i as ∆wac±
i ·wi.

Specifications Without loss of generality we are going to analyze the change of weight
wi when considering three consecutive signals ui−1, ui and ui+1. There are two time
windows which are important for the auto-correlation as well as for the cross-correlation
contribution. For the latter the first window opens with the beginning of the falling phase
of the preceding signal ui−1 and, because of the negative slope of ui−1, we define it as cc−.
The second window opens with the start of the rising phase of the subsequent signal ui+1

and is defined as cc+. Similarly, for the auto-correlation contribution the first window
opens with the rising phase of the according signal ui and is defined as ac+ and the second
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goes with the falling phase of ui, thus named ac−. As mentioned in the introductory
paragraphs of this chapter, a possible third factor M might open more and/or different
time windows. However, we will define M to essentially be active “around” the windows
discussed above assuring that states correlate with temporally neighboring states.
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Figure 4.3: The general setup is shown in panel A, and an arbitrary signal structure in
panel B. (A) Three temporal adjacent states and the rewarded state converge on the neuron
which learns according to a differential Hebbian plasticity rule. Plasticity at synapse wi is
influenced by pre-synaptic, by post-synaptic, and by possible modulatory activity. The states
x will be active in an increasing order. (B) The lower part shows the states x which have
an activity duration of length S. We assume that the duration for the transition between
two states is T . Above the signals u and the output v are depicted. Here we additionally
indicated the duration of the rising (PE and Pv,E) and the falling phase (PF and Pv,F )

of the signals and the output, respectively. Signals u are given by u(t) =
∫ S

0
(e−a (t−z) −

e−b (t−z)) dz. For state xi the weight change contributions of the auto-correlation ∆ac± and
cross-correlation ∆cc± are indicated.

We already defined S as the length of each state x. Furthermore, we define the period
between the end of a state xi(t) and the beginning of the next state xi+1(t) as T , where
T < 0 represents overlapping states. We define O as the onset time of a modulatory factor
M and L as its duration. Two (S and T ) of these four constant parameters (S, T , O, and
L) are displayed in detail in Figure 4.3 B. The remaining parameters are depicted in the
particular setup figures (Figure 4.4 and Figure 4.8) in the following sections.

Importance of a negative auto-correlation In order to emulate temporal difference
learning with a Hebb-like plasticity rule using this general setup, a negative auto-correlation
contribution is a necessary condition. This is the central idea behind the following proof
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which arises from the analysis made in chapter 2. There, we found that a negative auto-
correlation leads to convergent non-zero weights if the input activity is correlated with
successive non-vanishing inputs.

4.2 General analysis

Using the general setup defined in the last section, we analyze the underlying differential
weight change equation, the equivalence and for which parameter ranges the weights con-
verge. This general analysis is followed by specific implementations, namely differential
Hebbian plasticity with a global third factor, with a local third factor, and with different
time scales for plasticity and output. For this we further solve and investigate the equations
we received from the general analysis.

Analysis of the differential equation Plain differential Hebbian plasticity will not
suffice for our purposes as the auto-correlation contribution is per se equal to zero, and
thus not negative (see section 2.1). Hence, we need to use differential Hebbian plasticity
with a modification which will be a third factor (compare to ISO3, section 2.5) or different
time scales for the plasticity and the output pathway (compare to VOT plasticity, last
paragraph of section 2.1). This leads in a general form to

ẇk(t) = α̃ uk(t) v̇(t)M(t) (4.2) v(t) =
∑

l

wl(t)uv,l(t) (4.3)

where (similar to chapter 2) uk(t) is the considered pre-synaptic signal and v(t) the
post-synaptic activity of a model neuron with weights wk(t). The index v at the pre-
synaptic activity indicates that a different kernel or rather different parameters are being
used for the output as compared to plasticity. We will assume in the following that our
modulatory signal M is either on or off, i.e. 1 or 0. Thus it is represented by a step
function.

By means of a learning rate α̃ we can set the ratio between the weight change over
the weight ẇ/w to be significantly smaller than the state change of the state value u̇/u.
Hence, we assume a quasi-static process ( ẇi

wi
≪ u̇i

ui
, α̃ → 0) with all the consequences that

are discussed in appendix B.

For the following analysis we need to substitute equation 4.3 in equation 4.2 and solve
this differential equation which consists of a homogeneous and an inhomogeneous part:

ẇi(t) = α̃M(t)ui(t)
d

dt
[wi(t)uv,i(t)] + α̃M(t)ui(t)

d

dt
[
∑

j 6=i

wj(t)uv,j(t)]. (4.4)

We will use this equation which consists of equations 4.2 and 4.3 for the following practi-
cal emulations of temporal difference learning; however, always adapted to the particular
conditions made by each of the methods. Thus, it makes sense to list and compare these
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Method Rule ẇi(t) Output v(t) Combined ẇi(t)

Global α̃ ui(t) v̇(t)M(t) (4.5)
∑

j

wj(t)uj(t) (4.6)
α̃ M(t)ui(t)

d

dt
[wi(t)ui(t)]

+α̃ M(t)ui(t)
d

dt
[
∑

j 6=i

wj(t)uj(t)] (4.7)

Local α̃ ui(t) v̇(t)Mi(t) (4.8)
∑

j

wj(t)uj(t) (4.9)

α̃ Mi(t)ui(t)
d

dt
[wi(t)ui(t)]

+α̃ Mi(t)ui(t)
d

dt
[
∑

j 6=i

wj(t)uj(t)]

(4.10)

VOT α̃ ui(t) v̇(t) (4.11)
∑

j

wj(t)uv,j(t) (4.12)
α̃ ui(t)

d

dt
[wi(t)uv,i(t)]

+α̃ ui(t)
d

dt
[
∑

j 6=i

wj(t)uv,j(t)] (4.13)

Table 4.1: Overview over the essential equations used to emulate temporal difference
learning. In particular, ’Global’ is short for the global third factor, ’Local’ for the local
third factor and ’VOT’ for the implementation with different time scales. Concerning
the rule (second column) the difference between the global and the local third factor is at
the index of the modulatory factor M . The index is needed because the local third factor
modulates only the corresponding weight, thus the weight with the same index. By contrast,
as the modulatory factor in the VOT rule does not exist, we can mathematically set it to
1 or even simpler, just neglect it. The output (third column) is identical for the local and
the global third factor. However, as the VOT rule needs different time scales for plasticity
and output, we change the kernel parameters (a and b) of the output convolution, which is
indicated by the subindex v. In the last column we substituted the output in the rule which
results in the equation we have to consider when implementing the rule.

equations by pointing to the differences. In each of the sections covering a particular
method we will refer to table 4.1.

The integration boundaries are defined by either the intrinsic properties of the sig-
nal shape (rising/falling phase duration PE and PF respectively - see Figure 4.3) or the
modulatory factor M . This is generalized by means of a bounded temporal path π. The
first summand leads to the homogeneous solution which we already defined in chapter 2
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as auto-correlation wac(t). The second summand(s) on the other hand will lead to the
inhomogeneous solution and this was defined as cross-correlation wcc(t). Together we have
w(t) = wac(t) + wcc(t).

Using the argument of a quasi-static process, we neglect the derivatives of w on the
right hand side of equation 4.4. The solution of the auto-correlation wac

i (t) is then in
general (see appendix D):

wac
i (t) = wi(t0) exp

(

α̃

∫

π

ui(z) u̇v,i(z) dz

)

(4.14)

where t0 is defined as the lower bound of π. The overall weight change is therefore:

∆ac
i = wi

(

exp

(

α̃

∫

π

ui(z) u̇v,i(z) dz

)

− 1

)

(4.15)

Because of the quasi-static process (α̃ → 0), we expand the exponential function to the
first order:

∆ac
i = − α̃ wi κ+ o(α̃2) := α̃ wi

∫

π

ui(z) u̇v,i(z) dz + o(α̃2). (4.16)

where we have defined κ to be positive:

κ(π) = −
∫

π

ui(z) u̇v,i(z) dz

= − (κ+(πac+) + κ−(πac−) ). (4.17)

Note that κ corresponds to a negative auto-correlation contribution: −∆wac. Here we have
also left out the index i as all states are identical and split κ into κ+ and κ− representing the
first temporally-bounded path πac+ (positive slope of signal u - see Figure 4.3 B) and the
second temporally-bounded path (negative slope of signal u - see Figure 4.3 B). To this end,
as mentioned before, we also have to split ∆ac

i into ∆ac+
i = α̃ wi κ

+ and ∆ac−
i = α̃ wi κ

−.

Next we investigate the cross-correlation wcc(t) again under the assumption of a quasi-
static process. This leads us to:

wcc
i (t) = wi(t0) + α̃ wi−1

∫

πcc−

ui(z)u̇v,i−1(z) dz + α̃ wi+1

∫

πcc+

ui(z)u̇v,i+1(z) dz (4.18)

where we split the temporally-bounded path π into πcc− for the preceding state and πcc+

for the consecutive state. Furthermore, as all signals are identical, we can shift between
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signals by t = S + T . In detail this is ui−1(t) = ui(t+ S + T ) and ui+1(t) = ui(t− S − T ).
The overall weight change can then be split into ∆cc−

i and ∆cc+
i :

∆cc
i = α̃ wi−1

∫

πcc−

ui(z)u̇v,i(z + S + T ) dz

+ α̃ wi+1

∫

πcc+

ui(z)u̇v,i(z − S − T ) dz (4.19)

=: α̃ wi−1 (− τ−)
︸ ︷︷ ︸

∆cc−
i

+ α̃ wi+1 τ
+

︸ ︷︷ ︸

∆cc+
i

(4.20)

Here we defined τ± as being positive and independent of i:

τ−(πcc−) = −
∫

πcc−

u(z) u̇v(z + S + T ) dz (4.21)

τ+(πcc+) =

∫

πcc+−S−T

u(z + S + T ) u̇v(z) dz. (4.22)

Both τ± and κ depend on the actually used signal shapes u, uv and the temporally-bounded
path given by either the modulatory factor or again the signal shapes.

Analysis of the equivalence Without restrictions, we can now limit the discussion to
the situation in Figure 4.3 A, where we have a state transition from xi−1 via xi to xi+1. The
state xi+1 is either an arbitrary state or the reward. Thus, differential Hebbian plasticity
will influence the synaptic connections wi of states xi which directly project onto neuron
v. In Figure 4.3 B beneath the signals we indicate the different contributions (∆ values)
to the overall weight change defined above.

Here we consider the weight change of wi in more detail. This results from the transition
between xi−1 and xi, from the visiting state xi itself and from the transition between xi

and xi+1. The short learning period at the beginning of the signal ui will cause a negative
weight change ∆cc−

i because of the correlation between the negative derivative of ui−1

and the positive value of ui. Additionally, there is a weight change ∆ac+
i caused by the

signal itself. Due to the positive slope of the signal ui at the beginning of the state, the
auto-correlation contribution will be positive. The next learning interval occurs when the
state xi has been left and the signal ui already decays. This negative slope results in a
negative auto-correlation contribution. The fourth contribution yields a positive weight
change ∆cc+

i because the positive derivative of the next state signal ui+1 correlates with
the positive value of signal ui of state xi.

Such a sequence exists also when the next state transition occurs, yielding contributions
for the ∆i+1 values. During the first trial (where all weights are zero) only the cross-
correlation ∆cc+

j of state xj which comes before the rewarding state yields a contribution
due to the finding of the reward.
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In general the weight after a single trial is the sum of the old weight wi and the four
∆i values:

wi → wi + ∆ac−
i + ∆ac+

i + ∆cc−
i + ∆cc+

i (4.23)

Using equations 4.16 and 4.20 we can reformulate equation 4.23 into

wi → wi + α̃ (κ+ + κ−)wi − α̃ τ−wi−1 + α̃ τ+wi+1 (4.24)

Substituting κ = −(κ− + κ+), α = α̃ · κ and γ± = τ±/κ, we get

wi → wi − ακwi − α γ−wi−1 + α γ+wi+1 (4.25)

The convergence to wi = γ wi+1 is a property of these kind of equations (see appendix G).
According to equation G.9 of appendix G, γ needs to be replaced by λ−1, in addition to
ε1 = τ+/κ = γ+ and ε2 = τ−/κ = γ−, provided the values of κ and τ± are strictly positive.
These conditions will be discussed in the next paragraph. This gives us:

1

γ
=

1

2 γ−
+

√

1

(2 γ−)2
+
γ+

γ−
, (4.26)

and our weight development can be simplified to:

wi → wi − αwi + α γ wi+1 (4.27)

At this point we can make the transition from weights wi (differential Hebbian plasticity)
to states V (xi) (temporal difference learning). Additionally, we note that sequences only
terminate at i + 1, thus this index will capture the reward state xR and its value r(xi+1),
while this is not the case for all other indices (see end of this section for a detailed discussion
of rewards at non-terminal states). Consequently this gives us an equation almost identical
to equation 4.1:

V (xi) → V (xi) + α [γ r(xi+1) + γ V (xi+1) − V (xi)] (4.28)

where one small difference arises as in equation 4.28 the reward is scaled by γ. However,
this has no influence as numerical reward values are arbitrary. Thus, if learning follows a
Hebbian-like plasticity rule with a negative auto-correlation contribution (κ > 0), weights
will converge to the optimal estimated TD values.

Analysis of the convergence Next we will take a closer look at κ (equation 4.17)
and τ± (equations 4.22 and 4.21) as well as, resulting from this, γ (equation 4.26). For
guaranteed convergence, these values are constrained by two conditions (see appendix G),
τ± ≥ 0 and κ ≥ 0, where κ = 0 is allowed only in case of τ± = 0. A non-positive value of
κ would lead to divergent weights w and negative values of τ± to oscillating weight pairs
(wi, wi+1). However, even if fulfilled, these conditions will not always lead to meaningful
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weight developments. In particular, τ± values of 0 leave all weights at their initial weight
value, and discount factors which are represented by γ values exceeding 1 are usually
not considered in reinforcement learning (Sutton and Barto, 1998). Thus it makes sense
to introduce more rigorous conditions and demand that 0 < γ ≤ 1 and κ > 0. In the
following sections we will discuss particular implementations which allows to determine
these values. In order to discriminate between the different methods, we will indicate the
κ, τ and γ values with indices which are: G (global third factor), L (local third factor),
and T (different time scales).

Technical discussion Here we will cover basic technical constraints and discuss these
with respect to the derivation of the equivalence presented above.
Quasi-static process, α ≪ 1. In the derivation the assumption of a quasi-static process has
been used three times:

1. First, we used this assumption for solving the differential equation (equation 4.4) of
the weight change. More precisely we neglected the derivative of the weight on the
right side of equation 4.4. If we also considered this term, we would get an inverse
square root function 1/

√
1 − α ν instead of the exponential function eα 1

2
ν (see ap-

pendix B for a more detailed derivation of the differential equation and equation 4.14)
we assumed during our proof; the parameter ν is defined here as:

ν :=

∫

π

ui(z) u̇v,i(z) dz = −κ(π). (4.29)

The inverse square root function, however, has similar properties and expands equally
(compare appendix B) with respect to the first order around small values of α com-
pared to the exponential function, justifying constraint α ≪ 1 here.

2. Second, we truncated the expansion of equation 4.15 after the first order, which is also
only allowed for α ≪ 1. Would the necessary condition κ > 0 be affected if we had
not truncated the expansion? Considering ν as defined in equations 4.29 and 4.17,
we observe that a positive value of κ corresponds to a negative value of ν and will
lead to a negative weight change of ∆ac

i . Hence, given a negative value of ν (which is
a necessary condition for κ > 0 if taking only the first order terms of the expansion
into account), this leads directly to a negative weight change of ∆ac

i in equation 4.15.
This is due to the properties of the exponential function (eη − 1 < 0 ∀ η < 1)
or of the inverse square root function (1/

√
1 − η − 1 < 0 ∀ η < 1), and, as a

consequence, constraining to α ≪ 1 is allowed here as well.

3. Third, we neglected, because of α ≪ 1, the variability of the homogeneous solution
(wac, see equation 4.14) in order to calculate the inhomogeneous solution (wcc, see
equation 4.18 and appendix B) of the weight w. However, taking the variability
into consideration will not affect the linearity with respect to w. This is because
equation 4.20 can be directly split into τ± and w, and the additional homogeneous
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solution will only change the integral (equations 4.21 and 4.22) which leads to τ± as
the solution does not rely on w.

Reward only at the end of a sequence. In most physiological experiments (Schultz et al.,
1992; Montague et al., 1996; Morris et al., 2006) the reward is given at the end of the
stimulus sequence. Our assumption that the reward state is a terminating state and is
therefore only at the end of the learning sequence, conforms, thus, to this paradigm. How-
ever, for TD in general we can not assume that the reward is only provided at the end.
Differential Hebbian plasticity will then lead to a slightly different solution compared to
TD learning. This solution has already been discussed in a another context (Dayan, 2002).
Specifically, the difference in our case is the final result for the state value after convergence
for states that provide a reward: We get V (xi) → γV (xi+1) + r(xi+1) − r(xi) compared
to TD learning: V (xi) → γV (xi+1) + r(xi+1)). It would be interesting to assess with
physiological and or behavioral experiments which of the two equations does more closely
represent experimental reality. To do so one has to guarantee that the reward given at the
end is worth the costs that the animal incurred until reaching it (Hassani et al., 2001).
Finite number of states. If we just consider a finite number of states without periodic
boundary conditions and assume that always the same state neuron x0 starts the whole
sequence, the corresponding weight will not converge to w0 = γ w1 but to w0 = γ+w1 due
to the missing w−1 weight (see equations 4.27 and G.5). However, in this case the gradual
order of the weight values is only disturbed if the γ+ value is larger than 1.
Non-Markov. A system is Markovian if future states the system will visit only depend
on the state the system is currently in, i.e. the system is independent of past states. In
the presented algorithm, each TD value arises from the interaction of three states. Hence
for a considered state it is not negligible, from where it had been reached. Thus, strictly
speaking, the algorithm is history dependent and violates the Markov-property required
for TD learning (Sutton and Barto, 1998). This has no substantial consequence, as the
standard trick for non-Markovian systems, which often are also encountered in conventional
RL problems, can be applied here in the same way: A network can easily be designed where
states in a higher network layer are being concatenated into new larger states, which now
obey the Markov property. In many practical applications, this is not even required as
the value-gradient field will build up towards the reward, regardless of the non-Markovian
algorithm presented here. An implementation of TD learning on a linear network (see last
paragraph of subsection 4.2.1) using our algorithm behaves in this way. By contrast, we
will show that the local third factor fulfills the Markovian property.

4.2.1 Global third factor

As described in the introduction, the third factor can be modeled in two different ways (see
Figure 4.1). This has not only an influence on the mathematical properties of the proof
but also on the conditions of convergence. Although the local third factor both is more
straightforward in the mathematics and exhibits advantageous computational properties,
we will start with the more general global third factor.
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Figure 4.4: The setup is shown in panel A and the signal structure in panel B. (A) Three
states and the rewarded state converge on the neuron which learns according to equation 4.5.
The modulatory factor M will influence plasticity at all synapses wi. The states x will be
active with increasing indices. (B) The lower part shows the states xi which have a duration
of length S. We assume that the duration for the transition between two states is T . Above
the output v and the signals u are depicted. We additionally indicated the duration of the
rising (PE) and the falling phase (PF ) of the signals. Note that the duration for the output

and the plasticity pathway are equal. Here u is given by u(t) =
∫ S

0
(e−a (t−z) − e−b (t−z)) dz.

The third factor M is released for the duration L after an onset time of O and is also shown
in the lower part. For state xi the weight change contributions of the auto-correlation ∆ac±

and cross-correlation ∆cc± are indicated.

The specific setup is depicted in Figure 4.4 A, where the third factor triggered by the
output v influences all synaptic connections uniformly. The corresponding signal structure
is shown in Figure 4.4 B. The third factor M gets always triggered at the beginning of a
state x and is switch on after an onset time O. After time L it is switched off again. Thus,
the third factor M defines the boundaries of π. With this we are now able to determine and
calculate κ, τ± and finally the discount factor γ. We will indicate these values calculated
in this subsection with an index G (global).

Analysis of the differential equation The underlying equations 4.5, 4.6 and 4.7 can
be found in table 4.1 on page 66. They are identical to equation 2.25 of section 2.5 covering
ISO3 learning. Only the third factor was replaced by M (modulatory) to avoid collisions
between the reward r (or rather the return R) and the relevance signal R.

The boundaries of the temporal path π are t = O and t = O+L for ac+ and t = S+T+O
and t = S + T + O + L for ac−. As we are now using the same kernels for the plasticity
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and the output pathway, the integral of equation 4.17 simplifies, according to equation D.5
in appendix D, to 1

2
u2(t). We now have to include the boundaries, which results in

κG(S, T,O, L) =
1

2

(
u2(O) − u2(O + L)

)

+
1

2

(
u2(S + T +O) − u2(S + T +O + L)

)

= −
(
κ+

G(O,L) + κ−G(S, T,O, L)
)
. (4.30)

Thus the ∆ac
i -function split into ∆ac+

i = α̃ κ+
Gwi and ∆ac−

i = α̃ κ−Gwi.

For the cross-correlation contribution we include the same boundaries discussed above
into equations 4.22 and 4.21, which leads to

τ−G (S, T,O, L) = −
∫ O+L

O

u(z) u̇(z + S + T ) dz (4.31)

τ+
G (S, T,O, L) =

∫ O+L

O

u(z + T + S) u̇(z) dz (4.32)

Here the ∆cc
i -function split into ∆cc−

i = −α̃ τ−G wi and ∆cc+
i = α̃ τ+

G wi.

Both τ±G and κ±G depend on the actually used signal shape u(t) and the values for the
parameters S, T , O and L.

Analysis of the equivalence After having calculated τ±G and κ±G this paragraph is not
different from section 4.2 except that we have to add the index G to κ, τ and γ. Thus, if
learning follows this global third factor differential Hebbian rule, weights will converge to
the optimal estimated TD values. This proves that, under some conditions for the signal
shape and the parameters S, L, O and T (which influence whether κG > 0 and τ±G > 0),
TD(0) and the here proposed global three factor differential Hebbian plasticity are indeed
asymptotically equivalent.

Analysis of the convergence Now we will cover the conditions for the signal shape
and the parameters (S, T , O and L), which will lead to the requirement that γG should
be between zero and 1 (0 < γG ≤ 1) and that κG should be strictly positive (κG > 0).

As already discussed in the introductory section of this chapter, the theoretical consider-
ations need to be guided by biophysics. Hence, we will discuss neuronally plausible signals
that can arise at a synapse. This limits u to functions that possess only one maximum and
divide the signal into a rising and a falling phase with length PE and PF respectively.

One quite general possibility for the shape of the signal u is the function used in
Figure 4.3 and Figure 4.4 for which we investigate the area of convergence. We have three
parameters to be varied as we do not have to consider the parameter S if we take this
value to be large compared to |T |, O or L. For this, Figure 4.5 shows the γG value in 3
different panels. In each panel we varied the parameters O and T from minus to plus 2P
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Figure 4.5: Shown are γG values dependent on the ratio O/P and T/P for different values
of L/P (1/3, 2/3 and 4/3). Here P is the length of the rising as well as the falling phase.
The shape of the signal u is identical to the one used in Figure 4.3 and Figure 4.4 and is
given by u(t) =

∫ S

0
(e−a (t−z) − e−b (t−z)) dz with parameters a = 0.006 and b = 0.066. The

individual figures are subdivided into a red area where the weights will diverge (κG ≤ 0, see
equation 4.30), a green area where no overlap between both signals and the third factor exists
and into a yellow area that consists of γG values which, however, are beyond a meaningful
range (γG > 1). The detailed gray shading represent γG values (0 < γG ≤ 1) for which
convergence is fulfilled.

where P = PE = PF is the time the signal u needs to reach the maximum (or fall to zero).
In each of the panels, we plot γG values for a particular fraction of L/P .

A gray shading displays in detail the γG values, for which the condition of convergence
is fulfilled, whereas yellow represents those areas, for which we receive γG > 1. The green
area indicates parameter configurations for which no overlap exists between two consecutive
signals and the third factor (τG = 0), and for the red regions, κG is smaller than zero.

If the L value is greater than P −O−T , the area of convergence does not depend on L
anymore as the third factor then reaches a plateau as well as covers the whole falling phase
of the signal u. On the contrary, if the L value reaches the rising phase of the consecutive
state, the area of convergence decreases again (not shown).

For positive O values there exist γG values which are independent of (negative) T values.
Hence, if states overlap (T < 0), the γ value is invariant with respect to the degree of
overlap. This is an important aspect as value function approximation methods often use
overlapping kernels to represent features. In a biological context, this corresponds to
overlapping receptive fields providing the input to the system. We find that in these cases
γG remains unaffected by the degree of (receptive field) overlap, which in general is different
for any two input units.
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To extend these considerations to more general but smooth signal shapes, we Taylor
expand both the rising and the falling phases to the second order. With these constraints
γG can be calculated analytically (see appendix H) and is then plotted in Figure 4.6 with
respect to O and T for nine different input functions shown in the lower right. In the
upper left panel, the ratio between the duration of the third factor and P was set to 1/3,
in the upper right to 2/3, and the lower left to 4/3. Analogous to the exponential function,
the area of convergence increases with increasing L values. Figure 4.6 reveals that the
biophysically most realistic shape (bottom right) also has the largest convergence range.

The analytical calculations in appendix H are also used to extract information about
the areas in which the algorithm diverges (κ ≤ 0) or in which the weights of systems do
not change at all (τ = 0). This allows us to put these areas together to depict regions
where γG is either convergent or divergent. Figure H.7 can then be compared with the
results of Figure 4.6. It shows that both figures match each other as we have used the
same derivations in the appendix as for Figure 4.6. However, even if you use more general
kernel functions, such as the exponential function used for Figure 4.5, both figures still
match quite well, especially in the regions where the system diverges and where it stays
constant.

In summary the different figures (4.5, 4.6 and H.7) show clearly that the area of conver-
gence changes only gradually and the area as such increases with increasing duration of the
third factor. Altogether it shows that for a general neuronally plausible signal shape u, the
condition for asymptotic equivalence between temporal difference learning and differential
Hebbian plasticity with a global third factor is fulfilled for a wide parameter range covering
all realistic relative timing intervals between state activations and global third factor.

Application: Linear network In this paragraph we show that we can reproduce the
behavior of TD learning in a small linear network of neurons designed according to our
algorithm. Obtained weights of the differential Hebbian plasticity neuron represent the
corresponding TD value. It is known that in a linear TD learning system at the end of
learning, values will follow an exponential function with a decay rate given by the discount
factor γ. This is shown in panel (A). In panel (B) of this figure, we also investigate the
assumption of a quasi-static process.

Details of this simulation are as follows. The network consists of N states x which are
connected to a neuron v which uses differential Hebbian plasticity. The modulatory signal
is added by an additional neuron M . The states are indexed such that the state closest to
the reward has index 1; hence, the reward has the index 0. The state structure is shown
in Figure 4.7 right. At the beginning of learning, all weights are initialized to zero except
the weight connected with the reward. Each trial begins with state N approaching the
reward, at which a trial is terminated, thus, each state becomes active once.

The weights of the states connected to the differential Hebbian plasticity neuron are
shown in Figure 4.7 A for three different γG values after learning. States indexed with
higher numbers - hence, further away from the reward - have smaller weights and the
relation wi+1 = γGwi, where i indicates the distance to the reward holds for each γG value.
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Figure 4.6: Shown are γG values for different shapes of the signal u dependent on the ratio
O/P and T/P for three different values of L/P . The upper left panel is for L/P = 1/3,
the upper right for L/P = 2/3, and the lower left panel for L/P = 4/3, where P is the
length of the rising as well as the falling phase. The different shapes are shown in the lower
right and the corresponding equation (equation H.1) is given in the appendix H. The rows
represent different η values (top to bottom: 0, 1 and 2) and the columns different ξ values
(left to right: 0, 1 and 2). The individual figures are subdivided into a red area where
the weights will diverge (κG ≤ 0), a green area where no overlap between both signals and
the third factor exists and into a yellow area that consists of γG values which, however,
are beyond a meaningful range (γG > 1). The detailed gray shading represents γG values
(0 < γG ≤ 1), for which convergence is fulfilled.
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Figure 4.7: Shown are weights of a differential Hebbian plasticity neuron, where the
arrangement of the states is shown on the right. On the left, the weights of the network and
their corresponding exponential fit for three different γG values are plotted. The inset shows
the dependence of the weights on the learning rate. The difference of the weight closest to
the reward (w1 = γGw0 = γG 1) and the calculated γG value is plotted here and can be
fitted by a logarithmic function [f(x) ∝ log(1 − x)]. The γG values used are: (∗, dotted)
γG = 0.835697 [S = 3000, T = 330, O = −220, L = 650], (x, dashed) γG = 0.710166
[S = 3000, T = 300, O = −220, L = 650], (+, solid) γG = 0.507729 [S = 3000, T = 300,
O = −220, L = 550]. The shape of the kernel used here is identical to the shape used in
Figure 4.5, and the learning rate used for the main figure is 0.12.

This is indicated by an exponential fit. It also should be noted that the weights at states
far away from the reward deviate from the exponential fit but only for the highest γG value.
This is an effect caused by the finite number of states and at the same time by a γ+ value
which is higher than 1 (see last paragraph of section 4.2 for details).

In these system learning rates are usually in the range of 10−5 to 10−2 (Porr and Wörgötter,
2003b, 2007). The question arises whether in this range the assumption of a quasi-static
process will hold. If it holds, we would expect that the weight closest to the reward (w1)
will reach exactly the value of γG after learning. In Figure 4.7 B the deviation from
this expectation given by w1 − γG is plotted against the learning rate. As indicated by
equation 4.16, the deviation increases with increasing learning rates, but remains small
up to a rate of 10−1, which is well in the range of useful learning rates. The actual shape
of the curves is a consequence of different interacting processes depending, for example,
on the total number of states (see technical discussion above) and others.

If looking at higher γG values, it is apparent that the effect of a finite number of
states behaves antagonistically to the deviation caused by the increased learning rate,



78 CHAPTER 4 RELATION TO REINFORCEMENT LEARNING

i.e. the weight after learning is shifted to higher values (independent of the learning rate).
Therefore, if using higher γG values (or a smaller number of states), the simulated weight w1

may be modified such that it will be identical to the calculated γG value, even if using finite
learning rates larger zero. However, this will not correct the simulated γG value as such
since the weights are then not arranged exponentially anymore (indicated by Figure 4.7).

Technical discussion When using a global third factor all constraints discussed in the
beginning of this section hold. However, the application of an additional third factor allows
handling stochastically uncertain environments in an easy way:

Stochastically uncertain environments. It is known that in stochastically uncertain environ-
ments, the TD values only converge with probability one when the learning rate decreases
(Kushner and Clark, 1978; Dayan and Sejnowski, 1994). In our implementation, the signal
M is constant. If it were instead implemented to diminish during repeated encounters with
the same state, it would immediately incorporate the property of decreasing learning rates,
too.

4.2.2 Local third factor

After having derived the equivalence between temporal difference learning and differential
Hebbian plasticity with a global third factor, we will now repeat this derivation with a local
third factor. The technical discussion at the end of this subsection will give insights into
computational advantages compared to a global third factor.

The local third factor Mi, in contrast to a global third factor, opens a time window, in
which changes can occur only for its corresponding weight wi (see Figure 4.8 A). This is
indicated by the index i. Although this time window could be located anywhere depending
on the input ui, it should be placed at the end of the state xi as it only makes sense if
states correlate with their successor. Concerning the modulatory third factor Mi, we
define its length as L, and the time period between beginning of Mi and the end of the
corresponding state xi as O. Similarly to the last subsection, this defines the boundaries
of π. The four parameters (S, T , O, and L) are constant over states and are displayed
in detail in Figure 4.8 B. Note that there is a significant difference in the definition of
these parameters compared to the global third factor. There, the parameter O was defined
between the beginning of the modulatory signalM and the beginning of the state x, whereas
here it is defined towards the end of state x. This will always lead to a shift of −T in our
final equations in comparison to the equations we obtained using a global third factor. We
will indicate the calculated κ, τ and γ values in this subsection with an index L (global).

Analysis of the differential equation Here the underlying equations 4.8, 4.9 and 4.10
can be found in table 4.1 on page 66. They differ from equation 4.5 only by the fact that
the modulatory factor M has an index corresponding to its weight. Note that equation 4.9
is identical to equation 4.6.
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Figure 4.8: The setup is shown in panel A and the signal structure in panel B. (A) Three
states and the rewarded state converge on the neuron which learns according to equation 4.8.
Each state xi controls the occurrence of the modulatory factor Mi, which in turn will
influence plasticity only at synapse wi. This is different to Figure 4.4 where the modulatory
factor influences all synapses. The states x will be active with increasing indices. (B) The
lower part shows the states xi, which have a duration of length S. We assume that the
duration for the transition between two states is T . Above, the output v and the signals
u are depicted. We additionally indicated the duration of the rising (PE) and the falling
phase (PF ) of the signals. Note that the duration for the plasticity and the output pathway

are equal. Here u is given by u(t) =
∫ S

0
(e−a (t−z) − e−b (t−z)) dz. The third factor Mi is

released for the duration L after a time delay of O, which starts at the end of each state.
This is different to the global third factor, which is initiated at the beginning of a state.
The time the third factor is active is also shown in the lower part. For state xi, the weight
change contributions of the auto-correlation ∆ac± and cross-correlation ∆cc± are indicated.

The boundaries of the temporal path π are t = S+O and t = S+O+L for ac− as we
only have a time window at the end of the signal. Thus, ac+ as well as cc− do not exist.
Here we also use the same kernels for the plasticity and the output pathway, which allows
us to simplify the integral in equation 4.17. Including the boundaries results in

κL(S,O, L) =
1

2

(
u2(S +O) − u2(S +O + L)

)
(4.33)

Thus the ∆ac
i -function is equal to ∆ac−

i = α̃ κ−L wi.
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For the cross-correlation contribution we include the same boundaries discussed above
into equation 4.22 as the modulatory factor Mi effects only the consecutive state. Thus,
equation 4.21 is per definition zero. The remaining τ+

L , here called τL, results in

τL(S, T,O, L) =

∫ O+L−T

O−T

u(z + T + S) u̇(z) dz (4.34)

Note the time shift −T in the integral boundaries compared to τ+
G from equation 4.31.

Here, the ∆cc
i -function is identical to ∆cc+

i = −α̃ τ+
L wi.

In accordance with the last subsection, both τL and κL depend on the actually used
signal shape u and the values for the parameters S, T , O and L.

Analysis of the equivalence After we have calculated τL and κL and, more importantly,
by finding that τ−L and κ+

L do not exist when using a local third factor, this paragraph is
simpler than the corresponding one in the first part of section 4.2. The equation after a
single trial (equation 4.24) simplifies to

wi → wi + α̃ − κLwi + α̃ τLwi+1. (4.35)

Directly after substituting α = α̃ κL and γL = τL/κL, we arrive at the final equation

wi → wi − αwi + α γLwi+1 (4.36)

without the use of equation 4.26. This allows us to drop two constraints, which we will
discuss later in the technical discussion paragraph. Thus, likewise, if learning follows this
local third factor differential Hebbian rule, weights will converge to the optimal estimated
TD values. Furthermore, the analytics using a local third factor became more straightfor-
ward, and, as we will find out in the next paragraph, the convergence criterion is fulfilled
for an even broader range of parameter (S, T , O, and L) values.

Analysis of the convergence Identically to the discussion of the convergence for the
global third factor, we will investigate different signal shapes and the parameters (S, T ,
O and L), which also have an influence on the values of κL (equation 4.33) and τL (equa-
tion 4.34) and therefore γL = τL/κL. Equation 4.35 gives us again two constraints: τL ≥ 0
and κL ≥ 0 (where κL = 0 is allowed if τL = 0). The situation with a local third factor is a
great deal simpler than with a global third factor as we have to take only a single interval
into account. If we again include only biophysically meaningful biphasic signal shapes it
becomes evident that τL and κL can never be negative. The reason for τL can be found in
equation 4.34 because our signal u is positive and so is the derivative of u at the onset of
u, thus resulting in a non-negative value for τL. Concerning κL we also have to consider
the phase of the third factor which is triggered in this case at the end of the signal x. As
it starts to decay, u(S + O) is always larger than u(S + O + L) and therefore κL > 0.
However, κL can become zero (indicated by red regions in Figure 4.9 and Figure 4.10).
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This happens only if the third factor is shifted (due to the parameter O, see Figure 4.8 B
for more details) to regions of the signal u, where the decay has not yet started (O < −L)
or has already ended (O > P ). The latter is the only case, where weights would diverge.
If τL is zero (indicated by green regions in Figure 4.9 and Figure 4.10), weights will not
diverge but simply stay zero. Note that this is a stronger constraint than κL = 0 as weights
can not diverge, in the worst case they do not change at all. This is the reason why regions
with O < −L will not diverge although κL is equal to zero. Discount factors, which are
represented by γL values exceeding 1, are likewise not considered in our further discussion.
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Figure 4.9: Shown are γL values dependent on the ratio O/P and T/P for three different
values of L/P (1/3, 2/3, and 4/3). Here P is the length of the rising as well as the falling
phase. The shape of the signal u is identical to the one used in figure 4.8 and is given by
u(t) =

∫ S

0
(e−a (t−z) − e−b (t−z)) dz with parameters a = 0.006 and b = 0.066. The individual

figures are subdivided into a red area, where the weights will diverge (κL = 0, a green area
where no overlap between both signals and the local third factor exists and a yellow area
that consists of γL values which, however, are beyond a meaningful range (γL > 1). The
detailed gray shading represents γL values (0 < γL ≤ 1), for which convergence is fulfilled.

In the previous subsection, we analyzed the γG values for the function used in Figure 4.8,
so we will do the same for γL values here, too. Identical to Figure 4.5, Figure 4.9 shows
the γL value in 3 different panels. In each panel we varied the parameters O and T from
minus 2P to plus 2P where again P = PE = PF is the time the signal u needs to reach
the maximum. In each of the panels, we plot γL values for a particular value of L.

We additionally investigate the parameter regions, where our weights converge to the
values predicted by temporal difference learning for our Taylor expanded signal shapes
given by equation H.1. We find that, as discussed before, there exists only one region per
panel in Figure 4.10 which gives us an infinite γL value, resulting in divergent weights.
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Figure 4.10: Shown are γL values for different shapes of the signal u dependent on
the ratio O/P and T/P for three different values of L/P . The upper left panel is for
L/P = 1/3, the upper right for L/P = 2/3, and the lower left panel for L/P = 4/3, where
P is the length of the rising as well as the falling phase. The different shapes are shown in
the lower right and the corresponding equation (equation H.1) is given in the appendix H.
The rows represent different η values (top to bottom: 0, 1 and 2), and the columns different
ξ values (left to right: 0, 1 and 2). The individual figures are subdivided into a red area,
where the weights will diverge (κL = 0), a green area, where no overlap between both signals
and the third factor exists (τL = 0) and into a yellow area that consists of γL values which,
however, are beyond a meaningful range (γL > 1). The detailed gray shading represents
γL values (0 < γL ≤ 1), for which convergence is fulfilled.
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Here we also use the extracted information about the regions, where γL is either conver-
gent or divergent (see appendix H) and compare the resulting Figure H.8 with the results
of Figure 4.10. We find that both figures match to each other as we have used the same
derivations in the appendix as for Figure 4.10. And even if you use more general kernel
functions, like the exponential function used for Figure 4.9, both figures still match quite
well, especially in the regions, where the system diverges and where it stays constant. This
is consistent with the findings for the global third factor.

The different frames show clearly that the area of convergence changes only gradu-
ally and the area as such is increasing with increasing duration of the local third factor.
Altogether it shows that for a general neuronally plausible signal shape u the condition
for asymptotic equivalence between temporal difference learning and differential Hebbian
plasticity with a local third factor is fulfilled for an even wider parameter range compared
to a global third factor.

Application: Linear network In this paragraph we show that we can reproduce the
behavior of TD learning in a small linear network with two terminal states (see Fig-
ure 4.11 left). This is done with a network of neurons designed according to our algorithm
with a local third factor. Obtained weights of the differential Hebbian plasticity neuron
represent the corresponding TD values. It is known that in a linear TD learning system
with two terminal states (one is rewarded, the other not) and a γ value close to 1, values at
the end of learning will represent the probability of reaching the reward state starting at
the corresponding state (compare Sutton and Barto (1998)). This is shown in Figure 4.11
including the weight development.

Technical discussion When using a local third factor we can, as before, also handle
stochastic uncertain environments (letting the modulatory factors decay to zero). However,
we can now drop two constraints as equation 4.35 does not dependent on the preceding
state anymore. First, we can lift the constraint which came with the number of states and
the actual starting position. As the weight change does not depend on the previous state,
the starting position is treated identical to the subsequent states. Second, now the system
is strictly Markovian, which allows us to use this realization directly without redefining
the state space. Thus, the linear network with two terminal states and, most importantly,
with a random policy would have developed different weights when using the global third
factor without additional modifications.

4.2.3 Different time scales: VOT plasticity

In section 2.1 we showed that the auto-correlation is adjustable by the usage of different
time scales, i.e. by using different kernels or rather kernel parameters that change the
output trace. The question which now arises is whether we can use the same idea and
implement reinforcement learning by using different time scales.
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Figure 4.11: This figure shows the weight development and the linear state arrangement
with two terminating states. The weights which after convergence correspond to the states
depicted on the right are distributed uniformly (compare Sutton and Barto (1998)). The
lines represent the mean of the last 2000 weight values of each state and coincide with the
TD values we would get. The signal shape is given by u(t) =

∫ S

0
(e−a (t−z)−e−b (t−z)) dz with

parameters a = 0.006, b = 0.066 and S = 10000 which result in P = 1200. Furthermore is
O = 1/20P , L = P , T = 0 (which yields γL ≃ 1) and the learning rate 0.01.

The setup is depicted in Figure 4.12 A where kernels for the plasticity- and output
pathway are different. The corresponding signal structure is shown in Figure 4.4 B having
different signal shapes for plasticity- and output signals. The boundaries of π are defined
by the rising Pv,E and falling Pv,F period of the output signals uv where v stands for the
different kernel parameters and their consequences. Using the results from section 2.1 we
will use a smaller time scale for the output kernels, i.e. shorter rising and falling time,
which will lead to a negative auto-correlation contribution. Using this we will calculate κ,
τ± and γ which will be indicated by T (time scale).

Analysis of the differential equation The underlying equations 4.8, 4.9 and 4.10 can
be found in table 4.1 on page 66. They are identical to equations 2.5 and 2.13 of the last
paragraph of section 2.1 covering differential Hebbian plasticity with different time scales.
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Figure 4.12: The setup is shown in panel A and the signal structure in panel B. (A) Three
states and the rewarded state converge on the neuron which learns according to equa-
tion 4.11. By contrast to Figure 4.4 and 4.8, no third factor is used. The states x will be
active with increasing indices. (B) The lower part shows the states xi which have a duration
of length S. We assume that the duration for the transition between two states is T . Above
the output v and the signals u are depicted. We additionally indicated the duration of the
rising (PE and Pv,E) and the falling phase (PF and Pv,F ) of the signals and the output
respectively. Note that different to Figure 4.4 and 4.8 the kernel parameters for plasticity
and output are different. This leads to difference in the duration of rising and falling phase
indicated by two dashed lines. Here u is given by u(t) =

∫ S

0
(e−a (t−z) − e−b (t−z)) dz. For

state xi the weight change contributions of the auto-correlation ∆ac± and cross-correlation
∆cc± are indicated.

The boundaries of the temporal path π are t = 0 and t = Pv,E for ac+ and t = S and
t = S + Pv,F for ac−. Here, the integral of equation 4.17 is not in general solvable, thus
we only include the boundaries which results in

κT (S, v) =

∫ Pv,E

0

ui(z) u̇v,i(z) dz

+

∫ S+Pv,F

S

ui(z) u̇v,i(z) dz

= −
(
κ+

T (v) + κ−T (S, v)
)
. (4.37)

Thus, similar to the global third factor, the ∆ac
i -function splits into ∆ac+

i = α̃ κ+
T wi and

∆ac−
i = α̃ κ−T wi.
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For the cross-correlation contribution, we include the same boundaries discussed above
into equations 4.22 and 4.21, which leads to

τ−T (S, T, v) = −
∫ max (Pv,F−T,0)

0

u(z) u̇v(z + S + T ) dz (4.38)

τ+
T (S, T, v) =

∫ Pv,E

0

u(z + T + S) u̇v(z) dz (4.39)

where τ−T is equal to zero if the transition time T is greater than Pv,F . Thus, in general the
∆cc

i -function splits into ∆cc−
i = −α̃ τ−T wi and ∆cc+

i = α̃ τ+
T wi. Both τ±T and κ±T depend on

the actually used signal shapes u and uv and the values for the parameters S and T .

Analysis of the equivalence As we have calculated τ±T and κ±T and found out that for
some parameter values (T > Pv,F ) τ−T does not exist, this paragraph is a mixture of the
corresponding paragraphs of section 4.2 and subsection 4.2.2. If τ−L = 0, we simplify the
calculations according to subsection 4.2.2. On the other hand, if τ−L 6= 0, we need to stick
to the more complex derivation used in subsection 4.2.1. Similar to the preceding sections,
if learning follows this differential Hebbian rule with different time scales of plasticity
and output, weights will converge to the optimal TD values. The convergence properties
(see next paragraph) are even better than for the local third factor, however, the Markov
property is not always fulfilled.

Analysis of the convergence Here we will cover the conditions for the signal shapes
u and uv and the parameters (S and T ), which will lead to the demand that γT should be
between zero and 1 (0 < γT ≤ 1) and that κT should be strictly positive (κT > 0).

In the previous sections, we analyzed the γG/L values for the function used in Figure 4.3,
so we will do the same for γT values here. For this we have to define the output kernels
different from the plasticity kernels according to equations 2.5 and 2.13. We do this by
using an ρ value which scales the time of output kernel relative to the plasticity kernel
(see equation 2.16). An ρ value of infinity relates to a δ-function, thus to the S&B model.
Figure 4.13 left shows that even the strict demand that γT needs to be bounded between
0 and 1 holds for all possible T values given an ρ value greater 1. This corresponds to the
fact that the output kernel function hv is narrower than the plasticity kernel h. On the
right side of Figure 4.13, we plot the γT value for ρ → ∞, hence for the S&B model (see
appendix H.7 for an analytical solution of γT for the S&B model).

To extend these considerations to more general shapes we use equation H.1 to calculate
γT analytically (see appendix H for the definition of the signal shape and appendix H.6
for the analytical calculation). The results are then plotted in Figure 4.14 with respect
to ρ and T for nine different input functions which are shown in the top part of each
panel. Additionally we show in appendix H.6 that κT is always positive. This explains
why Figure 4.14 and 4.13 do not have regions for which the system is divergent.
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Figure 4.13: Shown are γT values dependent on the ratio T/P and ρ (see equation 2.16).
Here P = Pv,E = Pv,F is the length of the rising as well as the falling phase of the output.
The shape of the signal u is identical to the one used in Figure 4.3 and Figure 4.12 and is
given by u(t) =

∫ S

0
(e−a (t−z) − e−b (t−z)) dz, with parameters a = 0.006 and b = 0.066. The

detailed gray shading represent γT values (0 < γT ≤ 1) for which convergence is fulfilled
within a meaningful range. In the green regions we have τT < 0.1, thus almost no overlap.
On the right we plotted the γT for ρ → ∞ which resembles the S&B model with a delta
pulse for the output pathway.

Both figures (Figure 4.13 and Figure 4.14) indicate that when using two different time
scales, the convergence is guaranteed for all T parameters as long as the time scale of the
output is smaller than that of the plasticity.

Application: Linear network Depending on the transition time T between two states
this network can produce results which resemble either the linear network with a random
policy (compare to subsection 4.2.2) or only the linear network with a gradient policy
(compare to subsection 4.2.1).

Technical discussion Here we have a limited set of parameters (ρ and T ) that can be
varied, and the last paragraph revealed that for ρ > 1 all T values lead to non-divergent
weight values. Additionally, which is also a favorable result, it restricts the corresponding
γT value to 1. If we also set T to be large enough, i.e. T > Pv,F , the constraints related to
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Figure 4.14: Shown are γT values for different shapes of the signal u dependent on the
ratio T/P and ρ (see equation 2.16). The different shapes are shown in the top part of
each panel and the corresponding equation (equation H.1) is given in appendix H. The rows
represent different η values (top to bottom: 0, 1 and 2) and the columns different ξ values
(left to right: 0, 1 and 2). The detailed gray shading represent γT values (0 < γT ≤ 1),
for which convergence is fulfilled. In the green regions we have τT = 0, thus no overlap.
Regions that result in γ values greater 1 are only existent for non-symmetrical signal shapes
(e.g. η = 0 and ξ = 2).

the Markov property would be released, identically to the local third factor. For overlapping
states, however, the system stays non-Markovian. Thus, this mechanisms is a mixture of
the global and the local factor as it combines the properties of both.

How is this method of VOT plasticity related to a third factor. In principle, it acts
similarly to such a factor as a smaller time scale for the output pathway restricts plas-
ticity to a smaller time window, i.e. smaller than the intrinsic time window given by the
rising and falling phase of the plasticity kernels. Hence, a third factor with the functional
characteristics of the output kernels would achieve identical results and properties.
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4.3 Discussion

The TD rule has become the most influential algorithm in reinforcement learning, because
of its tremendous simplicity and proven convergence to the optimal value function
(Sutton and Barto, 1998). It was successfully transferred to control problems, too, in the
form of Q- or SARSA learning (Watkins and Dayan, 1992; Singh et al., 2000), which use
the same algorithmic structure, while maintaining similar advantageous mathematical
properties (Watkins and Dayan, 1992).

Relation to other work

In this study we have shown that TD(0) learning and differential Hebbian plasticity
either modulated by a third factor or by using different time scales for plasticity and
output pathway are asymptotically equivalent under certain conditions. This proof
relies only on commonly applicable, fairly general assumptions, thus rendering a generic
result not constraining the design of larger networks. It has long been suspected that
RL would, in neuronal tissue, have to rely on the use of a third factor in a Hebb rule
(Schultz, 1998) and several earlier results have pointed to the possibility of an equivalence
between reinforcement and correlation-based learning. Izhikevich (2007) solved the distal
reward problem using a spiking neural network, yet with fixed exponential functions
(Gerstner et al., 1996) to emulate differential Hebbian characteristics. His approach
is related to neurophysiological findings on spike-timing-dependent plasticity (STDP,
Markram et al. (1997)). Each synapse learned the correlation between conditioned stimuli
and unconditioned stimuli (e.g. a reward) through STDP and a third signal. Further-
more, Roberts et al. (2009) showed that asymmetrical STDP and temporal difference
learning are related. In our differential Hebbian learning model, in contrast to the work
described above, STDP emerges automatically because of the use of the derivative in
the postsynaptic potential (equation 2.25). The relation between STDP and differential
Hebbian learning and its asymptotic equivalence when using serial states was discussed in
Roberts (1999). Rao and Sejnowski (2001) showed that using the temporal difference will
directly lead to STDP, but they could not provide a rigorous proof for the equivalence.
Recently it has been shown that the online policy-gradient RL-algorithm (OLPOMDP)
developed by Baxter et al. (2001) can be emulated by spike-timing-dependent plasticity
(Florian, 2007), however, in a complex way using a global reward signal. On the other
hand, the observations reported here provide a rather simple, equivalent correlation-based
implementation of TD and support the importance of three-factor learning for providing
a link between conventional Hebbian approaches and reinforcement learning.

Relation to function value approximation

One drawback of reinforcement learning algorithms, like temporal difference learning, is
their use of discrete time and discrete non-overlapping states. In real neural systems, time
is continuous and the state space can only be represented by the activity of neurons, many
of which will be active at the same time and for the same “space”. This creates a rather
continuous state space representation in real systems. In order to allow for overlapping



90 CHAPTER 4 RELATION TO REINFORCEMENT LEARNING

states or for generalizing over a wider range of input regions, RL algorihtms are usually
extended by value function approximation methods (Sutton and Barto, 1998). However,
while biologically more realistic (Tamosiunaite et al., 2008), this makes initially elegant
RL algorithms often quite opaque, and convergence can many times not be guaranteed
anymore (Tsitsiklis and Van Roy, 1997; Wiering, 2004). Here we are not concerned
with function approximation, but instead address the question of how to transform an
RL algorithm (TD learning) to continuous time using differential Hebbian plasticity
and remaining fully compatible with neuronally plausible operations. However, with the
algorithm presented here clearer and more rigorous convergence proofs could be developed.
Only a few other approaches to formulate RL in continuous time and space exist (Baird,
1993; Doya, 1996, 2000), however lacking biological motivation. In particular Baird (1993)
extended Q learning by the “advantage updating” method and Doya (2000) performed
the transformation from a discrete sum to a continuous integral for the calculation of the
return R. In his case every value function V consists of a state representation and a cor-
responding weight. These weights need to be adjusted in order to let the δ error converge
to zero. This is done by a gradient descent algorithm which results in an update rule
that demands a weight derivative, which is difficult to emulate in a biologically realistic way.

Historical remark
It is interesting from a historical viewpoint that Sutton and Barto switched from a
setup similar to that presented in this chapter to a serial compound representation (see
section 2.3) when switching to temporal difference learning (Sutton and Barto, 1990). The
main concern they had with this setup is the simultaneous occurrence of a stimulus and
a rewarded stimulus. In such a case the weight of the stimulus converges to a value that
counterbalances the weight of the reward. This happens for every plasticity rule which has
a negative auto-correlation contribution. Thus, the setup presented here is also affected
by this problem. There are two simple arguments why we should not be concerned. First,
if we do not allow weights to become negative, the reward value, which is mostly positive,
can not be counterbalanced. Second, although many different stimuli occur at the same
time the reward is presented, these stimuli do not exactly fit with respect to timing and
temporal development. Therefore, although the auto-correlation is negative, the weight
change could be positive.

Remark concerning closed-loop systems
It is also a question how the parameter O, which represents the onset of the third factor,
is implemented in behaving systems, in particular if O is negative. This requires the
system to know when the next state is reached, hence it would need another algorithm
that anticipates the timing of upcoming states. On the other hand Figures 4.5, 4.6, 4.9,
and 4.10 show that the areas of convergence are still sufficiently large in the positive
range of O values.

Relation of the third factor to neuromodulators
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In this part of the thesis we are mainly concerned with showing the formal equivalence
between TD and differential Hebbian plasticity. Possible links to biophysical mechanisms
play a minor role here. Nonetheless, one could consider neuromodulators for the role
of the third factor M . The required reliability of timing, however, makes it unlikely that
Dopamine could take on this role as the timing of these signals does not seem to be reliable
enough (Redgrave and Gurney, 2006), although Pawlak and Kerr (2008) could show that
LTP in the Striatum only emerges in the presence of Dopamine. The attributed, albeit still
much discussed, role of the dopaminergic responses from neurons in the Substatia Nigra
(pars compacta) or the Ventral Tegmental Area (VTA) as possibly representing the δ error
of TD learning (Schultz et al., 1992; Montague et al., 1996) is, thus, neither questioned nor
supported by the results presented here. A very good alternative for the role of a well-timed
third factor, however, seems to be the response characteristic of the cholinergic tonically
active neurons (TAN) releasing the neuromodulator Acetylcholine. Their response, which
is a reduction of activity, is exceedingly well timed and occurs together with conditioned
stimuli (Graybiel, 1998; Morris et al., 2004). The fact that TAN’s cease to fire, would
require an additional inversion to make this compatible with our M factor, but when
considering possible disinhibitory effects, this should not pose a fundamental problem.

It is also important that we were able to show that our algorithm is indeed stable
across a wider range of possible biological signals as different temporal profiles exist e.g.
for synapse and channel activation (compare AMPA vs. NMDA characteristics). This is
required as it is not clear at this point in time - as discussed above - which signals are
involved in any three-factor learning and this might also depend on the considered cell type
and brain structure.

We also found that independent of which kind of third factor one uses, there exists
a wide parameter range in which differential Hebbian plasticity becomes asymptotically
equivalent to temporal difference learning. We could also show that not only the analytical
treatment of the local third factor is simpler but also the convergence is stronger as com-
pared to a global third factor. Furthermore, constraints concerning the number of states
and the non-Markovian property are lifted as the local third factor only correlates states
with following states and not with preceding ones.

On the other side, it is difficult to find biological counterparts for a local third factor.
The main difference between a global and local third factor is the origin of the afferents
to the neurons producing this signal. In the case of the global third factor, the output
of the considered neuron, which could be represented by neurons in the Striatum, is the
driving force of the release of neuromodulators. By contrast, for the local third factor
it is the input. The origin of this input is either cortical or hippocampal. Within the
Striatum TANs are favorable substrates producing the third factor. However, these TANs
are interneurons and their input is mainly provided by other neurons of the Striatum.
This would favor the global aspect of the third factor.

Importance of the negative auto-correlation contribution
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The last section of this chapter showed clearly that any given plasticity rule that uses the
proposed general setup and has a negative auto-correlation contribution is able to emulate
temporal difference learning.
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Chapter 5

Discussion and Outlook

In this thesis we focused mainly on the analysis of the auto- and cross-correlation
of a synaptic connection while it is changing under a Hebb-like plasticity rule. The
cross-correlation describes the correlation of the corresponding input with inputs of other
weights. By contrast, the auto-correlation depicts the correlation of the corresponding
input with itself. Hence, it becomes visible when only the corresponding input drives the
output. This provides a general theoretical framework which allows us to make predictions
about the overall weight development in all Hebb-like models. This theoretical framework
led to insights with which a setup was developed that made it possible to prove the long
suspected equivalence between differential Hebbian plasticity and temporal difference
learning. Additionally we developed an analytical solution which describes the weight
development in time of arbitrary many plastic synapses with non-stationary input patterns.

Relation to classical conditioning

The models investigated in this thesis are centrally related to classical conditioning. For
instance, in section 2.1 we presented in detail the S&B model (Sutton and Barto, 1981)
which was originally used to describe classical conditioning. It was the first real-time
computational model that could explain data from animal experiments. The S&B model
makes all the same predictions as the Rescorla-Wagner model (Rescorla and Wagner,
1972) which was, however, a trial-level model. Real-time models describe the temporal
development step-by-step, by contrast trial-level models only take trial (one trial consists
of many time steps) relevant information into account. For instance, they are only
interested whether there was a second stimulus and not, in case the second stimulus
appeared, at which step in time it occurred. Because of this, the S&B model, as well as
the here proposed VOT model (see section 2.1), can explain, among others, some of the
inter-stimulus interval effects, however, not all of them. This was one of the reasons that
Sutton developed the temporal difference model (see section 2.3), which was instrumental
in shaping the field of Reinforcement Learning (Sutton and Barto, 1998). The TD rule
had problems predicting the S-shaped weight development found in the data of animal
experiments. There the slope of the weight development increases with increasing weight
before converging to the final value. In the same year, however, Klopf presented a model
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Name Output: v Rule: ẇ1 ∆wac ∆wcc Comment

S&B w0 x0 + w1 x1 u1 v̇ < 0 − cc = 0 for negative T
ISO w0 u0 + w1 u1* u1 v̇ = 0 − cc anti-sym., numerical unstable
VOT w0 uv,0 + w1 uv,1 u1 v̇ − − different time scales
Hebb w0 u0 + w1 u1 u1 v > 0 > 0 always divergent
TD w1 x1 u1 r + u1 v̇ < 0 > 0 cc = 0 for negative T
ICO w0 u0 + w1 u1* u1 u̇0 = 0 − cc anti-sym., numerical stable
ISO3 w0 u0 + w1 u1* u1 v̇ R − − 3-factor diff. Hebb

Table 5.1: Overview over all single synapse plasticity rules discussed in this thesis. The
asterisk * depicts identical equations within one column. The auto-correlation contribution
is abbreviated with ∆wac and the cross-correlation contribution with ∆wcc. A hyphen −
indicates that the value is not restricted to neither the positive nor the negative range.

(Klopf, 1988), which was an extension of the Drive-Reinforcement model (Klopf, 1982),
that made all the same predictions as the TD model. In his model, Klopf introduced a
derivative in the input and added the weight into the eligibility trace. The latter results
in an S-shaped weight development. For additional models that predict certain aspects of
classical conditioning see the review from Balkenius and Morén (1998).

Overall weight change: Auto- and cross-correlation
In classical conditioning there are essentially two stimuli, namely the conditioned stimulus
which comes earlier and the unconditioned stimulus which follows. Therefore we analyzed
in chapter 2 and 3 the weight development of a single plastic synapse in the presence of two
consecutive spikes that were convoluted by kernel functions. Although the detailed tempo-
ral development had interesting features, we were mainly interested in the final weight after
such an event. In particular, we focused on the question which contributions (auto- and/or
cross-correlation) the weight change consisted of. For a better overview we summarized
the rule, the output and the auto/cross-correlation contributions for all discussed plasticity
rules in table 5.1. We presented the cross-correlation in weight change curves which were
always plotted with respect to the temporal difference of the two consecutive spikes. Here
we found different types of curves; symmetrical for Hebbian plasticity, anti-symmetrical
for differential Hebbian plasticity and combinations of these extreme cases (e.g. for dif-
ferential Hebbian plasticity with a third factor). The second contribution, namely the
auto-correlation, can be found in these curves at T = 0. We distinguished between three
different classes: 1) negative, 2) zero or 3) positive auto-correlation.
1) negative: The first class which has negative auto-correlation was used in chapter 4. There
it was important that the weight converges if its corresponding input is paired subsequently
with another later input, for instance with the reward. The reason for this convergence
is that the overall weight change results in a difference equation (see equation 2.17 and
chapter G) which only converges for negative auto-correlations.
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Tropism-like

ISO
ICO
ISO3
VOT

Delayed Rewards-like

S&B+
TD+

Actor-Critic
Q/SARSA learning

neuronal Actor-Critic
neuronal mix of Q-

and SARSA learning

Table 5.2: Categorization of models discussed in this chapter in the context of closed-loop
systems into tropism-like and delayed reward-like rules. TD+ and S&B+ indicates that, in
order to be used in closed-loop systems, the TD and the S&B model, respectively, have to
be extended.

2) zero: To achieve final stability of weights when the second (later) stimulus is avoided,
the algorithmic class with zero auto-correlation is of interest. As both the cross-correlation
and the auto-correlation contribution are zero, the overall weight change is “per definition”
zero.

3) positive: The class with positive auto-correlation is the worst as it drives an already
positive weight to infinity even without an additional input. If additionally the cross-
correlation is strictly positive, as is the case for Hebbian plasticity, the weight changes
only to more positive values and wrongly learned correlations can never be unlearned
again.

Closed loop with zero auto-correlation

Positive auto-correlations, even if they have numerical origins like in the ISO rule, are
problematic as they cause the weights to diverge. Therefore, we put essential effort in
chapter 2 and also in section 3.1 to find plasticity rules that fall into the class with a zero
auto-correlation. This becomes particularly important in the context of behaving systems,
i.e. in systems, where the output of our small neuronal network is influencing the inputs
the network receives. Here, diverging weights would lead to nonsensical output values, thus
to unwanted behavior. In earlier work of Porr and Wörgötter (e.g. Porr and Wörgötter
(2003a,b, 2006, 2007)) closed-loop systems were equipped with plasticity rules also
found in this thesis. For instance in Porr and Wörgötter (2003a), a Braitenberg vehicle
(Braitenberg, 1984) learned to avoid obstacles using the ISO rule (homosynaptic differen-
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tial Hebbian plasticity) or in Porr and Wörgötter (2006) a mechanical arm learned using
the ICO rule (hetereosynaptic differential plasticity) to anticipate disturbing impulses in
order to keep its position. For the latter, we developed in Kolodziejski et al. (2006, 2007)
improvements to overcome problems with different impulse strengths. In the closed-loop
context the difference between the numerically instable ISO rule and the stable ICO rule
becomes critical for the ISO rule which leads to weight configurations that can not solve the
task anymore. To this end, an extensive comparison was conducted in Porr and Wörgötter
(2006) where it was found that the ICO rule solves the tasks by far better than the
ISO rule. The reason is the intrinsic absence of the auto-correlation contribution in the
ICO rule. This leads to a perfect convergence when no second stimulus is present, i.e.
when the system avoids the second stimulus. Therefore this rule should be used whenever
a stimulus needs to be avoided or compensated, e.g. in an obstacle-avoiding task or, in the
field of engineering, for thermostat-like tasks, i.e. whenever the systems needs to converge
to a set point. Earlier we mentioned that a negative auto-correlation is useful when an
agent wants to approach a rewarding stimulus and by contrast an auto-correlation with
zero value should be used when an agent wants to avoid a punishing stimulus. However,
Porr and Wörgötter found a trick to use the stimulus-avoiding condition also in a positive
tropism task, i.e. a task in which the agent needs to reach (approach) the stimulus. For
this, the authors used the symmetry of two closely attached sensors when approaching a
target (e.g. circular food blob). The difference which defines the actual stimulus between
those two sensors is zero as soon as the agent approaches the circle perpendicularly, hence
avoiding this difference stimulus. With this differential stimulus setup, food retrieval tasks
were studied in Porr and Wörgötter (2006, 2007). In order to classify different rules into
tropism-like or delayed reward-like (see below) closed-loop rules, we list them in table 5.2.

Multi-synapse systems and their relation to closed-loop systems
In natural environments an agent usually has to deal with more than one stimulus at a
given time. Therefore in chapter 3, in particular in section 3.2, we extended the analytical
considerations to many plastic synapses that change at the same time by means of a
general linear Hebbian plasticity rule. We found, for the first time, a complete analytical
solution for continuously varying inputs. We also provided appropriate approximations
as the complete solution is difficult to compute. Usually, if input patterns are sta-
tionary, we can use well-known methods, like taking the eigenvalues of the covariance
matrix (Dayan and Abbott, 2001), in order to predict the weight development. As the
environment for behaving, hence self-stimulating, systems is usually complex, the input
patterns in general can not be simplified and we need to deal with realistic non-stationary
input patterns. Equipped with the tools derived in section 3.2 we are now able to face
biologically realistic neuronal setups, thus predicting their weight development. An
interesting starting point would be to predict input patterns that lead to either stable,
periodic or chaotic weight dynamics. Also the final weight distribution is of interest
as it would allow us to compare those results to already existing statistical analysis of
experimentally measured distributions of synaptic connections (Barbour et al., 2007).
Another direction would be to further investigate along the lines of the relation among
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spike-timing-depending plasticity (STDP) and Hebb-like plasticity rules (see chapter 2,
Roberts (1999); Porr et al. (2004); Saudargiene et al. (2004)). In particular with the
solution provided here the usually applied constraint of allowing only pairwise interactions
of spikes could be lifted. To sum up, if we are able to successfully apply the tools derived
in section 3.2 to the dynamics of synaptic connections, we could draw conclusions on the
underlying plasticity mechanisms of behaving biological systems.

Temporal difference learning versus differential Hebbian plasticity
A tropism only works if the stimulus is directly perceivable, hence if it is not “delayed”. If
this is not the case, we would need to apply mechanisms such as secondary conditioning. We
could think of a secondary conditioning as a second-order delay task where not a perceivable
stimulus is rewarded but the stimulus that follows after. In detail, in secondary conditioning
an already learned conditioned stimulus acts as a rewarded or unconditioned stimulus for
another, yet earlier, stimulus. This was, for instance, investigated in the context of a food
retrieval task in Thompson et al. (2008), however, with a modified plasticity rule. The
modifications made it possible to relate the stimulus setup and the results to the structure
and the function of limbic system. By contrast the normal way to learn from the delayed
rewards in higher-order delay tasks is temporal difference learning. The reason for this is
that the learning rule is shaped in such a way that the value converges to the return. And
the return is exactly the sum of all upcoming, thus delayed, rewards if following a certain
policy (for more details see introduction of chapter 4). It was used in Sutton (1988) to
overcome problems of the S&B model when dealing with secondary conditioning.

In chapter 4 we described a novel setup which allowed us to emulate the temporal
difference learning rule by using homosynaptic differential Hebbian plasticity. Older studies
had suggested that temporal difference learning relies fundamentally on a third factor,
namely the δ error (see equation 2.21). This δ error evaluates the reward by comparing it
with the expectation made by the value that should represent the return (see above). Note
that the reward is only represented in the third factor, and there are no reward states in
the TD model. In current work the δ error is related to the Dopamine signal in the brain
(see section 2.3 and Schultz et al. (1992); Schultz (1998)). However, the results presented
in chapter 4 do not rely on these requirements, namely on an evaluative third factor and
on an implicit reward signal. In the model developed here, the reward does not have to be
a separate entity but could be just another “salient” stimulus. This stimulus could be an
(unconscious) stimulus of pleasure (e.g. “This berry tastes well”) or a (conscious) stimulus
of will (e.g. “I wanted to move here”). Therefore, every stimulus could serve as a rewarding
stimulus as long as it essentially (i.e. above noise level) drives the “learning” neuron.
Second, the results in chapter 4 suggest in contradiction to TD model that a possible third
factor is only modulating and not evaluating plasticity. Additionally, in section 4.2.3 we
showed that it is even possible to totally omit a third factor by using different time scales
for the plasticity and the output pathway. This shifts the auto-correlation contribution
to non-zero values. Negative auto-correlation values are achieved when the time scale of
plasticity is greater than the time scale of the output pathway. For instance, if the EPSP
measured at the axon has a width of about 5 ms (Dudek and Bear, 1993), the plasticity
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should take at least slightly more than 5 ms (see equation 2.14 and 2.16 and Figure 4.12
for an illustration). Although the approach that both mechanisms are identically except
for the time scale is questionable, the requirement for plasticity to have a duration of
about 10 ms is reasonable. To evaluate this model with an experiment, we would need
to manipulate the time scales of the plasticity mechanisms. If we increase the speed of
plasticity, then we should find that decisions after learning are still random as the weights
of all alternatives diverged or rather reached a boundary; note that weights in biological
systems can not diverge due to natural limitations.

Using different time scales is only one of many possibilities to shift the auto-correlation
to negative values. Note that a negative auto-correlation is a necessary condition to emu-
late temporal difference learning (see section 4.1), and therefore plain differential Hebbian
plasticity can not be used. A prominent extension is an additional factor, the third fac-
tor (see section 2.5), which is similar to the third factor used in the current models of
temporal difference learning (Schultz et al., 1992; Schultz, 1998). Furthermore, the results
of Pawlak and Kerr (2008) which showed that a third factor, namely Dopamine, is neces-
sary for long-term potentiation in the Striatum, demand that Dopamine is present while
plasticity takes place. However, the third factor used in this work is different in a partic-
ular point; it is not evaluating the reward, it is only modulating plasticity (thus shifting
the auto-correlation to negative values). Along the line of a non-evaluating third factor,
Redgrave and Gurney pointed in Redgrave and Gurney (2006) to timing problems con-
cerning the Dopamine signal. In particular, they showed that Dopamine, which, according
to the TD model (Schultz et al., 1992), carries information about the reward, is released
before the animal is conscious about the reward; however, for an unconscious evaluation
of the rewarding stimuli the timing might be just right. The authors also presented an
alternative interpretation of Dopamine, which is that of a novelty signal, i.e. it is elicited
due to novel stimuli. This interpretation would also fit to the necessity of a decreasing
learning rate in uncertain environments when using temporal difference learning. How-
ever, the properties of the third factor needed for the equivalence presented here are not
conform with the properties of Dopamine because its timing in general is too imprecise. We
already mentioned that a neuromodulator which better fits the properties is Acetylcholine
(Graybiel, 1998). There are two starting points for possible experiments which could distin-
guish between the current model of temporal difference learning and the model presented in
this work. If we could show that Acetylcholine or neuromodulators with similar properties
are not essential for plasticity, the models presented in subsection 4.2.1 and 4.2.2 would
need a different interpretation. Concerning Dopamine, an interesting experiment would
be to keep the dopamine level high independently of the reward probability (it is known
that the dopamine concentration varies with respect to reward probability (Fiorillo et al.,
2003; Morris et al., 2004; Tobler et al., 2005)) and check whether the animal is still able
to distinguish between different reward probabilities.

Another approach which does not depend on a explicit third factor was developed by
Roberts et al., who showed the equivalence between asymmetrical spike-timing dependent
plasticity (STDP) and temporal difference learning when having consecutive states
(Roberts et al., 2009). Here, asymmetrical means that the weight-change or STDP curve



99
∆

w

B C

T T T

A

Figure 5.1: Asymmetrical spike-timing-dependent plasticity. The weight change ∆w is
plotted with respect to the temporal difference of two spikes. Panel A shows the symmetrical,
panel B the negative asymmetrical and panel C the summed STDP/weight change curve.
The negative symmetrical weight change curve corresponds to a negative auto-correlation
contribution.

has both a symmetrical and an antisymmetrical part (see Figure 5.1). In particular he
showed the symmetrical part needs to be negative in order to achieve equivalence. That
the framework of differential Hebbian plasticity and spike-timing-dependent plasticity
are closely linked together was shown in chapter 2 and in work of Roberts (Roberts,
1999) himself. Thus, we conclude that the negative symmetrical part of STDP ex-
actly corresponds to a negative auto-correlation contribution. However, the origin of this
negative symmetrical part is not clear and it would be worth to pursue this experimentally.

Closed-loop extension of temporal difference learning

Behaving systems can not solely rely on temporal difference learning or the here presented
emulation of it as both models are open-loop algorithms, as seen in Figure 4.7 and Fig-
ure 4.11. In these figures we set the policy, thus the actions were independent of the output
or any other signal produced by the algorithm. If we want to extend temporal difference
learning in such a way that the algorithm also determines its policy, we would need to
add an actor-like component. For this, there exist two popular methods, namely Actor-
Critic and SARSA/Q learning, and we will discuss both. Additionally we show possible
extensions of our algorithm which emulates these methods.

The Actor-Critic model (Witten, 1977) consists of a separate actor module which has
been added to the critic. The critic, which is the already existing temporal difference
learning rule, criticizes the actor by means of the δ error (see Figure 5.2 A). As a result
of this, the actor builds state-actions mappings, which provides a controller with actions
leading to the reward(s). Additionally, Actor-Critic models can be related to structure
and function of the basal ganglia (Joel et al., 2002). However, it is also possible to use the
state-value mapping V (x) of the critic to guide the agent, thus combining both modules
(see Figure 5.2 B). This is because values of each state represent future rewards, and
following this gradient will directly lead to the reward(s) (this is similar to klinokinesis
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Figure 5.2: Actor-Critic architecture. In panel A the Actor-Critic with separate actor
and critic is shown. Both the actor and the critic receive states xi and other relevant
context informations. The δ error of the critic also drives the learning of the actor, which
then chooses the optimal action. In panel B, we show the combined Actor-Critic model
proposed here. Here the actor chooses the action which leads to a state with the highest
value V (xi+1).

(Spudich and Koshland, 1975) and was used to model bee foraging in Montague et al.
(1995)). We also implemented a similar combined Actor-Critic (see Figure 5.3) and the
results show that the performance is robust in simple environments, even when using
randomly overlapping states. We were also able to map the structure of our algorithm to
the direct pathway of the basal ganglia (see Figure 5.3 A and Kolodziejski et al. (2008)).

The second possible extension is called Q- or SARSA learning (Watkins and Dayan,
1992; Singh et al., 2000). There, the state space is extended, namely by actions ai an
agent is able to execute at a certain state xi. Therefore the update rule results in

Q(xi, ai) →Q(xi, ai) + α [r(xi+1) + γQ(xi+1, b) −Q(xi, ai)] (5.1)

where b = argmaxaQ(xi+1, a) for Q learning

and b = ai+1 for SARSA learning.

The difference between Q and SARSA learning is only related to the learning rule. While
in SARSA learning the Q values are updated by using the actual taken action, the Q values
in Q learning are modified by taking the action which leads to the optimal policy. Thus,
Q learning converges in most cases faster as the agent can explore and exploit (at least the
learning values) at the same time (Sutton and Barto, 1998). As can be seen in equation 5.1,
the Q values for the extended state-action space are basically still learned according to the
temporal difference rule.

If we wanted to extend our setup to emulate either Q- or SARSA learning, the first
step would be to include a repertoire of actions aj (see Figure 5.4). We did this by
connecting all inputs to separate dendrites dj, where each dendrite represents an action.
To this end we connected each dendrite dj with a corresponding action aj. In order to
correlate activity at two different dendrites, all of them are additionally connected to a
neuron where the weights change according to the plasticity rules presented in chapter 4.
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Figure 5.3: Combined Actor-Critic model and the relation to the direct pathway of the
basal ganglia. In panel A, we show the closed-loop Actor-Critic model. The tonically active
neurons (TAN - third factor) modulate plasticity at neurons in the Striatum (ISO3 neu-
ron). Their activity disinhibits the motor neurons via the globus palidus (GPi) and the
substantia nigra pars reticulata (SNr). Only the excitatory connection between the state
layer and the ISO3 neuron using a global third factor are plastic. Panel B and C depict
the simulation results when using the Actor-Critic model in a typical grid world (inset of
panel C - size 9 × 9). There the weights are represented by a gray shading, where black
stands for 1 and white for 0. Each arrow points in the direction of the highest value. In
panel B we show the time development of some selected weights (at coordinate (x, y)) and
the panel C shows the time needed to reach the reward state (the black center square of the

inset - coordinates: (5, 5)). For the simulations we used u(t) =
∫ S

0
(e−a (t−z) − e−b (t−z)) dz,

a = 0.006, b = 0.0066, T = 300, O = 0, L = 90, µ = 0.001 and random initial positions.
The parameters lead to a γ value of 0.73.

The output v of this neuron is, however, not used. Whenever a state xi is active, it
will drive the activity at a dendrite depending on the corresponding weight wji. This
activity is then integrated at the action neurons aj and as soon as a certain threshold is
reached, the action corresponding to this “winning” dendrite is executed. Noise at the
dendrites guarantees that the selection of the actions is not only greedy, thus to allow
a certain level of exploration. It shows that it is difficult to emulate either plain Q- or
SARSA learning. For the latter the activity of all the other dendrites but the “winning”
dendrite needs to be inhibited after the decision was made as SARSA learning requires
the Q value of the actual taken action only. By contrast, to emulate Q learning, the same
deciding procedure needs to take place in the absence of noise to determine the optimal
action. In our preliminary implementation the weights develop according to a mix of both
Q- and SARSA learning, however, yielding convergent weights and stable behavior (see
Figure 5.4 B).
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Figure 5.4: Mixed Q/SARSA learning architecture. Panel A shows the architecture of
the Q/SARSA learning architecture. There are N × D connections between the states xi

and the dendrites di. N and D are the number of states and dendrites, respectively. All
dendrites converge to the ISO3 neuron. The plasticity is modulated by the third factor M
which is triggered by the actions ai. Panel B and C depict the simulation results when using
the mixed Q/SARSA model in a typical grid world (inset of panel C - size 5 × 5). Each
arrow points in the preferred direction given by the weight values. In panel B we show the
time development of some selected weights and the panel C shows the time needed to reach
the reward state (the black square of the inset - coordinates: (4, 4)). For the simulations

we used u(t) =
∫ S

0
(e−a (t−z) − e−b (t−z)) dz, a = 0.006, b = 0.0066, T = 300, O = 0, L = 90,

µ = 0.1 and a fixed initial positions at coordinate (2, 2). The parameters lead to a γ value
of 0.73.

Relation to decision making and planning

Implementations of closed-loop algorithms like Actor-Critic or Q/SARSA learning using
correlation-based learning rules allow us to bring the framework of avoidance learning and
the framework of goal-directed learning together. In doing so we would be able to better
explain the behavior of animals, as it is required to know which of the above strategies,
punishment avoidance or reward seeking, is employed in a given situation. There exist
mainly two ways to solve this problem. Either, by ways of switching, the agent makes a
decision for each situation between these two strategies or it uses a combination of them.
An example which shows the difference between the two mentioned solutions is a behaving
agent that needs to find rewards (food) in the environment (e.g. to keep their energy level
high) while at the same time avoiding painful situations like obstacles or traps. It is a non-
trivial problem to resolve the conflict between aversive and attractive stimuli. For example,
if reward and pain lie close together the agent using the decision making policy might decide
to avoid the pain, thus ending up at starvation. An agent, however, which uses a combined
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framework will not encounter this dilemma as the aversive stimulus does not completely
inhibit the attractive action. However, this would relate differential Hebbian plasticity
to the field of decision making or even planning. Nonetheless, it would be interesting to
develop a combined mathematical framework for the combination policy. The resulting
network could then be tested on an agent that forages in a hostile environment and would,
at the end, need to be generalized such that it can be used on any given agent.

“If the human brain were so simple that we could understand it, then we would
be so dumb not to understand it.”

Jostein Gaarder (Sophie’s World)
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Appendix A

Biophysical Basics

In order to understand the biophysics of synaptic plasticity mechanisms, we will explain
in this appendix the basics of activation mechanisms and how activation travels from the
pre-synaptic sites to the post-synaptic site.
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Figure A.1: Sketch of a membrane with ion channels. The membrane is impermeable to
ions which can only move between intra- and extra cellular regions by means of ion pumps
(not shown) and ion channels. Depending on several influences the ion channels are either
open or closed. As ions are charged particles, an electrical gradient develops. The intra
cellular region usually has more negative ions and is therefore negative (about −70mV).

Normally a cell is enveloped by a membrane, and this is also true for neurons. This
membrane is impermeable to all the ions which exist in the cellular fluid. By special mech-
anisms, different concentrations of these ions develop in the intra and extra cellular regions
(see Figure A.1). As ions are charged particles, the different concentrations cause a gradi-
ent in the potential. In more detail, there are two mechanisms that allow ions to penetrate
the membrane. Ion pumps actively shift the concentration under an expense of energy from
one site to an other and, more important for the understanding of activation, by means
of ion channels in a passive manner. These ion channels change their configuration, thus
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allowing or disallowing ions to pass. These configuration changes happen for instance at
different voltages or through neurotransmitters (which will be important for the transmis-
sion of the activation). If enough of them open and the concentration changes rapidly, so
does the potential and an action potential originates (see Figure A.2 A). Whenever we talk
about activation in the biophysical sense, we usually think of these action potentials or
shortened, spikes. After origin they start to propagate (in both directions). Activity flows
in a passive manner along the dendrites and/or the axon-like currents flow along a conduc-
tor (see Figure A.2 B left part). However, before the action potential reaches a synapse it
might not exist anymore as dendrites and axons are not ideal conductors. Hence, a second
active mechanism takes over, where the activity is transferred from one ion channel to the
next. Thus the altered potential opens adjacent ion channels, i.e. a cascade of ion channel
openings propagates along the neurons branches (see Figure A.2 B right part).
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Figure A.2: Sketch of an action potential and its propagation along an axon. Panel A
shows the time development of an action potential with its steep rising phase and its slightly
shallower relaxation phase. In panel B we show the mechanism of action potential propaga-
tion along an axon. An action potential was elicited at the middle ion-channel from which
it propagates in a passive manner to the left and in an active way to the right. Depending
on the isolation of the axon the voltage decays slowly (dashed line - good isolation) or fast
(solid line) to resting potential. In order to reach a synapse the axon needs either to be
sufficiently isolated or it needs adjacent open ion channels. However, the latter is more
energy consuming.

Two different kinds of synapses, electrical and chemical, exist. The first are rare and at
these gap junctions, the action potential influences the post-synaptic ion channels directly,
thus passing almost without a time delay. For the latter the action potential needs to
trigger the release of neurotransmitter for transmission. At the pre-synaptic site usually
many vesicles containing neurotransmitters exist (see Figure 1.4 upper part). When an
action potential arrives, these vesicles bind to the membrane and thereby release their
neurotransmitters into the synaptic cleft, which is the space between pre- and post-synaptic
site. The neurotransmitters then bind to the ion channels at the post-synaptic site, which
leads to a change in the potential which in turn may lead to an action potential at the
post synaptic site by means of a self-energizing effect. At this point we are able to link
two compartments to the synaptic efficiency. The first is the number of vesicles and their
neurotransmitters and the second is the number of ion channels at the post-synaptic site.
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Appendix B

Quasi-Static Weight Changes

Throughout the whole thesis we are using a quasi-static approach. For this we assume
that the change in weights wi is much smaller than the change in the convoluted signals
ui. This writes short as

ẇ(t)

w(t)
≪ u̇(t)

u(t)
. (B.1)

The parameter which adjusts this ratio is the plasticity rate µ (in chapter 2) or α (in
chapter 4). In the following we will use µ. To this end, the plasticity rate needs to be very
small or even asymptotically zero: µ→ 0.

Using this quasi-static approach allows mainly for two simplifications when calculating
the analytical solutions. In this appendix we will discuss these simplifications. For this
we use two inputs (u0 and u1), similar to chapter 2, where only the weight w1(t) is time
dependent. This weight changes according to ẇ1(t) = µu1(t) v̇(t), and the derivative of
the output writes as v̇(t) = w0 u̇0(t) + w1(t) u̇1(t) + ẇ1(t)u1(t). Together we have the
non-simplified plasticity rule:

ẇ1(t) = µu1(t) [w0 u̇0(t) + w1(t) u̇1(t) + ẇ1(t)u1(t)] (B.2)

which we will solve in two different ways: with and without the quasi-static assumption,
starting with the latter.

B.1 General solution

In general we need to solve equation B.2 using also the weight derivative of the right hand
side. We bring this term to the left hand side, which results in

[
1 − µu2

1(t)
]
ẇ1(t) =µu1(t)w0 u̇0(t) + µu1(t)w1(t) u̇1(t)

ẇ1(t) =µ
u1(t) u̇1(t)

1 − µu2
1(t)

w1 + µ
u1(t) u̇0(t)

1 − µu2
1(t)

w0 (B.3)
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In order to divide by 1−µu(t)2 we have to make sure that µ < u(t)2 for all t. Equation B.3 is
an inhomogeneous differential equation of first order. The solution of this kind of equations
is always the solution of the homogeneous part (auto-correlation) plus a particular solution
of the inhomogeneous part (cross-correlation). The latter we get by using the method of
variation of parameters, which will be discussed together with the quasi-static solution.
Therefore we provide here only the homogeneous solution which we depict with the index
ac to be consistent with the main text:

wac
1 (t) =

w1(t0)
√

|1 − µu1(t)2|
(B.4)

where t0 is the time the weight change starts. To compare this equation to the quasi-static
solution which we find throughout this thesis we need to Taylor expand equation B.4
(neglecting the absolute value bars) around small values of µ:

1√
1 − µ ξ

=
∞∑

n=0

(2n− 1)!! ξn µn

2n n!
= 1 +

ξ µ

2
+

3 ξ2 µ2

8
+ o(µ3) (B.5)

where we define η!! = η (η − 2) (η − 4) · . . . · 1 for all odd values of η and η!! = 1 for all
η ≤ 0.

B.2 Quasi-static solution

If the weight change is small, thus the system is quasi-static, we can neglect the weight
derivative on the right hand side of equation B.2, which results in

ẇ1(t) =µu1(t)w0 u̇0(t) + µu1(t)w1(t) u̇1(t) (B.6)

The homogeneous (ac) solution of this equation is

wac
1 (t) = w1(t0) · exp

(

µ
1

2
u2

1(t)

)

(B.7)

A step by step calculation can be found in appendix D. We need to Taylor expand this
equation, too, which results in

exp

(

µ
1

2
ξ

)

=
∞∑

n=0

ξn µn

2n n!
= 1 +

ξ µ

2
+
ξ2 µ2

8
+ o(µ3) (B.8)

By comparing the Taylor expansions of the general and the quasi-static solution it
becomes clear that only above the second order both equations become different. Thus,
for small values of µ it is justified to use the quasi-static solution.
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B.3 Variation of parameters

Next we will take a closer look at the inhomogeneous solution which corresponds to the
cross-correlation contribution. To calculate the solution we need to apply the method of
the variation of parameters which results in a form (using cc) which is valid for both the
general and the quasi-static solution:

wcc
1 (t) = wac

1 (t)

∫ t

t0

w0 u̇0(z)u1(z)

wac
1 (z)

dz (B.9)

The Taylor expansions (equations B.5 and B.8) depict that there is a variation of the
homogeneous solution from the first order on. However, as the plasticity rate µ goes to
zero we can neglect the variation and pull the homogeneous solution out of the integral.
This results in the equation we used throughout this thesis for the calculation of the cross-
correlation contribution:

wcc
1 (t) =

∫ t

t0

w0 u̇0(z)u1(z) dz (B.10)

It is nonetheless interesting that the weight change curve for plain differential Hebbian
plasticity varies for different plasticity rates which is shown in Figure B.1. This shows that
the weight change curve becomes anti-symmetrical when using large plasticity rates.
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Figure B.1: Weight change curve of differential Hebbian plasticity under different plas-
ticity rates using the full solution. It shows that the weight change curve becomes more
asymmetrical with larger plasticity rates. By contrast low plasticity rates (µ < 0.2) leave
the weight change curve unaffected.
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If we put both solutions together and only take the final weight after two inputs into
account we arrive at

w1(t) =wac
1 (t) + wcc

1 (t) = f(t)w1(t0) +

∫ t

t0

w0 u̇0(z)u1(z) dz

∆w1 = (1 − f(t)) w1 +

∫ ∞

t0

w0 u̇0(z)u1(z) dz (B.11)

where f(t) represents the factor given by the auto-correlation.
The last equation is used often throughout the main text and this appendix tried

to cover the drawbacks of this simplification. However, this appendix also showed that,
assuming a quasi-static process, the usage of equation B.11 is justified.
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Appendix C

Numerical Considerations

When we want to solve the plasticity rules numerically, we could use many different meth-
ods which solve differential equations. However, we have a problem whenever we do not
know which input will come next. This is a situation all behaving systems must face as
they live in an uncertain environment. The only method which applies if you do not know
the future is the basic Euler method. To this end you assume a small value which you
constantly add to your differential equation. For behaving systems even another problem
needs to be considered, because they usually can not choose this small value themselves.
It is given by the update frequency, which is governed by the time their sensors provide
the controller with new signals. The lower this update frequency is the higher are the
numerical errors and the higher will be, for instance, the auto-correlation contribution in
differential Hebbian plasticity although it is asymptotically converging to zero (compare
section 2.1).

In robotic applications we have the possibility to change the update frequency or rather
change the parameters of our kernel function. In the following we will provide an estimation
of the numerical error for different parameters by comparing the integration of the kernel
function equation 1.1 with the summation of it. Integrating from zero to infinity neglecting
σ gives us

Hint(a, b) =

∫ ∞

0

h(z) dz =

∫ ∞

0

(
e−a t − e−b t

)
dz =

[

−1

a
e−a t +

1

b
e−b t

]∞

0

=
1

a
− 1

b
=
b− a

a b
(C.1)

We need to compare this analytical solution C.1 with the numerical summation for which
we set t ∈ N as this is the natural way to integrate the kernel numerically. This results in

Hsum(a, b) =
∞∑

n=0

h(n) =
∞∑

n=0

(
e−a n − e−b n

)
=

1

1 − e−a
+

1

1 − e−b
=

e−a − e−b

(1 − e−a)(1 − e−b)

(C.2)
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Although equations C.1 and C.2 look different, they have similar values in particular in the
limit of a to zero. To depict this in a better way we set b = 2 a and calculate the relative
difference ∆h(a)

∆h(a) =
Hint(a, 2a) −Hsum(a, 2a)

Hint(a, 2a)
= 1 − 2 a

e−a

1 − e−2 a
= 1 − a

1
2
(ea − e−a)

= 1 − a sinh−1 a

(C.3)
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Figure C.1: Numerical error (equation C.3) of the kernel functions h(t) with respect to
the parameter a. We set the other parameter b = 2 a.

The difference ∆h(a) is plotted in Figure C.1 with respect to a. The value a determines
the position of the maximum, thus the length of the kernel function defined in equation 1.1.
The dependence on different a values is shown in Figure 1.7 where it shows that the higher
we choose a, the less space in time is covered by the kernel functions. Coming back to the
numerical considerations, with a value of a = 0.1 the kernel function covers just about 40
time steps which are significantly about zero. Here significant means that the value decayed
below 10−3 of the maximum value. Although only 40 time steps were used to discretize the
kernel function, values of a smaller than 0.1 result, according to equation C.3, in a difference
between analytical and numerical solution which seems to be tolerable. An a value of about
0.01 even decreases the error to an almost neglectable value. A comparison of the difference
between a = 0.1 and a = 0.01 in a real example is plotted in the upper inset of Figure 2.3 A
in the main text. The insets reveal that a discrepancy between analytical and numerical
solution of about 0.1 is still large enough to induce visible numerical errors. Along this
lines, it is not advisable to use a values larger than 1 and especially not larger than 5 as
Figure C.1 indicates.
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Appendix D

Solution of the Homogeneous Part of
the General Differential Hebbian
Plasticity Equation

Here we provide a solution for the homogeneous part of the general differential Hebbian
equation which can be found in many equations (e.g. equation 2.5 together with equa-
tions 2.9, 2.25 or 4.4). For the following analysis we neglect the index i and include the
third factor M to be as general as possible:

ẇ(t) =
dw(t)

dt
= α · u(t) u̇(t)w(t)M(t) (D.1)

Next we separate the variables and integrate both sides from zero to infinity:

∫ w

w0

dw

w
= α ·

∫ ∞

0

u(t) u̇(t)M(t) dt (D.2)

In the main text we mentioned that M(t) is either 1 or 0, thus we can model this function
as a sum of Heaviside functions Θ(t):

M(t) =
∑

m

Θ(t−Blower
m ) Θ(Bupper

m − t). (D.3)

As the Heaviside functions determine the integration boundaries of the right hand side of
equation D.2, this can be simplified to:

∫ t

t0

u(t) u̇(t)
∑

m

Θ(t−Blower
m ) Θ(Bupper

m − t) dt =
∑

m

∫ Bupper
m

Blower
m

u(t) u̇(t) dt (D.4)
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GENERAL DIFFERENTIAL HEBBIAN PLASTICITY EQUATION

The left side of equation D.2 solves to a logarithmic function and for its right side we use
following derivative:

du2(t)

dt
= 2u(t) u̇(t) (D.5)

All in all this leads to:

ln
w

w0

=
α

2

∑

m

[u2(Bupper
m ) − u2(Blower

m )] (D.6)

where we have to invert the logarithmic function:

w = w0 · exp
α

2

∑

m

[u2(Bupper
m ) − u2(Blower

m )]. (D.7)

This way we get the weight w after integrating over a pulse pair if having weight w0 before.
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Appendix E

Switching Integral and Derivative to
Solve the Derivative of the
Exponential Integral

In section 3.1 we show that the weights of differential Hebbian plasticity with a third
factor and a bank of kernel functions self-organize to a situation where the auto-correlation
contribution vanishes. There we encounter following integral

gv(t) = lim
ǫ→0

∫ ∞

ǫ

e−ξ(t) η

η
dη (E.1)

which is a special case of the exponential integral En(ξ) =
∫∞

1
e−ξ η/ηn · dη with n = 1.

As we are only interested in the derivative of this integral, we do not need to solve this
integral. In fact we need to solve:

ġv(t) = lim
ǫ→0

d

dt

∫ ∞

ǫ

e−ξ(t) η

η
dη. (E.2)

If e−ξ(t) η

η
is continuously differentiable, then it is possible to switch the derivative and

integral. As ξ(t) is always a linear function in equation 3.11, the exchange is possible and
we get

ġv(t) = lim
ǫ→0

∫ ∞

ǫ

d

dt

e−ξ(t) η

η
dη =

d ξ(t)

dt
lim
ǫ→0

∫ ∞

ǫ

e−ξ(t) ηdη

=
d, ξ(t)

dt
lim
ǫ→0

(

0 − e−ξ(t) ǫ

ξ(t)

)

= −d ξ(t)
dt

1

ξ(t)
= − ξ̇(t)

ξ(t)
(E.3)

This equation is used to simplify equation 3.11 which leads to equation 3.14.
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APPENDIX E SWITCHING INTEGRAL AND DERIVATIVE TO SOLVE

THE DERIVATIVE OF THE EXPONENTIAL INTEGRAL
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Appendix F

Estimation of the Number of
Calculations for Numerical
Calculation of the Temporal
Development

The following code snippet shows the relevant calculations which need to be performed for
every time step. Note that the method shown here for the calculation of the pre-synaptic
activity (pre) is a handy way to calculate the convolution. We get the appropriate factors
(fac1, fac2) by transforming the kernel into the Z-space. We will not count the checking
(if clause) for differential or plain Hebbian plasticity as this checking is not necessary.

//calculating the convolution for each input

for all N

pre(t) = pre(t-2) * fac1 + pre(t-1) * fac2 + input //#calc: 4

end

//calculating the output

post(t) = 0; //#calc: 1

for all N

post(t) = post(t) + pre(t) * weight(t) //#calc: 2

end

//checking for the type of plasticity

if Hebbian plasticity

fpost(t) = post(t) //#calc: 0 (actually not needed)

if differential Hebbian plasticity

fpost(t) = post(t) - post(t-1) //#calc: 1
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APPENDIX F ESTIMATION OF THE NUMBER OF CALCULATIONS
FOR NUMERICAL CALCULATION OF THE TEMPORAL

DEVELOPMENT

//updating all weights

for all N

weight(t) = weight(t-1) + mu * pre(t) * fpost(t) //#calc: 3

end

//total #calc: 4*N + 1 + 2*N + 0(1) + 3*N = 9*N + 1(2)

The pseudo code provided here shows us that we need 9 ·N + 1 calculations per time step
to numerically calculate the weight development. For differential Hebbian plasticity we
have one additional calculation step.
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Appendix G

Solution of the Difference Equation
Given by the Overall Weight
Development

In this thesis we have often encountered a difference equation which describes the overall
development of the weights investigated (see for instance equation 4.27 or section 2.1).
These equations can be written in a general form as

xn+1 = (1 − α)xn + α y. (G.1)

Here we want to calculate to which value equation G.1 converges. This difference equation
can be solved in a simpler way formulated as a differential equation:

ẋ(t) = −αx(t) + α y (G.2)

Note that it is always possible to substitute time independent factors before x(t) into the
plasticity rate α:

ẋ(t) = − α̃ κ x(t) + α̃ ỹ

ẋ(t) = − αx(t) + α
ỹ

κ
ẋ(t) = − αx(t) + α y. (G.3)

In this thesis the origin of the time independent factor κ is the auto-correlation contribution
∆wac or rather its negative value.
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The homogeneous part solves to an exponential function with exponent −α t and the
inhomogeneous solution can be found by the method of variation of parameters:

xinhom(t) =xhom(t)

∫ ∞

0

x−1
hom(z)α y dz

xinhom(t) = exp(−α t)
∫ t

0

exp(α z)α y dz

xinhom(t) = exp(−α t)α y
[

1

α
exp(α z)

]t

0

= y (1 − exp(−α t)) (G.4)

This gives us for the convergence:

x(t) =(C − y) exp(−α t) + y

lim
t→∞

x(t) = y (G.5)

where C is a constant. Note that equation G.4 only converges to y if α is positive. If we
relate α to the main text, it consists of the plasticity rate α̃ and the negative value of the
auto-correlation which is defined as κ. As the plasticity rate is usually positive, convergence
depends on a positive κ value, hence on a negative auto-correlation ∆wac. In this case
difference equations like equation G.1 or differential equations like equation G.2 always
converge to y. Additionally, Kushner and Clark (1978) showed that this holds also for a
stochastic variable with mean y where the variance is being reduced by a time-dependent
plasticity rate. To this end the plasticity rate has to decrease over time proportional to a
function f(t) with following properties:

∑∞
t=0 f(t) = ∞ and

∑∞
t=0 f

2(t) <∞. An example
function would be f(t) = 1/t.

In order to solve equation 4.25 we need to find in a second step the solution of another
difference equation. We get this equation by assuming that equation 4.25, which is of the
same form as equation G.1, already converged. This gives us following equation

wn = ε1wn+1 − ε2wn−1. (G.6)

We get the solution using the Ansatz wn = λn:

λn = ε1 λ
n λ− ε2 λ

n λ−1 (G.7)

Assuming λ 6= 0 we can divide equation G.7 by λn−1 and have to solve the following
quadratic equation:

0 =λ2 − 1

ε1

λ− ε2

ε1

λ1/2 =
1

2 ε1

±
√

1

(2 ε1)2
+
ε2

ε1

(G.8)
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A negative solution, however, would lead to an oscillation, therefore we only have to con-
sider the positive sign, which leads to a positive solution:

λ =
1

2 ε1

+

√

1

(2 ε1)2
+
ε2

ε1

(G.9)

that, potentiated by n, gives us the value which wn will converge to. Therefore we can set
wn = λ−1wn+1 and equation G.6 is simplified.
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Appendix H

Analytical Calculation of γ Using
First and Second Order Terms

In this appendix we want to analytically calculate or integrate equations 4.17, 4.22‘and 4.21.
To this end we define a signal function guided by biophysical considerations. This function
is divided into a rising phase, a plateau, and a falling phase. We expand both the rising
and the falling phase to the second order. This allows us to switch between linear and
quadratic rising and falling phases. After the calculation we summarize the results and,
most importantly, extract information about the essential areas, i.e. areas in which the
system diverges (κ ≤ 0) or in which the weights of systems do not change at all (τ = 0).
These areas are then plotted and compared with the results obtained in chapter 4. We find
that the calculations made in this appendix are transferable to other signal shapes that
follow the same basic biophysical ideas.

H.1 Taylor expansion of the kernel function

The Taylor expansion to the second order of an arbitrary kernel function with a plateau is
described as:

u(t) = U ·







0 if t < 0

(1 − η)
(

t
PE

)2

+ η t
PE

if t ≥ 0 ∩ t ≤ PE

1 if t > PE ∩ t ≤ S

1 − (1 − ξ)
(

t−S
PF

)2

− ξ t−S
PF

if t > S ∩ t ≤ S + PF

0 if t > S + PF

(H.1)

where U is the height of the plateau, PE and PF the length of the rising and the falling
phase respectively, S the length of a state and η and ξ the degree of the second order term
for the rising and the falling phase respectively. Here η = 1 or ξ = 1 leads to a linear slope,
η = 0 or ξ = 2 to a convex and η = 2 or ξ = 0 to a concave slope.



124
APPENDIX H ANALYTICAL CALCULATION OF γ USING FIRST AND

SECOND ORDER TERMS

IG O < 0 ∩ O + L < 0
IIG O < 0 ∩ O + L ≥ 0 ∩ O + L < PE

IIIG O < 0 ∩ O + L ≥ PE

IVG O ≥ 0 ∩ O < PE ∩ O + L < PE

VG O ≥ 0 ∩ O < PE ∩ O + L ≥ PE

VIG O ≥ PE ∩ O + L ≥ PE

AG O + T < S ∩ O + L + T < S
BG O + T < S ∩ O + L + T ≥ S ∩ O + L + T < PF

CG O + T < S ∩ O + L + T ≥ PF

DG O + T ≥ S ∩ O + T < PF ∩ O + L + T < PF

EG O + T ≥ S ∩ O + T < PF ∩ O + L + T ≥ PF

FG O + T ≥ PF ∩ O + L + T ≥ PF

Table H.1: The intervals used to discriminate between the different occurrence of the
global third factor. See Figure H.1 for a more intuitive representation.

H.2 Intervals given a third factor

Having defined the actual shape of the kernel function, we now have to distinguish between
different occurrence times of the third factor. Figure H.1 shows the six essential regions
of both the rising and the falling phase. For this we defined intervals I to V I for the
rising phase and A to F for the falling phase (see tables H.1 and H.2, where we defined the
intervals explicitly for the global - subscript G - and the local - subscript L - third factor).

Additionally we need to define another four intervals used for the correlation of the
signals when calculating τ±G/L (see table H.3).

H.3 Analytical calculation of κG and κL

Next we calculate κ using the Taylor expanded function (equation H.1). For the following
we assume that O + L < S and O + S + T > PE which holds if S is sufficiently larger
than O, L and |T |. These assumptions prevent cases where the third factor would effect
the signal after the next signal which is nonsensical. For the global factor we simplify κG

by splitting it into κ+
G and κ−G as done in the main text: κG = −(κ+

G + κ−G). For the local

IV

II
I

III

V
VI

D

B
A

C

E
F

SPr0 S+Pf

u

Figure H.1: Here we show the kernel functions with all possible regions for both the rising
and the falling phase. The relevant intervals are defined by I to V I and A to F .
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IL O < T ∩ O + L < T
IIL O < T ∩ O + L ≥ T ∩ O + L < PE + T
IIIL O < T ∩ O + L ≥ PE + T
IVL O ≥ T ∩ O < PE + T ∩ O + L < PE + T
VL O ≥ T ∩ O < PE + T ∩ O + L ≥ PE + T
VIL O ≥ PE + T ∩ O + L ≥ PE + T

AL O < S ∩ O + L < S
BL O < S ∩ O + L ≥ S ∩ O + L < PF

CL O < S ∩ O + L ≥ PF

DL O ≥ S ∩ O < PF ∩ O + L < PF

EL O ≥ S ∩ O < PF ∩ O + L ≥ PF

FL O ≥ PF ∩ O + L ≥ PF

Table H.2: The intervals used to discriminate between the different occurrence of the local
third factor are similar to the ones used for the global third factor. More precisely, we need
to shift the right hand side of each inequality by T . Thus, also Figure H.1 can be used for
a more intuitive representation as this figure does not depend on T .

a −T < 0
b −T + PF < 0
c −T < PE

d −T + PF < PE

Table H.3: Intervals needed for the correlation of two consecutive signals with a time
delay of T .

third factor we set κL = −κ−L as κ+
L does not exist. In table H.4 the analytical results for

κ±G and in table H.5 the analytical results for κL are stated using equations H.2 and H.3.
These equations result from equation 4.30 where we included the Taylor expanded function
(equation H.1). In detail equation H.2 represents the squared rising phase and equation H.3
the squared falling phase. It is important to mention that both functions, Φ(t) and Ψ(t)
are bounded between 0 and 1.

Φ(t) =

(
t

PE

)2

·
(

η + (1 − η)
t

PE

)2

(H.2)

0 ≤ Φ ≤ 1 ∀η : 0 ≤ η ≤ 2 ∩ ∀t : 0 ≤ t ≤ PE

Ψ(t) =

(

1 − t− S

PF

)2

·
(

1 + (1 − ξ)
t− S

PF

)2

(H.3)

0 ≤ Ψ ≤ 1 ∀ξ : 0 ≤ ξ ≤ 2 ∩ ∀t : S ≤ t ≤ S + PF

Discussion of κ±: The results can be summarized by plotting the areas which represent
definitive divergent areas where we simplify the rising and falling time to identical values:
P = PE = PF . These areas are composed from intervals in which the sum of κ+

G and κ−G
is always positive. For instance for interval AG conjoined with either of the intervals IG to
VIG, the sum of κ+

G and κ−G is always greater than zero and thus divergent. The same holds
for interval FG. Both areas are indicated in Figure H.2. There is an additional divergent
area; however, IIIG only exists there if the value of L is greater than P .
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Interval κ+
G/(

U2

2
) Interval κ−G/(

U2

2
)

IG 0 AG 0
IIG Φ(O + L) BG Ψ(O + S + T + L) − 1
IIIG 1 CG −1
IVG Φ(O + L) − Φ(O) DG Ψ(O + S + T + L) − Ψ(O + S + T )
VG 1 − Φ(O) EG −Ψ(O + S + T )
VIG 0 FG 0

Table H.4: Analytical result of κ±G

−1−2
O/P

210

0

2

1

−1

−2
−1−2

O/P
210 −1−2

O/P
210

AG

FG

AG

F
G

AG

III

FG

G

T
/P

L = P/3 L = 2 P/3 L = 4 P/3

Figure H.2: -κκκG- Here we show the divergent regions for different values of L. The
intervals indicated by different colors can be found in table H.1. Brown represents regions
which are independent of L, whereas the red regions depend on L. The light red region is
also depending on L, however, this area is only there for L > P .

Additionally there would be also an interval CG (not shown) for which the sum of κ+
G

and κ−G is always less than zero if conjoined with interval IG to VIG except IIIG. However,
this shows up only if L is greater than P , but then interval IIIG becomes valid. This can
be resolved by using different values for PE and PF where PF < PE.

Discussion of κL: As u(t) and with it Ψ(t) are monotonically decreasing functions the
only regions in which κL is equal to zero are AL and FL. Identically to the global third
factor, the results can be summarized in Figure H.3, where definitive divergent areas are
represented by different colors. Again, for simplicity, we take the rising and falling time to
have identical values: P = PE = PF . This is not necessary for κL, but later for τL.

Only in the white area there can be convergence, however, the shape of the actual
kernel function u determines whether a certain area converges or not. Additionally, it is
important to include the values for τ±G/L into the considerations as these values can be 0 in
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Interval κL/(
U2

2
)

AL 0
BL 1 − Ψ(O + S + L)
CL 1
DL Ψ(O + S) − Ψ(O + S + L)
EL Ψ(O + S)
FL 0

Table H.5: Analytical result of κL

−1−2
O/P

210

0

2

1

−1

−2
−1−2

O/P
210 −1−2

O/P
210

F

AL

L

AL

F
L

AL

F
L

T
/P

L = P/3 L = 2 P/3 L = g4 P/3

Figure H.3: -κκκL- Here we show regions of divergent γL values, i.e. regions in which κL is
zero, for different values of L. The intervals indicated by the different colors can be found
in table H.2. Brown represents regions which are independent of L, whereas the red regions
depend on L.

different areas, which means that there is no overlap between two consecutive signals and
the third factor. This will be investigated next.

H.4 Analytical calculation of τ±G and τL

Here we calculate the values for τ±G/L using the Taylor expanded function (equation H.1).
We likewise assume that there is no overlap of the signal with the signal after its next
state. In tables H.6 and H.7 the analytical results for τ±G and for τL are stated using
equations H.4, H.5, H.6 and H.7. These equations result from equations 4.31 and 4.32



128
APPENDIX H ANALYTICAL CALCULATION OF γ USING FIRST AND

SECOND ORDER TERMS

where we included the Taylor expanded function (equation H.1). It is important to mention
that these functions, ζ(t), ψ(t), χ(t) and ϕ(t) are always greater than 0.

ζ(t) =
2

U2

∫

U u̇(t) dt = 2

(

(1 − η)

(
t

PE

)2

+ η
t

PE

)

(H.4)

ζ ≥ 0 ∀η : 0 ≤ η ≤ 2

ψ(t) =
2

U2

∫

u̇(t)u(t+ S + T ) dt

=2

(

(1 − η)

(
t

PE

)2

+ η
t

PE

)

− (1 − η)(1 − ξ)

((
t

PF

)2(
t

PE

)2

+
8

3

(
t

PF

)2
t

PE

T

PE

+ 2

(
t

PF

)2(
T

PE

)2
)

− η (1 − ξ)

(

2

3

(
t

PF

)2
t

PE

+ 2

(
t

PF

)2
T

PE

+ 2

(
T

PF

)2
t

PE

)

− (1 − η) ξ

(

4

3

t

PF

(
t

PE

)2

+ 2
T

PF

(
t

PE

)2
)

− η ξ

(
t

PF

t

PE

+ 2
t

PF

T

PE

)

(H.5)

ψ ≥ 0 ∀η : 0 ≤ η ≤ 2 ∩ ∀ξ : 0 ≤ ξ ≤ 2

χ(t) =
2

U2

∫

U u̇(t+ S + T ) dt = −2

(

(1 − ξ)

((
t

PF

)2

+ 2
t

PF

T

PF

)

+ ξ
t

PF

)

(H.6)

χ ≤ 0 ∀ξ : 0 ≤ ξ ≤ 2
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ϕ(t) =
2

U2

∫

u(t) u̇(t+ S + T ) dt

= − (1 − η)(1 − ξ)

((
t

PF

)2(
t

PE

)2

+
4

3

(
t

PF

)2
t

PE

T

PE

)

− η (1 − ξ)

(

4

3

(
t

PF

)2
t

PE

+ 2

(
t

PF

)2
T

PE

)

− (1 − η) ξ

(

1

3

t

PF

(
t

PE

)2
)

− η ξ

(
t

PF

t

PE

)

(H.7)

ϕ ≤ 0 ∀η : 0 ≤ η ≤ 2 ∩ ∀ξ : 0 ≤ ξ ≤ 2
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O/P
210

IG

Fb

VI

G

G

IG

Fb

VI
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G

IG

Fb
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G

G
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L = P/3 L = 2 P/3 L = 4 P/3

Figure H.4: -τττ+
G- Here we show the regions of zero τ+

G values for different values of L.
The intervals indicated by the different colors can be found in table H.1. Green represents
regions which are independent of L, whereas the blue regions depend on L.

Discussion of τ±G : For these calculations we also simplify the rising and falling time to
have identical values: P = PE = PF . The results can be summarized also by plotting
the areas for which τ±G are zero (Figure H.4 and Figure H.5). For instance, similar to κG,
interval FG conjoined with intervals IG to VIG results in both τ+

G and τ−G to be equal to
zero. In case of τ−G this observation can also be made for interval AG, and in case of τ+

G

the interval VIG gives us zero. There are two additional intervals, IG and b, which result
in a value of zero for both τG measures. These areas are indicated with different colors in
Figure H.4 for τ+

G and in Figure H.5 for τ−G .
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Interval τ+
G /(

U2

2
) and τL/(

U2

2
) −τ−G /(U2

2
) γG γL

I 0 0 0 0
II ∩ A ζ(O + L) − ζ(0) 0 ∞ ∞
II ∩ B ∩ a ψ(O + L) − ψ(0) ϕ(O + L) − ϕ(0) ≥ 0 ≥ 0
II ∩ B ∩ ā ζ(−T ) − ζ(0) + ψ(O + L) − ψ(−T ) ϕ(O + L) − ϕ(−T ) ≥ 0 ≥ 0
II ∩ C ∩ a ∩ b 0 0 0 0
II ∩ C ∩ a ∩ b̄ ψ(−T + PF ) − ψ(0) ϕ(−T + PF ) − ϕ(0) ≥ 0 ≥ 0
II ∩ C ∩ ā ζ(−T ) − ζ(0) + ψ(−T + PF ) − ψ(−T ) ϕ(−T + PF ) − ϕ(−T ) ≥ 0 ≥ 0
II ∩ D ψ(O + L) − ψ(O) ϕ(O + L) − ϕ(O) ≥ 0 ≥ 0
II ∩ E ∩ b 0 0 0 0
II ∩ E ∩ b̄ ψ(−T + PF ) − ψ(0) ϕ(−T + PF ) − ϕ(0) ≥ 0 ≥ 0
II ∩ F 0 0 0 0
III ∩ A ζ(PE) − ζ(0) 0 ∞ ∞
III ∩ B ∩ a ψ(PE) − ψ(0) ϕ(PE) − ϕ(0) + χ(O + L) − χ(PE) ∞ ≥ 0
III ∩ B ∩ ā ∩ c ζ(−T ) − ζ(0) + ψ(PE) − ψ(−T ) ϕ(PE) − ϕ(−T ) + χ(O + L) − χ(PE) ∞ ≥ 0
III ∩ B ∩ c̄ ζ(PE) − ζ(0) χ(O + L) − χ(PE) ∞ ≥ 0
III ∩ C ∩ b 0 0 0 0
III ∩ C ∩ a ∩ b̄ ∩ d ψ(−T + PF ) − ψ(0) ϕ(−T + PF ) − ϕ(0) ∞ ≥ 0
III ∩ C ∩ a ∩ d̄ ψ(PE) − ψ(0) ϕ(PE) − ϕ(0) + χ(−T + PF ) − χ(PE) ∞ ≥ 0
III ∩ C ∩ ā ∩ d ζ(−T ) − ζ(0) + ψ(−T + PF ) − ψ(−T ) ϕ(−T + PF ) − ϕ(−T ) ∞ ≥ 0
III ∩ C ∩ ā ∩ d̄ ζ(−T ) − ζ(0) + ψ(PE) − ψ(−T ) ϕ(PE) − ϕ(−T ) + χ(−T + PF ) − χ(PE) ∞ ≥ 0
III ∩ C ∩ c̄ ζ(PE) − ζ(0) χ(−T + PF ) − χ(−T ) ∞ ≥ 0
III ∩ D ψ(PE) − ψ(0) ϕ(PE) − ϕ(0) + χ(O + L) − χ(PE) ∞ ≥ 0
III ∩ E ∩ b 0 0 0 0
III ∩ E ∩ b̄ ∩ d ψ(−T + PF ) − ψ(0) ϕ(−T + PF ) − ϕ(0) ∞ ≥ 0
III ∩ E ∩ d̄ ψ(PE) − ψ(0) ϕ(PE) − ϕ(0) + χ(−T + PF ) − χ(PE) ∞ ≥ 0
III ∩ F 0 0 0 0

Table H.6: Analytical results of τ±G/L and γG/L (part I). Instead of I-VI and A-F we used the appropriate intervals for

either the global (τ±G and γG: IG-VIG and AG-FG) or local (τL and γL: IL-VIL and AL-FL) third factor.
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Interval τ+
G /(

U2

2
) and τL/(

U2

2
) −τ−G /(U2

2
) γG γL

IV ∩ A ζ(O + L) − ζ(O) 0 ∞ ∞
IV ∩ B ζ(−T ) − ζ(O) + ψ(O + L) − ψ(−T ) ϕ(O + L) − ϕ(−T ) ≥ 0 ≥ 0
IV ∩ C ζ(−T ) − ζ(O) + ψ(−T + PF ) − ψ(−T ) ϕ(−T + PF ) − ϕ(−T ) ≥ 0 ≥ 0
IV ∩ D ψ(O + L) − ψ(O) ϕ(O + L) − ϕ(O) ≥ 0 ≥ 0
IV ∩ E ψ(−T + PF ) − ψ(O) ϕ(−T + PF ) − ϕ(O) ≥ 0 ≥ 0
IV ∩ F 0 0 0 0
V ∩ A ζ(PE) − ζ(O) 0 ∞ ∞
V ∩ B ∩ c ζ(−T ) − ζ(O) + ψ(PE) − ψ(−T ) ϕ(PE) − ϕ(−T ) + χ(O + L) − χ(PE) ≥ 0 ≥ 0
V ∩ B ∩ c̄ ζ(PE) − ζ(O) χ(O + L) − χ(−T ) ≥ 0 ≥ 0
V ∩ C ∩ d ζ(−T ) − ζ(O) + ψ(−T + PE) − ψ(−T ) ϕ(−T + PF ) − ϕ(−T ) ≥ 0 ≥ 0
V ∩ C ∩ c ∩ d̄ ζ(−T ) − ζ(O) + ψ(PE) − ψ(−T ) ϕ(PE) − ϕ(−T ) + χ(−T + PF ) − χ(PE) ≥ 0 ≥ 0
V ∩ C ∩ c̄ 0 χ(−T + PF ) − χ(−T ) 0 0
V ∩ D ψ(PE) − ψ(O) ϕ(PE) − ϕ(O) + χ(O + L) − χ(PE) ≥ 0 ≥ 0
V ∩ E ∩ d ψ(−T + PF ) − ψ(O) ϕ(−T + PF ) − ϕ(O) ≥ 0 ≥ 0
V ∩ E ∩ d̄ ψ(PE) − ψ(O) ϕ(PE) − ϕ(O) ≥ 0 ≥ 0
V ∩ F 0 0 0 0
VI ∩ A 0 0 0 0
VI ∩ B 0 χ(O + L) − χ(−T ) 0 0
VI ∩ C 0 χ(−T + PF ) − χ(−T ) 0 0
VI ∩ D 0 χ(O + L) − χ(O) 0 0
VI ∩ E 0 χ(−T + PF ) − χ(O) 0 0
VI ∩ F 0 0 0 0

Table H.7: Analytical results of τ±G/L and γG/L (part II). Instead of I-VI and A-F we used the appropriate intervals for

either the global (τ±G and γG: IG-VIG and AG-FG) or local (τL and γL: IL-VIL and AL-FL) third factor.
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Figure H.5: -τττ−G- Here we show the regions which result in zero τ−G values for different
values of L. The intervals indicated by the different colors can be found in table H.1. For
the color code see Figure H.4.
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Figure H.6: -τττL- Here we show the regions of zero τL values for different values of L.
The intervals indicated by the different colors can be found in table H.1. For the color code
see Figure H.4.

Discussion of τL: Similar to the previous paragraphs, we set P = PE = PF and plot
the results or rather areas for which τL is zero (Figure H.6). We find that, identical to τ+

G ,
the τL value is zero for regions IL, VIL, FL and b. However, due to the additional T -shift
all regions except region b are rotated by π/4.

As τ±G/L will not effect convergence, all areas would yield convergence. However, only
for the white area γG/L results in a value which is unequal to zero.
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H.5 Analytical calculation of γG and γL

Finally, we can calculate the value of γG/L using equation 4.26. This is not done explicitly
here, however, we indicate in the last two columns of tables H.6 and H.7 whether γG/L is
zero (no overlap between two consecutive signals and the third factor), greater than zero
or infinite.
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Figure H.7: -γγγG- Here we show the regions of meaningless γG values, where there is either
no overlap between two consecutive signals and the third factor (τ±G = 0), or γG diverges
(κG < 0). The areas are shown for different values of L. The intervals indicated by the
different colors can be found in table H.1. For the color code see Figure H.2 and Figure H.4.
It is now possible to compare this figure with Figure 4.5 and Figure 4.6.

Furthermore, we can combine the considerations made for κG/L and τ±G/L which are
illustrated in Figures H.2 - H.6 into Figure H.7 for the global and into Figure H.8 for the
local third factor.

If we compare Figure H.7 with Figure 4.5 and Figure 4.6 and Figure H.8 with Figure 4.9
and Figure 4.10, we find that the areas of divergence map exactly and that convergence
can be found only in the white areas. Therefore the considerations about convergence and
non-zero γG/L values can be transfered from the Taylor expanded function (equation H.1)
to all possible functions that possess only one plateau.

H.6 Analytical calculation of κT , τ
±
T and γT

In order to calculate κT , τ±T and finally γT , we need to define the rising and the falling
phase of the output pathway to be different from the plasticity phase. To this end we need
control parameters ρE and ρF respectively. These are set to be greater 1 as the phases for
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Figure H.8: -γγγL- Here we show the regions of nonsensical γ values, where there is either
no overlap between two consecutive signals and the third factor (τ± = 0), or γ diverges
(κ = 0). The areas are shown for different values of L. The intervals indicated by the
different colors can be found in table H.1. For the color code see Figure H.2 and Figure H.4.
It is now possible to compare this figure with Figure 4.5 and Figure 4.6.

the output pathway must be shorter. Thus, the duration of the rising phase of the output
pathway is PE/ρE and the duration of the falling phase PF/ρF . This leads to

κT = − (κ+
T + κ−T ) =

− U2

2

(
3 − (1 − ρE)(4 − η) η

3 ρ2
E

+
3 − 6 ρ2

F − (1 − ρF )(4 − ξ) ξ

3 ρ2
F

)

(H.8)

and for the τT values to

τ−T = − U2

2

(PF

ρF
− T )2

3P 2
F P

2
E

Θ(
PF

ρF

− T )×
(
ρF PF (2T (1 − η) − PE η (4 − ξ)) − P 2

F (1 − η)(3 − ξ)

+ ρ2
F T (1 − ξ) (T (1 − η) − 2PE η)

)
(H.9)

τ+
T =

U2

2

1

3P 2
F ρ

2
E

×
(
PE ρE (4 − η) (2T (1 − ξ) − PF ξ) − P 2

E (1 − η)(3 − ξ)

+ 6 ρ2
E (PF − T ) (PF + T − T ξ)

)
(H.10)

where Θ is the Heaviside function. As already discussed in the main text, τ−T is zero
for T > PF/ρF . Similar to the previous results all values are independent of S as long as
S > PE. In order to calculate the γT value, we need to include κT and τ±T into equation 4.26.
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Additionally, we find that if we set ρE = ρF and use equation H.1 for the signal shape,
κT is always greater than zero for ρE > 1 and thus, γT never diverges. This becomes clear
if we investigate κT for ρE = ρF :

κT =
U2

2

ρE − 1

ρ2
E

(6 (1 + ρE) − (4 − η) η − (4 − ξ) ξ) (H.11)

As ρE is greater than 1, ρE − 1 is always greater than zero and the first two products are
positive values. Therefore we need to make sure that the last product is positive, too. The
first summand is always greater than 12 (ρE > 1) and, as η and ξ is bounded between 0
and 2, the second and third summand are each smaller 4. This shows that the last product
is always larger than 12 − 4 − 4 = 4 and γT is always convergent.

H.7 Analytical calculation of γT for the S&B model

In the S&B model the control parameters ρE and ρF are both infinite, which leads to a rising
and a falling phase of length 0. This means that we have rectangular-like signal shapes.
Due to this property we get for the derivative of the signal u two δ functions at t = 0
and t = S, where the second is negative. Thus, the integral yielding κT (equation 4.33)
simplifies to −(u(0) − u(S)) = U , with U being the height of our general signal function
u. Note that we are not restricted to signal shapes given by equation H.1. We also use the
two δ functions to solve the τ±T -integrals. This leads to τ−T = u(−T ) and τ+

T = u(S + T ).
Taking this results, we calculate γT to

γTSB =

(

U

2u(S + T )
+

√

U2

4u2(S + T )
+

u(−T )

u(S + T )

)−1

(H.12)

or, even simpler, if we restrict our system to T > 0, we get γTSB = u(S + T )/U . As
mentioned before, this holds for all possible signal shapes on condition that the shape
consists of a rising phase, a plateau and a falling phase. Additionally, as u(t) ≤ U , γTSB

is always less or equal than 1, too.



136
APPENDIX H ANALYTICAL CALCULATION OF γ USING FIRST AND

SECOND ORDER TERMS



137

List of Symbols

Symbol Range Description/Comment

η, ξ, ν R real-valued, used in various contexts
n, k N number, used in various contexts
η̇(t) d

dt
η(t) R temporal derivative

ηηη R matrix
δ(t) delta-function
F , G functionals
∗ convolution
General symbols
i, j N

+ neuron
N N number of neurons
t, z R time (z used as integration variable)
T ti − tj R temporal difference between events
xi R unfiltered input
ui (xi ∗ h) R filtered input
v R output
wi R weight
∆wi, ∆i R weight change after event
w∞

i , ŵi R weight after event
ac, cc R auto- and cross-correlation
∆wac, ∆wcc

R auto- and cross-correlation contribution
µ, α R

+, ≪ 1 plasticity/learning rate
hi R filter/kernel function
a, b, σ b > a R

+ kernel parameters
ρ av/a R

+ ratio indicating variability of output trace
r R reward
γ R discount factor
Chapter 2
R R

+ relevance signal
TR R timing of the relevance signal
δr R δ error
r̃ R reward amplitude
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Symbol Range Description/Comment

Chapter 3
Λ W µw0 u̇(0) R

+ constant factor (W = number of events)
AAA, AAA R matrix describing weight change and its integral
ΩΩΩ R Magnus series
BBB R matrix describing weight development
k N

+ degree of approximation
η̂ R value after event
Chapter 4
R R Return
M 0, 1 modulatory/third factor
S R

+ state duration
T R

+ time between two consecutive states
O R onset of third factor
L R

+ duration of third factor
PR, PF R

+ duration of rising and falling phase
P PR = PF R

+ duration of both rising and falling phase
π R

+ bounded temporal path
κ −∆wac

R negative auto-correlation contribution
τ ∝ cc R proportional to cross-correlation
ac+, ac− R auto-correlation of rising and falling phase
κ+, κ− −(κ+ + κ−) R

+, R
− κ value of rising and falling phase

cc−, cc+ R cross-correlation with previous and next state
τ−, τ+

R
−, R

+ τ value related to previous and next state
γ± τ±/κ R particular γ value, also discount factor
Chapter 5
ai N action
di R dendrite
D N

+ number of dendrites
Indices
ηv variable output trace
ηR relevance signal
ηG global third factor
ηL local third factor
ηT different time scales
ηE rising phase
ηF falling phase
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