
 

 

 
 

 

 

 

The role of astrocytes for oligodendrocyte 

death and remyelination 

 

 

 

 

 

Dissertation 

for the award of the degree 

“Doctor rerum naturalium” (Dr. rer. nat.) 

 

 

Division of Mathematics and Natural Sciences 

Georg August University Göttingen 

 

 

submitted by 

Claudia Wrzos 

from Pszczyna (Pleß), Poland 

Göttingen, 2012 

 



 

 

 
 

Thesis Committee 

 

 

1
st

 Reviewer 

Prof. Dr. Christine Stadelmann-Nessler 

Institute of Neuropathology 

University Medical Center Göttingen 

Georg August University Göttingen 

 

 

2
nd

 Reviewer 

Prof. Dr. Michael Müller 

Department of Neuro- and Sensory Physiology 

University Medical Center Göttingen 

Georg August University Göttingen 

 

 

3
rd

 Member of the Thesis Committee 

Prof. Dr. Dr. Hannelore Ehrenreich 

Department of Clinical Neuroscience 

Max Planck Institute for Experimental Medicine 

Göttingen 

 

 

 

 

 

 

 

 

 

Date of oral examination: March 6th, 2012 

 



 

 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dla moich rodziców 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 
 

 

 

 

 

 

 

 

 

 
 

Declaration 
 

 

 
 

I hereby declare that I have written my Ph.D. thesis entitled “The role of astrocytes 

for oligodendrocyte death and remyelination” independently and with no other 

sources and aids than quoted. This thesis has not been submitted elsewhere for any 

academic degree. 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
Claudia Wrzos       Göttingen, January 2012 

 

 

 

 
 

 



Abstract 

 

 
V 

Abstract 

 

Astrocytes are the most abundant cells in the central nervous system (CNS) with 

wide-ranging functions. 

The first part of my thesis deals with Neuromyelitis optica (NMO), an inflammatory 

demyelinating disease of the CNS. Aquaporin 4 (AQP4), a water channel expressed 

in high density at perivascular astrocytic endfeet, has recently been identified as a 

target of the humoral immune response in NMO. I developed two in vivo models to 

assess the extent, time course, and mechanisms of tissue damage and repair after 

astrocyte depletion. A patient derived, recombinant anti-AQP4 (rAb-53) antibody was 

i.v. transferred into immunized rats (experimental autoimmune encephalomyelitis 

(EAE)/NMO model) or focally injected into the rat cerebral cortex (focal NMO model). 

One hour after a single cerebral injection of complement-binding rAb-53, a selective 

depletion of astrocytes was found. 3hrs after antibody injection, in addition, a 

diminution of oligodendrocytes was observed. 24hrs after antibody injection the 

astrocyte depleted areas reached their full extent and revealed loss of 

oligodendrocytes and oligodendrocyte precursor cells (OPCs). After two weeks, 

astrocytic repopulation of the lesion was nearly complete. However, the prelesional 

density of oligodendrocytes was not yet achieved. To assess the role of excess 

glutamate and ATP on oligodendroglial cell death, N-methyl D-aspartate (NMDA) and 

P2X7 receptor antagonists were applied in vivo and in vitro. However, no clear-cut 

effect of NMDA and P2X7 receptor antagonists on oligodendroglial cell death was 

observed. In the systemic EAE/NMO model, administration of rAb-53 to 

preimmunized rats demonstrated huge perivascular astrocyte depleted areas in the 

spinal cord accompanied by significant loss of oligodendrocytes and OPCs after 

30hrs. In addition, kidney pathology with detached cells of the inner medullary 

collecting ducts, where AQP4 is expressed, and infiltrating macrophages were 

observed. 

In summary, both models successfully mimicked human NMO lesions. The human 

rAb-53 was able to induce astrocyte depletion with a single cerebral injection or when 

administered to immunized rats. Activation of the complement system was found to 

be a prerequisite for astrocyte lysis. Furthermore, this work demonstrates that 

oligodendroglial cell death follows astrocyte depletion quite rapidly. However, 
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oligodendroglial repair of astrocyte depleted lesions is slow compared to classical 

demyelinated lesions.  

In the second part of my thesis the role of fibroblast growth factor 9 (FGF9) on 

demyelination (DM) and remyelination (RM) was assessed. To provide 

overexpression of this growth factor in vivo, an adeno-associated virus 6 (AAV-6)-

based vector containing the cDNA of FGF9 under the control of the GFAP promoter 

was constructed. This FGF9-AAV-6-based vector was intracerebrally injected in 

cuprizone-fed mice and rats with focal EAE to study a possible role of FGF9 on DM 

and RM. In both models, no clear effect of FGF9 on RM was found. However, in both 

models FGF9 led to widespread activation and proliferation of astrocytes and 

similarly, activation and proliferation of oligodendroglia.  

Thus, my results indicate that FGF9 has an important role for the homeostasis of glial 

cells, however, rather influences cell number and activation state than repair. 
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1  Introduction 

 

1.1  Astrocytes in health and disease 

 

Astrocytes, first characterized by Camillo Golgi in 1871, are the most abundant cells 

in the central nervous system (CNS) and outnumber neurons at least fivefold (He and 

Sun, 2007). These glia cells were first regarded as the “glue” that holds the CNS 

together but multiple additional functions of astrocytes have been described since 

then. Astrocytes participate in the regulation of blood flow and control fluid, ion and 

neurotransmitter homeostasis. They modulate synaptic activity and are relevant as 

energy suppliers (Fig. 1.1). Besides their essential contributions in the healthy CNS, 

astrocytes contribute to a variety of CNS disorders and pathologies.  

 

Astrocyte
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Figure 1.1: Schematic summary of astrocyte functions. Adapted from Sofroniew (2010). 
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1.1.1   Physiological functions of astrocytes in the healthy CNS 

 

Regulation of blood flow: Astrocytes have extensive contact with blood vessels and 

synapses and as such form neuro-glial-vascular domains. They can release 

mediators such as prostaglandins, nitric oxide or arachidonic acid, which can 

influence the blood vessel diameter. Blood flow can also be regulated in response to 

synaptic activity (Zonta et al., 2003). 

 

Regulation of ion, fluid and transmitter homeostasis: Astrocytic processes enwrap all 

synapses and express multiple transporters which are essential for synaptic function. 

Astrocytes clear the synaptic cleft from K+, neurotransmitters (glutamate, GABA and 

glycine) or protons (Na+/H+ exchanger). Astrocytic networks connected by gap 

junctions might prevent the potential toxicity of glutamate by the rapid dilution of this 

molecule. Aquaporin 4 (AQP4) water channels localized at astrocytic processes 

which contact blood vessels are important for fluid homeostasis. 

 

Modulation of synaptic activity: Astrocytes can modulate synaptic activity by the 

release of transmitters (glutamate, GABA, ATP) and by releasing co-factors such as 

D-serine (Mothet et al., 2000; Schell et al., 1995). Astrocytes are also instrumental 

during synapse development. 

 

Energy metabolism: Astrocytes are the main glycogen storage sites in the CNS and 

support neurons in periods of high neuronal activity or hypoglycemia. 

 

Blood-brain barrier (BBB): The BBB is composed of endothelial cells connected by 

tight junctions, the basal lamina, perivascular pericytes and astrocyte end-feet. 

Astrocytes and basal lamina constitute the glia limitans and restrict - in combination 

with the endothelial cells - diffusion of molecules and entry of leukocytes into the 

CNS. 

 

Astrocytes participate in myelination by the secretion of diverse growth factors. 

Platelet-derived growth factor (PDGF), which promotes the proliferation, migration 

and differentiation of oligodendrocyte precursor cells (OPCs), is synthesized by 

neurons and astrocytes (Gard et al., 1995). Astrocytes are the source of insulin-like 
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growth factor (IGF), an oligodendrocyte mitogen, differentiation and survival factor. 

They release neurotrophin-3 (NT-3) and basic fibroblast growth factor (bFGF or FGF-

2), which support proliferation and survival of oligodendrocyte precursors (Dreyfus et 

al., 1999). 

 

1.1.2   Astrocytes in inflammation 

 

Astrocytes and microglia cells are components of the innate immune system in the 

CNS, which protect the host by distinguishing molecular structures that are normally 

absent in the healthy organism. Effective detection of foreign (microbial) or modified 

endogenous ligands depends on pattern recognition receptors (PRR) such as 

scavenger or Toll-like receptors (TLR) which recognize conserved non-self motifs 

(Medzhitov, 2007). Astrocytes express TLR3 in vivo (Kim et al., 2006) and respond to 

TLR3 ligation with the synthesis of proinflammatory mediators such as IL-6, CXCL10 

and INF-β (Jack et al., 2005) and potentially neuroprotective anti-inflammatory 

cytokines such as IL-10 or IL-11 (Bsibsi et al., 2006). PRR-mediated activation of 

astrocytes might therefore amplify the local innate immune response (IL-1, IL-8), 

open the BBB (IL-6; MCP-1) and attract leukocytes from the blood into the CNS (IL-8, 

MCP-1, RANTES). On the other hand, astrocytes respond to TLR3 ligation by 

producing immunosuppressive cytokines and mediators of tissue repair. Keeping the 

balance between inflammatory and immunosuppressive pathways is essential for the 

response of astrocytes to tissue damage. This is probably best illustrated in a 

number of animal models, where astrocyte functions are partially or completely 

inhibited. Selective inactivation of NF- b (Nuclear Factor kappa b) in astrocytes 

improves spinal cord injury (Brambilla et al., 2005) and inactivation of the upstream 

NF- b inactivators NEMO or IKK2 in CNS cells improves EAE (van Loo et al., 2006). 

Complete ablation of proliferating astrocytes by ganciclovir in animals which express 

the herpes simplex virus thymidine kinase under the glial fibrillary acidic protein 

(GFAP) promoter is, however, detrimental and results in more severe and long-

standing inflammation, BBB dysfunction and neuronal degeneration (Bush et al., 

1999; Faulkner et al., 2004). 
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1.1.3  Neuromyelitis optica  

 

Neuromyelitis optica (NMO), first described by Clifford Allbutt in 1870 (Allbutt, Lancet 

1870, p.203) and summarized by Eugene Devic in 1894 (Wingerchuk et al., 1999), is 

an idiopathic inflammatory demyelinating disease of the CNS. Previously thought to 

be a variant of multiple sclerosis (MS), distinctive features of NMO have been 

described over the last decade. The most important finding was the discovery of an 

NMO-IgG which targets AQP4 in 70% of the patients (Lennon et al., 2005; Lennon et 

al., 2004). 

 

1.1.3.1 Epidemiology 

 

NMO is a rare disorder with a comparable incidence of 0.4/ 105 in non-white and 

white populations. It is three to nine times more common in women than men in 

patients with relapsing disease, whereas patients suffering from monophasic NMO 

do not have any sex bias (Wingerchuk et al., 1999). The median age of disease 

onset is the late thirties (Barbieri and Buscaino, 1989; Davis et al., 1996; Wingerchuk 

et al., 1999).  

 

1.1.3.2 Clinical presentation 

 

NMO preferentially affects the optic nerves and the spinal cord (Wingerchuk et al., 

2007a; Wingerchuk et al., 2007b) while brain regions are spared in early stages 

(Wingerchuk et al., 1999). NMO shows a relapsing disease course in two-thirds 

(Mandler et al., 1998; Wingerchuk et al., 1999) and the development of permanent 

disability is attack-related. Relapses can be separated by years or even decades 

(Wingerchuk et al., 2007b). Patients usually complain about ocular pain followed by 

loss of vision or symptoms characteristic of severe myelitis such as symmetric 

paraplegia, sensory loss and bladder dysfunction (Wingerchuk and Weinshenker, 

2003). Attacks generally worsen in the first week, and recovery in NMO is 

incomplete. 
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1.1.3.3 Diagnostic workup 

 

The diagnosis of NMO is based on clinical criteria in conjunction with radiological and 

serological testings. The main clinical features are optic neuritis and longitudinally 

extensive transverse myelitis (LETM). Supportive criteria are a brain magnetic 

resonance imaging (MRI) atypical for multiple sclerosis (Gard et al., 1995), a spinal 

MRI showing that the spinal cord lesion extends over three or more vertebrae and 

anti-AQP4 seropositivity (Wingerchuk et al., 2006; Wingerchuk and Weinshenker, 

2008). In the cerebrospinal fluid a mixed lymphocytic and neutrophilic pleocytosis is 

typical, and oligoclonal bands are detectable in 35% of the cases (Ghezzi et al., 

2004; Jarius et al., 2008).  

 

1.1.3.4 Pathogenesis 

 

NMO is currently considered to be an autoimmune disease with auto-antibody-

mediated injury to astrocytes. The target is the auto-antigen AQP4, which is a water 

channel present in high concentrations in astrocytes of the spinal cord, diencephalon 

and the periventricular zone. Immunoglobulins of anti-AQP4 antibody-positive 

patients or recombinant antibodies against AQP4 are pathogenic if transferred to 

animals in which the BBB has been opened by activated CNS-specific T cells 

(Bennett et al., 2009; Bradl et al., 2009). The frequency of familial NMO is higher 

than expected and argues for a genetic component of disease susceptibility. HLA 

and mitochondrial genes have been analyzed as contributors. HLA-DRB1*1501 is the 

allele most strongly associated with genetic susceptibility to MS, but has not been 

associated with NMO, according to a number of small studies (Brum et al., 2010; 

Cree et al., 2009; Zephir et al., 2009). In a Japanese population, HLA-DPB1*0501 

was more frequent in patients with NMO, but HLA-DRB1*1501 was also not 

(Matsushita et al., 2009). Genetic variations of AQP4 also failed to account for the 

overall susceptibility to NMO (Matiello et al., 2011). A single common nucleotide 

polymorphism in the promoter of CYP7A1, which codes for cytochrome P450 was 

found to be protective (Kim et al., 2010).  
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1.1.3.5 Histopathology 

 

The most important distinguishing histopathological feature of early NMO lesions is 

the loss of AQP4 immunoreactivity (Misu et al., 2007). In parallel, loss of GFAP 

immunoreactivity is described, accompanied by prominent perivascular deposits of 

immunoglobulin and complement components in a characteristic rim and rosette 

pattern (Fig. 1.2) (Lucchinetti et al., 2002; Misu et al., 2006; Roemer et al., 2007). 

These findings underpin the role of astrocytes as the primary target in NMO. In acute 

lesions, the inflammatory infiltrate consists of polymorphnuclear cells (PMNs) and 

eosinophilic granuloctyes, monocytes and T cells. At later time points, macrophages 

are the dominant leukocyte population (Lucchinetti et al., 2002). Vessel walls become 

thickened and hyalinised (Lefkowitz and Angelo, 1984; Lucchinetti et al., 2002; 

Mandler et al., 1993). In addition to demyelination (DM) and oligodendrocyte 

apoptosis, cavitation, necrosis, and axonal loss (Fig. 1.2) were described in grey and 

white matter lesions in the spinal cord (SC) and optic nerve (ON) (Mandler et al., 

1993; Parratt and Prineas, 2010). Less destructive NMO lesions have been found in 

the SC and medullary tegmentum with inflammation and loss of AQP4 

immunoreactivity, but no DM and tissue necrosis, suggesting that a potential 

reversible NMO lesion type may exist (Roemer et al., 2007).  

 

 

Figure 1.2: NMO lesion pathology in a 77 year old woman seropositive for anti-AQP4 
antibodies. Lesions show extensive loss of astrocytes in GFAP staining (A), accompanied by severe 
DM (B; MBP). Severe axonal loss is one of the hallmarks of NMO (C; Bielschowsky silver 
impregnation). Additionally, lesions are characterized by Ig depositions around the blood vessels (D, 
anti-IgM), complement deposits (E; anti-C9) and apoptotic oligodendrocytes (F; P25 staining). 
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1.1.3.6 Aquaporin 4 

 

Aquaporins are membrane proteins which regulate the flow of water in cells. Among 

the thirteen known aquaporins in mammals, aquaporin 4 (AQP4) is the main 

regulatory channel for water homeostasis in the CNS (Amiry-Moghaddam and 

Ottersen, 2003). Two isoforms exist in humans and rodents, namely M1 and M23 

(Fig. 1.3) (Moe et al., 2008; Rash et al., 2004). AQP4 (mainly M23) is expressed in a 

polarized fashion in astrocyte membranes apposed to blood vessels, where it covers 

30-40% of the astrocytic membrane (Wolburg, 1995). Besides astrocyte end-feet, 

AQP4 is also expressed in the nervous system in ependymal cells of the ventricles, 

meningeal cells of the pia mater, in astrocytes of the posterior optic nerve and in cells 

of the inner ear (Graber et al., 2008). Outside the nervous system, AQP4 

immunoreactivity can be found in the kidney, respiratory tract, digestive tract, skeletal 

muscles and integumentary (Ma et al., 1997). 

Most of the functions of AQP4 in the CNS are deduced from animal models deficient 

for AQP4. AQP4 knockout mice were generated in 1997 by targeted gene disruption 

and showed normal brain structure, vasculature and BBB function (Ma et al., 1997). 

Challenged by water intoxication AQP4 mice had a significantly improved survival 

and reduced swelling in astrocytic foot processes compared to controls (Manley et 

al., 2000). A significant reduction in brain swelling was also observed after middle 

cerebral artery occlusion (Manley et al., 2000). Besides the described function of 

AQP4 in brain edema, AQP4 is also involved in the migration of astrocytes. The 

localized swelling of lamellipodia is dependent on water flux across the plasma 

membrane and is important for cell migration. AQP4 deficient astrocytes migrate 

slower and show fewer lamellipodia (Saadoun et al., 2005). Finally, AQP4 deficiency 

results in a compromised clearance of extracellular K+ and this impaired uptake might 

influence neural signal transduction (Padmawar et al., 2005). 
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Figure 1.3: Model of AQP4. (A) 3-D structure shows the 6 domains and interconnecting loops and 

the two translation initiation sites M1 and M23 of AQP4. (B) Extracellular view showing the 
arrangement of AQP4 monomers into stable tetramers in the membrane. Adapted from Wells (1998). 

 

1.1.4  Effect of astrocytic overexpression of the fibroblast growth  

  factor 9 (FGF9) on brain parenchymal cells  

 

1.1.4.1 FGF9 

 

Fibroblast growth factors (FGFs) are a large family of polypeptide growth factors that 

are found in organisms ranging from nematodes to humans. In vertebrates, the 23 

members of the FGF family range in molecular mass from 17 to 34kDa and share 13-

71% amino acid identity. They are involved in oligodendrogenesis, astrogenesis, 

embryonic development and wound healing. The two main receptors that FGFs bind 

to are FGFR (fibroblast growth factor receptor) 2 and FGFR3. 

FGF9, first described as a glioma-derived growth factor (GDGF), is a heparin-binding 

growth factor protein containing 205 amino acid residues. In the adult CNS, FGF9 is 

known to be produced mostly by neurons and oligodendrocytes (Kanda et al., 1999; 

Nakamura et al., 1997; Todo et al., 1998), but also production and secretion by 

astrocytes has been described (Nakamura et al., 1999). Lin and coworkers (2009) 

showed that neuron-derived FGF9 is essential for migration of granule neurons in the 

cerebellum of mice. Additionally, FGF9 has been reported to have a neuroprotective 

effect on dopaminergic neurons (Huang and Chuang, 2010; Huang et al., 2009). 

+
H3N 

-
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Therefore, it is tempting to speculate that high FGF9 levels might be an endogenous 

repair or protective mechanism which might help to protect neurons. 

 

1.1.4.1.1 Effect of FGF9 on astrocytes  

 

On the one hand FGF9 is able to stimulate the proliferation and activation of glial 

cells and other cells that express FGF receptors. On the other hand in vitro 

experiments showed a strong inhibition of astrocytic differentiation and an almost 

total lack of GFAP positive astrocytes up to 7 days after treatment with FGF9. A total 

inhibition required prolonged treatment with FGF9, but for partial inhibition an 1h 

pulse was sufficient (Lum et al., 2009b). Another study described the role of FGF9 in 

downregulation of astroglial gap junctions and functional coupling by decreasing the 

expression of the gap junction protein connexin 43 in CNS astroglial cultures (Reuss 

et al., 2000).  

 

1.1.4.1.2 Effect of FGF9 on oligodendrocytes and OPCs 

 

Previous studies investigating the effects of FGF9 in pure oligodendrocyte cultures 

have reported an inhibition of proteolipid protein (PLP) and myelin-basic protein 

(MBP) expression during oligodendrocyte differentiation (Cohen and Chandross, 

2000) and an increase in process outgrowth in differentiated oligodendrocytes (Fortin 

et al., 2005). It has been reported that low FGF9 levels can lead to a modest effect 

on oligodendrocyte proliferation, whereas at higher concentrations, oligodendrocyte 

maturation was slowed down (Lum et al., 2009b).  

 

1.1.4.1.3 Effect of FGF9 on remyelination (RM) 

 

A low density microarray study investigating growth factors, cytokines and their 

receptors in MS lesions (developed and performed at the Max Planck Institute for 

Neuroimmunology by Hema Mohan and Edgar Meinl, unpublished data), revealed an 

association between the failure of RM and an upregulation of FGF9 in demyelinated 

compared to remyelinated lesions. FGFR3 expression was also upregulated in 

demyelinated lesions. 
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Christopher Linington and colleagues (University of Glasgow, unpublished data) 

studied the effects of exogenous FGF9 on myelination in vitro. They found, that 

FGF9 inhibits the formation of myelin oligodendrocytes glycoprotein (MOG)-/PLP-

/MBP-positive myelin sheaths in a dose dependent manner associated with the 

selective suppression of MOG protein expressed by highly differentiated PLP-/MBP-

positive oligodendrocytes. These cells can still contact and partially ensheath axons 

but fail to elaborate continuous compact myelin sheaths. The authors conclude that 

local expression of FGF9 may contribute directly to the failure of lesions to 

remyelinate. 

 

1.1.3  Aims 

 

Astrocytes are major players in both preventing and driving CNS diseases. In NMO, 

they are the targets of the immune response. The present thesis examines the 

pathogenesis of NMO-like focal lesions and studies the role of astrocyte-secreted 

FGF9 in experimental DM.  

The aim of the first project is to develop experimental models of NMO and to study 

tissue damage and repair of NMO-like lesions.  

The second project is based on recent findings that suggest a crucial role for FGF9 in 

RM. I used focal overexpression of FGF9 in astrocytes to study the role of this growth 

factor on astrocytes, oligodendrocytes and RM.  
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2  Materials and Methods 

 

For supplementary information on conventional procedures, solutions, chemicals, 

instruments, equipment and manufacturers, see Appendix A1, A2 and A3. 

 

2.1  Animals 

 

All in vivo experiments were carried out in adult (170–240g) female-inbred Lewis rats 

(n=244) purchased from Harlan Winkelmann GmbH (Borchen, Germany) or in adult 

C57BL/6 mice (n=24) from Charles River (Sulzfeld, Germany). The animals were 

kept in cages of 6 animals each on a 12:12hrs light/dark cycle with food and water ad 

libitum. Newborn P0 Wistar rats were used as the source of oligodendroglial and 

astroglial cells. All experiments were accredited by the Bezirksregierung 

Braunschweig, Germany. 

 

2.2   NMO animal models 

 

To study the pathogenesis of NMO AQP4-specific bivalent recombinant human IgG1 

recombinant monoclonal antibodies (rAbs) were reconstructed from the paired 

heavy- and light-chain sequences of cerebrospinal fluid (CSF) plasma cell clones 

from an NMO patient after a first clinical attack (Bennett et al., 2009). This work was 

done in the laboratory of Jeffrey Bennett in the Department of Neurology and 

Ophthalmology, University of Colorado, Denver, USA. For the present study the 

recombinant anti-AQP4 antibody 53 (rAb-53) and a control-recombinant Ab 2B4 (ctrl-

rAb) against the measles-virus-nucleocapsid protein were used. Furthermore, for 

EAE experiments, also modified variants of rAb-53 with inserted point mutations were 

used. These antibodies were defective in complement activation, or in antibody-

dependent cell-mediated cytotoxicity (ADCC), or in both. 

 

2.2.1  Generation of focal NMO-like lesions in vivo  

 

To investigate the effects of the rAb-53 in rats and to study the pathogenesis and 

repair in NMO-like lesions, a non-T-cell-dependent model was generated. 
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2.2.1.1 Intracerebral stereotactic injection 

 

Rats were intraperitoneally (i.p.) anaesthetized by injection of ketamine (60mg/kg 

bodyweight) and xylazine (8mg/kg bodyweight). After loss of consciousness, a rostro-

caudal cut was performed to gain access to the skull. Next, the animal was mounted 

in a stereotactic device. A fine hole was drilled into the skull 1mm caudal and 2mm 

sagittal to the bregma, until only a thin layer of bone was left to avoid damage to the 

brain. The skull and the meninges were then carefully opened with a microdissecting 

knife. 1µl of rAb-53 (2.5mg/ml) or ctrl-rAb (2.5mg/ml) diluted in serum was injected 

stereotactically by a fine calibrated glass capillary into the M1 motorcortex region or 

corpus callosum. Furthermore, to mark the injection site, monastral blue was added 

to the antibody and serum mixture. The solution was administered very slowly during 

a period of 3 minutes to avoid tissue damage. After injection the capillary was 

carefully withdrawn and the skin was sutured. To provide analgesia, buprenorphine 

(Temgesic©) was administered at 0.03mg/kg during surgery, 6 and 12hrs later. 

Finally, the animals were perfused at various time points after injection and the 

tissues were processed for immunohistochemistry.  

 

2.2.1.2 Pharmacological experiments to determine the role of NMDA and 

  P2X7 receptors in oligodendrocyte death 

 

The focal NMO model is characterized by astrocyte loss due to the lytic effect of rAb-

53 and complement followed by oligodendrocyte loss. To investigate the role of 

glutamate and ATP in oligodendrocyte death, NMDA and P2X7 receptor antagonists 

were applied (n=3). 

The NMDA receptor antagonists D-AP5 and MK-801 as well as the P2X7 receptor 

antagonists periodate oxidized adenosine triphosphate (oATP) and brilliant blue G 

(BBG) were injected intracerebrally together with the rAb-53 and human complement 

(total volume: 2µl). Concentration of the antagonists was 500µmol/L. Control animals 

received only rAb-53 and complement or only the receptor antagonists. After 24hrs 

the animals were perfused and tissue processed for histological assessment.  
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2.2.2  I.v. transfer of rAb-53 into animals with experimental autoimmune 

  encephalomyelitis (EAE) 

 

A “systemic” model of NMO was established to study the neuropathological features 

in Lewis rats after immunization with MBP-peptide. 

 

2.2.2.1 Sensitization procedure 

 

Female rats (n=36) were anaesthetized with isoflurane and immunized with 100µg 

guinea pig MBP72-85 (gp-MBP-peptide) emulsified in complete Freund´s adjuvant 

containing 5mg/ml inactivated Mycobacterium tuberculosis H37 Ra. After 7-10 days 

the animals showed the first clinical symptoms (see EAE score in Tab. 2.1). 

 

Table 2.1: EAE score on scale 0 to 5 

score clinical observation 

0 no obvious changes in motor functions 

1 limp tail 

2 limp tail and weakness of hind legs 

3 limp tail and complete paralysis of hind legs 

4 limp tail, complete hind leg and partial front leg paralysis 

5 complete hind and complete front leg paralysis 

 

2.2.2.2 Antibody application 

 

When the animals showed first signs of disease (scores 0.5 or 1), 500µl of the 

recombinant antibodies (5mg/ml) were administered into the retrobulbar venous 

plexus. After 30hrs the animals were perfused and brains, spinal cords and kidneys 

were prepared for histological assessment. 

 

2.2.2.3 Kidney function parameters 

 

Urine of MBP-primed rats (n=8) was collected 30hrs after antibody application by 

gently squeezing the bladder. 
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A volume of 100µl of the collected urine was centrifuged at 1000rpm for 5min using a 

cytospin centrifuge. In this way, the cell debris and protein were separated onto glass 

slides from the aqueous part of the urine and then stained according to Pappenheim. 

 

The protein concentration in the urine was determined using commercial dip sticks, 

which change their color depending on the content of protein. 

 

2.2.3  The effect of rAb-53 in vitro 

 

The in vivo experiments (n=3) were complemented by in vitro studies examining the 

effects of rAb-53 on oligodendrocyte, astrocyte, and mixed glial cultures. 

 

2.2.3.1 Isolation of primary glial cells from newborn animals 

 

As a source of primary glial cells, heads of newborn rats (P0-P1) were cut and 

transferred in fresh Hank´s buffered salt solution (HBSS) medium in a Petri dish to 

rinse off the blood. The heads were opened with fine scissors, and the brains 

removed with forceps and rinsed in fresh HBSS. The cerebella were removed and 

discarded. The meninges were removed with fine forceps to prevent that meningeal 

fibroblasts interfere with the glial cell growth. Afterwards the brains were placed in 

0.25% Trypsin-EDTA solution in 37°C to dissociate the tissue and release the cells. 

After washing with HBSS the brains were transferred into basal medium eagle 

(BME). A cell suspension was generated by trituration of the dissected brains in BME 

medium with a 10ml glass pipette. The suspension was seeded into 75cm3 poly-L-

lysin (PLL)-coated cell culture flasks containing 10ml BME medium. The cells, 

including astrocytes, oligodendrocytes and microglia, were grown for 10 to 14 days in 

an incubator (37°C). Medium was changed every 2 to 3 days.  

 

2.2.3.2 Culture of extracted cells 

 

In order to harvest oligodendrocytes and astrocytes from the mixed glial cell 

population, microglia cells were first shaken off by tapping the flask against the desk 

while controlling the process microscopically. Afterwards, cells were diluted twice 

with BME medium and fresh BME medium was added to the cell culture flasks. To 
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collect the oligodendrocytes, flasks were vigorously shaken horizontally 20 times by 

hand. The medium containing the detached cells was transferred into a falcon tube 

through a 40µm cell strainer to separate the larger cells from the oligodendrocytes. 

Then cells were centrifuged using an Eppendorf centrifuge at 800rpm for 10min. The 

supernatant was discarded and the cell pellet was resuspended in 2ml Super-Sato 

medium. To remove remaining microglia, the cell suspension was transferred to a 

3.5cm-diameter Petri dish, where the microglia were allowed to settle for 30sec. The 

cell suspension was then transferred into a falcon tube and the cells were counted 

using a Neubauer counting chamber. About 15,000 cells were plated on each PLL-

coated, HNO3-treated cover slip. These cover slips had already been placed in a 24-

(or 12-) well plate and incubated with Super-Sato medium the day before. The cells 

were incubated at 37°C and 5% CO2 for 24hrs before starting the experiments. 

To collect the astrocytes, the nearly microglia/oligodendrocyte-free cell culture flasks 

were washed with serum-free medium and then treated with 0.05% trypsin-EDTA for 

5min at room temperature while being automatically shaken to detach astrocytes 

from the flask surface. The reaction was stopped with BME medium. The supernatant 

was collected and centrifuged for 10min with 800rpm. The cell pellet was 

resuspended in 2ml Super-Sato medium and the astrocytes were counted using a 

Neubauer counting chamber. About 100,000 cells were plated on one PLL-coated, 

HNO3-treated cover slip. Astrocytes were incubated, just like the oligodendrocytes, 

for 24hrs before starting the experiments. 

 

2.2.3.3 Pharmacological experiments to determine the role of NMDA and 

  P2X7 receptors for oligodendrocyte death in vitro 

 

When the astrocytes had settled, the cells were incubated with rAb-53 (1µg/200µl) 

and human serum. Control wells received a) no antibodies b) serum or c) antibody 

alone. To determine, if the NMDA and P2X7 receptor antagonists influence the extent 

of oligodendrocyte death, some wells were incubated with rAb-53, human serum and 

one of the antagonists (conc: 50µM). After 24hrs, the supernatants were collected 

and cell viability and cell cytotoxicity assays were performed. Afterwards, astrocyte 

cultures were fixed using 4% PFA and stained for DAPI, GFAP and O4. 

Supernatants of astrocytes incubated with rAb-53 and human serum were added to 

primary oligodendrocyte cultures for 24hrs. To determine if NMDA and P2X7 receptor 
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antagonists prevent oligodendrocyte death, some wells were treated with a NMDA or 

P2X7 antagonist. Control wells were left untreated, received serum or antibody alone. 

After the incubation time, supernatants were collected to perform a cell cytotoxicity 

assay, and cell viability was determined. Cells were fixed and stainings for DAPI, 

MBP and O4 were performed.  

 

2.2.3.3.1 Cell viability assay (WST-1) 

 

Cell viability and the rate of cell proliferation were measured by the colorimetric WST-

1 (water soluble tetrazolium) assay. The principle of this assay is based on the ability 

of dividing cells to reduce tetrazolium salt to soluble formazan by mitochondrial 

dehydrogenases (Fig. 2.1).  

250µl of ready-to-use WST-1 solution was added to each well (24-well plate) and 

incubated for 10min (astrocytes) or 20min (oligodendrocytes) at 37°C. Subsequently, 

100µl of each supernatant was transferred in a 96-well plate and the absorbance was 

measured by an ELISA reader at 450 and 655nm. 

 

 

 

Figure 2.1: Principle of the WST-1 assay. WST-1 is reduced from a colorless tetrazolium to a 
detectable orange formazan by dehydrogenases of viable cells using NAD an electron mediator. 
http://www.dojindo.com/newimages/principal-SK.jpg 

 

2.2.3.3.2 CytotoxOne membrane integrity assay 

 

The CytotoxOne homogeneous membrane integrity assay measures the 

concentration of LDH (lactate dehydrogenase) which is released to the medium by 

damaged cells. LDH converts lactate to pyruvate. In this assay, this principle is 
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coupled to diaphorase, which converts non-fluorescent resazurin to fluorescent 

resorufin (Fig. 2.2).  

100µl of each supernatant was transferred into a 96-well plate and the temperature 

was equilibrated to 22°C. Then 100µl of the CytotoxOne reagent was added to each 

well, mixed for 30sec and incubated for 10min at 22°C. To end the reaction, 50µl of a 

stop solution was added. The degree of fluorescence was measured by a Tecan 

Safire plate reader at 560nm excitation and 590nm emission. 

 

Figure 2.2: Principle of CytotoxOne membrane integrity assay. The assay measures the release 

of LDH by damaged cells using a coupled enzymatic principle that results in the conversion of 
resazurin into the fluorescent compound resofurin. www.promega.com/tbs/tb306/tb306.html 

 

2.3  Overexpression of FGF9 in demyelinating animal models 

 

2.3.1  Adeno-associated viral 6 (AAV-6)-based vector as a tool to express 

  FGF9 in astrocytes 

 

To investigate the influence of FGF9 on astrocytes, oligoendrocytes and the process 

of RM, a replication-deficient vector based on adeno-associated virus 6 (AAV-6) was 

used to overexpress this protein in astrocytes.  

The AAV-6 vectors were constructed by Dr. Sebastian Kügler, Dept. of Neurology, 

UMG) (Kugler et al., 2003). The genome of the control viral vectors consisted of the 

astrocyte-specific GFAP promotor and the cDNA for enhanced green fluorescent 

protein (EGFP). Note that these EGFP-AAV-6 constructs contain a woodchuck 

hepatitis post-transcriptional control element (WPRE) which stabilizes mRNA, 

resulting in a 2–10 fold higher rate of protein expression. The constructed vectors 
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were propagated in 293 cells using a helper plasmid (Grimm et al., 2003) and purified 

(Malik et al., 2005). After dialysis, genome titres were determined, and purification 

and identification of infectious titres were performed (Kugler et al., 2003) (Fig. 2.3). 

To insert the FGF9 cDNA into the AAV-6-based vector, Dr. Andreas Junker, Institute 

for Neuropathology, UMG, slightly modified the construct. The EGFP insert was cut 

out and replaced by the FGF9 cDNA, which was derived from a commercial topo 

vector (Fig. 2.4). 

 

 

Figure 2.3: Vector card of the control AAV-6 with EGFP insertion constructed by Sebastian 
Kügler. 
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Figure 2.4: Vector card of the FGF9 containing AAV-6 modified by Andreas Junker. 

 

 

2.3.1.1 Injection of viral vectors in focal EAE  

 

To determine if FGF9 influences DM or RM, focal experimental autoimmune 

encephalomyelitis (fEAE) was performed (Merkler et al., 2006) and FGF9 or EGFP 

expression was induced by an AAV-6-based vector.  

In contrast to EAE models which generally affect the spinal cord and rarely the brain, 

fEAE allows one to assign a demyelinating lesion to a specific region of the brain. 

 

Adult Lewis rats (n=39) were immunized at the base of the tail with a subclinical dose 

(50µg) of recombinant rat MOG1-125 (rrMOG) protein emulsified in incomplete 

Freund´s adjuvant. This immunization induces anti-MOG-antibody production after 

18-24 days without clinical symptoms except slight weight loss.  
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2.3.1.1.1 Enzyme-linked immunosorbent assay (ELISA)  

 

The anti-MOG antibody titer in serum samples of MOG-immunized rats was 

determined by ELISA. Blood samples of rats were collected from the tail vein 3-4 

weeks after immunization. Serum was separated from other blood components by 

centrifugation for 15min at 4°C and 1000rpm. 96 well plates were coated with 0.8µg 

rrMOG1-125 diluted in PBS containing 0.05% Tween per well and incubated for 4hrs. 

Afterwards, the plates were washed 6 times with PBS/Tween (0.05%) and blocked 

with 2% BSA diluted in PBS for 2hrs at 37°C. The prepared plates were washed with 

distilled water and different dilutions of the serum samples were added to the wells 

and incubated for 2hrs at room temperature. The plates were washed again using 

PBS/Tween solution and incubated for 2hrs with an HRP coupled anti-rat Ig antibody. 

After another washing step, 100µl of TMB substrate was added to the wells. After 

approximately 15min, 50µl of 1N H2SO4 stop solution was added to the samples and 

the absorbance was measured by an ELISA reader at 450nm and 540nm. The 

animals with the highest serum antibody concentrations were used for intracerebral 

viral vector injection.  

 

2.3.1.1.2  Induction of focal EAE lesions and intracerebral viral vector  

  injection 

 

To induce a demyelinating lesion in the cortex or corpus callosum, the cytokines  

IFN-y and TNF-  were injected stereotactically 1mm caudal and 2mm sagittal to the 

bregma (for further details see 2.2.1.1). Maximal DM is achieved after 3 days. The 

lesions then almost fully remyelinate within 14 days. To study the influence of FGF9 

on DM and RM, cytokines were injected (2µl) together with the FGF9-expressing viral 

vector. Controls were injected with a viral vector expressing EGFP together with 

cytokines or PBS with cytokines. The animals were perfused 3 and 10 days after 

injection. 

 

2.3.1.2 Injection of viral vectors in the cuprizone model 

 

Using a further demyelinating model to assess the influence of FGF9 on DM and RM, 

the toxic copper chelator cuprizone was used in mice (n=24). Cuprizone induces DM 
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in the cortex and corpus callosum. Mice were fed with a cuprizone (0.25%) diet for 5 

weeks. After 4 weeks mice were stereotactically injected (2µl) with FGF9-AAV-6-

based vector, EGFP-control-AAV-6-based vector or PBS into the mouse brain (for 

further details see 2.2.1.1.). The animals were perfused 7 and 10 days post injection 

and brains were processed for histological assessment.  

 

2.4  Histology 

 

At the end of the experiments, the animals were anaesthetized by i.p. injection of a 

lethal dose of 14% chloral hydrate. After loss of nociceptive and eye lid reflexes, 

transcardial perfusion was performed through the left heart ventricle with PBS 

followed by 4% paraformaldehyde (PFA). Brains, SC, livers and spleens were 

collected and stored for 48hrs at 4°C in 4% PFA. After a washing step with PBS, 

tissue was dissected into 4-6mm-thick pieces and washed in water. For embedding 

in paraffin, the tissues were gradually dehydrated by performing graded 

alcohol/xylene/paraffin series using an automated tissue processor overnight. The 

tissues were then embedded in paraffin blocks, cut into thin 1µm sections using a 

sliding microtome and mounted on glass slides. For tissue previously injected 

intracerebrally, the injection site was identified by traces of monastral blue. 

 

Prior to the staining procedures, sections were deparaffinized and hydrated by 

performing graded xylene and isopropyl alcohol steps. To do so, they were immersed 

4 times in xylene (5min), once in isoxylene (1min), twice in 100% isopropyl alcohol 

(4min), once in 90%, 70% and 50% isopropyl alcohol (3min) and washed with 

distilled water. Stained sections were dehydrated after the staining procedures by 

performing the above described series in reversed order and mounted in DePex 

medium. 

 

2.4.2  Histochemical stainings 

 

Hematoxylin and eosin (H&E) staining is used for a general overview and evaluation 

of tissue especially with regard to the morphology of inflammatory, infiltrating and 

apoptotic cells. Hematoxylin stains cell nuclei blue by binding to basic nucleoproteins. 
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In contrast, eosin dyes acidophilic and basic extra- and intracellular proteins pink and 

red (eosinophilic). 

Sections were washed 3 times with distilled water and incubated for 8min in Mayer´s 

hemalaun, then shortly washed with water, differentiated by dipping approx. 1min in 

1% HCl alcohol and blued for 10min under running tap water. Afterwards, slides were 

placed into 1% eosin solution for 6min, washed with water, dehydrated and mounted. 

 

Luxol fast blue/periodic acid-Schiff (LFB/PAS) staining highlights demyelinated areas 

in CNS tissue by dyeing lipoproteins of myelin deep blue via LFB, and non-

myelinated/demyelinated parenchyma pink via PAS. After the 90% isopropyl alcohol 

step, the sections were placed in LFB solution in 60°C overnight and afterwards 

washed with 90% isopropyl alcohol. For differentiation, 0.05% lithium carbonate in 

H2O was used followed by 70% isopropyl alcohol. Distilled water was applied to stop 

this washing step until only myelin was stained deep blue. To start the PAS reaction, 

sections were put in 1% periodic acid for 5min, followed by washing for 5min under 

running tap water, 5min with distilled H2O and incubated in Schiff„s solution for 

20min. After this step, sections were washed again under running tap water. The 

hemalaun procedure, as described above, was performed to stain cell nuclei and the 

sections were then mounted. 

 

Bielschowsky silver impregnation was performed to evaluate axonal integrity and 

loss. Because of the argyrophilicity of axons, insoluble silver nitrate is able to bind, 

causing a reduction in elementary silver and a black impregnation. The parenchyma 

is stained yellow to brown. 

First sections were incubated in 20% silver nitrate (AgNO3) solution in distilled H2O 

for 20min in the dark and afterwards washed in distilled H2O. 32% ammonium 

hydroxide in distilled H2O was added drop by drop to the silver nitrate solution until all 

precipitations cleared up while shaking. The sections were placed for 15min in this 

cleared solution in the dark and washed with distilled H2O containing a few drops of 

ammonium hydroxide. About 10 drops of developer solution were added to the silver 

nitrate/ammonium hydroxide solution and the sections were developed for 5-6min 

until axons were stained black. Finally, the tissues were washed with distilled water 

and fixed with 2% sodium thiosulfate for 2min, dehydrated and mounted.  
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Pappenheim is a common panoptic method for the staining of smears of air dried 

cytological materials like urine sediment. It dyes nuclei purple, cytoplasm of 

lymphocytes blue, monocytes grayish blue, erythrocytes reddish/brownish and 

granulocytes dark purple/red violet. 

Glass slides containing cell debris from cytospins were air dried for 10min and 

incubated in May-Grünwald solution for 3min. They were then washed in PBS for 

1min and again incubated in Giemsa solution for 15min. Afterward slides were 

washed in PBS and distilled water for 1min, dehydrated and mounted with DePex. 

 

2.4.3  Immunohistochemistry (IHC) 

 

For optimal preservation of the morphology, tissues were fixed in 4% 

paraformaldehyde (PFA). However this causes a modification of tissue proteins and 

a loss of epitopes. In these cases paratopes of an antibody are not able to react with 

the antigens and a so-called epitope retrieval is needed. 

Epitopes were demasked by heating the slides in 10mM citric acid, 1mM Tris-EDTA 

or Tris-HCL solution in a microwave for up to 5x5 minutes, refilling after each cycle 

with distilled water. After this procedure the slides had to cool down and were then 

washed with distilled water before performing immunohistochemical stainings. 

 

Immunhistochemical stainings were performed to detect specific marker proteins for 

astrocytes, myelin-related proteins, infiltration/inflammation, axon pathology, cell 

density of mature oligodendrocytes and OPCs. 

The antibodies applied were generated in rabbits, mice, or rats. Avidin-coupled 

peroxidase and 3,3‟-diaminobenzidine tetrachloride (DAB) were used to visualize 

antibody binding of biotin-conjugated secondary antibodies. To visualize targets 

detected with the alkaline phosphatase anti-alkaline phosphatase (APAAP) method, 

Fast Red or Fast Blue were utilized as chromogens. 

The slides were washed first in PBS, followed by incubation in 3% H2O2 at 4°C for 

20min to block endogenous peroxidase. After being washed 3 times in PBS, the 

sections were blocked with 10% FCS in PBS at RT to inhibit unspecific antibody 

binding. The slides were incubated overnight with the specific primary antibody (see 

list of primary antibodies in Tab. 2.2) diluted in 10% FCS in PBS at 4°C in a wet 

chamber. The next day sections were washed 3 times with PBS and incubated with a 



Materials and Methods 

 

 
24 

biotinylated secondary antibody diluted in 10% FCS in PBS, which binds specifically 

to the Fc region of the primary antibody. After 1h the unbound antibody was removed 

by washing with PBS and the slides were placed for 1h in 0.1% streptavidin-

horseradish peroxidase (POX) diluted in 10% FCS in PBS at RT in a humid chamber. 

Then the unbound peroxidase was removed by washing with PBS and the reaction 

was developed using DAB which was oxidized by the bound POX, generating a dark-

brown staining. Sections were developed under microscopic control. To visualize cell 

nuclei, the hemalaun procedure, as described above, was performed and the 

sections were mounted. 

 

Table 2.2: List of primary antibodies 

Antigen Marker for Species/ 

clone 

Dilution Manufacturer 

APP amyloid precursor protein; 

early axonal damage 

mouse/ 

22C11 

1:3000 Chemicon 

AQP4 water channel expressed on 

astrocyte foot processes 

rabbit 1:500 Millipore 

C9 complement factor 9 mouse/ 

B7 

1:50 kindly provided 

by B.P. Morgan, 

Cardiff, UK 

Caspase-

3 

activated caspase-3 rabbit/ 

C92-605 

1:500 BD-Pharmingen 

CD3 T-lymphocytes rat/ CD3-

12 

1:200 Serotec 

CNP myelin forming cells mouse/ 

SMI-91 

1:200 Covance 

EAAT2  

(GLT-1) 

glutamate transporter 

expressed in astrocyte 

membrane 

mouse/ 

1H8 

1:50 Novocastra 

CD68 

(ED1) 

macrophages/activated 

microglia in rat 

mouse/ 

ED1 

1:500 Serotec 

FGF9 fibroblast growth factor 9 mouse/ 

(D-8) 

1:100 Santa Cruz 
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GFAP glial fibrillary acidic protein; 

astrocyte specific protein 

rabbit 1:1000 Dako 

EGFP enhanced green fluorescent 

protein  

mouse/ 

6AT316 

1:500 Abcam 

IgG immunglobulin G mouse 1:100 BioGenex 

IgG immunglobulin G rabbit 1:100 BioGenex 

Ki67 proliferation marker mouse/ 

Mib-1 

1:100 Dako 

Mac3 macrophages/activated 

microglia in mice 

rat/ 

M3/84 

1:200 Becton Dickinson 

MBP myelin-basic protein rabbit 1:1000 Dako 

NogoA mature oligodendrocytes mouse/ 

11C7 

1:20000 Kind gift from M. 

Schwab, Zürich 

(Oertle et al., 

2003) 

O4 expressed in most 

maturation stages of 

oligodendrocytes  

mouse/ 

O4 

1:100 R&D 

Olig2 oligodendrocyte precursor 

cells and mature 

oligodendrocytes 

(transcription factor) 

rabbit 1:300 IBL 

PLP proteolipid protein mouse/ 

plpc1 

1:250 Biozol 

S100B astrocyte specific protein rabbit 1:1000 Abcam 

 

 

2.4.3.1 Morphometry 

 

Cell densities were evaluated at a 400x magnification using an ocular counting grid. 

The extent of astrocyte loss was assessed using GFAP immunocytochemistry. 

GFAP-immunostained spinal cord or brain sections were scanned using a light 

microscope equipped with a digital camera. At least 15 spinal SC sections were 

examined per animal. Areas of complete astrocyte loss were measured using 



Materials and Methods 

 

 
26 

AnalysisTM software (University of Wisconsin, Madison, WI). The total area of 

astrocyte loss between groups was evaluated by analysis of variance (ANOVA). 

 

2.4.3.2 GFAP/NogoA/Olig2 triple immunofluorescence  

 

The marker for OPCs, Olig 2, detects immature oligodendrocytes, but also binds to 

NogoA-positive mature oligodendrocytes, though, giving a weaker nuclear staining 

signal (Kuhlmann et al., 2008). To distinguish both cell types and count densities of 

OPCs in astrocyte-depleted areas, triple immunofluorescence stainings were 

performed. 

  

  

 

Figure 2.5: Principle of the tyramide signal amplification method. 
www.mobitec.de/probes/docs/sections/0602.pdf 

 

Of note, the Olig2 and GFAP antibodies were derived from the same species. To 

avoid crosstalk between these two targets, the two marker proteins were detected 

using the tyramide signal amplification (Lin et al.) method. Enhanced sensitivity of the 

TSA allows lower concentrations of the primary antibody. In principle (Fig. 2.5; 1), the 

target antigen is detected by a primary antibody, followed by a HRP-labeled 

secondary antibody in conjunction with a dye-labeled tyramide. In the presence of 

hydrogen peroxide, HRP converts tyramide into a short-lived, extremely reactive free 

radical intermediate. This free radical intermediate reacts rapidly with HRP and 
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covalently binds to electron-rich regions of adjacent proteins (predominantly tyrosine 

residues) (Fig. 2.5; 2). 

After antigen retrieval, fixed tissues were incubated in 3% H2O2 in PBS for 1h and for 

10min in Avidin-Biotin solution. After washing with PBS, the slides were blocked in 

1% donkey serum in PBS for 1h and incubated overnight with the first primary 

antibody (Olig2 [rabbit polyclonal]). The next day, tissues were exposed to the 

secondary antibody (biotylinated-anti-rabbit) for 1h, incubated with HRP for 1h and 

finally with tyramide-coupled-Alexa 555 for 5min. To detect mature oligodendrocytes 

and astrocytes, the slides were again blocked for 20min and incubated overnight with 

the primary antibodies NogoA (mouse) and GFAP (rabbit, polyclonal). The next day, 

slides were washed with PBS and incubated with the secondary antibodies Alexa 

488 (anti-mouse) and Cy5 (anti-rabbit). Cell nuclei were stained with DAPI for 10min. 

After washing with PBS, the sections were mounted using fluorescence-mounting-

medium. 

 

2.4.3.3 Immunofluorescence of cultured cells 

 

Double immunofluorescence stainings were performed to evaluate the cell densities 

and morphology of primary astrocyte and oligodendrocyte cultures. I used GFAP and 

O4 (a sulfatide, expressed in OPCs and mature oligodendrocytes) for astrocyte 

cultures and O4 and MBP (expression of MBP indicates differentiated, myelinating 

oligodendrocytes) for oligodendrocyte cultures.  

First, fixed cells were blocked with 10% FCS in PBS and 0.5% Tween for 30min and 

then exposed overnight to the first primary antibody (MBP or GFAP). The next day 

the cover slips were incubated overnight with the second primary antibody O4. 

Afterwards, fixed cells were incubated with the secondary antibodies Cy 3 anti-rabbit 

(binds to MBP and GFAP) and Alexa 488 anti-mouse (binds to O4) for 1.5hrs. Then 

the cells were washed with PBS and subsequently, nuclei were stained with DAPI for 

15min. After this procedure the cover slips were washed again with PBS and H2O 

and mounted using fluorescence-mounting medium. 
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2.4.4  TUNEL staining 

 

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) is a method 

for detecting severe DNA damage or fragmentation resulting from apoptotic signaling 

cascades or, in some cases also, necrotic cell death. The enzyme terminal 

deoxynucleotidyl transferase identifies nicks in the DNA and catalyzes the addition of 

labeled dUTPs. 

Deparaffinized sections were rinsed twice with TBS and incubated with Proteinase K 

for 15min at 37°C. Subsequently, slides were washed 3 times using TBS buffer and 

once with cold TBS for 5min. 70µl of IST-working solution was applied to each 

section. Sections were incubated horizontally in a humid chamber for 1h at 37°C. 

Afterwards slides were rinsed 5 times with TBS buffer and blocked in 10% FCS in 

PBS for 15min at room temperature. Then Digoxigenin-AP antibody diluted in 10% 

FCS in PBS was applied to the sections and incubated for 1h at room temperature. 

After washing the slides 4 times with TBS, the stains were developed using 

NBT/BCIP solution, nuclei were stained and sections were mounted using 

Aquamount. 

 

2.4.5   In situ hybridization (ISH) 

 

In situ hybridization is a method to localize a specific DNA or RNA sequence in tissue 

sections using a labeled complementary DNA or RNA strand (probe). 

A PLP RNA probe was generated using linearized PLP plasmid DNA and 

Digoxigenin-labeled nucleotides.  

First sections were deparaffinized and hydrated by performing graded xylene and 

isopropyl steps and postfixed with 4% PFA. Then sections were rinsed 3 times with 

TBS and incubated with 0.2M HCl for 10min at room temperature to denaturate 

proteins. After rinsing with TBS, Proteinase K was applied to the tissue section for 

20min at 37°C to uncover mRNA by digesting proteins. Subsequently slides were 

rinsed 3 times with TBS and 5min with cold TBS, to stop the digestion, and 

incubated, for acetylation, in 0.5% acetic anhydride for 10min on a shaker. 

Afterwards the slides were rinsed again 3 times with TBS, dehydrated and exposed 

to chloroform for 3min. Then slides were dried off and incubated for 30min at 55°C 

without running dry. Afterwards the hybridization-mix was added to the sections and 
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incubated for 4min at 95°C and at 62°C overnight. The next day the sections were 

rinsed twice for 10min with washing buffer 1 at room temperature and with washing 

buffer 2 at 65°C. After rinsing with TBS again sections were blocked with 10% FCS in 

BBR (Boehringer Blocking Reagent) for 15min and incubated with an alkaline 

phosphatase coupled anti-Digoxigenin Ab diluted in blocking mix for 1h. Then the 

slides were rinsed 3 times with TBS, and the color reaction was developed using 

NBT/BCIP solution overnight. Afterwards double immunohistochemistry for GFAP 

and PLP protein was performed and sections were mounted using Aquamount. 

 

2.5  Statistical analysis 

 

Graphs were visualized with GraphPad Prism® for Windows. Normality of distribution 

was verified by the Kolmogorow-Smirnov-test. For statistical calculations comparing 

two groups, unpaired t-tests were performed. If three or more groups were 

compared, one-way analysis of variance was carried out. A probability value of less 

then 0.05 was considered significant. All data are given as mean ± SEM. 
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3  Results 

PART 1 

3.1  Modeling Neuromyelitis optica (NMO) in vitro and in vivo 

 

3.1.1  Focal NMO model  

 

3.1.1.1 Astrocyte depletion by rAb-53 is complement dependent 

 

To study the pathogenesis of NMO-like lesions in vivo a focal NMO model in naïve 

rats was developed. Animals (n=7) were focally injected (1µl) into the motorcortex 

and/or corpus callosum with the human rAb-53 (2.5mg/ml) diluted in human serum, 

with human serum alone or with the human recombinant anti-measles virus antibody 

2B4 (ctrl-rAb) (2.5mg/ml) diluted in human serum. After 24hrs the animals were 

perfused and processed for immunohistochemistry. 

 

Figure 3.1: Complete astrocyte loss in the cortex of a focally injected rat with rAb-53 and 
human serum (A; GFAP), but not with rAb-53 alone (B; GFAP) 24hrs after injection. Blue dye 
marks the injection site. 

 

Massive selective astrocyte loss was observed in GFAP stained sections of the 

cortex and corpus callosum after injection of rAb-53 and human serum (Fig. 3.1 A). 

This was also observed using AQP4 immunohistochemistry. Injection of the antibody 

alone did not generate any astrocyte loss (Fig. 3.1 B). The same applied to the 
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injections of the ctrl-rAb and human serum, human serum alone or ctrl-rAb alone (not 

shown). 

 

3.1.1.2 Features of astrocyte depleted areas in the focal NMO model 

 

To compare the lesions of the above described focal NMO model with human 

histopathology additional immunohistochemical stainings were performed. 

24hrs after lesion induction a loss of the astrocytic water channel AQP4, the target of 

rAb-53, was detected (Fig. 3.2 A). To confirm the selective depletion of astrocytes 

additional astrocytic markers were used. Both the glutamate transporter EAAT2 (Fig. 

3.2. B) and S 100b (data not shown) were depleted to the same extent as AQP4 and 

GFAP. Additionally NMO-like lesions showed a decrease in the density of mature 

oligodendrocytes (Fig. 3.7. B) and oligodendrocyte precursor cells (OPCs) (Fig. 3.2. 

C). Furthermore, astrocyte depleted areas stained positively for human IgG, 

complement deposits, and APP positive axons (Fig. 3.2 D-F). 

 

Figure 3.2: Histopathological features of astrocyte depleted areas in the focal NMO model 
24hrs after injection of rAb-53 with human serum. Astrocyte loss is confirmed by AQP4 (A) and 

EAAT2 (B) IHC, which show the same pattern of depletion. Additionally, NMO-like lesions present with 
a decrease in OPCs (C; Olig2), IgG depositions (D), axonal pathology (E; APP) and complement 
depositions (F; C9). Blue dye marks the injection site. 
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3.1.1.3 Astrocyte death precedes oligodendroglial demise 

 

To study the time course of NMO-like lesions in the focal NMO model animals were 

perfused 1h and 3hrs after injection and the tissue processed for 

immunohistochemistry. 

Already 1h after antibody injection first signs of astrocyte depletion were observed 

(Fig. 3.3 A). At this time point no oligodendrocyte loss or DM was seen (Fig. 3.3 B, 

C). 3hrs after antibody injection the astrocyte depleted area was considerably larger, 

and a prominent loss of oligodendrocytes but still no DM was revealed (Fig. 3.3 D-F). 

Oligodendrocyte death was confirmed by a degradation of oligodendrocyte 

processes and nuclear fragmentation (Fig. 3.3 E, small box). 

 

 
Figure 3.3: Early evolution of focal NMO-like lesions. 1h after focal injection astrocyte death is 
already apparent (A; GFAP), but no loss of oligodendrocytes (B; NogoA) or DM (C; MBP) is observed. 
3hrs after injection astrocytes are depleted (D; GFAP) and oligodendrocyte death is already visible (E; 
NogoA), but no DM is detected (F;MBP). In small boxes of A and D dying astrocytes and in E a dying 
oligodendrocyte are depicted. Blue dye marks the injection site. 
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3.1.1.4 Time course of inflammatory cell infiltration 

 

ED1 immunohistochemistry for activated microglia/macrophages and chloroacetate 

esterase staining for granulocytes were performed to type inflammatory cells in the 

focal NMO model. The numbers of activated microglia/macrophages and 

granulocytes were evaluated at 1h, 3hrs, 24hrs and one week after rAb-53 injection. 

After 1h and 3hrs no infiltration of ED1 positive cells was observed (Fig. 3.4 A+B). 

After 24hrs only few activated microglia/macrophages were seen (Fig. 3.4 C). 

However, numbers of ED1 positive cells rose massively after one week (Fig. 3.4 D). 

In contrast many granulocytes were seen 24hrs after antibody injection at the border 

of focal NMO-like lesions (Fig. 3.5 C). Note that at time points 1h, 3hrs and one week 

nearly no granulocytes were detected (Fig. 3.5 A, B, D). 

 

 
Figure 3.4: Time course of ED1 positive macrophages/activated microglia in focal NMO-like 
lesions. 1h (A) and 3hrs (B) post injection nearly no ED1 positive cells were detected. After 24hrs 
numbers of infiltrating macrophages/activated microglia had increased (C), but the highest density of 
ED1 positive cells was only reached after one week (D). Arrow indicates ED1 positive cell. Blue dye 
marks the injection site. 
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Figure 3.5: Time course of granulocytes in focal NMO-like lesions. 1h (A) and 3hrs (B) post 

injection nearly no granulocytes (pink) are detected. After 24hrs highest numbers of infiltrating 
granulocytes are observed (C), which dramatically decrease one week later (D). Dotted line marks 
astrocyte depleted area. Granulocytes are indicated with arrows. Blue dye marks the injection site. 

 

3.1.1.5 Rapid repopulation of astrocyte depleted focal brain lesions 

 

The evaluation of size, persistence and cellular repopulation of focal NMO-like 

lesions was performed on GFAP-stained sections at 24hrs and one week after 

antibody administration.  

The area of astrocyte depletion was significantly larger in animals injected with rAb-

53 + human serum than with the ctrl-rAb + human serum (P=0.0004) (Fig. 3.6, upper 

graph, A+B). After one week, astrocytes significantly repopulated the focal NMO-like 

lesions (P=0.0041) compared to 24hrs. Despite this, the size of the astrocyte free 

area was still larger in animals injected with rAb-53 than with ctrl-rAb after one week 

(P=0.0036) (Fig. 3.6, lower graph, C+D). 
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Figure 3.6: Focal NMO-like lesions are in part repopulated by astrocytes already one week after 
rAb-53 injection. The upper graph shows significant astrocyte loss with rAb-53 and human serum 
compared to ctrl-rAb with human serum (P=0.0004). The lower graph reveals astrocyte loss after one 
week (P=0.0036). Astrocytes repopulated the lesion area, but the size of the astrocyte free area is still 
significantly larger compared to ctrl-rAb injected animals. GFAP IHC confirms the astrocyte loss 24hrs 
after injection of rAb-53 with human serum (A). Injections with ctrl-rAb and human serum show only 
moderate astrogliosis after 24hrs, but no astrocyte depletion (B). After one week NMO-like lesion are 
in part repopulated (C), and ctrl injections show reactive astrocytes (D). Blue dye marks the injection 
site. 

 

3.1.1.6 Little oligodendrocyte repopulation and myelin repair one week 

  after focal astrocyte depletion 

 

Another question in studying focal NMO-like lesions was if oligodendrocytes 

repopulated the lesions in a time course similar to astrocytes. Animals were 

sacrificed 24hrs and one week post injection. NMO-like lesions were stained for 

myelin (MBP), mature oligodendrocytes (NogoA) and axonal integrity (Bielschowsky 

silver impregnation). 

After 24hrs a massive loss of oligodendrocytes and pale MBP staining were 

observed, whereas axons were well preserved (Fig. 3.7 A-C). DM was apparent after 

one week (Fig. 3.7 D). Furthermore, NMO-like lesions were hardly repopulated by 
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oligodendrocytes (Fig. 3.7 E). No decrease in axon density was observed (Fig. 3.7 

F). 

 

 
Figure 3.7: Time course of DM and oligodendrocyte repopulation. 24hrs after rAb-53 and human 
serum injection a decrease in myelin staining (A; MBP) and loss of oligodendrocytes (B), but no 
axonal loss is observed (C; Bielschowsky silver impregnation). After one week there is still an 
important decrease in myelin staining (D; MBP), repopulation by oligodendrocytes and RM have not 
yet occurred (E; NogoA) and no axonal loss is observed (F; Bielschowsky silver impregnation). 
Arrows: NogoA positive cells. Blue dye marks the injection site. 

 

3.1.1.7 Mechanisms of oligodendroglial cell death in vivo  

 

My results showed that numbers of oligodendrocytes were decreased when 

astrocytes were depleted in vivo (Fig. 3.8 A). Additionally a dramatic loss in OPC 

numbers was observed in NMO-like lesions (Fig. 3.8 B). But what are the 

mechanisms of oligodendrocyte and OPC loss, given that AQP4 is not expressed on 

oligodendroglial cells? On the one hand, factors generated after activation of the 

complement cascade, released by dying astrocytes or secreted by invading and 

activated inflammatory cells could cause oligodendroglial cell death. On the other 

hand, Marignier and coworkers (2010) suggested that glutamate toxicity causes 

oligodendrocyte death after their incubation with supernatant from astrocytes treated 

with CSF-IgG from NMO patients. Furthermore, an excess of extracellular ATP has 

been demonstrated to be toxic for oligodendrocytes (Matute et al., 2007b). 
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Figure 3.8: Massive loss of oligodendrocytes and OPCs is observed in animals focally injected 
with rAb-53 and human serum. (A): double staining of NogoA (brown) and GFAP (purple). (B): 

double staining of Olig2 (brown) and GFAP (purple). Dotted line: astrocyte depleted area. 

 

 

3.1.1.7.1 NMDA receptor antagonists 

 

To test the hypothesis whether oligodendrocyte loss is glutamate and NMDA 

receptor dependent, animals were focally injected (2µl) with rAb-53, human serum 

and an NMDA receptor antagonist. Two potent NMDA receptor antagonists, D-AP5 

(D-2-Amino-5-phosphonopentanoic acid) and MK-801 ((+) MK-801 hydrogen 

maleate), in a concentration of 500µmol/L, were used. 

Intracerebral injections (2µl) of the receptor antagonists alone did not produce any 

damage to brain cells. Local treatment with neither D-AP5 nor MK-801 showed any 

effect on the loss of mature NogoA-positive oligodendrocytes (Fig. 3.9 A+B). 

Similarly, in our preliminary experiments, no clear-cut effect of the NMDA-receptor 

antagonists D-AP5 and MK801 on the density of Olig2-positive cells were observed 

(Fig. 3.9 C+D). Further experiments including detailed morphometric evaluations will 

be performed to substantiate these findings. 

 

 

 

 

 

A B 

100µm 

No treatment 



Results – Part1 

 

 
38 

 

Figure 3.9: NMDA receptor antagonist treatment in focal NMO-like lesions. (A+C): Injection of 
rAb-53 with human serum and D-AP5. (B+D): Injection of rAb-53 with human serum and MK-801. 
(A+B): double staining of NogoA (brown) and GFAP (purple). (C+D): double staining of Olig2 (brown) 
and GFAP (purple). Dotted line: astrocyte depleted area. 

 

3.1.1.7.2 P2X7 receptor antagonists 

 

My in vivo experiments (n=2) did not confirm a central role of NMDA receptor 

activation for oligodendrocyte and OPC demise. When astrocytes are lysed, 

intracellular components are released, among them ATP. In other lesion paradigms, 

ATP was shown to kill oligodendrocytes due to over activation of their P2X7 receptors 

(Matute et al., 2007b). 

To test this hypothesis for focal NMO-like lesions, two P2X7 antagonists, oATP and 

BBG, in a concentration of 500µmol/L, were used. Intracerebral injections (2µl) of the 

P2X7 antagonists alone did not show any cellular toxicity. 

The preliminary qualitative evaluation of focal NMO-like lesions injected with oATP or 

BBG did not detect overtly increased numbers of mature oligodendrocytes (Fig 3.10 
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A+B) or OPCs (Fig. 3.10 C+D). To further clarify the role of P2X7 receptor antagonists 

on oligodendroglial cell death in NMO-like lesions additional morphometric 

evaluations are needed. 

 

 

Figure 3.10: P2X7 receptor antagonist treatment in focal NMO-like lesions. (A+C): Injection of rAb-
53 with human serum and oATP. (B+D): Injection of rAb-53 with human serum and BBG. (A+B): 
double staining of NogoA (brown) and GFAP (purple). (C+D): double staining of Olig2 (brown) and 
GFAP (purple). Dotted line: astrocyte depleted area. 

 

3.1.2  Antibody-transfer model of NMO (EAE/NMO model) 

 

3.1.2.1 Features of astrocyte depleted areas in rat EAE 

 

To study the pathogenesis of rAb-53 generated lesions under inflammatory 

conditions in the spinal cord, the gpMBP72-85-EAE model in rats (n=36) was used. At 

approximatly seven days post immunization animals showed first clinical signs of 

paralytic disease (see score table 2.1) and were i.v. injected (500µl) with the human 

rAb-53 (5mg/ml). Control animals were injected (500µl) with PBS or the ctrl-rAb 
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(5mg/ml). 30hrs after injection animals were sacrificed and tissue was processed for 

immunohistochemistry. Induction of perivenous brain inflammation is necessary to 

open the BBB and allow the i.v. injected antibodies to enter the CNS (Linington et al., 

1988). 

 

Figure 3.11: Astrocyte depletion in the rat EAE model when i.v. injected with rAb-53 (A+C), but 
not with ctrl-rAb (B+D). The graph shows a significant correlation between the maximal EAE score 

and the percentage of astrocyte depleted spinal cord area (P<0.0001). Findings in GFAP staining 
(A+B) are confirmed by AQP4 staining (C+D). 

 

Large astrocyte depleted perivenous areas were observed in the spinal cord of rAb-

53 injected animals applying GFAP and AQP4 staining (Fig. 3.11 A+C). The white 

and grey matter were affected to a similar extent. In contrast, in control rats, injected 

with ctrl-rAb, no astrocyte depletion or other cell loss was observed. To confirm that 

astrocytes are lost (and not only AQP4 is downregulated), stainings against other 

astrocyte markers, such as S100b and EAAT2 were performed. GFAP and S100b 

were lost to the same extent as AQP4 and EAAT2, thus confirming astrocyte 

depletion (data not shown). Animals transferred with rAb-53 developed more severe 

disease than those injected with ctrl-rAb. The area of astrocyte loss in the spinal cord 

correlated significantly with the EAE scores maximally obtained (Fig. 3.11). 
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Figure 3.12: Histopathological features of astrocyte depleted areas in the NMO/EAE model 
30hrs after rAb-53 administration. NMO-like lesion show myelin loss (A; MBP), but no axonal loss 

(B: Bielschowsky silver impregnation). However, disturbances of axonal transport are observed (C; 
APP). Astrocyte depleted areas also contain macrophages/activated microglia (D; ED1), perivascular 
complement (E; C9) and IgG depositions (F; human IgG). 

 

30hrs after i.v. antibody transfer, in the EAE/NMO model myelin staining intensity 

was markedly reduced, but no clear DM was observed. Bielschowsky silver 

impregnation showed intact axons (Fig. 3.12 A+B). However, APP positive axons 

were detected in NMO-like lesions, indicating disturbances of axonal transport (Fig. 

3.12 C). ED1 staining showed an infiltration by activated microglia/macrophages (Fig. 

3.12 D). Perivascular complement components and human IgG depositions were 

found (Fig. 3.12 E+F). 

 

3.1.2.2 Reduction of mature oligodendrocytes in astrocyte depleted areas 

 

To evaluate whether astrocyte depletion also causes a loss of mature 

oligodendrocytes in the systemic EAE/NMO model the density of NogoA positive 

cells in the lesions was determined. 

Oligodendrocytes in the white and grey matter were significantly decreased in NMO-

like lesions (155.5 ± 10.14 cells/mm2 in WM; 96.5 ± 4.1 cells/mm2 in GM) compared 

to animals injected with the ctrl-rAb (222.8 ± 18.29 cells/mm2 in WM; 224.1 ± 6 

cells/mm2 in GM) (Fig. 3.13). However, the loss of oligodendrocytes in grey matter 

lesions (P<0.0001) was more dramatic than in white matter lesions (P=0.0166). 
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Figure 3.13: NMO-like lesions reveal a decrease in oligodendrocytes 30hrs after antibody 
administration. Animals injected with rAb-53 show loss of oligodendrocytes in astrocyte depleted 
areas (A) compared to animals treated with ctrl-rAb (B) in NogoA (brown)/GFAP (purple) 
doublestainings. Graphs show a significant decrease of NogoA positive cells in white (P=0.0166) and 
grey matter lesions (P<0.0001). Dotted line: astrocyte depleted area. 

 

3.1.2.3 Loss of PLP mRNA positive oligodendrocytes in astrocyte  

  depleted areas 

 

PLP in situ hybridization on spinal cord sections was performed to underpin the loss 

of oligodendrocytes in NMO-like lesions. Cells positive for PLP mRNA were 

determined. Counts were performed on sections costained for PLP protein and 

GFAP to detect the area of astrocyte loss. 

In both, white and grey matter a significant decrease in PLP mRNA positive cells was 

found in astrocyte depleted areas (106.4 ± 18.18 cells/mm2 in WM; 49.5 ± 11.75 

cells/mm2 in GM) compared to spinal cord tissue of control animals (275.9 ± 10.27 

cells/mm2 in WM; 261.8 ± 32.64 cells/mm2 in GM) (Fig. 3.14). Of note, though, the 
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reduction of PLP mRNA positive cells (P=0.0023) was higher (Fig 3.14) than the loss 

of NogoA positive cells (P=0.0166) in white matter (Fig.3.13). 

 

 

Figure 3.14: Reduction of PLP mRNA positive cells in NMO-like lesions. In situ hybridization of 
PLP (pink) and GFAP (brown)/PLP (pink) double immunohistochemistry of animals injected with rAb-
53 (A) or ctrl-rAb (B) 30hrs post injection. Graphs show significantly lower numbers of oligodendroglia 
positive for PLP mRNA in white (P=0.0023) and grey matter lesions (P=0.0002) of animals injected 
with rAb-53 compared to ctrl-rAb. Dotted line: astrocyte depleted area. 

 

3.1.2.4 OPCs are as vulnerable as mature oligodendrocytes 

 

In the focal NMO model a prominent loss of OPCs in astrocyte depleted areas was 

observed. To assess whether this was also true for the systemic EAE/NMO model 

Olig2 staining was performed. 

The numbers of Olig2 positive cells were decreased (108.8 ± 11.7 cells/mm2 in WM; 

59.4 ± 7.6 cells/mm2 in GM) in astrocyte depleted areas compared to tissue from 

animals treated with ctrl-rAb (173.9 ± 27.03 cells/mm2 in WM; 154.8 ± 33.2 cells/mm2 

in GM) (Fig. 3.15). These findings were significant in white (P=0.0398) and grey 

matter lesions (P=0.0038). 
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Figure 3.15: Olig2 positive cells are decreased in NMO-like lesions 30hrs after rAb-53 injection. 

Olig2 (brown)/GFAP (purple) double IHC of animals injected with rAb-53 (A) or ctrl-rAb (B). Graphs 
demonstrate a significant loss of Olig2 positive cells in white (P=0.0398) and grey matter lesions 
(P=0.0038) of animals i.v. injected with rAb-53 compared to ctrl-rAb. Dotted line: astrocyte depleted 
area. 

 

As in 2.4.3.4 Olig2 antibody also faintly labels nuclei of mature oligodendrocytes. To 

clearly discern OPCs from mature oligodendrocytes triple IHC for NogoA, Olig2 and 

GFAP was performed. Cells double positive for Olig2 and NogoA were found in the 

white and grey matter (Fig. 3.16, small box). To identify immature oligodendrocytes 

cells that were only positive for Olig2 were counted.  

Counting only Olig2 positive cells, a significant decrease in OPCs in NMO-like 

lesions in the white (P=0.0114) and grey matter (P=0.0246) was observed (Fig. 

3.16). 
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Figure 3.16: GFAP/Olig2/NogoA triple immunohistochemistry confirms the decrease of OPCs in 
NMO-like lesions. Spinal cord cross sections of animals i.v. injected with rAb-53 (A) or ctrl-rAb (B) 

stained for GFAP (purple), Olig2 and NogoA. Graphs demonstrate the decreased densities of OPCs in 
white (P=0.0114) and grey matter (P=0.0246) NMO-like lesions compared to ctrl-rAb treated animals. 
Dotted line: astrocyte depleted area; small box: cell double positive for Olig2 and NogoA and single-
positive cell (NogoA). 

 

3.1.2.5 Activated caspase-3 positive oligodendrocytes in astrocyte  

  depleted areas  

 

Dying oligodendrocytes were detected in astrocyte depleted areas. Part of these cells 

showed characteristics of apoptosis, such as cell shrinkage and nuclear 

fragmentation (Fig. 3.17 A+B). To determine how oligodendrocyte death occurred 

double stainings for NogoA and activated-caspase-3 were performed (Fig. 3.17 B). 

Single double-positive oligodendrocytes could be identified. Similarly, applying 

TUNEL staining for fragmented DNA, individual TUNEL positive oligodendrocytes 

were found. 

 

White matter lesions

rA
b 5

3

C
tr
l-r

A
b

0

50

100

150

O
li
g

2
 p

o
s
. 
c
e
ll
s
/m

m
²

* * 
Grey matter lesions

rA
b 5

3

C
tr
l-r

A
b

0

50

100

150

O
li
g

2
 p

o
s
. 
c
e
ll
s
/m

m
²

A B 

200µm 20µm 

rAb-53 Ctrl-rAb 



Results – Part1 

 

 
46 

 

Figure 3.17: Oligodendrocyte death is caspase-3 dependent. Double IHC of NogoA (brown) and 

GFAP (purple) shows dying oligodendrocytes with shrunken cell bodies in NMO-like lesions (A; 
arrows). Double staining of NogoA (brown) and activated Caspase 3 (purple) in astrocyte depleted 
areas (B; arrow).  

 

3.1.2.6 Kidney pathology in the EAE/NMO model  

 

AQP4 is not only expressed on astrocyte foot processes, but is also a prominent 

water channel in the kidney. There, it is expressed at the basolateral membrane of 

the inner medullary collecting ducts (IMCD) (Terris et al., 1995). I was interested 

whether I could detect any pathological or clinical evidence for rAb-53 effects in the 

kidney. During the EAE/NMO experiment urine of the animals (n=8) injected with 

recombinant rAb-53 or ctrl-rAb was collected for further analysis. 30hrs after i.v. 

antibody injection animals were sacrificed and kidneys processed for IHC. 

AQP4 IHC of control animals showed no abnormalities in the kidney and especially 

the inner medulla (Fig. 3.18 A-C). However, in rAb-53 injected rats, AQP4 positive 

cells of IMCDs appeared swollen. Almost no space between the collecting ducts was 

visible any more (Fig. 3.18 D-F). Additionally some cells of IMCDs showed shrunken 

nuclei (Fig. 3.18 E+G-I). Cells of the collecting ducts were partly detached (Fig. 3.18 

G-I). 
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Figure 3.18: AQP4 staining (brown) of inner medullary collecting ducts (IMCDs) in the 
EAE/NMO model. IMCDs of animals injected with ctrl-rAb show no abnormalities (A-C). IMCD cells of 

animals treated with rAb-53 are swollen (D-F) and in part detached with shrunken nuclei (E+G-I). 

 

3.1.2.6.1 Macrophage infiltration in the kidneys 

 

Cross sections of kidneys were immunostained for ED1 to assess macrophage 

infiltration, most likely reflecting the phagocytosis of detached collecting duct cells. In 

kidneys of systemic EAE/NMO animals several foci of macrophage infiltration were 

found in the inner medulla (Fig. 3.19 A). In control kidneys from animals i.v. injected 

with ctrl-rAb only single ED1 positive cells were observed (Fig. 3.19 B). 
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Figure 3.19: Increased macrophage infiltration in kidneys of animals injected with rAb-53 with 

accumulation of ED1 positive cells (A). Animals treated with ctrl-rAb showed no accumulation of 
macrophages, but distinct ED1 positive cells in the kidney (B). 

 

3.1.2.6.2 Cell debris and protein content of the urine  

 

To assess whether cells of the collecting ducts were detached and scaled off, 

cytospins of urine were performed 30hrs after antibody injection. Cells were 

deposited on cover slips and stained for Pappenheim/Giemsa. 

Figure 3.20 represents cells collected from the urine of an animal i.v. injected with 

recombinant human rAb-53 (A) and from the urine of a rat i.v. injected with ctrl-rAb 

(B). In Fig. 3.19 A the number of cells was dramatically increased compared to B. 

Furthermore, in the urine of animals i.v. injected with rAb-53 100mg/dl protein was 

observed compared to animals injected with ctrl-rAb, where no protein was 

detectable after 30hrs. 
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Figure 3.20: Pappenheim/Giemsa staining of a urinary cytospin collected 30hrs after i.v. 
injection of rAbs. The urinary cytospin of rats i.v. injected with rAb-53 shows dramatically increased 
numbers of detached IMCD cells (A) in contrast to the cytospin of ctrl-rAb injected rats (B). 

 

3.1.2.7 Mutants of rAb-53 antibodies show different extent of   

  histopathology in the EAE/NMO model 

 

To determine if the ability of human rAb-53 to bind complement or act via ADCC is 

crucial for astrocyte depletion and lesion pathogenesis point mutated variants of rAb-

53 were generated and applied to my experimental system. Mutants were generated 

in the lab of Jeffrey Bennett, Denver, Colorado. In the systemic model of EAE/NMO 

rats were i.v. injected with the mutated rAb-53_K322A, rAb-53_K326W, or rAb-

53_L234A. K322A is unable to bind complement, K326W is defective in ADCC and 

L234A is defective in both. 

Rats (n=20) showed no significant differences in short-term (30hrs) clinical scores 

after i.v. injection of the above mentioned antibodies (data not shown) compared to 

the original rAb-53. However, by histological examination, only animals injected with 

the rAb-53 showed significantly more astrocyte loss compared to animals injected 

with the ctrl-rAb (P<0.005). Spinal cord cross sections of rats injected with the mutant 

antibodies showed much smaller areas of astrocyte depletion than with wt rAb-53. 

Thus, the ability to deplete astrocytes was substantially lower in mutants. For 

instance, treatment with the complement defective mutant, K322A, revealed a 

significant decrease in astrocyte loss compared to wt rAb-53 (P<0.005) (Fig. 3.21). 

Additionally, a trend to decreased astrocyte loss was seen in animals injected with 

K322A compared to K326W, which is defective in ADCC (Fig. 3.21). 
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As I mentioned before, a prominent loss of oligodendrocytes was observed when 

animals were i.v. injected with the rAb-53. I detected the loss of oligodendrocytes 

also in animals transferred with the mutant rAbs, but this loss was restricted to a 

much smaller area of astrocyte depletion. In white matter lesions a significant loss of 

NogoA positive cells was detected when animals were injected with rAb-53 (P<0.01) 

or its mutants (P<0.001) compared to ctrl-rAb. Similarly, also in grey matter lesions a 

significant loss of oligodendrocytes was found in rats i.v. injected with rAb-53 or its 

mutants compared to ctrl-rAb (P=0.0001). Densities of oligodendrocytes in astrocyte 

depleted areas were even lower in animals injected with one of the mutant rAb than 

with the wt rAb-53. However, only the complement defective mutant K322A actually 

showed a significant decrease in NogoA positive cells compared to rAb-53 (P<0.005) 

(Fig. 3.22).  

 

 

Figure 3.21: The percentage of astrocyte depleted spinal cord area is significantly higher in 

animals treated with rAb-53 than with the ctrl-rAb (P<0.05). Animals injected with the complement 
deficient mutant, K322A, show a significant decrease in astrocyte depletion compared to wt rAb-53 
(P<0.05). There is no significant decrease in astrocyte depletion with the mutants K326W and L234A 
compared to wt rAb-53. 
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Figure 3.22: Numbers of mature oligodendrocytes in EAE/NMO in white and grey matter 
lesions. Animals were injected with rAb-53 or corresponding mutants deficient in complement binding, 

ADCC activation, or both. In white matter lesions a significant loss of mature oligodendrocytes was 
detected in animals treated with rAb-53 (P<0.01) or its mutants (P<0.001). A significant loss of NogoA 
positive cells was also visible in the grey matter when animals were injected with rAb-53 or its 
mutants. The cell numbers were even lower in mutants than in rAb-53 injected cases. Even injection of 
the mutant K322A showed a significant decrease of oligodendrocytes compared to rAb-53. 

 

3.1.3  Effect of rAb-53 on astrocytes and oligodendrocytes in  vitro 

 

In vivo, no clear-cut effect of NMDA and P2X7 receptor antagonists on 

oligodendrocyte death was found in the focal NMO model. To further test whether 

oligodendrocyte death was related to astrocyte death in vitro experiments (n=3) were 

performed. Astrocytes and oligodendrocytes were cultured from newborn rats. 

In a first approach astrocytes were incubated in medium, in medium supplemented 

with rAb-53 (1µg/200µl) alone, with human serum alone or with rAb-53 (1µg/200µl) 

and human serum for 24hrs followed by PFA fixation.  

Medium and rAb-53 only treated astrocytes (Fig. 3.23. A+B) grew densely as 

visualized by DAPI/GFAP/O4 staining and looked healthy. This was supported by 

some O4 positive OPCs which only settle on intact astrocyte cell layers. A decrease 

in astrocyte density was observed in cultures treated with human serum alone. 

However, still some O4 positive cells were attached to astrocytes (Fig. 3.23 C). When 

astrocytes were exposed to rAb-53 together with human serum cell layers were 

dissolved. GFAP positive astrocyte processes had disappeared. Only DAPI and 

GFAP positive shrunken cells were visible. No O4 positive cells were detected any 

more (Fig. 3.23 C)  
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To underpin the microscopic findings WST-1 cell viability and LDH cytotoxicity 

assays of astrocyte cultures were performed. The WST-1 assay did not show any 

differences in proliferation and viability under different treatment conditions (data not 

shown). The LDH assay indicated more cell loss in astrocyte cultures treated with 

rAb-53 with human serum than incubated with medium or rAb-53 alone (Fig. 3.24). 

Additionally, cytoxicity was also increased after incubation with human serum alone 

(Fig. 3.24). 

 

 

Figure 3.23: Astrocyte cell culture stained for DAPI (blue), GFAP and O4. Cells were incubated for 

24hrs with medium (A), with rAb-53 alone (B), with human serum alone (C) or with rAb-53 together 
with human serum (D), which causes reduction of GFAP positive cells and processes. 

 

 

 

 

A 

D C 

B 

200µm 



Results – Part1 

 

 
53 

ct
rl

rA
b-5

3

se
ru

m

rA
b-5

3+
se

ru
m

-10000

0

10000

20000

30000

40000
LDH-Assay

F
lu

o
re

s
c
e
n

c
e
 (

R
F

U
)

 
Figure 3.24: LDH (cytotoxicity) assay of representative astrocyte cultures incubated in medium 

alone, in medium supplemented with the rAb-53 alone, with human serum alone or with rAb-53 and 
human serum. RFU: Relative Fluorescence Units. 

 

In a second approach oligodendrocyte cultures were incubated with medium, with 

medium supplemented with rAb-53 alone (1µg/200µl), with human serum alone, with 

rAb-53 (1µg/200µl) together with human serum, or with supernatants collected from 

astrocyte cultures incubated with rAb-53 and human serum. The treatment was 

applied for 24hrs followed by PFA fixation. 

Oligodendrocyte cultures incubated in medium alone were densely populated and 

immunopositive for O4 and in part MBP (Fig. 3.25 A). The same was true for 

oligodendrocytes treated with rAb-53 alone (Fig. 3.25 B). When cultures were treated 

with human serum alone, the cell density was not decreased and cells were still 

positive for O4 and MBP. Some oligodendrocytes appeared swollen (Fig. 3.25 C). 

Incubation with the rAb-53 together with human serum similarly did not decrease 

oligodendrocyte density (Fig. 3.25 D). After the incubation with the supernatant from 

astrocytes incubated with rAb-53 and human serum, oligodendrocyte density 

appeared diminished and oligodendrocyte processes were in part fragmented (Fig. 

3.25 E+F). 
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Figure 3.25: Oligodendrocyte cell cultures stained with DAPI (blue), MBP and O4. Cells were 
treated for 24hrs with medium (A), rAb-53 alone (B), human serum (C), rAb-53 together with human 
serum (D) or supernatants of rAb-53/human serum treated astrocytes (E+F), which induced a 
reduction in oligodendroglia. 

 

3.1.3.1 Assessment of mechanisms of oligodendroglial cell death in vitro 

 

3.1.3.1.1 NMDA and P2X7 receptor antagonists 

 

To investigate whether NMDA and P2X7 receptor antagonists prevent 

oligodendrocyte death in vitro, cultures were incubated with supernatants from 

astrocytes treated with rAb-53 and human serum. This treatment resulted in a 

decrease in oligodendrocytes (Fig. 3.25). In an attempt to rescue these cells one of 

the receptor antagonists was added. First, the receptor antagonists (50µM) were 

added to untreated astrocyte and oligodendrocyte cultures. No effects on cell density 

and cell morphology were observed. After treatment of oligodendrocyte cultures 

incubated with supernatants of astrocyte cultures, incubated before firstwith rAb-53 in 

human serum, with NMDA or P2X7 receptor antagonists (50µM), first microscopic 

analysis did not show any decrease in oligodendrocyte death. Also the WST-1 assay 

did not show any differences in cell viability (data not shown). 
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Figure 3.26: LDH (cytotoxicity) assay of representative oligodendrocyte cultures untreated, 
treated with human serum alone, with rAb-53 alone, with rAb-53 + human serum, with astrocyte 
culture supernatant (astrocytes previously incubated in rAb-53 and human serum), astrocyte culture 
supernatant + D-AP5, astrocyte culture supernatant + MK-801, astrocyte culture supernatant + oATP 
or astrocyte culture supernatant + BBG. RFU: Relative Fluorescence Units 

 

The analysis of the LDH assay revealed an increase in cytotoxicity when 

oligodendrocytes were treated with supernatants from astrocytes incubated with rAb-

53 in human serum (Fig. 3.26). However, similar to my findings in the astrocyte 

culture system toxicity was already increased by human serum alone. Of note, the 

range of LDH release was similar in controls and cultures treated with rAb-53 alone. 

The LDH assay indicated a decrease in oligodendrocyte toxicity after incubation with 

supernatant from treated astrocytes when MK-801 (50µM) or BBG (50µM) were 

added (Fig. 3.26).  
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PART 2 

3.2  Effect of astrocytic overexpression of FGF9 

 

Recent in vitro findings indicated a possible role of FGF9 on DM and RM. I wanted to 

test whether this is true in my in vivo models of DM and RM. First, I applied FGF9 

protein to demyelinated lesions in cuprizone-fed animals via stereotactic injection. 

However, most likely because of rapid degradation and the need for a prolonged 

availability of FGF9, no effect on RM was observed. To provide continuous and 

sufficient overexpression of this growth factor in vivo, an adeno-associated virus 6 

(AAV-6)-based vector containing the cDNA of FGF9 under the control of the GFAP 

promotor was constructed (FGF9-AAV-6-based vector). AAV-6-based vector 

predominantly infects astrocytes. In addition, the GFAP-driven construct conveys 

expression specifically in astrocytes. Control animals were injected with AAV-6 

expressing EGFP under control of the GFAP promoter (EGFP-AAV-6-based vector). 

Previous experiments showed the highest FGF9 (Fig. 3.27 A) and EGFP (Fig. 3.27 

D) expression 7 to 10 days after intracerebral AAV-6-based vector injection. To 

assess the role of FGF9 on myelin formation in vivo two experimental models of de- 

and RM were used. 
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Figure 3.27: Expression of FGF9 and EGFP on day 10. Animals intracerebrally injected with FGF9-

AAV-6-based vector reveal a diffuse expression of FGF9 at day 10 (A; FGF9), whereas animals 
treated with EGFP-AAV-6-based vector are negative for FGF9 (C; FGF9). In contrast, EGFP staining 
is negative in animals injected with FGF9-AAV-6-based vector (B; EGFP), however EGFP-AAV-6-
based vector treated animals show positive cellular EGFP staining (D; EGFP). 

 

3.2.1  Astrocyte and oligodendroglial phenotype after intracerebral 

  FGF9-AAV-6-based vector injection in the cuprizone mouse model 

 

Mice (n=7) were fed with 0.25% cuprizone for 5 weeks. At week 4 animals were 

injected with FGF9-AAV-6-based vector (2µl), an EGFP-AAV-6-based control vector, 

or PBS. Half of the mice were sacrificed after 7 days to study the influence of FGF9 

on the extent of DM. The others were sacrificed after 10 days including 3 days of 

normal chow to study the influence of FGF9 expression on RM. 

After 5 weeks on cuprizone diet DM was near complete in the corpus callosum and 

cortex (Fig. 3.28 A, B, E, F, I, J). In one animal injected with FGF9-AAV-6-based 

vector, the demyelinated area was larger than usual (Fig. 3.28 I+J). However, as a 

whole, FGF9 did not alter the extent of demylination in the cuprizone model 7 days 

after injection. But astrocytes were swollen, their cytoplasms were enlarged and their 

processes were well visible, representing a strongly activated phenotype at this time 

point (Fig. 3.28 K). This was not seen in mice injected with PBS or EGFP-AAV-6-

based vector (Fig. 3.28 C+G). The number of proliferating, Ki67 positive cells as well 

as the number of mitotic figures was much higher after injection of the FGF9-AAV-6-
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based vector (Fig. 3.28 L) than with PBS or the EGFP-AAV-6-based vector (Fig. 3.28 

D+H). 

 

Figure 3.28: Hemispheric frontal brain sections of mice injected with PBS (A-D), EGFP-AAV-6-
based vector (E-H) or FGF9-AAV-6-based vector (I-L) in the cuprizone model. Mice were 

perfused 7 days post injection after 5 weeks of cuprizone feeding. The demyelinated area appears the 
same size in animals treated with FGF9-AAV-6-based vector (I, J) in LFB-PAS (A, E, I) and MBP (B, 
F, J) IHC. GFAP (C, G, K) positive astrocytes show a strongly activated phenotype in animals injected 
with FGF9-AAV-6-based vector (K, arrows). Numbers of proliferating cells in Ki67 staining (D, H, L) 
were increased in animals treated with FGF9-AAV-6-based vector (L). 

 

The numbers of mature oligodendrocytes were increased in FGF9-AAV-6-based 

vector treated animals (Fig. 3.29 F). Also, the numbers of Olig2 positive OPCs were 

markedly increased in animals injected with FGF9-AAV-6-based vector (Fig. 3.29 E), 
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but not in controls (Fig. 3.29 A+C). Morphologically, Olig2 positive cells were 

markedly enlarged, as a whole representing an activated phenotype in FGF9-AAV-6-

based vector treated mice. Additionally, mitotic Olig2 positive cells were detected 

(Fig. 3.29 E, small box).  

 

Figure 3.29: Hemispheric frontal brain sections of mice injected with PBS, EGFP-AAV-6-based 
vector (C-D) or FGF9-AAV-6-based vector (E-F) in the cuprizone model. Mice were perfused 7 

days post injection. Olig2 (A, C, E) and NogoA (B, D, F) IHC showed higher cell numbers in animals 
treated with the FGF9-AAV-6-based vector. Small box: mitotic Olig2 positive cell. 

 

When animals were perfused 10 days post injection, thus including 3 days of RM, no 

differences in the extent of RM between the experimental groups were detected (Fig. 

3.30 A, B, E, F, I, J). As already demonstrated on day 7, astrocytes and their nuclei 

were large, their processes were easily to be discerned, and thus showed a highly 

activated phenotype (Fig. 3.30 K). Activated astrocytes were more abundant than 7 

days post injection and were found all over the ipsilateral injected hemisphere. Also 

10 days after injection with the FGF9-AAV-6-based vector the numbers of Ki67 

positive cells were increased (Fig. 3.30 L) compared to the numbers of proliferating 

cells in mice injected with PBS or EGFP-AAV-6-based vector (Fig. 3.30 D+H). Similar 

to the findings on day 7 Olig2 positive cells were large and appeared activated in 

FGF9-AAV-6-based vector treated animals. The density of Olig2 positive cells was 

even higher than on day 7 and mitotic figures were apparent (Fig. 3.31 E; small box). 

Similarly, in NogoA IHC numbers of activated mature oligodendrocytes were higher 
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in mice injected with FGF9-AAV-6-based vector 10 days than 7 days after (Fig. 3.31 

F). The density of mature oligodendrocytes was much lower in mice injected with 

PBS or EGFP-AAV-6-based vector (Fig. 3.31 B+D). 

 

 

Figure 3.30: Hemispheric frontal brain sections of mice injected with PBS (A-D), EGFP-AAV-6-
based vector (E-H) or FGF9-AAV-6-based vector (I-L) in the cuprizone model. Mice were 
perfused 10 days post injection. Cuprizone diet was terminated 3 days before perfusion. No 
differences were detected in the extent of DM, as visualized by LFB-PAS (A, E, I) and MBP (B, F, J) 
staining. GFAP (C, G, K) positive cells showed swollen cell bodies and easily visible processes 
indicating a highly activated phenotype in animals treated with FGF9-AAV-6-based vector (K). 
Numbers of proliferating cells (Ki67) (D, H, L) were markedly increased in animals treated with FGF9-
AAV-6-based vector (L). 
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Figure 3.31: Brain sections of mice injected with PBS, EGFP-AAV-6-based vector (C-D) or 
FGF9-AAV-6-based vector (E-F) in the cuprizone model. Mice were perfused 10 days post 

injection. Olig2 (A, C, E) and NogoA (B, D, F) stainings showed higher cell numbers in animals treated 
with the FGF9-AAV-6-based vector. Small box: mitotic Olig2 positive cell. 

 

3.2.2  Astrocyte and oligodendroglial phenotype after intracerebral  

  FGF9-AAV-6-based vector injection in focal EAE 

 

FGF9 overexpression in the cuprizone model resulted in astrocyte and 

oligodendroglial proliferation and activation. However, no effect on the velocity and 

extent of RM was observed. To assess the impact of FGF9 overexpression in a 

model of antibody-mediated DM in the rat, the targeted cerebral EAE model 

developed in our lab was utilized (Merkler et al., 2006). Female Lewis rats (n=39) 

were immunized with MOG1-125 protein. After around 18 days, when the rats obtained 

stable anti-MOG antibody titers, they were intracerebrally injected with cytokines 

(TNF-  and INF- ). The largest area of DM was visible at day 3, and complete RM 

occurred within 14-20 days. 

Injection (2µl) of EGFP- (Fig. 3.32 A) or FGF9-AAV-6-based vector (Fig. 3.32 C) into 

the cortex of naïve rats did not reveal any alterations in myelin staining 10 days after 

injection. However, GFAP staining revealed a panhemispheric activated phenotype 

of astrocytes in rats injected with FGF9-AAV-6-based vector (Fig. 3.32 D) compared 

to EGFP-AAV-6-based vector (Fig. 3.32 B).  
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Then, MOG1-125 immunized rats were intracerebrally injected (2µl) with cytokines, to 

induce a focal demyelinated lesion, cytokines with EGFP-AAV-6-based vector or 

cytokines with FGF9-AAV-6-based vector. Unexpectedly, no DM was observed in all 

experimental groups 3 days after injection (Fig. 3.33 A, C, E). No differences were 

observed in the numbers of OPCs and mature oligodendrocytes at this time point. 

The numbers of Ki67 and ED1 positive cells were also comparable and low in all 3 

experimental groups at day 3. 

 

Figure 3.32: 10 days after EGFP-AAV-6-based vector (A, B) or FGF9-AAV-6-based vector (C, D) 
injections in naïve rats. No DM (C; MBP), but strong activation of astrocytes with FGF9-AAV-6-

based vector is present (D; GFAP). Animals treated with EGFP-AAV-6-based vector show no DM (A; 
MBP) and only perilesional astrocyte activation (B; GFAP).  

 

Ten days after intracerebral injections in the rat focal EAE model small foci of 

demylination were only detected in rats injected with cytokines together with FGF9-

AAV-6-based vector (Fig. 3.34 M). In contrast, the myelin of rats injected with 

cytokines alone and cytokines with FGF9-AAV-6-based vector was well preserved 
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(Fig. 3.34 A+G). However, at this time point, an important near panhemispheric 

activation of astrocytes was detected in animals injected with cytokines and FGF9-

AAV-6-based vector (Fig. 3.34 N). This was not observed in rats injected with 

cytokines alone or cytokines with EGFP-AAV-6-based vector (Fig. 3.34 B+H). 

Additionally, an increase in Olig2 and NogoA positive cells was obvious in rats 

injected with cytokines and FGF9-AAV-6-based vector after 10 days (Fig. 3.34 O+P). 

Furthermore, numbers of ED1 positive cells appeared higher and more widespread 

(Fig. 3.34 Q) than in rats injected with cytokines alone (Fig. 3.34 E) or cytokines with 

EGFP-AAV-6-based vector (Fig. 3.34 K). The numbers of Ki67 positive cells were 

again increased in rats injected with cytokines with FGF9-AAV-6-based vector (Fig. 

3.34 R). 

 

 

Figure 3.33: Rat focal EAE 3 days after injection of cytokines alone (A), cytokines with EGFP-
AAV-6-based vector (C) and cytokines with FGF9-AAV-6-based vector (E). No obvious DM in 

MBP staining was detected in all 3 experimental groups.  

 

Double labeling studies for GFAP and Ki67 revealed that part of the astrocytes were 

positive for the proliferation marker in animals injected with cytokines and FGF9-

AAV-6-based vector (Fig. 3.35 A). Conspicuous aggregates of NogoA positive cells 

were found near the injection site in these animals (Fig. 3.35 B). 

As my results above indicated that FGF9 might be pro-inflammatory, the influence of 

FGF9-AAV-6-based vector on immunized rats without cytokine injection was 

determined. Interestingly, 10 days after injection a prominent area of DM was visible 

despite of the lack of a focal cytokine injection (Fig. 3.36 A). The activation pattern of 

astrocytes (Fig. 3.36 B) and the increase in numbers of astroglial and 

oligodendroglial cells was similar (Fig. 3.36 C-F) to the combined injection with 

cytokines and FGF9-AAV-6-based vector. 
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Figure 3.34: Rat focal EAE 10 days after injection of cytokines (A-F), cytokines with EGFP-AAV-
6-based vector (G-L) and cytokines with FGF9-AAV-6-based vector (M-R). Only in animals 
injected with FGF9-AAV-6-based vector small foci of DM occur (A, G, M; MBP). Furthermore, with 
FGF9 the area of activated astrocytes was conspicuously larger than in the other experimental groups 
(N; GFAP). Numbers of Olig2 and NogoA positive cells were increased (O, P). The highest numbers of 
ED1 positive cells were also detected in animals injected with cytokines and FGF9-AVV-6-based 
vector (Q). Additionally they showed an increase in Ki67 positive cells (R). A, G, M: MBP (brown); B, 
H, N: GFAP; C, I, O: Olig2; D, J, P: NogoA; E, K, Q: ED1; F, L, R: Ki67. 

 

 

Figure 3.35: Astrocytic and oligodendroglial proliferation in the rat focal EAE model after 
intracerebral injection with cytokines and FGF9-AAV-6-based vector. (A) Cells double positive for 
GFAP (blue) and Ki67 (brown). (B) Increased density of NogoA (brown) positive cells near the 
injection site. 

 

 

Figure 3.36: Rat focal EAE 10 days after injection of FGF9-AAV-6-based vector alone. Prominent 
DM (A; MBP) was visible after 10 days. Additionally, a high number of proliferating cells is present in 
this area (B; Ki67). In C (GFAP) astrocytes appear extremely activated. Mature oligodendrocytes (D; 
NogoA) and OPCs (E; Olig2) were increased in the area of activated astrocytes. Additionally, a large 
area of activated microglia/macrophages (E; ED1) is detected 
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4  Discussion 

 

NMO is an inflammatory demyelinating disease that preferentially targets the optic 

nerves and the spinal cord. Previously thought to be a variant of MS, the discovery of 

an autoantibody directed against AQP4 in 75% of the NMO but not in MS patients 

defined NMO as an independent disorder. The aim of the present thesis was to 

characterize in more detail the mechanisms underlying the tissue damage induced by 

recombinant patient derived antibodies directed against AQP4 in animal models. The 

antibodies were reconstructed from CSF plasma cells of an NMO patient (Bennett et 

al., 2009) and injected stereotactically (focal NMO model) or intravenously (systemic 

EAE/NMO model) into Lewis rats. Specifically, I addressed the following questions: 

How are astrocytes destroyed by AQP4 recombinant antibodies? Why do 

oligodendrocytes die after AQP4 recombinant antibody application? Do astrocytes 

and oligodendrocytes repopulate the lesion differently? 

 

The second part of my thesis studied the DM and RM potential of FGF9 in vivo in 

cuprizone-induced DM in the mouse and focal EAE in the rat.  

 

4.1  Modeling Neuromyelitis optica in vivo 

 

The stereotactic injection of rAb-53 leads to a rapid loss of astrocytes, which is 

followed by a loss of oligodendrocytes. Astrocyte depleted areas harbor APP positive 

axons, complement and Ig depositions. The early inflammatory infiltrate is composed 

of PMNs (Fig. 3.5). Thus the early lesion pathology has striking similarities with 

human NMO lesions as described by Lucchinetti and coworkers (2002) and Roemer 

and coworkers (2007). Stereotactically generated lesions slightly differ from NMO-like 

lesions induced by i.v. application of the antibody (Fig. 3.2). In the latter case animals 

immunized with a short MBP peptide, which opens the BBB for the antibody in the 

spinal cord of the animals. The lesion distribution of i.v. injected animals therefore 

follows a perivascular pattern and the inflammatory lesion is mainly composed of 

mononuclear cells (Fig. 3.12). In addition, i.v. injected animals suffer from EAE 

induced motor deficits, which increase by the injection of rAb-53 (Fig. 3.11). This is in 

contrast to stereotactic injections of rAb-53 into the motor cortex, which do not 
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become noticeable in the EAE scoring system. Compared to previously published 

models which transferred NMO serum antibodies into rats with acute T-cell-mediated 

EAE (Bradl et al., 2009), the lesion size obtained by the transfer of recombinant 

antibodies is more impressive and most likely reflects the amount of pathogenic rAb-

53 transferred.  

 

Oligodendrocyte loss can be depicted early after lesion induction by immunostainings 

against NogoA/p25 (Fig. 3.3 and 1.2) and was also described by Parratt and Prineas 

(2010) for human NMO. Astrocytes repopulate the lesion quickly 1 week after 

injection, whereas oligodendrocyte depletion remains prominent at this time point 

(Fig. 3.7). The reason for this longer lasting oligodendrocyte depletion is still obscure, 

however, the number of oligodendrocyte precursor cells is also considerably 

diminished after rAb-53 injection (Fig. 3.2 C) and thus the basic source of 

oligodendrocyte replenishment. The massive loss of OPCs could explain the delay in 

oligodendroglial repopulation of astrocyte depleted lesions that is the prerequisite for 

remylination in other experimental and human CNS diseases, such as MS (Prineas 

et al., 1989; Raine et al., 1981; Robinson et al., 1998). Furthermore, astrocyte loss 

clearly affects the RM outcome in a number of animal models, and astrocytes might 

provide necessary guiding cues and trophic support for oligodendrocytes (Talbott et 

al., 2005).  

 

In my experiments I took advantage of a recombinant antibody against AQP4 instead 

of serum from NMO patients (Bennett et al., 2009). This offered the unique 

opportunity to modify antibody effector functions by mutating the Fc region. In this 

regard, the injection of rAb-53_K322A, the AQP4 specific antibody deficient for 

complement activation caused a significantly smaller area of astrocyte depletion than 

the wt rAb-53 (Fig. 3.21). Therefore astrocyte depletion by this recombinant antibody 

is significantly dependent on its ability to activate complement. This is in line with 

human NMO lesions, which stain positively for complement factors, suggesting that 

complement mediated astrocyte loss might be relevant in the human disorder as well 

(Lucchinetti et al., 2002). Complement activation generates the small complement 

fragments C5a and C3a, which are potent peptide mediators of inflammation, and 

attract phagocytic cells including PMNs to the lesion site. 
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Ablating the ability of rAb-53 to activate natural killer (NK) cells (rAb-53_K326W) 

slightly reduced its ability to destroy astrocytes (Fig. 3.21) but rAb-53 devoid of both 

effector functions (rAb-53_L234A) was not less effective than AQP4 specific 

antibodies without complement activation properties. This clearly argues against a 

relevant contribution of NK cells to rAb-53 mediated astrocyte loss. However, 

mutated recombinant antibodies hardly differed from wt rAb-53 regarding 

oligodendrocyte loss in astrocyte depleted areas (Fig. 3.22).  

In summary, both NMO models mimic the pathology of human NMO lesions including 

loss of oligodendroglial cells. Furthermore, my findings underpin the role of 

complement for astrocyte depletion. 

 

4.1.1  Mechanism of oligodendroglial cell death in vivo and in vitro 

 

I have consistently observed the rapid death of OPCs and oligodendrocytes after 

rAb-53 injection, and both cell types are AQP4 negative. This is in line with the 

results of Marignier and coworkers (2010), who found oligodendrocyte death in cell 

culture experiments and ex vivo optic nerve explants when exposed to IgG from 

NMO patients. The authors postulated that a disruption of glutamate homeostasis 

and elevated extracellular glutamate levels that occurred as a consequence of 

astrocyte death, led to oligodendrocyte demise via binding to NMDA receptors. I also 

considered glutamate or ATP mediated excitotoxicity as the most likely mechanism of 

oligodendrocyte death happening within few hours after rAb-53 mediated astrocyte 

loss in my animal model. Oligodendrocytes express the ionotropic glutamate 

receptors amino-3-hydroxy-5-methyl 4-isoxazolepropionic acid, kainate and NMDA 

throughout most developmental stages (Karadottir et al., 2005; Matute et al., 2007a). 

In addition, NMDA receptor antagonists as well as kainate and AMPA receptor 

blockers have been beneficial in inflammatory demyelinating animal models for MS 

(Pitt et al., 2000; Smith et al., 2000; Wallstrom et al., 1996). In animals injected with 

rAb-53 I was, however, unable to show a convincing rescue from oligodendrocyte 

death by NMDA receptor antagonists (D-AP5 and MK-801)(Fig. 3.9), which I studied 

first due to their higher affinity for glutamate relative to AMPA receptors (Karadottir et 

al., 2005). Glutamate is taken up by astrocytes via the glutamate transporter 1 (GLT-

1 or EAAT-2) and usually quickly converted into glutamine by the astroglial glutamine 

synthetase (Danbolt, 2001; Parpura and Haydon, 2009). Therefore the increase in 
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extracellular glutamate concentrations after rAb-53 mediated astrocyte lysis in vivo 

may rather be caused by a reduced number of astrocytes capable of glutamate 

uptake via GLT1 than by the liberation of stored glutamate vesicles. Interestingly, the 

extent of oligodendrocyte loss in the grey matter following rAb-53 injection (Fig. 3.13) 

is larger than in the white matter. This may be due to higher glutamate levels in the 

grey matter (Lehre et al., 1995). I am currently blocking AMPA/kainate glutamatergic 

receptors by CNQX and NBQX to test whether these substances are able to prevent 

oligodendrocyte death after rAb-53 mediated astrocyte loss. Kainate receptors have 

also been implicated in sensitizing oligodendrocytes to complement attacks (Alberdi 

et al., 2006), which might be relevant considering the fact that the effector function of 

my rAb-53 is complement dependent. The second excitatory neurotransmitter which 

can damage oligodendrocytes if present in excess is ATP. If present in unusually 

high concentrations ATP can bind to P2X7 receptors on oligodendrocytes. The 

prolonged activation of P2X7 receptors on oligodendrocytes results in the overload of 

the cytosol with Na+, Ka+ and Ca2+ (North, 2002), caspase 3 activation and finally cell 

death (Matute, 2008; Matute et al., 2007b). However, high concentrations (500µM) of 

the P2X7 receptor antagonists oATP or BBG did not clearly prevent or ameliorate 

oligodendrocyte loss after stereotactic injection of rAb-53 (Fig. 3.10). 

Taken together, I could not show a convincing rescue of oligodendroglial cells by 

injection of NMDA or P2X7 receptor antagonists. To clarify their role further 

experiments and counts of the cell numbers have to be performed. Experiments 

applying AMPA/kainate receptor antagonists are ongoing. Furthermore, I hypothesize 

that multiple mechanisms might operate in parallel to induce the observed rapid loss 

of oligodendroglial cells. To prove this hypothesis a combinatorial treatment with 

both, NMDA and P2X7, receptor antagonists will be performed in vivo and in vitro.  

 

4.1.2  Kidney pathology in the EAE/NMO model 

 

Since AQP4 is not only expressed in astrocytes of the CNS but can also be detected 

in the collecting ducts of the kidney, I screened my animals for kidney pathology 

following i.v. antibody transfer. The inner medulla of the kidney was infiltrated by 

macrophages 30hrs after antibody transfer and these collecting ducts appeared 

swollen with visible cell detachments (Fig. 3.19+18). Urine analysis demonstrated 

high protein concentrations as well as cell debris. Pohl and coworkers (2011) who 



Discussion 

 

 
70 

transferred AQP4 specific T-cells together with NMO IgG induced an interstitial 

nephritis, while my kidney pathology localized rather to the collecting ducts.  

From my results I conclude that kidney pathology could be relevant in NMO. Despite 

the fact that AQP4 is also expressed in the human kidney (Mobasheri et al., 2007) a 

clinically apparent involvement of the kidneys has so far not been revealed in NMO 

patients. 

 

4.2  Effect of astrocytic overexpression of FGF9  

 

RM is a complex process which, if successful, restores myelin to demyelinated 

axons. At first, OPCs have to be recruited to the demyelinated area by pro-migratory 

factors released from reactive astrocytes and inflammatory cells (Ffrench-Constant 

and Raff, 1986). OPCs will populate the demyelinated area and have to differentiate 

into myelinating oligodendrocytes. This involves axon engagement and the formation 

of a myelin sheath (Franklin and Ffrench-Constant, 2008). The differentiation of 

OPCs to remyelinating oligodendrocytes is the most vulnerable phase of RM and in 

most animal models RM fails at this stage.  

In the second part of my thesis I have studied the effect of FGF9 in de- and 

remyelinating animal models by its overexpression in astrocytes. FGF9 was one of 

the molecules identified to be upregulated in demyelinated compared to remyelinated 

MS lesions in a microarray study performed by the group of Edgar Meinl (Max-

Planck-Institute for Neurobiology, Munich; unpublished data). I therefore speculated 

that FGF9 might be an inhibitor of OPC differentiation.  

 

Overexpression of FGF9 in astrocytes was obtained by constructing an AAV-6-based 

vector which expressed FGF9 under the control of the GFAP promoter. For control 

experiments, the same vector expressing EGFP under the GFAP promoter was 

constructed demonstrating EGFP expression predominantly in astrocytes after 

stereotactic injections into naive animals (Fig. 3.27 D). FGF9 overexpression reached 

its maximum 7-10 days after injection (Fig. 3.27 A) and its effect was studied in two 

experimental paradigms. 
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4.2.1   Overexpression of FGF9 in the cuprizone mouse model of toxic 

  DM and in a model of antibody-mediated focal inflammatory DM in 

  the rat 

 

Feeding mice with cuprizone for 5 weeks leads to oligodendrocyte death and the DM 

of white matter tracts, which is best depicted in the corpus callosum. If cuprizone 

feeding is stopped, demyelinated lesions become quickly remyelinated and this 

process is completed in around 2 weeks (Matsushima and Morell, 2001). I 

stereotactically injected the FGF9-AAV-6-based vector or EGFP-AAV-6-based vector 

4 weeks after initiation of the cuprizone feeding. Animals were sacrificed 1 week later 

(while still on cuprizone diet) to address the influence of FGF9 on DM or 10 days 

later (already three days on normal diet) to study if FGF9 promotes or inhibits RM. I 

could not detect any differences with respect to DM or RM in animals which received 

the FGF9-AAV-6-based vector compared to EGFP-AAV-6-based vector or PBS 

injected controls (Fig. 3.28+3.30). However, the number of OPCs and 

oligodendrocytes was significantly higher in the FGF9 expressing group already 7 

days after injection, and mitotic oligodendrocytes could easily be detected (Fig 3.28 

[small insert]). The rise in OPC and oligodendrocyte numbers became even more 

prominent at the second time point (Fig. 3.30 and Fig. 3.31). Furthermore a change 

in oligodendrocyte morphology was obvious with larger oligodendrocytes in the FGF9 

group compared to controls. GFAP upregulation and astrogliosis in the FGF9-AAV-6-

based vector injected group was detectable at day 7 after injection and even more 

prominent 3 days later.  

 

FGF9 overexpression in a model of stereotactically induced focal anti-MOG antibody 

mediated inflammatory DM led to similar results. In this model FGF9-AAV-6-based 

vector or EGFP-AAV-6-based vector were injected concomitantly with 

proinflammatory cytokines into MOG primed rats (Merkler et al., 2006). As further 

controls, I analyzed naïve animals injected with both AAV-6-based vector constructs 

but no additional cytokines (Fig. 3.32). In the focal EAE model, DM is most important 

three days after injection, and RM is completed after around 2 weeks. Unfortunately, 

all animals sacrificed at day 3 did not show demyelinated areas, which might be due 

to insufficient anti-MOG antibody titers after immunization (Fig. 3.33). While my focal 

experiments were therefore limited with regard to the study of de- or RM properties of 
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FGF9 overexpression, astrocyte and oligodendrocyte proliferation was detectable in 

all FGF9-AAV-6-based vector injected animals but not in controls (Fig. 3.34). 

Furthermore, at day 10 FGF9-AAV-6-based vector injected animals as well as 

animals which were injected with FGF9-AAV-6-based vector in combination with 

inflammatory cytokines harboured small foci of DM, whereas control animals with 

EGFP-AAV6-based vector and inflammatory cytokines did not (Fig 3.35 A). In 

addition, injection of FGF9-AAV-6-based vector in immunized rats without cytokines 

showed a proinflammatory effect with infiltrating macrophage/activated microglia (Fig. 

3.36 F) accompanied by a prominent demyelinated area. 

My results confirm the mitogenic potential of FGF9 on the oligodendrocyte lineage 

and resemble results obtained by overexpressing PDGFα in astrocytes using GFAP-

PDGFα mice (Woodruff et al., 2004). These mice, although having significantly higher 

numbers of OPCs, did not show more efficient RM following lysolecithin injection or 

cuprizone mediated DM. Therefore, in both models OPC recruitment does not seem 

to be the rate limiting factor for RM. While Cohen and Chandross (2000) suggested 

that FGF9 might suppress oligodendrocyte differentiation of primary rat 

oligodendrocytes in vitro, RM in vivo was not inhibited in the cuprizone model by 

FGF9 overexpression. Astrocytes responded to FGF9 overexpression in vivo by an 

upregulation of GFAP, which is in contrast to the results obtained by Lum and 

coworkers (2009a) who reported the strong inhibition of GFAP positive astrocyte 

differentiation from adult neural progenitor cells. I can detect small areas of DM 

following the stereotactic injection of FGF9-AAV-6-based vector in the focal EAE 

model at day 10, which needs to be addressed in further experiments. The most 

likely explanation is a disruption of the BBB which allows demyelinating antibodies to 

enter the CNS parenchyma. FGF9 might thus also increase the local inflammatory 

response. 

In summary I have established the stable expression of FGF9 in astrocytes by using 

an AAV-6-based vector. I can confirm the mitogenic potential of FGF9 on 

oligodendrocytes and astrocytes in vivo. FGF9 overexpression however did not 

influence remyelination in my experimental models. Further experiments have to 

address the potential proinflammatory activity and clarify if FGF9 modulates BBB 

functions.
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Appendix 

 

A1   Solutions and reagents  

 

Phosphate buffered saline (PBS):  

PBS (Dulbecco, Biochrom AG)   9.55 g  

distilled water     1000 ml  

 

1M sulfuric acid:  

96% sulfuric acid (Merck)    51.1 ml  

distilled water     448.9 ml  

 

4% paraformaldehyde (PFA):  

PFA (Merck, Germany)    40 g   

1.0 M sodium hydroxide    1  drop  

10-fold PBS      100 ml  

distilled water     900 ml  

adjust to pH 7.3   

0.05% Triton containing phosphate buffered saline (PBST):  

PBS       1000 ml  

 Triton X-100 (MP Biomedicals)   500 μl  

BME-medium: 

 inactivated horse serum   50 ml 

 Pen/Strep     5 ml 

 Glutamax     5 ml 

 BME-medium    460 ml 

 filter sterile 

 

Super-Sato medium: 

 B27-Supplement    2 ml 

 Glutamax     1 ml 

 Pen/Strep     1 ml 

 inactivated horse serum   1 ml 
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 Pyruvate (1.1%)    1 ml 

 Triiodthyronin    10 µl 

 L-Thyroxin     13 µl 

 DMEM     94 ml 

 filter sterile 

 

0.5% PLL-stock solution: 

 Poly-L-lysin     1 g 

 PBS (sterile)     200 ml 

 

0.01% PLL-ready-to-use solution: 

 PLL-stock solution    10 ml 

 PBS      500 ml 

  

H & E staining:  

1% acid rinse:  

 30% hydrochloric acid    2 ml  

 100% Isopropyl alcohol (Merck)   198 ml  

1% eosin solution:  

 Eosin-G Certistain© (Merck)   2 ml  

 70% isopropyl alcohol    198 ml  

 (filter before use)  

 

LFB-PAS staining: 

LFB solution: 

 LFB      1 g 

 95% EtOH     1000 ml 

 acetic acid     5 ml 

 

Bielschowsky silver staining:  

20% silver nitrate solution:  

 silver nitrate (Roth)     10 g  

 distilled water     50 ml  

Developer stock solution:  
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 37% formalin (Merck)    20 ml  

 Citric acid (Merck)    0.5 g 

 65% nitric acid (Merck)    2  drops  

 distilled water     100 ml  

2% sodium thiosulfate solution:  

 sodium thiosulfate pentahydrate   10 g 

 distilled water     500 ml  

 

Pappenheim staining: 

May-Grünwald solution:    50 ml 

Giemsa solution 

 Giemsa     1 ml 

 PBS      49 ml 

 

Immunohistochemistry:  

10mM citric acid buffer:  

 citric acid (Merck)     2.1 g  

 distilled water     1000 ml  

 adjust to pH 6  

 

Tris-ethylenediaminetetraacetic acid (Tris-EDTA) buffered saline:  

 Trizma base (Sigma)    1.21 g  

 0.1 M EDTA     1 ml 

 distilled water     1000 ml  

 adjust to pH 9  

 

0.2% casein block:  

 Tropix (Applied Biosystems)   2 g  

 PBS       1000 ml  

 Tween 20       1 ml  

 heat Tropix/PBS to 50°C until it dissolves  

 

1.0M Tris/HCl stock solution:  

 trizma base (Sigma)    121 g  
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 30% hydrochloric acid    400 ml  

 sodium chloride (Merck)    170 g  

 distilled water fill up to    1000 ml  

 adjust to pH 7.5  

 

TBS working solution (washing buffer for immunohistochemistry):  

 sodium chloride (Merck)    9 g  

 1.0M Tris/HCl     50 ml  

 adjust to pH 7.5  

 

Fast Blue working solution: 

 0.1M Tris (pH 8.2)     49 ml  

 naphtol-ASMX-phosphate (Sigma)  1 ml  

 1.0M levimasole (Sigma)    50 μl  

 Fast Red TR salt (Sigma)    0.025 g  

 filter before use  

 

Fast Red working solution:  

 0.1M Tris (pH 8.2)     49 ml  

 naphtol-ASMX-phosphate (Sigma)  1 ml  

 1.0M levimasole (Sigma)    50 μl  

 Fast Red TR salt (Sigma)    0.05 g  

 filter before use  

 

3,3‟-diaminobenzidine tetrachloride (DAB) working solution: 

 DAB      25 mg  

 PBS       50 ml  

 30% hydrogen peroxidase (Merck)  30 μl  

 

1% nickel ammonium sulfate solution:  

 nickel ammonium sulfate     0.1 g  

 distilled water     10 ml  

 

4-nitro blue tetrazolium chloride (NBT) stock solution:  
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 70% N,N-dimethylformamide   1 ml  

 NBT (Roche)     100 mg  

 

5-bromo-4-chloro-3-indolyl phosphate (BCIP) stock solution:  

 70% N,N-dimethylformamide   1 ml  

 (Sigma)  

 BCIP (Roche)     50 mg  

 

NBT/BCIP buffer:  

 1.0M Tris (Sigma-Aldrich)    100 ml  

 5.0M NaCl (Merck)     20 ml  

 1.0M MgCl (Merck)     50 ml  

 distilled water     100 ml  

 

NBT/BCIP working solution:  

 NBT stock solution    225 µl 

 BCIP stock solution    175 µl 

 NBT/BCIP buffer     50 ml 

 

1xIST working solution: 

 Tailing buffer     14 µl 

 CoCl      2.8 µl 

 Digoxigenin-DNA    1.4 µl 

 terminal transferase    0.7 µl 

 distilled water    51.1 µl 

 

In situ hybridization: 

Hybridization-mix/section: 

 dextran     10 µl 

 20x SSC     5 µl 

 deion. formamide    25 µL 

 Lachs-Sp.-DNA    1 µl 

 2% SDS     0.5 µl 

 PLP probe     3 µl 
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 H2O DEPC     5.5 µl 

 

A2   Chemicals/reagent manufacturers 

 

acetic acid    Merck KgaA, Darmstadt, Germany 

agarose    StarPure, StarLab GmbH, Ahrensberg, Germany 

ammonium chloride  Pharm Lyse, 10x conc., BD Biosciences, Heidelberg, 

    Germany 

ammonium hydroxide  Merck KgaA, Darmstadt, Germany 

brilliant blue G  Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

BME     Gibco, Invitrogen, Darmstadt, Germany 

boric acid    Roth, Karlsruhe, Germany 

citric acid    Merck KgaA, Darmstadt, Germany 

Chloroacetate-esterase Naphthol Chloroacetate esterase kit, detection of  

    polymorphnuclear cells, Sigma-Aldrich Chemie GmbH, 

    Steinheim, Germany 

chloral hydrate   Merck KgaA, Darmstadt, Germany 

copper sulphate   Merck KgaA, Darmstadt, Germany 

CytotoxOne   membrane integrity assay, Promega, Madison, WI, USA 

DAB     Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

D-AP5   Tocris bioscience, Biozol, Eching, Germany 

DePeX    VWR international, Darmstadt, Germany 

diethyl ether    Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

DMEM    High Glucose (4.5g/l), w/ L-Glutamine, sodium pyruvate, 

    Gibco, Invitrogen, Darmstadt, Germany 

EDTA    Roth, Karlsruhe, Germany 

Eosin-G    CertiStain Merck KgaA, Darmstadt, Germany 

EtOH     absolute Merck KgaA, Darmstadt, Germany 

formalin    Merck KgaA, Darmstadt, Germany 

Giemsa    Merck KgaA, Darmstadt, Germany 

H2O2     Merck KgaA, Darmstadt, Germany 

HBSS    Gibco, Karlsruhe, Germany 

IFA     Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

IFN-γ     PeproTech, London, UK 
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isopropanol    Merck KgaA, Darmstadt, Germany 

ketamine   Inresa, Freiburg, Germany 

LFB     BDH Laboratory supplies, VWR Int. Ltd., Poole, UK 

lithium carbonate   Merck KgaA, Darmstadt, Germany 

nickel ammonium sulfate  Merck KgaA, Darmstadt, Germany 

Mayer‟s hemalum   Merck KgaA, Darmstadt, Germany 

May-Grünwald solution Merck KgaA, Darmstadt, Germany 

methanol    Merck KgaA, Darmstadt, Germany 

MK-801   Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

monastral blue   Copper (II) phthalocyaninetetrasulfonic acid tetrasodium 

    salt, Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

mounting-medium  Fluorescence-mounting-medium, Dako 

mycobacteria tuberculosis H37 RA, Difco Laboratories, Augsburg, Germany 

NaCl     Merck KgaA, Darmstadt, Germany 

0.9% NaCl solution   B. Braun, Germany 

naphtyl ethylene   Merck KgaA, Darmstadt, Germany 

oATP    Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

Proteinase K   Sigma-Aldrich Chemie GmbH, Steinheim, Germany 

TUNEL   Roche Diagnostics GmbH, Mannheim, Germany 

Tween 20   Merck KgaA, Darmstadt, Germany 

 

A3  Equipment/instrument manufacturers 

 

24-well plates    Greiner Bio-One GmbH, Frickenhausen, Germany 

12-well plates  Greiner Bio-One GmbH, Frickenhausen, Germany 

96-well plates    Greiner Bio-One GmbH, Frickenhausen, Germany 

AnalysisTM     software, University of Wisconsin, Madison, WI 

cell strainer    (40µm) BD Biosciences, Heidelberg, Germany 

combi screen 3 plus analyticon, Lichtenfels, Germany 

cytospin centrifuge  Shandon Cytospin 4, Thermo Scientific, Dreieich,  

    Germany 

ELISA reader   Model 680, Biorad, Munich, Germany 

fluorescence reader  Safire, Tecan, Mainz, Germany 
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glass slides    Menzel, Braunschweig, Germany 

glass capillary   B. Braun, Germany 

GraphPad    software, San Diego, CA, USA  

incubator    Cellstar, Nunc GmbH, Wiesbaden, Germany 

micro osmometer  type OM806, Vogel/Löser, Berlin, Germany 

microscope   (light), BX41, Olympus, Europa GmbH, Hamburg,  

    Germany 

microtome    Leica, Wetzlar, Germany 

microwave    Bosch, Gerlingen-Schillerhohe, Germany 

Neubauer   (counting chamber) Brand GmbH & Co KG, Wertheim, 

    Germany 

sonicator    SonoPuls, Bandelin Electronics, Berlin, Germany 

stereotactic device   Stoelting Co, IL, USA  

tissue processor   TP 1020, Leica, Wetzlar, Germany 
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