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Introduction and overview

The aim of my PhD projects is to investigate various problems in applied pa-
rametric and nonparametric estimation, and eventually in prediction. The main
focus is on welfare analysis. The three major research objectives addressed are:
(i) to overcome boundary effects in nonparametric density estimation and re-
gression, (ii) to estimate and predict population distributions via data matching,
and (iii) to construct a income distribution estimator from a few quantiles. The
problems that we have dealt with are not new, even in the field of econometrics.
However, in some specific application areas, new challenges are often presented
to methodologies that have not been studied in (mathematical) statistics and are,
unfortunately, probably not even known. I will highlight the three specific pro-
blems that are considered in my dissertation.

• Boundary correction. The reason why we are looking for a boundary cor-
rection method is that the application of kernel density estimation and re-
gression often experience difficulties at the boundaries. For both kernel
density estimation and regression, however, quite often, our interests are
right up to the boundaries. For instance, if we are interested in poverty
and inequality, it is necessary to have reliable estimates of the income dis-
tribution at the left tail i.e. near zero. Similarly, those interested in risk
assessment looked at the performance of especially young or old, highly
or poorly educated, compared large with small companies, etc.. These are
all potential users of boundary correction methods, as they will definitely
face problems with boundaries. The so-called boundary effect, i.e. the
bias and variance increase due to one side data information, has been well
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Introduction and overview

studied in the literature. The methods used most often for boundary correc-
tion are the linear correction for density estimation (see Gasser and Müller,
1979; Gasser et al., 1985; Jones, 1993) as well as the local polynomial
approaches, which were first applied in density estimation by Fan and Gij-
bels (1992), and later on improved by Cheng et al. (1997) with an optimal
weighting. In many situations local polynomials are certainly an attractive
remedy for boundary effects in regression, since it would automatically
correct the boundary effects. Another option is to modify the bandwidth
towards the boundaries, including Rice (1984), Gasser et al. (1985) and
Müller (1991). See also Hall and Wehrly (1991). They believe that it is
obvious that larger bandwidths should be used in the boundary area. The
idea of the reflection method was first introduced by Schuster (1985) and
Silverman (1986), and later on successfully extended by Cline and Hart
(1991) by creating pseudo data. An alternative to Cline and Hart’s exten-
sion are the more recent methods of Cowling and Hall (1996) as well as
Zhang et al. (1999). I also mention the method for estimation performed
on transformed variables cf. Wand et al. (1991), Ruppert and Cline (1994),
Yang and Marron (1999), etc. Nevertheless, boundary correction methods
are hardly used in density estimation or in regression, even though a consi-
derable amount of theoretical studies and practical requirements exist. One
important reason is that most procedures are only available in the literature,
but not in any statistical or econometric software package. Another reason
could be a disappointingly small performance improvement when using
them. Finally, practitioners are often not willing to apply complex, and
sometimes seemingly non-intuitive, methods. For this reasons we suggest
a new boundary correction method that is simple and practical and can at
least compete with Jones (1993) and local polynomials in both density and
regression problems. As one will see, our method is much less complex
and requires hardly more computational effort than the estimation without
boundary correction does. A detailed methodological note with asymp-
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Introduction and overview

totic insight, a comprehensive simulation study, and two applications are
presented in Chapter 1.

• Data matching. In the second and third chapters I introduced an integration-
based procedure to estimating and predicting population distributions. This
is done by data matching with applications to the economics of wealth and
health. From the methodological point of view the problem I dealt with is
completely different from the problem dealt with in the first objective. Ho-
wever, we remain interested in welfare distribution estimation. Suppose we
have a data set with which we want to conduct studies on welfare analysis.
In the data set of our interest, however, the crucial information needed for
household income and expenditure estimation is missing. In general, it is
not particularly difficult, for the same country, region, similar year, etc., to
find another data set, which not only preserve the household income va-
riable but also has information about the other variables that are often used
to construct the income prediction model. It is natural to estimate a regres-
sion model for household income and expenditure with the “auxiliary data
set” and then use the estimated household income and expenditure model
for the estimation of household income and expenditure that we are inter-
ested in. However, the use of this method only gives the mean income (or
mean expenditure) conditioned on the available information and the speci-
fic model chosen. The resulting conditional distribution can by no means
serve as an estimate of the distribution of the unconditional income or ex-
penditure, and the subsequent poverty classification can only be “biased”.
In the present literature on poverty mapping and inequality studies, dif-
ferent approaches are applied to mitigate this problem like the adding of
Gaussian errors to model based mean predictors. One could say, one does
a kind of wild bootstrap under homoscedasticity to simulate the welfare
distribution for the population of interest. This method, though quite po-
pular, inherits several drawbacks, some of them are discussed in Chapter
2. We also mentioned two rather different approaches, which in some cir-
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Introduction and overview

cumstances can provide more helpful solutions. The first approach is the
quantile regression of conditional distributions and its marginals, see Koen-
ker (2005), Firpo et al. (2009) and Rothe (2009). It sticks to the quantiles
of a particular distribution instead of revealing the whole distribution of
interest. The second approach is the imputation methods (see Dempster et
al., 1977; Little and Rubin, 1987; Rubin, 1996; Schafer, 1997), where it is
quite practical to impute some missing values in a survey or census. Ho-
wever, the ‘imputation method’ was not designed to provide an estimator
or a predictor of the (marginal) distributions.
To prove that the proposed method also works well with a discrete data set,
I estimate the (unconditional) discrete distribution of the number of doctor
consultations for the population of interest. Further, I applied the proposed
method to a moderate random sample from the population, then forecast
that distribution for the population from which the sample was taken.
In conclusion, both Chapters 2 and 3, it is evident that the proposed method
can be applied to estimate both (unconditional) discrete and continuous
distributions. It is applicable irrespective of the mean regression or model,
and can be easily extended to other contexts, such as small area statistics,
nonparametric statistics, any latent variable model (e.g. Tobit regression),
simultaneous equation systems, IV methods, etc..

• Income distribution estimation from a few quantiles. Again, the problem I
faced is unlike those described in the previous sections. But I again solve
problems in welfare distribution. A method for convex estimation of a
regression function based on the spline smoothing technique is used to es-
timate the Lorenz curve from sparse data points. Compared to the currently
available methods for Lorenz curve estimation, the new estimate does not
require constrained optimization. The main contribution of this paper is to
show how, based on a few quantiles, one can apply a functional form for
the Lorenz curve to obtain a parametric density that is consistent with the
given quantiles. Furthermore, one can easily derive inequality measures,
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such as Gini coefficient, based on the same information. In an application
with quintile share data on the US income, it can be seen that the new es-
timate far outperforms the others. As an ongoing project the preliminary
ideas and results are summarized in Chapter 4.

As I have mentioned previously, the three research objectives are totally dif-
ferent and are therefore independent of each other. Among the three objectives,
objective 2 is however approached separately, using the discrete as well as the
continuous data set. Although in most of my applications I have investigated
the welfare distribution, my intention is to provide ideas that can be applied in a
more general situation, cf. Chapter 3. Last, but not least, all these developments
are only a source of help when they are provided in user-friendly software. The
most popular software for statistical analysis at universities and research insti-
tutions currently is the freeware and open-source R-project. It is very similar to
the commercial software S-Plus. I intend to provide an implementation of the
proposed methods in R-modules to the general public, and thereby contribute to
a rapid dissemination of my procedures.
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1. Simple and Effective Boundary Correction for
Kernel Densities and Regression with an
Application to the World Income and Engel
Curve Estimation

Abstract

In both nonparametric density estimation and regression, the so-
called boundary effects, i.e. the bias and variance increase due
to one-sided data information, can be quite serious. For estima-
tion performed on transformed variables this problem can easily
be elevated and may distort substantially the final estimates, and
consequently the conclusions. After a brief review of some exis-
ting methods a new, straightforward and very simple boundary
correction is proposed, applying local bandwidth variation at the
boundaries. The statistical behavior is discussed and the perfor-
mance for density and regression estimation is studied for small
and moderate sample sizes. In a simulation study this method
is shown to perform very well. Furthermore, it is an excellent
method for estimating the world income distribution, and En-
gel curves in economics. This is joint work with Prof. Stefan
Sperlich. My contributions in this paper are as follows: first I
proposed a new method of boundary correction; and then I did
complete implementation of this method in R.
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1. Boundary correction for kernel density estimation and regression

1.1. Introduction

Boundary effects are a well-known problem in nonparametric estimation, no
matter if we think of density estimation or regression. Moreover, if the esti-
mation has been performed on transformed covariates, as recommended in the
literature, see Wand et al. (1991), Ruppert and Cline (1994), Yang and Mar-
ron (1999), this problem may become elevated in two ways. Following these
articles, a most appropriate transformation is the assignment xi →

∫ xi

−∞
p(x)dx

with p being a parametric prior (maybe with estimated parameters) of the den-
sity of X.

Firstly, after such a transformation we definitely face boundaries (here 0 and 1)
with especially heavy tails. Secondly, what is just a boundary effect for the trans-
formed data may then affect big and essential parts of the untransformed model.
But also when we estimate an untransformed model directly, “boundaries” are
not necessarily small nor are they mostly of minor interest. The larger the noise
to sample size ratio or the smoother the function, the larger is the bandwidth
and thus the affected boundary region. Furthermore, it is the boundaries that
are of special interest; for example, in poverty analysis, it is necessary to have
reliable estimates of the income distribution at the left side “close” to the natural
boundary 0. Similarly, when using nonparametric regression in econometrics,
spill-over effects, flexible returns to scale or multiple (dynamic) equilibria can
typically, if at all, only be detected at, or close to, the boundaries. To conclude,
if we are interested in risk, in poverty and inequality, the performance of espe-
cially young or old people, highly or poorly educated, compare large with small
companies, etc., we always focus (also) on boundaries. In this article we will
be confronted with boundary problems when studying the world income distri-
bution, and when estimating the Engel curve for food expenditures in a poor
country (Indonesia in our case).

As can be seen from these examples, we are concerned with boundary correc-
tion methods for both kernel density and kernel regression estimation. A quick
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1.1. Introduction

internet search reveals that seemingly many boundary correction methods exist
already, many are referred to the linear correction for density estimation, see
Jones (1993), and can be considered as modifications of this method. A quite
comprehensive discussion of boundary correction methods for density estima-
tion is given in Cheng et al. (1997). In general, the existing methods can be
divided in following groups:

The majority of researchers prefer the method of modifying the kernel, inclu-
ding Gasser et al. (1985), Jones (1993) and the local polynomial approaches
(Cheng et al. 1997). Referring to the argument that local polynomial estimation
would automatically correct for boundary effects in regression (see for example
Fan and Gijbels, 1992) they apply this idea in density estimation. Effectively,
however, a boundary correction takes place only if the polynomial is of the “cor-
rect” order; else it can even aggravate the boundary effect. In density estimation
the use of local polynomial fitting has not prevailed, although Zhang and Karu-
namuni (1998, 2000) extended this method to the case of density estimation in
combination with a bandwidth-variation function. Nevertheless, in many situa-
tions local polynomials are certainly an attractive remedy for boundary effects
in regression, though the optimal weighting introduced by Cheng et al. (1997)
has not been applied (much) until now.

The second set of boundary correction methods modifies the bandwidth near
the boundaries. This group is much smaller and less known. Among them, Rice
(1984), Gasser et al. (1985) and Müller (1991), see also Hall and Wehrly (1991),
are maybe the most practical ones. They consider the regression context and
suggest to fix the window size inside the support of the covariates. Somewhat
similar to this idea, the loess and lowess smoother of Cleveland (1979, 1981)
implemented in R and S, uses a fixed span thereby automatically addressing the
boundary effects, see also Cleveland et al. (1992).

A quite old idea is the reflection method, introduced by Schuster (1985) and
Silverman (1986), and later extended by Cline and Hart (1991). A further de-
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1. Boundary correction for kernel density estimation and regression

velopment of it is the more recent methods of creating pseudo data to correct
for edges, see Cowling and Hall (1996). This method is more adaptive than the
common data reflection approach in the sense that it corrects also for disconti-
nuities in derivatives of the density. Zhang et al. (1999) suggested a method of
generating pseudo data, combining the transformation and reflection methods.
In some sense one could also add here the idea of Hall and Park (2002). They
proposed an empirical translation of the argument of the kernels and a bootstrap
method to translate the boundary estimate towards the body of the data set.

Finally we should mention again the transformation methods, see for example
Wand et al. (1991), Ruppert and Marron (1994), and Yang (2000).

It is surprising that in spite of their importance in practice and the considerable
(though not enormous) number of theoretical studies, boundary correction me-
thods are hardly used either in density estimation or in regression. One obvious
reason is the lack of implementation in statistical and econometric software;
another could be a disappointingly small performance improvement when using
them. Finally, practitioners are often not willing to apply complex, sometimes
seemingly non-intuitive, methods.

For this reason we will concentrate mainly on comparing our method with that
of Jones (1993) but also methods with fixed window size, the pseudo data ap-
proach (in particular Cowling and Hall, 1996) for densities, local linear for re-
gression, and data transformation (in an application). However, to the best of our
knowledge, even the quite well-known, and also reasonably successful method
of Jones is neither much used nor implemented in standard software packages.
Beside the lack of software, another reason for the scarce usage could be its
complexity compared to the visible improvement in the final estimate. As will
be shown, our method is much less complex and requires hardly more computa-
tional effort than does the estimation without boundary correction.

Summarizing, we are looking for a quick and easy boundary correction me-
thod that can at least compete with Jones (1993) and local polynomials in both,
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1.1. Introduction

density and regression problems. Our method is driven by the idea of substan-
tial bias reduction, c.f. Hall and Park (2002). Although the simplicity of our
method allows for a (substantial) variance increase, in sum the boundary esti-
mates improve in mean squared error. The method that handles the probability
mass at or near the boundaries best is not at this point being looked into. We
have introduced a new simple and practical method, given asymptotic insight, a
comprehensive simulation study, a comparison with existing methods, and two
applications.
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1. Boundary correction for kernel density estimation and regression

1.2. Kernel estimators and boundary correction

Suppose we want to estimate a probability density f nonparametrically based on
a random sample {X1, X2, . . . , Xn}, Xi ∈ Rd. For the ease of presentation we
restrict ourselves to univariate models (d = 1) in both density estimation and
regression. The extensions to multivariate density and regression estimation are
straight forward. The standard kernel density estimator of f (x) is given by

f̂h(x) =
1
n

n∑
i=1

Kh(Xi − x), (1.1)

where Kh(•) = 1
h K(•/h) could be any common symmetric kernel with sup-

port [−1, 1], satisfying µ0(K) = 1, µ1(K) = 0, µ2(K) < ∞, with µl(K) =∫ 1
−1 ulK(u)du (l = 0, 1, 2; u = X−x

h ) and h denoting the bandwidth. For such a
kernel method to make sense, f is supposed to be smooth, typically expressed
in the assumption of an existing second derivative f ′′.

However, if the support of f is bounded and has no exponentially falling tails,
this estimator is well known to suffer from the so-called “boundary effects”. This
means, for all points x being closer to the boundary than h, (1.1) underestimates
(strongly) f (x) since the kernel erroneously searches for information outside the
support of f .

Now consider a random sample {(Yi, Xi)}ni=1 for the regression model

Yi = m(Xi) + εi, (1.2)

where εi are random errors with expectation zero and finite variance σ2
i , and

a smooth regression function m(•) that is assumed to have second derivatives.
Then, the local polynomial estimator of degree α can be expressed as

m̂(v)(x) = (v!)eT
v (ZT WZ)−1ZT WY , (1.3)

where m(v) denotes the v ≤ α derivative of m, Z is a (n × (α+ 1)) matrix with
elements Zik = (Xi − x)k−1, Y = (Y1, . . . , Yn), W = diag{Kh(Xi − x)}ni=1, and ev
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1.2. Kernel estimators and boundary correction

is a vector of zeros with a 1 at position (v + 1). For v = 0 and α = 0 we get the
popular and simple Nadaraya-Watson estimator (Nadaraya, 1964). Also in this
regression case, the problem of boundary effects is well-known and can become
quite serious in practice.

To avoid confusion we shall assume (at least in the notation) that global band-
widths hglobal were used unless otherwise stated, especially for the estimation at
all interior points. Henceforth, the lower boundary - if it exists - is called a, and
the upper boundary - if it exists - is denoted by c. In other words, the interior
region is [a + hglobal, c − hglobal] while Bl = {x : a ≤ x < (a + hglobal)} and
Br = {x : (c − hglobal) < x ≤ c} are the left and right boundary regions.

Many methods have been proposed to correct for boundary effects, see Section
1.1. Probably the most popular one is the method of Gasser and Müller (1979),
revitalized by and named after Jones (1993), namely the local linear estimation.
Jones (1993) proposed to borrow more strength from inside of the support. More
specifically, if f is supported on [a, c], then the used kernel is given by

K∗(u) =
w3 −w2u

w1w3 − (w2)2
K(u)1[c2,c1], (1.4)

where the re-normalizing moments w j are defined by

w j =
∫ c1

c2

(
t − x
hglobal

) j−1

K
(

t − x
hglobal

)
dt,

with c1 = min(c, x + hglobal) and c2 = max(a, x − hglobal). Then the density
estimate applying his linear boundary corrector is f̂ in (1.1) but with the linearly
corrected kernel K∗(u). Similarly, for the regression estimator (1.3), we would
use K∗(u) in the definition of W.

An alternative is to choose local bandwidths in the boundary area. Typically,
one would say it is obvious that larger bandwidths should be used there. Rice
(1984) and Gasser et al. (1985) suggested choosing a bandwidth that keeps the
window width fixed at the boundary; see also Hall and Wehrly (1991). To reach
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1. Boundary correction for kernel density estimation and regression

this we simply use, for all boundary points, a local bandwidth defined by

hx =


2hglobal − (x − a) for a < x < (a + hglobal),
2hglobal − (c − x) for (c − hglobal) < x < c,
hglobal otherwise.

(1.5)

Hall and Wehrly (1991) extended this idea to first generate pseudo-data (with a
kind of extrapolating bootstrap) and then estimate in the boundary region using
the set of real and pseudo data. In the context of estimating a regression function
m(•), Rice (1984) used a kind of Richardson extrapolation proposing a linear
combination of uncorrected estimators m̂hglobal and corrected estimators m̂hx. I.e.
for all boundary points x = a + hρ, ρ < 1 he set

m̃(x) = (1 + βρ)m̂hglobal(x) − βρm̂hx(x), (1.6)

with m̂ as in (1.3) with α = 0, hx as in (1.5), and

βρ =
w1(ρ)w−1

0 (ρ)

(2 − ρ)w1

(
ρ

2−ρ

)
w−1

0

(
ρ

2−ρ

)
−w1w−1

0

for wk(v) =
∫ v

−1
ukK(u)du.

In contrast to the idea of enlarging the bandwidth at the boundary, we suggest
to reduce the bandwidth in the boundary regions. Our local bandwidth hx for
a ≤ x ≤ c can be indicated by

hx =


max(x − a, ε) if a ≤ x < (hglobal + a),
max(c − x, ε) if (c − hglobal) < x ≤ c,
hglobal otherwise.

(1.7)

where ε > 0 is just added for numerical reasons going to zero for n → ∞. For
theoretical discussion one could even skip ε and define hx only for a < x < c
such that the density or regression estimator is not defined at the boundaries but
arbitrarily close to them.

Inserting hx, either (1.5) or (1.7) into (1.1), we have

f̂hx(x) =
1

nhx

n∑
i=1

K
(
Xi − x

hx

)
(1.8)
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1.2. Kernel estimators and boundary correction

for the kernel density estimator. As we can see, the local bandwidths hx are
adjusted within the boundary region while f̂hx(x) is identical to the usual kernel
density estimator (1.1) if x is in the interior region. This also corresponds to
Jones’ method. It should be emphasized that the index x of hx refers to a given
point at which we wish to estimate the density or regression function. When
we insert hx into the regression estimator (1.3), we adjust only the weight W.
In contrast, Jones’ method is identical to (1.3) with global bandwidth inside the
interior region, but using K∗ in W.

We concentrate here on the situation where the boundary is (naturally) given; see
also our applications in Section 1.4. For given boundaries and x the bandwidths
hx are neither in the interior nor at the boundary random. Therefore the statistical
behavior of our resulting estimators is as simple as the method is. One might
also imagine situations where the boundary is unknown and has to be estimated.
Sometimes in the literature, the boundaries are set equal to the smallest and
largest observation. Especially for density estimation, however, this is a quite
questionable procedure to estimate the boundaries. In those cases the statistical
behavior of our final estimate (density and regression) is very complex because
it then has a random bandwidth. One would first have to establish assumptions
and conditions on the boundary estimates etc. For simpler situations random
bandwidths have been investigated e.g. in Abramson (1982), Hall (1983) or Hall
and Marron (1988).

Recall that in our notation, a point x belongs to the boundary region when its
distance to the boundary is smaller than hglobal. In asymptotic theory a boun-
dary point is a point x being closer to the boundary than the bandwidth used to
estimate f (x) or m(x) respectively. In this sense, our method turns all support
points into interior points and the asymptotics therefore remain unchanged. This
was also the original idea of the reflection and of the pseudo data approach; they
(artificially) changed the support, we change the bandwidth. Then, for the kernel
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1. Boundary correction for kernel density estimation and regression

density estimator (1.1) one obtains

Bias{ f̂hx(x)} =
h2

x

2
f ′′(x)µ2(K) + op(h2

x), (1.9)

with µ2(K) =
∫ 1
−1 u2K(u)du, and

Var{ f̂hx(x)} =
1

nhx
f (x)‖K‖22 + op(

1
nhx

), (1.10)

with ‖K‖22 =
∫

K2(u)du. For the regression (1.3) one obtains

Bias{m̂hx(x)} =
h2

x

2

{
m′′(x) + 2

m′(x) f ′(x)
f (x)

}
µ2(K) + op(h2

x) (1.11)

for the Nadaraya-Watson estimator with α = 0, and

Bias{m̂hx(x)} =
h2

x

2
m′′(x)µ2(K) + op(h2

x) (1.12)

for the local linear estimator with α = 1, both with

Var{m̂hx(x)} =
1

nhx

σ2(x)
f (x)

‖K‖22 + op(
1

nhx
). (1.13)

For consistency one needs hx → 0 and nhx → ∞ for n → ∞. It is clear that
our proposal of hx, given in (1.7), gives full preference to bias reduction at the
cost of increasing the variance. This becomes evident when we compare it with
the methods of Jones (1993) and fixed window sizes. Nevertheless, in sum this
can easily yield a reduction in mean squared error, as shown by our simulations
in the next section. The pseudo data approach is constructed to control for both
bias and variance at the edges.

Let us consider the asymptotics of a kernel density estimator when the method
of Jones (1993) is applied. Without loss of generality we assume there is a
lower bound a. Recall that we consider kernels bounded on [−1, 1]. We skip
the index global of bandwidth h and define implicitly a scalar p depending on
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1.2. Kernel estimators and boundary correction

x and a via x = p(a + h). Then, for al(p) =
∫ min{1,p}
−1 ulK(u)du and b(p) =∫ min{1,p}

−1 K2(u)du the asymptotics can be approximated by

Bias{ f̂h(x)} ' f (x)(a0(p) − 1) − ha1(p) f ′(x) +
h2

2
f ′′(x)a2(p), (1.14)

with

Var{ f̂h(x)} '
1

nh
f (x)b(p) . (1.15)

Note that for all interior points, the asymptotics coincide with the common ex-
pressions (1.9) and (1.10) respectively. In order to achieve a bias of order h2 near
the boundary, as well as in the interior, Jones (1993) defined a linear combina-
tion of K and a closely related function to obtain boundary kernel (1.4), such
that a0(p) =

∫ min{1,p}
−1 K∗(u)du = 1 and a1(p) =

∫ min{1,p}
−1 uK∗(u)du = 0. Simi-

lar observations can be made for regression and the other boundary correcting
methods.

The above, however, are asymptotic statements. In the next section we will study
how these methods compare for finite samples of different sizes. We should em-
phasize once again that in the past it has been repeatedly stressed that local poly-
nomial estimators do automatically correct for boundary effects. We mentioned
already in Section 3.1 that this is only true if the order of polynomials is cho-
sen accordingly. We should further remark that local polynomial estimators (in
practice and theory) need larger bandwidths for increasing degrees. In boundary
regions where data are sparse, it can even be recommendable to choose degree
≤ 1, i.e. to use the Nadaraya-Watson or local linear estimator. Applying Jones’
or our method for local linear smoothers yielded poor numerical performance
and is therefore skipped in the simulation section. The proposal of Cheng et al.
(1997) to extend the local polynomial estimator by an additional weighting turns
out to be rather complex in practice and still needs a reasonable amount of data.

We will also compare these simple methods with the reflection or pseudo data
approach of Cowling and Hall (1996). Note, however, that this is by no means
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1. Boundary correction for kernel density estimation and regression

an easy-to-use or intuitive method. In fact the practitioners have to chose two
further parameters which are essential for the success of the method. Cowling
and Hall (1996) defined the density estimator at the boundaries as

f̂ (x) =
1

nh

{ n∑
i=1

K
(

x − Xi

h

)
+

m∑
i=1

K
(

x − X−i

h

)}
, (1.16)

where m is such that O(nh) < O(m) < O(n), and X−i are pseudo data. More
specifically for positive constants A1, . . . , As, s ≥ r, where r is related to the
smoothness of the quantile function of X at the considered edge, and real num-
bers a1, . . . , as they define

X−i =
s∑

j=1

a jXA ji, 1 ≤ i ≤
n

max{Ai}
, (1.17)

such that
∑s

k=1 akA j
k = (−1) j, 1 ≤ j ≤ r. For example, in their article they

recommend the so called best three-point rule X−i = −5X(i/3) − 4X(2i/3) +
10/3X(i), i = 1, 2, . . . , n with X(i) indicating order statistics. Unfortunately,
in Cowling and Hall (1996) say nothing about the choice of m, either in general
or in their simulations. For more details and asymptotic behavior we refer to the
paper of Cowling and Hall (1996).

Finally we would like to mention that there exist many other methods for nonpa-
rametric regression estimation, like different versions of splines, Fourier series,
wavelets, etc. All these suffer a different kind of boundary effect. Fortunately,
for our approach it is clear how it can be applied / extended to these other me-
thods.
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1.3. Finite sample comparison

1.3. Finite sample comparison

We separate the simulation study into two parts: a more detailed one for density
estimation, and a smaller study for regression. The reason is that in regres-
sion, the boundary performance depends on too many factors to provide a really
comprehensive study; in fact, it depends on the distribution of the covariate(s),
the functional form of the conditional mean of the response, on the degree of
the (local) polynomial, and even on the heteroscedasticity. Therefore, the re-
gression part of our simulation study has rather an illustrative character. In our
simulations we set ε = 0.001 in (1.7).

1.3.1. Density estimation

To assess the effect of the correction methods near the boundaries, the following
six models are investigated:

1. uniform distribution on [0, 1];

2. gamma distribution Gamma(2.25, 1.5) applied on 5x;

3. log-normal distribution with µ = 0 and σ = 1;

4. log-normal distribution with µ = 0 and σ = 1.5;

5. log-normal distribution with µ = 0 and σ = 2;

6. exponential distribution with λ = µ = 5.

The density estimator was defined as in (1.1) with the Epanechnikov kernel
K(u) = 3/4(1 − u2)1{|u| < 1}. For illustration issues we chose hglobal = 0.3
thereby provoking substantial boundary effects. We estimated f (•) on a grid of
25 equidistant points x1 < x2 < . . . < x25, where x1 = 0 and x25 = 1. Then
the first 8 points lie in the left boundary region. The sample sizes were n = 50,
n = 100 (not shown for brevity) and n = 200. All results were calculated from
1000 simulation runs.
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1. Boundary correction for kernel density estimation and regression
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Figure 1.1.: The estimates for the six densities (upper left to the lower right) for n=50. Black line
is the true density, black long dashes indicate the density estimate without boundary
correction, grey long dashed is the method with fixed window size (1.5), black short
dashed is our adjusted window method (1.7), grey dashed & dotted is the pseudo
data method (1.16), and grey dotted line is Jones’ estimate.

Figures 1.1 and 1.2 display the true density and the expectation of its kernel esti-
mates, i.e. the averages over 1000 simulation runs. To highlight the behavior in
the boundary region, we plotted the estimates in [0, 0.6] for models 2 to 5, and
in [0, 1] for model 1. Maybe not surprisingly, see discussion in Section 1.2, our
new method has the smallest bias and reflects best the true boundary behavior of
the underlying densities. For both moderate sample size (n = 50) and relatively
large samples (n = 200) our method outperforms the others, while Jones’ me-
thod seems to be uniformly the second best. It should be remarked that Jones’
estimator shows exactly the behavior indicated in (1.14); it strongly underesti-
mates the curvature e.g. for model 2 and 4. The method with fixed window size
is even worse than not correcting at all. As indicated, for the density estimation
at the boundary we also tried the method of Cowling and Hall (1996) with the
best three-point rule and the maximal possible resulting m. This maximal num-
ber seems to be n − 1, but it turned out that the performance improves (except
for density 6) when we ignore all pseudo data X−i lying in the support of X; cf.
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Figure 1.2.: The estimates for the six densities (upper left to the lower right) for n=200. Black
line is the true density, black long dashes indicate the density estimate without boun-
dary correction, grey long dashed is the method with fixed window size (1.5), black
short dashed is our adjusted window method (1.7), grey dashed & dotted is the
pseudo data method (1.16), and grey dotted line is Jones’ estimate.

p. 555 of Cowling and Hall (1996). We also tried other choices, like m = n9/10,
but got worse results. Apart from the choice of pseudo generator and m the me-
thod of Cowling and Hall is computationally easy but its performance can only
compete with Jones’, or ours, when the original data are uniformly distributed.

Clearly, as stated in Section 1.2, our method is tailored to reduce bias but may
have very large variance. If so, it can not really be considered as an improvement
since the outcome would be rather random. To check this we constructed - again
from our 1000 simulation runs - pointwise confidence bands with a coverage
probability of 80%. These bands are given in Figures 1.3 and 1.4. First, we have
to admit that at the boundaries our method has often the widest intervals. A
closer look, however, reveals that they are not much wider and sometimes even
tighter than the bands corresponding to Jones’ method; and they are the only
confidence bands that always include the true function, except for design 2. For
n = 200 the widths of all the confidence bands are almost the same for our and
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1. Boundary correction for kernel density estimation and regression
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Figure 1.3.: The simulated confidence bands corresponding to Figure 1.1 with coverage proba-
bility of 80%.
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Figure 1.4.: The confidence bands corresponding to Figure 1.2 with coverage probability of
80%.

Jones’ method.

To better quantify the gain in bias and mean squared error, we calculated the
absolute bias and mean squared error averaged over the grid of 8 equidistant
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1.3. Finite sample comparison

n M1 M2 M3 M4 M5 M6
50 |Bias| no correction .2022 .5673 .0975 .1895 .2405 .7830

Jones .0013 .4696 .0678 .1280 .0765 .2370
ad justed .0105 .2093 .0474 .0365 .0518 .1436

f ixed .2577 .7572 .1158 .2477 .3352 1.096
pseudo .0147 .6003 .1373 .1345 .1266 .4355

MS E no correction .0596 .3384 .0208 .0527 .0776 .6261
Jones .0835 .3053 .0227 .0693 .0681 .1421

ad justed .6816 .1446 .0236 .0718 .1037 .2082
f ixed .0776 .5811 .0215 .0723 .1239 1.206

pseudo .0708 .4053 .0354 .0522 .0516 .2512
200 |Bias| no correction .2014 .5665 .0951 .1888 .2428 .7811

Jones .0053 .4668 .0618 .1278 .0745 .2360
ad justed .0295 .2080 .0392 .0341 .0500 .1440

f ixed .2575 .7563 .1142 .2460 .3365 1.096
pseudo .0142 .5962 .1109 .1528 .1168 .4498

MS E no correction .0450 .3251 .0120 .0399 .0639 .6136
Jones .0195 .2383 .0085 .0292 .0203 .0780

ad justed .1484 .0670 .0071 .0158 .0259 .0678
f ixed .0691 .5739 .0151 .0633 .1161 1.202

pseudo .0281 .3647 .0162 .0405 .0271 .2371

Table 1.1.: Absolute bias and MSE of density estimates in left boundary region for sample size
n = 50 and n = 200, based on 1000 repetitions: ad justed refers to our method (1.7);
f ixed refers to a fixed window size (1.5); pseudo refers to (1.16).

points xl over the left boundary region, i.e. we calculated

|Bias{ f̂h(x)}| =
1
8

8∑
l=1

∣∣∣∣∣ 1
1000

1000∑
M=1

(
f̂ M
h (xl) − f (xl)

)∣∣∣∣∣, (1.18)

and MSE{ f̂h(x)} =
1
8

8∑
l=1

1
1000

1000∑
M=1

(
f̂ M
h (xl) − f (xl)

)2
. (1.19)

The results are displayed in Table 1.1. It can be seen from this table that, as
expected, our method outperforms, by far, the competitors when looking at the
bias. For the variance this is different, at least for small sample sizes (except for
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1. Boundary correction for kernel density estimation and regression

the U[0, 1] design). For n = 100 (not shown) the mean squared error is about
the same for our method and Jones’; for n = 200 our new method outperforms
all others considered, except for the U[0, 1] and Log − N(0, 2) design when
comparing with Jones.

Before coming to the regression part we should briefly summarize. We have
looked for a rather simple method, that is easy to implement and to interpret,
for mitigating the boundary effects which in practice can cause rather serious
problems and nuisance. As has been shown in Section 1.2, equations (1.7), our
method complies with these requirements. Among all methods we have seen
it is even the one with the simplest implementation. The ease of interpretation
comes along with the insight that the statistical behavior is the same as for the
interior points; it is a local bandwidth which - this we admit - can become rather
small numerically although not in its rate. Fortunately, it has turned out in our
simulation study that this method is not just the simplest one but also shows an
excellent performance. In fact it outperforms even the popular method of Jones.
The other alternatives considered seem not to work in our density examples.

1.3.2. Regression estimation

We recommend our new method not only for density estimation but also for
kernel regression. As mentioned above, due to the fact that the boundary ef-
fects depend on too many factors, we have limited the following study to a brief
illustrative simulation with only one design for the one dimensional covariate X,
and a simple cubic polynomial for the regression function. That is, we consider
random samples {(Yi, Xi)}ni=1 from the nonlinear model

Yi = m(Xi) + εi , where m(x) = −(10/3)x3 + 5x2 − 1.275x (1.20)

is a smooth regression function, X ∼ U[0, 1] i.i.d. and ε ∼ N(0, 0.1) i.i.d. We
estimated m(•) with the Nadaraya-Watson and the local linear estimator, i.e.
(1.3) with α = 0 or α = 1 respectively. We used the Quartic kernel K(u) =
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1.3. Finite sample comparison

15/16(1 − u2)21{|u| < 1} on a grid of 25 equidistant points x1 < x2 < . . . < x25,
where x1 = 0 and x25 = 1, as we did above. Then again, for a global bandwidth
of hglobal = 0.3 the first 8 points form an equidistant grid in the left boundary
region. Note that the design choice favors now Jones’ method; recall the results
of Section 1.3.1. Like before, we did simulations for sample sizes n = 50 and
n = 200.
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Figure 1.5.: Comparison of regression estimates: black line is true curve, grey long dashed is
Nadaraya-Watson estimate without boundary correction, black short dashed is our
(adjusted) method, black dotted line is Jones’ estimate, grey dashed and dotted is the
estimate with fixed window size, and grey short dashed is the local linear estimator.

As was the case for the density estimation context, a most serious problem is
the bias at the boundary, and this is exactly what our method tries to mitigate.
It can be seen from Figure 1.5, that the bias is corrected best by our method.
Jones’ method improves on the Nadaraya-Watson but not on the local linear
estimator (not shown). It turned out that our method can also cause problems
in combination with the local linear estimator (not shown), see our discussion
about local polynomial estimation when data are sparse. Again, the method with
fixed window size performs worst. We also tried Rice’ (1984) more complex
procedure, see (1.6), and found that it could not uniformly compete with simple
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Figure 1.6.: The confidence bands for the left boundary, corresponding to Figure 1.5 for the non
corrected Nadaraya-Watson, the non corrected local linear, and our method.

local linear nor with ours. Additionally, cannot be considered as a “simple and
practical” methods. The local linear estimator turned out to be the strongest
competitor compared to our method.

To have an idea about the variance of the estimators, we again constructed point-
wise confidence bands with an 80% coverage probability, see Figure 1.6. As for
the density estimation, the bands for our corrector are wider at the boundaries
than for the other methods. Now the confidence bands are still much wider when
increasing the sample size from n = 50 to n = 200. However, again it is only
our method that really captures the curvature of the true data generating function
such that the true function is almost always inside the 80% pointwise confidence
bands, especially in the boundary region.

Our simulations conclude with Table 1.2 showing the average absolute biases
and mean squared errors of the left boundary region. As we did for density
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estimation, we calculated

|Bias{m̂h(x)}| =
1
8

8∑
l=1

∣∣∣∣∣ 1
1000

1000∑
M=1

(
m̂M

h (xl) −m(xl)
)∣∣∣∣∣, (1.21)

and MSE{m̂h(x)} =
1
8

8∑
l=1

1
1000

1000∑
M=1

(
m̂M

h (xl) −m(xl)
)2

. (1.22)

The results confirm what we have seen in Figures 1.5 and 1.6. Our method by
far outperforms the others in terms of bias reduction at the boundary. Due to its
large variance, however, its mean squared errors (on average) are clearly larger
than for all in the small sample n = 50 and is still larger than others with sample
size n = 200.

|Bias| MS E
n = 50 n = 200 n = 50 n = 200

ad justed .0146 .0125 .0028 .0016
NW(no correction) .0317 .0308 .0018 .0011

Jones .0272 .0247 .0408 .0010
LL(no correction) .0259 .0246 .0022 .0009

f ixed .0447 .0435 .0027 .0021

Table 1.2.: Absolute bias and MSE of regression estimates in left boundary region for sample
size 50 and 200 based on 1000 repetitions.
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1. Boundary correction for kernel density estimation and regression

1.4. World income distribution and Engel curve estimation

The potential of our method and the need of boundary correction is illustrated in
the two following applications. First we estimate the world income distribution,
and second we estimate the Engel regression curves for food expenditure in
Indonesia.

The world income distribution is of ongoing concern for economists and scho-
lars worldwide, see e.g. Acemoglu and Ventura (2002) and Sala-I-Martin (2006).
The discussion of a two or even three mode shape (cf. Holzmann et al. 2007) of
the world income distribution has been challenging the conventional findings
of growth empirics. As a consequence, for example, the convergence literature
established divergence among countries but found different convergence clubs.
Further, from this world income distribution one can obtain measures for global
inequality and poverty, as well as global growth incidence curves.

An often discussed question is how many convergence clubs do we find world
wide, which should be certainly reflected in the shape of the income density
function. The typical problem here is that of proper modeling, for example
should one use a normal mixture or a log-normal mixture, and how should we
bound the number of components (from above) or the variances (from below).
This problem even appears in nonparametrics: when Holzmann et al. (2007)
used the income, they encountered problems at the left boundary; when they
considered log-income, the ‘convergence club’ of the rich countries (i.e. a bump
on the right) was no longer visible. This can be seen quite well in our appli-
cation in Figure 1.7. It shows kernel density estimates based on all available
worlds real PPP GDP per capita for the year 2003 from the Penn World Table,
Version 6.2. The available income data, and that used here, comprise 174 coun-
tries. In this analysis we estimate density f (•) with lower bound a = 0 on a
grid of 200 equidistant points.
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Figure 1.7.: Comparison of kernel density estimates for cross-country income distribution in
2003 with hglobal = 5.37 (1.5 times Silverman’s rule-of-thumb bandwidth): black
solid line is kernel density estimate without boundary correction, black dashed is
our method (’adjusted’), grey dashed is Jones’ estimate, and grey dotted line is
kernel estimate on log-transformed data with hglobal = 0.76 (1.5 times Silverman’s
rule-of-thumb bandwidth). Scale: x-axis 103, y-axis: 10−3.

The black line is the usual kernel estimate without boundary correction. The
comparison with all other methods shows a serious boundary problem at 0. The
global bandwidth has been chosen such that we could replicate the graphical
results of Holzmann et al. (2007) where the bandwidth choice is not mentioned.
The density estimation based on the log incomes and therefore facing no boun-
daries nicely resolves the very sharp peak at income ≈ 880 (very poor countries)
and also makes visible a second convergence club of developing countries sho-
wing a plateau and a flat slope (to the left) at around income ≈ 3500. However,
it does not exhibit the mode on the heavy right tail, i.e. the rich countries’ mode.
Jones method linearizes the slope until zero (from the right) which causes several
problems in practice (density does not start from zero at zero nor does it exhibit
the two first convergence clubs). Our simple boundary correction method is the
only one that allows the estimator to reveal all interesting characteristics of this
density. We refer to Vollmer (2009) for more discussion on the behavior of the

39



1. Boundary correction for kernel density estimation and regression

cross-country income distribution.
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Figure 1.8.: Comparison of Engel curve estimates in 1997 with hglobal = 1.5 (left, for Indone-
sia) and hglobal = 2.4 (right, for North Sumatra) which is Silverman’s rule-of-thumb
times 3. Black dashed line is Nadaraya-Watson estimate without boundary correc-
tion, black solid is our method, and dotted line is local linear. Scale: x-axis 106,
y-axis: 106.

The second application requires a nonparametric but boundary corrected regres-
sion. Since almost the beginning of econometrics, the specification and estima-
tion of Engel curves has attracted the attention of many economists and applied
econometricians. A detailed discussion and review of the parametric approaches
to these problems are given in Deaton and Muellbauer (1980); an analysis of the
cross-sectional consumer behavior in the context of fully nonparametric models
can be found in Bierens and Pott-Buter (1990) or Engel and Kneip (1996). Still
today, Engel curves are of special interest in welfare analysis. They are espe-
cially affected by a boundary problem at the left in poor countries like Indonesia.
In Figure 1.8, we see n = 6242 observations of household annual food and total
consumption expenditures per capita for the whole country (left), and among
them n = 502 observations for the province North Sumatra (right). The source
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1.4. World income distribution and Engel curve estimation

of these data is the second wave of Indonesia Family Life Survey (IFLS) in 1997.
We fit an Engel curve to the left scatter plot of food versus total expenditure on
a grid of 200 equidistant points with a natural left boundary at a = 0. Certainly,
for poverty, welfare, and development analysis we pay special attention to the
poorest, and these are exactly at the boundary. Again, the usefulness of our cor-
rection method is evident but one might argue that the local linear estimator does
as well. There are several pros and cons and we do not want to enter the question
which estimator has to be preferred. What we can say is that it seems that, with
our boundary correction, the Nadaraya-Watson can compete with local linear
estimation.
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2. Predicting Household Expenditure and
Income Distribution for Welfare Analysis

Abstract

A reliable prediction of unconditional welfare distributions, like income or
consumption, is essential for welfare analysis, and in particular for inequa-
lity, poverty or development studies. Where observations of expenditures or
income are missing, the mean prediction based on available covariates is not
just a poor estimator of the unconditional distribution; it actually fails to pre-
dict the required information about tails and quantiles. In the present litera-
ture on poverty mapping and inequality studies, different devices are applied
to mitigate this problem, like the adding of Gaussian errors to model-based
mean predictors. Most methods yield simulated or numeric results, some-
times using strong non-testable assumptions. A new estimation and predic-
tion method is introduced which can be combined with any reasonable mean
prediction method. It is used to calculate the income distribution of a sur-
vey based on subsample information, to estimate the unconditional income
distribution for the non-responding households, and to predict the household
expenditures of a future panel wave. Moreover, it allows us to impute welfare
distributions for a census from survey data, as well as for synthetic popula-
tions under specific scenarios. Further inference is straight-forward, inclu-
ding the prediction of Lorenz curves, indexes like the Gini, or any distribu-
tion quantile, including confidence intervals. Chapter 2 and 3 are joint works
with Prof. Stefan Sperlich and Prof. Walter Zucchini. My main contribution
was a complete implementation of the proposed method in R.
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2. Predicting household expenditure and income distribution for welfare analysis

2.1. Introduction: The problem

For any empirical study on inequality, welfare economics, discrimination or po-
verty, reliable information about welfare distributions, such as income or expen-
diture, is fundamental. Especially in underdeveloped areas, having such infor-
mation is of critical importance for governmental as well as nongovernmental
organizations, including research institutions. Decision makers rely on distri-
bution estimates or predictions to assess and monitor social security systems,
allocate resources, transfers, etc. Furthermore, those estimations or predictions
enable researchers to carry out poverty mapping, to analyze the relationship of
poverty or inequality and human development indicators, and to study the pro-
poor growth or related issues. For the combination of poverty mapping and
policy implications see the recent compendium of Hyman et al. (2005).

There exists many initiatives, e.g. the OPPG1, of national and international ins-
titutions – the World Bank being probably the most involved – for which this
information is an imperative. Ravallion (2001) highlighted the fact that more
attention should be given to the micro level and therefore take into account the
micro distributions rather than just on the means. However, since the collection
of good quality expenditure or income data requires a lot of time and effort, or
because the complete information is simply not achievable, researchers and po-
licymakers have a strong interest in approaches which provide good estimates
and predictions, allow for inferences, scenario simulations, and comparison over
time and space. A most simple question would be, how to study different po-
verty levels when the information about preferred consumption expenditure or
income measures is absent? Certainly, as we propose a statistical method, we
assume that some useful information is available. More specifically, we assume
the availability of some informative covariates, say x, related to the variables of
interest, say y. Additionally, we are provided with a sample containing both x
and y, maybe collected from a different population or at a different point in time.

1Operationalising Pro-Poor Growth
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2.1. Introduction: The problem

We further assume that the conditional distribution of y given x for the popula-
tion of interest - this can even be a fictitious one - is similar either to the one of
our data at hand or approximately known. Our use of the term ‘similar’ will be
specified along the presentation of our method.

The literature on the issue of poverty and inequality measurement, as well as po-
licy implications, is abundant. Under www.pep-net.org/programs/pmma, there
are more than 1000 “recommended readings” on this topic. Clearly, the huge
amount of literature renders a comprehensive discussion impossible and we fo-
cus only on the most related contributions. They are still many when concen-
trating just on imputing income and expenditure. But if it comes down to the
estimation or prediction of welfare distributions, we only find a few procedures
proposed within a specific context, typically when studying poverty levels. In
that spirit, Paulin and Ferraro (1994) was an early work on imputing income,
Filmer and Prichett (2001), as well as Sahn and Stifel (2003), did welfare stu-
dies when expenditure data were missing. Hentschel et al. (2000) imputed the
likelihood to be poor from a survey to impute a poverty map with census data.

Most procedures to predict the required micro distribution (thinking of poverty
and inequality indexes) or at least some of its parameters, are based on data mat-
ching. A mean regression is calculated from a set of available information to
then predict the non-reported income or expenditures for the group of interest.
For a review on the prediction of expenditure in the context of poverty and in-
equality analysis see Abeyasekera and Ward (2002). The population of interest
can be all individuals for which income or expenditure are missing within the
same survey, or a different survey for which this information is not available,
maybe a census, a future or past panel wave (or cohort), or simply a fictitious
population in case of scenarios. An appropriate data matching technique would
therefore allow for comparisons of income, expenditure and related factors over
time and space (cf. Sahn and Stifel, 2000). The development of techniques to
interpolate from a survey to a more general data set has been well summari-
zed by Davis (2003). Unfortunately, the estimated conditional distribution can
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2. Predicting household expenditure and income distribution for welfare analysis

be quite different from the required unconditional one, i.e. the distribution of
the effective income or expenditure. In particular, the conditional distribution
has a substantially smaller spread, and therefore must not be used for welfare,
inequality or poverty analysis. In fact, if measures of inequality, poverty or vul-
nerability are of interest, one has to correct for the shrinkage of the predicted
values toward the mean in order to really capture the tails of the distribution.
Thus, no matter what kind of regression models or survey types being applied,
the problem is that one gets only conditional values, which have a much smal-
ler spread, resulting in high misclassification errors. Hentschel et al. (2000)
applied numerical “stretching” of the conditional distribution to fit some given
percentiles calculated from a sample with complete information.

A more practical and often used remedy, is to add random errors, normally dis-
tributed with a given constant variance. As the mean prediction is based on a
regression with data sets where full information is available, this variance might
be estimated from that data too. In statistical terms, one does a kind of wild
bootstrap under homoscedasticity to simulate the welfare distribution for the
population of interest. This method, though quite popular, entails several draw-
backs like no analytic predictor, random results, no further valid inference, etc.
In the context of small area statistics (for a general idea see Ghosh and Rao,
1994) Birkin and Clarke (1989) were probably the first to introduce an approach
to simulate micro income distributions. Elbers et al. (2003) proposed a simu-
lation method – though they call it estimation – based on small area modeling
to track poverty and inequality issues on the macro-level from micro data, the
so-called ELL or World Bank method. Note that these small area based methods
are designed to approximate macro-parameters, not the micro-level distribution
itself. Moreover, while in statistics a lot of effort is spent on deriving methods
for doing valid inference, applied econometricians mostly rely on intuitively jus-
tified simulations. More recently, Tarozzi and Deaton (2009) and Demombynes
et al. (2007) discussed those approaches quite critically. Note finally that Zeller
et al. (2004), Zeller et al. (2005) and Azzarri, Carletto, Davis and Zezza (2006)
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compared various models and methods for poverty assessment.

In this article a method is introduced to reveal the whole unconditional distribu-
tion. It is based on distribution theory rather than on simulation methods such
as the kind of wild bootstrap or Bayesian small area predictors discussed above.
This constitutes a quite different and new way to estimate, or predict, the dis-
tribution of interest, although it is based on the same amount of information.
We transform the mean prediction by applying an integration-based method to
assess the unconditional distribution. This provides analytic calculations instead
of simulations; it allows for further valid inference and for a more realistic si-
mulation of scenarios (see Gasparini et al. (2003) for currently used methods).
Another advantage is that the modeling of income and expenditure distributions
on which our approach is based is a well-studied field in statistics; see the recent
compendium of Chotikapanich (2008) or Atkinson and Bourguignon (2000).
Note that the new method is applicable independently of the mean regression or
model; it can be used for mixed effects (multi level) models as e.g. in the context
of small area statistics, nonparametric statistics, any latent variable model (e.g.
Tobit regression), simultaneous equation systems, IV methods, etc. It is evident
how to extend this method to any other context.

Before introducing the main idea, we should mention two rather different ap-
proaches which, in some circumstances, can provide more helpful solutions.
First, in the case where only very few but specific quantiles of a particular dis-
tribution are of interest, it is recommendable to just stick to these quantiles, i.e.
scalars instead of functions, see Koenker (2005) for a recent compendium. The
particular interest is directed to quantile regression of conditional distributions
and its marginals, see Firpo et al. (2009), cf. also Rothe (2009). While these
methods look quite promising, they are not constructed for revealing the whole
distribution. Also, they are clearly theoretical rather than practical contributions.
Computationally they can be quite cumbersome, especially the nonparametric
approaches which are only recommendable for the one dimensional case; note
that algorithms or computer codes are not available. This is in contrast to the se-
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cond approach we would like to mention. If it is limited to that of imputing some
missing values in an large sample, survey or census, we refer to the so-called
imputation methods first introduced by Rubin; for a compendium see Littel and
Rubin (2002). The provision of the associate software and the description of
modules and commands is abundant; see Horton and Lipsitz (2001), Royston
(2004), or Su et al. (2010). Note that this method was explicitly developed for
the imputation of missings in a survey to subsequently and convemently carry
out statistical data analysis. The algorithms work like “black boxes”; they are
not considered as estimators or predictors of (marginal) distributions. Simula-
tions, not shown in this article, revealed that the method introduced in this article
outperforms the publicly available algorithms in this respect - not to mention the
problems a black box entails for subsequent inference.

The rest of the paper is organized in the following way: In the next section we
introduce our new methodology for estimating the marginal distribution of Y
for the population of interest. In Section 2.3 we consider two different types
of problems of estimating the income distribution accounting for possible se-
lectivity biases. In Section 2.4 we use a panel wave from Indonesia to predict
the expenditure distributions for four years later. In two of our applications we
are provided with complete information so that we can validate our estimation
results. Section 2.5 concludes.
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2.2. A general methodology for predicting welfare
distributions

Both, matching and prediction is based on conditioning variables. We are in-
terested in the distribution of some quantity, say y, where in this article we are
thinking of household income or expenditures. Imagine we are provided with
a sample S1 containing information about y and, additionally about (possibly)
related information, say x, for example demographic factors and location. The
objective is to estimate the distribution of y for a data set, say S2, where only in-
formation on x is available. This can be a different survey or census, a different
wave in a panel, or even just an enlarged set containing S1, but with missing
responses y for the added records, i.e. households in our case. Alternatively, S2

could be a fictitious population with some x changed, e.g. for scenarios typical
in forecasting and counterfactual exercises.

There are at least two obvious approaches we would think of; either we estimate
directly the joint distribution of (x, y) then extract the marginal one of y for a gi-
ven set of x (one may also think of a predefined distribution of x), or we concen-
trate on the conditional moments of y|x which will then allow us to construct
the marginal distribution of y for any given set of x. The first idea corresponds
directly to the literature we discussed in the context of imputation methods and
quantile estimation; the latter to the regression plus simulation methods we men-
tioned in the context of simulation methods and small area statistics. While for
our purpose the first idea looks formally more elegant from a stochastic point of
view, the second is more appealing under practical considerations. However, as
we will see, depending on the set of prior assumptions, they are even identical
and can be converted from one to the other. Without depreciating the former,
we therefore follow in the presentation the second approach, starting with the
conditional mean.
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2.2.1. From marginalization to local n-fold mixtures

Consider a prior regression setup based on a completely observed sample S1 =
{(yi, xi)}ni=1,

yi = g(xi) + εi. (2.1)

For another set S2 containing {x j}
m
j=1 the y j are missing. These data could be:

a) in the same survey; b) from another survey or census; c) belong to the same
panel as S1 but to a different wave; or d) describe a fictitious population. In
a first step one estimates the mean prediction E(Y |X = x) = g(x) along its
particular model specification of g(·) in (2.1). We could equally well include
random or fixed effects if identifiable, as is recommendable for repeated measu-
rements, multilevel or panel models. For specific economic data, g(·) may be
estimated via Tobit models, selection bias correction, with weights from strata
sampling, etc.. One may even apply non- and semiparametric methods as we are
not interested in the interpretation of any parameters in model (2.1). Actually,
any consistent estimation of g(·) is valid, and it should be emphasized that the
main objective is not identification but estimation and prediction and therefore
the minimization of prediction or mean squared errors. From this point of view,
even inconsistent estimators would do, especially if they provide the smallest
prediction error.

As we mentioned in the introduction, the general problem is that, no matter what
kind of prediction models or survey types being applied, one gets only conditio-
nal values which have a distribution with density f (y|x) with a smaller spread
than the unconditional distribution fy(y). For welfare analysis, measuring in-
equality, poverty or discrimination, the conditional distribution alone is of little
help. The shrinkage of predictions toward the mean is primarily caused by the
fact that the predictions do not explain all the variation in consumption expen-
diture (or income); therefore some of the existing solutions which do not ignore
this ‘shrinkage’ effect, simply add random errors (typically normally distributed)
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with an appropriate variance to widen the density. The latter method is widely
used, often combined with small area statistics, like in Elbers et al. (2003).
However, since the results are generated by simulations and under strong as-
sumption on the model and distribution, the resulting values depend on chance,
and any further inference is not statistically justified. Moreover, as discussed in
the introduction, many methods are only constructed for simulating particular
percentiles, not the whole distribution.

In contrast, we introduce a direct analytic method of the unconditional distri-
bution. Recall that the required marginal distribution fy,2(y) of y in S2 can be
written in terms of the conditional f2(y|x) and the unknown fx,2(x), as

fy,k(y) =
∫

f(y,x),k(y, x)dx =
∫

fk(y|x) fx,k(x)dx, for k = 1, 2 (2.2)

by integrating covariates out from the joint distribution, where the k indicates
the particular population. A simple numerical approximation of this integration,
and to get around the estimation of fx,k is the sample average, i.e.

fy,k(y) =
1
m

m∑
j=1

fk(y|x j) + O(
1
m

), for k = 1, 2. (2.3)

So we obtain the required distribution by averaging over all estimated local den-
sities. Certainly, not observing y in S2, we cannot estimate its f2(y, x) nor
f2(y|x). If it is believed that the conditional distributions are the same for S1

and S2, one could use Firpo et al. (2009) or Rothe (2009) to derive parame-
tric or nonparametric estimates for our context. In our opinion the latter is not
recommended because, in addition to the problems that occur in applying multi-
dimensional nonparametrics, Firpo et al. (2009) found no improvement in their
results when looking at some conditional quantiles; they reported several draw-
backs instead.

Instead, we give up the strong assumption of having the same conditional distri-
bution of y in both data sets, and we stick to flexible parametric modeling. Our
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argument is first, that for getting a good approximation of the marginal distribu-
tion fy,2 in (2.3) it is sufficient to control for a given set of identifiable parameters,
in particular the mean and variance, but optionally also the symmetry of f2(y|x).
Second, coming up with a proper conditional a priori for f2(y|x) is not less jus-
tifiable than assuming it to be identical to a nonparametric f1(y|x). Finally, the
estimate of the required unconditional density f̂y,2(y) = 1

m
∑m

j=1 f̂2(y|x j) be-
comes a kind of a n-mixture of densities. We use here f̂2 to emphasize that
the moments have been estimated before from S1 = {(yi, xi)}ni=1. Mixtures are
known to give excellent approximations and are consistent under different sets
of typically mild conditions, see for example McLachlan and Peel (2000) for a
compendium, or for our context of Baysian priors and approximations of non-
parametric functions, Marin et al. (2005). Recall further that kernel density esti-
mates with second order kernels are local n-fold mixtures. In our case, control-
ling for the second moment corresponds to local bandwidths in kernel density
estimation, and controlling for the third moment corresponds to local kernels -
as they are recommended for boundary problems - or asymmetric weighting as
in knn smoothing.

2.2.2. Modeling, estimation and calibration

Given is a conditional distribution f2(y|x) up to some unknown parameters,
which can be typically expressed in terms of its moments. We concentrate only
on distributions with at most three unknown parameters, and the first three mo-
ments, namely E[Y |X], Var[Y |X], and E[(Y −E[Y |X])3|X]. Now, the idea is very
simple: the available data from S1 are taken to estimate the necessary moments
via mean regression first of Y , then of the squared and, if necessary, also the
cubed residuals. For the mean regression it is recommended to use a model as
rich as possible, but to disregard bias reducing methods which may increase the
total mean squared error (as e.g., instrumental variable methods do). In our ap-
plications we will use all available information x and explore the possible gain
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of semiparametric models, like the additive partial linear model (APLM). This
is a nontrivial extension of the linear model:

E[Y |X = (U, T )] = c + U′β+
q∑

α=1

gα(Tα), (2.4)

Here, the explanatory variables are separated into two the vectors U and T ,
where typically, U denotes a vector containing all categorical, especially dummy
variables, and vector T = (T1, . . . , Tq) the vector of continuous variables. The
unknown functions gα(·) are estimated in a nonparametric way. Most statisti-
cal and econometric software packages offer such a flexible regression model.
Where data and model allow for random effect modeling without introducing a
bias which leads serious prediction errors, this can be done, too. However, this
often renders subsequent statistical inference rather complicated.

In the special case where our method is used to predict income or expenditure
for the missing values in the same survey or census, i.e. where S1 ⊂ S2, one has
to control for a possible selection bias. There are several approaches, depending
on the economic model and data availability in S1, the Heckman (1976,1979)
correction being maybe the oldest but still most popular one. Currently, there
also exist different semiparametric approaches as e.g. Ahn and Powell (1993) or
Rodríguez-Póo et al. (2005).

In another particular case of predicting a variable y inside a panel structure for
a wave, where this information is missing, fixed or random effects models and
the inclusion of trends can seriously improve the prediction quality. For panels
being large in the time dimension, one can also consider varying coefficients to
use time trends or business cycles for improving prediction, i.e.

E[Y |X = (U, T ), V ] = β0(T ) + U′β(T ) + V(T ), (2.5)

where T can be time and some macroeconomic factors, and V are fixed or ran-
dom effects, possibly depending on T , too.
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Similarly one can proceed with the scedasticity function σ(x). Certainly, in
a case where homoscedasticity is credible, σ̂2 = 1

n
∑n

i=1 ε
2
i or its df-adjusted

version would do, where εi = yi − ŷi. More recommendable is to use a smoo-
thed version of σ2(xi) ≈ ε2

i (heteroscedasticity) with the index of the mean
function, in case of (generalized) linear models x′β, as regressor. Our expe-
rience for monetary measures is that, in case of heteroscedasticity, a constant
coefficient of variation (CoV) often does a very good job for approximating
the scedasticity function when the conditional mean is already estimated. With
CoV = σ(x)

E[Y |x] constant, one gets an appropriate estimator for Var[Y |x] from
the simple regression E[ε2|x] = c · E2[Y |x] or its simple extension E[ε2|x] =
c0 + c1E[Y |x] + c2E2[Y |x].

Normal Distribution

●

●

●

Chi−square Distribution

●

●

●

Gamma Distribution

●

●

●

Figure 2.1.: Examples for typical prior conditional distributions with heteroscedasticity when
the mean function is a straight line.

The residual distributions of income and expenditure regressions are bounded
from below and can be quite skewed for income and expenditure regressions.
For log-income and log-expenditures they are only somewhat skewed for higher
means. In any case it is worth considering distributions not restricted to sym-
metry. One can either work then with parametric families containing (at least)
three parameters, or make the skewness depend on the mean–variance propor-
tion. The latter is especially recommended if the residual distribution is bounded
from below or above. In Figure 2.1 we give three typical examples for appro-
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priate priors of conditional distributions where the mean is a simply a straight
line. A simple example for an according parametrization is the application of
the gamma distribution for f2, i.e. if one uses

f̂y,2(y) =
1
m

m∑
j=1

Γ(k̂(x j), ŝ(x j)) (2.6)

with E[Y |x] = k(x)s(x) and Var[Y |x] = k(x)s2(x), s(x), k(x) > 0. It is easy

to see that we get k(x) = E2[Y |x]
Var[Y |x] and s(x) =

√
Var[Y |x]

k(x) ; analogously its esti-

mates. For homoscedasticity one obtains the restriction s(x) =
√

1
k(x) , and for

heteroscedasticity with constant CoV k(x) = k.

When the conditional moments have been estimated and the estimation of the
marginal distribution has been done via (2.3), a final calibration is still recom-
mended as long as information about the variable of interest or its distribution is
available. The most evident case is when for S2 the mean of Y is known; then
the mean of the estimated distribution is adjusted accordingly.
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2.3. Estimating the income distributions

In the first application we use a continuing longitudinal household-level data set
from the Indonesia Family Life Survey (IFLS). It provides data at the individual
and household level on consumption, income, health, education, housing and
employment. Following Alisjahbana et al. (2003) the IFLS sample is represen-
tative for about 83% of the Indonesian population living in 13 of the 26 pro-
vinces in the country. In 1997, 2000 and 2008 the IFLS contains about 6500 to
10000 households which are partly cross section cohorts and partly a panel, also
because the questionnaires changed over time. The available data also contain
some sensitive information, including the household expenditures and income -
though with 20% to almost 50% missing values. The consumption expenditures
and income are expressed in logarithms of Rupiah.

2.3.1. An easy exercise

The first application is an easy, artificial exercise to study the functioning of our
procedure. We take the 5567 households in 2008 for which income has been
recorded and split them into half, 2783 for S1 and 2784 for S2. We will apply
our procedure with different estimators and priors to finally compare the resul-
ting predictions with the actually recorded income distribution. In our study,
household income per capita is a summation of five income sources: (1) income
from wage and salary in both cash and in-kind; (2) income from agricultural
business; (3) income from non-agricultural business; (4) household non labor
income, i.e. income outside wage/salary and business e.g. estimated house rent,
pension, scholarship, transfer received, etc; (5) household assets income.

Besides the classic references to the Mincer model, the data availability is a main
consideration when choosing the set of explanatory variables. Mincerian human
capital theory suggests that education (here measured as average years of schoo-
ling) and experience of working household members (measured here as average
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age) are chosen as explanatory variables. Other socioeconomic variables avai-
lable are the share of working household member, household size, household’s
female labor ratio, and whether there is a farmer in the family. The latter, toge-
ther with regional dummies (provinces and urban-rural location) accounts also
for the considerably high discrepancy between urban and rural areas. We ne-
glected the possibility of area-varying returns to assets or to human capital. The
asset ownership variable enters the model separately by log of assets per capita
and share of those assets devoted to household business activity. We end up with
model with 22 predictor variables.

The model we have outlined at first is the simple linear one used in most po-
verty assessments that rely on regression methods. By assuming that income,
consumption expenditures, and many other monetary welfare indicators are condi-
tionally approximately log-normally distributed (i.e. ln(y)|x is normally distri-
buted), we constructed an income prediction model with log household total
annual income per capita as response and our set of non-income regressors re-
ferring also to the empirical studies in Alisjahbana et al. (2003). We simply
applied OLS. Today a much more flexible alternative is the additive partial li-
near model introduced above, cf. equation (2.4). The resulting coefficients can
be seen in Table 2.1. For the APLM we only give the coefficients for the para-
metric linear part without standard deviations.

As parametric prior distributions for the conditional density of y|x in S2 we tried
the normal distribution and, to account for some asymmetry, the gamma distri-
bution. Then, for the second moment we compared different estimates for the
scedasticity function but, for the sake of brevity, we present only results under
homoscedasticity, and results under constant CoV; compare Section 2.2.2. The
resulting estimates for the income distribution in S2 are given in Figure 2.2 for
the linear regression model, and in Figure 2.3 for the additive partial linear mo-
del. The density plots for the real income distribution and the distribution of
conditional incomes, were created by kernel methods with Gaussian kernel and
two times Silvermans rule-of-thumb bandwidths, as the default still gave wig-
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Application 1 Application 2
Linear Model APLM 2-step-est. Heckman-2-step

Constant 10.957 (.2529) 11.55 (.0650)
Average age .0415 (.0102) .0494 .0438 (.0001)
Average age squared −.0006 (.0001) −.0007 −.0007 (.0000)
Average year of schooling .0400 (.0053) .0358 .0310 (.0000)
Log of assets per capita .2261 (.0122) .2294 .2254 (.0001)
Share of asset to business .4672 (.0808) .5027 .5602 (.0054)
Farmer in family −.2351 (.0489) −.2102 −.2102 −.1331 (.0024)
Share of working hhm 1.5472 (.0977) 1.203 .6681 (.0360)
Share of female hhm −.6385 (.1037) −.5233 −.5826 (.0081)
HH size −.0685 (.0099) −.1441 −.2607 (.0016)
Located in urban area .2871 (.0430) .2717 .2610 .2651 (.0014)
North Sumatera −.2365 (.0894) −.2162 −.0747 −.0074 (.0062)
West Sumatera −.0194 (.1102) .0056 −.0433 −.1396 (.0094)
South Sumatera −.1287 (.0942) −.0738 −.0513 .0250 (.0076)
Lampung −.4017 (.0956) −.3702 −.3721 −.2591 (.0081)
West Java −.2611 (.0678) −.2206 −.2196 −.2300 (.0034)
Central Java −.6629 (.0739) −.6095 −.6076 −.5800 (.0041)
Yogyakarta −.6850 (.1022) −.6261 −.6692 −.7929 (.0089)
East Java −.5239 (.0723) −.4890 −.5010 −.5872 (.0042)
Bali −.4119 (.0931) −.4343 −.3488 −.3065 (.0069)
West Nusa Tenggara −.5801 (.0846) −.5296 −.5084 −.4556 (.0056)
South Kalimantan −.0314 (.0965) .0295 −.0234 −.0917 (.0075)
South Sulawesi −.6058 (.1068) −.5632 −.6022 −.6826 (.0086)
Number of observations 2783 2783 5567 5567

Table 2.1.: Coefficients of the mean income models with standard deviations in parentheses.

gly outcomes. What can be seen first is that there is an enormous difference
between the distributions of the conditional and the unconditional log income
respectively. This is not surprising given an R2 of slightly above 30% for both
regressions. Even though the APLM does slightly better, the improvement is
hardly visible. The choice between homo- and heteroscedasticity, and also the
choice of the prior conditional distribution, seem to have a little bit more impact
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Figure 2.2.: Probability density curves based on a linear regression mean for the conditional
(grey dashed) and the unconditional (dark dashed) predicted income, compared to a
kernel density estimate based on the real incomes (black line). Different modeling
approaches from the upper left to the lower right.

than the regression model. The differences are nevertheless marginal when loo-
king at the integrated squared error, which can only be estimated because the
real income distribution has to be calculated via smoothing methods. Repea-
ting this exercise several times, i.e. splitting the original 5567 observations into
two sets and estimating one from the other shows that a representative sampling
from the provinces and the urban area is responsible for the shift of the mode (in
our example to the left) of the estimate. Apart from such sampling biases, the
prediction methods seems to work quite well. The outcome is robust and does
not depend much on our prior assumptions. Again, recall that our final estima-
tor can be considered as an n-fold mixture. For samples S2 larger than n = 100
the differences due to the prior modeling diminish rapidly, except for extremely
different models. In practice one does not really know which of the models (li-
near, APLM, homoscedastic, heteroscedastic, normal or gamma distribution) is
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Figure 2.3.: Probability density curves based on an additive partial linear regression mean for
the conditional (grey dashed) and the unconditional (dark dashed) predicted income,
compared to a kernel density estimate based on the real incomes (black line). Dif-
ferent modeling approaches from the upper left to the lower right.

closest to the real data generating process, and so it is always recommendable to
try more than one for such a robustness check.

2.3.2. Predicting the income distribution with missing values

In the first application we looked for an artificial problem that allowed us to
study and illustrate the performance of the introduced method. We therefore
considered an - admittedly, less interesting - situation where it is quite likely that
the moment regressions and the unknown distribution in S1 and S2 are similar,
i.e. come from the same population when disregarding selectivity biases.

In our second application we now turn to a problem where both data sets again
come from the same population but present the outcomes of a selection that is
most likely endogenous. Furthermore, we will not be able to check our results,
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simply due to the lack of complete information. More specific, we again take the
IFLS data from 2008 where 5567 households reported their income but 4894 did
not. Even though it is improbable that the same selectivity mechanism applied to
almost 50% of the total survey, to assume them to be missing at random would
be rather optimistic. We therefore applied a two step estimator that accounts for
the selection. The idea is as follows. We face two equations,

y∗ = xTβ+ u, income (2.7)

s = 11{zTθ+ ε}, reports income or not (2.8)

with the typical assumptions on u and ε. In our case z contains x and the addi-
tional dummy variable “respondent was household head” which turned out to be
significant in the selectivity equation (2.8). Let y be the reported income (else
y = 0), then we have

E(y|x, y > 0) = xTβ+ E(u|x, y > 0)

= xTβ+ α · λ(zTθ) (2.9)

where λ(·) is parametrically specified if the joint distribution of (u, ε) from
equations (2.7) and (2.8) is. Therefore, the first step is the estimation of equation
(2.8) to obtain θ, and the second step is the estimation of equation

y = xTβ+ α · λ(zT θ̂) + v (2.10)

where E[v] = E[v|x, zTθ] = 0. Note that for the prediction of the means of the
missing values one refers again to the original equation (2.7).

We tried several parametric and semiparametric estimation methods; see refe-
rences in Section 2.2.1. We started with the fully parameterized version of
Heckman where, as a result from assuming joint normality for (u, ε), λ(·) is
the inverse Mill’s ratio; see Figure 2.4. Then we tried to use a semiparametric
single index estimator for equation (2.8), and a partial linear model estimator
for the second step. As all implementations for the single index estimation we
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tried turned out to be quite unstable, we finally estimated the selectivity equation
with a probit and applied its θ̂ in a smoothing-spline based partial linear model
in (2.10); see the next to last column of Table 2.1. Similar to what we found in
the first exercise, Section 2.3.1, this semiparametric estimation procedure had
hardly an impact on the final results for the unconditional income distribution of
S2.
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Figure 2.4.: Estimated and predicted density curves of unconditional income for households with
not reported income (grey dashed), households with reported income (solid line),
and for the whole sample (dark dashed) in 2008, based on different prior assump-
tions from the upper left to the lower right.

In Figure 2.4 we compare, once again, the different predictions based on ei-
ther normality or gamma for the prior conditional distribution for homo- and
heteroscedasticity, respectively. Again we show only results where the heteros-
cedasticity is constraint to a constant coefficient of variance CoV. Contrary to
what we often observe in rich, industrialized countries, our estimates suggest
that the households not reporting their income tend to have smaller incomes,
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on average, compared to households with the same characteristics but reporting
their income. Though it would be interesting to study this finding in more depth,
this is clearly beyond the scope, and is not the motivation, of this paper. As it
is about half of the households that did not report their income, this could have
a notable impact on the total income distribution which is also shown in Figure
2.4.
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Figure 2.5.: Left figure: The Lorenz curves for the observed (solid) income, the conditional
income (thick dashed) and the predicted income (dotted-dashed). Right figure: The
Lorenz curve for the total survey, i.e. observed plus predicted with 99% point-wise
confidence intervals.

In view of this potential source of bias, one should study the consequences e.g.
for the Lorenz curve and Gini coefficient. In Figure 2.5, left column, we see
the resulting Lorenz curves for the conditional and the unconditional predicted
incomes and for comparison the Lorenz curve for the observed incomes. This
once more demonstrates that missing values must not be replaced by mean pre-
dictions even if mean prediction might be the best one can do for the prediction
of individual household incomes. Concerning the observed versus the predicted
income distribution we see the main difference for the mean of households. No-
netheless we see also, that the income distribution for households which did not
report income does not substantially deviate from the one of reported incomes.
Moreover, one should have in mind that our predictions are based on estimation,
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so they are random although they are not based on simulations. One would the-
refore like to have an idea of this randomness and construct confidence intervals.
We could do this for densities but, equally well, we can do this for the Lorenz
curve. In the literature one can find confidence intervals for the simulation based
predictions (where normal random errors were added to the individual income
predictions). However, they were constructed from repeated simulations, which
shows the uncertainty of the simulation method - and therefore proves why an
explicit analytic method like ours might be preferable, but it does not reflect the
uncertainty due to the estimation based prediction. We recommend to construct
confidence intervals or bands based on bootstrap or subsampling from the very
first step. For parametric bootstrap or the alternative subsampling we refer to
Politis et al. (1999). For bootstrap inference in semiparametric additive models
to Härdle et al. (2004), and for mixed effects or small area models to Lombardía
and Sperlich (2008). For the purely parametric model, a trivial bootstrap that
draws random samples of size n from the original sample and then simply re-
peats the whole procedure, is sufficient. In Figure 2.5, right column, we see the
99% confidence interval for the Lorenz curve.

As we already mentioned in the introduction, predicted income values typically
tend to be too high for the poorest households and too low for the richest. Mea-
sures of inequality in an income or expenditure distribution such as the Gini
coefficient are certainly very sensitive to that. Therefore we study also the per-
formance of our method to estimate the Gini coefficient. This coefficient is a
specific indicator, which ranges from 0 to 1, where 0 indicates perfect equality
and 1 total inequality. It corresponds to twice the area between the Lorenz curve
and the diagonal. In our application now, the Gini for the observed income is
0.579, for the income of non-reporting households it is 0.581 with our method
but just 0.368 for the conditionally predicted incomes. Putting together obser-
ved and predicted unconditional income for the missing values respectively, the
total Gini for the population is 0.582 with a 90% bootstrap confidence interval
of [0.578, 0.590]. Note that the Gini of the observed is right the upper bound of
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this interval.
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2.4. Predicting the expenditure distribution

Already the first case studies gave us some evidence of the importance of a
method for poverty, inequality and vulnerability analysis. In this Section, we
perform a further study, but now for prediction rather than for estimation. The
problem is to predict the distribution of consumption expenditures of a cohort
from the past. Certainly, it is also possible to change the role of S1 and S2

for historical studies to get an idea for past distributions thanks to extrapolation
from earlier but complete data. A prediction from the 2000 cohort to the 2008
cohort is maybe a little bit too adventurous as the returns have probably chan-
ged over that time period, especially in Indonesia. Therefore, either the mean
prediction or the scedasticity prediction will fail. Instead, we tried to predict the
expenditure distribution of the 2000 cohort with the aid of the 1997 cohort. For
evaluation issues we will predict the expenditures in 2000 only for that part of
the population (4585 households) for which we had actually observed the expen-
ditures. In practice one predicts correctly for the households and cohorts where
there is a lack of information. From 1997 we can use 5406 observations having
reported their expenditures and all predictor variables x, compared to only 439
incomplete records.

Given our experiences from above, for brevity we limit the presentation to the
results based on a linear regression model for the mean. The coefficients with
its standard deviations are given in Table 2.5 in the Appendix. We calculated
the real per capita consumption for each household by dividing nominal per ca-
pita consumption by the inflation rate of the respondent household’s province.
We used a provincial price deflater based on the Badan Pusat Statistic consumer
price indexes (CPI) reported for 45 cities in Indonesia and matched to the pro-
vinces included in the sample. For provinces with more than one city we use
the simple average of the price index; cf. Chaudhuri et al. (2002). This gave
us the regional inflation rates shown in Table 2.6 in the Appendix. This makes
expenditures more comparable and meaningful over time and regions. Then, as-
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suming that the expenditure behavior reflected by these coefficients is relatively
stable over the considered time period, we applied the four different priors on
S2, i.e. conditional normality and gamma under homo- and heteroscedasticity
with constant CoV. The final step is the in Section 2.2 mentioned calibration.
Referring to the measurement of the real GDP per capita provided by the WDI
in 2003 we notice that there is a decline of nearly 11.97% from 259 in 1997
to 228 in 2000. Given the assumption that the economy of average household
income is mirrored in the national real GDP per capita, we expect a decrease in
household income of around 11.97% from 1997 to 2000. The resulting uncondi-
tional predictions of expenditure distribution become comparable to the - in our
illustration - observed one. The results are given in Figure 2.6.
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Figure 2.6.: Density curves for the conditional expenditures (grey dashed) the predicted uncon-
ditional expenditures (thick dashed) for 2000 based on a 1997 cohort, and a kernel
density estimates of the observed expenditures (solid line) in 2000.

To better quantify the differences of the performance among different settings,
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we estimated the integrated squared error

IS E =
∫ ∞

−∞

[ f̂ (y) − f (y)]2dy , (2.11)

where f (·) indicates the true expenditure density and f̂ (·) our predictor. As
we do not really know the true f , this was replaced in our calculations by a
kernel density estimate with Gaussian kernel, Silverman’s rule-of-thumb band-
widths and using the in 2000 actually reported 4585 household expenditures.
Under the assumption of homoscedasticity we got 0.0012 for normal and 0.0010
for gamma priors, but only 0.0008 and 0.0007 for heteroscedastic normal and
gamma priors. Not that surprising for people familiar with mixture methods,
and because one maybe does not expect important asymmetries in the conditio-
nal density, the difference between normal and gamma priors is less accentuated
than the somewhat remarkable difference between homo- and heteroscedasti-
city. For the predicted distributions under heteroscedasticity for the prior, the
corresponding Lorenz curves hardly differ from the one based on the actually
reported expenditures. Similar to the preceding application, we again calculate
the measurement index of inequality in the expenditure distributions, here the
Gini coefficient. The results were a predicted value of 0.447 with [0.429; 0.455]
as its 90% bootstrap confidence interval, and a value of 0.451 for the observed
expenditures. These results, as well as the following ones refer to the gamma
prior under heteroscedasticity but hardly differ from those obtained when sub-
stituting by the normal. Overall, the results are very promising so far.

A question of central interest is to trace the development of poverty in the un-
derdeveloped and the developing countries. Certainly, there exist many different
definitions of poverty lines. The hardest ones to predict in our context are pro-
bably the absolute ones as any slight shift of the mean e.g. by calibration can
easily have a fundamental impact on the prediction of the number of households
being classified as poor. Therefore, if prediction methods for other cohorts or
years have to be applied or for scenario studies, it is more reasonable to consider
relative poverty measures. Hence, we used the poverty line defined as 40 percent
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of the country’s median consumption. The poverty line was then at 13.21458 log
Rps per year along the reported, and 13.20469 log Rps along the predicted in-
come distribution. Once the poverty line is fixed, one can see from the predicted
density the percentile lying below this line. For the case of a particular small or
moderate set of households it might be even interesting to look directly at the
individuals. In that case we need to assign each household a position inside the
unconditional distribution, based on his characteristics x. Based on the proba-
bility densities obtained above, one could approximate the distribution function
F(·) and its inverse F−1(·) e.g. by linear interpolation using the cumulated dis-
tribution value. Then, for a household with given x and predicted mean ŷ one
may construct a projection into the unconditional distribution along

ŷuncond = F−1(Fŷ(ŷ|x)), (2.12)

where Fŷ indicates the cumulated distribution function of the conditional in-
come. We emphasize that this must not be considered as optimal prediction of
the household income, which is still the mean prediction with an accuracy de-
pending for example on the R2 of the mean regression. We are simply assigning
each individual a place according to its x inside the predicted unconditional dis-
tribution. In contrast, this can be very helpful for the analysis of vulnerability to
poverty.

Now, the approximated expenditures generated from the inverse distribution
function 2.12 give an estimate for how many people will fall below the poverty
line. The accuracy of the predicted unconditional consumption expenditures can
then be examined by cross tabulating the predicted with the observed consump-
tion expenditures, see Tables 2.2 to 2.4. In Table 2.2 are compared the number
and percentages of actual non-poor and poor compared to the predicted values
and its confidence intervals. One is tempted to speak of an almost perfect pre-
diction thanks to our new method. In Tables 2.3 is shown what a purely mean
prediction would tell us about poverty. Finally, in Table 2.4 we analyzed the
prediction quality of our method for the individual household level. While, not
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surprising, most of the non-poor are classified correctly, this is not the case for
the poor. The outcomes of Table 2.3 and 2.4 are not surprising insofar that the
mean regression had an R2 of about 39% for 1997. The tails of the marginal
expenditure distributions are therefore mainly determined by the households’
unobserved heterogeneity. This is why we said these methods are helpful for
vulnerability but not for tail predictions of the individual level.

Observed Predicted 90% Prediction Interval
Not Poor 4079 (88.96%) 4063 (88.62%) [4056; 4079] (88.46% − 88.96%)
Poor 506 (11.04%) 522 (11.38%) [506; 529] (11.04% − 11.54%)

Table 2.2.: Number of Households below the relative poverty line according to the unconditional
distribution prediction

Observed Predicted 90%Conf.Int.
NotPoor 4079 4495 [4476; 4509]
Poor 506 90 [76; 109]

Table 2.3.: Number of Households below the
relative poverty line according to the
mean prediction

Observed Predicted
NotPoor Poor

NotPoor 3711 368
Poor 352 154

Table 2.4.: Individual classification of
households, predicted versus
reported.
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2.5. Conclusions

Our aim is to estimate or predict a monetary distribution, like income or consump-
tion expenditures. The mean regression gives only the conditional distribution
which is only poor estimator of the unconditional (marginal) distribution. For
certain welfare studies one could use quantile regression instead but again fails
to predict the marginal distribution as a whole. If one uses quantile regressions
for each percentile to afterward (re)construct the unconditional distribution, one
lacks of a common model and estimator, probably suffers estimation problems at
the (most interesting) tails, and further inference is hardly possible. In the litera-
ture many different models and methods were proposed, compared and rejected;
many of them being simulation methods.

We propose a simple method based on mild assumptions to get an analytic and
unique estimator for the whole required marginal distribution. The calculus of
derivatives, Lorenz curve, or any index, poverty or inequality measure is straight
forward. Furthermore, the explicit analytic form of our estimate makes inference
possible and similar to, for example, the construction of confidence and predic-
tion intervals.

There exist mainly two or three ways to understand and interpret our method,
in particular the integration or averaging step; see equation (2.3). The Bayesian
approach is to think of the required distribution as a random function which can
be described via estimated moments and appropriate conditional prior distribu-
tions. A more frequentist, but still modeling approach, is to rely on n-fold mix-
ture models working with estimated but (via common regression models) linked
parameters. As a special case we can even think of the nonparametric approach
via kernel density estimation. Here now, the conditional prior distribution is our
kernel, and the scedasticity function is the data-adaptive local bandwidth. Ho-
moscedasticity then resembles the use of a common global bandwidth. The use
of asymmetric priors corresponds to the case of applying special kernels typi-
cally used for boundary correction or asymmetric information (like the knn es-
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timators do in nonparametric regression). They are therefore recommendable if
prior knowledge on boundaries or skewness is available. A common conclusion
of each of these three interpretations is that the choice of the prior distribution
plays a minor role, the scedasticity function is indeed more important, and the
quality of the mean regression has mainly an impact on the variability of the
final estimate.

For the regression estimations necessary for the required moments, our method
is not at all restricted to particular methods or models; parametric, nonpara-
metric, semiparametric, selectivity correction or mixed effects models for cross
section, panel or times series; the here proposed method can straightforwardly
be combined with each of them. Inference can most easily be based on bootstrap
or subsampling methods.

We have shown the use and the practical usefulness of our method in three dif-
ferent contexts: data matching from one sample to another, the completing of
surveys with many missing values (probably endogenous), and the prediction to
the future. One could add survey-to-census, cross-survey or cross-country data
matching or scenarios for the prior evaluation of treatment and policy effects.
Our motivation, however, was the illustration and the study of the performance
of this method that can only be done if a reference distribution based on real
observations is available. As the implementation and use of our method is rela-
tively simple in any of the typically applied software packages like, for example,
gretl, R, SAS, S-plus or Stata, this presents a rather powerful though handy tool
for practitioners and empirical researchers.
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Application 3 (linear model)
Constant 11.77 (.1251)
Average age .0231 (.0042)
Average age squared −.0003 (.0000)
Average year of schooling .0488 (.0025)
Log of assets per capita .1567 (.0061)
Share of asset to business .0289 (.0438)
Farmer in family −.2011 (.0247)
Share of working hhm −.1082 (.0562)
Share of female hhm −.0521 (.0612)
HH size −.0567 (.0042)
Located in urban area .1604 (.0212)
North Sumatera −.3990 (.0463)
West Sumatera −.1974 (.0578)
South Sumatera −.3636 (.0561)
Lampung −.2568 (.0556)
West Java −.2754 (.0415)
Central Java −.3456 (.0425)
Yogyakarta −.5030 (.0534)
East Java −.6584 (.0417)
Bali −.4339 (.0500)
West Nusa Tenggara −.3546 (.0482)
South Kalimantan −.1474 (.0525)
South Sulawesi −.6501 (.0493)
Number of observations 5406

Table 2.5: Regression results of mean expenditures. Figures in parentheses give the standard
deviations
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Inflation Rate
Province 1998 1999 2000
Aceh 78.71 6.09 9.57
North Sumatra 82.53 0.66 5.37
West Sumatra 87.87 4.23 10.99
Riau 64.35 2.04 9.67
South Sumatra 89.22 −1.01 8.49
Bengkulu 84.10 0.47 8.21
Lampung 84.66 3.34 10.18
Jakarta 74.78 1.77 10.29
West Java 72.89 2.94 6.55
Central Java 70.46 1.02 8.62
Yogyakarta 77.46 2.51 7.32
East Java 87.09 1.06 9.62
Bali 75.11 4.39 9.81
West Nusa Tenggara 90.14 0.59 5.19
Central Kalimantan 75.12 −2.56 10.22
South Kalimantan 75.50 1.47 7.57
East Kalimantan 71.70 3.35 11.29
South Sulawesi 79.35 1.64 9.73
Southeast Sulawesi 97.75 1.29 11.25

Table 2.6: Regional inflation rates in 1997, 1999 and 2000 (Rp per capita/month), see also
Pradhan et al. (2001)
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3. Estimating and Predicting the Distribution of
the Number of Visits to the Medical Doctor

Abstract

This paper is concerned with the problem of estimating and pre-
dicting the distribution of the number of visits to the medical
doctor. We are interested in predicting the distribution for a
certain population, given a sample that is not necessarily taken
from that population. The prediction is based on a pre-estimated
conditional probability that is assumed to be the same for both
the population of interest and that from which the sample was
taken. We apply the method to data from Ryde (a suburb of Sid-
ney) in 1994 and 1995. In a first step, we model the distribution
of the number of visits to a general practitioner (GP) as a func-
tion of gender and age. The main contribution of this paper is to
show how, based on a sample of observations, one can estimate
the (unconditional) discrete distribution of the number of visits
for the population of interest, and also forecast that distribution
for the population from which the sample was taken. This is
achieved using an integration-based procedure.
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3. Estimating and predicting the distribution of the number of visits to the medical doctor

3.1. Introduction

The frequency distribution of doctor consultations is a primary indicator of
health care utilization in a population and, as such, is of obvious importance
for health care budgeting. Therefore, patterns in the frequency of consultations
to the doctor, especially the dependency of the utilization of health resources on
socioeconomic and geographic factors has been extensively documented, and
its proper modeling is of central interest for empirical research in health econo-
mics and applied econometrics, respectively (Cameron et al., 1988; Pohlmeier
and Ulrich, 1995; Windmeijer and Santos Silva, 1997; Deb and Trivedi, 1997;
Jochmann and León-González, 2004; Winkelmann, 2004; to mention only few).
Typically, the literature bemoans a lack of data on certain key variables on the
one hand and the ‘shrinkage effect’ effect of conditional expectations on the
other hand. More recently, Berzel et al. (2006) offered a plausible description
of the number of doctor visits by modeling its dependence on a very limited
number of demographic factors. In fact, it turned out that the mean number of
doctor visits can already be estimated quite well when applying appropriate sta-
tistical modeling on simple available demographic factors such as age, gender
and location.

Now, the target is to predict the numbers of visits for a population having at hand
only these simple demographic factors for the population of interest, but full in-
formation - i.e. also the numbers of visits - observed for a particular sample.
There exist several well-studied methods for estimating missing values (see
Dempster et al., 1977; Little and Rubin, 1987; Rubin, 1996; Schafer, 1997),
some of which could be used in our context. Then, instead of estimating the
distribution of interest directly one could consider the numbers of visits as mis-
sing values and complete the data by simulated (imputed) values. Most of these
imputation processes are iterative. A key feature of such approaches is to regard
missing data as random variables, and then to replace them with multiple draws
from the assumed underlying distribution. Therefore, these methods are often
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3.1. Introduction

known as ‘multiple imputation’.

However, to our knowledge, no direct estimator of the population distribution of
the doctor consultations has been reported yet. Note that the above-mentioned
methods perform well for imputing missing values but have not been studied
for imputing values for a whole population. Just thinking of the computational
burden, if - as typically the case - the underlying sample is small but the popu-
lation is large, these methods are not really attractive for our problem. Although
the method we introduce here is straight forwardly applicable on many similar
estimation or prediction problems, we concentrate on estimating the population
distribution of doctor consultation frequencies, based on a moderate sample.

In a first step, Section 3.2, we search for a reasonable conditional distribution
model based on only those covariates that are available in both the sample and
the population of interest. As commonly acknowledged, the Poisson or nega-
tive binomial generalized linear model is the simplest way to model count data.
The chosen link is typically the logarithm, i.e. the canonical link. According
to the exploratory analysis, however, it may not be appropriate to use Poisson
or negative binomial generalized linear models for our data problem since the
generalized linear model does not allow for the overdispersion parameter to de-
pend on covariates. As a way of overcoming these limitations associated with
Generalized Linear Models (GLM, see Nelder and Wedderburn, 1972) we tried
also the generalized additive model for location, scale and shape (GAMLSS),
introduced by Rigby and Stasinopoulos (2005). Nevertheless, all distribution
models in question should be adapted to the sample, as the final objective is the
optimal prediction or estimation of the unconditional distribution(s) of the po-
pulation(s) of interest. In a second step, Section 3.3, one can now derive these
distributions of interest as being a mixture of N(=population size) of the above
calculated conditional distributions. All we need is a clear idea of the distribu-
tion of the covariates in the populations of interest and the assumption that the a
priori fitted conditional models hold throughout. In Section 3.3 we present the
numerical results. Section 3.4 concludes.
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3. Estimating and predicting the distribution of the number of visits to the medical doctor

Table 3.1.: Summary statistics, standard deviations in parentheses.
population sample

men women men women
number of individuals 11302 12305 101 99
average age in 1994 36 (22) 39 (24) 37 (21) 40 (23)
average age in 1995 37 (22) 40 (24) – –
average number of visits in 1994 5.2 (6.3) 6.9 (7.2) 5.0 (5.3) 6.8 (6.1)
average number of visits in 1995 5.6 (6.5) 7.2 (7.2) – –

3.2. Modeling of the conditional distributions

The data set considered in this paper records the 23, 607 inhabitants of the Syd-
ney suburb Ryde in 1994 and 1995. The available information comprises age,
gender, and the number of doctor visits for both years. A more detailed des-
cription of these data can be found in Heller (1997). In the original data set
there are 11 individuals (of the 23, 618) reporting more than 100 visits. As it
turned out that this was due to an excessive misuse of the health insurance card
by illegal immigrants for which is was impossible to obtain reliable corrections,
we decided to truncate the data at a maximum of 100 visits. Note that then we
have just 41 individuals in 1994, and 40 in 1995, with more than 52 visits, i.e.
more than one each week. As no information is available that would allow for a
sound detection of missmeasurement, we have not truncated these counts. The
summary statistics for the remaining set of N = 23, 607 inhabitants are given in
Table 3.1.

There are mainly two prediction problems of interest. First, practitioners usually
only have access to surveys, which for local areas can be of moderate size. From
these they have to estimate the number of visits for a certain population, or to
predict them for an artificial population to calculate scenarios. For example, in
most industrialized countries a serious demographic change is expected in the
next two decades which will effect the health systems and pension funds. In
order to simulate these two situations we first draw a random sample of only
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Figure 3.1.: The number of visits to a GP (left, in 1994; right, in 1995) plotted against age for
a simple random sample of 200 residents in Ryde. Local linear regression estimate
with cross-validation bandwidth ĥCV = 2.78 (black line, male) and ĥCV = 2.78
(grey line, female)

200 observations from 1994 with the summary statistics given in Table 3.1. The
extension to stratified sampling or other sampling schemes is obvious. The aim
is to estimate the distribution of the number of visits to the medical doctor in
1994, and afterwards to predict it for 1995.

On the one hand it is well known that gender strongly interacts with age when
looking at visits to the doctor; on the other hand, age is the only additional
variable. Therefore, we first have to decide whether for a reasonable model fit
the sample should be split by gender. In order to study this, we plot the number
of doctor visits against age in Figure 3.1, separately for male and female. The
solid and dotted lines are simple local linear regression estimates. They indicate
a non-linear relationship between the mean of the number of doctor visits with
age and gender. Furthermore, the differences between males and females seem
to be quite complex and hard to capture in one common model.

Secondly, we analyze the variance-mean ratio to check for under or over dis-
persion. Figure 3.2 shows the variance-mean ratio by age and gender for the
random sample of 200 inhabitants in 1994. The ratio is clearly greater than one
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Figure 3.2.: Variance by mean, separate for males and females, based on 200 random samples in
1994.

for all levels of age, indicating inappropriateness of the Poisson model because
of over dispersion. This exploratory analysis also reveals that age and gender
have a strong influence on both the mean as well as the variance of visits; com-
pare Figure 3.1 and 3.2.

Recall that the negative binomial regression model allows for overdispersion by
introducing an unobserved heterogeneity term for each observation i. Observa-
tions are assumed to differ randomly in a manner that is not fully accounted for
by the observed covariates. It assumes a negative binomial distribution for the
response variable y in which its mean µ is modeled as a function of explanatory
variables and a variance of the form µ+ µ2σ, where σ is an unknown overdis-
persion parameter which in turn shows no extra dependency on the covariate
values. However, from Figure 3.2 we notice that the variance-mean ratio varies
substantially over the covariate values. Consequently neither the standard Pois-
son nor negative binomial generalized linear models seem to be appropriate in
this case.

As indicated, we will need to fit appropriate models of conditional distributions
to our data. Given our count data and the above findings we start with the ne-
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3.2. Modeling of the conditional distributions

gative binomial model (see for example, Cameron and Trivedi, 1998, Section
4.2.2), defined by

f (y|µ,σ) =


Γ(y+1/σ)

Γ(y+1)Γ(1/σ)
(µσ)y

(µσ+1)(y+(1/σ)) if x = 0, 1, · · ·

0 otherwise

with mean µ and variance µ+ µ2σ, see above. If the overdispersion is mainly
due to zero inflations, an alternative extension of the simple Poisson is the zero
inflated Poisson, i.e.

f (y|µ,α) = (1 − α) · Po(y, 0) + α · Po(y, µ), Po(y, µ) = e−µµy/y!,(3.1)

where again µ is modeled as a function of the covariates whereas α is an unk-
nown scalar. An alternative to this extension of the Poisson we can also consider
a zero inflated negative binomial having µ as a function of covariates and two
unknown parameters σ and α. Different approaches to tackle the zero-inflation
or other finite mixtures are proposed e.g. by Gurmu (1997), Deb and Trivedi
(1997). See that issue also for further suggestions though in different contexts.
As we mentioned before, for modeling linear functions, the linear models, lm(),
and generalized lineal models, glm() of Hastie and Pregibon (1992) in the R
language can be used. However we are restricted to model only the mean using
lm() and glm().

In order to compare these three models we calculate the log-likelihood (llh), the
deviance difference ∆D (relative to the simple Poisson) and the AIC of the fit-
ted models as quality of fit statistics. The results are listed in Tables 3.2 and
3.3 respectively, separated by gender. Note first that the different criteria do not
contradict each other. The zero-inflated Poisson model provides a slightly better
fit than the Poisson model (not shown). However, the model which is superior
(according to the AIC) is the negative binomial. The zero-inflated negative bi-
nomial shows no improvement compared to the negative binomial because the
zero inflation is unnecessary after the inclusion of σ. Consequently, the obser-
ved deviance difference is zero relative to the negative binomial. The AIC even
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3. Estimating and predicting the distribution of the number of visits to the medical doctor

Table 3.2.: Quality of fit statistics using GLM (for males)
Model Link Terms llh ∆D AIC
zero-inflated Poisson log(µ) age + age2 −294 − 596
negative binomial log(µ) age + age2 −253 82 515
zero-inflated negative binomial log(µ) age + age2 −253 82 517

Table 3.3.: Quality of fit statistics using GLM (for females)
Model Link Terms llh ∆D AIC
zero-inflated Poisson log(µ) age + age2 −360 − 728
negative binomial log(µ) age + age2 −286 148 579
zero-inflated negative binomial log(µ) age + age2 −286 148 581

indicates that the improvement in fit is insufficient to justify the use of the more
flexible but also more complex model. Recall that our main objective is not the
optimal fitting but prediction, which is much more sensitive to overfitting due
to complexity. Indeed, complexity is often one of the worst enemies of good
prediction.

However, the generalized linear considered so far is restricted to allow only the
location parameter to depend on covariates, and this only in a known parametric
way. Rigby and Stasinopoulos (1996, 2005) developed a general class of uni-
variate regression models, called the Generalized Additive Model for Location,
Scale and Shape (GAMLSS) with two important extensions. First, they allow
all distribution parameters to depend on a predetermined set of covariates. Se-
cond, the modeling of these parameter functions may include random effects or
even be nonparametric, but being always of an additive structure. The model as-
sumes independent observations of the response variable given the parameters,
the covariates and the values of the random effects. It provides a very general
distribution family for univariate continuous or discrete response variables. In
our case, under the negative binomial distributional assumption, both the mean
and the dispersion parameter can be modeled as a function of age. To sum-
marize, we consider the negative binominal density f (y|µ,σ) and will estimate
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Figure 3.3.: Impact of age and gender on the GAMLSS nonparametric regression estimates for
mean g1 (left) and dispersion g2 (right), based on a random sample of 200 residents
in Ryde in 1994.

log(µ) = g1(age), log(σ) = g2(age), (3.2)

where we first will set g1, g2 to be parametric quadratic function, and afterwards
nonparametric cubic splines (cs). For the latter we have plotted the functions g1,
g2 in Figure 3.3.

For comparing these two GAMLSS models, we use the well known fitted global
deviances GD = −2l(θ̂) = −2

∑n
i=1 l(θ̂∗), the Akaike information criterion AIC

of Akaike (1974) and the Schwarz Bayesian criterion SBC of Schwarz (1978).
AIC and SBC are asymptotically justified as predicting the degree of fit in a new
data set, i.e. approximations to the average predictive error. The global deviance,
SBC and AIC are summarized as statistics relating to the fit of the parametric
and nonparametric GAMLSS models in Table 3.4 and 3.5, again separately for
males and females. Fortunately, the different criteria do give the same selections
so that it is enough to look at the AIC here.

A further possibility to model dispersion in parametric or nonparametric nega-
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3. Estimating and predicting the distribution of the number of visits to the medical doctor

Table 3.4.: Quality of fit statistics using GAMLSS (for males)
Model Link terms GD AIC S BC

negative binomial log(µ) age + age2 506 518 533
(parametric model) log(σ) age + age2

negative binomial log(µ) cs(age) 502 515 534
(nonparametric model) log(σ) cs(age)

Table 3.5.: Quality of fit statistics using GAMLSS (for females)
Model Link terms GD AIC S BC

negative binomial log(µ) age + age2 568 580 596
(parametric model) log(σ) age + age2

negative binomial log(µ) cs(age) 568 580 595
(nonparametric model) log(σ) cs(age)

tive binomial regression is the Vector Generalized Additive Model introduced
by Yee and Wild (1996). One can also find some discussions about applying
the provided R-package VGAM for count data in Berzel et al.(2006). However,
already now we can see, compare Tables 3.2 to 3.5 that the AIC always selects
the negative binomial generalized linear model throughout. This confirms our
statement that, depending on the amount of information (data and signal-noise
ratio), complexity is one of the worst enemies of prediction. Consequently, it
is questionable to what extend other flexible, semi- or non-parametric model
approaches can improve in our prediction problem. Nevertheless, in the final
step we will also consider the GAMLSS results for the following reason. Our
objective is not the conditional but the unconditional density of visits, and we
do not know which model yields the best results there. Figure 3.3 shows that
the data fit indicates a nonlinear, nonconstant dispersion parameter. While limi-
ting to a quadratic modeling seems adequate, ignoring this finding might cause
prediction loss in the final step.
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3.3. Predicting population distributions

In this section, we come to this final step when applying our new method to the
two described problems. Both are for prediction: ones is using a random sample
of 101 males, and 99 females respectively, in 1994 to estimate the distribution of
number of visits for the male (and female) population in Ryde in the same year
(case study 1); another one is to predict the number of visits prediction for male
(or/and female) population in Ryde in 1995 using the same random sample of
males (or/and females) in 1994 (case study 2).

3.3.1. Case study 1

We start with estimating the distribution of number of doctor visits for the popu-
lation, given a sample in the same year. The method we suggest is not simulation
based; it provides transparent and reproducible estimators. We have a sample
{(xs

i , ys
i )}

n
i=1, and the covariates {x j}

N
j=1 of the population of interest. Recall that

the required unconditional distribution of the population of interest, say fN(y),
is simply the marginal distribution of the joint density fN(y, x) such that

fN(y) =
∫

fN(y, x)dx =
∫

fN(y|x) fN(x)dx . (3.3)

For finite populations we can simplify to

fN(x) =

 1
N if x = x j

0 if x , x j
(3.4)

and then obtain

fN(y) =
1
N

N∑
j=1

fN(y|x j). (3.5)

Thus, what we need is a reasonable substitute in equation (3.5) for the condi-
tional densities fN(y|x). An obvious choice here is one of the conditional den-
sities fitted to the sample data, say fn(y|x). If fn(y|x) is a consistent estimate

95



3. Estimating and predicting the distribution of the number of visits to the medical doctor

of fN(y|x), the consistency for fN(y) follows immediately. Also the asymptotic
properties can be derived directly for most cases via Taylor expansion. In the
nonparametric case this can be quite tedious, compare e.g. Van Keilegom and
Veraverbeke (2002) or Sperlich (2009). In both the nonparametric and the para-
metric world, the estimator of the unconditional density will inherit consistency
and convergence rate from the conditional density estimate.

What happens if fn(y|x) is not a consistent estimate of fN(y|x)? In that case our
procedure will still give a good approximate for fN(y) as long as the relation bet-
ween y and covariates x specified and estimated from the sample can be carried
over to the population reasonably well. In that case one could think of

f̂N =
1
N

N∑
j=1

fn(y|x j)

as an N-fold mixture of pre-determined densities relating y to some covariates
x.

In our case we considered the negative binomial (NB) as a reasonable descrip-
tion of the relation between y and x. With the estimates ĝ1, ĝ2 obtained from our
sample {(xs

i , ys
i )}

n
i=1 in Section 3.2 we estimate then the unconditional probabi-

lity function of y by

f̂N(y) =
1
N

N∑
j=1

NB[y|ĝ1(x j), ĝ2(x j)]. (3.6)

For the different specifications, NB with quadratic g1 and constant g2 (the GLM),
g1 and g2 quadratic functions of age, and finally cubic splines for g1 and g2

(GAMLSS), the results are given in Figure 3.4. As in our example we have
records of the real number of visits, we can evaluate our predictions exactly. It
can be seen that the distribution of the estimated conditional mean (circles) is
much too narrow to be of use when we are interested in the distribution of real
visits (bars). In contrast, the predicted unconditional distribution (solid circles)
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Figure 3.4.: Predicted population distribution based on negative binomial GLM estimates (up-
per), negative binomial GAMLSS parametric (middle) and cubic spline (lower) spe-
cification for 1994.

fits very well. While for men, it seems that it would be worth to pay more
attention on a possible zero inflation, the problem is less emphasized for females.

For comparing the different GLM and GAMLSS specifications we need a more
careful analysis. In order to do so, we calculated the prediction error

1
M

M∑
m=1

LOS S [ f̂N(ym) − fN(ym)], (3.7)

where M is the number of values y does take, i.e. 1, 2, · · · , 42 for males and
1, 2, · · · , 34 for females. LOS S [·] stands simply for abs[·] (L1-norm) and [·]2

(L2-norm) respectively. The outcome is listed in Table 3.6. According to this,
the negative binomial GAMLSS using spline performs best for both males and
females. It might however be surprising that for males it does much better than
GLM although the AIC was the same (515 for both CS-GAMLSS and GLM).
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Table 3.6.: L1 and L2-Norm prediction errors of case 1
L1-Norm L2-Norm

Model males f emales males f emales
negative binomial GLM .02480 .03558 .00385 .00451

zero-inflated negative binomial .02481 .03558 .00390 .00451
negative binomial GAMLSS .02483 .03531 .00389 .00448
NB GAMLSS using spline .02334 .03193 .00371 .00346

The problem with the AIC is that one needs to calculate the degrees of freedom
which can be quite problematic in nonparametric statistics, see e.g. Sperlich et
al. (1999) or Müller (2001). Note finally that based on our observation in Fi-
gure 3.4 we also calculated the prediction errors for the zero-inflated NB GLM;
surprisingly, it never outperforms the NB GAMLSS using spline.

3.3.2. Case study 2

Even more challenging - and also more interesting for health economics and
political decision making - is the prediction of visits to the medical doctor for
the future.

Clearly, the theoretical findings from equations (3.3) to (3.6) stay all the same.
The only difference is that, at least for far horizons, it is to be expected that the
relation between y and the used covariates will change. The prediction perfor-
mance of our method to the future depends on the persistency of the relation we
estimate from the sample. To keep the problem simple we will use the same
sample, i.e. the results obtained in Section 3.2 to now predict the distribution of
visits to the doctor for 1995. Applying the same procedure as we used in the
first case study, we get the predictions illustrated in Figure 3.5. At first glance
the prediction performance looks even better than the estimation performance
in case 1. This is due to the lack of zero inflations in the recorded real visits.
This now also explains why the different criteria in Section 3.2 opted for models
without zero-inflation. All these criteria are constructed thinking of an infinite
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Figure 3.5.: Predicted population distribution based on negative binomial GLM estimates (up-
per), negative binomial GAMLSS parametric (middle) and cubic spline (lower) spe-
cification for 1995.

hyperpopulation, i.e. of a distribution from which the populations in 1994 and
1995 are just random samples. Then, a zero-inflation would fit better the 1994
data but constitutes an overfit for the hyperpopulation.

As for the first case study we again analyzed the prediction errors, see equa-
tion (3.7), of our different specifications, summarized in Table (3.7). We get
a similar ranking of the specifications as in case study 1 but, as already noted
from Figure 3.5, with better total performance. Again, the nonparametric NB
GAMLSS clearly gives the best predictions for both the male and female popu-
lations.
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Table 3.7.: L1 and L2-Norm prediction errors of case 2

L1-Norm L2-Norm
Model males f emales males f emales

negative binomial GLM .02402 .03407 .00367 .00411
zero-inflated negative binomial .02403 .03407 .00371 .00411
negative binomial GAMLSS .02405 .03369 .00368 .00409
NB GAMLSS using spline .02238 .03110 .00348 .00325
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3.4. Conclusions

The number of visits to the medical doctor is of essential interest in health eco-
nomics, be it for political decision making or the planning of health care institu-
tions and insurance. While there exist many econometric model approaches to
study the demand for health care, it is hard to find a simple but effective method
to estimate and predict the unconditional distribution of the number of visits.
Often demographic information which is easily available even on the census le-
vel turns out to be more helpful for estimating – not to mention for prediction
and scenario simulations – the distribution of the number of visits than complex
econometric models. Doubtless the latter have their particular justification in
more sophisticated (welfare) analysis.

A careful model specification and selection is the necessary prior step to ob-
tain the conditional relationship between the number of visits and the demogra-
phic factors. Here, we fitted different conditional densities to the sample data.
Then a well known integration principle yields a predictor for the required un-
conditional distribution of visits. In case the conditional sample distribution
is a consistent estimator for the population analogue, this predictor inherits its
asymptotic properties, in particular consistency and convergence rate. In case
the population of interest follows a different distribution than the sample at hand,
we still have the interpretation of our predictor as an intuitively appropriate N-
fold mixture distribution. This may explain the excellent performance of our
method despite its simplicity, in both case studies: for the estimation of the un-
conditional population distribution, and for the future prediction.

The model selection might be done via standard criteria as we used. However,
one should not forget that these try to select the best estimator for the conditional
distribution whereas the final objective is the unconditional one. This or the
problematic calculation of the degrees of freedom for nonparametric estimators
would explain that, for example, the AIC did not select the optimal model for the
prediction of female visits to the medical doctor. In our case studies we were in
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the fortunate situation of knowing the outcome and could therefore compare the
prediction with the real number of visits. In practice we recommend to evaluate
the final predictor of the unconditional distribution on the observed sample. Note
that due to the explicit analytic form of our estimator / predictor our results
are transparent and reproducible. We do not use any random-, simulation- or
resampling methods. As a flexible method it can be incorporated in any mixed
effects or more sophisticated econometric models. Furthermore, it can be easily
extended to any other context and allows for further inference.
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4. Estimating the Income Distribution from a few
Quantiles

Abstract

For different welfare studies, often an estimate of the income
or consumption distribution is needed even if only few quantiles
(e.g. quartiles and quintiles) are available. A method for estima-
tion of a convex function based on spline smoothing is applied
for estimating the Lorenz curve from sparse data points. Com-
pared to the currently available methods, the new estimate does
not require constrained optimization. The use of the functional
form for the Lorenz curve enables us to provide a parametric
density that is consistent with the given quantiles. Further, we
can easily derive inequality measures such as Gini coefficient.
In the simulation study and an application with quintile share
data on US income, it can be seen that the new estimate per-
forms well. This oeuvre summarizes first ideas and results of an
ongoing joint collaboration with Ignacio Moral-Arce from the
Institute of fiscal studies in Madrid and Prof. Stefan Sperlich.
The results described in this paper represents my independent
work.
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4.1. Introduction

When Sala-I-Martin (2006), in his seminal paper, calculated the income distri-
bution of 138 countries he used nonparametric kernel density estimation. Typi-
cally, for such an estimation sufficiently large data sets have to be available or to
be constructed artificially by different data matching, forecasting, or extrapola-
tion methods (from neighboring countries). Often, however, quartiles, quintiles
or even more quantiles are indeed available and probably more reliable than par-
ticular (small) samples or own artificial constructs. Sometimes, for many small
areas we have the basic information of quantiles, we would like to be able to esti-
mate the distribution for each as well as the total distribution, which respects the
given quantiles, however here we come across a scaling problem. Our target is
to construct easy-to-calculate analytical estimators based on only a few quantiles
which will allow us to construct the distribution functions as well as derivatives,
like the Lorenz curve, or inequality, or poverty measures. The main idea is to
use a constraint spline estimator for the Lorenz curve which provides an analy-
tic parametric specification of all the other functions and parameters of interest.
The minimum of information needed are quartiles while there is no limit. Ho-
wever, with deciles we already get excellent approximations of the underlying
distribution, and the use of more than centiles typically does not contribute new
information.

A function f is a Lorenz curve if it satisfies the following properties (Ortega et
al., 1991):

• f (x) ≥ 0 for every x ∈ [0, 1],

• f (0) = 0 and f (1) = 1,

• f ′(x) ≥ 0 and f ′′(x) ≥ 0 for every x ∈ (0, 1).

The literature on the construction of Lorenz curves is abundant. In general, the
existing methods can be divided into two groups; cf. Ryu and Slottje (1999).
Most methods are based on parametric estimation: either estimate the Lorenz

108



4.1. Introduction

curve under a distributional assumption for the income distribution, cf. Da-
gum (1980), McDonald( 1984), Arnold (1983,1986), and Villaseñor and Arnold
(1989), or fit different functional forms for estimating the Lorenz curve, cf. Kak-
wani and Podder (1973, 1976), Rasche et al. (1980), Kakwani (1980), Gupta
(1984), Ortega et al. (1991), Basmann et al. (1990), Ryu and Slottje (1996).
The former set of contributions starts by summarizing the given observations of
microdata and then estimating the parameters under a pre-specified underlying
hypothetical distribution. One then uses the estimated parameters to approxi-
mate the Lorenz curve. The latter set tries to fit the given data with a functional
form that satisfies all the properties of a Lorenz curve. We noted that starting
with the welfare implications of Atkinson’s (1970) notion of Lorenz dominance,
there exists a large literature about constructing asymptotically distribution-free
statistical Lorenz curves, see Beach and Davidson (1983), Beach and Richmond
(1985), Bishop et al. (1989), Bishop et al. (1991), and Gastwirth and Gail
(1985). The problem with these works is that they only focus on a few Lo-
renz curve ordinates and provide information about discrete piecewise segments
without considering the shape of the entire curve.

Although the method of Lorenz curve estimation has been much discussed, none
of the above contributions was constructed to deal with the sparse data problem.
In case only a few points of the distribution are available, instead of micro-
data sets, how can one retrieve the unknown Lorenz curve? Three different
approaches to this task were reported and summarized by Braulke (1988). The
approaches considered are the curve fitting method by specified functionals, as
we mentioned above. It was tested using five inner points on the Lorenz curve.
Unfortunately, it only gives a poor performance. The method of interpolation
by a well-behaving (monotone, convex, differentiable) quadratic spline (Passow,
1977 and Lam, 1990) performs very well, as the fitted curve will definitely go
through the given data points, and the estimate always lies inside the range sug-
gested by the theoretical bounds. The midpoint of the range, spanned by the
constructed upper and lower bounds, would be a possible candidate compared
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to the quadratic spline estimate, because the bounds were constructed so that the
true Lorenz curve will be between these bounds. Unlike them, the main purpose
of the present paper is to use a spline estimate of a regression function under cer-
tain shape restrictions such as monotonicity and convexity, and based on sparse
data points on the Lorenz curve for estimating the entire Lorenz curve, the den-
sity, etc. The convex regression function estimate was described in detail in
Birke and Dette (2007). We will illustrate that it provides good fits to the Lorenz
curve of many income distributions, and allows us to easily compute Gini’s In-
dex and other inequality measures. Moreover, one can derive an explicit income
density function form from our Lorenz curve estimator.
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4.2. A new estimator for convex functions

Much effort has been spent on the problem of estimating a regression function
under certain shape constraints, such as the underlying regression curve being
positive, monotone, convex or concave, etc. using the least squares approach;
cf. Hildreth (1954), Wu (1982) and Fraser & Massam (1989). One problem
with the commonly used least squares technique, and also other projection-based
techniques, is that they produce a rather unsmooth convex estimate, even if the
underlying regression function is ‘known’ to be smooth.

In the present paper we apply an alternative estimate of convex functions based
on the conventional smoothing methods; cf. Birke and Dette (2007). The new
estimate is constructed in three steps. It starts with a strictly isotonic estimate
m̂′ of the derivative of the regression function m. Any unconstrained estimate
(kernel type, local polynomial, series or spline estimator) of the regression func-
tion could be used for this purpose. In a second step a density estimate of the
observations m̂′(Ui) is calculated, and then integrated to obtain an estimate of
the inverse of the regression function. The corresponding estimate of m is finally
obtained by inversion of this estimate, which is (at least) two times continuously
differentiable. The consistency and asymptotic normality of the new estimate
with the common rates of convergence in nonparametric regression has been
proved in their paper.

Consider the nonparametric regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, · · · , n, (4.1)

where X1, · · · , Xn are independent and identically distributed (i.i.d.) random
variables with density f and ε1, · · · , εi are i.i.d. with mean 0, variance 1 and finite
fourth moment. Further, assume that the variance function σ2 is continuous and
the density and regression function are three times continuously differentiable.
Note that m is strictly convex if and only if its derivative m′ is strictly increasing.

Suppose, for a set of specified population quantile indexed in increasing order
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(pi < pi+1) and bounded in [0, 1], one has observed the corresponding share of
aggregate income yi. Then, the approach can be described as follows:

• Construct a strictly isotonic estimate of the derivative of the regression
function m(p). The penalized least squares smoothing spline is used as
an unconstrained estimate of the regression function. Motivations and rea-
sons for choosing smoothing splines as a solution for curve fitting problems
were fully described, cf. the overall survey work of Wegman and Wright
(1983). Silverman (1985) extended the practicability of the spline smoo-
thing methodology.

• Construct a density estimate

1
Nhd

N∑
i=1

Kd

(m̂′(i/N) − u
hd

)
(4.2)

from the estimated values m̂′(i/N)(i = 1, · · · , N) of function m′. Kd

denotes a symmetric kernel with compact support on [−1, 1] with finite
second moment, and hd the corresponding bandwidth converging to zero
with increasing sample size n. We assume that Kd is twice continuously
differentiable on its support.

• Consequently, referring to the ideas of Dette et al. (2006) for making a
function estimate isotonic (which is in our case the estimate of m′);

Υ̂hd =
1

Nhd

N∑
i=1

∫ t

−∞

Kd

(m̂′(i/N) − u
hd

)
du (4.3)

is a consistent estimate of the function (m′)−1 at the point t. Note that this
function estimate is strictly increasing if hd is sufficiently small. Conse-
quently, its inverse is a strictly isotonic and smooth estimate of the deriva-
tive of the function m(·).

• The final step is to integrate the inversion of this estimate. Since the esti-
mate Υ̂−1

hd
is strictly increasing (and continuous), the estimated functional
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m̂l(p, u0) = m(u0) +
∫ p

u0

Υ̂−1
hd

(z)dz (4.4)

is strictly convex. Υ̂−1
hd

is an arbitrary point at u0 ∈ (0, 1). In our case
the choice of the initial point u0 is not crucial for the performance of the
proposed procedure.

Three different spline estimates are considered in the present study while ap-
plying the convex regression function estimate of Birke and Dette (2007):

• S1: A smoothing spline estimate that minimizes the criterion:
n∑

i=1

(yi −m(pi))2 + λ

∫
(m′′)2. (4.5)

The solution of this minimization problem is a piecewise cubic polynomial
with the joint points at the unique set of P values. The constructed spline
curve has continuous first and second derivatives, and the second and third
derivatives are zero at the endpoints of the spline. It is implemented in R in
the ‘mi’ package, see the function sreg().

• S2: A so-called penalized spline estimate of the function m is the function
that minimizes

n∑
i=1

(yi −m(pi))2 + λ

∫
(Drm)2, (4.6)

which is seemingly similar to S1 but has different numerical performance.
Let Dr be a linear differential operator, where r denotes the order of the
derivative to be penalized. For more details about its specification see He-
ckman and Ramsay (2000). This modification of (4.5) is implemented in
R in the ‘pspline’ package; see the command function smooth.Pspline().
Due to the sparse data we have to smooth the data using a second order
polynomial spline. Then the penalty is

∫
(D2m)2 and m(p) is a piecewise

polynomial of order 2r − 1 = 3.

• S3: Is basically like S2 but now m(p) is a piecewise polynomial of order
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2r − 1 = 4 by setting r = 2.5.

There are some suggestions in the literature about choosing and using smoo-
thing splines under certain shape constraints. For instance, Ramsay (1998) pro-
posed to impose the smoothness penalty in (4.6), on a coefficient function, say
w, which is related to the D via a differential equation. By choosing an appro-
priate differential equation one can ensure that D has some desired properties.
More recently, Turlach (2005) proposed another approach to shape constrained
smoothing using smoothing splines. However, they all propose methods that can
hardly be applied on a problem with very sparse data like we face it in this work.
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4.3. A simulation study

We generated a sample of size 1000 from a lognormal distribution with µ = 5
and σ = 1. Consider a set of population quantiles pi = (0, 0.2, 0.4, 0.6, 0.8, 1)
and the corresponding share of aggregate value, which is computed from the
generated sample. First, we estimated densities from the smoothing spline esti-
mator on a grid of 51 equidistant points t1 < t2 < · · · < t51, where t1 = 0 and
t51 = 1.

In this and the following sections, the kernel Kd from above (step 2) is always
the Epanechnikov kernel. The bandwidth hd is chosen as hd = (σ2/n)8/35

with Rice’s estimate (1984) σ̂2 = 1
2(n−1)

∑n−1
i=1(Y[i+1] − Y[i])2, where Y[1], · · · , Y[n]

denote the observations ordered with respect to their corresponding X-values.

Due to the sparse data we restrict ourselves to either the simple quadratic, which
doesn’t work and is therefore not shown, the cubic and the quartic spline esti-
mate. Figure 4.1 shows that Birke and Dette’s method with S3 – i.e. the dash
line – really works satisfactorily whilst capturing all the relevant information.
To highlight the behavior in the region where relative large differences exist,
we plotted the estimates for the vertical range of [0.2; 1]. In this region, the
difference is increasing for higher quantiles.

Figure 4.1.: Estimated Lorenz curves
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Figure 4.2.: Estimated density curves
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Table 4.1.: Share of aggregate value received by 10th, · · · , 90th quantile
S 1 S 2 S 3

L1 − Norm .0975 .0468 .0306
L2 − Norm .0046 .0012 .0005

Following Gastwirth’s definition (1971), the Lorenz curve can be derived as a
function of the cumulative distribution function F(x), where x is the income
sample. Let m̂l(p) denote the estimated empirical Lorenz curve. We have

m̂l(p) =

∫ p
0 F−1

X (y)dy

µX
, 0 ≤ p ≤ 1, (4.7)

where µX =
∫

x f (x)dx =
∫

xdF(x). To evaluate the goodness of the estimated
share of aggregate values received by every 10th population quantile, we com-
puted the L1- and L2-Norm estimation errors separately for S1, S2 and S3. The
outcome, given in Table 4.1, shows that Birk and Dette’s method using S3 does
better than the other two.

Note that m is constructed as a continuous, nondecreasing convex function that
is two times continuously differentiable and positive everywhere in [p1, p2] (in
our case [0, 1]). Thus the cumulative distribution function FX has a finite positive
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density which is given by

fX(x) =
1

µm̂′′l (FX(x))
. (4.8)

Given this explicit expression, one can estimate the density at any point. For
instance, according to the above formulas, the unknown income values

x(F) = µX · m̂′l(p) (4.9)

can easily be calculated. By putting the estimated values in (4.8) one can obtain
the densities at those points. The resulting density estimates are plotted in Figure
4.2. Once again it is confirmed that the method of Birke and Dette using S3
outperforms by far the others. It is the only one that really captures the mode of
the true distribution.
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4.4. Application on US data

We consider the US income quintiles listed in Table 4.2. The income quintile
measure is derived from the Statistics US Census data by ranking the average
household income from the poorest to the wealthiest, aggregating them, and
then grouping them into 5 income quintiles (1 being poorest and 5 being weal-
thiest), each quintile represents 20% of the population. In order to compare the
estimated income distribution with the original one, we calculate the share of
aggregate income received by each fifth of US households in 2000 from a micro
data sample with 483, 094 observations. As can be seen, the poorest 20 percent
of the population had roughly 3.7 percent of total income, the next poorest 20
percent of the population had roughly 9.3 percent of total income, etc.

Table 4.2.: Percent share of aggregate income (dollars) received by each fifth of US households
in 2000

Quintile 1 2 3 4 5 mean income number
Share of aggregate income .037 .093 .152 .234 .484 57, 195 483, 094
Source: U.S. Census Bureau: ACS Public Use Microdata Sample (PUMS) 2001

Figure 4.3.: Estimated Lorenz curves

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x

y

true lorenz curve
Birke using S1
Birke using S2
Birke using S3

●

●

●

●

●

●

0.5 0.6 0.7 0.8 0.9 1.0

0.2

0.4

0.6

0.8

1.0

x

y

Figures 4.3 and 4.4 give the function estimates of the Lorenz curve and income
distribution based on the 483,094 observations, compared to our different esti-
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Figure 4.4.: Estimated income distributions. Scale: x-axis 103, y-axis: 10−3.
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mates which are only based on the quintile information. As in the simulation
study, the estimators using Birke and Dette’s method perform best and describe
the shape of the true underlying densities much better. Note that, again, all esti-
mators pass almost exactly through the given quintiles.

Table 4.3.: Gini estimates
census estimate S 1 S 2 S 3

0.448 0.432 0.437 0.438

The Gini coefficient is commonly used as a measure of inequality of income or
wealth. Based on the Lorenz curve the Gini coefficient is defined mathematically
as the ratio of the area that lies between the line of equality and the Lorenz curve
over the total area under the line of perfect equality, i.e. the 45% line. This
ratio can be determined by 1 − 2

∫ 1
0 L(X)dX. Table 4.3 compares the estimates

based on the 483,094 observations to the different estimates based on the given
quintiles. The resulting Gini estimates confirm what we had already seen in
Figure 4.3: The estimate based on method of Birke and Dette using S3 is clearly
closer to the census estimate.
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