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Introduction

As the temperature is lowered, some inorganic and organic conductors with a
highly anisotropic crystal and electronic structure become unstable and undergo a
Peierls transition, i.e. they develop a charge-density wave. This instability is due to
their quasi one-dimensional nature which results in a (perfectly) nested Fermi surface.
A qualitative understanding of the Peierls instability can already be gained by coupling
independent electrons to phonons and treating the phonon field which can be identified
as the order parameter field in a mean-field picture [31, 36, 37, 55, 72, 75, 76]. How-
ever, because of reduced dimensionality, fluctuations of the order parameter field ∆

�
x �

are crucial and significant deviations are to be expected.
In a seminal paper, Lee, Rice and Anderson [57] introduced the one-dimensional

so-called fluctuating gap model (FGM), in which fluctuations of the phonon field are
described by a static disorder potential. Calculating the leading-order correction of the
electronic self energy of an incommensurate chain which is described by a complex
order parameter field with � ∆ � x ����� 0 and � ∆ � x � ∆ � � x �	����� ∆2

s e 
�� x 
 x 
 � � ξ, where ξ is
the temperature-dependent correlation length, Lee, Rice, and Anderson obtained an
approximate expression for the density of states (DOS), showing a suppression of the
DOS near the Fermi energy, which is called a pseudogap.

A few years later, Sadovskii [78] apparently obtained an exact expression for the
Green function of the FGM using Gaussian statistics for the higher correlation func-
tions of the order parameter field which he could assume to be real or complex, re-
ferring to a band filling being commensurate or incommensurate with the underlying
lattice. Recently, the experimental observation of a pseudo-gap state in the overdoped
cuprates above the superconducting phase transition lead to a reincarnation of the FGM
and Sadovskii’s exact solution [80, 81] in the field of high-temperature superconduc-
tivity. However, the revived interest in Sadovskii’s solution also brought to light a
subtle error in this solution [87] which questions not only the solution itself, but also
the work based on it.

Besides the limit ξ � ∞ where Sadovskii’s solution is indeed exact [54, 87],
Sadovskii’s solution can also be easily tested in the white-noise limit ξ � 0, keep-
ing D � ∆2

s ξ constant, such that � ∆ � x � ∆ � � x � ����� 2Dδ
�
x � x � � . Solving a stationary

Fokker-Planck equation, Ovchinnikov and Erikhman [71] obtained an exact expres-
sion for the DOS for real ∆

�
x � . They showed that for small ω and � ∆ � x ����� 0, the

v
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DOS diverges as � ρ � ω ��� ∝ �ω ln3 �ω ����
 1. Singularities of this type at the band center
of a random Hamiltonian have been discovered by Dyson [19] in the fifties and have
recently also been found in one-dimensional spin-gap systems [27, 62]. It is important
to note that in the FGM the singularity is a consequence of phase resonance, and is not
related to concrete probability properties of ∆

�
x � [58, 68]. In particular, the singularity

is not an artifact of the exactly solvable limit ξ � 0 considered in Ref. [71]. As argued
in Ref. [8], it is therefore reasonable to expect that for any ξ � ∞ the average DOS
of the FGM exhibits a singularity at ω � 0. This general argument is in disagreement
with Sadovskii’s solution [78] which for large but finite ξ shows a pseudogap and no
singularity. In this work we shall reexamine the DOS of the FGM which determines
the whole thermodynamics of the FGM and resolve the above contradictions.

We begin this work in Chapter 1 with an elementary introduction to the Peierls ef-
fect of both commensurate and incommensurate Peierls chains. Starting from a Fröh-
lich Hamiltonian which describes a one-dimensional electron-phonon system, we ob-
tain a Euclidean action which after integrating out the fermionic degrees of freedom
can be approximated by a static free energy functional of the phonon field. Expanding
this functional for small fields and keeping only the relevant terms, we are left with
the well-known Ginzburg-Landau functional of a one-dimensional Peierls system. We
will see that correction terms to this Ginzburg-Landau functional are already important
within a mean-field picture away from criticality. In the mean-field approximation, we
can explain the experimentally observed static lattice distortion and the accompanied
charge-density wave. Finally, we will discuss the importance of fluctuations of the
order parameter field and introduce the fluctuating gap model (FGM).

Chapter 2 focuses on the one-particle Green function of the FGM. After calcu-
lating the Green function in the leading-order Born approximation which reproduces
the result obtained by Lee, Rice and Anderson, we will develop a formally exact non-
perturbative expression of the Green function as a functional of the disorder potentials
based on a non-Abelian generalization of the Schwinger-ansatz. To calculate the DOS
and inverse localization length, the introduction of phase variables will turn out to be
very convenient. While one phase variable is simply related to the integrated DOS and
satisfies a non-linear equation of motion which is equivalent to a Riccati equation, the
other phase variable is related to the inverse localization length and can be expressed in
terms of the first phase variable. These equations of motions will serve as the starting
point for detailed calculations of the DOS and inverse localization length for various
probability distributions of the disorder potentials in the next chapters. It will turn out
that physical quantities like the DOS or inverse localization length are left invariant
under a gauge transformation which maps phase fluctuations of the order parameter
field onto an effective forward scattering potential and vice versa. We will make use
of this gauge-transformation in the following chapters.

In Chapter 3 we will review known exact results of the DOS and inverse local-
ization length in the limit of infinite correlation lengths and in the white noise limit.
Generalizing the phase formalism developed in Ref. [58] such that ∆

�
x � is allowed to

be complex, we will derive a linear fourth-order Fokker-Planck equation previously
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only obtained within the framework of the method of supersymmetry [42]. The solu-
tion of this stationary Fokker-Planck equation encapsulates all known results for the
DOS and inverse localization length of the FGM in the white noise limit including the
above mentioned Dyson singularity in the Ovchinnikov and Erikhman limit. Results
for the case of infinite correlation lengths will finally be obtained by averaging the
DOS and the inverse localization length calculated for a constant disorder potential
over an appropriate probability distribution of the disorder potentials.

The case of finite correlation lengths of the order parameter field will be attacked
in Chapter 4. Considering the equation of motion related to the integrated DOS, we
will first argue that we expect for any finite ξ a Dyson singularity in the DOS. We
will then set up an algorithm based on the equations of motion derived in Chapter
2 which will allow for a simultaneous numerical calculation of the DOS and inverse
localization length for arbitrary disorder potentials with unprecedented accuracy. For
complex ∆

�
x � , Sadovskii’s solution is not too far off from our numerical solution. In

particular, for large correlation lengths ∆sξ � 1, the DOS at the Fermi energy vanishes
as ρ

�
0 � ∝

�
∆sξ ��
 0 � 64 instead of ρ

�
0 � ∝

�
∆sξ ��
 1 � 2, as predicted by Sadovskii. However,

for real ∆, we will find a pseudogap in the DOS for ∆sξ � 1 which for any finite ξ is
overshadowed by a Dyson singularity of the form ρ

�
ω ��� A �ω lnα � 1 �ω ����
 1, where A

and the exponent α depend on the correlation length ξ. As the correlation length ξ
increases, α assumes the finite value α � 0 � 41, but the weight of the Dyson singularity
vanishes with increasing correlation length. At the end of Chapter 4, we shall also
discuss the case of only phase fluctuations of the order parameter which applies to
sufficiently low temperatures where the amplitude of the order parameter is confined
to a narrow region around ∆s such that Gaussian statistics do not apply any more. We
will find exact analytic results for the DOS and inverse localization length and we will
also calculate the low-temperature Pauli paramagnetic susceptibility and the electronic
low-temperature specific heat.

In Appendix A, we will use the formalism developed in Chapter 2 to obtain a
gradient expansion in the order parameter field of the local DOS and the related free
energy functional. Such a gradient expansion is well-known in the semi-classical the-
ory of superconductivity. Finally, in Appendix B, we will describe the algorithm used
in Chapter 4 to generate Gaussian colored noise in detail. We will also briefly discuss
an alternative method which can be used to generate disorder with an arbitrary given
spectrum.
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Chapter 1

The Fluctuating Gap Model

This chapter serves as an introduction into Peierls systems which due to their quasi
one-dimensional nature and the presence of electron-phonon interactions develop a
static lattice distortion and a charge-density wave. After a microscopic derivation of
a (generalized) Ginzburg-Landau functional, we briefly discuss the Peierls instability
in a mean-field picture. It follows a discussion of fluctuations of the order parameter
which due to reduced dimensionality are very important for an adequate description
of Peierls chains. Finally, we introduce the fluctuating gap model (FGM) as a low-
energy model which takes into account these fluctuations. The FGM has a wide range
of applications.

1.1 Fröhlich Hamiltonian and Peierls instability

The formation of periodic lattice distortions and charge-density waves in Peierls chains
is due to the electron-phonon interaction in these quasi one-dimensional materials [31,
36, 37, 55, 72]. Since particle-hole excitations with momentum 2kF are possible for
very small excitation energies, the Lindhard density-density response function exhibits
a singularity at q � 2kF . Kohn showed that this singularity should be conveyed into
a kink in the phonon spectrum [47]. While these Kohn anomalies are rather weak in
isotropic materials, they can lead to a substantial alteration to the phonon dispersion
in quasi one-dimensional materials with a topology of the Fermi surface which shows
perfect nesting. At low enough temperatures, the renormalized phonon mode at 2kF

can scale all the way down to zero, i.e. become gapless. This process is called softening
of the phonon mode. Since ωren

�
2kF ��� 0, a static lattice distortion with wave vector

2kF may now arise. Simultaneously, there is a formation of a charge density wave. As a
consequence, the discrete translational invariance is broken. The same physics can also
be described by considering the thermodynamics of a Peierls system. This approach
will also allow to go beyond a mean-field picture and will therefore be followed here.

1



2 Chapter 1 The Fluctuating Gap Model

1.1.1 Fröhlich Hamiltonian

A Hamiltonian to describe a one-dimensional electron-phonon system was proposed
in 1954 by Fröhlich [31]:

H � ∑
k  σ εk c†

k  σck  σ ! ∑
q

ωq b†
qbq ! ∑

q

gq"
L

ρ̂†
q
�
bq � K # q $ ! b†
 q 
 K # q $ ��� (1.1)

The system has length L � Na where a is the lattice spacing, and periodic boundary
conditions are assumed. c†

k and ck are creation and annihilation operators of fermions
with momentum k, spin σ, and energy εk. Their anticommutators are given by%

ck  σ & ck 
  σ 
(' � 0 & %
ck  σ & c†

k 
  σ 
 ' � δσ  σ 
 δk  k 
 1 � (1.2)

While εk � k2 ) 2m for free electrons, in the tight-binding approximation one has εk �� 2t coska.
The second term in the Fröhlich Hamiltonian (1.1) describes phonons with phonon

dispersion ωq. q is confined to the first Brillouin zone and for a chain with only nearest-
neighbor interactions we have (see for example Ref. [6]) ωq � 2ω0 sin � qa ) 2 � . The
creation and annihilation operators b†

q and bq of the phonons satisfy the commutation
relations *

bq & bq 
,+ � 0 & *
bq & b†

q 
 + � δq  q 
 1 � (1.3)

Finally, the last term in Eq. (1.1) models the interaction of the phonon system with the
fermions. The phonons are linearly coupled via the electron-phonon coupling constant
gq to the Fourier components of the electron density

ρ̂†
q � ∑

k  σ c†
k � q  σck  σ � (1.4)

Treating the electrons in the free electron approximation, q is not restricted to the
first Brillouin zone

� � π ) a & π ) a � . To assure that the phonon momentum lies in the
first Brillouin zone, we define a reciprocal lattice vector K

�
q � such that

� � π ) a � q �
K
�
q ��� π ) a � . In the following we will identify q with q � K

�
q � for phonons such that

we may formally omit K
�
q � .

Relation of phonon operators to operators of lattice displacements

The phonon operators bq and b†
q are directly related to the operators of the normal

coordinates uq of the lattice system by

uq � -
1

2Mωq . 1 � 2 /
bq ! b†
 q 0 � (1.5)

Here, M is the ionic mass. The lattice displacement operators of the ions at xn � na
are given by its Fourier transform,

u
�
xn ��� ∑

q
eiqxn

-
1

2NMωq . 1 � 2 /
bq ! b†
 q 0 � (1.6)
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As we will see later, in a mean-field picture the Peierls transition will lead to a non-
vanishing expectation value � u � xn ��� which implies that the system exhibits a static
lattice distortion.

1.2 Euclidean action

In an Euclidean functional integral approach, the Fröhlich Hamiltonian is conveyed
into the action (see, for example, Negele and Orland [70])

S
%
ψ � & ψ;b � & b ' � Sel

%
ψ � & ψ ' ! Sph

%
b � & b ' ! Sint

%
ψ � & ψ;b � & b ' & (1.7)

where

Sel
%
ψ � & ψ ' � β ∑

k  ω̃n  σ ψ �k  ω̃n  σ * iω̃n � ε̃k + ψk  ω̃n  σ & (1.8)

Sph
%
b � & b ' �1� β ∑

q  ωm

b �q  ωm 2 iωm � ωq 3 bq  ωm & (1.9)

Sint
%
ψ � & ψ;b � & b ' � β ∑

q  ωm

gq"
L 4 ∑

k  ω̃n  σψ �k � q  ω̃n � ωm  σψk  ω̃n  σ 56 2 bq  ωm ! b � 
 q  
 ωm 3 � (1.10)

Here, β � 1 ) kBT is the inverse temperature and ε̃k � εk � µ is the energy dispersion
reduced by the chemical potential µ. While the conjugated Grassmann variables ψk  ω̃n

and ψ �k  ω̃n
describe fermions with momentum k and fermionic Matsubara frequency

ω̃n � �
2n ! 1 � π ) β, bq  ωm and b �q  ωm

are complex (bosonic) phonon fields with momen-
tum q and bosonic Matsubara frequency ωm � 2πm ) β. Both n and m are integers. In
terms of the above action, the partition function reads

Z �87 D
%
ψ � & ψ ' D

%
b � & b ' exp

* � S
%
ψ � & ψ;b � & b '9+ & (1.11)

where D
%
ψ � & ψ ' and D

%
b � & b ' are appropriately normalized fermionic and bosonic

integration measures [70]. Thermal averages of a Euclidean time-ordered operator
T 2 F % c† & c;b† & b ' 3 are given by:

T ; F % c† & c;b† & b '=<?> � 1
Z
7 D

%
ψ � & ψ ' D

%
b � & b '

F
%
ψ � & ψ;b � & b ' exp

* � S
%
ψ � & ψ;b � & b '9+ � (1.12)

The following variable transformation turns out to be convenient:

φq  ωm � gq"
L @ bq  ωm ! b � 
 q  
 ωm A & (1.13)

ηq  ωm �1� i
gq"

L @ bq  ωm � b � 
 q  
 ωm A � (1.14)
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Note that by definition φ �q  ωm
� φ 
 q  
 ωm and η �q  ωm

� η 
 q  
 ωm . Since the action con-
sidered as a functional of ψ � , ψ, φ and η is Gaussian in η, the respecting integral may
easily be done,1 resulting in

S
%
ψ � & ψ;φ ' � Sel

%
ψ � & ψ ' ! Sph

%
φ ' ! Sint

%
ψ � & ψ;φ ' & (1.15)

where Sel
%
ψ � & ψ ' is unchanged and

Sph
%
φ ' � 1

2
βL ∑

q  ωm

1� gq � 2 φ �q  ωm B ω2
m ! ω2

q

ωq C φq  ωm & (1.16)

Sint
%
ψ � & ψ;φ ' � β ∑

q  ωm 4 ∑
k  ω̃n

ψ �k � q  ω̃n � ωm
ψk  ω̃n 5 φq  ωm � (1.17)

So far, no approximation has been made. In the following, we will restrict ourselves to
the low-energy physics of the weak-coupling limit, so that only fermions in the vicinity
of the Fermi energy are involved. In this case the Fermi energy may be linearized
around the two Fermi points, such that it assumes the form

ε̃k � vF
� � k �D� kF �E� (1.18)

To separate right- and left-moving Fermions, let us introduce the spinor field

ψ̄k  ω̃n  σ � -
ψ �� k  ω̃n  σ
ψ 
  k  ω̃n  σ . � -

ψkF � k  ω̃n  σ
ψ 
 kF � k  ω̃n  σ . (1.19)

and its conjugated counterpart

ψ̄†
k  ω̃n  σ � @ ψ ��F k  ω̃n  σ & ψ � 
  k  ω̃n  σ A � @ ψ �kF � k  ω̃n  σ & ψ � 
 kF � k  ω̃n  σ A � (1.20)

The electronic part of the action may be easily rewritten in terms of these spinor fields
and the inverse non-interacting Matsubara Green function

G 
 1
0

�
k & ω̃n ��� -

iω̃n � vFk 0
0 iω̃n ! vFk . � (1.21)

Since the momentum transfer of the phonons is either small compared with the Fermi
momentum or approximately 2kF , we decompose φq  ωm according to

Vq  ωm � -
Vq  ωm ∆q  ωm

∆ � 
 q  
 ωm
Vq  ωm . � -

φq  ωm φq � 2kF  ωm

φq 
 2kF  ωm φq  ωm . & (1.22)

such that � q �G� kF . While φ �q  ωm
� φ 
 q  
 ωm directly translates into V �q  ωm

� V 
 q  
 ωm ,
a similar relation for ∆q  ωm does only hold if 4kF is a reciprocal lattice vector.

1Physically this is due to the fact that we consider only non-interacting phonons which are coupled
to the space-coordinates of the underlying lattice.
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∆ �q  ωm
� ∆ 
 q  
 ωm is therefore only true for a half-filled band for which π ) a � 2kF .

We will refer to this case as the commensurate case. The more general case for which
kFa ) π is an other fractional number is also called commensurate but will not be dis-
cussed here. In the incommensurate case, for which kFa ) π is well separated from any
simple fractional number, all ∆ �q  ωm

and ∆ 
 q 
  
 ωm 
 are independent. We will see in this
work that commensurate and incommensurate Peierls systems can have very different
physical properties.

Defining the matrices G 
 1
0 and V via/

G 
 1
0 0

k  k 
  ω̃n  ω̃n 
 � δk  k 
 δω̃n  ω̃n 
 G 
 1
0

�
k & ω̃n � & (1.23)�

V � k  k 
  ω̃n  ω̃n 
 � Vk 
 k 
  ω̃n 
 ω̃n 
 & (1.24)

our action turns into

S
%
ψ̄† & ψ̄;V & ∆ & ∆ � ' � Sel 
 ph

%
ψ̄† & ψ̄;V & ∆ & ∆ � ' ! Sph

%
V & ∆ & ∆ � ' & (1.25)

where

Sel 
 ph
%
ψ̄† & ψ̄;V & ∆ & ∆ � ' � β ∑

k  k 
  ω̃n  ω̃n 
  σψ̄†
k  ω̃n  σ / G 
 1

0 � V 0
k  k 
  ω̃n  ω̃n 
 ψ̄k 
  ω̃n 
  σ & (1.26)

Sph
%
V & ∆ & ∆ � ' � 1

2
βL ∑

q  ωm

1� gq � 2 B ω2
m ! ω2

q

ωq C V �q  ωm
Vq  ωm! 1

c
βL ∑

q  ωm

1� g2kF � q � 2 B ω2
m ! ω2

2kF � q

ω2kF � q C ∆ �q  ωm
∆q  ωm & (1.27)

and

c �IH 2 & commensurate case (half-filled band) &
1 & incommensurate case � (1.28)

While in the incommensurate case J 2kF lie (up to a reciprocal lattice vector) inside
the first Brillouin zone, J 2kF lie directly on the border of the first Brillouin zone in the
commensurate case. In this case the factor of 1 ) 2 in the last line in Eq. (1.27) avoids
overcounting.

1.3 Ginzburg-Landau theory

Since the action describing the Peierls chain is only Gaussian in both the Fermion and
phonon fields, either of them can easily be integrated out. To determine the phonon
statistics and the related lattice deformations, let us first integrate out the fermionic
fields. Sel 
 ph

%
ψ̄† & ψ̄;V & ∆ & ∆ � ' then turns into

Sph  int
%
V & ∆ & ∆ � ' �K� ; ln 7 D

%
ψ � & ψ ' exp

/ � Sel 
 ph
%
ψ̄† & ψ̄;V & ∆ & ∆ � ' 0
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%
ψ � & ψ ' exp

/ � Sel 
 ph
%
ψ̄† & ψ̄;0 & 0 & 0 'L0�<�K� s lndet

*
1 � G0V + �M� sTr ln

*
1 � G0V + & (1.29)

where the logarithm of the matrix
*
1 � G0V + is defined by its power series and s counts

the number of spin states and is defined as

s �NH 2 & fermions with spin 1 ) 2 &
1 & spinless fermions � (1.30)

Expanding the logarithm up to terms of fourth order, we get

Sph  int
%
V & ∆ & ∆ � ' � s

2
Tr
�
G0V � 2 ! s

4
Tr
�
G0V � 4 � (1.31)

Neglecting for simplicity cross-terms between V and ∆, Sph  int
%
V & ∆ & ∆ � ' assumes the

form2

Sph  int
%
V & ∆ & ∆ � ' � Sph  int

%
V ' ! Sph  int

%
∆ & ∆ � ' & (1.32)

with

Sph  int
%
V ' �K� s

2
βL ∑

q  ωm

Π0
�
q & ωm � V �q  ωm

Vq  ωm & (1.33)

Sph  int
%
∆ & ∆ � ' �K� sβL ∑

q  ωm

Π2kF
0

�
q & ωm � ∆ �q  ωm

∆q  ωm! s
2

βL ∑
qi  ωmi

� U4
�
qi & ωmi � ∆ � 
 q4  
 ωm4

∆ � 
 q3  
 ωm3
∆q2  ωm2

∆q1  ωm1 & (1.34)

and

Π0
�
q & ωm ���K� 1

βL ∑
α

∑
k  ω̃n

Gα
0
�
k & ω̃n � Gα

0
�
k ! q & ω̃n ! ωm � & (1.35)

Π2kF
0

�
q & ωm ���K� 1

βL ∑
k  ω̃n

G 
0 � k & ω̃n � G �0 � k ! q & ω̃n ! ωm � & (1.36)

U4 � U4
�
0 & 0 �O� 1

βL ∑
k  ω̃n

1*
iω̃n ! vF k + 2 * iω̃n � vFk + 2 � (1.37)

The prime on the last sum in Eq. (1.34) denotes that the sums over the qi and ωmi are
restricted to ∑4

i P 1 qi � 0 and ∑4
i P 1 ωmi � 0. Note that a closed-loop theorem assures

that all terms in V beyond the quadratic term cancel (see for example [50]). Since in
the following we will only consider the leading term of U4

�
qi & ωmi � , here we have only

2Since there is no quartic term in V [see remark below Eq. (1.37)], the V -field may formally be easily
integrated out leading to renormalizations of Π2kF

0 Q q R ωm S and U4 Q qi RTR ωmi S
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given U4 � U4
�
0 & 0 � . Defining3 the renormalized phonon frequencies ωren

�
q & ωm � and

ω2kF
ren
�
q & ωm � as

ω2
ren
�
q & ωm ��� ω2

q 2 1 � s @ � gq � 2 ) ωq A Π0
�
q & ωm � 3 & (1.38)/

ω2kF
ren
�
q & ωm � 0 2 � ω2

2kF � q ; 1 � cs @ � g2kF � q � 2 ) ω2kF � q A Π2kF
0

�
q & ωm � < & (1.39)

the total (bosonic) action may be written as

S
%
V & ∆ & ∆ � ' � S

%
V ' ! S

%
∆ & ∆ � ' & (1.40)

S
%
V ' � 1

2
βL ∑

q  ωm

1� gq � 2 U ω2
m ! ω2

ren
�
q & ωm �

ωq V V �q  ωm
Vq  ωm & (1.41)

S
%
∆ & ∆ � ' � 1

c
βL ∑

q  ωm

1� g2kF � q � 2 WXY ω2
m ! /

ω2kF
ren
�
q & ωm � 0 2

ω2kF � q Z\[] ∆ �q  ωm
∆q  ωm! s

2
βL ∑

qi  ωmi

� U4
�
qi & ωmi � ∆ � 
 q4  
 ωm4

∆ � 
 q3  
 ωm3
∆q2  ωm2

∆q1  ωm1
� (1.42)

1.3.1 Lindhard function

The density-density Lindhard response function for a linearised energy dispersion and
momentum transfers close to 0 or 2kF is given by Π0

�
q & ωm � and Π2kF

0

�
q & ωm � , respec-

tively. Returning to a quadratic energy dispersion εk � k2 ) 2m, the static Lindhard
function per spin direction is given by

Π̄0
�
q & ωm �^�1� 1

βL ∑
k  ω̃n

G0
�
k & ω̃n � G0

�
k ! q & ω̃n ! ωm ��1� 7 k0
 k0

dk
2π

f
�
εk � q � 2 �_� f

�
εk 
 q � 2 �

kq ) m � (1.43)

Here, G0
�
k & ω̃n ��� *

iω̃n � εk ! µ
�
T � + 
 1, k0 is an ultraviolet momentum cutoff,

f
�
εk ��� 1

exp
*
β
�
εk � µ

�
T ��� + ! 1

(1.44)

is the Fermi function and

µ
�
T �a` εF @ 1 ! � π2 ) 12 � � kBT ) εF � 2 A (1.45)

is the temperature-dependent chemical potential. A numerical evaluation of the static
Lindhard function for various temperatures is shown in Fig. 1.1. As the temperature is

3These frequencies occur naturally in a dynamic theory based on linear response theory (see for
example [37]).
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q b kF

Π̄
0

c q

d 0ef Π̄
0
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0
0
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1
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Figure 1.1: The static Lindhard response function Π̄0
�
q � for free electrons with energy

dispersion εk � k2 ) 2m and a momentum cutoff k0 � 5kF plotted for the temperatures
kBT ) εF � 0 � 0 & 0 � 01 & 0 � 02 & 0 � 05 and 0 � 1. As the temperature approaches zero, the Lind-
hard function clearly diverges at q � 2kF . Since Π̄0

�
q � is symmetric with respect to

q � � q, we have only plotted Π̄0
�
q � for positive q.

lowered, perfect nesting leads to a singularity at q � 2kF .
In the limit T � 0, the Fermi function renders into a step function such that the

integral in (1.43) can be done analytically, resulting in

Π̄0
�
q & 0 �F� ρ0

kF� q � ln gggg 2kF ! � q �
2kF �h� q � gggg & (1.46)

where

ρ0 � 1
πvF

(1.47)

is the density of states (DOS) of free Fermions at the Fermi energy per spin direction.
While for small q we recover the Thomas-Fermi result Π̄0

�
q & 0 �i� ρ0, for � q ��` 2kF we

find

Π̄0
�
q & 0 �O� ρ0

2
ln gggg 2kF ! � q �

2kF �h� q � gggg & ggg � q �D� 2kF gggLj kF � (1.48)

The divergence of Π̄0
�
q & 0 � at q � 2kF can clearly be seen in Fig. 1.1.
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1.3.2 Kohn anomaly in the phonon dispersion

The singularity in the (static) Lindhard response function has a dramatic effect on the
renormalized phonon dispersion. In the commensurate case, Eqs. (1.38) and (1.39) can
be generalized towards arbitrary momenta q by defining [75]

ω̄2
ren
�
q & ωm ��� ω2

q 2 1 � s @ � gq � 2 ) ωq A Π̄0
�
q & ωm � 3 & (1.49)

where Π̄0
�
q & ωm � was introduced in the last subsection. For small q the coupling con-

stant gq varies as q1 � 2 (see Ref. [37]) such that � gq � 2 ) ωq is independent of q. In one
dimension it should be not such a bad approximation to assume the dimensionless
coupling constant

λ � s
ρ0 � gq � 2

2ωq
(1.50)

to be independent of q. A plot of the bare acoustic phonon dispersion ωq �
2ω0 sin � qa ) π � and the renormalized phonon dispersion

ω̄ren
�
q & ωm �a� ωq 2 1 � 2λΠ̄0

�
q & ωm � ) ρ0 3 1 � 2 (1.51)

for different temperatures is shown in Fig. 1.2. The singularity in the Lindhard func-
tion is clearly conveyed into a singularity in the renormalized phonon dispersion and is
known as a Kohn anomaly [47]. As the temperature is lowered, ω̄ren

�
2kF � decreases all

the way down to zero, leading to a finite transition temperature T MF
c at which ω̄ren

�
2kF �

becomes zero. At T MF
c , the q � 2kF phonon mode softens, i.e. becomes gapless. We

will see shortly that this dynamic definition of T MF
c agrees with a thermodynamic def-

inition of the mean-field transition temperature T MF
c . In the thermodynamic approach,

the free energy will be minimized for a finite ∆ below T MF
c .

The case of a half-filled band behaves slightly different. In this case the two singu-
larities at J 2kF merge at the boundary of the first Brillouin zone. The general picture
of the softening of the phonon mode, however, is the same.

1.3.3 Discarding quantum fluctuations

To derive a time-independent Ginzburg-Landau theory we ignore quantum fluctua-
tions, i.e. we ignore all terms involving finite bosonic frequencies. Since we will be
only interested in static properties this should be a reasonable approximation for not
too small temperatures. The action S

%
V & ∆ & ∆ � ' then turns into the free energy func-

tional βF
%
V & ∆ & ∆ � ' , where

F
%
V & ∆ & ∆ � ' � F

%
V ' ! F

%
∆ & ∆ � ' & (1.52)

F
%
V ' � 1

2
L∑

q

1� gq � 2 U ω2
ren
�
q �

2ωq V V �q Vq (1.53)
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q
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n
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2ω0

Figure 1.2: Plot of the acoustic phonon dispersion ωq � 2ω0 sin � qa ) π �
(dashed line) and the respective renormalized phonon dispersion ω̄ren

�
q & ωm �n�

ωq @ 1 � λΠ̄0
�
q & ωm � ) ρ0 A 1 � 2 for λ � 0 � 15 and kBT ) εF � 0 � 1 & 0 � 05 & 0 � 02 & 0 � 01 and T �

T MF
c .

F
%
∆ & ∆ � ' � 1

c
L∑

q

1� g2kF � q � 2 WXY / ω2kF
ren
�
q � 0 2

ω2kF � q Z [] ∆ �q∆q! s
2

L∑
qi

� U4
�
qi � ∆ � 
 q4

∆ � 
 q3
∆q2∆q1 � (1.54)

It is not difficult to show that

Π0
�
q & ωm ��� ρ0

v2
F q2

ω2
m ! v2

Fq2 & (1.55)

which implies that for a linearized energy dispersion Π0
�
q & 0 ��� ρ0 is even valid for

arbitrary temperatures. As we have already seen in Fig. 1.2, the Lindhard function
therefore only leads to a small modification of the acoustic phonon dispersion for small
q. Since F

%
V ' is Gaussian in V , the electron-phonon coupling only leads to slightly

renormalized phonon statistics for small q.
Let us now focus on the truncated free energy functional F

%
∆ & ∆ � ' : Expanding
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Π2kF
0

�
q �F� Π2kF

0

�
q & 0 � up to terms of second order in q, we have

Π2kF
0

�
q ��� Π2kF

0

�
0 �o� C v2

Fq2 & (1.56)

with

C � 1
βL ∑

k  ω̃n

1*
iω̃n ! vF k + * iω̃n � vFk + 3 � (1.57)

Π2kF
0

�
0 � may be calculated as follows:

Π2kF
0

�
0 ���1� 1

βL ∑
k  ω̃n

G 
0 � k & ω̃n � G �0 � k & ω̃n ��K�p7 k0
 k0

dk
2π

f
�
vFk �_� f

� � vFk �
2vFk�q7 k0
 k0

dk
2π

tanh
�
βvFk ) 2 �

2vFk� ρ0

2
7 ε0 � 2kBT

0
du

tanhu
u & (1.58)

where the momentum cutoff k0 turns into the energy cutoff ε0 � vFk0 and due to the lin-
earization of the energy dispersion, the chemical potential in the above Fermi function
equals zero. For ε0

) kBT � 1, the last integral in Eq. (1.58) depends logarithmically
on ε0

) 2kBT . The additive constant can be obtained by partially integrating the last
integral in Eq. (1.58) and then looking up the remaining integral (Eq. (4.371) in Ref.
[35]):7 x

0
du

tanhu
u

� ln
�
x �o� 7 ∞

0
du

lnu

cosh2 u
! O

�
e 
 x �a� ln

�
4eγx ) π � ! O

�
e 
 x � & (1.59)

where

γ � lim
N r ∞ 4 N

∑
n P 1

1
n
� ln

�
N � 5 � 0 � 577215664 �����i� (1.60)

is Euler’s constant. We therefore find for Π2kF
0

�
0 �

Π2kF
0

�
0 �F� ρ0

) 2 ln
* �

2eγ ) π � ε0
) kBT + & (1.61)

with4

2eγ

π
� 1 � 1338659 �����i� (1.62)

The mean-field transition temperature may now be obtained by plugging Eq. (1.61)
into Eq. (1.39) and setting the renormalized phonon dispersion equal to zero. It directly
follows

kBT MF
c � 1 � 134ε0 exp

� � 1 ) λ � & (1.63)

4Note that in the literature on the BCS-theory of superconductivity or the Peierls instability, many
people use the value 1 s 14 instead of 1 s 134. Of course, this slight deviation does not make any difference.
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where

λ � cs
ρ0 � gq � 2

2ωq
(1.64)

is the dimensionless coupling constant already considered above. In the weak-coupling
limit we have (by definition) λ j 1.

To calculate C and U4, let us consider the general expression

Cν1  ν2 � 1
βL ∑

k  ω̃n

1*
iω̃n ! vF k + ν1

*
iω̃n � vFk + ν2 & (1.65)

which clearly vanishes if ν1 ! ν2 is odd and greater than two. Turning the k-summation
into an integral and using the residue theorem, it follows for even ν � ν1 ! ν2 t 4

Cν1  ν2 � 2
β ∑

ω̃n u 0
7 du

2πvF

1*
iω̃n ! u + ν1

*
iω̃n � u + ν2�v� ρ0

2
4πi
β ∑

ω̃n u 0

1�
ν1 � 1 � ! -

d
du . ν1 
 1 1*

iω̃n � u + ν2
ggggg u P 
 iω̃n�1� ρ0

2
4πi
β

�
ν � 2 � � ν � 3 �xw�w�w ν2�

ν1 � 1 � ! ∑
ω̃n u 0

1*
2iω̃n + ν 
 1� ρ0

2

� � 1 � ν � 2 - β
4π . ν 
 2 - ν � 2

ν1 � 1 . @ 2ν 
 1 � 1 A ζ
�
ν � 1 � & (1.66)

where in the last step we have used

∑
ω̃n u 0

1*
2iω̃n + ν 
 1 � -

β
2πi . ν 
 1

∑
n odd

1
nν 
 1� -

β
2πi . ν 
 1 4 ∞

∑
n P 1

1
nν 
 1 � ∞

∑
n P 1

1�
2n � ν 
 1 5� -

β
4πi . ν 
 1 @ 2ν 
 1 � 1 A ζ

�
ν � 1 �E� (1.67)

The Riemann zeta-function which appears here is defined as

ζ
�
ν �F� ∞

∑
n P 1

1
nν � (1.68)

It directly follows from Eq. (1.66) that

U4 � 2C � ρ0

-
β
4π . 2

7ζ
�
3 �E� (1.69)
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1.3.4 Ginzburg-Landau functional

With the above approximations, the truncated free energy functional turns into

F
%
∆ & ∆ � ' � sρ0L

2
; a � T � ∑

q
∆ �q∆q ! b

�
T � ∑

qi

� ∆ � 
 q4
∆ � 
 q3

∆q2∆q1! c
�
T � ∑

q
q2 ∆ �q∆q < & (1.70)

where the temperature-dependent coefficients a
�
T � , b

�
T � and c

�
T � are given by

a
�
T ��� ln

T
T MF

c
& kBT MF

c � 1 � 134ε0 exp
� � 1 ) λ � & (1.71)

b
�
T ��� -

1
4πkBT . 2

7ζ
�
3 �E� (1.72)

c
�
T ��� -

vF

4πkBT . 2

7ζ
�
3 �E� (1.73)

We now define the order parameter field ∆
�
x � as the Fourier transform of ∆q:

∆
�
x ��� ∑

q
eiqx∆q & (1.74)

∆q � 1
L
7 L

0
dxe 
 iqx∆

�
x ��� (1.75)

Note that the order parameter field ∆
�
x � and the order parameter � ∆ � x ��� are real in the

commensurate case where ∆ �q � ∆ 
 q. In the incommensurate case, ∆ �q � ∆ 
 q does not
hold and ∆

�
x � and � ∆ � x ��� are complex. Note also that with the above definitions of the

prefactors of the Fourier transform both ∆
�
x � and ∆q have dimensions of energy.5 In

terms of ∆
�
x � the Ginzburg-Landau functional assumes the usual form

F
%
∆ & ∆ � ' � sρ0

2
7 L

0
dx ; a � T �y�∆ � x �L� 2 ! b

�
T �y�∆ � x �L� 4 ! c

�
T �y� ∂x∆

�
x �L� 2 < & (1.76)

In the microscopic derivation of this static Ginzburg-Landau functional we have ig-
nored quantum effects. The resulting free energy functional was expanded up to terms
of fourth order in the order parameter field and only the leading term involving gradi-
ents in the order parameter field was retained. These approximations can only be good
at sufficiently high temperatures provided that the order parameter field and its fluctu-
ations are small. In particular, we have to satisfy the condition �∆ � j kBT . To weaken
the above restrictions, higher terms in the order parameter field have to be included.

5We have introduced ∆q such that below a phase transition ∆q z 0 assumes the finite value ∆0eiϑ.
Other definitions are, of course, also possible.
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A method based on the formalism developed in the next chapter which allows to ex-
pand the free energy functional in terms of gradients of the order parameter field but in
each order collects all terms in the order parameter itself is presented in Appendix A.
Up to terms of second order in the gradient, we get the generalized Ginzburg-Landau
functional

F
%
∆ & ∆ � ' � F # 0 $ % ∆ & ∆ � ' ! F # 2 $ % ∆ & ∆ � ' & (1.77)

F # 0 $ % ∆ & ∆ � ' � sρ0 7 L

0
dx 4 � 2π

β ∑
0 { ω̃n | ε0

U�} ω̃2
n ! �∆ � 2 � ω̃n V ! �∆ � 2

2λ 5 & (1.78)

F # 2 $ % ∆ & ∆ � ' � sρ0 7 L

0
dx

2π
β ∑

ω̃n u 0
B 18 � ∂x∆ � 2�

ω̃2
n ! �∆ � 2 � 3

2

� 1
32

2 ∂x �∆ � 2 3 2�
ω̃2

n ! �∆ � 2 � 5
2 C � (1.79)

For F # 0 $ % ∆ & ∆ � ' to be finite and to avoid logarithmic divergences, the sum in Eq. (1.79)
needs to be regularized by an ultraviolet cutoff ε0.6 Although the ultraviolet cutoff ε0

was introduced here in the sum over Matsubara frequencies instead of as a cutoff in
the momentum integral, expanding Eqs. (1.77) to (1.79) in the regime β �∆ � j 1 and
using the definition of Euler’s constant given in Eq. (1.60) to evaluate the remaining
sum in F # 0 $ � ∆ & ∆ �~� , we recover precisely the Ginzburg-Landau functional (1.76).

1.4 Mean-field theory

As a first step to understand the phenomenon of the Peierls transition, we consider
our system in the mean field approximation, i.e. we ignore fluctuations of the order
parameter field ∆

�
x � and consider ∆ to be spatially constant. Since the gradient term

vanishes, the generalized Ginzburg-Landau functional (1.77) reduces to

F
�
∆ �a� sρ0L 4 � 2π

β ∑
0 { ω̃n | ε0

U } ω̃2
n ! �∆ � 2 � ω̃n V ! �∆ � 2

2λ 5 � (1.80)

A plot of F
�
∆ � for different temperatures T and real ∆ is shown in Fig. 1.3. As long

as T � T MF
c , the generalized Landau function (1.80) assumes its minimum at ∆ � 0.

At T � T MF
c , however, the coefficient of the quadratic term in the expansion of the

generalized Landau function,
�
sρ0

) 2 � a � T � , becomes negative, and F
�
∆ � takes on its

minima at the finite values ∆ � ∆0eiϑ which satisfy �∆ ��� ∆0 �� 0. While ϑ is an
arbitrary but constant phase in the incommensurate case, it is only allowed to assume
the values 0 and π in the commensurate case, such that ∆ � ∆0eiϑ ��J ∆0 is real. As
long as T is close to the mean-field critical temperature T MF

c , ∆0
) kBT is small and the

6This cutoff has to be introduced such that F � 0 ��� ∆ R ∆ ��� is a smooth function of temperature. One
possibility to do so is to weigh the last summand with a factor between 0 and 1 depending on the
difference between its frequency ω̃n and ε0.
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�
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�
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Landau function obtained from Eq. (1.76) by setting ∆
�
x �y� ∆ is a good approximation

to its generalized form. In this case, F
�
∆ � is minimized for ∆ � ∆0

�
T � eiϑ, where

∆0
�
T ��� - � a � T �=�

2b
�
T � . 1 � 2 & T � T MF

c � (1.81)

Since T � T MF
c , we may replace a

�
T � by

�
T � T MF

c � ) T MF
c and b

�
T � by b

�
T MF

c � , such
that

∆0
�
T �a� 4πkBT MF

c�
2 w 7ζ

�
3 ��� 1 � 2 - T MF

c � T
T MF

c . 1 � 2 & T � T MF
c � (1.82)

Note that we have defined ∆0
�
T � such that it is real and positive. The critical exponent

β̄ � 1 ) 2 is the typical mean-field exponent. Since ∆0
�
T � rises continuously from zero

at T � T MF
c , the system undergoes a second order phase transition. For arbitrary tem-

peratures, ∆0
�
T � may be calculated by minimizing Eq. (1.80). In this case, ∆0

�
T � is

implicitly given by the BCS gap equation [1, 83, 90]

1
λ
� 2π

β ∑
0 { ω̃n | ε0

1} ω̃2
n ! ∆2

0

�
T � & (1.83)
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c
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1 � @ T ) T MF
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which can also be written as

1
λ
��7 ε0

0
dε

tanh ; � ε2 ! ∆2
0

�
T ��� 1 � 2 ) 2kBT <�

ε2 ! ∆2
0

�
T ��� 1 � 2 � (1.84)

For T � T MF
c , we have ∆0

�
T ��� 0, and using Eq. (1.59) we recover Eq. (1.63). A plot

of ∆0
�
T � obtained by a numerical solution of Eq. (1.83) is shown in Fig. 1.4.

At zero temperature, F
�
∆ � and ∆0

�
0 � can be simplified as follows: In the limit

β � ∞, the sum over Matsubara frequencies in Eq. (1.80) turns into an integral,

FT P 0
�
∆ ��� sρ0L

- � 7 ε0

0
dE U } E2 ! �∆ � 2 � E V ! �∆ � 2

2λ . � (1.85)

The integral may be done analytically, resulting in

FT P 0
�
∆ ��� sρ0

2
L ���� ε0 } ε2

0 ! �∆ � 2 ! ε2
0 �h�∆ � 2 ln

ε0 ! } ε2
0 ! �∆ � 2�∆ � ! �∆ � 2

λ �� � (1.86)



1.4 Mean-field theory 17

To be consistent with our weak-coupling assumption which implies �∆ � j ε0, we ig-
nore terms of order �∆ � 2 ) ε2

0, such that

FT P 0
�
∆ ���M� sρ0

2
L �∆ � 2 - 1

2 ! ln

-
2ε0�∆ � . � 1

λ . � (1.87)

Setting the derivative of this equation with respect to ∆ equal to zero, we obtain for the
minimized free energy

FT P 0
�
∆0
�
0 ���F�M� sρ0L

2
∆2

0
�
0 �

2
� (1.88)

∆0
�
0 � , which we have chosen again real and positive, can be obtained in the weak-

coupling limit λ j 1:

∆0
�
0 ��� 2ε0e 
 1 � λ � (1.89)

Expressing λ in terms of the mean-field transition temperature T MF
c , we obtain the

usual BCS-relation between the zero-temperature gap and the mean-field transition
temperature,

2∆0
�
0 �F� 3 � 528kBT MF

c � (1.90)

1.4.1 Static lattice distortion

It directly follows from Eq. (1.6) that the expectation value of the lattice displacements
is given by � u � xn ���F� ∑

q
eiqxn

-
1

2NMωq . 1 � 2 / � bq � ! � b†
 q � 0 � (1.91)

In the mean-field approximation, the only non-vanishing contributions are� ∆ � x ���F� ∆0eiϑ � � g2kF �"
L

/ � b2kF � ! � b†
 2kF
� 0 (1.92)

and its conjugated form. We therefore have� u � xn ���F� -
2a

Mω2kF � g2kF � 2 . 1 � 2
∆0 cos

�
2kFxn ! ϑ ��� (1.93)

Below the Peierls transition ∆0 � 0, and the system develops a static lattice distortion
with wave vector 2kF whose amplitude is proportional to the order parameter � ∆ � x ���y�
∆0eiϑ. In the case of a half-filled band, kF � π ) 2a, such that all ions are displaced by
the same amount, but in alternating directions.
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1.4.2 Mean-field Hamiltonian

Treating the phonon field in a mean-field approximation, the electronic part of the
action (1.25) corresponds to the Hamiltonian

H MF
el � ∑

k

/
c†�F k & c†
  k 0 Hk

-
c �F k
c 
  k . & Hk � -

vFk ∆0eiϑ

∆0e 
 iϑ � vF k . � (1.94)

Here, c†�  k and c
�  k are creation and annihilation operators of right- or left-moving

electrons with momentum k measured relative to the Fermi energy. For simplicity,
we have ignored the spin index. The above Hamiltonian can be diagonalized by the
Bogoliubov transformation -

c �F k
c 
  k . � Uk

-
a �F k
a 
  k . & (1.95)

where Uk is a 2 6 2-matrix. For the new fermion operators a†�  k and a
�  k to satisfy the

usual anticommutation relations%
aα  k & aα 
  k 
�' � 0 & %

aα  k & a†
α 
  k 
 ' � δα  α 
 δk  k 
 1 & (1.96)

Uk has to be a special unitary matrix, i.e. its matrix elements have to satisfy�U �i�� k � 2 ! �U � 
  k � 2 � 1 (1.97)

U 
i
  k � U ��y�� k & U 
 �F k �M� U �� 
  k � (1.98)

The eigenvalues of Hk can easily be shown to be J Ek, where

Ek � sgn
�
k � } v2

F k2 ! ∆2
0 � (1.99)

Here, we have chosen a sign convention such that Ek � vFk for ∆0
) vF k � 0. A

straightforward evaluation of the corresponding eigenvectors determines the unitary
matrix Uk:

Uk � 1"
2 4 �

1 ! vF k ) Ek � 1 � 2 eiϑ � 2 � sgn
�
k � � 1 � vFk ) Ek � 1 � 2 eiϑ � 2

sgn
�
k � � 1 � vFk ) Ek � 1 � 2 e 
 iϑ � 2 �

1 ! vF k ) Ek � 1 � 2 e 
 iϑ � 2 5 �
(1.100)

For ∆ ) vFk � 0 the unitary matrix Uk scales to the identity 1. In terms of the new
fermion operators, the electronic part of the mean-field Hamiltonian reads

H MF
el � ∑

α  k αEk a†
α  kaα  k � (1.101)

For finite ∆0 the energy dispersion of this Hamiltonian is gapped. A plot of the energy
dispersion E � k � 
 kF

relative to the Fermi energy is shown in Fig. 1.5.
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1.4.3 The density of states

The fundamental quantity which will lie at the heart of the following chapters and
which encapsulates the whole thermodynamics is the density of states (DOS). In the
mean-field picture discussed here, the DOS ρ

�
ω � is given by

ρMF � ω ��� 7 ∞
 ∞

dk
2π ∑

α
δ
�
ω � αEk �� 1

π
7 ∞

0
dk δ

/ �ω ��� } v2
Fk2 ! ∆2

0 0� ρ0
�ω �} ω2 � ∆2

0

θ @ ω2 � ∆2
0 A & (1.102)

where the DOS of free fermions with a linearized energy dispersion is given by [see
also Eq. (1.47)]

ρ0 � 1
πvF

� (1.103)

A plot of the DOS in the mean-field approximation is shown in Fig. 1.6. Due to the
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Figure 1.6: Plot of the density of states ρMF � ω � in the mean-field approximation. The
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gap in the electron dispersion, the DOS vanishes for �ω �=� ∆0. The vanishing slope of
the energy dispersion Ek near the band edges manifests itself in the singularities in the
DOS at ω ��J ∆0.

1.4.4 Condensation energy

The ground state energy can be obtained by filling up all states up to the Fermi level
and adding to the corresponding energy the lattice energy sρ0L∆2

0
) 2λ. For a proper

normalization we have to subtract from this energy the corresponding energy of free
fermions. Since at T � 0 the free energy coincides with the energy itself, it is not
surprising that the above ground state energy is precisely given by Eq. (1.85) leading
to the condensation energy [see Eq. (1.88)]

Econd �M� FT P 0
�
∆0 ��� sρ0L

2
∆2

0

�
0 �

2 & (1.104)

where ∆0
�
0 � can be expressed by the BCS relation (1.90) in terms of the mean-field

transition temperature T MF
c . The condensation energy is positive because the Peierls

instability leads to a lowering of the occupied energy states near the Fermi level. This
energy gain prevails over the energy loss due to the static lattice distortion.
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1.4.5 Charge-density wave

The static lattice distortion encountered above is accompanied by a charge-density
wave. This can be seen by considering the ground state for which all energy levels
below the Fermi energy are occupied, implying the following expectation values:� aα  kaα 
  k 
 �F� 0 & � aα  ka†

α 
  k 
 �F� δα  α 
 δk  k 
 θ � � αk �E� (1.105)

The density operator
ρ̂
�
x �a� ψ† � x � ψ � x � (1.106)

can be expressed in terms of the field operator

ψ
�
x ��� 1"

L
∑
k

eikxck � 1"
L

∑
α  k ei # αkF � k $ xcα  k � (1.107)

Recalling that cα  k � ∑α 
 Uα  α 
  k aα 
  k, it follows

ρ̂
�
x ��� 1

L ∑
α  α 
 
  k ∑

α 
  α 
 
 
  k 
 U �αα 
 
  k Uα 
 α 
 
 
  k 
 e 
 i # αkF � k $ x ei # α 
 kF � k 
�$ x a†
α 
 
  kaα 
 
 
  k 
 � (1.108)

Taking the ground-state expectation value and making use of Eqs. (1.97) and (1.105),
we get � ρ̂ � x ����� 1

L ∑
α  α 
 ∑

α 
 
 k { 0

U �αα 
 
  kUα 
 α 
 
  ke 
 i # α 
 α 
�$ kF x (1.109)� 1
L ∑

k u 0

; 1 ! @ U �� 
  kU 
i
  k ! U ��i�F 
 kU 
 �� 
 k A e 
 2ikF x! @ U �
i
  kU � 
  k ! U �
 �� 
 kU �i�� 
 k A e2ikF x < � (1.110)

Since U �� 
  k � U 
 �� 
 k, we end up with� ρ̂ � x ����� ρ̃0 � ρ̃1 cos
�
2kFx ! ϑ � & (1.111)

where ρ̃0 � π ) k0 is the charge-density for ∆0 � 0 and

ρ̃1 � 4
L ∑

0 { k { k0

-
1 � v2

Fk2

E2
k . 1 � 2 � ∆0

πv2
Fλ

� (1.112)

Below the Peierls transition the system exhibits a charge-density wave with wave-
vector 2kF and amplitude proportional to the absolute value of the order parameter� � ∆ �=�~� ∆0.
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1.5 Breakdown of the mean-field picture

The above mean-field picture was capable of explaining the experimentally observed
Peierls transition, including the static lattice distortion, the charge-density wave and
the occurrence of a single-particle gap. However, the underlying microscopic machin-
ery contains far more subtleties than one might suspect at first glance. A major point is
the importance of fluctuations of the order-parameter field in low-dimensional systems.
A theorem due to Mermin and Wagner states that these fluctuations lead to the absence
of long-range order, even at very low temperatures [64]. This precludes a sponta-
neously broken continuous symmetry.7 But how can one explain the experimentally
observed charge-density wave which breaks a continuous translational symmetry in
strongly anisotropic materials like blue bronze [37]? The answer is simply this: These
materials are quasi one-dimensional, but not strictly one-dimensional. As we will see
below, in a strictly one-dimensional material, the correlation length ξ

�
T � increases

with decreasing temperature, but for any finite temperature cannot approach infinity.
At very low temperatures, however, even very weak interchain-coupling can lead to
the onset of three-dimensional order such that the system can undergo a Peierls transi-
tion. Of course, the transition temperature is not the previously considered mean-field
transition temperature T MF

c . Lee, Rice and Anderson [57] pointed out that one should
expect T 3D

c ` 1
4T MF

c . For a derivation of an adequate three-dimensional microscopic
theory see McKenzie [61] and references given therein. Here, we will only consider
the strictly one-dimensional case or take the correlation functions of the order param-
eter field as phenomenological given quantities.

1.5.1 Correlation functions of the order parameter field

We will now consider fluctuations of the order parameter field ∆
�
x � and calculate the

correlation functions of ∆
�
x � which describe the phonon statistics.

Harmonic approximation

At temperatures far above the mean-field critical temperature T MF
c , the coefficient a

�
T �

becomes large enough such that anharmonic corrections to the free energy functional
may be neglected. Truncating the free energy functional (1.70) at the second order, we
are left with

FG
%
∆ & ∆ � ' � sρ0L

2 ∑
q
2 a � T � ! c

�
T � q2 3 ∆ �q∆q � (1.113)

This functional implies the correlation functions� ∆q �^� 0 & (1.114)� ∆q∆ �q 
 �^� 2kBT
sρ0L

δq  q 

a
�
T � ! c

�
T � q2 � (1.115)

7It should be noted that the lower critical dimension for this theorem to be true is 2.
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While the correlation functions � ∆q∆q 
 � vanish for complex ∆ they are equal to� ∆q∆ � 
 q 
 � for real ∆. The correlation functions in real space are given by the Fourier
transformations of Eqs. (1.114) and (1.115):� ∆ � x ����� 0 &� ∆ � x � ∆ � � x �	����� ∆2

s
�
T � e 
�� x 
 x 
 � � ξ # T $ & (1.116)

(1.117)

where

∆2
s
�
T �^� kBT

sρ0 ¡ a
�
T � c � T � & (1.118)

ξ 
 1 � T �^� -
a
�
T �

c
�
T � . 1 � 2 � (1.119)

In the harmonic approximation, higher correlation functions are simply given by
Wick’s theorem.

Taking into account anharmonic corrections

As the temperature is lowered and approaches the mean-field critical temperature T MF
c ,

fluctuation effects become important and the mean-field picture breaks down. How-
ever, as shown by Scalapino, Sears and Ferrel [79] using the transfer matrix technique,
the first two moments of a one-dimensional Ginzburg-Landau theory are still approx-
imately given by Eqs. (1.116) and (1.117). For temperatures well below T MF

c , one
finds for real ∆

�
x � an exponential increase of the correlation length with decreasing

temperature, while for complex ∆
�
x � the correlation length increases as the inverse

temperature. This last result can be understood as follows:

Phase fluctuations only

For small temperatures T j T MF
c the generalized Ginzburg-Landau functional is dom-

inated by its minima. Amplitude fluctuations get frozen out and only phase fluctuations
survive such that ∆

�
x �E` ∆seiϑ # x $ . For complex ∆

�
x � , the phase ϑ

�
x � is a continuous

function of x. Ignoring, as before, quartic terms in the gradient expansion of the free
energy, the free energy is given up to an irrelevant constant by

F # phase $ % V ' � F # phase $ % ∂xϑ ) 2 '� 1
2

sρ0
2π
β ∑

ω̃n u 0

∆2
s�

ω̃2
n ! ∆2

s � 3
2

7 L

0
dx
�
∂xϑ

�
x � ) 2 � 2� 1

2
sρs
�
T � 7 L

0
dxV 2 � x � & (1.120)

where
V
�
x ��� ∂xϑ

�
x � ) 2 (1.121)
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can be interpreted (up to a constant 1 ) m � ) as the superfluid velocity and

ρs
�
T �F� ρ0

2π
β ∑

ω̃n u 0

∆2
s�

ω̃2
n ! �∆s � 2 � 3

2

(1.122)

is the superfluid density. The free energy is identical to the kinetic energy of a super-
flow. A two-dimensional analogue of Eq. (1.120) has been used by Emery and Kivel-
son [25, 26] in their theory describing superconductors with a small phase-stiffness.
For T � 0, the sum in Eq. (1.122) turns into an integral which can be done analytically
and gives

ρs
�
0 �F� ρ0 & (1.123)

i.e. at T � 0 is the superfluid density equal to the density of states. Plots of ρs
�
T � for

∆s
�
T � given by the BCS relation (1.83) and for ∆s � 1 � 76kBT MF

c are shown in Fig. 1.7.
For small temperatures, ρs

�
T � may be approximated by

ρs
�
T ��` ρs

�
0 � & T � T MF

c
) 4 � (1.124)

Since F # phase $ is only quadratic in V
�
x � , correlation functions of ∆

�
x � can easily be

calculated: For the first two moments we find� ∆ � x ����� 0 & (1.125)� ∆ � x � ∆ � x � ����� 0 & (1.126)
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and � ∆ � x � ∆ � � x � ����� ∆2
s ¥ exp @ i *ϑ � x �_� ϑ

�
x � � + A�¦� ∆2

s § exp

-
2i 7 x

x 
 dx �¨� V � x ��� � .ª©� ∆2
s

D
%
V ' exp

/
2i « x

x 
 dx ��� V � x �¨�¬�_� sρs
�
T � ) 2kBT « L

0 dx �¨� V 2 � x �¨�	� 0
D
%
V ' exp

/ � sρs
�
T � ) 2kBT « L

0 dx �¨� V 2
�
x �¨� � 0� ∆2

s exp @ � 2kBT ) sρs
�
T �L� x � x � � A� ∆2

s exp @ �­� x � x � � ) ξ � T � A & (1.127)

where

ξ
�
T �a� sρs

�
T �

2kBT
(1.128)

is the temperature-dependent correlation length. For very small temperatures, ρs
�
T �O`

ρs
�
0 �i� 1 ) π [see Eq. (1.124)], such that in this strictly one-dimensional theory we find

ξ
�
T ��� s ) 2πkBT ∝ 1 ) T which for fermions with spin 1 ) 2 agrees with Grüner’s [37]

result ξ
�
T ��� 1 ) πkBT .

1.6 The Hamiltonian of the fluctuating gap model

Having discussed the statistics of the phonon field, let us now set up the Hamiltonian
of the fluctuating gap model (FGM). For a particular realization of the (static) disorder,
the electronic part of the Hamiltonian reads

H � ∑
k  k 
 / c†�� k & c†
  k 0 Hk  k 
 - c �F k 


c 
  k 
 . & (1.129)

where

Hk  k 
 � -
vF k δk  k 
 ! Vk 
 k 
 ∆k 
 k 


∆ � 
 # k 
 k 
 $ � vF k δk  k 
 ! Vk 
 k 
 . � (1.130)

A Fourier transformation leads to

H ��7 L

0
dx

/
ψ†� � x � & ψ†
 � x � 0 Ĥ

�
x & � i∂x � - ψ � � x �

ψ 
 � x � . & (1.131)

with

Ĥ
�
x & � i∂x ��� - � ivF∂x ! V

�
x � ∆

�
x �

∆ � � x � ivF∂x ! V
�
x � . � (1.132)

This is the Hamiltonian of the FGM. Recall that we have linearized the energy disper-
sion such that the FGM can only describe the low-energy physics of Peierls chains in
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the weak-coupling regime. As a further approximation we have considered the phonon
field to be static. It will now be the aim to calculate disorder-averaged quantities for
the model described by this Hamiltonian. As we will discuss in Chapter 4, instead of
averaging over the disorder, it is also possible to consider a typical realization of the
disorder potential.

1.6.1 The fluctuating gap model in other physical contexts

In this chapter, the fluctuating gap model (FGM) emerged as an effective low-energy
model to describe quasi one-dimensional materials which undergo a Peierls transition.
Our strictly one-dimensional theory applies only to temperatures above the Peierls
transition before three-dimensional fluctuations become important and eventually lead
to a phase transition. However, a more sophisticated theory could provide the statistics
of the correlation functions of the order parameter field at arbitrary temperatures of an
effectively one-dimensional model.

It turns out that the FGM not only describes the low-energy physics of Peierls
chains. As shown in Refs. [62] and [17] the Hamiltonian of disordered spin chains
[37, 38, 85, 86] can be mapped by a Jordan-Wigner transformation onto the Hamil-
tonian of the FGM. In a semiclassical approximation of superconductivity, it is also
possible to replace the original three-dimensional problem by a directional average
over effectively one-dimensional problems [93] which in the weak coupling limit are
described by the FGM. This method has been used in Refs. [10, 52, 53] to derive
the gradient expansion of a clean superconductor. A generalization of the FGM to-
wards higher dimensions to describe the phase above the phase-transition in under-
doped high-Tc superconductors by anti-ferromagnetic short-range order fluctuations
was considered in Refs. [80] and [81].



Chapter 2

The Green function and related
quantities

In this chapter, we will introduce different concepts to calculate the Green function
and related quantities of the fluctuating gap model. The density of states and the lo-
calization length will be of special interest. In particular, we will develop a method
which allows to calculate these quantities simultaneously for arbitrary given disorder
potentials. In this chapter, we will only calculate the averaged single-particle Green
function in the Born approximation. Detailed non-perturbative calculations based on
the formalism to be developed in this chapter will be postponed to the next chapters.

As we have seen in the last chapter, the fluctuating gap model (FGM) describes the
low-energy physics of one-dimensional fermions subject to static disorder potentials
and applies to different physical contexts. The Hamiltonian of the FGM is of the Dirac
type and in first quantized form can be written as [see Eq. (1.132)]

Ĥ
�
x & � i∂x ���M� ivF ∂xσ3 ! V

�
x � σ0 ! ∆

�
x � σ � ! ∆ � � x � σ 
 � (2.1)

V
�
x � and ∆

�
x � are random potentials describing forward and backward scattering, vF

is the Fermi velocity (henceforth we set vF � 1), σi are the usual Pauli matrices, σ0 is
the 2 6 2 unit matrix, and σ � � 1

2

�
σ1 J iσ2 � .

2.1 The Green function

In the following, we are going to consider the retarded Green function G R � x & x � ;ω � of
the fluctuating gap model. This quantity is of special interest because it can be related
to several quantities which are in principle experimentally accessible. The trace of the
imaginary part of the Green function at coinciding space points determines the local
density of states (DOS),

ρ
�
x & ω �a��� π 
 1ImTr

*
GR � x & x;ω � + � (2.2)

27
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Averaging ρ
�
x & ω � over all space points gives the DOS ρ

�
ω � , which is the fundamental

quantity that determines the whole thermodynamics of the FGM. It will turn out that
the trace of the energy-integrated space averaged Green function at coinciding space
points Γ

�
ω � will be easier to calculate than its non-integrated form. While its imag-

inary part is proportional to the integrated DOS N
�
ω � , the Thouless formula states

that ReΓ
�
ω � is equal to the inverse localization length ®G
 1 � ω � . As in the following

chapters, we will usually only consider the DOS and the inverse localization length
for positive frequencies ω. Due to the particle-hole symmetry, the DOS and the lo-
calization length are symmetric with respect to the Fermi energy so that after setting
the Fermi energy equal to zero we have ρ

�
ω ��� ρ

� � ω � and ® 
 1 � ω ����® 
 1 � � ω � . It
therefore suffices to consider the case ω � 0.

The retarded 2 6 2 matrix Green function G R � x & x � ;ω � to the Schrödinger operator
ω � Ĥ satisfies the differential equation*

ω ! i0 � � Ĥ
�
x & � i∂x � + GR � x & x � ;ω ��� δ

�
x � x � � σ0 � (2.3)

The positive but infinitesimal imaginary part added to the frequency ω indicates that we
have to impose the correct boundary conditions applying to a retarded Green function.

2.1.1 Free fermions

It is easy to calculate the Green function for free fermions. In this case, V
�
x �i� ∆

�
x �O�

0, such that the system is translational invariant, and Eq. (2.3) simplifies to*
ω ! i0 � ! iσ3∂x + GR

0
�
x � x � ;ω ��� σ0δ

�
x � x � ��� (2.4)

Taking the Fourier transform of this equation from real space to momentum space
gives *

ω ! i0 � � kσ3 + GR
0
�
k;ω �F� σ0 � (2.5)

GR
0

�
k;ω ���N« dx e 
 ikxGR

0

�
x;ω � can now be found by a simple matrix inversion. If

α � 1 accounts for right- and α �q� 1 for left-moving fermions, the matrix elements
of GR

0

�
k;ω � are given by @ GR

0 A αα 
 � k;ω �a� δα  α 

ω � αk ! i0 � � (2.6)

A simple Fourier transformation back to real space now gives the retarded propagator
of free fermions in real space,

i @ GR
0 A αα 
 � x;ω ��� δα  α 
 θ � αx � eiαωx � (2.7)

Here, θ
�
x � is the Heaviside step function

θ
�
x ���NH 0 & x � 0

1 & x � 0
� (2.8)



2.2 Dyson equation and perturbation theory 29

For concreteness, let us also define θ
�
0 ��� limx r 0

*
θ
�
x � ! θ

� � x � + ) 2 � 1 ) 2. While the
matrix elements at x � 0 are sensitive to the definition θ

�
0 �E� 1 ) 2 which amounts to

defining

GR � x � 0;ω ��� 1
2

lim
x r 0 ¯ 2 GR � ! x;ω � ! GR � � x;ω � 3 & (2.9)

the local DOS ρ
�
x & ω ���°� π 
 1ImTr

*
GR

0

�
0;ω � + does not depend on this definition be-

cause it only involves the harmless quantity θ
�
x � ! θ

� � x ��� 1. Due to translational
symmetry, the total DOS is equal to the space-independent local DOS,

ρ0
�
ω ��� π 
 1 � (2.10)

Note that the DOS of free fermions is independent of the frequency because we have
linearized the energy dispersion.

A further Fourier transformation of Eq. (2.7) from frequency to time gives

i @ GR
0 A αα 
 � x; t �F� δα  α 
 θ � t � δ � αx � t ��� (2.11)

This free retarded Green function in space and time allows for a simple interpretation:
A fermion put into the system at t �±� 0 as a right- or left-mover will at time t � 0 have
traveled a distance � x �~� t � vFt in the positive or negative direction, respectively. The
fermion can not be observed in the system at times t � 0.

2.2 Dyson equation and perturbation theory

One way to handle the disorder is to consider the disorder potential as a perturbation
and expand the Green function in powers of this potential. Defining V

�
x ��� V

�
x � σ0 !

∆
�
x � σ � ! ∆ � � x � σ 
 , Eq. (2.3) may be written as*

iσ3∂x ! ω ! i0 � + GR � x & x � ;ω �F� δ
�
x � x � � σ0 ! V

�
x � GR � x & x � ;ω ��� (2.12)

Substituting x by x1, multiplying the resulting equation from the left with the free
Green function GR

0

�
x � x1;ω � and then integrating over x1 gives the Dyson equation

GR � x & x � ;ω ��� GR
0
�
x � x � ;ω � ! 7 dx GR

0
�
x � x1;ω � V

�
x1 � GR � x1 & x � ;ω ��� (2.13)

Iterating this Dyson equation, the exact Green function can be expressed in terms of
the free Green function and the disorder potential:

GR � x & x � ;ω ��� ∞

∑
n P 0

GR
n
�
x & x � ;ω � & (2.14)

where GR
0
�
x & x � ;ω �y� GR

0
�
x � x � ;ω � is the free Green function calculated above, and for

n t 1 the functions G R
n
�
x & x � ;ω � are given by

GR
n
�
x & x � ;ω ����7 dx1 �����²7 dxn

GR
0
�
x � xn;ω � V

�
xn � GR

0
�
xn � xn 
 1;ω �ª����� V

�
x1 � GR

0
�
x1 � x � ;ω ��� (2.15)
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Figure 2.1: Diagrammatic expansion of the matrix Green function. While the single
line represents the Green function of free fermions, the double line is a graphical rep-
resentation of the full Green function G R � x & x � ;ω � . The crosses denote the disorder
potential V

�
x � .

Recall that the right-hand side of this equation involves the product of 2 6 2-matrices.
The perturbative expansion of the full Green function can be visualized by using Feyn-
man diagrams (see Fig. 2.1).

The physical interpretation of the perturbation expansion is simple: The pertur-
bative expansion takes into account all possibilities of a particle moving through the
sample getting scattered at the various impurity potentials. While ∆

�
x � changes the

direction in which the particle travels and therefore can be interpreted as a backscat-
tering potential, V

�
x � does not change the direction of the particle, so that it only leads

to forward scattering.

2.2.1 Boundary conditions of the retarded Green function

Below, we will consider a non-perturbative approach to calculate the Green function of
the FGM. The above perturbative expansion can be used to obtain the correct boundary
conditions of the full retarded Green function: Let us consider @ GR

n A αα 
 � x & x � ;ω � . Ac-
cording to Eq. (2.15), its expansion in a product of free Green functions and the poten-
tials starts with @ GR

0 A αα
�
x � xn;ω � and ends with @ GR

0 A α 
 α 
 � x1 � x � ;ω � . These terms are
proportional to θ

�
α
�
x � xn ��� and θ

�
α � � x1 � x �	��� , respectively, so that @ GR

n A αα 
 � x & x � ;ω �
has to vanish as αx � � ∞ or α � x �³� ∞. Since this reasoning applies to all orders in
perturbation theory, it also applies to the full Green function. If we demand the po-
tentials to vanish outside the interval

* � Λ & L ! Λ + , the boundary condition can also be
written as @ GR A αα 
 � � αΛ & x � ;ω ��� 0 & @ GR A αα 
 � x & α � � L ! Λ � ;ω �a� 0 � (2.16)
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Figure 2.2: Diagrammatic representation of the averaged matrix Green function. The
single line represents the Green function of free fermions and in this case the (aver-
aged) double line is a graphical representation of the full (averaged) Green function� GR � x & x � ;ω ��� . The dashed line denotes the disorder average � V � x � V � x � ��� .
2.3 Second order Born approximation

Let us now consider the disorder-averaged Green function. As discussed in Chapter 1,
above the Peierls transition the first two moments of the order parameter field ∆

�
x � are

given by � ∆ � x ���F� 0 & � ∆ � x � ∆ � � x � ���F� ∆2
s e 
F� x 
 x 
 � � ξ � (2.17)

Following Lee, Rice and Anderson [57], we ignore the forward scattering disorder,
i.e. set V

�
x �´� 0. For a perturbative approach we assume Gaussian statistics for the

higher moments of the order parameter field such that these moments can be separated
according to Wick’s theorem. A diagrammatic representation of the averaged Green
function is shown in Fig. 2.2. An infinite number of diagrams can be summed up
by introducing irreducible diagrams which by definition cannot be separated into two
disconnected diagrams by cutting a single propagator. The corresponding amputated
diagram is obtained by eliminating all outer propagators. The sum of all amputated
irreducible diagrams is known as the self-energy and is diagrammatically presented in
Fig. 2.3. In terms of the self-energy, the averaged Green function reads in momentum

PSfrag replacements
Σ

Figure 2.3: Diagrammatic representation of the (irreducible) self-energy. As in the
above Figure 2.2, the single line represents the Green function of free fermions and the
dashed line denotes the disorder average � V � x � V � x �	��� .
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space ¥ GR � k;ω � ¦ � ; @ GR
0
�
k;ω � A 
 1 � Σ

�
k;ω � < 
 1 � (2.18)

The simplest approximation to take into account fluctuation effects of the order pa-
rameter is to consider only the first diagram in Fig. 2.3. This approximation is known
as the second order Born approximation and is essentially the approximation made
by Lee, Rice and Anderson in their seminal paper [57] in which fluctuations of the
order parameter of the FGM were taken into account for the first time. A special non-
Gaussian probability distribution of ∆

�
x � involving only phase fluctuations for which

the second order Born approximation turns out to be exact is presented in Ref. [13].

2.3.1 The self-energy

Since � V � x ���F� 0, the self-energy in the second order Born approximation is given by

ΣB
�
x � x � ;ω �F�µ� V � x � GR

0
�
x � x � ;ω � V � x � ���E� (2.19)

Placing Eq. (2.7) into this equation, we get�
ΣB � αα 
 � x � x � ;ω ��� δα  α 
 ∆2

s e 
�� x 
 x 
 � � ξ @ GR
0 A ᾱ  ᾱ � x � x � ;ω ����1� iδα  α 
 ∆2

s θ
� � α

�
x � x � ��� e 
 iα ¶ω � i � ξ ·¬# x 
 x 
 $ � (2.20)

As one should expect, the process of averaging restored translational invariance. Tak-
ing the Fourier transform of Eq. (2.20), we arrive at�

ΣB � αα 
 � k;ω ���q7 dxe 
 ikx � ΣB � αα 
 � x;ω �� δα  α 
 ∆2
s

ω ! αk ! i ) ξ � (2.21)

Within second order Born approximation, we therefore find for the one-particle Green
function @ GR

B A α  α 
 � k;ω ��� δα  α 

ω � αk � ∆2

s
ω � αk � i � ξ � (2.22)

This result was first obtained by Lee, Rice and Anderson [57].

2.3.2 The density of states and the inverse localization length

Integrating Eq. (2.22) over k and taking the trace, we obtain

TrGR
B
�
x & x;ω ���¸� i

ω ! i ) 2ξ¡ � ω ! i ) 2ξ � 2 � ∆2
s
& (2.23)
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where
"

z is defined as the principal part of the square root with the cut chosen along
the negative real axis.

The imaginary part of Eq. (2.23) gives the (averaged) DOS,

ρB
�
ω ��� ρ0 Re

ω ! i ) 2ξ¡ � ω ! i ) 2ξ � 2 � ∆2
s

� (2.24)

As we will show in Section 2.8, the real part of the Green function is equal to the
derivative of the inverse localization length ® 
 1 � ω � . Hence,

∂ω ® 
 1
B

�
ω �F� Im

ω ! i ) 2ξ¡ � ω ! i ) 2ξ � 2 � ∆2
s

� (2.25)

Integrating this equation with respect to ω and choosing the integration constant at
infinity equal to zero, we obtain® 
 1

B

�
ω ��� Im } � ω ! i ) 2ξ � 2 � ∆2

s � 1 ) 2ξ � (2.26)

A plot of both ρB
�
ω � and ® 
 1

B

�
ω � is shown for different values of the dimensionless

parameter ∆sξ in Fig. 2.4. With increasing correlation length ξ the DOS gets more and
more suppressed for ω � ∆s. However, instead of a real gap the fluctuations can only
create a pseudogap. At ω � 0, the DOS is given by

ρB
�
0 �F� ρ0

1¡ 1 ! � 2∆sξ � 2 & (2.27)

such that for ∆sξ � 1 the DOS vanishes as

ρB
�
0 � � ρ0

2∆sξ
∝

1
∆sξ

� (2.28)

For large frequencies ω, the asymptotic form of the DOS is given by

ρB
�
ω � � ρ0 U 1 ! ∆2

s

2ω2 V � (2.29)

Finally we note that as the correlation length approaches infinity, the DOS assumes the
mean-field result given in Eq. (1.102).

The analogous expressions for the inverse localization length are also easily calcu-
lated: At zero frequency, the inverse localization length is given by® 
 1

B

�
0 �F� ∆s U } 1 ! � 1 ) 2∆sξ � 2 � 1 ) 2∆sξ V � (2.30)

And for large frequencies, ® 
 1
B

�
ω � vanishes asymptotically as® 
 1

B

�
ω � � ∆2

s

4ω2ξ
� (2.31)
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Figure 2.4: Plot of the DOS ρB
�
ω � and the inverse localization length l 
 1

B

�
ω � calcu-

lated for ∆sξ � 0 � 2 & 0 � 5 & 1 � 0 & 2 � 0 & 10 � 0, and ∞ (mean-field result) in the second order
Born approximation.
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2.3.3 The spectral function

Another interesting quantity related to the single-particle Green function is the spectral
function

ρ
�
αkF ! k;ω ���¸� 1

π
Im @ GR � k;ω � A α  α � (2.32)

Experimentally, the spectral function can be measured by angular resolved photoe-
mission spectroscopy (ARPES). It directly follows from Eq. (2.22) that in the Born
approximation the spectral function is given by

ρB
�
αkF ! k;ω ��� ρ0

∆2
s ξ�

∆2
s � � ω2 � k2 ��� 2 ξ2 ! � ω � αk � 2 � (2.33)

Plots of the spectral function ρB
�
αkF ;ω � and ρB

�
αkF ! k;ω � with k � 0 � 5∆s as func-

tions of ω are shown for different values of ∆sξ in Figs. 2.5 and 2.6. While for small
correlation lengths, i.e. ∆sξ j 1 the spectral function exhibits a maximum near ω � αk,
for large correlation lengths we find two maxima near ω �¼J ¡ ∆2

s ! k2, the closest one
to αk having the larger weight.

Sadovskii’s solution and corrections to the second order Born approximation

An attempt to sum up all diagrams in the perturbative expansion of the averaged Green
function was made by Sadovskii in the late seventies [78]. His solution was known as
the only available exact solution of the pseudo-gap state (see Ref. [87]) and was there-
fore also used by other authors [63, 80, 81]. However, only recently Tchernyshyov
discovered an unfortunate error in Sadovskii’s solution which also turned the work
based on it into question [87]. For an analysis of the failure of Sadovskii’s solution see
the clarifying paper [87]. Instead of trying to sum up all diagrams in the perturbative
expansion of the Green function we will now develop a method which will allow for a
non-perturbative calculation of the Green function.

2.4 Non-Abelian Schwinger-ansatz

We base our non-perturbative approach to calculate the Green function of the FGM on
a matrix generalization of the Schwinger-ansatz [84]. To make the differential operator� i∂x proportional to the unit matrix, we first factor out a Pauli matrix σ3, so that the
retarded Green function

G̃R � x & x � ;ω ��� σ3GR � x & x � ;ω � (2.34)

satisfies *
i∂x � M

�
x & ω ! i0 � � + G̃R � x & x � ;ω ��� δ

�
x � x � � σ0 & (2.35)

where
M
�
x & ω ��� *

V
�
x �_� ω ! ∆

�
x � σ � ! ∆ � � x � σ 
 + σ3 (2.36)
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0 � 2 & 0 � 5 & 1 � 0 & 2 � 0 & 10 � 0 in the second order Born approximation.
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is a traceless matrix. We now try to solve Eq. (2.35) by making the ansatz

G̃R � x & x � & ω �a� U
�
x & ω � G̃R

0
�
x � x � � U 
 1 � x � & ω � & (2.37)

where U
�
x & ω � is an invertible 2 6 2 matrix and G̃R

0

�
x � is the Green function to the

operator i∂x ! i0 � σ3, i.e.

G̃R
0
�
x ���M� i

-
θ
�
x � 0

0 � θ
� � x � . � (2.38)

The ansatz (2.37) resembles the transformation law for the comparator in non-
Abelian Gauge theory (see, for example, the book on quantum field theory by Pe-
skin and Schröder [73]), and since it is also similar to the scalar Schwinger-ansatz
[84] which is sometimes used in functional bosonization of interacting fermions
[7, 9, 48, 49, 50, 51], we will refer to it as the non-Abelian Schwinger-ansatz
[8, 10, 11]. But note that in contrast to earlier formulations of the non-Abelian
Schwinger-ansatz [8, 10], we use the zero-frequency free retarded Green function,
such that the whole ω dependence is included in U

�
x & ω � .

In the following we are going to suppress the parameter ω. The ansatz (2.37)
indeed solves Eq. (2.35) if U

�
x � satisfies*

i∂x � M
�
x � + U � x �F� 0 � (2.39)

To establish our formalism, let us first restrict the disorder potentials to the interval� � Λ & L ! Λ � . While the potentials are assumed to be constant in the intervals
� � Λ & 0 �

and
�
L & L ! Λ � , they are allowed to fluctuate in between. An example is given in Fig.

(2.7). Later we can let Λ � ∞ (or we will set Λ � 0 and let L � ∞). The boundary
conditions for the retarded Green function given in Eq. (2.16) now renders into1

U12
� � Λ ��� U21

�
L ! Λ ��� 0 � (2.40)

Two different solutions of Eq. (2.39) are given by

U � � x �^� T exp U � i 7 x
 Λ
M
�
y � dy V & (2.41)

U 
 � x �^� T 
 1exp U i 7 L � Λ

x
M
�
y � dy V & (2.42)

where T exp is the path-ordered and T 
 1exp is the anti-path-ordered exponential func-
tion. Both, U � � x � and U 
 � x � can be expressed in terms of the S-matrix,

S
�
x & x � ��� T exp U � i 7 x

x 
 M
�
y � dy V � (2.43)

1In this work we will identify matrix elements as Ui j with Uαα ¾ , where i R j ¿ 1 R 2 corresponds to
α R α ÀÁ¿ÃÂ�R�Ä , e.g. U12 Å U ÆGÇ .
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Figure 2.7: Concrete realization of the backscattering potential ∆
�
x � . While the poten-

tial is allowed to fluctuate in the interval
*
0 & L + , it is assumed to be equal to ∆BC in the

intervals
� � Λ & 0 � and

�
L & L ! Λ � , and outside these intervals ∆

�
x � has to vanish.

By definition, U � � x ��� S
�
x & � Λ � and U 
 � x ��� S 
 1 � L ! Λ & x � . Because M† � σ3Mσ3

and TrM � 0, the S-matrices satisfy S† � σ3S 
 1σ3 and detS � 1, which means that
they belong to the non-compact group SU

�
1 & 1 � . It follows that the elements of S

satisfy S22 � S �11, S12 � S �21, and � S11 � 2 �É� S21 � 2 � 1. While each Uα
�
x � only obeys one

of the two conditions (2.40), the combination

U
�
x �F� 1"

u

-
U 
 11

�
x � U � 12

�
x �

U 
 21
�
x � U � 22

�
x � . (2.44)

satisfies both boundary conditions. Here, u � S22
�
L ! Λ & � Λ �Ê� U 
 11

� � Λ �ª�
U � 22

�
L ! Λ � , so that detU

�
x �F� 1. Defining2

uα � �
Uα11 & � Uα21 � T & (2.45)

vα � � � Uα12 & Uα22 � T & (2.46)

(such that vα � σ1u �α), we obtain from Eqs. (2.34), (2.37) and (2.44)

iGR � x & x � ;ω �a� θ
�
x � x � � u 
 � x � u†� � x �	�

u ! θ
�
x � � x � v � � x � v†
 � x � �

u
� (2.47)

2Note, that this definition deviates from the definition used in Ref. [11]. Here, the vectors uα and vα
are given by the first and second column of the matrix Uα multiplied from the left by Ë σ3.
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u†� and v†
 are the adjungated row vectors to the column vectors u � and v 
 , so that
u 
 u†� and v � v†
 are 2 6 2-matrices. Note that Eq. (2.47) involves only U � 12, U � 22,
U �
 12 and U �
 22, but not its complex conjugates. In principle, Eq. (2.47) allows to
determine the full Green function of the FGM by evaluating time-ordered exponential
functions. Equivalent but more complicated forms of this equation were first derived
by Abrikosov and Ryzhkin [2]. Of special interest is the trace of the Green function at
coinciding space points,

Tr
*
iGR � x & x;ω � + � U � 22

�
x � U �
 22

�
x � ! U � 12

�
x � U �
 12

�
x �

U � 22
�
x � U �
 22

�
x �_� U � 12

�
x � U �
 12

�
x � � (2.48)

It immediately follows from Eq. (2.2) that the local DOS is given by

ρ
�
x & ω ��� 1

π
Re

U � 22
�
x � U �
 22

�
x � ! U � 12

�
x � U �
 12

�
x �

U � 22
�
x � U �
 22

�
x �o� U � 12

�
x � U �
 12

�
x � � (2.49)

2.5 Riccati equation

Since Eq. (2.49) only depends on the ratios3

Φα
�
x ��� Uα12

�
x � ) Uα22

�
x � & (2.50)

we may also write

ρ
�
x & ω ��� 1

π
Re

1 ! Φ � � x � Φ � 
 � x �
1 � Φ � � x � Φ � 
 � x � � (2.51)

More generally, it follows from Eq. (2.47) that the whole matrix Green function at
coinciding space points can be written in terms of Φ � � x � and Φ � 
 � x � :

iGR � x & x;ω ��� i
2 2 GR � x ! 0 � & x;ω � ! GR � x & x ! 0 � ;ω � 3� 1

1 � Φ � � x � Φ � 
 � x � - 1
2 @ 1 ! Φ � � x � Φ � 
 � x � A � Φ � � x �� Φ � 
 � x � 1

2 @ 1 ! Φ � � x � Φ � 
 � x � A . � (2.52)

Using Eq. (2.39), we find that the Φα
�
x � are both solutions of the same Riccati equa-

tion, � i∂xΦα
�
x ��� 2ω̃

�
x � Φα

�
x � ! ∆

�
x � ! ∆ � � x � Φ2

α
�
x � (2.53)

where we have introduced ω̃
�
x ��� ω � V

�
x � . Similar Riccati equations have recently

been obtained by Schopohl [82] from the Eilenberger equations of superconductiv-
ity. To specify the initial conditions, let us assume that outside the interval

*
0 & L +

the potentials V
�
x � and ∆

�
x � are real constants, VBC and ∆BC t 0. This amounts

to taking the limit Λ � ∞, but keeping L constant. The initial values Φ � � 0 �Ì�
limΛ r ∞ S12

�
0 & � Λ � ) S22

�
0 & � Λ � and Φ 
 � L �a� limΛ r ∞

�
S 
 1 � 12

�
L ! Λ & L � ) � S 
 1 � 22

�
L !

Λ & L � can be obtained by evaluating the S-matrix for constant potentials.

3Note also that the definition of Φα Q x S does not involve the extra factor Ë i used in Ref. [11].
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2.5.1 The S-matrix for constant potentials

For constant potentials Vn and ∆n, the time-ordering operator T may be omitted in Eq.
(2.43), and the S-matrix is given by

Sn
�
x � x � ��� exp 2 � iMn

�
x � x � � 3 � exp 2 i � ω̃nσ3 ! ∆nσ � � ∆nσ 
 � � x � x � � 3� cosh

* } �∆n � 2 � ω̃2
n
�
x � x � � + σ0! isinh

* } �∆n � 2 � ω̃2
n
�
x � x � � + ω̃nσ3 ! ∆nσ � � ∆ �nσ 
¡ �∆n � 2 � ω̃2

n

� (2.54)

For �∆n � 2 � ω̃2
n, the argument of the square root is negative, so that in this case we write

the S-matrix as4

Sn
�
x � x � ��� cos

* } ω̃2
n �h�∆n � 2 � x � x � � + σ0! isin
* } ω̃2

n �h�∆n � 2 � x � x � � + ω̃nσ3 ! ∆nσ � � ∆ �nσ 
¡ ω̃2
n �¼�∆n � 2 � (2.55)

For notational simplicity, let us introduce ∆red
n � ¡ �∆n � 2 � ω̃2

n. To calculate Φ � � 0 � and
Φ 
 � L � , we need the ratio

Sn12
�
x �

Sn22
�
x � � i∆n∆red

n sinh
*
∆red

n x + cosh
*
∆red

n x + � ∆nω̃n sinh2
*
∆red

n x +�∆n � 2 cosh2
*
∆red

n x + � ω̃2
n

� (2.56)

The limit x �ÍJ ∞ may now be taken. We obtain

lim
x r � ∞

Sn12
�
x �

Sn22
�
x � � J i∆red

n � ω̃n

∆ �n � (2.57)

If we keep in mind that the frequency ω involves a small imaginary part, we see that
this result is not restricted to the case �∆n � 2 � ω̃2

n: For �∆n � 2 Î ω̃2
n the square root has to

be taken such that the right-hand side of Eq. (2.57) vanishes as ∆n � 0. This follows
directly from the definition of the S-matrix.

2.5.2 Initial conditions

It follows from Eq. (2.57) that the Riccati equation (2.53) should be integrated with
the initial conditions

Φ � � 0 �F� Φ � 
 � L ��� ÏÐÑ ÐÒ i
"

∆2
BC 
 # ω 
 VBC $ 2 
 # ω 
 VBC $

∆BC
& ∆2

BC � � ω � VBC � 2 &
sgn # ω 
 V∞ $ " # ω 
 VBC $ 2 
 ∆2

BC 
 # ω 
 VBC $
∆BC

& ∆2
BC
Î � ω � VBC � 2 &

(2.58)

4Note that the transition from Eq. (2.54) to Eq. (2.55) is independent of the definition of the square
root.
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where sgn
�
x � is equal to 1 for positive x and equal to � 1 for negative x. While for

∆BC � 0 the initial conditions are given by Φ � � 0 �y� Φ � 
 � L �O� 0, for ∆BC � ∞ one gets
Φ � � 0 ��� Φ � 
 � L �a� i. Note that for arbitrary potentials VBC and ∆BC, the initial values
are simply given by the stable stationary solution of the Riccati equation (2.53) with
V
�
x ��� VBC and ∆

�
x ��� ∆BC.

2.5.3 The case of a discrete spectrum

Defining the (complex) phase ϕα
�
x � via

Φα
�
x �a� eiϕα # x $ & (2.59)

and decomposing ∆
�
x � into its amplitude �∆ � x �L� and its phase ϑ

�
x � ,

∆
�
x ���N�∆ � x �L� eiϑ # x $ & (2.60)

the Riccati equation (2.53), turns into

∂xϕα
�
x ��� 2ω̃

�
x � ! 2 �∆ � x �L� cos

*
ϕα
�
x �_� ϑ

�
x � + � (2.61)

Note that this equation of motion is of the Langevin type [34, 46]

∂xv
�
x �a�¸� a ! b1V

�
x � ! b �2 � v � ∆ � x � ! b2

�
v � ∆ � � x �´� (2.62)

Let us consider the case
�
ω � VBC � 2 � ∆2

BC: It directly follows from Eq. (2.58) that�Φ � � 0 �L�Á�I�Φ 
 � L �L��� 1, such the initial values ϕ � � 0 � and ϕ 
 � L � are real. Hence, the
solutions of Eq. (2.61) remain real, which implies �Φα

�
x �L��� 1 for all x. As can be seen

from Eq. (2.58), ϕ � � 0 � and ϕ 
 � L � can be chosen to fulfill ϕ � � 0 ���°� ϕ 
 � L ��Ó * 0 & π + ,
so that the initial values ϕ � � 0 � and ϕ 
 � L � are uniquely determined by

cotϕ � � 0 �F�¸� cotϕ 
 � L ���¸� ω � VBC} ∆2
BC � � ω � VBC � 2 � (2.63)

For the phases ϕα
�
x � to be continuous, they have to be unreduced phases which are not

limited to take values between 0 and 2π. In terms of the ϕα
�
x � , the local DOS can be

written as

ρ
�
x & ω ���1� 1

π
Imcot U ϕ � � x �o� ϕ 
 � x �

2 ! i0 V� 2
∞

∑
m P 
 ∞

δ
�
ϕ � � x �o� ϕ 
 � x �o� 2πm �Ô� (2.64)

It is easy to show that for x t 0 the phase ϕ � � x & ω � is a monotonic increasing function
of ω: For the initial value at x � 0, this follows directly from Eq. (2.63),

∂ωϕ � � 0 �F�¸� ∂ωϕ 
 � L ��� 1} ∆2
BC � � ω � VBC � 2 � 0 � (2.65)
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It can be seen directly from Eq. (2.61) that ∂ωϕ � � x ��� 0 is true for every x t 0. More
formally, differentiating the equation of motion (2.61) with respect to ω gives

∂x∂ωϕα
�
x & ω �a� 2 � 2 �∆ � x �L� sin

*
ϕα
�
x �_� ϑ

�
x � + ∂ωϕα

�
x & ω ��� (2.66)

Solving this first-order differential equation for ∂ωϕα
�
x & ω � , we obtain

∂ωϕα
�
x & ω �a� ∂ωϕα

�
x0 & ω �! 2 7 x

x0

exp U � 2 7 x

x 
 �∆ � x �¨� �L� sin 2 ϕα
�
x �¨� �_� ϑ

�
x �¨� � 3 dx �¨� V dx � � (2.67)

Since both terms on the right-hand side of Eq. (2.67) are positive for α � ! and x0 � 0,
we have

∂ωϕ � � x & ω �´� 0 for x t 0 � (2.68)

Analogously we find
∂ωϕ 
 � x & ω ��� 0 for x Î L � (2.69)

For arbitrary ω, ϕ � � x & ω � integrated with the initial condition ϕ � � 0 & ω � given in Eq.
(2.63) will usually not be equal to ϕ 
 � L & ω � up to a multiple of 2π at x � L. For certain
discrete frequencies ωm, however, this is the case. Since ϕ � � x & ω � is a monotonic
function of ω, we can uniquely define ωm by the condition

ϕ � � L & ωm ��� ϕ 
 � L & ωm � ! 2πm � (2.70)

Note that ωm is only well-defined if it turns out that
�
ωm � VBC � 2 � ∆2

BC. Since the
right-hand side of Eq. (2.61) is a 2π-periodic function of ϕα

�
x � , we see that ϕ � � x & ωm �

and ϕ 
 � x & ωm � are equal up to the constant 2πm for every x Ó * 0 & L + ,
ϕ � � x & ωm �_� ϕ 
 � x & ωm ��� 2πm � (2.71)

Of course, the ωm are the discrete eigenvalues of the system. This follows immediately
from the fact that the local DOS ρ

�
x & ω � is equal to zero if not ω � ωm for one m.

Therefore, the total DOS is given by

ρ
�
ω �F� 1

L ∑
m

δ
�
ω � ωm �E� (2.72)

Using the well-known formula

δ
�
f
�
ω ���F� ∑

m

1� f � � ωm �L� δ � ω � ωm � & (2.73)

where ωm are the zeros of f
�
ω � , we can write Eq. (2.64) as

ρ
�
x & ω ��� ∑

m

2δ
�
ω � ωm �� ∂ωϕ � � x & ω �_� ∂ωϕ 
 � x & ω �=� � (2.74)
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Expressing ϕα
�
x & ω � by the right-hand side of Eq. (2.67) with α � ! and x0 � 0 or

α �¸� and x0 � L, respectively, we arrive at

ρ
�
x & ω ��� ∑

m

δ
�
ω � ωm �« L

0 dx � exp
� � 2 « x

x 
 dx ��� �∆ � x �¨� �L� sin
*
ϕα
�
x ��� & ωm �o� ϑ

�
x �¨� � + � � (2.75)

Once the eigenvalues ωm have been determined, this equation in principle allows to
calculate the local DOS for arbitrary potentials V

�
x � and ∆

�
x � .

2.6 Integrated averaged Green function Γ Õ ω Ö
In the last subsection, we have seen that the integrated DOS can be obtained by solving
a simple initial value problem for the phase ϕ

�
x � , which is a functional of the disorder.

To implement the correct boundary conditions for a system of length L, we have first
assumed that outside the interval

�
0 & L � the potentials are constant over a range Λ,

but then drop to zero. Finally, we have let Λ go to infinity. However, if we are only
interested in the limit L � ∞, i.e. the bulk properties, we can set Λ � 0 at the beginning
of our calculations. The physical meaning of this is that bulk properties should be
independent of the boundary conditions.

By setting the potential equal to zero outside the interval
�
0 & L � , we will not only

be able to recover the equation of motion (2.61) satisfied by the phase ϕ
�
x � which

determines the integrated DOS, we will also be able to derive an additional equation
which allows to calculate the inverse localization length.

It follows from Eq. (2.48) that the trace of the space-averaged diagonal element of
the retarded Green function is given by¥ Tr

*
GR � x & x;ω � + ¦ x � 1

L
7 L

0
dx Tr

*
GR � x & x;ω � +� 1

LS22
�
L & 0 � U � i 7 L

0
dx

�
S22

�
L & x � S22

�
x & 0 �o� S21

�
L & x � S12

�
x & 0 ��� V � (2.76)

The term in angular brackets can easily be identified to be equal to ∂ωS22
�
L & 0 � :

∂ωS22
�
L & 0 ��� -

∂ωT exp U � i 7 L

0
dx � M

�
x � � V×. 22� - 7 L

0
dx S

�
L & x � * � i∂ωM

�
x � + S � x & 0 � . 22� i 7 L

0
dx

�
S
�
L & x � σ3S

�
x & 0 ��� 22�K� i 7 L

0
dx

�
S22

�
L & x � S22

�
x & 0 �o� S21

�
L & x � S12

�
x & 0 ���Ø� (2.77)

We can therefore rewrite Eq. (2.76) as¥ Tr
*
GR � x & x;ω � + ¦ x � ∂ωS22

�
L & 0 �

LS22
�
L & 0 � � 1

L
∂ω ln

*
S22

�
L & 0 � + � (2.78)
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To describe the bulk properties, one should now take the limit L � ∞. Since this
expression involves the partial derivative with respect to ω, we introduce the trace of
the energy-integrated space-averaged Green function at coinciding space points,

Γ
�
ω �F� lim

L r ∞

1
L

ln
*
S22

�
L & 0;ω � + & (2.79)

so that ¥ Tr
*
GR � x & x;ω � + ¦ � ∂ωΓ

�
ω ��� (2.80)

While the integrated DOS is given by N
�
ω ���Ù� π 
 1ImΓ

�
ω � , we will see in the next

section that ReΓ
�
ω � is equal to the inverse localization length ®�
 1 � ω � . The decompo-

sition of Γ
�
ω � into its real and imaginary part can therefore be written as

Γ
�
ω �a�Ú® 
 1 � ω �_� iπN

�
ω ��� (2.81)

Both N
�
ω � and ® 
 1 � ω � can simultaneously be calculated by determining the logarithm

of the S-matrix element S22. It is convenient to express the S-matrix elements in terms
of their phases. Let us define ϕαα 
 � x � via

Sαα 
 � x & 0 �F� e 
 iϕαα 
 # x $ � (2.82)

Γ
�
ω � is then given by

iΓ
�
ω ��� lim

L r ∞

ϕ22
�
L �

L
� (2.83)

Introducing ᾱ �I� α, the properties of the S-matrix Sαα 
 � S �ᾱᾱ 
 render into ϕαα 
 �� ϕ �ᾱᾱ 
 . The S-matrix can be expressed in terms of ϕ12, ϕ22 and its complex conju-
gates.5 It follows from i∂xS

�
x & 0 �F� M

�
x � S � x & 0 � that the ϕαα 
 satisfy

∂xϕαα 
 � x �a� Mαα
�
x � ! Mαᾱ

�
x � exp

*
i
�
ϕαα 
 � x �_� ϕᾱα 
 � x ��� + � (2.84)

Recalling that M
�
x �E�q� ω̃

�
x � σ3 � ∆

�
x � σ � ! ∆ � � x � σ 
 , the two equations for ϕ12 and

ϕ22 read

∂xϕ22
�
x �^� ω̃

�
x � ! ∆ � � x � exp

*
i
�
ϕ22

�
x �o� ϕ12

�
x ��� + & (2.85)

∂xϕ12
�
x �^�1� ω̃

�
x �_� ∆

�
x � exp

* � i
�
ϕ22

�
x �_� ϕ12

�
x ��� + � (2.86)

If we now introduce

ϕ
�
x ��� ϕ22

�
x �_� ϕ12

�
x � & (2.87)

ζ
�
x ���1� i

�
ϕ22

�
x � ! ϕ12

�
x ��� & (2.88)

5Recall that instead of α R α À�¿ÃÂ�R�Ä we also use i R j ¿ 1 R 2 (see footnote 1 on page 37)
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we arrive at the following system of equations of motion:

∂xϕ
�
x ��� 2ω̃

�
x � ! 2 �∆ � x �L� cos

*
ϕ
�
x �o� ϑ

�
x � + &

∂xζ
�
x ��� 2 �∆ � x �=� sin

*
ϕ
�
x �_� ϑ

�
x � + � (2.89)

(2.90)

Note that Eq. (2.89), which determines ϕ
�
x � , is exactly the same Langevin equation

that we derived before from the Riccati equation [see Eq. 2.61] and is independent
from Eq. (2.90). After having found a solution to Eq. (2.89), ζ

�
x � in principle can be

obtained by integrating Eq. (2.90). In terms of ϕ
�
x � and ζ

�
x � , Γ

�
ω � is now given by

iΓ
�
ω ��� lim

L r ∞

*
ϕ
�
L � ! iζ

�
L � + ) 2L � (2.91)

The initial condition S
�
0 & 0 �a� σ0 could be mapped on the initial conditions for ϕ

�
0 �

and ζ
�
0 � which are, strictly speaking, singular but integrable. However, since Γ

�
ω �

is determined by the asymptotics for large L, the initial conditions finally drop out in
the limit L � ∞. We can therefore also choose ϕ

�
0 ��� ζ

�
0 �E� 0, such that ϕ

�
x � and

ζ
�
x � are real for all x and there is no finite initial value which as L becomes large only

dies out as 1 ) L. With these initial conditions, we can describe the bulk properties of
the system right from the beginning. The integrated DOS and the inverse localization
length can now be expressed as

N
�
ω �^� ρ0 lim

L r ∞
ϕ
�
L � ) 2L &® 
 1 � ω �^� lim

L r ∞
ζ
�
L � ) 2L � (2.92)

(2.93)

These two equations in combination with the equations of motion (2.89) and (2.90)
allow for simultaneous exact numerical computations of the (integrated) DOS and the
inverse localization length for arbitrary given disorder potentials. Since the (integrated)
DOS and the inverse localization length are self-averaging quantities [58], it is suffi-
cient to consider just one typical realization of the disorder potential. We will do this
for various interesting cases in Chapter 4.

In analytical calculations one does not usually work with a certain realization of
the disorder. Instead, one tries to calculate averaged quantities by using the given
statistical properties of the disorder potentials. Taking the average of Eq. (2.91) with
respect to the distribution of the random potentials V

�
x � and ∆

�
x � , we obtain

i � Γ � ω ���F� lim
L r ∞

* � ϕ � L ��� ! i � ζ � L ��� + ) 2L � (2.94)

Integrating the equations of motion (2.89) and (2.90) with respect to x from 0 to L,� Γ � ω ��� can be rewritten as

i � Γ � ω ���F� lim
L r ∞

1
L
7 L

0
dx � ω̃ � x � ! ∆ � � x � exp

*
iϕ
�
x � + ��� (2.95)



46 Chapter 2 The Green function and related quantities

Instead of looking at � ω̃ � x � ! ∆ � � x � exp
*
iϕ
�
x � + � as an average with respect to the prob-

ability distribution involving the disorder at x and via ϕ
�
x � also at all space points

between 0 and x, we can also consider the average to be with respect to the joint prob-
ability distribution of the random potentials at x and the unreduced phase ϕ

�
x � . The

process of averaging has now become local. Since exp
*
iϕ
�
x � + is a 2π-periodic function

in ϕ
�
x � , it is also sufficient to use the joint probability distribution of the random poten-

tials and the reduced phase ϕ
�
x ��Ó * 0 & 2π � . While the joint probability distribution of

the random potential and the non-reduced phase is only well-defined for finite x (and,
of course, depends on x), the joint probability distribution of the random potential and
the reduced phase becomes independent of x for large x and therefore in this limit is
equal to the stationary probability distribution. Recalling that � V � x ����� 0, Eq. (2.95)
reduces to

i � Γ � ω ���F� ω ! � ∆ � � x � exp
*
iϕ
�
x � + ��� (2.96)

This equation expresses the averaged integrated DOS as well as the averaged inverse
localization length in terms of a relatively simple function averaged over the joint
stationary distribution of the random potentials V

�
x � & ∆ � x � and the reduced phase ϕ

�
x � .

Recall that ∆
�
x � is allowed to be complex. We will use Eq. (2.96) in Chapter 3 to

calculate both N
�
ω � and ® 
 1 � ω � for the FGM in the white noise limit. In principle,

Eq. (2.96) also applies to less restrictive cases.

2.7 Gauge invariance

It turns out that fluctuations of the forward scattering disorder have similar effects on
the DOS and localization length as have phase fluctuations of the gap parameter. To
illuminate the hidden symmetry, let us again consider the equation satisfied by the
retarded Green function G R � x & x � ;ω � ,-

ω � V
�
x � ! i∂x � ∆

�
x �� ∆ � � x � ω � V

�
x �o� i∂x . GR � x & x � ;ω ��� δ

�
x � x � � σ0 � (2.97)

A crucial point of this equation is that its form is left invariant under the gauge trans-
formation [16]

GR � x & x � ;ω ��� exp
* � � i ) 2 � χ � x � σ3 + GR � x & x � ;ω � exp 2 � i ) 2 � χ � x � � σ3 3 & (2.98)

V
�
x ��� V

�
x � ! 1

2∂xχ
�
x � & (2.99)

∆
�
x ��� ∆

�
x � exp

* � iχ
�
x � + � (2.100)

Here, χ
�
x � is a local phase rotation which is allowed to vary arbitrarily from point to

point. Since the trace of a product of matrices is invariant under cyclic permutations
of the matrices, TrGR � x & x;ω � and therefore the local DOS and the inverse localization
length6 are also invariants under the above gauge transformation.

6Strictly speaking, it follows only that ∂ω Û Ç 1 Q ω S is left invariant. The integration constants at ω ¿ ∞
are, however, the same, so that Û Ç 1 Q ω S is invariant under the gauge transformation.
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Instead of directly looking at the trace of the Green function at coinciding space
points, we can also consider the equations of motion (2.89) and (2.90). Their form is
gauge invariant under the combined transformation

ϕ
�
x ��� ϕ

�
x �_� χ

�
x � & (2.101)

ζ
�
x ��� ζ

�
x � & (2.102)

V
�
x ��� V

�
x � ! 1

2∂xχ
�
x � & (2.103)

ϑ
�
x ��� ϑ

�
x �_� χ

�
x ��� (2.104)

It follows from Eqs. (2.92) and (2.93) that both the integrated DOS N
�
ω � and the

inverse localization length ®Ü
 1 � ω � are invariant under the considered gauge transfor-
mations. Only in the unusual case of a finite limit limL r ∞ χ

�
L � ) L we get an irrelevant

shift in the additive constant of N
�
ω � .

Besides χ
�
x �y� 0, the choices for which either V

�
x � or ϑ

�
x � vanishes are especially

convenient.

1. Effectively vanishing phase fluctuations: If ϑ
�
x � is differentiable, we can de-

fine

χ
�
x �F� ϑ

�
x � & (2.105)

such that the forward scattering potential is modified in such a way that there are
no phase fluctuations of ∆

�
x � left. In this gauge we have to let

V
�
x �^� V

�
x � ! 1

2∂xϑ
�
x � & (2.106)

∆
�
x �^� �∆ � x �L�Ý� (2.107)

Note that in this gauge the order parameter field �∆ � x �=� is real and positive. We
will use the above gauge transformation at the end of Chapter 4 to find an exact
solution for the FGM involving only phase fluctuations.

2. Effectively vanishing forward scattering potential: Choosing the phase χ
�
x �

such that
1
2

∂xχ
�
x ���¸� V

�
x � & (2.108)

the forward scattering potential V
�
x � can be eliminated by renormalizing the

phase fluctuations ϑ
�
x � of the backscattering potential ∆

�
x � . Explicitly, we let

V
�
x �^� 0 & (2.109)

∆
�
x �^� ∆

�
x � exp U i2 7 x

x0

V
�
x � � dx � V � (2.110)
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2.8 Lyapunov exponent and localization length

In this section, we will explicitly show that the Thouless formula holds for the FGM
and ReΓ

�
ω � can indeed be identified with the inverse localization length ®Þ
 1 � ω � .

One of the striking properties of disordered systems treated in the independent elec-
tron approximation is the fact that the disorder can lead to a macroscopic large number
of localized states. These states are eigenfunction of the Schrödinger equation falling
off exponentially with distance from one point in space which is characteristic for the
particular solution. Non-localized states only exist between two mobility edges, and as
the strength of the disorder increases, the width of this energy region narrows. Finally,
as both mobility edges coincide, all states become localized and the conductor turns
into an insulator. This phase transition is known as the Anderson transition [5].

In one dimension, an arbitrary weak disorder suffices to localize all eigenstates
(excluding perhaps states at isolated energy values) [69] of electrons treated in the
independent electron approximation. As a consequence the diffusion coefficient and
the dc conductivity vanish. Therefore, there is no metal-insulator transition in one
dimension.

2.8.1 Thouless formula

Since the energy dispersion of the FGM is linear, the Schrödinger equation of the
FGM, Ĥψ

�
x ��� ωψ

�
x � , is a linear first order differential equation. Fixing the two-

component wave function ψ
�
x �F� �

ψ1
�
x � & ψ2

�
x ��� T at one space point x0 therefore con-

stitutes the wave function at all space points x. As we will see below, for large distances� x � x0 � the envelope of the wave function will grow exponentially with probability
one, i.e. �	�ψ � x �L�	� � ���ψ0 ��� exp

� ! γ � x � x0 �¨� , where ���ψ � x �=��� 2 �K�ψ1
�
x �L� 2 ! �ψ2

�
x �=� 2. Of

course, ψ
�
x � cannot be an eigenfunction of the Hamiltonian Ĥ satisfying the right

boundary conditions. The proportionality factor γ in the exponential function is called
the Lyapunov exponent. The (mean) localization length is usually defined to be equal
to the inverse Lyapunov exponent [58]. This definition can be motivated by consid-
ering two wave functions of a large but finite system which are fixed at the left or
right end of the sample, respectively. Both solutions grow exponentially as one moves
into the bulk and usually they do not match. For certain discrete energy values ωm,
however, the wave functions can be matched after an appropriate rescaling and one
obtains an eigenfunction to Ĥ obeying the correct boundary conditions. Of course,
the resulting wave function can not simultaneously grow and fall off. Instead, one ex-
pects the envelope of the wave function to have a maximum somewhere in the bulk.
One also expects the wave function to fall off exponentially from this point xm such
that ���ψ � x �=��� � ���ψm ��� exp

� � γ � x � xm �¨� . Defining the localization length to be equal to
the inverse of the Lyapunov exponent γ therefore seems to be a reasonable definition.
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More explicitly, we define® 
 1 � ω �a� γ
�
ω ��� lim

L r ∞

1
L

ln

- ���ψ � L �=������ψ0 ��� . � (2.111)

Note that since we take the limit L � ∞, the initial value �	�ψ0 ��� drops out.
Let us now rewrite the Schrödinger equation such that the differential operator ∂x

is proportional to the unit matrix. As in the non-Abelian Schwinger-ansatz we factor
out a σ3-matrix so that the wave function ψ̃

�
x ��� σ3ψ

�
x � satisfies*

i∂x � M
�
x � + ψ̃ � x �a� 0 � (2.112)

Here, M
�
x � is the matrix defined in Eq. (2.36). The solution to the Schrödinger equa-

tion (2.112) is therefore given by

ψ̃
�
x ��� S

�
x & x0 � ψ̃0 � (2.113)

It follows with ��� ψ̃ � x �=���G�ß�	�ψ � x �L�	� that the Lyapunov exponent can be expressed in
terms of the S-matrix,

γ
�
ω �F� lim

L r ∞

1
L

ln �	� S � L & 0 � ψ̃0 �	�_� (2.114)

It is now easy to see that with probability one, γ
�
ω � does not depend on ψ̃0: Let s

� �
x �

be the two eigenvalues of S
�
x & 0 � , where � s � � x �L�±�q� s 
 � x �L�Ý�1� s � � x �L��
 1. If ψ̃ � � x � and

ψ̃ 
 � x � are the coefficients of the vector ψ̃
�
x � in the corresponding eigenbasis, we can

rewrite Eq. (2.114) as

γ
�
ω ��� lim

L r ∞

1
L

ln
/ � ψ̃ � � L � s � � L �=� 2 ! � ψ̃ 
 � L � s 
 � L �L� 2 0 1 � 2 � (2.115)

As long as the coefficient ψ̃ � � L � of the exponentially increasing solution of the
Schrödinger equation does not vanish (and this should be the case with probability
one), Eq. (2.115) reduces to

γ
�
ω ��� lim

L r ∞

1
L

ln � s � � L �L� & (2.116)

γ
�
ω � is clearly independent of the initial wave function ψ̃0 and only depends on the

largest eigenvalue of the S-matrix which grows exponentially as the length of the sys-
tem increases. Choosing ψ̃0 � �

0 & 1 � T , it follows from Eq. (2.114)

γ
�
ω ��� lim

L r ∞

1
L

ln @ � S12
�
L & 0 �=� 2 ! � S22

�
L & 0 �L� 2 A 1 � 2 & (2.117)

which due to
ln @ � S12

�
L & 0 �L� 2 ! � S22

�
L & 0 �L� 2 A 1 � 2 � ln @ 2 � S22

�
L & 0 �=� 2 � 1 A 1 � 2 � ln � S22

�
L & 0 �L� simplifies

to

γ
�
ω �F� lim

L r ∞

1
L

ln � S22
�
L & 0 �L�_� (2.118)
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Comparing this equation with Eq. (2.79), we see that the inverse localization length® 
 1 � ω ��� γ
�
ω � is in fact equal to ReΓ

�
ω � . The equation® 
 1 � ω �F� ReΓ

�
ω � (2.119)

is known as the Thouless formula [91] and was first shown to be valid for the FGM by
Hayn and John [40] in a different way. But note that these authors have only shown Eq.
(2.119) up to an integration constant which they had to determine by different means.

2.8.2 Localization length at ω à 0 for real ∆ á x â
Although we are going to postpone detailed calculations of the DOS and the localiza-
tion length to the next chapters, let us now consider the localization length at frequency
ω � 0 for a real disorder potential ∆

�
x � and V

�
x �a� 0. In this case M

�
x �a�Ù� iσ2∆

�
x � ,

so that the S-matrix may be expressed without the path-ordering operator as

S
�
x & x � ��� exp U � σ2 7 x

x 
 ∆
�
y � dy V� cosh U 7 x

x 
 ∆
�
y � dy V σ0 � sinh U 7 x

x 
 ∆
�
y � dy V σ2 � (2.120)

It directly follows from Eq. (2.118) that the inverse localization length at ω � 0 is given
by ® 
 1 � 0 ��� lim

L r ∞

1
L

ln � S22
�
L & 0 �L�~� lim

L r ∞

1
L

ln

-
cosh U 7 L

0
∆
�
y � dy Vo.� gggg limL r ∞

1
L
7 L

0
∆
�
y � dy gggg �q�\� ∆ � x ��� x �Á�N�∆av �o� (2.121)

where we have used the fact that in the limit L � ∞, the average � ∆ � x ��� x is equal to the
expectation value ∆av. The inverse localization length at frequency ω � 0 is equal to
the absolute value of the expectation value of the backscattering potential � ∆ � x ��� and
does not depend on the random fluctuations around this average value. Note that this
result is valid for arbitrary higher correlation functions of ∆

�
x � . In the case � ∆ � x ���i� 0,

the localization length diverges for ω � 0 which clearly distinguishes the point ω � 0.

2.9 Eilenberger and pseudo-Schrödinger equation

For slowly varying potentials, one might be interested in a gradient expansion of the
local DOS which determines the gradient expansion of thermodynamic quantities. For
example, a gradient expansion of the free energy allows for a microscopic derivation
of the Ginzburg-Landau free energy functional and corrections to it. We will now
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deduce an equation which in the semiclassical theory of superconductivity is known
as the Eilenberger equation [21, 56]. We will also derive a related pseudo-Schrödinger
equation. Both equations can be used to recursively calculate all orders in the gradient
expansion of the Green function at coinciding space points. Consider the Eilenberger
function

g̃R � x & ω ��� σ3GR � x & x & ω �a�M� i
σ3u 
 � x � u†� � x � ! σ3v � � x � v†
 � x �

2u
� (2.122)

Since σ3uα
�
x � is a column of the S-matrix, it satisfies

iσ3∂xuα
�
x ��� M

�
x � σ3uα

�
x ��� (2.123)

An analogous equation holds for vα
�
x � . Taking the adjoint of Eq. (2.123) and remem-

bering that M† � x ��� σ3M
�
x � σ3, one gets

i∂xu†
α
�
x ���M� u†

α
�
x � M �

x ��� (2.124)

Eilenberger equation

Using Eqs. (2.123) and (2.124), it directly follows from the definition of the Eilen-
berger function that the partial derivative of g̃R � x � with respect to x satisfies

i∂xg̃
�
x ��� *

M
�
x � & g̃ � x � + & (2.125)

where
*
M
�
x � & g̃ � x � + � M

�
x � g̃ � x �O� g̃

�
x � M �

x � denotes the commutator of the matrices
M
�
x � and g

�
x � . In the literature of superconductivity, this equation is called the Eilen-

berger equation [21, 56]. While the Eilenberger equation was first derived using per-
turbation theory, a similar derivation to our derivation based on wave functions was
given by Kos and Stone [52]. To derive a recurrence relation, we write g̃

�
x � as

g̃
�
x �a� ∞

∑
n P 0

g̃n
�
x � & (2.126)

where by definition g̃n
�
x � collects all terms involving n gradients. It then follows

i∂xg̃R
n
�
x ��� *

M
�
x � & g̃n � 1

�
x � + � (2.127)

Unfortunately, this equation can not be solved for g̃n � 1
�
x � . But since both M

�
x � and

g̃n � 1
�
x � are traceless matrices, for a given g̃n

�
x � it is possible to determine g̃n � 1

�
x � up

to terms commuting with M
�
x � .7 To fix the term proportional to M

�
x � , we note that it

7Since M Q x S is a traceless matrix, we can write it as M Q x S ¿ m Q x S R† Q x S σ3R Q x S , where m Q x S is a scalar
function and R Q x S is a (unitary) rotation matrix. Let us also expand g̃n Æ 1 as g̃n Æ 1 ¿ R† Q x S � α3 Q x S σ3 Â
α Ç Q x S σ Æ Â α Æ Q x S σ Ç � R Q x S , such that the first term on the right-hand side is proportional to M Q x S . If
we now use ã σ3 R σ ä�å�¿æË 2σ ä , we get ãM Q x S R g̃ Q x S å�¿ 2m Q x S R† Q x S � α Ç Q x S σ Æ Ä α Æ Q x S σ Ç � R Q x S , which
implies that only α Æ Q x S and α Ç Q x S can be evaluated from Eq. (2.127) while the term proportional to
M Q x S remains undetermined.
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follows from Eq. (2.122) that g̃
�
x � satisfies the constraint

g̃2 � x ���M� 1
4

σ0 � (2.128)

Since g̃
�
x � is a traceless matrix, it is possible to write g̃

�
x � as

g̃
�
x �a� g̃3

�
x � σ3 ! g̃ 
 � x � σ � ! g̃ � � x � σ 
 � (2.129)

The Eilenberger equation (2.125) may now be rewritten as

i∂x �� g̃ � � x �
g̃3
�
x �

g̃ 
 � x � �� �ç�� 2ω̃ 2∆ � � x � 0� ∆
�
x � 0 � ∆ � � x �

0 2∆
�
x � � 2ω̃ �� �� g̃ � � x �

g̃3
�
x �

g̃ 
 � x � �� � (2.130)

This is a linear first-order differential equation, which we can cast into a pseudo-
Schrödinger equation.

Pseudo-Schrödinger equation

Defining èψ � x � and ψ̃
�
x � asèψ � x ��� �� "

2g̃ � � x �� 2ig̃3
�
x �"

2g̃ 
 � x � �� & ψ̃
�
x �a� �� � " 2g̃ 
 � x �� 2ig̃3

�
x �� " 2g̃ � � x � �� & (2.131)

the normalized local DOS ρ
�
x & ω � ) ρ0 is simply given by the second component ofèψ � x � . The constraint (2.128) turns into

ψ̃T � x �Ýèψ � x �a� 1 & (2.132)

and Eq. (2.130) can be expressed as a pseudo-Schrödinger equation,� ∂x èψ � x ��� H
�
x �Ýèψ � x � & (2.133)

with the pseudo-Hamiltonian given by

H
�
x ��� �� 2iω

"
2∆ � � x � 0"

2∆
�
x � 0

"
2∆ � � x �

0
"

2∆
�
x � � 2iω �� � (2.134)

Note that H
�
x � can also be written as

H
�
x �a� 2iωJ3 ! ∆

�
x � J 
 ! ∆ � � x � J � & (2.135)
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where the Ji are spin J � 1 operators in the representation

J3 �é�� 1 0 0
0 0 0
0 0 � 1 �� & J � � " 2 �� 0 1 0

0 0 1
0 0 0 �� & J 
 � " 2 �� 0 0 0

1 0 0
0 1 0 �� � (2.136)

Formally, Eq. (2.133) looks like the imaginary-time Schrödinger equation for a J � 1
quantum spin subject to an imaginary time-dependent magnetic field. Recall that the
real part of the second component of the state èψ � x � can be identified with the local
DOS. Because our pseudo-Schrödinger equation is linear, the gradient expansion of
the local DOS can now be generated by a straightforward iterative calculation of the
state èψ � x � in powers of gradients. This will be done in Appendix A.





Chapter 3

Exact results

In this chapter, we analytically calculate the density of states (DOS) and the inverse
localization length of the fluctuating gap model in the limits of very small and infinite
correlation lengths ξ. While for ξ � ∞ we only have to average the DOS and the
inverse localization length over an ensemble of systems with a space independent gap
∆
�
x ��� ∆0, in the white noise limit ξ � 0, we can obtain the (integrated) DOS and

the inverse localization length by deriving and solving an equation closely related to a
Fokker-Planck equation.

3.1 The white noise limit

For small correlation lengths ξ, the disorder of the fluctuating gap model (FGM) may
be approximated by Gaussian white noise. This ξ � 0 limit is of special interest
because in this case the disorder at different space points is uncorrelated which basi-
cally admits for an exact analytic solution of the model. Various methods may now
be applied to find analytic results for the density of states (DOS). Ovchinnikov and
Erikhman [71] were the first to solve the commensurate case for which the random
backscattering potential ∆

�
x � is real. They showed that in the symmetric phase for

which � ∆ � x ����� 0, the DOS has a Dyson singularity previously found by Dyson [19].
In the case of � ∆ � x ��� �� 0 which models a phase below a phase transition, the DOS
either exhibits a singularity or a pseudogap near the Fermi energy depending on the
ratio of the disorder and the static gap. Using the technique of S-matrix summation,
Golub and Chumakov [32] confirmed the results by Ovchinnikov and Erikhman and
were also able to solve the incommensurate case. In the incommensurate case which is
described by a complex backscattering potential, there is no singularity and the disor-
der can only lead to a filling up of the pseudogap. The incommensurate case was also
considered by Abrikosov and Dorotheyev [3].

In recent years, the method of supersymmetry developed by Efetov [24] has been
established as a powerful tool to describe disordered systems in the white noise limit.
First, Hayn and John [40] re-derived the Ovchinnikov and Erikhman result for the

55
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DOS and were also able to give an analytic expression for the localization length.
Later, Hayn and Fischbeck [29, 41] used the method of supersymmetry to generalize
the known results for the integrated DOS to the case of three independent disorder
parameters which describe forward, backward, and umklapp scattering. These solu-
tions include both the commensurate and the incommensurate case as special cases.
Finally, both the integrated DOS and the localization length were calculated by Hayn
and Mertsching [42] in the most general case with a complex static gap parameter and
three disorder parameters.

In this chapter we start from i � Γ � ω ���O� ω ! � ∆ � � x � exp
*
iϕ
�
x � + � and the equation of

motion ∂xϕ
�
x �a� 2

*
ω � V

�
x � + ! 2 �∆ � x �L� cos

*
ϕ
�
x �_� ϑ

�
x � + which we derived in the pre-

vious chapter and follow the ideas of Lifshits, Gredeskul and Pastur [58] to show that
the probability density for the distribution of the reduced phase ϕ satisfies a continu-
ity equation. The stationary probability flux of the continuity equation turns out to be
equal to the integrated DOS. We then derive an equation closely related to a Fokker-
Planck equation which allows to calculate the integrated DOS for the most general case
exactly. Before considering the most general case we discuss the commensurate case,
i.e. the Ovchinnikov and Erikhman limit which we can solve in analogy to Halperin’s
calculation of the integrated DOS of a particle with an effective mass in a white noise
disorder potential [39]. The treatment of the general case is similar but more awkward
than the Ovchinnikov and Erikhman limit because instead of a linear differential equa-
tion of second order one has to face a linear differential equation of fourth order. The
equations to determine the integrated DOS and the localization length are, however,
the same as those derived by Hayn and Mertsching using the method of supersymme-
try [42] so that we recover their general results which also include the incommensurate
case which we will discuss afterwards.

3.1.1 Equality of the integrated density of states and the stationary
probability flux

As shown in the previous chapter, the averaged integrated DOS can be written in the
thermodynamic limit as [see Eq. (2.96)]

N
�
ω ���Ù� Fω

� è∆ & ϕ ��� ) 2π & (3.1)

where for notational brevity we use è∆ � x �^� �
V
�
x � & ∆ � x ��� and Fω

� è∆ & ϕ � is a function
linear in the disorder V & Re∆ & Im∆,

Fω
� è∆ & ϕ �F� 2

�
ω � V � ! 2Re∆cosϕ ! 2Im∆sinϕ � (3.2)

The unreduced phase ϕ
�
x & ω � satisfies the equation of motion (2.89) which can also be

written as
∂xϕ

�
x & ω ��� Fω

� è∆ � x � & ϕ � x & ω ���E� (3.3)
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Continuity equation

The space-dependent probability distribution can be defined as

Pω
�
x & ϕ ���Ù� δ2π

�
ϕ � ϕ

�
x & ω ����� & (3.4)

where δ2π
�
x �ê� ∑∞

m P 
 ∞ δ
�
x � 2πm � is the 2π-periodic delta function. A continu-

ity equation may be derived by partially differentiating the probability distribution
Pω
�
x & ϕ � with respect to x:

∂xPω
�
x & ϕ �F�¸� ∂ϕ � δ2π

�
ϕ � ϕ

�
x & ω ��� ∂xϕ

�
x & ω ����� (3.5)

Making use of Eq. (3.3), the continuity equation reads

∂xPω
�
x & ϕ � ! ∂ϕJω

�
x & ϕ �F� 0 & (3.6)

where the probability flux Jω
�
x & ϕ � is given by

Jω
�
x & ϕ ���µ� δ2π

�
ϕ � ϕ

�
x & ω ��� Fω

� è∆ � x � & ϕ � x & ω �����E� (3.7)

Letting x go to infinity, the probability distribution and the probability flux become
stationary, i.e. independent of x. Due to the continuity equation (3.6), Jω becomes also
independent of ϕ. Integrating the stationary form of Eq. (3.7) with respect to ϕ from 0
to 2π therefore leads to 2πJω �q� Fω

� è∆ & ϕ ��� , so that together with Eq. (3.1) we find the
remarkable relationship [58]

N
�
ω �a� Jω � (3.8)

The integrated DOS, i.e. the number of states in the energy interval
�
0 & ω + per unit

length, is equal to the stationary probability flux. Note that this result is valid for any
disorder potential and is not restricted to the white noise limit which we will consider
in the following.

3.1.2 White noise and the Fokker-Planck equation

While for arbitrary finite correlation lengths ξ it does not seem to be possible to find
an exact analytic expression for the (integrated) DOS, the white noise limit ξ � 0,
V 2

σ ξ � DV ,
�
Re∆σ � 2ξ � DR, and

�
Im∆σ � 2ξ � DI admits for an exact solution. This

is due to the fact that in this case the disorder at different space points is uncorrelated.
In the white noise limit, the disorder is characterized by the following correlation

functions: � V � x ����� 0 & � V � x � V � x � ���F� 2DV δ
�
x � x � � & (3.9)� Re∆

�
x ���F� Re∆0 & � Re ∆̃

�
x � Re ∆̃

�
x � ����� 2DR δ

�
x � x � � & (3.10)� Im∆

�
x ���F� Im∆0 & � Im ∆̃

�
x � Im ∆̃

�
x � ����� 2DI δ

�
x � x � � & (3.11)
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where ∆̃
�
x �a� ∆

�
x �y� ∆0. It is no loss of generality to assume that the first moment of

the forward scattering potential V
�
x � vanishes because a finite value would only lead

to a renormalization of ω. Since the probability distribution of the disorder is assumed
to be Gaussian, higher correlation functions are simply given by Wick’s theorem.

To cast the continuity equation into a Fokker-Planck equation, we make use of the
Gaussian nature of the disorder, so that for a functional f

%
V
�
y � ' of the disorder V

�
y �

we have � V � x � f
%
V
�
y � ' �F� 7 dx � � V � x � V � x � ��� § δ f

%
V
�
y � '

δV
�
x � � © & (3.12)

where in the last term we have to take the functional derivative of f
%
V
�
y � ' with respect

to V
�
x �	� . Using Eq. (3.9), this simplifies to� V � x � f

%
V
�
y � ' �F� 2DV § δ f

%
V
�
y � '

δV
�
x � © � (3.13)

Life becomes a little bit more subtle if we want to apply this relation to Eq. (3.7)
because in this case, f

%
V
�
y � ' has to be replaced by the 2π-periodic delta-function

δ2π
�
ϕ � ϕ

�
x & ω ��� whose phase ϕ

�
x & ω � is a functional of the disorder involving the

disorder at all space points y Î x. Using the chain rule for the functional derivative we
get � δ2π

�
ϕ
�
x & ω �_� ϕ � V � x �����M� 2DV ∂ϕ � δ2π

�
ϕ
�
x & ω �_� ϕ � δϕ

�
x & ω �

δV
�
x � ��� (3.14)

We now write ϕ
�
x & ω � as

ϕ
�
x & ω �_� ϕ

�
0 & ω �F� 7 x

0
dx � ∂x 
 ϕ � x � & ω �F� 7 x

0
dx � Fω

� è∆ � x � � & ϕ � x � & ω ��� (3.15)

and find
δϕ
�
x & ω �

δV
�
x � � ��� 2θ

�
x � x � ��� (3.16)

Since in our case x � x � , θ
�
0 � needs to be defined carefully (see also Itzykson and

Drouffe [43]). Recalling that we have introduced the delta function δ
�
x � as the limit

ξ � 0 of a symmetric function of x, we see that to maintain this symmetry, we have to
define θ

�
0 ��� 1 ) 2. It therefore follows with Pω

�
x & ϕ ���Ù� δ2π

�
ϕ � ϕ

�
x & ω ����� that� δ2π

�
ϕ � ϕ

�
x & ω ��� V � x ����� 2DV ∂ϕPω

�
x & ϕ �E� (3.17)

Similarly, we can show that� δ2π
�
ϕ � ϕ

�
x & ω ��� Re ∆̃

�
x ����� � 2DR∂ϕ

�
cosϕPω

�
x & ϕ ��� & (3.18)� δ2π

�
ϕ � ϕ

�
x & ω ��� Im ∆̃

�
x ����� � 2DI∂ϕ

�
sinϕPω

�
x & ϕ ���E� (3.19)
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Making use of these relations, the probability flux Jω
�
x & ϕ � is given by

Jω
�
x & ϕ ��� 2

*
ω ! Re∆0 cosϕ ! Im∆0 sinϕ + Pω

�
x & ϕ �� 4 2 DV ∂ϕPω

�
x & ϕ � ! DR cosϕ∂ϕ

�
cosϕPω

�
x & ϕ ���! DI sinϕ∂ϕ

�
sinϕPω

�
x & ϕ ��� 3 � (3.20)

The probability flux can also be written as

Jω
�
x & ϕ ��� Aω

�
ϕ � Pω

�
x & ϕ �o� 1

2
∂ϕ

*
B
�
ϕ � Pω

�
x & ϕ � + & (3.21)

where

Aω
�
ϕ ��� 2

*
ω ! Re ∆0 cosϕ ! Im∆0 sinϕ + � 4

�
DR � DI � cosϕ sinϕ & (3.22)

B
�
ϕ �8� 8 2 DV ! DR cos2 ϕ ! DI sin2 ϕ 3 � (3.23)

Note that the forward scattering disorder DV only leads to a renormalization of DR and
DI . Let us therefore define D̃R � DR ! DV and D̃I � DI ! DV .

Eq. (3.21) together with the continuity equation explicitly shows that the prob-
ability distribution satisfies the following one-dimensional Fokker-Planck equation
[34, 46]:

∂xPω
�
x & ϕ �F�¸� ∂ϕ

*
Aω
�
ϕ � Pω

�
x & ϕ � + ! 1

2
∂2

ϕ

*
B
�
ϕ � Pω

�
x & ϕ � + � (3.24)

The first term on the right-hand side is often called the transport, drift or convection
term. The second term is known as the diffusion or fluctuation term.

To find an analytic expression for the integrated DOS, we use the fact that, as
shown above, N

�
ω � is equal to the stationary probability flux. A good starting point

to calculate the integrated DOS is therefore the stationary form of Eq. (3.21), which
is nothing but the integrated stationary Fokker-Planck equation with the constant of
integration being the stationary probability flux that is equal to the integrated DOS
N
�
ω � ,

N
�
ω �F� Aω

�
ϕ � Pω

�
ϕ �o� 1

2
∂ϕ

*
B
�
ϕ � Pω

�
ϕ � + � (3.25)

In principle, one could first find a solution for
*
B
�
ϕ � Pω

�
ϕ � + to this first-order differ-

ential equation subject to the boundary condition
*
B
�
2π � Pω

�
2π � + � *

B
�
0 � Pω

�
0 � + with

N
�
ω � as a parameter and could then use the normalization condition « 2π

0 dϕPω
�
ϕ �y� 1

to determine N
�
ω � . While this procedure works quite well in the incommensurate

case with DR � DI and after a variable transformation also in the commensurate case
(without forward scattering) for which DI � DV � 0, the most general case considered
here seems to defy such a treatment. Here, we therefore present an alternative method
which allows to recover all known results in the white noise limit.
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3.1.3 The density of states in the white noise limit

To find the (integrated) DOS for arbitrary parameters DR & DI & DV and complex ∆0, we
first make the variable transformation

z � tan
/ ϕ

2
� π

4 0 � (3.26)

The trigonometric functions sinϕ and cosϕ can now be expressed in terms of z:
sinϕ � 1 
 z2

1 � z2 , and cosϕ �q� 2z
1 � z2 . Since d z

d ϕ � 1
2

�
1 ! z2 � , we find ∂ϕ � 1

2

�
1 ! z2 � ∂z,

and the probability distribution P
�
ϕ � has to be replaced by 1

2

�
1 ! z2 � P � z � . Using these

relations, Eq. (3.25) turns into

N
�
ω �a� 2 � ω ! Im∆0 �_� 2

�
Re∆0 � � 2D̃R � D̃I ��� z ! � ω � Im∆0 � z2! 2D̃Iz

3 3 P
�
z �_� D̃I∂z

/ ; 1 ! 2D̃ 
 1
I

�
2D̃R � D̃I � z2 ! z4 < P

�
z � 0 � (3.27)

Taking the Fourier transform of this equation leads to

2πN
�
ω � δ � k �F� �

ω ! Im∆0 � P̃ � k �o� 2i
�
Re∆0 � � 2D̃R � D̃I ��� P̃ � � k �� � ω � Im∆0 � P̃ ��� � k �_� 2iD̃IP̃ �¨�¨� � k �� iD̃Ik ; P̃ � k �o� 2D̃ 
 1

I

�
2D̃R � D̃I � P̃ �¨� � k � ! P̃ �¨�¨�¨� � k � < & (3.28)

where
P̃
�
k �F� 7 ∞
 ∞

e 
 ikzP
�
z � dz (3.29)

is the Fourier transform of P
�
z � which is also known as the characteristic function [28].

Normalization of the probability distribution P
�
z � implies P̃

�
k � 0 ��� 1. Assuming

higher derivatives of P
�
z � to be integrable, the other boundary conditions are given by

demanding that P̃
�
k �F� 0 sufficiently rapidly as � k �Á� ∞.

3.1.4 The commensurate case without forward scattering

Before we proceed with the most general case, let us first consider the Ovchinnikov
and Erikhman limit, i.e. the commensurate case without forward scattering. In this
case, ∆0 is real and may be assumed to be positive, DI � DV � 0 and we set D � DR.
Eq. (3.28) reduces to a second order differential equation with the boundary conditions
P̃
�
0 �F� 1 and P̃

�
k �F� 0 as � k �~� ∞:

2πN
�
ω � δ � k �F� ωP̃

�
k � ! 4iD

-
1 � ∆0

2D . P̃ � � k � ! 4iD

-
k ! iω

4D . P̃ �¨� � k �E� (3.30)

Integrating this equation from � ε to ! ε with ε � 0 � leads to

2πN
�
ω ���M� ω 2 P̃ � � 0 � �o� P̃ � � 0 
 � 3 � (3.31)
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Since P
�
z � is real, P̃

� � k ��� P̃ � � k � , and P̃ � � � k �F�¸� P̃ �,� � k � , which implies

N
�
ω �a��� ω

π
Re P̃ � � 0 � ��� (3.32)

P̃ � � 0 � � can be determined by first finding a solution to the differential equation (3.30)
for k � 0 which vanishes as k approaches infinity and then normalizing this solution
such that P̃

�
0 ��� 1. Because Eq. (3.30) is homogeneous for k � 0, it therefore fol-

lows that if g
�
k � is any solution to the homogeneous differential equation which obeys

g
�
k �F� 0 as k � ∞, then N

�
ω �a�¸� ω

π Re
*
g � � 0 � ) g � 0 � + . We introduce y

�
t �F� g

�
k � with

t �¸� i
�
k ! iω ) 4D � . The integrated DOS is now given by

N
�
ω �F� ω

π
Im 4 y � @ ω

4D A
y @ ω

4D A 5 & (3.33)

where y
�
t � has to satisfy the differential equation

t y ��� � t � ! -
1 � ∆0

2D . y � � t � ! ω
4D

y
�
t �O� 0 & (3.34)

with the only restriction that y
�
t � should approach zero as t goes to i∞. The general

solution of this differential equation can be expressed in terms of a linear combination
of Bessel functions of the first and second kind, Jν

�
x � and Nν

�
x � (Abramowitz and

Segun (A&S) [4]). The only solution which satisfies the boundary condition involves

the Hankel function of the first kind, H # 1 $ν
�
x ��� Jν

�
x � ! iNν

�
x � . Introducing

ν � ∆0

2D & (3.35)

we find y
�
t �´� �

ν ) 2 � t H # 1 $ν

/ �
ωt ) D � 1 � 2 0 . Because the prefactor is real and we only

need the imaginary part of the quotient y � � ω ) 4D � ) y � ω ) 4D � , Eq. (3.33) turns into

N
�
ω ��� ω

π
Im �ë� ; H # 1 $ν @ ω

2D A < �
H # 1 $ν @ ω

2D A ��ì� � (3.36)

Note that this equation is valid for arbitrary ω and is even analytic in the upper half
plane. In the following discussion of the Ovchinnikov and Erikhman limit, we will
again restrict ourselves to ω � 0. It follows

N
�
ω ��� ω

π
Jν @ ω

2D A N �ν @ ω
2D A � J �ν @ ω

2D A Nν @ ω
2D A

J2
ν @ ω

2D A ! N2
ν @ ω

2D A � (3.37)

The numerator can be simplified by using the Wronski relation [A&S, Eq. (9.1.16)]

Jν
�
x � N �ν � x �o� J �ν � x � Nν

�
x �a� 2

πx & (3.38)
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so that as our final expression for the integrated DOS we are left with

N
�
ω ��� 4D

π2 2 J2
ν @ ω

2D A ! N2
ν @ ω

2D A 3 � (3.39)

This result was first obtained by Ovchinnikov and Erikhman [71] in a more compli-
cated manner. Differentiating Eq. (3.39) with respect to ω, we find

ρ
�
ω �F�¸� 4 2 Jν @ ω

2D A J �ν @ ω
2D A ! Nν @ ω

2D A N �ν @ ω
2D A 3

π2 2 J2
ν @ ω

2D A ! N2
ν @ ω

2D A 3 2 � (3.40)

Finally, we can use the relations [A&S, Eq. (9.1.27)]

2J �ν � x ��� Jν 
 1
�
x � ! Jν � 1

�
x � and 2N �ν � x ��� Nν 
 1

�
x � ! Nν � 1

�
x � (3.41)

to express the derivatives of the Bessel functions through Bessel functions. Defining
u � ω ) 2D, we get

ρ
�
ω �F� 2

*
Jν
�
u � * Jν � 1

�
u �×� Jν 
 1

�
u � + ! Nν

�
u � *Nν � 1

�
u �o� Nν 
 1

�
u � +¬+

π2 2 J2
ν
�
u � ! N2

ν
�
u � 3 2 � (3.42)

For ∆0 � 0 which implies ν � 0, D is the only characteristic energy scale, and it is
useful to measure all energies in terms of D. Figure 3.1 shows the DOS ρ

�
ω � plotted

versus ω ) D. The DOS clearly exhibits a singularity near ω � 0 whose asymptotic be-
havior can be found by noting that J0

�
0 � is finite while N0

�
x � diverges logarithmically

for small x, N0
�
x � � 2 ) π lnx (A&S, Eq. 9.1.8). It follows1

N
�
ω � � D

ln2 � ω ) 2D � & (3.43)

such that the asymptotics of the DOS for ∆0 � 0 is given by

ρ
�
ω � � � 1�

ω ) 2D � ln3 � ω ) 2D � � (3.44)

Recall that to generalize this result towards arbitrary frequencies ω, we have to replace
ω by �ω � . The singularity described by Eq. (3.44) is called a Dyson singularity and
was first found by Dyson in a different model [19] involving also off-diagonal disor-
der. Outside this singularity, the DOS is almost equal to the DOS of the disorder-free
model, taking its minima ρ

�
ω � ��� 0 � 9636ρ0 at ω � ��J 1 � 2514D.

If ∆0 �� 0, ∆0 is another characteristic energy scale. ν � ∆0
) 2D then basically gives

the ratio of the two relevant energy scales ∆0 and D. The DOS plotted against ω ) ∆0

for different values of the parameter ν is shown at the top of Fig. 3.2. While the limit

1Note that the argument of the logarithm in the asymptotic form given by Ovchinnikov and Erikhman
deviates by a factor 1 í 2 from our result. Nevertheless both expressions lead to the same asymptotic
behavior. To take into account next to leading terms one has to use N0 Q x S ¿ 2 í π ln Q ax S Â O Q x S , where
a ¿ eγ í 2 which follows from A&S, Eq. (9.1.89). Here, γ î 0 s 5772 is Euler’s constant which leads to
a î 0 s 8905. This value is closer to our choice a ¿ 1 than to Ovchinnikovt’s and Erikhman’s choice
a ¿ 1 í 2.



3.1 The white noise limit 63
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Figure 3.1: Dyson singularity in the DOS ρ
�
ω � for ∆0 � 0.

ν � 0, for which one should measure ω in units of D, was already considered above,
in this figure we see that the singularity only survives for ν � 1 ) 2. For ν � 1 ) 2, the
DOS is constant and for ν � 1 ) 2 the effects of the constant gap ∆0 dominate those due
to the disorder and a pseudogap emerges.

The algebraic dependence of the DOS at small ω on the parameter ν can be found
by using again an asymptotic expansion of the Bessel functions. If ν � 0 is fixed and
x � 0, the Bessel function Jν

�
x � stays finite and Nν

�
x � � � � 1 ) π � Γ � ν � � x ) 2 ��
 ν [A&S,

Eq. (9.1.9)]. It follows

N
�
ω � � 4D

Γ2
�
ν � / ω

4D 0 2ν & (3.45)

so that

ρ
�
ω � � 2ν

Γ2
�
ν � / ω

4D 0 2ν 
 1 � (3.46)

We now see that for ν � 1 ) 2 the DOS in fact diverges algebraically as ω approaches
zero because in this case the exponent is negative. Although the algebraic divergence
differs from the divergence found in Dyson’s model, we will nevertheless refer to this
singularity as a Dyson singularity. For ν � 1 ) 2, however, the exponent is positive and
the DOS vanishes algebraically.

For large ν the disorder becomes irrelevant, N
�
ω ��� ρ0 θ

�
ω2 � ∆2

0 � � ω2 � ∆2
0 � 1 � 2,
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and the DOS reduces to the mean-field result

ρ
�
ω �F� ÏÑ Ò 0 & ω � ∆0 &

ρ0
ω�

ω2 � ∆2
0 � 1 � 2 & ω � ∆0 � (3.47)

It is also easy to see why the DOS is constant for ν � 1 ) 2. In this case the Bessel
functions are of half odd integral order and can be expressed in terms of sinx, cosx,
and powers of x. Using the well-known addition theorem cos2 x ! sin2 x � 1, one finds
N
�
ω ��� ω ) π. The DOS is then given by ρ

�
ω �a� ρ0 where ρ0 � 1 ) π: The effects of

the disorder are exactly canceled by those of the static gap.

Localization length

Since Γ
�
ω �O�ñ®±
 1 � ω �³� iπN

�
ω � is an analytic function in the upper half plane, we can

also easily find an analytic expression for the localization length ®�
 1 � ω � . It follows
from Eq. (3.36) that up to a constant

Γ
�
ω �a�¸� ω

; H # 1 $ν @ ω
2D A < �

H # 1 $ν @ ω
2D A � (3.48)

The inverse localization length is now given by® 
 1 � ω ��� ReΓ
�
ω �a��� ω

Jν @ ω
2D A J �ν @ ω

2D A ! Nν @ ω
2D A N �ν @ ω

2D A
J2

ν @ ω
2D A ! N2

ν @ ω
2D A � (3.49)

Comparing the right hand side of this equation with Eqs. (3.39) and (3.40), we find® 
 1 � ω ��� D
ωρ

�
ω �

N
�
ω � � (3.50)

This equation is exact and can already be found on page 155 in the book by Lifshits,
Gredeskul and Pastur [58].

If ∆0 � 0, it follows from Eqs. (3.43) and (3.44) that ®L
 1 � ω � vanishes logarithmi-
cally as ω approaches zero, ® 
 1 � ω � � � 2D

ln
�
ω ) 2D � � (3.51)

Using Eqs. (3.45) and (3.46), we get for arbitrary ∆0® 
 1 � 0 �F� ∆0 & (3.52)
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which, as can be seen from Eq. (3.51) is also true for ∆0 � 0. Eq. (3.52) agrees with
Eq. (2.121), so that Γ

�
ω � involves no extra constant. For large frequencies, ρ

�
ω �O� ρ0

and N
�
ω ��� ρ0 ω, such that ® 
 1 � ω �a� D � (3.53)

A plot of the inverse localization length ®Ü
 1 � ω � for various values of ν � ∆0
) 2D is

given at the bottom of Fig. (3.2). Note that here we measure ® 
 1 � ω � in terms of D but
ω in terms of ∆0.

3.1.5 Solving the general case with arbitrary parameters DR, DI ,
DV and ∆0

While in the commensurate case we only had to solve a differential equation of second
order, for DI �� 0, Eq. (3.28) is a differential equation of fourth order and more difficult
to solve. Without loss of generality we may assume that D̃R � D̃I (later we can also
take the limit D̃R � D̃I). Integrating Eq. (3.28) from � ε to ! ε with ε � 0 � we can
proceed as before and express the integrated DOS in terms of P̃

�
k � and derivatives

thereof evaluated at J 0 � . Integrating the terms linear in k by parts and using again the
fact that P̃ # n $ � � k ��� � � 1 � nP̃ # n $ � � k � , we find

N
�
ω ��� 1

π
Im 2 � i

�
ω � Im∆0 � P̃ � � 0 � � ! DIP̃ �¨� � 0 � � 3 � (3.54)

So, if y
�
k � is any solution to the homogeneous differential equation�

ω ! Im∆0 � y � k �_� 2i
�
Re∆0 � � 2D̃R � D̃I ��� y � � k �_� � ω � Im∆0 � y �¨� � k �� 2iD̃Iy �¨�¨� � k �_� iD̃Ik ; y � k �o� 2D̃ 
 1

I

�
2D̃R � D̃I � y �¨� � k � ! y �¨���¨� � k � < � 0 & (3.55)

which vanishes for k � ∞ sufficiently rapidly, then the integrated DOS is given by

N
�
ω ��� 1

π
Im U � i

�
ω � Im∆0 � y � � 0 �y

�
0 � ! DI

y �¨� � 0 �
y
�
0 � V � (3.56)

Again, since Γ
�
ω �F�¼® 
 1 � ω �o� iπN

�
ω � is an analytic function in the upper half plane,

up to a constant we have

Γ
�
ω ��� i

�
ω � Im∆0 � y � � 0 �y

�
0 � � D̃I

y �¨� � 0 �
y
�
0 � � (3.57)

Using the method of supersymmetry invented by Efetov [24], Hayn and Mertsching
[42] derived the set of equations (3.55) and (3.57) by different means2. Using the
method of Laplace transforms they found an exact expression with the constant of

2Hayn and Mertsching use a slightly different notation but apart from this and some irrelevant dif-
ferent signs their expressions are equal to ours.
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integration chosen such that one obtains the correct asymptotic behavior for large fre-
quencies determined in the Born approximation, Γ

�
ω �_� D � iω � DR ! DI � iω. Here,

instead of presenting a lengthy derivation, we will only cite the exact result found in
[42]:

Γ
�
ω �a� 2DI ! 4D̃R U z � 1 � z � F � � z �

F
�
z � ! zδR � i

�
1 � z � ε V � (3.58)

In this equation, F
�
z � is the hypergeometric function

F
�
z �a� F

� 1
2 � iε ! iδI � δR & 12 � iε � iδI � δR & 1 � 2iε;z � & (3.59)

with the parameters δR, δI , ε, and z (in our notation) given by

δR � Re∆0

4 @ D̃R
�
D̃R � D̃I � A 1 � 2 & δI � Im∆0

4 @ D̃I
�
D̃R � D̃I � A 1 � 2 & (3.60)

ε � ω

4 @ D̃RD̃I A 1 � 2 & z � D̃R � D̃I

D̃R
� (3.61)

Recall that we incorporated the parameter of the forward scattering disorder, DV , into
DR and DI by defining D̃R � DR ! DV and D̃I � DI ! DV . Only the additive constant
2DI in Eq. (3.58) does not get renormalized by DV . This is due to the fact that for large
frequencies Γ

�
ω � � DR ! DI � iω, independent of DV . As one would expect, Eq. (3.58)

is invariant under Re∆0 � � Re ∆0 and Im∆0 � � Im∆0. This can be seen by noting
that F

�
a & b;c;z �O� �

1 � z � c 
 a 
 bF
�
c � a & c � b;c;z � and F

�
a & b;c;z �F� F

�
b & a;c;z � .

The imaginary part of Eq. (3.58) determines the integrated DOS and can be sim-
plified as follows: First of all, we write

N
�
ω �F�¸� ρ0 ImΓ

�
ω ��� ρ0

W�F � 2 & (3.62)

where
W
�
z �F�M� 4D̃R

�
1 � z � 2 z Im @ F � � z � F � � z � A � ε �F � z �L� 2 3 � (3.63)

Differentiating Eq. (3.63) with respect to z, we see that W
�
z � satisfies the Wronski

relation
d
dz

W
�
z �F��� 2δR

1 � z
W
�
z �E� (3.64)

This differential equation can easily be integrated to give

W
�
z �F� W

�
0 � � 1 � z � 2δR � (3.65)

Since F
�
0 �_� 1, it directly follows from Eq. (3.63) that W

�
0 �_� 4D̃Rε � @ D̃R

) D̃I A 1 � 2 ω,
such that

W � -
D̃R

D̃I . 1 � 2 
 2δR

ω � (3.66)



68 Chapter 3 Exact results

The integrated DOS can therefore be written as

N
�
ω �F� ρ0

-
D̃R

D̃I . 1 � 2 
 2δR ω�F � 2 � (3.67)

Taking the confluent limit DI � 0 of Eq. (3.58), one can recover Eq. (3.48) which
describes the commensurate case without forward scattering. Turning on the forward
scattering disorder DV in the general expression gradually removes the possible sin-
gularity in the DOS. Below, we are only going to discuss the incommensurate case.
Other special cases can be found in [29, 40, 41, 42, 65].

3.1.6 The incommensurate case

In the incommensurate case, DR � DI � D ) 2, and the forward scattering potential DV

only leads to a renormalization of D. If we introduce D̃ � D ! DV � D̃R
) 2 ! D̃I

) 2, we
can write Γ

�
ω � as

Γ
�
ω �a� D � iω ! 2D̃

zF �
F

� (3.68)

Without loss of generality, we may assume that ∆0 is real. Note that the additive
constant D (which is equal to ®Ü
 1 � ∞ ��� limω r ∞ ReΓ

�
ω � ) does not include DV : The

forward scattering disorder does not affect the inverse localization length at large fre-
quencies. If we first define DR � D ) 2 and DI � � 1 ! µ 
 2 � D ) 2, the confluent limit of the
hypergeometric function F may be taken by letting µ � ∞. Then, the hypergeometric
function reduces to the generalized hypergeometric function 0F1 @ 1 � iω ) D̃;∆2

0
) 4D̃2 A ,

which can be expressed in terms of the modified (hyperbolic) Bessel function Ip
�
x � .

One finds (A&S, Eq. (9.6.47))

lim
µ r ∞

F � /
∆0
2D̃ 0 iω � D Γ

�
1 � iω ) D̃ � I 
 iω � D̃ / ∆0

D̃ 0 � (3.69)

Similarly, one can show that

lim
µ r ∞

zF � � /
∆0
2D̃ 0 1 � iω � D̃ Γ

�
1 � iω ) D̃ � I1 
 iω � D̃ / ∆0

D̃ 0 � (3.70)

In the incommensurate case, Γ
�
ω � therefore simplifies to

Γ
�
ω ��� D � iω ! ∆0

I1 
 iω � D̃ / ∆0
D̃ 0

I 
 iω � D̃ / ∆0
D̃ 0 � (3.71)

Using the formula (A&S, Eq. (9.6.28))

I1 � ν
�
x �a� I �ν � x �o� ν

x
Iν
�
x � & (3.72)
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Eq. (3.71) can also be written as

Γ
�
ω ��� D ! ∆0

I �
 iω � D̃ / ∆0
D̃ 0

I 
 iω � D̃ / ∆0
D̃ 0 � (3.73)

Taking the imaginary part of Eq. (3.71) and making use of the Wronski relation (A&S,
Eq. (9.6.14))

Iν
�
x � I1 
 ν

�
x �o� I1 � ν

�
x � Iν

�
x ���M� 2sin

�
πν � ) πx & (3.74)

we find for the integrated DOS

N
�
ω �F� D̃

π
sinh

/ πω
D̃ 0 ρ0ggg Iiω � D̃ / ∆0

D̃ 0 ggg 2 � (3.75)

This expression agrees with Ref. [32]. A plot of the DOS for different values of the
parameter ν � ∆0

) 2D is shown at the top of Fig. 3.3. There is no Dyson singularity,
and in the absence of a static gap ∆0, the disorder has no effect on the DOS so that
ρ
�
ω �E� ρ0 for ν � 0. At zero frequency, ρ

�
0 � is always finite and the DOS vanishes

with increasing ν, i.e. decreasing disorder, as ρ
�
0 �O� ρ0

) * I0
�
2ν � + 2. Putting it the other

way round, the disorder leads to a filling of the gap. As in the commensurate case,
in the limit D � 0, i.e. ν � ∞, the DOS reduces to the mean-field result ρ

�
ω ���

ρ0 θ
�
ω2 � ∆2

0 �Ì�ω � ) � ω2 � ∆2
0 � 1 � 2.

Taking the real part of Eq. (3.71), we get for the inverse localization length® 
 1 � ω ��� D ! ∆0

Iiω � D̃ / ∆0
D̃ 0 I1 
 iω � D̃ / ∆0

D̃ 0 ! I 
 iω � D̃ / ∆0
D̃ 0 I1 � iω � D̃ / ∆0

D̃ 0
2 ggg Iiω � D̃ / ∆0

D̃ 0 ggg 2 � (3.76)

In contrast to the commensurate case, the localization length at ω � 0 is finite for any
∆0 and given by ® 
 1 � 0 ��� D ! ∆0

I1

/
∆0
D̃ 0

I0

/
∆0
D̃ 0 � (3.77)

While for ∆0
) D̃ � 0 one has ®±
 1 � 0 ��� D (and also ®±
 1 � ω ��� D for every ω), for

∆0
) D̃ � 1 one finds ®±
 1 � ω � � ∆0 ! D ) 2 � DV

) 2. Finally, for small D and DV , the in-
verse localization length almost vanishes for �ω �=� ∆0. The weak disorder also creates
a few localized states with energies �ω �Á� ∆0 whose inverse localization length is given

by ® 
 1 � ω �E� } ∆2
0 � ω2. A plot of the inverse localization length for different values

of the parameter ν and DV � 0 is given at the bottom of Fig. 3.3.
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3.2 Infinite correlation lengths

In the limit of infinite correlation lengths, ∆
�
x � becomes independent of x and exact

results for the averaged DOS of the FGM may be obtained. The limit of large cor-
relation lengths ξ is of special importance for Peierls systems because the correlation
length of the order parameter diverges at the Peierls transition. Sadovskii was the first
to consider the fluctuating gap model (FGM) with infinite correlation lengths [77] and
calculated the one-electron Green function for the incommensurate case by summing
up all diagrams in the perturbation expansion. This Green function leads to a DOS
which exhibits a pseudogap at the Fermi energy. The commensurate case was later
solved by Wonneberger and Lautenschlager [96].

Taking the ensemble average

The limit of infinite correlation lengths can be solved by averaging the desired quantity
calculated with a static gap ∆ over an appropriate probability distribution of ∆. This
amounts to taking an ensemble average.

3.2.1 The commensurate case

For real ∆ and Gaussian statistics we have�������ò�F��7 ∞
 ∞

d∆¡ 2π∆2
s

e 
 ∆2 � 2∆2
s �����F� (3.78)

The DOS can now be calculated as follows:

ρ∞
�
ω ��� ρ0 7 ω
 ω

d∆¡ 2π∆2
s

e 
 ∆2 � 2∆2
s

ω"
ω2 � ∆2� 2ρ0

ω
∆s

1"
2π
7 1

0
due 
 # ω2 � 2∆2

s $ u2 1"
1 � u2� ρ0 ó π

2
ω
∆s

e 
 ω2 � 4∆2
s I0

-
ω2

4∆2
s . � (3.79)

Here, I0
�
u � is the modified Bessel function with index 0 already encountered in the

section on the white noise limit.
If we define the inverse localization length ®G
 1

∞
�
ω � for ξ � ∞ by the Thouless for-

mula, we have

∂ω ® 
 1
∞
�
ω ���M� § ω"

∆2 � ω2
θ
�
∆2 � ω2 � © & (3.80)

such that ® 
 1
∞
�
ω ��� : ¡ ∆2 � ω2 θ

�
∆2 � ω2 � >� ó 2

π
ω2

∆s
7 ∞

1
due 
 # ω2 � 2∆2

s $ u2 ¡ u2 � 1 � (3.81)
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3.2.2 Incommensurate case

For complex ∆
�
x � and Gaussian statistics, the process of averaging can be written as�D�����,���87 d∆¡ 2π∆2

s

e 
 ∆2 � 2∆2
s �����F� (3.82)

We therefore obtain for the DOS

ρ∞
�
ω �^� ρ0 7 �∆ � { ω

d Re∆d Im∆
π∆2

s
e 
��∆ � 2 � ∆2

s
ω¡ ω2 �h�∆ � 2� ρ0

ω2

∆2
s
7 1

0
due 
 # ω2 � ∆2

s $ u2 1"
1 � u2� 2ρ0

ω
∆s

e 
 # ω2 � ∆2
s $ Erfi

-
ω
∆s . � (3.83)

Here,

Erfi
�
u �F� 7 u

0
ex2

dx (3.84)

is the error function with an imaginary argument.
Similarly to the above calculations one can show that the inverse localization length

for complex ∆
�
x � and Gaussian statistics is given by® 
 1

∞
�
ω ��� ∆s

"
π

2
e 
 ω2 � ∆2

s � (3.85)

Plots of ρ∞
�
ω � and ®L
 1

∞
�
ω � are given in Fig. 3.4. While in the commensurate case the

DOS vanishes linearly in ω, it only vanishes quadratically in the incommensurate case.
This is due to the fact that the probability distribution for complex ∆ has less weight
for small �∆ � than the one for real ∆. The inverse localization length assumes for both
the commensurate and the incommensurate case a finite value at ω � 0 and drops to
zero as ω increases. That ®Ü
 1

∞
�
0 � is finite in the commensurate case seems to contradict

the general result ®±
 1
∞
�
0 ��� ∆av � 0 derived in Chapter 2. One should keep in mind,

however, that for ξ � ∞ we have only defined ® 
 1
∞
�
ω � by Re � G � x & x;ω ��� . While for

finite ξ a single chain is representative for an ensemble of chains, for ξ � ∞, there is no
self-averaging effect. On the other hand, it seems plausible to assume that the above
results for ξ � ∞ give a good approximation to the case of finite ξ if ξ is much larger
that any microscopic length scale involved. In particular, we have to demand ∆sξ � 1
and ωξ � 1. The above results for the DOS and the inverse localization length at ω � 0
can therefore not be expected to hold for finite correlation lengths. In fact, we will see
in the next chapter that for any finite ξ we find in the commensurate case ρ

�
0 �_� ∞ and® 
 1 � 0 ��� 0. For ∆sξ � 1 and ωξ � 1, however, we will find a remarkable agreement

between the two solutions as predicted above.
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Chapter 4

Finite correlation lengths

While in the limit of very small and infinite correlation lengths ξ of the random disor-
der, the fluctuating gap model (FGM) admits for an exact analytic calculation of the
density of states (DOS) and the inverse localization length, in the intermediate regime
of finite ξ there are only approximate solutions available. It especially turns up the
question: “How accurate are Sadovskii’s solutions [78], which for a long time were
thought to be exact?” An answer to this question is of particular interest because
Sadovskii’s solutions have become quite popular since the experimental discovery of a
pseudogap in the underdoped cuprates above the critical temperature Tc [80, 81]. In
this chapter, we will calculate the DOS and the inverse localization length for Gaus-
sian statistics, as approximately done by Sadovskii with very high accuracy numeri-
cally. We will also consider the case of only phase fluctuations for which we will even
find an exact solution by applying a gauge transformation to the Green function and
mapping the original problem onto a problem involving only white noise.

4.1 Singularities in the density of states

The exact results of the FGM derived in the white noise limit in the previous chapter
imply under certain circumstances a Dyson singularity in the DOS. This singularity
arises only in the commensurate case [i.e. for real ∆

�
x � ] and only if the forward scat-

tering potential and ∆av �K� ∆ � x ��� are sufficiently small [see Eqs. (3.44) and (3.46)].
Since the white noise limit describes the low-energy physics of physical systems char-
acterized by small correlation lengths ξ, this statement should also be true for small
but finite ξ. As far as I know, it was first shown by myself in collaboration with Peter
Kopietz that the DOS ρ

�
ω � of the FGM exhibits a singularity at the Fermi energy for

any finite value of the correlation length ξ if the fluctuating order parameter field ∆
�
x �

is real and its average � ∆ � x ��� is sufficiently small [8]. To detect the singularity, we ap-
plied the boundary condition ∆BC � VBC � 0, such that the complete spectrum turned

75
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out to be continuous [see Eq. (2.58) and its following remark].1 The existence of the
Dyson singularity can also be seen in the discrete case by considering the equation of
motion (2.89) for V

�
x ��� 0 and real ∆

�
x � which after the shift ϕ � ϕ � π ) 2 reads

∂xϕ
�
x ��� 2ω ! 2∆

�
x � sinϕ

�
x �´� (4.1)

The Dyson singularity in the DOS is due to phase resonance: If ω is small (compared
to ∆s, ∆2

s ξ and ξ 
 1) but positive, the change of ϕ
�
x � is dominated by the fluctuating

term 2∆
�
x � sinϕ

�
x � . Only near ϕ

�
x �_� nπ (with n an integer) we have ∂xϕ

�
x �_� 2ω � 0,

such that ϕ
�
x � can only grow on average. As

�
ϕ
�
x �_� nπ �a` ω ) ∆s, fluctuation effects

of ∆
�
x � become important, driving ϕ

�
x � from nπ ! ω ) ∆s to

�
n ! 1 � π � ω ) ∆s. Near

ϕ
�
x ��� �

n ! 1 � π, the constant force 2ω dominates again and the above picture repeats
itself.

As we decrease ω, the “time” (which corresponds to the space coordinate x) to
move ϕ

�
x � from nπ � ω ) ∆s to nπ ! ω ) ∆s will not change, but fluctuations of ∆

�
x �

will need slightly longer to drive ϕ
�
x � from nπ ! ω ) ∆s to

�
n ! 1 � π � ω ) ∆s, implying

that ϕ
�
x � decreases more slowly than ω as ω decreases. Now, the average DOS for

frequencies between 0 and ω is given by

ρ
�
ζω ��� N

�
ω �

ω
� lim

x r ∞

ϕω
�
x �

2πωx & (4.2)

where ζ is a number between 0 and 1. Letting ω approach zero, it follows ρ
�
0 �a� ∞.

This divergence describes the Dyson singularity in the DOS. The above reasoning is
independent of the probability distribution of ∆

�
x � . However, it should be noted that

∆
�
x � must not be dominated by one sign. If ϕ

�
x ��` nπ and

� � 1 � n∆
�
x � is negative,

ϕ
�
x � will fluctuate around the stable position near nπ ! ω ) ∆s. ϕ

�
x ��� �

n ! 1 � π can
only be reached if

� � 1 � n∆
�
x � is positive on average over a finite interval. We therefore

conclude that we expect a Dyson singularity if ∆
�
x � is real and fluctuates around ∆av �� ∆ � x ��� with ∆av sufficiently small.

For complex ∆
�
x � , fluctuations of the phase of ∆

�
x � can be mapped via the gauge

transformation (2.98) onto a forward scattering potential. Since the amplitude �∆ � x �=�
is always positive and the phase fluctuations lead to an effective local shift of the
frequency ω, there should be no Dyson singularity. Instead, we expect a suppression
of the DOS, i.e. a pseudogap.

4.2 Numerical algorithm

In the following, we present an exact algorithm which for stepwise constant potentials
allows for simultaneous numerical calculations of the integrated DOS and the inverse

1Our results have been turned into question in Ref. [67], but as pointed out in Ref. [12] and as will
be shown below, the DOS diverges in the commensurate case for ö ∆ Q x S�÷ ¿ 0 and V Q x S ¿ 0 for any finite
ξ at the Fermi energy.
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localization length. By choosing the step size sufficiently small, the integrated DOS
and the inverse localization length may be calculated for arbitrary given potentials. Let
us partition the interval

�
0 & L � into N intervals

�
xn & xn � 1 � of length δn � xn � 1 � xn with

x0 � 0 � x1 �ø�����Ü� xN � L, such that ∆
�
x �F� ∆n and V

�
x �F� Vn for xn � x � xn � 1. Let

us also define ω̃n as2 ω̃n � ω � Vn.
To find an exact analytic solution for the given stepwise constant potentials of

the equations of motion (2.89) and (2.90), let us consider again the related S-matrix
S
�
L & 0;ω � , which can be written as the finite product

S
�
L & 0;ω �F� N 
 1

∏
n P 0

Sn � N 
 1

∏
n P 0

S
�
xn � 1 & xn;ω � & (4.3)

where the Sn are given by [see Eqs. (2.54) and (2.55)]

Sn � cosh
* } �∆n � 2 � ω̃2

n δn + σ0! isinh
* } �∆n � 2 � ω̃2

n δn + ω̃nσ3 ! ∆nσ � � ∆ �nσ 
¡ �∆n � 2 � ω̃2
n

& ω̃2
n �Ù�∆n � 2 & (4.4)

Sn � cos
* } ω̃2

n �¼�∆n � 2 δn + σ0! isin
* } ω̃2

n �h�∆n � 2 δn + ω̃nσ3 ! ∆nσ � � ∆ �nσ 
¡ ω̃2
n �h�∆n � 2 & ω̃2

n �Ù�∆n � 2 � (4.5)

Eq. (4.3) implies the recurrence relation

S
�
xn � 1 & 0;ω �F� Sn S

�
xn & 0;ω � & (4.6)

which we will now cast into recurrence relations for ϕ
�
x � and ζ

�
x � : Taking the loga-

rithm of
S22

�
xn � 1 & 0 �F� �

Sn � 22 S22
�
xn & 0 � ! � Sn � 21 S12

�
xn & 0 � & (4.7)

we get

lnS22
�
xn � 1 & 0 ��� lnS22

�
xn & 0 � ! ln

* �
Sn � 22 ! � Sn � 21 S12

�
xn & 0 � ) S22

�
xn & 0 � + � (4.8)

Recalling

S12
�
x & 0 ��� exp

*
iϕ
�
x � ) 2 ! ζ

�
x � ) 2 + & (4.9)

S22
�
x & 0 ��� exp

* � iϕ
�
x � ) 2 ! ζ

�
x � ) 2 + & (4.10)

the recurrence relation for the S-matrix is transformed into the recurrence relations for
ϕn � ϕ

�
xn � and ζn � ζ

�
xn � ,

ϕn � 1 � ϕn � 2Im
*
lnzn + & (4.11)

ζn � 1 � ζn ! 2Re
*
lnzn + & (4.12)

2It should be obvious that ω̃n Å ω Ä Vn is not a Matsubara frequency.
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where we have introduced

zn � �
Sn � 22 ! � Sn � 21 exp

�
iϕn ��� (4.13)

Note that Eqs. (4.11) and (4.12) are integrated forms of the equations of motion (2.89)
and (2.90). The real and imaginary part of lnzn can be determined by using the formula

lnzn � ln @ � zn � eiαn A � ln � zn � ! iαn � ln � zn � ! iarg
�
zn �Ø� (4.14)

The argument of zn, arg
�
zn � can be obtained up to a multiple of 2π from3

arg
�
zn ��� 2πmn ! sgn

*
Imzn + arccos

-
Re zn� zn � . � (4.15)

To find the integer

mn � U arg
�
zn �

2π ! 1
2 V int

& (4.16)

we define zn
�
x � by zn with δn replaced by x � xn. zn

�
x � is an analytic func-

tion of x and at x � xn � 1 agrees with zn. For ω̃2
n �ù�∆n � 2, it follows from

Eq. (4.4) that Im
*
zn
�
x � + ∝ sinh

* ¡ �∆n � 2 � ω̃2
n
�
x � xn � + does not change its sign

for any x � xn, such that � arg
*
zn
�
x � + �F� π and mn has to be zero. For ω̃2

n ��∆n � 2, however, Im
*
zn
�
x � + ∝ sin

* ¡ ω̃2
n �h�∆n � 2 � x � xn � + , such that � * arg

�
zn
�
x ��� ) π + int �Ý�; ¡ ω̃2

n �h�∆n � 2 � x � xn � ) π < int
. Since the constant of proportionality is negative for

ω̃n �Ù�∆n � and positive for ω̃n ���ú�∆n � , it follows

mn � B 12 � sgn
�
ω̃n � ¡ ω̃2

n �h�∆n � 2 δn

2π C int

� (4.17)

To summarize, we can simultaneously calculate the integrated DOS and the inverse lo-
calization length for arbitrary stepwise constant potentials using the following iterative
algorithm with the initial values ϕ0 � ζ0 � 0,

ϕn � 1 � ϕn � 2 U 2πmn ! sgn
*
Imzn + arccos

-
Re zn� zn � .ûV &

ζn � 1 � ζn ! 2ln � zn � & (4.18)

(4.19)

where zn and mn are given by

3When implementing the algorithm on a computer and using the language C, arg Q zn S is given up to
a multiple of 2π by the function atan2 Q Imzn R Rezn S , which returns a value between Ä π and π.
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zn � �
Sn � 22 ! � Sn � 21 exp

�
iϕn � &

mn � ÏÐÑ ÐÒ B 12 � sgn
�
ω̃n � ¡ ω̃2

n �¼�∆n � 2 δn

2π C int
& ω̃2

n �h�∆n � 2 � 0

0 & ω̃2
n �h�∆n � 2 Î 0

& (4.20)

(4.21)

and the matrix elements of Sn are determined by Eqs. (4.4) and (4.5).

4.2.1 Generation of disorder

In case of finite correlation lengths, specific extensive physical quantities (which are
obtained by relating extensive quantities to the length of the system) show a self-
averaging effect as the length of the chain increases [58], i.e. they become independent
of the concrete realization of the disorder. This self-averaging effect can be under-
stood by partitioning a very long macroscopic chain into a large number of chains,
each one still being much longer than the correlation length and any other microscopic
length scale. In this case, boundary effects between adjacent parts of the original chain
may be neglected and we are practically left with an ensemble of a large number of
independent chains. Physical quantities can now be calculated for each chain indi-
vidually, assuming independently all possible values with their respective statistical
weight. Specific extensive quantities are now given by the ensemble-average, giving a
non-random value in the thermodynamic limit. The DOS and the inverse localization
length can therefore be calculated by generating one typical very long chain.

Gaussian disorder

To generate Gaussian disorder at the sample points xn with the first two moments
satisfying � ∆ � x ���F� ∆av & � ∆̃ � x � ∆̃ � x � ����� ∆2

s e 
�� x 
 x 
 � � ξ & (4.22)

where ∆̃
�
x ��� ∆

�
x �i� ∆av, we use a realization of an Ornstein-Uhlenbeck process de-

scribed in more general form in Appendix B. Using the Box-Muller algorithm [74],
we generate independent Gaussian random numbers gn with � gn �´� 0 and � g2

n �´� 1.
For real ∆

�
x � , we generate ∆̃n � ∆n � ∆av recursively by

∆̃0 � ∆sg0 & ∆̃n � 1 � an∆̃n ! } 1 � a2
n ∆sgn � 1 & (4.23)

where an � e 
F� δn � � ξ. It is shown in Appendix B that this Markov process indeed leads
to a Gaussian random process with the desired correlation functions. The Markov
property of the algorithm allows us to generate the disorder simultaneously with the
iteration of the recurrence relations (4.18) and (4.19), so that the algorithm presented
above practically needs no memory space and, in principle, arbitrary long chains can
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be considered. If we choose � δn � ) ξ j 1 (in practical calculations we choose � δn � ) ξ `
0 � 0001 to 0 � 05 depending on ∆sξ and make sure that lessening of � δn � ) ξ does not
change the results), the (integrated) DOS and the inverse localization length may be
calculated with arbitrary accuracy numerically.

Of course, the above algorithm can also be used to generate Vn and in the complex
case, Re∆n and Im∆n can be generated by replacing ∆s by ∆s

) " 2 (see Appendix B).

4.2.2 Results

First numerical calculations of the DOS of the FGM in the regime of finite correlation
lengths were done by myself in collaboration with Peter Kopietz using an algorithm
similar to the one presented here [11]. Simultaneously, Millis and Monien presented
their data obtained by an exact diagonalization of a lattice regularization of the FGM
[66]. However, these authors did not make any attempts to relate their results to the
continuous FGM which would have allowed for a more direct comparison with the
solutions given by Sadovskii [78].

In contrast to the algorithm described in Ref. [11], the algorithm presented here
does not only allow for a numerical calculation of the (integrated) DOS, it is also
capable of a simultaneous evaluation of the localization length which for finite ξ has
never been published before.

Commensurate case

In Fig. 4.1, we show our numerical results for the DOS ρ
�
ω � and inverse localiza-

tion length ®±
 1 � ω � for real ∆
�
x � (with ∆av � 0 and V

�
x �ü� 0), which refers to the

symmetric phase of a commensurate system with no forward scattering. Except for
∆sξ � 1000 & 0 � 2 we have chosen the same values of the dimensionless parameter ∆sξ
as in Fig. 7 of Ref. [78].4 One clearly sees the Dyson singularity in the DOS which
exists for any finite value of ξ and overshadows the pseudogap at sufficiently small en-
ergies. One can also see that this Dyson singularity is accompanied by a singularity in
the inverse localization length. The inverse localization length drops to zero at ω � 0,
in accordance with the exact result ®Ü
 1 � 0 �F�µ� ∆av � [see Eq. (2.121)].

The Dyson singularity in the DOS is missed by Sadovskii’s algorithm [78]. For a
more quantitative description of the Dyson singularity we have plotted the logarithm
of the integrated DOS N ) ∆s versus the logarithm of � ln

�
ω ) ∆s � . For frequencies

between ω � 10 
 11∆s and ω � 10 
 6 we find that the data can be very well fitted by a
straight line, such that

N
�
ω ��� ρ0

∆sB
�
ξ �� ln � ω ) ∆s �L� α # ξ $ & (4.24)

4Note that by choosing the length of the system to be ∆sξ ¿ 108 which is ten times as large as in
Ref. [11] we have improved the accuracy of the data of the DOS.
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Figure 4.1: Plot of the DOS ρ
�
ω � and the inverse localization length ® 
 1 � ω � for

real ∆
�
x � with Gaussian statistics, ∆sL � 108, and finite correlation lengths ∆sξ �

1000 � 0 & 100 � 0 & 10 � 0 & 2 � 0 & 1 � 0 & 0 � 5, and 0 � 2. As ∆sξ increases, the pseudogap in the DOS
becomes deeper and the inverse localization increases for small frequencies. For any
finite ξ, we find ρ

�
0 ��� ∞ and ®±
 1 � ω �a� 0. The dotted line represents the exact result

derived in Chapter 3 and for ω ý 0 � 2∆s is almost indistinguishable from the result for
∆sξ � 1000 � 0.
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Figure 4.2: Plot of the exponent α
�
ξ � defined by Eq. (4.24) for frequencies between

ω � 10 
 6∆s and ω � 10 
 11∆s. While α
�
ξ � slightly overestimates the white noise result

for small ∆sξ, in the opposite limit ∆sξ � 1 we find α ` 0 � 41 �
which implies for the DOS

ρ
�
ω ��� ρ0

A
�
ξ ��

ω ) ∆s �=� ln � ω ) ∆s �L� 1 � α # ξ $ & (4.25)

with A
�
ξ �i� α

�
ξ � B � ξ � . Plots of the exponent α

�
ξ � and the weight factors of the Dyson

singularity A
�
ξ � and B

�
ξ � are shown in Figs. 4.2 and 4.3. For ∆sξ j 1 our data is

consistent with the white noise result α � 2. As ∆sξ increases, the exponent α
�
ξ �

decreases, assuming for large correlation lengths ξ the finite value

α
�
ξ �F` 0 � 41 & ∆sξ ý 500 � (4.26)

Fitting the data for A
�
ξ � in the regime between ∆sξ � 500 and ∆sξ � 10000 to a power

law shows that the weight of the singularity of the DOS vanishes as

A
�
ξ �F� 0 � 175

�
∆sξ � 
 0 � 65 � (4.27)

The plot of the DOS given in Fig. 4.1 shows that for large correlation lengths ξ the
Dyson singularity only overshadows a pseudogap, such that ρ

�
ω � takes a minimal

value at a certain frequency ω � � ξ � . A double-logarithmic plot of ρ
�
ω ��� versus

�
∆sξ ��
 1

is given by the triangles in Fig. 4.4. The straight line gives a fit to a power-law:
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ρ
�
ω � � ) ρ0 � C

�
∆sξ � 
 µ (4.28)

We find
C � 0 � 482 J 0 � 010 & µ � 0 � 3526 J 0 � 0043 (4.29)

The circles in Fig. 4.4 show ω � where ρ
�
ω � is minimal. The long solid line is a fit to a

power-law
ω � ) ∆s � D

�
∆sξ � 
 γ � (4.30)

Here, we find
D � 0 � 2931 J 0 � 0074 & γ � 0 � 3513 J 0 � 0051 � (4.31)

such that within numerical accuracy µ � γ. The proportionality of ρ
�
ω ��� to the energy

scale ω � , which can be interpreted as the width of the Dyson singularity, can also
directly be seen in Fig. 4.1. Finally we note that for ∆sξ � 0 � 2 our algorithm produces
results consistent with the white noise limit ∆sξ j 1. From the exact solution of
Ovchinnikov and Erikhman [71] we obtain ρ

�
ω �~� ) ρ0 � 0 � 9636 and ω �E� 1 � 2514∆2

s ξ
which determines the short solid line in Fig. 4.4, describing ω � � ξ � in the white-noise
limit.

Incommensurate case

The DOS ρ
�
ω � and inverse localization length ® 
 1 � ω � for complex ∆

�
x � (and ∆av �

V
�
x �O� 0), which refers to the symmetric phase of the commensurate case with no for-

ward scattering are presented in Fig. 4.5. Neither the DOS nor the inverse localization
length involve a singularity. In fact, a direct comparison of our results for the DOS
with those obtained from Sadovskii’s algorithm shows a good agreement.

For a more quantitative comparison, the diamonds in Fig. 4.4 show the DOS ρ
�
0 �

at the Fermi energy. A fit to a power-law gives

ρ
�
0 � ) ρ0 � C

�
∆sξ � 
 µ & (4.32)

with
C � 0 � 6397 J 0 � 0066 & µ � 0 � 6397 J 0 � 0024 � (4.33)

Note that within numerical accuracy we find C � µ. This result should be compared
with Sadovskii’s approximate result C � 0 � 541 J 0 � 013 and µ � 1 ) 2.

4.3 Phase fluctuations only

As pointed out by Grüner [37], far below the mean-field critical temperature T MF
c , am-

plitude fluctuations of the complex order parameter ∆
�
x ���1�∆ � x �L� eiϑ # x $ are gradually

frozen out, and the amplitude �∆ � x �L� is close to its T � 0 value (with the Boltzmann
constant kB set equal to one)

∆s � ∆0
�
0 �F� 1 � 764T MF

c � (4.34)
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Figure 4.5: Plot of the DOS ρ
�
ω � and the inverse localization length ® 
 1 � ω � for

complex ∆
�
x � with Gaussian statistics, ∆sL � 108, and finite correlation lengths

∆sξ � 1000 � 0 & 100 � 0 & 10 � 0 & 2 � 0 & 1 � 0 & 0 � 5, and 0 � 2. As ∆sξ increases, the pseudogap in
the DOS becomes deeper and the inverse localization increases for small frequencies.
The dotted line represents the exact result derived in Chapter 3. This line is hardly
recognizable because it is almost indistinguishable from the line for ∆sξ � 1000 � 0.
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Long-wave length fluctuations of the phase, however, cost only little energy, so that the
order parameter fluctuates at the bottom of the two-dimensional free energy potential
well, which has the shape of a “Mexican hat”. Ignoring quartic terms in the gradient
expansion of the free energy (which can be found in Appendix A), the free energy is
given for a constant amplitude [see Eq. (1.120) and Ref. [14]] by

F # phase $ % V ' � 1
2

sρs
�
T � 7 L

0
dxV 2 � x ��� (4.35)

The superfluid density ρs
�
T � was given in Eq. (1.122) and at low temperatures is ap-

proximately equal to ρ0. In terms of the superfluid “velocity” V
�
x ��� ∂xϑ

�
x � ) 2, the

process of averaging can be written as�Ü����� �a� « D
%
V ' ����� e 
 βF

�
V �« D

%
V ' e 
 βF

�
V � � (4.36)

Since F
%
V ' is Gaussian and local, the process of averaging is described by Gaussian

white noise. The first two moments of V
�
x � are given by� V � x ����� 0 & (4.37)� V � x � V � x � ����� 2

1
4ξ
�
T � δ

�
x � x � � & (4.38)

with [see Eq.1.128]

ξ
�
T ��� sρs

�
T �

2T
� (4.39)

Well below the mean-field temperature T MF
c , we can use the BCS gap equation ∆s �

1 � 764T MF
c and ρs

�
T ��` ρ0 � π 
 1 to get for the dimensionless parameter5 ∆sξ

∆sξ
�
T ��� 0 � 281sT MF

c
) T � (4.40)

As already shown in Chapter 1, Eqs. (4.37) and (4.38) imply the correlation functions� ∆ � x ����� 0 & � ∆ � x � ∆ � x � ���F� 0 & (4.41)� ∆ � x � ∆ � � x � ����� ∆2
s exp @ �­� x � x � � ) ξ � T � A � (4.42)

To calculate physical quantities like the DOS or the inverse localization length, we use
the gauge invariance of these quantities under the gauge transformation (2.98) and map
the phase fluctuations of the order parameter ∆

�
x �y� ∆seiϑ # x $ onto the effective forward

scattering potential V
�
x ��� ∂xϑ

�
x � ) 2.

5The prefactor can be expressed in terms of the Euler constant γ, such that ∆sξ Q T S ¿ sT MF
c í 2eγT .
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4.3.1 Density of states and inverse localization length

The DOS and the inverse localization length for the remaining problem involving only
a constant gap parameter and forward scattering described by Gaussian white noise
were already calculated in the previous chapter. With the exception of the constant
shift in the inverse localization length, the results are identical with those for the in-
commensurate case without forward scattering and � ∆ � x ����� ∆0 �� 0. Substituting in
Eqs. (3.71) and (3.73) ∆0 by ∆s, D̃ by 1 ) 4ξ

�
T � and setting D � 0 (since there is only

forward scattering) which implies a completely different interpretation of the resulting
equations, we get for Γ

�
ω ���Ú® 
 1 � ω �_� iπN

�
ω �

Γ
�
ω �F�¸� iω ! ∆s

I1 
 i4ωξ
�
4∆sξ �

I 
 i4ωξ
�
4∆sξ � & (4.43)

or, equivalently,

Γ
�
ω ��� ∆s

I �
 i4ωξ
�
4∆sξ �

I 
 i4ωξ
�
4∆sξ � � (4.44)

It follows from Eq. (3.75) that the integrated DOS is given by

N
�
ω �F� ρ0

sinh
�
4πωξ �

4πξ
1gg Ii4ωξ
�
4∆sξ � gg 2 � (4.45)

Plots of the DOS and the inverse localization length for characteristic values of ∆sξ are
shown in Fig. 4.6. At the Fermi energy, the DOS simplifies to

ρ
�
0 �F� ρ0*

I0
�
4∆sξ � + 2 & (4.46)

such that, as the temperature is lowered and the correlation length grows, the DOS at
the Fermi energy vanishes exponentially,

ρ
�
0 � � 8πρ0∆sξexp

� � 8∆sξ � & 4∆sξ � 1 � (4.47)

This result is in contrast to the power-law behavior of the DOS as predicted by Gaus-
sian statistics. A plot of the DOS at the Fermi energy is shown in Fig. 4.7 as a function
of 1 ) ∆sξ. For a comparison, we have also plotted ρ

�
0 � for Gaussian statistics and the

result found in the Born approximation, which at low temperatures can only poorly de-
scribe the quantitative behavior of the pseudogap. For T � T MF

c
) 4 which corresponds

to ∆sξ ` 2 � 0, we find that the DOS ρ
�
0 � for phase fluctuations only is less than 10 
 5ρ0

while the Born approximation and the numerical exact result for Gaussian statistics
suggest a value of order ρ0

) 4.
As can also be seen in Fig. 4.7, there is no pseudogap for ∆sξ � 0 � 1. Note, however,

that these correlation lengths correspond to temperatures of order T MF
c , where the DOS
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Figure 4.6: Plot of the DOS ρ
�
ω � and the inverse localization length ® 
 1 � ω � for phase

fluctuations only and ∆sξ � 0 � 1 & 0 � 3 & 1 � 0 & 3 � 0 & 10 � 0 and ∞. As ∆sξ increases, the pseu-
dogap in the DOS becomes deeper and the inverse localization length increases for
small frequencies.
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Figure 4.7: Plot of the DOS ρ
�
0 � ) ρ0 as a function of 1 ) ∆sξ. The solid line gives the

DOS for phase fluctuations only while the dashed line is the result found in the leading
order Born approximation [see Eq. 2.27] and diamonds give the DOS evaluated for
Gaussian statistics [see Section 4.2]

has to be described by amplitude fluctuations. Nevertheless, using only phase fluctua-
tions for all temperatures T gives a good qualitative description of the DOS also in the
temperature region where amplitude fluctuations are important.

For temperatures well below the mean-field temperature T MF
c , where our theory

becomes quite accurate, we have, according to Eq. (4.40), ∆sξ � 1, such that the
Bessel function

Iiν
�
νz �F� e 
 πν � 2 Jiν

�
iνz � (4.48)

may be approximated by an Airy function: Using Eq. (9.3.35) from Ref. [4] (A&S),

Jν
�
νz � � -

4ζ
1 � z2 . 1 � 4 Ai

�
ν2 � 3ζ �

ν1 � 3 & (4.49)

with

2
3

ζ3 � 2 � ln
1 ! " 1 � z2

z
�É¡ 1 � z2 & z � 1 & (4.50)

2
3

� � ζ � 3 � 2 � ¡ z2 � 1 � arccos

-
1
z . & z � 1 & (4.51)
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whose leading terms in the Taylor expansion are given by

ζ � 2
1
3

- �
1 � z � ! 3

10

�
1 � z � 2 ! 32

175

�
1 � z � 3 . ! O

�
1 � z � 4 & (4.52)

we find

N
�
ω ��� ρ0

-
ω2 � ∆2

s

ζ . 1 � 2 1 � e 
 4πωξ

2π
�
4ωξ � 1 � 3 1� Ai @ � i4ωξ � 2 � 3ζ A � 2 � (4.53)

Here, ζ is given by Eqs. (4.50) and (4.51) with z � ∆s
) ω. Note that Eq. (4.53) is

valid for arbitrary ω as long as ∆sξ � 1. The case of large correlation lengths can be
surveyed further as follows: Expanding Eq. (4.53) for ω around ∆s, we find to leading
order in 1 ) 4∆sξ a maximum of the DOS ρ

�
ω � at ∆s, described by the inverted parabola

ρ
�
ω � � ρ0 B a � 4∆sξ � 1 � 3 � b

�
4∆sξ � 5 � 3 - ω

∆s
� 1 . 2 C & (4.54)

with

a � 1

24 � 3π
c2

c3
1

` 0 � 731 & (4.55)

b � 1

22 � 3π
1

c2
1
B 3 - c2

c1 . 3 � 1 C ` 0 � 258 & (4.56)

where c1 � Ai
�
0 �ü� 3 
 2 � 3 ) Γ � 2 ) 3 �ü` 0 � 355 and c2 � � Ai � � 0 �û� 3 
 1 � 3 ) Γ � 1 ) 3 �^`

0 � 259. Note that Eq. (4.54) implies that the maximum of the DOS diverges as�
4∆sξ � 1 � 3 ∝ T 
 1 � 3.

Away from ω � ∆s, the argument of the Airy function is large such that
Ai
���

i4ωξ � 2 � 3ζ � may be expanded in an asymptotic series: If we use Eq. (10.4.59)
from A&S,

Ai
�
z � � �

1 ) 2 � π 
 1 � 2z 
 1 � 4 exp
/ � 2z3 � 2 ) 3 0 & � � arg �9� π � & (4.57)

we find for ω � ∆s

ρ
�
ω � � ρ0

-
1 ! ∆2

s

4ω2 . & 4∆sξ
-

ω
∆s
� 1 . 3 � 2 � 1 & (4.58)

which is independent of ∆sξ and agrees with the mean-field result.
For ω � ∆s, we can use Eq. (10.4.60) from A&S,

Ai
� � z � � π 
 1 � 2z 
 1 � 4 sin

-
2
3

z3 � 2 ! π
4 . & � � arg �=� 2π ) 3 � & (4.59)
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to find for a quantitative description of the pseudogap

ρ
�
ω � � 8ρ0 } ∆2

s � ω2 ξ arccos
�
ω ) ∆s � * 1 ! exp

� � 8πωξ � +6 exp

- � 8
* } ∆2

s � ω2 ξ � ωξ arccos
�
ω ) ∆s � + . &

4∆sξ
-

1 � ω
∆s . 3 � 2 � 1 � (4.60)

If ω j ∆s and 4ω2ξ ) ∆s j 1, this result simplifies to

ρ
�
0 � � 8πρ0∆sξcosh

�
4πωξ � exp

� � 8∆sξ � & (4.61)

which at ω � 0 agrees with Eq. (4.47).

4.3.2 Pauli paramagnetic susceptibility

The Pauli paramagnetic susceptibility is defined as the contribution of the conduction
electrons to the susceptibility and can be written in terms of the DOS. A magnetic field
H shifts the energy levels of the electrons by an amount J µBH, where µB is the Bohr
magneton and the sign depends on the spin orientation of the electron with respect
to the field. The resulting different occupation of spin-up and spin-down states leads
to a magnetization density M

�
T � which for small magnetic fields is linear in H. An

elementary calculation of the susceptibility χ
�
T ��� dM

�
T � ) dH, which can be found

in the textbook by Ashcroft and Mermin [6], gives

χ
�
T ��� µ2

B 7 ∞
 ∞
dω2ρ � � ω � f

�
ω ��� (4.62)

Here, f
�
ω �E� 1 ) � exp

�
ω ) T � ! 1 � is the Fermi function, ρ � � ω � is the derivative of the

DOS with respect to frequency, and the factor of 2 is due to the two spin directions.
Integrating by parts, we find

χ
�
T �a� µ2

B 7 ∞
 ∞
dω2ρ

�
ω � - � d f

�
ω �

dω . � (4.63)

At T � 0, we have f
�
ω ��� θ

� � ω � , such that � d f
�
ω � ) dω � δ

�
ω � , and

χ
�
T � 0 ��� 2µ2

Bρ
�
0 �E� (4.64)

At zero temperature, the Pauli paramagnetic susceptibility is proportional to the DOS
at the Fermi energy. In usual metals, ρ

�
0 � is finite at T � 0, and Eq. (4.64) holds up to

T ` 10000 K (see Ref. [6]). In the case of a pseudogap or a singularity at the Fermi
energy, however, we have to go back to Eq. (4.63), which can also be written as

χ
�
T ��� µ2

B

T
7 ∞

0
dωρ

�
ω � 1

cosh2 � ω ) 2T � � (4.65)
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Placing the asymptotic expression (4.60) with ξ
�
T ��� ρs

) T into this equation, we are
left with

χ
�
T � ) χ0

�
16ρs

T 2 7 ∞

0
dω } ∆2

s � ω2 arccos

-
ω
∆s . 1 ! exp

* � 8πρsω ) T +�
1 ! exp

* � 2ω ) T + � 26 exp

- � ∆s

T U ω
∆s

-
1 � 8ρs arccos

-
ω
∆s . . ! 8ρs } 1 � � ω ) ∆s � 2 V×. & (4.66)

where
χ0 � 2µ2

Bρ0 & (4.67)

For ρs � ρ0
) 4 (and T � T MF

c ), the integrand is sharply peaked at ω � cos
�
1 ) 8ρs � ∆s,

such that the integral may be evaluated by a saddle point integration, resulting in

χ
�
T �

χ0

� ó π
ρs

-
sin
�
1 ) 8ρs � ∆s

T . 3 � 2
exp

- � 8ρs sin
�
1 ) 8ρs � ∆s

T . &
T j 4ρs∆s

�
1 � cos

�
1 ) 8ρs ��� 3 � 2 � (4.68)

Note, that the temperature restriction is necessary for the asymptotic expansion of
the DOS to be valid. Although the susceptibility χ

�
T � vanishes exponentially, the

exponent 8ρs sin
�
1 ) 8ρs � ∆s

) T is smaller than the exponent 8ρs∆s
) T , which governs

the DOS at the Fermi energy. However, as ρs approaches ρ0
) 4, the two exponents

become identical, such that for ρs
Î ρ0

) 4 the DOS and the susceptibility have the
same exponential dependence on T .

A numerical evaluation of the susceptibility χ
�
T � ) χ0 for ξ

�
T �^� ρs

�
T � T given

by Eq. (1.122) and ∆s
�
T � determined by the BCS gap equation (1.83) is shown in

Fig. 4.8. For a comparison, we have also plotted the DOS ρ
�
0 � ) ρ0 as a function of

temperature. The two are not identical because for small temperatures (and ρs � ρ0),
the major contribution to the integral in Eq. (4.65) comes from the frequency region
just below ∆s. In Fig. 4.8, we also show susceptibility data taken from Ref. [45] for
incommensurate quasi one-dimensional conductors which undergo a Pererls transition.

It is quite surprising that our plot of the susceptibility is very similar to the plot
obtained by Lee, Rice and Anderson [57] which perfectly fits experimental data
[37, 44, 45]. However, to explain experimental data, Lee, Rice and Anderson [57]
had to base their calculations on a real order parameter with a correlation length which
for low temperatures increases exponentially as the temperature is lowered. Only the
exponentially increasing correlation length of a real order parameter could lead to an
exponentially decreasing susceptibility and the prediction of T 3D

c ` T MF
c

) 4. Here,
we have shown that these predictions should also hold for a complex order parameter
with a correlation length which increases as 1 ) T . Since most Peierls chains are in-
commensurate and the susceptibility of many incommensurate Peierls chains has been
compared with the theory by Lee, Rice and Anderson [57], our results are of major
experimental relevance. For a comparison between theory and experiment, it should
be recalled that we have only used a strictly one-dimensional model with phase fluctu-
ations only. At higher temperatures, one should also include amplitude fluctuations.
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Figure 4.8: Plot of the susceptibility χ
�
T � calculated for ξ

�
T ��� ρs

�
T � ) T [with ρs

�
T �

given by Eq. (1.122)] and ∆s
�
T � determined by the minimum of the Ginzburg-Landau

functional. For a comparison, we also show as the dashed line the DOS at the Fermi
energy, ρ

�
0 � .

4.3.3 Thermodynamic quantities

The DOS encapsulates the whole thermodynamics. Let us first consider the elec-
tronic free energy, Fel

�
T � with respect to the gapped state with ρ∞

�
ω ��� ρ0 θ

�
ω2 �

∆2
s �y�ω � ) � ω2 � ∆2

s � :
Fel
�
T �o� Fξ P ∞

el

�
T �F�¸� sL

β
7 ∞
 ∞

dω
*
ρ
�
ω �o� ρ∞

�
ω � + ln / 1 ! e 
 βω 0 � (4.69)

Partial integration leads to

Fel
�
T �_� Fξ P ∞

el

�
T ���1� sL 7 dω

*
N
�
ω �_� N∞

�
ω � + 1

eβω ! 1� sρ0L Im 7 dω
*
Γ
�
ω �_� Γ∞

�
ω � + 1

eβω ! 1
& (4.70)

where Γ
�
ω �ê�I® 
 1 � ω ��� iπN

�
ω � is the space-averaged integrated retarded Green

function at coinciding space points already considered before and Γ∞
�
ω �æ�¡ ∆2

s � � ω ! i0 � 2, where the square root has to be taken such that Γ∞
�
ω �´� � iω for
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ω � ∞. Since Γ
�
ω � is analytic in the upper half plane, the integral may be done by

closing the integral in the upper half plane and using the residue theorem. We find

Fel
�
T �_� Fξ P ∞

el

�
T �a��� sρ0L

2π
β ∑

ω̃n u 0

*
ReΓ

�
iω̃n �o� ω̃n + � (4.71)

For the FGM with phase fluctuations only, we obtain by placing Eq. (4.44) into this
equation

Fel
�
T �_� Fξ P ∞

el

�
T ��� sρ0L∆s

2π
β ∑

ω̃n u 0 WY 1 ! -
ω̃n

∆s . 2 � I �4ω̃nξ
�
4∆sξ �

I4ω̃nξ
�
4∆sξ � Z] � (4.72)

Up to an irrelevant additive constant, Fξ P ∞
el

�
T � is given by

Fξ P ∞
el

�
T ���¸� sρ0L2∆2

s 7 ∞

1
du ¡ u2 � 1

1

e∆su � T ! 1
& (4.73)

which for small temperatures is exponentially small:

Fξ P ∞
el

�
T � � � sρ0L

"
2π∆2

s e 
 ∆s � T & T j ∆s � (4.74)

While in the general case we have to add Eqs. (4.72) and (4.73) to get the free energy
Fel
�
T � , for low temperatures we can neglect the exponentially small contribution given

by Eq. (4.74), such that Fel
�
T � is determined by the right-hand side of Eq. (4.72).

For T j T MF
c , the dimensionless correlation length ∆sξ is large, and a uniform

asymptotic expansion of Iν
�
νz � and I �ν � νz � [see A&S, Eqs. (9.7.7) and (9.7.9)] can be

used to find for the leading terms of the free energy

F
�
T � � sρ0L∆2

s U π4 1
4∆sξ

� 1
12

1�
4∆sξ � 2 V � (4.75)

Electronic specific heat

An experimentally accessible thermodynamic quantity is the electronic specific heat
which can be expressed in terms of the free energy as

Cel
�
T ���¸� T

d2Fel
�
T �

dT 2 � (4.76)

The low-temperature behavior of Cel
�
T � can be obtained from Eq. (4.75): Using

ξ
�
T ��� sρs

�
0 � ) 2T , it directly follows

Cel
�
T � � 1

8

-
ρ0

sρs
�
0 � . 2

C0
el
�
T � & (4.77)
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where the specific heat of free electrons is given by

C0
el
�
T ��� s

π2

3
ρ0LT � (4.78)

Although the DOS exhibits a pseudogap and vanishes exponentially near the Fermi
energy as the temperature is lowered, the electronic specific heat Cel

�
T � vanishes only

linearly in T , as for free electrons.
We conclude this chapter with a summary of the central results of the FGM valid

at low temperatures where phase fluctuations dominate in Table 4.1.

Table 4.1: Asymptotic low temperature results for the FGM describing electrons with
spin. Note that we have reintroduced the Fermi velocity vF and note also that the mean-
field critical temperature T MF

c serves as the only energy scale. For generalizations of
the formulas see the text.

superfluid density ρs
�
T � � ρ0 � 1

πvF

correlation length ξ
�
T � � vF

πT

density of states
ρ
�
0 �

ρ0

�
14 � 1T MF

c

T
exp

- � 4 � 49T MF
c

T .
inverse localization length ® 
 1 � 0 � � 1 � 76T MF

c

vF

susceptibility
χ
�
T �

χ0

�
1 � 74

-
T MF

c

T . 3 � 2
exp

- � 1 � 72T MF
c

T .
electronic specific heat

Cel
�
T �

C0
el

�
T � � 1

32





Conclusion

In this work, we have discussed the density of states (DOS) of the fluctuating gap
model (FGM) and related quantities like the inverse localization length, the Pauli para-
magnetic susceptibility and the low-temperature specific heat. We introduced the FGM
as an effective low-energy model describing the electronic properties of Peierls chains
and emphasized the fact that the FGM also finds its applications in other physical con-
texts: Spin chains can be mapped by a Jordan-Wigner transformation onto the FGM
and in order to explain the pseudogap-phenomenon in underdoped cuprates above a
phase transition, higher-dimensional generalizations of the FGM have been used.

With the rediscovery of the FGM in the context of high-temperature superconduc-
tivity, a previously unnoticed subtle error surfaced in Sadovskii’s widely used Green
function of the FGM, calculated for Gaussian statistics with finite correlation lengths.
This error re-opened the whole problem.

After setting up a non-perturbative theory which, in principle, allows to express
the one-particle Green function as a functional of an arbitrary given realization of the
disorder, we derived a simple equation of motion whose solution determines the DOS
and the inverse localization length. Starting from this equation, we could rederive all
known results for the FGM in the white noise limit.

Considering the equation of motion governed by the phase which determines the
DOS, we argued that the Dyson singularity found in the white noise limit for commen-
surate Peierls chains should not be an artifact of the white noise limit, but should be
present for any finite correlation length in contradiction to Sadovskii’s solution. Our
following numerical calculation of the DOS and inverse localization length confirmed
this prediction and showed also that for large correlation lengths, the Dyson singularity
only overshadows a pseudogap. Although Sadovskii’s algorithm misses this singular-
ity, his solutions for the incommensurate case where there are no singularities in the
DOS give a fairly good approximation to the exact result.

In the pseudogap-regime below the mean-field critical temperature, fluctuations of
the order parameter cannot be described by Gaussian statistics. Instead, as the tem-
perature is lowered, amplitude fluctuations get gradually frozen out, and the amplitude
takes on a value given by the minimum of the Ginzburg-Landau functional and only
long-wavelength gapless phase fluctuations survive. Using a gauge transformation to
map the phase fluctuations of the order parameter onto an effective forward scatter-
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ing potential, we could even find an exact solution for the FGM involving only phase
fluctuations which should be valid in the low temperature regime. We found that the
low-temperature specific heat is linear in T and that both the DOS at the Fermi energy
and the Pauli paramagnetic susceptibility vanish exponentially as the temperature T is
lowered, the ratio of the former to the latter also vanishing exponentially. The Pauli
paramagnetic susceptibility has been measured in various experiments and is in good
agreement with our results.

Having discussed quantities related to the DOS, one would also like to calculate
quantities like the spectral function. This has been done for a special non-Gaussian
probability distribution involving amplitude and phase fluctuations in Ref. [13], but
accurate results for realistic probability distributions (e.g. for phase fluctuations only)
are not known yet.



Appendix A

Gradient expansion of the free energy

In this appendix we present an efficient algorithm for obtaining the gradient expan-
sion of the local density of states and the free energy functional of the fluctuating gap
model (FGM). The algorithm is based on the linear pseudo-Schrödinger equation de-
rived in Chapter 2. The three-component wave-function èψ � x � satisfies a non-linear
constraint and may be found by a simple iterative procedure. Since one component ofèψ � x � is directly related to the local density of states (DOS), we obtain a simple itera-
tive algorithm to develop the gradient expansion of the local DOS and therefore also
the free energy fuctional. A generalization of the results to a three-dimensional clean
superconductor is given in Ref. [10].

Introduction

The phenomenological Ginzburg-Landau theory has proven to be a powerful tool in the
theory of superconductivity. Starting from the Gorkov equations of superconductivity,
it is also possible to derive the Ginzburg-Landau functional microscopically. For the
Ginzburg-Landau expansion to be valid, the order parameter field has to be small.
In a mean-field picture this is the case near a phase transition. However, away from
criticality or if fluctuations are large, one needs to include terms of higher order. In
the case of superconductivity, the extension towards arbitrary temperatures has been
done in the sixties by Werthamer [94, 95] and Tewordt [88, 89], who expanded the
free energy in terms of gradients of the order parameter. Unfortunately, this direct
expansion of the free energy in powers of gradients of ∆

�
x � is quite laborious and

rather difficult to verify.
Recently Kosztin, Kos, Stone and Leggett [53], and Kos and Stone [52] (KKSL)

developed new and more efficient algorithms to obtain the gradient expansion of the
free energy F

%
∆ & ∆ � ' of a clean superconductor and found a discrepancy with the

expression published by Tewordt. In Ref. [10] we confirmed the result derived by
KKSL by reducing the three-dimensional problem in a semiclassical approximation
to the problem of finding the gradient expansion of the one-dimensional FGM, and
determining its gradient expansion by an iterative solution of the pseudo-Schrödinger
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equation (2.133) derived in Chapter 2. Since, as was shown in Chapter 2, our pseudo-
Schrödinger equation is in fact equivalent to the Eilenberger equation of superconduc-
tivity which was used by KKSL, our determination of the gradient expansion of the
free energy is related to the one used by KKSL. The essential difference, however,
is the implementation of our non-linear constraint, which turns out to be quite use-
ful. In the following we will present our derivation of the gradient expansion of the
local DOS (which was first published in [10]) and the free energy functional of the
one-dimensional FGM. The semiclassical generalization towards higher dimensions is
given in [10].

In Chapter 2 we have shown that the local DOS can be obtained from the sec-
ond component of the three-component vector èψ � x � , which satisfies the linear pseudo-
Schrödinger equation [see Eq. (2.133)]� ∂x èψ � x ��� H

�
x �9èψ � x � & (A.1)

with the pseudo-Hamiltonian given by

H
�
x ��� 2iωJ3 ! ∆

�
x � J 
 ! ∆ � � x � J � � (A.2)

The Ji are spin J � 1 operators in the representation

J3 �ç�� 1 0 0
0 0 0
0 0 � 1 �� & J � � " 2 �� 0 1 0

0 0 1
0 0 0 �� & J 
 � " 2 �� 0 0 0

1 0 0
0 1 0 �� � (A.3)

Recall that èψ � x � has to satisfy the constraint

ψ̃T � x �Ýèψ � x �a� 1 & (A.4)

where
ψ̃T � x ��� � � ψ3

�
x � & ψ2

�
x � & � ψ1

�
x ���´� (A.5)

In terms of èψ � x � the local DOS (per spin direction) is given by

ρ
�
ω;x ��� ρ0 Reψ2

�
x ��� (A.6)

Iterative algorithm and gradient expansion

The gradient expansion of the local DOS is directly obtained from the second com-
ponent of the gradient expansion of èψ � x � . For convenience, we develop the gradi-
ent expansion of èψ � x � for imaginary frequencies ω � iE, because then our pseudo-
Hamiltonian (A.2) is Hermitian and left and right eigenvectors are identical. Suppose
we expand the solution of Eq. (A.1) in the formèψ � x ��� ∞

∑
n P 0

èψn
�
x � & (A.7)
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where by definition èψn
�
x � involves n derivatives with respect to x. Obviously

H
�
x �Ýèψ0

�
x ��� 0 & (A.8)

i.e. èψ0
�
x � must be an eigenvector of H

�
x � with eigenvalue zero. The existence of such

an eigenvector follows trivially from the fact that our pseudo-Hamiltonian (A.2) can
be interpreted as the Zeeman-Hamiltonian of a J � 1 quantum spin in an external mag-
netic field. Note that Eq. (A.8) determines èψ0

�
x � only up to an overall multiplicative

factor, which is fixed by requiring that the components of èψ0
�
x � satisfy the constraint

(A.4). This yields (with ω � iE)èψ0
�
x �a� 1¡ E2 ! �∆ � x �=� 2 �ë� ∆ 
²# x $�

2
E� ∆ # x $�

2

��ì� � (A.9)

For the higher order terms we obtain the simple recursion relation

∂x èψn
�
x ���¸� H

�
x �Ýèψn � 1

�
x � & n � 0 & 1 & �����O� (A.10)

Because one of the eigenvalues of H
�
x � vanishes, the inverse of H

�
x � does not exist,

so that we cannot simply solve Eq. (A.10) by multiplying both sides by H 
 1 � x � . As a
consequence, Eq. (A.10) determines èψn � 1

�
x � only up to a vector proportional to èψ0

�
x � ,èψn � 1

�
x ���¸� H 
 1� �

x � ∂x èψn
�
x � ! cn � 1

�
x �Ýèψ0

�
x � & (A.11)

where H 
 1� �
x � is the inverse of H

�
x � in the subspace orthogonal to èψ0

�
x � . Using the

fact that the two non-vanishing eigenvalues of H
�
x � are given by J 2

*
E2 ! �∆ � x �L� 2 + 1 � 2,

we find

H 
 1� �
x ��� H

�
x �

4
*
E2 ! �∆ � x �L� 2 + & (A.12)

i.e. H 
 1� �
x � is proportional to H

�
x � . To fix the constant cn � 1

�
x � in Eq. (A.11), we

require that the components of ∑n � 1
i P 0 èψi

�
x � satisfy the constraint (A.4). This implies

cn � 1
�
x ���¸� 1

2

n

∑
i P 1

ψ̃T
i
�
x �Ýèψn � 1 
 i

�
x � & (A.13)

where the vector ψ̃i
�
x � is obtained from èψi

�
x � by exchanging the first and third com-

ponents and multiplying them by � 1, see Eq. (A.5). For odd n we can show that
cn
�
x �´� 0. We thus obtain an explicit and very compact recursive algorithm for cal-

culating the gradient expansion of the local DOS. To zeroth order the vector èψ � x � is
given by Eq. (A.9). This corresponds to the adiabatic approximation of elementary
quantum mechanics. The step n � n ! 1 is summarized as follows:


 èψi given for i � 0 & ����� & n

 èψn � 1 ��� H 
 1� ∂x èψn � èψ0

2

n

∑
i P 1

ψ̃T
i èψn � 1 
 i � (A.14)
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It is easy to implement this iterative algorithm on a symbolic manipulation program
(such as Mathematica). In this way the lowest few terms in the gradient expansion can
be obtained in a straightforward manner.

Given the gradient expansion of the local DOS [which can be directly obtained
from the second component of èψ � x � ], we can calculate the free energy by simple inte-
grations. Using the fact that in the normal state ρ

�
x;ω �E� ρ0, the difference between

the free energy densities in the gapped and normal state of our one-dimensional model
at inverse temperature β is given by sρ0 f

�
x � , where

f
�
x �^�1� 1

β
Re U 7 ∞
 ∞

dω
*
ψ2
�
x;ω ! i0 �_� 1 + ln / 1 ! e 
 βω 0 V�1� Re U 7 ∞
 ∞

dω
*
iΓ
�
x;ω �o� ω + 1

eβω ! 1 V�1� 2π
β

Re B ∑
ω̃n u 0

Γ
�
x; iω̃n �o� ω̃n C � (A.15)

Here, ω̃n � �
2n ! 1 � π ) β are fermionic Matsubara frequencies, and

iΓ
�
x;ω ��� 7 ω

0
dω � ψ2

�
x;ω � ! i0 �E� (A.16)

Note that N
�
x;ω �y�ø� ρ0 ImΓ

�
x;ω � is the integrated local DOS. In Eq. (A.15) we have

used the fact that ψ2
�
x;ω � is analytic in the upper half of the complex ω-plane. The

free energy functional of the FGM is now given by

F
%
∆ & ∆ � ' � sρ0 7 L

0
dx U f � x � ! �∆ � x �L� 2

2λ V � (A.17)

The second term is the field energy of the order parameter field and was already derived
in Chapter 1.

The above equations allow for a simple recursive calculation of the gradient ex-
pansion of the free energy. Systematically adding total derivatives to the expressions
for the free energy (which do not change the bulk properties), we find the following
expressions:

Zeroth order:

ρ # 0 $ � x;ω ��� ρ0 θ
�
ω2 �h�∆ � 2 � �ω �¡ ω2 �h�∆ � 2 & (A.18)

F # 0 $ % ∆ & ∆ � ' � sρ0 7 L

0
dx 4 � 2π

β ∑
0 { ω̃n | ε0

U } ω̃2
n ! �∆ � 2 � ω̃n V ! �∆ � 2

2λ 5 � (A.19)

Second order:

ρ # 2 $ � x;ω �o� ρ0 �ω � θ � ω2 � �∆ � 2 � B � 5
32

2 ∂x �∆ � 2 3 2�
ω2 �h�∆ � 2 � 7

2

� 1
8
2 ∂2

x �∆ � 2 3 � 3 � ∂x∆ � 2�
ω2 �h�∆ � 2 � 5

2 C &
(A.20)
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F # 2 $ % ∆ & ∆ � ' � sρ0 7 L

0
dx

2π
β ∑

ω̃n u 0
B 18 � ∂x∆ � 2�

ω̃2
n ! �∆ � 2 � 3

2

� 1
32

2 ∂x �∆ � 2 3 2�
ω̃2

n ! �∆ � 2 � 5
2 C �

(A.21)
Fourth order:

ρ # 4 $ � x;ω �^� ρ0 �ω � θ � ω2 �¼�∆ � 2 � B 1155
2048

2 ∂x �∆ � 2 3 4�
ω2 �¼�∆ � 2 � 13

2! 42
512

2 ∂x �∆ � 2 3 2 @ 11 2 ∂2
x �∆ � 2 3 � 15 � ∂x∆ � 2 A�

ω2 �h�∆ � 2 � 11
2! 7

128

5 � ∂x∆ � 4 ! 4 2 ∂x �∆ � 2 3 2 ∂3
x �∆ � 2 3 � 10 2 ∂x @ � ∂x∆ � 2 2 ∂x �∆ � 2 3 A 3 ! 3 2 ∂2

x �∆ � 2 3 2�
ω2 �¼�∆ � 2 � 9

2! 1
32

2 ∂4
x �∆ � 2 3 � 5 2 ∂2

x � ∂x∆ � 2 3 ! 5 � ∂2
x∆ � 2�

ω2 �¼�∆ � 2 � 7
2 C & (A.22)

F # 4 $ % ∆ & ∆ � ' � sρ0 7 L

0
dx

2π
β ∑

ω̃n u 0
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2 C � (A.23)

Note that the high-frequency cutoff ε0 in Eq. (A.19) is necessary to regularize the free
energy which is well-known from the theory of superconductivity [20].





Appendix B

Generation of Colored Noise

In this appendix we describe a simple Markovian algorithm to generate a typical sam-
ple path of colored noise described by an Ornstein-Uhlenbeck process. The algorithm
works equally well to simulate a real or complex disorder potential with exponentially
decaying covariance and higher correlation functions given by Wick’s theorem. As
an input we only need independent Gaussian random numbers which can easily be
generated by the well-known Box-Muller algorithm. Finally, we discuss an alternative
method which can also be used to generate non-Gaussian colored noise.

Fluctuations of the relevant degrees of freedom in non-equilibrium statistical physics
are usually taken into account by adding a stochastic force to the deterministic equa-
tions of motion. The prototype stochastic differential equation has the form

dv
dt
�M� a

�
v
�
t ��� ! b

�
v
�
t ��� X � t �i� (B.1)

This equation is known as the Langevin equation [34, 46] and can easily be general-
ized to a matrix equation. It was first introduced by Langevin to describe Brownian
motion [22]. v

�
t � denotes the relevant variable which usually is a function of time.1

Note, however, that in condensed matter systems the disorder is often considered to
be stationary, and in one-dimensional systems a space-coordinate can play the role of
time.

The fluctuating random force is often called noise and can be of different orign.
Internal forces such as thermal fluctuations are usually assumed to be Gaussian with
very small correlation times τc. Since a finite expectation value � X � t ����� x̄ can be
incorporated into a

�
v
�
t ��� , it is no restriction to assume� X � t ���i� 0 & (B.2)

1In the case of Brownian motion, the relevant variable v Q t S is the velocity of a heavy particle of unit
mass, a Q v Q t S�S×Å α � v Q t S is the dissipative force due to friction, and b Q v Q t STS X Q t S³Å X Q t S is an additive
random force.
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where �D�����ò� signifies averaging over the probability distribution of X
�
t � . A Gaussian

stochastic process with standard deviation σ and correlation time τc is characterized
by the covariance � X � t � X � t � ���F� σ2e 
F� t 
 t 
 � � τc & (B.3)

and all higher moments given by Wick’s theorem. This process is called the Ornstein-
Uhlenbeck process [92], which by Doob’s theorem (see for example van Kampen [46])
is essentially the only stationary Gaussian Markov process. The white-noise limit may
be taken by letting τc go to 0 while keeping the quantity D � σ2τc constant. In this limit
the covariance becomes diagonal, such that disorder at different times is uncorrelated
and � X � t � X � t � ���F� 2Dδ

�
t � t � ��� (B.4)

While the white noise limit usually leads to a good approximation of internal fluctua-
tions, in the case of external fluctuations the relevant variables can vary substantially
over the correlation time τc. In this case it is essential to consider colored noise. Un-
fortunately, in most cases the finite correlation time leads to a serious complication
when trying to solve the Langevin equation. Techniques which turn out to be success-
ful in solving the white noise limit can only be applied after coupling the stochastic
equations of motion to an extra equation which takes care of the finite correlation time.
Often, the only way out lies in a numerical simulation of the stochastic process. It is
therefore important to find a method to generate typical disorder realizations. In the
following, we describe a very simple algorithm to generate a concrete sample path of
the Ornstein-Uhlenbeck process with finite correlation time τc which can be useful in
various applications. This algorithm can already be found in similar form in the math-
ematical literature on stochastic processes [28] and was also used in different physical
situations such as the Kramers problem (see for example [30, 59]). For the generation
of spatio-temporal colored noise see [33].

Simple algorithm to generate Gaussian colored noise

Independent Gaussian random numbers Zn with zero mean and unit variance can be
generated by the Box-Muller algorithm [74].2 The following recursive algorithm
(which we will refer to as Algorithm I) maps these onto real correlated Gaussian ran-
dom numbers Xn � X

�
tn � at the sample points tn (t0 � t1 �������Þ� tN 
 1) with � Xn �E� 0

and � XmXn ��� σ2e 
�� tm 
 tn � � τc:

X0 � σZ0 & (B.5)

Xn � ρnXn 
 1 ! } 1 � ρ2
n σZn & (B.6)

where the correlation coefficients ρn are given by ρn � e 
�� tn 
 tn � 1 � � τc . Setting ρ0 � 0,
Eq. (B.5) is also included in Eq. (B.6). A sample path generated by this algorithm is

2Note that the Box-Muller algorithm needs a good number generator to generate independent uni-
formly distributed random numbers.
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Figure B.1: Sample path of X
�
t � with σ � 1 as a function of t ) τc.

presented in Fig. B.1.
Using � Zn �O� 0 and � ZmZn �F� δmn, it is easy to see recursively from Eqs. (B.5) and

(B.6) that the first two moments of Xn are in fact given by � Xn ��� 0 and � XmXn ���
σ2e 
�� tm 
 tn � � τc . Because the Xn’s are given by a linear combination of the Gaussian
random variables Xn and a linear combination can only turn one Gaussian distribution
into another Gaussian distribution [28], the Xn’s also have to be Gaussian random
variables. Higher correlation functions are therefore given by Wick’s theorem [46].

It is also easy to generalize the above Algorithm I to a complex disorder poten-
tial. In this case one would like to have � X � t ���^� 0, � X � t � X � � t � ��� � σ2e 
�� t 
 t 
 � � τc

and � X � t � X � t � ����� 0. Generating ReXn and ImXn independently as before, one sees
that to get the desired correlation functions one has to replace σ by σ ) " 2. Since
Xn � ReXn ! iImXn only depends linearly on ReXn and ImXn, the complex Xn are also
Gaussian random variables.

Non-Gaussian colored noise

The above Algorithm I is very simple and proves to be succesful in generating Gaus-
sian colored noise. However, external fluctuations do not have to be Gaussian, and
there might be a need to generate a typical chain characterized by different statistics.
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Let us now describe an algorithm based on an expansion of a stochastic process in
terms of harmonic functions [23] which in the following we will refer to as Algorithm
II. If S

�
ω � represents the power spectrum of the stochastic process, a typical sample

path may be generated for large N by (see [18, 15])

X
�
t �y� " 2

N 
 1

∑
n P 0

*
2S
�
ωn � ∆ω + 1 � 2 cos

�
ωnt ! φn ��� (B.7)

Here, the φn are independent random phases which are uniformly distributed over the
interval

�
0 & 2π � , ∆ω � ωmax

) N, where ωmax is an upper cutoff of the noise spectrum,
and ωn � n∆ω. Algorithm II has the advantage that it is applicable to an arbitrary
given spectrum S

�
ω � . The spectrum of Gaussian colored noise can be found by taking

the Fourier transform of Eq. (B.3), resulting in

S
�
ω ��� 1

π
σ2τc

1 ! ω2τ2
c
� (B.8)

In comparison to Algorithm I, which unfortunetely only works to generate a sample
path of an Ornstein-Uhlenbeck process, Algorithm II has the disadvantage that for
it to become accurate, both ωmax and then N have to be chosen sufficiently large.
Even when using a fast Fourier transform which results in O

�
N log2 N � operations

[74], this can lead to large computation times. In addition, the sample paths are always
periodic with period 2πN ) ωmax, which can lead to further complications. For a more
quantitative comparison between the two Algorithms see the Comment by Manella
and Palleschi [60] on Ref. [15].

In summary, we have described a very simple algorithm to simulate a real or com-
plex Ornstein-Uhlenbeck process and an alternative algorithm which is not restricted to
generate Gaussian colored noise. When generating Gaussian colored noise, the advan-
tage of the former in comparison to the latter is that it takes advantage of the Markov
property of the Ornstein-Uhlenbeck process: To generate Xn we only need to know
Xn 
 1. When numerically solving an initial value problem of a stochastic differential
equation, the disorder may be simultaneously generated with the propagation of the de-
sired solution. In addition, arbitrary long chains can be easily generated. We have used
the described algorithm to generate the fluctuating order parameter field ∆

�
x �_� X

�
t � of

the so-called fluctuating gap model (see Chapter 4 and Ref. [11]). The above method
enabled us to calculate the density of states for arbitrary correlation lengths ξ � τc

with unprecedented numerical accuracy. The algorithm, however, should be useful in
all contexts where there is a need to generate colored noise described by an Ornstein-
Uhlenbeck process.
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