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1. Introduction

Since the dawn of our species, humans have wondered about their origin and the origin of
the surrounding life. First, the general belief was that God or some other supernatural force
had created everything, including life. According to this belief, the form of life remains
unchanged to the present day: The book of Genesis is a good example for this creation
story [49]. According to this book, God created life within a few days in the forms that still
surround us today. This became the accepted view for millenia in the European culture
but, beginning hundreds of years ago, Christian and Jewish scholars proposed that the
account in Genesis should be seen allegorically as it rather describes different facets of
God’s creation than the real temporal sequence of events (cf. e.g. [101]). Furthermore,
fossils were identified as petrified remnants of dead organisms. As more and more of them
were found all over the world this added to the accumulating evidence that the forms of
life changed over the ages and were not fixed for all time [75].

However, only after Darwin’s work “On the Origin of Species” published in 1859 [15]
the idea that life is in an ever changing process – nowadays called evolution – received
widespread acceptance. He proposed that natural selection favours those variants of a
species which are best adapted to their environment. He called these best adapted variants
the “fittest”. He further proposed that small variations in the species’ forms arise across
successive generations. Only the fittest of these variants would then survive the process of
natural selection. These fittest variants could, however, have very different forms. Thus,
the abundant variety of today’s life could have evolved from one simple original form of
life – the so-called first common ancestor. The origin of the variation across individuals
was unknown to Darwin; the fact that individuals inherit genes from their ancestors was
first noted by Mendel in the 1860s [54], but only became widely accepted in the early 20th
century. As de Vries first noted [16], mutations may change these genes slightly in the
process of inheritance and ultimately give rise to the emergence of new variants of species.

With the acceptance of the idea that evolution shapes life on earth, scientists tried to
develop models to study evolutionary processes and explain the diversity of today’s life.
These models used to be and still are strong simplifications usually describing the evolu-
tionary system with a small set of state variables. Although the forms of life themselves are
highly complex and complex interactions in the ecosystems are omnipresent, the utilization
of simplified models allows for general propositions about distinct aspects of evolutionary
dynamics and thus helps to grasp the basic mechanisms of evolution. Existing models
may be roughly categorized into three different types [6]. First, classic population-level
models are formulated using deterministic differential equations. They describe evolution
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1. Introduction

through a view of entire populations, assuming that these populations are infinitely large
so that stochastic effects of the single individuals’ reproduction and death processes are
neglected. Secondly, agent-based models take these stochastic effects into account by mod-
elling the dynamics of a finite number of individuals. These individuals are assumed to be
highly complex, i.e. each is described by a large number of attributes or degrees of freedom.
Thirdly, individual-based models assume a finite number of very simple individuals which
have very few attributes, e.g. their fitness and mutation probability. As Black and McKane
proposed recently [6], individual-based models – which we use throughout this thesis – are
best apt to study evolutionary dynamics. The reason, they argue, is that these models
include the stochastic effects missed by population-level models, but still allow for ana-
lytical calculations and general conclusions about evolutionary dynamics that are difficult
to obtain for agent-based models. In addition to this categorization into population-level,
agent-based and individual-based models, there are more features distinguishing different
models. One of the most important is whether or not the model includes a spatial compo-
nent. A spatial structure of the environment can have a strong impact on the evolutionary
dynamics as it allows for different types of populations living in different regions of the
environment [42,43,59]. The models we use throughout this thesis completely neglect any
spatial component yielding valuable insight into basic mechanisms of the underlying evolu-
tionary processes independent of spatial effects. Thus, although reducing the complexity of
the evolutionary setup, these models can still qualitatively explain evolutionary dynamics
observed in reality, as well as being fitted to experimental data, e.g. to determine mutation
rates [8, 10,20,58].

The first models of evolutionary dynamics were population-level models using a set of
differential equations for the evolving species’ population sizes to study the effects of se-
lection in the course of evolution. Examples for this are the predator-prey model [93] that
explains fluctuations in population sizes of both predators and its prey, or the models in
classical evolutionary game theory [35, 79, 85] that study how the fitness of individuals is
influenced by their mutual interactions. In such models, mutations play no or only a minor
role; they are assumed to occur only very rarely and therefore on time scales much longer
than the time scale imposed on the evolutionary dynamics by selection. However, as Eigen
observed [23] mutations can occur at a high rate, for example in viruses. The role of high
mutation rates was then adressed by Eigen in the quasispecies model [23, 24] which takes
into account both selection and significant mutation rates.

It was believed that selection and random mutations are the only underlying processes
of evolution until S. Wright introduced the concept of genetic drift in the 1920s [98].
Genetic drift is a stochastic effect in finite populations caused by random sampling in
the reproduction process. The number of offspring that one individual produces is not
deterministic, but can rather be seen as a random variable. Thus, the number of copies
of a gene transferred from one generation to the next may increase or decrease randomly
from generation to generation. Think for example of a gene only present in one individual
of an entire population. If this individual dies before it can produce offspring, the gene
is lost in the next generation and the number of copies is reduced from one to zero. This
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example shows that through genetic drift genes get lost in the process of reproduction and
so the diversity of the population diminishes [20]. The smaller a population the stronger is
the effect of the random sampling. Therefore, deterministic population-level models may
be used as an approach to describe very large populations where genetic drift is very weak,
while it is important to use stochastic models to properly analyze the dynamics of small
populations where genetic drift can be an important factor [20].

The idea of a tree of life that describes the relatedness among species through time has
been a key concept in the theory of evolution since it was introduced by Darwin [15]. If we
draw time on a vertical axis, whenever a parent individual produces offspring the genes of
the parent organism are transferred vertically along this axis to its offspring. We therefore
call the transfer of genes through reproduction vertical gene transfer (VGT). Considering
two organisms from two species, we follow the origin of their genes back through time
through repeated VGT- and mutation events up to the first parent organism which they
commonly share. We may then draw two lines connecting the two species at the point in
time where they share their common ancestor. Applying this procedure repeatedly, one
obtains a tree-like structure with all of todays species at the branches of the tree and one
organism at the root of the tree from which all life descended. This organism is often
referred to as the first common ancestor; the origin of this first common ancestor, however,
remains unclear. Even now, scientists are trying to determine the exact shape of such a
tree of life by statistically analyzing presently known gene sequences of life forms under the
assumption that evolution proceeds under the influence of selection, mutation and genetic
drift [11].

However, the existence of a unifying tree-like structure for the relationship between all
life-forms was recently questioned [11, 14] because in the last few decades more and more
evidence accumulated that evolution is not only driven by VGT, but horizontal gene trans-
fer (HGT) may also play a role. In general, HGT refers to the transfer of genetic material
among different living cells of one generation [81, 82, 86]. In the picture of the tree of
life this means a transfer of genetic information between different branchfes of the tree.
Thus, the different branches of the tree would become interconnected, so that the overall
existence of a unifying tree-like structure for the relationship between all life-forms was
questioned [14]. While the debate on the importance of HGT for modern organisms is still
ongoing [11,14,52,69], a consensus seems to have been reached that HGT played a promi-
nent role in early evolution [45]. Based on the idea of prominent HGT in early evolution,
it was proposed that before the emergence of distinct species, instead of one first common
ancestor there was a so-called “reactive soup” in which HGT dominated evolution [96,97].
In this reactive soup each individual had its own distinct set of genetic material which was
frequently changed by HGT-events. Due to a lack of data on early evolution, the possible
evolutionary dynamics in this reactive soup are unknown and it is completely unclear how
the first distinct species could have evolved from an early life environment dominated by
HGT [14].

Theoretical physicists have been studying evolutionary dynamics for a long time. They
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1. Introduction

often approach the field from the point of view that evolution may be modelled as a
stochastic process to be analyzed with the tools of statistical physics [20]. As Drossel put
it, “the theoretical approaches lag far behind the experimental findings. While existing
theoretical models and mathematical calculations cover a certain range of phenomena,
verbal arguments and plausible stories prevail in many other areas, creating the need
for more theoretical efforts” [20, p. 212]. The approach to tackle evolutionary problems
with the methods of theoretical physics has proven to be fruitful in recent years. Early
developed models, for example the works by Wright and Fisher [26, 99], Moran [55] or
Kimura [39], were refined and extended, for example by combining classical evolutionary
game theory [35,79,85] with the original stochastic models for finite populations [65,87,89].
By applying stochastic methods to these models it was possible to gain valuable insights
into the role of selection, mutation and genetic drift in evolutionary dynamics in general.
Although the models used are highly idealized, they nonetheless have repeatedly been used
to compare theoretical predictions with real data and fared surprisingly well (cf. e.g. [58]
and citations therein).

Yet, the attention has been mainly focused on the effects caused by selection, mutation
and the dynamics’ stochasticity, i.e. in vertical gene transfer processes. The impact of
HGT on evolutionary dynamics remains unclear and theoretical approaches to study how
HGT influences evolutionary dynamics has only recently begun. Raz and Tannenbaum
analytically showed in a very simple model that HGT has a deleterious effect in static
environments [73], which was confirmed in simulations by Vogan and Higgs shortly there-
after [92]. Believing in the generality of this result and because HGT is still present in
today’s bacteria populations one may conclude that HGT must confer an advantage for
populations in changing environments. However, to our knowledge this has not yet been
confirmed by analytical calculations or simulations. Other works studied HGT in the con-
text of evolutionary dynamics mainly driven by mutations, i.e. they introduced it to the
quasispecies model [7, 36, 68]. However, as all these studies focus on single aspects of evo-
lutionary dynamics with HGT, we still need to clarify what the general consequences of
HGT for evolutionary dynamics are.

Even in the very simple theoretical models used to study evolutionary dynamics there is
still much to be explored and understood. With this thesis, we aim at improving our
knowledge of the basic mechanisms underlying evolutionary dynamics. A specific aim of
the thesis is to provide a first explanation of how distinct life forms could evolve from a
HGT-dominated reactive soup, in particular with respect to the question which dynamical
properties would need to change for such a transition in evolution to emerge. Furthermore,
we analyze the role of HGT in changing environments in selection-dominated bacterial
evolution. Before we attempt to conceive the role of HGT in evolution, it is important to
gain a thorough understanding of the basic evolutionary dynamics without HGT. Here, the
theoretical work by Traulsen et al. [87,89] on evolutionary game theory in finite populations
provides a good starting point. In the first part of the thesis, we thus extend and generalize
results from Traulsen, gaining a better understanding how dynamic fitness, mutations and
genetic drift in general act together to shape evolutionary dynamics. Only after having
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grasped the role of these basic processes in evolutionary dynamics, we focus on the role of
HGT in evolution.

The work presented here is based on the established models describing selection, mutation
and genetic drift [20, 55, 99], along with those describing individuals’ interactions [65, 87].
We newly introduce a process effectively modelling HGT. We then aim at conceiving the
resulting system dynamics for dominating HGT or dominating selection and also analyze
the effect of HGT on the fitness of a population in changing environments.

The thesis is structured as follows: After this introduction we provide the fundamentals for
this thesis in Chapter 2. Therein, we first give a short overview of the biological background
of evolution, followed by a description of the models that we use throughout the thesis.
In this part we also introduce a new HGT model which captures the essential features of
HGT. At the end of Chapter 2 we provide the mathematical foundations needed for the
analytic calculations in the thesis.

In Chapter 3 we address the question of how dynamic fitness, mutations and genetic drift
in general act together to shape the course of evolutionary dynamics. Here, we consider
a general class of functions for the form of dynamic fitness that can arise through the
interactions between the individuals. Previous studies have only focussed on special linear
or simple quadratic instances of this class of functions [65, 87–89], although experimental
studies suggest that the dependence may be of a more complex form [51]. Our analysis
reveals that such complex interactions can cause the emergence of many stable states for
the dynamics, so that the population dynamics will stochastically switch between these
different states. Furthermore, our studies in Chapter 3 show that the impact of fitness
differences and mutations on the evolutionary dynamics scales with the population size.

To analyze how the dynamics are affected by dynamically changing population sizes we
consider a model with variable population sizes in Chapter 4. There we show that such vari-
able population size implies a rapid extinction of the population with high probability after
only relatively short periods of time. We then demonstrate that dynamic fitness can stabi-
lize the population size so the population will persist over much longer periods of time. The
resulting model seems promising to study the emergence of complex evolutionary dynamics
which arise due to stochastic reproduction processes and interactions between individuals.
We demonstrate this by developing an ecological model which exhibits complex dynamics
including quasi-cycles and punctuated equilibria. To our knowledge there is no previously
existing model system which exhibits both of these evolutionary features [4, 31, 53,60,67].

In Chapters 5 and 6 we study the impact of HGT on evolutionary dynamics. In Chapter 5
we show that HGT can give a population a fitness advantage in changing environments.
Previous studies only suggested that HGT may be beneficial for adapting populations [82],
but it was only explicitly shown that HGT yields no fitness advantage in fixed environ-
ments [73, 92]. Thus, our work now confirms that HGT can be beneficial for adapting
populations and our analysis reveals under which conditions this fitness advantage due to
HGT emerges.
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1. Introduction

In Chapter 6 we analyze the evolutionary dynamics with frequent HGT. It has been sug-
gested that such frequent HGT produces a reactive soup state where no distinct species
exist [14]. This could have been the dominant state in evolution before the first species
evolved [96, 97]. However, it remained unclear how the first distinct species could emerge
from this reactive soup. Our results show that a reactive soup state emerges at high HGT
rates and that the dynamics may stochastically switch between this HGT-dominated state
and a selection-dominated state. Our analysis of the dynamics reveals under which condi-
tions the reactive soup is stable and how it vanishes when the individuals’ competence for
HGT decreases. Thus, our results indicate a possible mechanism for the emergence of the
first species from a reactive soup which we discuss at the end of Chapter 6.

We summarize and discuss all results in Chapter 7, where we also point out possible direc-
tions of future research on the role of dynamic fitness and HGT in evolutionary dynamics.
Some of the details of the calculations in Chapters 2, 3 and 4 are contained in the Appen-
dices A-D.
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2. Fundamentals

2.1. Biological Background

Any evolving system relies on the basic building blocks of evolution which are replication,
selection and mutation or, more generally, the introduction of new variations. This does
not only include biological life as we know it, but also other evolving systems such as
languages [63, 64], ideas [80] and social networks [19]. The models we study in this thesis
are thus not only applicable to the evolution of life, but may also help to describe other
systems. However, throughout this thesis we concentrate on the evolution of biological
organisms. In the following sections we shortly introduce and discuss the basic building
blocks of biological evolution.

2.1.1. From genotype to phenotype

The persistence and thriving of every form of life on earth relies on the accumulation of
information about the life form’s environment, which includes the physical laws determining
the life form’s dynamics as well as the objects with whicht it interacts. This information
is stored in the genome of the individual organisms and determines their development and
functioning. The genome is encoded in Deoxyribonucleic acid (DNA) in most organisms
or Ribonucleic acid (RNA) in many viruses. Both DNA and RNA are long polymers,
essentially consisting of a backbone holding the molecule together on which information
carrying units are attached, called nucleobases or simply bases. Actually, the DNA is
built up of two such polymers, the strands, forming a double helix structure coupled
together by the nucleobases. The genome codes for many different functions necessary
for an organism to survive and is therefore divided into different coding segments, the
genes [28, 78]. Between the genes there are also non-coding sequences whose function is
not yet completely determined; they may serve as regulatory elements for the function of
the genes between which they are situated. Many organisms carry two (possibly different)
copies of each gene; these organisms are called diploid compared to the simpler haploid
organisms carrying only one copy of each gene. Most bacteria are haploid while sexually
reproducing organisms are diploid. The specific form of a gene is called an allele and in
diploid organisms they may either be identical – then called homozygous – or different –
then called heterozygous. Each gene codes for a specific trait of an organism, which is
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2. Fundamentals

determined by its allele carrying the building plan for a protein. For more information on
genomes, genes and DNA see e.g. the textbooks by Singer and Berg [78] or Futuyma [28].

There are four different types of bases in the DNA, namely adenine, cytosine, guanine
and thymine (or uracil in RNA), abbreviated as A, C, G and T (U). These bases make
up base pairs as their chemical interactions only allow for adenine to couple to thymine
and for guanine to couple to cytosine. Thus, one strand of the DNA determines the other
strand of the DNA as they are coupled together via these base pairs; the strands are
complementary, and so the information carried within each strand is redundant. We may
understand the bases as letters and thus the genome as one long word consisting of these
four letters. Hence, the information of an organism about its environment determining the
organism’s design and functioning is stored in a long sequence of a four-letter alphabet.
A given sequence defines one genotype, so that each individual life form may be assigned
to a certain genotype. Note that two different individuals may be of the same genotype
as they can have identical sequences. Typical genome lengths range from the order of 104

bases in simple viruses to the order of 109 bases in higher life forms such as e.g. humans.

DNA

RNA

Transcription

Translation

Replication

Protein

Figure 2.1.: A basic illustration of
the relationship between DNA,
RNA and protein, mediated by
the replication, transcription and
translation processes (cf. [78, p.
27]).

The DNA is in two ways an important basis for the
functioning of life (cf. Figure 2.1). First, the DNA
is involved in replication, where identical copies of
the original DNA molecule are created. In the repli-
cation process the DNA is split up by enzymes into
its two complementary strands. The complemen-
tary sequences of both strands are then recreated
by an enzyme called DNA polymerase, which builds
them up base by base. In this way, two complete
DNA sequences are created and the storage of an or-
ganism’s information is secured and handed over to
new offspring. Secondly, the genome holds the con-
struction plan for different proteins created through
a complex machinery from the genetic information.
We will only roughly describe the process here. For
more details see for example [78]. First, in the
transcription process a so-called messenger RNA
(mRNA) is created as a copy of a sequence from
the DNA. Then, the information contained in the

mRNA is translated into a protein. In this translation process ribosomes – complex molec-
ular machines themselves – attach to the mRNA and produce a protein while moving along
the mRNA. Here, always a set of three letters – called a codon – from the sequence of the
mRNA code for one amino acid which the ribosome binds together to form the resulting
protein. There are 20 different amino acids that are these basic building blocks of the
proteins. Each codon codes for one specific of these 20 different amino acids according to
the genetic code. As there are 43 = 64 different possibilities to combine the four differ-
ent letters into a set of three and each of these 64 codons codes for one of the 20 amino
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2.1. Biological Background

acids, the genetic code is redundant. It is universal for all life forms and has been shown
to be highly optimal in correcting coding errors [27, 32]. It was therefore proposed that
the genetic code evolved and outcompeted other genetic codes before life emerged in its
current form [27,30]. The basic relationship between DNA, RNA and proteins through the
processes of replication, transcription and translation is illustrated in Figure 2.1.

All the processes described above are highly complex and we thus refer to [28,78] for more
details. However, the whole machinery involved may be essentially conceived as a self-
replicating computing machine [63] because the translation process works similarly to a
computing machine: The ribosome moves along a given sequence of letters and translates
them into proteins according to a given code. As such a machine is deterministic, it is
thus often assumed that the genotype alone defines the phenotype of an individual, i.e. its
characteristics such as size and morphology, but also its behavior [20, 63]. However, this
is not entirely true because the environment also has an influence on the phenotype of an
individual, as certain constraints are put on its development [34]. Consider for example
two individuals with identical genotype growing up in two very different environments,
one where nutrients are in ample supply and one where it is hard to stay fed. Then,
the individual living in the former environment may grow larger and the individuals will
have different phenotypes. However, it is often assumed that in a given environment the
genotype completely determines the phenotype of individuals [63]. This assumption is
widely used in evolutionary theory [20] and works well in large enough populations. As the
genotype determines the average phenotype, in large populations enough individuals of one
genotype are born so that the average phenotype may well describe the entire population.

2.1.2. Natural Selection

Let us assume that the phenotype of an individual is completely determined by its geno-
type. Then individuals of different genotypes evolving in a given environment will exhibit
differing phenotypes and thus may fare differently. Hence, their phenotype will influence
the expected number of offspring they will have. We say that the individual having a
higher number of expected offspring is better adapted to the environment. This is often
quantified using a so-called fitness measure: The average number of offspring it will ob-
tain compared to a reference genotype defines the fitness of an individual. As we assume
that the genotype determines the phenotype and the phenotype defines the fitness, the
fitness of an individual is thus directly determined by its genotype [25, 63, 76]. Note that
the fitness of an individual may be time-dependent, because the environment may change
over time. Actually, for any individual all other organisms are part of the environment:
They can influence the number of offspring an individual can produce e.g. through pre-
dation or competetion for nutrients. Thus, in general the individuals mutually modify
their fitness through their interactions. This is usually analyzed with evolutionary game
theory [10,35,79,85].

Through higher probability of reproduction the fitter genotypes in a population have a
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2. Fundamentals

higher probability to persist than the less fit genotypes. Therefore, on average (ignoring
stochastic effects) the fitter genotypes outcompete the less fit genotypes in the long run;
the fitter genotypes are selected for while the less fit genotypes vanish from the population.
This process is called natural selection. Thus, the genotype stores the information about
how to best survive and reproduce in a given environment. Generally, natural selection is
a process reducing variability in a population by letting the fitter genotypes outcompete
the less fit genotypes which vanish from the population. This was already realized by
Darwin [15] who did not know from where the obviously wide-spread diversity in life
comes. The main cause of variability are mutations which we will discuss in the following.

2.1.3. Mutations

DNA is essentially a highly complex macromolecule and as such it can change in its struc-
ture through external influences such as e.g. radiation or chemical influences [78]. Also,
copying errors can occur in the process of replication when a copy of the DNA is made to
be handed on to the newly created organism. In general, all these changes of the genomic
sequence are called mutations. They introduce new genotypes to a population and there-
fore increase the variability in a population [20]. One of the basic features of mutations
is their stochastic nature. They occur randomly and are thus unpredictable. However,
some mutations are more probable than others as different parts of the DNA have different
stability properties. We may thus define mutation rates from one genotype to another
reflecting the frequency at which such mutations occur.

One type of mutation is the point mutation, meaning that only one base of the genomic
sequence changes in one mutation event [28,78]. If such a mutation alters the corresponding
codon in such a way that it still codes for the same amino acid, the mutation has no effect
for the phenotype of the organism. Such a mutation is called synonymous. On the other
hand, for all other, nonsynonymous mutations the small change in the genotype can have
massive effects on the phenotype of the corresponding individual and thus strongly modify
its fitness. As most populations are well adapted to their environment, mutations are
typically either deleterious, i.e. they decrease the fitness of the concerned individual [25,76],
or neutral, i.e. they do not affect the fitness of the individual [41]. However, for a population
moving into a new environment or living in a changing environment, some mutations may
be beneficial, increasing their fitness. In this way mutations are important for populations
to adapt to new or changing environments [66]. Other types of mutations include frameshift
mutations and sequence changes arising from recombination. They are discussed in detail
for example in [28].

Typical mutation rates for the bases range from the order of 10−3 per base per generation
in viruses to the order of 10−10 per base per generation in highly developed organisms such
as humans (cf. [63, p. 40]). Taking into account the length of the genomes, the mutation
rate per genome ranges from the order of 1 per genome in viruses to 10−3 in more complex
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organisms. This means, that some viruses mutate about once per generation while the rate
is much lower for higher developed organisms.

In general it is believed today that through mutation and natural selection new species
emerge. Darwin proposed that therefore all species are related and ultimately come from
one first organism, the first common ancestor [15, 20]. Looking back in time we can then
establish a diagram showing the relationship of all existing species up to the first common
ancestor. This diagram has a tree-like structure with time as the vertical axis and rela-
tionship distance as its horizontal axis and so is called the tree of life. There are different,
topologically equivalent ways to depict the tree of life which vizualize the relationships be-
tween species in different ways. For example, the relationship distance can also be drawn
on a circular axis and time would then lead from the inside of a circle to its rim. An ex-
ample of such a diagram is shown in Figure 2.2. Currently, scientists are trying to obtain
the detailed structural form of this tree of life by a statistical analysis of the genomes of
different organisms [11].

Figure 2.2.: A possible structure of the tree of life from [11]. Texts show the names of the
sequenced organisms; blue denotes Bacteria, red Eukaryota and green Archaea. Lines show
a possible structure of the relationship between different species. Time runs from the circle’s
center to its outer rim.
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2.1.4. Genetic Drift

We already saw that stochasticity plays an important role for mutations and therefore evo-
lution is not a deterministic process. Actually, stochasticity not only influences mutations,
but it is also important in the reproduction process. How well adapted an individual is
to a certain environment only determines its reproduction capabilities, but not the actual
number of offspring it will receive. By pure chance a well adapted individual may die be-
fore receiving offspring and other less well adapted individuals may receive more offspring.
Thus, the individuals of one generation are sampled in a random process to determine
the individuals of the next generation. This random sampling process is called genetic
drift [39].

This effect caused by the influence of stochasticity becomes negligible for large enough
populations and disappears (theoretically) for infinitely large populations. Such popula-
tions evolving deterministically are actually studied in many models [24, 63, 79, 85, 93]. In
small populations, genetic drift plays a major role that is well understood through simple
mathematical models [20]. By pure chance a genotype being present in one generation
may not be sampled in the reproduction process; this genotype would then be lost in the
next generation. In this way the number of different genotypes present in a population
can decline through the random sampling in the reproduction process. Therefore, genetic
drift is a process reducing variability in a population [20]. However, different from natural
selection which decreases variability in a deterministic way according to the fitness of the
different genotypes, genetic drift reduces variability independent of individual’s adapta-
tion to environments and is only governed by the mathematics of chance. Thus, to reflect
genetic drift, evolution models should be individual-based and use probabilistic reproduc-
tion events. Models based on deterministic differential equations are applicable in the
approximation of large populations where genetic drift plays a minor role.

For a long time, it was thought that genetic drift plays a minor role in evolutionary dy-
namics until Motoo Kimura introduced the neutral theory of molecular evolution based on
experimental estimates of amino acid substitutions in animal DNA [40]. Kimura proposes
that many mutations do not affect fitness – the mutations are thus neutral –, but through
genetic drift they can nontheless take hold in a population. Thus, in evolutionary dynam-
ics, genetic drift may play an important role for mutations which do not or only slightly
alter the fitness of a genotype.

2.1.5. Horizontal Gene Transfer

For a long time natural selection and mutations were thought to be the main ingredients
of evolution. After Kimura’s studies the importance of genetic drift was realized. How-
ever, there is another process shaping evolutionary dynamics: Horizontal gene transfer
(HGT) [81, 82, 86], also referred to as lateral gene transfer or cross species gene transfer.
Analysis of DNA-material indicates that many bacteria have aquired large portions of their
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genomes via HGT [37,46,57]. In the picture of the tree of life, reproduction is seen as the
vertical transfer of genetic material from one generation to the next. Following this picture,
in general HGT refers to any transfer of genetic material between two organisms except the
transfer from parent organism to its offspring in the process of reproduction. Thus, HGT
may occur between totally unrelated organisms although the probability of a successful
transfer is higher for more closely related organisms [86].

There are different mechansims for HGT, which we shortly discuss here. For more in-
formation see for example the review by Thomas and Nielsen [86]. First, bacteria may
aquire new DNA segments through natural transformation, which means the uptake and
integration of extracellular, free DNA. The ability of bacteria to take up this DNA is called
competence. The individuals can stochastically switch between a noncompetent state and
a compentent state depending on their environment [48]. Thus, the proportion of bacteria
that are in the state of competence depends on their surrounding environment and can
lie anywhere between 0 and 100 percent [12,86]. The extracellular DNA is released in the
surrounding environment either by decomposing or disrupted cells or through excretion
from living cells. Another possibility for HGT to occur is conjugative transfer, where two
cells link together for some time and build a junction from one cell to the other. Through
this junction genetic material is transferred and then integrated into one or both cells’
genome. A third process by which HGT occurs is transduction. Here a bacteriophage –
a virus infecting bacteria – integrates into the DNA of a host-cell. Later it is expelled
again taking with it some part of the bacteria’s genetic material. Upon entering another
bacterium this material is then integrated into the new host’s genome.

Although HGT may play an important role in evolution, it is still heavily debated if the idea
of a tree of life is also applicable in evolution considering the impact of HGT [11,14,17,52,69]:
Due to frequently occuring HGT events in evolutionary history, the genes of one organism
may have come from many different species. Thus, a statistical analysis cannot reveal the
evolutionary history of the organism’s genome in comparison to other species’ genomes.
This would make the construction of a unifying tree of life impossible since in this case for
each gene there would exist a specific tree different from all other trees [14]. As the impact
of HGT in evolutionary history is still under debate, it is not yet clear if the transfer of
genetic material between different species introduces only some new connections in the
tree [11] or completely destroys the notion of a tree [14,17].

This demonstrates that there is still a lot unknown about the impact of HGT on evolution-
ary dynamics. There are nevertheless some theories how evolution might proceed under the
influence of HGT [14,46,82]. It is for example proposed that HGT might help populations
to adapt to rapidly changing environments [82], but there are yet only a few computa-
tional studies suggesting that in model systems HGT poses no evolutionary advantage in
fixed environments [73, 92]. So, it is still unknown whether and how HGT increases a
population’s fitness in changing environments. Furthermore, with HGT there are different
possible shapes for a “tree” of life (which look more like a bush or net) and up to now it is
not yet clear which of these networks really represents the course of evolution [14, 18, 96].
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Even more, Woese proposes that there is no universal first common ancestor at the root of
the tree, but rather a point at which life began evolving with distinct species. Before that,
he proposes, there were no distinct species but rather a soup of primordial forms rapidly
exchanging genetic material via HGT [96,97]. However, how exactly evolution proceeds in
such a setting and how the transition to distinct species could occur is yet unclear. This
is one of the questions we address in this thesis.

There are already some theoretical studies on the impact of HGT (and also recombina-
tion [78] for sexually reproducing organisms) in the context of quasispecies theory [7,36,68]
(see Section 2.2.4 for quasispecies theory). Boerlijst et al. showed [7] that in certain model
settings the error threshold – a mutation rate above which no distinct species can exist –
is shifted to lower mutation rates by introducing HGT to the system. Furthermore, HGT
may introduce bistability between a selected state where the entire population is close to
the fittest genotype and a distributed state where the population is distributed over all
genotypes [36]. However, in all studies the distributed state vanishes for low mutation
rates and it is not yet clear how exactly the bistability emerges. The theoretical results in
all these studies [7, 36, 68] are based on population-level models where it is assumed that
the populations are very large so that stochastic effects may be neglected. Yet, stochas-
tic effects often play a major role in evolutionary dynamics which is well illustrated by
the effect of genetic drift. We would like to gain a better insight into the evolutionary
effects of HGT. As Black and McKane proposed recently, more general results than the
one obtained from population-level models may come from individual-based models that
include stochastic effects [6]. Therefore, here we introduce a new individual-based model
to study HGT under the influence of stochastic dynamics. With this model we study the
evolutionary effects of HGT with the aim of tackling the questions previously discussed.
The models we use in this thesis are consequently explained in the next section.

2.2. Models

In this section we introduce some of the theoretical models used to describe evolutionary
dynamics and also discuss results already obtained with them. We remark, that most
models describe well-mixed populations in one small environment where all individuals
interact with each other, i.e. the population has no spatial structure. This reduction yields
a first fundamental understanding of the dynamics imposed on a population by selection,
mutation, genetic drift or HGT. A spatially extended habitat adds additional complexity
to the dynamics which is a research topic of its own. We only study models without spatial
structure in this thesis. For evolutionary dynamics in spatially extended environments see
e.g. [42, 43,59,63].

All the processes involved in reproduction, mutation and horizontal gene transfer are highly
complex by themselves. To model these processes in detail may be the scope for simulation
tools of detailed ecological setups, but most theoretical works focus on the essence of the
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processes involved in evolution. Thus, the models presented here are strongly simplified,
but are important for grasping the basic mechanisms driving evolution. Also, even these
simple models are successfully used to analyze experimental data [58] which demonstrates
that they are capable of capturing the essence of evolutionary dynamics.

2.2.1. The fitness landscape

Most models quantify the adaptation of an individual to its environment by a fitness
measure of an individual, defined mathematically as the expected number of offspring
(which themselves reach fertility before dying) produced by the individual. It is usually
assumed that the genotype of an individual completely determines its fitness [20]. Thus,
assigning a fitness value fi to each genotype i yields a fitness landscape. Through selection
and by following the paths of possible mutations populations evolve on such a fitness
landscape usually by moving close to the highest peak, i.e. the fittest genotype. How exactly
such a fitness landscape looks is a non-trivial problem: There are nonlinear interactions
between the genes and each mutation can heavily alter the phenotype of an individual so
that the mapping from genotype to fitness via the phenotype is highly complex [20].

Figure 2.3.: An example fitness
landscape for a genome of length
l = 3. Nodes denote the eight
different genotypes with their se-
quence (black, ranging from 000
to 111). Red numbers indicate
the (fixed) fitness fi of genotype
i and blue numbers at the links
the mutation probabilities µij
from genotype i to j. Mutations
can only occur between geno-
types with shown links, all other
mutation probabilities are zero.

Throughout this thesis the models we use are based
on a standard model for fitness landscapes which
is defined as follows [63]. Consider a population of
individuals that all have a genome of fixed length
l, i.e. their genotype is determined by l bases. Fur-
ther consider that each base may assume two pos-
sible states, namely 0 and 1. In this model we only
consider point-mutations, so that in one mutation
event only one base is changed. The probability for
one such mutation µij from genotype i to j depends
on the base which is changed. Then, the sequence
space may be vizualized as an l-dimensional hyper-
cube where the vertices are the genotypes and the
edges are the possible mutations between the geno-
types with the mutation probability µij being the
weight of an edge. In the standard model each geno-
type is assigned one fixed fitness value and we thus
obtain a fitness landscape [20]. Figure 2.3 shows an
example of such a fitness landscape for l = 3. The
state space in this model is defined by the distribu-
tion of individuals k(t) = {k1(t), k2(t), . . . , k2l(t)}
on the different genotypes changing in time t. Here
ki(t) ∈ N is the number of individuals which are of
genotype i at time t.
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Fitness is often not a fixed property of the genotype alone as in the model above, but
variable itself. This dynamic fitness may be caused by a changing environment [94], e.g. by
the periodic fluctuations imposed on the environment by the seasons. Also, individuals
interact and therefore the fitness of the individuals may depend on the possibly changing
composition of the population [2,65,87,89]. This effect is called frequency-dependent fitness
as the fitness of the individuals depends on the frequency of the different genotypes in the
population. To study dynamic fitness, in this thesis we will not only use the model with
fixed fitness values fi defined above, but also extend this model to exhibit dynamic fitness.
To this end we use the genotype space as defined above, but replace the fixed fitness values
fi for genotype i by state- and time-dependent fitness functions fi(k, t). This function may
depend explicitly on time t as the fitness of an individual can be explicitly time-dependent
due to external influences. How the fitness depends on the distribution of individuals k is
determined by their interactions which we discuss in Section 2.2.3.

To summarize, in this thesis we use models in which populations evolve on a fitness land-
scape that may change over time due to external environmental changes and interactions
between the individuals. The basic topology of the landscape is defined by the possible
mutations between the different genotypes. How exactly the population moves on this
landscape depends further on the details of the reproduction and death processes. There
are different models for these processes which we discuss in the following section.

2.2.2. Reproduction processes

In the model introduced in Section 2.2.1 we study the evolutionary mechanisms by analyz-
ing the dynamics of the variable population sizes ki(t). To catch the features of the evolu-
tionary dynamics elicited by the processes’ underlying stochasticity, a fruitful approach is
to apply individual-based models with finite population sizes ki(t) ∈ N [6]. In such models
simple individuals reproduce and die according to a simple stochastic reproduction pro-
cess. Throughout this thesis we base our models on such stochastic reproduction processes
which we introduce in the following.

The Moran process

Consider a population of overall fixed size N evolving in continuous time t on a fit-
ness landscape as described in Section 2.2.1 with ki(t) ∈ {0, 1, . . . , N} individuals on
genotype i. The population is at all times described by the distribution of individuals
k(t) = {k1(t), k2(t), . . . , k2l(t)} with the additional condition that the overall population
size is

2l∑
i=1

ki(t) = N (2.1)
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at all times t. All individuals reproduce independently of each other and we consider the
reproduction process to occur instantaneously because usually reproduction occurs on a
very short time scale compared to the life span of an individual. Therefore, we call the
instantaneous reproduction a reproduction event. As we consider a model with constant
population size, whenever an individual produces one offspring, also one individual has
to die and is removed from the population. We consider the death probability of all
individuals to be equal, i.e. whenever one individual produces offspring, one individual
from the population is chosen randomly with equal probability and removed from the
population.

For one individual of genotype i with fitness fi, reproduction shall be a Poisson process.
Thus, the probability to reproduce in an infinitesimal time interval ∆t is a time-independent
constant ∆t · fi and the waiting time tW to the next birth event of this individual is
exponentially distributed with

p(tW ) = fi · e−fi·tW (2.2)

so that the mean waiting time to the next birth event is given by the fitness fi. Thus, for
fitness values close to one, time is measured on the order of generations.

For the entire population, we describe the above introduced reproduction process in the
following way (cf. Figure 2.4). As all individuals reproduce independently of each other
as a Poisson process, the waiting time tW to the next birth event occuring in the entire

A A

AA

C C

C

B

BB

Figure 2.4.: The Moran process keeps the overall population size constant. In this example three
different genotypes exhibiting different phenotypes with possibly different fitnesses are present.
In the first step one of the individuals (A) of genotype i receives an identical offspring (B) with
probability proportional to its fitness fi. The newly created individual mutates to another
genotype j with probability µij and finally one of the individuals (C) is chosen with uniform
probability to die. All of these steps are applied at each event of the Moran process and thus
occur in zero time.
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population of N individuals is given by

p(tW ) = Nf · e−Nf ·tW (2.3)

where

f = 1
N

2l∑
i=1

fiki (2.4)

is the population’s mean fitness defining the mean birth rate of the population. Which
of the individuals gives birth at this event time is then determined by chosing one of the
individuals with a probability proportional to its fitness fi. This individual produces an
identical offspring which may then mutate to genotype j with probability µij. Finally, one
of the individuals is chosen with equal probability to die and is thus removed from the
population. Figure 2.4 illustrates these steps applied at each event time of the process.

This reproduction process is called Moran process is named after P. A. P. Moran [55]
and is widely used because it captures essential features of evolution. Still, as it keeps the
population size N constant, it also often allows for an analytical description of the system’s
dynamics [20, 88]. Originally, Moran designed this process to study a population evolving
on a fitness landscape with only two genotypes and without any mutations occuring, but it
was later generalized to landscapes with more genotypes and mutations in the way shown
above [63,89].

The Wright-Fisher process

Consider again a population with fixed population size N distributed on a fitness landscape
as described in Section 2.2.1 with ki(t) ∈ {0, 1, . . . , N} individuals on genotype i evolving in
discrete time t ∈ Z. This means that time is measured in generations. Then, the population
is at all times described by the distribution of individuals k(t) = {k1(t), k2(t), . . . , k2l(t)}
and condition (2.1). Consider that each individual lives exactly for one generation and
before dying may produce a number of offspring which will live in the next generation. As
in the Moran process the reproduction and death of the individuals shall occur instanta-
neously, so that the population setup of one generation at time t = n can be determined
from the setup of the previous generation at time t = n− 1 in the following way. First, we
draw one individual from the generation at t = n − 1 with a probability proportional to
its fitness. The same type of individual is then created for the next generation at t = n.
This process is repeated N times so that the new generation again is of size N . We remark
that in this process some individuals may produce no offspring while some will produce
multiple offspring. When the setup of the new generation is determined, each individual
mutates with probability µij to genotype j according to its actual genotype i. This process
is illustrated in Figure 2.5 for one example time step.

This process was introduced by Wright and Fisher [26, 99] and mostly produces similar
dynamics as the Moran process [20]. While the Moran process describes populations with
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Figure 2.5.: The population setup can change strongly in one step of the Wright-Fisher process.
In this example the same population as in Figure 2.4 goes through one step of the Wright-
Fisher process. At each such time step, N individuals are drawn from the parent generation
resulting in the population shown in the second panel. Letters in the second frame indicate
the origin from the parent generation. Then, in this population mutations may occur (e.g. here
the individuals in the upper left and lower right corner) leading to the third panel showing the
resulting new generation.

overlapping generations, i.e. individuals of different generations interact and the individ-
uals reproduce at different times, the Wright-Fisher process describes populations with
non-overlapping generations, i.e. they reproduce and die and only after their death does
the new generation arise. Both types of reproduction processes may roughly describe cer-
tain features of real evolutionary systems. For example many bacteria live and interact
in overlapping generations which may rather be described by the Moran process while
many insects live in non-overlapping generations which is rather capture by Wright-Fisher
reproduction.

Independent birth and death process

Although the assumption of constant population size N in the above processes makes a
mathematical treatment of the resulting dynamics more feasible, it may miss important
effects in evolutionary dynamics arising from fluctuations in the population size. There-
fore, we developed a reproduction process where the overall population size N is itself a
stochastic time-dependent variable. We describe this process in the following.

We adapt the Moran process to model a process with independent birth and death events
(IBD process). In the Moran process at some time one individual reproduces and at the
same time another individual dies so that the population size remains constant. In the
IBD process we consider a population where individuals of genotype i have a birth rate fi
given by their fitness and a constant death rate κi = 1, so that an individual with fitness
fi produces on average fi offspring. Let both birth and death events occur independently
with exponentially distributed waiting times tBW for birth and tDW for death events. Thus,
similar to equation (2.3) the waiting times are distributed according to

p(tBW ) = Nf · e−Nf ·tBW (2.5)
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for the birth events and
p(tDW ) = N · e−N ·tDW (2.6)

for the death events. As in the Moran process, when a birth event occurs one individual
of genotype i is chosen with probability proportional to its fitness fi and produces one
offspring. This newly created individual may mutate with probability µij from genotype i
to genotype j . When a death event occurs, one individual is chosen randomly with equal
probability and the chosen individual is removed from the system.

Here, the population size is increased by one with each birth event and decreased by
one with each death event. Note however, that for a general fixed fitness fi 6= 1 the
population size is intrinsically unstable, as the population will on average either grow
infinitely (fi > 1) or go extinct (fi < 1). Even more, the population can even go extinct by
random fluctuations when the birth rate equals the death rate (fi = 1). We will study this
in more detail in Section 4 and show how the IBD process may be stabilized by a dynamic
fitness that depends on the population size.

2.2.3. Individuals’ interactions and game theory

As we already discussed shortly in Section 2.2.1, individuals may interact in various ways.
For example, they may compete for a food source, individuals may prey on other individu-
als, or some individuals may benefit from mutual cooperation. One approach to study the
effects of such interactions is game theory [63,79,85]. This theory models the interactions
of two individuals through simple, well defined games. In such a game each player has
the option to choose between different strategies how to interact with the other player,
for example strategies A and B. However, the players get to know the strategy chosen
by their opponent only after they have chosen their own strategy. Then, each player will
receive a payoff P from the game, which for both players does not only depend on their
own strategy, but also on the opponent’s strategy. Therefore, the payoff of both individuals
is determined by the payoff matrix

A B
A
B

(
a
c

b
d

)
(2.7)

so that the payoff for playing strategy A versus A is a, while playing A versus B yields a
payoff b. In the same way playing B yields c when playing versus A and d versus B. In
game theory, it is analyzed how individuals can maximize their payoffs if they play such a
game repeatedly against the same opponent [63].

The concept of game theory is applied to evolutionary dynamics in evolutionary game
theory [10, 35, 63, 79, 85]. To this end, a model is introduced where the genotype of an
individual determines its strategy in the game. Further consider, that all individuals play
the game defined by the payoff matrix against all individuals at all times. Then, an
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individual’s overall payoff obtained from one round of these games is related to its actual
fitness by adding the overall payoff to its basic fitness f = 1. For example, let there be
j individuals of genotype A and N − j individuals of genotype B. Then, in the game
determined by the payoff matrix (2.7) their fitness is given by

fA(j) = 1 + a(j − 1) + b(N − j)
N

(2.8)

for individuals of genotype A as they play versus j− 1 players of type A and N − j players
of type B; individuals of genotype B similarly obtain a fitness

fB(j) = 1 + cj + d(N − j − 1)
N

. (2.9)

If we let the population reproduce with these (time-dependent) fitnesses according to one
of the reproduction processes defined in Section 2.2.2, we thus obtain a model for the
evolution of interacting individuals. In this model the individuals’ fitness is frequency-
dependent as the fitnesses fA(j) and fB(j) depend linearly on the genotype frequencies
j/N and (N − j)/N of genotype A and B.

2.2.4. The replicator equation

In very large populations the stochastic effects of replication and mutation even out and the
deviations from the expected values tend to zero. Models studying such large populations
consequently study the dynamics of the frequency xi(t) ∈ [0, 1] with which genotype i is
present in an infinitely large population. The frequency xi(t) equals one when the entire
population is of genotype i at time t and it equals zero at times when genotype i is extinct.
In this setup a set of deterministic differential equations for the genotype frequencies xi
describe the evolutionary dynamics [20, 63]. We will shortly discuss this approach here so
that we may later compare our results with the results obtained by previous studies on
evolutionary dynamics in such model systems.

To study the impact of frequency-dependent fitness on evolutionary dynamics the so-called
replicator equation is often used [35,63,79,85]. Consider a population evolving on a fitness
landscape withM genotypes where xi denotes the frequency of genotype i in the population
as described above. We assume that mutations occur so rarely that they can be neglected on
the time scale modelled by the replicator equation. Let the individuals interact according
to a game (cf. Section 2.2.3) with entries aij of the payoff matrix (2.7) for genotype i
individuals interacting with genotype j individuals. Then the fitness for individuals of
genotype i becomes

fi(x) =
M∑
j=1

aijxj (2.10)

depending on the actual composition x of the population as described in Section 2.2.3.
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We further assume that the population with genotype i will grow proportionally to its
actual fitness fi(x) compared to the average fitness

f(x) =
M∑
k=1

xkfk(x) =
M∑
j=1

M∑
k=1

ajkxixj (2.11)

in the population, which yields the replicator equation

ẋi = xi
(
fi(x)− f̄(x)

)
(2.12)

where both the fitness fi(x) of genotype i and the average fitness f(x) may depend on the
actual composition of the population. By subtracting the mean fitness f(x) it is ensured
that the population size remains constant.

As the average fitness f(x) in equation (2.11) may depend quadratically on the genotype
frequencies xi, the fitness term in the replicator equation (2.12) may thus be quadratic.
Similarly, the fitness functions (2.8) and (2.9) for the individual-based model in Sec-
tion 2.2.3 are linear – and will maximally become quadratic through a normalization –
in the frequencies j/N and (N−j)/N of both genotypes A and B. Nonlinearities of higher
order in the frequencies are not possible in this model framework, i.e. game theoretic con-
siderations of individuals’ interactions always imply very specific dependencies of fitness on
genotype frequency [2]. Yet, experiments suggest that fitness may also depend on genotype
frequencies in a more general nonlinear way [51]. Therefore, in this thesis we apply a more
general approach to frequency-dependent fitness in Chapter 3 to clarify how interactions
that cause nonlinear fitness functionality influence evolutionary dynamics.

The resulting dynamical system defined by the replicator equation (2.12) and the interac-
tion matrix aij was thoroughly analyzed [63] showing that the dynamics converge to stable
fixed points where either one of the genotypes outcompetes all other genotypes or a certain
mixture of genotypes is present in the population. The system may have more than one
stable state so that the convergence to a state depends on the initial setup of the popula-
tion. However, starting from any initial condition, the dynamics will always converge to
one fixed point and then stay there for all times. Only in models considering stochastic
effects can the dynamics escape from such stable states and move to other stable states due
to the stochastic fluctuations. For more informations on the topic of game theory and the
replicator equation see for example the book on evolutionary dynamics by M. Nowak [63].
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2.2.5. The quasispecies equation

The replicator equation is commonly used to study the influence of selection in evolutionary
dynamics. However, it neglects mutations which can also play a major role in evolution.
Indeed, when mutations occur numerously they have a strong impact on the composi-
tion of a population. This was first described by Eigen and Schuster in the quasispecies
model [23, 24]. They introduced the quasispecies equation for a set of M genotypes

ẋi =
M∑
j=1

xjfjµji − fxi (2.13)

where similarly to the replicator equation xi is the frequency of genotype i, fj is the (fixed)
fitness of genotype j and f is the mean fitness of the population. Newly introduced is the
mutation matrix µij determining the mutation rate from genotype i to genotype j.

Due to the mutations the population does not necessarily converge to a composition that
maximizes the fitness of the population. The difference comes from the fact that the model
does not only consider the speed with which different genotypes reproduce, but also the flow
from one genotype to others. Thus, less fit genotypes can maintain a substantial population
frequency because they receive a constant mutational input from more fit genotypes. The
population will evolve to a distribution around the fittest genotype, where the mutation
rate µij and the fitness values fi together determine the stationary distribution x∗ the
dynamics converge to. This distribution is called a quasispecies and is determined by the
eigenvalue problem

x∗W = fx∗ (2.14)

where Wij = fjµji is a matrix containing the effects of both selection and mutation [63].

We conclude that the mutations tend to decrease the mean fitness of the population.
The population will not converge to the genotype of maximal fitness. Not only does
the stationary distribution in this setting fail to maximize the population’s fitness, but
the population can even completely fail to adapt to the underlying fitness landscape: If
the overall mutation rate exceeds a certain value, the population is dispersed over the
entire available genotype space. This value defines a critical mutation rate µc, where the
dynamical system defined by the quasispecies equation (2.13) undergoes a bifurcation.
The critical mutation rate µc is called error threshold because above it so many errors are
made in the reproduction process that the population cannot adapt to the given fitness
landscape. In Chapter 6 we find a similar effect for the evolution with HGT. Above a
critical HGT rate a new state emerges similarly to the dispersed state caused by too many
mutations. However, differently to the effects of mutation, we find that the dynamical
system with HGT becomes bistable above the critical HGT rate. How we model HGT in
detail is explained in the next section.
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2.2.6. Stochastic modelling of Horizontal Gene Transfer

Here, we introduce a new, stochastic model for horizontal gene transfer (HGT). HGT has
already been studied in the deterministic quasispecies model where it is represented by an
additional term in the quasispecies equation [7, 36, 68]. However, the stochastic nature of
the process may play an important role in the evolutionary dynamics so that a stochastic
model is needed. Similarly to models for reproduction or mutation, we do not describe the
processes involved in HGT in detail, but rather capture the essence of HGT as described
in Section 2.1.5.

Basically, HGT may be described by the following process: One individual of genotype
A meets an individual of type B and inserts some of the genetic material from B with
a rate defined by a basic rate c and the probability kj/N to meet B. By taking up the
material, the individual of type A mutates to genotype C. This genotype C is determined
by the sequence transferred to A and the position in A’s genome where the new sequence
is inserted. Thus, HGT introduces a 3-genotype interaction to the evolutionary dynamics.
The basic rate c at which the process occurs is determined by the frequency with which the
individuals meet and their competence to exchange genetic material [86] (cf. Section 2.1.5).
Actually, it was observed that this competence may be a time-dependent property of the
individuals [48, 86]. However, as we first want to grasp the overall influence of HGT we
restrict our model to time independent base rates c for each HGT-link.

How should we model this basic process? Consider a fitness landscape as defined in Sec-
tion 2.2.1 for a genome length l on which a population of N individuals evolves according
to the Moran process introduced in Section 2.2.2. Thus, at all times t there is a distribu-
tion k(t) = {k1(t), k2(t), . . . , k2l(t)} of individuals on the genotype space. To model the
above described HGT events we introduce HGT-links into the genotype space (see Fig-
ure 2.6). One HGT-link is defined in the following way: We randomly choose two different
genotypes A and B. Then we randomly choose a subsequence of length between 2 and
l − 2 bases from the sequence of genotype B. This sequence is then inserted at a random
position into the sequence of genotype A. To keep the sequence length of A constant, the
remaining bases at the end of sequence A are then cut off. The resulting sequence defines
the genotype C to which the individual of genotype A will mutate through this HGT-link.
If the genotype C is identical with genotype A we do not keep this HGT-link, but rather
repeat the above procedure because such a HGT-event would leave the population un-
changed and thus be irrelevant for the evolutionary dynamics. We repeat this procedure
until a predefined number of m new HGT-links has been introduced to the system.

To clarify the introduction of HGT-links, we present a simple example in the following
which is illustrated in Figure 2.6. Consider a sequence space of genomes of length l = 4.
To create a new HGT-link in this space we randomly choose two genotypes, e.g. A = 0100
and B = 1101. We randomly choose a subsequence of length 2 from genotype B, e.g. the
first two bases 11 in 1101. This sequence is inserted at a random position into the sequence
of A, e.g. position three so that the sequence of genotype A becomes A = 011100. Finally,
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Figure 2.6.: HGT-links introduce a three-genotype interaction to the evolutionary dynamics. Here
we show an example for the introduction of one HGT-link to the sequence space of genomes
with the length l = 4 (see text). The HGT-link is marked with red: Individuals of genotype
A = 0100 take up the first two bases 11 from genotype B = 1101 which are inserted at position
three into A = 011100. The remaining bases of A are cut off so that the sequence has again
length l = 4 and the individuals’ new sequence is thus C = 0111.

the remaining bases of genotype A are cut off to obtain again a sequence of length l and
we obtain the sequence C = 0111. Thus, through this HGT-link individuals of genotype
A = 0100 meeting genotype B = 1101 may be transformed to individuals of type C = 0111.

Each of these HGT-links defines one type of HGT event in which genotype A mutates to
genotype C by interacting with B. We consider these events to occur independently of
each other at a rate

rA→CHGT = c · kA
kB
N

(2.15)

where c is the base rate of the process as described above and kA is the number of individuals
of type A which may meet an individual of genotype B with probability kB/N according
to the number of type B individuals kB. As in the Moran process the events should occur
with equal probability ∆t · c · kA · kB/N in each infinitesimal time interval ∆t, so that the
waiting times tHGT

W between HGT events of one HGT-link are exponentially distributed
with

p(tHGT
W ) = c · kA

kB
N
· exp

[
−c · kA

kB
N
· tHGT
W

]
. (2.16)

25



2. Fundamentals

2.3. Mathematical fundamentals

This chapter provides the basic mathematical concepts needed for the analyses presented
in this thesis. We first introduce Markov processes and then show how to describe their
probabilistic dynamics using master equations. Thereafter, we describe absorbing states
of Markov processes. For birth and death processes (cf. Section 2.2.2) the extinction of a
population is such an absorbing state of the underlying Markov process. We present an
analytic formula for the probability that a birth and death process reaches the absorbing
state and the average time it needs to reach such a state. We then describe the basics
of Kramers’ method to obtain approximations for these absorption times. Finally, we
present the general form of Fokker-Planck equations and explain their connection to master
equations.

2.3.1. Markov processes

Let S be a countable set of states. Consider a time-discrete stochastic process X(t), t ∈ N
assuming one of the states of S at each time t, i.e. the dynamic process is described by
random variables X(t) indexed by the time t. The process is completely determined by
the joint probability distribution

P (X(t1) = s1;X(t2) = s2;X(t3) = s3; . . .) (2.17)

for all ordered times t1 < t2 < t3 < . . . and states s1, s2, s3 . . . ∈ S. Furthermore, we define
the conditional probability distribution

P (X(t1) = s1; . . . |X(T1) = s2; X(T2) = s3; . . .)

= P (X(t1) = s1; . . . ; X(T1) = s2; X(T2) = s3; . . .)
P (X(T1) = s2; X(T2) = s3; . . .) (2.18)

if P (X(T1) = s2; X(T2) = s3; . . .) 6= 0.

Consider the times being ordered according to T1 > T2 > . . . . Then theMarkov assumption
states that the conditional probability distribution of the process is entirely determined by
the most recent condition

P (X(t1) = s1; . . . |X(T1) = s2; X(T2) = s3; . . .)
= P (X(t1) = s1; . . . |X(T1) = s2) . (2.19)

This means that the actual state of the process X(t) at time t completely determines the
probability for the process to be in state s after the next time step; the history of the
process does not influence the processes further evolution. We say that the process is
memoryless and define this process as a time-discrete Markov process.
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For time-continuous stochastic processes the definitions are the same. Assume, that the
process takes a certain state X(t) = s1 at time t ∈ R. Then, after a time interval ∆t the
probability to find the process in state s2 is given by

P (X(t+ ∆t) = s2|X(t) = s1) . (2.20)

The memoryless property of the process now implies that the state at time t + ∆t only
depends on X(t). Especially, this means that that the state at time t+ ∆t is independent
of how long the process stayed in the state s1 before moving on to state s2. The only
distribution of waiting times τ with this property is the exponential distribution, so that
after an exponentially distributed waiting time τ the process moves on to the state s2
depending only on the previous state s1.

For a time-discrete Markov process being in state sk at time t the probability to arrive
in state sl at time t + 1 only depends on the state sk. We may thus assign transition
probabilities

pk,l = P (X(t+ 1) = sl|X(t) = sk) (2.21)

to move from state sk to state sl. As the process always has to move somewhere, the
transition probabilities fulfill ∑

l

pk,l = 1 (2.22)

for all states sk. Note, that the transition probability pk,k need not necessarily be zero,
meaning that the process can stay in state sk for more than one time step. A memoryless
dynamical process X(t) with the transition probabilities (2.21) between a countable set of
states S and the initial distribution P (X(0)) is also called a Markov chain.

For continuous-time Markov processes, similarly to the time-discrete Markov process we
define transition rates qk,l , which determine how fast the process moves from state sk to
state sl. Unlike the transition probabilities the transition rates fulfill the condition

qk,k = −
∑
l 6=k

qk,l (2.23)

so that |qk,k| defines how long (on average) the process will stay in state sk. For more
informations on Markov processes see e.g. the book by J. Norris [62].

2.3.2. The master equation

Assume now, that we know all transition rates qk,l (or probabilities pk,l) of a continuous-
time (or discrete-time) Markov process on a set S of n states. How do these transition
rates determine the dynamics of the Markov process? To answer this question we need to
consider how the probability of finding the process in a state sk changes with time. For
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the sake of brevity, we write
pk(t) := P (X(t) = sk) (2.24)

for the probability to find the process in state sk at time t. How this probability changes
with time is determined by the master equation

∂pk(t)
∂t

=
n∑

l=1, l 6=k
[pl(t)ql,k − pk(t)qk,l] (2.25)

for all k ∈ {1, 2, . . . , n}. Here, the first term describes the probability flux into the state
sk out of all other states sl which is given by the probability pl(t) that the process is in
state sl multiplied with the transition rate ql,k from state sl to sk. Similarly, the second
term gives the probability flux out of state sk into all other states sl.

If only nearest neighbour transitions qk,(k+1) and qk,(k−1) are possible (i.e. qkl = 0 for
l /∈ {k − 1, k + 1}) in an ordered set of states S, the master equation simplifies to

∂pk(t)
∂t

= pk−1(t)q(k−1)k + pk+1(t)q(k+1)k − pk(t)qk(k+1) − pk(t)qk(k−1). (2.26)

Such a system is called a linear Markov chain [38]. In this thesis we repeatedly study
systems which are effectively described by such linear Markov chains.

2.3.3. Absorbing states in birth-death processes

If for a certain state sk of a continuous-time Markov process the transition rates fulfill
qk,l = 0 for all l 6= k – or the transition probabilities of a time-discrete Markov process
fulfill pk,l = 0 for all l 6= k – the process can never leave this state. Such a state is called
an absorbing state of the Markov process.

An important example of such a state is the state N = 0 in birth-death processes where
a population of N individuals gets offspring at rate λN and death events occur at rate
µN [29, 38, 62]. As the population becomes extinct on reaching the state N = 0, new
offspring cannot emerge so that the dynamics will stay in this absorbing state. The master
equation of birth-death processes takes the form of equation (2.26) with qk(k+1) = λk and
qk(k−1) = µk. We study such systems in Chapter 4.

What is the probability pHk that the process will hit the absorbing state if it initially starts
in a state k? Considering the transition rates λk and µk one obtains through a simple
recursion formula [38]

pHk =


1 if ∑∞i=1

∏i
j=1

µj
λj

=∞∑∞
i=k

∏i

j=1
µj
λj

1+
∑∞

i=1

∏i

j=1
µj
λj

if ∑∞i=1
∏i
j=1

µj
λj
<∞

(2.27)
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which we derive in detail in Appendix A. Here, the sum ∑∞
i=1

∏i
j=1 µj/λj quantifies how

often every state would be visited by the dynamics if there was no absorbing state. If the
sum evaluates to ∞ as in the first case in (2.27), the dynamics would visit every state
infinitely often if there was no absorbing state. Thus, the birth-death process is recurrent
and it will eventually end in the absorbing state so that pHk = 1 [62]. If the sum converges,
the process can go to arbitrarily large population sizes without hitting the absorbing state.
It is transient and the dynamics will end in the absorbing state with a probability pHk < 1.

Through a similar recursion formula (cf. Appendix A) we obtain the mean time to absorp-
tion [38]

T k =

∞ if ∑∞i=1 χi =∞∑∞
i=1 χi +∑k−1

i=1

[∏i
j=1

µj
λj
·∑∞j=i+1 χj

]
if ∑∞i=1 χi <∞

(2.28)

from state k where we defined χi = 1
µi

∏i−1
j=1 λj/µj. Here, the sum ∑∞

i=1 χi quantifies the
average time to move from state 1 to state 0. The sum ranging from i = 1 to k − 1 thus
quantifies how long the dynamics need on average to move from state k to state 1.

We remark that according to the conditions in equations (2.27) and (2.28) parameter
settings are possible where the dynamics hit the absorbing state with probability pHk = 1,
but the mean time to absorption is T k =∞. For example, if µj = λj = 1 for all j ∈ N, the
dynamics are recurrent as

∞∑
i=1

i∏
j=1

µj
λj

=
∞∑
i=1

1 =∞, (2.29)

but the mean time to absorption diverges because

∞∑
i=1

1
µi

i−1∏
j=1

λj
µj

=
∞∑
i=1

1 =∞. (2.30)

In such a setting the dynamics will hit the absorbing state eventually, but for every t > 0
there exists a positive fraction of trajectories which reach the absorbing state only after a
waiting time tW > t. Thus, the mean time to absorption diverges.

2.3.4. Kramers’ method

The example of a diverging mean time to absorption in settings where the probability of
absorption is pHk = 1 illustrates that it is often not sufficient to study the mean time to
absorption for gaining a thorough understanding of the absorption process. Rather, it is
useful to analyze the extinction time distribution pE(t), i.e. the probability distribution
of the time it takes to hit the absorbing state (e.g. N = 0). Naturally, the shape of this
distribution depends on the birth and death rates λN and µN . In Section 4 we analyze a
problem where the rates are such that the dynamics of reaching the absorbing state may
be seen as the escape over a potential barrier (see Figure 2.7). In this situation, we apply
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Kramers’ method [33,44], which Kramers originally devised for molecular transformations
between two stable states divided by a potential barrier. In [29, p. 384-386] Gardiner
describes how to modify it such that we obtain the extinction time distribution for reaching
an absorbing state via a potential barrier in Markovian birth-death processes.

Figure 2.7.: A sketch of a potential
V (K) where the stochastic dynam-
ics of a linear Markov chain may
be conceived as the escape from the
metastable state k = N∗ to the ab-
sorbing state k = 0 via a potential
barrier.

Consider a Markovian birth-death process with
an absorbing state at k = 0. In this system, the
transition rates fulfill λk > µk for all k < N∗ and
λk < µk for all k > N∗ with N∗ ∈ N. That means,
that birth events occur at a higher rate than death
events for population sizes smaller than N∗ and
vice versa for population sizes larger than N∗.
This results in a potential well at k = N∗ for the
dynamics as depicted in Figure 2.7. Kramers’ ap-
proximation is that the potential barrier between
k = N∗ and k = 1 is high enough compared to
the stochastic diffusion process, so that the dy-
namics will first settle into a quasistationary dis-
tribution p∗k before escaping into the absorbing
state. For initial conditions k(t = 0) � 1, here
high enough means, that the stationary distribu-
tion fulfills p∗N∗ � p∗1. This can be rewritten to

k−1∏
j=1

λj−1

µj
� 1 (2.31)

(cf. equation (3.6)). If this condition is fulfilled, we may use a separation ansatz for the
probability function pk(t). We assume that the distribution pk(t) approximately takes the
form of the quasistationary distribution p∗k multiplied with the probability pW (t) to be in
the potential well, i.e. the probability that the dynamics have not reached the absorbing
state at time t. Thus, the probability pW (t) to be in the well yields the survival time
distribution pS(t) of the process. Formally, with this approximation the quasistationary
distribution takes the form

pk(t) = p∗k · pW (t). (2.32)

The birth-death master equation is given by

∂pk(t)
∂t

= µk+1pk+1(t)− λkpk(t)− µkpk(t) + λk−1pk−1(t) (2.33)

and its quasistationary distribution p∗k fulfills the detailed balance equation

λk−1p
∗
k−1 = µkp

∗
k, (2.34)

i.e. the probability flow out of state k into k−1 equals the probability flow out of k−1 into
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k in the quasistationary solution. In the following we use these two equations to derive a
formula for the change of the probability pW (t) in time, following the arguments in [29].
For the absorbing state we define p0(t) = 0, i.e. dynamics reaching the absorbing state are
removed from the system. We obtain the probability flow to j from j + 1 by summing
equation (2.33) from j + 1 to ∞ which yields

∂

∂t

∞∑
i=j+1

pi(t) = −µj+1pj+1(t) + λjpj(t) (2.35)

where we used the fact that limi→∞ pi(t) = 0 as the probability is normalized to∑∞i=1 pi(t) =
1. Using the balance equation (2.34) we rewrite this to

∂

∂t

∞∑
i=j+1

pi(t) = −µj+1pj+1(t) + λjpj(t)

= −µj+1pj+1(t) + µj+1
p∗j+1

p∗j
pj(t)

= −µj+1p
∗
j+1

[
pj+1(t)
p∗j+1

− pj(t)
p∗j

]
.

We divide by the factor µj+1p
∗
j+1 and sum this up from 0 to N∗−1 to obtain the probability

from N∗ into the absorbing state. Using p0(t) = 0 this yields

∂

∂t

N∗−1∑
j=0

∑∞
i=j+1 pi(t)
µj+1p∗j+1

= −pN∗(t)
p∗N∗

(2.36)

and using the separation ansatz (2.32) we obtain

∂

∂t
pW (t) ·

N∗−1∑
j=0

∑∞
i=j+1 p

∗
i

µj+1p∗j+1
= −pW (t) (2.37)

describing the exponential decay of the probability pW (t) to be in the potential well [29].
As mentioned above, we identify the probability pW (t) to be in the well with the survival
time distribution pS(t) of the process. Thus, under the condition (2.31) the survival time
distribution is well approximated by an exponential distribution

pS(t) = exp(−t/τ) (2.38)

which is a solution to equation (2.37). The time scale τ is given by the factor in equa-
tion (2.37) which becomes

τ =
N∗∑
j=1

1−∑j−1
i=1 p

∗
i

µjp∗j

−1

(2.39)

using an index shift and the normalization ∑∞i=1 p
∗
i = 1.
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2.3.5. The Fokker-Planck equation

Consider a system with states x ∈ R in which a deterministic force field with additional
diffusion determine the dynamics. In such a system probability density functions ρ(x, t)
determining the probability to find the process in state x at time t are appropriate to
describe the system’s dynamics. The time evolution of such a probability density function
ρ(x, t) is described by a Fokker-Planck equation [29, 74]. Such equations may be used to
describe the dynamics of high-dimensional systems. However, as we will only use Fokker-
Planck equations describing one-dimensional systems in this thesis, we will only introduce
the one-dimensional form of the equation here. For the general form of the equation see
for example [74].

The one-dimensional Fokker-Planck equation (FPE)

∂ρ(x, t)
∂t

= − ∂

∂x

[
D(1)(x)ρ(x, t)

]
+ ∂2

∂x2

[
D(2)(x)ρ(x, t)

]
(2.40)

describes the time evolution of the probability density ρ(x, t), where the drift coefficient
D(1)(x) specifies the deterministic force field and the diffusion coefficient D(2)(x) contains
the stochastic effects of the process. We remark that the FPE considers processes where
both the force force field as well as the diffusion process may be state dependent, as D(1)(x)
and D(2)(x) may both depend on the state x of the system.

Consider a Markov chain with N states where only nearest neighbour transitions are pos-
sible, so that the master equation takes the form of equation (2.26). For such a system
with many states N , the relative step sizes k/N with k ∈ {0, 1, . . . , N} between the neigh-
bouring states become small compared to the overall system size. Thus, the system may
be approximately described by a continuous system with a variable x = k/N ∈ [0, 1]; the
master equation for the probability distribution pk(t) is transformed to a FPE for the prob-
ability density ρ(x, s) with a rescaled time s. To achieve this transformation all system
parameters as well as the system time have to be rescaled with N such that in the limit
N →∞ all terms stay finite. A parameter a is hence rescaled to a parameter ã = a ·F (N)
with a functional dependence F (N) on the system size N . This functional dependence is
determined by the transformation k → x, so that a FPE of the form of equation (2.40) is
obtained. For more details see e.g. [74] or the calculations in Appendix B.
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evolutionary dynamics

Before we set out to analyze the evolutionary dynamics under the influence of HGT, we
first need to thoroughly understand the effects imposed on the evolutionary dynamics by
selection, mutation and genetic drift. In this chapter we study the effects of selection,
genetic drift and mutations in a simple system of two genotypes evolving under the Moran
process (cf. Section 2.2.2). Such systems of only two genotypes allow for a thorough math-
ematical analysis, but still yield much insight into the basic effects of selection, mutation
and genetic drift in evolutionary dynamics [20, 65, 87, 89]. That a mathematical analysis
of these systems is feasable stems from the fact that they are effectively one-dimensional;
the frequency x of individuals of genotype A in the population determines the frequency
of individuals of the other genotype B [87, 88]. The long term dynamics of the popula-
tion may be analyzed using the stationary probability distribution ρ∗(x) that genotype A
has a frequency x in the population. In this way it was analytically shown how genetic
drift and mutations impose opposing forces on the dynamics [88]. Mutations drive the
population to higher diversity, genetic drift reduces such diversity. Furthermore, it was
shown that, depending on the individuals’ interactions, frequency-dependent selection can
give rise to two different metastable states for the population dynamics [65, 88]. Due to
frequency-dependent selection, the dynamics can be drawn towards a mixed state, where
both genotypes are present in the population, or towards uniformity so that only one geno-
type remains present in the population. However, all these results were only obtained for
symmetric mutation rates and special forms of frequency-dependent selection.

Here we use a more general approach where we concentrate specifically on asymmetric
mutation rates and frequency-dependent fitness in a more general setting. Previous studies
on the influence of frequency-dependent fitness in evolutionary dynamics were inspired by
evolutionary game theory (cf. Section 2.2.3 and 2.2.4) which resulted in fitness functions
fi(x) depending linearly on the frequencies xi of the different genotypes i (cf. [65, 88]
and section 2.10). However, interactions may give rise to nonlinear dependencies which
has already been reported in experiment [51] and which is illustrated by the following
example: Let us assume that individuals of a given genotype A cooperate so that they
receive a better fitness when meeting other individuals of genotype A. Then the fitness
fA(xA) = 1 + a · xA increases linearly with the frequency xA of genotype A [65, 88]. Yet,
within the habitat in which the individuals are living there is only a limited amount of
resources which all individuals of genotype A are living off. If too many of them compete

33



3. Frequency-dependent fitness in evolutionary dynamics

for these resources the competition will be stronger than the cooperative effects and thus
the fitness of the individuals should decline. Therefore, the resulting fitness function has
to contain a nonlinear factor to reflect both of these effects, e.g.

fA(xA) = 1 + a · xA − b · x2
A (3.1)

with a > 0 and b > 0 constants reflecting cooperative and competitive effects respectively.
Such nonlinear fitness functions were not yet considered and we will analyze their impact
on the dynamics in this chapter.

Furthermore, different genotypes may exhibit diverse mutation probabilities [22,77] due to
each genome having its own stability properties [78]. For example, the mutation probability
for genotype A to mutate to B may be very different from the probability for B to mutate
to A (see also Figure 2.3). However, most studies focus on symmetric mutation rates where
all mutation probabilities are identical [1, 88, 100]. Therefore, in this chapter we will also
study asymmetric mutation probabilities.

3.1. Model setup

The model we use throughout this chapter is defined in the following way. Consider
a population of N individuals with genome length l = 1. The individuals are hence
distributed on a fitness landscape of only two genotypes A and B. The population evolves
under the Moran process defined in Section 2.2.2, i.e. at exponentially distributed event
times one individual produces offspring and one individual dies. Thus, the Moran process
keeps the overall population size N constant. We define kA and kB as the population sizes
on the genotypes A and B. Because the overall population size N is constant, we have the
identity kA + kB = N and thus describe the actual state of the effectively one-dimensional
system with the variable k ≡ kA = N − kB. We denote the mutation probability for an
individual of genotype A to mutate to B by µAB and the probability for B to mutate to A
by µBA. Furthermore, the fitness functions fA(k) = 1 + gA(k) and fB(k) = 1 + gB(k) may
take any functional form with the only restriction that gA(k) > −1 and gB(k) > −1 for all
k ∈ {0, 1, . . . , N}, because a negative fitness would mean a negative birth rate and is thus
not defined. Here, we introduced the functions gA(k) and gB(k) which represent the effect
of the individuals’ interactions on the fitness. This system exhibits highly diverse dynamics
for different parameter sets. Figure 3.1 shows three example trajectories of the variable k for
three different parameter sets and also illustrates the corresponding stationary probability
distributions to find the system in state k.

The dynamics of this system were already studied for special parameter sets. The studies
considered identical mutation probabilities µAB = µBA [1,88,100] or no mutations occuring
at all µAB = µBA = 0 [3,84]. Furthermore, the fitness functions were derived in the context
of evolutionary game theory [1,3,65,84,87,88,100], which yields fitness functions fA(k) and
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Figure 3.1.: Example trajectories of the number of individuals of genotype A for three parameter
sets in the two genotype system with a population evolving under the Moran process. The gray
insets show the stationary probability distributions to find the system in state k which were
obtained from equation (3.19). In (a) mutations are the dominating effect (µAB = µBA = 10−2)
driving the dynamics towards k = 500. In (b) genetic drift dominates (µAB = µBA = 10−4) so
that the dynamics stochastically switch between the states k = 0 and k = 1000. In (c) genetic
drift is stronger than the effects of mutations (µAB = µBA = 10−4) as in (b), but additionally
frequency-dependent fitness causes a metastable state at k = 500. The population size was
N = 1000 in all simulations, in (a) and (b) there was no frequency-dependent fitness (gA =
gB = 0) and in (c) the fitness functions were gA(k) = −10−5 · k and gB(k) = −10−5 · (N − k).
In all three simulations the initial condition was k = 500.

fB(k) being linear or quadratic in k (cf. Section 2.2.3). However, mutation probabilities
are often diverse [22, 77] and interactions may cause more complex fitness functions [51].
Therefore, here we study this system in a more general setting with different µAB and µBA
as well as fitness functions that may take any functional form.

3.2. Statistical analysis

How will a population in this model system evolve under the Moran process? First we note
that at each time an event of the Moran process occurs, k changes at most by ±1. The
transition probabilities at these events depend on the actual state k of the system alone,
so that the system is described by a linear Markov chain of N + 1 states ranging from
k = 0 to k = N . The fitness functions and the mutation probabilities determine the rate
r+
k at which the transition k → k+ 1 occurs. At each event time of the Moran process the
reproduction, mutation and death events are applied in sequence in zero time determining
r+
k in the following way:

• Reproduction: The population creates an offspring of genotype A with rate k·fA(k)
and of genotype B with rate (N − k) · fB(k) as there are k individuals of genotype
A reproducing at rate fA(k) and (N − k) individuals of genotype B reproducing at
rate fB(k).

• Mutation: The offspring increases k if the newly created individual is of genotype
A after applying the mutation process in the Moran step. Thus, with probability

35



3. Frequency-dependent fitness in evolutionary dynamics

(1 − µAB) an offspring of genotype A increases k, if the offspring does not mutate,
and with probability µBA an offspring of genotype B increases k, if the offspring
mutates to A.

• Death: One individual in the population is chosen with uniform probability and dies.
The population of genotype A will only increase if one individual of genotype B is
chosen to die. The probability that an individual of genotype B dies is (N−k)/(N+1)
as the individuals are chosen with equal probability.

The transition k → k + 1 will thus occur at a rate

r+
k = [kfA(k) · (1− µAB) + (N − k)fB(k) · µBA] N − k

N + 1 . (3.2)

Analogously to the above derivation we obtain the rate

r−k = [(N − k)fB(k) · (1− µBA) + kfA(k) · µAB] k

N + 1 (3.3)

for the transition k → k − 1.

These rates (3.2) and (3.3) yield the master equation

∂pk(t)
∂t

= pk−1(t)r+
k−1 + pk+1(t)r−k+1 − pk(t)r+

k − pk(t)r−k (3.4)

for a linear Markov chain (2.26) describing the time evolution of the probability pk(t) of
finding the population in the state with kA = k and kB = N − k at time t. The stationary
solution p∗k of the master equation yields the probability of finding the system in state
k after fadeaway of initial conditions (cf. also Figure 3.1). For a linear Markov chain as
described by the master equation (3.4), in the stationary solution all probability fluxes
are balanced [29], i.e. in all states k the probability flux out of state k into state k − 1
equals the probability flux out of state k − 1 into state k. This may be understood with
the following considerations. In the stationary solution ∂p∗k

∂t
= 0, so that according to the

master equation (3.4) the probability flux out of state 0 into state 1 has to equal the flux
out of state 1 into 0. Then this is also true for the flux out of state 1 into state 2 and
iteratively for all further states. This is quantified by the detailed balance equation

r+
k−1p

∗
k−1 = r−k p

∗
k, (3.5)

cf. also [29]. Using the balance equation (3.5) iteratively we arrive at

p∗k = p∗0

k−1∏
j=0

r+
j

r−j+1
(3.6)
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where we eliminate the prefactor p∗0 using the normalization condition

N∑
k=0

p∗k = 1. (3.7)

In this way we obtain the stationary solution

p∗k =

∏k−1
j=0

r+
j

r−j+1∑N
l=0

∏l−1
j=0

r+
j

r−j+1

(3.8)

which may be evaluated numerically, but does not yield much insight analytically as the
functional form of the stationary solution is hard to grasp in the above form (3.8).

Instead of analyzing the stationary solution of the master equation, we rather advance to
the Fokker-Planck equation (see Section 2.3.5) [74] which describes the system approxi-
mately in the limit of large population sizes. The Fokker-Planck equation has a stationary
solution which is more explicit than the solution of the master equation and thus yields
more insight on how the evolutionary dynamics depend on the system parameters. Previ-
ous works have shown that already for population sizes N % 100 the approximation works
well [88].

The master equation is transformed to a Fokker-Planck equation by rescaling the system
according to the population size N (cf. Section 2.3.5). Thus, all parameters have to be
rescaled such that the limit N → ∞ is non-degenerate which is sometimes referred to as
the weak-selection limit [65,87,88]. We use the transformation

x = k

N
∈ [0, 1], s = t

N
, µ̃ij = µij ·N (3.9)

ρ(x, s) = pxN(sN)N, g̃j(x) = gj(xN)N (3.10)

which we derive in Appendix B together with the Fokker-Planck equation corresponding
to the above master equation (3.4). Here, x is now the frequency of genotype A and (1−x)
the frequency of genotype B. s is the rescaled time and µ̃ij are the mutation rates. The
probability of finding the population with a certain frequency x of genotype A at time
s is then given by the probability density ρ(x, s). We rescaled the interaction functions
g̃A(x) and g̃B(x) but not the fitness functions as only fitness differences fA(x) − fB(x) =
gA(x)− gB(x) enter the Fokker-Planck equation. We obtain the Fokker-Planck equation

∂ρ(x, s)
∂s

= − ∂

∂x

[{
(g̃A(x)−g̃B(x))x(1−x)+µ̃(1−2x)−∆µ̃

}
ρ(x, s)

]
+ ∂2

∂x2

[
x(1−x)ρ(x, s)

]
(3.11)

where we introduced the mean mutation rate µ̃ := (µ̃AB + µ̃BA)/2 and the mutation rate
difference ∆µ̃ := (µ̃AB − µ̃BA)/2. Additionally to the Fokker-Planck equation, we have the
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3. Frequency-dependent fitness in evolutionary dynamics

normalization condition ∫ 1

0
ρ(x, s)dx = 1 (3.12)

for all s ≥ 0.

What does the Fokker-Planck equation (2.40) tell us about the evolutionary dynamics of
the system? The drift coefficient (cf. Section 2.3.5)

D(1)(x) = (g̃A(x)− g̃B(x))x(1− x) + µ̃(1− 2x)−∆µ̃ (3.13)

contains three different effects. The fitness difference g̃A(x)− g̃B(x) causes a drift towards
the fitter genotype which may depend on the genotype frequency as g̃A(x) − g̃B(x) may
depend on the frequency x. The mean mutation rate µ̃ causes a drift towards x = 1/2
where both genotypes occur with equal frequency and the mutation rate difference ∆µ̃
causes a drift towards the genotype which receives more mutational input. The diffusion
coefficient

D(2)(x) = x(1− x) (3.14)

reflects the genetic drift directed towards the edges of the system, meaning that either
genotype A or genotype B take over the population.

The stationary solution of the Fokker-Planck equation is [74]

ρ∗(x) = Ce−Φ(x) (3.15)

with the potential

Φ(x) = ln
[
D(2)(x)

]
−
∫ D(1)(x)
D(2)(x)dx (3.16)

and the normalization constant
C = 1∫ 1

0 e
−Φ(x)dx

. (3.17)

With the drift coefficient (3.13) and diffusion coefficient (3.14) the potential (3.16) becomes

Φ(x) = ln [x(1− x)]−
∫ [

g̃A(x)− g̃B(x) + µ̃(1− 2x)
x(1− x) −

∆µ̃
x(1− x)

]
dx

= ln [x(1− x)]−
∫

[g̃A(x)− g̃B(x)] dx− µ̃ ln (x(1− x)) + ∆µ̃ ln
[

x

1− x

]
(3.18)

where we used (1− 2x) = ∂
∂x

[x(1− x)]. We obtain the stationary solution

ρ∗(x) = C · e
∫

[g̃A(x)−g̃B(x)]dx · [x(1− x)]µ̃−1 ·
[

x

1− x

]−∆µ̃
(3.19)

where the constant C has to be computed numerically from equation (3.17) for given
parameter values.
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3.3. Analysis of the stationary solution

Four different effects enter the stationary distribution, factorized in three different terms:

• The selection effects enter the solution exponentially in the term e
∫

[g̃A(x)−g̃B(x)]dx,
where the frequency-dependent interaction functions g̃A(x) and g̃B(x) can take any
form and thus the selection influence depends strongly on their form. We further
note that as the interaction functions g̃i(x) = Ngi(k/N) depend linearly on the
population size, already small fitness differences imply a strong selectional force in
large populations.

• The term [x(1− x)]µ̃−1 reflects the opposing forces of mutations (µ̃ in the exponent)
and genetic drift (−1 in the exponent). For mean mutation rates µ̃ < 1 the dynamics
are driven towards the edges of the system, i.e. the population has mostly individuals
of one genotype; for mean mutation rates µ̃ > 1 a mixture of both genotypes is more
probable. If µAB = µBA = 1/N and no interactions are involved (g̃A(x) = g̃B(x) = 0)
any composition k of the population has the same probability to be observed, as
mutational force and genetic drift cancel each other (cf. also [88]).

• The asymmetry in the mutation rates ∆µ̃ adds an additional term [x/(1− x)]−∆µ̃

reflecting a force driving the dynamics towards a higher frequency of the genotype
which receives more mutational input than the other genotype.

3.3. Analysis of the stationary solution

How do the different evolutionary forces shape the dynamics of the two-genotype system?
With the stationary solution (3.19) of the Fokker-Planck equation we have now a means
to answer this question. In the following we analyze the possible shapes of the stationary
distribution in dependence of the system parameters, namely the interaction functions
g̃A(x), g̃B(x), the mean mutation rate µ̃ and the mutation rate difference ∆µ̃.

We start by studying the influence of the interaction functions on the stationary solu-
tion (3.19). First, we note that the selection term

∫
g̃A(x)− g̃B(x)dx in the stationary so-

lution has an extremum at every point xE, where g̃A(xE)− g̃B(xE) switches its sign. Thus,
g̃A(xE) = g̃B(xE) determines the fixed points of the (deterministic) selection dynamics.
These points xE can be either stable or unstable. They are stable, if g̃A(x) > g̃B(x) for
x < xE and g̃A(x) < g̃B(x) for x > xE resulting in a maximum of the stationary distribu-
tion. Under these conditions, for a frequency x < xE genotype A outcompetes B and thus
the frequency of A increases on average; for a frequency x > xE genotype B outcompetes
A and the frequency decreases which makes xE a stable fixed point of the selection driven
dynamics. Following the same argument, a fixed point is unstable, if g̃A(x) < g̃B(x) for
x < xE and g̃A(x) > g̃B(x) for x > xE because then the dynamics are driven away from
this point. We conclude that for continuous interaction functions g̃A(x) and g̃B(x) there
can be half as many metastable states of the dynamics as there are intersections of the
interaction functions, because every second intersection yields a maximum of the selection
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3. Frequency-dependent fitness in evolutionary dynamics

term in the stationary solution. We identify each maximum of the stationary solution with
a metastable state of the dynamics because the dynamics normally stay there for a certain
time before stochastically switching to another metastable state which is for example illus-
trated in Figure 3.3. Finally, we note that also at the edges of the system x = 0 or x = 1
there can be metastable states: If g̃A(0) < g̃B(0) in a uniform population of genotype B
individuals any newly emerging individuals of genotype A are outcompeted by genotype B
individuals making x = 0 a metastable state, and similarly, if g̃A(1) > g̃B(1) a metastable
state at x = 1 emerges.

We illustrate the above considerations using example interaction functions similar to the
ones provided in equation (3.1) where both genotype A and B interact only with individuals
of their own genotype. Here, cooperation and resource competition yield the interaction
functions

g̃A(x) = N(aAx− bAx2) and g̃B(x) = N(aB(1− x)− bB(1− x)2) (3.20)

where the constants aA and aB reflect the fitness increase through cooperation of genotypes
A and B and bA and bB the fitness decrease due to resource competition. Figure 3.2b shows
an example for such interaction functions. We remark that in this example the difference
g̃A(x) − g̃B(x) of the interaction functions is of the order x2, exhibiting maximally two
zero-crossings. Hence, the selection term may in general introduce two maxima (or less)
to the stationary solution, where one maximum may be given for a mixed population
0 < xmax < 1 and one for a uniform population xmax = 0 or xmax = 1. This is illustrated
in Figure 3.2 for a parameter set where one maximum at x ≈ 0.2 emerges as genotype A
is fitter than B for x < 0.2 and A is less fit than B for x > 0.2. Another maximum is at
x = 1 because for x > 0.7 genotype B outcompetes A so that B’s frequency increases on
average until the whole population is made up of genotype B individuals. Additionally,
in this example the dynamics exhibits a maximum at x = 0 due to genetic drift (because
µ̃ < 1) which also amplifies the maximum at x = 1. Hence, this figure illustrates that
different mechanisms such as selection and genetic drift may lead to different metastable
states which are determined by the maxima of the stationary distribution.

For nonlinear interaction functions there may be more than two metastable states of the
dynamics, so that the population exhibits many stable genotype frequencies between which
the dynamics switch back and forth stochastically. An example in Figure 3.3 illustrates that
nonlinear interactions can give rise to multiple stable states which had not been realized
before. Here, we considered interaction functions

g̃A(x) = α [1 + sin(βx)] and g̃B(x) = α [1 + cos(βx)] (3.21)

which are periodical in the frequency x. In most applications this may not be a realistic
interaction function, but it nonetheless demonstrates what is possible if a population ex-
hibits nonlinear interaction functions. We conclude that nonlinear interaction functions
may theoretically lead to an arbitrarily large number of stable states.
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Figure 3.2.: The population dynamics exhibit metastable states due to selective forces and genetic
drift. (a) shows the stationary solution (red, solid) from equation (3.19) together with data
from simulations (blue, ×) for the fitness functions shown in (b) defined in equation (3.20).
At the point x ≈ 0.2 where the interaction function g̃B(x) intersects g̃A(x) from below the
dynamics exhibit a metastable state. Furthermore, a metastable state at x = 1 is caused by
genotype B outcompeting A for frequencies larger than x ≈ 0.7. The metastable state at x = 0
is caused by genetic drift, which also enhaces the stability of the state at x = 1. The population
size for the simulation was N = 1000 showing that the Fokker-Planck equation approximates
the dynamics well already for relatively small population sizes. Further parameters were aA =
0.083, bA = 0.05, aB = 0.177 and bB = 0.2 and the mutation rate was set to µ̃ = 0.5 with no
asymmetry (∆µ̃ = 0).
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Figure 3.3.: The stationary solution (3.19) exhibits multiple metastable states for periodic inter-
action functions. (a) shows the stationary solution (red, solid) from equation (3.19) for the
periodic fitness functions defined in equation (3.21) together with data from simulations (blue,
×). Theoretically genetic drift also causes metastable states at x = 0 and x = 1, but due to the
finite number of individuals (N = 1000) in the simulations the maxima of the stationary solu-
tion remain small at these points. (b) shows a sample path demonstrating repeated stochastic
switching between the different metastable states. The paramters for this system were α = 30,
β = 25µ̃ = 0.5 and ∆µ̃ = 0.
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Figure 3.4.: At a critical mean mutation rate µ̃ = 1 the effects of genetic drift and mutations
cancel each other. Shown are three stationary solutions (3.19) of the Fokker-Planck equation
for a population without selective pressure (fA = fB = 1) with three different mean mutation
rates µ̃ without asymmetry ∆µ̃ = 0. For small mutation rates genetic drift pushes the dynamics
to the boundaries which is illustrated for µ̃ = 0.5 (blue). For the critical mutation rate µ̃ = 1
(red) the forces of genetic drift and mutation are equally strong so that a uniform distribution
is observed and for higher mutation rates the dynamics are pushed by the numerously occuring
mutations towards a mixed population x = 0.5 which is here illustrated for µ̃ = 2 (green).

Let us advance to study the influence of the mutations on the population dynamics. It is
already known [88], that in a population without selective pressure mean mutation rate
and genetic drift determine the distribution of individuals. The forces of genetic drift
and mutations are opposed to each other, which is reflected by the term (x(1 − x))µ̃−1

in the stationary solution (3.19). For µ̃ = 1 these forces cancel out and the population
may be found in any state with equal probability. For smaller mutation rates µ̃ < 1
genetic drift drives the dynamics towards the system’s edges so that either genotype A
or genotype B dominates the dynamics which stochastically switch between these two
states (cf. Figure 3.1b). For larger mutation rates µ̃ > 1 a mixture of both genotypes
is maintained as the often occuring mutations push the dynamics towards a frequency of
x = 0.5. The different shapes of the stationary distribution for the different mutation rates
are illustrated in Figure 3.4 (cf. also Figure 1 in [88]).

While the influence of the mean mutation rate µ̃ on the population dynamics was already
well understood, the influence of asymmetric mutation rates has not yet been studied in
this model system. We note, that the term (x/(1−x))−∆µ̃ may have a strong impact on the
stationary solution (3.19) near x = 0 for ∆µ̃ > 0 and near x = 1 for ∆µ̃ < 1. Furthermore,
per definition ∆µ̃ ∈ [−µ̃, µ̃] so that, if the mean mutation rate µ̃ is small, the influence
of asymmetric mutation rates on the stationary solution is small, too. However, for large
mean mutation rates µ̃ the shape of the stationary solution may strongly depend on the
asymmetry of the mutation rates if ∆µ̃ is large. Under these conditions – due to the
asymmetric mutation rates – the population dynamics will be drawn towards an increased
frequency of the genotype that receives more mutational input. Figure 3.5a illustrates that
the asymmetry in the mutation rates can elicit the emergence of a new metastable state
at the edge of the system. Actually, as Figure 3.5b shows, this newly emerging metastable

42



3.3. Analysis of the stationary solution

state even minimizes the fitness of the population and is thus clearly not induced by
selection. On the other hand, as Figure 3.6 illustrates, the asymmetry can also influence
the dynamics in such a way that metastable states are shifted or even vanish for high
enough mutational asymmetries.
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Figure 3.5.: New metastable states emerge due to asymmetric mutation rates. (a) shows the
stationary distriubtions of a system where genotype B outcompetes genotype A for symmetric
(∆µ̃ = 0) and asymmetric mutation rates (∆µ̃ = −0.5). The red and gray solid curves show
the theoretically obtained solution (3.19) of the Fokker-Planck equation and the blue and green
crosses data from simulations with N = 1000. (b) shows the fitness functions of the genotypes
demonstrating that the new metastable state emerging for ∆µ̃ = −0.5 minimizes the fitness of
the population. The mean mutation rate was µ̃ = 1 and the interaction functions were given
according to equation (3.20) with aA = 0.077, bA = 0.1, aB = 0.2 and bB = 0.15.
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Figure 3.6.: At high mutation rates µ̃ the asymmetry ∆µ̃ of the mutation rates has a strong
impact on the population dynamics. (a) shows that for low mutation rates µ̃ = 0.01 (green) and
µ̃ = 0.1 (red) genetic drift has a strong impact at the edges of the system creating metastable
states at x = 0 and x = 1 which vanish at the critical mutation rate µ̃ = 1 (blue). (b)
illustrates the effect of asymmetries for high mutation rates (here µ̃ = 5) where a metastable
state at x = 0.5 for symmetric mutation rates ∆µ̃ = 0 (blue) is first shifted for intermediate
asymmetries ∆µ̃ = 2.5 (red) and finally vanishes for strong asymmetries ∆µ̃ = 4.5 (green).
Here, the parameters aA = aB = −0.01 and bA = bB = 0.005 in the interaction functions (3.20)
are chosen such that selection drives the dynamics towards x = 0.5.
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3. Frequency-dependent fitness in evolutionary dynamics

3.4. The quality of the Fokker-Planck approximation

Here, we quantify the quality of the approximation we made on switching from a Markovian
to a Fokker-Planck description of the system’s dynamics. In Figure 3.2, Figure 3.3 and 3.5
the theoretical solutions well fit the data from simulations with popualtion sizes N = 1000;
in a similar study Traulsen et al. [88] find good fits already for N = 100. In the following
we quantitatively analyze how the quality of the Fokker-Planck approximation depends on
system parameters such as the population size N . We define the empirical distribution

πk := 1
Tmeas

Tmeas∑
t=0

δ(Xt+Tmix , k) (3.22)

to compare our theoretically obtained solution (3.19) of the Fokker-Planck equation with
data from simulations. Here, (Xt : t ≥ 0) is the evolutionary process defined by the master
equation (3.4), Tmix is a time large enough for the process to reach stationarity and Tmeas
is the measurement time of the simulation. We quantify the fit’s quality using the mean
distance measure

d := 1
N

N−1∑
k=1

∣∣∣∣∣πk −
∫ k

N
+ 1

2N

k
N
− 1

2N

ρ∗(x)dx
∣∣∣∣∣ (3.23)

comparing the mean distance of the empirical distribution πk from the theoretical distri-
bution, and the maximum distance measure

dmax := max
k∈[1,N−1]

{∣∣∣∣∣πk −
∫ k

N
+ 1

2N

k
N
− 1

2N

ρ∗(x)dx
∣∣∣∣∣
}

(3.24)

which returns the maximum distance of the empirical distribution πk from the theoretical
distribution. We obtain the theoretical distribution by integrating the theoretical density
ρ∗(x) over the bin size 1/N around the points k/N . Furthermore, we leave out the points
k = 0 and k = N in both measures because there the theoretical density ρ∗(x) can diverge.

We find that both distances d and dmax decay with increasing N which is illustrated in
Figure 3.7 for the example from Figure 3.2. Due to the divergence of ρ∗(x) at the bound-
aries the maximum distance dmax decays slower than the mean distance d showing that the
slow convergence at the domain boundaries dominates the quality of the fit. We conclude
that the fit for N % 1000 is already good, but special care has to be taken at the do-
main boundaries where the divergence of the stationary solution ρ∗(x) may lead to larger
deviations.

It is often assumed that the Fokker-Planck approximation holds only for weak selec-
tion [65, 88]. Thus in the following we use the two above defined distance measures d
and dmax to analyze the quality of the stationary solution in dependence of the selection
strength. We start by introducing a scaling factor ξ so that the interaction functions from
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Figure 3.7.: For large population sizes N the theoretically obtained stationary distribution well
fits data from simulations. (a) shows the stationary distribution (black, solid) from Figure
3.2 together with empirical densities (crosses) as defined in equation (3.22) from simulations
with N = 50 (blue), N = 200 (red), N = 500 (green) and N = 1000 (gray). (b) shows that
the mean distance d and maximum distance dmax between simulation data and the stationary
solution decrease with increasing population size N . The measured mean distance d (blue, ×)
as defined in equation (3.23) decreases faster with N than the maximum distance dmax (red,
∗) defined in equation (3.24) because of a slow convergence at the domain boundaries x = 0
and x = 1. We added the gray lines N−1.5 (solid) and 2N−0.5 as a guide to the eye to show
that the distances decrease with N approximately as a power law. For both (a) and (b) we
obtained the empirical distributions by simulating the dynamics from an initial state drawn
from ρ∗(x) for a mixing time Tmix = 100N and then recording the density for a measurement
time Tmeas = 10N2.

equation (3.20) become

g̃A(x) = ξN(aAx− bAx2) and g̃B(x) = ξN(aB(1− x)− bB(1− x)2). (3.25)

To exclude errors from the finite measurement times Tmeas we also compare the stationary
solution (3.19) of the Fokker-Planck equation (2.40) with the stationary solution (3.8) of the
master equation (3.4). The distance between these to distributions is obtained by simply
replacing the empirical distribution πk in the definition of the mean distance measure (3.23)
with the stationary solution p∗k of the master equation. We find that the stationary solution
of the Fokker-Planck equation well approximates the solution of the master equation for
selection strengths up to ξ of the order 1 which is shown in Figure 3.8. As Figure 3.8d
illustrates, only for ξ < 1 does the measurement error due to finite simulation times Tmeas
play a role. Figure 3.8c demonstrates that even if the Fokker-Planck approximation causes
a larger error for strong selection strengths (here ξ = 50), it still catches the overall trend
of the dynamics. Thus, for large selection strengths it predicts the trend of the dynamics
qualitatively, but makes a quantitative error.
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Figure 3.8.: For weak selection the stationary solution (3.19) from the Fokker-Planck equation well
approximates the exact solution (3.8) from the master equation, but only qualitatively catches
the overall trend of the dynamics for strong selection. (a)-(c) show the stationary solution from
the Fokker-Planck equation (red, solid) together with the solution from the master equation
(blue, ×) for the interaction functions from (3.25) for weak selection ξ = 0.1 (a), intermediate
selection ξ = 1 and strong selection ξ = 50. In (c) a large deviation of the Fokker-Planck
equation’s solution from the master equation’s exact solution is observable. (d) quantifies the
dependence of the mean distance d on the selection strength ξ for measured data (red, ∗) and
the solution of the master equation (blue, ×). For ξ > 1 we observe an increasing distance
between the approximate and the exact solution. The system parameters were N = 1000,
µ̃ = 0.5 and aA = aB = −0.01 and bA = bB = 0.005 in equation (3.25). We obtained the
empirical distributions by simulating the dynamics from an initial state drawn from ρ∗(x) for
a mixing time Tmix = 105 and then recording the density for a measurement time Tmeas = 107.
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3.5. Conclusion

Here, we have analyzed in a simple system of two genotypes how genetic drift, mutations
and frequency-dependent fitness shape evolutionary dynamics. In particular, we considered
a general class of functions for the frequency-dependent fitness where previous studies
had only considered special instances of this class of functions [65, 88]. Also, our general
approach included arbitrary mutation rates for both genotypes where previous studies had
only considered identical mutation rates [1,88,100]. Our analysis revealed how the interplay
of dynamic fitness, mutations and genetic drift induce metastable states on the population
dynamics between which the dynamics switch stochastically. At which genotype frequencies
the dynamics have a metastable state thereby depends on the respective strength of the
involved processes. At low mutation rates genetic drift induces metastable states at the
edges of the system where only one genotype is present in the population. These metastable
states vanish for higher mutation rates. Furthermore, we found that nonlinear fitness
functions may cause many metastable states so that there is no theoretical limit to the
number of such states in the system. Additionally, asymmetric mutation rates may shift
these states and also cause the emergence of new metastable states.

We found that already at moderate population sizes N a Fokker-Planck equation well
approximates the dynamics. However, our analysis based on the distance measures d (3.23)
and dmax (3.24) revealed that special care has to be taken at the domain boundaries where
one genotype dominates in the population. At these boundaries the stationary solution
of the Fokker-Planck equation may diverge and thus result in larger deviations. Also, we
found that in the strong selection regime where fitness differences are large the Fokker-
Planck approach leads to an increasing quantitative error. Thus, for evolutionary systems
exhibiting strong selection differences a Wentzel-Kramers-Brillouin (WKB) method may
be more appropriate to quantitatively study the evolutionary dynamics. As discussed for
example in [3] by Assaf and Mobilia a WKB approach leads to analytical results which
well fit simulation data even in the strong selection regime. Still, we have found that
the Fokker-Planck approximation qualitatively predicts the trend of the dynamics, so that
the application of a WKB approach here would not yield additional insight into how the
stochastic evolutionary dynamics are driven by selection and mutation.

We conclude that individuals’ interactions that create a nonlinear dependence of the fitness
on genotype frequency together with asymmetric mutation rates induce complex evolution-
ary dynamics [2]. Thus, if in a stable environment repeated shifts between different fre-
quencies are observed, this may indicate individuals’ interactions which cause a nonlinear
dependence of fitness on the frequency.
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4. Dynamic fitness stabilizes
populations with variable population
size

How will variations in the overall size of a population affect the course of evolutionary
dynamics? Experimental studies indicate that dynamically changing population sizes may
influence the genotype distribution of a population and thus be important for the evolu-
tionary dynamics [71,83] which is also suggested by our study of the two-genotype system
in Chapter 3 where selectional and mutational effects scaled with the population size.
However, the standard replication processes from theoretical models such as the Moran or
Wright-Fisher processes keep the population size constant. Therefore, in Section 2.2.2 we
introduced a new reproduction process, the IBD process, based on independent birth and
death events which yields dynamically changing population sizes. While such birth and
death processes are well known in the mathematical theory of Markov chains [38,62], they
are not common in the context of populations evolving on fitness landscapes, although the
IBD process allows for studying the impact of dynamically changing population sizes on
evolutionary dynamics.

In this chapter we first demonstrate that a population evolving under the IBD process
tends to go extinct with high probability after just relatively short times because of ran-
dom fluctuations in the population size. We then show how dynamic fitness may stabilize
the dynamics so that the population will persist for very long times with high probability.
Finally, we present a model system where the population size fluctuations of the IBD pro-
cess together with frequency-dependent fitness induce rich evolutionary dynamics. These
dynamics exhibit evolutionary features such as quasi-cycles – cyclic population size dynam-
ics modulated by stochastic background dynamics [6,53,70] – and punctuated equilibrium
dynamics – self-organized critical dynamics that produce extinction avalanches of power-
law distributed sizes [4,31,60,67]. This model is thus a promising approach to gain a better
understanding of how individuals’ interactions and stochastic reproduction processes cause
the emergence of such complex dynamical features.
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4.1. The unstable IBD process

Here, we show that the IBD process for populations exhibiting only static fitness is intrin-
sically unstable, so that a population evolving under this process will either grow infinitely
or go extinct. For simplicity of the argument, let us assume that all genotypes have the
same fixed fitness f , so that all individuals in the population have equal fitness. As each
individual has a birth rate given by the fitness f , the overall birth rate of the population
with N individuals is given by λN = fN . On the other hand the death rate of the popu-
lation is always µN = N . Thus, if the individuals’ fitness is larger than one (f > 1), the
birth rate exceeds the death rate for all population sizes and the population will grow on
average, if it does not go extinct through stochastic fluctuations from the initial population
size N0. Similarly, for a fitness smaller than one (f < 1) the death rate exceeds the birth
rate for all population sizes so that the population will almost always go extinct in finite
time from any initial population size N0. We conclude that any population where the
individuals have a fitness other than f = 1 is unstable under the IBD process.

0 100 200 300 400
0

100

150

200

250

50

t

N

Figure 4.1.: An example dynamics of the
population size N(t) for a population
with fitness f = 1 evolving under the
IDB-process. The initial condition was
N0 = 100 and the population in this ex-
ample goes extinct at tE = 491.

Even if the fitness is f = 1 for all individuals,
the population remains unstable. If we con-
sider such a population where all individuals
have a fitness f = 1, the birth rate λN = N
and the death rate µN = N are equal at all
times. Although the rates are equal the ac-
tual population size N(t) still fluctuates be-
cause birth and death events occur stochas-
tically and independently of each other. The
dynamics of N(t) are given by a Markov
chain similar to the one described by the
master equation (3.4) for the two-genotype
system in Chapter 3. We label the states
with the actual number of individuals N and
thus obtain the transition rates

r+
N = λN = N and r−N = µN = N (4.1)

to go from state N to the states N + 1 and N − 1 respectively. Random fluctuations of
the population size in this setting can still lead to the extinction of the population, i.e. the
dynamics of the Markov chain hits the absorbing state N = 0. An example in Figure 4.1
illustrates this, where a population with initially N0 = 100 individuals goes extinct after
approximately tE ≈ 500 generations.

The dynamics of the underlying Markov chain are recurrent, i.e. the process would visit
every state infinitely often if there was no absorbing state. As discussed in Section 2.3.3
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this is quantified by the sum

∞∑
k=1

k∏
j=1

µj
λj

=
∞∑
k=1

k∏
j=1

j

j
=
∞∑
k=1

1 (4.2)

which here diverges. We conclude that the population will go extinct with probability
pExt = 1 as it will hit the absorbing state eventually (cf. Section 2.3.3 and [38]).

According to equation (2.28) in Section 2.3.3, the mean time to absorption from the initial
state N0 = 1 diverges, if the sum

∞∑
k=1

1
µk

k−1∏
j=1

λj
µj

(4.3)

diverges [38]. With the transition rates (4.1) this yields the sum

∞∑
k=1

1
µk

k−1∏
j=1

λj
µj

=
∞∑
k=1

1
k

k−1∏
j=1

j

j
=
∞∑
k=1

1
k

(4.4)

which diverges. We conclude that the mean time to absorption from the state N0 = 1 is
t
(1)
E =∞.
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Figure 4.2.: The Markov chain representations of
the standard random walk (a) and the IBD
process (b) only differ in the speed of the tran-
sitions. Black numbers indicate the index of
the state indentified with the population size.
Blue numbers determine the transition rates
between the states. In both the standard ran-
dom walk in (a) and the IBD process in (b) the
probability to move to a higher state equals
the probability to go to a lower state.

What is the probability that the popu-
lation is still alive after a certain time?
To answer this question we need to de-
termine the extinction time distribution
pE(t) which determines the probability
that the population will go extinct at
time t. First, we remark that the pro-
cess we study is very similar to another
well known Markov process: The one-
dimensional random walk [29, 62]. In
this process similarly to the IBD pro-
cess only nearest neighbour transitions
are possible, i.e. the dynamics are de-
scribed by a master equation of the form
of equation (3.4). The transition rates
in this process are r+

k = r−k = 0.5 for
all states k. This Markov process and
the IBD process are illustrated in Fig-

ure 4.2. The only difference between both processes is that in the one-dimensional random
walk transition events always occur at rate one while in our evolutionary system the rate
at which a transition occurs is 2N in state N . The factor 2 originates from both birth and
death events occuring at rate N , yielding an accumulated rate of 2N .
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Figure 4.3.: The extinction time distribution pE(t) of the IDB-process well fits a power law. (a)
shows an extinction time distribution pE(t) (blue, dots) obtained from simulations of the IBD
process with initial condition N0 = 100. The process was started at N0 in 106 trials and the
extinction time was recorded. The orange line shows a power law fit to the data according
to equation (4.5) yielding an exponent α = 1.784 ± 0.001. The deviation from the power law
for small times t is determined by the initial condition N0. (b) shows the survival probability
distribution pS(t) for the measured data from (a) obtained using equation (4.6).

The hitting time distribution of random walks is a research field still under investiga-
tion [29,90,91]. For the one-dimensional random walk it is well known that the extinction
time distribution has a power law shape

pE(t) ∝ t−α (4.5)

for large times t. At small times t the shape of the distribution pE(t) is determined by the
initial condition N0 of the process. The tail of the distribution follows the power law (4.5)
with exponent α = 3/2 independently of the initial condition [90,91]. As the evolutionary
IBD process is very similar to the one-dimensional random walk we expect that it will
also exhibit a power law extinction time distribution. Only the exponent α should be
different than in the one-dimensional random walk because the process is faster for higher
population sizes. We could not compute the exponent α for this process analytically, but
determine it by measuring the extinction time distribution in simulations and fitting a
power law distribution to it. To achieve this we first cut of the part of the measured
distribution that is dominated by the initial condition. We then applied a nonlinear least
squares fit to the remaining data and in this way find that the exponent is approximately
α ≈ 1.8. Figure 4.3a shows a measured extinction time distribution together with the fit
of the power law (4.5) to the data.

From the extinction time distribution pE(t) we obtain the survival time distribution

pS(t) = 1−
∫ t

0
pE(t′)dt′ (4.6)

determining the probability that the population is still alive at time t. The second term
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here gives the probability that the population has gone extinct until time t, while the
initial condition is pS(0) = 1. Figure 4.3b illustrates the survival time distribution for
the unstable IBD process. Note that as α < 2 for the unstable IBD process the mean
time tE to extinction does not exist as tE =

∫∞
0 t · pE(t)dt = ∞ which confirms the result

obtained in equation (4.4). Yet, the probability that the population is alive drops quickly
with time, so that the population is extinct with probability 0.5 after only approximately
280 generations in the example illustrated in Figure 4.3 starting from a population size
N0 = 100. However, in reality populations are usually much more persistent, so that we
conclude that there must be a mechanism stabilizing the population dynamics. In the next
part we show that dynamic fitness can be such a mechanism as it is able to stabilize the
population dynamics of the IBD process.

4.2. The stabilized IBD process

As we discussed in Section 2.2.1, the fitness of individuals is often dynamic. This does
not only include frequency-dependent selection which we studied in Chapter 3 but also
other effects, such as changing environments. Here, we show how a fitness changing
with the overall population size stabilizes the dynamics of the IBD process. We con-
sider a population living in an environment providing only enough resources to sustain
a population of N∗ individuals. All individuals of the population compete for these
resources so that the fitness of each individual is decreased by every other individual
through competition for the resources. Such considerations are common in evolution-
ary models since Verhulst first introduced a carrying capacity in the mid 1800s [56].
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Figure 4.4.: The population size N(t) of a
population evolving under the stabilized
IDB-process with fitness function (4.7)
mainly fluctuates around the sustained
population size N∗ which in this example
is N∗ = 100.

If the population is much smaller than N∗
then there are resources in abundance and
the fitness of the individuals is high. We
thus propose a fitness dependence

f(N) = N∗
N

(4.7)

so that the population on average grows if it
is smaller than N∗ and shrinks whenever it
is larger than N∗. As Figure 4.4 illustrates
for N∗ = 100, the population dynamics stay
close to N∗ and the population is thus less
prone to go extinct. Consequently, we call
the process defined here the stabilized IBD
process.

In the following we analyze the properties of
the stabilized IBD process in comparison to
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4. Dynamic fitness stabilizes populations with variable population size

the unstable IBD process. With the fitness of the process (4.7) we obtain the birth and
death rates

λN = f(N)N = N∗ and µN = N. (4.8)

With these rates we find that the probability of the stabilized IBD process going extinct
is the same pE = 1 as for the unstable IBD process, because the sum

∞∑
k=1

k∏
j=1

µj
λj

=
∞∑
k=1

k∏
j=1

j

N∗
=
∞∑
k=1

k!
Nk
∗

(4.9)

does not converge (cf. Section 2.3.3). However, for this process the mean time to absorption
from N0 = N∗ is (cf. equation (2.28))

T =
∞∑
k=1

1
µk

k−1∏
j=1

λj
µj

+
N∗−1∑
k=1

 k∏
j=1

µj
λj

 ∞∑
m=k+1

1
µm

m−1∏
n=1

λn
µn

=
∞∑
k=1

Nk−1
∗
k! +

N∗−1∑
k=1

k!
Nk
∗

∞∑
m=k+1

Nm−1
∗
m!

= eN∗ − 1
N∗

+
N∗−1∑
k=1

k!
Nk
∗

eN∗

N∗

(
1− Γ(k,N∗)

k!

)

= eN∗ − 1
N∗

+ (eN∗ − 1)O
(
N−2
∗

)
(4.10)

where Γ(y, k) =
∫∞
k xy−1e−xdx is the incomplete Gamma function. Here, in the third

step we evaluated the sum term by term using MATHEMATICA. The sum’s first term
k = 1 yields (eN∗ − 1)/N2

∗ as Γ(1, N∗) = e−N∗ . The sum’s higher order terms are of the
order O(N−3

∗ ); they may be neglected under the assumption N∗ � 1. This mean time
to absorption is finite while for the unstable IBD process the mean time to absorption
diverges (cf. equation (4.4)). This seems surprising at first glance as the dynamic fitness
pushes the dynamics of the stabilized IBD process away from the absorbing state while
there is no such mechanism in the unstable IBD process. The explanation for this finding
is the fact, that the unstable IBD process can reach infinitely large population sizes, while
the stabilized IBD process cannot because for large enough population sizes N the birth
rate is much smaller than the death rate. Thus, the dynamics will always stay close to the
stable state N∗ until reaching the absorbing state through a random fluctuation.

What is the survival time distribution for the stabilized IBD process? The shape of the
distribution is determined by the fact that the birth rates are larger than the death rates
for population sizes N < N∗ and vice versa for N > N∗. Thus, the dynamics stay near the
metastable point k = N∗ for a long time and only in rare events reach the absorbing state
k = 0. In such a scenario Kramers’ method as discussed in Section 2.3.4 applies [33, 44].
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Figure 4.5.: The quasistationary distribution of the stabilized IBD process is very small close to
the absorbing state. Shown are the theoretical distribution (red, ×) and a distribution (blue, ◦)
obtained from simulating the system dynamics for a time tMeas = 108 from the initial condition
N0 = N∗. The sustainable population size was set to N∗ = 15.

As we saw there, the survival time distribution pS(t) fulfills the law

ṗS(t) = −pS(t) ·
N∗∑
j=1

1−∑j−1
i=1 p

∗
i

µjp∗j

−1

. (4.11)

Here, p∗k is the quasistationary probability distribution of the metastable state fulfilling the
detailed balance equation

λkp
∗
k = µk+1p

∗
k+1. (4.12)

With µk = k and λk = N∗ the quasistationary distribution p∗k is thus given by (see [29, p.
266] and the derivation of equation (3.8) in Chapter 3)

p∗k =
∏k−1
j=1

λj
µj+1∑∞

l=1
∏l−1
j=1

λj
µj+1

= Nk−1
∗
k! ·

N∗
eN∗ − 1 = Nk

∗
k! ·

1
eN∗ − 1 . (4.13)

for k ≥ 1. As the dynamics are absorbed in the state k = 0 the quasistationary distribution
is not defined there. Therefore, in equation (4.13) all sums and products start with the
index 1 instead of 0 which was the case in equation (3.8). The distribution is defined on
k ∈ N, so that the normalization sum ranges from l = 1 to infinity. This quasistation-
ary distribution has a high maximum close to k = N∗ and already for moderate N∗ the
probability to come close to the absorbing state is very small, so that the conditions for
Kramers’ method are clearly fulfilled for N∗ � 1. Figure 4.5 illustrates this for N∗ = 15.

Using the condition N∗ � 1 we evaluate the time scale in equation (4.11) and obtain

τ =
N∗∑
j=1

1−∑j−1
i=1 p

∗
i

µjp∗j
≈
(
eN∗ − 1

)
·
(
N−1
∗ +O

(
N−2
∗

))
(4.14)
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Figure 4.6.: The approximations made for the derivation of the survival time distribution (4.15)
and extinction time distribution (4.16) of the stabilized IBD process work well already for
relatively small N∗. Both (a) and (b) compare the theoretical predictions (red and orange,
solid lines) with data (blue, circles) obtained from recording the extinction times from 5 · 105

trials of simulating the dynamics for N∗ = 15. The red lines are given by using equation (4.14),
while the orange lines were obtained by numerically evaluating equation (4.11). Thus, the main
error in our calculations are not determined by Kramers’ approximation, but by the following
neglecting of terms of the order O(N−2

∗ ). (a) shows the resulting extinction time distribution
pE(t) and (b) the survival time distribution pS(t) = 1−

∫ t
0 pE(t′)dt′.

which we derive in detail in Appendix C. We thus find that the survival time distribution
in the limit of large sustained population sizes (N∗ � 1) is

pS(t) = exp
(
− N∗
eN∗ − 1t

)
. (4.15)

The extinction time distribution is easily calculated to

pE(t) = N∗
eN∗ − 1 exp

(
− N∗
eN∗ − 1t

)
(4.16)

using pE(t) = −ṗS(t). This extinction time distribution yields the same mean time to
extinction T =

∫∞
0 t · pE(t)dt =

(
eN∗ − 1

)
/N∗ as the result in equation (4.10).

The approximations made to derive the survival time and extinction time distributions
work well even for relatively small N∗. This is demonstrated in Figure 4.6 where the
theory only slightly underestimates the survival probability of the stabilized IBD process
for N∗ = 15. Actually, the approximations made to derive Kramers’ formula (4.11) work
very well which we checked by evaluating the factor in equation (4.11) numerically for
given parameters (see orange lines in Figure 4.6). We conclude that the main error in our
calculation (4.14) is determined by the fact that we neglect terms of the order O(N−2

∗ ).
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4.3. A scalable model

In the above section we used a dynamic fitness function (4.7) which implies large differ-
ences in fitness. The fitness of an individual can become of the order of the sustained
population size N∗. Usually, fitness differences are assumed to be small [88] as large fitness
differences often result in the fast extinction of all genotypes but the fittest (cf. Chap-
ter 3), i.e. all fitnesses are usually assumed to be of the order of 1. Kimura’s neutral theory
of molecular evolution even states that many genotypes have equal fitness, so that many
mutations do not affect fitness at all [41]. We conclude that the above fitness function (4.7)
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Figure 4.7.: A population evolving under
the scaled IDB-process with fitness func-
tion (4.17) exhibits fluctuations for which
the size depends on the scaling parame-
ter a: For larger a the dynamics stay close
to N∗ while the fluctuation size increases
with decreasing a. Shown are two exam-
ple trajectories for N∗ = 100 and a = 0.1
(blue) and a = 0.5 (red).

is probably not applicable to real systems.
Therefore, in this section we introduce a fit-
ness function which allows for keeping the
fitness differences small and still stabilizes
the IBD process. To this end, we introduce
a scaling factor a in the fitness function

f(N) = 1 + a
[
N∗
N
− 1

]
(4.17)

where now with a = 0 we obtain the unsta-
ble IBD process and with a = 1 the sta-
bilized IBD process. Thus, a population
evolving under this fitness function (4.17)
exhibits more stable dynamics than the un-
stable IBD process, but also more variable
dynamics than the stabilized IBD process,
depending on a. Figure 4.7 illustrates this
for two different values of a. We call this
new process the scaled IBD process.

If the force driving the system towards N∗ is strong enough to stabilize the system, we have
a similar situation as in Section 4.2 and Kramers’ method applies here, too. This means,
that the survival probability of the scaled IBD process should decline as an exponential
function with a timescale τ according to equation (2.39). However, the fitness function
(4.17) yields the birth rates λj = j(1 − a) + aN∗ and death rates µj = j which make a
calculation of this time scale τ (2.39) too complicated to obtain a closed expression for τ .
Thus, the exact time scale may only be obtained numerically for given parameters a and
N∗. Yet, we require an analytical estimate of the time scale to enable a prediction of the
necessary parameter value a to let the scaled IBD process survive for a certain time with
high probability.

To obtain such an estimate of the time scale we note that if Kramers’ method applies the
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survival time distribution will be given by

pS(t) = exp
(
− t

T

)
(4.18)

where T is the mean time survival time which is equal to the mean time to extinction
defined by equation (2.28) [38]. With this formula we derive an estimate value for T in
Appendix D. This estimate

T = a−
aN∗
1−a − 1
aN∗

(4.19)

is derived under the assumption aN∗ � 1 where we remark that all correction terms for
equation (4.19) are positive (cf. equation (D.12) in Appendix D). There are two important
facts about this estimate to note. First, in the limit a → 1 the above mean time to
extinction (4.19) is equal to the mean time (4.10) derived for the stabilized IBD process
in Section 4.2. Secondly, because all correction terms for equation (4.19) are positive,
increasing the value of T , this result always underestimates the mean time to extinction.
Thus, equation (4.19) is a strict lower bound for the mean time to extinction. This is
illustrated in Figure 4.8 where the theoretically predicted extinction time distribution

pE(t) = aN∗

a−
aN∗
1−a − 1

exp
(

aN∗

a−
aN∗
1−a − 1

· t
)

(4.20)

and the survival time distribution

pS(t) = exp
(

aN∗

a−
aN∗
1−a − 1

· t
)

(4.21)

decline faster than the measured distributions. Figure 4.8 also illustrates that the predic-
tion well approximates the data for increasing aN∗.
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Figure 4.8.: The theoretically computed survival time distribution (4.21) underestimates the ac-
tual survival time distribution of the scaled IBD process. Shown are extinction time distribu-
tion (a) and survival time distribution (b) of the scaled IBD process obtained from simulations
(color) and the corresponding theoretical lower bounds (black). We obtained the data by
recording the absortion times for 106 trials starting at the initial condition N0 = N∗ = 100.
The scaling factor was set to a = 0.01 (red data, solid line), a = 0.02 (green data, long dashes),
a = 0.03 (blue data, normal dashes), a = 0.04 (violet data, short dashes) and a = 0.05 (gray
data, very short dashes). Already for aN∗ = 5 the approximations made in the derivation of
equation (4.19) work well with relatively small deviations between simulation data and theory.
(b) also illustrates that the theory always underestimates but never overestimates the survival
probability.

4.4. Comparison of the IBD processes

Comparing the survival time distributions of the stabilized (4.15) and the scaled IBD pro-
cess (4.21) with the survival time distribution of the unstable IBD process (4.6) we find
that the unstable process goes extinct much faster than the other processes on short time
scales, which confirms that both the stabilized and the scaled IBD process exhibit more
stable dynamics on relevant time scales. However, at extremely long time scales the unsta-
ble IBD process has a higher survival probability than the other processes due to the power
law distributed extinction times. This is illustrated in Figure 4.9 also demonstrating that
the survival time distribution of the unstable IBD process has a fundamentally different
shape than the survival time distributions of the other processes. The unstable IBD pro-
cess can make excursions to arbitrarily large population sizes and these highly improbable
excursions can result in a very long survival time of the process. This also causes the di-
vergence of the mean extinction time of the unstable IBD process. On the other hand the
other processes will always stay close to N∗ with only few stochastic escapes and so they
always stay relatively close to the absorbing state. However, as Figure 4.9 demonstrates,
the survival probability of the unstable IBD process only surpasses the survival probability
of the other processes in a regime where the survival probability of the process has already
reached marginal values. We conclude that the population size dependend fitness intro-
duced in equations (4.7) and (4.17) stabilize the population dynamics so that these fitness
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functions almost always increase a population’s survival probability.
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Figure 4.9.: The unstable IBD process has a low survival probability at normal time scales but a
higher survival probability than the other processes for extremely long time scales. Shown are
the survival time distributions of the unstable IBD process (blue), the stabilized IBD process
(orange) and the scaled IBD process (red) in a log-linear plot (a) and a log-log-plot (b). The
survival time distribution of the unstable IBD process was obtained by using the data in Figure
4.3 and extending it using the fit in Figure 4.3a. The theoretical survival time distributions
(4.16) for the stabilized IBD process are shown in orange for N∗ = 15 (solid) as in Figure 4.6
and N∗ = 50 (dashed). The theoretical survival time distributions (4.21) for the scaled IBD
process are shown in red for N∗ = 100 and a = 0.03 (solid), a = 0.05 (long dashes), a = 0.1
(normal dashes) and a = 0.2 (short dashes).

The stabilized IBD process survives for extremely long times even at moderate sustained
population sizes N∗ (cf. Figure 4.9). For example, for N∗ = 100 the survival probability
only goes below pS(t) < 0.5 for times larger than t = 1042 (not shown in Figure 4.9 as it is
indistinguishable from 1 in the entire plot). Thus, if we require a model of an independent
birth death process which will not die out for very long times, the stabilized IBD process is
a good choice. However, the fluctuations of the population size in this model remain very
small, as the population almost always remains close to N∗. Therefore, if larger fluctuations
of the population size are important for the system under study, one should rather turn to
the scaled IBD process.

We only analyzed the stability properties of the IBD process under the condition that all
genotypes of a population exhibit identical fitness. If we need to study populations with
different fitnesses such as in Chapter 3, we therefore have to take special care whether the
basic conditions for the theory presented here are fulfilled. The frequency- and population-
size dependent fitness function of genotype i becomes

fi(x,N) = fi(x) · f(N) (4.22)

where fi(x) represents frequency-dependent fitness of genotype i (cf. equation (3.1)) and
f(N) represents fitness depending on population size (cf. equation (4.17)). Thus, for
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the population to be stable there has to be a population size below which f(N) >
(mini {fi(x)})−1 for all possible configurations x so that fi(x,N) > 1 at small population
sizes even if the population is in a genotype configuration x of low fitness fi(x). Other-
wise the population will go extinct with high probability upon reaching such a genotype
configuration of low fitness. Further, for the population to not grow infinitely there must
be a population size above which f(N) < (maxi {fi(x)})−1 for all configurations x so that
fi(x,N) < 1 even if the entire population is of the fittest genotype.

For the stabilized IBD process the fitness depending on population size is of the form
f(N) = N∗/N . Thus, this fitness is on the order of N∗ for small population sizes and can
become arbitrarily small for large population sizes. If the genotype-dependent fitness fi(x)
takes values on the order of one, a population evolving under the stabilized IBD process
is therefore stable with the fitness function defined in equation (4.22). For the scaled
IBD process the population-size-dependent fitness is given by f(N) = 1 + a [N∗/N − 1],
so that the maximal possible fitness is given by 1 + aN∗ − a at population size N = 1.
For large population sizes the fitness converges to the value 1− a. Thus, for a population
to evolve under the scaled IBD process in a stable way, the smallest genotype-dependent
fitness value has to fulfill fmin

i (x) > 1/ (1 + aN∗ − a) and the largest value has to fulfill
fmax
i (x) < 1/ (1− a). If these conditions are fulfilled, a population evolving under the
scaled IBD process is stable, i.e. the selectional force drives the population towards a
stable population size that depends on the population’s genotype configuration x. Still,
we remark that the population can go extinct through stochastic fluctuations as described
previously.

4.5. Application: A predator-prey model

Populations of predators and their prey exhibit cyclic population dynamics where at some
times prey is abundant while predators are rare and vice versa at other times. This striking
phenomenon has been studied for many years [5] and models of such systems already exist
since the 1920s when e.g. Volterra designed a first model to conceive how the predator-prey
interactions shape the population dynamics [93]. He described the population dynamics
using coupled, deterministic differential equations for the predator and prey frequencies in
the population. However, only under the assumption of special kinds of interactions do
these models predict cyclic behaviour; only recently was it realized that the deterministic
dynamics may not be oscillatory at all and the cyclic dynamics may rather be caused by
a resonant amplification of the stochasticity underlying the dynamics [53]. Thus, stochas-
tic models are required to wholly grasp all effects occuring in predator-prey dynamics [6].
An individual-based model with dynamic fitness may thus be a promising tool to bet-
ter understand how individuals’ interactions cause the emergence of cyclic dynamics in
predator-prey system.

Another important feature of evolutionary dynamics is that evolution does not proceed
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gradually but rather in sudden steps [31, 72]. This effect has been called punctuated
equilibrium dynamics because the dynamics stay in an equilibrium for long times until the
equilibrium is “punctuated” through stochastic fluctuations and the dynamics switch to
another equilibrium on a much shorter time scale. It has been proposed that this effect
is due to the evolutionary system being in a self-organized critical state [4]. To study
this effect models have been developed showing that species may go extinct in avalanches
of power-law distributed size [4, 60, 67]. However, these models are more abstract than
the individual-based models we use in this thesis and it is therefore not clear how the
interactions of individuals influence the distribution of the extinction events. Here, we
present a simple model based on a reproduction process with independent birth and death
events. The interactions of predator and prey individuals are reflected by dynamic fitness
functions. We show that this model both exhibits cyclic behaviour as well as punctuated
equilibrium dynamics, which indicates that both effects may be induced by the co-action
of dynamic fitness and stochastic reproduction.

In the following we describe an individual-based model which combines the stabilized dy-
namics of IBD processes with the general interactions between individuals of different
genotypes (cf. Chapter 3). In this model we consider M different genotypes each repre-
senting another species in a food web [21,95]. An individual of a certain genotype may thus
be the prey of individuals of another genotype positioned higher in the food web, and at
the same time prey on individuals of genotypes further down in the food web. In our model
this is reflected by the fitness functions of the different genotypes. We consider interactions
between the different individuals in such a way that the fitness of an individual is reduced
if there are many predators hunting it, and its fitness is increased if prey is abundand in
the population. A food web has a certain depth d, which is the number of levels from the
basic prey species up to the species on the top level of the food web that is not hunted by
any other species. In the following, for clarity of the argument we describe how to model
a food web of depth d = 3. However, the model is easily generalizable to any depth d.

For a food web of depth d = 3 we label the different species by the three levels A, B and C
in the food web. Individuals of type A are feeding on some limited resources, e.g. plants,
and are the prey of type B individuals which are in turn the prey of type C individuals.
The species of one type are positioned on one level of the underlying food web, but differ
in the species they hunt and in the species they are hunted by (cf. Figure 4.10).

We model the interactions between the different individuals using dynamic fitnesses as in
Chapter 3: First, we assume that populations of type A individuals will rapidly grow as
long as enough recources are there, and we assume that each species is specialized on one
food source, but also using some of the other type A individuals’ food sources. Taken
together, this results in a fitness function

fAi (k) = 1 + a− αki −
∑

j 6=i,j∈A
βkj (4.23)

for population i of type A. Here, k = (k1, k2, . . . , kM) is the vector of all population
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sizes, a > 0 models an increased fitness due to abundant resources,α > 0 models the
strong competition for resources of the individuals of species i and β > 0 models the weak
competition with the other type A individuals. If a and α are large enough, the population
is stabilized according to the considerations in Section 4.3. Each of the type B species are
specialized on certain types of prey, i.e. they hunt only some of the type A species while
they ignore others. We assume that they have some species which they mainly prey on
and some which are also hunted with a less strong impact. The predation decreases the
type A populations’ fitness so that the overall fitness function becomes

fAi (k) = 1 + a− αki −
∑

j 6=i,j∈A
βkj −

∑
j∈B

γijkj (4.24)

where γij = γS if there is strong predation of species i from j, γij = γW if predation is
weak, and γij = 0 if species j does not prey on species i. While the fitness of the type A
individuals decreases with predation, the fitness of type B individuals increases so that we
obtain

fBi (k) = 1− b+
∑
j∈A

δijkj (4.25)

with δij = δS, δij = δW or δij = 0 as above. Here, b > 0 models the species’ reduced fitness
if no prey is to be found. Similarly, individuals of type C strongly or weakly prey on type
B species, so that the type B fitness function becomes

fBi (k) = 1− b+
∑
j∈A

δijkj −
∑
j∈C

εijkj (4.26)

and type C fitness
fCi (k) = 1− c+

∑
j∈A

ζijkj (4.27)

with εij ∈ {εS, εW , 0} and ζij ∈ {ζS, ζW , 0} as above. Figure 4.10 illustrates the resulting
food web structure for an example system.

Figure 4.10.: The interaction structure of
the predator-prey model. Strong black
arrows indicate strong predation and
thin gray arrows weak predation.

We consider mutations between the different
species in the following way. New mutants
may turn to new food sources without changing
their position in the level of the food web. We
represent this with the mutation probabilities
µij = µAA for an individual of a type A species
i to mutate to another type A species j. The
same applies for type B and type C with mu-
tation probabilities µij = µBB and µij = µCC .
With a lower probability new mutants may also
turn to a new role in the food web, i.e. they may be positioned on a new level. We represent
this with the lower mutation probabilities µij = µAB for individuals of type A species i to
mutate to a type B species j and similarly with µij = µBC for individuals of type B species

63



4. Dynamic fitness stabilizes populations with variable population size

i to mutate to a type C species j.

In the following, we study an example system with eight different species of type A, and
four of type B and C respectively. The overall food web of this model is illustrated in
Figure 4.10. The dynamics of this system exhibits two features that are proposed to
occur in real evolutionary systems [5, 31]. An example dynamics is shown in Figure 4.11,
illustrating the points discussed in the following. The features of the dynamics are:

1. Quasi-cycles. As Figure 4.11c illustrates the population sizes of predators and prey
fluctuate cyclically, however not perfectly periodically. Rather, the fluctuations are
influenced by the stochastic fluctuations from the random events of the IBD process.
Periodic fluctuations are well known for predator-prey systems [5, 93], however in
these systems the fluctuations are perfectly periodic and deterministic. Already in
the 1970s it was suggested that the stochastic nature of the underlying dynamics in
predator-prey systems may be the cause of periodic dynamics [61], but only recently
was this analyzed in detail [53,70]. Thus, it was revealed that normally stable states
in predator-prey systems become unstable under stochastic dynamics, so that fluc-
tuations arise, which are not perfectly periodic, but still cyclic. That means, that
the microscopic stochastic dynamics excite macroscopic oscillations which are phase-
forgetting. Therefore, this dynamical feature is called a quasi-cycle [6, 53, 70]. As
the dynamics in Figure 4.11c and its power spectrum in Figure 4.11d demonstrate,
our system clearly exhibits these quasi-cycles (compare also with power spectrum in
Figure 2 in [53]). Figure 4.11d also shows, that the amplitude of the fluctuations is
highest for the species which are on top of the food chain. Even more, the influence
of the stochastic dynamics on the fluctuations seems to give rise to a resonance-like
effect (see dynamics between t = 500 and t = 1000 in Figure 4.11c) where the fluc-
tuations become very large. This effect might be caused by extinction events which
make the dynamics more unstable than in the system studied in [53] by McKane
and Newman. Thus, the introduced system is an example system for the important
influence of the stochastic nature of the dynamics on predator-prey dynamics.

2. Punctuated equilibrium dynamics. Panels a and b of Figure 4.11 show that the dy-
namics often stay close to a metastable state for long times before sudden switches
to new metastable states occur. We had observed similar behaviour already in Chap-
ter 3. Here, this behaviour often includes the extinction of species which is visible in
Figure 4.11e, where the number n of alive species is plotted versus time. Actually,
if one species goes extinct through stochastic fluctuations, the metastable state the
dynamics were in can become unstable so that the dynamics will move to a new
metastable state. Thus, the extinction of one species often has a catastrophic impact
on the evolution of other species. For example, if a species of type A vanishes, the
food for a type B species becomes scarce. Or if a type C species vanishes, a type B
species can grow strongly which in turn decreases the fitness of type A species. Thus,
one extinction event is often followed by more extinction events a few generations
later in an avalanche-like fashion. We measured the size of such avalanches in the
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following way. We define that an avalanche was initialized at a time t if the number
of alive species n(t) has decreased in the last generation: n(t) < n(t− 1). After such
an initialization of an avalanche we checked if further species had vanished from the
system after a time t + 50. This waiting time is large enough to allow the effect of
the vanishing species spread through the system so that other species can go extinct,
but still small enough so that the probability for another unrelated extinction event
to occur remains small. If n(t + 50) < n(t), we then checked whether this lead to
further extinctions after a further time t + 100. We repeated this procedure itera-
tively until we found a time t+ i · 50, i ∈ N at which no further species had vanished
from the system, i.e. n(t+ (i− 1) · 50) = n(t+ i · 50) we obtained the avalache size as
s = n(t)−n(t+ i ·50). Figure 4.11f shows the thus obtained distribution of avalanche
sizes m(s) in a log-log-plot. Also shown is a line, suggesting that the avalanche
sizes decrease like a power law. This is an indicator that the dynamics are in a self-
organized critical state, i.e. extinction events affecting many species can be caused
by the stochastic reproduction dynamics alone. Therefore, our results suggest that
our system exhibits punctuated equilibrium dynamics, which is an important feature
of evolutionary dynamics as it determines that evolution does not proceed gradually
but rather in sudden steps [31]. There are already evolutionary models which exhibit
punctuated equilibrium dynamics [4, 60, 67], however these models are abstract and
study the emergence of the phenomenon on the population level. Thus, these models
cannot determine how individuals’ reproduction processes and the interactions be-
tween the individuals influence the phenomenon. With the results presented here,
our model appears promising to study the influence of reproduction processes and
individuals’ interactions on punctuated equilibrium dynamics.

The interesting dynamics of this example system demonstrate that the IBD process with
dynamic fitness seems to be a promising model to study the impact of stochastic reproduc-
tion processes and interactions on evolutionary dynamics. To our knowledge quasi-cycles
and punctuated equilibrium dynamics were until now only observed in different models,
but not in one unifying model. Thus, our model shows that both effects can be induced by
the co-action of dynamic fitness and stochasticity alone. Additionally, our model may clar-
ify how interactions and stochastic reproduction cause these effects. Also, it could show
whether they mutually influence each other; e.g. a higher amplitude of the quasi-cycles
could cause populations to become more unstable as they have a small population size in
the valley of the cycle, so that this could induce more avalanches of large size. Finally,
we remark that the stochastic switching of the dynamics in Panels a and b of Figure 4.11
together with the distribution of extinction events in Figure 4.11f suggests that our model
system exhibits punctuated equilibrium. However, further studies in larger systems are
necessary to confirm this. In our system the avalanche sizes s could only be observed on a
scale of the order O(10) which, in a model of 16 species, is already a large avalanche. Still,
to gain better statistics with larger avalanche sizes it is thus necessary to study systems
with more species.
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Figure 4.11.: The predator-prey model system exhibits rich dynamics. (a) shows the long term
dynamics of the population sizes kA (blue), kB (red) and kC (green) of type A, B and C
individuals respectively. Each data point is averaged over a time t = 500 so that the cyclic
fluctuations shown in (c) are averaged out. Shown is a time interval of length 106 of a simulation
of the dynamics lasting 107 time units. Long periods of quasistationarity are followed by short
bursts of rapid changes which is also illustrated by (b) showing the population sizes of three
single species of type A (blue), type B (red) and type C (green), also averaged over a time
t = 500. (c) shows the same population size dynamics kA, kB and kC as (a) on a smaller
time scale. The dynamics exhibit cyclic fluctuations influenced by stochastic noise which can
also give rise to resonance effects as seen between t = 500 and t = 1000. (d) shows a plot of
the power spectrum P (ω) of the three time series kA(t), kB(t) and kC(t) which confirms the
impression given by (c) that they exhibit cyclic fluctuations. The intensity of the fluctuations
is highest for the species which are on the highest level in the food web. (e) shows the number
n of alive species for the dynamics shown in (a). n often decreases in avalanches of size s. (f)
shows the number m(s) of avalanches of size s that occured in the example dynamics of (a) in
a time t = 107 after fadeaway of initial conditions, i.e. the avalanche sizes were only recorded
after a waiting time t = 106. The gray curve m(s) = 8000 · s−4 is added as a guide to the eye.
The interaction parameters for this system were a = 0.2, b = 0.15, c = 0.3, α = 2.5 · 10−4,
β = 10−5, γS = 1.5 · 10−4, γW = 5 · 10−5, δS = εS = 3 · 10−4, δW = εW = 1.5 · 10−4,
ζS = 5 ·10−4 and ζW = 2 ·10−4. The mutation probabilities were µAA = µBB = µCC = 2 ·10−6

and µAB = µBC = 2 · 10−7.
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4.6. Conclusion

In this chapter we have studied populations evolving under a reproduction process with
independent birth and death events. In this setting, the overall population size fluctuates
stochastically so that a population can go extinct. We showed that the population dynamics
are unstable under this reproduction process if the individuals exhibit fixed fitnesses: If
the population’s fitness is larger than one the population will on average grow without
limit, if it is smaller than one it will go extinct. If the fitness is exactly f = 1 we found
that the population exhibits an extinction time distribution pE(t) – the probability that
the population will go extinct at time t – following a power law. Thus, the the population
will go extinct with high probability after relatively short times and only persist for long
times with low probability. However, assuming a carrying capacity N∗ for the population
we obtained a dynamic population-size-dependent fitness yielding a qualitatively different
extinction time distribution; in such a setting the distribution follows an exponential decay.
Our results show that a population with dynamic fitness modelling a carrying capacity will
persist with high probability for much longer times than the population with fixed fitness.
We conclude that in models studying populations with fluctuating population sizes dynamic
fitness may be an important mechanism stabilizing the population.

In the following we presented an example system modelling predator-prey interactions
based on the previously studied independent birth and death process. We thus illustrated
how the here presented framework may be used to model ecological systems. The re-
sulting system exhibits rich dynamical features such as quasi-cycles [6, 53] or punctuated
equilibrium dynamics [31] which was to our knowledge not yet studied in individual-based
models, but only in more abstract models. Also, we do not know of any previously defined
model system where both of these evolutionary features were observable. As the underly-
ing model is based only on dynamic fitness and a simple reproduction process, an analytic
study of how the individuals’ interactions cause these effects seems feasible. We therefore
suggest that this model may be a good approach to gain a better understanding under
which conditions quasi-cycles or punctuated equilibrium dynamics emerge.
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5. Horizontal gene transfer in changing
fitness landscapes

Recent studies suggest that horizontal gene transfer (HGT) – the exchange of genetic
material between individuals of different species – may have played an important role in
early evolution and still contributes to todays ongoing evolution [14, 45, 46]. However, the
influence of HGT in evolutionary dynamics is still not well understood. There are rather
many assumptions about the role of HGT in evolution, but only few theoretical studies
on how HGT affects evolutionary dynamics. One of these assumptions is that HGT might
help populations to adapt to changing environments [82]. Recently, Raz and Tannenbaum
showed in a simple model that in any static environment HGT has a deleterious effect
on a population at mutation-selection balance [73]. This result was confirmed by Vogan
and Higgs [92] in simulations using an agent-based model. As HGT still plays a role in
the bacterial evolution today [37, 46, 57], they proposed that HGT may confer a fitness
advantage in changing fitness landscapes. However, to our knowledge it has still not been
shown explicitly that HGT yields a fitness advantage for populations in changing fitness
landscapes.

Therefore, in this chapter we study HGT in changing environments using an individual-
based model. Here, using the individual-based model introduced in Sections 2.2.2 and 2.2.6
with a slowly fluctuating fitness landscape we explicitly show, that HGT can give a popula-
tion a fitness advantage in changing environments where the optimal rate at which HGT is
most advantageous for the population depends on the speed at which the fitness landscape
changes. Thus, depending on the frequency of environmental change there is an optimal
competence for HGT exhibited by the individuals of the population which maximizes their
fitness.

5.1. Model setup

Consider a population evolving on a changing fitness landscape defined by a genome of
length l as described in Section 2.2.1, so that genotype space assumes a hypercube structure
with mutation probabilities µij. Let us for now assume that all mutation probabilities are
equal µij = µ. Later we will also consider distributed mutation probabilities. As we have
seen in Chapter 3, individuals interactions can imply rapid changes in a population’s fitness
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which we exclude here to focus on the effect of HGT on an adapting population. Therefore,
in the following we will not include interactions in our model, but rather apply a fitness
landscape driven by external forces. This means that the fitness fi(t) of genotype i depends
explicitly on time, but not on the composition of the population. We consider a Fujiyama
landscape [20] – i.e. the fitness increases gradually towards one single fitness peak – with
periodically shifting peak defined by the periodically fluctuating fitness function

fi(t) = 1 + A sin(ωt) cos
(
π
HD(i, 0)

l

)
(5.1)

for genotype i. Here A is the amplitude and ω the frequency of the fluctation and HD(i, 0)
indicates the Hamming distance between genotype i and genotype 0. Thus, depending on
time only, half of the time genotype 0 exhibits the highest fitness and the other half of the
time genotype 2l − 1 has the highest fitness. Such a periodic fluctuation may for example
model seasonal effects.

We further assume that the individuals are open to exchange genetic material which we
represent in the model by introducing a number m of HGT-links. These HGT-links are
inserted randomly in the way described in Section 2.2.6. We assume that each HGT link
has the same HGT base rate c.

5.2. Adaptation to changing landscapes

Studying the population dynamics in this system we find (as expected) that the population
tries to move to the peak of the Fujiyama landscape. As the peak is shifted periodically the
population has to adapt to the changing landscape repeatedly. Thus, the mean fitness 〈f〉
of the population increases when adapting to the new peak, but decreases when the peak is
shifted to a new position. Depending on the frequency with which the landscape changes,
sometimes the population is capable of adapting in time to the new peak through repeated
mutations and sometimes the fitness decreases more strongly as the population does not
reach the newly emerging fitness peak in time. The population has more problems to
adapt to the landscape the faster it changes. This is illustrated in Figure 5.1 which shows
example trajectories of the population’s mean fitness for different frequencies ω with which
the fitness fluctuates (cf. equation (5.1)).

Does HGT increase or decrease the average fitness of a population evolving in such a fitness
landscape? To answer this question, we now randomly introduce to the system a number
m of HGT-links as defined in Section 2.2.6. Assigning different values for the base rate c for
different HGT-links leads to qualitatively similar results as using the same value c for all
HGT-links. Hence, for simplicity we set the base rate for all links to the same value c. In
this way, we study the overall influence of HGT on the fitness of the population by varying
the HGT base rate c. In simulations for each value c we let the population evolve for a long
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Figure 5.1.: A population adapts best to slowly changing fitness landscapes. The Figures show
example trajectories of the mean fitness 〈f〉 (red) of a population evolving in a changing fitness
landscape with the fitness f0(t) of genotype 0 shown in orange. The frequency of change was
ω = 0.001 in (a), ω = 0.01 in (b) and ω = 0.1 in (c). Further parameters were l = 7, N = 1000,
µ = 0.001 and A = 0.1 and in this example no HGT occured (c = 0).
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Figure 5.2.: The optimal HGT base rate copt where HGT is most beneficial for a population
depends on the frequency ω with which the fitness landscape changes. (a) shows the popula-
tion’s overall mean fitness

〈
f
〉
in dependence of the HGT base rate c for different frequencies

ω = 0.0001 (blue), ω = 0.01 (red) ω = 0.02 (orange), ω = 0.05 (green) and ω = 0.1 (gray).
HGT improves the population’s potential for adaptation in changing environments as for each
frequency ω > 0 there is an optimal base rate copt > 0 which maximizes

〈
f
〉
. We measured

this optimal base rate copt in dependence of ω which is shown in (b). The data suggests that
the optimal base rate increases linearly with the frequency which is illustrated by the least
squares fit to the data copt(ω) = 0.06 ± 0.049 + (33 ± 1.3) · x (gray line). System parameters
were l = 7, m = 1000,N = 1000, µ = 0.001 and A = 0.1. The simulation time for each data
point in (a) was T = 105. For all data points in (a) the variance is on the order of 10−7 or
smaller, so that we did not add error bars to the data points.
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time and measure the population’s overall mean fitness
〈
f
〉
, which is the time average of

the population’s mean fitness. We repeat this procedure for different frequencies ω. Over
a wide range of frequencies we found in our simulations that for each frequency ω > 0 an
optimal HGT base rate copt > 0 maximizes the population’s overall mean fitness. This
finding is illustrated in Figure 5.2a for different frequencies ω. Clearly copt decreases with
decreasing ω which is illustrated in Figure 5.2b suggesting a linear relationship between
frequency ω and optimal HGT base rate copt. We observe that in the limit ω → 0 of slowly
changing landscapes also the optimal HGT base rate becomes neglectable (copt → 0). This
confirms the findings in [73,92] that HGT does not increase a population’s fitness in fixed
environments. We remark, that for the fitness function (5.1) the limit ω = 0 does not
exist as the (fixed) fitness value fi depends on the initial condition. Thus, the special case
ω = 0 is qualitatively different from the fluctuating fitness landscape we studied here and
we therefore cannot determine copt for ω = 0 directly. Figure 5.2a also illustrates that
with increasing frequency ω the maximal overall mean fitness

〈
f
〉

opt decreases, because
it becomes more and more difficult for the population to adapt to the fast changes in the
landscape. Yet, the fitness gain due to HGT is clearly visible. All in all, we have now
shown explicitly that HGT can confer a fitness advantage in changing environments.

5.3. Conditions for the beneficial effect of HGT

Is there also an optimal mutation probability µopt (at a given HGT base rate c) for the
adaptation to the changing fitness landscape and how does the optimal HGT base rate copt
depend on this mutation probability? In the previous simulations we kept the mutation
probability µ fixed, so that we found an optimal HGT base copt for this special value µ only.
Now, we need to clarify how mutations and HGT act together to help a population move
in a changing landscape, i.e. we search for the parameter setting (µopt, copt) maximizing
the population’s overall mean fitness

〈
f
〉
at a given frequency ω. To this end, we varied

both the mutation probability µ and the HGT base rate c for a given frequency ω and
measured the overall mean fitness

〈
f
〉
as above. The simulation results indicate that there

is an optimal mutation probability µopt maximizing the fitness of the population which is
illustrated in Figure 5.3 for two different frequencies ω. Furthermore, the results shown in
Figure 5.3 suggest that for this mutation probability µopt HGT does not increase the fitness
of the population; for a given frequency ω the mutation probability µopt seems to determine
the best possible speed of adaptation for the population which cannot be increased by HGT,
i.e. copt = 0. For all parameter sets with µ > µopt HGT was deleterious. However, close to
the optimal mutation probability HGT can still be beneficial, as for example Figure 5.3b
shows where the overall mean fitness for the parameter set (µ = 0.001, c = 1) comes very
close to the optimal overall mean fitness at the parameter set (µ = 0.005, c = 0). In this
setting, also for the optimal mutation probability µopt the deleterious effect of HGT seems
to set in only for c > 1.
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Figure 5.3.: In fitness landscapes changing with one frequency ω there is an optimal mutation
probability µopt maximizing the overall fitness of the population. Both panels (a) and (b)
show the measured overall mean fitness

〈
f
〉
in dependence of the HGT base rate c for different

mutation probabilities µ and frequencies ω = 0.01 (a) and ω = 0.05 (b). Mutation probabilities
were µ = 0.0001 (blue), µ = 0.001 (red) and µ = 0.005 (orange) and µ = 0.01 (green) in (a)
and µ = 0.001 (blue), µ = 0.01 (red), µ = 0.02 (orange) and µ = 0.05 (green) in (b). Further
system parameters were l = 7, m = 1000, N = 1000, and A = 0.1. Each data point was
obtained by simulating the dynamics for a time T = 105. The variance for all data points is
on the order of 10−7 or smaller.

The dynamic change of the fitness landscape should – to be more realistic – include more
complex features than just a periodic switching with only one frequency ω. Is there a
dynamically changing landscape with optimal mutation probability µopt for which HGT
gives an additional advantage (copt > 0)? To answer this question we studied fitness
landscapes changing in different ways. For example, we used landscapes changing with
multiple frequencies, but also landscapes changing with sudden randomly occuring jumps
mimicking punctuated equilibrium dynamics [31], or landscapes fluctuating randomly. Yet,
the results of the simulations were qualitatively the same as above. In all of these landscapes
we found that a parameter set (µopt, copt = 0) maximizes the population’s overall mean
fitness, i.e. HGT does not yield a fitness advantage if the population exhibits the optimal
mutation probability. Only, for µ < µopt does HGT increase the population’s overall mean
fitness. As we could not check all possible dynamic fitness landscapes we cannot exclude,
that a landscape exists, where HGT also confers an advantage at µopt, but the collection
of all our simulation results indicate that this is not the case.

In real biological systems the mutation probabilities µij between different genotypes are
usually diverse, i.e. there is not one uniform value µij = µ [22, 77]. How does such muta-
tional diversity influence the positive impact of mutations and HGT in changing environ-
ments? We considered a fitness landscape as defined above with the only difference, that
the mutation probabilities were chosen randomly from a uniform distribution µij = 2µξij
with the random number ξij uniformly drawn from the interval [0, 1] and the mean mu-
tation probability µ. In this fitness landscape we varied the parameters for the mean
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Figure 5.4.: In fitness landscapes with non-uniform mutation probabilities µij there is an optimal
mean mutation probability µopt > 0 and optimal HGT base rate copt > 0 maximizing the overall
fitness of the population, if the landscape is changing with one frequency ω. The Panel shows
the measured overall mean fitness

〈
f
〉

in dependence of the HGT base rate c for different
mean mutation probabilities µ where the mutation probabilities were distributed uniformly
with µij = 2µξij for ξij ∈ [0, 1]. The fitness fluctuated with a frequency ω = 0.05. The mean
mutation probabilities here were µ = 0.001 (blue), µ = 0.005 (red), µ = 0.01 (orange), µ = 0.02
(green) and µ = 0.03 (gray). The highest overall fitness value was measured for µopt = 0.01
and copt = 1. Each data point was obtained by simulating the dynamics for a time T = 105.
Further system parameters were l = 7, m = 1000, N = 1000, and A = 0.1.

mutation probability µ and the HGT base rate c. For each of these values we again mea-
sured the overall mean fitness

〈
f
〉
of the population. In this setting, we found that HGT

actually gives a slight advantage to the population even for the optimal mean mutation
probability µopt. An example is shown in Figure 5.3. The results suggest that for low mean
mutation probabilities µ HGT is highly beneficial for the population, while close to the
optimal mutation probability µopt = 0.01, the increase in fitness due to HGT is small but
noticeable. Thus, our results suggest that if mutation rates between different genotypes
are diverse, a population evolving in changing environments may obtain optimal fitness if
it exhibits HGT.

5.4. Conclusion

All in all, we explicitly showed that the assumption in [73, 92] that HGT can improve the
fitness of a population in changing environments is true. However, we found that close to
an optimal mean mutation probability µopt, HGT gives only a slight advantage for non-
uniform mutation probabilities. For uniform mutation probabilities µij = µ HGT is only
beneficial if the mutation probabilities are too small. Our results thus suggest that HGT
may play a beneficial role for populations adapting to changing environments by providing
a mechanism to cross regions in genotype space where mutation probabilities are small.
The beneficial impact of HGT on the population observed in our simulations was relatively
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small.

We speculate that dynamically changing competences may make HGT more advantageous
for adapting populations. It has been shown that competence can depend on the well-
being of an individual so that in our model the parameter c would depend on the fitness of
an individual [47, 48]. In such a setting the deleterious effects of HGT for a well-adapted
population would be reduced while still yielding the advantage of fast adaptation when the
landscape changes. To check if such a mechanism may increase the positive impact of HGT
will be a goal of future work on evolutionary dynamics in changing fitness landscapes.
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6. Evolutionary dynamics with frequent
horizontal gene transfer

The emergence of the first species is still a puzzle. In the last decade it has been proposed
e.g. by Woese [96,97] that before the emergence of distinct species there was a reactive soup
where HGT dominated the evolutionary dynamics. In this reactive soup no distinct species
exist, but rather every life form has its own set of genes which are frequently exchanged with
other individuals. Many studies agree on HGT probably having played a prominent role
in early evolution [14,18,45,96,97]. Yet, the properties of such HGT-dominated dynamics
are not known and it is completely unclear how distinct species could emerge from the
reactive soup [14,18,97]. In this chapter we analyze how frequently occurring HGT affects
evolutionary dynamics and how it may cause a reactive soup state.

The few existing previous theoretical studies considering HGT mainly focussed on how
HGT influences the fitness of a population [73,92] (cf. Chapter 5) or the impact of HGT in
the quasispecies model [7, 36, 68]. With the quasispecies model the influence of mutations
in a population may be analyzed and thus the inclusion of HGT in this model revealed how
HGT may change the impact of mutations in population dynamics. The studies [7, 36,68]
revealed that HGT influences the mutational error threshold – a critical mutation rate
above which the population completely spreads out in genotype space (cf. Section 2.2.5) –
in the quasispecies model and can give rise to a bistability in the system. However, these
results do not reveal the general impact of HGT on evolutionary dynamics which remains
unknown.

Here, we use the HGT model introduced in Section 2.2.6 and study the impact of HGT
on the population dynamics in a static fitness landscape. We concentrate on the effect of
changing the HGT base rate c on the evolutionary dynamics. The individuals’ inclination
to exchange genetic material scales with c so that a large value c models the frequently
occuring HGT at early evolution. By varying the HGT base rate c we find a critical
transition similar to the error threshold in quasispecies theory [23,24], where a new stable
state emerges which is dominated by HGT instead of selection dynamics. The system
becomes bistable, so that a selection-dominated state is stable as well and the dynamics can
stochastically switch between these two states. Our analysis reveals that HGT alone suffices
to cause the emergence of this bistability. This stochastic switching between the HGT-
dominated and the selection-dominated state and the vanishing of the HGT-dominated
state by lowering the competence may help explain the transition from the reactive soup
to distinct species.
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6. Evolutionary dynamics with frequent horizontal gene transfer

6.1. Model setup and the introduction of an entropy
variable

Consider a population evolving on a static Fujuyama fitness landscape [20] where fitness
increases gradually in genotype space towards one single fitness peak. For the genotype
space we assume a hypercube defined by a genome of length l as described in Section 2.2.1.
The fitness function of genotype i is defined by

fi(t) = 1 + A cos
(
π
HD(i, 0)

l

)
(6.1)

throughout this chapter, where A defines the height of the fitness peak in the Fujiyama
landscape and HD(i, 0) is the Hamming distance between genotype i and 0 as in Chapter 5.
Thus, genotype 0 is the fittest and genotype 2l − 1 is the least fit in this fitness landscape
at all times. We assume a uniform mutation probability µij = µ for all mutation links in
the hypercube. We have checked that moderately distributed mutation probabilities do
not change the results of this chapter qualitatively.

We further assume that the individuals are open to exchange genetic material which we
represent in the model by introducing a number m of HGT-links. These HGT-links are
inserted randomly in the way described in Section 2.2.6. As for the mutations we assume
initially that all HGT-links have the same HGT base rate c to simplify the analysis. We
will study the effect of distributed HGT base rates c later.

How should we vizualize the dynamics of this system? It is not feasible to study the
dynamics of all the population sizes ki of the different genotypes i for larger l as there are
2l different genotypes in the system. We therefore introduce a new variable S(t) which
measures how distributed the population is in the fitness landscape. We define S(t) as an
entropy-like variable

S(t) = −
2l−1∑
i=0

ki(t)
N

log
[
ki(t)
N

]
(6.2)

and call this the population entropy. This population entropy is S = 0 if the entire
population is concentrated on one single genotype i (ki = N). If the population is equally
distributed among all genotypes (ki = N/2l), the population entropy takes its maximal
value

S =: Smax = l · log (2) . (6.3)

For example, on the Fujiyama landscape defined above for low enough mutation probabil-
ities and HGT base rates the population entropy will stay close to zero as the population
is mainly concentrated around the fitness peak at i = 0 (cf. also Figure 6.1).
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6.2. A transition in evolutionary dynamics

Depending on the individuals’ competence for exchanging genetic material, how does HGT
influence the population dynamics qualitatively? We studied the time evolution of the
population entropy for different HGT base rates c in an otherwise unchanged fitness land-
scape as defined in Section 6.1. As we focus on the impact of HGT, we fix the mutation
probability at a low value µ = 0.1N−1. Thus, mutations still occur in the population and
the dynamics cannot converge to an absorbing state, yet the impact of the mutations on
the overall evolution of the population remains small (cf. also Chapter 3). The population
entropy reveals qualitatively different population dynamics for different HGT base rates c.
Figure 6.1 illustrates the different dynamics for one example system. In general we find that
for low c the population is mainly concentrated around the fittest genotype as expected.
The dynamics of the population entropy remain close to zero, with minor fluctuations due
to mutations and the stochasticity of the underlying population dynamics (cf. Figure 6.1a).
This low entropy state is reached from arbitrary initial conditions after a transition period.
Still, in this low entropy state the average fitness of the population may switch between
different values (cf. Figure 6.1d) as the population is concentrated on different genotypes at
different times. For higher HGT base rates c the dynamics occasionally reach a new state
of high population entropy, which we call the high entropy state (cf. Figure 6.1b). In this
state the population is distributed throughout the entire fitness landscape as the average
rate of HGT events is highly increased. We observe that the dynamics switch stochastically
between the low and the high entropy state, in each state fluctuating around an equilibrium
value for many generations. The switching from one state to the other occurs on a much
shorter time scale of only few generations. Furthermore, the average percentage of time
spent in the low entropy and high entropy state respectively depends on c. The dynamics
stay longer in the high entropy state for higher c (cf. Figure 6.1 and Figures 6.6 and 6.7
for more details). Thus, for high enough c the dynamics remains in the high entropy state
for almost all times starting from any initial condition (cf. Figure 6.1c). Finally we note,
that the value of the population entropy in the high entropy state is not the maximally
possible population entropy Smax, i.e. the population is not perfectly distributed among
the genotypes in the high entropy state.

What drives the dynamics in the low and high entropy states? The examples in Panels d-f
of Figure 6.1 illustrate that in the low entropy state the population’s mean fitness 〈f〉 is
relatively high, often even close to optimal as the population concentrates on the genotypes
around the fitness peak. In the high entropy state the mean fitness 〈f〉 is rather close to
the average fitness value

fav = 1
2l

2l∑
i=1

fi = 1 (6.4)

as the population is completely spread out in the genotype space. Consequently, as Pan-
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els g-i of Figure 6.1 illustrate, the population’s HGT rate

rHGT =
m∑
i=1

c · kA
kB
N

(6.5)

– where the sum goes over all m HGT-links in the system (cf. equation (2.15) in Sec-
tion 2.2.6) – is close to zero in the low entropy state so that reproduction events occur
much more often than HGT events. We remark that the HGT rate rHGT is a dynamic
variable of the system quantifying the rate at which HGT occurs in a certain state of
the system while the HGT base rate c is a system parameter quantifying the individuals
competence for HGT. In the high entropy state the HGT rate rHGT is substantially higher
than in the low entropy state. We observe that it becomes on average of the order of the
reproduction rate or larger. For example, in Figure 6.1 the reproduction rate is always
approximately rRepr ≈ 1000, so that in the high entropy state in Figure 6.1h the average
HGT rate approximately equals the reproduction rate and for higher base rates c as in Fig-
ure 6.1i it is larger than the reproduction rate. Thus, we conclude that in the low entropy
state the dynamics are dominated by the selection process so that the population concen-
trates around the fitness peak, but in the high entropy state the dynamics are dominated
by HGT and selection plays only a minor role.

To understand the transition and the emergence of the bistability of the population dy-
namics we developed a method – based on the population entropy – to study the forces
induced by selection and HGT on the population dynamics. The evolution of the popu-
lation is event driven such that at each event – be it a reproduction event of the Moran
process or the exchange of genetic material in an HGT event – the setup of the population
can slightly change, and thus also the population entropy S defined in (6.2). Therefore, at
each event time there is a population entropy Sb directly before the event and a population
entropy Sa directly after the event. The resulting change of population entropy

∆S = Sa − Sb (6.6)

will in general depend on the type of event (reproduction or HGT event) and the actual
state of the system. On average one of these events will induce a mean change ∆S(S) of
the population entropy if the system is in a state with population entropy S. Considering
the rate r(S) at which the events occur, for a given state S the population entropy will on
average change with

Ṡ(S) = r(S) ·∆S(S) (6.7)

through the reproduction and HGT events.

In our model system reproduction and HGT events are completely independent, so that
we may study their effects on the population entropy independently of each other. Thus,
the average change of the population entropy becomes

Ṡ(S) = ṠRepr(S) + ṠHGT(S) = rRepr(S) ·∆SRepr(S) + rHGT(S) ·∆SHGT(S) (6.8)
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Figure 6.1.: For different HGT base rates c qualitatively different population dynamics emerge.
Shown are example dynamics of the population entropy for c = 1 (a), c = 3 (b) and c = 5
(c) in an example system of a population of N = 1000 individuals with genome length l = 7,
m = 2000 HGT-links and a fitness peak of height A = 0.1. For low HGT base rates c the
population entropy fluctuates slightly above zero for all initial conditions (a), for high c the
population entropy almost always fluctuates around a high value for all initial conditions (c)
and for intermediate HGT base rates the dynamics switch stochastically between these two
states (b). The maximal population entropy here is Smax = 7 log (2) ≈ 4.85. In the low
entropy state the population dynamics are driven by selection, in the high entropy state by
HGT. Panels (d), (e) and (f) show the mean fitness 〈f〉 of the population corresponding to
the entropy dynamics in (a), (b) and (c). The corresponding average HGT rates rHGT are
illustrated in Panels (g), (h) and (i). For low population entropies the fitness is high and HGT
rate small and vice versa for high population entropies.
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Figure 6.2.: The reproduction events on average decrease the diversity of a population. (a) shows
the measured average effect ∆SRepr(S) of the reproduction events in dependence of the popula-
tion entropy for the example system studied in Figure 6.1. The genotypes’ fitness is in the ranges
f ∈ [0.9, 1.1] so that the reproduction rate can only fluctuate between rRepr ∈ [0.9 ·N, 1100 ·N ].
Therefore, the reproduction rate only slightly depends on the system state as (b) illustrates, so
that the rate of change ṠRepr(S) due to reproduction shown in (c) has a similar shape as the
effect ∆SRepr(S) in (a). The results in (a)-(c) are almost independent of the HGT base rate
in the system, so that only data for c = 1 is shown. Each dataset was obtained in simulations
measuring the dynamics for a time T = 107.

with the reproduction rate rRepr(S) = Nf(S) determined by the populations average fit-
ness f(S), the HGT rate rHGT(S), and the mean changes of population entropy ∆SRepr(S)
and ∆SHGT(S) through reproduction and HGT events. In our simulations we measured
these rates and the average changes in dependence of the actual population entropy S: At
each event we recorded the population entropy before the event, the actual reproduction
and HGT rates and the change of population entropy ∆S(S) caused by the event. Aver-
aging over all recorded events that occurred at population entropy S thus yields the mean
changes of population entropy ∆SRepr(S) and ∆SHGT(S) both for reproduction and HGT
events, and the average reproduction and HGT rates rRepr(S) and rHGT(S) respectively.

How does the population entropy change through the reproduction events? Our results
show that reproduction events have a mean effect ∆SRepr(S) < 0 and thus induce a rate
of change ṠRepr(S) < 0 for all population entropies S, i.e. on average reproduction events
decrease the diversity of the population. This is illustrated in an example in Figure 6.2a.
This was expected as selection alone should reduce the diversity of the population until
all individuals are of the fittest genotype. Furthermore, we find that the effect of selection
is stronger the more the population is distributed in genotype space, i.e. ∆SRepr(S) is a
monotonically decreasing function (cf. also Figure 6.2a). The actual shape of this function
however depends on the shape of the actual fitness landscape. As we only assume relatively
small fitness differences between the different genotypes, the reproduction rate rRepr =
N · f(S) is of the same order for all population entropies S (cf. Figure 6.2b). Thus, the
resulting rate of change ṠRepr(S) illustrated in Figure 6.2c has a similar shape as the mean
effect ∆SRepr(S).

The population entropy’s change due to HGT is more complex. We find that HGT events
have a mean effect ∆SHGT(S) which depends on the population entropy in a complex
way (cf. Figure 6.3a). For intermediate population entropies S we find ∆SHGT(S) > 0,
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6.2. A transition in evolutionary dynamics

i.e. HGT on average distributes the population in genotype space. However, close to the
minimal population entropy S = 0 and the maximal population entropy Smax we observe
∆SHGT(S) < 0. This behaviour may be due to the HGT-link structure: Different genotypes
can have different numbers of incoming HGT-links via which HGT brings new individuals
to them. Thus, a genotype with many such incoming HGT-links will on average receive
more individuals through HGT than another genotype with fewer HGT-links. Therefore,
HGT will not distribute individuals perfectly in the system so that at high population
entropies – where the individuals are equally distributed in genotype space – HGT will
reduce the diversity in the population, i.e. ∆SHGT(S) < 0. At low population entropies
the population is concentrated on the few, fittest genotypes which are similar in our system.
Hence, a HGT event will often change an individual such that it will mutate to a genotype
which is already present in the population. In this way, for low population entropies the
HGT events could on average further reduce the population entropy. That the HGT-link
structure causes these effects is suggested by our measurements where we found that the
regions where ∆SHGT(S) is negative depend on the HGT-link structure.

The HGT rate increases nonlinearly with increasing population entropy (cf. Figure 6.3b)
which is caused by the nonlinear factor kA · kB/N in the rate equation (2.15) of the single
HGT-links. Considering all HGT-links the HGT rate is small if the population is concen-
trated on few genotypes – as many HGT-links are inactive because kA = 0 or kB = 0 –
and the rate increases nonlinearly with the population spreading in genotype space – as
more and more links become activated as kA > 0 and kB > 0. Thus, the resulting rate of
change ṠHGT(S) illustrated in Figure 6.3c increases nonlinearly from ṠHGT(0) = 0 reaching
a maximum at intermediate population entropies and becomes negative at high population
entropies. The HGT base rate c mainly acts as a scaling factor for the HGT rate rHGT
(cf. Figure 6.4b) and thus also for the average rate of change ṠHGT(cf. Figure 6.4c) so that
the overall impact of HGT in the evolutionary dynamics is controlled by the HGT base
rate c.

How do reproduction and HGT together drive the evolutionary dynamics? Adding up the
average rate of change due to HGT and reproduction yields the overall rate of change Ṡ(S)
(cf. equation (6.8)) which is illustrated in Figure 6.4c for different HGT base rates c.
We observe that for low HGT base rates the impact of HGT is smaller than the impact
of reproduction for all population entropies. Thus, the population is on average drawn
towards S = 0 explaining the observed dynamics in Figure 6.1a. For higher HGT base
rates c the average rate of change ṠHGT for HGT increases, so that it overcomes the
negative rate of change ṠRepr for high population entropies. At the HGT base rate ccr
where this first occurs, a new stable state of the dynamics is created through a saddle-node
bifuraction. The emerging fixed point is marked in the example in Figure 6.4c. The HGT
base rate at which the saddle-node bifurcation occurs is the critical HGT base rate ccr above
which stochastically switching dynamics are observed (cf. Figure 6.1b), i.e. not only short
stochastic excursions to high population entropy are observed but also dynamics which
stay at high population entropy for longer times. We remark that we here only studied the
average rate of change Ṡ(S) of the population entropy. Yet, as the underlying dynamics are
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Figure 6.3.: The average rate of change ∆SHGT(S) due to HGT depends nonlinearly on the pop-
ulation entropy. Similarly to Figure 6.2, (a) shows the measured average effect ∆SHGT(S) of
the HGT events for the example system studied in Figure 6.1. At low and high population
entropies the effect ∆SHGT(S) is negative while it is positive for intermediate population en-
tropies. All Panels (a)-(c) show results for HGT base rates c = 1 (blue), c = 3 (red) and c = 5
(orange). The mean HGT rate rHGT(S) increases nonlinearly with S (b) so that the rate of
change ṠHGT(S) shown in (c) first increases nonlinearly with S before dropping down at high
population entropies. Each dataset was obtained in simulations measuring the dynamics for a
time T = 107.

stochastic, still fluctuations counteracting the observed average rate of change can occur.
Therefore, the dynamics in Figure 6.1a do not converge to the state S = 0 but rather
fluctuate above this value. Also, this explains why above the critical HGT base rate ccr
the dynamics stochastically switch between the stable states at high and low population
entropy.

Why do the dynamics almost always remain in the high entropy state for high HGT base
rates? Using the average rate of change Ṡ(S) we define a potential

V (S) = −
∫ S

0
Ṡ(S ′)dS ′ (6.9)

in which the dynamics move under additional stochastic forcing. This potential is shown
in Figure 6.4d. According to reaction rate theory [33], the depths of the two stable states’
potential wells determine the average time the dynamics stay close to each of the stable
states. If there are two potential wells A and B at points a and b and a barrier at c,
then the times τA ∝ eEA and τB ∝ eEB the dynamics remain in the wells A and B scale
with the potential differences EA = V (a)− V (c) and EB = V (b)− V (c) if these are large
compared to the diffusion speed ω (EA � ω and EB � ω). As Figure 6.4d illustrates,
for large HGT base rates c the stable state created in the bifurcation has a much deeper
potential well than the state at S = 0. Therefore, for large HGT base rates the dynamics
stay almost always in this potential well and the observed population dynamics are thus
almost always in the high entropy state. From the dynamics shown in Figure 6.1 we have
obtained the stationary probability density ρ(S) to find the the population in a state with
population entropy S. This probability density is illustrated in Figure 6.5 together with the
potential from Figure 6.4d confirming that the dynamics stay the longer in the high entropy
state the deeper the potential well of the high entropy state is. This is also illustrated by
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Figure 6.4.: At a critical HGT base rate ccr a new fixed point at high population entropy emerges
in a saddle-node bifurcation. Here the system is analyzed for which the dynamics are shown in
Figure 6.1. Panels (a) and (b) show the measured rate of change of the population entropy due
to reproduction and HGT from Figures 6.2 and 6.3 respectively. (b) shows results for HGT
base rates c = 1 (blue), c = 3 (red) and c = 5 (orange). Adding the results from (a) and (b)
according to equation (6.8) yields the overall rate of change Ṡ for the dynamics shown in (c).
The arrow indicates the fixed point at high population entropies emerging through a saddle-
node bifurcation. With equation (6.9) we define a potential V (S) for the dynamics which is
shown in (f) for the previous HGT base rates c = 1 (blue), c = 3 (red) and c = 5 (orange)
and additionally for c = 0.5 (gray), c = 2 (green) and c = 4 (black). The potential valley at
high population entropies emerges between c = 1 and c = 2 so that the critical HGT base rate
must lie between these two values. Each dataset was obtained in simulations measuring the
dynamics for a time T = 107.
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Figure 6.5.: For higher HGT-base rates c the population dynamics remain longer in the high
entropy state corresponding to the depth of the potential well at high population entropies.
The potential V (S) from Figure 6.4d is shown again in (a). (b) illustrates the stationary
probability density ρ(S) to find the population in a state with population entropy S which
we obtained from simulating the dynamics for a time T = 104 to let the initial condition fade
away and then recording the population entropy of the population for a time T = 5 · 104. The
different colors in (a) and (b) indicate data sets for c = 0.5 (gray), c = 1 (blue), c = 2 (green),
c = 3 (red), c = 4 (black) and c = 5 (orange). Only for c ≥ 2 do we observe ρ(S) > 0 at
high population entropies in (b) corresponding to the fact that only for c ≥ 2 a potential well
at high population entropies forms in (a). Integrating the data from (b) with

∫ Smax
2 ρ(S)dS

yielded the percentage of time the dynamics remained on average in the entropy state which
is illustrated by the blue dots in (c). The red line is a guide to the eye for the predictions of
reaction rate theory leading to %THigh = eβ∆/(α + eβ∆) with ∆ = EB − EA the difference of
the potential wells’ depths and the constants α and β determined by diffusion speed and the
constraint TA+TB = T [33]. As these constants are unknown in our system we only added this
function to show the general form of the theoretical prediction. For low c this prediction fails
anyway as the prerequisite for the theory does not hold as the potential well at high population
entropy vanishes.

Figure 6.5c which shows the measured percentage of time the dynamics stayed in the high
entropy state (cf. also Figures 6.6-6.9). We conclude that the potential we derived through
the event-based analysis well fits to the observed population dynamics.

6.3. The transition’s dependence on system parameters

How does the emergence of the stable high entropy state depend on the model system’s
parameters? Here we discuss this question in detail. We study the impact of different
genome lengths l, population sizes N and the number m of HGT-links on the emergence of
the high entropy state. Furthermore, instead of identical mutation probabilities and HGT
base rates we use distributed mutation probabilities µij as well as distributed competences
c for different HGT-links. For all these studies we used the model from the previous
section with the fitness landscape defined as above by equation (6.1) and only varied single
parameters of this system.

How does the transition depend on the size of the system, i.e. the genome length l in our
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model? To answer this question we need to consider different HGT-link structures for
a given genome length l because the critical bifurcation point ccr depends on the actual
form of the HGT-link structure. Therefore, for a given genome length l we defined ten
different systems by introducing ten different HGT-link structures in the way described in
Section 2.2.6. As the number of genotypes for a genome length l is 2l, we also inserted m =
m0 · 2l HGT-links into a system of size l to make the systems of different size comparable.
For each of these systems we then measured the average time the dynamics spent in the
high entropy state in dependence of the HGT base rate c. We define the dynamics to
be in the high entropy state whenever S(t) > log (2) · l/2. The obtained data show that
the critical bifurcation point ccr on average increases with the genome length l which is
illustrated in Figure 6.6. The data also suggests that the variance of the dynamics over
different systems decreases with increasing genome length l. However, we cannot find a
scaling law describing how ccr will increase with increasing l. This is mainly due to the
fact that simulations for l & 8 take very long, so that we only could simulate dynamics
for systems up to genome length l = 9. Therefore, the data obtained are not sufficient to
derive a scaling law and we may only conclude that the transition seems to occur at higher
HGT base rates in systems with larger system size.

How does the number m of HGT-links influence the emergence of the high entropy state?
To answer this question we successively added HGT-links to the model system and studied
the transition of the the dynamics in dependence of the number of added links. Our results
revealed that the high entropy state emerges only for a high enough number m of HGT-
links, as illustrated by an example in Figure 6.7. If the number of HGT-links is small, the
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Figure 6.6.: For systems with larger genome lengths l the high entropy state emerges at larger
critical HGT base rates ccr. For different HGT base rates the figure shows the percentage of
time THigh the dynamics stayed in the high entropy state averaged over systems of genome
length l with ten different HGT-link structures. The error bars show the variance over the
different systems. The genome lengths here were l = 4 (blue), l = 5 (red), l = 6 (orange),
l = 7 (green), l = 8 (gray) and l = 9 (black). The number of HGT-links in a system with
genome length l was m = 3000 · 2l−7, the fitness landscape was defined by equation (6.1) with
A = 0.1 and the population size was N = 1000. Each datapoint was obtained in simulations
with measurement time T = 105.
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Figure 6.7.: The high entropy state only emerges if the number of HGT-links in the system is
high enough. The figure shows the percentage of time the dynamics stayed in the high entropy
state (S > log(2) · l/2) in dependence of the HGT base rate c. Different colors indicate systems
with a different number m of HGT-links which are m = 600 (blue), m = 800 (red), m = 1000
(orange), m = 1200 (green) and m = 1500 (gray). Further system parameters were l = 7,
N = 1000 and A = 0.1. The data were obtained in simulations of length T = 105.

dynamics remain at low population entropies for all HGT base rates. Only if the genotype
space is well connected through many HGT-links the high entropy state emerges. This
result may be understood considering the following argument. Assume, we place only one
HGT-link into a given fitness landscape. This link moves individuals from genotype A to
C. Then, for any given HGT base rate the population at A will be moved to genotype C
where no further HGT events can occur to the individuals. Thus, only if all genotypes are
connected by a sufficient number of HGT-links will the high entropy state emerge.

Does the impact of HGT scale with the population size similarly as fitness differences and
mutations do (cf. Chapter 3)? We studied the dependence of the HGT-induced dynamics
on the population size by varying the population size in a given fitness landscape with
defined HGT-link structure. As we know from Section 3 fitness differences ∆f have an
impact on the dynamics according to ∆f̃ = ∆f · N and the same applies for mutations
with µ̃ij = µ · N . Therefore, on varying the population sizes we kept the values ∆f̃ and
µ̃ij constant, i.e. we set the amplitude A in equation (6.1) to A = Ã/N with Ã fixed and
similarly for the mutation probabilities µij = µ̃ij/N in the fitness landscape. Studying the
resulting dynamics for different N we found that for large N the impact of HGT scales
similarly with N as fitness differences and mutations do. Therefore, we defined a rescaled
HGT base rate c̃ = c · N . We then studied the system dynamics in dependence of this
rescaled HGT base rate c̃. As an example in Figure 6.8 shows, by rescaling c to c̃ similar
dynamics are obtained for different population sizes N and the emergence of the high
entropy state always occurs at the same c̃cr. However, this only holds if the population
size is large enough; for small population sizes the population cannot easily spread out in
genotype space even for relatively high HGT base rates.

In all of the previous simulations we always used uniform HGT base rates. The results
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6.3. The transition’s dependence on system parameters
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Figure 6.8.: For large enough populations the impact of HGT scales linearly in N . The figure
shows the percentage of time the dynamics of an example system stayed in the high entropy
state (S > log(2) · l/2) in dependence of the rescaled HGT base rate c̃ = c · N . The fitness
landscape was the same in all simulations with l = 6, m = 1500 and Ã = 100, µ̃ij = 0.1 and
only the population size was varied with N = 100 (blue), N = 200 (red), N = 400 (orange),
N = 600 (green), N = 1000 (gray) and N = 1500 (black). For N % 600 the dynamics
are almost undistinguishable for different N , but fixed c̃. Each datapoint was obtained by
simulating the dynamics for a time T = 105 and recording the time the population entropy
fulfilled S > log(2) · l/2.

presented above do not change qualitatively when we use different HGT base rates for
the different HGT-links. As long as there are enough HGT-links in the model system
(cf. Figure 6.7) the diversity of HGT base rates for the different HGT-links seems to equal
out due to the large number of HGT-links. We conclude, that qualitatively our model leads
to similar results for uniform and non-uniform HGT base rates; to study the quantitative
impact of distributed HGT base rates on evolutionary dynamics a more detailed model
would be required. For example, each genotype could be assigned a different competence
for HGT which would determine the HGT base rates of this genotype’s HGT-links. In such
a model the impact of the competence distribution on the dynamics could be quantitatively
analyzed.

Distributed instead of uniform mutation probabilites also do not change the above results
qualitatively. Actually, mutations only played a minor role for the dynamics as we kept
the mutation rate low in the above simulations. Thus, the dynamics for distributed mu-
tation probabilities also quantitatively are similar to the dynamics for uniform mutation
probabilities. In the study by Jacobi and Nordahl [36] on HGT in a deterministic Eigen
quasispecies model (cf. Section 2.2.4) a high entropy state for the dynamics is found similar
to our results; however, there the authors show that the high entropy state vanishes for
“extremely low” [36, p. 484] mutation probabilities, i.e. in their model the HGT process
alone is not sufficient for the high entropy state to emerge. They analytically prove that
in their model the high entropy state vanishes for mutation probabilities µij = 0. In our
model however the analysis in Section 6.2 suggests that HGT by itself causes the emer-
gence of the high entropy state and thus it should also exist for arbitrarily low mutation
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6. Evolutionary dynamics with frequent horizontal gene transfer

probabilities. To check this we simulated the dynamics of the previous systems for very
small mutation probabilities. As Figure 6.9 illustrates the high entropy state was still sta-
ble for vanishing mutation probabilities µij = 0. Naturally, if there are no mutations at all
(µij = 0), the state S = 0 is an absorbing state of the dynamics and thus the system dy-
namics will eventually end up in this state. However, before reaching this absorbing state
starting from an initial condition close to the high entropy state (as in the simulations for
Figure 6.9 ) the dynamics can remain in this state for long times before being absorbed,
i.e. the high entropy state is still metastable even for µij = 0. Furthermore, for arbitrarily
low mutation probabilities the dynamics can reach the stable high entropy state from any
initial condition for high enough HGT base rates. We conclude that the addition of a term
representing HGT in the quasispecies equation only modifies the effect of mutations in the
quasispecies model [36], while in our model HGT is an independent process that can drive
the population dynamics towards a state of high diversity in the population.
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Figure 6.9.: The high entropy state is stable also for vanisishing mutation probabilities. Shown is
the measured percentage of time a population stayed in the high entropy state similar to Figure
6.7 for a system with mutation probabilities µij = 0.0001 (blue) as in Figure 6.7, µij = 10−12

(red) and no mutations at all µij = 0 (orange). Qualitatively the results are similar, only
for higher mutation probabilities the critical transition occurs at a lower value ccr. System
parameters were l = 7, A = 0.1, N = 1000 and m = 3000. Each datapoint was obtained in a
simulation of length T = 105 with the initial condition S(0) = Smax.

6.4. Conclusion

Let us shortly summarize the above results. We have analyzed a high-dimensional system of
many genotypes using an entropy-like variable S which we newly introduced. This approach
reveals that in a static fitness landscape, where selection dynamics let a population converge
to the genotype of highest fitness, sufficiently frequent HGT events cause the emergence
of a new state at high population entropy S, i.e. the population is spread out in the entire
genotype space. A detailed analysis – based on the population entropy S – of the average
forces imposed on the population dynamics by reproduction and HGT revealed that this
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6.4. Conclusion

new state emerges through a saddle-node bifurcation if the HGT base rate c is increased
over a critical value. This transition is due to the nonlinear dependence of the HGT
rate rHGT(S) on the population entropy S of the system. With the emergence of the high
entropy state the system becomes bistable stochastically switching between the high and
low entropy states.

Similar bistability has been found already in deterministic models based on the quasispecies
equation (2.13) with an additional term for HGT [7, 36, 68]. However, in these models
the bistability vanishes for low mutation probabilities [36], i.e. the impact of HGT on
the evolutionary dynamics depends on mutations to occur in the system. We conclude
that in these studies HGT rather influenced the effects caused by mutations by lowering
the model’s mutational error threshold than providing an independent mechanism for the
emergence of a stable state at high population entropy. Contrary to these results, in our
stochastic model system the bistability arises through HGT alone as it will not vanish for
arbitrarily small mutation probabilities. Thus, our findings suggest that HGT alone can
drive a population to a state of high diversity, if the HGT rate is high enough.

Our study on how the system parameters influence the emergence of the high entropy state
suggests that the critical HGT base rate ccr increases with system size. However, in reality
the genotype space is immense and thus in our model the high entropy state would only
emerge at very high HGT base rates. Thus, further mechanisms such as spatial dimensions
or special HGT-link structures may be important for the high entropy state to emerge in
large systems. HGT is more probable between individuals that are close to each other in
genotype space [46,97]. We speculate that this may induce HGT-link structures for which
the population will reach a state of high entropy at high HGT base rates, but the HGT-link
structure may still contain the population in a certain range of genotype space. Thus, the
effective genotype space “felt” by the population would not be as large as the real genotype
space so that a relatively small HGT base rate is sufficient to drive the population to a
high entropy state. Furthermore, in a model with spatial dimensions in different spatial
regions different genotypes may be predominant. By diffusion in space and HGT these
different genotypes may influence each other so that even at moderate HGT base rates
a high entropy state emerges where the population is widely spread through genotype
space. However, these considerations remain highly speculative until being incorporated
into models for HGT.

The existence of a high entropy state for frequently occurring HGT and its disappearance
for lower HGT base rates suggests a mechanism for the transition from a reactive soup dy-
namics in early evolution to distinct species (cf. Section 2.1.5 and [14,96,97]) if we assume
that the competence of a population is a dynamic variable and not a fixed parameter as in
our model system [12, 47, 48, 86]. Our results indicate that a population exhibiting a high
competence for HGT may exhibit dynamics where the population occupies a large region
of genotype space (cf. Figure 6.10). Through rare events the population may converge to a
more concentrated state close to a fitness peak. Thus, this population has a higher fitness
and could outcompete other populations spread out in genotype space. Therefore, geno-
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6. Evolutionary dynamics with frequent horizontal gene transfer

types exhibiting lower competence are selected for as the population on average exhibits a
higher fitness. As we assume competence to be a dynamically changing property of a pop-
ulation, the population could evolve to lower competence as this would on the long term
increase the population’s average fitness. Our results suggest that for a lower competence
of the individuals the spread out state would become unstable and thus the population
would evolve mainly according to the selection process in the fitness landscape. Thus,
the disappearance of the high entropy state would correspond to the transition from the
reactive soup to the first distinct species. This is illustrated in Figure 6.10. To understand
how the transition from reactive soup to distinct species may occur, we thus need to incor-
porate dynamically changing competences [12,47,48,86] into future more detailed models.
Furthermore, we emphasize that our model may only explain the emergence of the first
species from a previous evolutionary state where no species existed at all. To understand
how the ensuing process of speciation under the influence of HGT proceeds, our model
is not detailed enough. For such studies models would be needed where different species
can coexist over large scales of time, i.e. that probably a more detailed fitness landscape
including dynamic fitness would be a requirement for such models [65].
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Figure 6.10.: A possible scenario for the evolution of distinct species from a reactive soup. The
three graphs suggest how the average competence, the average fitness compared to an initial
fitness and the population entropy of a population may evolve in the transition from a reactive
soup to distinct species. In the initial state the competence is high, so that HGT drives the
dynamics; the population exhibits a high population entropy and low average fitness. This
state is marked in blue in this Figure. Through a stochastic switching the dynamics can reach
a state of low entropy where the fitness is higher. Here the population could evolve slowly
towards lower competence. Thus, the dynamics switch back and forth between the low and
the high entropy state remaining longer and longer in the low entropy state as the competence
decreases. This part of the evolutionary transition is marked in red. When the competence goes
below a critical value (marked by the dashed line) the high entropy state becomes unstable and
the dynamics remain in the low entropy state and, as distinct species evolve, the population’s
average fitness increases. This phase of the evolutionary dynamics is marked in green.
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7. Summary and Conclusions

All life on earth has been and still is being shaped by evolutionary processes. Still, many
aspects of evolutionary dynamics are far from being understood [20]. One such aspect of
evolutionary dynamics is its underlying stochasticity, resulting for example from stochastic
reproduction and death processes or random mutation events. Yet, the consequences of
such stochasticity for the dynamics remain to be clarified. We therefore analyzed different
aspects of stochastic evolutionary dynamics in this thesis. We developed and analyzed sim-
ple individual-based model systems where we considered finite-size populations of idealized
individuals stochastically reproducing and dying. Such basic models focus on catching the
essential features of evolution and yield qualitative conclusions about characteristic mech-
anisms in evolutionary dynamics [6]. As long as we have not even fully grasped the basic
mechanisms driving evolution, such simple models seem more appropriate for studying
evolutionary dynamics than more detailed quantitative ones. Our work focussed on two
aspects of stochastic evolutionary dynamics: The impact of dynamic fitness and of hori-
zontal gene transfer (HGT).

Dynamic Fitness

Fitness measures are a basic feature of many theoretical models of evolution because of
their basic role in capturing how well individuals fare under specific environmental condi-
tions [20,63]. Fitness therefore depends on both the (possibly changing) environment and,
in particular, the interactions with other individuals in a population. To grasp the impact
of such effects on the evolutionary dynamics we modelled fitness as a dynamic variable
itself. In particular, interactions between individuals imply fitnesses that depend on the
frequencies of the different genotypes present in a population.

Our knowledge of how a population will evolve in a dynamically changing fitness land-
scape due to such interactions remained yet incomplete. In fact, previous studies only sys-
tematically analyzed special linear and quadratic instances of such frequency-dependent
fitness [65, 87–89] arising from game theoretic considerations for the interactions. This
approach directly yields a linear dependence of fitness on genotype frequency, i.e. linear
fitness functions (cf. equations (2.8)-(2.9) in Section 2.2.3). Normalizing these fitness func-
tions causes the emergence of a specific quadratic dependence (cf. equations (2.11)-(2.12)
in Section 2.2.4). Thus, a game-theoretic approach to interactions only yields linear or
selected quadratic instances of fitness functions. Yet, experimental studies suggest that
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fitness may depend nonlinearly on the genotype frequencies of a population [51]. In this
thesis, we thus took a more general perspective on frequency-dependent fitness, considering
a general class of arbitrary nonlinear fitness functions. Furthermore, mutation rates are
often highly diverse for different genotypes [22, 77], but previous studies only considered
mutation rates to be equal for all genotypes in the system [3,65,88,100]. To complete our
general approach, we here explicitly considered such diverse mutation rates.

Considering a population which exhibits such nonlinear frequency-dependent fitness and
diverse mutation rates, we studied how these effects impact the population’s dynamics. In
Chapter 3, we analyzed the joint influence of frequency-dependent fitness, diverse mutation
rates and genetic drift on the population dynamics in a model system of two genotypes.
Here, we explicitly considered a general class of fitness functions that may depend on the
genotypes’ frequencies in an arbitrarily nonlinear way (cf. equations (3.20) and (3.21)).
For this general setting we derived an analytic expression (cf. equation (3.19)) for the
stationary probability distribution that a given genotype one exhibits a certain frequency
in the population. This expression revealed that the population dynamics tend to switch
stochastically between different metastable states that are induced by the interplay of the
frequency-dependent fitness, mutations and genetic drift (cf. Figure 3.2). We found that
fitness depending nonlinearly on genotype frequency may cause many of these metastable
states (cf. Figure 3.3). Furthermore, if the genotypes exhibit different mutation rates, these
states may be shifted and new such states may emerge (cf. Figures 3.5 and 3.6).

We conclude that frequency-dependent fitness together with heterogeneous mutation rates
induces complex evolutionary dynamics, in particular if the interactions imply nonlinear
fitness functions [2]. Previous studies had focussed on special linear or simple quadratic
instances of the class of fitness functions presented here and considered mutation rates to
be equal for all genotypes in the system [65, 87–89]. They revealed that genetic drift and
mutations counteract each other [88] and that frequency-dependent fitness can cause the
emergence of a metastable state where both genotypes coexist in the population [65, 88].
Going beyond these findings, our results indicate that frequency-dependent fitness may
even cause the emergence of many of these metastable states. We further revealed how
the mutation rates affect the genotype frequencies at which these stable states are lo-
cated. Thus, if population dynamics in real environments are observed that repeatedly
shift between different frequencies, even though environment remains stable, the observed
dynamics may – according to our results – indicate interactions between the individuals
that cause a nonlinear fitness dependence.

Dynamic fitness may also play an important role in stabilizing the dynamics of populations
of dynamically varying size (cf. Chapter 4). So far, theoretical studies have often focussed
on models of populations of fixed size described by reproduction processes such as, for
example, the Moran or the Wright-Fisher process (cf. Section 2.2.2) [20,63,84,88]. Experi-
mental findings indicate that the genetic diversity of a population may depend on variations
in population size [71,83] and it remains an open question how evolutionary dynamics are
influenced by dynamically changing population size. To study evolutionary dynamics with
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changing population sizes we developed a model for a reproduction process based on in-
dependent birth and death events which we called IBD process (cf. Section 2.2.2). We
studied populations evolving under this reproduction process in Chapter 4. We found that
the population would either go extinct with high probability after only relatively few gen-
erations or it would grow infinitely if we considered individuals with static fitnesses. Yet,
dynamic fitness stabilizes the population size, so that the probability of a rapid extinction
is strongly reduced and infinite growth is impossible (cf. Figures 4.4 and 4.9). We conclude
that dynamic fitness may be a stabilizing mechanism in evolutionary dynamics.

These novel models of evolution based on independent birth and death reproduction pro-
cesses and dynamic fitness seem promising to gain valuable insights into evolutionary phe-
nomena caused by the interplay of varying population sizes and individuals’ interactions,
e.g. quasicyclic behaviour in predator-prey systems [6, 53] or punctuated equilibrium dy-
namics [4,31,60,67]. In Section 4.5 we demonstrated in an example system how predator-
prey interactions [13,50,93] may be described using dynamic fitness which yields a relatively
simple, individual-based model with variable population size. We found that this system
exhibits a range of complex dynamics including quasi-cycles and punctuated equilibria
(cf. Figure 4.11). Quasicyclic behaviour, the resonant amplification of the dynamics’ un-
derlying stochasticity, has only recently been studied, e.g. in [53, 70] where it was found
that quasi-cycles occur “whenever the underlying deterministic population model exhibits
damped oscillations towards an equilibrium” [70, p. 63]. Our study now confirms that
quasi-cycles can be exhibited by the dynamics of finite populations.

It was suggested that evolution does not proceed gradually but rather in sudden steps [31,72].
The extinction of one species through stochastic fluctuations can elicit an avalanche where
after a short time further species go extinct as well [4]. Thus, large extinction events may
be due to the population being in a self-organized critical state: The dynamics seem to
be stable for some time, but then relatively small fluctuations can cause large extinction
avalanches, i.e. many species go extinct in a short period of time. In a self-organized criti-
cal state the size of these avalanches is power law distributed. Previous studies suggested
that punctuated equilibrium dynamics may describe extinction events in evolution, but
to our knowledge until now there have been only very abstract population-level models
such as e.g. the Bak-Sneppen model describing this effect [4,31,60,67]. The analysis of the
dynamics in our more detailed individual-based model system revealed that the population
indeed is in such a state of punctuated equilibrium. As our model is more detailed than the
abstract models in [4,60,67], it may help to understand how such punctuated equilibrium
dynamics could emerge in real biological systems and how these dynamics are influenced by
other features such as quasi-cycles. We conclude that our model system provides a promis-
ing approach to study in detail how interactions between individuals and the stochasticity
induced by reproduction and death processes give rise to complex evolutionary dynamics.
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Horizontal gene transfer
Regarding horizontal gene transfer, there are only very few theoretical studies that investi-
gate its impact on evolutionary dynamics. However, it was proposed that HGT may have
played an important role in early evolution [14, 45] and we therefore need to explore how
HGT affects evolutionary dynamics. Here we developed a stochastic process modelling
HGT (cf. Section 2.2.6) which captures the essence of HGT: In one HGT event an indi-
vidual of genotype A takes up genetic material from an individual of genotype B with a
certain competence to mutate to genotype C. Thus, this simple model is applicable to
individual-based population models, while previous approaches considered HGT on the
population level [7,36,68] or applied less general agent-based HGT-models with many de-
grees of freedom [92]. We conclude that our newly introduced model well balances between
these approaches, as it is as simple as possible, but still captures the essence of stochastic
HGT.
Can HGT be beneficial for evolving populations, i.e. can it increase the average fitness
of the population? It was often proposed that HGT may confer a fitness advantage for
populations adapting to new or changing environments [73, 86, 92]. Yet, recent studies
on how HGT affects fitness focussed on fixed environments [73, 92]. Finding that HGT
does not increase fitness in such fixed environments, the authors suggested that HGT
might be beneficial for populations in changing environments. In Chapter 5 we have now
confirmed that HGT can be beneficial for populations adapting to changing environments
(cf. Figure 5.2). In addition, our results also reveal that the population better adapts to the
changing environment through a high mutation rate than through increased HGT rates;
if all genotypes exhibit high enough identical mutation rates, adaptation is not improved
by HGT in the model (cf. Figure 5.3). Yet, mutation rates are often diverse for different
genotypes in real biological systems [22,77]. Our results indicate that in fitness landscapes
including such diverse mutation rates, a population will adapt optimally to the changing
landscape only if HGT occurs in the population (cf. Figure 5.3). Because of this finding
we propose that when an adapting population gets stuck at genotypes of low mutation
rate, HGT can help it to jump over such genotypes. We conclude that HGT can confer a
fitness advantage for adapting populations. However, whether or not HGT yields a fitness
increase depends also on the mutation rates in genotype space. Contrary to the simplistic
proposition that HGT will be beneficial for adapting populations [73,92], we conclude that
the impact of HGT on a population’s fitness in changing environments is more complex.
In particular, our results reveal that the diversity of mutation rates may be an important
factor in determining whether or not HGT is beneficial.
How do frequent HGT events influence evolutionary dynamics and how do selection-
dominated dynamics at lower HGT rates emerge? It has been proposed that HGT played
an important role in early evolution [45] where it may have dominated the evolutionary
dynamics so that no distinct species formed, but rather all individuals exchanged genetic
material at a high rate [14]. This state is sometimes referred to as a “reactive soup” and it
is unclear how evolution could proceed from this state to form the first distinct species [14].
In our theoretical investigations (Chapter 6) we found that for frequent HGT there exists a
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stable state where the population is spread out in the entire genotype space (cf. Figure 6.1).
We identify this as a reactive soup state because no distinct species can be identified in it
and the individuals exchange genetic material at a high rate. A mean field analysis of the
forces induced by reproduction and HGT events revealed that this state emerges through
a saddle-node bifurcation at a critical HGT base rate ccr so that for all higher HGT base
rates the reactive soup state is stable (cf. Figure 6.4). The dynamics then switch stochasti-
cally between two coexisting states, a selection-dominated state at low population entropy,
where the population is concentrated around the fittest genotype, and an HGT-dominated
reactive soup state at high population entropy. Thus, the system is bistable above ccr and
the dynamics remain in the reactive soup state longer when the HGT base rate is higher.

Our analysis demonstrates that mutations are not necessary for the reactive soup state to
emerge (cf. also Figure 6.9), i.e. HGT alone can drive the dynamics towards a stable state
where the population is spread throughout genotype space. Previous studies on HGT in
quasispecies models had already found a bistability between two states of low and high
population entropy [7, 36, 68], but it was attributed to the fact that HGT may lower the
error threshold, i.e. the critical mutation rate above which too many mutations occur for a
species to remain close to a fitness peak. The quasispecies model is designed for the analysis
of how large mutation rates affect a population and HGT was introduced as an additional
factor to this model. Thus, the bistability in this model vanished for low mutation rates
since it mainly modifies the effect of mutations [36]. Contrary to this finding, our results
highlight that HGT alone suffices to create the reactive soup state and mutations are not
necessary for its emergence.

How could distinct species have evolved from a reactive soup where HGT dominated as
proposed for example by Woese [96,97]? Our findings suggest how this evolutionary tran-
sition could have occurred (cf. Figure 6.10): In an initial evolutionary state the individuals
exchange genetic material at a high rate and thus form a reactive soup. After a long
waiting time stochastic fluctuations could cause the dynamics to converge to the selection-
dominated state. In this state the population would evolve to the peaks in the fitness
landscape and thus obtain an increased fitness before switching back into the reactive soup
state. Thus, after repeated switchings, the population could evolve to lower competences
for HGT implying that the reactive soup state would vanish. After this transition the
evolutionary dynamics are dominated by selection and thus distinct species form. To the
ensuing process of further speciation under the influence of HGT our model is not applica-
ble, as it lacks the details to model such a process. Still, we emphasize that the emergence
of the first species from a reactive soup may be well understood with the model we applied.
Of course, for now the sequence of events we propose for the emergence of the first species
remains speculative as our model does not include competences which change explicitly
with time. But recent first results by Vogan and Higgs [92] obtained in simulations of a
simple model system indicate that a population may eventually evolve towards lower com-
petence. In future research, more detailed models should include dynamically changing
competences to check if and under which circumstances a transition from reactive soup
dynamics to distinct species is possible in the way described above.
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Outlook
To summarize, this thesis has contributed several steps towards our understanding of how
basic mechanisms such as selection, mutation and HGT shape evolutionary dynamics. Our
results suggest possible directions of future research: As the example system in Section 4.5
demonstrates, the IBD process (cf. Section 2.2.2) in combination with dynamic fitness may
well be fit to study in greater detail how interactions between individuals and stochastic
reproduction processes cause the emergence of phenomena such as punctuated equilibrium
dynamics which previously were only analyzed in more abstract models [4, 60,67].
Our simulations in Chapter 5 revealed that HGT can be beneficial for adapting popula-
tions. Still, the fitness advantage that the population obtained through HGT was relatively
small. There are experimental studies suggesting that the individuals’ competence for HGT
may fluctuate over time and especially may depend on their fitness [47, 48]. Such a mech-
anism could increase the beneficial effect of HGT, for example if competence increases
with decreasing fitness, as in such a setting HGT would preferentially drive populations
towards new genotypes if they already exhibit a low fitness. Future research models should
therefore include such dynamic competences to check how this mechanism may affect the
impact of HGT on a population’s fitness.
In Chapter 6 we showed how a transition from HGT-dominated reactive soup dynamics to
selection-dominated dynamics may occur in evolutionary dynamics. However, our detailed
model analysis also indicates that the critical HGT base rate – at which the reactive soup
emerges – increases with system size. As in reality genotype space is very large [63, 78],
within our model framework there should be no reactive soup in large systems. However,
there may be further factors influencing the emergence of the reactive soup at lower HGT
rates. For example, we assumed a random HGT-link structure, but there is evidence
that HGT is more likely between closely related organisms [46, 97]. In large systems the
resulting HGT-link structure may thus cause the emergence of a localized reactive soup
where the individuals are spread out in a large but confined region of genotype space,
i.e. the population does not need to spread out through the entire genotype space. The
transition to such a state could thus occur at lower HGT rates. Also, spatial dimensions
may play an important role as in such a setting different genotypes can be present at
different locations of the system. It would thus be easier for the population to maintain a
high diversity so that additional spatial dimensions may also cause the reactive soup state
to emerge at lower HGT rates. We conclude that our model has revealed how HGT may
drive a population into a reactive soup state, but more refined models are needed to gain
a better understanding of the details of how this state may emerge.
Basic models catching the essence of evolutionary processes yield much insight into the
mechanisms driving evolution. In this thesis, we exploited this approach obtaining quali-
tative predictions about dynamical features of evolution, in particular how dynamic fitness
and HGT drive stochastic evolutionary dynamics. These predictions contribute to the
growing knowledge of how evolution proceeds under different circumstances and also point
towards open problems yet to be solved. We are confident that following the suggestions
made here these questions will be answered in the near future.
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A. Birth-death processes’ absorption
probabilities and mean time to
absorption

Here, considering birth-death process with birth rates λk and death rates µk we derive the
absorption probability pHk , i.e. the probability that the process will reach the state 0 from
an initial state k , as well as the mean time to absorption T k from state k (cf. Section 2.3.3).
Our analysis here follows the arguments in [38].

Considering the probabilities with which the process will move from state k to k + 1 and
k − 1 we obtain the recursion formula

pHk = λk
µk + λk

pHk+1 + µk
µk + λk

pHk−1 (A.1)

with the additional condition pH0 = 1. Rewriting this equation yields

(pHk+1 − pHk ) = µk
λk

(pHk − pHk−1) (A.2)

We apply this equation iteratively and obtain

pHk+1 − pHk = (pH1 − pH0 )
k∏
j=1

µj
λj
. (A.3)

Taking the sum of this equation and using pH0 = 1, this becomes

pHk+1 − pH1 = (pH1 − 1)
k∑
i=1

i∏
j=1

µj
λj
. (A.4)

The variables pHk denote probabilities and are thus bounded by 1. Therefore, if the sum

∞∑
i=1

i∏
j=1

µj
λj

(A.5)

does not converge, we necessarily have pH1 = 1 and consequently also pHk = 1 for all
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A. Birth-death processes’ absorption probabilities and mean time to absorption

k ∈ N. This means, that if the sum (A.5) does not converge, the process will end up in
the absorbing state with absolute certainty from any initial state k. Assuming that the
sum (A.5) converges, we arrive at a solution for pHk with the following argument. First, we
remark that pHk+1 ≥ pHk as the process coming from state k+ 1 has to pass through state k
to arrive in the absorbing state. Furthermore, if the sum (A.5) converges, the absorption
probability has to fulfill limk→∞ p

H
k = 0. Thus, in the limit k →∞ equation (A.4) becomes

pH1 = (pH1 − 1)
∞∑
i=1

i∏
j=1

µj
λj

(A.6)

which we solve for pH1 to obtain

pH1 =
∑∞
i=1

∏i
j=1

µj
λj

1 +∑∞
i=1

∏i
j=1

µj
λj

. (A.7)

Using this result together with equation (A.4) yields

pHk =
∑∞
i=k

∏i
j=1

µj
λj

1 +∑∞
i=1

∏i
j=1

µj
λj

(A.8)

for all k ∈ N. In summary we have found that the absorption probability is

pHk =


1 if ∑∞i=1

∏i
j=1

µj
λj

=∞∑∞
i=k

∏i

j=1
µj
λj

1+
∑∞

i=1

∏i

j=1
µj
λj

if ∑∞i=1
∏i
j=1

µj
λj
<∞

. (A.9)

In a similar way we calculate the mean time to absorption T k from state k. As the mean
waiting time in state k is (µk + λk)−1, we obtain the recursion formula

T k = 1
µk + λk

+ µk
µk + λk

T k−1 + λk
µk + λk

T k+1 (A.10)

with the condition T 0 = 0. We rewrite this to

T k − T k+1 = 1
λk

+ µk
λk

(T k−1 − T k) (A.11)

and iterate this relation to obtain

T k − T k+1 =
k∑
i=1

1
λi

k∏
j=i+1

µj
λj
−

k∏
j=1

µj
λj
T 1 (A.12)
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where we applied T 0 = 0. Here we define that ∏k
j=k+1 µj/λj = 1. Further, we define

χi = 1
µi

i−1∏
j=1

λj
µj

(A.13)

so that equation (A.12) becomes

(T k − T k+1)
k∏
j=1

λj
µj

=
k∑
i=1

χi − T 1. (A.14)

Due to the property T k+1 > T k of the mean waiting times, it immediately follows that
T 1 =∞ if the sum ∑∞

i=1 χi diverges. Suppose that ∑∞i=1 χi <∞, then we obtain the limit

lim
k→∞

(T k − T k+1)
k∏
j=1

λj
µj

= 0 (A.15)

so that
T 1 =

∞∑
i=1

χi. (A.16)

This result together with equation (A.14) yields

T k =
∞∑
i=1

χi +
k−1∑
i=1

 i∏
j=1

µj
λj
·
∞∑

j=i+1
χj

 . (A.17)

To summarize, we have found that the mean time to absorption from state k is

T k =

∞ if ∑∞i=1 χi =∞∑∞
i=1 χi +∑k−1

i=1

[∏i
j=1

µj
λj
·∑∞j=i+1 χj

]
if ∑∞i=1 χi <∞

. (A.18)
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B. The Fokker-Planck equation of the
two-genotype system

In the limit of large population sizes N the master equation (3.4) is well approximated by
a Fokker-Planck equation [74]. In the following we introduce the necessary transformation
and derive the Fokker-Planck equation (2.40) corresponding to the master equation (3.4).

We use the transformation

x = k

N
, s = t · F (N), µ̃ij = µij ·G(N), g̃i(x) = gi(k) ·H(N) (B.1)

where x represents the frequency of genotype A and F (N), G(N) and H(N) are scaling
functions to be determined in the following such that in the limit N → ∞ the terms in
equation (3.4) remain finite. With this transformation the probability distribution pk(t)
becomes a probability density

ρ(x, s) = pNx(t)N |t=s/F (N) (B.2)

in the Fokker-Planck equation. Defining

x+ = x+ 1
N
, x− = x− 1

N
(B.3)

we substitute the above transformation into the master equation (3.4) and obtain

dρ(x, s)
ds

F (N) = N2

N + 1

{[
(1− µAB)(1 + gA(x−))x−(1− x−) + µBA(1 + gB(x−))(1− x−)2

]
ρ(x−, s)

+
[
(1− µBA)(1 + gB(x+))(1− x+)x+ + µAB(1 + gA(x+))x2

+

]
ρ(x+, s)

−
[
(1− µAB)(1 + gA(x))x(1− x) + µBA(1 + gB(x))(1− x)2

+(1− µBA)(1 + gB(x))x(1− x) + µAB(1 + gA(x))x2
]
ρ(x, s)

}
(B.4)

and find that by choosing F (N) = N + 1, G(N) = H(N) = N in the limit N → ∞
the terms remain finite. In the following calculation we drop the time argument s in the
density ρ(x, s) to make the notation more transparent. Further, we introduce the mean
mutation rate

µ̃ := µ̃AB + µ̃BA
2 = N

2 (µAB + µBA) (B.5)
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B. The Fokker-Planck equation of the two-genotype system

and the mutation rate difference

∆µ̃ := µ̃AB − µ̃BA
2 = N

2 (µAB − µBA). (B.6)

These definitions and a reordering the terms in equation (B.4) yields
dρ(x)
ds

= N2
{
− 2x(1− x)ρ(x) + x+(1− x+)ρ(x+) + x−(1− x−)ρ(x−)

+ µ̃

N

[
−(1− 2x)2ρ(x) + 1

2(1− 2x+)2ρ(x+) + 1
2(1− 2x−)2ρ(x−)

]}
+N

{
g̃A(x−)x−(1− x−)ρ(x−)− g̃A(x)x(1− x)ρ(x)

+g̃B(x+)x+(1− x+)ρ(x+)− g̃B(x)x(1− x)ρ(x)

+ µ̃

2

[
(1− 2x−)ρ(x−)− (1− 2x+)ρ(x+)

]
+∆µ̃

[
x+ρ(x+)− xρ(x)− (1− x−)ρ(x−) + (1− x)ρ(x)

]
+ µ̃

N

[ (
g̃A(x+)x2

+ + g̃B(x+)(x2
+ − x+)

)
ρ(x+)−

(
g̃A(x)x2 + g̃B(x)(x2 − x)

)
ρ(x)

+
(
g̃A(x−)(x2

− − x−) + g̃B(x−)(1− x−)2) ρ(x−)−
(
g̃A(x)(x2 − x) + g̃B(x)(1− x)2) ρ(x)

]
+∆µ̃
N

[ (
g̃A(x+)x2

+ − g̃B(x+)(x2
+ − x+)

)
ρ(x+)−

(
g̃A(x)x2 − g̃B(x)(x2 − x)

)
ρ(x)

+
(
g̃A(x−)(x2

− − x−)− g̃B(x−)(1− x−)2) ρ(x−)−
(
g̃A(x)(x2 − x)− g̃B(x)(1− x)2) ρ(x)

]}
.

The first terms with the factor N2 in front in the limit N →∞ become the second order
derivatives of x(1− x)ρ(x) with respect to x. For example, for the first three terms in the
above equation the limit is given by

lim
N→∞

N2 {−2x(1− x)ρ(x) + x+(1− x+)ρ(x+) + x−(1− x−)ρ(x−)}

= lim
N→∞

−2x(1− x)ρ(x) +
(
x+ 1

N

) (
1−

(
x+ 1

N

))
ρ
(
x+ 1

N

)
+
(
x− 1

N

) (
1−

(
x− 1

N

))
ρ
(
x− 1

N

)
1/N2

= lim
h→0

−2x(1− x)ρ(x) + (x+ h) (1− (x+ h)) ρ (x+ h) + (x− h) (1− (x− h)) ρ (x− h)
h2

= ∂2

∂x2 [x(1− x)ρ(x)]

where we used
lim
h→0

[f(x+ h) + f(x− h)− 2f(x)] /h2 = ∂2

∂x2 f(x) (B.7)

in the last step [9]. Similarly, in the limit N →∞ the terms with N in front become first
order derivatives with respect to x, where all terms with the factor 1/N vanish, so that
the three terms (g̃A(x)− g̃B(x))x(1− x)ρ(x), µ̃(1− 2x)ρ(x) and −∆µ̃ρ(x) remain. Taken
together we obtain the Fokker-Planck equation
∂ρ(x, s)
∂s

= − ∂

∂x

[{
(g̃A(x)− g̃B(x))x(1−x)+µ̃(1−2x)−∆µ̃

}
ρ(x, s)

]
+ ∂2

∂x2

[
x(1−x)ρ(x, s)

]
(B.8)

approximating the master equation (3.4) in the limit of large population sizes N .

106



C. Time scales of the stabilized IBD
process

To analyze the survival time distribution of the stabilized IBD process in Section 4.2 we
need to calculate the time scale

τ =
N∗∑
j=1

1−∑j−1
i=1 p

∗
i

µjp∗j
(C.1)

derived in Section 2.3.4 using Kramers’ method [29, 44]. Here p∗j is the quasistationary
distribution of the process given by

p∗k =
∏k−1
j=1

λj
µj+1∑∞

l=1
∏l−1
j=1

λj
µj+1

(C.2)

(cf. equation (3.8)); λj and µj are the birth and death rates of the process in state j
respectively. For the stabilized IBD process they are given by λj = N∗ and µj = j leading
to (cf. equation (4.13))

p∗k = Nk
∗
k! ·

1
eN∗ − 1 . (C.3)

According to equation (C.1) this quasistationary distribution yields a time scale

τ =
N∗∑
j=1

1−∑j−1
i=1 p

∗
i

µjp∗j

=
N∗∑
j=1

1−
j−1∑
i=1

N i
∗
i!

1
eN∗ − 1

 [j · N j
∗
j!

1
eN∗ − 1

]−1

≈
(
eN∗ − 1

) N∗∑
j=1

(j − 1)!
N j
∗

1− e−N∗
j−1∑
i=1

N i
∗
i!

 (C.4)

where we approximated
[
eN∗ − 1

]−1
≈ e−N∗ for N∗ � 1 in the last step. The term

e−N∗
j−1∑
i=1

N i
∗
i! (C.5)
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can be neglected for N∗ � 1 as the sum only converges to eN∗ for j → ∞. In particular,
for small j the factor e−N∗ dominates and for large j there is the overall prefactor N−j∗ in
equation (C.4). Thus, in first order approximation we only consider the first term j = 1
of the sum in equation (C.4) and obtain

τ ≈
(
eN∗ − 1

) [1− e−N∗
N∗

+O
(
N−2
∗

)]
≈ eN∗ − 1

N∗
(C.6)

which increases exponentially in the sustained population size N∗, so that the survival time
distribution fulfills

pS(t) ≈ exp
(
− N∗
eN∗ − 1t

)
. (C.7)
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D. The mean extinction time of the
scaled IBD process

Here we derive an estimate of the mean extinction time T in the scaled IBD process from
Section 4.3. The scaled IBD process in state j exhibits a birth rate λj = j(1 − a) + aN∗
and a death rate µj = j. We apply these rates to equation (2.28) to calculate the mean
extinction time:

T =
∞∑

k=1

1
µk

k−1∏
j=1

λj

µj
+

N∗−1∑
k=1

 k∏
j=1

µj

λj

 ∞∑
m=k+1

1
µm

m−1∏
n=1

λn

µn

=
∞∑

k=1

1
k

k−1∏
j=1

j(1− a) + aN∗
j

+
N∗−1∑
k=1

 k∏
j=1

j

j(1− a) + aN∗

 ∞∑
m=k+1

1
m

m−1∏
n=1

n(1− a) + aN∗
n

(D.1)

Let us first focus on the first term in this equation. We will analyze the second term later.
Using the definition of the Pochhammer symbol for the rising factorial

(x)n =
n−1∏
i=0

(x+ i) (D.2)

we rewrite the first term T 1 of equation (D.1) to

T 1 =
∞∑
k=1

(1− a)k−1

k!

(
1 + aN∗

1− a

)
k−1

=
∞∑
k=1

(1− a)k
k!aN∗

(
aN∗
1− a

)
k

(D.3)

where we used the identity

(x+ 1)n−1 = Γ(x+ 1 + n− 1)
Γ(x+ 1) = Γ(x+ n)

xΓ(x) = 1
x

(x)n (D.4)

with the Gamma function Γ(x). Furthermore, the Pochhammer symbol may be written as
a generalized binomial coefficient [9]

(x)n
n! = (x+ n− 1)(x+ n− 2)(x+ n− 3) · · ·x

n(n− 1)(n− 2) · · · 1 =
(
x+ n− 1

n

)
(D.5)
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for any x ∈ R so that we obtain

T 1 = 1
aN∗

∞∑
k=1

(1− a)k
(

aN∗
1−a + k − 1

k

)
. (D.6)

The sum is evaluated using the binomial series [9]
∞∑
n=0

(
x+ n
n

)
αn = 1

(1− α)x+1 (D.7)

defined for x ∈ R and |α| < 1 so that the first term finally becomes

T 1 = 1
aN∗

([
(1− (1− a))

aN∗
1−a−1+1

]−1
− 1

)
= a−

aN∗
1−a − 1
aN∗

. (D.8)

The second term T 2 of equation (D.1) becomes

T 2 =
N∗−1∑
k=1

 k!
(1− a)k

k∏
j=1

[
j + aN∗

1− a

]−1
 ∞∑
m=k+1

(1− a)m−1

m!

m−1∏
n=1

[
n+ aN∗

1− a

]

=
N∗−1∑
k=1

 k!
(1− a)k

(
aN∗
1−a

)
k+1

 ∞∑
m=k+1

(1− a)m−1

m!

(
aN∗
1− a

)
m

(D.9)

We now introduce the hypergeometric sum

2F1(a, b, c; z) =
∞∑
k=0

(a)k (b)k
(c)k

· z
k

k! (D.10)

which converges absolutely for |z| < 1 [9], so that we may rewrite the above formula for
T 2 to

T 2 =
N∗−1∑
k=1

k!
(1− a)k

(
aN∗
1−a

)
k+1

(1− a)k
(k + 1)!

(
aN∗
1− a

)
k+1
· 2F1

(
1, 1 + k + aN∗

1− a, 2 + k, 1− a
)

=
N∗−1∑
k=1

1
k + 1 · 2F1

(
1, 1 + k + aN∗

1− a, 2 + k, 1− a
)

(D.11)

which we could not evaluate analytically. However, studying the single terms for k =
1, 2, . . . using MATHEMATICA, we find that each term is of the order of O

(
(aN∗)−k−1

)
.

Thus, for aN∗ � 1 in first order approximation T 2 may be neglected in comparison to T 1
and we find, that

T = a−
aN∗
1−a − 1
aN∗

+O
(
(aN∗)−2

)
(D.12)

where the second term is always positive as all terms in equation (D.11) are positive.
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