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Abstract

One of the main goals in cancer studies including high-throughput microRNA
(miRNA) and mRNA data is to find and assess prognostic signatures capable
of predicting clinical outcome. Both mRNA and miRNA expression changes in
cancer diseases are described to reflect clinical characteristics like staging and
prognosis. Furthermore, miRNA abundance can directly affect target transcripts
and translation in tumor cells. Prediction models are trained to identify either
mRNA or miRNA signatures for patient stratification. With the increasing
number of microarray studies collecting mRNA and miRNA from the same
patient cohort there is a need for statistical methods to integrate or fuse both
kinds of data into one prediction model in order to find a combined signature
that improves the prediction.

Here, we propose a new method to fuse miRNA and mRNA data into one
prediction model. Since miRNAs are known regulators of mRNAs, correlations
between miRNA and mRNA expression data as well as target prediction
information were used to build a bipartite graph representing the relations
between miRNAs and mRNAs.

Feature selection is a critical part when fitting prediction models to high-
dimensional data. Most methods treat features, in this case genes or miRNAs,
as independent, an assumption that does not hold true when dealing with
combined gene and miRNA expression data. To improve prediction accuracy, a
description of the correlation structure in the data is needed. In this work the
bipartite graph was used to guide the feature selection and therewith improve
prediction results and find a stable prognostic signature of miRNAs and genes.

The method is evaluated on a prostate cancer data set comprising 98 patient
samples with miRNA and mRNA expression data. The biochemical relapse, an
important event in prostate cancer treatment, was used as clinical endpoint.
Biochemical relapse coins the renewed rise of the blood level of a prostate
marker (PSA) after surgical removal of the prostate. The relapse is a hint
for metastases and usually the point in clinical practise to decide for further
treatment.

A boosting approach was used to predict the biochemical relapse. It could
be shown that the bipartite graph in combination with miRNA and mRNA
expression data could improve prediction performance. Furthermore the ap-
proach improved the stability of the feature selection and therewith yielded
more consistent marker sets. Of course, the marker sets produced by this new
method contain mRNAs as well as miRNAs.

The new approach was compared to two state-of-the-art methods suited for
high-dimensional data and showed better prediction performance in both cases.



Zusammenfassung

Eines der Hauptziele in der modernen Krebsforschung ist es mit Hilfe von Hoch-
durchsatztechnologien zum Messen von mRNA- und miRNA-Daten, Signaturen
zu finden, die es ermöglichen klinische Endpunkte vorherzusagen. Sowohl für
mRNA Transkripte wie auch für miRNAs ist gezeigt worden, dass Änderungen
im Expressionslevel klinische Parameter wie Tumorstadium oder Prognose wi-
derspiegeln können. miRNAs sind direkte Regulatoren der Genexpression und
haben einen unmittelbaren Einfluss auf ihre Zieltranskripte in der Tumorzelle.
Oft werden Vorhersagemodelle benutzt, um mRNA- oder miRNA-Signaturen
zu finden, mit deren Hilfe Patienten stratifiziert werden können. Mit steigender
Anzahl von Studien, die sowohl mRNA- wie auch miRNA-Daten derselben
Patienten enthalten, werden Methoden zur Integration beider Datentypen in
ein Vorhersagemodell immer wichtiger. Das Ziel hierbei ist eine kombinierte
Signatur aus mRNAs und miRNAs zu erhalten und somit die Qualität der
Vorhersage zu verbessern.

In der vorliegenden Arbeit stelle ich eine neue Methode vor, die es ermöglicht
mRNA- und miRNA-Daten in einem Modell zu integrieren. Da miRNAs mR-
NAs direkt beeinflussen, wurden Korrelationen zwischen den Expressionsleveln
sowie Datenbanken mit vorhergesagten miRNA-mRNA Interaktionen benutzt.
Damit wurde ein bipartiter Graph berechnet, der die miRNA-mRNA-Relationen
enthält.

Feature Selection ist ein entscheidender Teil bei Modellen für hochdimen-
sionale Daten. Die meisten Methoden gehen von der Annahme aus, dass die
einzelnen Features unabhängig voneinander sind. Dies ist eine Annahme, die
gerade im Umgang mit miRNA- und mRNA-Daten aufgrund der regulato-
rischen Eigenschaften der miRNAs falsch ist. Um nun die Vorhersage eines
Modells mit beiden Datentypen zu verbessern, bedarf es einer Beschreibung
der Korrelationsstruktur in den Daten. In dieser Arbeit wurde der bipartite
Graph mit der Schätzung der miRNA-mRNA-Relationen dazu benutzt, die
Feature Selection zu steuern und somit die Vorhersageergebnisse zu verbessern
und gleichzeitig eine stabile prognostische Signatur aus miRNAs und mRNAs
zu erhalten.

Die Methode wurde an einem Prostatakrebs-Datensatz mit miRNA- und
mRNA-Expressionsdaten von 98 Patienten getestet. Der klinische Endpunkt,
der vorhergesagt werden sollte, war in diesem Fall BCR (”biochemical relapse”),
das erneute Ansteigen des PSA-Levels (Prostataspezifisches Antigen) nach dem
Entfernen der Prostata. Dieser erneute Anstieg von PSA im Blut ist ein starker
Hinweis auf die Bildung eines Tumorrezidives oder einer Metastase und in der
klinischen Praxis der Zeitpunkt um eine neue Therapie zu prüfen.

In dieser Arbeit wurde ein Boosting-Ansatz gewählt, um BCR vorherzusagen.
Wir konnten zeigen, dass der bipartite Graph in Kombination mit den miRNA-



und mRNA-Expressionsdaten die Vorhersage verbessert. Zusätzlich wurde die
Stabilität der Feature Selection verbessert und damit konsistentere Signaturen,
bestehend aus miRNAs und mRNAs, produziert.

Dieser neue Ansatz wurde mit zwei modernen, für hochdimensionale Über-
lebensdaten geeignete Verfahren verglichen. In beiden Fällen schnitt unser
Ansatz besser ab.
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Chapter 1

Introduction

1.1 Clinical Cancer Research

1.1.1 Tumorgenesis

A metazoan cell, as for instance a human cell, carries the complete genetic

information of the whole organism. The genetic code includes all information

that is needed to develop and maintain the molecular mechanism for regulating

proliferation, differentiation, and at the end of the live cycle of a cell, the

controlled dead called apoptosis.

Changes in the genomic information are caused either by erroneous repli-

cation or external factors like radiation or chemicals and range from single

nucleotide changes, called point mutations, to aberrations affecting whole chro-

mosomes. Such changes can cause an abnormal transformation of cells into

malignant neoplasms which overcome the normal cell cycle mechanisms and

eventually lead to uncontrolled proliferations. The transformation of normal

cells into cancer cells is a complex process called tumorgenesis. Usually several

steps, several hallmarks (Hanahan and Weinberg, 2000, 2011), are needed

(figure 1.1) to complete this process.

The realization that a tumor is formed of cells that have lost the normal

ability of forming tissue and have gained the abnormal ability of immortal repli-

cation was one of the most important steps in the beginning of the biomedical

cancer research.
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FIGURE 1.1. The hallmarks of Cancer (Hanahan and Weinberg, 2011, courtesy of
Elsevier).

In principal every tumor can be traced back to the tissue the first tumor

cells originated from. The majority of tumors grow locally within this tissue.

These tumors are called benign. They are considered harmless for the patient.

Other tumors are able to invade adjacent tissue and release cells into the blood

stream spawning so called metastases in other organs. These metastases cause

around 90% of cancer related deaths (Weinberg, 2007). These tumors are called

malignant.

Finer categories can be made based on the original tissue. Most malignant

tumors, so called carcinomas, arise from epithelial cells. In healthy tissue,

these cells form a layer of tissue lining cavities and channels or protect organs.

Epithelial tissue fulfills many important tasks in the human body ranging from

protection of organs to secretion. Tumors arising from epithelial tissue can be

distinguished based on these two major biological functions. Squamous cell

carcinomas arise from epithelial cells serving as protecting cell sheets whereas

adenocarcinomas come from secreting epithelial cells. Examples of both types

can be seen in figure 1.2. Carcinomas are responsible for around 80% of cancer

related deaths.
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FIGURE 1.2. A classification of cancer types based on Weinberg (2007)
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1.1.2 Prostate Cancer

The prostate is a secreting organ with a central role in the reproduction

mechanism of men. Although there is still a debate about the true cellular

origin (Choi et al., 2012; Goldstein et al., 2010; Wang et al., 2009), prostate

cancer belongs to the class of adenocarcinomas and is assumed to arise from

secreting epithelial tissue in the prostate.

Prostate cancer is one of the most frequent tumors in men and the third

leading cause of death in the western hemisphere (Jemal et al., 2011). Prostate

cancer patients are 65 years old on average when diagnosed with prostate

cancer. Routinely several biopsies are taken to support the diagnosis.

The standard therapy for nearly all cases is (at least in Germany) the radical

prostatectomy that means the complete removal of the prostate accompanied

by heavy side effects. In case of a metastatic relapse additional therapies like

radiotherapy and hormone therapy are used. However, nearly all patients with

advanced prostate cancer eventually progress to a metastatic disease state that

shows resistance to hormone therapy (Felici et al., 2012). This state has been

termed castration-resistant prostate cancer. At this stage the final treatment

option is chemotherapy yielding an average life expectancy of 16-18 months

(Tannock et al., 2004).

In prostate cancer two risk groups can be distinguished. Around 20-30 %

of the patients have an aggressive tumor with a high risk of metastatic relapse

and a high mortality rate (Bill-Axelson et al., 2008). The remaining 70-80 %

have a non-aggressive tumor. Considering the average age of the patients this

group is over-treated with a diminished quality of life. For these patients a

more conservative approach like active surveillance could be deployed.

Although, there are standard diagnostic tests indicating prostate cancer

there is no established test available that is suitable to distinguish the two

risk groups. One of the goals of modern clinical prostate cancer research is to

identify such prognostic markers.

1.1.3 Biomarkers and Genomic Biomarkers

Nowadays the term biomarker is widely used in different terms and context. A

formal definition was given by the Biomarkers Definitions Working Group
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A characteristic that is objectively measured and evaluated as an

indicator of normal biological processes, pathogenic processes, or

pharmacologic responses to a therapeutic intervention.

(Biomarkers Definitions Working Group, 2001)

In the biomedical research the term biomarker in most cases refers to

genomic biomarkers that are markers associated to the genomic profile of a

patient. Note, that the term genomic does not necessarily coins a DNA marker.

It can also describe a marker on the level of RNA, e.g. mRNA and miRNA,

and also on protein level.

In the past mRNA sets of markers, so called marker panels or signatures,

have been described for several cancer entities. The most well known examples

are several prognostic signatures described for breast cancer (Paik et al., 2004;

van ’t Veer et al., 2002; Wang et al., 2005). Based on these signatures multigene

test like MammaPrint and Oncotype DX have found their way into clinical

practise. However, despite these efforts in translational research the clinical

utility of genomic signatures is still under debate (Sotiriou and Piccart, 2007).

Unfortunately, for prostate cancer a reliable risk prognosis is still a challenge

and no marker or marker signature is used in clinics for this purpose (Tosoian

and Loeb, 2010). However, a diagnostic marker has been used for several years:

the prostate specific antigen (PSA). This is a protein secreted by the prostate

and a major protein in the seminal fluid (Balk et al., 2003). Since PSA is also

expressed in prostate cancer cells and it can enter the blood stream, the blood

PSA level was found to be a first indicator of prostate cancer (Tosoian and

Loeb, 2010).

After the removal of the prostate the blood PSA level goes down and is

monitored during the follow-up time. The renewed rise of the PSA level is called

biochemical relapse (BCR). It is an indicator for a local relapse or metastasis

and in clinical practise the point to decide for further treatment.

1.1.3.1 The Basic Principle of Gene Expression

All gene signatures mentioned above are mRNA signatures. That means that

the test measures the mRNA level of a certain gene either in the tissue, e.g.
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tissue from a biopsy, or in the blood. Other types of RNA molecules have been

described to be potential biomarkers in the last years. These RNA molecules

belong to the class of non-coding RNAs. That means they do not code for a

protein but fulfill other tasks in the cell, e.g. postranscriptional regulation.

One of the fundamental dogmas in modern cell biology describes the sequence

from the genetic information contained within the DNA to the final product

which is in most cases a protein (see figure 1.3). Proteins are the main effectors

in the cell fulfilling a variety of tasks as e.g. structural proteins or enzymes.

Especially enzymes, biocatalysts of the cell, play a central role in the lifespan

of a single cell not only in catalysing metabolic reactions but building complex

signal cascades used to transport external signals from the cell membrane to

the cellular nucleus (a process that is called signal transduction).

Figure 1.3 shows a basic scheme of the single steps involved in the complex

process of gene expression (see Strachan and Read, 2005 and Voet and Voet,

2004 for a detailed description of the expression of the genetic information in

the cell) . Every step in this process underlies strict regulations.

The first step is transcription. The gene is transcribed to a one-stranded

RNA molecule, the pre-mRNA (pre messenger RNA). The term gene coins a

genomic sequence (DNA or RNA) that directly encodes a functional product,

i.e. a protein or a non-coding RNA (Gerstein et al., 2007). The transcription

is regulated by various mechanisms. Transcription factors are special proteins

activating or repressing the transcription of their target genes. Transcription

factors themselves are regulated by a complex network of signal pathways

allowing the cell to dynamically change its gene expression profile to react to

changing environmental conditions.

The resulting the pre-mRNA is processed further. In this splicing step

introns, which are not part of the final protein sequence, are removed. By

removing also part of the protein coding sequence, the so called exons, the cell

can use one pre-mRNA as template to produce different proteins. This process

is called alternative splicing. Several studies linked this process to various

cancer types (Germann et al., 2012; Rajan et al., 2009; Venables, 2004). The

splicing step results in the final mRNA.

All these steps happen in the nucleus of the cell. Afterwards the mRNA is

transported through the membrane of the nucleus to the cytoplasm. Here, the



. Clinical Cancer Research 

Nucleus

DNA

gene

non-coding RNA
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AAAAAA
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FIGURE 1.3. The basic principle of gene expression. As the first step the part of the DNA
coding strand known as gene is transcribed to pre-mRNA. In the second step the introns
and are spliced out forming the mature mRNA. After the transport from the nucleus to the
cytoplasm the protein is assembled from this mRNA in a process called translation (derived
from Strachan and Read, 2005).
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mRNA is translated by ribosomes yielding the primary amino acid sequence

of the protein. To protect the mRNA against degradation in the cytoplasm,

to regulate nuclear export, and to allow the translation process to start, a

poly-Adenyl tail (poly-A tail) is attached to its 3’ and a 5’ cap to its 5’ end(1).

There is a delicate balance between the rate an mRNA is transcribed and

its decay rate in the cytoplasm. Several factors can influence the stability of

the mRNA and by this regulate the amount of protein. These factors include

for examples enzymes responsible for removing the poly-A tail (specialized

exonucleases) of the mRNA making it vulnerable to degradation. More intrinsic

factors are microRNAs (miRNAs).

1.1.3.2 MicroRNAs - Essential Regulators of Gene Expression

miRNAs are short (around 22 nucleotides long), single stranded RNA molecules.

They bind sequence mediated to the 3’ end of a target mRNA (Bartel, 2009;

Bartel and Chen, 2004). Around 30% of the human protein coding genes

underlie regulation of miRNAs (Lewis et al., 2005). Around 2,000 human

miRNAs are known so far(2) and, similar to mRNAs, miRNAs can be measured

in a genome-wide manner.

In animals, binding of a miRNA to its target mRNA does not need to

be perfect. A match in the seed region of the miRNA (nucleotide 1 to 8),

however, seems to be important (Filipowicz et al., 2008). The binding leads

to a translational block either by degradation of the target mRNA, headed

by a decapping/deadenylation of the mRNA , or by inhibiting the binding of

the ribosomes and, consequently, inhibiting of protein biosynthesis. Cleavage

of the target mRNA or destabilization and subsequent degradation influence

the abundance of the mRNA levels which is measurable with RNA screening

methods (Giraldez et al., 2006; Wu et al., 2006). In any case, the miRNA

represses the translation of their target mRNAs into proteins. miRNAs are

therefore negative regulators of gene expression.

(1)The notation 3’ and 5’ for single DNA strands and RNA molecules is based on the free
carbon atoms of the desoxyribose or ribose, the sugar that is the basis of DNA and RNA.
This notation allows to assign a direction to DNA and RNA molecules. For example, during
the transcription the pre-mRNA is built up from 5’ to 3’.

(2)The miRBase database (www.mirbase.org, release 19, last checked August 15th, 2012)
list 1600 precursors and 2042 mature miRNAs.
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FIGURE 1.4. The biogenesis of a miRNA beginning with the miRNA gene that is transcribed
to the pri-miRNA (for simplicity only one precursor is shown in the primary transcript).
Processing via Drosha and Dicer yields the mature miRNA that is incorporated into the RISC
complex and finally binds to the target mRNA (Filipowicz et al., 2008; Kim et al., 2009).
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A miRNA can be encoded by a separate gene or be a part of the introns

of protein coding host genes. Figure 1.4 shows the basic principle of the

miRNA biogenesis from a miRNA gene (cf. Filipowicz et al., 2008; Kim et al.,

2009 for more details). Transcription of the miRNA coding region leads to

the pri-mRNA, the primary transcript that is usually several kilobases long

and can contains several precursors. The miRNA precursors are stem-loop

structures that are cleaved out by an enzyme called Drosha. The resulting

pre-miRNA is a double stranded small RNA with the characteristic stem-loop.

This double stranded miRNA precursor is transported from the nucleus where

the transcription and cleavage takes place into the cytoplasm where the miRNA

will accomplish its primary task. To do this one final step is needed. A protein

called Dicer cleaves the stem-loop. The resulting duplex unwinds yielding

the mature miRNA and its passenger strand. The thermal stability of both

strands determines which strand is incorporated as mature miRNA into the

RNA-induced silencing complex (RISC) that eventually binds to the target

mRNA. The other strand is degraded. Strand selection, however, is not a

stringent process and for some precursors both strands occur in the cell as

mature miRNAs (Kim et al., 2009).

Similar to mRNA, miRNA transcription and processing underlie a complex

regulation. Disturbance of this regulation can have a large effect since it

directly affects the target genes of this miRNA. It is therefore not surprising

that deregulation of miRNAs has been linked to development and progression

of several diseases including cancer (Brase et al., 2011; Groce, 2009; Lu et al.,

2005).

Since miRNAs are rather small and the sequence complementary to the

target mRNA does not need to be perfect, one miRNA can have several (up

to several hundreds) targets. Besides the pure sequence complementary the

thermal stability of the miRNA-mRNA complex is an important factor. Since

the experimental validation of a miRNA-mRNA pair is an elaborate issue

miRNA target prediction algorithms try to find novel miRNA targets among

known genes. Several different target algorithms exists taking into account not

only sequence information but also theoretical thermal stability and information

about homologue binding sites of other species(3).

(3)Since miRNA binding sites are an important aspect of gene expression regulation, they
are evolutionary highly conserved.
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With the miRBase database a central repository for miRNA related in-

formation has been created (Griffiths-Jones et al., 2008). Besides sequence

information of mature miRNA as well as of miRNA precursors, miRBase de-

scribes the naming conventions of miRNAs (Ambros et al., 2003). A miRNA

name consist of the species identifier (e.g. hsa for human miRNAs) followed by

“mir” for miRNA genes or “miR” in case the mature miNRA is described. The

single miRNA is identified by a unique number. The mechanism behind the

strand selection of the double stranded precursor is not yet fully understood. If

both strands of one precursor occur in the cell as mature miRNAs, the unique

number is followed by either a “3p” or “5p” indicating the strand. An example

of a mature miRNA name would be “hsa-miR-375-5p”.

1.1.3.3 Other Types of Biomarkers

Besides RNA marker like mRNA and miRNAs other types of genomic markers

are available and in standard practise in the biomedical research. DNA based

markers comprise e.g. single nucleotide polymorphism (SNP) or point mutations

as well as large chromosomal aberrations like deletions, amplifications, and

fusion genes (Chung and Chanock, 2011). There are epigenetic markers like

changes in the methylation profile of the DNA or histones(4) (cf. Mikeska et al.,

2012 for an overview).

Besides these traditional genomic markers, genetic activity or diregulation

can be measured directly on the protein level. This can be accomplished either

in large scale for many proteins at the same time by e.g. mass spectrometry

or protein arrays. Another way, and more simple, are measurements via

immunochemistry for single markers. A well known example is here the ERBB2

receptor which is measured in standard clinical practise for breast cancer

patients (Penault-Llorca et al., 2009).

Finally, specific metabolites, e.g lipids in the blood, can also be used as

biomarkers. For example it is known that a tumor changes the metabolic

profile of its cells during development to cope with its rapid growing energy

requirements. In case of an undersupply with oxygen the switch to anaerobic

(4)Methylation denotes the attachment of a methyl group (−CH3) to a cytosine in DNA or
to an arginine or lysine amino acid in histones. Methylation of DNA as well as methylation of
histones has a crucial influence on transcriptional activity and is therewith a very important
factor in gene expression regulation.
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metabolic processes is a logical consequence. These changes can be measured

by certain metabolites (see i.e. Chajès et al., 2011).

1.1.4 Microarray Technology

miRNAs as well as mRNAs can be measured genome-wide that means all

known miRNAs or mRNAs can be measured simultaneously. In the past twenty

years microarrays (Schena et al., 1995) have become the defacto standard for

large scale biomarker measurements. Besides genome-wide microarrays there

are also specialized custom microarrays designed to measure a well defined set

of markers.

Thereby, the basic working principle is rather simple. Genomic probes

(approximately 30 up to 150 nucleotides long) are attached to a solid slide. The

probes are packed at high density. Every probe has a specific sequence and is

used to detect a specific mRNA or DNA part.

Since the probes can be designed to match any given sequence , microarrays

can cover almost all types of genomic biomarker. SNP and tiling arrays cover

DNA based markers. They are used to measure SNPs and genomic aberrations

(insertions, deletions, and amplifications of specific chromosomal regions).

However, by far the most often used microarrays are microarrays for RNA

quantification especially gene expression microarrays. Basically two types of

gene expression microarrays can be distinguished.

cDNA- (complementary DNA(5)) or two-color arrays (Duggan et al., 1999;

Schena, 1999) were mostly used in the beginning of the microarray era. The

probes (cDNA, hence the name) were spotted to a solid glass slide. The mRNA

of two distinct samples was labeled with two different dyes and afterwards

hybridized to the array in a competitive manner. Afterwards the fluorescent

intensities are scanned in two channels, one for each dye. Based on the intensities

conclusion could be drawn which sample contained more or less of a specific

mRNA.

(5)Complementary DNA or short cDNA denotes single stranded DNA that is gained from
mRNA via a process called reverse transcription. As the name suggests it is simply the
inversion of transcription: from mRNA the complementary DNA is constructed. This is
catalyzed by an enzyme called reverse transcriptase that can be found in various RNA viruses.
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Nowadays these kind of microarrays are hardly used anymore. The more

precise one-color arrays have been established allowing a higher density of

probes (and hence a larger number of mRNAs measurable at once) and more

stable measurements. In order to allow density the probes are not spotted

but shorter oligos are synthesized directly at the slide (Lipshutz et al., 1999)

or are attached to silica beads assembled in microwells (Gunderson et al.,

2004; Walt, 2000). While for two-color arrays it was necessary to hybridize

the control at the same slide to eliminate slide effects the high reproducibility

of modern microarrays make it possible to hybridize each sample (including

possible controls) to an independent slide.

The principle of a one-color microarray experiment is illustrated in figure

1.5. Starting with several tissue samples, usually from a condition of interest

and a reference (a typical example is a comparison of tumor against normal

tissue), the mRNA of these samples is extracted and purified (and in most

cases amplified to get more starting material). In a first step this mRNA is

reversely transcribed to cDNA (complementary DNA) and at the same time

labeled with biotin.

The biotin labeled cDNA is than hybridized to the array. The probes

attached to the arrays bind to the cDNA matching their sequence. One spot

on the array contains several probes with the identical sequence. The higher a

gene is expressed the more mRNA and eventually the more cDNA is contained

in the sample, and consequently, the more of the corresponding probes are

occupied with cDNA molecules.

After scanning the array the accumulation of biotin labeled molecules cause

a bright spot at the image where the cDNA has bound to the array. The signal

intensity is then a measure for the gene expression. The higher the intensity of

the spot the higher the expression of the corresponding gene(6).

After scanning the array and transforming the image to signal intensity

values there are several pre-processing steps (cf. Stekel, 2003; Wit and McClure,

2004 for and overview on microarray analysis). Modern microarrays are designed

with a certain degree of redundancy. Since the probes are rather small compared

to an mRNA it is possible to design several different probes targeting the same

(6)Of course, other factors like the RNA sequence and hybridization efficacy can also
influence in intensity of the spot.
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mRNA. The combination of the signal intensities of all these several probes

to a so called expression value of the gene is one of these pre-processing

steps. Other steps include background correction and normalization steps.

Background correction procedures are used to eliminate possible unspecific

background signals caused by e.g. reflections on the slide. Normalization

steps include in-array and between-array normalization. In-array normalization

should remove spatial effects on the array e.g. caused by a distinct dispersion

of the sample on the slide. Between-array normalization is used to eliminate

technical variance between the samples (e.g. slight differences in the purification

or labeling process) and biological variance (e.g. general higher mRNA level in

one sample).

After preprocessing the normalized expression values can be displayed in

a so called gene expression matrix which is the starting point of the actual

analysis and statistical inference. The rows of the gene expression matrix

correspond to the genes, the columns to the samples(7). Similar to the statistical

notation the number of genes is denoted with p and the number of samples

with n. The expression matrix is therefore a p × n matrix. It is common to

use the log2 transformed expression values for further analysis due variance

stabilization properties of this transformation and an improved visualization of

the transformed expression values.

The described experimental workflow is explained using the example of gene

expression microarrays. However, the same principle holds true for microarrays

for miRNAs and SNP arrays.

(7)Since in statistical terms the genes are the variables (the expression value of a gene
would be the value of that varible) and the samples are the observations, this is contradictory
to the traditional statistical notation where the variables are usually the columns and the
observations the rows.
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1.2 Machine Learning Approaches in Bioinformatics

1.2.1 Methods

In the last years the price for a microarray experiment has dropped constantly

allowing a large number of experiments which give rise to a vast amount of

gene expression data especially in the cancer research. Besides data storing and

sharing, e.g. standards for describing a microarray experiment, as well as the

afore mentioned pre-processing steps, microarray bioinformatics is especially

concerned with the analysis of the resulting gene expression data.

Assuming an expression matrix as introduced in the previous section, sev-

eral questions arise naturally from such kind of experiment. Usually, several

microarray experiments are conducted comparing two groups (e.g. samples

from tumor tissue and as controls samples from normal tissue). When the

samples of one group are considered biological replicates testing for differences

between the two groups breaks down to testing for a difference between the

two distributions the single experiments were sampled from. A first question is

of course which genes show different expression values between the two groups.

Another question that arises is how well these two groups can be separated

based on the gene expression measurements.

Of course the outcome does not have to be binary. A continuous endpoint

is possible and in real world problems this is often the case, e.g. certain clinical

parameters of a patient can be measured on a continuous scale. If the samples

were gained from patients for whom the time to a certain event was monitored,

the outcome is a time-to-event endpoint. Despite the nature of the endpoint,

the underlying question remains the same in all these cases: How well can the

outcome be explained by the expression measurements ?

While the classical statistic knows methods to tackle all these different

scenarios there is a crucial difference to problems arising there. Microarray data

are high dimensional that means the number of genes (or markers in general)

is usually much higher than the number of samples and thus p� n.

Many bioinformatics methods have their origins in machine learning and

pattern recognition. According to a common terminology they can be divided

into supervised and unsupervised learning methods. Supervised denotes algo-
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rithms where the outcome, i.e. the class labels for a classification problem, is

known. The goal is now to learn the underlying rule (or function) connecting

the features, in this case the biomarkers, and the outcome based on the training

data set. For samples with unknown outcome the learned rule can be used for

prediction. Well known examples for supervised learning algorithms are Support

Vector Machines (SVM, Boser et al., 1992; Schölkopf and Smola, 2002; Vapnik,

1999), boosting (Freund and Schapire, 1996), the nearest shrunken centroids

classifier (Tibshirani et al., 2002), K-nearest neighbors (kNN, Cover and Hart,

1967; Fix and Hodges, 1951), and Random Forests (Breiman, 2001). Other

methods are originated in classical regression models. Prominent examples are

Lasso (Tibshirani, 1996) and the elastic net (Zou and Hastie, 2005).

If no outcome is known, no class label or continuous score, the only informa-

tion left are similarities between the samples. In the case of a gene expression

matrix this is the similarity between the expression profiles. Unsupervised

learning methods, also known as cluster methods, try to discover these simi-

larities. Based on such patterns the samples can be grouped, i.e. in order to

define new subclasses. Especially for cancers where no molecular subclasses are

known a priori this is a valuable approach. Examples for clustering methods

are K-means (Lloyd, 1982; MacQueen, 1967) , Self-organizing maps (SOM,

Kohonen, 1982), and Neural Gas (Cottrell et al., 2006; Martinetz et al., 1993).

1.2.2 Feature Selection and the Curse of Dimensionality

In the classical statistics a simple linear regression model can be formulated

(in matrix notation) as

y = βX + ε

where y is the n-dimensional outcome vector, X the n× p matrix of predictors,

and ε ∼ N(0, σ2) is the normally distributed error term. The famous least

squares solution for this problem was developed by Gauss and Legendre in the

early years of the 19th century and is nowadays the standard method to solve

linear models

β̂ =
(
XTX

)−1
XTy

It requires to be n > p in order to inverse
(
XTX

)
. As mentioned before

the strength of array based analysis methods in the biomedical field, like
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FIGURE 1.6. Illustration of the curse of dimensionality. The large unit hypercube is the
feature space. The colorized cube is the space of the training samples covering a fraction r
of the range of every predictor. The fraction of the feature space (fraction of volume of the
unit hypercube) and hence the predictive power of a fitted model decreases with increasing
dimension p (adapted from Hastie et al., 2009).

gene expression arrays, is to measure several ten thousands up to hundreds of

thousands markers at once. In this high dimensional case usually p� n.

While methods like SVM and kNN are in principle capable of fitting a

model for high dimensional data, their performance that means the prediction

power on new data is usually unsatisfactory. The underlying phenomenon is

sometimes referred to as curse of dimensionality, a term coined by Bellman

(1961).

The curse of dimensionality has many facets. In bioinformatics, where

models are fitted to high dimensional data, it usually manifests as a sampling

problem (cf. Hastie et al., 2009; chap. 2 for details). The quality of a high

dimensional model depends on how well the training data cover the feature

space, that means how well is the sampling. In case of p � n the data are

sparse that means the sampling is bad and the underlying structure cannot

be covered by the fitted model. Consequently, the predictive power of such a

model is poor.

The situation is best explained by a p-dimensional unit hypercube (figure

1.6). The unit hypercube represents the feature space that means the space

in which the fitted model will be used for prediction. It is the space the

model must be valid in. The colored hypercube marks the subspace that is

sampled by the training data. The fraction of the feature space covered by
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the training data is rp (note that r ≤ 1). Hence, r has to grow exponentially

with the dimensions p to cover the same fraction of the feature space. Since r

corresponds to the number of training samples, n has to grow exponentially

with increasing p. If the number of training samples n is fixed, the fraction

of the feature space covered by the model and therewith its predictive power

decrease with increasing p.

While the data are sparse in high dimensions traditionally distance metrics

like the euclidean distance become useless (Friedman, 1997) and methods

relying on them fell apart. Another problem in high dimensional settings is

that most of the predictors have no effect on the outcome. Adding only noise

to the model these features can mask the underlying relationship of informative

features to the outcome.

In modern algorithms the curse of dimensionality is tackled by feature

selection that means the selection of informative predictors (cf. section 2.2.2.1

for more details) for a specified outcome. By removing unnecessary features the

curse of the dimensionality is avoided during model fitting. Of course finding

informative features on the same data used for model fitting is not trivial and

bears the risk of overfitting. In this case the performance of the training data

would be overoptimistic while the performance on unseen data is poor. Feature

selection can be a separate step or a part of the learning algorithm (cf. Guyon

and Elisseeff, 2003 for an overview on feature selection methods) but most

methods assume the predictors to be independent. While this might be true

for other research areas it is definitely not in biomedical research.

Genetic regulation forms a complex network that leads to complicated

correlation structures. The situation is even worse when using gene expression

together with miRNA expression data. One miRNA can target many genes and

one gene can be targeted by several miRNAs. This forms a correlation structure

even more complex than for gene expression data alone. Feature selection

algorithms relying merely on scoring of single features for their importance to

the outcome, i.e. the disease state, produce models with probably to many, but

highly correlated features. The coherent redundancy in these features causes a

decreased performance on new data (Lee et al., 2008). For gene expression data

this results in signatures which have a poor overlap between different studies
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even if the considered outcome is identical (Michiels et al., 2011; Sotiriou and

Piccart, 2007).

1.2.3 Pathway Based Approaches

In the last years several methods have been developed to overcome these

shortcomings, at least when dealing with gene expression data. The key idea

is to include prior biological knowledge of regulation structures in order to

resolve co-linearity between the features. For protein coding genes there are

several databases covering information about interactions and common pathway

memberships. A pathway is an abstraction made in systems biology. It is

thereby defined as a biological network, a set of interactions or functional

relationships between molecular entities, i.e. genes or proteins of the cell (Cary

et al., 2005). Genes involved in the same pathway, if not having a direct

interaction, at least contribute to the same cellular process. Therefore, the

assumption that these genes are co-regulated is reasonable.

A variety of databases cover biological pathways or gene and protein inter-

actions (cf. Cary et al., 2005 for an overview). One of the most famous among

them is the KEGG database (Kyoto Encyclopedia of Genes and Genomes,

Kanehisa et al., 2004) that maps genes to manually curated pathway maps,

focusing on molecular interactions of genes in signalling and metabolic networks.

A similar approach is followd by PID (Pathway Interaction Database, Schaefer

et al., 2009). It is also a manually curated repository but focused on genes

with a role in signalling pathways, mostly cancer related. Besides ongoing

efforts in the field there are still no consistent standards to report newly found

interactions in the biomedical literature. Therefore, Transpath (Choi et al.,

2004), a commercial database, contains manually curated interactions from

peer-reviewed literature.

The HPRD database (Human Protein Reference Database, Keshava Prasad

et al., 2009) comprises information about protein-protein interactions (PPI data)

gained from yeast two-hybrid screens. Another database worth mentioning

in this context is the MINT database (Licata et al., 2012), also focussing on

experimentally verified protein interaction data.
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The ConsensusPathDB (Kamburov et al., 2011, 2009) differs from the afore

mentioned databases as it is a meta-database. It integrates different pathway

and PPI databases, i.e. KEGG, MINT, HPRD, PID, INAct, and others, to

draw a more complete picture of regulatory mechanisms in the cell.

Besides these general interaction databases there are databases focussing

on special interactions, most notable are transcription factor bindings. As

outlined in the former section transcriptions factors are proteins binding to

the DNA and therewith promoting or inhibiting the transcription of the target

gene. Transcription factor binding sites are key elements in the understanding

of transcriptional regulations and hence, databases like Transfac (Matys et al.,

2006) and JASPAR (Portales-Casamar et al., 2010) deal with this kind of

regulatory interactions.

Besides the databases several efforts have been made to develop formats

for storing and sharing pathway information, for example the BioPax language

(Biological Pathway Exchange, Demir et al., 2010).

Another structured knowledge resource for gene functions and products

is the Gene Ontology (GO, The Gene Ontology Consortium et al., 2000).

In a less technical sense the term ontology is used for an area of formalized

knowledge. An ontology defines items from a specific domain and relationships

connecting these items in a structured and hierarchical manner (Bard and Rhee,

2004). In case of the Gene Ontology three domains are considered: biological

processes, molecular functions, and cellular components. Biological processes is

the domain that can be most likely compared to pathway information contained

in databases like KEGG or PID. The hierarchical structure comprises broad

terms, i.e. cell cycle, on top to more refined terms at the bottom, all of them

describing biological processes. A gene (or more precisely a gene product)

can be assigned to several of these GO Terms. Since the structure follows a

hierarchical order a gene can always be assigned to the parent terms of an

assigned term, too(8). Consequently, more general terms on top of the hierarchy

contain more genes (that means more genes are assigned to that term) than

more specialised terms at the bottom.

(8)Note, since a term in the GO can have several parents, GO is not a tree but a directed
acyclic graph. Also note, it is sufficient to state the most explicit term valid for a certain
gene. The parents terms are included implicitly.
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Different methods have been developed to check for overrepresented GO

terms in a list of genes, i.e. genes that are differentially regulated between two

conditions (Beissbarth, 2006; Beissbarth and Speed, 2004). These GO terms

give a hint on altered processes in the cell caused by a deregulation of these

genes. Also, GO terms can be used, such as biological pathways, to conclude

similar functions and expression patterns. Genes assigned to similar GO terms

are likely to contribute to similar processes in the cell.

In recent years, an increasing number of methods incorporated prior bio-

logical knowledge in model building to overcome the afore mentioned flaws for

high-dimensional gene expression data and retrieve stable and highly predictive

gene signatures (cf. Porzelius et al., 2011a for an overview).

There are methods incorporating pathway knowledge in a test based setting,

i.e. examine each gene separately to retrieve candidate genes for a signature

(Wu and Lin, 2009). Of course, more elegant and more useful in the field of

biomarker discovery are methods that integrate the biological knowledge in the

model fitting process and feature selection. In the following a few examples are

mentioned.

Wei and Li (2007) proposed NPR (nonparametric pathway-based regression)

models with an additive pathway effect. The pathway effect is estimated by

the expression measurements of genes in the particular pathway via regression

trees. Li and Li (2008) and Pan et al. (2010) deployed shrinkage regression

methods with an altered penalty term to incorporate pathway knowledge. Both

methods rely on gene interaction networks as delivered by KEGG or HPRD. In

a similar fashion Binder and Schumacher (2009) used boosting to fit an additive

model using a penalized likelihood. By adapting the penalization structure

gene interaction graphs can be incorporated (cf. section 2.2.3 for details).

Other methods rely on SVMs and are specifically designed for classification

tasks (binary endpoints). Zhu et al. (2009) proposed a network based SVM

with a penalty constructed from the F∞-norm(9). Thereby, neighboring genes in

a gene interaction network are grouped together, forcing the SVM to select or

eliminate genes adjacent in the network, i.e. genes lying in the same pathway.

Rapaport et al. (2007) used the spectral decomposition of the gene interaction

network in order to compute a discrete Fourier transformation from the gene

(9)The infinity norm, or max norm of a vector x is defined as |x|∞ = max {|x1|, . . . , |xn|}.
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expression profiles. Again, the transformation of the gene expression profiles

was used to define a new metric for gene expression profiles. This metric was

used with a standard SVM as an example for a supervised learning algorithm(10).

SVMs were also used by Johannes et al. (2010). Here, a modified version of

recursive feature elimination (RFE, Guyon et al., 2002) was used to incorporate

prior pathway knowledge. Genes are ranked according to their connectivity in

a gene interaction network (Morrison et al., 2005). Subsequently, this rank is

included in RFE, an iterative feature selection used for SVMs.

Finally, some Bayesian approaches exist, allowing not only to incorporate

prior biological pathway knowledge but also a measure of uncertainty for the

final model (see e.g. Hill et al., 2012; Vannucci and Stingo, 2010).

1.3 Aim and Organization of the Thesis

While there are several methods that incorporate prior biological knowledge

into prediction models using gene expression data, there is however still a need

for methods using both gene expression and miRNA expression data at the

same time. For the fusion of these two kinds of data the description about the

regulatory dependencies of the features, mRNAs and miRNAs, is of central

importance.

The focus of this thesis was to develop a workflow that allows the risk

prediction of cancer patients where both, gene expression and miRNA expression

data are available. As a learning method we chose boosting because it has proven

its usability for high-dimensional microarray data (Dettling and Buhlmann,

2003; Dudoit et al., 2012), is able to handle different types of endpoints,

and has a sound statistical foundation (see section 2.1 for details). A graph

representing the regulatory relationships between the miRNAs and the mRNAs

can be estimated from the expression data itself in combination with a target

prediction database, in this case the MicroCosm target database (Enright et al.,

2003). The intention was to use this graph together with the gene and miRNA

expression data to built a better prediction model and improve feature selection.

(10)Rapaport et al. (2007) noted that the derived metric, incorporating gene expression and
a priori network knowledge, can also be used with unsupervised methods, i.e. to cluster the
biological samples.
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The thesis is structured as followed. Chapter 2 gives insights about the

theoretical background of the methods used in this work. Section 2.1 gives

a general overview about boosting and the statistical interpretation of this

method which originates from the machine learning field. Section 2.2 introduces

CoxBoost, an adaption of the boosting method for Cox models, and PathBoost

as a possibility to include prior biological knowledge in form of gene interaction

networks in the model fitting process. The Cox model as well as the underlying

fundamentals of time-to-event data are explained in 2.2.1. Section 2.3 briefly

introduces two methods suited for high-dimensional time-to-event data. These

are used as benchmarks to our workflow in terms of prediction accuracy. The

following section 2.4 deals with model assessments and error measurements

used in this thesis to judge the quality of a method and the resulting model. In

section 2.5 we present the miRNA target prediction algorithm used for building

the graph in our workflow. The chapter concludes with a description of the

data set we used for evaluation of our workflow and the preprocessing of this

data set.

The results chapter (chapter 3) explains our new workflow how to fit a model

with gene and miRNA expression in order to predict a clinical endpoint (Gade

et al., 2011). The description of the new workflow is followed by a thorough

evaluation of the method. This includes the evaluation of the prediction error

(section 3.2.1), the stability of the feature selection (section 3.2.2), and the

comparison to the benchmark methods. Furthermore, the problem of overfitting

and different target prediction algorithms is discussed (section 3.2.3 and 3.2.4).



Chapter 2

Material and Methods

2.1 Introduction to Boosting

An important part of machine learning, or statistical learning as it is called

sometimes, is supervised learning. Assuming training data (yi, xi) with i =

1, . . . , n where yi is the output or response and xi is the predictor or feature.

The task is now to find a prediction model capable of predicting y given x with

high accuracy on observations where y is unknown. If the output is discrete,

e.g. y ∈ {−1, 1} this task is called classification. If the response is continuous

it is called regression.

Boosting is one of the most powerful machine learning methods of the last

years. Similar to other ensemble learners several weak learners are combined

into a powerful committee. The prediction power of these simple base learners

is boosted. The first approaches of boosting were introduced by Schapire (1990)

and Freund (1995). The first practical, and todays most popular, boosting

algorithm was AdaBoost (short for Adaptive Boost) described by Freund and

Schapire (1996) (figure 2.1).

The original AdaBoost, called “AdaBoost.M1” (see algorithm 1), was

designed for a 2-class classification problem. Such a classification problem

can be describes as followed. Starting with the original training data, a new

weighted sample is created in every step m = 1, . . . ,M and used to build

a simple classifier Gm(x). In order to create a new sample the weights are

adapted according to the classification performance. Observations which were

classified poorly in previous steps gain more weight whereas the weight of
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GM(x)

G(x) = sign
(∑M

m=1 cmGm(x)
)

FIGURE 2.1. The figure shows the basic principle of AdaBoost as introduced by Freund
and Schapire (1996) (figure adapted from Hastie et al., 2009).

Algorithm 1 AdaBoost.M1 (as described in Hastie et al., 2009; chap. 10)

1: initialize weights wi = 1/n ∀i = 1, . . . , n
2: for m = 1→M do
3: fit a weak classifier Gm(xi) using weights wi
4: compute error

errm =

∑n
i=1wi I(yi 6= Gm(xi))∑n

i=1wi

5: compute classifier weight cm = log
(

1−errm
errm

)
6: adjust weights wi → wi exp (cm I(yi 6= Gm(xi)))
7: end for
8: final output is weighted combination G(x) = sign

[∑M
m=1 cmGm(x)

]
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correctly classified observations is decreased. Finally, the committee is built as

weighted combination of the single classifiers

G(x) = sign

[
M∑
m=1

cmGm(x)

]
(2.1)

The weights cm are calculated from the weighted misclassification error of the

single classifiers. Therefore, more accurate classifiers contribute more to the

final committee.

An interesting observation is that the test error of AdaBoost decreases in

most applications for a higher number of boosting steps M (Friedman et al.,

2000). It seems to be resistant to overfitting. Fitting learners on samples of the

training data suggests parallels to the bagging (short for bootstrap aggregation)

procedure (Breiman, 1996) and that the success of boosting can be explained by

reduction of variance. In contrast to bagging however, boosting performs well

with stumps (1), learners which have typically a high bias and a low variance.

Some explanations for the success of boosting were given over the years.

Schapire et al. (1998) explained the power of the committee by an increase of

the margin. Increasing the margin results in a better separation of the classes

and consequently a lower test error. Another explanation for the power of

boosting lies in the expression of the final committee (2.1) and was found by

Friedman (2008); Friedman et al. (2000) who established a statistical framework

for boosting methods. Friedman et al. linked the idea of boosting with the

statistical concept of additive models and loss functions. For a comprehensive

overview on boosting and its statistical properties the interested reader is

referred to (Hastie et al., 2009). The following remarks on boosting and its link

to additive modeling are mostly derived from chapter 10.

An additive model has the form

f(x) =
M∑
m=1

βm b(x; γm) (2.2)

Usually, b are simple functions of the multivariate argument x characterized by

a set of parameters γm. These functions are basis functions spanning a function

(1)trees with only two terminal nodes
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space. In terms of boosting the basis functions are the weak learners and the

basis function expansion f is the final committee. Thus, boosting can be

Algorithm 2 Forward Stagewise Additive Modeling (as described in Hastie
et al., 2009; chap. 10)

1: initialize f0(x) = 0
2: for m = 1→M do
3: compute

(βm, γm) = argmin
β,γ

n∑
i=1

l(yi, fm−1(xi) + β b(xi; γ))

4: fm ← fm−1(x) + βm b(x; γm)
5: end for

regarded as fitting an additive model minimizing a loss function, more precisely

the exponential loss. Figure 2.2 shows an example which demonstrates that

boosting optimizes the exponential loss and not the misclassification rate.

Definition 1. Loss function

Consider a response variable Y , a vector of predictors X, and a prediction

model f(X) trained on a training set T . A function

l : (Y, f(X))→ R

measuring the deviance of Y and f(X) is called loss function. Typical choices

are

l(Y, f(X)) = I(Y 6= f(X)) (0− 1 loss or misclassification) (2.3)

l(Y, f(X)) = exp(−Y f(X)) (exponential loss) (2.4)

l(Y, f(X)) = (Y − f(X))2 (squared error loss) (2.5)

A more complex loss function is the Huber loss. For small values of Y − f(X)

it imitates the squared loss whereas larger differences are penalized linear.

L(Y, f(X)) =

(Y − f(X))2 |Y − f(X)| ≤ δ

2δ(|Y − f(X)| − δ2) otherwise
(Huber loss) (2.6)
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FIGURE 2.2. The figure shows the training error of boosting as a function of the number
of boosting steps. This is an example with synthetic data from Hastie et al. (2009). Ten
normal Gaussian predictors x1, · · · , x10 are used. The binary output is calculated as y =
2 I(
∑

j x
2
j > χ2

10(0.5))− 1. The training set comprised 12000 cases. The blue line indicates

the misclassification rate ( 1
n

∑n
i I(yi 6= G(xi))) and the red line the average exponential loss

( 1
n exp(−yi f(xi))). The misclassification rate remains nearly constant after 250 steps whereas

the exponential loss keeps dropping. Clearly, boosting does not optimize the misclassification
but rather the exponential loss.
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When fitting the additive model (algorithm 2), the crucial step is to find

the pair (βm, γm). Since, for boosting, the basis functions are the weak learners

Gm(x), this yields

(βm, Gm) = argmin
β,G

n∑
i=1

exp [−yi (fm−1(xi) + β G(xi))] (2.7)

and therewith

(βm, Gm) = argmin
β,G

n∑
i=1

w
(m)
i e−yi β G(xi) (2.8)

where

w
(m)
i = e−yi fm−1(xi) (2.9)

can be regarded as weight independent from βm and Gm. They depend only

on the solution from the prior iteration m− 1 and will change with every new

boosting step. (2.8) can be solved independently for Gm and βm. For a fixed

βm 6= 0 (2) (2.8) can be written as

Gm = argmin
G

n∑
i=1

w
(m)
i e−β yiG(xi) (2.10)

By splitting the sum we get∑
yi=G(xi)

w
(m)
i e−β yiG(xi) +

∑
yi 6=G(xi)

w
(m)
i e−β yiG(xi) (2.11)

In the first sum yiG(xi) is equal 1 and in the second sum it is equal −1. With

that in mind (2.11) can be simplified to

∑
yi=G(xi)

w
(m)
i e−β +

∑
yi 6=G(xi)

w
(m)
i eβ (2.12)

(2)βm = 0 would be the trivial case that Gm has no contribution to the final model.
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The sums can be extended again by introducing the indicator function I(yi 6=
G(xi))

e−β
n∑
i=1

w
(m)
i − e−β

n∑
i=1

w
(m)
i I(yi 6= G(xi)) + eβ

n∑
i=1

w
(m)
i I(yi 6= G(xi)) (2.13)

which can be written as

e−β
n∑
i=1

w
(m)
i + (eβ − e−β)

n∑
i=1

w
(m)
i I(yi 6= G(xi)) (2.14)

Since the first sum and the factor of the second sum are independent of Gm,

the classifier has to minimize the second sum, the weighted prediction error

rate

Gm = argmin
G

n∑
i=1

w
(m)
i I(yi 6= G(xi)) (2.15)

Now a solution for βm can be derived by substitution of G by Gm in (2.8) and

setting the partial derivation to zero

0 =
∂

∂β

n∑
i=1

w
(m)
i e−β yiGm(xi) (2.16)

Solving the partial derivation gives

0 =
n∑
i=1

w
(m)
i e−β yiG(xi) (−yiGm(xi)) (2.17)

As before, the sum can be divided according to right and wrong classified

samples, making it possible to solve yiGm(xi) for each part

0 =
∑

yi=Gm(xi)

−w(m)
i e−β +

∑
yi 6=Gm(xi)

w
(m)
i eβ (2.18)
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Again both sum can be extended to all samples using the indicator function.

Furthermore eβ and e−β can be placed outside of the sums

0 = (eβ + e−β)
n∑
i=1

w
(m)
i I(yi 6= Gm(xi))− e−β

n∑
i=1

w
(m)
i (2.19)

and therewith

eβ + e−β

e−β
=

∑n
i=1w

(m)
i∑n

i=1 w
(m)
i I(yi 6= Gm(xi))

(2.20)

e2β =

∑n
i=1w

(m)
i∑n

i=1 w
(m)
i I(yi 6= Gm(xi))

(2.21)

β =
1

2
ln

( ∑n
i=1w

(m)
i∑n

i=1w
(m)
i I(yi 6= Gm(xi))

)
(2.22)

Let errm denote the weighted and normalized error rate minimized by Gm

errm =

∑n
i=1 w

(m)
i I(yi 6= Gm(xi))∑n

i=1w
(m)
i

(2.23)

Together with (2.22) this gives the solution for βm

βm =
1

2
ln

(
1− errm
errm

)
(2.24)

The update rule for the additive expansion

fm(x) = fm−1(x) + βmGm(x)

in algorithm 2 implies the update of the weights

w
(m+1)
i = e−yi fm(xi) (2.25)

= e−yi fm−1(xi) e−βm yiGm(xi) (2.26)
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Using the fact that w
(m)
i = e−yi fm−1(xi) and yiGm(xi) = −2 I(yi 6= Gm(xi)) + 1

this can be written as

w
(m+1)
i = w

(m)
i ecm I(yi 6=Gm(xi)) e−βm (2.27)

with cm = 2 βm. The factor e−βm is independent of i and hence has no effect.

With this in mind (2.27) is equivalent to step 6 in AdaBoost.M1 (algorithm

1). Fitting the weak classifier Gm(x) in step 3 can be seen as the search

for the optimum of (2.8) (since the trained classifier should minimize the

misclassification rate). The final committee in step 8 is in principle sign(fM (x)),

the sign of the additive expansion(3).

Putting this together Friedman et al. (2000) concluded that AdaBoost.M1 is

equivalent to forward stagewise additive modeling minimizing the exponential

loss and therewith reasoned the power of this technique. From this point of

view boosting is no longer restricted to classification problems but can be used

also for regression tasks. Different loss function can replace the exponential loss

underlying the original AdaBoost.M1 algorithm.exponential loss underlying the

original AdaBoost.M1 algorithm. Figure 2.3 compares different loss functions

for classification and regression.

(3)The difference lies in a constant factor since cm = 2 ∗ βm. However, this factor can be
placed outside the sum and has no influence to the final result.
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FIGURE 2.3. Figure (a) shows loss functions as functions of the margin y f(x). The
margin plays a role as error estimate for classification problems with y ∈ −1, 1. The losses
are: exponential loss (green) and binomial deviance log(1 + e−2y f (blue). Both functions
decrease with increasing margin. The third function (green) is the squared loss. Increasing
with positive margin (rightly classified) this loss function is less suited for classification tasks.
As a reference the misclassification (grey) is given. (b) shows losses as functions of the
residual y − f , a common error measure in regression tasks. Again, the green curve is the
squared loss. The blue curve is the absolute loss |y − f | and the red line is the Huber loss
(2.6). Since the squared-error loss emphasises observations with large residuals during the
model fit it is less robust and prone to outliers. A more robust choice is the absolute loss or
the Huber loss used for M-regression which is resistant against heavy outliers and nearly as
efficient for Gaussian errors as least squares (adapted from Hastie et al., 2009).
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2.2 Boosting for Cox Models

2.2.1 Time-to-event Data

In the following section the basic concepts and two fundamental functions used

for analysis of survival data will be introduced. For a more detailed overview

the interested reader is referred to Tableman and Kim (2004) and Everitt and

Hothorn (2006; chap. 9).

Survival data or, more general, time-to-event data (in the following survival

time and time-to-event are used interchangeable) usually consist of n obser-

vations (e.g. patients) (ti, δi,xi) with 1 ≤ i ≤ n. ti is the time the event of

interest occurred or the observation was censored(4) and δi is the censoring

status indicating such a censoring. The third part is an observation specific

p-dimensional vector of features or covariates xi.

The time points ti can be considered as realizations of a random variable T

with a probability density function f(t) and a distribution function

F (t) = P (T ≤ t) =

∫ t

0

dx f(x) (2.28)

When dealing with time-to-event data, two functions are from central impor-

tance. The first function is the survivor function

S(t) = P (T ≥ t) = 1− F (t) =

∫ ∞
t

dx f(x) (2.29)

which is defined as the probability that the survival time T is greater or equal a

specified time t. That means the survivor function is a time-dependent function

explaining how likely it is to be a survivor (event-free) at a given time point.

The second function is the hazard function

h(t) = lim
∆t→0+

P (t ≤ T ≤ t+ ∆t |T ≥ t)

∆t
(2.30)

(4)More precisely the data are said to be right-censored. For right-censored data the event
did not occur until the end of the study or other reasons made it impossible to track the
status of the patient. In this case the reason has to be independent from the event of interest.
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FIGURE 2.4. The figure shows the “Bath tub” shape of a hazard function. It describes
the hazard for death in human beings. It starts high right after birth which is caused by a
high infant mortality. In the middle ages the hazard has a low plateau indicating a low death
rate. In later years the hazard rises again due to the aging process (adapted from Everitt and
Hothorn, 2006)

defined as the instantaneous rate of failure (having an event) at time T > t.

Therewith h(t) ∆t is the probability of having the event at time t given the

fact that the individual was event free to time t. The condition is essential, e.g.

it is unlikely to die at an age of 100 simply for the fact that most people do not

reach that age. However, it is much more likely to die at an age of 100 given

that the person actually get that old.

The hazard function is often referred to as risk or mortality rate. It is

important to note that the hazard is not a probability but a rate which can be

seen from (2.30). A conditional probability per unit time is a rate and can have

values in the interval [0,∞]. Figure 2.4 shows an example of a hazard function.

It is known as “bath tub hazard” of death in human beings. Integrating the

hazard function over time gives the cumulative hazard function

H(t) =

∫ t

0

du h(u) (2.31)
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and by this the connection between hazard and survivor function

S(t) = exp(−H(t)) = exp(−
∫ t

0

dx h(x)) (2.32)

One of the most well known estimates of the survivor function (2.29) is the

non-parametric Kaplan-Meier estimate (Kaplan and Meier, 1958)

Ŝ(t) =
∏
j:tj≤t

(
1− dj

rj

)
(2.33)

where dj is the number of individuals having an event at time tj and rj is

the number of individuals at risk that means without an event right before

tj. That includes the individuals censored at time point tj. Figure 2.5 shows

the Kaplan-Meier estimate from the glioma data set from the coin R package

(Hothorn et al., 2011). The data comprises 37 patients suffering from two

different types of glioma (Grana et al., 2002), the time of survival and different

clinical information. Table 2.1 summarizes the example data set. Based on

the estimate of the survivor function the estimate of the cummulative hazard

function can be derived as

Ĥ = − log(Ŝ(t))

The effect of a covariate on the survivor function can be estimated by building

two groups and estimating the survivor function for each of them. The resulting

survivor functions can be tested for differences with help of the logrank test

(cf. Hosmer et al., 199; chap. 2 for an overview on survivor functions and

associated tests).

A more flexible and general approach was given by Cox (1972). The Cox’s

proportional hazards model or shortly Cox’s regression does not model the

survivor function directly but the hazard function

h(t|xi) = h0(t) eηi (2.34)
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Age Sex Histology Group Status Time

83 Female GBM Control Event 5
61 Male GBM Control Event 6
32 Female GBM Control Event 8
70 Male GBM Control Event 8
57 Female GBM Control Event 8
71 Female GBM Control Event 8
53 Female Grade3 Control Event 9
72 Male GBM Control Event 11
46 Male GBM Control Event 12
50 Male GBM Control Event 13
39 Female GBM RIT Event 14
40 Female GBM RIT Event 14
65 Male GBM Control Event 14
44 Male GBM Control Event 15
46 Male Grade3 Control Event 19
70 Male GBM RIT Event 20
31 Male Grade3 RIT Event 25
42 Female GBM Control Event 25
45 Female Grade3 RIT Censored 28
58 Male GBM RIT Event 31
32 Male Grade3 Control Event 32
27 Male Grade3 Control Event 34
40 Female GBM RIT Censored 36
36 Male GBM RIT Event 36
55 Female GBM RIT Censored 43
19 Female Grade3 Control Censored 48
57 Male Grade3 RIT Censored 50
33 Female Grade3 Control Censored 50
53 Male Grade3 RIT Censored 51
41 Female Grade3 RIT Event 53
40 Female Grade3 RIT Censored 54
36 Male Grade3 RIT Censored 57
52 Male Grade3 RIT Censored 57
54 Male Grade3 RIT Censored 58
47 Female GBM RIT Censored 59
49 Male Grade3 RIT Censored 61
48 Male Grade3 RIT Censored 69

TABLE 2.1. The table summarizes the glioma data set from Grana et al. (2002) packed
in the coin R package (Hothorn et al., 2011). The data comprises 37 patients with two
types of glioma. They have been treated with a standard therapy (Control) and a new
radioimmunotherapy (RIT). The event of interest is death, the survival time is given in
months.
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FIGURE 2.5. The figure shows the Kaplan-Meier estimates for the glioma data set from
Grana et al. (2002) packed in the R package coin (Hothorn et al., 2011). Figure (a) shows
the estimate of the survivor function. An easy to see but important indicator is the median
survival time, the time where the survivor function reaches a level of 0.5, in this case 31
months. Due to too few patients at risk the median survival time is not always observable.
Figure (b) shows the resulting estimate of the cumulative hazard function. Note that the
cumulative hazard is not a probability and thus not limited to the interval [0, 1]. In both
figures the censoring of patients is indicated by small crosses in the function plot.
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with an unspecified baseline hazard h0(t) and a linear predictor

ηi = xi
Tβ (2.35)

Since the only time-dependent term is the baseline hazard the ratio of the

hazards of two patients becomes

HR =
h(t|x1)

h(t|x2)
=

exp(x1
T β)

exp(x2 β)
(2.36)

= exp((x1 − x2)T β) (2.37)

The hazard (HR) is the usual measure of effect of the predictors of interest in

survival analysis, comparable e.g. with the odds ratio in logistic regression. An

important fact is that the baseline hazard is not included, HR depends solely

on the parameter vector β and thus is constant over time. This is called the

proportional hazard property.

Cox (1972) derived a method to estimate β without specifying the baseline

hazard. Therefore the Cox model is sometimes referred to as a semi-parametric

model. In fact h0 can be described by a variety of functions which makes the

Cox model quite general and powerful. Since the probability density function

depends on the baseline hazard so does the likelihood l(t, β). It is therefore

not possible to perform a regular Maximum Likelihood approach to estimate

the parameters. Instead Cox derived a partial likelihood based on conditional

probabilities.

Let t(1), . . . , t(r) (r ≤ n) the increasing times of event without time points

where an individual was censored. R(t(j)) is the risk set containing the indices

of individuals at risk at time t(j). Furthermore, x(j) denotes the vector of

covariates corresponding to the individual with an event at t(j). Now, conditional

probabilities can be defined (cf. Tableman and Kim, 2004 for more details)

describing the probability that the individual with x(j) has an event at time

t(j) given that the individual is at risk at this time. This can be written as

Lj(β) =
h0(t(j)) exp(x(j)

T β)∑
l∈R(t(j))

h0(t(j)) exp(xl
T β)

(2.38)
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=
exp(x(j)

T β)∑
l∈R(t(j))

exp(xl
T β)

(2.39)

Multiply these over the r event times yields Cox’s partial likelihood function

L(β) =
r∏
j=1

Lj(β) =
r∏
j=1

exp(x(j)
T β)∑

l∈R(t(j))
exp(xl

T β)
(2.40)

By considering the censoring status, all time points can be used in the product

L(β) =
n∏
i=1

(
exp(xi

T β)∑
l∈R(ti)

exp(xl
T β)

)δi

(2.41)

Note that (2.41) is not a true likelihood since it do not integrate to 1. However,

Cox argued that most of the relevant information about the parameter β is

covered in the partial likelihood and it is sufficient to maximize this partial

likelihood (or more specific the log-partial likelihood) via a Newton-Raphson

algorithm. The partial likelihood does not depend on the event times directly

but the rank of the event times. It is therefore sometimes referred to as a non-

parametric approach. It also important to note that in the multidimensional

case (n� p) the model cannot be fit the classical way(5).

The estimated parameters β̂ and the associated estimated standard devia-

tions can be used to test the influence of the single predictors on the HR. Also,

based on (2.32), the survivor function can now be estimated. Therefore an

estimation of the cummulative baseline hazard (and therewith of the baseline

hazard) is needed. Several parametric approaches exists if a reasonable assump-

tion about the distribution of h0 can me made (cf. Tableman and Kim, 2004

for details). An often used non-parametric approach is the Breslow estimator

of cummulative baseline hazard (Breslow, 1972) that follows directly from the

parameter estimation in the Cox model

Ĥ0(t) =
∑
t(j)≤t

ĥ0(t(j)) =
∑
t(j)≤t

1∑
l∈R(t(j))

exp(xj
T β̂)

(2.42)

(5)Like in any regression setting the case where the number of predictors overcomes the
number of observations the behavior is degenerated. All βi would be estimated to ±∞.
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FIGURE 2.6. The figure shows estimates of the hazard function based on a Cox model for
the glioma data set from Grana et al. (2002). The blue curve is the hazard for patients in the
control group, the red one the hazard from the group with the new radioimmunotherapy RIT.
The baseline hazard is the Breslow estimate. The data are shown on a loge scale, revealing
the proportional hazard property. Is is obvious that the therapy has an huge effect on the
hazard and therewith on the survivor function. The patients will gain from this therapy.

Figure 2.6 shows an example of the hazard estimates based on a Cox model

including the Breslow estimate of the baseline hazard. The estimates of the

hazards can be used to get an estimate of the survivor function and with this a

risk predcition model can be formulated

r̂(t|x) = Ŝ(t|x) = exp(−Ĥ0(t) exp(xT β̂)) (2.43)

2.2.2 Likelihood Boosting and Implicit Feature Selection

2.2.2.1 Introduction to Feature Selection

The main goal of building a prediction model, either to predict a discrete

outcome (classification) or a continuous (regression), is to learn a prediction

rule y = F (x) based on training data yi,xi (i = 1, . . . , n) where xi are p-

dimensional feature vectors. In the case of high-dimensional data it usually

holds p� n and several problems occur, e.g. the curse of dimensionality and

the sparseness of the feature space.
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FIGURE 2.7. The figure shows the different kinds of feature selection methods.

Usually, it is unclear if all the features (and therewith all dimensions in

the p-dimensional space) are needed to infer F . In contrast, uninformative,

noisy features can mask the underlying relationship between features and the

outcome and lead to worse estimations. For most algorithms the complexity

depends on the number of (trainings)-observations n and on the number of

features p. Several techniques have been developed to overcome these problems

(cf. Alpaydin, 2010; chap. 6 for an overview). They can be roughly divided

into two categories: feature extraction and feature selection.

Especially in the field of signal processing and pattern recognition feature ex-

traction methods a very common. The task is to transform the high-dimensional

input data into data of less dimensions that means to create a set of k new

features from the original p. The transformation can be linear, e.g in the case

of Principal Component Analysis (PCA) (Pearson, 1901), or non-linear.

PCA finds linear combinations of the input features explaining most of

variance. Afterwards these linear combinations (principal components) can be

used for the learning task. Other similar approach are Multidimensional Scaling

(MDS) and Linear discriminant analysis (Fisher, 1936). LDA finds, similar to

PCA, a linear projection of the original data but in a supervised fashion that

means using the output. In that manner clustering, e.g. the famous k-means

algorithm (Lloyd, 1982; MacQueen, 1967), can be used to build combinations

of features which are similar to each other.
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Non-linear feature extraction methods comprises e.g. Locally linear embed-

ding (LLE) and kernel based methods (cf. Schölkopf and Smola, 2002 for an

comprehensive overview on kernel based learning algorithms).

In contrast, methods of the second category, the feature selection methods

(figure 2.7), try to find k out of p features improving the prediction model. The

resulting models are better interpretable and in the biological case subsequent

analysis might be more practicable in sense of effort and costs(6).

Two general approaches can be distinguished (Guyon and Elisseeff, 2003;

Kohavi and George H. John, 1997). Variable ranking tries to identify and rank

relevant variables. Usually this is done by utilizing a score function related to

the outcome, e.g. the correlation (e.g. Golub et al., 1999) or the t-statistic (e.g.

Tusher et al., 2001). Variable ranking is a very general approach not limited to

building a prediction model. The variables alone are usually of interest (e.g.

genes which are differential expressed between two conditions). Furthermore,

the most relevant variables are usually suboptimal for building a prediction

model (Guyon and Elisseeff, 2003).

The second category are subset selection methods. Here not the predictive

power of a single feature is of interest but the focus lies on finding am optimal

subset of p variables. For such an optimal subset (given a suited optimality

criterion) in principal all 2p − 1 subsets need to be considered. While this can

be done for small p it is impractical for large dimensional data sets(7). Instead

heuristics are used to get a reasonable (but in most cases sub-optimal) subset

in polynomial time. Guyon and Elisseeff (2003) divides this class of methods

into filter methods, wrapper methods, and embedded methods.

Filter methods are a preprocessing step where the features are filtered

based on a certain criterion independent of the subsequent learning algorithm.

According to Kohavi and George H. John (1997) the ranking of variables is a

filter method where the top ranked variables are used as subset. The number

of variables to be taking has to be determined separately. Several methods

have been proposed (see Guyon and Elisseeff, 2003 for an overview). In case of

(6)In the biomedical research methods of the second category are preferred since linear or
non-linear combinations of the input features are harder to interpret than subsets of the
original features, e.g. genes or miRNAs. Dimensional reduction methods are often used to
find outliers in the outliers or inspect a general separability of two classes.

(7)In fact, finding the optimal subset is known to be NP-hard (Amaldi and Kann, 1998).
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a test statistic, as used by e.g. Tusher et al. (2001), a significance level can be

used to estimate the number of informative features.

However, as with variable ranking the most informative features do not

necessarily form an optimal feature set. However, since it is basically a ranking

of variables, filter methods are fast and as a preprocessing step not tuned for

a specific learning algorithm. The reduction of the feature space prior to the

actual model fit can be used to overcome the risk of overfitting.

In contrast, wrapper methods (Kohavi and George H. John, 1997) do not

asses single features but sets of features. Similar to filters the actual feature

selection is a separate step. The learning algorithm is considered a perfect

black box. In every iteration a defined set of features or variables is given to

the algorithm and the prediction result is assessed. Thus, a wrapper method

has to specify two important aspects: (1) How to search the space of possible

feature subsets and (2) how to assess the prediction result.

A wide range of search strategies can be used e.g. hill-climbing, best-first,

and simulated annealing (cf. Kohavi and George H. John, 1997 for an overview).

Like in classical statistic regression models, for greedy strategies two modes of

directions are possible: forward selection and backward elimination. Forward

selection starts with an empty model, adding the most promising features in

every search step, whereas backward elimination progressively eliminates the

least promising features from a full model. In high dimensional data where

usually only small subsets are of interest forward selection search strategies are

computationally less expensive since the learning algorithm operates with much

less features compared to backward elimination(8). Both methods produce

a nested sequence of subsets. Independent from the direction of search a

appropriate measure of the goodness-of-fit is needed in every search step to

evaluate the candidate subsets. The search stops if no improvement of the

prediction performance can be achieved (Langley, 1994) or pre-defined number

of features has been reached.

The wrapper methodology is a rather general concept since the underlying

learning algorithm is used as a black box. Thus it can be used for many settings.

(8)Dependent on the learning algorithm it might be impossible to fit the model with all
features. The simple least-squares estimator for a regression setting for example cannot be
computed in the case p > n.
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On the other side it is often criticized as a “brute force” attempt (Guyon and

Elisseeff, 2003) as the space of possible subsets is searched systematically.

A more directed approach are embedded methods. They incorporate the

feature selection as part of the training process. Consequently they are more

efficient since the re-training and evaluation for every candidate subset can be

omitted. Some methods use changes in the objective function together with a

greedy search in the feature subset space, e.g. Recursive Feature Elimination

(RFE) for SVMs (Guyon et al., 2002). Other methods incorporate a penalty

term in the objective function (Bi et al., 2003; Tibshirani, 1996; Weston et al.,

2003) to shrink the parameter space and get sparse model fits.

2.2.2.2 GAMBoost and CoxBoost

As shown before (section 2.1) boosting can be seen as a method for function

estimation using stagewise, additive modeling with a suited loss function.

Dependent on the loss function and the base learners it suited for classification

as well as regression tasks. As pointed out by Bühlmann and Hothorn (2007)

this makes boosting a very general and powerful method. For example, by

replacing the exponential loss underlying AdaBoost with the L2 loss function

(squared error loss) (y−f)2/2 Bühlmann and Yu (2003) derived L2Boost suited

for classification and regression tasks.

Another important class of loss functions is likelihood based, e.g. LogitBoost

(Friedman et al., 2000) where the negative log-likelihood is minimized (and

therewith the likelihood is maximized). GAMBoost (boosting for general

additive models, Tutz and Binder, 2006), another member of this class of

boosting algorithms, is shortly explained in the following.

Assuming training data (yi,xi) a generalized additive model (see Chambers

and Hastie, 1992; chap. 6,7 and Hastie et al., 2009; chap. 9 for an introduction)

has the form

µi = E(yi|xi) = h(ηi) (2.44)

and

ηi = f1(xi1) + f2(xi2) + · · ·+ fp(xip) (2.45)
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h is a specified response function(9). The functions fj are unspecified smooth

(“nonparametric”) functions. In the case where ηi = xi
T β is a simple linear

predictor the model becomes a generalized linear model (GLM).

By changing the link function several distributions of the response can be

modeled, usually distributions of the exponential family including Gaussian,

binomial, and Poisson. With this general linear or general additive models

are a fairly general model family useful for many applications including not

only regression but also classification tasks(10). Several algorithms have been

proposed to estimate the additive model. Assuming a sufficiently smoothness

of the functions fj e.g. the backfitting algorithm (Hastie and Tibshirani, 1986)

can be used.

These algorithms works fine if the set of variables and the associated

smoothing parameters are fixed. In case of high-dimensional data (p > n

predictors) few most influential variables have to be selected. GAMBoost

uses maximization of the log-likelihood to estimate the additive model (an

introduction into Maximum Likelihood for model inference can be found in

Hastie and Tibshirani, 1986; chap. 8). When the distribution of yi|xi is from

the exponential family that means the conditional density of yi can be written

as

f(yi|xi) = exp

(
yiΘi − b(Θi)

φ
+ c(yi, φ)

)
(2.46)

where Θi is the canonical parameter and φ a dispersion parameter. Following

the boosting principle, GAMBoost fits simple base learners that means simple

functions of the variables

ηi = η(xi, γ) (2.47)

where γ is the parameter of the base learner. Now, a log-likelihood can be

formulated as a function of the desired parameter γ. Since the likelihood is,

under the assumption that the observations yi are independent of each other,

(9)Some authors, e.g. Chambers and Hastie (1992), use the notation g(µ) = η where
g = h−1 is called link function.
(10)For e.g. a binary outcome a Bernoulli distribution can be assumed.
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simply the product of the densities, the log-likelihood is the sum over the

log-densities of yi

l(γ) =
n∑
i=1

l(yi, ηi) (2.48)

=
n∑
i=1

yi Θi − b(Θi)

φ
+ c(yi, φ) (2.49)

Note, in this case the canonical parameter Θi is simply a function of the base

learner ηi and therewith a function of the feature vector xi and the parameters

of the base learner γ.

Often utilized functions in the field of non-parametric function estimation are

smoothing splines. The basic idea is to fit piecewise-polynomial functions to the

data. GAMBoost uses a special form of smoothing splines called B-splines(11)

as base learners. B-splines (basis splines) are a method of constructing a

function from simple basis functions which are defined recursively. The linear

combination of the basis functions forms the function estimate. The placements

of the knots and the degree of the B-Spline basis determines the smoothness

and the accuracy of the estimate. Figure 2.8 shows an example of B-spline

bases of degree 1, 2, and 3 in the interval [0, 1]. Figure 2.9 illustrates a linear

combination of cubic B-splines (B-spline basis of degree 3 shown the bottom

panel of figure 2.8). The desired parameter γ of the base learner is now simply

the weight of the spline basis functions and optional the placement of the knots.

GAMBoost uses component-wise smoothing. In every boosting step the

base learner is a function of only one variable that means only the contribution

of one single feature is considered in each step. As a consequence maximal

M (the number of boosting steps) variables can contribute to the final model.

Since the number of boosting steps is usually small compared to the number

of variables p, GAMBoost performs an implicit feature selection (Tutz and

Binder, 2006) and thus implements an embedded feature selection method.

(11)In Tutz and Binder (2006) GAMBoost is discussed with smoothing splines as well as
with stumps. Since the R implementation of GAMBoost uses splines, these are described
here.
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FIGURE 2.8. B-spline basis functions defined in the interval [0, 1]. The knots are placed
equidistant with a distance of 0.1 in the given interval. In the top panel basis functions of
degree 1 (constant functions) can be seen. The middle panel shows quadratic splines (degree
2). The bottom panel shows cubic B-splines, the most often used B-spline basis.
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FIGURE 2.9. B-spline basis expansion of cubic B-splines. The top panel shows different
weighted spline basis functions and the lower panel the sum of these basis functions and
therewith the linear combination of the B-spline basis.

To avoid overfitting Tutz and Binder (2006) used penalized B-splines also

called P-Splines (Marx and Eilers, 1998; Ruppert, 2002). Thereby many basis

functions are used but in a penalized form. As a consequence the log-likelihood

becomes a penalized log-likelihood

lp(γ) = l(γ)− 1

2
γT ∆ γ (2.50)

where ∆ is the penalty matrix penalizing differences in the parameters corre-

sponding to basis functions of adjacent knots. The more such differences are

penalized the smoother the fit will be and overfitting becomes less likely. The

degree of smoothing depends on a penalty parameter λ. Since the algorithm

fits the model component-wise, the penalty parameter also determines the size

of each boosting step and therewith the contribution of the variable chosen in

each step. Indirectly, this parameter controls the number of boosting steps to

perform and hence the maximal number of variables included in the model.

The likelihood based principle of GAMBoost can be extended to Cox models

(cf. section 2.2.1). In this case the predictor ηi is the linear predictor involving



. Boosting for Cox Models 

the variables xi
Tβ and instead of the log-likelihood the partial log-likelihood

(2.41) is used for maximization. The desired parameter is the coefficient vector

β and therewith an estimation of the hazard and the survivor function. By

using component-wise boosting as deployed by GAMBoost, the resulting fit

will be sparse that means most of the entries in the parameter estimation β̂

will be zero.

CoxBoost (Binder and Schumacher, 2008b) starts with a parameter estima-

tion β̂ = 0. In every boosting step m (1 ≤ m ≤M) and for each variable xji

(1 ≤ j ≤ p) a new linear predictor can be formulated

η
(m)
ji = η

(m−1)
i + xji γ

(m)
j (2.51)

where an estimate for η
(m−1)
i is given by the linear predictor from the previous

boosting step

η̂i
(m−1) = xi

T β̂
(m−1)

(2.52)

Similar to GAMBoost, the maximization of a log-likelihood function is used to

estimate η
(m)
i . Since the final model is a Cox model, instead of a true likelihood

the partial likelihood (2.41) described in section 2.2.1 is used as a penalized

partial log-likelihood

lp

(
γ

(m)
j

)
=

n∑
i=1

δi

[(
η̂i

(m−1) + xji γ
(m)
j

)
− log

( ∑
l∈R(ti)

exp
(
η̂l

(m−1) + xjl γ
(m)
j

))]

+
1

2
λ

(m)
j

(
γ

(m)
j

)2

(2.53)

By using η̂i
(m−1) as an offset the information from previous boosting steps is

incorporated. As before, the penalty parameter λ
(m)
j = λ determines the size of

the boosting steps (and therewith the amount of the contribution of the current

base learner and the current variable to the final model) and is typically the

same for all boosting steps and variables. It has to be chosen preliminarily

but only coarsely such that the resulting number of boosting steps M exceeds
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around 50 steps (Binder et al., 2009; Binder and Schumacher, 2009). Otherwise

the algorithm is too greedy and the resulting model too sparse.

Again, the Newton-Raphson algorithm is used to find estimates for γ
(m)
j

maximizing the partial log-likelihood. Hereby U(γ) = ∂l(γ)/∂γ is the score

function, the first derivative of the unpenalized partial log-likelihood, and

I(γ) = ∂2l(γ)/∂2γ is the information matrix which is simply the negative

Hessian of the unpenalized partial log-likelihood. Furthermore, let U
(m)
j = U(0)

and I
(m)
j = I(0) denote the evaluations of U and I at parameter value γ = 0.

Therewith, only one Newton-Raphson(12) is performed to get the estimate

γ̂j
(m) =

U
(m)
j

I
(m)
j + λ

(m)
j

(2.54)

The variables with index j∗ that maximizes the score statistic

j∗ = argmax
j

(
U

(m)
j

)2

I
(m)
j + λ

(m)
j

(2.55)

improves the fit the most in the current boosting step and the corresponding

parameter estimate γ̂
(m)
j is used to update the overall parameter estimate β̂ as

follows

β̂
(m)
j =

β̂
(m−1)
j + γ̂

(m)
j if j = j∗

β̂
(m−1)
j

(2.56)

Note, in case the variable was picked for the first time the corresponding

entry in β̂ is now changed from 0 to the current estimate and the variable is

included in the final model. That illustrates the fact that after M boosting

steps maximal M entries in β̂ can be unequal 0. Therefore, the number of

boosting steps determines the number of variables included in the final model.

Algorithm 3 summarizes CoxBoost.

(12)Binder and Schumacher (2009) noted that one step is enough since the same variable
can be chosen in subsequent boosting steps adjusting the coefficient of this variable.
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Algorithm 3 CoxBoost (Binder and Schumacher, 2008b)

1: initialize coefficient β̂0 = (0, . . . , 0)
2: for m = 1→M do
3: for j = 1→ p do
4: fit candidate model for variable j and determine γ̂

(m)
j via Newton-

Raphson
5: end for
6: determine winner model j∗ and add γ̂

(m)
j∗ to β̂

(m−1)
j∗

7: update linear predictor η̂
(m)
i = xi

T β̂
(m)

8: end for
9: final output is parameter estimation β̂ = β̂

(M)
from the Cox model

2.2.3 Pathboost

When building predictive models in the biomedical field, most often the variables

are gene expression data. While in former years gene expression measurements

were performed using microarrays nowadays there is a shift to next generation

sequencing technologies. Either way, the features available for a predictive

model are genes taking values which reflect the expression in the particular

samples. Usually gene expression data are measured genome wide yielding

several ten thousands to hundred of thousands of features. Boosting as described

in the previous section is capable of building a predictive model with various

outcomes (depending if the model is an additive model or a Cox model) while

performing a feature selection at the same time. That way a panel of genes

can be found with high predictive power for the particular problem.

However, for complex problems the performance of such models is usually

unsatisfactory caused by the fact that the set of genes found by the algorithm

is suboptimal. Like many other methods, boosting assumes independence of

the features. Of course this is an assumption that does not hold true for gene

expression data. Genes underlie complex regulatory mechanisms and are highly

influence by each other. It it known that for many cancer types whole pathways

are deregulated. Although sparse models resulting from feature selection are

easier to interpret, it is most likely that only one candidate gene of such a

pathway is picked for the model. Thus, it is hard to identify such deregulated

pathways based on the feature list. However, information about common

pathways and direct interactions are available in biological databases nowadays.
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Several techniques have been proposed to included these meta-information into

the model building process and feature selection Bellazzi and Zupan (2007);

Chuang et al. (2007); Johannes et al. (2010); Porzelius et al. (2011a); Rapaport

et al. (2007). Thereby, the overall goal is to improve the prediction performance

and get gene sets which are robust and better interpretable.

Componentwise likelihood-based boosting is particular suited to include

prior knowledge about feature relationships. The key lies in the iterative nature

of the method and the flexible penalty structure. Binder and Schumacher

(2009) proposed PathBoost, an extension to GAMBoost and CoxBoost, which

is briefly explained in the following using the example of CoxBoost.

Such prior biological knowledge can be represented as graph G where the

knots are the genes and the edges represents gene-gene interactions. These

interactions do not need to be actual regulatory interactions observable on the

protein level but can also represent e.g. common pathways or other similarities.

If a strength can be assigned to such a gene-gene interaction the corresponding

adjacency matrix contains not only 0 and 1 but entries gij ∈ [0, 1](13).

The feature selection must now not only consider the feature and its pre-

dictive power bit also the connectivity of the feature in this graph. The key

to include such knowledge into CoxBoost lies in the penalty term λ in the

penalized partial log-likelihood (2.53). Instead of assuming a fixed penalty

term for all variables and all boosting steps the penalty will be adopted during

the fitting process. Figure 2.10 illustrates the principle of PathBoost by means

of a little toy example with 4 genes.

Adapting the penalties during the fitting process requires two update rules.

At first, the penalty of the variable picked in the current boosting step λ
(m)
j∗

is increased making it less likely that the same variable will be picked again

in following boosting steps. For following boosting steps l > m the penalty

becomes(14)

λ
(mk+1)
j∗ =

I
(mk+1)
j∗

1−
(

1− I
(mk)

j∗

I
(mk)

j∗ +λ
(mk)

j∗

)cf − I(mk+1)
j∗ (2.57)

(13)Without a loss of generality it can be assumed that edge weights are scaled to the interval
[0, 1].
(14)In Binder and Schumacher (2009) a linear increase has been described. The here

mentioned sigmoid penalty increase is the default in the R implementation of PathBoost and
was used in this work.
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Here, mk is the boosting step where the feature was picked the kth time and

got a penalty update. The penalty update is only performed for features with

at least one connection. The penalty of features without a single connection

remains unchanged when they are picked.

The second update rule deals with the penalties of connected features and

is more complex. To account for the loss of variability caused by the increase

of the penalty of the selected variable the penalty of connected features j+ is

reduced in following boosting steps

λ
(m+1)

j+ =
(1− π(m)

j+ ) I
(m+1)

j+ gj∗j+

(1− cf )
(1−π(m)

j∗ ) I
(m+1)
j∗ gj∗j+

I
(m+1)
j∗ +λm

j∗
+

(1−π(m)

j+
) I

(m+1)

j+

I
(m+1)

j+
+λm

j+

− I(m+1)

j+

π(m) is the approximated fraction of the Maximum Likelihood estimate (ob-

tained via non-boosting estimation) that has been realized for the feature in the

mth boosting step (cf. Binder and Schumacher, 2009 for details). The degree of

the penalty decrease is influenced by the measure of uncertainty 0 < gj∗j+ ≤ 1

for the edge between feature j∗ and j+ in the graph G (the graph representing

the biological knowledge).

The decrease of the penalty of connected features increases the probability

of picking these features in future steps. Thus, it is therefore more likely to

pick features connected to features already included in the model.

The step-size modification factor cf takes values between 0 and 1 and

controls the influence of connection graph on the feature selection. For cf = 1

no connection information would be considered. This would result in a standard

CoxBoost fit. Small values of cf increase the influence of the prior knowledge.
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FIGURE 2.10. This example illustrates the basic principle of the PathBoost extension
based on a network with 4 genes. In step m gene A is chosen by the boosting algorithm

(either GAMBoost or CoxBoost). As a result the penalty of gene A λ
(m+1)
A is increases in the

next step. On the other hand the penalty of the three adjacent genes B, C, and D is decreased
according to the weight of the edge from gene A. In a biological network this might be the
strength of the interaction or the number of common pathways (scaled to the interval [0, 1]).
Note that the edges do not necessarily need a weight, the simple case where the adjacency

matrix contains only 0 and 1 is also allowed. In this example the penalty of gene D λ
(m+1)
D is

decreased the most and thus it is picked in step m+ 1.
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2.3 Other Methods Suited for Time-to-event Data

Here two other methods suited for time-to-event data are shortly introduced.

These two methods are often used competitors of boosting approaches when

embedded feature selection is needed. They both are suited for time-to-event

data and were used for comparison in this work.

2.3.1 Regularized Regression Methods

Lasso (Tibshirani, 1996) was proposed as a shrinkage regression models (Hastie

et al., 2009; chap. 3) implementing an embedded feature selection. The

regression coefficients are penalized with anL1 penalty term

β̂ = argmax
β

(l(β)− α||β||1) (2.58)

with a likelihood function l(β) suited for the outcome. While Ridge regression

uses an L2 (quadratic) penalty term the use of the absolute penalty forces

most of the entries in β̂ to be exactly 0 and therewith performs an embedded

features selection. Ridge regression performs a parameter shrinking leaving

most of them > 0. If a feature selection is needed a cutoff for the parameters

needs to be defined. On the other hand, if many variables with small effects

can be assumed Ridge regression might be a better choice. As a trade-off the

method yields large models that are harder to interpret.

Originally, Tibshirani (1996) proposed quadratic programming to solve

(2.58) for linear regression models. Tibshirani (1997) extended the idea of

Lasso to Cox proportional hazard models still based on quadratic programming.

Since the solution for Cox models is much more computationally intensive,

Goeman (2010) proposed a solution of the Lasso estimation based on gradient

ascent optimization. The associated R implementation (Goeman, 2011) was

used for comparison.

2.3.2 Random survival forests

The second method is based on decision trees. Here, the sample space is

divided into smaller subspaces based on single variables. The dividing process
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FIGURE 2.11. Example for a decision tree (adopted from Hastie et al., 2009). The
regression tree T divides the space of input samples into several subspaces S1, . . . , S5 based on
the variables X1, . . . , X4 and assigned split points t1, . . . , t4 in a hierarchical manner. A new
sample with feature vector x = (x1, . . . , x4)T can now be assigned to one of the subspaces.
The prediction of the tree for this sample is then simple the average of the training samples
in the given subspace, in this example S4. For a classification tree the prediction Ĉ(x) would
be simply the majority vote of the training samples in S4. Note, not all entries in x influence
the decision. In this example the value of x2 is irrelevant for the prediction.

is hierarchical and thus can be illustrated as tree. A formal definition can be

found in Alpaydin (2010):

Definition 2. Decision trees

A decision tree is a hierarchical model for supervised learning where the local

region is identified in a sequence of recursive splits in a smaller number of steps.

The tree is composed of internal decision nodes and terminal leaf nodes.

Each internal decision node implements a test function based on one variable

(univariate tree) or several variables (multivariate tree). Such a tree can then

be used for prediction. The test sample is assigned to a terminal leaf node (and

therewith a subset of the training samples) based on the test functions of the

internal decision nodes. The prediction is simply a majority vote over those

training samples (classification tree) or the average (regression tree). Figure

2.11 illustrates the basic principle of a decision tree.
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The structure of the tree is not fixed a priori but has to be learned together

with the decision functions of the internal nodes. Several approaches have

been proposed to learn such a tree based on training data, e.g. the CART

(Classification and Regression Trees) algorithm (Breiman et al., 1984) and C4.5

(J. R. Quinlan, 1993).

After learning the structure and internal test functions a tree is a simple

and easy to interpret prediction model learned from the data. The simplicity

comes with a price. Decision trees usually have a high variance based on an

inherent instability. Slight changes in the data could cause a complete different

series of splits and an error in the top of the hierarchy is propagated through

the whole structure.

A solution for this problem was found by Breiman (2001). Instead of learning

one single tree, B trees are trained and their predictions are averaged. Similar

to Bagging (bootstrap aggregation, Breiman, 1996) the single trees are trained

on bootstrap samples of the original training, introducing a randomization to

the data, thus the name of the method: Random forests. Additionally, during

the tree growing process before choosing a split point, m ≤ p predictor variables

are chosen as candidates for the split. The resulting trees are (for large B)

uncorrelated and reduce the variance of the overall prediction model.

The parameters B and m have to be determined a priori. After fitting the

trees the prediction of a training sample with feature vector x is given by

ŷ = f̂Brf (x) =
1

B

B∑
b=1

T (x, γb) (2.59)

for a regression problem and by

ĝ = ĈB
rf = majority vote{Ĉb(x)}B1 (2.60)

for a classification problem. Thereby, Ĉb(x) is the class prediction of the b-th

decision tree.

Random forests perform remarkably well for most situations with little

tuning efforts (see Hastie et al., 2009; chap. 15 for a comprehensive overview

and comparisons to boosting). Additionally it performs an embedded feature
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selection and can deal with variables on different scales, making it a good choice

for high-dimensional heterogenous data sets.

Ishwaran et al. (2008) proposed an extension of Random forests suited for

right censored survival data called Random survival forests (RSF). Following

the principles of Random forests a collection of binary decisions trees is built

from bootstrap samples. For the internal nodes of each tree a random set of m

variables is chosen. The variable with corresponding split point that maximises

the survival difference between the two resulting daughter nodes is used for the

split. A terminal node is created when no more split can be performed e.g. a

specified number of unique events is reached. The authors also provide an R

implementation of their method (Ishwaran and Kogalur, 2007) which was used

in this work.

2.4 Model Assessment and Selection

Model assessment and, if several models are available, the choice which model is

best suited for the given data are one of the fundamental problems in statistical

learning. Several measures can be considered when judging the quality of a

certain model or learning algorithm.

For a prediction model as introduced in the previous sections the most

important measure is the generalization performance as a measure for its pre-

diction capabilities on yet unknown data. The assessments of this performance

is fundamental since it not only guides the choice of the learning algorithm but

allows the evaluation of the final model and therewith the prediction results.

Per definition the generalization performance is unknown during the learning

process. The next section introduces some terms and concepts leading to an

estimate of this performance called .632 bootstrap estimate. Several other

estimates exists and the interested reader is referred to Hastie et al. (2009;

chap. 7) for more details and comparison.
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2.4.1 Introduction to Test- and Training Error

Let T denote the training set used for fitting the model that means the set

of samples where the variables xi and the outcome yi is known. The training

error is given by

err =
n∑
i

l(yi, f̂(x)) (2.61)

with a given loss function l. Since the prediction error is calculated at the same

data as the model was fitted err usually overestimates the performance of the

model and the underlying learning algorithm. Thus, it is a poor estimate for

the generalization performance. A more realistic estimate is given by the so

called test error or generalization error, the prediction error on an independent

test sample

ErrT = E
[
l(yj, f̂(xj) | T

]
(yi,xj) /∈ T (2.62)

which needs a test set on the side. Figure 2.12 shows a comparison of the

training- and test error as function of the model complexity.
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FIGURE 2.12. The figure illustrates the training error (blue line) and the test error (red
lines) as a function of the mode complexity. The training error (prediction error on the
training set) decreases continuously with increasing model complexity and can even drop to
zero if the model gets complex enough. The test error (prediction error on the test set) on
the other side increases after a first drop. At this point the model starts to overfit and learns
noise instead th functional relationship between the outcome y and the variables x (adapted
from Hastie et al., 2009).
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Clearly, the training error err is biased downward compared to the test

error. It can even drop down to 0 if the model gets complex enough. Such a

model is usually too adapted to the training set T and is therewith overfitted.

Therefore the test error ErrT for such a model is high. Such a model does

not only reflect the underlying functional relationship between the outcome Y

and the variables X but includes additional noise. Hence, the generalization

performance is poor.

Equation (2.62) shows that the test error is still dependent on a fixed

training set T . The expected test error can now be defined as

Err = E
[
l(y, f̂x)

]
= E [ErrT ]

(2.63)

Note, the expected test error integrates over all possible training sets and

is therefore independent. It is the desired error to judge the generalization

performance of a particular model and hence several strategies have been

proposed to estimate Err. With such estimates the two problems mentioned

at the beginning of this section can be addressed

1. Model Selection

If a learning algorithm is parameterized with a tuning parameter (e.g.

the number of boosting steps M) the optimal model can be determined

based on the lowest Err.

2. Model Assessment

If a final model has been fitted the performance of this model is given by

an estimate of Err.

2.4.2 K-fold Cross-Validation

The first task, model selection, was performed using a theoretical concept called

K-fold cross-validation (Allen, 1974; Kohavi, 1995; M. Stone, 1974). Thereby,

the available data are split into K equal sized subsets. Different models (with

different model parameters) are trained on the remaining subsets and tested in

the chosen subset. This is done for every of the K subsets. After all subsets
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have been used as test set every sample in the data set was used for prediction

once. The resulting cross-validation estimation of the Err is given by

ÊrrCV =
n∑
i=1

l(yi, f̂
−κ(i)(xi) (2.64)

where κ : {1 . . . , n} 7→ {1, . . . , K} is an indexing function mapping a sample

to the subset it belongs to. Hence f̂−κ(i)(xi) is the function, fitted with the

subset with (yi,xi removed. The model with a parameter set minimizing (2.64)

is chosen. Typical choices for K are 5 or 10. In the extreme case K = n a

special form, the so called leave-one-out cross-validation is used.

Cross-validation can be also used for the task of model assessment. In this

case the available data have to be split in a nested fashion. The so called

outer cross-validation is used for assessment of the best model. The best model

can be found by splitting the training subsets again and performing the inner

cross-validation.

2.4.3 Bootstrap and the .632 Error Estimator

For smaller K the training sets become small compared to the whole data set.

As a consequence cross-validation overestimates the generalization error and

underestimates the performance of the model. For large K the variance of

the estimation becomes higher since the training sets become more and more

similar to each other(15). Considerable sizes of K are 5 and 10 (Breiman and

Spector, 1992; Kohavi, 1995). The leave-one out cross-validation is considered

near unbiased and is therefore often used despite the problem of high variance.

However for large sample sets the computational overhead of leave-one-out

compared to the 5- or 10-fold procedure is considerable.

Because of the high variance of the cross-validation estimator other methods

for estimating the prediction performance have been proposed. Bootstrap in

general is a method to assess the accuracy of an estimator. The basic idea is

to draw random samples with replacement from the original data, each of the

size of the original set. A given estimator is computed for all bootstrap samples.

(15)In the extreme case K = n, the leave-one-out cross-validation, the several training sets
differ only by one sample.
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Besides the estimator itself the variance of the estimation can be determined

assuming enough bootstrap samples were drawn.

Estimating the expected prediction error Err is carried out the same way.

However to determine a realistic estimate of Err the observations in one

bootstrap sample cannot be used for both, fitting the model and predicting

the outcome. Also prediction of the original training data would lead to an

underestimation of the generalization error since a bootstrap sample overlaps

with the training data. Similar to a cross-validation procedure a split in training

and test data is needed.

Since a bootstrap sample is drawn with replacement from the original data

set, some observations will picked more than once and hence other observations

are omitted. More precisely the probability to pick an observation i in bootstrap

sample b is

P (i ∈ b) = 1−
(

1− 1

n

)n
≈ 1− e−1

= 0.632

(2.65)

As a consequence approximately 63.2 % of the original data are in one bootstrap

sample. By using these observations for fitting the model, the remaining data,

the out-of-bag data can be used for testing. The bootstrap estimation of the

test error, the leave-one-out bootstrap estimate (Efron, 1979), is then given

by(16)

Êrrboot =
1

B

B∑
b=1

1

|C−b|
∑
i∈C−b

l(yi, f̂
∗b(xi) (2.66)

Here, f̂ ∗b(xi) denotes the prediction at xi of the model fitted using the b-th

bootstrap sample. The set C−b contains the set of indices i of observations

belonging to the b-th test set (out-of-bag data of the b-th bootstrap sample).

Since only 63 % of the available data are used for fitting the single models

(2.66) suffers from the same bias as the cross-validation estimate ÊrrCV for

smaller K. It overestimates the prediction error.

(16)Efron and Tibshirani (1997) pointed out that the leave-one-out bootstrap estimator can
be seen as a smoothed version of the leave-one-out cross-validation estimator. The smoothing
results in reduced variance of the estimation.
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A solution for this problem was found by Efron (1983) and is based on

(2.65). The so called .632 bootstrap estimator alleviates the training-size bias

by averaging over the test- and training error

Êrr.632 = .368 · err + .632 · Êrrboot (2.67)

where err is training error on the original data. The interested reader is referred

to Efron and Gong (1983) for a detailed derivation of (2.67). In addtion the

single bootstrap test errors instead of the averaged one can be used in (2.67).

This allows the estimation of the variance of Êrr.632 and thus gives a hint how

stable the prediction performance of a certain learning algorithm is.

In settings where a high overfitting is possible (e.g. settings where err = 0)

the .632 estimator is biased downward. Efron and Tibshirani (1997) proposed

a correction by taking into account the amount of overfitting. The resulting

.632+ estimator corrects the downward bias. The amount of overfitting is given

by the no-information error rate. This rate can be estimated by for example

shuffling the outcome yi. Based on the no-information error rate a relative

overfitting rate R̂ can be defined. It ranges from 0 indicating no overfitting

(err = Êrrboot) to 1 where the overfitting reaches the no-information value (for

details cf. Efron and Tibshirani, 1997). The .632+ estimator is given by

Êrr.632+ = (1− ŵ) · err + ŵ · Êrrboot (2.68)

with weights

ŵ =
0.632

1− 0.368 R̂
(2.69)

Êrr.632+ ranges from Êrr.632 in case no overfitting occurs to the leave-one

out bootstrap error err = Êrrboot when there is heavy overfitting. It can be

seen as compromise between the training error and the bootstrap estimator

depending on the degree of overfitting. Note that the calculation of Êrr.632+

is computationally more expensive since the no-information rate has to be

estimated.



 Material and Methods

2.4.4 Prediction Error for Time-to-event Data

The estimates of the generalization- or test error Êrr introduced in the last

section need a loss function l(yi, f̂(xi)) to measure the deviance between the

outcome yi and the model prediction based on the variables xi. In a classification

or simple regression setting one could simply choose the misclassification rate,

the exponential loss, or the Huber loss (cf. section 2.1). For time-to-event data

the situation is more complex. After fitting a Cox model the risk prediction

(2.43) is a function of time describing the predicted probability of still being

event free at time t given a set of variables. Let Yi(t) denote true event state

of individual i at time t

Yi(t) =

1 Ti > t

0 otherwise
(2.70)

Here Ti denotes the true (and possibly unknown) event time of individual i.

The given time ti is the minimum of Ti and the censoring time Ci.

To assess the quality of these predictions the Brier score

BS(t) = E

[
1

n

n∑
i=1

(Yi(t)− r̂(t|xi))
2

]
(2.71)

can be used (Graf et al., 1999), describing the average discrepancy between the

event states and the model predictions. Due to censoring, inverse probability

of censoring weights (Gerds and Schumacher, 2006; Graf et al., 1999) have to

be used to obtain consistent estimates of (2.71). By tracking this empirical

version of the Brier over time, prediction error curve estimates are obtained:

PEC(t) =
1

n

n∑
i=1

(
Yi(t)− r̂(t|xi)

)2

W (t, i) (2.72)

with weights

W (t, Ĝ, i) =
I(ti ≤ t, δi = 1)

Ĝ(ti)
+
I(ti > t)

Ĝ(t)
(2.73)



. Model Assessment and Selection 

0 10 20 30 40 50

Time t [months]

P
E

C

0.00

0.05

0.10

0.15

0.20

0.25

0

0.051

0.140.14

0.17

0.2

0.23
0.24

0.25 0.25 0.25
0.24

IPEC=10.56

FIGURE 2.13. Example of the prediction error curve (PEC) and the integrated prediction
error curve (IPEC) of the glioma dataset. The solid red curve shows the PEC based on a
Kaplan-Meier risk prediction estimate. The area under the curve is the corresponding IPEC.
The numbers on the curve give the error estimated at the event times of the patients (for a
better readability only every second event time point was used). Note that the KM estimate
of the Survivor function do no take into account any variables. As a reference the PEC
from a Cox model including variables Group, Age, and Histology is given (blue dashed line).
The benefit of the additional variables in the Cox model compared with the non-parametric
estimation of the Kaplan Meier is obvious.

where Ĝ(t) denotes a consistent estimate of the conditional probability of being

censored at time t. In this case the Kaplan-Meier estimate can be used (Graf

et al., 1999). By integration over time the integrated prediction error curve

(IPEC) is obtained. Figure 2.13 shows an example of the PEC based on the

glioma data set (cf. table 2.1).

If the risk prediction model in (2.72) is trained using all data, (2.72) denotes

the training error or apparent error err(t, r̂). Now, a bootstrap estimate of the

test error can be formulated

Êrrboot(t, r̂) =
1

B

B∑
b=1

1

C−b

∑
i∈C−b

(
Yi(t)− r̂b(t|xi)

)2

W (t, i) (2.74)
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where r̂b denotes the risk prediction of the model trained on the b-th bootstrap

sample. The definition of the .632 estimator is now straight forward. The .632+

estimator is given by

Êrr.632+ = (1− w(t)) · err(t, r̂) + w(t) · Êrrboot(t, r̂) (2.75)

where weights w(t) are adapted for right-censored time-to-event data according

to Gerds and Schumacher (2007).

2.5 MicroRNA Target Predictions

miRNAs are key regulators of gene expression (cf. section 1.1.3.2). Hence,

the knowledge about potential targets is the key for the understanding and

analysis of miRNA data. Since the experimental validation of a miRNA-mRNA

interaction is time-consuming, in-silico predictions of miRNA targets are an

important source of knowledge.

A variety of target prediction algorithms and databases exist (cf. Panagiotis

et al., 2009 for an overview). Two approaches were considered in this work.

The first is the MicroCosm target prediction database(17) (Griffiths-Jones et al.,

2006, 2008). The MicroCosm target prediction pipeline is based on the miRanda

algorithm (Enright et al., 2003; John et al., 2004). miRanda is a three-phase

method. At first, dynamic programming alignment is used to find matches

between miRNAs and the 3’ UTRs of potential targets. A weighted scheme is

used to reward matches at the 5’ end of the miRNA. Alignments with more

than one mismatch in the seed region of the miRNA are discarded. The result

is a score for a sequence match between a miRNA and a potential target gene.

Afterwards the free energy ∆G for each miRNA-mRNA match found in the

first phase is computed using the Vienna algorithm (Wuchty et al., 1999). The

third phase is mandatory and gives information how conserved a target site is

across different species.

Additionally a p-value is calculated based on an extreme value distribution

as described in Rehmsmeier et al. (2004). The p-value is solely based on the

miRanda scores without taking into account thermal stability or cross-species

(17)formerly miRBase Targets, version 5
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conservation. It it a measure for the significance of a certain miRNA-mRNA

pair. Only matches with a p-value lower then 0.05 are reported in the target

prediction database. Although the thermal stability and conservation of target

sites are not considered, miRNA-mRNA pairs with a very low p-value tend to

have conserved target sites and a low free energy.

For this work the target predictions were downloaded as miRNA-mRNA

pairs together with the assigned p-value (transcripts were given as Ensembl(18)

transcript identifiers).

A second target prediction database has been used for comparison. The

TargetScan predictions (version 5.5, Friedman et al., 2009; Lewis et al., 2005).

TargetScan does not use thermodynamic stability but rely solely on matches

between miRNA seeds and highly conserved regions of UTRs (3’ UTR of

potential target mRNAs). Since only k-mers (6,7, or 8) of the seed region of

a miRNA are considered the predictions are valid for whole miRNA families.

The algorithm uses alignments of 3’ UTRs of different species and searches

for well conserved matches to the seed region of miRNAs. As mentioned in

section 1.1.3.2 miRNA target sites are found to be highly conserved across

multiple species which is another hint for the importance of miRNA mediated

gene expression regulation.

Since mRNA sequences can be conserved for many reasons beyond miRNA

targeting the conservation of a match to a miRNA seed is not sufficient.

Additionally, a background conservation has to be estimated. For example, a

well conserved targets site within a rapidly evolving UTR is far more likely

conserved due to miRNA targeting than a site in a highly conserved UTR and

therewith a more promising candidate.

Similar to MicroCosm, TargetScan provides a p-value as a measure of

certainty for miRNA-mRNA match. The TargetScan database contains PCT

which is approximately equal to ( S
B
− 1)/ S

B
. S

B
is an estimated signal-to-

background ratio calculated using controls of equal size as the miRNA target

sites (cf. Friedman et al., 2009 for details). Thus, PCT is the Bayesian estimate

of the probability that a specific target site is conserved due to miRNA targeting

and not by chance. 1−PCT is an estimate of the false discovery rate (FDR) and

(18)The Ensembl project (www.ensembl.org, Flicek et al., 2012) provides genomic information
with a focus on the human genome
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can be used to assess the biological importance of a particular miRNA-mRNA

pair.

TargetScan predictions were downloaded as pairs of miRNA families and

mRNAs together with the PCT values (transcripts were given as RefSeq(19)

transcript identifiers). The miRNAs were matched to their families such that

at the end every miRNA in one family was assigned to the same targets.

2.6 Data Set

A prostate cancer data set from Taylor et al. (2010) was used in this study. Raw

expression data from Affymetrix Human Exon 1.0 ST arrays were obtained

from the NCBI GEO data repository(20) (GEO accession number GSE21034)

comprising 131 samples of tumor patients. Furthermore, miRNA expression

data from the Agilent microRNA V2 were downloaded (GEO accession number

GSE21036) including 113 samples of tumor patients.

2.6.1 Data Preprocessing

Preprocessing and especially normalization is a crucial part in the microarray

analysis (cf. section 1.1.4 for an introduction to microarrays). A typical

preprocessing consists of 3 steps

1. background correction

2. summarization of probe intensities

3. normalization

A laser is used to create the image of the array. The first step, the background

correction, is used to correct for noise caused by reflections of the array (cf.

Ritchie et al., 2007 for an overview).

Normalization is used to remove any systematic effects arising from the

microarray technology rather than from the biological experiment. In a first

(19)The Reference Sequence database (RefSeq) is a collection of genomic, transcript, and
protein records (Pruitt et al., 2012).
(20)The Gene Expression Omnibus (GEO, Barrett et al., 2011) is a public repository for

high-throughput microarray data.
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step, within-array normalization removes local effects from the probe intensities

that are based on different hybridization efficiency across the array. Especially

for spotted two-color arrays, this was an important step in the preprocessing (cf.

Smyth and Speed, 2003; Yang et al., 2002 for an overview). On the other side,

modern one-color arrays and hybridization protocols have reached a quality

level that obviates the need for within-array normalization.

The next step is the summarization of the probe intensities. Modern gene

expression microarrays, like the Affymetrix Human Exon 1.0 ST used in this

data set, contain several probes for one gene. After background correction

a signal intensity is associated to every spot and therewith every probe on

the microarray. The aim of the summarization step is to calculate one gene

expression value based on the single probe intensities.

Between-array normalization is intended to achieve consistency and there-

with comparability between the arrays of one experiment. It eliminates variation

of non-biological origin between the arrays e.g. differences in the RNA extrac-

tion efficiency.

The gene expression data for the prostate cancer data set used in this work

were derived from the raw data files using Robust Multichip Average (RMA,

Irizarry, 2003) implemented in the Affymetrix Power Tools. RMA realizes a

background correction via a linear model and a robust probe summarization for

Affymetrix microarrays. Afterwards the data were normalized using quantile

normalization as proposed by Bolstad et al. (2003). Quantile normalization is

an often used normalization method that is suited not only for gene expression

data. The method adapts the distributions of the expression values of each

array by equalising their quantiles, hence the name quantile normalization.

Raw data files from miRNA expression data were analyzed using the R-

package limma (Smyth, 2005). Each miRNA was represented by 16 probes

(replicates) on the array. The replicates were summarized using the sample-wise

median. Again, quantile normalization was used to remove inter-array variation.

At the end only tumor samples with gene expression as well as miRNA

expression data were used yielding a data matrix with 98 tumor samples, 17881

transcripts (mRNAs), and 723 miRNAs.
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2.6.2 Biochemical Relapse Status

Clinical parameters of the patients samples were downloaded from the supple-

mental material of Taylor et al. (2010). The time to the biochemical relapse

and the censoring status for 98 cancer patients were available. Of these 98

patients 18 suffered a relapse and 80 were censored.



Chapter 3

Results and Discussion

3.1 Graph-Based Fusion of miRNA and mRNA Expres-

sion Data

Due to their role as posttranscriptional regulators of around 30 % of the

human genome and their involvement in crucial cellular processes such as cell

proliferation, differentiation and apoptosis, miRNAs were subject of numerous

studies in the past years. Large genome wide screening studies as well as

functional studies revealed an involvement of miRNAs in the development and

progression of cancer in general (Garzon et al., 2006; Groce, 2009; Lu et al.,

2005) and particularly in prostate cancer (Brase et al., 2011; Coppola et al.,

2010).

Since miRNAs are shorter than mRNAs they are more stable and in general

more resistant against degradation processes than the longer mRNAs. Conse-

quently, miRNA expression is measurable even in serum (Brase et al., 2010)

and paraffin-embedded tissues where mRNA expression is hardly detectable.

Therefore, miRNAs are proper candidates for biomarkers and indeed several

studies were conducted to identify miRNAs with diagnostic and prognostic

potential (Brase et al., 2010).

Genome wide measurements of mRNA expression has been a common

method to identify patterns and potential biomarkers in biomedical research,

especially cancer research. In fact, panels of mRNA markers gained from

genome wide studies (Paik et al., 2004; van ’t Veer et al., 2002; Wang et al.,
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2005) are now used in clinical routine to aid clinician’s treatment decisions

in breast cancer. However, for prostate cancer the prognostic potential from

mRNA markers remains unsatisfactory (Tosoian and Loeb, 2010).

The regulatory nature of the miRNAs together with nowadays abilities of

genome wide miRNA expression studies makes the integration of mRNA and

miRNA expression data a logical step towards the understanding of posttran-

scriptional regulations. Indeed, several studies have combined gene and miRNA

expression data (Cho et al., 2011; Nymark et al., 2011) or gene expression data

with miRNA target predictions (Cheng and Li, 2008) to infer new miRNA

regulation activities. In addition, several tools have been developed to integrate

such data (Huang et al., 2011; Sales et al., 2010). In most cases, correlations

between mRNA and miRNA expression profiles gained from matched samples

and target prediction scores are the central element in the analysis.

Furthermore, a combined prediction model with mRNA and miRNA ex-

pression data, a fusion of these data sets, could improve prediction of clinical

endpoints and finally lead to candidate biomarker panels consisting of both:

miRNAs as the regulators and genes as the effectors. In most cases only mR-

NAs or miRNAs are used to build a predictive model, only a few approaches

have been proposed to integrate mRNA and miRNA data to discover novel

regulatory relations or to build combined prediction models (Buffa et al., 2011).

A central problem in these high-dimensional data is the tendency to overfit.

When integrating several omics data sets the number of features increases what

makes the feature selection even more important.

Here, a method capable to fuse mRNA and miRNA expression data in a

model to predict a clinical endpoint is introduced (Gade et al., 2011). Given

genome wide mRNA and miRNA expression data are available from the same

patients the method estimates the regulatory relationships of miRNAs and

genes. These estimations can be represented as a graph. Both datasets together

with the graph are than used in the prediction model. Likelihood boosting

(Binder and Schumacher, 2008b; Tutz and Binder, 2006, cf. section 2.2) was

used as a method for fitting prediction models because of its performance

and its ability to implicitly select features in the training process. The graph

holding the regulation estimates is thereby used to guide the feature selection
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leading to better predictions and more stability in resulting feature sets. The

workflow of the method is shown in figure 3.1.

As a first step the regulatory relations between miRNAs and mRNAs are

estimated. Two sources of informations are considered for this estimation. The

first are the expression profiles of the n patients. Based on what is known so far,

binding of a miRNA to the target mRNA leads in most cases to the degradation

of the target mRNA, which is measurable by gene expression arrays. As a

consequence the expression profiles of the miRNAs and their target mRNAs

are correlated. Here, the Pearson correlation coefficient ρ(i, j) was calculated

for every mRNA i (1 ≤ i ≤ p1) and miRNA j (1 ≤ j ≤ p2). The correlation

coefficient can be tested for a significant shift from zero leading to a p-value

for every mRNA-miRNA pair

pcori,j = P (H0 :ρ(i, j) = 0)

∀ i ∈ [1, p1], j ∈ [1, p2]
(3.1)

In a genome wide setting the number of tests is enormous (p1 × p2) and a high

false discovery rate can be expected. Thus, the resulting p-values have to be

corrected e.g. with the method from Benjamini and Hochberg (1995). In the

following pcori,j refers to the corrected values.

A strong correlation of the expression profiles of a mRNA-miRNA pair

does not necessarily imply a direct regulation but can be caused by secondary

interactions(1). A direct regulation requires a sequence match of the seed region

of the miRNA and the 3’ UTR of the target mRNA. A logical step is to include

knowledge about sequence similarities between miRNAs and mRNAs. More

advanced are target predictions based on not only similarity between the seed

region of the miRNA and the 3’ UTR of the mRNA but also thermal stability

of the resulting mRNA-miRNA complex and the evolutionary conservation of

the mRNA binding site.

The target predictions from MicroCosm (Enright et al., 2003, cf. section 2.5)

provides a score reflecting the sequence similarity. Additionally, a theoretical

distribution under the null hypothesis that no binding occurs is derived for the

scores. At the end a p-value for a possible mRNA-miRNA complex is provided.

These p-values ppredi,j are the second source of information used in the method.

(1)Secondary interactions in this case mean indirect regulatory relationships.
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mRNA/miRNA data set
n patient samples

p1 mRNAs
p2 miRNAs

Expression profile
correlation

(from patient samples)

pcori,j = P (H0 : ρ(gi,mj) = 0)

1 ≤ i ≤ p1 ∧ 1 ≤ j ≤ p2

Target predictions
(external information)

ppredi,j

1 ≤ i ≤ p1 ∧ 1 ≤ j ≤ p2

Combination

pcombi,j = combine(pcori,j , p
pred
i,j )

Bipartite graph

W = wi,j = 1− pcombi,j

Prediction: 500 bootstrap samples

bootstrap sample
(≈ 63 % training data)

inner 10-fold CV to optimize M ,
train boosting model with best
M and graph W

out-of-bag data
(≈ 37 % test data)

test model

calculate .632
error estimator

FIGURE 3.1. The workflow of the proposed method to fuse miRNA and mRNA expression
data from the same patients in one prediction model (Gade et al., 2011).
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They reflect the probability that a miRNA j is actually capable of binding

mRNA i and strengthen the importance of the connection of a mRNA i and

a certain miRNA j in the case where i is a predicted target of j. Since the

MicroCosm target database holds only mRNA-miRNA pairs with a p-value

below 0.05 the p-values of pairs not present in MicroCosm were set to 1.

Finally, two p-values are obtained for a possible mRNA-miRNA pair. Having

p-values is favourable since they are independent of the underlying target

prediction score and the number of samples is already taken into account

when estimating the correlation between the mRNA and the miRNA. Another

advantage is that with the two p-values a combined overall hypothesis can be

formulated.

In the statistical field of meta-analysis several methods have been formulated

allowing the integration of p-values (Davidov, 2011; Loughin, 2004; Zaykin

et al., 2002). The method used here was proposed by Stouffer et al. (1949) and

uses z-scores of the single p-values to get a combined one

pcombi,j = 1− Φ

(
1√
2

(
Φ−1(1− pcori,j ) + Φ−1(1− ppredi,j )

))
(3.2)

where Φ(x) =
∫ x
−∞

1√
2π
e

z2

2 dz is the probability distribution function of the

standard normal distribution. This combination is a central part of the method

leading to well distributed combined p-values that reflect the possibility of a

binding between miRNA and mRNA (ppred) and the effect of a possible binding

to the mRNA level in the cell (pcor).

The combined p-values can easily be transformed into weights

wi,j = 1− pcombi,j (3.3)

The resulting matrix of weights W = wi,j can be viewed as the p1×p2 adjacency

matrix of a bipartite graph W containing the estimations of the regulatory

relationships between mRNAs and miRNAs.

The graph W is interpreted as a directed graph with edges from mRNAs

to miRNAs. Together with likelihood boosting the graph is used to guide the

feature selection. Thereby weight is transfered from the mRNAs to the miRNAs.

This is done similar to the idea of Pathboost (Binder and Schumacher, 2009, cf.
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section 2.2.3). But instead of graphs describing biological pathway knowledge

the mRNA-miRNA graph W with the regulatory estimations is used. Every

time an mRNA i is picked the penalties λ of miRNAs connected to i are lowered

according to the weight of the connection (cf. section 2.2.3 for details). As a

consequence it is more likely to choose a miRNA j highly correlated and being

a predicted regulator of i in one of the next boosting steps. miRNAs with a

connection with high weight to i are likely to be a direct regulator of i and can

be assumed to be important for the outcome as well.

To get an impression how well the final model can predict the outcome the

error has to be estimated. Here, the .632 error estimator (cf. section 2.4.3) is

used with 500 bootstrap samples. For every bootstrap sample the number of

boosting steps M is optimized via a 10-fold cross-validation (cf. section 2.4.2).

After fitting the model including mRNA and miRNA expression data and the

graph W the resulting model is tested on the out-of-bag data. Together with

the training error the .632 error estimator of the test error can be computed.

3.2 Evaluation of the Method

The new method was evaluated with different objectives in mind using the

prostate cancer dataset from Taylor et al. (2010) (cf. section 2.6). As the

clinical endpoint of interest the time to biochemical relapse (BCR) was chosen

(cf. section 2.6.2). Since these are time-to-event data, CoxBoost was used for

fitting the model and the PEC and the IPEC (cf. section 2.4.4) were used as

error measurements.

The first question to answer was if the bipartite graph W together with

the mRNA and miRNA expression data can improve the prediction error

compared to models fitted with only the single data sets (cf. section 3.2.1). As

mentioned before, every model was fitted and evaluated with 500 bootstrap

samples resulting in 500 IPEC for every model. To be able to compare the

different model prediction errors the same bootstrap samples were used to fit

each of the models. The model were fitted using the CoxBoost R package

(Binder, 2010). The parallel evaluation of the models and the calculation of the

IPEC was performed using the R package peperr (Porzelius and Binder, 2010).
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The second question concerns the feature selection. By transferring weight

from the mRNAs to the miRNAs by using the graph W , the miRNA are favored

during the feature selection process. The question was if this is observable in

the feature lists of the models. Several authors pointed out that additional

knowledge can improve the stability of the selected features and therewith

improve the interpretability of the results (Johannes et al., 2010). Thus, it had

to be clarified if the graph also improves the stability of the feature selection

(section 3.2.2).

The estimation of the graph W is done using all available samples. Though

no information about the outcome is used, there might be a risk of overfitting.

As pointed out by Ambroise and McLachlan (2002) all modeling steps should be

included in the error estimation procedure (bootstrap in this case). Excluded

from this general rule are unsupervised screening steps, e.g. variance based

filtering of features (Hastie et al., 2009). Therefore, section 3.2.3 examines the

influence of the use of the whole dataset when estimating the bipartite graph

W .

The influence of a different target prediction algorithm is elucidated in

section 3.2.4. Finally, section 3.2.5 includes a comparison with two state-of-

the-art methods suited for time-to-event data.

3.2.1 Evaluation of the Prediction Error

To test whether the graph W improves the prediction accuracy by increasing the

probability of selecting miRNAs with connections to already chosen mRNAs,

CoxBoost was trained on both data sets, not given the graph information, and

on the single data sets. To assure a comparability of the prediction models

a common penalty of 1296 was determined such that the number of boosting

steps exceeds 50 in every case (table 3.1 lists the optimal number of boosting

steps for every model).

The 500 .632 estimators for the PEC and IPEC were calculated based on

pre-calculated bootstrap samples. The first question to answer was if the graph

improves the prediction accuracy. Figure 3.2 shows the PEC (averaged over

the 500 bootstrap samples) of the CoxBoost model trained with and without
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Optimal Number of
Boosting Steps M

only miRNA 98
only mRNA 100
both no graph 99
both with graph 99

TABLE 3.1. The table shows the optimal number of boosting steps M for every CoxBoost
model. The optimal number of steps was determined using a simple cross-validation procedure
on the single and combined data sets. The number of steps that minimizes the average
log-partial likelihood is considered optimal (Binder, 2010).

the graph when given mRNA and miRNA expression data(2). The graph

with regulatory relations clearly improved the model in terms of prediction

error. To take into account the variance of the prediction errors the 500 IPEC

(.632 estimation) resulting from the 500 bootstrap samples were compared. In

addition to the models with and without the graph, two CoxBoost models

were trained using only the single data sets (mRNA and miRNA expression

data alone). The results are shown in figure 3.2. The medians of the resulting

500 IPEC and their interquartile ranges (IQRs) are given in table 3.2. To test

whether the differences of the IPECs are significant, a one-sided Wilcoxon test

was carried out between the single models without a graph and the model

incorporating the bipartite graph. For every three risk prediction models

without graph information the difference was significant assuming a significance

level of 0.05.

Several authors pointed out that in high overfitting settings the .632 esti-

mator is biased downward and thus the prediction accuracy is overestimated

(Efron and Tibshirani, 1997). The .632+ error estimator corrects for this for

the cost of a higher computational complexity (cf. section 2.4.3 for a definition

of the .632+ estimator). Although, in the comparative setting used in this

work, bias is probably of minor importance, additional tests have been carried

out comparing the IPEC .632+ estimations of the single models. Table 3.2

summarizes the results.

Both expression data sets together with the graphW improved the prediction

error significantly compared to the model without the graph. There was no

(2)The data where scaled to ensure a mean of 0 and a standard deviation of 1 for all mRNAs
and miRNAs
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FIGURE 3.2. The upper figure shows the prediction models trained with (red line) and
without (gray line) the bipartite graph describing the relations between the features. The
incorporation of the graph resulted in a reduction of the prediction error. The .632 estimation
of the prediction error was used in this plot averaged over the 500 bootstrap samples. As a
reference (dashed line) the prediction error of the Kaplan-Meier estimator (cf. section 2.2.1)
is shown. The lower figure shows the 500 IPEC (.632 estimation) for the models trained only
on the miRNA expression data, only on the mRNA expression data, on both data sets but
without the graph W , and on both data sets using the graph W . The boxes are the standard
boxplots in R. The box represents the interquartile range (IQR) of the data with the median
indicated by a bold line. The whiskers extends to the most extreme point that is more than
1.5 times the IQR away from the box (1.5 IQR± 0.75/0.25quartile). Points above or below
the whiskers are considered as outliers (points in the boxplot).
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IPEC (median) IQR p-value

.632 estimator

only miRNA 5.90 0.88 < 0.001
only mRNA 5.82 0.87 < 0.001
both no graph 5.79 0.86 < 0.001
both with graph 5.46 1.20 -

.632+ estimator

only miRNA 5.84 0.70 < 0.001
only mRNA 5.83 0.75 < 0.001
both no graph 5.83 0.75 < 0.001
both with graph 5.61 1.20 -

TABLE 3.2. The table shows the .632 and the .632+ IPEC estimations (median and
IQR) of 500 bootstrap runs. Lower IPEC scores indicate better prediction accuracy. The
p-value is the result of a one-sided Wilcoxon test (unpaired) comparing the single data set
prediction models and the prediction model without graph with the combination incorporating
the bipartite graph.

clear trend regarding mRNA and miRNA data alone, though the miRNA

seemed to perform slightly worse. This might be due to the lower number of

features. Interestingly, the combination of both data sets without the graph

W yielded almost the same error as the gene expression data alone. Without

the graph information the additional information from the miRNAs seemed to

be worthless. This underpins the theory that feature selection is the crucial

step in these high-dimensional settings and guiding the feature selection via

prior knowledge is a successful strategy. The comparison of the .632 and the

.632+ estimators yielded similar results which leads to the conclusion that the

inclusion of prior knowledge used here is not a strong overfitting setting.

Though the improvement using both data sets and the graph is significant it

is rather small compared to the overall error. This might be due the complexity

of the problem or due to uncertainty in the graph W describing the relations

between mRNA and miRNA. Another reason might be the relative less number

of events (18/98 events) aggravating an accurate estimation of the prediction

error. Finally, the diverse nature of prostate cancer makes it probably difficult

to find a reliable prediction model for a large group of patients. Bair and

Tibshirani (2004) proposed the idea to divide the patients into subgroups (for

cancer types like prostate cancer where no such subtypes are known a priori)



. Evaluation of the Method 

bases on gene expression data and clinical variables. The stratification of the

patients according to such subtypes might afterwards simplify the model fitting

process and feature selection. The definition of prostate cancer subtypes is a

major topic in cancer research. Thus, this remains to be elucidated.

3.2.2 Evaluation of Stability and Interpretability of Selected Fea-

tures

The features chosen during fitting of a prediction model are most often as

interesting as the prediction power of the resulting model. Gene signatures

based on gene expression microarrays have been proposed for diagnostic and

prognostic issues. For breast cancer for example gene signatures are used in

clinical praxis (van ’t Veer et al., 2002; Wang et al., 2005). However, the overlap

of different signatures for one cancer type is usually poor.

In settings where many genes (or in general features) are correlated to the

clinical outcome it is hard to define the “best” gene set predicting the outcome

(Ein-Dor et al., 2005; Venet et al., 2011). Therefore, stability of feature selection

is nowadays as important as the prediction accuracy in order to get consistent

feature sets suited as possible signature.

In order to investigate the stability of the feature selection and the influence

of the graph the 500 bootstrap samples were used. The single bootstrap samples

differed on average in 56 patients (figure 3.3) and thus could be used to simulate

different patient cohorts. The number of bootstrap samples in that a certain

feature was picked by the feature selection was used as an indicator for the

stability of the feature selection.

When performing 500 bootstrap samples, 500 is the maximal number how

often a certain feature (gene or miRNA) can be selected. Table 3.3 compares

these feature counts for CoxBoost trained on mRNA and miRNA expression

data with and without the graph W . It shows the top 30 features based on the

feature counts for the two models. The graph information remarkably improved

the stability of the feature selection process. The top features were picked

almost twice as often with inclusion of the graph than the top features picked

in the model without the graph.
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No graph With graph
Feature Counts Feature Counts

ESM1 161 hsa-miR-513a-3p 329
hsa-miR-412 151 hsa-miR-513a-5p 316
INHBA 130 hsa-miR-128 249
COMP 126 hsa-miR-1226* 233
ZFHX4 114 hsa-miR-1231 209
SLC6A14 103 hsa-miR-1224-5p 206
hsa-miR-484 92 hsa-miR-220a 199
PI15 83 hsa-miR-1233 198
hsa-miR-556-3p 79 hsa-miR-208a 169
hsa-miR-409-3p 74 hsa-miR-199b-3p 168
ABCC11 70 hsa-miR-513b 157
hsa-miR-431* 65 hsa-miR-527 154
hsa-miR-342-3p 52 COMP 150
HOXB6 49 hsa-miR-1225-3p 146
PRM2 48 hsa-miR-1234 144
CEBPD 47 INHBA 141
PARS2 44 hsa-miR-1226 140
3603927 42 hsa-miR-1237 139
KRTAP26-1 42 hsa-miR-1225-5p 136
hsa-miR-451 42 hsa-miR-1238 127
ZNF334 39 hsa-miR-513c 126
GRIK1 39 hsa-miR-1229 119
hsa-miR-147b 35 hsa-miR-1228* 117
ITGBL1 34 hsa-miR-1227 102
ITGA11 33 ESM1 100
3680663 33 ZFHX4 98
TMC5 32 hsa-miR-1224-3p 79
hsa-miR-103 32 hsa-miR-597 68
3400384 30 hsa-miR-409-3p 55
hsa-miR-409-5p 29 hsa-miR-625 55

TABLE 3.3. The table lists the top 30 features from CoxBoost with and without graph
information. mRNA names are given by their official HGNC (Seal et al., 2011) symbols
(capital letters) , or in case where no HGNC symbol was available the Affymetrix IDs (7 digit
number) are given. miRNA names are given by their official miRBase IDs (starting with hsa-
miR). The Counts columns indicate how many times the feature was chosen. Consequently,
the maximal count would be 500.
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FIGURE 3.3. The figure shows the pairwise differences (in number of patients) of the
single bootstrap samples.

Another difference is the proportion of genes and miRNAs picked by the

models. The ratio among the top 30 features between mRNAs and miRNAs

was 2/3 without the graph, which was already higher than expected (there were

almost 25 time as many mRNAs than miRNAs in the top list). The graph

transfered weight from the mRNAs to the miRNAs. It is thus not surprising

that the ratio drops to 2/15. However, this clearly showed the influence of the

graph W on the feature selection.

Obviously, the graph lead to a more stable feature selection and a favouring

of miRNAs in the model. At the same time the accuracy of the predictions

was improved leading to the assumption that miRNA expression data carried

the main part of information needed to predict the time to the biochemical

relapse. However, it is important to note that miRNA expression data alone

failed to predict the relapse as accurate as the combined data with the graph.

This may be caused by the fact that one miRNA can have several targets and

dysregulation of a miRNA can affect multiple molecular pathways with no

direct connection to the outcome. Therefore, the genes as effectors seem to be

a mandatory source of information.

Among the top 30 features picked using the graph there are some miRNAs

found to play a role in prostate cancer, e.g. hsa-miR-513 (Porkka et al., 2007)
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and hsa-miR-128 (Khan et al., 2010). However, most of the miRNAs have not

been associated with prostate cancer before. The genes among the top 100

features of CoxBoost with and without graph were investigated for enriched GO

terms (The Gene Ontology Consortium et al., 2000) using the R package topGO

(Alexa and Rahnenfuhrer, 2010). In both cases GO terms functional related to

cancer were found. However, no clear pattern could be revealed in one or the

other case. It is therefore important to note that it is not straightforward to

derive functional implications for single biomarkers from a panel found by a

prediction model.

To summarize, it can be concluded that the graph W improves the stability

of the feature selection process and, as expected, favors miRNAs in the selection

process. If this would lead to an improvement in sense of predictions has to be

shown in the future when more datasets with such a setting will be available.

3.2.3 Assessing the Influence of Correlations

To be able to estimate the prediction error of a certain model, all modeling

steps should be included in the error estimation procedure (Ambroise and

McLachlan, 2002). Otherwise the estimated error might be to optimistic, that

means it is biased downwards. A typical example is known as selection bias

occurring if features are selected using the outcome over all training samples

(Furlanello et al., 2003).

In the workflow described in figure 3.1 the whole data set is used, prior

to the bootstrapping procedure, to estimate the regulation graph W . This

involves the danger of overfitting and a biased error estimation.

On the other hand, the graph estimation includes the correlations between

mRNAs and miRNAs without any knowledge about the outcome. To check if

this alone lead to overfitting one test run was conducted were the estimation of

the regulation graph W was moved to the bootstrap procedure. That means

the correlations were re-calculated for each bootstrap sample using solely the

patient samples included in that particular bootstrap sample.

Again, the .632 estimator of the IPEC was used to compare CoxBoost

with and without the graph. The median IPEC of CoxBoost with the graph

increased from 5.46 to 5.64 with an IQR of 0.99. In comparison with the IPECs
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FIGURE 3.4. The figure shows the number of significant correlations (assuming a sig-
nificance level of 0.05) in the 500 bootstrap samples (the correlations between mRNAs and
miRNAs were calculated using only the patients samples included in the particular boostrap
sample). The red line indicates the number of correlations found between mRNAs and
miRNAs when the whole data set (all 98 patient samples) was used.

of CoxBoost without graph the prediction error was still significantly smaller

assuming a significance level of 0.05 (p-value from one-sided Wilcoxon test:

0.006).

Although the prediction error increased when not using all samples for

estimating the regulation graph W the result remains the same. It is, however,

still unclear if the higher IPEC is due to overfitting. The number of correlations

between mRNAs and miRNAs found in the bootstrap samples is obviously larger

than the number of correlations resulting if all patient samples were used (figure

3.4). For bootstrapping the patients samples were drawn with replacement (cf.

section 2.4.3). As a consequence some patient samples are contained several

times in a bootstrap sample. This can cause artificial correlations between

the features and the outcome (Binder and Schumacher, 2008a). The same

effect probably caused the higher number of correlations in the bootstrap graph

estimations leading to many false positive connections in the graphs. These

connections could be another reason for the higher prediction error estimates.

From these results it can be concluded that no clear overfitting occurs and

hence all samples can be used to estimate the graph W .
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3.2.4 Assessing the Influence of Different Target Prediction

Databases

In the models described above the MicroCosm target prediction database

has been used. Many other approaches exist with partially large differences

(Panagiotis et al., 2009). Thus, the question arises how the choice of the target

prediction algorithm influences the performance of our method.

To our knowledge, TargetScan (Friedman et al., 2009) is the only target

prediction source besides MicroCosm that delivers not only a score but also a

p-value for a miRNA-mRNA pair. The TargetScan flatfiles (version 5.2) contain

a score PCT which can according to Friedman et al. (2009) be used to asses the

biological relevance of predicted miRNA-mRNA interactions. 1 − PCT is an

estimate of the FDR.

This FDR was used as prediction p-values ppredi,j to build the graph W .

CoxBoost using this graph yielded a median IPEC (.632 estimation) of 6.60

with an IQR of 0.95. Using MicroCosm the median IPEC was 5.46 with an

IQR of 1.20.

Obviously, the use of TargetScan resulted in a higher prediction error. This

result can possibly be explained by the lower coverage of TargetScan. From

the 723 miRNAs in the data set only 170 could be found in TargetScan having

a PCT value. In comparison, the MicroCosm predictions contained 698 out of

the 723 miRNAs with p-values. This indicates that the predictions play an

important role for the regulation graph W and that the correlations alone do

not cover the regulations sufficiently.

Of course many other target predictions are available nowadays, e.g. PicTar

(Krek et al., 2005). However, in order to use other sources, the scores from

these predictions have to be combined with either the correlation p-values

pcori,j or the correlation coefficients ρi,j directly. But this eliminates the handy

interpretation of the combined p-values pcombi,j and makes it necessary to find

another combination function (3.2).

Testing all available algorithms for miRNA target prediction is beyond the

scope of this work. Yet, the choice of the target prediction database seems to

be an important factor. Combinations of different target prediction algorithms

to improve the coverage might be a possible solution in future research.
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FIGURE 3.5. The upper figure shows the PEC (.632 estimations, averaged over the 500
bootstrap samples) for CoxBoost with the graph W (red line), Lasso (blue line), and RSF
(gray line). The lower figure shows the IPEC for all three methods.

3.2.5 Comparison to Other Prediction Methods

The assessments shown so far compared different models that were fitted

with CoxBoost. In addition two other methods suited for high-dimensional

time-to-event data were used for comparison.

Lasso (Tibshirani, 1996, 1997, see section 2.3.1) belongs to the regularization

or shrinkage methods. It is a regression method for linear and general linear
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models where the coefficient vector β is penalized via an L1 norm. The adaption

for the Cox proportional hazard model used here was proposed by Goeman

(2010). The associated R package penalized (Goeman, 2011) was used for

fitting the Lasso estimator. To guarantee comparability, the same mRNA and

miRNA expression data and the identical 500 bootstrap samples were used

for the evaluation. Similar to CoxBoost the resulting fit is an estimate of the

survivor function and a risk prediction. As before, the .632 estimation of the

IPEC was used as an error measurement.

The second method is a adaption of Random Forest for time-to-event data.

Random Survival Forest (RSF, Ishwaran et al., 2008, see section 2.3.2) was

trained given the mRNA and miRNA expression using the 500 bootstrap

samples. The R-package randomSurvivalForest (Ishwaran and Kogalur, 2007)

was used for model fitting.

The complexity parameter for RSF is the number of variables m to choose

from at each node. This parameter had to be determined a priori. Following

a suggestion from Porzelius et al. (2011b) the .632+ estimator of the IPEC

(should be minimal) was used to determine the optimal m given three choices
1
2

√
p,
√
p, and 2

√
p. In this case p = p1 + p2 is the total number of features

that means the number of mRNAs and miRNAs. These three choices for m

follow a suggestion from Breiman (2002). Furthermore the “logrank” splitting

rule has been used and, in order to gain speed, for each variable nsplit = 2

randomly chosen splitting points were considered (cf. Ishwaran and Kogalur,

2007, 2010 for details). The model was trained with the default of ntree = 1000

trees.

Figure 3.5 shows the PEC averaged over the 500 bootstrap samples. Ob-

viously, CoxBoost with graph as well as RSF performed better than Lasso.

RSF was slightly worse than CoxBoost with the graph, though the difference is

marginal.

To assess a statistical significance the 500 IPEC (.632 estimations) from each

method (figure 3.5) were compared using a one-sided Wilcoxon test. The results

can bee seen in table 3.4. Although CoxBoost with the graph W performed only

slightly better on this data sets, the performance gain is significant assuming

a significance level of 0.05. RSF seems to be able to detect even non-linear

relations between the features and the outcome. This might be the reason why
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IPEC (median) IQR p-value

Lasso 6.10 1.12 < 0.001
RSF 5.66 0.78 < 0.001
CoxBoost only miRNA 5.90 0.88 < 0.001
CoxBoost only mRNA 5.82 0.87 < 0.001
CoxBoost with graph 5.46 1.20 -

TABLE 3.4. The table shows the comparison of Lasso and RSF with CoxBoost with the
bipartite graph regarding the prediction error. The median and IQR from 500 IPECs were
calculated. The p-value is based on a one-sided Wilcoxon test comparing the 500 IPECs of
Lasso and RSF with the IPECs of CoxBoost. As a reference the values of CoxBoost using
only the single data sets are shown as well.

it performed so remarkably well without information about the relationships

among the features. Surprisingly Lasso performed even worse than CoxBoost

on the single data sets.

Besides the prediction error there was a remarkable difference in the runtime

of the three risk prediction models. Training and prediction for 500 bootstrap

samples took 40:17 hours for RSF, 2:25 hours for Lasso, and 1:16 hours for

CoxBoost with graph on a 20 core (2.7 GHz) machine with 64 GB memory.

To summarize, Lasso and RSF performed worse (in case of RSF only slightly

worse) than CoxBoost with the graph W while taking more computation time.
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Chapter 4

Conclusions

Nowadays, the prostate specific antigen, or short PSA, is the standard diagnostic

marker to detect prostate cancer. Hence, it is possible to detect prostate cancer

in an early stage and treat a cancer that is still ranked on top of cancer caused

death in the western hemisphere. However, the specificity of PSA is still under

debate. In many cases patients are over-treated causing a heavy burden of

side effects. To avoid unnecessary patient treatment, prognostic biomarkers

are needed that can complement PSA. But until now, no satisfying prognostic

marker has been established.

For years large scale gene expression measurements have been used to search

for new promising biomarkers, especially in a prognostic setting for various

cancer types. Machine learning methods have been applied in the field of

bioinformatics to guide this search, and help to condense thousands of features

into a signature with prognostic value. In the last decade a new class of non-

coding RNA molecules were found. MicroRNAs (miRNAs) were found to be

major regulators of gene expression. Similar to mRNAs their expression can

be measured on a global scale and it seems logical, as a next step, to search for

combined signatures of genes and miRNAs. Yet, until now, there is still a lack

of methods for building such a combined prediction model - the fusion - from

both kinds of data.

The regulatory relationships between miRNAs and genes violate the general

assumption of independence among the features in such a model. Even for

high-dimensional gene expression data alone the flaws of methods relying on

such assumptions became apparent. Unsatisfactory prediction accuracy and
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poor overlap among signatures were the reason to develop new methods that

incorporate an estimation of the regulatory relationships among the genes as

prior knowledge. Many databases, based on different approaches and data

sources, are available providing such knowledge.

In a similar manner I developed a workflow to combine miRNA and gene

expression data from the same patients to build a predictive model. Boosting, as

the underlying model fitting method, is quite flexible, can be used for different

types of endpoints and, most importantly, it allows the integration of prior

biological knowledge. We showed that the regulatory relationships between

miRNAs and genes can be effectively estimated as regulatory graph from the

expression data and target prediction databases.

From these two sources a combined prediction model could be fitted. We

showed on a large prostate cancer data set that our workflow yielded a model

with better prediction accuracy compared to using only the expression data.

Furthermore, the stability of the feature selection could be improved significantly.

A comparison with other methods suited for time-to-event data showed that

the improvement in prediction accuracy by incorporating the regulatory graph

is not a bias caused by the boosting approach.

Without a doubt, the prediction results can be substantially improved using

better target prediction databases including more accurate and more complete

knowledge. In-silico miRNA target prediction is a central topic in the miRNA

related research. We are convinced that the accuracy of these predictions will

increase dramatically in the next years and hope that more methods will use

these resources to build combined models from miRNA and gene expression

data.
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Rehmsmeier, M., Steffen, P., Höchsmann, M., and Giegerich, R.

(2004). “Fast and effective prediction of microRNA / target duplexes.”

RNA, 10(10): 1507–1517.

Ritchie, M. E., Silver, J., Oshlack, A., Holmes, M., Diyagama, D.,

Holloway, A., and Smyth, G. K. (2007). “A comparison of background

correction methods for two-colour microarrays.” Bioinformatics, 23(20):

2700–2707.

Ruppert, D. (2002). “Selecting the Number of Knots for Penalized Splines.”

Journal of Computational and Graphical Statistics, 11(4): 735–757.

Sales, G., Coppe, A., Bisognin, A., Biasiolo, M., Bortoluzzi, S., and

Romualdi, C. (2010). “MAGIA, a web-based tool for miRNA and Genes

Integrated Analysis.” Nucleic Acids Research, 38: 352–359.



 References

Schaefer, C. F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Han-

nay, T., and Buetow, K. H. (2009). “PID: the Pathway Interaction

Database.” Nucleic Acids Research, 37(Database issue): D674–D679.

Schapire, R. E. (1990). “The Strength of Weak Learnability.” Machine

Learning, 5: 197–227.

Schapire, R. E., Freund, Y., Bartlett, P., and Lee, W. S. (1998).

“Boosting the Margin : A New Explanation for the Effectiveness of Voting

Methods.” The Annals of Statistics, 26: 1651–1686.

Schena, M., editor (1999). DNA microarrays: A practical approach. Oxford

University Press, Oxford.

Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995).

“Quantitative Monitoring of Gene Expression Patterns with a Complementary

DNA Microarray.” Science, 270(5235): 467–470.

Schölkopf, B. and Smola, A. J. (2002). Learning with Kernels - Support

Vector Machines, Regularization, Optimization and Beyond. The MIT Press,

Camebridge, Massachusette.

Seal, R. L., Gordon, S. M., Lush, M. J., Wright, M. W., and Bruford,

E. a. (2011). “genenames.org: the HGNC resources in 2011.” Nucleic Acids

Research, 39(Database issue): D514–9.

Smyth, G. K. (2005). “Limma: linear models for microarray data.” In

Gentleman, R., V. Carey, S. Dudoit, R. Irizarry, and W. Huber, editors,

“Bioinformatics and Computational Biology Solutions using R and Biocon-

ductor,” pages 397–420. Springer, New York.

Smyth, G. K. and Speed, T. (2003). “Normalization of cDNA microarray

data.” Methods, 31(4): 265–273.

Sotiriou, C. and Piccart, M. J. (2007). “Taking gene-expression profiling

to the clinic: when will molecular signatures become relevant to patient care?”

Nature Reviews Cancer, 7(7): 545–553.

Stekel, D. (2003). Microarray Bioinformatics. Cambridge University Press.



References 

Stouffer, S., Suchman, E., DeVinney, L., Star, S., and Williams,

R. J. (1949). The American Soldier, Vol. 1: Adjustment during Army Life.

Princeton University Press, Princeton.

Strachan, T. and Read, A. P. (2005). Molekulare Humangenetik. Elsevier,

München, 3rd edition.

Tableman, M. and Kim, J. S. (2004). Survival Analysis Using S: Analysis

of Time-To-Event Data. Chapman & Hall/CRC, Boca Raton.

Tannock, I. F., de Wit, R., Berry, W. R., Horti, J., Pluzanska, A.,
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Brase, J. C., Mannsperger, H., Fröhlich, H., Gade, S., Schmidt, C., Wiemann,
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(2012). The maternal embryonic leucine zipper kinase (MELK) is upregulated

in high-grade prostate cancer. Journal of Molecular Medicine, pages 1–12.

Mannsperger, H., Gade, S., Henjes, F., Beissbarth, T., and Korf, U. (2010).

RPPanalyzer: Analysis of reverse phase protein array data. Bioinformatics,

26(17):2202–2203.

Zacher, B., Abnaof, K., Gade, S., Younesi, E., Tresch, A., and Fröhlich, H.
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