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Abbreviations and notations

The following list contains the most used abbreviations.

AIC Akaike information criterion

ANC Acid neutralizing capacity

EMAP Environmental Monitoring and Assessement Program

EPA Environmental Protection Agency

BLUE Best linear unbiased estimator

BLUP Best linear unbiased predictor

FEM Fixed effects model

GAM Generalized linear model

GAMM Generalized linear mixed effects model

GCV Generalized cross validation

GDP Gross domestic product

GLM Generalized linear model

GLS Generalized least squares

GLMM Generalized linear mixed effects model

HUC Hydrologic unit codes

MEM Mixed effects model

OCV Ordinary cross validation

OLS Ordinary least squares
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P-splines Penalized splines

PPML Poisson pseudo maximum likelihood

REML Restricted maximum likelihood

SMEM Semi-mixed effects model

TPS Thin plate spline

The following list contains the most used notations in Chapter 2 and 3.

y response vector

X,Z design matrices

β vector of regression coefficients

ε vector of errors

u vector of random effects

g(.) link function

(x)p+ the function xpI{x>0}

p degree of the spline

λ penalty term

n number of responses

D number of small areas

nd number of subjects in area d

q dimension of X

m(.) smooth function

F ,W matrices of individual and area covariates

r1, r2 dimensions of F and W

γ, η additive smooth functions

Ci geographical coordinates for observation i
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The following list contains the most used notations in Chapter 4.

Tijt export from country i to country j at time t

Dijt binary information

zij non-binary time invariant information

vijt, ηij unexplained heterogeneity

uij unobserved random effect

β, γ, δ vectors of unknown coefficients

βyi, βyj unknown scalar coefficients

wij time-invariant variables

ψ(.) additive function
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1 Introduction

Today, applications of non- and semiparametric models are found in nearly all fields of

empirical research. Since nonparametric methods do not have restrictive assumptions

about the distribution of the observations or functional forms of the underlying data

generating process, they are attractive methods when other necessary assumptions cannot

be assured. However, nonparametric methods might be limited in practice due to other

questions like the Bellman’s curse of dimensionality or the true underlying degrees of

freedom. In other words, certainly they cannot overcome the classical problem in statistics

to find the optimal bias-variance trade-off. More specifically, for cases involving only a

moderate sample size but many variables, we suffer from the curse of dimensionality. Then,

by introducing partial parametric components, that may allow us to match structural

conditions, such as linearity in some variables, the semiparametric modeling compromises

between flexibility and simplicity in statistical procedures. More information about non-

and semiparametric see, for example, Härdle, Müller, Sperlich and Werwatz (2004). One

may consider, as the basis for many semiparametric models, the well known generalized

linear model (Nelder and Wedderburn, 1972), given by E(y|X) = g(XTβ) where β is

the parameter vector to be estimated and g is the link function. This model can be

generalized in many ways like extending the index to be nonlinear or the link function to

be nonparametric.

A different but also popular extension is still parametric but nowadays is often used as

a bridge between parametric and non- or semiparametric models; adding some random

effects in this generalized linear model leads us to a generalized linear mixed effects model

(see Breslow and Clayton, 1993). Parametric mixed effects models are being widely used

in many areas. One of the most common uses is in small area estimation, other examples

are longitudinal studies, panel econometrics, multi-level models, repeated measurements in

biometrics, etc. In other words, any statistical model that provides an intuitive clustering
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1 Introduction

which is modeled via random cluster effects imposing a new variance-covariance structure

of the response data. Unfortunately, the application of these models is put into practice

under the independence assumption between random effects and the covariates. We say

unfortunately, because this clearly does not accurately reflect real world dependencies.

Like in other contexts, we will see that semiparametric modeling can be used to overcome

this problem in an else purely parametric modeling context. In this dissertation, we aim

to relax the independence assumption by introducing semi-mixed effects models. The in-

clusion of non- or semiparametric functions shall help to filter out possible dependence

between random cluster (or level) effects and the covariates of interest. This helps us to

establish the above mentioned but in practice else often unrealistic independence assump-

tion. For the practical implementation, the semiparametric modeling is done by using

splines. Note that, so far, this idea has only been introduced via kernels and was applied

to a particular problem of a two level estimation problem.

We will first introduce the idea along with the model referring mainly to Lombard́ıa and

Sperlich (2011). Our main focus is on the extension to P-splines popularized by Eilers

and Marx (1996), the different case-specific splines implementations including radial or

spatial splines (see, for example, Green and Silverman, 1994), choice of penalizing term,

automatic estimation of variances, and other practical questions. After a detailed introduc-

tion, and an intensive discussion, we include some simulation studies and implementation

in the statistical software package R. Note that we extend the so far existing methods

also toward additive modeling (see Deaton and Müllbauer, 1980), the inclusion of further

nonparametric parts, nonlinear link functions, etc. After the discussion of implementation

and general functioning, we continue with two real data problems. These have been chosen

from the maybe most typical application areas in econometrics and economic statistics,

i.e. empirical economics; small area estimation (see Rao, 2003 or Jiang and Lahiri, 2006)

and panel data econometrics (see Baltagi, 2005 or Arellano, 2003).

Our first study, the one in the field of small area estimation, is an application that will ad-

dress an environmental small area problem. Here, to overcome the dependencies between

the random effects and the covariates, we include area-specific effects plus the informa-

tion of location in the model. Therefore, we estimate the nonparametric functions in our

semiparametric model by using P-splines and thin plate splines. Thin plate splines are

isotropic smoothers and thus especially appropriate for spatial coordinates, i.e. handling
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the effect of location (see, for example, Duchon, 1977 or Wood, 2003). P-splines are easy

to implement and allow for additivity where we can model the explanatory variables non-

parametrically (see, for example, Ruppert, Wand, and Carroll, 2003). This was necessary

for the other covariates, except the location, to handle the double curse of dimensionality;

the statistical one referring to the slow rate of convergence, and the practical one referring

to the interpretation.

As previously mentioned, another common area where mixed effects are being frequently

used is the econometric analysis of panel data. Panel data combines features of both

cross section and time series data and have become widely used as a means to control

for unobserved cross-section heterogeneity (see Mátyás, 1997, or Baltagi, Egger and Pfaf-

fermayr, 2003). In our dissertation, we present an application with the gravity model to

explain panel bilateral country trade flows. We apply our new semiparametric approach

to panel gravity model via adding a nonparametric term in the transformed (via a known

link function) conditional mean, which depends on observable proxy variables, in order

to capture the dependency between the explanatory variables and the unobserved indi-

vidual heterogeneity term. For this application, we use the generalized additive mixed

effects model, which is an additive extension of generalized mixed effects model. This is

again to avoid the curse of dimensionality. Note that, this panel data gravity model is

an extension to the former application, as we have now complex link functions involved.

Some other new aspects will be the question of model selection, in particular we refer to

variable selection, and the selection of adequate software. Note that we are theoretically

able to use commands provided in the statistical software package R and (or) the widely

used econometric software package Stata.

Thus, the aim of this dissertation is to focus on semiparemetric estimation using mixed

effects models in panel data and small area estimation where it is intended to relax the

independence assumption. This independence assumption can presently be considered as

a main challenge in the use of mixed effects models in practice after for two decades the

main focus was directed toward the also quite crucial question of relaxing distributional

assumptions. Recall that the (linear) mixed effects models are mainly used by maximum

likelihood based estimation procedures. We first translated the idea of Lombard́ıa and

Sperlich (2011) from kernel smoothing to splines. We are aware of the fact that this is at

the cost of losing the nice slider interpretation they have as now we have no parameter

that in its two extremes includes fixed effects models and random effects models (without
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1 Introduction

further level effect modeling). But, we gain in different issues of practicability; simpler

implementation up to the use of already implemented software (in R, Stata and SAS at

least),

1. simpler automatic choice of the slider (see Lombard́ıa and Sperlich, 2011) as a frac-

tion of variances of error variance and the splines’ pseudo-variance,

2. faster calculation since splines are computationally much less expensive than kernels,

3. the possibility of local smoothing via heteroskedasticity of the splines’ pseudo-

variance,

4. simple extension to additive modeling of the semiparametric filter of dependence,

5. straight forward extension to semiparametric modeling of the other covariates’ im-

pacts,

6. a well studied extension to the generalized linear mixed effects models (which for

kernels has only been studied in theory to our knowledge),

7. etc.

We performed and studied different implementations where

1. we allowed for partly choosing and partly fixing the smoothness of the nonparametric

parts (especially the slider, see Lombard́ıa and Sperlich, 2011),

2. we tried different alternative estimation methods for the variance of the random

effects and the pseudo-variances of the splines,

3. we analyzed possible extensions to allow for heteroskedasticity of the residuals (for

the random effects this has been studied already in detail, see, for example, Foulley

and Quaas, 1995 or Robert-Granié, Heude and Foulley, 2002),

4. compared semi-mixed effects model (where only the filter is nonparametric), additive

semi-mixed, and semiparametric mixed effects models (i.e. additive partial linear

models plus semiparametric filter),

5. etc.

We also compared

1. own different implementations in R and Fortran 90,
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2. the different tools offered by the mgcv package in R, see Wood (2006),

3. the competing recent implementations in Stata 11 (Stata 10 partly did not offer

alternatives),

4. applications to different real data sets,

5. etc.

Nevertheless, in this thesis we only present a very small selection of results for the following

reasons;

1. in parallel to our thesis, this topic has been studied world-wide intensively such that

most of our findings have already been studied and published somewhere,

2. unfortunately but maybe not that surprisingly, many of our implementations turned

out to not work well in practice,

3. where we compared different methods, software or commands, we present here only

the outcome of the most reliable ones,

4. and for the sake of brevity.

In the next sections, the basic information for the applications will be introduced. This

will then be followed firstly by our small area estimation problem for environmetrics, and

finally by the panel data analysis application. All sections are mainly independent from

each other, so can be read individually. However, the information given in the following

sections will be the main guidance for all following sections. To make the sections somehow

independent, some repetitions are unavoidable.
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2 Mixed effects models

Certainly, like many other types of statistical regression models, a mixed effects model

(MEM) describes simply a relationship between a response variable and the covariates

that have been measured or observed along with the response. What distinguishes the

mixed effects model from the others is that we have a natural clustering given in the

data, may it be due to repeated measurements for (almost) each subject or individual,

a regional, climatic, social, ... area. Actually, this can even lead to a nested clustering;

we then speak of multilevel models (with more than just two levels). The idea is then

to allow for random deviations from the general mean but driven by the affiliation to

a specific cluster. These deviations are marked in either just the intercept which may

randomly vary over the different clusters or even in deviations from the general slopes

(coefficients) in a (generalized) linear mixed effects model. To understand the basics of

the mixed models, we start by examining linear models and the extended case of mixed

effects model.

A statistical model is explained as a mathematical relationship between the explanatory

variables and the response variable. The response variable y is the one whose content

is modeled with other variables, namely the explanatory variables x1, x2, ..., xn. One can

start with modeling the variables using a simple linear model

yi = β0 + β1xi1 + ...+ βkxik + εi (2.1)

for i = 1, ..., n, unknown coefficients βj, j = 0, 1, ..., k, and a random deviation (the error

term) ei. We can always rewrite the model in matrix notation, i.e.

y = Xβ + ε, (2.2)

where y is the response vector of length n, X is the vector of covariates of dimension

(1 + k)× n with a first column of ones referring to the constant term β0. Then, β is the

This chapter is a joint work with Sperlich, S. and Lombard́ıa, M. J..

23



2 Mixed effects models

vector of regression coefficients of dimension (1 +k), and ε is the vector of errors of length

n. Often, not necessarily but typically for the extensions to random effects models, it is

assumed that the distribution of the error term is known, for example ε ∼ N(0, σ2
εIn).

For details see the classic book of Searle (1971).

Linear models, which are fully determined up to a parameter, have been used in econo-

metrics and statistics for decades, since they were easy to implement and can easy to

interpret. With parametric modeling, the estimation procedure is easy as long as the un-

derlying assumptions are accurate. However, the estimates can be inconsistent and give

misleading information if the assumptions are violated, which leads to several extensions,

nonparametric regression being the most flexible one among all, see for example Härdle,

Müller, Sperlich, and Werwatz (2004).

Generalized linear models allow for a different extension; now the response variable can

also follow a discrete distribution, which is also possible for the linear model but definitely

not reasonable for different obvious reasons. The link functions are typically assumed

to belong to the exponential family such as Binomial, Poisson, etc. and they allow for

non-linear structures in the model:

g(µi) = Xiβ, (2.3)

where µi ≡ E(yi), and g is a the (typically assumed to be known) link function. See

McCullagh and Nelder (1989) for the classical generalized linear model and its implement-

ation, as well as some basics about the exponential family. Then, in Fahrmeir and Tutz

(2001) and McCulloch and Searle (2001) we get already introduced to the extension and

transition to linear and generalized linear mixed effects models which we will consider

next.

2.0.1 Linear mixed effects model

Often, the data to be analysed is clustered, grouped, or otherwise hierarchically organized.

Mixed effects models include additional random effects for the particular clusters. These

models have turned out to be much more appropriate for representing these types of

data. The fact that we add random and not fixed effects is a statistical trick but does

not necessarily follow a deeper interpretation idea. It does not mean that the cluster
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effect is random but this cluster effect is not further modeled, for example due to the lack

of sufficient information. Note that this randomness has consequences for the conditional

distribution of the response y; in particular, observations belonging to the same cluster are

dependent if one does not condition on the (unobserved) cluster effect. This allows to make

use of the idea of generalized or weighted least square estimation, or the inclusion of an

additional variance modeling in maximum likelihood procedures. This yields more efficient

estimates but at the price of possible misspecification as it assumes independence between

the unobserved cluster effect and the observed information gathered in the covariates

vector X.

To summarize, for a vector of response y with known X (including the intercept) and Z

(typically a subvector of X, often just the intercept) design matrices, a linear mixed effects

model is,

y = Xβ + Zu + e, (2.4)

where X and Z are design matrices, β is the fixed effects vector, and the random effect

vector u is independent from X and e. For the sake of presentation, let us assume for

a moment that u ∼ N(0,D) and e ∼ N(0,R). The covariance matrices D and R may

depend on a set of unknown variance components. Here are some properties: u ∼ N(0,D)

means that the expected value of the random effects are 0, E(u) = 0 and the variance is

D, V ar(u) = D. Variance of y, is specified as V ar(y|u) = R since V ar(u) = D. The

model in (2.4) can also be written as;

E(y|X,Z, u) = Xβ +Zu, (2.5)

where y follows a distribution with mean ∼Xβ, and since E(u) = 0, the variance of y is

V = V ar(y) = ZDZ
′
+R. (2.6)

For known variance components, the best linear unbiased estimator (BLUE) of β is then

β̂ = (X
′
V X)−1X

′
V −1y (2.7)

and the best linear unbiased predictor (BLUP) of u is

û = DZ
′
V −1(y −Xβ̂). (2.8)
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2 Mixed effects models

For details, see for example, Henderson, Kempthorne, Searle and von Krosigk (1959),

Robinson (1991) or McCulloch and Searle (2001).

Clearly, if the variances are known - something often assumed in earlier publications -

then it is obvious how a generalized or weighted least squares estimator can be applied to

obtain consistent and even efficient estimates for β. The first difficulty occurs when these

variance components have to be estimated. Usually, estimates for the variance compon-

ents depend on β, but β depends on these variance components, such that an iterative

estimation procedure seems to be necessary. In case of normality and homoscedasticity

for both the error and the random effect, there exists a linear transformation so that it is

possible to estimate the variance components without knowing β. This procedure used is

known as restricted maximum likelihood (REML) which maximizes the likelihood of linear

combinations of elements of y, see Patterson and Thompson (1971).

2.0.2 Generalized linear mixed effects models and other extensions

As in a linear mixed effects model, a generalized linear mixed effects model (GLMM)

includes a vector of observations y, design matrices X and Z, fixed effects, β and random

effects u ∼ (0,D = σ2
uI) with typically known distribution. See, for example, Breslow

and Clayton (1993), McCulloch and Searle (2001). The extension is done by introducing

an inverse link function g(.). The fixed and random effects are combined to form a linear

predictor

g(µ) = Xβ + Zu = η (2.9)

where µ is the vector of the conditional mean of y given both, the observed covariates

X, and the (unobserved) random effects and is linked to the parameter by the mentioned

function g(.). We introduced here η just for simplification; it often refers to the linear

predictor, cf. Table 2.1 gives a short list of some of the common link functions for various

distributions of response y, see also Härdle, Müller, Sperlich, and Werwatz (2004) for

further details.

Not surprisingly, the selection of the (inverse) link function is based on the distributions

of the error term and the random effect(s). For example, for the linear mixed model, the

inverse link function is the identity function g(η) = η.
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Distribution Link Inverse Link

Normal Identity η

Binomial Logit eη/(1 + eη)

Poisson Log eη

Gamma Inverse 1/η

Table 2.1: Common link functions for various distributions.

Hastie and Tibshirani (1990) introduced many semiparametric generalizations of the GLM

in their seminal book, but gave little emphasis to the inclusion of random effects. This was

quite different in Fahrmeir and Tutz (2001) or McCulloch and Searle (2001). There exists

indeed a vast non- and semiparametric literature on additive and generalized additive

models and it is not our aim to repeat this here; see for example Sperlich (1998).

Our focus is directed toward the extensions which include explicitly random effects: A

generalized additive mixed model (GAMM) is a special form of a GLMM where the ori-

ginally linear predictor is now specified in terms of a smooth function or functions of the

covariates (see, for example, Lin and Zhang, 1999 or Wood, 2006). More specifically, a

GAMM has the form

g(µi) = Xiβ +
∑
j

fj(xji) +Zu (2.10)

where u ∼ (0,D) with some known distribution, and yi ∼ exponential family(µi,R).

Lin and Zhang (1999) proposed an approximate inference in GAMMs using smoothing

splines and marginal quasi-likelihood. The advantage compared to the GLMM is just the

allowance for more flexibility of the functional form of the (originally) linear predictor.

The idea is to relax the assumption to know in advance how the covariates X enter the

regression model. Without completely depreciating this idea, our interest will be rather

to explore the possibility of arbitrary flexibility in order to filter potential dependencies

between the random effects and the covariates, which otherwise will render the estimation

inconsistent.

Before doing so in the next subsection, let us briefly mention the main advances that

have been achieved in recent years. The important point here is that the contributions

in this area are not just papers and books but in most cases accomplished by software
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2 Mixed effects models

packages. This explains why these models are quite popular in practice in biometrics

and environmetrics, today. R library package MASS provides glmmPQL function which

fits GLMMs and works by repeated calls to lme that is provided in package nlme. The

mgcv package provides gamm function which fits GAMMs by a call to lme in the normal

errors identity link case, otherwise by a call to gammPQL, which is a modification of

glmmPQL. Further details can be found in Package mgcv documentation (2011) or in

Wood (2006). In this dissertation, the mgcv package is used for small area estimation

problem for environmetrics. For the panel data study, we studied in both R and Stata.

Stata 11 provides the command xtmepoisson that fits mixed effexts models for count

responses. For details, see Stata 11 documentation.

2.0.3 The semi-mixed effects model

Recently, Lombard́ıa and Sperlich (2011) proposed a new model that allows to change

from MEM, without area specific covariates, to a semi-mixed effects model (SMEM) with

a smooth area specific mean and a random effect, up to a fixed effects model (FEM).

Mixed effects models allow for efficient estimation of the fixed parts in the model. Also,

they treat the small area effects as random effects, and make use of the random effects

for prediction. In the moment of prediction, one adds the predicted random effect to

the total prediction. The additional variance of the prediction caused by assuming this

effect to be random is only slightly larger than the variance of a fixed effect estimate

based on small samples, but the modeling of the new variance structure allows for a more

efficient estimation of the coefficients. It might improve prediction in the mean, but under

the assumption of independence between random effects and the covariates. Clearly, the

independence assumption is not shared by the fixed effects models given by

Yid = Xidβ + ud + εid, (2.11)

where d = 1, ..., D and i = 1, ..., nd with ud being the area specific fixed effect without

independence assumption, meaning without being independent from the individual effects,

Xid. FEM provides an unbiased estimate of β depending on the method but it also

contains D+ 1 parameters (D intercept and a slope) which leads to a large covariance for

all estimators.

With the smooth transition from MEM to SMEM and FEM, one can model the area effect
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and relax the independence assumption. The SMEM is, then, defined as

Yid = Xidβ + ηv(Wd) + ud + εid, (2.12)

where ηv : IRq → IR is a nonparametric function with a given slider v. If one sets v = 0,

then SMEM model turns into a FEM but if v = ∞ is set, one obtains the MEM with ud

being a random effect. The estimation procedure of a SMEM is as calculating a partial

linear mixed effects model (see e.g. Lombard́ıa and Sperlich, 2008 or Opsomer, Claeskens,

Ranalli, Kauermann, and Breidt, 2008). We later provide a section (Section 2.2.3) where

we combine the semi-mixed effects modeling idea with the spline implementation.

2.1 Typical applications of mixed effects models

Mixed effects models are widely used in many fields of empirical research. As indicated

above, they are especially appropriate if we face data with intuitively clustered data. This

is typically the case for small area statistics where area may refer to geographical, admin-

istrative, political, climatic, topographic, etc. areas, see, for example, Rao (2003). Other

examples are; repeated measurements (see e.g. Davidian and Giltinan, 1995) and longit-

udinal data (see e.g Verbeke and Molenberghs, 2009), as we have them most frequently in

biometrics (medicine). Not to forget the hierarchical models in social science, including

economics, and finally panel data econometrics (see e.g. Baltagi, 2005). In econometrics,

they are also quite commonly used for data mapping (see e.g. Davis, 2003) and data

matching (see e.g. Elbers, Lanjouw and Lanjouw, 2003).

For our applications, we focus on small area statistics in an environmental context, and

panel data analysis for an econometric modeling problem. Before we speak of the imple-

mentation of mixed effects models with splines, the approach we have chosen for given the

practical advantages, let us briefly review these two fields.

2.1.1 Small area estimation and environmetrics

Small area is the term that is used to refer, generally, to a small geographical area, though

it may also refer to an isolated particular demographic. If a survey has been carried out for

a whole population, a problem arises when trying to generate accurate estimates relative
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to any particular small area within this population, because this area may be too small.

While design-based inference methods may be appropriate for the overall survey sample

size, one has to rely on alternative methods, namely model-based, for small domains where

population level auxiliary information is available. In these circumstances, the statistical

techniques involving the estimation of parameters are simply called small area estimation.

Models based on random area-specific effects that account for area variations are called

small area models so that the indirect estimators based on small area models are con-

sequently called the model-based estimators. Small area models can be classified in two

types: aggregate level (or area level) models and unit level models. Fay and Herriot (1979)

were the first to use an area level model for estimating per capita income for small areas

in U.S.A. and proposed an empirical Bayesian method. Unit level models are relevant for

continuous y response variables and these models may be regarded as special cases of lin-

ear mixed effects models. In the case of binary response, the logistic mixed effects model

is used and, in the case of count response, the loglinear mixed effect model is used where

both models are the specific cases of generalized linear mixed effects models. Battese,

Harter and Fuller (1988) used the unit level model to estimate county crop areas using

survey and satellite data and constructed an empirical best linear unbiased predictor for

the small area means. For further details about small area models, see, for example, Small

Area Estimation by Rao (2003).

During the last few decades, mixed effects models have been widely used in small area

statistics. See, for example, Jiang and Lahiri (2006), Opsomer, Claeskens, Ranalli, Kauer-

mann, and Breidt (2008), Lombard́ıa and Sperlich (2011). For combining information

from various sources and explaining different sources of errors, these models offer great

flexibility and are well suited to solving many problems in small area estimation. The

most frequent argument is that direct estimates use too little information; then, imposing

a common model that deviates say randomly from one area to another is a way to bor-

row information from all the other areas. Note that this argument is particularly valid

if one is just interested in a particular area-specific information (a macro-parameter) like

the area mean. However, for a consistent model-parameter estimation and prediction, the

independence assumption turns out to be crucial. In practice, this independence is often

questionable and renders not just the point prediction but moreover the inference and

interval prediction invalid. Another crucial point to be mentioned is the common use of

strong distributional assumptions. These have been the focus of lively discussion and re-
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search for more flexible methods, especially in biometrics. The former problem, however,

i.e. the independence assumption, is still an untouched nimbus in small area statistics,

maybe because of the unknown consequences of what would happen if it fails to hold.

See, for example, Jiang and Lahiri (2006) for further details on mixed model estimation

in small area context.

We will consider a problem of environmental small area estimation where we try to relax

the independence assumption between random effects and the covariates. To overcome

the dependencies between the random effects and the covariates, we include area-specific

effects semiparametrically in the model. We estimate the nonparametric functions in our

model by using P-splines and thin plate splines. As indicated, and as will be discussed more

in detail, the thin plate splines shall help us to incorporate the geographical location but is

thus especially vulnerable to the independence assumption. Here, a filter is unavoidable to

make the outcome interpretable. We will be using, as a case study, a survey of lake water

quality in North-eastern states of U.S.A. conducted by the Environmental Monitoring and

Assessement Program (EMAP) of the Environmental Protection Agency (EPA) (Opsomer,

Claeskens, Ranalli, Kauermann, and Breidt, 2008).

2.1.2 Panel data analysis

A common use of mixed effects models is in the analysis of panel data (or longitudinal

data) (see e.g. Diggle, Heagerty, Liang and Zeger, 2002). A panel contains observations

for each subject over multiple time periods. The common feature of panel data sets are

that the sample of individuals is typically relatively large while the number of time periods

is generally small. The main advantage mentioned in economics or econometrics is the

chance to overcome the problem of unobserved heterogeneity leading to endogeneity of

covariates and thus to inconsistent estimates. Other advantages are the possibility of

estimating dynamic effects, the increase of efficiency, etc.

So, it has the potential to solve problems neither cross section methods nor pure time series

methods can solve (see e.g. Hsiao, 2003). The reasons for favoring a panel data approach

can be that panel data source grants the ability to control for individual fixed effects

and to model temporal effects without aggregation bias. Therefore, panel data estimation

methods have become increasingly popular in both theoretical and applied micro- as well
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as macro- economics; but this is also as a consequence of the increased available data of

this type.

There are several panel regression models; some include individual or subject specific

effects, others time specific effects, sometimes both, etc.. A main distinction is to separate

them into the fixed effects panel data models, where the model includes an individual effect

that is constant over time, and the random effects panel data models, which basically

coincide with our mixed effects models having a random effect for the individuals (which

does not change over time). So the individual effects are considered as random rather

than fixed constants. The simplest approach to the estimation is the pooled ordinary or

weighted least squares estimation. For the model we are interested in, i.e. the random

effects panel model, the notation for the errors might be set to uit = αi + εit where αi are

the individual effects. The errors of the same cross-section unit are then correlated and

the generalized least squares is thus used to estimate the model. For detailed descriptions

of these estimation methods, see, for example, Green (2003) or Wooldridge (2002).

The gravity model of trade has been widely used in economics due to its ability to explain

trade flows among countries. Tinbergen (1962) was the first to use the gravity model

in that context. The gravity model has generally been estimated using cross-sectional

data. However, this might generate inefficient results since heterogeneity among countries

cannot be controlled for in an adequate manner. To address this problem, the gravity

model is now being estimated using panel data, which have the advantage that they allow

for more general types of heterogeneity (see e.g. Westerland and Wilhelmsson, 2009).

The common procedure to estimate gravity equations with panel data is based on the

ordinary (or weighted if we model possible time dependence) least squares estimation

of the transformed log-linear specification including fixed effects to control for country

unobserved heterogeneity. This may lead to a lack of efficiency due to the great number of

parameters to be estimated, but the problem which make it less attractive is the difficulties

in estimating the effects of time-invariant variables. Unfortunately, if we use random effects

we again face the problem of the independence assumption which has always been in the

center of controversy discussions in econometrics.

In this dissertation, we introduce a nonparametric component in the gravity panel equation

that captures country unobserved heterogeneity dependent on the explanatory variables

without compromising the estimate of the effect of time invariant variables. Additionally,
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to address the criticism of Santos Silva and Tenreyro (2006) we transform the panel gravity

model to an additive mixed effects model with a Poisson link function. Then, we have

to estimate a generalized additive semi-mixed effects model. There, the introduction of

gamma distributed (by assumption) random effects extends the conditional distribution of

the response to a negative binomial one which is thus much more flexible than the Poisson

one. For details see the corresponding Sections in our thesis. We will analyze the trade

flows among the EU25 countries from 2004 till 2007.

2.2 Non- and semiparametric regression

Many books have been written about the topic of non- and semiparametric estimation,

even when just concentrating on some regression problems, see, for example, Ruppert,

Wand, and Carroll, (2003), Härdle, Müller, Sperlich and Werwatz (2004) or Horowitz

(2009).

It is by no means our aim to summarize even only parts of it. Instead, we directly focus

on the ideas we will apply in the following for our modeling and filtering. Let us start

very simply and consider the two regression examples below;

Example 1. E(y|x) = β0 + β1x, a parametric model, and

Example 2. E(y|x) = m(x), a nonparametric model with m(·) smooth but not further

specified.

Parametric models are determined up to a finite number of parameters. If the underlying

assumptions are correct, the estimations and predictions of these models are done easily

unless the assumptions are violated. Let m(x) be a smooth function that is unknown

but to be estimated. The objective is to estimate m by means of a function that both

fits the data well and is sufficiently smooth. In other words, nonparametric models avoid

the restrictive assumptions on the functional form (example 1). In order to meet this,

nonparametric regression estimators have to be rather flexible. However, some problems

become uncontrollable as the number of the variables increase. In the literature, this fact

is know as the curse of dimensionality (Bellman, 1957). Other problems are the lack of

interpretability, the choice of smoothness, etc. A main criticism is the lack of modeling. To

address the curse of dimensionality, interpretability, and the modeling idea, an accepted
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compromise is found by the semiparametric modeling.

The methods which try to overcome the dimensionality problem by combining some of the

parametric and the nonparametric techniques are known as the semiparametric methods.

The basis for many semiparametric models is the generalized linear model (Nelder and

Wedderburn, 1972) which is given by E(y|X) = g(XTβ) where β is the parameter vector

to be estimated and g is the link function, see our discussions above. This model can be

generalized in many ways. If we consider an unknown smooth link function, the model

then leads to a single index model (see e.g. Ichimura, 1993). If we assume a nonparametric

additive argument of g, this leads to a generalized additive model (Hastie and Tibshirani,

1990). If we assume a combination of additive linear and nonparametric components

in the g argument, then this model leads us to a generalized partial linear model. See,

for example, Severini and Staniswalis (1994), Lin and Carroll (2001). If there is no link

function, we get an additive model (see Friedman and Stuetzle, 1981). If we also add

random effects to these models we get mixed effects models, etc. We discussed some of

the extensions of these models earlier.

These models are particularly popular in econometrics; see Yatchew (2003), Härdle,

Müller, Sperlich, and Werwatz (2004), Sperlich, Härdle, and Aydinli (2006) or Horow-

itz (2009) to mention only few of the many books on this field.

The main challenge is, typically, to estimate the parametric part of the model at the para-

metric convergence rate, namely O(
√
n). A second challenge is, then, the implementation.

While for splines it seems to be much harder to elaborate and derivate exact mathematical

theory, and therefore it is often done for series estimators or kernel methods, the imple-

mentation seems to be most attractive via splines. Among them, P-splines have nowadays

attracted most of the attention for various reasons. This is why we now concentrate on

them, starting with the following section that tries to describe in detail some of the main

ideas and implementation.

2.2.1 Semiparametric modeling with penalized splines

Mixed effects models have been famous recently in semiparametric statistics. Bayesian

approaches, feasible algorithms using spline methods and kernel based smoothing methods

are all used in mixed effects models by several researchers. For Bayesian semiparametric
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approaches see, for example, Fahrmeir and Lang (2001) or Kneib and Fahrmeir (2007).

For approaches using splines see Opsomer, Claeskens, Ranalli, Kauermann and Breidt

(2008) or Claeskens, Krivobokova and Opsomer (2009). For kernel based approaches see,

for example, Lombard́ıa and Sperlich (2008).

We are interested in using the penalized splines in our studies since they are typically

implemented in different software packages like R and Stata. Moreover, they allow for

additive modeling, automatic choice of smoothing parameters and further extensions. Cer-

tainly, we also can model some of the explanatory variables nonparametrically if wanted.

In the Section 2.2.2, we will discuss the basics of penalized splines approaches and their

implementations. The following section is especially aimed at showing how to combine

nonparametric regression and mixed models with penalized splines. The only danger of

misinterpretation is that one might be tempted to mix up the interpretation of the ’real’

random effects and the pseudo random effects which are only generated to calculate the

nonparametric spline estimates. Although we will abstract from our original model at

the moment of implementation, we should always be aware of the differences between our

deterministic parts of the model, the filtering part (which is also deterministic), and the

real random part. Recall that the latter one is separated into residuals and a random

(level or) area effect.

2.2.2 Penalized spline regression

Penalized spline regression, often referred to as P-splines, are popularized by Eilers and

Marx (1996). P-splines are an attractive smoothing method because of their flexibility

and are also a natural candidate for constructing nonparametric small area estimation.

An advantage of the spline based approach is that it allows easily for additivity and is easy

to calculate. Finally, even the extension to generalized models, i.e. including additional

nonlinear though known link functions seems to be relatively manageable compared to

competing methods.

Although Hastie and Tibshirani (1986) pushed splines forward a lot, they sold it mainly

under the name of generalized additive modeling (GAMs) and backfitting methods. It

should be said that in particular contributions of Wahba (1990) and Gu (2002), among

others, heavily influenced the advances in that field. When looking at splines which played
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a key role for the practical advances, recall that Duchon (1977) invented thin plate splines

which we will use later on, in our first application. Penalized regression splines go at least

partly back to Wahba (1980), but were given real impetus by Eilers and Marx (1996)

and in a GAM context by Marx and Eilers (1998), always with a special emphasis on

implementation and its practical use. (In fact, speaking about mathematical statistics

we would have to mention a rather different literature, contributors and authors). Wood

(2006) comprised in his book, Generalized Additive Models: An Introduction with R, the

main results, and gave it a real push ahead with the mgcv package implementation in R.

The main target of our presentation is to show how the implementation of P-splines and

(generalized) linear mixed effects models are related to each other - what basically has

made up their popularity. Consider now the relatively simple model written in matrix

notation,

Y = η(F ) + ε, (2.13)

where ε is a vector of independent random variables with mean zero. Let us assume them,

for a moment, to be normally distributed with mean zero and variance σ2
e . Further, η(F )

is an unknown (for the sake of interpretation and to avoid the curse of dimensionality)

additive function such that η(F ) =
J∑
j=1

ηj(Fj). The latter one will certainly be estimated

using a P-spline. In order to do so, note that the model can be approximated adequately

well by

η̃(F ) = F1η1 + F2η2, η1 ∈ IRpJ , η2 ∈ IRJK ,

F1 =

(
F

...F 2... . . .
...F p

)
, (2.14)

F2 =

(
(F − τ1)p+

...(F − τ2)p+
... . . .

...(F − τK)p+

)
,

where p is the degree of spline, (x)p+ denotes the function xpI{x>0} and τ1 < ... < τK is a

set of previously fixed knots. In practice, one can take each tenth ordered observation of

the particular covariate.

In P-spline regression, K is typically taken to be large, e.g. with 1 knot every 4 or 5

observations (Opsomer, Claeskens, Ranalli, Kauermann, and Breidt, 2008). Higher values

of p, the power of spline, may lead to smoother spline functions. For what is considered to

be a reasonable number of knots, the degree of the spline basis usually has little influence

on the fitted spline at the knot points, although interpolation between the knots will take
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the form of the underlying basis. Reducing the number of knots reduces the flexibility

of the fitted spline. There is also a need for minimizing the number of knots to avoid

overfitting. On the other hand, usage of the penalty term avoids the overfitting and lets

one use the sufficient number of knots.

A substantial question is how much η2 is allowed to vary. Note that if its variation is

arbitrary, then our model (2.14) is over-parameterized. This can and should be avoided

by a penalty term. For a given sample, this is done by defining the regression estimators

as the minimizers over (η1,η2) of

(Y − η̃(F ))t(Y − η̃(F )) + ληt2η2, (2.15)

where λ is the penalty term or smoothing parameter which controls the bias-variance

ratio. Note that if it is zero, we have no bias but large variance; if it is large we have

large bias but low variance. So we know already intuitively that it must be proportional

to the ratio of the variance of ε divided by the variance of η2. Under these circumstances,

estimating the smoothness for the model is now estimating the smoothing parameter λ or

the variances of the error and η2. If λ is too high, the data will be over-smoothed. If it is

too low, then the data will be under-smoothed. In either case, the spline estimate η̃ will

not be close to the true function.

With this in mind, the penalty for the η(F ) function can be estimated via λ = σ̂2
e/σ̂

2
η2

with

λ = (λ11 , ..., λ1J )
′
. Another solution will be to set the λ and therefore fix the smoothness.

Note that this corresponds to some extend to the inverse of the slider in Lombard́ıa and

Sperlich (2011). There are three different methods, namely ordinary cross validation

(OCV), generalized cross validation (GCV), and assuming distributions for ε and η2 and

estimating their variances. GCV has computational advantages over OCV (Wahba, 1990).

We will concentrate on the last method based on the idea of linear mixed effects model

estimation (see e.g. Ruppert, Wand, and Carroll, 2003).

2.2.3 Extended model description and mixed effects model

representation

Combining now the semi-mixed effects modeling idea of Lombard́ıa and Sperlich (2011),

see our Section 2.0.3 with the spline implementation of above, we consider the following
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two-level model

Yid = Xidβ + γ(Fid) + η(Wd) + ud + εid, (2.16)

where d = 1, .., D are the indices for the area and i = 1, ..., nd the indices for the subjects

or individuals in area d, i.e. the index d runs over the small areas and i runs over the

elements of each areas. If we consider a panel data study, i may refer to time and d may

refer to the individual. Let Y ∈ IRn be the vector of n =
D∑
d=1

(nd) responses, X ∈ IRn×q

and F ∈ IRn×r1 matrices containing, respectively, q and r1 covariates for the n individuals.

X contains also one column of ones for the constant, say β0. Let further W ∈ IRD×r2

indicate the matrices of the regional covariates, and Z ∈ IRn×D a matrix of ones and

zeros indicating in what area the individual lives, u ∈ IRD random area effects, and the

remaining unobserved individual effects ε ∈ IRn, where u⊥ε, i.e. independence is assumed.

Let β ∈ IRq+1 be a fixed effect, γ : IRr1 → IR and η : IRr2 → IR nonparametric unknown

but smooth functions that have to be estimated. Then, in matrix notation we can rewrite

the model as follows:

Y = Xβ + γ(F ) + η(W ) +Zu+ ε. (2.17)

Recall that for consistent estimation, using classical methods, we further need the inde-

pendence between covariates and area effects. In our model, area effects are separated

into a controlled (say deterministic) effect η(W ) and the random one u. The idea is that

an appropriate choice of η filters possible dependence between the covariates and the area

remainder u.

If γ(F ) 6= 0 and η(W ) 6= 0, then combining the P-spline approximation (2.14) with the

model (2.16), we can rewrite the model as

Y = Xβ + Sθ +Gh+Mδ +Lv +Zu+ ε, (2.18)

where we defined the following matrices,

S =


F11 · · · F p

11 | · · · | Fr11 · · · F p
r11

...
...

F1n · · · F p
1n | · · · | Fr1n · · · F p

r1n

 ,

G =


(F11 − ρ11)p+ · · · (F11 − ρ1k1

)p+ | · · · | (Fr11 − ρ11)p+ · · · (Fr11 − ρ1k1
)p+

...
...

(F1n − ρ11)p+ · · · (F1n − ρ1k1)p+ | · · · | (Fr1n − ρ11)p+ · · · (Fr1n − ρ1k1)p+

 ,
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M =


W11 · · · W p

11 | · · · | Wr21 · · · W p
r21

...
...

W1n · · · W p
1n | · · · | Wr2n · · · W p

r2n

 ,

L =


(W11 − τ11)p+ · · · (W11 − τ1k2

)p+ | · · · | (Wr21 − τ11)p+ · · · (Wr21 − τ1k2
)p+

...
...

(W1n − τ11)p+ · · · (W1n − τ1k2)p+ | · · · | (Wr2n − τ11)p+ · · · (Wr2n − τ1k2)p+

 ,

with θ = (θ1, ...,θr1)
′ ∈ IRpr1 being a fixed parameter with θr1 = (θr11, ..., θr1p)

′
, δ =

(δ1, ..., δr2)
′ ∈ IRpr2 being a fixed parameter with δr2 = (δr21, ..., δr2p)

′
.

Further, we have h = (h1, ...,hr1)
′ ∈ IRk1r1 being the first spline’s pseudo random effect

with hr1 = (hr11, ..., hr1k1)
′ ∈ N(0, Iσ2

h), σ
2
h = (σ2

h1
, ..., σ2

hr1
)
′
, and v = (v1, ...,vr2)

′ ∈
IRk2r2 being the second spline’s pseudo random effect with vr2 = (vr21, ..., vr2k2)

′ ∈
N(0, Iσ2

v), σ
2
v = (σ2

v1
, ..., σ2

vr2
)
′
. The remaining terms have already be defined before.

Then, for the sake of implementation, the model can be rewritten in matrix notation as

Y = Tα+Cξ +Zu+ ε, (2.19)

by merging fixed to fixed and pseudo-random to random parts, where T = [XSM ], α =

[β θ δ]
′
, C = [GL] and ξ = [hv]

′
. Finally, u ∼ N(0,Σu = σ2

uID), ε ∼ N(0,Σε = σ2
eIn)

and ξ ∼ N(0,Σξ = diag[Iσ2
h, Iσ

2
v ]).

Then, we define Σy = CΣξC
′
+ZΣuZ

′
+ Σε. If the variances of the random and pseudo-

random components (i.e. in the latter case the smoothing parameters) were known, the

standard results from BLUP theory (McCulloch and Searle, 2001) guarantee that given

the model specifications

α̂ = (T
′
Σ−1
y T )−1)T

′
Σ−1
y Y (2.20)

is the BLUE (best linear unbiased predictor), and consequently

ξ̂ = ΣξCΣ−1
y (Y − T α̂), û = ΣuZΣ−1

y (Y − T α̂−Cξ̂) (2.21)

are the BLUPs (best linear unbiased predictors).

39



2 Mixed effects models

Alternatively, we can estimate the variance components simultaneously by ML method

with or without a correction, see Rao (2003). For notational convenience, we write estim-

ation of σ2
h, σ

2
v on the one hand but σ2

u on the other hand separately to distinguish the

random part from the splines’ pseudo random parts:

σ̂2
u = (û

′
û+ σ̂2

u trace(T
∗
ii))/D,

σ̂2
h = (ĥ

′
ĥ+ σ̂2

h trace(T
∗1
ii ))/k1, σ

2
h = (σ2

h1
, ..., σ2

hr1
)
′
,

σ̂2
v = (v̂

′
v̂ + σ̂2

v trace(T
∗2
ii ))/k2, σ

2
v = (σ2

v1
, ..., σ2

vr2
)
′
,

σ̂2
e = (Y

′
ε̂)/n

with T ∗ii = (I +Z
′
(σ̂2

e)
−1Zσ̂2

u)
−1 (here, each i runs over D), T ∗1ii = (I +G

′
(σ̂2

e)
−1GΣ̂h)

−1

(here, each i runs over r1 ∗k1), T ∗2ii = (I+L
′
(σ̂2

e)
−1LΣ̂v)

−1 (here, each i runs over r2 ∗k2),

and Σ̂y = CΣ̂ξC
′
+Zσ̂2

uZ
′
+ σ̂2

eIn where Σξ = diag[Iσ2
h, Iσ

2
v ]. Note that this made easy

with additivity.

As can be seen, an iteration is necessary if REML (restricted maximum likelihood estim-

ation) cannot be applied for the estimation of variance components. The iteration runs

over estimating the fixed effects, predicting the random effects, and finally estimating the

variance components to restart with the fixed effects estimation and so on. We typically

stopped if the fixed effects vectors did not change more than 1 percent compared to the

last iteration’s outcome.

Further alternatives have been implemented to account for the possibility of only estimat-

ing the variances of the truly random parts u and ε but fix the smoothness of function γ

or pre-determine the slider for our dependence filter function η. It turned out that (a) to

distinguish between random and pseudo-random only makes sense if we want to assume

different distributions, and even then it is not evident what numerically happens, (b) if

one wants to fix the smoothness - you can also speak of pre-setting the λs - it is better

from an implementation point of view to simply fix σ2
h and/or σ2

v . We conclude that one

of these implementations is sufficient. Other extensions were implemented to account for

possible heteroskedasticity of either the random effects, the pseudo-random effects, or the

residuals. Note that heteroskedasticity of σ2
h and σ2

v simply cause locally different smooth-

ness that might be wanted or not. In contrast, heteroskedasticity of u or ε have a quite

different interpretation.
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Allowing for local smoothing, or equivalently from an implementational point of view, for

the (pseudo-) random effects has been studied in different works (see e.g Brumback and

Rice, 1998 or Ruppert, Wand, and Carroll, 2003). Our implementation for the heteroske-

dasticity of the residuals did work but not very well. We basically followed White’s well

known approach in econometrics by simply using the squares of residuals on the variance

matrices. A much more successful extension to incorporate simultaneously heteroskedasti-

city for the error term (recall that this effects the smoothness parameter and, in our case

certainly also the random effects prediction) can be found in Crainiceanu, Ruppert, Car-

roll, Joshi, and Goodner (2007), Krivobokova, Crainiceanu, and Kauermann (2008) or

Wiesenfarth, Krivobokova, Klasen, and Sperlich (2011).

For the construction uniform confidence bands and inference tests in our type of models and

methods, see Sperlich and Lombard́ıa (2010) which use kernel smoothing and bootstrap

based inference, or Wiesenfarth, Krivobokova, Klasen, and Sperlich (2011) who used P-

splines for estimation and the the volume-of-tube formula for inference.
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3 An application in environmetrics

related to small area estimation

3.1 Abstract

Mixed effects models allow for efficient estimation of the fixed parts in the model. Also,

they treat the small area effects as random effects, to account for the between-area vari-

ations beyond that which is explained by the variations in model covariates, and they

make use of the random effects for prediction. In the moment of prediction, one adds the

predicted random effect to the total prediction. The additional variance of the predic-

tion caused by assuming this effect to be random is only slightly larger than the variance

of a fixed effect estimate based on small samples, but the modeling of the new variance

structure allows for a more efficient estimation of the coefficients. It might improve pre-

diction in the mean, but under the assumption of independence between random effects

and the covariates. In this study, we try to relax this assumption with a semiparamet-

ric modeling using splines approach. We carry out an application that will address an

environmental small area problem. To overcome the dependencies between the random

effects and the covariates, we include area-specific random effects in the model. We estim-

ate the nonparametric functions in our semiparametric model by using P-splines and thin

plate splines. Thin plate splines, introduced to geometric design by Duchon (1977), are

isotropic smoothers and are appropriate for spatial coordinates. Penalized spline regres-

sion, or P-splines, were popularized by Eilers and Marx (1996). P-splines are attractive

as a smoothing method because of their flexibility, and also a natural candidate for con-

structing nonparametric small area estimation. They are easy to implement and allow for

additivity where we can model the explanatory variables nonparametrically.

This chapter is a joint work with Lombard́ıa, M. J. and Sperlich, S..
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3 An application in environmetrics related to small area estimation

3.2 Introduction

As in the last chapter we have already introduced some details of spline estimation and

of the semi-mixed effects model basics, we concentrate here rather on what is new in this

Chapter:

Small area estimation. We briefly mentioned this topic in the earlier chapter as motivating

the use of mixed effects models. What we did not discuss are the main statistical challenges

when using mixed effects model estimation and prediction.

In our environmental context, the notation of small areas will indeed refer to what one

is intuitively thinking of: small geographical areas. For environmental questions, this

automatically entails the question: to what extent geographical correlation does matter.

“Small area” is the term that is used to refer, generally, to a small area or population,

though it may also refer to an isolated particular demographic. If a survey has been carried

out for a whole population, a problem arises when trying to generate accurate estimates

relative to any particular small area within this population, because the sample in many of

the areas may be (moreover, typically is) too small. While design-based inference methods

may be appropriate for the overall survey sample size, one has to rely on alternative

methods, namely model-based, when looking at small domains. The idea is based on the

availability of that population level auxiliary information. In those circumstances, the

statistical techniques involving the estimation of parameters are simply called “small area

estimation” (see, for example, Rao, 2003). During the last few decades, mixed effects

models have attracted a lot of attention and have consequently been widely used in small

area estimation (see e.g. Lombard́ıa and Sperlich, 2008 or Opsomer, Claeskens, Ranalli,

Kauermann, and Breidt, 2008). For combining information from various sources and

explaining different sources of errors, these models offer great flexibility and are well suited

for solving most problems in small area estimation.

To be more specific: in small area statistics, one often is not that much interested in the

model even though in practice it might then be used and interpreted. What is of interest

are area level parameters, say macro-parameters for each area. Typical examples are:

average income in a municipality, average added value produced by firms inside a county,

average tourist expenditures for each province, percentage of unemployment for certain

areas, percentage of poverty in certain regions, etc. As can be guessed from these examples,
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3.2 Introduction

small area statistics are an important issue for statistical institutes and administrative

statistics in general. See, for example, Ghosh and Rao (1994), Lahiri and Rao (1995),

Ugarte, Goicoa, Militino and Durbán (2009) or Lombard́ıa and Sperlich (2011).

A problem is that, given the available data, these numbers have to be estimated or pre-

dicted. Although the point estimator might be the most interesting number for the politi-

cian or many decision makers, we know in statistics, econometrics and biometrics that this

number, especially if we think of small samples and prediction, can be quite uninformative

and even misleading unless reliable confidence and prediction intervals are provided. Given

the used statistical model and estimator, these might be quite complicated to obtain.

To reduce the variability inherited by the nature of being ’small’ (small area, small sample),

the model based approach is the most popular one, and when thinking of ’very small areas’

we assume to have many areas (say D) with few observations (say nd, d = 1, . . . , D).

Then, it is more reasonable to work with random area effects than with fixed ones given

the particular mixed effects model. Depending on the estimation method, one may use

distributional assumption on the random effects and error terms or not. Also, the model

choice is of certain importance even though the model itself may not be of further interest,

but further inference is model based and therefore only valid if the model is correct. One

crucial assumption, then, is the mutual independence between covariates, random effects

and error terms.

To conclude, in small area statistics we face the following sequence of statistical problems:

estimate or predict the area-parameters though the sample is too small for many areas;

use a model based approach and choose an adequate model where ’adequate’ includes

the problematic independence assumption; depending on the estimation and prediction

method, one may have to choose or model the distributions of the random effects and

error term; from the model estimates, calculate the wanted parameters for each area and

construct a prediction interval. The last point is equivalent to the estimation of the

prediction squared error. The latter point has maybe been the most studied point in small

area statistics for about few decades. (see e.g. Prasad and Rao, 1990, Lahiri, 2003, Das,

Jiang and Rao, 2004 or Lombard́ıa and Sperlich, 2011)

We will consider here not an econometric problem like the given examples above but an

environmental one. Not surprisingly, also in environmetrics, small area estimation has

become a more and more popular tool (see, for example, Militino, Ugarte and Goicoa,
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3 An application in environmetrics related to small area estimation

2006 or Pratesi, Ranalli, and Salvati, 2008). We consider data from 1991 to 1996 of

334 lakes in the north-eastern states of the U.S.A.. The figure of interest is the acid

neutralizing capacity of the water, say Y . As we will use three continuous explanatory

variables (F1, F2), an intercept plus a continuous variable that is ’known’ to have a

linear impact (X), and the random small area effects u. When looking at geographical

areas and environmental data, one would intuitively suppose to face spatial correlation

in the response that could pass to a spatial correlation in the random area effects; see

Gosh, Natarajan, Stroud and Carlin (1998). This, however, does ignore the chance to

have correlation between the covariates and random effects as probably both are related

to where they have been observed geographically. Therefore we prefer to include the

geographical location in the deterministic (fixed) part of the model. This will be done via

thin plate spline (TPS) regression of the coordinates (C); see Wood (2003). Finally, we

include two area-specific variables (W1, W2) to filter possible dependence between u and

the (F1,F2). We now concentrate on the estimation of our model.

Summarizing, we will work with the following model:

Yid = Xidβ + δ(Ci) + γ1(F1id) + γ2(F2id) + η1(W1d) + η2(W2d) + ud + εid, (3.1)

where d = 1, .., D and i = 1, ..., nd. The index d runs over the small areas and i runs over

the elements of each area. In matrix notation this is

Y = Xβ + δ(C) + γ1(F1) + γ2(F2) + η1(W1) + η2(W2) +Zu+ ε. (3.2)

As said, Y ∈ IRn is the vector of n responses, X ∈ IRn×q a matrix containing q covariates

for n individuals including one column of ones for the constant β0. Let Ci = (c1i, c2i)

denote the geographical coordinates for the observations, F1 ∈ IRn×r1 , F2 ∈ IRn×r1 and

W1 ∈ IRD×r2 , W2 ∈ IRD×r2 the matrices of the individual and the area covariates. Z ∈
IRn×D is a matrix of ones and zeros indicating in what area the observation is located.

Finally, we have u ∈ IRD, the random area effects, and the remaining heterogeneity

ε ∈ IRn, where u⊥ε independent.

Then, we have to estimate β ∈ IRq+1, an unknown fixed vector. δ : IR2 → IR, γ1 : IRr1 →
IR, γ2 : IRr1 → IR and η1 : IRr2 → IR, η2 : IRr2 → IR are the smooth functions that have

to be estimated by thin plate and cubic splines.

So, the aim of this chapter is to avoid possible dependence between the random effects and

the covariates with a semiparametric modeling approach using splines. We do this along
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3.3 Spline models, bases and prediction error estimation

a case study where we analyze a survey of lake water quality in the north-eastern states of

the U.S.A.. The survey was conducted by the Environmental Monitoring and Assessment

Program (EMAP) of the Environmental Protection Agency (EPA) from 1991 to 1996. In

the next section, we reconsider the P-splines. Afterwards, we introduce briefly the basic

ideas of thin plate spline regression to better account for spatial smoothing. Thanks to this

property, they should play a more important role in small area estimation. We close that

section with a short revision of how the prediction mean squared error can be calculated

for our spline estimation approach. A small Monte Carlo simulation study shall illustrate

the estimation performance of the proposed model in our context, see Section 3.4. Then,

in Section 3.5, we will carry out the case study based on the aforementioned data with

the introduced methods.

3.3 Spline models, bases and prediction error estimation

Given the huge amount of literature on spline regression, here we try to be brief and just

indicate the basic ideas of the methods we will apply in the following sections. For the sake

of presentation, we will separate the discussion for the cubic splines which will be used

for estimating one dimensional additive functions γ1, γ2, η1, η2 in model (3.1), and thin

plate splines used for estimating the two-dimensional function δ. We further simplify the

notation by considering a one-dimensional nonparametric regression problem; the simple

model

yi = m(xi) + εi, i = 1, . . . , n (3.3)

with εi being independent and identically distributed (i.i.d.) random terms independent

of xi and among themselves.

While some bases are numerically more stable and allow computation of a model fit with

better accuracy, the change in basis does not, in principle, change the fit. Aside from

numerical stability, one may consider ease of implementation and interpretability in order

to select one basis over another. We start with a typical simple basis for P-spline regression.

For understanding the underlying mechanics of spline-based regression, one can study the

truncated power bases. These bases can be applied easily in practice as long as the knots

are selected carefully or a penalized fit is used. For given knots κ1, · · · , κK consider the
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3 An application in environmetrics related to small area estimation

truncated power basis of degree p

1, x, ..., xp, (x− κ1)p+, ..., (x− κk)
p
+, (3.4)

where the + signs indicate that the bracket will be zero if the expression inside is negative.

Then, the pth-degree P-spline model can be written as

m(x;β,γ) = β0 + β1x+ ...+ βpx
p +

K∑
k=1

γk(x− κk)p+. (3.5)

A commonly used modification of the cubic spline model is the natural cubic spline basis.

The truncated cubic basis for the knots κ1, ..., κk is

1, x, x2, x3, (x− κ1)3
+, ..., (x− κk)3

+. (3.6)

A cubic smoothing spline, m, minimizes the residual sum of squares and the penalty on

the integral of the squared second derivative (m
′′
)2

n∑
i=1

(yi −m(xi))
2 + λ

∫
(m(x)

′′
)2dx (3.7)

where λ is the penalty term that plays crucial role in determining the smoothness of the

model. We have seen in the first chapter that one can write this like a linear mixed effects

model estimation problem where the coefficients of the (x−κ1)3
+, ..., (x−κk)3

+ are treated

like random coefficients orthogonal to 1, x, x2, x3. In practice, the knots are a subsequence

of the ordered observations xi. For further details see Ruppert, Wand and Carroll (2003).

Since both the P-spline and the small area estimation are random effects models, it is not

difficult to combine both into a semiparametric small area estimation of an environmental

problem based on mixed effects model regression. Furthermore, there are cases where x is

multivariate, other bases might be preferable to the truncated polynomials. For our study

we combine cubic truncated power basis with thin plate splines, as the latter are most

appropriate for the spatial coordinates, cf. model (3.1).

Again, consider the problem of estimating the smooth function m(xi) in the model (3.3).

Let us fix w as the highest order of derivative of m we plan to control to measure wiggliness.

Considering geographical coordinates, x is now a two-dimensional variable. Then, thin

plate spline smoothing estimates function m by finding the function f̂ that minimizes

‖y − f‖2 + λJw(f), (3.8)
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3.3 Spline models, bases and prediction error estimation

where y is a vector of yi data and f = [f(x1), ..., f(xn)]
′
. Jw(f) is a penalty functional

measuring the wiggliness of f , and λ is a smoothing parameter boosting or shrinking

multiplicatively the penalty done by

Jw =

∫ ∫ ∑
v1+v2=w

w!

v1!v2!

(
δwf

δxv11 δx
v2
2

)2

dx1dx2,

where 2w > dx =dimension of x. It is obvious how this can be extended to higher

dimensions. It can be shown that the function minimizing (3.8) has the form

f̂(x) =
n∑
i=1

δiηw(‖x− xi‖) +
M∑
j=1

αjφj(x), (3.9)

where δ and α are vectors of the coefficients to be estimated, M =
(
w+dx−1

dx

)
, and φj are

linearly independent polynomials spanning the space of polynomials of degree less than

w. Next, δ is subject to the linear constraints that T
′
δ = 0 where Tij = φj(xi), and ηw is

defined as

ηw(r) =

{
(−1)w+1+dx/2

22w−1πdx/2(w−1)!(w−dx/2)!
r2w−dxlog(r) if dx even

Γ(dx/2−w)

22wπdx/2(w−1)!
r2w−dx if dx odd

Defining matrix E by Eij ≡ ηw(‖x− xi‖), the thin plate spline fitting becomes

minimize ‖y −Eδ − Tα‖2 + λδ
′
Eδ subject to T

′
δ = 0 , (3.10)

with respect to δ and α.

Penalized regression splines simply use fewer spline basis functions. There are two altern-

atives: knot based and Eigen based splines. In knot based splines, we choose a subset of

our data, namely the knots, and create the basis as if we are only smoothing that data.

In Eigen based, we choose the number of basis functions (which are simply given by the

Eigenvectors of E) to construct the spline that will optimally approximate a full spline.

In that sense thin plate splines are easy to implement, but we still have to choose the

K, the number of basis dimension, for thin plate splines. One has to decide roughly how

large the basis dimension is. The number of basis dimension for the model has to be fairly

certain enough to provide flexibility. For further details we refer to Green and Silverman

(1994) or Wood (2003).

At the end of this section we give the formulas to estimate the variance of the model based

predictors of ȳd. In order to do so, we first have to extend our model (3.3). It has already
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3 An application in environmetrics related to small area estimation

been shown in the last chapter but can also be seen from the book of Ruppert, Wand

and Carroll (2003) that we can write our spline model (with also real u and with pseudo

random effects, say ξ) in terms of

Y = Xβ +Gξ +Zu+ ε, (3.11)

where X now refers to the non-truncated spline part, G in case of just one dimensional

cubic splines would consist of the (xi − κ1)3
+, ..., (xi − κk)3

+, and Z as usual indicating in

which area each observation is located. An obvious candidate to estimate for ȳd is

ŷd = x̄dβ̂ + ḡdξ̂ + edû, (3.12)

where the bars indicate true means for each dimension (power) of our variables, the hats

indicate estimates or predictors, and ed is a zero-vector with a 1 at its d-th position.

Set V ar[Y ] = Σy, Σξ, Σu and Σε being the variance-covariance matrices of the (pseudo)

random terms, W = (G,Z), ω = (ξ
′
,u
′
), w̄d = (ḡd, ed), and

Σω =

(
Σξ 0

0 Σu

)
Then for cd = x̄d − w̄dΣωW

TΣ−1
y X we have

ŷd − ȳd = cd(β̂ − β) + w̄d
(
ΣωW

TΣ−1
y (Y −Xβ)− ω

)
(3.13)

We know from Opsomer, Claeskens, Ranalli, Kauermann and Breidt (2008) that we can

estimate the prediction mean square error via

ĉd(X
′
Σ̂−1
y X)−1ĉ

′
d + w̄dΣ̂ω

(
I −W ′

Σ̂−1
y W Σ̂ω

)
w̄
′

d + 2(Y −Xβ̂)
′
Ŝ
′
Î−1Ŝ(Y −Xβ) (3.14)

with I being the identity matrix, and S being a matrix with rows

Sj = w̄d

(
δΣω

δ(σ2)j
W

′
Σ−1
y + ΣωW

′ δΣ−1
y

δ(σ2)j

)
, j = 1, 2, 3

where (σ2)j refers to the variances of ξ, u and ε respectively. Where we put hats, the

variances were replaced by their estimates. Further, Î is a 3× 3 matrix with elements ij

1

2
trace(PBiPBj) , with P = Σ̂−1

y − Σ̂−1
y X(X

′
Σ̂−1
y X)−1;

further B1 = GG
′
, B2 = ZZ

′
and B3 the identity matrix of rank n.

An alternative to this linear approximation is doing bootstrap; see, for example, Lombard́ıa

and Sperlich (2008).
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3.4 A small illustrative simulation

As the cubic spline smoothing has been studied intensively in many simulations and ap-

plications over decades (see e.g. Wahba, 1990, Gu, 2002 or Ruppert, Wand and Carroll,

2003), we concentrate here exclusively on the much less known thin plate spline per-

formance. Moreover, we will give a special emphasis on the performance of the variance

estimation. Here, with variances are also meant the parameters indicating the variation

of our pseudo-random effects. So these are rather smoothing parameter estimates than

variance estimates. To this aim we will consider models somewhat more complex than

those considered in the last section but coming closer to the model we plan to study in

our small area environmental study.

A thin plate spline is an isotropic smoother, which is appropriate for spatial coordinates

(see e.g. Duchon, 1977). For construction of our small area estimation model, we will be

using the coordinates of each lake. To demonstrate the practical performance of the thin

plate splines, we carry out a simulation study. For the simulation consider the following

test function

f(c1, c2) = 1.2exp(−(c1 − 0.2)2/σ2
c1
− (c2 − 0.3)2/σ2

c2
)

+0.8exp(−(c1 − 0.7)2/σ2
c1
− (c2 − 0.8)2/σ2

c2
)

where σ2
c1

= 0.3 and σ2
c2

= 0.4. Let us first consider the simple model

yid = β0 +Xidβi + f(c1id, c2id) + υd + eid (3.15)

where we generate Xid from a normal distribution with variance 1 and mean function

0.8 + c2
1id + c2

2id to correlate our data as otherwise the estimation problem would be too

trivial. Set the basis dimension (number of knots, see above) to K = 80, and let the

random effects be u ∼ N(0, σ2
u = 0.05), and error term e ∼ N(0, σ2

e = 0.1). We set the

number of small areas to D = 86 with nd = 6 observations in each resulting in a sample

size of n = 516.

To fit the model we use the command gamm() of the mgcv package with identity link;

see Wood (2003). Figure 3.1 shows the example of an estimate when data are generated

with f1 and estimated using the thin pate splines. As we consider here two dimensional

functions, the figures are given as contour plots. Comparing the true data generating
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Figure 3.1: Left; true function, right; TPS term of the fit using function f.

process and its estimate, we see how thin plate splines can capture geographical or spatial

features very well.

Now we use the test function f for further studies and consider the following model, i.e.

the data generating process

yid = β0 +Xidβ + f(c1i, c2i) +

r1∑
r1=1

[sin(a ∗ F1r1d) + b]

+

r2∑
r2=1

[sin(a ∗ F2r2d) + b] + ud + εid (3.16)

where now the function

Xid = 0.8 +
r∑
r=1

c2
1rd +

r∑
r=1

c2
2rd +

r1∑
r1=1

F 2
1r1d

+

r1∑
r1=1

F 2
2r2d

(3.17)

is used to correlate the data. We generate Fr1d ∈ U[0,2], Fr2d ∈ U[0,2] where r = r1 = r2 = 1,

d = 1, ..., 86, with a = 2.5, b = 0, D = 86. nd = 6 and n =
D∑
d=1

(nd) = 516. Here f is
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3.4 A small illustrative simulation

still the two dimensional smooth function that has to be estimated with thin plate splines.

The number of Monte Carlo iterations is set to 500.

The variance and the bias of the estimated σ̂u, σ̂e are given in the Table 3.1. It can be

seen that the automatic choice of smoothing parameter as well as the estimation of the

true variances of our random terms work well for our context.

σ2
e σ2

u Bias(σ̂u, σ̂e)

0.10 0.05 -0.001035 -0.003289

0.25 -0.002508 -0.003393

σ2
e σ2

u V ar(σ̂u, σ̂e)

0.10 0.05 0.000109 0.000049

0.25 0.001721 0.000049

σ2
e σ2

u (1/m
∑m

i=1 σ̂ui , 1/m
∑m

i=1)σ̂ei)

0.10 0.05 0.048965 0.096711

0.25 0.247492 0.096607

σ2
e σ2

u Bias(σ̂u, σ̂e)

0.50 0.05 -0.002820 -0.008778

0.25 -0.005066 -0.009266

σ2
e σ2

u V ar(σ̂u, σ̂e)

0.50 0.05 0.000455 0.001200

0.25 0.002720 0.001207

σ2
e σ2

u (1/m
∑m

i=1 σ̂ui , 1/m
∑m

i=1)σ̂ei)

0.50 0.05 0.047180 0.491222

0.25 0.244934 0.490734

Table 3.1: d=86,n=516, first model.

Now consider the following model where we add the averages of the individual effects over

53



3 An application in environmetrics related to small area estimation

small areas

yid = β0 +Xidβ + f1(c1i, c2i) +

r1∑
r1=1

[sin(a ∗ F1r1n) + b]

+

r2∑
r2=1

[sin(a ∗ F2r2n) + b] +

r2∑
r2=1

[sin(a ∗W1r2d) + b]

+

r2∑
r2=1

[sin(a ∗W2r2d) + b]ud + εid (3.18)

where the following function

Xid = 0.8 +
r∑
r=1

c2
1rd +

r∑
r=1

c2
2rd +

r1∑
r1=1

F 2
1r1d

+

r1∑
r1=1

F 2
2r1d

+

r2∑
r2=1

W 2
1r2d

+

r2∑
r2=1

W 2
2r2d

(3.19)

is used to correlate the data where r = r1 = r2 = 1. The variance and the bias of the

estimated σ̂u, σ̂e are given in the Table 3.2. The number of Monte Carlo iterations is set

to 500.

Before we come to the application, we should also mention here that we did several studies

for checking the quality of the curve estimation and the reliability of the confidence bands

automatically provided in R. While the estimation works very well it turned out that, from

a frequency interpretation, the confidence bands seem to be a little bit liberal. Nonetheless,

in general we seem to have a quite powerful and reliable tool at hand to perform our

environmental case study.

3.5 The environmental application

As mentioned earlier, the auxiliary information in small area estimation is often used via

linear mixed model regression to improve the precision of survey estimators of finite popu-

lation means and totals through linear or generalized regression estimation techniques. It

is stated and nowadays accepted that the resulting estimators have good theoretical and

practical properties. However, as Breidt, Opsomer, Johnson and Ranalli (2007) showed,

it is not always clear that ratio or linear models are good approximations of the true re-

lationship between the auxiliary variables, in our case X, C, F1 and F2, and the variable

of interest in the survey. This results in a serious efficiency loss when the model is not

appropriate. In the article of Breidt, Opsomer, Johnson and Ranalli (2007), it is explained
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3.5 The environmental application

σ2
e σ2

u Bias(σ̂u, σ̂e)

0.10 0.05 -0.001978 -0.003323

0.25 -0.008631 -0.003432

σ2
e σ2

u V ar(σ̂u, σ̂e)

0.10 0.05 0.000117 0.000049

0.25 0.001792 0.000049

σ2
e σ2

u (1/m
∑m

i=1 σ̂ui , 1m
∑m

i=1)σ̂ei)

0.10 0.05 0.048022 0.096677

0.25 0.241369 0.096568

σ2
e σ2

u Bias(σ̂u, σ̂e)

0.50 0.05 -0.005187 -0.009028

0.25 -0.013827 -0.009432

σ2
e σ2

u V ar(σ̂u, σ̂e)

0.50 0.05 0.000453 0.001203

0.25 0.002754 0.001200

σ2
e σ2

u (1/m
∑m

i=1 σ̂ui , 1/m
∑m

i=1)σ̂ei)

0.50 0.05 0.044813 0.490972

0.25 0.236173 0.490568

Table 3.2: d=86,n=516, model with averages.

how non- and semiparametric regression estimation can be extended in simple and more

complicated designs. These much more flexible models maintain all the good theoretical

and practical properties of the linear models, but they are better able to capture com-

plicated relationships between variables. This should and often does result in substantial

efficiency gains. Therefore, we do not only use semiparametric modeling to filter possible

dependence between the auxiliary variables and random effects, but also allow for more

flexibility concerning the impact of our covariates.

The Environmental Monitoring and Assessment Program of the US Environmental Pro-
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3 An application in environmetrics related to small area estimation

tection Agency surveyed 334 lakes out of a population of 21026 in the north-eastern states

of the U.S.A. between the years 1991 and 1996. Some of them were visited several times

during the study period, amounting to a total of 551 measurements. For a description

of the Environmental Monitoring and Assessment Program and the north-eastern lakes

survey, see Whittier, Paulsen, Larsen, Peterson, Herlihy, and Kaufmann (2002).

Variable N mean Std.Dev. min max

HUC 551 2009409.7314 1213979.5160 1010001.0000 5010002.0000

ANC 551 385.20526 547.5779 -72.2000 3371.0000

ELEV 551 321.78221 196.1327 4.0000 807.0000

LONG 551 -72.78855 2.3735 -78.9789 -67.3006

LAT 551 43.43670 1.4502 39.4508 47.1998

CO3 551 5.69828 20.2739 0.0000 203.3600

OH 551 0.62625 2.6479 0.0000 38.9000

Table 3.3: Descriptive statistics

In the data set, 113 small areas are defined by eight-digit “Hydrologic Unit Codes” (HUC)

within the region of interest, including 27 that have no sample observations. HUCs divide

all U.S.A. land based on the individual drainage basins according to a nested arrangement

from largest (region) to smallest (unit). They are often used in surveys of natural resources

as a way to delineate areas. The “acid neutralizing capacity” (ANC), also called the acid

binding capacity, measures the buffering capacity of water against negative changes in

pH-value (see Wetzel, 1975) and is often used, in water resource surveys, as an indicator

of acidification risks in bodies of water.

As HUC boundaries follow watershed drainage areas, the lakes contained within these

boundaries can be expected to present the same hydrological features, and thus HUCs

make meaningful subdivisions of a region. In other words, lakes in the same HUC are

expected to be more similar than two lakes in different HUCs. On the other hand, factors

affecting the ANC go across HUCs, so overall spatial trends may be useful in predicting

the ANC. Therefore, an HUC prediction model has the potential to capture most of the

patterns in the data. We also used CO3 and OH levels of the lakes’ water, which are highly

correlated, see Figure 3.2. Unknown smooth impacts of its averages are used to filter out

56



3.5 The environmental application

●
●●

●

● ●●
●● ●

● ●
●

●
● ●

●

●●● ●●

●● ●●
●

●●● ●●
●

●
●

●
●●● ●●
●

●

●

●●●●●●●●
● ●

● ●
●

● ●

●
●

●

●●●●●

●
●

●

●

●

●●●●
●● ●●

● ●●●
●●●● ● ●●●

● ●● ●●●●●
●●●

●

● ●●

●●
●

●●●

●
● ●●●●
●●

● ●

● ●●●●●
●

● ●●

● ●

●●
● ●● ●

●●
● ●●●
●●●●●●

● ●●
●●●●

●●● ●
●

●

●●
● ●

●

●

●
●

●
●

●
●

●

●●
● ●

● ●●●●●●●●●●
●●

●●●
●●●

●

●

●
●●●●●●●

●

●●

●
●● ●● ●●

●●
●●

●

●

●

●

●●

●●

●●●

●
●

●

●
●●●

● ●●
●

●
●●●●

●
●

● ●●

●

●

●

●●●

●

●

●

● ●

●
●

●
●●

●

●

●

●● ●

●●

●

●

● ●

●

●●
●●

●●●

● ●

●●●
●

●

●

●

●● ●

● ●

● ●

●●
●

●
●

● ●●●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●●
●●●● ●●

●●●
●
●●●●●●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●● ● ●

●

●● ● ●●

●●●●●●
●●

●

●

●

●

●●

●

●

●

●

●●●

● ●

●●●●
●●●

●
●

●●
●

●

●●

●

●●●●●

●

●
●

●

●
●

●
●

●●

● ●
●

●● ●
●

●

●● ●●

●

●

●

● ● ●
●

●

●

●

●

●●●●●●●●●●●●●●●●●

●
●●

●●
● ●

●●●

●

●●●

●

●●●●

●
●

● ●

●●●●●
●

●
●●● ●●

●●
●●●●●●●
●

●●●● ●●●●●●●
●●●●

●●
● ●●●

●●●●●●●
●

●
●

●

●

●

●

●

0 1 2 3 4 5

0
50

0
15

00
25

00
35

00

Corr. between response and logCO3

logCO3

A
N

C

●
●●

●

● ●●
●● ●

● ●
●

●
● ●

●

●●● ●●

●●●●
●

●●● ●●
●

●
●

●
●●● ●●

●

●

●

●●●●●●●●
● ●

● ●
●
● ●

●
●

●

●●●●●

●
●

●

●

●

●●●● ●● ●●
● ●●●

●●●● ● ●●●
● ●● ● ●●●●

●●●

●

● ●●

●●
●

●●●

●
● ●●●●
●●

● ●

● ●●●●●
●

● ●●

● ●

●●
● ●● ●

●●
● ●●●

●● ●●●●
● ●●
●●●●

●●● ●
●

●

●●
●●

●

●

●
●

●
●

●
●

●

●●
● ●

● ●●●●●●●●●●
●●

●●●
●●●

●

●

●
●● ●●●●●

●

●●

●
●● ●● ●●

●●
●●

●

●

●

●

●●

●●

●●●

●
●

●

●
●●●

● ●●
●

●
●●●●
●

●

● ●●

●

●

●

●●●

●

●

●

● ●

●
●

●
●●

●

●

●

●● ●

●●

●

●

● ●

●

●●
●●

●● ●

● ●

●●●
●

●

●

●

●● ●

●●

● ●

●●
●

●
●

● ●●●
●

●

●

●
●

●

●●

●
●

●

●

●
●

●●
●●●● ●●

●●●
●
● ●●●●●

●

●

●

●

●

●●
●

●
●

●

●

●
●

●

●● ● ●

●

●● ● ●●

●●●●●●
●●

●

●

●

●

●●

●

●

●

●

●●●

● ●

●●●●
●● ●

●
●

●●
●

●

●●

●

●●●●●

●

●
●

●

●
●

●
●

●●

● ●
●

●● ●
●

●

●● ●●

●

●

●

● ● ●
●

●

●

●

●

●●●●●●●●●●●●●●●●●

●
●●

●●
●●

●●●

●

●●●

●

●●●●

●
●

● ●

●●●●●
●

●
●●● ●●

●●
●●●●●●●

●
●●●● ●●●●●●●

●●●●
●●

● ●●●
●●●●●●●

●
●

●
●

●

●

●

●

0 1 2 3

0
50

0
15

00
25

00
35

00

Corr. between response and logOH

logOH

A
N

C

Figure 3.2: Correlation between the response and selected and logged variables.

possible dependence. As discussed, additionally we used the geographical co-ordinates of

the centroid of each lake in the construction of our small area model in this environmental

problem.

If these control functions, namely δ, η1, and η2 were jointly insignificant, then a classic

mixed effects model for small area estimation and prediction would be adequate. If they

were significant, in the classic model the independence assumption would definitely be

violated and all further inference, estimation, prediction and calculation of the prediction

mean squared error would therefore be wrong. Note that also bootstrap would fail here

as it is model based, too.

We should say here that we studied former empirical results and so far used models, and

also did some prior model selection studies. The model we have finally come up with is

comparable for example to the studies of Breidt, Opsomer, Johnson and Ranalli (2007)

as well as that of Opsomer, Claeskens, Ranalli, Kauermann and Breidt (2008), just that

they all ignored the dependency problem.

The model we finally fitted was

Yid = Xidβ + δ(ci) + γ1(lnF1id) + γ2(lnF2id) + η1(lnW1d) + η2(lnW2d) + ud + εid, (3.20)

where d = 1, .., 86 and i = 1, ..., 551. The index d runs over the small areas and i runs over

the elements of each area. Y is a vector of responses, the variable ANC, X is the elevation
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3 An application in environmetrics related to small area estimation

of the lakes, lnF1 is a vector of the logged CO3 values and lnF2 is a vector of the logged

OH values. lnW1 and lnW2 are the vectors of the averages of the variables logCO3 and

logOH over small areas, respectively, logCO3ij, with logCO3ij = (1/D)
∑D

d=1 logCO3ijd

and logOH ij, with logOH ij = (1/D)
∑D

d=1 logOHijd, u random area effects (HUCs), and

the individual effects ε ∈ IRn. γ1,γ2, η1, η2 (cubic splines) and δ (TPS) are the smooth

functions and ci = (c1i, c2i) denotes the geographical coordinates for the observations,

longitude and latitude.

We fit the model with different numbers of basis dimensions. A useful general purpose

approach to choose the basis dimensions is fitting the model and extracting the deviance

residuals. Afterwards, for each smooth term in the model, we fit an equivalent, single

smooth to the residuals, using a substantially increased K to see if there is a pattern in

the residuals which could potentially be explained by increasing K. AIC values also are

a guiding factor for which model (which we use different numbers of dimension basis for

the smooths) to choose. Hence, we use K=100 for the thin plate splines and K=20 for the

cubic splines where the correlated logCO3 and logOH values are used, and K=10 for the

averaged values over small areas of logCO3 and logOH. The knots of the cubic splines are

placed evenly throughout the covariate values to which the term refers.

Fixed effects t p-value

Intercept 25.958 0.0000

Elevation -2.675 0.0077

Sig. of smooths F p-value

δ (LONG,LAT) 1.939 < 0.001

γ1 (logCO3) 215.418 < 0.001

γ2 (logOH) 114.540 < 0.001

η1 (mlogCO3) 14.774 < 0.001

η2 (mlogOH) 13.603 < 0.001

StdDev

Intercept 48.561

Residual 66.531

Table 3.4: Estimates of coefficients (with p-values), intercept and the random effects stand-

ard deviation and the approximate significance of smooth trems.
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Figure 3.3: Left; plot of longitude and latitude of lakes. Right; smooth of location, K=100.

The data was analyzed using R (R Development Core Team, 2009) and since the linear

mixed model can be viewed as a special case of the generalized linear mixed model with

the identity link, the R package mgcv (Wood, 2011) was used. We analyzed the data by

using mixed effects models. We used measures of carbon trioxide and hydroxyl levels in the

lakes’ water as our covariates, Hydrologic Unit Codes as random effects and our choice was

the elevation of the lakes as fixed effects. In our model, we had several smooth functions

and they were estimated by thin plate splines and cubic splines where we could rewrite

the cubic splines in additional form. To assess the validity of the small area estimation

analysis, we performed a simulation study where we estimated bias and variance of the

standard deviations of the errors and the random effects. Because the first three rules

of statistics are “draw a picture, draw a picture, draw a picture” (Michael Starbird), we

provided figures for the thin plate splines simulations and the smooth terms estimates

from the data analysis.

In the Figures 3.3 to 3.5, the solid lines and curves are the estimated effects. Gray areas

indicate 95% confidence bands (Bayesian credible intervals). The bottom of each plot,

the rug plot, shows the values of the covariates of each smooth. The number we see at
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Figure 3.4: Left; smooth of logCO3, K=20. Right; smooth of logOH, K=20.
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Figure 3.5: Left; smooth of mean logCO3, K=10. Right; smooth of mean logOH, K=10.

the y-axis caption represents the effective degrees of freedom of the term being plotted.

Certainly, for the function estimate of δ we have no confidence bands but can see its
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significance from the R print out.

What we find is firstly, the control functions seem to be all significantly different from

zero and, secondly, all functions are clearly non-linear except maybe γ1. We can therefore

see that: (a) location matters even after having controlled for the other variables like

elevation, and its impact is not easy to be captured; (b) as Breidt, Opsomer, Johnson and

Ranalli (2007) pointed out, simple linear mixed effects models are often not flexible enough

to reflect correctly complex relationships such as those in our environmental problem; (c)

the crucial and always applied independence assumption is typically problematic and in

our case clearly violated. Control functions are necessary to filter the possible dependence

between covariates and area effects as otherwise all small area inference would be invalid.
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4 From the log of gravity toward a

semi-mixed effects gravity model for

intra-trade in domestic markets

4.1 Abstract

The common procedure with which to estimate Gravity equations was based on the OLS of

the transformed log-linear specification. For panel data, several fixed effects were included

to control for country unobserved heterogeneity. In recent years, both the classic gravity

model and the estimation method have been criticized, and different alternatives have

been suggested. While a controversial discussion has been going on about the classic and

newly proposed approaches, the empirical research on trade has mainly ignored this, still

applying the popular log-linear model combined with OLS estimation. In this work, first

some of the main criticism and alternatives considered so far are revisited. Then, the

ongoing discussion is extended to panel data analysis before an original new model and

estimation method is proposed. This new proposal tries to reconcile the existing ones

and can easily be applied with several of the standard software packages. This model is

especially designed for studying intra-trade of domestic markets and integration areas. It

is used to study the intra-trade of the European Union before the recent economic crisis

of 2007.

This chapter is a joint work with Proença, I. and Sperlich, S..
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4.2 The classic gravity model and some criticisms in brief

To analyze trade flows, the gravity model has been experiencing a revival, in particular

thanks to the new economic geography. It was mainly due to the work of Tinbergen

(1962) that this modeling approach influenced strongly the research on trade (especially the

empirical one) though it has a much broader field of applications in economics. Niedercorn

and Bechdolt (1969) were probably the first in trying to give an economic derivation of

this modeling idea, followed by Anderson (1979) who concentrated on trade and started

out from consumer expenditure system theory. More recent theoretical contributions in

this direction are provided for example by Deardorff (1998) who proved the consistency of

the gravity model with the Heckscher-Ohlin trade theory, and Anderson and van Wincoop

(2003), who basically revisited Anderson’s model but extending it slightly to deal with the

border puzzle. For more contributions see also references herein.

These articles by nature look at the economic derivations to clarify the basic economic

model specification and consequences for comparative statics analysis. At the same time

there was a lot of empirical and (applied) econometric research going on trying to find

model specifications, relevant covariates and estimation procedures which fit the data well

to a seemingly reasonable model. The work of Bergstrand (1985) marked an important

contribution to bridge economic theory and common empirical practices, again based on

consumer expenditure and general equilibrium theory. But still, this discussion of correct

econometric specification and estimation can differ a lot from the aforementioned; to see

this, compare his work with Mátyás (1997).

Quite recently, Santos Silva and Tenreyro (2006) have pointed out a problem that has

been ignored so far by both of the above mentioned communities. They make the point

that for basically all trade models logarithmic transformations (i.e. typically log-log-linear

models) are used. However, if the error terms are not independent from the regressors,

ordinary least square estimation (henceforth OLS) allows for consistent estimation of the

parameters of that log-model but not of the model of interest. They argue that these

trade-models typically exhibit heteroscedasticity, i.e. the lack of independence. It is clear

that neither the use of generalized least square estimation (GLS) nor the introduction of

some fixed effects, etc., can resolve this problem. Even though this is true for any log-

transformed model, they argue that the consequences are particularly severe in the context

of gravity modeling for trade analysis. As an alternative they proposed for example to
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apply the Poisson pseudo maximum likelihood (henceforth PPML) to estimate the original

model without the use of a log-transformation. Other authors like Martinez-Zarzoso (2011)

criticized that approach and argued, based on intensive simulation studies, in favor of OLS

and feasible GLS combined with the log-transformation. Santos Silva and Tenreyro (2008)

replied (to an early discussion paper version, therefore the earlier date) they wanted to rise

mainly the consistency problem, not the question of efficiency performance. It is clear that

the PPML has not the same problems with zero responses as a log-transformation has,

but the problems are similar if we face a zero-inflation. One of the further problems is the

inefficiency due to possible overdispersion which makes the feasible GLS outperforming

PPML. Consequently, one could argue that just like economists have long been aware of the

Jensen’s inequality (to pick up the argument of Santos Silva and Tenreyro), statisticians

have always been aware of the fact that the mean squared error of an estimator is more

important than unbiasedness, we are not sure if the econometricians are aware of this.

We will therefore propose an extension that on the one hand will respect the interest of

a correct identification of the parameters of interest and on the other hand the legitimate

request for a more efficient estimation performance.

Panel data have become widely used as means to control for unobserved cross-section

heterogeneity. Applications with the gravity model to explain panel bilateral country

trade flows are an example. In that context, Mátyás (1997) was one of the first authors to

call attention to control for unobserved heterogeneity specific to importer country, exporter

country and time, that may lead to endogeneity, with fixed effects. Another approach,

which is more in use nowadays, instead considers fixed country-pair effects in order to

prevent inconsistency due to omitted time invariant determinants specific to the bilateral

relation such as common language, common border or a common relevant ethnic group

capturing immigrants’ links to their own country. Anderson and van Wincoop (2003)

give different reasons for including either country specific or country-pair specific effects.

Moreover, Baltag, Egger and Pfaffermayr (2003) show the importance of controlling for

all interactions based on importer, exporter and time effects. Their model is more general,

encompassing both the specific importer or exporter and the country-pair fixed effects

models.

One of the drawbacks of these fixed effects approaches is that they either tend to overfit or

they require the application of differencing estimators which might be appropriate for linear

models (i.e. models which are linear with respect to the parameters) but less for nonlinear
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ones, neither they allow for the identification of the impact of time invariant variables on

trade. This problem is addressed by Serlenga and Shin (2007) in the estimation of a gravity

model to explain bilateral trade among 15 EU countries for a panel data large in time. They

control for unobserved heterogeneity using a general multifactor error structure following

Pesaran (2006). To account for dependency between unobserved heterogeneity and some

explanatories they combine the estimation procedure of Pesaran (2006) with Hausman

and Taylor instrumental variables in a way that enables them to estimate the coefficients

of time invariant variables. This last procedure needs a minimum of exogenous variables

varying in time and a minimum of exogenous variables constant in time depending on the

number of endogenous variables in each category. It is only applicable for panels with

a large number of observations in time. Moreover, it assumes that one is provided with

adequate instruments which is not at all evident in practice – but both weak instruments

or the lack of that particular exogeneity lead to a failure of identification. Different to the

above mentioned contribution, Westerlund and Wilhelmsson (2009) proposed a Poisson

fixed effects estimator (with robust variances) for a panel data analysis to study the trade

effects of the 1995 European Union enlargement. Their argumentation follows partly

Santos Silva and Tenereyro (2005) but they give a stronger emphasis on the problem of

zero responses. Therefore, it is surprising that they do not consider the problems of zero-

inflation and overdispersion. They certainly do not identify other time invariant impacts

than the fixed effects.

Now it is well known that a natural extension of a Poisson modeling is the introduction

of subject specific random effects which automatically will capture the overdispersion. If

the mean function is exponential with multiplicative random effects which are supposed to

follow a gamma distribution, then the resulting likelihood is a (pseudo) negative binomial

one. This is probably the most popular extension of the Poisson (pseudo) likelihood mod-

eling. In mixed effects literature and also in different software packages, it is preferred to

consider normal distributed additive random effects inside the exponential mean function,

for details see next sections. To add then a zero inflation to a Poisson, both conditioned on

the same explanatories, is quite straight and standard in applied statistics but less often

needed if random effects take care of possible overdispersion. Notice that we have a rather

flexible likelihood with subject specific heterogeneity but allowing for the identification of

all parameters of interest, including those that are time invariant. It helps us further to

overcome possible zero inflation and / or serious efficiency losses.
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The obvious problem that occurs now is to prevent misspecification due to the independ-

ence assumption for the random effects. But in the context of small area statistics, Lom-

bard́ıa and Sperlich (2011) introduced a new class of semi-mixed effects models. In terms

of panel econometrics, one could say that they extended the Mundlak device for random

effects models in several ways. They actually included a nonparametric component in the

equation that captures all country unobserved heterogeneity correlated with the explanat-

ories without compromising the estimation of the effect of time invariant variables nor the

estimation of the untransformed nonlinear gravity equation. The remaining heterogeneity

is still modeled by independent random effects. For our purpose this is important for the

allowance of overdispersion.

To summarize, in this paper we introduce a semiparametric gravity model for panel data.

One of the main ideas is to add a nonparametric term in the exponential conditional mean

function which depends on observable proxy variables in order to filter possible dependency

between some explanatories and the unobserved individual heterogeneity (constant over

time). Time fixed effects and interaction terms can be included without difficulty. The

proposed model can be estimated with different programs provided in standard software

packages like e.g. R and Stata. As far as we know, there does not exist a similar

semiparametric specification for panel count data models in the literature. Most of the

semiparametric approaches to panel count data are based on random effects, that is,

assuming that unobserved individual heterogeneity is distribution free and not correlated

with explanatories. Examples are, among others, Gurmu, Rilstoneb and Sternc (1999) and

Zheng (2008) who recurs to Bayesian techniques. A distinct approach is given by Wellner

and Zhang (2007) who consider a semiparametric count panel data model by introducing

a multiplicative term in the exponential conditional mean and equal to a monotonously

increasing (but unknown) function that depends on the time period. Note that does

by no means fit our problem. Racine and Li (2004) introduce a nonparametric single

index model, estimated with kernels, and apply it to panel data reporting the number of

successful patent applications.

In what concerns nonlinear specifications of the gravity model for panel data, Hender-

son and Millimet (2008) compare the usual parametric exponential specification of the

gravity model with a nonparametric alternative. The parametric model is estimated us-

ing PPML with fixed importer country effects and fixed exporter country effects. They

hypothesize that the nonparametric approach might be more valuable for depicting im-
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portant heterogeneity on the effect of some explanatories. However, the authors found

that their specification combined with PPML was superior on predicting trade flows (both

in- and out-of-sample) compared to their nonparametric estimates and predictions. For

this reason one might want to limit the use of nonparametrics to filter possible dependence

between exploratories and subject specific random effects. There is nevertheless an issue

in the model specification that makes additive nonparametric modeling still attractive, at

least for explorative purposes. We will see in the next section that all the gravity model

specifications and estimation methods work with logarithmic inputs. Unfortunately, for a

logarithmic transformation the chosen units can easily make an important difference for

the coefficient estimates.

The rest of the paper is organized as follows. In the next section the model is introduced

and the problems of the classic estimation methods, pointed out by Santos Silva and

Tenereyro (2005), are briefly revised. We then develop a new model and estimator in order

to reconcile their suggestions with criticism e.g. of Martinez-Zarzoso (2011), and to give

an extension to panel data analysis with time invariant regressors. Section 4.4 is dedicated

to the study of the trade flows among the 25 members of the European Union after the big

expansion in 2004 toward the East, when the Czech Republic, Estonia, Hungary, Latvia,

Lithuania, Malta, Poland, Slovakia, Slovenia, and Cyprus became members. To not distort

the results by the financial crises, we concentrate on the period of 2004 to 2007, i.e. a four

years panel. Section 4.5 concludes.

4.3 A semi-mixed effects gravity model for panel data

The specification of our gravity model follows the derivations of the above discussed lit-

erature. The bilateral trade Tijt, say export from country i to country j at time (year) t,

is assumed to be determined by the GDPs yit, yjt of countries i and j, multilateral trade

barriers and trade cost factors which might be represented by consumer price indexes (like

in Anderson and van Wincoop (2003), pair specific information like contiguity and dis-

tance, common language and /or ethnic groups as well as country specific information like

landlockedness and population size. Alternatively to GDP and population one can find

model specifications via GDP per capita. In panel specifications one might also include

time fixed effects.
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Let us for a moment classify the independent variables into the following groups: the GDP,

binary information Dijt, non-binary time invariant information zij, and the remaining set

xijt. Then, typically for i, j = 1, ..., N, t = 1, ..., T the following panel gravity model is

considered

Tijt = exp[ln(xijt)β + ln(zij)γ +Dijtδ + αt + ηij] y
βyi
it y

βyj
jt + εijt (4.1)

= exp[ln yitβyi + ln yjtβyj + ln(xijt)β + ln(zij)γ +Dijtδ + αt + ηij]vijt, (4.2)

where we included time fixed effects αt, unexplained heterogeneity ηij, and error terms vijt

and εijt respectively. Here εijt is a zero-mean random variable, and vijt = 1 + εijt/exp[...]

consequently a heteroscedastic though multiplicative disturbance term with a conditional

mean equal to one. Further, xijt, zij and Dijt are row vectors, β, γ and δ column vectors of

unknown coefficients of corresponding size, and βyi, βyj unknown scalar coefficients. When

panels are large in time, then there are alternative specifications for the time effect that

may be preferable to the fixed effects and can be easily accommodate in the framework

that will be introduced in the remainder of this paper, see for instance Pesaran (2006).

While Santos Silva and Tenreyro (2006) criticized the inconsistency of OLS or GLS estim-

ators of

lnTijt = ln yitβyi + ln yjtβyj + ln(xijt)β + ln(zij)γ +Dijtδ + αt + ηij + ln vijt, (4.3)

due to the fact that the conditional expectation of ln vijt is a function of the independent

variables and ηij (if a random effect), Westerlund and Wilhelmsson (2009) emphasized the

distortion caused by zero trade observations. Both proposed PPML to overcome these

problems. In contrast, Martinez-Zarzoso (2011) argued that nevertheless OLS and GLS

showed better performance in practice, and several authors discussed ways to incorporate

zero-responses differently. Henderson and Millimet (2008) found that the nonparametric

alternatives they studied could not outperform the above parametric models, neither in

in-sample nor in out-of-sample prediction. Recall further the above discussed problems

that occur if the ηij are modeled as fixed effects.

Based on these observations, we propose to estimate equation (4.1) with the aid of a mixed

effects PPML, where the ηij are random effects. The well known problem is that that if this

unknown heterogeneity is related with the included explanatory variables, then also this

estimator is inconsistent. The best known possible remedy is probably the Mundlak (1978)

device. He proposed to include the temporal means of the explanatories linearly in model
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(4.1) wherever possible (i.e. in our case basically of the lnxijt as most of the dummies

are time invariant, too). Although this proposal can often be found in the literature –

see also the much less practical but better motivated one of Chamberlain (1984) – it has

never been accepted in applied econometrics as a real way out of the dependency dilemma

of random (respectively mixed) effects models. Note further that for panels short in time,

the inclusion of temporal means runs the estimation numerically less stable and inherits

complex covariance structures with large variances for the coefficient estimates.

In the context of small area statistics, Lombard́ıa and Sperlich (2011) introduce a semi-

parametric filter to get rid of the possible dependency between this random heterogeneity

and included explanatory variables. Following their idea, we claim that for a set of time-

invariant but else continuous variables wij there exists an unknown function ψ(.) such that

E(ηij|ψ(wij), xijt, zij, Dijt) = 0 or in other words that ηij = ψ(wij) + uij with uij being

an unobserved random effect, uncorrelated with xijt, zij, Dijt and wij. If we additionally

assume that uij is independent of εijt, then model (4.1) becomes

Tijt = exp[ln(xijt)β + ln(zij)γ +Dijtδ + αt + ψ(wij) + uij + εijt]. (4.4)

The existence of such a filter or function ψ(·) is not a mystery at all. As wij is continuous

we can imagine the extreme case where ψ simply does a kind of interpolation such that it

corresponds in fact to fixed effects and we get ηij ≡ 0. Another extreme case it that there

is actually no dependency between the included explanatory variables and ηij; then we

can set ψ ≡ 0. In most cases, however, ψ will be something in between and be estimated

accordingly.

The variables wij can be considered as proxies for the relation of xijt and zij with ηij.

Certainly, their availability will depend on the particular problem. For some applications

one may have a clear idea of the causes of the dependency between explanatory variables

and the individual unobserved heterogeneity term. For instance, if we modeled wages the

last is due in good part to individual ability, and we would look for corresponding proxies

like the IQ. If we are not sure and lacking additional information, one can follow Mundlak’s

suggestion of taking the temporal means of the time varying explanatories for wij but then

has to be very careful with the coefficients’ correct interpretation, see discussion above.

Note, however, that our proposal is much more flexible and general, given the fact that

we allow these variables to enter nonparametrically. If one is not particularly interested

in estimating right the coefficient γ then the respective time invariant zijl can be part of
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wij.

To avoid smoothing problems, the curse of dimensionality, and to provide the chance to

interpret ψ (the impact of wij), we will consider ψ(wij) as an additively separable func-

tion. Furthermore, we would like to get confidence intervals around the estimated additive

functionals. Finally, recall that we said that ψ has to be estimated accordingly to really

act as a filter. When using smoothers for ψ, this problem basically boils down to the ques-

tion of smoothing parameter selection along a well defined objective function. Note that

Lombard́ıa and Sperlich (2011) considered only a multidimensional kernel estimate com-

bined with cross validation or a modified Hausman test for the exogeneity of explanatories.

All the points we call for have recently been solved in the P-spline literature on mixed

effects model estimation; see, for example, Wood (2006). Programs which can handle this

estimation of equation (4.4) with PPML are provided in R and Stata. In the moment

of estimation, we face at least one remaining problem which is due to the nonparametric

nature of ψ on the one hand, and the wanted correlation of regressors and wij on the other

hand. This can easily lead to multifunctionality (the analogue to multicollinearity). There

are basically two ways to handle this: variable selection as is usually done in complex high

dimensional regression problems, and the restriction of flexibility of ψ, e.g. by limiting the

impact of the Mundlak device variables to linearly.

It should be added that an extension of our (else parametric) model with nonparametric

filter to the more complex semi- and nonparametric world is straight forward, and can

even be performed with the same software. Henderson and Millimet (2008) argue that the

added value of such an extension is quite poor if not questionable.

In the next section, we use our semi-random effects gravity model (4.4) to analyze the

trade flows among the EU25 countries from 2004 till 2007. Recall that this was the period

following the big extension to Eastern Europe until the financial crises in the Western

world. The dependent variable of interest will be the import flows, given that countries

often tend to monitor their imports more carefully than their exports.
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4.4 Trade flows insider the European Union after the big

Eastward Enlargement

4.4.1 Data and model

As said above, we will consider the import flows as our dependent variable. With regard

to the independent time-variant variables, we use as proxies for the overall economic mass

of the countries in the bilateral trade flow the GDPs (MGDP and XGDP for importer and

exporter countries respectively), and the populations (MPOP and XPOP for importer and

exporter countries respectively). We expect a positive effect for MGDP and XGDP while

for MPOP and XPOP the literature documents an ambiguous effect. For multilateral

trade barriers we follow Anderson and van Wincoop (2003) including the consumer price

indexes MCPI and XCPI of the importing and exporting countries. We consider also a

measure of the difference in terms of factor endowment of both trading countries, RFE,

given by the absolute value of the difference between their per capita GDPs, and a measure

of the degree of similarity in bilateral size, SIM, an index that is bounded between 0

(absolute divergence in size) and 0.5 (equal country size). The higher is RFE, the larger

is the difference between each country factor endowment resulting in a lower intensity of

intra-industry trade but a higher volume of inter-industry trade. Consequently, the total

effect has an ambiguous sign. Serlenga and Shin (2007) found positive signs for the effect

of these variables in explaining total trade while Baltagi, Egger and Pfaffermayr (2003)

found a negative sign for RFE and a positive one for SIM when modeling exports. All

these regressors enter our model in logarithmic terms.

In what concerns time-invariant variables, we use the distance (logarithm of kms between

the capitals) of the two trading partners, DIST, as a proxy for the effect of transportation

costs. Therefore, we expect this variable to have a negative effect on trade. We consider

also some time-invariant dummy variables like NEIGH which is equal to one if both trading

countries share a land or sea border, COMLANG which is equal to one if both trading

partners share the same official language, ETHNIC which is equal to one if in the importer

country there is an ethnic minority of the exporter country, EU15 which is equal to one if

both countries belong to the European 15, MLOCK / XLOCK which is equal to one if the

importer / exporter country has no direct connection to the sea (i.e. are landlocked), and
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the dummy GERMAN which is equal to one if one of the countries involved in the trade

flow is Germany. We admit that this is not really an ’explaining’ variable but as it has

been shown in many different empirical works, skipping this dummy from the regression

increases significantly the remaining unobserved heterogeneity in an asymmetric way. We

expect that all these dummy variables have a positive effect on trade except for MLOCK

and XLOCK. We also introduced time dummies as well, denoted by D05, D06 and D07

for the years 2005, 2006 and 2007.

For the proxies, say Wij, that shall filter possible dependence between the remaining

heterogeneity ηij and the regressors enumerated above, we consider the area of importer

and exporter country, respectively MAREA and XAREA for size. To control for the

technological development (in absolute and relative terms) we take the yearly average of

the number of patents from 2003 to 2005 and its per capita counterpart, denoted by NPAT

and NPATpc, respectively. All these four variables were included in logarithmic terms.

Table 4.1 reports some descriptive statistics about all of the used variables. Further

details on the way the variables were obtained can be found in the Appendix. It should be

mentioned that GDP and population are correlated by more than 80% for importing and

exporting countries, the consumer price indexes MCPI and XCPI exhibit a correlation

of about 70% among themselves and one of 6 to above 9% (in absolute values) with

population and GDP, RFE and SIM a negative correlation of about -27%. Moreover,

while RFE shows a correlation of 10 to 20% with 5 regressors, SIM has mostly a pretty

low correlation with other regressors (varying from zero to five percent). Finally, being

landlocked is to 30% correlated with population size and to 23% with GDP. The AREA

variables are to almost 80% correlated with the corresponding population sizes and to 60%

with the corresponding GDPs.

The estimation of all our models have been performed by the use of the gamm procedure

of the software package R. For all models for which alternative estimation procedures

existed, no matter whether in R or Stata, we double checked our results. Where numerical

problems occurred due to multicollinearity or multifunctionality, the R routines turned

out to be numerically more robust. In general, the R procedures were mostly faster so

that all results presented in the following refer to the output obtained in R. Where offered

by the routines, we tried different specifications of the distribution of our random effects
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Variable Obs Mean Std. Dev. Min Max

M 2400 37.5504 95.4791 0.0013 920.7711

MGDP 2400 12.0023 1.5235 9.1749 14.7005

XGDP 2400 12.0031 1.5242 9.1749 14.7005

MPOP 2400 16.0941 1.2717 13.0280 18.2287

XPOP 2400 16.0884 1.2706 13.0280 18.2287

MCPI 2400 4.6125 0.0408 4.5183 4.7649

XCPI 2400 4.6125 0.0408 4.5183 4.7649

RFE 2400 0.9767 0.7696 0.0045 7.9311

SIM 2400 -1.5861 0.9152 -4.7496 -0.6931

DIST 2400 7.0065 0.6413 4.0431 8.1194

NEIGH 2400 0.1333 0.3400 0 1

COMLANG 2400 0.0300 0.1706 0 1

ETHNIC 2400 0.0167 0.1280 0 1

EU15 2400 0.3500 0.4771 0 1

GERMAN 2400 0.0808 0.2726 0 1

MLOCK 2400 0.2000 0.4001 0 1

XLOCK 2400 0.2000 0.4001 0 1

MAREA 2400 11.5227 1.1928 7.8579 13.2123

XAREA 2400 11.5227 1.1928 7.8579 13.2123

NPAT 2400 5.6722 2.2519 2.1511 10.0200

NPATpc 2400 3.3400 1.7927 -0.2066 5.5994

Table 4.1: Descriptive statistics

uij. Typically the outcome did not vary significantly along the different specifications

(namely gamma for the multiplicative version, and normal for the additive one). All

results presented in this article refer to the normal specification.

4.4.2 Summary of main estimation results

We start with the estimation of parametric panel data models following the PPML ap-

proach. A first trial showed that variables RFE should be skipped but SIM be kept,

compare also with discussion above. For the pooled regression (model 1) the estimates of
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the elasticities of importer GDP, exporter GDP and distance have size smaller (in absolute

value) than the usual estimates obtained with the loglinear model, though this is a tend-

ency depicted also in Santos Silva and Tenreyro (2006) (for different bilateral partners than

those considered here) and Proença et al (2008) (for the same bilateral partners addressed

here), both using the PPML for cross section data. The impact of importer population

is not relevant while we find a positive significant effect for the population size of the ex-

porting country. As expected, the CPI of the importer is positive whereas the one of the

exporter is negative. If countries share borders, if Germany is involved, or if both trading

partners belong to the EU15, we have a significant positive effect. Landlockedness of the

importing country, and distance between partners have a significant negative impact. All

included time fixed effects are significant and increasingly positive (over time).

In a second step we try the parametric Mundlak device. We denote the temporal means

of our regressors by simply putting an ”m” in front of the original name of the variable.

If we compare the two models of which the estimates are given in Table 4.2, we see quite

important changes from model 1 to model 2: the impact of XGDP decreases by almost

60% whereas the impact of MGP goes up by more than 10%. XPOP changes its sign, the

consumer price index variation becomes insignificant like EU15 and almost GERMAN.

The impact of NEIGH cuts almost to the half, SIM changes the sign and becomes clearly

independent. Note also that the estimated σu is almost ten percent smaller in model 2

than in model 1. Certainly, the problem is that the interpretation of β does indeed change

importantly from model 1 to model 2. However, what we have in model 2 is mainly a

projection of the time invariant heterogeneity on the temporal means.

It would therefore be preferable to filter possible dependence between the pair effects ηij

(see equation (4.3)) and our regressors lnxijt by means of our proxies Wij and function

ψ, compare model (4.4). This has first been done by only including the area and patent

variables but without (further) temporal means and is denoted as model 3.1. further

, the alternatives are to include the temporal means of the population sizes, let it be

nonparametrically (model 3.2) or parametrically (model 3.3), and the temporal means of

the GDPs (model 3.4) respectively. The estimation results for model 3.1 and 3.2 are given

in Table 4.2, and those for models 3.3 and 3.4 in Table 4.4 of the Appendix. In general we

can say that these models seem to be located in-between models 1 and 2 (except model

3.4), which is in accordance with our intuition. The remaining pair effect uij, which is

supposed to be random, shows a quite similar standard deviation for all models of this
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class. Models 3.2 and 3.3 are basically the same what simply means that the impact of

the temporal means of the population size is log-linear.

What is evident is that each time we include the temporal mean of one of our regressors

of interest, its β coefficient changes drastically. Compare especially the coefficients of

XPOP of model 3.1 versus models 3.2, 3.3 and the coefficients of the GDPs of model 3.1

versus model 3.4. Also the coefficients of the CPIs change a lot due to its high absolute

correlations of more than 8% with mXPOP and of more than 15% with mXGDP. What

is not shown here is that the model changes a lot if the temporal means of the GDPs

enter nonparametrically. This indicates that we may face rather a problem of functional

misspecification than of omitted variables. The functional forms of our additive ψ are

given in Figure 4.1 together with 95% confidence intervals. The shown graphs refer to

model 3.1. The corresponding estimates of ψ(Wij) for the other models are given in the

Appendix. The nonparametric impacts of the temporal means of population sizes, see

model 3.2, are given in Figure 4.2.

One might want to be on the safe side (concerning possible exogeneity) and include always

all temporal means, but Chamberlain (1982) showed already for simpler models that this

can easily fail to work - without discussing the details of proper interpretation. We can

include temporal means only for our lnxijt but not for the other explanatories. Further-

more, for our data, larger models than those presented in this articles turned out to be

overidentified facing problems of multicollinearity and multifunctionality. Finally, a high

significance of the temporal means may simply reflect the inappropriateness of the log-

linear specification or the choice of units before doing the log-transform, recall also our

above made comments.

All our studies made so far indicate that the impact of GDP is likely to be more com-

plex than log-linear of needs a different choice of units before the log-transform is done.

The easiest way to relax our model (4.4) is to replace β1 lnMGDP and β2 lnXGPD by

β1(lnMGDP ) and β2(lnXGPD), where now β1 and β2 are nonparametric functions. Note

that we alternatively tried to include the squared and cubic terms of log-GDP but unfor-

tunately without similar success. We denote our new model 4.1 in reference to model 3.1

because only the functional shape of the impact of GDP has changed. The similarities to

model 3.1 and differences to model 1 or model 2 are as expected. The standard deviation
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Model: 1 2 3.1 3.2 4.1

Const -5.3178 .0001 -70.2684 .0691 -7.1251 .0000 -0.61577 .6640 9.7555 .0000

MGDP 0.7183 .0000 0.7961 .0000 0.7900 .0000 0.77226 .0000 n.p.e

XGDP 0.5008 .0000 0.2139 .0000 0.4192 .0000 0.29200 .0000 n.p.e

MPOP 0.0041 .2917 0.0003 .9307 0.0023 .5485 0.00022 .9537 0.0028 .4300

XPOP 0.2344 .0000 -0.0890 .0499 0.2810 .0000 -0.09098 .0455 0.2627 .0000

MCPI 0.3438 .0514 -0.0126 .9509 0.1510 .4623 0.14191 .4789 0.2336 .2871

XCPI -0.9498 .0000 -0.2398 .2118 -0.6499 .0007 -0.33542 .0763 -1.1525 .0000

SIM -0.0509 .0771 0.0651 .2580 -0.0631 .0260 -0.01382 .6478 -0.1352 .0000

DIST -1.2632 .0000 -1.3165 .0000 -1.1971 .0000 -1.19854 .0000 -1.2422 .0000

NEIGH 0.4054 .0013 0.2459 .0351 0.2773 .0076 0.25257 .0112 0.3279 .0017

COMLANG -0.2609 .1817 -0.0443 .8046 0.1004 .5296 0.09505 .5353 0.0255 .8736

ETHNIC 0.1206 .6185 0.2227 .3157 0.0158 .9359 0.03128 .8683 -0.0679 .7304

EU15 0.4317 .0000 0.1351 .2371 0.8220 .0000 0.70199 .0000 0.7954 .0000

MLOCK -0.3581 .0000 -0.3313 .0000 0.0673 .5352 -0.01673 .8679 0.0133 .9006

XLOCK 0.0243 .7659 0.0271 .7211 0.1136 .2618 0.08796 .4337 0.1676 .0872

GERMAN 0.1805 .0213 0.1350 .0679 0.0715 .4009 -0.02853 .7566 0.1587 .0444

2005 0.0256 .0004 0.0234 .0010 0.0229 .0015 0.02183 .0019 0.0485 .0000

2006 0.0818 .0000 0.0847 .0000 0.0775 .0000 0.07985 .0000 0.1368 .0000

2007 0.0998 .0000 0.1066 .0000 0.0938 .0000 0.09870 .0000 0.1868 .0000

mMGDP -0.1368 .1379

mXGDP 0.6149 .0000

mMPOP 0.2329 .0005 n.p.e

mXPOP 0.0978 .2157 n.p.e

mMCPI 13.0632 .0169

mXCPI 0.0719 .9897

mSIM 0.0090 .8951

Wadd n.p.e n.p.e n.p.e

σu 0.708668 0.640852 0.559236 0.531391 0.562986

Table 4.2: Estimates of coefficients (with p-values), intercept and the random effects stand-

ard deviation for different model specifications. n.p. stands for nonparametric

estimates. The latter are shown in the corresponding figures: for model 3.1. the

estimated impact of the additional W -instruments MAREA, XAREA, NPAT,

and NPATpc are plotted in Figure 4.1; for models 3.3 and 4.1 see Appendix.
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Figure 4.1: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 3.1 with 95% confidence intervals.

of the random effect has hardly changed compared to the class of our models 3.1 to 3.4.

The next steps would be again to see what changes if we include additionally temporal

means (see model 4.2 and 4.3 in the Appendix) or finally to try an almost purely non-

parametric, say generalized additive model, compare model 5 in the Appendix. But before

we start to further compare coefficients and discuss reasons for significant changes, it is

probably more reasonable to look for a model selection criteria and see whether we really

gain something with all these extensions. Table 4.3 provides such a comparison based

on the Akaike, the Bayesian Information Criterion, and the Log-likelihood. We see that

along these criteria model 4.3 seems to be the best but in our opinion is little helpful for

reasonable economic interpretation. We should also be careful with looking at the absolute

numbers. In fact, compared to model 4.1, only model 4.3 can improve more than 10% in

all criteria. However, between model 3.1 and 4.1 we have again a loss / gain of another

10%. Respective the question of endogeneity, a Hausman type test is not available for our
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Figure 4.2: Estimates of ψ5(mMPOP ) and ψ6(mXPOP ) for model 3.2 with 95% confid-

ence intervals.

models in any software. We programmed one based on (wild) bootstrap but numerically it

is not very stable and therefore just not reliable. The typical but not surprising message is,

however, that a simple random (or mixed) effects model suffers from endogeneity whereas

nonparametric filters turn the test statistic insignificant. It does – and maybe should –

not further serve or help for model selection.

Model: 1 2 3.1 3.2 4.1

AIC 1603.479 1388.531 1421.918 1306.513 1144.407

BIC 1724.927 1550.461 1589.631 1497.359 1323.687

LL -780.740 -666.265 -681.959 -620.257 -541.204

Model: 3.3 3.4 4.2 5 4.3

AIC 1311.954 1301.396 1028.780 1079.962 975.020

BIC 1491.234 1480.676 1219.626 1293.941 1194.782

LL -624.977 -619.698 -481.390 -502.981 -449.510

Table 4.3: Different model selection criteria for all estimated model specifications.
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4.5 Concluding remarks

In this paper we have introduced a methodology to estimate a semiparametric specification

of a gravity model for panel data with mixed effects and applied it to explain the trade

flows among the EU25 countries from 2004 to 2007. We use proxy variables to filter

nonparametrically the country pair effects that are supposed to be correlated with the

explanatory variables. Given that these proxies’ impact is modeled nonparametrically,

our new model class includes the two extreme cases of fixed and random effects models.

The resulting model is a semi-mixed effects model in the sense that it still has a residual

random effects component. Thanks to this modeling tool we are now able to extend

the suggestion of Santos Silva and Tenreyro (2006) to use PPML estimation for gravity

models. Our extension is aimed to address different pitfalls which have been the source

of a quite controversial discussion about which is the best model or method to analyze

gravity models and / or trade. We introduced our method directly for the case of panel data

analysis but should emphasize that this extension works equally well for other types of data

(unbalanced panels, cohorts, cross sectional, etc.). It is well known that the introduction

of an additional randomness in the (pseudo-)poisson models can substantially increase

the efficiency of estimation as it allows for overdispersion, zero trade, and can easily be

extended to zero inflation.

We discussed several reasons why we are convinced that, especially for short-time panels,

fixed effects Poisson regression is not appropriate to estimate trade flows. On the other

hand, random effects and pooled Poisson regression ignore that country unobserved effects

may be correlated with explanatories which may lead to inconsistency. Our approach is

a good compromise and has shown to give sensible results. As a side effect, we can

also explore and handle the problem of model specification concerning possible model

specification problems caused by, let’s say a bad choice of units before taking the log-

transform of GDP.

It should finally be emphasized that, though the idea and the model class are completely

new, our approach is already now applicable as R and stata provide commands which

help the practitioner to estimate these kind of models.
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4.6 Appendix

4.6.1 Countries included in the data set

Austria (AU), Belgium (BE), Bulgaria (BU), the Czech Republic (CZ), Denmark (DK),

Estonia (EE), Finland (FI), France (FR), Germany (DE), Greece (GR), Hungary (HU),

Ireland (IR), Italy (IT), Latvia (LV), Lithuania (LH), Luxembourg (LU), the Netherlands

(NE), Poland (PL), Portugal (PT), Romania (RO), Slovakia (SK), Slovenia (SV), Spain

(SP), Sweden (SW) and the United Kingdom (UK).

4.6.2 Further details about the used variables

Dependent Variable:

- IMPORTS: Nominal Import (cif) flows in 1011 euros.

Independent Variables:

- GDPM/GDPX: Importer/Exporter country’s Nominal Gross Domestic Product

at Market Prices, expressed in millions of euro. Yearly data obtained from the

Eurostat’s New Cronos Database.

- IMPOP/EXPOP: Importer/Exporter country’s Population, expressed in thou-

sands of people at the end of the period. Data obtained from the Eurostat’s

New Cronos Database.

- CPIM/CPIX: Consumer Price Indexes of importer/exporter country.

- RFEijt =

∣∣∣∣log

(
GDPit
POPit

)
− log

(
GDPjt
POPjt

)∣∣∣∣
- SIMjt = log

[
1−

(
GDPit

GDPit +GDPjt

)2

−
(

GDPjt
GDPit +GDPjt

)2
]

- DISTANCE: Absolute Distance, expressed in kilometers, is the geodesic dis-

tance between capitals (in the case of the Netherlands, Amsterdam sub-

stitutes Den Haag), measured as the surface distance between two points

of latitude and longitude (great circle distance). Values obtained from

www.wcrl.ars.usda.gov/cec/java/lat-long.htm.
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- NEIGH: Neighboring Dummy Variable is equal to one if two trading partners

share a land or sea border, zero otherwise. From CIA’s World Factbook 2003

on www.cia.gov/cia/publications/factbook/index.html.

- COMLANG: Common Language Dummy Variable is equal to one if two trading

partners share the same official language, zero otherwise. From CIA’s Factbook

2003 on www.cia.gov/cia/publications/factbook/index.html.

- ETHNIC: Ethnic Dummy Variable is equal to one if there is in the importer

country an ethnic minority of the exporter country that represents more than

5% of total population of the latter, zero otherwise. From the CIA’s The World

Factbook 2003.

- EU15: Dummy equal to 1 if the exporting country belongs to the European 15.

- GERMAN: Dummy equal to 1 if the two involved countries is Germany.

- MLOCK/XLOCK: Landlockedness Dummy Variable for the Importer/Exporter

country, is equal to one if the importing country has no direct connection to

sea, zero otherwise.

Additional PROXY Variables to filter possible dependency:

- IMPLANDAREA/EXPLANDAREA: Importer/Exporter country’s area. (con-

stant in time)

- MEANPAT: Average of the number of patents of importer country recorded as

EPO (European patent office) patent applications (Direct EPO filings + EURO-

PCT in regional phase) in the period 2003-2005; source OECD. (constant in

time)

- MEANPATPC: Average number of patents per million inhabitant of importer

country recorded as EPO (European patent office) patent applications per mil-

lion inhabitant in the period 2003-2005; source EUROSTAT. (constant in time)

- not to forget, some of the averages of the time varying variables from above (recall

Mundlak device).
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4.6.3 Further estimation results
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Figure 4.3: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 3.2 with 95% confidence intervals.
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Figure 4.4: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 3.2 with 95% confidence intervals.
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Model: 3.3 3.4 4.2 5 4.3

Const -7.7228 .0030 -1.4173 .4553 9.9938 .0000 1.2897 .0000 -74.743 .0662

MGDP 0.7727 .0000 0.8084 .0000 n.p.e n.p.e n.p.e

XGDP 0.3112 .0000 0.2181 .0000 n.p.e n.p.e n.p.e

MPOP 0.0002 .9502 0.0012 .7500 0.0019 .5901 n.p.e 0.001 .7434

XPOP -0.0911 .0452 0.0449 .2633 0.0641 .0931 n.p.e -0.046 .2740

MCPI 0.1449 .4704 -0.0339 .8688 0.0642 .7690 n.p.e 0.086 .6914

XCPI -0.3940 .0365 -0.2011 .2954 -0.5103 .0211 n.p.e -0.880 .0001

SIM -0.0178 .5245 0.0499 .0910 -0.0076 .8042 n.p.e 0.028 .6015

DIST -1.1925 .0000 -1.2100 .0000 -1.2489 .0000 n.p.e -1.231 .0000

NEIGH 0.2270 .0256 0.2774 .0073 0.3005 .0034 0.4371 .0001 0.266 .0071

COMLANG 0.1613 .3033 0.1378 .3852 0.0971 .5378 0.0607 .7005 0.127 .4030

ETHNIC 0.0560 .7708 0.2200 .2643 0.1468 .4522 -0.0551 .7760 0.095 .6094

EU15 0.7910 .0000 0.2664 .0054 0.3062 .0012 0.8044 .0000 0.520 .0000

MLOCK 0.0261 .7995 -0.3506 .0000 -0.3239 .0001 -0.1421 .2527 -0.298 .0002

XLOCK -0.0080 .9364 0.0886 .3522 0.0894 .3485 0.1283 .1927 0.104 .2821

GERMAN -0.0680 .4168 0.0721 .3793 0.1207 .1177 0.1269 .1010 0.036 .6394

2005 0.0223 .0015 0.0225 .0013 0.0449 .0000 0.0775 .0000 0.052 .0000

2006 0.0805 .0000 0.0817 .0000 0.1342 .0000 0.1753 .0000 0.150 .0000

2007 0.0995 .0000 0.1020 .0000 0.1854 .0000 0.2132 .0000 0.211 .0000

mMGDP -0.5860 .0000 -0.4320 .0004 -0.614 .0000

mXGDP 0.5547 .0000 0.5398 .0000 0.504 .0000

mMPOP -0.2905 .0302 -0.093 .4635

mXPOP 0.7297 .0000 0.304 .0005

mMCPI -10.415 .0836

mXCPI 29.270 .0000

mSIM -0.042 .5081

Wadd n.p.e n.p.e n.p.e n.p.e n.p.e

σu 0.547692 0.559103 0.555421 0.550515 0.531086

Table 4.4: Estimates of coefficients (with p-values), intercept and the random effects stand-

ard deviation for different model specifications. n.p. stands for nonparametric

estimates. The latter are shown in the corresponding figures.
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Figure 4.5: Estimates of β1(mMGDP ) and β2(mXGDP ) for model 4.2 with 95% confid-

ence intervals.
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Figure 4.6: Estimates of β1(MGDP ), β2(XGDP ) β3(MPOP ), β4(XPOP ) for model 5

with 95% confidence intervals.
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Figure 4.7: Estimates of β5(MCPI), β6(XCPI) β7(SIM), β8(DIST ) for model 5 with

95% confidence intervals.
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Figure 4.8: Estimates of β1(mMGDP ) and β2(mXGDP ) for model 4.3 with 95% confid-

ence intervals.
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Figure 4.9: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 3.3 with 95% confidence intervals.

90



4.6 Appendix

8 9 10 11 12 13

−
3

−
2

−
1

0
1

2
3

4

MAREA

im
pa

ct

8 9 10 11 12 13

−
3

−
2

−
1

0
1

2
3

4

XAREA

im
pa

ct

2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

4

NPAT

im
pa

ct

0 1 2 3 4 5

−
3

−
2

−
1

0
1

2
3

4

NPATpc

im
pa

ct

Figure 4.10: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 3.4 with 95% confidence intervals.
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Figure 4.11: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 4.2 with 95% confidence intervals.
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Figure 4.12: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 5 with 95% confidence intervals.
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Figure 4.13: Estimates of ψ(W ) = ψ1(MAREA) + ψ2(XAREA) + ψ3(NPAT ) +

ψ4(NPATpc) for model 4.3 with 95% confidence intervals.
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Summary

In this dissertation, we focused on semiparemetric estimation using mixed effects models

in panel data and small area estimation where it is intended to relax the independence

assumption between random effects and the covariates which can presently be considered

as a main challenge in the practical use of mixed effects models.

In Chapter 2, we presented the mixed effects models and their typical applications along

with small area estimation and panel data analysis. We introduced the idea along with the

semi-mixed effects model referring mainly to Lombard́ıa and Sperlich (2011). Our main

focus was on the extension to P-splines. After a detailed introduction we performed and

studied different implementations. We allowed for partly choosing and partly fixing the

smoothness of the nonparametric components in the model. We tried different alternative

estimation methods for the variance of the random effects and the pseudo-variances of the

splines. We estimated the variance components simultaneously by ML method with a cor-

rection. For notational convenience, we re-wrote estimation of the variance components in

a way that distinguishes the random part from the splines’ pseudo random parts. Further

alternatives have been implemented to account for the possibility of only estimating the

variances of the truly random parts but fix the smoothness of function or pre-determine the

slider for our dependence filter function. It turned out that to distinguish between random

and pseudo-random parts only makes sense if we want to assume different distributions,

and even then it is not evident what numerically happens and if one wants to fix the

smoothness, it is better from an implementation point of view to fix one of the variances

of the pseudo-random effects. We conclude that one of these implementations is sufficient.

Other extensions were implemented to account for possible heteroskedasticity of either

the random effects, the pseudo-random effects, or the residuals. Our implementation for

the heteroskedasticity of the residuals did work but not very well. We basically followed

White’s well known approach in econometrics by simply using the squares of residuals on
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the variance matrices. A much more successful extension to incorporate simultaneously

heteroskedasticity for the error term (recall that this effects the smoothness parameter

and, in our case certainly also the random effects prediction) can be found in Crainiceanu,

Ruppert, Carroll, Joshi, and Goodner (2007), Krivobokova, Crainiceanu, and Kauermann

(2008) or Wiesenfarth, Krivobokova, Klasen, and Sperlich (2011).

In Chapter 3, we concentrated mainly on small area estimation and we discussed the main

statistical challenges when using mixed effects model estimation and prediction. The

aim of the chapter was to avoid possible dependence between the random effects and the

covariates with a semiparametric modeling approach using splines. After reconsidering

the P-splines, we introduced briefly the basic ideas of thin plate spline regression to better

account for spatial smoothing. We reviewed briefly how the prediction mean squared error

can be calculated for our spline estimation approach. We carried out a small Monte Carlo

simulation study to illustrate the estimation performance of the proposed model. We

considered models somewhat more complex than those considered in the earlier section

of Chapter 2 that were closer to the model we used in our small area environmental

study. The data we used were collected by the Environmental Monitoring and Assessment

Program of the US Environmental Protection Agency where they surveyed 334 lakes out

of a population of 21026 in the north-eastern states of the U.S.A. between the years 1991

and 1996. While analyzing the data, we used measures of carbon trioxide and hydroxyl

levels in the lakes’ water as our covariates, Hydrologic Unit Codes as random effects and

the elevation of the lakes as fixed effects. In our model, we had several smooth functions

and they were estimated by thin plate splines and cubic splines where we could rewrite

the cubic splines in additional form. We concluded that the location did matter even

after having controlled for the other variables like elevation. Also, as Breidt, Opsomer,

Johnson and Ranalli (2007) pointed out, simple linear mixed effects models are often not

flexible enough to reflect correctly complex relationships such as those in our environmental

problem. On the other hand, the crucial and always applied independence assumption is

typically problematic and in our case it was clearly violated. What we also concluded

was that the control functions were necessary to filter the possible dependence between

covariates and area effects as otherwise all small area inference would be invalid.

In Chapter 4, we presented an application with the gravity model to explain panel bi-

lateral country trade flows. We applied our semiparametric approach to panel gravity

model via adding a nonparametric term in the transformed conditional mean in order
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to capture the dependency between the explanatory variables and the unobserved indi-

vidual heterogeneity term. For this application, we used the generalized additive mixed

effects model, which is an additive extension of generalized mixed effects model. Based

on the observations, we proposed to estimate our model with the help of a mixed effects

PPML, where the unexplained heterogeneity term were random effects. The well known

problem is that if this unknown heterogeneity is related with the included explanatory

variables, then also this estimator is inconsistent. The best known possible remedy to

this problem is the Mundlak (1978) device which is including the temporal means of the

explanatories linearly in the model. In the context of small area statistics, Lombard́ıa and

Sperlich (2011) introduce a semiparametric filter to get rid of the possible dependency

between this random heterogeneity and included explanatory variables. Following their

idea, we claimed that for a set of time-invariant variables, where we applied the Mundlak

device, there exists an unknown function and we considered this function to be an ad-

ditively separable function. We allowed these time-invariant variables to enter our model

nonparametrically. We used our semi-random effects gravity model to analyze the trade

flows among the EU25 countries from 2004 till 2007. Given that the proxies’ impact was

modeled nonparametrically, our new model class included the two extreme cases of fixed

and random effects models and the resulting model was a semi-mixed effects model in the

sense that it still had a residual random effects component. With the help of this modeling

tool, we were able to extend the suggestion of Santos Silva and Tenreyro (2006) to use

PPML estimation for gravity models. We introduced our method directly for the case of

panel data analysis but should emphasize that this extension works equally well for other

types of data (unbalanced panels, cohorts, cross sectional, etc.).
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