
Modeling and Querying

of Distributed XML Data

in Presence of 3rd Party Links

Dissertation

zur Erlangung des Doktorgrades

der Mathematisch-Naturwissenschaftlichen Fakultäten

der Georg-August-Universität zu Göttingen

vorgelegt von

Oliver Fritzen

aus Trier

Göttingen

im November 2007

2

Referent: Prof. Dr. rer. nat. Wolfgang May, Georg-August-Universität Göttingen
Korreferent: Prof. Dr.-Ing. habil. Kai-Uwe Sattler, Technische Universität Ilmenau

3

Abstract

XML (short for eXtensible Markup Language) is a meta-language for
the representation of digital data. XML has had an enormous impact
on modern computer science and IT industry since its advent in
1997, for several reasons: XML is simple and easily accessible. Using
Unicode as encoding, XML can be viewed and authored/edited with
common text editors, and due to the context-free and well-formed
structure of XML document types, it is easy to provide efficient
parsers for processing XML documents. Also, XML’s concept of
definable document types enables for a structured representation of
almost arbitrary digital data, with the document type modeling the
domain of the data, which makes XML a very powerful and flexible
standard for data representation, particularly regarding the Web.

The XLink standard is an extension to XML for defining references
between XML documents, inspired by the hyperlink concept from
hypertext. XLink defines two types of links: Simple Links are uni-
directional links from one document to another, similar to HTML
hyperlinks. Extended Links create graph-based relationships (arcs)
between portions of XML (resources) over multiple XML documents.

Within the LinXIS project, models and query evaluation for XLink
have been investigated: in a logical data model, a Simple Link is given
the semantics of an embedded view that “imports” the referenced
data from a remote document into the link-defining document. The
participating XML data, together with the Simple Links define a
virtual instance (a single-document view on the distributed data)
according to the logical data model.

Extended Links define relations between XML resources, but in con-
trast to Simple Links, they are not defined inside the participating
resources but apart of them. This allows to define a semantics for
Extended Links, with an Extended Link defining views that combine
and extend the participating resources from a 3rd party perspective,
without need for write access to them, and thus extending the Simple
Links logical data model.

The above described logical data model provides a semantics for the
evaluation of XPath queries over distributed XML data: A query
may be evaluated not on a (physical) XML document, but on the
virtual instance defined by the given Simple and Extended Links.
The query evaluation may “follow” along a Simple Link, continuing
the evaluation process on the referenced, physically remote data.
For Extended Links, queries can be evaluated on the integrated view
combining the sources referenced by an Extended Link, based on the
3rd party semantics of the link.

A previous PhD thesis, which also emerged from the LinXIS project,
introduced the data model for Simple Links and investigated tech-

4

niques and algorithms for XPath query evaluation on the linked
XML data. As part of the work, the data model was implemented
on base of the Open Source XML database system eXist, thus cre-
ating a Simple-Link-enhanced XML database prototype.

The present work extends the focus from Simple to Extended Links :
The work includes a formal description of both Simple Link and
Extended Link semantics, based on a specification as an abstract
data type (ADT), and providing Extended Links with a 3rd Party
Link semantics. Also, the basic concepts for query evaluation with
respect to 3rd Party Links are investigated. The algorithms as well
as the logical data model for 3rd Party Links are implemented by
further enhancement of the eXist-based prototype, providing the
query evaluation unit with that semantics. The prototype is tested
within a case study, evaluating the prototype’s functional behavior
and performance. The case study is followed by a discussion of the
proposed 3rd Party Link approach, addressing its applicability in
terms of its design, performance and its relevance within a rapidly
evolving Web infrastructure. The work is completed by a conclusion
addressing the previously discussed issues, and giving an overview
over related research as well as over perspectives and further work.

5

Abstract (Deutsch)

XML (für eXtended Markup Language) ist eine Metasprache zur
Darstellung digitaler Daten, die seit ihrer Standardisierung 1997 in
kurzer Zeit extrem populär geworden ist, sowohl im akademischen
als auch im industriellen Anwendungskontext. Dafür gibt es eine
Anzahl von Gründen: XML hat eine niedrige Einstiegsschwelle in
Bezug auf die notwendige Tool-Infrastruktur und Lesbarkeit durch
Menschen, da XML Unicode als Darstellungsform benutzt und mit
üblichen Texteditoren geschrieben und gelesen werden kann. Außer-
dem ist die kontextfreie Grammatik eines Dokumenttyps zusammen
mit der strikten Serialisierungsvorschrift der Wohlgeformtheit ef-
fizient mit Parsern verarbeitbar. Darüber hinaus bietet das Konzept
der frei definierbaren Dokumenttypen die Möglichkeit, nahezu be-
liebige Daten strukturiert darzustellen und über die Grenzen von
Plattformen, Softwareinfrastrukturen oder bestimmter Formate hin-
weg auszutauschen, insbesondere über das Web.

XLink ist eine vom World Wide Web Consortium standardisierte
Syntax um XML-Dokumente mit einer Hyperlink-Funktionalität aus-
zustatten. XLink definiert zwei Arten von Links: Simple Links
sind unidirektionale Verbindungen von einem Dokument in ein an-
deres, vergleichbar mit dem HTML-Hyperlink. Die komplexeren Ex-
tended Links verknüpfen Resourcen innerhalb verschiedener XML-
Dokumente miteinander durch gerichtete Graphstrukturen (arcs).

Der XLink -Standard definiert für solche Links lediglich eine Syntax ;
eine Semantik bekommt ein Link erst im Kontext einer Anwendung
wie der Anfragesprache XQuery oder der Transformationssprache
XSL. Für beide existiert allerdings keine – zumindest keine standar-
disierte – XLink -Semantik.

Im Rahmen des Forschungsprojektes LinXIS sind Modelle und die
Auswertung von Anfragen in Bezug auf XLink untersucht worden:
Man kann einen Simple Link als Definition einer eingebetteten Sicht
betrachten, die Daten aus einem referenzierten Dokument in das
einbettende Dokument einbindet. Die beteiligten – physischen –
Dokumente und die Simple Links werden durch diese Link-Semantik
zu einer einzigen virtuellen Instanz verschmolzen; die Link-Semantik
definiert also ein logisches Datenmodell.

Extended Links repräsentieren Beziehungen zwischen XML-Resour-
cen, nur sind Extended Links nicht wie Simple Links im einbetten-
den Dokument definiert, sondern unabhängig von den referenzierten
Resourcen in einem eigenen Dokument. So ist es möglich, von drit-
ter Seite aus Sichten über mehrere beteiligte XML-Dokumente zu
beschreiben, ohne auf die Dokumente selber Schreibrechte haben zu
müssen. Das logische Datenmodell für Simple Links wird also er-
weitert auf Extended Links, denen so eine 3rd Party Link -Semantik
zugeeignet wird.

6

Das oben beschriebene logische Datenmodell liefert eine Semantik
zur Auswertung von XPath-Anfragen über räumlich verteilte, mit
XLink verknüpfte XML-Daten: Anfragen werden nicht auf dem phy-
sischen Datenmodell des angefragten Dokumentes, sondern auf der
zugehörigen, durch die beteiligten Dokumente und Links definierten
virtuellen Instanz ausgewertet. Die Auswertung “läuft” entlang
eines Simple Links in ein anderes Dokument und wird dort fort-
gesetzt. Ebenso können Anfragen auf einer integrierten Sicht aus-
gewertet werden, die durch Extended Links mit 3rd-Party-Semantik
definiert wird.

In einer früheren, im Rahmen von LinXIS entstandenen Dissertation
wurde ein Datenmodell für Simple Links beschrieben und Verfahren
und Algorithmen zur Auswertung von XPath-Anfragen auf diesem
Datenmodell untersucht. Als Teil der Arbeit entstand eine Im-
plementierung des Datenmodells auf Basis des Open-Source-XML-
Datenbanksystems eXist, so dass der dadurch entstandene Prototyp
in der Lage ist, Anfragen auf mit Simple Links verknüpften Daten
gemäß dem Datenmodell auszuwerten.

In der vorliegenden Arbeit wird der Fokus auf Extended Links er-
weitert: Teil der Arbeit ist eine formale Beschreibung eines gemein-
samen Datenmodells für Simple Links und Extended Links (letztere
versehen mit 3rd-Party-Link-Semantik), spezifiziert in Form eines
abstrakten Datentypen (ADT). Darüber hinaus werden grundlegende
Aspekte der Anfrageauswertung in Bezug auf die 3rd-Party-Link-
Semantik untersucht. Die beschriebenen Techniken und Algorith-
men die das obige logische Datenmodell implementieren, werden
prototypisch umgesetzt. Dazu wird der bereits vorhandene Simple
Link -fähige, eXist-basierte Prototyp weiterentwickelt. Der so ent-
standene neue Prototyp wird in einer Fallstudie auf Funktion und
Leistung hin untersucht. Anschließend wird der gesamte 3rd-Party-
Link-Ansatz kritisch diskutiert in Bezug auf Design, Leistungsfähig-
kei und Relevanz im Kontext einer sich kontinuierlich verändern-
den Web-Infrastruktur. Schließlich wird diese Diskussion in einem
Fazit abschließend bewertet. Hier wir auch ein zusammenfassender
Überblick über andere Arbeiten auf dem Gebiet sowie über Perspek-
tiven zur Weiterentwicklung und Umsetzung gegeben.

Contents

1 Introduction 1

2 Preliminaries 9
2.1 XML for Documents and Data 9
2.2 XML, HTML and Hyperlinks . 10
2.3 Linking XML Data . 11

2.3.1 XPointer . 12
2.3.2 XLink Syntax . 13
2.3.3 Remarks . 18

3 Querying XML Data with Simple Links 19
3.1 Query Support for XLinks . 19
3.2 Applications: Data Integration and Splitting Documents 22
3.3 Handling Simple Links . 23

3.3.1 Modeling Directives: dbxlink:transparent 23
3.3.2 L-Directive and R-Directive 25
3.3.3 XLinks and Querying . 26

4 Querying XML Data with Extended Links 29
4.1 Perspectives forward, inverse, relation 29
4.2 Arc Roles in Different Perspectives 34
4.3 3 Perspectives – 3 Modeling Directives 34
4.4 Modeling Directives for the relation Perspective 35

4.4.1 The dbxlink:transparent Directives for relation perspective . 35
4.4.2 Cardinality Directives for relation 39

4.5 Modeling Directives for forward and inverse 40
4.5.1 Placement for forward and inverse 41
4.5.2 Placement for forward and inverse 44
4.5.3 Allowed/Default transparent Values for forward and inverse 44

5 The Logical Data Model for Simple Links 47
5.1 The Data Model as an Abstract Data Type 47

5.1.1 Signatures . 48
5.1.2 Data Model: Axioms . 51

i

ii CONTENTS

5.1.3 Operators φ and φ∗ . 56
5.1.4 Transformation Start . 57
5.1.5 Signature and Definition of γ 57
5.1.6 Signature and Definition of γLR 57
5.1.7 Signature and Definition of γL 58
5.1.8 Signature and Definition of γR 60

5.2 Finite Data Model, Cycle Detection and Link Bombs 60
5.2.1 Not Well-Defined Instances 61

6 The Logical Data Model for 3rd Party Links 63
6.1 Description of the Mapping for the relation Perspective 63

6.1.1 Definition of γX . 64
6.2 Extended Links – forward and inverse Perspective 70

6.2.1 Placement Value determines Processing Order 71
6.2.2 Signature and Definition of φ(LB) 72
6.2.3 Signature and Definition of γ(LB) 73

6.3 Three Kinds of Transparency for 3rd Party Links 74
6.3.1 Concurrent View Definition 75

6.4 The Flight Schedule Example . 80
6.4.1 Relation Perspective . 80
6.4.2 Forward Perspective . 83
6.4.3 Inverse Perspective . 90

7 Querying wrt. 3rd Party Links 95
7.1 Evaluating 3rd Party Links in Distributed XML Environments . 95

7.1.1 Server Infrastructure . 95
7.2 Implementing Transparency . 97

7.2.1 Outline: Three Steps . 97
7.2.2 Creating and Using Linkbase Indexes 99
7.2.3 Query Shipping versus Data Shipping 103
7.2.4 The Algorithm . 105
7.2.5 Resolving an Arc . 111

7.3 Implementation of the Prototype 113
7.3.1 The eXist Database System 113
7.3.2 Software Architecture . 115
7.3.3 Database Architecture . 115
7.3.4 XPointer/XInclude Support 117
7.3.5 Version . 117

8 Case Study: the “Flightbase” 119
8.1 Distributing the Mondial Database 120
8.2 Generating the Linkbase . 120

8.2.1 IATA-Code . 121
8.2.2 Description of the Integration Process 121

8.3 Hardware Configuration and Test Setup 124
8.3.1 Hardware . 124

CONTENTS iii

8.3.2 Test Setup . 124
8.4 Query Comparison . 126

8.4.1 Query I: Germany to India 126
8.4.2 Query II: All Connections from Hannover to Lisbon . . . 128
8.4.3 Query III: Munich to Auckland without Stopover 129
8.4.4 Query Environment . 131

8.5 Evaluation and Summary . 132
8.5.1 Query Results . 132
8.5.2 Query II: All Connections from Hannover to Lisbon . . . 134
8.5.3 Query III: Munich to Auckland without Stopover 135
8.5.4 Performance Evaluation 136
8.5.5 Functionality Evaluation 137
8.5.6 Summary . 139

9 Analysis and Discussion 143
9.1 Browsing the Web . 144
9.2 Querying the Web . 145

9.2.1 Searching the Web: State of the Art 145
9.2.2 The Semantic Web . 145
9.2.3 The Social Web . 146
9.2.4 XPath – The Right Choice? 146
9.2.5 Implementation Aspects 147

9.3 Discussion: Facing the Objections 148
9.3.1 Objection 1: There is no XML Web 148
9.3.2 Objection 2: XPath is not Adequate for Web-Querying . 149
9.3.3 Objection 3: 3rd Party Links are prohibitively expensive . 149

9.4 Proposal for an Improved Architecture 149

10 Conclusions and Outlook 153
10.1 Related Work . 153

10.1.1 Views in XML . 153
10.1.2 Querying Distributed XML Data 154
10.1.3 XLink . 154
10.1.4 Summary on Related Work 154

10.2 Contribution . 155
10.3 Outlook . 156

iv CONTENTS

Chapter 1

Introduction

XML – One Among Many

For representing and modeling data, lots of languages, specifications, standards,
formalisms and notations exist. UML class diagrams, for example, are used for
modeling object-oriented software systems. Entity-Relationship diagrams pro-
vide a data model for describing general-purpose data, which can be easily
transformed into the relational schema of a relational database system. There
are semistructured data models like XML. RDF serves for expressing relations
between Web resources, OWL is a language for defining and using ontologies.
In these terms, XML is one among many.

XML – One Among Few

After its publication in 1998, XML quickly gained widespread acceptance as well
in the research community as among commercial and private software creators.
On one hand, XML is very simple to use: an XML document can be written
using a plain text editor, since its file format is Unicode. Which means: au-
thoring access is simple. It has a fixed structure consisting of well-formed tags
and attributes, similar to HTML, but without HTML’s syntactic fault tolerance.
With that, it is easy to create simple, performant and highly customizable XML
parsers (which makes reading/processing simple). On the other hand, XML of-
fers a high degree of flexibility, since each document type can be customized to
a specific data domain: the vocabulary’s items represent the basic concepts of
the given domain, rules define relationships between these concepts. Consider
e.g. a domain “book”. A document type book could have a vocabulary covering
the basic concepts of a book: book, chapter, section, paragraph, author, etc., as
well as a set of rules describing that a book has one or more authors, it has a
number of chapters, each chapter has a number of sections, each section consists
of a number of paragraphs, each paragraph contains portions of the book’s lit-

1

2 CHAPTER 1. INTRODUCTION

eral text body. Each document type together with the XML syntax defines a
language for describing data from a certain domain, with a “word” in such a
data domain language being called an XML instance or document.

Summarizing the above, XML serves as a meta language for data representa-
tion with highly complex – and as well performant — querying and manipulation
mechanisms, as well as with low requirements regarding the essentially needed
tool infrastructure. Which makes XML one among few.

XML – Syntax and Data Model

XML documents have a strict syntax, based on a hierarchical structure of well-
formed tags, attributes and literal values. The concepts of elements (e.g. book)
having text and/or other elements, e.g. title, chapter) as their contents, of at-
tributes (attributed to an element) and literal values (inside attributes or text
children of an element), along with some additional types as entities, comments
and namespaces altogether imply a hierarchical data model: an XML document
represents a tree data structure, with the tree’s nodes being elements, attributes,
text nodes etc.

XML documents have also a text representation: Elements are represented
by their name, given in pointy brackets: <book>. . . </book> denotes a book
element, with the element’s content being enclosed between the opening tag
<book> and the closing tag </book>. Attributes assigned to an element are
written as key-value pairs as part of the opening element:
<book isbn=”978-3518188187”>. . . </book>.

When accessing an XML document, one can follow the textual representa-
tion of the document (e.g. in a file), or one can follow the tree data model of
the document1. When accessing a graph-based data model (such as a tree), the
access is no more sequential, as for text files, but navigation-based on notions as
neighbor (graph) or parent-child (tree) relationships. Query or transformation
engines as well as certain parsers2 operate on basis of the XML data model
instead of its textual representation. The XPath [XPa99] Data Model extends
the XML data model by introducing so-called axes, which enable for navigation
inside the document tree. E.g. the child axis of an element yields all element
and text children as result. Other axes are attribute, parent, descendant or self.

Linking XML – The XLink Standard

XML Documents are monolithic: one single document can be seen as a single
file. HTML documents are also monolithic in some way, since each HTML

1The textual representation induces the data model tree, and vice versa, the textual rep-
resentation can be obtained by a pre-order traversal of the tree structure.

2For XML, two families of parsers exist. DOM [DOM98] parsers adhere to XML’s Doc-
ument Object Model, where SAX (Simple API for XML) parsers refer to XML’s serialized
textual representation.

3

document is located in a single HTML file3. But within hypertext, connections
between documents can be expressed using hyperlinks. Everyone has an intuitive
idea of the concept of a hyperlink, since hyperlinks are a part of HTML, the
document language of the ubiquitous World Wide Web. Hyperlinks are followed
by clicking them in a browser. So, would it make sense to adopt the concept of
the hyperlink for the XML world? What would be its benefits? What would be
its properties? What syntax and what kind(s) of semantics would a hyperlink
have?

In 1999, the World Wide Web Consortium [W3C] published the XLink rec-
ommendation [XLi01b], which defines a link as “an explicit relationship between
resources or portions of resources”. Simple Links reference an XML resource
from a document (more precisely: from the linking element, which contains the
Simple Link markup). An XML resource is another document, or part(s) of
another document. Extended Links represent complex relationships between re-
sources. Resources can be either locally defined inside the Extended Link, or via
locators using XPointers pointing to remote resources. The relationships itself
are modeled by arcs, which are unidirectional connections between resources.

A

•

B

b

Figure 1.1: Simple Link – reference from instance A to resource b in instance B

Simple Links (see Figure 1.1) always “start” in the document where they are
defined, and point to some remote resource. Extended Links may contain locally
defined resources, locators that point to to remote resources, and arcs connecting
these resources. In contrast to Simple Links, Extended Links are not defined
inside the documents that they link together, but outside of these in a linkbase
document (see Figure 1.3). This can be useful for linking remote XML data
with no authoring / write access granted.

Link Expansion and Logical Data Model

When bringing Simple Links into play, the question comes up how to integrate
Simple Links into the XML data model. Are links integrated into the data
model as a novel kind of relationship, or will they rather be mapped to existing
relationships as child, attribute etc.? The first option demands an explicit way

3For the sake of simplicity, techniques like HTML frames, which bring together multiple
HTML documents in one screen presentation, are not considered here.

4 CHAPTER 1. INTRODUCTION

A

•

B

b

(physical instances A and B)

A

b

(virtual instance A’)

Figure 1.2: Simple Link – Mapping from physical to logical data model

of navigation along links. E.g. XPath needs to be equipped with an additional
XLink axis, or some kind of dereferencing function, for being able to follow and
evaluate XLink references.

The second option is to blend the link results transparently into the current
data model, right into the position where the Simple Link element was defined.
The linking relation to a (previously remote) resource is mapped into a regular
relation in the XML data model, such as child-of, neighbor-of or attribute-of.
This resembles cutting the referenced material out of the linked remote tree and
pasting it into the currently navigated tree, thereby expanding the Simple Link
element (see Figure 1.2).

Extended Link

A

a

B

b

arc

from-locator to-locator

Figure 1.3: Extended Link with two locators identifying remote resources, and
one arc connecting both resources

The first option, explicit navigation, brings an additional notion of rela-
tionship into the XML modeling. In contrast to that, the approach involving

5

transparent expansion of links makes it possible to reference objects from re-
mote instances as if they were locally defined. In terms of data integration and
data distribution scenarios, the latter approach seems the more sophisticated
and promising one, since it enables for sharing XML data across multiple places
without regarding the concrete location of a requested piece of data. This can
be useful in scenarios of distributed authoring or data fragmentation. Generally,
it seems to be a more flexible and superior approach toward the modeling capa-
bilities, to distinguish between data items in terms of their intrinsic properties
instead of in terms of their physical locations on the Web.

Note that the “transparent approach” implies a mapping from XML to XML:
XLink’s Simple Links are syntactically described in XML. The structure induced
by the original XML plus the link information is also XML, since all links are
transformed into plain XML constructs. This motivates the definition of the
following terms:

transparent link expansion: an XLink element expresses a link relation to
some remote XML resource. When traversing such a link element, the re-
mote result is transparently blended into the currently navigated instance,
with the remote data being seamlessly integrated into the traversed in-
stance. The link is said to be expanded.

physical and virtual instance: when traversing an XML document contai-
ning XLinks (the physical instance) from top down, expanding every found
XLink, the completely expanded result instance is called virtual instance4.

physical data model and logical data model: The rules of how to map sets
of physical instances to a virtual instance by expanding the contained
XLinks provide the semantics of the logical XLink data model.

Extended Links and 3rd Party Semantics

In [BFM06a], the “transparent approach” was described including both a speci-
fication of its logical data model and the description of a prototypical implemen-
tation for XLink Simple Links. For Extended Links, the situation is different
due to their different structure. Since Extended Links refer to resources in re-
mote documents, and since an Extended Link’s arc is a directed connection with
a from and a to resource, an arc’s impact on the logical data model depends on
the traverser’s perspective.

• The document containing the from-resource is traversed (document A in
Figure 1.4). When data of the from-resource is traversed, the to-resource
data is transparently blended into the traversed document. Thereby, the
from-resource’s document, the to-resource and the linkbase together spec-
ify a virtual instance (document A’ in Figure 1.4). This perspective is
called the forward perspective.

4Note that such a virtual instance is not necessarily finite, since it may contain cycles.
More on this issue can be found in Section 5.2.

6 CHAPTER 1. INTRODUCTION

Extended Link

A

a

B

b
arc

fro
m-lo

ca
tor to-locator

A

a

b

(Extended Link + physical instances A and B) (virtual instance A’)

Figure 1.4: Extended Link (i) – logical data model in forward perspective

Extended Link

A

a

B

b
arc

fro
m-lo

ca
tor to-locator

B

b

a

(Extended Link + physical instances A and B) (virtual instance B’)

Figure 1.5: Extended Link (ii) – logical data model in inverse perspective

• The document containing the to-resource is traversed (document B in Fig-
ure 1.5). Here, the from-resource data is blended into the to document,
analogue to forward perspective. Since both perspectives can be consid-
ered symmetrical to each other (with interchanged from and to ends), this
perspective is named inverse perspective.

• A third perspective is anchored to the linkbase: When the linkbase itself
is traversed, arcs inside Extended Links can be expanded by blending the
referenced remote resources into the arc element. Since this perspective
creates a view based on the relation between the from and to resources
that the arc establishes, it is called the relation perspective (Figure 1.6).

7

Extended Link

A

a

B

b
arc

fro
m-lo

ca
tor to-locator Extended Link

a b

(Extended Link + physical instances A and B) (virtual instance)

Figure 1.6: Extended Link (iii) – logical data model in relation perspective

Perspectives forward and inverse are well-suited for creating views (as they are
known from relational database systems) on remote, read-only data sources on
the Web, while the perspective relation can be seen as an extension of the logical
model induced by Simple Link semantics, since the link information is located
in the traversed document itself.

This Work as a Part of the LinXIS Project

This work is embedded into the LinXIS project [Lin], which focuses on semantics
for XLink-connected XML data regarding the evaluation of queries. A number
of publications exist which present and document the research work and the
achieved results throughout the LinXIS project, with two of them being of par-
ticular relevance for this work: “Handling Interlinked XML Instances on the
Web” [BFM06a] contains a formal description of the logical data model for
Simple Links, and “Querying along XLinks in XPath/XQuery: Situation, Ap-
plications, Perspectives” [BFM06b] describes evaluation techniques for Simple
Links, representing two essential building blocks in the scope of this work.

Another work which emerged from the LinXIS project, the PhD thesis of my
then-coworker Erik Behrends [Beh06], is strongly linked to this one: in Erik’s
thesis, the semantics and evaluation techniques for Simple Link-connected, dis-
tributed data was investigated. Part of his work was a prototype implementing
the Simple Link data model by extending the Open Source XML database sys-
tem eXist [exi].

This work extends the previous research by (i) giving a formal description of
the logical data model as an abstract data type, covering Simple Links as well
as Extended Links, by (ii) specifying a 3rd Party Link semantics for Extended
Links, and by (iii) investigating query evaluation techniques for 3rd Party Links,

8 CHAPTER 1. INTRODUCTION

validated by a proof-of-concept implementation of the data model and query
evaluation, with an implementation based on the already existing Simple Link-
aware prototype.

This work, as part of the LinXIS project [Lin], has been supported by the
Deutsche Forschungsgemeinschaft (DFG).

Outline

In 2, an short recapitulation of the basic notions of XML, XPath, XLink and
XPointer is given. 3 conceptually describes the semantics for navigating along
XLink Simple Links. 4 does the same for XLink Extended Links. 5 specifies the
logical data model for Simple Links formally by describing it as an abstract data
type. In the same manner, 6 defines the logical data model for XLink Extended
Links. 7 describes the algorithmic concepts of processing Extended Links in
an XML database system, and describes the software prototype implementing
these concepts. 8 contains a small case study which applies the Extended Link
approach to a real-world example in shape of an airline schedule containing
worldwide flight connections, and delivers some statistical query runtime results.
9 analyzes and discusses the 3rd-Party-Link approach critically considering its
design, its performance behavior, and its function regarding the appropriateness
and competitiveness in the context of modern Web infrastructure. The thesis is
concluded by 10, pointing out the contribution of the proposed 3rd Party Link
approach in terms of its concept and of its realization and giving an overview
over related research done in that area, as well as giving an outlook over further
work and perspectives.

Chapter 2

Preliminaries

The purpose of this chapter is to give a brief introduction to the XML-related
concepts XPath and XPointer, which are necessary for understanding the XLink
language. Also, the concept of links in HTML is shortly revisited, with a focus
on the similarities between HTML Hyperlinks and XLink, since historically the
idea of the HTML hyperlink served as a blueprint for the XLink concept.

2.1 XML for Documents and Data

Since its publication in 1998, XML [XML98] has quickly become a central means
for data integration and exchange, especially in application areas with hetero-
geneous data sources, with the most heterogeneous application of all being the
World Wide Web itself.

XML is a meta language for representing data in a semi-structured fashion.
The term semi-structured means that the data has a less rigid structure than
e.g. a relational database (whose structure is given in the database schema), but
it has more structure than raw data (for example a plain text file containing the
complete text of a book, but without any markup or formatting structure denot-
ing chapters, pages etc.1). This intermediate approach makes XML an appro-
priate choice for exchanging data between data sources as diverse as relational
databases (with database schemas), any kind of Web Services (with a result
adhering to some return type specification), or raw character data (adhering to
no schema at all). So, XML enables for data exchange between heterogeneous
data sources.

On the other hand, XML has initially been designed as an easier manageable
alternative to the Structured General Markup Language (SGML), a document
description meta language2. From an abstract point of view, a document con-
sists of a sequence of atomic data items, as characters and numeric values,

1For a profound definition of the term “semi-structured”, please refer to [Abi97]
2The design of XML can be seen as a stripped-down version of SGML, refining the rich,

but extremely complex SGML to an essential subset.

9

10 CHAPTER 2. PRELIMINARIES

together with some kind of a structure, denoted as markup adhering to a docu-
ment type. A quite prominent markup language (and an application of SGML)
is HTML (see Section 2.2), with HTML documents being the syntactical basis
of what is commonly denominated as “the Web”.

So, XML can be seen on one hand as a data representation meta language,
and on the other hand as a meta language for document processing. The terms
schema and document type describe more or less the same concept.

2.2 XML, HTML and Hyperlinks

Meta
Language SGML XML
Level

Document
Type HTML XHTML Mondial-Distributed SVG
Level

XLink

Document index.html index.xhtml cities-B.xml floorplan.svg
Level

Purpose Describes hypertext describes geographical describes vector
document data (cities in Belgium) graphics (a floor plan)

refined subset

defined in defined in defined in defined in

defined in

defined in defined in

defined in

has purpose
has purpose has purpose has purpose

uses uses

Figure 2.1: Relation of XML, SGML, HTML and XLink

XML and HTML are often (and some say, erroneously) considered similar
because of their similar appearance: serialized as a data format, both con-
tain textual information (PCDATA) interspersed with markup elements,
given as tags in pointy brackets. However, there are differences in syn-
tax and concept. HTML provides a fixed vocabulary of markup elements
for describing hyperlinked Web documents with the purpose of being read
(“browsed”) online with a Web browser. Thus, HTML is a document type.
XML, in contrast, is a meta language, allowing to define its own document
types. Conceptually, XML is a follow-up to SGML rather than to HTML.

Nevertheless is the perception of XML as a successor of HTML still quite
common, which is to some part owed to the historical background: one

2.3. LINKING XML DATA 11

design goal for XML was to supply a markup language for the Web which
was more flexible than HTML (since HTML had a fixed vocabulary), and
which had a strict separation of content and layout (since HTML inter-
mixes both, which does not enable for a clean conceptual modeling). Thus,
XML documents were initially considered to be “consumed” in a brows-
ing context by an XML browser software. However, the practitioner’s
perspective on the usage of XML has shifted quite a bit away from the
browsing context since these days.

HTML and Hyperlinks: Hyperlinks enable the author of an HTML docu-
ment to place references to other Web resources in the document, which
then can be followed by clicking on the textual link representation in the
browser. In this manner, HTML documents on the Web are connected by
unidirectional edges or links. With hyperlinks, HTML contains a simple
and robust mechanism for representing links from one document to either
another document, or to some other resource, as text, image, video or
audio files, which can possibly reside on a remote server. A resource is
located by its URL, its Uniform Resource Locator [URL]. URLs to docu-
ments can be enhanced with a fragment identifier pointing to a pre-defined
anchor inside the referenced document (see Figure 2.2).

An overview over the relationships between XML, SGML, HTML, XML and
XLink, together with some example document and document types motivating
the meta structure, is given in Figure 2.1.

. . .

<!– doc.html –>

. . .
<h2>

NEWS
</h2>

. . .

Figure 2.2: HTML Link with fragment identifier to anchor element

2.3 Linking XML Data

In contrast to HTML, native XML documents are self-contained without built-
in features for creating links to other XML resources. Since XML initially was
thought to be used also in a browsing context, the need was seen to equip XML
also with a concept for defining hyperlinks. As the eXtensible in XML suggests,
the hyperlink functionality was not built into the XML standard, but XLink

12 CHAPTER 2. PRELIMINARIES

was defined as a syntactical extension3, which could be adopted by any XML
document type to express hyperlinks between XML documents.

A first draft on “Linking XML” was formulated in 1997 [XLD97]. The
XLink specification itself reached recommendation status in 2001, presenting
a framework for linking of XML documents, featuring the notions of Simple
Links and Extended Links. Simple Links are similar to HTML links in the
point that they provide a unidirectional reference into another XML document,
specified with a URI. But where for HTML links, fragment identifiers support
only navigation to a pre-defined anchor, XLink takes advantage of a number
of more sophisticated fragment identifier mechanisms, the most expressive one
being XPointer [XPt02a].

<!– mondial.xml –>

. . .
<country id=”NZ”>

<name>New Zealand</name>

. . .
</country>

. . .

Figure 2.3: XLink with XPointer using shorthand addressing

2.3.1 XPointer

XPointer [XPt02a] is a W3C standard for identifying fragments inside XML
data instances. This enables for creating links to complete XML documents,
to document fragments (which can even be contiguous text regions inside a
document). There are three ways for identifying XML fragments: via ID, via
child positions, or with XPath-based navigation:

• shorthand pointers (formerly “barenames”) identify a single element by
the – unique – value of its ID attribute (see Figure 2.3).

• The element() scheme (formerly “child sequences”) identifies a single el-
ement by the position of its ancestors. E.g. doc.xml/1/7/2 means the
2nd child of the 7th child of the root element of document doc.xml (see
Figure 2.4). Starting point is either the document root node or a single
element identified by a shorthand pointer expression.

3The term “syntactical extension” shall not suggest that XLink extends the XML syntax
– it does not. Instead, it denotes that XLink is not an own document type, but rather “some
portion of syntax”. In few words, its just a number of attribute definitions, which can be
adopted by every document type. When added to an XML element, the attributes describe a
hyperlink syntactically, but not semantically. In Section 2.3.2, the XLink syntax is described
in detail.

2.3. LINKING XML DATA 13

• with the xpointer() scheme, a fragment is identified by a XPath-based
navigational expression (see Figure 2.5).

<!– mondial.xml –>

. . .
<country id=”NZ”>

<name>New Zealand</name>

. . .
</country>

. . .

Figure 2.4: XLink with XPointer using element() addressing scheme

The xpointer() scheme is in some sense superior to the other schemes, since
it functionally comprises the other two: every element() or shorthand pointer
expression can be rewritten into an xpointer() expression, but not vice versa.
xpointer() in its function and syntax is an extension to XPath [XPa99], which
was developed as a generic navigation mechanism for XML Query and Trans-
formation Languages.

XPointer (or, to be precise, the xpointer() scheme defined as part of the
XPointer language [XPt02a]) and XPath differ in two significant points:

• location versus node: in XPointer, the concept of nodes, node types and
node-sets is generalized to locations, location types and ranges, to enhance
navigation inside and across neighboring text nodes (e.g. for marking con-
tiguous text regions inside an XML document and referencing them with
an XPointer).

• root nodes: in contrast to XPath, XPointer allows the root node of the
referenced XML data instance to have arbitrary types and numbers of
node children, instead of a single root element node, in order to allow
expressions to address location sets inside arbitrary external parsed en-
tities (which are not necessarily in tree structure) as well as well-formed
documents.

2.3.2 XLink Syntax

XLink enables for creating links between XML resources. The XLink language
is expressed in XML itself. The two existing linking constructs are Simple Links
representing unidirectional connections between an XLink element and a data
from a remote instance, and Extended Links using arcs to connect local resources
and/or remote resources which are identified with locators4.

4Further reading: [WL02] give a comprehensive overview on the XLink/XPointer area. The
official W3C XLink recommendation [XLi01a] serves as authoritative source on the XLink

14 CHAPTER 2. PRELIMINARIES

< a href=”http://. . . /mondial.xml# xpointer(//country[name=‘New Zealand’]) ”/>

<!– mondial.xml –>

. . .
<country id=”NZ”>

<name>New Zealand</name>

. . .
</country>

. . .

Figure 2.5: XLink with XPointer using xpointer() addressing scheme

Simple Links

Simple Links are similar to HTML <a> (= anchor) elements with href attributes.
An XLink Simple Link element is equipped with the additional XLink attributes
xlink:type and xlink:href. xlink:type is the attribute which makes a regular XML
element be an XLink element. therefore, it is mandatory for all kinds of XLink
elements. The xlink:href attribute contains a URI identifying a remote XML
resource.

Example 1 Consider an XML Element country which contains data about a
specific country, e.g. New Zealand. Consider a remote XML instance cities-
NZ.xml containing geographical data about cities in New Zealand. Then, the
country element could contain a reference to the city data of its own capital
Wellington, which is residing at the remote cities-NZ.xml instance. So, the in-
formation that Wellington is the capital of New Zealand can be expressed by
referencing the city element of Wellington from the country Element of New
Zealand, without need of duplicating the city data:

<country car code=”NZ”>

<name>New Zealand</name>

<capital xlink:type=“simple”
xlink:href=“http://. . . /cities-NZ.xml#xpointer(//city[name=‘Wellington’])”/>

. . .
</country>

The XLink attributes are:

• xlink:type=“simple” indicates that capital is a Simple Link,

• xlink:href=“cities-NZ.xml#xpointer(//city[name=‘Wellington’])” indicates a
reference to the city element inside cities-NZ.xml with a child element name
with the text content “Wellington”.

standard.

2.3. LINKING XML DATA 15

Simple XLinks can have the following XLink attributes:
name function allowed values

xlink:type indicating “this is a link element” “simple”
xlink:href* contains XPointer reference URI / XPointer expression
xlink:role* declares role of the XLink element URI referring to role resource
xlink:title* human-readable title CDATA
xlink:show* determines browsing behavior {new,replace,embed,other,none}
xlink:actuate* determines browsing behavior {onLoad,onRequest,other,none}

Starred(*) attributes are optional, all others are mandatory.

Note that Simple Links (as well as all other XLink elements) are not identified as
Simple Links by their name. Any arbitrary XML element, without regard of its
name, its attributes or child nodes, can be made an XLink element by adding an
xlink:type attribute with one of the values simple, extended, arc, locator, resource
or title.

Extended Links

As the name suggests, Extended Links differ more from HTML links concerning
their modeling functionality, which makes also the syntax more complex. An
Extended Link contains:

• zero or more XML resources, either local (contained child elements etc.)
or remote (specified by a URI given in a locator element),

• zero or more directed arcs connecting these resources,

• optionally a title, and

• optionally some none-XLink-related content.

Local resources: an Extended Link can contain local XML data in form of
zero or more resource elements, which may contain arbitrary XML data.
Each resource element has an attribute xlink:label by that arcs can refer to
it.

Remote resources are XML data existing outside the Extended Link element.
A remote resource is identified (and thereby defined) by a locator element.

Locators: An Extended Link contains zero or more locator elements. A locator
contains a URI pointing to a resource5 outside the link location, and –
just as local resource elements – an xlink:label attribute.

5The term resource in that context refers to any kind of XML data which can be described
by a URI expression identifying a document and using any of the available schemes of the
xpointer language as given in Section 2.3.1. A resource defined that way can consist of a single
XML node, or of multiple XML nodes, which do not necessarily form a contiguous document
fragment, but can be single, isolated nodes spread over a document, or even over multiple
documents.

16 CHAPTER 2. PRELIMINARIES

Arcs represent directed connections between resources. An Extended Link de-
fines a graph with resources as vertices, and arcs as edges. Arcs from local
resources to remote resources are called outbound arcs, arcs from remote
resources to local resources are called inbound arcs, arcs connecting remote
resources are called 3rd party arcs. Arcs have an xlink:from attribute and
an xlink:to attribute, denoting the start and the end resource of the arc6.
Local resources are identified by the value of their xlink:label attribute.
Remote resources are identified by their locator element, which in turn is
addressed by its xlink:label attribute’s value.

Example 2 Consider an Extended Link element flightplan which contains data
about flight connections of the airline Y.A.A.7. The cities are modeled as re-
sources. Most cities referenced by the Extended Link can be taken from the
Mondial XML database. These remote resources are described by locator el-
ements. Other, less prominent cities (e.g. Anytown located in Somecountry)
are modeled inside the link as local resources. Cities are connected with flight
routes, modeled as arcs, establishing direct connections from one city to another
(see Figure 2.6).

Extended Links have the following XLink attributes:

name function allowed values

xlink:type indicating “this is a link element” “extended”
xlink:role* declares role of the XLink element URI referring to role resource
xlink:title* declares human-readable title CDATA

Except for Simple Links and Extended Links, the other XLink elements as arcs,
resources, locators and titles may be children of an Extended Link element. Like
Simple and Extended Links, they are identified by an xlink:type attribute with
the respective value.

title:
name function allowed values

xlink:type indicating “this is a link element” “title”

resource:
name function allowed values

xlink:type indicating “this is a link element” “resource”
xlink:role* declares role of the XLink element URI referring to role resource
xlink:title* human-readable title CDATA
xlink:label for identification by arc(s) NMTOKEN

6The “regular” and most intuitive case is an arc connecting exactly one resource (from)
with exactly one other resource (to). But arcs can also associate multiple resources: the
xlink:label values inside an Extended Link are not necessarily unique. Hence, one arc can
address multiple from and to resources by one single label.

7could stand for “Yet Another Airline”, national Airline of the Republic of Somecountry.

2.3. LINKING XML DATA 17

<f lightplan xlink:type=“extended”
xlink:title=“Flight Plan for Yet Another Airline”
xmlns:xlink=“http://www.w3.org/1999/xlink”>

<alt xlink:type=“title”>

<airline>

<name>Yet Another Airline</name>

<code>YAA</code>

</airline>

</alt>

[. . .]

<city xlink:type=“resource” xlink:label= “anytown”

country=“somectr”><name>Anytown</name>

</city>

[. . .]

<cityref xlink:type=“locator” xlink:label= “cty-NZ-wel”

xlink:href=“cities-NZ.xml#xpointer(//city[name=‘Wellington’])”/>

<cityref xlink:type=“locator” xlink:label= “cty-SGP-sin”

xlink:href=“cities-SGP.xml#xpointer(//city[name=‘Singapore’])”/>

[. . .]
<flight-con xlink:type=“arc”

xlink:from= “cty-NZ-wel” xlink:to=“cty-SGP-sin”/>

<flight-con xlink:type=“arc”

xlink:from= “cty-SGP-sin” xlink:to=“cty-NZ-wel”/>

<flight-con xlink:type=“arc”

xlink:from=“cty-SGP-sin” xlink:to= “anytown” />

</flightplan>

xlink:title: the title element bears human-readable information about the nature
of the link,

local resource city: represents the city of Anytown,

two locators cityref locate the city elements of Singapore and Wellington
from cities-SGP.xml and cities-NZ.xml (both are part of the Mon-

dial database [May07]), classifying them as remote resources,

three flight-con arcs represents flight connections from Wellington to Sin-
gapore, from Singapore to Wellington and from Singapore to (local re-
source) Anytown. Note that, since arcs are directed, the arcs Wellington–
Singapore and Singapore–Wellington are distinct.

Figure 2.6: Extended Link containing the flightplan of “Yet Another Airline”

locator:
name function allowed values

xlink:type indicating “this is a link element” “locator”
xlink:href contains XPointer reference URI / XPointer expression
xlink:role* declares role of the XLink element URI referring to role resource
xlink:title* human-readable title CDATA
xlink:label for identification by arc(s) NMTOKEN

18 CHAPTER 2. PRELIMINARIES

arc:
name function allowed values

xlink:type indicating “this is a link element” “arc”
xlink:from specifies connection’s starting point label value/NMTOKEN
xlink:to specifies connection’s end point label value/NMTOKEN
xlink:arcrole* declares role of the arc URI referring to role resource
xlink:title* human-readable title CDATA

Starred(*) attributes are optional, all others are mandatory.

All XLinks, Simple Links as well as Extended Links, can also have non-XLink
attributes and children, with no XLink-specific meaning for the XLink element.

2.3.3 Remarks

Since the W3C and IETF standards and recommendations for XPath, XPointer,
XQuery – and almost all other XML-related technologies – are quickly evolv-
ing, there is an obvious need to specify the version / state of the art of these
technologies as they are used, understood and cited in scope of this work. This
work refers to:

• XPath: XML Path Language (XPath) Version 1.0, W3C Recommendation
16 November 1999 [XPa99]

• XPointer :

– XML Pointer Framework (XPointer), W3C Recommendation 25 March
2003 [XPt03b]

– XML XPointer element() Scheme, W3C Recommendation 25 March
2003 [XPt03a]

– XPointer xmlns() Scheme, W3C Recommendation 25 March 2003
[XPt03c]

– XPointer xpointer() Scheme, W3C Working Draft 19 December 2002
[XPt02b]

• XLink : XML Linking Language (XLink) Version 1.1, W3C Recommen-
dation 27 June 2001 [XLi01a]

The namespace for the XML Linking Language is http://www.w3.org/1999/xlink.
Throughout the examples in this work, The namespace is always bound to the
namespace prefix xlink, if not stated otherwise.

Chapter 3

Querying XML Data with
Simple Links

3.1 Query Support for XLinks

Consider the following XLink example: The geographical database Mondial is
split up into several instances and distributed over a number of host locations.
An instance countries.xml contains country data, instances cities-UK.xml, cities-
B.xml and cities-D.xml contain data about all cities of a specific country (here,
cities in the U.K., in Belgium and in Germany).

The fact that Antwerp is in Belgium is expressed via a Simple Link from
inside the Belgium element in countries.xml to Antwerp’s city element in the
cities-B.xml document (at Figure 3.1). The fact that global organizations have
members (countries) is represented with one Extended Link, containing one arc
for each country↔organization membership relation:

memberships

orgs countries

host 1 host 2

host 3 cities-B cities-D

member-of is-member

headq

capital
cities

neighbor

How can XML documents linked in this way be queried? Many relations in
the modeled data are expressed with XLinks. E.g. for finding out how many

19

20 CHAPTER 3. QUERYING XML DATA WITH SIMPLE LINKS

<!-- http://www.foo.de/countries.xml -->

<countries>

<country car code=”B” area=”30510”>

<name>Belgium</name>

<population>10170241</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#
xpointer(/cities/city[name=’Brussels’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’D’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-B.xml#xpointer(//city)” />

:
</country>

<country car code=”D” area=”356910”>

<name>Germany</name>

<population>83536115</population>

<capital xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#
xpointer(/cities/city[name=’Berlin’])” />

<neighbor xlink:type=”simple” xlink:href=

”http://www.foo.de/countries.xml#
xpointer(/countries/country[@car code=’B’])”

borderlength=”167”/>

:
<cities xlink:type=”simple” xlink:href=

”http://www.bar.de/cities-D.xml#xpointer(//city)” />

:
</country>

:
</countries>

<!-- http://www.bar.de/cities-B.xml -->

<cities>

<city>

<name>Brussels</name>

<population>951580</population>

:
</city>

<city>

<name>Antwerp</name>

<population>459072</population>

:
</city>

:
</cities>

<!-- http://www.bar.de/cities-D.xml -->

<cities>

<city>

<name>Berlin</name>

<population>3472009</population>

:
</city>

<city>

<name>Hamburg</name>

<population>1705872</population>

:
</city>

:
</cities>

Figure 3.1: Excerpt of the Distributed Mondial XML Database [May07]

inhabitants the capital of Belgium has, it would be necessary to gather data
from two different documents – countries.xml and cities-B.xml, possibly on two
different hosts – during a single query execution.

The XML Query Requirements [XMQ03]1 explicitly state that querying

1The XML Query Requirements led to the specification of the XML Query Language
(XQuery) by the World Wide Web Consortium. XPath is an XML navigation language based
on path expressions, and is an integral part of XQuery. Thus, all XPath functions can be
used within XQuery; that’s why for the scope of this work there is no distinction between
XPath and XQuery functions, using the term “XPath/XQuery function” instead. In the
specification XQuery 1.0 and XPath 2.0 Functions and Operators [XPQ07], the distinction

3.1. QUERY SUPPORT FOR XLINKS 21

along references, both within an XML document and between documents, must
be supported. Intra-document references are modeled in XML using the ID-
IDREF construct. In XQuery, these references can be explicitly dereferenced
with the XPath/XQuery function id(). Inter-document references in XML doc-
uments can be expressed with XLink constructs. How can they be queried?
Can they be queried at all?

With the XPath/XQuery function document(), a remote document can be
identified in a query, and with
let $pointer :=

doc(”http://. . . /countries.xml”)//country[name=”Belgium”]/capital/@href/string(),

one can select the URI value of the capital element’s href attribute:
”http://. . . /cities-B.xml#xpointer(/cities/city[name=’Brussels’])”, which references
the city document of Brussels. But inside XQuery, that attribute value is just a
string, which cannot be resolved in order to dereference the capital Simple Link.
Hence, inter-document xlink:href references as the above cannot be resolved in
XQuery, at least not in general.

However, there exist some exceptions: If the URI’s XPointer expression is
a shorthand pointer, as ”http://. . . /countries.xml#B”, or an XPointer scheme
with an explicit ID value given, as in ”http://. . . /countries.xml#xpointer(id(B))”,
the URI can be resolved by combining the document() and the id() functions.
Also, there exist XML processing applications that provide proprietary functions
which can be used to supply that functionality. E.g., the Saxon XML processing
software [Kay] provides an XSLT extension function saxon:evaluate() which can
be used to evaluate an XPath expression within a remote document specified
by Saxon’s doc function. Furthermore, [RBHS04] propose an XQuery extension
with“execute at uri xquery { xquery }”.

These solutions either work only on restricted URIs, or within non-XQuery-
standard software solutions. Within the scope of standard XQuery functions
as given in XQuery 1.0 and XPath 2.0 Functions and Operators, the described
dereferencing functionality cannot be made available for the general case.

Apart from being insular, the above approaches for querying in the pres-
ence of XLink references require explicit link dereferencing. Preferable to this
would be an approach for handling distributed XML data where the links are
transparent in the sense that they are seamlessly embedded into the common
XML / XPath data model, so that queries could follow the links implicitly to
the referenced nodes in other documents without “minding the gap” between
two linked documents. This leads to a logical data model where distributed,
XLinked XML documents represent a single, virtual, integrated XML instance,
as shown in Figure 3.2. The XLink elements are seen as view definitions that in-
tegrate the referenced XML data into the referencing XML instance. The XLink
element specifies the referenced nodes, and how they are mapped seamlessly into
the surrounding instance. Of special interest is here, how the link relation is

between XQuery and XPath functions also has been given up.

22 CHAPTER 3. QUERYING XML DATA WITH SIMPLE LINKS

•

xpath-expr1

uri#xpath-exprx

•
uri

xpath-exprx

(physical instances)

•

xpath-expr1

(virtual instance)

Figure 3.2: Extended XML Data Model with XLink Elements

mapped to a standard XML data model relation (e.g. child or attribute rela-
tion). The virtual instance can then be processed with standard languages like
XPath, XQuery, or XSLT without need for specific link dereferencing operators.

3.2 Applications: Data Integration and Split-
ting Documents

The usage of linked XML information occurs mainly in two situations:

• Data integration: building (virtual) XML documents by combining au-
tonomous resources. The referenced resources may be given as remote
documents on the Web without write access.

• Splitting and distributing documents: An XML document can be split up
into parts and distributed over multiple servers. With the use of XLinks,
these parts can be interconnected to form a distributed database. In this
case, it is intended to keep the external schema2 unchanged, i.e., the vir-
tual instance of the linked documents should be valid wrt. the original
document’s DTD/Schema. The idea is, to get the same answers from the
distributed database as from the original one for each query. This re-
quires the links’ “cutting edges” – that can be between elements and their
subtrees, or between elements and their attributes – to be reassembled
flexibly.

2External schema in the context of relational database systems means the schema of a view
defined over a database. Here, it is the schema of the original XML instance before splitting
it up.

3.3. HANDLING SIMPLE LINKS 23

For an example for document splitting, have a look at Figure 3.1, where the
countries Belgium and Germany are depicted, each referencing their cities via
XLink from remote locations. For providing flexibility in fine-tuning the logical
model of the linked data, XLink elements are extended with modeling directives
for designing an external schema by defining the “cutting edges” of the instance
in different ways.

3.3 Handling Simple Links

3.3.1 Modeling Directives: dbxlink:transparent

In [May02], a logical model was proposed that transparently resolves XLinks
into one virtual XML instance, defining a semantics for Simple Links. For that
purpose, the XLink specification is extended with attributes from the dbxlink
namespace, in order to specify the “behavior” of a Simple Link element when
it is traversed:

• dbxlink:transparent: mapping of the linked resources to a virtual instance
according to the logical model,

• dbxlink:actuate: point in time when the XLinks are evaluated to generate
the view (materialization at parse time, or on-demand for answering a
query),

• dbxlink:eval: location where the XPointers and query expressions are eval-
uated (locally at the server hosting the referencing document, or at the
remote site, where the referenced document is located),

• dbxlink:cache: caching strategies for views and intermediate results.

The most important dbxlink attribute in terms of the data model and towards
fine-grained modeling of linked XML data is the dbxlink:transparent attribute.
The attribute’s value contains the modeling directives that determine how ex-
actly the remote resource is mapped into the document context, and what hap-
pens to the linking element.

Consider again the “Belgium” example from Figure 3.1, taken from the
Mondial database, which contains references from the country element of Bel-
gium to the city elements for (a) all cities and (b) Belgium’s capital Brussels, all
located at a remote instance cities-B.xml. The first intuition of the above idea
is to simply “copy” the target of the XPointer and to “paste” it into the XLink
element, replacing the XLink element thereby. But also, other options can be
thought of: a referenced resource can be made subelement(s) of the Simple Link
element, or could be made a reference attribute, depending on the intended ex-
ternal schema. A possible mapping of the resources shown in Figure 3.1 could
e.g. result in a model that allows for the following XPath queries:

24 CHAPTER 3. QUERYING XML DATA WITH SIMPLE LINKS

• model the capital as an attribute:
doc(”http://.../countries.xml”)//country[name=”Belgium”]/id(@capital)/population

• model cities as subelements, dropping the “auxiliary” cities element:
doc(”http://www.foo.de/countries.xml”)//country[name=”Belgium”]/city/name

• model neighbors as subelements that contain the referenced country data
and the link’s borderlength attribute:
doc(”...”)//country[name=”Belgium”]/neighbor[name=”Germany”]/@borderlength

(note that the virtual substructure that matches the latter part is obtained
from combining the country element with its name subelement “Germany”,
and the neighbor subelement of Belgium with its attribute borderlength).

In the resulting virtual instance, the Belgium element would look like:

<country car code=“B” capital=“cty-B-brussels”>

<name>Belgium</name>

<city id=“cty-B-antwerp”>

<name>Antwerp</name>

. . .
</city>

<city id=“cty-B-brussels”>

<name>Brussels</name>

<population year=“1995”>951580</population>

</city>

. . .
<neighbor car code=“D” capital=“cty-D-berlin” borderlength=”167”>

<name>Germany</name>

<city id=“cty-D-aachen”>

<name>Aachen</name>

. . .
</city>

. . .
</neighbor>

. . .
</country>

The exact node-to-node mapping for Simple Links is based on two modeling
directives:

• the L-directive (Left-hand or Link directive)

• the R-directive (Left-hand or Link directive)

Right-hand / Result Directive: the XPointer expression from the xlink:href
attribute is evaluated, yielding a set of XML nodes. The nodeset is
mapped to an intermediate result depending on (i) whether complete el-
ements are to be inserted, or (ii) only the referenced element’s contents
(its attributes, text and child elements) are to be inserted. Since the di-
rective is – by convention – being written on the right hand, and since it

3.3. HANDLING SIMPLE LINKS 25

takes charge of the XPointer result set, it is called Right-Hand Directive
or Result Directive. From now on, the term R-directive is used for short.

Left-hand / Link Directive: The intermediate result is mapped again, now
into the referencing instance. Here, the question arises how to treat the
Simple Link element containing the xlink:href and dbxlink:transparent at-
tributes. Whether it is removed and replaced by the result set, whether
it is grouped around the result set, whether it is wrapped around each
result set node, or being transformed into a reference attribute of its par-
ent, referencing the XLinked nodeset: all this is determined by the Link
Directive or Left-Hand Directive. From now on, the term L-directive is
used for short.

3.3.2 L-Directive and R-Directive

(i) Consider a result set containing a number of nodes (and implicitly their
child elements, text and attribute nodes). The following R-directive alter-
natives exist for embedding the result nodes in the virtual instance:

– insert-nodes: Each result node is inserted “as a whole”.

– insert-bodies: Insert only the result nodes’ bodies, namely their ele-
ment and text children and attributes. For text and attribute nodes,
the body is considered empty.

– insert-nothing: Drop the result nodes and – you might have guessed
it – insert just nothing.

(ii) The treatment of the XLink element itself also influences the structure of
the virtual instance. Here, the following options for the L-directive exist:

– drop-element: Drop the XLink element, replacing it with the result.

– keep-body: Drop the XLink element’s hull and use only the informa-
tion of its body (its non-XLink attributes and content) for enriching
the referenced nodes3.

– group-in-element: Keep the XLink element and “wrap it around” the
referenced nodes (only once around all referenced nodes).

– duplicate-element: Duplicate the XLink element and wrap it around
each referenced node.

– make-attribute: Replace the link element with an IDREF(S) attribute
with the same name as the link element, referencing the result set
element(s).

To put it all together, mapping a Simple Link element consists of three steps
that determine the structure of the virtual instance: (i) mapping the result set,

3Note that drop-element is a specialization of keep-body, since drop-element can be replaced
with a keep-body with an XLink element with no non-XLink children and attributes.

26 CHAPTER 3. QUERYING XML DATA WITH SIMPLE LINKS

yielding a set of nodes (“insert-nodes”), or a set of bodies (“insert-bodies”), (ii)
mapping the XLink element itself, and (iii) mapping the result to a nodeset
which is then added to the parent element as new children and/or attributes.
The mapping in the two first steps is determined by the user amongst the above
alternatives; the step (iii) is then solely a mapping into well-formed XML.

The dbxlink:transparent attribute for a Simple Link element thus contains
two keywords: (i) the R-directive determining the mapping of the result set.
R-dir ∈ {insert-nodes, insert-bodies, insert-nothing}, and (ii) the L-directive de-
termining the mapping of the link element itself. L-dir∈ {duplicate-element,
group-in-element, drop-element, keep-body, make-attribute}.

A prototypical Simple Link element looks like this:

<linkelement xlink:type=”simple” xlink:href=”xpointer”
dbxlink:transparent=”L-dir R-dir” non-xlink-attributes>

non-xlink children
</linkelement>

Default values for dbxlink:transparent Values:

Simple Link L-dir R-dir drop-element insert-nodes

Example 3 Figure 3.3 shows an excerpt of doc(”http://www.foo.de/countries.xml”)
where the cities XLink element has been extended with a dbxlink:transparent at-
tribute containing L-directive drop-element and R-directive insert-nodes. The
virtual instance is obtained by dropping the cities link element and inserting the
referenced city nodes instead.

3.3.3 XLinks and Querying

The semantics for Simple Links as “embedded views”, that include the linked
data into the virtual instance, is defined for allowing to query interlinked XML
data that is distributed over the Web. XQuery, the standard query language for
XML, is based on XPath for identifying nodesets inside the queried instance.
Hence, for providing a Simple Link semantics for querying, it is sufficient to
describe the Simple Link’s “behavior” with respect to XPath navigation.

In the following 4, the “behavior” of Extended Links with respect to XPath
queries is introduced, in order to provide an Extended Link semantics for query-
ing. Then, s 5 and 6 define the Simple Link and Extended Link querying se-
mantics formally by algebraically specifying a logical linking data model, and
how it is compliant with XPath queries.

3.3. HANDLING SIMPLE LINKS 27

<countries>

<country car code=”B”> <name>Belgium</name>

. . .
<cities xlink:type=”simple”

xlink:href=”http://www.bar.de/cities-B.xml#xpointer(/cities/city)”

dbxlink:transparent=”drop-element insert-nodes” />

</country>

<country car code=”D”> ... </country>

</countries>

countries

country @car code
=”B”

name

Belgium

cities

country @car code
=”D”

name

Germany

cities

http://www.bar.de/
cities-B.xml

http://www.bar.de/
cities-D.xml

cities

city

name

Brussels

city

name

Antwerp

cities

city

name

Berlin

city

name

Hamburg

countries

country @car code
=”B”

name

Belgium

city

name

Brussels

city

name

Antwerp

country @car code
=”D”

name

Germany

city

name

Berlin

city

name

Hamburg

Figure 3.3: Illustration of the mapping – Above: Fragment Extended with
dbxlink:transparent. Left: Physical instances with XLink References. Right:
Induced Virtual Instance.

28 CHAPTER 3. QUERYING XML DATA WITH SIMPLE LINKS

Chapter 4

Querying XML Data with
Extended Links

Both Simple Links as well as Extended Links define directed point-to-point
connections between XML resources. In Figure 4.1, examples for both Simple
Links and Extended Links are given, comparing them side by side: where for
Simple Links, the connection always starts at the Simple Link element, the
situation is different for Extended Links, since they are not defined inline, as part
of the involved remote resources. Instead, the linking metadata is maintained
and kept out of line (in a separate linkbase document), which is the reason why
Extended Links are often referenced as Out-of-Line Links1.

The out-of-line definition has further implications: the three involved data
locations – the from-location with the from-resource where the link starts, the
to-location with the to-resource where the link points to, and the linkbase – can
be authored and maintained by three completely autonomous parties. The only
requirement is that both resources (maintained by the 1st, the from party, and
the 2nd, the to party) are visible to the linkbase (3rd party). Whenever it is
intended to stress this 3rd party aspect of Extended Links within this work, the
term 3rd Party Links is used.

4.1 A Matter of Perspective: forward, inverse and
relation Perspectives

As pointed out in Section 2.3, an Extended Link consists of:

• zero or more local XML resources, defined inside the link element,

1In earlier XLink language specifications there existed the definition of “Inline Extended
Links”. Inline Extended Links were formally Extended Link elements, but – as the name
suggests – defined inline, realizing some kind of a multi-target Simple Link. Inline Extended
Links were removed from the candidate release of the specification in the year 2000.

29

30 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

xlink

(from) (to)

linkbase

location A location D

location B location C

arc C-Barc B-A arc C-D

Simple Link connecting a source 3rd Party Link connecting remote
and a destination location locations via arcs

linkbase

location A location D

location B location C

arc C-B

arc B-A

arc C-D

local resources

E F G

arc A-E

arc F-D

arc D-G

arc E-F

3rd Party Link connecting remote locations (A-D) and local resources (E-G)

Figure 4.1: Simple Link, 3rd Party Link, 3rd Party Link with local resources

• remote resources, specified with a locator element containing a URI /
XPointer reference,

• zero or more directed arcs connecting from-resources with to-resources,

• optionally a title, and

• optionally some none-XLink-related content.

Without loss of generality, let us focus on arcs connecting one single from-
resource with one single to-resource2. Considering the 3-parties notion for Ex-
tended Links that is given above in the text, three perspectives have to be
considered:

• the forward perspective from the viewpoint of the 1st (the from-resource)
party,

• the inverse perspective from the viewpoint of the 2nd (the to-resource)
party, and

• the relation perspective from the viewpoint of the 3rd (linkbase) party.

2An set of multiple resources {r1, . . . , rn} at one of the ends of an arc can be considered
to be equivalent to one resource r′ consisting of the union of nodes from r1, . . . , rn

4.1. PERSPECTIVES FORWARD, INVERSE, RELATION 31

(linkbase)

(arc)

•

a

(from document)

•

b

(to document)

Physical Instances

Virtual Instance

•

a

b

forward(-insert)

•

b

a

inverse(-insert)

a b

relation

relationforward inverse

Figure 4.2: forward, inverse, and relation: physical and virtual instances for three
perspectives

For the logical data model, this implies that each perspective defines its own
virtual instance. Hence, for a single arc and its two referenced resources, three
different virtual instances exist, with the composition depending on the sup-
posed perspective. The different perspectives’ virtual instances are schemati-
cally depicted in Figure 4.2.

Example 4 Consider again the flightplan example of “Yet Another Airline”,
given in Figure 4.3. The from-resource is located inside cities-NZ.xml, supplying
data about New Zealand’s cities. The to-resource is located inside cities-SGP.xml
about Singapore’s cities. The linkbase is linkbase.xml, supplying data about flight
connections between cities. It defines a view on the data for each of the three
perspectives (with the resulting virtual instances depicted in Figure 4.4):

32 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

<f lightplan xlink:type=“extended”
xlink:title=“Flight Plan for Yet Another Airline”
xmlns:xlink=“http://www.w3.org/1999/xlink”
dbxlink:transparent=“group-in-element”>

<alt xlink:type=“title”>

<airline>

<name>Yet Another Airline</name>

<code>YAA</code>

</airline>

</alt>

[. . .]

<city xlink:type=“resource” xlink:label= “anytown”

country=“somectr”><name>Anytown</name>

</city>

[. . .]
<cityref xlink:type=“locator” label= “NZ-well”

xlink:href=“cities-NZ.xml#xpointer(/cities/city[name=‘Wellington’])”/>

<cityref xlink:type=“locator” label= “SGP-sing”

xlink:href=“cities-SGP.xml#xpointer(/cities/city[name=‘Singapore’])”/>

[. . .]
<flight-con xlink:type=“arc”

xlink:from= “NZ-well” xlink:to=“SGP-sing”
<dbxlink:forward dbxlink:rolename=“flight-to” dbxlink:transparent=“dup-arc-elem

drop-from-elem ins-from-nodes drop-to-elem ins-to-nodes”/>

<dbxlink:inverse dbxlink:rolename=“flight-from” dbxlink:transparent=“dup-arc-elem
drop-from-elem ins-from-nodes drop-to-elem ins-to-nodes”/>

<dbxlink:relation dbxlink:transparent=“dup-arc-elem
drop-from-elem ins-from-nodes drop-to-elem ins-to-nodes”/>

<flight-con xlink:type=“arc”

xlink:from= “SGP-sing” xlink:to=“NZ-well”/>

<flight-con xlink:type=“arc”

xlink:from=“SGP-sing” xlink:to= “anytown” />

</flightplan>

Figure 4.3: Flightplan example with dbxlink:transparent attributes

The forward perspective (left, in Figure 4.2) has an impact on the XML in-
stance that contains the from-resource (here the city element for Wellington
in cities-NZ.xml): The to-resource (the Singapore city element inside cities-
SGP.xml) is mapped into the virtual instance, defining a modified view over
cities-NZ.xml.

The inverse perspective (mid, in Figure 4.2) is symmetrically inverse to the
forward perspective. Here, the linkbase defines a modified view over the
to-resource, blending the Wellington city element into cities-SGP.xml, ac-
cording to the modeling directives and rolename given for inverse.

4.1. PERSPECTIVES FORWARD, INVERSE, RELATION 33

– forward perspective: –

cities-NZ.xml is traversed

<!– cities-NZ.xml –>

<!– (distributed mondial database) –>

<cities>

. . .
<city id=“cty-NZ-wellington”>

<name>Wellington</name>

<flight-to>

<city id=“cty-SI-singapore”>

<name>Singapore</name>

</city>

</flight-to>

</city>

. . .
</cities>

– inverse perspective: –

cities-SGP.xml is traversed

<!– cities-SGP.xml –>

<!– (distributed mondial database) –>

<cities>

. . .
<city id=“cty-SI-singapore”>

<name>Singapore</name>

<flight-from>

<city id=“cty-NZ-wellington”>

<name>Wellington</name>

</city>

</flight-from>

</city>

. . .
</cities>

– relation perspective: –

linkbase.xml is traversed

<!– linkbase.xml –>

<linkbase>

. . .
<flightplan>

<flight-con>

<city id=“cty-NZ-wellington”>

<name>Wellington</name>

</city>

<city id=“cty-SI-singapore”>

<name>Singapore</name>

</city>

</flight-con>

. . .
</flightplan>

</linkbase>

from-location to-location

Figure 4.4: Resulting views for forward, inverse and relation perspective

In the relation perspective (right, in Figure 4.2), the linkbase itself is ex-
panded: arcs and locators are expanded in-place when traversed by a query,
according to the given modeling directives, including the results from cities-
NZ.xml and cities-SGP.xml into the linkbase document.

The query
document(”cities-NZ.xml”)/cities/city[name=”Wellington”]/flight-to/city returns the Sin-
gapore city element as result, since Singapore is the destination of the flight
blended into the virtual instance (and may be more, since there can be more
flight connections to other cities starting in Wellington).
The query
document(”cities-SGP.xml”)/cities/city[name=”Singapore”]/flight-from/city returns (at
least) the Wellington city element from cities-NZ.xml.
A query
document(”flightplan.xml”)/linkbase/flightplan/flight-con[city[1]/name=”Singapore”]/city[2]

returns all cities that can be reached from Singapore by plane.
The query
document(”flightplan.xml”)/linkbase/flightplan/flight-con[city[2]/name=”Singapore”]/city[1]

returns all cities that have outgoing flight connections straight to Singapore.

Throughout all queries, the relevant perspective is determined by the lead-
ing document() function’s argument, which determines a query’s entry point:
queries with a leading document(”cities-NZ.xml”) (1st party) are evaluated wrt.
the forward perspective. Queries with a leading document(”cities-SGP.xml”) (2nd
party) are evaluated wrt. the inverse perspective. Queries with a leading docu-
ment(”linkbase.xml”) (3rd party) are evaluated wrt. the relation perspective.

34 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

4.2 Arc Roles in Different Perspectives

An arc describes a relationship between resources. The “meaning” of a rela-
tionship established by an arc depends not only on the connected resources and
the information given with the arc itself (e.g. its name), but it also changes
with the perspective from where the relationship is seen. E.g., the relationship
between a parent and its child can be seen from an “above perspective” as a
binary “parent-child” relationship, with one argument being the parent, the
other argument being the child. From the perspective of the parent, the same
relationship can be seen as a unary predicate “has-child” with the child being
the predicate’s argument. From the perspective of the child, the relation looks
like a unary “has-parent” predicate with the parent being the predicate’s single
argument. A relationship hence may have different roles according to different
perspectives. To allow for a semantically meaningful modeling, it is desirable
to enable the link designer to assign names to a relationship’s roles within the
relationship-defining arc.

Regarding again the flight connection scenario from Example 4, the arc
has the “flight-to” role for the forward perspective, where the arc points to
another city with an outgoing flight connection going there. In the inverse
perspective, the arc points from the destination city to the start city of an
incoming flight connection, fulfilling a “flight-from” role for the to-resource. The
relation perspective assigns the “flight-con(nection)” role to the arc. The role
of the arc for each perspective is assigned with the dbxlink:rolename attribute3.
Within the arc’s syntax, the perspective-specific role name is given as the value
of dbxlink:rolename for each perspective (see Figure 4.5). If dbxlink:rolename is
omitted, the name of the arc element is used as default rolename.

4.3 3 Perspectives – 3 Modeling Directives

Since in the presence of 3rd Party Links, three perspectives exist, and since each
perspective needs its own modeling directives for mapping the physical to the
virtual instance, an arc needs to be equipped with three sets of directives. For
that, each arc element has dbxlink:relation, dbxlink:forward and dbxlink:inverse
subelements, each containing the dbxlink:transparent attribute for the according
perspective, as well as a dbxlink:rolename. The arc element’s dbxlink:transparent
attribute can still serve as a default value for the three dbxlink subelements,
if any of them is omitted. This leads to an enhanced Extended Link syntax,
shown in Figure 4.5, which will be explained in detail throughout the following
sections.

3not to be confused with the xlink:role or xlink:arcrole attribute, that are defined by the
W3C XLink standard, and that have no dbxlink-specific semantics.

4.4. MODELING DIRECTIVES FOR THE RELATION PERSPECTIVE 35

<ext dbxlink:transparent=’ext-L-dir ’>
<arc xlink:type=’arc’>

<dbxlink:relation dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir arc-L-dir from-L-dir from-R-dir to-L-dir to-R-dir ’/>

<dbxlink:forward dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir placement-dir arc-L-dir to-L-dir to-R-dir ’/>

<dbxlink:inverse dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir placement-dir arc-L-dir from-L-dir from-R-dir ’/>

arc content
</arc>

<loc xlink:type=’locator’
dbxlink:transparent=’loc-L-dir loc-R-dir ’>

locator content
</loc>

</ext>

Figure 4.5: Extended Link Syntax with dbxlink:transparent and dbxlink:rolename
directives for each perspective

4.4 Modeling Directives for the relation Perspec-
tive

Although the relation perspective is anchored to the linkbase (and thus is as-
signed to the 3rd party), it is addressed first here, due to its similarity with the
already familiar Simple Links modeling. In this manner, the modeling issues
concerning Extended Links can be explained on basis of the “least abstract”
perspective, so that they are already familiar, and can be referred to during the
sections covering the forward and inverse perspectives.

The relation perspective creates a modified view over the linkbase containing
the Extended Link elements. Both from-locator and to-locator elements are
expanded, the expansion results are concatenated (“from” first, “to” last). The
concatenated result is combined with the traversed arc element, and finally, the
expanded arcs are combined with the link element itself. In terms of perspective,
relation resembles more of a complex kind of Simple Links: when link information
is found inline, it is expanded in-place.

4.4.1 The dbxlink:transparent Directives for relation perspec-
tive

The modeling directives for relation are given in the dbxlink:transparent attributes
of the arc element and the locator elements. The following modeling directives,
marked up in Figure 4.7, apply:

• ext-L-dir determines how the surrounding Extended Link element is pro-
cessed (duplicated, kept, dropped, etc.). As for a Simple Link’s L-directive,

36 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

(linkbase)

(arc)

•

a

(from document)

•

b

(to document)

Physical Instances

Virtual Instance

a b

relation

Figure 4.6: The relation Perspective - Physical and Virtual Instance

its possible values are: duplicate-element, group-in-element, drop-element,
make-attribute, and keep-body.

For duplicate-element, the Extended Link element is multiple times du-
plicated and wrapped around every expanded arc and/or locator. The
link element’s non-XLink nodes are duplicated with their parent, and the
arc’s/locator’s result is inserted in document order right in the former
position of the arc/locator.

Note that ext-L-dir is only relevant for the relation perspective. It has no
meaning for either forward or inverse perspectives.

• arc-L-dir determines how the arc element is processed (duplicated, kept,
dropped, etc.). Again, its possible values are: dup-arc-elem, group-arc-
elem, drop-arc-elem, make-arc-attr, and keep-arc-body.

• from-L-dir and from-R-dir determine how the nodeset that is identified

4.4. MODELING DIRECTIVES FOR THE RELATION PERSPECTIVE 37

by the from-locator is processed. As for Simple Links L-directive and R-
directive, the possible values are: dup-from-elem, group-from-elem, drop-
from-elem, make-from-attr, keep-from-body (from-L-dir) and ins-from-elem,
ins-from-bodies, ins-from-nothing (from-R-dir).

• to-L-dir and to-R-dir determine how the nodeset that is identified by the
to-locator is processed. It is exactly the same as for Simple Links. Hence,
the possible values are: dup-to-elem, group-to-elem, drop-to-elem, make-to-
attr, keep-to-body (to-L-dir) and ins-to-elem, ins-to-bodies, ins-to-nothing
(to-R-dir).

• loc-L-dir and loc-R-dir are the left and right hand side directives for each
locator. Note that in principle, each locator can be given the same map-
ping functionality as a Simple Link. When traversed over an arc (which
is the regular case), the arc’s from-L/R-dir/to-L/R-dir directives super-
sede the locator’s own directives. But if a locator is traversed directly,
the locator is expanded by its own L- and R-directive, just like a Simple
Link. There is only one difference: to avoid unwanted expansion of loca-
tors by accidentally traversing them (e.g. with imprecise XPath queries),
a locator’s default transparent directive is drop-element insert-nothing. So
the locator won’t contribute anything (unwanted) to the virtual model,
except explicitly stated different by the linkbase designer.

Since the linkbase is only directly accessed in relation perspective, a lo-
cator’s dbxlink:transparent directives are only relevant for the relation per-
spective. They have no meaning for the forward and inverse perspectives,
since those contribute to the virtual instance only by their arcs.

<ext dbxlink:transparent=’ext-L-dir ’>
<arc xlink:type=’arc’>

<dbxlink:relation dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir arc-L-dir from-L-dir from-R-dir to-L-dir to-R-dir ’/>

<dbxlink:forward dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir placement-dir arc-L-dir to-L-dir to-R-dir ’/>

<dbxlink:inverse dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir placement-dir arc-L-dir from-L-dir from-R-dir ’/>

arc content
</arc>

<loc xlink:type=’locator’
dbxlink:transparent=’loc-L-dir loc-R-dir ’>

locator content
</loc>

</ext>

Figure 4.7: The directives for relation perspective, marked in the link structure

38 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

Allowed dbxlink:transparent directives for relation perspectivea:
arc-L from-L from-R to-L to-R

* * * * *

aThe star (*) stands for wildcard: for an L-dir, all five L-dir directives are allowed, for an
R-dir, all three R-dir directives are allowed.

Default values for dbxlink:transparent in relation perspective:

Simple Link L-dir R-dir drop-element insert-nodes

Extended Link element: ext-L-dir group-in-element
Extended Link’s arc element arc-L-dir dup-arc-elem

from-L-dir from-R-dir drop-from-elem ins-from-nodes
to-L-dir to-R-dir drop-to-elem ins-to-nodes

Extended Link’s Locator element L-dir R-dir drop-element insert-nothing

Example 5 To visualize the effect of the modeling directives from Example 4,
look again at the parameters for the relation perspective: transparent=“dup-arc-

elem drop-from-elem ins-from-nodes drop-to-elem ins-to-nodes”

• dup-arc-elem: the arc element flight-con is kept, and is wrapped around the
locator results4.

• drop-from-elem: the locator element cityref is dropped and replaced by the
referenced node(s).

• ins-from-nodes: the referenced node(s) are completely inserted.

• drop-to-elem, ins-to-nodes: equivalent.

Result:

<linkbase>

<flightplan>

<flight-con>

<city id=“cty-NZ-wellington”>

<name>Wellington</name>

</city>

<city id=“cty-SI-singapore”>

<name>Singapore</name>

</city>

</flight-con>

</flightplan>

</linkbase>

Now consider the same relationship, still in the relation perspective, but let’s
assume now different mapping directives, given in dbxlink:transparent: dbxlink:transparent=“dup-
arc-elem dup-from-elem ins-from-bodies make-to-attr ins-to-nodes”

4Since both locations only yield a single node each, cardinality options have no effect.

4.4. MODELING DIRECTIVES FOR THE RELATION PERSPECTIVE 39

• dup-arc-elem: again, the arc element flight-con is kept, and is wrapped
around the locator results.

• dup-from-elem: the locator element cityref is kept, eventually duplicated
(not here in the example) and inserted.

• ins-from-bodies: the referenced nodes’ bodies are are extracted and inserted
into the surrounding element (here: the locator element cityref.)

• make-to-attr ins-to-nodes: the referenced “to” element – here the city ele-
ment of Singapore – is taken, and an IDREF attribute with the locator’s
element name is created, referencing the Singapore element. For multi-
ple result elements, an IDREFS attribute is created, containing a set of
IDREF tokens, each one identifying one result element.

Result:

<linkbase>

<flightplan>

<flight-con city=“cty-SI-singapore”>

<cityref id=“cty-NZ-wellington”>

<name>Wellington</name>

</cityref>

</flight-con>

</flightplan>

. . .
<city id=“cty-SI-singapore”>

<name>Singapore</name>

</city>

. . .

</linkbase>

4.4.2 Cardinality Directives for relation

Algebraically, an arc defines a relationship between resources. Conceptually, a
resource can be seen either as an atomic unit or as a multi-valued set of nodes
(a nodelist). Following the latter concept, the arc – as a relationship – has a
notion of cardinality. Like a relationship in Entity-Relationship Modeling for
relational databases, an arc can relate two node sets as 1 : 1, 1 : n, n : 1 or
m : n relations.

1:1 means that the cartesian product of both nodesets is formed (the set of all
ordered pairs with one item from nodeset A and one item from nodeset
B). By convention, the node from the from-nodeset is first in document
order, the node from the to-nodeset is second. The modeling directive is
card-1-1.

40 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

1:n means that a from-node is followed by all to-nodes. This is done sequen-
tially for all from-nodes. The modeling directive is card-1-n.

m:1 similarly means that all from-nodes are followed by one to-node. Accord-
ingly, this is done with all to-nodes. The modeling directive is card-m-1.

m:n simply concatenates the from-locator’s and to-locator’s results. The mod-
eling directive is card-m-n.

See Figure 4.8 for illustration of the cases above. The cardinality directive
is, just like all other modeling directives, denoted in the dbxlink:transparent
attribute of the according dbxlink:relation child element of the concerned arc.
For later sections, please keep in mind that the cardinality aspect is as well of
relevance for the forward and inverse perspectives.

arc

a1 a2

(from-locator)

a3 b1

(to-locator)

b2

1 : 1 cardinality

(a1 b1)(a1 b2)(a2 b1)(a2 b2)(a3 b1)(a3 b2)

1 : n cardinality (a1 b1 b2)(a2 b1 b2)(a3 b1 b2)

m : 1 cardinality (a1 a2 a3 b1)(a1 a2 a3 b2)

m : n cardinality (a1 a2 a3 b1 b2)

Figure 4.8: Multi-valued locators mapped with different cardinalities

4.5 Modeling Directives for the forward and in-

verse Perspectives

The forward perspective is anchored to the from-document, which means that a
3rd Party Link has an impact to a traversed from-document. The to-resource
is combined with the arc information, and this intermediate result is blended
into the from-document. In detail: the to-locator and the to-resource at the

4.5. MODELING DIRECTIVES FOR FORWARD AND INVERSE 41

(linkbase)

(arc)

•

a

(from document)

•

b

(to document)

Physical Instances

Virtual Instance

•

a

b

forward(-insert)

•

a b

forward-fuse

•

a

b

forward-replace

insert fuse replace

Figure 4.9: The three Placing Modes for forward perspective: fuse, replace and
insert(default)

remote end point of the arc are processed with to-L-dir and to-R-dir before
the result is blended into the from-resource. Hence, the transparent attribute
of dbxlink:forward has the directives arc-L-dir, to-L-dir and to-R-dir (and also
placement and cardinality directives, see Sections 4.5.1 and 4.5.2), but no from-
L-dir or from-R-dir.

The from-locator serves only for defining the from-resource where the arc
starts, but does not influence the modeling of the virtual instance. Hence, the
from-directives are omitted.

The inverse perspective is defined vice versa: here, the from-resource is
blended into the to-document. Hence, from-L-dir and from-R-dir, as well as
arc-L-dir (and, same as within forward, placement and cardinality directives)
define the result. to-L-dir and to-R-dir are omitted.

4.5.1

Placement Directives for the forward and inverse Perspectives For forward per-
spective (and inverse as well), an additional issue comes into focus: after the
to-resource is processed together with its locator and arc information (yielding
an intermediate result), where is it placed within the from-resource? For this

42 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

(linkbase)

(arc)

•

a

(from document)

•

b

(to document)

Physical Instances

Virtual Instance

•

b

a

inverse(-insert)

Figure 4.10: The inverse perspective - physical and virtual data model

notion, called placement, three customization options (placement options) exist
for how to combine from-location, to-location and arc element:

• insert placement: after combining the to-locator, the to-locator’s results
and the arc element with each other, the thereby created intermediate
result is inserted as child/attribute nodes of each node that is identified
by the from-locator (see Figure 3.2).

• replace placement: each node located by the from-element is replaced with
the intermediate result from arc, to-locator and to-locator’s result. See
Figure 4.9.

• fuse placement: concatenating and inserting the bodies of the intermediate
results from both from-locator and to-locator into the arc, fusing them
together. See Figure 4.9 also.

For the inverse perspective, the same options apply with swapped from and
to-resources.

For fuse placement, the from-L/R and to-L/R directives are restricted to
“drop-from-elem ins-from-bodies” / “drop-to-elem ins-to-bodies”, since fuse de-
termines two nodes to be fused in a certain way that also determines the proper

4.5. MODELING DIRECTIVES FOR FORWARD AND INVERSE 43

to document

 arc

(2) forward-perspective with

(1) physical data model with linkbase, from and to locations

linkbase

from locator to locator (locating
 multiple nodes)

dup-arc-elem

card-1-n

 and

a
b1

b2 b3

from document

(3) forward with dup-arc-elem card-1-1

a2a

b1 b2 b3

a2a

b
1

a

b1b1

a

(from-node is duplicated)

Figure 4.11: Example for 1 : n and 1 : 1 cardinalities in forward perspective

handling of element hull and element bodies: both nodes’ bodies of each pair of
nodes are concatenated, and the arc element is wrapped around each pair in a
dup-arc-elem manner.

These placement options only apply for the forward and inverse perspectives.
The reason is obvious: both perspectives are asymmetric in some way. Nodes
from a remote resource have to be blended into nodes from a local resource,
and the placement determines the mode of this intertwinement. For the relation
perspective, both locations are remote, since the local part is the linkbase itself.
So, both remote locations can be treated equally, since they only have to be
intertwined with the linkbase’s arc, but not with each other.

44 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

<ext dbxlink:transparent=’ext-L-dir ’>
<arc xlink:type=’arc’>

<dbxlink:relation dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir arc-L-dir from-L-dir from-R-dir to-L-dir to-R-dir ’/>

<dbxlink:forward dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir placement-dir arc-L-dir to-L-dir to-R-dir ’/>

<dbxlink:inverse dbxlink:rolename=’rolename’
dbxlink:transparent=’card-dir placement-dir arc-L-dir from-L-dir from-R-dir ’/>

arc content
</arc>

<loc xlink:type=’locator’
dbxlink:transparent=’loc-L-dir loc-R-dir ’>

locator content
</loc>

</ext>

Figure 4.12: The directives for forward perspective, marked up in the link struc-
ture

4.5.2

Cardinality Directives for the forward and inverse Perspective

The cardinality is also of relevance for the forward and inverse perspectives.
In the forward perspective, the to-result (with the already processed arc) can be
inserted into the from-node as a complete fragment list (1 : n relationship), or
the from-node can be duplicated in-place around each result fragment (thereby
creating a 1 : 1 relationship). Accordingly, in the inverse, the 1 : 1 and m : 1
cardinalities are available. Other alternatives (as m : n) are not available,
because in both forward and inverse perspectives, one of the two related sets is
already “glued” to the surrounding instance – the one that is navigated – and
therefore cannot be modified (except being duplicated in-place). See Figure 4.11
for an example in forward perspective. Figure 4.13 depicts a single-steps-example
also in forward perspective, with multiple to-nodes, a duplicated to-locator and
a duplicated arc element, with cardinality 1 : 1.

4.5.3

Allowed and Default dbxlink:transparent Values for forward and inverse

The allowed dbxlink:transparent values for the forward and inverse perspec-
tives, depending on the given placement, are given here in a table for overview:

4.5. MODELING DIRECTIVES FOR FORWARD AND INVERSE 45

Allowed dbxlink:transparent values for forward perspective:

arc-L from-L from-R to-L to-R placement
insert * drop-element insert-nodes * * {1:1,1:n}
replace * drop-element insert-nodes * * {1:1,1:n}
fuse dup-arc-elem drop-element insert-bodies drop-element insert-bodies {1:1,1:n}

Allowed dbxlink:transparent values for inverse perspective:

arc-L from-L from-R to-L to-R placement
insert * * * drop-from-elem ins-from-nodes {1:1,1:n}
replace * * * drop-to-elem ins-to-nodes {1:1,1:n}
fuse dup-arc-elem drop-from-elem insert-bodies drop-to-elem insert-bodies {1:1,1:n}

Default dbxlink:transparent values for forward and inverse perspectives:

arc-L from-L from-R to-L to-R placement
insert dup-arc-elem drop-from-elem ins-from-nodes drop-to-elem ins-to-nodes 1:n
replace dup-arc-elem drop-element insert-bodies drop-element insert-bodies 1:n

46 CHAPTER 4. QUERYING XML DATA WITH EXTENDED LINKS

a

a aa

from document to document

link base

b

a

1

a

(1) to-location set with 3 elements (2) with wrapped-around locator elements

a

(3) with wrapped-around arc elements

3

aa

(4) inserted into duplicated (1:1 relation)
from location elements

4

 physical data model with link base, from and to locations
 - to location bears three single element nodes -

2

b

b b b1 2 3 b b b1 2 3

b b b1 2 3

bb b b1 2 3

duplicated locator
elements

duplicated
arcs

duplicated "from"
elements

Figure 4.13: Stepwise mapping from physical to virtual data model with ”dup-
arc-elem dup-to-elem card-1-1” in forward perspective

Chapter 5

The Logical Data Model for
Simple Links

In s 3 and 4, a proposal for a data model for querying distributed XML instances
is sketched and motivated on base of examples. In this chapter, this data model
is formally specified for Simple Links by describing an XML-to-XML mapping
from a number of interlinked physical XML instances to a virtual instance. The
virtual instance is defined as the result of mapping the inter-linked physical
XML instances to one single instance, thereby replacing the links.

The mapping itself is defined in terms of an abstract data type, which uses
a reduced XML data model that is based on the XML information set. The
XML infoset describes the essential data model concepts that are common to
all XML-related data model standards. Since the mapping given below is based
on (a reduced) XML infoset, it is compliant with all common data / document
/ information models for XML as DOM, or the XPath/XQuery data model.

5.1 The Data Model as an Abstract Data Type

Expanding a Simple XLink element is done in three steps:

1. processing the XPointer’s result,

2. embedding the result into the XLink element, and

3. embedding this intermediate result set into the document context of the
originating XLink element.

These three steps are executed each time a Simple Link element has to be ex-
panded, e.g. during the evaluation of an XPath query against XLink-interlinked
documents.

For specifying the behavior of the Simple Link expansion, a custom XML
data model is used, based on the notions of element, attribute and text nodes.

47

48 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

Other nodes, namely namespace, processing instruction or comment nodes are
omitted, as they are of no interest for link expansion as it is described here. Dur-
ing processing, we also need the terms of nodelists and nodelist lists. Nodelists
are lists (ordered tuples) of nodes, nodelist lists are lists of nodelists.

In the presented model, there is no formal separation between attributes
(unordered) and element and text nodes (ordered), since all nodes – including
attributes – are considered to be ordered. This makes the definition of the
semantics much simpler and easier readable, since all nodes associated to an
element – attributes as well as text children or subelements – can be treated in
a syntactically uniform way by the mapping functions φ and γ.

The data model is described as an abstract data type, using constructors
for basic terms like elements, attributes, text nodes, nodelists etc., and ax-
ioms for describing the behavior of the data type. The axioms can be distin-
guished into accessors for accessing components of composed data structures
(e.g. Name(node) accesses a node’s name), modificators and combinators, such
as InsertAttr(elem, attr), which adds an attribute to an element, and trans-
formations: The mapping function γ and the traversal function φ map a set
physical XML instances containing XLinks to its link-induced virtual instance
by transparently following and expanding each XLink1. γ and φ are specified
as operations on the abstract data type. Hence, they’re are transformations
according to the ADT terminology, transforming an XML structure with links
into an XML structure without links.

In the following, the abstract data type is specified, starting with the axioms’
signatures together with a textual description, with the axioms themselves given
in the following section.

5.1.1 Signatures

Here, the signature and a short explanation is given for each data type axiom,
starting with the basic types, and continuing with constructors, accessors and
modifiers / combinators (except for lists which are presented in a coherent block,
since they are type-generic). The axioms itself are defined afterwards in Sec-
tion 5.1.2.

basic types:

STRING is the set of all unicode strings2

QNAME is the set of all qualified XML names
(QNAME ⊆ STRING)

ELEM is the set of all elements
ATTR is the set of all attributes

1This applies to Simple Link as well as 3rd Party Link elements. The latter are described
in the following chapter, “on top” of the Simple Link definitions.

2where STRING represents all type of XML string values, like CDATA, PCDATA, NMTO-
KEN, NMTOKENS etc.

5.1. THE DATA MODEL AS AN ABSTRACT DATA TYPE 49

TEXT the set of all text nodes
NODE = ELEM ∪ ATTR ∪ TEXT the set of all nodes
NODELIST = LIST<NODE> the set of all lists(ordered tuples)

of nodes.
NODELISTLIST = LIST<NODELIST> the set of all lists of nodelists.

constructors:

Elem : constructs a new element with given
QNAME × NODELIST → ELEM name ∈ QNAME, attrs + children

(both intermixed in the nodelist).
Attr : QNAME × STRING → ATTR constructs a new attribute node

with a name and a value.
Text : STRING → TEXT constructs a new text node.

Text(“abc”) is abbreviated “abc”.
Null : ∅ → NODE constructs a null value (needed as

return value for certain operations)

accessors:

Name : NODE → QNAME returns the name of an element or attribute
node

Attrs : NODE ∪ NODELIST → NODELIST returns the list of attributes of an element,
or the concatenation of all lists of attributes
of elements in a nodelist.

Children : returns the list of children of an element,
NODE ∪ NODELIST → NODELIST or the concatenation of all lists of children of

elements in a nodelist.
Body : NODE → NODELIST returns the element body of an element node

as a list of element, text and attribute nodes.
If the argument is a non-element node, the
empty list is returned.

StripXLinkAttrs : ELEM → ELEM removes all XLink attributes of an XLink
element.

StripXLinkChildren : ELEM → ELEM removes all XLink element children of the
given element.

StripXLinkNodes : ELEM → ELEM removes all XLink nodes of the given element.
Value : NODE ∪ NODELIST → STRING returns the text value of an element, the

attribute value of an attribute, the text
value of a text node, and the concatenation
of values of a nodelist.
(similar to XPath’s string() function)

50 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

AttrsValue : NODELIST → STRING returns the concatenation of values
of the attributes in a nodelist,
separated with blanks.

NodesByName : returns a list of named nodes from
NODELIST × QNAME → NODELIST a nodelist by their names.
AttrsByName : returns a list of attributes from
NODELIST × QNAME → NODELIST a nodelist by their names.

modifiers / combinators:

Flat : NODELISTLIST → NODELIST Turns a NODELISTLIST into a NODELIST
by concatenating the nodelists.

Unflat : Turns a nodelist into a list of nodelists,
NODELIST→ NODELISTLIST each containing one single node.
CombineBodies: Combines two element bodies
NODE×NODELIST→NODELIST (resp. nodelists).
AddBody: Adds the given element body to the other
ELEM×NODELIST→ELEM element’s body.
InsertAttr: Inserts an attribute into a nodelist.
ATTR×NODELIST→NODELIST
InsertAttrs: Inserts a list of attributes into a nodelist.
LIST<ATTR>×NODELIST→NODELIST
EvalXPointer: returns a nodeset representing the result
STRING→NODELIST of an XPointer evaluation against a virtual

instance3.

lists:

List of type T:
∅ → LIST<T> create → []
List containing n items: [a1,. . . , an]
Concatenation: Lists are concatenated
[a, b, c] ◦ [b, c, d] ≡ [a, b, c, b, c, d] with ◦
[] the empty list

3Note the “virtual” part. This means that an XPointer expression is not evaluated within
a physical instance, but may reference nodes in document parts that are “not really there”,
but that are already the product of another XLink expansion! Hence, XLink involves not only
the two layers physical/virtual, but some superior “levels of virtuality”. See Section 6.3 for
more details.

5.1. THE DATA MODEL AS AN ABSTRACT DATA TYPE 51

5.1.2 Data Model: Axioms

Here, the axioms, that have been introduced above, are specified as operators
of the abstract data type. Most operators are more or less self-describing, and
the definition of their behavior is rather straightforward. Some terminology and
a-priori abbreviations are given first:

XLink attributes are attribute nodes belonging to the namespaces

• xmlns:xlink=”http://www.w3.org/1999/xlink” or

• xmlns:dbxlink=”http://www.dbis.informatik.uni-goettingen.de/linxis”.

XLink Elements are XML elements containing one or more XLink Attributes.

XLink nodes are XLink Elements or XLink Attributes.

URIs [Uri98] reference a document or a document fragment. A URI has
the form doc-ref#fragment-identifier, with doc-ref identifying a specific
document, and fragment-identifier being an XPointer expression specifying
a fragment of the XML document.

XPointers [XPt02a] specify a nodelist inside of a specific document by a URI
reference. See Section 2.3.1.

• Name : NODE → QNAME gives the name of an element or attribute.
Name of a text node is the empty string.

– Name(Elem(elem name,body)) = elem name

– Name(Attr(attr name, attr val)) = attr name

– Name(Text(text val)) = Null.

• Attrs : NODE ∪ NODELIST → NODELIST returns the list of attributes
of an element node, or the concatenation of the lists of attributes of the
nodes in a nodelist.
Attrs(arg) = ?

– arg ∈ TEXT : Attrs(arg) = [].

– arg ∈ ATTR : Attrs(arg) = [].

– arg ∈ ELEM : Attrs(arg) = Attrs∗(Body(arg)).

– arg ∈ NODELIST, arg = [n1, . . . , nk] :
Attrs([n1, . . . , nk]) = Attrs(n1) ◦ . . . ◦ Attrs(nk).

Auxiliary function Attrs∗:
Attrs∗ : NODELIST → NODELIST.
Attrs∗([n1, . . . , nk]) =?

– n1 ∈ ATTR : Attrs∗([n1, . . . , nk]) = n1 ◦ Attrs∗([n2, . . . , nk])

– n1 ∈ ELEM ∪ TEXT : Attrs∗([n1, . . . , nk]) = Attrs∗([n2, . . . , nk])

52 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

Attrs∗([]) = [].

• Children : NODE ∪ NODELIST → NODELIST returns the list of element
and text children of an element node, or the concatenation of the lists of
children of the nodes in a nodelist.
Children(arg) = ?

– arg ∈ TEXT : Children(arg) = [].

– arg ∈ ATTR : Children(arg) = [].

– arg ∈ ELEM : Children(arg) = Children∗(Body(arg)).

– arg ∈ NODELIST, arg = [n1, . . . , nk] :
Children([n1, . . . , nk]) = Children(n1) ◦ . . . ◦ Children(nk).

Auxiliary function Children∗:
Children∗ : NODELIST → NODELIST.
Children∗([n1, . . . , nk]) =?

– n1 ∈ ELEM ∪ TEXT : Children∗([n1, . . . , nk]) = n1◦Children∗([n2, . . . , nk])

– n1 ∈ ATTR : Children∗([n1, . . . , nk]) = Children∗([n2, . . . , nk])

Children∗([]) = [].

• Body : NODE → NODELIST:

– An element’s body is the nodelist of its element, text and attribute
nodes:
Body(Elem(name, nodelist)) = nodelist

– Text and attribute nodes have no body:
Body(text or attr) = []

• Value : NODE ∪ NODELIST → STRING:

– value of a text node is its text value (as a string):
Value(Text(stringval)) = stringval

– value of an attribute node is the attribute value:
Value(Attr(attr name, attr value)) = attr value

– value of an element node is the concatenation of values of its element
and text children:
Value(element) = Value(Children(element))

– value of a nodelist is the concatenation of the values:
Value([n1, . . . , nk]) = Value(n1) ◦ Value([n2, . . . , nk])
Value([n]) = Value(n)
Value([]) = ”” (empty string)

• AttrsValue : NODELIST → STRING:

5.1. THE DATA MODEL AS AN ABSTRACT DATA TYPE 53

– AttrsValue([n1, . . . , nk]) =

∗ if n1 is an attribute:
AttrsValue([n1, . . . , nk]) = Value(n1)◦” ”◦AttrsValue([n2, . . . , nk])

∗ if n1 is an element or text node:
AttrsValue([n1, . . . , nk]) = AttrsValue([n2, . . . , nk])

– AttrsValue([n1]) = Value(n1)

– AttrsValue([]) = ””

• NodesByName : NODELIST × QNAME → NODE selects a named node by
its name from a nodelist.
NodesByName([n1, . . . , nk], qname) =?

– Name(n1) = qname :
NodesByName([n1, . . . , nk], qname) = n1◦NodesByName([n2, . . . , nk], qname)

– Name(n1) 6= qname :
NodesByName([n1, . . . , nk], qname) = NodesByName([n2, . . . , nk], qname)

– NodesByName([], qname) = [].

• AttrsByName : NODELIST × QNAME → NODELIST:
AttrsByName selects an attribute by its name from a nodelist.
AttrsByName([n1, . . . , nk], qname) = AttrsByName’(Attrs∗([n1, . . . , nk]), qname)

Auxiliary operator AttrsByName’:LIST<ATTR> × QNAME → NODELIST:
AttrsByName’([a1, . . . , an], qname) =?

– Name(a1) = qname :
AttrsByName’([a1, . . . , an], qname) = a1◦AttrsByName’([a2, . . . , an], qname)

– Name(a1) 6= qname :
AttrsByName’([a1, . . . , an], qname) = AttrsByName’([a2, . . . , an], qname)

– AttrsByName’([], qname) = [].

• InsertAttr: NODELIST×ATTR→NODELIST inserts an attribute into a nodelist.
If there is already an attribute of the same name, the old attribute’s value
and the new attribute’s value are concatenated.

InsertAttr(nodelist, attr) = ?:

– if AttrsByName(nodelist),Name(attr)) = [] :
InsertAttr(nodelist, attr) = nodelist ◦ attr

– AttrByName(nodelist,Name(attr)) = [a1, . . . , ak] with j being a1’s
position in nodelist. Then let n′

j = Attr(Name(attr),AttrsValue([a1, attr])).
Then,
InsertAttr([n1, . . . , nj , . . . , nk], attr) = [n1, . . . , n

′
j , . . . , nk].4

4If a nodelist already contains multiple attributes with the same name, then it is already to
some degree inconsistent, since it can’t have been created using InsertAttrs. For in that sense
consistent nodelists, it is sufficient to fuse the to-be-inserted attribute with the first attribute
of the same name found in the list.

54 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

• InsertAttrs: NODELIST×LIST<ATTR>→NODELIST inserts a list of at-
tributes into a nodelist.

– InsertAttrs([n1, . . . , nk], [a1, . . . , an]) =
InsertAttrs(InsertAttr([n1, . . . , nk], a1), [a2, . . . , an]).

– InsertAttrs([n1, . . . , nk], []) = [n1, . . . , nk].

• CombineBodies: NODELIST×NODELIST→NODELIST combines two bod-
ies (resp. nodelists) by concatenating element and text nodes and by
combining the attributes.
CombineBodies(body1, body2) =?

– CombineBodies(body1, []) = body1.

– Let body1 = [b1, . . . , bn], and body2 = [n1, . . . , nk].
CombineBodies([b1, . . . , bn], [n1, . . . , nk]) = ?

∗ n1 ∈ ELEM ⇒
CombineBodies([b1, . . . , bn], [, n1, . . . , nk]) =
CombineBodies([b1, . . . , bn, n1], [n2, . . . , nk])

∗ n1 ∈ TEXT :

· if bn ∈ ELEM ∪ ATTR ⇒
CombineBodies(body1, body2) = CombineBodies(body1◦[n1], [n2, . . . , nk])

· if bn ∈ TEXT ⇒
Let b′ = Text(Value([bn, n1]). CombineBodies(body1, body2) =
CombineBodies([b1, . . . , bn−1, b

′], [n2, . . . , nk])

∗ n1 ∈ ATTR : CombineBodies(body1, body2) =
CombineBodies(InsertAttr(body1, n1), [n2, . . . , nk]).

• AddBody: ELEMENT×NODELIST→ELEM adds a new body (simply a
nodelist) to the element’s body.
AddBody(Elem(ename, ebody), newbody) =
Elem(ename,CombineBodies(ebody, newbody)).

• StripXLinkAttrs : ELEM → ELEM: Removes all XLink attributes from the
element.
StripXLinkAttrs(Elem(ename, [b1, . . . , bn])) = Elem(ename,StripXLinkAttrs*([b1, . . . , bn]))
Auxiliary function StripXLinkAttrs* : NODELIST → NODELIST:

– StripXLinkAttrs*([b1, . . . , bn]) =

∗ Name(b1) belongs to one of the namespaces xlink or dbxlink:
⇒ StripXLinkAttrs*([b2, . . . , bn])

∗ else:
⇒ [b1] ◦ StripXLinkAttrs*([b2, . . . , bn])

– StripXLinkAttrs*([]) = [].

5.1. THE DATA MODEL AS AN ABSTRACT DATA TYPE 55

• StripXLinkElems : ELEM → ELEM: Removes all XLink Element Children
from the element.
StripXLinkElems(Elem(ename, [b1, . . . , bn])) = Elem(ename,StripXLinkElems*([b1, . . . , bn]))
Auxiliary function StripXLinkElems* : NODELIST → NODELIST:

– StripXLinkElems*([b1, b2, . . . , bn]) =?

∗ b1 ∈ ELEM, b1 = Elem(ename, [n1, . . . , nk1
]).

· ∃ 1 ≤ i ≤ k1 : Name(ni) ∈ {“xlink:type”, “dbxlink:type”} :
⇒ StripXLinkElems*([b2, . . . , bn]) ⇒ [b1]◦StripXLinkElems*([b2, . . . , bn])

∗ b1 ∈ TEXT ∪ ATTR :
⇒ [b1] ◦ StripXLinkElems*([b2, . . . , bn])

– StripXLinkElems*([]) = [].

• StripXLinkNodes : ELEM → ELEM: Removes all XLink Attributes and
XLink children from the element.
StripXLinkNodes(elem) = StripXLinkElems(StripXLinkAttrs(elem)).

• Flat : NODELISTLIST → NODELIST:
Flat([nl1, . . . , nlk]) = n11 ◦ Flat([nl2, . . . , nlk]).
Flat([]) = [].

• Unflat : NODELIST → NODELISTLIST:
Unflat([n1, . . . , nk]) = [[n1] ◦ Unflat([n2, . . . , nk]].
Unflat([]) = [].

• EvalXPointer : STRING → NODELIST
returns a nodeset representing the result of an XPointer evaluation against
a virtual instance with the URI containing the XPointer given as string.
A URI as given in an href-attribute value of an XLink element is usually
composed of the following parts:

www.foo.org
︸ ︷︷ ︸

/mondial-countries.xml
︸ ︷︷ ︸

#xpointer
︸ ︷︷ ︸

(”//country[car code=’B’]”
︸ ︷︷ ︸

)

server path xpointer xpath expression
scheme

The URI contains:

– server and path information which indicate the queried XML docu-
ment instance,

– and an XPointer expression identifying a nodelist.

It should be stressed that the XPath expression is not evaluated against
the (physical) target document, but against the virtual instance induced
by the target document plus XLinks5.

5For details on this aspect, please refer to Section 6.3 where the notion of different degrees
of transparency is explained.

56 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

5.1.3 Operators φ and φ∗

The operators φ (phi) and φ∗ (phi-star) traverse the physical instance, recur-
sively following its tree structure. Each found XLink is expanded with the
operator γ. Other nodes remain unchanged. These operators describe the map-
ping of the physical to the virtual instance, thereby defining the logical data
model for Simple Links.

An XPointer expression, given within a single Simple Link element, can
reference multiple nodes in a remote instance. Thus, γ and φ algebraically map
single nodes to nodelists.

The bucket collects certain elements which have been addressed with an
XLink element with a dbxlink:transparent=“make-attribute” directive. The make-
attribute directive is covered in more detail later.

The Operator φ

Signature:
φ : NODE → NODELIST × NODELIST

φ(node) 7→ (newnodelist, newbucket)

Definition:

φ(node) =?

• node ∈ TEXT ∪ ATTR : φ(node) = ([node], [])

• node ∈ ELEM and node is not an XLink element node:
φ(node) = ([Elem(Name(node), elembody)], bucket)
with (elembody, bucket) = φ∗(Body(node))

• if φ’s argument is an XLink element node, map the element with γ:
φ(xlinkelem) =
(phi elements, phi bucket ◦ gamma bucket)
(phi elements, phi bucket) = φ∗(gamma children)
(gamma children, gamma bucket) = γ(xlinkelem).

The Operator φ∗

Signature:
φ∗ : NODELIST → NODELIST × NODELIST

φ∗(nodelist) 7→ (newnodelist, bucket)

Definition:

φ∗([node1, . . . , nodek]) = (result1 ◦ . . . ◦ resultk, bucket1 ◦ . . . ◦ bucketk)
with (resulti, bucketi) = φ(nodei) for all 1 ≤ i ≤ k.

5.1. THE DATA MODEL AS AN ABSTRACT DATA TYPE 57

5.1.4 Transformation Start

The initial transformation starts with root node as the root node of the physical
instance which is the entry point to the virtual instance.

(virtual instance, bucket) = φ(root node).

5.1.5 Signature and Definition of γ

The γ operator expands Simple Link elements: applied to an Simple Link el-
ement, γ expands the Simple Link according to its xlink:type attribute, the
XPointer expression in attribute xlink:href and transparent directive in attribute
dbxlink:transparent.

As described in Section 3.3, dbxlink:transparent contains the (R-directive
and the L-directive), the first one determining the processing of the link ele-
ment itself, and the latter one determining the processing of the remote result.
L-directives can have the values {duplicate-element | group-in-element | drop-
element | keep-body | make-attribute }. Result directives have values { insert-
nodes | insert-bodies | insert-nothing }.

Signature:

γ : ELEM → NODELIST × NODELIST

γ : (xlink) 7→ (xlink result, newbucket)

Definition:

• xlink is of type “simple”:
γ(xlink) = (xlink result, bucket)
with
xlink result = Flat(nodelistlistLR)
(nodelistlistLR, bucket) = γLR(xlink)

• xlink is of type “extended”:
γ(xlink) = γX(xlink)

For γ, the sub-operators γL, γR, γLR (for Simple Links) and γX (for Extended
Links) exist. γR does the result set mapping, where the result set from the
XPointer evaluation is mapped according to the given R-directive. γL does the
link mapping, where the mapped result set is mapped into the link element
according to the L-directive. γLR performs the composition of both γL and γR.
γX is relevant for Extended Link processing, which is addressed in Section 6.1.

5.1.6 Signature and Definition of γLR

Signature:

γLR : ELEM → NODELISTLIST × NODELIST

58 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

Definition:

γLR(xlink) = (nodelist listL, bucket)

with
(nodelist listL, bucket) = γL(xlink, nodelist listR)
nodelist listR = γR(xlink,EvalXPointer(xpointer))
xpointer = Value(AttrByName(Body(xlink), “xlink:href”)) is the XPointer ex-
pression from the xlink element’s xlink:href-attribute.

5.1.7 Signature and Definition of γL

Signature:

γL : ELEM × NODELISTLIST → NODELISTLIST × NODELIST

γL : (xlink, resultR) 7→ (resultL, bucket)

with resultR = [r1, . . . , rk] being a list of nodelists, which is the intermediate
result of the R-directive applied to the Simple Link’s XPointer’s result.

The behavior of γL is determined by the L-directive in the dbxlink:transparent
attribute.

Definition:

• L-directive is drop-element :
The link element is dropped and replaced with the result from γR:
γL(xlink, [r1, . . . , rk]) =
CombineBodies(r1,CombineBodies(r2, . . . ,CombineBodies(rk−1, rk) . . .)).

Note that ri is not a single node, but each ri stands for a nodelist con-
taining nodes6.

• L-directive is group-in-element :
All element bodies from the result are gathered and added to the body of
the XLink element:
γL(xlink, [r1, . . . , rk]) =
([AddBody(AddBody(. . .
AddBody(AddBody(StripXLinkAttrs(xlink), r1), r2), . . . , rk−1), rk)], []) .

• L-directive is duplicate-element :
The XLink element is duplicated for each element body from the result,
forming its new “element hull”:
γL(xlink, [r1, . . . , rk]) = ([[e1], . . . , [ek]], []) with
ei = AddBody(StripXLinkAttrs(xlink), ri) for all 1 ≤ i ≤ k.

6If the R-directive specifies insert-bodies, each nodelist contains one element’s body. If the
R-directive specifies insert-nodes, the result contains each result node unmodified, but packed
into a single nodelist.

5.1. THE DATA MODEL AS AN ABSTRACT DATA TYPE 59

• L-directive is keep-body :
The link element is dropped, and its body is mapped into each of the
elements inside every body in the result of γR:
γL(xlink, [r1, . . . , rk]) = ([r′1, . . . , r

′
k], []) with

(let ri =: [ni1, . . . , niki
] be the single nodelists)

r′i := [n′
i1, . . . , n

′
iki

],

n′
ij :=

{
AddBody(nij ,Body(StripXLinkAttrs(xlink))), if nij ∈ Elem
nij , else.

with ni1, . . . , niki
being the nodes in the result’s i-th element body.

• L-directive is make-attribute :
The link element is dropped and replaced by a virtual attribute with the
name of the link element. The virtual attribute’s value depends on the
type of the nodes in the result:

(i) for a text or attribute note in the result, the virtual attribute’s value
is the node’s string value. If there are multiple result nodes, the
single string values are concatenated to form the virtual attribute’s
value.

(ii) For an element node in the result, the element is equipped with a
newly generated, virtual-instance-wide unique ID value, and inserted
into the bucket. The virtual attribute obtains the newly generated
value as an IDREF value.

If there are multiple elements in the result node, all are added to the
bucket, and the virtual attribute obtains an IDREFS value, referen-
cing all newly added elements7. If an element node already has an
ID attribute, the present one is re-used instead of generating a new
one.

γL(xlink, [r1, . . . , rk]) =
([Attr(Name(xlink),AttrsValue([v11, . . . , v1n1

, , vk1, . . . , vknk
])],

b11 ◦ . . . ◦ b1n1
◦ ◦ bk1 ◦ . . . ◦ bknk

) with

vij :=

{
Attr(”dbxlink:id”,idij) if nij is an element node,
nij , else.

bij :=







[AddBody(nij , [Attr(“dbxlink:id”, idij)]) ◦ StripXLinkNodes(Body(xlink))],
if nij is an element node,

[] else.

with each idij being a virtual instance-wide unique ID value. Note that
the Attr(Name(xlink), [. . .]) attribute is of the type IDREF/IDREFS, and

7Note that make-attribute delivers a “sensible” mapping only if the referenced nodes are
either elements (resulting in an IDREF or IDREFS value) or attribute and text nodes (resulting
in a CDATA value). Mapping a mixture of element and other nodes with make-attribute results
in a concatenation of both IDREFs and regular CDATA values, which is utterly useless, since
at least the IDREFs cannot be resolved anymore.

60 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

that the Attr(“dbxlink:id”, idij) attributes inside the bij ’s are of the type
ID.

5.1.8 Signature and Definition of γR

Signature:

γR : ELEM → NODELISTLIST

γR(xlink) =?

Let [n1, . . . , nk] = Eval(Value(GetAttrByName(Attrs(xlink), ”xlink:href”))) be the
resulting nodes from evaluating the XPointer expression in the XLink element.
Definition:

• result directive is insert-nodes : γR(xlink) = Unflat([n1, . . . , nk])

• result directive is insert-bodies : γR(xlink) = [Body(n1), . . . ,Body(nk)]

• result directive is insert-nothing : γR(xlink) = [].

5.2 Finite Data Model, Cycle Detection and Link
Bombs

The regular XML data model defines an XML instance as a monolithic tree
structure with the document root element as the tree’s root. The logical data
model discussed in this work changes the picture: link structures may be cyclic,
so that a complete serialization would be infinite. Consider the following Mon-
dial neighbor example:

Example 6 In the distributed Mondial, each country element has a number
of neighbor Simple Link elements as its children that reference the country’s
neighboring countries (except countries that are islands). E.g. France has one
neighbor element to each of its neighbors Belgium, Germany etc. So, the query

. . . /country[name=”Belgium”]/neighbor/name

yields all names of France’s neighbor countries, as there are Belgium, Luxem-
burg, Germany, Switzerland, Italy, Monaco, Spain and Andorra.
Belgium again references France as its neighbor. So, a query

. . . /country[name=”Belgium”]/neighbor/name/neighbor/name

will yield all France’s neighbors’ neighbors’ names, including France itself.
Consider now a query

. . . /country[name=”Belgium”]//neighbor/name.

5.2. FINITE DATA MODEL, CYCLE DETECTION AND LINK BOMBS 61

Due to the use of the descendant-or-self-axis (“//”), the query would not termi-
nate, if evaluated näıvely: Since each of Belgium’s neighboring countries again
has a number of neighboring countries, and each of the neighbors’ neighboring
countries again has neighbors and so on, the query would try to expand and
to follow each neighbor link again and again. This process won’t terminate,
since neighborhood relations are cyclic: if A is B’s neighbor, then B is also A’s
neighbor.

Nevertheless, the query is well-defined because it has a fixed result, consisting
of the transitive closure of the neighbor relation between all countries reachable
from France crossing borders on land.

As shown in the example above, the virtual instance may have an infinite
serialization. Nevertheless, the data model itself is finite, since a regular XML
instance in the XLink-transparent data model – even if infinite in its materializa-
tion – still has, or at least, may have a finite representation. The tree data model
of regular XML is expanded to a more general graph model, which may con-
tain cycles, but still may be navigated and evaluated using XPath expressions.
But, as the above example suggests, when implementing an XPath/XQuery en-
gine, one has to deal with cycle detection, especially in the presence of queries
containing the descendant or descendant-or-self axes. Cycle detection is a well
understood problem in graph theory, and the results from there can be applied
for implementing a query engine. For more details on cycle detection in XPath
engines over the above data model, please refer to [Beh06].

5.2.1 Not Well-Defined Instances

However, there are link constructs that have a finite representation, but do
induce virtual instances that are not well-defined, either in terms of a finite
expansion, or in terms of evaluating them in finite time. E.g. a Simple Link
referencing its parent element with drop-element, adding xlink:href, xlink:type
and dbxlink:transparent attributes to its parent element, again referencing the
parent’s parent, and so on, leading straight to the root element, would “con-
sume” the complete instance. There are several kinds of link constructs show-
ing this or similar pathologic behavior. To avoid these, it is sufficient to forbid
“self-modifying” virtual instances: the creation of new XLink elements by links
that add xlink and dbxlink attributes to some element is generally not allowed.
For a detailed treatment of the “link bomb” phenomenon, please refer again
to [Beh06].

62 CHAPTER 5. THE LOGICAL DATA MODEL FOR SIMPLE LINKS

Chapter 6

The Logical Data Model for
3rd Party Links

For Simple Links, a formal description of the mapping of the physical to the
virtual data model has been given in 5. It is based on a set of operators (i)
traversing the physical data model and searching for XLinks (φ, φ∗), and (ii)
expanding an XLink in place if found (γ, γL, γR, γLR).

In Section 4.1, it was pointed out that there exist three different perspectives
on 3rd Party Links, defining three different semantics. Thus, the forward and
inverse perspective demand a different way of specifying Extended Link seman-
tics than the relation perspective: the relation perspective of an arc defines the
mapping from where the arcs are defined, namely inside the linkbase document.
This is in some way the same as with Simple Links: a Simple Link defined
in a document A embeds parts of a remote document B into A (described in
Section 4.4). In contrast, arcs in the forward and inverse perspective define a
physical-to-virtual mapping from the perspective where the arc starts (forward),
or where it ends (inverse, both described in Section 4.5).

The chapter starts with the relation perspective in Section 6.1. Section 6.2
gives a specification of the mapping for forward and inverse perspectives. All
three types of mappings are described using the φ, φ∗, γ, γL, γR and γLR from
the Simple Links mapping, familiar from 5.

6.1 Description of the Mapping for the relation

Perspective

As for Simple Links, a set of operators traverse a physical instance (the linkbase
/ the Extended Link element), finding and expanding XLink elements: Extended
Link, arc, locator and dbxlink:relation elements define the mapping for the rela-
tion perspective. The traversal operators are the same for both Simple and
Extended Links, namely φ and φ∗. The expansion operators are given with

63

64 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

γX (Extended Link elements) and the sub-operators φX , φ∗
X , γext, γarc, γ∗

LR,
FilterXLinks, Arc2Simple, Loc2Simple, FlatCardList, GetRoleName, DoCard and
GetArcDirectives which will be introduced alongside.

6.1.1 Definition of γX

γX maps the entire Extended Link structure to the virtual instance of the relation
perspective, using a number of sub-operators: γext combines the Extended Link
element (and its physical children and attributes) with the result of the inner
arc and locator elements. Arc and locator elements are mapped using γarcloc.

γX(extlink) = γext(extlink, φX(extlink))

Definition of γext:

The operator γext expands the Extended Link element according to the given
L-directive, which is the same as γL does with Simple Links. Nevertheless, the
expansion semantics for the Extended Link element is a little different from
the semantics for Simple Links. To motivate why an additional operator γext

is needed, consider the following example of an Extended Link with one arc
element and some non-XLink children. The arc element arc is expanded to two
element nodes, ”x” and ”y” (and some content):

<extlink xlink:type=”extended” dbxlink:transparent=”duplicate-element”>

<pre1/><pre2/><pre3/>

<arc xlink:type=”arc” . . . />

<post1/><post2/>

</extlink>

[[<x>content of x</x>],[<y>content of y</y>]]

The result will look like:

<extlink>

<pre1/><pre2/><pre3/><x>content of x</x><post1/><post2/>

</extlink>

<extlink>

<pre1/><pre2/><pre3/><y>content of y</y><post1/><post2/>

</extlink>

For duplicating the extlink element, the locator is evaluated (which yields two
nodelists, each containing one ”x” element), and extlink is “wrapped around”
each locator’s result, inserting the result itself in place at the arc’s previous
position in the physical instance: after the <pre*/>, but before the <post*/>

elements. The plain γL operator cannot be made to process arc results which
are spatially spread over a link element’s child nodes. This special in-place
treatment of arc/locator result requires a specific γext operator:

γext : ELEM× < (NODELIST × ELEM × NODELIST) > → NODELIST × NODELIST

6.1. DESCRIPTION OF THE MAPPING FOR THE RELATION PERSPECTIVE65

γext(extlink, [(pre1, link1, post1), . . . , (pren, linkn, postn)]) = (Flat(result), bucket)

Let transval =Value(AttrByName(Body(extlink),”dbxlink:transparent”)).

• if transval =drop-element, then:
result = result1 ◦ resultrest

bucket = bucket1 ◦ bucketrest

(result1, bucket1) = γarcloc(extlink, link)
(resultrest, bucketrest) = γext(extlink, [(pre2, link2, post2), . . . , (pren, linkn, postn)])

• if transval =keep-body, then:
result = result1 ◦ resultrest

bucket = bucket1 ◦ bucketrest

(tmp result, tmp bucket1) = γL(new extlink, arclocresult)
new extlink = Elem(Name(extlink), [Attr(xlink:type,”simple”),

Attr(dbxlink:transparent,”keep-body”)] ◦ pre1 ◦ post1)

(arclocresult, tmp bucket2) = γarcloc(extlink, link1)
tmp bucket = tmp bucket1 ◦ tmp bucket2.
(resultrest, bucketrest) = γext(extlink, [(pre2, link2, post2), . . . , (pren, linkn, postn)])

• if transval =group-in-element, then:
(result, bucket) = ([[Elem(Name(extlink), elembody)]], bucket)
(elembody, bucket) = γ∗

ext(extlink,Body(extlink)).
Auxiliary function γ∗

ext : ELEM×NODELIST → NODELISTLIST × NODELIST
γ∗

ext(extlink, [n1, . . . , nk]) =?

– n1 ∈ ATTR ∪ TEXT :
γ∗

ext(extlink, [n1, . . . , nk]) = ([[n1]] ◦ result, bucket)
(result, bucket) = γ∗

ext(extlink, [n2, . . . , nk]).

– n1 ∈ ELEM and n1 is a non-XLink element: same as above.

– n1 ∈ ELEM and n1 is an XLink element:
γ∗

ext(extlink, [n1, . . . , nk]) = (result1◦resultrest, bucket1◦bucketrest)
(result1, bucket1) = γarcloc(extlink, n1)
(resultrest, bucketrest) = γ∗

ext(extlink, [n2, . . . , nk])

– γ∗
ext(extlink, []) = ([], []).

• if transval =duplicate-element, then:
result = result1 ◦ resultrest

bucket = bucket1 ◦ bucketrest

result1 = Elem(Name(extlink), pre1 ◦ Flat(linkresult) ◦ post1)
(linkresult, bucket1) = γarcloc(extlink, link1)
(resultrest, bucketrest) = γext(extlink, [(pre2, link2, post2), . . . , (pren, linkn, postn)])

• if transval =make-attribute, then:
γext(extlink, [(pre1, link1, post1), . . . , (pren, linkn, postn)]) =

Attr(Name(extlink),Eval(γ
(attr)
ext ([link1, . . . , linkn])))

66 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

Auxiliary operator γ
(attr)
ext : NODELIST → NODELIST:

γ
(attr)
ext ([link1, . . . , linkn]) = (result1◦resultrest, bucket1◦bucket2◦bucketrest)

(result1, bucket1) = γL(newlink, linkresult)

newlink = Elem(”dbxlink:id”, [Attr(xlink:type,”simple”),
Attr(dbxlink:transparent,”make-attribute”)])

(linkresult, bucket2) = γarcloc(extlink, link1)
(resultrest, bucketrest) = γext(extlink, [(pre2, link2, post2), . . . , (pren, linkn, postn)])

and finally: γext(extlink, []) = ([], []).

Definition of φX :

Operator φX traverses an Extended Link element’s children. It yields a list
consisting of one tuple (pre, link, post) for each found arc/locator with link
being the arc/locator element itself, and pre / post denoting all preceding /
following non-XLink sibling elements of link. Thus, it produces the input list
for the γext operator.

φX : ELEM → LIST < (NODELIST × ELEM × NODELIST) >

φX(extlink) = φ∗
X([],Children(extlink))

φ∗
X([n1, . . . , ni−1], [ni, . . . , nk]) =?

• ni ∈ TEXT : φ∗
X([n1, . . . , ni−1], [ni, . . . , nk]) = φ∗

X([n1, . . . , ni], [ni+1, . . . , nk])

• ni ∈ ELEM and ni is no arc or locator:
φ∗

X([n1, . . . , ni−1], [ni, . . . , nk]) = φ∗
X([n1, . . . , ni], [ni+1, . . . , nk])

• ni ∈ ELEM and ni is an arc or locator:
φ∗

X([n1, . . . , ni−1], [ni, . . . , nk]) =
[([n1, . . . , ni−1], ni,FilterXLinks([ni+1, . . . , nk]))] ◦ φ∗

X([n1, . . . , ni−1], [ni+1, . . . , nk])

• φ∗
X([n1, . . . , nk], []) = [].

Auxiliary operator FilterXLinks: NODELIST → NODELIST:
FilterXLinks([n1, . . . , nk]) =?

• n1 ∈ TEXT : FilterXLinks([n1, . . . , nk]) = [n1] ◦ FilterXLinks([n2, . . . , nk])

• n1 ∈ ELEM and n1 is a non-XLink element (arc or locator):
FilterXLinks([n1, . . . , nk]) = [n1] ◦ FilterXLinks([n2, . . . , nk])

• n1 ∈ ELEM and n1 is an XLink element (arc or locator):
FilterXLinks([n1, . . . , nk]) = FilterXLinks([n2, . . . , nk])

• FilterXLinks([]) = [].

6.1. DESCRIPTION OF THE MAPPING FOR THE RELATION PERSPECTIVE67

Definition of γarcloc:

γarcloc maps a link element – either an arc or a locator element – to its result.

γarcloc : ELEM × ELEM → NODELISTLIST × NODELIST

γarcloc(extlink, link) =?

• link is an arc element:
γarcloc(extlink, link) = γarc(extlink, link)

• link is a locator element:
γarcloc(extlink, link) = γLR(link)

Definition of γarc:

γarc(extlink, arc) = γL(Arc2Simple(arc, perspective),FlatCardList(DoCard(fromresult, toresult)))
(fromresult, frombucket) = γ∗

LR(Loc2Simple(extlink, arc,”xlink:from”))1

(toresult, tobucket) = γ∗
LR(Loc2Simple(extlink, arc,”xlink:to”))

Auxiliary operators:

• γ∗
LR : NODELIST → NODELISTLIST × NODELIST

γ∗
LR([link1, . . . , linkn]) = (result1 ◦ resultrest, bucket1 ◦ bucketrest)

(result1, bucket1) = γLR(link1)
(resultrest, bucketrest) = γ∗

LR([link2, . . . , linkn])

• Arc2Simple transforms an arc element to a Simple Link element, so that
it can be processed with γL according to its ext-L-dir value.

Arc2Simple : ELEM × STRING → ELEM
Arc2Simple(arc, perspective) =

Elem(GetRolename(arc, perspective),
[Attr(”xlink:type”,”simple”),Attr(”dbxlink:transparent”, arcdir)]
◦StripXLinkNodes(Body(arc)))

with (arcdir, card, place) = GetArcDirectives(arc, perspective)

• Loc2Simple transforms an arc’s locators to a list of Simple Links, which
then can be processed with γ∗

LR.

Loc2Simple : ELEM × ELEM × STRING → NODELIST
Loc2Simple(extlink, arc, fromto) = [simple1, . . . , simplen]
Let locs = ArcGetLocs(extlink, arc, fromto) = [loc1, . . . , locn]
Let ∀1 ≤ i ≤ n : simplei =

Elem(Name(loci),StripXLinkNodes(Body(loci) ◦ [type, href, newtrans]))
with

1The definition of γ∗

LR
is necessary, since an Extended Link element may have multiple

locator elements with the same xlink:label value. So, an arc can reference multiple from-
locators, with each of them being processed with γLR. γ∗

LR
applies γLR to a nodelist of

locators.

68 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

type =Attr(”xlink:type”,”simple”)
href =AttrByName(loci,”xlink:href”)
trans = Value(AttrByName(loci,”dbxlink:transparent”))
newtrans =Attr(”dbxlink:transparent”,newtransval)
newtransval = lparam ◦ rparam

with:
if fromto = ”xlink:from”:

“drop-from-elem” ∈ trans ⇒ lparam = “drop-element”
“group-from-elem” ∈ trans ⇒ lparam = “group-in-element”
“dup-from-elem” ∈ trans ⇒ lparam = “duplicate-element”
“keep-from-body” ∈ trans ⇒ lparam = “keep-body”
“make-from-attr” ∈ trans ⇒ lparam = “ make-attribute”

“insert-from-nodes” ∈ trans ⇒ rparam = “ insert-nodes”
“insert-from-bodies” ∈ trans⇒ rparam = “ insert-bodies”
“insert-from-noth” ∈ trans ⇒ rparam = “ insert-nothing”

if fromto = ”xlink:to”:

“drop-to-elem” ∈ trans ⇒ lparam = “drop-element”
“group-to-elem” ∈ trans ⇒ lparam = “group-in-element”
“dup-to-elem” ∈ trans ⇒ lparam = “duplicate-element”
“keep-to-body” ∈ trans ⇒ lparam = “keep-body”
“make-to-attr” ∈ trans ⇒ lparam = “ make-attribute”

“insert-to-nodes” ∈ trans ⇒ rparam = “ insert-nodes”
“insert-to-bodies” ∈ trans⇒ rparam = “ insert-bodies”
“insert-to-noth” ∈ trans ⇒ rparam = “ insert-nothing”

• ArcGetLocs: ELEM × ELEM × STRING → NODELIST
ArcGetLocs(extlink, arc, fromto) = ArcGetLocs∗(Body(extlink),

Value(AttrsByName(Body(arc), fromto)))

ArcGetLocs∗([n1, . . . , nk], label) =?

– n1 ∈ TEXT ∪ ATTR :
ArcGetLocs∗([n1, . . . , nk], label) = ArcGetLocs∗([n2, . . . , nk], label)

– n1 ∈ ELEM and AttrByValue(Body(n1), label) = Attr(”xlink:label”, label):
ArcGetLocs∗([n1, . . . , nk], label) = [n1] ◦ ArcGetLocs∗([n2, . . . , nk], label)

– n1 ∈ ELEM and AttrByValue(Body(n1), label) 6= Attr(”xlink:label”, label):
ArcGetLocs∗([n1, . . . , nk], label) = ArcGetLocs∗([n2, . . . , nk], label)

– ArcGetLocs([], label) = [].

• GetArcDirectives : ELEM × STRING → STRING × STRING × STRING
GetArcDirectives(arc, perspective) = lparam ◦ ” ” ◦ rparam

6.1. DESCRIPTION OF THE MAPPING FOR THE RELATION PERSPECTIVE69

with:
Let trans = Value(AttrByName(Body(arc),”dbxlink:transparent”).
“drop-arc-elem” ∈ trans ⇒ lparam = “drop-element”
“group-arc-elem” ∈ trans⇒ lparam = “group-in-element”
“dup-arc-elem” ∈ trans ⇒ lparam = “duplicate-element”
“keep-arc-body” ∈ trans ⇒ lparam = “keep-body”
“make-arc-attr” ∈ trans ⇒ lparam = “make-attribute”

“1-1” ∈ trans ⇒ card = “1-1”
“1-n” ∈ trans ⇒ card = “1-n”
“n-1” ∈ trans ⇒ card = “n-1”
“n-m” ∈ trans ⇒ card = “n-m”

“insert” ∈ trans ⇒ place = “insert”
“replace” ∈ trans ⇒ place = “replace”
“fuse” ∈ trans ⇒ place = “fuse”

• AttrByValue : NODELIST × STRING → ATTR
AttrByValue([n1, . . . , nk], value) =?

– n1 ∈ ELEM × TEXT :
AttrByValue([n1, . . . , nk], value) = AttrByValue([n2, . . . , nk], value)

– n1 ∈ ATTR and Value(n1) 6= value :
AttrByValue([n1, . . . , nk], value) = AttrByValue([n2, . . . , nk], value)

– n1 ∈ ATTR and Value(n1) = value :
AttrByValue([n1, . . . , nk], value) = n1

– AttrByValue([], value) = Null

• GetRolename(arc, perspective) =
Value(AttrByName(Body(NodeByName(Body(arc),

perspective)),”dbxlink:rolename”))

• DoCard :
NODELISTLIST × NODELISTLIST × STRING → LIST < NODELIST × NODELIST >
DoCard(fromloc, toloc, card) =?
let fromloc = [fl1, . . . , f ln]
let toloc = [tl1, . . . , tlk]

– card = 1-1 ⇒
DoCard(fromloc, toloc, 1-1) = [(fl1, tl1),. . ., (fl1, tlk),

...
...

(fln, tl1),. . . , (fln, tlk)]

– card = 1-n ⇒
DoCard(fromloc, toloc, 1-n) =

70 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

[(fl1, toresult), . . . , (fln, toresult)]

– card = n-1 ⇒
DoCard(fromloc, toloc, n-1) =
[(fromresult, tl1), . . . , (fromresult, tln)]
with fromresult =
CombineBodies(fl1, . . . ,CombineBodies(fln−1, f ln) . . .)

– card = n-m ⇒
DoCard(fromloc, toloc, n-m) = [(fromresult, toresult)]
with fromresult = CombineBodies(fl1, . . . ,CombineBodies(fln−1, f ln) . . .)
and toresult = CombineBodies(tl1, . . . ,CombineBodies(tlk−1, tlk) . . .)

• FlatCardList : < NODELIST × NODELIST > → NODELISTLIST
FlatCardList([(a1, b1), . . . , (an, bn)]) =

[CombineBodies(a1, b1)] ◦ FlatCardList([(a2, b2), . . . , (an, bn)])
FlatCardList([]) = [].

• DoPlacement : LIST < NODELIST×NODELIST > ×STRING → NODELISTLIST
DoPlacement([(A1, B1), . . . , (An, Bn)], place) =
[DoPlacementSingle : (A1, B1, place)]◦DoPlacement([(A2, B2), . . . , (An, Bn)], place)
DoPlacement([], place) = [].

• DoPlacementSingle : NODELIST × NODELIST×STRING → NODELISTLIST
DoPlacementSingle(A,B, place) = result
with: A,B ∈ NODELIST,
A = [a1, . . . , am], B = [b1, . . . , bk], ai, bj ∈ NODE for 1 ≤ i ≤ m, 1 ≤ j ≤ k

– = insert ⇒
result = [[a′

1] . . . , [a
′
m]] with a′

i ∈ NODE

∀1 ≤ i ≤ m : a′
i =







AddBody(ai, B), if ai ∈ ELEM

ai, if ai ∈ ATTR ∪ TEXT

– place = replace ⇒ result = [B, . . . , B
︸ ︷︷ ︸

m times

]

– place = fuse ⇒ result = [CombineBodies(A,B)].

6.2 Extended Links – forward and inverse Per-
spective

The out-of-line definition and 3rd party semantics of linkbases for forward and
inverse perspectives as described in Section 4.1 cannot be mapped with the
ADT operators defined up to here, since γ and γX are based on mapping links

6.2. EXTENDED LINKS – FORWARD AND INVERSE PERSPECTIVE 71

inline. One idea is to expand the traversal functions φ and φ∗ with an additional
linkbase parameter LB (to provide it with the necessary linkbase information),
and to apply them to the embedding resource (from for forward, to for inverse).
φ(LB) and φ∗

(LB) traverse an XLinked document, expanding Simple Links, and
verifying at the same time if the traversed node is referenced by a locator in the
linkbase LB. If the locator is an arc’s from-locator, evaluate the arc’s forward
perspective. If the locator is an arc’s to-locator, do the same with the arc’s
inverse perspective.

6.2.1 Placement Value determines Processing Order

Now, with the knowledge of the mapping operators γL and γR, DoPlacement,
and DoCard and with knowledge of the meaning of L/R, placement and car-
dinality directives, but before starting with the formal details of the mapping,
let’s have a short – and less formal2 – look at the placement directive, and its im-
pact on the order of operator applications to the data model, since the value of
the placement directive (insert, fuse, replace) determines the order of processing
operations. Let node be a single node identified by the from-locator fromloc,
arc the arc element, and toloc the to-locator.

• For forward perspective with place ∈ {insert, replace} the processing order
is:

DoPlacement(DoCard([[node]],
γL(arc, γL(toloc, γR(toloc))), card), place)

In words:

1. evaluate the to-locator’s XPointer result and process it with the R-
directive (γR).

2. process the to-locator’s result with the to-locator element (γL).

3. process the previous result with the arc element (γL).

4. apply the cardinality to the node identified by the from-locator node
and the previous result (DoCard).

1-1 builds pairs of node one node/element body from the previous
result (duplicating node). 1-n builds one tuple consisting of node and
the complete previous to side result.

Allowed combinations: for insert, 1-1 and 1-n (default) is allowed.
For replace, only 1-n is allowed.

5. apply the placement to each pair. The placement operator DoPlace-
ment concatenates each of these pairs (of nodelists). Each pair con-
sists of a list of from-nodes and a list of to-nodes. Let’s assume the
perspective is forward: then, for each pair, the to-nodes are then (i)
made children of, (ii) fused with, or (iii) replacing the from-nodes. In

2For reasons of readability, buckets are not considered in the results of γL and γR as they
are given here. For the formal definition of the mapping involving also the bucket results, see
Section 6.2.3 later in this chapter.

72 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

inverse perspective, the same is done with from and to interchanged.
In relation perspective, no placement is done at all.

• For place = fuse, let again node be a single node identified by the from-
locator. The processing order is:

γL(arc,DoPlacement(DoCard([Body(node)],
γL(toloc, γR(toloc)), card), place))

In words:

1. evaluate the to-locator’s XPointer result and apply the R-directive
(γR).

2. process the to-locator’s result with the to-locator element (γL). For
fuse, L/R-directives are fixed to drop-element insert-bodies.

3. apply the cardinality to the from-node’s body and the previous result
(DoCard). Allowed combinations for fuse: 1-1 and 1-n (default).

4. implement the fuse placement: process the previous result with the
arc element (γL), with its L/R-directive set to dup-arc-elem. The
effect is, the arc element is wrapped around each pair of bodies
(Body(node),tolocresultbodies)).

5. the original from-node node is replaced with the previous results.

After having the above as a “big picture” in mind, we can plunge into the gory
details of the mapping. In the following, the signatures and definitions for φ(LB)

and γ(LB) are given for the forward perspective: a physical document instance
is traversed with φ(LB). If a traversed node is part of a from-locator referenced
by an arc, and if both the arc and the locator are contained in the linkbase
LB, then γ(LB) is applied to that node, which combines the node with the arc
result (using insert, replace or fuse), and blends the combined result back into
the instance, replacing the original node.

The inverse perspective is completely symmetric to forward (with only from-
and to-locators interchanged). Thus, it is omitted here.

6.2.2 Signature and Definition of φ(LB)

Signature:
φ(LB) : NODE → NODELIST × NODELIST

φ(LB)(node) → (newnodelist, bucket)

Definition:
φ(LB)(node) =?

• node is a – yet unresolved – Simple Link element:
φ(LB)(node) = (result, bucket) with
(result, tmpbucket1) = φ(LB)(tmpresult)
(tmpresult, tmpbucket2) = φ(node)
bucket = tmpbucket1 ◦ tmpbucket2.

6.2. EXTENDED LINKS – FORWARD AND INVERSE PERSPECTIVE 73

• node is not an unresolved Simple Link element AND node is contained in
the xlink:href XPointer expression of from-locator loc (in forward perspec-
tive) or to-locator loc (in inverse perspective) of at least one arc arc in the
Extended Link element extlink in the linkbase LB3:

φ(LB)(node) = (newnodelist, bucket)
with (newnodelist, tmpbucket1) = φ∗

(LB)(Flat(nodelistlist))

(nodelistlist, tmpbucket2) = γ(LB)(extlink, arc, loc, node)
bucket = tmpbucket1 ◦ tmpbucket2

• else:

– node ∈ ELEM:
φ(LB)(node) = ([newnode], bucket)
newnode = Elem(Name(node), result)
(result, bucket) = φ∗

(LB)(Body(node))

– node ∈ TEXT ∪ ATTR :
φ(LB)(node) = (node, []).

Definition of φ∗
(LB) : NODELIST → NODELIST × NODELIST:

φ∗
(LB)([n1, . . . , nk]) = (result1 ◦ resultrest, bucket1 ◦ bucketrest) with

(result1, bucket1) = φ(LB)(n1)
(resultrest, bucketrest) = φ∗

(LB)([n2, . . . , nk])

φ∗
(LB)([]) = ([], []).

6.2.3 Signature and Definition of γ(LB)

Signature:

γ(LB) : ELEM × ELEM × NODE × STRING → NODELISTLIST × NODELIST

γ(LB)(extlink, arc, node, perspective) 7→ (nodelistlist, bucket)

Definition:
γ(LB)(extlink, arc, node, perspective) = (nodelistlist, bucket)
with:

• if perspective = dbxlink:forward :
loc = Loc2Simple(extlink, arc, ”xlink:to”)

3If there are multiple arcs referencing the node, or one single arc referencing the node via
multiple locators, the view defined by the linkbase is said to be concurrent. For the treatment
of concurrent view definitions, please refer to Section 6.3.

74 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

• if perspective = dbxlink:inverse :
loc = Loc2Simple(extlink, arc, ”xlink:from”)

(locresult, locbucket) = γLR(loc)
(arcparam, card, place) = GetArcDirectives(arc)
newarc = Arc2Simple(extlink, arc, perspective)
nodelistlist =?

• place ∈ {insert, replace} :⇒

– if node ∈ TEXT ∪ ATTR ⇒ nodelistlist = [[node]], bucket = [].
(you can’t insert anything into a text or attribute node)

– if node ∈ ELEM: ⇒
nodelistlist =
DoPlacement(DoCard([[node]], arcresult, card), place) with
(arcresult, bucket1) = γL(newarc, locresult)
(locresult, bucket2) = γLR(loc)
and
bucket = bucket1 ◦ bucket2.

Allowed cardinality directive values: 1-n (default) and 1-1 for place =
insert, 1-n (fixed) for place = replace.

• place = fuse :⇒
(nodelistlist, bucket1) = φ(LB)(arcresult)
with

(arcresult, bucket2) =







γL(newarc, placementresult) if placementresult 6= []

([], []) else

placementresult = DoPlacement(DoCard([Body(node)], locresult, card), place)
(locresult, bucket3) = γLR(loc)
and
bucket = bucket1 ◦ bucket2 ◦ bucket3.

6.3 Three Kinds of Transparency for 3rd Party
Links

For querying in presence of 3rd Party Links, it needs to be clarified what “trans-
parent” for linkbases in the implementation context can mean. Consider a lo-
cator’s or a Simple Link’s xlink:href XPointer expression referencing nodes in
a (virtual) instance that are “not really there”, but blended into the instance
by Simple or by 3rd Party Links. Remember that in 5, it was stated that the
function EvalXPointer, which serves for evaluating XPointer references in XLink

6.3. THREE KINDS OF TRANSPARENCY FOR 3RD PARTY LINKS 75

elements, evaluates XPointer/XPath expression with respect to the virtual in-
stance. This implies that Simple Links or locators can reference nodes that are
not part of the referenced physical instance, but that are blended into the vir-
tual instance by XLink semantics, either by Simple Links or by Extended / 3rd
Party Links. The evaluation of an XPath expression needs to be ”forwarded”
along an XLink reference. With that effect in mind, three different notions, or
”levels”, of transparency can be distinguished:

Physical Addressing: all from-resources contain nodes in the physical data
model only. XPath expressions are evaluated directly on the document
that the URI – which contains the XPath – specifies. It is not allowed to
address nodes that are mapped into the virtual instance either by Simple
Links or by 3rd Party Links.

Physical addressing is the simplest, least “abstract” form of transparency
for 3rd Party Links, and is – usually – the easiest one to implement.

Simple XLink-aware Addressing: An intermediate level of abstraction dis-
plays the Simple XLink-aware addressing. Here, from-locators can ad-
dress nodesets in the virtual data model, where the navigation starts at
the starting document, but can follow Simple Link references (and only
those) into other documents. It is not allowed to address nodes that are
added to the virtual instance by 3rd Party Links.

The server’s location can be found during evaluation of the locator’s
XPointer expression, by starting at the entry document and following Sim-
ple XLink references out of the entry document. Since an XPath expres-
sion on the virtual data model can address nodes in multiple documents
(example: the query

/country[@car code=”B” or @car code=”NL”]//city

locates city elements from both cities-B.xml and cities-NL.xml), a loca-
tor’s result might be located on multiple physical instances on different
servers.

Simple and 3rd Party Link-aware Addressing: locators address nodes in
the complete virtual data model, including Simple XLinks and 3rd Party
Links. This implies that one arc can add new nodes to a document by
creating a view over it, and another arc can reference portions of these
newly added nodes, again modifying or replacing them, and so on (views
over views over views etc.).

6.3.1 Concurrent View Definition

Within the Simple and 3rd Party Link-aware Addressing, it is possible to define
arcs originating on nodes that have been added by other arcs itself: views over
views over views can thus be created. Note that there is no natural order given
over the arcs of a linkbase. If multiple arcs reference the same node, or a single

76 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

arc references a node via multiple from-locators (forward case) or multiple to-
locators (inverse case), the view definition is called concurrent.

Concurrent view definitions are to some degree problematic for the XLink
semantics, since there is no notion of an ”execution order” among the arcs or
locators of a linkbase. If multiple arcs expand or modify the same node, what
should be the result? For certain kinds of concurrent view definitions, conflict-
free mappings can be thought of. Consider e.g. an element X, with multiple
arcs enriching X with ”insert” placement: all arcs could add their results to the
body of element X inside the virtual instance. But in which document order?
Or what, if one of the from-locators’ XPointer expression does no more address
node X due to the modifications of one of the previous arcs? Even more obvious
is the problem in the following constellation: two arcs reference node X as their
from side, one with insert placement, one with replace placement. Is node X
first modified and then replaced? Or first replaced and then modified? In such
situations, multiple ordering of mapping the arcs may result in multiple different
results. Which ordering is the right one? And how to find it? Some approaches
for finding the right mapping:

• find the “most conservative” mapping: from all combinatorially available
mappings, take the mapping wich destroys the fewest information within
the virtual instance. E.g. first evaluate arcs with replace semantics, then
evaluate arcs with insert semantics, then arcs with fuse semantics, etc.

• Postulate that the appearance of the arcs in the linkbase document deter-
mines the order of the mapping: arcs coming first in document order are
evaluated first.

• Evaluate the arcs in arbitrary ordering.

The first alternative – and this can already be guessed from the rather imprecise
formulation – is not really formally definable, since (1) there is no canonical
measure for information within a linkbase (at least, no trivial one), and (2)
even supposing to have an efficiently computable (or heuristically approximated)
canonical measure, many steps would involve problems as query containment,
which often cannot be sufficiently solved with algorithmic methods. So, this
alternative seems not to be an alternative at all.

The second alternative, taking the document order as mapping order, seems
technically feasible, but relatively random, since it seems not quite evident how
the rather technical aspect of the position of an arc in the linkbase should have
any impact on the algebraic properties of the logical data model.

The third alternative is a generalization of alternative 2, and bears – seem-
ing rather desperate than reasonable – few attraction, for similar reasons as
alternative 2.

In absence of an intuitive and consistent interpretation of concurrent (and
conflicting) view definitions, it seems reasonable to simply ignore concurrency in
linkbases as invalid, leaving their evaluation to the application on a random or
heuristic best-effort basis (indeed, in the general case it seems quite non-trivial

6.3. THREE KINDS OF TRANSPARENCY FOR 3RD PARTY LINKS 77

to decide upon the concurrency of a linkbase, since this involves – among other
things – deciding about things like query containment).

Nevertheless it might be useful in certain scenarios to have multiple arcs
referencing one node. For Simple Link and 3rd-Party-Link-aware addressing, it
is possible to explicitly declare a mapping order for the linkbase designer with
means of the regular XLink semantics. Consider the following example, using
the fuse placement:

Example 7 Consider a linkbase with an arc c, two locators loc, from-document
fromdoc.url and to-document todoc.url in forward direction, with fuse semantics
and 1 : 1 cardinality:

<linkbase>

<c dbxlink:transparent=”dup-arc-elem place-fuse card-1-1”
xlink:from=”get-x” xlink:to=”get-y” strat=”1”/>

<loc xlink:label=”get-x” xlink:href=”fromdoc.url#xpointer(’//x’)”/>

<loc xlink:label=”get-y” xlink:href=”todoc.url#xpointer(’//y’)”/>

. . .
</linkbase>

fromdoc.url

. . .
<x><a/></x>

todoc.url

. . .
<y><b1/></y>

<y><b2/></y>

The fromdoc.url instance is expanded with the given arc c, producing the carte-
sian product of the children of nodes x (from) and y (to):

fromdoc.url

. . .
<x><a/></x>

⇒

fromdoc.url

. . .
<c strat=”1”><a/><b1/>

<c strat=”1”><a/><b2/>

1. Now, the linkbase is expanded with yet another arc c and two more locators
(the old, already evaluated parts are displayed in gray):

<linkbase>

<c dbxlink:transparent=”dup-arc-elem place-fuse card-1-1”
xlink:from=”get-x” xlink:to=”get-y” strat=”1”/>

<loc xlink:label=”get-x” xlink:href=”fromdoc.url#xpointer(’//x’)”/>

<loc xlink:label=”get-y” xlink:href=”todoc.url#xpointer(’//y’)”/>

<c dbxlink:transparent=”dup-arc-elem place-fuse card-1-1”
xlink:from=”get-c1” xlink:to=”get-z” strat=”2”/>

<loc xlink:label=”get-c1” xlink:href=”fromdoc.url#xpointer(’//c[@strat=”1”]’)”/>

<loc xlink:label=”get-z” xlink:href=”todoc2.url#xpointer(’//z’)”/>

. . .
</linkbase>

fromdoc.url

. . .
<c strat=”1”><a/><b1/></c>

<c strat=”1”><a/><b2/></c>

todoc2.url

. . .
<z><d1/></z>

<z><d2/></z>

Expanding again fromdoc.url results in the following virtual instance, pro-
ducing the cartesian product of the three participating locators’ results, the
children of x, y, and z:

78 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

fromdoc.url

. . .
<c strat=”1”><a/><b1/></c>

<c strat=”1”><a/><b2/></c>

⇒

fromdoc.url

. . .
<c strat=”2”><a/><b1/><d1/></c>

<c strat=”2”><a/><b1/><d2/></c>

<c strat=”2”><a/><b2/><d1/></c>

<c strat=”2”><a/><b2/><d2/></c>

2. Now, a third arc c is added to the linkbase, expanding the given set 3-tuples
to a (even larger) set of 4-tuples:

<linkbase>

<c dbxlink:transparent=”dup-arc-elem place-fuse card-1-1”
xlink:from=”get-x” xlink:to=”get-y” strat=”1”/>

<loc xlink:label=”get-x” xlink:href=”fromdoc.url#xpointer(’//x’)”/>

<loc xlink:label=”get-y” xlink:href=”todoc.url#xpointer(’//y’)”/>

<c dbxlink:transparent=”dup-arc-elem place-fuse card-1-1”
xlink:from=”get-c1” xlink:to=”get-z” strat=”2”/>

<loc xlink:label=”get-c1” xlink:href=”fromdoc.url#xpointer(’//c[@strat=”1”]’)”/>

<loc xlink:label=”get-z” xlink:href=”todoc2.url#xpointer(’//z’)”/>

<c dbxlink:transparent=”dup-arc-elem place-fuse card-1-1”
xlink:from=”get-c2” xlink:to=”get-l” strat=”3”/>

<loc xlink:label=”get-c2” xlink:href=”fromdoc.url#xpointer(’//c[@strat=”2”]’)”/>

<loc xlink:label=”get-l” xlink:href=”todoc3.url#xpointer(’//l’)”/>

. . .
</linkbase>

fromdoc.url
<c strat=”2”><a/><b1/><d1/></c>

<c strat=”2”><a/><b1/><d2/></c>

<c strat=”2”><a/><b2/><d1/></c>

<c strat=”2”><a/><b2/><d2/></c>

. . .

todoc3.url

. . .
<l><k1/></l>
<l><k2/></l>

Expanding again yields:

6.3. THREE KINDS OF TRANSPARENCY FOR 3RD PARTY LINKS 79

fromdoc.url
<c strat=”2”><a/><b1/><d1/></c>

<c strat=”2”><a/><b1/><d2/></c>

<c strat=”2”><a/><b2/><d1/></c>

<c strat=”2”><a/><b2/><d2/></c>

. . .

⇒

fromdoc.url
<c strat=”3”>

<a/><b1/><d1/><k1/>

</c>

<c strat=”3”>

<a/><b1/><d1/><k2/>

</c>

<c strat=”3”>

<a/><b1/><d2/><k1/>

</c>

<c strat=”3”>

<a/><b1/><d2/><k2/>

</c>

<c strat=”3”>

<a/><b2/><d1/><k1/>

</c>

<c strat=”3”>

<a/><b2/><d1/><k2/>

</c>

<c strat=”3”>

<a/><b2/><d2/><k1/>

</c>

<c strat=”3”>

<a/><b2/><d2/><k2/>

</c>

. . .

3. Now, a finally last arc x is added, producing the 5-tuple cartesian prod-
uct over the sets of elements {a},{b1/b2}, {d1/d2}, {k1/k2} and {r}, re-
moving the auxiliary strat attribute and re-installing the initial x element
surrounding the generated tuples:

<linkbase>

. . .
<c dbxlink:transparent=”dup-arc-elem place-fuse card-1-1”

xlink:from=”get-last” xlink:to=”get-f” strat=”2”/>

<loc xlink:label=”get-last” xlink:href=”fromdoc.url#xpointer(’//c[@strat=”3”]’)”/>

<loc xlink:label=”get-f” xlink:href=”todoc4.url#xpointer(’//f’)”/>

. . .
</linkbase>

fromdoc.url

. . .
⇒

fromdoc.url
<x><a/><b1/><d1/><k1/><r/></x>

<x><a/><b1/><d1/><k2/><r/></x>

<x><a/><b1/><d2/><k1/><r/></x>

<x><a/><b1/><d2/><k2/><r/></x>

<x><a/><b2/><d1/><k1/><r/></x>

<x><a/><b2/><d1/><k2/><r/></x>

<x><a/><b2/><d2/><k1/><r/></x>

<x><a/><b2/><d2/><k2/><r/></x>

. . .

Please note that

• instead of creating a cartesian product over n sets, it is also possible to
model with 1 : n cardinality, adding new nodes to a from-node’s body each
time. Thereby, it is possible to model a sort of “sum” of nodes instead of
a (cartesian) product.

80 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

• with the strat (= stratum) attribute in the arc and in the locator’s XPointer,
it is possible to explicitly define an “execution order” (or better: mapping
priority) over a linkbase’s arcs. With this technique, it is possible for the
linkbase designer to explicitly define a mapping order over the concurrent
arc definitions, based alone on the proposed XLink semantics.

6.4 The Flight Schedule Example

In the following, three small examples for the three perspectives relation, for-
ward, inverse are given, situated in the flight connection scenario from Exam-
ple 4 and Example 5. The scenario includes the distributed XML geo-database
Mondial, containing information about countries and cities, and a linkbase
containing information about flights from city to city worldwide; both are given
in Figure 6.4. The linkbase contains an Extended Link representing the flight
plan, identifying – among others – the cities Wellington (New Zealand) and
Singapore (capital of the country Singapore) by locators, and representing the
flight connection from Wellington to Singapore with an arc connecting both
locators.

In “relation” perspective, the linkbase itself is queried, connecting and in-
tegrating country and city data into the flight plan data. In “forward” and
“inverse” perspective, a view over the Mondial country and city data is created,
modifying the geographical data with flight plan information.

6.4.1 Relation Perspective

The mapping for the relation perspective is started by applying φ to the linkbase
given in Figure 6.4:

φ(Elem(”linkbase”, [
Elem(”flightplan”, [Attr(”xlink:type”,”extended”), Attr(”dbxlink:transparent”, ”group-in-element”),

Elem(”connection”,[Attr(”xlink:type”,”arc”), Attr(”xlink:from”,”WLG”), Attr(”xlink:to”,”SIN”),
Elem(”dbxlink:relation”, [Attr(”dbxlink:transparent”,”1-1 group-arc-elem”),

Attr(”dbxlink:rolename”,”flight-con”)]),
Elem(”dbxlink:forward”, [Attr(”dbxlink:transparent”,”insert 1-1 dup-arc-elem drop-from-elem ins-from-nodes”),

Attr(”dbxlink:rolename”,”flight-to”)]),
Elem(”dbxlink:inverse”, [Attr(”dbxlink:transparent”,”replace dup-arc-elem make-from-attr ins-from-nodes

drop-to-elem ins-to-nodes”),Attr(”dbxlink:rolename”,”flight-from”)])]),
Elem(”cityref”, [Attr(”xlink:type”,”locator”), Attr(”xlink:label”,”WLG”),

Attr(”xlink:href”,”//country[name=’New Zealand’]/city[name=’Wellington’]”)]),
Elem(”cityref”, [Attr(”xlink:type”,”locator”), Attr(”xlink:label”,”SIN”),

Attr(”xlink:href”,”//country[name=’Singapore’]/city[name=’Singapore’]”)])])])) =

([Elem(”linkbase”, result)], bucket) (1)
with
(result, bucket) =
φ∗([Elem(”flightplan”,[Elem(”connection”,[...]),Elem(”cityref”,[...]),Elem(”cityref”,[...])])]) =
φ(Elem(”flightplan”, [Elem(”connection”,[...]),Elem(”cityref”,[...]),Elem(”cityref”,[...])])) =
γX(Elem(”flightplan”, [Elem(”connection”,[...]),Elem(”cityref”,[...]),Elem(”cityref”,[...])])) =
γext(Elem(”flightplan”, [...]), φX(Elem(”flightplan”, [...]))) =

6.4. THE FLIGHT SCHEDULE EXAMPLE 81

The Flightplan Linkbase

<linkbase>

<flightplan xlink:type=”extended” dbxlink:transparent=”group-in-element”>

<flight-con xlink:type=“arc” xlink:from=“WLG” xlink:to=“SIN” >

<dbxlink:relation dbxlink:transparent=“1-1 group-arc-elem” dbxlink:rolename=“flight-con”/>

<dbxlink:forward dbxlink:transparent=“insert 1-1 dup-arc-elem
drop-to-elem ins-to-nodes” dbxlink:rolename=“flight-to”/>

<dbxlink:inverse dbxlink:transparent=“replace 1-n dup-arc-elem make-from-attr ins-from-nodes”
dbxlink:rolename=“flight-from”/>

</flight-con>

<cityref xlink:type=“locator” xlink:label=“WLG”

xlink:href=“ mondial//country[name=”New Zealand’”//city[name=”Wellington”] ”/>

<cityref xlink:type=“locator” xlink:label=“SIN”

xlink:href=“ mondial//country[name=”Singapore”]//city[name=”Singapore”] ”/>

</flightplan>

</linkbase>

The Mondial Geo Database (excerpt)

<mondial>
<country>

<name>New Zealand</name>

<city><name>Auckland</name></city>

<city><name>Christchurch</name></city>

<city><name>Wellington</name></city>

. . .
</country>

. . .
<country>

<name>Singapore</name>

<city><name>Singapore</name></city>

</country>

. . .
</mondial>

Figure 6.1: The flightplan example

γext(Elem(”flightplan”, [...]), φ∗

X
([],Children(Elem(”flightplan”, [...])))) =

γext(Elem(”flightplan”, [...]),φ∗

X
([],[Elem(”connection”,[...]), Elem(”cityref”,[...]),Elem(”cityref”,[...])])) =

γext(Elem(”flightplan”, [...]),[([],Elem(”connection”,[...]),[])] ◦
φ∗

X
([], [Elem(”cityref”,[...]),Elem(”cityref”,[...])])) =

γext(Elem(”flightplan”, [...]), [([],Elem(”connection”,[...]),[]),([],Elem(”cityref”,[...]),[])] ◦
φ∗

X
([], [Elem(”cityref”,[...])])) =

γext(Elem(”flightplan”, [...]), [([],Elem(”connection”,[...]),[]),([],Elem(”cityref”,[...]),[]),

82 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

([],Elem(”cityref”,[...]),[])]) =

(Flat(extresult),extbucket) (2)
with
transval = group-in-element:
(extresult,extbucket) =

([[Elem(Name(Elem(”flightplan”, [...])),Flat(elembody))]],extbucket) (3)
with
(elembody,extbucket) = γ∗

ext
(Elem(flightplan,[..]),Body(Elem(flightplan,[..])) =

γ∗

ext
(Elem(flightplan,[..]),[Elem(”connection”,[...]),Elem(”cityref”,[...]),Elem(”cityref”,[...])]) =

(result1 ◦ resultrest,bucket1 ◦ bucketrest) (4)
with
(result1, bucket1) = γext(Elem(flightplan,[..]),[Elem(”connection”,[...])) =
γarcloc(Elem(flightplan,[..]),Elem(”connection”,[...])) =
(* because connection is an arc *)
γarc(Elem(flightplan,[..]),Elem(”connection”,[...])) =
γL(Arc2Simple(Elem(connection,[..])),FlatCardList(DoCard(fromresult,toresult))) =
γL(Elem(GetRolename(Elem(”connection”,[...]),”dbxlink:relation”),

[Attr(”xlink:type”,”simple”), Attr(”dbxlink:transparent”,”group-in-element”)]),
FlatCardList(DoCard(fromresult,toresult))) =

γL(Elem(”flight-con”, [Attr(”xlink:type”,”simple”), Attr(”dbxlink:transparent”,”group-in-element”)]),
FlatCardList(DoCard(fromresult,toresult))) (5)

with
(fromresult,frombucket) =
γ∗

LR
(Loc2Simple(Elem(flightplan,[..]),Elem(”connection”,[...]),”xlink:from”)) =

γ∗

LR
([Elem(flightplan,[Attr(”xlink:type”,”simple”),Attr(”dbxlink:transparent”,”group-in-element”,

Attr(”xlink:href”,’//country[name=”New Zealand”]/city[name=”Wellington”]’)])]) =
[γL(γR(Elem(flightplan,[Attr(”xlink:type”,”simple”),Attr(”dbxlink:transparent”, ”group-in-element”,

Attr(”xlink:href”,’//country[name=”New Zealand”]/city[name=”Wellington”]’)])))] =
[γL([[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]]))] =
([[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]], [])

and
(toresult,tobucket) =
... =
([[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])]], [])

Insert fromresult, toresult, frombucket,tobucket into (5):
(result1, bucket1) =
γL(Elem(”flight-con”, [Attr(”xlink:type”,”simple”), Attr(”dbxlink:transparent”,”group-in-element”)]),

FlatCardList(DoCard(fromresult,toresult))) =
γL(Elem(”flight-con”, [Attr(”xlink:type”,”simple”), Attr(”dbxlink:transparent”,”group-in-element”)]),

FlatCardList([[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])],[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])]]))
γL(Elem(”flight-con”, [Attr(”xlink:type”,”simple”), Attr(”dbxlink:transparent”,”group-in-element”)]),

[[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])],[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])]]) =
([[Elem(”flight-con”, [Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),

Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])]], [])

and
(resultrest, bucketrest) = γ∗

ext
([Elem(”cityref”,[...]),Elem(”cityref”,[...])]) =

... (* since default transparent value for locators is ”drop-element insert-nothing”, thus adding nothing *)
([],[])

Insert result1,resultrest, bucket1, bucketrest into ((4)):

6.4. THE FLIGHT SCHEDULE EXAMPLE 83

(elembody,extbucket) =
([[Elem(”flight-con”, [

Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])]] ◦ [], [] ◦[])=

([[Elem(”flight-con”, [
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])]], [])

Insert elembody,extbucket into ((3)):
(extresult,extbucket) =
([[Elem(Name(Elem(”flightplan”, [...])),Flat([[Elem(”flight-con”, [Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),

Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])]]))]],[]) =
([[Elem(”flightplan”,[

Elem(”flight-con”, [
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])]],[])

Insert extresult, extbucket into ((2)):

(result, bucket) =
(Flat([[Elem(”flightplan”, [

Elem(”flight-con”,[
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])]]),[])

= ([Elem(”flightplan”,[
Elem(”flight-con”, [

Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])],[])

Insert result, bucket into (1):
φ(...) = ([Elem(”linkbase”, result)], bucket) =
([Elem(”linkbase”,[

Elem(”flightplan”, [
Elem(”flight-con”, [

Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])],[])

in XML:

<linkbase>

<flightplan>

<flight-con>

<city><name>Wellington</name></city>

<city><name>Singapore</name></city>

</flight-con>

</flightplan>

</linkbase>

The bucket remains empty.

6.4.2 Forward Perspective

Again, consider the Flightplan Extended Link element from Figure 6.4. Now, the
Mondial instance is traversed, expanding/modifying each node that participates

84 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

the Extended Link. In forward perspective, this is the Wellington city element.
In the arc element’s dbxlink:transparent attribute, the insert placing denotes that
the Singapore city element is – after being processed with the surrounding locator
and arc elements – placed inside the Wellington city element as an additional
child element.

The Mondial instance is traversed by the φ(LB) operator, applying the γ(LB)
operator to elements referenced by arcs/locators in the linkbase LB, the γ
operator to Simple Links, and leaving all other nodes unmodified. Starting
point is the above Mondial instance in its data model description:

φElem(”mondial”,[
. . .
Elem(”country”,[

Elem(”name”,[Text(”New Zealand”)])
Elem(” city ”,[Elem(”name”,[Text(”Auckland”)])])
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])])
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])
. . .

])
. . .
Elem(”country”,[

Elem(”name”,[Text(”Singapore”)])
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])

])
. . .

])

Starting with the application of φ(LB) to the instance (leaving away the unmod-
ified Singapore part, as well as the “. . . ” sections):

φ(LB)(Elem(”mondial”,[
Elem(”country”,[
Elem(”name”,[Text(”New Zealand”)])
Elem(”city ”,[Elem(”name”,[Text(”Auckland”)])])
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])])
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])

])
]) =

φ(LB)(Elem(”mondial”,[
Elem(”country”,[
Elem(”name”,[Text(”New Zealand”)]),
Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])])])) =

([Elem(”mondial”, mondialbody)],mondialbucket) (1)

with
(mondialbody,mondialbucket) =
φ∗

(LB)
(Body(Elem(”mondial”,[. . .]))) =

φ∗

(LB)
([Elem(”country”,[. . .])]) =

φ(LB)(Elem(”country”,[
Elem(”name”,[Text(”New Zealand”)]),
Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),

6.4. THE FLIGHT SCHEDULE EXAMPLE 85

Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])])) =

[Elem(”country”, countryresult)],countrybucket) (2)

with
(countryresult,countrybucket) =
φ∗

(LB)
(Body(Elem(”country”,[. . .]))) =

φ∗

(LB)
([Elem(”name”,[Text(”New Zealand”)]),

Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]) =

(resultname ◦ resultrest1, bucketname ◦ bucketrest1) (3)

with:
(resultname,bucketname) =
φ(LB)(Elem(”name”,[Text(”New Zealand”)])) = ([Elem(”name”,[Text(”New Zealand”)])],[])

and
(resultrest1,bucketrest1) =
φ∗

(LB)
([Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),

Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]) =

(resultauck ◦ resultrest2, bucketauck ◦ bucketrest2) (4)

with:
(resultauck,bucketauck) =
φ(LB)(Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]) =
. . .
([Elem(”city”,[Elem(”name”,[Text(”Auckland”)])])],[])

and
(resultrest2,bucketrest2) =
φ∗

(LB)
([Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),

Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]) =

(resultchri ◦ resultrest3, bucketchri ◦ bucketrest3) (5)

with:
(resultchri,bucketchri) =
φ(LB)(Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]) =
. . .
([Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])])],[])

and
(resultrest3,bucketrest3) =
φ∗

(LB)
([

Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]) =

(resultwell ◦ resultrest4, bucketwell ◦ bucketrest4) (6)

with:
(resultwell,bucketwell) =
φ(LB)(Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])) =

86 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

(* since the Wellington city element is referenced by a locator: *)
(newnodelist,bucket) (7)

with

(newnodelist, tmpbucket1) = φ∗

(LB)
(Flat(nodelistlist)) (8)

(nodelistlist,tmpbucket2) = γLB(extlink, arc, node, ”dbxlink:forward”) (9)

extlink = Elem(”linkbase”,[. . .])
arc = Elem(”connection”,[

Attr(”xlink:type”,”arc”), Attr(”xlink:from”,”WLG”), Attr(”xlink:to”,”SIN”),
Elem(”dbxlink:relation”, [. . .]),
Elem(”dbxlink:forward”, [. . .]),
Elem(”dbxlink:inverse”, [. . .])])

node = Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])

Inserted into (9):
(nodelistlist,tmpbucket2) = γLB(extlink, arc, node, ”dbxlink:forward”) =
γLB(Elem(”linkbase”,[. . .]),

Elem(”connection”,[
Attr(”xlink:type”,”arc”), Attr(”xlink:from”,”WLG”), Attr(”xlink:to”,”SIN”),
Elem(”dbxlink:relation”, [. . .]),
Elem(”dbxlink:forward”, [. . .]),
Elem(”dbxlink:inverse”, [. . .])]),

Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]), ”dbxlink:forward”) =

(gammaresult, gammabucket) (10)

with:
(gammaresult,bucket1) =

DoPlacement(DoCard([[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]], arcresult,”1:1”),”insert”) (11)

with

(arcresult, bucket2) = γL(newarc, toresult) (12)

with
newarc = Arc2Simple(extlink,arc,”dbxlink:forward”) =
Elem(”flight-to”,[

Attr(”xlink:type”,”simple”), Attr(”dbxlink:transparent”,”duplicate-element”)])

and

(toresult, bucket3) = γLR*(toloc) (13)

with
toloc =
Loc2Simple(Elem(”connection”,[. . .]),Elem(”cityref”,[. . .],”xlink:to”) =
[Elem(”cityref”, [

Attr(”xlink:type”,”simple”), Attr(”xlink:href”,”//country[name=’New Zealand’]/city[name=’Wellington’]”),
Attr(”xlink:dbxlink:transparent”,”drop-element insert-nodes”)])]

Inserted into (13):
(toresult, bucket3) =
γLR*([Elem(”cityref”, [

6.4. THE FLIGHT SCHEDULE EXAMPLE 87

Attr(”xlink:type”,”simple”), Attr(”xlink:href”,”//country[name=’New Zealand’]/city[name=’Wellington’]”),
Attr(”xlink:dbxlink:transparent”,”drop-element insert-nodes”)])]) =

γLR(Elem(”cityref”, [
Attr(”xlink:type”,”simple”), Attr(”xlink:href”,”//country[name=’New Zealand’]/city[name=’Wellington’]”),
Attr(”xlink:dbxlink:transparent”,”drop-element insert-nodes”)])) =

([[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]],[])

Inserted into (12):
(arcresult, bucket2) = γL(newarc, toresult) =
γL(Elem(”flight-to”,[Attr(”xlink:type”,”simple”),

Attr(”dbxlink:transparent”,”duplicate-element”)]),
[[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]]) =

([[Elem(”flight-to”,[Elem(”city”,[
Elem(”name”,[Text(”Wellington”)])])])]],[])

Inserted into (11):
(gammaresult,bucket1) =
DoPlacement(DoCard([[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]],

arcresult,”1:1”),”insert”) =
DoPlacement(DoCard([[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])]],

[[Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])]],”1:1”),”insert”) =
DoPlacement(

[([Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])],
[Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])],”insert”) =

DoPlacementSingle(
[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])],
[Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])],”insert”) =

DoPlacementSingle(
[[AddBody(
Elem(”city”,[Elem(”name”,[Text(”Wellington”)])]),
[Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])] =

[[Elem(”city”,[Elem(”name”,[Text(”Wellington”),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])]] =

[[Elem(”city”,[
Elem(”name”,[

Text(”Wellington”),
Elem(”flight-to”,[

Elem(”city”,[
Elem(”name”,[

Text(”Singapore”)])])])])])]

Inserted into (10):
(nodelistlist,tmpbucket2) = γLB(arc,loc,node,”dbxlink:forward”) =
([[Elem(”city”,[

Elem(”name”,[
Text(”Wellington”),

Elem(”flight-to”,[
Elem(”city”,[

Elem(”name”,[
Text(”Singapore”)])])])])])],[])

Inserted into (8):
(newnodelist, tmpbucket1) =
φ∗

(LB)
(Flat([[Elem(”city”,[

Elem(”name”,[
Text(”Wellington”),

Elem(”flight-to”,[

88 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

Elem(”city”,[
Elem(”name”,[

Text(”Singapore”)])])])])])]])) =
φ∗

(LB)
([Elem(”city”,[

Elem(”name”,[
Text(”Wellington”),

Elem(”flight-to”,[
Elem(”city”,[

Elem(”name”,[
Text(”Singapore”)])])])])])]) =

([Elem(”city”,[
Elem(”name”,[

Text(”Wellington”),
Elem(”flight-to”,[

Elem(”city”,[
Elem(”name”,[

Text(”Singapore”)])])])])])],[])

Inserted into (7):
(resultwell,bucketwell) =
φ∗

(LB)
(Flat(

[[Elem(”city”,[Elem(”name”,[Text(”Wellington”),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])]])) =

φ∗

(LB)
([Elem(”city”,[Elem(”name”,[Text(”Wellington”),

Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])])) =
([Elem(”city”,[Elem(”name”,[Text(”Wellington”),

Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])],[])

and
(resultchri,bucketchri) =
([Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])])],[])

and
(resultrest3,bucketrest3) =
φ∗

(LB)
([Elem(”city”,[

Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])]) =

(resultwell ◦ resultrest4, bucketwell ◦ bucketrest4)

and
(resultrest4,bucketrest4) =
φ∗

(LB)
([]) = ([],[]).

Inserting into (6):
(resultrest3, bucketrest3) =
(resultwell ◦ resultrest4, bucketwell ◦ bucketrest4) =
([Elem(”city”,[Elem(”name”,[Text(”Wellington”)]),

Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])] ◦ [],[] ◦ []) =
([Elem(”city”,[

Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])], [])

Inserting into (5):
(resultrest2, bucketrest2) =
(resultchri ◦ resultrest3, bucketchri ◦ bucketrest3) =
([Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])])] ◦
[Elem(”city”,[Elem(”name”,[Text(”Wellington”)])])] ◦ [], [] ◦ []) =

([Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),

6.4. THE FLIGHT SCHEDULE EXAMPLE 89

Elem(”city”,[
Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])], []).

Inserting into (4):
(resultrest1, bucketrest1) =
(resultauck ◦ resultrest2, bucketauck ◦ bucketrest2) =
([Elem(”city”,[Elem(”name”,[Text(”Auckland”)])])] ◦
[Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[

Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])],

[] ◦ []) =
([Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]), Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),

Elem(”city”,[
Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])], []).

Inserting into (3):
(countryresult,countrybucket) =
(resultname ◦ resultrest1, bucketname ◦ bucketrest1) (3)
([Elem(”name”,[Text(”New Zealand”)])] ◦
[Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[

Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])], [] ◦ []) =

([Elem(”name”,[Text(”New Zealand”)]),
Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[

Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])], []).

Inserting into (2):
(mondialbody,mondialbucket) =
([Elem(”country”, countryresult)],countrybucket) =
([Elem(”country”, [

Elem(”name”,[Text(”New Zealand”)]),
Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[

Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])],[])

Inserted into (1):
φ(LB)(Elem(”mondial”,[. . .])) =
([Elem(”mondial”, mondialbody)],mondialbucket) =
([Elem(”mondial”, [

Elem(”country”, [
Elem(”name”,[Text(”New Zealand”)]),
Elem(”city”,[Elem(”name”,[Text(”Auckland”)])]),
Elem(”city”,[Elem(”name”,[Text(”Christchurch”)])]),
Elem(”city”,[

Elem(”name”,[Text(”Wellington”)]),
Elem(”flight-to”,[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])])])]),[]).

90 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

in XML:

<mondial>
<country>

<name>New Zealand</name>

<city><name>Auckland</name></city>

<city><name>Christchurch</name></city>

<city>

<name>Wellington</name>

<flight-to> <!-- newly inserted surrounding arc element -->

<city><name>Singapore</name></city> <!-- inserted to-nodes -->

</flight-to>

</city>

</country>

</mondial>

The bucket remains empty.

6.4.3 Inverse Perspective

Again, consider the Flightplan Extended Link element from Figure 6.4. Same as
for the forward perspective, the Mondial database is traversed, expanding/modifying
each node that participates in the Extended Link (Wellington and Singapore city
elements).

Here, the given directives are replace, which means that the Singapore city
node is replaced with the processed arc origin. dup-arc-elem denotes that the
arc’s origin (the Wellington city element) is kept, with the arc element wrapped
around the – single – origin element Wellington. make-from-attr determines the
from-locator element being turned into an IDREFS attribute referencing the
origin. ins-from-nodes determines the Wellington element to remain unchanged
(so the IDREFS attribute contains one reference to the Wellington city element).

As within forward perspective, the Mondial instance is traversed by the φ(LB)

operator, applying the γ(LB) operator to Extended Links (and its components).

φ(LB)(Elem(”mondial”,[
Elem(”country”,[Elem(”name”,[Text(”New Zealand”)],. . .)]),

. . .
Elem(”country”,[
Elem(”name”,[Text(”Singapore”)]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])

])
. . .
]) =

(mondialresult,mondialbucket) =
φ(LB)(Elem(”mondial”,[

Elem(”country”,[Elem(”name”,[Text(”New Zealand”)],. . .)]),
. . .

Elem(”country”,[
Elem(”name”,[Text(”Singapore”)]),

6.4. THE FLIGHT SCHEDULE EXAMPLE 91

Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])
])

. . .
]) =

(dropping the New Zealand and the [. . .] parts)

φ(LB)(Elem(”mondial”,[
Elem(”country”,[
Elem(”name”,[Text(”Singapore”)]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])

])
]) =

([Elem(Name(Elem(”mondial”,[. . .])),mondialinnerresult)], mondialinnerbucket) =
([Elem(”mondial”, mondialinnerresult)],mondialinnerbucket) (1)

with:
(mondialinnerresult,mondialinnerbucket) =φ∗

(LB)
(Body(Elem(”mondial”,[. . .]))) =

φ∗

(LB)
([Elem(”country”,[

Elem(”name”,[Text(”Singapore”)]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])]) =

(countryresult ◦ resultrest,countrybucket ◦ bucketrest) (2)

with:
(countryresult, countrybucket) =
φ(LB)(Elem(”country”,[

Elem(”name”,[Text(”Singapore”)]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])])) =

([Elem(Name(Elem(”country”,[. . .])), countryinnerresult)],countryinnerbucket) (3)

with:
(countryinnerresult,countryinnerbucket) =
φ∗

(LB)
([Elem(”name”,[Text(”Singapore”)]), Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])]) =

(nameresult ◦ cityresult, namebucket ◦ citybucket) (4)

with:
(nameresult,namebucket) = φ(LB)(Elem(”name”,[Text(”Singapore”)])) =
([Elem(”name”,[Text(”Singapore”)])],[]) (5)

and:
(cityresult,citybucket) =
φ(LB)(Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])) =
(* since the Singapore city element is touched by to-locator cityref *)
(gammaresultflat,gammabucket1 ◦ gammabucket2) (6)

with:
(gammaresultflat,gammabucket1) = φ∗

(LB)
(Flat(gammaresult))

(gammaresult,gammabucket2) = γ(LB)(extlink,arc,node,”dbxlink:inverse”) (7)
extlink = Elem(”linkbase”,[. . .])
arc = Elem(”connection”,[

Attr(”xlink:type”,”arc”), Attr(”xlink:from”,”WLG”), Attr(”xlink:to”,”SIN”),
Elem(”dbxlink:relation”, [. . .]),
Elem(”dbxlink:forward”, [. . .]),
Elem(”dbxlink:inverse”, [. . .])])

node = Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])

92 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

Inserted into (7):
(gammaresult,gammabucket2) =
γ(LB)(Elem(”linkbase”,[. . .]),

Elem(”connection”,[
Attr(”xlink:type”,”arc”), Attr(”xlink:from”,”WLG”),Attr(”xlink:to”,”SIN”),
Elem(”dbxlink:relation”, [. . .]),
Elem(”dbxlink:forward”, [. . .]),
Elem(”dbxlink:inverse”, [. . .])]),
Elem(”city”,[Elem(”name”,[Text(”Singapore”)])]),

”dbxlink:inverse”) =

(DoPlacement(
DoCard(

[[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])]],
arcresult,”1-n”),

”replace”),
arcbucket ◦ locbucket) (8)

with:
(arcresult,arcbucket) =
γL(Arc2Simple(extlink,arc,”dbxlink:inverse”),locresult) (9)

with:
loc = Loc2Simple(extlink, arc,”xlink:from”) =
Elem(”cityref”,[

Attr(”xlink:type”,”simple”),
Attr(”xlink:href”,”//country[name=’New Zealand’]/city[name=’Wellington’]”),
Attr(”dbxlink:transparent”,”make-attribute insert-nodes”)])

and:
(locresult, locbucket) = γLR(loc) =
γLR(Elem(”cityref”,[

Attr(”xlink:type”,”simple”),
Attr(”xlink:href”,”//country[name=’New Zealand’]/city[name=’Wellington’]”),
Attr(”dbxlink:transparent”,”make-attribute insert-nodes”)])) =

(
[[Attr(”cityref”,”id0001”)]], (* locresult *)
[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])] (* locbucket *)

)

Inserted into (9):
(arcresult,arcbucket) =
γL(Arc2Simple(extlink,arc,”dbxlink:inverse”),locresult) =
γL(Arc2Simple(

Elem(”linkbase”,[. . .]),
Elem(”connection”,[
Attr(”xlink:type”,”arc”), Attr(”xlink:from”,”WLG”), Attr(”xlink:to”,”SIN”),
Elem(”dbxlink:relation”, [. . .]),
Elem(”dbxlink:forward”, [. . .]),
Elem(”dbxlink:inverse”, [. . .])]),

”dbxlink:inverse”),
[[Attr(”cityref”,”id0001”)]]) =

γL(Elem(”flight-from”,[
Attr(”xlink:type”,”simple”), Attr(”dbxlink:transparent”,”duplicate-element”)]),

[[Attr(”cityref”,”id0001”)]]) =

6.4. THE FLIGHT SCHEDULE EXAMPLE 93

([[Elem(”flight-from”,[Attr(”cityref”,”id0001”)])]],[]).

Inserted into (8):
(gammaresult,gammabucket2) =
(DoPlacement(

DoCard([[Elem(”city”,[
Elem(”name”,[Text(”Singapore”)])])]], arcresult,”1-n”),”replace”),
arcbucket ◦ locbucket) =

(DoPlacement(
DoCard([[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])]],

[[Elem(”flight-from”,[Attr(”cityref”,”id0001”)])]],
”1-n”),

”replace”),
[] ◦ [Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])]) =

(DoPlacement(
[([[Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])]],
[[Elem(”flight-from”,[Attr(”cityref”,”id0001”)])]])],
”replace”),

[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])]) =

([[Elem(”flight-from”,[Attr(”cityref”,”id0001”)])]],
[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])])

Inserted into (6):
(cityresult,citybucket) =
φ(LB)(Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])) =
(gammaresultflat,gammabucket1 ◦ gammabucket2)

with:
(gammaresultflat,gammabucket1) = φ∗

(LB)
(Flat(gammaresult)) =

φ∗

(LB)
(Flat([[Elem(”flight-from”,[Attr(”cityref”,”id0001”)])]])) =

φ∗

(LB)
([Elem(”flight-from”,[Attr(”cityref”,”id0001”)])]]) =

([Elem(”flight-from”,[Attr(”cityref”,”id0001”)])]],[]).

Back to (6):
(cityresult,citybucket) =
φ(LB)(Elem(”city”,[Elem(”name”,[Text(”Singapore”)])])) =
(gammaresultflat,gammabucket1 ◦ gammabucket2) =
([Elem(”flight-from”,[Attr(”cityref”,”id0001”)])],
[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])])

Inserted into (4):
(countryinnerresult,countryinnerbucket) =
(nameresult ◦ cityresult, namebucket ◦ citybucket) =
(nameresult ◦ [Elem(”flight-from”,[Attr(”cityref”,”id0001”)])],
namebucket ◦ [Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])]) =

(now, inserting (5) here:)
([Elem(”name”,[Text(”Singapore”)])] ◦ [Elem(”flight-from”,[Attr(”cityref”,”id0001”)])],
[] ◦ [Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])]) =

([Elem(”name”,[Text(”Singapore”)]),Elem(”flight-from”,[Attr(”cityref”,”id0001”)])],
[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])])

Inserted into (3):

94 CHAPTER 6. THE LOGICAL DATA MODEL FOR 3RD PARTY LINKS

(countryresult, countrybucket) =

([Elem(”country”,[Elem(”name”,[Text(”Singapore”)]), Elem(”flight-from”,[Attr(”cityref”,”id0001”)])])],
[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])])

Inserted into (2):
(mondialinnerresult,mondialinnerbucket) =

(countryresult ◦ resultrest1,countrybucket ◦ bucketrest1) =

(* resultrest and bucketrest being [] each *)

([Elem(”country”,[
Elem(”name”,[Text(”Singapore”)]),
Elem(”flight-from”,[Attr(”cityref”,”id0001”)])])] ◦ [],

[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])] ◦ []) =

([Elem(”country”,[
Elem(”name”,[Text(”Singapore”)]),
Elem(”flight-from”,[Attr(”cityref”,”id0001”)])])],
[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])])

Inserted into (1):
(mondialresult,mondialbucket) =

([Elem(Name(Elem(”mondial”,[. . .])),mondialinnerresult)], mondialinnerbucket) =

([Elem(”mondial”, mondialinnerresult)],mondialinnerbucket)

([Elem(”mondial”,[
Elem(”country”,[

Elem(”name”,[Text(”Singapore”)]),
Elem(”flight-from”,[Attr(”cityref”,”id0001”)])])])],

[Elem(”city”,[Attr(”dbxlink:id”,”id0001”),Elem(”name,[Text(”Wellington”)])])])

which is equivalent to

<mondial>

. . .
<country>

<name>Singapore</name>

<flight-from cityref=”id0001”/> <!-- former Singapore city element, now replaced -->

<!-- by reference to Wellington city element -->

</country>

. . .
</mondial>

and the bucket containing

<city dbxlink:id=”id0001”>

<name>Wellington</name>

</city>

.

Chapter 7

Algorithms for Query
Evaluation with 3rd Party
Links

7.1 Evaluating 3rd Party Links in Distributed
XML Environments

In s 5 and 6, a logical data model for querying distributed XML data in presence
of Simple Links and Extended Links has been formally defined. With that,
a formal foundation is provided to explore the algorithmic side of querying
XLinked data. In [Beh06], algorithmic and implementation aspects of Simple
Links have been investigated, including a detailed investigation of the issues of
Query Shipping / Data Shipping. Using this knowledge about Simple Links
as basis, this chapter focuses on methods, techniques and infrastructure for
evaluating XPath queries in presence of 3rd Party Links, within a distributed
XLink-aware XML environment.

Since the relevant perspectives for 3rd Party Links are forward and inverse,
and since both are symmetric to each other, only the forward perspective is
covered here.

The evaluation techniques given in this chapter are applied in the context of
a technical infrastructure, which is described first. The proposed infrastructure
model is an abstraction of the XLink-aware XML server infrastructure as it was
developed throughout the LinXIS [Lin] project.

7.1.1 Server Infrastructure

The chosen scenario for demonstrating the XLink features of the prototype
consists of a number of XLink-aware eXist servers. Each server contains XML
data, which again may contain XLink references to data on other XML servers.

95

96 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

A server can be abstractly seen as a repository of XML files with additional
Web server functionality – supplying data on http requests, requesting data
from remote resources etc. – and with XPath support. XPath expressions can
be submitted (via http) to an XML server, and are evaluated on the virtual
instance, induced by the XLink-connected instances. In that way, XPath ex-
pressions may be evaluated across several linked XML instances on multiple
hosts.

Note that since both, XSLT and XQuery are based on XPath, XSL trans-
formations as well as the unmodified XQuery expressions can be applied to
the virtual instance without modification. In the LinXIS implementation, the
modified eXist servers execute XQuery expressions on the virtual instance. The
general concept of XPath evaluation is based on the following notion:

• Each query – at least basically – consists of a number of location steps.

• there exists a context, which serves as the input for the next location step,
which again produces a new context as output, which is passed on to the
next location step, and so on.

• When the last location step is processed, the resulting context is the pro-
cessed result of the expression.

• The initial context is empty (note that a leading ”/” identifies a docu-
ment’s root node).

A location step consists of three items: an axis identifier, a node test, and zero
or more predicates. For each location step, and for each node in the context, the
set of those nodes is computed that can be reached from the node by the given
axis. The node test is applied to each of the result nodes, and – if present – the
predicates are evaluated, which can reduce the number of result nodes. Then,
the current node is removed from the context and replaced by the computed
nodes. This is performed for each location step, where one step’s result is the
next step’s input context. The obtained result is the last location step’s result.

In the described XLink setting, two cases deserve special treatment during
evaluation of an XPath query:

• The evaluation passes a Simple Link element:
each time an axis result set is computed, it has to be considered if the
nodeset can contain nodes generated by an XLink. So, it must be checked
if the axis result set contains XLink elements, or contains nodes with
XLink element children which might produce XLink results to be added
to the axis result set.

• The evaluation passes nodes that are part of a resource referenced by an
arc’s from-locator:
In that case, the arc’s result is processed by first combining the to-resource
with the arc information, according to the modeling defined in the arc’s
dbxlink:transparent attribute (arc-L-dir, to-L-dir, to-R-dir). Then, this

7.2. IMPLEMENTING TRANSPARENCY 97

a.xml

host 1

linkbase

b.xml

host 2

c1.xml

host 3

c2.xml

from to

 Simple XLinks

registering

to

from

a.xml

host 1

linkbase

b.xml

host 2

host 3

c2.xml

linkbase-1 linkbase-2

c1.xml

from
to

from

to

Simple XLinks

(a) registering and distributing (b) with distributed linkbase indexes
a linkbase linkbase-1 and linkbase-2

Figure 7.1: Registering and distributing linkbase information

intermediate result is combined with the currently traversed from-nodes,
again according to the keywords in dbxlink:transparent (cardinality and
placement directives).

In most cases (depending on the given mapping directives), the given link
semantics can be emulated by rewriting the current from-nodes, replacing
or enriching them with Simple Link structures (see Function 7.7). In the
few cases where the 3rd Party Link cannot be “compiled down” to Simple
Links, it is computed directly, but still reusing the already given Simple
Link processing logic described by φ, γ etc.

After that, the regular processing continues.

In the following, the basic concepts for implementing these notions in the given
infrastructure scenario are discussed, along with application perspectives, as
well as bringing the attention to some pitfalls raising their ugly heads.

7.2 Implementing Transparency

7.2.1 Outline: Three Steps

The basic procedure for using 3rd Party Links in the DBXLink scenario includes
the following steps:

1. Registering a linkbase by introducing it to all affected servers. These are
those servers that contain XML data which is referenced by locators from

98 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

Links inside the linkbase.

2. The linkbase data is distributed among the servers. An arc with a lo-
cator referencing data on a server a will be stored on the server a. The
created sub-linkbases are termed linkbase indexes. Each linkbase index
contains entries for arcs originating on the server where the index is lo-
cated (an arc originates at the nodes located by its from-locator). This is
relevant for evaluation wrt. forward perspective. Each linkbase index also
contains entries for arcs with their destinations on the server where the
index is maintained. Hence, this is of relevance for evaluation in inverse
perspective.

3. When an XPath query is issued to the whole virtual data model, each
traversed node is checked whether it is affected by the server’s linkbase
index, means: in each location step evaluation, it is checked whether an
arc from the local linkbase index could influence the traversed nodes, by
adding, enriching or modifying the current context by referenced nodes.
If so, the evaluation might be spread over the 3rd-party-linked nodes on
remote servers.

Level of Transparency

Note that the three steps which are given above, and which are depicted in de-
tail below, are only applicable for Physical Addressing and Simple-Link-aware
Addressing. Step 1, the registering, and step 2, the distribution of a linkbase
are a form of preprocessing, resulting in having split up a linkbase in several
parts on several hosts. Which part is sent to which host depends on the loca-
tion of the referenced nodes: an arc that references nodes on a host X with its
from-locator will be sent to that host X. If the node is either referenced directly
on physical level, or if the XPointer expression is forwarded to host X during
registry, then the physical location of that node can be determined. But con-
sidering 3rd-Party-Link-aware addressing, this technique meets its limits: for
physical or Simple-Link-aware addressing, it is relatively easy to find out if a
node is influenced by an arc: simply evaluate the from-locator’s XPath expres-
sion, and potentially follow one (or more) Simple Link reference(s). At some
point, a node can be obtained which is part of the from-resource, together with
the node’s physical document location. For 3rd-party-link-aware addressing, it
would be necessary for each traversed node to find out if it is influenced by
any of the linkbase’s arcs, which might add evaluation-relevant nodes to the
virtual instance as it is known by now. If so, the nodes blended into the virtual
instance by the arc have to be checked as well if they in turn are touched by
some arc, and so on. Computationally, this can be reduced to the problem of
finding a transitive closure over 3rd Party mapping rules, which seems theore-
tically feasible, but prohibitively expensive regarding the runtime. Moreover, it
would not be compliant with the design decision to distribute a linkbase’s parts
to the server that hosts the document bearing the influenced node, since this
information cannot be obtained a priori, but only during the XPath evaluation,

7.2. IMPLEMENTING TRANSPARENCY 99

which makes the precomputing / registering of linkbase information impossible.
Due to this, the prototype described here supports only “level 2” transparency,
allowing linkbases to have from-locators pointing to nodes via a “Simple Link
detour”.

7.2.2 Creating and Using Linkbase Indexes

In the following, the 3 steps – registering a linkbase, distributing a linkbase, and
evaluation XPath expressions wrt. the linkbase – are described in detail, with
an algorithmic notation following later.

Registering a Linkbase.

A linkbase is registered at some server in the network. For each arc in the
linkbase, it is determined where the arc’s locators are pointing to. Then, the
arc is transmitted to the servers that host the nodes identified by the locators.
Hence, the registered linkbase is split up and distributed among the servers
containing nodes referenced by the arc’s locators.

Building an Index.

Each server may receive a number of arcs with their locators pointing into one
of the server’s hosted documents. The arcs and locators are locally registered in
the index. The locator results are precomputed: nodes in one of the database’s
local documents that are identified by one of the received locators are associated
with the index’s representation of the locator. See Figure 7.2 for an example
index entry.

XPath Evaluation in Presence of a Linkbase.

An XPath query is evaluated on a server, with each location step producing an
intermediate context. If such a context contains a node influenced by an arc’s
locator (the query traverses that node), the node is modified / replaced by the
arc’s result, the new result nodes are included in the intermediate context, and
the next location step is evaluated with the modified context as input.

Example.

In Figure 7.3, an example is given for a number of linked XML documents
on multiple hosts, and a linkbase with physical addressing. host0 hosts the
document countries.xml containing data about all countries. host1 hosts the
document cities-NZ.xml containing data about New Zealand’s cities. host2 hosts
the document cities-SGP.xml containing data about Singapore’s cities (which is
only Singapore itself). Consider now the query

/countries/country[@car code=”NZ”]//city[name=”Wellington”]/flight-to/city/name

100 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

<linkbase-local xmlns:dbxlink=”http://dbis.informatik.uni-goettingen.de/linxis”
xmlns:xlink=”http://www.w3.org/1999/xlink” xlink:type=”extended”>

<connection dbxlink:transparent=”group-arc-elem drop-to-elem ins-to-nodes”
distance=”148” xlink:from=”iata-AAL” xlink:to=”iata-CPH” xlink:type=”arc”>

<flight arr=”07.10” dep=”06.25” meals=”N” no=”LH6001” stops=”0” type=”M87”/>

<flight arr=”07.50” dep=”07.05” freq=”X7” meals=”N” no=”LH6125” stops=”0” type=”M82”/>

<flight arr=”08.35” dep=”07.50” freq=”X67” meals=”N” no=”LH6093” stops=”0” type=”M81”/>

<above>Disc. 6/22, Exc. 5/4, 5/17 - 5/18, 5/28</above>

</flight>

. . .
</connection>

<airport dbxlink:eval=”remote”
xlink:href=”http://linxis03/db/LinXIS/cities-DK.xml#xpointer(/cities/city[name=’Aalborg’])”
xlink:label=”iata-AAL” xlink:type=”locator” dbxlink:locref=”/db/LinXIS/cities-DK.xml#1.1”>

<name>Kopenhagen/Copenhagen</name>

</airport>
<airport dbxlink:eval=”remote”

xlink:href=”http://linxis03/db/LinXIS/cities-DK.xml#xpointer(/cities/city[name=’Copenhagen’])”
xlink:label=”iata-CPH” xlink:type=”locator” dbxlink:locref=”/db/LinXIS/cities-DK.xml#1.4”>

<name>Kopenhagen/Copenhagen</name>

</airport>

. . .
</linkbase-local>

– /db/LinXIS/linkbase-local.xml –

(locally registered linkbase part on host linxis03)

/db/LinXIS/cities-DK.xml # 1 . 4

<cities xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xmlns:dbxlink=”http://dbis.informatik.uni-goettingen.de/linxis”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

<city is country cap=”yes”>

<name>Copenhagen </name>

>country xlink:type=”simple” dbxlink:transparent=”drop-element insert-nodes” xlink:href=
”http://linxis02/db/LinXIS/countries.xml#xpointer(/countries/country[@car code=’DK’])”/>

>longitude>12.55</longitude>

<latitude>55.6833</latitude>

<population year=”87”>1358540</population>

</city>

. . .
<city>

<name>Aarhus </name>

<country xlink:type=”simple” dbxlink:transparent=”drop-element insert-nodes” xlink:href=
”http://linxis02/db/LinXIS/countries.xml#xpointer(/countries/country[@car code=’DK’])”/>

>longitude>10.1</longitude>

<latitude>56.1</latitude>

<population year=”87”>194345</population>

</city>

. . .
</cities>

– /db/LinXIS/cities-DK.xml on host linxis03 –

local document path

1st child in doc

4th child of 1st child

Figure 7.2: Excerpt of a registered local linkbase

being evaluated on host0. The evaluation of an XPath query is segmented into a

7.2. IMPLEMENTING TRANSPARENCY 101

- countries.xml / host 0 -

<countries xmlns:xlink=”http://www.w3.org/1999/xlink”
xmlns:dbxlink=”http://www.dbis.informatik.uni-goettingen.de/linxis”>

. . .
<country car code=”NZ”>

<name>New Zealand</name>

<population>3547983</population>

<cities xlink:type=”simple” dbxlink:transparent=”drop-element insert-nodes”
xlink:href=”http://host1.foo.bar/countries.xml#xpointer(’/countries/country[@car code]=”NZ”’)”/>

</country>

. . .
</countries>

- cities-NZ.xml / host 1 -

<cities> <!-- id#001 -->
<city> <!-- id#002 -->

<name> <!-- id#003 -->

Wellington <!-- id#004 -->
</name>

</city>

<city> <!-- id#005 -->
<name> <!-- id#006 -->

Auckland <!-- id#007 -->
</name>

</city>

</cities>

- cities-SGP.xml / host 2 -

<cities> <!-- id#008 -->
<city> <!-- id#009 -->

<name> <!-- id#010 -->

Singapore <!-- id#011 -->
</name>

</city>

</cities>

- linkbase.xml -

<linkbase> <!-- id#012 -->
<cityref <!-- id#013 -->

xlink:label=”WLG”
xlink:type=”locator”
xlink:href=”. . . ”/>

<cityref <!-- id#014 -->

xlink:label=”SIN”
xlink:type=”locator”
xlink:href=”. . . ”/>

<cityref <!-- id#015 -->

xlink:label=”FRA”
xlink:type=”locator”
xlink:href=”. . . ”/>

<cityref <!-- id#016 -->

xlink:label=”HNL”
xlink:type=”locator”
xlink:href=”. . . ”/>

<flight-con <!-- id#017 -->

xlink:type=”arc”
xlink:from=”WLG”
xlink:to=”SGP” . . . />

<flight-con <!-- id#018 -->

xlink:type=”arc”
xlink:from=”FRA”
xlink:to=”HNL” . . . />

</linkbase>

host1 linkbase index

node arc

id#001 → ∅
id#002 → id#017
id#003 → ∅
id#004 → ∅
id#005 → ∅
id#006 → ∅
id#007 → ∅

resource-locator

re
so
ur

ce
-lo

ca
to
r

lo
ca

to
r-a

rc

lo
cator-arc

S
im

p
le

L
in

k

S
im

p
le

L
in

k

host2 linkbase index

node arc

id#008 → ∅
id#009 → id#018
id#010 → ∅
id#011 → ∅

Figure 7.3: Evaluation of an XPath Query wrt. a Linkbase

number of steps. The steps correspond to the XPath expression’s location steps.
Each processing step is described in terms of its pre- and post condition (in-
termediate evaluation context before and after), and of a textual description of
what happens in that very step. The initial context contains only the document
node of countries.xml on host0 at address http://host0.foo.bar.

1. evaluate location steps /countries/country[@car code=”NZ”]
context before:
[doc-node(”countries.xml”)]
via child axis from the document node and the countries node test, first the root
element “countries” is selected. From here, via child axis and with a country node
test, all “country” elements are selected. Now, the predicate [@car code=”NZ”]
is applied, which selects of all “country” elements that one with car code NZ
(New Zealand).

102 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

context after:
[country-element(NZ)]

2. evaluating //city[name=”Wellington”]

(a) evaluating axis ”//”
context before:
[country-element(NZ)]
from the New Zealand country element, the “//” axis (descendant-or-self)
select the New Zealand country element itself, and all descendants.
intermediate context:
[country-element(NZ), name-element(”New Zealand”), population-element,
cities-element]
cities is a Simple Link element. Resolving it yields all city-elements of New
Zealand from the cities-NZ.xml document on host1.
Part of the evaluation continues on host1 (due to Query Shipping), since
the cities-NZ.xml instance is hosted there. Note that on host1, a linkbase
index exists that is relevant for evaluation.
context after:
[country-element(NZ), name-element(”New Zealand”), population-element,
city-element(id#002), name-element(id#003), textnode(id#004), city-element(id#005),
name-element(id#006), textnode(id#007)]

(b) evaluating nodetest ”city”
context before:
[country-element(”New Zealand”), city-element(id#002), name-element(id#003),
textnode(id#004), city-element(id#005), name-element(id#006), textnode(id#007)]
all elements are eliminated except the two city elements.
context after:
[city-element(id#002), city-element(id#005)]

(c) evaluating predicate [name=”Wellington”]
context before:
[city-element(id#002), city-element(id#005)]
predicate deletes the “Auckland” element (id#005) from the context, keep-
ing just the “Wellington” city element.
context after:
[city-element(id#002)]

3. check linkbase index
context before:
[city-element(id#002)]
consulting the linkbase index table reveals the fact that the Wellington city el-
ement is referenced as a from-locator from the arc with id#017, which is the
flight-con arc representing the flight connection from Wellington to Singapore.

The arc has the placement directive insert, which means that the arc’s result is
inserted into each from-node, here the Wellington city node. The arc’s result is
composed of the from-locator result (which is the city element of Singapore from
cities-SGP.xml on host2) and wrapped into the flight-con arc element, which is
renamed to its rolename in dbxlink:forward perspective, “flight-to”.

7.2. IMPLEMENTING TRANSPARENCY 103

<city>

<flight-to>

<city><name>Singapore</name></city>

</flight-to>

<name>Wellington</name>

</city>

The new, enriched element is denoted city-element(id#002)*.
context after:
[city-element(id#002)*]

4. evaluate /flight-to location step
context before:
[city-element(id#002)*]
Navigates into the flight-to child element of the city-element(id#002)*. context
after:
[flight-to-element(SGP)]

5. evaluate /city location step
context before: [flight-to-element(SGP)]
Navigates into the flight-to’s child city-element. context after:
[city-element(SGP)]

6. evaluate /flight-to location step
context before:
[city-element(SGP)]
Navigates into the name child element of Singapore’s city element. context after:
[name-element(“Singapore”)]

So, the after-all result is the following element node:
<name>Singapore</name>

7.2.3 Query Shipping versus Data Shipping

The above example exhibits that the evaluation of a single XPath query can
spread over multiple hosts, but it does not point out explicitly how this may
happen. E.g. step 1 focuses on nodes on host0. Steps 2 and 3 deal with nodes
on host1, step 4 and 5 deal with nodes originally on host2. Are these query
parts evaluated at the host where the affected nodes are situated? Or are the
remote nodes copied to the host where the query evaluation started from? Or
a mixture of both?

If an XPath expression is evaluated with respect to a registered linkbase,
and one location step crosses a Simple Link border, three options can be figured
out for continuing the evaluation process.

Query Shipping: the unprocessed rest of the XPath expression is forwarded
from the current server to the remote document and evaluated there, with
the remote server respecting its local linkbase index table. The results
from the remote server are serialized into XML data sent over the network,
deserialized again and inserted as a copy into the local evaluation context.

104 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

Data Shipping: the referenced remote document is serialized and transferred
completely to the server where the evaluation currently is taking place.
Here, a copy is created and the query is evaluated locally on the copy.
Respecting the linkbase here would imply – since the linkbase indexes are
stored locally at the server hosting the document where the physical in-
stance of the from-locator-referenced nodes resides – not only to receive the
complete remote document, but also the complete remote linkbase index,
which then could be evaluated locally at the current server. This would
result in even higher communication overhead. Also, for most straight-
forward implementations in imperative programming languages, the in-
dexes would become invalid, since their addressing schema, hash tables
etc. probably will be based on object IDs or similar, which are limited in
scope to their original runtime environment. The tables could be restruc-
tured and transformed before sending them, but nevertheless the efforts
would be enormous and the implementation would be cumbersome. So,
this approach seems conceptually inappropriate.

Hybrid Shipping: the XPointer expression is transferred to the remote docu-
ment and evaluated there; the resulting XML is transferred to the current
server and copied there, and the XPath expression is evaluated to the local
copy.
Here, the problem is basically the same: not only the regular result trees
have to be sent back, but also the remote linkbase index, with a need to
abstract from the local runtime environment, which would be barely more
efficient than Data Shipping.

The above-mentioned aspects lead to the conclusion that the only conceptu-
ally promising evaluation approach here is Query Shipping, which also makes
sense when analyzing potential scenarios: Consider a scenario which consists
of a number of XLink-aware servers (Simple Links as well as Extended Link
bases) on one hand (e.g. a distributed Mondial [May07] instance), and of a
number of external non-XLink-aware XML sources (as remote Web Services,
XML Databases, RSS newsfeeds, or plain XML files) on the other hand. The
sources are referenced via Simple Links or as “to” locators from the linkbase’s
arcs. The first is addressed as the “own domain”, the latter one may be called
the “alien domain”. Data shipping and Hybrid Shipping are offered alternatives
for “weaker” XML services from the alien domain that are not XLink-aware and
not capable of Query Shipping.

Since it seems more common to enrich the own domain by incorporating
“alien” data instead of enriching “alien” data, the assumption of Query Shipping
among the own-domain servers and of data or Hybrid Shipping among the alien
data sources seems to be valid at least within a reasonably large subset of real-
world data integration scenarios.

7.2. IMPLEMENTING TRANSPARENCY 105

7.2.4 The Algorithm

It has been discussed in Section 6.3 that there exist three different notions of
introducing 3rd Party Links to the DBXLink data model: with physical address-
ing (1), with Simple-Link-aware addressing (2), and with 3rd-Party-Link-aware
addressing (3). Assuming that Query Shipping is used throughout the scenario,
alternatives (1) and (2) seem quite feasible. Alternative (3) is significantly more
complex. It would e.g. involve the processing of transitive closures for multiple
arcs referencing the same node, which can become quite delicate. The issues
of circular links and link bombs would become relevant in an even more weird
fashion (due to the more complex modeling), and the introduced linkbase in-
dexing by precomputing the locator results would not be applicable here (since
nodes that are virtually blended into the document can’t be indexed at the
document’s server site). Thus, the 3rd-Party-Link-aware addressing is consid-
ered to be rather of formal and theoretical interest than of practical impact.
For the following, this work focuses on (2), the Simple-Link-aware addressing.
Algorithms for processing are given below.

Only forward Perspective.

The given algorithms below implement the forward perspective, since inverse is
symmetrically to forward. So, the from-locator always locates the nodes that are
modified, replaced or fused. The to-locator always references the remote nodes
that are inserted into / fused with / replace the from-nodes.

Part 1 - Registering the Linkbase.

The linkbase is preprocessed before evaluating an XPath expression on the
distributed XML data with respect to the linkbase. For that, the XPointer
expressions inside the from-locators’ xlink:href attributes are evaluated. Since
the sources may reference each other with Simple Links, and a from-locator’s
XPointer expression may cross such a Simple Link, the result of such an eval-
uation might be spread over multiple (physical) documents on multiple hosts.
On each host, a linkbase index table is created that provides a mapping from
the evaluated node to the arc containing the from-locator referencing that node.
So, each server knows about the arcs that start from one of the nodes in one of
the documents that the server is hosting.

In the following, the process of registering a linkbase over multiple servers
is described in detail, starting with a description of the assumed server infras-
tructure.

Infrastructure / Prerequisites:

• We assume to have a number of servers host1, . . . hostn, that are XLink-
aware (have the logic to evaluate queries traversing Simple Links as well
as queries over data referenced by 3rd Party Links).

106 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

• We assume to have a linkbase to be registered. The linkbase has arcs
arc1 . . . , arcm, each arc with one from-locator and one to-locator1.

• Let EvalXPointer(xptr) = [(node1, host1), . . . , (noden, hostn)] be the func-
tion that evaluates an XPointer expression, returning a set of nodes. The
nodes may be distributed over different servers, with hosti denoting the
server where the node is originally located2.

• Let InsertIntoIndex(host,node,arc) insert the mapping (node → arc) into
the local linkbase index located at server host.

Procedure 7.1 (registerLinkbase), Procedure 7.2 (registerArc)
In Procedure 7.1, the linkbase is parsed, each arc is extracted. In Procedure 7.2,
the arc’s from-locator’s XPointer expression is evaluated with respect to Simple
Links. The result is the set of nodes identified by the arc’s from-locator. These
nodes might be spread over multiple servers/hosts. The arc itself is then sent
to each of these hosts, to be stored there inside the local linkbase index table.

Procedure RegisterLinkbase

Input: {arc1, . . . , arcm} from linkbase
Result: Each arc is sent to servers hosting nodes from the arc’s “from”

locator
(executed at the registering server)1

begin2

foreach arc ∈ {arc1 . . . , arcm} do3

RegisterArc(arc)4

end5

end6

1As done earlier in this work (e.g. in Section 4.1), we focus without loss of generality on
arcs identifying exactly one from- and exactly one to-node.

2The necessary informations are in detail: (1) the node information as name, node type,
document element, children etc. as given in the XML Infoset, (2) the host where the – physical
– document is hosted, and (3) some kind of local physical ID of the node on the host machine.

7.2. IMPLEMENTING TRANSPARENCY 107

Procedure RegisterArc

Input: arc from linkbase
Result: arc is sent to server hosting nodes from arc’s from-locator
(executed at the registering server)1

begin2

fromloc ←− arc’s from-locator3

xpointer ←− fromloc’s XPointer4

result = [(node1, host1), . . . , (nodek, hostk)] ←− Eval(xpointer)5

(the nodes identified by xpointer, along with their host locations)6

foreach (node, host) ∈ result do7

InsertIntoIndex(host, node, arc)8

end9

end10

Part 2 - Evaluating XPath over XLinked XML with Linkbases.

The linkbase has now been registered, and its arc information has been spread
over the participating hosts’ local linkbase indexes. Now, an XPath expression is
issued to the XLinked data. Simple Links as well as Linkbase information might
add nodes to the virtual instance. The children/attributes must be checked
whether they are XLink-relevant or not, and – if so – if their outcome is relevant
for the current XPath location step.

The check “are there any relevant arcs for node X?” is performed by lookup
in the linkbase index that is created during the registering. The linkbase index is
a pre-computed hashtable, with a node’s local address inside the storage system
of the hosting server’s database system as key value. If there are arcs outgoing
from X, they can be found with X’s local address.

As described in Section 7.2.3, Query Shipping is the only evaluation strategy
which is compliant with the pursued linkbase approach. Thus, Query Shipping
is assumed to be used for all links.

• Let arc ←− GetIndex(node) return the arc associated with the given node
from the local linkbase index of server host, when executed there.

• xpath-expr1/stepx/xpath-expr2 are three parts of an XPath expression, with
xpath-expr1 being the part that has already been processed, stepx being
the current location step, and xpath-expr2 being the yet unprocessed part.

Note that the following algorithms for evaluating XPath expressions over XML
with Simple XLinks are adaptions from the dissertation of Erik Behrends [Beh06],
with logic added for including linkbases into the evaluation.
Procedure 7.3 (processRelevantLinks)
For each element in the current evaluation context, its text children, element
children, and attributes are checked if they are (1) Simple XLink Elements, or
(2) nodes that are touched by an arc. In both cases, they have to be expanded
to satisfy the virtual data model.

108 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

Procedure processRelevantLinks

Input: A current context (set of nodes) C, xpath-expr1, stepx,
xpath-expr2.

Result: Relevant links resolved in advance for the next step.
begin1

foreach element e ∈ C do2

L ←− getRelevantLinks(e, stepx)3

while L 6= ∅ do4

for ` ∈ L do5

if isSimpleLink(`) then6

resolveSimpleLink(`, stepx, xpath-expr2)7

else if isArc(`) then8

resolveExtendedLink(`, L.next(), stepx, xpath-expr2)9

L.remove(L.next())10

end11

L ←− getRelevantLinks(e, stepx)12

end13

end14

end15

Procedure 7.4 (getRelevantLinks)
Here, the XLink-relevant children of a given context element are determined.
Relevant are Simple Link elements, since they might add elements to the virtual
instance, and children or attributes addressed by a 3rd Party Link’s from-locator.
They can be replaced or modified by the arc’s result, and by that also add nodes
to the virtual instance.
Function 7.5 (performNodetest)
performNodetest checks if the name of an arc result enriching the current doc-
ument can be precomputed from inspecting the arc’s transparent values. If so,
and if the resulting node name does not match the nodetest from the given
location step, then the arc is not to be included into the evaluation (returns
“false”). If the name of the result node cannot be guessed, or if the location
step doesn’t include a name test (e.g. wildcard ”*”), or if the name matches the
name test, then “true” is returned.
Procedure 7.6 (resolveSimpleLink)
resolves Simple Link Elements either by (1) Query Shipping, (2) Data Shipping,
or (3) Hybrid Shipping (these terms are defined in Section 7.2.3).
Procedure 7.7 (resolveExtendedLink)
resolveExtendedLink takes a node, an arc that references the node via its from-
locator, the current location step, and the remaining, yet unevaluated XPath
expression. The node is replaced / modified with the arc’s result, which is
acquired by replacing the arc with a construct involving Simple Links, and
adding the construct to the current evaluation context. The construct itself is
then evaluated as a regular Simple Link.

7.2. IMPLEMENTING TRANSPARENCY 109

Function getRelevantLinks

Input: An element e, stepx, the local LinkbaseIndex.
Output: The links children relevant for e wrt. stepx.
begin1

links, tmpList ←− emptyList2

axisx ←− the axis of stepx;3

nodetestx ←− the nodetest of stepx4

switch axisx do5

case self6

// do nothing7

case child8

tmpList ←− e.getChildren() ◦ e.getAttributes()9

case descendant10

tmpList ←− e.getDescendants() ◦ e.getAttributes() ◦11

e.getDescendants().getAttributes()
case descendant-or-self12

tmpList ←− e.getDescendants() ◦ e.getAttributes() ◦13

e.getDescendants().getAttributes()
case following-siblings14

tmpList ←− e.getFollowingSiblings()15

case following16

tmpList ←− e.getFollowing() ◦ e.getFollowing().getAttributes()17

case attribute18

tmpList ←− e.getChildren() ◦ e.getAttributes()19

end20

end21

foreach node ∈ tmpList do22

if isSimpleLink(node) then23

link ←− (SimpleLink)node24

if axisx = attribute then25

if link.getLDirective() = ”make-attribute” and link matches26

nodetestx then

links.add(link)27

else if link.getLDirective() ∈{”drop-element”, ”keep-body”} then28

links.add(link)29

else if link.getLDirective() ∈ {”group-in-element”,30

”duplicate-element”} and link matches nodetestx then

links.add(link)31

else if link.getLDirective() ∈ {”drop-element”, ”keep-body”} then32

links.add(link)33

else if LinkbaseIndex.contains(node) and performNodetest(arc, stepx) then34

links.add(arc), links.add(node)35

end36

return links37

Function 7.8 (arc2SimpleLink)
Translates the given arc and node from arc’s from-locator into an equivalent

110 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

Function performNodetest

Input: arc,stepx

Output: false if arc’s prospective result doesn’t match nodetest; else true.
begin1

nametest ←− stepx.getNametest()2

if nametest= null then3

return true4

if arc.getPlacingDirective() = ”place-insert” then5

return nametest = node.getName()6

else7

// placing is ”place-replace”8

if arc.getLDirective() ∈9

{”dup-arc-elem”,”group-arc-elem”,”make-arc-attr”} then

return nametest = arc.getName()10

else if arc.getLocator().getLDirective() ∈11

{”dup-arc-elem”,”group-arc-elem”,”make-arc-attr”} then

return nametest = arc.getToLocator().getName()12

return true13

end14

Procedure resolveSimpleLink

Input: A Simple Link element `, stepx, xpath-expr2
Result: ` has been resolved.
begin1

switch `.getAttribute(”dbxlink:eval”) do2

case ”local”3

href ←− `.getAttribute(”xlink:href”)4

doc ←− getReferencedDocument(href)5

frag ←− getLocalXMLFragment(doc,6

href.getSubstringAfter(”#”))
addXMLFragment(frag, `.getAttribute(”dbxlink:transparent”))7

case ”distributed”8

frag ←− getXMLFragment(`.getAttribute(”xlink:href”))9

addXMLFragment(frag, `.getAttribute(”dbxlink:transparent”))10

case ”remote”11

if canShipQuery(`, stepx, xpath-expr2) then12

q ←− buildQueryToShip(`, stepx, xpath-expr2)13

shipQuery(q)14

else15

` ←− `.setAttribute(”dbxlink:eval”, ”dist ributed”)16

resolveSimpleLink(`, stepx, xpath-expr2)17

end18

end19

structure containing only Simple XLinks. Example 7.4 presents an overview
on how to translate an arc into Simple Link structures, depending on the arc’s

7.2. IMPLEMENTING TRANSPARENCY 111

Procedure resolveExtendedLink
Input: arc,node,stepx,xpath-expr2
Output: node has been resolved with respect to arc.
begin1

newlinks ←− arc2SimpleLink(arc,node)2

foreach link ∈ newlinks do3

resolveSimpleLink(link,stepx,xpath-expr2)4

end5

end6

transparent and placement directives.

Note that for the (arc’s L-Directive ; to-locator’s L-Directive) tuples, the
combinations “dup-arc-elem ; dup-to-elem” and “dup-arc-elem ; dup-to-elem” can-
not be replaced by Simple Link constructs. For both, the L-Directives behavior
of the arc element AND the to-locator element cannot be simulated using a single
Simple Link, since the result structure and size is a priori unknown, but would
be needed to simulate the correct “wrapping” of the result elements. Hence,
Query Shipping cannot be supported, since the cardinality of the surrounding
arc element depends on the – yet uncomputed – result. Instead, the arc’s result
must be evaluated by using γR and γL directly: γR and γL are applied to the
locator element, then γL is used for the arc element. Finally, the results are put
together with γLR.

7.2.5 Resolving an Arc

Example 8 For the following examples, assume the prefix x to be bound to the
w3c xlink namespace, and d to the linxis dbxlink namespace. d:transparent is
abbreviated to d:trans.

<somearc x:type=”arc” d:trans=”group-arc-elem dup-to-elem ins-to-nodes” non-xlink-arcs/>

<somearcs-tolocator x:type=”locator” d:trans=”. . . ” x:href=”toloc-href ”/>

The arc element somearc and its to-locator somearcs-tolocator are transformed
as described in Figure 7.4:

<somearc non-xlink-arcs>

<somearcs-tolocator x:type=”simple” x:href=”toloc-href ” d:trans=”duplicate-element insert-nodes”/>

</somearc>

To take advantage of the already existing infrastructure for evaluating Simple
Links, a promising approach is to evaluate an arc element by rewriting it into
a result-equivalent structure consisting of Simple Links and non-XLink nodes,
and add it into the current result context for further processing.

Due to the nature of dup-to-elem, where the number of duplications depends
on the – by time of expansion unknown – size of the locator’s result set, and due
to keep-to-body spreading the locator’s non-XLink body among also that result

112 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

Function arc2SimpleLink

Input: arc, node

Output: a replacement for node is returned in shape of a Simple Link structure,
emulating arc’s outcome.

begin1

if arc.getPlacingDirective() = ”insert” then2

if isElement(node) then3

arc.setPlacingDirective(”replace”)4

node.addChild(arc2SimpleLink(arc))5

return node6

else7

// replace8

locator ←− arc.getToLocator()9

locator.setXLinkType(”simple”)10

locator.setLDirective(arc.getToLocatorLDirective())11

locator.setRDirective(arc.getToLocatorRDirective())12

arc ←− arc.removeXLinkProperties()13

switch arc.getArcLDirective() do14

case ”drop-element”15

return locator16

end17

case ”keep-body”18

return {locator} ∪ arc.getBody()19

case ”group-in-element”20

arc.addChild(locator)21

return arc22

case ”duplicate-element”23

locatorresult ←− gammaLR(locator)24

result ←− emptySet()25

foreach nodelist ∈ locatorresult do26

result ←− result ∪ {arc.addBody(nodelist)}27

end28

return result;29

case ”make-attribute”30

locatorresult ←− gammaLR(locator)31

arc.setXLinkType(”simple”)32

arc.setLDirective(”make-attribute”)33

(result, newbucket) ←− gammaL(arc, locatorresult)34

bucket ←− bucket ∪ newbucket // side effect: bucket update35

return result36

end37

set, the combinations 1.1 and 1.4 from Example 8 can’t simply be replaced with
Simple Link constructs. The solution here would be either

materializing: First the locator’s result is materialized (which can be enor-
mous), then the arc’s left-hand directive is applied to the intermediate

7.3. IMPLEMENTATION OF THE PROTOTYPE 113

result. In this case, the XLink engine cannot take advantage of Query
Shipping, even if the remote system supports Query Shipping.

modify Query Shipping: the other alternative involves recoding and enhanc-
ing the Query Shipping unit. With document constructors like document”
+ innerQuery + ”/xpath, complex XQueries, including also information
from the arc element, can be shipped to the other side and can be evalu-
ated there (Although, this approach also has its shortcomings: e.g. a link
element can contain non-XLink subtrees, that theoretically would need to
be shipped to the remote host, together with the rest of the query, to be
included in the result evaluation there).

For the scope of the implementation prototype, the first of these alternatives
was chosen. If possible, arcs are compiled into Simple Links which are given
back into the regular Simple Link evaluation process, and for those few cases
where this is not feasible, the arc is evaluated by materializing.

7.3 Implementation of the Prototype

7.3.1 The eXist Database System

For the implementation of the evaluation techniques from 7, a matter of choice
was (1) to build a complete new XLink-aware XPath/XQuery processor from
scratch, using only basic XML APIs as SAX, DOM, Xerces etc., or to (2) en-
hance an already existing XPath/XQuery system to process 3rd Party XLinks
in the described way. Alternative 1 would include the benefit of a conceptually
clean design with the a priori design goal of XLink/3rd Party Link evaluation,
where the second alternative would imply to modify an already existing – and
probably complex – system which was originally not designed to follow XLink
references, which could make it necessary not only to modify the XPath/XQuery
evaluation unit, but also the storage model, indexing algorithms etc.

In the end, the choice was made for alternative 2: enhancing an already
existing XPath/XQuery system. In the present case, this was the XML database
system eXist [exi]. eXist offers – among other advantages – complete XQuery
support. Also, my co-researcher Erik Behrends decided earlier to use eXist
as a basis for his own work, which was focussed on implementing Simple Link
functionality into an XML database. So, I could benefit from the already present
Simple Link modifications, and I could take advantage from his insight and –
overall positive – experiences with the interna of the eXist system.

Hence, choosing eXist as a code basis seemed the most promising solution in
terms of reusability, user-friendliness during testing and during the construction
of a case study, and transferability of the results to industrially relevant systems.

The eXist database system is a native XML database system, completely
written in Java. Since the software is open source, it is maintained and developed
by a vivid developer community. It features a number of XML-related and Web-
related standards as XPath/XQuery, XUpdate, XSL, XML Schema, XInclude,

114 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

transparent value resulting structure
arc part to-locator part

1.1 dup-arc-elem dup-to-elem —

1.2 dup-arc-elem group-to-elem

<somearc arc-nonxlink-attrs>

<somearcs-tolocator x:type=”simple” d:trans=”group-element ..”
x:href=”..” loc-nonxlink-attrs/>

</somearc>

1.3 dup-arc-elem drop-to-elem
<somearc x:type=”simple” d:trans=”group-element ..”

x:href=”..” arc-nonxlink-attrs/>

1.4 dup-arc-elem keep-to-body —

1.5 dup-arc-elem make-to-attr

<somearc arc-nonxlink-attrs>

<somearcs-tolocator x:type=”simple” d:trans=”make-attribute ..”
x:href=”..” loc-nonxlink-attrs/>

</somearc>

2.1 group-arc-elem dup-to-elem

<somearc arc-nonxlink-attrs>

<somearcs-tolocator x:type=”simple” d:trans=”duplicate-element ..”
x:href=”..” loc-nonxlink-attrs/>

</somearc>

2.2 group-arc-elem group-to-elem

<somearc arc-nonxlink-attrs>

<somearcs-tolocator x:type=”simple” d:trans=”group-element ..”
x:href=”..” loc-nonxlink-attrs/>

</somearc>

2.3 group-arc-elem drop-to-elem

<somearc arc-nonxlink-attrs>

<someloc x:type=”simple” d:trans=”drop-element ..”x:href=”..”/>

<other arc’s children . . . />

</somearc>

2.4 group-arc-elem keep-to-body

<somearc arc-nonxlink-attrs>

<someloc x:type=”simple” d:trans=”keep-body ..”
x:href=”..” to-loc-nonxlink-attrs/>

</somearc>

2.5 group-arc-elem make-to-attr See 1.5

3.1 drop-arc-elem dup-to-elem
<somearcs-tolocator x:type=”simple” d:trans=”duplicate-element ..”

x:href=”..” loc-nonxlink-attrs/>

3.2 drop-arc-elem group-to-elem
<somearcs-tolocator x:type=”simple” d:trans=”group-element ..”

x:href=”..” loc-nonxlink-attrs/>

3.3 drop-arc-elem drop-to-elem <somearcs-tolocator x:type=”simple” d:trans=”drop-element ..” x:href=”..” />

3.4 drop-arc-elem keep-to-body
<somearcs-tolocator x:type=”simple” d:trans=”keep-body ..”

x:href=”..” loc-nonxlink-attrs/>

3.5 drop-arc-elem make-to-attr <somearcs-tolocator x:type=”simple” d:trans=”make-attribute ..” x:href=”..” />

4.1 keep-arc-elem dup-to-elem
<somearcs-tolocator x:type=”simple” d:trans=”duplicate-element ..”

x:href=”..” arc-nonxlink-attrs loc-nonxlink-attrs/>

4.2 keep-arc-elem group-to-elem See 4.1

4.3 keep-arc-elem drop-to-elem
<somearc x:type=”simple” d:trans=”keep-body ..”

x:href=”..” arc-nonxlink-attrs/>

4.4 keep-arc-elem keep-to-body
<somearc x:type=”simple” d:trans=”keep-element ..”

x:href=”..” arc-nonxlink-attrs loc-nonxlink-attrs/>

4.5 keep-arc-elem make-to-attr See 3.5

5.1 make-arc-attr dup-to-elem
somearc=”idref ”3

bucket := [<somearcs-tolocator x:type=”simple” dbxlinkID=”idref ”
d:trans=”duplicate-element ..” x:href=”..” loc-nonxlink-attrs/>,..]

5.2 make-arc-attr group-to-elem
somearc=”idref ”
bucket := [<somearcs-tolocator x:type=”simple” dbxlinkID=”idref ”

d:trans=”group-element ..” x:href=”..” loc-nonxlink-attrs/>,..]

5.3 make-arc-attr drop-to-elem <somearc x:type=”simple” d:trans=”make-attribute ..” x:href=”..” />

5.4 make-arc-attr keep-to-body
somearc=”idref ”
bucket := [<somearcs-tolocator x:type=”simple” dbxlinkID=”idref ”

d:trans=”keep-body ..” x:href=”..” loc-nonxlink-attrs/>,..]

5.5 make-arc-attr make-to-attr <somearc x:type=”simple” d:trans=”make-attribute ..” x:href=”..”/>

Figure 7.4: Results for Example 8

7.3. IMPLEMENTATION OF THE PROTOTYPE 115

HTTP as means for interaction and data querying/manipulation. With its
JSP/Servlet architecture, the application adopts an up-to-date Web application
paradigm, and since it is quickly evolving and adopting new features, it seemed
like a promising infrastructure for the LinXIS prototype implementation.

7.3.2 Software Architecture

The eXist database system is client-server based, with the options to run it either
in a stand-alone server mode (accessible via http), as well as in JSP/servlet Web
application context. The latter option offers interaction with the eXist database
via HTTP-GET, HTTP-POST, WebDav and XML-RPC. Along with the server,
there comes an interactive Web interface for setting off XQuery/XUpdate com-
mands, an interactive client for querying, updating and administering databases,
together with a number of jar files containing the jetty application server [jet07],
a lightweight4 servlet application engine in which the eXist server can be run.

7.3.3 Database Architecture

An eXist database system consists of the eXist server – as mentioned above
either running in stand-alone mode or as a java servlet application in a servlet
engine – together with a single database instance. The instance consists (in
terms of its data model) of a number of “collections”, with each collection
containing a number of XML documents. Physically, the XML data is organized
in B*-Trees which are stored in persistent files, completed with a number of files
containing several kinds of index structures.

Metadata concerning user and permission management is stored in a ded-
icated XML collection called “system”. Here, write/read and authoring per-
missions as well as collection metadata are maintained. The database can be
accessed and operated by multiple users/operators in parallel using multiple
access methods as HTTP, WebDav etc. Transaction ACID criteria are granted
for XQuery and XUpdate.

The database is capable of processing DTD and XML Schema by validating
each XML document during uploading. However, for updating an existing XML
document, there is no new conformance checking of the updated document with
its associated DTD or schema. Also, the database seems to do no kind of post
schema validation (e.g., #FIXED attributes from DTDs are not included in the
XQuery evaluation).

Data and Storage Model

The internal data model for XML nodes is based on the DOM data model; the
classes ElementImpl, AttrImpl etc. implement the DOM interfaces for Element,
Attribute etc. Due to the storage model, not all DOM methods are implemented
for the node types. Insertion, updating and deletion operations as well as many

4”lightweight” in opposition to large-scale, highly customizable engines such as Apache
Tomcat

116 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

operations concerning attributes are subject to dedicated insert/update oper-
ations that are performed by a database broker. The database broker gathers
metadata about collections and XML instances, and coordinates concurrent ac-
cess to the database.

The storage model differs in some points from the DOM data model: e.g.,
attributes are considered as “children” of their hosting element, which means
that they appear intermixed with other element or text children of an element,
when retrieving actual children or inserting/appending new ones.

Indexing Schema

eXist in the versions ≥ 1.0 uses the dynamic level numbering (DLN) [BR04]
schema for indexing nodes proposed by Böhme and Rahm in 2004. The schema
is based on a hierarchical notation. Each node – element, attribute, text or other
node – exception: the document node – is assigned an index key consisting of
a number of numeric values and “.” (dot) as separators. When parsing a new
XML document into a collection, the root element receives the DLN index 1.
The first child in document order (which might also be an attribute) receives
the 1.1, the second child gets 1.2 and so on. So, 1.4.7.2 stands for the 2nd child
of the 7th child of the 4th child of the root element.

How does insertion of nodes into a document work with the numbering
scheme depicted above? Consider the (element) node 1.1 with child nodes
1.1.1, . . . , 1.1.9. If between nodes 1.1.7 and 1.1.8, a sequence of 3 new nodes
are to be inserted as children of 1.1, the inserted nodes have to be given the
numbers 1.1.8, 1.1.9, 1.1.10, and the former nodes 1.1.8 and 1.1.9 must be renum-
bered to 1.1.11 and 1.1.12. This is compliant with the numbering scheme, but
frequent renumbering is very inefficient (since e.g. all child nodes of renumbered
nodes have to be renumbered as well).

So, the new nodes are assigned the keys 1.1.7/1, 1.1.7/2, 1.1.7/3 etc. If
now another node is inserted between 1.1.7/1 and 1.1.7/2, it is assigned the
key 1.1.7/1/1. Hence, the dot separator can be seen as a “vertical” separator
(separating the layers of the tree), and the slash can be seen as a “horizon-
tal” separator, adding new neighbors to a node without disturbing the already
present neighbors.

From time to time, the storage structures are reorganized, which goes along
with a restructuring of the index keys (removing “/” steps by “pulling up” the
node to their predecessor’s layer, renumbering all following sibling nodes) and
with updating the index structures to the new key identifiers. eXist supports
– among others – an element index (by name, also including attributes), and
a value index (by text content, text nodes and attributes), plus methods for
searching children and descendants of given nodes by their QNames or values.

Remark: the “id” values mentioned in Section 7.2 are implemented us-
ing a concatenation of the hosting document’s URL and the concerned node’s
current DLN index key. In the prototype, the “local” database, which circum-
vents all those documents containing nodes referenced by the local linkbase’s
from-locators, is assumed to remain unmodified. Theoretically, it would be pos-

7.3. IMPLEMENTATION OF THE PROTOTYPE 117

sible to make the linkbase infrastructure update-compliant by restructuring the
linkbase’s index keys each time the other indexes are restructured too. Since this
would have involved lot of tiny code work, going along with minimal academic
relevance, I refrained from implementing update stability for linkbase indexing.

7.3.4 XPointer/XInclude Support

eXist in its original state offers support for XLink/XPointer together with XIn-
clude [XIn06]. Since XInclude is a – less expressive – subset of the introduced
XLink semantics, and since it lacks a proper data model, the XInclude features
of eXist were not used for adding the XLink/DBXLink functionality to the eXist
query engine.

7.3.5 Version

The LinXIS-aware prototype is based on eXist version 1.0-beta from May 2006,
revision 3595. The current version of the original eXist is 1.1 (final release),
with version 1.1.1 in development.

118 CHAPTER 7. QUERYING WRT. 3RD PARTY LINKS

Chapter 8

Case Study: the
“Flightbase”

This chapter is a case study for some “real world” application involving 3rd
Party Links, in order to study the effects on creation, use and maintenance of
a 3rd Party Link application with the prototype implementation based on the
eXist Database [exi] described in the previous chapters.

As a business domain for the case study, the flight schedule of the commercial
airline Lufthansa was chosen. One reason was the almost allegoric similarity
between a flight schedule and a linkbase in terms of the modeling: a flight
schedule can be seen as a directed graph between airports, and such a graph
can be modeled – almost without any abstraction – as a 3rd Party Link, with
airports as locators, and flight connections as arcs.

The second reason for choosing the flight schedule scenario was the avail-
ability and accessibility of the needed data sources. For geographical aspects,
the approved Mondial database could provide the necessary base data about
countries and cities, delivering the targets for the linkbase’s locator pointers.
The linkbase itself is based on the – publicly available – flight schedule of the
Lufthansa airline company [LH07].

The chapter is organized as follows: First, the overall structure and design
of the distributed Mondial linkbase is sketched.

Second, the process of generating, extracting and integrating data from the
flight schedule (plus some additional Web sources) into a linkbase is described
in detail.

Next, the hardware configuration where the application operates on is depicted.

Then, a comparison is performed between 3 example queries, (1) expressed and
evaluated on the 3rd Party Link flight schedule example, and (2) on the same
set of distributed XML files, but without use of 3rd Party Links, instead with
explicit navigation over XLinks/XPointers using the Saxon XQuery processor.

Finally, an evaluation is given on the implementation in terms of perfor-
mance, usability and practical relevance, together with a number of possible

119

120 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

future improvements.

8.1 Distributing the Mondial Database

The Mondial Database does already exist in its distributed version (see [May07]).
For the use case, one minor change had to be made: the dbxlink:eval attributes
of all occurring XLinks had to be set to “remote” to enable query shipping,
since both local evaluation and hybrid evaluation perform relatively bad with
respect to queries against the virtual data model. In its distributed version,
the monolithical mondial.xml file is split into a number of XML files and spread
over a number of hosts, here given as linxis01.ifi.informatik.uni-goettingen.de, . . . ,
linxis05.ifi.informatik.uni-goettingen.de:

• mondial-root.xml at linxis01:
starting document, contains references to countries, continents, organiza-
tions as well as geographical entities.

• countries.xml, continents.xml at linxis02:
contains information about all countries and continents. Each country
with international car code XX contains references to its cities in cities-
XX.xml.

• cities-A.xml . . . cities-ZW.xml and provs-A.xml . . . provs-ZW.xml at linxis03:
each file contains information about the respective countries’ cities in
cities-XX.xml. Same with provinces.

• organizations.xml, flightbase.xml at linxis04:
contains data about international organizations. Each organization has 0
or more countries as members, as well as a headquarter city. Also, the
flightbase.xml linkbase (see below) is situated here.

• geo.xml at linxis05:
contains data about geographical entities, as lakes, mountains, rivers, seas,
and deserts.

8.2 Generating the Linkbase

The flight schedule scenario involves the Lufthansa flight schedule data, con-
taining all flight connections offered by Lufthansa plus partner airlines, and the
geographical data from Mondial, providing the cities as endpoints of the flight
connections. Hence, the flight schedule had to be transformed into a linkbase

8.2. GENERATING THE LINKBASE 121

(”flightbase”) with airports as locator elements referencing Mondial’s cities,
and arcs representing the flight connections between airports/cities.

For generating the flightbase, certain portions of information had to be iden-
tified in both Mondial and the flight schedule, in order to be mapped correctly
onto each other. In the flight schedule, the schedule looks like follows:

Hamburg (HAM) Start Airport

Amsterdam (AMS) 235mi Destination
07.00 08.00 LH4660 CR1 X7 0 R 1:00 Distance

Above Disc. 7/12, Excl. 5/28 Add. Flight Inf.1

11.10 12.10 LH4662 CR1 X67 0 R 1:00
. . .

dept – arr – flight no – machine type – freq2 – stops – meal code – duration.

The available information about the airport is the given name, which is often
the name of the city nearby the airport (here: Hamburg), sometimes together
with the airport’s name - in case a city has more than one airport, e.g. London
(Heathrow) and London City Airport. In some cases, the name is neither a
city’s nor the airport’s name (e.g. Funchal Airport on Madeira Island is simply
denoted as “Madeira”). Together with the name goes the three-letter IATA-
Code [IAT07] of the airport.

8.2.1 IATA-Code

The IATA-Code is a trigram code identifying each international airport. E.g.
San Francisco is SFA, Frankfurt am Main is FRA. At [IAT07], a list of air-
ports can be obtained, together with city and country information, sometimes
region information, as well as the complete name of the airport (e.g. “JFK
(KJFK) John F. Kennedy International Airport (formerly Idlewild Airport)
Jamaica, New York (New York City), United States”). The documents are in
XHTML, which makes the automatic data extraction easier, since I could use
XPath/XQuery directly on the XHTML documents. But since there is no fixed
schema for these webpages (except that is has to be valid XHTML), and since
the descriptions of each airport differ from case to case, the generated data
has to be checked for consistency and be manually refined afterwards. Another
problem is that the code words are not unique: 323 of the 17,576 triples are
used by more than one airport, e.g. AUH = Abu Dhabi Airport at the Persian
Gulf and AUH = Aurora Municipal Airport, Aurora, Nebraska, United States.

8.2.2 Description of the Integration Process

In the following, the data integration process involving the 3 data sources:

• Lufthansa flight schedule (LH.pdf),

122 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

lh.pdf wikipedia IATAList

tool: acrobat reader unix-tool: wget

lh.rtf iata-dir.xhtml

perl: flugplan.pl XQuery: iata2xml.xq

lh.xml mondial.xml iata-dir.xml

lh-rest.xml

XQuery: map-iata2mondial.xq

iata2mondial-rest.xml iata2mondial.xml

by hand: remove wrong matches

iata2mondial-edited.xml

XQuery: createlinkbase.xq

flightbase.xml

(1)

(2)

(3)

(4)

(9)

(9)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(11)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

Figure 8.1: diagram of the integration process

• Mondial (Mondial.xml), and

• the IATA data from Wikipedia

is described in order of the numbering of the steps from (1) to (18) in Figure 8.1.

• acrobat reader: in order to make the Lufthansa flight schedule Sched-
ule PDF (about 600kb in size) machine-readable, the Adobe r© Reader r©’s
copy&paste option was used, obtaining a RTF (Rich Text Format) version
of the schedule. Rich Text Format [RTF07] is a cross-platform markup
language for text documents. Since RTF is ascii-based, it can be processed
using scripting languages such as awk, sed, perl etc.

• flugplan.pl: flugplan.pl is a perl script, generating XML data from the
flight schedule data in lh.rtf. The result is an XML instance lh.xml con-
taining 1473 flight connections and 416 airports.

• wget: wget is a common unix tool for automatically receiving multiple
HTML files from the Web, either by recursion or by specifying them in

8.2. GENERATING THE LINKBASE 123

a file. iata-dir.xml is a huge file containing all IATA information from
the english Wikipedia site [IAT07] (which is spread among 26 sub-pages
according to their starting letters) as one huge XHTML document.

• iata2xml.xq is an XQuery program that collects and refines data from the
Wikipedia XHTML data in iata-dir.xml into XML data which associates
each IATA airport code with its airport, city and - if present - region name.

• map-iata2mondial.xq:

(1) This XQuery program joins the schedule data containing references to
airports (via airport / city name and IATA code) and the Mondial data
containing cities using the IATA code information from Wikipedia. First,
the IATA codes from lh.xml are extracted. Then, the corresponding data
from the Wikipedia-driven iata-dir.xml is received, consisting of airport
name, city’s/cities’ name(s), country name, and sometimes region or state
name. Then, some heuristic matching algorithm is performed, consist-
ing of refining, splitting and combining the known airport information, in
order to receive (possibly multiple) matches among the Mondial cities.
Since all three the Wikipedia data, the Mondial data and the Lufthansa
data are not formalized in terms of the nomenclature and spelling of cities,
this process is heuristic and hence error-inflicted to some degree. This may
lead to a number of false positives: cities that are assigned to an IATA
code by mistake. Example: Abu Dhabi airport is assigned Abu Dhabi
in Mondial, but also Aurora Municipal Airport in Aurora, Nebraska,
since Aurora and Abu Dhabi share the same IATA AUH (see above). As
well, false negatives can appear: cities that are present in Mondial, but
that aren’t recognized by the heuristics. Example: Frankfurt, Germany
is named as “Frankfurt” in the Lufthansa Schedule, but in Mondial it
is named “Frankfurt am Main”, to distinguish it from the German city
Frankfurt an der Oder . So both strings won’t match – even not partially,
since the Wikipedia airport names are split up and sought after in Mon-

dial, but not the other way round – and “Frankfurt” cannot be assigned
to the Mondial element for Frankfurt. A frequent source of such mis-
alignments are different transcriptions of German Umlauts, as well as the
diacritic accents used in languages as French, Spanish, Polish etc.
(2) After the creation of iata2mondial.xml in the previous step, both lh.xml
and mondial.xml have to be scanned (manually, using regexp search) for
false negatives: airport data from lh.xml that reference cities that are
present in Mondial, but have not been matched, and thus have not been
included in iata2mondial.xml. When finding such a city, the airport ele-
ments that did not match in the previous step were manually modified,
so that they would now (e.g. the name of the airport of South Corean
city “Busan” was changed to “Busan/Pusan”, so that the heuristics could
match it with the “Pusan” entry in Mondial). The modified airport
elements were collected in lh-rest.xml. Then, the last step was repeated

124 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

with lh-rest.xml instead of lh.xml, producing a iata2mondial-rest.xml file
containing 19 previously false negatives.

• removing wrong matches: having eliminated false negatives in the
previous step, the iata2mondial.xml and iata2mondial-rest.xml files were
merged by hand. False positives were removed by hand: duplicate IATA
codes as the Aurora - Abu Dhabi case, duplicate cities, or some airports
that have multiple cities assigned. For example, the Köln-Bonn Airport is
assigned to both Cologne and Bonn. In these cases, usually the bigger city
was selected, supposing that the bigger city usually is the more relevant
one.

• createlinkbase.xq: finally, the XQuery program createlinkbase.xq cre-
ates the flightbase from the iata2mondial-edited.xml by creating xpointers
pointing to the Mondial cities (in the distributed Mondial version), by
creating locator elements using the XPointers as xlink:href attribute val-
ues, and by creating arcs using the locators as xlink:from and xlink:to. The
original LH.pdf contained 1473 flight connections between 416 airports,
the final flightbase.xml contains 1274 connections between 348 cities. So,
the flightbase is not complete with respect to the original flight schedule,
which in most cases can be tracked to airports that are in the schedule,
but not present in Mondial (e.g. Faro, Portugal).
A short excerpt of the produced linkbase flightbase.xml is given in Fig-
ure 8.2.

8.3 Hardware Configuration and Test Setup

8.3.1 Hardware

For testing the scenario consisting of the distributed Mondial version plus the
flightbase, the following hardware configuration was used:

A Debian Sarge Linux box, with 2x Intel r© XeonTM CPUs with 2.80GHz,
6GB of memory and a RAID 5 3×75GB Disk Drive with netto 146.5GB. On
the Linux box, a VMWare r©Server is running with 5 virtual hosts named
linxis01. . . linxis05.

8.3.2 Test Setup

The idea of the case study was, to motivate the XLink/Linkbase concept based
on some real-world example, together with a small set of queries on that ex-
ample. On one hand, the virtual model is queried, including linkbase and Sim-
ple Link evaluation with the modified eXist system. One the other hand, the
same queries are issued against the physical system using a non-server-based,
lightweight XQuery engine as Saxon r© in order to produce the equivalent result

8.3. HARDWARE CONFIGURATION AND TEST SETUP 125

Figure 8.2: Excerpt from flightbase.xml

sets. Since Saxon cannot deal with XLinks, the queries had to be rewritten to-
wards explicit XLink navigation using the non-XQuery standard saxon:evaluate
function for evaluating an XPath expression to some remote XML resource into
a nodeset.

eXist comes in a from-the-shelf distribution containing the XML server, plus
some additional classes, including the Jetty r© servlet engine in which the eXist
server is usually run in. The Saxon queries use the same Mondial files, using

126 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

Jetty only as a webserver supplying the Mondial files via Web. It is the only
running application on the Linux box, but inside the VMWare r© , there are
some other virtual hosts running. Hence, it might be possible that some test
queries can run longer, depending on the workload of the physical machine. I
tried to eliminate this effect to a minimum by running each query three times
and taking the arithmetic mean of the three runtimes as resulting runtime. This
technique was applied to the eXist queries as well as to the Saxon queries.

8.4 Query Comparison

All queries are more or less based on the assumption that a person – a traveling
salesman, an airline employee or a customer – asks for a certain connection,
or a set of connections, presenting a structured set of single connections as
result. The queries are “exhaustive” in a sense that the queries traverse large
portions of the linkbase, sometimes even multiple times (especially the queries
in Sections 8.5.2 and 8.5.3).

8.4.1 Query I: Germany to India

Task: Find all flight connections from German cities to India.

In the Virtual Model:

for $fromcity in /cities/city,

$tocity in $fromcity/connection/city

let $countryname := $tocity/country/name

where $countryname="India"

return <con>

<from>{$fromcity/name/text()}</from>

<to>{$tocity/name/text()}</to>

<country>{$countryname/text()}</country>

</con>

In the Physical Model:

declare namespace xlink="http://www.w3.org/1999/xlink";

declare function local:normalize-space($s as xs:string) as xs:string {

fn:replace($s,"%20"," ")

};

declare function local:get-hrefparts($href as xs:string) as xs:string* {

let $hrefparts := fn:tokenize($href,’#’)

let $hrefhost := $hrefparts[1]

let $hrefxptr := fn:substring($hrefparts[2],11,fn:string-length($hrefparts[2])-11)

let $tokens := fn:tokenize($hrefxptr,"/","m")

return ($hrefhost, $tokens)

};

declare function local:get-locators($flightbasedoc as document-node()) as element()* {

$flightbasedoc/*/airport

8.4. QUERY COMPARISON 127

};

declare function local:get-airportcities($locators as element()*) as element()* {

for $locator in $locators

let $href := fn:string($locator/@xlink:href)

let $hrefparts := local:get-hrefparts($href)

let $cities-host := $hrefparts[1]

let $citiesstep := $hrefparts[2]

let $citystep := local:normalize-space($hrefparts[3])

let $city :=

doc($cities-host)/saxon:evaluate(fn:concat("/",$citiesstep,"/",$citystep))

return <pair>{($locator,$city[population=max($city/population)])}</pair>

};

let $host := ’http://linxisXX.ifi.informatik.uni-goettingen.de:8080/exist/servlet/db/LinXIS/’

let $host01 := fn:replace($host,"linxisXX","linxis01")

let $host03 := fn:replace($host,"linxisXX","linxis03")

let $host05 := fn:replace($host,"linxisXX","linxis05")

let $citiesD:= doc(fn:concat($host03,"cities-D.xml"))

let $Germancities := $citiesD/cities/city

let $locators := local:get-locators(doc(fn:concat($host05,"flightbase.xml")))

let $loc-city-pairs := local:get-airportcities($locators)

let $German-loc-city-pairs :=

for $p in $loc-city-pairs

let $l := $p/airport

let $c := $p/city

where ($c = $germancities) return $p

let $indian-loc-city-pairs :=

for $p in $loc-city-pairs

let $l := $p/airport

let $c := $p/city

let $country-hrefparts := local:get-hrefparts(fn:string($c/country/@xlink:href))

let $host := $country-hrefparts[1]

let $country := doc($host)/saxon:evaluate(fn:concat("/",

$country-hrefparts[2],"/",$country-hrefparts[3]))

where $country/name="India"

return $p

let $g2i-connections :=

for $con in doc(fn:concat($host05,"flightbase.xml"))/*/connection

where $con/@xlink:from = $german-loc-city-pairs/airport/@xlink:label

and $con/@xlink:to = $indian-loc-city-pairs/airport/@xlink:label

return $con

let $result-tuples :=

for $c in $g2i-connections

let $fromcity := $german-loc-city-pairs/self::pair[airport/@xlink:label = $c/@xlink:from]/city

let $tocity := $indian-loc-city-pairs/self::pair[airport/@xlink:label = $c/@xlink:to]/city

return <con>

<from>{$fromcity/name/text()}</from>

<to>{$tocity/name/text()}</to>

</con>

return <result

xmlns:xlink="http://www.w3.org/1999/xlink"

128 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:dbxlink="http://dbis.informatik.uni-goettingen.de/linxis">

{$result-tuples}

</result>

In the virtual model, the query is relatively compact. Though, the processing
in the background is complex, since in the query clause, a number of XLink
“edges” have to be traversed. The city elements have virtual child elements of
type connection, which are added by the flightbase. The connection elements
each have a Simple Link child that evaluates to a city element – the destination
city of the connection. Each city element has a – virtual – country attribute, that
evaluates to the country element where the city belongs to. All these “linked
axes” are traversed in the above XPath expression.

In the physical model, the query is relatively long and complicated, with
much efforts being put in processing the xlink:href XPointer values and produc-
ing the necessary joins. It should be stressed that in terms of comparability, it
is important not to use implicit knowledge – e.g. that all Indian city elements
are in some document cities-IND.xml – but rather use only the information given
in the xlink:href attributes. The system should behave exactly the same if the
distribution across files and hosts was a completely different one.

8.4.2 Query II: All Connections from Hannover to Lisbon

Since Lufthansa doesn’t offer direct connections from Hannover, Germany to
Lisbon, Portugal, the system must be queried for indirect connections including
one transit. Also, there should be a valid chance for a transfer in so far as
connection A to airport X should have at least one flight with an arrival time
earlier than the departure time of at least one flight from airport X to the
destination Lisbon.

In the Virtual Model:
for $con1 in doc(’cities-D.xml’)/cities/city[name=’Hannover’]/connection

let $city := $con1/city

return

for $con2 in $con1/city/connection[city/name=’Lisbon’]

where ($con2/flight/@arr > $con1/flight/@dep)

return

<con>{($con1,$con2)}</con>

In the Physical Model:

declare namespace xlink="http://www.w3.org/1999/xlink";

declare function local:normalize-space($s as xs:string) as xs:string {

fn:replace($s,"%20"," ")

};

declare function local:get-hrefparts($href as xs:string) as xs:string* {

let $hrefparts := fn:tokenize($href,’#’)

let $hrefhost := $hrefparts[1]

8.4. QUERY COMPARISON 129

let $hrefxptr := fn:substring($hrefparts[2],11,fn:string-length($hrefparts[2])-11)

let $tokens := fn:tokenize($hrefxptr,"/","m")

return ($hrefhost, $tokens)

};

declare function local:get-locators($flightbasedoc as document-node()) as element()* {

$flightbasedoc/*/airport

};

declare function local:get-airportcities($locators as element()*) as element()* {

for $locator in $locators

let $href := fn:string($locator/@xlink:href)

let $hrefparts := local:get-hrefparts($href)

let $cities-host := $hrefparts[1]

let $citiesstep := $hrefparts[2]

let $citystep := local:normalize-space($hrefparts[3])

let $city :=

doc($cities-host)/saxon:evaluate(fn:concat("/",$citiesstep,"/",$citystep))

return <pair>{($locator,$city[population=max($city/population)])}</pair>

};

let $host := ’http://linxisXX.ifi.informatik.uni-goettingen.de:8080/exist/servlet/db/LinXIS/’

let $host01 := fn:replace($host,"linxisXX","linxis01")

let $host03 := fn:replace($host,"linxisXX","linxis03")

let $host05 := fn:replace($host,"linxisXX","linxis05")

let $citiesD:= doc(fn:concat($host03,"cities-D.xml"))

let $locators := local:get-locators(doc(fn:concat($host05,"flightbase.xml")))

let $loc-city-pairs := local:get-airportcities($locators)

let $hannover := $loc-city-pairs[city/name="Hannover"]

let $lisbon := $loc-city-pairs[city/name="Lisbon"]

let $han2lis-connections :=

for $con1 in doc(fn:concat($host05,"flightbase.xml"))/*/connection,

$con2 in doc(fn:concat($host05,"flightbase.xml"))/*/connection

where $con1 != $con2

and $con1/@xlink:from = $hannover/airport/@xlink:label

and $con2/@xlink:to = $lisbon/airport/@xlink:label

and $con1/@xlink:to = $con2/@xlink:from

return <con>{($con1,$con2)}</con>

return

<result xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:dbxlink="http://dbis.informatik.uni-goettingen.de/linxis">

{$han2lis-connections}

</result>

8.4.3 Query III: All Connections from Munich, Germany
to Auckland, New Zealand without Stopover in the
U.S.

Similar to query II, the database is searched for a for a two-flight connection.
Starting point is Munich in Germany, endpoint is Auckland, New Zealand. Ad-
ditional constraint is that the flight has no stopover in any city in the United
States. For each pair of single connections, the overall distance is calculated as

130 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

the sum of the distances of the two single connections. The result connections
are sorted by distance in ascending order.

In the Virtual Model:

for $con1 in /cities/city[name=’Munich’]/connection

let $transitcountryname := $con1/city/country/name

let $dist1 := $con1/@distance

return

for $con2 in $con1/city/connection

let $destcityname := $con2/city/name

let $distance := $dist1 + $con2/@distance

where (($transitcountryname !="United States") and ($destcityname = "Auckland"))

order by $distance

return <con>{attribute distance {$distance},$con1,$con2}</con>

In the Physical Model:

declare namespace xlink="http://www.w3.org/1999/xlink";

declare function local:normalize-space($s as xs:string) as xs:string {

fn:replace($s,"%20"," ")

};

declare function local:get-hrefparts($href as xs:string) as xs:string* {

let $hrefparts := fn:tokenize($href,’#’)

let $hrefhost := $hrefparts[1]

let $hrefxptr := fn:substring($hrefparts[2],11,fn:string-length($hrefparts[2])-11)

let $tokens := fn:tokenize($hrefxptr,"/","m")

return ($hrefhost, $tokens)

};

declare function local:get-locators($flightbasedoc as document-node()) as element()* {

$flightbasedoc/*/airport

};

declare function local:get-airportcities($locators as element()*) as element()* {

for $locator in $locators

let $href := fn:string($locator/@xlink:href)

let $hrefparts := local:get-hrefparts($href)

let $cities-host := $hrefparts[1]

let $citiesstep := $hrefparts[2]

let $citystep := local:normalize-space($hrefparts[3])

let $city :=

doc($cities-host)/saxon:evaluate(fn:concat("/",$citiesstep,"/",$citystep))

return <pair>{($locator,$city[population=max($city/population)])}</pair>

};

let $host := ’http://linxisXX.ifi.informatik.uni-goettingen.de:8080/exist/servlet/db/LinXIS/’

let $host01 := fn:replace($host,"linxisXX","linxis01")

let $host03 := fn:replace($host,"linxisXX","linxis03")

let $host05 := fn:replace($host,"linxisXX","linxis05")

let $citiesD:= doc(fn:concat($host03,"cities-D.xml"))

let $locators := local:get-locators(doc(fn:concat($host05,"flightbase.xml")))

let $loc-city-pairs := local:get-airportcities($locators)

let $munich := $loc-city-pairs[city/name="Munich"]

8.4. QUERY COMPARISON 131

let $auckland := $loc-city-pairs[city/name="Auckland"]

let $us-cities :=

for $p in $loc-city-pairs

let $country-hrefparts := local:get-hrefparts(fn:string($p/city/country/@xlink:href))

let $countrydoc := doc($country-hrefparts[1])

let $country := $countrydoc/saxon:evaluate(fn:concat("/",$country-hrefparts[2],"/",$country-hrefparts[

3]))

where $country/name="United States"

return $p

let $muc2auck-connections :=

for $con1 in doc(fn:concat($host05,"flightbase.xml"))/*/connection,

$con2 in doc(fn:concat($host05,"flightbase.xml"))/*/connection

let $distance := $con1/@distance + $con2/@distance

where

(: check connections :)

$con1/@xlink:from = $munich/airport/@xlink:label

and $con2/@xlink:to = $auckland/airport/@xlink:label

and $con1/@xlink:to = $con2/@xlink:from

and (not (fn:exists($us-cities/airport[@xlink:label=$con1/@xlink:to])))

order by $distance

return <con>{(attribute distance {$distance},$con1,$con2)}</con>

return <result xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:dbxlink="http://dbis.informatik.uni-goettingen.de/linxis">

<allcons>{$muc2auck-connections}</allcons>

</result>

Here, the basic problem is the same as in query two: find a connection from
A to B consisting of two basic connections A → X and X → B using some
stopover airport X. The only differences are (1) the negation in describing the
set of possible stopover airports (’no city in the U.S.’), and (2) the sorting of the
result connections by their summed-up distances. Obviously, the latter one has
no impact on the approach on neither the virtual model query nor the physical
model query. For the stopover airport restriction, the “country” link has to be
evaluated.

8.4.4 Query Environment

Virtual vs. Physical

Both groups of queries, the virtual-model queries via eXist and the physical-
model queries via Saxon, were issued via http from the same machine, a unix
workstation connected to the same local area network as the linxis0X host ma-
chines. For Saxon, the internal http client was used using the Saxon doc()
function. For the virtual queries, a small java wrapper was used, taking the
query string as input (the start document was hardcoded into the wrapper
code). Reassuringly, each virtual-physical pair of queries produced the same

132 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

output in all cases3. For the exact query results, see below.

Query Running Conditions

The queries I, II and III were issued 6 times each, divided in two runs with the
sequence I-II-III-I-II-III-I-II-III. Since, in the virtual model, answering XLinked
queries produces additional “virtual documents”, increasing the indexes’ sizes
and thereby decreasing the database performance, the database was reset after
each query, so that the order of the queries did not influence the query answering
time. For issuing the queries and for automation of the experiment, I used a
configuration of cron jobs on linxis01-linxis05, cooperating with a perl script
executed on a remote host (s2.ifi.informatik.uni-goettingen.de, in the same local
network), issuing the queries. Inter-host synchronization was performed via file
locking over a common AFS filesystem.

8.5 Evaluation and Summary

8.5.1 Query Results

The issued queries yielded the following results:

Query I: Frankfurt to India

<con>

<name>Bangalore</name>

<name>India</name>

</con>

<con>

<name>Madras</name>

<name>India</name>

</con>

<con>

<name>Hyderabad</name>

<name>India</name>

</con>

<con>

<name>Calcutta</name>

<name>India</name>

</con>

<con>

<name>Mumbai</name>

<name>India</name>

</con>

3Some visual differences, however, may be traced back to eXist’s serialization functionality.
In the virtual model, there exist no XLink elements. Albeit if a query result never contains
XLink elements, a non-XLink element may have XLink children, e.g. the airport link inside
each connection element. Due to the straightforward XML serialization of eXist, these children
are output straight from their physical representation, instead of being filtered out by the
serializer. Nevertheless, the querying itself performs correct, since the direct query results are
XLink-free. Outputting the result nodes including their child and attribute nodes is more a
custom than a convention, and does not touch the validity of the query answer.

8.5. EVALUATION AND SUMMARY 133

Query I
(Germany to India)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

12
59

.6
91

s

10
.4

09
s

run 1

11
93

.0
58

s

9.
89

0
s

run 2

13
40

.8
55

s

10
.6

41
s

run 3

13
23

.7
08

s

9.
75

3
s

run 4

12
76

.4
36

s

10
.0

47
s

run 5

12
01

.4
78

s

9.
86

65
s

run 6

12
65

.8
71

s

10
.1

01
s

computed average

se
co

n
d
s

Figure 8.3: Runtime of Query I in the virtual LinXIS model (white) and in the
physical model using Saxon (gray)

In words: the query returned five flight connections from Frankfurt to India:

1. Frankfurt → Bangalore

2. Frankfurt → Madras

3. Frankfurt → Hyderabad (India)

4. Frankfurt → Calcutta

5. Frankfurt → Mumbai

134 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

8.5.2 Query II: All Connections from Hannover to Lisbon

Query II
(Hannover to Lisbon)

0

100

200

300

400

500

600

64
2.

54
1

s

8.
97

4
s

run 1

63
8.

03
4

s

8.
86

9
s

run 2

64
7.

45
2

s

8.
92

1
s

run 3

63
0.

25
2

s

8.
36

9
s

run 4

63
6.

95
3

s

9.
09

4
s

run 5

63
0.

88
8

s

9.
34

8
s

run 6

63
7.

73
2

s

8.
92

92
s

computed average

se
co

n
d
s

Figure 8.4: Runtime of Query II in the virtual LinXIS model (white) and in the
physical model using Saxon (gray)

<con>

<connection xlink:type="arc" dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes"

xlink:from="iata-HAJ" xlink:to="iata-FRA" distance="174">

<flight dep="05.40" arr="06.40" no="LH1001" .../>

<flight dep="06.15" arr="07.15" no="LH1001" .../>

<flight dep="07.00" arr="08.00" no="LH1003" .../>

<flight dep="07.15" arr="08.15" no="LH1003" .../>

<flight dep="09.55" arr="10.55" no="LH1005" ...>

<above>Exc. 5/17 - 5/20, 5/27 - 5/28</above>

</flight>

<flight dep="11.30" arr="12.30" no="LH1007" .../>

<flight dep="13.20" arr="14.20" no="LH1009" .../>

<flight dep="13.40" arr="14.40" no="LH1009" ...>

<above>Eff. 5/2, Exc. 5/18, 5/27 - 5/28</above>

</flight>

<flight dep="14.30" arr="15.30" no="LH1011" .../>

<flight dep="18.50" arr="19.50" no="LH1013" .../>

</connection>

<connection xlink:type="arc" dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes"

xlink:from="iata-FRA" xlink:to="iata-LIS" distance="1165">

<flight dep="06.45" arr="08.40" no="LH2174" .../>

<flight dep="09.30" arr="11.25" no="LH4530" .../>

<flight dep="13.30" arr="15.25" no="LH2172" .../>

<flight dep="13.40" arr="15.35" no="LH4532" .../>

<flight dep="19.15" arr="21.10" no="LH2176" .../>

<flight dep="21.55" arr="23.50" no="LH4536" .../>

</connection>

</con>

8.5. EVALUATION AND SUMMARY 135

<con>

<connection xlink:type="arc" dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes"

xlink:from="iata-HAJ" xlink:to="iata-MUC" distance="298">

<flight dep="07.05" arr="08.15" no="LH1017" .../>

<flight dep="08.50" arr="10.00" no="LH1021" .../>

<flight dep="11.10" arr="12.20" no="LH1025" ...>

<above>Exc. 5/27 - 5/28</above>

</flight>

<flight dep="13.05" arr="14.15" no="LH1027" .../>

<flight dep="15.10" arr="16.20" no="LH1019" ...>

<above>Exc. 5/27, 6/8</above>

</flight>

<flight dep="17.15" arr="18.25" no="LH1029" .../>

<flight dep="19.00" arr="20.10" no="LH1033" .../>

<flight dep="20.35" arr="21.45" no="LH1035" ...>

<above>Exc. 5/17 - 5/18, 6/7 - 6/8</above>

</flight>

</connection>

<connection xlink:type="arc" dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes"

xlink:from="iata-MUC" xlink:to="iata-LIS" distance="1234">

<flight dep="06.35" arr="08.40" no="LH2212" .../>

<flight dep="11.10" arr="13.20" no="LH4540" .../>

<flight dep="14.10" arr="16.15" no="LH2170" .../>

<flight dep="19.05" arr="21.15" no="LH4544" .../>

</connection>

</con>

</result>

In words: The database contains two connections from Hannover to Lisbon: one
going via Frankfurt am Main, the other one via Munich.

8.5.3 Query III: All Connections from Munich, Germany
to Auckland, New Zealand without Stopover in the
U.S.

<result xmlns:dbxlink="http://dbis.informatik.uni-goettingen.de/linxis"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xlink="http://www.w3.org/1999/xlink">

<allcons>

<con distance="11314">

<connection xlink:type="arc" xlink:from="iata-MUC" xlink:to="iata-HKG" distance="5610"

dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes">

<flight dep="21.40" arr="15.10+1" no="LH730" type="343" stops="0" meals="MM"/>

</connection>

<connection xlink:type="arc" xlink:from="iata-HKG" xlink:to="iata-AKL" distance="5704"

dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes">

<flight dep="18.10" arr="09.00+1" no="LH9810" op_by_partner="yes" type="744" stops="0"

meals="DB"/>

</connection>

</con>

<con distance="11416">

<connection xlink:type="arc" xlink:from="iata-MUC" xlink:to="iata-BKK" distance="5455"

dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes">

<flight dep="21.10" arr="12.40+1" no="LH9716" op_by_partner="yes" freq="346" stops="0"

meals="M"/>

</connection>

136 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

Query III
(Munich to Auckland without U.S.)

0

1000

2000

3000

4000

5000

6000

54
62

.7
14

s

11
.2

87
s

run 1

51
97

.4
54

s

13
.6

01
s

run 2

52
32

.4
49

s

12
.4

10
s

run 3

51
42

.1
88

s

11
.8

62
s

run 4

51
65

.3
95

s

14
.4

35
s

run 5
53

55
.5

83
s

11
.6

10
s

run 6

52
59

.2
97

1
s

12
.5

34
1

s

computed average

se
co

n
d
s

Figure 8.5: Runtime of Query I in the virtual LinXIS model (white) and in
physical model using Saxon (gray)

<connection xlink:type="arc" xlink:from="iata-BKK" xlink:to="iata-AKL" distance="5961"

dbxlink:transparent="group-arc-elem drop-to-elem ins-to-nodes">

<flight dep="19.40" arr="11.40+1" no="LH9738" op_by_partner="yes" freq="346"

stops="0" meals="M"/>

</connection>

</con>

</allcons>

</result>

In words: The database contains two connections from Munich to Auckland:
one via Hong Kong (11314 miles) and one via Bangkok (11416 miles). Two
more results exist over San Francisco and Los Angeles, but they are filtered
from the result since the cities are in the United States.

8.5.4 Performance Evaluation

Non-concurrent query evaluation:

in eXist, the query evaluation is non-concurrent. For evaluating a single location
step on a given context nodeset, the axis, the nodetest and (eventually) the
predicates are applied to the context’s first node, then the second, and so on.
The n + 1th node is not evaluated until the nth node’s result is evaluated. For
regular XML/XQuery this seems to be a reasonable approach. But consider
now the first node of the context set being an XLink: the location step has to
“cross” the XLink connection via query or data shipping, the data has to be
transmitted via a http connection, which is of course significantly slower. Hence,
the effort of following an XLink during evaluation is enormous in comparison to

8.5. EVALUATION AND SUMMARY 137

a following a “regular axis”. In the modified eXist implementation, this means
that the evaluation is halted until the XLink part is done. Then, the evaluation
can continue.

Here, an opportune optimization would be to concurrently start the evalua-
tion on all context nodes, and merging the results in document order afterwards
until the last result has arrived. This would reduce the theoretical complexity
for a node context with nodes {node1, . . . , noden} from

T ({node1, . . . , noden}) = T (node1) + . . . + T (noden)

to
T ({node1, . . . , noden}) = MAX({T (node1), . . . , T (noden)})

plus some constant overhead.
When implemented näıvely, this would result into a large number of paral-

lely open http connections for large context nodesets. The effort of opening,
closing and maintaining these connections would again be enormous. To avoid
this, connection pooling could be an option, so that – at least, inside a sin-
gle query evaluation – only one steady http connection is established between
two participating XML servers, with multiple threads sharing one physical http
connection.

These modifications alone could supply an enormous speedup, since my ex-
periences during debugging revealed that the significant part of the runtime is
used for establishing connections to remote hosts and idle waiting for the remote
results. At least, the idle waiting could be reduced using that technique.

Linkbase Representation: Native vs. XML

In the prototype, linkbases are represented using XML documents containing
references into the index structure of the local server, stored as attribute values.
This was a relatively simple solution, since it mainly involved the usage of al-
ready existing functionality as inserting and updating XML data. On the other
hand, this is a relatively inefficient way for maintaining a hash map (remember
that a linkbase is nothing more than a partial mapping from nodes to from-
locators affecting that very node with its xlink:href attribute), since the linkbase
data is stored in the XML datamodel, which is again stored in eXist-internal
index structures (B+-trees etc.). A more efficient way would be to store the
linkbases directly in a similar index/B-tree structure. This would evade numer-
ous serializing and deserializing operations, executed on the materialization of
each XML node during a location step evaluation.

8.5.5 Functionality Evaluation

Apart from the performance issues addressed above, the prototype implemen-
tation has some shortcomings in evaluation of XQuery statements. This has
mainly to do with the embedding of the XLink functionality into eXist’s soft-
ware architecture: the class DBXLinkProcessor, which is the central class for

138 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

expanding XLinks during query evaluation, is coupled with the XPathExpr class,
which represents an XPath expression from an incoming query. DBXLinkProces-
sor checks for relevant XLink elements, initializes their expansion / evaluation
using query shipping, data shipping or hybrid shipping, and integrates their
results into the XPath expressions “regular”, which means: non-XLink results.
So, all XLink-relevant aspects are processed in the scope of a single XPath ex-
pression. Hence, Simple Link and Extended Link evaluation work fine for single,
flat XPath expressions.

Problems may arise however, if a query consists of more than a flat XPath
expression, especially

• inside nested XPath queries,

• concerning data and hybrid shipping behavior, and

• for variable definition and evaluation.

Example: Nested XPath Expressions

A quite common XPath construct is the id() expression. Consider an expression
/a/b/id(c/d/@e). The whole expression is an (absolute) XPath expression, and
the argument of if id() is again a (relative) XPath expression.

The XLink expansion is tied to the XPathExpr class, and does not consider
XLink information tied to surrounding or included XPath expressions. If, e.g.,
the c location step would match an XLink child element, which is present in the
virtual model, but not in the physical model, the evaluation unit has no chance
to find that element. Let us consider just having evaluated the b location step4.
If the next evaluation step would be another location step, the engine would now
check for XLink elements, that possibly could contribute to the next context
set. But since the next step is a function call, with a completely independent
XPath expression as its argument, the eventual XLink element is not considered
relevant. The inner expression /c/d/@e gets the previous context set from its
surrounding expression as start context, but none of its XLink meta-information,
and has therefore no chance to find possibly relevant XLinks, neither Simple
Links nor Extended Links.

This behavior applies to each kind of inner XPath expressions, especially
inside function calls, as well as in predicates. Note that this forbids the usage
of make-attribute as L-directive for the to-locator of an arc, since these can be
evaluated only within the id() function call.

Example: Variables

Consider the following XQuery example, applied to the familiar airline scenario:

4For a more detailed look into the Simple Link-aware evaluation of XPath queries within
the modified eXist version, please have a look at [Beh06]

8.5. EVALUATION AND SUMMARY 139

for $con1 in /cities/city[name=’Hannover’]/connection

let $city := $con1/city

for $con2 in $city/connection

where $con2/city/name = ’Lisbon’

return <con>{$con1,$con2}</con>

Let us examine each variable appearance in detail:

• $con1: The variable iterates over all connections of the “Hannover” city
element, which are given by the linkbase and blended into the virtual
instance the usual way. Everything’s fine until here.

• let $city := $con1/city: the nodeset represented by the $con1 variable
binding is the start context for the XPath expression $con1/city. The city
location step is evaluated, the evaluation-relevant airport link element is
found and expanded. As a result, the link element is evaluated, and the
result – the city element where the airport element points to – is evaluated
by query shipping and copied into the local instance5. So, the city element
is expanded in the local virtual instance. Still, everything seems alright
up to now.

• for $con2 in $city/connection: Now, the nodeset represented by $city is
scanned for possible XLink elements. The problem is: the city elements
are copied and thereby deprived of their original host, that also maintains
the relevant part of the linkbase. In the local linkbase, no information can
be found about the new elements. So, the produced result set is empty,
which of course is wrong in terms of the logical data model.

8.5.6 Summary

Focusing alone on performance issues, the results of the virtual datamodel
querying may appear somewhat humbling on first sight, since their runtimes
all exceed the physical datamodel queries’ runtimes by the factor 100. As de-
picted above, some reasons for that could be determined:

• non-concurrent query evaluation

• internal linkbase representation as XML

The above described functional anomalies concerning XQuery evaluation can
be traced to one software design decision:

• XLink processing is bound to the evaluation of XPathExpr.

Let’s discuss these points now one by one in order of appearance in the text.

5This is not a contradiction to the query shipping directive. Even when evaluating the
rest of a query in a remote place, the final results have to be integrated in the local virtual
instance, to be used for further evaluation steps.

140 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

Non-Concurrent Query Evaluation

When thinking about making eXist’s query evaluation concurrent, one has to
spot the code regions that involve active, non-concurrent waiting. The code
region where this has an enormous impact on performance is the expansion of
Simple Links in DBXLinkProcessor.process():

...

while(!relevantLinks.isEmpty()) {

for (int j = 0; j < relevantLinks.getLength(); j++) {

ElementImpl link = (ElementImpl) relevantLinks.item(j);

NodeListImpl xpointerresult = new NodeListImpl();

// get all nodes to be appended specified by the dbxlink rules

xpointerresult.addAll(resolveXLink(link));

// store all collected referenced nodes, mapped to the referencing link

nodesToBeInserted.put((StoredNode)link, xpointerresult);

}

// changes have to be made persistent

try {

context = applyChanges(currentElement);

} catch (XPathException e) {

e.printStackTrace();

}

// get remaining links that have to be resolved

relevantLinks = getRelevantLinks(currentElement);

}

...

– DBXLinkProcessor.process() –

The creation of an http connection and the shipping of the data / query
results over that connection is done in resolveXLink(link) in a strictly sequential
way: the connection is opened, the data is sent, the result is received, the
connection is closed. The program execution is halted until the remote host has
fulfilled his workload and has answered the http request.

A possible way of evading that bottleneck would be to encapsulate the
connection opening, query/data transport and connection closing into another
class extending the java class java.lang.Thread (or implementing the interface
java.lang.Runnable), delegating the task into a new thread for each single con-
nection. java.lang.Thread brings along the functionality for synchronization us-
ing monitoring. Synchronization is needed e.g. for waiting until the last thread
has completed and then gathering the single XLinks’ results.

Since the above described optimizations have no impact on the basic func-
tionality of executing queries over XLinked XML instances, I decided to leave
these modifications as subject to further research and optimization work.

Internal Linkbase Representation

Let’s shortly reconsider the linkbase registration process: the central linkbase
file (e.g. flightbase.xml) is registered by traversing all from-locators, taking their
xlink:href XPointer values, and evaluate these via query shipping. If an XPointer
is shipped to a remote host and terminates there – which means, it identifies

8.5. EVALUATION AND SUMMARY 141

some nodes there as the XPointer’s result – then, the relevant linkbase portion,
namely the locator and all arcs having the locator as their from-locator, are
transferred to the remote host, copied into the local linkbase part, and endowed
with an additional attribute dbxlink:locref. The attribute’s value consists of
multiple entries, each one consisting of (1) the local document path and (2) the
concerned node’s nodeID. Later, on evaluating queries on that host with respect
to the local linkbase data, each traversed context node is checked if in the local
linkbase there is a locator containing the node’s document path and nodeID. If
so, the arc is evaluated. Of course, storing the local linkbase data is significantly
slower than to store it directly in some file-based indexing structure, or in a in-
memory hash structure. The problem with the in-memory solution is, that it
is not persistent to database reboot6. The other solution would result in a
complete re-write of the storage unit, completely with B-tree support, indexing
schemes, concurrency control, transaction management etc. Even if many of the
features could be copied from the regular storage unit, this would result in an
amount of effort which seems not to bear a reasonable cost-benefit ratio, neither
in terms of scientific relevance nor regarding the effective speedup.

XLink Processing tied to PathExpr

Most functional disabilities of the prototype’s evaluation unit have to do with
the “location” in the code, where XLink processing takes place. The processing
is done mainly in class DBXLinkProcessor, which is a field of class PathExpr.
PathExpr represents the XQuery construct of a path expression. Considering
the “Variables” example above, this leads to the insight that not only the path
expression should be aware of all XLink information, but also its subsequent
location steps. Also, a path expression might contain inner path expressions
(e.g. a function call or a predicate are parts of a path expression, and may con-
tain zero or more path expression as arguments). For several tasks, especially
involving query shipping, it would be necessary to pass information from the
inner path expression’s DBXLinkProcessor instance to the DBXLinkProcessor in-
stance of the surrounding path expression (see the example: “Nested XPath
Expressions” above). This again would have led into serious refactoring of the
XLink processing, which I considered to be of subordinate relevance, especially
since many queries – at least most of the “common” ones – can be rewritten
towards not containing nested path expressions or variable expressions going
over XLink boundaries.

6In fact, the in-memory variant can be used as an additional feature, for caching some
information and storing it in shared memory, e.g. in the servlet context, which is accessible
to all servlet instances in the servlet engine. In the prototype, this variant is implemented to
accelerate linkbase evaluation.

142 CHAPTER 8. CASE STUDY: THE “FLIGHTBASE”

Chapter 9

Analysis and Discussion

The general idea behind the XLink/LinXIS approach was basically to connect
two main concepts of data engineering in a benefit-bringing way: (i) information
integration from autonomous sources on the Web, and (ii) the definition of
views over XML data, as known from relational databases, where views are
defined over the relational data model. On the Web, lots of autonomous data
sources exist, maintained by autonomous content supplying parties, supplying
data about general aspects of public interest, such diverse as the weather, estate
prices, flight plans, movie critics, etc., which could be combined with views. A
multitude of scenarios can be thought of that would profit from the definition
and implementation of a data model which allows for querying / navigating
these views1.

The World Wide Web is evolving quickly in various aspects: the number
and customs of its users, the available bandwidth, the used infrastructure and
technologies. What impact do these rapid changes have on the idea of XLink,
and on the data model and evaluation techniques presented in this work?

The next sections try to give an analysis of the XLink + LinXIS approach
as it is proposed in this work, regarding its relevance and competitiveness con-
cerning its efficiency, functional behavior and applicability, regarding today’s
Web infrastructure. What was the Web supposed to look like today, back when
the XLink standard was developed? And what does it look like today? Where
is XLink still relevant, and where is it not? In what kinds of scenarios is the
use of 3rd Party Link-created views useful and applicable? Does the approach
(XLink as well as LinXIS) still make sense at all?

This chapter describes the vision of today’s Web infrastructure as it was en
vogue during the late 90ies, when XLink was developed (denominating it the
XML Web) in the context of browsing the Web (Section 9.1) and querying the

1It does not need too much fantasy to figure out that, for certain peer groups, there would
be an added value in combining data from a weather forecast website with online flightplan
data from an airline into a view which then could be queried: “give me all flight connections
from my hometown to any place with a sunny weather forecast for the next two weeks”, to
give a very trivial example.

143

144 CHAPTER 9. ANALYSIS AND DISCUSSION

Web (Section 9.2). Moreover, the then-postulated XML Web is compared to
present Web technologies as the Semantic Web and the Social Web. Throughout
these sections, some arguments against the validity and relevance of the XLink
+ LinXIS approach are pointed out in form of objections. These objections
are discussed in detail in Section 9.3. In Section 9.4, an improved software
architecture is proposed, based on the preceding discussion and the experiences
made with the actual prototype implementation.

9.1 Browsing the Web

One goal throughout the development of XML and XLink was to define a stan-
dard which sooner or later should replace, or at least should embrace the HTML
as the primary data representation format on the Web. Instead of having lots
of – mostly manually edited and maintained – HTML documents containing
both content and layout intermixed, the idea was to have an XML data body
providing the data of a specific data domain in a clear, domain-specific model-
ing, and to use XSL transformations and CSS layout information for creating a
customized, but generic representation for being viewed in a browser. Assuming
such an infrastructure, 3rd Party Linking would be a powerful concept for ag-
gregating such data bodies into views, thereby creating new data bodies which
then could be queried or browsed. Although this is not a commonly agreed
term, let us refer to that infrastructure as the XML Web.

The reality today looks a bit different: indeed, most websites are no more
written by hand, but created from data models by automated work flows. But
the underlying data model is not always the above mentioned XML data body,
but the internal data model of some content management system. Which, again,
can be XML + XSL, or a relational database system, or any other data model,
all with one thing in common: the model is – usually – not available to the
public. (X)HTML pages are generated from the internal model and published,
but the underlying data model is not made public.

Even websites authored in XHTML are not really adequate for being ad-
dressed with XPointer expressions: though XHTML is an XML document type,
and all nodes in an XHTML document can be addressed with the xpointer()
scheme, the XHTML contains data not in a domain-driven representation, but
in a representation focusing mainly on layout aspects , which makes it harder
and more imprecise to reference the interspersed relevant domain data. Also,
Web layout is often subject to frequent change (website relaunches/redesigns
etc.), additionally to eventual changes of the underlying domain data. Subsum-
ing the above in a catchphrase, it can be stated:

Objection 1: there is no such thing as an XML Web.

9.2. QUERYING THE WEB 145

9.2 Querying the Web

9.2.1 Searching the Web: State of the Art

The common approaches for seeking relevant information in the World Wide
Web have not changed significantly in the past 15 years. The weapons of choice
still are search engines, searching and sorting the Web by creating huge indexes
over character sequences, plus more or less efficient ranking heuristics in an
effort to present the – often vast – amount of results for a query ordered by
their (supposed) relevance for the user. Key mechanism for finding data in the
Web is mainly a sophisticated kind of character matching over several millions
(if not billions) of hypertext documents and other media with no common data
model.

9.2.2 The Semantic Web

The Semantic Web is based on the idea to associate data on the Web with a no-
tion of explicit, machine-processable semantics. The semantics of a certain data
domain is described with an ontology. An ontology consists of classes, which
represent central concepts from the data domain, and of individuals, which re-
present concrete, existing instances among the data, with each instance being an
instance of – at least – one class. Classes can be described by defining attributes
for them (attributes describe certain properties, features or characteristics of
the classes’ individuals), and by relationships to other classes, as subsumption
(subclass), partition, or disjoint partition.

The idea is, to formalize such an ontology with an ontology language such
as OWL [OWL04], and to be able to use reasoning over the given ontology
concepts as well as individuals with means of description logic (a specific subset
of first order logic). With the help of a reasoner (a software that “understands”
description logic), applied to a given ontology, the ontology can be queried for
intensional knowledge, which is knowledge about classes and individuals that
is not directly expressed in the ontology description, but which is inferred from
the extensional (= directly specified) knowledge plus the ontology rules and
constraints, defined in description logic. The idea behind the idea is, to be able
to formulate a query based on the domain concepts instead of character/string
matching. Consider the following example:

Example 9 Imagine yourself trying to remember details from a recent party
talk, where someone else recommended you a book, but you can’t remember either
the title nor the author’s name. You only remember some vague details: that
it was the author’s 3rd book, and that the author’s sister was an actress. To a
Semantic Web, you could issue a query like “Give me all books by an author
who has published more than 3 books, and whose sister is an actress”2.

Data modeling and search techniques using ontologies and description logic
are a vivid area of research. Despite the conceptual impressiveness of the Se-

2Try to google that!

146 CHAPTER 9. ANALYSIS AND DISCUSSION

mantic Web approach, a number of problems arise. One is, that reasoning on
ontologies in presence of large data amounts in general is computationally ex-
pensive, so that queries based on the ontology using solely reasoning often are
not an option at all, when considering problems of a real-world size.

Another problem is the integration of ontologies. Most problem areas involve
heterogeneous data from multiple data domains. Even if for each of those do-
mains, an agreed ontology exists, integrating such overlapping domains demands
an explicit matching of concepts across the different ontologies, which – by now
– can only be done manually by a domain expert, which is a time-consuming
and possibly error-prone process.

In spite of their complexity and inherent computational intractabilities, and
in spite of unsolved problems in the area of ontology integration, semantic tech-
nologies for querying the Web are yet of – at best – moderate relevance outside
the scientific community.

9.2.3 The Social Web

In absence of common information models,ontologies tc., applications from the
Social Web or Web 2.0 use the domain knowledge of user communities to au-
tomatically create implicit taxonomies. A simple example are interactive rec-
ommender systems e.g. for music (”if you like the music you are listening right
now, you will probably also like the following artists:”), with their measure of
relevance based on the behavior of a sufficiently large user community. Other ex-
amples can be found in communities of practice, as Flickr [FLI07] for publishing
and annotating photos, or social tagging applications for annotating and sharing
bookmarks. The resulting folksonomies (= folks + taxonomy) are necessarily
imprecise and not canonic, since they are created by a community, in contrast
to “standards”, which a community – hopefully – agrees on, but which are cre-
ated by single persons or boards with institutional character. Folksonomies,
despite being imprecise and non-canonical, offer a way of querying the Web for
concepts, rather than for string occurrence.

Newer research efforts aim on combining technological Semantic Web ap-
proaches with community-driven Social Web concepts, sometimes referred to as
“Web 3.0”.

9.2.4 XPath – The Right Choice?

Enhancing the XML Web with linking has the striking advantage of XML as
a common data model, enabling for querying the Web with query languages
based on a precise algebraic data model and bearing precise results, instead
of imprecise search based on string matching or ad-hoc community-generated
taxonomies.

Let us forget for a moment objection 1, assuming there was an XML Web
consisting of distributed, XLink-connected, public XML documents. Would
then XLink-enhanced XPath be adequate for exploring, traversing and querying
the Web?

9.2. QUERYING THE WEB 147

XPath consists of location steps, with a location step consisting of an axis
identifier, a node test testing the name or type of the context nodes, and zero
or more predicates over the traversed XML data. XPath, and especially the
axes, have been designed to meet the requirements for navigating single, self-
contained, hierarchical XML documents, which, if seen in the algebraic way, are
tree structures.

When adding Simple Links to the model, the tree model changes to a graph
or network model, which may contain cycles. The phenomenon is known from
retrieving HTML pages from the Web, e.g. with the Unix tool wget: each page
contains numerous links to remote pages, which might degenerate, when fol-
lowing each link to an arbitrary depth, to the retrieval of all (linked) HTML
documents of the World Wide Web.

In XPath, one of the axes is the self-or-descendant axis “//”, which identifies
all nodes which are, in direct or transitive relation, children of a context node.
Which means, all children of the context node, all the grandchildren, all the
children’s children, and so on. A tree’s depth is an upper bound for the length
of this line of ancestors. In an arbitrary graph network, there is no such upper
bound, since a graph has no depth. In the presence of cycles, there only might
be a “longest non-cyclic path”.

Consider now an XPath query //*, issued to any document in our “XML
Web”. The query would return every element in the document from the root
element down to each leaf element, following also every Simple Link defined in
the document (except Simple Links specifying make-attribute), following every
Simple Link given in the linked documents, and so on. The query would result
in returning a sufficiently large part of the known XML Web. Even cycle detec-
tion and the search for a transitive closure would not change the fundamental
absurdness of formulating such a query, which is nevertheless completely legal
XPath. Other problems come up when regarding backward axes as the par-
ent axis (are the physical oder the virtual parents to be considered the correct
ones?), which is discussed in [Beh06]. Which leads to

Objection 2: (Full) XPath is not adequate for querying the Web.

Note that even if objection 2 is based on the assumption of having only
Simple Links, it is trivial to conclude that, if it holds for Simple Links, it might
as well hold for Extended Links.

9.2.5 Implementation Aspects

When regarding the implementation of the XLink + LinXIS approach as it is
described in 7, a few things can be figured out which conflict with the idea of
querying the Web in presence of 3rd Party Links. One is: the introduced infras-
tructure is based on distributing and registering (= precomputing) a linkbase’s
information across all affected document locations. Assuming now the initial
scenario of thousands (or millions) of users creating personal linkbases and regis-
tering them across the XML Web in hundreds of XLink-enhanced XML servers,

148 CHAPTER 9. ANALYSIS AND DISCUSSION

each server would have to maintain and evaluate thousands of linkbases at the
same time. Also, each server would need the functionality to authenticate each
user who sends a query, ensuring that his query is evaluated with his linkbase,
and keeping all other users’ linkbases secret for him. This would result in an
enormous workload for each Web server, which scales at least linear to the
(increasing) number of users in the Web, which is a very disadvantageous per-
formance behavior for a distributed system. Still, the prototype’s performance
with even one user is far below competitive, as can be derived from Figures 8.3,
8.4 and 8.5. Which leads to

Objection 3: Evaluating XPath wrt. 3rd Party Links is pro-
hibitively expensive, dumping most effort on the server side.

9.3 Discussion: Facing the Objections

In the sections above, a number of objections have been given, which will be
discussed here, together with some perspectives how to solve the described prob-
lems, and how to adopt the XLink approach – and the own perspective to it –
in order to be compliant with today’s rapidly changing Web infrastructure.

9.3.1 Objection 1: No, there is no XML Web. But:

Today’s Web infrastructure is a heterogeneous mixture of techniques and data
models, which is far from the XML Web as referred to above. This is no surprise
at all, since heterogeneity lies in the nature (and is one of the reasons of the
success) of the World Wide Web. But where the World Wide Web in the
early to mid 90ies was populated mainly by humans providing (and consuming)
content in shape of HTML resources, the Web is more and more evolving to a
medium where data is not only produced and consumed by persons, but where
the users are – with increasing rates – goal-driven agents or peer-to-peer software
components exchanging data autonomously. These actors – consider e.g. the
quickly emerging sector of Web Services and grid computing applications –
provide and exchange data in domain-specific representations, often using RDF
or XML as interchange format.

Examples for XML-based data exchange standards are newsfeed techniques
as RSS (Really Simple Syndication, see [RSS07]) or Atom [ATO07]. Moreover,
Linking XML can make sense in smaller contexts than the complete World
Wide Web, e.g. in smaller subsets such as corporate intranets or private virtual
networks (VPNs), with a closed and controlled domain of information sources
and users. The conclusion that can be drawn is: there is no XML Web, but
there is a lot (and a growing amount) of XML on the Web.

9.4. PROPOSAL FOR AN IMPROVED ARCHITECTURE 149

9.3.2 Objection 2: No, full XPath is not Adequate for
Querying the Web. But:

Some XPath concepts, such as the descendant(-or-self) axes, make only sense
inside non-interlinked XML document trees, but not within open and struc-
turally unrestricted graph structures, possibly traversing the whole Web. Here,
an option is to use an XPath subset for “Web queries”. A reduced XPath lan-
guage can be thought of, containing only the self, child, attribute, and namespace
axes. The restriction from 12 to 4 axes is not that harsh as it seems on the first
glance: Backward axes (parent, ancestor, ancestor-or-self, preceding-sibling, pre-
ceding) can be replaced by forward axes (see [OMFB02]), and following-sibling
and following axes are only relevant when considering the document order of
XML documents. For data-centric XML, the document order is not of much
concern (if necessary, it can be represented explicitly in the data anyway). So,
full XPath might not be adequate for querying the Web, but it also might be
sufficient to restrict it to an as well essential as viable subset, still enabling for
issuing expressive queries over linked XML data.

9.3.3 Objection 3: Yes, 3rd Party Links are prohibitively
expensive. But:

The introduced XLink-database prototype is based on the eXist database sys-
tem. eXist was chosen as code basis since it is (a) a native XML database
system written in Java, offering full XPath and XQuery support, (b) it sup-
ports a wide range of protocols as HTTP, REST, SOAP, XML-RPC etc., and
(c) it is Open Source. However, eXist is not designed as a distributed 3rd-Party-
Link-aware database system, and the software architecture of the prototype was
a compromise between an implementation of the XLink evaluation strategies,
and between the given eXist software architecture. Designing a completely new
prototype from scratch could result in a much more efficient and consequent
architecture (but would take significantly more time and cost than available).
A snapshot of such an architecture is described in the following section.

9.4 Proposal for an Improved Architecture

With the experiences and observations that have been made during the devel-
opment of the prototype, a few things can be said: the software’ performance is
rather weak, and scales badly with the number of linkbase users (discussed in
the previous section). This raises the question: can we do any better? Can we
think of an improved prototype with better performance, and how could such
a prototype look like? Which would be the requirements? It should be able
to process Simple Links as well as linkbases. Which should be the design prin-
ciples? For a competitive overall performance, a strict peer-to-peer approach
would be favorable, involving strict query-shipping, to minimize the effort of
transmitting large portions of XML data, aiming at processing as much of a

150 CHAPTER 9. ANALYSIS AND DISCUSSION

query as possible right at the server where the queried data is located. In order
to keep as much workload as possible away from common XML servers (which
provide XML data, and which can answer XPath queries by Query Shipping),
the efforts for checking for node traversals on one hand – this must be done by
the common servers – and answering and linkbase management on the other
hand should be disseminated.

The proposed software architecture is sketched in Figures 9.1 and 9.2. The
necessary components are a client that is able to merge single XPath results,
coming from distributing a query by Query Shipping, back together, a linkbase
proxy for maintaining, brokering and evaluating the linkbase information, and
regular, XPath-aware XML servers where XPath expressions can be “registered”
in a way that a message is sent to the linkbase if a certain registered node has
been traversed by a query. The linkbase server continues the evaluation along
the XLink “axis”, sending the results back to the client (where the results are
possibly merged with the non-XLink results of the common XML server(s)).

9.4. PROPOSAL FOR AN IMPROVED ARCHITECTURE 151

host linxis01
(cities-F.xml)

host linxis02
(cities-DK.xml)

host linxis03
(cities-UK.xml)

host linxis00
(linkbase proxy)

client

1. registering flightbase.xml

(/cities/city[nam
e=

’P
aris’],linxis00,arc001)

2. registering arcs

1. A flightplan linkbase with connections Paris (F) → Copenhagen (DK) and
Paris (F) → London (UK) (and others) is registered at the linkbase proxy by
a client.

2. For each arc, it’s from-locator is registered at the servers.

Figure 9.1: Peer-to-peer architecture part 1: registering a linkbase

152 CHAPTER 9. ANALYSIS AND DISCUSSION

city(Paris)→(arc0001,linxis00)
city(Paris)→(arc0002,linxis00)

host linxis01
(cities-F.xml)

host linxis02
(cities-DK.xml)

host linxis03
(cities-UK.xml)

host linxis00
(linkbase proxy)
arc001 → . . .
arc002 → . . .

client

(1)
/cities/city[nam

e=
’P

aris’]/flight-to/city,query001@
client

(2b) flight-to/city

(2
a
)(fl

ig
h
t-to

/
city,arc0

0
1
,q

u
ery0

0
1
@
clien

t)

(fl
ig

h
t-to

/
city,arc0

0
1
,q

u
ery0

0
1
@
clien

t)

(3
a
)

(/
ci

ti
es

/
ci

ty
[n

a
m

e=
’C

o
p
en

h
a
g
en

’]
,q

u
er

y0
0
1
)

(3
a)

(/
ci
tie

s/
ci
ty
[n
am

e=
’L
on

do
n’
],q

ue
ry
00

1@
cl
ie
nt
)

(3b
)
(∅

,
query001)

(4
)

([city(C
o
p
en

h
ag

en
)],q

u
ery0

0
1
)

(4
)

([city(L
o
n
d
o
n
)],q

u
ery0

0
1
)

1. the client issues the XPath query /cities/city[name=’Paris’]/flight-to/city to server
linxis01, together with a unique query id (which is always transmitted together with
the query or parts of it).

2. server linxis01 evaluates location steps /cities/city[name=’Paris’]. On finding the
city node for Paris in its linkbase index (with the arc marked with insert placement),
linxis01 ships the remaining query part to the linkbase proxy, together with an id for
the arc (at the proxy) and the query (at the client) (2a), and evaluates the remaining
query part also locally (2b). (for replace placement, only (2a) is performed)

3. The rest query flight-to/city is evaluated relatively to the 2 arcs registered
for the Paris node (representing the connections to Copenhagen and Lon-
don), and combined with their to-locators’ addresses, http://linxis02/cities-
DK#xpointer(/cities/city[name=’Copenhagen’]) and http://linxis03/cities-
UK#xpointer(/cities/city[name=’London’]), resulting in the queries
/cities/city[name=’Copenhagen’] and /cities/city[name=’London’] being shipped
to linxis02 and linxis03 (3a).
The query flight-to/city yields no result when issued locally on linxis01, and an
empty nodeset is sent to the client (3b).

4. The new rest queries /cities/city[name=’Copenhagen’] and
/cities/city[name=’London’] are evaluated at linxis02 and linxis03. The re-
sults (the Copenhagen and London city elements) are sent back to the client.

5. The received city nodes are merged with other results that have the same query id
(here, it is only the empty nodeset from linxis01), in order to assemble the final
query result:
[<city><name>Copenhagen</name>. . . </city>, <city><name>London</name>. . . </city>]

Figure 9.2: Peer-to-peer architecture part 2: evaluating an XPath query

Chapter 10

Conclusions and Outlook

In this work, a logical data model for Extended Links has been introduced. The
idea was to present a semantics for integrating XML data sources distributed
over the Web into a single, personalized view (i) by means of a precise, formal
and coherent data model, which (ii) provides means for a modeling which is
expressive enough to be useful, and simple enough to be realizable, and (iii)
which is compliant with the syntax of the W3C XLink standard for expressing
inter-document links.

This chapter gives a brief overview over the related research work over linking
and querying XML in Section 10.1. Section 10.2 presents a résumé on the
main scientific contributions of this work, with respect to the discussion in the
previous chapter. Finally, Section 10.3 highlights some aspects of the work that
still deserve deeper investigation, and opens perspectives on further work in the
area of 3rd Party Links.

10.1 Related Work

10.1.1 Views in XML

Numerous publications exist on the issue of defining, querying and maintaining
XML views: in [AMR+98], update maintenance of materialized views in OEM
(a semistructured data language, considered by many as the main precursor
of XML) is investigated; views are defined in Lorel, a query language with
similarities to XQuery. In [SKS+01], techniques are described for expressing and
querying XML views over relational data, especially regarding how to translate
XQuery expressions on the view to SQL expressions on the underlying relational
data. [BDH04] presents algorithms for propagating updates made to an XML
view to its underlying set of relational views. In [BLP+98], requirements for
an XML view definition language are formulated, based on a (pre-XQuery)
XML mediator infrastructure. In [AMN+01], typechecking of XML views over
relational data is investigated regarding as well its technical as its computational
aspects.

153

154 CHAPTER 10. CONCLUSIONS AND OUTLOOK

10.1.2 Querying Distributed XML Data

In [Suc02], the distributed evaluation of path expressions on XML data is in-
vestigated, considering an architecture of a (fixed) set of federated repositories,
using an algebraic representation based on bisimulation, and focusing on compu-
tational aspects such as upper bounds for runtime complexity. The graph-based
data model includes ε-edges, which have the same functionality as (and can be
expressed by) Simple Links.

Active XML [AXM02] is a framework extending XML by introducing active
elements, which enable including Web Services to provide dynamic content for
XML documents. Considering a Web Service which offers access to XML data
by XPath queries, this provides the functionality of resolving and materializing
Simple Links. In [ABC+04], a method for lazy evaluation is described for ma-
terializing only those service calls that are traversed within a tree pattern query
(a construct considered to subsume XPath queries). Active XML is focused on
providing means and infrastructure for integrating dynamic (but typed) Web
Service calls into static XML data by materialization (where the LinXIS ap-
proach, in contrast, is focused on delivering a logical data model for stepwise
evaluation for Simple Links).

10.1.3 XLink

In [CFRV02], an HTTP proxy server for processing external linkbases using
XLink’s Extended Links is proposed. The XLinkProxy annotates Web resources
in XML with respect to a given linkbase by merging the relevant linkbase in-
formation into the annotated document, and supplies the assembled document
to a browser. The focus is on browsing XML hypertext.

In [LL03], the XML representation SXML is developed on the basis of the
functional language scheme, together with the extension SXLink for dereferen-
cing Simple Links as well as linkbases with Extended Links, based on explicit
dereferencing operators. Here, the focus is set on describing a DOM-like in-
memory structure representing multiple, interlinked XML instances with func-
tional programming.

[NCEF02] describes the framework XLinkIt for defining constraints and
discovering inconsistencies among XML data. The results are represented using
Extended Links.

Amaya [Ama] is an experimental Web browser and editor. It is an Open
Source project hosted by the W3C. It supports RDF and Simple Links as well
as linkbases defined by Extended Links within the context of browsing XML /
XHTML documents.

10.1.4 Summary on Related Work

Much of the work found about views in XML focuses on coupling concepts
of querying semistructured data with common techniques for view definition
and maintenance in relational databases, or to solve these problems (e.g. view

10.2. CONTRIBUTION 155

maintenance wrt. updates) for semistructured views by mapping them to the
domain of relational databases, where view management is a common and well-
understood research area. The remaining publications, addressing pure XML
views, mostly consider the management of materialized views defined by XQuery
expressions or other, proprietary, kinds of view definition.

For publications about querying distributed XML data, two main focuses can
be determined: one is the algebraic and computational aspects of distributed
query evaluation, another one is about infrastructural aspects towards provid-
ing dynamic XML contents by embedding service calls. These approaches all
incorporate a notion analogue to XLink’s Simple Links.

The literature dealing explicitly with the XLink standard uses it mainly for
browsing purposes, representation format or navigation on the materialized data
structure in DOM-style.

Summarizing the above, it can be said that the research efforts that have
been done for explicitly bringing together the concepts (and standards) of link-
ing XML (with W3C’s XLink as standard) and querying XML (with W3C’s
XPath/XQuery) are relatively modest. Much work is centered around creating,
querying and maintaining views in XML, but none of them is based on linkbases
with 3rd Party Links in XLink syntax for describing a view’s properties. The
(rare) use of linkbases is mostly limited to the context of browsing.

10.2 Contribution

XLink, introduced by the W3C as the designated standard for Linking XML
documents, and XQuery, the W3C’s designated (and widely-used) standard
for querying XML data, exist independently from each other, despite in the
W3C XML Query Requirements [XMQ05]1, it has been stated as an explicit
requirement that

“3.4.12 References: Queries must be able to traverse intra- and inter-
document references.”

Up to date, this requirement has only partially been met. An explicit derefer-
encing operator has been dropped. XPointer support was considered, but not
provided by the XQuery work group.

The presented work aims at closing the conceptual gap between these two
– up to date largely isolated – main XML issues: between XML querying and
XML linking. A logical data model is presented, describing a mapping from
linked XML to plain XML, which enables for processing XLink-connected XML
data, providing rich modeling features for customizing the “cutting edges” be-
tween two XML resources. The logical data model thus provides a semantics
for querying linked distributed XML data. A prototype implementation of a
query engine is presented, implementing as well Simple Link as 3rd Party Link

1The XML Query Requirement from 2005 has been superseded by a new version in spring
2007, which still contains the above quoted requirement for inter-document traversal.

156 CHAPTER 10. CONCLUSIONS AND OUTLOOK

semantics, validating the introduced data model by providing a proof of con-
cept, finding that the semantics is adequate for splitting up and integrating
distributed XML data across multiple Web locations, and enables for creating
3rd Party views.

Based on the discussion in 9, it can be said that the LinXIS approach is of
conceptual relevance for a number of reasons:

• it is based on the W3C standards XLink and XQuery,

• a formal definition and a prototype implementation are provided, demon-
strating the basic validity of the LinXIS approach, and

• LinXIS represents an approach for data integration on the Web based on
linked XML.

LinXIS might not be the only approach for XML-based data integration on
the Web. Other approaches exist, but up to now, none of them succeeded in
defining a “standard of practice”, legitimated by commercial relevance and/or
approval by a large user community. Still, XML is the most common way of
publishing data on the Web with a structural, machine-processable data model
(even regarding the steadily growing amount of RDF data on the Web).

Apart from speaking of LinXIS as of closing a conceptual gap: with creating
a technique for connecting previously isolated XML data repositories on the Web
based on W3C technology, enabled for being queried – and in the absence of any
other solution of significantly higher relevance – with LinXIS, we’re supposed
to be as good as it gets.

10.3 Outlook

As stated above in Section 9.3, the presented prototype serves as a proof-of-
concept implementation, but is – in terms of performance – not appropriate
for as a basis for a large-scale Web-wide-distributed infrastructure. Considering
the sketch of an alternative implementation architecture from Section 9.4 in the
previous chapter, it can be stated that some performance bottlenecks specific
to the prototype’s design (which was driven by pure feasibility considerations
and dictated by the time schedule) can be evaded. Thus, with the architecture
described there, and with a reduced version of XPath, 3rd Party Links as well as
Simple Links can be implemented, assuming an infrastructure of XML servers
as described above, resulting in a significantly faster software infrastructure for
Simple Links as well as 3rd Party Links. Other possible areas of research are
the investigation of query optimization, query caching, schema processing and
link typing in context of the described LinXIS approach, as well as discovering
and investigating new application areas for evaluating queries in presence of 3rd
Party Links.

Bibliography

[ABC+04] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and
N. Preda. Lazy query evaluation for active xml. In SIGMOD, pages
227–238, 2004.

[Abi97] S. Abiteboul. Querying Semi-Structured Data. In Intl. Conference
on Database Theory (ICDT), number 1186 in LNCS, pages 1–18.
Springer, 1997.

[Ama] W3c’s editor/browser. http://www.w3.org/Amaya/.

[AMN+01] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking
xml views of relational databases. In LICS, pages 421–430, 2001.

[AMR+98] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and J. L. Wiener.
Incremental maintenance for materialized views over semistructured
data. In A. Gupta, O. Shmueli, and J. Widom, editors, VLDB’98,
Proceedings of 24rd International Conference on Very Large Data
Bases, August 24-27, 1998, New York City, New York, USA, pages
38–49. Morgan Kaufmann, 1998.

[ATO07] The ATOM Syndication Format.
http://www.atompub.org/rfc4287.html, 2007.

[AXM02] Active XML Primer, 2002. http://www-rocq.inria.fr/gemo/Gemo/Projects/axml/.

[BDH04] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From xml view
updates to relational view updates: old solutions to a new problem.
In M. A. Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A.
Blakeley, and K. B. Schiefer, editors, VLDB, pages 276–287. Morgan
Kaufmann, 2004.

[Beh06] E. Behrends. Evaluation of Queries on Linked Distributed XML
Data. PhD thesis, Universität Göttingen, Germany, 2006.

[BFM06a] E. Behrends, O. Fritzen, and W. May. Handling Interlinked XML
Instances on the Web. In Intl. Conference on Extending Database
Technology (EDBT), number 3896 in LNCS, pages 792–810, 2006.

157

http://www.w3.org/Amaya/
http://www.atompub.org/rfc4287.html
http://www-rocq.inria.fr/gemo/Gemo/Projects/axml/

158 BIBLIOGRAPHY

[BFM06b] E. Behrends, O. Fritzen, and W. May. Querying along XLinks in
XPath/XQuery: Situation, Applications, Perspectives. In EDTB
Workshops. WS Query Languages and Query Processing (QLQP),
number 4254 in LNCS, pages 662–674, 2006.

[BLP+98] C. K. Baru, B. Ludäscher, Y. Papakonstantinou, P. Velikhov, and
V. Vianu. Features and requirements for an xml view definition
language: Lessons from xml information mediation. In QL, 1998.

[BR04] T. Böhme and E. Rahm. Supporting Efficient Streaming and Inser-
tion of XML Data in RDBMS. In DIWeb, pages 70–81, 2004.

[CFRV02] P. Ciancarini, F. Folli, D. Rossi, and F. Vitali. Xlinkproxy: external
linkbases with xlink. In ACM Symposium on Document Engineering,
pages 57–65. ACM, 2002.

[DOM98] Document object model (DOM). http://www.w3.org/DOM/, 1998.

[exi] eXist: an Open Source Native XML Database.
http://exist-db.org/.

[FLI07] http://www.flickr.com Photosharing.
http://en.wikipedia.org/wiki/Flickr, 2007.

[IAT07] The International Air Transport Association (IATA) airport code.
http://en.wikipedia.org/wiki/IATA_Airport_Code, 2007.

[jet07] Jetty. Jetty, a lightweight webserver written in Java,
http://jetty.mortbay.com/, 2007.

[Kay] M. Kay. SAXON: an XSLT processor.
http://saxon.sourceforge.net/.

[LH07] LH.pdf. The Lufthansa Time Table / Der Lufthansa-Flugplan,
http://www.lhtimetable.com/LH.pdf, 2007.

[Lin] The LinXIS Project. http://dbis.informatik.uni-goettingen.de/LinXIS/.

[LL03] K. Lisovsky and D. Lizorkin. XSLT and XLink and their implemen-
tation with functional techniques. Russian Digital Libraries Journal,
6(5), 2003.

[May02] W. May. Querying linked XML document networks in the
web. In 11th. WWW Conference, 2002. Available at
http://www2002.org/CDROM/alternate/166/.

[May07] W. May. The Mondial database, 1999–2007.
http://dbis.informatik.uni-goettingen.de/Mondial/.

[NCEF02] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a
consistency checking and smart link generation service. ACM Trans.
Internet Techn., 2(2):151–185, 2002.

http://www.w3.org/DOM/
http://exist-db.org/
http://www.flickr.com
http://en.wikipedia.org/wiki/Flickr
http://en.wikipedia.org/wiki/IATA_Airport_Code
http://jetty.mortbay.com/
http://saxon.sourceforge.net/
http://www.lhtimetable.com/LH.pdf
http://dbis.informatik.uni-goettingen.de/LinXIS/
http://www2002.org/CDROM/alternate/166/
http://dbis.informatik.uni-goettingen.de/Mondial/

BIBLIOGRAPHY 159

[OMFB02] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: Looking
Forward. In EDBT Workshop ”XML-Based Data Management”
(XMLDM), pages 109–127, 2002.

[OWL04] OWL Web Ontology Language. http://www.w3.org/TR/owl-features/,
2004.

[RBHS04] C. Re, J. Brinkley, K. Hinshaw, and D. Suciu. Distributed XQuery.
In Workshop on Information Integration on the Web (IIWEB), 2004.

[RSS07] The RSS (Really Simple Syndication) Specification 2.0.10.
http://www.rssboard.org/rss-specification, 2007.

[RTF07] The Microsoft Rich Text Format 1.7.
http://support.microsoft.com/kb/86999, 2007.

[SKS+01] J. Shanmugasundaram, J. Kiernan, E. J. Shekita, C. Fan, and J. E.
Funderburk. Querying xml views of relational data. In P. M. G.
Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao, and
R. T. Snodgrass, editors, VLDB, pages 261–270. Morgan Kaufmann,
2001.

[Suc02] D. Suciu. Distributed query evaluation on semistructured data.
ACM Transactions on Database Systems (TODS), 27(1):1–62, 2002.

[Uri98] Uniform Resource Identifier. http://www.ietf.org/rfc/rfc2396.txt,
1998.

[URL] IETF-URL – the uniform resource locator (url).
http://tools.ietf.org/html/rfc1738.

[W3C] W3C – The World Wide Web Consortium. http://www.w3.org/.

[WL02] E. Wilde and D. Lowe. XPath, XLink, XPointer, and XML: A
Practical Guide to Web Hyperlinking and Transclusion. Addison
Wesley, 2002.

[XIn06] XML Inclusions (XInclude). W3C Recommendation,
http://www.w3.org/TR/xinclude/, 2006.

[XLD97] XLink first Draft. http://www.w3.org/TR/WD-xml-link-970731,
1997.

[XLi01a] XML Linking Language (XLink). http://www.w3.org/TR/xlink,
2001.

[XLi01b] XML Linking Language (XLink) Version 1.0. W3C Recommenda-
tion, http://www.w3.org/TR/xlink, 2001.

[XML98] Extensible Markup Language (XML). http://www.w3.org/XML/,
1998.

http://www.w3.org/TR/owl-features/
http://www.rssboard.org/rss-specification
http://support.microsoft.com/kb/86999
http://www.ietf.org/rfc/rfc2396.txt
http://tools.ietf.org/html/rfc1738
http://www.w3.org/
http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/WD-xml-link-970731
http://www.w3.org/TR/xlink
http://www.w3.org/TR/xlink
http://www.w3.org/XML/

160 BIBLIOGRAPHY

[XMQ03] XML Query Requirements. http://www.w3.org/TR/xmlquery-req,
2003. Work in progress.

[XMQ05] XML Query Requirements. W3C Working Draft,
http://www.w3.org/TR/xmlquery-req, 2005. Work in progress.

[XPa99] XML Path Language (XPath) Version 1.0. W3C Recommendation,
http://www.w3.org/TR/xpath, 1999.

[XPQ07] XQuery 1.0 and XPath 2.0 Functions and Operators. W3C Recom-
mendation, http://www.w3.org/TR/xquery-operators, 2007.

[XPt02a] XML Pointer Language (XPointer). http://www.w3.org/TR/xptr,
2002. Work in progress.

[XPt02b] XPointer xpointer() Scheme. http://www.w3.org/TR/xptr-xpointer,
2002. Incorporated into [XPt03b].

[XPt03a] XPointer element() Scheme. http://www.w3.org/TR/xptr-element,
2003. Incorporated into [XPt03b].

[XPt03b] XPointer Framework. W3C Recommendation,
http://www.w3.org/TR/xptr-framework, 2003.

[XPt03c] XPointer xmlns() Scheme. http://www.w3.org/TR/xptr-xmlns,
2003. Incorporated into [XPt03b].

http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xmlquery-req
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery-operators
http://www.w3.org/TR/xptr
http://www.w3.org/TR/xptr-xpointer
http://www.w3.org/TR/xptr-element
http://www.w3.org/TR/xptr-framework
http://www.w3.org/TR/xptr-xmlns

Curriculum Vitae

Personal Data

Date and place of birth: 19.11.1974 in Trier, Germany
Nationality: German

[professional]
1.10.2003 – present Research Assistant (Wissenschaftlicher Mitarbeiter) in the Database and

Information Systems group at the Universität of Göttingen, Germany.
1.3.2002 – 30.9.2003 Research Assistant at the Chair of Computer Science 5 (Information

Systems & and Database Technology), Rheinisch-Westfälische Techni-
sche Hochschule Aachen, Germany

[studies]
24.9.2001 Graduation in Computer Science (Diplom-Informatiker) from the Uni-

versity of Trier
1999 – 2000 Student Researcher (Studentische Hilfskraft) for project SB-PRAM (Pa-

rallel Programming in Fork)
1998 – 1999 Student Researcher (Studentische Hilfskraft) for project DBLP (Biblio-

graphic Information System for Computer Science Publications)
1997 – 1998 Teaching Assistent (Studentische Hilfskraft) for Automata Theory and

Formal Languages
1994 – 2001 Student of Computer Science (Informatik) at the University of Trier,

Germany
[school]
10.6.1994 Graduation (Abitur)
1985 – 1994 Secondary school Friedrich-Wilhelm-Gymnasium in Trier.
1981 – 1985 Elementary school Grundschule Trier-Olewig in Trier.

Languages:
German: native
English: fluent
French: basic knowledge

	Introduction
	Preliminaries
	XML for Documents and Data
	XML, HTML and Hyperlinks
	Linking XML Data
	XPointer
	XLink Syntax
	Remarks

	Querying XML Data with Simple Links
	Query Support for XLinks
	Applications: Data Integration and Splitting Documents
	Handling Simple Links
	Modeling Directives: dbxlink:transparent
	L-Directive and R-Directive
	XLinks and Querying

	Querying XML Data with Extended Links
	Perspectives forward, inverse, relation
	Arc Roles in Different Perspectives
	3 Perspectives -- 3 Modeling Directives
	Modeling Directives for the relation Perspective
	The dbxlink:transparent Directives for relation perspective
	Cardinality Directives for relation

	Modeling Directives for forward and inverse
	Placement for forward and inverse
	Placement for forward and inverse
	Allowed/Default transparent Values for forward and inverse

	The Logical Data Model for Simple Links
	The Data Model as an Abstract Data Type
	Signatures
	Data Model: Axioms
	Operators and *
	Transformation Start
	Signature and Definition of
	Signature and Definition of LR
	Signature and Definition of L
	Signature and Definition of R

	Finite Data Model, Cycle Detection and Link Bombs
	Not Well-Defined Instances

	The Logical Data Model for 3rd Party Links
	Description of the Mapping for the relation Perspective
	Definition of X

	Extended Links -- forward and inverse Perspective
	Placement Value determines Processing Order
	Signature and Definition of (LB)
	Signature and Definition of (LB)

	Three Kinds of Transparency for 3rd Party Links
	Concurrent View Definition

	The Flight Schedule Example
	Relation Perspective
	Forward Perspective
	Inverse Perspective

	Querying wrt. 3rd Party Links
	Evaluating 3rd Party Links in Distributed XML Environments
	Server Infrastructure

	Implementing Transparency
	Outline: Three Steps
	Creating and Using Linkbase Indexes
	Query Shipping versus Data Shipping
	The Algorithm
	Resolving an Arc

	Implementation of the Prototype
	The eXist Database System
	Software Architecture
	Database Architecture
	XPointer/XInclude Support
	Version

	Case Study: the ``Flightbase''
	Distributing the Mondial Database
	Generating the Linkbase
	IATA-Code
	Description of the Integration Process

	Hardware Configuration and Test Setup
	Hardware
	Test Setup

	Query Comparison
	Query I: Germany to India
	Query II: All Connections from Hannover to Lisbon
	Query III: Munich to Auckland without Stopover
	Query Environment

	Evaluation and Summary
	Query Results
	Query II: All Connections from Hannover to Lisbon
	Query III: Munich to Auckland without Stopover
	Performance Evaluation
	Functionality Evaluation
	Summary

	Analysis and Discussion
	Browsing the Web
	Querying the Web
	Searching the Web: State of the Art
	The Semantic Web
	The Social Web
	XPath -- The Right Choice?
	Implementation Aspects

	Discussion: Facing the Objections
	Objection 1: There is no XML Web
	Objection 2: XPath is not Adequate for Web-Querying
	Objection 3: 3rd Party Links are prohibitively expensive

	Proposal for an Improved Architecture

	Conclusions and Outlook
	Related Work
	Views in XML
	Querying Distributed XML Data
	XLink
	Summary on Related Work

	Contribution
	Outlook

