
Some Aspects on Coarse Homotopy Theory

Dissertation
zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten
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Abstract

The most important examples of coarse spaces arise from proper metrics
on spaces or from metrisable compactifications. In both cases, the bounded
subsets are precisely the relatively compact ones. On the other hand, one
of the characteristic properties a coarse map required to have is formulated
by the bounded subsets. Motivated from the above two facts and in order
to be able to develop the notion of locally properness which has been intro-
duced by Viêt-Trung Luu for discrete spaces, we introduce a new notion of
compatibility between the coarse structure and the topology when a coarse
space also carries a topology. The spirit of this is to let the local part of the
theory govern by the topology of spaces. Having established this we are able
to introduce some basic notions such as pull-back and push-forward coarse
structures, and products and coproducts of coarse spaces which also are car-
rying a topology with the required compatibility between the topology and
the coarse structure.

We use the notion of basepoint projection introduced by Paul Mitchener
and Thomas Schick to develop a notion of pointed coarse spaces which leads
us to a new notion of collapsing from a coarse point of view. This enables
us to introduce some essential notions such as coarse quotient spaces, coarse
spaces obtained by coarse collapsing and coarse spaces obtained by coarse
attaching via a coarse map.

We introduce a new notion which in a sense is the analogue for coarse
geometry of locally compactness for topology and investigate some of its
properties.

Then, we develop basic notions in the coarse homotopy theory including
some constructions such as coarse smash product, coarse suspensions and
coarse mapping cone needed to develop coarse homotopy theory and we
prove some of their properties. The coarse homotopy groups are introduced
next and then we develop an exact sequence of coarse homotopy groups.

We also give a more complete exposition on the coarse CW-complexes
broad enough to provide an appropriate foundation in order to carry over
more of the tools from algebraic topology into coarse geometry. Having es-
tablished that we prove a coarse version of the theorem of J.H.C. Whitehead
which allows certain aspects of coarse homotopy classification.

Next, we pursue a big step forward and calculate the coarse homotopy
groups of the standard coarse spheres. More precisely, we prove πcrsk (SnR+

) ∼=
πk(Sn) for all k ≤ n. This has some intense applications, namely, this
enables us to carry over some important theorems from algebraic topology
concerning the coarse homotopy groups of coarse CW-complexes when they
are R+-spaces. Then, as a one result of these theorems, we introduce the
coarse Eilenberg-Maclane spaces.
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Chapter 1

Foundations

Coarse geometry is the study of the “very large scale” properties of spaces.
To see what is meant by the “very large scale”, let restrict ourselves, for a
moment, to metric spaces. For topologists, the significance of the metric lies
in the collection of open sets it generates, but this passage from the metric
to its associated topology loses a good deal of information; in fact only the
‘very small scale structure’ of the metric is reflected in its topology. For
example the metric

d′(x, y) := min{d(x, y), 1}

defines the same topology as the metric d itself.
Coarse geometry arises when we consider the dual procedure in which

“very large scale” properties of spaces are to be investigated. In coarse
geometry, the role of open subsets is played by some subsets of X × X,
called entourages. For example, in the metric space (X, d), the entourages
are defined to be the subsets of the following sets

Dr := {(x, y)| d(x, y) ≤ r}

where r ≥ 0. Now, we can see what we mean by ‘very large scale’ property
of a metric space (X, d); consider two functions f, g : S → X, where S is an
arbitrary set. If there is a positive real number r ≥ 0 with

{(f(s), g(s))| s ∈ S} ⊆ Dr,

then the functions f and g are considered as the same object in the coarse
sense, that is, any two functions into a bounded metric space represent the
same object as far as coarse geometry is concerned or with the other words,
every space of a finite size is coarsely equivalent to a single point.

As one can define the notion of an abstract topological space by axioma-
tizing the properties of open sets in metric spaces, one can define an abstract
coarse space by axiomatizing the properties of entourages in metric spaces.

3
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In section 1.2, we will give an axiomatic description of the structure needed
to do coarse geometry.

In this chapter, we redevelop some basic notions in coarse geometry
needed to develop some aspects of coarse homotopy theory. In [Luu], Viêt-
Trung Luu has introduced the notion of locally properness for the discrete
spaces. We first develop this notion for the coarse spaces which also carry
a topology with some kind of compatibility between their coarse structure
and their topology. Therefore, we often refer to the difference between these
two setups. But, I should remark that our approach is more geometrical
rather than his approach which is categorical.

1.1 Properness axiom

First, we fix some notations. They mainly come from [Roe03] and [Luu].
Let X be a set. We will use the following notation for subsets of X ×X.

(i) If E ⊆ X×X, then E−1 denotes the set {(y, x) ∈ X×X| (x, y) ∈ E},
called the inverse of E;

(ii) If E1, E2 ⊆ X × X, then E1 ◦ E2 denotes the set {(x, z) ∈ X ×
X| (x, y) ∈ E1 and (y, z) ∈ E2 for some y ∈ X}, called the compo-
sition of E1 and E2.

If E ⊆ X ×X and K ⊆ X, we define

E ·K := {x ∈ X| ∃y ∈ K, (x, y) ∈ E},
K · E := {x ∈ X| ∃y ∈ K, (y, x) ∈ E}.

In case K is a singleton {x}, we use the notations Ex and Ex for E-balls
E · {x} and {x} · E, respectively.

The following two lemmas are obvious:

Lemma 1.1.1. Let X be a set. If E1, E2 ⊆ X ×X, and K ⊆ X, then

(E1 ∪ E2) ·K = E1 ·K ∪ E2 ·K and K · (E1 ∪ E2) = K · E1 ∪K · E2;
E1 ◦ 1E2·K = E1 ◦ E2 ◦ 1K and 1K·E1 ◦ E2 = 1K ◦ E1 ◦ E2;

(E1 ◦ E2) ·K = E1 · (E2 ·K) and K · (E1 ◦ E2) = (K · E1) · E2; and

E−1
1 ·K = K · E1 and K · E−1

1 = E1 ·K.

Lemma 1.1.2. Let X be a set. If E1, E2, E
′
1, E

′
2 ∈ ℘(X ×X) with E1 ⊆ E2

and E′1 ⊆ E′2, and K1,K2 ⊆ X with K1 ⊆ K2, then

E1 ∪ E′1 ⊆ E2 ∪ E′2, E1 ◦ E′1 ⊆ E2 ◦ E′2,
(E1)−1 ⊆ (E2)−1, 1K1 ⊆ 1K2 ,

E1 ·K1 ⊆ E2 ·K2, and K1 · E1 ⊆ K2 · E2.
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Definition 1.1.3. Let X and Y be topological spaces1.

• A subset E ⊆ X × X satisfies the Roe properness axiom if E · K
and K ·E are relatively compact2 whenever K is a relatively compact
subset of X;

• A map f : X → Y (not necessarily continuous) is called topologically
proper if f−1(K ′) is relatively compact whenever K ′ is a relatively
compact subset of Y .

The following follows directly from Lemmas 1.1.1 and 1.1.2.

Proposition 1.1.4. If E,E′ ∈ ℘(X×X) satisfy the Roe properness axiom,
then E ∪ E′, E ◦ E′, E−1, and all subsets of E satisfy the Roe properness
axiom. Also, all singleton {1x}, x ∈ X, satisfy the Roe properness axiom.

Note that Proposition 1.2.2 of [Luu] does not hold in this setup, but
fortunately, by adding more assumptions on maps which will be fulfilled
automatically in the cases we will work on in the future, we get exactly
what we need. The following is the corresponding statement:

Proposition 1.1.5. Let X,Y and Z be topological spaces. Consider the
composition of set maps X

f→ Y
g→ Z:

(i) If f and g are topologically proper, then g ◦ f is topologically proper.

(ii) If g◦f is topologically proper and g preserves relatively compact subsets,
then f is topologically proper.

(iii) If g ◦ f is topologically proper and if f preserves relatively compact
subsets and it is surjective, then g is topologically proper.

Proof. The proof is straightforward.

1.2 Coarse structure and
compatibility with topology

In this section, we first give an axiomatic description of the structure needed
to do coarse geometry. Compare [Roe96], [Mit01],[Roe03] and [Luu].

Definition 1.2.1. Let X be a set. A collection EX of subsets of X × X
is called a coarse structure on X, and the elements of EX will be called
entourages, if the following axioms are fulfilled:

1In general, we do not assume topological spaces to be Hausdorff unless otherwise
stated.

2We use the term relatively compact in the following sense: a subset K of a topological
space X is relatively compact if it is contained in some compact subspace of X.
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(i) EX is closed under the formation of subsets, inverses, compositions,
and finite unions; and

(ii) for all x ∈ X, the singleton {1x} is an entourage.

A coarse space is a set X equipped with a coarse structure EX on X. We
denote such a coarse space by (X, EX) or simply by X.

The coarse space X is called connected if every singleton {e}, e ∈ X×X,
is an entourage of EX . A pair of points x, x′ ∈ X are connected (with respect
to EX) if {(x, x′)} ∈ EX . There is also a notion of a subset of a coarse space
being of finite size, namely

Definition 1.2.2. Let (X, EX) be a coarse space. We call a subset B ⊆ X
bounded if B ⊆ Ex for some E ∈ EX and for some x ∈ X.

Proposition 1.2.3 (properties of bounded sets). Let (X, EX) be a
coarse space.

(i) Subsets of bounded sets are bounded.

(ii) If B ⊆ X is bounded, then B ×B ⊆ EX .

(iii) If B ⊆ X is bounded and E ∈ EX , then E ·B and B · E are bounded.

(iv) Let B1, B2 ⊆ X be bounded sets, The following are equivalent.

• B1 ∪B2 is bounded;

• B1 ×B2 ∈ EX ;

• There exists an entourage E ∈ EX such that E ∩ (B1 ×B2) 6= ∅.

(v) If (X, EX) is a connected coarse space, then any finite union of bounded
sets is bounded.

For a proof consult Proposition 1.7 of [Gra].

Definition 1.2.4. Let X be a set and E ′ a collection of subsets of X ×X.
Since any intersection of coarse structure on X is itself a coarse structure,
we can make the following definition. By 〈E ′〉, we denote the smallest coarse
structure containing E ′, i.e., the intersection of all coarse structures contain-
ing E ′. We call 〈E ′〉 the coarse structure generated by E ′.
In the same way, we define the connected coarse structure generated by E ′
and we denote it by 〈E ′〉cn.

To give a motivation for the next definition, we review two notions from
the classical coarse geometry, although, we do not stay faithful to them. The
first is the notion of a coarse map: assuming X and Y to be coarse spaces,
a set map f : X → Y was said to be coarse if
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(i) it is coarsely uniform in the sense that for every entourage E ∈ EX ,
the image

f×2(E) = {(f(x), f(y))| (x, y) ∈ E}

is an entourage, and

(ii) it is coarsely proper in the sense that the inverse image of a bounded
set is also bounded.

The second notion is the notion of compatibility of coarse structure and
topology when a coarse space also carries a topology: suppose we are given
a Hausdorff topological space X. A coarse structure EX on X was said to
be compatible with the topology (or as in [Roe03], the coarse structure on
X was said to be proper) if (1) there is a neighborhood of the diagonal
∆X which is an entourage and (2) every bounded subsets of X is relatively
compact. An immediate consequence of this compatibility was that the
bounded subsets in proper coarse spaces are exactly the relatively compact
ones (see [Roe03], [Mit01] and [Gra]). Motivated from this fact and the fact
that one of the property that indicates coarse maps has been formulated
by bounded subsets, we are going to let this side of the theory govern by
topology of the space. To do it, we first require the following compatibility
between the coarse structure and the topology:

Definition 1.2.5. Let (X, EX) be a coarse space. Then X is called a coarse
topological space, if it is equipped with a topology (not necessarily Hausdorff)
such that every E ∈ EX satisfies the Roe properness axiom. A coarse topo-
logical space X is called proper if its bounded subsets are precisely the rela-
tively compact ones. We say the coarse structure and the topology of a space
X are compatible if X is a proper coarse topological space. A (proper) coarse
topological space X is called unital if the diagonal 4X := {(x, x)| x ∈ X}
is an entourage.

Note that the definition of a “proper coarse topological space” is slightly
redundant: if the bounded subsets are precisely the relatively compact ones,
then every entourage automatically satisfies the Roe properness axiom. As
in [Luu], we use the notation E ∈ E|X|1 as a convenient abbreviation for
E ∈ ℘(X ×X) satisfying the Roe properness axiom.

Example 1.2.6. Let (X, d) be a proper metric space. Set Dr := {(x, y) ∈
X ×X | d(x, y) < r} and define

Ed := {E ⊆ X ×X | E ⊆ Dr for some r > 0}.

It is easy to verify that (X, Ed) is a connected unital proper coarse topological
space and it will be called the bounded coarse structure coming from the
metric d.
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Example 1.2.7. Let X be a Hausdorff space and X a compactification of
X, i.e., X is a dense and open subset of the compact set X. The collection

EX := {E ⊆ X ×X | E ⊆ X ×X ∪∆X}

of all subsets E ⊆ X×X, whose closure meets the boundary (X×X)\(X×
X) only in the diagonal, is a connected coarse structure on X, called the
continuously controlled coarse structure. It is easy to verify that if X is
metrisable, then the coarse structure EX is compatible with the topology.
Compare [Roe03], [Mit01] and [Gra].

Definition 1.2.8. Let X be a coarse topological space and let X ′ ⊆ X be
a subset. Then

EX′ := EX |X′ := EX ∩ ℘((X ′)×2)

is a coarse structure on X ′, called the subspace coarse structure. If X is a
proper coarse topological space and X ′ is a closed subset of X, then X ′ is
itself a proper coarse topological space with subspace coarse structure.

1.3 Coarse maps

In [Luu], Viêt-Trung Luu has introduced the notion of locally properness
for discrete spaces. In this section, we develop his approach for coarse topo-
logical spaces. The goal is to introduce a notion which is weaker than topo-
logically properness when spaces are nonunital. Therefore, from now on, we
assume that spaces always carry a topology.

Definition 1.3.1. LetX and Y be topological spaces. A set map f : X → Y
is locally proper for F ∈ E|X|1 if E = f×2(F ) ∈ E|Y |1 and f−1(K) · F and
F · f−1(K) are relatively compact for all relatively compact K ⊆ Y . If
(X, EX) is a coarse topological space, then f is locally proper if it is locally
proper for all F ∈ EX .

Definition 1.3.2. Let (Y, EY ) be a coarse topological space. A set map
f : X → Y preserves F ∈ E|X|1 (with respect to EY ) if E = f×2(F ) ∈ EY . If
(X, EX) is also a coarse topological space, then f preserves entourages if f
preserves every F ∈ EX .

Definition 1.3.3. Let Y be a coarse topological space. A set map f : X →
Y is coarse for F ∈ E|X|1 if f is locally proper for F and if f preserves F . If
(X, EX) is also a coarse topological space, then f is coarse map if f is coarse
for every F ∈ EX .

Lemma 1.3.4. Let X and Y be topological spaces and let Z be a unital
coarse topological space.
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• If a set map f : X → Y is topologically proper and respects the Roe
properness axiom, then f is locally proper for any F ∈ E|X|1 (so f is
locally proper for any coarse structure on X).

• If a set map g : Z → Y is locally proper, then g is topologically proper.

Proof. The proof is straightforward.

Note that for unital proper coarse topological spaces, our notion of a
“coarse map” is just the classical notion. Therefore, in this case, we continue
using the terminologies “coarsely uniform” and “coarsely proper”. But, the
question which arises here is whether our coarse maps contain the whole
characteristic properties that we expect a coarse map to have. As we will
see in the future, being careful enough, we will get what we need from a
coarse map even in the cases that coarse topological spaces are not unital
or both source and target spaces are not proper.

The only problem that causes some difficulties in this setup in compare
with the discrete case is that in some proofs we can not conclude that our
maps respect the Roe properness axiom. We will add this as an assumption
whenever it is required. But, note that adding this assumption is not a
demanding, because, in the future, we will consider only coarse maps which
preserve entourages by definition, that is, they respect the Roe properness
axiom which means the assumption will be automatically fulfilled. The
following is the corresponding proposition to Proposition 1.6.6 of [Luu]:

Proposition 1.3.5. Let X and Y be topological spaces and f : X → Y be
a set map. If f : X → Y is locally proper for F, F ′ ∈ E|X|1, then f is locally
proper for F ∪F ′, F ◦F ′, F−1, and all subsets of F . Also, f is locally proper
for all singletons {e} , e ∈ X ×X.

Proof. Note that the argument in the proof of Proposition 1.6.6 of [Luu] does
not hold here, but the proof is still straightforward applying Lemmas 1.1.1
and 1.1.2.

Without losing more time, we state the final statement that we need
later, namely

Corollary 1.3.6. Let X be a topological space and let Y be a coarse topo-
logical space and assume f : X → Y to be a set map. If f : X → Y is coarse
for F, F ′ ∈ E|X|1, then f is coarse for F ∪F ′, F ◦F ′, F−1, and all subsets of
F . Also, f is coarse for all singleton {1x} , x ∈ X; if X is connected, then
f is coarse for all singletons {e} , e ∈ X ×X.

And finally, although Proposition 1.6.12 and 1.6.13 of [Luu] does not
hold in our setup, but we can prove the following:
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Proposition 1.3.7. Let X and Y be topological spaces. If set maps f, g :
X → Y are locally proper for F ∈ E|X|1, then

(i) If f and g preserve relatively compact subsets, then E := (f ×g)(F ) ⊆
Y × Y satisfies the Roe properness axiom; and

(ii) for each relatively compact subset K ′ of Y×Y , the subset (f×g)−1(K ′)∩
F is a relatively compact subset of X ×X.

Proof. We omit proofs of the symmetric cases. The part (i) follows from
the following relations

(f × g)(F ) ·K ⊆ f(F · g−1(K)),

K · (f × g)(F ) ⊆ g(f−1(K) · F ),

where K ⊆ Y is a relatively compact subset.
For (ii), one can easily see that

(f × g)−1(K ′) ∩ F ⊆ [F · g−1(π2(K ′))]× [f−1(π1(K ′)) · F ].

Proposition 1.3.8. Let X,Y and Z be topological spaces. Consider the
composition of set maps X

f→ Y
g→ Z, supposing that F ∈ E|X|1 and G :=

f×2(F ):

(i) If f is locally proper for F and g is locally proper for G, then g ◦ f is
locally proper for F .

(ii) If g ◦ f is locally proper for F , g preserves relatively compact subsets
and G ∈ E|Y |1, then f is locally proper for F .

(iii) If g ◦ f is locally proper for F , f preserves relatively compact subsets
and G ∈ E|Y |1, then g is locally proper for G.

Proof. We omit proofs of the symmetric cases. Note that the proof of Propo-
sition 1.6.13 of [Luu] does not hold here. The statements (i)-(iii) easily
follow from the above enhanced conditions and the following relations:

(g ◦ f)−1(K ′) · F ⊆ [F · f−1(g−1(K ′) ·G)] · F,
f−1(K) · F ⊆ (g ◦ f)−1(g(K)) · F, and

g−1(K ′) ·G ⊆ f((g ◦ f)−1(K ′) · F ),

where K ⊆ Y and K ′ ⊆ Z are relatively compact subsets.

Definition 1.3.9. Let (X, EX) and (Y, EY ) be coarse topological spaces and
let f, g : X → Y be coarse maps.
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• The maps f and g are called close, denoted by f ∼cl g, if (f × g)(F ) ∈
EY for all F ∈ EX .

• The map f is called a coarse equivalence if there is a coarse map
h : Y → X such that the composites h ◦ f and f ◦ h are close to the
identities 1X and 1Y , respectively.

• We say that X and Y are coarsely equivalent, denoted by ∼=crs, if there
exists a coarse equivalence from X to Y .

Note that for unital coarse topological spaces, our notion of closeness
is just the classical one, i.e., for X unital, f and g are close if and only if
(f × g)(4X) ∈ EY . Compare [Roe96], [Roe03] and [Luu].

Example 1.3.10. The coarse spaces R and Z (both equipped with their
usual bounded coarse structure) are coarsely equivalent.

Proof. Let f : R→ Z be the greatest integer function which assigns to any
given number x the biggest integer not exceeding x. Obviously, the map f
is coarse and it is easy to see that the inclusion i : Z → R provides a coarse
inverse for f .

The following is obvious:

Proposition 1.3.11. Closeness of coarse maps X → Y is an equivalence
relation.

1.4 Pull-back coarse topological structure

Let (Y, EY ) be a coarse topological space and let f : X → Y be a set map.
The goal is to equip X with a topology and a coarse structure which make
f into a coarse map. Consider

As topology : the topology on X which has the elements of the following
set as its open subsets: {

f−1(U)| U is open in X
}

;

As coarse structure: the following collection of subsets of X ×X which
is actually a coarse structure on X by Corollary 1.3.6:{

F ∈ E|X|1 | f is coarse for F
}
.

The set X equipped with the above topology and coarse structure is obvi-
ously a coarse topological space, therefore, we define
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Definition 1.4.1. Let (Y, EY ) be a coarse topological space and let f : X →
Y be a set map. The coarse topological structure defined as above on X is
called the pull-back coarse topological structure of EY on X along the map f
and will be deoted by f∗EY .

Moreover, we can prove

Proposition 1.4.2. Let (Y, EY ) be a proper coarse topological space and let
f : X → Y be a set map. Then the pull-back coarse topological structure of
EY on X along f is also proper.

Proof. First, we show that the bounded subsets of (X, f∗EY ) are relatively
compact. Suppose that B ⊆ X is bounded. It means that B × B is an
entourage of f∗EY , i.e., the map f is coarse for B × B. Since f preserves
entourages, so f(B) is bounded which means f(B) is relatively compact
because Y is a proper coarse topological space. On the other hand, f is
locally proper for B×B which means f−1(K) ·(B×B) is relatively compact
for every relatively compact subset K ⊆ Y . Hence f−1(f(B)) · (B × B) is
relatively compact. But B ⊆ f−1(f(B))·(B×B), so B is relatively compact.
Now we show that the relatively compact subsets ofX are bounded. Suppose
that B is a relatively compact subset of X. Since for every subset K ⊆ X
(therefore also for relatively compact ones), we have (B × B) ·K ⊆ B and
K · (B × B) ⊆ B, therefore B × B ∈ E|X|1 . On the other hand, since f
is continuous, f(B) is a relatively compact subset of Y , but Y is a proper
coarse topological space which means f(B) is bounded, i.e., f(B)× f(B) =
f×2(B × B) is an entourage. So, we have shown that f preserves B × B
which also means f×2(B × B) ∈ E|Y |1 . Similarly, for every subset K ′ ⊆ Y
(so also for relatively compact subsets) we have f−1(K ′) · (B ×B) ⊆ B and
(B×B) ·f−1(K ′) ⊆ B which means f−1(K ′) ·(B×B) and (B×B) ·f−1(K ′)
are relatively compact. So we have shown that B×B ∈ E|X|1 and f is coarse
for B ×B which means B is bounded.

If Y is connected, then f∗EY is connected. If Y is unital and f is topo-
logically proper, then f∗EY is unital. The following is obvious.

Proposition 1.4.3. Let (Y, EY ) be a coarse topological space and let f :
X → Y be a set map. If EX is a coarse structure on X which makes X into
a coarse topological space with respect to the topology on X defined above
and which also makes f into a coarse map, then EX ⊆ f∗EY .

1.5 Push-forward coarse topological structure

Let (X, EX) be a coarse topological space and let f : X → Y be a surjective
set map. This time the goal is to equip Y with a topology and a coarse
structure which make f into a coarse map. Consider
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As topology : the quotient topology on Y induced by f ;

Now, if f is topologically proper and respects the Roe properness axiom,
then we go further and define a coarse structure on X as follows:

As coarse structure: the coarse structure generated by the set{
f×2(F )| F ∈ EX

}
.

The set Y equipped with the above topology and coarse structure is obvi-
ously a coarse topological space, therefore, we define

Definition 1.5.1. Let (X, EX) be a coarse topological space and let f :
X → Y be a surjective map which is topologically proper and respects the
Roe properness axiom after topologizing Y with the quotient topology. The
coarse topological structure defined as above on Y is called the push-forward
coarse topological structure of EX on Y along f and will be denoted by f∗EX .

Also in this case, we can prove

Proposition 1.5.2. Let (X, EX) be a proper coarse topological space and
let f : X → Y be a surjective set map which satisfies the above conditions.
Then the push-forward coarse topological structure of EX on Y along f is
also proper.

Proof. First, we show that the bounded subsets of (Y, f∗EX) are relatively
compact. Suppose B ⊆ Y to be bounded. It means that B × B is an en-
tourage of f∗EX . Therefore, from the construction of the coarse structure
generated by

{
f×2(F )| F ∈ EX

}
and the fact that f×2(F ) ∈ E|Y |1 for ev-

ery F ∈ EX , follows that B × B ∈ E|Y |1 . Now, fix an element b0 of B.
From B × B ∈ E|Y |1 follows that {b0} · (B × B) is relatively compact. But
B ⊆ {b0} · (B ×B) which means that B is relatively compact.
Now, we show that the relatively compact subsets of Y are bounded. Sup-
pose that B is a relatively compact subset of Y . Since f is topologically
proper, f−1(B) is a relatively compact subset of X, but X is a proper coarse
topological space which means f−1(B) is bounded, i.e., f−1(B)× f−1(B) is
an entourage. Now since f is surjective, one can easily show that B ×B ⊆
f×2(f−1(B) × f−1(B)) which means B × B is an entourage, i.e., B is
bounded.

Under the above assumptions, if X is connected, then f∗EX is also con-
nected, and if X is unital, then f∗EX is also unital. The following is obvious.

Proposition 1.5.3. If (X, EX) is a coarse topological space and f : X → Y
is a set map with the above properties, then f∗EX is the minimum coarse
structure on Y which makes f into a coarse map.
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1.6 Products and coproducts

As we mentioned before, we are taking a geometrical point of view, therefore
we are not going to investigate too much the categorical aspect of the the-
ory. Indeed, we only concentrate on constructions needed later to develop a
notion of coarse homotopy. Nevertheless, we can define

Definition 1.6.1. The precoarse topological category has as objects all coarse
topological spaces and as arrows coarse maps. The connected precoarse topo-
logical category is full subcategory of it consisting of the connected coarse
topological spaces. Similarly, one can define the unital precoarse topological
category.

Note that the above category is not actually the proper one, because
the locally properness of a morphism as has been formulated for topological
coarse spaces cannot provide the characteristic properties that we expect
from our morphism in coarse sense (it has been formulated by using the
relatively compact subsets, while in coarse topological spaces they are not
in general the bounded ones). But, we can also form the subcategory of
all proper coarse topological spaces and coarse maps, denoted by PCrsT
and its full subcategory consisting of connected proper coarse topological
spaces, denoted by CPCrsT. Then, we can show that the former has finite
products while the latter has coproducts.

Let (X, EX) and (Y, EY ) be proper coarse topological spaces and let πX :
X × Y → X and πY : X × Y → Y be the projections. Taking the product
topology and the coarse structure

EX×Y := (πX)∗EY ∩ (πY )∗EX

on X×Y , we can easily see that (X×Y, EX×Y ) is a proper coarse topological
space. Moreover,

Proposition 1.6.2. Under the above assumptions, X X × Y
πXoo πY // Y

is in the categorical sense the product of X and Y in PCrsT.

Proof. It is obvious that under the above construction πX and πY are coarse
maps. Therefore, the only thing that remains to show is the universality.

For it, suppose X Z
foo g // Y is another cone in PCrsT. Define the

map t : Z → X × Y by the equation

t(z) := (f(z), g(z)).

We must show that t is a coarse map (the uniqueness is clear). Suppose that
G ∈ EZ and F := t×2(G). First, we show F ∈ E|X×Y |1 . For it, assume that
K is a relatively compact subset of X × Y . But

K · F ⊆ (πX(K) · f×2(G))× (πY (K) · g×2(G))
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which means that K · F is relatively compact. We omit the proof of the
symmetric case. So from Proposition 1.3.8 (ii) directly follows that t is
locally proper for G ∈ EZ . It only remains to show F ∈ EX×Y . For it, we
must show that πX and πY are coarse for F . It is clear that they preserve
F . To show that πX and πY are locally proper for F , we first show that t
preserves bounded subsets: suppose C ⊆ Z is bounded, hence f(C) and g(C)
are bounded, but t(C) ⊆ f(C)× g(C), i.e., t(C) is bounded. Now for every
relatively compact subset K ′ ⊆ X, the subset B := f−1(K ′) ·G is relatively
compact in Z. But Z is a proper coarse topological space which means
B is bounded. So from above follows that t(B) is bounded, i.e., relatively
compact. On the other hand, one can easily see that (πX)−1(K ′) ·F ⊆ t(B)
which means (πX)−1(K ′) · F is relatively compact so we have shown that
πX is locally proper for F . Similarly, one can show that πY is also locally
proper for F and then we are done.

Remark 1.6.3. Note that being unital in product coarse structure is a fatal
problem, because, for instance, π−1

X (K)·4X×Y fails to be relatively compact
for each relatively compact subset K ⊆ X. Similarly, we can see that each
F ∈ E|X×Y |1 for which one of the sets F · (X × Y ) or (X × Y ) · F spreads
along one of the axes fails to be an entourage in coarse product structure.

Now, let
{

(Xj , EXj ) : j ∈ J
}

be a family of connected proper coarse topo-
logical spaces and let ij : Xj → qXj , j ∈ J , be the inclusion maps. Taking
the weak topology on qXj , the inclusion maps are obviously topologically
proper and respect the Roe properness axiom, hence we can consider the
coarse structure Eq :=

〈
(ij)∗EXj

〉
cn

on qXj . Now, we claim

Proposition 1.6.4. Under the above assumptions, ((qXj , Eq), ij) is in the
categorical sense the coproduct of Xj’s in CPCrsT.

Proof. It is obvious that under the above construction the inclusions ij ’s
are coarse maps. We must first show that the weak topology and the coarse
structure Eq on qXj are compatible, but before it let us introduce some
notation: by Dδ, we mean a finite union of subsets of the form {(xj , xk)}
where xj ∈ Xj and xk ∈ Xk. Similarly, for a connected proper topological
space Z, by Dδ

Z we mean a finite union of subsets of the form {(z, z′)} where
z, z′ ∈ Z. Now, assume that B ⊆ qXj is bounded, i.e., B×B ∈ Eq. So there
are entourages Ejk,l ∈ EXjk,l and Dδ

l ∈ Eq, where jk,l ∈ J for k = 1, · · · , n
and l = 1, · · · ,m such that

B ×B ⊆ m◦
l=1

(i×2
j1,l

(Ej1,l) ∪ i
×2
j2,l

(Ej2,l) ∪ · · · ∪ i
×2
jn,l

(Ejn,l)) ∪D
δ
l .

Therefore there are indices b1, b2, · · · , bs ∈ J such that

B ⊆ (
s⋃
q=1

BXbq ) ∪ (
r⋃

w=1

{xw}),
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where BXbq ⊆ Xbq are relatively compact and xw ∈ Xw. That is, B is
relatively compact in qXj . Conversely, assume that B ⊆ qXj is relatively
compact. So there are indecies j1, j2, · · · , js ∈ J such that

B ⊆ Xj1 ∪Xj2 ∪ · · · ∪Xjs

by the definition of the weak topology. On the other hand, B ∩ Xjt is
relatively compact for every t = 1, · · · , s. Hence B ∩ Xjt is a bounded
subset of Xjt for every t = 1, · · · , s. Therefore ijt(B ∩ Xjt) are bounded
subsets of qXj and because the coarse structure Eq is connected, therefore
B =

⋃s
t=1 ijt(B ∩ Xjt) is a bounded subset of qXj . So we have shown

that (qXj , Eq) is a proper coarse topological space. Now, to show that it
is coproduct of Xj in CPCrsT, it remains to show the universality. For

it, suppose that (Z,Xj
tj→ Z) is another cone in CPCrsT. Define the map

t : qXj → Z by the equation

t(x) := tj(x), if x ∈ Xj .

We must show that t is a coarse map (the uniqueness is clear). Assume
F ∈ Eq, therefore

F ⊆ m◦
l=1

(i×2
j1,l

(Ej1,l) ∪ i
×2
j2,l

(Ej2,l) ∪ · · · ∪ i
×2
jn,l

(Ejn,l)) ∪D
δ
l ,

where Ejk,l ∈ EXjk,l for k = 1, · · · , n and l = 1, · · · ,m. So we have

t×2(F ) ⊆ m◦
l=1

(t×2(i×2
j1,l

(Ej1,l))∪t
×2(i×2

j2,l
(Ej2,l))∪· · ·∪t

×2(i×2
jn,l

(Ejn,l)))∪t
×2(Dδ

l ).

Therefore

t×2(F ) ⊆ m◦
l=1

(t×2
j1,l

(Ej1,l) ∪ (t×2
j2,l

(Ej2,l)) ∪ · · · ∪ (t×2
jn,l

(Ejn,l))) ∪ (Dl)δZ ,

which means that t preserves entourages. Now we shall show that t is locally
proper for every F ∈ Eq. For it, suppose that K is a relatively compact
subset of Z. Without lose of generality, we can assume that

F ⊆ (i×2
j1

(Ej1) ∪ i×2
j2

(Ej2) ∪ · · · ∪ i×2
jn

(Ejn)) ∪Dδ,

where Ejk ∈ EXjk for k = 1 · · · , n. If Dδ = (xl1 , xl′1) ∪ (xl2 , xl′2) ∪ · · · ∪
(xlm , xl′m), then from the fact that t−1(K) ∩ ij(Xj) = ij(t−1

j (K)), one can
easily show that

t−1(K) · F ⊆ (ij1(t−1
j1

(K) · Ej1) ∪ ij2(t−1
j2

(K) · Ej2) ∪ · · · ∪ ijn(t−1
jn

(K) · Ejn))

∪ (
m⋃
q=1

ilq(t
−1
lq

(K) · (xlq , xl′q)),

which means t−1(K)·F is relatively compact, i.e., the map t is locally proper
for F . So we are done.



Chapter 2

Coarse topological R-spaces

In this chapter, we first give a more complete exposition on the coarse CW-
complexes in order to prepare an appropriate foundation for our later work
specially for the chapter 5 in which we will prove the coarse Whitehead
theorem. Then, we introduce the coarse topologicalR-spaces and prove some
of their basic properties. Next, we use the notion of basepoint projection
introduced in [MS], to define a new notion of collapsing from a coarse point
of view. And at the end of this chapter, we introduce a new notion which
in a sense is the analogue for coarse geometry of locally compact spaces for
topology.

2.1 Coarse CW-complexes

In order to define coarse CW-complexes, we need to describe their building
blocks. The main idea is the one introduced in [Mit01], which provided a
generalization of the metric space R+ = [0,∞) in the coarse category, but
our definition is slightly different, namely, we add one more condition which
is again a generalization of a property of the metric space R+ will be needed
later.

Definition 2.1.1. Let ER be a unital connected coarse structure on R+

which is compatible with the standard topology on R+ (recall that our un-
derstanding of the compatibility between the topology and the coarse struc-
ture of a space is different from what have been introduced in [Roe03] and
[Mit01]). We call R = (R+, ER) a generalised ray if the coarse structure ER
satisfies the following conditions:

• If M and N are entourages, the same is true for

M +N := {(u+ x, v + y) | (u, v) ∈M, (x, y) ∈ N}.

• If M is an entourage, so is

M� := {(u, v) | (x, y) ∈M and (x ≤ u ≤ v ≤ y or y ≤ v ≤ u ≤ x)}.

17
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• If M is an entourage and q ≥ 1 a real number, then

M×
q

:= {(xa, ya)|(x, y) ∈M and a ∈ [0, q]}

is also an entourage.

Proposition 2.1.2. By ER+, we denote the usual bounded coarse structure
on R+. The coarse space (R+, ER+) is a generalised ray and ER+ ⊆ ER
whenever (R, ER) is a generalised ray.

Proof. The coarse space (R+, ER+) is obviously a generalised ray. For the
second statement, because our generalised rays have more entourages in
compare with the classical ones, therefore the standard argument presented
in Proposition 2.5 of [Mit03] still holds in our setup.

Proposition 2.1.3. By E·, we denote the continuously controlled coarse
structure on R+ induced by the one-point compactification. The coarse space
(R+, E·) is a generalised ray and ER ⊆ E· whenever (R+, ER) is a generalised
ray.

Proof. The fact that the coarse space (R+, E·) is a generalised ray easily
follows from Theorem 2.27 of [Roe03]. On the other hand, the inclusion
ER ⊆ E· is true for every coarse structure which is compatible with the
topology of R+.

Recall that if X is a compact subset of the unit sphere in a normed space
then we define the open cone on X, denoted by OX, to be the metric space

OX := {λx| λ ∈ [0,∞), x ∈ X}.

We know that the coarse geometry of the cone OX is closely related to the
topology of the space X, namely,

Proposition 2.1.4. Let X and Y be compact metrisable spaces which are bi-
Lipschitz homeomorphic1 with respect to the metrics coming from embedding
X and Y in the unit sphere of a real Hilbert space H. Then OX and OY
are coarsely equivalent.

For a proof consult Proposition 2.2 of [Roe96].

With the motivation coming from the above proposition and the facts
that the cone of the sphere Sn−1 is the Euclidean space Rn and the cone of
the Euclidean n-cell, Dn − Sn−1, is the half-space Rn × R+, we define

1A map f : X → Y between metric spaces is said to be Lipschitz if there is a constant C
such that d(f(x1), f(x2)) ≤ Cd(x1, x2) for all x1, x2 ∈ X; a bi-Lipschitz homeomorphism
is a Lipschitz map with a Lipschitz inverse.



Some Aspects on Coarse Homotopy Theory 19

Definition 2.1.5. Let R be a generalised ray and let n ≥ 0. The coarse
R-sphere of dimension n is the coarse product SnR = (RqR)n+1. The coarse
R-cell of dimension n is the coarse product Dn

R = Sn−1
R × R. The coarse

R-sphere
{(x, 0)| x ∈ SnR}

is called the boundary of the coarse cell Dn+1
R . A coarse n-cell, n ≥ 0,

denoted by ecrsR , is a connected proper coarse topological space which is
coarsely equivalent to the coarse R-cell of dimension n, Dn

R, if n ≥ 1, and
which is coarsely equivalent to the generalised ray R, if n = 0. For later
use, it is more convenient to define a coarse n-cell, for n ≥ 1, as a coarsely
equivalent copy of Dn

R \ S
n−1
R , although there is no difference between them

from the coarse point of view. In the future, we will drop the “R” suffix
in ecrsR whenever it is clear from the context what is intended. We define
the coarse interval, denoted by IcrsR , as the coarse product R × R. We
should remark here that we always consider the connected coarse coproduct
structure on R qR.

As a special case, we define the standard coarse sphere of dimension
n, denoted by SnR+

, to be the unital proper coarse topological space Rn+1

equipped with the bounded coarse structure coming from the metric. Simi-
larly, we define the standard coarse cell of dimension n and we will denote
it by Dn

R+
.

Let 0 ≤ s ≤ 1 be a real number. Consider the map is : R→ IcrsR defined
by the equation is(t) := te

π
2
is, we have

Lemma 2.1.6. Let R be a generalised ray. The coarse space Im(is) equipped
with the subspace coarse structure is coarsely equivalent to R.

Proof. Consider the map is : R → Im(is) defined in above. We will show
that it is actually a coarse equivalence. For it, suppose that E ∈ ER.
By the third axiom in the definition of a generalised ray, the subset E×

1

is an entourages in ER. On the other hand, one can easily show that
E′ := (π×2

1 )−1(E×
1
)∩ (π×2

2 )−1(E×
1
) is an entourage in EIcrsR

. Now we claim
i×2
s (E) ⊆ (Im(is))×2 ∩E′ which means that is preserves entourages. To see

this, let (t, t′) ∈ E. Therefore, by the third axiom in the definition of a
generalised ray, we have

(t cos(
π

2
s), t′ cos(

π

2
s)), (t sin(

π

2
s), t′ sin(

π

2
s)) ∈ E×1

,

that is, (te
π
2
is, t′e

π
2
is) ∈ E′. On the other hand, Im(is) is a closed subset

of IcrsR which means it is also a proper coarse topological space. Hence,
since the map is : R → Im(is) is also topologically proper, therefore it is a
coarse map. Now, consider the map j : Im(is)→ R defined by the equation
j(te

π
2
is) := t. To show that it is a coarse map it is enough to show that
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it preserves entourages. Suppose E ∈ EIcrsR
|Im(is). Therefore there exists

an entourage F ∈ EIcrsR
such that E = (Im(is))×2 ∩ F . Clearly, π×2

1 (F ),
π×2

2 (F ) ∈ ER. Hence, (π×2
1 (F ))×

1
, (π×2

2 (F ))×
1 ∈ ER, by the third axiom

in the definition of a generalised ray. Now, the first axiom implies that
(π×2

1 (F ))×
1

+ (π×2
2 (F ))×

1 ∈ ER. On the other hand,

j×2(E) ⊆ (π×2
1 (F ))×

1
+ (π×2

2 (F ))×
1
,

which means j preserves entourages. Obviously, i◦j = 1Im(is) and j◦i = 1R,
i.e., i is a coarse equivalence.

As we can see above, we can think of a coarse sphere as a “sphere at
infinity” which agrees with the philosophy of the coarse geometry. We can
also think of a generalised ray as a “point at infinity” and this leads us to the
following notion of basepoint in the coarse category. The definitions come
from [MS], but ours are slightly different.

Definition 2.1.7. Let R be a generalised ray.

• A coarse topological space X is called a coarse topological R-space if
it is equipped with a map pX : X → R which is topologically proper
and preserves the entourages. We will call the map pX : X → R the
basepoint projection (we can define a proper coarse topological R-space
similarly).

• Assume that X has been equipped with a basepoint projection pX :
X → R. A coarse map iX : R → X is called a basepoint inclusion if
the composite pX ◦ iX is close to the identity 1R.

• Let X and Y be coarse topological R-spaces with basepoint projections
pX : X → R, pY : Y → R and basepoint inclusions iX : R → X,
iY : R→ Y . Let f : X → Y be a coarse map. The map f is said to be
basepoint-preserving if the composite f ◦ iX and iY are close. The map
f is said to be compatible with the basepoint projections (resp. strongly
compatible with the basepoint projections) if the composite pY ◦ f and
pX are close (resp. pX(x) = pY (f(x)) for every x ∈ X).

Remark 2.1.8. Note that saying pX : X → R is topologically proper and
preserves entourages is stronger than saying pX : X → R is a coarse map,
because we did not assume that X is unital.

Now, we introduce an important class of proper coarse topological R-
spaces which are built in stages: attach a (possibly infinite) family of coarse
1-cells to a disjoint union of generalised rays; attach a family of coarse 2-cells
to the result; then attach coarse 3-cells, coarse 4-cells, and so on. Since we
allow attaching infinitely many coarse cells, let us begin by discussing an
appropriate coarse structure.
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Definition 2.1.9. Let X be a topological space covered by its subsets Aj ,
where j lies in some (possibly infinite) index set J , that is, X =

⋃
j∈J Aj .

Moreover, assume that

(i) each (Aj , Ej) is a connected coarse topological space such that the
following relations hold between the topology of Aj and the topology
of X;

(a) every relatively compact subset K of Aj is relatively compact in
X; and

(b) for every relatively compact subset L of X, the subset L ∩ Aj is
relatively compact in Aj for every j ∈ J .

(ii) for each j, k ∈ J , the coarse structure of Aj and of Ak agree on Aj∩Ak,
that is, for every entourage E ∈ EAj there exists an entourage F ∈ EAk
such that E ∩ (Ak ×Ak) = F ∩ (Aj ×Aj) and vice versa.

Let {ij : Aj → X| j ∈ J} be the inclusion maps. Then the weak coarse
structure on X determined by {Aj | j ∈ J} is defined to be the following
coarse structure

Ew :=
〈
(ij)∗EAj

〉
cn
.

One can show that each Aj , as a coarse subspace of X, retains its original
coarse structure. We may remind the fact that we were allowed to make the
above definition, because the inclusion maps are topologically proper and
respect the Roe properness axiom. Note that in the future, when we say X
has the weak coarse structure determined by {Aj | j ∈ J}, we mean that all
above assumptions hold. For instance, in the case that the topology of each
coarse topological space Aj coincides with the subspace topology induced
by the topology of X and each Aj is closed in X, then the conditions (a)
and (b) are automatically fulfilled. Moreover, note that under the above
assumptions, the coarse space (X, Ew) is a coarse topological space. From
now on, we stop mentioning the inclusion maps ij ’s and we will consider Aj
as ij(Aj) and so on.

Lemma 2.1.10. Let a topological space X have the weak coarse structure
determined by a family of coarse topological subsets {Aj | j ∈ J}. For any
connected coarse topological space Y , a function f : X → Y is coarse if and
only if f |Aj is coarse for every j ∈ J .

Proof. We omit proofs of the symmetric cases. Assume that f is a coarse
map. Let F ∈ EAj , hence F ∈ Ew by the definition of the weak coarse
structure. Therefore f×2(F ) ∈ EY which means (f |Aj )×2 ∈ EY , since F ⊆
Aj×Aj . Now assume that K is a relatively compact subset of Y , so f−1(K)·
F is a relatively compact subset of X. But, (f |Aj )−1(K) · F ⊆ f−1(K) · F
which implies that (f |Aj )−1(K) · F is relatively compact in Aj by (b), i.e.,
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f |Aj is locally proper for F . So we have shown that f |Aj is a coarse map
for every j ∈ J . Conversely, suppose that f |Aj is coarse for every j ∈ J .
Assume E ∈ Ew, therefore by the definition of the weak coarse structure,
without lose of generality, we can write:

E ⊆
m⋃
l=1

(Ej1,l ◦ Ej2,l ◦ · · · ◦ Ejn,l) ∪D
δ
l ,

where Ejk,l ∈ EAjk,l for k = 1, · · · , n and l = 1, · · · ,m and the subsets Dδ
l

are the ones introduced in the proof of Proposition 1.6.4. Therefore,

f×2(E) ⊆
m⋃
l=1

(f×2(Ej1,l) ◦ f
×2(Ej2,l) ◦ · · · ◦ f

×2(Ejn,l)) ∪ (Dl)δY .

But, f×2(Ejk,l) = (f |Ajk,l )
×2(Ejk,l), for all k = 1, · · · , n and all l = 1, · · · ,m

which implies that f preserves entourages. Now assume thatK is a relatively
compact subset of Y , so

f−1(K) · E ⊆
m⋃
l=1

(((f−1(K) · Ej1,l) · Ej2,l) · · · · · Ejn,l) ∪ (f−1(K) · F ′l ),

where F ′l are some finite subsets of X. But, f−1(K) ·Ej1,l = (f |Aj1,l )
−1(K) ·

Ej1,l , which implies that f−1(K) · Ej1,l is relatively compact in Aj1,l and
therefore in X by (a). Now, from (b) and the fact that entourages satisfy the
Roe properness axiom follow that [(f−1(K) ·Ej1,l)∩Aj2,l ] ·Ej2,l is relatively
compact in Aj2,l and therefore in X. But,

[(f−1(K) · Ej1,l) ∩Aj2,l ] · Ej2,l = (f−1(K) · Ej1,l) · Ej2,l .

That is, by repeating this for finitely many times, one can conclude that
f−1(K) · E is relatively compact in X, as desired.

Definition 2.1.11. Assume that a coarse topological space X is a disjoint
union of coarse cells: X =

⋃
{ecrsR | ecrsR ∈ E}. For each k ≥ 0, the k-skeleton

X(k) of X is defined by

X(k) =
⋃
{ecrsR ∈ E| dim(ecrsR ) ≤ k} .

Of course, X(0) ⊆ X(1) ⊆ · · · and X =
⋃
k≥0X

(k).

Definition 2.1.12. A coarse CW-complex is an ordered triple (X,E,Φ),
where X is a connected coarse topological R-space, E is a family of coarse
cells, and Φ =

{
ΦecrsR

| ecrsR ∈ E
}

is a family of coarse maps, called coarse
characteristic maps, such that

(1) X =
⋃
{ecrsR | ecrsR ∈ E} (disjoint union);
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(2) for each coarse k-cell ecrsR ∈ E, the map ΦecrsR
: (Dk

R, S
k−1
R ) → (ecrs ∪

X(k−1), X(k−1)) is a relative coarse equivalence, i.e., ΦecrsR
is compatible

with the basepoint projections and ΦecrsR

∣∣∣(DkR\Sk−1
R ) : Dk

R \S
k−1
R → ecrs

is a coarse equivalence;

(3) if we define ēcrsR to be ΦecrsR
(Dk

R), then X has the weak coarse structure
determined by {ēcrsR | ecrsR ∈ E};

(4) if ecrsR ∈ E, then ēcrsR is contained in a finite union of coarse cells in E.

In the future, we say “a coarse CW-complex X is an R+-space” to in-
dicate that it is a connected coarse topological R+-space and the domain
of all coarse characteristic maps of X are the pairs consisting of the stan-
dard coarse cells and the standard coarse spheres. We finish this section by
defining a coarse subcomplex of a coarse CW-complex.

Definition 2.1.13. Let (X,E,Φ) be a coarse CW-complex. If E′ ⊆ E,
define ∣∣E′∣∣ = ∪

{
ecrsR | ecrsR ∈ E′

}
⊆ X,

and define Φ′ =
{

ΦecrsR
: ecrsR ∈ E′

}
. Call (|E′| , E′,Φ′) a coarse subcomplex

if Im(ΦecrsR
) ⊆ |E′| for every ecrsR ∈ E′.

2.2 Coarse equivalence relations

In topology, when we have an equivalence relation on a topological space
X, then we can define the quotient space X/ ∼ consisting of the equiva-
lence classes equipped with the quotient topology. But, in coarse topology
collapsing all points of an equivalence class to a point may cause that the
natural map fails to be topologically proper which then means that we can-
not pushforward the coarse structure of EX on X/ ∼ along the natural map.
In this section, we define a notion of coarse collapsing which leads us to a
notion of coarse quotient spaces. As the first step, we introduce the notion
of a pointed coarse topological R-spaces:

Definition 2.2.1. Let X be a coarse topological R-space equipped with a
basepoint projection pX : X → R and a basepoint inclusion iX : R → X.
We say the basepoint inclusion iX : R → X represents a basepoint of X if
the following holds:

∀r ∈ R ∃ x ∈ Im(iX) such that pX(x) = r.

In the case that such a basepoint inclusion exists, we denote Im(iX) by ∗crs
and we call X pointed with the basepoint ∗crs, or we shortly write (X, ∗crs)
to mean that the coarse topological R-space X is pointed with the basepoint
∗crs.
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In the upcoming lines, we will explain the reason why we assumed such
a splitting property.

Example 2.2.2. Let R be a generalised ray. In the future, for each n ≥ 0,
we always consider the second copy of the ray R in the first component of
SnR as its basepoint.

Our next goal is to define a new notion of collapsing from a coarse point
of view. In topology, when we collapse a subset A of a topological space
X, we get a point in the space X. Therefore, in coarse topology, we expect
to get a coarse point which is a point at infinity or more precisely a copy
of the generalised ray R for a coarse topological R-space X, when we are
collapsing. In the following, we will make this idea more precise.

Definition 2.2.3. Let X be a coarse topological R-space. An equivalence
relation ∼ on X is called coarse if each equivalence class [x], x ∈ X,

• is bounded; or

• is a pointed coarse topological R-space with subspace coarse structure
and pX |[x] as its basepoint projection.

Now, we define a new equivalence relation ∼crs on X, called the coarse
equivalence relation generated by ∼, as follows: x ∼crs y if and only if

(i) x ∼ y, and

(ii) pX(x) = pX(y).

We denote the equivalence class containing x under the new equivalence
relation by [x]crs. Now, suppose that the map υ : X → X/ ∼crs is the
natural map, that is, it carries each point of X to the equivalence class
[x]crs and assume X/ ∼crs has been equipped with the quotient topology.
Obviously, the basepoint projection pX : X → R factors through the natural
map, that is, there exists a map pX/∼crs : X/ ∼crs→ R making the following
diagram commute:

X
υ //

pX   @
@@

@@
@@

@ X/ ∼crs

pX/∼crszzvvvvvvvvv

R.

This implies that the natural map is topologically proper and respects the
Roe properness axiom (with respect to the quotient topology). Therefore
we can equip the topological space X/ ∼crs with the coarse push-forward
structure υ∗EX . The obtained space is called a coarse quotient space of X
and will be denoted again by X/ ∼crs. In fact, the coarse quotient space
X/ ∼crs is a pointed coarse topological R-space. Moreover, if X is proper,
so do X/ ∼crs.
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Now, we can see why we assume such a splitting property for the base-
point. We expect to get a copy of R for each unbounded equivalence class af-
ter collapsing it. Assuming each unbounded equivalence class to be pointed,
guarantees that in each unbounded equivalence class we are able to collapse
all points with the same distance from the origin to a point of the basepoint
of that class having the same distance from the origin. Another point should
be mentioned is that although our final goal is to get for each unbounded
equivalence class a point at infinity but we do not have any choice unless
dealing with all points lying in an unbounded equivalence class. Now, to
show that the final object we get after collapsing each unbounded equiva-
lence class is indeed a coarse point, we must show the following:

Proposition 2.2.4. Under the above assumptions, after collapsing an un-
bounded equivalence class [z], we have

[z] / ∼crs∼=crs R.

Proof. It is easy to show that the coarse map υ ◦ i[z] : R → [z] / ∼crs is
indeed a coarse equivalence.

Now, we consider a special case, namely, let A be a subset of a coarse
topological R-space X which is either a pointed coarse topological R-space
with the subspace coarse structure, or a bounded subset of X. Then X/A
denotes the coarse quotient R-space obtained via the equivalence relation ∼
whose equivalence classes are A and the single point sets {x}, x ∈ X \A. We
call X/A the coarse quotient R-space obtained from X by coarse collapsing
A to the ray R.

Example 2.2.5. Let R be the real line with its bounded coarse structure
and with the basepoint projection pR : R → R+ defined by pR(x) = |x|.
Suppose that A is the union of the subsets B = {(4k+1

2 , 4k+3
2 )| k ∈ Z+} and

C = {x ∈ R| x ≤ 0} of R. Then one can easily check that R/A ∼=crs R+.

The following is an important construction of examples of coarse quotient
spaces of proper coarse topological R-spaces.

Definition 2.2.6. Let X, Y and A be coarse topological R-spaces. Suppose
i : A → X and f : A → Y are coarse maps which are strongly compatible
with the basepoint projections. Moreover, assume that the inverse image of
bounded subsets under the coarse maps i and f are bounded (for example,
this is the case, if X, Y and A are proper coarse topological R-spaces with
A unital). Let Z := X q Y be the coarse coproduct of X and Y . Assume
that ∼ is the equivalence relation on Z generated by the binary relation
{(i(a), f(a)) ∈ Z × Z| a ∈ A}. Then the coarse topological quotient R-
space Z/ ∼crs as defined above, is called the coarse space obtained from Y
by weakly coarse attaching X via f and will be denoted by X ∪A Y . Note
that we did not assume any splitting property because each equivalence class
of ∼ is bounded.
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Now, there is a special example that we wish to mention, because it will
play an important role in the next chapter.

Example 2.2.7. Let X and Y be pointed proper coarse topological R-
spaces. Suppose that f : X → Y is a coarse surjection map which is
also injective unless for a subset of the set kerf := {x ∈ X| f(x) ∈ ∗crs}.
Moreover, assume that the subset kerf has the following properties:

(i) it consists of the basepoint of the space X;

(ii) for every x1, x2,∈ kerf , we have f(x1) = f(x2) if and only if pX(x1) =
pX(x2).

Therefore, by above, we can consider the coarse quotient R-space X/kerf .
Note that, given f : X → Y with the above properties, there always exists
an injection ϕ : X/kerf → Y making the following diagram commute:

X
f //

v ##H
HHHHHHHH Y

X/kerf,
ϕ

;;vvvvvvvvv

namely, ϕ([x]crs) = f(x).

The natural questions which arise here are whether the map ϕ : X/
kerf → Y above is coarse and under which conditions the map ϕ is a coarse
equivalence. In the upcoming lines, we will give an answer to these questions.

Definition 2.2.8. Let X and Y be coarse topological spaces (not necessarily
unital). A coarse surjection map f : X → Y is called a coarse identification
if for every entourage F ∈ EY there are entourages Eij ∈ EX , 1 ≤ i ≤ n,
1 ≤ j ≤ m and a subset F ′ ⊆ Y ×Y which is a finite union of subsets of the
form {1y}, y ∈ Y , such that

F ⊆ (
m⋃
j=1

f×2(E1j) ◦ f×2(E2j) ◦ · · · ◦ f×2(Enj)) ∪ F ′.

Example 2.2.9. Let R+ × R+ and R2 be the pointed proper coarse topo-
logical spaces equipped with the bounded coarse structures. The coarse
map exp : R+ × R+ → R2 defined by exp(te

π
2
is) := te2πis, 0 ≤ s ≤ 1, is

called the coarse exponential map. One can easily see that it is actually
a coarse identification. Moreover, one can similarly define the exponential
map exp : IcrsR → S1

R for a generalised ray R.
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Theorem 2.2.10. Let X and Y be proper coarse topological spaces and let
f : X → Y be a coarse identification. Then, for all coarse topological spaces
Z and all functions g : Y → Z, one has g coarse if and only if g◦f is coarse.

X
g◦f //

f   A
AA

AA
AA

Z

Y

g

??~~~~~~~

Proof. If g is a coarse map, then g ◦ f is clearly a coarse map. Conversely,
let g ◦ f be a coarse map and let F ∈ EY . We first show that g×2(F ) ∈ EZ .
Without lose of generality, we can assume

F ⊆ (f×2(E1) ◦ · · · ◦ f×2(En)) ∪ F ′,

where E1, · · · , En ∈ EX and F ′ ⊆ Y × Y is a finite union of subsets of the
form {1y}, y ∈ Y . Therefore,

g×2(F ) ⊆ ((g×2 ◦ f×2(E1)) ◦ · · · ◦ (g×2 ◦ f×2(En))) ∪ g×2(F ′)

That is, since g ◦ f preserves entourages, therefore g×2(F ) is entourage. It
remains to show that g is locally proper for F ∈ EY . By the first part, we
have already shown that g×2(F ) ∈ E|Z|1 . Now, suppose that K is a relatively
compact subset of Z. Again, without lose of generality, we have

F ⊆ (f×2(E1) ◦ · · · ◦ f×2(En)) ∪ F ′,

where the subsets E1, · · · , En and F ′ are as in above. Therefore,

g−1(K) ·F ⊆ ((((g−1(K) · f×2(E1)) · f×2(E2)) · · · · ) · f×2(En))∪ g−1(K) ·F ′

But, one can easily show that

g−1(K) · f×2(E1) ⊆ f((g ◦ f)−1(K) · E1),

which by the locally properness of g ◦ f and the facts that X and Y are
proper means g−1(K) · f×2(E1) is a relatively compact subset of Y . Now
the result follows from the fact that for every i = 2, 3, · · · , n, f×2(Ei) ∈ EY
and the fact that each entourage satisfies the Roe properness axiom.

The following is clear:

Lemma 2.2.11. Let X, Y and Z be coarse topological spaces and let f :
X → Y be a coarse identification. Suppose that g : Y → Z is a coarse
surjection. Then g is a coarse identification if and only if g ◦ f is a coarse
identification.

Now go back to Example 2.2.7, we claim
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Theorem 2.2.12. Under the assumptions of Example 2.2.7, the map ϕ is
a coarse equivalence if the coarse map f : X → Y is a coarse identification.

Proof. It is clear that the natural map v : X → X/kerf is a coarse identifi-
cation. Consider the following commutative diagram:

X
f //

v ##H
HHHHHHHH Y

X/kerf.
ϕ

;;vvvvvvvvv

That ϕ ◦ v = f is a coarse map implies that ϕ is a coarse map, by The-
orem 2.2.10. Note that ϕ is surjective because f is. Now, consider the
following commutative diagram:

X
v //

f ��@
@@

@@
@@

@ X/kerf

Y.
ϕ−1

;;wwwwwwwww

Again, from Theorem 2.2.10 and the fact that f is a coarse identification
follow that ϕ−1 is a coarse map. So we have shown that in the case of
Example 2.2.7, the proper coarse topological R-spaces Y and X/kerf are
coarsely equivalent if f is a coarse identification.

Now, we introduce a class of coarse CW-complexes which are the ana-
logue for coarse topology of the regular CW-complexes for topology. They
come to play in different occasions, for example, when we do not want our
coarse topological R-spaces to have any hole: examples of such case are, as
we have seen before, when we are dealing with the coarse collapsing or as we
will see immediately after the next definition when we want to inroduce the
notion of coarse product. Another place in which full coarse CW-complexes
will show up are when we are dealing with coarse homotopy groups of coarse
CW-complexes in Chapter 5.

Definition 2.2.13. a coarse CW-complex (X,E,Φ) is called full if

(1) X(0) is a disjoint union of the generalised rays R with the exception
that any two generalised rays which are the boundary of the same
coarse 1-cell intersect at 0;

(2) each coarse k-cell ecrsR arises from X(k−1) by weakly coarse attaching
Dk
R vie a coarse map fecrsR : Sk−1

R → X(k−1) which is an embedding
(that is a homeomorphism onto its image) and which is also strongly
compatible with the basepoint projections (the maps i : Sk−1

R → Dk
R

are just the inclusions);



Some Aspects on Coarse Homotopy Theory 29

(3) the basepoint projection pX : X → R coincides with the standard
basepoint projection of the generalised rays in X(0) and of the coarse
R-cells Dk

R (the basepoint projections of the coarse R-cells Dk
R have

been taken to be the standard ones).

Endowing the coarse topological spaces with basepoint projections make
it possible to define a special coarse product which plays a crucial role in
developing the coarse homotopy theory. More precisely,

Definition 2.2.14. Let X and Y be coarse topological R-spaces, where at
least one of them is a full coarse CW-complex. By the coarse product of X
and Y , denoted by X ×R Y , we mean the set

X ×R Y = {(x, y)| pX(x) = pY (y)} ,

equipped with the following coarse structure

EX×RY := (πX |X×RY )∗EX ∩ (πY |X×RY )∗EY .

Before explaining the reason why we assume at least one of the spaces
X or Y to be a full coarse CW -complex, note that

Lemma 2.2.15. Let R be a generalised ray. If X is a coarse topological
R-space, then X ×R R ∼=crs X.

Proof. Consider the maps i : X → X ×R R and πX : X ×R R → X defined
by i(x) := (x, pX(x)) and πX(x, r) = x, respectively. They are obviously
coarse and i ◦ πX = 1X×RR and πX ◦ i = 1X .

So, as expected, the coarse product of a coarse topological R-space X
with the generalised ray R, that is, with a coarse point, is just the space X
itself. Now, one can see why we assumed at least one of the spaces X or Y
to be a full coarse CW -complex: roughly speaking, we do not want to kill
any coarse points. To see it clearer, let X be the set of positive even integers
and let Y be the set of positive odd integers both of them equipped with the
bounded coarse structure and the trivial basepoint projection. Obviously,
X ∼=crs Y ∼=crs R+. Therefore, we expect X ×R+ Y

∼=crs R+, while X ×R+

Y = ∅. In the following, we will give a standard way to construct an
entourage of X ×R Y from entourages of X and Y .

Lemma 2.2.16. Let X and Y be proper coarse topological R-spaces where at
least one of them is a full coarse CW -complex and let F ∈ EX and E ∈ EY .
Define F ×R E as the following subset of X ×R Y

F ×R E := ((πX |X×RY )×2)−1(F ) ∩ ((πY |X×RY )×2)−1(E).

Then F ×R E is an entourage (possibly empty) of X ×R Y .
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Proof. We must show

(i) F ×R E ∈ E|X×RY |1 ;

(ii) the map πX |X×RY : X ×R Y → X (resp. πY |X×RY : X ×R Y → Y ) is
coarse for F ×R E.

We omit proofs of the symmetric cases. For (i), let K be a relatively compact
subset of X ×R Y . Obviously,

(F ×R E) ·K ⊆ (F · (πX |X×RY )(K))× (E · (πY |X×RY )(K)),

which means (F ×R E) · K is relatively compact. For (ii), first, it is clear
that (πX |X×RY )×2(F ×R E) ⊆ F which means πX |X×RY preserves F ×R E.
It remains to show that πX |X×RY is locally proper for F ×RE. For it, let K ′

be a relatively compact subset of X, we must show that (πX |X×RY )−1(K ′) ·
(F ×R E) is relatively compact. The subset K ′ is relatively compact in X,
so it is bounded, hence T := pX(K ′) is relatively compact in R, since R is a
proper coarse topological space. On the other hand, since pY is topologically
proper, therefore p−1

Y (T ) · E is relatively compact. But, obviously

(πX |X×RY )−1(K ′) · (F ×R E) ⊆ (K ′ · F )× (p−1
Y (T ) · E),

so we are done. Similarly, one can show that πY |X×RY : X ×R Y → Y is
coarse for F ×R E.

Given an entourage F ∈ ER, a question which naturally arises is whether
the subset FR := (π×2

1 )−1(F ) ∩ (π×2
2 )−1(F ) of IcrsR × IcrsR is an entourage in

EIcrsR
or not, where πi : R × R → R, i = 1, 2, are the projections on the

first and the second coordinate, respectively. The answer is in general no,
because the projections πi’s fail to be locally proper for FR. The following
lemma will be essential later on.

Lemma 2.2.17. Let X and Y be coarse topological R-spaces. If f : X → Y
is a coarse map which is compatible with the basepoint projections, then the
map f ×R 1IcrsR

: X ×R IcrsR → Y ×R IcrsR defined by

(x, pX(x)e
π
2
is) 7−→ (f(x), pY (f(x))e

π
2
is)

is a coarse map.

Proof. Assume that E ∈ EX×RIcrsR
. We must show that the map f ×R 1IcrsR

is coarse for E. Set E1 := π×2
X (E), E2 := π×2

IcrsR
(E), E3 := f×2(E1), D :=

((pY ◦ f) × pX)(E1 ◦ E−1
1 ) and D′ := (pX × (pY ◦ f))(E−1

1 ◦ E1). They are
obviously entourages. Now, we define the subset T ⊆ IcrsR × IcrsR as follows:

T := {(re
π
2
is, r′e

π
2
is′)| ∃ ((x, pX(x)e

π
2
it), (x′, pX(x′)e

π
2
it′)) ∈ E such that

(s, s′) = (t, t′) and (r, r′) = (pY (f(x)), pY (f(x′)))}
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Moreover, define F := D×
1◦(π×2

1 (E2))×
1◦(D′)×1

andG := D×
1◦(π×2

2 (E2))×
1

◦(D′)×1
, where πi : R×R→ R, i = 1, 2, are the projections on the first and

the second coordinate, respectively. We define

J := (π×2
1 |T )−1(F ) ∩ (π×2

2 |T )−1(G)

and we first claim that the subset J is an entourage in EIcrsR
. We must show

that

(i) J ∈ E|R×R|1 ;

(ii) π1 : R×R→ R (resp. π2 : R×R→ R) is coarse for J .

We omit proofs of the symmetric cases. For (i), suppose thatK is a relatively
compact subset of R×R. Obviously,

J ·K ⊆ (F · (K ·R))× (G · (R ·K)),

which implies that J · K is relatively compact, as desired. The fact that
πi, i = 1, 2, preserve J immediately follows from the way that we have
defined J . Now, we must show that πi : R × R → R, i = 1, 2, are locally
proper for J . Let K ′ be a relatively compact subset of R. Suppose that
re

π
2
is ∈ π−1

1 (K ′) · J , where 0 ≤ s ≤ 1 and r ≥ 0. Therefore, there exists
r′e

π
2
is′ ∈ π−1

1 (K ′) for some 0 ≤ s′ ≤ 1 and for some r′ ≥ 0 such that

(re
π
2
is, r′e

π
2
is′) ∈ J.

But J ⊆ T , which means there are ((x, pX(x)e
π
2
it), (x′, pX(x′)e

π
2
it′)) ∈ E

such that (s, s′) = (t, t′) and (r, r′) = (pY (f(x)), pY (f(x′))). Hence,

(x, x′) ∈ E1, and

(p(x)e
π
2
it, p(x′)e

π
2
it′) ∈ E2.

Now if π−1
1 (K) · J is not relatively compact, then there exist an unbounded

sequence {rk} of positive real numbers such that rke
π
2
isk ∈ π−1

1 (K) · J for
some 0 ≤ sk ≤ 1, k ∈ N. Therefore, there are sequences {r′k}, {s′k}, {xk}
and {x′k} having above properties, that is, for each k ∈ N,

(rk, r′k) = (pY (f(xk)), pY (f(x′k))), (xk, x′k) ∈ E1,

(pX(xk)e
π
2
isk , pX(x′k)e

π
2
is′k) ∈ E2 and r′ke

π
2
is′k ∈ π−1

1 (K ′).

From the above assumptions directly follow that

∀ k ∈ N, (pX(x′k) cos(
π

2
s′k), pY (f(x′k)) cos(

π

2
s′k)) ∈ (D′)×

1
.

But since pX(f(x′k)) cos(π2 s
′
k) ∈ K ′, for every k ∈ N, therefore

∀ k ∈ N, pX(x′k) cos(
π

2
s′k) ∈ (D′)×

1 ·K ′,
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which means pX(x′k)e
π
2
is′k ∈ π−1((D′)×

1 ·K ′), for every k ∈ N. Then since
(pX(xk)e

π
2
isk , pX(x′k)e

π
2
is′k) ∈ E2, for every k ∈ N, therefore

∀ k ∈ N, pX(xk)e
π
2
isk ∈ E2 · π−1

1 ((D′)×
1 ·K ′).

But since E2 ∈ EIcrsR
and because (D′)×

1 ·K ′ is a relatively compact subset
of R, therefore E2 ·π−1

1 ((D′)×
1 ·K ′) is a relatively compact subset of R×R.

That is, Q := {pX(xk)| k ∈ N} is a bounded subset of R. On the other
hand, (pY (f(xk)), pX(xk)) ∈ D, for every k ∈ N. Therefore,

{pY (f(xk))| k ∈ N} ⊆ D ·Q,

which implies that the subset {pY (f(xk))| k ∈ N} is bounded in R which is a
contradiction since pY (f(xk)) = rk, for every k ∈ N. So we have shown that
J is an entourage in EIcrsR

. Now the way is free to show the main statement,
namely, the map f ×R 1IcrsR

is coarse for E: taking

E3 ×R J := ((πY |Y×RIcrsR
)×2)−1(E3) ∩ ((πIcrsR

|Y×RIcrsR
)×2)−1(J),

one can show, as in the proof of Lemma 2.2.16, that E3 ×R G ∈ EY×RIcrsR
.

Now, we have
(f ×R 1IcrsR

)×2(E) ⊆ E3 ×R G.

The last thing that remains to show is locally properness of f ×R 1IcrsR
for

E. Assume that K ′′ is a relatively compact subset of Y ×R IcrsR . One can
easily show that

(f ×R 1IcrsR
)−1(K ′′) · E ⊆ (f−1(πY (K ′′)) · E1)× (πIcrsR

(K ′′) · E2),

which implies that (f ×R 1IcrsR
)−1(K ′′) · E is relatively compact, as desired.

So we have shown that f×R 1IcrsR
preserves entourages and is locally proper,

that is, it is a coarse map.

Corollary 2.2.18. Let X and Y be coarse topological R-spaces and let Z be
a full coarse CW -complex. If f : X → Y is a coarse map which is strongly
compatible with the basepoint projections. Then the map f×R1Z : X×RZ →
Y ×R Z defined by

(f ×R 1Z)(x, z) := (f(x), z),

is a coarse map.

2.3 Coarse Hamband spaces

It is a natural question whether the map f ×R 1Z : X ×R Z → Y ×R Z
is a coarse identification when f : X → Y is a coarse identification (recall
that we defined the coarse product ×R of two coarse topological R-spaces
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when at least one of them is a full coarse CW -complex and the function
f×R1Z can be defined if the map f is strongly compatible with the basepoint
projections). As we know, in topology, to get from an identification f : X →
Y , an identification f × 1Z : X × Z → Y × Z, we need the space Z to be
a locally compact space. So, we are investigating some conditions on the
coarse topological R-space Z which imply f ×R 1Z : X ×R Z → Y ×R Z
to be a coarse identification. Considering coarse geometry as a dual theory
to topology, the following is a dual notion of locally compactness in coarse
world:

Definition 2.3.1. Let X be a coarse topological R-space with a basepoint
projection pX : X → R. We call X Hamband2 if for every entourage E ∈
EX and for every entourages M1,M2 · · · ,Mn ∈ ER with p×2

X (E) ⊆ M1 ◦
M2 ◦ · · · ◦ Mn, there exist entourages G1, G2, · · · , Gn ∈ EX such that if
(x, y) ∈ E, then assuming k0 := x , inductively, for every ri+1 ∈ (Mi+1)p(ki),
i = 0, 1, · · · , n− 2, one can find ki+1 ∈ X with p(ki+1) = ri+1 such that the
following hold:

(i) (ki, ki+1) ∈ Gi+1 for every i = 0, 1, · · · , n− 2; and

(ii) (kn−1, y) ∈ Gn.

Example 2.3.2. The Euclidean space Rn equipped with the bounded coarse
structure and its standard basepoint projection is clearly a coarse Hamband
space.

Lemma 2.3.3. Let X, Y and Z be proper coarse topological R-spaces. Sup-
pose that the coarse products X ×R Z and Y ×R Z can be defined (that
is, at least one of the component at each coarse product is a full coarse
CW-complex). If f : X → Y is a coarse identification which is strongly
compatible with the basepoint projections, and Z is Hamband, then the map
f ×R 1Z : X ×R Z → Y ×R Z defined by

(f ×R 1Z)(x, z) := (f(x), z)

is a coarse identification.

Proof. By Corollary 2.2.18, the map f ×R 1Z is coarse. Let F ∈ EY×RZ .
Therefore, by definition of the coarse structure EY×RZ , the subsets E :=
(πY |Y×RZ)×2(F ) and G := (πZ |Y×RZ)×2(F ) are entourages of EY and EZ ,
respectively. Since f is a coarse identification, without lose of generality, we
write

E ⊆ (f×2(E1) ◦ f×2(E2) ◦ · · · ◦ f×2(En)) ∪ F ′

2This is a Persian word means “connected”. Because the word “connected” has already
been used in the classical setup and since the notion we are going to define bring some
kind of connectness in mind, therefore the word “Hamband” has been suggested.
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where Ei ∈ EX , i = 1, 2, · · · , n, and F ′ is a subset of Y × Y which is the
finite union of subsets of the form {1y}, y ∈ Y . For each i, i = 1, 2, · · · , n,
define Mi := p×2

Y (f×2(Ei) ∪ F ′). First, we show that

p×2
Z (G) ⊆M1 ◦M2 ◦ · · · ◦Mn.

For it, suppose that (z1, z2) ∈ G, hence there exists (y1, y2) ∈ Y × Y such
that ((y1, z1), (y2, z2)) ∈ F . Therefore, pY (yj) = pZ(zj), j = 1, 2, and
(y1, y2) ∈ E. If (y1, y2) ∈ F ′, then y1 = y2 and therefore,

(pZ(z1), pZ(z2)) = (pY (y1), pY (y1)) ∈Mi,

for all i = 1, 2, · · · , n, that is,

(pZ(z1), pZ(z2)) ∈M1 ◦M2 ◦ · · · ◦Mn,

as desired. Otherwise, there exist sk ∈ Y , k = 1, · · · , n− 1, such that

(y1, s1) ∈ f×2(E1), (s1, s2) ∈ f×2(E2), · · · , (sn−1, y2) ∈ f×2(En).

Therefore,

(pZ(z1), pZ(z2)) = (pY (y1), pY (y2)) ∈M1 ◦M2 ◦ · · · ◦Mn.

Now since Z is Hamband and p×2
Z (G) ⊆M1 ◦M2 ◦ · · · ◦Mn, therefore there

exist entourages G1, G2, · · · , Gn ∈ EZ having the properties mentioned in
Definition 2.3.1. On the other hand, by Lemma 2.2.16, for each i, i =
1, 2, · · · , n, we can construct the entourage Ei ×R Gi of X ×R Z. Now,
defining F ′′ := F ′ ×R G, the final claim is

F ⊆ ((f ×R 1Z)×2(E1 ×R G1) ◦ (f ×R 1Z)×2(E2 ×R G2) ◦ · · ·
· · · ◦ (f ×R 1Z)×2(En ×R Gn)) ∪ F ′′.

Suppose that ((y1, z1), (y2, z2)) ∈ F , hence (y1, y2) ∈ E and (z1, z2) ∈ G.
So, (y1, y2) ∈ F ′, or

(y1, y2) ∈ f×2(E1) ◦ f×2(E2) ◦ · · · ◦ f×2(En).

In the former case, obviously, we have ((y1, z1), (y2, z2)) ∈ F ′′. In the latter
case, there exist sk ∈ Y , k = 1, · · · , n− 1, such that

(y1, s1) ∈ f×2(E1), (s1, s2) ∈ f×2(E2), · · · , (sn−1, y2) ∈ f×2(En).

Therefore, there exist xj ∈ X, j = 1, 2, and s′l, s
′′
l ∈ X, l = 1, 2, · · · , n − 1,

such that

(x1, s
′
1) ∈ E1, (s′′1, s

′
2) ∈ E2, (s′′2, s

′
3) ∈ E3, · · · , (s′′n−1, x2) ∈ En
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with f(xj) = yj , j = 1, 2, and f(s′l) = f(s′′l ) = sl for all l = 1, 2, · · · , n− 1.
On the other hand,

(pY (y1), pY (s1)) ∈M1, (pY (s1), pY (s2)) ∈M2, · · · , (pY (sn−1), pY (y2)) ∈Mn.

But, pY (yj) = pZ(zj), j = 1, 2, that is,

pY (s1) ∈ (M1)pZ(z1), pY (s2) ∈ (M2)pY (s1), · · · , pY (sn−1) ∈ (Mn−1)pY (sn−2).

Hence, by the definition of being Hamband, we can inductively find ki ∈ Z,
i = 1, 2, · · · , n− 1, such that

(i) pZ(ki) = pY (si) for all i = 1, 2, · · · , n− 1; and

(ii) (z1, k1) ∈ G1, (k1, k2) ∈ G2, · · · , (kn−1, z2) ∈ Gn.

On the other hand, pZ(zj) = pY (yj) = pY (f(xj)) = pX(xj), j = 1, 2.
Similarly, for each i = 1, 2, · · · , n− 1, we have

pZ(ki) = pY (si) = pY (f(s′i)) = pY (f(s′′i )) = pX(s′i) = pX(s′′i ).

That is, setting (s′′0, k0) := (x1, z1) and (s′n, kn) := (x2, z2), we have

((s′′i , ki), (s
′
i+1, ki+1)) ∈ Ei+1 ×R Gi+1,

for all i = 0, 1, · · · , n− 1. Therefore,

((f(s′′i ), ki), (f(s′i+1), ki+1)) ∈ (f ×R 1Z)×2(Ei+1 ×R Gi+1),

for all i = 0, 1, · · · , n− 1. Hence,

((y1, z1), (y2, z2)) ∈ (f ×R 1Z)×2(E1 ×R G1) ◦ (f ×R 1Z)×2(E2 ×R G2) ◦ · · ·
· · · ◦ (f ×R 1Z)×2(En ×R Gn),

as desired.





Chapter 3

Coarse homotopy theory

In this chapter we first develop basic notions in the coarse homotopy theory.
We will next introduce some constructions such as coarse smash product,
coarse suspensions and coarse mapping cone needed to develop coarse homo-
topy theory and we will prove some of their properties. The coarse homotopy
groups will be introduced next and at the end of this chapter, we develop
an exact sequence of coarse homotopy groups. Throughout this chapter, we
shall assume unless otherwise stated that all coarse topological R-spaces are
pointed.

3.1 Coarse homotopy

In order to define a coarse version of homotopy theory, one is for sure: we
can not simply use the closed interval I. To see it, let f, g : X → Y be
coarse maps between proper metric spaces X and Y equipped with their
bounded coarse structures. If there exists a coarse map F : X × I → Y
such that F (x, 0) = f(x) and F (x, 1) = g(x) for every x ∈ X, then because
I × I is entourage, therefore, for every two points t, s ∈ I, the maps Ft and
Fs are close, that is, f ∼cl g which means the definition is not actually the
proper one. Therefore, as the first step we replace I by the coarse interval
IcrsR . Recall that given a real number 0 ≤ s ≤ 1, we defined the coarse map
is : R→ IcrsR by the equation is(t) := te

π
2
is. Inspired from the fact that the

subset Im(is) is a copy of R, that is, a coarse point in IcrsR , from now on, we
will denote the subset Im(is) by (s)crs representing a copy of R in IcrsR . The
following is our understanding of deformation of coarse maps from a coarse
point of view:

Definition 3.1.1. Let X and Y be coarse topological R-spaces and let
f, g : X → Y be coarse maps. Then f and g are called coarsely homotopic,
denoted by f 'crs g, if there exist a coarse map H : X ×R IcrsR → Y such
that H ◦ (1X ×R i0) ◦ i ∼cl f and H ◦ (1X ×R i1) ◦ i ∼cl g, where the map
i : X → X ×R R is the map defined in Lemma 2.2.15. Such a map H is

37
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called a coarse homotopy. One often writes H : f 'crs g if one wishes to
display a coarse homotopy. From now on, for convenience, we will denote
the composite (1X ×R is) ◦ i by i∗s. If A is a subset of X with 1A ∈ EX , then
a coarse homotopy H : X ×R IcrsR → Y is said to be relative to A (or rel A)
if there exist a coarse map h : X → Y and an entourage E ∈ EY such that

(H ◦ i∗s(a), h(a)) ∈ E,

for all a ∈ A and all 0 ≤ s ≤ 1.

If fs : X → Y is defined by fs(x) = H ◦ i∗s(x), then a coarse homotopy
H gives a one-parameter family of coarse maps deforming f into g from a
coarse point of view. One thinks of fs as describing the coarse deformation
at time s.

Theorem 3.1.2. Coarse homotopy is an equivalence relation on the set of
all coarse maps X → Y .

Proof. Reflexivity and symmetry are trivial. We will show the transitivity.
Assume that H : f 'crs g and G : g 'crs h. Define J : X ×R IcrsR → Y by

J(x, pX(x)e
π
2
is) :=

{
H(x, pX(x)eπis), if 0 ≤ s ≤ 1

2

G(x, pX(x)e
π
2
i(2s−1)), if 1

2 < s ≤ 1.

We must only show that J is a coarse map. We omit proofs of the symmetric
cases. Let D ∈ EX×RIcrsR

. First, consider the subset D′ of (X ×R IcrsR )×2

containing the pairs

((x, pX(x)e
π
4
i),(x′, pX(x′)e

π
4
i)),

((x, pX(x)e
π
2
is),(x, pX(x)e

π
4
i)), and

((x′, pX(x′)e
π
4
i),(x′, pX(x′)e

π
2
is′)),

where ((x, pX(x)e
π
2
is), (x′, pX(x′)e

π
2
is′)) ∈ D with

(0 ≤ s ≤ 1
2
,
1
2
< s′ ≤ 1) or (

1
2
< s ≤ 1, 0 ≤ s′ ≤ 1

2
).

The claim is that D′ ∈ EX×RIcrsR
. To prove the claim the only part that is

not clear is to show that π×2
IcrsR

(D′) ∈ EIcrsR
. For it, let F := π×2

IcrsR
(D). Taking

M := π×2
1 (F ) ∪ π×2

2 (F ), one can see that

π×2
1 (π×2

IcrsR
(D′)), π×2

2 (π×2
IcrsR

(D′)) ⊆M� ∪ (M�)−1,

that is, π×2
1 (π×2

IcrsR
(D′)), π×2

2 (π×2
IcrsR

(D′)) ∈ ER. The rest, that is, showing that

π×2
IcrsR

(D′) satisfies the Roe properness axiom and that π1, π2 : IcrsR → R are
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locally proper for π×2
IcrsR

(D′) are straightforward. Set

D′′ := D∪D′ ∪ (D′)−1,

E := π×2
X (D′′ ∩ (X ×R (

1
2

)crs)×2) and

E′ := E ∪ [(E∪E−1) ◦ (E ∪ E−1)] ∪ E−1.

From Lemma 2.1.6 and Lemma 2.2.15 follow that E, and therefore E′, is an
entourage in EX , hence the subsets E1 := ((H◦i∗1)×g)(E′) and E2 := (g×(G◦
i∗0))(E′) are entourages in EY . Taking E3 := D′′∩ (X×R (

⋃
0≤s≤ 1

2
(s)crs))×2,

E4 := D′′ ∩ (X ×R (
⋃

1
2
≤s≤1(s)crs))×2,

T := (H×2 ◦ (1X ×R α)×2)(E3) ◦ E1 ◦ E2 ◦ (G×2 ◦ (1X ×R β)×2)(E4), and

S := E1 ◦ E2 ◦ (G×2 ◦ (1X ×R β)×2)(E4),

one can easily see that

J×2(D) ⊆(H×2 ◦ (1X ×R α)×2)(E3)

∪ (G×2 ◦ (1X ×R β)×2)(E4)

∪ S ∪ S−1

∪ T ∪ T−1,

where the coarse maps α, β : IcrsR → IcrsR are defined as follows:

α(re
π
2
is) :=

{
reπis, if 0 ≤ s ≤ 1

2

re
π
2
i, if 1

2 ≤ s ≤ 1, and

β(re
π
2
is) :=

{
re0i, if 0 ≤ s ≤ 1

2

re
π
2
i(2s−1), if 1

2 ≤ s ≤ 1.

That is, the map J preserves entourages. Note that the maps 1X ×R α
and 1X ×R β are coarse by Lemma 2.2.17, since the coarse maps α and β
are compatible with the basepoint projections. Now assume that K is a
relatively compact subset of Y . We have

J−1(K) ·D ⊆ [H ◦ (1X ×R α)]−1(K) ·D ∪ [G ◦ (1X ×R β)]−1(K) ·D,

which implies that J is locally proper for D. We can do the same for the
symmetric case, that is, the map J is coarse.

Example 3.1.3. Let X and Y be coarse topological R-spaces and let f, g :
X → Y be two coarse maps which are close. Then, f 'crs g, by definition.
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Definition 3.1.4. If f : X → Y is a coarse map, its coarse homotopy class
is the equivalence class

[f ]crs := {coarse map g : X → Y | g 'crs f} .

The family of all such coarse homotopy classes is denoted by [X;Y ]crs.

Theorem 3.1.5. Let fi : X → Y and gi : Y → Z, i = 0, 1, be coarse maps.
If f0 'crs f1 and g0 'crs g1, then g0 ◦ f0 'crs g0 ◦ f1. Moreover, if f0 is
compatible with the basepoint projections, then g0 ◦ f0 'crs g1 ◦ f0.

Proof. Let F : f0 'crs f1 and G : g0 'crs g1 be coarse homotopies. Obvi-
ously,

K : g0 ◦ f0 'crs g0 ◦ f1,

where K : X ×R IcrsR → Z is the composite g0 ◦ F . For the second part,
define H : X ×R Icrs → Z by H(x, pX(x)e

π
2
is) = G(f0(x), pY (f0(x))e

π
2
is).

The map H is a coarse map, by Lemma 2.2.17. The rest is obvious.

Definition 3.1.6. Let X and Y be coarse topological R-spaces and let
f : X → Y be a coarse map.

• The map f is called a coarse homotopy equivalence if there is a coarse
map g : Y → X such that the composites g ◦ f and f ◦ g are coarsely
homotopic to the identities 1X and 1Y , respectively. In the future, we
will use the notation X 'crs Y to indicate that there exists a coarse
homotopy equivalence between X and Y .

• The map f is coarsely nullhomotopic if it is coarsely homotopic to a
map c : X → Y whose image is coarsely equivalent to the ray R.

• The coarse topological R-space X is coarsely contractible if 1X is
coarsely nullhomotopic.

Example 3.1.7. For each n > 0, the standard coarse cell, Dn
R+

, is coarsely
contractible.

Proof. Let V n be the subset

{x ∈ Dn
R+
| ‖x‖ = 1}

of Dn
R+

and let ϕ : Dn → V n be a bi-Lipschitz homeomorphism which is
identity on Sn−1. Let F : Dn × I → Dn be a Lipschitz map provided a
homotopy between 1Dn and a constant map c : Dn → Dn. Now, consider
the map F̃ : Dn

R+
×R+ I

crs
R+
→ Dn

R+
defined by

F̃ (x, ‖x‖e
π
2
is) :=

{
‖x‖ · ϕ(F (ψ(x̃), s)), if ‖x‖ 6= 0
0, if x = 0,
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where x̃ is the point where the ray emanating from the origin and passing
through the point x meets V n and where ψ : V n → Dn is the inverse
Lipschitz of ϕ. The Lipschitz condition on the maps guarantees that the
map F̃ is a coarse map (see [HR95] for example). On the other hand, it is
obvious that F̃ is the desired coarse homotopy.

3.2 Coarse suspension

Suppose that X and Y are pointed coarse topological R-spaces such that at
least one of them is a full coarse CW -complex. Since the subset

(X ×R ∗crs) ∪ (∗crs ×R Y )

of X×RY is with the subspace coarse structure a pointed coarse topological
R-space, therefore, as we have seen in the preceding chapter, we can collapse
it to the ray R. That is, we can define

Definition 3.2.1. Let X and Y be pointed coarse topological R-spaces such
that at least one of them is a full coarse CW -complex. The coarse smash
product of X and Y , denoted by X ∧ Y , is defined to be the pointed coarse
quotient R-space

X ×R Y/(X ×R ∗crs) ∪ (∗crs ×R Y ),

obtained from X ×R Y by collapsing (X ×R ∗crs)∪ (∗crs×R Y ) to the ray R
with the identified subset as its basepoint.

Theorem 3.2.2. Let X, Y and Z be pointed proper coarse topological R-
spaces. If X and Z are Hamband, then (X ∧ Y ) ∧ Z is coarsely equivalent
to X ∧ (Y ∧ Z).

Proof. Write v for the various coarse identification maps of the form X ×R
Y → X ∧ Y , and consider the diagram

X ×R Y ×R Z
1 //

v×R1
��

X ×R Y ×R Z

1×Rv
��

(X ∧ Y )×R Z

v

��

X ×R (Y ∧ Z)

v

��
(X ∧ Y ) ∧ Z X ∧ (Y ∧ Z).

Now v ×R 1 is a coarse identification by Lemma 2.3.3, since Z is Hamband.
Similarly, 1×R v is a coarse identification. Therefore the maps v◦(1×R v)◦1
and v ◦ (v ×R 1) ◦ 1 are coarse identifications. Now, the result follows from
Theorem 2.2.12 by considering appropriate maps.
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Now, denoting the subset (0)crs ∪ (1)crs of IcrsR by İcrsR , we define

Definition 3.2.3. If (X, ∗crs) is a pointed coarse topological R-space, then
the reduced coarse suspension of X, denoted by ΣcrsX, is the coarse quotient
R-space

ΣcrsX = (X ×R IcrsR )/((X ×R İcrsR ) ∪ (∗crs ×R IcrsR )),

where the identified subset is regarded as its basepoint.

We define the unreduced coarse suspension (or coarse double cone) of
a pointed coarse topological R-space X, denoted by ScrsX, as the coarse
quotient space of X ×R IcrsR obtained by collapsing X ×R (0)crs to a ray and
X×R (1)crs to another ray R. The space X then can be imbedded in ScrsX
as X ×R (1

2)crs.

Theorem 3.2.4. Let R be a generalised ray and assume that S1
R has been

given a basepoint as in Example 2.2.2. Let X be a pointed proper coarse
topological R-space. If X is Hamband, then

ΣcrsX ∼=crs X ∧ S1
R.

Proof. Since X is Hamband, the map 1X ×R exp : X ×R IcrsR → X ×R S1
R

is a coarse identification, by Lemma 2.3.3. If v : X ×R S1
R → X ∧ S1

R is the
natural map, then h := v ◦ (idX ×R exp) is also a coarse identification, by
Lemma 2.2.11. But it is easy to check that (X ×R IcrsR )/kerh = ΣcrsX, and
so the result follows from Theorem 2.2.12.

Theorem 3.2.5. ΣcrsSnR
∼=crs S

n+1
R for all n ≥ 0.

Proof. By the definition of a generalised ray, one can consider the disjoint
union RqR as the topological space R equipped with some coarse structure
compatible with the topology coming from the metric such that its restric-
tion on both of the subspaces [0,∞) and (−∞, 0] is just the coarse structure
on R. Therefore, assuming e1, · · · , en+1 to be the standard base of Rn+1

and te1, t ∈ [0,∞), the basepoint of SnR, we allow ourselves to define the
map f : SnR ×R IcrsR → Sn+1

R by the equation

(x, ‖x‖e
π
2
is) 7−→

‖x‖·
{

1
2

(e1 +
x

‖x‖
) + (cos 2πs)

1
2

(e1 −
x

‖x‖
) + (sin 2πs)

1
2

∥∥∥∥e1 −
x

‖x‖

∥∥∥∥ en+2

}
.

The map f is indeed a modification of the map is used in the classical
situation. To get a clearer picture, one can look at the following figure
showing the way that f is defined on S1

R ×R (s)crs (which is, of course, a
copy of S1

R) for some 0 ≤ s ≤ 1.
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xAO

B

X

X

X

X X
XB

AO X

S1R

f|S1R XR (s)
crs

As one can see from the above the map f is a coarse identification which
satisfies the conditions of Example 2.2.7. On the other hand, it is easy
to check that SnR ×R IcrsR /kerf = ΣcrsSnR. Hence, ΣcrsSnR

∼=crs S
n+1
R , by

Theorem 2.2.12.

Corollary 3.2.6. SmR+
∧ SnR+

∼=crs S
m+n
R+

for all m,n ≥ 1.

Proof. We prove by induction on n. For n = 1, the statement directly
follows from Theorem 3.2.4 and Theorem 3.2.5. Now assume that the above
statement holds for every k ≤ n− 1, we shall prove it for k = n.

SmR+
∧ SnR+

∼=crs S
m
R+
∧ (ΣcrsSn−1

R+
)

∼=crs S
m
R+
∧ (Sn−1

R+
∧ S1

R+
)

∼=crs (SmR+
∧ Sn−1

R+
) ∧ S1

R+

∼=crs S
m+n−1
R+

∧ S1
R+

∼=crs ΣcrsSm+n−1
R+

∼=crs S
m+n
R+

,

by repeated applications of Theorem 3.2.2, 3.2.4, 3.2.5, and the induction
assumption. Note that we could apply Theorem 3.2.2 here since for each
n ≥ 0, SnR+

= Rn+1 is a full coarse CW-complex.

As in the classical case, to be able to go further, we need some notion
of a pointed coarse map, that is, coarse maps which have some basepoint
preserving property. The following is our understanding of a pointed coarse
map.

Definition 3.2.7. Let X and Y be pointed coarse topological R-spaces
and let f : X → Y be a coarse map. As we have seen in the preceding
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chapter the basepoints of X and Y are represented by some fixed coarse
maps iX : R → X and iY : R → Y , respectively, with some splitting
properties. We call the map f pointed if f ◦ iX ∼cl iY . We sometimes write
f : (X, ∗crs)→ (Y, ∗crs) to indicate that f is pointed.

Now, we are ready to introduce some important constructions.

Definition 3.2.8. Let X and Y be pointed coarse topological R-spaces
and let f : X → Y be a pointed coarse map. The coarse reduced cone on
X, denoted by ccrsX, is defined to be the smash product X ∧ IcrsR (recall
that the basepoint of IcrsR is always taken to be (1)crs). We denote the
class of (x, pX(x)e

π
2
is) in ccrsX by x ∧ pX(x)e

π
2
is. Note that X can be

identified with the subspace X ∧ (0)crs. Moreover, if the inverse image of
bounded subsets under f are bounded (for example, this is the case if X and
Y are pointed proper coarse topological R-spaces with X unital), and f is
strongly compatible with the basepoint projections, then we define the coarse
mapping cone Ccrsf to be the pointed coarse topological R-space obtained
from Y by weakly coarse attaching ccrsX via f as defined in Definition 2.2.6.
The basepoint of Ccrsf can be taken to be the coarse point {[y]| y ∈ Im(iY )}.

Write f ′ for the “inclusion map” of Y in Ccrsf ; more precisely, f ′ is the
inclusion of Y in the coarse coproduct of Y and ccrsX, composed with the
natural map onto Ccrsf .

Theorem 3.2.9. Let X and Y be pointed proper coarse topological R+-
spaces with X unital and let f : X → Y be a pointed coarse map which is
strongly compatible with the basepoint projections. Then

Ccrsf ′ 'crs ΣcrsX.

Proof. Define Φ : ΣcrsX → Ccrsf ′ by

[x×R pX(x)e
π
2
is] 7−→

{
f(x) ∧ pY (f(x))e

π
2
i(1−2s) in ccrsY, if 0 ≤ s ≤ 1

2

x ∧ pX(x)e
π
2
i(2s−1) in ccrsX, if 1

2 < s ≤ 1,

followed by the natural map. This is well-defined, because pY (f(x)) = pX(x)
for every x ∈ X and since f(x)∧(1)crs and x∧(1)crs both represent the same
point at the subset [f(∗crs)] of Ccrsf ′ . Moreover, Φ is a coarse map (for the top
row follows from Lemma 2.2.17). Now, define ψ : ccrsX q ccrsY → ΣcrsX
by

ψ(x ∧ pX(x)e
π
2
is) = [x×R pX(x)e

π
2
is] ∈ ΣcrsX, (3.2.1)

for points of ccrsX and for points of ccrsY by

ψ(y ∧ pY (y)e
π
2
it) = [x×R pX(x)e

π
2
it], (3.2.2)
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where x is a point of ∗crs with pX(x) = pY (y). Now, let Ψ : Ccrsf ′ → ΣcrsX
be the map induced by ψ. Note that the map ψ does induce Ψ , since
ψ(x ∧ (0)crs) = x ∧ (0)crs = ψ(f(x) ∧ (0)crs).

It remains to prove that Ψ ◦ Φ and Φ ◦ Ψ are coarsely homotopic to the
respective identity maps. Now, Ψ ◦ Φ : ΣcrsX → ΣcrsX is given by

(Ψ ◦ Φ)([x×R pX(x)e
π
2
is]) :=

{
[x′ ×R pY (f(x))e

π
2
i0], if 0 ≤ s ≤ 1

2

[x×R pX(x)e
π
2
i(2s−1)], if 1

2 < s ≤ 1,

where x′ is a point of ∗crs with pX(x) = pX(x′). And, this is obviously
coarsely homotopic to 1ΣcrsX .

On the other hand, Φ ◦ Ψ is given by the map induced by

x ∧ pX(x)e
π
2
is 7−→

{
f(x) ∧ pY (f(x))e

π
2
i(1−2s), if 0 ≤ s ≤ 1

2

x ∧ pX(x)e
π
2
i(2s−1), if 1

2 < s ≤ 1,

for points of ccrsX and for points of ccrsY by

y ∧ pY (y)e
π
2
it 7−→ [z],

where z is a point of the subset f(∗crs) with pY (y) = pY (z). To construct a
coarse homotopy F : Ccrsf ′ ×R IcrsR+

→ Ccrsf ′ , between Φ ◦ Ψ and 1Ccrs
f ′

, define
FX : ccrsX ×R IcrsR+

→ Ccrsf ′ by

FX(x ∧ pX(x)e
π
2
is, pX(x)e

π
2
it) = f(x) ∧ pY (f(x))e

π
2
i(1−2s−t(1−s)),

if 0 ≤ s ≤ (1− t)/(2− t) and by

FX(x ∧ pX(x)e
π
2
is, pX(x)e

π
2
it) = x ∧ pX(x)e

π
2
i(2s−1+t(1−s)),

if (1− t)/(2− t) < s ≤ 1. Next, we define FY : ccrsY ×R IcrsR+
→ Ccrsf ′ by

FY (y ∧ pY (y)e
π
2
is, pY (y)e

π
2
it) = y ∧ pY (y)e

π
2
i(1−t(1−s)), 0 ≤ s ≤ 1.

Now, to see that FX is a coarse map, one can first notice that it is induced
by a coarse map of (X ×R IcrsR+

)×R IcrsR+
→ Ccrsf ′ , i.e.,

(X ×R IcrsR+
)×R IcrsR+

a coarse map //

v×R1IcrsR+ ))RRRRRRRRRRRRRR
Ccrsf ′

ccrsX ×R IcrsR+

FX

88rrrrrrrrrrr

But, v ×R 1IcrsR+
is a coarse identification, since IcrsR+

is Hamband. So, Theo-
rem 2.2.10 implies that FX is a coarse map. Similarly, FY is a coarse map;
and since

FX(x ∧ (0)crs, pX(x)e
π
2
it) = f(x) ∧ pY (f(x))e

π
2
i(1−s)

= FY (f(x) ∧ (0)crs, pY (f(x))e
π
2
it),
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FX and FY together induce a coarse homotopy F : Ccrsf ′ ×R IcrsR+
→ Ccrsf ′ ,

which is a coarse map by an argument similar to that used for FX and FY .
Moreover, for s = 1,

FX(x ∧ (1)crs, pX(x)e
π
2
it) = [z],

where z is a point of the subset f(∗crs) with pX(x) = pY (z) and

FY (y ∧ (1)crs, pY (y)e
π
2
it) = [z′],

where z′ is a point of the subset f(∗crs) with pY (y) = pY (z′). So, F is a
pointed coarse homotopy; and clearly F is a coarse homotopy between Φ◦Ψ
and 1Ccrs

f ′
. Hence Φ and Ψ are coarse homotopy equivalences.

3.3 Coarse homotopy groups

In this section, we introduce coarse homotopy groups. As in the classical
algebraic topology, the central idea is to associate an algebraic situation to
a coarse situation, and to study the simpler resulting algebraic setup.

Let X and Y be pointed coarse topological R-spaces. Two coarse homo-
topy of X into Y can be “concatenated” if the first ends where the second
begins, of course, in a coarse sense. More precisely,

Definition 3.3.1. Let X and Y be pointed coarse topological R-spaces. If
F : X ×R IcrsR → Y and G : X ×R IcrsR → Y are two coarse homotopies such
that F ◦ i∗1 ∼cl G◦ i∗0, then define a coarse homotopy F ∗G : X×R IcrsR → Y ,
which is called the coarse concatenation of F and G, by

(F ∗G)(x, pX(x)e
π
2
is) :=

{
F (x, pX(x)eπis), 0 ≤ s ≤ 1

2

G(x, pX(x)e
π
2
i(2s−1)), 1

2 < s ≤ 1.

Showing that F ∗G is actually a coarse map is based on the same argument
we have seen in the proof of Theorem 3.1.2, therefore, we avoid repeating it
here.

One does not have to combine these coarse homotopies at s = 1
2 . We

can do it at any (s)crs, namely,

Lemma 3.3.2. Let φ1 and φ2 be Lipschitz maps (I, ∂I) → (I, ∂I) which
are equal on ∂I. Let F : X ×R IcrsR → Y be a coarse homotopy and
let Gk(x, pX(x)e

π
2
is) = F (x, pX(x)e

π
2
iφk(s)) for k = 1, 2. Then G1 'crs

G2 rel X ×R (s)crs for s = 0, 1.
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Proof. Note that the Lipschitz condition has been made to ensure that the
maps defined by re

π
2
is 7→ re

π
2
iφk(s) are coarse (see Example 3.1.7). It is easy

to check that the coarse map H : X ×R IcrsR ×R IcrsR → Y defined by

H(x, pX(x)e
π
2
it, pX(x)e

π
2
is) := F (x, pX(x)e

π
2
i(sφ2(t)+(1−s)φ1(t)))

is the required coarse homotopy.

We shall use C to denote a constant coarse homotopy, whichever one
makes sense in the current context. For example F ∗ C is coarse concate-
nation with the constant coarse homotopy C for which C(x, pX(x)e

π
2
is) =

F (x, pX(x)e
π
2
i1), but use of C∗F will imply the one for which C(x, pX(x)e

π
2
is)

= F (x, pX(x)e
π
2
i0). As in the classical case, we have

Proposition 3.3.3. Let X and Y be pointed coarse topological R-spaces and
let Fk, Gk : X ×R IcrsR → Y coarse homotopies for k = 1, 2.

(i) We have F1 ∗ C 'crs F1 rel X ×R (s)crs for s = 0, 1, and, similarly,
C ∗ F1 'crs F1 rel X ×R (s)crs for s = 0, 1.

(ii) Defining F−1
1 : X ×R IcrsR → Y by

F−1
1 (x, pX(x)e

π
2
is) := F1(x, pX(x)e

π
2
i(1−s)),

we have F1 ∗ F−1
1 'crs C rel X ×R (s)crs for s = 0, 1.

(iii) If the coarse concatenations F1 ∗ F2 and F2 ∗G1 are defined, we have
(F1 ∗ F2) ∗G1 'crs F1 ∗ (F2 ∗G1) rel X ×R (s)crs for s = 0, 1.

(iv) If F1 'crs F2 and G1 'crs G2 rel X ×R (s)crs for s = 0, 1, then

F1 ∗G1 'crs F2 ∗G2 rel X ×R (s)crs

for s = 0, 1.

Proof. They are easy applications of Lemma 3.3.2.

Let us denote the set of coarse homotopy classes of pointed coarse maps
of a pointed coarse topological R-space X to a pointed coarse topological
R-space Y , with coarse homotopies preserving the base points (by that,
we mean coarse homotopies rel ∗crs), by [X;Y ]crs∗ (we use this notation for
stress here. In the future we will drop the asterisk suffix, depending on
the context to make clear what is intended). For the moment let us set
A := X ×R İcrsR ∪ ∗crs ×R IcrsR .

If f, g : ΣcrsX → Y are pointed coarse maps, then they induce coarse
homotopies f ′, g′ : X×R IcrsR → Y by means of composition with the natural
map X ×R IcrsR → ΣcrsX. Then f ′ ∗ g′ : X ×R IcrsR → Y is defined. But this
map do not still induce a map ΣcrsX → Y , because of the way that it has
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been defined on s = 1 and on ∗crs ×R (s)crs for every 1
2 < s ≤ 1. But since

the coarse maps f and g are pointed, this can be easily fixed by defining
f ′ ∗ g′ at s = 1 as follows:

(f ′ ∗ g′)(x, pX(x)e
π
2
is) :=


f ′(x, pX(x)eπis), 0 ≤ s ≤ 1

2

g′(x, pX(x)e
π
2
i(2s−1)), 1

2 < s < 1 and x /∈ ∗crs
f ′(x, pX(x)e

π
2
is), s = 1 or x ∈ ∗crs.

The resulting pointed coarse map ΣcrsX → Y will be denoted by f ∗ g with
little danger of confusion.

For any coarse map f : (ΣcrsX,A) → (Y, ∗), we denote its homotopy
class in [ΣcrsX;Y ]crs∗ by [f ]crs. For two such maps f and g we define

[f ]crs · [g]crs = [f ∗ g]crs .

Of course, we must check that [f1]crs = [f2]crs and [g1]crs = [g2]crs imply
that [f1 ∗ g1]crs = [f2 ∗ g2]crs, but this follow from Proposition 3.3.3 (iv).

Given a pointed coarse topological R-space X, we can define the coarse
quotient R-space X/X. And, therefore, in a canonical way, we get a map
i∗ : R→ X/X. We define

Definition 3.3.4. Let X and Y be pointed coarse topological R-spaces. A
map c : X/X → Y is called coarse pre-constant if c ◦ i∗ ∼cl iY . Then, we
call the map X → Y induced by c by means of composition with the natural
map X → X/X, the coarse constant map to the basepoint of Y and we will
denote it by c∗.

Let c∗ : ΣcrsX → Y be the constant coarse map to the basepoint of Y .
Then, from the laws of coarse homotopies developed in Proposition 3.3.3,
we easily see that:

(associativity) [f ]crs · ([g]crs · [h]crs) = ([f ]crs · [g]crs) · [h]crs

(unity element) [c∗]
crs · [f ]crs = [f ]crs = [f ]crs · [c∗]crs

(inverse) [f ]crs ·
[
f−1

]crs = [c∗]
crs.

(Recall that f−1 stands here for the “inverse” coarse homotopy with time
running the opposite way to that in f , and not to an inverse function.)

Thus, under this operation, the set [ΣcrsX;Y ]crs∗ of pointed coarse ho-
motopy classes of pointed coarse maps ΣcrsX → Y , becomes a group.

The most important special case of the foregoing is that of coarse sus-
pensions of coarse spheres. Let S0

R denote the coarse 0-sphere, RqR, having
the second copy of the ray R as its basepoint. Because of Theorem 3.2.5, we
can for the purposes of this section, define the pointed coarse n-sphere, SnR,
to be the n-fold reduced coarse suspension of S0

R. Thus, as a special case of
the foregoing discussion, we can define
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Definition 3.3.5. Let (X, ∗crs) be a pointed coarse topological R-space.
For every n ≥ 0, we define

πcrsn (X, ∗crs) := [SnR;X]crs∗ .

We shall usually abbreviate πcrsn (X, ∗crs) to πcrsn (X). By the above discus-
sion, when n ≥ 1, πcrsn (X) is a group and is called the nth coarse homotopy
group of X.

As in the classical case, the general problem of computing coarse ho-
motopy groups is very difficult. The most important cases are the groups
πcrsk (SnR+

) which will be our task in the next chapter.

Given a pointed coarse map h : X → Y between two pointed coarse topo-
logical R-spaces X and Y , one can easily see that h induces homomorphisms
h∗ : πcrsn (X, ∗crs)→ πcrsn (Y, ∗crs) defined by [f ]crs 7→ [h ◦ f ]crs. Moreover, if
X ∼=crs Y , then, obviously, πcrsn (X, ∗crs) ∼= πcrsn (Y, ∗crs). Sadly, if there ex-
ists a coarse homotopy equivalence between two pointed coarse topological
R-spaces X and Y , we cannot conclude that πcrsn (X, ∗crs) ∼= πcrsn (Y, ∗crs).
To see this, let f : X → Y be a coarse equivalence between X and Y with
the inverse g : Y → X. To show that f∗ : πcrsn (X, ∗crs) → πcrsn (Y, ∗crs) is
an isomorphism, at some step we need to conclude from g ◦ f 'crs 1X that
(g ◦ f) ◦ γ 'crs γ, where γ is a representative of an element of πcrsn (X, ∗crs).
But, from Theorem 3.1.5 we know that in general this is not the case
unless the representative γ is compatible with the basepoint projections.
Therefore, if for pointed coarse topological R-spaces X and Y , each el-
ement of πcrsn (X, ∗crs) and πcrsn (X, ∗crs) can be represented by a pointed
coarse map which is compatible with the basepoint projections, then the
existence of a coarse homotopy equivalence between X and Y guarantees
that πcrsn (X, ∗crs) ∼= πcrsn (Y, ∗crs).

Definition 3.3.6. A pointed coarse pair (X,A) consists of a pointed coarse
topological R-space X together with a closed subset A of X equipped with
the subspace coarse structure such that iX(R) ⊆ A, where iX : R → X is
the basepoint inclusion of X. Given pointed coarse pairs (X,A) and (Y,B),
a map of coarse pairs f : (X,A) → (Y,B) is a coarse map f : X → Y such
that f(A) ⊆ B. Moreover, we call a map of coarse pairs f : (X,A)→ (Y,B)
pointed if f : X → Y is pointed.

All we have done goes over immediately to the case of pointed coarse
pairs (X,A), namely

Definition 3.3.7. If (X,A) and (Y,B) are pointed coarse pairs, then

[(X,A, ∗crs); (Y,B, ∗crs)]crs∗
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is the set of all pointed coarse homotopy classes of pointed maps of coarse
pairs β : (X,A, ∗crs) → (Y,B, ∗crs). We often suppress basepoints and
parentheses and write [X,A;Y,B]crs∗ . In particular, we define the relative
coarse homotopy group of a pointed coarse pair (X,A) to be

πcrsn (X,A, ∗crs) :=
[
Dn
R, S

n−1
R ;X,A

]crs
∗ =

[
Σcrs(Dn−1

R , Sn−2
R );X,A

)
]crs∗ ,

(we usually abbreviate πcrsn (X,A, ∗crs) to πcrsn (X,A)). This is a group for
n ≥ 2.

3.4 The coarse homotopy sequence of a coarse pair

In this section we develop an exact sequence of coarse homotopy groups
analogous to the exact coarse homology sequence of a coarse pair. It is,
of course, an indispensable tool in the study of coarse homotopy groups.
Everything in this section is in the pointed setup.

Definition 3.4.1. Let
A

f−→ B
g−→ C

be a sequence of pointed coarse topological R-spaces (or pointed coarse
pairs) such that the pointed coarse maps are compatible with basepoint
projections. It is called coexact if, for each pointed coarse topological R-
space (or coarse pair) Y , the sequence of sets (pointed coarse homotopy
classes)

[C;Y ]crs∗
g]−→ [B;Y ]crs∗

f]−→ [A;Y ]crs∗

is exact, i.e., Im(g]) = (f ])−1(c∗), where c∗ is the coarse constant map to
the basepoint of Y .

Theorem 3.4.2. Let A and X be pointed proper coarse topological R-spaces
with A unital. For any pointed coarse map f : A → X strongly compatible
with the basepoint projections, the sequence

A
f−→ X

f ′−→ Ccrsf

is coexact, where f ′ : X −→ Ccrsf is the inclusion map of X in Ccrsf .

Proof. Clearly, f ′ ◦ f 'crs c∗, the coarse constant map to the basepoint of
Ccrsf , so Im(g]) ⊆ (f ])−1(c∗). Suppose given a pointed coarse map φ : X →
Y with φ ◦ f 'crs c∗ via the pointed coarse homotopy F : A ×R IcrsR → Y ,
i.e., F ◦ i∗0 ∼cl φ ◦ f and F ◦ i∗1 ∼cl c∗. Then F on A×R (IcrsR \ (0)crs) and φ
on X fit together to give a map Ccrsf → Y extending φ.

Note that since the inclusion maps are strongly compatible with the
basepoint projections and because the inverse image of bounded subsets
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under the inclusion maps are bounded, therefore the construction of Ccrsf

can be iterated, that is we obtain a long sequence of proper coarse topological
R-spaces and coarse maps

A
f−→ X

f ′−→ Ccrsf
f ′′−→ Ccrsf ′

f (3)

−→ Ccrsf ′′ −→ · · · .

Therefore, by above theorem, we have

Corollary 3.4.3. Let A and X be pointed proper coarse topological R-spaces
with A unital. For any pointed coarse map f : A → X strongly compatible
with the basepoint projections, the sequence

A
f−→ X

f ′−→ Ccrsf
f ′′−→ Ccrsf ′

f (3)

−→ Ccrsf ′′ −→ · · ·

is coexact.

In addition, if all spaces are pointed proper coarse topological R+-spaces,
then from Theorem 3.2.9 follows that Ccrsf ′′ 'crs ΣcrsX, Ccrs

f (3) 'crs ΣcrsCcrsf ,
and so on; in fact each proper coarse topological R+-space in the sequence

A
f−→ X

f ′−→ Ccrsf
f ′′−→ Ccrsf ′

f (3)

−→ Ccrsf ′′ −→ · · ·

can be identified, up to coarse homotopy equivalence, with an iterated coarse
suspension of A, X or Ccrsf .

Proposition 3.4.4. Let A and X be pointed proper coarse topological R+-
spaces with A unital. For any pointed coarse map f : A → X strongly
compatible with the basepoint projections, the diagram

Ccrsf ′
f (3)

// Ccrsf ′′

Ψ

��
ΣcrsA

Φ

OO

[f×Rυ]
// ΣcrsX

is coarse homotopy commutative, where Φ and Ψ are coarse homotopy equiv-
alences defined as in Theorem 3.2.9, and where υ : IcrsR+

→ IcrsR+
is defined by

υ(re
π
2
is) = re

π
2
i(1−s) for 0 ≤ s ≤ 1.

Proof. Looking at the way that Ψ has been defined in Theorem 3.2.9 shows
that Ψ ◦ f (3) maps points of Ccrsf to the basepoint of ΣcrsX as in Equa-
tion (3.2.2), and points of ccsrX to ΣcrsX by the rule x ∧ pX(x)e

π
2
is 7→

[x×R pX(x)e
π
2
is] as in Equation (3.2.1). Thus

(Ψ◦f (3)◦ Φ)([a×RpA(a)e
π
2
is]) =

{
[f(a)×R pX(f(a))e

π
2
i(1−2s)], if 0 ≤ s ≤ 1

2

[x×R pX(x)e
π
2
i1], if 1

2 < s ≤ 1,
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where x is a point of ∗crs with pX(x) = pA(a). Therefore, Ψ ◦ f (3) ◦ Φ =
[f ×R ῡ], where ῡ : IcrsR+

→ IcrsR+
is defined by

ῡ(re
π
2
is) =

{
re

π
2
i(1−2s), if 0 ≤ s ≤ 1

2

re
π
2
i0, if 1

2 ≤ s ≤ 1.

But υ 'crs ῡ by an obvious coarse homotopy, so that [f ×R υ] 'crs [f ×R
ῡ].

Theorem 3.4.5. Let A and X be pointed proper coarse topological R+-
spaces with A unital. For any pointed coarse map f : A → X strongly
compatible with the basepoint projections, the sequence

A
f // X

f1 // Ccrsf
f2 // ΣcrsA

[f×R1] // ΣcrsX
[f1×R1] // ΣcrsCcrsf −→

is coexact, where f1 := f ′ and f2 := Ψ ◦ f ′′. Similarly, for coarse maps of
coarse pairs of pointed proper coarse topological R+-spaces.

Proof. Let Y be a pointed coarse topological R+-space. Consider the dia-
gram

· · · // [ΣcrsX;Y ]crs∗
([f×Rυ])] //

Ψ]

��

[ΣcrsA;Y ]crs∗
(f2)] //

Ψ]

��

[Ccrsf ;Y ]crs∗

· · · // [Ccrsf ′′ ;Y ]crs∗
(f (3))]

// [Ccrsf ′ ;Y ]crs∗
(f ′′)]

77ooooooooooo

(f1)] // [X;Y ]crs∗
(f)] // [A;Y ]crs∗ .

By Proposition 3.4.4 this diagram is commutative; and each Ψ ] is a one-one
correspondence. Therefore, the upper row is an exact sequence. But

[f ×R υ] = [f ×R 1] ◦ [1×R υ] : ΣcrsA→ ΣcrsX,

and
([1×R υ])] : [ΣcrsA;Y ]crs∗ → [ΣcrsA;Y ]crs∗

is the function that sends each element into its inverse (note that [ΣcrsA;Y ]crs∗
is a group). Since the image of ([f ×R 1])] : [ΣcrsX;Y ]crs∗ → [ΣcrsA;Y ]crs∗
is a subgroup, this means that Im([f ×R 1])] = Im([f ×R υ])]; also, (([f ×R
1])])−1(c∗) = (([f ×R υ])])−1(c∗). Thus ([f ×R υ])] can be replaced by
([f ×R 1])] without sacrificing exactness. Note that the upper row is an
exact sequence of groups as far as [ΣcrsA;Y ]crs∗ , and an exact sequence of
abelian groups as far as [Σcrs(ΣcrsA);Y ]crs∗ .
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Thus a coarse map of coarse pairs f : (A,A′)→ (X,X ′) with f ′ = f |A′ ,
gives the coarse pair of coarse mapping cones (Ccrsf , Ccrsf ′ ), and for a pointed
coarse pair (Y,B), there is the exact sequence of sets

· · · → [(Σcrs)2X, (Σcrs)2X ′;Y,B]crs∗ → [(Σcrs)2A, (Σcrs)2A′;Y,B]crs∗
→ [ΣcrsCcrsf ,ΣcrsCcrsf ′ ;Y,B]crs∗ → [ΣcrsX,Σcrs)X ′;Y,B]crs∗
→ [ΣcrsA,ΣcrsA′;Y,B]crs∗ → [Ccrsf , Ccrsf ′ ;Y,B]crs∗ → [X,X ′;Y,B]crs∗
→ [A,A′;Y,B]crs∗ ,

where the terms involving coarse suspensions consists of groups and homo-
morphisms. The rest contains only pointed sets and maps.

Consider the special case of the inclusion f : (S0
R+
, S0

R+
)→ (D1

R+
, S0

R+
).

Clearly, the coarse mapping cone Ccrsf is coarse homotopy equivalent to the
coarse pair (S1

R+
, ∗crs). Thus we have the coexact sequence

(S0
R+
, S0

R+
)→ (D1

R+
, S0

R+
)→ (S1

R+
, ∗crs)→ (S1

R+
, S1

R+
)→ (D2

R+
, S1

R+
),

where the second map is the result of coarse collapsing S0
R+

to the basepoint.
By coarse suspending this n− 1 times, we get the coexact sequence

(Sn−1
R+

, Sn−1
R+

)→ (Dn
R+
, Sn−1

R+
)→ (SnR+

, ∗crs)→ (SnR+
, SnR+

)→ (Dn+1
R+

, SnR+
).

All these fit together to give a long coexact sequence. Now

[SnR+
, SnR+

;Y,B]crs∗ = [SnR+
;B]crs∗ = πcrsn (B),

[SnR+
, ∗crs;Y,B]crs∗ = [SnR+

;Y ]crs∗ = πcrsn (Y ),

[Dn
R+
, Sn−1

R+
;Y,B]crs∗ = πcrsn (Y,B).

Therefore, we obtain the “exact coarse homotopy sequence” of the coarse
pair (Y,B):

· · · → πcrsn+1(Y,B)→ πcrsn (B)
i]−→ πcrsn (Y )

j]−→ πcrsn (Y,B)
∂]−→ πcrsn−1(B)→ · · ·

· · · → πcrs1 (Y,B)→ πcrs0 (B)→ πcrs0 (Y ),

where all are groups and homomorphisms until the last three, which are
only pointed sets and maps. Tracing through the definitions shows easily
that i] is induced by the inclusion B ↪→ Y , j] is induced by the inclusion
(Y, ∗crs)→ (Y,B), and ∂] is induced by the restriction to Sn−1

R+
⊆ Dn

R+
.





Chapter 4

Calculating of the coarse
homotopy groups of the
coarse spheres Sn

R+

Chapter 3 was concerned with general results on coarse homotopy theory
including some principal notions such as the coarse suspensions, coarse map-
ping cone, coarse homotopy groups, exact sequences of coarse pairs, and
some of their properties. As in the classical case, the general problem of cal-
culating coarse homotopy groups is very difficult, but is reasonably manage-
able provided that we confine our attention to fairly “well-behaved” coarse
topological spaces such as coarse CW-complexes. But, as in the classical
case, it is not possible to get very far without knowing the groups πcrsr (SnR+

),
at least for r ≤ n, therefore, as the first step, we shall prove that

πcrsr (SnR+
) ∼=

{
Z, r = n

0, r < n.

Then in the next chapter we will pursue these ideas further, so as to ob-
tain more precise results when the spaces involved are coarse CW-complexes.

Our first goal is to introduce for each integer r ≥ 1, a discrete subset of
the coarse sphere SrR+

, denoted by (SrR+
)dis, such that it sits coarsely dense1

in SrR+
, but considering each point x of (SrR+

)dis, there is no other point of
(SrR+

)dis lies within π/24 of x. Obviously, (SrR+
)dis and SrR+

are coarsely
equivalent.

We start with r = 1. For each m ∈ Z+ (by Z+, we mean the set of
positive integers), let Sm be the circle of radius m centered at the origin and

1A subset Z of a metric space Y is called coarsely dense if there is some R > 0 such
that every point of Y lies within R of a point of Z. Then, we say Z sits coarsely dense in
Y with constant R.

55
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let sm,0 := (m, 0). Assume that the points sm,k, k = 1, · · · , 12m − 1, have
been chosen on the circle Sm such that

(i) the inclination of the straight line passing through the origin and the
point sm,1 is π/6m;

(ii) the points sm,k, k = 0, 1, · · · , 12m − 1, form a partition, denoted by
(Sm)dis, of the circumference of the circle Sm into 12m archs with the
same length π/6.

We define (S1
R+

)dis to be the set
⋃

m∈Z+

(Sm)dis. Obviously, the inclusion

i : (S1
R+

)dis → S1
R+

is a coarse equivalence, i.e., (S1
R+

)dis is coarsely equiv-
alent to S1

R+
. Next, we introduce a special discrete subset of the coarse

product S1
R+
×R+ I

crs
R+

which we will denote it by (S1
R+

)dis ×R+ (IcrsR+
)dis. To

do it, we first consider the discrete subset (IcrsR+
)dis of IcrsR+

which is a set con-
taining those points of

⋃
m∈Z+

(Sm)dis having non-negative components, i.e.,

(IcrsR+
)dis :=

⋃
m∈Z+

Im, where Im := {im,j := sm,j | j = 0, 1, · · · , 3m}. Now, by

the definition of the coarse product ×R+ :

(S1
R+

)dis ×R+ (IcrsR+
)dis :=

⋃
m∈Z+

j=0,1,··· ,3m

Sjm,

where Sjm :=
{
sm,k ×R+ im,j := (sm,k, im,j)| k = 0, 1, · · · , 12m− 1

}
. We call

each point im,j a time-unit, that is, for each fixed m ∈ Z+, we have 3m+ 1
time-units im,j , j = 0, 1, · · · , 3m, each of them represents a copy of (Sm)dis in
(S1

R+
)dis×R+(IcrsR+

)dis. The reason that we wrote the elements of (S1
R+

)dis×R+

(IcrsR+
)dis as sm,k×R+ im,j is to remind ourselves the structure of entourages in

×R+ . More precisely, by writing
∥∥sm,k ×R+ im,j − sm′,k′ ×R+ im′,j′

∥∥
R+
≤ S,

we mean that
∥∥sm,k − sm′,k′∥∥ ≤ S and

∥∥im,j − im′,j′∥∥ ≤ S.
With a little work, one can generalise the above idea to introduce (SrR+

)dis
with the desired properties for each integer r > 1. But, to keep this part
short, we content ourselves with giving some hints for the case r = 2: we
first discretize the xy-plane as we did above. Then, we keep doing this for
all planes passing through the antipodal points and the z-axis. Then comes
some hand works, namely removing some points carefully out such that

(i) for each m ∈ Z+, the set consisting of the remaining points lying on
the sphere of radius m centered at the origin, Sm, sit coarsely dense
in Sm with constant π/6; and

(ii) for each point x of (S2
R+

)dis, there is no other point of (S2
R+

)dis lies
within π/24 of x.
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For later use, we fix some notations: for each m ∈ Z+, let Sm be the sphere
of radius m in Rr+1 centered at the origin. We again denote the points of
(SrR+

)dis by sm,k while the index k here is a tuple (k1, k2, · · · , kr), where
ki = 1, · · · , 12m − 1, for each i = 1, 2, · · · , r. Similarly, we continue using
the notations Sjm and sm,k ×R im,j , while in order to remind ourselves that
k is not a positive integer but a tuple we will write k ∈ C(Sm).

The following lemma comes from [Roe03](Lemma 1.10) and plays an
important role in this chapter.

Lemma 4.0.1. Let X be a length space2, Y any metric space. Then the
following properties of a set map f : X → Y are equivalent:

(a) f is large-scale Lipschitz3;

(b) f preserves entourages;

(c) There exists S,L > 0 such that d(x, x′) < S ⇒ d(f(x), f(x′)) < L.

Therefore, if we define a map F on (SrR+
)dis×R+ (IcrsR+

)dis and then extend
it affinely on the whole of SrR+

×R+ I
crs
R+

, to show that it preserves entourages
it is enough to find S,L > 0 such that∥∥sm,k ×R+ im,j − sm′,k′ ×R+ im′,j′

∥∥
R
≤ S ⇒∥∥F (sm,k ×R+ im,j)− F (sm′,k′ ×R+ im′,j′)

∥∥ < L.
For simplicity, we take unless otherwise stated Sc := 2 as the positive real
number S above up to which we consider a neighboring of each point of
(SrR+

)dis. The following are obvious:

B(sm,k;Sc) ∩ (Sp)dis 6= ∅, if p = m− 1,m,m+ 1
B(sm,k;Sc) ∩ (Sp)dis = ∅, otherwise,

for each k ∈ C(Sm). In the future, by ŝm,k, we mean an arbitrary element
of the set B(sm,k;Sc) ∩ (S1

R)dis.

The next simple Example gives us some elementary ideas about what we
are going to deal with in this chapter.

2A (connected) metric space X is called length space if the distance between any two
points, of X is equal to the infimum of the lengths of the curves joining them.

3One says that f : X → Y is large-scale Lipschitz if there are positive constants c and
A such that

d(f(x), f(x′)) ≤ cd(x, x′) + A.
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Example 4.0.2. If η : R+ → R+ is a coarse map, then η is coarsely homo-
topic to the identity map.

Proof. Without lose of generality, we can assume that η(0) = 0 because
otherwise we can find a coarse map η′ : R+ → R+ which is close to η and
η′(0) = 0, and then we can start from η′. We shall define a coarse map
F : R+ ×R+ IcrsR+

→ R+ such that F ◦ i∗0 ∼cl η and F ◦ i∗1 ∼cl 1R+ . For
each integer n ≥ 0, set sn := n. We use the subset {sn|n ≥ 0} as (R+)dis.
Obviously, it is enough to define F on (R+)dis ×R+ (IcrsR+

)dis such that

• for every integer n ≥ 0, F ((sn ×R+ in,0)) = η(n), and F ((sn ×R+

in,3n)) = n; and

• the map F |(R+)dis×R+
(IcrsR+

)dis preserves entourages; and

• the inverse image (F |(R+)dis×R+
Icrsdis

)−1(K) of every finite subset K ⊆
R+ is again finite.

Because then we can extend it to a coarse map with the desired properties.
For simplicity, set ηn := η(n), for each integer n ≥ 0. Since η is a coarse
map, so there is a positive real number L such that ηm+1 ∈ [ηm − L, ηm + L],
for every integer m ≥ 0. For simplicity, for each integer n ≥ 0 and each j,
j = 0, 1, · · · , 3n, we denote the value of F at sn×R+ in,j by Fn,j . Clearly, we
define Fn,0 := ηn and Fn,3n := n, for every integer n ≥ 0. We define Fk,j by
induction on k starting from k = 1. Choose a positive real number M > 0
which is bigger than L+ 1/2. Define

F1,1 = F1,2 :=


F1,0 −M, if F1,0 − F1,3 > M

F1,0 +M, if F1,3 − F1,0 > M

F1,3, otherwise.

Since |F1,0 − F1,3| ≤ L+ 1, clearly |F1,0 − F1,1| ≤M and |F1,3 − F1,1| ≤M .
Now assume that Fk,j has been defined for k = n and every j = 0, · · · , 3n
such that

Fn,j+1 =


Fn,j −M, if Fn,j − Fn,3n > M

Fn,j +M, if Fn,3n − Fn,j > M

Fn,3n, otherwise.

(4.0.1)

Now we shall define Fk,j for k = n+ 1 and for each j = 1, · · · , 3(n+ 1)− 1
such that (4.0.1) holds. The critical point is that∣∣∣∣Fn+1,0 − Fn+1,3(n+1)

∣∣− |Fn,0 − Fn,3n|∣∣ ≤ L+ 1,

while we have three more time-units in n + 1-step in compare with the
previous step. Therefore, we can overcome the difference and define Fn+1,j

for every j = 1, · · · , 3(n + 1) as in (4.0.1) and this complete the induction.
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Clearly, for each integer k ≥ 0 and for each j, j = 0, · · · , 3k, the distance of
Fk,j from each of the points Fk±1,j−1, Fk±1,j and Fk±1,j+1 is smaller than
L+M . In the next step, we can easily extend F affinely on R+×R+ I

crs
R+

. The
inverse image of bounded subsets under F are clearly bounded. On the other
hand, choosing S > 0 small enough, one can easily see that the only values
of F needed to compare are the ones we have already compared above, that
is F preserves entourages. Moreover, F ◦ i∗0 ∼cl η and F ◦ i∗1 ∼cl 1R+ .

Now, suppose given a pointed coarse map η : S1
R+
→ S1

R+
. Consider

the restriction of η on (S1
R+

)dis and suppose that Sc > 0 is the constant
we introduced above. Since η is coarsely uniform, therefore there exists a
positive real number L > 0 such that ‖η(sm,k)− η(ŝm,k)‖ ≤ L for every
m ∈ Z+ and k = 0, · · · , 12m − 1. On the other hand, since the coarse
map η is pointed, therefore there exists a positive real number M > 0 such
that ‖η(sm,0)− sm,0‖ ≤ M for every m ∈ Z+. Coarsely properness of η
implies that for each T > 0, there is a positive integer m0 ∈ Z+ such that
η((Sk)dis) ∩ Sl = ∅ for every k ≥ m0 and l ≤ T , where Sl is the circle of
radius l centered at the origin. Now, we first choose T0 > 0 big enough
such that π × (L+M)/4T0 is small enough; and then assume that m0 is a
positive integer having above property with respect to T0 with this additional
property that 1000π/m0 is small enough. Let us remark that some of the
above required conditions have been made for the later use in the proof of
the main theorem and not necessarily for what is coming in below.

Now, for each positive integer t ≥ m0, we assign to η|(St)dis a continuous
pointed map η̃t : S1 → S1 as follows: Let s̃t,k be the projection of the point
st,k on S1 where k = 0, · · · , 12t− 1. We define η̃t(s̃t,k) to be the projection
of the point η(st,k) on S1. Since for each k, k = 0, · · · , 12t − 1, the point
η(st,k) lies outside of the circle of radius T0 centered at the origin and because
‖η(st,k)− η(st,k+1)‖ ≤ L and L is small enough relative to T0, therefore for
each pair of points (η̃t(s̃t,k), η̃t(s̃t,k+1)) on S1 there is a unique path with
the smallest length joining them. As the next step, we extend the map η̃t
affinely on each arc joining points s̃t,k and s̃t,k+1, for each k = 0, · · · , 12t−2.
And, finally, to get a pointed continuous map η̃t : S1 → S1, we define η̃t
affinely on the arc joining points (1, 0) and st,0 and on the arc joining points
st,12t−1 and (1, 0). Note that each η̃t : S1 → S1, t ≥ m0, can be defined so
as to be also Lipschitz. Now the claim is

Lemma 4.0.3. If η : S1
R+
→ S1

R+
is a pointed coarse map, then there is a

positive integer m0 such that deg(η̃t) is a fixed integer for every t ≥ m0.

Proof. Let T0 and m0 be the integers appeared above and let deg(η̃m0) =
q ∈ Z. One can easily show by induction on t starting from m0 that

deg(η̃t) = q,

for every t > m0.
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Remark 4.0.4. Note that one can similarly assign to any pointed coarse
map η : SrR+

→ SnR+
a family of pointed Lipschitz maps {η̃t : Sr → Sn| t ∈

Z and t ≥ m0 for some positive integer m0}. Moreover, the similar state-
ment as in above holds if r = n.

Now we are ready to prove the main theorem of this chapter, namely

Theorem 4.0.5. Let SnR+
be the coarse sphere of dimension n equipped with

the bounded coarse structure. Then

πcrsr (SnR+
) ∼= πr(Sn),

for all r ≤ n.

Proof. We shall construct an isomorphism Φ : πr(Sn, ∗) → πcrsr (SnR+
, ∗crs).

For this purpose, we define Φ as follows and we will show that it is actually
an isomorphism. Considering any element of πr(Sn, ∗), we choose a repre-
sentative f : (Sr, ∗) → (Sn, ∗) of this equivalence class which is Lipschitz.
We assign to f a map f̃ : SrR+

→ SnR+
defined as follows:

f̃(x) :=

{
rf(x̃), if x 6= 0 and x = rx̃

0, if x = 0,

where x̃ is the point where the ray emanating from the origin and passing
through the point x meets Sr. That the map f is Lipschitz guarantees that
the map f̃ is a coarse map. Moreover, f̃ is pointed because f is.

To see that Φ is well-defined, suppose that f, g : (Sr, ∗) → (Sn, ∗) are
two pointed Lipschitz maps which are homotop. From the classical algebraic
topology, we know that there exists a pointed homotopy F : Sr × I → Sn

between f and g which is Lipschitz. Then, the map F̃ : SrR+
×R+ I

crs
R+
→ SnR+

defined as follows clearly provides a coarse homotopy rel ∗crs between the
coarse maps f̃ and g̃.

F̃ (rx̃, rt̃) :=

{
rF (x̃, t̃), if r 6= 0
0, if r = 0,

where by x̃ and t̃ we mean exactly what we have introduced above.

The map Φ is surjective. Let η : (SrR, ∗crs) → (SnR, ∗crs) be a pointed
coarse map. As we have seen before, we can assign to η : (SrR, ∗crs) →
(SnR, ∗crs) a family of pointed Lipschitz maps {η̃t : Sr → Sn| t ∈ Z and t ≥
m0 for some positive integer m0}. Moreover, let positive integers T0 and
m0 be the ones which appeared in the construction of η̃t’s. For simplicity,
we denote η̃m0 by f . We claim

Φ([f ]) = [η]crs .
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We shall therefore define a coarse map F : SrR+
×R+ I

crs
R+
→ SnR+

(rel ∗crs)
with F ◦ i∗0 ∼cl η and F ◦ i∗1 ∼cl f̃ . For it, we will first define F on Sjm,
j = 0, 1, · · · , 3m, by induction on m starting from m0 and then we will
extend it affinely on the whole of SrR+

×R+ I
crs
R+

. To be precise, P (m) is the
following assertion:

There exist a real number L > 0 (depending only on the real number
Sc > 0) and an entourage E ∈ ESnR+

such that for each m ∈ Z+, m ≥ m0,

we can define F on Sjm, j = 0, 1, · · · , 3m, with the following properties:

(i) ∀k ∈ C(Sm): F (sm,k ×R+ im,0) = η(sm,k) and F (sm,k ×R+ im,3m) =
f̃(sm,k);

(ii) if
∥∥sm,k ×R+ im,j − sm′,k′ ×R+ im′,j′

∥∥
R
≤ Sc, then∥∥F (sm,k ×R+ im,j)− F (sm′,k′ ×R+ im′,j′)

∥∥ < L,
where m′ = m− 1,m;

(iii) there exists a function ω : N → R+, defined inductively, which is
coarsely proper and for each positive integer m, m ≥ m0, the following
holds:

∀k ∈ C(Sm), ∀j, j = 0, 1, · · · , 3m :
∥∥F (sm,k ×R+ im,j)

∥∥ ≥ ω(m);

(iv) for each positive integer m, m ≥ m0, the following holds:

∀j, j = 0, 1, · · · , 3m, (F (sm,0 ×R+ im,j), sm,0) ∈ E,

where the set {sm,0| m ∈ Z+} represents the basepoint of SrR+
as well

as the basepoint of SnR+
.

The fourth condition implies that the coarse homotopy F is rel ∗crs, the third
one guarantees coarsely properness of F , while, by the discussion came after
Lemma 4.0.1, the second condition guarantees that F is coarsely uniform.

We first introduce some notations. For each point sm,k ∈ (SrR+
)dis,

m ≥ m0, k ∈ C(Sm), we introduce a finite sequence of points (apm,k)
m
p=m0

of
(SrR+

)dis defined as follows: Let Srp be the sphere of radius p centered at the
origin in Rr+1. Assume that for each p, m0 ≤ p ≤ m, bpm,k is the point where
the ray emanating from the origin passing through the point sm,k meets the
sphere Srp . Now, for each p, m0 ≤ p ≤ m, we define apm,k to be a point of
(Sp)dis with the minimum distance from bpm,k. Note that it is possible that
more than one point of (Sp)dis have the same minimum distance from bpm,k,
then in this case we just introduce one of them as the point apm,k. Clearly,
amm,k = sm,k. Now, for each m ∈ Z+, m ≥ m0, set

cm := min
k∈C(Sm)

{
‖η(sm,k)‖ ,

∥∥∥f̃(sm,k)
∥∥∥} ,
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and let Sncm be the sphere of radius cm centered at the origin in Rn+1.
Moreover, assume that tlm,k is the point where the ray radiating from the
origin and passing through the point η(sm,k) meets the sphere Sncl and (t′)lm,k
is the point where the ray radiating from the origin and passing through the
point f̃(sm,k) meets the sphere Sncl . We will denote the line segment joining
two points η(sm,k) and tlm,k by I lm,k and the line segment joining two points
(t′)lm,k and f̃(sm,k) by (I ′)lm,k. Note that for fixed m and cl, all line segments
(I ′)lm,k, k ∈ C(Sm), have the same length. Now, let C be a curve in Rn+1 and
assume that Snp1 and Snp2 are again spheres of radius p1 and p2 respectively
with p1 ≤ p2. By Cp1}p2 , we mean that part of C which is on or between
the two spheres Snp1 and Snp2 , that is

Cp1}p2 := {x ∈ C| p1 ≤ ‖x‖ ≤ p2},

which, of course, can be an empty set. Furthermore, by C�pi , we mean
the projection of Cp1}p2 on Snpi (by projection, we mean for each point of
C which lies on or between the two spheres Snp1 and Snp2 finding the point
where the ray radiating from the origin and passing through that point of
C meets the sphere Snpi).

As the first step, we define F on Sjm0 , j = 0, 1, · · · , 3m0. Clearly, for
each k ∈ C(Sm0), the points tm0

m0,k
and (t′)m0

m0,k
coincide. Now, for each

k ∈ C(Sm0), let Cm0,k be the curve which joins two points η(sm0,k) and
f̃(sm0,k) and consists of two line segments Im0

m0,k
and (I ′)m0

m0,k
. Set

Lm0 := max
k∈C(Sm0 )

{∥∥∥η(sm0,k)− t
m0
m0,k

∥∥∥+
∥∥∥f̃(sm0,k)− (t′)m0

m0,k

∥∥∥} ,
and let L and M be the constant which we have introduced before and let L′

be the corresponding constant for the coarse map f̃ . Next, we take N > 0
big enough in compare with 2π × (L + M + L′) and of course bigger than
Lm0
3m0

. Now, for each k ∈ C(Sm0), we partition the curve Cm0,k as follows:
considering each curve Cm0,k as a straight line segment, we start partitioning
Cm0,k from the point η(sm0,k) and we choose the points of the partition such
that all the partition segments have the same length N except possibly the
last segment which has the length smaller than N . That is, ξ0

m0,k
= η(sm0,k)

and ξjkm0,k
= f̃(sm0,k) for some jk. Choosing N bigger than Lm0

3m0
guarantees

that for each k ∈ C(Sm0) the index jk is not bigger than 3m0 which in the
other words means that for each k ∈ C(Sm0), 3m0 + 1 time-units that we
have available at the step m0 is enough to get from η(sm0,k) to f̃(sm0,k).
For the k’s in C(Sm0) which ξjkm0,k

= f̃(sm0,k) for some jk < 3m0, we define

ξjm0,k
:= f̃(sm0,k) for every j, j = jk + 1, · · · , 3m0. Now we define F on Sjm0

as follows:
F (sm0,k ×R+ im0,j) := ξjm0,k

,
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for every k ∈ C(Sm0) and every j, j = 0, 1, · · · , 3m0. Obviously, the condi-
tions (i)-(iv) are fulfilled for L := 8N , E := {(x, y) ∈ SnR+

× SnR+
| ‖x− y‖ ≤

M} and ω(m0) := cm0 .

Before going through the details of the proof, let us give a outline of it.
Note that having defined F on Sjm0 already suggests a way to define F on
Sjm0+1 which is simply by using the points am0

m0+1,k to define F on S1
m0+1 and

then by using the way that F has been defined on Sjm0 to reach f̃ |(Sm0 )dis

and finally use again the points am0
m0+1,k to define F on S

3(m0+1)+1
m0+1 in the

desired way to reach f̃ |(Sm0+1)dis and the important fact here is that going
one step further we have three more time-units available which allowed us to
do as above. But, obviously, we cannot use this strategy to define F on Sjm
for every m because then it fails to be coarsely proper. And this is where
the sequence (cm)m≥m0 comes to play. The rough idea is to introduce a
coarsely proper function ω : N→ R+ which is the desired function stated in
(iii) by using the sequence (cm)m≥m0 which is as a function coarsely proper.
So, roughly speaking, the main problem that we are facing is introducing
the function ω : N→ R+ step by step and then at each step m, m > m0, in-
troducing special curves which for every k ∈ C(Sm) join the points η(sm, k)
and f̃(sm,k), and which live outside and on the sphere Snω(m) and have some
nice properties. In the following, we will make the above ideas precise.

First, we introduce a sequence (Mi)∞i=0 of positive integers, inductively,
as follows: setting M−1 := 0, we define Mi, i = 0, 1, 2, · · · , to be the
smallest positive integer such that

η((Sm)dis) ∩ Sl = ∅ and f̃((Sm)dis) ∩ Sl = ∅,

for every integer m ≥ m0 +Mi and every l ≤ cm0+Mi−1 , where Sl is the
sphere of radius l centered at the origin in Rn+1. The coarsely properness of
η and f̃ guarantee the existence of Mi’s. Now, choose ε0 > 0 small enough
(for our purpose, it is enough to choose for instance ε0 := π/1000). Next,
we choose the positive integer N0 so big such that the projection of any
given arc of the sphere Srm0+N0

of the length 10r × π on the sphere Srm0

has the length smaller than ε0. As the next step, we define ω at every m,
m0 < m ≤ m0 + max{N0,M0}, inductively, as follows:

ω(m0 + p) :=

{
ω(m0 + p− 1), ω(m0 + p− 1) < cm0+p

cm0+p, ω(m0 + p− 1) ≥ cm0+p,

where 1 ≤ p ≤ max{N0,M0}. Now, we define F on Sjm for every m, m =
m0 + 1, · · · ,m0 + max{N0,M0}. As we said, we first introduce for each k ∈
C(Sm), a curve joining two points η(sm,k) and f̃(sm,k). We will denote this
curve by Cm,k. For it, we consider the finite sequence (apm,k)

m
p=m0

of (SrR+
)dis
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introduced before. Each curve Cm,k consists of three main parts, called η-
part, middle part and f̃ -part. The η-part starts from the point η(sm,k) and
consisting of the following line segments: the line segment joining two points
η(sm,k) and η(am−1

m,k ), then the line segment joining points η(am−1
m,k ) and

η(am−2
m,k ) and so on until the line segment joining two points η(am0+1

m,k ) and
η(am0

m,k). Let sm0,k′ be the point with am0
m,k = sm0,k′ . The middle part consists

of two line segments Im0
m0,k′

and (I ′)m0
m0,k′

and finally we define the f̃ -part of
the curve Cm,k to be the curve consisting of the following line segments:
the line segment joining two points f̃(am0

m,k) and f̃(am0+1
m,k ), then the line

segment joining two points f̃(am0+1
m,k ) and f̃(am0+2

m,k ) and so on until we reach
the point f̃(sm,k). As the curves Cm,k, m = m0 +1, · · · ,m0 +max{N0,M0}
have been defined, we already have a partition for each of them. For each
k ∈ C(Sm), let ξjm,k be the points of the partition of Cm,k. Obviously, for

each k ∈ C(Sm), the indices j in ξjm,k run over 0 ≤ j ≤ 3m + 1. Now we
simply define F as follows:

F (sm,k ×R+ im,j) := ξjm,k.

Obviously, the conditions (i)-(iv) are fulfilled for the constant L and the
entourage E introduced before.

From this step, we change our strategy, because, for instance, we cannot
define the value of ω in advance at the whole of some periods as we did for
m0 < m ≤ m0 + max{N0,M0}. The reason is that it deponds not only on
cm’s but on other factors, therefore there is no way unless define it step by
step. Let us first have a look at some highlights of our strategy: the way
that the sequence (Mi)∞i=0 has been defined guarantees that the movement
of the points η(sm,k) and f̃(sm,k) for m ≥ m0 +M0 do not cause any change
in those parts of our curves which lie inside of the sphere Sncm0

. This fact
encourages us to establish the following:

(i) as long as we are defining F at some step m with m0 +Mi < m ≤
m0 +Mi+1, the positive real number cm0+Mi−1 is the upper bound for
the values of ω at this period (that is, it is the upper bound for the
radius of the spheres that we are going to use as the lower bounds of
our curves in this period).

As one can see above, we used the points sm0,k, k ∈ C(Sm0), to determine
the middle part of our curves when we were defining F for m, m0 < m ≤
m0 +max{N0,M0}. Now, one of the questions which naturally arises is that
as we continue defining F for m, m > m0 + max{N0,M0}, regardless of the
fact that we have projected some parts of our curves on a bigger sphere or
not, which m′ we are going to use in order to determine the middle parts of
our curves. Clearly, if we use the points of the previous step to determine
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the middle parts of our curves, then possibly at some steps it may happen
that even for two nearby points some parts of their middle parts have been
determined by some points in the previous steps which are too far from each
other only because of the fact that we do not have enough control over the
points of our discrete model of SrR+

×R+ I
crs
R+

. To avoid above situation and
of course because of another important reason that will be explained later
we require that

(ii) after each time of projectiong some parts of our curves on a bigger
sphere (we will explain later under which conditions we are allowed
to do it), we will stay at that sphere for a special period which is
determined as follows: assume that at some step m′ we have projected
our curves on a bigger sphere. We choose the positive integer Nm′ so
big such that the projection of any given arc of the sphere Srm′+Nm′ of
the length 10r × π on the sphere Srm′ has the length smaller than ε0.
Now, we define ω(m) := ω(m′) for every m with m′ < m ≤ m′ +Nm′ .
We call this period the “stabilization period”. The way that F is
defined in a stabilization period is as above but with this big difference
that we use the points η(am

′
m,k), k ∈ C(Sm), as the last point of the

η-parts, then the middle parts are defined by using the curves Cm′,k′
where k′’s have been determined by the equations like am

′
m,k = sm′,k′ ,

and finally the f̃ -parts are again defined as above but started from the
points f̃(am

′
m,k).

Obviously, (i) force us to the following:

(iii) after each stabilization period, to define ω at the next step (that is, to
define the next lower bound), we should always consider an additional
rule, namely, if after a stabilization period we are at some step m′′,
m0 +Mq < m′′ ≤ m0 +Mq+1, then the value of ω that we are about
to define cannot be bigger than cm0+Mq−1 .

Now, let us go through the way that F is defined on Sjm0+max{N0,M0}+1
as an example for the steps we are possibly allowed to project some parts of
our curves on a bigger sphere. For simplicity, set ν0 := m0 +max{N0 +M0}.
Obviously, ω(ν0) = min

m0≤m≤ν0
{cm}. Let m1 be the biggest integer with m0 ≤

m1 ≤ ν0 such that cm1 = ω(ν0). First, we distinguish two cases:

(a) m1 = ν0 which simply means that ω(ν0) = cm0 ;

(b) m1 < ν0 but cm1+1 > cm0 .

in both of the above cases, as we said above, the next step is to consider
the position of ν0 + 1, i.e., if ν0 + 1 ≤ m0 +M1, then it means that we are
already on the sphere that is our upper bound in this period which means
we should define ω(ν0 + 1) := ω(ν0) and we define F in this case as we did
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for m0 < m ≤ m0 + max{N0,M0}. But if ν0 + 1 > m0 +M1, then we will
do the same as we will do for case

(c) m1 < ν0 and cm1+1 ≤ cm0 ,

namely, we assume that for each k ∈ C(Sν0+1), the curve Eν0+1,k is the
curve defined as above having the points η(am0

ν0+1,k) and f̃(am0
ν0+1,k) as the

last and the first point of its η- and f̃ -parts, respectively, and having as its
middle part the curve Cm0,k′ , where k′ has been determined by the equation
am0
ν0+1,k = sm0,k′ . As the next step, we project that part of Eν0+1,k which lies

on or between the two spheres Snω(ν0) and Sncm1+1
on the sphere Sncm1+1

. As
before, we will denote that part of Eν0+1,k which is on or between the two

spheres Snω(ν0) and Sncm1+1
by E

ω(ν0)}cm1+1

ν0+1,k , while we denote its projection

on the sphere Sncm1+1
by E

�cm1+1

ν0+1,k . Now, if for k ∈ C(Sν0+1,k), Eν0+1,k lives
outside or on the sphere Sncm1+1

, then we define Dν0+1,k to be just Eν0+1

itself. Otherwise, we define the curve Dν0+1,k to be the curve constructed

from Eν0+1,k by replacing E
ω(ν0)}cm1+1

ν0+1,k by E
�cm1+1

ν0+1,k . For later use, we will

call E
�cm1+1

ν0+1,k the spherical part of the curve Dν0+1,k and denote it by Dsph
ν0+1,k.

The next step is to partition the curves Dν0+1,k, k ∈ C(Sν0+1). Recall
that for every k ∈ C(Sν0+1), we already have a partition for the curve
Eν0+1,k which we denote them by χjν0+1,k. Therefore, for each k ∈ C(Sν0+1)
that the curve Eν0+1,k lives outside or on the sphere Sncm1+1

, we already

have a partition of Dν0+1,k denoted this time by ζjν0+1,k, i.e., in this case

ζjν0+1,k := χjν0+1,k. For k ∈ C(Sν0+1) for which the curve Eν0+1,k meets
the inside of the sphere Sncm1+1

, we just need to define a partition for the
spherical part of Dν0+1,k. For that part, we just take the projection of

the points of the partition which lies on E
ω(ν0)}cm1+1

ν0+1,k on the sphere Sncm1+1
.

Let again ζjν0+1,k be the points of the partition of Dν0+1,k. Now, since the
values ω(ν0) and cm1+1 are close enough and because it is the first time
that we are projecting those parts of our curves which lie on or between the
spheres Sω(ν0) and Sncm1+1

on the sphere Sncm1+1
, therefore the points that are

supposed to compare to each other stay close enough to each other, therefore
we allow ourselves to define for every k ∈ C(Sν0+1), the curve Cν0+1,k to be
the curve Dν0+1,k itself with ξjν0+1,k := ζjν0+1,k as the points of its partition.
That is, we define ω(ν0 + 1) := cm1+1. Now, we define F as follows:

F (sν0+1,k ×R+ iν0+1,j) := ξjν0+1,k.

Clearly, since we have chosen N bigger than 2π × (L + L′), therefore the
conditions (i)-(iv) are again fulfilled for the constant L and the entourage E.

As we required in (ii), since we have projected some parts of our curves
on a bigger sphere at the step ν0 +1, therefore we take a stabilization period
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which in this case, it will take until ν1 := ν0 + 1 +Nν0+1. Now, to define F
at the step ν1 + 1, we first have some routine works in front of us, namely

(1) we take the integer m2 which is the first integer coming after m1 + 1
with cm2 > cm1+1 (recall that cm1+1 = ω(ν1));

(2) then we consider the position of ν1 + 1, i.e., for which integer Mq the
inequality m0 +Mq < ν1 + 1 ≤ m0 +Mq+1 holds. Therefore, the
positive real number cm0+Mq−1 is the upper bound for the radius of
the sphere that we are allowed to use;

(3) the next step, as we have seen above, is the comparing the values cm2

and cm0+Mq−1 .

Now, if as the result of the above process it turns out that we are “possi-
bly” allowed to project on the sphere Sncm2

, then the question which arises

is whether we can use the same strategy to define F on Sjν1+1 as at the step
ν0 + 1. Knowing that η is coarsely uniform just tells us that the image of
the points that are of distance smaller than Sc > 0 remains of distance at
most L which means the map η may move very wildly which means because
we are projecting some parts of our curves on a bigger sphere the following
might happen:

“After partitioning the curves Dν1+1,k, k ∈ C(Sν1+1) as above, for some
k ∈ C(Sν1+1), there are points ζjν1+1,k and ζj+1

ν1+1,k of the partition of the
curve Dν1+1,k such that

‖ζjν1+1,k − ζ
j+1
ν1+1,k‖ > 2N.” (4.0.2)

For a moment, let us assume that (4.0.2) happens just for one k0 ∈
C(Sν1+1) and just for one j, say j0, in the partition of the curve Dν1+1,k0 .
We call our strategy to overcome this sort of difficulty “saving time-units”.
Roughly speaking, what we understand under saving a time-unit on a point
ζ (or at j) is to define F such that it has the same value ζ at both two
points sm,k ×R+ im,j and sm,k ×R+ im,j+1. Let us remind the fact that not
only the points of partitions are important but the way that we define F by
using them because finally we are going to compare the value of F at points
sm,k ×R+ im,j and sm′,k′ ×R+ im′,j′ with

∥∥ij − ij′∥∥ ≤ Sc. To be more precise,
let us go back to our situation at the step ν1 + 1. What we wanted was
to define ω(ν1 + 1) := cm2 but because (4.0.2) happened, we again define
ω(ν1 + 1) := ω(ν1). As we mentioned in (ii), for each k ∈ C(Sν1+1), we use
the points sν0+1,k′ , k′ ∈ C(Sν0+1), to determine the middle part of the curves
Cν1+1,k, that is the middle parts are defined by using the curves Cν0+1,k′ ,
where k′’s have been determined by the equations like aν0+1

m,k = sν0+1,k′ .

Now, we define F on Sjν1+1, j = 0, 1, · · · , 3(ν1 + 1) + 1, as follows: for each
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k ∈ C(Sν1+1), let ξjν1+1,k be the points of the partition of Cν1+1,k (recall

that they are determined directly by the points χjν1+1,k of the partition of
the curve Eν1+1,k). We define

F (sν1+1,k ×R+ iν1+1,j) :=

{
ξjν1+1,k, 0 ≤ j ≤ j0
ξj−1
ν1+1,k, j > j0,

where, as we said above, j0 is the only point with
∥∥∥ζj0ν1+1,k − ζ

j0+1
ν1+1,k

∥∥∥ > 2N .
Therefore,

F (sν1+1,k ×R+ iν1+1,j0) = F (sν1+1,k ×R+ iν1+1,j0+1),

and this is what we mean by saving a time-unit. Now, because we have three
more time-units at the step ν1+1, we can spend two of them to overcome the
changes and save one as we explained on the point ζj0ν1+1,k. The important
technical point in saving time-units, as we can see above, is that

(iv) if we have to save a time-unit at j for some k0 ∈ C(Sm), then we will
save a time-unit at j for all k ∈ C(Sm).

Above, we assumed that (4.0.2) happens just for one j0 and just for one
k0 ∈ C(Sν1+1) but the fact is that since the curve Eν1+1,k might has wrapped
so many times, so it might happen that ‖ζjν1+1,k − ζ

j+1
ν1+1,k‖ > 2N for many

points of the partition of the curve Dν1+1,k all of a sudden and this may
also happen for many k ∈ C(Sν1+1). In this case, our strategy is to stay
at the sphere Snω(ν1) as long as we have saved a time-unit at each j with

‖ζjν1+1,k − ζj+1
ν1+1,k‖ > 2N for all k ∈ C(Sν1+1). Obviously, at some step

m′ − 1, we have saved a time-unit on every needed point of the partiton of
the curve Cm′−1,k for all k ∈ C(Sm′−1). Note that

(v) in the whole of a period that we are staying at some sphere in order to
save enough time-units we will use the points sm′′,k′′ to determine the
middle parts of our curves, where m′′ is the last previous step at which
we have projected some parts of our curves on a bigger sphere. That
is, for example, we will use the curves Cν0+1,k to define the middle
parts of our curves in the period ν1 + 1 ≤ m ≤ m′ − 1.

Now, we explain the way that F is defined at the step m′. First of all, finally,
we define ω(m′) := cm2 . For each k ∈ C(Sm′), let Dm′,k be the curve defined
as above with ζjm′,k as the points of its partition. For each k ∈ C(Sm′), the
curve Cm′,k is defined to be the curve Dm′,k itself but we define the points
of its partition as follows: let j′ be the first index with ‖ζj

′

m′,k−ζ
j′+1
m′,k ‖ > 2N ,

then we define

ξjm′,k :=


ζjm′,k, 0 ≤ j ≤ j′

ϑj
′

m′,k, j = j′ + 1
ζj
′+1
m′,k , j = j′ + 2,
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where ϑj
′

m′,k is the middle point of the line segment joining two points ζjm′,k
and ζj

′+1
m′,k whenever this middle point lies on or outside of the sphere Sncm2

or
it is the projection of this middle point on the sphere Sncm2

if it lies inside this
sphere. We keep doing this for all the points of the partition on which we
have saved a time-unit. So, until now, for each k ∈ C(Sm′), we have defined
a curve Cm′,k joining two points η(sm′,k) and f̃(sm′,k) partitioned by the
points ξjm′,k such that j’s run over 0 ≤ j ≤ 3m′+1 and ‖ξjm′,k− ξ

j+1
m′,k‖ ≤ 2N

for every j = 0, 1, · · · , 3m′ − 1. But, we are not still done, because for each
k ∈ C(Sm′), the nearby points on the curve Cm′,k are not the only points
are supposed to compare to each other, that is,

“It might happen that for two different k and k′, there are points ξjm′,k
and ξj

′

m′′,k′ of the partitions of the curves Cm′,k and Cm′′,k′ , respectively,
with this property that they are supposed to compare to each other and
‖ξjm′,k − ξ

j′

m′′,k′‖ > 2N , where m′′ = m′ or m′′ = m′ − 1.”

This sort of difficulty may arise at the beginning when we were pro-
jecting on the bigger sphere or even at the time that we were choosing the
new points ϑj

′

m′,k. But, we have already prepared ourselves to overcome this
difficulty, namely, by considering the stabilization periods. Using the stabi-
lization periods guarantee that around each point η(sm′,k) in each direction
there are relatively big number of points which have the same middle part
as the curve Cm′,k or a middle part which has been determined by a nearby
point of the point that has determined the middle part of the curve Cm′,k
and this means that we can replace some of these middle parts smoothly by
appropriate curves (with the same number of points of partition) whenever
it is necessary to fill the undesired gap between the middle parts of two
curves joining two nearby points for which the above has happened. That
is we can finally define F on Sjm′ with the desired properties.

The only fact that maybe we should add here is the way that we de-
termine the radius of the next sphere on which we are going to project our
curves:

(vi) if the radius of the sphere on which we have projected for the last time
is cmp , then the radius of the next sphere on which we are going to
project is mq which is the first integer coming after mp with cmq > cmp .

Obviously, we will not get a stuck at any constant cm, that is the func-
tion ω : N → R+ is coarsely proper and with this we are done because one
can define F with the desired properties (i)-(iv) by repeating this process.

The map Φ is injective. Since in the case that r < n any two pointed
continuous map f, g : (Sr, ∗)→ (Sn, ∗) are homotopic, therefore, it is enough
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to consider the case r = n. Hence, let f, g : (Sn, ∗)→ (Sn, ∗) be two pointed
Lipschitz maps such that Φ([f ]) = Φ([g]), i.e., f̃ 'crs g̃. Therefore, there is a
coarse homotopy F : SnR+

×R+ I
crs
R+
→ SnR+

with F ◦ i∗0 ∼cl f̃ and F ◦ i∗1 ∼cl g̃.
Let L > 0 be a positive real number such that∥∥F (sm,k ×R+ im,j)− F (sm′,k′ ×R+ im′,j′)

∥∥ ≤ L
if
∥∥sm,k ×R+ im,j − sm′,k′ ×R+ im′,j′

∥∥
R
≤ Sc. The map F to be pointed

means that there exists a positive real number M > 0 such that for every
m ∈ Z+ the following holds:

∀j, j = 0, 1, · · · , 3m :
∥∥F (sm,0 ×R+ im,j)− sm,0

∥∥ ≤M.

On the other hand, F to be coarsely proper implies that for each T > 0, there
is a positive integer m ∈ Z+ such that F (Sjl )∩Sk = ∅ for every integer l ≥ m
and every k ≤ T , where Sk is the sphere of radius k centered at the origin
in Rn+1. Now, we first choose T0 > 0 big enough such that π× (L+M)/4T0

is small enough; and then assume that m0 is a positive integer having above
property with respect to T0. By definition, F (S0

m0
) = f̃ |Sm0

and F (S3m0
m0

) =
g̃|Sm0

. As we have seen in the first part, for each j, j = 0, 1, · · · , 3m0, we
can assign to F |

Sjm0
a pointed continuous map F̃j : Sn → Sn. Clearly, the

degree of F̃0 : Sn → Sn is equal to the degree of f . At the same time, since∥∥F (sm0,k ×R+ im0,j)− F (sm0,k ×R+ im0,j+1)
∥∥ ≤ L,

for every k ∈ C(Sm0) and for every j = 0, 1, · · · , 3m0 and because F is
pointed, therefore the degree of the induced pointed continuous map F̃j is
equal to the degree of induced pointed continuous map F̃j+1. Therefore
deg(F̃0) = deg(F̃3m0) which means deg(f) =deg(g) which implies that f
and g are homotopic, i.e., Φ is injective.



Chapter 5

Coarse homotopy groups and
coarse CW-complexes

In chapter 3, we have defined the coarse homotopy groups of a pointed coarse
topological R-space X, and established some of their properties. Then, in
chapter 4, we pursued a big step forward and calculated the coarse homotopy
groups of the standard coarse spheres. In this chapter, we will see some
applications of the main theorem of the chapter 4: we first prove some
important theorems concerning the coarse homotopy groups of coarse CW-
complexes. Next, we state and prove a coarse version of the theorem of J. H.
C. Whitehead. And at the end of this chapter, we carry over some classical
results to the coarse setup which lead us to coarse Eilenberg-Maclane spaces
(for the classical results see for example [Mau]). The key point in all proofs is
Theorem 4.0.5 directly or the details of its proof. Throughout this chapter,
we shall assume unless otherwise stated that all coarse topological spaces
including coarse CW-complexes are pointed R+-spaces.

5.1 Coarse homotopy groups
of coarse CW-complexes

In this section, we first prove a general theorem to the effect that πcrsr (X,Y )
= 0 in certain circumstances, at least if X and Y are coarse CW-complexes.
Let V n be the subset

{x ∈ Dn
R+
| ‖x‖ = 1}

of Dn
R+

and let ϕ : Dn → V n be a bi-Lipschitz homeomorphism which is
identity on Sn−1. Then,

Lemma 5.1.1. Let X be a full coarse CW-complex of dimension n and let
An be the indexing set for the coarse n-cells of X. For each α ∈ An, let Vα
be the subspace Φn

α(O(ϕ({x ∈ Dn| ‖x‖ ≤ 1
2}))). Let V = ∪αVα. Then

πcrsk (X \ V ) ∼= πcrsk (Xn−1),

71
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for all k.

Proof. To prove this, we first construct a coarse homotopy F : X×R+ I
crs
R+
→

X, starting with the identity map such that F ((X \ V )×R+ (1)crs) ⊆ Xn−1

and F (x, pX(x)e
π
2
i1) = x for all x ∈ Xn−1. We define F on Xn−1 to be the

identity homotopy, that is,

F (x, pX(x)e
π
2
is) := x, if x ∈ Xn−1,

and on coarse n-cells as follows:

F (Φn
α(y), pX(Φn

α(y))e
π
2
is) := Φn

α(‖y‖ · ϕ((1 + s)ψ(ỹ))),

if y ∈ Dn
R+
, ‖ψ(ỹ)‖ ≤ 1

(1+s) , α ∈ An, and

F (Φn
α(y), pX(Φn

α(y))e
π
2
is) := Φn

α(‖y‖ · ϕ(ψ(ỹ)/‖ψ(ỹ)‖)),

if y ∈ Dn
R+
, ‖ψ(ỹ)‖ ≥ 1

(1+s) , α ∈ An, where ỹ is the point where the ray
radiating from the origin and passing through the point y meets V n and
where ψ : V n → Dn is the inverse Lipschitz of ϕ. One can easily see that F
has the required properties. Let r := H ◦ i∗1 : X \V → X \V . Clearly, r◦ i =
1Xn−1 and i ◦ r 'crs 1X\V , where i : Xn−1 → X \ V is the inclusion. The
critical point here is that the proof of Theorem 4.0.5 guarantees that each
element of πcrsk (X\V ) (resp. each element of πcrsk (Xn−1)) can be represented
by a pointed coarse map f : SkR+

→ X \ V (resp. by a pointed coarse map
g : SkR+

→ Xn−1) which is compatible with the basepoint projections. So,
we are done.

Given an n-dimensional full coarse CW-complex X we can consider a
regular ordinary CW-complex K by declaring for each coarse k-cell ecrsα of
X, k ≤ n, the subset eα := {x ∈ ecrsα | pX(x) = 1} as a k-cell attached via
the map fecrsα |Sk−1 we have available (see Definition 2.2.13). Assuming K to
be compact guarantees that X is the cone of K. From now on, when we use
the expression “full coarse CW-complex”, we shall assume unless otherwise
stated that this property holds.

Theorem 5.1.2. Let X be an n-dimensional full coarse CW-complex (n ≥
2), and let Y be a coarse subcomplex that contains Xn−1, Then

πcrsk (X,Y ) = 0,

for all 1 ≤ k < n.

Proof. Let the indexing sets of coarse n-cells for X and Y be An and Bn,
respectively. As we mentioned, we do not need to care about the character-
istic maps because in the case of full coarse CW-complexes, they are just
the inclusions. Now, let η : (Dk

R+, S
k
R+

) → (X,Y ) be a pointed coarse map
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with k < n. The critical point is that the proof of Theorem 4.0.5 guaran-
tees the existence of a pointed Lipschitz map f : (Ik, ∂Ik) → (K,L) such
that f̃ 'crs η via a coarse homotopy rel ∗crs, where K is a regular CW-
complex of dimension n introduced above, L is a subcomplex of K whose
cone is Y itself and where f̃ is the pointed coarse map constructed from
f as in the proof of Theorem 4.0.5. Obviously, the indexing sets of n-cells
for K and L are An and Bn themselves, respectively. Moreover, let Ψn

α be
the characteristic maps for K. For each α ∈ An − Bn, let Uα be the open
subspace Ψn

α(
{
x ∈ Dn| ‖x‖ < 2

3

}
) of K, and let V be the closed subspace⋃

An−Bn Ψn
α(
{
x ∈ Dn| ‖x‖ ≤ 1

3

}
). Thus K \ V is open. Also, write Wα for

(K \ V )∩Uα. We shall show that the map f̃ : (Dk
R+, S

k
R+

)→ (X,Y ) can be
‘pushed off’ OV and hence pushed into Y .

Now Ik can be regarded as the product of k copies of I. Since I is
a CW-complex with one 1-cell and two 0-cells, Theorem 7.3.16 of [Mau]
yields a CW decomposition of Ik, in which there is just one k-cell. Indeed,
if I is “subdivided” by introducing a new 0-cell at 1

2 , this has the effect of
subdividing Ik into 2k hypercubes each of side 1

2 , and the corresponding CW
decomposition has 2k k-cell. This process can be iterated: at the next stage
we obtain a CW-decomposition with 22k k-cells consisting of hypercubes of
side 1

4 , and so on. Now, considering the map f : (Ik, ∂Ik)→ (K,L), k < n,
the sets f−1(K \ V ), f−1(Uα) form an open covering of Ik, so that we can
iterate the subdivision process until Ik is subdivided into a CW -complex M
in which each k-cell is mapped by f into K \ V or into one of the sets Uα.
We denote the characteristic maps for M by ψmβ . Notice also that ∂Ik is a
subcomplex of M .

The next step is to construct a pointed coarse map θ : OM → X such
that

(a) for each m-cell ψmβ (Dm) of M , m < n, f(ψmβ (Dm)) ⊆ K \ V ⇒
θ|O(ψmβ (Dm)) = f̃ |O(ψmβ (Dm)); otherwise

f(ψmβ (Dm)) ⊆ Uα ⇒ θ(O(ψmβ (Dm))) ⊆ OWα;

(b) f̃ 'crs θ rel O(∂Ik) and the cone of points of M that are mapped by
f into Uα remains in OUα throughout the coarse homotopy.

This is done by induction on the skeletons of M . Suppose θ has been de-
fined on OMm−1, m < n, so as to satisfy (a) and (b) (it is easy to define
θ on OM0, since the cone of each 0-cell that is mapped by f into Uα can
be joined by the cone of a straight line to the cone of a point of Wα).
Now consider an m-cell ψmβ (Dm) of M such that f(ψmβ (Dm)) ⊆ Uα; then
f(ψmβ (Sm−1)) ⊆ Uα and θ(O(ψmβ (Sm−1))) ⊆ OWα. Since each charac-
teristic map of M can be chosen from the beginning bi-Lipschitz homeo-
morphism, therefore θ|O(ψmβ (Sm−1)) represents an element of πcrsm−1(OWα) by
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Proposition 2.1.4. But πcrsm−1(OWα) ∼= πcrsm−1(Sn−1
R+

) by Lemma 5.1.1. On
the other hand, πcrsm−1(Sn−1

R+
) = 0, by Theorem 4.0.5, since m < n. Thus

θ|O(ψmβ (Sm−1)) is coarsely nullhomotopic and hence can be extended to a
coarse map θ : O(ψmβ (Dm)) → OWα. Moreover, the original coarse ho-
motopy between f̃ and θ on O(ψmβ (Sm−1)) can be extended to a coarse
homotopy of O(ψmβ (Dm)) in OUα that starts with f̃ and whose final map
is θ on O(ψmβ (Sm−1)); and this final map is coarsely homotopic to θ, rel
O(ψmβ (Sm−1)). It follows that we can extend θ to OMm so as still satisfy
(a) and (b), by using this construction on the cone of m-cells mapped into
some Uα, and by defining θ = f̃ (with the coarse constant homotopy) on the
cone of m-cells mapped into K \ V , the resulting θ (and coarse homotopy)
being coarse by Lemma 2.1.10. By induction, therefore θ can be extended
to OMk = OM , since k < n.

Because f̃ is pointed and f̃ 'crs θ rel O(∂Ik), therefore [f̃ ]crs = [θ]crs.
On the other hand, if k < n, [θ]crs is the image under the inclusion map of an
element of πcrsk (O(K\V ),OL); but πcrsk (O(K\V ),OL) = 0 by Lemma 5.1.1,
and hence [f̃ ]crs = [θ]crs = 0. It follows that πcrsk (X,Y ) = 0 for k < n, as
desired.

Theorem 5.1.3. Let (X,Y ) be a full coarse CW-pair; that is, X is a full
coarse CW-complex, Y is a coarse subcomplex and (X,Y ) is a pointed coarse
pair, and let i : Xn ∪ Y → X be the inclusion map with n ≥ 1. Then

(i) i∗ : πcrsk (Xn ∪ Y ) → πcrsk (X) is onto for 1 ≤ k ≤ n and isomorphism
for 1 ≤ k < n;

(ii) πcrsk (X,Xn ∪ Y ) = 0 for 1 ≤ k ≤ n.

Proof. Consider the exact coarse homotopy sequence of the pointed coarse
pair (Xm+1, Xm):

· · · → πcrsk+1(Xm+1, Xm)→ πcrsk (Xm)
i]−→ πcrsk (Xm+1) −→ πcrsk (Xm+1, Xm)

→ · · · ,

where i : Xm → Xm+1 denotes the inclusion map. Now by Theorem 5.1.2,
πcrsk (Xm+1, Xm) = 0 for 1 ≤ k ≤ m, so that i] : πcrsk (Xm) → πcrsk (Xm+1)
is onto for 1 ≤ k ≤ m and isomorphism for 1 ≤ k < m. Moreover, clearly,
i] : πcrs0 (Xm) → πcrs0 (Xm+1) is always onto, and is one-one correspondence
if m > 0.

Hence i] : πcrsk (Xn) → πcrsk (Xm) is isomorphic for 1 ≤ k < n and onto
for k = n, for all m > n. But the elements of πcrsk (X) are represented
by pointed coarse maps η : SkR+

→ X. And, once again, as in the proof
of Theorem 5.1.2, there is a pointed Lipschitz map f : Sk → K such that
[f̃ ]crs = [η]crs, where K is exactly the regular CW-complex we introduced
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in the proof of Theorem 5.1.2. Now, since Sk is compact the images must be
contained in finite skeleton of K which implies that the image under f̃ must
be contained in finite skeletons of X. A similar argument applies to coarse
homotopies of SkR+

in X, so that i] : πcrsk (Xn) → πcrsk (X) is isomorphism
for 1 ≤ k < n and onto for k = n. To deduce the first part of (a), observe
that πcrsk (Xn ∪ Y n+1) → πcrsk (Xn ∪ Y ) is an isomorphism for 1 ≤ k ≤ n,
and πcrsk (Xn ∪ Y n+1) → πcrsk (Xn+1) is isomorphism if k < n and onto if
k = n, by another application of Theorem 5.1.2. Now, the coarse homotopy
sequence of the pair (X,Xn ∪ Y ) gives (b).

5.2 The coarse Whitehead’s theorem

As in the classical case, since coarse CW-complexes are built using attaching
coarse maps whose domains are coarse spheres, it is perhaps not too sur-
prising that coarse homotopy groups of coarse CW-complexes carry a lot of
information. The main goal of this section is to prove the coarse version of
Whitehead’s theorem, that states that if f : K → L is a pointed coarse map
of coarse CW-complexes that induces isomorphisms f∗ : πcrsk (K)→ πcrsk (L)
for all k ≥ 0, then f is a coarse homotopy equivalence. We start this section
with the following definition.

Definition 5.2.1. Let X and Y be coarse topological R+-spaces and let
f : X → Y be a coarse map.

• f is called strongly pointed if for each coarse subspace xcrs of X for
which the restriction pX |xcrs : xcrs → R+ turns into a coarse equiva-
lence, the restriction pY |f(xcrs) : f(xcrs)→ R+ is also a coarse equiva-
lence and f◦ixcrs ∼cl if(xcrs), where ixcrs and if(xcrs) are coarse inverses
of pX |xcrs and pY |f(xcrs), respectively.

• f is called a weak coarse homotopy equivalence if it is strongly pointed,
f∗ : πcrs0 (X,xcrs) → πcrs0 (Y, f(xcrs)) is an one-one correspondence,
and f∗ : πcrsk (X,xcrs) → πcrsk (Y, f(xcrs)) is an isomorphism for all
k ≥ 1 and for all coarse subspace xcrs of X for which the restriction
pX |xcrs : xcrs → R+ turns into a coarse equivalence.

• X is called coarsely path connected if, for every two coarse subspaces
∗1 and ∗2 of X for which there are coarse maps fk : R+ → X, k = 1, 2,
such that fk(R+) = ∗k, k = 1, 2, there exists a coarse map α : IcrsR+

→
X such that α ◦ i0 ∼cl f1 and α ◦ i1 ∼cl f2, where is : R → IcrsR is
defined as before by is(t) = te

π
2
is. We call such an α a coarse path

joining ∗1 and ∗2.

Theorem 5.2.2. Let X be a coarse CW-complex and let Y be a coarse sub-
complex of X such that the inclusion map i : Y → X is a weak coarse homo-
topy equivalence. Let Z be a coarsely path connected coarse CW-complex,
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with a coarse 0-cell as basepoint. Then for any choice of basepoint in Y ,
i∗ : [Z;Y ]crs∗ → [Z;X]crs∗ is an one-one correspondence.

Proof. We show first that i∗ is onto. Suppose, then, that we have a pointed
coarse map f : Z → X; we shall show by induction on the skeletons of Z
that f can be coarsely deformed into Y . The map f is regarded as a map of
Z ×R+ (0)crs to X (recall that Z ×R+ (0)crs ∼=crs Z, by Lemma 2.2.15), and
will be extended to a coarse map f : Z ×R+ I

crs
R+
→ X such that f(Z ×R+

(1)crs) ⊆ Y , and if K is any coarse subcomplex of Z that is mapped by f into
Y , then f is coarsely constant on K×R+ I

crs
R+

, that is, f(k, pZ(k)e
π
2
is) = f(k)

for all k ∈ K and 0 ≤ s ≤ 1. Moreover, we can assume from the beginning
that f maps the basepoint of Z, say zcrs, into Y : assume that a coarse 0-cell
ycrs in Y has been chosen as the basepoint of Y . Obviously, it can be also
regarded as the basepoint of X. Now, since f : Z → X is pointed, therefore
a pointed coarse map f ′ : Z → X can be defined such that it is close to f
(and therefore coarsely homotopic to f) and also maps the basepoint of Z
into Y . Thus, in particular the above coarse extension will be pointed.

Given such a coarse subcomplex K (the above argument also shows that
such a coarse subcomplex K exists), write Mn = Zn ∪ K, and extend f
as the coarsely constant homotopy to (Z ×R+ (0)crs) ∪ (K ×R+ IcrsR+

), i.e.,
f(k, pZ(k)e

π
2
is) := f(k) for every k ∈ K and 0 ≤ s ≤ 1. If ecrs is any coarse

0-cell of Z \ K, since Z is coarsely path connected there is a coarse path
α : IcrsR+

→ X such that α ◦ i0 ∼cl f ◦ Φ0
ecrs and α ◦ i1 ∼cl f ◦ Φ0

zcrs ⊆ Y

(sometimes we state the second relation simply by writing α ◦ i1
cl
⊆ Y ); thus

we can extend f to M0 ×R+ I
crs
R+

by setting f(z, pZ(z)e
π
2
is) = α(e

π
2
is), 0 ≤

s ≤ 1. This serves to start the induction; so we may now assume that f has
been extended to a coarse map f : (Z ×R+ (0)crs) ∪ (Mn−1 ×R+ I

crs
R+

) → X

such that f(Mn−1×R+ (1)crs) ⊆ Y . Now, for each coarse n-cell ecrsn of Z \K,
Lemma 2.2.17 allows us to consider the following composite

(Dn
R+
×R+ (0)crs) ∪ (Sn−1

R+
×R+ I

crs
R+

)

Φecrsn ×R+
1IcrsR+

��
(Z ×R+ (0)crs) ∪ (Mn−1 ×R+ I

crs
R+

)

f

��
X,

which sends Sn−1
R+
×R+ (1)crs to Y . Now we define a coarse equivalence h of

Dn
R+
×R+ I

crs
R+

to itself, for simplicity we will state the precise formula just
for n = 1, but the same idea works exactly for the higher n:

h(reπis, (0)crs) := (re
π
4
i(2s+1), (0)crs) 0 ≤ s ≤ 1



Some Aspects on Coarse Homotopy Theory 77

h(reπis, re
π
2
it) :=

{
(re

π
4
i(1−t), (0)crs), s = 0, 0 ≤ t ≤ 1

(re
π
4
i(3+t), (0)crs), s = 1, 0 ≤ t ≤ 1

h(reπis, (1)crs) :=

{
(reπi0, re

π
2
i4s), 0 ≤ s ≤ 1

4

(reπi1, re
π
2
i(4−4s)), 3

4 ≤ s ≤ 1

h(reπis, (1)crs) := (re
π
2
i(4s−1), (1)crs)

1
4
≤ s ≤ 3

4
extending the definition inside Dn

R+
×R+ I

crs
R+

by regarding the inside as the
join of (Dn

R+
×R+ (0)crs)∪ (Sn−1

R+
×R+ I

crs
R+

)∪ (Dn
R+
×R+ (1)crs) to (re

π
2
i, re0i)

with the equal r. The map h is clearly a homeomorphism, therefore we de-
note its inverse which is again a coarse map by h−1. The point of this defini-
tion is that the map f ◦(Φecrs×R+ 1IcrsR+

)◦h−1 is a coarse map of (Dn
R+
, Sn−1

R+
)

to (X,Y ), which therefore represents an element of πcrsn (X,Y ), with some
basepoint. But by the exact coarse homotopy sequence πcrsn (X,Y ) = 0; thus
f ◦ (Φecrs ×R+ 1IcrsR+

) ◦ h−1 can be extended to a coarse map of Dn
R+
×R+ I

crs
R+

that sends Dn
R+
×R+ (1)crs and Sn−1

R+
×R+ I

crs
R+

to Y , i.e., there exists a coarse
homotopy F : Dn

R+
×R+ I

crs
R+
→ X (rel Sn−1

R+
) such that

F ◦ i∗0 ∼cl f ◦ (Φecrs ×R+ 1IcrsR+
) ◦ h−1,

F ((Dn
R+
×R+ (1)crs) ∪ (Sn−1

R+
×R+ I

crs
R+

))
cl
⊆ Y.

Hence, by applying h again, H := F◦h extends f◦(Φecrs×R+1IcrsR+
) to a coarse

map of Dn
R+
×R+ I

crs
R+

that sends Dn
R+
×R+ (1)crs to Y . Since f has already

been defined on Φecrs(Sn−1
R+

) and because Φecrs is a coarse equivalence on
Dn

R+
\Sn−1

R+
, hence f can be extended by H ◦Ψecrs to a coarse map of (Z×R+

(0)crs)∪ ((ecrs∪Mn−1)×R+ I
crs
R+

) such that f((ecrs∪Mn−1)×R+ (1)crs) ⊆ Y ,
where Ψecrs is coarse inverse of Φecrs on ecrs. These process defines an
extension of f to a function f : (Z ×R+ (0)crs) ∪ (Mn ×R+ I

crs
R+

) → X such
that f(Mn ×R+ (1)crs) ⊆ Y . Moreover this extension is a coarse map: for
(Z ×R+ (0)crs)∪ (Mn×R+ I

crs
R+

) is a coarse CW-complex, and the composite
of each of its characteristic maps with f is coarse; hence f is coarse by
Lemma 2.1.10. The inductive step is now complete, hence f can be extended
to a function f : Z ×R+ I

crs
R+
→ X such that f(Z ×R+ (1)crs) ⊆ Y , that is,

i∗ : [Z, Y ]crs∗ → [Z,X]crs∗ is onto.
It is easy to deduce that i∗ is also injective. For suppose f, g : Z → Y are

pointed coarse maps such that i ◦ f 'crs i ◦ g by a pointed coarse homotpy
F : Z ×R+ I

crs
R+
→ X. Since Z ×R+ I

crs
R+

is a coarsely path connected coarse
CW-complex and K := (Z ×R+ (0)crs) ∪ (zcrs ×R+ I

crs
R+

) ∪ (Z ×R+ (1)crs) is
a subcomplex with F (K) ⊆ Y , so F can be coarsely deformed to a coarse
map G : Z ×R+ I

crs
R+
→ Y such that G coincides with F on K. That is, G is

a pointed coarse homotopy between f and g.
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It is easy to extend Theorem 5.2.2 to a weak coarse homotopy equivalence
which is strongly compatible with the basepoint projections, by using the
coarse mapping cylinder defined as follows:

Definition 5.2.3. Let X and Y be pointed coarse topological R-spaces
and let f : X → Y be a pointed coarse map which is strongly compatible
with the basepoint projections. If the inverse image of bounded subsets
under f are bounded (for example, this is the case if X and Y are pointed
proper coarse topological R-spaces with X unital), then we define the coarse
mapping cylinder of f , M crs

f , to be the pointed coarse topological R-space
obtained from Y by weakly coarse attaching (X ×R+ I

crs
R+

)/(∗crs ×R+ I
crs
R+

)
via f , where X has been identified with the subspace {[x, (1)crs]| x ∈ X}.

Let g : X →M crs
f be the inclusion of X in X×R+ I

crs
R+

(as X×R+ (0)crs),
followed by the natural map, and let h : M crs

f → Y be the map induced by
the identity map of Y and the map from X ×R+ I

crs
R+

to Y that sends each
(x, pX(x)e

π
2
is) to f(x). Clearly, f = h ◦ g. Moreover,

Theorem 5.2.4. Let X and Y be pointed proper coarse topological R+-
spaces with X unital, and let f : X → Y be a pointed coarse map which is
strongly compatible with the basepoint projections. The map h : M crs

f → Y
defined as above, is indeed a coarse homotopy equivalence.

Proof. To show that h is a coarse homotopy equivalence, define j : Y →
M crs
f to be the inclusion of Y in the disjoint union Yq((X×R+I

crs
R+

)/(∗crs×R+

IcrsR+
)) followed by the natural map. Then h◦j = 1Y , and j◦h : M crs

f →M crs
f

is given by

j ◦ h(y) = y,

j ◦ h([x, pX(x)e
π
2
is]) = f(x).

A coarse homotopy F : M crs
f ×R+ I

crs
R+
→M crs

f between 1Mcrs
f

and j ◦ h can
be defined by

F (y, pY (y)e
π
2
it) = y,

F ([x, pX(x)e
π
2
is], pX(x)e

π
2
it) = [x, pX(x)e

π
2
i(s+t(1−s))].

That the map F is coarse follows from Theorem 2.2.10 by an argument
similar to what we have seen in the proof of Theorem 3.2.9.

Corollary 5.2.5. Let X and Y be coarse CW-complexes with X unital.
Given a weak coarse homotopy equivalence f : X → Y strongly compatible
with the basepoint projections, and a coarsely path connected coarse CW-
complex Z, f∗ : [Z;X]crs∗ → [Z;Y ]crs∗ is an one-one correspondence (where
Z has a coarse 0-cell as basepoint, and X, Y have any basepoints that cor-
respond under f).
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Proof. As we have seen before, we can assume, without lose of generality,
that our coarse CW-complexes are full. By Theorem 5.2.4, f is the composite

X
g→M crs

f
h→ Y,

where M crs
f is the coarse mapping cylinder of f , the map g is the inclusion

map, and h is a coarse homotopy equivalence. The critical point here is again
that the proof of Theorem 4.0.5 guarantees that each element of πcrsk (M crs

f )
(resp. each element of [Z;M crs

f ]crs∗ ) can be represented by a pointed coarse
map SkR+

→ M crs
f (resp. by a pointed coarse map Z → M crs

f ) which is
compatible with the basepoint projections, that is, h is indeed a weak coarse
homotopy equivalence (resp. h∗ is indeed an one-one correspondence). Now,
since both f and h are weak coarse homotopy equivalences, so is g; hence
g∗ : [Z;X]crs∗ → [Z;Mf ]crs∗ is an one-one correspondence by Theorem 5.2.2.
Therefore, f∗ = h∗ ◦ g∗ is an one-one correspondence.

Note that in the proof of Corollary 5.2.5, we do not need to show that
M crs
f is a coarse CW-complex, because looking at the details of the proof of

Theorem 5.2.2, one can see that we did not actually use the assumption that
X is a coarse CW -complex. Now, the coarse whitehead’s theorem follows
immediately.

Theorem 5.2.6. If f : X → Y is a weak coarse homotopy equivalence of
coarsely path connected coarse CW-complexes, then f is a coarse homotopy
equivalence.

Proof. By corollary 5.2.5, f∗ : [Y ;X]crs∗ → [Y ;Y ]crs∗ is a one-one corre-
spondence. Now, by looking at the details of the proof of Theorem 5.2.2
and Corollary 5.2.5, one can see that since the identity map 1Y is compat-
ible with the basepoint projections, the coarse map γ : Y → X for which
f∗([γ]crs) = [1Y ]crs is indeed compatible with the basepoint projections. On
the other hand, f ◦ γ 'crs 1Y immediately implies that γ is also a weak
homotopy equivalence. So by a similar argument there exists δ : X → Y
compatible with the basepoint projections such that γ ◦ δ 'crs 1X . From
f ◦ γ 'crs 1Y follows that (f ◦ γ) ◦ δ 'crs δ, since δ is compatible with the
basepoint projections. Therefore,

f 'crs f ◦ (γ ◦ δ) 'crs (f ◦ γ) ◦ δ 'crs δ,

so that γ ◦f 'crs 1X as well, and so γ is a coarse homotopy inverse to f .

The next important theorem in this chapter is the Coarse Cellular Ap-
proximation Theorem, which in a sense is the analogue for coarse CW-
complexes of the Cellular Approximation Theorem for CW-complexes in
the classical case. The following is our understanding of a coarse cellular
map:
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Definition 5.2.7. Let X and Y be coarse CW-complexes. A coarse map
f : X → Y is called cellular if f(Xn) ⊆ Y n for each n ≥ 0.

Theorem 5.2.8. If X and Y are full coarse CW-complexes, Y is coarsely
path connected, and f : X → Y is a coarse map such that f |K is coarse
cellular for some subcomplex K of X (possibly empty), then there exists a
coarse cellular map g : X → Y such that g|K = f |K and g 'crs f rel M .

Proof. This is very similar to Theorem 5.2.2: by induction on the skeletons
of X, we define a coarse homotopy F : X ×R+ I

crs
R+
→ Y that starts with f

ends with a coarse cellular map, and is the coarsely constant homotopy on
K×R+ I

crs
R+

. Since, for each coarse 0-cell ecrs0 of X \K, there is a coarse path
in Y from f(ecrs0 ) to a coarse 0-cell of Y , we can certainly define F on X0×R+

IcrsR+
∪K ×R+ I

crs
R+

. Suppose, then, that F has been extended to Xn−1 ×R+

IcrsR+
, and that F (Kn−1 ×R+ (1)crs) ⊆ Y n−1. Just as in Theorem 5.2.2, F

can be extended to each coarse n-cell of X \ K, since πcrsn (Y, Y n) = 0 by
Theorem 5.1.3; and the result is a coarse map such that F (Xn×R+ (1)crs) ⊆
Y n. This completes the inductive step, and so gives the required coarse
homotopy F : X ×R+ I

crs
R+
→ Y .

Theorem 5.2.9. Given a coarsely path connected full coarse CW-complex
X and an integer n ≥ 0, there exists a full coarse CW-complex Y , having
X as a coarse subcomplex, such that, if i : X → Y is the inclusion map

(i) i∗ : πcrsk (X)→ πcrsk (Y ) is isomorphic for k < n;

(ii) πcrsn (Y ) = 0.

Proof. Let A be a set of generators for the group πcrsn (X) (for example, the
set of all elements of πcrsn (X)). For each α ∈ A, take a representative pointed
coarse map Φn

α : SnR+
→ X which by Theorems 4.5 and Theorem 5.2.8 may

be assumed to be a homeomorphism onto its image, strongly compatible
with the basepoint projections and cellular. Let Y be the coarse topological
R+-space obtained from X by coarse attaching coarse cells Dn+1

R+
by the

coarse maps Φn
α, one for each α ∈ A. Obviously, Y is a full coarse CW-

complex having X as its subcomplex. Moreover, by Theorem 5.1.3(i) i∗ :
πcrsk (X) = πcrsk (Y n ∪ X) → πcrsk (Y ) is isomorphic for k < n, and onto for
k = n. But for each α ∈ A, i∗(α) ∈ πcrsn (Y ) is represented by the coarse
map i ◦ Φn

α : SnR+
→ Y ; and this is clearly coarsely homotopic to the coarse

constant map to the basepoint of Y , since Y has an coarse (n + 1)-cell
attached by Φn

α. Hence πcrsn (Y ) = 0.

This process can be iterated, so as to “kill off” πcrsk (Y ) = 0 for all k ≥ n.

Theorem 5.2.10. Given a coarsely path connected full coarse CW-complex
X and an integer n ≥ 0, there exists a coarse CW-complex Y , having X as
a coarse subcomplex, such that, if i : X → Y is the inclusion map
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(i) i∗ : πcrsk (X)→ πcrsk (Y ) is isomorphic for k < n;

(ii) πcrsk (Y ) = 0 for k ≥ n.

Proof. By repeated applications of Theorem 5.2.9, there is a sequence of full
coarse CW-complexes X ⊆ Y1 ⊆ Y2 ⊆ · · · , each a coarse subcomplex of the
next, such that for each m ≥ 1, if i : X → Ym is the inclusion map,

(i) i∗ : πcrsk (X)→ πcrsk (Ym) is isomorphic for k < n, and

(ii) πcrsk (Ym) = 0 for n ≤ k < n+m.

Let Y =
⋃∞
m=1 Ym equipped with the weak topology and with the weak

coarse structure. Since we could choose the representative pointed maps
Φn
α : SnR+

→ X strongly compatible with the basepoint projections, therefore
we can define a basepoint projection pY : Y → R+ with desired properties,
that is, Y is indeed a coarse CW-complex having each Ym, and X as a coarse
subcomplex.

To prove (i) and (ii), note that, given any k, i∗ : πcrsk (Y k+1) → πcrsk (Y )
is an isomorphism. But Y k+1 is the (k + 1)-skeleton of each Ym for which
n + m > k, so that i∗ : πcrsk (Y k+1) → πcrsk (Ym) is also an isomorphism for
such m. Hence i∗ : πcrsk (Ym) → πcrsk (Y ) is an isomorphism, and (i) and (ii)
are now immediate.

We finish this chapter by introducing coarse Eilenberg-Maclane spaces:

Definition 5.2.11. We have proved in Theorem 4.0.5 that

πcrsk (SnR+
) ∼=

{
Z, k = n

0, k < n.

It follows from Theorem 5.2.10 that there exists a coarse CW-complex K
such that πcrsk (K) = 0 for k 6= n and πcrsn (K) = Z. Such a coarse CW-
complex is called an coarse Eilenberg-Maclane space Kcrs(Z, n).
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