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1 INTRODUCTION  

1.1 PpoA: A tale of green molds and red enzymes 

Oxidized fatty acids acting as signal molecules in mammals (Funk, 2001) and plants (Wasternack, 

2007) are commonly termed oxylipins. In the late 1980’s similar molecules have been identified 

in the ascomycete Aspergillus nidulans and were shown to be involved in developmental 

processes (S P Champe et al., 1987; S P Champe and el-Zayat, 1989; Mazur et al., 1991). By 

influencing the ratio of conidio- and ascospores these compounds obviously acted as well as 

hormone-like molecules and consequently have been named Precocious-Sexual-Inducers or, 

abbreviated, Psi-factors. Structurally, they are unsaturated C18 fatty acids with a hydroxyl-group 

at C8 and an optional hydroxyl group at C5. Almost in parallel it was established that 

Gaeumannomyces graminis, another ascomycete, produces similar hydroxylated derivatives of 

unsaturated C18 fatty acids with a hydroxyl function at C8 and a second, facultative one at C7 

(Brodowsky et al., 1992). Four years later the enzyme responsible for oxygen insertion at C8 of 

the fatty acid was isolated from this fungus (Chao Su and Ernst H. Oliw, 1996). Although it 

seemed that the hydroperoxide-isomerase activity that rearranged this fatty acid hydroperoxide 

to the 7,8-dihydroxy derivative was tightly associated, it could not be isolated at that time. It 

rather took two more years to show that both reactions are catalyzed by the same polypeptide 

chain (Chao Su et al., 1998). Based on the thus identified sequence (Hörnsten et al., 1999), 

Tsitsigiannis et al. identified in 2004 a homologue protein in A. nidulans that was proposed to be 

involved in the formation of Psi-factors (Tsitsigiannis, Zarnowski, et al., 2004). Consequently, the 

gene was named Psi-factor producing oxygenase A (PpoA) and the respective deletion mutant 

was indeed impaired in spore formation with a higher ratio of asexual to sexual spores in 

comparison to the wild type. Detailed investigations of the interaction between Ascomycota 

with a Δppo background and various hosts indicated that psi-factors deploy their action not only 

in spore formation, but merely are also involved in pathogenicity and colonization of mammal 

and plant hosts, putatively by regulation of mycotoxin biosynthesis (Tsitsigiannis, Bok, et al., 

2005; Tsitsigiannis and Nancy P. Keller, 2006). Expanding this physiological insights into the role 

of PpoA, LC/MS2-analysis of the oxylipin pattern of ΔppoA strains proved that this enzyme is 

indeed responsible for the formation of the fatty acid C8-hydroperoxy adduct and also the 5,8- 

dihydroxy fatty acid was not detectable in the mutant (Garscha et al., 2007). Since also external 

addition of the 8-hydroperoxy fatty acid did not restore the formation of the 5,8-dihydroxy 

derivative, this study concluded that PpoA might exhibit a dual function and catalyzes not only 

fatty acid peroxidation, but also the subsequent rearrangement of this intermediate to the 5,8-

dihydroxy fatty acid (Garscha et al., 2007). The subsequent work of Brodhun et al. finally 

established a heterologous expression system and a purification protocol for this enzyme that 

enabled to produce pure enzyme in large amounts (Brodhun et al., 2009). Thus, it was possible 

to perform a detailed biochemical investigation for the first time. The results of this study and a 
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subsequent EPR-study (Fielding et al., 2011), have unequivocally shown that PpoA is a 

bifunctional enzyme that utilizes two distinct heme-domains in order to catalyze the sequential 

oxidation of fatty acids. The peroxidation of an unsaturated C18 fatty acid at C8 is catalyzed in 

the N-terminal domain of PpoA by a peroxidase/dioxygenase and the thus formed intermediate 

is rearranged to the corresponding 5,8-dihydroxy derivative by a cytochrome P450 activity in the 

C-terminal domain of PpoA. Hence, this enzyme is not only of interest because of its involvement 

in regulating fungal growth and pathogenicity, but also a comprehensive system in order to 

study the versatility of heme chemistry in nature. The two subsequent sections are dedicated to 

give a synopsis over these two fields of interest and highlight the role that Ppo-enzymes play in 

these respects.  

 

1.2 Involvement of oxylipins in host-pathogen interaction 

Lipids represent a heterogeneous class of biomolecules that are defined solely by their solubility 

in organic solvents. Besides their commonly known function in energy storage and cell 

compartmentalization, certain lipids (e.g. diacylglycerol) can deploy an important role in 

signaling (Stryer, 2007). Within this field oxylipins, i.e. oxidized fatty acids, occupy an important 

position in mammals and plants and their regulatory role in stress response and developmental 

processes is thoroughly investigated (Funk, 2001; Wasternack, 2007). Exemplary for oxylipin’s 

hormone-like action in defense-responses, jasmonate and its derivatives were shown to be 

induced upon wounding in tomato and thale cress (Wasternack, 2007) and eicosanoids are 

widely known for their role in regulating pain, fever and inflammation (Funk, 2001), a fact 

exploited by all non-steroidal anti-inflammatory drugs (NSAIDs) on the market. Despite these 

information on the situation in plants and mammals, the knowledge about oxylipins in fungi 

started to rise rather recently (Andreou et al., 2009; Brodhun and Feussner, 2011). Not only the 

finding that several fungal enzymes seem to combine two distinct steps of oxylipin-biosynthesis, 

namely lipid peroxidation and subsequent peroxide rearrangement, in one polypeptide chain 

(see Section 1.4) renders this a research field of interest, but eventually more fascinating is the 

idea that the fungal oxylipins might mimic and interfere with host derived oxylipins in order to 

overcome an established defense mechanism (Tsitsigiannis and Nancy P. Keller, 2006; 

Christensen and M.V. Kolomiets, 2011). Before reviewing the experimental evidences for this 

hypothesis (section 1.2.2), the impact of fungal pathogens on agriculture as well as the 

consumer’s health will be outlined briefly. 
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1.2.1  FUNGAL INFECTIONS AND MYCOTOXIN PRODUCTION-A  CURSE FOR AGRICULTURE  

 

Molding of spices, fruits and crops is not just of academic interest but actually causes severe 

yield depressions. Contamination of the remaining harvest with mycotoxins and the resulting 

thread of the consumer’s health make it even more important to understand the processes of 

fungal pathogenicity and to establish efficient strategies of plant protection. Mycotoxins are 

toxic secondary metabolites, produced by fungi in order to promote the fungal infection. Most 

important are those toxic to humans. Based on a consideration of natural abundance, toxicity 

and possibility to serve as an indicator analyte, the European Union has regularized the maximal 

tolerated concentration of six different mycotoxins in food1. Thus, those six compounds can be 

identified as main mycotoxins with severe relevance regarding economic and health issues and 

their occurrence and toxic effects will be briefly reviewed here (Coppock and Jacobsen; Frisvad 

et al., 2006):  

 

Aflatoxins (Figure1) 

Aflatoxins can be divided into Aflatoxin B1, B2, G1, G2 and M1. Aflatoxin B1 is the most potent 

known natural carcinogen. Even if only trace amounts of these compounds are ingested, acute 

liver toxicity can be observed. Aflatoxins are produced by various Aspergillus species, e.g. A. 

flavus and A. parasiticus. Since those fungi grow under rather tropical conditions, the possibly 

contaminated foods comprise of nuts, figs, spices etc. But also inadequate storage conditions, 

i.e. high temperature and humidity, can lead to a severe contamination. An exceptional position 

within the aflatoxin family is attributed to Aflatoxin M1. This compound is the product of a 

biotransformation and is yielded by hydroxylation of Aflatoxin B1, if contaminated food is 

ingested by a cow. Consequently, this toxin can be identified in milk and products thereof.  

 

Fumonisins (Figure1) 

As Tricothecenes and Zearalenone, Fumonisines are produced by Fusarium species and thus can 

contaminate crops on the field even in a zone of moderate climate. Fumonisines are mainly 

detected on maize and their major producers are F. verticillioides and F. proliferatum.  

 

Ochratoxin A (Figure1) 

Ochratoxin A is a nephrotoxic, cancerogenic and teratogenic metabolite, produced mainly by A. 

ochraceus, A. westerdijkiae and some strains of A. niger. As for the Aflatoxin producing fungi, 

those mainly contaminate food grown in tropical zones, e.g. grapes, coffee and cacao beans. In 

contrast, Penicillium verrucosum is the main contaminant, producing Ochratoxin A in stored 

food.   

                                                           
1 current regulations regarding maximal levels can be found in: COMMISSION REGULATION (EC) 
No 2174/2003 for Aflatoxines; COMMISSION REGULATION (EC) No 123/2005 for Ochratoxin A; 
COMMISSION REGULATION (EC) No 455/2004 for Patulin; COMMISSION REGULATION (EC) No 
856/2005 for Deoxynivalenol, Zearalenon and Fumonisine 
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Patulin (Figure1) 

Patulin is a metabolite with toxic effects on prokaryotes as well as eukaryotes. It can be 

identified in apples, but also in pears and grapes. The major source is Penicillium expansum. 

 

Tricothecenes (Figure1) 

Tricothecenes are a diverse group of compounds with a common lead structure. Of those 

derivatives Deoxynivalenol is the one that can be regarded as indicator compound and therefore 

its level in food is regularized. This mycotoxin, which’s trivial name vomitoxin illustrates its major 

toxic effect, is mainly produced by F. graminearum and F. culmorum. Besides Deoxynivalenol, 

T2-and HT2-toxin, which are produced by F. sporotrichioides and F. langsethiae and occur mainly 

in oat, are discussed to be regularized by law, since those derivatives are known to be highly 

toxic. 

 

Zearalenone (Figure1) 

Zearalenone has a structure, comparable to the one of the hormone estrogen and its toxic 

effects mainly derive from this structural similarity. The pseudo estrogen interferes with various 

processes, regulated by estrogen. The main producers of this compound are F. graminearum and 

F. culmorum. 

Figure 1: Structure of economical important mycotoxins  
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All molds known to be important producers of mycotoxins, e.g. those belonging to the genera 

Aspergillus, Fusarium and Penicillium, can be classified in the phylum Ascomycota. One of the 

best established model organisms of this phylum is Aspergillus nidulans. Although not 

synthesizing one of the regularized mycotoxins, this fungus produces Sterigmatocystin a 

polyketide related to Aflatoxin and exhibiting similar toxological effects (D.W. Brown et al., 

1996). Since the established tools and knowledge might help to gain new insights in the 

mechanisms and molecules regulating mycotoxin production and pathogenicity of ascomycetes 

in general, A. nidulans can also serve as model organism in this respect.  

 

1.2.2  THE IMPACT OF OXYLIPINS IN GENERAL AND PSI-FACTORS IN SPECIAL ON FUNGAL 

PATHOGENICITY  

 

One of the substance classes that are involved in regulation of crop molding are lipids. In the 

early 1980’s it was shown that aflatoxins are preferentially found on seeds containing high 

amounts of unsaturated fatty acids and a subsequent study could further narrow down the 

responsible compounds and establish that oxidized fatty acids are accountable for this enhanced 

mycotoxin biosynthesis (A. A. Fabbri et al., 1983; C Fanelli and A A Fabbri, 1989). Moreover, a 

study investigating the role of polyunsaturated fatty acids as well as their hydroperoxy fatty acid 

derivatives on development of Aspergillus species established their growth and sporogenesis 

promoting function (Calvo et al., 1999). In line with this observation, Burow et al. showed that 

mycotoxin synthesis is inversely regulated by two positional isomers of hydroperoxy linoleic acid 

(HPODE): While 9-HPODE was shown to specifically enhance mycotoxin biosynthesis, 13-HPODE 

had the antagonistic effect and suppressed mycotoxin production (Burow et al., 1997). 

Consequently, maize with a mutation in the 9-HPODE synthesizing lipoxygenase (LOX) was less 

susceptible to Fusarium verticillioides and showed a significantly reduced fumonisin B1 level 

(Gao et al., 2007). Interestingly, the same maize knock-out line was more susceptible to 

Aspergillus flavus and displayed increased aflatoxin levels (Gao et al., 2009). This observation 

together with a study investigating the effect of fungal 13-HPODE on Ochratoxin A biosynthesis 

(Reverberi et al., 2010) leads to the hypothesis that fatty acid hydroperoxides may generally 

cause an unspecific up-regulation of mycotoxin biosynthesis, while some plant-derived oxylipins 

might act as defense mediators and inhibit this process in a pathogen-specific manner.  

 

The virulence enhancing effect of hydroperoxy fatty acids may be explained by the fact that 

structurally related oxylipins on the one hand mediate host defense and are on the other hand 

important regulators of fungal development. Exemplary, it is known that in plants jasmonic acid 

acts inter alia as signaling molecule during wounding and pathogen attack (Wasternack, 2007). 

However, the effect of this compound on different Aspergillus species is inconsistent. There are 

reports of Aflatoxin biosynthesis repression in A. flavus grown on medium supplemented with 

methyl jasmonate (Goodrich-Tanrikulu et al., 1995) as well as on an Aflatoxin biosynthesis 

promoting effect for A. parasiticus grown under similar conditions (Vergopoulou et al., 2001). 
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Interestingly, it was reported that several fungi are able to synthesize this plant defense-

mediator or a mimic thereof (Brodhun and Feussner, 2011) and it was proposed that these 

compounds might promote the fungal infection. Albeit this is not in agreement with the role of 

jasmonic acid as defense-mediator, the fungus might abuse the diverse physiological roles of this 

oxylipin in plants and an elevated jasmonic acid concentration may induce a senescence process 

making the plant more susceptible to fungal infections or a better host for necrotrophic 

pathogens (Thatcher et al., 2009). For the sake of completeness it should be mentioned that also 

non-plant hosts like mammals produce oxylipins that can mediate fungal growth. Exemplary it 

was shown that Prostaglandin E2 can affect Aspergillus development (Tsitsigiannis, Bok, et al., 

2005). Since the first intermediate in the biosynthesis leading to oxylipins is a peroxidized fatty 

acid in all potential hosts, it is tempting to assume that these intermediates might be sensed by 

the pathogen to initiate its virulence and finally overcome the established defense response. 

 

With the description of Psi-factors as fungal hormones in the late 1980’s (S P Champe et al., 

1987; S P Champe and el-Zayat, 1989; Mazur et al., 1991), fungal oxylipins, which structurally 

resemble these peroxidized fatty acids, were identified. These compounds have been shown to 

be involved in the balance and regulation of the sexual and asexual life cycle of the fungus (S P 

Champe et al., 1987; S P Champe and el-Zayat, 1989). Later on supported by the biochemical 

analysis of Garscha et al. (Garscha et al., 2007), various studies conducted in the group of Nancy 

Keller could show that these Psi-factors are produced by an enzyme family, which is specific for 

ascomycetes and shows homology towards mammalian prostaglandin H2 synthase. 

Physiologically, the respective knock out mutants were impaired in the regulation of their 

normal life-cycle (Tsitsigiannis, Kowieski, et al., 2004, 2005; Tsitsigiannis, Zarnowski, et al., 2004), 

a finding which is consistent with the function of Psi-factors as postulated by Champe and co-

workers (S P Champe et al., 1987; S P Champe and el-Zayat, 1989). For instance, an A. nidulans 

strain in which the ppoA gene was disrupted did not produce the 8- hydroxy derivative of linoleic 

acid and showed a four-fold increased ratio of asexual to sexual spores as compared to a wild 

type strain (Tsitsigiannis, Zarnowski, et al., 2004) whereas disruption of the ppoC gene resulted 

in a decreased ratio of asexual to sexual spores and suppressed the biosynthesis of the 8-

hydroxy derivative of oleic acid (Tsitsigiannis, Kowieski, et al., 2004). Therefore, the identified 

genes in the model organism A. nidulans have been consequently named Psi-factor producing 

oxygenases A through C (ppoA, ppoB, ppoC). Benefiting from the recent improvements in 

genome sequencing (Bornscheuer et al., 2012), it became obvious that Ppo-enzymes with their 

domain-architecture comprising of an N-terminal dioxygenase and a C-terminal cytochrome 

P450 may be ubiquitously distributed in ascomycetes (Andreou et al., 2009; Brodhun and 

Feussner, 2011) and hence might exhibit a pivotal function in this ecological niche. Considering 

that spore development is an essential process in fungal growth and virulence (Calvo et al., 

1999) and keeping in mind that the structures of the signal molecules regulating the respective 

process are similar to that of the plant hormones defending the host, one may hypothesize that 

host oxylipins might be able to promote fungal pathogenicity. Supporting this hypothesis, 
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various Ppo-knock out mutants are not only impaired in spore formation, but exhibit an 

additional change in their ability to colonize a host, which suggests a certain role of psi-factors in 

pathogenicity. This effect may be explained by the hypothesis that Psi-factors regulate not only 

the life cycle, but also the secondary metabolism of the fungus. Exemplary an A. flavus strain, in 

which four ppo and one lox gene were down regulated exhibited an impaired regulation of 

Aflatoxin biosynthesis (S.H. Brown et al., 2009) and Tsitsigiannis et al. could show that the Ppo-

knock out strains of A. nidulans were impaired in the colonization of peanut seeds, which is most 

likely caused by a reduced amount of Sterigmatocystin produced (Tsitsigiannis and Nancy P. 

Keller, 2006). This mycotoxin is related to Aflatoxin and therefore a potent virulence factor of 

host colonization. Additionally, regulation of fungal virulence by Psi-factors may point out the 

existence of an inter-species communication mediated by oxylipins. This cross-talk between host 

and pathogen may be characterized by perception of foreign oxylipins enabled through chemical 

similarities of the signaling compounds in all kingdoms of life (Tsitsigiannis and Nancy P. Keller, 

2006; Brodhun and Feussner, 2011; Christensen and M.V. Kolomiets, 2011). Although a number 

of evidences accumulated during the last decade, which support such an oxylipin mediated 

crosstalk between host and pathogen, no conclusive details of the underlying mechanisms were 

given to date and some of the results seem to be in conflict with each other. However, a striking 

evidence for this crosstalk between host, irrespective whether plant or mammalian host, and 

pathogen was presented when Brodhagen et al. showed in 2007 that a plant LOX can 

complement the phenotype of A. nidulans Δppo strains (Brodhagen et al., 2007). The functional 

substitution of fungal oxylipins by host derived ones might explain how the fungus can sense the 

presence of a host and initiate its virulence mechanisms, e.g. production of mycotoxins. So far 

the evidences collected seem to point out that this mechanism is of general relevance and that 

oxylipins play a pivotal role not only for the infection of plants but also in mycosis of mammals. 

However, some hosts may also take advantage of the conserved chemical structure of oxylipins 

and utilize the pathogen’s oxylipins to initiate an adequate defense mechanism (Tsitsigiannis, 

Bok, et al., 2005). Taken together the role of lipids and especially oxylipins in fungal 

pathogenicity seems to be worth a further investigation. However, to finally establish a detailed 

mechanism of how Psi-factors may mediate fungal virulence, more systematic research is 

indispensable and many aspects of the proposed oxylipin mediated inter-species communication 

have to be characterized in the future. For instance it is completely unknown by what receptors 

fungi perceive oxylipins.  
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1.3 A mechanical view on PpoA, an fascinating enzyme to 
study heme-chemistry 

In PpoA two independent activities are combined in one enzyme: A dioxygenase (DOX) in the N-

terminal part of the enzyme catalyzes dioxygenation of C8 of an unsaturated C18 fatty acid and 

an atypical P450-functionality in the C-terminal domain catalyzes the rearrangement of this N-

terminally formed hydroperoxy fatty acid to its 5,8-dihydroxy derivative (Brodhun et al., 2009). 

Interestingly, both domains require a heme cofactor for their activity and, since a different 

coordination causes a distinct reactivity, the entire enzyme represents two avenues, how 

versatile heme chemistry can be utilized by nature. Remarkably, this fusion is both a blessing and 

a curse. While it enables to investigate typically separated activities and their interplay within 

one system, this is consequently accompanied by an increased complexity of the system. Not 

solely the interaction and combination of two activities within one enzyme is of interest, but also 

the peroxide isomerase domain of the enzyme represents an activity that is atypical for 

cytochrome P450 enzymes. Most likely the P450-domain can be clustered with class III 

cytochrome P450s that are defined as cytochrome P450s that circumvent the need of external 

electron donors (Werck-Reichhart and Feyereisen, 2000; Brash, 2009). This class of cytochrome 

P450s does not insert molecular oxygen in the substrate molecule, but rather rearranges fatty 

acid peroxides. Notably, all known members of this class are responsible for the biosynthesis of 

oxylipins and short-cut the commonly accepted P450 reaction cycle by a hemolytic cleavage of 

the peroxide’s O-O bond (Brash, 2009). In contrast, the reaction finally leading to a dihydroxy 

fatty acid suggests a heterolytic fission of the peroxide’s O-O bond and a shunt that shortcuts 

the P450 reaction cycle by a different path than the previously mentioned reaction (Kupfer et al., 

2001).  

 

The following sections will review the current knowledge about similar enzymes that could serve 

as a guide to elucidate structural and mechanistic aspects of the respective enzyme domain. One 

should keep in mind that there are only homologue systems for the single domains, but the 

combination of both activities in one enzyme is something unique. 
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1.3.1  D IOXYGENASE-DOMAIN  

 

Sequence alignments of the DOX-domain indicated that it is a member of the myeloperoxidase 

family (Daiyasu and Toh, 2000). Besides Ppo-enzymes, two members of this family catalyze the 

dioxygenation of fatty acids: prostaglandin H2 Synthase (PGHS) and α-dioxygenase (α-DOX) 

(Daiyasu and Toh, 2000). Both employ a nearly identical mechanism of catalysis (Mukherjee et 

al., 2010; A.-L. Tsai and Kulmacz, 2010). This mechanism involves two activities, a peroxidase and 

the actual DOX, which are mechanistically linked (Figure 2). Initially, within a redox reaction 

catalyzed in the enzymes peroxidase site, a peroxide molecule is reduced to the corresponding 

hydroxide and the enzyme’s heme cofactor is oxidized two-fold. This reactive heme species 

(compound I; [Fe(IV)=O PPIX]+*) is subsequently reduced by transfer of one electron from a 

tyrosine, which thus forms a reactive radical. The resulting heme derivative (compound II; 

[Fe(IV)=O PPIX]) is still a reactive species and responsible for an enzyme inactivation process that 

is caused by heme destruction, which is illustrated as bleaching of the soret peak, and can be 

dampened by addition of reducing equivalents that will reduce the heme back to its ferric state 

(Wu et al., 2007). While these reactions occur in the enzymes peroxidase site (Figure 2, pale 

red), the actual DOX reaction is mediated by the mentioned tyrosyl radical that is placed within a 

second active site of the enzyme (Figure 2, pale green). Since its proposal in 1988 (Dietz et al., 

1988; Karthein et al., 1988), growing evidence has accumulated that this “branched-chain” 

model, which mechanistically links both active sites by the intramolecular electron transfer from 

the catalytic tyrosine in the DOX-site to the oxidized heme in the peroxidase site, indeed is valid 

for the reaction of PGHS (A.-L. Tsai and Kulmacz, 2010) and the related α-DOX (Gupta et al., 

2008a; Mukherjee et al., 2010). Within the once activated DOX-site (Figure 2, pale green), the 

tyrosyl radical interacts with the fatty acid and abstracts a hydrogen atom from either C13 of 

arachidonic acid (PGHS) or C2 from a range of different fatty acids in α-DOX. The resulting 

substrate radical is delocalized over five carbons in case of arachidonic acid and finally reacts 

with molecular oxygen at C11 to produce a fatty acid peroxyl derivative (Wu et al., 2011). In 

contrast to PGHS, hydrogen abstraction and oxygen insertion occur suprafacial in α-DOX and the 

carbon from which the hydrogen is initially abstracted is identical with the one finally reacting 

with molecular oxygen (Mats Hamberg, León, et al., 2002). While in PGHS several rearrangement 

reactions follow the formation of the first peroxyl radical, sequentially including formation of an 

endoperoxide between C9 and C11, formation of a cyclopentane ring and a further dioxygen 

insertion at C15, the final step for both enzymes is again an interaction between the catalytic 

tyrosine and the afore formed peroxyl radical. A hydrogen atom is transferred from the amino 

acid to form both: a hydroperoxy fatty acid that is released as enzymatic product and a tyrosyl 

radical that is capable of catalyzing the next reaction cycle upon formation of a new enzyme-

substrate complex. The studies of Brodhun et al. (Brodhun et al., 2009) and Fielding et al. 

(Fielding et al., 2011) could already establish that the dioxygenation mechanism of PpoA 

resembles the here presented mechanism. EPR-spectra as well as the absence of dioxygenase 
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activity in the respective phenylalanine variant indicated that the catalytic competent tyrosine of 

PpoA is Tyr374, the position homologue to the conserved tyrosine in myeloperoxidases. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Conserved reaction mechanism of fatty acid oxidizing enzymes, belonging to the myeloperoxidase 

family. Note that these enzymes have two distinct active sites. In one of these sites dioxygenation of the 

fatty acid (FA) is mediated by a tyrosyl radical (pale green), while in the mechanistically linked peroxidase-

site a peroxide is reduced to oxidize the heme cofactor (Fe containing protoporphyrin IX; [Fe(III)PPIX]), 

which is reduced again by intramolecular electron transfer from the catalytic tyrosine and thus activates 

the enzyme (pale red). ROOH denotes a variety of different peroxides and radicals are marked by an 

asterisk (*). A detailed description of the catalytic cycle is given in the text.  

 

In contrast to knowledge on the mechanism, structural data is only available for PGHS. Although 

rice ɑ-DOX has been crystallized successfully (Lloyd et al., 2006), so far no solved structure is 

available. Nevertheless two experimentally verified homology models suggest that the structure 

resembles the one of PGHS (W. Liu et al., 2004; Koszelak-Rosenblum et al., 2008) pointing out 

the structural conservation within the myeloperoxidase family. As expected by sequence 

homologies, the 3D-structures of both PGHS isoforms have a conserved fold. These two PGHS-

isoforms catalyze the same reaction, but differ in their substrate promiscuity, which might be 

explained by some specific amino acid exchanges within the DOX active site (Vecchio et al., 

2012). However, the main difference between both isoforms is that PGHS-1 is constitutively 

expressed, while PGHS-2 is the inducible isoform exhibiting a pivotal role during infections and 

inflammation processes (D.L. Simmons et al., 2004). Both isoforms can serve as prototypes for 

monotopic membrane proteins (Fowler and Coveney, 2006). They form homodimers and both 

monomers exhibit a hydrophobic membrane binding domain with which the protein is anchored 

to the membrane (Michael Garavito et al., 2002). While the peroxidase-site of the enzyme is in 

proximity of the heme, the entrance to the channel forming the DOX active-site is located at the 

interface of the membrane binding domain (Figure 3 A, green) and the catalytic domain (Figure 3 
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A, blue) and the fatty acid enters the DOX channel from the membrane. At the junction of 

membrane binding domain and catalytic domain an arginine interacts with the negatively 

charged carboxyl group of the fatty acid substrate (Figure 3 B). Although structurally conserved, 

the contribution of this arginine to substrate binding differs remarkably between the two PGHS 

isoforms: While in PGHS-1 apparently an ionic interaction confers strong substrate binding, in 

PGHS-2 a hydrogen bond exhibits much weaker binding strength and contributes less strongly to 

binding (Rieke et al., 1999). From this observation it became obvious that in PGHS-2 hydrophobic 

interactions between apolar residues lining the active site and the fatty acid are relatively more 

important for substrate binding than in PGHS-1. In both isoforms, the fatty acid substrate is 

placed in an L-shaped confirmation within the active site of the catalytic domain and the 

substrate’s C13 is positioned next to the catalytic tyrosine residue (Figure 3 B).  

 

Figure 3: Structure of PGHS. A overall structure of the PGHS-1 homodimer (PDB-ID: 1CQE); heme: red; 

catalytic domain: blue; membrane binding domain: green; flurbiprofen bound to the active site: cyan; Note 

the ß-octylglucoside molecules (grey) bound to the membrane binding domain B Zoom from the membrane 

into the active site of PGHS-2 (PDB-ID: 3HS5); heme: red; catalytic domain: blue; membrane binding 

domain: green; arachidonic acid bound to the active site: cyan. Note the two highlighted residues and their 

interactions with the substrate: Arg120 (5.2 Å to arachidonic acid’s carboxyl group) and Tyr385 (2.9 Å to 

arachidonic acid’s C13). 
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1.3.2  CYTOCHROME P450-DOMAIN  

 
Cytochrome P450 enzymes are one of the largest enzyme families with a very diverse range of 

utilized substrates and reactions catalyzed (Werck-Reichhart and Feyereisen, 2000). This 

diversity is reflected on the level of the primary sequence, on which sequence identity may be as 

low as 20 % (Sirim et al., 2010). Actually only three residues are completely invariant in all 

known P450 sequences: the cysteine that serves as the heme iron’s fifth ligand and a 

glutamate/arginine pair that forms the so called ExxR-motif (Werck-Reichhart and Feyereisen, 

2000). Despite this low sequence identity, the three dimensional fold of the enzyme core is 

highly conserved with 12 α-helices named from A through L, several, short ß-sheets and one 

conserved coil named ‘meander loop’ (Peterson and Graham, 1998; Sirim et al., 2010) (Figure 4 

A). Noteworthy are the helices I and K (Figure 4 B). The I-helix spans over the distal heme plane 

and exhibits a conserved threonine which forms a hydrogen bond network with a neighboring 

glycine. This network causes a kink within the helical structure and thus forms a cavity that most 

likely accommodates the oxygen to be inserted into the substrate (Martinis et al., 1989). Helix K 

contains the ExxR-motif, which represents two of the three absolutely conserved residues of 

P450 enzymes. This motif is placed on the proximal heme site and might be involved in 

stabilizing the core structure. Besides this core region, the structure of P450 enzymes is 

nonconserved and variable. This variability enables interaction with different redox partners, 

optional membrane binding and conversion of a highly diversified substrate spectrum. The 

substrate promiscuity of P450s and the differences of single enzymes in this respect were 

additionally described by definition of six so called substrate recognition sites (SRS) (Gotoh, 

1992). While SRS 1 is located in a variable loop connecting the conserved core structure of the 

enzyme-family, SRS 2, 3 and 4 are located within the conserved α-helices and SRS 5 and 6 are 

located within the conserved ß-sheets (Figure 4 A) (Sirim et al., 2010). 

 

As mentioned earlier, the hydroperoxide isomerase activity of PpoA can be identified by 

sequence homology and functional aspects as cytochrome P450 enzyme (Brodhun et al., 2009). 

Due to the fact that it does not require molecular oxygen or external electron donors, it can be 

classified to be part of the cytochrome P450 class III enzyme family (Werck-Reichhart and 

Feyereisen, 2000). Within this class, enzymes rearranging fatty acid peroxides to produce signal 

molecules in mammals (Cyp8a, prostacyclin synthase and Cyp5, thromboxane synthase) and 

plants (Cyp74-family, i.e. allene oxide synthase, divinyl ether synthase and hydroperoxide lyase) 

are systematized (Brash, 2009). Of this class four crystal structures are available and they all 

exhibit the conserved P450-fold. Notably, the plant members of this P450 class exhibit a specific 

alteration of the primary sequence. Within the typically highly conserved heme binding loop a 

nine amino acid insert can be identified (D.-S. Lee et al., 2008). This longer heme binding loop 

leads also to a slight perturbation of the conserved P450-fold with a change in the mode of 

heme-binding and a putative disruption of redox partner-interaction (D.-S. Lee et al., 2008; L. Li 

et al., 2008).   
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Figure 4: 

Conserved 

overall-fold of 

cytochrome P450 

enzymes. The 

tertiary structure 

of P450 enzymes 

is defined by the 

presence of 12 

conserved α-

helices and 

several short ß-

sheets, while the 

variable loops 

connecting these 

conserved 

elements 

account for the 

diversity of this 

enzyme-family. 

Exemplary 

shown are 

secondary 

structural 

elements 

forming the core 

structure of the 

prototype 

enzyme P450cam 

(PDB: 2ZWT; 

assigned  

according to the algorithm of Sirim et al. (Sirim et al., 2010)). A Conserved helices are depicted in green, 

while ß-sheets are rendered in blue and substrate-recognition sites are orange. Heme and Heme-binding 

loop are shown in red and the meander-loop is gray. The substrate (camphor) is rendered in cyan. B 

Highlighted are the I-helix, which is involved in determination of substrate specificity and harbors a 

threonine (Thr252 in P450cam) that is proposed to facilitate oxygen activation, and the K-helix, which 

contains the ExxR-motif that includes two of the absolutely invariant amino acids of P450s (i.e. Glu287 and 

Arg290 in P450cam; the third invariant amino acid is a cysteine coordinating the heme [Cys357 in 

P450cam]). The K-helix is proposed to stabilize the heme co-factor.   
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The mechanism of catalysis differs remarkably between typical cytochrome P450-

monooxygenases and class III enzymes, i.e. hydroperoxide rearranging cytochrome P450s (Figure 

5). To highlight these differences, a brief outline of the typical P450 reaction cycle is necessary. A 

more detailed view on this issue is for example given in a review from Denisov et al. (Denisov et 

al., 2005). In a common P450 reaction the hydroxylation or epoxidation of a substrate is 

catalyzed and the oxygen needed therefore is derived from molecular oxygen. Preceding the 

actual reaction, the enzyme has to be activated and the second atom of the molecular oxygen is 

reduced to water. Reduction equivalents therefore are provided by NADPH/H+ and are delivered 

by either P450 reductase or the flavoprotein-adrenodoxin system. Consequently, the first half of 

the typical reaction cycle describes only this enzyme activation by oxygen and no modification of 

the substrate occurs (Figure 5). The first step of the reaction cycle is replacement of heme-

bound water by a substrate molecule RH and a concomitant change of low-spin ferric heme to 

high-spin ferric heme (Conner et al., 2011). Following a reduction of ferric heme to its ferrous 

form, dioxygen is bound to the cofactor. A second electron transfer generates compound 0, an 

iron-peroxo-heme-intermediate. Although some studies discuss that this species already could 

be responsible for enzyme reactivity, most calculations and experiments contradict this (P.K. 

Sharma et al., 2003; A. Franke et al., 2008). Finally a hydrogen atom is transferred to compound 

0 which leads to a cleavage of the peroxo-O-O-bond and generation of compound I, the same 

two-fold oxidized heme species that also can be found as intermediate in enzymes of the 

myeloperoxidase-family (see section 1.3.1). For this oxygen-bond cleavage, a threonine within 

the I-helix has been shown to be crucial (Imai et al., 1989; Martinis et al., 1989). The last steps of 

this typical reaction cycle involve interaction with the substrate. Firstly, heme compound I serves 

as oxidizing species within a redox reaction, yielding a substrate radical and heme compound II. 

This heme compound is one-fold oxidized and although in the common representation its iron-

structure is described as Fe(IV)=O, some studies suggest that it is rather Fe(IV)-OH (Green et al., 

2004). Within the next step of the reaction cycle, this oxygen is rebound to the substrate-radical. 

This results in an enzyme-product complex where the heme is already in its ferric form. The very 

last step to complete the reaction cycle is then dissociation of the product from the enzyme.  

 

For later discussion mentioning of two artificial shortcuts of this reaction cycle is necessary. By 

the first shortcut compound I can be directly yielded without the need of molecular oxygen or 

reduction equivalents. If the enzyme is treated with peroxides (e.g. hydrogen peroxide or m-

chloroperbenzoic acid), a redox reaction between heme and this peroxide yields directly the 

corresponding hydroxide and compound I. The thus charged enzyme can oxidize the substrate in 

exactly the same manner as if it would have been activated by reduction of molecular oxygen. 

Surely, the most impressive application of this peroxide shunt was trapping of the highly reactive 

compound I by Rittle and Green (Rittle and Green, 2010). Recently, two enzymes have been 

identified that seem to utilize this peroxide shunt for a native reaction: the α, ß-hydroxylation of 

a fatty acid substrate with hydrogen peroxide as oxygen source (Matsunaga et al., 2002; D.-S. 

Lee et al., 2003; Fujishiro et al., 2011). As presented by Brash, all plant class III cytochrome P450s 
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shortcut the outlined reaction cycle by homolytic cleavage of the substrate peroxide’s O-O-bond 

and direct formation of heme compound II (Brash, 2009). Hence, this subclass of cytochrome 

P450s utilizes fatty acid peroxides as substrate and for enzyme activation. In contrast to the 

peroxide shunt, the peroxide’s O-O-bond is cleaved not heterolytic and therefore compound II 

instead of compound I is formed. Thus, the substrate is not fully reduced to the corresponding 

hydroxide, but an alkoxyl radical is formed. This alkoxyl radical will readily react with the 

adjacent double bond and form an epoxy allylic carbon radical. Subsequently, this radical looses 

a hydrogen atom, which in toto classifies this kind of reaction as dehydration. The hydrogen loss 

itself can be subdivided into two steps: i) transfer of an electron to the heme iron and ii) loss of a 

proton. The first of these steps restores the cofactor, i.e. it yields ferric heme and a hydroxide, 

and forms a substrate cation. The subsequent proton loss would form a new double bond and 

finally furnish either an allene oxide or a divinyl ether. The reaction catalyzed by hydroperoxide 

lyase and eventually leading to an unstable hemiacetal, which spontaneously decomposes to an 

aldehyde and an ω-oxo fatty acid, most likely differs from this scheme with no proton loss 

occurring, but rather a conventional oxygen rebound from compound II. Of course, formation of 

an epoxy alcohol also involves a classical oxygen rebound to the epoxy allylic radical. For 

mammalian class III-P450s the same shortcut of the reaction cycle with homolytic peroxide’s O-

O-bond cleavage and compound II as solely heme intermediate was shown to be true (Hecker 

and Ullrich, 1989; Yeh et al., 2005). 

 

Figure 5: The 

cytochrome-

P450 reaction 

cycle and its 

shortcut, 

occurring in 

catalysis of 

classIII-

P450s. For all 

known 

members of 

this fatty acid 

peroxide 

rearranging 

P450s, it was 

shown that 

the full 

reaction cycle 

(grey) is shortcut and that heme compound II is the only reaction intermediate. For illustration reactants 

and products of Cyp74 enzymes are shown in this figure.   
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1.4 Interaction of DOX-and P450-enzymes in oxylipin 
biosynthesis 

So far, a hypothesis about the physiological role of oxylipins in host defense was presented, first 

indications for the use of similar compounds by pathogenic fungi were outlined and enzymes, 

homologue to the distinct PpoA-domains, were introduced. Interestingly, all of these homologue 

enzymes are involved in oxylipin biosynthesis in mammals and plants, but so far only single 

enzymes of complex biosynthetic routes were described. In this section the interplay of these 

enzymes to compose the entire biosynthetic pathway and finally yield the bioactive compound is 

summarized. This description will focus on selected examples of biosynthetic routes and one 

should be aware that there are alternative routes for production of distinct oxylipins (Andreou et 

al., 2009; Brodhun and Feussner, 2011). Namely the discussion will include the mammalian 

prostanoid pathway and the LOX-pathway from plants. Roughly spoken both pathways consist of 

a two-step process. In a first step a fatty acid is functionalized by insertion of molecular oxygen. 

The thus formed lipid peroxide is further processed by the action of diverse unusual cytochrome 

P450 enzymes leading to peroxide isomerization and finally formation of the active compound or 

a precursor thereof. The enzymes involved in oxygen insertion and formation of the hydroperoxy 

fatty acid can be classified in two big groups. Both groups utilize radical chemistry to perform 

their reactivity, but differ in their cofactor requirements and their demands on substrate 

unsaturation (C. Schneider et al., 2007). While lipoxygenases (LOXs) require an iron-cofactor and 

initiate their reaction on a bisallylic carbon, PGHS and α-DOX have a heme cofactor and at least 

α-DOX can catalyze activation of carbons with higher bond dissociation enthalpy. Although both 

classes are present in plants and mammals, one of the most important oxylipin biosynthesis 

pathways in mammals is initiated by PGHS, while the prominent oxylipin biosynthesis pathways 

in plants are initiated by LOX-enzymes (Brodhun and Feussner, 2011). As mentioned previously, 

important active compounds are formed from the yielded hydroperoxy fatty acid by peroxide 

isomerizing cytochrome P450 enzymes. In mammals those are thromboxane synthase for 

synthesis of thromboxane, which is involved in platelet aggregation and vasoconstriction, and 

prostacyclin synthase, which’s product acts as a thromboxane antagonist (Funk, 2001). In plants 

these unusual cytochrome P450s form an own subfamily: Cyp74. From these Cyp74-enzymes 

allene oxide synthase (AOS), the first enzyme in the biosynthesis-pathway of jasmonic acid, is 

probably the most important one (Brash, 2009; Brodhun and Feussner, 2011). This enzyme 

catalyzes the formation of an allene oxide by dehydration of the fatty acid peroxide. Other 

enzymes belonging to this P450-subfamily are hydroperoxide lyase (HPL), epoxy alcohol synthase 

(EAS) and divinyl ether synthase (DES) (Brash, 2009; Brodhun and Feussner, 2011). Considering 

the results from Brodhun et al. on the domain structure of PpoA (Brodhun et al., 2009), it 

becomes evident that also the fungal pathway yielding Psi-factors resembles this two-step 

process, albeit only one enzyme is involved. While existing as two independent enzymes in 

plants and mammals, within ascomycetes the dioxygenase and the atypical P450-enzyme 

involved in furnishing the bioactive oxylipin are fused to one polypeptide chain (Figure 6). 
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Figure 6: Common two step biosynthesis pathway of oxylipins. In mammals as well as in plants typical 

pathways of oxylipin biosynthesis involve fatty acid peroxidation by a dioxygenase (green) and subsequent 

rearrangement of this hydroperoxy fatty acid by an atypical cytochrome P450 (blue). Biosynthesis of fungal 

Psi-factors was shown to comprise the same reaction steps, but both enzymatic activities are fused to one 

enzyme. Exemplary substrates, products and intermediates as well as catalyzing enzymes are shown for 

selected pathways in each kingdom. Abbreviations: PGHS: prostaglandin H2 synthase; TXAS: thromboxane 

synthase; PGIS: prostacyclin synthase; LOX: lipoxygenase; DES: divinyl ether synthase; AOS: allene oxide 

synthase; HPL: hydroperoxide lyase; PpoA: Psi-factor producing oxygenase A   
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22  OOBBJJEECCTTIIVVEESS  AANNDD  OOUUTTLLIINNEE  

The aim of the present study was to functionally and structurally characterize Psi-factor 

producing oxygenases and thus elucidate the molecular basis of Psi-factor biosynthesis in 

ascomycetes. With PpoA as prototype of the Ppo-enzyme family and its expression and 

purification protocols on hand, the prerequisites for such a study were already established in a 

previous study (Brodhun et al., 2009). Therefore, the main objective was to derive structural 

information and link this data with the mechanism proposed in this former study. Considering 

the size of this enzyme, X-ray crystallography was the method of choice to derive an atomic 

structure. Despite several efforts to rescue the crystallization project, the prototype Ppo did not 

yield diffraction quality crystals (Section 4.2). To overcome this dead end, template-based 

structure prediction was utilized to model the distinct enzyme domains that resemble 

characterized oxylipin producing enzymes from other species (Section 4.3). Although template-

based structural models tend to be reliable, careful validation of conclusions drawn from these 

models is mandatory. Therefore, enzyme variants were constructed and thoroughly 

characterized by various biochemical approaches to finally establish determinants of reactivity 

and thus link the active site structure to the enzyme function (Section 4.4). Thus the crucial 

involvement of two tyrosines (Tyr374 and Tyr327) in dioxygenation and an asparagine (Asn887) 

in hydroperoxy fatty acid rearrangement was shown. Moreover, the modes of substrate binding 

to the distinct domains were established. While an arginine (Arg336) might ionically bind the 

carboxylate of the fatty acid substrate in the DOX-domain of PpoA, two phenylalanines (Phe795 

and Phe799) seem to be involved in proper substrate placement in the P450-domain. To bridge 

the gap between the predicted and biochemically validated structures of the single domains on 

the one hand and their arrangement in a single polypeptide chain as well as the enzyme's 

quaternary structure on the other hand, small-angle X-ray scattering data of the native enzyme 

were obtained and the low resolution envelope of the particle was calculated thereof (Section 

4.6.1). The results indicate that native PpoA might exhibit a flat trimeric quaternary structure. To 

additionally shed light on a selected aspect of the enzyme mechanism, specifically dideuterated 

substrates were used to probe the kinetic contribution of the hydrogen transfer steps occurring 

during fatty acid conversion (Section 4.7). These measurements revealed that from the three 

steps involving hydrogen transfer, the tyrosyl radical mediated hydrogen abstraction from C8 

exhibits clearly the most important kinetic contribution.  
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33  MMEETTHHOODDSS  

3.1 Protein crystallization  
 

For proteins larger than 30 kDa the only possibility to get atomically resolved structural 

information is to obtain single crystals and subsequent collection of X-ray diffraction data. The 

main obstacle in this procedure is the identification of conditions under that the protein of 

interest will crystallize. A comprehensive overview of crystallization techniques is given in 

literature (Bergfors, 1999). A typical crystallization experiment is set up by mixing a “high” 

protein concentration with several precipitants to be tested. These precipitants are quite diverse 

in nature and can be: salts (e.g. NaCl; (NH4)2SO4), organic compounds (e.g. polyethylene glycols, 

methyl pentanediol), organic solvents or various combinations thereof. Initially the precipitant 

concentration is chosen to be lower than would be necessary to precipitate the protein. This 

point has to be found for every protein/precipitant-combination empirical. Subsequent, the 

condition is allowed to slowly increase the concentration of protein and precipitant by 

controlled evaporation of water. Although several approaches exist to achieve this, the most 

common used one is vapor diffusion. Here the miniaturized condition with protein and 

precipitant is enclosed together with a larger reservoir of undiluted precipitant (either as 

“hanging” or “sitting drop”). The sealing guarantees that water will slowly evaporate from the 

drop, as long as the precipitant concentration in the drop is lower than in the reservoir. Thus, 

the drop shrinks and both, the precipitant and the protein concentration are increased. Figure 7 

shows and describes an idealized phase diagram for a vapor diffusion experiment. Note that for 

each examined precipitant, concentrations have to be optimized in order to prevent 

precipitation and avoid undersaturation. Another typical problem is associated with the fact that 

nucleation and (optimal) crystal growth are not typically occurring at the same position of the 

phase diagram. Hence, a too steep increase of concentrations might lead to overnucleation and 

formation of many small and bad diffracting crystals. Although not usable for the diffraction 

experiment itself, these tiny crystals still might pave the way to success by serving as starting 

material in various kinds of seeding experiments. By preventing the need to bring the system to 

a state where nucleation occurs, these seeding experiments can typically speed up the 

crystallization experiment and could yield bigger crystals than obtainable without seeds.  

 

Up to date identification of a precipitant condition that gives an initial hit that could be 

optimized further is still an empirical approach. Nevertheless, automation and miniaturization 

allows the fast screening of various conditions without too much effort. Typically, screens are 

available that comprise various conditions (i.e. combinations of different precipitants, additives 

and buffers), which have been used successfully in crystallization trials of other proteins. These 

biased, random screens are called sparse matrix screens. Additionally, screens are available that 

try to rationalize the sampling of the parameter matrix (Grid screens). Caused by the huge 
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amount of parameters (e.g. precipitants, additives and buffers with various concentrations and 

in different combinations), an entirely systematic screen is not feasible and Grid screens deploy 

their strength mainly in the optimization of an identified initial hit. 

 

Figure 7: Phase diagram of an optimal 

protein-precipitant condition for vapor 

diffusion. The axes represent the 

concentration of precipitant and protein, 

respectively. The vapor diffusion experiment 

starts at point 1, where concentrations of 

protein and precipitant are low enough to 

ensure protein’s solubility. Due to evaporation 

of water, the drop’s volume shrinks and the 

concentration of protein and precipitant are 

equally increased. As soon as the nucleation 

zone is hit (2), crystal nuclei will form and thus 

deplete the protein concentration, which 

brings the condition to a phase of slow and 

even crystal growth (3). 

Despite the technical improvements made to enable automatized high-throughput screening of 

various conditions, new statistics show that only 10% of all proteins will crystallize readily (Kim et 

al., 2008) and that those will most likely show a first promising result even if screening only a 

small set of different conditions (Z.S. Derewenda, 2004). Thus it would be hardly meaningful to 

uninspiredly extent the conditions screened, in order to find a suitable condition for a protein 

that resisted successful crystallization so far. Besides this random trial and error approach with 

excessive testing of various possible crystallization conditions, one can think of various 

improvements of the protein in order to yield well diffracting crystals. These include: 

 

•reductive methylation of surface exposed lysines (Kim et al., 2008) 

•surface entropy reduction (Z.S. Derewenda and Vekilov, 2006; Cooper et al., 2007) 

•construction of fusion proteins/ fixed arm carrier (Smyth et al., 2003; Moon et al., 2010)  

•proteolytic digestion/ removal of flexible parts (Wernimont and Edwards, 2009)  

•cocrystallization with ligands 

•crystallization of homologue (thermostable) proteins 

•antibody mediated crystallization (Hunte and Michel, 2002) 

•GraFix/ cross linking approach to yield monodisperse complexes for 3D-cryo EM (Kastner et al., 

2008) 

•a combination of the aforementioned approaches (Moon et al., 2010)  

[precipitant]

Undersaturation

Optimal crystal
growth

Nucleation + fast 
Crystal growth

1

3

2

Protein precipitation
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In the following the advantages and disadvantages of the single techniques will be discussed. In 

order to form a well ordered crystal lattice the sample has to be homogenous and should consist 

of molecules with a defined surface that can interact with each other. The first two approaches 

to optimize the protein, utilized for crystallization, follow the same idea: Charged side chains 

with long, and therefore intrinsically not well ordered, sidearms are modified in order to 

facilitate regular contacts between individual protein molecules. Especially for peripheral 

membrane binding proteins this seems to be of high importance, because these proteins have 

large, positively charged clusters on their surface, which are supposed to interact with the 

anionic phospholipids of the membrane (Bhardwaj et al., 2006). While the first approach aims at 

a biochemical methylation and will only affect surface exposed residues, the second approach 

consists of site-directed-mutagenesis steps to replace surface exposed glutamic acids and lysines 

with alanine. This implies all the drawbacks, one always have to keep in mind when dealing with 

site-directed-mutagenesis. Moreover the identification of surface exposed residues without 

structure is somewhat empirical and a large surface area might require the mutation of different 

amino acids, with each and every mutation step having the same inherent threat of structure 

perturbation or loss of function. While these two approaches modify the protein surface to allow 

the formation of crystal contacts, the other approaches rather try to yield monodisperse and 

well structured units for the formation of the crystal lattice. Therefore unordered loops and tails 

can be removed by limited proteolysis of the native protein. Upon substrate binding enzymes 

might undergo an induced fit, yielding a higher ordered structure. Another technique that 

proved to be very valuable for 3D cryo EM is called GraFix. The idea is to obtain monodisperse 

particles by ultracentrifugation and simultaneous fixation of this state by cross linking with 

glutaraldehyde. The promise of employing fusion proteins is that the added protein domain will 

crystallize readily and provide crystal surfaces that might guide the crystallization of the enzyme 

of interest. Furthermore the structure of the fused protein often is resolved to high resolution 

and this information can be used to ease the problem of phase determination. Unfortunately, 

the generated multidomain proteins are often very flexible with respect to the arrangement of 

the domains. Therefore a rigid linker is needed to assure a homogenous domain architecture, 

which in turn is a prerequisite for the formation of a defined crystal lattice (Smyth et al., 2003). 

Fragments of antibodies, raised specifically against the protein of interest can fixate intrinsically 

disordered, flexible parts of the protein, shield hydrophobic regions and provide new surfaces 

for crystals. Although nowadays generation of antibodies has become a standard technique, it is 

still expensive, labor-intensive and time-consuming. If modification of the protein does not lead 

to well diffracting crystals, a last opportunity is to crystallize a homologue protein. This related 

protein might be less flexible and therefore more easily to crystallize.  
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3.2 Prediction of protein folds by computer algorithms 

Although a nowadays commonly accepted hypothesis, postulated by the Nobel Prize laureate 

Christian B. Anfinsen and known as “Anfinsen’s dogma”, proposes that the protein structure is 

determined solely by its primary structure (Anfinsen, 1973), prediction of protein folds is still a 

challenging task. The mentioned dogma, also known as “Thermodynamic Hypothesis”, is based 

on the idea that under physiological conditions all proteins will fold to a state of lowest Gibbs 

free energy, and therefore the native state can be calculated if all forces governing the 

interatomic interactions are known. The challenge of protein-folding can be visualized by 

thinking of the degrees of freedom that exist for the permutation of the atoms of a 

macromolecule within the three-dimensional space (Zwanzig et al., 1992). While the nature has 

found a way to reach the native state within physiological reasonable time and thus to overcome 

this “Levinthal’s paradox”, sampling of the conformational space in order to identify the global 

energetic minimum is still the most challenging task in protein-fold prediction. Also state-of-the-

art computational power allows the de novo fold prediction only for peptides of a limited size, 

i.e. only a small conformational space is searchable without high risk of getting trapped in a local 

minimum of the energy function (Yang Zhang, 2008b). Therefore other techniques have been 

designed that allow to define the initial structure based on homology to a protein with known 

structure (homology modeling) or by alignment of small sequence strings with known protein 

folds (fold recognition or protein threading) (Yang Zhang, 2008b). Remarkably, all techniques 

have gained severe improvements from recent developments. As the free-modeling and ab initio 

approaches could benefit from improvements in computational power and improved 

parameterization of their physics-and knowledge-based force fields, the template-based 

approaches could be utilized more frequently with the advent of more and more experimental 

structures placed in the protein database (PDB; http://www.rcsb.org/pdb/home/home.do) 

(Yang Zhang, 2008b). While suitable templates for most protein-domains are nowadays 

available, modeling of multi-domain proteins is still one of the most challenging tasks. To 

overcome these problems, one might think of modeling the single domains and subsequent 

identification of a reasonable spatial assembly by techniques allowing the determination of low 

resolution protein envelopes (Förster et al., 2008). 

 

There are several algorithms available and in order to assess the reliability of the programs the 

biyearly competition CASP (Critical Assessment of Techniques for Protein Structure Prediction) is 

performed. One of the outstanding algorithms within the last three rounds (CASP7-2006; CASP8-

2008; CASP9-2010) was I-TASSER (iterative threading assembly refinement) from the Zhang lab 

(Yang Zhang, 2008a; Roy et al., 2010). It is not only a highly reliable algorithm, but also allows to 

predict the structure of large proteins up to 1 500 amino acids and hence was considered to be 

the best choice for modeling of PpoA. Its principle is based on a combination of threading, 

subsequent assembly and refinement of the model within a proprietary force field (Roy et al., 

2010). In a first step, the submitted protein-sequence (and its predicted secondary structure) is 
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utilized to identify templates in the PDB database that are best suited to guide the structure 

building of a given subsequence. As result of this threading process several small folds 

representing substructures of the final protein model are obtained. In the next step these 

fragments are assembled to a whole structure. Finally the structure is refined within a force field 

in order to remove steric clashes and improve hydrogen bonding networks between the 

assembled fragments.  

 
3.3 Characterizing the oligomeric assembly of a 
macromolecule by Small-angle X-ray scattering (SAXS)  
 

Detailed description of SAXS to measure low-resolution particle structures is given in literature 

(Putnam et al., 2007; Jacques and Trewhella, 2010; Mertens and Svergun, 2010) and here only 

the essentials of this method are reviewed. The basic principle of X-ray scattering is that charged 

particles, e.g. electrons, emit electromagnetic waves when they are accelerated. If this 

acceleration is caused by elastic collision of an electromagnetic wave with a charged particle, 

this leads to an apparent change in the direction of wave propagation, although rather a 

secondary wave is generated. Assuming coherent scattering, one can observe intensity patterns 

of the secondary waves that are caused by constructive or destructive interference. This 

intensity patterns contain valuable information about the distances between lattice-planes in 

crystals or the envelope of a molecule in solution, if one considers only the circular scattering 

intensities at small angles. Hence, SAXS is a technique utilized to determine the envelope of a 

macromolecular particle. It can be employed in order to measure the oligomeric state of a 

protein sample, determine the assembly of single domains to an entire molecule or asses the 

flexibility of a protein which’s structure was previously solved by high resolution techniques (i.e. 

NMR or crystallography) or can be predicted reliably.  

 

During data collection the beam intensity is measured in dependence of momentum transfer q 

(      
       

 
 ;  =wavelength and 2* = angle between incident beam and scattered beam). 

The measured intensity is typically represented in a one dimensional plot as radially averaged 

mean (Figure 8 A) and depends on the particle’s shape and the contrast between particle and 

solvent. Contrast denotes the excess scattering length density, i.e. the difference of electron 

density between solute and solvent. Since the incident beam interacts with the electron density, 

the scattering length is a measure for the intensity of the secondary wave and the difference 

between scattering length of the protein and the medium describes the contrast between 

sample and background. Following normalization for buffer background one obtains an intensity 

profile corresponding to the scattering of one particle. Since the technique measures the sample 

in its native state, i.e. in solution, the resulting scattering curve is an average over all possible 

particle orientations. From the thus obtained scattering curve a number of parameters (maximal 

dimension, particle volume, radius of gyration) can be derived directly, while calculation of the 

molecular shape needs some more elaborate procedures. The Fourier transform of the 

http://de.wikipedia.org/wiki/Liste_der_IPA-Zeichen
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scattering curve gives the distance distribution function, which shows the abundance of certain 

distances (r) occurring within the particle (Figure 8 B). Clearly, this function depends on the 

particle's shape and one can derive the maximal dimension of the particle (Dmax). From the 

linearization of the scattering curve (Guinier plot; ln(I(q)) vs. q2; Figure 8 C) one can not only 

observe potential particle aggregation, but also read out I(0) (the scattering at zero angle; y-

intercept of the Guinier-plot) and Rg (the radius of gyration; slope of the Guinier-plot).Obviously, 

I(0) cannot be measured directly, but is only an approximation for which's determination the 

measurement of very small angles is beneficial. To allow even at this small angles a clear 

distinction between the direct beam and the scattered one, a highly focused beam, as it is 

available at synchrotron sources, is a prerequisite. This intensity of the scattered beam at zero 

angles depends on the particle concentration and the particle volume. Thus, if the sample 

concentration is measured carefully one can calculate the particle's volume from I(0). Assuming 

that the specific density of e.g. a protein is always the same, calculation of the molecular weight 

is possible based on this particle volume. 

Figure 8: Data obtained directly from the SAXS-experiment. A Scattering curve of the sample corrected 

with scattering curve of the buffer B The distance distribution function is obtained from A by Fourier 

Transformation and represents a histogram of distances observed within the molecule. Besides other data, 

this function contains information about the maximal particle dimension (ca. 43 Å for this example). C 

Guinier-Plot of A is utilized to confirm that no aggregation occurs. Additionally, one can directly read out 

the scattering at zero angle (I(0); intercept with the y-axis) and the radius of gyration (Rg; slope of the 

function). Figures are taken with permission from ref (Jacques and Trewhella, 2010).  

 

Additionally, more sophisticated algorithms allow calculating a particle envelope, which’s 

theoretical scattering curve fits the experimentally observed one. There are several algorithms 

and programs available and the most important ones are collected in the program suite ASTAS 

from EMBL Hamburg. The principle of the algorithm implemented in the software DAMMIN and 

DAMMIF is outlined briefly. The scattering curve yields directly information on the maximal 

diameter of the investigated particle. Therefore, it is possible to define a sphere, which can 

completely enclose the investigated particle, as search volume and fill this volume with M beads 

that have a diameter d, with d<<Dmax. Subsequently, each of this smaller spheres is assigned to 

be part of the particle (value=1) or the solvent (value=0). With this assignment the whole 

structure is described by a string of M characters. Knowing that from every assumed shape a 
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theoretical scattering curve can be calculated, one can compare the curve of the assumed shape 

with the experimental data and use the difference between these data to guide the process of 

ab initio prediction of a molecular shape that perfectly describes the observed scattering curve. 

A very important aspect of a SAXS-experiment and especially of the derived ab initio structures is 

that a three dimensional molecular shape is derived from a one dimensional curve. Thus, the risk 

of overinterpreting the data and misleading results is given, especially since often a multitude of 

potential shapes will yield the observed scattering curve. Keeping this in mind, one will realize 

that the assurance of measuring pure, monodisperse samples is a necessary prerequisite, but 

not a sufficient criterion, for reliable interpretation of SAXS data. Therefore, a subsequent 

evaluation of the obtained model with other experimental data should be mandatory.  

 
3.4 Electron Paramagnetic Resonance and Double Electron 
Electron Resonance  
 

Electron paramagnetic resonance (EPR) is a spectroscopic technique to obtain information about 

the magnetic properties of electrons. For a more comprehensive description of this kind of 

spectroscopy, the reader is referred to literature (Lottspeich et al., 2006; Corvaja et al., 2009), 

but the basic principle will be outlined here: Magnetism is always associated with the kinematics 

of a charged particle. Keeping the electron-spin itself or the angular movement of the electron in 

a given orbital around an atom's nucleus in mind, one can easily see that an electron can be 

referred to as the world’s smallest magnet. While typically atoms and molecules obey Hund's 

rule and have no magnetic properties, due to paired electrons with magnetic spins cancelling out 

each other, some transition metals have unpaired electrons in their d-shells and radicals have 

generally an unpaired electron giving rise to an observable magnetic moment. The principle of 

an EPR-experiment is that the magnetic moments of those electrons are split within an outer 

magnetic field (Zeeman Effect). A single electron has two magnetic states mS = ± ½ and thus the 

electrons are aligned within the applied magnetic field in either parallel or antiparallel 

orientation, with the latter having a higher energetic state than the parallel aligned electron. 

According to Zeeman's law the energy difference of both orientations (ΔE) is proportional to the 

effective magnetic field (Beff), meaning the higher the magnetic field is, the higher the splitting 

between both energetic states: 

 

ΔE= µ*g* Beff; with: µ- Bohr magneton and g- Landé g-factor  

 

The macroscopic magnetic property of the compound is consequently proportional to the 

population difference between the two spin states. This population difference in turn is 

described by a Boltzmann distribution and is obviously inversely proportional to the temperature 

and proportional to the effective magnetic field. To probe the specific energetic difference 
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between both states, which is characteristic for certain compound's properties described later 

on, the transition between both states is enabled by resonant absorption of microwaves: 

 

ΔE= µB*g* Beff= h*ν; with: h- Planck constant and ν- the microwave frequency matching ΔE 

 

For elucidation of the resulting spectrum it is important to know that the effective magnetic field 

is not equal to the applied magnetic field (Bappl), but is the sum of this magnetic field and a 

compound's internal magnetic field (Bint): 

 

Beff =  Bappl+ Bint 

 

This internal magnetic field is caused by the following contributions: 

I) Spin-orbit-coupling; magnetic field caused by the angular moment of the electron's movement 

around the nucleus 

II) Spin-spin-coupling; magnetic field caused by additional unpaired electrons 

III) Magnetic field of associated nuclei, this interaction causes a splitting called hyperfine-

interaction. Often, this hyperfine-interaction can only be resolved at high magnetic fields and 

contains information on the atomic structure around the detected paramagnetic species. 

 

This compound specific internal magnetic field can be described by a g-value deviating from that 

of the free electron. Caused by anisotropic geometry of the electron orbital, this g-value shows 

also an anisotropic behaviour and consequently, within a powder-sample or a frozen liquid three 

g-values can be observed and deliver additional information about the molecular geometry.  In a 

single crystal these spatial dependencies can be resolved and in a liquid solution the fast 

tumbling of the molecule leads to a single, time-averaged and broadened g-value. Following this 

deviation the g-value is a specific fingerprint of the investigated compound and its tensor can be 

utilized to obtain information not only about the paramagnetic species, but also about the 

rhombicity of the electron-orbital and the nature of neighbouring nuclei. The most obvious way 

to obtain EPR-data is to measure a continuous wave (cw)-spectrum. That is to keep the 

microwave frequency fixed and continuously sweep the magnetic field over a given range of 

values. 

 

Obviously a wealth of information can be extracted from such a cw-EPR-spectrum, but 

interpretation is complicated by this vast amount of parameters. To overcome these limitations, 

pulsed EPR can be utilized, with different pulse sequences yielding spectra with distinct 

information and the possibility to resolve several signal details that would give rather an 

inhomogeneous broadened signal than resolved information in a cw-experiment. The principle 

of these experiments is that electron spins aligned parallel or antiparallel with an outer magnetic 

field are rotated out of their equilibrium state by application of a short resonant microwave 

pulse, whereby the pulse length or the pulse intensity can be utilized to adjust the angle by 
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which the spins are rotated. By definition a  /2-pulse is used to rotate the magnetization from 

the z-axis of a Cartesian coordinate system into x-y-plane. Subsequently, two different 

interactions of the spins with their surrounding will lead to a decay of magnetisation within the 

x-y-plane. The spin lattice relaxation (T1) describes relaxation of the magnetization back to the z-

axis (i.e. to an equilibrium state) and the transverse relaxation (T2) describes the fanning out of 

magnetization in the x-y-plane. This transverse relaxation can be reversed by an additional pulse, 

causing a 180° rotation of the magnetization and thus leading to refocusing of magnetization 

and producing an echo after the same time-delay placed between both pulses. The produced 

spin-echo is termed “Hahn-echo” and the described pulse-sequence is one of the simplest that 

can be utilized. From the large amount of pulse-sequences that a sample can be subjected to, a 

technique utilized in this study to measure intramolecular radical distances should be pointed 

out: 

 

3.4.1  DOUBLE ELECTRON-ELECTRON-RESONANCE (DEER) 

 

DEER, sometimes also referred to as pulsed electron-electron double resonance (PELDOR), is a 

pulsed EPR-technique that gives information about dipolar-interactions (Reginsson and 

Schiemann, 2011). This information can for instance give rise to knowledge on the distance of 

two independent paramagnetic species in a molecule. Since performed in frozen solution, but 

yielding precise distances and distance distributions between two paramagnetic labels of a 

macromolecule, it is a technique complementary to fluorescence approaches that yield rather 

imprecise real-time data of molecular distances and dynamics.  

 

The presence of a second paramagnetic centre within the same molecule gives rise to an internal 

magnetic field that will result in a splitting of the EPR-signal. Since the magnitude of this dipole-

dipole interaction depends on the distance between the dipoles, in a continuous wave-spectrum 

the splitting will be resolved only for small distances (up to 2 nm), while it leads to an 

inhomogeneous signal broadening for larger distances. To overcome this limitation the pulsed 

method DEER is utilized. The pulse sequence is designed in a way that allows specific detection 

of dipolar-couplings, while contributions of hyperfine-splitting are suppressed. Exactly, the 

dipolar coupling is described by the following equation:  

 

νdd(r, ) = 
           

                    

 

where νdd is the dipolar coupling, μ is the vacuum permeability, g1 and g2 are the g-values of the 

respective paramagnetic species, μB is the Bohr magneton, and h is Planck’s constant. The 

important parameters in this equation are:  -the angle between the vector of the applied 

magnetic field and the vector spanning the distance between both dipoles and r-the distance 

between both dipoles, i.e. the desired information. This dipolar coupling is measured as 

modulation of the amplitude of a refocused echo. The modulation is caused and depends on the 
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time of a pump-pulse resonant to the coupled dipole and accomplished at varying time-points t, 

swept between the first and the second  -pulse of the observer-sequence (Figure 9). The pulse 

sequence is started with a  /2-pulse rotating the magnetization of the spins in resonance with 

the observe-pulse frequency to the x-y-plane. In this plane the transverse relaxation will lead to 

a fanning-out of the magnetization. By application of a  -pulse after τ1, the magnetization 

vectors will be rotated by 180° and the fanning-out is reversed. Consequently, the magnetization 

is focused again and will produce a Hahn echo after 2*τ1. In the following evolution time (τ2), the 

pump pulse is applied and the signal is eventually detected by application of a final  -pulse at 

the observer frequency. 

Figure 9: Pulse-sequence applied for a four-pulse DEER-measurement. While three pulses are utilized at the 

resonance frequency of one of the paramagnetic species to produce a refocused echo, the fourth is applied 

at a frequency resonant to the (putatively) dipolar-coupled paramagnetic species (“pump”). By modulating 

the time of this pump pulse application between 2*τ1 and 2*τ1+τ2 the refocused echo of the observed 

dipole is modulated (assuming that both dipoles are coupled). The frequency of this modulation is the 

dipolar coupling and thus contains information on the distance between both dipoles.  

 

The resulting signal in the time domain represents contributions of intramolecular and 

intermolecular dipolar couplings. Subtraction of the randomly distributed intermolecular 

distances, which give a monoexponential decay, leads to a signal purely influenced by the 

intramolecular distances. To extract the desired distance distribution from the resulting signal 

several approaches ranging from a simple Fourier transformation to Tikhonov regularization can 

be pursued. In order to detect long distances, one has to assure that the dipolar evolution time 

τ2 is long enough to cover a full oscillation. Yet, the upper limit of this time window is restricted 

by the system’s transverse relaxation (T2). Although this relaxation time might be prolonged (e.g. 
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by addition of glycerol or using deuterated buffer), this limitation commonly determines the 

upper limit of detectable distances (   8 nm).  

 

3.5 Kinetic Isotope Effects (KIE) 
 

To assess the kinetic contribution of a discrete step of bond fission within a complex scheme of 

reaction steps to an overall-reaction, the measurement of KIEs can be utilized. By labeling of the 

substrate with a heavy isotope, the zero-point energy of the bond is reduced and hence, 

assuming a fixed temperature, the rate of this microscopic reaction step is lowered, due to an 

increased activation energy. Caused by the largest possible relative mass difference, this effect is 

most pronounced for labeling with the derivatives of hydrogen. The result of such an experiment 

is usually represented as ratio of the rate constant for the light isotopologue (e.g. kH) divided by 

the rate constant for the reaction with the heavy isotopologue (e.g. kD), i.e. typically this fraction 

is bigger than one. Since the inherent decrease of the bond fission rate is caused by a defined 

change of the bond’s reduced mass, one can calculate a range of fold-difference which encloses 

the experimentally expected value. Nevertheless, a quantum mechanical effect named hydrogen 

tunneling and describing the ability of the bond breaking process to transit through a lower 

energy pathway, which is forbidden in classical mechanics, can lead to a significantly higher 

kH/kD, since this tunneling can occur more likely for hydrogen than for the heavier isotopes.  

 

By investigating whether this intrinsic KIE of a single reaction step is reflected in the 

macroscopically observed kinetics, one can deduce information about the interplay of discrete 

reaction steps, how they kinetically make up the overall reaction and whether the investigated 

step is rate limiting. For a more comprehensive description of this method, the reader is referred 

to literature (Ranaghan and Mulholland, 2010).  

 

3.6 Measuring redoxpotentials by direct electro 
chemistry 

Typically, electron transport through the protein to the active site of a redox-active protein is the 

limiting factor for direct electrochemistry of proteins (Léger and Bertrand, 2008). Direct means 

in this context that an electrode and not a redox partner is source or sink for the electrons 

delivered to/from the protein’s active site. To overcome this limitation, either promoters or 

mediators can be applied (Hu, 2001). Promoters are substances that allow the protein of interest 

to form films on the electrode surface and thus ease the electron transfer. In contrast, mediators 

are low molecular weight redox-active substances that can carry electrons from the electrode to 

the active site of the investigated protein. Thus, this kind of voltametry is, strictly spoken, not a 

direct one. It was reported for several heme proteins that the best signal can be obtained by a 

combination of pyrolytic graphite electrode and DDAB (didecyldimethylammonium bromide) as 

promoter (Hu, 2001). This substance will form a hydrophobic layer on the electrode surface and 
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then can eventually mimic the situation of redox transfer, occurring if the protein is bound to a 

biological membrane (Hu, 2001). The experimental approach to immobilize the redox active 

protein on the surface of an electrode is also known as “protein film voltammetry” and can be 

utilized to gain information not only about the redoxpotential but also about the kinetics of 

electron transfer (Armstrong, 2009). 

 

Nevertheless, interpretation of the potentials obtained for redox-proteins immobilized on 

surfaces and their physiological relevance remains hard. It was shown for various systems that 

the midpoint potential measured for immobilized proteins and the redox potential of the protein 

in solution has not necessarily the same value (Verhagen et al., 1995). Also the chosen surfactant 

to immobilize the protein can have a drastic effect on the observed value (Hu, 2001; Johnson et 

al., 2002; Udit et al., 2006). This implies that for each investigated redox-active protein various 

surfactant/ electrode-combinations have to be examined, the measured values always have to 

be stated in combination with the utilized immobilization chemistry and interpretation of the 

measured data has to be done carefully. 

 

3.7 Identification of oxylipins by LC/MS2 

 

LC-MS2, i.e. a triple quadrupole with electron spray ionization coupled to Reverse-phase HPLC, 

was described as ideal analytical tool for identification and quantification of oxylipins (E H Oliw 

et al., 1998; Nilsson et al., 2010). A typical MS/MS-experiment to detect oxylipins is performed in 

negative mode and thus deprotonated fatty acid derivatives are detected. The fragmentation-

pattern contains only a limited number of highly informative peaks. Besides a peak 

corresponding to loss of water, the analytes are characteristically fragmented at carbons 

functionalized with hydroxyl-groups. Elucidation of the oxylipin’s structure can be further 

facilitated by enzymatic conversion of fatty acid isotopologues labeled with stable isotopes (e.g. 
13C-and 2H-labeled fatty acid). 
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For this study, the products produced by PpoA from oleic and linoleic acid are of interest. These 

oxidized C18 fatty acids are (ranged according their typical abundance in fatty acid conversions 

by wild type enzyme):  

 

Products derived from oleic acid (IUPAC: (9Z)-Octadec-9-enoic acid)): 

 5,8-Dihydroxy oleic acid (5,8-DiHOME; IUPAC: (9Z)-5,8-Dihydroxy-octadec-9-enoic acid) 

 8-Hydroperoxy oleic acid (8-HPOME; IUPAC: (9Z)-8-Hydroperoxy-octadec-9-enoic acid) 

 8-Hydroxy oleic acid (8-HOME; IUPAC: (9Z)-8-Hydroxy-octadec-9-enoic acid) 

Side products: 

 8-Keto oleic acid (8-KOME; IUPAC: (9Z)-8-Oxo-octadec-9-enoic acid) 

 6,8-Dihydroxy oleic acid (6,8-DiHOME; IUPAC: (9Z)-6,8-Dihydroxy-octadec-9-enoic acid) 

 8,11-Dihydroxy oleic acid (8,11-DiHOME; IUPAC: (9Z)-8,11-Dihydroxy-octadec-9-enoic acid) 

 8-Hydroxy-9,10-epoxy-octadecanoic acid  

 10-Hydroxy-8,9-epoxy-octadecanoic acid  

 

Products derived from linoleic acid (IUPAC: (9Z,12Z)-Octadeca-9,12-dienoic acid): 

 5,8-Dihydroxy linoleic acid (5,8-DiHODE; IUPAC: (9Z,12Z)-5,8-Dihydroxy-octadeca-9,12-

dienoic acid) 

 8-Hydroperoxy linoleic acid (8-HPODE; IUPAC: (9Z,12Z)-8-Hydroperoxy-octadeca-9,12-

dienoic acid) 

 8-Hydroxy linoleic acid (8-HODE; IUPAC: (9Z,12Z)-8-Hydroxy-octadeca-9,12-dienoic acid) 

Side products: 

 8-Keto linoleic acid (8-KODE; IUPAC: (9Z,12Z)-8-Oxo-octadeca-9,12-dienoic acid) 

 6,8-Dihydroxy linoleic acid (6,8-DiHODE; IUPAC: (9Z,12Z)-6,8-Dihydroxy-octadeca-9,12-

dienoic acid) 

 8,11-Dihydroxy linoleic acid (8,11-DiHODE; IUPAC: (9Z,12Z)-8,11-Dihydroxy-octadeca-9,12-

dienoic acid) 

 (12Z)-8-Hydroxy-9,10-epoxy-octadec-12-enoic acid  

 (12Z)-10-Hydroxy-8,9-epoxy-octadec-12-enoic acid  

 

Figure 10 summarizes the LC-MS2 spectra of the oxylipins derived from linoleic acid. The 

corresponding oleic acid derived products exhibit basically the same spectrum. Merely the 

fragment containing the C12-C13 bond will have a mass/charge-ratio increased by 2.  
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Figure 10: LC-MS
2
-spectra of oxylipins formed by fungal Ppo-enzymes. The spectra are ordered in their 

range of elution from the RP-HPLC system described in Materials and Methods. A Fragmentation of 8,11-

DiHODE; a reference-spectrum can be found in (Jernerén et al., 2010) B Fragmentation of 5,8-DiHODE; a 

reference-spectrum can be found in (Garscha and Ernst H Oliw, 2007) C Fragmentation of 6,8-DiHODE; the 

129 Da-Fragment can be unequivocally identified by utilization of 
13

C18-linoleic acid D Fragmentation of 8-

hydroxy-9,10-epoxy-12Z-octadecenoic acid; a reference-spectrum can be found in (E H Oliw et al., 1998). 

Note that due to Payne rearrangement, the fragmentation pattern of 10-hydroxy-8,9-epoxy-12Z-

octadecenoic acid is basically the same (Ernst H Oliw et al., 2006). E Fragmentation of 8-HODE; a 

reference-spectrum can be found in (Garscha and Ernst H Oliw, 2007) F Fragmentation of 8-KODE; a 

reference-spectrum can be found in (E H Oliw et al., 1998).  
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44  RREESSUULLTTSS  

4.1 Enzyme preparation and quality control 

The prerequisite for the intended biochemical and biophysical characterization of PpoA are 

expression and purification processes that enable to generate high amounts of homogeneous 

enzyme. Wild type enzyme and variants were expressed and purified as described in a previous 

study (Brodhun et al., 2009) and specified in the experimental part (Section 8.1.12). While 

variants for which only the product pattern was determined (Met791Leu; 

Met791Leu/Ala792Val; Met791Leu/Ala792Met; Phe795Leu; Phe799Tyr; Phe799Trp; 

Phe795Leu/Phe799Leu; Leu1009Glu), were not purified, but the cell pellet was only lysed, 

variants that were further characterized were purified to homogeneity. The quality of the 

resulting enzyme batch was controlled by a combination of SDS-PAGE, UV-Vis-and CD-

spectroscopy (data not shown). Except for the Phe799Leu- and Phe799Met-variant, CD-spectra 

were measured once for every variant in order to assure that the overall protein fold was not 

perturbed by the mutation (near UV-spectra) and that integrity of the heme cavity was not 

affected (far UV-spectra). Enzyme concentration was determined spectroscopically, using a 

theoretically derived specific extinction coefficient of ε280 = 126 000 M-1*cm-1. UV-Vis-

spectroscopy was also used as major tool to assess enzyme homogeneity, since the ratio of 

heme absorption at the soret-peak and at 280 nm equals one for a PpoA-preparation free of 

(protein) impurities. When the ratio A410/A280 differed from unity, SDS-PAGE was employed to 

check the protein purity and determine whether the observed deviation is caused by a protein 

contamination of the sample or reduced heme occupancy, caused by the mutation. The QC-

parameters for all enzyme batches except Asn887Val and Phe799Leu were consistent with wild 

type enzyme. For these two variants the soret-band showed reproducibly a significant reduced 

absorption, in comparison to wild type enzyme. For the Asn887Val-variant A410 was reduced by 

approximately 30 %, while the Phe799Leu-variant exhibited about 60 % of the soret-absorption 

of wild type enzyme. Yet, SDS-PAGE indicated a homogeneous enzyme preparation. To attribute 

the thus concluded most likely lowered heme occupancy of the enzyme to one of the two 

domains, cw-EPR-spectra of the purified enzyme were recorded at X-band (in cooperation with 

Alistair Fielding, MPI for Biophysical Chemistry, Goettingen; Data not shown). While the high-

spin heme showed the same abundance as for a wild type sample with the same protein-

concentration (as judged by an equal A280), the low-spin heme signal was reduced by 

approximately 40 % for the Asn887Val-variant and 80 % for the Phe799Leu-variant. According to 

the assignment by Fielding et al. (Fielding et al., 2011), this observation could be interpreted as a 

lower heme-occupancy of the cytochrome P450 domain of PpoA, caused by the conducted 

amino acid exchange. Qualitatively, the g-tensor of the Phe799Leu-variant was comparable to 

wild type, but in the Asn887Val-variant a changed g1 indicated a perturbed coordination of the 

heme.  
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4.2 Attempts to crystallize the enzyme 

4.2.1  REFINEMENT OF A PREVIOUSLY IDENTIFIED PROMISING CONDITION  

 

In a previous crystallization trial, Florian Brodhun could identify a precipitant combination that 

yielded spherulites and thus could putatively serve as initial condition for further refinement. To 

refine this condition (initially: 1.3 M (NH4)2SO4; 200 mM Li2(SO4); 100 mM Tris-HCl, pH 7.6) 

precipitant and protein concentrations were systematically varied and the effect of several 

additives and the temperature on crystallization was investigated. The detailed process of 

successive refinement is outlined briefly: 
 

I) Systematic variation of precipitant-concentration at a fixed protein 

concentration (15 g/l): Salt concentrations were varied in the range of: 1.6 to 7.0 

M ionic strength, with the single salts systematically varied in the range of 0.1 to 

1.4 M. 

II) Variation of the protein concentration in the range of 3 to 15 g/l.  

III) Addition of additives (1,6-hexanediol, phenol, glycerol, EDTA, DTT) 

IV) Vapor diffusion at 4 and 20° C 

V) Streak-seeding with so far obtained, small spherulites. 

Despite all efforts no improvements in spherulite size or shape could be achieved (Figure 11 A).  

 

4.2.2  NEW SCREENING FOR CONDITIONS EVENTUALLY YIELDING CRYSTALS  

 

Since the previously identified initial hit could not be optimized to give a crystal suitable for data 

collection, a new initial screen with wild type enzyme was performed. Seven distinct 96-well 

plates representing the most common used conditions for crystallization were utilized with 

different enzyme preparations at various temperatures. From this screening only nine conditions 

were found to yield spherulites that might be considered as initial ‘hit’ for a further refinement. 

While the vast majority of the investigated conditions yielded either precipitate or remained 

clear, these nine wells contained aggregated enzyme that served as initial condition for 

refinement. From the given ‘hits’ the best (Figure 11 B) was chosen and subjected to a thorough 

refinement as outlined in 4.2.1. Again no improvement of spherulite size or form was achieved. 
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4.2.3  SYSTEMATIC TEST OF DIVALENT CATIONS  

Since screening of more than 5000 conditions did not yield successful results, an alternative to 

sparse matrix screens was considered (Bergfors, 1999, Chapter 10). The idea of this kind of 

rational screen was to adjust the pH to a value at which the protein will be negatively charged. 

At this state, positively charged metal ions might act as counter-ions and mediate crystal 

contacts between single protein-molecules. Using this rational, following salt precipitants are 

supposed to yield satisfying results: ammonium sulfate, ammonium phosphate, ammonium 

citrate, ammonium acetate, magnesium sulfate and calcium chloride. From theoretical 

calculations considering the number of charged amino acids, one can find that the net-charge of 

PpoA is supposed to be negative at pH 8.5. At this pH imidazole and TRIS are substances that 

exhibit adequate buffer capacities. Screenings with 20 mg/ml of wild type enzyme at this pH 

utilizing a matrix with variations in the employed buffer, the 6 aforementioned precipitants in 

varying concentration, a multitude of possible divalent cations (Ni(II)Cl2, ZnCl2, Fe(II)SO4, MgCl2, 

CaCl2 andCuCl2) and several additives, the most promising results have been obtained in 

imidazole buffer with ammonium sulfate as precipitant and either ZnCl2 or CuCl2 as metal ions 

(Figure 11 C). Although these initial hits seemed to be promising, a refinement to high quality 

crystals was not possible.  

Figure 11: Results obtained for crystallization trials with the unmodified protein. A Refinement of a 

previously identified condition ((NH4)2SO4; Li2(SO4); Tris-HCl; Section 4.2.1) B Best hit in a new screen for a 

suitable condition (PEG 20000; Na-MES; Section 4.2.2) C Aggregated PpoA, obtained in a rationalized 

screen ((NH4)2SO4 ; CuCl2; Section 4.2.3) 

  

A B C
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4.2.4  TRYPTIC DIGEST AND/OR REDUCTIVE LYSINE METHYLATION OF PPOA  AND SUBSEQUENT 

CRYSTAL SCREENS  

 

It is well known that several proteins have (not necessarily obvious) properties that prevent a 

successful crystallization. To possibly rescue a project aiming to crystallize such a protein, several 

protein modifications might be performed (see section 3.1). Two of these various methods have 

been utilized rather often and have reliably improved the ability to form crystals in several cases: 

In situ tryptic digest to remove flexible loops of the protein and methylation of surface exposed 

lysines to overcome charge-charge repulsions (Kim et al., 2008; Wernimont and Edwards, 2009). 

Both methods were applied as described in literature and the resulting protein was subjected to 

a screening for suitable initial conditions as it is described for the wild type enzyme in section 

4.2.2. However, the results indicated that the mentioned methods to modify the protein itself, 

did not improve the crystallizability of PpoA. Also a combination of both methods was not 

successful.  

 

4.2.5  GRAFIX AND SUBSEQUENT CRYSTAL SCREEN  

 

GraFix is an approach developed for 3D-cryo electron microscopy in order to overcome sample 

properties like polydispersity and flexibility that might negatively affect this kind of experiment 

(Kastner et al., 2008). The basic principle is that homogeneity of the purified protein sample is 

assured by ultracentrifugation in a density gradient. This process will select for mass differences 

and discriminate between distinct oligomeric states and incomplete particle assemblies. To 

stabilize the enriched protein state, a glutaraldehyde gradient in the tube is used to cross-link 

the protein, which leads to fixation of a given homogenous sample state. Additionally, this cross-

linking agent is thought to be involved in stabilizing flexible parts of the protein by linking them 

to the stable protein core. These putative benefits of the GraFix approach make it an interesting 

method also for modification of protein (complexes) to be crystallized. Especially the oligomeric 

structure of PpoA seems to make it a valuable target for the GraFix approach. Moreover, GraFix 

was facultatively combined with limited trypsolysis to probe for potential synergistic effects. 

Figure 12 summarizes the approach, shows the characterization of the modified protein and 

presents the two most interesting results of the subsequent crystallization screens. 

 

However, also this protein modification did not lead to a substantial increase in the amount of 

hits, i.e. interesting conditions that might be worth refinement. Nevertheless, two conditions 

showed very promising initial results (Figure 12 C and D). Interestingly, these two conditions 

were identical and differed only in the incubation temperature. Thus, MPD in combination with 

imidazole buffer was identified as a promising condition for further refinements. As diverse 

other conditions with MPD did not yield spherulites, no other buffers or additional precipitants 

were chosen for initial optimization of the identified condition. For the refinement screen both, 
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precipitant concentration and pH, were systematically varied. The pH was adjusted to values 

from 6.05 to 8.05 over the rows of a 96-well block and the MPD-concentration was changed over 

the columns, starting with a concentration of 10 % (w/v) to a concentration of 40 % (w/v). Since 

the described initial refinement did not lead to an improvement of the spherulites formed, the 

matrix of screened parameters was enlarged and the effect of protein concentration and various 

additives was investigated. To possibly benefit from the effects of ligand binding the functional 

variant PpoA_Tyr374Phe (Brodhun et al., 2009) was employed, but, as also seen for the 

unmodified protein, a co-incubation of this variant with linoleic acid was rather 

counterproductive. Finally, further improvements of well behaved conditions were attempted by 

various seeding techniques. Nevertheless, again all efforts failed and no significant improvement 

or well diffracting crystals could be obtained (Figure 13). 

 

Figure 12: Modification of PpoA by tryptic digest and GraFix. A A discontinuous saccharose gradient (20 to 

60 % (w/v)) with glutaraldehyde (0.06 to 0.15 % (w/v)) was utilized to homogenize and simultaneously 

cross-link a PpoA-sample. The sample was purified and digested as described in sections 8.1.12 and 8.1.15. 

Subsequently the enzyme (red) was subjected to the GraFix-gradient presented in A. B SDS-PAGE of a wild 

type standard (i.e. undigested PpoA; lane I), the digested enzyme after SEC (lane II) and after rescue from 

the GraFix-gradient (lane III). C The first of two interesting hits obtained upon crystallization screens with 

the modified protein. 250 nl of 11 g/l tryptic digested and glutaraldehyde cross linked wt-enzyme were 

mixed with 250 nl reservoir (0.1 M imidazole, pH 8; 35 % (w/v) 2-methyl-2,4-pentandiol) and stored for 14d 

at 20°C. D The second hit of the crystallization screen. 125nl of 11 g/l tryptic digested and glutaraldehyde 

cross linked wt-enzyme were mixed with 250 nl reservoir (0.1 M imidazole, pH 8; 20 % (w/v) 2-methyl-2,4-

pentandiol) and stored for 14 d at 4°C. 
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Figure 13: Spherulites obtained by refinement of crystallization conditions for the tryptic digested and 

GraFix modified enzyme in conditions with imidazole-buffer and MPD-precipitant.  

 

The observed beneficial use of imidazole buffer might be explained by the known coordination 

of the imidazole ring to the heme of various P450s (Yeh et al., 2005). By this binding a 

conformational change from the opened enzyme-form to a closed and more rigid one might be 

accomplished (H. Li and Thomas L. Poulos, 1999). Visible spectra of the enzyme obtained in 20 

mM HEPES buffer before and after addition of imidazole indicated that also in the P450-domain 

of PpoA a six-ligated iron complex with imidazole is formed (Figure 14). Nevertheless, it was 

shown for class III P450s that the coordination of imidazole to the heme is only weak (Yeh et al., 

2005). In line with this, also quantitative imidazole binding studies with wild type enzyme and 

the His10004Ala-variant, in which the P450-heme is absent (Brodhun et al., 2009), did not lead 

to an unequivocal assignment of the heme-domain in which this complex is formed (See also 

section 4.4.4). Taken together, the results of the spectral titration indicate that imidazole might 

bind to the cysteine as well as the histidine coordinated heme and could eventually induce 

conformational changes favoring crystallization in both PpoA-domains.  

  



 Results 

   

 

51 

 

Figure 14: Vis-spectrum of 1 mg/ml PpoA in 20 mM HEPES, pH 7.4 (black) and the same enzyme after 

addition of imidazole to a final concentration of 100 µM (grey). The red-shift of the soret-peak, indicated 

by the peak at 418 nm and the minimum at 402 nm in the difference spectrum (Inset), can be interpreted 

by the formation of a six-coordinated nitrogen-based heme-complex and the peak-trough distance in the 

difference-spectrum can be used to quantify ligand-binding to the heme (Yeh et al., 2005).  

 

4.3 Template-based structure prediction 

Since the vast majority of proteins will not crystallize at all (Kim et al., 2008), the structure of 

PpoA was additionally modeled in silico. Especially proteins that have homologue protein 

structures already solved and deposited in the protein database (PDB; 

http://www.rcsb.org/pdb/home/home.do) are suitable targets for reliable template-based 

structure prediction. Hence, the domains of PpoA, which structurally and functional resemble 

characterized oxylipin synthesizing enzymes, were modeled independently from each other.  
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4.3.1  PREDICTED STRUCTURE OF PPOA’S DOX-DOMAIN AND IDENTIFIC ATION OF RESIDUES 

PUTATIVELY INVOLVED IN DIOXYGENATION  

 

The DOX-domain of PpoA from A. nidulans was defined by to range from Met1 to His620. The 

thus derived sequence-string was submitted to the I-Tasser web server 

(zhanglab.ccmb.med.umich.edu/I-TASSER/) and modeling was initiated without assignment of 

templates. In a first step the algorithm identifies best aligning sequences in the PDB to optimally 

guide the process of fold prediction. In case of the DOX-domain, the threading process relied on 

PDB-entries belonging to the myeloperoxidase-family, namely: mPGHS-2 (PDB-ID: 1CVU; m Mus 

musculus); oPGHS-1 (PDB-ID: 1EQG; o, Ovis aries); lactoperoxidase (PDB-ID: 2GJ1) and 

myeloperoxidase (PDB-ID: 1MHL). The resulting model of the apodomain was loaded into the 

molecular modelling program Chimera 1.5.3 and superimposed with both PGHS isoforms, 

enzymes known to exhibit a similar sequence and resembling the function of the PpoA DOX-

domain (Table 1). Not surprisingly, the functional similarity was reflected on a structural level 

and both PGHS isoforms superimposed well with the modelled domain. As already indicated by 

sequence alignments, the agreement was slightly better with isoform 2 as compared to PGHS-1. 

Hence, a solved crystal-structure of this enzyme (PDB-ID: 3HS5) was superimposed to the 

predicted apodomain in order to identify presumed cofactor and substrate binding sites as well 

as amino acid side chains putatively responsible for reactivity (Figure 15 A). The thus obtained 

structure with substrate and cofactor was cleaned within the Amber force field, implemented in 

the Chimera package. 

 

Table 1: Comparison of the modeled DOX-domain of PpoA with homologue enzyme structures previously 

solved. Despite sharing only an amino acid identity of 15 % and an amino acid similarity of 22 %, oPGHS1 

and mPGHS2 exhibit a highly conserved fold (Michael Garavito et al., 2002) (RMSD= 0.8 Å over 533 Cα), 

indicating the conserved tertiary structure of heme-dioxygenases. PGHS-x, prostaglandin H2 synthase 

isoform x; m, Mus musculus; o, Ovis aries 

 

In the primary structure of the DOX-domain a highly conserved sequence motif was identified by 

analysis of 82 Ppo-like sequences placed in Uniprot: RxxLSDAVxLVRGDRxxT. Even at the x-

positions only limited variability was observed. Despite the general homology to PGHSs and α-

DOXs, this sequence-motif is Ppo-specific and absent in those myeloperoxidases. Strikingly, 

searching the Uniprot-database with this short sequence string and the default threshold (10) 

Homologue Enzyme Structural 

superposition 

Amino acid identity Amino acid similarity 

oPGHS-1 

PDB-ID: 3N8V 

1.0 Å over 311 Cα 20.6% 31.7% 

mPGHS-2 

PDB-ID: 3HS5 

0.9 Å over 309 Cα 16.5% 26.7% 
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will identify solely (putative) PpoA-homologues pointing out its family specific character (BLAST-

retrieval from May 2012). Within the modelled structure this motif forms an α-helix that spans 

over the putative substrate binding channel. Although the primary sequence is not conserved in 

PGHSs, the same secondary structural element can be identified in their atomic structures.  

 

Within the modelled dioxygenase domain of PpoA, the heme is placed between the two 

histidines (His202, His377) that already have been identified by sequence alignments as distal 

and proximal heme ligands in 7,8-linoleate diol synthase (Garscha and Ernst H Oliw, 2008) 

(Figure 15 C). Resembling the substrate channel of PGHS, the fatty acid substrate might be 

bound in a channel lined by hydrophobic amino acids, which could contribute by hydrophobic 

interactions to binding of the substrate (Figure 15 B and 17 A). For PGHS, it was shown that 

substrate affinity is additionally mediated by ionic interaction of the fatty acid’s carboxyl group 

with the guanidinium group of arginine 120 (numbering of oPGHS1) (Koszelak-Rosenblum et al., 

2008). In the modeled structure, no basic amino acid structurally aligns with this position, but 

the charge of arginine 336 is in equal distance to the substrate’s carboxylate (5 Å; Figure 15 C 

and 17 A). Tyrosine 374, the homologue position to mPGHS-2’s catalytic active Tyr385, was 

already shown to be involved in hydrogen-abstraction from carbon C8 (Garscha and Ernst H Oliw, 

2008; Brodhun et al., 2009; Fielding et al., 2011) and is placed in a reasonable distance to this 

carbon. Notably, the distance between this tyrosine and the hydrogen to be abstracted was 

modeled to be almost twice as large as the corresponding distance between tyrosine 385 and C13 

in mPGHS-2. In contrast, tyrosine 327 of the PpoA DOX-domain is located in a distance to C8 that 

is only half the catalytic distance found in mPGHS-2 and thus might rather resemble a catalytic 

competent interaction. Still it should be mentioned that the substrate position between these 

two tyrosine residues is rather free and also different substrate topographies with tyrosine 374 

being closer to C8 are feasible. To shed light on the role of the two newly identified amino acid 

determinants, an Arg336Met- and a Tyr327Phe-variant were constructed in addition to the 

already established Tyr374Phe-variant (Brodhun et al., 2009).  
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Figure 15: Predicted structure of PpoA’s DOX-domain. Shown is the predicted model (white) superimposed 

with mPGHS2 (green; PDB-ID: 3HS5) serving as relevant homologue enzyme. A Overall structure of the 

PpoA model superimposed to the experimental structure of mPGHS2. The RMSD between both structures is 

0.9 Å over 309 Cα. B Zoom into the active site. Linoleic acid (rendered in cyan) was placed within the 

predicted PpoA structure in a similar position and conformation as the substrate (arachidonic acid, orange) 

is bound in mPGHS2. C Determinants involved in substrate conversion catalyzed by mPGHS-2 and amino 

acids, proposed to play an analogous role in PpoA, are shown. Arg120 of mPGHS-2 was identified to 

contribute to arachidonic acid binding by ionic interaction with the carboxylate group. Although in a 

different position, Arg336 in PpoA is in a reasonable distance to promote substrate affinity by the same 

mechanism. PpoA’s Tyr374 aligns with mPGHS2’s Tyr385 and the radical intermediate of this residue is 

most likely also involved in hydrogen abstraction from the fatty acid substrate. Tyr327 (PpoA) might either 

serve as an alternative radical site or assist in orienting Tyr374 by formation of a hydrogen-bonding 

network. At least it aligns with mPGHS2’s Tyr348 that was proposed to fulfill the latter role. Also the heme 

coordinating histidines are structurally conserved in both enzymes. Exemplary shown is PpoA’s proximal 

histidine (HIS377).   
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4.3.2  PREDICTED STRUCTURE OF PPOA’S P450-DOMAIN AND IDENTIFICATION OF RESIDUES 

PUTATIVELY INVOLVED IN HYDROPEROXY FATTY ACID REARRANGEMENT  

 

For modeling of PpoA’s hydroperoxide isomerase-domain, the sequence-string from His620 to 

Phe1081 was submitted to the I-Tasser web interface. Again, initially no templates were 

specified and thus the threading process unbiasedly searched the PDB. The main templates used 

to generate the final structure were: CYP450 CalO2 (PDB-ID: 3BUJ); CYP450 46A1 (PDB-ID: 2Q9F); 

CYP450 105P1 (PDB-ID: 3E5J); CYP450 MoxA (PDB-ID: 2Z36); CYP450 cin (PDB-ID: 1T2B); CYP450 

cam (PDB-ID: 1YRC) and CYP450 154C1 (PDB-ID: 1GWI). As expected all templates belong to the 

cytochrome P450 enzyme family, but surprisingly none of the utilized templates was a class III-

cytochrome P450. To assess the potential differences between the modelled structure and 

typical cytochrome P450s, the model was superimposed with a number of class III P450s and 

P450cam, the prototype P450 from Pseudomonas putida (Table 2).  

 

Homologue Enzyme RMSD of Structural 

superposition 

Amino acid identity Amino acid similarity 

AtAOS 

PDB: 2RCH 

1.3 Å over 123 Cα 11.5% 21.5% 

PaAOS 

PDB: 3DBM 

1.2 Å over 113 Cα 14.5% 25.3% 

hCyp8a 

PDB: 2IAG 

1.3 Å over 70 Cα 16.6% 26.8% 

P450cam 

PDB: 2ZWT 

1.3 Å over 91 Cα 21.7% 30% 

Table 2: Comparison of the modeled P450-domain of PpoA with homologue enzyme structures previously 

solved. AOS, allene oxide synthase; At, Arabidopsis thaliana; Pa, Parthenium argentatum; hCyp8a human 

prostacyclin synthase; P450cam, Pseudomonas putida camphor monooxygenase 

 

The model superimposes with all structures to a similar RMSD, which points out the fact that, 

despite sometimes quite diverse primary structures, the fold of cytochrome P450s is highly 

conserved (Sirim et al., 2010). Due to functional similarities and good structural superposition, 

the AOS structures were chosen to guide the process of cofactor and substrate placement as 

well as identification of amino acids, putatively involved in catalysis. 

 

Despite the reasonable structural agreement between the modelled domain and solved 

structures of homologue enzymes, the later on experimentally verified role of three amino acids 

in substrate-positioning, regioselectivity of substrate hydroxylation and peroxide-cleavage led to 

the need to refine the model. Therefore, the I-helix was readjusted and the F-helix was 

repositioned from the entrance of the substrate access channel to a position directly facing the 

heme on the distal site. This latter displacement was necessary to bring two phenylalanines 
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(Phe795 and Phe799), proposed to be involved in substrate positioning, in a position in which 

the distance between substrate and heme is catalytic relevant. This reorientation might reflect a 

dynamic process naturally occurring upon substrate binding to cytochrome P450s (Sirim et al., 

2010). The thus perturbed structure was specified as template for a new submission of this 

domain’s primary sequence to the I-Tasser-server. The algorithm’s inherent force field cleaned 

the perturbed structure and the resulting apodomain showed an overall-fold and quality 

parameters (Q-Mean; swissmodel.expasy.org/qmean) comparable to the initial model. In fact 

the RMSD between this “closed, substrate-bound” conformation of PpoA’s hydroperoxide 

isomerase domain and the previously obtained ”opened, substrate-free” form was 0.98 Å over 

345 Cα. Furthermore, the “closed”-state structurally aligned to the same extent with the given 

set of prototype P450s (Table 3). 

 

Homologue Enzyme RMSD of Structural  

superposition before 

manual refinement 

RMSD of Structural  

superposition after manual 

refinement 

AtAOS 

PDB: 2RCH 

1.3 Å over 123 Cα 1.1 Å over 102 Cα 

PaAOS 

PDB: 3DBM 

1.2 Å over 113 Cα 1.0 Å over 94 Cα 

hCyp8a 

PDB: 2IAG 

1.3 Å over 70 Cα 1.3 Å over 96 Cα 

P450cam 

PDB: 2ZWT 

1.3 Å over 91 Cα 1.3 Å over 106 Cα 

Table 3: Comparison of the refined model of PpoA’s P450-domain with homologue enzyme structures 

previously solved. AOS, allene oxide synthase; At, Arabidopsis thaliana; Pa, Parthenium argentatum; 

hCyp8a human prostacyclin synthase; P450cam, Pseudomonas putida camphor monooxygenase 

 

In contrast to the initial, “opened” model, several later on experimentally verified amino acid 

determinants for certain aspects of reactivity are placed in a meaningful spatial arrangement 

within the “closed” form (Figure 16). For this model AtAOS was chosen to define an appropriate 

substrate position, since in this structure the substrate is placed in a position, relative to heme, 

that is more likely to be catalytic competent as compared to the solved PaAOS structure. Figure 

16 C highlights some residues that may play a role in hydroperoxide rearrangement. First, 

substrate binding and –positioning might be mediated by  -stacking between the substrate’s Δ9-

double bond and the aromatic phenyl ring of Phe795. Although Phe799 might interact in a 

similar way with the Δ12-double bond of the substrate, the larger distance between its phenyl 

ring and the double bond suggests rather another role for this amino acid and it might be 

involved in constraining the substrate position by the bulkiness of its side-chain. As proposed for 

the DOX-domain, additional contributions to substrate binding might arise from ionic 

interactions between the substrate’s carboxylate and a positively charged amino acid side chain.  
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However, the substrate is proposed to enter the active-site of the P450-domain with its 

carboxyl-tail first (Figure 16 B and 17 B) and thus a deprotonated substrate may be repulsed by 

the mainly uncharged active site. Moreover, no basic amino acid that could coordinate the 

carboxylate was found in reasonable distance within the modeled active site. Finally, Asn887 

located in the I-helix is placed in a proper position to form a hydrogen bonding network between 

its amide-function, the heme-iron and the substrate’s peroxide. This hydrogen-bonding network 

might be crucial for substrate-binding and heterolytic cleavage of the peroxides O-O-bond. To 

probe the role of the aforementioned putative determinants, respective enzyme-variants 

(Phe795Leu; Phe799Leu; Phe799Met; Phe799Tyr; Phe799Trp and Asn887Val) were constructed 

by site-directed mutagenesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16 (next page): Predicted structure of PpoA’s P450-domain (white) superimposed with AtAOS (blue; 

PDB-ID: 2RCH) serving as relevant homologue enzyme. A Overall structure of the PpoA model 

superimposed to the experimental structure of AtAOS. The RMSD between both structures is 1.3 Å over 123 

Cα. B Zoom into the active site. 8-HPODE (rendered in cyan) was placed within the predicted PpoA 

structure in a similar position and conformation as the substrate-analogue (13-HODE, orange) is bound in 

AtAOS. C Determinants involved in substrate conversion catalyzed by AtAOS and amino acids, proposed to 

play an analogous role in PpoA are shown. Asn321 of AtAOS was identified to contribute to catalytic turn-

over by formation of a hydrogen-bonding network and thus facilitating the cleavage of the peroxide’s O-O-

bond (D.-S. Lee et al., 2008). Although in a slightly different position, Asn887 in PpoA is in a reasonable 

distance within the I-helix to putatively promote substrate conversion by a similar mechanism. As 

expected, the cysteines coordinating the heme-iron as fifth ligand are conserved in both structures 

(Cys1006 in PpoA and Cys471 in AtAOS). Also a positively charged residue stabilizing the heme by ionic 

interaction with one of the protoporphyrin’s propionates is conserved in both structures (His1004 in PpoA 

and Lys469 in AtAOS). Additional to these residues, a phenylalanine-pair (Phe795 and Phe799) seems to be 

of relevance for proper substrate binding and placement in PpoA.  
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Figure 17: 2D-representation of amino acids forming the active site of PpoA’s DOX-domain (A) and P450-

domain (B), respectively. The substrate is shown in purple, carbons are colored black, nitrogen is blue and 

oxygen is depicted in red. Amino acids forming hydrophobic contacts with the fatty acid substrate are 

visualized as semicircles and amino acids involved in hydrogen bonds with the substrate are depicted in 

ball-stick representation. The corresponding hydrogen bond is shown. In contrast to the DOX-domain, the 

substrate seems to enter the P450-active site with its carboxyl-end first and exhibits a direct interaction 

with the heme co-factor. Amino acids investigated in this study are highlighted in blue. The representations 

were calculated with LigPlot
+
 (Laskowski and Swindells, 2011). 

 

4.4 Validation of proposed amino acid determinants by 
biochemical characterization of respective variants  

4.4.1  SUBSTRATE BINDING TO PPOA’S DOX-DOMAIN MAY BE GOVERNED BY IONIC  

INTERACTION WITH ARG336 

 

From the modeled structure it was deduced that an important contribution to substrate binding 

might arise from ionic interactions between the carboxylate and the positively charged 

guanidinium group of Arg336. Nevertheless, one should keep in mind that the hydrophobic 

nature of the substrate suggests that main contributions to substrate affinity might arise from 

the fatty acid tail interacting with hydrophobic residues forming the active site (Figure 17 A). To 

estimate the importance of the ionic interaction between the carboxylate and Arg336 for 
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substrate affinity, an uncharged enzyme variant (Arg336Met) was constructed and its kinetics 

was compared to that of wild type enzyme (Figure 18). The shown kinetic traces were obtained 

by measuring the depletion of dissolved oxygen upon mixing a varying concentration of linoleic 

acid with 100 nM of the respective enzyme in 20 mM HEPES buffer, pH 7.4. For evaluation, the 

maximal slope of this depletion was determined and, assuming a stoichiometric reaction of one 

molecule dioxygen with one molecule fatty acid, converted to a substrate conversion rate. 

Interestingly, the obtained data for the Arg336Met variant suggest a sigmoidal behavior rather 

than a hyperbolic one as it is observed for wild-type enzyme kinetics and thus suggests a 

different reaction mechanism. Nevertheless, the data are not significant enough to base a 

detailed assessment of different kinetic models on them and a putative change of enzyme 

cooperativity caused by the conducted mutation is not explained straightforwardly. Therefore, 

both datasets were fitted with a hyperbolic equation and the obtained parameters are: km = 15.3 

µM and kcat = 399 min-1 for wild type enzyme and km = 49.5 µM and kcat = 231 min-1 for the 

Arg336Met-variant of PpoA. Although the fit with a sigmoidal kinetics (  
          

          
 ; 

(Witherow and Houston, 1999)) led to a much better description of the dataset measured for 

the Arg336Met-variant (least square sum improved from 66.4 to 8.1), the derived kinetic 

parameters differ by the same magnitude between wild type and the variant and the better fit 

was caused merely by a changed Hill coefficient (km,wt = 13.7 µM; kcat, wt = 375.4 min-1; nw t = 1.2 

and km,R336M = 30.4 µM; kcat,R336M = 167.1 min-1; nR336M = 5.0). One should also keep in mind that 

the values obtained for kcat and km have to be seen as an approximation of the true value, since 

micelle-formation of the substrate molecules might lead to an underestimation of the km-values, 

especially for the Arg336Met-variant.  

 

 

 

Figure 18: Kinetics of linoleic acid 

conversion by PpoA_wild type enzyme 

and PpoA_Arg336Met. 100 nM of the 

respective enzyme in 20 mM HEPES-

buffer, pH 7.4, were converted with 

varying substrate concentrations. The 

conversion rate was determined from 

the consumption rate of dissolved 

dioxygen. The measured data were fit 

to obey Michaelis-Menten kinetics and 

the calculated parameters are: km,wt = 

15.3 µM; kcat,wt = 399 min
-1

; km,R336M = 

49.5 µM; kcat,R336M = 231 min
-1 

. Shown 

is one of two independently 

determined kinetics.  
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4.4.2  TYR327:  A  SECOND TYROSINE INVOLVED IN HYDROGEN ABSTRACTION FROM THE FATTY 

ACID SUBSTRATE ’S C8? 

 

Tyrosine 374 of PpoA was proposed to be involved in a radical-mechanism finally leading to 

abstraction of hydrogen from the substrate’s C8 (Brodhun et al., 2009; Fielding et al., 2011). The 

thus formed substrate centered radical reacts with molecular oxygen and yields, via a peroxyl 

intermediate, the product of PpoA’s DOX-domain: 8-hyproperoxy fatty acid. Within the 

predicted structure of PpoA’s DOX-domain, the tyrosine proposed to initially abstract hydrogen 

form the fatty acid’s C8 is only one of two tyrosines in roughly equidistant positions to the 

substrate’s C8. There are several roles that the other tyrosine (Tyr327) could play within the 

catalytic mechanism. Among those are i) a putative alternative radical-site; ii) hydrogen-bonding 

to Tyr374 and orienting this residue in a catalytic competent conformation suitable to interact 

with the hydrogen of the substrate’s C8 and iii)  -stacking between the phenoxyl-ring of Tyr327 

and the Δ9-double bond of the substrate in order to place the substrate’s C8 in an adequate 

distance to Tyr374. To establish whether Tyr327 indeed can be attributed to one of those roles, 

again an oxygen depletion kinetics was obtained (Figure 19). The data show that Tyr327 is 

crucially involved in catalytic turnover (km,wt = 15.3 µM; kcat,wt = 399 min-1; km,Y327F = 44.9 µM; 

kcat,Y327F = 87 min-1). Again the shape of the kinetics is altered, which suggests a transition towards 

another oxidation mechanism caused by the single point mutation. A sigmoidal description of 

the measured kinetics results once more in a significantly improved fit (least square sum 

improved from 8.0 to 1.4), but, with exception of the Hill coefficient, the derived kinetic 

parameters for wild type and the variant differ by the same magnitude as those obtained for the 

Michaelis-Menten mechanism (km,wt = 13.7 µM; kcat,wt = 375.4 min-1; nwt = 1.2 and km,Y327F = 27.4 

µM; kcat,Y327F = 63.3 min-1; nY327F = 3.8). Here it should be emphasized that, although this 

experiment pointed out the pivotal role of Tyr327 in substrate turn-over, no clarification on the 

nature of its mechanism is achieved.  

Figure 19: Kinetics of linoleic acid 

conversion by PpoA_wild type enzyme 

and PpoA_Tyr327Phe. 100 nM of the 

respective enzyme in 20 mM HEPES-

buffer, pH 7.4, were converted with 

varying substrate concentrations. The 

conversion rate was determined from 

the consumption rate of dissolved 

dioxygen. The raw data were fit to a 

Michaelis-Menten kinetics and the 

calculated parameters are: km,wt = 15.3 

µM; kcat,wt = 399 min
-1

; km,Y327F = 44.9 

µM; kcat,Y327F = 87 min
-1 

. Shown is one of 

two independently determined kinetics. 
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To estimate whether Tyr327 influences the conformation of the tyrosine radical in the activated 

enzyme, the tyrosyl-radical of the Tyr327Phe-variant was trapped and subsequently analyzed by 

EPR-spectroscopy at different frequencies (Experiment conducted and evaluated by Dr. Alistair 

Fielding in the working group of Prof. Dr. Marina Bennati; MPI for biophysical Chemistry, 

Goettingen). The measured g-values of the formed radical are consistent with a tyrosyl species, 

but the observed ß-proton splitting is narrower than in the wild type, which could be interpreted 

by a different dihedral-angle between the radical’s phenoxyl ring and the ß-protons. 

Additionally, simulating the measured radical by one tyrosyl was not possible, which suggests 

the presence of different tyrosyl rotamers. On the one hand, these results might be interpreted 

in a way substantiating the hypothesis of Tyr327 stabilizing Tyr374 in a conformation suitable for 

hydrogen abstraction from C8 and thus disrupting of the respective hydrogen bond would cause 

the Tyr374 to adopt another conformation. On the other hand the result of this measurement is 

also consistent with the idea that the catalytic competent radical is formed at Tyr327 and Tyr374 

is merely a transient link in an electron transfer pathway from Tyr327 to heme compound I. 

Hence, by preventing formation of the radical at position 327 in PpoA’s Tyr327Phe-variant the 

radical could be trapped at Tyr374, a tyrosine putatively exhibiting a different conformation than 

the one measured in wild type. Moreover, an additional role of Tyr327’s phenoxyl ring in 

positioning the substrate’s Δ9 double bond by  -stacking is not excluded by these data. 

Therefore two supplementary variants were constructed: One variant with an aliphatic, 

hydrophilic residue (Tyr327Gln) and one variant with an aliphatic, hydrophobic residue 

(Tyr327Leu). While the Tyr327Gln-variant was not reacting with linoleic acid, the Tyr327Leu-

variant, which is supposed to have neither the ability to properly place the substrate nor to 

orient the Tyr374-radical by hydrogen bonds, exhibited low residual activity. Although the DOX-

domain formed not only 8-HPODE, but also 10-HPODE, the amount of this by-product was 

comparable to what can be found in wild type enzyme. 75 % of the hydroperoxy fatty acid 

produced by the Tyr327Leu-variant was 8-HPODE, a value comparable to the 60-70 % reported 

for PpoA wild type enzyme (Brodhun et al., 2010). In a nutshell, the product pattern of this 

variant contradicts the hypothesis of an aromatic residue at position 327 being involved in 

correct placement of the substrate and therefore determining regioselectivity of fatty acid 

oxidation. However, Tyr327 is crucially involved in catalysis and this observation might be 

explained either by a hydrogen bond between this residue and the catalytic competent Tyr374 

or an (alternative) tyrosyl radical formed at this position. To probe the latter hypothesis, the 

distances between the tyrosyl-radicals in the distinct enzyme monomers were measured by 

DEER and the amino acid position of the radical was assigned based on a low resolution 

structure of PpoA (Section 4.6.2).   
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4.4.3  DETERMINANTS OF SUBSTRATE BINDING TO PPOA’S HYDROPEROXIDE- ISOMERASE-

DOMAIN  

 

To probe whether ionic interactions between the substrate’s carboxylate and a positively 

charged amino acid within the active site play a role in substrate binding to PpoA’s cytochrome 

P450-domain, conversion of 8-HPODE methyl ester was pursued. This uncharged substrate 

analogue should be repulsed by a positive charge within the active site and thus no product 

conversion would be detectable, if a basic amino acid is involved in substrate binding. 

Interestingly, the results not only show that 8-HPODE methyl ester can be rearranged by PpoA 

(Figure 20 A), but a competitive assay, in which equal amounts of 8-HPODE and 8-HPODE methyl 

ester were provided for the rearrangement reaction, revealed that the enzyme has the same 

conversion rate for both kinds of substrate (Figure 20 B). A final experiment to prove the derived 

hypothesis that no charges are involved in substrate binding to PpoA’s hydroperoxide isomerase 

domain was to conduct the aforementioned competitive assay at a higher pH. While the 

previous assay was performed at pH 7.4 (50 mM TRIS-buffer) and at this pH obviously both 

substrates were converted to an equal extent, the same experiment performed at pH 9 (50 mM 

TRIS-buffer) resulted in conversion of solely 8-HPODE methyl ester. The most obvious 

explanation for this result is repulsion of the deprotonated substrate from the enzyme’s non-

charged active site structure. In line with this observation, conversion of linoleic acid by PpoA 

yields a product pattern that crucially depends on the buffer’s pH. At pH 5 and 7 only traces of 

hydroperoxy fatty acid accumulate, but the vast majority is rearranged to 5,8-DiHODE. In 

contrast, at pH 9 the situation differs and 8-HPODE is accumulated and not rearranged by the 

enzyme’s P450 activity (data not shown).  
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Figure 20: No ionic interactions are involved in substrate binding to PpoA’s hydroperoxide isomerase 

domain. A 
14

C-labeled 8-HPODE methyl ester was synthesized by conversion of 
14

C-linoleic acid with 

PpoA_C1006A (Brodhun et al., 2009) and subsequent methylation of the resulting 
14

C-8-HPODE with 

trimethylsilyldiazomethane. This substance (lower trace) is converted by PpoA (wild type) to 5,8-DiHODE 

methyl ester (upper trace). Shown are representative scintillation counter detected signals of RP-HPLC 

separated substances. B A competitive assay in which equal amounts of 8-HPODE methyl ester and 8-

HPODE were subjected to conversion by PpoA (wild type) and were extracted after different times resulted 

in formation of equal amounts 5,8-DiHODE and 5,8-DiHODE methyl ester at pH 7.4. At pH 9.0 only 

conversion of 8-HPODE methyl ester was observed. Shown are the arithmetic means of three independent 

conversions quantified for each time point as well as the corresponding standard deviation.  
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While these results demonstrate that ionic interactions do not play a role in substrate binding 

and thus validate the absence of basic amino acids in the modeled active site and support the 

hypothesis that the substrate may enter the P450-active site with its carboxyl-end first, binding 

of the substrate to aromatic residues via  -stacking is still reasonable. 

 

π-Stacking as potential constrain for proper placement of 8-HPODE in PpoA’s P450-domain  

 

Evaluating the predicted structural model of PpoA’s P450-domain, one can hypothesize that 

Phe795 is involved in correct substrate orientation by  -stacking of its aromatic side chain with 

the substrate’s Δ9 double bond. The initial, “opened” homology model of the P450-domain 

furthermore suggested that another highly conserved phenylalanine (Phe799) could interact 

with the Δ12 double bond of polyenoic fatty acid derivatives (Figure 21). Both phenylalanines are 

located in the region in between the F/G-helices, which is described to typically harbor the 

substrate recognition sites (SRS) 2 and 3 (Sirim et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Aromatic residues, putatively involved in π-stacking to place the polyenoic substrate in the right 

position. In this substrate orientation, Phe795 is in proximity to the fatty acids Δ9 double bond and Phe799 

might be placed to stabilize the position of the Δ12 double bond. It should be mentioned that the distance 

between the peroxide and the heme is likely to large for this conformation to be a productive state and 

thus a conformational change and closure of the enzyme-domain upon substrate binding seems to be 

likely.   

Phe795
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To elucidate whether the aromaticity of these phenylalanines indeed might play a role in 

substrate positioning, the respective leucine-variants and a double mutant were created and the 

product pattern observed upon conversion of oleic and linoleic acid was determined. The results 

of oleic acid conversion by the Phe795Leu-variant illustrate that Phe795 plays a role in 

determining the regioselectivity of the reaction (Figure 22). In the product-pattern obtained 

from conversion with the variant, the amount of DiHOME with changed regiochemistry is 

increased ten-fold from 2.4 % of the total amount of products to 24 % as compared to the wild 

type enzyme.  

Figure 22: Phe795 in SRS22 determines the regioselectivity of PpoA’s fatty acid isomerase activity. The 

conversion was conducted by incubation of 1 ml cell lysate with 100 µM oleic acid for 2 min. The reaction 

was quenched and extracted twice by Et2O. No significant difference in the overall amount of oxidized fatty 

acids was observed and product identity was verified by their MS
2
-spectra (Section 3.7). Note that two 

minor products have only been tentatively assigned as 8,11-DiHOME and 8-KOME and that two peaks have 

the MS/MS-spectrum of 6,8-DiHOME, representing most likely different diastereomers of this compound. 

Shown is the quantitative evaluation of three biological replicates each measured as triplicate as well as 

the corresponding standard deviation. Inset: Representative chromatograms of the conversion of oleic acid 

by wild type enzyme (blue) and the Phe795Leu-variant (red).  

  

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

? 5.8-
DiHOME

6.8-
DiHOME

6.8-
DiHOME

9,10-ep-8-
OH

8-HOME ?

re
la

ti
ve

 a
m

o
u

n
t 

o
f 

fo
rm

e
d

 p
ro

d
u

ct
 [

%
] wild type

Phe795Leu

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

90.0

100.0

? 5.8-
DiHOME

6.8-
DiHOME

6.8-
DiHOME

9,10-ep-8-
OH

8-HOME ?

re
la

ti
ve

 a
m

o
u

n
t 

o
f 

fo
rm

e
d

 p
ro

d
u

ct
 [

%
] wild type

Phe795Leu

5 10 15 20 25 30

In
te

n
si

ty

t/ min

8-HOME

5,8-DiHOME

6,8-DiHOME



 Results 

   

 

67 

 

In agreement with  -stacking between aromatic protein residues and the substrate’s double 

bonds, conversion of linoleic acid, in which a second double bond might contribute to substrate 

binding, by the Phe795Leu-variant led to a less pronounced increase in the amount of by-

product as compared to oleic acid conversion. Still, an increase in the relative amount of 6,8-

DiHODE from 8 % for the wild type enzyme to 16 % for the variant was observed (Figure 23). To 

elucidate the putative involvement of Phe799’s phenyl ring in binding of the Δ12 double bond, 

linoleic acid was converted by the respective variant. Strikingly, this variant showed a more 

severely disturbed product pattern than the Phe795Leu variant (Figure 23). Not only 

accumulation of products from the DOX-domain (8-HODE and 8-HPODE) indicated a reduced 

turn-over of the rearrangement reaction catalyzed by PpoA’s cytochrome P450 activity, but also 

the nature of rearranged products was more diverse than observed so far and comprised 

dihydroxy derivatives (8,11-DiHODE; 5,8-DiHODE; 6,8-DiHODE) as well as epoxy alcohols 

(tentatively assigned as 8-hydroxy-9,10epoxy-12Z-octadecenoic acid and 10-hydroxy-8,9epoxy-

12Z-octadecenoic acid). Additionally, two peaks were detected, which’s fragmentation pattern 

was consistent with the spectrum of 8-KODE. Since the identification of ketones and epoxy 

alcohols indicated a non-enzymatic homolytic peroxide cleavage of 8-HPODE by free heme (Ernst 

H Oliw et al., 2006), the heme-occupancy of the P450-domain of the Phe799Leu-variant was 

investigated next.  

 

A significantly decreased soret band of the purified variant in comparison to wild type enzyme 

indicated a loss of heme (Figure 24 A). To attribute this lower heme occupancy to one of the two 

domains, a continuous wave X-band EPR-spectrum was recorded in collaboration with Alistair 

Fielding (MPI for Biophysical Chemistry, Goettingen; Figure 24 B). The spectrum reveals that the 

low spin heme content of this variant is reduced to approx. 15 % of the wild type’s value, while 

the g-values are unaffected. This result indicates a heme loss without perturbation of the heme’s 

coordination environment. Supporting this spectroscopic data, the purified Phe799Leu-variant 

showed a drastic decreased amount of P450-derived products and 70 to 90 % of all products 

were derived from PpoA’s DOX-domain (i.e. 8-HODE and 8-HPODE; Figure 24 C). Although these 

data suggest a loose binding of heme in the Phe799Leu-variant accompanied by heme-bleeding 

into the buffer, free heme-chemistry does not explain the diversification of the product-pattern 

in the purified variant. Hence, Phe799 seems not only to affect heme binding, but also reaction 

specificity. To probe the crucial property of the residue at position 799, further variants 

(Phe799Tyr; Phe799Trp and Phe799Met) were constructed. Interestingly, all of those variants 

did not show a reduced heme content in comparison to wild type enzyme (data not shown). 

Nevertheless, the Phe799Met-variant showed the same diversified product pattern as the 

Phe799Leu-variant, additionally indicating that the diversification of products rearranged from 

8-HPODE might not be crucially governed by free heme, but rather by an unconstrained 

substrate binding to the active site of PpoA’s P450-domain (Figure 25). In line with the idea that 

the residue at amino acid position 799 is involved in substrate binding is the observation that a 

bulky tryptophan at this position prevents isomerization of 8-HPODE to a great extent, 
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potentially by blocking the active site. Not that surprising is the observation that the Phe799Tyr-

variant exhibited a nearly identical product pattern as the wild type enzyme. Still one can see 

from the obtained data that even with such a slight modification of the amino acid at position 

799 a significant decrease in hydroperoxy fatty acid isomerase activity is associated. Considering 

that the rate-limiting step of the overall reaction is hydrogen-abstraction in the DOX-domain 

(Section 4.7), this activity reduction becomes even more evident. Despite the data obtained 

here, the question, whether the roles of Phe795 and Phe799 in determining reaction specificity 

can be attributed to be a result of improper substrate placement, due to a lack of  -stacking 

between the substrate’s double bonds and the aromatic amino acid side chains, or whether the 

observed effects have to be explained by other means, is not finally answered by these 

experiments. However, in this respect it is mentionable that the Phe799Leu-variant, which was 

proposed to exhibit an impaired ability to correctly place the Δ12 double bond, is also 

rearranging oleic acid to a diversified product pattern (data not shown). 

Figure 23: Phe795 in SRS2 and Phe799 in SRS3 determine the regioselectivity of PpoA’s fatty acid 

isomerase activity. The conversion was conducted by incubation of 1 ml cell lysate with 100 µM linoleic 

acid for 2 min. The reaction was quenched and extracted twice by Et2O. Products were identified by their 

MS
2
-spectra (Section 3.7). Shown is the quantitative evaluation of three biological replicates as well as the 

corresponding standard deviation. Inset: Representative chromatograms of the conversion of linoleic acid 

by wild type enzyme (blue), the Phe795Leu-variant (red) and the Phe799Leu-variant (green). Note that 

peaks with the same assignment have identical MS/MS-spectra representing most likely different isomers 

of this compound.   
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Figure 24: The mutation of Phe799 to Leu leads to a significant loss of cytochrome P450-heme of PpoA. A 

The UV/VIS-spectrum of this variant shows a reduced soret-peak relative to wild type enzyme. This 

indicates a   40 % heme loss. B X-band cw-EPR spectrum of the variant shows that only the low-spin heme 

content (i.e. the P450-heme (Fielding et al., 2011)) is reduced, while the high-spin heme (i.e. the DOX-heme 

(Fielding et al., 2011)) shows the same abundance as in the reference spectrum of wild type enzyme. Note 

that for clarity an offset was added to the variant’s spectrum. C Representative LC/MS-chromatogram of 

linoleic acid conversion by purified PpoA_Phe799Leu. Note that the amount of rearranged 8-HPODE is 

drastically reduced in comparison to wild type enzyme and a concomitant accumulation of 8-HPODE is 

observed. Three independent conversions were performed.  
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Figure 25 (previous page): Product patterns of linoleic acid conversion by PpoA_Phe799Leu, 

PpoA_Phe799Tyr, PpoA_Phe799Trp, and PpoA_Phe799Met in comparison to wild type enzyme. 100 µM 

linoleic acid was converted by the respective cell lysates. While the Trp-variant rearranged basically no 

hydroperoxy fatty acid, the Tyr-variant showed a product pattern reminiscent of the wild type pattern, 

although the activity of the P450-domain was reduced. In contrast, the leucine-and methionine-variants 

showed a diversified product pattern. A Representative chromatograms. B Quantitative evaluation of LC-

MS data. The patterns were obtained from three independent enzyme expressions of each variant. Shown 

is the arithmetic mean as well as the corresponding standard deviation.  

 

4.4.4  ASPARAGINE 887  IS CRUCIALLY INVOLVED IN HYDROPEROXIDE REARRANGEMENT  

 

It is known that the amide function of an asparagine in the I-helix of hydroperoxy fatty acid 

rearranging P450s is crucially involved in peroxide cleavage (Chiang et al., 2006; D.-S. Lee et al., 

2008). Notably, sequence alignments did not lead to identification of a homologue residue in 

PpoA and in the initial model of the P450-domain, no asparagine was at the expected position. 

However, a neighboring residue within the I-helix is an asparagine (Asn887), but its side chain 

points by approximately 90° away from the expected direction. Assuming that this detail might 

be false predicted, a respective variant (Asn887Val) was constructed. Although the conducted 

variation did not lead to a qualitative change of the product pattern and only the three 

enzymatic products known from conversions by wild type enzyme, i.e. 8-HODE, 8-HPODE and 

5,8-DiHODE, were produced, there was a significant effect on the hydroperoxide isomerase 

activity causing a decrease in the relative amount of rearranged product and a concomitant 

accumulation of DOX-derived products (Figure 26). 

 

During characterization of the purified PpoA-variant, it became obvious that the conducted 

mutation leads additionally to a reduced soret absorption of the enzyme. To address whether 

this reduced vis-absorption is caused by a lower heme-content of either the DOX-or the P450-

domain, or merely reflects altered cofactor coordination in one or the other domain, Dr. Alistair 

Fielding (MPI for Biophysical Chemistry, Goettingen) recorded cw X-band EPR-spectra of the 

variant as well as of wild type enzyme. The obtained data reveal that there is no difference in the 

high-spin heme indicating that the cofactor of the DOX-domain is not affected by the conducted 

variation. In contrast, the low-spin signal assigned as P450-heme (Fielding et al., 2011) was not 

only reduced by approximately 40 %, but also the g-tensor was altered (Figure 27). Since the g-

values of a P450 enzyme are very sensitive to the cofactor’s ligation sphere, these changes might 

indicate an altered coordination as one would expect, if the amide of Asn887 forms a hydrogen 

bonding network involving the subtrate’s peroxide and the heme-iron.   
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Figure 26: The Asn887Val-variant of PpoA exhibits a significantly reduced hydroperoxy fatty acid isomerase 

activity as compared to the wild type. This effect is revealed by a decreased amount of rearranged product 

and a concomitant accumulation of DOX-derived products. The reaction of the respective variant with 

linoleic acid was extracted after 2 min and product patterns in these extracts were measured by LC-MS
2
. 

Shown are the arithmetic means of products quantified for three independent conversions as well as the 

corresponding standard deviation. 

 

Figure 27: cw X-EPR spectra of the low-spin 

heme species in PpoA-Asn887Val (75 µM; 

green) as compared to wild type (75 µM; 

black). Qualitative differences in g1 are 

marked. Additionally, the heme occupancy in 

the variant is only about 60 % of the wild 

type value. Spectra were recorded by Dr. 

Alistair Fielding with details specified in 

literature (Fielding et al., 2011). The 

spectrum of the variant was measured for a 

single preparation and the wild type 

spectrum is consistent with spectra obtained 

for several other preparations of this enzyme  
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A final experiment to shed light on the role of asparagine 887 was based on the idea that the 

asparagine might structurally resemble the functional homologue position in class III P450s. As it 

was shown for PpoA (Brodhun et al., 2009), this P450 class in general exhibits only weak and 

transient binding of typical P450-heme ligands like CO and imidazole (Yeh et al., 2005; D.-S. Lee 

et al., 2008). Taken crystallographic data into account, this observation is explained by the 

carboxamide of the catalytic asparagine sterically hindering the direct coordination of small 

ligands to the heme iron (D.-S. Lee et al., 2008). To probe a similar position of Asn887 directly 

above the distal heme plane in PpoA’s P450-domain, an imidazole titration was performed as 

already outlined in section 4.2.5 and figure 14. Briefly, wild type enzyme and the Asn887Val-

variant were both titrated with imidazole and the red-shift of the soret band was monitored. 

Interestingly, titrations of both enzymes yielded basically the same dissociation constant (kD   6 to 

11 µM, assuming a one-site binding model), indicating that Val still might be too bulky to permit 

access to the heme or that the asparagine in PpoA indeed is farer apart from the heme than in 

other class III P450s, as it was predicted in the structural model (Section 4.3.1.2). Notably, the 

measured affinity is roughly 50-times higher as it was reported for prostacyclin synthase (Yeh et 

al., 2005), which might additionally point out a more accessible heme. By imidazole titration of 

PpoA’s His1004Ala-variant, in which the P450-heme is absent (Brodhun et al., 2009), it could be 

shown that also the histidine coordinated heme of the DOX-domain is binding imidazole. Thus, 

for proper evaluation of the spectral binding assays, consideration of a two-site binding model 

was necessary. Therefore the binding parameters obtained for titration of the His1004Ala-

variant (kD   34µM) were defined as (fixed) parameters of imidazole binding to the DOX-domain 

and affinity parameters of imidazole binding to the P450-heme were subsequently calculated 

from titrations of wild type enzyme and the Asn887Val-variant, respectively, with fixed 

parameters for imidazole binding to the DOX-heme and the imidazole binding parameters for 

the P450-heme fitted to a two-site binding model. For both, the wild type enzyme and its 

Asn887Val-variant, the thus obtained KD did not differ significantly and were in the range of   80 

µM. This value still represents an about 6-fold higher affinity of imidazole to the P450-heme of 

PpoA as compared to prostacyclin synthase. Again the missing influence of a less bulky residue 

at position 887 on ligand access supports the idea that this position in PpoA is less important in 

shielding of the P450 heme as in other class III P450s.  

 

Taken together the here presented data substantiate the involvement of Asn887 in 

hydroperoxide rearrangement and justify the refinement of the initially obtained predicted 

structure. Nevertheless, the heme-binding of imidazole suggests that the P450-heme of PpoA is 

shielded to a lesser extent than in other class III P450s. This in turn might indicate that the 

catalytic competent asparagine, which is responsible for the steric shielding, has a different 

position and is in agreement with the failure to identify a catalytic competent asparagine by 

sequence alignments.   
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4.5 Attempts to convert 5,8-LDS to 7,8-LDS 

 

Psi-factor producing oxygenases in Aspergillus nidulans have been identified by homology to the 

enzyme 7,8-linoleate diol synthase (7,8-LDS) from Gaeummanomyces graminis, which 

synthesizes 7,8-dihydroxy fatty acids (Tsitsigiannis, Zarnowski, et al., 2004). In the following 

years several in depth studies have shown that both enzymes posses the same domain-structure 

comprising of an N-terminal DOX-domain and a C-terminal cytochrome P450, which represents a 

conserved architecture that is common to all members of the LDS-family. It was shown for 7,8-

LDS that the N-terminal domain catalyzes the same reaction as PpoA and converts an 

unsaturated 18C fatty acid to its 8-hydroperoxy derivative (Garscha and Ernst H Oliw, 2008). Also 

the alignment of both sequences illustrates that the determinants for the different regioisomers 

synthesized as products of the respective enzyme are most likely located in the P450-domain.  

 

In principle two possible explanations for the changed regioselectivity of both hydroperoxy fatty 

acid isomerases seem possible: i) a change of the protein architecture at the distal side of the 

heme leads to a sterically caused readjustment of the substrate position or ii) an amino acid 

exchange within the heme binding loop leads to a modification of the heme’s redox potential 

causing a changed kinetics or mechanism of heme-chemistry. 

 

i) Is regioselectivity determined by a changed substrate binding? 

 

As already shown in section 4.4.3, Phe795 seems to contribute via  -stacking with the Δ9 double 

bond of the substrate to the placement of this substrate in a proper position. Knowing that the 

substrate will not undergo severe reorientations between heterolytic peroxide cleavage and 

hydroxylation of C5 [40], it is reasonable to assume that a transition state will be formed at which 

the two carbons involved in the reaction (i.e. C8 and C5) are concomitant in close proximity of the 

heme iron (Figure 28 A). From the structure, one can deduce that the long aliphatic side chain of 

Met791 might push C5 towards the iron, while a small amino acid at position 792 could create a 

cavity that allows C6 and C7 to be placed in unproductive distance from the cofactor (Figure 28A). 

The corresponding positions in G. graminearum are Leu796, which is less bulky than Met and 

hence would not force C5 to be placed next to the iron, and Val797, slightly bulkier than Ala792 

in PpoA and thus could push substrate’s C7 in a productive distance to the heme (Figure 28 B). 

Nevertheless, the corresponding variant of PpoA as well as the double mutant 

(PpoA_Met791Leu and PpoA_Met791Leu/Ala792Val) showed an identical product pattern 

compared to the wild type and also the variant resembling the situation of Magnaporthe grisea 

(PpoA_Met791Leu/Ala792Met), which was thought to more likely push C7 in a productive 

distance to the heme, did not show an altered product pattern (data not shown).  
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Figure 28: Proposed transition state of the 

substrate bound to PpoA’s P450-domain and 

thereof derived determinants for 

regioselectivity. A illustrates the situation in 

5,8-LDS (i.e. PpoA), while B depicts the 

equivalent positions in Gaeummanomyces 

graminis 7,8-LDS. Note that 7,8-LDS of 

Magnaporthe grisea (Cristea et al., 2003) has a 

situation with Met instead of Ala792 and Leu 

instead of Met791, making the explanation for 

formation of 7,8-DiHODE more likely.  

 

 

 

 

 

i) Does an altered heme-chemistry influence regioselectivity? 

 

There are only some known determinants that govern the redox potential and therefore the 

reactivity of the heme cofactor of an enzyme. Of those determinants the proximal ligand 

coordinating the iron is by far the most important one (Thomas L. Poulos, 1996). Besides the 

proximal ligand, only a few other amino acids have been implicated to modulate the cofactor’s 

redox potential. Matsumura et al. identified two residues in the heme binding loop and showed 

their influence on the redox potential (Matsumura et al., 2008). While the phenylalanine at the 

beginning of the P450 consensus sequence, seven amino acids upstream of the iron’s cysteine 

ligand is invariant in 7,8- and 5,8-LDS, the second identified determinant differs. The 

hydrophobic leucine three amino acids downstream the cysteine ligand of PpoA is replaced by a 

charged glutamate in 7,8-LDS. Matsumura et al. have shown that replacement of a hydrophobic 

amino acid (Ala) at this position by a hydrophilic one (Gln) leads to a decreased electron density 

on the heme-iron and therefore directly influences the kinetics of compound I formation 

(Matsumura et al., 2008). A decreased rate of compound I formation could in turn favor a 

reorientation bringing carbon 5 to the oxidizing species in 5,8-LDS, while a faster formation of 

this oxidizing species in 7,8-LDS might promote instant oxidation of the neighboring carbon 7. To 

address the question whether the variation of this position plays a role in the differentiation 

between 5,8- and 7,8-LDS, the respective variant of 5,8-LDS (PpoA_Leu1009Glu) was generated. 

However, also this enzyme variant exhibited virtually the same product pattern as the wild type. 
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4.6 Quaternary structure of PpoA 

4.6.1  MEASURING THE NATIVE LOW-RESOLUTION STRUCTURE OF PPOA  BY SAXS 

 

To derive a hypothesis how the independently predicted domains might interact with each other 

and make up an oligomeric enzyme, a low resolution structure of the native enzyme was 

determined by SAXS. Small-angle scattering data were obtained in collaboration with Giancarlo 

Tria (BioSAXS-group, EMBL, Hamburg) for six different concentrations (48.8 g/l, 25.0 g/l, 10.5 g/l, 

5.8 g/l, 3.0 g/l and 2.0 g/l) of the wild type enzyme (in 50 mM HEPES, pH 7.4 with or without 2 

mM DTT addition) at the X33-beamline at the DESY in Hamburg. The resulting scattering curves 

and Guinier plots indicated that the enzyme preparation showed no aggregation tendency and 

was highly monodisperse. Also, addition of 2 mM DTT, which can be used in order to reduce 

aggregation, did not alter the scattering curve. The distance distribution function suggested a 

maximal particle’s dimension of   16.5 nm, a radius of gyration of   5.4 nm and an occupied 

volume of   546 nm3. This directly measured particle volume suggested a molecular weight of  

 341 kDa, which would correspond to a trimeric quaternary enzyme structure of the enzyme (the 

monomer has a theoretically calculated molecular weight of   120 kDa, while its apparent 

molecular weight judged by SDS-PAGE is   110 kDa). The ab initio determined molecular shape 

that best describes the experimentally observed scattering curve was calculated by Giancarlo 

Tria utilizing the program DAMMIF (D. Franke and Svergun, 2009). Interestingly, the thus 

determined shape (Figure 29 A+B) agreed with the low resolution structure obtained by rigid-

body docking of three monomers of each of the previously modeled enzyme domains to the 

scattering curve using the SASREF algorithm (Petoukhov and Svergun, 2005) (Figure 29 C+D). The 

thus obtained structure showed an excellent agreement with the experimental data. 

 

To validate the derived model of the enzyme’s quaternary structure, surface exposed and 

accessible protease cleavage sites were mapped. Therefore the protein was subjected to native 

proteolysis with trypsin. Although size exclusion chromatography indicated that the native 

molecular weight was unchanged, this treatment yielded reproducible four stable fragments 

that could be separated by SDS-PAGE (Figure 30 A). The sites that were accessible to this 

treatment were determined by ESI-MS2 of the excised bands (measurements by Dr. Oliver 

Valerius, Georg-August-University, Goettingen). Although this approach was complicated by the 

generally incomplete peptide-coverage on the one side and a highly sensitive detection of 

unspecifically truncated peptides forming a background over the whole lane on the other side, 

four sites of truncation have been identified (Arg140; Lys350; Lys806, and Lys834) and were 

highlighted within the enzyme’s model (Figure 30 B). Clearly, the accessible digestion sites are 

distributed on the edge of the molecule and the flat sites of the particle are inaccessible for the 

protease’s active site.  
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Figure 29: PpoA’s quaternary structure derived from a small-angle X-ray scattering intensity profile of 

native wild type enzyme. A Ab initio determined bead-model of the particle shape that fits the 

experimentally observed scattering curve. The shape was calculated by EMBL’s BioSAXS group using the 

DAMMIF algorithm. B 90° rotation of A around the z-axis. C Rigid-body docking of three PpoA-monomers 

(i.e. three predicted DOX- and three predicted P450-domains) to the scattering curve. The docking was 

calculated in EMBL’s BioSAXS group using the SASREF algorithm. D 90° rotation of C around the z-axis. 
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Figure 30: Validation of the proposed quaternary structure of PpoA by limited trypsolysis. A The enzyme 

was incubated over night at 4 °C under non-denaturing conditions with 1/200 (w/w) trypsin. The enzyme 

fragments were putatively assigned as: Phe141-Lys834 (theoretical molecular weight: 78 kDa); Asp351-

Lys834 (55 kDa); unidentified Fragment with   33 kDa and Ser807-Phe1081 (30k Da). The assignment of the 

obtained fragments was based on ESI-MS
2
 data and theoretical molecular weights were calculated from 

Uniprot-ID: Q6RET3 using ProtParam (http://web.expasy.org/protparam/). The assigned digestion sites 

were consistent for two independently digested enzyme preparations. B Within the model, the sites that 

are vulnerable to tryptic digestion under the conditions named in A are highlighted by blue spheres. Note 

that all sites that can be accessed by trypsin’s active site are located at the edge of the protein and not on 

the flat side. 

 

4.6.2  MEASURING TYROSYL-RADICAL DISTANCES BY DEER 

 

DEER is a technique to probe the distance between two paramagnetic centers. Since it is known 

that the first step of oxygen insertion is mediated by such a paramagnetic center, i.e. a tyrosyl-

radical that abstracts hydrogen from the fatty acid’s C8, one can measure the distances between 

these tyrosyls in the different monomers of the protein and use this constraints to further 

evaluate the proposed quaternary enzyme structure. From the obtained low resolution structure 

of PpoA (Section 4.6.1), a distance of the proposed radical-forming Tyr374 of 5.9 nm was 

derived. However, one has to keep in mind that SAXS will yield merely low-resolution structures 

and thus these distances are associated with an experimental error of up to 2 nm. Independently 

from their true spacing, the arrangement of the monomers within a triangular quaternary 

structure gives rise to an equilateral distance triangle between active site residues of the distinct 

domains (Figure 31). In order to measure the distances between the catalytic active tyrosines 

with a more precise method and thus verify or falsify the SAXS-derived enzyme structure, DEER 
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was employed. Interestingly, Fielding et al. measured already the distance between the catalytic 

active tyrosyl radicals and determined one significant distance of 5.2 nm (Fielding et al., 2011). 

Although this distance is in agreement with the spacings of the Tyr374s determined from the 

SAXS-structure and the existence of merely one significant distance can be explained by the 

spatial arrangement of the three tyrosyl radicals as vertices of an equilateral triangle, an 

additional, minor distance extracted in this study complicates the picture again. Considering that 

Tyr327 is a second tyrosine residue within the DOX active site and is in reasonable distance to 

the substrate carbon to be oxidized, this distance (3.9 nm) could be explained by an additional 

radical site at this tyrosine (Figure 31). To evaluate this possibility, the tyrosyl radical distances in 

the Tyr327Phe-variant were determined additionally to those of the wild type enzyme. 

Figure 31: Zoom into the DOX active-sites. Tyrosine residues putatively forming the substrate oxidating 

radical are shown. The distances between the three Tyr374-sites (cyan) are 5.9 nm, while the distances 

between the alternative Tyr327-sites (orange) are 5.1 nm. Within the Structural model of PpoA, DOX-

domains are colored green and the P450-domains are colored blue. Hemes are rendered in red.  

Tyr374
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Taking advantage of the superior signal to noise ratio and a lower demand on sample amount 

(Ghimire et al., 2009), we intended to extend the previous study on this issue at X-band (Fielding 

et al., 2011) and obtain the new data at Q-band. In order to measure the expected distance by 

DEER, the dipolar evolution time trace should be recorded for at least 2.5 µs (G. Jeschke et al., 

2004). While this evolution time is sufficient to obtain a reliable distance-value, longer evolution 

times are favorable in order to extract exact distance distributions. Besides the problem to 

generate and trap a sufficient amount of tyrosyl radical, the main obstacle for the given 

analytical task is the rather small phase memory time of the generated radical. This enhanced 

relaxation might be caused by the proximity to the heme iron (Fielding et al., 2011). To decrease 

these relaxation processes, the influence of glycerol and D2O on relaxation times was assessed 

(Figure 32). Therefore, 100 µM of wild type trimer was reacted with an equal volume of 12 mM 

8-HPODE in the respective buffer. The reaction was immediately (reaction time 4 to 6 seconds) 

transferred to Q-band tubes, quenched in a dry ice bath and then stored in liquid nitrogen. 

Measurements of relaxation rates were performed at 6 K with the details given in Section 8.1.21. 

Interestingly, the utilization of D2O instead of water led to an unexpected enhanced relaxation of 

the radical. This might indicate that the rotational freedom of the tyrosyl is restricted by a 

hydrogen-bonding network involving water and thus is increased in D2O. The addition of 20 % 

glycerol did not lead to a significant increase of the decisive Tm, but contrary substantially 

lengthened T1, which implements the requirement of a longer shot repetition time and thus a 

longer acquisition time in order to get the same number of spectral averages. Although a further 

increased glycerol concentration led to an even longer spin-lattice relaxation, the buffer 

condition containing 30 % glycerol also positively affected the phase memory time and increased 

this parameter by   50 %. Since the formation of a glass instead of a crystalline frozen solution 

can advantageously influence relaxation times (Kveder et al., 2008), also a condition that allows 

glass-formation upon freezing was utilized. This sample contained 50 mM HEPES, pH 7.5, with 30 

% glycerol and 1 M sucrose as vitrification buffer. However, this condition did not improve Tm as 

compared to the buffer containing 30 % glycerol, but prolonged T1. 
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Figure 32: Relaxation rates of PpoA’s tyrosyl radical under different buffer-conditions at 6 K. T1 (A) was 

measured by an inversion recovery sequence and Tm (B) by a two-pulse decay. The obtained traces were 

fitted with an exponential (Tm) and biexponential (T1) function, respectively. From these fits the following 

relaxation rates were obtained: T1(HEPES) = 52.4 ms; Tm(HEPES) = 988 ns; T1(20 % Glycerol) = 71.2 ms; 

Tm(20 % Glycerol) = 984 ns; T1(HEPES-D2O) = 21.9 ms; Tm(HEPES-D2O) = 647 ns; T1(HEPES-D2O + 20 % d8-

Glycerol) = 44.3 ms; Tm(HEPES-D2O + 20 % d8-Glycerol) = 962 ns; T1(30 % Glycerol) = 121 ms; Tm(30 % 

Glycerol) = 1470 ns; T1(vitrification) = 196 ms; Tm(vitrification) = 1500 ns. “HEPES” is short for 50 mM 

HEPES, pH 7.5, and “vitrification” denotes a condition containing 50 mM HEPES, pH 7.5/ 1 M sucrose/30% 

glycerol. In contrast to all other conditions in which the water crystallizes upon freezing, this buffer 

composition is supposed to give a perfect glass. All measured relaxation-rates were obtained with a single 

enzyme preparation. 

 

Besides a reasonable phase-memory time, the second requirement in order to obtain high-

quality DEER-data is to generate a sufficient amount of radical. According to the values reported 

by Fielding et al. (Fielding et al., 2011), one could expect   0.6 spins per enzyme-trimer for manual 

mixed samples. To assess the influence of preparing the sample in X-and Q-band-tubes, 

respectively, as well as to define the 8-HPODE concentration that gives maximal radical-

intensity, spins were quantified by cw X-band spectroscopy. To avoid the pitfalls associated with 

absolute quantitation, most of the samples were quantified at 20 K utilizing g2 = 2.25 of the low-

spin heme as internal standard. Since the reaction generating the tyrosyl radical as well as the 

mutation of Tyr327Phe is unlikely to influence this feature, normalizing the radical intensity to 

this value seems to be a valid approach. The results indicated that, although generated by 

manual mixing, the radical can be trapped reproducible and to the same extent in X-band and Q-

band tubes. In contrast, the radical-kinetics and enzyme activation was found to be sensitive to 

the utilized concentration of peroxide and 160-fold excess of 8-HPODE was identified as the 

peroxide concentration that enabled to generate the highest radical amount. While radical 

trapping was reproducible for a given enzyme batch, different batches showed a varying 

response towards peroxide treatment with radical intensities varying by as much as 4-fold. In an 

attempt to absolutely quantify the amount of radical, radical intensities were measured at 110 K 
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and quantified with a 100 µM 4-Amino-2,2,6,6-tetramethylpiperidine-1-oxyl standard. These 

data suggest that, depending on the enzyme preparation, roughly between 0.1 and 0.4 spins per 

trimer were yielded. Considering the errors associated with determination of protein 

concentrations, quantification of radicals and the error propagation of both, this value is in 

reasonable agreement with the 0.6 spins per trimer reported by Fielding et al. (Fielding et al., 

2011). For DEER-measurements the enzyme preparations yielding most radical upon activation 

were deployed. 

 

Dipolar evolutions were recorded on samples prepared by mixing 100 µM of the respective 

PpoA-variant with 16 mM 8-HPODE in HEPES-buffer containing 30 % glycerol and trapping the 

generated radical by freezing in liquid nitrogen after 4 to 6 seconds. The data were collected at 5 

K. For the measurement, the microwave frequency was set to the value maximally absorbed in 

the resonator and the magnetic field was adjusted to match the low-field transition of the ß-

proton split tyrosyl-radical. The pump pulse was applied 50 MHz away on the tyrosyl radical’s 

high-field line. The pulse length enabling the most efficient spin-inversion at the pump frequency 

was determined by a nutation experiment and found to be   50 ns. The parameters of the pulse-

sequence at the observer frequency were set as follows:  /2= 20 ns; τ1= 150 ns; τ2= 3200 ns and 

the shot repetition time was set to 100 ms. The signal was averaged for 20 h and distances were 

extracted from data obtained in the time domain by Tikhonov regularization as implemented in 

DeerAnalysis2011 (G. Jeschke et al., 2006). The distances extracted from dipolar evolutions 

recorded on wild type samples resembled the distance-distribution that was already measured 

at X-band (Fielding et al., 2011): One major distance of 5.2 nm is accompanied by a minor 

distance of 4.1 nm (Figure 33 A + B). While the major distance is in good agreement with the 

equilateral distance triangle putatively spanned between the Tyr374s, the existence of a second 

distance is not in agreement with a solely paramagnetic center within a symmetric trimer. To 

assess whether this smaller distance might arise from an alternative radical-site, dipolar 

evolutions were recorded additionally on PpoA’s Tyr327Phe-variant. According to the predicted 

structure of the DOX-active site (Section 4.3.1.1), this residue is the most likely candidate for 

formation of an additional radical-site. Interestingly, the obtained dipolar evolution (Figure 33 C) 

as well as the extracted distances (Figure 33 D) showed no significant difference to wild type 

enzyme, which might point out that Tyr327 is not a major alternative radical-site and, at the 

same time, strengthens the hypothesis of Tyr374 being the catalytic competent radical-site. 

Considering the second hypothesis according to which Tyr327 serves as hydrogen-bond donor to 

stabilize the catalytic active Tyr374, one would expect to see a broader distance distribution in 

the Tyr327Phe-variant. Although no broadening was extracted from the measured dipolar 

evolutions for this variant, this does not necessarily contradict this hypothesis. The low signal-to-

noise ratio and the rather short dipolar evolution time prevent a reliable extraction of distance 

distributions from the measured data. 
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Figure 33: Dipolar evolutions and distance distributions of tyrosyl-radical distances in PpoA. A Background 

corrected dipolar evolution of tyrosyl-radical distances in 100µM PpoA wild type reacted with 160-fold 

excess 8-HPODE and aged for   6ms. The trace was accumulated at 5 K and averaged for 20 h. Experimental 

details are given in the text. The here shown evolution is consistent with more than 5 independently 

measured ones. B Distance distributions extracted from A. C Background corrected dipolar evolution of 

tyrosyl-radical distances in 100µM PpoA Tyr327Phe. The experimental procedure yielding the radical is 

identical to the one specified for A and a consistent trace was obtained in an independent measurement. D 

Distance distributions extracted from C.  

 

Although deployment of the respective variant revealed that the 4.1 nm distance does not stem 

from an additional radical formed at Tyr327, no alternative hypothesis where it might arise from 

was derived so far. Considering that PpoA is an enzyme that is characterized by the presence of 

three paramagnetic centers in the active state (i.e. tyrosyl radical; low-spin heme and high-spin 

heme) (Fielding et al., 2011), it is reasonable to assume that the minor distance might arise from 

dipolar couplings of the tyrosyl to one of the hemes. Based on the fact that inversion of high-spin 

heme magnetization requires different energies than applied and the proposal that the DOX-

heme (i.e. the high-spin heme) is in the ferryl state in the activated enzyme and thus is EPR-

inactive, one can reason that dipolar couplings to the low-spin heme might be picked up. 

Interestingly, the distances between the proposed tyrosyl radical-site and the low-spin heme 

within the low-resolution SAXS-model are in agreement with the measured distance distribution 

(Figure 34 A). While the distances between the low-spin hemes of each monomer and one 
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tyrosyl-heme distance are too large to be observed (i.e. d> 8 nm), the remaining two tyrosyl-

heme distances are in the same order of magnitude as the Tyr374* distances and a bit smaller, 

respectively, and thus could explain the measured distance distribution. To test this hypothesis, 

a PpoA-variant with a reduced low-spin heme-content (Phe799Leu; Section 4.4.3) was measured 

(Figure 34 B). Albeit the distance distribution extracted from the dipolar evolution of this variant 

(Figure 34 C) indicates that the smaller distance is gone in the absence of low-spin heme, an 

unequivocal statement linking this distance to a tyrosyl P450-heme distance can’t be made, 

because a DEER-experiment placing the pump pulse 60 MHz away at the low-field side of the 

tyrosyl (i.e. in better resonance to the low-spin heme) did not result in a dipolar evolution with a 

modulation depth significant enough to be analyzed (data not shown).  

Figure 34: The minor distance observed in PpoA might be caused by dipolar coupling of the catalytic 

competent tyrosyl to the low-spin heme. A Expected distances of the low-spin hemes to one of the 

proposed tyrosyl-radical sites (Tyr374). Remarkably, one of the expected distances has the same 

magnitude as the tyrosyl-tyrosyl distances, one is slightly shorter and the third is too large to be detected 

by DEER. Note that, due to symmetry, the distances between the other tyrosyls and the low-spin hemes will 

be identical. B Background corrected dipolar evolution of tyrosyl radical distances in 100µM 

PpoA_Phe799Leu reacted with 160-fold excess of 8-HPODE and aged for   6ms. The trace was accumulated 

at 5K and averaged for 20 h. Experimental details are given in the text. The shown evolution is consistent 

with the dipolar evolution obtained for the PpoA_His1004Ala variant, which also has a reduced heme 

occupancy ((Brodhun et al., 2009); Dr. Alistair Fielding, personal communication) C Distance distributions 

extracted from B.   
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4.7 Kinetic isotope effects to probe rate-limiting steps of 
hydrogen abstraction 

4.7.1  UTILIZED PROBES  

 

To assess the contribution of hydrogen abstraction steps in the distinct PpoA-domains on the 

overall enzyme kinetics, Dr. Andre Nadler (Institute for Organic and Biomolecular Chemistry, 

University Goettingen) synthesized regio-specifically dideuterated oleic acids. One substrate was 

dideuterated at C8 (8,8-Dideutero oleic acid, C8-d2-OA), while another had these labels on C5 (5,5-

Dideutero oleic acid, C5-d2-OA) (Figure 35). Therefore the latter one served as probe to test the 

kinetic contribution of C5-hydroxylation on the overall reaction, while C8-d2-OA was utilized to 

probe the kinetic significance of the hydrogen abstraction step preceding the insertion of 

molecular oxygen. Or, to give it in other words, C8-d2-OA can give information on the kinetic 

contribution of the reaction taking place in the DOX-domain of the enzyme and the kinetics of 

C5-d2-OA conversion will provide knowledge about the kinetic relevance of fatty acid 

hydroperoxide rearrangement taking place in the cytochrome P450-domain of the enzyme.  

 

4.7.2  PSEUDO STEADY-STATE KINETICS  

 

The reaction kinetics was continuously assayed by monitoring the insertion of molecular oxygen 

into the fatty acid. Since oxygen is inserted in equimolar amounts into the substrate, this oxygen 

consumption can be directly related to enzyme kinetics. Figure 36 shows representative traces of 

this oxygen depletion for 100 µM of the respective substrates. In figure 36 A the proposed 

mechanistic homology to PGHS is illustrated by the sigmoidal shape of the obtained oxygen 

consumption curves, reflecting enzyme activation and inactivation processes. On a longer time-

scale this is also evident for C8-d2-OA (Figure 36 B). The first derivatives of these curves reveal 

unequivocally that the entire kinetics is governed by these opposite effects and that a phase of 

highest activity is reached only transiently (Figure 36 C). This dependence on activation and 

inactivation processes permits the application of conventional steady-state theory for evaluation 

of the observed kinetics and complicates the quantitative interpretation of the results. Since the 

intention of the here described experiments was to obtain data on the rate limiting steps under 

physiological conditions and a comprehensive investigation of the enzyme with all its 

characteristics, including activation- and inactivation-phases, a pre-activation of the enzyme with 

any kind of peroxide was not conducted.   
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Figure 35: Probes utilized to 

determine the kinetic 

contribution of hydrogen 

transfer steps in the DOX-

domain (A) and the P450-

domain (B) of PpoA. A Within 

the DOX-domain hydrogen is 

abstracted from oleic acid’s 

C8 and transferred to the 

catalytic active tyrosine 

(which is most likely Tyr374, 

the left tyrosine in this figure; 

the right one is Tyr327). By 

specific dideuteration of this 

carbon, the corresponding 

reaction rate is diminished. B 

Within PpoA’s P450-domain, 

the N-terminally formed 8-

HPOME is rearranged to 5,8-

DiHOME. Therefore, a 

hydrogen/deuterium has to 

be abstracted, most likely by 

compound I, from substrate’s 

C5. Substrates are rendered in 

cyan with oxygen atoms in 

red and deuterium in yellow.  

 

 

 

To overcome the difficulties associated with the description of the obtained biexponential 

kinetics, the transiently reached point of maximal velocity was extracted from each trace for the 

different substrate concentrations. The dependency of these values from substrate 

concentration was pragmatically described by a hyperbolic equation similar to the one, known 

from Michaelis-Menten-kinetics (Figure 37). Nevertheless, one should keep in mind that no 

steady state was reached and thus the parameters of this hyperbolic equation do not have the 

meaning of Michaelis-Menten parameters. Yet, the obtained parameters might be utilized to 

quantify the KIEs observed for the distinct isotopologues (Table 4). While the magnitudes of the 

measured data indicate that hydrogen abstraction from C8 is the major rate-limiting step of the 

reaction, the influence of C5-dideuteration on oxygen depletion kinetics indicates that the two 

enzyme domains are not acting independent from each other.  

B

A
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Figure 36: 

representative 

oxygen 

consumption 

kinetics, obtained 

for conversion of 

500 nM PpoA with 

100 µM of various 

substrates.  

A Oxygen 

depletion kinetics 

obtained for 

conversion of oleic 

acid, C5-d2-OA and 

C8-d2-OA, 

respectively. 

Shown are 

representative 

traces from three 

independent 

measurements.  

B Oxygen 

depletion kinetics 

obtained for 

conversion of C8-

d2-OA.  

C First derivatives 

of the kinetic 

traces from A.  
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Figure 37: Pseudo-Michaelis-Menten kinetics obtained for conversion of oleic acid (upper trace); C5-d2-OA 

(middle trace) and C8-d2-OA (lower trace) by PpoA. By measurement of fifteen distinct substrate 

concentrations as triplicates, the coefficient of variation was found to be up to 20 % for this method. To 

illustrate the significance of the measurements, this coefficient of variation is shown for each substrate 

concentration measured.  

 

 Substrate 

Kinetic parameter C5-d2-OA C8-d2-OA 

vH/vD 1,1 33,4 

(v/k)H/(v/k)D 2,2 9,6 

Table 4: Deuterium KIEs for conversion of oleic acid and its C5-d2-and C8-d2-derivatives, respectively. Note 

that the kinetics do not obey the Michaelis-Menten equation and thus interpretation of the obtained KIEs is 

not straightforward.  
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4.7.3  END-POINT MEASUREMENTS  

 

To probe, whether the results obtained for oxygen depletion are reflected in the amount of 

product formed, conversions of 100 µM of the respective substrate by PpoA were quenched 

after 2 min incubation time and extracted with Et2O. Although the HPLC results (Figure 38) 

correlated with the results of oxygen consumption and showed roughly the same amount of 

activity reduction for the distinct substrates, LC-MS2 analysis revealed that there was a 

significant change in the relative amount of byproducts of the reaction (Figure 39). While for 

conversion with oleic acid and C8-d2-OA the product pattern showed the known distribution with 

6,8-DiHOME and 9,10-epoxy-8-hydroxy-octadecanoic acid as side products, the amount of these 

minor products was doubled for the substrate dideuterated at C5. Concomitant with this 

increase, the amount of the main product was decreased by the same extent.  

 

Figure 38: Quantitative analysis of the main product (5,8-DiHOME) formed upon conversion of PpoA with 

differentially dideuterated oleic acid. Shown are UV-signals of the product-pattern separated by RP-HPLC. 

Retention time of the main product was verified by authentic standard. Shown are representative 

chromatograms of three independent conversions 
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Figure 39: LC/MS
2
-analysis of products formed upon conversion of 100µM differentially dideuterated oleic 

acid by 500nM PpoA. The reaction was accomplished for two minutes and products were subsequently 

extracted with Et2O. Formed products were identified by LC-MS
2
 (as described in Section 3.7) and 

quantified by LC-MS. Shown are the arithmetic mean as well as the corresponding standard deviation for 

results from three independent conversions. 9,10ep-8OH is short for 8-hydroxy-9,10-epoxy-octadecanoic 

acid. 

 

4.7.4  IS THE HIGH KIE  FOR DIDEUTERATION AT C8  EXPLAINABLE BY HYDROGEN TUNNELING? 

 

The most straightforward way to address this question is to measure the temperature 

dependency of the reaction. Hampering this approach, activity is beyond the systems limit of 

detection for the substrate C8-d2-OA at temperatures below 8 °C. Additionally, the activity shows 

a significant drop at 40 °C indicating that enzyme denaturation already occurs at this 

temperature. Constrained by these two limits, the temperature range that can be covered is 

rather small and thus the results deduced from these measurements should be treated with 

care. Nevertheless, the measured temperature dependency within this limited range revealed 

no striking difference in the Arrhenius prefactors for the reaction of PpoA with oleic acid or C8-

d2-OA and thus contradicts the possibility of hydrogen tunneling (data not shown).  
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4.7.5  EXPLAINING THE EFFECT OF DIDEUTERATION AT C5  ON OXYGEN CONSUMPTION  

 

The most likely explanation for the observed influence of dideuteration at C5 on dioxygenation 

rate would be the existence of an inter-domain communication. One possible mechanism of this 

inter-domain communication could be intermediate-channeling from the N-terminal domain to 

the P450-domain of the enzyme. In principle, there are at least three ways of intermediate 

channeling: 

(i) A closed hydrophobic tunnel for intermediate transfer (Cheng et al., 2008) 

(ii) Electrostatic channeling of the intermediate across the protein surface (Cheng et al., 

2008) 

(iii) ‘Channeling’ by proximity of the active sites, resulting in a microenvironment with 

locally higher intermediate concentrations (Bauler et al., 2010) 

Due to the chemical properties of the intermediate yielded in the reaction of PpoA with oleic 

acid, possibility (ii) seems to be unlikely. If substrate channeling occurs within a closed 

hydrophobic tunnel, one would expect that in a competitive approach using labeled fatty acid 

(50 µM 13C18-linoleic acid) and unlabelled intermediate (50 µM 8-HPODE) the majority of end 

product would be labeled (Spivey and Ovádi, 1999). As the result of this isotope dilution in figure 

40 demonstrates, this is not the case for PpoA. Contrary an accumulation of labeled 

intermediate was observed and most of the end product formed was unlabeled, indicating that 

the P450-domain of the enzyme can use free intermediate as substrate for the rearrangement 

and that the hydroperoxide product of the DOX-domain is released to the buffer. These results 

could point out that the ‘channel’ between the both domains might be defined by not more than 

steric adjacency resulting in a direct equilibration of the intermediate between both active sites, 

which might be a kinetic advantage for the overall reaction to yield the desired end product. 

However, the macromolecular structure as it is supported by the SAXS-data (Section 4.6.1) does 

not substantiate this idea. Contrary, the proposed active sites (Section 4.3) and substrate access 

routes are not facing each other in this model.   
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Figure 40: Isotope dilution experiment for the reaction of PpoA with labeled linoleic acid and unlabeled 

intermediate (8-HPODE) suggests a lack of a hydrophobic tunnel between both domains. 50µM of each 

substrate were reacted with 0.1 µM PpoA. The products formed after 45 sec were extracted and quantified 

by LC/MS. Shown are the arithmetic mean as well as the corresponding standard deviation for products 

quantified from three independent conversions. 

 

Another hypothesis that could explain the observed influence of C5-dideuteration on the kinetics 

of dioxygen consumption is that the enzyme exhibits some kind of allosteric regulation or a half-

of-site reactivity as it was reported e.g. for PGHS (Yuan et al., 2006; Dong et al., 2011). As already 

stated in the introduction, this enzyme is a dimer, but interestingly, upon substrate binding to 

one subunit, a conformational change will inactivate the other one and hence only one of both 

subunits is active at the same time. A similar mechanism occurring between the distinct domains 

of PpoA and thus a conformational change occurring upon substrate binding to one domain and 

preventing substrate binding to or conversion by the other domain could also explain the 

observed effect. The reduced kinetic rate of fatty acid hydroperoxide rearrangement caused by 

dideuteration at C5 would consequently also affect the activity of the fatty acid hydroperoxide 

formation in PpoA’s DOX-domain. If this hypothesis is true, one would expect that the enzyme’s 

oxygen consumption rate depends on whether there is additional fatty acid hydroperoxide 

present in the buffer. Without the initial presence of this substrate of the P450-domain, the 

dioxygen insertion should proceed with a faster rate. Contrary, if substrate for the cytochrome 
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this reaction should slow down the dioxygenation rate. Nevertheless, one has to consider that 8-

HPODE does not only serve as substrate for PpoA’s P450-domain, but also activates the DOX-

domain by oxidation of the heme. As an opposite effect, this enhanced activation might actually 

mask a potential allosteric regulation. However, the results of the corresponding competitive 

experiment, deploying 100 µM of the substrate of the DOX-domain and a varying concentration 

of the P450-substrate, show a rather severe dependence of the DOX-activity on the substrate-

concentration available for the rearrangement-reaction, which might be interpreted as first 

proof for an allosteric regulation (Figure 41).  

Figure 41: Decrease of dioxygenation velocity, due to increase of the initially present intermediate 

concentration, might be interpreted as hint for a half-of-site reactivity of both PpoA domains. Shown is the 

quantitative determination of maximal DOX-activity in dependence of substrate concentration available for 

the P450-reaction. 0.5 µM PpoA was reacted with 100 µM linoleic acid and a varying concentration of 8-

HPODE. For each ratio [8-HPODE]/[Linoleic acid] a single measurement was performed. Inset: Oxygen 

consumption kinetics obtained for PpoA catalyzed conversion of 100 µM linoleic acid without, with 50 µM 

and with 100 µM 8-HPODE reveals a significant dependency of DOX turn-over on substrate concentration 

available for the rearrangement reaction catalyzed by the P450-domain.  
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4.7.6  STEREOCHEMISTRY OF THE DIOXYGENATION,  CATALYZED BY PPOA 

 

The stereochemistry of the sequential oxygenation yielding dihydroxy fatty acids was elucidated 

for the homologue enzyme 7,8-LDS from Gaeumannomyces graminis (M Hamberg et al., 1994). 

This enzyme abstracts the pro-S hydrogen from C8 and inserts oxygen antarafacially. The 

following conversion of 8R-HPODE to a vicinal diol in threo configuration takes place 

suprafacially. To establish whether also PpoA abstracts the pro S hydrogen of the fatty acid 

substrate’s C8, linoleic acid enriched to 64 % with an 8R-deuterium label was utilized. Calculated 

from the natural abundance of 13C (1.1 %), one would expect approx. 20 % of end product to be 

one Da heavier than the nominal mass, assuming that the compound consists of 18 carbons. For 

the conversion of linoleic acid by PpoA, this expectation value is quite exactly met by the 

measured value (Table 5). As a result of conversion of linoleic acid enriched with 8R-Deutero-

linoleic acid one would mathematically expect 58 % of the heavier isotopologue, if the 

deuterium label is retained. This theoretical value is the sum of the heavier 13C-isotopologue (i.e. 

the isotopologue with one atom 13C) derived from 36 % linoleic acid and the light 13C-

isotopologue (i.e. the isotopologue without any 13C) derived from the deuterium-labeled linoleic 

acid (0.2*0.36 + 0.8*0.64). If one furthermore considers the isotopologues with an additionally 

by one Da increased molecular mass, the theoretically expected distribution can be derived as 

described and would be 29 %, 58 % and 13 %, for 311, 312 and 313 Da, respectively. Evaluation 

of the experimental data for all three masses reveals that the measured values do not fit as 

perfect as outlined in table 5. However, the measured relative distribution: 36 %, 53 % and 11 % 

is still close to the expected distribution. Especially when considering the mass uncertainty of the 

mass spectrometer used, the here reported deviation from theory is negligible. Since the 

experimental observed values are in agreement with the theoretically derived ones, one can 

deduce that the pro S hydrogen is abstracted from C8 and not the pro R hydrogen. Hence, at 

least the first step of the reaction-mechanism has the same stereochemistry as the homologue 

reaction catalyzed by 7,8-LDS from G. graminis. 

Table 5: Relative quantity of 5,8-DiHODE isotopologues formed upon conversion of PpoA with linoleic acid 

and linoleic acid enriched with its 8R-deutero isotopologue, respectively. The arithmetical expected 

nominal mass of the end product of linoleic acid conversion by PpoA is 311 Da. The amount of end product 

with this mass and its isotopologue with a one Da heavier molecular weight was quantified by LC-MS. 

  

Conversion of Area 5,8-DiHODE/ m/z = 311 Area 5,8-DiHODE/ m/z = 312 

Linoleic acid 84 % 16 % 

64% 8R-Deutero-linoleic acid/ 

36% Linoleic acid 

43 % 57 % 
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4.8 Protein film voltammetry of PpoA 

In order to assess the ability of PpoA to be investigated by protein-film voltammetry, a pyrolytic 

graphite electrode was coated with DDAB. This promoter/electrode-system is a suitable starting 

point to investigate the electrochemical behavior of a heme containing protein (Section 3.6). 

 

However, immediately upon bringing the electrode prepared with a film of DDAB into the 

enzyme solution, a visible precipitate formed. Since this might indicate enzyme denaturation, 

the enzyme solution was checked for integrity of the native state by UV-Vis-spectroscopy and 

conversion of linoleic acid. Remarkably, both criteria showed characteristics deviating from the 

native enzyme and indicating enzyme denaturation. Hence, one has to keep in mind that the 

measured electrochemical properties will not reflect the physiological situation, but merely 

represent the artificial situation of the heme enzyme immobilized in a DDAB-film. The electrolyte 

for voltammetry was 50 mM NaBr in 50 mM phosphate buffer, pH 7.4, and voltammograms 

were measured against a silver reference-electrode. Both, the cyclic voltammograms as well as 

the square wave voltammograms (Figure 42) show a single midpoint potential, which might be 

caused by an unresolvable overlap of the midpoint potentials of both PpoA hemes or is 

indicative of a severe denaturation of rather one than both active sites. The value of this 

midpoint potential depends on the scan speed of the cyclic voltammograms and changes from -

0.34 V (for a scan speed of 10mV/ sec) to -0.46 V (for a scan speed of 50mV/sec). Because this 

latter scan speed already leads to a severe perturbation of the voltammogram shape, it is 

reasonable to assume that acceptable midpoint potentials can be measured only for scan speeds 

of up to 30 mV/sec. Interestingly, the value obtained for this scan speed (-0.42 V) is in perfect 

agreement with the value obtained from square wave voltammetry. 

 

Figure 42: Protein film voltammetry of PpoA immobilized on a pyrolytic graphite electrode coated with 

DDAB. A Cyclic voltammograms obtained for different scan speeds. B Square wave voltammogram. Details 

of the experiment are specified in the experimental part of this thesis and the measured voltammograms 

are obtained from a single immobilization experiment. 
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55  DDIISSCCUUSSSSIIOONN  

5.1 Structure-Function-Relationship 

 

In order to establish a structure-function relationship for PpoA, it was attempted to crystallize 

the enzyme, obtain X-ray diffraction data and finally solve an atomic structure. Despite some 

efforts and the exploration of unusual techniques to eventually rescue the crystallization trials 

(Section 4.2), no diffraction quality crystals of PpoA were obtained. To derive structural 

information nonetheless, the single domains, which functionally resemble distinct oxylipin 

producing enzymes found in other species, were utilized for template-based structure prediction 

(Section 4.3). Evaluation of the predicted structures (Figures 15-17) was based on the fact that 

several aspects of structure-function-relationship, exemplary including substrate binding to 

heme-dioxygenases and mechanisms of peroxide-cleavage by atypical cytochrome P450’s, have 

been elucidated in these homologue enzymes (Koszelak-Rosenblum et al., 2008; D.-S. Lee et al., 

2008). However, one has to keep in mind that the predicted models will not correctly reflect all 

structural details and substrates might also bind with a slightly changed conformation. 

Exemplary the fatty acid bound in the DOX-domain might exhibit a different position as 

proposed and hence the geometry and distances between carbon 8 and the catalytically 

important tyrosines are not defined unequivocally. A different issue associated with the atomic 

details of the modeled active sites is illustrated by the predicted position of the catalytically 

involved Asn887. As predicted, the side-chain of this residue is pointing by 90° away from the 

peroxide-heme axis and thus would render this a residue incompetent for catalytic turn-over. 

Nevertheless, analysis of the respective valine-variant indicated that this residue is crucially 

involved in the hydroperoxide rearrangement reaction. Although the position of this residue 

might be refined by a readjustment of the entire I-helix, an eventually more likely explanation 

for a repositioned amide side chain is given by a kink interrupting the helical secondary structure 

of the I-helix above the active site in virtually all cytochrome P450s (Denisov et al., 2005). In the 

thus created space the catalytic threonine of typical P450s is located. A similar kink and the 

resulting readjustment of catalytically important amino acids was also reported for hydroperoxy 

fatty acid rearranging P450s (D.-S. Lee et al., 2008). Nonetheless, the predicted structure of 

PpoA’s P450-domain contains an unperturbed I-helix and thus might be false predicted in this 

detail. As a last example for the putatively wrong predicted details of the active-site structures, 

the position of the hydroperoxy fatty acid substrate in the P450-domain is mentioned here. 

Although two ortholog classIII-P450s have been crystallized with the same substrate-analogue, 

the resulting structures reveal two completely different substrate orientations (L. Li et al., 2008; 

D.-S. Lee et al., 2008) making the evaluation of the native binding modes nearly impossible and 

preventing a reliable prediction of substrate position in the P450-domain of PpoA.  
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Despite these problems associated with various details of the predicted active-site structures, 

the thorough biochemical and biophysical characterization of variants of certain hypothesized 

determinants proved the functional role of the respective amino acid position (Section 4.4). 

Utilizing this approach five amino acids crucially involved in substrate conversion by PpoA were 

identified. Of these five residues two are apparently involved in dioxygenation, while the 

remaining three amino acids govern hydroperoxy fatty acid rearrangement in the P450-domain 

of PpoA. It should be pointed out that all identified amino acid determinants are highly 

conserved throughout the whole Ppo-enzyme family and thus might serve as prototype 

determinants that characterize the reactivity of the whole enzyme family. The involvement of 

the mentioned determinants in catalysis is discussed in detail within the following two 

subsections. Elaborating on the active site structures and to get further insight into the 

macromolecular assembly of the predicted domains to an entire oligomeric enzyme, small-angle 

X-ray scattering data were used to derive a low resolution structure of the native enzyme 

(Section 4.6.1). The thus postulated quaternary structure of PpoA is discussed in Section 5.1.3.  

 

5.1.1  ACTIVE SITE STRUCTURE OF THE DOX-DOMAIN AND DETERMINANTS OF DIOXYGENASE-

ACTIVITY  

 

The N-terminal domain (amino acid 1-620) of PpoA was assigned by sequence homology as 

member of the myeloperoxidase enzyme family (Daiyasu and Toh, 2000) and by multiple 

sequence alignments this study could identify an eighteen amino acid long sequence motif 

(Section 4.3.1.1) within the DOX-domain that is highly specific for all PpoA-homologue enzymes 

and thus might guide a way for enzyme classification within the myeloperoxidase family. Based 

on structures of different myeloperoxidases, the N-terminal domain of PpoA was modeled and 

found to resemble the crystal structures of the characterized heme-dioxygenases PGHS-1 and 

PGHS-2 (Section 4.3.1.1; Figure 15). The cofactor and the fatty acid substrate (linoleic acid) were 

placed in the same position as it is found in PGHS, which leads to a spatial arrangement, in which 

all known determinants of reactivity are placed in reasonable geometry. The heme is 

coordinated by a proximal histidine (His377) and on the distal side a second histidine (His202) 

can be found. The corresponding positions of both histidines were already shown to be crucially 

involved in enzyme activity of the homologue 7,8-LDS (Garscha and Ernst H Oliw, 2008) and 

PpoA’s His377Ala-variant is also inactive (Dr. Florian Brodhun, personal communication). The 

fatty acid is bound within a hydrophobic channel (Figure 17 A) of which Val328 next to the fatty 

acids C4 has been implemented to be involved in the regioselectivity of hydroperoxide formation 

(Garscha and Ernst H Oliw, 2009; Brodhun et al., 2010). Besides hydrophobic interactions of the 

fatty acid tail with apolar amino acids lining the substrate channel, the carboxylate of the 

substrate might be bound by ionic interactions to the side chain of a basic amino acid. A similar 

binding mechanism is proposed for both homologue heme dioxygenase: α-DOX and PGHS 

(Koszelak-Rosenblum et al., 2008). Although at the position homologue to PGHS-2’s Arg120 no 

basic amino acid was identified within the predicted PpoA-structure, the side chain of Arg336 is 
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located at the entrance of the proposed substrate channel and resides at the same distance to 

the substrate’s carboxylate as Arg120 in mPGHS2 (Figures 15 C and 17 A). Therefore, it was 

assumed that this residue might confer affinity of the fatty acid substrate to PpoA’s DOX-

domain. To validate this hypothesis, a respective variant with an uncharged amino acid at 

position 336 (Arg336Met) was constructed and its substrate affinity was measured by a kinetic 

approach and compared to wild type enzyme (Section 4.4.1, Figure 18). Although the measured 

kinetics of the variant are altered in a way supporting the hypothesis of Arg336 being involved in 

substrate binding, the effects of this mutation and especially the increase of km are not as 

pronounced as one would expect for a residue playing a pivotal role in substrate binding. On the 

one hand, the small magnitude of the observed effect might be either caused by the enzyme’s 

complex kinetics, which is governed by activation- and inactivation-processes that prevent 

reaching steady state conditions and hence complicate the evaluation of the kinetics by 

Michaelis-Menten theory (discussed in more detail in section 5.2), or by the fatty acid substrate 

forming micelles leading to an underestimation of the true km. Besides these putative systematic 

errors, one should also keep in mind that the shape of the dioxygen depletion kinetics measured 

for the Arg336Met-variant indicates a transition towards a different oxidation-mechanism 

caused by this mutation. Although a sigmoidal description of the measured data leads to a 

significantly improved fit, a clear conclusion why the conducted mutation should affect the 

enzyme’s cooperativity in such a drastic way is not easily derived. Interestingly, sigmoidal 

description of the measured variant-kinetics does not lead to changed values of km and vmax, 

relative to the wild type values, but affects merely the Hill coefficient. While this effect might be 

explainable for the Arg336Met-variant, a variant proposed to have affected binding properties; 

the observation that the Tyr327Phe-variant possesses a similar effect (Figure 19) renders this 

hypothesis implausible again and suggests that a lower activity may just unmask an intrinsic 

cooperative enzyme behavior. Albeit this possibly changed enzyme cooperativity, the km and vmax 

of the Arg336Met-variant, as compared to the wild type, are also not altered more significantly 

for the sigmoidal described kinetics. Thus the small observed effect could have a mechanistic 

implication and point out that the basic amino acid in the DOX-domain of PpoA rather resembles 

the function of Arg120 in PGHS-2 than that of the homologue position in PGHS-1. In isoform 2 of 

this heme DOX the positively charged side chain of Arg120 does not ionically interact with the 

substrate, but stabilizes its position by formation of weaker hydrogen bonds and thus renders 

hydrophobic interactions with the fatty acid tail relatively more important (Rieke et al., 1999). In 

line with other determinants crucially involved in positioning of the fatty acid are oxidations of 

unusual substrates (e.g. 14:1Δ9Z, 16:1Δ9Z, 18:1Δ8Z, 18:1Δ11Z, 18:1Δ12Z and 20:1Δ11Z), which indicated 

that the regiospecificity of the oxidation might be determined rather by the distance from the 

double bond (system) than by the distance from the substrate’s carboxyl- or ω-end (Brodhun et 

al., 2009; Ernst H Oliw et al., 2011). This finding implicates that the regioselectivity of the 

dioxygenation within the DOX-domain might depend on the correct placement of the substrate’s 

double bonds. Based on this observation, Tyr327 can be identified as solely aromatic residue 

putatively determining the placement of the substrate by  -stacking to assure that the 
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dioxygenation occurs regio-selective. Remarkably, this residue is highly conserved throughout all 

dioxygenases and was suggested to be involved in a hydrogen bonding network that places the 

catalytic competent tyrosyl radical in a position that resembles a rotamer perfectly placed to 

abstract hydrogen from the fatty acid substrate (Rogge et al., 2006). In contrast to this clear 

attribution of a certain role, Thuresson et al. speculated that the corresponding COX-residue 

might rather be involved in placement of the substrate than positioning of the oxidizing tyrosyl 

(Thuresson et al., 2001). This deduction was based on and is strengthened by the observation 

that in COX and 7,8-LDS only variants in which the Tyr was replaced by Phe, as another aromatic 

amino acid, remained active (Thuresson et al., 2001; Garscha and Ernst H Oliw, 2008). 

Nevertheless, since a narrower ß-proton splitting of the tyrosyl radical was observed in the EPR-

spectrum of the Tyr327Phe-variant, which indicates a conformational perturbation of the 

oxidizing tyrosine, it is reasonable to conclude that Tyr327 in PpoA contributes, at least partially, 

to proper positioning of the oxidizing tyrosyl radical. Hence, a role of this residue in substrate 

positioning would be not more than an additional one and evaluation of the mechanistic 

implications of this residue is thus complicated. Moreover, preliminary results characterizing 

PpoA’s Tyr327Leu-variant, which should not contribute to substrate binding by  -stacking, 

indicated that the regioselectivity of dioxygenation by this variant is not less specific and thus 

Tyr327 is most likely not crucially involved in substrate-placement. Besides the already 

mentioned function of Tyr327 to place the oxidizing tyrosine radical in a catalytic competent 

conformation, the spatial arrangement of Tyr327 next to the substrate’s C8 furthermore 

suggested that the catalytic tyrosyl radical might be (alternatively) formed at this position and 

the previously implicated Tyr374 (Brodhun et al., 2009; Fielding et al., 2011) might be only a 

transient link in a radical chain for intra-molecular electron transfer from Tyr327 to heme 

compound I. To test this hypothesis, radical distances between the tyrosyl-radicals in the distinct 

domains were measured by DEER (Section 4.6.2) and compared to the tyrosine distances derived 

from PpoA’s low resolution quaternary structure (Section 4.6.1). Although the distance 

distribution obtained for the wild type enzyme indicated the presence of an additional minor 

distance that could be interpreted as a second or alternative radical site at Tyr327, the distances 

extracted from the dipolar evolutions measured for the Tyr327Phe-variant were basically 

identical to the wild type pattern and thus a second radical at this position is rather unlikely 

(Figure 33). Integrating the results from the DEER-experiment of the Tyr327Phe-variant and the 

modeled active site structure with solely two tyrosines being in reasonable distance to 

eventually oxidize the substrate, the assignment of Tyr374 as catalytic competent residue is 

further strengthened.   
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5.1.2  ACTIVE SITE STRUCTURE OF THE P450-DOMAIN AND DETERMINANTS OF HYDROPEROXY 

FATTY ACID ISOMERASE-ACTIVITY  

 

Based on the observation that a basic amino acid is, at least partially, involved in substrate 

binding to PpoA’s DOX-domain, the contributions of charge-charge interactions to binding in the 

P450-domain were investigated. Strikingly, no positively charged amino acid, which could 

interact with the hydroperoxy fatty acid’s carboxyl group, was identified in the proposed active 

site of the P450-domain and the proposed binding mechanism with the carboxyl group in the 

active site suggests that the substrate has to be protonated (Figure 16 B and 17 B). Albeit this 

might be indicative of a false predicted structure and binding mechanism, the possibility that this 

is a valid observation was further investigated by conversion of an uncharged substrate analogue 

(Section 4.4.3). The methyl ester of 8-HPODE was not only converted without altered reaction 

specificity, which points out that a hypothetical ionic interaction is not crucial for substrate 

placement and hence for regioselectivity of the rearrangement reaction, but also a competitive 

conversion of 8-HPODE methyl ester and free 8-HPODE revealed that there is no quantitative 

difference in substrate binding of these both substrates (Figure 20). Contrary, conversion of 8-

HPODE at pH 9 indicated that the carboxylate actually has to be protonated for substrate 

rearrangement. This might be explained by repulsion of the deprotonated, anionic substrate 

from the uncharged active site of the P450-domain. Considering that ionic interactions do not 

contribute to substrate-binding to the P450-domain, a new aim was to explore the contributions 

of distinct binding modes to substrate affinity. Especially taking into account that fatty acid 

hydroxylations by PpoA will occur specifically on carbons -1 and -4 relative to the substrate’s 

double bond (Brodhun et al., 2009), one might speculate that  -stacking between an aromatic 

residue and the substrate’s double bond(s) contributes to proper positioning of the substrate 

within the active site. Within the originally modeled “opened” P450-structure indeed two 

phenylalanines (Phe795 and Phe799) are in reasonable proximity to 8-HPODE’s Δ9 and Δ12 

double bonds for  -stacking to occur (Section 4.3.1.2; Figure 21). The substrate was placed in 

this position based on the substrate’s electron density found in guayule AOS (L. Li et al., 2008). 

However, the distance between the peroxide and the heme renders this position most likely 

catalytic inactive. Therefore, assuming that the two phenylalanines indeed are involved in 

substrate binding, an assumption that was later on experimentally verified, a conformational 

change involving a movement of the enzyme’s F/G-helix towards the heme and thus closing the 

active site upon substrate binding would be mandatory. Actually, similar structural perturbations 

have been shown to occur upon substrate binding to P450-BM3 (H. Li and Thomas L. Poulos, 

1997, 1999) and several other cytochrome P450s (Pochapsky et al., 2010). With two reasonable 

amino acid determinants for substrate binding on hand, the next step was to biochemically 

characterize the respective enzyme-variants (Section 4.4.3). Because no assay to continuously 

monitor either depletion of the fatty acid peroxide or formation of the dihydroxy fatty acid is 

feasible, the kinetics of the P450-domain cannot be measured directly. Instead, end-point 

measurements of the enzymatic fatty acid conversion by PpoA were conducted and a decreased 
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activity was deduced from an accumulation of hydroperoxy fatty acid, while an impaired and less 

constrained substrate binding might be visualized as a loss of reaction specificity and a 

diversified product pattern. Although the Phe795Leu-variant showed the expected biochemical 

characteristics with a less specific regioselectivity of the rearrangement reaction, which was 

more pronounced for conversion of oleic acid, a substrate with solely one constraining double 

bond, the Phe799Leu-variant showed a surprising effect on the resting enzyme (Figures 22, 23 

and 24). All available data are consistent with a severely decreased heme occupancy of the 

P450-domain of this variant. Concomitant the product pattern of the rearranged hydroperoxy 

fatty acid was even more diversified as compared to the Phe795Leu-variant. Interestingly, only 

the variant with a leucine at position 799 exhibited the reduced heme occupancy, while all other 

amino acids tested at this position (i.e. Met, Trp and Tyr) did not perturb the cofactor binding. 

Despite the unperturbed heme-binding, the additional variant with an aliphatic amino acid 

(Phe799Met) rearranged 8-HPODE also to a diversified product pattern (Figure 25). This 

observation indicates a dual function of Phe799 in substrate as well as cofactor binding. 

Nevertheless, it has to be admitted that an explanation of how an amino acid at the distal side of 

the heme could affect cofactor binding in such a drastic manner is not straightforwardly given. 

Likely the change of phenylalanine to leucine provokes a severe perturbation affecting the 

structure of the whole domain. Although the influence of the respective variants, having an 

aliphatic residue at this position, on the rearrangement’s regioselectivity seems to be more 

obvious: lacking of the proposed  -stacking leads to a less constrained substrate position and 

thus a higher probability of other parts of the substrate to be oxidized, the fact that Phe799 is 

more important for regioselectivity of the rearrangement than Phe795 is not consistent with this 

hypothesis. From their arrangement within the structure, it would be expected that the Δ9 

double bond of the substrate is bound by the benzyl ring of Phe795 and regiospecific 

rearrangement of the 8-hydroperoxy derivative of oleic acid by wild type enzyme suggests that 

proper placement of this double bond is more important relative to the placement of the Δ12 

double bond of polyenoic substrates. Additionally, the Phe799Leu-variant rearranged 8-HPOME 

also to a diversified product pattern and not specifically to 5,8-DiHOME, as would be expected if 

the aromatic ring at position 799 would be solely necessary to place the substrate’s Δ12 double 

bond. Therefore, Phe799 might possess a distinct function that is not  -stacking to the Δ12 

double bond. Located at the boundary of the active site, its bulkiness might constrain the 

substrate in a catalytic competent position (Pochapsky et al., 2010). In line with this observation, 

the variant with a bulkier residue at position 799 (Phe799Trp) did not rearrange significant 

amounts of hydroperoxy fatty acids, putatively caused by a restricted access to the active site. 

Alternatively this phenylalanine might mediate substrate access and product egress. A similar 

function of a phenylalanine was proposed for a variety of cytochrome P450s among them 

Cyp3A4, Cyp2B1 and P450cam (Fishelovitch et al., 2009). Nevertheless, for these enzymes the 

gate controlling the access to the active site is build up by a pair of phenylalanines that is closed 

by  -stacking between the distinct benzyl rings. In the predicted structure of PpoA’s P450-

domain Phe1059 might serve as complementing residue forming this gate. However, the 
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Phe1059Leu-variant did not show a diversified product pattern, but its reaction specificity was 

comparable to wild type enzyme (data not shown).  

 

Despite the identification of Phe795 and Phe799 as residues involved in determination of the 

rearrangement’s regioselectivity, identification of determinants responsible for differentiation 

between 5,8-LDS and 7,8-LDS was not successful. In order to identify potential sites determining 

the reaction specificity of a cytochrome P450 enzyme, one can start to investigate the so called 

substrate recognition sites (SRSs). These SRSs have been defined as flexible parts of the enzyme 

governing the accommodation of different substrate molecules and specifying their regio- and 

stereo selective metabolization (Gotoh, 1992). While most of these SRSs seem to be responsible 

for adaption towards a highly diverse range of substrate sizes, SRS 5 is one of the most 

important sites for distinct regio- and stereoselectivity in closely related enzymes (Seifert and 

Pleiss, 2009). Therefore, its potential involvement in the differentiation between 5,8-LDS and 

7,8-LDS was investigated. SRS 5 starts C-terminal of the K-helix directly behind the ExxR-motif 

and spans over 9 to 11 amino acids to an arginine, which stabilizes the heme by interaction with 

one of the propionate groups (Seifert and Pleiss, 2009). Within the modeled structure of PpoA’s 

P450-domain, this region is indeed adjacent to the relevant part of the substrate and might be 

involved in determination of regiospecificity. Nevertheless, the three residues in direct contact 

with the substrate (Val940, Ala941 and Leu942) are conserved between 5,8-LDS and 7,8-LDS. 

Thus, it seems unlikely that SRS 5 is involved in the differentiation between these two enzymes. 

Instead of single amino acid determinants, significant changes in the architecture of the protein 

fold might be also responsible for an altered regioselectivity. A sequence alignment shows that 

within the cytochrome P450-domain of 7,8-LDS three longer inserts exist as compared to 5,8-

LDS. These inserts in the P450-domain are solely responsible for the longer amino acid sequence 

of 7,8-LDS in comparison to 5,8-LDS (1165 amino acids vs. 1081 amino acids). To assess a 

putative effect of these inserts on the regioselectivity of the catalyzed rearrangement reaction, 

the cytochrome P450 domains of both enzymes have been modeled with the I-Tasser algorithm. 

However, within these putative structures none of the three additional loops of 7,8-LDS 

interfered with the predicted substrate binding site of PpoA and thus a conclusion whether one 

of these loops might be responsible for the different regioselectivity in the distinct enzymes is 

not possible. Based on the predicted substrate binding mode, an alternative hypothesis to 

explain the differences between 5,8-LDS and 7,8-LDS was that in 5,8-LDS a six-membered 

transition state enabling the proximity of C5 and C8 is formed, while the substrate is not forced to 

adopt this conformation in 7,8-LDS (Section 4.5, Figure 28). Although Met791 was identified as 

putative structure fulfilling this function in PpoA, a respective variant did not catalyze formation 

of 7,8-DiHODE. Besides a structural explanation, one might consider that differences in the 

cofactor chemistry could also explain the altered reaction specificity. Exemplary a short lived 

compound I might readily oxidize the closest carbon, while a less reactive compound I might be 

stable enough to oxidize the substrate not before it was repositioned. However, with exception 

of the thiol ligand, the factors governing the reactivity of P450-heme are not well understood yet 
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and one of the residues in the heme-binding loop that was proposed to mediate this reactivity 

did not influence the regioselectivity of fatty acid dihydroxylations catalyzed by PpoA (Section 

4.5). 

 

Upon binding of the substrate, the peroxide has to be reduced and concomitantly the P450 

heme is oxidized to yield compound I, the reactive species capable to hydroxylate an unactivated 

C-H bond (Rittle and Green, 2010). In related hydroperoxy fatty acid rearranging cytochrome 

P450s, this peroxide cleavage was proposed to be facilitated by a hydrogen bonding network 

involving the amide function of an asparagine located in the enzyme’s I-helix on the distal side of 

the heme (Hecker and Ullrich, 1989; Yeh et al., 2005; D.-S. Lee et al., 2008). While no strictly 

conserved asparagine exists at the homologue position in PpoA’s P450-domain, a neighboring 

residue in the I-helix of this enzyme-domain was found to be an asparagine (Asn887; Section 

4.3.1.2; Figures 16 C and 17 B). Assuming that this detail of the structure might be false 

predicted, a respective variant was constructed and characterized biochemically (Asn887Val; 

Section 4.4.4). As one would expect, if the hydroperoxide rearrangement reaction is impaired, 

products of the DOX-domain were accumulated in linoleic acid conversions by this variant and 

concomitantly the amount of produced 5,8-DiHODE was decreased by about 90 % as compared 

to wild type enzyme (Figure 26). Furthermore, this variant showed a slightly decreased heme 

content. This weakened cofactor binding is in agreement with the amide side-chain forming a 

hydrogen bonding network between the peroxide-substrate and the heme-iron and thus 

representing an additional weak and noncovalent contribution to cofactor as well as substrate 

binding. Additionally supporting this hypothesis, the g-values that are sensitive to the 

coordination environment of the iron were found to be slightly altered (Figure 27). To further 

probe whether the altered position of the asparagine in PpoA as compared to other class III 

P450s is an artifact of the modeling process or putatively reflects a true structural difference, the 

binding affinity of a small ligand (imidazole) to the heme was measured. The carboxamide of the 

catalytic competent asparagine was implemented to shield the distal heme-side and thus cause 

the merely transient and weak formation of the enzyme-family archetypical absorption of the 

reduced CO-complex at 450 nm, which is typical for class III P450s (Yeh et al., 2005; D.-S. Lee et 

al., 2008). By this mechanism also binding of imidazole is less pronounced than in typical P450s. 

Although a transient formation of the reduced CO-complex absorbing at 450 nm was already 

shown in a previous study (Brodhun et al., 2009), these results are not sufficient to 

quantitatively assess this process. Therefore a spectrally monitored imidazole-binding study was 

conducted. The evaluation of the obtained data was complicated by the existence of a second 

heme. Although this complexity might be theoretically overcome by considering a two-site 

binding model, the distinct spectral parameters of the histidine and cysteine coordinated heme, 

with the soret peak of the DOX-domain slightly blue-shifted in comparison to the P450 heme, 

render also this approach impracticable, as the read out of the assay is not independent from 

the binding site. Despite these complications, the tendencies revealed by the imidazole titrations 

indicate that i) imidazole has a higher affinity to the P450-heme of PpoA as compared to the 
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active site of prostacyclin synthase (Yeh et al., 2005) and ii) the mutation of Asn887 to valine did 

not significantly increase the binding affinity of imidazole. Both results might be interpreted as 

indications that the asparagine in PpoA shields the heme less strictly as in other class III P450s 

and thus mutating this residue to a less bulky one does not significantly ease the access to the 

heme. This conclusion implements that the modeled structure might predict a true position of 

this asparagine and that the active site of PpoA’s P450-domain is more open than in other class 

III P450s and thus could enable the access of water. The presence of these water molecules in 

turn could be the reason why the hydroperoxide cleavage occurs heterolytically in fatty acid diol 

synthases (Kupfer et al., 2001) and not homolytically as in other class III P450s (Brash, 2009). At 

least, acid catalyzed cleavage by water was shown to be the main determinant of hetero- vs. 

homolytical O-O bond scission in P450 2B1, 3A1 and 3A5 (Correia et al., 1995). Although the 

present study probed only the involvement of an I-helical asparagine’s amide in peroxide 

cleavage, another mechanism for peroxide cleavage, which can be identified in CYP152B1 and 

CYP152A1 (Matsunaga et al., 2002; D.-S. Lee et al., 2003; Fujishiro et al., 2011) and which 

requires an additional carboxylic function, seems to be unlikely, since no carboxylate was 

identified in the proximity of the peroxide, to be cleaved during catalysis. 

 

5.1.3  QUATERNARY STRUCTURE  

 
PpoA and related enzymes were thought to be tetrameric for more than ten years (Chao Su and 

Ernst H. Oliw, 1996), but the SAXS-data obtained in this study illustrate that this view on the 

molecular weight was not detailed enough. Both, the zero-angle scattering intensity I(0) as well 

as the ab initio model of the particle’s shape calculated from the entire scattering curve, suggest 

that native PpoA forms rather a trimer (Section 4.6.1; Figure 29). The flat, trimeric quaternary 

structure causes an overestimation of the native molecular weight determined by size exclusion 

chromatography, which is calibrated for globular proteins. The derived quaternary structure, 

which’s envelope is based on the experimental obtained SAXS data, can reasonably explain at 

least two observations that have been made for PpoA: i) Only the edges of the flat molecule can 

reach into the active site of trypsin. Thus, the digestion of native PpoA does not lead to a 

complete degradation, but yields stable fragments (Section 4.6.1; Figure 30). ii) The arrangement 

of the monomers within an equilateral triangle (Figure 31) explains why determination of the 

distances between tyrosyl-radicals of the monomers gives only one significant signal 

representing a distance of   5.2 nm ((Fielding et al., 2011) and Section 4.6.2; Figure 33). The 

distance observed with this technique in frozen solution agrees quite well with the distance of 

the tyrosines, putatively forming the radical, in the model. The distance differences between 

both methods might be explained by a genuine difference between the liquid and the frozen 

solution. Still one should keep in mind that for SAXS a difference as small as 10 Å is not 

resolvable. An additional modulation of the dipolar evolution representing a second, smaller 

distance between paramagnetic species of   4.1 nm indicated that an alternative radical site 

might be formed. However, the same distance distribution of the Tyr327Phe-variant as 
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compared to the wild type indicated that at least this tyrosine is not responsible for the 

additional distance observed. At the same time, this opens the question where this smaller 

distance might arise from. Theoretically one could speculate that the tyrosyls might exhibit a 

certain conformational flexibility. However, to span a distance difference of 10 Å, two tyrosines 

would have to undergo a severe and concerted movement towards each other and an 

intermediate or broadened distance would be expected in this case. Moreover, the catalytic 

active tyrosine of the homologue PGHS was shown to posses no conformational flexibility (Sidhu 

et al., 2010). Considering that this smaller distance was observable even after the fast quenching 

(4 to 6 seconds) performed on the here investigated samples, it seems to be unlikely that it is a 

distance associated with radical side products not involved in catalytic turn-over or responsible 

for enzyme-inactivation. Additionally strengthening the hypothesis that this minor radical-

distance is not caused by dipolar coupling to another protein radical is the observation that the 

tyrosyl radical formed upon activation of the wild type enzyme can be simulated by a single 

tyrosine (Fielding et al., 2011). To finally rule out the possibility of an additional radical site 

indicative of enzyme inactivation, a rapid freeze-quench sample could be characterized in the 

future. Although also dipolar coupling to the low spin heme rather than to a distinct radical 

could theoretically explain the existence of a second distance (Figure 34 A), the fact that this 

smaller distance is not observed when the pump-pulse is applied in closer resonance with the 

low-spin heme indicates that this is no valid hypothesis. One should also keep in mind that, 

despite that the resting enzyme should posses a symmetric structure, substrate binding in the 

course of the activation process might induce a conformational change, which could perturb the 

structure and eventually lead to an isosceles triangle rather than an equilateral one. To probe 

this hypothesis a future experiment could determine tyrosyl-radical distances in a sample 

activated with hydrogen peroxide. Since this peroxide is no substrate for the P450-domain of the 

enzyme, no postulated conformational change should occur and thus also the activated enzyme 

should posses a symmetric geometry. An alternative explanation for the existence of the smaller 

distance might be that it is merely an artifact caused by the treatment of a triple-spin system as 

biradical. It was shown that this simplification can lead to a broadening of the distance-

distribution and the extraction of small distance artifacts especially from tri-radicals with an 

equilateral geometry (Gunnar Jeschke et al., 2009). Nevertheless, also treatment of the data 

with a model describing an equilateral tri-radical does not meet the requirements of the 

investigated system. This stems from the fact that the spins in the investigated system are only 

transiently formed and not stable. Hence, it is not clear to which extent the mean value of   0.6 

spins per trimer is distributed as mono-, bi and tri-radical. Although a cooperative enzyme 

behavior favoring the formation of bi- and tri-radicals is possible, most likely a mixture of 

different radical populations might exist complicating the extraction of true distance 

distributions further. Moreover, the existence of additional paramagnetic centers in the nano-

object (i.e. high-spin and low-spin heme) might imply the need to consider further spin 

correlations. Interestingly, the smaller distance exhibits quite exactly the double frequency as 

compared to the larger distance (νdd(4.12 nm)/νdd(5.18 nm) = 1.99) and thus might be indeed an 
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artificial sum combination of this true distance. Taking into account that distortions of the 

extracted distances are most pronounced for symmetric/equilateral spatial arrangements of 

spins (Gunnar Jeschke et al., 2009) and that the absence of the low-spin heme might not only 

lead to a reduction of the complexity of the multi-spin correlations, but also to a structural 

perturbation eventually destroying the molecule’s symmetry, also this hypothesis might be in 

agreement with the result of PpoA’s Phe799Leu-variant. Generally, the absence of the smaller 

distance in this variant (Figure 34) did not substantiate or falsify one of the several hypotheses 

explaining the nature of this distance. The loss of the P450-heme could prevent formation of an 

additional protein-radical in this domain and the associated diminished activity of the 

rearrangement reaction could suppress the manifestation of conformational changes, occurring 

upon substrate binding, as perturbed symmetry of the oligomer. Everything considered the 

nature of this additional distance cannot be clarified at the present stage of research.  

 

Altogether, the SAXS-derived low-resolution structure, validated by tryptic digest and DEER-

constraints, helped to set the proposed structure of PpoA to a new level. Although an atomic 

view of the interactions between the monomers could not be given, the orientations of both 

domains with respect to each other were derived from the predicted domains docked into the 

SAXS-derived low resolution structure and the assembly of two conserved, oxylipin forming 

activities in a single polypeptide chain as well as its quaternary structure were characterized for 

the first time.  

5.2 Kinetic isotope effects to probe the kinetic 
contribution of hydrogen-transfer steps  

Utilizing regioselectively deuterated oleic acid, the kinetic contribution of the distinct hydrogen 

transfer steps within PpoA’s reaction mechanism were probed. The proposed reaction 

mechanism (Brodhun et al., 2009; Fielding et al., 2011) predicts at least three different steps of 

hydrogen transfer: i) the catalytic competent tyrosyl radical abstracts hydrogen from the 

substrate’s C8; ii) this hydrogen is subsequently retransferred to the intermediately formed 

peroxyl radical thus restoring the tyrosyl radical for the next catalytic cycle and iii) within the 

P450-domain an activated heme species, most likely compound I, has to abstract hydrogen from 

C5 in order to enable oxygen rebound from the oxidized heme. The kinetic contributions of these 

steps might be revealed by oleic acid dideuterated at C8 (to unravel the importance of steps i 

and ii) and a distinct probe dideuterated at C5 (to estimate the influence of step iii on the overall 

kinetics).  

 

In a first attempt, dioxygenation kinetics were obtained by continuous measurement of dioxygen 

depletion (Section 4.7.2; Figures 36 and 37). In order to kinetically describe the data obtained for 

different substrate concentrations, the transient point of maximal velocity was obtained from 

dioxygen depletion kinetics of each substrate concentration and several models were considered 

for their evaluation. Obviously, a classical Michaelis-Menten description of the kinetics is not 
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valid, since the enzyme system exhibits no steady state. On the other hand, the oligomeric 

structure of the enzyme suggests cooperative effects and the corresponding sigmoidal behavior 

of the kinetics would be reasonable as well. Moreover, more sophisticated kinetic models that 

can be used to describe phase transitions at certain substrate-concentrations (e.g. the formation 

of micelles and different enzyme kinetics for the free fatty acid and the micelle) might be 

considered. Also, one should keep in mind that the kinetics might depend on the concentrations 

of both substrates, fatty acid and dioxygen, as it was described for exemplary for PGHS-1 

(Mukherjee et al., 2007). Nevertheless, for a detailed investigation, which of the mechanisms is 

best suited to describe the fatty acid conversion kinetics of PpoA, highly precise kinetic data are 

mandatory. Inter alia caused by impaired substrate solubility in aqueous solution these are hard 

to get and typically the measured kinetics have a rather high standard deviation rendering the 

credible evaluation of different models exhibiting merely subtle differences impossible. In order 

to overcome these problems a pragmatic approach was chosen and the kinetic behavior was 

described by a hyperbolic equation resembling the one known from the classical Michaelis-

Menten mechanism. Despite the fact that trends arising from differentially deuterated 

substrates might be revealed by this approach, one should keep in mind that the reaction is 

dominated by enzyme-activation and –inactivation processes and thus does not exhibit a steady-

state. Hence the reaction does not obey a Michaelis-Menten mechanism and the obtained 

kinetic parameters (k and v) have not the classical meaning of km and vmax. For the C8-labeled 

substrate vH/vD was determined to be 33.4, which is significantly higher than the value of   7 that 

one can expect for bond fission by a semi classical mechanism (Ranaghan and Mulholland, 2010). 

Nevertheless, it has to be considered that the labeling was only regio-and not stereo selective. 

Hence, the measured KIE is a combination of primary and secondary KIE. Moreover, the 

hydrogen/deuterium is proposed to be transferred twice in a full dioxygenation cycle. First, the 

label is removed from the fatty acid and reacts with the catalytic active tyrosyl radical to form a 

tyrosine. Following formation of a peroxyl substrate radical by trapping of molecular oxygen by 

the carbon centered fatty acid radical, the same hydrogen/deuterium is transferred to yield the 

product of fatty acid dioxygenation and restore the tyrosyl radical for the next catalytic cycle 

(Brodhun et al., 2009). For both homologue enzymes, PGHS and α-DOX, it was shown by 

measurements in deuterated water that on the time scale of catalysis exchange of the tyrosine’s 

proton with the buffer is negligible and thus indeed both steps of hydrogen/deuterium transfer 

have to be considered (Mukherjee et al., 2010; Danish et al., 2011). Keeping these contributions 

to the macroscopically determined KIE for conversion of C8-d2-OA as well as the standard 

deviations of the measured data in mind the determined value seems not significantly increased 

enough to claim “hydrogen tunneling” unequivocally. Nevertheless, the observed vH/vD strongly 

suggests hydrogen tunneling contributions for breakage of the carbon hydrogen bond. To prove 

this hypothesis a more detailed investigation of the KIE’s temperature dependency is essential. 

While unequal Arrhenius-prefactors for both isotopologues are typically a sufficient indication 

for hydrogen tunneling, one should keep in mind that in certain cases this is not enough and 

additional experimental evidence (e.g. evaluation of multiple KIEs with the Swain-Schaad 
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relationship) is needed to unequivocal proof hydrogen tunneling (S.C. Sharma and Klinman, 

2008). Nevertheless, a first rough estimation of the temperature dependency of the reaction of 

PpoA with oleic acid and C8-d2-OA indicated that the Arrhenius-prefactors for conversion of both 

substrates are equal and thus contradict the possibility of hydrogen tunneling being involved in 

the abstraction of hydrogen from the substrate’s C8  (Section 4.7.4).  

 

Interestingly, the observed pronounced KIE for hydrogen abstraction from C8 and (putative) 

proceeding of this process by hydrogen tunneling is in agreement with observations for several 

other fatty acid dioxygenases. LOXs are known for their high deuterium KIEs in the range of   80 

(Rickert and Klinman, 1999). Notably, although the substrates and products of this enzyme-class 

are comparable to those of PpoA’s DOX-domain, the enzyme mechanism differs. Exemplary the 

oxidizing species of LOX enzymes is not a tyrosyl radical, but Fe(III)-OH (C. Schneider et al., 2007) 

and the hydrogen is abstracted from a bis-allylic carbon that exhibits a lower bond dissociation 

enthalpy than the allylic C8 of the PpoA substrates (Ernst H Oliw et al., 2010). Interestingly, the 

two enzymes that are mechanistically comparable to PpoA’s DOX-domain are quite diverse with 

respect to their KIEs. While α-DOX was shown to exhibit tunneling effects comparable to LOX-

enzymes (Gupta et al., 2008a), the situation for PGHS differs remarkably. Although the 

macroscopically observed KIE was shown to be unexpectedly low more than 40 years ago (Mats 

Hamberg and Samuelsson, 1967), it was established only recently that this does not reflect a 

masking of a higher intrinsic value by a complex interplay of certain reaction steps, but merely 

that the inherent process of bond breaking has a value of just kH/kD   2 and thus is significantly 

lower than expected (Wu et al., 2011). To complete the confusion, the non-native substrate 

linoleic acid shows a kH/kD   20 and thus is within the expected range of deuterium KIEs (Danish et 

al., 2011). Although one has to consider that the fully deuterated substrate will give a 

combination of primary and several secondary KIEs and that the hydrogen/deuterium-label has 

to be abstracted twice, from the fatty acid and subsequently from the catalytic tyrosine, the 

measured value is in the upper range of what one would expect in a semiclassical mechanism 

and the authors concluded from several additional experiments that hydrogen tunneling occurs 

in the course of this reaction. The measured differences between the native (arachidonic acid) 

and the non native (linoleic acid) substrate might be explained structurally by the geometry of 

substrate bound to the active site. While the transition state of linoleic acid conversion allows 

hydrogen to tunnel and permits this pathway for the heavier deuterium, the native substrate is 

bound in a geometry that allows tunneling of both isotopes and thus reduces the observed KIE. 

Interestingly, these macroscopically differently expressed deuterium KIEs of the in other 

respects mechanistically highly comparable α-DOX and PGHS suggests that α-DOX might be a 

better model for the PpoA DOX-domain than PGHS. Nevertheless, some other features like the 

missing peroxidase activity of α-DOX (Mats Hamberg, León, et al., 2002) and the suprafacial 

insertion of molecular oxygen by this enzyme (Mats Hamberg, Sanz, et al., 2002) support the 

idea that PGHS might be the better suited homologue model and suggest that the DOX-domain 

of PpoA might mechanistically comprise of aspects from both enzymes.   
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In contrast to DOXs, in typical cytochrome P450 enzymes no unique step of catalysis can be 

identified as conserved rate-limiting step. In fact, depending on the enzyme, several microscopic 

reaction steps might be rate-limiting (Guengerich, 2002). Although often the second electron 

transfer step preceding the formation of compound 0 is found to be rate-limiting (Ortiz de 

Montellano, 2010), this is obviously not of interest for hydroperoxide rearranging P450s. 

According to Guengerich et al., the rearrangement reaction catalyzed by the PpoA-P450 domain 

might be rate limited by: C-H bond breaking or product release (Guengerich, 2002). The later 

one is only of importance if the substrate induces a conformational change upon binding, a 

situation that actually might occur in PpoA. To assess a putative rate-limitation caused by C-H 

bond breaking, C5-d2-OA was utilized to probe the kinetic contribution of hydrogen abstraction 

on the overall reaction. Surprisingly dideuteration at this carbon did not only influence the 

amount of 5,8-DiHOME (Figure 38) and led to a diversification of rearranged products (Figure 

39), but also had an effect on the dioxygenation rate (Figure 36 and 37). Although this indicates 

that the hydrogen abstraction from C5 is the rate-limiting step during PpoA’s rearrangement 

reaction, the influence of dideuteration at C5 on the kinetics of dioxygenation, determined as 

dioxygen depletion, was puzzling and is not explainable by the assumption of domains, acting 

independent from each other. To understand how an isotope effect, decreasing the reaction 

rate of a subsequent activity, can influence the reaction rate of a preceding reaction step two 

explanations are obvious: i) a substrate channel, transferring the substrate from one domain to 

the other or ii) conformational changes upon substrate binding leading to a perturbation of the 

structure and allosteric regulation of the activity of the other domain. To rule out the first 

explanation an isotope dilution experiment was conducted (Spivey and Ovádi, 1999). Assuming a 

closed channel between both domains, one would expect that labeled linoleic acid would be 

transferred directly into labeled 5,8-DiHODE and no labeled 8-HPODE would be released to the 

buffer. At the same time no unlabeled intermediate present in the reaction buffer could enter 

the P450-domain and thus no unlabeled dihydroxy fatty acid should be detectable. Nevertheless, 

the results of the corresponding experiment (Section 4.7.5; Figure 40) illustrate that in PpoA no 

structural closed channel exists for intermediate transfer between both domains. Another 

mechanism for intermediate transfer between two domains could be the equilibrium of product 

and substrate between spatially neighbored active sites (Bauler et al., 2010). However, the 

quaternary structure derived from SAXS-data is not supporting this hypothesis (Section 4.6.1). 

Although one should keep in mind that the low-resolution of the particle’s shape derived from 

the scattering curve might lead to a misinterpretation of the true domain orientations, these 

results render a conformational change upon substrate binding to the P450-domain and 

perturbing the substrate-binding to the DOX-domain the most likely explanation. Additionally, 

the two structural models obtained for the P450-domain upon prediction of the tertiary 

structure (“opened” and “closed” form; Section 4.3.1.2) are an indication that these 

conformational changes indeed might occur upon substrate binding to the hydroperoxide 

isomerase domain. Nevertheless, these structures are only first indications pointing out that 

PpoA could show a similar structural perturbation upon substrate binding as P450-BM3. In this 
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naturally occurring fusion protein of a cytochrome P450 monooxygenase with its FAD/FMN 

diflavin reductase substrate binding to the monooxygenase leads to a conformational change 

affecting the relative orientation of the reductase domain (H. Li and Thomas L. Poulos, 1999). 

The finding that dideuteration at C5 has a more pronounced influence on V/k than on V can be 

interpreted as a further proof for this hypothesis. Dideuteration at this particular carbon does 

not influence the measured enzymatic interconversion (i.e. dioxygen insertion yielding 8-

HPOME), but alters the component describing substrate-binding and formation of enzyme-

substrate complex (Northrop, 1975). This might be explained by an altered substrate-binding to 

the DOX-domain, caused by a changed kinetics of the rearrangement reaction. 

5.3 Electrochemistry of PpoA 

In principle, PpoA immobilized within a DDAB-film on a pyrolytic graphite electrode seemed to 

be a suitable system to be characterized by protein film voltammetry. In both, cyclic 

voltammetry as well as square wave voltammetry, oxidation and reduction currents could be 

measured (Section 4.8, Figure 42). In contrast to the square wave voltammograms the cyclic 

voltammograms exhibited a more significant reduction peak as compared to the subsequent 

oxidation peak, which might indicate that the reduction is not fully reversible. The fact that only 

one peak is observed might indicate that the redox-potentials of the P450- and the DOX-hemes 

are either not resolvable by protein film voltammetry or that merely one active site was 

denaturated by the immobilization procedure. Additionally, it should be considered that DDAB 

might be not a suitable promoter to mediate electron transfer between the electrode surface 

and the one or the other heme. Albeit neither the DOX- nor the P450-domain remained active 

upon the immobilization procedure, the value of the measured redox-potential might indicate 

that rather the DOX-heme was inaccessible for electron transfer by the chosen procedure. This 

deduction is based on redox-potentials reported for either P450-enzymes (e.g. Cyp121: -476 mV 

(McLean et al., 2008); CYP125: -303 mV (McLean et al., 2009)) or DOXs (e.g. LOX: 600 mV 

(Nelson et al., 1995); PGHS1: -167 mV (Goodwin et al., 2000); PGHS2: -156 mV (Goodwin et al., 

2000)) compared to the measured midpoint-potential of PpoA (-420 mV).  

 

Although these first results opened in principle the possibility to further characterize the 

electrochemical behavior of PpoA, including the kinetics of electron transfer, the dependency on 

temperature and different pH, these investigations were not further pursued. The reason for this 

is that rather large optimization efforts to identify the best suited electrode material as well as a 

surfactant that might better mediate the electron transfer are needed. These optimizations are 

mandatory in order to eventually detect another potential representing the second heme 

centre. Moreover, some enzymes are reported to exhibit redox parameters quite sensitive to the 

experimental layout (Goodwin et al., 2000; Johnson et al., 2002). Despite these time-consuming 

optimization procedures, the main problems arise from the difficulty to physiological interprete 

the measured potential and obtain mechanistically relevant information (Léger and Bertrand, 

2008). An eventually better way to measure adequate redox-potentials would be to use redox-
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titrations as reported in literature (Daff et al., 1997). However, the existence of two heme 

centers within one protein would make it necessary to monitor spectral changes by EPR- instead 

of vis-spectroscopy (Verhagen et al., 1995). A final and striking argument against a detailed 

electrochemical investigation of PpoA is that, also by measuring soluble redox-potentials, one 

always obtains the electrochemical parameters for the ferric/ferrous-heme transition, a redox 

transition without physiological relevance for the enzyme mechanism, which is proposed to 

involve only transitions from ferric to ferryl or oxo-ferryl (Brodhun et al., 2009; Fielding et al., 

2011).  
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66  SSUUMMMMAARRYY  

Phytopathogenic fungi are not only of economic importance for the yield depression they cause, 

but can also be considered as severe threat for the health of the consumer ingesting molded 

crops and fruits. This health threat is caused by several fungal secondary metabolites referred to 

as mycotoxins (Section 1.2.1). About eight years ago, the group of Nancy Keller proposed that 

these molding processes, as well as several types of mycoses in mammals, are mediated by 

fungal hormone-like acting compounds known as Psi-factors (Section 1.2.2). Considering the 

economic importance of the provoked fungal infections and their impact on public health, a 

detailed investigation of the underlying mechanisms of Psi-factor perception, their physiological 

influence and biosynthesis is of scientific significance. Focusing on the biochemical and 

mechanistic characterization of Psi-factor producing oxygenase A and thus highlighting the 

molecular basis of Psi-factor biosynthesis, this study could substantiate the mechanism 

presented by Brodhun et al. (Brodhun et al., 2009) and establish a hypothetical structural model. 

Although being merely a low resolution model with atomic details based solely on structure 

prediction and the overall-shape based on small-angle X-ray scattering (Section 4.6.1), several 

aspects of this structure could be validated by the deployment of adequate biochemical and 

biophysical approaches. Exemplary the crucial involvement of five newly identified amino acids 

in determination of the reaction specificity and enzyme activity could be proven (Section 4.4). So 

it was shown that the fatty acid substrate may bind to the DOX-domain with the ω-end first and 

is stabilized by ionic interactions of its carboxylate with Arg336, while binding of the 

intermediately formed hydroperoxy fatty acid to the cytochrome P450-domain may occur in a 

reversed orientation, i.e. with the carboxyl-end first, and thus requires an uncharged, 

protonated substrate. Instead two phenylalanines (Phe795 and Phe799) seem to play a role in 

substrate-binding and determination of reaction specificity. While the rearrangement reaction 

catalyzed by the P450-domain involves heterolytic cleavage of a peroxide, which is facilitated by 

the presence of Asn887, the dioxygenation in the N-terminal domain of PpoA is mediated by a 

tyrosyl radical. Based on the active site structure, two tyrosines were postulated to be involved 

in this process. While EPR-spectroscopy of the respective variants revealed that Tyr374 ((Fielding 

et al., 2011) and section 4.6.2) is most likely the catalytic active residue, Tyr327 seems to be 

involved in orienting this residue in a catalytic competent position. Besides these active site 

structures guiding the enzymatic turn-over, a distinct aspect of the enzyme mechanism was 

evaluated by the use of specifically dideuterated substrates (Section 4.7). Thus it was shown that 

hydrogen abstraction preceding the insertion of molecular oxygen is the rate limiting step of the 

overall reaction and both domains of the bifunctional enzyme are not acting independent from 

each other, but are kinetically linked. Taken together, this study could elucidate the functional 

and structural basis of Psi-factor biosynthesis in ascomycetes and highlight the molecular 

background for the physiological role of Psi-factors in host-pathogen interactions, which was 

established by previous studies (Section 1.2.2). 
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77  OOUUTTLLOOOOKK  AANNDD  FFUUTTUURREE  PPEERRSSPPEECCTTIIVVEESS  

To further establish PpoA's reaction mechanism from a mechanistic point of view, detailed 

investigation of several aspects presented in this work could be conducted. Exemplary, several 

determinants of substrate-binding were proposed in this study (Arg336; Phe795 and Phe799), 

but their involvement in substrate-binding was not proven unequivocally. Expanding on this 

issue a comprehensive study utilizing isothermal titration calorimetry and the various variants 

could be conducted. Nevertheless, this might be a rather challenging study since chemical similar 

compounds (e.g. linoleic acid and hydroperoxy linoleic acid) might show affinity to distinct active 

sites of the enzyme, namely the peroxidase-, the DOX- and the P450-active site. Deciphering the 

binding-contributions of a given substrate to the distinct sites might be even further complicated 

by the low solubility of the substrates in aqueous buffer and the concomitant mixing artifacts 

arising from substrates, solubilized in ethanol. A different valuable investigation of PpoA's 

reaction-mechanism might involve stopped-flow measurements to kinetically asses the heme 

reaction cycle in both domains. However, one has to consider that both hemes will form 

structurally highly similar intermediates and an assignment of spectral features to one or the 

other domain is not straightforward. Despite this difficulty, some minor differences of the 

UV/vis-spectra might arise from the distinct heme-ligation. Exemplary, it was shown that 

compound I of PGHS-1 exhibits an absorption maximum at 630 nm (Rouzer and Lawrence J. 

Marnett, 2003), while this maximum is red-shifted by 60 nm in Cyp119 (Rittle and Green, 2010). 

A way to more easily overcome the issue of similar heme-intermediates in both domains would 

be to genetically truncate the enzyme and obtain the distinct activities expressed independent 

from each other. Besides the problem of achieving this (several attempts have been made 

during this thesis without success, data not shown), a more severe counter-argument against 

this strategy is that the kinetics measured for the single domains will not reflect the complex 

interplay of both domains in one polypeptide chain and thus will fail to address the most 

intriguing feature of PpoA and related enzymes. Finally, from a biochemical point of view, a 

detailed investigation of cooperativity effects occurring in the trimeric enzyme might justify 

some efforts. Starting with theoretical indications that substrate-binding to PpoA’s P450-domain 

might induce a conformational change and supported by the experimentally observed influence 

of substrate-dideuteration at C5 on the dioxygenation rate, first data suggesting an allosteric 

regulation occurring in the bifunctional enzyme have been collected. To further decipher this 

putative process, one could try to get better kinetic data with lower standard deviation that 

might resolve a sigmoidal behaviour of the kinetics. In this respect one should think of 

overcoming the issues of substrate-solubility by the use of detergents. Additionally, CD-and 

fluorescence-spectroscopy might be utilized to monitor conformational changes upon substrate-

binding to the one or the other domain.  
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Although in this study a model could be derived that gave first insights into the quaternary 

structure and template-based structure prediction seems to be a reliable approach to predict 

atomic details of the distinct domains, a detailed view on the structurally most intriguing part of 

Ppo enzymes, the linkage between both domains, could not be given. Because several 

unsuccessful attempts were made to crystallize PpoA, this enzyme appears not to be a suitable 

candidate to approach the answer to this structural issue. Although some more efforts can be 

undertaken to finally get a PpoA crystal, e.g. construction of PpoA-variants that might exhibit a 

reduced surface entropy, a much more promising way to obtain a Ppo crystal seems to be to 

initiate crystallization trials with homologue enzymes. The high conservation of Ppo enzymes in 

ascomycetes (Andreou et al., 2009) as well as the existence of PpoA orthologs in virtually all 

ascomycetes (Tsitsigiannis, Kowieski, et al., 2005), provides a huge diversity to seek for suitable 

candidate enzymes. Nevertheless, the appropriate enzyme for this experiment might not be 

predictable rational, but rather involve time-consuming trial and error. Since this involves 

cloning, expression, purification, characterization and crystallization for each tested candidate, 

much effort has to be undertaken, if one decides to go this way. 

 

Albeit there are still details of the reaction mechanism to be answered, a much more important 

field of research seems to be a more detailed physiological characterization of PpoA. While the 

endogenous role of Psi-factors in ascomycetes to balance sexual and asexual spore development 

is quite well established (S P Champe et al., 1987; S P Champe and el-Zayat, 1989; Tsitsigiannis, 

Kowieski, et al., 2004, 2005; Tsitsigiannis, Zarnowski, et al., 2004), its more exciting role in 

interspecies communication is more elusive. Although initial data were accumulated, which 

suggest that Psi-factors produced by PpoA are involved in host-pathogen interactions (see 

section 1.2), no definite proof of this hypothesis was given yet. In the light of the here presented 

data describing the enzyme's mechanism and structure, a study closing the gap existing between 

the characterized enzyme and its scarcely defined physiological role might be the scientifically 

most promising one. The experimental design of such a study could potentially involve 

heterologous expression of ppo genes in a putative host and characterization of the 

susceptibility of the resulting transgenic host towards a variety of fungal pathogens in 

comparison to the non-transgenic host. A correlation of the assumed change in the resistance of 

the transgenic and non-transgenic host with the host's oxylipin profile might additional 

strengthen the proposed role of Psi-factors in pathogenicity.  
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88  EEXXPPEERRIIMMEENNTTAALL  PPAARRTT  

8.1 Wet lab methods 

All bacterial cultures were inoculated under sterile conditions in a Sterile hood Prettl®-Telsta BioII-A 

from Telstar (Terrassa, Spain) and all glassware and disposable tips were autoclaved prior to usage. 

Unless stated otherwise, all materials were purchased from Carl Roth (Karlsruhe, Germany) and of 

highest purity available.  

 

8.1.1  KITS AND MARKER  

Kits: NucleospinTM plasmid kit from Machery&Nagel (Düren, Germany) 

Protein Marker: Protein molecular weight markerTM from Fermantas (St. Leon-Rot, Germany) 

Enzymes: Pfu-DNA-Polymerase and DpnI were obtained from Fermantas  

 

8.1.2  MEDIA AND ANTIBIOTIC  

Luria-Bertani (LB)-medium: Pepton: 10 g/l; yeast extract: 10 g/l; NaCl: 5 g/l in diH2O; the medium 

was autoclaved at 120 °C for 20 min. 

 

2*YT medium: Pepton: 30 g/l; yeast extract: 20 g/l; NaCl: 5 g/l in diH2O; the medium was autoclaved 

at 120 °C for 20 min. 

 

Antibiotic: Kanamycin was added to all cultivations to a final concentration of 50 µg/ml 

 

LB-Plates: For preparation of agar plates, 1.5 % (w/v) agar was added to the medium. 

 

8.1.3  STRAINS  

Organism Strain Genotype Source 

E. coli XL1Blue 

recA1endA1gyrA96 thi-

1hsdR17 supE44 

relA1lac[F`proAB lac9zM15 

Tn19(Tetr)] 

Invitrogen 

(Darmstadt, 

Germany) 

E. coli BL21* 
F-ompT hsdSB(rB-mB) gal 

dcm araB:T7RNAP-tetA 

Invitrogen 

(Darmstadt, 

Germany) 

Table 6: Used organisms and strains. 
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8.1.4  VECTORS  

PpoA was expressed from pET24a plasmid (Merck, Darmstadt, Germany) as described in literature 

(Brodhun et al., 2009). 

 

8.1.5  PREPARATION OF COMPETENT E.  COLI FOR TRANSFORMATION BY HEAT-SHOCK  

300 ml LB-Medium was inoculated with 300 µl of an overnight culture of the respective E.coli strain 

and grown at 37 °C to an OD600   0.5. The cell suspension was chilled for 10 min on ice and cells were 

subsequently harvested by centrifugation (20 min; 3000*g). The pellet was washed once with 100 ml 

TFB-buffer and cells were resuspended in 16 ml TFB-buffer and 1.2 ml DMSO. 300 µl aliquots were 

prepared and shock-frozen in liquid nitrogen. Until use, they were stored at -80 °C.  

 

TB-Buffer:  

10 mM PIPES pH 6.7 (KOH), sterile filtered  

55 mM MnCl2  

15 mM CaCl2  

250 mM KCl  

 

8.1.6  TRANSFORMATION  

For transformation of the plasmids in E. coli the competent cells were thawed on ice. Subsequently, 

100 μl of the cell suspension were added to the site-directed mutation reaction or 2 µl of plasmid-

DNA. This mixture was incubated for 20 min on ice. Afterwards, the cells were heat-shocked in a 

water bath for 45 sec at 42 °C and instantly cooled on ice for 5 min. After addition of 900 μl LB-

medium the cells were shaken at 200 rpm for 90 min at 37 °C. Transformands were selected by 

spreading this cell suspension on LB-agar-plates containing 50 µg/ml kanamycin. The plates were 

incubated over night at 37  C and single colonies were picked for subsequent incubations. 

 

8.1.7  PLASMID-DNA-ISOLATION FROM E.  COLI  

For isolation of plasmid-DNA 5 ml LB-medium containing 50 µg/ml Kanamycin was inoculated with a 

single bacterial colony and cultivated over night at 37°C and 200 rpm. Plasmid preparation from this 

culture was facilitated by the NucleospinTM Plasmid Kit according to the manufacturer’s protocol. 

Deviating from this protocol, elution of DNA was performed by addition of 50 µl diH2O. Plasmid-DNA 

was stored at -20 °C. 
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8.1.8  SITE-DIRECTED MUTAGENESIS BY POLYMERASE-CHAIN-REACTION  

Site-specific nucleotide exchanges were conducted on the previously described expression plasmid 

(Brodhun et al., 2009) by utilization of oligonucleotides with specific mismatches at the desired 

position (Table 7). PCR amplification was performed by Pfu-Polymerase according to manufacturer’s 

instructions on a Mastercyler from Eppendorf AG (Hamburg, Germany). After 25 cycles of PCR, 

template DNA was digested with DpnI, precipitated and the resolved mutated plasmid was 

transformed to XL1-Blue (Invitrogen, Darmstadt, Germany). Site-specificity of the conducted 

mutation was confirmed by sequencing of the entire open reading frame. 

 

8.1.9  DNA-SEQUENCING  

DNA-sequencing was performed using the Dye-Terminator-Cycle-Sequencing-Kit from Applied 

Biosystems (Carlsbad, USA). During DNA-synthesis, ddNTP’s are randomly introduced, which leads to 

a nucleotide specific truncation of the strand. The ddNTP’S are labeled with distinct fluorescent dyes 

and the fragments are detected by their 3’-terminal nucleotide. Therefore, the mixture of the DNA 

strands of different lengths is separated by capillary electrophoresis, the fluorescent dye molecules 

are excited by a laser and fluorescence is detected by a photo cell. The sequencing reaction was 

performed as specified by Applied Biosystems with 1 µl of plasmid and 2 µM of the sequence specific 

oligonucleotide (Table 8). For purification sodium acetate (3 M), ethanol and EDTA (125 mM) were 

added, the mixture was stirred and then incubated for 5 min. Subsequently, the mixture was 

centrifuged at 20000*g and 4 °C for 15 min. The resulting pellet was washed with ethanol (70%), 

dried and dissolved in formamide (15 µL). Acrylamide based electrophoretic separation of the 

specifically terminated DNA-fragments was done by the group of Prof. Pieler at GZMB, Goettingen.  
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Oligonucleotide name/ Mutation Sequence 

Tyr327Phe_a AAGATTTTGTCCGAACGATTTTGAATATAAACCGG 

Tyr327Phe_b CGGACAAAATCTTTTAGGATAATATTTGCG 

Tyr327Leu_a TTATTTTAAAAGATTTGGTCCGAACGATTTTG 

Tyr327Leu_b TTCGGACCAAATCTTTTAAAATAATATTTGCG 

Tyr327Gln_a TTATTTTAAAAGATCAGGTCCGAACGATTTTG 

Tyr327Gln_b TTCGGACCTGATCTTTTAAAATAATATTTGCG 

Arg336Met_a GAATATAAACATGACAGATAGCACCTGGAGTTTGG 

Arg336Met_b GCTATCTGTCATGTTTATATTCAAAATCGTTCGG 

Met791Leu_a AGATCTTGGCTGCAGTTTTCACTGCC 

Met791Leu_b TGCAGCCAAGATCTTGTACAGTTCCG 

Met791Leu/Ala792Val_a CAAGATCTTGGTTGCAGTTTTCACTGCC 

Met791Leu/Ala792Val_b TGCAACCAAGATCTTGTACAGTTCCG 

Met791Leu/Ala792Met_a CAAGATCTTGATGGCAGTTTTCACTGCC 

Met791Leu/Ala792Met_b TGCCATCAAGATCTTGTACAGTTCCG 

Phe795Leu_a CAGTACTCACTGCCATCTTCTACGACGC 

Phe795Leu_b ATGGCAGTGAGTACTGCAGCCATTATC 

Phe799Leu_a GCCATCTTGTACGACGCAGATATTGGG 

Phe799Leu_b TCGTACAAGATGGCAGTGAAAACTGC 

Phe799Tyr_a CTGCCATCTACTACGACGCAGATATTGGG 

Phe799Tyr_b GCGTCGTAGTAGATGGCAGTGAAAACTGC 

Phe799Trp_a CTGCCATATGGTACGACGCAGATATTGGG 

Phe799Trp_b GCGTCGTACCATATGGCAGTGAAAACTGC 

Phe799Met_a CTGCCATCATGTACGACGCAGATATTGGG 

Phe799Met_b GCGTCGTACATGATGGCAGTGAAAACTGC 

Asn887Val_a AATGGTGGCAGTCCAAGCACAATTGTTTTCGC 

Asn887Val_b GCGAAAACAATTGTGCTTGGACTGCCACCATT 

Leu1009Glu_a GCGAAGATCTATGCAAGACAGG 

Leu1009Glu_b GATCTTCGCCCAAACACTTGTGG 

Table 7: Oligonucleotides, used for site-directed mutagenesis 

 

Oligonucleotide name Sequence 

T7-Promoter TAATACGACTCACTATAGG 

PpoA_Seq_A GACCTATTCCAGACAGACCC 

PpoA_Seq_B ATGCAAGATTTTGTCGCGGG 

PpoA_Seq_C TACAAGCTGGTTCTTCGCGC 

PpoA_Seq_D GTTCGAGCTAAACCAGGCCG 

Table 8: Oligonucleotides, used for sequencing  
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8.1.10  EXPRESSION OF PPOA  WILD TYPE AND ITS VARIANT S IN E.  COLI  

For expression of the recombinant protein, the respective plasmids were transformed in Bl21*. As 

preparatory cultures LB-medium containing 50 µg/ml Kanamycin was inoculated with one transgenic 

colony and shaken at 200 rpm over night at 37 °C. These preparatory cultures were used to inoculate 

the expression cultures (1 l in 2 l shaking flasks; 2*YT with 50 µg/ml Kanamycin). The cultures were 

cultivated until they reached an OD600 of 0.6 - 0.8. Then a spatula green ammonium ferric citrate as 

well as a spatula aminolevulinic acid (Sigma, Steinheim, Germany) was added and expression was 

induced by addition of IPTG to a final concentration of 0.1 mM. Subsequently the cultures were 

further cultivated for 24 h at 28 °C. The cells were harvested by centrifugation at 8000*g at 4 °C for 

20 min. The cell pellet was dissolved in lysis buffer and this suspension was stored at -20 °C. 

 

Lysis buffer: 

50 mM TRIS, pH 7.4 

10 % (v/v) Glycerol 

5 mM EDTA 

Lysozyme (spatula tip) 

 

8.1.11  CELL DISRUPTION OF E.COLI  EXPRESSION CULTURES  

The dissolved cell pellet was thawed on ice. To further facilitate cell disruption, pulsed sonication (5 x 

45 sec, 50 % power, 50 % impulse) was performed with a Sonoplus GM 7 from Bandelin (Berlin, 

Germany). The cell debris was removed by centrifugation at 50.000*g at 4°C for 20 min and the 

clarified supernatant was poured and used for further purification. 

 

8.1.12  ENZYME PURIFICATION  

Enzyme was purified as described previously (Brodhun et al., 2009). Briefly, cell pellet was 

resuspended in lysis-buffer (50 mM Tris-buffer, pH 7.5/ 5 mM EDTA/ 10 % (v/v) glycerol) and after 

cell disruption by lysozyme-treatment and ultrasonication a two-step chromatographical sequence 

was utilized with a strong anion exchanger for enzyme capture (Source 30Q (GE-healthcare, Freiburg, 

Germany) with 50 mM Tris-buffer, pH 7.5, and 5 mM EDTA; dV/dt = 2 ml/min; elution with a linear 

gradient from 0 to 300 mM NaCl over 25 min) and a size exclusion column (Superdex S200 26/60 (GE-

healthcare, Freiburg, Germany) with a 20 mM NaHEPES-buffer, pH 7.4; dV/dt = 2 ml/min) for 

polishing of the enzyme. 

 

8.1.13  SDS-POLYACRYLAMIDE-GEL ELEKTROPHORESIS (SDS-PAGE) 

SDS-PAGE were cast and run on a Mini-PROTEAN3 Electrophoresis System from Bio-Rad Laboratories 

GmbH (Muenchen, Germany). The samples were mixed with FIB’s Laemmli-buffer (Seesen, Germany) 

and boiled for 5 min. Typically, 10 µl of the denatured samples were loaded into the wells of the 

stacking gel and the gel was run with 30 mA until the bromphenol front was not visible anymore. 

Proteins were stained overnight by Coomassie Brilliant Blue and destained with water. Optionally, 
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protein-bands were excised and identified by ESI-MS. The latter was done by Dr. Oliver Valerius, 

Institute for Microbiology and Genetics, Georg-August-University, Goettingen.  

Stacking gel (4.8 %)  

0.5 M Tris/HCl,pH= 6.7; 0,4 % (w/v) SDS 

 

375 μl 

30 % Acrylamide/Bisacrylamide (12.5 : 1, w/v) 240 μl 

25 % (w/v) APS  3 μl 

TEMED 6 μl 

diH2O 885 μl 

 

Seperation gel (10 %)  

1.5 M Tris/HCl, pH = 8.8; 0,4%SDS 1000 µl 

30 % Acrylamide/Bisacrylamide (12.5 : 1, w/v) 1330 µl 

25 % (w/v) APS  3 μl 

TEMED 6 μl 

diH2O 1670 µl 

 

SDS-PAGE-buffer  

25 mM Tris/HCl, pH = 8.0  

200 mM glycerine    

0.1 % (w/v) SDS  

 

Coomassie-staining solution 

40 % (v/v) Methanol   

10 % (v/v) Acetic acid   

Coomassie Brilliant Blue G250  

 

8.1.14  UV-VIS  AND CD-SPECTROSCOPY  

UV-Vis spectra were recorded against a matching buffer on a Cary 100 Bio UV-visible 

spectrophotometer from Varian (Palo Alto, USA). The enzyme was diluted to an appropriate 

concentration (< 1 g/l) and measured in a 10 mm quartz cuvette. Enzyme-concentrations were 

determined utilizing the theoretically calculated specific extinction coefficient ε280 = 125 500 M-1 cm-1. 

 

CD-spectra were recorded on a Chirascan from Applied Photophysics (Leatherhead, UK) against 20 

mM HEPES-buffer, pH 7.4. The temperature was fixed at 20 °C and the enzyme concentration was 

adjusted to 1.2 mg/ml. For far-UV and Vis-CD spectra a 10 mm cuvette was used, while near-UV CD-

spectra were measured with enzyme placed in a 1 mm cuvette. 

 

8.1.15  TRYPTIC DIGESTION OF NATIVE PPOA 

For digestion of PpoA purified enzyme in 20 mM HEPES, pH 7.4, was treated with 1 : 200 (w/w) 

trypsin (Sigma; Steinheim; Germany). This mixture was incubated over night at 4 °C. For removal of 
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the protease, size exclusion chromatography was utilized as outlined in section 8.1.12. Alternatively 

the digested protein was directly analyzed by SDS-PAGE.  

 

8.1.16  GRAFIX  

The method for fixation of a certain oligomeric state within a density gradient was applied with 

modifications from literature (Kastner et al., 2008). For PpoA not a continuous, but a discontinuous 

saccharose gradient with a discontinuous glutaraldehyde gradient in the opposite orientation was 

used. The gradient was prepared in 50 mM HEPES, pH 7.5, and the gradient concentrations were 

adjusted as outlined in figure 12. The gradient was prepared in 12 ml tubes and PpoA was applied as 

thin, concentrated band on top of the gradient. Separation of the applied sample and concomitant 

fixation of a certain oligomeric state was accomplished by centrifugation 250000*g at and 4 °C for 48 

h. Using this protocol both, untreated and previously trypsin digested PpoA, were cross-linked.  

 

8.1.17  REDUCTIVE METHYLATION OF SURFACE EXPOSED LYSINES  

Reductive methylation was carried out as described in literature (Kim et al., 2008). For this kind of 

protein modification PpoA at a concentration of 7 g/l in 50 mM HEPES, pH 8.0/ 500 mM NaCl/ 5 % 

(v/v) glycerol/ 10 mM ß-mercaptoethanol was used. Alternatively also trypsin treated PpoA (section 

8.1.15) was used for this modification. Dimethylamine-borane (Sigma, Steinheim, Germany) was 

solved in water to a final concentration of 1 M and 1 M formaldehyde was prepared by boiling 300 

mg paraformaldehyde in 10 ml 50 mM HEPES, pH 8.0, over night at 95 °C. The methylation was 

accomplished by addition of 80 µl 1 M formaldehyde and 40 µl 1 M dimethylamine-borane to 2 ml of 

the protein. This mixture was incubated on ice for 2 h and the addition of methylating reagents was 

repeated two times. Upon incubation over night, the reaction was stopped by addition of glycine to a 

final concentration of 13.3 mM and DTT to a final concentration of 5 mM. Size exclusion 

chromatography was applied to exchange the buffer and remove the reagents.  

 

8.1.18  MEASURING DOX-KINETICS BY MONITORING DEPLETION OF DISSOLVED OXYGEN  

Continuous DOX-kinetics were measured by monitoring oxygen depletion during the reaction of 100 

to 500 nM Ppo-enzyme with various fatty acids in different concentrations. The reactions were 

conducted in 20 mM Na-HEPES, pH 7.5, and the temperature was adjusted with a water bath. Unless 

stated otherwise, the temperature was fixed at 27 °C. The respective substrate was prepared as 100-

fold EthOH stock solution and 10 µl of this stock were diluted in 980 µl buffer. Dissolved oxygen in 

the reaction was measured using an Oxygraph (a Clark-type electrode) from Hansatech Instruments 

(Norfolk, UK) and the reaction was started by addition of enzyme. For evaluation, velocity of 

dioxygenation was calculated by determination of the maximal slope of oxygen depletion and 

assuming a stoichiometric, equimolar reaction of oxygen with fatty acid. The measured signal was 

correlated with the dissolved oxygen level by calibrating the system with sodium dithionite. 

Therefore, in a completely oxygen-saturated buffer solution, all dissolved oxygen was reduced by 

addition of sodium dithionite. The amplitude of the resulting voltage decrease was equalized to the 

total dissolved oxygen amount at the respective temperature, as they are tabulated in literature.  



Experimental Part  

 

 

124 

 

8.1.19  SYNTHESIS OF 
1 4C-LABELED 8-HPODE  AND 8-HPODE  METHYL ESTER  

10 μl of 100 μCi·ml−1 1-14C1-linoleic acid (Perkin Elmer, Waltham, USA) and 5 μl of 500 g*l−1 peroxide-

free linoleic acid (Cayman, Ann Arbor, USA) were mixed in 400 μl methanol and converted to 

methylated linoleic acid by addition of 10 μl 2 M trimethylsilyl-diazomethane in hexane (Sigma-

Aldrich, Steinheim, Germany). The reaction was accomplished on a shaker at room temperature for 

30 min. After evaporation of the solvent under a gentle nitrogen stream, linoleic acid methyl ester 

was separated from the remaining free fatty acid by RP-HPLC. HPLC conditions were chosen identical 

to those described by Brodhun et al. (Brodhun et al., 2009). 14C-labeled 8-HPODE was produced by 

conversion of 10 μL of 100 μCi·ml−1 1-14C1-linoleic acid and 5 μl of 500 g*l−1 peroxide-free linoleic acid 

by PpoA–His1004Ala (Brodhun et al., 2009). The fatty acid peroxide product was isolated by RP-HPLC 

and subsequently the corresponding methyl ester was furnished by reaction with trimethylsilyl-

diazomethan. The methylated 8-HPODE was again isolated by RP-HPLC. These substrate methyl 

esters were finally converted with 100 nM of the respective enzyme in 20 mM HEPES, pH 7.4, for 30 

min at room temperature. After extraction with diethyl ether, the conversion products were 

analyzed by RP-HPLC coupled to a Ramona Star scintillation counter (Raytest, Straubenhardt, 

Germany). 

 

8.1.20  SUBSTRATE CONVERSION AND ANALYSIS OF THE PRODUCT PATTERN BY LC-MS2  

Reactions were typically carried out in Na-HEPES (20 mM, pH 7.5). The reaction buffer was prepared 

by dilution of the 100-fold substrate working concentration (10 μl; prepared in EtOH) in buffer (980 

μl). Enzymatic conversion was started by mixing this buffer with PpoA. Subsequently, the reaction 

was shaken for two minutes and stopped afterwards by extraction with Et2O. The solvent was 

evaporated under a N2-stream and the products were redissolved in MeCN/H2O/HAc (50 : 50 : 0.1 

(v/v)). LC/MS2 was performed as described previously (Brodhun et al., 2009). The relative product 

distribution was determined by relation of the respective product signal-intensity to the intensity-

sum of all products formed. Therefore, the single products were identified by MS2. Both, the use of 

deuterium labels at different sites of the fatty acid backbone as well as conversion of the substrate’s 
13C18-isotopologue, allowed a reliable identification of the single fragments and facilitated the 

identification of the products formed. The signals of the distinct products were integrated after 

extracting the molecular weight of the product from the total ion count of the MS. To calculate the 

molecular weight of the products, deprotonation of the carboxylic group and isotopologues of the 

substrate have to be considered.  

 

8.1.21  MEASUREMENT OF TYROSYL RADICAL DISTANCES BY DEER 

Cw-EPR spectra were recorded on a Bruker EMX spectrometer equipped with a Bruker ER041 bridge. 

The resonator was cooled by a liquid helium cryostat from Oxford Instruments. Detailed parameters 

of the measurement are specified elsewhere (Fielding et al., 2011). 

 

Pulsed EPR-measurements were perfomed on a Bruker ELEXSYS E580. Temperature was adjusted 

using a liquid helium cryostat CF935 from Oxford Instruments. For highest sensitivity, the 
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measurements were performed at 6 K (determination of relaxation times and echo detected field 

sweeps) and 5 K (four-pulse DEER), respectively. Measurement of T1 was done utilizing an inversion 

recovery sequence:  -τ1- /2-τ2- -τ2-detect, with τ1 being increased. The time window of this 

experiment was adjusted to a length that covered a complete saturation of the signal. Tm was 

measured with a two-pulse echo decay experiment:  /2-τ1- -τ1-detect, with τ1 being increased. 

Depending on the relaxation time, the time window was adjusted to cover the whole exponential 

decay. DEER data were collected utilizing the dead-time free four-pulse sequence presented in 

section 3.4.1 (Pannier et al., 2000). Distance distributions were extracted from dipolar time evolution 

data using Tikhonov regularization as implemented in DeerAnalysis2011 (G. Jeschke et al., 2006). 

 

8.1.22  D IRECT ELECTROCHEMISTRY OF PPOA  WITHIN A SURFACTANT FILM  

A self assembled DDAB-film was established on an electrode made of pyrolytic graphite by air 

evaporating 3*10 µl of a DDAB-solution (0.1 M in chloroform) on the electrode. Subsequently, PpoA 

wild type enzyme was bound to this surfactant film by equilibration of the electrode in a 25 µM 

PpoA-solution (in 20 mM HEPES, pH 7.4) for one week at 4 °C. Enzyme integrity after this incubation 

was checked by UV/Vis-spectroscopy of the enzyme solution and conversion of linoleic acid. The 

electrode itself was utilized as working electrode to measure cyclic and square wave 

voltammograms. In both cases Ag was utilized as reference electrode, a Pt-wire served as counter-

electrode and 50 mM NaBr in 50 mM Na2HPO4, pH 7.4, was utilized as electrolyte. Cyclic 

voltammograms were obtained in a range from -1 V to 0.8 V while the scan-rate was varied between 

10 and 50 mV/sec. Square wave voltammograms were obtained in a range between -1 and 0 V.  

 

8.1.23  IMIDAZOLE TITRATION AND SPECTRAL BINDING  ASSAY  

 

Spectral binding assays were performed as described in literature (Yeh et al., 2005). Therefore, the 

enzyme solution (1 mg/ml in 20mM HEPES, pH 7.5) was titrated with a concentrated imidazole stock 

solution. The vis-spectrum was recorded upon each imidazole addition. For evaluation the 

difference-spectrum was calculated and the peak-trough difference was plotted against the 

imidazole concentration. Dissociation constants were calculated assuming either a one-site 

(            
                

               
) or a two-site (            

                 

                
 + 

                 

                
) binding model.  
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8.2 Bioinformatic methods 

Molecular weight and ε280 of PpoA were calculated using the ProtParam tool from Swissprot 

(http://web.expasy.org/protparam/). 

 

For template-based structure prediction several algorithms have been tested (e.g. 

http://raptorx.uchicago.edu/; http://casp.rnet.missouri.edu/multicom_3d.html), but finally I-TASSER 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER/) was chosen. 

 

Chimera 1.5.3 was obtained from University of California, San Francisco 

(http://www.cgl.ucsf.edu/chimera/download.html) and utilized for molecular modeling as well as 

rendering. Raytracing was performed with POV-Ray (http://www.povray.org/).  

 

Amino acid identities and similarities were calculated using the web interface SIAS 

(http://imed.med.ucm.es/Tools/sias.html). 

 

Sequence alignments and analysis was done using the BioEdit package from Ibis Biosciences 

(http://www.mbio.ncsu.edu/bioedit/bioedit.html).  

 

2D Plots of active site residues were calculated with LigPlot+ (http://www.ebi.ac.uk/thornton-

srv/software/LigPlus/) (Laskowski and Swindells, 2011). 
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I am just a dwarf standing on the shoulder of giants 
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filling up my physical energy reservoirs in a tasty way. Last but not least, I want to express my 

gratitude to Gerhard Marder. His steady engagement in order to maintain the lab equipment was an 
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Feußner, for careful reading the manuscript of this thesis and supporting its writing with valuable 
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homologue. Also the head of the Department, Prof. Kai Tittmann, gave valuable input to this thesis 
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meetings. Small angle X-ray scattering data, were obtained at the X-33 beamline at the DESY in 

Hamburg. Therefore, I am grateful to the BioSAXS-group of Prof. Dimitri Svergun, and especially the 

help of Giancarlo Tria in obtaining and interpreting the data is emphasized here. In this context, I also 

want to express my gratitude to Dr. Oliver Valerius (Department of Molecular Microbiology and 

Genetics, University Goettingen), who determined exposed trypsin cleavage sites in the native 
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enzyme by ESI-MS. The attempts to crystallize PpoA were conducted in the group of Prof. Ficner and 

the practical help of Michael Franke and Daniel Weinrich are acknowledged. I am especially indebted 

to Dr. Piotr Neumann, who gave me advice of how to proceed and, most important, encouraged me, 

whenever the experiments did not work as they should. DNA-sequencing was performed in the 

group of Prof. Pieler (Department of Developmental Biochemistry, University Goettingen) by Andreas 
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1111  AABBBBRREEVVIIAATTIIOONNSS  

Å- Angstrom, 10-10 m 

A- Deoxyadenosine  

Ala- Alanine 

α-DOX- Alpha dioxygenase 

AOS- Allene oxide synthase 

APS- Ammonium persulfate 

Arg- Arginine 

Asn- Asparagine 

a.u.- Arbitrary units 

bp- Base pair  

°C- Degree Celsius  

C- Deoxycytidine 

C5-d2-OA- (9Z) 5,5-Dideutero-octadec-9-enoic acid 

C8-d2-OA- (9Z) 8,8-Dideutero-octadec-9-enoic acid 

Cw- Continuous wave 

Cys- Cysteine 

Da- Dalton 

DEER- Double electron electron resonance 

diH2O- Deionized water 

DiHODE- (9Z, 12Z) Dihydroxy-octadeca-9,12-dienoic acid  

DiHOME- (9Z) Dihydroxy-octadec-9-enoic acid  

DMSO- Dimethyl sulfoxide 

DNA- Deoxyribonucleic acid  

dNTP- Deoxyribonucleotide triphosphate  

D2O- Deuterium oxide 

DOX- Dioxygenase 

DTT- Dithiothreitol 

E- Glutamic acid 

EDTA- Ethylenediaminetetraacetic acid  

EM- electron microscopy 

EPR- Electron paramagnetic resonance 

ESI- Electrospray ionisation 

Et2O- Diethyl ether  

EtOH- Ethanol 

F- Phenylalanine 

G- Deoxyguanosine 

g- Gram 



Abbreviations  

 

 

144 

 

Gln- Glutamine 

Glu- Glutamic acid 

GraFix- Gradient Fixation 

h- Hours 

H- Histidine 

HAc- Acetic acid 

HCl- hydrochloric acid 

His- Histidine 

HEPES- 4-(2-hydroxyethyl)-1-piperazine-ethanesulfonicacid  

HODE- (9Z, 12Z) Hydroxy-octadeca-9,12-dienoic acid 

HOME- (9Z) Hydroxy-octadec-9-enoic acid 

HPLC- High performance liquid chromatography  

HPODE- (9Z, 12Z) Hydroperoxy-octadeca-9,12-dienoic acid 

HPOME- (9Z) Hydroperoxy-octadec-9-enoic acid 

HR- High resolution 

IPTG- Isopropyl-β-D-thiogalaktoside  

IUPAC- International Union of Pure and Applied Chemistry 

kD- Dissociation constant 

KIE- Kinetic isotope effect 

KODE- (9Z, 12Z) Oxo-octadeca-9,12-dienoic acid 

KOME- (9Z) Oxo-octadec-9-enoic acid 

l- Liter  

L- Leucine 

 - Wavelength  

LDS- Linoleate diol synthase 

Leu- Leucine 

LOX- Lipoxygenase 

M- Molar (mole per liter) 

m- Meter 

mA- Milliampere 

MeCN- Acetonitrile 

Met- Methionine 

MetOH- Methanol 

MPI- Max Planck Institute 

MS- Mass spectrometry 

MW- Molecular weight 

m/z- Ratio of mass to charge 

N- Asparagine 

ODX- Optical density at a wavelength of X nm  

P450- Cytochrome P450 
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PCR- Polymerase chain reaction 

PDB- Protein data base (http://www.rcsb.org/pdb/home/home.do) 

PELDOR- Pulsed electron double resonance 

PGIS- Prostacyclin synthase 

PGHSx- Prostaglandin H2 synthase, isoform x 

pH- The negative decadic logarithm of hydrogen- ion activity [- log10[H3O]+ 

Phe- Phenylalanine 

PIPES- Piperazine- N,N′- bis- ethanesulfonic acid 

PPIX- Protoporphyrin IX 

Ppo- Psi- factor producing oxygenase 

Psi- Precocious sexual inducer 

Q- Glutamine 

R- Arginine 

RMSD- Root- mean- square deviation 

rpm- Rotations per minute  

RP- Reverse phase 

RT- Room temperature 

s- Second  

SAXS- Small-angle X- ray scattering 

SDS- Sodium dodecyl sulfate  

SRS- Substrate recognition site (of cytochrome P450s) 

T- Deoxythymidine 

T1- Spin- lattice relaxation 

T2- Spin- spin relaxation 

Tm- Phase memory time 

TEMED- N,N,N′,N′- Tetramethylethylenediamine 

TFA- Trifluoroacetic acid 

Tris- 2- Amino- 2- hydroxymethyl- propane- 1,3- diol 

Trp- Tryptophane 

Tyr- Tyrosine 

U- Unit (unit of enzyme activity)  

UV- Ultra violet  

vis- Visible 

V- Volt 

Val- Valine 

v/v- Volume per volume 

W- Tryptophane 

Wt- Wild type 

w/v- Weight per volume   

Y- Tyrosine 
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