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CHAPTER 1

INTRODUCTION

Shephard (1996) pointed out the importance of studying the volatility models

for the financial markets. The availability of high quality transaction data at

an affordable cost makes it possible to investigate the relationship between the

intra-daily price movements and the corresponding trading volume (see Engle and

Russell, 1998). The salient features of the transaction data are, firstly, that the

transactions are recorded at irregular time intervals over the course of the trading

day and, secondly, the price changes between consecutive transactions can have

only a limited number of values.

In order to account for the feature of irregular time intervals, Engle and Russell

(1998) considered the time at which a transaction is recorded as a random variable.

They then proposed the class of autoregressive conditional duration (ACD) models

as a time series model for the sequence of times elapsed between consecutive trades.

Engle and Russell (1998) also considered each variable (such as the transaction

price and the trading volume) attached to a transaction time as a random variable.

However, the changes in the successive transaction prices from their dataset have

a negative sample autocorrelation at lag one1. As a result, Engle and Russell

1The cause of this phenomenon is explained, for example, in Bauwens and Giot (2001, Section
2.7).
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(1998) used instead the midquotes2 as the price variable to define the sequence

of quote times elapsed between consecutive significant3 price changes. They also

showed that, conditional on the history, the intensity function for significant price

change can be used to construct a measure of instantaneous return volatility (See

Engle and Russell, 1998, p. 1154, Equation (32)).

A number of modifications to the original ACD model of Engle and Rus-

sell (1998) have been proposed in the literature. For a survey see, for example,

Hautsch (2004, Section 5.3). The modifications may be grouped broadly into the

specification of the conditional mean function and the specification of the error

distribution. In particular, Hautsch (2004, Section 5.5.1) evaluated seven different

specifications of the expected duration function of the ACD model and concluded

that a nonlinear mean function provided a better description of the durations

between consecutive significant midquote change than a linear mean function.

Bauwens et al. (2004) applied a serially independent unit exponential model and

thirteen separate specifications of the ACD model4 to the waiting time between

successive midquote changes of at least one-eighth of an US dollar. They com-

pared the models with each other on the basis of their forecast performance, and

2The midquote is the average of the best bid quote (the price at which a buyer offers to buy
an unit of the share) and the best ask quote (the price at which a seller offers to sell an unit
of the share). The data used by Engle and Russell (1998) is obtained from trading on the New
York Stock Exchange (NYSE). It contains, in addition to the trade data, the best bid quote, the
best ask quote and the time at which the quotes are recorded. See paragraph one of Hautsch
(2004, Section 4.2.1) for a discussion of data obtained from the NYSE.

3This means that the absolute value of the price change is at least a specified level - see later.
4The specifications used there selected from four types of model for the conditional mean,

four families of distributions for the error process, and a class of models for duration expressed
as a ratio of the quantiles of two gamma distributions.
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concluded that the distribution for error in all the successful models have more

parameters than the exponential and Weibull.

The transaction datasets analysed in this thesis contain only the following

information for each transaction recorded: the time at which the transaction is

recorded, the price at which the share is traded and the volume of the share

traded. As a result, the price durations considered in this thesis are all defined

as the time elapsed between consecutive significant transaction price changes. A

financial duration model may, of course, be proposed for datasets that contain

more information (for example, the bid and the ask quote) than are available in

the dataset used in this thesis.

Hujer et al. (2002) proposed to model the durations between consecutive

trades by allowing for some unobserved heterogeneity in the financial duration

models. They reported that the models that allow for unobserved heterogeneity

provided better forecasts than those provided by the ACD models that do not

allow for unobserved heterogeneity. Hujer et al. (2002), however, did not ap-

ply their model to the more important variable of duration between significant

price changes and they did not introduce covariates (such as the trading volume

over the duration between significant price changes) to explain variations in the

response variable. De Luca and Zuccolotto (2003) proposed a mixture of exponen-

tial distributions for the error of the ACD model. They reported that this model

is adequate for the waiting time between successive price changes while the expo-



4

nential and the Weibull models considered by Engle and Russell (1998) disagree

with the tail of the distribution of error. De Luca and Gallo (2004) reported that

the agreement between the mixture of two exponentials and the error for the ACD

model was not affected by introducing the volume of a day’s first trade into the

model for the conditional mean. De Luca and Gallo (2009) modelled the waiting

time between successive price changes of at least one-sixteenth of an US dollar.

They introduced covariate information into the model of De Luca and Zuccolotto

(2003) in the following ways. Firstly, the conditional mean of the ACD model was

allowed to depend on lagged trading intensity and lagged average volume. Sec-

ondly, the mixing proportion for the first exponential component was allowed to

depend on lagged mixing proportion and lagged trading intensity. They reported

that the model that incorporates covariates via the conditional mean fitted the

waiting times better than that which does not. A comparison between the model

that allows for covariates in the mixing proportion and that with a time-dependent

mixing proportion is, however, not reported in De Luca and Gallo (2009).

Russell and Engle (2005) studied the relationship between the speed of the

transaction price change and the size of the transaction price change. They consid-

ered the sequence of vectors containing the duration and the price change between

consecutive transactions as a bivariate time series. The distribution of the bivari-

ate vector, conditioned on the preceding observed vectors, is factorised5 into a

product of two component distributions: the distribution of price change, condi-

5This method was proposed by Engle (2000, p. 3, Equation (5)).
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tioned on the duration, and the marginal distribution of the duration. Russell and

Engle (2005) considered the price change between consecutive trades as a multino-

mial random variable in order to account for the feature of discrete changes in

transaction price. However, they did not incorporate the volume information in

their model.

The literature that followed from Russell and Engle’s (2005) work has used

either transaction data that contain variables in addition to transaction price and

volume traded, or data that contain information about the requests made by the

buyers and sellers of a share. Transaction data that contain additional variables

are used by Zhang et al. (2009) to construct the sequences of midquote durations.

These sequences are used to compare the out-of-sample forecasting performance

of the model proposed by Russell and Engle (2005) with that of a simpler class

of models. They reported that Russell and Engle’s (2005) model produced more

accurate forecasts than those produced by the simpler class of models, but that

they are also computationally more demanding to apply than are the simpler

models. Tay et al. (2004) chose to classify the transaction price changes into

one of the three possible states: a price increase, a price decrease or no price

change. They then studied the impact of the covariates (here they used trading

volume, trading direction and their interaction as well as the lagged durations) on

the durations between consecutive transactions when the price change over this

duration is in a given state. Kwok et al. (2009) applied the model but used the
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buy-sell initiated trade indicator6, in addition to the trading volume, as covariates.

Ng (2010) analysed a dataset containing information on orders to buy or to

sell a share. He considered the binary variable that indicates whether an order

recorded on an electronic exchange is to buy or to sell a share. He viewed the

sequence of these binary variables as a special case of the model proposed by

Russell and Engle (2005) and used the resulting model to study the relationship

between the buy-sell variable and the covariates, for example last transaction

price, spread, bid-ask volume.

Another variation to model the discreteness of price change between consec-

utive trades is that proposed by Müller and Czado (2009) who categorised the

transaction price changes into seven categories and regarded these as an ordinal-

valued random variable. They then formulated their regression model to contain

two components: a component to model the covariates (here, the two covariates

used are the durations between consecutive transactions and the volume traded)

and a component to model the correlation structure using a type of stochastic

volatility model. Czado et al. (2010) applied that model to the case when other

covariates, like the time-of-day and the number of quotes between trades, are used.

There is also literature that approached the modelling of irregular interval and

discreteness of transaction price changes differently to that of Russell and Engle

(2005). For example, Haug and Czado (2006) studied the relationship between the

6A trade is initiated by a buyer if the buyer sought for owners of share who are willing to
sell and conversely for a trade initiated by a seller. For a discussion of buyer- or seller- initiated
trades, see Hautsch (2004, Section 4.1.3).
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absolute return volatility at the time of a transaction and the possible covariates

(here they used only the bid-ask spread and the duration between consecutive

trades). In contrast to Russell and Engle (2005) they considered the price change

between consecutive trades as a continuous valued random variable. Instead of

modelling the change in consecutive transaction prices directly, another approach

is to model the aggregate of the square of each return within a trading day, called

the realized volatility of intraday returns7. For example, Oomen (2006) considered

the intraday return as the composition of a cumulative transaction price changes

component and a cumulative error component. He used the Poisson process to

describe the number of trades observed at the time instant t since the observa-

tion began, and the moving average process8 to describe the error contained in

the transaction price observed. Then the cumulative price changes component is

modelled by the aggregate of the normally distributed random variables, and the

cumulative error component is modelled by the aggregate of the moving average

process. For both components, the number of variates summed is given by the

difference in the outcome between the Poisson process at the end and at the begin-

ning of a time interval. Oomen (2006) used the intraday return model considered

to construct the realized volatility, which is an estimator for the integral of the

instantaneous volatility over the duration of the trading day. He reported that the

7The price of the share is determined at a regular time interval within a trading day. Thus,
the intraday return is the change in the share price at consecutive time intervals within a trading
day. For a review of realized volatility, see McAleer et al. (2008).

8He used the moving average process with the constant term equals to zero and with the
difference of standard normal variates used for each error term.
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realized volatility has a smaller mean squared error when the transaction prices

at the time of every fixed number of transactions are used than when the share

prices are determined at a regular time interval within a trading day. Andersen et

al. (2007) studied the realized volatility, where the intraday returns are computed

over consecutive five-minute intervals. The realized volatility computed over the

preceding day, the preceding week (they used the preceding five trading days) and

the preceding month (they used the preceding twenty-two trading days) were used

as the explanatory variables for the realized volatility computed over a proceeding

number of days. They considered the realized volatility to consist of two compo-

nents: a component for the continuous price evolution and a component for the

aggregate "significant jumps" in the share prices. A nonparametric procedure was

proposed to measure each component separately. Andersen et al. (2007) reported

that the models that included the continuous evolution component and the aggre-

gate jumps component as separate explanatory variables produced more accurate

realized volatility forecasts than those produced by the models that include the

realized volatility itself as the explanatory variable.

Problem statement and contributions made. The aim of this disserta-

tion is to study the volatility of price movement in the transaction data of shares

listed on the electronic trading system of the Frankfurt Stock Exchange. These

data consist of observations recorded continuously during a trading day. The two

research questions addressed in this dissertation are as follows. The first question
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is whether the continuous-time models proposed by Hujer et al. (2002) can be

used successfully to forecast the waiting times between successive price changes of

at least a given level. The second question is whether the discrete-time models we

propose can be used successfully to forecast the price changes observed at regular

intervals during a trading day.

The contributions made in this dissertation are as follows. Firstly, we apply

the class of models proposed by Hujer et al. (2002) to the waiting time between

significant price changes. These waiting times contain both the variation in the

local trend and the intra-daily seasonal variation. We model both variations then

remove their effects from the observations. Although the presence of the intra-

daily seasonality of the waiting time between successive transactions (and hence

successive price changes of a given amount) are well documented (see Hautsch,

2004, Section 5.2.4), the variation in the local trend has been neglected in the lit-

erature on financial duration modelling. Our results show that the out-of-sample

forecasts of the intra-daily seasonal variation play an important role for the accu-

racy of the forecasts made by the model. We fit the models of Hujer et al. (2002)

to the standardised waiting time after both the effect of the intra-daily seasonal

and of the local trend variations have been removed. The likelihood function of

Hujer et al.’s (2002) model possesses several local maxima9. As a result, the local

maximum identified by a numerical optimisation routine depends on the set of

9This is a problem common to all mixture models. The HMMs and the models of Hujer et al.
(2002) are examples of dependent mixture models. For a description of the problem of multiple
maxima in the likelihood of a HMM, see Zucchini and MacDonald (2009, Section 3.4.1).
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starting values used. We develop a strategy to search for the set of starting values

that improves the chances of locating the global maximum. We show that the

forecasts given by the models that depend on an unobserved state process are

more accurate than the forecasts made by the “standard” models for the waiting

time between significant price changes. We show that the intra-daily seasonal

variation is the chief issue for the success of the model. We also show that the

parameters of the model vary substantially over successive rolling periods.

Secondly, we study the intra-daily price movement and its relationship with

the trading volume. In contrast to the autoregressive multinomial model of Russell

and Engle (2005), the models we propose here treat the intraday return as a

composition of a binary variable that indicates the presence or absence of price

change, and a continuous-valued variable for the conditional return given the

presence of change. The variation in both the price change indicators and the

conditional returns depends on an unobserved state process and the associated

trading volume. We show that in most cases our models provide more accurate

forecasts of the variance of price change than those computed by the exponential

filter.

Overview of the dissertation. This dissertation contains two main chap-

ters: Chapters 2 and 3. In Chapter 2 we give an account of our investigation for

the first research question. In that chapter we study the waiting time between sig-

nificant price changes. We show that these waiting times contain both a variation
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in the intra-daily seasonality as well as a variation in the average waiting time

in a trading day. The standardised waiting time is obtained by estimating and

removing firstly the seasonal variation and then the variation in the daily mean

waiting time. We fit the class of models proposed by Hujer et al. (2002) to these

standardised waiting times. The parameters are estimated by numerical maximi-

sation of the likelihood function. The likelihood function of Hujer et al.’s (2002)

model has several local maxima. As a result, the local maximum identified by the

algorithm depends on the set of starting values used to initialise the iterations.

We develop a strategy to reduce the dangers of not locating the global maximum,

and hence the maximum likelihood estimate.

In Chapter 3 we give an account of our investigation for the second research

question. We propose another class of models for the variance of the price changes.

The presence of price change is modelled separately from the size of the change

given the occurrence of price change. We incorporate the volume into each of the

component models to explain the intra-daily seasonality of the observations. For

each component of price change we first select a model and then we assess the fit

of this model in the out-of-sample period.



CHAPTER 2

THE MARKOV SWITCHING ACDMODELS FOR THE

TIMES BETWEEN PRICE EVENTS

In this chapter we forecast the time until the level of the price moves by at least a

given amount. The movement of the share price is modelled in continuous-time,

since a trade (and hence a price movement) occurs at random throughout the

trading hour.

Various measures of volatility can be constructed by using these waiting times.

One example is the instantaneous volatility estimator that was applied in Engle

and Russell (1997, Section 6; 1998, Section 8.1) and another example is the condi-

tional volatility given preceding waiting times that was discussed in Gerhard and

Hautsch (2002). For a discussion of volatility measures that use the waiting times

between successive “significant” price changes, see Hautsch (2004, Section 3.3.1).

In this chapter we describe the data for three shares and then describe how

the observations are generated from these data. We investigate the stationarity,

the distribution and the serial correlation structure of these observations series.

The models are considered in Sections 2.5 and 2.6. We apply these models to nine

series of observations. The findings of our applications are discussed.

12



2.1. DESCRIPTION OF THE TRANSACTION DATA 13

Period Hours Duration (hours)

01.1998 to 17.09.1999 8:30 to 17:00 8.5

20.09.1999 to 01.06.2000 9:00 to 17:30 8.5

02.06.2000 to 10.2003 9:00 to 20:00 11

11.2003 to 12.2004 9:00 to 17:30 8.5

Table 2.1: Trading hours of the XETRA. On the last trading day of each year

XETRA closes at 14:00 .

The main references for this chapter are: Hautsch (2004) for the autoregressive

conditional duration models, Zucchini and MacDonald (2009) - referred to as ZM

hereafter - for the hidden Markov models, and Hujer et al. (2002) for the Markov

switching models.

2.1 Description of the transaction data

We used a transaction dataset released by the Deutsche Finanzdatenbank

(DFDB), Karlsruhe. This dataset contains all transactions recorded in each trad-

ing day. The period covered is 28 November 1997 to 30 December 2004, both

inclusive. During this period the trading hour changed three times. Table 2.1 dis-

plays the trading hours and the periods to which they apply. For each transaction

six variables were recorded: the securities identification number1, the date, the

time (precise to centiseconds), the price (in Euros), the volume (in units of shares

1It is a six-digit alphanumeric code used to identify a share listed on a stock market in
Germany.
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traded) and the code2 that indicates the form3 of trading. As of 2 January 2004,

the International Security Identification Number4(ISIN) is an additional variable

contained in the dataset.

The transaction dataset we analysed was prepared from the records of the

components of DAX30 traded on the exchange electronic trading (XETRA)5 sys-

tem of the FSE. Using the price of the components on the XETRA system, the

DB calculates the value of DAX30 at every second during the trading hour.

2.1.1 Selection of shares and observation periods

We analysed the following three shares: Allianz (ALV, insurance sector), E.ON

(EOA, utilities sector) and Badische Anilin- und Soda-Fabrik (BAS, chemicals

sector). For all three shares the data cover the three-month period March to May

in each of the years 2002-2004.

The three shares were selected for the following reasons. Firstly, each of the

shares remained6 as a component of the DAX30 throughout the period covered

by the data. Secondly, in the year 2004 each of these shares was the most actively

traded in its sector. Figure 2.1 depicts the annual trade for each selected share.

2See Table 4.1 on page 206.
3See Deutsche Börse AG (2004, pp. 18-31) for a detailed description.
4It is a code consisting of two letters (for example, DE to represent Germany) followed by a

ten-digit alphanumeric code. This code is the international standard for quoting a share listed
on a stock exchange.

5It was developed by the Deutsche Börse AG (DB) which operates the Frankfurt Stock
Exchange (FSE). The system first came into operation on November 28, 1997. Hautsch (2004,
Section 4.2.2) gives more details of its functioning.

6The DB reviews the composition of the DAX30 index in September of the trading year.
Outside of this date, a company is excluded from the index composition if it is no longer one of
the 45 largest companies listed on the FSE, and a company can be included if it ranks among
the 25 largest companies listed.
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In the top panel of this figure we note that there is an upward trend in the annual

trades. The decrease in trading activity for the years 2003 and 2004 was due

largely to the shortened length of trading hour. We note in the bottom panel of

Figure 2.1 that for the years 2003 and 2004 Allianz is the most actively traded

(i.e. top ranked) share among the components of DAX30. The amounts of annual

trading for E.ON and BASF are very similar for the years 1998-2004.

Figure 2.2 displays the plot of consecutive daily returns on Allianz for each of

the years 2002-2004. We computed the daily returns as 100 · ln (pd/pd−1), where

pd is the opening price on day d. In Figure 2.2 we note that values of return in

excess of 3−standard deviations occurred more frequently in the year 2004 than

in 2003. This indicates that the daily returns in the year 2004 were more volatile

than in 2003. We also note in Figure 2.2 that in the years 2002 and 2003 the

daily returns were not volatile during the three-month period March to May. In

the year 2004, however, the daily returns were more volatile during March to May

than during the second-half of the year. In Appendix B. we plot the daily returns

on EOA (in Figure 4.1) and BAS (in Figure 4.2) for the years 2002-2004. In each

of these figures we again note the increased volatility in March to May of the year

2004.
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Figure 2.1: Number of annual transactions for three shares, and their ranks (rank

1 indicates the most frequently traded).
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Figure 2.2: Daily returns on the opening price of the Allianz shares. The mean

return (solid line) and 3-standard deviation (dashed lines) over the year are shown.
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2.1.2 Adjustments to transaction data

Two features of our transaction dataset are: firstly, instances of several trans-

actions that occur simultaneously, and secondly, the conspicuous delay to execute

the transaction after an auction7. For the first feature we treated the volumes of

the elements as part of the volume of one order. We therefore replaced each se-

quence of trades by a single transaction executed at the common transaction time

of the sequence, at the volume-weighted average price of the elements, and with

the sum of the elements’ volume traded. For a discussion of other treatments8

of the first feature, see Hautsch (2004, Section 4.1.2). No trading is permitted

by the XETRA system during an auction. In the case that this pause occurred

between two consecutive trades we deduct the length of the period of pause from

the corresponding waiting time (See Section 2.2.1).

2.2 Generation of price durations

From the dataset adjusted for trades sharing identical transaction time, we

extract the nine sub-datasets specified in Section 2.1.1, i.e. the trades of ALV,

EOA and BAS, each covering the period March to May in the years 2002-2004.

For a given sub-dataset we denote the number of trades by N , and the opening

7Three auctions, each of a different type, are held during each trading day of the year 2002-
2004: the opening auction at the opening time, the intraday auction at 13:00 (and at 17:30 for
trading days in the period January 2002 to November 2003, both inclusive), and the closing
auction at the closing time. See Deutsche Börse AG (2004, pp. 19-26) for an account. The
volatility interrupted auction, in addition, can also be held during a trading day. See Deutsche
Börse AG (2004, pp. 27-31) for an account.

8Note that, however, after applying the method he selected, Hautsch (2004, p. 49, footnote 4)
deleted the trades sharing a common transaction time that remain before applying the models.



2.2. GENERATION OF PRICE DURATIONS 19

time for trading in the first trading day by t0. Then, for n = 1, 2, . . . , N , the n−th

transaction since t0 is recorded at the transaction time τn, and executed at the

transaction price pn (Euros per unit of share traded) for the transaction volume

of vn (units of shares traded).

2.2.1 Basic types of duration

Three basic types of durations can be computed by using our transaction

data9. The first type of duration, which Hautsch (2004, p. 32) called the trade

duration, refers to the waiting time between successive transactions. We compute

the trade duration of the n−transaction, denoted by Wn, by using W1 = τ1 − t0

and

Wn = τn − τn−1 (for n = 2, 3, . . . , N). (2.1)

For each sub-dataset we make two adjustments to the trade durations obtained

by using Equation (2.1). Firstly, we exclude the waiting time between the last

transaction in a trading day and the opening time of trading in the subsequent

day. Secondly, we subtract the minimum10 duration of an auction11 from the

trade duration of the transaction after this auction. We use the trade durations

obtained after we make these two adjustments.

9See Hautsch (2004, Section 3.1.1) for an account of the types of duration for other transaction
datasets.

10The opening auction ends at the opening time. The volatility interrupted and the closing
auction last at least two minutes long. The intraday auction lasts at least two minutes, but at
least five minutes on a trading day when the financial security is traded under the derivative
contract transacted on the European Exchange (Eurex).

11For a description of the code used to indicate the auction corresponding to the transaction,
see Appendix A., Table 4.1.
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The second type of duration, which Hautsch (2004, p. 33) called the price

duration, refers to the waiting time between successive “significant” price changes.

Define the price event as the transaction in which a significant price change occurs.

For k = 1, 2, . . ., we denote the k−th price event in a dataset by nk. We compute

the price durations in two steps. In the first step we identify the events according

to the rule in Engle and Russell (1997, p. 196). This is done by setting the initial

transaction as n1, and then defining nk as the first transaction after nk−1 in which

pn satisfies

∣∣pn − pnk−1
∣∣ ≥M (for k = 2, 3, . . .),

where M denotes the minimum magnitude (in Euros) for a price change to be

significant. The total number of events in a dataset is denoted by K, and this is a

function of theM we use. In the second step, denote by τ pk (M) the time at which

the nk-th event occurs. We then compute the price duration until nk, which we

denote by W p
k (M), according to the following equation

W p
k (M) = τ pk (M)− τ pk−1 (M) (for k = 2, 3, . . . , K). (2.2)

We refer to {W p
k (M)} thus generated as the “M−” price durations whenever

it is necessary to identify the M we used. Our datasets contain transactions in

successive trading days. We restart the computation in each day. In doing so the

serial order applies only to the day in which the durations series are computed.

The third type of duration, which Hautsch (2004, pp. 33-34) called the volume

duration, refers to the waiting time between successive “significant” cumulative
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volume traded. This is not analysed in this chapter.

2.2.2 Issues

In order to generate price durations for a given sub-dataset we require a price

change levelM to be given. One approach is by using the sub-dataset to determine

M 12. But, three issues need to be addressed first. These are the division of sub-

dataset, a criterion for M and Ms for the out-of-sample periods.

Division of sub-dataset. We partition a given sub-dataset into subsamples

in three consecutive monthly periods. Then we generate price durations for each

subsample separately.

Criterion. Given a subsample we generate series of price durations at a

variety ofMs. For each series generated we compute the series of counts of trades

in consecutive price durations. We use three categories of price change levels:

small-sized M (sm-M), medium-sized M (md-M) and big-sized M (bg-M). In

order to select an M for each category we adopt the criterion that the average

of observations in the counts series is roughly equal to a value that we assign.

Following Hautsch (2004, p. 62) we assign the value of 10 (trades per unit time)

for sm-M and 500 for bg-M. For md-M we assign the value of 150. Given a one-

month period the price durations series at the same category ofM are comparable,

since these series have similar lengths.

12Alternatively, M can be supplied by the “decision-maker” (for example, an investor or a
risk manager): see Gerhard and Hautsch (2002, p. 62).
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Table 2.2 presents, for each category of price change, the averages of trade

count and the lengths of the price durations series for ALV in March of the years

2002-2004. In this table we note that the lengths of both the md-M and the

bg-M series are less than 1000 in each of the three years. These series are not

sufficiently long for the application of the models we consider in this chapter. For

each category of price change we also present the averages of trade counts and the

lengths of price durations series for EOA (in Table 2.3) and BAS (in Table 2.4)

in March of the years 2002-2004. In both of these tables we again note that the

lengths of both the md-M and the bg-M series are less than 100013. We focus on

the sm-M price durations in what follows.

Out-of-sample periods. In order to generate the price durations series for

the out-of-sample periods we need to defineM for these periods. One way of doing

so is as follows. In each sub-dataset we determineM by using the first sub-sample.

Then we assign this value ofM for each of the two successive monthly periods that

follows the first month. By using the subsample for each out-of-sample period we

generate price durations at the assigned M .

We now examine the stability of averages of trade count in the three consec-

utive monthly periods. Table 2.5 presents, in each of the years 2002-2004, the

averages of trade count and the lengths of sm-M price durations series for ALV

in each of the months March to May. In this table we note that in the year 2002

the values of the average for March, April and May remain roughly 10. In this

13This problem could be solved by considering periods longer than one month.
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month sm-M av. trades #(obs.)

3.2002 0.25 9.4 4505

3.2003 0.10 9.7 14248

3.2004 0.08 10.7 10614

md-M

3.2002 1.10 151.8 268

3.2003 0.40 137.0 998

3.2004 0.30 145.0 769

bg-M

3.2002 2.10 502.8 70

3.2003 0.85 513.7 248

3.2004 0.60 507.0 197

Table 2.2: Price durations of Allianz at three categories of M (sm-M, md-M, bg-

M). Averages of trade count (av. trades), and the lengths of price durations at

each category of M.
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month sm-M av. trades #(obs.)

3.2002 0.06 11.0 3260

3.2003 0.06 10.0 7730

3.2004 0.04 8.5 8569

md-M

3.2002 0.25 152.9 219

3.2003 0.30 174.9 434

3.2004 0.20 169.8 408

bg-M

3.2002 0.55 501.2 44

3.2003 0.50 497.7 148

3.2004 0.35 516.0 123

Table 2.3: Price durations of E.ON at three categories of M (sm-M, md-M, bg-M).
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month sm-M av. trades #(obs.)

3.2002 0.05 10.1 3437

3.2003 0.05 9.4 8616

3.2004 0.04 10.7 5965

md-M

3.2002 0.20 137.9 245

3.2003 0.25 171.4 454

3.2004 0.15 128.3 473

bg-M

3.2002 0.40 504.8 56

3.2003 0.45 510.0 139

3.2004 0.30 496.7 104

Table 2.4: Price durations of BASF at three categories of M (sm-M, md-M, bg-M).
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2002 Mar Apr May

sm-M 0.25 0.25 0.25

av. trades 9.4 10.8 10.1

obs. 4505 3760 4289

2003

sm-M 0.10 0.10 0.10

av. trades 9.7 17.6 15.9

obs. 14248 9611 7943

2004

sm-M 0.08 0.08 0.08

av. trades 10.7 12.7 14.8

obs. 10614 5349 5524

Table 2.5: Comparison of price durations of Allianz corresponding to the same

small-M in different months of the year 2002, 2003, 2004: average number of trades

(av. trades) between significant price changes, and the number of price changes

(obs.).
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case the lengths of 0.25−price durations series across the three monthly periods

also remain roughly stable. In the year 2003, however, the average for April is 1.8

times that for March. The corresponding length of series for April is two thirds of

that for March. In the year 2004 the averages remain relatively stable across the

three monthly periods. The corresponding length of series for April is however

only half of that for March. We also present, in each of the years 2002-2004, the

averages of trade count and the lengths of sm-M price durations for EOA (in Table

2.6) and BAS (in Table 2.7) in each of the months March to May. We note in

both tables that in each of the years the averages remain relatively stable across

the three monthly periods.

2.3 Analysis of the observed durations

In this section we outline the results of an exploratory analysis of sm-M price

durations for three shares. We investigate the seasonal variation within the day,

the distribution of the durations and the serial correlation structure of the series.

Changes in the daily means are considered in Section 2.3.4. The findings of this

preliminary analysis are summarised.

2.3.1 Features of variation

Figure 2.3 displays, for each of the years 2002-2004, the index plots of sm-M

price durations for ALV in the left column and a smooth of the points in each
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2002 Mar Apr May

sm-M 0.06 0.06 0.06

av. trades 11.0 11.0 12.5

obs. 3260 2971 3031

2003

sm-M 0.06 0.06 0.06

av. trades 10.0 11.3 12.9

obs. 7730 5848 4725

2004

sm-M 0.04 0.04 0.04

av. trades 8.5 9.9 9.0

obs. 8569 5973 6111

Table 2.6: Comparison of price durations of E.ON corresponding to the same

small-M in different months of the year 2002, 2003, 2004.
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2002 Mar Apr May

sm-M 0.05 0.05 0.05

av. trades 10.1 10.4 11.5

obs. 3437 3430 3563

2003

sm-M 0.05 0.05 0.05

av. trades 9.4 10.2 11.9

obs. 8616 6823 5463

2004

sm-M 0.04 0.04 0.04

av. trades 10.7 12.3 13.1

obs. 5965 4030 3587

Table 2.7: Comparison of price durations of BASF corresponding to the same

small-M in different months of the year 2002, 2003, 2004.
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of the index plot in the right column14. In this figure we note the following two

features. Firstly, each of the three index plots displays “spikes,” which are most

pronounced for the period March to May 2002 and the least for the period March

to May 2003. Secondly, a smooth of each observations series displays an upward

trend, which suggests that the series are not stationary.

In Appendix B. we present the index plot and its smooth of the sm-M price

durations for EOA (Figure 4.3) and for BAS (Figure 4.4). In both these figures

we note features that are similar to those noted in Figure 2.3.

2.3.2 Distributional features

The left column of Figure 2.4 displays the plot of kernel density estimates15 of

the observed sm-M price durations for Allianz for each of the years 2002-2004. We

have also plotted, to the right of each figure, the observed against the exponential

distribution quantiles of the price durations. In Figure 2.4 we note two properties

that are common to all three sequences of sm-M price durations. Firstly, the

unconditional distributions (as represented by the plots in left column) have the

general shape of an exponential distribution, i.e. their modes are close to zero.

Their tails, however, are all considerably longer than that of the exponential. The

numbers of observations whose values exceed 800 seconds indicate this; there are

545 such instances in March to May 2002, 184 in March to May 2003 and 201

14We use the locally-weighted polynomial regression method to smooth the points. These
smooths are computed by the R function lowess.

15Kernel density with Epanechnikov kernel and bandwidth calculated by Silverman’s rule-of-
thumb. The estimates are computed by density function of R.
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Figure 2.3: Plots of sm-M price durations (in units of 1000 seconds) for ALV

against index of price event (in units of 1000) for the months March to May in

the years 2002-2004 (left column). Nonparametric regression lines computed by

the R function lowess that is a smooth of the points in each of the years (right

column).
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Figure 2.4: Kernel density estimates of the observed sm-M price durations of

Allianz (left column). qq-plot of the observed price durations based on an expo-

nential distribution (right column).
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in March to May 2004. Secondly, the qq-plots (right column) show that for the

shorter durations, i.e. less than 400 seconds (top) or less than 200 seconds (middle

and bottom), the observed durations occur less frequently than the corresponding

exponential distribution. But, for the longer durations, the observed durations

occur much more frequently than the corresponding exponential distribution.

In Appendix B. we present the plots of the kernel density estimates and the

qq-plot of the sm-M price durations for E.ON (Figure 4.5) and BASF (Figure

4.6). In these figures we also note the property of less frequent small durations

and more frequent large durations for these two sets of sm-M price durations.

Table 2.8 shows the descriptive statistics for sm-M price durations generated

from the transactions for Allianz, E.ON and BASF from March to May. The last

column of Table 2.8 shows that the sm-M price durations generated from transac-

tions on all three shares are over-dispersed relative to an exponential distribution,

i.e. the sample standard deviation exceeds its sample mean.

2.3.3 Autocorrelation

The ACF of the observed price durations for Allianz, in the years 2002-2004,

are displayed in Figure 2.5. The price durations in each of the year correspond

to sm-M price changes in March, April and May. Note in Figure 2.5 two features

that are common to all three sample ACFs. Firstly, the sample autocorrelation

at lag 1 is substantially larger than zero16. Secondly, at longer lags, the sample

16In all three sample ACFs it is in excess of 0.3.
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ALV

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.25 12554 0.01 89.95 5668.10 319.87 195.58 1.64

2003 0.10 31802 0.01 32.27 2499.44 134.03 76.35 1.76

2004 0.08 21487 0.01 36.06 4262.34 167.13 90.58 1.85

EOA

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.06 9262 0.01 128.25 6137.39 424.79 266.26 1.60

2003 0.06 18303 0.01 65.99 3645.99 212.28 132.92 1.60

2004 0.04 20653 0.01 42.81 2896.16 157.74 94.33 1.67

BAS

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.05 10430 0.01 110.50 5823.18 379.55 236.06 1.61

2003 0.05 20902 0.01 56.75 4634.91 191.41 116.45 1.64

2004 0.04 13582 0.01 64.32 5537.23 245.56 143.39 1.71

Table 2.8: Descriptive statistics of observed small-M price durations (in seconds)

for Allianz, E.ON and BASF for the period March to May, 2002-2004. The eight

columns are: size of small-M (Euro), length, shortest, median, longest, standard

deviation, average and relative dispersion.
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Figure 2.5: ACF of observed price durations of Allianz corresponding to small-M

price changes for the period March to May in years 2002, 2003 and 2004.
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autocorrelations decrease slowly towards zero. This suggests that the observation

sequence may contain trend and / or seasonal variation over the period covered.

We have also presented the ACF of the observed price durations, for the years

2002-2004, of the E.ON share (Figure 4.7) and of the BASF share (Figure 4.8) in

Appendix B.. The price durations in each year correspond, again, to sm-M price

changes in March, April and May. These ACFs exhibit similar features to those

noted in Figure 2.5.

2.3.4 Components of variation

Figure 2.6 displays each of the two components of variation exhibited by the

price durations series for Allianz in the years 2002-2004. The observations for each

of the years correspond to sm-M price changes for the months March to May. In

order to reveal the intraday seasonality in these series we estimate the regression

of price duration on the time at which the last significant price change occurred

by a smooth function17.

We note in Figure 2.6 two properties that are common to all three series of

observations. Firstly, the expected duration functions estimated (left column)

show the systematic variation of price duration sequences over the period of a

17This is computed by the R function smooth.spline. We define here twenty-one knots for
series in the years 2002 and 2003, and sixteen knots for those in 2004. By following Hautsch
(2004, p. 65), who places a knot at 30-minute intervals during the trading day, we deduce these
numbers from the length of duration of the trading day for the periods covered by the series
(see Table 2.1).
The generalised cross-validation (GCV) method has also been used, but the numbers of knots

we obtained by using this method are unreasonably large. For example, we obtain roughly two
hundred knots for each of the series for March in the years 2002-2004. From these numbers we
can deduce that, for March in the years 2002 and 2003, the knots are placed roughly at intervals
of 3 minutes and 20 seconds, and, for March 2004, at intervals of 2 minutes and 30 seconds.
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Figure 2.6: Observed price durations of Allianz: nonparametric estimate of intra-

day cyclical pattern (left column) and daily average (right column). The durations

correspond to small-M price changes for the period March to May in years 2002,

2003 and 2004..
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trading day. The general pattern of this can be described as follows: durations

between price events are, on average, the shortest at the beginning and at the end

of the day, but longer between one and two o’clock in the afternoon. The longer

trading hours (see Table 2.1) for trading days from the period March to May 2002

and March to May 2003 introduces an additional pattern to the daily variation

(top and middle): price durations are, on average, the longest around seven o’clock

in the evening. Secondly, the index plots show noticeable fluctuation of the daily

total number of price events (right column) around some downward sloping trend

over the sample period. This is evidence for fluctuation in daily mean duration and

the mean is increasing over the sample period (since the number of price events

in a trading day is inversely related to the average price duration over the day).

We also present the two components of variation of the observed price durations

of the E.ON share (Figure 4.9) and the BASF share (Figure 4.10) in Appendix

B.. The price durations correspond to sm-M price changes in the same three

periods as those used in Figure 2.6. The intraday cycle of these price durations

exhibits similar general pattern as those estimated from the price durations of the

Allianz share. Furthermore, the daily average of these price durations also exhibit

considerable variation.
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2.3.5 Properties of observed durations

Based on our analysis, we list four features that are common to all nine se-

quences of sm-M price durations.

1. The mean is not stationary. The sequences all display both an upward

overall trend and seasonal variation.

2. The unconditional distribution is overdispersed (i.e. the sample standard

deviation exceeds the sample mean) relative to the exponential.

3. The positive serial correlation is substantial. Furthermore, the sample ACF

decays slowly. In addition to the nonstationarity in the mean, this suggests

that price durations “cluster,” i.e. a long duration tends to follow a long

duration and a short duration tends to follow a short duration.

4. The overall trend in the series of total number of price events in each day is

downward. In the case of the series of average price duration in each day,

this is upward.

2.4 Stationary price durations

In this section we outline the results of an analysis of the components of sm-M

price durations for three shares. We consider a multiplicative model for the series,

which consists of three factors: the model for the intraday seasonal variation, the

level of the daily mean and the model for the intraday random variation. We
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preprocess all series in two stages: firstly, the observations are deseasonalised,

and secondly, the deseasonalised series are standardised by the levels of their

daily averages. We investigate the procedure to deseasonalise the series in Section

2.4.1. The seasonally-adjusted series and the mean-standardised series are then

examined. The findings of this analysis are summarised.

2.4.1 Adjustment for intraday seasonal pattern

On trading day d, the deseasonalised duration, denoted by ad = (an,d), is

constructed by removing the seasonal variation from the observed durations. For

a sample consisting of D trading days, the seasonal component is assumed to

be the regression of observed durations over the entire sample w =(wd) on its

starting times t =(td), i.e.

wn,d = m (tn−1,d) + en,d (for n = 1, 2, . . . , nd), (2.3)

where tn−1,d denotes the observed starting time of duration wn,d and nd denotes

the number of price durations observed on day d. The errors in Equation (2.3) are

serially correlated. The conditional expectation of the duration when its starting

time is t centiseconds from midnight on day d, denoted bym (t) in Equation (2.3),

is estimated by a smoothing spline function18.

Note that the regression model (2.3) implies that the seasonal variation of

18Estimation uses the smooth.spline function contained in the base package of R(version
2.9.0). For transactions made in the year 2002 and until the end of October 2003, twenty
one knots were specified for the spline function. For transactions made from the beginning of
November 2003, sixteen knots were specified. The specified number of knots correspond roughly
to knots placed at thirty minute intervals from the start of a trading day.
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duration is exactly the same over each trading day in the sample. Of course,

more refined models that are capable of better capturing the shape of the seasonal

variation can be assumed19. However, from our experience, the dominant seasonal

variation of duration is that durations tend to be short at the beginning and at

the end of the trading day, but long at around one o’clock in the afternoon.

Using the estimated smoothing spline function m̂ (t), the seasonal variation is

removed from the observed durations according to

an,d =
wn,d

m̂ (tn−1,d)
. (2.4)

The descriptive statistics of the deseasonalised price durations for Allianz, E.ON

and BASF are presented in Table 2.9. In Table 2.9 we note the following. Firstly,

the second column from the right of the panels for all three shares show that the

means of deseasonalised durations are almost always slightly less than 1. Sec-

ondly, the first column from the right of the panels for all three shares show that

the unconditional distributions of the deseasonalised price durations remained

overdispersed relative to the exponential distribution. Finally, in the fourth col-

umn from the right of the panel for BAS we see that the smallest deseasonalised

price duration over the period March to May 2002 is a negative value (−30.139).

The smoothing spline function estimated from the durations observed over

this period is shown in the top left hand plot of Figure 2.7. The estimated mean

duration function displayed by the top left plot of Figure 2.7 takes on negative

19One possibility would be to assume a different seasonal component for each weekday (see
for example, Hujer and Vuletíc (2007)).
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ALV

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.25 12554 0.00 0.55 19.97 1.33 1.001 1.33

2003 0.10 31802 0.00 0.48 25.94 1.51 0.999 1.51

2004 0.08 21487 0.00 0.46 63.02 1.58 0.998 1.59

EOA

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.06 9262 0.00 0.56 19.97 1.31 0.996 1.32

2003 0.06 18303 0.00 0.58 28.53 1.29 0.999 1.29

2004 0.04 20653 0.00 0.51 36.80 1.46 0.999 1.46

BAS

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.05 10430 -30.14 0.55 29.14 1.44 0.998 1.45

2003 0.05 20902 0.00 0.57 29.04 1.30 0.999 1.30

2004 0.04 13582 0.00 0.51 35.24 1.49 0.999 1.49

Table 2.9: Descriptive statistics of (seasonally-) adjusted small-M price durations

of Allianz, E.ON and BASF for the period March to May, 2002-2004. The eight

columns are: size of small-M (Euro), length, smallest, median, largest, standard

deviation, average and relative dispersion.
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Figure 2.7: Nonparametric estimate of mean price duration for BASF (top left),

mean of log-duration (top right) and exponent of mean of log-duration (bottom

left) as a function of time of last significant price change. The durations correspond

to small-M price changes for the period March to May in the year 2002.
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values when the last significant price change occurs between 19:30 and 20:00. This

is due to the fact that model (2.3) does not impose restrictions on the sign of the

response variable.

One way20 is to restrict the sign of the response variable in two steps. In the

first step, we regress the log-durations on the times of last significant price change,

i.e.

log (wn,d) = ν (tn−1,d) + en,d (for n = 1, 2, . . . , nd), (2.5)

where ν (tn−1,d) denotes the mean of the log-duration when the time of last price

change is tn−1,d. Then, in the second step, we transform the values predicted by

the estimated smoothing function from the log-scale back to the original scale (in

seconds) by exponentiating, i.e.

m̂ (tn−1,d) = exp (ν̂ (tn−1,d)) . (2.6)

Finally, the deseasonalised durations that started at tn−1,d are computed by Equa-

tion (2.4).

Applying regression model (2.5) to the price durations of BAS over the period

March-May 2002, the estimated smoothing spline function is shown by the bottom

left plot in Figure 2.7. Note that the shape of the sign-restricted smoothing

spline function is essentially the same as that of the unrestricted smoothing spline

function (top left plot). But, the conditional mean values given by the sign-

20Another possibility would be to determine the number of knots for the smoothing function
by “generalised” cross-validation method. This is, however, not recommended, because the
observed durations sequence is serially correlated.
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restricted function are smaller over the entire range of starting times than the

conditional mean values given by the unrestricted function. This observation

demonstrates that the log-transformation of durations introduced a bias into the

estimated smoothing spline function. Nevertheless, the deseasonalised durations

for all three shares were constructed by assuming that the seasonal component

from the observed durations is given by the sign-restricted regression model (2.5).

In Appendix B. we display the mean functions (estimated before and after the

application of transformation) for sm-M price durations for Allianz (Figure 4.11),

E.ON (Figure 4.12) and BASF (Figure 4.13) in the years 2002-2004.

2.4.2 Analysis of adjusted durations

We deseasonalised the observed price durations, corresponding to sm-M price

changes in March to May of the years 2002-2004, of the Allianz, the E.ON and the

BASF shares. In each year, the intraday seasonal component was estimated using

the sign-restricted regression model (2.5). We analysed each of the nine sequences

of deseasonalised price durations by examining the plot of its smooth, the plot of

daily averages, its descriptive statistics and its ACF.

In the left column of Figure 2.8, we plotted a smooth, computed by the R

function lowess, of the deseasonalised price durations for Allianz in each year.

We note that the sample mean for each of the three years is much larger than 1

(it is 2.753 for March to May 2002, 3.426 for March to May 2003 and 3.592 for
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Figure 2.8: (Seasonally-) adjusted price durations of Allianz: mean durations,

estimated nonparametrically, as a function of number of significant price changes

(dotted line, left column) and daily average (right column). The durations corre-

spond to small-M price changes for the period March to May in years 2002, 2003

and 2004. In each plot of left column, sample mean of durations in each year is

indicated by the solid horizontal line.
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March to May 2004). The difference from 1 is due to the bias of the estimated

smoothing spline function. We also note that the mean duration function is not

constant over the number of price changes in each of the three years. In the right

column of Figure 2.8, the plot of the daily average of the deseasonalised price

durations of Allianz shows considerable variation in each of the three years. We

have also presented, for each of the three years, the plot of a smooth and the plot

of daily average of the deseasonalised price durations of the E.ON (Figure 4.14)

and the BASF (Figure 4.15) shares in Appendix B.. In each of these figures we

also note that the mean function is not constant over the number of price changes

and that the daily average varies considerably in each year.

Table 2.10 gives the descriptive statistics of the deseasonalised price duration

for Allianz, E.ON and BASF. For each share we find that the smallest deseason-

alised duration (fourth column) in each year is zero. We also find in each year that

the sample mean (column 8) is much larger than 1 and that the deseasonalised

price durations is overdispersed (column 9) relative to its mean.

The ACF of the deseasonalised price durations of the Allianz share, in the

years 2002-2004, are displayed in Figure 2.9. The price durations in each year

correspond to sm-M price changes in March, April and May. We find in each

year that the deseasonalised price durations has a significantly large positive first

order autocorrelation, and the size of the autocorrelation decreases very slowly

with increasing order of the lag. In fact the autocorrelation remains significantly
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ALV

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.25 12554 0.00 1.20 116.32 4.91 2.75 1.78

2003 0.10 31802 0.00 1.20 266.24 7.41 3.43 2.16

2004 0.08 21487 0.00 1.18 423.49 9.15 3.59 2.55

EOA

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.06 9262 0.00 1.17 76.62 4.50 2.58 1.74

2003 0.06 18303 0.00 1.14 104.34 4.42 2.58 1.72

2004 0.04 20653 0.00 1.20 206.50 6.04 2.95 2.05

BAS

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.05 10430 0.00 1.18 69.40 4.55 2.69 1.69

2003 0.05 20902 0.00 1.14 152.21 4.82 2.62 1.84

2004 0.04 13582 0.00 1.20 306.28 7.25 3.15 2.30

Table 2.10: Descriptive statistics of adjusted (non-negativity of duration pre-

served) small-M price durations of Allianz, E.ON and BASF for the period March

to May, 2002-2004. The eight columns are: size of small-M (Euro), length, small-

est, median, largest, standard deviation, average and relative dispersion.
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Figure 2.9: ACF of (seasonally-) adjusted price durations of Allianz corresponding

to small-M price changes for the period March to May in years 2002, 2003 and

2004.
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positive even at lag 100.

We have also presented the ACF of the deseasonalised price durations, in

the years 2002-2004, of the E.ON share (Figure 4.16) and of the BASF share

(Figure 4.17) in Appendix B.. For each of the shares we again note that in

each year the first order autocorrelation of the deseasonalised durations is a large

positive value and that the autocorrelation remains positive until at lag 100. The

slowly decaying autocorrelation indicates that the variation of the mean duration

function we found in each of Figures 2.8 to 4.15 should be removed from the

deseasonalised durations.

2.4.3 Standardisation of adjusted durations

One way to remove the variation of the mean duration function is to stan-

dardise the daily mean of the deseasonalised durations. In each year with D

(D = 1, 2, . . .) trading days we compute the standardised price durations in trad-

ing day d (d = 1, 2, . . . , D), denoted by zd = (zn,d), by dividing the deseasonalised

durations by its sample mean on day d, i.e.

zn,d =
an,d
ād

, (2.7)

where ād denotes the sample mean of (an,d) and nd denotes the number of signifi-

cant price changes in trading day d. By construction, the standardised durations

in trading day d have a mean value of exactly one.
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2.4.4 Analysis of standardised durations

We compute the standardised sm-M price durations for Allianz, E.ON and

BASF. Table 2.11 gives the descriptive statistics of the standardised series for each

share. In this table we note that, in each of the nine series, the overdispersion

relative to the standard exponential distribution remains considerable (see column

9).

Figure 2.10 displays the sample ACFs of the standardised series for Allianz. In

this figure we note that, for each of the three periods, the positive serial correlation

in the series remains strong. In Appendix B. we present the sample ACFs of the

standardised series for E.ON (Figure 4.18) and for BASF (Figure 4.19). In both

of these figures we note again the strong positive serial correlation in all series.

2.4.5 Properties of standardised durations

We have computed the standardised price durations of the Allianz, the E.ON

and the BASF shares, where the durations of each share correspond to sm-M price

changes in March to May of the years 2002-2004. We found three features of the

standardised price durations from our analysis of each of the nine standardised

duration sequences. Firstly, the trend of the standardised durations is roughly

constant over the number of price changes in each year. This indicates that the

standardised price durations are at least mean stationary. Secondly, the distri-

bution of the standardised durations is overdispersed (i.e. the sample standard
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ALV

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.25 12554 0.00 0.47 26.36 1.59 1.00 1.59

2003 0.10 31802 0.00 0.48 30.09 1.58 1.00 1.58

2004 0.08 21487 0.00 0.44 31.35 1.63 1.00 1.63

EOA

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.06 9262 0.00 0.50 30.72 1.57 1.00 1.57

2003 0.06 18303 0.00 0.52 23.59 1.51 1.00 1.51

2004 0.04 20653 0.00 0.48 32.54 1.55 1.00 1.55

BAS

year sm-M #(obs.) min. med. max. s.d. mean s.d.
mean

2002 0.05 10430 0.00 0.48 26.36 1.55 1.00 1.55

2003 0.05 20902 0.00 0.52 42.28 1.52 1.00 1.52

2004 0.04 13582 0.00 0.49 37.51 1.54 1.00 1.54

Table 2.11: Descriptive statistics of standardised small-M price durations of Al-

lianz, E.ON and BASF for the period March to May, 2002-2004. The eight

columns are: size of small-M (Euro), length, smallest, median, largest, standard

deviation, average and relative dispersion.
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Figure 2.10: ACF of standardised price durations of Allianz corresponding to

small-M price changes for the period March to May in years 2002, 2003 and 2004.
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deviation exceeds the sample mean). Finally, there is a significantly large positive

first order autocorrelation. As the order of the lag increases, the size of this pos-

itive autocorrelation decreases slowly towards zero. This indicates the presence

of positive serial correlation in the standardised duration sequence (i.e. long du-

ration tend to follow long durations and short duration tends to follow the short

durations).

2.5 The ACD models

The standardised durations z are a series of nonnegative continuous-valued

observations. We assume that these series are also covariance stationary. En-

gle and Russell (1997, 1998) proposed the class of models, which they called the

autoregressive conditional duration (ACD) models, for z. Their models can ac-

commodate both overdispersion (see, for example, Hautsch, 2004, p. 81) and

serial dependence in z.

An ACD model for {Zn : n = 1, . . . , N} consists of two components: firstly,

means of durations Zn, denoted by µn, and secondly, random errors, denoted by

ǫn. The model assumes that the components are combined multiplicatively, i.e. it

has the general form:

Zn = µn · ǫn (for n = 1, . . . ,N). (2.8)

In an ACD model the errors are defined by the ratio

ǫn =
Zn
µn

(for n = 1, . . . , N). (2.9)
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The model assumes that these errors are independent random variables with a

common probability distribution, denoted by gǫ (e), and that the mean of each

error is 1.

2.5.1 Specification

In order to specify the type of ACD model we apply we need to postulate a

model for µn and a family of parametric distributions for the error.

The baseline model for µn, used in Engle and Russell (1997, p. 191; 1998, p.

1133), is a linear function of p (for p = 1, 2, . . .) lagged durations, Zn−1, . . . , Zn−p,

and q (for q = 1, 2, . . .) preceding means, µn−1, . . . , µn−q. An ACD model with

µn having this general form is given the abbreviation ACD(p, q). We refer to µn

as the conditional mean given the history, since it is a weighted average of the

preceding observations. To determine the constraints that apply to the parameters

of a model for µn we consider the special case of ACD(1, 1), i.e.

µn = ω + αZn−1 + βµn−1 (for n = 2, . . . ,N). (2.10)

In Equation (2.10) we require that ω > 0 and α, β ≥ 0 to ensure that the con-

ditional means take on strictly positive values. The unconditional mean for this

ACD model is given by21:

E (Zn) =
ω

1− (α+ β)
. (2.11)

21This follows by taking the expection of both sides of Equation (2.10) and by applying the
covariance stationarity of {Zn}.
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By imposing the additional constraint (α+ β) < 1 we ensure the existence of

E (Zn) in Equation (2.11). The recursion (2.10) is initialised by setting µ1 equal

to the unconditional mean. For a survey and classification of several other speci-

fications for µn, see Hautsch (2004, Section 5.3).

For the error component of an ACD model we may use, as a model for ǫ, any

parametric families of distributions with support defined on the positive real line.

As the baseline model Engle and Russell (1997, p. 191; 1998, p. 1133) used the

standard exponential distribution, which is given by the density function

gǫ (e) = exp (−e) (for e ≥ 0). (2.12)

We refer to ACD models with this distribution for the error as the exponential

ACD (EACD) models.

In order to accommodate the overdispersion, families of distributions at vari-

ous levels of generalisation of the exponential are used in the literature22. To use

any one of these families for the error component in the ACD model we select the

sub-family that satisfies the following conditions. Firstly, it includes the standard

exponential distribution as a special case. This we achieve by fixing the value of

one of the several parameters, at which the standard exponential can be obtained.

Secondly, the sub-family that satisfies condition 1 has a mean of 1. This we obtain

by dividing the distribution concerned by its mean.

22See Hautsch (2004, Section 5.2.3) for a brief account.
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2.5.2 The likelihood

Suppose the N consecutively observed durations z1, . . . , zN are generated by

an ACDmodel with conditional mean µn and error described by probability distri-

bution ge (ǫ). Define z
(n) = (z1, z2, . . . , zn). Then, the exact likelihood of observing

{
z(N)

}
under the specified ACD model is given by the (joint) distribution of {Zn}

evaluated at
{
z(N)

}
. A complication that arises when we want to evaluate this is

that we need to provide the distribution of the first few observations, which is not

known to us.

We can, however, approximate the exact likelihood instead. One way of doing

so is to take the first few observations as known and set the first few conditional

means equal to their unconditional mean. For computational convenience, the

likelihood LN we maximise is the probability density of

{Zu+1 = zu+1, Zu+2 = zu+2, . . . , ZN = zN}

conditioned on the first u observations. For µn a function of p lagged durations

and q lagged conditional means, we take u to be the larger of p and q.

In the case of the ACD(1, 1) models, the conditional likelihood to be max-

imised is

LN = f (z2, . . . , zN | z1) =
N∏

n=2

f
(
zn|z(n−1)

)
. (2.13)

The conditional distributions in the likelihood (2.13) are determined by substi-

tuting the specified conditional mean and probability distribution describing the
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error in Equation (2.13), i.e. by

f
(
zn|z(n−1)

)
=
1

µn
ge

(
zn
µn

)
. (2.14)

We use the EACD (1, 1) model as the basic ACD model. That is, an ACD

model with conditional mean µn a linear function of one lagged duration Zn−1

and one lagged conditional mean µn−1, and the error described by a standard

exponential distribution. The likelihood of observing
{
z(N)

}
under this model is

given by Equation (2.13), with conditional distributions following from Equation

(2.14)

f
(
zn|z(n−1)

)
=
1

µn
exp

(
− zn
µn

)
(2.15)

and the recursion for the conditional means (µn) is initialised by setting µ1 =

E (Z1) and µ2 = ω + αz1 + βµ1.

In this chapter the family of Burr distributions is the most general model

we used for the error component in the ACD model. This was first used by

Grammig and Maurer (2000, Section 3.2), in which they call the class of models

they obtained Burr ACD (BACD). For this class of ACD models we demonstrate

how one selects the sub-family to use for the error component.

Consider the ACD(1, 1)model in which the distribution for the error is defined

by Equation (A.1) in Grammig and Maurer (2000, p. 35)

gX
(
x|µ, κ, σ2

)
=

µκxκ−1

[1 + σ2µxκ]1+(
1
σ2
)
, (2.16)

where its support is the set of all strictly positive real numbers (i.e. x > 0) and the
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constraints on its parameters are that they must have strictly positive real values.

The mean of the Burr distribution (2.16) follows by setting j = 1 in Equation

(A.4) of Grammig and Maurer (2000, p. 36)

E (X) = µ−
1
κ

[
Γ
(
1 + 1

κ

)
· Γ

(
1
σ2
− 1
κ

)

(σ2)1+
1
κ · Γ

(
1 + 1

σ2

)

]

, (2.17)

where Γ (·) denotes the gamma function. The additional constraint on the pa-

rameter σ2 is that it must be strictly less than the value of the parameter κ.

This ensures that Γ
(
1
σ2
− 1
κ

)
in Equation (2.17), and hence E (X), is defined. We

represent the family of Burr distributions by X ∼ Burr (µ, κ, σ2).

In the sub-family of Burr distributions that we use, we set the parameter µ

equal to 1. This ensures that the Burr distribution approximates the standard

exponential, if κ equals 1 and σ2 approaches 0. To obtain the distribution that

has a mean of 1, we follow the literature by dividing the conditional mean µn by

the mean of Burr (1, κ, σ2)23 instead. We refer to this quantity as the “scaled”

conditional mean, and it is denoted by φn.

The likelihood of the BACD (1, 1) model is given by Equation (2.13) in which

the conditional densities, following from Equation (2.14), are given by

f
(
zn|z(n−1);θ

)
=

(φ−κn )κzκ−1n

[1+σ2(φ−κn )zκn]
1+( 1

σ2
)

(for n = 2, . . . , N). (2.18)

The recursion for the conditional means (µn), and hence (φn), is initialised by

setting µ1 = E (Z1) and µ2 = ω + αz1 + βµ1. The parameters of the conditional

23Note that this is strictly positive.
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densities (2.18) are θ = (ω, α, β, κ, σ2)
′
, where ω, α and β are the parameters

that apply to the conditional mean function, and κ and σ2 are the parameters

that apply to the Burr distribution. The conditional distributions for the Weibull

ACD models and the generalized gamma ACD models of Lunde (1999, p. 5) are

given in Table VI of Hujer et al. (2002, p. 38).

2.6 The Markov switching ACD models

In the literature the standard ACD models were modified or generalised, in

numerous different ways, in order to arrive at more flexible models for various

types of waiting times (See Chapter 1). Hujer et al. (2002) proposed the Markov

switching ACD (MSACD) models in which both components of an ACD model

are allowed to depend on the state of an unobserved Markov process. In this way

their models can accommodate abrupt changes in the mean of Zn in addition to

the overdispersion.

In this section we define and introduce notation for the MSACD models. We

discuss parameter estimation, model selection and model checking. Appendix B.

outlines a small (though computer-intensive) simulation study that we used to

check the estimation software.
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2.6.1 Description

The Markov switching ACD (MSACD) model {Zn : n = 1, 2, . . .} consists of

two parts: firstly, an unobserved state process {Cn} is assumed to be a Markov

chain, and secondly, an observed state-dependent process {Zn} such that the

conditional distribution of Zn given the preceding observations depends only on

the current state Cn. Define C
(n) = (C1, C2, . . . , Cn) and Z

(n) = (Z1, Z2, . . . , Zn).

The dependence structure of the model can be summarised by:

Pr
(
Cn|C(n−1)

)
= Pr (Cn|Cn−1) (for n = 2, 3, . . .) (2.19)

f
(
zn|Z(n−1),C(n)

)
= f

(
zn|Z(n−1), Cn

)
(for n = 2, 3, . . .). (2.20)

For the observed process the ACD model (2.8) is assumed, in which the com-

ponents depend on the Markov chain as follows. Firstly, the conditional mean of

Zn given Z(n−1) depends only on the current state Cn but not on the preceding

states (this follows immediately from Eq. (2.20)). Let µn,j denote this conditional

mean, given Cn is in state j (for j = 1, . . . ,m). We use a model, like (2.10), for

µn,j:

E
(
Zn|Z(n−1), Cn = j

)
= µn,j. (2.21)

Secondly, we define Zn
µn,j

as the error if Cn is in state j. Its distribution depends

on the current state but not on the preceding states or observations, i.e.

g

(
zn
µn,j

∣∣∣∣Z
(n−1),C(n)

)
= g

(
zn
µn,j

∣∣∣∣Cn
)
. (2.22)

Any distribution we use for the error component in an ACD model, such as that
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given by Equation (2.12) may be used as the error distribution in state j. We

assume that the error, conditional on preceding observations, has a mean of 1, i.e.

E

(
zn
µn,j

∣∣∣∣Z
(n−1)

)
= 1.

Given Cn, the conditional distribution of an ACD model, such as that given by

Equation (2.15), can be specified in Equation (2.20).

In this chapter we assume that {Cn} in the MSACD models is a stationary

irreducible Markov chain (ZM, p. 18), with (one-step) transition probability matrix

(t.p.m.) Γ and stationary distribution δ. Denote the entries of Γ by γij =

Pr (Cn = j|Cn−1 = i) with row sums equal to one, i.e.

Γ =






γ11 · · · γ1m

...
. . .

...

γm1 · · · γmm






,

where m is the number of states of the Markov chain, and δ is a row vector

satisfying δΓ = δ and δ1′ = 1. If the Markov chain {Cn} has m states then {Zn}

is called an m−state MSACD model.

In our definition of the MSACD model one can use a different type of ACD

model for each state. In this chapter we concentrate on the case that one type of

ACD model is used for all states.

The parameters of the MSACD model can be divided into two groups: the

parameters of the Markov chain and the parameters of the specified ACD model

when the Markov chain is in state j at duration Zn. The Markov chain is com-
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pletely determined by its t.p.m. Γ, thus we refer to the vector collecting the

(m2 −m) off-diagonal elements of Γ, denoted by θΓ, as the parameter vector of

the Markov chain. Given state j, we collect the parameters of the ACD model

in a vector denoted by θj. Each element in this vector is subscripted by j to

denote its state-dependence. We refer to θj as the state-dependent parameter vec-

tor and to its elements as the state-dependent parameters of the MSACD model.

For example, the state-dependent parameter vector for a Burr ACD(1, 1) model

is θj =
(
ωj , αj , βj , κj , σ

2
j

)′
, where ωj denotes the constant term in the model for

µn,j. In the case that the model for µn,j contains more than one lagged dura-

tion and/or lagged state-dependent conditional mean, we denote the coefficient

of the k−th (for k = 1, . . . , p) lagged duration term by αjk and the coefficient

of the l−th (for l = 1, . . . , q) lagged state-dependent conditional mean term by

βjl. For example, the state-dependent parameter vector of an EACD(2, 2) model

is θj =
(
ωj , αj1, αj2, βj1, βj2

)′
, where αj2 denotes the coefficient of the second

lagged duration term. Note that the parameters in θj can be further divided into

two groups: those that apply to the model for µn,j and to the model for the error.

Denote by θ the vector collecting θ1, . . . ,θm and θΓ. We then refer to θ as the

parameters of the MSACD model.

The MSACD model generates the observations as follows: at the n-th dura-

tion the Markov chain selects a parameter vector θj, and then the conditional

distribution given θj generates the observation zn.
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We now introduce notation and terminology for particular parts of the MSACD

model. Define

fn|n−1,j (z) = f
(
zn|Z(n−1), Cn = j

)
(for j = 1, . . . ,m).

Then, given state j, we denote the distribution of Zn conditional on preceding

observations by fn|n−1,j. For the error we define

gj (ǫ) = gen (ǫ|Cn = j) (for j = 1, . . . ,m).

Then given state j, the probability distribution of the error is denoted by gj.

At the n-th duration, we refer to the m conditional distributions fn|n−1,j as the

state-dependent conditional distributions, to the m conditional means µn,j as the

state-dependent conditional means, and to the m distributions gj as the state-

dependent error distributions of the MSACD model.

2.6.2 Model fitting

We specify a MSACD model in three steps. In the first step, we specify the

number of states of the Markov chain. In the next step, we specify the type of

lagged conditional mean to be included in the model for µn,j. The state-dependent

conditional means µn−1,j , µn−2,j, . . . are used in this chapter. An alternative that

we can use is the state-independent conditional means µn−1, µn−2, . . . (see the

discussion in Hujer et al., 2002, p. 10). In the last step, we specify the condi-

tional distribution of an ACDmodel to be used as the state-dependent conditional

distribution of the MSACD model.
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We call {Zn} an exponential MSACD model in the case that the exponential is

specified for the state-dependent error distributions. We denote by MSACD(p, q)

the case that the state-dependent conditional means µn,j have an ACD(p, q) spec-

ification. For example, a two-state exponential MSACD(1, 1) model is a MSACD

model with t.p.m.

Γ =






γ11 γ12

γ21 γ22




 ,

the conditional mean in state j defined by

µ1,j =
ωj

1−αj−βj

µn,j = ωj + αjZn−1 + βjµn−1,j (for n = 2, 3, . . .)

and the state-dependent conditional distributions defined by

fn|n−1,j (z) =
1
µn,j
exp

(
− zn
µn,j

)
(for j = 1, 2).

The likelihood. Assume that N consecutive observations z1, . . . , zN are

generated by an m−state MSACD model with t.p.m. Γ and initial distribution δ

for its Markov chain, and conditional distribution of the specified ACD model as

the state-dependent conditional density fn|n−1,j (z). Define z
(n) = (z1, z2, . . . , zn).

The likelihood LN of the MSACD model, conditioned on the first u observations,

is given by

LN = f (zu+1, . . . , zN | z1, . . . , zu)

=
N∏

n=u+1

f
(
zn|z(n−1)

)
. (2.23)
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A derivation of the explicit formula for the likelihood (2.23) is given in Appendix

B., pages 210-213.

In Equation (2.23) the conditional distribution of Zn is a mixture conditional

distribution

f
(
zn|z(n−1)

)
=

m∑

j=1

f
(
zn, Cn = j| z(n−1)

)

=
m∑

j=1

Pr
(
Cn = j| z(n−1)

)
· fn|n−1,j (z) , (2.24)

where the state-dependent conditional density fn|n−1,j (z) is the j−th component

distribution and the probability that Cn is in state j, conditioned on the pre-

vious observations z(n−1), denoted by pn|n−1,j, is the probability weight assigned

to the j−th component distribution. In this chapter we refer to the conditional

distribution (2.24) as the conditional distribution of the MSACD model24.

For events n = (u+ 1) through to n = N , where u is the number of obser-

vations the likelihood is conditioned upon, the quantities pn|n−1,j and fn|n−1,j (z)

required to evaluate the conditional distribution of Zn are computed by Hamilton’s

(1994, p. 692) algorithm. This algorithm recursively computes the distribution

of Cn conditioned on z(n−1) using a set of two equations (for j = 1, 2, . . . ,m).

Define z(0) as the empty set. The first equation (his Equation 22.4.5), which can

24Hujer et al. (2002, p.9) refer to conditional distribution (2.24) as the “marginal density,” or
as the “incomplete data density” in their description of the EM algorithm for MSACD models.
However, Equation (2.24) is the marginal for the joint distribution of Zn and Cn conditional on
the preceding observations.
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be described as the updating equation, is

Pr
(
Cn = j| z(n)

)
=

f
(
zn|Cn, z(n−1)

)
Pr

(
Cn| z(n−1)

)

f (zn| z(n−1))
(2.25)

and the second equation (his Equation 22.4.6), which can be described as the

prediction equation, is

Pr
(
Cn+1 = j| z(n)

)
=

m∑

i=1

Pr (Cn+1 = j|Cn = i) Pr
(
Cn = i| z(n)

)
. (2.26)

A derivation of Equations (2.25) and (2.26) is given in Appendix B., pages 207-210.

Note that the denominator of the expression on the right-hand side of Equation

(2.25) is the conditional distribution of Zn

f
(
zn| z(n−1)

)
=

m∑

j=1

f
(
zn|Cn = j, z(n−1)

)
Pr

(
Cn = j| z(n−1)

)
, (2.27)

which represents the contribution of zn to the likelihood of {zn}.

Now, we substitute Equation (2.27) into Equation (2.25) and then rewrite

the resulting equation in terms of the notations introduced earlier, the updating

equation takes on the form

pn|n,j =
pn|n−1,j ·fn|n−1,j(z)

∑m
s=1 p

(s)
n|n−1

·fn|n−1,s(z)
(for j = 1, 2, . . . ,m). (2.28)

Similarly, rewriting Equation (2.26) in terms of the notations introduced earlier;

the prediction equation takes on the form

pn+1|n,j =
∑m

i=1 γij · pn|n,i (for j = 1, 2, . . . ,m). (2.29)

Equations (2.28) and (2.29) represent the set of equations given in Hujer et al.

(2002, p. 10).
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From Equation (2.24), it is easy to show that the marginal conditional mean

is a probability-weighted average of the state-dependent conditional means, i.e.

µn =
m∑

j=1

Pr
(
Cn = j| z(n−1)

)
· µn,j. (2.30)

Hujer et al. (2002, p. 39) further show that the distribution of the error, condi-

tional on the preceding observations, is a mixture, i.e.

g
(
ǫn| z(n−1)

)
=

m∑

j=1

Pr
(
Cn = j| z(n−1)

)
· g (ǫn|Cn = j) . (2.31)

From Equation (2.31), some properties of the error process for the MSACD model

can be described as follows. Firstly, the errors of the MSACD model are not in-

dependent, since the distribution of the error depends on previous observations.

Secondly, the assumption that the conditional error given preceding observations

has a mean of one is satisfied, since the mean of the state-dependent error dis-

tribution is one by construction. Finally, the variance of the error changes from

duration to duration. For a sketched proof of properties two and three, see Hujer

et al. (2002, p. 39).

In general, the series of observations to which we fit an MSACDmodel consists

of durations series in successive trading days. Here we assume that the component

series are independent of each other, since we recompute the durations in each

day (see Section 2.2.1). Thus the likelihood of the observations is a product of

the likelihoods of the components.

Maximisation of the likelihood to estimate parameters. The para-

meters are estimated by maximising the likelihood of the MSACD model. For
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this purpose Hujer et al. (2002) used both a numerical maximisation algorithm

and the Expectation-Maximisation (EM) algorithm. In order to minimise the pro-

gramming effort for each modification of the model (ZM, p. 72), we estimate the

parameters by direct numerical maximisation (DNM) of the likelihood25. To esti-

mate the parameters this way several problems need to be addressed. The main

problems are the constraints on the parameters and the existence of multiple local

maxima in the likelihood function.

Constraints on the parameters. Since elements of the t.p.m. are prob-

abilities and the ACD model is a strictly positive-valued process, maximisation

of the likelihood of a MSACD model is a constrained optimisation problem. The

observed duration series is typically long and the estimated off-diagonal elements

of the t.p.m. tend to lie close to the lower boundary value of zero, thus maximi-

sation using a constrained optimizer can be slow (ZM, p. 47). However, in order

to use R’s unconstrained optimizer nlm for maximisation of the likelihood, the

optimization problem needs to be first converted to an unconstrained one.

In general there are three groups of constraints: those that apply to the pa-

rameters of the state-dependent conditional means, those that apply to the pa-

rameters of the Markov chain and those that apply to the parameters of the

state-dependent error distributions26. In the case of a Burr MSACD with state-

25Hujer et al. (2002, p. 22) also used DNM when the state-dependent conditional mean
depends also on lagged state-independent conditional mean. However, they preferred the EM
algorithm for other specifications of the state-dependent conditional mean (Hujer et al., 2002,
p. 13).

26A state-dependent error distribution that is a standard exponential does not have any pa-
rameters to be estimated.
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dependent conditional means that are a linear function of one lagged duration

and one lagged state-dependent conditional mean, the constraints for each group

of parameters are:

1. The constant term ωi in the state-dependent conditional mean must be

strictly positive, for i = 1, . . . ,m. The coefficient of both the lagged duration

term αi and lagged state-dependent conditional mean term βi in the state-

dependent conditional mean must be nonnegative and sum of the coefficients

must be strictly less than one, for i = 1, . . . ,m.

2. The parameters of the state-dependent error distribution κi and σ
2
i must be

strictly positive and σ2i < κi, for i = 1, . . . ,m.

3. The rows of the t.p.m. Γ must sum to 1, and all the parameters γij must

be in the interval [0, 1].

The implementation difficulties caused by the constraints on the parameters

of this MSACD model can be avoided by reparameterising the model. The t.p.m.

Γ is reparameterised as described in ZM (pp. 48-49). As an illustration, starting

values for parameters γij of a two-state Markov chain are reparameterised to the

“working parameters” by the following transformations

τ ij = log
(
γij
γii

)
(for i �= j).

The estimates of the working parameters returned by the unconstrained optimizer
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are reparameterised back to the “natural parameters” by the following transfor-

mations

ρ̂ij =






exp (τ̂ ij) (for i �= j)

1 (for i = j)

γ̂ij =
ρ̂ij

ρ̂i1 + ρ̂i2
.

The constraints on parameters of state-dependent conditional means may be

divided into two types: the strictly positive constraints on the constant terms

ωi, and the nonnegative elements that sum to less than one constraints on the

coefficients of lagged duration term αi and of lagged state-dependent conditional

mean βi. The transformation of the parameter ωi is relatively simple. Starting

value for the constant term is transformed to the unconstrained parameter by

Wi = log (ωi), for i = 1, . . . ,m. Estimates returned by the unconstrained opti-

mizer is transformed back to the constrained parameter by ω̂i = exp
(
Ŵi

)
. The

constraints on the parameters αi and βi (for i = 1, . . . ,m) are similar to those on

the parameters of Γ, except that the sum of αi and βi cannot equal to one. Thus,

the transformations of the parameters αi and βi use a slight modification of the

reparameterisation of the Γ as described in ZM (pp. 48-49). In state i we define

an additional parameter, denoted by γ, by

γi = 1− (αi + βi) .

In this definition we assume that the value of βi is likely to be close to 1
27. Then,

27This can be interpreted as the existence of strong persistence in the price durations, a finding
of Hautsch (2004, p. 125) in his application.
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place βi followed by αi and γi in a vector di defined by

di = (d1,i, d2,i, d3,i)
′ .

so the parameters βi, αi and γi are renamed as d1,i, d2,i, d3,i respectively. The

starting values for the constrained parameters αi and βi are transformed to the

unconstrained real numbers Dv,i defined by

Dk−1,i = log
(
dk,i
d1,i

)
(for k = 2, 3) (2.32)

The estimates returned by the unconstrained optimizer are transformed back to

the constrained parameters by

d̂k,i =






1

1+
∑2
v=1 exp(D̂v,i)

(for k = 1)

exp(D̂k−1,i)
1+
∑2
v=1 exp(D̂v,i)

(for k = 2, 3)

(2.33)

The values of d̂1,i, d̂2,i and d̂3,i represent β̂i, α̂i and γ̂i respectively. For the more

general case that the state-dependent conditional mean is a linear function of p

lagged durations Xn−1, . . . ,Xn−p and q lagged state-dependent conditional means

µn−1,i, . . . , µn−q,i, there will be a total of r = p + q + 1 parameters (for p, q ∈ N).

The additional parameter becomes

γi = 1−
(

p∑

l=1

αn−l,i +

q∑

l=1

βn−l,i

)

,

and the vector of constrained parameters generalises to

di = (d1,i, . . . , dq,i, dq+1,i, . . . , dq+p,i, dr,i, )
′



2.6. THE MARKOV SWITCHING ACD MODELS 73

so the parameters β1,i, . . . , βq,i, α1,i, . . . , αp,i and γi are renamed as d1,i, . . . , dr,i re-

spectively. Transformations to the unconstrained real numbers defined by Equa-

tion (2.32) now holds for k = 2, . . . , r and transformation back to the constrained

parameters defined by Equation (2.33) now generalises to

d̂k,i =






1

1+
∑r−1

v=1 exp(D̂v,i)
(for k = 1)

exp(D̂k−1,i)
1+
∑r−1

v=1 exp(D̂v,i)
(for k = 2, . . . , r).

The transformation of the state-dependent Burr distribution parameters κi

and σ2i proceed as follows, for i = 1, . . . ,m. Define constrained parameter vectors

∆1 = (σ
2
1, . . . , σ

2
m)

′
and ∆2 = (κ1 − σ21, . . . , κm − σ2m)

′
. Then, starting values for

∆1 and ∆2 are transformed to unconstrained real numbers by D1 = log (∆1)

and D2 = log (∆2). Estimates returned by the unconstrained optimizer are

transformed back to the constrained parameter vectors by ∆̂1 = exp
(
D̂1

)
and

∆̂2 = exp
(
D̂2

)
from which the estimated state-dependent Burr distribution pa-

rameters are calculated by κ̂ = ∆̂1 + ∆̂2 and σ̂
2 = ∆̂1.

Number of parameters requiring estimation. The likelihood of an

MSACD model, as given by Equation (2.23), is a function of the parameters

as well as two groups of quantities: those to start the recursions for the state-

dependent conditional means and those to start the recursion for the conditional

distribution of Cn given preceding observations. We reduced the number of quan-

tities requiring estimation as follows. In the case that the conditional mean in

state j has an ACD(p, q) specification. We start the recursion by setting each of
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the max (p, q) number of quantities to the unconditional mean (as given by Equa-

tion (2.11)). For example, in state j, the conditional mean in an MSACD (1, 1)

model is

µ1,j = E (Z1|C1 = j) =
ωj

1−αj−βj
(for j = 1, . . . ,m).

For p1|0,j = Pr
(
C1 = j|z(0)

)
, which is needed to start the recursion represented by

Equations (2.28) and (2.29), we use

p1|0 = (Pr (C1 = 1) , . . . ,Pr (C1 = m)) = δ,

where δ is the stationary distribution of the Markov chain. Applying expressions

in both cases to the likelihood, it is now a function of the parameters only.

A total of k independent parameters is required to be estimated. The k here

is the sum of: m times (1+ p+ q) parameters for the state-dependent conditional

mean, m times the number of parameters for the state-dependent error distribu-

tion and (m2−m) parameters for the Markov chain28. Thus, one needs to provide

k starting values for the numerical maximizer to locate a local maximum.

The most general MSACD model we consider in this chapter has two states,

the Burr distributions for state-dependent errors and state-dependent conditional

means that depend on lagged duration and lagged state-dependent conditional

mean. We can treat this twelve parameter model as the result of progressive

extensions of the baseline model (i.e. the model which assumes that the observa-

28Thus, for example, a two-state Burr MSACD(1, 1) model has a total of twelve parameters
to be estimated, of which six come from the ACD(1, 1) specification for the state-dependent
conditional means, four from the state-dependent Burr distributions and the remaining two
parameters from the Markov chain.



2.6. THE MARKOV SWITCHING ACD MODELS 75

m Error Γ θǫ ω k

1 Exponential 0 0 1 1

1 Burr 0 2 1 3

2 Exponential 2 0 2 4

2 Burr 2 2 2 6

Table 2.12: Number of parameters of MSACD models with no additional depen-

dence on past observations.

tions are realisations of independent exponential random variables with a common

mean). In the first extension we generalise the model for the error from the ex-

ponential to the Burr distribution. Given each distribution we then increase the

number of states of the Markov chain from one to two. The types of MSACDmod-

els considered in the first two extensions are presented in Table 2.12. In the final

extension we allow the means in the one-state models and the state-dependent

means in the two-state models to depend on preceding observations. The types of

models considered in the final extension are presented in Table 2.13. In order to

fit the model at each level of generalisation we select starting values by assigning

parameter estimates of model at the preceding level and providing values for the

additional parameters.

Multiple local maxima in the likelihood. The likelihood of an MSACD

model is a function of the parameters and it can have several local maxima. Our

goal is to find the global maximum. Depending on the set of starting values used,
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m Error Γ θǫ ω α β k

1 Exponential 0 0 1 1 0 2

1 Exponential 0 0 1 1 1 3

1 Burr 0 2 1 1 0 4

1 Burr 0 2 1 1 1 5

2 Exponential 2 0 2 2 0 6

2 Exponential 2 0 2 2 2 8

2 Burr 2 4 2 2 0 10

2 Burr 2 4 2 2 2 12

Table 2.13: Number of parameters of MSACD models with additional dependence

on past observations.
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the numerical maximizer can easily identify a local, but not the global, maximum.

This problem applies also to estimation by the EM algorithm.

In order to improve the chances of finding the global maximum we use a range

of starting values and then see whether the same maximum is reached each time

(Hujer et al., 2002, p. 12; ZM, Section 3.4.2). For their EM algorithm Leroux and

Puterman (1992, p. 550 and 553) generated many sets of starting values and then

chose the set at which the largest maximised likelihood value was identified. We

apply this idea to estimate the parameters of the MSACD models in three steps.

In the first step, we generate several sets of plausible starting values and then

we use each set to evaluate the likelihood. In the second step, we arrange these

likelihood values in decreasing order of magnitude and select from these those

starting values that correspond to the U (e.g., 20) largest likelihood values. In

the last step, we use this subset of starting values for the maximisation, and see

whether the same maximum is identified in each case. We now apply our method

to maximise the likelihood of N consecutive observations assumed to be generated

by a model which has k parameters.

For the i−th parameter we assign bi (for i = 1, 2, . . . , k) distinct values29. The

range of these values is assumed to contain the estimate of this parameter. We gen-

erate a total of B sets of starting values by using the R function expand.grid30.

The computational effort (in terms of time) required to maximise the likelihood

29We assign at least three separate values for each parameter.
30The B here represents the product of the bi.
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of a long series of observations is considerable, especially if the model has a large

number of parameters. Using all sets of starting values that we generated for the

maximisation is not feasible, since B becomes very large when k is large. One

way to overcome this problem is to select a portion of the B sets with which we

have a large chance of locating the global maximum. We do so by first evaluating

the likelihood at each of the B sets and then we use r (for r = 1, 2, . . .) largest

values of likelihood as the criterion to select our substantially smaller number of

sets of starting values. We refer to the r sets obtained this way as our “best” set,

and these are the sets we use for the maximisation31. By setting this method as

an algorithm we have an automatic procedure to select a set of starting values for

a MSACD model.

Assignment of starting values. We started by fitting the m−state ex-

ponential MSACD(0, 0) model. The parameters for this model consist of the

m constant terms in the state-dependent conditional mean ω1, . . . , ωm, and the

(m2 −m) off-diagonal elements of the t.p.m.32. To fit a two-state model we as-

signed a common starting value of
(
0.1
m−1

)
to all off-diagonal elements of the t.p.m.33

and for each ωi we assigned the following eleven values: 0.5, 1, 2, . . ., 10. We shall

see later that by including lagged terms in the state-dependent means the esti-

mates of ωi we obtained there are considerably small in relation to the range of

31We assume here that by initialising the iterations at a best starting values the numerical
maximiser has a better chance to locate the global maximum than that at inferior starting
values.

32For m = 1, this is just the single element 1.
33This implies that initially the Markov chain is equally likely to be in each state (ZM, Section

3.4.2)
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starting values we used here.

For each parameter in addition to those for the model at the preceding level of

generalisation we assigned starting values as follows34. For a given m the parame-

ters of the Burr MSACD(0, 0) model consist of those for: the Markov chain, the

state-dependent conditional means, and the state-dependent error distributions.

We assigned the estimated t.p.m. and estimates of the constant terms in the

state-dependent conditional means of the exponential MSACD(0, 0) as starting

values for parameters of the Burr MSACD(0, 0) model. In order to generate start-

ing values we have to assign values for each parameter of a state-dependent Burr

distribution (κi, σ
2
i ). By trial-and-error we found that the ranges of the following

values for κi: 0.5, 1, 1.5, 2, 3, . . .,6 and for σ2i : 0.01, 0.05, 0.1, 0.5, 1, 2, 3, 4

contained κ̂i and σ̂2i , respectively.

For a given m we then extended the state-dependent conditional mean in an

exponential and a Burr MSACD(0, 0) model to that depending on a lagged du-

ration (i.e. an MSACD(1, 0) specification) and then also depending on a lagged

state-dependent conditional mean (i.e. an MSACD(1, 1) specification). We as-

signed parameter estimates of an exponential MSACD(0, 0) model as the starting

values for parameters of an exponential MSACD(1, 0) model. In order to generate

starting values we have to assign values for each αi. By trial-and-error we found

that the range of the following values: 0.001, 0.005, 0.01, 0.05, 0.1, 0.2, . . ., 0.5

34The number of values that we can assign is a compromise between the degree of accuracy
and computational feasibility.
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contained α̂i.

Next we assigned the estimated t.p.m. of the exponential MSACD(0, 0) model

as starting values for the t.p.m. in an exponential MSACD(1, 1) model. In order

to generate starting values we have to assign values for each parameter of a state-

dependent conditional mean (ωi, αi, βi). By trial-and-error we found that the

ranges of the following values for each ωi: 0.01, 0.05, 0.1, for each αi: 0.01, 0.05,

0.1, 0.3, 0.5, 0.7 and for each βi: 0.1, 0.3, 0.5, 0.7, 0.8, 0.9 contained ω̂i, α̂i and β̂i,

respectively. Starting values for the parameters of the Burr MSACD(1, 0) model

and of the Burr MSACD(1, 1) model were chosen in a similar way.

Standard errors. Parametric bootstrap can be used to estimate the standard

errors of the maximum likelihood estimators in the MSACD models as is done for

the HMMs (see ZM, p. 55). On account of the considerable computational effort

required (ZM, p. 53) we refrain from doing so in our applications.

2.6.3 Model selection and checking

In order to select an appropriate model and then to assess its out-of-sample

fit, we divided an observations series into two sub-samples. We fitted the models

to the first sub-sample (termed the calibration sample) and we examined a fitted

model by using the second (termed the validation sample). In our applications

the calibration sample covers roughly the first two-thirds of the sample period.

Model selection. After we fitted various types of MSACD model to the
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calibration sample we need some criterion for model comparison. Following Hujer

et al. (2002, p. 22) we use the Bayesian information criterion (BIC) for model

selection.

Model checking. In the out-of-sample period we applied Diebold et al.’s

(1998) method to assess the fit of the selected model. In their method the proba-

bility integral transform (PIT) of each observation is defined as

un = Pr
(
Zn ≤ zn| z(n−1)

)
.

The PITs are based on the conditional distribution (under the model) of Zn given

the preceding observations. If the selected model is correct, Diebold et al. (1998,

pp. 867-868) showed that the series of PITs {un} are independent and identically

distributed with common distribution U (0, 1)35.

We assessed the distributional assumption as follows. Assume that the model

is correct. Then in a histogram of the PITs the frequency that the values of un

occurs in a bin is described by the binomial distribution. For this distribution

the total number of independent Bernoulli trials is the length of validation sample

and the constant probability of success is the bin width. Using the binomial as

the null distribution we performed a hypothesis test in two ways. Firstly, we

construct, at each bin, a 95% confidence band for the histogram estimator of the

density value36. An estimate that lies outside this confidence band indicates that

the selected model may not be adequate for the out-of-sample period. Secondly,

35The basic idea, however, dates back to at least Rosenblatt (1952).
36The construction uses a normal approximation to the binomial distribution.
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we can carry out a χ2 goodness-of-fit test37.

We assessed the independence assumption as follows. Firstly, we plot the

sample ACF for {un} at lags of up to 5038. Secondly, we test the null hypothesis

that the first fifty autocorrelations are zero39 by computing the Ljung-Box test

statistics40. A rejection of the null indicates that the selected model is inadequate

to describe the serial correlation in the validation sample. The pattern of the

autocorrelation coefficients may suggest the nature of this inadequacy.

2.7 Modelling price durations

Our objective is to assess whether the MSACD model can be used successfully

to represent the times between price changes of a specified amount. For this

purpose we used the transaction data for ALV, EOA and BAS. The periods covered

are the months of March to May in the years 2002-2004.

The sm-M price duration is the variable we model. Its computation is de-

scribed in Section 2.2. We applied the models to nine series of price durations.

Price durations series have the following three features (see Section 2.3.5). Firstly,

they are overdispersed relative to the exponential distribution. Secondly, they are

positively serially correlated. Finally, they display intraday seasonal variation.

37For the calculation of the test statistics, the observed cell frequency is the observed frequency
of un having value in a bin, the expected cell frequency is the expected value of the binomial
distribution. Under the null hypothesis that {un} is independent and identically U (0, 1), the
test statistics has an asymptotic chi-squared distribution with m− 1 degrees of freedom, where
m denotes the number of bins in the histogram.

38As used in Table II of Hujer et al (2002, p. 23)
39Under the null hypothesis, the test statistics has a chi-squared distribution with fifty degrees

of freedom and the hypothesis test is carried out at the usual 5% significance level.
40This is computed by the R function Box.test.
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2.7.1 Preprocessing of observed durations

We found in Section 2.3.5 that the series of price durations display variation

in day-to-day average and intraday seasonality. To standardise the mean we pre-

processed the observations in two stages. In the first stage we used the method

proposed by Engle and Russell (1997 and 1998) to remove the seasonal varia-

tion. In their method they fit a spline function to the entire series of observations

and then they divide the series by the fitted function41. In the second stage we

standardised the mean on each day by dividing the seasonally-adjusted series for

each day by its average. The series we obtained here have an average of 1. In

order to assess the influence of day-to-day variation of the mean on the forecast

performance of the models, we used first the adjusted durations and then the

standardised durations to examine the model.

2.7.2 Model fitting, selection and checking

We fitted a variety of MSACD models to the preprocessed series. The models

we used can be divided into two groups: those that do not assume dependence at

the observation level and those that assume additional dependence at the observa-

tion level. Within each group, we used models in the order of increasing number

of parameters: one-state models followed by two-state models, models with ex-

41The application of Engle and Russell’s method has the consequence that the average of the
deseasonalised series is 1 only if it is taken over the entire period.
What is done in the literature is this. The deseasonalised series is split into an in-sample and

an out-of-sample period. In this case the average for neither sub-periods are 1 (see, for example,
Table I on Hujer et al., 2002, p. 22).
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ponentially distributed errors followed by those with the Burr, and models with

dependence on lagged duration only followed by those with dependence on both

lagged duration and lagged conditional mean. In the last group we used models

that assume no dependence at the observation level and then we used models that

assume additional dependence at the observation level.

Parameter estimation by maximum likelihood. For each type of model

used, we estimated its parameters by the method of maximum likelihood. We used

direct numeric optimisation to maximise the incomplete-data likelihood. This

is carried out by using R (version 2.9.0)’s unconstrained nonlinear optimisation

routine nlm. To apply nlm we transform the parameters to its unconstrained

equivalent, as described in Section 2.6.2. The starting values we uses was chosen

from thirty possible sets of values as described in Section 2.6.2.

Model selection and checking. For each sequence of price durations, we

compared the fitted models as described in Section 2.6.3. We checked the forecast

performance of the selected model by using the preprocessed durations in the

validation sample. This is described in Section 2.6.3.

2.7.3 Model fitted to fixed sample

In this application we used the price durations for March to May in the year

2004. For each of the three shares the observations over the entire three-month
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period are deseasonalised42.

Fixed sample of adjusted durations. We splitted the seasonally-adjusted

series into two parts. The first part covered the first two months (i.e. the months

of March and April), with which we used to fit the models. The second part

covered the month of may, with which we used to check the selected model.

Table 2.14 presents the estimates of parameters in the model selected for each

share. We note that firstly, the same model specification (i.e. a two-state Burr

MSACD model) was chosen for each of the three fixed calibration samples of

adjusted durations. Secondly, there is a noticeable difference between estimated

“persistence” parameter in state 2, β̂2, for each of the three fixed calibration sam-

ples. In particular, β̂2 of the model chosen from calibration sample of adjusted

durations for E.ON share is close to zero. Thirdly, σ̂2 of the model chosen from cal-

ibration sample of adjusted durations for ALV share is noticeably smaller (0.028)

than those for EOA (0.187) and BAS (0.194). Lastly, γ̂12 of the model chosen

from calibration sample of adjusted durations for ALV share is noticeably larger

than those for EOA (0.030) and BAS (0.034).

Using the model chosen, we plot the histogram and the ACF of the forecast

UPRs computed from the standardised durations of the ALV (Figure 2.11), the

EOA (Figure 2.12) and the BAS (Figure 2.13) shares in May of 2004. In each

of the three histograms, we plotted the 95% confidence interval (dotted lines) for

42The intraday seasonal component is estimated by a smoothing spline function with sixteen
interior knots (correspond roughly to knots positioned at 30-minute intervals). To ensure that
the spline function is non-negative we apply Equation (2.5) and then Equation (2.6).
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θ̂ BAS EOA ALV

100 · ω̂1 3.3 1.7 0.7

10 · α̂1 1.19 0.72 0.74

β̂1 0.857 0.915 0.922

κ̂1 1.087 0.975 1.015

σ̂21 0.231 0.165 0.167

100 · ω̂2 0.7 6.7 0.3

10 · α̂2 0.16 7.71 5.34

β̂2 0.821 0.002 0.442

κ̂2 0.880 0.850 0.807

σ̂22 0.194 0.187 0.028

γ̂12 0.034 0.030 0.100

γ̂21 0.251 0.189 0.263

code 1 1 1

Table 2.14: Adjusted price durations of BASF, E.ON and Allianz: MSACD model

chosen for March to April, 2004.
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Figure 2.11: Fixed sample of adjusted price durations of Allianz in March to May,

2004: forecast UPRs of the two-state Burr MSACD(1,1) model. Histogram of

observed UPRs (top) and ACF of observed UPRs (bottom).
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Figure 2.12: Fixed sample of adjusted price durations of E.ON in March to May,

2004: forecast UPRs of the two-state Burr MSACD(1,1) model. Histogram of

observed UPRs (top) and ACF of observed UPRs (bottom).
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Figure 2.13: Fixed sample of adjusted price durations of BASF in March to May,

2004: forecast UPRs of the two-state Burr MSACD(1,1) model. Histogram of

observed UPRs (top) and ACF of observed UPRs (bottom).
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the estimated density function. In each of the three sample ACFs we plotted an

approximate 95% confidence interval (dotted line) for the ACF of independent

and identically distributed random variables.

From Figures 2.11 to 2.13 we note the following. Firstly, the confidence in-

tervals for the estimated heights of the histogram are quite narrow due to the

relatively long length of adjusted durations in the validation sample (about 5500

observations for ALV, 6000 for EOA and 3500 for BAS). Secondly, under each of

the three chosen models, the distribution of the forecast UPRs are significantly

different from a standard uniform distribution: p-values of the chi-squared statis-

tics (with nine degrees of freedom) are all close to zero. A closer examination of

the three histograms shows the general tendency for the departure: less forecast

UPRs observed for very short durations (i.e. those that fell in the first two bins)

and more forecast UPRs observed for the very long durations (i.e. those that fell

in the last two bins) than those expected under the standard uniform. Finally,

under the MSACD model chosen from adjusted durations for ALV and BAS, the

observed Ljung-Box test statistics are significant at the 5% level.

Fixed sample of standardised durations. For each share, we used the

standardised price durations in the first two months (i.e. March and April 2004)

to choose the MSACD models and then the standardised price durations in the

third month (i.e. May 2004) to check the chosen model. The model chosen for the

“fixed” calibration samples of each share is given in Table 2.15. We note that the
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θ̂ BAS EOA ALV

100 · ω̂1 8.4 9.6 4.3

10 · α̂1 1.43 6.60 1.25

β̂1 0.793 0.000 0.844

κ̂1 1.082 0.857 0.992

σ̂21 0.233 0.212 0.178

100 · ω̂2 1.0 5.6 5.6

10 · α̂2 0.14 0.85 8.39

β̂2 0.805 0.869 0.000

κ̂2 0.870 0.984 0.849

σ̂22 0.124 0.170 0.165

γ̂12 0.034 0.198 0.030

γ̂21 0.280 0.032 0.193

code 1 1 1

Table 2.15: Standardised price durations of BASF, E.ON and Allianz: MSACD

model chosen for March to April, 2004.
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same model specification (i.e. a two-state Burr MSACD model) was chosen for

each of the three fixed calibration samples of standardised durations. Secondly,

there is a noticeable difference between estimated “persistence” parameter, β̂i,

from each of the three fixed calibration samples. In particular, β̂1 of the chosen

model for standardised durations of E.ON and β̂2 for standardised durations of

ALV are zero (to three significant digits). Lastly, γ̂12 of the chosen model for

standardised durations for EOA share is noticeably larger than those for BAS

(0.034) and ALV (0.030). Similarly, γ̂21 for standardised durations of ALV share

is noticeably larger than those for BAS (0.280) and EOA (0.032).

Using the model chosen, we plotted the histogram and the ACF of the fore-

cast UPRs computed from the standardised durations of the ALV (Figure 2.14),

the EOA (Figure 2.15) and the BAS (Figure 2.16) shares in May of 2004. From

Figures 2.14 to 2.16, we note the following. Firstly, the confidence intervals for

the estimated heights of the histogram are quite narrow. This indicates that the

series over the out-of-sample period is considerably long (roughly 5 500 observa-

tions for ALV, 6 000 for EOA and 3 500 for BAS). Secondly, under the model

chosen for ALV (top row, Figure 2.14) and for BAS (top row, Figure 2.16), there

are insufficient evidence to reject the hypothesis that the forecast UPRs come

from a standard uniform distribution: the probability of observed chi-squared

statistics (with nine degrees of freedom) are 0.292 for ALV and 0.248 for BAS.

However, a closer examination of the histograms for both of these two samples
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Figure 2.14: Fixed sample of standardised price durations of Allianz in March to

May, 2004: forecast UPRs of the two-state Burr MSACD(1,1) model. Histogram

of observed UPRs (top) and ACF of observed UPRs (bottom).
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Figure 2.15: Fixed sample of standardised price durations of E.ON in March to

May, 2004: forecast UPRs of the two-state Burr MSACD(1,1) model. Histogram

of observed UPRs (top) and ACF of observed UPRs (bottom).
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of observed UPRs (top) and ACF of observed UPRs (bottom).
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shows that the forecast UPRs for very short durations (i.e. first bin from the left)

are observed significantly less frequently than that expected under the standard

uniform. Thirdly, under the model chosen from standardised durations for EOA

(top row, Figure 2.15), the distribution of the forecast UPRs is significantly differ-

ent from a standard uniform: probability of observed chi-squared statistics (with

nine degrees of freedom) is zero. A visual inspection of the histogram shows that

forecast UPRs for very short durations (i.e. first bin from the left) are observed

significantly less frequently and for the very long durations (i.e. second and third

bin from the right) are observed significantly more frequently than the standard

uniform. Finally, under the MSACD model chosen for ALV (bottom row, Figure

2.14) and BAS (bottom row, Figure 2.16), the probabilities of observed Ljung-Box

test statistics are less than 0.05: for ALV, the probability is 0.034 and for BAS, it

is 0.041. Thus, there are insufficient evidence to support the hypothesis that the

first fifty forecast UPRs are jointly independent.

Discussion. The variation in the level of daily mean has a considerable

influence on the forecast performance of the model. By comparing our results

from the analysis of forecast UPRs for all three series that we used, we found

that, for the out-of-sample period, the selected model provided a better fit to the

standardised observations than it does to the deseasonalised ones. We note this,

for example, in our application to the price durations for ALV. In the test for

uniform distribution the value of the chi-squared statistics we obtained for the
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standardised durations (10.765 in top half of Figure 2.14) is substantially lower

than that we obtained for the adjusted durations (33.343 in top half of Figure

2.11).

Our assessment here, however, is not based on strictly out-of-sample forecasts.

What we have done instead (and what is done in the literature) is this. By

preprocessing the series over the entire period we assumed that, for each day in

the out-of-sample period, both the mean level and the seasonality were known in

advance. In practice neither of these are available to us at the time of forecast.

In order to determine whether the model, under such an assumption, fits the out-

of-sample observations we need to base our assessment on forecasts in which both

the daily mean and seasonality are also forecast.

2.7.4 Model fitted to rolling sample

Our interest here is to make strictly out-of-sample assessment of the forecast

performance of the MSACD model. For this purpose we used a technique that we

refer to as rolling sample with fixed window. In this technique we recalibrate the

selected model regularly and then we use the fitted model after each recalibration

to forecast observations over an out-of-sample period. In our applications the

rolling sample covers sixteen days in which the in-sample period covers the first

fifteen days and the out-of-sample period covers day 16.

We used the sm-M price durations for ALV, EOA and BAS. The periods
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covered are March to May in the years 2002-2004. The three consecutive months

(i.e. March to May) cover 63 trading days in the year 2002, 62 days in 2003 and

64 days in 2004.

For each of the nine series investigated, only the first fifteen days were used to

select a model. In each of the subsequent rolling samples only the selected model

was used but it was recalibrated (i.e. the model parameters are reestimated43) in

each in-sample period of the rolling sample.

For each calibration sample we preprocessed the observations in two stages (see

Section 2.4.3) and then we fitted the model to the standardised durations. For

each validation sample we preprocessed the observations by using the seasonal

component fitted to the preceding fifteen days and the forecast for the level of

mean of adjusted durations44. We then computed the forecast pseudo-residual

of each observation in the standardised series so obtained. By examining these

residuals we assessed the forecast performance of the fitted model and we were

able to identify observations that are extreme relative to the model.

There are 48 rolling samples in the year 2002, 47 in 2003 and 49 in 2004.

For each calibration sample we used the termination code returned by nlm to

determine whether the optimiser has located a local maximum. We considered

43As starting values for the parameters we use the estimates of the parameters in the model
fitted to the preceding calibration sample.

44The estimate use the value in trading day 15 of the exponential filter:

Nd = ρād + (1− ρ)Nd−1

for d = 2, 3, · · · , 15 and N1 = ā1. The weight ρ ∈ [0, 1] is chosen by minimising the one-step-
ahead forecast MSE.
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the model as successfully fitted when a code of 1 is returned. For each validation

sample we test whether the forecast UPRs are distributed U (0, 1) and whether

they are independent by performing the tests as described in Section 2.6.3.

Comparison of models. Tables 2.16 to 2.18 present the estimates of para-

meters in the models selected for BAS, EOA and ALV for the first fifteen trading

days in March, 2002-2004. From our model selection exercise for BAS we note

the following. The optimisation method converged for all models we fitted to se-

ries for March 2003 and March 2004. But, for March 2002, the method diverged

when we fitted the two-state Burr MSACD(0, 0) and two-state Burr MSACD(1, 1)

models. In both these cases the likelihood values returned by the optimiser are

not local maxima, and thus the best model for March 2002 was inconclusive.

From Table 2.16, we first compare the models selected for March 2002 and

March 2003. We see that both selected models have a two-state Burr MSACD

specification. However, the state-dependent component models have an ACD(0, 0)

specification in March 2002, but an ACD(1, 1) specification in March 2003. Thus,

a direct comparison of the state-dependent component processes chosen is not

possible. However, the estimated probability of being in state 2 conditional on

the Markov chain being in state 1 at the previous event has increased from 0.270 in

March 2002 to 0.319 in March 2003. On the other hand, the estimated probability

of Cn in state 1 conditional on Cn−1 in state two has decreased from 0.113 in March

2002 to 0.033 in March 2003. In the model selected for March 2004 we see that
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Year 2002 2003 2004

100 · ω̂1 30.7 13.6 7.2

10 · α̂1 0.48 1.17

β̂1 0.058 0.837

κ̂1 0.917 1.059 1.140

σ̂21 0.060 0.622 0.234

100 · ω̂2 129.1 10.2 2.2

10 · α̂2 1.19 0.23

β̂2 0.795 0.774

κ̂2 1.256 1.097 0.876

σ̂22 0.313 0.193 0.087

γ̂12 0.270 0.319 0.080

γ̂21 0.113 0.033 0.332

code 1 1 1

prop. fit 20/48 11/47 44/49

prop. sig. 14/48 4/47 7/49

Table 2.16: Standardised price durations of BASF: model chosen in trading days

1-15 of the years 2002-2004. Last three rows: termination code (code), fits to cal-

ibration sample (prop. fit), significant chi-squared statistics in validation sample

(prop. sig.).
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Year 2002 2003 2004

100 · ω̂1 17.8 3.6 12.3

10 · α̂1 1.07 0.72 6.66

β̂1 0.741 0.901 0.001

κ̂1 1.183 1.094 0.846

σ̂21 0.357 0.202 0.240

100 · ω̂2 15.3 13.9 6.7

10 · α̂2 5.91 4.80 1.03

β̂2 0.008 0.000 0.844

κ̂2 0.775 0.856 1.002

σ̂22 0.006 0.026 0.207

γ̂12 0.054 0.048 0.231

γ̂21 0.274 0.239 0.047

code 2 1 1

prop. fit 16/48∗ 8/47∗ 27/49∗

prop. sig. 5/48 5/47 4/49

Table 2.17: Standardised price durations of E.ON: model chosen in trading days

1-15 of the years 2002-2004.
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Year 2002 2003 2004

100 · ω̂1 9.9 1.9 5.5

10 · α̂1 0.95 0.27 8.70

β̂1 0.824 0.856 0.009

κ̂1 1.070 0.843 0.856

σ̂21 0.232 0.006 0.029

100 · ω̂2 8.2 3.8 4.2

10 · α̂2 4.23 0.70 1.26

β̂2 0.045 0.913 0.844

κ̂2 0.926 1.137 0.973

σ̂22 0.006 0.221 0.185

γ̂12 0.039 0.267 0.216

γ̂21 0.238 0.106 0.048

code 3 2 1

prop. fit 7/48 0/47 39/49

prop. sig. 7/48 7/47 7/49

Table 2.18: Standardised price durations of Allianz: model chosen in trading days

1-15 of the years 2002-2004.
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the estimated coefficient of the lagged conditional mean in state 1, β̂1, is 0.837,

and in state 2, β̂2, is 0.774. Thus, in both states, the dependence of the current

conditional mean on the lagged conditional mean is strong (i.e. value of β̂i is close

to 1). This is evidence to support strong persistence in the standardised duration

series even after allowing for two states.

From our model selection exercise for EOA we note that the optimisation

method converged for all models we fitted to the series for March 2003. But, for

March 2002, the method diverged for all two-state Burr MSACD specifications we

fitted, thus the best model for March 2002 was inconclusive. From Table 2.17, the

findings on the models chosen for standardised durations of EOA are as follows.

Firstly, similar to findings made from Table 2.16, over the first fifteen trading

days of March in each of the years 2002, 2003 and 2004, a two-state Burr ACD

model was chosen. Secondly, an ACD(1, 1) specification has been chosen for the

state-dependent component models in both March of 2002 and March of 2003.

However, there is a noticeable difference between the component models chosen

in March of 2002 and that chosen in March of 2003. In particular, the persistence

of the component model in state 1, as indicated by β̂1, has increased from 0.741

in March 2002 to 0.901 in March 2003. The level of the component model in state

1, as indicated by ω̂1, has decreased from 0.178 in March 2002 to 0.036 in March

2003. The estimated Markov chain in March 2002 (γ̂12 = 0.054 and γ̂21 = 0.274)

is roughly the same as that in March 2003 (γ̂12 = 0.048 and γ̂21 = 0.239).
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From Table 2.17, the findings on the model chosen for EOA in March 2004 are

as follows. The component model in state 1 has negligible persistence (β̂1 = 0.001)

but has a strong persistence in state 2 (β̂2 = 0.844). This is evidence that the

level of persistence in the standardised duration is noticeably different between

the two states.

Before the discussion of Table 2.18, we note the following from the model

selection process. The estimation of all MSACD models converged in March

2002, but the estimation of the two-state Burr MSACD(0, 0) did not satisfy the

convergence criteria in March 2003. Thus, the best model in March 2002 was

inconclusive. From Table 2.18, the findings on the models chosen for standardised

durations of ALV are as follows. Firstly, similar to the findings made from Table

2.16, over the first fifteen trading days of March in each of the years 2002-2004, a

two-state Burr ACD model was chosen. Secondly, an ACD(1, 1) specification has

been chosen for the state-dependent component models in both March of 2002 and

March of 2003. Again, there was a noticeable difference between the component

models chosen in March of 2002 and that chosen in March of 2003. The persistence

of the component model in state 2, as indicated by β̂2, has increased from 0.045

in March 2002 to 0.913 in March 2003. The level of the component model in state

1, as indicated by ω̂1, has decreased from 0.099 in March 2002 to 0.019 in March

2003. While in state 2, ω̂2 decreased from 0.082 in March 2002 to 0.038 in March

2003. The estimated Markov chain in March 2002 indicates that the probability
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of remaining in state 1 (γ̂12 = 0.039) is higher than that of remaining in state

2. In March 2003, there was instead a higher probability of remaining in state 2

(γ̂21 = 0.106). Thus, there was also a noticeable difference between the estimated

Markov chains.

From Table 2.18, the findings on the model chosen for ALV in March 2004 are

as follows. The component model in state 1 has negligible persistence (β̂1 = 0.009)

but has a strong persistence in state 2 (β̂2 = 0.844). This is evidence that the

level of persistence in the standardised duration was noticeably different between

the two states.

Model checking: a case study. Of the nine sequences of price durations

we used, the series for BAS for the year 2004 was the only one for which the model

is adequate. In order to demonstrate the application of the model to the rolling

samples, we discuss the results obtained in this application.

In the first rolling sample the two-state Burr MSACD(1, 1) model was cho-

sen. This model was recalibrated in each of the subsequent 48 rolling samples.

We checked whether the numerical method used to maximise the likelihood con-

verged in each rolling sample as follows. Firstly, we examine the termination code

returned by nlm for the calibration sample. In the top half of Figure 2.17 we

plotted the termination code for calibration samples 1-49. We note that the opti-

miser has located a local maximum (termination code of 1) in all but calibration

samples 30-34. Secondly, we examine the number of iterations performed by nlm
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Figure 2.17: Standardised price durations of BASF in March to May, 2004: cali-

bration of chosen model in samples 1-48. Termination code returned by nlm (top)

and the number of iterations performed by nlm (bottom).
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before the procedure terminated. In the bottom half of Figure 2.17 we plotted the

number of iterations for calibration samples 1-49. In calibration samples 30-34

we note that the procedure terminated after only a few iterations. This indicates

that different starting values are needed.

Using the fitted models in rolling samples 1-49 we plot the estimates of each

parameter. Figure 2.18 displays the plots of the estimates of parameters in the

state-dependent conditional distributions and Figure 2.19 displays the plots of the

estimates of parameters of the Markov chain. In Figure 2.18 we note the following.

Firstly, the estimates of βi and σ2i in state 1 and state 2 “cross” each other45.

Secondly, in the case of β̂i, the variation in its value from one rolling sample

to the next is considerable. Thirdly, when the optimisation did not converge in

one rolling sample, then the optimisations usually do not converge in all of the

subsequent rolling samples. We note this, for example, in the plot of β̂i where in

state 2 the values after rolling sample 34 vary only a little. These observations

suggest that the series of standardised durations was still nonstationary46. The

plots of estimates of parameters of the Markov chain show similar properties and

thus are not presented here.

For each rolling sample we examined the UPRs of the observations in the

validation sample. To determine whether these pseudo-residuals are U (0, 1) we

applied the chi-squared test. A histogram of the values of the test statistics for

45This is not due to label switching.
46This suggests that the variation(s) in the level of daily mean and/or the intraday seasonal

component are/is considerable.
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Figure 2.18: Standardised price durations of BASF in March to May, 2004: model

fitted in calibration samples 1-48. State-dependent parameters of conditional

mean (left column) and conditional distribution of duration.
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Figure 2.19: Standardised price durations of BASF in March to May, 2004: model

fitted in calibration samples 1-48. Off-diagonal element in row 1 (top) and in row

2 (bottom) of the t.p.m..
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validation samples 1-49 is presented in the top half of Figure 2.20. We note

that two of these values exceed even 37 (i.e. the 99.9% percentile of the null

distribution47). These allow us to identify the trading days on which the fitted

model was not valid. We also checked whether the UPRs are independent of each

other. For this purpose we applied the Ljung-Box test. A histogram of the values

of the test statistics is presented in the bottom half of Figure 2.20. Again, the

model is not valid for trading days on which the value exceed the 95-th percentile

of the null distribution.

In the period March-May, 2004, the seven trading days on which the model

was not valid are days 22, 25, 27, 42, 44, 45 and 48. In order to identify the

source of the problem we assessed the fit of the model for each of these days by

means of forecast pseudo residuals, as defined on page 97 of ZM. Their index

plots are presented in Figure 2.21. In all of these plots we note that the means

of the residuals series are not stationary (notably those for days 25 and 48). This

suggests nonstationarity in the quantities that we obtained after we standardised

the means for the seven days concerned. In all the plots in Figure 2.21 we see

forecast pseudo residuals that are extreme. This indicates that the observations

concerned are possible outliers relative to their predecessors. Figures 2.22 and

2.23 display the histograms and qq-plots of the forecast pseudo residuals. For all

days we note that they deviate strikingly from the standard normal distribution.

Since we used the forecasts of intra-daily seasonal component and the daily

47That is, chi-squared with nine degrees of freedom.
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Figure 2.20: Observed price durations of BASF in March to May, 2004: distribu-

tion of chi-squared test statistics (top) and of Ljung-Box test statistics (bottom) of

forecast UPRs. Solid line depicts chi-squared distribution with 9 d.o.f. (top) and

chi-squared distribution with 50 d.o.f. (bottom). Vertical dashed line represents

the 95th-percentile of the distribution.
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Figure 2.21: Forecast pseudo residuals for BAS in March-May, 2004: its index

plots for the seven trading days in which the fitted model is not valid.
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Figure 2.22: Forecast pseudo residuals for BAS in March-May, 2004: its plots for

days 7, 10 and 12. Index plot (top row), histogram (middle row) and qq-plot

(bottom row) are shown. Solid line depicts standard normal distribution (middle

row) and dashed line depicts equality of sample and theoretcal quantiles.
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Figure 2.23: Forecast pseudo residuals for BASF in March-May, 2004: its plots

for days 27, 29, 30 and 33.
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mean to standardise the mean for the seven days concerned, we now assess the

forecast performance of the model we used for each component. For this purpose

the measure we used for the seasonal component is the sum-of-squares of predic-

tion error48, and for the mean level is the square of forecast error49. Figure 2.24

displays each of the two measures for validation samples 1-49. We note that both

measures display considerable variation. This suggests that both the seasonal

variation and the mean level are unstable. Furthermore, we found that the model

generally performed poorly for days in which the seasonal variation observed de-

viates strikingly from its forecast. This suggests that variation in the seasonality

has a strong detrimental effect on the accuracy of the model’s forecasts.

We now examine observations that are extreme relative to the model. We

found that large observations generally occurred in periods during which trading

was inactive or the price varied slowly. The small observations, on the other hand,

occurred in periods of rapid trading and substantial changes in the price.

Problems encountered. With the exception of the durations series for

BAS in the year 2004, we encountered several problems in our applications. The

main problems are as follows. Firstly, the appropriateness of the selected model

was doubtful. In fitting the models to the calibration sample in the first rolling

sample, we noticed convergence problems for some of the twelve types of models

that we used. The likelihood values achieved in these cases are not necessarily

48We define this as the difference between the observation and the prediction provided by the
spline function.

49We define this as the difference between the observed level and the level forecasted.
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Figure 2.24: Validation samples for BAS in March-May, 2004: prediction accuracy

of spline function (left column) and forecast accuracy of exponential filter (top

right) for days 16-64. The parameter used in the exponential filter (bottom right)

for calibration samples 1-49.
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even local maxima. The models fitted are therefore not comparable by a model

selection criteria. Secondly, the forecast performance of the selected model was

poor in the subsequent rolling samples. For trading days in which the model

performed markedly poorly (as indicated by its NPRs) we analysed the model.

We found that the daily mean forecasts differ considerably from the observed

values. Furthermore, the NPRs for these days still exhibit seasonal variation.

2.8 Summary and discussion

In this chapter it is the forecast performance of the MSACD model that we

assessed. To achieve this we employed the rolling sample with fixed window in

which we removed the forecasts for the nonstationary components in an out-of-

sample period before we examined the model. Our approach differs from those

that are commonly described in the literature in three important respects:

1. The selected model was assessed according to its forecast performance.

Hautsch (2004, p. 106), for example, validated the fitted model on the

calibration sample, i.e. the observations to which the model was fitted is

used again for checking.

2. The forecast performance was assessed strictly out-of-sample. In the litera-

ture, for example Grammig and Maurer (2000, p. 28) and Hujer and Vuletíc

(2007, p. 644), the authors first standardised the mean of the entire ob-

servation series. They then split the resultant series into two sub-samples.
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The proposed models were calibrated on the first sub-sample and then the

fitted models were validated on the second. The application of such method

has two consequences. Firstly, the averages of observations in both the cal-

ibration and in the validation samples are not 1. Secondly, it assumes that

the intraday seasonality in the validation period is available at the time of

forecast.

3. The forecasts (under the fitted model) were computed over a one-day pe-

riod, and the model was recalibrated daily. In the literature, the model was

calibrated once and then used to compute forecasts over a period of several

days. This approach has the main weakness that the estimates of the pa-

rameters do not describe the observations that have become available after

the time at which the model was fitted.

We found that the forecast performance of the MSACD model was in general

poor. The source of the problem is that the instability of the seasonal pattern and

the variation in the levels of daily mean were both considerable. This is reflected in

the estimates of the parameters where considerable variation was displayed. The

task of forecasting these components can be simplified. One way of doing so is to

model observations at fixed time intervals instead and then to allow seasonality

in the model we use.



CHAPTER 3

AN HMM FOR THE INTRADAY RETURNS

In Chapter 2 of this dissertation we applied the MSACD model to the price du-

rations series. The instability of the intraday seasonality and the considerable

variation of the daily average duration created the main difficulties when we at-

tempted to forecast the price durations.

In this chapter we model the intraday returns. We calculated the returns at

regular time intervals, and thus the number of returns observed in each trading

day is a constant. In contrast the number of price durations varied from one

trading day to the next; it has to be forecasted as does the intraday seasonality,

in order to apply methods that are designed to model the standardised durations1.

Two features of the intraday returns series are the occurrences of zero return2 and

the presence of intraday seasonality3. Both features need to be accommodated by

the model.

One way to accommodate the occurrences of zero return in our model is as

1In the current literature it is assumed that the durations in the validation sample have
already been adjusted for intraday seasonality. For the purpose of forecasting out-of-sample,
however, this assumption does not hold, because neither the intraday seasonal variation nor
the number of transactions in the validation sample are known in advance. Thus, we need to
forecast both variables.

2 i.e. no share price change in the time interval. The frequency of such events increases when
the share price is observed at a higher frequency during the trading day.

3This feature is well-documented (see, for example, Andersen and Bollerslev, 1997).
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follows. We model the returns using two components; the first models the presence

or the absence of price change and the second models the level of return observed

when a price change does occur. Each component of the univariate process is

modelled separately4. For each component of the return we employ the predicted

volume to explain the seasonality, since our aim is to forecast the intraday return

volatility. Our objectives in this chapter are firstly, to find a relationship between

the returns and the predicted volumes series, secondly, if such a relation exists,

to build a model for the returns, and lastly, to apply this model to forecast the

return volatility.

In order to build the models for the returns and then to assess whether they

can be used successfully to forecast the return volatility, the transaction data for

eight shares traded on the XETRA were investigated. We computed the intraday

returns as 100 · log
(
pt
pt−1

)
, where pt is the share price at the end of intraday time

interval t. The models were applied to the returns on the following shares: Allianz

(ALV), E.ON (EOA), Badische Anilin- und Soda-Fabrik (BAS), Lufthansa (LHA),

Touristik Union International (TUI), Deutsche Bank (DBK), DaimlerChrysler

(DCX) and Bayer Schering (SCH). The data investigated cover the following two-

month periods in the year 2004: March-April, May-June, August-September, and

November-December.

4This model is different from that of Engle and Russell (2005), who represented the transac-
tion price series and the series of duration until the transaction as a bivariate process.
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3.1 Analysis of the intraday returns

In this section we investigate the relationship between intraday return and

intraday volume traded. We use data for three actively traded shares for this;

these are (in decreasing level of activity): ALV, EOA and BAS. The data cover

four separate months in the year 2004: March, May, August and November.

In each of the trading days investigated we observed the price and the volume

traded at regular intervals. Let pt denote the price on intraday interval t and vt

denote the volume traded on intraday interval t. We define pt as the last recorded

price in interval t and we calculate vt as the sum of shares traded in interval

t. In our investigations we examined the pairs of observations {(Vt, rt)}, where

Vt = log (vt) and rt denotes the return on intraday time interval t. In the case

of zero volume, Vt was defined as zero5. In what follows we refer to Vt as “the

volume on interval t,” or simply as “volume.”

We performed five separate investigations in this section. We began each of

our investigations by analysing the data for ALV. We chose to start with the

data for the month of May, since the variation in daily returns is moderate. In

that month we analysed the data twice: we examined first the data for three

separate days and then for the entire month. In our daily analysis of data we used

the quartiles of the daily total numbers of intraday trades to select the days as

follows: firstly, we analysed the day for which the total number of trades is at the

5For investigations in this section, however, we deleted observations for intervals over which
no trade took place.
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median and then we analysed the days for which the total numbers are at the first

and the third quartiles. We continued our investigation by analysing the data for

the other three months. We concluded our investigation by analysing the data for

the remaining two shares for each of the four months.

3.1.1 Dependence of the squared return on volume

We first investigate the relationship between squared return, denoted by r2t

and volume Vt. We used the cross correlation function to measure the relationship

between these two series, which we now define.

Let (Xt, Yt) be a stationary bivariate time series. The cross covariance function

at lag k is defined as γXY (k) = Cov (Xt, Yt+k) (for k = 0,±1,±2, · · · ). The

cross correlation function at lag k is then defined as ρXY (k) =
γXY (k)
σX ·σY

, where

σX =
√
V ar (Xt) and σY =

√
V ar (Yt).

Let {(xt, yt)} denote n pairs of observations. A sample estimate of γXY (k) at

lag k, given in Box et al. (1994, p. 411, Eq. 11.1.4), is:

γ̂xy (k) =






1
n

∑n−k
t=1 (xt − x̄) (yt+k − ȳ) (for k = 0, 1, 2, · · · )

1
n

∑n+k
t=1 (yt − ȳ) (xt−k − x̄) (for k = 0,−1,−2, · · · ),

where x̄, ȳ denote the sample means of {xt} and {yt}, respectively. A sample

cross correlation function at lag k is then defined as ρ̂xy (k) =
γ̂xy(k)

si·so
, where sx =

√
γ̂xx (0) and sy =

√
γ̂yy (0). In order to obtain a useful estimate of ρ̂xy (k), a

minimum of 50 pairs of observations should be used (see the example in Box et
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al., 1994, p. 412). We used the R function ccf to compute ρ̂xy (k)
6.

We begin our investigation by analysing the bivariate time series of Vt and

r2t for ALV on 19 May 2004. The total trades on this day is the median of the

daily totals of trades in the month of May. Figure 3.1 displays {Vt}, {r2t } and the

sample cross correlation function for these two series. Both series are calculated at

observation intervals of thirty seconds, one minute and five minutes. In Figure 3.1

we note the following four features. Firstly, there is a clear intraday-seasonality in

both {Vt} and {r2t }: the level of each series reaches a high over the first and the

last thirds of the day, and it drops to a low over the second third. Secondly, there

is a positive relation between {Vt} and {r2t }, since both series attain their highest

and lowest levels over the same period of the day. Thirdly, the cross correlation

coefficient at lag zero is considerably larger than those at all other lags. There

are significant cross correlation coefficients at negative lags (i.e. the dependence

of r2t depend on Vt) and at positive lags (i.e. the dependence of Vt on r2t ). The

sample cross correlation function does not decrease exponentially towards zero

with increasing lags7. Finally, longer sampling intervals lead to less significant

cross correlation coefficients. These four features apply in general to all three

6Let ρxy (k) denote the sample cross correlation function at lag k that is defined in the R
function ccf. Using the expression for γ̂xy (k) the formula for ρxy (k) can be written as:

ρxy (k) =

{
γ̂yx (k) (for k = 0, 1, 2, · · · )

γ̂xy (−k) (for k = · · · ,−2,−1, 0).

7We are interested in the cross correlation at lag zero. In examining the cross correlation
functions for our applications we have taken into account the fact that the volume series are not
stationary.
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Figure 3.1: ALV in 2004-05-19: log-volumes (top), squared returns (middle) and

cross-correlation function (bottom). Observation intervals used: 30 seconds (left

column), one minute (middle column) and five minute (right column).
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shares for each of the four months we examined.

In our assessment of the cross correlation between {Vt} and {r2t } the two main

problems are as follows. Firstly, we need an objective way to select the length of

the sampling interval, since it affects the sample cross correlation function (see

Section 3.1.2). Secondly, in order to construct a forecast model for {r2t } we need

to have the volume information available at the time of the forecast (see Section

3.1.3).

3.1.2 Selection of observation interval

We need to select a regular interval to compute the observations, because

we saw in Section 3.1.1 that the observation interval used affects the size of the

cross correlation at lag zero. We then apply the selected observation interval to

compute all observations.

Let xt be the binary variable that represents the occurrence (xt = 1) or the

absence (xt = 0) of a price change on intraday interval t. For each bivariate time

series {(Vt, rt)} we first compute the binary series from the returns, where rt �= 0

represents that a price change has occurred. We then calculate {xt} for a variety

of observation intervals. We select the fixed interval such that in the binary series

calculated at this interval roughly 50% of the observations have zero value. We

exclude here binary series in which the proportion of zero observations is less than

25%, as well as intervals that are shorter than 15 seconds.
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Figure 3.2 displays the proportions of no price change for Allianz that we

obtained daily by using observation intervals of fifteen and thirty seconds for each

of the months March, May, August and November in the year 2004. We note

in this figure that when we computed the intraday returns at intervals of thirty

seconds the daily proportions that we obtained for each of the months fluctuate

closer to 0.25 than those that we obtained when a 15-second interval was used.

However, by using the 30-second interval, the daily proportions for all of the other

shares we used fluctuate closer to 0.5 than those for Allianz. On account of this

we used the 30-second interval to compute all observations.

3.1.3 Prediction of the volume

In Section 3.1.1 we saw that the intraday volume series {Vt} display a clear

seasonal variation. In order to forecast returns using volumes as a covariate, we

need to have Vt available at the time of forecast. Here we are interested in making

a 30-second-ahead forecast. One way to obtain a prediction for Vt, denoted by

Nt−1, is by the exponential filter:

Nt = αVt + (1− α)Nt−1 (for t = 2, 3, . . . , T ), (3.1)

where α ∈ [0, 1] denotes the weight8 on the current observation. We start this

procedure by setting N1 = V1. In what follows we refer to Nt−1 as the predicted

volume.

8This is also called the “smoothing parameter.”
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Figure 3.2: Price change indicators of Allianz in March, May, August and Novem-

ber, 2004: daily proportion of no price change when price change indicators are

calculated at different observation interval.
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In Equation (3.1) we note that α is a parameter that needs to be supplied.

Our aim now is to investigate the relation between return and lagged volume,

thus we need to determine which value of α best suits this purpose. We used the

following method to select α. We first compute, at the selected sampling interval,

the binary series that represents the occurrences of price change {xt}. We then

compute, at the same sampling interval, the series of predicted volumes {Nt} for a

variety of values of α. For each {Nt} computed at an α we fit a logistic regression

of the binary variable on the predicted volume9:

logit [Pr (Xt = 1|Nt−1)] = β0 + β1Nt−1.

We select the α that leads to the lowest AIC.

We applied the exponential filter, using the selected α, to the volumes series

for each of the three shares investigated. Figures 3.3 and 3.4 display, respectively,

the α selected daily in each of the four months investigated, for volume series

observed at 15− and at 30− second intervals for ALV. Comparing Figure 3.3 with

Figure 3.4 we note that, at an observation interval of 30 seconds, an α of 0.05 is a

reasonable fixed value to compute predicted volumes for ALV for all four months

investigated.

9This is computed by the R function glm.
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Figure 3.3: Allianz in March, May, August and November, 2004: weight for obser-

vation used by daily best logistic regression of price change indicator on predicted

log-volume. Observations at 15 second interval.
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Figure 3.4: Allianz in March, May, August and November, 2004: weight for obser-

vation used by daily best logistic regression of price change indicator on predicted

log-volume. Observations at 30 second interval.
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3.1.4 Occurrence of price change

We now investigate the relation between predicted volumeNt−1 and the binary

variable representing price change occurrence on interval t, denoted by Xt. To

illustrate this relationship we present here our analysis of the intraday bivariate

time series of Nt−1 and Xt for ALV in March, May, August and November of the

year 2004. We computed the volumes and the returns at 30 second intervals, and

we computed the predicted volumes by the exponential filter (using an α of 0.05).

For each of the trading days we investigated we fitted a logistic regression of

Xt on Nt−1 to the observations10. Figure 3.5 shows, for each trading day, the

probability of price change (under the fitted model) as a function of Nt−1 for ALV

in each of the four months. We note the following features in this figure. Firstly,

in each of the four months shown the probability of price change at interval t

in each trading day is an increasing function of the predicted volume at interval

t. Secondly, in each of the four months, the curves for daily probability of price

change function lie close to each other, i.e. they are reasonably stable across

the trading days. Finally, in each of the four months, the daily curves all have

positive slope and they can be divided roughly into two groups: a group with

steeper-slopes and the other with flatter slopes.

10Using the R function glm.
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Figure 3.5: Allianz in March, May, August and November, 2004: daily probability

of price change as a function of predicted volume. In computing the estimates we

did not exclude the outliers.



3.2. FORECASTING THE VOLATILITY OF INTRADAY RETURNS 133

3.1.5 Variance of conditional return given price change

We investigate here the relation between predicted volume Nt−1 and squared

conditional return given price change has occurred on interval t, denoted by M2
t .

Here, we used the squared return as an approximation of volatility. To illustrate

this relationship we present here our analysis of the intraday bivariate time series

of Nt−1 and M2
t for ALV on each day of the first week of May in the year 2004.

The top row of Figure 3.6 displays a smooth of the scatter plot of {(Nt−1,M2
t )}

for each trading day. The bottom row of Figure 3.6 displays the plot of density

estimate of predicted volume for each trading day11. In this figure we note the

following. Firstly, the curves vary considerably from one day to the next. This

indicates that the relationship between return squared and volume is not stable.

Secondly, on each day, the nonparametric regression line contains two relative

extrema. This indicates that the volatility for interval t, conditional on the occur-

rence of price change, depends on Nt−1, and that the volatility alternates between

an increasing and a decreasing function of Nt−1.

3.2 Forecasting the volatility of intraday returns

From the previous section, we saw in both the plot of probability of price

change as a function of lagged volume, and the plot of squared return as a function

of lagged volume that a mixture model could provide a better description of their

11We used the R function density (Gaussian kernel and bandwidth given by Silverman’s
"rule-of-thumb") to compute the density estimates. These plots indicate the range of values
over which the predicted volumes are most concentrated.
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Figure 3.6: Allianz in each trading day of week 1 of May, 2004. Local polynomial

regression, computed by theR function loess, of conditional squared return given

price change on predicted volume (top row). Density estimate, computed by the

R function density, of predicted volume (bottom row). Vertical lines indicate

the smallest and the ninetieth-percentile of predicted volume respectively.
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relationships than that provided by a generalised linear model with the logistic

and the log-link function respectively. For this purpose, a particular type of

dependent mixture model called the hidden Markov model (HMM) is used as a

starting point. In particular, we use the class of HMMs incorporating a covariate

to describe the relationships mentioned above. The main reference for HMM is

Zucchini and MacDonald (2009), which we denote by ZM in what follows.

3.2.1 Hidden Markov models

An HMM {St : t = 1, 2, . . .} consists of two components. The first component

is an unobserved random process, denoted by C1, C2, . . ., which is assumed to be a

(discrete-time) Markov chain. This means that the dependence structure of {Ct}

satisfies the Markov property (ZM, p. 16)

Pr (Ct|Ct−1, . . . , C1) = Pr (Ct|Ct−1) . (3.2)

The second component is an observed random process, denoted by S1, S2, . . .,

which is assumed to have the following dependence structure

Pr (St|St−1, . . . , S1, Ct, . . . , C1) = Pr (St|Ct) , (3.3)

i.e. the distribution of St depends only on the realisation of Ct. If Ct is assumed to

take on the values {1, 2, . . . ,m} then {St} is called an m−state HMM. We assume

that the conditional distribution Pr (St|Ct) comes from a family of parametric

distributions. In the case that this distribution is the Poisson {St} is termed a

Poisson-HMM.
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For the HMM investigated in this chapter we make three additional assump-

tions on the Markov chain {Ct}. Firstly, {Ct} is a homogeneous Markov chain

with (one-step) transition probability matrix (t.p.m.)

Γ =






γ11 · · · γ1m

...
...

γm1 · · · γmm






,

where the transition probabilities are defined by γij = Pr (Ct = j|Ct−1 = i), for

i, j = 1, . . . ,m. Secondly, the Markov chain is stationary with stationary distri-

bution δ =(δ1, δ2, . . . , δm), where δi = Pr (Ct = i). Lastly, the Markov chain is

irreducible12.

We now introduce notation for discrete and continuous observations. In the

case of discrete-valued observations we define pi (st) = Pr (St = st|Ct = i), where

i = 1, . . . ,m are the states of the Markov chain. Thus pi (·) is the probability

mass function for St whose index is the realisation of the Markov chain at time

t. In the case of continuous-valued observations pi (·) is the probability density

function for St whose index is given by the outcome of Ct.

An HMM generates an observation at time t as follows: the unobserved ran-

dom process selects the parameter θi, and then the distribution with this para-

meter generates the observation. In this sense ZM (p. 30) termed {Ct} as the

“parameter process” and {St} as the “state-dependent process.” Following from

12A more detailed discussion of stationarity and irreducibility properties of the Markov chain
is given in ZM (p.16-18).
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these terminologies we refer to pi as the state-dependent distributions (see ZM, p.

32).

Model specification. The particular class of basic HMM to be applied is

specified firstly, by selecting the family of parametric distributions for the state-

dependent distributions in the model and secondly, by selecting the number of

states m. As an illustration a two-state Poisson-HMM is an HMM with t.p.m.






γ11 γ12

γ21 γ22




 ,

and the state-dependent distributions pi (st) =
λ
st
i exp(−λist)

st!
, where st = 0, 1, . . ..

The likelihood. Suppose an observations series of size T , denoted by s1, . . . , sT ,

was generated by an m−state HMM with initial distribution δ and t.p.m. Γ for

its Markov chain, and pi as their state-dependent probability distributions. Then

the probability of the observed series is

Pr (S1 = s1, . . . , ST = sT ;θ) ,

where θ denotes the vector with parameters for the model as its elements. This

probability is regarded as a function of θ which is called the likelihood of the

m−state HMM; we denote this by LT . Define the diagonal matrix

P (st) =






p1 (st) 0

. . .

0 pm (st)






.
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The formula for LT (given in ZM, p. 37-38) is

LT = δ ·P (s1) · ΓP (s2) · · · · · ΓP (sT ) · 1′, (3.4)

where 1′ is a column vector of m 1’s. In the case that the initial distribution of

the Markov chain is assumed to be its stationary distribution, Equation (3.4) can

be written as

LT = δ · ΓP (s1) · ΓP (s2) · · · · · ΓP (sT ) · 1′. (3.5)

A recursive scheme to compute the likelihood is given in ZM (p. 38). Essential

to their development is the vector of forward probabilities, which is defined, at each

time point t, by

α1 = δ ·P (s1)

αt = δ ·P (s1) Πtk=2ΓP (sk) (for t = 2, . . . , T )

(3.6)

From this definition, it follows that likelihood (3.4) can be computed in a recursive

manner as

α1 = δ ·P (s1)

αt = αt−1 · ΓP (st) (for t = 2, . . . , T )

LT = αT · 1′,

(3.7)

where, in the case that st is missing, P (·) is taken to be the identity matrix. In

the case that the Markov chain is assumed to be stationary (that is, δ = δΓ), we

can compute the likelihood (3.5) by recursion (3.7) in which the first equation is

replaced with α0 = δ and the index t in the second equation runs from 1 to T .

The computing time needed to evaluate LT by DNM is proportional to Tm2 (see
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ZM, p. 38). This is linear in the length of the series, and so the computational

effort remains modest even for “long” time series.

Parameter estimation. We estimate the parameters of an HMM by maxi-

mum likelihood. This is commonly performed by direct numerical maximisation

(DNM) of the likelihood and/or by the Expectation-Maximisation (EM) algo-

rithm13.

In this chapter we chose DNM without using analytical derivatives to perform

maximum likelihood estimation. This is motivated by our need to implement a

variety of models for the exploratory modelling of returns. We exploit in particular

two characteristics of DNM. Firstly, its implementation causes little difficulty: we

require only the forward probabilities to compute the likelihood and we have

available an optimisation routine (i.e. nlm in R), which does not require us to

supply derivatives. Secondly, it allows a model to be modified with a minimum

of programming effort. A modification requires changes mainly in the code that

evaluates the likelihood.

The implementation of DNM of recursively calculated likelihood routinely

encountered three main problems, namely numerical underflow, constraints on

the parameters, and existence of multiple local maxima in the likelihood (ZM, p.

45). Each problem, together with a strategy to overcome it, is now described.

Parameter estimation: numerical underflow. For discrete observations

13The relative merits of the DNM and the EM algorithm are discussed in Bulla and Berzel
(2008).
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generated by an HMM, the values of forward probabilities in αt become so small

with increasing t that they can be numerically rounded to zero. This problem is

called numerical underflow of the likelihood (see ZM, p. 46).

We employ the strategy described in ZM (p. 46-47) to overcome numerical

underflow. The key idea there is to first define a vector of “scaled” forward

probabilities at each time point t as

φt =
αt

wt
,

where wt = αt1
′. Then the recursive likelihood computation can be re-written as

φ0 = δ

lT = log (LT ) =
∑T
t=1 log

[
φt−1ΓP (st) 1

′
]
,

where δ is the initial distribution of the Markov chain. Log-likelihood computation

using the above procedure “will avoid underflow in many cases” (ZM, p. 47).

Parameter estimation: parameter constraints. Some parameters of

HMMs are bounded. For example, each transition probability must take on a value

between zero and one. Thus, maximization of the log-likelihood is a constrained

optimization problem.

There are at least two problems with the constrained optimisation formulation.

Firstly, the constrained optimizer may be slow in locating the optimum (ZM, p.

47). Secondly, the coding required for the constraints leaves the programming of

the likelihood unnecessarily complicated. In order to overcome these problems

we adopt the strategy described in ZM (p. 48-49). The essential idea there is to
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make an appropriate one-to-one transformation of the constrained parameter to

an unconstrained parameter with respect to which the likelihood is maximised.

The solution returned by the unconstrained maximiser is then transformed back to

the corresponding constrained parameter values. The unconstrained parameters

are referred to as the “working” parameters and the constrained parameters as

the “natural” parameters.

Parameter estimation: existence of multiple local maxima in the

likelihood. The likelihood function of an HMM often has several local maxima

(ZM, Section 3.4.1). However, there exists no simple method to determine whether

the optimum located by the numerical maximiser is indeed the global maximum.

Since the identified local maximum depends on the starting values used, we

adopt the strategy of experimenting with a few plausible starting values, to see

whether the same maximum is reached each time (ZM, Section 3.4.1). The se-

lection of plausible starting values for HMM parameters is done according to ZM

(Section 3.4.2). In the HMMs described later, however, we have to develop other

ways to select starting values for the parameters of state-dependent distributions.

Model selection. From among the equally plausible models that have been

fitted to the data we need to select objectively the “best” one. This is a model

selection problem14. In this chapter we use two criteria for model selection. The

14See Zucchini (2000) for an introductory account.
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first is the Akaike information criterion (AIC), which is defined by

AIC = −2 log (LT ) + 2p, (3.8)

where LT is the likelihood function of the HMM as given by Equation (3.4) and p

is the number of parameters required to be estimated. The second is the Bayesian

information criterion (BIC), which is defined by

BIC = −2 log (LT ) + p log (T ) , (3.9)

where T is the length of the time series. An example of model selection in sta-

tionary HMM is given in ZM (p. 90-92).

Model checking. After the best HMM has been selected, we need to decide

whether this model is adequate for the out-of-sample period. This is a model

checking problem.

We analyse the forecast pseudo-residuals of an HMM to assess the general

fit of the selected model in the out-of-sample period15. In the case of continuous

observations the two versions of forecast pseudo-residuals we analyse are: firstly,

the uniform pseudo-residuals (UPRs)16, defined as

ut = Pr
(
St ≤ st|S(t−1) = s(t−1)

)

and secondly, the normal pseudo-residuals (NPRs), defined as

zt = Φ
−1 (ut) ,

15See ZM (Section 6.2) for a description of the use of pseudo-residuals in HMMs. .
16This basic concept dates back to at least Rosenblatt (1952).
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where Φ−1 (ut) denotes the distribution function of the standard normal distribu-

tion. Both versions are based on the conditional distribution given all preceding

observations17. This is given by the ratio of the likelihood of the first t observa-

tions to that of the first t− 118. If the selected model is valid, then the UPRs are

distributed U (0, 1) and the NPRs are distributed as standard normal. We can

check the selected model by a visual inspection of the histogram and qq-plot of

the pseudo-residuals.

3.2.2 A model to forecast the volatility of intraday returns

Let Rt denote the return on intraday time interval t andXt the binary variable

representing the occurrence of price change on interval t. In our model we define

Rt =






Mt with probability πt

0 with probability (1− πt),

(3.10)

where πt denotes the probability of price change occurring on interval t, i.e.

Pr (Xt = 1) andMt denotes the conditional return given price change occurred on

interval t. Equation (3.10) defines a mixed discrete-continuous random variable,

since the outcome of Xt is binary and Mt is continuous-valued.

Model specification. We specify our model for {Rt : t = 1, 2, . . .} by spec-

ifying a separate model for each component of {Rt}. In both the model for

the binary series {Xt : t = 1, 2, . . .} and the model for the conditional returns

17This is termed the forecast distribution under the model. Hence, {ut} and {zt} are described
as “forecast” pseudo-residuals.

18For discrete observations the formula is given in ZM (p. 97, Section 6.2.3). In the continuous
case the formula is the same but with probability function replaced by the density function.
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{Mt : t = 1, 2, . . .} we use the exponentially smoothed volumes, lagged by 30 sec-

onds, Nt−1 as a covariate
19. We refer to Nt−1 as the predicted volume, because the

lagged smoothed volume is the one-step-ahead forecast of Vt. Values of smoothed

volume were available for the same period as the observations of both the binary

variable and the conditional returns. The use of lagged smoothed volume, as

opposed to simultaneous volume, as a covariate is motivated by our need for the

covariate to be available at the time of forecast. In this chapter a 30-second-ahead

forecast is considered.

For the binary series {Xt} the Bernoulli-HMM we consider is as follows. In

Section 3.1.4 we saw (in Figure 3.5) that there is a positive dependence of the price

change probability on the predicted volume. This motivated us to introduce Nt−1

into the model via the parameter πi of the state-dependent Bernoulli distributions.

One way of doing so is to assume that, given Nt−1, the logit of price change

probability in state i is a linear function of Nt−1(for example, logit (πt,i) = α0,i +

α1,iNt−1). Here we did not make the restriction that a single linear function

should apply to all m states. In Section 3.1.4 we also saw that the curves of daily

price change probability as a function of Nt−1, in each month investigated, can

be divided into two groups, where the curves in the one group have slopes that

are steeper than those in the other. This observation motivates us to consider a

Markov chain with two states in our model for {Xt}. In what follows we refer to

our model for {Xt} as the two-state Bernoulli-HMM incorporating volume.

19The exponentially smoothed volumes are computed by Equation (3.1).
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For the conditional returns {Mt} the normal-HMM we consider is as follows.

The state-dependent normal distributions here have mean zero and variance σ2i .

This variance represents the return volatility in state i. In Section 3.1.5 we saw

(in Figure 3.6) that there is a dependence of the squared return on the predicted

volume. This motivated us to introduce Nt−1 into the model via the parameter

σ2i of the state-dependent distributions, since we consider squared return as an

approximation of return volatility. We did so by assuming that, given Nt−1, the

logarithm of variance in state i is a linear function ofNt−1(for example, log
(
σ2t,i

)
=

α0,i+α1,iNt−1)
20. In Section 3.1.4 we also saw that in general two relative extrema

occur in the curves for squared return as a function of Nt−1. This observation

motivates us to consider a Markov chain with two states in our model for {Xt}.

In what follows we refer to our model for {Mt} as the two-state normal-HMM

incorporating volume.

From Equation (3.10) we see that our model for {Rt} consists of two compo-

nents, where a separate HMM is assumed for each component. We also allow Nt−1

to influence the parameter of the state-dependent distribution in both classes of

HMMs assumed. Thus, we refer to our model for the returns as a two-component

HMM incorporating volume.

Model fitting. The model we considered for {Xt} and for {Mt} are both

special cases of HMM incorporating a covariate into the state-dependent proba-

20Again we did not here make the restriction that a single linear function should apply to all
m states.
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bilities. Thus, the expression for the likelihood of a sequence of T observations

s1, . . . , sT is (see ZM, p. 126)

LT = δ ·P1 (s1, N0) · ΓP2 (s2, N1) · · · · · ΓPT (sT , NT−1) · 1′, (3.11)

where, for convenience, we chose N0 to be zero21 and Pt (st,Nt−1) denotes the

diagonal matrix with i−th diagonal element pt,i (st,Nt−1). The definition of the

various state-dependent distributions are presented in Appendix C., Table 4.3.

Numerical underflow of the likelihood can be avoided by applying the algo-

rithm in ZM (p. 47) with state-dependent probability distributions now depending

on Nt−1. In order to avoid constraints on the model parameters we reparameterise

the model. The transformations of the parameters of state-dependent distribu-

tions are given in Appendix C., Table 4.4. We reparameterise the t.p.m. Γ as

follows. We first transform the starting values for parameters of the t.p.m. to the

“working” parameters

τ ij = log
(
γij
γii

)
(for i �= j and i, j = 1, 2).

We then transform the solutions from unconstrained optimizer back to the “nat-

ural” parameters

ρij =






exp (τ ij) (for i �= j)

1 (for i = j)

γij =
ρij

ρi1 + ρi2
.

21An alternative to this is to use the average of the series of Nt that covers the preceding
trading day.



3.2. FORECASTING THE VOLATILITY OF INTRADAY RETURNS 147

Model selection and checking. We perform model selection in models for

both the binary series and the conditional returns by means of AIC and BIC (see

Section 3.2.1 for an account).

We then examine the selected model to assess its suitability for the observa-

tions. We describe three techniques for the binary series and one for the con-

ditional returns. In all the techniques we need to find the forecast distributions

under the selected model, i.e. the conditional distribution of each observation

given all preceding observations. In the case of the binary series the conditional

probability Pr
(
Xt = x|X(t−1) = x(t−1)

)
is given by the ratio of the likelihood of

the first t observations to that of the first t− 1 (cf. ZM, p. 97):

Pr
(
Xt = x|X(t−1) = x(t−1)

)
=
αt−1ΓPt (xt,Nt−1) 1

′

αt−11′
. (3.12)

In the case of the conditional returns the conditional density f
(
mt|M(t−1) =m(t−1)

)

is given by Equation 3.12, with the probability function replaced by the density

function and the diagonal matrix replaced by Pt (mt,Nt−1).

For the binary series we describe three model-checking techniques to assess

the suitability of the selected model. The first technique formulates the model

checking problem as a test of the null hypothesis

H0: logit [E (Xt)] = logit (π̂t),

where π̂t denotes the conditional probability of price change {Xt = 1} given the

history X(t−1) computed under the selected model, against an alternative hypoth-
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esis

HA: logit [E (Xt)] = S [logit (π̂t)] ,

where S is a smoothing spline function22. We visually inspect the plot of S against

the logit of π̂t; a deviation of S from the identity function constitutes evidence

against the null hypothesis. This plot is also used to reveal the nature of the

departure.

The second model-checking technique assesses the correspondence between the

average of forecast probabilities of price change under the selected model and the

relative frequency of occurrences of price change. For the validation sample, we

group the forecast probabilities of price change (i.e. the conditional probability of

price change {Xt = 1}, given the history X(t−1)) into one of the twenty intervals

of the form [(i− 1)w, iw) where i = 1, 2, . . . , 20. The fixed interval length w

used is 0.05. The mid-point of the i−th interval is used as the average of the

forecast probabilities for this interval. We then plot (for i = 1, 2, . . . , 20) the

relative frequency of the occurrences of price change in the i−th interval against

the average of the forecast probabilities for this interval. The deviation of the

plotted pair from the identity function is evidence of inadequacy of the selected

model.

The third model-checking technique uses the logistic regression to assess the

correspondence between the occurrences of price change and the forecast proba-

22This technique is developed in Zucchini et al. (2008, p. 810, Section 5).
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bilities of price change. We smooth the standardised deviance residuals23 under

the fitted logistic regression by using the method of locally-weighted polynomial

regression. Departure of the smoothed24 residuals from 0 constitutes evidence for

the inadequacy of selected model.

For the conditional return given price change occurred we check the selected

model by a visual inspection of the plots of the NPR. This is described in Section

3.2.1.

Improvement in forecast accuracy achieved. In this chapter we forecast

the volatility of the intraday return 30 seconds ahead.

Volatility itself is not directly observable, thus we use the squared return as its

approximation. We consider two models for forecasting: firstly, the exponential

smoother as our baseline model and secondly, our two-component HMM incorpo-

rating volume. For each of these models we use the mean-squared forecast error

(MSFE) as a measure of its forecast accuracy, where the forecast error is given

by the difference between an observation and its forecast. In the out-of-sample

period we compare the MSFE for the baseline model with that for our model.

We define the forecast quality as the improvement in forecast accuracy achieved

by our model on the exponential smoother. We then use the ratio of the MSFE

of the two-component model to that of the baseline model as a measure of this

improvement.

23It is computed under the fitted model by Equation 5.3 in Collett (1991, p. 123).
24The smoothed values are computed by the R function lowess.
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For each of the two models we consider we now give an account of the method

used for volatility forecasting. We applied both methods to all 32 samples we

investigated in this chapter. For each sample of length T we estimate the model

by using the calibration sample of length tin (i.e. observations at interval t =

1, 2, . . . , tin) and we assess the forecast quality of the model fitted by using the

validation sample (i.e. observations at interval t = tin + 1, tin + 2, . . . , T ).

Let r2t denote the squared return at interval t. In the first method we com-

pute the (one-step-ahead) forecast at interval t, denoted by r̂2t (1), by using the

exponential smoother

r̂2t (1) = α · r2t + (1− α) · r̂2t−1 (1) , (3.13)

where α is the smoothing parameter. Define

ǫt−1 (1) = r2t − r̂2t−1 (1) ,

where ǫt−1 (1) denotes the (one-step-ahead) forecast error made on interval t−1 by

r̂2t−1 (1). The average forecast error made by r̂
2
t (1) for a sequence of n observations,

which we term the mean squared forecast error for exponential filter (MSFEexp),

is then defined as

MSFEexp (α) =
1

n− 1

n∑

t=2

ǫ2t−1 (1) . (3.14)

For the validation sample we use the α estimated by using the calibration sample25

for the exponential smoother. We re-initialise the forecasting procedure daily26,

25This was done by minimising the MSFEexp for the in-sample period. We used the R
function optimize for the minimisation. The smoothing procedure was re-initialised daily by
setting the first observation for each day as the initial forecast.

26Again by setting the first observation for each day as the initial forecast.
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thus the variation in the squared returns across different days is unaccounted for

in the forecasts. Thus the performance of the exponential smoother reported here

is better than it would have been had this daily re-initialisation not been done.

In the second method we define the volatility forecast as the variance of the

(one-step-ahead) forecast distribution for the returns, i.e. the distribution of Rt

conditional on all preceding returns R(t−1) = r(t−1). In order to derive a formula

for this variance we need results for the forecast distribution for both compo-

nents of the returns. Firstly, the forecast distributions for the binary series are

Pr
(
Xt = xt|X(t−1)

)
, which can be computed as a ratio of two likelihoods of a

Bernoulli-HMM incorporating volume. Let πt−1 (1) denote the forecast probabil-

ity of price change, i.e.

πt−1 (1) = Pr
(
Xt = 1|X(t−1)

)
.

Secondly, the forecast distributions for the conditional returns are f
(
mt|M(t−1)

)
.

We express each of these as a mixture of two state-dependent normal distribu-

tions27, where the weight w
(t)
i (1) is the i−th element of the vector φtΓ under the

two-state normal-HMM incorporating volume. In this mixture the i−th compo-

nent distribution is normal with mean 0 and variance σ2t,i. Using the result for

the k−th uncentered moment of a mixture given in ZM (p. 8), we thus conclude

that f
(
mt|M(t−1) =m(t−1)

)
has a mean of 0 and a variance given by

2∑

i=1

w
(t)
i (1) · σ2t,i. (3.15)

27By using Equation (5.5) on ZM, p. 79.
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We now give a derivation for our conclusions. In accordance with Equation (3.10)

the forecast distribution for {Rt} has mean

0 · (1− πt−1 (1)) + E
(
Mt|M(t−1)

)
· πt−1 (1) = 0, (3.16)

where E
(
Mt|M(t−1)

)
denotes the mean of the forecast distribution for the condi-

tional return, and second moment given by

02 · (1− πt−1 (1)) +
[
V ar

(
Mt|M(t−1)

)
+ E

(
Mt|M(t−1)

)2] · πt−1 (1)

= V ar
(
Mt|M(t−1)

)
· πt−1 (1) , (3.17)

where V ar
(
Mt|M(t−1)

)
denotes the variance of the forecast distribution for the

conditional returns. Using results (3.16), (3.17) and (3.15) we conclude that the

formula for the variance of the forecast distribution for {Rt} is

πt−1 (1) ·
[
w
(t)
1 (1) · σ2t,1 + w

(t)
2 (1) · σ2t,2

]
. (3.18)

Let V ar
(
Rt|R(t−1)

)
denote this variance. Define

ǫt−1 (1) = r2t − V ar
(
Rt|R(t−1)

)
,

where ǫt−1 (1) denotes the (one-step-ahead) forecast error made on interval t−1 by

the two-component HMM incorporating volume. The average forecast error made

by V ar
(
Rt|R(t−1)

)
in a sequence of n observations, termed the mean squared

forecast error for HMM (MSFEHMM), is then defined as

MSFEHMM =
1

n− 1

n∑

t=2

ǫ2t−1 (1) . (3.19)
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In order to measure the forecast performance for our two-component model

relative to that of the exponential smoother, we define

RMSFE =
MSFEexp
MSFEHMM

, (3.20)

where RMSFE is the acronym for ratio of MSFEs. An RMSFE that exceeds

1 indicates that in the out-of-sample period the forecasts derived from our two-

component HMM incorporating volume are, on average, more accurate than those

computed by the exponential smoother.

Software implementation. In order to develop our software to implement

HMMs that incorporate volume into the state-dependent probabilities, several

problems need to be addressed. The main problems are the selection of a suitable

model for the volumes series, the assessment of the bias of parameter estimators,

the likelihood of a series of consecutive intra-daily bivariate series and the likeli-

hood when data are missing. In Appendix C. (on pages 238-240) we describe how

to overcome each of these problems.

3.3 Modelling the occurrence of price change

In this section we model the price change occurrence in the transaction data

for major components of DAX. To represent the presence or absence of intraday

price change we use Bernoulli-HMMs of the kind that allows for predicted volume

in the state-dependent probability of price change.

In order to assess whether such models can be used successfully to forecast the
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price change patterns, we use the transaction data for the eight shares we chose:

ALV, EOA, BAS, LHA, TUI, DBK, DCX and SCH. For each of the eight shares

we use the data that cover four separate periods, each of length two months in

the year 2004: March and April (period 1), May and June (period 2), August and

September (period 3), and November and December (period 4).

For each of the 32 datasets used we compute (vt, rt) at 30− second intervals

in each of the trading days, where in the t−th intraday interval vt is the (log-)

volume traded and rt is the return. This results in 1020 pairs of observations for

each day. For each of the 32 bivariate series we obtain we use observations that

cover the first month to fit our models (i.e. the calibration sample), and those

that cover the subsequent month to check for deficiencies in the fitted model (i.e.

the validation sample).

3.3.1 Models fitted

We consider various models for the bivariate time series (nt−1, xt), with nt−1

being the prediction28 of vt, and xt being the binary variable that represents the

presence (i.e. rt is nonzero, which is denoted by 1) or the absence (i.e. rt is zero,

which is denoted by 0) of price change. We use the logistic regression model,

which is fitted by the R function glm, as the baseline model.

We then consider three types of two-state Bernoulli-HMMs based on a station-

28The exponential smoother (as given in Section 3.1.3) with α = 0.5 was used to compute the
series of predicted volumes {nt} on a daily basis. As we have defined in Equation (3.11), we set
N0 = 0.
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model logit (πt,1) logit (πt,2)

2.0 α0,1 + α1,1Nt−1 α0,2 + α1,2Nt−1

2.1 α0,1 + α1,1Nt−1 α0,2

2.3 α0,1 α0,2

Table 3.1: Two-state Bernoulli-HMMs: models for logit of state-dependent prob-

abilities of price change.

ary Markov chain29. In these models πt,i (nt−1) is the probability of price change

occurring in intraday period t, which is a function of the predicted volume, if the

Markov chain is in state i. Table 3.1 gives the expressions for logit πt,i (nt−1) in

each type of model.

The likelihood of a two-state Bernoulli-HMM incorporating volume is given

by Equation (3.11) in Section 3.2.2, where the state-dependent distributions are

Bernoulli and the covariate is Nt−1. We fit the two-state Bernoulli-HMMs via the

R function nlm by direct numerical maximisation of the log-likelihood of (nt−1, xt).

The likelihood is maximised with respect to the unconstrained parameters, where

the reparameterisation of the t.p.m. and the state-dependent distributions are

described in Section 3.2.2.

In order to fit our models to the calibration samples several problems need

to be addressed. The main ones are the determination of starting values for

29A one-state Bernoulli-HMM is just the logistic regression model, which assumes that the
xt’s are independent Bernoulli random variables with the logit of mean in intraday interval t
equals to a+ bnt−1. The constant term and the coefficient are the parameters.
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the optimisation procedure and choosing the frequency of model calibration. In

this subsection we first describe the method we used to determine the starting

values, under the heading “Starting values for the iterations”. We then discuss

models calibrated on a daily basis, under the heading “Models fitted daily”. On

computational grounds it is desirable to avoid having to recalibrate the model on a

daily basis. We therefore consider the alternative where the model is recalibrated

less frequently, e.g. four times per month. We end this subsection by discussing

“Models calibrated less frequently in a month”.

Starting values for the iterations. We first fit the logistic regression model

then we fit the two-state models in the order: Model 2.0, 2.1 then 2.3.

In Model 2.0 we use the parameter estimates of the logistic regression model

as the starting values for the parameters of the model for logit πt,1. In the model

for logit πt,2 we set α0,2 = 0 and we take the exponentially smoothed volumes

{nt} as given. πt,2 is thus a function of α1,2 only. Using a range of values for

α1,2, we generate various series of πt,2. The starting value for α1,2 corresponds to

a generated {πt,2} in which the proportion of values between 0.5 and 0.6 in {πt,2}

exceeds 70%. In Model 2.1 we use (α̂0,1, α̂1,1) and α̂0,2 in Model 2.0 as the starting

values for (α0,1, α1,1) and α0,2. In Model 2.3 we use α̂0,1 and α̂0,2 in Model 2.1 as

the starting value for α0,1 and α0,2.

Our choice of starting values for the parameters of the Markov chain follows

the strategy of ZM (p. 50, Section 3.4.2). In Model 2.0 we assign 0.01 as the
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starting value for both γ12 and γ21. In Model 2.1 we use γ̂12 and γ̂21 in Model 2.0

as the starting values for γ12 and γ21. In Model 2.3 we use γ̂12 and γ̂21 in Model

2.1 as the starting values for γ12 and γ21.

Models fitted daily. We begin our investigation of the models considered by

applying these to (nt−1, xt) for Allianz in Period 2 of the year 2004. The models

are fitted on a daily basis in the month of May. For each of the trading days the

two-state models are preferred by AIC. But no single type of two-state model are

preferred for all days.

In order to assess the behaviour of the daily models fitted we thus inspect

the most general type of two-state model we consider, i.e. models with Nt−1

incorporated into the probability of price change in both states of the Markov

chain. In these models πt,i (nt−1) is the probability of price change occurring in

intraday interval t, as a function of the predicted volume, if the state is i. Figure

3.7 displays πt,i (nt−1) in state i = 1 and 2, plotted on the same set of axes, in

the models fitted daily. In both states of the Markov chain the majority of the

estimated functions are positively sloped. The curves in both states are roughly

stable, although the curves in state 1 lie closer to each other than those in state

2.

In the t.p.m. of the underlyingMarkov chain, γij denotes Pr (Ct = j|Ct−1 = i),

where γ12 and γ21 are the free parameters. Figure 3.8 depicts γ̂ij for i, j = 1, 2 of

the model fitted daily. Both free parameters are roughly stable; however, there is
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Figure 3.7: Two-state Bernoulli-HMMs: state-dependent probabilities of price

change, as a function of Nt−1, in daily models for Allianz in May, 2004.
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Figure 3.8: Two-state Bernoulli-HMMs: transition probabilities of Markov chain

in daily models for Allianz in May, 2004.
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considerable fluctuation in γ̂21.

Models fitted less frequently in a month. We use the two-state Bernoulli-

HMM with logit πt,i (Nt−1) = α0,i + α1,iNt−1 in state i = 1 and 2. We apply this

model to the calibration sample in Period 2 of the year 2004. We now fit the

model less frequently in the month than daily as follows. We first divide the

month into sub-periods then we calibrate the model for each of the sub-periods.

The three cases that we investigate are the model recalibrated four times and

twice in the month, and the model fitted monthly. In each of these cases we

fit the model twice: firstly, by assuming in each sub-period that the bivariate

observations in successive days are independent; and secondly, by assuming in each

sub-period some serial dependence across successive days within each component

of the bivariate observations (we achieve this by concatenating intraday volumes

and returns in adjacent days by a series of missing observations, coded as NA in

R, of length 1030. We then apply the model to this consolidated bivariate series.)

In the first two cases we sum the values of AIC for the sub-periods. In the case

of models fitted daily the values of AIC for each of the days are summed. Table

3.2 compares the four cases, assuming serial dependence within the sub-periods in

each case, on the basis of their total AIC. It indicates that the total AIC selects

the case of fitting the model daily.

We consider again the application of the three types of two-state Bernoulli-

30Our choice of ten missing observations between adjacent days is arbitrary, but it does make
the adjacent series close to independent. We use this choice to concatenate adjacent series from
hereafter.
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Frequency Total AIC

daily 23455.1

four times 23502.8

twice 23542.4

monthly 23666.4

Table 3.2: Two-state Bernoulli-HMMs: comparison of models for Allianz recali-

brated less frequently in May, 2004, by total AIC. The consolidated series is used

in each sub-period.

HMM, as presented in Table 3.1, to the calibration sample for Allianz in Period

2 of the year 2004. On computational grounds we recalibrate all of these models

monthly. Within each component series we postulate a weak serial dependence

across the days by using a series of missing observations of length 1031 to concate-

nate adjacent intraday series. The monthly model is an approximation to each

daily model, since the values of parameters for the monthly model apply to all

the daily models. For each type of model we summed the value of AIC for all the

daily models. We compare the three types of two-state Bernoulli-HMM, recali-

brated monthly, on the basis of their AIC32. We found that Model 2.1 is preferred

by AIC. Parameter estimates in this model are presented in row 3 of Table 3.3.

Figure 3.9 plots πt,i as a function of Nt−1 in each of the models for Period 2.

In the same way (i.e. monthly recalibration with serial dependence across days

31As before, this choice arbitrary.
32In the bracket we give the value of total AIC for the corresponding daily models.
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Figure 3.9: Monthly models for Allianz in May, 2004: Model 2.1 was selected.
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ALV α̂0,1 α̂0,2 α̂1,1 α̂1,2 γ̂11 γ̂22 δ̂1 δ̂2 #(obs.)

03.2004 0.746 0.0075 3.136 1.890 0.991 0.980 0.690 0.310 23483

05.2004 −1.050 1.284 9.079 − 0.972 0.968 0.533 0.467 21441

08.2004 0.548 −0.356 2.686 3.313 0.995 0.993 0.583 0.417 22462

11.2004 0.423 −0.275 2.852 1.792 0.990 0.971 0.744 0.256 22462

Table 3.3: Estimates of parameters for the selected two-state Bernoulli-HMM for

Allianz in March, May, August and November, 2004.

in both component series) we apply the two-state Bernoulli-HMMs considered to

the calibration sample for Allianz in Periods 1, 3 and 4 of the year 2004. For the

calibration sample in all three periods the AIC preferred Model 2.0. Details of

the selected model for each period are presented in rows 2, 4 and 5 of Table 3.3.

Figures 3.10, 3.11 and 3.12 plot πt,i, as a function ofNt−1, in the models for Periods

1, 3 and 4 respectively. In all these periods Model 2.0 was selected. Two notable

features of these models are as follows. Firstly, the state-dependent probabilities

πt,i are a monotonically increasing function of Nt−1. Secondly, the functions πt,i

do not cross: the probability of price change in one of the states is higher than

that in the other state for all Nt−1. The estimated Markov chain underlying the

selected models for all four periods are strongly persistent. Their unconditional

probabilities are given in Table 3.3, under δ̂i which denotes Pr (Ct = i). Note in

Table 3.3 that the estimates of α0,1, α0,2, α1,1 and α1,2 can look quite different

from period to period but still lead to similar probabilities (cf. Figures 3.9 to
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Figure 3.10: Two-state Bernoulli-HMMs: state-dependent probabilities of price

change, as a function of Nt−1, in monthly models for Allianz in March, 2004.

Model 2.0 was selected. Solid horizontal line indicates probability of 0.5.



3.3. MODELLING THE OCCURRENCE OF PRICE CHANGE 165

0.0 0.2 0.4 0.6 0.8 1.0

ALV2004-08
Model 2.0

pred.vol/ 10000

pr
ob

(c
ha

ng
e)

0.0

0.2

0.4

0.6

0.8

1.0

State 1
State 2

0.0 0.2 0.4 0.6 0.8 1.0

ALV2004-08
Model 2.1

pred.vol/ 10000

pr
ob

(c
ha

ng
e)

0.0

0.2

0.4

0.6

0.8

1.0

State 1
State 2

0.0 0.2 0.4 0.6 0.8 1.0

ALV2004-08
Model 2.3

pred.vol/ 10000

pr
ob

(c
ha

ng
e)

0.0

0.2

0.4

0.6

0.8

1.0

State 1
State 2

Figure 3.11: Monthly models for Allianz in August, 2004: Model 2.0 was selected.
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Figure 3.12: Monthly models for Allianz in November, 2004: Model 2.0 was se-

lected.
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3.12).

Finally, we repeated the application of the two-state Bernoulli-HMMs consid-

ered to the remaining seven shares in all four periods of the year 2004. As for

Allianz these models were recalibrated monthly with serial dependence within the

volume and return series across the days. For all seven shares in all four periods

the AIC preferred Model 2.0. Features of these models are the same as those for

Allianz.

3.3.2 Model checking

For each of the eight shares we used, a model is selected for each of the

four periods in the year 2004. We used the model-checking techniques in Section

3.2.2 to assess whether these monthly models are adequate. Of the 32 models we

examined this way the selected two-state models provide an acceptable fit in 26

cases33. These are the fitted models for ALV, EOA, BAS, DBK and SCH (all four

periods), LHA (periods 1, 3 and 4) and TUI (periods 1,2 and 4).

In all six of the remaining cases (i.e. LHA for period 2, TUI for period 3 and

DCX for all periods) we conclude that the selected models are unsatisfactory. In

each of these cases a plot of fitted spline against the identity function reveals that

the selected model overestimates the price change probability. In order to correct

for these deficiencies we consider alternative models in Section 3.5.

33H0 cannot be rejected (technique 1) and the general correspondence between the observed
and the mean forecasted probability of price change is acceptable (technique 2).
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To illustrate model checking for the out-of-sample period we present two cases:

a monthly model that is adequate and the other that is not. For each t in the

validation period we compute the conditional distribution (under the selected

model) of Xt given the history x(t−1).

For the first case we present the model selected for ALV for Period 3 in the

year 2004. The parameter estimates in this model are:

Γ̂ =





0.995 0.005

0.007 0.993




 ,

logit (πt,1) = 0.548 + 2.686 ·Nt−1,

logit (πt,2) = −0.356 + 3.313 ·Nt−1.

We apply the first model checking technique of Section 3.2.2 to the logit of π̂t.

Figure 3.13 displays the plot of fitted smoothing spline against the identity func-

tion. In this Figure we note the following. Firstly, the fitted smoothing spline lies

closely around the identity function, particularly over the part of x−axis ranging

from 0.5 to 0.8. The selected model is satisfactory for the the validation sample in

the sense that the null hypothesis cannot be rejected. Secondly, there is an appar-

ent departure from identity function at both tails of the fitted smoothing spline

function. The application of the second model-checking technique of Section 3.2.2

reveals that fewer forecast price change probabilities take on either relatively small

(between 0.4 and 0.5) or relatively large (between 0.8 and 1) values.

For the second case of our illustrations we present the model selected for LHA



3.3. MODELLING THE OCCURRENCE OF PRICE CHANGE 169

0.0 0.2 0.4 0.6 0.8 1.0

ALV2004:08-09
Check f.cast prob(change): Technique 1

f.prob(change)

sp
lin

e(
f.

ca
st

 p
ro

b(
ch

an
ge

))

0.0

0.2

0.4

0.6

0.8

1.0

smooth term: 3.85 d.o.f.

Figure 3.13: Model-checking technique 1 of Section 3.2.2 applied to model selected

for Allianz for period 3, 2004. Plot of smoothed values, computed by function gam

in R library mgcv, against forecast probabilities (solid line) with confidence bands

(dashed). The data points (binary observations against forecast probabilities)

appear as solid horizontal lines.
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for Period 2 in the year 2004. We applied all three model-checking techniques of

Section 3.2.2 to this model. Figure 3.14 depicts the plot for each of the techniques

we applied. We note in this figure that the selected model systematically over-

estimates the observed price change probability in the out-of-sample period. The

plot for technique 2 confirms our conclusion34. In the plot for technique 3 a

smooth of the standardised residual deviance remains negative over the entire

out-of-sample period, which again confirms our conclusion.

3.4 Modelling the conditional return given an occurrence

In this section we model the conditional returns given price change occurrence

in the bivariate series of intraday volumes and returns. We consider HMMs as

models for the size of return when price change does occur. The state-dependent

distributions are normal distributions with zero mean and a variance that depends

on Nt−1. In order to assess whether such models can be used successfully to fore-

cast the conditional volatility patterns, we used the 32 series of (vt, rt) computed

in Section 3.3.

34A closer examination of the forecast probabilities that we computed reveals that
(21585/22462) × 100 = 96.1% of them achieve values in the range of 0.2 − 0.55. In each of
the bins that cover this range the average of forecast probabilities is still larger than the corre-
sponding relative frequency of price changes that occurred. This indicates that our conclusion
is still valid after we ignore in our assessment forecasts that we obtain rarely.
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Model log
(
σ2t,1

)
log

(
σ2t,2

)

2.0 α0,1 + α1,1Nt−1 α0,2 + α1,2Nt−1

2.1 α0,1 + α1,1Nt−1 α0,2

2.3 α0,1 α0,2

Table 3.4: Two-state normal-HMMs: models for the logarithm of state-dependent

volatilities of conditional return, given a price change has occurred.

3.4.1 Models fitted

We considered various models for the bivariate time series (nt−1,mt), with nt−1

being the prediction35 of vt, and mt being the returns series in which a missing

observation represents a zero return. We use the one-state normal-HMMs36 as the

baseline model.

We then considered three types of two-state normal-HMMs based on a sta-

tionary Markov chain. In these models σ2t,i (nt−1) is the volatility of nonzero return

in intraday period t, which is a function of the predicted volume, if the Markov

chain is in state i. Table 3.4 gives the expressions for σ2t,i (nt−1) in each type of

model.

The likelihood of a normal-HMM incorporating volume is given by Equation

(3.11) in Section 3.2.2, where the state-dependent distributions are zero mean

35The exponential smoother (as given in Section 3.1.3) with α = 0.5 was used to compute the
series of predicted volumes {nt} on a daily basis. As we have defined in Equation (3.11), we set
N0 = 0.

36This is the model which assumes that the nonzero returns are realisations of independent
normal random variables with zero mean and the logarithm of variance in intraday interval t
equals to a+ bnt−1. The constant term and the coefficient are the parameters.
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normal and the covariate is Nt−1. The normal-HMMs are fitted via theR function

nlm by direct numerical maximisation of the log-likelihood.

Like in Section 3.3.1, the calibration sample is used to fit the models and the

validation sample is used to check the selected model. As before the determi-

nation of starting values and choosing the recalibration frequency are the main

problems for model fitting. In this subsection we first describe the method we

used to determine the starting values and then we discuss models calibrated on a

daily basis, under the heading “Models fitted daily.” We end this subsection by

discussing “Models calibrated less frequently in a month.”

Starting values for the iterations. We first fit the one-state model using

zero as the starting value for both the constant term and the coefficient in the

model. We then fit the two-state models in the order: Model 2.0, 2.1 then 2.3.

In Model 2.0 we use the parameter estimates of the one-state model as the

starting values for the parameters of the model for log
(
σ2t,1

)
. In the model for

log
(
σ2t,2

)
we set α0,2 = α1,2 = 0. In Model 2.1 we use (α̂0,1, α̂1,1) and α̂0,2 in Model

2.0 as the starting values for (α0,1, α1,1) and α0,2. In Model 2.3 we use α̂0,1 and

α̂0,2 in Model 2.1 as the starting value for α0,1 and α0,2.

The starting values for the parameters of the Markov chain are chosen as in

Section 3.3.1.

Models fitted daily. We start by applying the models considered to (nt−1,mt)

for Allianz for Period 2 in the year 2004. We fit the models on a daily basis for the
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month of May. For all trading days the two-state models are preferred by AIC.

But no single type of two-state model from Models 2.0, 2.1 and 2.3 is preferred

for all days.

We assess the behaviour of the daily models fitted by inspecting the two-state

models with Nt−1 incorporated into the volatility in both states of the Markov

chain. In these models σ2t,i (nt−1) is the volatility of nonzero return in interval

t, as a function of the predicted volume, if the state is i. Figure 3.15 displays

σ2t,i (nt−1) in state i = 1 and 2, plotted on the same set of axes, of the model fitted

in each day. In both states of the Markov chain the majority of the functions

are positively sloped. The curves in both states are roughly stable, although the

curves in state 2 lie closer to each other than those in state 1.

In the t.p.m. of the underlying Markov chain γ12 and γ21 are the free parame-

ters. Figure 3.16 depicts γ̂ij for i, j = 1, 2 of the model fitted in each day. Both

free parameters are roughly stable, but there is more fluctuation in γ̂12.

Models fitted less frequently in a month. We use the two-state normal-

HMM with log σ2t,i (Nt−1) = α0,i + α1,iNt−1 in state i = 1 and 2. We apply this

model to the calibration sample in Period 2 of the year 2004. We now fit the

model less frequently in the month than daily as follows. We first divide the

month into sub-periods then we calibrate the model for each of the sub-periods.

The three cases we investigate, as in Section 3.3.1, are the model recalibrated

four times and twice in the month, and the model fitted monthly. In each of these
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Figure 3.15: Two-state normal-HMMs: state-dependent volatilities, as a function

of Nt−1, in daily models for Allianz in May, 2004.
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Figure 3.16: Two-state normal-HMMs: estimated transition probabilities of

Markov chain in daily models for Allianz in May, 2004.
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Frequency Total AIC

daily −39488.7

four times −39253.8

twice −39232.4

monthly −39230.3

Table 3.5: Two-state normal-HMMs: comparison of models for Allianz recali-

brated less frequently in May, 2004, by total AIC. The consolidated series is used

in each sub-period.

cases we fit the model twice: firstly, by assuming the independence of observations

in successive days within each subperiod; and secondly, by assuming some serial

dependence within each component of the observations37 across successive days in

each subperiod. For the cases of recalibrating the model four times and twice in

the month we sum the values of AIC for the sub-periods. For the case of models

fitted daily the we sum the values of AIC for each of the days. Table 3.5 compares

the monthly model with the models fitted at each of the three different frequencies

in the month, where serial dependence within the sub-periods are assumed in each

of these cases, on the basis of their total AIC. It indicates that the total AIC selects

the case of fitting the model daily.

We consider again the application of the three types of two-state normal-

HMM, as presented in Table 3.4, to the calibration sample for Allianz in Period

37This is done as in Section 3.3.1.
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Model AIC

2.0 −39230.3 (−39488.7)

2.1 −39177.1 (−39395.1)

2.3 −39101.2 (−39292.6)

Table 3.6: Two-state normal-HMMs: comparison of monthly models for Allianz

in May, 2004, by AIC. The consolidated series is used. In the brackets total AICs

for models fitted daily are given.

2 of the year 2004. On computational grounds we recalibrate all these models

monthly. Within each component series we postulate serial dependence across

the days by using a series of missing observations of length 1038 to concatenate

adjacent intraday series. The monthly model is an approximation to each daily

models, since each parameter of its fit represents the average for the corresponding

parameter in each of the daily models fitted. For each type of model we sum

the values of AIC for all the daily models. Table 3.6 compares the three types

of two-state normal-HMM, recalibrated monthly, on the basis of their AIC39. It

indicates that Model 2.0 is preferred by AIC. Parameter estimates for this model

are presented in row 3 of Table 3.7. Figure 3.17 plots σ2t,i as a function of Nt−1 in

each of the models for Period 2.

In the same way (i.e. monthly recalibration with serial dependence across

days in both component series) we apply the two-state normal-HMMs considered

38As before, our choice is arbitrary.
39In the bracket we give the value of total AIC for the corresponding daily models.
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ALV α̂0,1 α̂0,2 α̂1,1 α̂1,2 γ̂11 γ̂22 δ̂1 δ̂2 #(obs.)

03.2004 −6.208 −4.912 1.600 1.571 0.979 0.939 0.744 0.256 18012

05.2004 −4.941 −6.186 1.002 1.165 0.965 0.986 0.286 0.714 15044

08.2004 −6.357 −4.863 1.500 0.693 0.984 0.949 0.761 0.239 14905

11.2004 −6.867 −5.641 1.034 0.753 0.976 0.949 0.680 0.320 15666

Table 3.7: Estimates of parameters for the selected two-state normal-HMM for

Allianz in March, May, August and November, 2004.
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Figure 3.17: Monthly models for Allianz in May, 2004: Model 2.0 was selected.
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Figure 3.18: Two-state normal-HMMs: state-dependent volatilities, as a function

of Nt−1, in monthly models for Allianz in March, 2004. Model 2.0 was selected.

to the calibration sample for Allianz in Periods 1, 3 and 4 of the year 2004. For

the calibration sample in all three periods the AIC prefers Model 2.0. Parameter

estimates for the selected model for each of the periods are presented in rows 2,

4 and 5 of Table 3.7. Figures 3.18, 3.19 and 3.20 plot σ2t,i, as a function of Nt−1,

in the models for Periods 1, 3 and 4 respectively. In all these periods Model

2.0 was selected. Two notable features of these models are as follows. Firstly,
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Figure 3.19: Monthly models for Allianz in August, 2004: Model 2.0 was selected.
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Figure 3.20: Monthly models for Allianz in November, 2004: Model 2.0 was se-

lected.
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the state-dependent volatilities σ2t,i are monotonically increasing as a function of

Nt−1. Secondly, the functions σ2t,i do not cross; the volatility of nonzero return

in one of the states is higher than that in the other state for all Nt−1. For each

of the four periods we investigated the estimated t.p.m. of the Markov chain has

diagonal elements close to 1. This indicates persistence in each of the two states.

The corresponding stationary distribution
(
δ̂1, δ̂2

)
is also given in Table 3.7. In

March 2004, for example, state 1 is more likely than state 2, because the estimated

stationary distribution is (0.744, 0.256).

Finally, we repeat the application of the two-state normal-HMMs considered

to the remaining seven shares for all four periods in the year 2004. As for Allianz

we recalibrate these models monthly and for each series used we assumed serial

dependence within the volumes and returns series across the days. For all seven

shares and in all four periods the AIC prefers Model 2.0. Features of these models

are the same as those for Allianz.

3.4.2 Model checking

For each of the eight shares we used, a model is selected for each of the four

periods in the year 2004. We analyse the (forecast) NPRs, as defined in Section

3.2.2, to assess whether these monthly models are adequate. All 32 models we

examined in this way provided an acceptable fit.

To illustrate model checking for the out-of-sample period we present the model
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selected for ALV for Period 3 in the year 2004. The parameter estimates in this

model are:

Γ̂ =





0.984 0.016

0.051 0.949




 ,

log
(
σ2t,1

)
= −6.357 + 1.500 ·Nt−1,

log
(
σ2t,2

)
= −4.863 + 0.693 ·Nt−1.

For each t in the validation sample we computed the forecast distribution (under

the selected model) of the conditional return (given price change has occurred)

Mt. Figure 3.21 displays the histogram of the (forecast) UPRs and the plots of

the (forecast) NPRs.

In Figure 3.21 the histogram of the UPRs does not appear to be U (0, 1). The

UPRs here reflect two features of the conditional returns. Firstly, the conditional

returns are nonzero. The values of the UPR that lie in the range 0.45−0.55 occur

less frequently than expected. That’s because the value of UPR cannot be 0.5

combined with the fact that the price change are discrete-valued40. Secondly, the

conditional returns take on a finite number of values, if the price level varies slowly

over the day. We have computed the UPRs by applying continuous distributions

to the conditional returns which are discrete in nature. The discreteness of the

UPRs is reflected in its histogram as peaks at bins 5, 7− 9, 12− 14 and 16.

In Figure 3.21 the histogram of the NPRs appears to be well approximated by

the standard normal, because the bin width used here is quite large. In the qq-plot

40The minimum amount of change allowed by XETRA is EUR0.01. Price changes involving
volume-weighted average prices we computed, however, are continuous-valued.
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Figure 3.21: Validation sample of Allianz in Period 3, 2004: plots of forecast

pseudo residuals (under selected two-state normal HMM incorporating volume).

Histogram of forecast UPR (top left) and NPR (top right). Quantile-quantile plot

of forecast NPR with standard normal quantiles on horizontal axis.
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of the NPRs the points lie closely around the identity function, but deviate from

linearity at both tails of the plot. This indicates that the selected model fits well

to the observations that are not extreme (relative to the model and all preceding

observations). A notable feature in this qq-plot is the discreteness of NPRs41.

This confirms the discrete nature of the conditional returns, and that the normal

distribution is only an approximation of the forecast distribution of Mt.

3.5 Models for the state-dependent probabilities of change

In Section 3.3.2 we examined the Bernoulli-HMM incorporating volume se-

lected for each share in each of the four periods in the year 2004. We concluded

there that the selected models were inadequate in the following six cases: LHA

(Period 2), DCX (Periods 1-4), TUI (Period 3). In all these cases the selected

model over-estimated the probabilities of price change. Forecast probabilities with

values greater than 0.5 correspond particularly poorly to the occurrences of price

change in the validation sample.

One way to correct this over-estimation is by considering transformations of

the predicted volume in the model for the price change probabilities in state i,

πt,i. For this purpose we considered two types of transformations: the square root

(model 1) and the (natural) logarithm42 (model 2). These models are presented

in Table 3.8, where α0,i,α1,i are the state-dependent coefficients. In order to allow

41This is, at values at which the NPRs cluster the plot appears horizontal.
42Here, log (0) is set equal to log

(
10−323

)
: this is the smallest finite natural logarithm value

allowed by R.
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model logit (πt,i)

1 α0,i + α1,i ·
√
Nt−1

2 α0,i + α1,i · log (Nt−1)

Table 3.8: Models for the logit of the probability of price change in state i (for

i=1,2).

flexibility in the form of its dependence on predicted volumes, we also model the

means of the binary series by applying smoothing splines.

In the case of LHA for period 2 we fitted the following four models to the

calibration sample. The first two models we fitted are the two-state Bernoulli-

HMM in which we use model 1 and then model 2 in Table 3.8. The third model

we fitted is a smoothing spline function for the logit of price change probabilities

πt
43 and the last model we used is the logistic regression model for πt. We then

applied the model-checking techniques of Section 3.2.2 to check the fit of these

models in the out-of-sample period. We found that all four models still over-

estimate the probability of price change. In order to check the fit in other sample

periods we re-examine two of the fitted models: the smoothing spline function

and the logistic regression model.

We first check the fit in the in-sample period by applying the model-checking

techniques of Section 3.2.2 to these two models. Figure 3.22 displays the plot for

technique 1 applied to the fitted logistic regression model. We note in this figure

43The function is fitted using the R function gam provided in the mgcv library. The degrees
of freedom is selected via cross validation.
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Figure 3.22: Model-checking technique 1 of Section 3.2.2 applied to calibration

sample of Lufthansa in Period 2, 2004. Forecast probabilities of price change

under fitted logistic regression model.
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that the plot departs strikingly from the identity function. This indicates that the

logistic regression model is inadequate also for the in-sample period. Figure 3.23

displays technique 1 applied to the fitted smoothing spline. We note in this figure

that the plot lies closely around the identity function. This indicates that there is

insufficient evidence to reject the null hypothesis. By comparing the plot in Figure

3.23 with that in Figure 3.22 we conclude that the smoothing spline function44 is

a more successful model than the logistic regression model. We then check the fit

in the first out-of-sample day. From the plots for technique 1 we again conclude

that the smoothing spline function is a more successful model than the logistic

regression model.

For each of the remaining five cases for which the selected Bernoulli-HMMs

is inadequate we fit the four alternative models we considered and then check the

models as we have done for LHA for period 2. In each of these cases we arrived

at the same conclusions as those for LHA for period 2.

3.6 Comparisons of improvement in forecast accuracy

We assess the forecast performance of our two-component model by applying

the RMSFE (page 152, Equation (3.20)). Table 3.9 presents this ratio computed

for each of the 32 cases investigated in this chapter. In this table we note the

following features. Firstly, our two-component model has in general performed

better than the baseline model: in 25 of the 32 cases the RMSFE has a value

44We use here 7.98 degrees-of-freedom that we obtained by using the cross-validation method.
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Figure 3.23: Model-checking technique 1 of Section 3.2.2 applied to calibration

sample of Lufthansa in Period 2, 2004. Forecast probabilities of price change

under fitted smoothing spline function.
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Period 1 2 3 4

ALV
0.993

(0.171)

1.014

(0.073)

1.036

(0.111)

2.443

(0.125)

BAS
1.006

(0.096)

1.017

(0.080)

1.065

(0.106)

1.208

(0.300)

DBK
1.135

(0.425)

1.165

(0.330)

0.885

(0.085)

2.192

(0.267)

DCX
≈ 0.000

(0.094)

1.035

(0.080)

1.052

(0.106)

1.171

(0.300)

EOA
1.609

(0.076)

1.016

(0.055)

1.124

(0.070)

1.049

(0.152)

LHA
1.029

(0.099)

1.028

(0.190)

1.019

(0.078)

1.091

(0.234)

SCH
0.002

(0.050)

1.014

(0.048)

0.977

(0.029)

1.021

(0.163)

TUI
0.990

(0.040)

1.947

(0.053)

1.065

(0.216)

0.994

(0.050)

Table 3.9: Improvement in forecast accuracy achieved by the two-component

HMM incorporating volume: RMSFE for eight shares in Periods 1-4, 2004. The

alpha estimated from the calibration sample is given in the bracket.
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exceeding 1. The success rate achieved by our model varies across periods (all

eight shares in period 2; four shares only in period 1) and between shares (all

periods for BAS, EOA and LHA; two periods only for SCH and TUI).

Secondly, our two-component model fared particularly poorly in two of the

cases: DCX and SCH (period 1). A closer examination of the sample in each case

revealed the following. In both cases the range for predicted volume Nt−1 in the

out-of-sample period is considerably wider than that in the calibration period.

Extrapolations thus occurred when the variance of conditional return in state i,

σ2t,i was predicted beyond the range for Nt−1 on which the model was fitted. An

additional feature of the predicted volumes in both cases is that the variation in the

out-of-sample period is considerably higher than that in the calibration period.

The application of extrapolation is thus unreliable, since there is considerable

doubt on the validity of the fitted model for the out-of-sample period.

3.7 Summary and discussion

In this chapter we forecast the volatilities of intraday return. We found that

the squared returns depend on the volumes traded. We proposed to decompose

the returns into two components: the occurrences of price change and the condi-

tional returns given price change has occurred. We applied the Bernoulli-HMMs

incorporating volume to model the first component, and the normal-HMMs incor-

porating volume to model the second.
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For each component we examined the transaction data for eight shares cov-

ering four separate periods in the year 2004. In our model selection exercises

we found that the models fitted daily are preferred (by AIC) to the model fitted

monthly. We fitted our model monthly nevertheless, since the computational ef-

fort required is relatively modest. This made our analysis of eight shares over four

periods computationally feasible.

In our application of the Bernoulli-HMMs incorporating volume we found that

the selected models were inadequate in 6 of the 32 cases investigated. In all six

cases the models over-estimated the probability of price change in the out-of-

sample periods. In order to correct this over-estimation we fitted four alternative

models to the binary series. We found that the smoothing spline function for

logit (πt) provided adequate fit to the calibration sample.

In our application of the normal-HMMs incorporating volume we found that

the discreteness of conditional returns (given price change has occurred) was un-

accounted for in these models. The normal distribution can thus be regarded as

an approximation only. We also found that these models were not adequate to

describe the frequency of extreme observations.

In our assessment of the forecast performance we found that our two-component

model are superior (according to RMSFE) to the baseline model in 25 of the 32

cases investigated. A closer examination of the remaining seven cases revealed that

the forecasts derived under our model were unreliable when the state-dependent
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variances were predicted at values that were outside the range of predicted vol-

umes to which the models were fitted. In these cases the predictions of the state-

dependent variances were computed by assuming that the regression lines fitted

to the calibration sample holds true for values of Nt−1 outside the range of the

observations. These regression lines, however, can grossly misrepresent observa-

tions in the out-of-sample period. Thus they provided predictions that can differ

substantially from the observed values.



CHAPTER 4

CONCLUDING DISCUSSION AND FUTURE

RESEARCH

The aim of this dissertation is to study empirically the volatility of intra-daily price

changes for transaction data from electronic trading on the XETRA platform of

Frankfurt Stock Exchange. In our study we investigated two variables that can

be used to measure volatility. These are the time it takes for the price to change

by a specified amount, and the amount of price change over a fixed interval of

time. The two main questions that we addressed are as follows. Firstly, do the

models that assume unobserved heterogeneity in the observations provide better

forecasts than those that do not? Secondly, does the trading volume (possibly

lagged) helps to improve the forecast of price change volatility?

In Chapter 2 we forecast the waiting time between successive sm-M price

changes. We investigated the MSACD models proposed by Hujer et al. (2002)

for this purpose. We applied these models to the price durations for three shares.

In each of the three periods covered two stages of preprocessing were needed

to standardise the series before these models could be fitted. In the first stage

the price durations were deseasonalised. However, after deseasonalising, using

195
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a spline function, much of the variability in the series remains; the day-to-day

variability in the values of average deseasonalised price duration over a trading

day is considerable. Thus in the second stage we standardised the deseasonalised

price durations that occurred over each day, by dividing these values by their

average over the day. Our findings suggest that the two sources of variability,

namely the intraday seasonality1 and the day-to-day variation, create the chief

difficulties when attempting to forecast price durations.

A number of different specifications of the MSACD models were fitted to

the standardised price durations. We found that a two-state model with Burr

state-dependent distributions was preferred. In most of the selected models we

found that, given the Markov chain is in state j, the conditional mean is a linear

function of the lagged duration and the preceding conditional mean in state j. A

difficulty encountered was that of maximising the likelihood, which has to be done

using numerical methods. We found that the results were sensitive to the starting

values, some of which lead to a local (rather than the global) maximum, while the

others cause the method to diverge. This problem not only reduces the confidence

in the estimates but also substantially increases the computational burden.

We assessed the fits of the selected models in the out-of-sample periods. One-

month periods were first used for this purpose. We found that when the validation

samples were preprocessed before forecasting the standardised durations, the se-

1There were some regularity in the seasonal pattern. For example, price durations that
occurred in the commencement and the conclusion of trading phases are frequently short; price
durations that occurred in the lunchtime period (around 13:00 in Germany) are frequently long.



197

lected models were adequate in the out-of-sample periods. This is what was done

in, for example, Hujer et al. (2002) and Hautsch (2004)2. However, the price du-

ration forecasts in this case were not truely out-of-sample, since the seasonal and

the day-to-day components were determined from data that included observations

that were not available at the time of forecast (i.e. at the start of each successive

days in an out-of-sample period).

We then considered rolling samples with a fixed window to assess the out-of-

sample fits. In each rolling sample we forecasted one day ahead. As our forecast

we used the seasonal and the day-to-day component determined from the calibra-

tion sample. Out of the nine cases investigated the selected models were adequate

in only one case. We found that the parameters of the fitted models vary sub-

stantially over the successive rolling samples. In the unsuccessful cases we found

considerable variability in both seasonal and the day-to-day components. As a

result, it is not clear whether the standardised durations still contain seasonal vari-

ation that were unaccounted for, or the MSACD model was indeed inadequate for

the standardised durations.

In our applications of the MSACD model we encountered several problems.

The performance of this model was sensitive to the instability of the intraday

seasonality, since this is a model for the standardised durations. One approach

is to introduce covariate information into the MSACD models. This can be done

via the state-dependent conditional means or the transition probabilities of the

2To our knowledge truely out-of-sample forecasting were not investigated in previous papers.
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Markov chain. One potential covariate is the total volume of shares traded in

the preceding interval of successive significant price changes. This can be used

to explain the seasonal variation in the state-dependent conditional mean. The

parameters of the MSACDmodel were estimated using numerical maximization of

the likelihood. They can also be estimated by the expectation-maximization (EM)

algorithm. Neither method is guaranteed to converge to the global maximum, but

the EM algorithm can have a larger circle of convergence (see Bulla and Berzel

(2008) in the context of the HMMs). Another variable that could be modelled by

the MSACD model is the volume duration3, which could be used as a measure of

liquidity4.

In Chapter 3 we forecast volatilities of intraday returns. We proposed the

two-component HMMs incorporating volume and applied these to model intraday

returns for eight shares. In each of the four periods covered we found that a

two-state model was preferred for both components of return. For each of these

components we found a dependence on predicted volume in both state-dependent

distributions of each of the selected models. In 25 out of the 32 out-of-sample

periods we found that the volatility forecasts derived under our model are, on

average, more accurate than those computed by the exponential smoother, which

was used as a baseline model.

In both components of our model we circumvented the forecasting of season-

3This is defined as the time between consecutive transactions during which a specified number
shares is traded.

4See Hautsch (2004, Section 3.4.2).
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ality by allowing for the influence of predicted volume in the respective state-

dependent distributions. However, there are weaknesses in our model. For the

price change occurrences component we found that our model over-estimated the

probability of occurrence in some cases. Among the alternative models considered

for these cases, we modelled the logit of price change probabilities. By using the

smoothing spline to estimate the regression of the logit quantity on the predicted

volume we found that the resulting model was adequate for the calibration sample

in each of the unsuccessful cases. This suggests that using a nonparametric model

for logit (πt,i) in the two-state Bernoulli HMM might be a promising alternative.

For the other component of return we found that, conditional on the occurrence

of price change, the discreteness of the return was unaccounted for by our model.

We also found that the frequency of extreme observations was inadequately de-

scribed by our model. In this respect a family of heavy-tailed distributions, such

as the (student’s) t−distributions, might be a useful alternative to the normal.

In forecasting volatilities we found that, when the state-dependent variances were

extrapolated, our model can be invalid in some cases. In our applications we fore-

cast volatility of intraday return 30-second-ahead. This forecast period might be

too short for decision-making.

The two-component HMM incorporating volume can also be applied to other

measures of volatility. The model can be applied, for example, to the intraday

absolute (or squared) return. In that case the exponential distribution could be
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used as the state-dependent distribution in the model for the size of price change

conditional on the occurrence of a price change.

The conclusion that may be drawn from our findings in Chapters 2 and 3

is that, when intraday observations are available, models based on regular time

intervals are more successful in the forecasting of volatility than those that are

based on price durations. The main difficulty in the first case is that of forecasting

the mean level and seasonality, a problem that has been ignored in the literature.
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APPENDICES

A. Transaction data

code form (German) form (English)

E Eröffnung Open

EA Eröffnungsauktion Opening auction

VA
Auktion nach Volatilitätsunterbrechnung Auction after trading halt

due to excess volatility

IA Intraday auction

V Variabler Handel Continuous trading

S Schluß Close

SA Schlußauktion Closing auction

Table 4.1: Code indicating the form of trading.
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B. Markov switching ACD models

Derivation of Hamilton’s algorithm

Our aim here is to derive Hamilton’s algorithm to compute the likelihood of

N consecutive observations x1, x2, . . . , xN assumed to be generated by a Markov

switching model. This model has m states (for m = 1, 2, . . .), a lag order of u

(for u = 1, 2, . . .) and state-dependent errors that are independent with common

distribution F (ǫ;θǫ,j) (for j = 1, 2, . . . ,m).

The Markov switching model consists of two parts. The first is a state process

(Ct), for t = 2, 3, . . . , N , which is a (discrete index) Markov chain, with m states

(for m = 1, 2, . . .) and transition probability matrix defined by Γ =
(
γij

)
(for

i, j = 1, 2, . . . ,m). The second part is the state-dependent process (Xt), for

t = (u+ 1) , . . . , N such that if Ct = j (for j = 1, 2, . . . ,m) the model for Xt

is Xt = µ (Xt−1, . . . , Xt−u,θµ,j) + ǫt,j and (ǫt,j) are independent with common

distribution F (ǫ;θǫ,j).

For t = 1, 2, . . . ,N , we define the following notation. Firstly,C(t) = (C1, . . . , Ct)
′

is the history of (Ct) up to t; X(t) and x(t) are defined analogously. Secondly,

xtu = (xu, . . . , xt)
′ are the observations from u (u > 1) to t (t > u).

The parameters for theMarkov chain are contained in the vector θΓ =
(
γij

)
i�=j

,

where i and j = 1, 2, . . . ,m. The parameters for the conditional mean and the

error distribution are contained in the vectors θµ = (θµ,1, . . . ,θµ,m) and θǫ =

(
θǫ,1, . . . ,θǫ,m

)
, respectively. Then the parameters for the model are contained in
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the vector θ =(θµ,θǫ,θΓ)
′.

Problem statement. Assume that x is a realisation of (Xt). For t =

1, 2, . . . , N what is the formula for Pr
(
Ct|X(t) = x(t)

)
?

Solution. Let Pr
(
Ct|x(t)

)
represent Pr

(
Ct|X(t) = x(t)

)
. We make the fol-

lowing assumption.

(A0) x and θ are known

(A1) Pr
(
Ct|C(t−1)

)
= Pr (Ct|Ct−1) Markov property

(A2) f
(
xt|C(t),x(t−1)

)
= f

(
xt|Ct,x(t−1)

)
Xt, C

(t−1) independent

(A3) Pr
(
Ct|C(t−1),x(t−1)

)
= Pr

(
Ct|C(t−1)

)
Ct, X

(t−1) independent

We now derive a recursion to compute the likelihood.

Step t = 1, 2, . . . , u (Initialise)

Take x(0) to be the empty set. At index points t = 1, 2, . . . , u:

1. Set the distribution conditioned on x(t−1) to its unconditional distribution:

Pr
(
Ct|x(t−1)

)
= Pr (Ct) distribution of Ct.

f
(
xt|Ct,x(t−1)

)
= f (xt|Ct) distribution of Xt conditioned on Ct.

2. Update:

f (xt, Ct) = f (xt|Ct) Pr (Ct) (B.1)

f (xt) =
m∑

j=1

f (xt, Ct = j) (B.2)

=
m∑

j=1

f (xt|Ct = j) Pr (Ct = j) (B.3)

Pr (Ct| xt) =
f (xt, Ct)

f (xt)
(B.4)
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Equation (B.1) is the definition of conditional probability, Equation (B.2)

represents the law of total probability, and equations (B.3) and (B.4) follows

by definition of conditional probability.

3. Predict:

Pr
(
Ct+1|x(t)

)
=

m∑

j=1

Pr
(
Ct+1, Ct = j|x(t)

)
(B.5)

=
m∑

j=1

Pr
(
Ct+1|Ct = j,x(t)

)
Pr

(
Ct = j|x(t)

)
(B.6)

=
m∑

j=1

Pr (Ct+1|Ct = j) Pr
(
Ct = j|x(t)

)
(B.7)

Equation (B.5) represents the law of total probability, Equation (B.6) follows

by definition of conditional probability and Equation (B.7) follows by the

independence of Ct+1 and x
(t).

Step t = (u+ 1) , (u+ 2) , . . . ,N

(Updating equation)

Contribution to likelihood:

f
(
xt|x(t−1)

)
=

∑m

j=1 f
(
xt|Ct = j,x(t−1)

)
Pr

(
Ct = j|x(t−1)

)
.

Update Ct:

Pr
(
Ct|x(t)

)
=
f(xt|Ct,x(t−1))Pr(Ct|x(t−1))

f(xt|x(t−1))
.

(Prediction equation)

Pr
(
Ct+1|x(t)

)
=

m∑

j=1

Pr (Ct+1|Ct = j) Pr
(
Ct|x(t)

)
.
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Likelihood of xNu+1 conditioned on x
(u)

LN = f
(
xNu+1

∣∣x(u);θ
)
=

N∏

t=u+1

f
(
xt|x(t−1)

)
.

log-likelihood:

lN = logLN =
N∑

t=u+1

log f
(
xt|x(t−1)

)
.

Derivation of the explicit formula for the likelihood

Problem statement. Assume x is a realisation of {Xt}. Derive an explicit

formula for the likelihood LN conditioned on x1, . . . , xu of an m-state Markov-

switching model.

Solution. The likelihood LN of a Markov switching process {Xt} conditioned

on x1, . . . , xu can be written as

LN = f (xu+1, . . . , xN |x1, . . . , xu)

=
m∑

j1=1

m∑

j2=1

· · ·
m∑

jN=1

f
(
xNu+1, C1 = j1, . . . , CN = jN

∣∣x(u)
)

(B.8)

The summands of Equation (B.8) can be represented by f
(
xNu+1,C

(N)
∣∣x(u)

)
.

Then applying the definition of conditional probability to f
(
xNu+1,C

(N)
∣∣x(u)

)
,

the summands of Equation (B.8) can be written as

f
(
xNu+1,C

(N)
∣∣x(u)

)
= f

(
xNu+1

∣∣C(N),x(u)
)
· Pr

(
C(N)

∣∣x(u)
)

(B.9)
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The first term on the right-hand side of Equation (B.9) can be written as:

f
(
xNu+1

∣∣C(N),x(u)
)

= f
(
xN ,x

N−1
u+1

∣∣C(N),x(u)
)

(B.10)

= f
(
xN |xN−1u+1 ,C

(N),x(u)
)
· f

(
xN−1u+1

∣∣C(N),x(u)
)
, (B.11)

where Equation (B.11) follows from applying the definition of conditional prob-

ability to Equation (B.10). After we have applied the definition of conditional

probability to f
(
xt,x

t−1
u+1

∣∣C(N),x(u)
)
, for t = N, (N − 1) , . . . , (u+ 2), the first

term on the right-hand side of Equation (B.9) can be written as a product

f
(
xNu+1

∣∣C(N),x(u)
)
= f

(
xu+1|C(N),x(u)

) N∏

t=u+2

f
(
xt|xt−1u+1,C(N),x(u)

)
(B.12)

The first factor in Equation (B.12) can be re-written as

f
(
xu+1|C(N),x(u)

)
= f

(
xu+1|Cu+1,x(u)

)
, (B.13)

because Xu+1 depends only on Cu+1 and x
(u). For t = (u+ 2) , (u+ 3) , . . . , N ,

the factors in Equation (B.12) can be re-written as

f
(
xt|xt−1u+1,C(N),x(u)

)
= f

(
xt|xt−1u+1, Ct,x(u)

)
(B.14)

= f
(
xt|xt−1t−u, Ct

)
(B.15)

where Equation (B.14) follows from the independence of Xt and C
(t−1) and Equa-

tion (B.15) follows from the dependence of Xt on x
t−1
t−u only. After we replace the

first factor of Equation (B.12) by equations (B.13) and the remaining factors of
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Equation (B.12) by Equation (B.15), we can then re-write the first term on the

right-hand side of Equation (B.9) as:

f
(
xNu+1

∣∣C(N),x(u)
)
= f

(
xu+1|Cu+1,x(u)

) N∏

t=u+2

f
(
xt|xt−1t−u, Ct

)
. (B.16)

The second term on the right-hand side of Equation (B.9) can be written as:

Pr
(
C(N)

∣∣x(u)
)
= Pr

(
CN ,C

(N−1)
∣∣x(u)

)
(B.17)

= Pr
(
CN |C(N−1),x(u)

)
Pr

(
C(N−1)

∣∣x(u)
)
, (B.18)

where Equation (B.18) follows from applying the definition of conditional prob-

ability to Equation (B.17). After we have applied the definition of conditional

probability to Pr
(
Ct,C

(t−1)
∣∣x(u)

)
, for t = N, (N − 1) , . . . , 2, the second term on

the right-hand side of Equation (B.9) can be written as a product

Pr
(
C(N)

∣∣x(u)
)
= Pr (C1)

N∏

t=2

Pr
(
Ct|C(t−1),x(u)

)
. (B.19)

For t = 2, 3, . . . , N , the factors in Equation (B.19) can be re-written as

Pr
(
Ct|C(t−1),x(u)

)
= Pr

(
Ct|C(t−1)

)
(B.20)

= Pr (Ct|Ct−1) , (B.21)

where Equation (B.20) follows from the independence of Ct and x
(u) and Equation

(B.21) follows from the Markov property of {Ct}. After we replace the factors of

Equation (B.19) by Equation (B.21), we can then re-write the second term on the

right-hand side of Equation (B.9) as:

Pr
(
C(N)

∣∣x(u)
)
= Pr (C1)

N∏

t=2

Pr (Ct|Ct−1) . (B.22)
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Finally, by replacing the first term of Equation (B.9) by Equation (B.16) and

the second term of Equation (B.9) by Equation (B.22), the summands can be

re-written as

f
(
xNu+1,C

(N)
∣∣x(u)

)

= Pr (C1)
N∏

t=2

Pr (Ct|Ct−1)

×f
(
xu+1|Cu+1,x(u)

) N∏

t=u+2

f
(
xt|xt−1t−u, Ct

)
(B.23)

and the likelihood of a Markov switching process conditioned on x1, . . . , xu can be

written as

LN =
m∑

j1,...,jN=1

(

δj1

N∏

t=2

γjt−1,jt

)

×
(

fju+1
(
xu+1|x(u)

) N∏

t=u+2

fjt
(
xt|xt−1t−u

)
)

(B.24)

=
m∑

j1,...,jN=1

(

δj1

u+1∏

t=2

γjt−1,jt

)

fju+1
(
xu+1|x(u)

)

×
N∏

t=u+2

γjt−1,tfjt
(
xt|xt−1t−u

)
(B.25)

= δΓuF
(
xu+1|x(u)

)

×ΓF
(
xu+2|xu+12

)
ΓF

(
xu+3|xu+23

)
· · · · · ΓF

(
xN |xN−1N−u

)
1′, (B.26)

where δ is a row vector with elements δj1 = Pr (C1 = j1), Γ is the t.m.p. of

{Ct} with elements γjt−1,jt = Pr (Ct = jt|Ct−1 = jt−1), F
(
xt|xt−1t−u

)
is the diagonal

matrix with jt th element fju+1
(
xu+1|x(u)

)
= f

(
xt|xt−1t−u, Ct = jt

)
and 1 is a row

vector of length m with one as its elements.
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Software for estimation

Consider the two-state MSACD model with t.p.m.

Γ =






γ11 γ12

γ21 γ22






and conditional means in state 1 given by

µ1,1 =
ω1

1−α1−β1

µ1,1 =
ω1

1−α1−β1
µn,1 = ω1 + α1Zn−1 + β1µn−1,1 (for n = 2, . . . ,N)

and in state 2 given by

µ1,2 =
ω2

1−α2−β2

µ1,2 =
ω2

1−α2−β2
µn,2 = ω2 + α2Zn−1 + β2µn−1,2 (for n = 2, . . . , N).

At Zn the distribution of the error is a mixture distribution with components

ǫn,1 ∼ Burr (µ = 1, κ1, σ
2
1) with E (ǫn|Ct = 1) = 1

ǫn,2 ∼ Burr (µ = 1, κ2, σ
2
2) with E (ǫn|Ct = 2) = 1,

i.e. the component distribution selected by the Markov chain at Zn is used to

describe the error. We call a model of the kind we describe above as the Burr

MSACD(1, 1). It has twelve parameters of which two are for the Markov chain,

γ12, γ21, six are for the state-dependent conditional means, ω1, α1, β1, ω2, α2, β2,

and the remaining four are for the state-dependent error distributions, κ1, σ
2
1, κ2, σ

2
2.

We checked our estimation software by using simulation to estimate the means

and standard deviations of the maximum likelihood estimators in the two-state
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model we describe above. We generated twenty series of length 100005 from this

model by specifying its population parameters, and then we fitted the same type

of model (using our software) to each of these series6. Table 4.2 gives the sample

means, biases7 and standard deviations for the estimators of the twelve parame-

ters. We note in this table the following. Firstly, sample means are reasonably

similar to the population parameters. Secondly, although the standard deviations

are not large, it has to be kept in mind that very long series were used in the

simulation. The results from this simulation exercise provide some support for

the accuracy of our estimation software.

5This round number is in the range of the lengths of the series that we fit our models to.
The series we generated has a length of 11000 of which the first 1000 observations are regarded

as the burn-in sample.
6The computational time for the simulation is roughly eight hours.
7Defined here as the difference between the values of sample mean and population parameter.
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θ true mean
(
θ̂
)

bias
(
θ̂
)

s.d.
(
θ̂
)

ω1 2.00 1.9934 −0.0066 0.1328

α1 0.15 0.1489 −0.0011 0.0074

β1 0.80 0.7982 −0.0018 0.0101

κ1 3.50 3.4590 −0.0410 0.0860

σ21 2.00 1.9479 −0.0521 0.0700

ω2 0.50 0.5023 0.0023 0.0377

α2 0.10 0.0995 −0.0005 0.0113

β2 0.50 0.4992 −0.0008 0.0289

κ2 1.50 1.5119 0.0119 0.0273

σ22 0.50 0.5068 0.0068 0.0588

γ12 0.10 0.0997 −0.0003 0.0044

γ21 0.10 0.1000 0.0000 0.0046

Table 4.2: Simulation of a two-state Burr MSACD(1,1) model: bias and standard

error of the parameters.
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Figure 4.1: Index plot of daily return series of E.ON. The return is calculated on

the opening price of the share on each trading day. Solid horizontal line marks the

average return over the trading year. Dashed line marks three standard deviations

in excess (above mean) and in deficit (below mean) of the mean.
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BAS in 2002
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Figure 4.2: Index plot of daily return series of BASF. The return is calculated on

the opening price of the share on each trading day. Solid horizontal line marks the

average return over the trading year. Dashed line marks three standard deviations

in excess (above mean) and in deficit (below mean) of the mean.
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Figure 4.3: Plots of sm-M price durations (in units of 1000 seconds) for EOA

against index of price event (in units of 1000) for the months March to May in

the years 2002-2004 (left column). Nonparametric regression lines computed by

the R function lowess that is a smooth of the points in each of the years (right

column).
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Figure 4.4: Plots of sm-M price durations (in units of 1000 seconds) for BAS

against index of price event (in units of 1000) for the months March to May in

the years 2002-2004 (left column). Nonparametric regression lines computed by

the R function lowess that is a smooth of the points in each of the years (right

column).
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Figure 4.5: Kernel density estimates of the observed sm-M price durations of E.ON

(left column). qq-plot of the observed price durations based on an exponential

distribution (right column).
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Figure 4.6: Kernel density estimates of the observed sm-M price durations of

BASF (left column). qq-plot of the observed price durations based on an expo-

nential distribution (right column).
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Figure 4.7: ACF of observed price durations of E.ON corresponding to small-M

price changes for the period March to May in years 2002, 2003 and 2004.
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Figure 4.8: ACF of observed price durations of BASF corresponding to small-M

price changes for the period March to May in years 2002, 2003 and 2004.
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Figure 4.9: Observed price durations of E.ON: nonparametric estimate of intraday

cyclical pattern (left column) and daily average (right column). The durations

correspond to small-M price changes for the period March to May in years 2002,

2003 and 2004.
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Figure 4.10: Observed price durations of BASF: nonparametric estimate of intra-

day cyclical pattern (left column) and daily average (right column). The durations

correspond to small-M price changes for the period March to May in years 2002,

2003 and 2004.
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Figure 4.11: Observed price durations of Allianz: nonparametric estimate of mean

duration, before transformations (left column) and after transformations (right

column), as a function of time of last significant price change. The durations

correspond to small-M price changes for the period March to May in years 2002,

2003 and 2004.
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Figure 4.12: Observed price durations of E.ON: nonparametric estimate of mean

duration, before transformations (left column) and after transformations (right

column), as a function of time of last significant price change. The durations

correspond to small-M price changes for the period March to May in years 2002,

2003 and 2004.
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Figure 4.13: Observed price durations of BASF: nonparametric estimate of mean

duration, before transformations (left column) and after transformations (right

column), as a function of time of last significant price change. The durations

correspond to small-M price changes for the period March to May in years 2002,

2003 and 2004.
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Figure 4.14: (Seasonally-) adjusted price durations of E.ON: mean durations, es-

timated nonparametrically, as a function of number of significant price changes

(dotted line, left column) and daily average (right column). The durations corre-

spond to small-M price changes for the period March to May in years 2002, 2003

and 2004. In each plot of left column, sample mean of durations in each year is

indicated by the solid horizontal line.
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Figure 4.15: (Seasonally-) adjusted price durations of BASF: mean durations, es-

timated nonparametrically, as a function of number of significant price changes

(dotted line, left column) and daily average (right column). The durations corre-

spond to small-M price changes for the period March to May in years 2002, 2003

and 2004. In each plot of left column, sample mean of durations in each year is

indicated by the solid horizontal line.
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Figure 4.16: ACF of (seasonally-) adjusted price durations of E.ON corresponding

to small-M price changes for the period March to May in years 2002, 2003 and

2004.
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Figure 4.17: ACF of (seasonally-) adjusted price durations of BASF corresponding

to small-M price changes for the period March to May in years 2002, 2003 and

2004.



MARKOV SWITCHING ACD MODELS 234

Lag

A
C

F

EOA2002-03to05

1 20 40 60 80 100

-0.1

0.0

0.1

0.2

0.3

Lag

A
C

F

EOA2003-03to05

1 20 40 60 80 100

-0.1

0.0

0.1

0.2

0.3

Lag

A
C

F

EOA2004-03to05

1 20 40 60 80 100

-0.1

0.0

0.1

0.2

0.3

Figure 4.18: ACF of standardised price durations of E.ON corresponding to small-

M price changes for the period March to May in years 2002, 2003 and 2004.
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Figure 4.19: ACF of standardised price durations of BASF corresponding to small-

M price changes for the period March to May in years 2002, 2003 and 2004.
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C. Hidden Markov Models

two-state HMM

Distribution in state i Probability functions

Poisson
p1 (st) =

λ
st
1 exp(−λ1st)

(st)!

p2 (st) =
λ
st
2 exp(−λ2st)

(st)!

Bernoulli
p1 (st) = πst1 (1− π1)

1−st

p2 (st) = πst2 (1− π2)
1−st

two-state HMM incorporating volume

Distribution in state i Probability functions Models for parameters

Bernoulli
pt,1 (st) = πstt,1

(
1− πstt,1

)1−st

pt,2 (st) = πstt,2
(
1− πstt,2

)1−st

πstt,1 =
exp(α0,1+α1,1Nt−1)

1+exp(α0,1+α1,1Nt−1)

πstt,2 =
exp(α0,2+α1,2Nt−1)

1+exp(α0,2+α1,2Nt−1)

Exponential
pt,1 (st) = ρt,1 exp

(
−ρt,1st

)

pt,2 (st) = ρt,2 exp
(
−ρt,2st

)

ρt,1 = exp (α0,1 + α1,1Nt−1)

ρt,2 = exp (α0,2 + α1,2Nt−1)

Normal
pt,1 (st) =

1√
2πσ2t,1

exp
[
−1
2

(
s2t
σ2t,1

)]

pt,2 (st) =
1√
2πσ2t,2

exp
[
−1
2

(
s2t
σ2t,2

)]
σ2t,1 = exp (α0,1 + α1,1Nt−1)

σ2t,2 = exp (α0,2 + α1,2Nt−1)

Table 4.3: Definitions of state-dependent distributions of the HMMs for

t=1,2,...,T.
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two-state HMM

Distribution in state i Working parameters Natural parameters

Poisson ηi = log (λi) λi = exp (ηi)

Bernoulli ηi = log
(
pi
1−pi

)
pi =

exp(ηi)
1+exp(ηi)

two-state HMM incorporating volume

Distribution in state i Working parameters Natural parameters

Bernoulli

ηt =





log

(
p1,t
1−p1,t

)

log
(
p2,t
1−p2,t

)






=






α0,1 α1,1

α0,2 α1,2




 ·






1

Nt




.

Pt =






p1,t

p2,t






=






exp(η1,t)
1+exp(η1,t)

exp(η2,t)
1+exp(η2,t)




.

exponential

ηt =





log

(
ρ1,t

)

log
(
ρ2,t

)






=






α0,1 α1,1

α0,2 α1,2




 ·






1

Nt




.

Rt =






ρ1,t

ρ2,t






=





exp

(
η1,t

)

exp
(
η2,t

)




.

normal

ηt =





log

(
σ21,t

)

log
(
σ22,t

)






=






α0,1 α1,1

α0,2 α1,2




 ·






1

Nt




.

Σt =






σ21,t

σ22,t






=





exp

(
η1,t

)

exp
(
η2,t

)




.

Table 4.4: Definitions of transformations of parameters of state-dependent distrib-

utions for t=1,2,...,T. The working parameters are unconstrained and the natural

parameters are constrained.
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Implementation of the HMM incorporating volume

In this section we give an account of the methods we used to overcome each

of the main problems that arises when we implement the HMM incorporating

volume.

1. (Independent gamma random variables) In the simulation to test the two-

state Bernoulli-HMM incorporating volume we found that a sequence of

volumes {Nt} generated by some arbitrarily chosen distribution leads to a

substantial bias. To overcome this problem we first choose a trading day

in which the price change probability is strongly dependent on Nt (in this

case the data for Allianz on 20 May 2004). Then we equate the average

and the sample variance of {nt} to the expectation and the variance of

a gamma random variable respectively. We solve for the shape and the

scale parameters, which we denote by â and ŝ respectively, of the gamma

distribution simultaneously. Finally, we generate an Nt series of length n

from a gamma distribution with parameters â and ŝ by using theR function

rgamma.

2. (Bias relative to population parameter) In order to verify our software we use

simulation to determine the difference between the true value of a parameter

and the expected value of its estimator. To assess the extent of the bias,
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however, we use the ratio

%bias =

∣∣∣mean
(
θ̂
)
− θ

∣∣∣

|θ| · 100,

where θ denotes the true value of a parameter and mean
(
θ̂
)
the average

of the estimates we obtain for θ. That is, %bias represents the bias as a

percentage of θ. In applying this measure we specify θ that is considerably

different from 0.

3. (Independence of the consecutive intra-daily bivariate series) The series to

which we fit a model consist of intraday series in consecutive trading days.

However, no data are available in periods outside of the trading hours, since

no trading took place. One way to account for this fact in our model is to

assume that the intraday series are independent of each other. Let D denote

the number of trading days in the period. For day d (for d = 1, 2, . . . , D) we

define T (d) as the length of the series, N(d)=
(
N (d)
1 , . . . ,N (d)

T (d)

)′
as the vol-

umes series and S(d)=
(
s
(d)
1 , . . . , s

(d)

T (d)

)
as the returns series. Then applying

Equation (3.11) to the series in day d, we get the likelihood

L(d)
T (d)

= δ ·P1
(
s(d)1 ,N (d)

0

)
·ΓP2

(
s(d)2 , N (d)

1

)
· · · · ·ΓPT (d)

(
s(d)
T (d)

,N (d)

T (d)−1

)
· 1′.

By assuming independence of the intraday series the log-likelihood of the

HMM incorporating volume is given by

lD = l
(1)

T (1)
+ · · ·+ l

(D)

T (D)
.
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4. (Missing values in bivariate series) An alternative way to account for a bi-

variate series that consists of observations in consecutive days in our model

is to insert a sequence of missing values between the series in adjacent days.

We can then fit our models to the consolidated series thus obtained. For

example, we have an observation series that covers two trading days, which

we display here

Day 1 Day 2

x
(1)
1 x

(1)
2 x

(1)
3

N
(1)
1 N

(1)
2 N

(1)
3

x
(2)
1 x

(2)
2 x

(2)
3

N
(2)
1 N

(2)
2 N

(2)
3

By inserting a missing value between days 1 and 2 we obtain the following

bivariate series:

x
(1)
2 x

(1)
3 NA x

(2)
2 x

(2)
3

N
(1)
1 N

(1)
2 NA N

(2)
1 N

(2)
2

For the series that we use, ten missing values (coded, for example, as NA

in R) are inserted between the trading days whenever we want to fit our

models to the consolidated series. A test for the software in this case is as

follows. In the likelihood Equation (3.4), the state-dependent distribution

matrix for an observation that is missing is replaced by the identity matrix.
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