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1. Introduction 

1.1. Mitochondria 

Eukaryotic cells are characterized by a complex compartmentalization. The compartments or 

organelles are separated by lipid membranes. These membranes form a diffusion barrier that 

is necessary for the integrity of the organelles. Within the different organelles optimal 

enzyme composition as well as pH and redox conditions can be maintained without 

interfering with the remainder of the cell. This provides multiple specialized environments 

for the multitude of cellular activities. In addition the biological membranes are required for 

concentration gradients of solutes or metabolites. These concentration gradients can be used 

for storage of metabolites as well as signaling processes as exemplified in calcium signaling 

(Clapham, 2007). Moreover, biological membranes are the site of coupling biochemical 

reactions to the generation or consumption of gradients and thereby converting chemical 

energy into potential energy or vice versa (e.g. the respiratory chain). Organelles also protect 

their content or environment from damage. Examples for this principle are the nucleus, 

protecting the genome from mutagens or the lysosomes that contain proteases, amylases and 

other degenerative enzymes (de Duve, 2005; Luzio et al., 2007; Mekhail and Moazed, 2010). 

In the middle of the 19th century cytologists first identified the diversity of subcellular 

structures. By the end of the 19th century the uniformity of eukaryotic compartmentalization 

was recognized by the discovery of ubiquitous structures. Since then the identification and 

characterization of the nucleus, mitochondria, endoplasmic reticulum and other organelles 

has given rise to our current understanding of eukaryotic cell biology (Palade, 1964). 

Mitochondria, present in virtually all eukaryotes are essential organelles involved in energy 

metabolism and other basic cellular processes (see section 1.3.1). The mitochondrial 

subcompartments are characterized by two mitochondrial membranes. The matrix is enclosed 

by the mitochondrial inner membrane and the inter membrane space separates the inner and 

outer membrane. The mitochondrial inner membrane forms cristae, characteristic 

invaginations that increase the membrane surface. Within a cell, mitochondria form tubular 

networks that are highly dynamic. Interestingly mitochondria can divide, fuse and even 

migrate along cytoskeletal structures. Mitochondrial morphology and dynamics are a focus of 

current mitochondrial research (Liesa et al., 2009; Okamoto and Shaw, 2005). 
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The origin of mitochondria is believed to be an endosymbiotic event of a respiring 

prokaryote. The nature of the host cell as well as the early evolution of mitochondria is 

currently under controversial debate (Gray et al., 1999; Lithgow and Schneider, 2010; 

Szklarczyk and Huynen, 2010). The endosymbiont however, was characterized by 

comparative genomics to resemble α–proteobacteria (Andersson et al., 1998). 

During mitochondrial evolution most endosymbiotic genes were transferred to the host 

genome. Accordingly, these genes encode for proteins that are synthesized in the cytosol and 

need to be imported into mitochondria (see section 1.2). However, few genes are still 

mitochondria-encoded (e.g. 13 in humans; 8 in Sacharomyces cerevisiae). In most species the 

mitochondrial genome is a circular DNA molecule, containing very compact genetic 

information. Furthermore the mitochondrial DNA is an extrachromosomal element that is 

inherited in a non mendelian, mostly maternal fashion. Although the genes encoded by the 

mitochondrial genome vary between species, for not yet fully understood reasons, there is a 

minimal set of proteins that is mitochondria-encoded in all eukaryotes (Wallace, 2007). 

Interestingly, for the expression of the small number of mitochondria-encoded proteins, a full 

set of DNA replication and expression machineries is maintained in mitochondria. Moreover 

the dual genetic origin of mitochondrial proteins requires a coordination of the mitochondrial 

protein expression and import during organellar biogenesis. 

1.2. Import of nuclear-encoded proteins into mitochondria 

The mitochondrial proteome comprises about 1000 proteins (Sickmann et al., 2003; Taylor et 

al., 2003). However, the organellar genome encodes only for about 1% of these polypeptides. 

Hence, the vast majority of mitochondrial proteins is synthesized on cytosolic ribosomes and 

subsequently imported into mitochondria. In contrast to protein import into the endoplasmic 

reticulum, mitochondrial protein import occurs posttranslationally. Furthermore, unlike 

nuclear or peroxisomal import, proteins remain in an unfolded state prior to translocation. 

Protein import into one of the four mitochondrial subcompartments is a highly coordinated 

and complex mechanism that involves multiple translocase machineries (Fig 1.1) (Becker et 

al., 2009; Chacinska et al., 2009; van der Laan et al., 2010). 

In brief, mitochondrial precursor proteins are synthesized on cytosolic ribosomes, bound by 

cytosolic chaperones and guided to the translocase of the outer membrane (TOM). The TOM 

complex is the general import pore for virtually all mitochondrial proteins. It contains 
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receptor proteins (Tom20, Tom22, Tom70) and Tom40 that forms a ß-barrel channel for 

protein translocation (Ahting et al., 2001; Becker et al., 2005; Model et al., 2008). After the 

precursor is translocated across the outer membrane it is subsequently transported via 

specialized import machineries dependent on the targeting signal and the submitochondrial 

fate of the precursor. Noteworthy, two different translocases of the inner membrane (TIM) 

have evolved, the presequence translocase (TIM23) and the carrier translocase (TIM22). Both 

TIM translocases are multimeric protein complexes that are capable to insert precursor 

proteins into the mitochondrial inner membrane (see section 1.2.2). In addition, TIM23 also 

facilitates translocation into the matrix and can release proteins into the inter membrane 

space. The sorting and assembly machinery (SAM) accomplishes insertion of ß-barrel 

proteins into the mitochondrial outer membrane and the mitochondrial inter membrane space 

assembly machinery (MIA) is required for maturation of cysteine-containing small inter 

membrane space proteins. 

1.2.1. Targeting signals of mitochondrial precursor proteins 

Cytosolic precursors of mitochondrial proteins contain specific signals that target these 

proteins for import to the particular submitochondrial localization (Fig 1.1). 

The most common mitochondrial targeting signals are cleavable presequences that are 

present in about 70% of mitochondrial precursors (Vögtle et al., 2009). The presequence is 

located at the N-terminus of the precursors and forms an amphipathic α-helix. Presequences 

target proteins via TIM23 into the matrix. However, some proteins contain presequences that 

are followed by a hydrophobic sorting signal. This sorting signal arrests translocation and 

proteins are laterally released into the inner membrane (Glick et al., 1992). The inner 

membrane protease cleaves off the hydrophobic sorting signal of some of these proteins, 

which subsequently remain soluble in the inter membrane space. In most cases the 

presequence can be cleaved by the matrix processing peptidase, resulting in an N-terminal 

truncation of the mature protein. 

An exception are presequence-like internal targeting signals, identified in a small number of 

proteins such as Bcs1, Mdj2 and Pam18 (Fölsch et al., 1996; Mokranjac et al., 2003; Truscott 

et al., 2003; Westermann and Neupert, 1997). In this case a hydrophobic sequence is 

followed by a positively charged presequence-like helix. These two domains form a hairpin 
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loop that mimics an amphipathic presequence and targets the protein to TIM23 mediated 

insertion into the inner membrane. 

Members of the family of inner membrane metabolite carriers, such as the ADP/ATP carrier 

(AAC) and the phosphate carrier have six transmembrane spans and their targeting signals 

are distributed across the entire length of the protein (Wiedemann et al., 2001). These 

proteins are transported via TIM22 (Pfanner and Neupert, 1987; Rehling et al., 2004). 

Furthermore, many small proteins of the mitochondrial inter membrane space contain 

cysteine rich Cx3C or Cx9C motifs for targeting to the MIA pathway (Herrmann and Köhl, 

2007; Stojanovski et al., 2008). Moreover, precursors of ß-barrel outer membrane proteins 

contain a C-terminal targeting sequence that targets these proteins to SAM (Becker et al., 

2008). 

 
Figure 1.1 Mitochondrial translocation map 
Cytosolic precursor proteins are transported via specialized import machineries into mitochondria. The 
translocase of the outer membrane (TOM) facilitates transport across the outer membrane. Subsequently 
the translocases of the inner membrane (TIM23, TIM22), the sorting and assembly machinery (SAM) or 
the mitochondrial inter membrane space assembly machinery (MIA) are required for transport to the 
respective submitochondrial destination and maturation of the protein. Various mitochondrial targeting 
signals target proteins for mitochondrial import: A classical presequence (A) mediates transport into the 
matrix. A presequence followed by a sorting signal (B), a presequence-like internal motive (C) or 
multiple internal targeting signals (D) can target proteins into the inner membrane. Cysteine containing 
internal signals (E) are recognized by MIA and the C-terminal β-signal targets proteins to SAM. In 
addition, proteins can be transported by the mitochondrial export machinery (OXA). MOM, 
mitochondrial outer membrane; IMS, inter membrane space; MIM, mitochondrial inner membrane. 
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Presequences are well characterized and can be predicted based on the primary sequence. 

Alternative mitochondrial targeting sequences are a focus of current research. 

1.2.2. Insertion of proteins into the mitochondrial inner membrane 

For this thesis the insertion of proteins into the mitochondrial inner membrane is of special 

interest (Fig 1.2). As previously mentioned, nuclear-encoded proteins can be inserted into the 

mitochondrial inner membrane via both TIM translocases, TIM23 and TIM22. Furthermore 

mitochondria-encoded proteins are inserted into the inner membrane via the mitochondrial 

export machinery (OXA), which is also involved in the so-called conservative sorting 

pathway. 

Insertion of presequence-containing precursors with a sorting signal is mediated by TIM23. 

The core complex of TIM23 consists of the protein conducting channel, formed by Tim23 

and Tim17, and Tim50 that regulates channel opening and passes the precursor from TOM to 

the TIM23 translocase (Geissler et al., 2002; Meinecke et al., 2006; Truscott et al., 2001; 

Yamamoto et al., 2002). Additionally, Tim21 is involved in the interaction of TOM with 

TIM23 and promotes  presequence transmission (Chacinska et al., 2005; Mokranjac et al., 

2005). The positively charged presequence is transported through TIM23 by an 

electrophoretic force, generated by the membrane potential (∆ψ). Subsequently the 

translocation is arrested by the hydrophobic sorting signal and the precursor is released 

laterally into the inner membrane (Glick et al., 1992). Although lateral release in the inner 

membrane is not yet fully understood it was shown that this translocation process requires the 

 
Figure 1.2 Components of the inner membrane insertion machineries 
Mitochondrial inner membrane proteins are inserted into the membrane by TIM23, TIM22 or the OXA 
machinery. The composition of these multimeric complexes is indicated. Additionally, small Tims 
function as chaperones and prevent aggregation in the inter membrane space. 
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membrane potential (∆ψ), Tim21 and Tim17 (Chacinska et al., 2005; van der Laan et al., 

2007). 

The TIM22 translocase transports members of the metabolite carrier family. These 

hydrophobic proteins are shuttled to TIM22 by so called small Tims, hexameric inter 

membrane space chaperones. The Tim9-Tim10 complex is the major inter membrane space 

chaperone and guides not only metabolite carriers and other inner membrane proteins to 

TIM22 but also ß-barrel proteins to SAM (Curran et al., 2002a; Webb et al., 2006; 

Wiedemann et al., 2006a). In addition, the non-essential Tim8-Tim13 complex also forms a 

hexameric inter membrane space chaperone and guides substrates such as Tim23 to the 

TIM22 translocase (Curran et al., 2002b; Davis et al., 2007). The chaperone bound precursor 

is recruited to TIM22 by Tim12, a peripheral subunit of TIM22 (Sirrenberg et al., 1998). The 

membrane integral part of TIM22 consists of Tim18, Tim54 and Tim22, which forms the 

channel for protein translocation (Rehling et al., 2003). Dependent on the membrane potential 

(∆ψ) the precursor is inserted into the TIM22 translocase, laterally released into the 

membrane in an unresolved manner and then assembles into functional complexes. 

Another machinery for protein insertion into the inner membrane is the mitochondrial export 

machinery (OXA – for oxidase assembly). This complex consists of Oxa1 as core subunit 

(Kohler et al., 2009; Nargang et al., 2002). Oxa1 is a homolog of the bacterial YidC, which 

facilitates protein insertion into the bacterial membrane on its own and also cooperates with 

the bacterial Sec-translocase (du Plessis et al., 2011; Wang and Dalbey, 2011). Oxa1 

mediates the conservative sorting pathway of presequence containing inner membrane 

proteins that first are transported into the matrix and subsequently are inserted into the inner 

membrane dependent on the membrane potential (Hell et al., 1998; Rojo et al., 1995). 

Additionally, Oxa1 is also involved in membrane insertion of multispanning proteins with 

presequences and hydrophobic sorting signals (Bohnert et al., 2010). Mitochondria-encoded 

proteins in higher eukaryotes are almost exclusively hydrophobic proteins. Oxa1 mediates the 

insertion of these proteins in a cotranslational manner (Hell et al., 2001; Ott and Herrmann, 

2010). The mitochondrial ribosome binds to the C-terminal extension of Oxa1. Subsequently 

the nascent chain is transferred to Oxa1 and the protein is inserted into the membrane during 

synthesis. For this process additional factors, such as Mba1, Cox18 and translational 

activators are required (Mick et al., 2011; Towpik, 2005). 



1. Introduction 

7 

1.3. Mitochondrial function and biogenesis 

1.3.1. Mitochondria play a central role in eukaryotic cells 

Mitochondria are well known for their role in the energy metabolism of eukaryotic cells. 

Primarily, mitochondria contribute to cellular energy homeostasis by production of ATP via 

the oxidative phosphorylation system, which is energized by the electron flux of the 

respiratory chain. 

In addition to the role in bioenergetics, the importance of mitochondria in various other 

biochemical processes became apparent. Examples are the β-oxidation of fatty acids and the 

urea cycle, which at least partially take place in mitochondria. In addition, mitochondria are 

essential for the biogenesis of iron-sulfur clusters as well as heme groups (Ajioka et al., 2006; 

Lill, 2009). Interestingly, due to their involvement in iron-sulfur cluster biogenesis 

mitochondria or organelles derived from degenerated mitochondria (mitosomes, 

hydrogenosomes) are also indispensable in organisms that do not depend on oxidative energy 

generation such as Trichomonas vaginalis and Giardia lamblia, unicellular eukaryotic 

parasites (Shiflett and Johnson, 2010; van der Giezen and Tovar, 2005). 

In mammals, mitochondria also play a role in heat generation by uncoupling of the 

respiratory chain from ATP production (Rousset et al., 2004). Furthermore the involvement 

of mitochondria in apoptosis, ageing and cancer indicates the essential role of mitochondria 

in regulation of cell growth and death (Balaban et al., 2005; Gogvadze et al., 2008; Guarente, 

2008; Seo et al., 2010). 

The multitude of mitochondrial functions explains their essential role for eukaryotic cells and 

the pleiotropic effects of mitochondrial dysfunctions (see section 1.4). 

1.3.2. The respiratory chain 

In higher eukaryotes, the main source of energy is the oxidative phosphorylation system. 

Oxidative phosphorylation depends on the respiratory chain in the mitochondrial inner 

membrane that transfers electrons from reducing equivalents (NADH, succinate) to molecular 

oxygen (Fig 1.3). The energy of this electron flux is used to generate a proton gradient across 

the mitochondrial inner membrane (membrane potential, ∆ψ). This proton gradient 

subsequently drives ATP synthesis via the F1FO-ATPase. The respiratory chain consists of 

four multi subunit complexes. Although functionally and structurally conserved, the 
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composition of these complexes varies between species. Therefore, in the following, the 

mammalian respiratory chain is used as an example if not stated otherwise. All of the 

respiratory chain complexes are integral membrane complexes and, except for complex II, 

contain mitochondria-encoded core subunits and additional nuclear-encoded subunits. 

Electrons are transferred between the complexes by electron shuttles in the inner membrane 

(ubiquinone, also termed CoQ) and inter membrane space (cytochrome c). 

The NADH dehydrogenase (complex I), which is not present in S. cerevisiae, transfers two 

electrons from NADH to ubiquinone. The energy of this process is used for proton 

translocation from the matrix to the inter membrane space, giving rise to the proton gradient. 

Complex I is the biggest respiratory chain complex and consists of 45 or 46 subunits, iron-

sulfur clusters as well as flavin mononucleotide as redox centers (Carroll et al., 2006). 

Interestingly only 14 subunits form the functional core of the complex, which is conserved 

from prokaryotes to man (Brandt, 2006). Seven of these core subunits are highly hydrophobic 

and are encoded by the mitochondrial genome, whereas the other 7 subunits are hydrophilic 

and encoded in the nucleus. Interestingly in plants and many fungi alternative NADH 

dehydrogenases have evolved (Kerscher, 2000). These enzymes directly feed electrons into 

the respiratory chain without proton pumping. Examples are Ndi1, Nde1 and Nde2, the 

alternative NADH dehydrogenases of S. cerevisiae (Luttik et al., 1998; Marres et al., 1991).  

 
Figure 1.3 The mammalian respiratory chain 
The respiratory chain is formed by multimeric complexes in the mitochondrial inner membrane. These 
complexes contain mitochondrial (depicted in red) and nuclear (blue) encoded subunits. The electron 
transport chain from NADH or succinate to oxygen via complex I to IV energizes the generation of a 
proton gradient, which drives ATP synthesis by the F1FO-ATPase. 
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The succinate dehydrogenase (complex II) transfers electrons from succinate or fatty acids 

via FAD to ubiquinone. Complex II, the smallest respiratory chain complex, does not 

participate in proton pumping and only consists of four nuclear-encoded subunits (Hagerhall, 

1997; Sun et al., 2005). 

The lipophilic electron carrier ubiquinone is oxidized by the cytochrome bc1 complex 

(complex III), which transfers the electrons to cytochrome c and pumps protons into the inter 

membrane space. Complex III consists of 11 subunits, one of which (cytochrome b) is 

encoded by the mitochondrial genome. In addition it contains heme b, heme c1 and iron sulfur 

clusters as redox centers (Iwata et al., 1998; Xia et al., 1997). 

Reduced cytochrome c is subsequently passed to the cytochrome c oxidase (complex IV), 

which transfers the electrons to molecular oxygen. Thereby, the cytochrome c oxidase 

generates water and pumps protons into the inter membrane space (see next section). 

The proton gradient, generated by the respiratory chain drives not only protein import and 

other transport processes but is also used by the F1FO-ATPase. This complex uses the 

electrochemical gradient to catalyze ATP synthesis (Nakamoto et al., 2008; Stock et al., 

2000). 

Interestingly, the above-mentioned complexes form higher oligomers, so called 

supercomplexes or respirasomes (Acin-Perez et al., 2008; Schägger and Pfeiffer, 2000). For 

example, in yeast a dimer of complex III associates to one ore two copies of complex IV 

(III2IV, III2IV2) and the ATPase is present in a dimeric form (V2) (Arnold et al., 1998). In 

mammals a dimer of complex III can associate to complex I and complex IV to form various 

higher oligomers (Schägger and Pfeiffer, 2000). The function of supercomplex formation is 

not yet fully understood. However, it has been suggested that supercomplex formation might 

improve electron transfer between the complexes and that they are involved in mitochondrial 

ultrastructure (Acin-Perez et al., 2008; Wittig and Schägger, 2009; Zick et al., 2009). 

1.3.3. The cytochrome c oxidase 

The cytochrome c oxidase, the terminal enzyme complex of the respiratory chain, couples the 

electron transport from cytochrome c to molecular oxygen to the translocation of protons 

from the matrix into the inter membrane space. The cytochrome c oxidase consists of 11 

subunits in S. cerevisiae or 13 subunits in human and belongs to the family of heme-copper 

oxidases (Ferguson-Miller and Babcock, 1996). Interestingly, the crystal structure of the 
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dimeric bovine cytochrome c oxidase (Tsukihara et al., 1996) revealed a very compact 

structure of the 13 subunits with cofactors buried deeply inside the complex. 

The three core subunits, Cox1, Cox2 and Cox3 are mitochondria-encoded in most eukaryotes 

and highly conserved in all respiring organisms (Castresana et al., 1994). These core subunits 

contain heme and copper cofactors as redox centers. Interestingly, most respiring prokaryotes 

only have these three core subunits, which are sufficient for cytochrome c oxidase activity, 

indicating their functional importance. Hence, the structure and function of the core subunits 

has been analyzed using prokaryotic cytochrome c oxidase as a model (Iwata et al., 1995; 

Svensson-Ek et al., 2002). 

Cox1 is the central subunit of the cytochrome c oxidase and contains 12 transmembrane 

helices and heme a, heme a3 as well as the CuB site as redox centers. Furthermore Cox1 is 

involved in proton pumping and contains two proton translocating pores (D-channel, K-

channel) (Gennis, 1998). Moreover, Cox1 is also the central subunit for cytochrome c 

oxidase assembly (see next section) and absence of Cox1 leads to rapid degradation of the 

other core cytochrome c oxidase subunits. 

Cox2, a protein with two membrane spans and an inter membrane space domain, coordinates 

the CuA site as redox active center. The CuA site together with heme a forms the entry site for 

electrons in the cytochrome c oxidase. Little is known about Cox3, which has seven 

transmembrane spans and does not participate in proton pumping. However, studies on 

bacterial Cox3 homologs indicated that Cox3 is involved in proton uptake at physiological 

pH values (Gilderson et al., 2003). 

The nuclear-encoded subunits show less sequence conservation and are believed to be 

required for complex assembly and stabilization. In addition there are isoforms of nuclear-

encoded subunits, which are expressed tissue specifically (e.g. COX6A1/COX6A2 in 

mammals) or depended on environmental conditions (e.g. Cox5a/Cox5b in yeast), which 

probably modulate cytochrome c oxidase activity (Fabrizi et al., 1992; Hodge et al., 1989). 

1.3.4. Assembly of the cytochrome c oxidase 

The assembly of the cytochrome c oxidase involves the coordination of multiple subunits of 

dual genetic origin and the insertion of heme and copper cofactors. This process occurs in an 

assembly line like manner and requires more than 20 assembly factors (Herrmann and Funes, 

2005; Khalimonchuk and Rödel, 2005; Mick et al., 2011). The assembly factors are present 
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in substoichiometric amounts and function at different steps of the assembly process. Some 

assembly factors regulate the expression of mitochondria-encoded subunits, others are 

required for cofactor insertion or have a chaperone function. 

The assembly process starts with the expression of the mitochondria-encoded core subunit 

Cox1. In yeast, expression of mitochondria-encoded subunits is tightly controlled by 

translational activators that bind the 5’ untranslated regions of the mRNA (Fig 1.4). In 

mammals, there are no extensive 5’ untranslated regions in mitochondrial mRNAs and 

translational control is less understood. Although possible mammalian COX1 translation 

factors, such as TACO1 and LRPPRC could be identified (Sasarman et al., 2010; 

Weraarpachai et al., 2009), they await further biochemical characterization. Therefore, the 

main focus in the following section is the yeast cytochrome c oxidase. 

Two translational activators control Cox1 translation in yeast. Pet309 binding to COX1 

mRNA is required for mRNA stability and translation (Manthey and McEwen, 1995; 

Tavares-Carreon et al., 2008). Mss51 can either bind COX1 mRNA or unassembled Cox1 

protein. Binding of Mss51 to COX1 mRNA promotes translation. In contrast, unassembled 

Cox1 sequesters Mss51 rendering it incapable to initiate further COX1 translation (Decoster 

et al., 1990; Perez-Martinez et al., 2003). This regulatory mechanism of Cox1 synthesis 

prevents accumulation of unassembled Cox1 in the inner membrane, which otherwise can 

lead to generation of reactive oxygen species (Khalimonchuk et al., 2007). 

The 12 transmembrane helices of Cox1 are cotranslationally inserted into the inner 

membrane by Oxa1. Furthermore the insertion of the heme and copper cofactors into Cox1 is 

also believed to occur cotranslationally (Carr and Winge, 2003; Khalimonchuk and Rödel, 

2005). After synthesis, Cox1 is bound by the assembly factors Cox14 and Coa3, which 

recruit Mss51 (Barrientos et al., 2004; Fontanesi et al., 2011; Mick et al., 2010). This 

complex is subsequently bound by Coa1, a factor suggested to be involved in copper 

insertion into Cox1 and required for translational regulation of COX1 mRNA (Mick et al., 

2007; Pierrel et al., 2007). The complex, consisting of Cox1, Cox14, Coa1, Coa3 and Mss51 

is essential for feed back regulation of Cox1 expression (Fig 1.4), since Mss51 can not induce 

translation in this complex (Mick et al., 2010; Perez-Martinez et al., 2003). Interestingly this 

complex accumulates in cells lacking Shy1 and very little assembled mature cytochrome c 

oxidase can be detected (Mick et al., 2010). Although the mechanism remains unclear, Shy1 

is required for release of Mss51, which then activates further Cox1 expression. Shy1 is also 



1. Introduction 

12 

required for initiation of subsequent steps of cytochrome c oxidase assembly, which might 

involve insertion of heme into Cox1 (see section 1.5.1). 

Little is known about the subsequent steps of cytochrome c oxidase assembly. However, 

pulse-chase labeling of mitochondria-encoded subunits in cultured human cells revealed 

subassemblies or assembly intermediates (Nijtmans et al., 1998). In addition it was shown 

that assembly intermediates accumulate if assembly factors are mutated in patients or 

knocked down in cultured cells (Horan et al., 2005; Oswald et al., 2009; Stiburek et al., 2005; 

Williams et al., 2004). Hence, a stepwise, assembly line like biogenesis of the cytochrome c 

oxidase has been proposed (Nijtmans et al., 1998). This assembly line model has been refined 

since then and current models (Herrmann and Funes, 2005; Mick et al., 2011) suggest 

association of Cox5 and Cox6 to Cox1 before the other mitochondria-encoded subunits 

(Cox2 and Cox3) and Cox4 associate to the complex. Subsequently, a preformed complex of 

Cox7, Cox8 and Cox9 is incorporated. Finally Cox12 and Cox13 are assembled which are 

not essential for enzymatic activity. 

 
Figure 1.4 Translational feed back regulation of Cox1 synthesis in yeast 
Cox1 is synthesized dependent on the translational activators Mss51 and Pet309 and cotranslationally 
inserted into the inner membrane by the OXA-machinery. Subsequently the translational activator Mss51 
forms a complex with Cox1, Cox14, Coa1 and Coa3, and thereby cannot promote further Cox1 synthesis. 
Dependent on Shy1 cytochrome c oxidase assembly proceeds, Mss51 is released and can initiate 
additional Cox1 synthesis. 
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1.4. Mitochondrial diseases 

1.4.1. Mitochondrial dysfunction leads to multisystem disorders 

Although mitochondrial disorders were initially considered to be very rare, recent estimations 

on the prevalence of mitochondrial disorders vary between 1:5000 and 1:10000 (McFarland 

et al., 2002; Schaefer et al., 2004). 

Mitochondria play a central role in bioenergetics of eukaryotic cells. Therefore mitochondrial 

dysfunction especially affects highly energy-dependent tissues and organs, such as heart, the 

central nervous system and skeletal muscle (Fig 1.5A). Although genetically very diverse, 

mitochondrial disorders share a common set of clinical symptoms. Characteristic clinical 

features include specific abnormalities of the brain and nervous system such as blindness, 

deafness and mental retardation. Moreover, distinct biochemical findings such as 

accumulation of lactate in the blood or absence of enzyme activities (e.g. cytochrome c 

oxidase, pyruvate dehydrogenase) are typical for mitochondrial disorders. 

Mitochondrial diseases can be classified dependent on the clinical manifestation. Some of 

these disorders only show one clinical feature. LHON (Leber hereditary optic neuropathy) for 

example is characterized by development of blindness in otherwise healthy young adults (Yu-

Wai-Man et al., 2009). Most mitochondrial diseases however display a combination of 

several clinical features and most patients show multiple symptoms in various tissues. The 

Leigh Syndrome (LS) and the Mitochondrial DNA Depletion Syndrome (MDDS) are 

examples for disorders with multiple clinical manifestations. The multitude of symptoms in 

affected patients is the reason for the severe progression of mitochondrial diseases and 

strongly reduced lifespan. 

The clinical manifestations and classification of mitochondrial diseases are reviewed in detail 

elsewhere (DiMauro and Schon, 2008; Finsterer, 2004; Zeviani and Carelli, 2007). 

1.4.2. Mutations leading to mitochondrial diseases 

Due to the dual genetic origin of mitochondrial proteins, mitochondrial diseases can be 

caused by mutations of the mitochondrial or nuclear genome. 
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The proteins encoded by the human mitochondrial DNA are subunits of the respiratory chain 

(Fig 1.5B). Hence, mutations of the mitochondrial genome affect respiratory chain biogenesis 

and function. Owing to the maternal inheritance of the mitochondrial genome, pathogenic 

mutations are also inherited maternally. Although mitochondrial DNA and the maternal 

inheritance of many mitochondrial diseases were known for a long time, the first 

mitochondrial DNA mutations, leading to disease, were identified not before 1988 (Holt et 

al., 1988; Wallace et al., 1988). Subsequently, the number of identified patient mutations 

increased rapidly and now more than 200 pathogenic point mutations and countless 

deleterious deletions and rearrangements have been identified (DiMauro and Schon, 2008).  

For the severity of dysfunction due to mitochondrial DNA mutations it is critical if all 

mitochondrial DNA molecules within a cell are similar (homoplasmy) or if there is a mixture 

of different alleles of mitochondrial DNA molecules (heteroplasmy). Due to the central role 

of mitochondria in energy metabolism it is believed that most homoplasmic mitochondrial 

DNA mutations are lethal. In fact only very few homoplasmic mutations were described in 

patients. The effect of heteroplasmic mitochondrial point mutations strongly depends on the 

proportion of mutated DNA molecules. Usually mitochondrial function is only impaired if 

 
Figure 1.5 Heterogeneity of mitochondrial diseases 
(A) Mitochondrial disorders have an effect on multiple organs and tissues, as depicted. Organs, affected 
in Leigh Syndrome (bold) and in the Mitochondrial DNA Depletion Syndrome (underlined) are indicated. 
(B) Organization of the human mitochondrial genome, encoding for subunits of complex I (green), III 
(yellow), IV (red) and the F1FO-ATPase (blue). As an example for the multitude of pathogenic 
mitochondrial DNA point mutations, bases affected in Leigh Syndrome patients as reviewed in Finsterer 
(2008) are indicated (brown). 
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the mutant load is above a critical value (threshold), which is typically above 70-80% 

dependent on the mutation. Heteroplasmy and the threshold effect of mitochondrial DNA 

mutations account for the remarkable heterogeneity of mitochondrial DNA related diseases. 

Often there is a correlation of the severity of the disease and the mutant load of the 

mitochondrial point mutation. An example is the T8993G mutation of the mitochondrial 

genome, which causes the Leigh Syndrome (see below) at 90% mutant load or the much less 

severe NARP syndrome at 70-80% mutant load (Holt et al., 1990; Tatuch et al., 1992). 

In contrast to mitochondrial DNA mutations, nuclear mutations causing mitochondrial 

diseases affect multiple mitochondrial activities and functions. First, respiratory chain 

function can be affected by mutations of nuclear-encoded respiratory chain subunits or 

assembly factors. In addition, the Krebs cycle and the fatty acid metabolism is often impaired 

due to nuclear gene mutations (Pithukpakorn, 2005; Rinaldo et al., 2002). Defects in 

metabolic functions of mitochondria can be either caused by mutation of functional enzymes 

or metabolite transporters. Besides metabolic defects, also impaired mitochondrial biogenesis 

can lead to disease. In case of the Barth Syndrome (Barth et al., 1983), the synthesis of 

cardiolipin, a characteristic phospholipid of the mitochondrial inner membrane, is impaired 

(Vreken et al., 2000; Xu et al., 2006). In addition, mitochondrial biogenesis can be affected 

by mutations of components of the mitochondrial import machinery such as TIMM8A or 

HSPD1 (Hansen et al., 2002; Roesch et al., 2002). Furthermore, mitochondrial morphology 

and dynamics can be impaired by nuclear gene mutations as shown for mutations affecting 

OPA1, a factor involved in mitochondrial fusion (Alexander et al., 2000; Delettre et al., 

2000). 

Another class of nuclear gene mutations affects the maintenance or expression of the 

mitochondrial genome. Mutations affecting the mitochondrial replication machinery lead to 

depletion of mitochondrial DNA (see section 1.4.4). Additionally, mutations of ribosomal 

subunits, such as MRPS16 (Miller et al., 2004), as well as translation elongation factors 

(Smeitink et al., 2006; Valente et al., 2007) have been identified in patients leading to 

impaired mitochondrial translation. 

Taken together, nuclear gene mutations affect various mitochondrial functions. However, the 

effects of these heterogeneous mutations often lead to similar clinical features due to general 

energy depletion. The heterogeneity of causes for similar clinical symptoms is a major 

complication for the development of specific treatments for mitochondrial diseases. Although 
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the clinical symptoms are described in detail and many pathogenic mutations are identified, 

the molecular etiology and the relation of the mutations and the pathogenesis of most 

mitochondrial diseases remain still enigmatic. 

1.4.3. Leigh Syndrome 

Leigh Syndrome (LS), a severe neurodegenerative disorder of infancy, was first described in 

1951 (Leigh, 1951). LS is believed to be the most common mitochondrial disorder of infancy 

with a prevalence of 1:40000 (Rahman et al., 1996). Characteristic for this disease are 

symmetrical necrotic lesions in the brain (cerebellum, brainstem, diencephalon). Typical 

clinical features of LS include mental retardation, loss of motor skills, general weakness and 

epileptic seizures (Finsterer, 2008; Rahman et al., 1996). In general LS manifests within the 

first year of life and most patients die within six years due to their severe neurological 

problems. 

Biochemically LS is characterized by respiratory chain defects or in some cases defects of the 

pyruvate dehydrogenase complex. Although LS is clinically well defined an enormous 

number of different mutations in nuclear and mitochondrial (Fig 1.5B) genes have been 

found in patients (Finsterer, 2008). For instance mutations in all the 14 core subunits of 

complex I, both nuclear and mitochondria-encoded, have been described to cause LS. 

Moreover, also mutations affecting complex II, complex IV or the F1FO-ATPase can lead to 

LS. It should also be noted that not only mutations of structural subunits but also assembly 

factors of respiratory chain complexes can cause LS. 

Although several respiratory chain complexes can be affected, cytochrome c oxidase 

deficiency is the most common reason for LS (Pequignot et al., 2001). Because complete loss 

of cytochrome c oxidase function is believed to be lethal, in affected LS patients a residual 

cytochrome c oxidase activity of 10-50 % can be determined (Brown and Brown, 1996; 

Merante et al., 1993). 

Leigh Syndrome with isolated cytochrome c oxidase deficiency is most commonly caused by 

SURF1 mutations, first described by Tiranti et al. (1998). To date, numerous different SURF1 

mutations have been described in LS-patients (Pequignot et al., 2001), most of which are 

deletions, insertions and mutations of splicing sites leading to alterations of the coding 

sequence and absence of the SURF1 protein. In addition, most point mutations described so 

far introduce stop codons and only few missense mutations were identified (see table 1.1). 
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Patient missense mutations that lead to exchange of conserved amino acids indicate the high 

functional relevance of the affected residues. Hence, the role of these residues is of special 

interest and might reveal the molecular function of SURF1 in more detail. 

1.4.4. Mitochondrial DNA Depletion Syndrome 

The Mitochondrial DNA Depletion Syndrome (MDDS) was first described in 1991 (Moraes 

et al., 1991). MDDS is characterized by a reduction of mitochondrial DNA copy number 

below 35%. Interestingly, for unknown reasons, this loss of mitochondrial DNA occurs tissue 

specifically. Mitochondrial DNA depletion results in insufficient synthesis of respiratory 

chain subunits and energy deficiency. Dependent on the affected tissue, different clinical 

manifestations can be observed. The two most prevalent forms especially affect skeletal 

muscle (myopathic MDDS) or show progressive liver and brain dysfunctions (hepatocerebral 

MDDS). In addition mitochondrial DNA depletion also affects other tissues and organs and 

the clinical manifestations are heterogeneous (Spinazzola and Zeviani, 2007). 

MDDS is caused by impaired mitochondrial DNA integrity. Although mitochondrial DNA 

replicates autonomously, the factors of the replication machinery are nuclear-encoded. Not 

surprising, mutations in these genes were identified in MDDS patients. Various mutations in 

POLG, encoding the mitochondrial DNA polymerase (pol γ) were described (Graziewicz et 

al., 2006; Hudson and Chinnery, 2006). Moreover mutations were identified affecting the 

mitochondrial DNA helicase Twinkle or factors involved in nucleotide transport and 

metabolism such as the adenine nucleotide translocator, the mitochondrial thymidine kinase 

and deoxyguanosine kinase (Kaukonen et al., 2000; Saada et al., 2001; Spelbrink et al., 

2001). So far mutations in nine nuclear genes have been identified to cause MDDS 

(Copeland, 2008). Except of one, these genes encode for factors involved in mitochondrial 

DNA replication or nucleotide homeostasis. The exception is MPV17, which encodes a 

mitochondrial inner membrane protein of unknown function. 

MPV17 mutations lead to severe forms of hepatocerebral MDDS, first reported by Spinazzola 

et al. (2006). To date 20 different mutations are described, most of which are missense 

mutations (see table 1.1) or short in frame deletions affecting one to three amino acids (El-

Hattab et al., 2010). 

MPV17 is highly conserved in eukaryotes and also has peroxisomal paralogs. Although 

studies on mammalian and yeast members of this protein family have been performed, 
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MPV17 function remains unresolved. Therefore it is unknown how MPV17 dysfunction 

results in mitochondrial DNA depletion. 

1.5. Yeast as a model for mitochondrial diseases 

Yeast cannot only be considered to be one of “humans best friends”, since it has been used 

for millennia in brewing and baking processes (Samuel, 1996; Sicard and Legras, 2011), it 

has also been used to study biochemical processes since the 19th century (Barnett, 1998, 

2000). In the last decades advances in molecular biology revealed the extraordinary 

conservation of basal biochemical processes in all eukaryotes. Hence, yeast is an ideal model 

to study eukaryotic biochemistry. Interestingly, most of the current knowledge of the 

molecular basis of human mitochondrial function is derived from studies on the yeast 

Saccharomyces cerevisiae as a model. The facultative anaerobic character of S. cerevisiae 

allows analysis of respiratory chain dysfunction. Furthermore, the compact genome and the 

well established genetic manipulation techniques make S. cerevisiae an ideal model to study 

mitochondrial biogenesis and function.  

Many human genes associated with mitochondrial diseases have yeast counterparts 

(Barrientos, 2003) that can be used to study the molecular etiology of these diseases. In this 

regard patient point mutations that affect amino acids also conserved in S. cerevisiae are most 

interesting since they indicate a functional importance of these amino acids. Amino acid 

exchanges due to these point mutations can be mimicked in the yeast protein. In this study, 

point mutations affecting SURF1 and MPV17, identified in patients of Leigh Syndrome and 

Mitochondrial DNA Depletion Syndrome respectively, were analyzed using the 

corresponding yeast proteins as a model. 
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Table 1.1 Pathogenic missense mutations affecting SURF1 and MPV17 

Amino acid exchanges in SURF1 Reference Conservation in yeasta 

Y274D Teraoka et al. (1999) + (Y344) 

G124R Coenen et al. (1999) + (G137) 

G124E Poyau et al. (2000) + (G137) 

I246T Poyau et al. (2000) +/- (F249) 

L203P Sacconi et al. (2003) +/- (V205) 

Q80R Coenen et al. (2006) + (Q91) 

V177G Yuksel et al. (2006) +/- (I175) 

R192G Yang et al. (2006) + (R190) 

D202H Yang et al. (2006) - (K204) 

R192W Piekutowska-Abramczuk et al. (2009) + (R190) 

M235T Piekutowska-Abramczuk et al. (2009) + (M238) 

Y274C Piekutowska-Abramczuk et al. (2009) + (Y344) 

Amino acid exchanges in MPV17 Reference Conservation in yeasta 

R50Q Spinazzola et al. (2006) + (R51) 

R50W Spinazzola et al. (2006) + (R51) 

N166K Spinazzola et al. (2006) + (N172) 

G24W Spinazzola et al. (2008) + (G24) 

S170F Kaji et al. (2009) + (S176) 

K88E El-Hattab et al. (2010) +/- (R94) 

G94R El-Hattab et al. (2010) - (L100) 

P98L El-Hattab et al. (2010) + (P104) 

A162D El-Hattab et al. (2010) + (A168) 
aCorresponding conserved (+), similar (+/-) and non conserved (-) amino acids are given in brackets. 
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1.5.1. Shy1 – a model for SURF1 associated LS 

Mutations affecting SURF1 are the most prevalent cause of Leigh Syndrome with isolated 

cytochrome c oxidase deficiency. SURF1 is encoded by the first of six genes of the surfeit-

locus, a cluster of unrelated housekeeping genes (Duhig et al., 1998). SURF1 is highly 

conserved in respiring organisms. Most insights into the function of SURF1 came from 

studies on its yeast homolog Shy1. Initially SHY1 mutations were identified in pet mutants by 

Mashkevich et al. (1997) indicating that Shy1 is required for respiratory competence. In the 

same study it was shown that Shy1 localizes to the mitochondrial inner membrane. In fact 

transmembrane span predictions and protease protection analyses indicate that SURF1/Shy1 

contains a large inter membrane space domain and is inserted into the inner membrane with 

N- and C-terminal helices. The reduced cytochrome c oxidase content in cells lacking Shy1 

(Mashkevich et al., 1997) was characterized by Nijtmans et al. (2001) indicating that in 

shy1∆ cells the assembly of the cytochrome c oxidase is strongly reduced. However, a 

residual cytochrome c oxidase activity of ~ 30% was determined, apparently not sufficient 

for respiratory growth. The defective cytochrome c oxidase assembly in shy1∆ cells was 

explained by studies of Barrientos et al. (2002) demonstrating that Shy1 is required for Cox1 

expression. In addition, it was shown that mutations in MSS51 suppress a deletion of SHY1. 

Protein interaction analyses by Mick et al. (2010; 2007) revealed physical interactions of 

Shy1 with various Cox1 translational regulators such as Mss51, Coa1, Coa3 and Cox14, that 

are involved in translational feed-back regulation of Cox1. In addition, the assembly of Shy1 

into high molecular weight complexes, possible Cox1 containing cytochrome c oxidase 

assembly intermediates was demonstrated. Interestingly, in fibroblasts from patients with 

SURF1 associated Leigh Syndrome, an accumulation of cytochrome c oxidase assembly 

intermediates could also be detected (Stiburek et al., 2005; Williams et al., 2004). Moreover 

in yeast, Shy1 association to the mature cytochrome c oxidase was shown (Mick et al., 2007). 

However, a possible role of this association in repair processes or late assembly steps remains 

speculative. Although a role of Shy1/SURF1 in Cox1 expression and cytochrome c oxidase 

assembly is evident, its exact molecular function is still elusive. 

Interestingly, studies on bacterial Shy1/SURF1 homologs revealed its potential role in heme 

insertion into Cox1. Smith et al. (2005) showed that Rhodobacter sphaeroides lacking Surf1 

still assemble an aa3-type cytochrome c oxidase. However, the activity of this cytochrome c 

oxidase was reduced to 35% and heme a3 was missing in about 50% of the enzyme 
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complexes. This finding was verified using Paracoccus denitrificans Surf1, which was 

shown to bind heme a in vitro (Bundschuh et al., 2009; Bundschuh et al., 2008) 

In yeast, although indication exists that heme insertion into Cox1 takes place in a Shy1 

dependent step of assembly (Khalimonchuk et al., 2010; Khalimonchuk et al., 2007) the 

molecular mechanism of heme insertion is unresolved. 

Interestingly, SURF1 point mutations have been identified in LS patients affecting highly 

conserved amino acids (see table 1.1). In the course of the present work Bestwick et al. 

(2010a) reported the analysis of three patient point mutations in SURF1, characterized using 

the correspondent SHY1 mutations. However, although in some cases loss of functionality 

due to the mutation could be shown, the molecular basis of protein dysfunction remains to be 

clarified. 

1.5.2. Sym1 – a model for MPV17, a protein involved in MDDS 

The Mitochondrial DNA Depletion Syndrome (MDDS) is caused by mutations of factors 

involved in mitochondrial DNA replication or MPV17, a protein of unknown function. The 

MPV17 gene was named after the Mpv17 mouse mutation, generated by random integration 

of provirus DNA into the mouse genome (Weiher et al., 1990). Homozygous MPV17-/- 

mutant mice showed progressive kidney dysfunction and were suggested to be an ideal model 

for kidney diseases. Although MPV17 was initially suggested to be a peroxisomal protein 

(Zwacka et al., 1994), studies on the yeast MPV17 homolog, termed Sym1 (stress inducible 

yeast MPV17) indicated a mitochondrial inner membrane localization and a role in ethanol 

and heat tolerance (Trott and Morano, 2004). The role of MPV17 in the Mitochondrial DNA 

Depletion Syndrome was reported by Spinazzola et al. (2006), also confirming its 

mitochondrial inner membrane localization. Although to date multiple MPV17 mutations 

have been described in MDDS patients (El-Hattab et al., 2010), the molecular function of 

MPV17 is still unknown. 

Interestingly, also peroxisomal paralogs of MPV17/Sym1, termed PMP22 or Yor292c in 

mammals or yeast respectively, could be identified. Studies on PMP22 indicated a pore 

forming activity of this protein (Rokka et al., 2009; Van Veldhoven et al., 1987).  

It has been speculated that the MPV17/Sym1 protein family plays a role in the metabolism of 

reactive oxygen species. However different studies came to contradictory results (Trott and 

Morano, 2004; Wagner et al., 2001; Zwacka et al., 1994) and the role of MPV17/Sym1 in 
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oxidative stress remains elusive. Additionally, recent studies on Sym1 suggested a role in 

energy metabolism and mitochondrial morphology (Dallabona et al., 2010). However, an 

indirect effect due to loss of mitochondrial DNA as previously reported (Spinazzola et al., 

2006) could not be excluded.  

The biogenesis of MPV17 and Sym1 in mitochondria and its molecular function remains 

unknown. Hence, the mechanism that leads to disease in patients with MPV17 associated 

MDDS is unclear. Yeast might be an ideal model to unravel the biogenesis, interactions and 

molecular functions of the mitochondrial members of the MPV17/Sym1 family. Furthermore, 

the use of corresponding yeast mutations might help to understand how the patient MPV17 

mutations result in loss of mitochondrial DNA. 
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1.6. Aim of this work 

Mitochondrial dysfunctions are severe multisystem disorders, mostly caused by energy 

depletion due to mutations in the mitochondrial or nuclear genome. The few mitochondria-

encoded proteins and their dysfunctions are studied and characterized very well. In contrast, 

the function of many nuclear-encoded mitochondrial proteins, involved in human diseases, is 

still ill-defined. Accordingly, the molecular etiology of mutations affecting these proteins is 

unresolved. In this work, two nuclear-encoded proteins (SURF1 and MPV17) involved in 

mitochondrial diseases were studied in detail. 

SURF1, associated with Leigh Syndrome, is an assembly factor of the cytochrome c oxidase 

with unclear molecular function. In patients, mutations affecting SURF1 lead to defective 

cytochrome c oxidase and severe neurodegenerative disorders. Although most patients show 

deletions, nonsense mutations and mutations of splicing sites, a few point mutations have 

been identified. The first point mutations described affect the highly conserved amino acids 

G124 and Y274, which were analyzed in this study. 

MPV17 mutations have been identified in patients of the Mitochondrial DNA Depletion 

Syndrome. The function of MPV17, the mitochondrial member of a big family of homolog 

proteins is not known. Therefore it remains enigmatic how mutant MPV17 leads to loss of 

mitochondrial DNA. The first MPV17 mutations found in patients affect the highly 

conserved amino acids R50 and N166. The effect of these mutations as well as the function and 

biogenesis of the wild-type protein is analyzed in this study. 

The significance for diseases and the high conservation of amino acids in SURF1 and 

MPV17, affected by patient point mutations, indicate the functional importance of these 

residues. This study aims to resolve the molecular function of SURF1 and MPV17 by 

characterization of these amino acid exchanges and thereby to understand mechanisms that 

lead to mitochondrial disorders. 

This work describes the development of yeast models for patient point mutations that were 

used for phenotypical and biochemical characterization. With these models the effect of the 

patient mutations on protein biogenesis, stability and function was analyzed. Furthermore the 

yeast homolog proteins were used to biochemically characterize the molecular function of 

wild-type SURF1 and MPV17. 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Chemicals, enzymes and kit systems 

Standard chemicals were used in analytical grade quality and obtained from AppliChem 

(Darmstadt), Merck (Darmstadt), Serva (Heidelberg), Sigma Aldrich (Taufkirchen) or Roth 

(Karlsruhe). Restriction enzymes were ordered from Fermentas (St. Leon-Rot). 

Deoxyoligonucleotides were obtained from Metabion (Martinsried) and used as primers for 

PCR or site-directed mutagenesis. Special chemicals and enzymes are listed in table 2.1 and 

2.2. Kit systems (listed in table 2.3) were used according to the manufacturer’s 

recommendations. 

2.1.2. Microorganisms and cell lines 

Escherichia coli (E. coli) strain XL1-blue (Stratagene) was used for molecular cloning. 

Genotypes of Saccharomyces cerevisiae (S. cerevisiae) strains used in this study are listed in 

table 2.4. For human cell culture HEK 293T cells (ATCC, CRL-11268), adherent, 

immortalized human embryonic kidney cells were used. 

2.1.3. Plasmids 

All plasmids used in this study are listed in table 2.5. Plasmids were generated as described in 

section 2.5.5 and propagated in E. coli XL1-blue cells. 

2.1.4. Antibodies 

Primary polyclonal antibodies were raised in rabbit, immunized either with peptides or 

purified proteins (Gramsch Laboratories, Schwabhausen). Secondary antibodies against 

rabbit immunoglobulin, coupled to horseradish-peroxidase were used for Western blot 

detection. Most important antibodies used for Western blot analysis and co-

immunoprecipitation experiments, are listed in table 2.6. 
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Table 2.1 Special chemicals and consumables 

Product Manufacturer Product Manufacturer 

ATP Roche PEG4000 Fluka 

NADH Roche Herring Sperm DNA Promega 

Creatine phosphate Roche PVDF membrane Millipore 

[35S]methionine Hartmann-Analytic X-Ray films GE-Healthcare 

DNA-Marker: 
GeneRuler Fermentas ECL Western blotting 

detection reagents GE-Healthcare 

BN-Marker: HMW 
calibration kit GE-Healthcare MitoTracker Orange 

CMTMRos Invitrogen 

SDS-Marker: Broad 
Range Biorad Rapamycin LC Laboratories 

IgG (human) Sigma Aldrich AntimycinA Sigma Aldrich 

IgG (bovine) Biorad Oligomycin Sigma Aldrich 

Roti-Quant Roth Valinomycin Calbiochem 

Digitonin Calbiochem Chloramphenicol Serva 

Triton X-100 Serva Cycloheximide Sigma Aldrich 

Complete EDTA free Roche ProteinA-Sepharose GE-Healthcare 

PMSF Sigma Aldrich Ni-NTA-Agarose Qiagen 
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Table 2.2 Enzymes used in this study 

Enzyme Manufacturer Application 

TEV-Protease Invitrogen Protein purification 

KOD Hot start DNA Polymerase Novagen PCR 

Trypsin-EDTA Gibco Detaching of cultured cells 

Creatin Kinase Roche In vitro import 

Proteinase K Roche Protease protection assays 

Zymolyase 20T Seikagaku Spheroplasting of yeast cells 

 

 
Table 2.3 Kit systems used in this study 

Kit Manufacturer Application 

Wizard Plus SV Minipreps DNA 
Purification System Promega Plasmid miniprep 

NucleoBond PC 100 Macherey-Nagel Plasmid midiprep 

Wizard SV Gel and PCR Clean-
Up System  

Promega DNA fragment purification 

High Pure PCR Template 
Preparation Kit Roche Isolation of highly purified yeast 

genomic DNA  

Rapid DNA Ligation Kit Fermentas Ligation of DNA fragments 

QuikChange Site-Directed 
Mutagenesis Kit Agilent Site directed mutagenesis of 

plasmids 

BigDye Terminator v1.1 Cycle 
Sequencing Kit  Applied Biosystems DNA sequencing 

mMESSAGE mMACHINE SP6 Ambion In vitro transcription 

MEGAclear Ambion Purification of RNA 

Flexi Rabbit Reticulocyte Lysate 
System Promega In vitro translation 

TNT SP6 Quick Coupled 
Transcription/Translation System Promega Coupled in vitro 

transcription/translation 
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Table 2.4 Yeast strains used in this study 

S. cerevisiae strain Genotype Reference 

YPH499 MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 Sikorski and Hieter (1989) 

DaMY21 (coa1∆) MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 coa1::HisMX6 Mick et al. (2007) 

DaMY22 (shy1∆) MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 shy1::HisMX6 Mick et al. (2007) 

yRR11 (sym1∆) MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 sym1::HisMX6 this study 

yRR13 (SYM1Prot.A) 
MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 sym1::SYM1-ProtA-
HisMX6 

this study 

yRR37 (SYM1GFP) 
MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 sym1::SYM1-ProtA-
HisMX6 

this study 

YPH499 [rho0] MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 [rho0] 

AG Rehling 

YPH-BG-54-1-1 
(tim54-11) 

MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 tim54::tim54-11 Wagner et al. (2008) 

YPH-BG-tim12-4 
(tim12-4) 

MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 tim12::ADE2 [pFL39-
TIM12-4ts] 

Gebert et al. (2008) 

PRY34 (tim8∆tim13∆) 
MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 tim13::kanMX4 
tim8::TRP1 

Truscott et al. (2002) 

GB102 (tim10-2) MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 tim10::tim10-2 Truscott et al. (2002) 

yCS4 (tim23↓) MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 tim23::Lys2 [pCS28-HIS] Schulz et al. (2011) 

YPH-BG-50-2A 
(tim50-1) 

MATa ade2-101 his3-Δ200 leu2-Δ1 lys2-801 
trp1-Δ63 ura3-52 tim50::ADE2 [pFL-tim50-
1_CEN] 

Chacinska et al. (2005) 

BY4741 MATa his3-Δ1 leu2Δ0 met15Δ0 ura3Δ0 Brachmann et al. (1998) 

Y05113 (uth1∆) MATa his3-Δ1 leu2Δ0 met15Δ0 ura3Δ0 
uth1::kanMX4 Euroscarf 

Y02103 (atg5∆) MATa his3-Δ1 leu2Δ0 met15Δ0 ura3Δ0 
atg5::kanMX4 Euroscarf 

Y12941 (fpr1∆) MATa his3-Δ1 leu2Δ0 met15Δ0 ura3Δ0 
fpr1::kanMX4 Euroscarf 
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Table 2.5 Plasmids used in this study 

Plasmid Backbone Insert Reference 

pRS416 – – Stratagene 

pDaM10 (Shy1WT) pGEM4Z SHY1 Mick et al. (2007) 

pDaM11 (Shy1G137E) pGEM4Z SHY1-(G410A) this study 

pDaM12 (Shy1G137R) pGEM4Z SHY1-(G409A) this study 

pDaM13 (Shy1Y344D) pGEM4Z SHY1-(T1030G) this study 

pDaM20 (Shy1WT) pRS416 SHY1a this study 

pDaM21 (Shy1G137E) pRS416 SHY1-(G410A) a this study 

pDaM22 (Shy1G137R) pRS416 SHY1-(G409A) a this study 

pDaM23 (Shy1Y344D) pRS416 SHY1-(T1030G) a this study 

pDaM24 (Shy1WT↑) pRS426 SHY1 a this study 

pDaM27 (Shy1Y344D↑) pRS426 SHY1-(T1030G) a this study 

pRR7 (SURF1WT) pGEM4Z SURF1 this study 

pRR8 (SURF1G124E) pGEM4Z SURF1-(G371A) this study 

pRR13 (SURF1G124R) pGEM4Z SURF1-(G370A) this study 

pRR14 (SURF1Y274D) pGEM4Z SURF1-(T820G) this study 

pRR1 (Sym1WT) pRS416 SYM1b this study 

pRR2 (Sym1R51Q) pRS416 SYM1-(AG151CA)b this study 

pRR3 (Sym1N172K) pRS416 SYM1-(C516A)b this study 

pJD27 (Sym1WT) pCR-blunt-II-TOPO SYM1 this study 

pJD28 (Sym1R51Q) pCR-blunt-II-TOPO SYM1-(AG151CA) this study 

pJD30 (Sym1N172K) pCR-blunt-II-TOPO SYM1-(C516A) this study 

O01 (OTC) pGEM4 OTC AG Rehling (O01) 

A01 (NcAAC) pGEM4 NcAAC Pfanner et al. (1987) 

COX6A1 pOTB7 COX6A1 Imagenes 
(IRAUp969A0334D) 

aIncluding 372 bp upstream and 363 bp downstream of the open reading frame. 
bIncluding 550 bp upstream and 535 bp downstream of the open reading frame. 

 

 

 



2. Materials and Methods 

29 

Table 2.6 Antibodies used in this study 
Antibodies directed 
against yeast proteins Epitope, description Reference 

αSym1 C-terminal peptide, affinity purified antibody AG Rehling (1570) 

αShy1 Whole protein AG Rehling (2241) 

αShy1C C-terminal peptide, affinity purified antibody AG Rehling (1094) 

αCox1 C-terminal peptide AG Rehling (1583) 

αCox2 C-terminal peptide AG Rehling (1948) 

αCox4 Central peptide AG Rehling (577) 

αCox5a C-terminal peptide AG Rehling (1540) 

αCoa1 C-terminal peptide AG Rehling (1954) 

αCoa3 C-terminal peptide AG Rehling (2047) 

αRip1 C-terminal peptide AG Rehling (543) 

αAAC Neurospora crassa protein AG Rehling (51) 

αProtA Peroxidase Anti-Peroxidase Sigma Aldrich 

Antibodies directed 
against human proteins Epitope, description Reference 

αSURF1 Whole protein AG Rehling (2243) 

αCOX1 C-terminal peptide AG Rehling (2035) 

αCOX5A C-terminal peptide AG Rehling (2036) 

Secondary antibodies Description Reference 

GαR-HRP αIgG(rabbit) coupled to horseradish peroxidase Dianova 

 

2.2. Cultivation of bacteria 

E. coli cells were grown in LB medium (0.5% yeast extract, 1% tryptone, 1% sodium 

chloride). Solid medium was made by addition of 1.5% agar before autoclaving. For selection 

of plasmids, carrying an AmpR marker 100 mg/l ampicillin was added to the medium. Liquid 

cultures were inoculated from a plate or 1:100-1:1000 and incubated on a shaker at 37 °C. 

The growth of E. coli cultures was monitored by OD600 measurements. Cryo-stocks were 

prepared to store E. coli strains: 1 ml of bacterial culture was supplemented with 200 µl of 

sterile 80% glycerol and stored at –80 °C. 
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2.3. Cultivation of yeast 

2.3.1. Growth conditions and media 

S. cerevisiae strains were grown in rich medium, supplemented with 2% glucose (YPD) or 

3% glycerol (YPG) as a fermentable or nonfermentable carbon source, respectively. 

Synthetic medium (SD, SGal, SG) was used for selection of genetic markers or for cultures 

that were used for in vivo labeling of mitochondrial translation products and for fluorescence 

microscopy. All components of the yeast media used in this study are listed in table 2.7. To 

obtain solid medium, 2% agar was added to the medium prior to sterilization and preparation 

of the plates.  

Liquid yeast cultures were inoculated from a plate or 1:20 to 1:50 in order to get an 

appropriate cell density. Cell density was monitored by OD600 measurements (OD600 of 

1 ~ 107 cells per ml). Cultures were shaken at 140 rpm and incubated at 30 °C if not indicated 

otherwise. For induction of autophagy, plates were supplemented with 0.2 µg/ml rapamycin.  

 

 

 
Table 2.7 Media for yeast culture 
Medium Components 

YPD 1% yeast extract, 2% peptone, 2% glucose 

YPG 1% yeast extract, 2% peptone, 3% glycerol 

YPE 1% yeast extract, 2% peptone, 3% ethanol 

SD-Ura 0.67% yeast nitrogen base, 0.07% CSM-Ura, 2% glucose 

SD-His 0.67% yeast nitrogen base, 0.07% CSM-His, 2% glucose 

SGal-Ura 0.67% yeast nitrogen base, 0.07% CSM-Ura, 2% galactose 

SG-Ura 0.67% yeast nitrogen base, 0.07% CSM-Ura, 3% glycerol 

SE-Ura 0.67% yeast nitrogen base, 0.07% CSM-Ura, 3% ethanol 

SGal 0.67% yeast nitrogen base, 0.07% CSM-Ura, 20 mg/l uracil, 2% galactose 

SG 0.67% yeast nitrogen base, 0.07% CSM-Ura, 20 mg/l uracil, 3% glycerol 
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2.3.2. Yeast cryo-stocks 

To store yeast strains, 0.75 ml of a yeast culture was supplemented with 0.75 ml of sterile 

30% glycerol and stored at -80 °C. 

2.3.3. Growth test of yeast strains 

Serial 10-fold dilutions of over night yeast cultures in YPD or SD-Ura were spotted on solid 

media plates, incubated for 3 to 5 days at indicated temperatures and growth was documented 

using a CCD camera (LAS 3000, Fujifilm). 

2.4. Culture of human cell-lines 

Human cells (HEK 293T) were cultured in Dulbecco’s Modified Eagle Medium (Gibco) 

supplemented with 10% fetal bovine serum. Culturing was performed at 37 °C under 5% CO2 

atmosphere in 75 cm2 bottles or 175 cm2 dishes (Nunc). Prior to confluency, the culture was 

split 1:10 by detaching the cells from the surface using trypsin-EDTA (Gibco). Cells were 

washed with PBS (137 mM sodium chloride, 2.7 mM potassium chloride, 12 mM potassium 

phosphate, pH 7.4), sedimented at 200 g for 5 min and seed in fresh culture medium. 

To inhibit mitochondrial or cytosolic translation before harvesting, the medium was 

supplemented with 50 µg/ml chloramphenicol for 16 h or 100 µg/ml cycloheximide for 2 h 

respectively. 

2.5. Molecular biology methods 

2.5.1. Determination of nucleic acid concentrations 

DNA and RNA concentrations were determined using the NanoVue spectrophotometer (GE-

Healthcare) assuming that 50 µg/ml DNA or 40 µg/ml RNA solutions would correspond to 

an OD260 of 1.  

2.5.2. DNA electrophoresis 

DNA fragments were separated in a gel of 1% agarose in TAE (40 mM Tris/acetate, pH 8.0, 

2 mM EDTA) supplemented with 1 µg/ml ethidium bromide. Before loading, DNA samples 

were mixed with loading dye (4x stock: 40% saccharose, 1% OrangeG) and electrophoresis 

was performed in Mini-Sub Cell GT chambers (Biorad) for 30 min at 120 V. As a standard, 
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GeneRuler DNA Ladder Mix (Fermentas) was used. DNA bands were documented using an 

UV-transilluminator or cut out using a UV-light table. 

2.5.3. Purification of plasmids 

Plasmids were isolated from E. coli using the Wizard Plus SV Minipreps DNA Purification 

System (Promega) or NucleoBond PC 100 (Macherey-Nagel) according to the 

manufacturer’s instructions. 

2.5.4. PCR-amplification of DNA fragments 

DNA fragments were amplified for cloning and for in vitro transcription by PCR using KOD 

Hot Start DNA Polymerase (Novagen) according to the recommendations of the 

manufacturer. Standard PCR reactions were performed in 50 µl scale. Templates for 

amplification were either 25 ng plasmid DNA or 200 ng yeast genomic DNA (purified using 

the High Pure PCR Template Preparation Kit, Roche).  

2.5.5. Molecular cloning 

Using yeast genomic DNA or cDNA clones of human genes as a template, PCR was used to 

amplify inserts and introduce restriction sites for cloning. The PCR products were verified by 

agarose gel electrophoresis and purified using the Wizard SV Gel and PCR Clean-Up System 

(Promega). 

Restriction of vector backbones and insert DNA-fragments was performed using Fast Digest 

restriction enzymes (Fermentas) and fragments were again purified. Subsequently the 

fragments were ligated using the Rapid DNA Ligation Kit (Fermentas) and the ligated 

constructs were transformed in E. coli. The clones were verified by restriction analysis and 

sequencing. 

2.5.6. Site-directed mutagenesis of plasmids 

The QuikChange Site-Directed Mutagenesis Kit (Agilent) was used to introduce point 

mutations in previously cloned genes. For this purpose complementary primers were 

designed which contained the nucleotide exchanges. Mutagenesis was performed according 

to the manufacturer’s instructions and success was verified by sequencing. 
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2.5.7. Sequencing of DNA 

Sequencing of DNA was performed by the Sanger method using the BigDye Terminator v1.1 

Cycle Sequencing Kit: The sequencing reaction was performed in 10 µl scale containing 

300 ng plasmid, 8 pmol primer, 1.5 µl sequencing-mix and 1.5 µl sequencing-buffer. After 

the sequencing reaction (25 cycles: 96 °C, 10 sec; 55 °C, 15 sec; 60 °C, 4 min), 1 µl 125 mM 

EDTA and 1 µl 3 M sodium acetate was added and DNA was precipitated by adding 50 µl 

100% ethanol. Subsequently the DNA was pelleted (20000 g, 15 min), washed with 70% 

ethanol and dried (vacuum concentrator). After the DNA was resuspended in 15 µl Hi-Di-

formamide it was analyzed using the Genetic Analyzer 3100 (Applied Biosystems) in the 

Göttingen Center for Molecular Biosciences. 

2.5.8. Transformation of E. coli 

Competent E. coli cells were prepared from a 100 ml culture of OD600 ~ 0.6. The culture was 

incubated at 4 °C for 5 min and harvested (5000 g, 5 min, 4 °C). Subsequently cells were 

resuspended in 40 ml of ice cold 30 mM potassium acetate, 100 mM rubidium chloride, 

10 mM calcium chloride, 50 mM manganese(II) chloride, 15% glycerol, pH 5.8 and 

incubated on ice for 5 min. Cells were pelleted again, resuspended in 4 ml 10 mM rubidium 

chloride, 75 mM calcium chloride, 15% glycerin, 10 mM MOPS, pH 6.8, and aliquots of 

100 µl were stored at -80 °C. 

For transformation, competent E. coli cells were thawed on ice and 25 mM 2-

mercaptoethanol was added. After 10 min of incubation on ice, 25 ng plasmid DNA or a 

ligation reaction was added to the cells. After 30 min incubation on ice and a heat shock at 

42 °C for 45 sec, 1 ml LB was added and cells were further incubated at 37 °C for 60 min. 

Cells were sedimented and plated on a LB plate supplemented with appropriate antibiotics for 

plasmid selection. 

2.5.9. Transformation of S. cerevisiae 

Yeast strains were transformed with plasmids and constructs for integration into the genome 

using the lithium acetate method, first described by Ito et al. (1983) and improved since then. 

A detailed protocol is described in Gietz and Schiestl (2007). For integration of constructs in 

the yeast genome, the integration-cassettes were amplified by PCR as described (Janke et al., 
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2004). The integration in the genome was validated by PCR or by Western blot analysis of 

the target protein. The strains generated in this work are listed in table 2.4. 

2.6. Biochemical Methods 

2.6.1. Determination of protein concentrations 

Protein concentration was determined by Bradford analysis using Roti-Quant (Roth) 

according to the manufacturer’s recommendations. The absorbance of the protein solutions at 

600 nm was measured in microtiter plates or cuvettes using a Spectra ELISA Reader (Tecan) 

or a BioPhotometer (Eppendorf), respectively. A standard curve was prepared using bovine 

IgG or BSA.  

2.6.2. Preparation of whole cell extracts 

Protein extracts from yeast cells were prepared as described (Yaffe and Schatz, 1984) with 

minor modifications: Cells were sedimented (20000 g, 10 min, 4 °C) and resuspended in 

H2O. After 250 mM sodium hydroxide and 15 mM 2-mercaptoethanol was added, cells were 

lyzed on ice for 10 min. By addition of 6% TCA and incubation for 10 min on ice, protein 

was precipitated and could be sedimented by centrifugation (20000 g, 2 min, 4 °C). 

2.6.3. SDS-PAGE 

Denaturating protein electrophoresis (Laemmli, 1970) was performed using standard 

methods: Protein samples were resuspended in SDS-sample-buffer, incubated at 95 °C for 

5 min and subsequently loaded on a polyacrylamide gel. In this study, gels were used, 

containing 0.1% SDS and 4% acrylamide for the stacking gel or 12 – 14% acrylamide for the 

resolving gel. Acrylamide stock solutions contained 30% acrylamide/bisacrylamide (37.5 : 1) 

with the exception for in vivo labeling experiments (see section 2.9) where a ratio of 75 : 1 

acrylamide/bisacrylamide was used. Electrophoresis was performed using the MINI-Protean 

II (Biorad) system (200 V, 25 mA per gel) or custom-made midi gel systems (230 V, 30 mA 

per gel). As a marker the SDS-PAGE standard Broad Range (Biorad) was used. 

SDS-sample-buffer: 10% glycerol, 2% SDS, 0.01% Bromphenol blue, 0.5% 2-mercaptoethanol, 60 mM Tris, 
pH 6.8 

SDS-running-buffer: 25 mM Tris, 191 mM glycine, 0.1% SDS 
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Stacking-gel-buffer (10x): 0.8 M Tris/HCl, pH 6.8 

Resolving-gel-buffer (5x): 1.875 M Tris/HCl, pH 8.8 

2.6.4. BN-PAGE 

BN-PAGE (Schägger and von Jagow, 1991) was used to separate native protein complexes as 

described (Dekker et al., 1997): Mitochondria were resuspended in solubilization-buffer (1 µl 

buffer per µg protein) and incubated on ice for 30 min. Unsoluble material was sedimented 

(20000 g, 15 min, 4 °C) and the supernatant was supplemented with BN-sample-buffer to a 

final concentration of 1x. After further incubation (5 min, 4 °C) and a clarifying spin 

(20000 g, 5 min, 4 °C) the sample was loaded on a 4 - 13% or 6 - 16% gradient gel with a 4% 

stacking gel. Electrophoresis was performed using the SE600 Ruby system (GE-Healthcare) 

at 100 V over night or 600 V for 4 - 5 hours. In case of subsequent Western blot analysis the 

cathode buffer was exchanged to buffer without Coomassie brilliant blue in the middle of the 

run. As a marker the HMW calibration kit (GE Healthcare) was used. 

Solubilization-buffer: 1% digitonin, 20 mM Tris/HCl, pH 7.4, 0.1 mM EDTA, 50 mM sodium chloride, 10% 
glycerol, 1 mM PMSF 

BN-sample-buffer (10x): 5% Coomassie brilliant blue G-250, 500 mM ε-amino n-caproic acid, 100 mM Bis-
Tris, pH 7.0 

BN-gel buffer (3x): 200 mM ε-amino n-caproic acid. 150 mM Bis-Tris, pH 7.0 

BN-anode buffer: 50 mM Bis-Tris/HCl, pH 7.0 

BN-cathode buffer: 50 mM Tricine, 15 mM Bis-Tris, 0.2% Coomassie brilliant blue G-250 

Acrylamide stock solution: 48% acrylamide, 1.5 % bisacrylamide (= 49.5% T, 3% C) 

2.6.5. 2D BN-PAGE/SDS-PAGE 

For 2 dimensional BN-PAGE/SDS-PAGE (Wittig et al., 2006) complexes were separated by 

BN-PAGE, lanes were cut and subjected to SDS-PAGE in the second dimension using same 

buffers and settings as described previously.  

2.6.6. Western blotting 

After proteins were separated by polyacrylamide-gelelectrophoresis, they were transferred to 

PVDF membranes, using semi dry blotting chambers (Peqlab). Gels, PVDF membranes, and 

Whatman papers were soaked in blotting buffer (20 mM Tris, 150 mM glycine, 0.02% SDS, 

20% methanol), assembled and finally blotting was performed at 250 mA for 2 hours. 
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2.6.7. Immunodetection of proteins on PVDF membranes 

PVDF membranes were blocked using 5% milk powder in TBST (125 mM sodium chloride, 

20 mM Tris, 0.1% Tween 20, pH 7.5) for 1 hour at room temperature or at 4 °C over night. 

Subsequently, membranes were incubated in primary antibodies for 1 hour at room 

temperature and washed 3 times for 15 min with TBST. After incubation with HRP coupled 

secondary antibodies for 1 hour, membranes were washed again 3 times and signals were 

detected using the ECL system and X-Ray films (GE Healthcare). 

2.6.8. Coomassie staining 

Proteins on PVDF membranes or in polyacrylamide gels were Coomassie-stained using 

2.5 g/l Coomassie brilliant blue R-250, 40% ethanol, 10% acetic acid. After staining of 

PVDF membranes (5 min) or gels (3 hours) the background staining was removed by 

incubation in 40% ethanol, 10% acetic acid. Additionally PVDF membranes were completely 

destained using methanol. 

2.6.9. Colloidal Coomassie staining 

Highly sensitive protein staining in polyacrylamide gels was performed by Colloidal 

Coomassie staining (Neuhoff et al., 1988). Gels were fixed in 50% methanol, 2% phosphoric 

acid for 16 h and washed three times with H2O for 30 min before they were incubated for 1 h 

in 34% methanol, 2% phosphoric acid, 17% (w/v) ammonium sulfate. Subsequently gels 

were stained in 34% methanol, 2% phosphoric acid, 17% (w/v) ammonium sulfate, 0.66 g/l 

Coomassie brilliant blue G-250 for 3 days and destained with H2O. 

2.6.10. Drying of polyacrylamide gels 

Polyacrylamide gels were placed on Whatman paper, covered by a plastic bag and 

subsequently dried using a vacuum gel drier (Scie-Plas) at 65 °C for 2 h. 

2.6.11. Autoradiography and quantification of radiolabeled proteins 

To detect radiolabeled proteins, separated by SDS-PAGE or BN-PAGE, gels were stained, 

dried and exposed to Storage Phosphor Screens (GE-Healthcare). After exposure for 

appropriate times, the signals were digitized using the Storm820 scanner (GE-Healthcare). 
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Quantification of radiolabeled proteins was performed using ImageQuant TL software (GE-

Healthcare). 

2.7. Isolation of mitochondria 

2.7.1. Isolation of yeast mitochondria 

Yeast mitochondria were isolated as described (Meisinger et al., 2006). In brief, yeast 

cultures were grown to OD600 of 2 and harvested by centrifugation at 7000 g for 15 min. 

Cells were washed with H2O and incubated 30 min in 10 mM DTT, 100 mM Tris/H2SO4, 

pH 9.4 (2 ml/g of cells) at 30 °C. Subsequently cells were washed with zymolyase-buffer 

(1.2 M sorbitol, 20 mM potassium phosphate, pH 7.4) and spheroplasted using Zymolyase-

20T (4 mg/g of cells) in zymolyase-buffer (7 ml/g of cells) for 45 min at 30 °C. Spheroplasts 

were washed in zymolyase-buffer, resuspended in ice cold homogenization buffer (0.6 M 

sorbitol, 10 mM Tris/HCl, pH 7.4, 1 mM EDTA, 1 mM PMSF, 0.2% BSA) and homogenized 

using a glass / teflon homogenizer (Potter S, Sartorius). From this extract, cell debris and the 

nuclear fraction was sedimented (2000 g, 10 min, 4 °C). Subsequently the supernatant was 

centrifuged (17000 g, 15 min, 4 °C) to pellet the mitochondrial fraction. 

Mitochondria were washed with SEM (250 mM sucrose, 1 mM EDTA, 10 mM MOPS, 

pH 7.2), protein concentration was determined by Bradford analysis using bovine IgG as a 

standard and mitochondria were diluted to 10 mg/ml with SEM. After shock freezing in 

liquid nitrogen mitochondria were stored at -80 °C. 

It should also be noted that incubation steps were performed at the respective temperatures 

when mitochondria were isolated from cultures that were grown at nonpermissive 

temperatures (e.g. 19 °C). 

2.7.2. Isolation of mitochondria from human cells 

Mitochondria of human cultured cells (HEK 293T) were isolated as described (Lazarou et al., 

2009). Cells were harvested, washed with PBS (200 g, 5 min) and homogenized in 220 mM 

mannitol, 70 mM sucrose, 20 mM Hepes, pH 7.6, 1 mM EDTA, 0.5 mM PMSF using a 

glass / teflon homogenizer (Potter S, Sartorius). Cell debris and nuclei were removed by 

centrifugation (800 g, 10 min, 4 °C) and mitochondria were pelleted at 10000 g, 10 min, 

4 °C. Protein concentration was determined by Bradford analysis using BSA as standard.  
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Table 2.8 Conditions for in vitro translation of precursor proteins 
Precursor In vitro translation-system (comments) 

Shy1a TNT SP6 Quick Coupled Transcription/Translation System 

OTC TNT SP6 Quick Coupled Transcription/Translation System 

SURF1a Flexi Rabbit Reticulocyte Lysate System (100 mM KCl extra) 

COX6A1 TNT SP6 Quick Coupled Transcription/Translation System 

Uth1 Flexi Rabbit Reticulocyte Lysate System (120 mM KCl and 2 mM MgOAc extra) 

Sym1a TNT SP6 Quick Coupled Transcription/Translation System 

AAC TNT SP6 Quick Coupled Transcription/Translation System 

Sym1-truncations Flexi Rabbit Reticulocyte Lysate System (70 mM KCl extra) 
awild-type and mutant forms 

 

2.8. In vitro import analysis in isolated mitochondria 

2.8.1. In vitro labeling of precursor proteins 

2.8.1.1. In vitro transcription 

RNA was transcribed from DNA templates using the SP6 RNA polymerase. Therefore PCR 

products were used, amplified from yeast genomic DNA (the SP6 promoter was introduced 

with the primers), or the open reading frame was first cloned under the control of the SP6 

promoter in pGEM4Z and the plasmid was used as a template for PCR (using an SP6 and T7 

primers). After purification of the PCR-products, in vitro transcription was performed using 

the mMESSAGE mMACHINE SP6 Kit (Ambion) and the RNA was purified using the 

MEGAclear kit (Ambion) according to the manufacturer’s recommendations. 

2.8.1.2. In vitro translation 

Proteins were labeled with [35S]methionine by in vitro translation from purified RNA using 

the Flexi Rabbit Reticulocyte Lysate System (Promega): 33 µl of Lysate, 1 µl of amino acid 

mix, 50 µCi of [35S]methionine, 1 µg RNA was supplemented with different concentrations 

of potassium chloride and magnesium acetate (see table 2.8), and adjusted to a total volume 

of 50 µl with H2O. After in vitro translation for 90 min at 30 °C, the reaction was stopped on 
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ice and excess methionine (20 mM) and 250 mM sucrose was added. Lysates were frozen in 

liquid nitrogen and stored at -80 °C. 

2.8.1.3. Coupled in vitro transcription/translation 

Coupled transcription/translation of radiolabeled proteins was performed with the TNT SP6 

Quick Coupled Transcription/Translation System (Promega): Open reading frames were 

cloned under control of the SP6 promoter in pGEM4Z and plasmids were purified. 50 µl 

lysate mix was supplemented with 1 µg plasmid DNA and 50 µCi [35S]methionine and 

incubated at 30 °C for 90 min. The reaction was stopped on ice and 20 mM methionine and 

250 mM sucrose was added. The lysate was frozen in liquid nitrogen and stored at -80 °C. 

2.8.2. In vitro import into isolated mitochondria 

Radiolabeled precursor proteins were in vitro imported into isolated yeast or human 

mitochondria as previously described in Wiedemann et al. (2006b) or Lazarou et al. (2009) 

respectively. 

First, mitochondria were resuspended in Import-buffer to 0.5 – 0.75 mg/ml. As a negative 

control the membrane potential was dissipated by addition of 1% AVO mix (1 mM 

antimycin A, 0.1 mM valinomycin, 2 mM oligomycin in ethanol). After addition of 5 - 10% 

of the radiolabeled precursor protein lysate, import was performed at 25 °C (yeast) or 37 °C 

(human) before it was stopped on ice and by addition of 1% AVO mix. If indicated the 

unimported precursor protein was degraded by addition of 40 µg/ml proteinase K, which was 
inactivated with 2 mM PMSF after incubation for 10 min at 4 °C. 
After import, mitochondria were reisolated (20000 g, 10 min, 4 °C), washed with SEM and 
subsequently analyzed by SDS-PAGE or BN-PAGE. 
Import analysis in temperature sensitive, mutant yeast mitochondria was performed at 25 °C, as 
described, with an additional heat shock (15 min, 37 °C) after resuspension in Import-buffer. 
For antibody shift experiments after in vitro import, mitochondria were resuspended in SEM to 
1 mg/ml and osmotic swelling of the mitochondrial outer membrane was performed by addition 
of 10 volumes of 1 mM EDTA, 10 mM MOPS/KOH, pH 7.2. After addition of antibody (1% 

serum) samples were incubated for 45 min on ice, mitochondria were washed with SEM and 

samples were analyzed by BN-PAGE analysis.  

Import-buffer (human): 250 mM sucrose, 5 mM magnesium acetate, 80 mM potassium acetate, 20 mM Hepes 
/KOH, pH 7.4, 2 mM ATP, 2 mM NADH, 10 mM sodium succinate, 10 mM malic acid 
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Import-buffer (yeast): 3% BSA, 250 mM sucrose, 80 mM potassium chloride, 5 mM magnesium chloride, 
2 mM potassium phosphate, 5 mM methionine, 10 mM MOPS/KOH, pH 7.2, 2 mM ATP, 2 mM NADH  
(for assembly studies 5 mM creatin phosphate and 100 µg/ml Creatin Kinase was added as ATP-regenerating 
system) 

2.8.3. Stability assay after in vitro import 

To analyze the stability of proteins after import a pulse/chase study was performed (Röttgers 

et al., 2002). In vitro import was performed for 5 min in 500 µl reactions using 375 µg 

isolated yeast or human mitochondria at 25 °C or 37 °C, respectively. The import was 

stopped by addition of 1% AVO mix and samples of 50 µl were taken before and after the 

precursor protein was degraded by incubation with 40 µg/ml proteinase K for 10 min on ice. 

Mitochondria were reisolated (20000 g, 10 min 4 °C) and resuspended in pre-warmed, 

energized Import-buffer. Chase samples of 50 µl were taken after incubation at 25 °C (yeast) 

or 37 °C (human) for the indicated times. All samples were analyzed by SDS-PAGE and 

digital autoradiography. 

2.9. In vivo labeling of mitochondrial translation products 

Translation efficiency of mitochondria-encoded proteins in different yeast strains was 

analyzed as previously described (Mick et al., 2010). Yeast cultures in SGal-ura or SGal were 

grown to OD600 of 1.0 and 1.0 OD600 equivalent of cells was harvested by centrifugation 

(20000 g, 2 min). Cells were washed and resuspended in 1 ml Labeling-buffer (2% galactose, 

40 mM potassium phosphate, pH 6.0). After incubation at the respective labeling temperature 

(30 °C or 19 °C) for 10 min, cytosolic translation was stopped by addition of cycloheximide 

to 150 µg/ml. Labeling was started after 5 min incubation by addition of 40 µCi 

[35S]methionine. After 5 or 15 min labeling at 30 °C (10 or 30 min at 19 °C), samples were 

taken, excess methionine (4 mM) was added, and after further 2 min incubation put on ice. 

Whole cell extracts of these samples were analyzed by SDS-PAGE and digital 

autoradiography. 

Stability of mitochondria-encoded proteins was analyzed by in vivo labeling (pulse) followed 

by further incubation (chase) after mitochondrial translation has been stopped: Mitochondrial 

translation products of 1.0 OD600 equivalent of cells were labeled as described for 15 min at 

30 °C. Labeling was stopped by addition of 4 mM methionine and 100 µg/ml 

chloramphenicol and cells were further incubated at 30 °C. After 2 min a pulse sample was 
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taken. Chase samples were taken after additional incubation for 5, 15, 45 or 135 min. 

Samples were analyzed by SDS-PAGE of whole cell extracts and digital autoradiography. 

2.10. Localization and topology of mitochondrial proteins 

2.10.1. Subcellular localization analysis by fluorescence microscopy 

Proteins, containing a GFP tag, were localized by in vivo fluorescence microscopy. Yeast 

cultures were grown in SG medium to mid log phase at 30 °C. Mitochondria were stained by 

addition of 0.2 µg/ml MitoTracker Orange CMTMRos (Invitrogen) to the culture for 15 min. 

Subsequently 5 µl of the culture was transferred to a glass slide, a cover slip was fixed and 

microscopy was performed using a DeltaVision Deconvolution microscope (Olympus IX71, 

Applied Precision). Fluorescence of GFP or MitoTracker was detected using FITC or TRITC 

filter setup, respectively. Whole cells were visualized using differential interference contrast 

optics.  

2.10.2. Submitochondrial localization analyses 

Submitochondrial localization of proteins was determined by protease protection assays as 

described (Mick et al., 2007) in intact mitochondria and mitoplasts, generated by osmotic 

swelling of the outer membrane with 1 mM EDTA, 10 mM MOPS/KOH, pH 7.2. 

Mitochondria or mitoplasts (1 mg/ml) were incubated with proteinase K (0 – 90 µg/ml) for 

10 min on ice. Proteinase K was inactivated by addition of 2 mM PMSF and samples were 

analyzed by SDS-PAGE and Western blotting. 

2.10.3. Analysis of membrane association by carbonate treatment 

To distinguish peripheral membrane association from membrane integration of proteins, 

carbonate extraction was performed as described (Mick et al., 2007). Incubation of isolated 

mitochondria (0.5 mg/ml) in 100 mM sodium carbonate (pH 11.5) for 20 min on ice releases 

peripheral membrane proteins. Subsequently, membranes and transmembrane proteins were 

sedimented by ultracentrifugation (100000 g, 45min, 4°C).  
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2.11. Purification of mitochondrial protein complexes 

2.11.1. IgG-chromatography 

Mitochondrial complexes of ProteinA tagged proteins were isolated as described (Geissler et 

al., 2002; Rehling et al., 2003). Isolated yeast mitochondria were resuspended to 1 mg/ml in 

Solubilization-buffer, unsoluble material was spun out (20000 g, 15 min, 4 °C) and the 

supernatant was applied to IgG-sepharose (150 µl beads). After binding for 3 hours at 4 °C 

and extensive washing using 20 column volumes Wash-buffer, the complexes were eluted by 

TEV-protease (Invitrogen) cleavage of the ProteinA-tag (16 h, 6 °C). Subsequently, the His-

tagged TEV-protease was removed by addition of 5 µl Ni-NTA-Agarose (Qiagen) and the 

eluated fraction was analyzed by BN-PAGE analysis. 

Solubilisation-buffer: 1% digitonin, 20 mM Tris/HCl, pH 7.4, 0.1 mM EDTA, 80 mM sodium chloride, 10% 
glycerol, 1 mM PMSF 

Wash-buffer: 0.3% digitonin, 20 mM Tris/HCl, pH 7.4, 0.1 mM EDTA, 80 mM sodium chloride, 10% 
glycerol, 1 mM PMSF 

2.11.2. Co-immunoprecipitation 

Isolated mitochondria were incubated 30 min at 4 °C in solubilization buffer (1% digitonin, 

60 mM sodium chloride, 5 mM EDTA, 10% glycerol, 20 mM Tris/HCl, pH 7.4) and 

unsoluble material was spun out. The supernatant (total) was applied to antibodies, which 

were crosslinked (using dimethyl-pimelimidate) to ProteinA-Sepharose beads (GE-

Healthcare). After binding (60 min, 4 °C) and extensive washing of the beads, bound proteins 

were eluted using 0.1 M glycine pH 2.5. Subsequently samples were neutralized with 1 M 

Tris and analyzed by SDS-PAGE and Western blotting. 

2.12. Electrophysiological characterization of mitochondrial 

proteins 

2.12.1. Isolation of proteins from yeast mitochondria for 
electrophysiological characterization 

Mitochondrial proteins, fused to a ProteinA-His7 tag at their C-terminus, were purified by 

Ni2+ affinity- and subsequent IgG-chromatography followed by TEV-protease cleavage of the 

tag. 15 – 20 mg isolated yeast mitochondria were centrifuged down (20000 g, 10 min, 4 °C), 
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resuspended to 10 mg/ml in SDS-buffer and incubated 15 min at 25 °C. Subsequent 20x 

dilution with 0.2%-triton-buffer (0.5 mg/ml protein) and incubation at 4 °C for 30 min 

allowed refolding of the proteins. After a clarifying spin (20000 g, 15 min, 4 °C) the 

supernatant was subjected to 500 µl Ni-NTA beads (Qiagen). After binding and extensive 

washing with 25 column volumes 0.1%-triton-buffer, the bound proteins were eluted with 

7.5 ml 300 mM imidazole in 0.1%-triton-buffer. After dilution of the sample with 22.5 ml 

0.1%-triton-buffer, 100 µl IgG-sepharose beads were added and protein was bound at 4 °C 

for 16 h. After extensive washing of the beads (25 column volumes with 0.1% triton buffer), 

bound protein was eluted by cleavage of the ProteinA tag (30 U TEV-protease, Invitrogen). 

TEV-protease was removed by addition of 10 µl Ni-NTA beads and samples were subjected 

to electrophysiological analysis. 

SDS-buffer: 1% SDS, 50 mM sodium phosphate, pH 7.4, 100 mM sodium chloride, 10% glycerol, 10 mM 
imidazole, 1 mM PMSF, proteinase inhibitor cocktail (Complete EDTA free, Roche) 

0.2%-triton-buffer: 0.2% triton X-100, 50 mM sodium phosphate, pH 7.4, 100 mM sodium chloride, 10% 
glycerol, 10 mM imidazole, 1 mM PMSF, proteinase inhibitor cocktail (Complete EDTA free, Roche) 

0.1%-triton-buffer: 0.1% triton X-100, 50 mM sodium phosphate, pH 7.4, 100 mM sodium chloride, 10% 
glycerol, 10 mM imidazole, 1 mM PMSF, proteinase inhibitor cocktail (Complete EDTA free, Roche) 

2.12.2. Electrophysiology 

Electrophysiological measurements were performed by Dr. M. Meinecke and V. Krüger 

(AG-Wagner, Universität Osnabrück). 

Purified protein was refolded into liposomes using detergent mediated reconstitution. Proteo-

liposomes were fused to a planar lipid bilayer. Subsequently current recordings were 

performed at different holding potentials. For all measurements symmetrical buffer 

conditions were used (250 mM potassium chloride, 20 mM MOPS/Tris, pH 7.0), except for 

the determination of the reverse potential, where 20 mM potassium chloride, 20 mM 

MOPS/Tris, pH 7.0 was used at the trans-side of the membrane and 250 mM potassium 

chloride, 20 mM MOPS/Tris, pH 7.0 was used at the cis-side. 

To validate the specificity of the pore forming activity, antibodies were added to each side of 

the lipid bilayer during current recordings. 
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3. Results 

3.1. SHY1 as a model for SURF1 mutations, identified in Leigh 
Syndrome patients 

3.1.1. SHY1 mutations, mimicking patient SURF1 alleles lead to 
cytochrome c oxidase deficiency 

3.1.1.1. Yeast models for SURF1 mutations show respiratory deficiency 

SURF1 is a highly conserved assembly factor of the human cytochrome c oxidase (Zhu et al., 

1998). Moreover, mutations in SURF1 are the most prevalent cause of Leigh Syndrome with 

isolated cytochrome c oxidase deficiency (Pequignot et al., 2001): In patients, point 

mutations were identified, leading to an exchange of glycine124 of SURF1 to glutamic acid or 

arginine (Coenen et al., 1999; Poyau et al., 2000). Furthermore, Teraoka et al. (1999) 

reported an exchange of tyrosine274 of SURF1 to aspartic acid. Interestingly, these amino 

acids are highly conserved (Fig 3.1A), indicating their functional importance. In this study, 

these point mutations in SURF1 were analyzed, using the yeast homolog SHY1 as a model: 

The affected G124 or Y274 residues in SURF1 correspond to Shy1 G137 or Y344, respectively.  

To map the site of these amino acid exchanges in Shy1, a prediction of transmembrane spans 

(Fig 3.1B) was compared to the topology of Shy1 (Mashkevich et al., 1997). This indicated 

that G137 of Shy1 resides in the IMS domain, whereas Y344 locates at the interface of the IMS 

domain and the second transmembrane span of Shy1 (Fig 3.1C). 

To utilize SHY1 as a model for the SURF1 patient mutations, the SHY1 open reading frame 

with its endogenous promoter and terminator sequences was cloned into the yeast vector 

pRS416 and the point mutations were introduced using site directed mutagenesis. These 

plasmids, or an empty plasmid as control, were transformed in a shy1∆ strain and growth 

analyses on fermentable and nonfermentable carbon sources were performed to test for 

respiratory competence (Fig 3.1D). All strains showed growth on fermentable carbon 

sources. Interestingly, the strain expressing Shy1G137E shows respiratory deficiency at all 

temperatures tested and resembles the shy1∆ phenotype as reported previously (Bestwick et 

al., 2010a). In contrast to that, a G137R exchange in Shy1 leads to a temperature dependent 
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respiratory deficiency. Cells expressing Shy1G137R do not grow at 30 °C but show residual 

growth at reduced temperatures. Remarkably, the strain expressing the Shy1Y344D variant 

however, showed a cold sensitive respiratory deficiency and only slightly reduced growth on 

non fermentable carbon sources at 30 °C. 

3.1.1.2. SHY1 mutant strains lack cytochrome c oxidase 

To analyze the respiratory deficiency of yeast strains expressing the mutant variants of Shy1 

in more detail, mitochondria were isolated from these strains, grown at 30 °C. Subsequently 

 
Figure 3.1 Mimicking highly conserved SURF1 patient mutations in yeast leads to respiratory 
deficiency 
(A) Partial alignment of SURF1/Shy1 homolog proteins using ClustalW2 (Blosum62 score matrix) 
surrounding the amino acids G124 and Y274 of SURF1 (arrowheads), which are affected by pathogenic 
SURF1 mutations. Black boxes indicate 100%, dark gray 80-100%, light gray 60-80% similarity. (B) 
Prediction of transmembrane spans (TM) of Shy1, using TMpred. (C) Topology of Shy1, indicating the 
localization of amino acids G137 and Y344, corresponding to the affected SURF1 residues in Leigh 
Syndrome patients. MOM, mitochondrial outer membrane; IMS, inter membrane space; MIM, 
mitochondrial inner membrane. (D) Serial dilutions of shy1∆ cells, containing an empty plasmid (–) or 
expressing Shy1WT, Shy1Y344D, Shy1G137R or Shy1G137E were spotted on fermentable (YPD) or 
nonfermentable (YPG) medium and were incubated at indicated temperatures. 
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the respiratory chain complexes were analyzed by BN-PAGE and Western blotting 

(Fig 3.2A). Cytochrome c oxidase was analyzed, using antibodies against the mitochondria-

encoded core subunit Cox1 and the nuclear-encoded subunit Cox4. As reported previously 

(Mashkevich et al., 1997; Nijtmans et al., 2001), in mitochondria from shy1∆ cells, no mature 

cytochrome c oxidase could be detected. In contrast, cytochrome c oxidase assembles to 

supercomplexes (III2IV, III2IV2) in wild-type mitochondria (Fig 3.2A lanes 2, 7). Explaining 

the growth phenotype, in mitochondria from shy1G137E and shy1G137R cells, no mature 

cytochrome c oxidase could be detected (Fig 3.2A lanes 3,8 and 4,9, respectively) and in 

shy1Y344D mitochondria, cytochrome c oxidase could only be detected in minute amounts. 

Using Rip1 specific antibodies, the cytochrome bc1 complex was analyzed. This complex 

was mainly present in its dimeric form (III2) in the mutant mitochondria, and failed to form 

supercomplexes (III2IV1 and III2IV2) due to the lack of cytochrome c oxidase. As a control, 

the F1FO-ATPase complexes (V1, V2) were analyzed, which were unaffected by the SHY1 

mutations. 

To study the temperature sensitive respiratory phenotype, caused by the mutant Shy1 variants 

in more detail, mitochondria from cells grown at 19 °C were analyzed by BN-PAGE and 

Western blotting (Fig 3.2B). In consistence with the growth phenotype at 19 °C, cytochrome 

 
Figure 3.2 Point mutations in SHY1 lead to lack of cytochrome c oxidase 
(A) Mitochondria, isolated from indicated strains, grown at 30 °C were solubilized and respiratory chain 
complexes were analyzed by BN-PAGE and Western blotting using indicated antibodies (B) Cytochrome 
c oxidase of mitochondria, isolated from strains grown at 30 °C or 19 °C was analyzed as in (A) using 
Cox1 specific antibody. 
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c oxidase levels in shy1G137R mitochondria were comparable to wild-type but were hardly 

detectable in mitochondria from the cold sensitive shy1Y344D strain. 

In all tested mutant strains, a lack of cytochrome c oxidase could be shown, which was even 

enhanced at non-permissive temperatures. Therefore it can be concluded that the respiratory 

deficiency, observed in the mutant strains, is caused by the lack of cytochrome c oxidase. 

3.1.1.3. Mutations affecting G137 of Shy1 lead to reduced abundance of Shy1 

It was reported that SURF1 mutations lead to reduction or absence of SURF1 in patient 

mitochondria (Pequignot et al., 2001). Furthermore, yeast Shy1 is known to play a central 

role in Cox1 biogenesis as well as in early steps of cytochrome c oxidase assembly 

(Barrientos et al., 2002; Mick et al., 2007). Therefore, steady state levels of Shy1 as well as 

subunits and assembly factors of the cytochrome c oxidase were analyzed in detail in 

mitochondria isolated from the SHY1 mutant strains (Fig 3.3). Shy1 was detected using 

antibodies raised against full length Shy1 or the C-terminus of Shy1, which is not affected by 

the mutations. Interestingly Shy1 could hardly be detected with both antibodies in shy1G137E 

and shy1G137R mitochondria. Furthermore, Cox1 and Cox2, mitochondria-encoded core 

subunits of the cytochrome c oxidase, were strongly reduced in shy1G137E and shy1G137R 

mitochondria, similar to mitochondria lacking Shy1. This findings are consistent with recent 

studies by Bestwick et al. (2010a). In contrast, Shy1 was present in comparable amounts in 

shy1Y344D and wild-type mitochondria. However, Cox1 and Cox2 also showed reduced 

 
Figure 3.3 SHY1 point mutations lead to reduced abundance of Shy1 and core cytochrome c oxidase 
subunits 
15 µg mitochondria, isolated from indicated strains, were analyzed by SDS-PAGE and Western blotting. 
Asterisk, cross reactive band; Shy1, antibody against full-length Shy1; Shy1C, antibody against C-
terminal peptide of Shy1. 
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abundance in shy1Y344D mitochondria. Moreover, nuclear-encoded subunits (Cox4, Cox5a) as 

well as early assembly factors (Cox14, Coa1, Coa3, Mss51) of the cytochrome c oxidase 

were not affected by the SHY1 mutations. As controls, marker proteins of different 

mitochondrial sub-compartments were analyzed, which showed no differences in the 

mitochondria tested. 

It can be concluded that the lack of Shy1 in mitochondria from shy1G137E and shy1G137R cells, 

explains their respiratory deficiency, which phenotypically resembles a deletion of SHY1. 

3.1.2. Import and stability of Shy1 in yeast mitochondria 

3.1.2.1. Mutant Shy1 is efficiently imported into yeast mitochondria 

The observed absence of Shy1 in shy1G137E and shy1G137R mitochondria could be caused by 

impaired mitochondrial import or by destabilization and rapid turnover of the mutant Shy1 

proteins. 

To analyze mitochondrial import, wild-type and mutant Shy1 precursor proteins were 

synthesized and [35S]labeled using rabbit reticulocyte lysate and an in vitro import assay was 

established as described in Mick et al. (2007) (Fig 3.4A and B). Upon import, the Shy1 

precursor was processed to the faster migrating mature Shy1 protein. Dependent on the 

membrane potential (∆ψ), mature [35S]Shy1 accumulated in mitochondria and was protected 

 
Figure 3.4 In vitro import assay of radiolabeled Shy1 
(A) Wild-type and mutant Shy1 precursor proteins were synthesized and [35S]labeled in rabbit 
reticulocyte lysate and analyzed by SDS-PAGE and digital autoradiography. (B) Scheme of an in vitro 
import assay of [35S]Shy1 into isolated yeast mitochondria. (C) Wild-type [35S]Shy1 was in vitro 
imported in mitochondria as depicted in (B) for indicated time-points, with or without membrane 
potential (∆ψ) and proteinase K (Prot.K) treatment. Samples were analyzed by SDS-PAGE and digital 
autoradiography. Precursor (p) and mature (m) forms of Shy1 are indicated 
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from protease treatment, whereas the Shy1 precursor was degraded (Fig 3.4C). Subsequently, 

this assay was used to compare the import efficiency of wild-type and mutant Shy1. 

Surprisingly, mutant Shy1 proteins were in vitro imported in a comparable manner into 

isolated yeast mitochondria (Fig 3.5A). This finding was confirmed by a quantitative import 

assessment of the Shy1 variants, which revealed identical import efficiency and kinetics 

(Fig 3.5B). In addition, it was shown in whole cell extracts from the different mutants, that no 

Shy1 precursor accumulated in the cytosol, although mature Shy1 was reduced in shy1G137E 

and shy1G137R cells (Fig 3.5C) in consistence with the reduction shown in mitochondria, 

isolated from these cells (Fig 3.3). Hence, it can be excluded that an impaired import of 

Shy1G137E and Shy1G137R accounts for the reduced abundance of this proteins in mitochondria. 

 

 

 
Figure 3.5 Mitochondrial import of mutant Shy1 proteins is not affected 
(A) [35S]labeled wild-type and mutant Shy1 precursors were in vitro imported into isolated yeast 
mitochondria in presence or absence of a membrane potential (∆ψ) for indicated times. After proteinase K 
(Prot.K) treatment, where indicated, samples were analyzed by SDS-PAGE and digital autoradiography. 
As a standard, 5% precursor protein (Lysate) was used. p, precursor; m, mature. (B) Quantification of 
three independent experiments as in (A), using ImageQuant TL (GE-Healthcare). Import efficiency was 
calculated as protease protected mature Shy1 relative to the input (Lysate). Import efficiency of Shy1WT 
after 16 min was set to 100%. (SEM, n=3). (C) Whole-cell extracts of indicated strains were analyzed by 
SDS-PAGE and Western blotting. 
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3.1.2.2. Mutation of G137 in Shy1 leads to rapid turnover after import  

The hypothesis of a destabilization of Shy1 due to the exchange of G137 was analyzed by 

pulse-chase analysis after in vitro import: Wild-type or mutant [35S]Shy1 was imported into 

isolated mitochondria, precursor proteins were degraded by protease treatment and samples 

were taken after different times of further incubation (Fig 3.6A). Although Shy1WT and 

Shy1Y344D were stable, the signal intensity of Shy1G137E and Shy1G137R strongly decreased 

over time (Fig 3.6B). Quantitative analyses of these experiments revealed a half-life of about 

4 hours of Shy1WT and Shy1Y344D in mitochondria, whereas Shy1G137E and Shy1G137R were 

turned over with a half-life of less than 30 min (Fig 3.6C). Consequently the reduced 

 
Figure 3.6 Shy1G137E and Shy1G137R are destabilized in yeast mitochondria 
(A) Experimental setup of the stability assay after in vitro import. (B) As shown in (A), [35S]labeled Shy1 
precursors were imported in yeast mitochondria for 5 min (import). Import was stopped, unimported 
precursor protein (p) was degraded by proteinase K treatment (Prot.K) and mitochondria were reisolated 
and resuspended in energized buffer. After further incubation for different times (chase), samples were 
taken and analyzed by SDS-PAGE and digital autoradiography. m, mature. (C) Three independent 
experiments as in (B) were quantified using ImageQuant TL (GE-Healthcare). Values represent means of 
mature Shy1 signals after the indicated time of chase relative to 0 min chase (=100%). SEM (n=3). 
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abundance of Shy1G137E and Shy1G137R in mitochondria can be explained by their rapid 

degradation after mitochondrial import. 

3.1.2.3. Shy1Y344D maintains the physiologically correct topology 

It could be shown that Shy1Y344D is imported into mitochondria and remains stable. However, 

since the mutation affects an amino acid at the interface of the second transmembrane span, it 

was hypothesized that the insertion of this transmembrane span into the inner mitochondrial 

membrane could be impaired. To assess the topology of the second transmembrane span, a 

protease protection analysis of the C-terminal domain of Shy1 was established (Fig 3.7A):  

Mitochondria and mitoplasts, generated by osmotic swelling, were incubated with different 

amounts of protease. Samples were analyzed by SDS-PAGE and Western blotting, using an 

antibody raised against the C-terminus of Shy1. In mitochondria, Shy1 was protected from 

protease treatment by the outer mitochondrial membrane (Figure 3.7B). However, in 

mitoplasts, Shy1WT and ShyY344D were degraded by the protease. Interestingly, in both cases 

C-terminal domains were detected, which remained protected by the mitochondrial inner 

membrane, indicating a similar localization in the mitochondrial matrix. Therefore it can be 

 
Figure 3.7 Shy1Y344D is correctly inserted in the mitochondrial inner membrane 
(A) Scheme of the experiment shown in (B). (B) From indicated strains, mitochondria or mitoplasts, 
generated by osmotic swelling, were incubated with increasing concentrations of proteinase K (Prot.K) 
for 10 min on ice. Samples were analyzed by SDS-PAGE and Western blotting using antiserum against 
the C-terminus of Shy1. Asterisk, cross reactive band; Shy1’, C-terminal Shy1 fragment; MOM, 
mitochondrial outer membrane; MIM, mitochondrial inner membrane. 
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concluded that the exchange of Y344 of Shy1 does not affect the correct physiological 

topology of the protein. 

3.1.3. Import and stability of SURF1 in human mitochondria 

3.1.3.1. Establishment of an in vitro import assay of SURF1 

Considering the destabilization of Shy1G137E and Shy1G137R in yeast mitochondria, it was 

speculated that SURF1G124E and SURF1G124R could also be rapidly degraded in human 

mitochondria. Destabilization of SURF1 in affected patients, similar to a SURF1 deletion in 

other individuals, would explain the development of Leigh Syndrome. 

To confirm a destabilization of SURF1G124E/G124R in human mitochondria, an in vitro import 

assay was established for mitochondria, isolated from cultured HEK293T cells. To optimize 

in vitro import conditions, ornithine transcarbamylase (OTC), a well characterized substrate 

for in vitro import into mammalian mitochondria (Sztul et al., 1987), was used (Fig 3.8A). 

Upon incubation of [35S]OTC precursor with isolated human mitochondria, the faster 

migrating mature form of OTC accumulated at a protease protected location, dependent on 

the membrane potential. To use this in vitro import assay for SURF1, the open reading frame 

of SURF1 was cloned, [35S]SURF1 was synthesized in reticulocyte lysate and imported in 

isolated HEK293T mitochondria using the same conditions (Fig 3.8B). Similar to Shy1, also 

the SURF1 precursor was processed to the mature form, which accumulated in mitochondria 

dependent on a membrane potential. 

 
Figure 3.8 In vitro import of SURF1 into human mitochondria 
(A) OTC precursor protein was in vitro synthesized and [35S]labeled in reticulocyte lysate (Lysate). In 
vitro import into isolated HEK293T mitochondria for 20 min was performed in presence or absence of 
membrane potential (∆ψ) and subsequent proteinase K (Prot.K) treatment where indicated. (B) 
[35S]SURF1 was in vitro synthesized and imported in HEK293T mitochondria for indicated times with 
and without membrane potential and subsequent proteinase K treatment. Samples of (A) and (B) were 
analyzed by SDS-PAGE and digital autoradiography. p, precursor; m, mature. 
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3.1.3.2. Mutant SURF1 is efficiently imported into mitochondria 

The import efficiency of the mutant variants of SURF1 was analyzed by in vitro import 

analyses. Therefore the patient point mutations were introduced into the cloned SURF1 using 

site directed mutagenesis. Subsequently, [35S]labeled wild-type and mutant SURF1 proteins 

were synthesized and in vitro import was performed into HEK293T mitochondria (Fig 3.9). 

Similar to the wild-type protein, SURF1G124E, SURF1G124R and SURF1Y274D were processed 

to the mature form upon incubation with mitochondria and accumulated at a protease 

protected location dependent on the membrane potential. Moreover, quantification of the 

signals revealed that the import efficiency was in a range of ±10% of the wild-type protein 

(not shown). Hence, it was concluded that similar to the yeast counterparts, the mutant 

SURF1 proteins are efficiently imported into human mitochondria. 

 
Figure 3.9 Mutant SURF1 imports efficiently into human mitochondria 
In vitro import of wild-type and mutant SURF1 precursors (p) into isolated HEK293T mitochondria for 
indicated times in presence or absence of membrane potential (∆ψ). After proteinase K (Prot.K) treatment 
(were indicated), samples were subjected to SDS-PAGE and digital autoradiography. As a marker mature 
(m) SURF1 was visualized by SDS-PAGE and Western blotting (lane 1). 
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3.1.3.3. Mutations affecting G124 in SURF1 lead to degradation of the mature 

protein 

Since the mutant SURF1 proteins are efficiently imported into mitochondria, it was 

speculated that similar to the yeast models, an exchange of G124 in SURF1 leads to 

destabilization of the protein. 

Therefore, the stability of SURF1 proteins, affected by the patient point mutations, was 

compared with the wild-type protein. To analyze this, the degradation of in vitro imported 

radiolabeled SURF1WT, SURF1G124E, SURF1G124R and SURF1Y274D proteins was monitored 

by pulse-chase analysis (Fig3.10A). 

Similar to the yeast model, mature SURF1WT and SURF1Y274D remained stable after in vitro 

import into mitochondria, degradation of the precursor and further incubation for up to 4 

hours (Fig 3.10A upper and lower panel). In contrast, SURF1G124E and SURF1G124R signals 

drastically decreased over time. In fact, at incubation times of more than 60 min, signals of 

SURF1G124E and SURF1G124R were hardly detectable (Fig 3.10A middle panels). 

A quantitative analysis of these experiments revealed a half-life of mature SURF1WT and 

SURF1Y274D of more than 4 hours. On the other hand, SURF1G124E and SURF1G124R were 

rapidly degraded with half-lifes of about 10 min (Fig 3.10B). 

Taken together, it can be concluded that mutations, affecting the highly conserved amino acid 

G124 of SURF1, lead to destabilization of the protein, similar to mutations affecting the 

corresponding G137 of the yeast model Shy1. Exchanges of the highly conserved Y274 in 

SURF1 (Y344 in Shy1) however, do not alter the stability of the protein. 
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3.1.3.4. SURF1Y274D association with cytochrome c oxidase assembly 

intermediates is affected 

It could be shown that mutations affecting G124 of SURF1 lead to rapid degradation of the 

protein in mitochondria, which fully explains the cytochrome c oxidase deficiency in the 

patients. SURF1Y274D however, remains stable after import into mitochondria. To analyze the 

molecular pathology of SURF1Y274D in more detail, the assembly of SURF1 to inner 

mitochondrial membrane complexes was examined. Therefore, protein complexes of isolated 

HEK293T mitochondria were analyzed by BN-PAGE analysis and Western blotting 

(Fig 3.11A). Interestingly, using 1% digitonin as a detergent for solubilization, two SURF1 

containing complexes of about 100 and 200 kDa were resolved (Fig 3.11A lane 2). In 

contrast, mature cytochrome c oxidase migrated as a complex of approximately 400 kDa 

(Fig 3.11A lanes 3-5). Moreover, COX1-containing putative assembly intermediates were 

 
Figure 3.10 Exchange of G124 in SURF1 leads to rapid degradation in mitochondria 
(A) Stability assay of wild-type and mutant SURF1 after in vitro import as depicted in (Fig 6A): 
[35S]SURF1 precursors (p) were in vitro imported into HEK293T mitochondria, after proteinase K 
(Prot.K) treatment, mitochondria were reisolated and further incubated for indicated times (chase). 
Samples were analyzed by SDS-PAGE and digital autoradiography. m, mature. (B) Three independent 
experiments as in (A) were quantified using ImageQuant TL (GE-Healthcare). Shown are mean ratios of 
SURF1 signal after indicated times of chase relative to 0 min chase (=100%). SEM (n=3). 
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also detected at about 200 kDa (Fig 3.11A lane 3), which apparently did not co-migrate with 

the 200 kDa SURF1 complex. 

To analyze this in more detail, the assembly of in vitro imported [35S]SURF1 was examined 

(Fig 3.11B). Dependent on the membrane potential, SURF1WT was imported and assembled 

into complexes of similar size as seen in the Western blot analysis. Interestingly, minute 

amounts of SURF1WT were also detected at the size of the mature cytochrome c oxidase, 

which was visualized by the assembly of COX6A1 (Fig 3.11B lane 5). In contrast, assembly 

analysis of the mutant SURF1Y274D revealed a preferential association to the 200 kDa 

complex (Fig 3.11C). Essentially no assembly of SURF1Y274D into the 100 kDa complex or 

into the mature cytochrome c oxidase could be detected. 

Subsequently, the assembly of SURF1WT and SURF1Y274D was directly compared and the 

nature of the observed SURF1 complexes was addressed in mitochondria, depleted of 

cytochrome c oxidase assembly intermediates (Fig 3.11D). Therefore, mitochondrial or 

cytosolic translation was inhibited by chloramphenicol (CAP) or cycloheximide (CHX) 

respectively, prior to isolation of mitochondria. Interestingly, although SURF1WT and 

SURF1Y274D import was undistinguishable (Fig 3.11D lower panel), the assembly of 

SURF1Y274D into the 200 kDa complex was strongly increased compared to SURF1WT 

(Fig 3.11D lane 2 and 6). Moreover, compared to untreated mitochondria, in mitochondria 

treated with CAP, the assembly of SURF1WT and SURF1Y274D into the 200 kDa complex was 

strongly decreased (Fig 3.11D lane 3 and 7). This result indicates that the assembly of 

SURF1 into the 200 kDa complex depends on mitochondrial translation and most likely 

assembly intermediates of the cytochrome c oxidase. 

Taken together it could be shown that SURF1 assembles to putative cytochrome c oxidase 

assembly intermediates, which are uncharacterized so far. Interestingly an Y274D exchange in 

SURF1 leads to an altered association of the protein to these complexes. 
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Figure 3.11 Altered association of SURF1Y274D to cytochrome c oxidase assembly intermediates 
(A) Mitochondrial protein complexes of HEK293T cells were solubilized in 1% digitonin and analyzed 
by BN-PAGE and Western blotting using indicated antibodies or preimmune serum (p.i.). (B, C) 
[35S]labeled SURF1WT and COX6A1 (B) or SURF1Y274D (C) were in vitro imported into HEK293T 
mitochondria for indicated times in presence or absence of a membrane potential (∆ψ). Subsequently, 
complexes were solubilized in 1% digitonin and analyzed by BN-PAGE and digital autoradiography. (D) 
In vitro import of SURF1WT or SURF1Y274D for 45 min into mitochondria, isolated from chloramphenicol 
(CAP), cycloheximide (CHX) or untreated HEK293T cells. Subsequently, samples were split and 
analyzed by SDS-PAGE (lower panel) or BN-PAGE (upper panel) followed by digital autoradiography. 
Asterisk, frequently observed unspecific protein band; p, precursor; m, mature. 
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3.1.4. Shy1Y344D uncouples Cox1 expression from cytochrome c 
oxidase assembly 

3.1.4.1. Shy1Y344D permits Cox1 expression 

In contrast to SURF1WT, SURF1Y274D accumulates preferentially in a 200 kDa complex. The 

effects of this accumulation apparently lead to lack of cytochrome c oxidase, as shown in 

affected patients (Pequignot et al., 2001; Teraoka et al., 1999). The exact role of SURF1 in 

cytochrome c oxidase assembly remains enigmatic. However, using its yeast homolog as a 

model, it could be shown that Shy1 couples cytochrome c oxidase assembly to translational 

regulation of its central subunit Cox1 (Barrientos et al., 2002; Mick et al., 2007). 

Hence, it was speculated that Cox1 translational regulation is affected by the mutations in 

SHY1. This would also explain the reduced steady state levels of Cox1 in cells expressing 

mutant Shy1 (Fig 3.3). Therefore, mitochondrial translation was analyzed by in vivo labeling 

of mitochondria-encoded proteins (Fig 3.12A). As reported previously (Barrientos et al., 

2002), deletion of SHY1 leads to strongly reduced expression of Cox1. As expected, in cells 

expressing Shy1G137E or Shy1G137R, Cox1 biosynthesis was reduced comparable to shy1∆ 

cells due to the rapid degradation of the mutant Shy1 proteins. However, cells expressing 

Shy1Y344D displayed Cox1 expression, which was indistinguishable from wild-type cells 

(Fig 3.12 A and B). 

In addition, it could be shown that even at non-permissive temperature (19 °C) shy1Y344D cells 

showed Cox1 expression that was similar to wild-type cells (Fig 3.12 C and D).  
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Hence, in shy1Y344D cells, Cox1 expression is unaffected although assembly of the 

cytochrome c oxidase is impaired. Therefore, Cox1 biosynthesis is apparently uncoupled 

from translational feedback regulation in shy1Y344D mitochondria.  

3.1.4.2. Shy1Y344D releases Cox1 from translational feedback regulation 

Interestingly, in shy1Y344D mitochondria, the Cox1 translational feedback regulation system is 

non-functional: Although cytochrome c oxidase assembly is defective, Cox1 translation is not 

shut down. 

To address Cox1 translational regulation in shy1Y344D mitochondria, early cytochrome c 

oxidase assembly intermediates were analyzed, which are known to link to feedback 

regulation of Cox1 translation. These assembly intermediates, containing Coa1, Coa3 and 

Mss51, were analyzed by co-immunoprecipitation analyses of Coa1 (Fig 3.13A) and Coa3 

(Fig 3.13B).  

 
Figure 3.12 shy1Y344D cells efficiently translate mitochondria-encoded proteins 
(A) In vivo [35S]labeling of mitochondrial translation products for indicated times at 30 °C using shy1∆ 
cells, grown at 30 °C, expressing wild-type or mutant Shy1 or containing an empty vector (–). 
Subsequently, whole cell extracts were prepared and analyzed by SDS-PAGE and digital 
autoradiography. (B) Signals of three independent experiments as in (A) were quantified using 
ImageQuant TL (GE-Healthcare). Bars represent mean ratios of Cox1/Cob after 15 min labeling relative 
to the wild-type (=100%). SEM (n=3). Cox1 signals were normalized to Cob, which is expressed 
independent of defective cytochrome c oxidase assembly (C, D) shy1∆ cells, expressing Shy1WT or 
Shy1Y344D, were grown at 19 °C and in vivo labeling (C) was performed as in (A) but at 19 °C. 
Quantification (D) of the signals after 30 min labeling was performed as in (B). SEM (n=3). 
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Antibodies, directed against Coa1, efficiently precipitated Coa1 in shy1∆, shy1Y344D and wild-

type mitochondria (Fig 3.13A). Interestingly, compared to the wild-type, in shy1∆ 

mitochondria increased amounts of Cox1 and Mss51 were co-precipitated, indicating an 

accumulation of cytochrome c oxidase assembly intermediates that shut down Cox1 

translation. In contrast, wild-type and shy1Y344D mitochondria showed comparable amounts of 

co-precipitated Cox1 and Mss51, indicating no increased accumulation of these assembly 

intermediates due to the Y344D exchange in Shy1. As a control, Coa3, a known interactor of 

Coa1 was detected, and Por1 was analyzed to check for unspecific binding. This finding was 

confirmed in co-immunoprecipitation experiments, using antibodies directed against Coa3, 

which also interacts with Cox1 at earlier steps of its biogenesis independent of Coa1 (Fig 

3.13B). Again, an accumulation of early intermediates of cytochrome c oxidase biogenesis, 

containing Cox1 and Mss51 could be shown in shy1∆ mitochondria, which were less 

abundant in wild-type and shy1Y344D mitochondria. 

This finding fully explains the wild-type like expression of Cox1 in mitochondria from 

shy1Y344D cells, where no cytochrome c oxidase assembly intermediates accumulate that 

sequester Mss51 and thereby repress Cox1 translation.  

3.1.4.3. Cox1 is rapidly degraded in shy1Y344D cells  

The wild-type-like expression of Cox1 in shy1Y344D mitochondria is in contradiction to the 

observed reduced steady state level of Cox1 (Fig 3.3). Therefore it was speculated that Cox1, 

 
Figure 3.13 Analysis of early cytochrome c oxidase assembly intermediates in yeast 
(A, B) Co-immunoprecipitation of Coa1 (A) or Coa3 (B) from mitochondria, solubilized in 1% digitonin, 
isolated from shy1∆ cells, expressing Shy1WT, Shy1Y344D or containing an empty vector (–): Lysates were 
incubated with specific or control antibodies. Bound proteins were eluted after extensive washing and 
analyzed by SDS-PAGE and Western blotting. Total, 6%; eluate, 100%; Asterisk, cross-reactive band. 
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that is synthesized in shy1Y344D mitochondria must be rapidly turned over. To test this 

hypothesis, a stability assay of mitochondrial translation products was established: 

Mitochondrial translation products were labeled in vivo using [35S]methionine, translation 

was stopped and degradation was monitored after further incubation of the cells for different 

times (Fig 3.14A). In wild-type cells, all mitochondrial translation products remained stable 

and no decrease of signal intensity was observed. However, in shy1∆ and shy1Y344D cells, the 

mitochondria-encoded subunits of the cytochrome c oxidase Cox1, Cox2 and Cox3 were 

degraded. 

A quantitative analysis of Cox1 stability in the different strains (Fig 3.14B) revealed that 

Cox1 is turned over rapidly in shy1∆ and shy1Y344D cells. As a control, a coa1∆ strain was 

used, which is known to have destabilized Cox1 (Pierrel et al., 2007). This strain showed 

even faster Cox1 degradation than shy1∆ or shy1Y344D cells. The destabilization of Cox1 in 

shy1Y344D cells explains the lack of Cox1 at steady state although Cox1 expression is not 

affected in this strain. 

 
Figure 3.14 Cox1 is rapidly turned over in shy1Y344D cells 
(A) Mitochondrial translation products of indicated strains were in vivo [35S]labeled for 15 min. After 
labeling was stopped by addition of 100 µg/ml CAP and 4 mM unlabeled methionine, incubation was 
continued at 30 °C. After indicated times of chase, samples were taken, whole cell extracts were prepared 
and analyzed by SDS-PAGE and digital autoradiography. (B) Experiments as in (A) were quantified 
(ImageQuant TL, GE-Healthcare) and Cox1 stability was determined as mean ratios of Cox1/Cob at each 
time-point relative to 0 min chase (=100%) for the individual strain. SEM (n=3). 
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3.1.4.4. Shy1Y344D has a dominant negative effect on Cox1 stability 

It could be shown that Shy1Y344D is stable after mitochondrial import but is nonfunctional and 

leads to rapid Cox1 degradation due to defective cytochrome c oxidase assembly. To test if 

Shy1Y344D has a dominant negative effect, the open reading frame encoding for Shy1Y344D 

was cloned in a multicopy vector, which was transformed in wild-type and shy1∆ cells. 

Growth analyses of these strains did not show a dominant effect (not shown). However, 

pulse-chase experiments after [35S]labeling of mitochondrial translation products revealed a 

destabilization of Cox1 in wild-type cells, which overexpress Shy1Y344D (Fig 3.15A). To 

confirm this dominant negative effect, steady-state levels of Cox1 were analyzed in strains 

overexpressing Shy1Y344D in shy1∆ and wild-type background (Fig 3.15B). In agreement with 

the pulse-chase experiments, it was shown that overexpression of Shy1Y344D in wild-type 

background leads to reduced Cox1 levels, whereas Cox1 is little affected when Shy1Y344D is 

co-expressed with the wild-type copy in similar amounts. Hence, Shy1Y344D not only shows 

lack of function in regard to cytochrome c oxidase assembly, it even has a dominant negative 

effect on Cox1 stability when overexpressed in the wild-type background. 

 
Figure 3.15 Shy1Y344D has a dominant negative effect on Cox1 stability in yeast 
(A) Quantification of Cox1 synthesis (pulse for 15 min) and stability (chase for 135 min) as analyzed in 
(Fig 3.14B) in indicated strains. In brackets are the proteins, expressed from a plasmid (↑ indicates 
overexpression). (B) From wild-type or shy1∆ cells, expressing indicated proteins from a plasmid (↑ 
indicates overexpression) whole cell extracts were prepared and analyzed by SDS-PAGE and Western 
blotting. 
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3.1.5. Mitochondrial quality control by mitophagy 

Cells expressing Shy1Y344D show wild-type like expression of Cox1. However, Cox1 is 

rapidly degraded. The degradation of accumulated assembly intermediates of the cytochrome 

c oxidase plays an essential role for cell viability, since some assembly intermediates are 

prone to production of reactive oxygen species (Khalimonchuk et al., 2007; Rigoulet et al., 

2011). These highly reactive compounds lead to damage of proteins, DNA and lipids. Cells 

counteract oxidative stress by expressing detoxifying enzymes such as catalase and 

superoxide dismutase (Jamieson, 1998). Moreover damaged mitochondria can be degraded 

via selective autophagic degradation of mitochondria (mitophagy) (Kanki and Klionsky, 

2010; Tal et al., 2007).  

It is conceivable, that in shy1Y344D cells, an increased production of reactive oxygen species 

due to impaired cytochrome c oxidase assembly, triggers mitophagy. This would also explain 

the rapid Cox1 turnover observed in shy1Y344D mitochondria. The first mitochondrial proteins, 

reported to be involved in mitophagy are Uth1 and Aup1 (Kissová et al., 2004; Tal et al., 

2007). It was hypothesized that Uth1 is a mitochondrial outer membrane receptor for 

autophagosome formation (Camougrand et al., 2003; Kissová et al., 2004). Therefore it was 

speculated that in shy1Y344D cells, Uth1 could be involved in degradation of mitochondria. 

Interestingly, there is a controversy about the N-terminus of Uth1: Based on sequence 

homology to ortholog yeast proteins and mapping of transcription start sites (Kellis et al., 

2003; Zhang and Dietrich, 2005) it was suggested, that Uth1 translation starts at the second 

start-codon of the open reading frame (Fig 3.16A). To analyze its N-terminus and 

mitochondrial localization, Uth1 starting from the first start codon of the open reading frame 

was in vitro translated and [35S]labeled using rabbit reticulocyte lysate. Subsequently, in vitro 

import experiments into isolated yeast mitochondria were performed (Fig 3.16B). 

Interestingly, [35S]Uth1 was processed to a faster migrating form upon incubation with 

mitochondria. Moreover, this mature form accumulated in a membrane potential (∆ψ) 

dependent manner and was protected against protease treatment. This is strong evidence that 

Uth1, with its predicted transmembrane span, in fact is located in the mitochondrial inner 

membrane. The previously suggested outer membrane localization of Uth1 might be due to 

mislocalization of the tagged protein used in this study (Velours et al., 2002). Furthermore 

the potential of [35S]Uth1, starting from the first possible start methionine, to be imported in 

vitro and its processing led to the hypothesis, that Uth1 translation starts at the first start-



3. Results 

64 

codon of the open reading frame and that the protein is processed to a mature form after 

mitochondrial import. Interestingly, no N-terminal Uth1 peptide was found in a screen to 

identify the N-termini of all mitochondrial proteins (Vögtle et al., 2009). Using this data 

however, an Uth1 peptide was identified in collaboration with Dr. R. Zahedi (Leibniz Institut 

für Analytische Wissenschaften, Dortmund), which started between the two possible start-

methionines (Fig 3.16A). This finding confirms the translation-start of Uth1 at the first 

potential start methionine and its processing after mitochondrial import. 

To study the role of Uth1 in autophagy, the response of uth1∆ cells to rapamycin was 

analyzed. Previous studies (Kissová et al., 2004) showed a resistance of uth1∆ cells to 

rapamycin, which induces growth defects in wild-type cells by artificial induction of 

autophagy. In contrast, in the present study no resistance to rapamycin of uth1∆ cells 

(BY4741 background) could be observed (Fig 3.16C). As a control fpr1∆ cells were used, 

which are resistant to rapamycin (Heitman et al., 1991). As an additional control atg5∆ cells 

were analyzed, which are defective of autophagy. These cells do not survive starvation and 

show reduced viability (Kametaka et al., 1996; Kissová et al., 2004). 

Moreover, also a uth1∆ strain derived from YPH499 was analyzed which also showed no 

resistance to rapamycin treatment (not shown). 

Taken together, it was concluded, that Uth1 is localized to the mitochondrial inner membrane 

and that the role of Uth1 in autophagic degradation of mitochondria remains questionable. 

 
Figure 3.16 Analysis of Uth1, the suggested mitophagy receptor in the outer membrane 
(A) Amino acid sequence of Uth1. The potential start-methionines (red), the predicted transmembrane 
span (underlined) and the N-terminus identified by mass spectrometry (green) are indicated. (B) In vitro 
import of [35S]Uth1 into isolated yeast mitochondria in presence or absence of a membrane potential (∆ψ) 
for different times with subsequent proteinase K (Prot.K) treatment as indicated. The [35S]Uth1 precursor 
(Lysate) was used as a standard. p, precursor; m, mature. (C) Serial dilutions of indicated yeast strains 
were spotted on YPD plates supplemented with 0.2 µg/ml rapamycin if indicated. Plates were incubated 
for 3 days at 30 °C. 
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3.2. Sym1, a model for MPV17-associated Mitochondrial DNA 

Depletion Syndrome 

3.2.1. Sym1 is a polytopic protein of the mitochondrial inner 
membrane 

3.2.1.1. MPV17 patient mutations affect highly conserved amino acids 

MPV17, a highly conserved mitochondrial inner membrane protein, is involved in the 

Mitochondrial DNA Depletion Syndrome (Spinazzola et al., 2006). In patients, mutations 

were identified that lead to an R50Q or N166K exchange in MPV17. Interestingly, these amino 

acids are invariant in homolog proteins (Fig 3.17A) and correspond to R51 or N172 in the yeast 

ortholog Sym1. Hence, Sym1 can be used as a model to analyze these patient mutations. 

Characteristic for MPV17, Sym1 and their homologs are four predicted transmembrane spans 

(Fig 3.17B), which might be affected in the mutant proteins. The exchange of the basic 

arginine51 of Sym1 (R50 in MPV17) to a glutamine residue could influence protein 

interactions or the insertion of the second predicted transmembrane span (Fig 3.17C). 

Similarly, the exchange of the asparagine at position 172 in Sym1 (N166 in MPV17) to a basic 

lysine residue in the fourth predicted transmembrane span (Fig 3.17B and C) could also be 

deleterious for membrane insertion and protein interactions in a hydrophobic environment. 

In this study, Sym1 was used as a model, to resolve the molecular function and biogenesis of 

MPV17/Sym1, which is to date unknown. 

3.2.1.2. SYM1 deletion does not affect respiratory competence in yeast 

Sym1 has been reported to be required for stress tolerance in yeast. Studies by Trott and 

Morano (2004) and Spinazzola et al. (2006) showed that strains, lacking Sym1, derived from 

BY4743 or BY4741 respectively, did not grow on ethanol containing media under heat shock 

conditions. To validate this finding, SYM1 was deleted in YPH499 background and growth 

tests were performed (Fig 3.18A). As controls, wild-type cells and cells, lacking 

mitochondrial DNA (rho0), were used. As reported previously, sym1∆ cells were able to grow 

on nonfermentable carbon sources (YPG). However, sym1∆ cells also grew comparable to 

wild-type cells on ethanol containing media (YPE) at all temperatures tested. 
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Interestingly, altered respiratory chain activities were reported in patients with mutations in 

MPV17 (Wong et al., 2007). Therefore, steady-state levels of respiratory chain subunits and 

complexes in isolated mitochondria were analyzed by SDS-PAGE and BN-PAGE (Fig 18B 

and C). Marker proteins of the outer and inner membrane (Tom70 and Tim23) and the 

mitochondrial matrix (Pam17, Ssc1) remained unchanged in sym1∆ mitochondria compared 

to the wild-type. Moreover, structural subunits and assembly factors of the respiratory chain 

were indistinguishable in wild-type and sym1∆ mitochondria (Fig 3.18B), confirming the 

growth analysis. Furthermore, BN-PAGE analysis of respiratory chain supercomplexes in 

sym1∆ and wild-type mitochondria showed no differences (Fig 3.18C). 

 
Figure 3.17 Patient mutations in MPV17 affect conserved residues in putative transmembrane 
spans 
(A) Alignment of MPV17 homolog proteins using ClustalW2 (Blosum62 matrix): Black boxes indicate 
100%; dark gray 80-100%; light gray 60-80% similarity. Arrowheads show amino acids affected by 
patient mutations. (B) Transmembrane span prediction of Sym1 using TMpred. Putative transmembrane 
(TM) segments are indicated. (C) Predicted domain-structure of Sym1: Transmembrane domains (TM) 
and patient mutations (arrowheads) are indicated. 
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Hence, no respiratory phenotype and altered respiratory chain composition in sym1∆ cells 

could be observed. Therefore, it was speculated, that the phenotype, reported by Trott and 

Morano (2004) and Spinazzola et al. (2006) might be specific to the strains, used in these 

studies and represent an indirect effect due to increased loss of mitochondrial DNA in these 

strains as reported (Spinazzola et al., 2006). 

3.2.1.3. Localization and topology of Sym1 

Initially, mouse MPV17 was reported to be localized in peroxisomes (Zwacka et al., 1994). 

However, more recent studies indicate a mitochondrial localization of human MPV17 

(Spinazzola et al., 2006) as well as its yeast homolog Sym1 (Trott and Morano, 2004). 

To verify this, a strain was generated that expresses GFP, fused to the C-terminus of Sym1 

and the mitochondrial localization of Sym1 was confirmed by fluorescence microscopy 

(Fig 3.19A). Co-localization of MitoTracker Orange, a dye, specific for mitochondria, with 

Sym1GFP, indicated the mitochondrial localization of Sym1. 

 
Figure 3.18 Cells lacking Sym1 show respiratory competence 
(A) Serial dilutions of wild-type (WT), cells lacking mitochondrial DNA (rho0) or sym1∆ cells were 
spotted on rich media plates, containing glucose (YPD), glycerol (YPG) or ethanol (YPE) as a carbon 
source and incubated at the indicated temperatures. (B) Indicated amounts (µg) of isolated mitochondria 
from wild-type or sym1∆ cells were analyzed by SDS-PAGE and Western blotting with antibodies as 
indicated. (C) Wild-type or sym1∆ mitochondria were solubilized and respiratory chain complexes were 
analyzed by BN-PAGE and Western blotting. 
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Since Sym1 contains four predicted transmembrane spans, it was hypothesized, that it must 

be an integral membrane protein in mitochondria. To confirm this, isolated mitochondria 

were analyzed by carbonate treatment (Fig 3.19B). Aco1 (aconitase), a soluble matrix 

marker, and Tim44, which is peripherally associated to the inner membrane, could be 

extracted from the mitochondrial membranes by carbonate. In contrast, Sym1 and Por1, a 

polytopic outer membrane protein, were sedimented with the membrane fraction. Hence, it 

can be concluded that Sym1 is an integral membrane protein. 

Furthermore, the submitochondrial localization and topology of Sym1 was addressed by 

protease protection assays of Sym1 (Fig 3.19C). Mitochondria from wild-type and a strain 

expressing ProteinA, fused to the C-terminus of Sym1, were incubated with increasing 

amounts of proteinase K. In contrast to Tom70, an outer membrane marker protein, Sym1 

and Sym1Prot.A remained protected by the outer membrane. However, when mitoplasts were 

generated by osmotic swelling of the outer membrane, Sym1 and Sym1Prot.A became 

accessible to protease. In SYM1Prot.A mitochondria, the protease accessibility of the C-

terminal ProteinA tag revealed, that the C-terminus of Sym1 is exposed to the intermembrane 

space. Taking the four predicted transmembrane spans into consideration, it was concluded, 

that the N- and C- terminus as well as the central loop of Sym1 is exposed to the 

intermembrane space, whereas two loops are exposed to the mitochondrial matrix (Fig 

3.19D). Interestingly this finding experimentally disproved the topology predicted by Wong 

et al. (2007) which suggested a matrix localization of the N- and C-terminus. 

In wild-type mitochondria, Sym1 was detected using antiserum directed against the C-

terminus (Fig 3.19C). Interestingly, the Sym1 C-terminus is more stable than the C-terminal 

ProteinA tag at lower protease concentrations. Most likely, the short C-terminal extension of 

Sym1 into the inter membrane space is not big enough to be accessible at lower protease 

concentrations. In addition, the C-terminus could be protected by interactions with proteins or 

membranes. 
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3.2.2. Formation and assembly of Sym1 complexes 

3.2.2.1. Sym1 forms high molecular membrane complexes 

The peroxisomal homolog of Sym1/MPV17, Pmp22, was suggested to form multimeric 

complexes (Rokka et al., 2009). To address if Sym1 forms complexes in the mitochondrial 

inner membrane, mitochondria from cells, expressing Sym1, Sym1Prot.A or lacking Sym1 

were solubilized in digitonin buffer and membrane protein complexes were separated by BN-

PAGE. Western blot detection of the ProteinA tag revealed two complexes of about 120 and 

220 kDa (Fig 3.20A). These complexes, named Sym1c120 and Sym1c220, could not be detected 

using antibody specific to the C-terminus of Sym1 (not shown), indicating that the C-

terminus is buried inside of the complex and therefore not accessible for antibodies. 

 
Figure 3.19 Sym1 is a protein of the mitochondrial inner membrane 
(A) Cells, expressing Sym1GFP were visualized using a DeltaVision Deconvolution microscope in 
differential interference contrast (DIC). The mitochondrial network, stained with MitoTracker Orange 
(Invitrogen), and GFP signals were detected by fluorescence microscopy and merged to show co-
localization. Bar, 5 µm. (B) Isolated wild-type mitochondria were incubated in 100 mM sodium carbonate 
(pH 11.5). The soluble fraction (S) was separated from the membrane pellet (P) by centrifugation. (C) 
Mitochondria and mitoplasts, generated by osmotic swelling, were incubated with increasing amounts of 
proteinase K (Prot. K), followed by SDS-PAGE and Western blotting. (D) Topology of Sym1. MOM, 
mitochondrial outer membrane; IMS, inter membrane space; MIM mitochondrial inner membrane. 
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Additionally, these complexes were purified by IgG chromatography, eluted by TEV-

protease cleavage under native conditions and could be Coomassie stained (Fig 3.20B). 

Hence, it could be shown, that Sym1 is present in high molecular weight complexes of about 

120 and 220 kDa in the mitochondrial inner membrane. Analysis of the composition and 

assembly of these complexes will help to understand the molecular function and biogenesis 

of Sym1. 

3.2.2.2. Establishment of an in vitro import assay of Sym1 

To analyze the mitochondrial assembly of the observed Sym1 complexes, an in vitro 

import/assembly assay of Sym1 was established. Therefore, [35S]labeled Sym1 was 

synthesized in vitro using rabbit reticulocyte lysate. Subsequently, [35S]Sym1 was in vitro 

imported into isolated yeast mitochondria (Fig 3.21A). Protease protected Sym1 accumulated 

over time dependent on the membrane potential (∆ψ). Interestingly, no processed form of 

Sym1 was detected. Therefore, in contrast to predictions by Spinazzola et al. (2006), Sym1 

lacks a cleavable presequence. This was also validated by Edman degradation and mass 

spectrometric identification of the N-terminus of Sym1, purified from yeast mitochondria 

(not shown). 

 
Figure 3.20 High molecular weight membrane complexes of Sym1 
(A) Isolated mitochondria from indicated yeast stains were solubilized in 1% digitonin and membrane 
complexes were analyzed by BN-PAGE and Western blotting. (B) Sym1 complexes were isolated by IgG 
chromatography from SYM1Prot.A mitochondria. After elution by TEV-protease, complexes were subjected 
to BN-PAGE and Coomassie staining. 
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The assembly of the Sym1c120/c220 complexes were resolved in detail by BN-PAGE analysis 

of the newly assembled complexes after in vitro import (Fig 3.21B). After short incubation 

times and dependent on the membrane potential (∆ψ), Sym1 accumulated at a protease 

protected location (Fig 3.21B lane 2 and 3). Because of the co-migration with the in vitro 

synthesized protein (lysate) at about 65 kDa, it was speculated that this band represents 

monomeric Sym1 (Sym1m). Additionally, only after short incubation times, high molecular 

weight complexes of 420 kDa, most likely transient assembly intermediates (Sym1AI), were 

detected. After longer incubation (Fig 3.21B lanes 4 - 6), Sym1 assembled to the respective 

mature Sym1c120 and Sym1c220 complexes. Sym1m and the assembly intermediate complexes 

(Sym1AI) were not longer detected. Although there was no assembly to the Sym1c120 and 

Sym1c220 complexes without a membrane potential, minute amounts of Sym1m and a complex 

of about 90 kDa were detected (Fig 3.21B lane 7), which could represent a stage III import 

intermediate (Sym1SIII) that accumulates during outer membrane translocation at the TOM in 

the absence of a membrane potential as also shown for AAC (Ryan et al., 1999).  

Additionally, antibody shift experiments, revealed the specificity of the imported complexes 

(Fig 3.21C). 

 
Figure 3.21 Assembly of Sym1 complexes 
(A and B) [35S]Sym1 was in vitro imported into isolated yeast mitochondria for indicated time points in 
presence or absence of a membrane potential (∆ψ) followed by proteinase K (Prot.K) treatment and SDS-
PAGE (A) or BN-PAGE (B) analysis. In (B) a lysate sample was used as a marker for monomeric Sym1 
(Sym1m). Sym1c120/Sym1c220, Sym1 complexes of about 120/220 kDa; Sym1AI, assembly intermediate; 
Sym1SIII, stage III intermediate. (C) After in vitro import of Sym1 and osmotic swelling of the outer 
mitochondrial membrane, indicated antibodies were added to the mitoplasts and samples were analyzed 
by BN-PAGE and digital autoradiography. 
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Taken together, it could be shown, that Sym1 imports into mitochondria in a membrane 

potential dependent manner, and subsequently assembles into high molecular complexes.  

3.2.2.3. Sym1 assembly is not dependent on the TIM22-translocase 

Polytopic inner membrane proteins, that lack a cleavable presequence, including the 

metabolite carriers, are typically imported via the TIM22 translocase (Chacinska et al., 2009). 

Therefore it was speculated, that Sym1 is also a substrate of TIM22. To prove this 

hypothesis, the import and assembly was analyzed in mutant mitochondria, which have a 

temperature dependent defect of subunits of TIM22 (Gebert et al., 2008; Wagner et al., 

2008).  

In wild-type mitochondria, AAC, a well characterized TIM22 substrate, assembles into the 

mature dimer in the presence of a membrane potential (Fig. 3.22A lanes 9-12). However, 

mutations affecting Tim54 (Wagner et al., 2008), a core subunit of the TIM22 translocase 

lead to drastically reduced import and assembly of AAC, (Fig. 3.22A lanes 13-15). In 

contrast to that, the import and assembly of Sym1 was unaltered by mutations affecting 

Tim54 (Fig 3.22A lanes 1-8). This finding was verified in mitochondria isolated from  

tim12-4 cells, containing temperature sensitive Tim12, a peripheral subunit of TIM22 (Gebert 

et al., 2008): Although the assembly of AAC was impaired, Sym1 assembly was not reduced 

(Fig 3.22B). 

Hence, Sym1 import is not affected by the mutations of the TIM22 translocase. Therefore, it 

was concluded that Sym1 is imported independent of TIM22 via an alternative import 

mechanism. 

3.2.2.4. Sym1 assembly is dependent on functional TIM23-translocase 

About 70% of the mitochondrial matrix/inner membrane proteins are substrates of TIM23 

and contain an N-terminal presequence as a targeting signal (van der Laan et al., 2010; 

Vögtle et al., 2009). However, TIM23 also translocates proteins lacking an N-terminal 

presequence and containing internal targeting signals such as Bcs1 (Fölsch et al., 1996). 

Since it could be shown, that Sym1 is imported independent of TIM22, an import mechanism 

via TIM23 was considered. 
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To analyze if Sym1 import depends on TIM23, in vitro import/assembly assays were 

performed into mitochondria with defective TIM23. Surprisingly, Sym1 assembled less 

efficient and with delayed kinetics in tim50-1 mitochondria (Chacinska et al., 2005), which 

contain temperature sensitive Tim50, the receptor of TIM23 (Fig 3.23A). In contrast, AAC 

assembly was unaffected in these mitochondria compared to the wild-type. This finding was 

confirmed in tim23↓ mitochondria (Schulz et al., 2011), which were depleted of Tim23, the 

central subunit of TIM23 (Fig 3.23B). Although AAC import and assembly were comparable 

in wild-type and tim23↓ mitochondria, Sym1 assembly was strongly reduced when Tim23 

 
Figure 3.22 Sym1 assembly in TIM22 mutant mitochondria 
After 15 min heat shock at 37 °C of wild-type and tim54-11 (A) or tim12-4 (B) mitochondria, [35S]labeled 
Sym1 or AAC was in vitro imported for indicated times in presence or absence of membrane potential 
(∆ψ) prior to treatment with 40 µg/ml proteinase K. Sym1 complexes (Sym1c120, Sym1c220) as well as 
AAC dimers (AAC2) were detected after BN-PAGE and digital autoradiography. 
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was depleted. Interestingly in tim23↓ mitochondria Sym1 accumulated in a complex of 420 

kDa, most likely the assembly intermediate (Sym1AI), previously seen after short import 

times in wild-type mitochondria (Fig 3.21B). This import intermediate accumulated due to 

defective TIM23 translocase and most likely represents Sym1 bound to TOM. 

Taken together, it was concluded that although Sym1 lacks a classical N-terminal 

presequence, its import and assembly depend on the TIM23 translocase. 

 

 
Figure 3.23 Sym1 assembly in TIM23 mutant mitochondria 
Assembly analysis of [35S]Sym1 in wild-type and tim50-1 mitochondria after heat shock for 15 min at 
37 °C (A) or in wild-type and tim23↓ mitochondria (B). Experimental setup and conditions as described 
in (Fig 3.22). Complexes formed by Sym1 (Sym1c120, Sym1c220, Sym1AI) and AAC (AAC2) are indicated. 
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3.2.2.5. The influence of small Tim proteins on Sym1 assembly 

During mitochondrial import, so called small Tim proteins, shuttle hydrophobic cargo 

proteins from the outer membrane translocase to the inner membrane translocases (Petrakis et 

al., 2009). To address the influence of small Tim proteins on Sym1 biogenesis, in vitro 

import analysis was performed in mitochondria, that lack or have mutant small Tim proteins. 

Mitochondria, with temperature dependent defects of Tim10 (Truscott et al., 2002) showed 

 
Figure 3.24 Sym1 assembly in small Tim mutant mitochondria 
(A) Wild-type and tim10-2 mitochondria were heat shocked at 37 °C for 15 min. Subsequently, in vitro 
import at 25 °C for indicated times with or without a membrane potential (∆ψ) and proteinase K 
(40 µg/ml) treatment was performed. Samples were subjected to BN-PAGE analysis and digital 
autoradiography. Sym1c120/Sym1c220, Sym1 complexes; AAC2, mature AAC-dimer. (B) Same 
experimental setup as described in (A) with wild-type and tim8∆tim13∆ mitochondria, the heat shock was 
omitted. 
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strongly reduced AAC assembly, whereas the assembly of Sym1 was unaffected, compared 

to wild-type mitochondria (Fig 3.24A). Moreover, mitochondria lacking Tim8 and Tim13, 

small Tim proteins involved in the import of Tim23 (Leuenberger et al., 1999; Truscott et al., 

2002) did not show any import defects for AAC. Sym1 also assembled into the mature 

complexes in tim8∆tim13∆-mitochondria (Fig 3.24B). Therefore, it was concluded, that the 

small Tim proteins Tim8, Tim10 and Tim13 are not essential for Sym1 import and assembly. 

However, the influence of so far uncharacterized inter membrane space chaperones cannot be 

excluded. 

3.2.2.6. Mapping Sym1 domains, necessary for its import and assembly 

Sym1 does not contain a cleavable N-terminal presequence that targets the protein to 

mitochondria (see section 3.2.2.2). To map mitochondrial targeting signals of Sym1, 

truncation constructs of Sym1 were in vitro synthesized and [35S]labeled (Fig 3.25A). 

Subsequently, the import competence of these constructs was analyzed by in vitro import and 

assembly into isolated mitochondria. Interestingly, the constructs lacking the N- or C-

terminal inter membrane space domains were still imported in mitochondria and even 

assembled into high molecular weight complexes (Fig 3.25B lanes 2 and 6). However, these 

 
Figure 3.25 Assembly of truncated Sym1 proteins 
(A) Schematic representation of Sym1 truncation constructs, used for in vitro import analyses. FL, full 
length; ∆N, N-terminal truncation; ∆C, C-terminal truncation; TM, transmembrane span. (B) In vitro 
import of [35S]Sym1 truncation-constructs as depicted in (A). Samples were treated with 40 µg/ml 
proteinase K and analyzed by BN-PAGE and digital autoradiography. Sym1 complexes (Sym1c120, 
Sym1c220) and monomeric Sym1 (Sym1m) are indicated for the full length construct. 
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complexes appear smaller in size, compared to the complexes of full length Sym1 (Fig 3.25B 

lane 1). This size shift could be due to the truncation of Sym1 or lost protein interactions.  

More extensive N-terminal truncations, additionally removing the first transmembrane span 

and the first matrix loop, lead to assembly defects of Sym1 (Fig 3.25B lanes 3 and 4). The 

import of these constructs however, was not affected since monomeric Sym1 (Sym1m) still 

accumulated. In contrast, a Sym1 truncation, also lacking the second transmembrane span, 

showed only minor import efficiency (Fig 3.25B lane 5).  

Similar to these findings, C-terminal truncations of Sym1 revealed, that the 4th 

transmembrane span is required for assembly but not for import (Fig 3.25B lane 7), whereas 

further truncation of the second matrix loop drastically reduced import efficiency. 

Hence, it can be concluded that mitochondrial targeting signals are distributed at different 

sites of Sym1. Furthermore, it could be shown, that the inter membrane space termini are 

dispensable, the terminal transmembrane spans however, are required for assembly of Sym1.  

3.2.3. Modeling MPV17 patient mutations using SYM1 

3.2.3.1. Mutant Sym1 proteins are stable in mitochondria 

The involvement of MPV17 in the Mitochondrial DNA Depletion Syndrome was first shown 

by identification of patient missense mutations leading to R50Q or N166K exchanges in 

MPV17 (Spinazzola et al., 2006). 

To study the effect of these point mutations, corresponding mutations in SYM1 were used as a 

model. Although no respiratory phenotype in sym1∆ cells could be observed (Fig 3.18A), a 

deleterious effect of the mutant Sym1 variants could not be excluded. Therefore, in this study 

these variants of Sym1 were expressed from a plasmid in sym1∆ cells and growth tests were 

performed. In contrast to previous studies (Spinazzola et al., 2006), these cells did not show 

growth defects on ethanol containing media at heat shock conditions (Fig 3.26A). 

However it was speculated, that mutations could lead to rapid turnover of Sym1R51Q or 

Sym1N172K
, as previously speculated for MPV17R50Q (Spinazzola et al., 2006) and shown for 

Shy1G137E and Shy1G137R in this study. To analyze this hypothesis, mitochondria from cells, 

expressing the wild-type or mutant variants of Sym1 were isolated and Sym1 levels were 

compared (Fig 3.26B). It should be noted, that the mutations, analyzed in this study, do not 

alter the recognition site of the Sym1-specific antibody, as it is directed against the C-
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terminus. Interestingly, the abundance of the mutant Sym1 variants was indistinguishable 

from Sym1WT. Hence, the mutant forms of Sym1 were stable after mitochondrial import. 

3.2.3.2. Sym1R51Q and Sym1N172K assembles into high molecular complexes 

Since the stability of Sym1R51Q and Sym1N172K was not affected by the mutations, it was 

asked if these proteins form high molecular complexes or if complex formation is impaired 

due to the amino acid exchanges. 

Therefore, membrane complexes of sym1R51Q, sym1N172K and wild-type mitochondria were 

analyzed by BN-PAGE and Western blot analysis. Since the Sym1 specific antibody did not 

recognize complexes when the BN-gel was directly analyzed by Western blotting (see section 

3.2.2.1), subunits were separated by a second dimension SDS-PAGE prior to Western blot 

analysis (Fig 3.27). Interestingly, the mutant variants of Sym1 could be detected in high 

molecular weight complexes of identical size as Sym1WT. This indicates that complex 

formation and protein interactions are not impaired by the mutations in SYM1 affecting R51 

and N172. 

 

 
Figure 3.26 Mimicking patient mutations in yeast Sym1 
(A) Growth test of cells, lacking mitochondrial DNA (rho0) and containing an empty vector, or sym1∆ 
cells expressing Sym1WT, Sym1R51Q or Sym1N172K from a plasmid. Serial dilutions of cells were spotted 
on selective media plates, containing glucose (SD-ura), glycerol (SG-ura) or ethanol (SE-ura) as a carbon 
source and incubated at indicated temperatures. (B) 15 µg isolated mitochondria from sym1∆ cells, 
expressing Sym1WT, Sym1R51Q or Sym1N172K from a vector, were analyzed by SDS-PAGE and Western 
blotting, using the indicated antibodies. 
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Figure 3.27 Complex formation of mutant Sym1 proteins 
Mitochondria, from sym1∆ cells, expressing the indicated Sym1 variants were solubilized in 1% 
digitonin. Proteins were separated by 2-dimensional BN-PAGE/SDS-PAGE and analyzed by Western 
blotting, using antibodies specific to the C-terminus of Sym1. 
 

3.2.3.3. Assembly of mutant Sym1 proteins 

Mutations affecting Sym1 did not impair the assembly of Sym1 into the respective mature 

complexes (Sym1c120/c220). The kinetics of complex-assembly of Sym1R51Q and Sym1N172K 

was analyzed by in vitro import analysis of [35S]labeled Sym1R51Q and Sym1N172K in 

comparison to the wild-type protein. It could be shown that the mutant variants assembled in 

a comparable manner as Sym1WT (Fig 3.28). Hence, complex formation and assembly 

kinetics are unaffected by an R51Q or N172K exchange in Sym1. 
 
 

 
Figure 3.28 Assembly kinetics of mutant Sym1 
(A) [35S]labeled Sym1WT, Sym1R51Q or Sym1N172K was in vitro imported into wild-type mitochondria as 
indicated. Monomeric Sym1 (Sym1m) and Sym1 complexes (Sym1c120/Sym1c220) were detected after BN-
PAGE and digital autoradiography. ∆ψ, membrane potential. 
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3.2.4. Sym1 forms a pore in the mitochondrial inner membrane 

3.2.4.1. Purification of Sym1 from yeast mitochondria 

To date there is no experimental data on the molecular function of Sym1/MPV17. However, 

it was speculated previously that PMP22, the peroxisomal homolog of Sym1/MPV17, could 

form a nonselective pore in the peroxisomal membrane (Van Veldhoven et al., 1987). This 

was recently verified by electrophysiological characterization of mouse PMP22 (Rokka et al., 

2009). Therefore, it was hypothesized that Sym1 could form a pore in the mitochondrial inner 

membrane. To analyze this, Sym1 was purified from yeast mitochondria for subsequent 

electrophysiological characterization, in this study. 

A combination of Ni2+-affinity chromatography, IgG-chromatography and subsequent 

specific elution by TEV-protease cleavage of the ProteinA tag was established to purify 

Sym1 from mitochondria of cells expressing Sym1Prot.A (Fig 3.29A and B). As a control for 

contaminations, the purification was performed in wild-type mitochondria in parallel. 

To validate the purification, the final elution fraction was analyzed by SDS-PAGE and 

subsequent Coomassie staining. Only one band was present, indicating the purity of the 

isolation (Fig 3.29C). Additionally, the identity of the purified Sym1 was verified by mass 

spectrometry (not shown). 

 

 
Figure 3.29 Purification of Sym1 for electrophysiological characterization 
(A) Scheme of the purification strategy for subsequent electrophysiology. (B) Samples of the purification, 
as depicted in (A) were separated by SDS-PAGE and analyzed by Western blotting. UB, unbound; E, 
eluate. (C) The eluate of the IgG chromatography was analyzed by SDS-PAGE and Coomassie staining 
to assess purity of the preparation. 
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3.2.4.2. Electrophysiological characterization of Sym1 

Sym1, purified from yeast mitochondria, was electrophysiologically characterized in 

collaboration with Dr. M. Meinecke and Dr. V. Krüger (AG Wagner, Universität Osnabrück). 

Purified Sym1 was incorporated into a planar lipid bilayer and current recordings were 

performed (Fig 3.30). Remarkably a pore forming activity with a main conductance state of 

450 pS at 250 mM potassium chloride, 20 mM MOPS/Tris pH 7.0 could be detected. This 

was independent of the polarization of the applied holding potential. The conductance state 

corresponds to a pore size of about 1.6 nm. Interestingly, voltage increase led to transient 

reduction of conductance. These gating events of the channel indicate a dynamic activity of 

the pore at high membrane potentials. It should also be noted that the eluate from the 

purification of the strain without a tagged protein (wild-type strain) was used as a negative 

control and showed no channel activity. 

Moreover, a reverse potential of 48 mV was determined (asymmetrical buffer conditions: 

20 mM potassium chloride, 20 mM MOPS/Tris, pH 7.0 at trans-side and 250 mM potassium 

chloride, 20 mM MOPS/Tris, pH 7.0 at cis-side), indicating selectivity for cations of the 

channel (Fig 3.31A). Furthermore, the specificity of the channel activity was verified by 

addition of Sym1 specific antibodies, which reduced the conductance of the channel (Fig 

3.31B).  

Taken together, it can be concluded, that Sym1 forms a channel in the mitochondrial inner 

membrane, which favors cations and shows dynamic gating behavior. 
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Figure 3.30 Sym1 shows channel activity 
Sym1 was reconstituted in liposomes and incorporated in a planar lipid bilayer. Subsequently, current 
recordings at different voltages and polarizations of the bilayer (as indicated) were performed using 
250 mM potassium chloride, 20 mM MOPS/Tris pH 7.0 at both sides of the bilayer. 
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Figure 3.31 Cation selectivity and specificity of the Sym1-pore 
(A) Sym1 was incorporated in a planar lipid bilayer. Using an asymmetric buffer system (trans-side: 
20 mM potassium chloride, 20 mM MOPS/Tris, pH 7.0; cis-side: 250 mM potassium chloride, 20 mM 
MOPS/Tris, pH 7.0), the current/voltage relationship was recorded to determine the reverse potential 
(Urev) of the Sym1-pore. (B) Current/voltage relationship of Sym1 before and after addition of Sym1 
specific antibodies at symmetric buffer conditions (250 mM potassium chloride, 20 mM MOPS/Tris pH 
7.0). 
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4. Discussion 
In this study, the yeast S. cerevisiae was used as a model to unravel the molecular pathology 

of certain patient point mutations, affecting nuclear genes that encode mitochondrial proteins. 

Although a lot is known about the molecular pathology of mitochondrial DNA mutations, 

nuclear gene mutations leading to mitochondrial dysfunction are less understood (Finsterer, 

2004). Often, the molecular function of proteins, involved in mitochondrial diseases, is still 

unclear and functional characterization of these proteins will also help to shed light in their 

dysfunction. 

SURF1 and MPV17 are proteins of ill-defined function involved in the development of 

severe mitochondrial diseases (see section 1.4). In this study, the molecular pathology of 

three point mutations in SURF1, identified in Leigh Syndrome patients was analyzed. 

Furthermore, the molecular function and biogenesis of Sym1, the yeast homolog of MPV17, 

which is involved in the Mitochondrial DNA Depletion Syndrome, was characterized. 

4.1. Molecular pathology of SURF1 point mutations 

Mutations in SURF1 are the main cause of Leigh Syndrome with isolated cytochrome c 

oxidase deficiency. Although most patients have deletions or nonsense mutations in SURF1 

(Pequignot et al., 2001), few missense mutations were described. Mutations affecting the 

amino acids G124 and Y274 of SURF1 were the first missense mutations identified in patients 

(Coenen et al., 1999; Poyau et al., 2000; Teraoka et al., 1999). Interestingly, these amino 

acids are highly conserved, which indicates their functional importance. Therefore, analysis 

of these mutations will not only help to understand the pathogenesis of the Leigh Syndrome, 

it will also improve our knowledge of the molecular function of SURF1 in the assembly 

process of the cytochrome c oxidase. 

As models for the SURF1G124E, SURF1G124R and SURF1Y274D mutations, the corresponding 

yeast mutations in SHY1 (shy1G137E, shy1G137R, shy1Y344D) were analyzed in this study. 

Previous studies (Bestwick et al., 2010a) could only identify respiratory defects in shy1G137E 

cells, whereas shy1Y344D cells showed no respiratory deficiency. Here, using a more extensive 

screening method for respiratory growth, it could be shown, that shy1Y344D cells have a cold 

sensitive respiratory defect. Furthermore, the phenotype of shy1G137E cells was verified and 

the respiratory deficiency of shy1G137R cells was shown. Due to the respiratory phenotype, 
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these mutations can be well studied in yeast. Interestingly, the different temperature 

dependency of the phenotypes may already be a hint for different natures of protein 

dysfunction. 

Different modes of molecular pathology due to mutations in nuclear-encoded mitochondrial 

proteins are feasible: First, point mutations can result in nonfunctional proteins as reported 

for the mitochondrial DNA polymerase (Ponamarev et al., 2002). In this case a Y955C 

exchange in the active center of pol γ leads to defective DNA synthesis and disease. 

Furthermore point mutations can lead to mistargeting of the protein, as reported for the 

V223D, V224R and I226P mutations in tafazzin (Claypool et al., 2006), a protein involved in 

Barth Syndrome (Barth et al., 2004). Another example for mistargeting is the R10P exchange 

in the presequence of the PDH E1α precursor, identified in patients with pyruvate 

dehydrogenase deficiency (Takakubo et al., 1995). 

Using in vitro import and protease protection analysis of Shy1 and SURF1 precursors, it 

could be shown that the mitochondrial import and maturation is not affected by the mutations 

analyzed in this study. The reduced abundance of Shy1 with mutations in G137, observed in 

this study and reported previously (Bestwick et al., 2010a) can therefore not be explained by 

an impaired mitochondrial import efficiency. However, it could be shown that in contrast to 

Shy1Y344D (SURF1Y274D in human), which remained stable after import, mutations affecting 

G137 in Shy1 (G124 in SURF1) lead to rapid degradation of the protein after mitochondrial 

translocation. This finding also explains the shy1G137E phenotype, which resembles a deletion 

of SHY1 in respect to respiratory deficiency and heme insertion in Cox1 (Bestwick et al., 

2010a). Moreover, it explains the pathogenesis of patients with SURF1G124E/R mutations, 

which is similar to deletions or nonsense mutations of SURF1 (Coenen et al., 1999; Poyau et 

al., 2000). 

In contrast, the mutation affecting Y344 of Shy1 (Y274 of SURF1) did not reduce stability of 

the encoded protein after mitochondrial import. Additionally it was shown that the membrane 

topology of Shy1 was not affected by an Y344D exchange. Therefore, altered mitochondrial 

translocation, maturation, topology or stability of Shy1Y344D/SURF1Y274D does not account 

for the respiratory phenotype of the yeast cells and the development of Leigh Syndrome in 

affected patients. Instead, impaired function of Shy1Y344D/SURF1Y274D could be shown. 

The function of Shy1/SURF1 in the assembly process of the cytochrome c oxidase remains 

still enigmatic. Yeast mitochondria lacking Shy1 show an accumulation of cytochrome c 
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oxidase assembly intermediates, containing Cox1, Coa1, Coa3 and Cox14 (Barrientos et al., 

2002; Mick et al., 2010; Mick et al., 2007; Pierrel et al., 2007). These assembly intermediates 

recruit Mss51, the translational activator of Cox1 and thereby shut down further Cox1 

expression. The negative feed back regulation of Cox1 translation prevents accumulation of 

pro-oxidant assembly intermediates of the cytochrome c oxidase in the mitochondrial inner 

membrane that are believed to generate reactive oxygen species (Khalimonchuk et al., 2007). 

Interestingly, a Y344D exchange in Shy1 does not shut down Cox1 expression. Furthermore, 

compared to shy1∆, in shy1Y344D mitochondria Cox1 does not accumulate in Mss51 

containing early assembly intermediates of the cytochrome c oxidase. Moreover, analyses by 

Bestwick et al. (2010a) indicate that Shy1Y344D allows heme a insertion in Cox1 which occurs 

downstream of negative feedback regulation of Cox1 expression (Khalimonchuk et al., 2010; 

Khalimonchuk et al., 2007). Nevertheless, it was shown that in shy1Y344D mitochondria less 

mature cytochrome c oxidase can assemble. In fact, at non-permissive temperature, mature 

cytochrome c oxidase is not detectable in shy1Y344D mitochondria. Furthermore, when 

overexpressed in wild-type background, Shy1Y344D shows a dominant negative effect on 

Cox1 stability. This indicates that Shy1Y344D has a deleterious effect and generates a block of 

cytochrome c oxidase assembly. 

Taken together, in shy1Y344D mitochondria, Cox1 progresses through early assembly steps 

with translational feed back regulation, subsequently heme a is inserted but further assembly 

to mature cytochrome c oxidase is blocked due to the Y344D exchange in Shy1 and Cox1 is 

degraded by the mitochondrial quality control system. Therefore it has to be concluded that 

Shy1Y344D (or SURF1Y274D) is a partially nonfunctional protein (also see section 4.4), which, 

in respect to pathogenesis and phenotype of this mutation, is clearly different from mutations 

affecting G137 of Shy1 (G124 of SURF1). 

In comparison, mutations affecting G137 of Shy1 (G124 of SURF1) lead to degradation 

whereas mutations affecting Y344 of Shy1 (Y274 of SURF1) lead to impaired function of the 

protein. Therefore the phenotype or molecular pathology of the point mutations in SHY1 or 

SURF1, analyzed in this study, is caused by different mechanisms. As a consequence also 

differences in potential upcoming therapies for affected patients have to be considered. For 

instance a gene replacement therapy might by fruitful for patients carrying deletions or 

mutations in G124 of SURF1 but might be less efficient for patients with mutations affecting 

Y274 of SURF1. 
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4.2. SURF1Y274D reveals novel cytochrome c oxidase assembly 

intermediates 

The assembly of the cytochrome c oxidase from individual subunits of different genetic 

origin is a highly complex process, that involves more than 20 additional factors and is 

believed to function in an assembly-line like manner (Herrmann and Funes, 2005; Mick et al., 

2011; Nijtmans et al., 1998). In yeast as a model system to study mitochondrial biogenesis, 

the cytochrome c oxidase assembly has been studied extensively. The earliest assembly 

intermediates shown, are the Cox1-containing translational feed back regulation complexes, 

mentioned previously. In addition, also downstream assembly intermediates such as the 

Cox1-Cox3-Cox5-Cox6 complex in cells lacking Cox2 have been described (Horan et al., 

2005). Although assembly intermediates of the cytochrome c oxidase were also shown in 

human mitochondria (Oswald et al., 2009; Stiburek et al., 2005; Weraarpachai et al., 2009; 

Williams et al., 2004), their nature and constituents are less understood. 

Interestingly, the early steps of cytochrome c oxidase assembly are apparently not conserved 

in yeast and mammals and no robust mammalian homologs of yeast factors involved in 

expression of mitochondria-encoded subunits of the cytochrome c oxidase can be found. This 

might be due to the fact that the mitochondrial mRNA structure differs significantly between 

yeast and mammals. Yeast mitochondrial mRNAs contain untranslated regions, which are 

bound by translational activators. In contrast, human mitochondrial mRNAs lack extensive 

untranslated regions. Interestingly, SURF1 and factors, required for cofactor insertion 

(Cox10, Cox11), might be the earliest assembly factors conserved in yeast and mammals. 

Due to the differences in early steps of Cox1 maturation and cytochrome c oxidase assembly 

between yeast and mammals, to date little is known about these steps in mammalian 

mitochondria. In this study mild solubilization conditions (digitonin) were used to resolve 

SURF1 containing assembly intermediates of the cytochrome c oxidase as shown for yeast 

Shy1 (Mick et al., 2007). Although COX1 and SURF1 containing complexes could be 

detected at about 200 kDa, they apparently did not co-migrate. Using in vitro assembly 

analysis of SURF1 into isolated mitochondria however, it could be shown, that the SURF1 

complex of about 200 kDa depends on mitochondrial translation. Therefore, it was speculated 

that this complex contains mitochondrial translation products and represents a novel 

assembly intermediate of the cytochrome c oxidase. Interestingly, this 200 kDa complex of 
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SURF1 is strongly increased when SURF1Y274 is assembled in vitro, whereas the other 

SURF1 complexes are missing. The preferential accumulation of SURF1Y274D to this bona 

fide assembly intermediate of the cytochrome c oxidase indicates an allele specific 

accumulation of a “dead-end” product of cytochrome c oxidase assembly or a reduced off-

rate of SURF1Y274D. 

Eventually, SURF1Y274D blocks the cytochrome c oxidase assembly at a distinct step. 

Subsequently, these assembly intermediates, not able to progress this bottleneck are degraded 

in patients, which would explain their lack of functional cytochrome c oxidase. On the other 

hand, the accumulation of so far uncharacterized assembly intermediates could be an ideal 

tool for biochemical characterization of these intermediates and bring more insights into the 

assembly process of the mammalian cytochrome c oxidase. 

4.3. Association of SURF1 with mature cytochrome c oxidase 

The function of SURF1/Shy1 remains not fully understood. However, the association of Shy1 

to assembly intermediates of the cytochrome c oxidase, shown in this study and also reported 

previously (Mick et al., 2007; Pierrel et al., 2007) indicates a chaperone like function of 

SURF1/Shy1. This study provides evidence for a chaperone like function also for SURF1 

since it associates to potential assembly intermediates of the mammalian cytochrome c 

oxidase. 

Interestingly it was shown in previous studies, that Shy1 also associates to mature 

cytochrome c oxidase (Mick et al., 2007). In this study, using in vitro assembly analysis and 

mild solubilization conditions, it could be shown that also SURF1 interacts with mature 

cytochrome c oxidase in mammalian mitochondria. This finding is of especial interest, 

because it confirms the interaction of Shy1 with mature yeast cytochrome c oxidase and it 

also raises the question why a potential chaperone should interact with a mature complex. To 

date the function of the association of SURF1/Shy1 to mature complexes remains ill-defined. 

However, it could be speculated, that SURF1/Shy1 is involved in repair processes of the 

mature cytochrome c oxidase. Such repair mechanisms of fully assembled complexes have 

been reported previously for the photosystem II, which similar to the cytochrome c oxidase is 

a multi subunit complex involved in electron transport (Dobakova et al., 2007; Nowaczyk et 

al., 2006). 
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4.4. Shy1Y344D uncovers dual functionality of Shy1 

Shy1 couples Cox1 expression to cytochrome c oxidase assembly in yeast mitochondria 

(Barrientos et al., 2002; Mick et al., 2007). Although Cox1 translational regulation in yeast 

mitochondria has been studied (Barrientos et al., 2004; Mick et al., 2010; Pierrel et al., 2007), 

the mechanism of coupling Cox1 translation to cytochrome c oxidase assembly by Shy1 is 

less understood.  

Interestingly, shy1Y344D mitochondria showed wild-type-like expression of Cox1 but lack of 

cytochrome c oxidase assembly. In this case Cox1 translational control is uncoupled from 

cytochrome c oxidase assembly. Shy1Y344D releases Cox1 from translational feed back 

regulation complexes but does not allow further cytochrome c oxidase assembly. Therefore, 

analysis of the shy1Y344D mutation revealed dual functionality of Shy1.  

Moreover, the shy1Y344D allele represents an ideal tool to study the early and late steps of 

Shy1 dependent Cox1 maturation independent of each other. This was so far not possible, 

since lack of Shy1 not only leads to defective cytochrome c oxidase assembly but also shuts 

down Cox1 expression.  

Interestingly, there are suppressor mutants of a SHY1–deletion (Barrientos et al., 2004; 

Bestwick et al., 2010a). These suppressors lead to overexpression of Cox1. The role of these 

suppressors in later steps of cytochrome c oxidase assembly however, is unclear. In further 

studies, analysis of these suppressors in shy1Y344D cells might help to understand and dissect 

the dual functionality of Shy1 in more detail. 

4.5. Degradation of assembly intermediates of the cytochrome 

c oxidase 

The biogenesis of the cytochrome c oxidase has to be highly regulated to prevent 

accumulation of cytotoxic assembly intermediates, prone to production of reactive oxygen 

species (Khalimonchuk et al., 2007). Nevertheless, due to potential mutations affecting 

mitochondrial proteins or misfolding, an accumulation of such assembly intermediates cannot 

be excluded. 

The Y274D exchange in SURF1 has been shown to alter the assembly process of the 

cytochrome c oxidase, leading to an accumulation of potentially harmful cytochrome c 

oxidase assembly intermediates. In fact, it has been shown that the corresponding yeast 



4. Discussion 

90 

Shy1Y344D allows Cox1 conversion to its pro-oxidant state (Bestwick et al., 2010a). 

Moreover, the high somatic mutation rate of mitochondrial DNA (Brown et al., 1979) causes 

deleterious mutations affecting the mitochondria-encoded core subunits of the cytochrome c 

oxidase. Therefore, not only a tight regulation of the biogenesis of the cytochrome c oxidase, 

but also a repair mechanism or degradation system for impaired assembly intermediates is 

required. Interestingly, in this study it was shown that Cox1 is rapidly degraded when 

cytochrome c oxidase assembly was impaired at later steps due to the shy1Y344D mutation. 

Moreover, it was shown that Shy1Y344D, when overexpressed in the wild-type background, 

has a dominant negative effect on Cox1 stability, although no phenotype could be observed. 

Therefore, one could speculate, that in this case the accumulation of cytochrome c oxidase 

assembly intermediates triggers the mitochondrial degradation system, which eliminates 

deleterious assembly intermediates and restores wild-type like growth. Interestingly, a 

heterozygous SURF1Y274D/SURF1WT state does also not lead to Leigh Syndrome (Teraoka et 

al., 1999), again indicating an involvement of repair systems. 

The described assembly defects and degradation of Cox1 due to the shy1Y344D (SURF1Y274D) 

mutation make this mutation an ideal tool to analyze these degradation processes in more 

detail in upcoming studies. 

To date little is known about specific mitochondrial repair or degradation systems. It was 

reported that the m-AAA-protease (Arlt et al., 1998), as well as Oma1 (Bestwick et al., 

2010b; Kaser et al., 2003), mitochondrial inner membrane proteases, are involved in Cox1 

processing and degradation. Moreover, mitochondria can be degraded by autophagy. This 

autophagic degradation of mitochondria (mitophagy) could be involved in elimination of 

mitochondria that accumulate cytochrome c oxidase assembly intermediates, which are 

potentially cytotoxic. 

In this study, the influence of Uth1 on mitochondrial degradation was analyzed. However, in 

contrast to previous studies (Kissová et al., 2004), a resistance of uth1∆ cells to rapamycin 

could not be observed. Hence, an involvement of Uth1 in autophagic processes could not be 

validated. Moreover, in vitro import analyses indicated a localization of Uth1 to the 

mitochondrial inner membrane rather than to the outer membrane as reported previously 

(Velours et al., 2002). Taken together this study provides evidence that Uth1 is not capable to 

function as a receptor for mitophagy in the mitochondrial outer membrane as previously 

speculated (Camougrand et al., 2003). The analysis of mechanisms that lead to degradation of 
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damaged mitochondria is an interesting area of further research. It will also help to 

understand the response of cells to deleterious cytochrome c oxidase assembly intermediates 

and accumulation of reactive oxygen species. 

4.6. Sym1 is a mitochondrial member of a conserved protein 

family 

In this study, Sym1 was used as a model to characterize the MPV17/Sym1 protein family, 

which is involved in the development of the Mitochondrial DNA Depletion Syndrome 

(Spinazzola et al., 2006). Interestingly, the MPV17 protein, first identified in mouse (Weiher 

et al., 1990), was initially found to be localized in peroxisomes (Zwacka et al., 1994). Later 

studies however, showed a mitochondrial localization of MPV17 (Spinazzola et al., 2006). In 

this study, it was confirmed that Sym1, the yeast MPV17 homolog, is exclusively located to 

mitochondria as previously reported (Trott and Morano, 2004). 

Moreover, the submitochondrial localization and topology of Sym1 was characterized in this 

study indicating that Sym1 is located to the mitochondrial inner membrane. Furthermore, 

using transmembrane span predictions and protease protection analyses it could be 

concluded, that the N- and C-terminus as well as a central loop is exposed to the 

mitochondrial inter membrane space and 2 loops are exposed to the matrix (N-out/C-out–

topology). Such a membrane integration has been proposed previously (Trott and Morano, 

2004), the orientation however remained unclear and has been predicted inverse in previous 

studies (Wong et al., 2007). 

The initial identification of MPV17 in mouse peroxisomes cannot be explained, however it 

should be noted, that also peroxisomal homologs of the MPV17/Sym1 family exist. These 

peroxisomal proteins, PMP22 in mammals and Yor292c in yeast, show sequence homology 

to Sym1/MPV17 and also have 4 predicted transmembrane spans. Interestingly a N-out/C-

out–topology of PMP22 could be shown by accessibility to aminopeptidase (Kaldi et al., 

1993). This indicates a conserved topology of peroxisomal and mitochondrial members of 

this protein family. Moreover, Sym1/MPV17 homologs were also found in woronin bodies, 

organelles of filamentous fungi that are derived from peroxisomes (Liu et al., 2008). 

Taken together, Sym1/MPV17 represent mitochondrial members of a large ubiquitous family 

of conserved proteins, present in different organelles. Although a functional conservation of 
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these proteins remains speculative, a better understanding of the function of Sym1/MPV17 

might also shed light in the molecular functions of the other family members. 

4.7. A controversy about the sym1∆ phenotype 

In contrast to previous studies (Dallabona et al., 2010; Spinazzola et al., 2006; Trott and 

Morano, 2004) no respiratory phenotype or sensitivity to ethanol was detected in sym1∆ cells 

in this study. All previously reported phenotypes on ethanol-containing media at elevated 

temperatures were observed in strains derived from the BY4741/BY4743 background 

(Brachmann et al., 1998). However, in this study YPH499 was used as a background 

(Sikorski and Hieter, 1989). 

Hence, it can be speculated that the different results are due to the use of other genetic 

backgrounds. This indicates that the suggested role of Sym1 in ethanol tolerance of yeast 

cells might be indirect. 

A loss of mitochondrial DNA, as seen in patients with MPV17 mutations, could lead to 

respiratory deficiency of sym1∆ cells. Interestingly, evidence for (Spinazzola et al., 2006) and 

against (Trott and Morano, 2004) increased loss of mitochondrial DNA in sym1∆ cells was 

reported. A loss of mitochondrial DNA however, would not account for the ethanol and 

temperature specificity of this phenotype. Furthermore, high copy suppressors of a SYM1 

deletion were reported, that increase protein kinase A activity (Trott and Morano, 2004). The 

activity of protein kinase A however, was not monitored in any of the studies. 

It was reported that the ethanol sensitivity of sym1∆ cells could be suppressed by addition of 

glucose (Trott and Morano, 2004). Therefore, a direct toxicity of ethanol can be excluded and 

the growth defect on ethanol containing plates at 37 °C of sym1∆ cells appears to be an 

indirect effect. This hypothesis is supported by a recent report (Dallabona et al., 2010) 

indicating that the sym1∆ phenotype on lactate, acetate and low-glucose plates is similar to 

the phenotype on ethanol plates. The same report suggests defective glycogen storage, 

mitochondrial morphology and reduced activity of succinate dehydrogenase in sym1∆ cells 

and therefore presents evidence for pleiotropic effects rather than for a specific phenotype of 

a SYM1 deletion. 

Similar to the sym1∆ phenotype that could not be reproduced in this study, also the kidney 

specific phenotype of Mpv17-/- mice (Weiher et al., 1990) was not reproducible as reported 
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by Spinazzola et al. (2006). Hence, an adaptation to the loss of MPV17/Sym1 is feasible but 

awaits further experimental evidence. 

4.8. Sym1 complexes in the mitochondrial inner membrane 

Mitochondrial proteins of the inner membrane often assemble to multimeric structures in 

order to form functional complexes. Well-studied examples are the respiratory chain 

complexes or the protein translocase complexes of the mitochondrial inner membrane. 

Although for Sym1 an assembly into multimeric complexes was hypothesized (Trott and 

Morano, 2004), no experimental data for a Sym1 complex has been reported so far. In this 

study, mild solubilization of native protein complexes was used to separate these complexes 

in a polyacrylamide gel. Using Western blot analysis of tagged Sym1, it could be shown that 

Sym1 assembles into complexes of about 120 and 220 kDa. Subsequently, these complexes 

could even be purified in a native state. Moreover, an in vitro assembly assay of Sym1 

complexes in yeast mitochondria could be established. All these experiments suggested the 

assembly of Sym1 into complexes of 120 and 220 kDa. The constituents of these complexes 

however remain unknown. In this regard, the isolation of these complexes, established in this 

study, might be an ideal tool to characterize their composition biochemically by mass 

spectrometry or Western blot analysis. The identification of interaction partners of Sym1 will 

not only reveal the structure and biogenesis of these complexes, it also will help to 

understand the physiological role and molecular function of the Sym1 complexes. 

Interestingly, two complexes, Sym1c120 and Sym1c220, could be resolved by BN-PAGE 

analysis in this study. It can be speculated that both complexes are functionally relevant and 

have two different physiological roles in the mitochondrial inner membrane. However, it is 

also feasible that the 120 kDa complex is either an assembly intermediate or a product of 

partial disassembly of the 220 kDa complex due to solubilization. 

For PMP22, the peroxisomal Sym1/MPV17 homolog, the formation of a homotrimeric 

structure was suggested (Rokka et al., 2009). Therefore, a homotrimeric structure might also 

be considered for Sym1/MPV17. In fact, since the potential monomeric Sym1 runs at about 

65 kDa in BN-PAGE analysis, the complexes at about 120 kDa and 220 kDa might represent 

dimers and trimers of Sym1, respectively. This speculation however, is not trivial to prove. 

Co-isolation of Sym1 proteins with different tags, or crosslinking approaches might be an 

option to study this in more detail in further analyses. 
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4.9. Sym1 as a model for the assembly of polytopic inner 

membrane proteins 

The import of nuclear-encoded proteins into mitochondria involves the translocases of the 

outer and inner mitochondrial membrane. Due to the diversity of membrane topologies and 

numbers of transmembrane segments of integral inner membrane proteins, multiple import 

pathways via TIM23 and TIM22 have evolved (see section 1.2.2). This raises the question 

how polytopic inner membrane proteins such as Sym1/MPV17 are translocated and inserted 

into the inner membrane. 

Although an N-terminal presequence was predicted in MPV17/Sym1 previously (Spinazzola 

et al., 2006), in this study it could be shown that Sym1 lacks an N-terminal presequence and 

rather contains internal targeting sequences. 

The establishment of an in vitro import and assembly assay allowed to resolve the assembly 

kinetics of Sym1. These revealed a rapid association of Sym1 to the respective complexes at 

120 and 220 kDa. Furthermore, transient assembly intermediates were detected, which were 

speculated to be monomeric Sym1 as well as Sym1 associated to the TOM complex. In 

addition a complex accumulated in the absence of the membrane potential. Most likely this 

complex is a stage III import intermediate, also observed when other polytopic inner 

membrane proteins such as AAC are imported (Ryan et al., 1999). 

Multispanning mitochondrial inner membrane proteins with internal targeting sequences, as 

the metabolite carriers, typically are transported via the TIM22 translocase (Becker et al., 

2009; Rehling et al., 2004). Therefore, in this study it was initially assumed that Sym1 could 

be a TIM22 substrate. Import analyses into different TIM22 mutant mitochondria however, 

revealed that Sym1 is transported in a TIM22 independent manner. In contrast, it was shown 

that Sym1 import and assembly is dependent on TIM23. This unexpected finding indicates 

that Sym1 translocation into the mitochondrial inner membrane functions in an 

unconventional manner. Proteins, such as Bcs1, Mdj2 and Pam18, contain an internal 

presequence-like domain C-terminal to a hydrophobic sequence (Fölsch et al., 1996; 

Mokranjac et al., 2003; Westermann and Neupert, 1997). These domains are believed to form 

a hairpin loop that acts like an amphiphatic presequence for TIM23 mediated translocation. 

The mechanism of translocation of such proteins however, remains poorly understood. If 

such a presequence-like internal targeting sequence is also present in Sym1 remains 
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speculative so far. Using truncation constructs of Sym1 for in vitro import experiments 

however, revealed that the targeting signal is located in the central part of Sym1. 

Taken together, Sym1 takes an unusual route of import into the mitochondrial inner 

membrane. Moreover, Sym1 represents a model for import of proteins with four 

transmembrane spans, only few of which have been characterized so far. Therefore, Sym1 is 

an ideal model to study alternative import mechanisms of four transmembrane span proteins 

in more detail. 

4.10. SYM1 models for patient MPV17 point mutations 

The Mitochondrial DNA Depletion Syndrome can be caused by mutations in MPV17 (El-

Hattab et al., 2010; Spinazzola et al., 2006; Wong et al., 2007). In this disease, tissue specific 

loss of mitochondrial DNA leads to mitochondrial dysfunction. The mechanisms, how 

MPV17 mutations lead to loss of mitochondrial DNA however, remain unclear since the 

physiological role and molecular function of MPV17 is so far unknown. 

In previous studies (Spinazzola et al., 2006) SYM1 has been used as a model to analyze point 

mutations in MPV17. There it was shown that SYM1 point mutations, corresponding to 

patient MPV17 mutations, lead to a phenotype similar to sym1∆ cells or at least retardation of 

growth. Moreover it was shown, that MPV17 expression at least partially complements a 

deletion of SYM1. 

Since the phenotype of sym1∆ cells reported previously (Trott and Morano, 2004) was not 

reproducible in this study (see section 4.7), and a dominant negative effect of SYM1 alleles, 

mimicking patient MPV17 mutations, could not be detected, phenotypic characterization of 

these mutations cannot be performed in this analysis. However, destabilization of Sym1R51Q 

or Sym1N172K, mimicking patient MPV17R50Q and MPV17N172K, as speculated (Spinazzola et 

al., 2006) could be excluded by steady state analysis. Furthermore, using in vitro import 

analysis of [35S]labeled Sym1 precursors, it could be shown that mutant Sym1R51Q and 

Sym1N172K is not only imported into mitochondria, it also assembles to the same complexes 

as Sym1WT. Therefore it can be concluded, that Sym1R51Q and Sym1N172, similar to Shy1Y344D 

is not affected by mistargeting or degradation. Instead, mutation of the amino acids R50 and 

N166 in MPV17 (R51 and N172 in Sym1) might lead to functional defects of the protein and 

subsequently to development of the Mitochondrial DNA Depletion Syndrome. 
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4.11. The channel activity of Sym1 and its implications for 

MDDS 

The function of Sym1/MPV17 in the mitochondrial inner membrane has been unknown so 

far. In contrast, the peroxisomal homolog PMP22 was shown to form a pore in the 

peroxisomal membrane (Rokka et al., 2009; Van Veldhoven et al., 1987).   

In the present study, Sym1, isolated from yeast mitochondria, was characterized 

electrophysiologically. These analyses revealed a channel activity of Sym1, indicating that 

Sym1 forms a pore in the mitochondrial inner membrane. Although Sym1 showed a channel 

activity at all holding potentials tested, at physiological mitochondrial membrane potentials, 

which vary from 130 – 180 mV (Chen, 1988; Hafner et al., 1990), increased dynamics of 

channel activity could be observed. This indicates dynamic properties of the Sym1 pore at 

physiological conditions. 

The main conductance state of 450 pS of the Sym1 channel corresponds to a pore size of 

about 1.6 nm. This large pore size would enable free diffusion of metabolites as well as 

protons through the Sym1 pore. Interestingly, for PMP22 it was shown that metabolites of up 

to 300 Da can pass the cannel (Rokka et al., 2009). However, free diffusion of protons across 

the mitochondrial inner membrane would disrupt the membrane potential and oxidative 

phosphorylation in mitochondria. Therefore, the Sym1 pore cannot exist as a constantly 

opened channel in the mitochondrial inner membrane. Hence, dynamic closure events of the 

channel on its own or by additional interaction partners can be postulated. The mechanisms 

and regulation of this channel closure could not be determined in this study and await further 

characterization. 

The mutant Sym1R51Q and Sym1N172K proteins might be interesting for further 

characterization of this channel, since defective channel function or regulation can be 

hypothesized. In fact, the patient MPV17 mutations might lead to proton leakage through the 

mitochondrial inner membrane. This would lead to an increased production of reactive 

oxygen species (Brookes, 2005; Turrens, 1997, 2003), which could account for damage and 

loss of mitochondrial DNA as seen in the patients. Production of reactive oxygen species due 

to mutations in MPV17 has been studied, however results of these analyses are inconsistent. 

There are reports of increased (Wagner et al., 2001), reduced (Zwacka et al., 1994) and 
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unchanged (Trott and Morano, 2004) production of reactive oxygen species due to a loss of 

Sym1/MPV17. Thus, this has to be reevaluated. 

The channel forming activity of Sym1 raises the question of the physiological role of this 

pore. A cargo of the Sym1 pore remains unknown, however determination of the reverse 

potential indicated selectivity for cations, suggesting a positively charged cargo. Furthermore, 

it can be speculated that the presence of Sym1/MPV17 homologs in peroxisomes, indicates a 

substrate that is present in both organelles. Biophysical and genetic interaction studies of 

Sym1 as well as more extensive phenotypical characterization of sym1∆ cells might help to 

identify a cargo of the Sym1 pore in upcoming studies. 

Members of the metabolite carrier family of the mitochondrial inner membrane have six 

transmembrane spans and facilitate pore formation upon dimerization (Palmieri and Pierri, 

2010; Palmisano et al., 1998; Pebay-Peyroula et al., 2003). Tim23, a protein with four 

transmembrane spans, might also forms a pore as a homodimer (Bauer et al., 1996; Meinecke 

et al., 2006; Truscott et al., 2001). Hence, it is unlikely that the 4 transmembrane spans of 

Sym1 are sufficient to form a pore of 1.6 nm. Therefore, it can be speculated that Sym1 

forms a pore of this size upon complex formation or homo-oligomerization (see section 4.8). 

Taken together, the identification of the channel activity of Sym1 revealed its molecular 

function as a pore in the mitochondrial inner membrane. The characterization of a cargo of 

the Sym1 pore in further studies will uncover the physiological role of Sym1. This will help 

to understand the pathogenesis of MPV17 associated Mitochondrial DNA Depletion 

Syndrome. 
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4.12. Conclusion 

In this thesis, nuclear-encoded mitochondrial proteins, involved in human disease were 

analyzed using yeast as a model system. Thereby the molecular pathology of SURF1 point 

mutations identified in Leigh Syndrome patients could be resolved. Mutations in G124 of 

SURF1 lead to degradation of the protein whereas an Y274D exchange in SURF1 (Y344D in 

Shy1) led to impaired function of the protein. Moreover, the SURF1Y274D/shy1Y344D mutations 

indicate dual functionality of SURF1/Shy1 and represent ideal tools to resolve the assembly 

of the cytochrome c oxidase in more detail. 

Additionally, the biogenesis and molecular function of Sym1, the yeast homolog of MPV17, 

a protein involved in the Mitochondrial DNA Depletion Syndrome, could be characterized. It 

could be shown that Sym1 is imported in a TIM23 dependent manner into mitochondria and 

associates into high molecular complexes. Moreover, it was shown that Sym1 forms a pore in 

the mitochondrial inner membrane. 

Taken together, it must be concluded that the analysis of human mitochondrial diseases, 

using yeast as a model can help to understand the molecular pathology of these diseases. A 

combination of clinical and biochemical findings will not only help to understand the 

biogenesis and function of mitochondria in more detail, it will also help to counteract 

mitochondrial diseases in a systematic manner. 
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5. Summary 
Mitochondrial diseases are fatal disorders mainly affecting highly energy dependent tissues 

such as brain, heart, liver and muscle. These severe disorders can be caused by mutations 

affecting mitochondrial- or nuclear-encoded proteins. The molecular function of many 

nuclear-encoded mitochondrial proteins involved in disease is unknown so far and therefore, 

the mechanisms that lead to disease are enigmatic. In this study, point mutations in SURF1 

and MPV17 were analyzed that were found in patients of the Leigh Syndrome and the 

Mitochondrial DNA Depletion Syndrome respectively. These missense mutations affect 

highly conserved and therefore potentially functional important amino acids. 

The function of SURF1, a highly conserved early assembly factor of the cytochrome c 

oxidase, has been studied using its yeast homolog Shy1. Shy1 is involved in the maturation 

and translational feed back regulation of Cox1, the central subunit of the cytochrome c 

oxidase. In this study, it was shown that patient point mutations affecting G124 in SURF1 lead 

to rapid degradation of the protein after mitochondrial import. In contrast, patient mutations 

that lead to an Y274D exchange in SURF1 do not alter mitochondrial import or stability but 

showed increased association to a newly identified cytochrome c oxidase assembly 

intermediate. Hence, SURF1Y274D shows impaired function. Using the corresponding yeast 

Shy1Y344D as a model, dual functionality of SURF1/Shy1 could be shown. Shy1Y344D releases 

cytochrome c oxidase assembly intermediates from translational feed back regulation of 

Cox1 but fails to promote cytochrome c oxidase assembly at later steps. 

Mutations affecting MPV17, a mitochondrial inner membrane protein of previously unknown 

function, lead to loss of mitochondrial DNA. In this study Sym1, the yeast homolog of 

MPV17, was used as a model to study the biogenesis and function of MPV17/Sym1. It could 

be shown that Sym1 forms high molecular weight complexes of 120 and 220 kDa in the 

mitochondrial inner membrane. In contrast to most polytopic inner membrane proteins, Sym1 

is imported in a TIM23 dependent manner into mitochondria. The function of Sym1 was 

analyzed by electrophysiological characterization of Sym1, isolated from yeast mitochondria. 

Sym1 showed channel activity, which indicates a pore forming function of Sym1/MPV17 in 

the mitochondrial inner membrane. 
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